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Abstract

The intersection of deep learning and mathematics has led to profound developments
in both fields. On one front, researchers have sought a deeper understanding of deep
learning’s mathematical underpinnings, aiming to enhance its robustness. Simultaneously,
deep learning has been harnessed to address mathematical challenges, paving the way
for scientific machine learning. This interdisciplinary synergy has revolutionised scientific
computing, particularly in the context of partial differential equations (PDEs). Innovative
neural network architectures have emerged, tailor-made for solving specific classes of PDEs,
capitalising on inherent PDE properties. These advancements have significantly impacted
mathematical modelling, where parametric PDEs are pivotal in representing natural and
physical processes in science and engineering.

This thesis looks at these specialised neural network methods and extends them for
parametric studies and the solution of related inverse problems. The relevance of these
approaches is showcased across various industrial applications; namely, in a continuum
mechanics problem encountered in the automotive industry during vehicle development.
Building upon this foundation, the research extends to more intricate PDEs encountered
in scientific and engineering domains, including the Navier-Stokes equation, Helmholtz
equation, advection equation, and Solid mechanics equation. Methodologies are rigorously
examined, comparing neural operator-based techniques with classical finite element solvers
and Tikhonov functional-based approaches. Extensive numerical experiments are conducted
under varying noise levels, providing insights into the trade-offs and applicability of different
methods for diverse PDE-based challenges.

Another aspect of this thesis is exploring Electrical Impedance Tomography (EIT),
a powerful imaging technique with diverse applications, primarily focusing on solving
its challenging (PDE-based) inverse problem. A comprehensive examination of deep
learning-based and analytic-based strategies is conducted, emphasising their strengths
and limitations. Novel variable conductivity scenarios are introduced to mimic real-world
complexities, facilitating a nuanced assessment of the methods’ robustness and adaptability.



Résumé

L’intersection de l’apprentissage profond et des mathématiques a conduit à de profonds
développements dans les deux domaines. D’une part, les chercheurs ont cherché à mieux
comprendre les fondements mathématiques de l’apprentissage profond, afin d’en améliorer
la robustesse. Simultanément, l’apprentissage profond a été exploité pour relever des
défis mathématiques, ouvrant la voie à l’apprentissage automatique scientifique. Cette
synergie interdisciplinaire a révolutionné l’informatique scientifique, en particulier dans
le contexte des équations différentielles partielles (EDP). Des architectures innovantes de
réseaux neuronaux ont vu le jour, conçues sur mesure pour résoudre des classes spécifiques
d’EDP, en capitalisant sur les propriétés inhérentes à l’EDP. Ces avancées ont eu un impact
significatif sur la modélisation mathématique, où les EDP paramétriques jouent un rôle
central dans la représentation des processus naturels et physiques en science et en ingénierie.

Cette thèse examine ces méthodes spécialisées de réseaux neuronaux et les étend aux
études paramétriques et à la résolution de problèmes inverses connexes. La pertinence
de ces approches est démontrée dans diverses applications industrielles, notamment dans
un problème de mécanique des milieux continus rencontré dans l’industrie automobile
au cours du développement des véhicules. Sur cette base, la recherche s’étend à des
EDP plus complexes rencontrées dans les domaines scientifiques et techniques, notamment
l’équation de Navier-Stokes, l’équation de Helmholtz, l’équation d’advection et l’équation
de la mécanique des solides. Les méthodologies sont rigoureusement examinées, comparant
les techniques basées sur les opérateurs neuronaux aux solveurs classiques par éléments
finis et aux approches basées sur les fonctions de Tikhonov. Des expériences numériques
approfondies sont menées sous différents niveaux de bruit, fournissant un aperçu des
compromis et de l’applicabilité des différentes méthodes pour divers défis basés sur les EDP.

Un autre aspect de cette thèse est l’exploration de la tomographie d’impédance électrique
(EIT), une technique d’imagerie puissante avec diverses applications, en se concentrant
principalement sur la résolution de son problème inverse (basé sur les EDP). Un examen
complet des stratégies basées sur l’apprentissage profond et sur l’analyse est effectué,
soulignant leurs forces et leurs limites. De nouveaux scénarios de conductivité variable sont
introduits pour imiter les complexités du monde réel, facilitant une évaluation nuancée
de la robustesse et de l’adaptabilité des méthodes.



Zusammenfassung

Die Überschneidung von Deep Learning und Mathematik hat zu tiefgreifenden Entwick-
lungen in beiden Bereichen geführt. Einerseits haben sich die Forscher um ein tieferes
Verständnis der mathematischen Grundlagen des Deep Learning bemüht, um dessen
Robustheit zu verbessern. Gleichzeitig wurde das Deep Learning genutzt, um mathematische
Herausforderungen zu lösen und den Weg für wissenschaftliches maschinelles Lernen zu
ebnen. Diese interdisziplinäre Synergie hat das wissenschaftliche Rechnen revolutioniert,
insbesondere im Zusammenhang mit partiellen Differentialgleichungen (PDEs). Es sind
innovative neuronale Netzwerkarchitekturen entstanden, die für die Lösung spezifischer
Klassen von PDEs maßgeschneidert sind und die inhärenten Eigenschaften von PDEs
ausnutzen. Diese Fortschritte haben sich erheblich auf die mathematische Modellierung
ausgewirkt, wo parametrische PDEs eine zentrale Rolle bei der Darstellung natürlicher
und physikalischer Prozesse in Wissenschaft und Technik spielen.

Die vorliegende Arbeit befasst sich mit diesen spezialisierten neuronalen Netzwerk-
methoden und erweitert sie für parametrische Studien und die Lösung damit verbundener
inverser Probleme. Die Relevanz dieser Ansätze wird anhand verschiedener industrieller
Anwendungen aufgezeigt, insbesondere an einem kontinuumsmechanischen Problem, das in
der Automobilindustrie bei der Fahrzeugentwicklung auftritt. Aufbauend auf dieser Grund-
lage wird die Forschung auf kompliziertere PDEs ausgedehnt, die in wissenschaftlichen und
technischen Bereichen anzutreffen sind, darunter die Navier-Stokes-Gleichung, die Helmholtz-
Gleichung, die Advektionsgleichung und die Gleichung der Festkörpermechanik. Die Meth-
oden werden eingehend untersucht, wobei auf neuronalen Operatoren basierende Verfahren
mit klassischen Finite-Elemente-Lösern und auf Tichonov-Funktionen basierenden Ansätzen
verglichen werden. Es werden umfangreiche numerische Experimente unter verschiedenen
Rauschpegeln durchgeführt, die Einblicke in die Kompromisse und die Anwendbarkeit der
verschiedenen Methoden für verschiedene PDE-basierte Herausforderungen geben.

Ein weiterer Aspekt dieser Arbeit ist die Untersuchung der elektrischen Impedanztomo-
graphie (EIT), einer leistungsstarken bildgebenden Technik mit vielfältigen Anwendungen,
wobei der Schwerpunkt auf der Lösung des anspruchsvollen (PDE-basierten) inversen
Problems liegt. Es wird eine umfassende Untersuchung von Deep Learning-basierten und
analytischen Strategien durchgeführt, wobei deren Stärken und Grenzen hervorgehoben
werden. Neuartige Szenarien mit variabler Leitfähigkeit werden eingeführt, um die
Komplexität der realen Welt zu imitieren und eine nuancierte Bewertung der Robustheit
und Anpassungsfähigkeit der Methoden zu ermöglichen.
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It is the glory of God to conceal a matter; to search out
a matter is the glory of kings.

— Proverbs 25:2, NIV-The Holy Bible

1
Introduction

1.1 Motivation

The buzz around artificial intelligence over the recent years is mostly due to its successes
in end-user applications ranging from health care, telecommunications, speech recognition,
self-driving cars, and many more areas in public life. The recent popularity has been due
to large language models, which have been applied successfully in intelligent chatbots.
Hardly, the mathematical aspects of it are mentioned. Truly, deep learning has driven
these successes, and at the back of these are mathematical concepts. Specifically, in
mathematics, one identifies deep learning in two major facets. On one face is the field of
mathematics of deep learning, which seeks to understand the concepts of deep learning
from a mathematical point of view with the possible aim of making them more robust, and
on the other face, the field of deep learning for mathematics, where the objective is to solve
problems in mathematics with deep learning. The latter has recorded some great successes
in imaging science (edge and feature detection, classification, inpainting, denoising, etc.),
inverse problems (computed tomography, magnetic resonance imaging, electrical impedance
tomography, etc), and recently partial differential equations (PDEs).

In this work, we focus on deep learning for mathematics. Specifically, we look at
the intersection of inverse problems and partial differential equations also known as pde-
based inverse problems or parameter identification problems (PIP). We therefore seek to
solve not only the PDE (forward) problem but also, we are mostly interested in solving
the inverse problem in PDEs, using Deep learning. But why PDEs? Even better, why
parameter identification problems in PDEs?

Indeed, one could make the case that partial differential equations (PDEs) are the go-to
choice for modelling a wide range of issues in the natural sciences, engineering, and industry.
As these models become increasingly intricate, especially in advanced industrial applications

1
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like digital twins, there is a growing demand for highly effective solvers to tackle them.
These models encompass the entire product life cycle, starting with traditional simulation
and optimisation during the development stage and extending to process monitoring and
control during production. Typically, these models depend on the precise calibration of
crucial parameters, which could range from single numerical values to complex spatial and
temporal parameter functions. The calibration procedure necessitates multiple iterations
of the model and further underscores the importance of efficient solving techniques.

It’s unsurprising that data-driven ideas, particularly neural network approaches, have
been extensively examined in recent years. They hold the potential to overcome three
significant challenges in Partial Differential Equation (PDE) simulations:

• Firstly, it’s a well-known fact that no mathematical-physical model is ever entirely
comprehensive. However, a sufficiently large dataset can capture even the most
intricate details or challenging nonlinearities.

• Secondly, in many cases, the parameters that need to be determined do not follow
arbitrary patterns but instead adhere to unknown, application-specific distributions.
These distributions can be uncovered and harnessed through training data.

• Thirdly, as previously mentioned, the complexity of PDE-based modelling has
reached a point where traditional and widely used methods like finite elements or
finite differences demand computational times beyond reasonable limits. In contrast,
neural network concepts prove to be highly efficient once trained.

Our own experiences over the past few years align with this trend. An increasing number of
our industrial and engineering collaboration partners have begun to explore the application
of deep learning (DL) concepts based on neural networks for solving Partial Differential
Equation (PDE) problems. However, they and we have encountered a bewildering array of
diverse DL approaches tailored to these tasks. These approaches range from general methods
suitable for various problems to highly specialised ones tailored for individual equations.

To be more precise, we are considering second-order partial differential equations defined
in a bounded domain Ω ⊂ d, which depend on a parameter function λ:

N (u,∇u,∆u, ut;λ) = 0 (1.1)

λ : Ω →

In this general notation, N encodes the differential equation as well as boundary conditions.
We always assume, that the parameter-to-state operator F , which maps a given parameter
λ to the solution of the PDE, is well-posed. I.e., we assume a function space setting such
that the solution u of the PDE is unique and depends continuously on the parameter
λ. We will consider three related classes of problems:
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1. Forward problem: solving a single PDE: given λ, compute u = F (λ)

2. Parametric studies: given many parameters, λi, i = 1, . . . , n, compute the correspond-
ing ui

3. Parameter identification (inverse problem): given a measured uδ or its values Puδ

under a measurement operator P , determine a corresponding λ, e.g., solve F (λ) ∼ uδ.

Our main target is the third class of problems, i.e., inverse problems stated as parameter
identification problems for PDEs. These problems are typically non-linear and ill-posed, even
if the differential equation is linear and the forward operator is well-posed. Nevertheless,
we will start with the first problem and review the most common DL approaches for
solving the forward problem. We then discuss their potential for parametric studies and
parameter identification problems. As an underlying motivation for using DL concepts in
this setting, we assume that evaluating the forward operator F by classical methods, e.g.,
finite difference schemes or finite elements, is computationally expensive and unsuitable
for large-scale parametric studies.

There are two remarks for clarifying the scope of the present work. Foremost, parameter
identification problems are inverse problems and can be attacked by well-established general
regularisation schemes for operator equations. For a recent overview of such data-driven
concepts for inverse problems and their regularisation properties, see [10]. However, these
concepts, e.g., unrolled iteration schemes, typically involve an evaluation of the forward
operator or its adjoint. This will not lead to efficient schemes in our framework, where
the evaluation of F is assumed to be too costly for large-scale parametric studies. We
will remark shortly on that in our section on the state of the art. Hence, in the present
paper, we only consider DL concepts, where the forward operator itself, i.e., the parameter-
to-state operator, or its inverse are replaced by a neural network. Secondly, a growing
number of highly optimised DL concepts exist for very specific PDE problems, e.g., for
coupled physics systems, molecular dynamics, or complex fluid dynamic problems. These
approaches have a limited potential for transfer to other problems, and we will not address
these concepts. We will rather focus on general classes of DL concepts that apply to
various PDE-based problems. However, we will highlight some of those successful but
specialised approaches in the state-of-the-art section. All the codes and datasets used for
the numerical experiment will be available online on GitHub.

1.2 Some remarks on concepts not covered in this work

This section aims at drawing attention to research directions outside this work’s scope.
Firstly, several specialised and powerful DL concepts exist for complex but specific PDEs.

Research on neural networks for such specialised cases of PDEs, as well as related parametric
studies and inverse problems, is exploding, and it is impossible to give an exhaustive list of

https://github.com/dericknganyu/dl_for_pdes
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references. Hence, we only seek to highlight areas of research that have reached a certain
level of maturity in terms of experimental success and mathematical rigour.

A particularly successful area for DL applications is coupled-physics systems, which lead
to some of the most complex inverse problems. Typically, those inverse problems cannot
be solved by standard concepts, neither in the classical analytical regularisation setting nor
in data-driven frameworks. Hence, such problems, e.g., optoacoustic tomography, require
specialised concepts, which typically integrate domain-specific expert knowledge or at least
partially draw their motivation from analytic reconstruction formulae, see [9, 63, 132,
301]. While we are at it, we also mention successes of DL methods in other sub-fields of
tomography such as electrical impedance tomography [128, 137], diffuse optical tomography
[239] and computed tomography [204, 205]. Another class of papers takes numerical schemes
for PDEs as a starting point for developing network architectures, see [122, 275]. In these
papers, the different layers of a neural network are regarded as time stepping in a discretised
scheme. In particular, this allows to specifically mimic and improve numerical schemes
for parabolic equations, which, e.g., are the basis for many imaging problems based on
diffusion processes. Simulation of turbulent flows also is an area, where DL concepts have
shown good success. We reference some papers, which in our opinion together with the
cited literature therein allow an overview of this topic [76, 233, 309]. One should also
mention the spectacular results of simulating molecular dynamics [34, 172] and many other
fields of applications, where DL simulations lead to groundbreaking novel insights.

We also do not cover the topic of DL for stochastic PDEs and recent results, which
we regard to be more on the side of PDE theory and simulation. Hence, we do not cover
recent developments as e.g., described in [40, 74, 79].

Secondly, we want to remark on general regularisation schemes for inverse problems
using a data-driven approach, which can be applied to but are not particularly tailored
for PDE-based parameter identification problems. Typically, these general data-driven
regularisation schemes for parameter identification problems do need an evaluation of F
or any form of its adjoints. For this type of scheme, we refer to [10] or to [1] for a recent
paper, which embeds the learning of the network together with the parameter identification
into a regularisation scheme. We would like to remark that unrolled iteration schemes, such
as LISTA or unrolled primal-dual, are somewhat hybrid methods and could be included in
our work. However, LISTA is predominately successful for linear forward operators A and
still needs the adjoint A∗ for initialising the network’s input. One could extend such DL
schemes, which are derived from classical regularisation theory, so that the evaluation F or
its adjoint would be done by training an embedded network for every operator evaluation.
However, this leads to a rather complex training task and this extension is not part of the
scope of the original papers for e.g., primal-dual, NETT or DeepPrior or similar [2, 74, 207].
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1.3 Published articles and contributions of the author

Each chapter within this thesis draws from articles the author and collaborators authored,
as explicitly stated at the outset of each chapter. Some aspects of these articles are generally
referenced rather than fully presented within this thesis. This omission is primarily because
of their lack of direct relevance to the central focus of this thesis. Additionally, there are
instances where the research contained within the omitted sections was not conducted by
the author, resulting in its inclusion here solely for review and reference purposes. The
first authorship is also underlined for each of the articles presented below.

To enhance comprehension and organisation, the contents of some articles are divided
into different chapters, with each section contributing to a cohesive whole. Below each
article’s representation in this thesis is a brief description of the role played by the
author in the publication.

• Derick Nganyu Tanyu, Jianfeng Ning, Tom Freudenberg, Nick Heilenkötter, Andreas
Rademacher, Uwe Iben and Peter Maass. “Deep learning methods for partial
differential equations and related parameter identification problems”. In: Inverse
Problems 39.10 (Aug. 2023), p. 103001.

Derick Nganyu Tanyu contributed to all aspects of this work and is the corresponding
author. He did the organisation, presentation of the results and two-third of the
experiments. The section on theoretical results on deep learning for PDEs was the
focus of another co-author. This work is the basis of chapter 3 and the numerical
results presented in chapter 4. A part of this paper is also briefly showcased in
chapters 1 and 2.

• Derick Nganyu Tanyu, Isabel Michel I, Andreas Rademacher, Peter Maass and Jörg
Kuhnert. “Parameter identification by deep learning of a material model for granular
media”. In: Manuscript submitted for publication (Jul. 2023). Preprint available at
(arXiv:2307.04166).

Derick Nganyu Tanyu contributed to all aspects of this work. As the main author
and corresponding author, he performed all the coding and writing. Chapter 5 is
based on this work.

• Derick Nganyu Tanyu, Jianfeng Ning, Andreas Hauptmann, Bangti Jin and Peter
Maass. “Electrical Impedance Tomography: A Fair Comparative Study on Deep
Learning and Analytic-based Approaches”. In: Manuscript submitted for publication
(Nov. 2023). Preprint to be made available on arXiv.

Derick Nganyu Tanyu contributed to all aspects of this work except for the experi-
ments involving neural network architectures. He produced the dataset needed for
this work, as well as the simulations. As the first and corresponding author, he
worked equally to organise, present and discuss the results. This work forms the
basis of chapter 6.
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• Derick Nganyu Tanyu. “From Neural Operators to Complex Partial Differential
Equations based Inverse Problems: Comparative Numerical Methods for Problem-
Solving”. In: In preparation. Preprint to be made available on arXiv.

Derick Nganyu Tanyu contributed to all aspects of this work, as the sole author. The
numerical results present in this work are the basis of chapter 4. A part of chapter 3
is also from this work.

• Terence Kibula Lukong, Derick Nganyu Tanyu, Thomas Tamo Tatietse, and Detlef
Schulz. “Long Term Electricity Load Forecast Based on Machine Learning for
Cameroon’s Power System”. In: Energy and Environment Research 12.1 (2022):
1-45..

Derick Nganyu Tanyu contributed to all aspects of this work. and performed all
the coding leading to the results. This work is not included in this thesis due to its
divergence from the central theme of the thesis. It is only listed here as part of the
work conducted by the author during the PhD period.

1.4 Structure of the thesis

In Chapter 2 we provide some theoretical foundations and basic knowledge on which this
thesis builds. We then proceed in Chapter 3, with an overview of deep learning for PDEs,
which mainly focuses on solving the forward problem. We equally describe extending these
methods to solve the respective inverse or parameter identification problem. Chapter 4 takes
a step further, and there, we numerically demonstrate the strengths of methods described
in Chapter 3. We start with basic ‘academic’ problems and build to more complex ones.
Chapter 5, takes us to industry, specifically in the automotive industry, where we look at a
parameter identification problem in continuum mechanics. This PDE is vital in the vehicle
development process. In chapter 6, we take a look at the Calderón problem: a famous
PDE-based inverse problem, which forms the basis of electrical impedance tomography
and has great potential in medical imaging among many others.



It is not knowledge, but the act of learning, not possession
but the act of getting there, which grants the greatest
enjoyment.

— Carl Friedrich Gauss

2
Preliminaries and Foundations

2.1 Motivation

The focus of this work being the intersection of deep learning, PDEs and inverse problems,
a background on the respective subjects is thus warranted. In this chapter, we aim to
provide some foundations in these areas. Starting from the growing field of Deep Learning,
by stating its most fundamental architectures; through Inverse problems, highlighting the
two major approaches in the area, and finally to PDEs, categorising and describing
how they are widely solved.

2.2 Neural Networks and Deep Learning

The recent years have seen a boost in artificial intelligence. These successes have mostly
been fuelled by the advances made in Deep learning. The early groundbreaking works
can be found in the well-written books [133] [26] [245]; only some basics serving as a
foundation of this work are highlighted at this point.

Deep learning is commonly seen as a sub-field of machine learning, which itself is a sub-
field of artificial intelligence. The specificity of deep learning is the existence of the so-called
neural networks. Neural networks have as main building blocks artificial neurons, also known
as perceptrons or artificial neural network units, which try to achieve intelligence (thus
artificial intelligence). by mimicking the functionality of biological neurons, as illustrated
in Figure 2.1. For this reason, perceptrons are designed to have the following elements.

• Activation: Both artificial neurons and biological neurons can be in an active or
inactive state. In the biological case, this is associated with the action potentials of
“firing” or “not firing”, while in artificial neurons, it’s looked upon as the neuron’s
output being either in an “on” or “off” state"

7
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• Inputs: Both types of neurons receive inputs from other neurons or sources. In
biological neurons, these inputs come from dendrites, while in artificial neurons, they
are usually mathematical values. A common practice is to normalise or standardise
the inputs of the ANN so that they are within a certain range or in a particular
distribution.

• Weights: Artificial neurons assign weights to their inputs, which determine the
importance or influence of each input on the neuron’s output. A larger weight usually
implies the particular input has a greater influence on the output.

• Summation: Both artificial and biological neurons perform a weighted sum of their
inputs. In artificial neurons, it’s a mathematical operation that sums the products of
inputs and weights. Usually, a bias is added to the result of the sum of the products.

• Activation Function: Both types of neurons apply an activation function to the
weighted sum of inputs. While this is a complex electrochemical process in biological
neurons, in artificial neurons, it’s typically a simple mathematical function like a
step function, sigmoid, or rectified linear unit (ReLU) [250].

• Output: Both types of neurons produce an output. This output is usually the
application of the activation function to the weighted sum of inputs with the bias.

• Learning: Artificial neurons are usually conceived to learn from data via techniques
like gradient descent and backpropagation. As a result of this learning process,
artificial neural networks are able to adapt and improve their performance with time.

Figure 2.1: The perceptron-the building unit of artificial neural networks.

While the biological neurons inspire the functionality of the perceptrons, they remain
a simplified model of the latter and, as a result, do not embody the former’s complexity,
adaptability as well as their functionality.

We now provide the definition of a perceptron.

Definition 2.2.1 (Perceptron or Artificial neuron). A perceptron is the function f : n →
given by

f (x1, . . . , xn) = φ

(
n∑

i=1
xiwi + b

)
= φ(〈x,w〉 + b) (2.1)
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where x = (x1, . . . , xn) ∈ n are the inputs, w = (x1, . . . , xn) ∈ n are the weights, b ∈
is the bias and φ : → is the non-linear activation function.

In practice, many artificial neurons are made to work on a single input, resulting in
a possibly higher dimension output. This usually constitutes a layer.

Definition 2.2.2 (Neural network layer). A neural network layer is made of N` neurons
(usually called the width of the layer), all acting on an input y ∈ N`−1 . It is the function
f` : N`−1 → N` given by

f`(y) = φ
(
W (`)y + b(`)

)
, (2.2)

where b(`) ∈ N` , and W (`) ∈ N`−1×N` .

The above concepts on deep learning have been broadly covered over the past years.
Meanwhile, [274] discusses the backpropagation algorithm, which is at the backbone of the
learning process in artificial neural networks (ANN). The main idea is the update of the
ANN’s weights based on a function of the network’s output (called the cost or loss function)
with respect to their input. For this, optimisation algorithms such as gradient descent
and its variants, stochastic gradient descent and more are used. See [113] for a review on
optimisation algorithms. For a general but more in-depth understanding of the learning
process of ANNs, from its history, through architectures, techniques and perspectives, we
refer to [201] [103]. For a comparison and analysis of some popular activation functions, as
well as their impact on the ANN’s performance, one could have a look at [250].

2.2.1 Neural Networks Architectures

Over the years, a good number of neural network architectures have been developed.
However, in most of these famous neural network architectures, it is possible to always
identify either a feedforward neural network (FFN), a convolutional neural network (CNN)
or a recurrent neural network (RNN).

