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Summary 

South American countries highly rely on hydropower for their electricity supply and the 

deployment of remaining untapped hydropower potential is the cornerstone of national 

generation capacity expansion plans. However, given the dependency of hydropower on 

water availability, risks associated with weather and climate variability could jeopardize the 

security of electricity supply of these countries. 

In the case of Ecuador, according to government plans, fossil fuel thermal power plants 

will continue playing an important role in meeting the demand during the dry periods. 

A more sustainable and resilient strategy would be to diversify the power mix focusing on 

exploiting the complementarities between hydropower and other variable renewable 

energies, such as wind and solar. However, the deployment of these technologies in the 

country is still at a very early stage and there are some challenges to be tackled. 

Due to the varying nature of solar and wind resources, the optimal planning and 

deployment of solar and wind power that could potentially complement hydropower 

requires detailed knowledge of the spatial and temporal variability of the resources. 

Unfortunately, long-term, high-quality solar irradiance and wind speed measurements are 

generally scarce and sparsely distributed, challenging the characterization of solar and 

wind resources at a country level. The complex climatic characteristics and topography of 

Ecuador represent another challenge to better understand the spatio-temporal dynamics 

between renewable resources, as well as the potential synergies of solar and wind power 

generation to compensate hydropower during the dry periods. 

The main research goal of this dissertation is to develop tools and data to support the 

optimal planning of a more sustainable and resilient power system in Ecuador by 

systematically investigating the spatio-temporal variabilities and synergies of renewable 

resources in the complex terrain of Ecuador. For this purpose, climate data, machine 

learning techniques, and power system modeling tools are used.  

The lack of solar and wind resource data is addressed by processing satellite-derived 

solar irradiance data and by using numerical weather prediction models to simulate wind 

resources. The generated meteorological datasets for Ecuador have a temporal resolution 
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of one hour and a spatial resolution of 3 ´ 3 km. They comprise 21 years (1998–2018) of 

solar irradiance data and 14 years (2005–2018) of bias-corrected wind speed and wind 

direction data at a turbine hub heigh of 80 m. 

A novel methodology to characterize the spatio-temporal variability of gridded solar and 

wind resource datasets is proposed and demonstrated. Spatial functional data analysis 

(sFDA) is used to identify spatial subregions with similar intra-annual variability patterns of 

solar radiation and wind speed. Finally, the ability of geographically-dispersed photovoltaic 

(PV) and wind power systems to reduce the power output variability and provide reliable 

power generation is assessed by using power system performance models. 

This dissertation provides the first comprehensive spatio-temporal characterization of 

solar radiation and wind speed in Ecuador. The identified subregions from the 

sFDA regionalization approach are the basis for the assessment of the complementarity 

between solar and wind to water resources of existing and planned hydropower plants. 

One of most important finding is that solar and wind resources have a strong spatio-

temporal complementary behavior with water resources from both the Amazon and Pacific 

basins. This demonstrates that the seasonal variability of hydropower can be compensated 

by geographically-dispersed PV and wind power systems.  

Another important finding is that the joint operation of PV and wind power systems 

from different subregions reduces the intrinsic variability of each resource. Wind power at 

a high-resource site (52% capacity factor) paired with PV from different subregions can 

provide the highest level of firm capacity (up to 5.5% of the combined capacity) for 87.5% of 

the time in a year. Furthermore, wind power from subregions with high resources stabilizes 

PV power output at diurnal timescales during the windy months (June–September), 

suggesting that both technologies could serve as baseload during this period, thus reducing 

the requirements for energy storage. The identified operational benefits of the spatio-

temporal synergies among renewable power generation may provide economic incentives 

to increase the participation of PV and wind power in the Ecuadorian power mix. 

These findings demonstrate that solar and wind power can play an important role in 

shaping a more sustainable and resilient power system in the country. The insights gained 

in this dissertation, as well as the provided data and tools, will support power sector 

planners and decision-makers in the development of strategies for the optimal expansion 

of solar and wind power technologies to complement hydropower and to reduce the 

dependencies on fossil fuel thermal power.  
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This dissertation contributes to the ongoing discussion on renewable energy 

complementarities in the region and the proposed methodology can be transferred to other 

countries to support optimal capacity expansion planning. Furthermore, the methods and 

data developed in this dissertation provide the groundwork for further research into energy 

system modeling. 

Keywords: spatio-temporal variability, solar irradiance, wind speed, hydropower, PV, 
wind power, resilient energy systems, complementarity, energy meteorology, functional 

data analysis, clustering, Ecuador. 
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Zusammenfassung 

Die Stromversorgung der Länder Südamerikas basiert in hohem Maße auf Wasserkraft 

und die Erschließung noch ungenutzter Wasserkraft-Potenziale ist der Eckpfeiler der 

nationalen Ausbaupläne zur Stromerzeugung. Da die Wasserkraftwerke jedoch von der 

Verfügbarkeit von Wasser abhängig sind, können durch Wetter- und Klimavariabilität 

entstehende Risiken die Sicherheit der Stromversorgung in diesen Ländern gefährden. 

In Ecuador werden nach den Plänen der Regierung thermische Kraftwerke auf der Basis 

fossiler Brennstoffe weiterhin eine wichtige Rolle in der Stromversorgung während der 

Trockenperioden einnehmen. Eine nachhaltigere und resilientere Strategie wäre die 

Diversifizierung des Strommixes unter Nutzung der Komplementarität von Wasserkraft und 

anderen erneuerbaren Energien wie Wind- und Solarenergie. Allerdings befindet sich der 

Ausbau dieser Technologien im Land noch in einer sehr frühen Phase und einige 

Herausforderungen sind hierbei zu bewältigen. 

Aufgrund des fluktuierenden Charakters der Solar- und Windressourcen erfordert die 

optimale Planung und Nutzung von Sonnen- und Windenergie zur Ergänzung von 

Wasserkraft detaillierte Kenntnisse über die räumliche und zeitliche Variabilität dieser 

Ressourcen. Leider sind qualitativ hochwertige Langzeitmessungen der Solarstrahlung 

und der Windgeschwindigkeit häufig kaum oder nur für wenige Messpunkte verfügbar, was 

die Charakterisierung der Solar- und Windressourcen auf Landesebene erschwert. 

Die komplexen klimatischen Bedingungen und die Topografie Ecuadors stellen eine 

weitere Herausforderung für das Verständnis der räumlich-zeitlichen Dynamik zwischen 

den erneuerbaren Ressourcen sowie der Möglichkeiten der Solar- und 

Windenergieerzeugung zur Kompensation des geringeren Outputs von Wasserkraftwerken 

während der Trockenperioden dar. 

Das Hauptziel dieser Dissertation ist die Entwicklung von Tools und Daten, um die 

Planung eines nachhaltigeren und resilienten Stromversorgungssystems in Ecuador zu 

unterstützen, durch die systematische Untersuchung der räumlich-zeitlichen Variabilität 

und der Synergien zwischen erneuerbaren Ressourcen im komplexen Terrain 
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Ecuadors. Zu diesem Zweck werden Klimadaten, Techniken des maschinellen Lernens 

und Modellierungstools für Stromversorgungssysteme eingesetzt.  

Der Mangel an Daten über Solar- und Windressourcen wird durch die Verarbeitung der 

von Satellitendaten abgeleiteten Solarstrahlungsdaten und durch die Verwendung 

numerischer Wettervorhersagemodelle zur Simulation der Windressourcen behoben. 

Die erzeugten meteorologischen Datensätze für Ecuador haben eine stündliche zeitliche 

Auflösung und eine Rasterauflösung von 3 ´ 3 km. Die Datensätze umfassen 21 Jahre 

(1998–2018) Solarstrahlungdaten und 14 Jahre (2005–2018) bias-korrigierter 

Windgeschwindigkeits- und Windrichtungsdaten auf einer Nabenhöhe von 80 m. 

Zur Charakterisierung der räumlich-zeitlichen Variabilität von gerasterten Solar- und 

Windressourcendatensätzen wird eine neue Methodik vorgeschlagen und demonstriert. 

Mit Hilfe der spatial functional data analysis (sFDA) werden räumliche Teilregionen mit 

ähnlichen unterjährigen Variabilitätsmustern in der Sonneneinstrahlung und 

Windgeschwindigkeit identifiziert. Schließlich wird die Fähigkeit geografisch verteilter 

Photovoltaik- (PV) und Windkraftanlagen, die Variabilität der Leistungsabgabe zu 

verringern und eine zuverlässige Stromerzeugung zu gewährleisten, mit Hilfe von 

Stromversorgungsmodellen bewertet. 

Diese Dissertation stellt die erste umfassende räumlich-zeitliche Charakterisierung 

der Solarstrahlung und der Windgeschwindigkeit im Gebiet Ecuadors dar. Die mit dem 

sFDA-Regionalisierungsansatz identifizierten Teilregionen bilden die Grundlage für die 

Bewertung der Komplementarität zwischen Solar- und Windressourcen und den 

Wasserressourcen bestehender und geplanter Wasserkraftwerke. Eines der wichtigsten 

Ergebnisse ist, dass Solar- und Windressourcen ein starkes räumlich-zeitliches 

Komplementärverhalten zu den Wasserressourcen des Amazonas- und Pazifikbeckens 

aufweisen. Dies zeigt, dass die saisonalen Schwankungen der Wasserkraft durch 

geografisch verteilte PV- und Windkraftanlagen kompensiert werden können.  

Ein weiteres wichtiges Ergebnis ist, dass der gemeinsame Betrieb von PV- und 

Windkraftanlagen in räumlich getrennten Teilregionen die inhärente Variabilität jeder 

einzelnen Ressource reduziert. Windkraft an dem Standort mit den stärksten Ressourcen 

(52% Kapazitätsfaktor) kann zusammen mit PV-Anlagen in verschiedenen Teilregionen 

während 87,5% der Zeit im Jahr eine hohe Grundleistung (bis zu 5,5% der 

kombinierten Kapazität) bereitstellen. Darüber hinaus stabilisiert die Windenergie aus 

Teilregionen mit hohen Ressourcen die PV-Energieproduktion in den windreichen Monaten 

(Juni–September) auf der täglichen Zeitskala, was darauf hindeutet, dass beide 
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Technologien in diesem Zeitraum als Grundlast dienen können, wodurch sich der Bedarf 

an Energiespeichern verringert. Die festgestellten operativen Vorteile der räumlich-

zeitlichen Synergien bei der Stromerzeugung aus erneuerbaren Energien können 

wirtschaftliche Anreize für einen Ausbau des Anteils von PV und Windenergie am 

ecuadorianischen Strommix bieten. 

Diese Ergebnisse zeigen, dass Solar- und Windenergie eine wichtige Rolle bei der 

Gestaltung eines nachhaltigeren und resilienteren Stromversorgungssystems in Ecuador 

einnehmen können. Die in dieser Dissertation gewonnenen Erkenntnisse werden Planern 

und Entscheidungsträgern im Energiesektor bei der Entwicklung von Strategien für den 

optimalen Ausbau dieser Technologien zur Ergänzung von Wasserkraft und zur Reduktion 

der Abhängigkeit von fossilen Brennstoffen unterstützen. Damit wird ein Beitrag zur 

laufenden Diskussion über die Komplementarität erneuerbarer Energien in dieser Region 

geleistet, wobei die vorgeschlagene Methodik auf andere Länder übertragen werden kann, 

um eine optimale Planung des Kapazitätsausbaus zu unterstützen. Darüber hinaus bilden 

die in dieser Dissertation entwickelten Methoden und Daten eine wertvolle Grundlage für 

weitere Forschungsarbeiten in der Energiesystemmodellierung. 

Schlagwörter: räumlich-zeitliche Variabilität, Solarressourcen, Windressourcen, 

Wasserkraft, Photovoltaik, Windkraft, resiliente Energiesysteme, Komplementarität, 

Energiemeteorologie, Clustering, Ecuador. 
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Chapter 1 Introduction 

1.1. Background 

Hydropower is a low greenhouse gas emitting renewable energy that plays an important 

role in today’s electricity mix, sharing 16% of electricity generation worldwide and 

about 45% of the total renewable capacity (IEA, 2021a). South American countries have 

important untapped potentials for hydropower generation and its deployment is at the core 

of the national energy strategies of countries like Bolivia, Ecuador, Paraguay, Chile and 

Brazil (IHA, 2017). 

In the case of Ecuador, the natural geographic distribution of the Andes divides the 

country into two drainage basins: the Amazon and the Pacific, which together represent a 

technical potential for hydropower generation of 91 GW, from which 22 GW are assumed 

to be technically and economically feasible (CONELEC, 2013). The Ecuadorian 

government made targeted investments for hydropower infrastructure development in the 

Amazon basin during the 70’s and 80’s; however, this development was considerably 

diminished due to political and financial instabilities, especially between 1996 and 2008. 

During this time the country tried and failed to create a decentralized energy market, which 

was intended to provide economic incentives for private investors to develop new 

hydropower generation capacity (CONELEC, 2012; Zambrano-Barragan, 2012). 

This situation led to a crisis in the energy sector that reached a critical point by the end 

of 2009, when the Amazon basin had the lowest river inflow in the last 46 years (47% lower 

than the November average) and the country faced several electricity shortages until the 

beginning of 2010 (Schaeffer et al., 2013). At that time, to compensate the lack of 

generation, the government expanded the fossil fuel thermal power portfolio and the 

amount of electricity imports from neighboring countries (Fig. 1-1). As a consequence, 

Ecuador's power mix increased in carbon intensity and was further exposed to the risks of 

energy imports, both with respect to fuel price volatility and uncertain electricity supply from 

neighboring countries (Zambrano-Barragan, 2012). 

To achieve electricity self-sufficiency and reduce the expenditure on fuels for the power 

sector, the Ecuadorian government, based on the legal framework in place since 2008 that 
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allowed the recovery of the state control in the energy sector, established strategic 

generation capacity expansion plans focused on the construction of eight flagship 

hydropower projects with a total installed capacity of 2832 MW (CONELEC, 2013). Most of 

the new capacity consisted of five hydropower projects in the Amazon basin, of which the 

largest projects Coca Coda Sinclair (1500 MW) and Sopladora (487 MW) started operating 

in 2016. The remaining three projects are located in the Pacific basin, two of which already 

started operations: Manduriacu (50 MW) in 2016 and Minas San Francisco (275 MW) in 

2018 (ARCERNNR, 2020). 

 

Fig. 1-1. Annual electricity generation in Ecuador during 2008–2020 disaggregated by supply source. 
Source: Own representation, data from ARCERNNR (2022a). 

By 2020, the total installed generation capacity in Ecuador reached 8095.25 MW 

(ARCERNNR, 2022a), comprised by a large share of hydro and thermal power (62.56% 

and 35.09%, respectively), with a negligible participation of solar, wind, and other non-

hydro renewables (Fig. 1-2). 

 

Fig. 1-2. Ecuadorian power mix in 2020. Source: Own representation, data from ARCERNNR (2022a). 
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Ecuador is planning to continue with this hydro-thermal configuration to meet the 

country’s electricity demand in the mid- and long-term. By 2027, new large-scale 

hydropower projects in the Amazon basin are planned to add about 3000 MW of 

generation capacity, while fossil fuel thermal power will account for 12% of the power mix 

(MERNNR, 2018). Until 2040, it is planned that hydropower will be the main electricity 

supply source, maintaining at least a 70% share of the annual electricity production 

(MICSE, 2016). 

1.2. Problem definition 

The Ecuadorian government’s strategy highly relies on hydropower and fossil fuel 

thermal power to meet the country’s electricity demand. However, given the dependency 

of hydropower on water availability and the negative effects of fossil fuels, risks associated 

with weather and climate variability could jeopardize the security of the electricity supply in 

the country. 

The Amazon and Pacific basins have a quasi-complementary energy production regime 

from February to April in the Pacific basin and from May to August in the Amazon basin 

(CONELEC, 2013). Nevertheless, between November and February, water resources are 

limited on both sides. Therefore, the vulnerability of the Ecuadorian power system grows 

proportionally with the increased probability of simultaneous critical hydrological scenarios 

in both basins (Schaeffer et al., 2013). 

Another significant threat in the region is the cyclical climate period known as El Niño-

Southern Oscillation (ENSO), which has an impact on the precipitation patterns in the 

tropical Pacific and could represent severe floods or droughts in timescales of two to about 

seven years (A. Bendix et al., 2006; Chiew et al., 2002; Trenberth, 2019). The ENSO driven 

variability in global and regional hydropower generation was investigated by 

Ng et al. (2017), who found from simulations that more than one third of the dams exhibit 

statistically significant annual energy production anomalies during ENSO events. 

Furthermore, global climate change could add a significant amount of uncertainty to the 

natural climate variability, increasing the frequency and intensity of critical hydrological 

periods (Schaeffer et al., 2013). According to a recent study, hydropower generation in 

Ecuador is highly uncertain and sensitive to climate change, as variations in inflow to 

hydropower plants would directly lead to changes in the expected hydropower annual 

output (Carvajal et al., 2017). 
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To mitigate the aforementioned risks, a number of strategies have been suggested to 

help hydropower plants cope with weather and climate related variabilities. One strategy is 

to invest in reservoir capacity in order to compensate for seasonal variation of river inflow 

(Schaeffer et al., 2013). However, most of the existing hydropower plants in Ecuador do 

not have reservoirs and the planned projects are run-of-river plants located in the Amazon 

basin with small regulation reservoirs, which would not provide seasonal regulation. 

Furthermore, despite the fact that hydropower plants with reservoirs are less sensitive to 

inflow changes than run-of-river plants, any storage capacity would be ineffective under 

extremely dry climate change scenarios (Carvajal et al., 2017). 

Another strategy is to rely on the use of existing and new fossil fuel thermal power plants 

to increase the margin of reserve (Schaeffer et al., 2013), which is the approach of the 

Ecuadorian government for the cases of low hydrological scenarios (MERNNR, 2018). 

However, the increase of fossil fuel thermal power generation will correspondingly increase 

the production of greenhouse gas emissions, causing environmental impacts and 

strengthening the effects of climate change. 

This dissertation explores a more sustainable and resilient strategy that involves 

leveraging the complementarity behavior that the generation profiles of variable renewable 

energy (VRE), namely, solar and wind, might have to the hydrological regime. The positive 

impacts of the VRE–hydro synergies on the economic performance and reliability of the 

power systems, as well as their contribution to the energy security of countries in South 

America, have been highlighted in recent studies (e.g., IRENA (2016), Paredes and 

Ramírez (2017)). Furthermore, this strategy is more aligned to the guiding concept ‘resilient 

systems’ that aims at describing design principles to prepare energy systems to the 

unexpected (Gleich et al., 2019; Gößling-Reisemann, 2016). Resilience is understood as a 

(socio-technical) system’s ability to maintain its services under stress and in turbulent 

conditions (Gleich et al., 2010). Diversity, redundancy, decentralization, and geographical 

dispersion of power supply sources are all key resilience-enhancing design principles, 

which aim at helping the power supply system to be prepared for and to cope with the 

aforementioned weather and climate related variabilities, as well as to other 

uncertain stressors (Brand et al., 2017; Gleich et al., 2019; Gößling-Reisemann, 2016; 

Gößling-Reisemann et al., 2019). 

There are, however, some challenges that need to be tackled to scale up the share of 

solar and wind technologies in the Ecuadorian power mix. A key question for capacity 

generation expansion planning is where to install new wind and/or solar power plants that 

could potentially complement hydropower during the dry periods. This is a relevant issue 



Introduction 

 5 

in countries such as Ecuador where the deployment of these technologies is still at a very 

early stage. An increase of the solar installed capacity occurred in 2014 

(from 3.9 to 26.4 MW) (ARCERNNR, 2020); however, there have been no major new 

capacity additions since that time. The same is true for wind power capacity since 2013, 

when the only wind farm in Ecuador’s mainland, Villonaco (16.5 MW), started operations 

(ARCERNNR, 2020).  

According to the latest Ecuadorian generation capacity expansion strategy, Plan 

Maestro de Electricidad 2018–2027, the planned non-hydro renewable energy capacity is 

estimated based on resource atlases and described as two blocks of 900 MW total, which 

was expected to be commissioned sequentially by 2023 (MERNNR, 2018). From this total 

capacity, only 310 MW correspond to specific on-going projects (two wind farms of 

110 MW total and one utility-scale photovoltaic (PV) farm of 200 MW), while the technology 

and location of the remaining planned capacity is still to be defined (MERNNR, 2018). 

However, due to the varying nature of solar and wind resources, the optimal planning 

and deployment of solar and wind power that could potentially complement hydropower 

requires more comprehensive resource variability assessments. Such assessments will 

provide relevant information to decision-makers for solving the optimal siting and sizing 

problem. Beside the magnitude of solar radiation that resource atlases provide, a complete 

characterization of the solar resource should also include the analysis of the variability of 

the solar radiation over time and space, at different timescales and distance ranges 

(Gueymard et al., 2011). The same applies for the characterization of the wind resource 

(Watson, 2014). Unfortunately, the lack of long-term and high-resolved measurements of 

solar irradiance and wind speed hinders such assessments, representing a significant 

hurdle not only for Ecuador, but also for many South American countries (IRENA, 2017). 

An additional challenge to better understand the variability of solar and wind resources 

in Ecuador is the complex climate and topography of the country. From a climatic point of 

view, the country is influenced by the displacement of the Intertropical Convergence Zone 

(ITCZ), the Pacific Ocean sea surface temperature fluctuations, the trade winds, the 

influence of Hadley and Walker circulation cells, and moisture advection from the Amazon 

(Ballari et al., 2018). From a topographic point of view, Ecuador includes a wide variety of 

terrain, ranging from flat coastal plains, rugged complex mountains in the Andes, rain forest 

lowlands in the Amazon, and volcanic origin islands in the Galapagos (Fig. 1-3). 

The assessment of the contribution of solar and wind power to reduce the power output 

variability in such a complex terrain is another challenge to be tackled. Previous studies 
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have highlighted that the jointly operation of geographically-dispersed renewable power 

plants can significantly smooth out the power output and contribute to baseload power 

(e.g., Archer and Jacobson (2007), Santos-Alamillos et al. (2015)). However, the lack of 

wind and solar resource data at a high spatial and temporal resolution has hindered the 

evaluation of these potential benefits for the power supply system. 

 

Fig. 1-3. Digital elevation map of Ecuador's mainland and the Galapagos Islands. Source: Own representation, 
data from IGM (2021), Watkins (2021). 

Altogether, the Ecuadorian power planning sector encounters four central challenges to 

increase the share of solar and wind technologies that could complement hydropower: 

(i) the lack of historical, long-term, high-resolved, and validated meteorological datasets; 

(ii) the lack of an accurate characterization of the spatio-temporal variability of solar and 

wind resources in complex terrain; (iii) the lack of a comprehensive analysis of the spatio-

temporal dynamics between solar, wind, and water resources; and (iv) the lack of a 

comprehensive analysis of the spatio-temporal synergies of geographically-dispersed PV 

and wind power generation to reduce the power output variability and provide reliable power 

generation.  
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1.3. Research objectives and scope 

Based on the background and the problem statement described above, the main 

research goal of this dissertation is to develop tools and data for the optimal planning of a 

more sustainable and resilient power system in Ecuador by systematically investigating the 

spatio-temporal variabilities and synergies of renewable resources in the complex terrain 

of Ecuador.  

To accomplish this research goal, four research objectives are defined: 

1. To generate long-term and high-resolved solar and wind resource datasets for 

Ecuador. 

2. To develop a new methodology based on spatial functional data analysis for the 

characterization of the spatio-temporal variability of solar and wind resources. 

3. To analyze the spatio-temporal correlation between solar, wind, and water 

resources in Ecuador based on long-term and high-resolved meteorological datasets. 

4. To analyze the opportunity of wind and solar power to enhance the resilience of the 

Ecuadorian power supply system by accounting the spatio-temporal synergies of 

renewable power generation. 

This is the first study to undertake a systematic investigation from an energy 

meteorology perspective that addresses the aforementioned challenges confronting the 

Ecuadorian power planning sector. The findings of this dissertation represent the first 

comprehensive assessment of renewable power generation in Ecuador, which aims at 

supporting a sustainable energy transition in the country. 

The study area comprises Ecuador’s mainland and the Galapagos Islands, which are 

located 1000 km west from the Ecuadorian coast (Fig. 1-3). Although there is no 

hydropower in Galapagos, the islands rely heavily on diesel fuel imported from the mainland 

to generate electricity (Apolo et al., 2019). Considering the importance of the conservation 

of the marine and terrestrial ecosystems in Galapagos, this area is also included in the 

study to support the transition towards 100% renewable energy in the islands. 

This dissertation is exclusively focused on the generation side of the power supply 

system. The analysis of transmission and distribution grid, as well as the economic aspects 

of solar and wind technologies are outside the scope of this study. Ecuador is chosen as a 

case study due to its complex climatic characteristics and topography, as well as the power 

sector particularities. Nevertheless, the proposed methodology can be transferred to other 

countries or regions to support the optimal planning of generation capacity expansion. 
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1.4. Dissertation outline 

The schematic overview of the structure of this dissertation is depicted in Fig. 1-4, where 

the colored blocks represent the approaches used to address the research objectives. 

These approaches are explained in detail in the remaining part of this dissertation as follow. 

 
Fig. 1-4. Schematic overview of the structure of this dissertation. Each colored block represents the approaches 
used to address the research objectives, which are explained in detail in the corresponding chapters. 
Abbreviations: ERA5: European Centre for Medium-Range Weather Forecasts Reanalysis v5; 
NSRDB: National Solar Radiation Database; WRF: Weather and Research Forecast; HPP: Hydropower plant; 
CHIRPS: Climate Hazards Infrared Precipitation with Stations; GRDC: Global Runoff Data Center. 
Source: Own representation. 
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In Chapter 2, the new methodology to characterize the spatio-temporal variability of 

long-term and gridded meteorological datasets using spatial functional data analysis 

(sFDA) is described (Research Objective 2). The feasibility of the methodology is 

demonstrated by using a solar irradiance dataset of Ecuador’s mainland and the Galapagos 

Islands. This dataset consists of a 21-year period of hourly solar resource data at 3 ´ 3 km 

grid resolution, which is generated by processing satellite-derived data retrieved from the 

National Solar Radiation Database (NSRDB) (Research Objective 1 – solar resource 

dataset). 

Chapter 3 describes the configuration and validation of the Weather Research and 

Forecast (WRF) mesoscale model, which is used to generate a 14-year period of hourly 

wind resource data at a 3 ´ 3 km horizontal grid resolution for Ecuador’s mainland and the 

Galapagos Islands (Research Objective 1 – wind resource dataset). This chapter also 

presents and discusses the results of the spatio-temporal variability analysis of wind 

speed over the study area, which is characterized by using the methodology proposed 

in Chapter 2. 

Chapter 4 is concerned with the temporal and spatio-temporal correlation analysis 

between solar, wind, and water resources in the study area (Research Objective 3). First, 

this chapter investigates to which extent solar and wind resources are complementary in 

time and space to water resources in existing and planned hydropower plants. Next, the 

pairwise temporal correlations between solar, wind, and water resources at each grid point 

are assessed. The results from the sFDA regionalization and the long-term, gridded 

datasets of solar and wind resources generated in the previous chapters are used for the 

analysis. For water resources, historical measurements of river discharge near six 

representative hydropower plants, as well as a gridded precipitation dataset are used for 

the spatio-temporal and temporal correlation analysis, respectively. 

In Chapter 5, the hourly time series of solar and wind resource datasets are converted 

into power output to analyze the complementarity of renewable power generation. The 

analysis focuses on the benefits that the spatio-temporal synergies between PV, wind, and 

hydropower could provide to enhance the resilience of the Ecuadorian power supply 

system. (Research Objective 4). This chapter describes the methodology to assess the 

benefits in terms of reliability and stability, and discusses the findings. 

This dissertation finishes with Chapter 6 that summarizes the main findings related to 

each research objective, highlights the significance and contributions of this dissertation, 

and gives recommendations for further research work.
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Chapter 2 Spatio-temporal characterization of 
long-term solar resource using spatial 
functional data analysis1 

This chapter presents a new methodology to characterize the spatio-temporal variability 

of long-term and gridded meteorological datasets. Spatial functional data analysis (sFDA) 

is used to identify spatial areas with similar intra-annual variability patterns. The feasibility 

of the methodology is demonstrated by using a 21-year period of global horizontal 

irradiance (GHI) data on Ecuador’s mainland and the Galapagos Islands, which is retrieved 

from the National Solar Radiation Database (NSRDB). This is the first time that the 

sFDA regionalization method is used for the characterization of solar resources and the 

results indicate that it provides a suitable basis for the interannual variability and 

complementarity analyses. In Ecuador’s mainland, twenty-two subregions with four 

seasonal patterns are identified. The Inter-Andean valleys have the highest long-term 

annual mean GHI (5.4 kWhm–2d–1) with the lowest mean interannual variability (3.4%). In 

Galapagos, high values are found over all islands (≥ 4.8 kWhm–2d–1), characterized by three 

subregions with one seasonal pattern. The proposed methodology is applied in the next 

chapter for the characterization of wind resources and constitutes the basis for the 

achievement of the remaining research objectives of this dissertation. 

2.1. Introduction 

Solar energy plays a leading role in the global renewable capacity expansion. In 2020, 

there was an annual increase of solar capacity of 127 GW (+22%) (IRENA, 2021). This 

growing expansion is a key component that supports the energy transition towards 

decarbonization in many countries worldwide. However, due to the varying nature of the 

solar resource, the optimal planning and deployment of solar power applications requires 

detailed knowledge of the spatial and temporal variability of solar irradiance. 

