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Abstract

The encoding and manipulation of binary numbers in digital systems is a major design chal-
lenge for modern high-performance computer arithmetic and digital signal processing. Besides
unsigned and signed integer representation, fixed point and floating point are the two state-
of-the-art choices for implementing real number arithmetic in digital systems. In the past
decades a few other approaches were proposed, but none achieved to provide a general-purpose
alternative to the established fixed and floating point. In recent years, however, machine
learning and other applications with requirements for processing huge amounts of data increased
the demands for alternative number representations in order to efficiently handle these new
challenges. A further motivation for the development of digital number format alternatives are
inefficiencies and inaccuracies within the IEEE standard for floating point, which are tackled
by the universal number (unum) format, proposed in 2015.

This thesis deals with the Sets Of Real Numbers (SORN) format, which is a derivative of the
unum approach. The SORN format represents the entire real numbers with a dedicated set of
exact values and intervals, and implements arithmetic operations with pre-computed lookup
tables, realized with simple Boolean logic circuits. This approach leads to low-complex and low-
latency hardware designs, while the represented precision is rather low, compared to standard
formats. Due to these properties, SORNs are well-suited for constraining high-dimensional
optimization problems by means of preprocessing, as well as for implementing threshold-based
algorithms.
This thesis presents implementations of SORN arithmetic operations on register-transfer level
and evaluates on different SORN datatype representations, as well as optimizations such as the
introduction of fused SORN arithmetic. In order to facilitate a design space exploration with
SORNs, an automated design flow is presented, which provides complete SORN datapaths for
different algorithms and applications. By using this design flow, SORN arithmetic is applied
within edge detection for image processing and as preprocessing for detection algorithms in
wireless MIMO communication. The presented results show that the proposed SORN approach
achieves an improvement of the hardware measures for the respective designs, while providing
similar algorithmic performance as the state-of-the-art implementations with standard formats.
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Kurzfassung

Die Kodierung und Verarbeitung von Binärzahlen in digitalen Systemen stellt eine große
Herausforderung für moderne und hoch-performante Computerarithmetik und digitale Sig-
nalverarbeitung dar. Neben der Darstellung von positiven und negativen Ganzzahlen sind
Festkomma- und Gleitkommadarstellungen die beiden meist genutzten Ansätze für die Imple-
mentierung von arithmetischen Operationen mit reellen Zahlen in digitalen Systemen. In den
vergangenen Jahrzehnten wurden einige weitere Verfahren vorgestellt, jedoch stellte keines eine
ernsthafte Konkurrenz zu den etablierten Fest- und Gleitkommaformaten dar. Innerhalb der
letzten Jahre haben jedoch das maschinelle Lernen und andere Anwendungen mit enormem
Datendurchsatz die Nachfrage nach alternativen Zahlendarstellungen stark gesteigert, um
diese neuen Herausforderungen effizient bewältigen zu können. Eine weitere Motivation für
die Entwicklung alternativer digitaler Zahlenformate sind Ineffizienz und Ungenauigkeiten
innerhalb des IEEE-Standards für Gleitkomma-Arithmetik, die durch das 2015 vorgestellte
universal number (unum)-Format ausgeräumt werden sollen.

Diese Dissertation beschäftigt sich mit dem Sets Of Real Numbers (SORN)-Format, einer
Weiterentwicklung des unum-Ansatzes. Das SORN-Format repräsentiert alle reellen Zahlen mit
einem dedizierten Satz von exakten Werten und Intervallen und implementiert arithmetische
Operationen mit vorberechneten Tabellen, die mit einfachen booleschen Logikschaltungen
realisiert werden. Dieser Ansatz führt zu Hardware-Designs mit geringer Laufzeit und Kom-
plexität, wobei die darstellbare Genauigkeit im Vergleich zu Standardformaten geringer ausfällt.
Aufgrund dieser Eigenschaften eignen sich SORNs für die Vereinfachung hochdimensionaler Op-
timierungsprobleme durch Vorverarbeitung, sowie für die Umsetzung von Schwellwert-basierten
Algorithmen.
In dieser Dissertation werden Implementierungen von arithmetischen Operationen mit SORNs
auf Register-Transfer-Ebene vorgestellt und für verschiedene SORN Datentypen ausgew-
ertet, sowie Optimierungen wie die Einführung von Fused-SORN-Arithmetik untersucht.
Zur Evaluierung des Entwurfsraums mit SORNs wird ein automatisiertes Entwurfswerkzeug
vorgestellt, das vollständige SORN-Datenpfade für verschiedene Algorithmen und Anwen-
dungen umsetzt. Mit Hilfe dieses Entwurfswerkzeuges wird die SORN-Arithmetik bei Kan-
tenerkennung in der Bildverarbeitung sowie als Vorverarbeitung für Detektionsverfahren in
der drahtlosen MIMO-Kommunikation eingesetzt. Die vorgestellten Ergebnisse zeigen, dass
für alle SORN-Implementierungen eine Verbesserung der Hardware-Parameter der jeweiligen
Designs erreicht werden kann, wobei ein vergleichbares algorithmisches Verhalten wie bei
Referenz-Implementierungen mit Standardformaten erzielt wird.
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1 Introduction

One of the first things a student learns about in a digital design course is the immense growth of
the semiconductor industry within the second half of the last century, and how this development
is described by Moore’s law. In 1965 Gordon Moore postulated that the number of transistors
in an integrated circuit (IC) would roughly double every two years [Moo06], a forecast that
should hold for the next 50 years. This massive increase of components per device was the
main driver for an improving computing performance of different microprocessor generations,
and became possible because the size of single transistors could be reduced from micrometers
to a few nanometers. During the last decade, however, Moore’s law seems to have come to an
end, due to fundamental physical limits like the size of an atom, which eventually limits the
minimal size of a single transistor [Cro16, Wal16, Bla16]. In order to preserve the outcome of
Moore’s law and further improve the performance of microprocessors, new approaches have to
be considered, both on the technological or physical level [RK22], as well as on the algorithmic
or arithmetic level [Sou21]. The latter includes the field of computer arithmetic and digital
number formats, which, since the beginning of digital computers, is dominated by solely two
approaches to encode and manipulate numbers in digital systems: integer or fixed point (FxD)
arithmetic on one hand, and floating point (FP) arithmetic on the other. Digital computer
arithmetic contains a huge innovation potential, which is why a trend towards more alternative
approaches could be observed in recent years. This includes formats proposed many years
ago, like the Residue Number System (RNS) and stochastic computing (SC), which are now
applied for quantum-resistant cryptography [MS20], as well as new approaches like posits and
adaptions of the existing floating point formats for applications in machine learning [Joh18] or
radio astronomy [Gun23].
To get an overview of the role of alternative number formats within the computer arithmetic
research community, figure 1.1 breaks down the publications on alternative number formats
other than integer, fixed and standard floating point at the IEEE International Symposium on
Computer Arithmetic (ARITH), starting from 1985, when the first floating point standard
was released by the IEEE [IEEE85]. Even though one single conference cannot reflect all the
research going on in this field, the ARITH is considered the leading conference for computer
arithmetic and gives a good overview of the most important topics. Figure 1.1 depicts the
percentage of publications on alternative formats per issue, taken from in total 715 publications,
with a mean of about 30 papers per issue. Until 2015, the symposium was held every two
years, and annually since then. The total share of publications on alternative number formats
at ARITH over all considered issues is about 20%, which shows that alternative arithmetic
does not play a significant role within this research community. A major part of the considered
publications deals with modular arithmetic like the RNS and Galois field (GF)/finite field (FF)
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Figure 1.1.: Percentage of publications on alternative number formats at ARITH symposium
per issue, taken from 715 publications accessed via [ACS] and [IEEE].

arithmetic, which are mainly used in cryptography applications. Another group of publications
considers a Logarithmic Number System (LNS) in order to ease the hardware implementation
of multiplication and division for standard floating point. Since the late 2010s machine learning
is the major emerging topic in most research fields related to digital systems, which also shows
its impact at ARITH. For machine learning implementations, quantization and energy-efficient
number formats are of high importance [RSL+21], which is reflected by ARITH publications
on alternative floating point formats in recent years.
Another part of this trend on alternative formats for machine learning is the posit format,
which is a derivative of the universal number (unum) format, proposed by John Gustafson
in 2015. The unum format is an alternative floating point approach which includes interval
arithmetic (IA), and targets the improvement of inefficiencies and inaccuracies within the
IEEE floating point standard [Gus15]. The approach was presented as a keynote at ARITH
2015, leading to a panel discussion on the advantages and disadvantages of both unums and
floats in the next years edition between Gustafson and William Kahan, one of the founders
of the IEEE floating point standard [GK16]. In 2019 the first unum related publication was
presented at ARITH, followed by a few more posit publications in the following years.
Since the ARITH community does not show enough interest in alternative number format re-
search in general, and the unum approach in particular, Gustafson started his own Conference
for Next Generation Arithmetic (CoNGA) in 2018 [CoN18], which deals with all kinds of
alternative computer arithmetic approaches, including unums and its two derivatives: posit
and Sets Of Real Numbers (SORN). The latter is a low-complex and low-precision version of
the interval-based unums, and will be the main topic of this thesis.

Among other alternative digital number formats like posit, LNS, RNS and
standard floating point adaptions, SORNs are part of a recent trend towards
more diverse and application-specific number representation in current and
future computer arithmetic and digital signal processing [CRR+21, Sou21].
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1.2. Outline

The outline of the thesis is structured according to the main contributions, as shown in figure
1.2. Chapter 2 introduces state-of-the-art (SOTA) approaches for digital arithmetic and number
formats including the standard representations for integers, fixed and IEEE floating point, as
well as alternative number formats like RNS or LNS, interval arithmetic and the unum format
with its type-III version of posits. Chapter 3 introduces the type-II unum and SORN approach,
and discusses datatypes, an automated design flow, hardware complexity and fused operations
for SORNs. Chapter 4 presents applications for SORN arithmetic, namely edge detection
for image processing and symbol detection in wireless MIMO communication. Chapter 5
summarizes and concludes the thesis and gives an outlook on possible future work.





2 Digital Arithmetic and
Number Formats

According to the Oxford Dictionary, a number is "a word or symbol that represents an amount or
a quantity" [HLB+20]. The amount, quantity or value of something can be displayed or written
in many different ways. Just as we can speak or write words and text in different languages,
numbers can be represented in different notations and with different symbols, the numerals. A
numeral is "a sign or symbol that represents a number" [HLB+20]. In the history of humankind,
various numeral systems have been used to express numbers and perform calculations, before
the Arabic numerals were established, as we use them today. Some prominent historical
examples, some of which are still used today, are the unary representation, also called tally
marks ;::, the Maya numerals , and the roman numerals XII (here all representing the
value 7) [Ifr00].
Nowadays, the Arabic numerals {0 1 2 3 4 5 6 7 8 9} are used to represent numbers within a
decimal number system, where a number consists of several digits, each with a value 0-9. In an
integer number, every digit is multiplied with 10n, where n is the position of the digit within
the number, starting with n = 0 for the rightmost digit and increasing by 1 towards the left.
For rational numbers with a fractional part, containing a value between 0 and 1, a separator
sign, usually a dot ".", is used. Every digit to the right of the separator is also multiplied with
10n, starting with n = −1 for the leftmost digit and decreasing towards the right, as depicted
in figure 2.1.
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Figure 2.1.: Visualization of the decimal number system.
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In mathematical terms, this can be written with the general formula for positional systems

vB =
N−1∑

n=−M

dnBn (2.1)

with the represented value v, the digits dn with 0 ≤ dn < B and the base B, also called radix.
For the decimal number system, B = 10 and dn ∈ {0, . . . , 9}. M and N are the number of
digits for the fractional and integer part, respectively [BSMM08]. Note that in this notation,
the position index starts with the rightmost digit n = −M and increases towards the left until
n = N − 1. The index B can be used with the actual value to indicate the base of the current
number system, for example 625.83710, sometimes also 625.837|10. This notation is mostly
applied when different bases are used within one equation or algorithm. If only one base is
used, the base index is usually omitted. Throughout this work, the described index notation is
mainly used to distinguish the numerals 0 and 1 used in decimal representation (010 and 110),
or in binary representation (02 and 12), as introduced below.
The decimal number system, as we use it today, started to appear in Europe somewhere
between the 10th and 13th century anno Domini (AD) [Ifr00]. After that, it took several more
centuries before it became established as the matter of course with which we use it today in
everyday life. Then, in the late 1930th and early 1940th, a new way of representing numbers
became important with the development of the first digital computers. These computers were
built with vacuum tubes, which were later replaced by transistors, nowadays still the main
component of modern digital computing systems [O’R08]. Both vacuum tubes and transistors
behave like switches, able to distinguish between solely two different states: off or on, low or
high voltage, 0 or 1. Due to this behavior, computers are not suited to use decimal arithmetic.
Instead, the binary number system is applied.
Like the other number systems mentioned above, the binary system is much older than the first
computers. One famous mathematician who contributed to arithmetic with binary numbers
was Leibniz in the early 18th century [O’R08]. Nevertheless, with the invention of digital
computers, this approach using only two different numerals became more important than ever.
The binary and decimal number systems are both positional systems applying to equation
(2.1), the only differences are the base B and the digits dn. For binary representation, B = 2
and the digits dn ∈ {0, 1} are also called bits. How to encode and represent binary numbers,
for example as integer or real values, and how to perform arithmetic operations with them, is
the discipline of digital number formats and computer arithmetic, located within computer
science. This topic will be explained in detail in this chapter.
As a general remark, it has to be mentioned that all the different number systems discussed
so far are clearly distinguishable because of their outer forms and the utilized numerals.
Now, entering the topic of digital number formats, all encoded in binary representation, this
distinction is not so obvious anymore. The outer form of all the different formats, that will be
covered in the following, is a bit string composed of zeros and ones. Whether the bit string
encodes an integer or fixed point value, with or without a sign, and at which position the
radix point is located (if there is one), is only visible from the system configuration and type
definitions.
Further, it has to be mentioned that the implementation of arithmetic operations for different
number formats, using transistors in electronic circuits, for example on field-programmable
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gate arrays (FPGAs), with integrated circuits (ICs) or application-specific integrated circuits
(ASICs), respectively, is based on the theory of digital design. This includes Boolean Logic and
Algebra, as well as the principles of combinatorial and sequential logic design [HH13]. These
topics will not be covered here, a basic knowledge is assumed in the following.

2.1. Integer Format

In mathematics, the most elementary set of numbers are the natural or whole numbers N,
defined either without zero as N = {1, 2, 3, . . . }, also referred to as positive integers [JJ43],
or with zero N0 = {0, 1, 2, 3, . . . } [BSMM08]. These are the most intuitive numbers that are
commonly used in everyday life. When negative values (and zero) are also considered, the set
is called integers Z = {. . . , −2, −1, 0, 1, 2, . . . }. For computer arithmetic, these two sets build
the most basic number format, the integer format. The natural numbers N0 = {0, 1, 2, 3, . . . }
are hereby referred to as unsigned integers, whereas the set Z = {. . . , −2, −1, 0, 1, 2, . . . } is
called signed integers.

Unsigned The unsigned integers are built straight forward following the definition of a
positional number system in equation (2.1) with base B = 2 and digits dn ∈ {0, 1}, now called
bits bn

v2 =
N−1∑
n=0

bn2n (2.2)

with the total number of bits N . The index n = 0 corresponds to the rightmost bit, the least
significant bit (LSB), and n = N − 1 to the leftmost bit, the most significant bit (MSB). Table
2.1 shows the encoding of unsigned integers with up to N = 3 bits and the respective decimal
equivalents [HH13]. The minimum and maximum values in this representation are given in
table 2.2.

Table 2.1.: Unsigned integer encoding for up to N = 3 bits.

unsigned integer decimal
N = 1 N = 2 N = 3

0 00 000 0
1 01 001 1

10 010 2
11 011 3

100 4
101 5
110 6
111 7
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Table 2.2.: Minimum and maximum values for unsigned and signed integer formats with N
bits.

encoding min value max value
decimal binary decimal binary

unsigned 0 00 . . . 0 2N − 1 11 . . . 1
signed-magnitude −2N−1 + 1 11 . . . 1 2N−1 − 1 01 . . . 1
one’s complement −2N−1 + 1 10 . . . 0 2N−1 − 1 01 . . . 1
two’s complement −2N−1 10 . . . 0 2N−1 − 1 01 . . . 1

Signed For the representation of signed integer values Z = {. . . , −2, −1, 0, 1, 2, . . . }, three
different encoding schemes can be used: the signed-magnitude, the one’s complement and the
two’s complement encoding.

Signed-Magnitude Comparable to the decimal numbers, where an extra numeral is used
to indicate that a number is negative, the signed-magnitude encoding reserves the MSB to
represent the sign of a number. This bit is called the sign bit. Zero hereby indicates a positive,
one a negative number. The remaining N − 1 bits encode the absolute value of the number as
an unsigned integer. The minimum and maximum value in this representation are given in
table 2.2. Table 2.3 shows the encoding of signed-magnitude integers with N = 3 bits and the
respective decimal equivalents [Far04]. The drawback of signed-magnitude encoding is that it
is not compatible with the rules of binary arithmetic, which will be discussed in section 2.1.1.
In addition, the encoding contains redundancy with a negative and positive zero value [HH13].

One’s Complement For creating the one’s complement encoding of a negative number,
its unsigned binary value is complemented, meaning that all bits are flipped to the opposite.
Zeros become ones and vice versa. Positive values are not changed, their encoding is the same
as for unsigned or signed-magnitude encoding. The minimum and maximum value in this
representation are given in table 2.2. Table 2.3 shows the encoding of one’s complement integers
with N = 3 bits [Far04]. One’s complement numbers can be used with binary arithmetic (see
section 2.1.1), but they don’t solve the problem of redundant zero values.

Table 2.3.: Signed integer encoding for N = 3 bits.

signed magnitude one’s complement two’s complement decimal

000 000 000 0
001 001 001 1
010 010 010 2
011 011 011 3
100 111 - −0
101 110 111 −1
110 101 110 −2
111 100 101 −3

- - 100 −4
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Two’s Complement The two’s complement representation is the most commonly used
encoding for negative integers, because it applies to binary arithmetic and eliminates the
redundancy of two zeros. As for the previous representations, positive values remain unchanged.
For negative values, in a first step the unsigned integer value of a number is inverted, just as
for one’s complement. In a second step, a one is added to the inverted value. The following
example shows the two’s complement encoding of −510 using N = 4 bits:

0101 (unsigned value)

1010 (inverted/one’s complement)
+ 0001 (add 12)

1011 (two’s complement)

(2.3)

The minimum and maximum value in two’s complement representation are given in table
2.2. Table 2.3 shows the encoding of two’s complement integers with N = 3 bits [Far04]. An
alternative way of interpreting two’s complement numbers is to treat them as unsigned integers
except the MSB, which is given a weight −2N−1, instead of 2N−1 [HH13]. In this case the MSB
acts as a weighted sign bit. Equation 2.2 can be rewritten in order to represent this behavior:

vtwosComp = −bN−12N−1 +
N−2∑
n=0

bn2n (2.4)

2.1.1. Addition

Arithmetic with binary numbers, encoded as unsigned and signed integers, derives from the
concepts of decimal arithmetic, since both representations are positional number systems and
differ solely in base and digits [Far04]. For decimal addition, the digits of two numbers are
added positional wise, starting with the rightmost digit at position n = 0. When the result of
this addition can not be displayed with a single digit, the first resulting digit contributes to
the overall result, whereas the second digit is stored as so-called carry and contributes to the
addition of the next two digits at position n = 1 [Far04]. This process is continued until the
rightmost position n = N − 1. Due to the carry, it can happen that the result value requires
an additional digit at position n = N . An example of this process is given in figure 2.2a.
Binary addition with unsigned integers follows the decimal approach, performing a bit wise
addition, starting with the LSB at position n = 0. The addition of two 12-bits produces
a 02 in the result and a 12 in the carry, which is applied to the next position. Figure 2.2b
shows the binary addition of the two unsigned 4-bit values a = 01102 = 610 and b = 00112 = 310.

5173
+ 7854

111 (carry)
13027

(a) decimal addition

0110 (= 610)
+ 0011 (= 310)

11 (carry)
1001 (= 910)

(b) binary addition

Figure 2.2.: Concepts for decimal and binary addition.
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Carry Out In decimal arithmetic, an extra digit at position n = N due to the carry, as
shown in figure 2.2a, is simply added to the result value without any further considerations. In
digital systems, however, the storage size of a binary number is limited to a fixed bitwidth N .
If the addition of two fixed width unsigned integer numbers produces a carry that propagates
to the N -th position, this is signaled by a carry output, because the result value requires more
bits than the operands [Par10]. In a naive implementation, if the extra bit would be discarded,
this would lead to a wrong result.

Implementation The functionality of binary addition for a single bit can be implemented
with the so-called half adder (HA). This building block produces the sum s for two inputs a

and b, along with the carry output cout. The 1-bit half adder can be implemented with one
AND and one XOR gate. Figure 2.3 shows the truth table, as well as the gate level and block
level design. For adding values with more than one bit, single adder blocks can be connected,
each processing the resulting bit for one position n. In order to handle carry values from
previous stages, the full adder (FA) block can be used. It contains an additional carry input
and can be implemented with two half adders and one OR gate. Figure 2.4 shows the truth
table, gate and block level design of a full adder. The serial connection of one half adder,
followed by N − 1 full adders is the simplest way of implementing an N -bit adder, the so-called
ripple-carry adder (RCA), shown in figure 2.5. Other architectures like carry-lookahead or
prefix can be used to implement adders with different properties, such as lower latency [HH13].

a b cout s

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

(a) truth table

ba

scout

(b) gate level

a b

s

HAcout

(c) block level

Figure 2.3.: Truth table, gate and block level architecture for a 1-bit half adder.

cin a b cout s

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

(a) truth table

bacin

scout

(b) gate level

a b

s

FA cincout

(c) block level

Figure 2.4.: Truth table, gate and block level architecture for a 1-bit full adder.
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FA

aN−1 bN−1

cout

sN−1

FA

aN−2 bN−2

sN−2

FA

a1 b1

s1

FA

a0 b0

cin

s0

Figure 2.5.: Architecture of an N bit ripple-carry adder [HH13].

Signed Addition Signed addition or the subtraction of one binary integer from another
can be realized by combining the unsigned integer addition with two’s complement encoding.
The operation a − b can be rewritten as a + (−b), where (−b) is the negative two’s complement
encoding of b. Figure 2.6a shows the computation of a−b with a = 01102 = 610, b = 00112 = 310,
and −b = 11012 = −310, respectively. In contrast to the addition of two unsigned numbers,
for signed addition the carry output has no significance [Par10]. In the depicted example, the
output is correct only if the carry output is discarded.
Signed addition can be implemented with the described adder architecture without any changes.
If a dedicated subtraction operation is to be implemented, the addition block can be used with
a negated second input b and a carry input cin = 12 for the LSB (n = 0), in order to obtain
the negated two’s complement encoding of the second input b [HH13].

Overflow When adding two negative values, i.e. subtracting a positive from a negative
value, a so-called overflow is possible, as shown in figure 2.6b for a − b with a = 10102 = −610,
b = 00112 = 310, and −b = 11012 = −310, respectively. An overflow is detected by the XOR
operation between the two leftmost caries and indicates that the computed output is incorrect
[Par10], as depicted in the example.

0110 (= 610)
+ 1101 (= −310)

11 (carry)
0011 (= 310)
(a) no overflow

1010 (= −610)
+ 1101 (= −310)

10 (carry)
0111 (= 710)

(b) overflow

Figure 2.6.: Binary subtraction, realized as addition of two’s complement encoded numbers,
without and with overflow, detected by an XOR of the two leftmost carries.

2.1.2. Multiplication

Similar to addition, binary multiplication can be derived from the decimal approach. Figure
2.7a shows an example of decimal multiplication. The multiplicand a = 375110 is multiplied by
each individual digit of the multiplier b = 604210. The resulting partial products are aligned
to the position n of the current multipliers digits and then summed up, leading to the result
of the multiplication. The same approach can be used for binary multiplication, as shown in
figure 2.7b for two 4-bit numbers. The multiplicand a = 01012 is multiplied by each bit of
the multiplier b = 11012. Since this is a multiplication with 02 or 12, the partial products are
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3751
× 6042

7502
15004

0
+ 22506

1 (carry)
22663542

(a) decimal multiplication

0101 (= 510)
× 1101 (= 1310)

0101
0000

0101
+ 0101

1111 (carry)
1000001 (= 6510)

(b) binary multiplication

Figure 2.7.: Concepts for decimal and binary multiplication.

either the multiplicand or all-zero. Following the decimal approach, all partial products are
aligned to their respective position n and then summed up with binary addition [Man02].
Figure 2.8 shows the process of unsigned binary multiplication for the individual bits of
multiplicand and multiplier for a 4 × 4 bit multiplication. A general N × N multiplier produces
an output p with a width of 2N for two N -bit inputs a and b. For digital implementation, the

a3 a2 a1 a0
× b3 b2 b1 b0

a3b0 a2b0 a1b0 a0b0
a3b1 a2b1 a1b1 a0b1

a3b2 a2b2 a1b2 a0b2
+ a3b3 a2b3 a1b3 a0b3

p7 p6 p5 p4 p3 p2 p1 p0

Figure 2.8.: Partial products for unsigned multiplication.

HA FA FA HA

a3 b0 a2 b0 a1 b0 a0 b0

a3 b1 a2 b1 a1 b1 a0 b1

FA FA FA HA

a3 b2 a2 b2 a1 b2 a0 b2

FA FA FA HA

a3 b3 a2 b3 a1 b3 a0 b3

p0p1p2p3p4p5p6p7

Figure 2.9.: Architecture of a 4-bit unsigned integer array multiplier.
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multiplication of two single bits, required to obtain the partial products, can be realized with
an AND gate. The addition of those partial products is implemented with half and full adders.
Figure 2.9 shows the architecture of a 4 × 4 array multiplier for unsigned integer numbers
[HH13]. The N2 partial products, obtained by AND gates, are summed up with N − 1 stages
of N -bit adders, resulting in a 2N -bit output.

Two’s Complement Multiplication For signed multiplication with two’s complement
numbers, some adjustments have to be made in the partial product scheme and the unsigned
architecture:

1. If the multiplicand a is negative, sign extension has to be carried for every partial
product. This is done by copying the MSB of every partial product to the positions
N − 1 < n < 2N .

2. If the multiplier b is negative, the last partial product has to be two’s complemented and
sign extended. The two’s complement encoding can be achieved by negating the bits of
the partial product and adding a 12 to the carry in the lowest position.

3. Possible overflow at positions n ≥ 2N is discarded.

These adjustments, especially the sign extension, can be simplified using a two’s complement
trick which is described in [EL04]. This simplification leads to a reduced partial product scheme,
displayed in figure 2.10, which realizes all of the above mentioned adjustments [EL04, DBS06].
Figure 2.11 shows the architecture of a 4-bit two’s complement multiplier that implements the
adapted partial product scheme. All differences to the unsigned scheme and architecture are
displayed in red. The negated partial product bits are implemented with NAND gates instead
of ANDs, and the adder in the top row at position n = 4 is now a full adder which takes the
additional 12 as input. The 12 in the bottom row would require another half adder at position
n = 7 to add up with the carry from n = 6. Since the carry output in position n = 7 is not
required, this additional half adder can be simplified with a NOT gate [Pir96].
Note that the here presented array multiplier with ripple-carry adder stages is only one of
various multiplier architectures that can be found in the literature [Pir96, EL04, DBS06].

a3 a2 a1 a0
× b3 b2 b1 b0

1 a3b0 a2b0 a1b0 a0b0
a3b1 a2b1 a1b1 a0b1

a3b2 a2b2 a1b2 a0b2
+ 1 a3b3 a2b3 a1b3 a0b3

p7 p6 p5 p4 p3 p2 p1 p0

Figure 2.10.: Partial products for the multiplication of two operands a and b in two’s com-
plement. Both a and b can be either positive or negative.
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FA FA FA HA

a3 b0 a2 b0 a1 b0 a0 b0

a3 b1 a2 b1 a1 b1 a0 b1

FA FA FA HA

a3 b2 a2 b2 a1 b2 a0 b2

FA FA FA HA

a3 b3 a2 b3 a1 b3 a0 b3

p0p1p2p3p4p5p6

1

p7

Figure 2.11.: Architecture of a 4-bit two’s complement integer array multiplier.

2.1.3. Division

Comparable to the previously discussed operations addition, subtraction and multiplication,
the concept of division for binary numbers can be derived from decimal division. The general
approach for the division of two integers can be stated as

a ÷ b = a

b
= q + r

b
(2.5)

with the dividend a divided by the divisor b. The result can be written as the combination of
the integer quotient q and the remainder r, which displays the fractional part of the result, if
existing. In figure 2.12a the approach of decimal division is shown with an example. The digits
of the dividend a = 7369 are divided by the divisor b = 5 separately, starting with the leftmost
digit a3 = 7. The quotient of the first division q3 = 1 is written to the result. The remainder
is obtained by a3 − q3b = 2. Then the next digit a2 is pulled down right to the remainder.

7369 ÷ 5 = 1473 + 4
5

−5
23

−20
36

−35
19

−15
4

(a) decimal division

1101 ÷ 0010 = 0110 + 0001
0010

−0
11

−10
10

−10
01

− 0
1

(b) binary division

Figure 2.12.: Concepts for decimal and binary division.
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This new number is again divided by b, resulting in the next quotient digit q2. This process is
repeated until the last digit a0 was used. The remainder of this last iteration is the remainder
r of the final result.
For binary division, a similar approach can be used. The only difference is that the quotient
bits are not obtained by dividing the current remainder by b, but by a comparison. Figure
2.12b shows an example using two 4-bit unsigned integer values. Again, the bits of the dividend
a = 1101 are processed separately, starting with the MSB a3. Since a3 < b, the first quotient
bit is q3 = 0. The remainder is again obtained by a3 − q3b, then the next bit a2 is pulled down
to the right of the remainder. This new value is now greater than b, leading to q2 = 1. The
process is continued until the last quotient bit q0 is obtained. A generalization of this binary
division process can be formulated with the following algorithm [HH13].

Division Algorithm The division a ÷ b for two N -bit integer numbers a and b can be
described with the following iterative algorithm, requiring N iteration steps which are counted
downwards by the iteration index i = N − 1 . . . 0. The partial remainder r′ is initialized with
zero: r′(N − 1) = 010 = 00 . . . 002. After initialization, the following steps are executed per
iteration. Note that the round bracket notation r′(i) indicates the (binary) value of r′ for the
current iteration i, whereas the lower case index notation qi represents the i-th bit of the value
q. The application of the division algorithm for the values used in the previous example from
figure 2.12b is shown in table 2.4.

1. The remainder of the current iteration r(i) is obtained by shifting r′(i) left by one position
and appending the bit ai to the right as the new LSB.

r(i) = [r′(i) << 1, ai] (2.6)

2. The value of b is subtracted from the current remainder r(i), using binary subtraction,
and stored as the difference d(i).

d(i) = r(i) − b (2.7)

3. The quotient bit qi is obtained by negating the MSB of the difference d(i), which is
encoded as two’s complement value.

qi = dN−1(i) (2.8)

4. Finally, the partial remainder for the next iteration r′(i − 1) is set, depending on the
current quotient bit.

r′(i − 1) =
r(i) if qi = 0

d(i) if qi = 1
(2.9)

After the last iteration i = 0, the computed partial remainder r′(−1) is the remainder of
the overall result r.
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Table 2.4.: Application of the division algorithm for 4-bit binary division a ÷ b with a = 1101
and b = 0010.

i r′(i) r(i) d(i) qi

3 0000 0001 1111 0
2 0001 0011 0001 1
1 0001 0010 0000 1
0 0000 0001 1111 0

−1 0001

Implementation A possible hardware architecture for a division of two 4-bit integer values
is the array divider shown in figure 2.13. It implements the algorithm described in equations
(2.6)-(2.9) with N = 4 rows, each realizing one iteration i. Every row consists of an N -bit
adder, calculating the difference d(i), and N − 1 multiplexers which compute the next r′(i − 1).
The final stage contains one additional multiplexer (MUX) to obtain the final r. In total,
the array divider consists of N2 full adders, N2 − N + 1 multiplexers, and N NOT gates
[HH13, Pir96]. Similar to multiplication, many approaches for implementing division can be
used. One stage of the presented array divider can, for example, be used together with a
register file to implement a sequential divider, calculating one quotient bit per clock cycle.
Other architectures for implementing the division operation with quotient and remainder can
be found in the literature [EL04], including approaches considering signed integers [DBS06].

FA FA

MUX
1 0

FA

MUX
1 0

FA

MUX
1 0

FA FA

MUX
1 0

FA

MUX
1 0

FA

MUX
1 0

FA FA

MUX
1 0

FA

MUX
1 0

FA

MUX
1 0

FA

MUX
1 0

FA

MUX
1 0

FA

MUX
1 0

FA

MUX
1 0

0 b3 0 b2 0 b1 a3 b0

1

b3 b2 b1 a2 b0

1

b3 b2 b1 a1 b0

1

b3 b2 b1 a0 b0

1

q3

q2

q1

q0

r3 r2 r1 r0

Figure 2.13.: Architecture of a 4-bit integer array divider.
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2.2. Fixed Point Formats

The natural numbers N and integers Z can be considered as subsets to the rational numbers
Q = {x | x = p

q
with p, q ∈ Z and q ̸= 0} [BSMM08]. The rationals include all numbers with an

integer and a fractional part that can be expressed as the quotient of two integers. In decimal
representation, rational numbers are encoded with digits for the integer and the fractional part,
separated by a separator sign, usually a dot, called decimal or radix point. The digits right to
the separator are weighted with negative exponents as defined in equation (2.1) and shown in
figure 2.1.
For binary encoded rationals, again the same positional approach can be used. The integer
part of the number is represented with N bits, followed by the fractional part with M bits. In
between is the implicit radix or binary point at a fixed position, leading to the formats name:
FxD. The formula for positional notation (2.1) can be adapted for fixed point numbers [EL04]:

vFxD =
N−1∑

n=−M

bn2n (2.10)

The integer bits n = 0 . . . N − 1 are interpreted with positive powers of 2, the fractional bits
n = −M. . . − 1 are multiplied with negative powers of 2. The radix point is located between
the bits b0 and b−1. In the following equation an example is given for an 8-bit unsigned fixed
point number with N = M = 4:

1001.11012 = 23 + 20 + 2−1 + 2−2 + 2−4 = 9.812510 (2.11)

Signed fixed point values can be encoded with the two’s complement scheme in the same way
as integers (see section 2.1). Table 2.5 shows the minimum and maximum values for a given
unsigned and two’s complement fixed point configuration.
The radix point in the binary value in equation (2.11) is shown for clarification, in a digital
implementation the separator position is not encoded in a FxD value. Therefore the applied
format has to be noted in the system documentation. The Q-format QN.M is sometimes used as
a declaration of the applied fixed point format to specify the number of integer and fractional
bits, respectively [Obe07]. According to this notation, the example value from equation (2.11)
is formatted as Q4.4 and could also be written as 1001.1101Q4.4 or 10011101Q4.4, respectively.
In addition to the position of the radix point, it has to be declared or documented whether the
applied Q-format is used as unsigned or two’s complement encoding and if the respective sign
bit is included in the number of integer bits N [PU20].

Table 2.5.: Minimum and maximum values for unsigned and signed fixed point formats with
N integer and M fraction bits.

encoding min value max value
decimal binary decimal binary

unsigned 0 00 . . . 0 2N − 2−M 11 . . . 1
two’s complement −2N−1 10 . . . 0 2N−1 − 2−M 01 . . . 1
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2.2.1. Basic Arithmetic

Since fixed point numbers are based on the same positional approach as binary integers, the
basic arithmetic operations addition, subtraction, multiplication and division can be carried out
with the same approaches that were discussed for integer values in sections 2.1.1-2.1.3. However,
because some bits of a fixed point value are interpreted with negative powers instead of positive
ones, the operations have to keep track of the radix point. For addition and subtraction, the
only condition is that the fractional parts of the inputs are aligned, leading to the same fraction
width in the result. For multiplication, the number of fractional bits in the result is the sum
of the fraction widths of both inputs. The same holds for the integer part. For division, the
number of fraction bits in the result is the dividend fraction width subtracted by the divisor
fraction width. The number of integer bits in the result is the width of the dividends integer
part subtracted by the fraction width of the divisor [PU20].
Figure 2.14 shows an exemplary subtraction of two 8-bit numbers, interpreted as integers and
fixed point values in Q4.4 format. Concerning hardware implementation, integer and FxD
numbers can share the same architectures for arithmetic operations. The arithmetic logic
unit (ALU) within a processor, for example, can be used for both integer and fixed point
operations. The radix point location for fixed point operations can be tracked in software.