Feed-forward Neural networks

Artificial neural networks are referred to as being “deep” because they are made up of a good
number of neural network layers. Feed-forward neural networks, or multi-layer perceptrons
(MLP), are one of the earliest breakthrough in the field. The concepts presented at the
start of 2.2 directly apply to them.

Definition 2.2.3 (Feed-forward Neural Networks). Consider the function A = fL ◦ fL−1 ◦
. . . ◦ f2 ◦ f1 : N0 → NL , a composition of L neural network layers, with each layer f`,
having a width of N`, ` = 1, . . . , L. The function

A(x) = fL (fL−1 (. . . (f1(x)))) (2.3)

is called an artificial or deep neural network. where x ∈ N0, N0 is the dimension of the
input layer and is defined as in Definition 2.2.2
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Convolutional neural networks

While feed-forward neural networks perform relatively well on ‘basic’ tasks, they are
however limited in computer vision tasks such as image classification object detection and
other tasks involving grid-like data. Convolutional neural networks were a breakthrough
in this aspect. The pioneer work that used CNNs is probably the LeNet-5 architecture
[202], which used CNNs for the task of handwritten digit recognition. However, its
breakthrough was only later with the AlexNet [296]. Since then, subsequent developments
of neural network have been made.

The fundamental building block of a CNN is a convolutional layer, used for feature
extraction from input data. In addition to a convolutional layer, CNNs usually have
activation layers, pooling layers (used to reduce the spatial dimensions of the feature
maps while extracting dominant features), padding layers as well as fully connected layers
(usually at the end of the network).

Recurrent Neural Networks

It is usually necessary to capture previous information for sequential data, such as time
series data. In other words, there is a need for the network to have some memory. This
is achieved with residual connections to previous layers. RNNs [273, 295] have since
been improved and their shortcomings such as short-term memory have been improved in
Long-short term memory (LSTM) [142] and gated recurrent unit (GRU) [58] networks.

2.2.2 Principal Component Analysis

Though not a neural network architecture per se, this concept is used in many aspects of
this thesis. It is thus briefly explained here to lay some foundation. For a detailed overview,
we refer to [171] Principal component analysis (PCA) or proper orthogonal decomposition
(POD), as called in physics, is mostly viewed in machine learning as a dimensionality
reduction technique. The starting point of PCA is high-dimensional data (with many
features/variables). By using the dependencies between the variables in this data, PCA,
reduces the dimension to a lower dimension (lesser features). In essence, the features with
less variance, are considered to be less useful, while those with high variance are preferred.
Mathematically, the PCA algorithm makes use of the concepts of mean, covariance matrices,
eigenvector and eigenvalues as described in the below steps.

- centering of the data, i.e. subtraction of the mean.

- calculation of the covariance matrix

- computation of the eigenvectors and corresponding eigenvalues of the covariance
matrix.

- identification of the principal components, i.e. eigenvectors with the highest eigenval-
ues.
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- transformation of the data by using the eigenvectors.

Definition 2.2.4 (Principal Component Analysis). Given n samples of a certain data
xi ∈ m, with i = 1, . . . , n, we define the matrix X := (xi)n

i=1 ∈ n×m with mean µ.
The matrix Xµ := X − µ ∈ n×m has covariance matrix in m×m with corresponding
eigenvector matrix V ∈ m×m. The matrix Vp ∈ m×p is obtained from V by selecting the
p principal components. The function PX : X 7→ Xu ∗ Vp is the PCA, where ∗ is a matrix
multiplication.

In order to reconstruct X from Y = PX , one applies the operation Y ∗ V T
p + µ, where

V T
p is the transpose of the matrix Vp

2.3 Inverse Problems

Simply put, inverse problems are concerned with recovering original information/data from
a transformed version, or in other words, determine the causes of a certain desired or
observed effect. In this section, only the basics on the subject are discussed. [10] provides
a more exhaustive covering on the subject. For a Bayesian view on the subject, see [289].

Definition 2.3.1 (Inverse problem). The task of recovering a model parameter λ ∈ Λ, the
parameter space from measured data u ∈ U , the solution space, where

u = F (λ) + η (2.4)

is called an inverse problem. Additionally, F : Λ → U is the forward operator while η ∈ U
models the noise. (In the rest of the discussion, we ignore η)

One inherent property of inverse problems encountered in science and engineering is their
ill-posedness. This makes inverse problems particularly challenging, as finding numerically or
analytically stable methods for solving are then difficult. Particularly, it is worth mentioning
at this point that PDE-based inverse problems tend to be highly non-linear. This further
introduces another challenge, which is however not discussed at this point. [154] studies
some PDE-based inverse problems such as the inverse gravimetry, inverse conductivity,
inverse scattering, inverse spectral as well tomography and inverse scattering problems.

Definition 2.3.2 (Well/Ill-posedness of an inverse problem). An inverse problem is well-
posed in the Hadamard sense [123] if the below conditions are fulfilled:

- Existence: for each u ∈ U , there exists some λ ∈ Λ such that F (λ) = u.

- Uniqueness: λ as defined above, is unique. λ is therefore the solution of the inverse
problem.

- Stability: The inverse mapping F−1 : U → Λ is continuous. Or better still, the error
in the solution should depend stably on noise in the data.
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When any of the conditions is not met, the problem is deemed ill-posed.

Generally, speaking, there exist workarounds on the question of existence and uniqueness.
Usually, on one hand, to deal with the problem of non-existence, a solution whose image in
the range is closest to the data (in a suitable distance) is usually chosen, and on another
hand, to deal with the problem of non-uniqueness, a solution is with zero projection in
the Null-space of F is chosen. The challenge is thus usually at the level of instability
with noise. Unfortunately, for the majority of interesting but challenging inverse problems,
instability has been shown to be an intrinsic property. This formed the basis of the theory
of inverse problems, with the aim to develop stable schemes for the estimation of the
parameter λ from the data u [10]. Methods, leading to stable approximations of an inverse
problem, are called regularisation methods.

2.3.1 Regularisation and Inverse Problems

On the subject of regularisation, a good number of algorithms have been developed
for the obtention of stable approximations of inverse problems. Most of them can be
classified into four main groups [10]:

- Approximation of the analytic inverse, which aims at stabilising a closed form of the
inverses F−1, usually by reconstruction operators.

- Iterative methods, applying early stopping. Usually based on the gradient descent,
with objective to minimise the term ‖F (λ) − u‖2

U , where ‖ · ‖U is the norm in the
space U . The ill-posedness of the problem usually leads to a decrease in the error up
to a certain level, after which a divergence is observed, thus the need for an early
stopping criterion.

- Discretisation usually controls the approximation of the forward operator but also
has an effect on the inverse.

- Variational methods minimise the data misfit with an added penalty term. The cost
function is, thus, of the nature.

λα := argmin
λ∈Λ

(L(F (λ), u) + Rα(λ)) (2.5)

Popular choices of the penalty term are total variation (TV) regularisation and Ridge
or Tikhonov regularisation. This term usually controls desirable features of the
parameter, and its choice is therefore motivated by this.

A special case and a rather popular version of the variational method is the classical
Tikhonov regularisation, where the expression in 2.5 is now.

λα := argmin
λ∈Λ

(1
2 ‖F (λ) − u‖2

U + αR(λ)
)

(2.6)
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A popular choice of the penalty term, in literature is R(λ) = 1
2‖λ − m0‖2

Λ, where the
point m0 ∈ (Λ0, ‖ · ‖Λ) ⊆ (Λ, ‖ · ‖Λ), so that we now have

λα := argmin
λ∈Λ

(1
2 ‖F (λ) − u‖2

U + α
1
2‖λ−m0‖2

Λ

)
(2.7)

Specifically when R(λ) = 1
2‖λ‖2

Λ, and F is linear, with an adjoint F ∗, minimising the
expression in 2.6, yields

λα = (F ∗ ◦ F + αI)−1 ◦ F ∗, (2.8)

where I, is the identity matrix.

2.3.2 The Bayesian approach

Up to now, we have mostly discussed the case of functional analytic regularisation. However,
the question of the choice of the norms ‖ · ‖U and ‖ · ‖Λ, and the choice of the point m0

remain unaddressed, as they are chosen rather arbitrarily in the functional setting, with
no further modelling assumptions. Also, the questions of certainty that the prediction
made by the model lies in a certain desired regime; and that of the relative probability
that the local minimisers of 2.7 determine the parameter λ. These questions are addressed
by the Bayesian approach to inverse problems and makes them richer. This motivates
its mention at this point of this work. However, Bayesian/probabilistic approaches are
not used in the problems studied in this work but show a promising direction. We refer
the reader to [289] for a more exhaustive discussion on the subject. Worth mentioning,
however, is the fact that the Bayesian approach seeks to find a probability measure µu

on Λ which contains information on the states of λ given the measurement u. Also, we
highlight the similarity of the minimisation problem in 2.7 to the probability measure of
the posterior µu, with density function πu(λ) , given by

πu(λ) ∝ exp
(

−1
2‖F (λ) − u‖2

U − 1
2 ‖λ−m0‖2

Λ

)
(2.9)

for the specific case where Λ and U are finite-dimensional, with additive Gaussian noise
and a Gaussian prior measure µ0 (with density function π0). The density πu(λ) is thus
larger at the minimisers of 2.7. Additionally, Baye’s formula establishes a relationship of
direct proportionality between πu and, π0 as demonstrated in [289].

In order to obtain information from the expression in 2.9 in high-dimensional settings,
the procedure is usually either through variational methods where a maximum a posteriori
(MAP) estimator, which maximises πu, is found or through sampling methods–such
as Markov Chain Monte Carlo (MCMC)–where set of points distributed according to
πu are generated. In problems where the prior η ∼ N (0,Ση) and µ0 = N (m0,Σµ0),
2.9 then becomes

πu(λ) ∝ exp
(

−1
2

∣∣∣Σ−1/2
η (F (λ) − u)

∣∣∣2 − 1
2

∣∣∣Σ−1/2
µ0 (λ−m0)

∣∣∣2)
= exp

(
−1

2 |(F (λ) − u)|2Ση
− 1

2 |(λ−m0)|2Σµ0

)
,
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with MAP estimator

λ∗ = argmin
λ∈Λ

(1
2 |(F (λ) − u)|2Ση

+ 1
2 |(λ−m0)|2Σµ0

)
,

which is similar to 2.7, but the choice of the norms and m0 are clear, thus answering
the question earlier highlighted.

2.4 Partial Differential Equations

As earlier mentioned, partial differential equations (PDEs) are an essential tool for modelling
natural phenomena. The focus on this section is a discussion on the major (and basic)
aspects of PDEs as well as numerical methods for solving PDEs. For a more complete
introduction on the subject of PDES, one could refer to [83] and [287]. An expression of a
second-order PDE, which we mostly focus on in this work, has already been introduced
in Equation 1.1. Generally speaking, a second-order PDE has the highest derivative
of order two in its expression.

2.4.1 Categorising PDEs

Partial Differential Equations (PDEs) can be categorised into several major types based
on their characteristics and properties. As a rule of thumb, categorising PDEs helps in
understanding the nature of the PDEs and usually serves as a guide in the choice of
appropriate solution techniques and mathematical methods for solving them. Some of
the major categorisations of PDEs include:

• Elliptic PDEs have smooth and continuous solutions. They are often used to describe
steady-state problems where the solution does not depend on time. Examples include
the Laplace equation and the Poisson

• Parabolic PDEs describe problems that evolve over time, typically involving a
diffusion or heat conduction process. They have one independent variable (e.g., time)
and are second-order in the spatial variables. Examples include the heat equation
and the diffusion equation.

• Hyperbolic PDEs are used to model wave-like phenomena and problems that involve
information propagation. They are characterised by two independent variables (space
and time) and are second-order in both. Examples include the wave equation and
the transport equation.

• Linear PDEs: are characterised by the linear appearance of the unknown function
and its derivatives. They thus have well-understood properties and are thus generally
easier to solve.

• Nonlinear PDEs are the opposite of linear PDEs and are often more challenging to
solve
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2.4.2 Classical methods for Solving PDEs numerically

The finite difference (FDM), finite element (FEM), boundary element (BEM), finite volume
(FVM) and particle methods are the most established concepts for numeric solutions
of PDEs. These methods are well-researched and reliable, and are generally employed
whenever possible within the given restrictions of data and computer power.

The finite difference method (FDM) is based on the replacement of the occurring
derivatives by difference quotients. In this process, the function values of the solution are
approximated at individual discrete grid points. The result is a so-called grid function.
We refer to [288] for a more detailed description. The great advantage of the FDM is its
straightforward realisation. However, its extension to more complex problems is limited
and rather unrealistic smoothness assumptions are necessary for its analysis.

The finite element method (FEM) overcomes the mentioned disadvantages of FDM
methods to a large extent. In contrast to the FDM, it is based on the weak formulation of
the PDE under consideration and searches for the discrete solution over a finite-dimensional
subspace of the underlying function space, see [36] for more details. Especially in connection
with adaptive and domain decomposition methods, it shows its full potential. An interesting
variant is discontinuous Galerkin (dG) methods, in which the smoothness assumptions
for the discrete solution, which stems from the weak formulation of the PDE, are only
enforced by penalty terms.

The boundary element method (BEM) follows a different idea. In this concept, the
PDE is transformed into a boundary integral equation, which, however, is only possible in
special cases. This reduces the dimension of the problem. The boundary integral equation
is then discretised by means of FEM, for example. However, the resulting system of
equations is dense, and its numerical solution is often tricky and numerically very elaborate.
Nevertheless, the BEM offers great advantages for exterior space problems in which an
unbounded area is considered. We refer, for instance, to [120] for more information.

The Finite Volume Method (FVM) brings together ideas from the FEM and the FDM
and combines them with arbitrary control volumes, see [206]. The FVM is particularly well
suited for the discretisation of hyperbolic equations and convection-dominated problems.
However, its theoretical analysis is not yet that advanced.

Another approach are particle methods or discrete element methods (DEM), see [46],
which are based on a completely different approach. Here, individual particles and their
interaction with each other are considered. By using different approaches to describe the
interaction, different materials and processes can be simulated. They thus achieve very
good accuracy in many applications, e.g., in the simulation of sand, which is difficult
to simulate with the other methods.

The mentioned concepts are well-established for solving PDE-based forward problems
and all of them have been adapted to inverse problems, in particular in the complex tasks
of optimal control or numerical parameter identification. They lead to accurate results
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in this context. However, two main difficulties have to be mentioned: Firstly, and as
mentioned already in the previous section, solving these inverse problems requires solving
the forward problem multiple times, which leads to unacceptable overall computing times
at least for large problems. Furthermore, the optimisation algorithms for solving the above-
mentioned parameter identification tasks require the first and, if possible, also the second
derivative with respect to the unknown parameters. At first, it is often unclear whether
the mentioned derivatives exist at all. In addition, their calculation is algorithmically
very complex and time-consuming, especially for time-dependent problems. We refer
to [303] for a detailed discussion.



My work always tried to unite the true with the beautiful,
but when I had to choose one or the other, I usually
chose the beautiful.

— Hermann Weyl

3
Deep Learning for Partial

Differential Equations 1: Concepts
and State of Art

This chapter reviews the literature and provides the start of art of DL methods for solving
PDEs. They are then extended for the purpose of parametric studies and inverse problems.
It is based on the following article:

Derick Nganyu Tanyu, Jianfeng Ning, Tom Freudenberg, Nick Heilenkötter, Andreas
Rademacher, Uwe Iben and Peter Maass. “Deep learning methods for partial
differential equations and related parameter identification problems”. In: Inverse
Problems 39.10 (Aug. 2023), p. 103001.

3.1 Motivation

The main purpose of this section is to list the DL methods considered in this present
survey. In the subsequent sections, we will then analyse their potential for parametric
studies and inverse problems.

As already mentioned, mesh-based methods for solving PDEs such as finite element
methods, finite difference methods, and finite volume methods are the dominant techniques
for obtaining numerical solutions of PDEs. When implementing these methods, the
computational domain of interest should be first discretised using a set of mesh points and
the solution is then approximated at the chosen grid points. The solutions are usually
obtained from a finite linear space by solving a linear or non-linear system of equations.
The classical methods are very stable and efficient for low-dimensional problems and
regular geometries. They are well understood in terms of existence, stability and error
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estimate, and we can usually achieve the desired accuracy by increasing the resolution of
the discretisation. In addition to the more general remarks above, the classical methods
have several additional drawbacks and limitations. Firstly, the curse of dimensionality
has limited the use of mesh-based methods, since the number of discretisation points will
increase exponentially with the dimension, and there is no straightforward way to discretise
irregular domains in high-dimensional spaces. Secondly, traditional methods are designed to
model one specific instance of the PDE system, not the parameter-to-state operator. Thus,
for any given new instance of the PDE system, the problem has to be solved again. Thirdly,
the numerical solution is only computed at the mesh points and evaluation of the solution
at any other point requires interpolation or some other reconstruction method. Fourthly,
classical methods require the knowledge of the underlying analytic system of differential
equations, but sometimes the exact physics is unknown. Lastly, solving inverse problems
by classical problems is often prohibitively expensive and requires complex formulations,
repeated computation of forward problems, new algorithms and elaborate computer coding.

Deep learning methods have shown great power in addressing the above difficulties.
Since there are many different deep learning methods for PDEs, and each method has its
particular properties, we will discuss them one by one. We should add, that the theoretical
investigation of deep learning concepts for PDEs, beyond more or less direct applications
of the universal approximation theorem, is still scarce. This is in contrast to the classical
PDE theory, where exhaustive literature exists on the analytic properties of different types
of PDEs. The theoretical characterisation of PDEs, as well as the type of theoretical
background needed for proving solvability and uniqueness, differentiates between linear
and non-linear elliptic, parabolic or hyperbolic equations in terms of the given boundary
conditions. Analytic tools are different for these different classes; hence it is somewhat
surprising that DL concepts for PDEs hardly ever use this classical classification but
rather use a classification based on whether the PDE (no matter which type of PDE) is
known, which type of data is given for training and which type of network architecture
as well as which loss function for training is used.

We follow this data-driven classification scheme. Our first level of characterisation is
based on the input and output structure of the network. A first class of networks takes
x or (t, x) as input and outputs a one- or low-dimensional scalar value or vector uΘ(·).
During training the weights Θ of the network are optimised such that uΘ(·) = û(·) is an
approximation to the solution u of the PDE at the specified point x or (t, x), i.e., a regression
problem for the function uΘ ≈ u is solved. These networks aim at a function approximation.
Otherwise, one aims at an operator approximation for the parameter-to-state map and
uses networks which take a parameter function, either in discretised form or as a vector of
precomputed feature values, as the input and outputs the full solution function u. The
solution u is again delivered either in discrete form or as a related feature vector, that can
be turned into a proper function representation in a post-processing step. The general idea
of these two characterisations is summarised in the following Figures 3.1-3.2:
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• F u n cti o n e v al u ati o n, n e ur al n et w or k u Θ (t, x) ≈ u (t, x) b as e d o n t h e  PI N N c o n c e pt,

[ 2 6 1]

Fi g u r e 3. 1: A n et w or k  wit h a l o w i n p ut di m e n si o n f or (t, x),  w hi c h o ut p ut s a s c al ar or
l o w- di m e n si o n al û ( t, x) = u Θ ( t, x).  H e n c e, t h e n e ur al n et w or k i s t r ai n e d t o b e a f u n cti o n
a p pr o xi m ati o n of t h e s ol uti o n û ( t, x) ≈ u (t, x).  D uri n g t r ai ni n g, a ut o m ati c di ff e r e nti ati o n
b y b a c k pr o p a g ati o n i s u s e d t o c o m p ut e all n e c e s s ar y d eri v ati v e s f or c h e c ki n g,  w h et h er t h e
P D E i s s ati s fi e d. I n a d diti o n, t h e l o s s f u n cti o n t y pi c all y s u m s u p o v er s e v er al v al u e s of
(t, x) a n d t h ei r c or r e s p o n di n g f u n cti o n v al u e s.  Aft er t r ai ni n g, t h e  D e e p  N e ur al  N et w or k i s
t h e n u s e d a n d û c a n b e e v al u at e d at ar bit r ar y p oi nt s (t, x).

• O p er at or e v al u ati o n, n e ur al n et w or k Φ Θ (λ ) f oll o wi n g t h e  P C A N N c o n c e pt [ 2 4]

Fi g u r e 3. 2: A t y pi c al s et u p f or a n o p e r at or a p pr o xi m ati o n s c h e m e.  H er e, a n or d er
r e d u cti o n  m o d el ( s e e [ 2 2, 5 7, 2 7 6] f or a n o v er vi e w of r e d u cti o n  m o d el s) i n c o m bi n ati o n
wit h a n e ur al n et w or k i s e m pl o y e d.  Fi r st, t h e p ar a m et er λ ∈ Λ , t h e p ar a m et er s p a c e,
i s r e d u c e d t o a f e at ur e v e ct or i n R d Λ b y d et e r mi ni n g it s s c al ar pr o d u ct s  wit h a pr e-
c o m p ut e d r e d u c e d b a si s, i. e., c k = ⟨ λ, b k ⟩ ( w hi c h i n c a s e of a n ort h o n or m al s y st e m i s
e q ui v al e nt t o λ ∼ c k b k ∈ Λ ).  O nl y t h e f e at ur e v e ct or s ar e  m a p p e d b y t h e n e ur al n et w or k
ϕ Θ : R d Λ ∋ c → c̃ ∈ R d U .  T h e o ut p ut f e at ur e s c̃ a r e t h e n u s e d t o d et er mi n e a n e x p a n si o n
of t h e s o u g ht-f or s ol uti o n û = ℓ c̃ ℓ b̃ ℓ i n t e r m s of a b a si s { b̃ ℓ } i n t h e s ol uti o n s p a c e, U .
I n t hi s  w a y,  w e t h e n a p pr o xi m at e t h e p ar a m et er t o s ol uti o n f u n cti o n Ψ : Λ ∋ λ → u ∈ U
b y Φ Θ = G U ◦ ϕ Θ ◦ F Λ a s i n di c at e d b y t h e r e d ar r o w. F Λ a n d F U a r e e n c o d e r f u n cti o n s
( P C A  m a p s) i n t h e p ar a m et er a n d s ol uti o n s p a c e s r e s p e cti v el y,  w hil e G Λ a n d G U a r e t h ei r
r e s p e cti v e d e c o d er f u n cti o n s. ( s e e 3. 5. 1 a n d [ 2 4]).

T y pi c al e x a m pl es of  D L c o n c e pts ai mi n g f or a f u n cti o n a p pr o xi m ati o n ar e  D e e p  Rit z

m et h o d [ 2 1 5, 3 2 7],  P h ysi cs-I nf or m e d  N e ur al  N et w or k ( PI N N) [ 2 6 1],  D e e p  G al er ki n  M et h o d

( D G M) [ 2 8 4],  We a k  A d v ers ari al  N et w or ks [ 3 2 9], a n d  D e e p S plitti n g  A p pr o xi m ati o n  m et h o ds

[ 1 9]. I n all t h es e c o n c e pts, i nf or m ati o n of t h e u n d erl yi n g p h ysi cs  m ust b e us e d  w h e n tr ai ni n g

t h e n e ur al n et w or k, i. e., t h e  P D E  m ust b e k n o w n a n al yti c all y.  T h es e c o n c e pts ar e us u all y

m es h-i n d e p e n d e nt a n d a c c ur at e,  w hil e t h e y r e q uir e k n o wl e d g e of t h e g o v er ni n g l a ws of

t h e  P D Es, a n d t h e o pti mis ati o n pr o bl e m n e e ds t o b e s ol v e d f or e v er y n e w i nst a n c e.  T his

is si mil ar t o cl assi c al  m et h o ds.
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Networks PDE usage Data usage Neural network Discretisation Referenceapproximation parameter Solution
Deep Ritz yes no function no no [215, 327]

PINN yes no function no no [261]
WAN yes no function no no [14, 329]

PCANN no many operator free grids free grids [24]
FNO no many operator free grids free grids [211]

UFNO no many operator free grids free grids [316]
MWT no many operator free grids free grids [119]

DeepONet no many operator fixed no [222]
PINO yes if needed operator free grids free grids [214]

PI-DeepONet yes if needed operator fixed no [310]

Table 3.1: The list of DL concepts considered in this survey is based on a pre-selection mirroring
our own interest in inverse problems. Hence, concepts for operator approximation are preferred.
In their original papers, most of these concepts were designed for Level 1 problems only. Hence,
we need to specify in later sections how to extend them for Level 2 or Level 3 problems. Also,
we will later refine the features characterising the different methods in terms of limitations, e.g.,
which PDE equations are most suitable and which are not.