1 This chapter is based on Tapia, M., Heinemann, D., Ballari, D., and Zondervan, E. (2022). Spatio-temporal 
characterization of long-term solar resource using spatial functional data analysis: Understanding the variability and 
complementarity of global horizontal irradiance in Ecuador. Renewable Energy, 189, 1176–1193. 
https://doi.org/10.1016/j.renene.2022.03.049 
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Long-term variability analyses of solar irradiance provide essential information to 

decision-makers for a valid selection of suitable locations and optimal system design, as 

well as for the assessment of risk and the financial viability of solar energy projects 

(Fernández Peruchena et al., 2016; Gueymard et al., 2011; Lohmann et al., 2006; 

Rodríguez-Benítez et al., 2018; Sengupta et al., 2018; Vignola et al., 2012). 

Historical datasets covering 30 years or longer are needed to statistically characterize the 

solar irradiance at any location (Vignola et al., 2012). Unfortunately, such long-term, high-

quality solar irradiance measurements are generally scarce and sparsely distributed, which 

challenges the spatial characterization at a country or regional level, especially over 

complex terrain. To overcome this limitation, satellite-derived datasets are considered a 

reliable and practical option that cover a wide spectrum of spatial scales and are available 

for long time periods (Sengupta et al., 2018). 

Previous studies have explored the spatio-temporal variability of the solar resource at a 

regional scale using gridded satellite datasets (Gutiérrez et al., 2017; Habte et al., 2020; 

Laguarda et al., 2020; Vindel et al., 2020; Zagouras et al., 2013; Zagouras, Inman, et al., 

2014; Zagouras, Pedro, et al., 2014)2. Some authors used climatological classifications to 

condense the large number of grid points into smaller groups (Habte et al., 2020), while 

other studies applied data-driven methods based on regionalization techniques to identify 

areas with similar solar radiation variability (Gutiérrez et al., 2017; Laguarda et al., 2020; 

Vindel et al., 2020; Zagouras et al., 2013; Zagouras, Inman, et al., 2014; Zagouras, Pedro, 

et al., 2014). A common approach used in the latter is the k-means algorithm applied to a 

dimension-reduced dataset by Principal Component Analysis (PCA). Reducing the data 

dimensionality lowers the computational complexity; however, it might not 

consider the inherent spatio-temporal dependencies of the data (Ballari et al., 2018; 

Jacques et al., 2014). 

Spatial functional data analysis (sFDA) represents an alternative for analyzing high-

dimensional gridded satellite-derived data, which considers the spatio-temporal 

dependencies of each grid point by means of spatial autocorrelation and complete time 

functions (Ballari et al., 2018; Giraldo et al., 2018). Although a spatial functional 

regionalization method was previously applied to gridded satellite precipitation data by 

Ballari et al. (2018), no studies have been found that applied spatial functional 

regionalization methods to gridded satellite GHI data to analyze the spatio-temporal 

variability of solar radiation. 

 
2 An overview of these studies can be found in Table A-1 in Appendix A.1. 
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In this chapter, a new methodology to characterize the spatio-temporal variability and 

complementarity of long-term gridded satellite-derived GHI data using sFDA is proposed. 

The methodology comprises multiple steps. First, a hierarchical regionalization method for 

spatial functional data is used to identify homogeneous areas with similar intra-annual 

variability patterns. Second, the characterization of the interannual GHI variability is 

performed using the coefficient of variation. Finally, the spatio-temporal complementarity 

between the resulting areas from the regionalization is analyzed through correlation 

coefficients. 

As a case study, this methodology is applied to a 21-year period of gridded satellite-

derived GHI data on Ecuador’s mainland and the Galapagos Islands, which is retrieved 

from the National Solar Radiation Database (NSRDB). This region features complex 

climatic characteristics and topography (Morán-Tejeda et al., 2016; Pourrut, 1995), 

which may cause significant spatio-temporal GHI variability (Gueymard et al., 2011; 

Sengupta et al., 2015; Vignola et al., 2012), thus representing a relevant case for the 

application of the proposed methodology. Furthermore, Ecuador has an important 

solar energy potential, since almost 55% of its territory shows solar radiation levels 

above 4.1 kWhm–2d–1 (Ordoñez et al., 2019). However, the share of solar technology in the 

Ecuadorian power mix is still marginal. In 2020, the installed capacity of solar PV 

was 26.74 MW, representing only 0.33% of the total installed capacity in the country 

(see Fig. 1-2 in Chapter 1). 

Therefore, the relevance of this chapter is twofold. First, its novelty lies in the use of the 

sFDA method for the regionalization of long-term gridded satellite-derived GHI data applied 

to a region characterized by complex climate and terrain. Second, the case study provides 

the first comprehensive spatio-temporal characterization of GHI in Ecuador that aims at 

supporting the Ecuadorian energy sector for the optimal planning and deployment of solar 

power systems in the country.  

This chapter is structured as follows. Section 2.2 presents the data used and describes 

the proposed methodology. Section 2.3 presents the results of the case study in different 

subsections: (2.3.1) GHI regionalization, (2.3.2) interannual spatio-temporal variability, and 

(2.3.3) seasonal complementarity. Section 2.4 discusses the methodological approach and 

the practical contribution of the findings. Finally, Section 2.5 presents the conclusions of 

this chapter. 
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2.2. Methods and data 

2.2.1. Solar resource data 

For this chapter, the satellite-derived GHI data of the Physical Solar Model (PSM) 

version 3 from the NSRDB (Sengupta et al., 2018) is used. The NSRDB is produced and 

disseminated by the National Renewable Energy Laboratory (NREL) and provides solar 

irradiance and other meteorological data at a high spatio-temporal resolution (4 ´ 4 km grid 

at hourly and half-hourly intervals) covering a large part of the American continent 

(Sengupta et al., 2018). The comparison between GHI satellite estimations from the 

NSRDB and ground measurements from 53 stations across Ecuador’s mainland was 

performed by Ordoñez et al. (2019). According to their results, the hourly mean bias error 

(MBE) for clear sky conditions was less than 5%, while for cloudy sky conditions the MBE 

was found to be less than 10%, suggesting a good agreement between measured and 

satellite-estimated data (Ordoñez et al., 2019). Those results were aligned with the 

findings from other comparisons at locations throughout the continental United States 

(Habte et al., 2018; Sengupta et al., 2018). 

A 21-year period of hourly solar irradiance and meteorological data from 1998 to 2018 

corresponding to the study area was downloaded through the Application Programming 

Interface (API)3 provided by NREL. Two preprocessing steps were performed before 

applying the methodology described in Section 2.2.2. First, the dataset was statistically 

checked to search for possible data anomalies that could be related to satellite artifacts. 

This analysis revealed that grid points at longitudes 78.02°W and 77.98°W between 

latitudes 0.13°N and 1.71°S showed anomalies from 24-11-2008 to 31-12-2017, which 

might be attributed to satellite artifacts (See Fig A-1 in Appendix A). The nearest-neighbor 

interpolation method was applied to the identified grid points to reduce the anomalies. 

Second, the spatial resolution of the dataset was increased from the native NSRDB 

resolution to 3 ´ 3 km, applying the first order conservative remapping method. The change 

in resolution was required for the assessment of complementarities between solar and wind 

resources for the study area, which uses wind resources at a 3 ´ 3 km resolution simulated 

by the WRF mesoscale model (see Chapter 3). The processed solar resource dataset is 

stored as a netCDF file (network Common Data Form) with the variables listed in Table A-2 

in Appendix A.3. The long-term monthly mean daily total GHI dataset for Ecuador and the 

Galapagos Island used in this chapter is displayed in Fig. 2-1.  

 
3 https://developer.nrel.gov/docs/solar/nsrdb/psm3-download/ 
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Fig. 2-1. Long-term monthly mean daily total GHI from 1998 to 2018 at a 3 ´ 3 km resolution on Ecuador’s 
mainland (top) and the Galapagos Islands (bottom). Source: Own representation, data retrieved 
from the NSRDB. 
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2.2.2. Characterization of the spatio-temporal variability of gridded data 

Fig. 2-2 provides an overview of the proposed methodology. Each block represents one 

of the different steps: regionalization, interannual variability, and complementarity analyses, 

which are explained in detail in the following subsections. 

 

 

Fig. 2-2. Flowchart of the proposed methodology to characterize the spatio-temporal variability and 
complementarity of long-term gridded satellite-derived GHI data. 
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2.2.2.1. Regionalization 
The hierarchical regionalization methodology for spatial functional data described in 

Giraldo, et al. (2012) is applied to the GHI dataset in order to identify homogeneous spatial 

areas with similar intra-annual variability patterns. This method combines hierarchical 

clustering algorithms for both geographically referenced and functional data to classify 

spatially correlated curves (Giraldo, Delicado, et al., 2012). It requires a weighted 

dissimilarity matrix based on the 𝐿! norm, which accounts for the dissimilarities 

among curves, and the so-called trace-variogram function (Giraldo et al., 2011), which 

accounts for their spatial correlation. A detailed description of the method can be found in 

Ballari et al., (2018) and Giraldo, et al. (2012). The following is a summary of the required 

steps that are displayed in the regionalization block of Fig. 2-2. 

• Convert time series to functional data: The discrete time series of monthly mean 
daily total GHI (12-dimension vectors per grid point) are converted into functional 

curves using a Fourier basis with 11 functions. The Fourier basis system is 

chosen as the smoothing method assuming the periodicity of the GHI time series 

(Ramsay et al., 2005). The resulting dataset comprises the functional curves 

𝜒"!(𝑡), … , 𝜒""(𝑡) at 𝑠# geographical locations (27,175 in Ecuador’s mainland 

and 874 in the Galapagos Islands). 

• Weighted dissimilarity matrix: The weighted dissimilarity measure is expressed 
as: 

𝑑𝜔 1𝜒"!(𝑡), 𝜒"#(𝑡)2 = 𝑑 1𝜒"!(𝑡), 𝜒"#(𝑡)2 𝛾"!"#(ℎ) (2.1) 

where 𝑑 1𝜒"!(𝑡), 𝜒"#(𝑡)2 = 6∫$(𝜒"!(𝑡) − 𝜒"#(𝑡))
!𝑑𝑡 is the 𝐿! norm of the 

distance between two functional curves, and 𝛾"!"#(ℎ) is the trace-variogram function 

(Giraldo et al., 2011), which is calculated according to the spatial distance between 

geographical locations 𝑠% and 𝑠& (Ballari et al., 2018).  

The method assumes that the spatial functional process is second-order stationary 

(Giraldo, Delicado, et al., 2012); however, this assumption no longer holds true 

when there is a pronounced geographic trend in the dataset (Oliver et al., 2015), 

which is the case with solar radiation. For this reason, it is 

necessary to remove the spatial trend before calculating the trace-variogram 

function (Giraldo, Delicado, et al., 2012). This is done by using a functional 

regression model (Ramsay et al., 2005) with functional response (smoothed 
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GHI curves) and three scalar covariates (longitude, latitude and altitude). Once the 

regression model is estimated, the functional residuals are calculated to compute 

the empirical trace-variogram function. Then, a parametric model is fitted to the 

empirical trace-variogram following classical geostatistical estimation procedures 

(Giraldo, Delicado, et al., 2012). Finally, the trace-variogram 𝛾"!"#(ℎ) is calculated 

by subtracting the covariance function 𝐶(ℎ) for the distance between each pair 

of geographical locations from the variance 𝐶(0) obtained from the fitted parametric 

model (Ballari et al., 2018). 

• Hierarchical clustering algorithm: Once the weighted dissimilarity matrix is 
calculated, the Ward hierarchical agglomerative clustering method is applied. This 

method forms hierarchical groups of mutually exclusive subsets on the basis of their 

similarity with respect to specified characteristics (Ward, 1963). 

• Cluster validity assessment: The optimal number of clusters is selected based on 
both the analysis of the average silhouette width (ASW) (Rousseeuw, 1987) and 

the analysis of the functional boxplots of the resulting clusters. The ASW provides 

a score based on how similar a curve is to all the curves in its respective cluster 

compared to curves in other clusters (Ballari et al., 2018), whereas the functional 

boxplots provide a visual comparison of the similarities/dissimilarities of the curves 

grouped in each cluster. 

2.2.2.2. Interannual spatio-temporal variability 
The coefficient of variation (𝐶𝑉) is used to analyze the interannual GHI variability during 

the 21-year period at yearly and monthly timescales. The 𝐶𝑉 is defined as the ratio of the 

standard deviation to the mean value (Gutiérrez et al., 2017). The results are expressed as 

percentages and represent a measure of the GHI variability over time at the cell’s 

geographical location (Gueymard et al., 2011). For the analysis of the yearly interannual 

variability, the annual coefficient of variation (𝐶𝑉') is calculated as: 

𝐶𝑉'(%) =
61𝑁∑ (𝐺𝐻𝐼'% − 𝐺𝐻𝐼

AAAAA')!(
%)*

𝐺𝐻𝐼AAAAA'
× 100 (2.2) 

where 𝑁 is the number of years; 𝐺𝐻𝐼'% is the annual mean daily total GHI of each 

individual 𝑖 year; and 𝐺𝐻𝐼AAAAA' is the mean of the mean daily total GHI during the 21-year period 

(Habte et al., 2020). 



Spatio-temporal characterization of long-term solar resource 

 19 

Similarly, for the analysis of the monthly interannual variability, the monthly coefficient 

of variation (𝐶𝑉+) is calculated based on monthly bins of data (e.g., Januaries, 

Februaries, etc.) as: 

𝐶𝑉+(%) =
61𝑁∑ (𝐺𝐻𝐼+% − 𝐺𝐻𝐼AAAAA+)!(

%)*

𝐺𝐻𝐼AAAAA+
× 100 (2.3) 

where 𝑁 is the number of years; 𝐺𝐻𝐼+% is the monthly mean daily total GHI of each 

individual 𝑖 year; and 𝐺𝐻𝐼AAAAA+ is the 21-year monthly mean daily total GHI for the 

corresponding month (Gueymard et al., 2011; Habte et al., 2020). 

Both 𝐶𝑉' and 𝐶𝑉+ are aggregated by the resulting clusters from the regionalization to 

facilitate the intercomparison among the spatial areas. 

2.2.2.3. Complementarity 
The Pearson product-moment correlation coefficient (𝑟,) is used to assess the spatio-

temporal complementarity among different spatial areas and is calculated as: 

𝑟,%& =
𝐶𝑜𝑣(𝑖, 𝑗)
𝜎% 	𝜎&

 (2.4) 

where 𝐶𝑜𝑣(𝑖, 𝑗) is the covariance between the monthly time series corresponding to the 

representative points of the clusters 𝑖 and 𝑗; and 𝜎%, 𝜎& is the standard deviation of the 

monthly time series of the representative point of cluster 𝑖 and 𝑗, respectively. The 

correlation coefficient can range from −1 to 1. Complementarity is associated to the 

negative values, whereas similarity is related to the positive values.  

The level of complementarity and similarity is evaluated according to the interpretation 

given in Table 2-1 (Cantão et al., 2017). 

Table 2-1. Interpretation of correlation coefficient values for the analysis of complementarity and similarity of 
renewable resources (Based on Cantão et al. (2017)) 

Behavior Correlation coefficient Interpretation 
Similarity 0.9 ≤ 𝑟$ ≤ 1.0 Very strong similarity 
 0.6 ≤ 𝑟$ < 0.9 Strong similarity 
 0.3 ≤ 𝑟$ < 0.6 Moderate similarity 
 0.0 ≤ 𝑟$ < 0.3 Weak similarity 
Complementarity −0.3 < 𝑟$ < 0.0 Weak complementary 
 −0.6 < 𝑟$ ≤ −0.3 Moderate complementary 
 −0.9 < 𝑟$ ≤ −0.6 Strong complementary 
 −1.0 ≤ 𝑟$ ≤ −0.9 Very strong complementary 
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2.2.2.4. Implementation 
The described methodology was implemented in R (R Core Team, 2020), using the 

packages fda (Ramsay et al., 2020) and geofd (Giraldo, Mateu, et al., 2012), among others. 

2.3. Results 

2.3.1. Regionalization results 

This section presents the regionalization of GHI in Ecuador’s mainland and the 

Galapagos Islands, described and analyzed in relation to the climate characteristics of the 

resulting spatial areas. 

2.3.1.1. Regionalization of GHI in Ecuador’s mainland 
Twenty-two clusters are selected as the optimal partition for Ecuador’s mainland 

according to the cluster validity assessment explained in Appendix A.4. These clusters 

(hereafter called subregions) represent spatially homogeneous areas featured with similar 

intra-annual GHI variability. From the functional boxplots of the subregions 

(see Appendix A.5), four main seasonal patterns are identified; consequently, the 

subregions are grouped into four spatial areas (hereafter called regions) according to the 

corresponding seasonal pattern.  

The spatial distribution of the four regions and their respective subregions is shown in 

Fig. 2-3, where it can be seen that the regions are spatially contiguous and compact areas, 

which are distributed longitudinally through Ecuador’s mainland. From east to west, 

region A is located in the Ecuadorian Amazon, regions EH and WH are located in the 

eastern and the western side of the Andean highlands, respectively, and region C is located 

in the coastal area.  

The Ecuadorian Andes consist of two parallel mountain ranges (the 

Eastern and Western Cordilleras) separated by the tectonic Inter-Andean Depression 

(Coltorti et al., 2000). They are the major climate divide that separates the humid lowland 

forests of the Amazon basin from the coastal areas (Rollenbeck et al., 2011). These 

topographical and climate characteristics are reflected in the spatial distribution of 

the four regions, where the borders of regions C and A closely match the contour of the 

highlands. Furthermore, the spatial location of regions EH and WH resembles the 

distribution of the Andean highlands. 
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Fig. 2-3. Spatial distribution of the 22 solar subregions in Ecuador’s Mainland after applying the sFDA 
regionalization method. The subregions are grouped and named according to their corresponding region: 
Amazon (A), Eastern highlands (EH), Western highlands (WH) and Coast (C). The white line depicts the 
altitudinal contour at 1000 meters above sea level (m.a.s.l.). The black points represent the location of the 
median curve of each subregion. 

Fig. 2-4 shows the intra-annual GHI variability of each region. Fig. 2-4a shows the 

dispersion of the functional curves per region, whereas Fig. 2-4b compares their monthly 

and annual means. High GHI values are found in region WH, which shows a unimodal 

pattern with a peak in September. Region A displays a bimodal pattern with the annual 

maxima occurring in September–October and a peak of smaller magnitude in April. 

Region EH shows a similar seasonal pattern as region A but of smaller GHI magnitude, 

with the annual maxima occurring in October. In contrast to the previous regions, region C 

shows a bimodal pattern with a high peak in March and another of smaller 

magnitude in September. The annual minima of GHI in all regions (except for WH) occur in 

June–July, following the mid-year low sun elevation that corresponds to the austral winter. 

From Fig. 2-4b (left) it is evident that seasonal complementarity exists between 

region C and the other regions. 
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Fig. 2-4. Intra-annual variability of GHI in the four regions in Ecuador’s mainland: Amazon (A), Eastern 
highlands (EH), Western highlands (WH) and Coast (C). The functional boxplots on a) show the monthly 
dispersion of the functional curves per region, where the colored shapes represent the interquartile range, the 
gray external lines depict the minimum and maximum curves, and the black lines are the median curves 
interpreted as the main seasonal patterns in each region. The black dotted line in region A represents the outlier 
curves in the region. The left side of b) shows the comparison of the four main seasonal patterns. The right side 
of b) shows the dispersion of the annual mean daily total GHI per region, where the black points represent the 
values of the median curve for each region, and the black circles are the outliers. 

Fig. 2-5 and Fig. 2-6 show the spatial distribution and the intra-annual GHI variability of 

the 22 subregions grouped by their corresponding region. Here it is noticeable that the 

subregions in the corresponding region share similar seasonal patterns, but they differ in 

the magnitude of GHI. This can also be seen in Table 2-2, which summarizes the long-term 

annual mean daily total GHI per subregion. 

Similar to the spatial variability, the intra-annual GHI variability may be explained by the 

climate characteristics – mainly cloud and rainfall dynamics – occurring in the different 

subregions that can affect GHI in complex ways.  

In Ecuador’s mainland, the climatic regimes closely depend on the characteristics of the 

air masses, which in turn are influenced or produced by three main factors: (i) the seasonal 

displacement of the ITCZ towards the north or south that determines the input of air masses 

with different temperature and humidity conditions; (ii) the mountain ranges that play a 

fundamental role in the formation, displacement, and isolation of local or regional air 
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masses; and (iii) the Pacific Ocean currents and the maritime air masses that influence the 

rainfall patterns in the Coast and the Andes region (Celleri et al., 2007; Pourrut, 1995).  

The influence of these factors on the spatio-temporal GHI variability will become more 

evident when describing the subregions of each region in the following subsections. 

Table 2-2. Long-term annual mean daily total GHI, yearly coefficient of variation (𝐶𝑉%), and mean elevation in 
each solar subregion. Note that subregions are named and sorted in decreasing order according to the GHI 
value in their respective region. 

Solar 
Subregion 

GHI 
[kWhm–2d–1] 

CVy 
[%] 

Mean elevation 
[m.a.s.l.] 

A.1 4.6 3.8 312.3 
EH.1 5.0 4.0 2645.5 
EH.2 4.5 4.9 3186.4 
EH.3 4.2 4.8 951.7 
EH.4 4.1 5.4 2120.0 
EH.5 3.8 6.2 2016.7 
EH.6 3.4 8.0 2685.9 
WH.1 5.4 3.4 1763.1 
WH.2 5.1 4.5 1148.2 
WH.3 5.1 4.7 3414.7 
WH.4 4.5 5.3 2546.0 
WH.5 4.0 6.1 2243.8 
WH.6 3.7 6.0 1790.8 
C.1.1 4.8 4.4 31.2 
C.1.2 4.1 6.0 101.5 
C.2.1 4.0 4.9 140.0 
C.2.2 3.6 6.2 319.2 
C.3.1 4.6 4.0 52.0 
C.3.2 4.3 4.2 246.3 
C.3.3 4.2 4.5 98.7 
C.3.4 3.8 5.5 176.9 
C.3.5 3.3 7.0 956.4 
G.1.1 6.0 3.9 259.1 
G.1.2 5.5 5.7 212.8 
G.1.3 4.8 7.3 292.2 
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Fig. 2-5. Spatial and temporal variability of GHI per subregions in regions: Amazon (A), Eastern highlands (EH) 
and Western highlands (WH). The maps on a), c) and e) show the spatial distribution of subregions within each 
region (gray polygons depict the province boundaries. See Appendix D for provinces’ names). The left sides of 
b), d) and f) show the comparison of the main GHI seasonal patterns for the corresponding region (dotted black 
lines) and the median curves in each subregion. The right sides of b), d) and f) show the dispersion of the 
annual mean daily total GHI for each subregion, where the black points represent the values of the median 
curve of each subregion. 
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Fig. 2-6. Spatial and temporal variability of GHI per subregions in the coast region (C). The map on a) shows 
the spatial distribution of the subregions (gray polygons depict the province boundaries. See Appendix D for 
provinces’ names). The left sides of b) – d) show the comparison of the main GHI seasonal pattern of region C 
(dotted black lines) and the median curves in each subregion. The right sides of b) – d) show the dispersion of 
the annual mean daily total GHI for each subregion, where the black points represent the values of the median 
curve of each subregion. 
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One subregion (A1) is identified over the Amazon lowlands (Fig. 2-5a). Interestingly, this 

homogeneous subregion covers an extended geographical area and it is characterized by 

high annual mean values (4.6 kWhm–2d–1) and low intra-annual variability (Fig. 2-5b). This 

may be attributed to the high specific humidity and convective activity throughout 

the year in the area (Laraque et al., 2007), which results in low total annual sunshine hours 

(Pourrut, 1995). 
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2.3.1.1.2. Eastern Andean Highlands 
Six subregions (EH.1–EH.6) are identified along the eastern Andean highlands and 

partly over the inter-Andean valleys (Fig. 2-5c). The highest annual mean values are found 

in EH.1, followed by EH.2 and EH.4 (5.0, 4.5, 4.1 kWhm–2d–1, respectively) (Fig. 2-5d), 

which are located along the Inter-Andean valleys. In contrast, the lowest annual values are 

found in EH.6, followed by EH.5 (3.4, 3.8 kWhm–2d–1, respectively), located along the 

eastern Andean flanks. 

The low GHI values and low intra-annual variability found in EH.5 and EH.6 

may be explained by the influence of a high cloudiness and precipitation band called 

Andes-Occurring System (AOS) (J. Bendix et al., 2006). This area is dominated by 

moisture bearing easterlies that originate over the tropical Atlantic and Amazon basin 

(Buytaert et al., 2006; Vuille et al., 2000). Most of the moisture is precipitated in the form of 

long duration drizzle due to orographic lifting (Rollenbeck et al., 2011). 

The higher values of GHI seen in EH.1 and EH.2 may be attributed to lower rainfall 

amounts occurring in the Inter-Andean valleys because air masses transported from the 

Amazon and the Pacific lose much of their humidity on the eastern and western flanks of 

the Andes (Vuille et al., 2000). EH.3 is partly located along the outer eastern Andean flanks, 

and therefore shows a similar seasonal pattern as EH.5 and EH.6, but of higher GHI 

magnitude, since EH.3 covers part of the Amazon lowlands. 

All the EH subregions depict annual maxima in October-November. This is aligned to 

ground measurements from stations located in southern Ecuador that found November as 

the month with the greatest clear sky probability (Emck, 2007). The annual minima occur 

in June-August, which coincides with the lowest sun elevation of the year and more 

persistent overcast skies brought in by the strong easterlies (Emck, 2007). 

2.3.1.1.3. Western Andean Highlands 
Six subregions (WH.1–WH.6) are identified along the western Andean highlands and 

the Inter-Andean valleys (Fig. 2-5e). Subregion WH.1 shows the highest annual mean GHI 

values (5.4 kWhm–2d–1) and low intra-annual variability. Subregion WH.2 shows high annual 

mean GHI values (5.1 kWhm–2d–1) as well; however, the intra-annual variability is higher 

compared to WH.1 (Fig. 2-5f). Subregion WH.3 is located at high elevations of the western 

and eastern Cordillera and shows a similar seasonal pattern to WH.1, but of lower GHI 

magnitude (Fig. 2-5f). 

Subregions WH.4, WH.5 and WH.6 are spatially distributed along the western Andean 

slopes towards the coastal area (Fig. 2-5e) and show lower annual mean GHI values 
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(4.5, 4.0, and 3.7 kWhm–2d–1, respectively) (Fig. 2-5f). The reduced GHI magnitude in this 

area may be attributed to the influence of the ITCZ over the eastern Pacific, which is 

responsible for continuous moisture in the form of rainfall, clouds, and fog due to orographic 

uplift (Buytaert et al., 2006). These aspects are especially reflected in the lower intra-annual 

GHI variability of subregion WH.6 (Fig. 2-5f). 

As mentioned above, the annual minima in the WH region do not match the lowest sun 

elevation of the year and vary from December to March among the subregions. This 

singularity was analyzed by Emck (2007) using measured data from stations located in 

southern Ecuador. The author concluded that the barrier effect produced by the eastern 

mountains benefits the leeward flanks, because in June–August the share of the water 

vapor and the clouds retained by the mountain range increases. Consequently, extended 

times of direct insolation compensate for the lowest annual solar radiation (Emck, 2007). 

2.3.1.1.4. Coast 
Nine subregions with three slightly different seasonal patterns are identified in the 

coastal area and grouped accordingly as C.1.1, C.1.2, C.2.1, C.2.2, C.3.1–C.3.5 (Fig. 2-6). 

In general, all the subregions show annual maxima in March-April and another peak of 

reduced intensity in September–October. Fig. 2-6b shows the first type of seasonal pattern 

found in C.1.1 and C.1.2. The highest annual mean GHI value is found in subregion C.1.1 

(4.8 kWhm–2d–1) located in the lowlands near the coastline. This area is particularly dry with 

low rainfall rates (in the form of drizzle) due to the influence of the cold Humboldt current 

(Pourrut, 1995). C.1.2 has a similar seasonal pattern to C.1.1, but of lower GHI magnitude 

due to the spatial dispersion and the humidity level of the three partitions that comprise this 

subregion (ranging from arid and dry to super-humid and sub-humid (Moya, 2006)). 

Fig. 2-6c shows the second type of seasonal pattern that is found in C.2.1 and C.2.2, 

characterized by low intra-annual variability and low GHI values. This may be attributed to 

the influence of the ITCZ (Ilbay-Yupa et al., 2021) and the location of the subregions along 

the lower slopes of the western Andean, where orographic rainfall occurs. 

Fig. 2-6d shows the third seasonal pattern that is found in C.3.1–C.3.5, where a gradual 

decrease of GHI magnitude can be seen. From Fig. 2-6a, it is noticeable that this gradient 

occurred from west to east and is related to the geographical location and altitude of the 

subregions, since rainfall increases between the low-altitude coastal cordillera and the 

Andean foothills (Erazo et al., 2018). 
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2.3.1.2. Regionalization of GHI in the Galapagos Islands 
Three subregions are selected as the optimal partition for the Galapagos Islands 

according to the cluster validity assessment explained in Appendix A.4. Fig. 2-7a shows 

the spatial distribution of the subregions (G.1.1, G.1.2, and G.1.3), which depict a bimodal 

pattern, but they differ in GHI magnitude (Fig. 2-7b). G.1.1 shows the highest annual mean 

value (6.0 kWhm–2d–1) with the annual maxima in October. G.1.2 and G.1.3 show lower 

values (5.5 and 4.8 kWhm–2d–1, respectively) with the annual maxima in March. The minima 

of all subregions occur in June-July. 

 

Fig. 2-7. Spatial and temporal variability of GHI in the Galapagos Islands (region G) per subregions after 
applying the sFDA regionalization method. The map on a) shows the spatial distribution of subregions (See 
Appendix D for islands’ names). The left side of b) shows the comparison of the main GHI seasonal pattern of 
region G (dotted black lines) and the median curves in each subregion. The right side of b) shows the dispersion 
of the annual mean daily total GHI for each subregion, where the black points represent the values of the 
median curve of each subregion. 