00101101
+ 11001011

1111
11111000

(a) binary

45
+ −53

−8
(b) integer

2.8125
+ −3.3125

−0.5000
(c) Q4.4

Figure 2.14.: Subtraction of two 8-bit binary numbers using two’s complement encoding,
interpreted as integers and fixed point values in Q4.4 format.

2.2.2. Iterative Approaches

The algorithms for the basic arithmetic operations discussed so far have a deterministic
computing time and they produce guaranteed accurate results, except for rounding errors
and precision limitations. Another group of algorithms that can be used to compute certain
arithmetic operations and functions are approaches which approximate the result within
multiple iterations, starting from an initial value. One of these algorithms is the Newton-
Raphson method, which can be used to compute the reciprocal of a number, the square root
or the reciprocal square root [EL04]. Other prominent examples are the Goldschmidt division
algorithm and the Coordinate Rotation Digital Computer (CORDIC) algorithm to compute
trigonometric functions [DBS06].
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Newton-Raphson Algorithm The Newton-Raphson method is a general approach to
determine the root of a function f(x) by using the first derivative f ′(x). With the iterative
algorithm

x(i + 1) = x(i) − f(x(i))
f ′(x(i)) (2.12)

and a suitable start value x(0), as well as a sufficient number of iterations i, the root can be
approximated [EL04]. In order to use this approach to calculate the reciprocal of a value b,
for example to realize a division as a multiplication of the dividend with the reciprocal of the
divisor b, the corresponding function can be defined as f(x) = 1

x
− b with f ′(x) = − 1

x2 . This
leads to the iterative algorithm

x(i + 1) = x(i) (2 − bx(i)) (2.13)

which approximates x(i + 1) = 1
b

for a sufficient number of iterations [AOS09]. Table 2.6 shows
the application of the Newton-Raphson method to calculate the reciprocal of b = 7 using a
Q4.8 fixed point format with a start value x(0) = 0.25.
The convergence of the Newton-Raphson method is quadratic. Mathematically spoken,
ϵ(i + 1) = ϵ(i)2 with the relative error of the current iteration ϵ(i) = 1 − bx(i) for the re-
ciprocal method. In order to guarantee convergence, this leads to the following condition for
the start value x(0) [EL04]:

|ϵ(0)| = |1 − bx(0)| < 1 (2.14)

In general, the Newton-Raphson method can be used to find the root of any function f(x).
In addition to the reciprocal, another prominent use case in the context of implementing
arithmetic functions is the square root (sqrt) function, or reciprocal square root, respectively.
For the square root

√
s = s1/2, the function f(x) is set to f(x) = x2 − s with f ′(x) = 2x,

leading to the update equation

x(i + 1) = 1
2

(
x(i) + s

x(i)

)
(2.15)

which approximates x(i + 1) =
√

s by using a division operation in every iteration. In order
to avoid the division, the reciprocal square root 1√

s
can be calculated with f(x) = 1

x2 − s and
f ′(x) = − 2

x3 , leading to

x(i + 1) = x(i)
2

(
3 − sx(i)2

)
. (2.16)

Table 2.6.: Application of the Newton-Raphson algorithm to calculate the reciprocal of b = 7
1
b

= 1
7 = 0.142857 . . . using the Q4.8 format.

i 0 1 2 3 4 5
x(i) 0.25000000 0.06250000 0.09765625 0.12890625 0.14062500 0.14453125
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The result x(i + 1) = 1√
s

can be multiplied with s to obtain
√

s. According to the convergence
criteria for the reciprocal method described above, the convergence of the Newton-Raphson
method for square root and reciprocal square root can be achieved as follows:∣∣∣∣∣1 − x(0)2

s

∣∣∣∣∣ < 1 (2.17)∣∣∣1 − sx(0)2
∣∣∣ < 1 (2.18)

Possible architectures to implement the Newton-Raphson method for division or (reciprocal)
square root can be found in [EL04] and [AOS09].

Goldschmidt Algorithm The Goldschmidt algorithm is an alternative approach to Newton-
Raphson for calculating the result of a division q = a

b
. Here both the dividend a and the divisor

b are iteratively multiplied with a factor γ(i) reading as

q = a

b

∏N
i=0 γ(i)∏N
i=0 γ(i)

(2.19)

until b
∏N

i=0 γ(i) ≈ 1 and a
∏N

i=0 γ(i) ≈ q. The update equations of the iterative algorithm can
be written as

γ(i + 1) = 2 − b(i)
a(i + 1) = a(i)γ(i + 1) = a(i)(2 − b(i))
b(i + 1) = b(i)γ(i + 1) = b(i)(2 − b(i))

(2.20)

with the initial values a(0) = a and b(0) = b. To ensure convergence, the inputs have to
be normalized in order to fulfill 0 < b < 1 [DBS06]. Table 2.7 shows the application of the
Goldschmidt division a

b
= 0.3

0.7 using a Q4.8 fixed point format. Note that a = 0.3 and b = 0.7
can not be represented exactly with the Q4.8 format. The Q4.8 equivalents are given as start
values for i = 0 in Table 2.7.
Similar to Newton-Raphson, the Goldschmidt algorithm can also be modified in order to
calculate the (reciprocal) square root. Details, along with possible hardware architectures for
both division and square root can be found in [EL04] and [AOS09].

CORDIC Algorithm Different from Newton-Raphson or Goldschmidt, which require addi-
tion/subtraction and multiplication operations, the CORDIC algorithm is based on shift and
addition/subtraction operations only. Originally developed to compute trigonometric functions,

Table 2.7.: Application of the Goldschmidt algorithm to calculate the division a
b

= 0.3
0.7 =

0.428571 . . . using the Q4.8 format.

i 0 1 2 3
a(i) 0.30078125 0.39062500 0.42578125 0.42968750
b(i) 0.69921875 0.91015625 0.99218750 1.00000000
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the algorithm can be configured in six different operation modes to also compute multiplication,
division and hyperbolic functions [Beu08]. The unified CORDIC algorithm can be written as

x(i + 1) = x(i) − m σ(i) y(i) 2−δ(i)

y(i + 1) = y(i) + σ(i) x(i) 2−δ(i) (2.21)
z(i + 1) = z(i) − σ(i) θ(i)

with the hyperbolic, linear and cyclic operation modes m ∈ {−1, 0, 1} and the rotation and
vectoring option controlled by the parameter t ∈ {0, 1}. The iteration series δ(i), the sign σ(i)
and the angle θ(i) can be written as follows [Bär18]:

δ(i) =
i with i ∈ {0, 1, ..., N − 1} if m ≥ 0

i − k with 3k+1 + 2k − 1 ≤ 2i and i ∈ {1, 2, ..., N} if m = −1
(2.22)

σ(i) =
sgn(z(i)) if t = 0

−sgn(y(i)) if t = 1
(2.23)

θ(i) =


2−i if m = 0
arctan

(
2−δ(i)

)
if m = 1

artanh
(
2−δ(i)

)
if m = −1

(2.24)

The final result of a CORDIC computation has to be multiplied with a scale factor

K =


1 if m = 0
0.6072529 if m = 1
1.2074971 if m = −1

(2.25)

which depends on the operation mode. Additionally, CORDIC computations are subject to
certain convergence criteria, which are summarized in table 2.8.
A detailed derivation of the unified CORDIC equations, the scale factors and convergence
criteria, as well as possible hardware implementations can be found in the original work [Wal71],
summarized in German in [Beu08] or English in [Bär18], respectively. Table 2.9 shows the

Table 2.8.: Convergence criteria of the CORDIC algorithm for the different operation modes.

vectoring (t = 1) rotation (t = 0)

linear (m = 0) y(0)
x(0) ≤ 2 z(0) ≤ 2

cyclic (m = 1) arctan
(

y(0)
x(0)

)
≤ 1.743 z(0) ≤ 1.743

hyperbolic (m = −1) arctanh
(

y(1)
x(1)

)
≤ 1.118 z(1) ≤ 1.118
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different functions realized with the CORDIC algorithm in its different operations modes,
controlled by the parameters m and t. Note that the hyperbolic mode m = −1 starts with
an iteration index i = 1 and the start values are x(1), y(1) and z(1), respectively. Table 2.10
shows the application of the CORDIC algorithm in cyclic rotation mode to calculate the sin()
and cos() functions using a Q4.8 fixed point format. The results computed by the CORDIC in
cyclic mode are 1

K
sin() and 1

K
cos(), respectively. The final results have to be multiplied with

the scale factor K from equation (2.25).

Table 2.9.: Computable functions with the CORDIC algorithm for the different operation
modes [Bär18].

vectoring (t = 1) rotation (t = 0)

linear x(N) = x(0) x(N) = x(0)

(m = 0) z(N) = z(0) + y(0)
x(0) y(N) = y(0) + x(0) z(0)

cyclic x(N) =
√

x(0)2 + y(0)2 x(N) = x(0) cos(z(0)) − y(0) sin(z(0))

(m = 1) z(N) = z(0) + arctan
(

y(0)
x(0)

)
y(N) = y(0) cos(z(0)) + x(0) sin(z(0))

hyperbolic x(N) =
√

x(1)2 − y(1)2 x(N) = x(1) cosh(z(1)) + y(1) sinh(z(1))

(m = −1) z(N) = z(1) + artanh
(

y(1)
x(1)

)
y(N) = y(1) cosh(z(1)) + x(1) sinh(z(1))

Table 2.10.: Application of the CORDIC algorithm in cyclic rotation mode to calculate
x(N) = 1

K
cos(0.5) = 1.4451 . . . and y(N) = 1

K
sin(0.5) = 0.7894 . . . using the

Q4.8 format.

i 0 1 2 3 4
x(i) 1.00000000 1.00000000 1.50000000 1.37500000 1.48437500
y(i) 0.00000000 1.00000000 0.50000000 0.87500000 0.70312500
z(i) 0.50000000 −0.28515625 0.17968750 −0.06640625 0.05859375

i 5 6 7 8 9
x(i) 1.44140625 1.46484375 1.45312500 1.44531250 1.44140625
y(i) 0.79687500 0.75000000 0.77343750 0.78515625 0.78906250
z(i) −0.00390625 0.02734375 0.01171875 0.00390625 0.00000000



2.3. Floating Point Formats 25

2.3. Floating Point Formats

The real numbers R are a superset to the so far discussed natural numbers N, integers Z and
rationals Q [BSMM08], represented with integer and fixed point formats, respectively. The
floating point (FP) format is often referred to as the digital representation of real numbers,
even though one of the properties of the reals is to be an infinite set [BSMM08], which can
never be fulfilled with the implementation of finite precision. Floating point numbers can
therefore be considered as a finite subset of the real numbers R [EL04].
As the name indicates, and in contrast to fixed point formats, floating point numbers are not
limited to a fixed position of the radix point. Instead of a positional encoding, numbers are
encoded in scientific notation with a significant or mantissa m, a radix or base B, and an
exponent e [MBdD+18, HH13]:

± m × Be (2.26)

In a digital system, the implementation of floating point numbers can be realized in many
ways, i.e. with different bitwidths for exponent and mantissa, different exception cases, etc.
In fact, the first computers with floating point arithmetic showed various versions of the
format [MBdD+18, Kah81]. In order to standardize a floating point format which leads to
comparable results on different computers, in 1985 the Institute of Electrical and Electronics
Engineers (IEEE) published the "IEEE 754 Standard for Binary Floating Point Arithmetic"
[IEEE85]. The encoding defined in this standard with its two revisions from 2008 [IEEE08]
and 2019 [IEEE19] is still the most commonly used state-of-the-art encoding for floating point
numbers and will be discussed in detail in the following section.

2.3.1. IEEE 754 Floats

The IEEE 754 Standard specifies formats for decimal and binary encoding of floating point data
in order to guarantee identical results independent from the implementation, and whether it is
done in software or hardware. On top of the encoding, also conversion and arithmetic operations
are specified, as well as rounding behavior and exception case handling. In the following, the
binary floating point encoding from the recent 2019 revision of IEEE 754 Standard is discussed
[IEEE19]. Additional explanations are taken from [MBdD+18], [HH13] and [Bär18].
According to IEEE 754, a binary floating point value is encoded with three different fields,
namely the sign bit S, the w bit biased exponent E, and the t bit mantissa, here called trailing
significant T . The encoding is shown in Figure 2.15, both E and T are interpreted as unsigned

S
(sign)
1 bit

E
(biased exponent)

w bits

T
(trailing significant)

t bits

MSB LSB

Figure 2.15.: Encoding of binary floating point value according to IEEE 754 [IEEE19].
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integers. The bits from the biased exponent field E are assumed to represent the true exponent
of the floating point number e from Equation (2.26) added to a bias, reading as

E = e + bias (2.27)

with the bias representing the maximum exponent value emax for a given exponent size w

bias = emax = 2w−1 − 1 . (2.28)

The true exponent e is calculated as

e =
E − bias if E > 010

1 − bias otherwise .
(2.29)

If E > 010 the encoded value is considered a normal float, and a subnormal float for E = 010.
This affects the representation of the mantissa m from Equation (2.26), encoded by the trailing
significant T . For both cases the value of T is normalized by 2t to represent a number < 110.
If E > 010 (normal float), a 110 is added to shift the mantissa value to 1 ≤ m < 2. This extra
110 is sometimes referred to as the hidden bit h, which has the binary value 12 for the normal
case and 02 for subnormals. With this definition, the trailing significant or mantissa can be
interpreted as follows:

m = h + T

2t
=
1 + T

2t if E > 010 (normal)
0 + T

2t if E = 010 (subnormal)
(2.30)

Special Values The IEEE 745 Standard describes the encoding of three kinds of special
values, namely zero, infinity and Not a Number (NaN). The first two can occur as both positive
and negative, NaN is distinguished between quiet and signaling NaN. A zero is encoded with
E = 010 and T = 010. For infinity E = 2w − 1, meaning that all bits of the biased exponent are
set to 12, and T = 010. A NaN is represented by E = 2w − 1 and T ̸= 010. If the first (leftmost)
bit of T is a 12, the NaN is quiet (qNaN), otherwise it is signaling (sNaN).

With these definitions, the general case description to obtain the value vF P of a binary encoded
floating point number according to IEEE 754 can be written as follows:

vF P = (−1)S ×



0 if E = 010 and T = 010

22−2w−1 × (0 + T
2t ) if E = 010 and T > 010

2E+1−2w−1 × (1 + T
2t ) if 1 ≤ E ≤ 2w − 2

∞ if E = 2w − 1 and T = 010

qNaN if E = 2w − 1 and T ̸= 010 with TMSB = 12

sNaN if E = 2w − 1 and T ̸= 010 with TMSB = 02

(2.31)

Precision The precision of a floating point number p = 1 + t is defined by the number
of bits in the significant, including the hidden bit. In order to provide different precision for
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Table 2.11.: Parameter of the binary floating point encoding according to IEEE 754 [IEEE19].

name binary16 binary32 binary64 binary128
(half) (single) (double) (quad)

total bits 16 32 64 128
exponent bits w 5 8 11 15
significant bits t 10 23 52 112
precision p 11 24 52 113
bias 15 127 1023 16383

different applications, the IEEE 754 specifies four different binary floating point formats with
a total bitwidth of 16, 32, 64 and 128, respectively. The original version from 1985 includes
the 32 bit format as single and the 64 bit format as double precision. In the later version also
16 and 128 bit formats were specified, sometimes called half and quad or quadruple precision.
Table 2.11 lists the four different formats with the respective exponent and significant bitwidths,
precision and the bias values.

Rounding When the value to be encoded or the result of an arithmetic operation requires
more precision than available in the current format, the value is to be rounded and the inexact
exception has to be signaled. The standard specifies one default and three user-selectable
directed rounding attributes mandatory for any IEEE 754 compliant implementation:

• roundTiesToEven (default): "[...] the floating-point number nearest to the infinitely
precise result shall be delivered; if the two nearest floating-point numbers bracketing
an unrepresentable infinitely precise result are equally near, the one with an even least
significant digit shall be delivered; if that is not possible, the one larger in magnitude
shall be delivered [...]" [IEEE19].

• roundTowardPositive: The next greater floating point value closest to the infinitely
precise result shall be delivered. +∞ is a possible result of this operation.

• roundTowardNegative: The next lower floating point value closest to the infinitely precise
result shall be delivered. −∞ is a possible result of this operation.

• roundTowardZero: The floating point value closest to the infinitely precise result and
with no greater magnitude shall be delivered.

Over- & Underflow When the magnitude of a result with unbounded exponent range is
greater than the largest number within the destination floating point format and is rounded
according to the current rounding mode, an overflow has to be signaled. This means that not only
returned ±∞ values can produce overflow. If, for example, the unbounded exponent range result
is larger than the formats largest value but is rounded to this value via roundTowardNegative
or roundTowardZero, this is also considered as an (positive) overflow [IEEE19, MBdD+18].
The same holds for negative overflows.
For underflow, a similar definition is given [IEEE19]: An exception is signaled when a non-zero
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result with unbounded exponent range lies strictly between ±2emin with emin = 1 − emax and is
rounded according to the applied rounding mode. The standard also contains a second, slightly
different definition which leads to different results only in a very few cases. This is discussed in
[MBdD+18].

2.3.2. Floating Point Arithmetic

The IEEE 754 Standard specifies various operations to manipulate floating point numbers and
defines which operations are mandatory for an IEEE 754 compliant implementations of floats.
Some of these operations are listed in the following (non-exhaustive list):

• Conversion operations to and from integer and between different floating point formats.

• Comparison operations less than, equal, greater than and unordered.

• Mandatory arithmetic operations addition, subtraction, multiplication, fused multiply-
add (FMA), division and square root, all with correct rounding.

• Recommended arithmetic operations/functions like exp(x), log(x), hypot(x), xy, sin(x),
cos(x), tan(x), ...

The Standard only names the operations and specifies the required behavior, not the actual
implementation. Possible algorithms, as well as software and hardware implementations
for the different arithmetic operations can be found in textbooks like [EL04], [DBS06] or
[MBdD+18]. Note that the iterative algorithms from section 2.2.2 like Newton-Raphson
or Goldschmidt can also be used with floats [MBdD+18]. In the following, the algorithms
and possible implementations for floating point addition/subtraction and multiplication are
discussed further.

2.3.3. Addition/Subtraction

Since floating point number representation is based on scientific notation, the methods for
performing arithmetic operations with floats can be derived accordingly. Let x = 3.125 × 102

and y = 1.850 × 104 be two numbers in scientific/decimal floating point representation. In
order to perform the addition z = x + y, the exponents of both numbers have to be aligned,
before the mantissas can be added. In the given example, the radix point in x has to be shifted
left by two positions to align the exponent, then the addition can be performed:

0.03125 × 104

+ 1.85000 × 104

1.88125 × 104

(2.32)

A similar approach is used for binary floats. The general algorithm for addition and subtraction
is discussed in the following [EL04, MBdD+18].

Algorithm Let x and y be the two operands formatted as binary floating point values
(Sx, Ex, Tx) and (Sy, Ey, Ty), respectively. The result of the addition/subtraction operation
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z = x ± y is formatted accordingly as (Sz, Ez, Tz). Note that during the following steps, the
significants are considered including the respective hidden bit in all performed operations,
including shifts.

1. Exponent Comparison: In a first step the exponents of both operands are compared.
If Ex < Ey the operands x and y are swapped to ensure Ex ≥ Ey. The output exponent
is set to be Ez = Ex.

2. Significant Alignment: The significant of the operand with smaller exponent y is
aligned by shifting Ty right by the exponent difference Ex − Ey.

3. Significant Addition/Subtraction: The significants Tx and Ty are added/subtracted,
according to their respective signs Sx and Sy. This signed addition determines the
significant Tz and sign Sz of the result.

4. Normalization: During the signed addition in the previous step it can happen that
either (a) a carry out is produced in the MSB or (b) the result contains leading zeros
due to subtraction. In both cases the result has to be adjusted by either (a) shifting Tz

right by one position and incrementing Ez by one, or (b) shifting Tz left by the number
of leading zeros and decrementing Ez accordingly.

5. Rounding: Due to the possible shifts in the alignment and normalization steps the
result significant Tz might be subject to rounding according to the specified rounding
mode. In order to guarantee a correct rounding, the intermediate resulting significant Tz

is computed with three extra bits right to the LSB, two guard bits, sometimes separated
into guard and round bit, and a sticky bit.

• The (first) guard bit is used to store the LSB shifted out during the normalization
step when a carry out is produced during addition.

• The round bit is required if a subtraction is performed and the exponents of both
operands differ by more than 110. In this case a left shift by one position can be
necessary to normalize the result. Then the guard bit becomes the LSB and the
round bit becomes the guard bit.

• The sticky bit is used whenever bits are shifted out to the right, mostly during the
alignment step. It contains the result of an OR operation of all shifted out bits.

These three bits are used to apply the selected rounding mode (see section 2.3.1). More
details can be found in [EL04], [MBdD+18], [DBS06] and [Gol91].

6. Exceptions: During the operation, five different exceptions might be detected:
• An overflow occurs in the normalization step (a) if the exponent to be incremented

Ez is already at its maximum value.
• During case (b) an underflow can occur when Ez is too small to be decremented by

the number of leading zeros.
• When the result of the significant addition is zero, the resulting exponent has to be

set to Ez = 0.
• The result is inexact if rounding is applied.
• If one or both operands are NaN, the output is also set to NaN.
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Implementation A hardware implementation of a floating point adder realizes the steps of
the algorithm discussed above. It consists of five main blocks:

• The exponent comparison which computes the difference of the two operand exponents
with a subtractor.

• The significant alignment that utilizes a shifter according to the exponent difference.
• The significant addition/subtraction whose main component is a signed adder.
• The normalization which is composed of a leading zero or leading one detector and a

shifter.
• The rounding block with an adder and combinatorial logic for evaluating the guard bits.

On top of these blocks, the exception cases have to be detected and processed. Different
possible implementation schemes for floating point adders can be found in figures 2.16 and 2.17,
[EL04], [MBdD+18] and [DBS06], respectively. The main conceptional difference is between
the so-called single-path and dual-path architecture. The single-path approach, depicted in
figure 2.16, performs the above discussed algorithm in a straight forward way including the
two shift operations for alignment and normalization in one path. However, it can never
happen that large shifts in both directions are required within one operation: For exponent
differences ≤ 1 the required right shift during the alignment is maximum one position, while

−

Ex

w

Ey

w

swap

Tx

p

Ty

p

>>

sticky bit gen.

2p + 2

set exponent

±

Sx Sy

p p + 3

normalization

p + 4w

rounding

w p

Sz Ez Tz

Figure 2.16.: Architecture of a single-path floating point adder/subtractor without exception
case handling.
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the left shift during the normalization can be larger. This is called the close path. For the
far path with exponent differences > 1, on the other hand, the alignment right shift can be
large, but the normalization left shift is again maximum one position. By separating these two
paths with the dual-path design, shown in figure 2.17, the critical path delay can be improved
[EL04, MBdD+18].

close far

−

Ex

w

Ey

w

swap

Tx

p

Ty

p

set exponent

>>

sticky bit gen.

2p + 2

±

Sx Sy

p p + 3

prenorm.

p + 4w

>> 1

−

Sx Sy

p + 1p

LZC

<<

p + 1

−

w

close far

Sz Ez TzSz Ez Tz

normalization

rounding

w p

Sz Ez Tz

Figure 2.17.: Architecture of a dual-path floating point adder/subtractor without exception
case handling [MBdD+18].
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2.3.4. Multiplication

Multiplication of two floating point numbers is less complicated than addition. Considering
again two numbers x = 3.125 × 102 and y = 1.850 × 104 in scientific notation, their product
z = x × y can be computed by simply multiplying the mantissas and adding the exponents:(

3.125 × 102
)

×
(
1.850 × 104

)
= (3.125 × 1.850) × 102+4 = 5.78125 × 106 (2.33)

For binary floats this approach is followed straight forward. In the following the general
algorithm for multiplication is discussed [EL04, MBdD+18].

Algorithm Let x and y be the two operands formatted as binary floating point values
(Sx, Ex, Tx) and (Sy, Ey, Ty), respectively. The result of the multiplication operation z = x × y

is formatted accordingly as (Sz, Ez, Tz). Note that during the following steps, the significants
are considered including the respective hidden bit in all performed operations.

1. Significant Multiplication: The two significants Tx and Ty are multiplied, resulting in
a product with doubled bitwidth 2p. The lower half of the result is reduced to a guard
bit and a sticky bit combining all discarded bits with an OR operation.

2. Exponent Addition: The two biased operand exponents Ex and Ey are added and the
bias (equation (2.28)) is subtracted to obtain the resulting exponent: Ez = Ex +Ey −bias.

3. Sign: The output sign is obtained by an XOR operation of the operand signs:
Sz = Sx XOR Sy.

4. Normalization: The multiplication of the significants might produce a result 2 ≤ Tz < 4
because the operand significants are between 110 and 210. In this case the output has to
be normalized by shifting the significant Tz right by one position and incrementing the
exponent Ez by 110. The LSB of Tz becomes the guard bit and the sticky bit needs to be
recomputed by an OR of the previous sticky and guard bit.

5. Rounding: Similar to addition/subtraction, rounding is performed according to the
specified rounding method (section 2.3.1) based on the to guard and sticky bit.

6. Exceptions: During the operation, five different exceptions might be detected:

• An overflow may occur if the resulting exponent is too large to represent after the
exponent addition.

• An underflow may occur if the resulting exponent is too small to represent after the
exponent addition, due to the included bias subtraction.

• The output is set to zero if at least one of the operands is zero.

• The result is inexact if rounding is applied.

• The result is NaN if one or both operands are NaN, or if the operands are zero and
infinity.
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A special case that is not considered in the presented algorithm is the multiplication of
subnormal floats with E = 0. If one or both operands are subnormal they either have to be
normalized before multiplication, which might require an internal extension of the exponent
size, or the result of the significant multiplication has to be normalized with left shifts. This is
discussed in detail in [MBdD+18].

Implementation A hardware implementation of a floating point multiplier realizes the
steps of the algorithm discussed above. It consists of five main blocks:

• The exponent addition which utilizes an adders and a subtractor.

• The significant multiplication which is composed of an p × p multiplier.

• The sign computation which uses a single XOR gate.

• The normalization that consists of a one bit right shifter and an incrementer.

• The rounding block with an adder and combinatorial logic for evaluating the guard and
sticky bit.

On top of these blocks, the exception cases have to be detected and processed. Despite the
straight forward implementation, which is discussed here and depicted in figure 2.18, various
alternative approaches exists. Since the critical path delay is set by the significant multiplier,
the most prominent approach is to implement a carry-save multiplier to reduce the latency of
the overall design [EL04, MBdD+18, DBS06].

Sx Sy

+

Ex

w

Ey

w

−

bias

w

×

Tx

p

Ty

p

2p

sticky bit gen.

p + 2

normalization

rounding

w p

Sz Ez Tz

Figure 2.18.: Architecture of a floating point multiplier without subnormal and exception
case handling.
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2.3.5. Alternative Floating Point Formats

The IEEE 754 standard was released in 1985 in order to harmonize the various existing
floating point formats and to ensure compatibility and portability between different systems.
During that time, the standard served its purpose well, whereas nowadays the demands
for more flexibility and application specificity increase (again). Two strong drivers of this
trend are neural networks (NNs) with demands for low computational complexity and power
consumption [Joh18], as well as high-performance computing (HPC) where data movement
and memory bandwidth are identified as the system bottlenecks [LLH18]. Both applications
require datatypes different from the IEEE standard, either in terms of bitwidth, dynamic range
or efficiency of arithmetic circuits. Due to the demands of these and other applications, the
ecosystem of floating point datatypes is growing again.
One prominent example is the so-called brain float bfloat16 format from Google, a 16 bit
floating point representation designed for machine learning applications [WK19]. The difference
to the IEEE 16 bit half precision format is the number of exponent and fraction bits. While
half precision consists of 5 exponent and 10 significant bits, bfloat16 has 8 exponent bits like
the IEEE 32 bit single precision datatype, and 7 significant bits. This gives bfloats the same
dynamic range as single precision numbers and simplifies conversions between both formats
while sacrificing some precision.
A similar approach is followed for the DLFloat format developed by IBM, especially for deep
learning (DL) applications [AMF+19]. It can be seen as an intermediate approach between
half precision and bfloat, as it also consists of 16 bit, 6 for the exponent and 9 for the
significant. DLFloats further do not utilize subnormal numbers and combine the NaN and
infinity exception into one bit pattern, which both increases the dynamic range and reduces
the hardware complexity of the corresponding arithmetic circuits.
Another, more disruptive approach is the posit number format which belongs to the unums.
This format will be discussed in detail in section 2.6.2. Posits are a floating point format
consisting of a 2 bit exponent, and two variable length fields: the significant, and a second,
exponent-like scaling factor called regime which enables a tapered accuracy and a higher
dynamic range, compared to IEEE floats [GY17, Pos22]. The encoding of the discussed formats
is shown in figure 2.19. Comparisons of IEEE floats, bfloats, DLFloats, posits and other
intermediate FP formats, especially for machine learning applications, can be found in the
literature, for example [Joh18], [LLH18], [WK19], [AMF+19], [RSL+21] or [DSTH+23].

IEEE16 (subnormals,
5.96 × 10−8 to 6.55 × 104) S E E E E E T T T T T T T T T T

bfloat16 (no subnormals,
1.19 × 10−38 to 3.39 × 1038) S E E E E E E E E T T T T T T T

DLFloat (no subnormals,
4.66 × 10−10 to 8.58 × 109) S E E E E E E T T T T T T T T T

posit16 (no subnormals,
1.39 × 10−17 to 7.21 × 1016) S R . . . R E E T . . . T

Figure 2.19.: Encoding of different 16 bit floating point formats.
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2.4. Application Specific Number Formats

The discussed integer, fixed and (IEEE) floating point number representations can be considered
the standard or classic formats for computer number representation. Apart from these
standard ones, and the already discussed floating point variations, there exists a variety
of other approaches, either for complete, stand-alone number formats, or for those with
intermediate purpose to be used in combination with the standard representations [Par03].
Since these formats are used for dedicated approaches in special applications and are usually not
implemented in general-purpose designs, they can be summarized under the term application
specific, sometimes also called non-conventional number formats. One example for such an
approach are the slash number systems with fixed- or floating-slash, which, in simplified terms,
utilize two separate values for nominator and denominator to represent a number in fractional
form [MK85]. Other approaches, which will be discussed in more detail in the following, are the
carry-save format, the Residue Number System (RNS), the Logarithmic Number System (LNS)
and stochastic computing.

2.4.1. Carry-Save Format

The ripple-carry adder structure discussed in section 2.1.1, as well as the carry-lookahead and
prefix adder, are summarized as carry propagate adders (CPAs) because the carry from the
LSB position has to propagate from right to left to determine the final result. This carry
propagation defines the delay of the respective adder design [HH13]. When more than two
operands have to be added, for example the partial products within a multiplier, a carry-save
adder (CSA) can be used to improve the critical path delay of the design. During this process,
the intermediate results are converted into the carry-save representation which consists of an
N -bit number s to store the sum bits of the result, and a second N -bit number c to store
the carry bits. This carry-save representation with 2N bit can be interpreted as a redundant
number representation, since the result of a three operand addition with N -bit operands could
generally be stored with N + 2 bit [Pir96].
When further operands need to be added, this can be done in a similar manner, using s and c

as operands, and producing another result in carry-save form. Note that c has to be applied
to the addition of positions 1 to N , rather than 0 to N − 1, because the carry of a result
contributes to the next higher position [Par10]. Figure 2.20 shows an N -bit CSA with three
operands x, y and z consisting of N full adders, which produce an N -bit sum s and an N -bit
carry output c. Because the carry bits are saved rather than propagated, the delay of such
a CSA is equal to the delay of only one full adder. For multi-operand additions, multiple

FA

xN−1 yN−1 zN−1

cN sN−1

FA

xN−2 yN−2 zN−2

cN−1 sN−2

. . . FA

x1 y1 z1

c2 s1

FA

x0 y0 z0

c1 s0

Figure 2.20.: Architecture of an N bit carry-save adder [Pir96].



36 Chapter 2. Digital Arithmetic and Number Formats

CSAs with one CPA at the end, required to convert the carry-save formatted result back to
the standard integer representation, can significantly reduce the overall delay. For an array
multiplier, as discussed in section 2.1.2, the critical path delay can be improved by 33.3% when
using a CSA instead of a ripple-carry adder for the partial products [DBS06].

2.4.2. Residue Number System

The Residue Number System (RNS) is based on a rather old approach, derived by a Chinese
mathematician in the first century AD [JSR18]. The general idea is to convert a (large) integer
number x into a set of N small integers {x1, . . . , xN}, which represent the remainders or
residues for a division of x by a set of moduli {m1, . . . , mN}. These remainders are obtained
by the modulo operation:

{x1, . . . , xN} = x mod {m1, . . . , mN} with 0 ≤ xi < mi (2.34)

The moduli {m1, . . . , mN} have to be pairwise coprime, or relatively prime, meaning that the
greatest common divisor of two moduli mi and mj is 1 [BSMM08]. The product of all moduli

M =
N∏

i=1
mi (2.35)

defines the maximum integer value that can be represented uniquely with the defined set of
moduli, leading to 0 ≤ x ≤ M − 1. When applying a complement encoding, also negative
numbers can be represented within the range −M

2 ≤ x ≤ M
2 − 1 for an even M and −M−1

2 ≤
x ≤ M−1

2 for an odd M [Par10, JSR18]. In the negative case, the remainders are obtained as
follows:

xi =
x mod mi if x ≥ 0

mi − |x| mod mi if x < 0
(2.36)

The arithmetic operations addition, subtraction and multiplication can be applied to the remain-
ders directly. For two integer values x and y in residual form {x1, . . . , xN} and {y1, . . . , yN},
the result {z1, . . . , zN} is obtained by

zi = (xi ◦ yi) mod mi (2.37)

where ◦ denotes the respective operation. Other operations like division or comparison, however,
are more complicated with residual numbers [SJJT86].
The (back)conversion from a number in residual form {x1, . . . , xN} to its integer form x can
be done using the Chinese Remainder Theorem (CRT) according to

x =
(

N∑
i=1

m̂i

(
m̂−1

i xi mod mi

))
mod M (2.38)
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with m̂i = M
mi

and m̂−1
i being the multiplicative inverse of m̂i, obtained by solving the following

congruence relation [SJJT86]:

m̂im̂
−1
i ≡ 1 (mod mi) (2.39)

Figure 2.21 shows an example of applying the RNS to two integer numbers, performing an
addition operation in residual form and converting the result back using the CRT.
In terms of hardware implementation, the RNS enables reduced storage size when numbers
are stored in residual form, and speeds up the computation of additions and multiplications,
because the required adder architectures become much smaller, and the operations on the
different moduli can be carried out in parallel [JSR18]. Current applications for RNS are
cryptography [MASC17] and deep learning [RTAF21].

System: {m1, m2, m3} = {3, 5, 7} M = 3 × 5 × 7 = 105

Operands: x = 11 x1 = 11 mod 3 = 2
x2 = 11 mod 5 = 1
x3 = 11 mod 7 = 4

y = 13 y1 = 13 mod 3 = 1
y2 = 13 mod 5 = 3
y3 = 13 mod 7 = 6

Addition: z = x + y z1 = (2 + 1) mod 3 = 0
z2 = (1 + 3) mod 5 = 4
z3 = (4 + 6) mod 7 = 3

Conversion: m̂1 = M

3 = 35 35 m̂−1
1 ≡ 1 (mod 3) ⇒ m̂−1

1 = 2

m̂2 = M

5 = 21 21 m̂−1
2 ≡ 1 (mod 5) ⇒ m̂−1

2 = 1

m̂3 = M

7 = 15 15 m̂−1
3 ≡ 1 (mod 7) ⇒ m̂−1

3 = 1

z =

35 × (2 × 0) mod 3︸ ︷︷ ︸
=0

+ 21 × (1 × 4) mod 5︸ ︷︷ ︸
=4

+ 15 × (1 × 3) mod 7︸ ︷︷ ︸
=3

 mod 105

= (0 + 84 + 45) mod 105

= 24

Figure 2.21.: Example for applying the RNS to two integers x and y, performing the addition
in residual form and converting the result back to integer using the CRT.
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2.4.3. Logarithmic Number System

Another prominent example for a number format is the Logarithmic Number System (LNS),
which was developed during the 1970s as an alternative for the standard floating point format
[CP13]. The approach is to encode numbers by taking their logarithms to a base B, usually
with B = 2 for digital systems. In a logarithmic representation, a number x = ±2Lx is encoded
by a sign bit and the logarithm of its absolute value

Lx = log2(|x|) (2.40)

which is stored as a fixed point value with an integer and fractional part. Since for 0 < x < 1
the logarithm is negative, Lx must either be encoded in two’s complement, or a bias needs to
be added to ensure that Lx is always positive [Par10]. Some implementations also include extra
bits to encode special cases like zero, NaN or infinity [DdD03]. The benefit of representing
numbers by their logarithms is that multiplication and division operations are simplified to
addition and subtraction, respectively:

log2(|x| × |y|) = Lx + Ly

log2(|x| ÷ |y|) = Lx − Ly

(2.41)

The output sign is obtained with an XOR operation of the input signs [Par10]. The downside of
the approach, on the other hand, is that addition and subtraction in logarithmic representation
are more complex:

log2(x + y) = Lx + log2

(
1 + 2Ly−Lx

)
log2(x − y) = Lx + log2

(
1 − 2Ly−Lx

) (2.42)

with |x| ≥ |y|, or Lx > Ly, respectively [DdD03, CP13]. The main challenge for implementing
a LNS is therefore to handle the non-linear function log2

(
1 ± 2d

)
with d = Ly − Lx < 0.