Examples for the second type, i.e., methods aiming at an operator approximation, include
model reduction neural network (PCANN) [24], Deep Operator Network (DeepONet) [222]
and its extensions [106, 310], Fourier neural operator (FNO) [211] and its physics-informed
extension–Physics Informed Neural Operator (PINO) [214], Graph Kernel Network [212,
213], Bayesian deep convolutional encoder-decoder networks [334], Wavelet Neural Operators
[302], Multiwavelet based operator (MWT) [119] and many more. These operator methods
usually learn the neural network with some paired input-output (parameter-solution)
observations with or without the knowledge of the physical system (using the physics
information could sometimes alleviate the need for much data as in the case of PINO and
PI-DeepONet) as highlighted in Table 3.1. Thus, the neural network only needs to be
trained once, and a new parameter identification task can be directly solved by a forward
pass of the network. Some of these deep learning methods still need to discretise the domain
of interest, and the solutions are sought in a finite linear space [334]. A recently published
paper [68] aims at comparing some of these operator approximation concepts for solving
various PDEs. The primary criterion for comparison in this well-written paper is the cost-to-
accuracy curve. Accordingly, the authors compare results obtained with different network
sizes. However, their comparison includes the basic methods PCANN, DeepONet and FNO,
which in our tests did not yield the best results. Also, the numerical test stays in a range -
when compared with FEM methods - of rather large approximation errors. This matches
our experience; it is hard to get to high precision for forward solvers with DL concepts.
However, our focus is on inverse problems, which are not covered in the mentioned paper.

In terms of the involved computational load, the computational cost of classical
methods for solving linear PDEs is mainly determined by the need to solve a large linear
system. For deep learning methods, it is the training process (optimisation) of the neural
network. As a general rule of thumb for low dimensional problems with regular geometries,
classical methods are in general more powerful and efficient than deep learning methods.
Ignoring rounding errors, the main error of the classical methods arises from the step
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size of the discretisation. There exists a trade-off on the resolution: coarse grids are fast
but less accurate, fine grids are more accurate but slower. On the other hand, for DL
approaches one usually has to carefully choose the neural network, optimisation method
and hyperparameters in consideration of the underlying differential equation. Additionally,
the error of deep learning methods is usually difficult to estimate and consists of several
factors. The accuracy can be characterised by dividing the total error into three main types:
approximation, optimisation, and generalisation errors. More specifically, the approximation
error measures the smallest difference between the neural networks and the underlying
function or operator, which we aim to approximate. This error is influenced by the size and
architecture of the neural networks. The optimisation error arises from the non-convexity
property of the loss function and the limited number of iterations used for its minimisation.
Stochastic Gradient Descent is an efficient algorithm for escaping local minima and reducing
the optimisation error; nevertheless, in real-life applications, we never achieve a global
minimum. The generalisation error refers to how the trained networks perform on unseen
data and is mainly affected by the amount of training data, the modelling information
of the PDEs, and the architecture of the neural networks.

The selection of DL-based PDE solvers, which are further investigated in this survey, is
based on our endeavour to cover a most complete range of different concepts. Hence, we in-
cluded the basic concepts of learned DL solvers, as well as some recent improvements of these.

A more detailed description of these approaches, their algorithmic implementation
and their analytical properties will be given in the subsequent sections. We will also
highlight, how these methods, which were typically designed as PDE-forward solvers, can
be extended to parameter identification problems.

3.2 Characterisation of DL concepts for PDEs

Having specified the restricted scope of the present survey, we will now list the concepts
under consideration in the following sections. Before starting the introduction of the
individual methods, we include some general remarks on the characterisation of deep
learning methods for PDEs. As already mentioned, the characterisation of DL concepts for
solving PDEs differs considerably from the analytic characterisation of PDEs. They are
mainly characterised in terms of the information needed for applying them. The two main
classes of information are data and physical models, where ’physical models’ refers to the
mathematical formulation of the differential equations and their boundary conditions.

3.2.1 Data

Data-driven methods rely on the availability of sufficiently large data sets of good quality.
The data provided can be sampled values of single or multiple solutions, where sampling
can be done either on a predefined grid or with arbitrary sampling points. Some of the
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most advanced theoretical investigations do start from assuming a sampling in function
space, which opens the path for incorporating functional analytical machinery in their
analysis, see [1, 24, 260].

However, the volume of available data is usually rather scarce,e.g., useful experimental
data is generally limited or even intractable for many practical scenarios and high-fidelity
numerical simulations are often computationally expensive. It is sometimes challenging to
extract interpretable information and knowledge from the data deluge. Moreover, purely
data-driven methods may fit observations very well, but predictions may be physically
inconsistent or implausible. Theoretically, finite data cannot fully and correctly determine
a mapping which maps an infinite set to an infinite set. However, we can still see the
success of data-driven methods, which is mainly due to two reasons: firstly, the search for
a solution or parameter typically follows a certain prior distribution, which we might be
able to approximate well with few samples; and secondly most problems are continuous,
which in connection with suitable regularisation schemes leads to good generalisation
properties, even for limited sets of training data, [261]

In addition to sampled data, a wealth of domain-specific expert knowledge exists for
most applications. This information may come in the form of observational, physical or
mathematical understanding of the system under consideration. Integrating data and this
prior knowledge can yield more interpretable machine learning methods and can improve
the accuracy and generalisation performances without large amounts of data.

In our context, information from physics may come in different forms: most commonly,
the system of partial differential equations as well as boundary conditions are specified.
Otherwise, some energy functional or a weak formulation may be given. Also, certain
approaches [277] incorporate conservation laws in the network architecture. Whenever such
information is used, the concept is typically called ’physics informed’.

Different from data-driven methods, the physics information may uniquely determine the
systems, however, only within the limitations of the chosen model. For example, given the
PDE formula and some initial and boundary equations, the solution is uniquely determined
if the system is well-posed. In other words, mathematical formulae may inherently contain
all information of the physical systems, while data are just observations and reflections of
the physical systems and thus cannot fully reveal the whole information of the systems.

The most common approach is to use this physics information in the loss function
during the training of the network. Hence, the type of physics information determines
the loss function.

3.2.2 Network training and application

Training the resulting networks typically leads to additional problems. This may require
extensive hyperparameter search, data pre-processing or subtle parameter settings for
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controlling the convergence of the training scheme. For the respective training concepts
for each method, refer to [244].

As pointed out in [175], specific to physics-informed learning, there are currently
three pathways that can be followed separately or in tandem to accelerate training and
enhance the generalisation of ML models by embedding physics in them. The first one is
observational biases from observational data, which is the foundation of data-driven
methods in machine learning. The second is inductive biases by designing special NN
architectures that can automatically and exactly satisfy some properties and conditions. The
most common example are convolutional NNs which can be designed to respect properties,
such as symmetry, rotations and reflections. Other examples are graph neural networks
[212] which are adapted to graph-structured data. Another concept is based on quadratic
residual networks(QRES) [39], which increases the potential of the neural networks to
model non-linearities by adding a quadratic residual term to the weighted sum of inputs
before applying activation functions. They were shown to have good performance in
learning high-frequency patterns. The invertible neural network [8] makes the inverse of the
neural network well-defined. It has applications in inverse problems and generative models.
Specific architectures can also be designed to satisfy the initial/boundary conditions. The
last pathway is learning biases, where the physics constraints are imposed in a soft
manner by appropriately penalising the loss function of conventional NN approximations.
Representative examples include the Deep Ritz method and PINN.

We also want to comment on the arguably most important tools for physics-informed
machine learning, namely automatic differentiation [18]. In principle, this general concept
allows us to compute exactly the derivatives of the network output with respect to the
input variables. Hence, we can conveniently incorporate weak or strong formulations of the
underlying PDE. However, compared to conventional numerical gradients such as finite
difference, the automatic differentiation method is usually slower and requires more memory.

Moreover, after training, the methods will again differ substantially in their scope of
applicability. Methods might allow the sampling of a solution of a PDE at arbitrary points.
In this case, the method is called meshfree, which is one of the most desirable properties of
most DL concepts for PDEs. Another important property, in particular for Level 2 and
Level 3 problems, is the computational load needed for applying the network to a different
parameter of the PDEs. This is most efficient for most operator learning schemes, but
might require re-training or the computation of specific feature vectors.

In conclusion, different deep learning methods for PDEs are mainly different in terms of
their neural network architecture and the particular choice of the loss function for training.

3.2.3 General DL concepts for PDE-based inverse problems

So far, we have sketched two main approaches for solving PDEs (forward problems), namely
function or operator approximation schemes. In the following sections, we will introduce



24 24

these methods and their baseline implementation in more detail. We will also include,
whenever appropriate, the related concepts for the PDE-based inverse problems.

The extension of function approximations uΘ(t, x) for solving inverse problems is not
straightforward and differs from method to method. In contrast to that, the application
of learned operator approximation schemes ΦΘ(λ) to inverse problems is always based
on one of the two following concepts:

• The direct (or backward) method, where the network is trained with reversed input-
output. In other words, the solution of the PDE is the input of a neural network
which outputs the parameter function. This method is similar to the forward problem,
but we learn the backward operator.

• Tikhonov Regularisation, for this case, the forward operator ΦΘ(λ) is trained as
usual. For an inverse problem with given noisy data, uδ we then approximate a
suitable parameter λ by minimising a Tikhonov functional with respect to λ

‖ΦΘ(λ) − uδ‖2 + αR(λ).

The choice of the penalty term R adds to the flexibility of the method and can
encode further properties of the solution such as smoothness, sparsity or piece-wise
constant structures. Minimisation is done iteratively via gradient descent, where the
differentiation with respect to λ can be implemented using backpropagation with
respect to the input, but with fixed weights Θ. We exemplify the procedure for the
model reduction concept PCANN in Algorithm 5. A similar idea can be applied to
the other solution operators mentioned in Sections 3.5.2 and 3.5.3.

3.3 Theoretical Results of Deep Learning for PDEs

One reason for the success of finite element methods is that the functions in Sobolev
space can be approximated by piece-wise polynomials with a certain convergence rate
depending on the mesh size. However, classical methods require degrees of freedom of
the order of ε−d for a desired accuracy ε in d dimensional problems, which limits their
applications to high-dimensional problems. The task of deep learning for PDEs is to employ
neural networks to approximate the solution or parameter-to-state operator with a limited
amount of data or physical information. A fundamental question is therefore whether the
neural network can effectively approximate the solution/parametric operator of a PDE
system, and if so, how to estimate the complexity of a neural network in terms of the
dimensionality growth and accuracy requirements. In this section, we will briefly review
some approximation theoretical aspects of deep learning for PDEs.
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3.3.1 Approximation Results for Solution Learning in PDEs

Neural networks are universal approximators [65, 145] in the sense that continuous functions
on compact domains can be uniformly approximated by neural networks with arbitrary
accuracy, provided the number of neurons is sufficiently large. A lower bound on the size
of the neural network for achieving the desired accuracy was not given in these papers.
With some assumptions on the activation functions and the space of functions to be
considered, more refined results on the relationship between the size and the approximation
accuracy of neural networks have been reported in [16, 29, 72, 107, 114, 115, 221, 230, 280].
The universal approximation theorem has also been generalised to convolutional neural
networks in [332] and complex-valued neural networks in [308]. These results concern
general function approximations and do not refer to PDE solutions.

Neural Networks Approximation for High Dimensional PDEs

We now shortly discuss the theoretical foundations for approximating solutions of PDEs
by neural networks. Recent years have witnessed great empirical success of various deep
learning methods [130, 149, 327, 329] in particular for solving high-dimensional PDEs.
To explain these successes, several mathematical results have been proven showing that
neural networks have the ability to approximate solutions of some PDEs without the curse
of dimensionality (CoD). In particular, in [108] it is shown that the solutions of linear
Black-Scholes PDEs can be approximated by neural networks with the size increasing at
most polynomially with respect to both the reciprocal of the prescribed approximation
accuracy and the PDE dimension d. A number of articles have appeared that significantly
extend the results in [108] to more classes of PDEs [21, 102, 146, 151, 161, 263]. In
particular, in [151] it is proven that neural networks have the expressiveness to overcome
the CoD for semilinear heat PDEs.

On the other hand, there are also some articles, [109, 111, 254, 324] that derive some
lower bounds on the complexity of neural networks with ReLU activation function to
achieve a certain accuracy, showing that there are natural classes of functions where deep
neural networks with ReLU activation cannot escape the CoD.

Barron Spaces

Typical classical approximation results for PDE solutions use a setting in Sobolev or Besov
spaces. These spaces can be defined by their approximation properties using piece-wise
polynomials or wavelets. In the same sense, the Barron space [53, 80] is the analogue when
we consider approximation by two-layer neural networks. Roughly speaking, the Barron
space consists of functions that can be approximated by two-layer neural networks, and
the approximation error is governed by the norm of the Barron space. A nice property of
Sobolev/Besov-type spaces is that solutions to partial differential equations lie in these
spaces. This is the core of the regularity theory for PDEs. When introducing Barron spaces
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in PDEs, a natural corollary and fundamental question is whether the solutions of the
dimensional partial differential equations (PDEs) we are interested in belong to a Barron
space. We will briefly review the definition of the Barron space and its approximation
theorem, as well as an example of its use in escaping CoD in high-dimensional PDEs.

Consider functions g ⊂ d : X → R which allow the below representation:

g(x; Θ) =
∫

Ω
aσ(wTx+ b)ρ(da, dw, db), x ∈ d, (3.1)

where ρ is a probability distribution on Ω = × d × and σ : → is some activation
function. This representation can be thought of as a continuum realisation of two-layer
neural networks, which are given as

gn(x,Θ) = 1
n

n∑
k=1

akσ(wT
k x+ bk), x ∈ d . (3.2)

We present the following definition from [53] for Barron functions defined in a domain
Ω ⊂ d. This definition is an adaptation of the definition given in [80], with some crucial
modifications, for the purpose of analysing PDEs.

Definition 3.3.1. For a domain Ω ⊂ d and a fixed radius R ∈ [0,+∞], the corresponding
Barron space with index p is defined as

Bp
R(Ω) = {f : ‖f‖Bp

R(Ω) < ∞}, (3.3)

where

‖f‖Bp
R(Ω) := inf

ρ∈PR

{( ∫
|a|pρ(da, dw, db)

)1/p : f =
∫

Ω
aσ(wTx+ b)ρ(da, dw, db)

}
(3.4)

and PR :=
{
ρ : ρ is supported on × {x ∈ d : ‖x‖ ≤ R} ×

}
.

The most essential feature that distinguishes Barron function spaces from Sobolev
or Besov spaces is that elements of the former can be approximated by a two-layer
neural network with an approximation rate that is independent of the dimension, as
shown in the next theorem [53]:

Theorem 1. Suppose that the activation function σ is smooth with C0 := supz∈ |σ(z)| ≤
∞, C1 := supz∈ |σ′(z)| ≤ ∞ and supz∈ |σ′′(z)| ≤ ∞, and that g ∈ B1

R(Ω). Then for any
open bounded subset Ω0 ⊂ Ω and any n ∈ +, there exists {(ak, wk, bk)}n

k=1 satisfying

∥∥∥∥ 1
n

n∑
k=1

akσ(wT
k x+ bk) − f

∥∥∥∥
H1(Ω0)

≤
2(C2

0 +R2C2
1 )m(Ω0)‖g‖Bp

R(Ω)

n
, (3.5)

where m(Ω0) is the Lebesgue measure of Ω0.
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The above theorem gives an H1-approximation rate for the Barron space defined by
its integral representation. Furthermore, for a family of second-order elliptic PDEs with
some assumptions on the coefficients and the source term, it is proved in [53] that for
any exact solution u and ε ∈ (0, 1/2), there exists u∗ ∈ B1

R( d) with R ≤ c1(1
ε )c2 and

‖u∗‖B1
R( d) ≤ c3(d

ε )c4| ln ε| so that ‖u − u∗‖H1( d) ≤ ε. Thus, it is easy to conclude that
there is a two-layer neural network um(x; Θ) with m ≤ c5(d

ε )c6| ln ε| such that ‖um − u‖ ≤ ε,
where c1, c2, c3, c4 are constants independent of u∗, ε and d. Therefore, these results prove
that even a simple two-layer neural network with a single activation function has sufficient
representational power to approximate the solution of an elliptic PDE without CoD.

In [54], the regularity theory of solutions to the static Schrödinger equation in spectral
Barron spaces was studied. In [80] the flow-induced function space was introduced
and analysed by considering the residual neural networks. And the analysis in [161]
shows that the solutions of some linear parabolic PDEs belong to a close analogue of
the flow-induced spaces.

The Monte Carlo Approach

The approximation power of neural networks is the basic requirement for escaping CoD
in high-dimensional PDEs, while the algorithms for finding the optimal parameters of
the neural networks are also equivalently important when considering computational
complexity. The approximation of high-dimensional integrals plays an important role in
such high-dimensional problems. Let f : D = [0, 1]d → be a function in L2(D)and let

I(f) =
∫

D
f(x)dx. (3.6)

To approximate the integral (3.6), the Monte Carlo algorithm [79] randomly samples
independent, continuous, uniformly distributed points {xi}N

i=1 from D and let

IN (f) = 1
N

N∑
i

f(xi). (3.7)

Then by a simple calculation, we have

[|I(f) − I(g)|2] = Var(f)
N

and Var(f) =
∫

X
|f(x)|2dx−

[ ∫
x
f(x)dx

]2
. (3.8)

Thus, the Monte Carlo algorithm, which approximates the integral in high-dimensional
spaces, can escape the CoD in a probabilistic sense. The convergence rate of the Monte Carlo
algorithm plays an important role in the theory of machine learning for high-dimensional
PDEs. As we can see, the deep Ritz and WAN loss functions discussed later for PDEs all
involve the evaluation of an integral over the domain of interest, and the PINN loss function
can also be viewed as the integral of the squared residual of the PDE over its domain of
definition. In addition, the paper [110] proved that if a function can be approximated by a
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proper discrete approximation algorithm without CoD, and if there are neural networks that
satisfy certain regularity properties and approximate this discrete approximation algorithm
without CoD, then the function itself can be approximated by neural networks without
suffering the CoD. Full history recursive multilevel Picard approximation methods(MLP)
[79, 150] are some recursive nonlinear extensions of the classical Monte-Carlo approximation
methods, and it has been shown that such approximation schemes also escape the CoD
in the numerical computation of semilinear PDEs with general time horizons.

In summary, there exist a growing number of strict mathematical results which prove
that deep neural networks have the expressive capacity to approximate the solutions of
some specific PDEs without the CoD and that the Monte Carlo algorithm can provide an
efficient method for computing the associated loss functions. Nevertheless, the conjecture
that there is a deep learning-based approximation method that overcomes the CoD in
terms of computational complexity in the numerical approximation of PDEs has not yet
been fully analysed, for example, the convergence rate of the optimisation procedure to
learn the solution is also required to overcome the CoD.

3.3.2 Neural Network Approximations for Parametric PDEs

Operator learning methods aim to approximate the parametric map connecting a parameter
space with a solution state space (parameter-to-state map). In the literature, the proposed
operator learning methods usually consider low-dimensional PDEs. However, the inputs
and outputs of neural networks for operator learning are usually high-dimensional vectors,
which requires the neural networks to have sufficient expressiveness to approximate the
parametric map. The first successful use of neural networks in the context of operator
learning appeared in [47], where the authors designed a novel learning architecture based
on neural networks and proved that these neural networks yield a surprising universal
approximation property for infinite-dimensional nonlinear operators. This was later
extended to deeper networks, see [255].

A Theoretical Analysis of Neural Networks for Parametric PDEs with Reduced
Basis Assumption

In this subsection, we will briefly review a theoretical result [194] for parametric PDEs,
which is based on the assumption of an inherent low dimensionality of the solution manifold.
We will present a brief overview of the arguments that lead to the approximation theorem
obtained in [194]. The lemmas in this paper and the arguments used for proving them are
constructive and have important value in the analysis of neural networks.

In [194], the authors consider parameter-dependent equations in their variational form:

Aλ(uλ, v) = fλ(v), for all λ ∈ Y , v ∈ H, (3.9)

where the parameter set Y is a compact subset of p with a fixed and potentially large p.
H is a Hilbert space and Aλ is a symmetric, uniformly continuous and coercive bilinear
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form, fλ ∈ H∗ is bounded by a constant C for all λ ∈ Y , uλ ∈ H is the solution and
the solution manifold is assumed to be compact in A.

The following is a simplified outline of the arguments of [194], which derived upper
bounds on the size of neural networks with activation ReLU approximating the solution
operator of parametric partial differential equations under the assumption that the solution
space is inherently lying in a low-dimensional space.

1. Firstly, it recalled the result shown in [324] that the scalar multiplication f(x, y) = xy

for x, y ∈ [0, 1] can be constructed by a ReLU NN of size O(log2(1/ε)) up to an error
of ε > 0.

2. As a next step, the approximate scalar multiplication is used to show that a matrix
multiplication of two matrices of size d×d with entries bounded by 1 can be performed
by NN of size O(d3 log2(1/ε)) up to an error of ε > 0.

3. For A ∈ d×d such that ‖A‖2 ≤ 1 − δ for some δ ∈ (0, 1), the map A →
∑n

s=0 A
s

can be approximated by a ReLU NN with an accuracy of ε > 0 and having a
size of O(n log2

2(m)d3 · (log2(1/ε) + log2(n))). Furthermore, with the fact that the
Neumann series

∑n
s=0 A

s converges exponentially fast to (Id −A)−1, a ReLU NN can
be constructed that approximates the inversion operator B → B−1 to accuracy ε > 0
under suitable conditions on the matrix B. This NN has the size O(d3 logq

2(1/ε)) for
a constant q > 0.

4. Next, two assumptions are required, which are satisfied in many applications. The
first is that the map from the parameter space to the associated stiffness matrices of
the Galerkin discretisation of the parametric PDE with respect to a reduced basis
can be well approximated by neural networks. The second is that the map from the
parameters to the right-hand side of the variational form of the parametric PDEs
discretised based on the reduced basis can be effectively approximated by neural
networks. Then there exists a neural network that approximates the operator
from parameters to the corresponding discretised solution with respect to the
reduced basis. If the reduced basis is of size d and the implementations of the
map obtaining the stiffness matrix and the right-hand side are adequately efficient,
then the corresponding NN is of size O(d3 logq

2(1/ε)). Finally, if D is the size of the
high-fidelity basis, then one can approximate a base change by applying a linear map
V ∈ D×d to a vector with respect to the reduced basis. This procedure increases
the size of the NN to O(d3 logq

2(1/ε) + dD).



30 30

Approximation Results for Operator Learning Methods with State-of-the-
Art Architectures

In contrast to neural networks aiming at function approximations, several operator learning
methods for PDEs aiming at learning the full parameter-to-state map have been proposed
in recent years. These operator learning methods have their own specific and somewhat
complex architectures. For example, the networks of Fourier neural operators are mainly
defined in Fourier space or the DeepONets consist of a branch network that approximates
the map and a trunk network that approximates the solution basis. Thus, the network
approximation result in (3.3.2) cannot be directly applied to these state-of-the-art operator
learning methods. However, there are also some approximation results available for
some operator learning methods.

In [186] it is shown that in the worst case, the network size of the Fourier neural
operator can grow exponentially in terms of accuracy when approximating general operators.
However, the author also proves that, under suitable hypotheses, the size of the network
in FNOs for approximating the parametric map for a Darcy-type elliptic equation or
for the incompressible Navier-Stokes equations of fluid dynamics scales polynomially
in the error bound.

For PCANN, under some assumptions on the probability measure of the parameter and
solution spaces, in [24] it is proven that for any error level ε > 0 there exist dimensions
for the reduced basis of the parameter and solution spaces, and a network with maximum
layers and widths, such that the neural network can approximate the operator up to a
certain error ε associated with the probability distribution.

In DeepONet [222], the basis functions of the solution space are represented by the
trunk net. Thus, not only is the branch net required to have approximation capability
to learn the map connecting the parameter functions and the coefficients of the solutions
with respect to the basis of the trunk net, but the trunk net should also efficiently
approximate the basis of the solutions. A first answer to this question lies in a remarkable
universal approximation theorem for the operator network first proven in [47]. More refined
results are given in [197, 222]. In particular, in [197] the authors extended the universal
approximation theorem from continuous to measurable functions, while removing the
compactness requirements. Upper and lower bounds on the DeepONet error are given in
[197] with respect to the number of sensors, the number of branch and trunk networks
p, and the sizes and depths of the networks.

Some approximation results for operator learning with convolutional neural networks
have also been derived. In [87], the authors established and verified theoretical error bounds
for the approximation of nonlinear operators using convolutional neural networks. The
results shed light on the role of convolutional layers and their hyperparameters, such as
input and output channels, depth and others.
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3.4 DL concepts based on function approximation

In this section, we list the most common DL concepts based on function approximation
for PDE forward solvers and their related inverse problems.