Similar to Ecuador’s mainland, the spatio-temporal variability of GHI in Galapagos may 

be explained by the climate characteristics in this area, which result from a complex 

interaction of oceanic currents that surround the islands and the predominant trade winds 

from the southeast (Trueman et al., 2010). During January to May (hot season), G.1.1 and 

G.1.2 show similar patterns and high GHI values. In contrast, from June to December (cool 

season) a difference in GHI magnitude can be seen (Fig. 2-7b). On the one hand, G.1.2 is 

located along the windward side of both the islands and the volcanoes, which are more 

humid during the cool season (Trueman et al., 2010), thus reducing the incoming radiation 

in these areas. On the other hand, G.1.1 comprises the lowlands and the tops of higher 

volcanoes, areas that remain dry during the cool season (Trueman et al., 2010), thus 

showing higher GHI values. G.1.3 shows lower GHI values throughout the year compared 
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to the other subregions. This may be attributed to its location over the highlands and south-

facing slopes, since humidity and rainfall increase considerably with altitude due to the 

influence of the Humboldt Current (Pourrut, 1995). 

2.3.2. Interannual spatio-temporal variability of GHI 

Fig. 2-8 shows the annual coefficient of variation 𝐶𝑉', where it can be seen that the 

highest yearly interannual variabilities are along the eastern and western flanks of the 

Andes, the northwest coastline, and over the south-facing slopes of the Galapagos Islands. 

In contrast, the Amazon lowlands and the Inter-Andean valleys show the lowest 

variabilities.  

 

Fig. 2-8. Annual coefficient of variation 𝐶𝑉% (%) of mean daily total GHI during 1998–2018 over Ecuador’s 
mainland and the Galapagos Islands. The white line over the continental part depicts the altitudinal contour at 
1000 m.a.s.l. 

Table 2-2 and Fig. 2-9 show the variability per subregion in detail. The highest mean 𝐶𝑉' 

values (> 6.0 %) are found in EH.6, G.1.3, C.3.5, EH.5, and C.2.2, while the lowest mean 

values (< 4.0 %) are found in WH.1 and A.1. Fig. 2-9 also reveals a clear trend of increasing 

variability among the subregions within their corresponding regions, meaning that the 

subregions that show higher 𝐶𝑉' values are those with lower GHI magnitude in their 

respective region. 
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Fig. 2-9. Annual coefficient of variation 𝐶𝑉% (%) of mean daily total GHI during 1998–2018 per subregion and 
grouped by region: Amazon (A) Eastern highlands (EH), Western highlands (WH), Coast (C), Galapagos (G). 

 

Fig. 2-10. Monthly coefficient of variation 𝐶𝑉& (%) of mean daily total GHI during 1998–2018 over Ecuador’s 
mainland. 

 

Fig. 2-11. Monthly coefficient of variation 𝐶𝑉& (%) of mean daily total GHI during 1998–2018 over the Galapagos 
Islands. 
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Fig. 2-10 and Fig. 2-11 show the monthly coefficient of variation 𝐶𝑉+, where it is notable 

that the highest monthly interannual variabilities are along the eastern flanks of the Andes, 

the western coastline, and over the south-facing slopes of the Galapagos Islands.  

Fig. 2-12 takes a more detailed look at these findings, aggregated per subregions. The 

highest mean 𝐶𝑉+ values are in the EH region (especially in EH.6) during two intervals: 

December to February and July to September. On the coast, C.1.2 shows high variabilities 

from May to December. Further, in Galapagos, G.1.3 shows the highest variabilities from 

December to January. In contrast, the lowest variabilities with minimum changes during the 

twelve months are in WH.1, located in the Inter-Andean valleys. 

The high variability in EH.6 is associated with the AOS band of clouds and precipitation, 

as mentioned in Section 2.3.1.1.2. However, from Fig. 2-8 it can be inferred that this 

variability may also be attributed to the satellite image artifacts (see Appendix A.2), which 

particularly affects this subregion.  

The high variability in subregions C.2.2, C.3.5, WH.4, WH.5, WH.6 and G.1.3 may be 

attributed to the effect of climatic phenomena occurring in the area, such as ENSO. This 

phenomenon, recognized in its cold phase as La Niña and its warm phase as 

El Niño, influences the rainfall interannual variability on the Pacific coast (Trenberth, 2019). 

El Niño triggers convection that leads to large rainfall events along the coast of Ecuador 

and Peru (A. Bendix et al., 2006; Morán-Tejeda et al., 2016) and the western Andean 

slopes between 1°–3°S (Vuille et al., 2000). Similarly, the surface ocean around the 

Galapagos Islands warms substantially during El Niño events, producing significantly more 

rainfall compared to normal years (Sachs et al., 2002).  

Studies regarding the effects of ENSO on solar radiation in Ecuador were not found in 

the literature. Nevertheless, Henao et al. (2020) found that solar radiation anomalies in 

Colombia increase during El Niño and decrease during La Niña, which are related to the 

absence and excess of convective clouds. Similar dynamics might be expected in Ecuador; 

however, further investigation is needed to determine the underlying factors of the 

interannual GHI variability in Ecuador. 
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Fig. 2-12. Boxplots of the monthly coefficient of variation 𝐶𝑉& (%) of mean daily total GHI during 1998–2018 
per subregion and grouped by region: Amazon (A) Eastern highlands (EH), Western highlands (WH), Coast (C), 
and Galapagos (G). The outliers are excluded for clarity. 
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2.3.3. Seasonal complementarity 

The correlation matrix for all the pairs of subregions in Ecuador’s mainland and the 

Galapagos Islands is shown in Fig. 2-13. The negative coefficients highlight that region 

C and the other regions are complementary, since their seasonal patterns are opposite 

(Fig. 2-4). Different levels of complementarity are identified: (i) strong complementarity 

between C.1.2 and all WH subregions, as well as between C.2.2 and WH.3, WH.4 and 

WH.5; (ii) moderate complementarity between subregions in C (except C.3.1 and C.3.2) 

and E.1 and WH subregions; and (iii) weak complementarity between C and A, and the 

other subregions in EH and WH. From the positive correlation coefficients, it is also evident 

that all subregions within each respective region show high similarities, thus highlighting 

the ability of the sFDA regionalization method to find groups with similar temporal patterns. 

 

Fig. 2-13. Pearson correlation coefficient matrix of monthly mean daily total GHI time series of the median 
curves of each subregion. 
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2.4. Discussion 

The results from the case study indicate that the sFDA regionalization method applied 

to gridded satellite-derived GHI data effectively identifies spatially homogeneous areas 

featured by similar GHI intra-annual variability patterns. The variation of the magnitude of 

GHI among areas that share similar patterns can also be identified. This approach differs 

from previous studies dealing with the analysis of the spatio-temporal variability of solar 

resource in a number of respects.  

Firstly, the sFDA regionalization is a data-driven method that allows for the classification 

of the dataset considering its inherent spatio-temporal characteristics. This objective 

classification differs from classical climatological classifications based on temperature and 

precipitation. Habte et al. (2020) used the Köppen-Geiger (KG) climate classification 

(Kottek et al., 2006) to analyze the variability of the solar resource over America. Other 

studies used also the KG classification in various solar applications at a global scale 

(Ascencio-Vásquez et al., 2019; Sun et al., 2019). Such an approach may be appropriate 

for the analysis over large geographical areas; however, misclassifications could be 

expected due to the global focus and coarser resolution of the KG (Giler-Ormaza, 2018), 

or because misclassifications in mountainous regions in South America could not be 

corrected due to lack of data (Peel et al., 2007). Therefore, the KG classification might not 

be suitable for the analysis over smaller areas, since solar irradiance can vary significantly 

over relatively small distances due to microclimate effects of topography and the general 

behavior of regional weather patterns (Gueymard et al., 2011; Sengupta et al., 2015; 

Vignola et al., 2012). 

Secondly, unlike previous GHI regionalization approaches that applied 

clustering algorithms after reducing the dimensionality of the satellite-derived datasets 

(Gutiérrez et al., 2017; Laguarda et al., 2020; Vindel et al., 2020; Zagouras et al., 2013; 

Zagouras, Inman, et al., 2014; Zagouras, Pedro, et al., 2014), the sFDA method classifies 

the dataset based on the dissimilarities between the curves from each grid point weighted 

by the dissimilarities throughout space. By considering the existing spatial correlation, the 

method is able to find groups of curves that are spatially homogeneous, since the weighting 

function increases the dissimilarities among distant points (Romano et al., 2015). 

In addition, the sFDA method provides tools such as functional boxplots in which the 

dispersion of the curves within each subregion can be explored in both spatial and temporal 

dimensions (Ballari et al., 2018). 
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Thirdly, the regionalization results from this case study indicate that the sFDA method 

captures the GHI variability due to microclimate effects. This ability is reflected for example 

in the spatial classification of the subregions along the Andes (Section 2.3.1.1.2). This 

outcome is contrary to that of Ballari et al. (2018), who applied the same regionalization 

approach for precipitation data but local variabilities along the eastern Andes were not 

captured. The authors attributed this limitation to the low resolution of the input satellite-

derived dataset, which is confirmed by the findings of this study, since 

data at higher resolution is used (3 ´ 3 km grid resolution instead of 27 ´ 27 km used 

in Ballari et al. (2018)). 

Finally, the variabilities due to the topographic effects are also captured by 

the sFDA. The interannual variability results of this case study are in line with those of 

Habte et al. (2020), who found high spatial variabilities over western South America. 

The authors attributed this finding to the complex topography and large ranges of elevation 

change over small areas. The results of this case study support this association; however, 

it is further identified that the variabilities not only account for the change of elevation, but 

also the microclimate effects in the different subregions. In addition, the high variabilities in 

the eastern Andes may also be attributed to the satellite image artifacts (see Appendix A.2). 

The findings from this chapter contributes to the better understanding of the availability 

and variability of GHI in Ecuador. Previous studies have only provided information 

regarding the magnitude of the solar resource in Ecuador (Cevallos-Sierra et al., 2018; 

Echegaray-Aveiga et al., 2018; Ordoñez et al., 2019), but not a comprehensive analysis 

about its spatio-temporal variability. Ordoñez et al. (2019) built an updated solar atlas using 

the typical meteorological year (TMY) dataset from the NSRDB and highlighted those 

provinces with good solar potential. However, TMY datasets represent typical rather than 

extreme conditions, therefore they are not suitable to completely understand the resource 

variability (Vignola et al., 2012). In contrast, this study uses a 21-year period dataset from 

the NSRDB that enables both the identification of spatial areas with the best potential, and 

the evaluation of the variability of GHI over time, which is highly relevant for the design and 

financial feasibility assessment of solar energy projects (Gueymard et al., 2011). 

Another important finding is that the subregions on the coast and the western Andean 

highlands show significant seasonal complementarities. This aspect raises the possibility 

for exploring planning and operation strategies, known as geographical smoothing effect 

(Lave et al., 2012; Marcos et al., 2012; Mills et al., 2009; Zagouras, Pedro, et al., 2014), to 

smooth out the intra-annual GHI variability and consequently the solar production in these 

areas. Nevertheless, according to the statistical analysis of the interannual variability, high 
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variabilities from May to December are found in C.1.2 and C.2.2. Since these subregions 

show strong complementarity to the WH region, further investigation is needed for 

assessing the complementarities during ENSO events, which could have an 

effect on the solar resource, as previously investigated in Colombia (Henao et al., 2020; 

Parra et al., 2020). 

The validation of the NSRDB dataset over the study area was beyond the scope of this 

dissertation. In that respect, Ordoñez et al. (2019) found a good agreement between the 

satellite estimates and ground-measured solar radiation data from 53 stations in Ecuador’s 

mainland. However, due to the sparse monitoring systems across the country, no 

measurements from the eastern and southern Ecuadorian Amazon, nor from the 

Galapagos Islands were used in the mentioned study. Therefore, it is recommended to 

perform further validations supported by the findings from this study. The geographical 

location of the median curves of each subregion, which is considered the most 

representative temporal pattern of the subregion, could be used for the placement of 

ground-based sensors and thus establish an optimal measurement network. The 

subregions with low interannual variability would require shorter measurement periods to 

characterize the solar resource (Gueymard et al., 2011). 

The regionalization of GHI in this case study is performed using monthly averaged data 

to understand the intra-annual variabilities and seasonal complementarities. Nevertheless, 

the proposed methodology can be used at different temporal scales (e.g., daily or hourly), 

as well as to analyze other renewable resources, or energy production data. This case 

study uses the Fourier basis system as the smoothing method assuming that the monthly 

time series are periodic, however, for nonperiodic data (e.g., hourly wind speed data), the 

spline basis would be recommended (further details can be found in (Ramsay et al., 2009)). 

A practical limitation for using the sFDA regionalization method might be, however, the high 

computation cost in the case of a larger number of grid points or data at a high temporal 

resolution. 
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2.5. Conclusions 

In this chapter a new methodology to characterize the spatio-temporal variability of long-

term gridded satellite-derived GHI data using spatial functional data analysis is proposed. 

The methodology is implemented over Ecuador’s mainland and the Galapagos Islands to 

demonstrate its applicability over a region characterized by complex climate and terrain.  

The results indicate that the regionalization method identifies coherent areas with similar 

intra-annual variability patterns and effectively captures the GHI variations influenced by 

microclimate and topographic effects. Furthermore, the resulting subregions provide an 

appropriate basis for the analysis of the interannual variability and complementarity. In 

general, it is concluded that the proposed methodology can be applied to other regions or 

countries and adapted to analyze the spatio-temporal variability of other renewable 

resources or energy yield. 

This chapter provides the first comprehensive spatio-temporal characterization of GHI 

in Ecuador, which is of particular relevance to support the optimal planning and deployment 

of solar power systems in the country. The regionalization map and the variability statistics 

provide explicit information to identify optimal sites for the deployment of irradiance 

measurement networks and solar power plants. 

In Ecuador’s mainland, WH.1 is one of the most suitable subregions, since it shows the 

highest annual mean values (5.4 kWhm–2d–1) and the lowest annual coefficient of 

variation (3.4%). Further areas with high potential (≥ 4.5 kWhm–2d–1) are located in the 

Inter-Andean valleys, the Amazon lowlands and along the coastline. In Galapagos, all 

islands show great potential (≥ 4.8 kWhm–2d–1), especially the subregion G.1.1, which has 

the highest annual mean values (6.0 kWhm–2d–1) and the lowest annual coefficient of 

variation (3.9%). 

Moreover, the newly identified seasonal complementary behavior between the coast and 

the Andean Highlands lays the foundation for planning geographically-dispersed solar 

power plants, with the goal of smoothing the solar resource variability. This aspect is further 

explored in Chapter 4 and Chapter 5. The proposed methodology, the generated solar 

resource dataset, and the findings reported in this chapter represent the basis for the 

achievement of the remaining research objectives of this dissertation. 
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Chapter 3 Mesoscale modeling and 
characterization of wind resources over 
complex terrain in Ecuador 

In this chapter, the newly developed 14-year period dataset of hourly wind speed and 

wind direction at a 3 ´ 3 km grid resolution for Ecuador’s mainland and the Galapagos 

Islands is presented. The configuration and validation of the Weather Research and 

Forecast (WRF) mesoscale model used to generate this dataset is discussed in detail. 

The systematic deviations found between simulated wind speed at 80 m above ground 

level (AGL) with respect to observations at four sites located along the Andean highlands 

are then corrected using a linear scaling correction combined with the sFDA regionalization 

method. Next, the intra-annual and interannual spatio-temporal variability of wind speed is 

characterized applying the methodology proposed in Chapter 2. Results show that the key 

area for wind energy development is located over the Andean highlands that shows high 

long-term annual mean wind speeds (8.3 m s–1) and stronger winds (up to 19.2 m s–1) 

between June and September. 

3.1. Introduction 

A remarkable growth in the global wind energy installed capacity has been seen in the 

last decade. From 2010 to 2021, the global cumulative onshore wind capacity increased by 

more than four times, from 178 to 769 GW (IRENA, 2022). Driven by ambitious 

decarbonization targets set by governments around the world, as well as due to cost 

reductions, wind capacity is expected to further increase to double its current capacity by 

2030 (IEA, 2021b). 

In the case of Ecuador, the country has no policies that establish mechanisms and goals 

to promote non-hydro renewable energies (García de Fonseca et al., 2019). As a 

consequence, wind energy deployment is still at an early stage in the country. The total 

installed wind power capacity in the country is 21.15 MW, (16.5 MW in Ecuador’s mainland 

and 4.65 MW in the Galapagos Islands), which represented only 0.26% of the share in the 

Ecuadorian power mix in 2020 (ARCERNNR, 2021). 
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The only existing wind farm in Ecuador’s mainland, Villonaco, reached in 2015 an 

impressive capacity factor of 64%, generating 52% more than the estimated energy yield 

from the feasibility study (CELEC, 2016). While this highlights the significant wind potential 

in the country, it also shows the need for more reliable wind power assessments for the 

optimal planning and operation. 

The output power of a wind turbine is given by the expression: 𝑃 = 0.5	𝐶-	𝜌	𝐴	𝑈.; 

where, 𝜌 is the air density; 𝐶𝑝 is the power coefficient, which describes the fraction of power 

in the wind that may be converted by the turbine into mechanical work; 𝐴 is the rotor swept 

area; and 𝑈 is the average wind speed over the rotor area (Burton et al., 2021). Given the 

cubic dependence of a wind turbine’s power output on wind speed, even small errors in 

wind speed translate into large errors in predicted power output. Therefore, accurate and 

reliable long-term wind resource data is required. Key sources of historical meteorological 

data to conduct wind power assessments include: ground observations, wind atlases, 

global reanalyses, and regional reanalyses (McKenna et al., 2022). 

In Ecuador, wind resources are sparsely monitored and measurements are usually 

available at 10 m AGL, which is the standard meteorological measurement height; 

however, not relevant for wind energy applications (Jung et al., 2019). Recently installed 

high masts (50+ m) observation stations are only available at a few geographical locations 

over the Andean highlands. To identify sites with high wind resource potential, the country 

relies since 2013 on a tailored wind atlas at a 200 × 200 m spatial grid resolution covering 

Ecuador’s mainland and the Galapagos Islands (MEER, 2013). Previous studies on wind 

resource assessment in the country used the raster layers of annual average wind speeds 

from this wind atlas (Cevallos-Sierra et al., 2018; Jijón et al., 2018; Villacreses et al., 2017). 

The Global Wind Atlas (GWA) (Global Wind Atlas, 2022) is another source at a spatial grid 

of 250 × 250 m, which covers onshore and offshore areas. 

Wind atlases provide long-term mean wind speed and/or power density at a high spatial 

resolution (McKenna et al., 2022) and they are useful for identifying high-resource sites and 

for the design of measurement campaigns (Mortensen et al., 2017). However, wind atlases 

are static products and do not provide information for the assessment of the temporal 

variability of wind resources. 

Global reanalysis datasets, which interpolate meteorological observations in space and 

time using numerical weather prediction models (Rose et al., 2015), represent an 

alternative for such assessments. Reanalyses provide long-term meteorological data on a 

global regular grid with information considered representative for the entire grid cell 
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(McKenna et al., 2022). Currently used global reanalysis datasets are, for instance, 

ERA5 (31 km horizontal grid, at hourly intervals) (Hersbach et al., 2018) and MERRA2 

(~50 km horizontal grid, at hourly intervals) (Gelaro et al., 2017). 

Previous studies on energy system models for Ecuador used reanalysis data as feed-in 

time series to simulate wind farms located in high potential sites selected according to the 

Ecuadorian wind atlas (Carvajal et al., 2019; Godoy et al., 2021). However, using data from 

global reanalyses for simulating wind power output can lead to a severe underestimation of 

the wind energy technical potential, specially over complex terrain (Pickering et al., 2020). 

Thus, global reanalyses should only be relied upon after they have been thoroughly 

validated (Staffell et al., 2016), which has not been performed for Ecuador yet. 

Regional reanalyses provide the higher resolution required to resolve wind patterns in 

complex terrain and perform better than global reanalyses (Pickering et al., 2020). 

Although such datasets are available for Europe, Australia, China, and North America 

(McKenna et al., 2022), there are no datasets available for South America or for the Andean 

Region. 

Due to these limitations and needs, this chapter aims to produce a consistent long-term 

and high-resolved wind resource dataset for Ecuador using numerical weather prediction 

models. This dataset is a core element of this dissertation and necessary for the 

characterization of the spatio-temporal variability of wind resources in Ecuador, as well as 

for the subsequent analysis of the correlation with solar and hydro resources. 

The Weather Research and Forecast (WRF) mesoscale model is selected to produce a 

14-year period dataset (2005–2018) of hourly wind resource data at a 3 ´ 3 km spatial 

resolution. The ERA5 reanalysis dataset is used as input data for the WRF model. Then, 

the simulated wind speed and wind direction at 80 m AGL are validated using measured 

data from four tall meteorological masts located over the Andes. This comparison allows 

the definition of correction factors that are applied to the complete dataset for correcting 

systematic biases. Finally, the long-term, bias-corrected simulated dataset is used to 

characterize the spatio-temporal variability of the wind resource applying the methodology 

explained in Chapter 2, Section 2.2.2. 

This chapter is structured as follows. Section 3.2 describes the configuration of the 

mesoscale model, presents the data and methods for the validation of the simulations, as 

well as the methodology for the bias correction. Section 3.3 presents the results in different 

subsections: (3.3.1) the evaluation of the performance of simulated wind speed; (3.3.2) the 

evaluation of the performance of simulated wind direction; (3.3.3) the evaluation of the wind 



Chapter 3 

 42 

speed bias correction; and (3.3.4) the spatio-temporal variability analysis of wind resources. 

Section 3.4 discusses the main findings and contributions, and finally Section 3.5 presents 

the conclusions of this chapter. 

3.2. Methods and data 

3.2.1. Mesoscale model 

The selected mesoscale model to perform the simulations is the Advanced Research 

WRF (ARW), a widely used open-source community model developed by the National 

Center for Atmospheric Research (NCAR) and other institutes (Skamarock et al., 2019). 

WRF is a state-of-the-art atmospheric modeling system designed for both meteorological 

research and numerical weather prediction (Skamarock et al., 2019). 

The WRF mesoscale model has been previously used for wind energy applications (e.g., 

Carvalho et al. (2014), Santos-Alamillos et al. (2014), Salvação and Guedes Soares (2018), 

Dörenkämper et al. (2020)). 

This study uses the WRF-ARW version 4.0.2 to produce 14 years (2005–2018) of 

atmospheric data with an hourly temporal resolution. A detailed description of the model 

can be found in Skamarock et al. (2019). The spatial configuration of the model (Fig. 3-1) 

comprises one outer coarse-resolution (parent) domain (named d01) and two nested (child) 

domains (named d02 and d03), which cover the Galapagos Islands and Ecuador’s 

mainland, respectively.  

 

Fig. 3-1. Spatial configuration of the WRF mesoscale model, where d01 represents the parent domain, 
d02 covers the Galapagos Islands and d03 covers Ecuador’s mainland. 
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The WRF model setup parameters are listed in Table 3-1. The physics parametrization 

schemes follow the model configuration used for the production of the New European Wind 

Atlas (NEWA) (Dörenkämper et al., 2020). The sensitivity analysis and evaluation 

procedures for choosing the NEWA model setup can be found in Hahmann et al. (2020). 

Table 3-1. WRF model setup configuration used for the production of a 14-year period wind resource dataset 
for Ecuador 

WRF version 4.0.2 
Period 00:00 UTC 01-01-2005 

23:00 UTC 31-12-2018 
Domain d01: 9 km parent (400 x 220 grid) 

d02: 3 km child (202 x 151 grid) 
d03: 3 km child (385 x 385 grid) 

Vertical levels 61 levels (surface to 50 hPa) 
Dynamical 
forcing 

ERA5 reanalysis (hourly, 31 x 31 km) 

Nudging Spectral nudging in d01 only, above PBL and level 20 
Physics 
schemes 

Rapid radiative transfer model for global applications (RRTMG) longwave 
and shortwave radiation schemes 
WRF Single-Moment five-class micro-physics 
Noah land surface model 
Eta Similarity surface layer 
Mellor–Yamada–Nakanishi–Niino level 2.5 Planetary boundary layer (PBL) 
scheme 
Kain-Fritsch cumulus convection scheme 

 

The initial and boundary conditions for the WRF simulations are obtained from ERA5 

reanalysis data. ERA5 is the most recent global reanalysis produced by the European 

Centre for Medium-Range Weather Forecasts (ECMWF), which includes a detailed record 

of the global atmosphere, land surface and ocean waves with a horizontal 

resolution of 31 km, 137 vertical layers, and an hourly data output from 1950 onwards 

(Hersbach et al., 2020). 

The simulations are performed month by month for the 14-year period (2005–2018). 

Each month is split into four runs and a 24-hour spin-up period is added at the beginning 

of each run, which guarantees that the mesoscale flow is in full equilibrium with the 

mesoscale aerodynamic characteristics of the terrain (Dörenkämper et al., 2020). Nudging 

in domain d01 is used to prevent the model solution to diverging from the large-scale 

circulation patterns (Dörenkämper et al., 2020; Vincent et al., 2015). 

The post-processing of the WRF simulations follows the procedure described in 

Dörenkämper et al. (2020). The resulting hourly time series are stored as netCDF files with 

the variables listed in Appendix B.1. 
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3.2.2. Observational data 

The wind speed and wind direction simulated by the WRF model is compared to 

observations from four tall meteorological masts located along the Andean highlands, 

which are referred to as Site A–D in this dissertation. Due to the sensitive nature of the 

data, the coordinates of the sites are not disclosed and normalized wind speed values are 

shown in the results section. 

The observations consist of 10-minute averages of wind speed and direction at 

80 m AGL for twelve months (November 2016 to October 2017). Site D has additional data 

for nine months (January to September 2015), which is used for the bias-correction 

validation (which will be discussed in Section 3.2.5). Preprocessing steps were performed 

before using the observation data for the comparison, which included data quality control 

and converting the 10-minute data to hourly averages. 

3.2.3. ERA5 data 

To evaluate the pairwise agreement between ERA5, WRF simulations, 

and observations, wind speed and direction at 100 m AGL are retrieved from ERA5 

(Hersbach et al., 2018). The bilinear interpolation method is used to horizontally interpolate 

from the four closest grid points to each observation site. Then, wind speed at 80 m AGL 

is estimated using the logarithm profile according to Equation (3.1) (Sathyajith, 2006): 

𝑊𝑆0' = 𝑊𝑆0(
ln	(𝑍!/𝑍1)
ln	(𝑍*/𝑍1)

 (3.1) 

where, 𝑊𝑆0( and 𝑊𝑆0' is ERA5 wind speed at 100 and 80 m AGL, respectively; 𝑍* is 

100 m; 𝑍! is 80 m; and 𝑍1 is the surface roughness length at each observation site, which 

is obtained by interpolating the 𝑍1 simulated by WRF from the four closest grid points to 

each observation site. 

3.2.4. Performance metrics 

A statistical approach is used to describe the degree of the agreement between 

simulated and observed wind data. Simulated wind data refers to either WRF simulations 

or ERA5 data. The three selected statistical metrics for wind speed are: mean bias 

error (MBE), root mean square error (RMSE) and Pearson correlation coefficient 𝑟,, 

calculated according to Equations (3.2)–(3.4) (Wilks, 2006), respectively: 
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𝑀𝐵𝐸 =
1
𝑛
	Z(𝑊𝑆234! −𝑊𝑆562!)
#

%)*

 (3.2) 

𝑅𝑀𝑆𝐸 = \
∑ (𝑊𝑆234! −𝑊𝑆562!)!
#
%)*

𝑛
 (3.3) 

𝑟, =
𝐶𝑜𝑣(𝑊𝑆234 ,𝑊𝑆562)

𝜎234𝜎562
 (3.4) 

 

where, 𝑛 is number of data points in the considered time series; 𝑊𝑆234! and 𝑊𝑆562! refer 

to the 𝑖-th value of the simulated and observed wind speed, respectively; 

𝐶𝑜𝑣(𝑊𝑆234 ,𝑊𝑆562) is the covariance between simulated and observed wind speed; and 

𝜎234 and 𝜎562 are the standard deviation of the simulated and observed wind speed, 

respectively. 

The performance of the WRF model is evaluated by comparing simulations and 

observations from the four observation sites (A–D) during the control period 

(November 2016 to October 2017). ERA5 data is also compared to observations for the 

same period. For the comparison, the hourly time series of WRF simulated wind speed and 

direction for each site are extracted from the WRF output at 80 m AGL using bilinear 

interpolation from the four closest grid points to each site. ERA5 wind speed and direction 

at 80 m AGL are extracted according to the procedure described in Section 3.2.3. 

In the case of wind direction, the difference between simulations and observations 

Δ𝑊𝐷 in Equation (3.5) is evaluated following the methodology described in Jiménez and 

Dudhia (2013) and Salvação and Guedes Soares (2018) in which: 

 

ΔWD = 9
𝑊𝐷.01 −𝑊𝐷23.													
𝑊𝐷.01 −𝑊𝐷23. − 360
𝑊𝐷.01 −𝑊𝐷23. + 360

 
if  𝑊𝐷.01 −𝑊𝐷23. ≤ |180| 
if  𝑊𝐷.01 −𝑊𝐷23. > 180 
if  𝑊𝐷.01 −𝑊𝐷23. < −180 

(3.5) 

where, 𝑊𝐷234 and 𝑊𝐷562 are the simulated and observed wind direction, respectively. 

Using this formulation, counterclockwise rotations occur when Δ𝑊𝐷 is negative, while 

positive values indicate a clockwise rotation of the simulated wind direction with respect to 

the observed records.  
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The performance of the simulated wind direction is evaluated through MBE, mean bias 

absolute (MBA), RMSE and relative root mean square error (RMSErel), according to 

Equations (3.6)–(3.9) (Salvação et al., 2018), where Δ𝑊𝐷 is the difference between 

simulations and observations determined by Equation (3.5). 