Approaches for this are either the usage of lookup tables (LUTs) [SA75], or the approximation
using Taylor-series [CSK+08]. Another method for implementing addition and subtraction
in LNS architectures is to convert from logarithmic to an internal fixed point format, for
example using Mitchell’s Method [Mit62], or piecewise function approximation [RLP13]. The
operation is then performed with a conventional adder, before the result is converted back to
its logarithmic form.
LNS arithmetic thus can be beneficial for algorithms with a high amount of multiplication
and/or division operations, and when addition and subtraction can be implemented without
performance losses, compared to standard formats [CP13]. Applications for LNS arithmetic
reach from general-purpose processors [CSK+08] and digital signal processing [RLP13] to
current scientific topics like neural networks [ACJ20] and quantum computing [Arn22].
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2.4.4. Stochastic Computing

All the number representations discussed so far are positional systems where every bit encodes
a dedicated value or weight. Most of them are non-redundant or contain only a small amount
of redundancy, which means they are very efficient from an information-per-bit perspective.
However, such an encoding can also have disadvantages, especially when it comes to reliability
and fault-tolerance of a system. One big challenge in this domain are so-called soft errors,
visible as temporarily bit flips, which can be caused by ionized radiation [DM03]. If a fixed
point number is effected by such a single bit flip, a huge numerical error can result if the MSB
or one of the higher order bits is flipped. The same holds for a floating point number when
flipping the sign bit or one of the exponent bits. Common techniques to deal with this problem
are the usage of error-correction codes or the implementation of redundant operation blocks
[QLR+11].
An alternative concept is to use a non-positional and redundant number format to encode
numerical values, where a bit flip in any position introduces only a small numerical error. This
approach is called stochastic computing (SC). Instead of a positional encoding, numbers are
represented as probabilities p of zeros and ones in a bit stream [AH13]. The following equation
shows the encoding of a number x with a random 8-bit stochastic number (SN), where the
probability of ones px encodes the decimal value of x:

x = 0.37510 = 0.011Q1.3 =̂ 01001100|px= 3
8

(2.43)

While a flip of the MSB in the fixed point encoding would lead to a value 1.011Q1.3 = 1.37510
(unsigned) with a numerical error ϵ = 1, flipping any of the bits in the stochastic encoding
would introduce a numerical error of only ϵ = ±1

8 .
Arithmetic operations in this stochastic format can be implemented with simple logic gates. A
multiplication of two probabilities px × py can be realized by an AND operation of the two
stochastic numbers. However, this only holds when the two numbers are uncorrelated [AH13].
Another condition for using SC is that input values might have to be scaled or normalized,
because, since they encode probabilities, stochastic numbers can only represent values in [0, 1]
[AQH18]. Due to this limitation, the implementation of a stochastic adder, realized with
a MUX, shifts the addition results to [0, 1], while they would normally be in [0, 2] [AH13].
Concepts for other arithmetic operations and functions with stochastic numbers, as well as
conversions and the bipolar encoding for representing negative values are discussed in [AH13]
and [AQH18], respectively.
SC provides a high fault tolerance and low-complex arithmetic operations, but, at the same
time, a quite low precision and low latency when implementing the stochastic operations in a
serial manner [QLR+11]. These advantages and limitations define possible applications, which
include neural networks and image and signal processing [AQH18].
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2.5. Interval Arithmetic

Traditional fixed point or floating point arithmetic and all other approaches that implement real
numbers with finite precision single values are subject to rounding, which leads to potentially
incorrect results. For most applications these small inaccuracies can be tolerated as they do not
influence the behavior of the overall system in a critical way. For applications where rounding
error propagation is a critical point, however, as well as for scientific computing, interval
arithmetic (IA) is a way to guarantee correct solutions and to ensure reliable computing. The
general approach is to represent a value x not by a finite precision and potentially rounded
single value, but by an interval X which is composed of two values for the lower and upper
bound and encompasses the actual value of x [Gom09]. Such an interval can be defined as

X = {[x, x] | x, x ∈ R | x ≤ x ≤ x} (2.44)

with the lower bound x and the upper bound x [Rum10]. This notation is compliant to the
IEEE standard for interval arithmetic which specifies IA with IEEE floating point bounds
[IEEE18]. The notation with square brackets [x, x] denotes that the endpoints x and x are
included in the respective interval, whereas round brackets (x, x) exclude them. Combinations
of square and round brackets for representing half-open intervals are also possible [BSMM08].
An alternative representation for excluding interval bounds is ]x, x[ [Gom09]. In this work
round brackets will be used to denote excluded or open interval bounds.
For the four standard operations ◦ ∈ {+, −, ×, ÷} arithmetic with two intervals X and Y with
0 /∈ Y for division is defined as follows [Rum10]:

X ◦ Y = [min(x ◦ y, x ◦ y, x ◦ y, x ◦ y), max(x ◦ y, x ◦ y, x ◦ y, x ◦ y)] (2.45)

This general formula can be simplified for the operations addition and subtraction reading as

X + Y = [x + y, x + y] (2.46)
X − Y = [x − y, x − y] (2.47)

while for multiplication, equation (2.45) can be specified as follows [KK06, NSWvG12]:

X × Y =



[x × y, x × y] if x ≥ 0 and y ≥ 0
[x × y, x × y] if x ≥ 0 and y < 0 ≤ y

[x × y, x × y] if x ≥ 0 and y < 0

[x × y, x × y] if x < 0 ≤ x and y ≥ 0
[min(x × y, x × y), max(x × y, x × y)] if x < 0 ≤ x and y < 0 ≤ y

[x × y, x × y] if x < 0 ≤ x and y < 0

[x × y, x × y] if x < 0 and y ≥ 0
[x × y, x × y] if x < 0 and y < 0 ≤ y

[x × y, x × y] if x < 0 and y < 0

(2.48)
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Accordingly, equation (2.45) can be specified for division [KK06, NSWvG12]:

X ÷ Y =



[x ÷ y, x ÷ y] if x ≥ 0 and y > 0
[x ÷ y, x ÷ y] if x ≥ 0 and y < 0

[x ÷ y, x ÷ y] if x < 0 ≤ x and y > 0
[x ÷ y, x ÷ y] if x < 0 ≤ x and y < 0

[x ÷ y, x ÷ y] if x < 0 and y > 0
[x ÷ y, x ÷ y] if x < 0 and y < 0

with 0 /∈ Y (2.49)

X ÷ Y =



[NaN, NaN] if x > 0 and y = y = 0
[−∞, x ÷ y] if x > 0 and y < y = 0
[−∞, x ÷ y] ∪ [x ÷ y, +∞] if x > 0 and y < 0 < y

[x ÷ y, +∞] if x > 0 and 0 = y < y

[−∞, +∞] if x ≤ 0 ≤ x

[NaN, NaN] if x < 0 and y = y = 0
[x ÷ y, +∞] if x < 0 and y < y = 0
[−∞, x ÷ y] ∪ [x ÷ y, +∞] if x < 0 and y < 0 < y

[−∞, x ÷ y] if x < 0 and 0 = y < y

with 0 ∈ Y (2.50)

Note that in an actual implementation, for the case resulting in the union of two intervals with
y < 0 < y, the result can be either represented as [−∞, +∞] [NSWvG12], or with an improper
interval where x > x [KK06].
Other arithmetic operations, comparisons and elementary functions with intervals are discussed
in [KK06], [Kul09], [Gom09], [Rum10] and [MKC09]. A commonly used class of elementary
functions are monotonic functions. When considering such a monotonic increasing or decreasing
function f with an interval input X, the output can be determined as follows [MKC09]:

f(X) = [min(f(x), f(x)), max(f(x), f(x))] (2.51)

Since there are many elementary functions which are not or only piece-wise monotonic, the given
definitions need to be adapted for certain functions. A prominent example is the exponential
or polynomial function f(X) = Xn. The corresponding output interval can be calculated as
follows [MKC09, Gom09]:

Xn =


[xn, xn] if x ≥ 0 or n is odd
[xn, xn] if x < 0 and n is even
[0, max(xn, xn)] if 0 ∈ X and n is even

(2.52)

Accuracy/Overestimation The correctness of a numerical computation is usually denoted
by the term accuracy. For non-interval representations, the applied metric is the distance of
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a computed result to the actual correct value, obtained with infinite precision. For standard
encodings like fixed point or floating point, the accuracy of arithmetic operations is limited by
rounding, under- and overflow, and the precision of the applied number format [Gol91]. For
interval arithmetic a different definition of the term accuracy is used. Since the infinite-precision
result of a computation is always included in an interval, the width or diameter x − x is used
as metric for the accuracy, which is also called overestimation in this context [Rum10].

The Dependency Problem One of the main challenges when dealing with interval arith-
metic is the so-called dependency problem, which can arise when an interval variable occurs
multiple times in an equation. If these occurrences are handled as independent inputs with the
above defined arithmetic operations for a straightforward IA implementation, an unnecessary
growth of the output interval results [Rum10, Gus15]. This behavior can be illustrated by
evaluating the function f(X) = 2X + X2 for an interval input X = [−1, 1]. A naive imple-
mentation handling both occurrences of X as independent inputs would lead to the following
result:

f(X) = 2X + X2

= 2 [−1, 1] + [−1, 1]2

= [−2, 2] + [0, 1]
= [−2, 3]

(2.53)

This computation assumes that the actual value of x, represented by the interval X, can be
−1 and 0 at the same time, which results in an overestimation. A more accurate result, by
means of a tighter output interval, can be achieved when the dependency of the two inputs is
taken into account. One option is to evaluate the complete equation either for the lower or the
upper bound of X in order to determine the output bounds:

f(X) = [min (f(x), f(x)) , max (f(x), f(x))]
= [min (f(−1), f(1)) , max (f(−1), f(1))]
= [min (−1, 3)) , max (−1, 3))]
= [−1, 3]

(2.54)

This approach, however, requires a tracking of the dependency of the input variables. Alterna-
tively, the function f(X) can be rewritten in order to eliminate the double occurrence of the
same variable and then be processed in a straightforward way:

f(X) = 2X + X2

= (X + 1)2 − 1
= ([−1, 1] + 1)2 − 1
= ([0, 2])2 − 1
= [0, 4] − 1
= [−1, 3]

(2.55)

In both cases, the overestimated range [−2, −1) is removed from the output interval.
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Implementation An interval number is usually implemented in hardware using two separate
fixed point or floating point numbers for the two interval bounds. The corresponding arithmetic
is rather slow when running on a standard processor as software implementation, because both
interval bounds and special cases are computed subsequently [GEOA06]. Therefore, interval
arithmetic is either implemented with two parallel ALUs using fixed point numbers [GEOA06]
or with two parallel floating point units (FPUs) [KK06, NSWvG12] to compute the lower and
upper bound of a result simultaneously. In addition, the implementation contains a control
structure for selecting the operands and handling special cases, as well as respective rounding
modules. As a general rule, when applying the given formulas for interval arithmetic with
finite precision numbers, the lower bound result is always rounded down (towards zero), the
upper bound is always rounded up (towards infinity).
Figure 2.22 shows the general structure of an interval arithmetic unit in a simplified form with-
out rounding and special case handling. Comparable architectures can be found in [GEOA06]
for fixed point interval arithmetic, as well as in [KK06] and [NSWvG12] for floating point IA.
According to figure 2.22, the operands of an interval operation are selected with multiplexers
and then processed with two parallel arithmetic units. These two operation units realize the
four basic operations ◦ ∈ {+, −, ×, ÷} as introduced in equations (2.46) - (2.50). Depending
on the operation, as well as the target latency, the required circuitry of the modules varies.
While for addition and subtraction one addition/subtraction module per bound is required, for
the multiplication operation with lowest possible latency in total four multipliers, as well as
comparison operations and additional logic have to be implemented to realize equation (2.48).
For the division operation from equations (2.49) and (2.50) two division modules and some
additional logic is required [NSWvG12].
Due to the parallel processing, the IA implementation of addition and subtraction can compete
with the speed of a standard single-value operation, at the cost of an approximately doubled
hardware area and an accordingly increased power consumption. The described modules
required to realize the interval multiplication also more than double the area of a single-valued

0 1 0 1

X = [x , x]

0 1 0 1

Y = [y , y]

◦ ◦

Z = [z , z]

Figure 2.22.: Simplified general structure for an interval arithmetic unit with operand selection
and two parallel operation units for ◦ ∈ {+, −, ×, ÷} [KK06].



44 Chapter 2. Digital Arithmetic and Number Formats

multiplication. The expected latency increase is below a factor 1.5 when using four parallel
multiplication modules [NSWvG12]. Finally, the additional hardware to realize the interval
division again approximately doubles the complexity of single-valued division. Since the division
operation in hardware is very slow in general, the additional latency due to the extra logic is
negligible [NSWvG12].

At this point the state-of-the-art is left behind and new approaches for
digital number representation are discussed. All the encodings presented so
far have been published decades ago and are well known concepts in computer
arithmetic, whereas the following universal numbers are a relatively new
approach. The universal number concept is separated into three distinct
number representations, referred to as type-I, type-II and type-III. Since the
main contribution of this thesis does not target all of these approaches, but
solely the type-II derivative and the corresponding Sets Of Real Numbers,
first the general universal number approach with the derived type-I and
type-III encodings will be discussed in this chapter in the following sections.
The type-II format is then introduced in the next chapter 3.
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2.6. Universal Numbers

"Fewer bits. Better answers." is the claim John L. Gustafson made in 2015 [Gus15] when he
introduced a new number format, the universal numbers (unums). The proposed format is a
new approach for a floating point format tackling the inaccuracy and inefficiency of IEEE floats
with an interval-based structure and variable exponent and significant widths. The format will
be discussed in detail in the following section 2.6.1, according to [Gus15], [1] and [Bär18].
In the next year, an even more "radical approach" for a number format was presented with Sets
Of Real Numbers (SORN) [Gus16]. As an extension of the original unum idea, this approach
leaves the floating point idea behind and builds a fixed-width, interval-based format with low
precision, targeting a regular, very low complex and very fast arithmetic. The remainder of
this work deals with SORN arithmetic and its applications. The original SORN approach from
[Gus16] is discussed in section 3.1, followed by extensions and adaptions of this initial approach
in the rest of chapter 3. Applications for SORN arithmetic are presented in chapter 4.
Since interval arithmetic and variable bitwidth numbers are concepts far away from the
established floating point approach unums target to replace, a third, more standard-float-like
format was presented in 2017, called posits [GY17]. This approach applies to single-valued
rounding and fixed overall bitwidth, yet targets to succeed IEEE floats with a higher dynamic
range and accuracy, as well as simpler hardware and exception case handling. The posit format
will be discussed in section 2.6.2, following [GY17] and [Pos22].
In order to distinguish between the three approaches and since they are all developed from the
original unum idea, they will be referred to as unum type-I (original), type-II (SORN) and
type-III (posit) in the following.

2.6.1. Type-I: The Original Unums

The original type-I unums adapt the existing structure of IEEE floats presented in section 2.3.1
with a sign bit s, a biased exponent e, and a significant, here called fraction f . The bias is the
same as for floats, given in equation (2.28). The concept of normal and subnormal numbers
with a hidden bit h = 1 for e > 0 is also kept. One of the two big differences to floats is the
exponent size es and the fraction size fs. These are variable parameters with a value ≥ 1. To
be able to track the current exponent and fraction size of a unum at runtime, the values es − 1
and fs − 1 are encoded in two extra fields right to the fraction, as depicted in figure 2.23. With
this approach unum values with different exponent and fraction sizes can be operated and
stored, which, in theory, can reduce the memory bandwidth, compared to IEEE floats. The
bitwidth of the fields storing the values es − 1 and fs − 1, however, is fixed. The width of the

s
(sign)
1 bit

e
(exponent)

es bits

f
(fraction)
fs bits

u
(ubit)
1 bit

es − 1
(exp. size)

ess bits

fs − 1
(frac. size)

fss bits

ub
(ubound)

1 bit

MSB LSB

utag

Figure 2.23.: Encoding of type-I unums [Gus15].
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field storing the exponent size is ess, the width of the fraction size field is fss. Therefore, the
exponent can have a width 1 ≤ es ≤ 2ess, and the fraction width is 1 ≤ fs ≤ 2fss, respectively.
The values {ess, fss} define the unum-environment. Operations between unums always have
to be in the same environment. This is comparable to the precision of IEEE floats.
The second difference of unums compared to standard floats is the rounding behavior. Whenever
a float value exceeds the available precision, it is rounded according to the specified rounding
mode, as discussed in section 2.3.1. In contrast, unums are not rounded at all. Instead, when
a value is between two representable unums, this is signaled by the so-called uncertainty bit or
ubit u. When the ubit is set to 12, the unum represents the open interval between the value
encoded with the current exponent and fraction field, and the value which is larger by one unit
of least precsision (ulp), which would be a 12 added to the LSB of the fraction [Mul05]. The
ubit is located right to the fraction, as depicted in figure 2.23. Together with the exponent
and fraction size, as well as the later explained ubound bit, it forms the so-called utag, the
self-descriptive part of a unum. The following example shows the ubit concept with two exact
unum values a and c that differ by one ulp, and the inexact unum b in between:

a = 0 0011 010100 0 0011 0101 = 0.0820312510

b = 0 0011 010100 1 0011 0101 = (0.0820312510, 0.083007812510)
c = 0

s
0011

e
010101

f
0
u

0011
es−1

0101
fs−1

= 0.083007812510

(2.56)

Considering special value encoding, unums avoid the problem of having 2t − 1 NaN encodings
like IEEE floats do. There are only two NaN values, distinguished between quiet and signaling
by the sign bit, while all other bits are 12. The same holds for positive and negative infinity,
where all fields but the ubit have all 12 bits. However, there is some redundancy in the unum
format. Since a zero is encoded by e = f = 010 which can be represented with different
exponent and fraction widths, and the sign is irrelevant, there are 2ess+fss+1 possible zero
representations. More details on special cases with unums can be found in [Gus15] and [Bär18],
respectively.
In summary, adapting equation (2.31) for unums leads to the following general case unum
representation:

vunum = (−1)s ×



22−2es−1 × ( f
2fs ) if e = 010

∞ if {e, f, es − 1, fs − 1} = all 12 bits and u = 02

NaN if {e, f, es − 1, fs − 1, u} = all 12 bits
2e+1−2es−1 × (1 + f

2fs ) otherwise
(2.57)

Ubounds With the ubit concept unums can only represent ulp-wide intervals, yet arithmetic
operations with an inexact unum might result in wider intervals. In order to be able to represent
these, in [Gus15] ubounds are introduced. A ubound is composed of two single unums, one for
the lower and one for the upper bound, comparable to interval arithmetic, as introduced in
section 2.5. Since these lower and upper unum bounds can be open intervals themselves, such
a ubound interval can have both included or excluded endpoints. In order to signal whether
an exact or inexact unum represents a stand-alone value or is part of a ubound, the ubound
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bit is used. The ubound bit is located right to the field denoting the fraction size, as depicted
in figure 2.23. More details on ubounds can be found in [Gus15].

Arithmetic Arithmetic with unums and ubounds is a combination of floating point and
interval arithmetic. If two exact unums are involved in an operation, standard floating point
arithmetic can be used, extended by algorithms which handle the variable size of exponents
and fractions. If at least one of the inputs of an arithmetic operation is either an inexact
single unum or a ubound, interval arithmetic rules have to be applied. Standard floating point
and interval arithmetic are discussed in sections 2.3.2 - 2.3.4 and 2.5, respectively. Details on
unum/ubound arithmetic can be found in [Gus15], [1] and [Bär18].

Implementation The main challenge for the hardware implementation of unum/ubound
arithmetic are the variable exponent and fraction widths. Since hardware circuits can not be
implemented with variable widths, most unum architectures are implemented with maximum
size datapaths and use zero padding for values with non-maximum sizes [HZS+17, GMR+18, 1].
This, however, eliminates the advantage of possible savings due to small width unums. Another
approach, introduced in [Gus15], is to not carry out arithmetic operations on numbers in
unum format directly, but to use an internal, fixed-size and high-precision scratchpad layer,
the so-called general-, gbound- or g-layer, along with appropriate conversion functions. This
approach is implemented in [BDdD17], using a standard floating point format with some
custom adaptions as internal g-layer format.
An overview of hardware implementations for unum arithmetic is given in table 2.12. Even
though this list might be non-exhaustive, publications on unum type-I hardware implementa-
tions are limited. Possible reasons are the challenges introduced by the variable size properties
which complicate implementations and somehow counteract the idea of improved efficiency.
An intermediate approach is to use unums as a memory format only, where the advantages of
small exponent and fractions sizes can be exploited. For arithmetic operations, the unums are
converted to a fixed-size floating point format. In [BJC+19] this approach is implemented for
variable precision floating point computing.

Table 2.12.: Implementations of type-I unums for different unum environments {ess, fss}
and hardware platforms.

operations env. HW platform

[BDdD17] +, ×, comparison {4, 6} ASIC
[HZS+17] +, ×, FFT N/A FPGA
[GMR+18] +, − {4, 5} ASIC (fabricated)
[1] +, −, ×2, ÷2, comparison, CORDIC {3, 5} ASIC, FPGA
[BDdD19] ISA with +, −, ×, comparison {4, 8} ASIC, FPGA (RISC-V)
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2.6.2. Type-III: Posits

Posits are meant to be a drop-in replacement for IEEE floats and are claimed to have several
improvements over standard floating point, such as a higher dynamic range and accuracy,
lower hardware complexity and less exception cases. They were first presented in 2017 [GY17],
resulting from the experiences with the two previous unum versions. In 2022, a posit standard
was ratified [Pos22]. Unlike type-I and type-II unums, posits are a single-valued floating point
format with a fixed bitwidth, utilizing rounding rather than interval arithmetic, if a value can
not be represented with the available precision. Like IEEE floats, posits have a sign bit S, as
well as an exponent E and a fraction F , whose definitions, however, differ from standard floats.
In addition, posits contain an extra field, called the regime R. All fields after the sign bit can
have a variable size, while the total bitwidth of a posit number is fixed. The structure of a
posit encoding with N bits is shown in figure 2.24, according to [Pos22]. The different fields of
a posit are explained in the following:

• The sign bit S determines the sign of a posit. In contrast to IEEE floats, posits
were introduced with a two’s complement encoding in [GY17] in order to remove the
redundancy of a negative zero. This means that if S = 12, the rest of the binary posit
value is considered to be encoded in two’s complement. In [Pos22] this behavior is
expressed by encoding the implicit integer value represented by the sign bit as 1 − 3S,
leading to a hidden bit h that is either 110 or −210. This covers the negation and addition
of a 12 in case of a negative (two’s complemented) fraction. In addition, the value of the
sign bit is added to the exponent calculation, and the effective exponent is multiplied
by 1 − 2S. This covers the negation and addition of a 12 in case of a negative (two’s
complemented) exponent. The complete description for deriving a decimal posit value
with this two’s complement handling is given in equation (2.59).

• The regime field R consists of a variable number of k bits with same value, either 02 or
12, followed by one termination bit with opposite value R0. The decimal value of R is
determined by the number bits k and by their value:

R =
−k if R0 = 02

k − 1 if R0 = 12
(2.58)

In the original proposal [GY17], R was interpreted as power of 22es , with the variable
exponent size es, which was used to define the posit environment {N, es}, together with

S
(sign)
1 bit

R
(regime)

k bits

R0
(regime)
0 . . . 1 bit

E
(exponent)
0 . . . 2 bits

F
(fraction)

0 . . . m bits

MSB LSB

N bits

Figure 2.24.: Encoding of posits according to the posit standard [Pos22].
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the posit size N . In [Pos22] the exponent size was fixed to 2. Therefore R scales with
powers of 16.

• The exponent E is unbiased and interpreted as an unsigned integer, scaling with powers
of 2. If there are any bits left after the regime encoding, the exponent can have up to 2
bits, according to [Pos22].

• If there are any bits left after regime and exponent, they encode the fraction F , which
follows the same definition as for IEEE floats. Only the hidden bit is defined in a different
way for negative numbers, as explained above.

There are two special values with posits, namely zero and Not a Real (NaR), which merges
NaN and ±∞. A zero is encoded with all bits set to 02, for NaR the sign bit is 12 and all
others bits are 02.
With all the discussed definitions, the general case representation of a posit value according to
[Pos22] reads as follows:

vposit =


0 if {S, R, E, F} = 010

NaR if {R, E, F} = 010 and S = 110(
(1 − 3S) + F

2m

)
× 2(1−2S)×(4R+E+S) otherwise

(2.59)

In contrast to IEEE floating point, there is only one rounding mode for posits, which follows a
rounding-to-nearest method and is defined in [Pos22]. Implementation of correct rounding for
posits is more complicated than for standard floats, since, due to the variable field widths, it is
not only the fraction that might be rounded, but also the exponent. In addition to rounding,
the posit standard also specifies comparisons, arithmetic operations and elementary functions.
Comparisons with posits are as simple as with integers, due to the two’s complement encoding.
Details on posit arithmetic operations can be found in the literature. In the following paragraph
several publications related to hardware implementation for posit arithmetic are discussed.

Implementation For the hardware implementation of posits, handling the variable widths
of regime, exponent and fraction leads to an overhead in control logic, compared to IEEE
floats. The length of the regime has to be decoded first, before exponent and fraction
positions can be determined [MDBB20]. Therefore most posit hardware implementations
utilize a data extraction module before the actual arithmetic operations are performed. The
exponent of a standard float implementation is replaced by a scale factor which represents the
combination of regime and exponent of a posit. With this scale factor and the fraction part,
the algorithms for performing arithmetic operations on posits are similar to those for standard
floats [CGS+18, JS19, MDBB20]. Table 2.13 shows a collection of recent posit hardware
implementations for different arithmetic operations and target platforms. Most of them include
comparisons to IEEE FP hardware, as shown in table 2.14 for FPGA implementation. Since
the original claim for simpler hardware with posits from [GY17] can mostly not be confirmed
with the presented and further comparisons from the literature, there are also approaches for
approximate computing with posits in order to reduce the hardware complexity [MDBB+22].
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Table 2.13.: Posit hardware implementations (non-exhaustive list).

operations bitwidth HW platform quire

[CGS+18] +, × 8, 16, 32 ASIC, FPGA no
[PM18] +, −, × 10 . . . 32 FPGA no
[JS19] +, −, ×, ÷ 16, 32 ASIC, FPGA no
[UFdD19] +, −, × 16, 32, 64 FPGA (HLS) yes
[MDBB20] +, −, × 8, 16, 32 ASIC no
[MMDBB21] MAC 8, 16, 24, 32 ASIC yes
[TGRK21] ISA with FMA, 32 ASIC, FPGA no

÷, √ (RISC-V)
[MMB+22] ISA with +, −, 32 ASIC, FPGA yes

×, ÷, √ , MAC (RISC-V)
[ZKAKP22] MAC 8 ASIC no

Quire The definition of the posit format also includes a scratchpad layer, comparable to the
gbound-layer for type-I unums. For posits, this internal format is called the quire, and is used
for exact accumulations and fused operations. Posits can be converted to the high-precision,
signed fixed point quire format to perform operations without intermediate rounding. Solely
one single rounding step at the end of a series of operations is required, when the result is
converted back from quire to posit format [Gus17]. The bitwidth and encoding of the quire
datatype is defined in [Pos22]. Some of the presented hardware implementations from table
2.13 also include quire compatibility for fused operations [UFdD19, MMDBB21, MMB+22].

Table 2.14.: Comparison of 32 bit float and posit implementations on FPGA.

[CGS+18] [UFdD19] [MMB+22]

device Zynq-7000 Kintex-7 Kintex-7
operation add mul add mul ISA
format float posit float posit float posit float posit float posit

LUT 1049 981 533 572 425 738 80 544 3726 11796
register - - - - 375 811 193 710 1008 2979
delay [ns] 41.58 40.03 29.05 33.02 2.69 2.66 2.20 2.42 19.82 19.82
DSP - - 4 4 0 0 3 4 - -
cycles - - - - 14 22 7 21 - -
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Accuracy Despite the claim of better hardware performance for posits, which is at least
questionable considering the publications discussed above, the second argument for posits in
[GY17] is a higher dynamic range and a better accuracy of posits compared to IEEE floats
of same bitwidth. However, this higher accuracy does not apply for all representable values.
While floats have a mostly constant accuracy for all representable values, posits have a so-called
tapered accuracy, which is high for small values around 010 (the sweet spot or golden zone) and
decreases for increasing magnitudes [GY17].
Some of the presented publications on hardware implementation [CGS+18, TGRK21, MMB+22]
also include accuracy benchmarks comparing posits and IEEE floats. In addition, there are also
several software implementations comparing both formats, such as [LLH18] and [dDFMU19].
As a general conclusion the different works mainly confirm the higher dynamic range and the
better accuracy of posits. The accuracy improvement is hereby caused by the extra fraction
bits a posit value has, compared to a float value of same bitwidth. However, the improved
accuracy is only valid within the posit sweet spot around 010, where the improvement can be
up to multiple orders of magnitude [MMB+22]. Yet, there are also various applications and
benchmarks (out of the sweet spot) where posits perform worse than floats [dDFMU19].





3 SORN: Sets Of Real
Numbers

Sets Of Real Numbers (SORN) is a number representation which is derived from the second
version of the universal numbers. This type-II unum approach was presented as "A Radical
Approach to Computation with Real Numbers" [Gus16], because the format differs fundamentally
from the commonly used approaches for fixed point, floating point or interval arithmetic. While
type-I unums, posits or the Logarithmic Number System are adaptions of floating point, the
SORN approach defines a totally different way of encoding and computing numbers, comparable
to the dissimilarity of the Residue Number System or stochastic computing. In the following
section 3.1, the initial unum type-II approach and the derived SORN arithmetic is presented
according to [Gus16].
At the time of writing this, and to the best of the authors knowledge, for type-II unums and
SORN arithmetic, no publications other than the original [Gus16] and the authors publications
presented in this thesis exist, neither on hardware or software implementation, nor any other
related topic. As discussed in section 1.1 and figure 1.2, respectively, the main contributions
of this work are the implementation, evaluation, optimization and application of the SORN
number format. After the introduction of the initial approach in section 3.1, the remainder
of this chapter presents adaptions of the originally proposed SORN datatype structure in
section 3.2, discusses the developed SORN design-flow in section 3.3, evaluates on the hardware
complexity of basic SORN arithmetic components in section 3.4, and introduces fused SORN
arithmetic in section 3.5. Applications of the SORN number format are discussed in chapter 4.

3.1. Type-II Unums and the SORN Approach

Type-I unums turn out to be very challenging to implement in hardware, as discussed in
section 2.6.1. Following these experiences, the second unum version targets some aspects of an
ideal number format, namely a regular and easy hardware implementation with equally fast
arithmetic operations, no exception cases and no rounding errors. The last goal is achieved
by the open interval style enabled by the ubit from type-I unums, which is therefore kept for
type-II. The general idea of the second unum approach is to represent all real numbers in a
closed form. Since an exact representation of every real number is not possible with finite
precision, the ubit is used to denote open intervals. The real number line is interpreted as
a circle, with both ends −∞ and +∞ merged together to a single value ±∞, assumed to
be an exact value and the reciprocal of zero. This interpretation of the reals is depicted in
figure 3.1a. In this very simple resolution, the reals are represented by 0, ±∞ and two open
intervals encompassing all positive and all negative reals, respectively. The corresponding
binary unum-II representation is composed of two bits with the LSB serving as the ubit and
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Figure 3.1.: Representations of type-II unums with the decimal values in the outer and the
binary encoding in the inner circle [Gus16].

the MSB as the sign bit of a two’s complement encoding. This format can now be extended
by one bit, adding the exact values 110 and −110, as well as the corresponding open intervals.
This 3 bit unum-II representation is shown in figure 3.1b. Further extensions include another
exact value, its negative version, and the positive and negative reciprocal. Figure 3.1c shows a
4 bit unum-II format with the additional exact values 2, −2, 1/2 and −1/2, as well as the open
intervals in between. Due to the preserved symmetry, the given representation is closed under
negation and reciprocation. Negation follows the two’s complement encoding by negating all
bits and adding a 12. This corresponds to a reflection on the vertical axis. For a reciprocation,
all bits but the sign bit are negated, and a 12 is added. This corresponds to a reflection on the
horizontal axis.
The format is defined by the chosen exact values, which are called the u-lattice or lattice values.
Except the endpoints zero and infinity and the mandatory value 110, any lattice values > 110
can be chosen. The example from figure 3.1c is composed of the lattice values {0, 1, 2, ±∞},
their reciprocals, negations and the open intervals in between. Instead of 2, any real value can
be chosen to extent the lattice values, for example 10, 256, or even π. The number of lattice
values defines the bitwidth (and precision) of the binary unum-II representation.
If algorithms for arithmetic operations would now be developed for this unum-II format, a
traditional, type-I-like arithmetic would result. This algorithms would also require a solution
to handle wider intervals, comparable to ubounds. In addition, different operations would
require different implementation complexity. All this is avoided with a new number format
and arithmetic: The Sets Of Real Numbers.
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3.1.1. SORNs

To begin with, it has to be clarified what otherwise might lead to a misconception: SORNs
are not identical to type-II unums, they are an own representation, derived from unum-II,
but way more powerful. With the above defined unums, the real numbers R are repre-
sented with a set of exact values and intervals, for example {±∞, (−∞, 0), 0, (0, ∞)} or
{±∞, (−∞, −1), −1, (−1, 0), 0, (0, 1), 1, (1, ∞)}. Every element of these sets can be considered
as a subset of the reals. The SORN format represents the power set of the given unum type-II
representation.

Definition 3.1.1. A power set of a set S includes all possible subsets of S. Given a set
S = {a, b, c}, the power set of S is {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} [BSMM08].

In other words, a value in SORN format can not only represent one of the given subsets, as
the unum format does, but any combination of them. Therefore the representation is called
Sets Of Real Numbers, with emphasis on the plural Sets.
The number of bits for the binary SORN encoding equals 2unum bits, or the number of elements
in the unum set. Every SORN bit encodes the absence (02) or presence (12) of a unum value.
The MSB is hereby used to represent ±∞, followed by the remaining elements sorted from
negative to positive towards the LSB. In table 3.1 the encoding for 4 bit SORNs is given,
corresponding to the 2 bit unums from figure 3.1a. Accordingly, the 3 and 4 bit unums in
figures 3.1b and 3.1c can be represented with 8 and 16 SORN bits, respectively. Table 3.2
shows some examples for 8 and 16 bit SORNs.

Table 3.1.: Encoding of 4 bit SORNs.

SORN decimal SORN decimal

0000 ∅ 1000 ±∞
0001 (0, ∞) 1001 (0, ∞]
0010 0 1010 0 ∪ ±∞
0011 [0, ∞) 1011 [0, ∞]
0100 (−∞, 0) 1100 [−∞, 0)
0101 (−∞, 0) ∪ (0, ∞) 1101 [−∞, 0) ∪ (0, ∞]
0110 (−∞, 0] 1110 [−∞, 0]
0111 (−∞, ∞) 1111 [−∞, ∞]

Table 3.2.: Examples of 8 and 16 bit SORN encodings (N = 3 and N = 4).

8 bit SORN decimal 16 bit SORN decimal

00011100 (−1, 1) 0000111111100000 [−1, 1/2]
00001111 [0, ∞) 1000000001111111 (0, ∞]
00110000 [−1, 0) 0011100000001110 [−2, −1] ∪ [1, 2]
10000001 (1, ∞] 0000000000000110 (1, 2]
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The encoded set of lattice values and intervals will be called the SORN datatype in the following.
Details on SORN datatypes are discussed in section 3.2.