3.4.1 Deep Ritz Method
Motivation

The Deep Ritz method [327] is a function evaluation concept based on a combination of
the classical Ritz method (variational method) and deep learning. The Deep Ritz method
assumes that a variational formulation of a PDE as stated in Equation (1.1) exists, i.e.,
there exists a Ψ : → such that the unique solution u of the PDE is given by

u = argminv∈HI(v) (3.10)

where
I(u) =

∫
Ω

Ψ(u(x))dx (3.11)

and H is the set of admissible functions. Hence, the Deep Ritz method is a physics-
informed method.

The idea of the Deep Ritz method is to replace u with a neural network uΘ which has a
scalar or vectorial x as input. The network is trained by choosing suitable collocation points
{xi}N

i=1 ⊂ Ω and by replacing the integral in the variational formulation by a finite sum

min
Θ

N∑
i=1

Ψ(uΘ(xi)) . (3.12)

After training, uΘ can be evaluated efficiently at arbitrary points in the domain of definition.

Network architecture

For the numerical examples for our standard test problems, see Section 4.1, we used the
network shown in Figure 3.3. The main building block of the Deep Ritz neural network
consists of two stacked fully connected (FC) layers which are each followed by a non-linear
somewhat "smooth" activation function. A residual connection, which can help to avoid
the vanishing gradient, links the input of the first FC layer to the output of the second FC
layer. Several blocks are then stacked to complete the architecture of the network.

Consider the i-th block of the neural net. Let Wi,1,Wi,2 ∈ m×m and bi,1, bi,2 ∈ m be
the respective weight and bias of the first and second FC layers. A block which receives
an input s, performs the operation

Bi(s) = σ (Wi,2 · σ (Wi,1s+ bi,1) + bi,2) + s, (3.13)

where σ is the activation function. From experience,

σ(x) = max
{
x3, 0

}
, (3.14)
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pr o vi d es a g o o d b al a n c e b et w e e n a c c ur a c y a n d si m pli cit y. Its s m o ot h n ess c o ntri b ut es t o

t h e a c c ur a c y of t h e  D e e p  Rit z  m et h o d.  T o  m at c h t h e i n p ut, r es p. o ut p ut, di m e nsi o ns

of t h e c o nsi d er e d pr o bl e m, a n a p pr o pri at e  F C l a y er is us e d at t h e e ntr a n c e (r es p. e xit)

of t h e first (r es p. l ast) l a y er of t h e first (r es p. l ast) bl o c k of t h e n e ur al n et w or k.  Fi g ur e

3. 3 s h o ws t h e ar c hit e ct ur e of t h e  D e e p  Rit z n et w or k.

Fi g u r e 3. 3: D e e p  Rit z n et w or k  wit h n bl o c k s a n d  wit h a p pr o pri at e i n p ut a n d o ut p ut  F C li n e ar
l a y e r s.  T h e fir st  F C li n e ar l a y er c a n b e r e pl a c e d b y z er o p a d di n g

T h e al g o ri t h m

T h e tr ai ni n g of t h e n et w or k d o es n ot n e e d a n y i nf or m ati o n or d at a of t h e s ol uti o n u , h e n c e,

wit h t his r es p e ct, it is e q ui v al e nt t o cl assi c al n u m eri c al  P D E s ol v ers.  H o w e v er, it n e e ds t h e

P D E i n its v ari ati o n al f or m ul ati o n, h e n c e, it is a p h ysi cs-i nf or m e d c o n c e pt.  T h e n et w or k

ar c hit e ct ur e  will b e of t h e t y p e ‘f u n cti o n a p pr o xi m ati o n’, i. e., a r at h er s m all n et w or k  wit h

t w o or t hr e e n o d es i n t h e i n p ut l e v el a n d a si n gl e v al u e f or o ut p ut.  T his c a n b e a dj ust e d

f or hi g h er- di m e nsi o n al  P D Es a c c or di n gl y.  T h e tr ai ni n g of t h e n et w or k us es a l oss f u n cti o n,

w hi c h is si m pl y a dis cr etis ati o n of t h e v ari ati o n al f or m ul ati o n.  A s e c o n d t er m is a d d e d f or

e ns uri n g t h e b o u n d ar y c o n diti o ns.  H e n c e, first of all, it r e q uir es s a m pli n g a s uit a bl e s et of

e v al u ati o n p oi nts x i , i = 1 , ..,  N i n t h e d o m ai n of d e fi niti o n a n d o n t h e b o u n d ar y.  T his c a n

b e d o n e vi a st o c h asti c s a m pli n g of a u nif or m distri b uti o n o v er t h e d o m ai n of d e fi niti o n

( M o nt e  C arl o i nt e gr ati o n) o n a fi x e d gri d.  T h e tr ai ni n g its elf is t h e n d o n e b y cl assi c al

st o c h asti c gr a di e nt d es c e nt.  T h e s a m pli n g p oi nts  m a y b e c h a n g e d d uri n g tr ai ni n g aft er a

fi x e d n u m b er of e p o c hs.  We s p e cif y t h e a p pr o a c h f or t h e cl assi c al  P oiss o n pr o bl e m

∆ u = λ o n Ω ⊂ R 2

u = g o n ∂ Ω
( 3. 1 5)

T his h as t h e v ari ati o n al f or m: I (u ) = Ω
1
2 | ∇u (x )|2 − λ (x )u (x ) d x, s e e  Al g orit h m 1.

It h as b e e n n u m eri c all y s h o w n t h at t h e  D e e p  Rit z h as t h e p o w er t o s ol v e hi g h- di m e nsi o n al

pr o bl e ms, t his is  m ai nl y d u e t o t h e us e of t h e  M o nt e  C arl o al g orit h m f or a p pr o xi m ati n g

t h e i nt e gr al. I n a d diti o n,  D e e p  Rit z is p ot e nti all y a n at ur all y a d a pti v e al g orit h m t h at c a n

s ol v e pr o bl e ms  wit h c or n er si n g ul ariti es.  O n e dr a w b a c k of t h e  D e e p  Rit z  m et h o d is t h at

t h e n e ur al n et w or k p ar a m et eris es t h e s ol uti o n f u n cti o n i nst e a d of t h e p ar a m et er-s ol uti o n
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Algorithm 1: Deep Ritz Method
Input:

• NL/NB: number of inner/boundary collocation points
• τ : learning rate

1 Initialise the network architecture uΘ
2 while not converged do
3 Sample collocation points {xi

L ∈ Ω : i = 1, . . . , NL]} and {xj
B ∈ ∂Ω : j = 1, . . . , NB}

4 Compute EL(uΘ) = 1
NL

∑NL
i=1

( 1
2 |∇uΘ(xi

L)|2 − λ(xi
L)uΘ(xi

L)
)
, via backpropagation

5 Compute EB(uΘ) = 1
NB

∑NB
j=1

(
uΘ(xj

B)− g(xj
B)
)2

6 Add loss values L = EL(uΘ) + EB(uΘ)
7 Optimise Loss, L using the appropriate optimisation algorithm.
8 Update Θ← Θ− τ∇ΘL

9 end

operator. Hence, the Deep Ritz method is less suited for parametric studies, since it requires
a new training of the full network for every new parameter. Note that the loss function
of the Deep Ritz method can be negative and the minimal value is usually unknown, this
also causes some challenges in the training process. In addition, the minimisation problem
that results from Deep Ritz is usually not convex even when the original problem is. The
treatment of the essential boundary condition is not as simple as for traditional methods.

Theoretical Background

The convergence properties of the Deep Ritz methods have been analysed intensively over
the last years [75, 77, 162, 241]. The most far-reaching results - to the best of our knowledge
- are described in [75]. This paper also contains a nicely written survey on the state of the
art of other results concerning convergence properties. This paper uses techniques from
Γ-convergence for proving that, under rather mild assumptions on the network architectures,
the loss function of the network training Γ-converges to the true variational formulation and
the minimisers also converge weakly to the true solution of the PDE, see Theorem 7 [75].

3.4.2 Physics-informed Neural Network (PINN)
Motivation

The notion of ’physics-informed neural networks’ is now used in more general terms. In this
section, however, we discuss the baseline version of a PINN as introduced in the original
paper [261]. Similar to the previously described Deep Ritz method, this original PINN
concept parameterises the solution function as a neural network and requires knowledge of
the underlying In contrast to the Deep Ritz method, PINNs use the strong form of the
PDE, thus their application to general PDEs is straightforward. To describe the method,
we split up the operator N in equation (1.1) into a differential operator L encoding the
PDE and the initial/boundary operator B. The problem then reads

L(u;λ) = 0 in Ω

B(u;λ) = 0 on ∂Ω.
(3.16)
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The neural network uΘ is again substituted into the PDE, where the differential operator
L can be applied to uΘ via automatic differentiation (backpropagation). We note that
L(uΘ; ·) and B(uΘ; ·) rely on the same set of parameters Θ as uΘ, which is crucial for the
optimisation of PINNs. To fit uΘ to the PDE, we penalise the residuals of both operators by
their mean squared error on previously sampled points. This leads to the training objective

min
Θ

(MSEL(uΘ) +MSEB(uΘ)) , (3.17)

where

MSEL(uΘ) = 1
NL

NL∑
i=1

|L(uΘ;λ)(xi
L)|2 and MSEB(uΘ) = 1

NB

NB∑
j=1

|B(uΘ;λ)(xj
B)|2.

(3.18)
During optimisation, MSEB enforces the initial or boundary conditions of a given problem
and MSEL checks the differential equation at the collocation points. A visual representation
of the general idea is shown in Figure 3.4.

Figure 3.4: General training procedure of the PINN approach. As compared with the conditions
in (3.18), we included a data condition in this figure that refers to observations of the solution on
some points.

Network architecture

The architecture of the neural network uΘ allows a lot of freedom, the original paper
[261] uses a simple fully-connected architecture. Depending on the underlying differential
equation, different network structures can lead to better approximation results. This
promotes the existence of a great variety of extensions of the PINN approach, either
focused on individual problems or designed for broader classes of equations. We will
mention a few of these methods in Section 8.



35 35

The algorithm

The general training procedure is comparable to the Deep Ritz algorithm 3.4.1. Again, the
network itself is optimised to approximate the solution as a function, therefore the number
of input nodes corresponds to the dimensionality of Ω and the amount of output nodes
denotes the dimensionality of the possibly vector-valued solution. The training requires
the underlying PDE and some evaluation points xi

L, x
j
B, i = 1, . . . , NL, j = 1, . . . , NB to

compute the residuals. The sampling strategy and therefore the distribution of these
points can be chosen freely and may be changed throughout the training. Summarising the
approach for the Poisson problem of Equation 3.15, the general algorithm is shown in 2.

Algorithm 2: Physics-Informed Neural Networks
Input: NL/NB: number of inner/boundary collocation points,
τ : learning rate

1 Initialise the network architecture uΘ
2 while not converged do
3 Sample collocation points {xi

L ∈ Ω : i = 1, . . . , NL]} and {xj
B ∈ ∂Ω : j = 1, . . . , NB}

4 Compute MSEL(uΘ) = 1
NL

∑NL
i=1 |∆uΘ(xi

L)− λ(xi
L))|2, via backpropagation

5 Compute MSEB(uΘ) = 1
NB

∑NB
j=1 |uΘ(xj

B)− g(xi
B))|2

6 Add loss values L = MSEL(uΘ) + MSEB(uΘ)
7 Update Θ← Θ− τ∇ΘL

8 end

The generality of PINN allows the extension of the loss function to include sev-
eral additional conditions. For example, if some observed data is available, it can be
seamlessly incorporated into the loss function. In addition, PINN can be extended to
solve integro-differential equations [225], fractional PDEs [252] and stochastic PDEs [330].
Furthermore, by using a discrete-time model (Runge-Kutta methods) to link two distinct
temporal snapshots, the number of collocation points for time-dependent PDEs can be
reduced significantly.

Application to parameter identification

Notably, PINNs are also suitable for the parameter identification of PDEs. Given a set
of observed data points, the unknown parameters of the PDE can be optimised alongside
the parameters of the solution network uΘ. From an implementation point of view, PINNs
can therefore be applied to parameter identification problems requiring minimal additional
work, see [48, 159, 226, 260, 261, 328].

While the identification/learning of scalar parameters is quite straightforward, that of
function-valued (e.g., space-dependent and/or time-dependent) parameters requires some
additional effort. For function-valued parameters such as the right side, λ in equation 3.15
or the coefficient λ in 4.3 of a certain PDE, one usually introduces an additional neural
network λΘ for the searched functions. The idea behind these networks is comparable to uΘ

which parameterises the PDE solution as described in 2, i.e., we input the space and/or time
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variables and the network should output an approximation of the searched function at these
values. The training process then consists of a combination of physics-informed loss and
data loss. Via the data loss, the network uΘ learns an interpolation of the given (measured)
data. A physics-informed loss, like the MSEL term in 3.18, then enables us to learn the
searched functions, by using the learned interpolation uΘ. During the minimisation of
the sum of both loss terms, the corresponding weights of all appearing networks then are
optimised simultaneously via automatic differentiation. The resulting loss function which
is optimised, e.g., in the case of the Poisson problem 3.15 is thus

L = 1
NP

NP∑
i=1

|∆uΘ(xi
P) − λΘ(xi

P))|2︸ ︷︷ ︸
Physics loss

+ 1
ND

ND∑
j=1

|uΘ(xj
D) − u(xj

D))|2

︸ ︷︷ ︸
Data loss

, (3.19)

where NP is the number of collocation points, and ND is the number of known data points,
such that {xi

P ∈ Ω : i = 1, . . . , NP ]} and {xj
D ∈ ∂Ω : j = 1, . . . , ND}.

In the case of noisy data, the physics can also act as a regularisation for the learned
interpolation, since the loss also influences uΘ. Even when only discrete data points of
the solution are available, the physics loss may be evaluated on arbitrary points, because
of the interpolation properties of uΘ. Moreover, the flexible framework of PINNs allows
for further inclusion of a-priori knowledge on the solution or parameter functions, such
as their regime or boundary values, by similar incorporation into the loss.

In the numerical experiments in Section 4.1, we will use simple fully connected neural
networks (FCNNs), consisting of multiple FC layers. As an activation function, we
will use φ(x) = tanh(x).

Theoretical Background

In contrast to the large number of applications of PINNs, they still lack a rigorous theoretical
background. First consistency results under additional assumptions for linear elliptic and
parabolic PDEs, can be found in [325]. Some estimates on the generalisation error of
PINNs approximating solutions for forward and inverse problems are proven in [234, 235].
The authors derive an error estimation in terms of training error and training points by
exploiting the stability properties of the underlying equation. More general convergence
results of the PINN approach still have to be found.

Some studies of the convergence rate were carried out in [311, 313]. There the Neural
Tangent Kernel (NTK) theory [157] was applied to the PINN framework, which gave the
first insight into the convergence behaviour of the different loss terms and spectral bias
of PINNs. With the NTK theory special weights for the different terms can be found, to
achieve more robust and accurate results. In [312], the same approach was also applied
to the DeepONet architecture, which will be introduced in Section 3.5.3.
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Generalisations and extensions of PINN

Lastly, we want to give a short overview of possible extensions and generalisations for
PINNs. Since the literature in this regard is vast, we cannot represent every approach.

• Quadratic Residual Networks (QRES) [39]: Extends PINNs by including
quadratic terms in each layer. The architecture used consists of FC layers with
additional weight matrices, see Figure 3.5. In each layer, the output of the FC layer
matrix and additional matrix are point-wise multiplicated and added to the FC layer
output, to create a quadratic term. This may lead to faster convergence and better
parameter efficiency with respect to network width and depth.

• Residual-based adaptive refinement [225]: The idea of RAR is to add more
residual points in the locations where the PDE residual is large during the training
process, conceptually similar to FEM refinement methods.

• Gradient-enhanced PINN (gPINN) [328]: If the PDE residual Lu is zero, then
it is clear that the gradient of the PDE residual, i.e., Lu, should also be zero. Thus,
the gradient-enhanced PINN (gPINN) uses a new type of loss function by leveraging
the gradient information of the PDE residual to improve the accuracy and training
efficiency of PINNs.

• XPINN and cPINN [158, 159]: The XPINN and cPINN apply domain decomposi-
tion, and then different subdomains use independent neural networks to approximate
the solutions. In addition to the loss function used in PINN, interface conditions
are introduced to stitch the decomposed subdomains together in order to obtain
a solution for the governing PDEs over the complete domain. These extensions
efficiently lend themselves to paralleled computation and are able to solve more
general PDEs, e.g., PDEs with jump parameter functions.

For further details on the PINN approach, we suggest the paper [64], which contains a
comprehensive and nicely written survey for the current state of the art of the PINNs. It
mentions different applications, extensions, theories, general challenges and currently
open questions.

3.5 DL concepts based on operator approximation

In this section, we introduce the basic concepts for DL approaches which aim at approximat-
ing the parameter-to-state operator. By construction, these methods are perfectly suited
for parametric studies and can be adapted directly to inverse problems. The two basic
concepts for adaptation to inverse problems have already been described in Section 3.2.3.
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Figure 3.5: Overview and comparison of network architectures used in PINN, QRES and Deep
Ritz. With weight matrix W , bias vector b and activation function σ.

3.5.1 Model Reduction and Neural Networks for Parametric
PDEs (PCANN)

Motivation

PCANN, seeks to provide a meshless operator for the evaluation of the solution of a PDE
by combining ideas of model order reduction with deep learning. For given training data
(λi, ui) one first obtains a model reduction by use of the principal component analysis (PCA)
for both the input (parameter λ) and output (solution u) functions. Only the coefficients
of a finite number of PCA components are retained. The PCA thus reduces the dimensions
of both the input and output spaces to finite latent dimensional spaces. A neural network
then maps the coefficients of the respective representations in these latent spaces as shown
in Figure 3.2. The evaluation of this operator approximation for a novel parameter λ is
then most efficient: one only needs to compute the scalar products with the specified finite
number of PCA components, the neural network then maps these coefficients to the latent
coefficients of the output space and an expansion using these coefficients and the PCA on
the output side gives a function approximation to the solution of the PDE.

The formulation of this approach is in a function space setting and hence mesh-free. For
implementation purposes, however, one has to specify how to compute the scalar products
with the PCA components. These functions are only given numerically, usually by their
values on a specified grid. The red arrow in Figure 3.2 shows the flow during testing.
The overall PCANN can be used to evaluate the solution of the PDE for any given grid
size as illustrated in Algorithm 3. In line 2-3 of Algorithm 3, it is possible to use one
of the numerous PCA algorithms available [319]. For the implementations in this work,
we make use of randomised PCA as proposed in [125, 126].

In a situation where the input-to-output operator is linear, like in the case of the
Poisson problem considered, it might be beneficial to use a simple linear map for the
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m a p pi n g of t h e r e d u c e d /l at e nt di m e nsi o ns. S e cti o n 4. 1, e q u all y s h o ws r es ults f or t his c as e,

P C A Li n,  w h er e a si n gl e li n e ar l a y er  wit h n o a cti v ati o n f u n cti o ns is us e d t o  m a p t h e l at e nt

di m e nsi o ns.  P C A Li n is si mil ar t o t h e li n e ar  m et h o d pr o p os e d i n [ 2 4], h o w e v er,  w e us e

a n e ur al n et w or k i nst e a d of t h e n or m al e q u ati o ns.  T h e r es ults i n b ot h c as es ar e si mil ar

as  w e l at er s h o w i n s e cti o n 4. 1.  T h e c o m bi n ati o n of  m o d el or d er r e d u cti o n  wit h d e e p

l e ar ni n g h as r e c or d e d s u c c ess i n a n u m b er of a p pli c ati o n pr o bl e ms r a n gi n g fr o m c ar di a c

el e ctr o p h ysi ol o g y [ 9 1, 9 5],  w h er e t h e us e of pr o p er ort h o g o n al d e c o m p ositi o n ( P O D) f urt h er

i m pr o v es t h e r es ults [ 9 4], t o fl ui d fl o w [ 9 3] a n d n o n-li n e ar  m o d els [ 6 1, 9 2]. S p e ci fi c all y,

t h e  P C A N N o p er at or h as b e e n us e d i n [ 1 8 8, 2 1 7] i n a  m ultis c al e pl asti cit y pr o bl e m t o

m a p str ai n t o str ess.  W ort h hi g hli g hti n g is a n e arli er  w or k [ 1 3 9],  w hi c h e q u all y c o m bi n es

m o d el or d er r e d u cti o n  wit h n e ur al n et w or ks t o s ol v e  P D Es.

N e t w o r k  A r c hi t e c t u r e

I n o ur n u m eri c al e x a m pl es,  w e f oll o w e d t h e o utli n e of t h e ori gi n al p a p er [ 2 4] a n d us e d a

f ull y c o n n e ct e d f e e d-f or w ar d n e ur al n et w or k f or t h e  m a p pi n g of t h e l at e nt s p a c es.  T h e

n u m b er of n o d es p er l a y er is as f oll o ws d X , 5 0 0 , 1 0 0 0 , 2 0 0 0 , 1 0 0 0 , 5 0 0 , dY . d X a n d d Y ar e

c o nsi d er e d t o b e h y p er p ar a m et ers, a n d f or c o n v e ni e n c e, ar e c h os e n t o b e e q u al.  As a cti v ati o n

f u n cti o n  w e us e t h e S c al e d  E x p o n e nti al  Li n e ar  U nit ( S E L U) a cti v ati o n f u n cti o n  w hi c h

t h at i n d u c e s elf- n or m ali zi n g pr o p erti es i n f e e d-f or w ar d n e ur al n et w or ks [ 1 7 8].  Fi g ur e 3. 6

s h o ws a si m pli fi e d s c h e m ati c of t h e o v er all ar c hit e ct ur e.

Fi g u r e 3. 6: Ar c hit e ct ur e of t h e  P C A N N.

T h e  Al g o ri t h m

As a p ur el y d at a- dri v e n  m et h o d, n o p h ysi cs or  P D E is n e e d e d i n t h e tr ai ni n g of t h e  m o d el.

H o w e v er, t h e d at a us e d f or t h e tr ai ni n g of t h e n et w or k is o bt ai n e d fr o m a cl assi c al  F D M

f or s ol vi n g t h e u n d erl yi n g  B y tr ai ni n g t h e n et w or k  wit h t h es e i n p ut- o ut p ut ( n u m eri c all y-

gi v e n) f u n cti o n p airs,  w e o bt ai n a n e ur al o p er at or  w hi c h s ol v es t h e  P D E f or v ari o us

i nst a n c es irr es p e cti v e of t h e  m es h si z e.

O n c e a g ai n,  w e s p e cif y t h e al g orit h m f or t h e  P oiss o n pr o bl e m i n  E q u ati o n 3. 1 5.  T h e

tr ai ni n g d at a is t h e p air (λ i , ui ),  wit h e a c h λ i , ui ∈ R s 2
.  Ori gi n all y, λ i , ui ar e f u n cti o ns
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given in a (square) grid of dimensions s× s. By flattening these functions, we now have
them in s2 . Training then proceeds as in Algorithm 3, while testing/usage of the trained
network proceeds as in Algorithm 4.

Theoretical Background

As the PCANN method combines both the PCA and Neural network (NN) to achieve the
task of operator learning, the strength of its approximation, therefore, comes from that
of both the PCA and NNs. For a good approximation, one thus needs not only a good
neural network but also, appropriate PCA truncation parameters (resulting from choosing
sufficient amounts of data). The existence of all these factors is shown in Theorem 3.1 of
[24] which is a consequence of Theorem 3.5 of the same work. A recent work [195] further
extends the approximation theory of PCANN. Notably, it derives novel approximation
results, with minimal assumptions [195].

Algorithm 3: PCANN
Input:

• (λi, ui): Training Data pair with i = 0 . . . Ntrain
• τ : learning rate

1 Initialise the network ΦΘ
2 Compute PCA of (λi), store PCA (ak) , k = 1, . . . , dX
3 Compute PCA of (ui), store PCA (b`), ` = 1, . . . , dY
4 for i← 0, . . . , Ntrain do
5 compute ck

i = 〈λi, ak〉 ∈ RdX

6 compute d`
i = 〈ui, b`〉 ∈ RdY

7 end
8 while not converged do

/* Train network */
9 for i← 0, . . . , Ntrain do

10 Compute Loss, Li =
∑dY

`=1

∥∥∥∥∥ΦΘ
(
ck

i

)
− d`

i

d`
i

∥∥∥∥∥
2

11 end
12 Compute the Loss, L =

∑Ntrain
i=1 Li

13 Optimise L using the appropriate/chosen optimisation algorithm.
14 Update Θ← Θ− τ∇ΘL

15 end

Algorithm 4: Using/Testing the PCANN
Input:

• Input parameter functions λi with i = 0 . . . Ntest
• Input PCA basis (ak)k=1,...,dX

• Output PCA basis (b`)`=1,...,dY

• Trained network ΦΘ.
Result: Output solution functions ũi, with i = 0 . . . Ntest

1 for i← 0, . . . , Ntest do
2 ũi =

∑
`

ΦΘ (〈λi, ak〉)` b`

3 end
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PCANN adaptation for inverse problems

Following the general concepts as discussed in Section 3.2.3 we have two principal options.
We either train a PCANN network ΨΘ(u) with training data (uδ

i , λi), where we reverse the
input-output order. I.e., the (uδ

i ) are used as input and (λi) as output. After training we can
directly use a new measurement (uδ) and compute a corresponding parameter λ̂ = ΨΘ(uδ).