𝑀𝐵𝐸 =
1
𝑛
	ZΔ𝑊𝐷%

#

%)*

 (3.6) 

𝑀𝐵𝐴 =
1
𝑛
	Z|Δ𝑊𝐷%|
#

%)*

 (3.7) 

𝑅𝑀𝑆𝐸 = \∑ (Δ𝑊𝐷%)!#
%)*

𝑛
 (3.8) 

𝑅𝑀𝑆𝐸789 =
𝑅𝑀𝑆𝐸
180°

∙ 100 (3.9) 

 

3.2.5. Bias correction of wind speed 

A temporal bias correction is performed to reduce the systematic deviations of the WRF 

simulated wind speeds at 80 m AGL with respect to observations. The bias correction 

methodology consists of two stages as displayed in Fig. 3-2. 

The first stage focuses on the correction of a single site and follows three steps 

according to Li et al. (2019): (i) inferring correction terms using simulated and observed 

wind speed from a given time period, namely, the control period; (ii) applying the correction 

terms to the simulated wind speed from a different period, namely, the evaluation period; 

and (iii) comparing the bias-corrected data in the evaluation period with observations using 

different statistical metrics.  

The control period is from November 2016 to October 2017. During this period, 

observations from sites A–D are used for the comparison. The evaluation period is from 

January to September 2015. During this period, the comparison is limited to observations 

from site D, since the other sites do not have data during that period.  

The correction terms are inferred based on the difference between simulated and 

observed wind speeds in the control period. Instead of using a constant correction term, a 

specific term for a given hour and given month is determined. In this way, the diurnal and 

seasonal overestimation of the WRF simulated wind speed, which will be discussed in 

Section 3.3.1, is taken into account. 
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Fig. 3-2. Overview of the methodology for the bias correction of WRF simulated WS (wind speed). Source: Own 
representation. 

 

In the second stage, the bias correction is applied to the hourly time series during the 

complete period (14 years) using the previously inferred correction terms. The correction is 

only applied to specific grid points of Ecuador’s mainland, which are selected based on the 

results of the sFDA regionalization of wind speed (for detailed description of the sFDA 

regionalization method see Chapter 2, Section 2.2.2.1). In this way, the correction is applied 

to the grid points within a spatial region that share similar intra-annual variability patterns 

of wind speed to that of the four observation sites. 

The bias correction methodology follows a linear scaling correction as applied in 

Lenderink et al. (2007). The correction terms are defined as the MBE during the control 

period weighted by the ratio of the hourly simulated wind speed at grid point 𝑥 and time 𝑡 

to the long-term hourly mean wind speed at same grid point 𝑥. Thus, the bias-corrected 

hourly wind speed is calculated according Equation (3.10): 
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𝑊𝑆:;<
=>778=?8@(𝑡, 𝑥) = 𝑊𝑆:;<(𝑡, 𝑥) − 𝑀𝐵𝐸(+,C):;<E562

𝑊𝑆:;<(𝑡, 𝑥)
𝑊𝑆AAAAA:;<(𝑥)

 (3.10) 

 

where, 

𝑊𝑆:;<
=>778=?8@(𝑡, 𝑥) is the bias-corrected hourly wind speed at grid point 𝑥 and time 𝑡. 

𝑀𝐵𝐸(+,C):;<E562
 is a 12 ´ 24 matrix of the monthly and diurnal mean bias between 

simulated and observed wind speed during the control period (November 2016 to 

October 2017). 

𝑊𝑆:;<(𝑡, 𝑥) is the hourly simulated wind speed at grid point 𝑥 and time 𝑡. 

𝑊𝑆AAAAA:;<(𝑥) is the long-term hourly mean simulated wind speed at the grid point 𝑥. 

After the bias correction is applied, the Wilcoxon signed-rank test is used to determine 

if the improvements in the bias-corrected wind speed are statistically significant, following 

the approach used in Deppe et al. (2013). The significant level alpha is set at 0.05. This 

test is selected because it does not depend on the distribution of the data and is resistant 

to outliers (Wilks, 2006). 

Note that the following assumptions are made to transfer the pointwise bias correction 

to any grid point. First, it is assumed that the bias at the selected grid points behaves similar 

to the calculated bias at the observation sites and is time-dependent, i.e., the bias varies 

depending on the month and time of the day. Second, the correction terms are inferred 

using present-day simulated and observed data, and it is assumed that the correction terms 

are a good estimate for past simulated data. Third, it is assumed that the correction terms 

remain unchanged for the complete 14-year period. 

3.2.6. Spatio-temporal variability analysis of wind speed 

The analysis of the spatio-temporal intra-annual and interannual variability of wind speed 

is conducted by applying the same methodology used for the solar resource dataset, which 

is explained in detail in Chapter 2, Section 2.2.2. 
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3.3. Results 

3.3.1. Performance of WRF simulated wind speed 

The monthly statistical scores of the comparison between observations, WRF, and 

ERA5 wind speed during the control period (November 2016 – October 2017) are 

presented in Table 3-2. It is evident from this table that the WRF model overestimates wind 

speed compared to observations, while ERA5 strongly underestimates wind speed 

compared to observations. 

Table 3-2. Summary of monthly performance metrics between observations (OBS), WRF, and ERA5 wind 
speed averaged for the four observation sites during the control period (November 2016 – October 2017). 
(s is the standard deviation). 

 WRF–OBS ERA5–OBS 
Date MBE RMSE 𝑟$  MBE RMSE 𝑟$ 
 [m s–1] [m s–1] [–] [m s–1] [m s–1] [–] 

2016–11 0.78 2.98 0.66 –3.53 4.77 0.57 
2016–12 0.86 2.71 0.63 –2.99 4.09 0.47 
2017–01 0.85 2.99 0.68 –3.30 4.33 0.55 
2017–02 0.47 2.80 0.76 –2.93 4.03 0.58 
2017–03 0.78 2.81 0.52 –2.25 3.20 0.41 
2017–04 1.78 3.45 0.67 –3.48 4.62 0.52 
2017–05 1.78 3.60 0.72 –3.47 4.89 0.56 
2017–06 2.28 3.96 0.62 –4.44 5.68 0.47 
2017–07 3.18 4.86 0.61 –7.37 8.42 0.50 
2017–08 3.21 4.60 0.62 –5.21 6.40 0.52 
2017–09 2.00 3.86 0.48 –6.24 7.21 0.45 
2017–10 1.37 3.09 0.78 –5.19 6.48 0.60 
Mean 1.61 3.48 0.65 –4.20 5.34 0.52 
s 0.93 0.72 0.09 1.52 1.52 0.06 

 

The MBE between WRF and observations is 1.61 ± 0.93 m s–1 for all sites over all 

months, with higher values from June to September (2.00 to 3.21 m s–1). RMSE between 

WRF and observations for all sites over all months is 3.48 ± 0.72 m s–1, again with higher 

values from June to September (3.86 to 4.86 m s–1). The overall correlation for the four 

sites is 0.65 ± 0.09. 

The comparison of ERA5 and observations shows that the MBE is –4.20 ± 1.52 m s–1 

for the whole control period. Larger negative biases are seen from July to October. RMSE 

between ERA5 and observations is also higher than that between WRF and observations, 

at 5.34 ± 1.52 m s–1. Larger RMSE values are seen during July to October. The correlation 

coefficient for all sites over all months is 0.52 ± 0.06, which is lower than that of between 

WRF and observations. 

 



Chapter 3 

 50 

A further breakdown of the MBE between WRF and observations by month and time of 

day for the four sites is displayed in Fig. 3-3. This plot reveals a trend of diurnal and monthly 

bias between WRF and observations. WRF overestimates nighttime wind speeds specially 

from 23:00 to 13:00 UTC (18:00 to 08:00 local time), which is more evident during July to 

September. The largest averaged bias of 4.59 m s–1 is seen in July at 08:00 UTC. 

 

Fig. 3-3. Hourly and monthly variability of wind speed bias between WRF and observations at 80 m AGL 
averaged for the four sites during the control period (November 2016 – October 2017). 

 
3.3.2. Performance of simulated wind direction 

The monthly statistical scores of the comparison between observations, WRF, and 

ERA5 wind direction during the control period are presented in Table 3-3.  

The MBE results indicate that WRF wind is rotated counterclockwise with respect to the 

observations (–6.95 ± 2.92°), with larger negative biases during April–July. The RMSE is 

61.32 ± 13.5°, resulting in a relative RMSE of 34.07 ± 7.50% over all sites and months. 

ERA5 shows a positive (clockwise) wind direction bias of 24.84 ± 33.67° over all sites and 

months, with larger positive biases during July–September. The RMSE is 110.65 ± 6.77°, 

resulting in a relative RMSE of 61.47 ± 3.76% over all sites and months. 

  



Mesoscale modeling and characterization of wind resources over complex terrain 

 51 

Table 3-3. Summary of monthly performance metrics between observations (OBS), WRF, and ERA5 wind 
direction averaged for the four observation sites during the control period (November 2016 – October 2017). 
(s is the standard deviation). 

 WRF–OBS ERA5–OBS 
Date MBE MBA RMSE RMSErel MBE MBA RMSE RMSErel 
 [°] [°] [°] [%] [°] [°] [°] [%] 

2016–11 –5.10 46.71 69.32 38.51 2.76 94.30 105.26 58.48 
2016–12 –7.97 45.74 68.75 38.20 2.50 98.55 108.62 60.34 
2017–01 –4.80 45.90 68.86 38.26 2.82 93.17 102.79 57.10 
2017–02 –1.22 49.87 72.75 40.42 –24.21 87.54 97.92 54.40 
2017–03 –5.69 58.65 80.60 44.78 –11.60 92.26 103.92 57.73 
2017–04 –11.51 42.74 66.42 36.90 20.40 105.83 113.65 63.14 
2017–05 –9.28 50.16 72.02 40.01 15.82 102.73 112.21 62.34 
2017–06 –9.63 38.65 58.52 32.51 39.59 109.12 116.06 64.48 
2017–07 –9.44 25.80 40.82 22.68 84.34 114.93 118.26 65.70 
2017–08 –7.60 31.00 46.36 25.76 63.99 112.53 117.34 65.19 
2017–09 –7.31 28.30 40.89 22.72 66.99 113.22 117.31 65.17 
2017–10 –3.82 33.39 50.56 28.09 34.62 107.55 114.45 63.59 
Mean –6.95 41.41 61.32 34.07 24.84 102.64 110.65 61.47 
s 2.92 10.05 13.50 7.50 33.67 9.29 6.77 3.76 

 

Fig. 3-4 provides a visual comparison of the wind direction distribution of observations 

against WRF and ERA5 for each site during the control period. On the one hand, WRF 

tends to match the prevailing wind in sites A, B, C, where winds blow mostly from east / 

southeast directions. In site D, the observations indicate predominant west / northwest 

winds, while WRF is rotated counterclockwise. On the other hand, ERA5 matches the 

prevailing wind in sites A and C, while in site B ERA5 shows a counterclockwise rotation 

with respect to the observations. In site D, ERA5 does not display the predominant wind 

observed in this location, but it shows rather weaker breezes blowing from different 

directions. Overall, the results show that WRF simulated wind directions perform better than 

ERA5, which is reflected in the previously discussed statistics. 
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Fig. 3-4 Comparison of the distribution of wind speed and the varying wind directions from observations (OBS), 
WRF, and ERA5 during the control period (November 2016 – October 2017) for each observation sites. The 
concentric circles represent the probability of wind coming from a particular direction in percentage. 
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3.3.3. Bias correction of WRF simulated wind speed results 

3.3.3.1. Bias correction at one observation site 
According to the results in Section 3.3.1, there is a consistent trend of diurnal and 

monthly bias between WRF and observations (see Fig. 3-3). Therefore, the simulated wind 

speed at the observation site D during the evaluation period (January – September 2015) 

is corrected using a set of correction terms according to the month and time of day, which 

are inferred from the analysis during control period (see Equation (3.10)). 

Table 3-4 shows the performance metrics for wind speed simulations before and after 

the bias correction at site D. Uncorrected simulated wind speeds show higher biases during 

June and July, a similar monthly pattern as previously seen in the control period.  

After applying the correction, bias-corrected wind speeds show a significant 

improvement in comparison to the uncorrected values. MBE is reduced from 2.16 ± 0.94 to 

0.36 ± 0.49 m s–1, while the RMSE decreases from 4.28 ± 1.03 to 2.96 ± 0.55 m s–1. The 

correlation coefficients also show an improvement from 0.57 ± 0.11 to 0.72 ± 0.06. 

Additionally, the Wilcoxon signed-rank test indicates that the bias correction is statistically 

significant with a p-value < 0.05. 

Table 3-4. Performance metrics for wind speed simulations before and after the bias correction for site D during 
the evaluation period (January – September 2015). (s is the standard deviation). 

 WRF–OBS (Site D) WRFcorrected–OBS (Site D) 
Date MBE RMSE 𝑟$ MBE RMSE 𝑟$ 
 [m s–1] [m s–1] [–] [m s–1] [m s–1] [–] 

2015–01 1.26 3.20 0.68 0.66 2.62 0.75 
2015–02 0.92 2.98 0.70 0.44 2.50 0.78 
2015–03 1.19 2.96 0.72 0.42 2.33 0.79 
2015–04 2.36 4.42 0.43 0.58 2.56 0.72 
2015–05 2.08 4.35 0.45 0.30 2.66 0.68 
2015–06 2.99 5.19 0.60 0.71 3.69 0.70 
2015–07 3.86 5.89 0.49 0.68 3.41 0.66 
2015–08 2.34 4.81 0.50 –0.87 3.78 0.62 
2015–09 2.47 4.75 0.56 0.36 3.12 0.75 
Mean 2.16 4.28 0.57 0.36 2.96 0.72 
s 0.94 1.03 0.11 0.49 0.55 0.06 

 

The improvement becomes clearer when comparing the MBE before and after the 

correction by month and time of the day. From Fig. 3-5, it is evident that the overestimation 

of WRF at nighttime from 23:00 to 13:00 UTC (18:00 to 08:00 local time) occurring from 

April to September is reduced when applying the time-dependent bias correction.  
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Fig. 3-5. Hourly and monthly variability of wind speed bias between WRF and observations at 80 m AGL for 
site D before (left) and after (right) applying the bias correction during the evaluation period (January to 
September 2015). 

3.3.3.2. Bias correction at selected grid points 
Based on the good performance in terms of MBE, RMSE, and correlation coefficient that 

the single point bias-correction methodology shows after being applied to WRF simulated 

wind speeds at site D (see Table 3-4), the second stage of the bias correction methodology 

is applied to selected grid points in Ecuador’s mainland. As described in Section 3.2.5, the 

grid points for the application of the bias correction are selected based on the 

regionalization of the WRF simulated wind speed. 

The regionalization results are shown in Fig. 3-6. From the map on the left, it can be 

seen that WRF simulated wind speeds in Ecuador’s mainland are classified into three 

regions, named R1, R2, and R3. Remarkably, the four observation sites are located inside 

region R3, which is spatially distributed along the Andean highlands.  

From the functional boxplot of region R3 displayed on the right side of Fig. 3-6, it is 

evident that the grid points of this region share a similar intra-annual variability. High wind 

speeds occur from June to September, similar to the intra-annual pattern seen in the 

observation sites. 

Since the grid points in the region of interest (R3) share the same intra-annual variability 

pattern but differ in wind speed magnitude, a minimum threshold is set as constraint for the 

application of the bias correction. This is done to avoid negative wind speed values after 

applying the bias correction for those grid points that show a similar intra-annual variability 

pattern but have lower wind speed magnitude than the observations. As result, 1282 out 

of 2966 total grid points in region R3 satisfy the condition to have a higher or equal wind 
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speed magnitude to that at the four observation sites for all months. Therefore, these grid 

points are selected for the application of the bias correction methodology. 

 

Fig. 3-6. Results of the regionalization of WRF simulated wind speed (not bias-corrected) in Ecuador’s 
mainland. Left: Spatial distribution of the resulting regions after applying the sFDA regionalization method. The 
white line depicts the altitudinal contour at 1000 m.a.s.l. and the black points represent the location of the 
median curve of each region. Right: Functional boxplot of region R3, where the four observation sites are 
located. The colored shape represents the interquartile range, the gray external lines depict the minimum and 
maximum curves, the black line is the wind speed curve of the black point in R3 from the map on the left. 

Once the subset of grid points is selected, the bias of the complete 14-year period wind 

speed time series of those grid points is corrected using Equation (3.10). Then, the bias-

corrected dataset from the selected grid points is merged with the dataset of the remaining 

grid points in Ecuador’s mainland, thus a new dataset of wind speed at 80 m AGL is 

generated.  

Fig. 3-7 compares the probability density function of the original and corrected datasets 

from the selected grid points. As expected, the distribution of wind speed is shifted to the 

left, but the shape of the distribution is maintained. The correction effect is more evident 

from April to October, when the originally overestimations were higher. 
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Fig. 3-7. Distribution of the 14-year monthly mean WRF simulated wind speed before (original) and after bias 
correction (corrected) at selected grid points inside region R3, where the four observation sites are located.  
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3.3.4. Spatio-temporal variability analysis of wind resources 

After completing the validation and bias correction of WRF simulated wind speed, this 

section presents the results of the spatio-temporal variability analysis of the wind resources. 

For the analysis, the long-term monthly mean wind speed datasets for Ecuador’s 

mainland and the Galapagos Island are used, which are displayed in Fig. 3-8. These 

datasets are calculated using the complete 14-year period of the WRF simulated wind 

speed time series at 80 m AGL. Note that the dataset of Ecuador’s mainland includes the 

bias-corrected time series of the selected grid points in the Andean highlands. 

The results of the spatio-temporal variability analysis of wind resources are presented 

in a similar way as in the previous chapter for the variability analysis of solar resources. 

First, the results of the regionalization of wind speed in Ecuador's mainland and the 

Galapagos Islands are described and analyzed in relation to the climate characteristics of 

the resulting spatial areas in Section 3.3.4.1 and Section 3.3.4.2, respectively. Then, the 

results of the intra-annual variability analysis at yearly and monthly timescales are 

presented in Section 3.3.4.3. 
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Fig. 3-8. Long-term monthly mean wind speed at 80 m AGL from 2005 to 2018 at a 3 x 3 km resolution on 
Ecuador's mainland (top) and the Galapagos Islands (bottom). Wind speeds are simulated using the WRF 
mesoscale model. Note that the maps for Ecuador’s mainland include the bias-corrected wind speed applied 
to selected grid points in the Andean highlands (See Section 3.3.3.2). 
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3.3.4.1. Regionalization of wind speed in Ecuador’s mainland 
After applying the sFDA regionalization to the bias-corrected dataset, the 

resulting regions have a similar spatial classification pattern to that displayed on the left 

side of Fig. 3-6, although with some variations due to the bias-corrected wind speed values 

in the Andean highlands. To further analyze the difference in wind speed magnitude within 

each region, a second regionalization is applied using ten partitions (hereafter called 

subregions). The number of subregions is determined according to the cluster validity 

assessment explained in Appendix B.2. The spatial distribution of the three regions and 

their respective subregions is shown in Fig. 3-9. Regions R.1 and R.2 cover the coast and 

the Amazon lowlands, as well as scattered grid points along the Inter-Andean valleys. 

Region R.3 is a more compact region that is spatially distributed along the eastern and 

western Andean highlands. 

 

Fig. 3-9. Spatial distribution of the ten wind subregions in Ecuador's mainland after applying the sFDA 
regionalization method. The subregions are grouped and named according to their corresponding region: R1, 
R2, and R3. The black points represent the location of the median curve of each subregion. 

Fig. 3-10 shows the spatial distribution and the intra-annual wind speed variability of the 

ten subregions grouped by their corresponding region. Here it is noticeable that the 

subregions in the corresponding region share similar seasonal patterns, but they differ in 

the magnitude of wind speed. This can also be seen in Table 3-5, which summarizes the 

long-term annual mean wind speed and wind power density per subregion. 
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Fig. 3-10. Spatial distribution of the subregions in regions R.1, R.2, and R.3 and temporal variability of wind 
speed at 80 m AGL in each subregion in Ecuador’s mainland. The maps on a), c) and e) show the spatial 
distribution of the subregions within each region (gray polygons depict the province boundaries. See Appendix 
D for provinces’ names). The left sides of b), d) and f) show the comparison of the main wind speed seasonal 
patterns for the corresponding region (dotted black lines) and the median curves obtained from the functional 
boxplot of each subregion (Appendix B.3). The right sides of b), d) and f) show the dispersion of the annual 
mean wind speed for each subregion, where the black points represent the values of the median curve of each 
subregion. 
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Table 3-5. Long-term annual mean wind speed and wind power density at 80 m AGL, yearly coefficient of 
variation (𝐶𝑉%), and mean elevation per wind subregion in Ecuador’s mainland and the Galapagos Islands. 
Note that subregions are named and sorted in decreasing order according to the wind speed value in their 
respective region. 

Wind 
Subregion 

Wind speed 
 
[m s–1] 

Wind power 
density 
[W m–2] 

CVy 
 
[%] 

Mean 
Elevation  
[m.a.s.l] 

R.1.1 4.1 84.9 6.6 2290.5 
R.1.2 3.1 36.7 3.2 913.1 
R.2.1 2.5 22.8 2.9 401.6 
R.2.2 2.4 20.4 2.6 682.8 
R.2.3 1.9 10.9 2.2 917.9 
R.3.1 8.3 747.1 11.9 2992.5 
R.3.2 6.9 400.7 10.8 3119.8 
R.3.3 5.9 166.5 7.7 3538.8 
R.3.4 5.1 106.5 6.5 3380.3 
R.3.5 5.1 250.2 11.3 2473.9 
R.4.1 5.7 157.9 4.8 138.0 
R.4.2 4.7 95.2 5.5 176.5 
R.4.3 3.8 59.2 6.3 294.2 
R.5.1 2.8 36.3 7.0 453.9 

 

The spatial and temporal variability of the wind resources over Ecuador’s mainland is 

driven by the large-scale circulation systems in the Tropics, further influenced by changes 

in surface properties and elevation. The Andean highlands represent a strong divide for the 

lower tropospheric flow (Vuille et al., 2000). Accordingly, coastal areas and the lower 

western Andean flanks are mainly influenced by air masses originating in the Pacific, while 

the eastern part of the country is dominated by easterly trade winds originating over the 

tropical Atlantic and Amazon basin (Hastenrath, 1981). In the coastal area, the easterlies 

interact with two local circulation systems: (i) the breeze resulting from the temperature 

contrast between the continent and the ocean, and (ii) the valley-mountain winds due to 

the influence of the Andean highlands (MEER, 2013). This combination results in a higher 

spatial variability of wind speed with some areas showing stronger winds than those in the 

surrounding areas (MEER, 2013). 

These characteristics are reflected in the spatial distribution of the resulting regions and 

subregions. Region R.1 comprises two subregions (R.1.1 and R.1.2). Subregion R.1.1 

is mainly scattered along the Inter-Andean valleys. It also includes partitions 

along the coastline of Esmeraldas and Manta, and a small partition in the coastal 

Cordillera (Fig. 3-10a). This subregion shows a unimodal pattern with high winds from 

June to September and lower winds from October to May (Fig. 3-10b). The annual mean 

wind speed is 4.1 m s–1. 
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Subregion R.1.2 covers the rest of the coastline, the Inter-Andean valleys and scattered 

partitions in the Amazon lowlands. The annual mean wind speed is 3.1 m s–1 and it is almost 

constant along the year. Regarding wind direction in these two subregions, R.1.1 shows 

scattered winds from southwest to east directions (Fig. 3-11); although, the higher winds 

during June to September come from east and southeast directions (Fig B-4 in 

Appendix B.4). In R.1.2, the predominant wind direction is from southwest and remain 

constant throughout the year (Fig. 3-11 and Fig B-5 in Appendix B.4). 

Region R.2 comprises three subregions (R.2.1–R.2.3) that display low wind speed 

magnitudes over Ecuador’s mainland. The largest area of R.2.1 is distributed over the 

Amazon lowlands. Wind speed in this subregion is low throughout the year, with an annual 

mean wind speed of 2.5 m s–1 (Fig. 3-10c and d). The predominant winds come from 

south and southeast (Fig. 3-11); however, during November to January, slightly higher 

winds (max. 5.4 m s–1) come from the east (Fig B-6 in Appendix B.4). 

Subregions R.2.2 and R.2.3 are distributed over the rest of the coast and Amazon areas, 

and scattered locations in the Inter-Andean Valleys. These two subregions have the lowest 

wind speed magnitude of all subregions in Ecuador’s mainland, with annual mean wind 

speeds of 2.4 and 1.9 m s–1, respectively. The predominant winds in R.2.2 come from 

southwest, while in R.2.3 weaker breezes blow from different directions ranging southeast 

and southwest (Fig. 3-11 and Fig B-7, Fig B-8 in Appendix B.4). 

The most important wind resources are seen in Region R.3, which comprises five 

subregions (R.3.1–R.3.5) located over the Andean highlands (Fig. 3-10e). The intra-annual 

variability of wind speed in these subregions shows a unimodal pattern with higher 

magnitude from June to September and lower from October to May. Although a smaller 

peak is seen from November to January (Fig. 3-10f). The higher wind speeds observed in 

region R.3 correlate to the fact that the easterlies are stronger at elevations higher 

than ~1000 m.a.s.l. (Emck, 2007), and that the most intensive easterlies extend into the 

mid-troposphere over the Equator during June–September (Hastenrath, 1981). This 

behavior is also backed by observations at 4890 m.a.s.l. on Antizana volcano 

(eastern Andean highlands) where strong winds from July to September are observed 

(Favier et al., 2004). The observation sites A–D are located at elevations higher 

that 1000 m.a.s.l. and show strong winds during these months, as well. 
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Subregion R.3.1 shows the highest wind speed magnitude with an annual mean value 

of 8.3 m s–1. This subregion is mainly scattered along the central part of the western Andean 

highlands and along the Loja province, but also a small partition and isolated grid points 

are seen in the northeastern Andean highlands (Fig. 3-10e). Subregion R.3.2 shows an 

annual mean wind speed of 6.9 m s–1. It covers larger extensions of the western Andean 

highlands, as well as areas over the eastern Andes in the north and south of the country. 

Subregions R.3.3 and R.3.4 extend over the internal flanks of the highlands towards the 

valleys and show annual mean wind speeds of 5.9 and 5.1 m s–1, respectively. 

Subregion R.3.5 is scattered throughout the outer flanks of the western Andean 

highlands and shows a similar temporal pattern to the previous subregions, but rather lower 

winds at the beginning and end of the year (Fig. 3-10f). The annual mean wind speed in 

subregion R.3.5 is 5.1 m s–1. 

The predominant winds throughout the year in subregions R.3.1–R.3.4 come from east 

and southeast directions (Fig. 3-11). In subregion R.3.5, weak winds from the south 

and southwest are also seen. Taking a more detailed look at wind direction in subregions 

R.3.1–R.3.5 per month (Fig B-9–Fig B-13 in Appendix B.4), it is observed that the stronger 

winds during June to September come from east and southeast, which is in agreement with 

the more pronounced easterlies. 
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Fig. 3-11. Distribution of wind speed and the frequency of wind direction at 80 m AGL per subregion grouped 
by their respective region in Ecuador’s mainland. The concentric circles represent the probability of wind coming 
from a particular direction in percentage. 
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3.3.4.2. Regionalization of wind speed in the Galapagos Islands 
Four subregions are selected as the optimal partition for the Galapagos Islands 

according to the cluster validity assessment explained in Appendix B.2. 

The spatial distribution of the resulting four subregions R.4.1–R.4.3 and R.5.1 is displayed 

in Fig. 3-12a, while the intra-annual variability pattern of wind speed in each subregion is 

shown in Fig. 3-12b. 

 

 

Fig. 3-12. Spatial and temporal variability of wind speed at 80 m AGL in the Galapagos Islands. The map 
on a) shows the spatial distribution of the subregions of regions R.4 and R.5 (See Appendix D for 
islands’ names). The left side of b) shows the comparison of the median curves obtained from the functional 
boxplot of each subregion (Appendix B.3). The right side of b) shows the dispersion of the annual mean wind 
speed for each subregion, where the black points represent the values of the median curve of each subregion. 

Subregions R.4.1–R.4.3 are spatially distributed over the islands located on the east 

side (San Cristobal, Santa Cruz, and Floreana) and scattered over the eastern and western 

side of the Isabela and Fernandina Islands.  

Subregions R.4.1 and R.4.2 show a unimodal variability pattern with higher winds from 

June to December and lower winds from January to May. The annual mean wind speed in 

these subregions is 5.7 and 4.7 m s–1, respectively. A similar pattern is seen in R.4.3 but to 

a lesser extent.  

The marked seasonality in R.4.1 and R.4.2 corresponds to the two distinctive seasons 

in Galapagos that are influenced by the interaction of oceanic currents and winds, which in 

turn are governed by the north-south migration of the ITCZ (Trueman et al., 2010). From 

January to May, when the ITCZ is close to Galapagos, hot conditions with mild winds 
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prevail, while from June to December, when the ITCZ lies further north, cooler conditions 

with southeast trade winds predominate (Trueman et al., 2010). These dynamics are 

reflected in the intra-annual variability of wind speed (Fig. 3-12b) and wind direction in these 

subregions (Fig. 3-13 and Fig B-14–Fig B-16 in Appendix B.4). 

A different intra-annual variability pattern is seen in subregion R.5.1 that is scattered 

over the western slopes of the volcanoes in Isabela and Fernandina Islands (Fig. 3-12a). 