3.1.2. LUT-based Arithmetic

The implementation of arithmetic operations between two or more SORN operands relies
on table lookup. For any arithmetic operation and a designated SORN datatype, a lookup
table (LUT) can be derived, containing the results for every possible combination of the two
(or more) input SORNs. The entries of that table are obtained following the rules of interval
arithmetic, as presented in section 2.5. Table 3.3 shows the LUT for the addition of two 8 bit
SORNs, encoded according to the datatype from figure 3.1b. This table can now be used to
perform additions via table lookup, but only for SORN values with a single 12 bit, also called
one-hot encoding. For operations on SORNs with multiple 12 bits, the LUT has to be called
multiple times, providing the result for every one-hot input combination. These intermediate
results are then combined with an OR operation to obtain the final result. The following
equation (3.1) shows this behavior by adding the SORN values 00001110 and 00000100, which
correspond to the decimal intervals [0, 1] and (0, 1):

00001110
[0,1]

+ 00000100
(0,1)

00001000
0

+ 00000100
(0,1)

= 00000100
(0,1)

OR 00000100
(0,1)

+ 00000100
(0,1)

= 00000111
(0,∞)

OR 00000010
1

+ 00000100
(0,1)

= 00000011
(1,∞)

= 00000111
(0,∞)

(3.1)

Table 3.3.: LUT for the addition of two 8 bit SORNs.

x + y
±∞ (−∞, −1) −1 (−1, 0) 0 (0, 1) 1 (1, ∞)

10000000 01000000 00100000 00010000 00001000 00000100 00000010 00000001

±∞ 11111111 10000000 10000000 10000000 10000000 10000000 10000000 1000000010000000
(−∞, −1) 10000000 01000000 01000000 01000000 01000000 01110000 01110000 0111111101000000

−1 10000000 01000000 01000000 01000000 00100000 00010000 00001000 0000011100100000
(−1, 0) 10000000 01000000 01000000 01110000 00010000 00011100 00000100 0000011100010000

0 10000000 01000000 00100000 00010000 00001000 00000100 00000010 0000000100001000
(0, 1) 10000000 01110000 00010000 00011100 00000100 00000111 00000011 0000000100000100

1 10000000 01110000 00001000 00000100 00000010 00000011 00000001 0000000100000010
(1, ∞) 10000000 01111111 00000111 00000111 00000001 00000001 00000001 0000000100000001
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x7 x6 x5 x4 x3 x2 x1 x0

y7 y6 y5 y4 y3 y2 y1 y0
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z0

. .
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..
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Figure 3.2.: ROM hardware circuit for bit z5 of an 8 bit SORN addition z = x + y, according
to table 3.3.

The hardware implementation of the SORN LUTs can be realized with (non-programmable)
read-only memory (ROM) circuits, which consist of wired connections and basic logic gates.
Figure 3.2 shows the logic circuit for obtaining the bit z5 (exact −110) for the result of an 8
bit SORN addition z = x + y according to table 3.3. The remaining bits of the result z are
implemented in a similar way. According to [Gus16], the benefit of this kind of arithmetic
is that a SORN LUT and its corresponding hardware circuit can be implemented for any
operation, without a difference in chip area or circuit delay. Section 3.4 will evaluate on this
hypothesis.
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3.2. Datatypes

The set of lattice values and their distribution as exact values and intervals is called the SORN
datatype. In contrast to positional number systems like integers, floats, type-I unums or posits,
the decimal value represented by a certain SORN bit or bit string is not entirely fixed by
the format itself, but can be varied by the choice of lattice values and interval distribution.
According to [Gus16], the three mandatory lattice values {0, 1, ±∞} and the general structure
with reciprocals, negatives and open intervals is predetermined, but the further lattice values
can be freely chosen, as described in section 3.1. This version of the SORN number format
will be called the original or unum-II based SORN format in the remainder of this work.
The following section 3.2.1 will introduce a formal mathematical description of this format,
according to [5] and [8].
Since SORN arithmetic relies on LUTs which are created for every operation and datatype
combination, there are possibilities to further adapt the formats structure and create suitable
LUTs accordingly. Some drawbacks of the original format are discussed in section 3.2.2, which
leads to a datatype structure without exact values and with half-open intervals. This structure
is presented and mathematically formulated in section 3.2.3, according to [3] and [5]. The
choice of lattice values and interval distributions throughout this work is discussed in section
3.2.4, further customized and intermediate SORN datatypes are proposed in section 3.2.5.
Evaluations on the differences in algorithmic performance between the unum-II based, the
half-open and the custom datatypes will be presented in sections 4.2 - 4.4 for the application
of symbol detection in wireless multiple-input and multiple-output (MIMO) communication.
The hardware performance measures of the corresponding arithmetic LUTs for the different
datatypes will be evaluated and compared in section 3.4.

3.2.1. Original Format

The original, unum-II based SORN format from [Gus16], presented in section 3.1, can be
formulated as a general, mathematical definition, according to [5] and [8]. The format is defined
by a set of N lattice values li with i ∈ {0, . . . , N − 1} and N > 2. The special case N = 2
corresponds to the 4 bit SORNs with li ∈ {0, ±∞}, described in table 3.1. This case will not
be covered by the following formal definition.
For a general datatype, the mandatory lattice values are l0 = 0, l1 = 1, lN−1 = ±∞,
accompanied by further, user-selected lattice values 1 < li < ∞, with i ∈ {2, . . . , N − 2}. The
general lattice L is composed of

• the lattice values li,

• the reciprocals 1/li of all user-selected lattice values 1 < li < ∞, and

• the negations of all lattice values and reciprocals, except for l0 and lN−1.
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±∞

0

−1 1

. . .

. . .

. . .

. . .

l2

1/l2−1/l2

−l2

lN−2−lN−2

1/lN−2−1/lN−2

(lN−2, ∞)(−∞, −lN−2)

(0, 1/ln−2)(0, −1/ln−2)

(1, l2)(−l2, −1)

(1/l2, 1)(−1, −1/l2)

Figure 3.3.: General definition of the original, unum-II based SORN datatype.

This formulates the exact values within the lattice L. In addition, every gap between two exact
values is filled by an open interval with the two adjacent values as boundaries. With these
definitions, the general lattice L reads as follows:

L = { ± ∞, (−∞, −lN−2), −lN−2, . . . , −l2, (−l2, −1), −1, (−1, −1/l2), −1/l2, . . . , −1/lN−2,

(−1/lN−2, 0), 0, (0, 1/lN−2), 1/lN−2, . . . , 1/l2, (1/l2, 1), 1, (1, l2), l2, . . . , ln−2, (lN−2, ∞)}
(3.2)

This general lattice also defines the structure of the original, unum-II based SORN datatype,
as depicted in figure 3.3. The bitwidth ws of this datatype is ws = 8 × (N − 2), with
N > 2. The representation given in figure 3.1c is an example for this definition with N = 4,
li ∈ {0, 1, 2, ±∞} and a SORN bitwidth ws = 8 × (4 − 2) = 16. The next larger SORN
datatypes would contain N = 5 and N = 6 lattice values, resulting in ws = 24 and ws = 32
SORN bits, respectively.
Table 3.4 gives an overview of the original SORN datatypes implemented throughout this work.
Note that in [4] and [6], the exact value for ±∞ is split in two bits for −∞ and +∞. This is
done to align the bitwidth with the also implemented half-open datatypes in order to allow a
fair comparison of the utilized hardware.

Table 3.4.: Overview of the implemented original SORN datatypes throughout this work.

label lattice values N ws adaptions reference

unum8 {0, 1, ±∞} 3 8 - [2, 3, 5]
unum9 {0, 1, ±∞} 3 9 separate ±∞ bits [4, 6]
unum16 {0, 1, 2, ±∞} 4 16 - [2, 3, 5]
unum17 {0, 1, 2, ±∞} 4 17 separate ±∞ bits [4, 6]
unum32 {0, 1, 2, 4, 8, ±∞} 6 32 - [2]
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3.2.2. Drawbacks of the Original Format

The original, unum-II based SORN datatype relies on horizontal symmetry with respect to the
values −110 and 110 on the unum circle, in order to provide reciprocal closure. In addition, exact
values and open intervals are distinguished by the ubit. These two properties, however, are only
exploited in the binary unum encoding. When dealing with SORN values, the general method
of arithmetic with pre-computed LUTs can be applied to any SORN datatype, independent
of its internal structure. This gives the designer the freedom to adapt the existing datatype
structure and to chose or evaluate the most-suitable SORN datatype for a specific application.
The following drawbacks of the original datatype structure are target of improvement when
adapting the SORN representation.

Precision The precision of the format is quite low and scales poorly. The insertion of a
single lattice value li requires 8 extra bits for the SORN datatype: one for the value itself, the
reciprocal, the negative, the negative reciprocal, and one new open interval for each of these
four exact values.

Exact Values When the exact values within the SORN datatype do not match the ap-
plication data, these SORN bits are barely ever addressed without one of the adjacent open
intervals during arithmetic operations, which makes them de-facto-redundant. Even if one
of the formats exact values matches some of the input data of a SORN algorithm, once an
operation results in an interval SORN, further calculations with this value will always result
in intervals, making the formats other exact values de-facto-redundant. Table 3.5 lists the
occurrence of all exact results except zero for the two original datatypes unum8 and unum16
for two-operand addition and multiplication. The table includes two scenarios, where either
only one-hot inputs or all possible SORN input combinations are applied. A valid SORN input
is hereby considered as a bit string with a single 12 bit (one-hot) or consecutive 12 bits. Bit
strings like 100110102 are not considered, because they usually do not occur when applying
straight forward SORN arithmetic (even though they are valid SORN values in theory).

Table 3.5.: Exact result count within the original SORN datatypes.

OP datatype inputs
No. No. exact results
cases ±∞ +1 −1 +2 −2 +1

2 −1
2

+ unum8 one-hot 64 14 2 2 - - - -
+ unum8 all possible 1296 56 2 2 - - - -

× unum8 one-hot 64 13 2 2 - - - -
× unum8 all possible 1296 31 2 2 - - - -

+ unum16 one-hot 256 30 5 5 3 3 4 4
+ unum16 all possible 18496 240 5 5 3 3 4 4

× unum16 one-hot 256 29 6 6 4 4 4 4
× unum16 all possible 18496 127 6 6 4 4 4 4
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With the number of SORN bits ws, the number of possible one-hot inputs for two-input addition
and multiplication is w2

s . When considering all possible SORN inputs, the number of input
cases is 1/4 (w2

s +ws)2, derived from the formula for triangle numbers (Gaußsche Summenformel)
[BSMM08].
According to table 3.5, for one-hot inputs and unum8, about 22% (addition) and 20% (multipli-
cation) of the cases result in exact ±∞, for unum16 its about 11% (addition and multiplication).
When considering all possible SORN inputs, the percentage of exact ±∞ results drops to
4% (addition) and 2% (multiplication) for unum8. For unum16 its 1% (addition) and 0.7%
(multiplication). The other exact result occurrences are (even more) negligible, which is why
they are removed with the half-open SORN datatypes.

3.2.3. Half-Open Intervals

Both issues discussed in the previous section can be improved with a SORN representation
that dismisses all exact values, except for zero, and uses half-open intervals instead. This
removes the described de-facto-redundancy, improves the information-per-bit and therefore
also the precision scaling. Removing the mandatory lattice value 110 and the requirement to
accompany every introduced lattice value with a reciprocal further increases the flexibility of
a designer to increase the precision or improve the dynamic range without adding too much
unwanted complexity.
This described SORN representation will be called half-open in the remainder of this work. As
introduced in [3] and [5], this general SORN datatype is composed of an exact zero framed
by half-open intervals towards negative and positive infinity, which include their respective
lower/upper bound. The adapted lattice reads as

L = {[−∞, −lN−2), [−lN−2, −lN−3), ... , [−l1, 0), 0, (0, l1], ... , (lN−3, lN−2], (lN−2, ∞]} (3.3)

and consists of N lattice values li with i ∈ {0, . . . , N − 1}, N > 1, l0 = 0 and lN−1 = ∞. The
structure is depicted in figure 3.4. The corresponding SORN bitwidth is ws = 2N − 1, since
any introduced lattice value li with 0 < li < ∞ only introduces two extra bits each representing
one half-open interval.
An overview of several half-open datatypes implemented throughout this work is given in table

(lN−2, ∞][−∞, −lN−2)

0

(lN−3, lN−2]

(0, l1]

[−lN−2, −lN−3)

[−l1, 0)

. . . . . .

Figure 3.4.: General definition of the half-open SORN datatype.
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3.6. The distribution of the lattice values li within the representation is chosen to be either
linear or logarithmic, as indicated by the label <lin/log,ws>|<max value>. In order to distinguish
between representations of same bitwidth and value distribution, the respective maximum
lattice value lN−2 < ∞ is included in the label as well. From the specified lattice values in the
table, the datatype can be constructed according to equation (3.3). In the following equations
(3.4) and (3.5), the two datatypes lin11 |1 and log11 |1 from table 3.6 are given as examples:

lin11 |1 = {[−∞, −1), [−1, −3/4), [−3/4, −1/2), [−1/2, −1/4), [−1/4, 0),
0, (0, 1/4], (1/4, 1/2], (1/2, 3/4], (3/4, 1], (1, ∞]}

(3.4)

log11 |1 = {[−∞, −1), [−1, −1/2), [−1/2, −1/4), [−1/4, −1/8), [−1/8, 0),
0, (0, 1/8], (1/8, 1/4], (1/4, 1/2], (1/2, 1], (1, ∞]}

(3.5)

Table 3.6.: Overview of the implemented half-open SORN datatypes throughout this work.

label lattice values li N ws reference

log5 |1 {0, 1, ∞} 3 5 -

lin7 |3 {0, 3/2, 3, ∞} 4 7 [10]
lin7 |100 {0, 50, 100, ∞} 4 7 [10]
log7 |1 {0, 1/2, 1, ∞} 4 7 [10]
log7 |64 {0, 32, 64, ∞} 4 7 [10]

lin9 |1 {0, 1/3, 2/3, 1, ∞} 5 9 [5, 7, 10]
lin9 |120 {0, 40, 80, 120, ∞} 5 9 [10]
log9 |1 {0, 1/4, 1/2, 1, ∞} 5 9 [5]
log9 |2 {0, 1/2, 1, 2, ∞} 5 9 [4, 10]
log9 |128 {0, 32, 64, 128, ∞} 5 9 [10]

lin11 |1 {0, 1/4, 1/2, 3/4, 1, ∞} 6 11 [3, 5, 7, 10]
lin11 |200 {0, 50, 100, 150, 200, ∞} 6 11 [10]
log11 |1 {0, 1/8, 1/4, 1/2, 1, ∞} 6 11 [5]
log11 |2 {0, 1/4, 1/2, 1, 2, ∞} 6 11 [10]
log11 |256 {0, 32, 64, 128, 256, ∞} 6 11 [10]

lin13 |1 {0, 1/5, 2/5, 3/5, 4/5, 1, ∞} 7 13 [5, 9]
lin13 |2 {0, 1/4, 1/2, 3/4, 1, 2, ∞} 7 13 [3, 7]
log13 |1 {0, 1/16, 1/8, 1/4, 1/2, 1, ∞} 7 13 [5]

lin15 |2 {0, 1/4, 1/2, 3/4, 1, 3/2, 2, ∞} 8 15 [7]
lin15 |300 {0, 50, 100, 150, 200, 250, 300, ∞} 8 15 [8]
log15 |512 {0, 16, 32, 64, 128, 256, 512, ∞} 8 15 [8]

log17 |8 {0, 1/8, 1/4, 1/2, 1, 2, 4, 8, ∞} 9 17 -

lin19 |2 {0, 1/4, 1/2, 3/4, 1, 5/4, 3/2, 7/4, 2, ∞} 10 19 -
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3.2.4. Choice of Lattice Values and Distribution

The choice of lattice values and their distributions within the SORN datatypes listed in table
3.6 might seem quite random and raise the question how SORN datatypes in general, and the
presented datatypes in particular, are set up. From a general hardware architects point of view,
the datatype is always set up to match a specific application and its data, just like it is done
for standard formats like fixed or floating point, where the format and its bitwidth are chosen
according to the application or system requirements. For the SORN format, however, there
are more parameters to set. The usual approach for setting up a SORN datatype is to start
with the dynamic range required for the target application, which is given by the maximum
non-infinity lattice value. Next, the precision by means of the number of intervals between zero
and the maximum lattice value is set, which defines the bit width of the SORN datatype. In
addition, the interval distribution has to be specified, which can be linear, logarithmic or any
other distribution. The given parameters of dynamic range, precision and distribution can be
varied in order to evaluate on the complexity-performance trade-off within the design space of
the target application. For any application, the best suited SORN datatype can be evaluated
with the automated design flow presented in section 3.3.
Within this work, the log based datatypes like log5 |1 , log9 |2 or log17 |8 are chosen to match the
lattice values and interval distribution of the original unum-based datatypes, in order to ease a
fair comparison between both approaches. In addition, the linear distributed datatypes with a
similar value range are introduced to compare against the log based approach. In the remainder
of this work, those datatypes presented in table 3.6 with a small value range ≤ 3 are used for a
MIMO symbol detection application which will be presented in section 4.2. Those datatypes
with large value ranges > 100 are used for an image processing application, presented in section
4.1. A further customization of the SORN datatypes for specific applications is discussed in
the next section 3.2.5.
In addition to the described, explorative SORN datatype design approach followed throughout
this work, also more theoretically determined datatypes are applicable. One possible approach is
to take into account the statistics of a certain application and to match the interval distribution

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 30
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Figure 3.5.: Probability density function of a noisy, normal distributed BPSK signal, seg-
mented into intervals [x, x] with equal probabilities P (x ≤ x ≤ x) =

∫ x
x p(x)dx.
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of the SORN datatype accordingly. As a brief outlook to section 4.2, the value distribution
for a received signal within a wireless communication system using a binary phase-shift
keying (BPSK) modulation is considered as an example. The transmitted signal of either
−110 or 110 is disturbed by noise during the transmission, resulting in a normal distribution
of the received values, as depicted in figure 3.5. In order to process the received signal with
SORN arithmetic, the datatype could be chosen to contain intervals with an equal probability
P (x ≤ x ≤ x) =

∫ x
x p(x)dx. A possible interval distribution is depicted in figure 3.5 and would

lead to the following 13 bit SORN datatype:

stat13 |3 = {[−∞, −3), [−3, −1.426), [−1.426, −1.129), [−1.129, −0.874),
[−0.874, −0.581), [−0.581, 0), 0, (0, 0.581], (0.581, 0.874],
(0.874, 1.129], (1.129, 1.426], (1.426, 3], (3, ∞]}

(3.6)

According to the notation for SORN datatypes introduced above, this statistically determined
datatype can be labeled as stat13 |3 . In sections 4.2.5 and 4.2.7 evaluations on a SORN pre-
processor for symbol detection in a wireless MIMO system using a BPSK modulation are
presented, which take into account the stat13 |3 datatype in figures 4.12a, 4.12b and 4.18a. The
presented results show that for this particular application and datatype, the statistic approach
does not improve the logarithmic and linear based distributions applied in the remainder of
this work.

3.2.5. Custom Datatypes

As discussed in the previous section, the structure of a SORN datatype and the utilized
lattice values can be chosen and evaluated according to a given application. Even though
the half-open datatype structure from equation (3.3) targets to improve the properties of the
original datatype, further adaptions might be beneficial for certain applications. In general, it
is possible to customize a SORN datatype in any way. The presented half-open structure can
be seen as a customization of the original one, but it can be further adapted. In the following,
the adaptions made to the general half-open datatype structure throughout this work are
discussed. These customized half-open SORN datatypes are listed in table 3.7. The datatype
labels <lin/log,ws>|<max value>

<adaptions> extend the general half-open labels by the adaptions made to
the general structure.

Custom Value Distribution Some of the linear labeled datatypes from table 3.6 are
actually not strictly linear. The datatypes lin13 |2 and lin15 |2 have different lattice value
distributions for 0 ≤ li ≤ 1 and 1 ≤ li ≤ 2. Both distributions can, however, be considered
linear, wherefore the respective datatypes are labeled accordingly. The same holds for the
lin15 and lin17 datatypes from table 3.7.

Exact Values The general half-open datatype structure removes exact values in order
to avoid redundancy when these values are not used without adjacent intervals. For some
applications, however, it can be beneficial to re-introduce single exact values that match the
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Table 3.7.: Overview of the implemented custom half-open SORN datatypes throughout this
work.

label lattice values li N ws adaptions ref.

lin6 |250
nz,nn {0, 50, 100, . . . , 250, ∞} 7 6 no exact zero, no negatives [8]

log10 |256
nn {0, 2, 4, 8, 16, . . . , 256, ∞} 10 10 no negatives [8]

lin11 |250
nz,nn {0, 25, 50, 75, . . . , 250, ∞} 12 11 no exact zero, no negatives [8]

lin13 |1e1/2 {0, 1/4, 1/2, 3/4, 1, ∞} 6 13 exact value 1/2 [3]
lin15 |2e1/2 {0, 1/4, 1/2, 3/4, 1, 2, ∞} 7 15 exact value 1/2 [3]

lin17 |3e1/2 {0, 1/4, 1/2, 3/4, 1, 2, 3, ∞} 8 17 exact value 1/2 [3]
lin17 |2e1/2 {0, 1/4, 1/2, 3/4, 1, 3/2, 2, ∞} 8 17 exact value 1/2 [3]
lin17 |2e1 {0, 1/4, 1/2, 3/4, 1, 3/2, 2, ∞} 8 17 exact value 1 [4]
lin17 |2e1/

√
2 {0, 1/4, 1/2, 1/

√
2, 1, 3/2, 2, ∞} 8 17 exact value 1/

√
2 [7]

application data. The respective datatypes in table 3.7 are labeled < · · · > |e<exact value>. The
following equation (3.7) gives the datatype lin13 |1e1/2 from table 3.7 as an example:

lin13 |1e1/2 = {[−∞, −1), [−1, −3/4), [−3/4, −1/2), −1/2, (−1/2, −1/4), [−1/4, 0),
0, (0, 1/4], (1/4, 1/2), 1/2, (1/2, 3/4], (3/4, 1], (1, ∞]}

(3.7)

No Negatives or Exact Zero Both the original and the general half-open SORN datatype
structures provide a representation for all real numbers between −∞ and +∞. For some
applications, such a coverage is not necessary and can be reduced in order to save bitwidth and
hardware complexity. There are many applications where negative numbers are not required,
for example when representing the pixel values of an image. For such an application, the
SORN bitwidth can be almost halved by removing all negative intervals. In the datatype label
this is indicated with < · · · > |nn for no negatives. In a similar manner, some applications do
not require an exact zero value. This adaption is indicated with < · · · > |nz for no exact zero.
Combinations of these attributes are also possible. Equation (3.8) gives the datatype lin6 |250

nz,nn
from table 3.7 as an example:

lin6 |250
nz,nn = {[0, 50], (50, 100], (100, 150], (150, 200], (200, 250], (250, ∞]} (3.8)
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3.3. Automated Design-Flow

As introduced in the previous section, SORNs are a highly flexible number format. In contrast
to standard formats like integer, fixed point or floating point, bitwidth is not the only adjustable
parameter. Starting from the original SORN version, the choice of lattice values offers a certain
amount of flexibility when designing a SORN datatype for a specific application. Applying
the half-open or customized datatypes enables an even higher level of flexibility, not only by
the choice of lattice values, but also by their distribution, possible single exacts and present
or absent zero, infinity or negative values. The overall goal of the SORN design process is
to find the best-suited SORN datatype for a specific algorithm, which delivers meaningful
results while maintaining a reasonable amount of hardware resources. Performing this design
space exploration can be a tedious task, especially when all the different designs have to be
implemented manually. In order to perform this task in a reasonable amount of design time,
an automation of the process is indispensable.

Design-Flow The general SORN design flow, which is developed and used throughout this
work, is depicted in figure 3.6 and will be presented in the following.

1. As for any digital design process, the starting point is a specified algorithm for a
dedicated application. In addition, a datatype has to be set up, which should be tailored
towards the algorithm or application and its input and output data, for example by
setting an appropriate dynamic range or matching regular input values.

2. The next step is to create the SORN arithmetic LUTs for the chosen datatype and all
the operations and functions that are required for the specified algorithm.

3. The LUTs are implemented on register-transfer level (RTL) using AND and OR gates, as
described in section 3.1.2 and shown in figure 3.2. This results in single RTL modules
for every required operation.

4. According to the algorithm, the RTL modules for the different arithmetic operations are
connected to form the entire SORN datapath.

By performing the described steps, a single SORN design can be created for the specified
algorithm. Repeating the design process and evaluating the resulting datapaths regarding
algorithmic and hardware performance for different SORN datatypes leads to an explored
design space and eventually to the best-suited configuration for the specified application
problem.

Automation The described SORN design space exploration may require a lot of effort
when all the required steps of LUT, RTL and datapath generation have to be carried out
manually for various datatypes. In order to facilitate this design process, a python tool for the
automated generation of SORN datapaths was created. This "SORN Hardware Generator"
[5] is an open source python tool, available on GitHub [Bär19]. The tool delivers not only
the SORN arithmetic LUTs and respective RTL modules per datatype and operation, but
also connects these modules to a complete SORN datapath, including an automated pipeline
register insertion. The target algorithm, the SORN datatype and the pipeline configuration
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Datatype

(lN−2, ∞][−∞, −lN−2)

0

(lN−3, lN−2]

(0, l1]

[−lN−2, −lN−3)

[−l1, 0)

. . . . . .

Algorithm

01: # set algorithm
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Figure 3.6.: Proposed SORN design flow, starting from the datatype and algorithm specifica-
tion to create the required arithmetic LUTs and respective RTL modules, and
eventually set up the entire datapath.

together form the input specification for the tool, which will be discussed in the following
section 3.3.1. A detailed explanation of the SORN LUT generation and the template-based
synthesis of the corresponding RTL descriptions is given in sections 3.3.2 and 3.3.3, respectively.
Implementation details on the final step, the automated generation of the entire datapath, are
not discussed, since this is not a primarily contribution of the author. Details on this part can
be found in [5].

3.3.1. Algorithm and Datatype Specification

The input of the SORN Hardware Generator tool is a specification file which includes

1. the name of the top level RTL design,

2. the SORN datatype,

3. the number of required pipeline registers and

4. the targeted arithmetic algorithm.



68 Chapter 3. SORN: Sets Of Real Numbers

An example for such an input file is given in listing 3.1. The top level name is indicated with
the keyword @name, followed by the SORN datatype, indicated by the keyword @datatype.
The configuration offers three different kinds of datatypes: The first configuration is a half-open
datatype with a linear lattice value distribution, as introduced in section 3.2.3. The definition
reads as follows:

['lin', '[<start>,<stop>,<step>]','zero', 'negatives', 'infinity']

The first keyword introduces the distribution, followed by the definition of lattice values. The
<start> value sets the smallest lattice value (typically zero), the <stop> value the largest
non-infinity one. The value of <step> defines the step size between the start and stop values.
Following the lattice value definition, the three options for an exact zero, negative values and
an infinity lattice value are set. An inclusion of the respective keyword sets the corresponding
option. Any combination of the keywords is possible. The example in listing 3.1 sets a datatype
with linear distributed values between zero and one with a step size of 0.25, an exact zero and
an infinity value. This corresponds to the lin11 |1 datatype from table 3.6 and equation (3.4),
but without negative values.
The second possible datatype configuration is a half-open datatype with a logarithmic lattice
value distribution, also introduced in section 3.2.3. The definition

['log', '[<start>,<stop>]','zero', 'negatives', 'infinity']

is similar to the linear one, the only difference is that the <step> parameter is not required.
The datatype is built with lattice values between 2<start> and 2<stop>, followed by the three
optional parameters which serve the same purpose as for the linear distribution.
Finally, the third possible datatype configuration is fully manual and reads as follows:

['man', '{<element1>;<element2>;...}']

With this configuration, every element of the datatype can be defined as exact value, open or
half-open interval with a customized lattice value spacing, using the respective round or square
brackets. All regular linear or logarithmic datatypes can also be specified with this manual

Listing 3.1 Specification file for the SORN Hardware Generator tool [Bär19, 5].
1 # 1/ set file name
2 @name top_level
3

4 # 2/ set datatype
5 @datatype ['lin', '[0,0.25,1]', 'zero', 'infinity']
6

7 # 3/ set number of pipeline stages
8 @pipeline 1
9

10 # 4/ set equation(s)
11 z1 = x1 + x2
12 z2 = x3 + x4
13 z = z1 * z2
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option. Further, this configuration can also be used to define the customized datatypes from
table 3.7, the original datatypes from table 3.4, or any other SORN datatype.
The third specification in the input file is the number of required pipeline registers to be
inserted in the datapath. This option is set by the keyword @pipeline which can be followed
by any integer value ≥ 0. The pipeline stages are automatically placed between two SORN
LUT blocks in the top level architecture, targeting an equal distribution within the datapath.
The fourth and last specification is the targeted arithmetic algorithm. The algorithm is
specified with single equations, where every input, intermediate value and output is given as a
labeled variable. Since the equations are interpreted with the numpy package in python, all the
arithmetic operations and functions available in numpy can be used. The tool automatically
detects those variables corresponding to an input and output. These are added to the entity of
the final RTL top level architecture. For every equation in the specification file, a submodule
is created and instantiated in the top level.

3.3.2. LUT Generation

For every arithmetic operation and function from the algorithm specified in the input file, a
SORN LUT object is created within the tool. The inputs of this LUT generation process are
the number of operands, the operation or function, and the SORN datatype. In a first step,
the decimal LUT is created and stored with floating point values. The inputs of the LUT are
the elements of the specified datatype, which can be either exact values, open, half-open or
closed intervals. Internally, exact values are handled as closed intervals with the same lower
and upper boundary x = x, in order to handle calculations with both exact and interval inputs.
The results for the LUT are obtained by following the rules of interval arithmetic, which are
discussed in section 2.5. In particular, two-input operations are implemented according to
equation (2.45), single-input operations according to equation (2.51). Therefore, the tool is
limited to monotonic single-input functions. These functions, however, can also be piece-wise
monotonic, as long as the interval boundaries wherein they are monotonic, are also present as
lattice values in the defined datatype. Considering the function f(X) = X2 with the interval
input X, defined according to equation (2.44), f can be considered monotonic decreasing for
x ≤ 0 and monotonic increasing for x ≥ 0. Consequently, as long as 010 is a lattice value within
the datatype, the function can be evaluated correctly.
All previously discussed interval arithmetic operations are defined for closed intervals. Since
the presented SORN datatypes from section 3.2 can contain any combination of closed, open
or half-open intervals, the open/closed boundary conditions for the LUT outputs also have to
be considered when calculating the respective results as discussed before. Therefore, whenever
a LUT output is calculated according to equation (2.45) or (2.51), the corresponding boundary
condition is also taken into account. For single-input operations, the input condition can be
simply forwarded to the output. For two-input operations, the output boundary is open if at
least one of the operand boundaries is open. This corresponds to a Boolean OR operation
between the operand boundaries, where the open condition is encoded as a 12 and the closed
condition as a 02.
Once the LUT is set up with float intervals and corresponding interval boundaries, every entry
is converted into binary SORN representation. This is done by iterating over all elements of
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the defined SORN datatype. If the current float output interval entirely or partly matches
with an element of the datatype, the respective SORN bit is set to 12. After all elements of
the datatype are iterated, the SORN result is stored in a binary LUT. This float-to-SORN
conversion includes a certain rounding, since the float results are mapped onto the predefined
intervals of the SORN datatype. For example, consider the lin11 |1 datatype from equation
(3.4) and the single-input operation f(X) = X2. When creating the float LUT entry for the
datatype element X = (1/2, 3/4], the output is

f ((1/2, 3/4]) = (1/2, 3/4]2 = (1/4, 9/16] (3.9)

which is not an element of the SORN datatype. When converting this result to a binary SORN
value, the output yields a SORN result with a rounded upper boundary:

000000011002 = (1/4, 3/4] (3.10)

After all entries of the float LUT are converted to binary SORN representation with the
described method, the LUT is structured like the one depicted in table 3.3 and can be
implemented on RTL.

3.3.3. RTL Implementation

The RTL implementation of the previously defined SORN LUTs per arithmetic operation
is realized with the help of predefined VHDL templates, which are customized according
to the respective operation. These templates include generic building blocks like an entity,
architecture, signal declaration and assignment, etc., and are customized with the user-defined
parameters like the operation name and the bitwidth of the datatype. The main part to be
customized by the tool, however, is the implementation of the functionality by means of the
bit assignments to encode the binary SORN outputs of the LUT. These bit assignments are
realized with AND and OR operations, in order to describe a logic circuit with the structure
shown in figure 3.2. Such a circuit does not only consider one-hot inputs, as a single instance
of the LUT does, but every possible combination of input bits.
For the creation of this logic-level description, the tool iterates over all the ws bits in the SORN
datatype, and for every bit a loop over both operands x and y is performed. Whenever the
LUT output for the current operand combinations has a 12 at the position ws, an AND of
the two corresponding operand bits is added to the VHDL template. Every instance of (xi

AND yj) is separated with an OR. This algorithm is described in listing 3.2 with python-style
pseudo code. As an example, the generated VHDL description for the bit z5 from table 3.3
and figure 3.2 would read as follows:
result(5) <= (x(0) AND y(6)) OR (x(1) AND y(6)) OR ... OR (x(7) AND y(7));

Such a line is created for every bit of the output and added to the VHDL template. The result
of this process is a VHDL-based RTL description per required arithmetic operation, specified
in the arithmetic algorithm, as described in section 3.3.1. These arithmetic SORN building
blocks are then instantiated within a top level module to form the entire datapath, realizing
the specified algorithm. Details on this last part of the SORN Hardware Generator tool are
described in [5].
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Listing 3.2 Python-style pseudo code for the template-based creation of VHDL files for
implementing the SORN LUTs [Bär19].

1 # loop over bits in datatype
2 for bit in range(0,len(SORNdatatype)):
3 vhdlSTR = "result(" + str(bit) + ") <= "
4 # loop over values in operand 0
5 for op0 in range(0,len(SORNdatatype)):
6 # loop over values in operand 1
7 for op1 in range(0,len(SORNdatatype)):
8 currentSORNresult = LUT.resultSORN[op0][op1]
9 # write resulting assignment

10 if currentSORNresult[bit] == 1:
11 if not isFirstAssignment:
12 vhdlSTR = vhdlSTR + "OR "
13 vhdlSTR = vhdlSTR + "(x(" + str(op0) + ") AND y(" +

str(op1) + ")) "↪→

14 # write end of line
15 if op0 == len(SORNdatatype)-1:
16 vhdlSTR = vhdlSTR + ";\n"
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3.4. Hardware Complexity

One of the main motivations for the development of type-II unums and SORNs is the difficult
design process and the high hardware complexity when implementing type-I unums [Gus16].
Therefore some properties are aimed for when developing the SORN format, namely a high
energy efficiency, a high speedup compared to legacy formats, and a regular arithmetic structure,
leading to a simplified design process and equally complex circuits. The presented automated
design flow for SORN arithmetic including the generation of dedicated RTL descriptions for
different SORN operations contributes to such a simplification of the design process. However,
the choice of the SORN datatype is still up to the designer and has to be evaluated according
to a specific application. The different SORN applications presented in chapter 4 therefore
include evaluations on architectures utilizing different SORN datatypes, as well as comparisons
to reference implementations.
This section discusses an application-independent evaluation of the hardware complexity of
SORN modules for basic arithmetic operations, namely addition and multiplication. On top of
comparing these two operations, various SORN datatypes are evaluated against each other,
as well as against integer/fixed point reference modules. The following datatype classes are
considered in this evaluation:

• Unum-based SORN: The evaluation includes circuits for the unum-based SORN
datatypes unum8 - unum17 from table 3.4. The circuits for unum8 and unum16 are
implemented as parallel instances of the respective one-hot SORN LUTs whose outputs
are combined with OR gates in order to allow multiple-hot inputs, as proposed in [Gus16]
and described in section 3.1.2. The circuits for unum9 and unum17 are implemented
with the SORN Hardware Generator described in section 3.3.

• Half-open SORN: The evaluation further includes circuits for various half-open and
custom SORN datatypes from tables 3.6 and 3.7 with widths of 5, 9, 11, 13 and 17 bit,
all implemented with the SORN Hardware Generator.

• Integer/fixed point: In order to compare the SORN modules against a reference design,
the evaluation includes circuits for integer/fixed point addition and multiplication for all
utilized SORN bitwidths 5, 8, 9, 11, 13, 16 and 17. Addition is implemented as ripple-carry
adder. For the implemented array multipliers, the output is rounded to the respective
input bitwidth in order to make a fair comparison to the SORN modules.