The other option is to use a trained network for the forward problem ΦΘ and include
this into a Tikhonov functional. The resulting algorithm is summarized as follows:

Algorithm 5: Using trained forward PCANN for Inverse Problem
Input:

• Solution function uδ

• Input PCA basis (ak)k=1,...,dX

• Output PCA basis (b`)`=1,...,dY

• Trained network ΦΘ : c = (〈λ, ak〉) 7→ d = (〈u, b`〉).
Result: Output parameter function λ̂

1 Initialise c0

2 for m← 0, . . . , N (large integer) do
3 Compute Jα(c) =

∥∥ΦΘ(c)− 〈uδ, b`〉
∥∥

2
4 Compute the loss Jα(c) := Jα(c) + αR(c).
5 Optimise Loss Jα(c) using gradient descent
6 Update cm+1 ← (cm − σm∂J/∂c (cm))
7 end
8 Compute λ̂ =

∑
k

cN
k ak

3.5.2 Fourier Neural Operator
Motivation

Fourier neural operators (FNO) [211] are designed as deep learning architectures for learning
mappings between infinite-dimensional function spaces. The Fourier neural network is
formulated as an iterative architecture, where each iteration (hidden layer), inspired by
the convolution theorem, is a Fourier integral operator defined in Fourier space. The
main network parameters are therefore defined and learned in Fourier space rather than
in physical space, i.e., the coefficients of the Fourier series of the output function are
learned from the data.

While standard feed-forward neural networks (FNN) and CNNs combine linear multi-
plications with non-linear activations in order to learn highly nonlinear functions, FNOs
combine linear integral operators with non-linear activations in each layer to learn non-linear
operators. The fast Fourier transform (FFT) makes the implementation even more efficient.

Different from DeepONet, and similar to the PCANN methods, FNO discretises both
the input function λ(x) and the output function u(x) by using point-wise evaluations in an
equispaced mesh. In addition, FNO requires that λ and u be defined on the same domain
and are discretised by the same discretisation. The function space formulation of the
approach allows training an FNO on a dataset with low resolution and applying it directly
on a dataset with higher resolution, thus achieving the so-called zero-shot super-resolution.
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Theoretical Background

The idea of FNO, stems from an earlier paper by the same team, see [212], which also
seeks to approximate a neural operator by concatenating multiple hidden layers. While
standard artificial neural networks (FCN, CNN) have affine functions (weights and biases)
with scalar nonlinear activation as hidden layers, neural operators instead have affine
operators (usually, in addition to affine functions with weights and biases [186] [224]),
and with scalar nonlinear activation functions. A hidden layer numbered j + 1 thus
performs the update of input vj as follows

vj+1(x) := σ (Wvj(x) + (K(λ; θ)vj) (x)) , ∀x ∈ Ω, (3.20)

where W and K are the respective weights, biases and neural operators. These neural
operators are chosen to be integral operators of the form

(K(λ; θ)v)(x) =
∫

Ω
κθ(x, y;λ(x), λ(y))v(y)dy, ∀x ∈ Ω. (3.21)

These operators can be realised by different concepts such as graph kernels [212], multipole
expansions [213], non-local kernels [326], low-rank kernels [187], wavelet transforms [302],
multiwavelet transforms [119], or Laplace transforms [45]. A recent work even uses
some famous convolutional neural networks architectures [262]. In the special case where
κθ = κθ(x − y), Equation 3.21 becomes

(K(θ)v)(x) =
∫

Ω
κθ(x− y)v(y)dy, ∀x ∈ Ω

= (κθ ∗ v)(x), ∀x ∈ Ω

=
(
F−1(F(κθ) · F(v))

)
(x), ∀x ∈ Ω

=
(
F−1(Kθ · F(v))

)
(x), ∀x ∈ Ω,

by the use of the convolution theorem. This then leads to the parameterisation of the neural
network given by κθ directly in the Fourier space Kθ. [186] provides a good theoretical
background of FNOs and [187] offers a good overview of neural operators using different
integral operators along with some theoretical justification.

It is worth mentioning the recent work in [196], which introduces the Nonlocal Neural
Operator (NNO), that generalises over arbitrary geometries. FNO is a special case of
the NNO, and this work highlights how increasing the number of channels in FNO as
opposed to increasing the number of Fourier modes benefits the FNO. The same work also
introduces the averaging neural operator which is a subclass of NNO but also happens
to be at the core of many neural operator frameworks [196].
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The Algorithm

The classical FNO is only possible with a uniform grid (cartesian domain), but can be
extended for any mesh. We note that, unlike the PCANN method, the input and output
functions are inputted in their unflattened states. Once again, as an example, we consider
the problem in Equation 3.15 and we seek to learn the operator

F : Λ(Ω; dλ) 3 λ(x) 7→ u(x) ∈ U(Ω; du), (3.22)

where dλ and du depend on the discretisation used (dλ = du = 5132 if we use functions
with a resolution of 513 × 513), Ω is a subset of while Λ and U are Banach spaces
of functions taking values in .

Network Architecture

The architecture of the FNO follows from the algorithm described in Section 3.5.2. For the
special case in Equation 3.15, we consider a mesh of resolution N×M . We denote each point
in the domain Ω as xl

k, with input λ(xl
k), and output u(xl

k), with k ∈ {1, . . . , N} and l ∈
{1, . . . ,M}. We equally denote λ(x) and u(x) as the input and output for the whole domain.

• The FCN Pθ takes each λ(xl
k) ∈ and maps it to a higher dimension dv0 , i.e.,

v0(xl
k) = Pθ(λ(xl

k)) ∈ dv0 ,

v0(x) = Pθ(λ(x)) ∈ dv0 ×N×M .

v0(x) is thus an N ×M ‘image’ with dv0 channels.

• To obtain v1(x) from v0(x), the following operations are applied.

– The (2D) Fourier transform F is applied to each channel of v0(x), and the
first k = k1 · k2 modes are kept (k1, k2, being the number of modes to be
kept in the first and second dimensions respectively). As a result, we obtain
F(v0(x)) ∈ dv0 ×k.

– The linear transform Rφ, which is realised as a weight matrix in k×dv0 ×dv0 is
applied to F(v0(x)). The result is Rφ · F(v0(x)) ∈ dv0 ×k .

– Apply the inverse FFT to Rφ · F(v0(x)), (appended with zeros to make up
for the truncated/unselected modes). The outcome is F−1 (Rφ · F(v0(x))) ∈

N×M×dv0

– Finally, v1(x) is obtained from the above together with a residual connection
with a weight matrix WΦ ∈ dv0 ×dv0 , as follows

v1(x) = σ(WΦ · v0(x) + F−1 (Rφ · F(v0(x)))) ∈ N×M×dv0
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• v 2 , v3 , . . . , vT ar e o bt ai n e d fr o m v 1 , v2 , . . . , vT − 1 r es p e cti v el y i n a si mil ar  m a n n er as

a b o v e. I n t his  w a y,  w e h a v e T F o uri er l a y ers.

• At t h e e n d of t h e l ast  F o uri er l a y er a n ot h er  F C N Q ψ is a p pli e d,  w hi c h pr oj e cts v T (x )

t o t h e o ut p ut di m e nsi o n.  We t h er ef or e o bt ai n t h e o ut p ut f u n cti o n

u (x ) = Q ψ (v T (x )) ∈ R N × M

I n t h e  F N O ar c hit e ct ur e,  w e us e t h e  G a ussi a n  Err or  Li n e ar  U nits ( G E L Us) [ 1 3 4,

1 3 5] as a cti v ati o n f u n cti o ns.

Fi g u r e 3. 7: Ar c hit e ct ur e of t h e  F N O.

Al g o ri t h m 6: F N O
I n p u t:

• ( λ i , ui ) :  Tr ai ni n g d a t a p ai r  wi t h i = 0 . . . Nt r ai n

• τ : l e a r ni n g r a t e
1 I ni ti ali s e t h e f ull y c o n n e c t e d n e t w o r k s ( F C N ) P θ a n d Q ψ

2 I ni ti ali s e t h e li n e a r t r a n sf o r m s W Φ a n d R ϕ

/ * S e c t i o n 3 . 5 . 2 d e f i n e s t h e s e F C N a n d l i n e a r t r a n s f o r m n e t w o r k s * /
3 Lif t λ i t o a hi g h e r di m e n si o n b y c o m p u ti n g v 0 = P θ ( λ i )
4 f o r j ← 0 , . . . , T − 1 d o

5 v j + 1 : = σ W Φ v j + [ F − 1 ( R ϕ · ( F v j ) )] , o u t p u t of  F o u ri e r l a y e r s

6 e n d
7 O b t ai n t h e t a r g e t di m e n si o n b y u si n g Q ψ t o g e t ũ i = Q ψ ( v T )
8 w hil e n o t c o n v e r g e d d o

/ * T r a i n n e t w o r k * /
9 f o r i ← 0 , . . . , Nt r ai n d o

1 0 C o m p u t e l o s s L i =
ũ i − u i

u i 2

1 1 e n d

1 2 C o m p u t e t h e  L o s s, L =
N t r a i n

i = 1
L i

1 3 O p ti mi s e  L u si n g t h e a p p r o p ri a t e / c h o s e n o p ti mi s a ti o n al g o ri t h m.
1 4 U p d a t e Θ ← Θ − τ ∇ Θ L w h e r e Θ = ( θ,  ψ ) .

1 5 e n d

G e n e r ali s a ti o n a n d  E x t e n si o n s of  F N O s

A d et ail e d g ui d e f or i m pl e m e nt ati o n a n d a n ill ustr ati o n of h o w t o e xt e n d  F N O t o o p er at ors

wit h i n p uts a n d o ut p uts d e fi n e d o n di ff er e nt d o m ai ns c a n b e f o u n d i n [ 2 2 4].  T h er e, t w o

c as es of g e n er alis ati o n ar e als o c o nsi d er e d:



45 45

C 1: As motivation, take a parabolic PDE, where the initial condition at time t = 0 is
the input for the parameter-to-state operator. The output is the solution for all
times t ∈ [0, T ]. This leads to the general setting where the output space is that of
functions defined on a product space, where the first component is the same as for
the input space and the second component is arbitrary. i.e.

F : Λ(Ω; dλ) 3 λ(x) = u(x, 0) 7→ u(x, t) ∈ U(Ω × [0, t]; du),

where Ω is a subset of while Λ and U are Banach spaces taking values in dλ and
du (with dλ = du, depending on the discretisation of the functions) respectively. In

order to match dimensions before applying an FNO, the output domain could be
shrunk by use of a Recurrent Neural Network (RNN) or the input domain could be
extended to incorporate the time, t as an extra coordinate.

C 1: The input space is a subset of the output space, like in the case of the operator F ,
mapping the boundary conditions of the domain to the solution of the PDE in the
whole domain.

F : G(∂Ω; dg ) 3 g(x) = u|δΩ 7→ u(x) ∈ U(Ω; du),

where ∂Ω ⊂ Ω ⊂ , while G and U are Banach spaces taking values in dg and du

(defined in a similar way as above in the first case) respectively. For this situation,
zero padding could be applied or better still, an appropriate transformation could be
used to map the boundary condition to a lower dimension. This then brings us back
to the previous case.

It is worth noting that the use of the FFT in the algorithm of the FNO restricts its
applicability to situations where the input and output are defined on a cartesian domain
(square, rectangle domain in 2D and cube, cuboid in 3D). This introduces a challenge when
dealing with complex geometries. A practical workaround is described as follows.

W 1: Define a new domain which is the minimum bounding box of the complex domain, and
perform a zero padding for the area within this bounding box, but out of the complex
domain. However, in practice, this makes the resulting function discontinuous in the
‘rectangle’ and usually yields larger errors.

W 1: Use the same minimum bounding of the complex domain, as previously described,
but padding is done with the nearest function values within the complex domain,
instead of zeros.

Though somewhat successful, the extensions provided in [224] do not seem to favour
FNO. A better approach to complex domains is by transforming/deforming this complex
domain to a cartesian domain by use of neural networks (NN), positioned before and after
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t h e  F N O as pr o p os e d i n [ 2 1 0].  T h es e n e ur al n et w or ks c o ul d eit h er b e fi x e d or l e ar n e d

t o g et h er  wit h t h e  F N O p ar a m et ers.  T h e r es ulti n g  N N- F N O- N N n et w or k is s ai d t o b e

‘ g e o m etr y a w ar e’ a n d is c all e d  G e o m etr y- A w ar e  F N O ( G e o- F N O).

B esi d es t h es e str u ct ur al c o nsi d er ati o ns, t h e f oll o wi n g g e n er alis ati o ns h a v e r e c e ntl y

g ai n e d i n cr e asi n g att e nti o n:

Fr o m c o n v- F N O t o  U- F N O: P ossi bl y t h e  m ost r e c e nt v ari a nt of t h e  F N O, t h e  U- F N O

[ 3 1 6] i ntr o d u c es t h e f a m o us  U- N et t o t h e ar c hit e ct ur e i n t h e s o- c all e d  U- F o uri er l a y er.  T h e

U- F N O t h us h as b ot h  F o uri er a n d  U- n et l a y ers; it st arts o ff  wit h t h e f or m er a n d e n ds  wit h

t h e l att er.  Ess e nti all y, a  U- F o uri er l a y er is si mil ar t o t h e  F o uri er l a y er, b ut h as b ot h a

w ei g ht  m atri x a n d a t w o-st e p  U- N et l a y er i n t h e r esi d u al as ill ustr at e d i n  Fi g ur e 3. 8. I n

c o ntr ast t o t h e u p d at e p erf or m e d b y t h e  F o uri er l a y er i n  E q u ati o n 3. 2 0, t h e  U- F o uri er l a y er

p erf or ms t h e u p d at e i n  E q u ati o n 3. 2 3,  wit h U b ei n g t h e t w o-st e p  U- N et.

v t+ 1 (x ) : = σ (U v t (x ) + W v t (x ) + (K (a ; θ )v t ) (x )) , ∀ x ∈ Ω . ( 3. 2 3)

As c o m p ar e d  wit h  m et h o ds b as e d o n  C N Ns, t h e b as eli n e  F N O a c hi e v es a g o o d a c c ur a c y f or

si n gl e- p h as e fl o w pr o bl e ms, b ut it d o es n’t s e e m t o d o s o  w ell  wit h  m ulti p h as e fl o ws [ 3 1 5].

O n t h e ot h er h a n d, c o n v- F N O d o es b ett er t h a n  C N N- b as e d  m et h o ds, a n d t h e  U- F N O

e v e n i m pr o v es o n t h at.  C o n v- F N O is i m pl e m e nt e d b y usi n g a st a n d ar d c o n v ol uti o n

i n pl a c e of t h e  U- N et.

Fi g u r e 3. 8: Ar c hit e ct ur e of t h e  U- F N O.

M ul ti w a v el e t  b a s e d o p e r a t o r ( M W T ): I n a  m or e r e c e nt  w or k [ 1 1 9], a n e ur al o p er at or

w hi c h e v al u at es t h e k er n el o p er at or i n ( 3. 2 1) usi n g a di ff er e nt a p pr o a c h is i ntr o d u c e d.  T h e

i d e a h er e is t o l e v er a g e t h e s u c c ess es i n si g n al pr o c ess es of b ot h ort h o g o n al p ol y n o mi als a n d

w a v el et b asis ( n ot a bl y, v a nis hi n g  m o m e nts a n d ort h o g o n alit y).  M ulti w a v el ets, t h er ef or e, d o

n ot j ust pr oj e ct t h e f u n cti o n o nt o a si n gl e  w a v el et f u n cti o n as  w a v el ets d o, i nst e a d t h e y

pr oj e ct t h e f u n cti o n o nt o a s u bs p a c e of d e gr e e-r estri ct e d p ol y n o mi als.

F or a n u n d erst a n di n g of t h e c o n c e pt, t h e s p a c e of pi e c e- wis e p ol y n o mi als of d e gr e e

u p t o k ∈ N wit h n ∈ Z ∪ { 0 } is d e fi n e d i n [ 0, 1] :

V k
n =

2 n − 1

l= 0

f | d e g ( f ) < k f or x ∈ 2 − n l, 2 − n (l + 1) ∧ 0 , els e w h er e .
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For each k ∈ with n ∈ ∪ {0}, we have that dim(Vk
n) = 2nk and

Vk
n−1 ⊂ Vk

n. (3.24)

We note that, as n increases, so does l, and Vk
n is defined from a lower(coarser) to a

higher(finer) resolution; these resolutions being each time a power of 2. As a result, the
method is restricted to discretisations which are a power of 2. Appropriate padding or
interpolation could be applied to the function if its resolution is not a power of 2.

Given the basis φj , j = 0, 1 . . . , k − 1 w.r.t, a measure µ0 of Vk
0 , it is possible to obtain

the basis of subsequent Vk
n, n > 0 by appropriate shifts and scales of φj :

φn
jl(x) = 2n/2φj (2nx− l) , j = 0, 1, . . . , k − 1, l = 0, 1, . . . , 2n − 1, w.r.t. µn (3.25)

One then defines the multiwavelet subspace Wk
n, which is related to the spaces of orthogonal

polynomials as below:

Vk
n+1 = Vk

n

⊕
Wk

n, Vk
n ⊥ Wk

n. (3.26)

Similarly, the basis of Wk
n, n > 0 can be obtained by appropriate shifts and scales if the

basis ψj , j = 0, 1 . . . , k − 1 w.r.t, a measure µ0 of Wk
0 , is known. A similar expression

as in Equation 3.25 can thus be obtained.
Equations 3.24 and 3.26 inform us that the basis of Vk

n and W k
n can be written as

linear combinations of that of Vk
n+1. As a result, for a given function it is possible to

obtain a relationship between its coefficients in these bases. Specifically, the function
f ∈ d has coefficients in the space of orthogonal polynomials (multiscale coefficients)
sn

l = [〈f, φn
il〉µn

]k−1
i=0 ∈ kd×2n and coefficients in the multiwavelet subspace (multiwavelet co-

efficients) dn
l = [〈f, ψn

il〉µn
]k−1
i=0 ∈ kd×2n , which are related by the decomposition equations:

sn
l = H(0)sn+1

2l +H(1)sn+1
2l+1, (3.27)

dn
l = G(0)sn+1

2l +G(1)sn+1
2l+1, (3.28)

and reconstruction equations

sn+1
2l = Σ(0)(H(0)T sn

l +G(0)T dn
l ), (3.29)

sn+1
2l+1 = Σ(1)(H(1)T sn

l +G(1)T dn
l ). (3.30)

H(0), H(1), G(0), G(1) ∈ kd×kd are the reconstruction filters while Σ(0),Σ(1) are the cor-
rection terms. The theory and derivation of these terms are well covered in [119], we
only highlight it here for better explanation of the steps involved in the method. In
Equations 3.27-3.28, H(0) and G(0) act on the even terms of the multiscale coefficient
while H(1) and G(1) act on the odd terms. The result of these operations is visibly a
down-sampling from the higher to a lower resolution (half the original resolution), thus
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t h e t er m d e c o m p ositi o n.  O n t h e ot h er h a n d, e q u ati o ns 3. 2 9- 3. 3 0 p erf or m t h e r e v ers e of

t his o p er ati o n, l e a di n g t o t h e r e c o v er y of t h e hi g h er r es ol uti o n.

S o f ar,  w e  w al k e d t hr o u g h  m ulti w a v el et r e pr es e nt ati o n of a f u n cti o n f ∈ R d .  T his

n oti o n  will b e a p pli e d t o t h e i n p ut a n d o ut p ut f u n cti o ns of t h e n e ur al n et w or k / o p er at or.

A di ff er e nt n oti o n, k n o w n as t h e  N o n- St a n d ar d  F or m is us e d t o o bt ai n t h e  m ulti w a v el et

r e pr es e nt ati o n of t h e k er n el f u n cti o n.  T his  m et h o d ess e nti all y r e d u c es t h e o p er at or k er n el

i n  E q u ati o n 3. 2 1 K v = w t o t h e s et of e q u ati o ns.

U n
dl = A n d n

l + B n s n
l ,

U n
ŝl = C n d n

l ,

U L
sl = T̄ s L

l ,

wit h U dl a n d U sl (r es p e cti v el y d n
l a n d s n

l ) b ei n g t h e r es p e cti v e  m ultis c al e a n d  m ulti w a v el et

c o e ffi ci e nts of w (r es p e cti v el y v ). L h er e is t h e i n d e x c orr es p o n di n g t o t h e c o e ffi ci e nts

of t h e l o w est r es ol uti o n ( o ut p ut of t h e l ast d e c o m p ositi o n). A n , Bn , Cn a n d T̄ ar e t h e n

p ar a m et eris e d  wit h a  C N N ( w hi c h c o ul d b e d o n e i n  F o uri er s p a c e as i n  F N O or n ot)

n et w or k f oll o w e d b y a  R e L U a cti v ati o n t h e n li n e ar l a y er  w hi c h  w e l e ar n d uri n g tr ai ni n g.

I n pr a cti c e  w e us e s a m e n e ur al n et w or ks f or all n : t h us A n = A θ A
, Bn : = B θ B

, Cn : =

C θ C
a n d T̄ : = T̄ θ T

.  F or a gi v e n i n p ut, t h e  m ulti w a v el et o p er at or p erf or ms a s eri es of

o p er ati o ns as s h o w n i n  Fi g ur e 3. 9.

Fi g u r e 3. 9: Ar c hit e ct ur e of t h e  M W T  O p er at or.

P h y si c s I nf o r m e d ( F o u ri e r )  N e u r al  O p e r a t o r -  P I N O T his  m et h o d c o m bi n es

t h e o p er at or l e ar ni n g of  F N Os a n d f u n cti o n l e ar ni n g  PI N Ns, i n a q u est t o all e vi at e t h e

c h all e n g es f a c e d i n t h e i n di vi d u al c as es [ 2 1 4].  W hil e  PI N Ns f a c e a c h all e n g e i n o pti mis ati o n

w h e n d e ali n g  wit h c o m pl e x pr o bl e ms as i n  m ultis c al e d y n a mi cs,  F N O n e e ds a  w e alt h of

d at a  w hi c h  mi g ht n ot b e r e a dil y a v ail a bl e.  PI N O c o m bi n es b ot h c o n c e pts b y i ntr o d u ci n g

t w o st a g es i n t h e l e ar ni n g pr o c ess:
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• Firstly, the operator is learned using either/both a data loss (same loss as in FNO)
and/or a PDE loss (physics-informed loss), in a phase termed Pre-training. This
case reduces to the normal FNO method if no PDE loss is used. As an example,
the PDE loss for Poisson’s equation in 3.15 is given by Equation 3.31 where α is a
hyperparameter.

LPDE =
Ntrain∑
i=1

‖∆uiΘ − λiΘ‖2
L2(Ω)︸ ︷︷ ︸

Domain (Ω) loss

+α
Ntrain∑
i=1

‖uiΘ − gi‖2
L2(∂Ω)︸ ︷︷ ︸

Boundary (∂Ω) loss

, (3.31)

• Secondly, for a specific instance of the input (parameter, for forward problem), the
learned operator from the first stage is further fine-tuned, using the PDE loss and an
operator loss. The latter minimises the difference between the initial network, FΘ0

resulting from the pre-training phase and the further optimised networks FΘi , i > 0.
This phase is the test-time optimisation stage. For a specific parameter instance λ,
the operator Loss is thus given by

LOP = ‖FΘi − FΘ0‖2. (3.32)

A strength of the PINO is in its ability to achieve competitive errors with fewer data as
demonstrated in [214]. This is mainly due to the introduction of the PDE loss. Notably,
this PDE loss is evaluated in a not-so-usual way as the input of the network is the
function and not a set of collocation points. Automatic differentiation as we know it
is thus not possible. Three methods for gradient descent are outlined in [214]. One
option is numerical differentiation, i.e., a finite difference method (FDM), which we use
for our experiments in later sections.