In this subregion, wind speed is low and almost constant along the year with an annual 

mean of 2.8 m s–1, except for a small peak in March (Fig. 3-12b). This subregion does not 

show the predominant southeast wind direction seen in the previous subregions, but 

rather weaker breezes coming from different directions between southwest and southeast 

(Fig. 3-13). The peak seen in March corresponds to higher winds (max. 5.1 m s–1) coming 

from east and southeast directions (Fig B-17 in Appendix B.4). 

 

Fig. 3-13. Distribution of wind speed and the frequency of wind direction at 80 m AGL per subregion grouped 
by their respective region in the Galapagos Islands. The concentric circles represent the probability of wind 
coming from a particular direction in percentage. 
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3.3.4.3. Interannual spatial-temporal variability of wind speed 
The coefficient of variation (𝐶𝑉) is used to analyze the interannual variability of wind 

speed at 80 m AGL during the 14-year period at yearly and monthly timescales. Fig. 3-14 

shows the spatial distribution of the annual coefficient of variation 𝐶𝑉'.  

 

Fig. 3-14. Annual coefficient of variation 𝐶𝑉% (%) of wind speed at 80 m AGL during 2005–2018 over Ecuador’s 
mainland and the Galapagos Islands. The white line over the continental part depicts the altitudinal contour 
at 1000 m.a.s.l. 

The highest variabilities of wind speed are along the western Andean highlands, while 

the lowest variability is seen over the coast and Amazon areas, as well as in the Inter-

Andean valleys. In Galapagos, the highest variabilities are seen over the northwest side of 

the islands, especially around the western slopes of the volcanoes in Isabela and 

Fernandina Islands. 

The distribution of the 𝐶𝑉' values per subregion is shown in Fig. 3-15 and a summary of 

the mean values per subregion is given in Table 3-5. Subregions R.3.1, R.3.2, and 

R.3.5 have the highest mean 𝐶𝑉' values (>10%). The lowest mean 𝐶𝑉' values (<3.5%) are 

seen in R.1.2 and the subregions in region R.2. In Galapagos, subregion R.5.1 shows the 

highest mean 𝐶𝑉' values (7.0%), while subregion R.4.1 have the lowest values 

mean 𝐶𝑉' values (4.8%). 
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Fig. 3-15. Annual coefficient of variation 𝐶𝑉% (%) of wind speed at 80 m AGL during 2005–2018 per subregion 
and grouped by region in Ecuador’s mainland (R.1–R.3) and in Galapagos (R.4–R.5). 

At a monthly timescale, Fig. 3-16 shows that the monthly coefficient of variation 𝐶𝑉+ 

over Ecuador’s mainland reaches high values along the western Andean highlands 

throughout the year.  

A further breakdown by subregion per month (Fig. 3-18) shows that the variability is 

seasonal rather than random. This is especially observed in subregions R.3.1, R.3.2, and 

R.1.1, which show high variability from October to May; however, during the months with 

stronger winds (June to September) the median 𝐶𝑉𝑚 is lower than 50%. This pattern is also 

observed in subregion R.3.5, but the 𝐶𝑉𝑚 value is higher than that observed in the 

aforementioned subregions (~50–60%) during the windy months. These results show that 

wind speed over the 14-year period in subregions R.3.1, R.3.2, and R.1.1 is less variable 

during the windy months. This finding may be of interest to power system planners, since 

the interannual variability of wind resources has significant implications for the cash flow of 

a wind farm operator (Watson, 2014).  

Fig. 3-17 shows the monthly coefficient of variation 𝐶𝑉+ over the Galapagos Islands. 

The highest variabilities throughout the year are around the western slopes of the 

volcanoes in Isabela and Fernandina Islands. This area corresponds to subregion R.5.1 

that shows median 𝐶𝑉𝑚 values higher than 60% over all months (Fig. 3-18). 

Subregions R.4.1–R.4.3 show a similar seasonal variability pattern to that observed in 

Ecuador’s mainland. During the windy months in Galapagos (June to December) the 

variability is lower (median 𝐶𝑉𝑚 < 40%) compared to that during February to March 

(median 𝐶𝑉𝑚 > 40%). 
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Fig. 3-16. Monthly coefficient of variation 𝐶𝑉& (%) of wind speed at 80 m AGL during 2005–2018 over Ecuador's 
mainland. 

 

 

Fig. 3-17. Monthly coefficient of variation 𝐶𝑉& (%) of wind speed at 80 m AGL during 2005–2018 over the 
Galapagos Islands. 
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Fig. 3-18. Boxplots of the monthly coefficient of variation 𝐶𝑉& (%) of wind speed at 80 m AGL during 2005–
2018 per subregion and grouped by region in Ecuador’s mainland (R.1–R.3) and in Galapagos (R.4–R.5). 
Outliers are excluded for clarity. 
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3.4. Discussion 

The lack of a validated, long-term, and high-resolved wind dataset for the study area 

was the motivation to simulate wind resources using the WRF mesoscale model. Wind 

speed measurements at 80 m AGL from four meteorological tall masts were made available 

to evaluate the performance of the model. Results indicate that WRF overestimates wind 

speed compared to observations, especially at nighttime and from June to September. All 

observation sites are located over complex terrain in the Andean highlands. According to 

previous studies, WRF seems to overestimate surface wind speeds in complex terrain due 

to unresolved orographic surface drag (Jiménez et al., 2012). 

The nighttime overestimation is consistent with previous studies (Hahmann et al., 2010; 

Ngan et al., 2013; Zhang et al., 2004), which is probably due to excessive vertical mixing 

during nighttime hours. Normally, the sun heats the earth’s surface during daytime, causing 

warm updrafts and vertical mixing, which results in an increase of wind speed during the 

day. Near sunset, a second temperature inversion starts to grow from the bottom surface 

as rapid radiative heat losses occur at the ground (Zhang et al., 2004). This dynamic 

corresponds to a change from an unstable daytime convective boundary layer to a stable 

nocturnal boundary layer (NBL) (Emeis, 2013). 

The validation of WRF simulated wind speed performed by Ngan et al. (2013) found that 

the overestimation always began at sunset, which corresponds to the start of the growth of 

the NBL. The authors attributed the overestimation to the inaccuracy of WRF 

in capturing the thermal and mechanical dynamics that occur during the evening hours 

(Ngan et al., 2013). In another validation study of WRF simulated wind speed over 

Denmark, Hahmann and Peña (2010) found larger nighttime overestimations in October 

compared to those in June, which was attributed to the fact that stable conditions are more 

prevalent during fall and winter than during summer in this geographical area. In the 

Ecuadorian Andean highlands, clear skies generally occur during June to September 

(Hastenrath, 1981), which may explain the larger nighttime overestimation of the simulated 

winds at the observation sites during these months. 

ERA5 is found to have significant negative biases compared to observations, which 

implies that the ERA5 reanalysis data may not be a reliable dataset to evaluate the wind 

power potential in the Ecuadorian Andean highlands. The underestimation of ERA5 might 

be attributed to the coarse resolution of the model and its inability to reproduce fluctuations 

at a local site, especially over complex terrain (Olauson, 2018). Nevertheless, based on the 

comparison of WRF simulated wind speed against observations, it can be inferred that 
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ERA5 is suitable as forcing data for the mesoscale model. One question that may arise is 

how WRF is able to input relatively inaccurate ERA5 data and produce more accurate wind 

speed simulations. This can be explain by the fact that the atmospheric processes not 

resolved by ERA5 (due to the coarse horizontal resolution) are considered in WRF with the 

aid of physical parameterization schemes (Carvalho et al., 2012). In addition, the nesting 

and nudging methods used in the WRF simulations provide better temporal detail at the 

nest boundary than driving it directly from linearly interpolated analyses, as well as better 

accounting for topographic and convective effects (Skamarock et al., 2019). 

An improvement of WRF simulated wind speed forced by ERA5 compared to ERA5 data 

itself was also reported by Dörenkämper et al. (2020). The authors compared WRF 

simulations and ERA5 data against measurements from masts located in complex terrain 

in Greece. They found that ERA5 underestimates the mean wind speed by 2.5–4.0 m s–1, 

while small underestimations were found between WRF and observations. 

The evaluation of the sensitivity of the WRF model to changes in the configuration 

settings was outside the scope of this dissertation. For further research, a sensitivity 

analysis to test different initial and boundary forcing conditions, as well as other physical 

parametrization settings could be performed to determine the underlying factors of the 

model overestimations and evaluate different configurations to reduce WRF systematic 

biases. 

The overestimation in wind speed translates to larger differences in wind power and 

capacity factors due the aforementioned cubic dependence. For a typical wind turbine, 

biases of 2 to 4 m s–1 can translate to the difference between 20% and 80% capacity factor 

(Staffell et al., 2016). Therefore, the correction of the bias is required for the assessment 

of wind power potential. The consistent trend of diurnal and monthly bias found between 

WRF simulated wind speeds and observations enables the definition of factors to correct 

the bias of the WRF simulations. According to the results, the bias correction increases the 

agreement of the WRF simulations to observations in terms of MBE, RSME, and correlation 

coefficients during the control and evaluation period. Thus, the resulting bias-corrected time 

series show a diurnal cycle that is more in phase with the observations during the control 

and evaluation period. 

It is not possible, however, to evaluate the 14-year period of WRF simulated winds due 

to the lack of measurements covering this period. Nevertheless, the control period covers 

one year allowing the analysis of the performance of the simulation of wind speed and wind 
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direction. The evaluation period extents for nine extra months, allowing the evaluation of 

the performance of the pointwise bias correction approach. 

The bias correction method combined with the sFDA regionalization method is found to 

be suitable for the adaptation of the pointwise bias correction to any other grid point in the 

dataset that has a similar wind speed temporal variability pattern to that of the 

observation sites. This approach denotes a significant advantage compared to other 

approaches to correct the bias of gridded datasets applied in previous studies. For instance, 

Heredia et al. (2018) used Voronoi diagrams to divide the study area into neighboring cells 

in such a way that each cell contains a measurement station. Such an approach is 

constrained by the number of observation sites. Therefore, its application would be 

restricted for the present work, since the observation sites are limited to four. In another 

study, Gruber et al. (2019) applied a bias correction method to grid points located within a 

certain distance from the nearest measurement station. Such an approach assumes that 

wind speeds at the selected grid points behave similar to that of the observation sites, 

without considering that wind speed may vary within a few kilometers, especially over 

complex terrain. This limitation is overcome by using the sFDA regionalization approach to 

select the grid points with a similar spatio-temporal variability of wind speed to that of the 

observation sites. 

Due to the small number of available tall meteorological masts, the evaluation of the 

performance of WRF simulated wind speeds and the bias-correction is limited to grid points 

over the Andean highlands. Measurements in the Amazon, the coastal region, and the 

Galapagos Islands are not available, thus the validation in these areas is not possible. 

Nevertheless, the Andean highlands host the best wind resources and represent a key area 

for wind energy development. Therefore, the findings presented in this chapter provide new 

insights into the variability and availability of wind resources for a better deployment of wind 

power in the Ecuadorian Andes. 
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3.5. Conclusions 

This chapter presents the first long-term wind resource dataset at a 3 × 3 km grid and 

hourly resolution for Ecuador’s mainland and the Galapagos Islands. The dataset is 

generated using the Weather Research and Forecasting (WRF) mesoscale model forced 

by initial and boundary conditions from ERA5 reanalysis data. 

Simulated wind speeds over the Andean highlands are bias-corrected based on the 

validation of the performance of the model using observational data from meteorological 

tall masts at 80 m AGL. Results shows that the bias correction method increases the 

agreement between WRF simulations and observations. MBE is reduced from 2.16 ± 0.94 

to 0.36 ± 0.49 m s–1, RMSE decreases from 4.28 ± 1.03 to 2.96 ± 0.55 m s–1, and the 

correlation increases from 0.57 ± 0.11 to 0.72 ± 0.06. Moreover, the resulting bias-corrected 

time series shows a diurnal cycle that is more in phase with the observations. 

Using the bias-corrected dataset, the intra-annual and interannual spatio-temporal 

variability of wind speed is characterized applying the methodology proposed in Chapter 2. 

The findings from this Chapter provide the first comprehensive spatio-temporal 

characterization of wind resources in Ecuador. The regionalization map and the variability 

statistics provide explicit information to identify optimal sites for the deployment of 

measurement networks and wind power plants. In Ecuador’s mainland, subregion R.3.1, 

which is scattered over the Andean highlands, shows the highest long-term annual mean 

wind speed (8.3 m s–1), with stronger winds (up to 19.2 m s–1) between June and September 

coming from east and southeast direction. This subregion shows, however, the highest 

mean interannual variability (11.9%) compared to the other subregions. Nevertheless, a 

further breakdown of the coefficient of variation at monthly time scales reveals that the 

variability is seasonal rather than random, showing that wind speed over the 14-year period 

is less variable during the windy months. In the Galapagos Islands, the best wind resources 

are found in subregion R.4.1 that shows the highest long-term annual mean wind 

speed (5.7 m s–1) and the lowest mean interannual variability (4.8%). 

These findings contribute to the understanding of the spatio-temporal variability of wind 

resources in Ecuador, which is of particular relevance to support the optimal planning and 

deployment of wind power systems in the country. Furthermore, the generated wind 

resource dataset and the findings reported in this chapter support the achievement of the 

remaining research objectives of this dissertation, which are reported in the following 

chapters. 
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Chapter 4 Correlation analysis of renewable 
resources in Ecuador based on meteorological 
data with high spatial and temporal resolution 

This chapter investigates for the first time to which extent solar and wind resources are 

complementary in time and space to water resources in Ecuador using correlation analysis. 

First, the spatio-temporal correlation is analyzed using the time series of GHI and wind 

speed at representative geographical locations obtained from the sFDA regionalization, 

and time series of river discharge records from gauging stations located near selected 

hydropower plants. Then, the temporal correlation of the different resources at each grid 

point over Ecuador is analyzed using GHI, wind speed, and precipitation gridded datasets. 

Results reveal that there are strong spatio-temporal complementarities between the 

different resources. This implies that solar and wind power have a high potential to 

compensate hydropower during the dry periods. Additionally, results from the temporal 

correlation analysis show a great potential for deploying complementary hydro-wind-solar 

hybrid power systems in Ecuador. 

4.1. Introduction 

The hydropower capacity in Ecuador could be reduced up to one-third of its installed 

capacity during the dry periods, or even more under severe drought events, which could 

lead to a significant expansion of fossil fuel thermal power to meet the country’s electricity 

demand (Jara, 2018).  

An alternative way to compensate hydropower during the dry periods is to use other 

renewable resources that show an anti-correlated (also called complementary) behavior to 

the hydrological regimes. Temporal complementarity can be observed when two or more 

energy sources have periods that complement each other over time in the same region 

(Bagatini et al., 2017), while spatial complementarity can be observed when energy 

sources from different regions complement each other. Spatio-temporal complementarity 

is considered for a single or multiple resources whose complementary nature is 

investigated simultaneously in time and space (Jurasz et al., 2020). 
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Recent studies evaluated the complementarities between solar, wind, 

and water resources in South American countries, such as in Brazil (Bagatini et al., 2017; 

Borba et al., 2017; de Oliveira Costa Souza Rosa et al., 2017, 2020; Schmidt et al., 2016), 

and in Colombia (Canales et al., 2020; Henao et al., 2020; Parra et al., 2020). 

These studies highlighted the potential of solar and wind resources to compensate 

hydropower during the dry seasons in the study areas. Spatio-temporal complementarities 

between different regions in Latin America have also been investigated recently (Gonzalez-

Salazar et al., 2021; Viviescas et al., 2019).  

In these studies, the assessment usually involved the complementarity to existing or 

planned hydropower plants (HPPs), using historical records of river discharge from gauging 

stations located near the selected plants. Energy yield records from HPPs in operation were 

also used in the case that the energetic complementarity was evaluated instead of the 

resource complementarity. Regarding solar and wind data for the complementarity 

analysis, some authors used measurements from meteorological stations or historical 

records of energy yield from existing solar or wind power plants. However, in sparsely 

monitored regions or where the number of installed solar and wind power plants is minimal, 

which is the case of Ecuador, such an approach would hinder an extended analysis that 

includes locations where observations are not available. 

Other previous studies used solar and wind data from gridded reanalysis datasets that 

cover wider areas and longer time periods. This type of data is useful for the analysis of 

temporal complementarities, as demonstrated by Henao et al. (2020). The authors used 

precipitation, wind speed, and solar radiation data retrieved from the MERRA-2 reanalysis 

dataset (Gelaro et al., 2017) to assess the pairwise complementarities of the resources at 

each grid point over Colombia. However, a disadvantage of using this reanalysis dataset, 

which has a grid resolution of 50 km, may be that local variations in solar and wind 

resources are not captured due to the coarse horizontal resolution (Olauson, 2018). 

Another issue of using reanalysis datasets for the assessment of spatio-temporal 

complementarities is regarding the selection of the representative sites for solar and wind 

power plants to be evaluated. A common approach is to use high-potential areas derived 

from a geographical potential assessment, which uses a set of criteria to exclude grid 

points considered unsuitable for solar and wind deployment (Gonzalez-Salazar et al., 2021; 

Viviescas et al., 2019). However, as revealed in Chapter 3, Section 3.3.1, reanalysis data 

significantly underestimates wind resources. Therefore, such an approach may exclude 

areas that eventually have larger potential than the one calculated using the reanalysis 

datasets. 
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This chapter assesses the temporal and spatio-temporal correlations between solar, 

wind, and water resources in Ecuador. Such an assessment has not been performed for 

this country yet and aims: (i) to investigate the potential of solar and wind resources to 

compensate in time and space existing and planned HPPs in Ecuador’s mainland, 

and (ii) to assess the potential for the deployment of local hybrid and complementary 

renewable power systems in Ecuador’s mainland and the Galapagos Islands. 

The novelty of this chapter lies on the use of the sFDA regionalization method to select 

the representative solar and wind sites for the spatio-temporal correlation analysis in a 

country with limited and unevenly-distributed meteorological stations. In this way, the 

analysis is not limited to the geographical locations where the meteorological 

measurements are available, nor to their surroundings. Furthermore, the representative 

solar and wind sites are neither randomly selected, nor based on best geographical 

locations inferred from resource atlases or low-resolved reanalysis datasets, but rather they 

are selected based on the characterization of the spatio-temporal variability of solar and 

wind resources, which is reported in Chapter 2 and Chapter 3, respectively. 

This chapter is structured as follows. Section 4.2 describes the methods and data used 

for the analysis. Section 4.3 presents the results of both the spatio-temporal correlation and 

temporal correlation analyses. Section 4.4 discusses the main findings and contributions. 

Finally, Section 4.5 presents the conclusions of this chapter. 

4.2. Methods and data 

4.2.1. Water resources 

The Ecuadorian Andean highlands divide the country in two natural drainage 

basins: (i) the Pacific basin that comprises the watersheds located on the western side of 

the Andes conveying water to the Pacific Ocean, and (ii) the Amazon basin that comprises 

the watersheds located on the eastern side of the Andes draining to the Amazon River 

(Fernandez-Palomino et al., 2022). The hydropower technical potential of the Amazon and 

Pacific basins is 71% and 29%, respectively (CONELEC, 2013, p. 158). 

For the spatio-temporal correlation analysis in this chapter, six large-scale HPPs are 

selected (Fig. 4-1a). Three are located in the Amazon basin (HA.1–HA.3) and three are 

located in the Pacific basin (HP.1–HP.3). Five of them are in operation and provided 

about 61% of the total electricity generated by hydropower in 2020 (CENACE, 2021).  
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Fig. 4-1. Selected hydropower plants (HPPs) for the spatio-temporal correlation analysis. a) Geographical 
location of HPPs in the Amazon basin (HA.1–HA.3) and in the Pacific basin (HP.1–HP.3). b) Monthly mean 
river discharge (Q) at gauging stations near selected HPPs. Source: Own representation. Data retrieved from 
GRDC (2022). 

To characterize the hydrological regime of each HPP, the records of mean daily river 

discharge (𝑄) from gauging stations located close to the selected HPPs are used. 

These records were retrieved from the Global Runoff Data Centre (GRDC) (GRDC, 2022). 

Table 4-1 shows the details of the selected HPPs and their related gauging station. Note 

that each station has a different period of records, however, due to the lack of further 

information it is assumed that the GRDC dataset provides the intra-annual characteristics 

of the respective river basin. 

Table 4-1. Details of selected hydropower plants and the nearest gauging stations. 

  Hydropower plants  Gauging stations 
Basin River  

basin 
Name Code 

name1 
Installed 
capacity 
[MW] 2 

Type  River 
name 

Station 
name 

Period of 
records 

Amazon Napo Coca Codo 
Sinclair 

HA.1 1500.0 Run-of-
river 

 Coca San Rafael 1978–1982 

Amazon Pastaza Agoyán HA.2 154.0 Dam  Pastaza Bannos 1970–1996 
Amazon Santiago Paute Molino HA.3 1100.0 Dam  Paute D.J. Palmira 1970–1979 
Pacific Guayas Marcel Laniado HP.1 213.0 Dam  Quevedo Quevedo 1962–2005 
Pacific Jubones Minas San 

Francisco 
HP.2 270.0 Run-of-

river 
 Jubones D.J. San 

Francisco 
1970–2005 

Pacific Esmeraldas Toachi-Pilatón3 HP.3 254.4 Run-of-
river 

 Toachi A.J. Pilaton 1964–2005 

1 Code name used in this dissertation. HA: Hydropower plant in Amazon basin, HP: Hydropower plant in Pacific basin. 
2 Source: (CENACE, 2021; MERNNR, 2018),  
3 Hydropower project under construction. 
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The seasonal hydrological regimes of the different gauging stations are displayed on 

Fig. 4-1b. It can be seen that the stations located in the Amazon basin show a marked 

seasonality with a peak in July and low values from November to February. Stations in the 

Pacific basin also show a unimodal variability pattern, with high values in March to April, 

and lower from August to November. 

To assess the relationships between solar, wind, and water resources at the same 

geographical location measured or modeled river discharge data is required. However, as 

mentioned before, the study area is poorly monitored and hydrological modeling in the 

Andes is challenging due to large spatial variability of precipitation, specific soil properties, 

and very irregular topography (Buytaert et al., 2011). River discharge is determined by the 

balance among precipitation, surface and groundwater storage, and evapotranspiration 

(Heerspink et al., 2020). The relationship between precipitation and river discharge regimes 

in Ecuador was analyzed by Laraque et al. (2007), who found that there was no delay 

between the observed maximum precipitation and maximum river discharge in small to 

medium upper intra-Andean basins (i.e., Santiago river basin). However, the authors also 

found a delay between precipitation and discharge that varies from one to two months in 

larger basins (i.e., Napo and Pastaza river basins) (Laraque et al., 2007). No studies 

regarding the relationship between precipitation and river discharge in the Pacific basin 

were found in the literature. Consequently, due to the lack of long-term and validated river 

discharge data at high spatial resolution covering the study area, precipitation data is used 

for the temporal correlation analysis, assuming that the precipitation regime reflects the 

discharge regimes in small to medium river basins in the Amazon basin. For larger river 

basins, the spatio-temporal correlation analysis using the discharge records will prevail. 

The gridded daily precipitation data from 1981 to 2019 for Ecuador’s mainland was 

retrieved from the Climate Hazards Infrared Precipitation with Stations (CHIRPS) dataset 

version 2.0 (Funk et al., 2015). CHIRPS data is available at a 0.05° × 0.05° grid resolution 

and has been successfully used to understand the precipitation variability over the tropical 

Andes (Segura et al., 2019). Two preprocessing steps were performed to the 39-year 

period CHIRPS dataset before applying the methodology described in Section 4.2.3. First, 

the spatial resolution was increased from the CHIRPS native resolution to 3 × 3 km, 

applying the first order conservative remapping method. This step was performed to match 

the grid resolution of the CHIRPS dataset with that of the solar and wind datasets generated 

in Chapter 2 and Chapter 3. Second, the long-term daily and monthly mean precipitation at 

each grid point was calculated. 
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4.2.2. Solar and wind resources 

The datasets of solar irradiance and wind speed described in Chapter 2 and Chapter 3 

are used for the temporal and spatio-temporal correlation analyses in this chapter.  

For the spatio-temporal correlation analysis, the long-term monthly and daily mean GHI 

and wind speed time series of the grid points representing each solar or wind subregion 

are used. In Ecuador’s mainland, the representative grid points of the 22 solar subregions 

(A.1, EH.1–EH.6, WH1–WH6, C.1.1–C.3.5) are used in the analysis, whose geographical 

location is displayed in Fig. 4-2a.  

 

Fig. 4-2. Geographical location of the representative sites of solar and wind subregions used for the spatio-
temporal correlation analysis. a) Representative sites of the solar subregions (A.1, EH.1–EH.6, WH1–WH6, 
C.1.1–C.3.5) in Ecuador’ mainland. b) Representative sites of the wind subregions (R.1.1, R.3.1–R.3.5) in 
Ecuador’ mainland. c) Representative sites of the solar subregions (G.1.1–G.1.3) in the Galapagos Islands. 
d) Representative site of the wind subregion (R.4.1) in the Galapagos Islands. 
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In the case of the wind resources, the representative grid points of subregions 

R.1.1 and R.3.1–R.3.5 are used for the analysis, whose geographical location is displayed 

in Fig. 4-2b. The other wind subregions are excluded from the correlation analysis because 

wind power densities (WPD) in those subregions are lower than 100 Wm–2, which is 

considered too low to be exploited (Manwell et al., 2009).  

In the Galapagos Islands, the three solar subregions (G.1.1–G.1.3) and the wind 

subregion R.4.1 (see geographical location in Fig. 4-2c and Fig. 4-2d) are included in the 

analysis. The other wind subregions in Galapagos are excluded from the correlation 

analysis for the same reason used for the mainland. 

For the temporal correlation analysis, the long-term monthly and daily mean GHI and 

wind speed time series of all grid points of Ecuador’s mainland (27,175) and of the 

Galapagos Islands (874) are used. 

4.2.3. Correlation analysis methodology 

In this study, correlation analysis is used to determine the pairwise relationship between 

the three renewable resources at monthly and daily timescales. The spatio-temporal 

correlation analysis uses the Pearson product-moment correlation coefficient (𝑟,) and the 

Spearman rank correlation coefficient (𝑟2), which are computed according to 

Equations (4.1) and (4.2), respectively (Wilks, 2006): 

𝑟,G!'# =
𝐶𝑜𝑣(𝑥% , 𝑦&)
𝜎G!𝜎'!

 (4.1) 

𝑟2G!'# =
𝐶𝑜𝑣(𝑟𝑔G! , 𝑟𝑔'#)
𝜎7H)!𝜎7H*#

 (4.2) 

where 𝐶𝑜𝑣(𝑥% , 𝑦&) is the covariance between the long-term monthly and daily mean time 

series of resources 𝑥 and 𝑦 at grid points 𝑖 and 𝑗; and 𝜎G!, 𝜎'! is the standard deviation of 

the respective time series. In Equation (4.2), the Spearman correlation is defined as the 

Pearson correlation computed using the ranks 𝑟𝑔G! , 𝑟𝑔'# of the time series 𝑥% , 𝑦&; 

and 𝜎7H)! , 𝜎7H*#  are the standard deviation of the respective ranks. The Pearson correlation 

measures the strength of linear dependencies, while Spearman correlation reflects the 

strength of monotone relationships (Wilks, 2006). 

The temporal correlation analysis between resources 𝑥 and 𝑦 at each grid point is 

calculated using the gridded long-term monthly and daily mean datasets of 

resources 𝑥 and 𝑦 as NetCDF files. The operator 𝑡𝑖𝑚𝑐𝑜𝑟 from the Climate Data 
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Operators (CDO) software is used for this purpose, which correlates each grid point of two 

NetCDF datasets over all time steps (Schulzweida, 2020). 

4.3. Results 

4.3.1. Spatio-temporal correlation of renewable resources 

4.3.1.1. Spatio-temporal correlations of solar, wind, and water resources in 
Ecuador’s mainland 
The results of the Pearson and Spearman correlation coefficients using monthly time 

series are displayed in Fig. 4-3 and Fig. 4-4, respectively. The correlation coefficients are 

very similar, but it is found that 𝑟,+>#?C9' ≥ 𝑟2+>#?C9' in 74% of the pairs, suggesting a linear 

relationship between the monthly time series. Thus, the following sections will only refer to 

the Pearson correlation coefficient results. 

According to the interpretation of the correlation coefficients (see Table 2-1), there are 

different levels of complementarity and similarity between the resources. Strong 

complementarities are seen between river discharge from stations in the Amazon basin 

and GHI in subregions EH.2, EH.4, EH.6 and C.1.1–C.1.2. In the Pacific basin, only HP.3 

shows a very strong complementarity with GHI in subregion WH.3, while strong 

complementarities are seen between discharge in all three stations and GHI in subregions 

A.1, EH.1, EH.3, EH5, EH.6 and WH.1–WH.6. Remarkably, the correlation between 

discharge at stations in both basins is low (–0.2 ≤ 𝑟,+>#?C9' ≤ 0.3), implying that there is a 

very weak complementarity to a very weak similarity between both basins. This behavior is 

evident from the time series shown in Fig. 4-1, where it can be observed that between 

November and February water is limited in both basins. 