All implemented RTL modules were synthesized for a 28 nm CMOS SOI technology from
STMicroelectronics (STM) using Genus Synthesis Solution software from Cadence. The target
frequency is set to 1 GHz. The synthesis results for area utilization, critical path delay and
power consumption are presented in figures 3.7 and 3.8 for the addition and multiplication
modules, respectively. These results will be analyzed in detail in the following. The exact
results can also be found in the appendix B.1 in table B.1. Note that some of the SORN
modules for different datatypes but same bitwidths show equal results, because their circuits
are identical.
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Figure 3.7.: Synthesis results for addition components without pipeline stages for f = 1 GHz
and CMOS 28 nm technology.
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Figure 3.8.: Synthesis results for multiplication components without pipeline stages for
f = 1 GHz and CMOS 28 nm technology.
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3.4.1. SORN vs. Integer/FxD

Before comparing the hardware performance of the different SORN datatypes against each
other, it is essential to investigate whether the SORN format in general can compete with or
even outperform classical number formats in terms of hardware measures, as it was aimed for.
Therefore the implemented SORN modules are compared against a standard signed integer
arithmetic, which is also capable of handling fixed point numbers. Among the standard formats,
integers are considered the least complex.
Evaluating on the synthesis results displayed in figures 3.7 and 3.8, it can be generalized that
SORNs outperform integers in all but one category, which is the area utilization of the addition
components. Here the respective integer design is always smaller than the SORN design of the
same bitwidth, on average the SORN modules more than double the integer area utilization.
However, this larger area does not lead to a longer critical path or a higher power consumption
of the SORN addition modules, compared to integer. On the contrary, except for 5 and 8 bit,
all SORN components show a lower power consumption than the integer reference of same
bitwidth. With increasing bitwidth, this difference between SORN and integer also increases
towards halving the integer power consumption for the 17 bit case. For the critical path delay,
the gap between SORN and integer is even larger. For small bitwidths, the SORN components
are nearly twice as fast as the integer ones, which increases even more towards 17 bit.
Considering the multiplication modules, the gap between integer and SORN is even larger.
While the SORN modules show a moderate area increase for growing bitwidths, the integer
area utilization grows much more rapidly. For 5 bit, the integer area compares to SORN by a
factor of almost 4, which increases even more for higher bitwidths. A similar behavior can be
observed for the power consumption, ranging from a factor of 4 to almost 7 when comparing
integer to the worst SORN module per bitwidth. Finally, the critical path delay for the integer
multiplication is between 2 and 3 times longer than for the corresponding SORN module.
It has to be noted that this evaluation considers only the hardware aspects of the presented
designs. From an algorithmic point of view, a bitwise comparison between integer and SORN
arithmetic blocks is hardly fair, because the two formats follow completely different approaches
and differ in attributes like precision, dynamic range, or interval and set representation. In
chapter 4 application specific SORN implementations are therefore compared to reference
designs on both hardware and algorithmic performance to determine their suitability.

3.4.2. SORN vs. SORN

After showing how SORN hardware behaves in comparison with integers, it is interesting to
evaluate the performance among the various SORN datatypes. This comparison is manifold
and therefore split into the following subgroups.

Unum-based vs. unum-based To begin with, the datatypes unum8 and unum16, imple-
mented as parallel one-hot LUTs, are compared against unum9 and unum17, implemented as
pure logic gates with the SORN Hardware Generator. For both addition and multiplication,
the area utilization of unum8/16 is higher than for unum9/17, by an average factor of 2. For
the path delay, an opposite behavior can be observed. Here the unum9/17 datatypes show an
average delay increase of factor 1.3 compared to unum8/16. For the power consumption, only
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the 8 and 9 bit datatypes differ noticeable, by a factor around 1.5 in favor for unum9. For the
higher bitwidths, only a very small difference of around 2% - 4% is visible. Considering all
three measures combined, it can be stated that the unum9/17 datatypes perform better than
unum8/16. In detail, the area-power-timing (APT) product of unum8/16 increases by a factor
between 1.7 and 2, compared to unum9/17. This shows that the SORN logic for multiple-hot
inputs is more efficient than the parallel one-hot LUT implementation.

Unum-based vs. half-open The next step in the evaluation is to compare the unum-based
with the half-open SORN datatypes. For this comparison, two approaches can be followed:

1. Same bitwidth: The more intuitive way is to compare unum-based against half-open
linear and logarithmic datatypes with the same bitwidth, considering those datatypes
containing lattice values within the same range. When comparing unum9 with the
different lin/log9 datatypes for addition, leaving out lin9 |120 and log9 |128 , it can be
observed that the area utilization is about 20% lower for the unum-based module, while
delay and power consumption are almost equal. For 9 bit multiplication, all three
measures are also on a similar level, with some small outliers in both directions, resulting
from the different half-open modules.
For 17 bit addition, the half-open datatype log17 |8 shows slightly better results than
unum17, with the highest difference in the power consumption, which is reduced by
about 25%. For 17 bit multiplication, unum17 has a 30% lower area and 25% lower
power consumption than log17 |8 , but also an about 20% longer path delay. In general,
in can be concluded that unum-based and half-open datatypes of same bitwidth show a
comparable hardware performance with some outliers in both directions.

2. Same lattice values: One could argue that comparing unum-based and half-open
datatypes with the same bitwidth is not fair, because the half-open datatypes have a
higher dynamic range and precision, because they leave out exact values and utilize more
lattice values at the same bitwidth. The second approach is therefore to compare those
datatypes that utilize the same lattice values. In this evaluation, this would be unum8/9
vs. log5 |1 and unum16/17 vs log9 |2 . Consequently, the log17 |8 datatype would actually
compare to unum32/33, which was not considered here.
Following this approach for comparison, the half-open datatypes easily outperform the
unum-based ones in all measures, especially for the area utilization, which is more than
halved for all configurations.

Half-open vs. half-open Figures 3.7 and 3.8 cover different linear, logarithmic and custom
half-open datatypes per bitwidth. Differences among these will be analyzed in the following,
separated into three categories:

1. Linear vs. logarithmic: Both linear and logarithmic datatypes are implemented for
9, 11 and 13 bit. The evaluations show no results that indicate one of the two options to
be advantageous in terms of hardware performance. For multiplication, it even turns
out that the circuits for lin9 |120 and log9 |128 are identical, as well as the circuits for
lin11 |200 and log11 |256 .
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2. Small vs. large lattice values: For addition, the choice of small or large lattice values
does not have an influence on the hardware performance. For multiplication, however,
those datatypes with large lattice values show a much better hardware performance for
all measures. The reason is that for multiplication with large values, most results utilize
solely the infinity interval which simplifies the circuit, whereas multiplication with values
around 110 stays in that range and utilizes more SORN bits.

3. Lin/log vs. custom: Considering the two custom datatypes, it can be observed that an
exact value as in lin13 |1e1/2 does not have a major impact on the hardware performance,
whereas leaving out negative values as in lin11 |250

nz,nn drastically improves the hardware
performance for multiplication.

Addition vs. Multiplication Finally, the initial goal of equally complex arithmetic opera-
tions with SORNs needs to be evaluated. Analyzing the results from figures 3.7 and 3.8, as
well as table B.1, it can be observed that for the unum-based datatypes, not equal but similar
results are obtained, even for both implementations methods. For the half-open datatypes, this
does not apply. Except for 17 bit, all half-open multiplication modules show a lower area than
the addition ones, especially noticeable for datatypes with large lattice values, as discussed
above. In contrast, for datatypes with small lattice values the power consumption is noticeably
higher for multiplication.
In conclusion, the hardware performance of the operation blocks created with the SORN
Hardware Generator is highly datatype and operation dependent and does not provide equally
complex operation blocks.
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3.5. Fused SORN Arithmetic

For traditional number formats like floating point, the main reason for accuracy degradation
during computation is the accumulation of rounding errors. The term accuracy can hereby
be defined as the distance of a computed result to the actual correct value, obtained with
infinite precision. Despite rounding, also under- and overflow, as well as the applied precision
affect the accuracy of a single-valued number system like floats [Gol91]. In most cases, when
sufficient precision is applied, the accumulated rounding error is rather small compared to the
computed values and does not have a large impact on the outcome of a computation. However,
due to some cases where actual accidents happened because of rounding errors [Szp13], and to
address the accuracy requirements of some applications like scientific computing, the reduction
of rounding errors for floating point arithmetic is still a major issue. A commonly used
approach to achieve this reduction is the implementation of fused operations, where multiple
arithmetic operations are mapped into a joint function block. A prominent example for a
fused floating point operation is the fused multiply-add (FMA) or multiply-accumulate (MAC),
which is included in the IEEE-754 standard [IEEE08]. For such a fused operation, rounding is
performed only at the end, omitting the rounding of the intermediate result and reducing the
accumulated error. The following definition of a fused operation will be used throughout this
work, independent of the number system.

Definition 3.5.1. A fused operation is an expression containing two or more mathematical
operations that is evaluated exactly and converted back to the machine-representable form
only at the end [9].

For SORN arithmetic, accuracy degradation during computation is a challenge as well, but
with another definition of the term accuracy. As described in section 2.5, for interval arithmetic
number formats, the distance of the two interval bounds, also called the diameter of the
interval, is used as a measure for accuracy. For SORNs, the width of a represented interval
can be measured by the number of consecutive 12 bits. The most accurate case is a one-hot
SORN value, representing only one interval from the specified datatype, whereas the least
accurate case with all bits set to 12 usually represents the unspecific interval [−∞, ∞] (if
infinity and negative values are included in the datatype). Complex SORN computations can
accumulate to such wide intervals which lack of usability. Consequently, improving the accuracy
of SORN arithmetic operations means reducing the interval growth during computation. As
with traditional formats like floats, this can be achieved with fused arithmetic, where multiple
operations are combined in one SORN LUT without intermediate quantization, according
to the definition 3.5.1 given above. The following sections will introduce and evaluate fused
SORN arithmetic for single-, two- and three-input operations.
From an implementation point of view, SORNs are highly suited for fused arithmetic, since the
software-defined SORN LUT generation can be easily adapted for more complex operations as
well. For the process described in section 3.3.2, the arithmetic operation has to be changed
from a single operation like x × y to a more complex function like (x × y)2. Since the LUT
entries are computed as floats before they are converted to SORN, the general structure of the
LUT and the resulting RTL description do not change. With some further adaptions to the
tool, this process can also be used to generate SORN LUTs for three-input fused operations.
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3.5.1. Single- and Two-Input Fused Operations

The previously mentioned process of growing SORN intervals can be best explained with an
example [9]. Consider the operation (x × y)2, composed of two-input multiplication followed
by a single-input square operation. Tables 3.8a and b show the SORN LUTs for multiplication
and squaring, using a 5 bit half-open SORN datatype with values between 010 and 110, which
is an extract from the lin13 |1 datatype from table 3.6. With this LUTs, the datapath of
the squared multiplication operation can be set up. The upper half of figure 3.9 shows this
non-fused operation for the two input values x and y:

x = 000102 = (3/5, 4/5]
y = 000012 = (4/5, 1]

(3.11)

After multiplication, the intermediate SORN result is quantized from the true mathematical
product x × y = (12/25, 4/5] to the SORN representable interval (2/5, 4/5], including an overesti-
mation of (2/5, 12/25]. The two intervals from the intermediate result (2/5, 3/5] and (3/5, 4/5] are

Table 3.8.: LUTs for the SORN operations (a) multiplication and (b) square, fused to (c) the
LUT for the square of two multiplied operands [9]. All LUTs use a 5-bit SORN
datatype which is extracted from the lin13 |1 datatype from table 3.6.

x × y
(0 , 1

5 ] (1
5 , 2

5 ] (2
5 , 3

5 ] (3
5 , 4

5 ] (4
5 , 1]

x2

10000 01000 00100 00010 00001

(0 , 1
5 ] 10000 10000 10000 10000 10000 10000 10000

(1
5 , 2

5 ] 01000 10000 10000 11000 11000 11000 10000
(2

5 , 3
5 ] 00100 10000 11000 11000 01100 01100 11000

(3
5 , 4

5 ] 00010 10000 11000 01100 01110 00110 01110
(4

5 , 1] 00001 10000 11000 01100 00110 00011 00011

(a) (b)

(x × y)2 (0 , 1
5 ] (1

5 , 2
5 ] (2

5 , 3
5 ] (3

5 , 4
5 ] (4

5 , 1]

10000 01000 00100 00010 00001

(0 , 1
5 ] 10000 10000 10000 10000 10000 10000

(1
5 , 2

5 ] 01000 10000 10000 10000 10000 10000
(2

5 , 3
5 ] 00100 10000 10000 10000 11000 11000

(3
5 , 4

5 ] 00010 10000 10000 11000 11100 01110
(4

5 , 1] 00001 10000 10000 11000 01110 00111

(c)
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Figure 3.9.: Non-fused and fused SORN squared multiplication example for the 5-bit SORN
datatype from table 3.8.

squared individually, followed by an OR operation to compute the final result (0 , 4/5]. Since the
overestimation from the multiplication is propagated, this result includes the interval (0 , 1/5],
which would not be required to represent the true result (144/625, 16/25] with the available SORN
datatype.
Table 3.8c shows the SORN LUT for the fused operation (x × y)2 with the same 5 bit datatype.
The fused version of the above described example is depicted in the lower half of figure 3.9. Both
show that when using a fused SORN operation, the result is (1/5, 4/5] and does not contain the
unnecessary interval (0 , 1/5], therefore increasing the accuracy. This behavior can be observed
for in total 4 of the possible 25 one-hot input cases for the given operation and datatype.
In the following, this approach of fusing single- and two-input SORN operations is evaluated
for a set of basic operations, as well as for the more complex hypot and swish functions, and
two polynomials of second and third order. As a measure for accuracy, the interval or output
bitwidth is used, which means the number of consecutive 12 in the SORN result. In addition,
all evaluations also take into account the hardware results of the synthesized non-fused and
fused designs, using 28 nm CMOS SOI technology from STM.

Basic Operations In order to evaluate this fused approach on a quantitative basis, the
twelve functions depicted in table 3.9 are implemented and evaluated as both non-fused and
fused version for the lin13 |1 SORN datatype from table 3.6. Each operation is composed of
either two-input addition (1-6) or multiplication (7-12), combined with one of the single-input
functions square, square root or the exponential function. An even index represents single-input

Table 3.9.: Basic operations evaluated for two-input fused and non-fused implementations [9].

1 2 3 4 5 6

(x + y)2 x2 + y
√

x + y
√

x + y ex+y ex + y

7 8 9 10 11 12

(x × y)2 x2 × y
√

x × y
√

x × y ex×y ex × y
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followed by two-input operations, an odd index represents the opposite. The results of this
evaluation are depicted in figure 3.10. The synthesis results are given as APT product, the
accuracy as mean interval width of the output SORN. The mean is hereby obtained from the
results of all possible 132 one-hot input combinations during RTL simulation. Note that for the
square-root-based operations 3, 4, 9 and 10, only zero or positive input values were considered.
The primary goal of introducing fused operations is to improve the output accuracy by reducing
the interval width. Considering the results from figure 3.10, it can be observed that all evaluated
fused designs show an accuracy improvement over the respective non-fused design, except
for the operation with index 3, where the accuracy is equal for both designs. The highest
reductions of the interval width are achieved for the operations with indices 6 (22%), 9 (24%)
and 12 (28%), respectively. For all operations that include addition (indices 1-6), the mean
improvement is 6.2%, for the multiplication operations (indices 7-12) the mean improvement
is 11.8%. Taking into account those operations where a two-input operation is followed by a
single-input (odd indices), the mean improvement is 7.1%. For the opposite operation order
with even indices, the mean improvement is 10.9%.
Considering the hardware results, even higher improvements can be observed. The highest are
achieved for the operations with indices 7 (88%) and 11 (77%), respectively. However, there
are also two cases where the APT product is larger for the fused implementation, compared to
the non-fused version. In particular, for the operations with indices 6 and 12, the fused APT
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Figure 3.10.: APT product vs. mean interval width for the basic operations from Tab. 3.9,
implemented as non-fused (nf) and fused (f) version for the lin13 |1 datatype
from table 3.6 [9].
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product is larger by 11% and 21%, respectively. Yet, for all operations that include addition
(indices 1-6), still a mean APT product improvement of 22.5% can be achieved for the fused
designs. For the multiplication operations (indices 7-12) the improvement is even higher with
41.7%. Comparing again two-input operations followed by a single-input (odd indices) with
the opposite order (even indices), the mean improvements are 51.2% and 13%, respectively.
As a general conclusion, it can be stated that all fused designs achieve an improved performance
for at least one of the evaluation measures, in most of the cases even for both. In addition, the
multiplication-based operations show higher improvements than the addition-based ones for
both evaluation measures.

Hypot and Swish Function In order to consider functions that combine more than two
arithmetic operations, the two-input hypot and the single-input swish functions

hypot(x, y) =
√

x2 + y2 (3.12)

swish(x) = x

1 + e−x
(3.13)

are evaluated in a similar manner as the basic operations before. The hypot function is widely
used in signal processing applications like the computation of 2-dimensional Euclidean distances
or in image processing [SB11], and is even included in the 2008 version of the IEEE-754 standard
[IEEE08]. The swish function is used as activation function in deep neural networks [RZL17].
Both functions are composed of one two-input and three single-input operations, which are
fused into one block, as depicted in figure 3.11.

x + y

x2 x2

√
x

√
x2 + y2

(a)

x
y

−x

ex

1 + x

x
1+e−x

(b)

Figure 3.11.: Non-fused (top) and fused (bottom) block diagrams of the RTL designs for the
(a) hypot and (b) swish function [9].
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Table 3.10.: Mean output interval width of the SORN result and 28 nm CMOS synthesis
results for fused and non-fused two-input hypot and swish functions [9].

hypot(x, y) swish(x)

non-f. fused non-f. fused

mean int. width [bit] 2.610 1.544 4.077 1.923

C
M

O
S

area [µm2] 36.067 26.765 22.358 22.522

power [µW] 11.168 6.900 4.985 4.510

timing [ns] 0.327 0.309 0.433 0.247

APT product 131.714 57.066 48.260 25.089

Similar to the basic operations, the two functions are evaluated for both accuracy and hardware
performance. For the accuracy the mean output interval width is obtained from RTL simulations
for all possible one-hot inputs for the applied lin13 |1 datatype, which are 132 different inputs
for the hypot and 13 for the swish function. The results are given in table 3.10, together with
the hardware measures, obtained from a 28 nm CMOS synthesis. Similar to the basic operation
evaluation, it can be observed that the fused implementations outperform their non-fused
counterparts in both accuracy and hardware performance. In detail, the fused hypot function
shows an accuracy and APT product improvement of 41% and 57%, respectively. For the fused
swish function, the improvements are 53% for the accuracy and 48% for the APT product.

Polynomials Polynomial functions are another interesting use case for fused SORN arith-
metic since they are often used as benchmarks for performance evaluations and state-of-the-art
comparisons for different computing environments, for example scientific extensions for floating
point [HHKR12], or type-I and type-III unums [Gus15, Gus17]. With SORNs, solving poly-
nomial functions, i.e. determining their roots, differs from standard algorithms with classical
number formats because of the limited precision of SORN environments. SORNs can be used in
a preprocessing step to determine possible solution candidates or start values for optimization
algorithms, which are subsequently evaluated in another number format. This approach is also
used for the SORN MIMO symbol detection which will be discussed in chapter 4. Essentially,
for determining the roots of a polynomial using SORN arithmetic, the binary SORN output is
calculated for every possible one-hot input value from the chosen datatype. Those input values
leading to a result containing the zero bit set to 12 are considered as solution candidates.
In the following two different polynomial benchmarks with one variable and orders 2 and 3 are
considered:

p2(x) = 2 x2 + 0.5 x − 0.25 (roots: −0.5, 0.25)
p3(x) = x3 − 1.5 x2 + 0.75 x − 0.125 (root: 0.5)

(3.14)

The polynomials are implemented as both non-fused and fused design for the lin19 |2 datatype
from table 3.6. Table 3.11 shows the mean output interval width and number of solution
candidates after SORN processing for both polynomials from Eq. (3.14), as well as their
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Table 3.11.: Mean output interval width of the SORN result, number of solution candidates,
and 28 nm CMOS synthesis results for second and third order polynomials.

p2(x) p3(x)
non-f. fused non-f. fused

mean int. width [bit] 4.684 3.158 8.211 5.579

solution candidates 5 3 11 7

C
M

O
S

area [µm2] 66.749 63.158 296.534 239.578
power [µW] 9.315 7.598 38.150 25.465
timing [ns] 0.397 0.387 0.786 0.737
APT product 246.842 185.711 8891.839 4496.329

respective 28 nm CMOS synthesis results. For the second order polynomial p2(x) the output
interval width is reduced by 33%, the number of solution candidates improves from 5 to 3, and
the APT product is reduced by 25%. For the third order polynomial p3(x) the output interval
width reduction is by 32%, the number of solution candidates improves from 11 to 7, and the
APT product is almost halved (49% reduction).

3.5.2. Three-Input Fused Operations

The results from the previous section show that fused SORN arithmetic can improve both
the accuracy and the hardware performance for single- and two-input SORN operations.
Consequently, this approach is to be evaluated for three-input operations as well. The most
widely used fused operation in digital signal processing with standard formats is the three-input
fused multiply-add (FMA) operation (x × y) + z. Figure 3.12 shows an example for this

×

+

x = 0000100
(0, 1.5]

y = 0000010
(1.5, 3]

z = 0100000
[−3, −1.5)

0000111
(0, ∞] 0111111

[−3, ∞]

FM
A

0111110
[−3, 3]

non-fused
fused

Figure 3.12.: Non-fused and fused SORN multiply-add example for the lin7 |3 datatype from
table 3.6 [10].
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operation carried out with SORN arithmetic using the lin7 |3 datatype from table 3.6 for both
non-fused and fused implementations with the following inputs:

x = 00001002 = (0, 1.5]
y = 00000102 = (1.5, 3]
z = 01000002 = [−3, −1.5)

(3.15)

The upper half of figure 3.12 shows the non-fused case where the intermediate true multiplication
result (0, 4.5] is quantized to the SORN interval (0, ∞], before z is added, leading to the final
result [−3, ∞]. The lower half of figure 3.12 shows that when the intermediate quantization can
be avoided with the fused operation, the true output [−3, 3] can be achieved, which corresponds
to an improvement of the output accuracy.
In the following, the three-input fused SORN approach is evaluated for three different arithmetic
operations, namely three-input addition x + y + z, multiplication x × y × z, and multiply-
add (MA) (x × y) + z, each implemented as non-fused and fused version. The evaluation
includes designs for in total twelve different SORN datatypes per operation. In detail, four
7, 9 and 11 bit datatypes from table 3.6 are used, each with either a linear or logarithmic
value distribution and with small or large lattice values. The evaluation covers accuracy and
hardware results individually, as well as in a combined analysis.

Accuracy Results The accuracy results in terms of the mean output interval width per
operation and datatype are given in figure 3.13. The results are obtained from RTL simulations

0 1 2 3 4
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Figure 3.13.: Mean output bitwidths for non-fused and fused three-input addition, multi-
plication and multiply-add, evaluated for one-hot input values. The output
bitwidth reduction for fused operations per datatype is given in % [10].
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for all possible one-hot input combinations without infinity intervals, leading to (ws − 2)3

possible input combinations per datatype. The graph also includes the reduction of the interval
width in % for every fused designs, compared to its non-fused equivalent.
The highest improvements are achieved for multiplication with up to 28.8% reduction, followed
by multiply-add with up to 15.5%. The improvement for the fused three-input addition with
up to 7.6% is rather moderate. Except for multiplication, the improvements scale with the
bitwidth of the SORN datatype. Another interesting observation is that for all operations
with at least one multiplication, the improvement for datatypes with larger lattice values is
much higher. One multiplication and five multiply-add cases even show no improvement, all
for datatypes with small lattice values up to 110 or 210. The reason is that multiplication
with values ≤ 110 stays in that range and does not lead to infinity intervals, which is why
the small-value datatypes show a lower interval width in general. Since there are less infinity
interval cases that can be avoided with fused operations, the improvement is also smaller.

Hardware Results Figure 3.14 shows the area utilization and power consumption for a
28 nm CMOS synthesis of all fused and non-fused designs for a target frequency of f = 1 GHz.
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Figure 3.14.: Synthesis results for non-fused and fused three-input addition, multiplication
and multiply-add, for 28 nm CMOS with f = 1 GHz [10].
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The path delay is not shown because the fused path delay is equal to the non-fused one for 2/3

of the evaluated cases. For the remaining 1/3, the fused operations show slightly higher delays.
All delay results are included in the APT product which is used for the joint accuracy and
hardware evaluation in the next paragraph.
The fused three-input SORN LUTs show a higher area utilization than the non-fused combina-
tion of two two-dimensional SORN LUTs. This is true for every evaluated operation and SORN
datatype except for the lin7 |100 and log7 |64 datatypes in combination with the multiply-add
operation, where a small area reduction for the fused designs can be observed. In particular,
for fused addition, the area increases between 35% and 230%, for fused multiplication between
2% and 217%. For FMA the area utilization reaches from a decrease of 2% to an increase of
215%. The mean area increase for the fused designs over the 12 different datatypes is 101% for
addition, 43% for multiplication, and 51% for multiply-add.
Considering the power consumption, more fused designs show an improvement over their
non-fused equivalents. For all datatypes with large lattice values in combination with the
multiply-add operation a reduction of the power consumption can be achieved, which is 12%
on average. Additionally, datatypes lin7 |3 and log9 |2 with the multiplication operation achieve
a reduction of 47% and 1%, respectively.
All implemented designs were also synthesized for an FPGA platform. Details and results
can be found in the appendix B.2 and figure B.1. This evaluation mostly confirms the results
discussed above, especially concerning the higher area utilization for the fused designs.

Accuracy vs. Hardware Results In contrast to the two-input fused operations evaluated
in section 3.5.1, where both accuracy and hardware could be improved, the above evaluated
results for three-input fused operations show that while the output interval accuracy is also
mostly improved by the fused designs, the hardware complexity is mostly increased. In order
to visualize and rate the trade-off between both measures, a joint evaluation is discussed in the
following. According to [10], an accuracy ratio racc is introduced, which compares the mean
output width of fused and non-fused designs for every operation and datatype, based on the
presented simulation results:

racc = fused mean out width
non-fused mean out width (3.16)

In a similar manner, the APT product ratio rAP T compares the hardware performance of fused
vs. non-fused, utilizing the combined APT results given in [µm2×µW×ns] from the presented
CMOS synthesis:

rAP T = fused APT [µm2 × µW × ns]
non-fused APT [µm2 × µW × ns]

(3.17)

Figure 3.15 plots both ratios against each other. An improvement for the fused over the
non-fused design is indicated by a ratio < 1. Cases where the percentage degradation of one
measure is compensated by the other are represented by balanced ratios racc + rAP T = 2. Some
designs showing an rAP T > 2 are depicted in the small subplot which is simply an extension of
the main plot window.
Roughly 3/4 of the evaluated cases neither achieve an rAP T < 1 nor balance ratios. However,
for four FMA designs with 7 and 9 bit, as well as for one fused multiplication with 7 bit,
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Figure 3.15.: Output accuracy ratio racc vs. APT product ratio rAP T for fused three-input
addition, multiplication and multiply-add [10]. A ratio < 1 indicates an
improvement for the fused design over the non-fused. Balanced ratios are
achieved with racc + rAP T = 2.

an improvement for both ratios can be achieved. Further, two 7 bit and two 9 bit fused
multiplication designs achieve results better than balanced ratios. In addition, for the datatypes
lin11 |200 and log11 |256 the designs for multiplication and multiply-add are close to balanced
ratios.
In general, it can be concluded that the multiplication and multiply-add operations with 7
and 9 bit datatypes show a high improvement potential for using three-input fused operations,
whereas addition and the 11 bit datatypes are mostly not worth considering.

3.5.3. Two- vs. Three-Input Fused Hypot Function

The two previous sections 3.5.1 and 3.5.2 showed separate evaluations for fused operations with
up to either two or three inputs. While the results for two inputs showed mainly improved
hardware measures, designs with three inputs showed both better and worse results. In order to
compare both approaches, this section evaluates on the previously introduced hypot function,
but with three inputs

hypot(x, y, z) =
√

x2 + y2 + z2 (3.18)

and compares the implementations of a non-fused design, one which fuses operations up to two
inputs, and a design that fused the complete function into a single block with three inputs.
These three different designs are shown in figure 3.16. All three designs were implemented for
the twelve SORN datatypes utilized in the previous section 3.5.2 and synthesized for 28 nm
CMOS technology with f = 1 GHz. The hardware results are again summarized as the APT
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Figure 3.16.: Block diagrams for the three-input hypot function as non-fused, two-input fused
and three-input fused designs [10].

product ratio rAP T , introduced in equation (3.17). The accuracy is also obtained through RTL
simulations as described in section 3.5.2 and summarized as accuracy ratio racc, introduced in
equation (3.16). The ratios for the two-input and the three-input fused implementations both
are computed against the respective non-fused design. The results of this evaluation are given
in figure 3.17. The two subplots split the rAP T -axis into parts with different resolutions.
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racc + rAP T = 2.
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The main result from this evaluation is that only two-input fused designs achieve an rAP T < 1.
Only two of the three-input designs achieve a result better than balanced ratios with an
rAP T ≈ 1. In contrast to the results for fused three-input multiplication and FMA from
the previous section, for the three-input hypot function only datatypes with small lattice
values show improvements for both ratios. The lin7 |100 datatype is the only exception for this
observation. Another interesting observation is that some of the three-input designs show an
accuracy improvement of up to 60%, yet accompanied by a large rAP T >> 1.
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3.6. Summary

This chapter introduced the basic concept of the type-II unum format and the derived Sets Of
Real Numbers (SORN) representation, according to its proposal from [Gus16]. After extending
this original, unum-based SORN format by a formal mathematical description, and discussing
possible drawbacks of this original version, alternative half-open and custom SORN datatypes
were proposed. In order to facilitate the implementation of SORN datapaths with different
datatypes and to provide a basis for a design space exploration, an automated design-flow for
RTL implementation through the open-source SORN Hardware Generator tool was presented.
With the help of this tool, the hardware complexity of basic arithmetic SORN components was
evaluated for different SORN datatypes and against standard integer/fixed point operations.
The results showed that SORNs easily outperform integer designs of same bitwidth. When
comparing the proposed half-open SORN datatypes against the original unum-based ones
for the same lattice values, the half-open designs showed major improvements. Finally, the
concept of fused operations from standard floating point arithmetic was adapted for SORNs
and evaluated for single-, two- and three-input operations. Evaluations on both accuracy and
hardware performance showed that fused SORN operations for up to two inputs almost always
improve both measures at once. For three-input fused SORN operations, the accuracy is also
mostly improved, while the hardware improvement is not always achieved and highly datatype
and operation depended.





4 SORN Applications

When categorizing the Sets Of Real Numbers format among all the other existing approaches
for representing real numbers in digital systems, which are discussed in chapter 2, SORNs can
be considered as an application specific rather than a general purpose format. The main reason
is the utilized interval arithmetic, where result values have to be interpreted differently than
in standard, single-valued arithmetic. This complicates a head-to-head comparison for the
performance of SORNs versus legacy formats like fixed or floating point. In section 3.4 it is
shown that SORNs can achieve a better hardware performance compared to standard integer
or fixed point formats. However, SORNs still have to prove that they can compete with the
algorithmic performance of these standard formats as well. While in the previous chapter 3
the SORN format and the general arithmetic concept with the corresponding datatypes are
presented, this chapter therefore deals with suitable applications for SORNs. These use cases
facilitate evaluations and comparisons with standard formats, taking into account not only the
hardware but also the algorithmic performance.
Another aspect is the evaluation of different SORN datatypes, which also has been carried out
solely for hardware measures in sections 3.4 and 3.5 so far. Here as well, an evaluation with
respect to the algorithmic performance is facilitated through the following applications.

In [Gus16] a possible use case for the SORN format is given by a twelve dimensional non-linear
system of equations, taken from a robotics application. With standard formats, such a system
of equations is usually solved with an iterative optimization algorithm relying on a suitable
starting value. With a fast SORN implementation, it becomes feasible to compute the entire
solution space by means of an exhaustive search. Due to the low precision of SORNs, this
does not lead to a single solution for the system of equations, but it reduces the amount of
possible solutions and provides a space for the starting value of a subsequent optimization
algorithm executed in a standard format. In this scenario, the SORN computation can be seen
as a preprocessing step to reduce the overall runtime of the optimization.
In the following, different use cases for SORNs will be presented, where the implemented
algorithms follow two different general approaches:

1. SORNs are used in an application where precision and output accuracy are not critical,
for example when the results are used for a threshold-based decision.

2. SORNs are used in a preprocessing step to reduce the solution space of an optimization
problem as shown in the example from [Gus16].

These two general approaches are applied in two different application areas: For the first
approach, SORNs are used in image processing, in particular for an implementation of the



94 Chapter 4. SORN Applications

Sobel algorithm used for edge detection. The edge detection problem and the SORN realization
are presented in section 4.1. For the second approach, SORNs are used in a wireless MIMO
communication system, which is introduced in section 4.2, together with a SORN preprocessor
for MIMO symbol detection. This preprocessor is used within a BPSK detector presented in
section 4.3, and for improving a state-of-the-art sphere decoder (SD), discussed in section 4.4.

4.1. SORN Edge Detection for Image Processing

The detection of edges within images is a central problem statement in the field of image
processing. An edge, also called contour, can be defined as a region of an image, where
discontinuities or distinct changes in color or brightness of two or more adjacent pixels can be
detected [SB11, AMFM11]. These edges can then be used to separate the image into different
segments or to identify certain objects. Use cases of edge detection are, for example, fingerprint
recognition [CWHY08], the classification of clouds via satellite images [DT13] or road lane and
object detection for autonomous driving [BGLP15, YYW21].
An edge detection algorithm can consist of multiple processing steps which target different
aspects and improvements of the edge result. One of the most widely used approaches is the
Canny edge detection algorithm [Can86], which applies some of these different processing steps.
The edge detection result for applying the Canny algorithm on an example image is shown in
figure 4.1.

(a) Original Image (b) Canny Edge Detection

Figure 4.1.: Result of an edge detection example using the canny algorithm (b) on the original
image (a) [Ima]. The original image (a) is licensed under the Creative Commons
Attribution-Share Alike 3.0 Unported license [Lic] and is depicted without changes
in (a).
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The Canny edge detection algorithm computes the following steps [Can86, SB11, Yux23]:
1. Gaussian smoothing to reduce the effect of noise within the image.
2. Gradient magnitude/intensity G(x, y) and direction θ(x, y) calculation per pixel (x, y),

by use of the Sobel operator.
3. Non-maximum suppression to thin the calculated edges by removing those edges without

a maximum intensity in edge direction.
4. Double thresholding to identify weak and strong edges and delete those weak edges not

connected to a strong edge, in order to form complete edges and remove single edge
artifacts.

The Canny algorithm can be seen as an advanced approach with the pre- and post-processing
steps 1 and 3, while the actual edge detection is performed by the Sobel operator in step 2 and
the threshold decision in step 4, which, in a more simple approach, can also be implemented
with a single threshold. This Sobel operator with single thresholding is introduced in the
subsequent section 4.1.1, followed by a SORN implementation in section 4.1.2, as well as an
algorithmic and hardware evaluation in sections 4.1.3 and 4.1.4, respectively.

4.1.1. Sobel Operator

The Sobel operator or Sobel filter, also called Sobel-Feldman operator [Sob14], basically consists
of two 3 × 3 filter kernel matrices used to approximate the first derivative of the image gradient
in x and y direction, respectively [SB11]. The input of this process is a grayscale version of
the original image A ∈ NNx×Ny

0 with Nx and Ny as the number of pixels in horizontal and
vertical direction. The pixels of this grayscale image are typically stored as 8 bit integer values
A(x, y) ∈ {0, . . . , 255}. The derivatives in x (horizontal) and y (vertical) direction, Gx and Gy,
are calculated per pixel (x, y) by performing a discrete convolution of the filter kernels GSobel,x
and GSobel,y with a 3 × 3 slice of the input matrix that has the current pixel (x, y) as center
element. The discrete convolution operation ∗ is defined as follows for 3 × 3 matrices [SB11]:

G ∗ A =


G1,1 G1,2 G1,3
G2,1 G2,2 G2,3
G3,1 G3,2 G3,3

 ∗


A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3


=

3∑
i=1

3∑
j=1

G4−i,4−jAi,j

= G3,3A1,1 + G3,2A1,2 + G3,1A1,3 + G2,3A2,1 + G2,2A2,2 + G2,1A2,3+
G1,3A3,1 + G1,2A3,2 + G1,1A3,3

(4.1)

The process of parsing the input matrix A with the filter kernels and calculating Gx and Gy

for every pixel (x, y) is shown in figure 4.2 for a 5 × 5 input image. The 3 × 3 slice of the input
matrix used for this process reads as

A3×3(x, y) =


A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

 =


A(x − 1, y + 1) A(x, y + 1) A(x + 1, y + 1)

A(x − 1, y) A(x, y) A(x + 1, y)
A(x − 1, y − 1) A(x, y − 1) A(x + 1, y − 1)

 (4.2)
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andfisconvoflvedwfiththefiflterkerneflsfinordertoobtafinGxandGy:

Gx(x,y)=







1 0 −1

2 0 −2

1 0 −1







GSobefl,x

∗A3×3(x,y) =A1,3−A1,1+A3,3−A3,1+2A2,3−2A2,1 (4.3)

Gy(x,y)=







1 2 1

0 0 0

−1 −2 −1







GSobefl,y

∗A3×3(x,y) =A3,1−A1,1+A3,3−A1,3+2A3,2−2A1,2 (4.4)

Afftercomputfingthegradfientsfinxandydfirectfion,the2-dfimensfionaflfimagegradfientmagnfitude

orfintensfitycanbecaflcuflated:

G(x,y)= Gx(x,y)
2+Gy(x,y)

2 (4.5)
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For more complex approaches like the Canny detector, also the direction of the gradient is
taken into account, which is computed based on the gradients in x and y direction:

θ(x, y) = atan2(Gy(x, y), Gx(x, y)) =



arctan
(

Gy

Gx

)
if Gx > 0

arctan
(

Gy

Gx

)
+ π if Gx < 0 and Gy ≥ 0

arctan
(

Gy

Gx

)
− π if Gx < 0 and Gy < 0

+π
2 if Gx = 0 and Gy > 0

−π
2 if Gx = 0 and Gy < 0

undefined if Gx = 0 and Gy = 0

(4.6)

Comparable edge detection operators which mainly differ by the applied matrix kernels are the
Prewitt, Roberts or Laplace operators [SB11].