FNO usage for inverse problems

FNO is an operator learning concept, hence both general concepts as outlined in Section
3.2.3 can be used for solving inverse problems. We will report on the achieved results in
our section on numerical examples. FNO does remarkably well, despite its rather linear
and Fourier-centric approach. However, it allows the incorporation of fine details related
to high frequencies in a consistent way, nevertheless understanding the success of FNO
methods for solving inverse problems should be an important direction for future research.

3.5.3 DeepONet
Motivation

It is widely known that deep neural networks are universal approximators, i.e., they can
approximate any finite-dimensional function to arbitrary accuracy [65, 145]. This has
been extended to a universal approximation theorem for operators [47], which states that
a neural network with a single hidden layer can accurately approximate any nonlinear
continuous operator. This theorem and its extension to multi-layer networks, see [222],
provides the motivation for the concept of DeepONet.
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Network Architecture

The DeepONet [222] mirrors the structure of the universal approximation theorem of
operators with a novel network architecture. Let us consider an operator F that maps
an input function λ to an output function u, i.e., u = F(λ). A DeepONet GΘ takes an
input function λ, which is sampled at fixed predefined collocation points, and provides
an approximation for u(x) at arbitrary points x by the combination of a trunk and
branch net in the following way:

u(x) ≈ GΘ(λ)(x) =
p∑

k=1
bk(λ(s1), λ(s2), ..., λ(sm))︸ ︷︷ ︸

branch

tk(x)︸ ︷︷ ︸
trunk

=
p∑

k=1
bk(λ)tk(x). (3.33)

The trunk net t = T(x; θt) takes the continuous coordinates x as the input, and outputs
a feature vector t = [t1, ..., tp] ∈ p, which can be considered as p functions of x. The branch
net b = B(λ; Θb) takes λ = [λ(s1), λ(s2), ..., λ(sm)], the discretisation of the input function,
as input and returns a feature vector b = [b1, ..., bp] ∈ p as output. The branch and trunk
nets are then combined by an inner product to approximate the underlying operator.

This DeepONet is called "unstacked DeepONet", while it is called a "stacked Deep-
ONet" if each bk(λ), k = 1, ..., p is an individual neural network, i.e., [b1, ..., bm] =
[B(λ; Θ1

b), ...,B(λ; Θm
b )]. Several numerical results have shown that unstacked DeepONets

typically have larger training errors as compared with stacked DeepONets, but the test error
is smaller and unstacked DeepONets lead to smaller generalisation errors. Both branch net
and trunk net can have general architectures, e.g., fully connected neural network(FCN),
recurrent neural network(RNN), and convolutional neural network(CNN). However, as x is
usually in low dimensional space, a standard FNN is commonly used as the trunk net. A
bias can also be added to the last stage of the DeepONet to improve performance.

Figure 3.10: Architecture of the DeepONet

The novelty of the DeepONet is that its network architecture is composed of these
two sub-networks, which treat the input λ and x differently, thus it is consistent with
prior knowledge. In addition, there is no need to discretise the domain to approximate



51 51

the solution space, and the evaluated solution functions are defined in the whole domain.
The only condition required is that the sensor locations [s1, s2, ..., sm] should be consistent
for the training dataset. There also are some generalisations which encode the input
functions to the branch net by a feature vector, for example, we can use the coefficients
of λ with respect to some chosen basis as input.

Once the DeepONet is trained, it is easy to see that the numerical solutions will lie
in the linear space Span{t1(x), ..., tp(x)}, i.e., {tk(x)}p

k=1 are actually the trained basis
to approximate the solution space, and {bk(λ)}p

k=1 are the corresponding coefficients.
Since usually, p is not large, e.g., approximately 100 for our 2 dimensional problems, the
DeepONet can be regarded as a model reduction method in which the reduced basis
is obtained by training.

The Algorithm

Based on the architecture of the DeepONet, the parameters can be optimised by minimising
the following mean square error loss:

L(Θ) = 1
NM

N∑
i=1

M∑
j=1

|F (λi) (xi,j) −GΘ (λi) (xi,j)|2

= 1
NM

N∑
i=1

M∑
j=1

∣∣∣∣∣ui (xi,j) −
p∑

k=1
bk (λi) tk (xi,j)

∣∣∣∣∣
2

There are two important hyper-parameters which should be determined before training:
the positive integers m and p, i.e., the number of sensors for encoding the input functions
and the number of the bases used to approximate solutions. Larger m and p means
smaller encoding error and reconstruction error, respectively. However, increasing them
usually does not necessarily reduce the total error due to the increased complexity of
the optimisation problem. The locations of the sensors are not necessarily equispaced.
However, they should be consistent with the training dataset.

Note that a pair of the training data in DeepONet is {λi, xi,j , ui(xi,j)}, thus it is slightly
different from most neural operator methods, i.e., the full field observation of solutions is
not necessary for the DeepONet and the DeepONet can work with only partially observed
solutions. This is of particular importance for real applications where more often than
not the available data is not complete. In addition, for different types of data sets, we
can use different implementations for DeepONet to dramatically reduce the computational
cost and memory usage by orders of magnitudes. For example, different branch input λ
may share the same trunk net input x, and different input x may share the same input
λ, see [224] for details. This computation technique can also be applied to the extension
PI-DeepONet [310] when computing the derivatives of the output functions.
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Algorithm 7: Fast implementation of DeepONet
Input: data: {(λi, xj , ui(xj))|i = 1, 2, ..., N ; j = 1, 2, ..., M}
Number of sensors: m, and the locations of the sensors: S = (s1, ..., sm)
Let λ = [λ1(S), ..., λN (S)] ∈ N×m; X = [x1, ..., xM ] ∈ RM , U = [u1, u2, ..., uM ] ∈ N×M

p: the number of basis to be learned.
τb/τt : learning rates of the branch net and trunk net

1 Initialise the branch net BΘb
and trunk net TΘt

2 while not converged do
3 B = BΘb

(λ) ∈ N×p and T = TΘt
(X) ∈ M×p

4 Output = BT T ∈ N×M

5 L(Θ) = 1
MN

‖U −Output‖
6 Update Θ← Θ− τ∇ΘL

/* The fast algorithm can be easily extended to the mini-batch case and the
computation of the derivatives in PI-DeepONet. */

7 end

Generalisations of DeepONet

Several extensions of DeepONet have also been developed.

• In [224], a feature expansion for the trunk net input is proposed in order to satisfy
some desirable properties of the output function, e.g., oscillating structures or decay
properties. Feature expansion for the branch net can also be used to incorporate
a feature which is a function of x. E.g., the POD-DeepONet, as proposed in [224],
precomputes a basis by performing proper orthogonal decomposition (POD) on the
training data. Thus, POD-DeepONet shares the same idea with PCANN for the
output space. Employing such feature vectors might be particularly advantageous
for non-smooth parameters or solutions, i.e., discontinuous or highly oscillatory
functions.

• The Bayesian B-DeepONet [216] uses the Bayesian framework of replica-exchange
Langevin diffusion to enable DeepONets training with noisy data. The B-DeepONet
and Prob-DeepONet, as proposed in [238], were shown to have good predictive power
along with uncertainty quantification. In [96], a further generalization ’Variational
Bayes DeepONet’ was introduced, in which the weights and biases of the neural
network are treated as probability distributions instead of point estimates, and their
prior distributions are updated by Bayesian inference.

• A universal approximation theorem of continuous multiple-input operators was proved
and the corresponding MIONet was proposed to learn multiple-input operators in
[170]. Similarly, the authors in [298] proposed a new enhanced DeepONet, in which
multiple input functions are represented by multiple branch DNN sub-networks, which
are then combined with an output trunk network via inner products to generate the
output of the whole neural network.
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• Several extensions for dealing with particular function properties were recently
proposed. E.g., a multi-scale DeepONet [220] was proposed to approximate a
nonlinear operator between Banach spaces of highly oscillatory continuous func-
tions. The shift-DeepONets proposed in [124] extends Deep Operator Networks
for discontinuous output functions by elevating the linear basis expansion of the
classical DeepONet architecture to a non-linear combination. This can make the
basis functions themselves dependent on the input function by exposing explicit shift
and scale parameters. In the paper [294], the authors introduce the Deep Graph
Operator Network, a combination of DeepONet and Graph neural networks, by using
GNN Branch Net to exploit spatially correlated graph information. The authors in
[237] developed a framework named Fed-DeepONet to allow multiple clients to train
DeepONets collaboratively under the coordination of a centralised server.

• The Variable-input Deep Operator Network (VIDON) [258], is peculiar in that it
allows for sensor points to be queried from any point in the domain during training.
In this way, no prior discretisation of the domain is needed.

Theoretical Background

In addition to the universal theorem, several analytic results have been published for
DeepONet. In the original paper, a theoretical analysis was presented which allows
estimation of the approximation properties for ODE operators with respect to an underlying
probability distribution. The analysis depends on the number of sensors and the related
approximation of the input functions.

In [197], the universal approximation property of DeepONets was extended to include
measurable mappings in non-compact spaces. By decomposition of the error into encoding,
approximation and reconstruction errors, both lower and upper bounds on the total error
were derived, relating it to the spectral decay properties of the covariance operators
associated with the underlying measures. For four prototypical examples of nonlinear
operators, it was proved that DeepONets can break the curse of dimensionality.

In [70], the convergence rates of the DeepONet were considered for both linear and
non-linear advection-diffusion equations with or without reaction. The conclusion is that
the convergence rates depend on the architecture of the branch network as well as on the
smoothness of the inputs and outputs of the operators. The paper [104] gives a bound
on the Rademacher complexity for a large class of DeepONets.

3.6 Conclusion

This chapter outlined some major methods in the context of deep learning for PDEs, and
how these methods can be extended for the respective parameter identification tasks. In the
next chapter, these methods, and the extensions are evaluated on both basic and complex
problems, as well as both linear and non-linear problems.



Mathematics is, in its way, the poetry of logical ideas.

— Albert Einstein

4
Deep Learning for Partial

Differential Equations 2:
Numerical Results

This chapter presents the results of DL methods for PDEs, and their extensions in parametric
studies and inverse problems. It is based on the following articles:

Derick Nganyu Tanyu, Jianfeng Ning, Tom Freudenberg, Nick Heilenkötter, Andreas
Rademacher, Uwe Iben and Peter Maass. “Deep learning methods for partial
differential equations and related parameter identification problems”. In: Inverse
Problems 39.10 (Aug. 2023), p. 103001.

Derick Nganyu Tanyu. “From Neural Operators to Complex Partial Differential
Equations based Inverse Problems: Comparative Numerical Methods for Problem-
Solving”. In: In preparation. Preprint to be made available on arXiv.

4.1 Introduction

The core of this chapter is a numerical comparison of the methods described in chapter 3.
The aim is to develop a guideline for scientists who want to start working with DL methods
for PDE-based problems and who face the problem of determining suitable methods.

We will perform numerical experiments on different levels. Firstly, we will investigate
the performance for solving the forward Poisson problem. This linear problem is most
commonly used and, despite its limited value for generalisations to non-linear problems -
already yields some insight into the performance of the chosen methods. We then perform
tests for the inverse Poisson problem, where the source term is the sought-after parameter.

54
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After that, we will turn to analysing the behaviour of the chosen methods for forward
and inverse Darcy flows. A particular emphasis is on evaluating and comparing the
respective numerical schemes in terms of accuracy, but also computational time and
storage needed for parametric studies.

With the insight gained from studying these two rather basic problems, we proceed
to investigate more complex problems, where we equally show that the results obtained
for these methods are comparable.

We want to acknowledge that a growing list of publications devoted to testing DL
concepts for the solution of PDEs already exists, see [105, 112, 224]. However, these
studies focus on PDE-based forward problems; in contrast, our experiments for comparing
forward solvers are a preliminary step towards our main goal, namely a comparison of
DL methods for PDE-based parameter identification problems.

4.2 Part 1: Basic Problems

We start this section, focused on the Poisson and Darcy flow problems, with an outline
of our data generation procedure, which follows [24, 212, 213]. Moving on, for both the
Poisson and Darcy flow problems, we proceed as follows:

– Forward problem
– Inverse problem trained with exact data
– Inverse problem trained with noisy data

4.2.1 Generating Training and Test Data

The outline of our numerical experiments for the linear differential equations ∆u = λ on
Ω, u = g on ∂Ω (Poisson problem), as well as simulations for the Darcy flow, follows the
approach of [24]. Hence, we run a performance analysis in terms of accuracy, as well as
computational load, and the parameter λ is randomly generated as a Gaussian random
field. As a gold standard for comparison, we use a standard FDM code, which is tuned to
high precision and also provides the ground truth data for training the networks.

Learning operators implies learning mappings between function spaces. For a supervised
learning task, we need input-output data pairs for training, which in our case are the
parameter and solution functions. We start with Gaussian Random Fields, commonly used
in the stochastic modelling of physical phenomena as described in [24, 212, 213, 224]; more
precisely, we use the Gaussian distribution as base measure

µG = N
(
0, (−∆ + 9I)−2

)
,

with a zero Neumann boundary condition on the operator ∆, which yields random but
smooth test data for the Poisson problem. Other interesting measures are µL and µP
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which are the push-forwards of µG under the exponential and piece-wise constant maps
respectively, so that µL = exp] µG and µP = T]µG, where exp] and T] represent the
respective push-forward functions, with

T (s) =
{

12 s ≥ 0
3 s < 0

For our experiments with the Darcy flow, we used piece-wise constant parameters. Some
examples are shown in Figure 4.1.

Figure 4.1: Example of samples from the GRF probability measures µG, µL and µP.

To complete the data pair, we use the generated samples as right-hand sides of the
Poisson problem and use a finite difference method (FDM) to get the solution for the
considered problem. As an example, we consider the Poisson problem given by

−∆u(s) = λ(s) s ∈ (0, 1)2

u(s) = 0 s ∈ ∂(0, 1)2,
(4.1)

where the forcing term λ(s) is sampled from the GRF λ ∼ µG. Then, the domain (0, 1)2 is
discretised as shown in Figure 4.2, and a second-order FDM scheme is used to evaluate the
Laplacian, reducing the Poisson equation to a system of linear equations given by Equation
4.2, where i = 0, . . . Ny and j = 0, . . . Nx for a resolution of (Nx + 1) × (Ny + 1)

Figure 4.2: Computational grid showing interior grid points (black) and boundary grid points
(white).

∆y
∆x (−ui,j−1 + 2ui,j − ui,j+1) + ∆x

∆y (−ui−1,j + 2ui,j − ui+1,j) = ∆x∆yλ (xj , yi) (4.2)
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A similar discretisation scheme is used for the Darcy Flow equation 4.3 which is equally
of interest to us in this work.

−∇ · (λ(s)∇u(s)) = f(s) s ∈ (0, 1)2

u(s) = 0 s ∈ ∂(0, 1)2
(4.3)

Our numerical tests are done using baseline implementations of the mentioned DL algorithms,
and we did some extensive hyperparameter search for every method. For details, see the
appendices in [244]. Nevertheless, hyperparameter search and fine-tuning the optimisation
scheme in search of global minima is a never-ending story. Hence, the presented results
should be understood as the best we could achieve within the given time and with the
available computing capacity (specified in [244]). All methods were treated equally, and
we believe that this leads to a fair basis for comparison.

In addition, we are well aware of the extensive body of literature dealing with sometimes
rather refined extensions and improvements of these methods, e.g., there are several
extensions of the PINN approach and a survey on different Physics-informed neural operator
networks variants has been recently published, [105]. However, these extensions most often
come with the necessity to fine-tune additional hyperparameters, or they only apply to
special cases. Hence, as said before, we focus on a comparison of the basic implementations
in this section. To give proper credit to the different approaches, we assigned different co-
authors to different concepts and everybody did their best to ‘defend’ the respective concepts.

So far, we have addressed the general outline of our testing scenario and our data
generation for the academic test examples. This is in line with procedures used by
our collaborating industrial partners. Research and development departments in the
industry also seem to rely mostly on simulated data during the first development cycles
for new products. In contrast to simulated data, real-life data for industrial applications
typically is very scarce. Almost often, this is only available in very limited numbers.
This leads to the problem of data enrichment and data augmentation, which is outside
the scope of the present work.

We also clarify the criteria for our evaluation below. There are several obvious categories
such as achievable mean accuracy, training time, and time for solving the forward Poisson
problem after training, but also degrees of freedom of the networks used, stability concerning
hyperparameter tuning, etc. Nevertheless, in the following, we will mainly discuss two
criteria, namely accuracy and the potential for parametric studies/inverse problems, i.e., the
computational time needed to run the algorithm after training for novel sets of parameters.

4.2.2 Poisson Problem
Forward Problem

Testing different DL concepts to train a forward solver for the Poisson problem (4.1) is
the most basic academic example, which is used by almost all relevant publications in this
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context. This linear problem can be solved by all other methods considered, and the errors
are as reported in Table 4.1. These errors do not differ too much, they are below 1% relative
error except for DRM, which has an error of approximately 2% ∼ 5%. Still, there are some
notable differences. The overall winner is PCALin both in terms of achievable accuracy
and in terms of complexity of the network. However, none of the methods was able to
achieve an accuracy comparable with fine-tuned FDM or FEM methods. The advantage
of DL concepts, in this case, lies in the potential for large-scale parametric studies, where
the execution time for testing novel parameters has to be minimal.

However, not all DL concepts are suitable for parametric studies. In general, DL
concepts aiming for a function approximation require expensive retraining of the network
for every additional parameter and have limited value for large-scale parameter variations.
Hence, we focus on DL concepts for operator approximations, see Table 3.1. In our
experiments, DeepONet and their physics-informed versions performed best in terms of
efficiency (run time for testing). The differences in testing time for these methods are
below the variance introduced by the random sampling of test data.

The comparison with respect to different resolutions of u shows the expected, but
interesting result, that operator approximations, which are based on a functional analytic
reasoning in function spaces rather than discrete settings, indeed show an independent
accuracy across scales, see Table 4.2. This cannot be matched by function approximations,
where the error increases by several orders of magnitude for coarse discretisations.

These numerical findings for the linear Poisson problem in a standard domain have little
value for generalisations to other PDE problems. Nevertheless, as a punch line for simple
linear PDE problems, we would stress the old saying ‘keep it simple’ and suggest applying
‘easy to use’ concepts such as PCALin with a suitable, but comparatively small network.

PINNs also offer an easily accessible concept, which is easy to adapt to other PDE, but
it requires retraining, i.e., PINNs in their original version are not suitable for parametric
studies, and they exhibited a slightly larger L2-error in our scenario.

As an alternative, MWT requires a more advanced implementation but seems to be
more efficient for parametric studies, however, training times are rather high.

Inverse Problem

The investigation of the performance of DL concepts for PDE-based inverse problems
for parameter identification is the core of this survey. In this subsection, we summarise
the results for the inverse Poisson problem, i.e., determining λ in Equation 3.15 from a
measured version of u. Iterative methods for solving such inverse problems, as well as
parametric studies, require multiple evaluations of the parameter-to-state map F . As
already mentioned, DL concepts based on operator approximations are better suited in
this context, and we will focus on these methods. The only exception is the extension to
inverse problems of PINNs and QRES, as described in Section 8
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(a) Ground Truth (b) PCANN (c) PCALin (d) FNO

(e) U-FNO (f) MWT (g) DeepONet (h) PINO

(i) PI-Deeponet (j) PINN (k) QRES (l) DRM

Figure 4.3: Test examples for Poisson forward problem using resolution of 513 × 513. (b)-(l)
show the specified neural network’s approximation of the solution (left-hand side) and the absolute
difference between the Ground truth in (a) with the approximation (right-hand side).

(a) Ground Truth (b) PCANN (c) PCALin (d) FNO

(e) U-FNO (f) MWT (g) DeepONet (h) PINO

(i) PI-Deeponet (j) PINN (k) QRES

Figure 4.4: Test examples with backward operator training for inverse Poisson problem using
a resolution of 513 × 513. (b)-(k) show the specified neural network’s approximation of the
solution (left-hand side) and the absolute difference between the Ground Truth in (a) with the
approximation (right-hand side). All examples are computed with noise free data.

Our tests for PDE-based inverse problems are organised in terms of how we attack
the inverse problem and which data is used for training. Foremost, there are two primary
approaches for dealing with inverse problems, see Section 3.2.3. We can either train the
inverse problem with a reversed input-output structure, or we can integrate a learned
forward solver in a Tikhonov approach. Secondly, we can train the network with either
noiseless data or noisy data with different noise levels. Both tests are meaningful for
applications, depending on whether clean data obtained in research labs or measured data
from field experiments are available. As it is common for inverse problems, these networks
will be evaluated for reconstruction problems with noisy data after training. The case of
testing with noise-free data is included for the reason of completeness.

Training is always done with 1000 training samples, where λ is computed as a smoothed
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random Gaussian field, see Section 4.2.1. The parameter-to-state map, u = F (λ), is then
computed with a high-precision finite difference scheme. The resulting solution u is then
perturbed with normally distributed random noise of different levels, δ.

uδ(x) = u(x) + δ · ||u|| ·N(0, 1)

For the evaluation of the methods, we use additional N = 5000 samples of uδ, which
are computed by the same procedure, i.e., drawing additional random samples for λtrue,
computing the corresponding solution u and adding noise.

These perturbed solutions are the input for the inverse problem during evaluation.
The resulting estimation of the parameter λ̂ is then compared with the original, true
parameter λtrue. As a standard measure of success, we average over the different evaluation
samples and take the mean L2-error, E(‖λ̂ − λtrue‖).

For certain applications, i.e., control problems, the output error is also of importance
and, for some experiments, we also report the difference between the solution obtained
with λ̂ and the true, unperturbed solution u as shown in Tables 4.7b and 4.7c.

Let us comment on the different test scenarios (inverse learning or Tikhonov, noise-free
or noisy data for training) in more detail.

The tests with unperturbed data, i.e., the case where the networks were trained and
evaluated with perfect noise-free data are reported in Table 4.1 and Table 4.2 for different
resolutions. For operator approximation methods, the inverse problem in these tables is
always solved by inverse learning (backward operator training). Also, PINN and QRES
can be directly extended to parameter learning by a doubling of the network, see Section
8. This results in a doubling of the network parameters as shown in the second column
of both tables. As a general observation, we remark that the achievable accuracy for
the inverse problem is considerably below the accuracy of the forward problem, which
reflects the ill-posedness of the inverse problem. Also, the baseline implementations of
PCANN, PINN and DeepONet perform less reliable as compared with their extensions,
such as PCALin, U-FNO, PINO or MWT. After training, the run times of the different
methods are the same as for the forward problem.

Due to the linear nature of the problem and the missing noise in the data, one should
not overestimate the value of these tests. In particular, testing with noisy data is essential
for inverse problems.

To this end, we have done experiments where the networks were trained with noiseless
data but the evaluation was done with noisy data, see Table 4.5. We clearly see that the
networks trained with noise-free data do not generalise to the case of noisy data. The error
exceeds 100% in most cases. The only notable exceptions are surprisingly DeepONet and PI-
DeepOnet. Even for high noise levels, these methods still produce errors in the reconstructed
parameter which are approx. 4 – times larger than the noise in the data, which is the range
of errors one would expect for optimal regularisation schemes for ill-posed problems.
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Tables 4.6 and 4.7 are the most meaningful ones for inverse problems. Here, we report
results on networks, which are trained and evaluated with noisy data. Table 4.6 reports
results obtained by reversed/backward operator training, i.e., the network is trained to take
uδ as input and to directly return an estimate for the parameter λ. Table 4.7 reports results
obtained by first training a forward network ΦΘ(λ) and then computing an approximation
to the parameter by solving a Tikhonov minimisation problem

min
λ

‖ΦΘ(λ) − uδ‖2 + αR(λ) .

In these experiments, R was always taken as a discretisation of the L2-norm and α

was optimised by numerical experiments. Depending on the problem, one could add an
additional regularisation term as shown in [244].

Both approaches, i.e., inverse learning and embedding a learned forward operator into
a Tikhonov scheme do give comparable results, see Tables 4.6 and 4.7. All errors in the
reconstructions are naturally larger than the error in the input data, as is to be expected
for ill-posed problems. Given the small differences achieved by the different methods, it is
challenging to suggest a particular method. However, in our opinion, the range of errors 1%
or 5% might be most important for applications and a closer look at the numbers reported
in Table 4.6 for inverse training of the inverse Poisson problem shows that FNO and PINO
seem to perform best, with PCALin and MWT as runner-ups. For Tikhonov-based training
and giving higher importance to larger error rates of 1% or 5%, best results are achieved
by MWT with PINO as runner-up. Hence comparing the winners of either approach
(FNO/PINO and MWT) for this range of errors yields a slight advantage for using the
Tikhonov approach in connection with the MWT concept. However, we should remark
that the Tikhonov approach requires solving a minimisation problem for each new data
set and is computationally more expensive.