Strong similarities are seen between discharge from stations in the Amazon basin and 

wind speed in subregions R.1.1 and R.3.1–R.3.5. In the Pacific basin, river discharge in 

HP.1 and HP.2 shows very strong similarities to GHI in subregions C.1.1–C.1.2, while a 

strong similarity is seen between the three stations and solar subregions C.2.1–C.2.2 and 

C.3.3–C.3.4. As expected, the correlation coefficients of river discharge between stations 

in the same basin are high (0.9 ≤ 𝑟,+>#?C9' ≤ 1.0), showing a very strong similarity.  
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Fig. 4-3. Pearson correlation coefficient matrix of monthly time series of GHI at the representative sites of each 
solar subregions (A.1, EH.1–EH.6, WH1–WH6, C.1.1–C.3.5), wind speed at the representative sites 
of each wind subregions (R.1.1, R.3.1–R.3.5), and river discharge at gauging stations in the Amazon basin 
(HA.1–HA.3) and Pacific basin (HP.1–HP.3). 
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Fig. 4-4. Spearman correlation coefficient matrix of monthly time series of GHI at the representative sites of 
each solar subregions (A.1, EH.1–EH.6, WH1–WH6, C.1.1–C.3.5), wind speed at the representative sites of 
each wind subregions (R.1.1, R.3.1–R.3.5), and river discharge at gauging stations in the Amazon basin (HA.1–
HA.3) and Pacific basin (HP.1–HP.3). 
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Taking a look into the normalized monthly time series, the intra-annual complementarity 

and similarity between the different resources is more evident. Note that the time series are 

normalized by dividing them by the mean value. From Fig. 4-5, it is clear that the low 

availability of water resources in the Amazon basin during October–March can be 

compensated with solar resources from subregions on the coast (C.1.1–C.1.2) that show 

high GHI values during November–April and in September, or from subregions in the 

Eastern Andean highlands (EH.2, EH.4, EH.6) that show high GHI values during 

September–December. 

 

Fig. 4-5. Normalized monthly time series of strong complementary pairs between river discharge (Q) at stations 
in the Amazon basin and global horizontal irradiance (GHI) at the representative sites of each solar subregion. 

In the case of the Pacific basin, river discharge at HP.3, located in the eastern highlands, 

shows an almost perfect complementarity to GHI in WH.3, located in the western highlands, 

since both time series are six months lagged (Fig. 4-6a). The time series of the subregions 

with a strong complementarity to river discharge in the Pacific basin are shown in Fig. 4-6b. 

From this figure, it can be observed that the low availability of water resources during June–

November can be compensated with solar resources in both sides of the Andean highlands 

and in the Amazon (A.1, EH.1, EH.3, EH5, EH.6 and WH.1–WH.6). From Fig. 4-6c, it is 

observed that wind speed from all wind subregions have a moderate complementarity to 

water resources in the Pacific basin. The compensation occurs from June to October, while 

during November and December both wind and water resources are low. 
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Fig. 4-6. Normalized monthly time series of river discharge (Q) at stations in the Pacific basin, global horizontal 
irradiance (GHI) and wind speed (WS) at the representative sites of each solar and wind subregion. a) Very 
strong complementary pairs, b) strong complementary pairs, and c) moderate complementary pairs. 

Regarding the complementarity and similarity of wind and solar resources among the 

different subregions, it is found that wind speed in subregions R.1.1 and R.3.1–R.3.5 

has a strong complementarity with GHI in subregions EH.2, EH.4, C.1.1, C.1.2, and 

C.3.3 (Fig. 4-7a). The low availability of wind resources during November–May can be 

compensated with solar resources from the aforementioned subregions. Strong similarities 

are seen between wind speed in subregions R.1.1 and R.3.1–R.3.5 and GHI in subregions 

WH.3–WH.6 (Fig. 4-7b). 
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Fig. 4-7. Normalized monthly time series of global horizontal irradiance (GHI) and wind speed (WS) at the 
representative sites of each solar and wind subregion, showing: a) strong complementary pairs and b) strong 
similarity pairs. 

Another important complementary behavior, as previously seen in Chapter 2, 

Section 2.3.3, is that GHI from subregions C.1.2 and C.2.2 on the coast shows a strong 

complementarity with GHI in subregions WH.1–WH.6 in the western Andean highlands, as 

displayed in Fig. 4-8. 

 

Fig. 4-8. Normalized monthly time series of strong complementary pairs among global horizontal irradiance 
(GHI) at the representative sites of each solar subregion. 
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Turning now to the results of the correlation analysis using daily time series, displayed 

in Fig. 4-9 and Fig. 4-10, it is seen that the Pearson and Spearman correlation coefficients 

slightly change compared to the resulting values using the monthly time series. 

Nevertheless, there are still marked complementarities and similarities between the 

different resources. Similar to the analysis at monthly timescale, the relationship between 

the time series seems to be linear, since for 84% of the pairs 𝑟,@I%9' ≥ 𝑟2@I%9'. Thus, the 

following sections will only refer to the Pearson correlation coefficient results. 

Strong complementarities at daily timescale are seen between river discharge at stations 

HA.2 and HA.3 in the Amazon basin and GHI in subregion EH.4. In the Pacific basin, strong 

complementarities are seen between river discharge at HP.1–HP.3 stations and GHI in 

subregions WH.1–WH.6. Similar to the analysis of the monthly time series, the correlation 

coefficient between daily time series of river discharge at gauging stations in both basins is 

low (–0.2 ≤ 𝑟,@I%9' ≤ 0.2). 

Strong similarities are seen between discharge at stations in the Amazon basin and wind 

speed in subregions R.1.1 and R.3.1–R.3.5. The similarity level between discharge at 

stations in the Pacific basin decreases compared to that at monthly timescale. 

Nevertheless, strong similarities are seen between discharge at the three stations and GHI 

in subregions C.1.1, C.2.1–C.2.2 and C.3.3–C.3.4. The correlation between discharge at 

stations of the same basin also decreases compared to that at monthly timescale and range 

between 0.7 ≤ 𝑟,@I%9' ≤ 1, still showing a strong similarity. 

Regarding the correlation of wind and solar resources at daily timescale, wind speed in 

subregions R.1.1, R.3.1–R.3.2 and R.3.5 shows a strong complementarity to GHI in 

subregions EH.4 and C.1.1–C.1.2. Strong similarities are only seen between wind speed 

in subregion R.1.1 and GHI in subregion WH.5. 
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Fig. 4-9. Pearson correlation coefficient matrix of daily time series of GHI at the representative sites of each 
solar subregions (A.1, EH.1–EH.6, WH1–WH6, C.1.1–C.3.5), wind speed at the representative sites 
of each wind subregions (R.1.1, R.3.1–R.3.5), and river discharge at gauging stations in the Amazon basin 
(HA.1–HA.3) and Pacific basin (HP.1–HP.3). 
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Fig. 4-10. Spearman correlation coefficient matrix of daily time series of GHI at the representative sites of each 
solar subregions (A.1, EH.1–EH.6, WH1–WH6, C.1.1–C.3.5), wind speed at the representative sites 
of each wind subregions (R.1.1, R.3.1–R.3.5), and river discharge at gauging stations in the Amazon basin 
(HA.1–HA.3) and Pacific basin (HP.1–HP.3). 
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4.3.1.2. Spatio-temporal correlations of solar and wind resources in the 
Galapagos Islands 
For the Galapagos Islands, only the spatio-temporal correlations between solar and wind 

resources at the representative grid points of the solar and wind subregions are evaluated, 

because there is no hydropower capacity installed in the islands. The results of the Pearson 

and Spearman correlation coefficients using monthly time series are shown in Fig. 4-11a 

and Fig. 4-11b. Strong and moderate complementarities are observed between GHI in 

subregions G.1.2–G.1.3 and wind speed in subregion R.4.1. From the monthly time series 

displayed in Fig. 4-11c, it is clear that wind and solar resources compensate each other 

during January–May and June–August, while during the other months both resources have 

a similar behavior.  

 

Fig. 4-11. Spatio-temporal correlations of solar and wind resources in the Galapagos Islands. a) Pearson 
correlation coefficient 𝑟$&+,-./% and b) Spearman correlation coefficient 𝑟0123/% matrices of monthly time series 
of global horizontal irradiance (GHI) and wind speed (WS) at the representative sites of each solar subregions 
(G.1.1–G.1.3) and the wind subregion R.4.1 in the Galapagos Islands. c) Normalized monthly time series of 
GHI and WS at the representative sites of solar subregions (G.1.1–G.1.3) and the wind subregion R.4.1. 
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4.3.2. Temporal correlation of renewable resources 

This next section presents the results of the pairwise correlations at the same grid point. 

In Ecuador’s mainland the pairwise correlation between GHI, wind speed, and precipitation 

is calculated, while in the Galapagos Islands only the correlation between GHI and wind 

speed is calculated. 

4.3.2.1. Temporal correlation of solar, wind, and water resources in 
Ecuador’s mainland 
The spatial distribution of the correlation coefficients between GHI and precipitation at 

monthly and daily timescales is shown in Fig. 4-12a-b. Similar patterns are observed in 

both maps with the only difference that correlation values at a daily timescale are lower 

than the values at a monthly timescale. A marked longitudinal gradient is observed from 

the coastal lowlands (positive correlations) towards the western flanks of the Andes up to 

1000 m.a.s.l. (negative correlations). Another gradient is observed from the western 

highlands (negative correlations) towards the drainage divide between the Pacific and 

Amazon basins along the Intra-Andean valleys (positive correlations). Then, negative 

correlations continue from the eastern highlands towards the Amazon lowlands. Translating 

the negative correlations into complementarity levels shows that a strong complementarity 

(–0.75	≤ 𝑟	 ≤ –0.6) exists between GHI and precipitation along the western Andean 

highlands, which corresponds to the Pacific basin and to the solar subregions WH.1–WH.6. 

This pattern is reflected in the correlation values from the spatio-temporal 

correlation analysis that uses river discharge at gauging stations HP.1–HP.3 in the Pacific 

basin (see Fig. 4-9). 

The spatial distribution of the correlation coefficients between wind speed and 

precipitation at monthly and daily timescales is shown in Fig. 4-12c-d. Again, similar 

patterns are observed in both maps with the only difference that correlation values at a 

daily timescale are lower than the values at a monthly timescale. From the maps, it is 

observed that a large percentage of Ecuador’s mainland (82.5 %) has negative correlation 

values. Translating the negative correlations into complementarity levels shows that a 

strong complementarity (–0.85	≤ 𝑟	 ≤ –0.6) between wind speed and precipitation is 

observed over the coastline, the coastal inland low valley, and the northwestern highlands, 

which corresponds to the Pacific basin and to the wind subregions R.1.1 and R.3.5. 

This pattern is reflected in the correlation values from the spatio-temporal correlation 

analysis that uses river discharge at gauging stations HP.1–HP.3 in the Pacific basin 

(see Fig. 4-9). Surprisingly, the strong similarity observed between wind speed at 
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representative grid points in subregions R.1.1 and R.3.1–R.3.4 and discharge at gauging 

stations in the Amazon basin from the spatio-temporal correlation analysis, previously seen 

in Fig. 4-9, is not reflected in the temporal correlation analysis displayed in Fig. 4-12c. 

This may be due to the fact that there is a delay between precipitation and discharge that 

varies from one to two months in larger basins in the Amazon (Laraque et al., 2007). As 

mentioned before, the correlation analysis using the river discharge records is preferred for 

these areas. 

 

Fig. 4-12. Spatial distribution of correlation coefficients between GHI and precipitation at each grid point in 
Ecuador’s mainland at monthly (a) and daily (b) timescales. Likewise, spatial distribution of correlation 
coefficients between wind speed and precipitation at each grid point in Ecuador’s mainland at monthly (c) and 
daily (d) timescales. Grid resolution 3 ´ 3 km. The black line depicts the altitudinal contour at 1000 m.a.s.l. 
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The results of the temporal correlation analysis between GHI and wind speed at monthly 

and daily timescales are shown in Fig. 4-13a-b. Similar to previous figures, same patterns 

are observed with the only difference that correlation values at a daily timescale are lower 

than the values at a monthly timescale.  

It is found that 40.5 % of the area in Ecuador’s mainland shows negative correlations. 

However, excluding grid points with WPD lower than 100 Wm–2, the area is reduced 

to 4.7% (11,430 km2), located over the Andean highlands.  

Another notable result is that there exists an overlap of grid points with negative 

correlation between wind speed and precipitation (Fig. 4-12c-d) and grid points with 

negative correlation between wind speed and GHI (Fig. 4-13a-b), especially over the 

coastline and the coastal inland low valley. This implies that wind speed at the grid points 

in these areas is complementary in time with both precipitation and GHI. Nevertheless, 

it must be noted that WPD over the coastal area is lower than 100 Wm–2, which means that 

wind resources are too low to be exploited. 

 

 

Fig. 4-13. Spatial distribution of correlation coefficients between GHI and wind speed at each grid point in 
Ecuador’s mainland at monthly (a) and daily (b) timescales. Grid resolution 3 ´ 3 km. The black line depicts the 
altitudinal contour at 1000 m.a.s.l. 
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4.3.2.2. Temporal correlations of solar and wind resources in the 
Galapagos Islands 
The spatial distribution of the correlation coefficients between GHI and wind speed at 

monthly and daily timescales is shown in Fig. 4-14a-b. Similar patterns are observed with 

the only difference that correlation values at a daily timescale are lower than at a monthly 

timescale. Negative correlations are observed over the volcanoes, as well as over the 

eastern side of the islands. However, excluding grid points with WPD lower than 100 Wm– 2, 

the area with negative correlation values is reduced to 26.5% (2088 km2). 

This area corresponds to wind subregion R.4.1 (see Fig. 3-12 in Chapter 3). 

The complementarity behavior is driven by the intra-annual variability of wind speed and 

GHI, as seen in Fig. 4-11. 

 

Fig. 4-14. Spatial distribution of correlation coefficients between GHI and wind speed at each grid point in the 
Galapagos Islands at monthly (a) and daily (b) timescales. Grid resolution 3 × 3 km. 
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Fig. 2-7, Fig. 3-10, and Fig. 3-12), is selected as representative site for the spatio-temporal 

correlation analysis. In this way, even if the number of correlation pairs is reduced, the solar 

and wind resources over the complete study area are considered, since each 

representative site already characterizes the temporal variability of the resource over a 

specific spatial area. 

This approach has a significant advantage compared to previous studies. For instance, 

Cantão et al (2017) evaluated the complementarity between water and wind resources in 

Brazil by means of correlation maps elaborated from Voronoi diagrams. The authors used 

the geographical location of meteorological stations from a widespread measurement 

network to divide the study area into Voronoi cells. However, the limitation of such an 

approach is that assuming that the time series of the meteorological station “could 

represent all the points inside its corresponding Voronoi cell is a strong approximation” 

(Cantão et al., 2017, p. 1217). A similar approach was used by Jara (2018) to analyze the 

complementarity of solar and water resources in Ecuador. The author used the 

geographical location of existing and hypothetical PV plants to generate the Voronoi cells. 

However, due to the uneven spatial distribution of the considered PV plants, some of the 

resulting Voronoi cells covered large spatial areas from the Ecuadorian coast to the 

Amazon, without reflecting the spatial variability of the solar resource in the country. In 

contrast, as described in Chapter 2 and Chapter 3, the data-driven sFDA regionalization 

method captures the variabilities of GHI and wind speed due to microclimate and 

topographical effects, consequently, all points inside the resulting subregions share similar 

temporal variability patterns. Furthermore, the analysis performed in this chapter is not 

limited to the solar and wind resources of the specific geographical location of existing 

meteorological stations or power plants, but by using the sFDA regionalization method, the 

solar and wind resources of the entire study area are considered. 

The methodology outlined in this chapter is used to achieve two objectives: 

(i) to investigate the potential of solar and wind resources to compensate in time and space 

existing and planned hydropower plants in Ecuador’s mainland, and (ii) to assess the 

potential for the deployment of local hybrid and complementary renewable power systems 

in Ecuador’s mainland and the Galapagos Islands. 

Concerning the first objective, the results suggest that the deployment of solar and wind 

power over geographically-dispersed sites that show complementary variability patterns 

can smooth out the seasonal variability of water resources to a large degree. This finding 

has significant implications for developing strategies to expand the solar and wind power 

capacity that could compensate hydropower during the dry periods in both basins. Thus, 
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displacing the current – and planned – fossil fuel thermal power capacity that is used to 

meet the electricity demand during the dry periods. 

The spatio-temporal correlation analysis also reveals that the complementarity level 

between water resources in the Pacific and Amazon basins is very low. Water resources 

from both basins complement each other only during February–April and May–August. This 

aspect has been already taken into account in previous Ecuadorian generation capacity 

expansion plans (CONELEC, 2013). The government planned to increase the hydropower 

capacity in the Pacific basin to take advantage of the so called “quasi-complementary” 

behavior of water resources in both basins (CONELEC, 2013, p. 178). Two of the planned 

projects have already started operations: Manduriacu (50 MW) in 2016 and Minas San 

Francisco (275 MW) in 2018 (ARCERNNR, 2020). However, the third planned hydropower 

project in the Pacific basin, Toachi-Pilatón (254.4 MW), is still on hold due to technical and 

financial problems (CGE, 2020; IHA, 2022), consequently, delaying the important expected 

contribution of this project to supply electricity during the dry season in the Amazon basin. 

Another important finding concerns the similar temporal variability patterns between 

solar, wind, and water resources found in Ecuador’s mainland. This characteristic suggests 

that solar and/or wind power projects could be planned instead of hydropower 

projects. Large hydropower projects generally imply environmental and social impacts 

(Anderson et al., 2018). Additionally, these kind of projects may also experience serious 

delays and cost overruns (Ansar et al., 2014; Sovacool et al., 2014), as mentioned above. 

Therefore, these issues could be prevented by expanding the solar and/or wind power 

capacity in sites that have similar intra-annual variability patterns to the hydrological regime 

in both basins. 

Regarding the second objective, the pairwise correlation maps between GHI, wind 

speed, and precipitation show the great extent of the complementarity between the 

resources. This finding suggests that the potential to develop local hydro-solar-wind hybrid 

and complementary power systems could be further explored. It is important to bear in mind 

that although gridded precipitation data is found to be useful for analyzing the relationships 

to solar and wind resources at each grid point, hydropower potential is not available in all 

grid points, since it depends on effective inflow and available head. Thus, a hydrological 

model that converts precipitation to streamflow in selected catchments would be necessary 

for further analysis.  
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4.5. Conclusions 

This chapter assesses for the first time the temporal and spatio-temporal correlations 

between renewable resources in Ecuador for two objectives: (i) to investigate the potential 

of solar and wind resources to compensate in time and space existing and planned 

hydropower plants in Ecuador’s mainland, and (ii) to assess the potential for the 

deployment of local hybrid and complementary renewable power systems in Ecuador’s 

mainland and the Galapagos Islands. 

Results show that there are strong spatio-temporal complementarities between solar, 

wind, and water resources in Ecuador’s mainland. This implies that geographically-

dispersed solar and wind power plants can compensate hydropower during the dry periods. 

The low availability of water resources in the Amazon basin during October–March can be 

compensated with solar resources from subregions on the coast (C.1.1–C.1.2) that show 

high GHI values during November–April and in September, or from subregions in the 

Eastern Andean highlands (EH.2, EH.4, EH.6) that show high GHI values during 

September–December. In the case of the Pacific basin, the low availability of water 

resources during June–November can be compensated with solar resources in both sides 

of the Andean highlands and the Amazon (A.1, EH.1, EH.3, EH5, EH.6 and WH.1–WH.6). 

It is also found that wind resources over the Andean highlands (R.1.1 and R.3.1–R.3.4) 

have a moderate complementarity to water resources in the Pacific basin.  

In the Galapagos Islands, results show that wind and solar resources compensate each 

other during January–May and June–August, while during the other months both resources 

have a similar behavior. 

The temporal correlation analysis reveals that local hybrid and complementary power 

systems have a great potential to be explored. Excluding grid points where wind resources 

are too low to be exploited, solar and wind resources show a complementary behavior 

over 4.7% (11,430 km2) of Ecuador’s mainland, and over 26.5% (2088 km2) of the 

Galapagos Islands. 

The new understanding of the complementarity of renewable resources in Ecuador 

gained in this chapter will be useful for power sector planners and operators. The 

regionalization maps, correlation matrixes, and time series plots provide explicit information 

regarding the spatio-temporal correlations between the different renewable resources. The 

findings can be used for generation capacity expansion plans, as well as to optimize the 

operation of water reservoirs and back-up systems.  
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Sites inside the solar and wind subregions that show strong complementary behavior to 

water resources can be selected as candidates for further capacity expansion planning. 

The temporal correlation maps also provide the tools to explore the potential for deploying 

hybrid and complementary power systems. 

From the methodological point of view, this chapter demonstrates the advantages of 

using the sFDA approach to assess the spatio-temporal correlations between different 

renewable resources in a country with limited and unevenly-distributed meteorological 

stations. This approach can be applied to other countries or regions to explore the 

complementarity of renewable resources or energy yield for a better capacity expansion. 
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Chapter 5 Spatio-temporal synergies of 
renewable power generation 

While the previous chapter focuses on the spatial and temporal complementarity 

between solar, wind, and water resources, this chapter further evaluates the power 

generation complementarity of geographically-dispersed renewable resources. The 

evaluation focuses on the benefits that the spatio-temporal synergies between PV, wind, 

and hydropower could provide to the Ecuadorian power supply system. The benefits are 

assessed in terms of reliability and stability. Results show that the joint operation of wind 

and solar power systems from different subregions could provide at least up to 5.5% of the 

combined capacity for 87.5% of the time in a year. It is also found that wind power stabilizes 

PV output at diurnal timescales during the windy months, suggesting that both technologies 

could serve as baseload during these months. These findings indicate that generation 

capacity expansion plans should focus on exploiting the spatio-temporal synergies between 

renewable resources, which may provide the economic incentive for the deployment of PV 

and wind power, thus increasing the diversity and enhancing the resilience of the power 

supply system in Ecuador. 

5.1. Introduction 

Diversity, redundancy, geographical dispersion, and decentralization of power supply 

sources are all key resilience-enhancing design principles, which aim at helping the power 

supply system to be prepared for and to cope with uncertain disturbances (Brand et al., 

2017; Gleich et al., 2019; Gößling-Reisemann, 2016; Gößling-Reisemann et al., 2019). 

The diversification of the Ecuadorian power mix is mentioned as an important strategy 

in the latest government generation capacity expansion plan (MERNNR, 2018). 

However, diversity is more than the number of power supply sources. Diversity is defined 

as “an evenly balanced reliance on a variety of mutually disparate options” (Stirling, 2010, 

p. 1625). Thus, diversity includes three interrelated and distinct components: variety (how 

many different elements), balance (how many of each element), and disparity (how different 

the elements are from each other) (Biggs et al., 2012; Stirling, 1994, 2007). 
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Looking at the historical power generation capacity in Ecuador from 2008 to 2020 

disaggregated by source in Fig. 5-1, it is noticeable that in spite of the different power supply 

sources (variety), there exists an imbalance due to the high dependence on thermal and 

hydropower (balance). Non-hydro renewables play only a marginal role for the 

electricity supply. The same tendency is expected to continue in the mid- and long-term 

(MERNNR, 2018; MICSE, 2016). 

Furthermore, there is a high degree of centralization of power generation, since three 

large-scale hydropower facilities (namely, Mazar–Paute–Sopladora, Agoyán–San 

Francisco, and Coca Codo Sinclair) generate a large share of the total electricity in the 

country (71.5% in 2020 (CENACE, 2021)). 

 

Fig. 5-1. Historical power generation capacity in Ecuador from 2008 to 2020 disaggregated by supply source. 
Source: Own representation, data from ARCERNNR (2022a). 

Disparity is an inherently qualitative attribute that “requires consideration of options in 
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higher stability of the system, but at the same time to a lower degree of flexibility and 

potential for adaptability (Binder et al., 2017). 

4180.2
4395.7

4757.4 4795.7 5062.9 5102.9 5299.1
5557.0

7606.9 7445.2
8048.1 8072.8 8095.3

0

2000

4000

6000

8000

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

In
st
al
le
d 
ca
pa
ci
ty
 [M
W
]

Hydro Thermal Wind Solar Biogas Biomass



Spatio-temporal synergies of renewable power generation 

 103 

 

Fig. 5-2. Illustration of the disparity of electricity supply sources of the Ecuadorian power mix in respect to the 
type of resource. RoR is run-of-river hydropower, Dam is hydropower with reservoir capacity, LPG is liquefied 
petroleum gas. Source: Own representation based on Stirling (2010). Data from (ARCERNNR, 2021). 

The geographical dispersion of power supply options also plays an important role for the 

resilience of the power system. When system elements are geographically-dispersed, 

localized stressors, ranging from weather and climate-related events to terrorist attacks, 
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assessment. First, the hourly time series of solar and wind resources at selected sites with 

high potential in each solar and wind subregion are converted into power output. Then, the 

benefits of the joint operation of geographically-dispersed PV and wind power systems are 

assessed by looking at two metrics: (i) reliability, in terms of the amount of firm capacity 

that the joint operation could provide for a certain percentage of hours per year, 

and (ii) stability, in terms of the reduction of the power output variability of a combined 

system as compared to a system comprising only one technology. The latter metric is 

assessed at two different timescales: intra-day for the case of the joint operation of PV with 

wind power and intra-annual for the case of the combination of PV or wind power with 

hydropower. 

This chapter is structured as follows. Section 5.2 describes the methods and data used 

in this chapter in different subsections: (5.2.1) describes the methodology used for the 

selection of the sites with high potential in each solar and wind subregion; (5.2.2) and 

(5.2.3) describe the power modeling tools used to simulate PV and wind power output at 

each site; (5.2.4) presents the hydropower data used for the assessment; and (5.2.5) 

describes the methodology for the analysis of the joint operation of renewable power plants. 

Then, Section 5.3 presents the results of the analysis, which are then discussed in 

Section 5.4. Finally, Section 5.5 presents the conclusions of this chapter. 

5.2. Methods and data 

5.2.1. Geographical assessment of wind and solar potential  

A Geographic Information System (GIS) approach is used to determine the geographical 

area available for the deployment of utility-scale solar and wind power farms. This approach 

consists of applying a set of restriction criteria with buffer distances to exclude non-suitable 

areas. For simplicity, this study is limited to restrictions concerning safety and ecological 

constraints that are grouped into three categories: infrastructure, water bodies, and 

protected areas (Table 5-1). The GIS datasets used for this purpose were retrieved as 

vector layers from publicly available sources (see Table C-1 in Appendix C). 

The software QGIS version 3.16 (QGIS Association, 2022) is used for the processing of 

the GIS datasets. First, the buffer distances are added to each vector feature (point, line or 

polygon) and then the vector layers are converted into raster layers with a binary logic for 

each grid cell to represent suitable and non-suitable areas.  

The grid resolution of each raster layer is then set at 3 ´ 3 km, which is determined by 

the solar and wind resource datasets described in Chapter 2 and Chapter 3. Next, a binary 
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overlapping of the processed layers is applied to obtain a raster map comprising those grid 

cells suitable for the deployment of utility-scale solar and wind power farms. 

The resulting suitable grid cells from the raster map are then grouped by the solar and 

wind subregions to select a representative site for each subregion. Since the interest of this 

chapter is to assess the PV and wind power that could be generated at sites with high 

resources, the selected grid cells are those showing the highest long-term annual mean 

daily total GHI within each solar subregion and the highest long-term annual mean wind 

power density within each wind subregion.  

Table 5-1. Constraint layers and buffer distance applied to select suitable areas for the deployment of utility-
scale solar and wind power plants. Sources: see Table C-1 in Appendix C. 

Category Constraint Buffer distance  
[m] 

Reference 

Infrastructure Urban areas 500, 1000 or 1500 1 Latinopoulos and Kechagia (2015) 
 Roads 100 2 Lütkehus et al. (2013) 
 Railways 250 2 Lütkehus et al. (2013) 
 Airports 1760 or 5000 3 Lütkehus et al. (2013) 
 Transmission grid 120 Lütkehus et al. (2013) 
 Archeological sites – Villacreses et al. (2017) 
Water bodies Rivers 65 Lütkehus et al. (2013) 
 Lakes 65 Lütkehus et al. (2013) 
 Mangroves 65 Lütkehus et al. (2013) 
 Reservoirs 65 Lütkehus et al. (2013) 
Protected areas Natural reserves 250 Villacreses et al. (2017) 
 Protected forest 250 Villacreses et al. (2017) 
 Intangible areas 250 Villacreses et al. (2017) 
 Protected biosphere 250 Villacreses et al. (2017) 

1 Latinopoulos and Kechagia (2015) set the buffer distance depending on the population size of the urban area. 
This criterion is applied to Ecuador based on the type of urban area; thus, the buffer distances are set as follows: 
for country, province or canton capitals: 1500 m; for parish capitals: 1000 m; and for towns: 500 m. 
2 Distance measured from the center of roads or railways, which are considered as objects of 6 m width. 
3 A radial distance of 1760 m and 5000 m around the runaway is considered for small airfields and big airports, 
respectively. 
 

5.2.2. Solar PV power model 

The pvlib-python package (Holmgren et al., 2018) is used to simulate the power output 

of a solar PV system at each selected solar subregion’s site. The input dataset for the 

simulation comprises hourly time series from 1998 to 2018 of global horizontal irradiance 

(GHI), diffuse horizontal irradiance (DHI), and direct normal irradiance (DNI) in [𝑊𝑚E!], 

wind speed at 10 m AGL in [𝑚	𝑠E*], and ambient temperature in [℃], which are retrieved 

from the NSRDB and downscaled to 3 ´ 3 km (see Chapter 2). 

For each site, a solar PV farm of 10 MW DC capacity is simulated. Each PV farm consists 

of mono-crystalline silicon modules (SPR 220 BLK-U from SunPower) mounted on an 

open rack. The surface azimuth is set at 90º respect to due north and the tilt angle is 
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set at 10º, which is the optimal module orientation according to a previous sensitivity 

analysis of the rooftop PV technical potential in three cities of Ecuador’s mainland, reported 

in Tapia et al. (2022). To account for the system losses, the factor 𝑓9>"" is set at 14%, which 

is a typical value representing losses due to soiling, shading, mismatch, wiring, 

connections, light induced degradation, nameplate rating, and operational availability 

(Dobos, 2014), as well as cable and inverter losses (Bódis et al., 2019). Note that losses 

due to temperature are not included in 𝑓9>"", since pvlib-python uses a thermal model to 

predict the associated operating temperature of the PV modules based on the given 

meteorological dataset (King et al., 2004). 