4.1.2. SORN Implementation

The Sobel operator is usually implemented in standard integer or fixed point format, for
example as hardware accelerator on an FPGA [BAPA16, KSH23]. Since the final step of the
algorithm is a comparison of the gradient magnitude G(x, y) with a predefined threshold T ,
resulting in a binary image, precision is no major concern, as long as the threshold decision
can be applied with a sufficient accuracy. The bitwidth for implementing this algorithm is
determined by the required dynamic range, as the input data of the grayscale image and most
of the required arithmetic operations can be implemented with integers. When using SORN
arithmetic instead, the dynamic range of the applied datatype can be aligned to the problem,
not only by increasing the bitwidth, but also by decreasing the precision and maintaining a small
bitwidth. The SORN datatypes applied in the following are lin6 |250

nz,nn, log10 |256
nn , lin11 |250

nz,nn,
log15 |512 and lin15 |300 from tables 3.6 and 3.7, all representing a high dynamic range with
different resolutions and bitwidths. In order to improve the hardware performance of a Sobel
edge detection, implementations of the Sobel operator for the different SORN datatypes are
discussed and compared to an integer reference implementation. The implementation details
are discussed in the following. The algorithmic performance and synthesis results are evaluated
in sections 4.1.3 and 4.1.4, respectively.
Three different Sobel implementations are considered: a full integer reference design, a hybrid
approach combining integer and SORN arithmetic, and a full SORN design. The block diagram
for all designs is given in figure 4.3, indicating which number format is used for the respective
subblock. The integer-to-SORN conversions required for the hybrid and full SORN designs are
not shown. These modules are implemented as LUTs, realized with simple logic circuits.

Integer Reference Design The inputs of the reference design are the pixel values of the
input image A3×3, formatted as 8 bit unsigned integer values. These inputs are converted to
a signed representation before performing the convolution with additions and subtractions,
according to equations (4.3) and (4.4). The outputs of this convolution Gx and Gy are 10
bit signed integers. In order to compute the 2-dimensional image gradient magnitude G, the
intermediate results Gx and Gy are squared and added, resulting in a 20 bit unsigned integer
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x − y 2x − 2y x − y

x + y

x + yINT (reference,
hybrid)

SORN (full)

x − y 2x − 2y x − y

x + y

x + yINT (reference,
hybrid)

SORN (full)

√
x2 + y2

x2 x2

x + y

INT (reference)
SORN (hybrid,

full)

Gx Gy

G2 G

Figure 4.3.: Block diagram for the three different Sobel implementations: All integer as
reference implementation, integer convolution with SORN hypot for the hybrid
approach, and SORN convolution and hypot for the full SORN approach [8].

value. To reduce the complexity of the design, the required square root is omitted, and the
squared gradient magnitude G2 is compared to a squared threshold T 2 instead.

Hybrid Integer-SORN Design The hybrid design implements the convolution with integers
in the same way as in the reference design, before Gx and Gy are converted to SORN represen-
tation in order to compute the 2-dimensional image gradient magnitude G. Since Gx and Gy

are squared in the subsequent operation, solely positive values have to be taken into account.
Therefore the absolute values are considered for SORN conversion, and the implemented
datatypes lin6 |250

nz,nn, log10 |256
nn and lin11 |250

nz,nn all represent positive values only. The required
hypot function for computing the 2-dimensional gradient magnitude is implemented with the
SORN Hardware Generator from section 3.3 as fused SORN module, as introduced in section
3.5.1. Since the result G is in SORN representation, the threshold T has to be selected as one
of the intervals from the implemented SORN datatype.

Full SORN Design For the full SORN design, the pixel values from the input image A3×3
are converted to SORN representation, before both convolutions and the hypot function are
carried out with SORN arithmetic. Since for the convolutions also negative values have to be
taken into account, here the implemented SORN datatypes log15 |512 and lin15 |300 also cover
negative values. As for the hybrid design, the threshold T has to be selected as one of the
intervals from the implemented SORN datatype.
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4.1.3. Algorithmic Performance

In figure 4.4a a grayscale test image showing a highway is depicted, which is used for the
application of road lane detection for autonomous driving [Gat19b]. Figures 4.4b - 4.4d show
the Sobel edge detection results for the given test image for the integer reference implementation,
a hybrid and a full SORN implementation with SORN datatypes lin11 |250

nz,nn and lin15 |300 ,
respectively. The threshold T for any edge detection problem is not a fixed value, but has to
be chosen depending on the required level of detail in the edge result. For the reference design,
a threshold T = 250 was chosen, which leads to a reasonable detection of the road lane shape,
whereas most of the visible cars and the shape of the surrounding landscape can not be detected
in their entirety. In order to attempt a fair comparison, for the SORN designs comparable
threshold intervals are chosen. For the datatype utilized in the hybrid SORN approach, the
corresponding threshold interval is T = (250, ∞]. For the full SORN approach, however,
thresholds near zero have to be chosen, and the resulting image has to be inverted afterwards,
in order to achieve a comparable result. For the edge detection in figure 4.4d the threshold
interval T = (0, 50] was used for this purpose.
From a visual comparison it can be stated that all three approaches achieve to detect the
road lanes properly, while some minor differences can be observed in the detection of the
cars on the road, and for the shape of the landscape. A visual comparison, however, is not

(a) Grayscale Test Image (b) Reference Sobel Impl. (Integer)

(c) Hybrid SORN Sobel Impl. (lin11 |250
nz,nn) (d) Full SORN Sobel Impl. (lin15 |300 )

Figure 4.4.: Highway image (a) in grayscale [Gat19b, Gat19a], and with Sobel edge detection
results from (b) an integer reference implementation with threshold T = 250, (c)
a hybrid-SORN implementation with datatype lin11 |250

nz,nn and threshold interval
T = (250, ∞], and (d) the negated result for a full-SORN implementation with
datatype lin15 |300 and threshold interval T = (0, 50] [8].
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sufficient to evaluate the performance of the different approaches. Unfortunately, finding
appropriate measures to evaluate the performance of different edge detection approaches is an
open problem in the field of image processing. A comprehensive study on various error and
performance metrics for edge detection from [LMDBB13] indicates that no general-purpose
solutions exists to this problem. Therefore, in there following different evaluations on the
algorithmic performance of the SORN Sobel edge detection designs are carried out.
Despite the visual comparison, the most intuitive evaluation approach is a numerical comparison
of the hybrid and full SORN designs with the integer reference. For this purpose, the normalized
absolute error (NAE) is introduced, which counts the number of pixels differing between the
edge detection results of the reference and the respective SORN design, normalized by the
total number of pixels:

NAE =
∑Nx

x=1
∑Ny

y=1(EINT(x, y) ̸= ESORN(x, y))
NxNy

(4.7)

EINT/SORN ∈ {0, 1}Nx×Ny hereby are the respective edge detection results as binary images
with dimension Nx × Ny. Applied to the edge detections depicted in figure 4.4, this leads to
the following results:

NAE|hybridSORN,lin11 |250
nz,nn

= 0.0181 (4.8)
NAE|fullSORN,lin15 |300 = 0.0287 (4.9)

These results show that the differences between reference and SORN designs are below 3%,
which matches the results of the visual comparison, but it can not draw a conclusion whether
the SORN results are better, worse or just different to the integer result. In addition, solely
one test image was considered so far, which is not enough for a comprehensive evaluation. In
the following, evaluations on the Berkeley Segmentation Data Set (BSDS) 500 from [AMFM11]
are carried out, which is a set of images for the performance evaluation of contour detection
and image segmentation algorithms, consisting of images of humans, animals, objects and
landscapes.

MNAE for SORN and Integer Designs with BSDS 500 The BSDS 500 contains 200 test
images for the purpose of edge detection evaluation. These test images are used to evaluate
on the differences between integer and SORN implementations. The applied metric is the
mean normalized absolute error (MNAE), which takes the mean of all 200 NAEs per design.
For this evaluation, all implemented SORN datatypes are considered, as well as two different
thresholds per design. For the hybrid designs, the two rightmost SORN intervals with indices
T = ws − 1 and T = ws are considered as thresholds, for the full SORN designs the two
intervals closest to zero are used. Since the edge results for the full SORN approach are
negated, these close-to-zero thresholds can be considered as equivalent thresholds Te = ws − 1
and Te = ws. For the reference design, matching integer thresholds are used in order to allow
a fair comparison. A matching threshold hereby means TINT = 200 for TSORN = (200, 250],
TINT = 250 for TSORN = (250, ∞], etc.
The results of the described evaluation are given in table 4.1. It can be observed that for both
the hybrid and full SORN approach, the linear datatypes show a lower difference to the integer
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Table 4.1.: The mean normalized absolute error (MNAE) between SORN and reference integer
implementation for 200 test images from BSDS500 [8] .

SORN datatype
hybrid SORN full SORN

lin6 |250
nz,nn log10 |256

nn lin11 |250
nz,nn log15 |512 lin15 |300

MNAE
T = ws 0.0659 0.1200 0.0598 Te = ws 0.1396 0.0667
T = ws − 1 0.1167 0.2323 0.0852 Te = ws − 1 - 0.0673

reference than the logarithmic distributed ones. In addition, the threshold value T = ws shows
the best performance. In general, differences to the reference design below 7% can be achieved,
which again shows that the SORN approach achieves a similar performance, but can still not
be rated as better or worse than the integer design. For this purpose, a third, independent
reference is required, which is given in the BSDS 500 with the ground truth solution.

Ground Truth Comparison with BSDS 500 The ground truth (GT) solutions are human
made edge detections from different human subjects for the test images within the BSDS 500
[AMFM11], which include the main aspects of an image from the subjects point of view. In
figure 4.5 three of these GT solutions are shown for a grayscale test image from BSDS 500,
together with the integer reference edge detection result. For the test images from the dataset,
in total 6 different GT solutions per test image are available. To compare the performance
of the proposed SORN edge detection designs with the integer reference, again the mean

(a) Grayscale Test Image (b) Integer Edge Detection

(c) Ground Truth 1 (d) Ground Truth 2 (e) Ground Truth 3

Figure 4.5.: Grayscale test image from BSDS 500 [AMFM11] with integer edge detection
result and different ground truth solutions.
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Figure 4.6.: The mean normalized absolute error (MNAE) w.r.t. 6 ground truth solutions
for the different integer and SORN Sobel implementations over 200 test images
from BSDS500 [8].

normalized absolute error (MNAE) is considered, but this time with respect to the different
GT solutions:

MNAE =

∑Ni
i=1

(∑Nx
x=1

∑Ny
y=1(GTi(x,y)̸=Ei(x,y))

NxNy

)
Ni

(4.10)

Ei hereby is the respective integer, hybrid or full SORN edge result, GTi the ground truth
solution and Ni the number of test images. The MNAE with respect to GT is shown in figure
4.6 for the five different SORN implementations, each with that threshold value leading to
the lowest error, and for the integer reference design with three different threshold values
corresponding to the SORN thresholds. As for the previous evaluation, it can be observed
that the linear distributed SORN datatypes lead to a lower error metric than the logarithmic
ones. Compared to the integer references, similar or even better results can be achieved for the
SORN designs, especially for the hybrid approach. As discussed before, and also mentioned in
[LMDBB13], the lower difference to GT does not necessarily indicate a better performance for
any edge detection application, but it shows that the SORN approach achieves at least similar
results than the integer reference and can be used as a replacement.

4.1.4. Synthesis Results

The synthesis results for a 28 nm CMOS technology from STM are given in table 4.2. All
integer and SORN designs were synthesized without pipeline registers for a target frequency of
1 GHz and the respective maximum frequency. For 1 GHz, all SORN designs achieve a lower
area and power consumption compared to the integer reference. The area reduction is higher
for the hybrid designs with up to 45% reduction, whereas the power consumption is reduced by
all SORN designs on a similar level, with up to 44% reduction. In addition, all SORN designs
achieve a higher maximum frequency than the integer reference while still maintaining a lower



4.1. SORN Edge Detection for Image Processing 103

Table 4.2.: CMOS STM 28 nm technology synthesis results for all implemented integer and
SORN Sobel designs [8].

Integer
hybrid SORN full SORN

lin6 |250
nz,nn log10 |256

nn lin11 |250
nz,nn log15 |512 lin15 |300

target freq. [MHz] 1000 1000 1000 1000 1000 1000
runtime [ns] 0.962 0.958 0.962 0.962 0.961 0.962
area [µm2] 1153.987 638.765 693.110 733.421 989.808 1132.282
power [µW] 550.337 329.210 349.387 349.964 309.294 324.075

max. freq. [MHz] 1263 1681 1603 1605 1661 1715
runtime [ns] 0.792 0.595 0.624 0.623 0.602 0.583
area [µm2] 2087.165 1100.294 1157.251 1245.706 1661.213 2017.642
power [µW] 1979.710 757.566 774.962 838.914 403.631 413.465

area and power consumption. For the respective maximum frequency, again the area is mostly
reduced by the hybrid approach with up to 47%, while the reduction in power consumption
is the highest for the full SORN approach with up to 80%. Similar results can be achieved
when implementing the different designs on an FPGA, as shown in the appendix B.3 with the
synthesis results for an Artix-7 FPGA in table B.2.
Together with the algorithmic performance evaluation from the previous section, it can be
concluded that the SORN Sobel approach achieves similar edge detection results compared to
a state-of-the-art integer implementation, while improving all hardware parameters complexity,
maximum frequency and power consumption.
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4.2.SORNPreprocessorffor WfireflessMIMO

Communficatfion

Fortheedgedetectfionapproachdfiscussedfintheprevfioussectfion,SORNswereusedwfithfinan

appflficatfionwheredecfisfionsaremadebasedonpredefinedthreshoflds.Herebyprecfisfionand

accuracyoffthefinaflresufltarenomajorfissue,asflongasasuficfientaccuracyfforthreshofld

comparfisonfisprovfided.Intheremafinderoffthfischapter,asecondgeneraflusecasefisdfiscussed,

whereSORNsareusedfinapreprocessfingstepfinordertoreducethesoflutfionsetfforan

optfimfizatfionprobflem.Theappflficatfionfissymbofldetectfionfforwfireflessmufltfipfle-finputand

mufltfipfle-output(MIMO)communficatfion.

Inwfireflessbroadbandteflecommunficatfionsystems,sfignaflsaretransmfittedbetweenantennas

throughawfirefless,tfime-varfiantchanneflusfingradfiowaves[Spe21].Awfideflyusedtechnfique

tofimprovesfingfleantennasystemswfithonetransmfitandrecefiveantennaareso-caflfledMIMO

systemswhfichusemufltfipfleantennasatbothends.Sfincemufltfipfletransmfitantennassend

dfifferentpfiecesofffinfformatfionoverthewfireflesschanneflwfithfinthesameffrequencybandand

tfimefframe,ahfigherspectrafleficfiencycanbeachfieved,fi.e.ahfigherdatarateperffrequency

bandwfidth,measuredfinbfitspersecondperHertz[RG08].Theprficeoffthfisfimprovement

arehfigherhardwarecostsffortheradfioffrequency(RF)components,asweflflasanfincreased

compflexfityoffthebasebandsfignaflprocessfingatbothtransmfitterandrecefiver[RPL+13].The

firstwfireflesscommunficatfionstandardstofincfludetheMIMOapproachweretheIEEE802.11n-

2009standard(Wfi-Ffi4)[IEEE09],asweflflastheEvoflvedHfighSpeedPacketAccess(HSPA+)
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4.2.1. MIMO Symbol Detection

All clients Ci simultaneously transmit digital modulated data xi, which contains fixed elements
from a finite symbol alphabet S, corresponding to the chosen digital modulation. All symbols
in S have an identical a priori probability. Depending on the modulation bitwidth m, the
cardinality of the symbol alphabet is |S| = 2m. The most common modulation schemes are
phase-shift keying (PSK) and quadrature amplitude modulation (QAM). Figure 4.8 shows the
constellation diagrams of some basic PSK and QAM schemes. All symbols are normalized to a
signal power σ2

S = 1 [Kam04].
The transmitted symbols xi form the transmit vector x ∈ SNC , which can be either real-
or complex-valued, depending on the modulation. The vector x is transmitted over the
wireless channel, which is modeled by the channel matrix H ∈ CNB×NC . This matrix is
obtained by channel estimation techniques, which will not be discussed here. In the following,
perfect channel state information (CSI) is assumed. The channel is considered as a flat fading,
Rayleigh distributed channel with additive white Gaussian noise with variance σ2

N and zero
mean, modeled by the noise vector n ∈ CNB . The entries of both the channel matrix and the
noise vector are symmetric complex Gaussian, independently and identically distributed (i.i.d.)
[BHEHZ16, RPL+13].
Every antenna on the basestation receives a complex-valued signal yi, which together form
the receive vector y ∈ CNB . The relation between transmitted and received signals can be
described by the following linear system of equations [Lar09, YH15]:

y = Hx + n (4.11)

At the basestation, the signal processing task is to calculate the estimate of the transmit
symbol vector x̂ ∈ SNC by solving the maximum likelihood estimation (MLE) problem:

x̂ = argmin
x∈SNC

∥y − Hx∥2 (4.12)

The MLE problem is known to be non-deterministic polynomial-time (NP)-hard [YH15],
which means that the complexity of a solving algorithm grows exponentially with the number
of symbols in S. Therefore an exhaustive search approach becomes impractical for higher
order modulations. Instead, linear detection approaches like zero forcing (ZF) [CW07] or
minimum mean square error (MMSE) [SFS11], all well as non-linear methods such as lattice
reduction (LR) [WF03], soft interference cancellation (SIC) [YH15] or the tree-search based

Re(S)

Im(S)

(a) 2-PSK

Re(S)

Im(S)

(b) 4-PSK/QAM

Re(S)

Im(S)

(c) 8-PSK

Re(S)

Im(S)

(d) 16-QAM

Figure 4.8.: Constellation diagrams for PSK and QAM modulations with m = 1 . . . 4 bit.
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sphere decoder (SD) [Lar09] are used to solve equation (4.12) in a maximum likelihood (ML)
sense. The sphere decoder will be used as a reference ML detector in the following and will be
discussed in detail in the subsequent section.
In the remainder of this work, a quadratic MIMO system with NC = NB = N is assumed.

4.2.1.1. Sphere Decoding

The MLE problem from equation (4.12) is a least squares problem with a discrete search space,
since x ∈ SN consists of symbols from a finite digital modulation alphabet S. In order to
avoid calculating the norm ∥y − Hx∥2 for every possible symbol vector x by means of an
exhaustive search, a sphere decoder only takes into account those solutions that lie within a
sphere around the received vector y ∈ SN and satisfy

∥y − Hx∥2 ≤ r (4.13)

with the sphere radius r [HV05]. However, since the sphere is N -dimensional, and the ML
solution should not be excluded, the computational effort to determine those x that fulfill both
equations (4.13) and (4.12) is not yet reduced [BBW+05]. By using a QR decomposition (QRD)
of the channel matrix H ∈ CN×N , equation (4.12) can be rewritten as

x̂ = argmin
x∈SN

∥QHy︸ ︷︷ ︸
ỹ

−Rx∥2 (4.14)

with the orthogonal matrix Q ∈ CN×N and the upper triangular matrix R ∈ CN×N [Lar09,
BBW+05]. QH denotes the Hermitian transposition of Q, also called conjugate transpose.
Details on the QRD can be found in the appendix A.1 and in [GVL96].
The squared norm from the rewritten MLE problem (4.14) can now be defined element-wise
[7]:

∥ỹ − Rx∥2
2 =

N∑
j=1

∣∣∣∣∣∣ỹj −
N∑

i=j

(Rjixi)
∣∣∣∣∣∣
2

(4.15)

Because R is upper triangular, the problem can be reduced to a single dimension by calculating
the last element i = j = N first, before successively obtaining the complete norm. This
transforms the problem into a tree search with a tree that traverses the iterations j from
equation (4.15) in an inverse manner, starting with j = N , which corresponds to the tree level
l = 1. Such a tree is shown in figure 4.9 with a dimension N = 3 and a symbol alphabet
with |S| = 2. From equation (4.15) the recursive error e(l) at every tree level l can be defined
[7, BBW+05]:

e(l) =
∣∣∣∣∣∣ỹN−l+1 −

N∑
i=N−l+1

RN−l+1,i xi

∣∣∣∣∣∣
2

+ e(l − 1) (4.16)

Starting from the root node, the error at the first level l = 1 with e(0) := 0 is calculated as

e(1) = |ỹN − RN xN |2 (4.17)
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Figure 4.9.: Illustration of a Schnorr-Euchner SD algorithm with pruning, for a system with
N = 3 and |S| = 2. Each node contains the accumulated error metric e(l) for
the respective path. The adaptive radius r is adjusted each time the bottom
level is reached [7].

for both branches with the respective xN . Both results are compared to the radius, which
is initially set to r = ∞. According to Schnorr-Euchner (SE) [SE94], the path with lower
error metric is followed first, if both fulfill e(l) < r. This process is repeated for the lower tree
levels until the bottom level is reached and e(N) represents a complete N -dimensional norm
for one symbol vector x. This is called a depth-width or depth-first search [BHEHZ16]. A
sphere decoder with pruning adjusts the radius to r = e(N) every time the bottom tree level is
reached. Then the algorithm continues with the next, not yet evaluated branch at a higher
level until e(l) > r or the bottom level is reached again, and the radius is adjusted accordingly.
This process is repeated until there are no more branches to evaluate. The determined bottom
level node with the lowest error metric defines the estimated symbol vector x̂.

4.2.2. SORN Preprocessor Approach

The number of possible symbol vectors x ∈ SN to solve the MLE problem (4.12) is obtained
from the modulation bitwidth m and the MIMO system size N :

|S|N = (2m)N (4.18)

The straight forward approach of computing the required norm from equation (4.12) for all
possible (2m)N symbol vectors is usually too complex and time consuming, which is why
detection algorithms like ZF, SD or others are required. As shown in section 3.4.1, however,
SORN arithmetic is not only less complex, but also a 2-3 times faster than standard integer or
fixed point arithmetic, which makes an exhaustive search evaluation of problem (4.12) feasible.
Similar to the twelve-dimensional robotics problem from [Gus16], a computation of the norm
∥y − Hx∥2 with any reasonable-length SORN datatype for all possible symbol vectors x does
not lead to a single solution, because the precision of the SORN format is not high enough.
The norm for any xi ∈ SN will be a SORN value with one or multiple 12 bits, representing
an interval ≥ 010. Two different symbol vectors xi and xj can hereby lead to the same norm
in SORN representation. Consequently, a threshold is introduced to determine which of the
SORN computed norms are considered small enough to lead to a ML solution for problem
(4.12). This is done by determining that SORN interval bit which is closest to 010 among
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all solutions. Consider the following example showing the SORN computed norms for three
different symbol vectors x1, x2 and x3 using the lin9 |1 SORN datatype from table 3.6:

∥y − Hx1∥2 = 0000011102 = (0, 1]
∥y − Hx2∥2 = 0000011002 = (0, 2/3]
∥y − Hx3∥2 = 0000000112 = (2/3, ∞]

(4.19)

Both x1 and x2 would be considered as a valid solution because they produce norms close to
010, whereas x3 would be marked as a non-valid solution. Depending on the chosen SORN
datatype, the threshold interval does not necessarily have to be the open zero interval, yet it is
in most of the evaluated cases discussed below.
This computation of the norm for all possible symbol vectors x ∈ SN with SORN arithmetic
leads to a set of possible estimation results x̂ ∈ R ⊂ SN with |R| ≤ |S|N . R is the set
of remaining solutions after SORN processing [7]. Since |R| > 110, the described process is
considered as a preprocessing step within a MIMO detection to reduce the solution space for a
state-of-the-art detector implemented in a standard format like fixed point.

4.2.3. Implementation

The norm within the MLE problem (4.12) requires the computation of a square root, which
can be avoided by using the squared norm ∥y − Hx∥2

2 instead, without affecting the result of
the optimization. The general block diagram of the SORN preprocessor is depicted in figure
4.10a. In the first stage, the complex matrix-vector multiplication Hx is carried out, which
requires 4N2 multiplications as well as 4N2 − 2N additions for both the real and the imaginary
part, and results in a first intermediate vector (Hx) ∈ CN . The elements of this vector are
obtained by the following equations for i = 1 ... N [5]:

Re(Hx)i =
N∑

j=1
(Re(Hij) Re(xj) − Im(Hij) Im(xj))

Im(Hx)i =
N∑

j=1
(Re(Hij) Im(xj) + Im(Hij) Re(xj))

(4.20)

The second stage subtracts the first intermediate vector (Hx) from y using 2N subtractions,
leading to the second intermediate vector (y − Hx) ∈ CN . The elements of this vector are
obtained by the following equations for i = 1 ... N :

Re(y − Hx)i = Re(yi) − Re(Hx)i

Im(y − Hx)i = Im(yi) − Im(Hx)i

(4.21)

In the final stage, the squared norm is calculated using 2N square operations and 2N − 1
additions:

∥y − Hx∥2
2 =

N∑
i=1

(
Re(y − Hx)2

i + Im(y − Hx)2
i

)
(4.22)

The described architecture can be implemented using the SORN Hardware Generator presented
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Figure 4.10.: Datapath structure for the SORN preprocessor without pipeline registers as (a)
general block diagram and (b) realization for real-valued system.

in section 3.3. Listing A.1 in the appendix A.2 gives the corresponding specification file to
generate a SORN MIMO preprocessor with N = 4 and one pipeline stage for the lin13 |1
datatype from table 3.6.
If a real-valued MIMO system is considered, the implementation of the preprocessor reduces to
N2 multiplications and N2 −N additions for the first stage, N subtractions for the second stage,
and N square operations as well as N − 1 additions for the third stage. The implementation
of a SORN preprocessor for a real-valued system is depicted in figure 4.10b.

4.2.4. Hardware Results

Table 4.3 gives the synthesis results for a complex-valued SORN preprocessor from figure
4.10a with two pipeline stages, for a 2 × 2 and 4 × 4 MIMO system with different SORN
datatypes from table 3.6. The utilized technology is a general-purpose 90 nm process from
Taiwan Semiconductor Manufacturing Company Limited (TSMC). The complexity by means
of the area utilization is given in kilo gate equivalents (GEs), a technology independent measure
where the total area in µm2 is normalized by the area of a 2-input NAND gate with lowest
driver strength. The throughput is given in mega operations (OPs) per second and is obtained
from the maximum frequency f and the number of required clock cycles per detection C, which
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in turn is composed of the number of possible solutions from equation (4.19) and the number
of pipeline stages Npipe:

throughput
[

MOPs
s

]
= f

C
= f

(2M)N + Npipe
(4.23)

One operation is hereby considered as the computation of all possible solutions x ∈ SN per
received vector y, resulting in the reduced solution set R, which can be used for further
processing. The applied modulations are a 4-PSK [2, 5], also called quadrature phase-shift
keying (QPSK), and a 4-QAM [3], with a bitwidth m = 2, respectively.
Solely linear SORN datatypes are considered, since the algorithmic evaluations from the
subsequent sections will show that they perform better than the logarithmic ones for the given
application. For those datatypes with an exact 0.5 value, the complex PSK/QAM symbols xi

are scaled to ±0.5 ± j 0.5 before converting to SORN representation.
Comparing the results for those designs with unum-based and half-open linear SORN datatypes,
it can be observed that for both 2 × 2 and 4 × 4 cases, the unum-based designs achieve a
slightly lower complexity than the linear datatypes of similar bitwidth. This also holds for the
energy for the 4 × 4 case comparing unum8 and lin9 |1 . For all other measures, however, both
the 8 and 16 bit unum-bases designs are outperformed by the linear ones with similar bitwidth,
yet not by multiple orders of magnitude. These results are consistent with the evaluation for
basic arithmetic operations from section 3.4.
When comparing the results for the linear-based designs of different bitwidth ws, it can be
observed that with an increasing ws also the complexity and energy increase, while frequency
and throughput decrease, as expected. For different datatypes with same bitwidth ws = 13
and ws = 17, however, small differences in the results can be observed, caused by the slightly
different logic of the respective circuits. This behavior was also observed in section 3.4.
In order to compare the hardware performance of the SORN preprocessor (only 4 × 4) to
state-of-the-art (SOTA) designs, table 4.3 also includes the hardware measures for sphere
decoder and QR decomposition designs from the literature. Some of those results are given
for another technology node, therefore the given results are normalized to 90 nm in order to
allow a fair comparison. The first observation is that the SORN preprocessor designs can run
at much higher frequencies than the SD and QRDs, mostly more than one order of magnitude.
Despite the high frequency, the energy is also much lower for the SORN designs, also about
one order of magnitude on average. The complexity is at least similar to the SOTA designs,
depending on the implementation it can also be up to an order of magnitude lower for the
preprocessor. The throughput of the SOTA designs varies, therefore the SORN preprocessor
throughput can be lower, similar or higher, but all within one order of magnitude.
This comparison shows that the SORN preprocessor could be incorporated in a SOTA detector
without limiting the throughput or adding a disproportionate amount of complexity or power
consumption. Two complete detector designs applying the SORN preprocessor are presented
in sections 4.3 and 4.4.
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Table 4.3.: Synthesis results for the SORN preprocessor with different datatypes, for a
2 × 2 and 4 × 4 complex-valued MIMO system with QPSK modulation and
two pipeline stages, for 90 nm CMOS technology. For comparison with state-of-
the-art architectures, the hardware measures for reference SD and QRD designs
are given. To allow a fair comparison, results for a different technology are
normalized to 90 nm (c−d) [5].

datatype complexity frequency energy throughput
[kGE] [GHz] [ µW

MHz ] [MOP
s ]

2 × 2 SORN preprocessor

[2](a) unum8 4.80 2.02 12.08 112.22
[2](a) unum16 18.29 1.69 44.12 93.89
[5] lin9 |1 5.48 2.19 8.09 121.67
[5] lin13 |1 10.72 1.95 14.63 108.33

4 × 4 SORN preprocessor

[2](a) unum8 17.15 1.58 48.30 6.12
[2](a) unum16 64.98 1.25 190.85 4.84
[5] lin9 |1 26.30 1.90 54.28 7.36
[3] lin11 |1 37.23 1.74 35.38 6.74
[5] lin13 |1 49.07 1.62 65.90 6.28
[3] lin13 |2 48.92 1.57 45.47 6.09
[3] lin13 |1e1/2 42.56 1.69 37.41 6.55
[3] lin15 |2e1/2 59.13 1.60 48.36 6.20
[3] lin17 |3e1/2 80.73 1.50 64.86 5.81
[3] lin17 |2e1/2 89.18 1.52 68.69 5.89

4 × 4 SD

[ROP11] - 39.53(b) 0.471 34.10(c) 2.82(d)

[BWA+12] - 872(b) 0.135 497(c) 23.35(d)

[YTC+13] - 153.9 0.109 264.49 20

4 × 4 QRD

[RLP13] - 22.38(b) 0.129 4403.10(c) 0.65(d)

[RLP15] - 71.75(b) 0.192 213.16(c) 1.25(d)

[HCW15] - 452 0.143 654.13 35.75

(a) In [2] the results are given for one pipeline stage, here for two stages.
(b) Normalized by: area × (areaNAND2)−1

(c) Normalized by: energy ×
(

technology
90 nm

)−1 ×
(

0.9
VDD

)2

(d) Normalized by: throughput × technology
90 nm
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4.2.5. Reducing the Solution Set

As described in section 4.2.2, the result of the SORN preprocessor is a reduced solution set R
that contains |R| possible estimation results x̂ ∈ R. In order to evaluate on the size of R, the
metric for the mean (number of) remaining solutions (MRS) is introduced as

MRS = |R| = 1
Ntest

Ntest∑
i=1

|R|i (4.24)

which gives the arithmetic mean of |R| over Ntest MIMO detections. In relation to the number
of possible solutions, the MRS value can be given as a percentage:

MRS [%] = |R|
|S|N × 100% = |R|

(2m)N × 100% (4.25)

Figure 4.11 gives the MRS in [%] over the PSK modulation bitwidth m for a 2 × 2 and
4 × 4 MIMO system for different SORN datatypes. The linear and logarithmic half-open
datatypes outperform the unum-based ones by far, even the 9 bit log/lin datatypes show a
higher reduction of the solution set than the 16 bit unum-based one. As a general observation
among the half-open datatypes, it can be stated that the higher the bitwidth, the higher the
reduction. In addition, the linear datatypes show a better performance than the logarithmic
ones. For all datatypes, the MRS is mostly stable over the modulation bitwidth m. For the
respective best configurations, reductions of the solution set by more than 80% can be achieved.
A second evaluation in figure 4.12 gives the MRS in % over the signal-to-noise ratio (SNR).
The SNR values hereby represent the mean SNR over all receive antennas in decibel (dB).
The evaluation covers a real-valued system with BPSK modulation (m = 1) in figures 4.12a
and 4.12b, and a complex-valued system with QPSK modulation (m = 2) in figures 4.12c
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Figure 4.11.: The mean (number of) remaining solutions (MRS) for the MLE problem (4.12)
in % after SORN preprocessing over modulation bitwidth m, for a complex-
valued MIMO system with PSK modulation, a system size of (a) N = 2 and
(b) N = 4, SNR = 30 dB, Ntest = 103 and different SORN datatypes [2, 5].
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and 4.12d, both for N = 4 and N = 8, respectively. As in the previous evaluation, the
half-open SORN datatypes outperform the unum-based ones for all cases. Especially for the
complex-valued system it can be observed that the log9 |2 datatype shows the exact same
results as the almost doubled-bitwidth unum17 datatype, because they share the same lattice
values. For the real-valued system this does not apply, because here the exact 110 within the
unum-based datatype matches the input data of the ±110 BPSK symbols. However, the 17 bit
linear datatype, which also includes the exact 110, shows an even better performance as it does
not include the other exact values from unum17.
Comparing the different half-open lin and log datatypes again shows that the higher the
bitwidth, the higher the reduction. For the best configuration lin17 |2e1 for the real-valued, and
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(a) Real-valued 4×4 MIMO system with
BPSK modulation [4].
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(b) Real-valued 8 × 8 MIMO system with BPSK modu-
lation.
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(c) Complex-valued 4 × 4 MIMO system
with QPSK modulation [6, 7].
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(d) Complex-valued 8×8 MIMO system with QPSK mod-
ulation [6, 7].

Figure 4.12.: The mean (number of) remaining solutions (MRS) for the MLE problem (4.12)
in % after SORN preprocessing over SNR, for a real- and complex-valued
MIMO system with BPSK and QPSK modulation, respectively, a system size
of N = 4 and N = 8, and different SORN datatypes.
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lin17 |2e1/
√

2 for the complex-valued system, reductions of up to 92% (4 × 4 real), 98% (8 × 8
real), 93% (4 × 4 complex), and 86% (8 × 8 complex) can be achieved. All datatypes show
only small variations over different SNRs, some are almost constant.
The results for the real-valued system in figures 4.12a and 4.12b also include the statistically
determined datatype discussed in section 3.2.4. The results show that for the given application
scenario, this datatype approach does not lead to better results than the linear and logarithmic
distributed datatypes.

4.2.6. Properties of the Remaining Solutions

After SORN preprocessing, the set of remaining solutions R is subject to further processing,
for example with a state-of-the-art sphere decoder as will be discussed in sections 4.2.7 and
4.4. Before that step is taken, some properties of R are evaluated, which could influence the
further processing.