Finally, Tables 4.7b and 4.7c are based on experiments, where the reconstructed
parameter λ̂ was used to compute the corresponding solution û = F (λ̂). This is then
compared with either the true solution u, see Table 4.7c), or the noisy data, which was
used for training, see Table 4.7b). This is considered as a test for how well these parameter
estimation problems can be used to solve control problems, which is however not the focus
of this work and this case is therefore not investigated further.

Summary Poisson problem

In summary, for the forward problem, the investigated DL concepts are less accurate as
compared with finite difference methods on a fine grid. However, these DL concepts do
produce competitive results for solving inverse problems with different noise levels. DL
concepts for operator approximation perform best and offer a significant advantage in
run time. Hence, either large-scale parametric studies or iterative solvers for parameter
identification benefit decisively from well-trained DL concepts.
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Forward Problem Inverse Problem

Networks # of Rel. L2 Training Testing Rel. L2 Training Testing
Parameters Error (s/epoch) (s) Error (s/epoch) (s)

DRM 6, 721 0.0251 0.0514 ∼ 480 - - -
PINN 5, 301 | 10, 602 0.0075 0.1034 ∼ 1, 315 0.1650 0.2368 ∼ 3, 370
QRES 5, 509 | 11, 018 0.0076 0.1581 ∼ 2, 150 0.1549 0.4186 ∼ 5, 730

PCANN 5, 155, 150 | 5, 205, 200 0.0073 0.0142 0.6063 0.0981 0.0161 0.6179
PCALin 62, 750 0.0013 0.0077 0.7453 0.0244 0.0090 0.7640

FNO 2, 368, 001 0.0066 42.6249 0.0168 0.0415 42.6245 0.0174
U-FNO 3, 990, 401 0.0053 97.6730 0.0346 0.0254 97.6434 0.0343

MWT 9, 807, 873 0.0036 114.2043 0.0488 0.0159 113.2655 0.0483
DeepONet 640, 256 | 768, 128 0.0042 0.1098 0.0002 0.1035 0.1201 0.0002

PINO 2, 368, 001 0.0031 42.6289 0.0166 0.0301 42.8172 !0.0143
PI-DeepONet 640, 256 | 739, 712 0.0061 0.4637 0.0002 0.1068 0.4462 0.0002

Table 4.1: Performance of different methods for the Poisson Problem, using a 513×513 resolution.
In the second column, for the forward and inverse problems, if the same number of parameters are
used, only one number is specified. If different amounts are used, two numbers are given. The left
one then corresponds to the forward problem and the right one to the inverse case. The networks
were trained with noiseless data and backward operator training was used for solving the inverse
problem.

Forward Problem Rel. Errors Inverse Problem Rel Errors
Grid size, s 65 129 257 513 65 129 257 513

DRM 0.0397 0.0289 0.0244 0.0251 - - - -
PINN 0.0245 0.0088 0.0084 0.0075 0.1715 0.1694 0.1653 0.1650
QRES 0.0288 0.0082 0.0088 .0076 0.1598 0.1565 0.1542 0.1549

PCANN 0.0078 0.0075 0.0073 0.0073 0.0989 0.0979 0.0981 0.0981
PCALin 0.0016 0.0013 0.0013 0.0013 0.0303 0.0271 0.0253 0.0244

FNO 0.0066 0.0061 0.0067 0.0066 0.0299 0.0341 0.0366 0.0416
U-FNO 0.0063 0.0056 0.0062 0.0054 0.0292 0.0277 0.0288 0.0254

MWT 0.0047 0.0047 0.0048 0.0036 0.0357 0.0202 0.0198 0.0159
DeepONet 0.0047 0.0041 0.0041 0.0042 0.0983 0.0992 0.1041 0.1044

PINO 0.0031 0.0030 0.0034 0.0031 0.0263 0.0273 0.0319 0.0301
PI-DeepONet 0.0081 0.0057 0.0060 0.0061 0.1074 0.1068 0.1067 0.1068

Table 4.2: Error variation with the resolution for the Poisson problem. The networks were
trained with noiseless data and backward operator was used for solving the inverse problem.

For the somewhat simple Poisson problem with vanishing boundary data, where both

the forward and inverse operator are linear, there is not much difference between the

DL concepts. Overall, we propose using PCALin, PCANN or PINN for first testing,

due to their ‘easy-to-use’ structure. They produce acceptable results for a wide range

of hyper-parameters and are comparatively easy to train. For more accurate results,

we propose using MWT, which is however somewhat more involved; for implementation

details, see the respective appendices.
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4.2.3 Darcy Flow
Forward Problem

We now consider the steady-state of the 2-d Darcy flow equation on the unit square which
is the second order, linear, elliptic PDE

−∇ · (λ(s)∇u(s)) = f(s) s ∈ (0, 1)2

u(s) = 0 s ∈ ∂(0, 1)2
(4.4)

with a Dirichlet boundary. In this equation, λ ∈ L∞ (
(0, 1)2; +

)
is the diffusion coefficient,

f = 1 ∈ L2 ((0, 1)2; +
)

is the forcing function and u ∈ H1
0 ((0, 1)2; ) is the unique

solution of the PDE.
We start with a discussion of the forward problem, i.e., computing the solution u in

Equation 4.3, for a given piece-wise constant diffusion coefficient λ. In all experiments,
λ(x) ∈ {3, 12}, i.e., the domain of definition is segmented randomly into two regions
with known values.

Surprisingly, the errors for PINN and QRES are relatively high, even if the network
is trained and evaluated with noise-free data, see Table 4.3. All other methods solve this
non-linear forward problem reliably. MWT is the overall winner for solving the forward
problem with noise-free data. This also holds for most levels of resolution.

Again, the comparison with respect to different resolutions of u shows the expected
result that operator approximations, based on functional analytic reasoning in function
spaces, indeed show an independent accuracy across scales, see Table 4.4.

(a) Ground Truth (b) PCANN (c) PCALin (d) FNO

(e) U-FNO (f) MWT (g) DeepONet (h) PINO

(i) PI-Deeponet (j) PINN (k) QRES (l) DRM

Figure 4.5: Test examples for forward Darcy problem using a resolution of 513 × 513. (b)-(l),
shows the specified neural network’s approximation of the solution (left-hand side) and the
absolute difference between the Ground Truth in (a) with the approximation (right-hand side).

Inverse Problem

The investigation of the performance of DL concepts for inverse Darcy flows again either
uses inverse training or embedding of a forward solver into a Tikhonov functional. The
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(a) Ground Truth (b) PCANN (c) PCALin (d) FNO

(e) U-FNO (f) MWT (g) DeepONet (h) PINO

(i) PI-Deeponet (j) PINN (k) QRES

Figure 4.6: Test examples with backward operator training for inverse Darcy Flow problem
using a resolution of 513 × 513. (b)-(k), shows the specified neural network’s approximation
of the solution (left-hand side) and the absolute difference between the Ground Truth in (a)
with the approximation (right-hand side). All examples are computed with noise free data. For
reconstructions with noisy data see Figure 4.10.

testing scenarios are similar to those of the Poisson problem, i.e., 1000 random samples
were used for training and 5000 samples for evaluation.

In view of different applications, we have either used no further assumption on λ,
see Figure 4.6, or we have assumed that we know λ is a segmentation of the domain
of definition into two components with a known value, see Table 4.10. This models the
problem of mixing two liquids with known densities.

For a closer investigation, we start with a basic experiment for solving the Darcy inverse
problems by inverse training with noise-free data. Results using a 513 × 513 resolution and
without knowing the values oλ a priori are shown in Figure 4.6. We note the strength of
the FNO, U-FNO, MWT and PINO to identify the position of the discontinuities with
backward operator training. PINO, however, computes a mismatch in the values of the
densities. The network architecture seems to play a crucial role in these results. For e.g.,
DeepONet always provides a reconstruction, which is obtained by a linear combination
of smooth functions(trunk nets), and in solution learning methods uΘ(x) is naturally
continuous, hence discontinuities are not in the range of these methods. Other methods
based on discretisation, i.e., reconstructing the densities in the last layer of the networks
at prescribed positions allow for sharper transitions of the densities.

As before, we have done experiments where the networks were trained with noiseless or
noisy data. The results of inverse training with perfect data for training and evaluation
are stated in Tables 4.3 and 4.4; they mimic the results of the forward training and do not
yield additional insights. As for the Poisson problem, training with noise-free data does
not generalise to noisy data, see Table 4.5; even only 1% error in the evaluation data yields
reconstruction errors of 30% and larger. We should remark on the sub-optimal results
obtained by DeepONet, which shows errors of about 25% for all noise levels tested. Here,
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the error margins are considerably larger, but almost constant over different noise levels.
This might indicate that the dominant error is not stemming from inversion and noise, but
rather from a structural disadvantage of the network architecture or sub-optimal training.
We have tested several larger DeepONet network architectures, which however did not cure
the problem. A major reason for the large error of DeepONet for this inverse problem is
that DeepONet has to learn the basis of the output space via the trunk net. Thus, the
trunk net must have sufficient expressiveness to approximate the basis of the output space.
In addition, even if the size of the trunk net is large enough, finding the optimal parameters
of the trunk net is another challenge. Thus, if the number of reduced basis of the output
space is large or the output functions are very complicated (e.g., highly oscillatory or
discontinuous), it would be very difficult for the trunk net to learn the basis accurately.
For both Poisson and Darcy problems, the parameter spaces are more complicated than
the solution spaces, which explains the large error of DeepONet for inverse training.

Tables 4.6 and 4.8 state the results most important for inverse problems. They show
some remarkable differences between the considered concepts. Most methods (PINN, QRES,
PCANN, PCALin, DeepONet, PI-DeepONet) show approximately the same errors for all
noise levels. This indicates that a structural approximation error dominates the influence of
the data noise. We have tested different hyperparameter settings for all of these methods,
which, however, did not change the result. As a consequence, these methods do not yield
competitive results for small levels of data noise. Nevertheless, PCANN exhibits about 10%
error in the reconstructions even for 5% data error, which is remarkably good. In our test
scenarios, there are clear winners: U-FNO and MWT for small noise levels and PCANN for
larger noise levels. While the DeepONet, its physics-informed variant PI-DeepONet as well
as PINO, do not seem to be suitable for Darcy inverse problems. As mentioned earlier, PINO
is capable of detecting the discontinuities but it fails to provide accurate density estimates.

When comparing the best methods for inverse training (MWT for small noise levels,
PCANN for larger noise levels, see Table 4.6 ) with the best method for Tikhonov
minimisation, see Table 4.8, we see an advantage for inverse training, which generally yields
better results. That errors are consistently larger for Tikhonov learning might be partially
explainable by the difficulty of choosing a suitable regularisation parameter α. We have
also included the accuracy metric which measures the segmentation error rather than the
functional L2 error. Again, results are similar for all methods, see Table 4.8a.

We finally estimated the output error by feeding the reconstructed λ̂ into the respective
neural networks and comparing the resulting û with the exact data u and its noisy version
uδ, see Figures 4.8c and 4.8.

Summary Darcy Flow

In summary, the investigated DL concepts produce competitive results for solving inverse
problems with different noise levels. DL concepts for operator approximation perform best
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Forward Problem Inverse Problem

Networks # of Rel. L2 Training Testing Rel. L2 Training Testing
Parameters Error (s/epoch) (s) Error (s/epoch) (s)

DRM 22, 201 0.0369 0.0859 ∼ 1, 050 - - -
PINN 6, 291 | 7, 972 0.1995 0.1164 ∼ 2, 010 0.1988 0.2528 ∼ 4, 790
QRES 6, 562 | 8, 895 0.2017 0.2108 ∼ 3, 320 0.1975 0.4221 ∼ 6, 420

PCANN 5, 155, 150 | 5, 035, 030 0.0253 0.0136 0.6108 0.0988 0.0487 0.1548
PCALin 10, 100 0.0656 0.0075 0.3290 0.2203 0.0139 0.3108

FNO 2, 368, 001 0.0109 41.6857 0.0165 0.1490 42.0596 0.0163
U-FNO 3, 990, 401 0.0095 97.9580 0.0344 0.0085 98.8170 0.0345

MWT 9, 807, 873 0.0058 112.4575 0.0637 0.0156 112.8750 0.0403
DeepONet 568, 320 | 1, 047, 644 0.0295 0.0606 0.0011 0.2220 0.0659 0.0011

PINO 2, 368, 001 0.0084 42.8685 0.0168 0.2345 42.7417 0.0142
PI-DeepONet 568, 320 | 684, 288 0.0384 0.2513 0.0011 0.2720 0.4905 0.0011

Table 4.3: Performance of different methods for the Darcy flow problem with piece-wise constant
coefficients and using a 513 × 513 resolution. A similar convention is used for the second column
as in Table 4.3.

Forward Problem Rel. Errors Inverse Problem Rel Errors
Grid size, s 65 129 257 513 65 129 257 513

DRM 0.0501 0.0375 0.0358 0.0369 - - - -
PINN 0.2254 0.2043 0.2071 0.1995 0.2413 0.2014 0.2032 0.1988
QRES 0.2596 0.2077 0.1993 0.2017 0.2371 0.2117 0.2036 0.1975

PCANN 0.0256 0.0254 0.0253 0.0253 0.0983 0.0985 0.0987 0.0988
PCALin 0.0656 0.0656 0.0656 0.0656 0.2191 0.2198 0.2201 0.2203

FNO 0.0113 0.0106 0.0107 0.0109 0.1661 0.1536 0.1501 0.1490
U-FNO 0.0078 0.0071 0.0074 0.0095 0.0928 0.0640 0.0322 0.0085

MWT 0.0080 0.0060 0.0059 0.0058 0.1047 0.0800 0.0461 0.0156
DeepONet 0.0290 0.0292 0.0289 0.0295 0.2219 0.2261 0.2221 0.2220

PINO 0.0078 0.0066 0.0071 0.0084 0.1703 0.1997 0.2216 0.2345
PI-DeepONet 0.0390 0.0382 0.0381 0.0384 0.2706 0.2711 0.2682 0.2720

Table 4.4: Error variation with resolution for the Darcy Flow problem with piece-wise constant
coefficients. The networks were trained with noiseless data and backward operator training was
used for solving the inverse problem.

and offer a significant advantage in run time. Hence, either large-scale parametric studies
or iterative solvers for parameter identification decisively benefit from well-trained DL
concepts. This training has to be done with the same noise level, training with noise-free
data does not generalise to noisy data. As a general procedure, we would recommend
favouring backward operator training over Tikhonov minimisation.

When choosing appropriate methods, we propose to use inverse training in combination
with U-FNO and MWT for small noise levels and, the concept PCANN was best for solving
the non-linear inverse Darcy flow problem with higher noise levels.

As extensive as our numerical tests have been, they only provide a snapshot of the
diverse landscape of PDE problems and testing scenarios. In particular, it might be
interesting e.g., to test Darcy inverse problems with continuous parameters and inverse
Poisson problems with piece-wise constant functions. However, for the sake of an overview
and the already somewhat lengthy list of tables presented, we decided to restrict ourselves
to the tests presented in the work.
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Poisson Darcy Flow PWC
Noise level 0% 0.1% 1% 5% 10% 0% 0.1% 1% 5% 10%

PCANN 0.0988 0.0993 0.1171 0.3525 0.5645 0.0983 0.0983 0.0984 0.0998 0.1039
PCALin 0.0303 0.0379 0.0737 0.3134 0.6228 0.2191 0.2191 0.2192 0.2231 0.2348

FNO 0.0299 0.2966 2.6444 10.5499 19.9952 0.1341 0.1743 0.5100 3.3888 7.5197
U-FNO 0.0292 0.2102 1.1645 4.3941 8.3548 0.0896 0.1202 0.5896 1.4194 2.2052

MWT 0.0316 0.2201 1.2716 4.1969 7.6609 0.0865 0.1123 0.3668 0.6949 0.8620
DeepONet 0.0983 0.0985 0.1048 0.2059 0.3748 0.2219 0.2223 0.2224 0.2262 0.2375

PINO 0.0263 0.3457 3.3960 16.8352 33.8227 0.1703 0.1789 1.0438 6.1264 12.3570
PI-DeepONet 0.1074 0.1075 0.1120 0.1917 0.3352 0.2706 0.2706 0.2706 0.2714 0.2737

Table 4.5: Effects of noise on the solution for the inverse problems on a 65 × 65 resolution.
The network is trained with noise-free data, but evaluated with noisy data. Backward operator
training is used for solving the inverse problem.

Poisson Darcy Flow PWC
Noise level 0% 0.1% 1% 5% 10% 0% 0.1% 1% 5% 10%

PINN 0.1715 0.1727 0.1734 0.2110 0.2378 0.2413 0.2407 0.2496 0.2564 0.2893
QRES 0.1598 0.1658 0.1714 0.2007 0.2256 0.2371 0.2421 0.2617 0.2789 0.2951

PCANN 0.0988 0.0991 0.1293 0.1876 0.2273 0.0983 0.0987 0.0990 0.1012 0.1093
PCALin 0.0303 0.0318 0.0840 0.1478 0.1846 0.2191 0.2191 0.2191 0.2217 0.2315

FNO 0.0299 0.0554 0.0957 0.1389 0.1678 0.1341 0.1344 0.1449 0.1770 0.2019
U-FNO 0.0292 0.0594 0.1036 0.1633 0.1839 0.0896 0.0902 0.1219 0.1649 0.1932

MWT 0.0316 0.0533 0.0966 0.1525 0.1867 0.0865 0.0893 0.1115 0.1634 0.1956
DeepONet 0.0983 0.1042 0.1084 0.1537 0.1870 0.2219 0.2283 0.2273 0.2379 0.2522

PINO 0.0263 0.0570 0.0957 0.1389 0.1678 0.1703 0.1737 0.2083 0.5147 0.9699
PI-DeepONet 0.1074 0.1086 0.1137 0.1516 0.1834 0.2706 0.2680 0.2703 0.2735 0.2742

Table 4.6: Effects of noise on backward operator inverse problems on a 65 × 65 resolution. The
network is trained with noisy data and datasets with the same noise level are used for testing.

4.3 Part 2: Complex Problems

Following the study performed in section 4.2, which studied less complex PDEs of the
Poisson and Darcy flow problems, this section seeks to study how the methods perform
with more complex PDEs such as the Navier-Stokes, Helmholtz, Advection equations as
well a solid/structural mechanics problem. These problems were extensively studied in [68].
There, the focus was on the forward problem, and the writers comparatively look at the
performance of the various neural operators with cost. However, in this work, we focus
on using neural operators to solve the respective inverse problems. In the following, we
provide the description of the corresponding inverse problems for the forward problems
stated in [68]. For consistency, we denote the parameter by λ ∈ Λ, the parameter space
which we aim at identifying, and the solution (or measurement) u ∈ U , the solution space.

Furthermore, we once again define the Gaussian Random Fields (GRF), commonly
used in the stochastic modelling of physical phenomena (and has gained popularity in
deep learning methods for solving PDEs literature). Specifically, we use the Gaussian
distribution µG with mean µ̄ and variance (−∆ + τ 2)−d as base measure. Thus,

µG(µ̄, τ, d) = N
(
µ̄, (−∆ + τ 2)−d

)
, (4.5)

with a zero Neumann boundary condition on the Laplacian operator ∆, which yields
random but smooth test data. τ denotes the inverse length scale of the random field,
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0% 0.1% 1% 5% 10%

PCANN 0.2128 0.2128 0.2137 0.2975 0.4468
PCALin 0.0803 0.0805 0.0918 0.1534 0.2132

FNO 0.0931 0.0936 0.1082 0.1450 0.1693
U-FNO 0.0687 0.0697 0.0909 0.1397 0.1802

MWT 0.0708 0.0714 0.0878 0.1368 0.1796
DeepONet 0.1341 0.1330 0.1350 0.1660 0.2088

PINO 0.0598 0.0623 0.0890 0.1441 0.1915
PI-DeepONet 0.1573 0.1580 0.1727 0.2040 0.2298

(a) λerr, the relative error of the learned parameter

0% 0.1% 1% 5% 10%

PCANN 0.0133 0.0128 0.0130 0.0123 0.0122
PCALin 0.0010 0.0010 0.0016 0.0074 0.0158

FNO 0.0022 0.0025 0.0097 0.0464 0.0924
U-FNO 0.0009 0.0013 0.0091 0.0457 0.0914

MWT 0.0014 0.0017 0.0093 0.0459 0.0917
DeepONet 0.0053 0.0054 0.0113 0.0497 0.0988

PINO 0.0006 0.0010 0.0088 0.0454 0.0911
PI-DeepONet 0.0045 0.0047 0.0135 0.0520 0.1013

(b) ũerr, the relative error between the solution of
the learned parameter and the noisy solution.

0% 0.1% 1% 5% 10%

PCANN 0.0133 0.0128 0.0131 0.0150 0.0209
PCALin 0.0010 0.0010 0.0020 0.0074 0.0133

FNO 0.0022 0.0023 0.0040 0.0089 0.0133
U-FNO 0.0009 0.0010 0.0024 0.0072 0.0124

MWT 0.0014 0.0015 0.0025 0.0072 0.0124
DeepONet 0.0053 0.0053 0.0055 0.0085 0.0137

PINO 0.0006 0.0008 0.0023 0.0072 0.0126
PI-DeepONet 0.0045 0.0046 0.0058 0.0147 0.0152

(c) uerr, the relative error between the solution of
the learned parameter and the noiseless solution.

Table 4.7: Effects of noise on Tikhonov-based inverse problems for the Poisson problem and
using datasets with a resolution of 65 × 65. The errors shown here are averaged over 100 test
samples.

0% 0.1% 1% 5% 10%

PCANN 77.74 77.70 77.83 76.79 74.19
PCALin 90.58 90.58 90.57 90.55 90.42

FNO 96.92 96.92 96.71 95.45 94.30
U-FNO 94.23 93.83 95.20 94.14 92.48

MWT 98.26 98.33 97.84 96.42 95.04
DeepONet 93.88 93.88 93.95 93.49 92.70

PINO 97.56 97.59 97.45 96.34 95.07
PI-DeepONet 92.03 91.93 91.84 91.80 91.60

(a) λacc(%), the accuracy of the learned parameter

0% 0.1% 1% 5% 10%

PCANN 0.4684 0.4692 0.4680 0.4828 0.5148
PCALin 0.3157 0.3157 0.3159 0.3163 0.3183

FNO 0.1764 0.1764 0.1823 0.2143 0.2402
U-FNO 0.2140 0.2205 0.2017 0.2371 0.2734

MWT 0.1287 0.1250 0.1435 0.1880 0.2209
DeepONet 0.2484 0.2483 0.2469 0.2547 0.2691

PINO 0.1559 0.1549 0.1607 0.1932 0.2244
PI-DeepONet 0.2792 0.2801 0.2820 0.2822 0.2861

(b) λerr, the relative error of the learned parameter

0% 0.1% 1% 5% 10%

PCANN 0.1151 0.1152 0.1144 0.1211 0.1373
PCALin 0.0929 0.0929 0.0929 0.0931 0.0934

FNO 0.0104 0.0105 0.0174 0.0711 0.1362
U-FNO 0.0477 0.0517 0.0419 0.0698 0.1145

MWT 0.0129 0.0125 0.0177 0.0544 0.1032
DeepONet 0.0480 0.0484 0.0495 0.0773 0.1190

PINO 0.0167 0.0164 0.0211 0.0567 0.1065
PI-DeepONet 0.0586 0.0593 0.0604 0.0816 0.1244

(c) ũerr, the relative error between the solution of
the learned parameter and the noisy solution.

0% 0.1% 1% 5% 10%

PCANN 0.1151 0.1152 0.1144 0.1207 0.1363
PCALin 0.0929 0.0929 0.0929 0.0928 0.0923

FNO 0.0210 0.0212 0.0223 0.0329 0.0421
U-FNO 0.0477 0.0517 0.0395 0.0437 0.0496

MWT 0.0129 0.0125 0.0142 0.0209 0.0276
DeepONet 0.0480 0.0484 0.0483 0.0561 0.0597

PINO 0.0167 0.0164 0.0181 0.0250 0.0349
PI-DeepONet 0.0586 0.0593 0.0593 0.0614 0.0677

(d) uerr, the relative error between the solution of
the learned parameter and the noiseless solution.