After setting the technical parameters, the simulation of the PV system power output is 

performed using the object-oriented modeling paradigm of pvlib-python (pvlib, 2022). The 

PVSystem object is instantiated with the selected PV module and the predefined tilt and 

azimuth angles. The Sandia Array Performance Model (SAPM) (King et al., 2004) is 

selected to model the electrical performance of the PV modules. The temperature of 

the PV modules and cells are modeled assuming an open rack mounting configuration 

(King et al., 2004). The Hay-Davies model (Hay et al., 1980) is selected as the irradiance 

transposition model to get the plane of array irradiance components. 

Then, an instance of the ModelChain class is created with the geographical coordinates 

of the site (𝑠) and the previously defined PVSystem object. Next, the model is run with the 

hourly meteorological data of site (𝑠). In this step, the SAPM model simulates the 

characteristic current-voltage (I-V) curve that determines the output power of a single PV 

module under the specific meteorological conditions of the site (𝑠). The output is a time 

series that includes short-circuit current (Isc), open-circuit voltage (Voc), and current, voltage, 

and power at maximum power point (Imp, Vmp, Pmpp, respectively). 

Subsequently, the total PV power output 𝑃,J(5)(𝑡) produced by the PV farm at site (𝑠) 

and time (𝑡) is calculated according to Equation (5.1): 

𝑃,J(5)(𝑡) = 𝑁+ ⋅ 𝑃+--(5)(𝑡) ⋅ (1 − 𝑓9>"") (5.1) 

where 𝑃+--(5) is the hourly output power at the maximum power point from the SAPM 

model, simulated using the meteorological data of site (𝑠) at time (𝑡); 𝑁+ is the number the 

PV modules, and the factor 𝑓9>"" accounts for the system losses. 

Then, the hourly PV capacity factors (𝐶𝐹,J) are calculated as the ratio between the 

hourly PV power output 𝑃,J(5)(𝑡) and the total installed capacity of each PV farm at site (𝑠). 

The process described above is repeated for each solar subregion’s site. 
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5.2.3. Wind power model 

The python package windpowerlib (Haas et al., 2021) is used to simulate the power 

output of a 10 MW wind farm at each selected wind subregion’s site. The input dataset 

comprises the hourly time series for the period 2005–2018 from the mesoscale WRF model 

(see Chapter 3), which includes wind speed in [𝑚	𝑠E*] and temperature in [𝐾] both at 

80 m AGL, surface air density in [𝑘𝑔	𝑚E.], surface pressure in [𝑃𝑎], and surface roughness 

length in [𝑚]. 

Depending on the long-term annual mean wind speed of each site, one of the three 

commercial wind turbines listed in Table 5-2 is used to simulate the power output of the 

wind farm. The power output curves of each wind turbine type are directly retrieved from 

the turbine type database of windpowerlib, then the power output curves are 

corrected according to the site’s specific air density at 80 m AGL using the ideal gas 

equation (Haas, 2019). 

Table 5-2. Long-term annual mean wind speed and wind power density at selected sites in each wind subregion 
and specifications of the wind turbines used to simulate the power output of a wind farm at each site. 

Subregion Mean wind  
speed  
[m s–1] 

Mean wind 
power density  
[W m–2] 

Turbine model  
(Wind class) 

Manufacturer 

R.3.1 10.95  1420.06 V112-3.45 (IEC IA) Vestas 
R.3.2 8.63 821.57 V117-3.45 (IEC IIA – IB) Vestas 
R.3.3 5.91 258.34 GE 3.2-130 (IEC IIIA) General Electric 
R.3.4 5.23 186.37 GE 3.2-130 (IEC IIIA) General Electric 
R.3.5 6.54 336.58 GE 3.2-130 (IEC IIIA) General Electric 
R.1.1 4.60 148.72 GE 3.2-130 (IEC IIIA) General Electric 

 

No height corrections are performed for wind speed or temperature, since the mesoscale 

WRF model directly provides the data at hub height. The design of the layout of the wind 

turbines within each site is outside the scope of this study. Nevertheless, 

the power reduction due to wake losses is estimated in the form of a wind farm efficiency 

(Haas, 2019). In this study, the wind farm efficiency is set at 90%. 

The calculation of the wind power output is performed using the object-oriented 

modeling paradigm of windpowerlib (Haas, 2019). The object WindFarm is instantiated with 

the corresponding wind turbine type and the total installed capacity of the wind farm. Then, 

an instance of the TurbineClusterModelChain class is created with the aforementioned 

parameters for wake losses and density correction. Next, the model is run with the 

meteorological data at each site (𝑠). The output is a time series of the wind power output 

𝑃:(5)(𝑡) of each wind farm located at site (𝑠) and time (𝑡). Then, the hourly wind capacity 
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factors (𝐶𝐹:) are calculated as the ratio between the hourly wind power output 𝑃:(5)(𝑡) and 

the total installed capacity of each wind farm at site (𝑠). 

5.2.4. Hydropower data 

The monthly energy yield records for the period 2005–2018 of two representative 

hydropower plants are used for the analysis in this chapter. The selected HPPs are: 

Agoyán (named HA.2) of 154 MW capacity, which is located in the Amazon basin, and 

Marcel Laniado (named HP.1) of 213 MW capacity, which is located in the Pacific basin. 

The records are retrieved from ARCERNNR (2022b). These HPPs are selected because 

they were in operation during the selected period and their capacity was not expanded 

during the same time. The other HPPs listed in Table 4-1 in Chapter 4 either started 

operations later, increased their capacity, or are still under construction. 

The monthly hydropower capacity factors (𝐶𝐹K) of each HPP are calculated as the ratio 

between the monthly energy yield record and the maximum possible energy that would 

have been produced operating at its installed capacity over the number of hours of the 

corresponding month. 

5.2.5. Analysis of joint operation of renewable power plants 

The benefits that the joint operation of complementary and geographically-dispersed PV 

and wind power could bring to the power system are assessed using two metrics identified 

in the literature: firm capacity and stability coefficient. 

5.2.5.1. Firm capacity 
Firm capacity provides an additional metric of complementarity by quantifying the 

minimum amount of power output that can be guaranteed for a given percentile of hours 

per year (Slusarewicz et al., 2018). Following Archer and Jacobson (2007), the percentile 

threshold is set at 87.5%, which is the average time that coal-fired power plants are 

operating free from unscheduled or scheduled maintenance in a year. In this sense, the 

firm capacity metric quantifies the fraction of the combined PV and wind capacity for each 

pair of sites that could be online to provide renewable power generation at the same 

probability as that of a coal-fired power plant. 
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5.2.5.2. Stability coefficient 
The stability coefficient 𝐶"?IL (Sterl et al., 2018) is used to quantify the reduction of the 

power output variability of a hybrid system composed by two renewable energy 

technologies (𝑥 and 𝑦) as compared to a system comprising only one technology. This 

measure considers the strength of the resources through capacity factors 𝐶𝐹 and is 

calculated according to Equation (5.2) (Sterl et al., 2018): 

𝐶"?IL = 1 −
𝐶𝑉M<),*
𝐶𝑉M<)

= 1 −
6∑ s𝐶𝐹G,'% − 𝐶𝐹

AAAAG,'t
!

$
%)* 𝐶𝐹AAAAG,'u

6∑ v𝐶𝐹G% − 𝐶𝐹AAAAGw
!$

%)* 𝐶𝐹AAAAGx
 (5.2) 

𝐶𝐹G,' =
𝑛𝐶𝐹G +𝑚𝐶𝐹'

𝑛 +𝑚
 (5.3) 

where, 𝐶𝑉M<) and 𝐶𝑉M<),* are the coefficient of variation of the capacity factors of 

technology 𝑥 and combined technologies 𝑥 and 𝑦, respectively; 𝑇 is the total number of 

time intervals; 𝐶𝐹G,' is the capacity factor of combined technologies; and 𝐶𝐹AAAAG,' denotes the 

average of the combined capacity factors. 𝐶𝐹G,' is calculated according to Equation (5.3), 

where 𝐶𝐹G and 𝐶𝐹' are the capacity factors of each technology with an installed 

capacity of 𝑛 and 𝑚, respectively.  

By definition, 𝐶"?IL ≤ 1, with 𝐶"?IL = 0 meaning that the hybrid system does not provide 

benefits in terms of power generation stability compared to the output of only one 

technology, and 𝐶"?IL = 1 denotes that the power output of the combined operation is 

constant over time (perfect synergy) (Sterl et al., 2018). 

In this study, 𝐶"?IL is applied to investigate if wind power from the selected sites could 

provide diurnal stability to geographically-dispersed combined PV-wind power systems. 

Thus, the simulated hourly PV and wind power output time series at each site is used. 

Technologies 𝑥 and 𝑦 in Equation (5.2) are PV and wind, respectively. 

Additionally, the coefficient 𝐶"?IL is applied to investigate if PV or wind power from the 

different sites could provide stability to the hydropower output. Since hourly records of 

hydropower production are not publicly available, the analysis uses the monthly energy 

yield records of the two selected HPPs and the monthly time series of simulated energy 

yield of PV and wind power. In this case, technology 𝑥 in Equation (5.2) is hydropower, and 

technology 𝑦 can be PV or wind power. 
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5.3. Results 

5.3.1. Geographical wind and PV potential 

After applying the set of restriction criteria described in Section 5.2.1, a total of 

15,750 grid cells (out of 27,175) are found to be suitable for the deployment of utility-scale 

wind and PV power farms. This represents a geographical area of 141,750 km2, which is 

about 58% of the total surface area of Ecuador’s mainland. 

The spatial distribution of the long-term annual mean daily total GHI over the suitable 

grid cells is shown in Fig. 5-3. This figure also displays the geographical location of the 

sites that have the highest value within each subregion. It is worth noting that within the 

subregions A.1 and EH.3 the grid cells with the highest solar radiation are located in remote 

areas in the Amazon. Since this chapter focuses on assessing the renewable energy 

potential of geographically-dispersed power plants that could operate together, an 

additional constraint is applied. This additional constraint allows the identification of the grid 

cells within subregion A.1 and EH.3 that have high resource potential and are located closer 

to the interconnected transmission network. The grid cells in these subregions that satisfy 

the additional constraint are those displayed in Fig. 5-3.  

The spatial distribution of the long-term annual mean wind power density (WPD) over 

the suitable grid cells is shown in Fig. 5-4. This figure also displays the geographical 

location of the sites that have the highest value within each subregion. Note that the wind 

subregions included in the analysis are R.1.1 and R.3.1–3.5, since the long-term annual 

mean WPD of the grid points in these subregions is higher than 100 Wm–2. Another remark 

is that only suitable grid cells in which the bias of simulated wind speed was corrected 

(see Chapter 3, Section 3.3.3.2) are included in the selection of the representative sites 

within the aforementioned subregions. A total of 575 grid cells meets these two conditions 

(i.e., suitable and bias-corrected) and out of them the sites with the highest wind resource 

are selected and displayed in Fig. 5-4. 
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Fig. 5-3. Long-term annual mean daily total GHI of suitable grid cells (3 x 3 km) over Ecuador’s mainland for 
the deployment of utility-scale PV farms after applying the GIS-based selection approach using the constraint 
layers. The grid cells that have the highest value within each solar subregion are marked in black and labeled 
according to the subregion’s name. 
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Fig. 5-4. Long-term annual mean wind power density of suitable grid cells (3 x 3 km) over Ecuador’s mainland 
for the deployment of utility-scale wind power farms after applying the GIS-based selection approach using the 
constraint layers. The grid cells that have the highest value within each wind subregion are marked in black 
and labeled according to the subregion’s name. 
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5.3.2. PV and wind power output simulation 

The hourly time series of meteorological data of the selected sites are used to simulate 

the power output of a 10 MW solar or wind power farm according to the methods explained 

in Sections 5.2.2 and 5.2.3.  

Table 5-3 provides a summary of the annual mean 𝐶𝐹,J and 𝐶𝐹: of the simulated PV 

and wind farms at each subregion’s site. What stands out in the table is the high annual 

mean 𝐶𝐹 of the wind farm in subregion R.3.1 (52.1 %), which is aligned to the high winds 

seen in this subregion and already discussed in Chapter 3, Section 3.3.4.1. Regarding the 

PV farms, the highest annual mean 𝐶𝐹,J is seen in WH.1 and EH.1 (~20% both), while the 

lowest value (12.7%) is seen in subregion C.2.2. These results are also aligned to the 

difference of GHI magnitude in each solar subregion as discussed in Chapter 2, 

Section 2.3.1.1. 

Table 5-3. Annual mean capacity factors (CF) of simulated PV and wind farms of 10 MW at each solar and wind 
subregion’s site. 

Solar  Wind 
Subregion CFPV  

[%] 
Subregion CFPV  

[%] 
Subregion CFPV  

[%] 
Subregion CFPV  

[%] 
 Subregion CFW  

[%] 
A.1 14.5 EH.1 20.0 WH.1 20.3 C.1.1 16.9  R.1.1 15.9 
  EH.2 17.4 WH.2 17.0 C.1.2 14.5  R.3.1 52.1 
  EH.3 14.2 WH.3 18.7 C.2.1 13.6  R.3.2 36.8 
  EH.4 15.6 WH.4 17.3 C.2.2 12.7  R.3.3 21.9 
  EH.5 14.9 WH.5 15.9 C.3.1 15.6  R.3.4 17.5 
  EH.6 12.8 WH.6 15.7 C.3.2 14.4  R.3.5 28.6 
      C.3.3 14.7    
      C.3.4 12.8    
      C.3.5 13.1    
 

Looking at the diurnal cycle of 𝐶𝐹,J and 𝐶𝐹: per month at each site in Fig. 5-5, 

a noticeable intra-annual variability pattern of wind power is observed. High 𝐶𝐹: values are 

seen during June–September, which is in agreement to the high wind speed in this period, 

while during the rest of the year 𝐶𝐹: values remain low.  

Another remarkable observation in Fig. 5-5 is that wind farms in subregions R.3.1 and 

R.3.2 (also in R.3.5, but to a lesser degree) have 𝐶𝐹: values almost constant and high 

throughout the day during June–September. This fact reveals an intra-day complementary 

behavior between PV and wind power in these subregions, which will be further quantified 

in the Section 5.3.4. During the same period, 𝐶𝐹: of wind farms in subregions R.1.1 

and R.3.3 is high during local daytime (from 10:00 to 23:00 UTC) and decreases at 

local nighttime. 
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Fig. 5-5. Diurnal cycle of PV and wind capacity factors (CF) per month of simulated PV and wind farms of 
10 MW at each solar and wind subregion’s site. Bold lines are the mean values and the shaded ribbons 
represent the standard deviation. 

Taking a closer look at the duration curves of 𝐶𝐹,J and 𝐶𝐹: at each site in Fig. 5-6, 

the frequency distribution of the PV and wind power output in a year can be observed. Each 

point on the 𝑥 axis represents the probability (in terms of number of hours in a year) of PV 

or wind capacity factors greater or equal to the corresponding 𝑦 value on the curve. 

Note that the PV and wind farms are assumed to be down during 2% of the time to account 

for unplanned maintenance. 

As expected, PV is off for 50% of the time, since it only generates power during daytime. 

Nevertheless, solar farms in subregions WH.1 and EH.2 show 𝐶𝐹,J³50% for ~23% of the 

time. In the case of wind power, 𝐶𝐹: of wind farms in subregions R.3.1 and R.3.2 is 

above 85% for 34% and 20% of the time, respectively, while in subregions R.1.1 and R.3.4 

are above this value only ~0.3% of the time. 
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Fig. 5-6. Duration curves of capacity factors (CF) of simulated PV and wind farms of 10 MW at each solar and 
wind subregion’s site. 

 

5.3.3. Firm Capacity 

When analyzing the power output of combined PV and wind farms (total capacity 

of 20 MW) operating in pairs, the benefits of the complementary behavior between the 

resources is more evident. Fig. 5-7 shows the power output percentage of paired PV and 

wind farms that could be available for 87.5% of the time in a year. This figure reveals that 

the contribution to firm capacity is ruled by the magnitude of the wind resource at the 

subregion’s site. Thus, it is observed that combining the wind farm in R.3.1 (the site with 

the best wind resource) with PV farms in any solar subregion results in a firm 

capacity of 5.2–5.5% of the combined capacity. The combination of wind farms in 

subregions R.3.2 or R.3.5 with PV farms in any solar subregion could provide a firm 

capacity of 1.1–1.8%. The lowest firm capacity (0.4 to 0.7%) is provided by the combination 

of wind farms in subregions R.3.4, R.3.3 or R.1.1 with PV farms in any solar subregion, 

which is not surprising because the wind resources in these subregions are lower compared 

to the previous ones. 
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Fig. 5-7. Power output percentage of paired PV and wind farms (20 MW total) that could be online for 87.5% of 
the time in a year. 

Fig. 5-8 provides a graphical representation of the increase in firm capacity for three 

sample pairs. The figure displays the duration curves of PV power output at one site (WH.1) 

and wind power output at three different sites (R.3.1, R.3.2, R.1.1), and the duration curve 

of the combined PV and wind farms. It is noticeable that more power could be delivered 

when PV and wind operates in combination compared to the firm capacity levels they could 

provide when they operate separately. The left and middle panels show that due to the 

better wind resources in R.3.1 and R.3.2 higher firm capacity levels could be achieved, 

while the right panel shows the low contribution of R.1.1 to the firm capacity. 

 

Fig. 5-8. Duration curves of the simulated power output of PV and wind farms and the power output of the 
combined operation (20 MW total) for three sample pairs (WH.1–R.3.1, WH.1–R.3.2, WH.1–R.1.1). The dashed 
vertical line represents the 87.5% availability threshold. 
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Comparing the duration curves of the capacity factor for the same sample pairs, two 

different patterns are observed. First, the left panel of Fig. 5-9 shows that 𝐶𝐹: of the wind 

farm in R.3.1 is higher when operates separately than when it operates in combination with 

the solar farm in WH.1, which is expected due to the large 𝐶𝐹: of the farm in this subregion. 

Second, the middle panel shows that although the capacity factor of the combined 

operation is lower for ~40% of the hours than the values of 𝐶𝐹,J and 𝐶𝐹: operating 

separately, this is compensated by a higher average capacity factor over the 

remaining 60% of the time. The same pattern is observed in the right panel, although to a 

lesser degree due to the lower wind resources in R.1.1. 

 

Fig. 5-9. Duration curves of the capacity factor (CF) of the simulated PV and wind farms and the capacity factor 
of the combined operation (20 MW total) for three sample pairs (WH.1–R.3.1, WH.1–R.3.2, WH.1–R.1.1). The 
dashed vertical line represents the 87.5% availability threshold. 

As mentioned in Chapter 4, water resources in the Amazon and Pacific basins are limited 

from November to February (see Fig. 4-1), for this reason it is important to assess 

the firm capacity that combined PV and wind power could provide during these months. 

Fig. 5-10 shows that the combination of the wind farm in subregion R.3.1 with PV farms in 

any solar subregion could provide 1.93–1.97% of the total capacity (20 MW) for 87.5% 

of the time during the dry months, while the other combinations could provide 

between 0.30 to 0.65% of the total capacity. 
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Fig. 5-10. Power output percentage of paired PV and wind farms (20 MW total) that could be online 87.5% of 
the time during November–February. 

Looking at the duration curves of the combined power output from November to 

February, it is observed that the power output increases compared to that when the PV and 

wind farms operate separately. Fig. 5-11 displays the duration curves of PV power output 

at one site (EH.1) and wind power output at three different sites (R.3.1, R.3.5, R.1.1), and 

the duration curve of the combined PV and wind farms. Note that EH.1 is selected this time 

for the comparison because this subregion shows higher radiation levels from November 

to January compared to those in WH.1. From the figure, it is noticeable that the number of 

hours of high wind power output decreases, which is driven by the lower wind resources in 

the subregions during these months. Contrary, PV delivers half of its capacity for 

at least ~30% of the time during these months. This pattern leads to higher power that could 

be delivered when PV and wind operates together. 

 

Fig. 5-11. Duration curves during November–February of the simulated power output of PV and wind farms and 
the power output of the combined operation (20 MW total) for three sample pairs (EH.1–R.3.1, EH.1–R.3.5, 
EH.1–R.1.1). The dashed vertical line represents the 87.5% availability threshold. 
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Regarding the capacity factor of the PV and wind farms during the dry months, the 

duration curves depicted in Fig. 5-12 show that when operating separately, the PV farm in 

subregion EH.1 performs better than the wind farms in the three wind subregions. 

Additionally, from the left panel in Fig. 5-12 it can be observed that although the capacity 

factor of the combined operation is lower for ~35% of the hours during November to 

February than the values of 𝐶𝐹,J, this is compensated by a higher average capacity factor 

over the remaining 65% of the time, which PV alone would not be able to provide. A similar 

pattern is seen in the middle and right panels, except that 𝐶𝐹,J is higher than 𝐶𝐹: for a 

longer time, which implies that the time when the combined average capacity is higher will 

be reduced. 

 

Fig. 5-12. Duration curves during November–February of the capacity factor (CF) of the simulated PV and wind 
farms and the CF of the combined operation (20 MW total) for three sample pairs (EH.1–R.3.1, EH.1–R.3.5, 
EH.1–R.1.1). The dashed vertical line represents the 87.5% availability threshold. 
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R.3.1, R.3.2 or R.3.5 with PV farms in any solar subregion results in the highest annual 

mean 𝐶"?IL values (0.4–0.6), implying that wind power could provide diurnal stability to PV 
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R.1.1, the lowest average 𝐶"?IL values (~0.1) are seen in the combination of R.1.1 with PV 

farms in any solar subregion. 

 

Fig. 5-13. Annual mean stability coefficient 𝐶8-29 of paired PV and wind farms (20 MW total, capacity ratio 1:1). 

As already mentioned, from the monthly plots of 𝐶𝐹,J and 𝐶𝐹: (see Fig. 5-5), it is evident 

that the best intra-day complementary behavior occurs during June–September. This is 

now confirmed and quantified using the stability coefficient metric. Fig. 5-14 displays the 

dispersion of 𝐶"?IL values for all pairs per month, showing higher values that occur during 

June–September, when wind speed is almost constant and high throughout the day, thus 

complementing PV output at diurnal timescales. 

 

Fig. 5-14. Boxplots of the monthly stability coefficient 𝐶8-29 for each pair of combined PV and wind power plants 
(assuming a capacity ratio 1:1). 
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The coefficient 𝐶"?IL is also applied to assess if the PV or wind farms in different 

subregions could provide intra-annual stability to hydropower output from the two 

selected HPPs. Fig. 5-15 shows the 𝐶"?IL results for the pairwise combinations of PV farms 

and HPPs, assuming a capacity ratio 1:1. A higher 𝐶"?IL value (0.4) results from the 

combination of the hydropower plant in the Pacific basin, HP.1, with PV farms in subregions 

WH1–WH.5, which are located in the western Andean highlands. In the case of the 

hydropower plant in the Amazon basin, HA.2, the higher 𝐶"?IL values (0.3) are observed 

with the combination of PV farms in subregions A.1, and EH (except for EH.3), which are 

located in the Amazon lowlands and the eastern Andean highlands, respectively. 

 

Fig. 5-15. Annual mean stability coefficient 𝐶8-29 for each pair of combined PV farms and selected hydropower 
plants (assuming a capacity ratio 1:1). 

Regarding the combination of the HPPs with wind farms in different subregions shown 

in Fig. 5-16, it can be observed that the joint operation of the HP.1 in the Pacific basin with 

the wind farms in subregion R.1.1 or R.3.4 results in the highest 𝐶"?IL values (0.3). 

The other combinations result in 𝐶"?IL values below zero, implying that wind farms in those 

subregions could not provide intra-annual stability to hydropower of the HPPs in 

both basins. 

 

Fig. 5-16. Annual mean stability coefficient 𝐶8-29 for each pair of combined wind farms and selected hydropower 
plants (assuming a capacity ratio 1:1). 
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5.4. Discussion 

This chapter investigates the ability of geographically-dispersed and combined solar PV 

and wind power farms to reduce their power output variability and provide a reliable power 

generation, while complementing the intra-annual power output variability of existing 

hydropower plants. This is assessed by the firm capacity and stability coefficient 𝐶"?IL, 

which are additional quantitative metrics to evaluate the complementarity of renewable 

power generation. 

The results using the coefficient 𝐶"?IL to assess the potential of PV or wind power to 

provide stability to the intra-annual hydropower variability (Fig. 5-15 and Fig. 5-16) are 

consistent with the results of the correlation analysis of renewable resources. As described 

in Chapter 4, Section 4.3.1.1, solar resources have a stronger complementary behavior 

with water resources in both basins, while water resources in the Pacific basin have a 

moderate complementarity with wind resources. Nevertheless, the coefficient 𝐶"?IL 

represents an additional metric for the better understanding of the effectiveness of the joint 

operation of complementary power plants, since it takes into account the strength of the 

resources (i.e., by using capacity factors) (Sterl et al., 2018). Thus, the coefficient 𝐶"?IL 

results reveal that PV generation from complementary solar subregions could provide intra-

annual stability to hydropower in the case of the PV capacity is similar to that of the HPP. 

When testing different capacity ratios, the coefficient 𝐶"?IL decreases accordingly. This 

suggests that the joint operation of PV and hydropower would not provide additional 

benefits in terms of intra-annual stability, unless PV and hydropower have similar installed 

capacities. The same applies to the joint operation of wind and hydropower in the Pacific 

basin. Therefore, an increase of the PV and wind power installed capacity is needed to take 

advantage of the stability benefits. This capacity can be built by aggregating several power 

systems within the same subregion or other subregions where solar irradiance or wind 

speed has similar intra-annual variability patterns. For instance, the additional PV capacity 

needed to stabilize hydropower could be distributed among subregions WH.1–WH.6, which 

share similar temporal variability patterns (see Fig. 2-5). 

The assessment in this chapter focuses on the supply-side of the power system aiming 

to establish a starting point for further exploration of planning and operation strategies. The 

two metrics used, firm capacity and stability coefficient, are found to be useful to assess 

the reliability and stability of the power system, without explicitly considering electricity 

demand profiles. The main reason for this is the lack of publicly available demand data. 

Further work should focus on assessing the ability of complementary and geographically-

dispersed PV and wind power systems to balance demand and supply. Synthetic hourly 
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load data that considered the spatial variability of demand in the study area could be useful 

for this purpose. 

Overall, the findings in this chapter demonstrate that the joint operation of 

geographically-dispersed PV and wind power farms in Ecuador provide reliable and stable 

power output. Therefore, these technologies can play an important role in the displacement 

of the fossil-fuel thermal power capacity that is used to compensate the intra-annual 

variability of hydropower generation, especially during the dry months. These findings are 

contrary to the general assumption among energy planners in some Latin American 

countries that consider that solar and wind power do not contribute to the firm capacity 

(Campo, 2015; Levy et al., 2021). One reason for this assumption is the lack of hourly 

historical data of wind and solar resources, which makes it difficult to assess in more detail 

the contribution of these technologies to firm capacity (IRENA, 2017; Levy et al., 2021). 

Similarly, the spatio-temporal synergies of PV and wind power are not captured by long-

term generation expansion planning models that use coarse meteorological 

datasets as input data for modeling PV and wind power outputs (e.g., Carvajal et al. (2019), 

Godoy et al. (2021)). Other studies completely ignored these synergies when aggregating 

solar and wind data at the country level by technology (e.g., Heredia and Gardumi (2022), 

Rivera-González et al. (2019). A coarse spatial and temporal resolution is necessary to 

keep the models solvable within reasonable time and to reduce calibration and other input 

data requirements (Pfenninger et al., 2014). However, the low temporal and 

spatial resolution of PV and wind power data may explain that the optimization models 

used in some of these studies result in an optimal power mix favoring thermal 

power generation with natural gas to compensate the variability of hydropower in Ecuador 

(e.g., Carvajal et al. (2019)). The spatio-temporal synergies among renewables in Ecuador 

may provide economic incentives, making the investment in solar and wind power projects 

more economically attractive. This eventually could lead to alternative development 

pathways with higher participation of wind and PV power in long-term generation capacity 

expansion optimization models. 

In the end, a higher share of geographically-dispersed PV and wind power – and other 

non-hydro renewables – in the Ecuadorian power mix will reduce the existing imbalance 

among current power supply options in the country. By doing so, the diversity of the system 

(with its three interdependent attributes: variety, balance, and disparity) will increase, 

thus, enhancing the resilience of the system for responding to changes and disturbances 

(Biggs et al., 2012). Although the design of operating strategies will be necessary to cope 

with the mismatch between electricity supply and demand, from a resilience perspective, 
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as argued by Binder et al., (2017), a high balance implies that a more even distribution of 

technologies might potentially provide a higher degree of flexibility and adaptability to the 

system. 

Nevertheless, power systems are not only technical systems, but rather socio-technical 

systems. Thus, the social dimension – including different actors involved in the governance 

structure of the national energy system (e.g., politics, industry, research, society, or media), 

and their complex interactions (Binder et al., 2017) – should be part of the analysis of the 

transformation towards a more sustainable and resilient power system in Ecuador. 

The ability of the different actors to learn, anticipate, and plan is integral to the resilience of 

socio-technical systems (Ruth et al., 2019). The findings of this dissertation lay the 

foundations for the technical aspects of the analysis; yet, the social aspects and a holistic 

analysis approach should be the direction for further research. 

5.5. Conclusions 

This chapter assesses the benefits that the spatio-temporal synergies between PV, 

wind, and hydropower could provide to the Ecuadorian power supply system in terms of 

reliability and stability. For this purpose, the power output of PV and wind farms located at 

high potential sites within each solar and wind subregion is simulated using hourly time 

series from the meteorological datasets generated in the previous chapters. 