Discarding the Maximum Likelihood Solution When the SORN preprocessor calculates
the remaining solutions with a fixed threshold interval, it can happen that the ML solution,
i.e. the solution that would be given from a maximum likelihood detector, is discarded by
the preprocessor and not included in R. Figure 4.13 shows the percentage of test cases where
the ML solution is discarded by the SORN preprocessor, over the mean received SNR for a
complex-valued 4 × 4 and 8 × 8 system, in reference to the MRS figures 4.12c and 4.12d. In
comparison to the MRS results, it can be observed that those datatypes which lead to a high
reduction of the solution set also have a higher probability of discarding the ML solution.
However, while the MRS results are almost constant over SNR, the probability of discarding
the ML solution is highly SNR depended and only noticeable for low SNR values. In addition,
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Figure 4.13.: Percentage of cases where the ML solution is discarded by the SORN prepro-
cessor over SNR, for a complex-valued MIMO system with QPSK modulation,
a system size of (a) N = 4 and (b) N = 8, and different SORN datatypes
[7, Kno20].



4.2. SORN Preprocessor for Wireless MIMO Communication 115

only for the 4 × 4 case non-negligible probabilities occur, for the 8 × 8 case the probability is
mostly below 0.5%. The reason for the higher discarding probability in the 4 × 4 case is the
lower percentage of MRS, compared to 8 × 8.

Scatter Plots and Angle of Remaining Solutions In order to rate the suitability of the
remaining solutions for further processing, one possible evaluation metric is the position of the
estimated solutions x̂ ∈ R within the complex plane. This position, or the respective angle
when using a PSK modulation, are the main decision criteria for the demodulation process
at the receiving basestation. Therefore the arithmetic mean of the remaining solutions per
detection

x̂ = 1
|R|

|R|∑
i=1

x̂i (4.26)

can be used as estimated solution for the MLE problem. In figure 4.14 the position of this
mean estimation after SORN preprocessing is shown for Ntest = 103 transmissions for the
symbol x1 = 1/

√
2 + j 1/

√
2 for a complex-valued 4 × 4 system with QPSK modulation using the
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Figure 4.14.: Scatter plot for the arithmetic mean x̂1 of the remaining solutions after SORN
preprocessing for 103 transmissions of the symbol x1 = 1/

√
2 + j 1/

√
2, for N = 4

with QPSK, the lin13 |1 SORN datatype and different SNR values [5].
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heuristic of the angles ∠x̂4 is given in figure 4.17. Some of the datatypes utilize an exact 0.5
value, used to match the complex QAM symbols xi, which are scaled to ±0.5 ± j 0.5 before
converting to SORN representation. The influence of this exact value can be seen in the scatter
plots from figure 4.16, where for all datatypes with an exact 0.5 results x̂4 with a correct real
and/or imaginary part are visible. The higher the SORN bitwidth, and therefore the precision,
the more such results appear. In addition, an increasing amount of results with a correct angle
∠x̂4 but incorrect absolute value |x̂4| are visible.
This latter observation is even better visible when considering the heuristic of the angles ∠x̂4
from figure 4.17. Here the increase of angles within the decision boundaries, as well as with
a correct angle ∠x4 = 3π

4 can be observed for an increasing SORN bitwidth. In detail, the
percentage of cases where the angle ∠x̂4 lies within the decision boundaries are 73.2% (lin11 |1 ),
77.9% (lin13 |2 ), 80.3% (lin13 |1e1/2 ), 85.6% (lin15 |2e1/2 ), 85.7% (lin17 |3e1/2 ) and 84.7% (lin17 |2e1/2 ).
This verifies that the exact 0.5 value within the datatypes improves the results, which, however,
might still be insufficient to serve as a stand-alone detector. This will be evaluated in the next
section 4.2.7.
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Figure 4.16.: Scatter plot for the arithmetic mean x̂4 of the remaining solutions after SORN
preprocessing for 103 transmissions of the symbol x4 = −1/
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with 4-QAM and SNR = 10 dB, for different SORN datatypes [3].
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Figure 4.18.: Uncoded BER of the stand-alone SORN preprocessor with result x̂ for an (a)
real-valued and (b) complex-valued MIMO system with N = 4, BPSK and
4-QAM, respectively.

values > 0 dB. For the complex-valued system, the 17 bit datatypes show the best performance
only for SNR values > 5 dB. A possible reason is the higher probability to discard the ML
solution for low SNRs, as discussed in section 4.2.6.
The results for the real-valued system in figure 4.18a again include the statistically determined
datatype discussed in section 3.2.4. The results support those from the evaluation in section
4.2.5 and show that this datatype approach does not lead to better results than the linear and
logarithmic distributed datatypes.

Sphere Decoder Initialization Since the stand-alone solution was proven insufficient,
another approach is to use the SORN solution to obtain an initial radius r for a state-of-the-art
SD, which is then processed in a standard format like floating point. For this evaluation, a SD
with pruning is considered, which adjusts its radius r throughout the tree-search, as described
in section 4.2.1.1. The MLE solution hereby corresponds to a maximum initial radius. For
comparison, the evaluation also includes other, manually defined initial radii r = {4, 8, 16}.
The initial radius based on the SORN preprocessing is obtained by computing the squared
norm from equation (4.15) with a SORN estimate x̂. This SORN estimate is hereby either the
mean of the remaining solutions x̂ according to equation (4.26), or the result of a majority
vote among the remaining solutions in R.
Figure 4.19b shows the BER of a SD with the different discussed initial radii for a 4 × 4 MIMO
system with 8-PSK modulation. As a measure for estimating the required computing time of
the algorithm, the mean number of visited nodes for one tree-search is given in figure 4.19a. The
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Figure 4.19.: (a) mean visited nodes and (b) BER for a sphere decoder initialized with
different radii r for a 4 × 4 MIMO system with 8-PSK [2, 5]. The MLE solution
corresponds to an initial radius r = ∞. The radii for the SORN solutions are
obtained from the arithmetic mean and majority vote after SORN preprocessing.

first remarkable observation is that all SORN-based SDs achieve a quasi-ML BER-performance,
while they reduce the number of visited nodes, compared to the MLE solution. The decoders
with manually defined initial radii show a worse BER-performance for low SNRs, while they
also show the lowest number of visited nodes in this SNR range. For those SNR values where
they achieve a quasi-ML performance, their number of visited nodes is similar or even worse
than for the SORN-based decoders. Overall, the SORN-based approach shows the better
BER and a similar or better visited-nodes-performance. Comparing the different SORN-based
detectors, it can be noted that the majority vote solution outperforms the mean approach, and
that the linear datatype shows slightly better results than the unum-based one.
From an implementation point of view, the presented approach can reduce the latency of the SD
as it reduces the number of visited nodes. It has to be considered, however, that the required
SORN preprocessing also adds a certain computing time. Depending on the implementation
strategy, if the preprocessor can run in parallel with the required QRD, the reduced latency
can be fully exploited.

4.2.8. Datatype Considerations

Throughout the evaluation of the SORN MIMO preprocessor in the previous sections, different
unum-based and half-open linear and logarithmic SORN datatypes from tables 3.4, 3.6 and 3.7
have been considered. The hardware results from section 4.2.4 showed that the unum-based
designs have a slightly lower complexity than the linear half-open ones with similar bitwidth.
For the other metrics energy, maximum frequency and throughput, however, the half-open
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datatypes perform much better than the unum-based ones. On top of that, the algorithmic
evaluations from sections 4.2.5 - 4.2.7 not only showed a better performance for the half-open
over unum-based datatypes for similar bitwidths, but also for half-open datatypes with much
smaller bitwidths. In detail, for the MRS evaluation in section 4.2.5 it was shown that the
half-open log9 |2 datatype achieves the exact same results as the unum17 datatype which
requires almost twice the bitwidth. Together with the hardware evaluation of basic arithmetic
components in section 3.4 it can be concluded that the half-open SORN datatypes outperform
the unum-based ones in both hardware and algorithmic performance.
Considering the half-open SORN datatypes, the evaluations in section 4.2.6 showed that the
introduction of single exact values matching the application data can improve the algorithmic
performance. Concerning the difference between linear and logarithmic distributed half-open
datatypes, section 4.2.5 showed better results for the linear ones, which, however, might be
application specific and not a general conclusion.
In order to evaluate on the SORN interval properties of the different datatypes not only from
a result point of view, but also with an emphasis on the arithmetic behavior, in figure 4.20
different interval properties of intermediate results within a 4 × 4 SORN preprocessor are
given for different linear half-open datatypes. In detail, for the architecture from figure 4.10a
the intermediate results after the matrix-vector multiplication Hx (figure 4.20a) and after
subtraction y − Hx (figure 4.20b) are considered. The analyzed interval properties are

I) intervals with the value [−∞, ∞], i.e. SORN values with all bits set to 12,

II) intervals with at least one ∞-boundary,

III) intervals that span 010 and cover both negative and positive values, and

IV) the mean interval bitwidth of the SORN values by means of bits set to 12, normalized by
the total SORN bitwidth ws.

For the first two metrics I) and II) it can be observed that the occurrence of [−∞, ∞] or half-∞
intervals can mainly be reduced by increasing the maximum lattice value of the SORN datatype.
The transition from datatypes lin11 |1 to lin13 |2 , lin13 |1e1/2 to lin15 |2e1/2 , lin15 |2e1/2 to lin17 |3e1/2 ,
and lin17 |2e1/2 to lin17 |3e1/2 all increase the maximum lattice value and reduce the occurrence
of ∞-intervals. Considering those SORN intervals that span 010 with the third metric III),
it can be stated that the occurrence of this interval property can be reduced by increasing
the precision of the datatype, either by introducing an exact value, as in the transition from
lin13 |2 to lin13 |1e1/2 , or by representing the same value range with more intervals, as in the
transition from lin17 |3e1/2 to lin17 |2e1/2 . For the mean interval bitwidth as last metric IV), both a
larger maximum lattice value, as well as a higher precision improve the mean interval bitwidth.
The precision, however, is more important, as can be observed for the 13 and 17 bit datatypes.
Here the respective datatypes with a higher precision, not the ones with a larger maximum
lattice value show a lower mean interval bitwidth.
From this evaluation it can be concluded that in general datatypes with a higher bitwidth
improve arithmetic behavior, no matter if the higher bitwidth datatype introduces a higher
dynamic range with a larger maximum lattice value, or a higher precision. For datatypes with
the same bitwidth, that improve either the dynamic range or the precision, however, no general
conclusion can be drawn. The presented evaluation shows that ∞-intervals can be avoided
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with a larger maximum lattice value, whereas zero-spanning intervals and the mean interval
bitwidth can be reduced with a higher precision. When returning to the result point of view,
for the MRS metric discussed in section 4.2.5, a higher precision is more important to improve
the results, as can be seen for the transitions from datatype lin13 |2 to lin13 |1e1/2 and lin17 |3e1/2

to lin17 |2e1/2 in figure B.2 in the appendix B.4. Regarding the angle of x̂ which is used as a
decision criterion in section 4.2.6, the 13 bit datatype with a higher precision shows the better
performance, whereas for the 17 bit datatypes the one with a lager dynamic range leads to
better results. Finally, for the BER evaluation in section 4.2.7 and figure 4.18b, the opposite
can be observed: here the 13 bit datatype with a higher maximum lattice value shows better
results for all SNRs, whereas the 17 bit datatype with a higher precision performs better, but
only for high SNR values. In total, for this particular datatype property, no general conclusion
can be drawn and the optimal datatype has to be chosen depending on the most important
performance metric for the given application.
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Figure 4.20.: SORN interval properties of different datatypes within the MIMO preprocessor
datapath after (a) matrix-vector multiplication Hx and (b) vector subtraction
y − Hx, respectively, for N = 4 and SNR = 10 dB [3].
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4.3. Hybrid SORN/FxD BPSK Detector

Among the variety of MIMO detectors in the literature, as described in section 4.2.1, the
main trade-off is between hardware complexity and performance in terms of BER and data
rate/throughput, respectively. The two SORN based-approaches presented in section 4.2.7
mark two ends of this spectrum: the stand-alone SORN detector with a very low complexity
but poor BER performance, and the SORN-initialized 64 bit floating point sphere decoder
which achieves ML performance. In the following, an intermediate approach is presented for
a real-valued 4 × 4 MIMO system with BPSK modulation (m = 1). The single-bit BPSK
modulation does not provide very high data rates, but due to its simplicity, leads to a low
hardware complexity and robustness against harsh channel conditions.
For this approach, the remaining solutions after SORN preprocessing x̂ ∈ R are evaluated by a
fixed point (FxD) solver with bitwidth wf = 16 in signed Q6.10 format. The FxD solver, like the
SORN preprocessor, computes the squared norm from the MLE problem (4.12). The number
of possible solutions x ∈ SN in the given scenario is |SN | = (2m)N = 24 = 16. The SORN
preprocessor reduces this number, as described in section 4.2.2 and 4.2.5. The mean reduction
is given in % in figure 4.12a for different SORN datatypes and SNRs. The corresponding
absolute MRS value |R| varies between 4.7 and 5.3 for unum9, between 3 and 3.9 for log9 |2 ,
between 1.3 and 2.4 for lin17 |2e1 , and is nearly constant at 2 for unum17. These are mean
values, however, and the maximum peak values can be higher. From a hardware point of view,
a varying number of remaining solutions |R| per detection leads to a non-deterministic runtime
for an iterative implementation, or to a high complexity with a highly unbalanced circuit
utilization for a parallel implementation. In figure 4.21 the BER performance for computing a
dedicated number of solutions x̂ ∈ RFxD ⊆ R after SORN preprocessing with a FxD solver
is given for |RFxD| = {2, . . . , 8} and different SORN datatypes over the mean received SNR.
The graphs also include the maximum likelihood estimation, obtained from a 64 bit floating
point sphere decoder with maximum radius, and a solution for |RFxD| = |R|.
The best BER for processing the maximum number of remaining solutions |RFxD| = |R| is
achieved for the 9 bit datatypes. The reason is that these datatypes show a higher number of
remaining solutions compared to the 17 bit ones, as shown in figure 4.12a. According to the
evaluations from section 4.2.6, datatypes with higher MRS values also have a higher probability
of including the ML solution, which leads to a better BER performance. When considering
a smaller, fixed number of remaining solutions, every increase of |RFxD| leads to a better
BER performance for the 9 bit datatypes, whereas for the 17 bit datatypes a saturation at
|RFxD| = 6 for unum17 and |RFxD| = 4 for lin17 |2e1 can be observed. Also worth mentioning
is that with a minimum number of |RFxD| = 2 a near-optimum performance can be achieved
for the lin17 |2e1 datatype. Near-optimum is hereby related to the |RFxD| = |R| rather than
the ML solution, which, however, are quite close for low SNRs. This evaluation shows that a
detector which computes solely two remaining solutions after lin17 |2e1 SORN preprocessing
with 16 bit fixed point can achieve a reasonable BER performance, which is much better than
for the stand-alone SORN preprocessor with the same datatype, shown in figure 4.18a. The
hardware implementation for this approach will be evaluated in the following.
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Figure 4.21.: BER for a detector applying the respective SORN datatype (a) - (d) and
considering |RFxD| of the remaining solutions for FxD processing, for a real-
valued 4 × 4 MIMO system with BPSK modulation [4].

4.3.1. Hardware Architecture

A simplified block diagram for the hardware architecture of the proposed detector is given in
figure 4.22. The two main components are the SORN preprocessor and the FxD solver, both
implemented in a tree structure according to figure 4.10b. The SORN preprocessor has one
pipeline stage, for the FxD solver different designs without and with one pipeline stage are
implemented. The SORN bitwidth is ws = 17, the FxD bitwidth is wf = 16, formatted as
signed Q6.10 format. All in- and outputs are also Q6.10 formatted. The design uses two different
clock signals, realized with a clock divider that creates a SORN clock which is 4 times faster
than the FxD/control clock. In figure 4.22 the fast clock is indicated with a star symbol ⋆. The
control path is implemented with a finite-state machine (FSM), executing the following states:

1. In the first state, the inputs are converted from FxD to SORN format with a simple,
single-input LUT, realized with logic gates.
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2. In the second state the preprocessor is executed for all 2N = 16 possible solutions
x, and the results are written to the register file. Both happens at SORN frequency,
corresponding to in total 4 clock cycles at control frequency.

3. The third state determines the two remaining solutions by comparing all results with the
threshold interval. If more than two solutions fulfill the threshold condition, the first two
are selected for FxD processing.

HFxD yFxD

x̂FxD

Control
FxD2SORN

wf

FxD2SORN

wf

SORN
Preproc.

ws ws ws

⋆

Sel x SORN

4
⋆

FxD
Solver

wf wf wf

FxD
Solver

wf wf wf

Sel x FxD

4

Sel x FxD

4

Register
File

ws
⋆

Remaining
Solution

16ws

MUX

wf wf

wf

<

wf wf ⋆ fast clk
SORN
FxD
CTRL

Figure 4.22.: Datapath structure (simplified) of the proposed hybrid SORN/FxD BPSK
detector for a real-valued 4 × 4 MIMO system. The SORN preprocessor uses a
faster clock signal than the FxD and control path.
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4. In the fourth state, the two determined remaining solutions are processed with the FxD
solvers and the results are compared to determine the final output.

For the case |R| = 1, the respective result in FxD format is directly passed to the output.
The architecture requires in total 7 clock cycles at control frequency if the FxD solver is
implemented without a pipeline stage, one for each of the states 1, 3 and 4, and 4 cycles for
the preprocessor state 2.
In addition to the described architecture, an alternative design with one FxD solver is im-
plemented, which computes both remaining solutions iteratively and contains an additional
registers file. Due to the removed second FxD solver, this design is less complex, but requires
one more clock cycle. For comparison with an all-FxD approach, two additional detectors are
implemented, composed of 4 and 2 FxD solvers, respectively, which process all 16 possible
solutions iteratively in fixed point only. All intermediate results are stored in a register file
and compared in order to determine the smallest norm.

4.3.2. Synthesis Results

The results for a 90 nm CMOS technology synthesis of the two different hybrid SORN/FxD
detector designs are presented in table 4.4. The first design (a) is the one depicted in figure
4.22 with the SORN preprocessor and two FxD solvers, the second design (b) is composed of
the SORN preprocessor and one FxD solver. For both designs, different frequency and FxD
pipeline stage combinations are implemented, labeled with S1 - S6. The results for the all-FxD
designs are given in table 4.5. Design (c) is composed of four parallel FxD solvers, design
(d) contains two. All FxD solvers are implemented with one pipeline stage and for different
frequencies, labeled with F1 - F4.

Hybrid SORN/FxD Detector The different frequency/pipeline configurations lead to
different runtimes, which are given as number of required clock cycles at the respective lower
control frequency, and in nanoseconds. As mentioned in the previous section, the architecture
with one FxD solver (b) requires one more cycle than the one with two FxD solvers (a),
resulting in an average runtime gain of 11.6% for approach (a). Considering the total area,
which is given in µm2 and kGE, approach (b) requires approximately 28.9% less area on average,
compared to approach (a). Since (a) utilizes more area than (b), also the power consumption is
higher, as well as the APT product which measures the trade-off between all three parameters
area, power consumption and runtime, and is given in [µm2×µW×ms].
Considering the area distribution of the proposed detectors, a general outcome of this evaluation
is that the SORN preprocessor shows a lower complexity than the FxD solver. For approach
(a) with two FxD solvers, each requires 27.8% to 30.2% of the total area, while the SORN
preprocessor requires between 20.2% and 24.9%, depending on the frequency and pipeline
configuration. For approach (b), the SORN preprocessor requires between 28.3% and 34.0% of
the total area, while the FxD solver requires between 38.7% and 43.6%.
The area demands of the component for FxD to SORN conversion are independent from the
configuration. Over all different configurations for approach (a) and (b), the (in total 20)
conversion components together require an area of 2800 µm2, which is a part of 3.0% to 4.5%
of the respective total area.
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Table 4.4.: Synthesis results for the hybrid SORN/FxD BPSK detector with 1 SORN prepro-
cessor and (a) 2 or (b) 1 FxD solver for 90 nm CMOS technology, implemented
for the lin17 |2e1 SORN datatype and a signed Q6.10 format [4].

parameter
(a) SORN + (b) SORN +

2 FxD solvers 1 FxD solver

config label S1 S2 S3 S4 S5 S6

freq [MHz] FxD+CTRL 200 200 250 200 200 250
SORN 800 800 1000 800 800 1000

pipeline stages FxD 0 1 1 0 1 1

runtime
[cycles] 7 8 8 8 9 9
[ns] 35 40 32 40 45 36

total area
[µm2] 93337 87576 93377 64958 62372 67695
[kGE] 33070 31029 33084 23015 22099 23985

SORN area(a) [µm2] 18871 18276 23211 18393 18225 22992
[%] 20.2 20.9 24.9 28.3 29.2 34.0

FxD area(a) [µm2] 28225 25608 25985 28296 25793 26215
[%] 30.2 29.2 27.8 43.6 41.4 38.7

power [µW] 7997 8703 10683 7686 8060 9873

APT product [µm2×µW× ms] 26.1 30.5 31.9 20.0 22.6 24.1
(a)area of the SORN preprocessor or one single FxD solver

Comparison to all-FxD Design When comparing the two SORN-based designs (a) and (b)
with the all-FxD designs (c) and (d), it can be observed that the best runtime is achieved for
design F2, but this also comes with the highest complexity. The design with the lowest overall
complexity is the SORN design S5, which is also faster than the lowest complex FxD design
F3. Architecture F3 also shows the lowest power consumption, while S3 shows the highest. In
general it can be stated that the hybrid SORN/FxD approach achieves hardware results on
a similar level to the all-FxD approach. When considering the APT product as a combined
measure, the SORN design S4 even achieves the best overall performance while still being 20%
faster and nearly equally complex than the all-FxD design with lowest APT product F3.
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Table 4.5.: Synthesis results for the reference FxD BPSK detector with (c) 4 or (d) 2 FxD
solvers for 90 nm CMOS technology, implemented with a signed Q6.10 format [4].

parameter
(c) 4 FxD (d) 2 FxD

solvers solvers

config label F1 F2 F3 F4

freq [MHz] 200 250 200 250

runtime
[cycles] 6 6 10 10
[ns] 30 24 50 40

total area
[µm2] 111933 117414 64603 67603
[kGE] 39659 41601 22889 23952

FxD area(a) [µm2] 24329 25695 24754 26241
[%] 21.7 21.9 38.3 38.8

power [µW] 8812 10215 6381 8282

APT product [µm2×µW×ms] 29.6 28.8 20.6 22.4
(a)area of one single FxD solver
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4.4. SORN Sphere Decoder

The hybrid SORN/FxD BPSK detector discussed in the previous section is an example for a
low-complex and sub-optimal detector, which does not achieve ML performance. In contrast,
the standard sphere decoder algorithm is able to achieve this ML performance, but at the cost
of a higher complexity. From a hardware point of view, especially the latency is challenging for
a SD implementation, since it is SNR depended an non-deterministic. In order to improve the
suitability of the algorithm for hardware implementation, there exist various approaches to
adapt the standard SD towards a lower and deterministic latency. Some of these approaches will
be discussed in section 4.4.5. The SD initialized with a SORN preprocessing result, presented
in section 4.2.7, can also be seen as one of these approaches, as it was shown to reduce the
number of visited nodes, which is a measure for the latency of the algorithm. In the following,
the SORN SD approach is presented, which also utilizes the preprocessing introduced in section
4.2 in order to reduce the SD latency, yet not by calculating an initial radius, but by removing
dedicated nodes from the search tree. In the following, this reduction, as well as a subsequent
permutation of the search tree are described in section 4.4.1. The hardware implementation of
the complete SD design with SORN and QRD preprocessing is presented in section 4.4.2, as
well as RTL and CMOS synthesis results in sections 4.4.3 and 4.4.4, respectively. Comparisons
to state-of-the-art approaches which also target a reduction of the SD latency are discussed in
sections 4.4.5 and 4.4.6.

4.4.1. Tree Reduction and Permutation

As introduced in section 4.2.2, the SORN preprocessor results in a reduced solution set R
for the MLE problem (4.12). This set is now used to reduce the complexity of the sphere
decoder search tree. As described in section 4.2.1.1 and depicted in figure 4.9, the search tree
contains every possible transmit vector x ∈ SN , which correspond to the respective bottom
level tree nodes. Those nodes corresponding to the solutions x /∈ R which are discarded by
the preprocessor can be removed from the tree. Figure 4.23a shows the example of a tree with
N = 3 and BPSK, where two of the bottom level nodes are removed. The intention of this
approach is to reduce the number of visited nodes and therefore the latency of the algorithm.
Even though the described SD with pruning does not iterate over all nodes within the tree, a
lower number of total nodes can still be expected to lead to a lower number of visited nodes.
This behavior is evaluated for a 4 × 4 and 8 × 8 complex-valued MIMO system with QPSK

(a) original (b) balanced (c) unbalanced

Figure 4.23.: Permutation of the sphere decoder search tree: (a) original tree with deleted
nodes (black) resulting from the SORN preprocessing, and permuted tree for a
(b) balanced and (c) unbalanced node ratio [6, 7, Kno20].
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modulation over the SNR in figures 4.24a and 4.24b, respectively. For the SORN preprocessor
different datatypes are applied. It can be observed that the mean number of visited nodes can
be drastically reduced by up to 75% for the 4 × 4 case. This reduction, however, is highly
datatype and SNR dependent. For the 8 × 8 case, the maximum reduction with less than 20%
is much lower.
In order to further improve the latency reduction introduced by the deleted nodes, a permutation
of the search tree can be applied to fully exploit the reduction. By virtually permuting the
order of transmit antennas, the remaining solution set R, as well as the SD search tree are
also permuted, the latter by interchanging the tree levels l. Different permutations hereby
lead to different shapes of the search trees. In the following, two opposite permutations are
evaluated, leading either to a balanced or unbalanced subtree size. The two deleted nodes
in the tree without permutation in figure 4.23a are both in the same level-1-subtree, but in
different level-2-subtrees. A balanced permutation leads to equally sized subtrees starting from
level 1, as shown in figure 4.23b, whereas for the unbalanced permutation in figure 4.23c both
deleted nodes are shifted into the same level-2-subtree which facilitates the deletion of one
additional node. The corresponding simulation results for a 4 × 4 and 8 × 8 QPSK MIMO
system with different SORN datatypes for the preprocessor are shown in figures 4.24c and
4.24d for the balanced, and figures 4.24e and 4.24f for the unbalanced permutation, respectively.
It can be observed that the balanced permutation leads to a deterioration of the visited nodes,
rather than to an improvement, compared to the results without any permutation. For the
4 × 4 system some and for 8 × 8 all datatypes lead to a performance which is even worse than
for the standard SD without any deleted nodes. The unbalanced permutation, on the other
hand, further improves the results with no permutation leading to a reduction of the visited
nodes by up 82% for 4 × 4 and up to 55% for the 8 × 8 case.

Determining the Permutation The balanced and unbalanced permutation used for the
evaluations in figure 4.24 are determined by a sorting algorithm. This algorithm computes the
permutation order p ∈ NN , which gives the new virtual order of the transmit antennas. The
main approach is to count the number of remaining solutions in every branch per tree level,
and to compute the standard deviation of this value as a measure for the subtree size. By
iterating over different permutations, this standard deviation is either minimized for a balanced
or maximized for an unbalanced ratio. The computation of the standard deviation is hereby
simplified in order to reduce the complexity for hardware implementation. The algorithm is
given in code A.1 in appendix A.3. Since this is not a main contribution of the author, the
approach is not discussed in more detail here. A detailed derivation and further explanations
can be found in [6] and [Kno20].
In the given references, also an approximate version of the sorting algorithm is presented, which
further reduces the complexity with respect to its hardware implementation. In [6] it is shown
that this approximate permutation leads to a similar visited nodes performance as the exact
algorithm. Due to its simplicity, this approximate algorithm, which is given in code A.2 in
appendix A.3, is used for the hardware implementation presented in the following section 4.4.2.
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Figure 4.24.: Mean visited nodes of a standard Schnorr-Euchner (SE)-SD, and a SE SD
with deleted nodes after SORN preprocessing, without and with balanced and
unbalanced permutation, for a 4 × 4 and 8 × 8 complex-valued MIMO system
with QPSK [6, 7, Kno20].
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4.4.2. Implementation

In the following, the RTL implementation of the complete SORN SD approach is discussed for
a 4 × 4 MIMO system with QPSK modulation. The top level architecture is shown in figure
4.25 for a 16 bit FxD datapath. The design consists of five main modules:

• SORN: A module computing the SORN preprocessing as described in section 4.2.3.

• SORT: The implementation of the approximate sorting algorithm to compute the
unbalanced permutation for the SD search tree, as described in section 4.4.1. The
permutation is applied to the channel matrix H and the SORN preprocessing result, as
well as to inverse the permutation of the final SD result.

• QRD: A QR decomposition of the permuted channel matrix H , required as preprocessing
for the sphere decoder, as described in sections 4.2.1.1 and A.1.

• MVM: The implementation of the matrix-vector-multiplication (MVM) ỹ = QHy from
equation (4.14), required for the sphere decoder, as described in section 4.2.1.1.

• SD: The implementation of a sphere decoder with a reduced search tree, according to
the SORN preprocessing result. The inputs ỹ and R result from the permuted and
decomposed channel matrix H .

In addition to the five main modules, the design contains three further submodules to apply
the permutation to the channel matrix H and the SORN result, and the inverse permutation
to the SD result x̂. The SORN preprocessing and the sorting algorithm are implemented for a
frequency of 1 GHz. A frequency divider is used to create a second clock of 100 MHz, which
drives the QRD, MVM and SD modules. The detailed implementation of the five main modules
is described in the following. In order to provide a comparison to a state-of-the-art design,
also a standard SE SD is implemented together with the required QRD, MVM preprocessing,
but without a reduced search tree and a permutation. The differences between both SD
implementations are discussed in the respective paragraph.

SORN Preprocessor The architecture of the SORN preprocessor is shown in figure 4.26.
This module computes the squared norm ∥y − Hx∥2

2 according to equation (4.12) for every
possible symbol vector x ∈ SN in SORN format, as described in section 4.2.2. For the
given 4 × 4 case with QPSK, the number of possible solutions is |S|N = (2m)N = 256. The
implemented preprocessor contains two such SORN solvers to compute the norm in parallel.
Both solvers are implemented as described in section 4.2.3 with three pipeline stages for the
different SORN datatypes lin9 |1 , lin11 |1 , lin13 |2 , lin15 |2 and lin17 |2e1/

√
2 . Before fed into the

SORN solvers, the FxD inputs H and y are converted to the respective SORN representation.
The possible solutions x are selected according to a submodule which counts the respective
indexes. All calculated norms are stored in a register file and evaluated by another submodule,
which determines the reduced solution set R, as described in section 4.2.2. The output of the
preprocessor is a 256 bit signal where each bit represents the inclusion (12) or exclusion (02) of
a respective solution x in R.
The number of required clock cycles for the SORN preprocessor can be determined from the
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Figure 4.26.: SORN preprocessing unit performing an exhaustive search for the MLE problem
(4.12) with two parallel SORN solvers to determine the remaining solutions [7].

256 possible solutions processed with two parallel SORN solvers with three pipeline stages.
This leads to 131 cycles at SORN frequency 1 GHz, corresponding to CSORN = 13.1 cycles at
100 MHz.

Sorting Module The sorting module shown in figure 4.27 implements the approximate
sorting algorithm given in code A.2 in appendix A.3, as described in section 4.4.1. The output
gives the permutation order to achieve an unbalanced node ratio in the reduced SD tree.
The input of the sorting module is the 256 bit signal from the preprocessor, where each bit
represents the in- or exclusion of one symbol vector x. This is shown in figure 4.28 with all 256
possible symbol vectors in the first four rows and the SORN preprocessing result in the bottom
row. For the sorting process, the preprocessing result for one QPSK symbol per row 1 - 4 is
mapped to a 64 bit signal. In figure 4.28 this is shown for the symbol 1√

2 (1 + j). For the first
row, every fourth bit of the SORN result is mapped, for the second row the first four bits, then
bits 17 to 20, and so on. For the last row, the first 64 bits are used. This results in 16 different
combinations for the 64 bit mapped signal, which are controlled by an FSM. The mapped
signal is passed to a counter which determines the number of 12 bits in the signal. This value
is then added to the result from the previous iteration, or to 010 for the first iteration. The
sum is squared and passed to the feedback loop. After every fourth iteration the accumulated
result corresponds to the approximated standard deviation of one row. This value is passed to
the last block which sorts the calculated standard deviations per row in descending order to
obtain the final permutation.
The sorting module requires in total 19 clock cycles at SORN frequency 1 GHz, corresponding
to CSORT = 1.9 cycles at 100 MHz. This number includes 16 cycles for the different mapping
combinations, one for initializing the FSM and two for the final sorting process.
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Figure 4.27.: Sorting unit calculating the permutation order for the channel matrix and an
unbalanced SD search tree based on the SORN preprocessing [7].

QR decomposition The QRD module is used to decompose the channel matrix H into an
orthogonal matrix Q ∈ CN×N and an upper triangular matrix R ∈ CN×N , as described in the
appendix A.1. The applied method is a complex Givens Rotation which successively generates
zero-elements below the main diagonal of the input matrix H by multiplying with a complex
rotation matrix. The QRD is implemented iteratively and produces one zero entry per iteration.
For the given 4 × 4 system size this leads to 6 global iterations. In every iteration the elements
of the rotation matrix c and s are calculated according to equation (A.2), before the rotation
is applied. The required inverse square root is implemented with an iterative Newton-Raphson
algorithm with three iterations, as described in section 2.2.2. The Givens Rotation is realized
by computing the (sub-)matrix multiplication shown in equation A.1. Therefore two different
submodule types are implemented, realizing either one of the equations for R′

ik and R′
jk:

R′
ik = c Rik + s Rjk

R′
jk = −s∗ Rik + c∗ Rjk

for k ∈ {i, . . . , N}, i < j (4.27)

In total 11 such submodules and two additional complex multiplications are required to compute
all new entries of Q and R per iteration in parallel, as well as a submodule to compute c and
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Figure 4.28.: Representation of the SORN preprocessing result (bottom row) and the corre-
sponding symbol vectors x in rows 1 - 4. Per row, the SORN result bits for
the symbol 1√

2(1 + j) are mapped to the next stage [7].
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s. In addition, registers to store all intermediate values of c, s, Q and R are implemented.
Each of the 6 global iterations requires 16 clock cycles, 14 to generate the rotation parameters
and 2 to apply the rotation. One additional cycle is required for initialization, resulting in a
total number of CQRD = 97 clock cycles at 100 MHz.

Matrix-Vector-Multiplication The MVM module implements the matrix-vector-multi-
plication ỹ = QHy from equation (4.14) using 16 complex multiplications and 14 complex
additions/subtractions. These arithmetic blocks are organized in a tree structure with one
pipeline stage. Since the four rows of the output vector are calculated after each other, together
with the pipeline stage in total CMVM = 5 clock cycles at 100 MHz are required.

Sphere Decoder The dataflow diagram of the implemented standard SE SD and SORN-
reduced SD is shown in figure 4.29. The standard SE SD will be described first, then the
adaptions for the SORN-based approach will be discussed. The module implements the SE
SD algorithm with pruning as described in section 4.2.1.1. The control path is composed of
an FSM that manages the transitions between the different nodes and tree levels. A register
file contains all required parameters: the current tree level l, the node counter cnode, the
global radius r and the calculated error metrics e(1, 1) . . . e(2m, 2m) per node. The datapath
is composed of multiplications, additions and a square block in order to compute the error
metric per node according to equation (4.19). Beginning from the first level, the error metric
is calculated for every node in the current level (and subtree). After processing all of these 2m

errors, they are sorted and compared to the global radius r. The path with the lowest error
metric that satisfies e(cnode, l) < r is followed. When the bottom level is reached and the final
error of the current path fulfills e(cnode, l) < r, the global radius is adapted. The node counter
cnode is reset and the algorithm continues with the next node in a higher level, that shows the
lowest remaining error metric and fulfills e(cnode, l) < r, until no such node is left.
For the SORN-reduced SD, an additional component is required to calculate those nodes that
can be removed from the search tree. The input of this component is the 256 bit result from the
SORN preprocessor, where every bit corresponds to one possible solution vector x, equivalent
to the bottom level nodes of the search tree. The removed bottom tree level nodes can therefore
be taken directly from the preprocessing result. For the removed nodes in higher tree levels,
the bits from the preprocessing result are connected by a 2m-dimensional OR-gate as

Nl(i) =
2m(i+1)−1∨

j=2m×i

Nl+1(j) (4.28)

with Nl(i) being the node at level l ∈ {1, . . . , N − 1} and i ∈ {0, . . . , (2m)l − 1}, the bottom
level nodes NN(i), ∨ as logical OR and the modulation bitwidth m. Due to the described
removal of nodes within the search tree, the presented SD implementation has to be adjusted.
In figure 4.29, all adaptions for the SORN-reduced SD are indicated with dashed lines/blocks.
The removed nodes lead to a new parameter cmax, which gives the number of valid nodes per
current tree level (and subtree) and requires an additional register. This value is recalculated
every time the algorithm jumps to another level. In addition, the node counter cnode can not
be simply incremented anymore, but has to be determined according to the removed nodes.
Both implemented versions of the SD require one clock cycle to initialize the controlling FSM,
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Figure 4.29.: Behavior of the standard SE SD with pruning, according to section 4.2.1.1.
Additional steps and adaptions made for the SORN-reduced SD are displayed
with dashed lines/blocks [7].
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and one cycle per visited node. The number of visited nodes and therefore the total number of
required clock cycles for the SD is non-deterministic and will be evaluated in section 4.4.3.

4.4.3. RTL-Simulation

To evaluate on the performance of the implemented designs, figure 4.30 shows the resulting
BER, mean number of visited nodes and required latency in clock cycles for the reference SE SD
and the SORN SD implementations with a 16 bit FxD format and different SORN datatypes
and SNRs. Implementations for a 32 bit FxD format show the same results. Except for the
lin9 |1 datatype and high SNR values, all SORN designs achieve the same ML performance as
the reference SE SD. The visited nodes results in figure 4.30b confirm the software evaluation
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Figure 4.30.: RTL simulation results for (a) uncoded BER, (b) mean visited nodes and (c)
latency in required clock cycles; all for the hardware implementation of the
SORN-based SD with preprocessing and QRD, and the standard SE SD with
QRD in 16 bit FxD format, for a 4 × 4 complex-valued MIMO with QPSK [7].
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from figure 4.24e: the SORN-based designs achieve a high reduction of the visited nodes,
compared to the reference SE SD. These reductions are highly datatype dependent. For the
higher bitwidth SORN datatypes, the mean number of visited nodes is also almost constant
over SNR, whereas for the SE SD the number decreases for increasing SNR. The visited
nodes, however, only show the improvement for the SD itself, and do not take into account the
increased preprocessing effort introduced by the SORN components. Therefore figure 4.30c
shows the required latency of both top level designs, including the QRD and MVM for both
and additionally the SORN preprocessor and sorting module for the SORN SD. The number
of required clock cycles C for a complete detection for both SD designs at 100 MHz are given
in the following. Note that the SORN preprocessor and the sorting module run with 1 GHz,
which is why their respective number of required clock cycles at 100 MHz is not an integer
value:

CSE−SD = CQRD︸ ︷︷ ︸
=97

+ CMV M︸ ︷︷ ︸
=5

+CSD = 102 + CSD (4.29)

CSORN−SD = CSORN︸ ︷︷ ︸
=13.1

+ CSORT︸ ︷︷ ︸
=1.9

+ CQRD︸ ︷︷ ︸
=97

+ CMV M︸ ︷︷ ︸
=5

+CSD = 117 + CSD (4.30)

Due to the high frequency of the SORN components, the introduced latency overhead of the
additional preprocessing is less than 15% of the latency required for QRD and MVM. From the
results in figure 4.30c it can be seen that this additional latency is smaller than the achieved
gain in terms of less visited nodes. In total all SORN designs show a latency improvement
for a certain SNR range < 010, with a reduction of up to 20%. The 17 bit SORN design even
shows an improvement until an SNR of 3 dB.

4.4.4. Synthesis Results

All implemented designs were synthesized for a 28 nm CMOS technology from STM, the results
are given in table 4.6. The FxD part of both the SE and SORN SD was implemented for 16 and
32 bit, the SORN part for datatypes with 9 to 17 bit. All SORN components were synthesized
for a frequency of 1 GHz, all FxD components for 100 MHz. For the SORN SD designs with
a 16 bit FxD path, the total area increases by up to 12%, comparing the design with 9 bit
SORN datatype and one with 17 bit. For the 32 bit FxD SORN SD designs, this increase is
much lower with up to 4%. A similar behavior can be observed for the energy, with an increase
of up to 17% and 8%, respectively. Considering the area of the different submodules, it can be
observed that the QRD is the largest with 50% to 55% for 16 bit FxD, and 67% to 70% for 32
bit FxD. The SORN preprocessor requires only between 10% and 19% of the total design for
16 bit FxD, and between 4% and 8% for 32 bit FxD. The sorting module is even smaller with
9% and 3.5%, respectively. The SD itself requires about 7% and 8%.
When comparing the SORN with the reference SE SD, a total area increase between 41% and
58% can be observed for the 16 bit FxD designs, and between 14% and 18% for 32 bit FxD.
The energy increase is between 57% and 83%, and 18% and 27%, respectively, mainly caused
by the high frequency used for the SORN components.
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Table 4.6.: Synthesis results for the SORN-based SD with preprocessing and QRD, and the
standard SE SD with QRD, all for a 4 × 4 complex-valued MIMO system with
QPSK, synthesized for 28 nm CMOS technology [7]. The SORN frequency for all
designs is 1 GHz, and 100 MHz for the FxD and control paths.

config.
bitwidth total area partial area [%] energy

SORN FxD [µm2] [kGE] SORN SORT QRD MVM SD [µW/MHz]

SO
R

N
SD

C1 9 16 154234 315 10.27 9.83 55.18 8.55 7.50 32.77
C2 11 16 159200 325 13.22 9.53 53.36 8.26 7.20 34.15
C3 13 16 165509 338 16.07 9.16 51.90 7.97 6.92 35.50
C4 15 16 170298 348 18.46 8.90 50.46 7.76 6.73 36.60
C5 17 16 172419 352 19.27 8.79 49.93 7.66 6.68 38.23

C6 9 32 424054 866 3.83 3.58 69.76 10.71 8.43 70.63
C7 11 32 430309 879 4.99 3.53 69.12 10.54 8.43 72.52
C8 13 32 432969 884 6.27 3.50 67.79 10.38 8.59 73.38
C9 15 32 442277 903 7.21 3.47 67.62 10.17 8.14 75.26
C10 17 32 441186 901 7.68 3.44 67.29 10.19 8.05 76.25

SE
SD C11 - 16 109165 223 - - 77.12 11.89 9.95 20.93

C12 - 32 372897 762 - - 78.28 11.92 9.06 59.87

4.4.5. Comparison to SOTA Complexity Reduction

Approaches

The SORN SD is not the first approach targeting an improvement of the standard SD. Various
versions of the algorithm have been proposed in the past, mainly attempting a reduction or
fixation of the number of visited nodes per detection. An overview of many of these state-of-
the-art approaches with corresponding hardware implementations can be found in [BHEHZ16].
In the following, some of these approaches are compared to the presented SORN SD in terms
of visited nodes performance and additional preprocessing effort. The mean number of visited
nodes for the different approaches is given in figure 4.31 for a 4 × 4 and 8 × 8 QPSK MIMO
system. The additional preprocessing effort is compared in table 4.7 in terms of required
floating point, integer or SORN operations. The hardware results of the implemented SORN
SD and QRD are compared to state-of-the-art architectures in section 4.4.6.

SQRD Comparable to the SORN SD approach, the sorted QR-decomposition (SQRD)
algorithm targets to decrease the number of visited nodes by virtually permuting the antenna
order, resulting in a permutation of the channel matrix H . The permutation in this approach
is based on the norm of the column vectors of H [WRB+02]. This kind of permutation leads
to a minimized number of wrong decisions in the first tree levels [SBB08]. From figure 4.31 it
can be seen that the SQRD approach leads to a reduced number of visited nodes, compared to
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the SE SD with standard QRD. The SORN approach, however, shows mostly better results,
especially for the 4 × 4 case. From an implementation point of view, the SQRD replaces the
QRD component, leading to a complexity increase of 90% for an FPGA implementation from
[CM14], or to an area and latency increase of 40% and 7% for a CMOS implementation in
[NGW10].

K-Best Both the K-Best and the FSD approach fix the number of visited nodes per
detection and lead to a deterministic latency of the SD. In contrast to the depth-first (DF) SE
SD, which evaluates a complete tree path, before going back to higher tree levels to evaluate
alternatives, the K-Best detector follows a breadth-first approach. Starting from the root node,
in every tree level the k best candidates with lowest error metric e(l) are determined and
their paths are followed in parallel, while the remaining nodes are discarded [KCCW02]. This
approach leads to a deterministic latency, and the corresponding hardware implementations
can be parallelized and pipelined. Depending on the choice of the k parameter, however, the
approach also leads to a degradation of the BER performance [BHEHZ16]. The number of
visited nodes for the K-Best approach is

NvisitedNodes,K-Best =
2m + 2mk(N − 1) k ≤ 2m

2m + (2m)2 + 2mk(N − 2) 2m < k ≤ (2m)2
(4.31)

with the modulation bitwidth m. In figure 4.31 the visited nodes are shown for a parameter
k4×4 = 2 and k8×8 = 8, leading to a constant but mainly worse performance compared to the
17 bit SORN approach. When choosing k4×4 = 4 and k8×8 = 16, the number of visited nodes
is equivalent to the FSD algorithm, which will be discussed in the following. For the K-Best
detector no additional preprocessing is required. The hardware performance will be discussed
in section 4.4.6.

−6 −4 −2 0 2 4 60

20

40

60

80

SNR [dB]

m
ea

n
vi

sit
ed

no
de

s

(a) 4 × 4

−6 −4 −2 0 2 4 60

200

400

600

800

SNR [dB]

SE SD
SQRD
SORN
log9 |2
SORN
lin17 |2e1/

√
2

FSD
LR FSD
K-Best
(k4×4 = 2,
k8×8 = 8)

(b) 8 × 8

Figure 4.31.: Mean visited nodes of a standard SE SD, with SQRD, K-Best, FSD and
LR FSD, and permuted tree after SORN preprocessing; for a (a) 4 × 4 and (b)
8 × 8 complex-valued MIMO system with QPSK [7]. (The K-Best, FSD and
LR FSD results are obtained analytically.)
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FSD In contrast to the K-Best approach, for the fixed-complexity SD (FSD) there are
two different parameters fixing the number of considered nodes at different tree levels. In the
full expansion stage all possible nodes are considered, whereas in the single expansion stage
only one path per subtree is followed [BT08]. For a 4 × 4 system the first tree level, for 8 × 8
the first two levels are considered as full expansion, all remaining stages as single expansion.
According to [BT08] and [FRG+09], this leads to the following number of visited nodes for the
respective system size:

NvisitedNodes,FSD,4×4 = 2m + (N − 1)(2m)2

NvisitedNodes,FSD,8×8 = 2m + (2m)2 + (N − 2)(2m)3 (4.32)

From figure 4.31 it can be seen that the number of visited nodes for this approach is mostly
higher than for all the other approaches. The FSD, however, achieves a quasi-ML BER
performance, in contrast to K-Best. Therefore an additional preprocessing step is required,
which leads again to a permutation of the channel matrix H in a way that signals with a
high noise amplification are detected in the full expansion stage and signals with a low noise
amplification during the single expansion [BT08]. The complexity of this preprocessing is given
in table 4.7 in terms of floating point operations (FLOPs). A comparison to the complexity of
the SORN preprocessor is hardly fair because it requires only SORN and integer operations.
When considering the QRD as a reference, however, which requires 37.3N3 FLOPs for a N ×N

matrix according to [GVL96, KPLK14], it can be shown that for N = 4 the FSD preprocessing
requires 27% more FLOPs than a QRD. In comparison, from table 4.6 it can be seen that the
SORN preprocessing requires at most 56% of the QRD area. In addition, in section 4.4.3 it
was shown that the required latency of the SORN preprocessor requires less than 16% of the
QRD latency.

LR FSD Even though K-Best and FSD are already adaptions of the standard SD approach,
in the literature exist various further adaptions of these approaches. One of these is the lattice-
reduced FSD (LR FSD) which targets to reduce the search tree within the full expansion
stage of the FSD [KPLK14], comparable to what the K-Best approach does. During the
full expansion, not all but a reduced number kLR ≤ 2m nodes are considered for further

Table 4.7.: Comparison of the preprocessing effort for the SORN-based and FSD algorithms
supplementary to a QRD and QHy [7].

algorithm BER preprocessing operations (N × N MIMO)

FSD [KPLK14] quasi-ML FSD ordering of H 10N4 + 8N3 − 9N − 9 FLOPs

LR FSD sub-optimal complex LR of H 59.7N3

[KPLK14] FSD ordering of H 10N4 + 8N3 − 9N − 9 FLOPs
ZF estimate 18N3 + 6N2 + N

SORN SD quasi-ML SORN ex. search (2m)N(8N2 + 4N − 1) SORN OPs
permutation of H 2N2m + 0.5N2 − 1.5N Integer OPs
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processing. This number is determined through another preprocessing step which performs
a lattice reduction (LR) of the channel matrix H. The visited nodes performance of this
approach, as shown in figure 4.31, is comparable to the K-Best approach, and therefore mostly
worse compared to the 17 bit SORN approach. The number of visited nodes is obtained with
equation (4.32) and kLR = 3. The additional preprocessing effort of this approach is also listed
in table 4.7 and is even higher than for the FSD.

4.4.6. Comparison to SOTA Hardware

The implemented SORN and SE SD are compared to reference designs of different SDs and
comparable approaches in table 4.8. All designs were implemented for 4 × 4 MIMO with
different modulations, as indicated. The results for the implemented SORN and SE SD are
given without QRD and MVM preprocessing to allow a fair comparison, since the reference
designs do not include these modules either. The SORN preprocessor and sorting module,
however, are included in the results. The power consumption of the different designs is
normalized to a 65 nm technology with 1.2 V supply voltage (Vdd) [BHEHZ16] to facilitate a
comparison:

norm. power = power ×
(

1.2 V
Vdd

)2

×
(65 nm

tech.

)
(4.33)

The throughput is obtained as

throughput = N × m

C
× f [bit/s] (4.34)

with the MIMO dimension N , the modulation number m, the number of required clock cycles
C and the clock frequency f [BBW+05].
Even though a normalized power, as well as gate equivalents are used, the comparisons can
never be totally accurate, since different technologies, modulations and/or SNRs are used.
However, comparing the implemented reference SE SD with the literature SDs from [YTC+13],
[ROP11] and [GNJ17], a good throughput-area ratio, as well as a low power consumption
can be achieved. For the SORN SD the throughput is further improved, while the power
and area increase is at a moderate level. For the reference design [GNJ17] the throughput is
about an order of magnitude higher than for the SORN SD, but it has to be noted that the
throughput in [GNJ17] is given for an SNR of 12 dB, whereas the implemented designs are
evaluated at 0 dB. In comparison with the fixed-complexity approaches K-Best [PSSG10] and
FSD [LLN12], the achieved throughput of the implemented SORN and SE SD approaches is
about two orders of magnitude lower. On the other hand, these designs show a higher area
and a much higher power consumption, even though the results do not include the required
preprocessing in addition to a QRD. Moreover, these designs do not achieve the same BER
performance as the implemented SORN and SE SD. When comparing solely the SORN and
SE SD, the area and power increase between both seems to be quite high, but it has to be
considered that these results do not include the QRD module, which was shown to take the
major part of both designs area and power consumption in section 4.4.4.
In table 4.9 the implemented QRD module is compared to reference implementations in order
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Table 4.9.: Comparison of the implemented and reference 4 × 4 complex QRD architectures
[7].

[HCW15] [TS17] [GLS+13] this work

algorithm SVD/QRD QRD/SQRD QRD QRD
bitwidth n.a. n.a. 13 16
process/Vdd 90 nm/1.0 V(a) 90 nm/1.0 V(a) 65 nm/1.0 V 28 nm/0.9 V

area [kGE] 452 375 378 176
frequency [MHz] 143 220 72 100
power [mW] 93.54 140 127 1.53
norm. power [mW] 97.28 145.6 182.9 6.31
throughput [matr. / s] 35.75 M 44 M 72 M 1.03 M

(a)Typical Vdd for TSMC 90 nm Std Cell Library

to rate its impact on the overall SORN SD design. The reference designs are implemented as
systolic array [TS17, GLS+13] or massively parallel CORDIC processors [HCW15] in order to
enhance the throughput, while in this work the QRD is implemented iteratively, which leads
to a much lower throughput. The high throughput of the reference designs is compensated by
a high complexity and power consumption, which is much lower for the implemented QRD
module. Since for the complete SORN SD design, the implemented QRD module requires at
least half of the chip area and the highest amount of required clock cycles, as shown in section
4.4.4, a further increase of the area for a higher-throughput QRD would minimize the relative
complexity overhead introduced by the SORN preprocessor. In addition, a lower latency of
the QRD would increase the impact of the visited-nodes-reduction introduced by the SORN
SD and lead to a higher overall latency reduction compared to the SE SD.
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4.5. Summary

In this chapter the Sets Of Real Numbers (SORN) format was evaluated in terms of its
algorithmic performance for dedicated applications. For the first application, SORNs were
considered to implement the Sobel operator used for edge detection in image processing. It was
shown that for this threshold-based algorithm the state-of-the-art integer arithmetic datapath
can be replaced with SORN arithmetic, which provides a similar algorithmic performance while
improving all hardware measures. For the second application, SORNs were applied within a
wireless MIMO communication system. In particular, a SORN preprocessor was introduced,
which targets to reduce the search space of a MIMO symbol detection in order to reduce the
latency of such an algorithm. It was shown that this approach can drastically reduce the number
of possible solutions for a detection, depending on multiple parameters like the SORN datatype,
the number of transmit and receive antennas, the applied modulation, or the signal-to-noise ratio.
Evaluations on hardware measures showed that such a SORN preprocessor can be incorporated
in a state-of-the-art detector without limiting the throughput or adding a disproportionate
amount of complexity or power consumption. The presented SORN preprocessor was further
applied within a hybrid SORN/FxD BPSK detector for a real-valued MIMO system, and
within a sphere decoder architecture with additional QRD preprocessing for a complex-valued
system. For both approaches it was shown how SORNs can improve the state-of-the-art, either
by improving the latency of the detector, and/or by reducing the hardware complexity and
power consumption.



5 Conclusion and Outlook

The SORN number format is a derivative of the universal numbers and targets to perform
low-complex and fast arithmetic operations in hardware via lookup tables. This thesis presents
the hardware implementation of the original SORN approach and its evaluation with an
automated design flow tool for design space exploration. The primary contributions comprise
the SORN design flow, optimizations of the original approach such as adaptions of the
SORN datatypes and the introduction of fused arithmetic, as well as the application of SORNs
for different use cases. The primary contributions and findings of this thesis can be summarized
as follows.

SORN Datatypes The originally proposed SORN datatypes were derived from the unum
representation and consist of exact values and open intervals with lattice values that are included
together with their reciprocals and negative equivalents. This very regular and rather strict
structure misses flexibility, even though the arithmetic concept with pre-computed LUTs could
generally be used with any datatype, when abandoning unum compatibility. A further issue is
the combination of exact values with open intervals in the original datatype, which introduces
a certain redundancy when used within SORN arithmetic, as discussed in section 3.2.2. Due to
these drawbacks, within the thesis a new SORN datatype structure with half-open intervals and
a less strict lattice value structure and distribution was proposed. Both datatype approaches
were compared regarding their algorithmic and hardware performance. Evaluations for the
SORN MIMO preprocessor in sections 4.2 - 4.4 show that half-open datatypes outperform the
unum-based ones, while mostly requiring less bitwidth. For the hardware implementation of
the SORN preprocessor in section 4.2.4, again those architectures with half-open datatypes
show better results when comparing equal bitwidths, except for the area, which was slightly
lower for the original approach. Considering the hardware performance of basic addition and
multiplication operations in section 3.4.2, both approaches show similar results when comparing
same bitwidths, but a much better performance for the half-open approach when comparing
datatypes with the same lattice values, i.e. the same precision and dynamic range. In general, it
can be concluded that the proposed half-open SORN datatypes show a significant improvement
over the original approach, improving both the algorithmic and hardware performance at the
same time.

Automated SORN Design Flow The proposed SORN datatype structure is highly flexible,
not only in terms of bitwidth, but also concerning the choice of lattice values and their
distribution. Since the SORN arithmetic LUTs have to be recomputed for every datatype
and operation, an automation of this process is required in order to perform a design space
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exploration of different SORN implementations. The automated design flow presented in
section 3.3 includes an open source SORN hardware generator tool which not only provides
arithmetic operation blocks for different operations and user defined datatypes, but also
complete datapaths to implement and evaluate entire algorithms with SORN arithmetic.

Fused SORN Arithmetic Since the SORN arithmetic LUTs are pre-computed with the
automated hardware generator tool, they can be adapted for different operations, including a
combination of multiple basic arithmetic operations, so-called fused operations. This approach
was incorporated into the automated SORN design flow and evaluated for different basic and
complex fused operations for up to three inputs. The main advantage of fused SORN operations
is the improvement of the output accuracy, which, for a SORN computation, can be measured
by the width of the output intervals. The presented evaluations in section 3.5 show that fused
SORN operations improve the output accuracy in nearly all cases, compared to standard, non-
fused SORN operations. In addition, fused SORN operations for up to two inputs also mostly
improve the hardware performance, while for three-input fused architectures this improvement
is highly operation and datatype dependent.

SORN Applications In order to evaluate on the suitability of SORN arithmetic for digital
signal processing, in this thesis SORNs were applied to use cases for image processing and
symbol detection in wireless MIMO communication. The considered Sobel operator is a
threshold-based algorithm for edge detection within image processing. The presented eval-
uations from section 4.1 show that a SORN implementation of the algorithm can replace a
state-of-the-art integer version, providing a similar algorithmic performance while improving
all hardware measures. For the use case of symbol detection in wireless MIMO communication,
a SORN preprocessor was presented in section 4.2, which can be used to constrain the solution
space for symbol detection. The preprocessor was used to implement a hybrid SORN/FxD
BPSK detector for a real-valued MIMO system in section 4.3, and within a sphere decoder
with additional QRD preprocessing for a complex-valued system in section 4.4. For both
approaches it was shown that SORNs can improve the respective state-of-the-art detectors,
either by improving the latency or by reducing hardware complexity and power consumption.

The SORN number format with its corresponding LUT-based arithmetic
provides a low-complex, low-energy and fast-computing approach for imple-
menting arithmetic operations, outperforming state-of-the-art number system
implementations of similar bitwidths. Since the interval-based approach is
different to standard formats and comprises a lower precision, SORNs are
not suitable as a general drop-in replacement for these standard formats.
However, this thesis shows how the SORN approach can be exploited for
improving the implementation of threshold-based algorithms, as well as for ef-
ficiently constraining large optimization problems by means of preprocessing.
With the presented open-source tool for automated design space exploration,
SORN implementations can be easily evaluated.
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5.1. Outlook

The presented thesis mainly focuses on the SORN arithmetic concept with pre-computed LUTs,
different datatypes and fused operations on one hand, and on suitable application scenarios
on the other. A third aspect is the automated design flow which makes evaluations on the
first two topics feasible. Following the research topics presented here, possible future work on
SORNs is threefold. The first aspect is the arithmetic concept, especially the determination
of suitable SORN datatypes. Throughout this work the implemented datatypes are somehow
application-specific, with dynamic range, precision and sometimes also single exact values
matched to the pixel values for edge detection or the MIMO detection problem. However,
with their mostly regular and symmetric value distribution, they are still rather generic. As
described in section 3.2.4, there are other possibilities to further match a SORN datatype to a
specific application, for example by exploiting the statistics of the application data and deriving
a suitable datatype accordingly. Even though in sections 4.2.5 and 4.2.7 it was evaluated that
for the given application the statistically determined datatype does not lead to better results,
the general idea is still worth considering for future work.
For such an approach, the automated design flow needs to be updated in order to perform
an evaluation of the application data and automatically set up a SORN datatype that is
compatible with the existing design flow. This contributes to the second aspect of possible
future work, which is improving the design flow and the SORN hardware generator tool.
Besides the statistically determined datatype generation, other implementation techniques
could be considered. The current tool provides fully connected and parallel implementations
of the user defined algorithms, which can be pipelined as required. Instead, also an iterative
approach could be considered, as well as a resource-sharing between different submodules or
even different operation blocks. A further possible extension is the automated combination of
SORN and integer or fixed point datapaths including conversion functions to exploit hybrid
SORN designs.
A third topic for future research are further applications for SORN arithmetic. This can
include other threshold-based and constrainable optimization algorithms, as well as further
suitable arithmetic problems. The currently most emerging research field is machine learning,
where SORNs can be applied to classification algorithms such as support vector machines
[HBRP21, HBRP23], or the k-nearest neighbor approach [HBK+22]. Due to the very high
number of operations and the resulting complexity, the hardware implementation of neural
networks is also a promising application field for SORN arithmetic.





A Supplementary Algorithms &
Program Code

A.1. QR Decomposition with Givens Rotation

The QR decomposition is a method in linear algebra to split any complex-valued matrix
A ∈ CN×N into an orthogonal matrix Q ∈ CN×N and an upper triangular matrix R ∈ CN×N

and can be used to solve full rank least squares problems [GVL96]. For computing the
decomposition orthogonal transformations like Gram-Schmidt, Householder Reflection or
Givens Rotation can be applied. The latter will be discussed in the following.
The approach of the Givens Rotation is to successively generate zero-elements below the main
diagonal of the input matrix A by multiplying with a complex rotation matrix. After an
initialization of R = A, the decomposition is performed by iteratively multiplying the rotation
matrix with R [7]:
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The rotation matrix is composed of the elements c and s, as well as their complex conjugates
c∗ and s∗:

c = R∗
ii√

|R∗
ii|2 + |R∗

ji|2
s =

R∗
ji√

|R∗
ii|2 + |R∗

ji|2
(A.2)

The rotation matrix creates a zero entry in R at position {j, i}. After every iteration the
rotation matrix has to be recomputed according to the updated R. The Q matrix is the
product of all intermediate rotation matrices [GVL96].

A.2. Specification Files for the SORN Hardware

Generator



152 Appendix A. Supplementary Algorithms & Program Code

Listing A.1 Specification file for the SORN Hardware Generator tool to generate a SORN
MIMO preprocessor with N = 4 and one pipeline stage for a lin13 |1 datatype.

1 @Name MIMO_solver_N4
2 @datatype ["lin","[0,1,1/5]","Zero","infty","negative"]
3 @pipeline 1
4

5 ################## Function Definition: ###################
6 ### H*s
7 Hs0_re = (((H00_re * s0_re) - (H00_im*s0_im)) + ((H01_re * s1_re) -

(H01_im * s1_im))) + (((H02_re*s2_re) - (H02_im*s2_im)) +
((H03_re * s3_re) - (H03_im * s3_im)))

↪→

↪→

8 Hs1_re = (((H10_re * s0_re) - (H10_im*s0_im)) + ((H11_re * s1_re) -
(H11_im * s1_im))) + (((H12_re*s2_re) - (H12_im*s2_im)) +
((H13_re * s3_re) - (H13_im * s3_im)))

↪→

↪→

9 Hs2_re = (((H20_re * s0_re) - (H20_im*s0_im)) + ((H21_re * s1_re) -
(H21_im * s1_im))) + (((H22_re*s2_re) - (H22_im*s2_im)) +
((H23_re * s3_re) - (H23_im * s3_im)))

↪→

↪→

10 Hs3_re = (((H30_re * s0_re) - (H30_im*s0_im)) + ((H31_re * s1_re) -
(H31_im * s1_im))) + (((H32_re*s2_re) - (H32_im*s2_im)) +
((H33_re * s3_re) - (H33_im * s3_im)))

↪→

↪→

11 Hs0_im = (((H00_re * s0_im) + (H00_im*s0_re)) + ((H01_re * s1_im) +
(H01_im * s1_re))) + (((H02_re*s2_im) + (H02_im*s2_re)) +
((H03_re * s3_im) + (H03_im * s3_re)))

↪→

↪→

12 Hs1_im = (((H10_re * s0_im) + (H10_im*s0_re)) + ((H11_re * s1_im) +
(H11_im * s1_re))) + (((H12_re*s2_im) + (H12_im*s2_re)) +
((H13_re * s3_im) + (H13_im * s3_re)))

↪→

↪→

13 Hs2_im = (((H20_re * s0_im) + (H20_im*s0_re)) + ((H21_re * s1_im) +
(H21_im * s1_re))) + (((H22_re*s2_im) + (H22_im*s2_re)) +
((H23_re * s3_im) + (H23_im * s3_re)))

↪→

↪→

14 Hs3_im = (((H30_re * s0_im) + (H30_im*s0_re)) + ((H31_re * s1_im) +
(H31_im * s1_re))) + (((H32_re*s2_im) + (H32_im*s2_re)) +
((H33_re * s3_im) + (H33_im * s3_re)))

↪→

↪→

15

16 ### y-H*s
17 y_Hs0_re = y0_re - Hs0_re
18 y_Hs1_re = y1_re - Hs1_re
19 y_Hs2_re = y2_re - Hs2_re
20 y_Hs3_re = y3_re - Hs3_re
21 y_Hs0_im = y0_im - Hs0_im
22 y_Hs1_im = y1_im - Hs1_im
23 y_Hs2_im = y2_im - Hs2_im
24 y_Hs3_im = y3_im - Hs3_im
25

26 ### ||y-H*s||^2
27 squared_norm = ((y_Hs0_re**2 + y_Hs0_im**2) + (y_Hs1_re**2 +

y_Hs1_im**2)) + ((y_Hs2_re**2 + y_Hs2_im**2) + (y_Hs3_re**2 +
y_Hs3_im**2))

↪→

↪→
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A.3. Sorting Algorithm for the SORN SD

The exact and approximate versions of the sorting algorithm to determine the permutation
order p ∈ NN , which gives the new virtual order of the transmit antennas are given in code A.1
and A.2, respectively. The inputs of the algorithm are the matrix with all remaining symbol
vectors R ∈ CN×|R| and the symbol vectors per tree level l, xl(k) ∈ Cl, with k = 1, . . . , (2m)l.

Code A.1 Sorting algorithm to compute the permutation order p (exact version) [6].
Input: R, xl ▷ matrix with all remaining symbol vectors, vector of symbol combinations
Output: p ∈ NN ▷ permutation order

1: for l = 1, . . . , N − 1 do ▷ determine permutation elements
2: Set C ∈ N(N−l+1)×(2m)l as
3: clik := ∑

κ

(
R{pN , ...pN−l+2︸ ︷︷ ︸

not existent for l=1

,i}κ = xl(k)
)

▷ count symbol vectors xl(κ)

4: for i = 1, . . . , N do
5: Set Tl ∈ NN with Tli := ∑2m

k=1 c2
lik ▷ compute squared sum

6: end for
7: pN−l+1 = arg maxi(Tli) ▷ use max for unbalanced and min for balanced branches
8: end for

Code A.2 Sorting algorithm to compute the permutation order p (approximate version) [6].
Input: R, xl ▷ matrix with all remaining symbol vectors, vector of symbol combinations
Output: p ∈ NN ▷ permutation order

1: Set C ∈ NN×2m as cik := ∑
κ

(
Rκ(i) = x1(k)

)
2: Set T ∈ NN with Ti := ∑2m

j=1 c2
ij

3: p = arg sorti(Ti) ▷ use ascend for balanced and descend sorting for unbalanced branches





B Supplementary Results

B.1. SORN & Integer Addition/Multiplication

CMOS Synthesis Results

For the evaluation of basic addition and multiplication SORN components in section 3.4, table
B.1 shows the detailed results for the graphs 3.7 and 3.8.
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Table B.1.: Synthesis results for addition and multiplication components without pipeline
stages for f = 1GHz and CMOS 28 nm technology.

datatype
addition multiplication

area delay power area delay power
[µm2] [ns] [nW] [µm2] [ns] [nW]

integer/fixed point

int5 11.587 0.346 2777.889 56.794 0.461 10297.013
int8 19.421 0.528 4507.542 148.022 0.783 14480.892
int9 22.032 0.583 4529.504 197.146 0.921 19869.390
int11 27.254 0.710 4536.213 314.813 0.973 20735.092
int13 32.477 0.828 5019.608 463.814 0.978 29296.747
int16 42.758 0.955 5582.112 583.930 0.975 31596.278
int17 47.981 0.941 6359.625 757.085 0.975 33943.750

original SORN

unum8 68.870 0.260 5281.106 66.749 0.247 5105.532
unum9 40.147 0.330 3399.655 37.699 0.379 3545.094
unum16 275.808 0.393 3890.240 274.829 0.343 4566.554
unum17 126.806 0.491 4045.557 120.442 0.422 4641.333

half-open SORN

log5 |1 16.483 0.201 2828.047 15.667 0.210 2477.759

lin9 |1 50.918 0.326 3191.194 38.189 0.341 3638.113
lin9 |120 50.918 0.326 3191.194 18.768 0.257 1654.762
log9 |1 52.061 0.318 3371.655 41.942 0.328 4001.991
log9 |2 52.061 0.318 3371.655 45.043 0.253 4193.180
log9 |128 52.061 0.318 3371.655 18.768 0.257 1654.762

lin11 |1 72.950 0.307 3756.115 52.387 0.313 4171.617
lin11 |200 72.950 0.307 3756.115 20.074 0.290 1466.160
lin11 |250

nz,nn 50.918 0.296 3197.559 9.629 0.268 601.157
log11 |1 66.749 0.311 3032.919 62.342 0.376 4956.896
log11 |256 66.749 0.311 3032.919 20.074 0.290 1466.160

lin13 |1 99.226 0.387 2819.989 76.541 0.347 5009.221
lin13 |1e1/2 90.413 0.440 3733.622 70.176 0.335 4552.063
log13 |1 88.454 0.317 3135.989 83.395 0.358 4974.518

log17 |8 123.053 0.422 3061.809 172.666 0.347 6049.132
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B.2. FPGA Synthesis Results for Three-Input

Fused Operations

Figure B.1 shows the FPGA synthesis results including LUT utilization and path delay for
the evaluation of three-input fused operations from section 3.5.2. The target platform is a
ZYNQ-7 ZC702 Evaluation Board from Xilinx. For all synthesized designs, no digital signal
processors (DSPs) or Block RAMs (BRAMs) are utilized. The power consumption is not
shown because the power of the designs is negligible compared to that of the FPGA and no
differences between non-fused and fused can be observed.
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Figure B.1.: FPGA Synthesis results for non-fused and fused three-input addition, multiplica-
tion and multiply-add, for a ZYNQ-7 ZC702 Evaluation Board (xc7z020clg484-1)
with f = 150 MHz [10].
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B.3. FPGA Synthesis Results for SORN Sobel

Implementations

In table B.2 the synthesis results for an Artix-7 AC701 FPGA from Xilinx are given for the
integer and SORN Sobel implementations presented in section 4.1.2 for a target frequency of
100MHz. The worst negative slack (WNS) shows the required runtime margin with

runtime = 1
frequency − WNS (B.1)

indicating that the target frequency was met, when the WNS value is positive.

Table B.2.: Synthesis results without DSPs for an Artix-7 AC701 FPGA (xc7a200tfbg676-2)
[8].

Integer
hybrid SORN full SORN

lin6 |250
nz,nn log10 |256

nn lin11 |250
nz,nn log15 |512 lin15 |300

target freq. [MHz] 100 100 100 100 100 100
WNS [ns] −1.487 0.554 0.492 −0.173 −0.466 −1.042
max freq. [MHz] 87.055 105.865 105.175 98.299 95.548 90.563
LUTs 457 148 207 219 597 712
total power [W] 0.145 0.136 0.137 0.138 0.140 0.147

B.4. MRS for Linear Half-Open SORN Datatypes

lin11 |1 lin13 |2 lin13 |1e1/2 lin15 |2e1/2 lin17 |3e1/2 lin17 |2e1/2
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Figure B.2.: The mean (number of) remaining solutions (MRS) for the MLE problem (4.12)
in % after SORN preprocessing for an SNR of 10 dB, for a complex-valued 4 × 4
MIMO system with 4-QAM modulation, and different SORN datatypes [3].
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B.5. Scatter and Angle Plots for SORN MIMO

Preprocessor with 8-PSK

In figure B.3 the position of the mean estimation after SORN preprocessing according to
equation (4.26) from section 4.2.6 is shown for Ntest = 103 transmissions for the symbol
x2 = 2/3

√
2 + j 1/2

√
2 for a complex-valued 4 × 4 system with 8-PSK modulation using the lin13 |1

datatype and different SNR values. Figure B.4 shows the heuristic of the corresponding angles
∠x̂2 for the same test setup.
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Figure B.3.: Scatter plot for the arithmetic mean x̂2 of the remaining solutions after SORN
preprocessing for 103 transmissions of the symbol x2 = 2/3

√
2 + j 1/2

√
2, for N = 4

with 8-PSK, the lin13 |1 SORN datatype and different SNR values [5].
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