Results indicate that the joint operation of geographically-dispersed PV and wind power 

systems can smooth out the variability of the power output when compared to that of 

individual resources. This joint operation can provide at least 0.4 to 5.5% of the combined 

capacity for 87.5% of the time in a year (7665 hours), which differs from the general 

assumption among energy planners that wind and solar power do not contribute to the firm 

capacity. The higher the wind potential at the site, the higher the firm capacity that could 

be provided by the joint operation. From November to February, when water resources in 

both basins are limited, the joint operation can provide at least about 2% of the combined 

capacity for 87.5% of the time in these months (2520 hours). PV generation from 

subregions over the eastern Andean highlands (EH.1–EH.5) is important to provide reliable 

power generation during these months, since the high solar resources in these subregions 

complement the limited water resources in both basins.  

Another important finding is that wind power from subregions with high wind resources 

(R.3.1, R.3.2, and R.3.5) stabilizes PV power output at diurnal timescales during the windy 

months (June–September), which suggests that these technologies could serve as 

baseload in these months, thus reducing the requirements for energy storage. 
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The potential of PV and wind power systems to reduce the intra-annual variability of 

existing hydropower plants is assessed using the stability coefficient, which provides an 

additional metric to better understand the effectiveness of the joint operation of 

complementary power plants. The results are consistent with the findings of the correlation 

analysis of renewable resources (Chapter 4), but it is additionally found that PV and wind 

power generation from complementary subregions could provide stability to hydropower in 

the case that the PV and hydropower capacities are similar. The required PV and wind 

power capacities can be built by aggregating geographically-dispersed power systems with 

similar intra-annual variability patterns. The regionalization maps and the spatio-temporal 

variability analysis of solar and wind resources reported in Chapter 2 and Chapter 3 

are useful tools for solving the siting problem. 

The identified complementary behavior and the operational benefits of the spatio-

temporal synergies between renewables in the country demonstrate that solar and wind 

power can play an important role in shaping a more sustainable, decentralized, and 

diversified power system. Generation capacity expansion planning in Ecuador should be 

focused on exploiting the identified spatio-temporal synergies for the design of a more 

robust and precaution-oriented power supply system. This will enhance the resilience of 

the Ecuadorian power system to cope with weather and climate-related variabilities, and 

other uncertain stressors. 
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Chapter 6 Conclusions and outlook 

6.1. Conclusions 

This dissertation systematically investigates the spatio-temporal variabilities and 

synergies of renewable resources in the complex terrain of Ecuador for the optimal planning 

of a more sustainable and resilient power system in the country. The main findings and 

contributions of this dissertation grouped by each research objective are presented below. 

Research Objective 1: To generate long-term and high-resolved solar and wind 
resource datasets for Ecuador. 

Long-term, high-quality measurements of solar irradiance and wind speed at relevant 

heights for wind applications are generally scarce and sparsely distributed, which 

challenges the spatio-temporal characterization of solar and wind resources at a country 

level, especially over complex terrain. To tackle this challenge, this dissertation generates 

two long-term meteorological datasets at a 3 ´ 3 km grid resolution covering Ecuador’s 

mainland and the Galapagos Islands. 

The first dataset comprises a 21-year period (1998–2018) of hourly satellite-derived 

solar irradiance and other meteorological data, which is compiled from the widely used 

National Solar Radiation Database (NSRDB) (Sengupta et al., 2018). This dataset was 

previously validated against ground measurements from 53 stations in Ecuador’s mainland 

(Ordoñez et al., 2019). In addition, a statistical check of the 21-year period dataset is 

performed in this dissertation. Results reveal that few grid points over the eastern Andean 

highlands show anomalies that might be attributed to satellite artifacts. Thus, the nearest-

neighbor interpolation method is applied to the identified grid points to reduce these 

anomalies. 

The second dataset comprises a 14-year period (2005–2018) of hourly wind speed and 

wind direction data at several heights. This dataset is generated using the Weather 

Research and Forecast (WRF) mesoscale model forced by initial and boundary conditions 

from ERA5 reanalysis data. The lack of a validated, long-term, and high-resolved wind 

resource dataset for the study area was the motivation to produce the mesoscale model 
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simulations. The number of simulation years is limited due to time and computational 

constraints. The comparison between WRF simulated wind speed and observations 

at 80 m above ground level from four meteorological tall masts located over the Andes 

shows that the WRF model overestimates wind speed, especially at nighttime and during 

the windy months (June to September). This overestimation is consistent with previous 

studies. However, since the overestimation in wind speed translates to larger differences 

in wind power, a bias correction is applied to the simulated WRF wind speed. The correction 

factors are defined based on the consistent trend of diurnal and monthly bias found 

between WRF and observations. According to the results, the bias correction method 

increases the agreement between the WRF simulations and observations in terms of MBE, 

RSME, and correlation coefficients during the control and evaluation period. Therefore, the 

resulting bias-corrected time series show a diurnal cycle that is more in phase with the 

observations. 

The solar and wind resource datasets constitute a core element of this dissertation, 

since they are necessary for the achievement of the remaining research objectives. 

Moreover, this is the first time that such long-term and high-resolved solar and wind 

resource datasets have been compiled and generated for the study area, providing the 

groundwork for future research in energy meteorology and energy system modeling. 

Research Objective 2: To develop a new methodology based on spatial functional 
data analysis for the characterization of the spatio-temporal variability of solar and 
wind resources. 

A new methodology to characterize the spatio-temporal variability of gridded solar and 

wind resource datasets using spatial functional data analysis (sFDA) is proposed and 

demonstrated. The methodology comprises multiple steps. First, a hierarchical 

regionalization method for spatial functional data is used to identify homogeneous areas 

(called subregions in this dissertation) with similar intra-annual variability patterns. 

Second, the characterization of the interannual variability is performed using the coefficient 

of variation. Finally, the spatio-temporal complementarity between the resulting subregions 

from the regionalization is analyzed through correlation coefficients. 

Results indicate that the sFDA regionalization method identifies coherent subregions 

with similar intra-annual variability patterns of solar radiation and wind speed, effectively 

capturing the variability due to microclimate and topographic effects in the complex terrain 

of Ecuador. This is the first time that the sFDA regionalization method is used for this 

purpose and the results indicate that it provides an appropriate basis for the interannual 
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variability and complementarity analyses. In general, it is concluded that the proposed 

methodology can be applied to other regions or countries and adapted to analyze the 

spatio-temporal variability of other renewables resources or energy yield. 

Furthermore, the sFDA regionalization method is found to be useful for adapting the 

pointwise wind speed bias correction to any grid point that has similar wind speed temporal 

variability patterns to that of the observation stations. This implies that such an approach 

can be applied to correct the bias of other gridded wind resource datasets. 

From a practical perspective with respect to Research Objective 2, this dissertation 

provides the first comprehensive spatio-temporal characterization of solar radiation and 

wind speed in Ecuador’s mainland and the Galapagos Islands. The regionalization maps 

and the variability statistics provide explicit information to identify optimal sites for the 

deployment of meteorological measurement networks, as well as for the construction of 

solar and wind power facilities in the country. These results are of particular relevance to 

support planners and decision-makers for the optimal planning and deployment of solar 

and wind power systems in the country. 

Research Objective 3: To analyze the spatio-temporal correlation between solar, 
wind, and water resources in Ecuador based on long-term and high-resolved 
meteorological datasets. 

The most significant finding from the spatio-temporal correlation analysis of renewable 

resources in the study area is that solar and wind resources have strong spatio-temporal 

complementarities to water resources in the Amazon and Pacific basins. The low 

availability of water resources in the Amazon basin during October–March can be 

compensated by solar resources from subregions on the coast and along the Eastern 

Andean highlands. In the case of the Pacific basin, the low availability of water resources 

during June–November can be compensated by solar resources from subregions in both 

sides of the Andean highlands and in the Amazon. Wind resources over the Andean 

highlands are also complementary to water resources in the Pacific basin, although to a 

moderate level. Furthermore, strong complementarities of solar resources between the 

coastal area and the Western Andean highlands are also identified. 

The intra-annual variability patterns of solar and wind resources in some subregions are 

also found to be similar to the hydrological regimes in both basins. This aspect suggests 

that solar and/or wind power projects could be planned instead of hydropower plants. 

Such a strategy could prevent serious environmental and social impacts related to the 
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deployment of large-scale hydropower projects in the Amazon basin, where most of the 

untapped hydropower potential of the country resides. 

The temporal correlation analysis reveals that there exists a great potential for deploying 

hydro-solar-wind hybrid systems. Although gridded precipitation data is found to be useful 

for analyzing the pairwise correlation to solar and wind resources at each grid point, 

hydropower potential is not available in all grid points, as it depends on effective inflow and 

available head. To further explore the potential of hybrid power systems, a hydrological 

model that converts precipitation to streamflow in selected catchments would be needed. 

The newly identified seasonal complementary behavior between solar, wind, and water 

resources in Ecuador lays the foundation for the optimal planning and siting of new 

geographically-dispersed solar and wind power capacities to compensate hydropower 

during the dry periods. 

Research Objective 4: To analyze the opportunity of wind and solar power to 
enhance the resilience of the power supply system by accounting the spatio-
temporal synergies of renewable power generation. 

The benefits that the spatio-temporal synergies of renewable power generation could 

provide to the power system are quantified in terms of reliability and stability. Results reveal 

that the joint operation of geographically-dispersed PV and wind power systems from 

different subregions reduces the intrinsic variability of each resource and provides certain 

levels of firm capacity to be available at a given time. This finding differs from the general 

assumption among energy planners that wind and solar power do not contribute to the firm 

capacity. Another important finding is that wind power from subregions with high resources 

stabilizes PV power output at diurnal timescales during the windy months, suggesting that 

both technologies could serve as baseload during this period, thus reducing the 

requirements for energy storage. The identified operational benefits of the spatio-temporal 

synergies of renewable power generation may provide economic incentives to support the 

deployment of PV and wind power, thus displacing fossil fuel thermal power generation. 

From the findings of this dissertation, it can be concluded that solar and wind power can 

play an important role in shaping a more sustainable and resilient power system in the 

country. Generation capacity expansion planning in Ecuador should be focused on 

exploiting the identified spatio-temporal synergies for the design of a more robust and 

precaution-oriented power supply system. A higher share of geographically-dispersed PV 

and wind power – and eventually other non-hydro renewables – in the power mix will 
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reduce the existing imbalance among current power supply options in the country. By doing 

so, the diversity of the power system, which involves variety, balance, and disparity, will 

increase. Likewise, similar power generation profile patterns translate into redundancy of 

power supply sources, which is another precautionary measure. Therefore, taking these 

design elements into account for capacity expansion planning can help in enhancing the 

resilience of the current hydro-thermal power system to cope with weather and 

climate related variabilities, uncertainties of fossil fuel prices due to geopolitical conditions, 

and other uncertain stressors. 

 

6.2. Outlook 

The methodology and data developed in this dissertation open up a plethora of options 

for further research. A natural progression of this work is to assess the optimal sizing and 

relative share among PV and wind power needed to meet the electricity demand, while 

displacing fossil fuel thermal power. For this purpose, the results from this dissertation can 

be integrated into both operational power system models and long-term generation 

expansion planning models.  

The hourly datasets will support operational power system models to assess the 

flexibility of the power system with an increasing contribution of solar and wind generation. 

Long-term generation expansion planning models can be used to explore different 

scenarios for 100% renewable energy, optimizing the spatio-temporal complementarity 

between resources.  

The sFDA regionalization method will enable the incorporation of better spatial details 

into the models. In this way, the computational requirements to solve the optimization 

problems can be reduced, while accounting for the spatio-temporal synergies among 

renewable power generation. Such an approach will capture the benefits associated with 

spatial smoothing of variable renewable energy generation, which is a challenge in long-

term planning models (Collins et al., 2017). 

Considering that power systems are complex socio-technical systems, the modeling of 

the power system transformation should not focus only on the rationale of techno-economic 

optimization, but should also take into account human behavior and interaction of different 

stakeholders. The findings of this dissertation provide the groundwork for the technical 

aspects of the analysis; yet, the social dimension and the development of a holistic analysis 
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approach, using for instance agent-based models, should be the direction for further 

research. 

Further studies should also focus on investigating the impact of weather and climate on 

the energy sector in both a retrospective and prospective way. The generated long-term 

meteorological datasets will support further research on different topics in this respect, 

e.g., the assessment of the sensitivity of the power system to interannual climate variability, 

the impacts of El Niño–Southern Oscillation (ENSO) on solar and wind resources, and the 

analysis of the degree to which the complementarity between renewable resources in 

Ecuador could mitigate the impacts of ENSO on hydrological resources. 
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Appendix A Supplementary material to Chapter 2 

A.1. Overview of studies on the analysis of spatio-temporal variability of 
the solar resource 

Table A-1. Overview of studies on the analysis of spatio-temporal variability of the solar resource at a regional 
scale that used gridded satellite-derived datasets (GHI: Global horizontal irradiance, DNI: Direct normal 
irradiance, NA: not available) 

Reference Objective Region Dataset Time 
period 

Temporal 
resolution 

Spatial 
resolution 

Number 
of grid 
points 

Classification 
method 

Habte et 
al. (2020) 

To assess the 
long-term 
spatial and 
temporal solar 
resource 
variability at a 
regional scale 

America 
(land 
surfaces 
only) 

gridded 
satellite 
data  
(GHI, 
DNI) 

20 
years 

30 min, 
then 
aggregated 
to 
seasonal, 
annual and 
long-term 
averages 
  

4 x 4 km 2 million 
(approx.) 

Köppen-
Geiger climate 
classification  

Gutierrez 
et al. 
(2017) 

To analyze the 
variability and 
complementarity 
of the solar 
resource and 
photovoltaic 
production 
among sub-
regions of a 
wide area 

Iberian 
Peninsula 

gridded 
satellite 
data 
(GHI) 

30 
years 

daily 0.05 x 
0.05 
degrees 

NA k-means 
initialized with 
a complete 
linkage 
hierarchical 
clustering 
solution of a 
dimension-
reduced 
dataset by 
principal 
component 
analysis 
  

Laguarda 
et al. 
(2020) 

To understand 
the impact of El 
Niño South 
Oscillation on 
the solar 
resource over a 
region of 
Southeastern 
South America 

southeastern 
South 
America 
(containing 
Uruguay) 

gridded 
satellite 
data 
(GHI) 

15 
years 

hourly, 
then 
aggregated 
to long-
term 
monthly 
averages 

1 x 1 
degrees 

31 k-means 
initialized with 
a Ward 
hierarchical 
clustering 
solution after 
reducing the 
dimensionality 
of the dataset 
by principal 
component 
analysis 
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Table A-1. Cont. 

Reference Objective Region Dataset Time 
period 

Temporal 
resolution 

Spatial 
resolution 

Number 
of grid 
points 

Classification 
method 

Vindel et 
al. (2020) 

To analyze 
the spatial 
and 
temporal 
variability of 
solar 
irradiance 
over a 
region 
affected by 
the 
intertropical 
convergence 
zone 

Zambia and 
surrounding 
zones 

gridded 
satellite 
data 
(GHI) 

9 
years 

daily 0.1 x 0.1 
degrees 

14,500 Principal 
component 
analysis to 
obtain 
temporal 
variability 
patterns and 
k-means 
based on the 
interquartile 
range to 
analyze the 
spatial 
variability  

Zagouras 
et al. 
(2013) 

To 
determine 
the location 
of 
measuring 
sites for 
solar 
irradiance 

Greece gridded 
satellite 
data 
(Cloud 
modification 
factor) 

2 
years 

daily 0.05 x 
0.05 
degrees 

28,800 k-means after 
reducing the 
dimensionality 
of the dataset 
by principal 
component 
analysis 
 
 

Zagouras , 
Inman, et 
al. (2014) 

To 
determine 
coherent 
zones of 
global 
horizontal 
irradiance 
for a utility-
scale 
territory  

California gridded 
satellite 
data 
(GHI) 

2 
years 

30 min 0.01 x 
0.01 
degrees 

NA k-means 
initialized with 
a deterministic 
scheme after 
reducing the 
dimensionality 
of the dataset 
by principal 
component 
analysis 
 
 

Zagouras, 
Pedro, et 
al. (2014) 

To select 
candidate 
locations for 
solar power 
plants that 
take into 
account 
solar 
variability 
and 
geographical 
smoothing 
effect 

Lanai 
Island 
(Hawaii) 

gridded 
satellite 
data 
(GHI) 

15 
years 

30 min 0.01 x 
0.01 
degrees 

411 k-means 
initialized by 
Affinity 
propagation 
method 
applied to a 
dimensionally 
reduced 
dataset 
through 
principal 
component 
analysis 
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A.2. Anomalies in NSRDB dataset 

 

Fig A-1. Spatial distribution of the standard deviation of the annual mean daily total GHI during 1998–2018 over 
Ecuador's mainland at a 4 ´ 4 km spatial resolution. Grid points at longitudes 78.02ºW and 77.98ºW between 
latitudes 0.13ºN and 1.71ºS showed anomalies during the period 24-11-2008 to 31-12-2017. Source: Own 
representation, data from the NSRDB. 

 

A.3. List of NSRDB variables 

Table A-2. List of variables retrieved from the National Solar Radiation Database. 

Short name Long name Units Dimensions 
DHI Diffuse horizontal irradiance W m–2 3 
DNI Direct normal irradiance W m–2 3 
GHI Global horizontal irradiance W m–2 3 
T Air temperature °C 3 
WS Wind speed m s–1 3 
Lon Center longitude of grid cell ° 2 
Lat Center latitude of grid cell ° 2 
Times Time UTC 1 
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A.4. Cluster validity assessment for GHI regionalization 

The optimal number of clusters for the regionalization of the GHI dataset is selected 

based on both the analysis of the average silhouette width (ASW), and the analysis of the 

functional boxplots of the resulting clusters. 

For the regionalization of GHI in Ecuador’s mainland, twenty-two clusters are selected 

as optimal partition because the AWS value decreases significantly for higher number of 

partitions (Fig A-2). In addition, as seen in Fig A-4, the functional boxplots of the 

22 subregions display a uniform dispersion of the functional curves with a minimum number 

of outliers curves, which suggests a coherent spatial classification. 

 

Fig A-2. Average silhouette width (AWS) values against the number of clusters for the regionalization of GHI in 
Ecuador's mainland. 

For the regionalization of GHI in the Galapagos Islands, three clusters are selected as 

optimal partition. Although the AWS value at 2 is higher (Fig A-3), three clusters are 

selected because the spatial distribution of the clusters is aligned to the climatic zones 

described in Trueman et al. (2010). In addition, as seen in Fig A-4, the functional boxplots 

of the three subregions in the Galapagos Islands display a uniform dispersion of the 

functional curves without outlier curves, which suggests a coherent spatial classification. 

 

Fig A-3. Average silhouette width (AWS) values against the number of clusters for the regionalization of GHI in 
the Galapagos Islands. 

  

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of clusters

AS
W

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

2 3 4 5 6 7 8 9 10

Number of clusters

AS
W



Appendix 

 151 

A.5. Functional boxplots regionalization GHI 

 

Fig A-4. Functional boxplots that show the dispersion of the GHI functional curves per subregion in Ecuador's 
mainland and the Galapagos Islands, named according to their corresponding region: Amazon (A), Eastern 
highlands (EH), Western highlands (WH), Coast (C), and Galapagos (G). The colored shapes represent the 
interquartile range, the gray external lines depict the minimum and maximum curves, the black lines are the 
median curves interpreted as the representative temporal pattern of each subregion. The black dotted lines in 
A.1, EH.1, EH.4 represent the outlier curves. 
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Appendix B Supplementary material to Chapter 3 

B.1. Output variables from the WRF simulations 

Table B-1. List of output variables from the WRF simulations. The four-dimensional variables are given at: 30, 
40, 50, 60, 70, 80, and 100 m AGL. These variables are obtained following the post-processing procedure 
performed by Dörenkämper et al. (2020). 

Short name Long name Units Dimensions 
WS Wind speed m s–1 4 
WD Wind direction ° 4 
PD Power density W m–2 4 
T Air temperature K 4 
TKE Turbulent kinetic energy m2s–2 4 
Q Humidity mixing ratio 1 4 
HFX Surface sensible sensible heat flux W m–2 3 
PBLH PBL height m 3 
PSFC Surface pressure Pa 3 
Q2 Specific humidity at 2 m 1 3 
RHO Air density at surface kg m–3 3 
T2 Air temperature at 2 m K 3 
TSK Surface skin temperature K 3 
UST Friction velocity m s–1 3 
WD10 Wind direction at 10 m ° 3 
WS10 Wind speed at 10 m m s–1 3 
ZNT Surface aerodynamic roughness length m 3 
ALPHA Map projection distortion ° 2 
HGT Surface elevation m 2 
XLAT Center latitude of grid cell ° 2 
XLON Center longitude of grid cell ° 2 
Times Time UTC 1 
Z Height above ground m 1 
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B.2. Cluster validity assessment for wind speed regionalization 

The optimal number of clusters for the regionalization of the wind speed dataset is 

selected based on both the analysis of the average silhouette width (ASW), and the 

analysis of the functional boxplots of the resulting clusters. 

For the regionalization of wind speed in Ecuador’s mainland, ten clusters are selected 

because the AWS value decreases significantly for higher number of partitions (Fig B-1). 

In addition, as seen in Fig B-3, the functional boxplots of the 10 subregions display a 

uniform dispersion of the functional curves with a minimum number of outliers curves, which 

suggests a coherent spatial classification. 

 

Fig B-1. Average silhouette width (AWS) values against the number of clusters for the regionalization of wind 
speed in Ecuador's mainland. 

For the regionalization of GHI in the Galapagos Islands, four clusters are selected as 

optimal partition. Although the AWS value at 2 is higher (Fig B-2), four clusters are selected 

because the spatial distribution of the clusters is aligned to the analysis of wind speed 

described in Trueman et al. (2010). In addition, as seen in Fig B-3, the functional boxplots 

of the four subregions in the Galapagos Islands display a uniform dispersion of the 

functional curves without outlier curves, which suggests a coherent spatial classification. 

 

Fig B-2. Average silhouette width (AWS) values against the number of clusters for the regionalization of wind 
speed in the Galapagos Islands. 
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B.3. Functional boxplots regionalization wind speed 

 

Fig B-3. Functional boxplots that show the dispersion of the wind speed functional curves per subregion in 
Ecuador's mainland and the Galapagos Islands. The colored shapes represent the interquartile range, the gray 
external lines depict the minimum and maximum curves, the black lines are the median curves interpreted as 
the representative temporal pattern of each subregion. The black dotted lines in R.1.2, R.2.1, R.2.2, R.4.1, and 
R.4.2 represent the outlier curves. 
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B.4. Monthly wind direction in subregions 

 

Fig B-4. Distribution of monthly wind speed and the frequency of wind direction at 80 m AGL in subregion R.1.1 
in Ecuador’s mainland. 

 

Fig B-5. Distribution of monthly wind speed and the frequency of wind direction at 80 m AGL in subregion R.1.2 
in Ecuador’s mainland. 

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

Sep Oct Nov Dec

May Jun Jul Aug

Jan Feb Mar Apr

0.0%5.0%10.0%15.0%20.0%25.0%

0.0%5.0%10.0%15.0%20.0%25.0%

0.0%5.0%10.0%15.0%20.0%25.0%

WS [m s−1]

[1.56,3.01]
(3.01,4.46]
(4.46,5.91]
(5.91,7.36]
(7.36,8.81]

R.1.1

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

Sep Oct Nov Dec

May Jun Jul Aug

Jan Feb Mar Apr

0.0%
10.0%
20.0%
30.0%
40.0%

0.0%
10.0%
20.0%
30.0%
40.0%

0.0%
10.0%
20.0%
30.0%
40.0%

WS [m s−1]

[1.26,2.77]
(2.77,4.27]
(4.27,5.78]
(5.78,7.28]
(7.28,8.79]

R.1.2



Appendix 

 156 

 

Fig B-6. Distribution of monthly wind speed and the frequency of wind direction at 80 m AGL in subregion R.2.1 
in Ecuador’s mainland. 

 

Fig B-7. Distribution of monthly wind speed and the frequency of wind direction at 80 m AGL in subregion R.2.2 
in Ecuador’s mainland. 
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Fig B-8. Distribution of monthly wind speed and the frequency of wind direction at 80 m AGL in subregion R.2.3 
in Ecuador’s mainland. 

 

Fig B-9. Distribution of monthly wind speed and the frequency of wind direction at 80 m AGL in subregion R.3.1 
in Ecuador’s mainland. 
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Fig B-10. Distribution of monthly wind speed and the frequency of wind direction at 80 m AGL in subregion 
R.3.2 in Ecuador’s mainland. 

 

Fig B-11. Distribution of monthly wind speed and the frequency of wind direction at 80 m AGL in subregion 
R.3.3 in Ecuador’s mainland. 

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

Sep Oct Nov Dec

May Jun Jul Aug

Jan Feb Mar Apr

0.0%10.0%20.0%30.0%40.0%50.0%

0.0%10.0%20.0%30.0%40.0%50.0%

0.0%10.0%20.0%30.0%40.0%50.0%

WS [m s−1]

[1.99,4.61]
(4.61,7.24]
(7.24,9.86]
(9.86,12.5]
(12.5,15.1]

R.3.2

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

Sep Oct Nov Dec

May Jun Jul Aug

Jan Feb Mar Apr

0.0%10.0%20.0%30.0%40.0%50.0%

0.0%10.0%20.0%30.0%40.0%50.0%

0.0%10.0%20.0%30.0%40.0%50.0%

WS [m s−1]

[2.6,4.27]
(4.27,5.93]
(5.93,7.6]
(7.6,9.27]
(9.27,10.9]

R.3.3



Appendix 

 159 

 

Fig B-12. Distribution of monthly wind speed and the frequency of wind direction in at 80 m AGL subregion 
R.3.4 in Ecuador’s mainland. 

 

Fig B-13. Distribution of monthly wind speed and the frequency of wind direction in at 80 m AGL subregion 
R.3.5 in Ecuador’s mainland. 
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Fig B-14. Distribution of monthly wind speed and the frequency of wind direction at 80 m AGL in subregion 
R.4.1 in the Galapagos Islands. 

 

Fig B-15. Distribution of monthly wind speed and the frequency of wind direction at 80 m AGL in subregion 
R.4.2 in the Galapagos Islands. 
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Fig B-16. Distribution of monthly wind speed and the frequency of wind direction at 80 m AGL in subregion 
R.4.3 in the Galapagos Islands. 

 

Fig B-17. Distribution of monthly wind speed and the frequency of wind direction at 80 m AGL in subregion 
R.5.1 in the Galapagos Islands.  
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Appendix C Supplementary material to Chapter 5 

C.1. GIS datasets for geographical wind and PV potential assessment 

Table C-1. Data sources of constraint layers used to determine the geographical area available for the 
deployment of utility-scale solar and wind farms. 

Category Constrain Date 
accessed 

Data source  Website 

Infrastructure Urban areas 08/07/2019 Military 
Geographic 
Institute 

http://www.geoportaligm.gob.ec/portal/index
.php/cartografia-de-libre-acceso-escala-50k/ 

 Roads 03/01/2019 Military 
Geographic 
Institute 

http://www.igm.gob.ec/work/files/downloads/
trans.zip 

 Railways 03/01/2019 Military 
Geographic 
Institute 

http://www.igm.gob.ec/work/files/downloads/
trans.zip 

 Airports 08/07/2019 Military 
Geographic 
Institute 

http://www.geoportaligm.gob.ec/portal/index
.php/cartografia-de-libre-acceso-escala-50k/ 

 Transmission 
grid 

03/01/2019 CONELEC http://app.sni.gob.ec/sni-
link/sni/PORTAL_SNI/PORTAL/AIG/68_line
a_transmision.rar 

 Archeological 
sites 

08/07/2019 Military 
Geographic 
Institute 

http://www.geoportaligm.gob.ec/portal/index
.php/cartografia-de-libre-acceso-escala-50k/ 

Water  
bodies 

Rivers 08/07/2019 Ministry of 
Environment 

http://www.geoportaligm.gob.ec/portal/index
.php/cartografia-de-libre-acceso-escala-50k/ 

 Lakes 08/07/2019 Ministry of 
Environment 

http://www.geoportaligm.gob.ec/portal/index
.php/cartografia-de-libre-acceso-escala-50k/ 

 Mangroves 08/07/2019 Ministry of 
Environment 

http://mapainteractivo.ambiente.gob.ec/ 

 Reservoirs 08/07/2019 Ministry of 
Environment 

http://www.geoportaligm.gob.ec/portal/index
.php/cartografia-de-libre-acceso-escala-50k/ 

Protected areas Natural 
reserves 

03/01/2019 Ministry of 
Environment 

http://mapainteractivo.ambiente.gob.ec/ 

 Protected  
forest 

03/01/2019 Ministry of 
Environment 

http://mapainteractivo.ambiente.gob.ec/ 

 Intangible 
areas 

08/07/2019 Ministry of 
Environment 

http://mapainteractivo.ambiente.gob.ec/ 

 Protected 
biosphere 

03/01/2019 Ministry of 
Environment 

http://mapainteractivo.ambiente.gob.ec/ 
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Appendix D Ecuador map 

 

Fig D-1. Political map of Ecuador. The map of the continental area shows the provincial boundaries and 
provinces’ names. The map of Galapagos shows the name of the bigger islands. Source: Own representation, 
data from IGM (2021).  
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Appendix E Student contributions 

In this dissertation the results from the supervision of the following students’ works are 

included: 

§ Jonathan L Chu, Mesoscale modelling of wind resources over complex tropical 

terrain in Ecuador using the ERA5 reanalysis dataset. Bachelor's Thesis, Carl von 

Ossietzky Universität Oldenburg, 2019. 

§ Leonard Ramos Perez, Geospatial assessment of rooftop solar photovoltaic potential 

for multiple cities in Ecuador. Master’s Thesis, Carl von Ossietzky Universität 

Oldenburg, 2022. 
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