Table 4.8: Effects of noise on Tikhonov-based Inverse Problems on the Darcy Flow problem with
PWC coefficients, using a dataset of resolution of 65 × 65. The errors shown here are averaged
over 100 test samples.
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Truth

0% 0.1% 1% 5% 10%

PCANN

PCALin

FNO

U-FNO

MWT

DeepONet

PINO

PI-DeepONet

Table 4.9: Effects of noise on Tikhonov-based Inverse Problems on the Poisson problem, using a
dataset of, resolution of 65 × 65.
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Truth
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PCANN

PCALin

FNO

U-FNO

MWT

DeepONet

PINO

PI-DeepONet

Table 4.10: Effects of noise on Tikhonov-based Inverse Problems on the Darcy Flow pwc problem,
using dataset of, resolution of 65 × 65.
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while d determines the regularity of the random field. The dataset used in this work is
generated from µG or it’s push-forward under a specified map. Figures 4.7-4.10 shows
examples of the parameter-solution pair in the datasets. Details on how each is generated
is further presented in the following sections 4.3.1- 4.3.4

4.3.1 Advection

Consider the 1D advection equation with advection speed c defined in the domain Ω = [0, 1)

∂u

∂t
+ c

∂u

∂s
= 0 s ∈ Ω,

u(0) = λ
(4.6)

We equally use the dataset from [144] where the initial condition u(0) = λ is sampled from
µA = A]µG, the push forward of µG(µ̄ = 0, τ = 3, d = 2) under the map

A(x) =
{

1 x > 0
−1 x ≤ 0

Our interest is therefore to estimate the initial solution u(0) = λ from the solution at
time T, u(T ), thus the map Ψ given by

Ψ : U ([0, 1] × Ω; ) 3 u(T, ·) 7→ λ ∈ Λ ([0, 1] × Ω; )

Specifically, we choose T = 0.5 and the advection speed c = 1 and the PDE in Equation
4.6 is solved analytically for a 1-dimensional grid of size 200. Figure 4.7 gives a sneak
peek at the nature of the samples in the dataset.

Figure 4.7: Advection dataset sample

4.3.2 Solid Mechanics

Consider an elastic solid in the domain Ω, undergoing inappreciable deformations char-
acterised by the Cauchy stress tensor σ and resulting displace d. We define Γv and Γλ,
two disjoints parts of the boundary ∂Ω (with outward normal n) of the domain Ω, i.e
Γv ∪ Γλ = ∂Ω, and Γv ∩ Γλ = . If v is the prescribed displacement imposed on the
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boundary of the domain Γv and λ is the surface traction on the remaining part of the
domain Γλ. The PDE governing such a system is

∇ · σ = 0 in Ω,

d = v on Γv

σ · n = λ on Γλ

(4.7)

Once again, the elastic solid considered is that in [144], which is made of a cylindrical fibre
at the centre, made of a linear elastic material, with specified density, Young’s modulus and
Poisson ratio. Our parameter identification problem here is to obtain the one-dimensional
traction λ from the von Mises stress field u, thus the map Ψ given by

Ψ : U (Ω; ) 3 u(s) 7→ λ ∈ Λ (Γλ; +) .

This traction is drawn from the GRF µS = S]µG, the push forward of µG(µ̄ = 100, τ =
3, d = 1) under the map

S(x) = 4002x

We equally highlight that the dataset was generated using a finite element approach with
the NNFEM library [322] [147], and interpolated on a 41 × 41 grid. The load used was
on a 1-dimensional grid of size 21.

Figure 4.8: Solid Mechanics dataset sample

4.3.3 Navier-Stokes

Consider the incompressible Navier-Stokes equation for a fluid with being the kinematic
velocity ν, defined in Ω = [0, 2π2] and given by

∂u

∂t
+ (v · ∇)u− ν∆u = λ

u = −∆ψ
∫

Ω
ψ = 0

v =
(
∂ψ

∂s2
,− ∂ψ

∂s1

)
.

(4.8)

Equation 4.8 is the vorticity-stream formulation, popularly used for solving the 2D
incompressible Navier-Stokes equation. This form is obtained by a change of variable
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which replaces the components of the velocity v in the continuity and momentum equations
with the vorticity u and stream function ψ, transforming the mixed elliptic-parabolic 2-D
incompressible Navier-Stokes equations into a parabolic equation and an elliptic (Poisson)
equation. We are interested in inferring the forcing λ from the vorticity u(T, ·) at a later
time, T , thus the map Ψ given by

Ψ : U ([0, 1] × Ω; ) 3 u(T, ·) 7→ λ(s) ∈ Λ (Ω; )

The dataset used in our experiment is obtained from [144], where the forcing term is sampled
from the distribution µG = µG(µ̄ = 0, τ = 3, d = 4). The initial vorticity u(0), is equally
sampled from this distribution. With ν = 0.025, the PDE in 4.8 is solved at final time u(T ),
where T = 10, using a pseudo-spectral method on a grid of size 64×64, and a Crank-Nicolson
scheme for time integration. An example parameter-solution pair is shown in Figure 4.9

Figure 4.9: Navier Stokes dataset sample

4.3.4 Helmholtz

For a given frequency ω ∈ +, and wave speed λ ∈ Λ (Ω; +), the Helmholtz equation
defined in Ω = [0, 1]2 and given by(

−∆ − ω2

λ2(s)

)
u = 0 in Ω = (0, 1)2,

∂u

∂n
= 0 on ∂Ω1, ∂Ω2, ∂Ω4

∂u

∂n
= 1 on ∂Ω3,

(4.9)

is the time-independent form of the wave equation, and has as solution the excitation
field u(s) ∈ U

(
[0, 1]2; +

)
, where ∂Ω1, ∂Ω2, ∂Ω4 are the south, east, and west boundaries

respectively, all with zero Neumann boundary conditions and ∂Ω3 is the north boundary.
We are interested in inferring the inhomogeneous wave speed field λ from disturbance
field u, thus the mapping

Ψ : U (Ω; +) 3 u(s) 7→ λ(s) ∈ Λ (Ω; )



74 74

Once again, we use dataset from [144], which samples the inhomogeneous wave speed from
µH = H]µG, the push forward of µG(µ̄ = 0, τ = 3, d = 2) under the map

H(x) = 20 + tanh x.

The PDE in 4.9 is then solved by finite element method on a 100 × 100 grid. Figure
4.9 shows a sample parameter-solution pair.

Figure 4.10: Helmholtz dataset sample

4.3.5 Results and Discussion

The results obtained from the complex problems follow a similar trend to those of the
complex problems. Results for all methods but for the DeepONet, PI-DeepONet, and PINO
are shown here. Equally, the function evaluation DL approaches are also not shown here.
Firstly, we present the performances of the forward operators in table 4.11 These forward
operators are further used for parameter identification in the Tikhonov-based approach,
for which results are shown in figures 4.11-4.14. For each of these figures, (a) shows the
performance with noise, while (b) shows how this performance in the noisy scenarios
compares to that in the noiseless (0%) scenario. Specifically, for the Advection problem, the
backward methods show better performance compared to the Tikhonov-based methods as
depicted in figure 4.11a. A similar observation is also seen for the solid mechanics problem
in figure 4.12a. However, the Tikhonov-based methods show a better scaling with noise,
as depicted in figure 4.12b. The Navier-Stokes problem equally shows similar results in
4.13a but for the Tikhonov-based FNO, which scales abnormally with noise as depicted in
figure 4.13b. Particularly interesting are the Tikhonov-based approaches for the Helmholtz
problem, which (but for the PCANN) beat their backward counterparts (see figure 4.14a.
All Tikhonov-based methods, however, do scale better with noise (see figure 4.14b).

4.4 Conclusions

The presented survey aims at developing a guideline on whether and how to use deep
learning concepts for PDE-based forward solvers and related inverse problems. To this end,
we have implemented and tested the most widely used neural network concepts as well as
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Neural Operator Navier Stokes Solid mechanics Helmholtz Advection

PCANN 0.06277 0.06039 0.04979 0.06381
PCALin 0.05610 0.23230 0.10309 0.04685

FNO 0.00330 0.07290 0.03478 0.14789
U-FNO 0.00613 0.05751 0.03836 0.14664

MWT 0.00250 0.05640 0.03872 0.12691

Table 4.11: Performance (relative error) of the respective forward problem solvers

(a) Relative errors (b) Change in relative errors.

Figure 4.11: Advection

(a) Relative errors (b) Change in relative errors.

Figure 4.12: Solid Mechanics

several of their extensions for the two most common PDE problems (Poisson, Darcy flow).
In addition, we have applied neural network concepts to two industrial projects.

Naturally, the present text tries to give a complete-as-possible snapshot of the situation
at the time we started writing up the results of our test. We are well aware that
several additional concepts have been proposed since and we apologise to those whose
contributions are missing.

There is no unique criterion for determining the best method, this very much depends
on the specific task at hand. Hence, we presented a survey of numerical values for each
method, which should allow the user to evaluate the particular criterion relevant to its
specific application and to determine a suitable method accordingly.
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(a) Relative errors (b) Change in relative errors.

Figure 4.13: Navier Stokes

(a) Relative errors (b) Change in relative errors.

Figure 4.14: Helmholtz

Nevertheless, we want to highlight some general findings. Within the restricted scope
of our test environment, we have found the following conclusions. DL concepts for solely
solving forward problems lack precision as compared with classical FEM methods. This
finding has been confirmed by other authors as well, see e.g., a numerical study for PINNs
in [112]. However, in general, they achieve reasonable accuracy and offer great potential
for efficient parameter studies, e.g., for applications in rapid prototyping.

Our findings differ depending on whether the underlying PDE is linear or non-linear and
whether training data, i.e., sufficiently many parameter-state pairs are known, is available.
Several methods such as Ritz-method or PINN only use the PDE and do not use training
data. Hence the comparison has to distinguish these cases

For a linear PDE and if only the PDE is known but no data is available, we propose to
use PINN for solving the forward problem. If data, i.e., sufficiently many parameter-state
pairs are known, then PCA or even better PCALin are an excellent starting point. As
mentioned, this is only the first indication, our tests were restricted to the Poisson problem.
Surprisingly, see Table 4.6, there is not much difference between different concepts for
solving the inverse Poisson problem by backward operator training. All methods considered
produce reliable results e.g., for 5% noise in the data. Hence, run times might be the
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criterion for the decision. Obviously, concepts for operator training are advantageous and
DeepONet and PI-DeepONet are the overall winners in terms of run-time for testing.

The Poisson forward problem is a rather simple linear elliptic Hence, the numerical test
should be seen as some preliminary test giving some limited insight into the behaviour of
DL concepts for forward linear PDEs. As we will see from the more evolved examples, the
findings in this section have only a limited meaning for more general cases.

Concerning solvers for the Darcy problem, MWT is the overall winner for solving
the forward problem with noise-free data, at least in our experiments. For solving the
inverse Darcy problem we propose to use inverse training in combination with U-FNO
and MWT for small noise levels and PCANN for solving the non-linear inverse Darcy
flow problem with higher noise levels.

As a general remark, we observe that concepts which combine data-driven learning with
mathematical concepts such as reduced order models or incorporating the PDE directly,
e.g., PCANN/PCALin, PINO, FNO or MWT, have an advantage in terms of stability and
performance. Again, we want to emphasise that it is premature to make this a general
rule, this is rather an observation restricted to our numerical setting.

Naturally, there are many meaningful extensions of the chosen test scenario. e.g.,
inserting a classical FDM/FEM forward solver into a Tikhonov regularisation scheme or
including H1 - error measures for comparison would be most interesting. However, we
prefer to stay with the present scope of focusing on comparing DL methods for inverse
problems and restrict ourselves to the tests provided.

Concerning industrial applications, additional features gain influence. e.g., the simu-
lation of heat inside a rotating engine requires working with a time-dependent domain
of definition. Most codes will require substantial additional work when dealing with
such complex domains. TorchPhysics offers an accessible concept for working with such
domains, which in connection with a standard PINN concept did yield good performance
for a parametric study in this context.

The other industrial problem of identifying parameters in a problem of mechanical
engineering reduces to a rather low-dimensional task and can be solved by PCANN.
Hence, choosing a method suitable for a given industrial problem requires problem-specific
considerations, which have to be evaluated task by task.

We should remark, that the size of the network differs considerably. We have performed
rather extensive hyper-parameter searches for each method. The reported network sizes
did yield the best results. E.g., the DRM does not benefit from extending the network
to larger sizes for the mentioned application.

In Table 3.1, we list the properties of classical methods, Deep Ritz method in [327], PINN
in [261], model reduction and Neural Network in [24], DeepONets in [222] and Fourier Neural
Operator [211]. We should mention that the properties only correspond to the methods in
these mentioned papers, since by some modifications, they can have different properties.
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Figure 4.15: Properties of deep learning methods for PDEs.

For example, the PINN may be used to model parameter-solution operators. In Figure4.15,
we schematically illustrate the properties of different deep learning methods for PDEs.

The methods discussed above have shown their high potential for solving PDEs as well
as their related parametric studies and inverse problems. Whenever efficiency is an issue,
these methods perform most convincingly. However, there are still many open questions
and problems that are common in the deep learning community. Hyperparameter search
can be very time-consuming and would benefit from a sound theoretical foundation. Also,
the choice of activation functions and loss functions can be more refined.



It always seems impossible until it’s done.

— Nelson Mandela

5
Parameter Identification of a
Material Model for Granular

Media

In this chapter, an application problem is considered, and a DL-based method is proposed.
It is based on the following article:

Derick Nganyu Tanyu, Isabel Michel I, Andreas Rademacher, Peter Maass and Jörg
Kuhnert. “Parameter identification by deep learning of a material model for granular
media”. In: Manuscript submitted for publication (Jul. 2023). Preprint available at
(arXiv:2307.04166).

5.1 Introduction

In geosciences, engineering, and industry, partial differential equations (PDEs) are widely
used to model a great variety of problems. They are a great tool for modeling and solving
complex phenomena ranging from the incompressible flow in the Earth’s mantle to the
electronic structure of materials. For an industrial product, these models follow the full life
cycle from classical simulation and optimization during the development phase to process
monitoring and control during production. PDE models generally introduce some critical
parameters, which have to be calibrated so that the model reflects the system or problem
being considered. These parameters could be scalar or space- and time-dependent parameter
functions, and their calibration process usually requires multiple runs of the model. In
some scenarios, one has access to the solution of the PDE or observation of the system
and wishes to infer the parameters underlying the governing PDE, thus an inverse problem.
A wide range of inverse problems have been studied, such as tomography [13], inverse

79
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kinematics [300], inverse problems in signal processing [3] and even in quantum mechanics
[42]. In the field of geomathematics [89], we equally identify inverse problems such as
gravimetric inversion [90, 181], seismic inversion [69, 247] , geodynamic inversion[266],
and inverse magnetometry [27] among others. Particularly in [267], by a combination of
geophysical imaging and inversion methods of gravimetry, seismology, and geodynamics
in a single cost function, the authors study the reconstruction of the Earth’s material
parameters. In this inverse problem, the system is in essence governed by the Poisson, wave,
and Stokes equations, where the gravitational potential, seismic displacement, and surface
velocity are respectively observed for the estimation and identification of mass density,
wave speed, and the viscosity parameters. A helpful review of selected inverse methods
to infer parameters for problems in geosciences can be found in [265].

PDE-based inverse problems are one of the most challenging inverse problems because
their complexity is compounded by the fact that the solutions are typically nonlinear.
This further emphasizes the need for efficient and fast solvers. While traditional or
standard numerical methods such as finite differences and finite elements have been used
extensively to solve PDEs, most if not all these standard PDE solvers suffer from the curse
of dimensionality [20], i.e. the computational cost grows exponentially as the dimension
increases. This has led to the extensive study of data-driven concepts, particularly, neural
network approaches for solving PDEs over the last few years. In addition to their potential
of overcoming the curse of dimensionality, these data-driven concepts usually have the
potential to complete mathematical-physical models as even the finest detail or tricky
non-linearity is contained in a sufficient dataset. In addition, since the parameters to
be determined most often are not arbitrary, but follow an unknown, application-specific
distribution, the training data provides a means to recover and exploit this distribution.

This chapter looks at a PDE-based inverse problem in the field of continuum mechanics,
which is applicable to the automobile development process. Specifically, our focus is
on a physical model of soil over which vehicles ride. However, the methodology is also
transferable to material modeling tasks in geosciences such as the parameterization of
material models for snow or landslides. They are necessary e.g. to predict runout zones or
to evaluate protective measures. Furthermore, [244] shows how the proposed method and
its likes (data-driven methods) can be used to solve the inverse Poisson problem, which
has applications in gravimetry [267]. Similar works [211, 262] also show the potential
of data-driven methods to solve Stokes and wave equations with respective applications
in geodynamics and seismology [185].

The rest of this work is structured as follows: We continue in Section 5.1.1 by looking
into reduced order models (ROM) and how proper orthogonal decomposition (POD), as
well as deep learning (DL), can be used in ROMs. We equally highlight in Section 5.1.2,
how neural networks have been recently applied for PDE solutions, parametric studies, and
inverse problems. We then proceed to present the defining equations of our problem in
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Section 5.2 and the laboratory test setting, which provides the basis of the MESHFREE
simulations [156] used for the data generation. Section 5.3 presents the method used to
approach the problem, i.e. PCA-NN. In Section 5.4, we summarize the numerical results,
followed by concluding remarks in Section 5.5.

5.1.1 Reduced Order Models and POD/PCA

Full-order models (FOM) like the finite difference method (FDM), finite element method
(FEM), finite volume method (FVM), discontinuous Galerkin method (DGM), etc. that
discretize the PDEs are usually highly accurate but very expensive. Depending on the
application and the goals set, the user has to balance accuracy and computation time as an
algorithm of higher accuracy implies higher computation time. In FDM, for example, a finer
discretization of the domain (grid) leads to higher accuracy. The result of this is a system
of linear equations with many more unknowns/parameters (i.e. the solution vector has a
higher dimension); thus, a larger matrix system has to be solved to obtain the PDE solution
on this fine grid. This is a major setback for real-time applications, and other settings where
the PDE has to be queried multiple times. Reduced Order Models (ROM) offer a solution
as they seek to reduce the dimension of the solution vector while maintaining the problem’s
physical features. The Reduced Basis (RB) method, which has received a lot of attention
in the last decade [73, 121, 174, 253, 259, 272] but can be traced back to the 1980s [86, 248,
257], is unarguably one of the most popular ROM. This method consists of an offline and
an online stage. During the offline stage, a reduced basis is obtained from a good choice
of parameters, and this is used to obtain solutions of the PDE for new parameters. This
is very similar to neural operator methods for solving PDEs like Fourier Neural Operator
(FNO) [211] and Deep operator network (DeepONet) [222]. The RB method can also be
extended for parameter identification tasks [219] as well as inverse problems [97].

Recently, Deep Learning-based reduced order models (DL-ROM) have been popularized
to efficiently solve PDEs [91, 101, 203]. Just like the RB method, they consist of an offline
(training) phase and an online (testing) phase. The DL-ROM, though time-efficient during
testing, might be very costly during training due to the high number of features or dimensions
of the input and/or output – similar to RB method. The consequence of this is usually a
network with more parameters, and thus more time is needed for optimizing these parameters.
A common solution that reduces the number of network parameters while maintaining or
even improving the accuracy is the proper orthogonal decomposition (POD). In the field of
machine learning, this is commonly known as Principal Component Analysis (PCA), used
as a technique for dimensionality reduction [318]. Reduced order models constructed with
both deep learning and POD are referred to in [94] as POD-DL-ROM, where accuracy-wise,
they are reported to outperform state-of-the-art POD-Galerkin ROMs during the testing
stage; and efficiency-wise, they outperform DL-ROMs during the training stage.
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5.1.2 Neural Networks and PDEs

Neural Networks have shown interesting results in dealing with high dimensional complex
PDEs [130], where they overcome the curse of dimensionality for the Schrödinger equation
and Hamilton–Jacobi–Bellman equation [150], Black–Scholes equations [23, 108], and
Kolmogorov equations [161] which arise in option pricing [81].

The popularity of neural networks in solving PDEs probably comes from the famous
Physics-informed neural networks in [261] that use a neural network to approximate a
function, i.e. the solution of the PDE for a single parameter instance. Similar works include
quadratic residual networks [39] and Deep Ritz networks [327].

Another class of neural networks – probably closer in its operation to RB methods –
approximate an operator by a neural network. They are known as neural operators and can
be used to query solutions of different parameter instances when trained. The PCA-based
neural operator [24], FNO, DeepONet are part of this class as well as other novel methods
and ‘variants’ like the Multiwavelet-based operator [119], graph neural operator [212],
wavelet neural operator [302], and many more. [244] provides a good overview and extends
them for parametric studies as well as inverse problems.

5.2 Problem Formulation

To shorten the design cycle of vehicles and reduce the cost of development, the automotive
industry employs numerical simulation tools in the vehicle development process for testing
and analysis. In this application example, we are interested in the interaction of vehicles
with various roadbeds such as sand, snow, mud, etc. Vehicle stability depends largely on this
interaction, and the safety of the passengers is thus a concern. To approach this problem,
a full-body model of the vehicle dynamics is needed as well as proper modeling of the
roadbed. Of interest to us, is the modeling of the roadbed consisting of granular material.
This is a continuum mechanics problem that involves not only the well-known conservation
equations of mass, momentum, and energy, but also a supplementary phenomenological
material model. While the former specify the process conditions and are generally well
understood, the latter relates the applied strain to the resulting stress and comes with
uncertainties as well as non-linearities. Obviously, the overall goal is for the simulations to
match the real-life experiments, thus the selected material model is of great importance.

5.2.1 Barodesy Model

Material models have parameters that are specific to the considered material as well as its
reaction to external conditions, and these models range from simple to complex. By using
single-parametric models for the granular material (roadbed), for example, the deviation
between simulations and experiments increases as the simulation time progresses. As a
result, complex material models with many more parameters are used. Such parameters
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are usually determined by a great wealth of expert knowledge, and costly experiments.
The barodesy model [183, 184] is one of such complex material models which conforms
to the basic mechanical properties of the material. It is formulated in tensorial form
by Equations (5.1)–(5.2)

dS
dt

= WS − SW + H(S,D, e) (5.1)
de

dt
= (1 + e) · tr(D), (5.2)

with

D = 1
2

(
∇vT +

(
∇vT

)T
)

W = 1
2

(
∇vT −

(
∇vT

)T
)

and

H(S,D, e) = hb(σ) ·
(
fbR0 + gbS0

)
· |D|,

where

σ = |S| =
√

tr (S2)

S0 = S/|S|, D0 = D/|D|, R0 = R/|R|

R = tr
(
D0
)

· I + c1 · exp
(
c2 · D0

)
hb = σc3

fb = c4 · tr
(
D0
)

+ c5 · (e− ec) + c6

gb = −c6

ec = (1 + ec0) · exp
(

σ1−c3

c4 · (1 − c3)

)
− 1.

In the above expressions:

- S ∈ 3×3 is the Cauchy stress tensor (with principal stresses σ1, σ2, σ3 in axial and
lateral directions),

- W is the antisymmetric part of the velocity gradient,
- D is the stretching tensor (the symmetric part of the velocity gradient),
- e = Vp/Vs is the void ratio with critical void ratio ec, where Vp and Vs are the volume

of pores and solids (grains).
- v ∈ 3 is the velocity field.

The non-linear function H introduces the material parameters c1, c2, c3, c4, c5, c6, and ec0

which we seek to identify via deep learning in a supervised learning task, provided the
stress is known. For Hostun sand [71], for example, c1 = −1.7637, c2 = −1.0249, c3 =
0.5517, c4 = −1174, c5 = −4175, c6 = 2218, ec0 = 0.8703.
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5.2.2 Oedometric Test

In soil mechanics, laboratory tests are used to measure the physical and mechanical
properties of soil. They enable the testing and validation of material models. The tests
vary from soil classification, shear strength, consolidation, and permeability tests, etc.
[88]. The consolidation or oedometric test is one of the most conducted tests in soil
mechanics. The soil (material) sample is loaded as well as unloaded in axial direction
and rigid side walls prevent any lateral expansion, see Figure 5.1. With this, the soil’s
consolidation properties can be measured.

Figure 5.1: Schematic illustration of an oedometric test, see [251].

The laboratory measurements of oedometric tests result in stress paths (relating lateral
and axial stress) and stress-strain-curves, e.g. in axial direction illustrated in Figure 5.2.
These are compared to corresponding element tests wrt. a material model such as barodesy,
in which the material model is integrated for one numerical point. When evaluating the
quality of 3D numerical methods, only the comparison with corresponding element tests
should be made, since the numerics cannot be better than the material model itself. This
was investigated, for example, in [231] for the MESHFREE software (see Section 5.2.3),
at that time still referred to as Finite Pointset Method (FPM).

5.2.3 MESHFREE and the Generalized Finite Difference Method

We employ the Generalized Finite Difference Method (GFDM) [191] implemented by
Fraunhofer ITWM in the MESHFREE software [156, 192] to numerically solve coupled
PDEs governed by the conservation equations and material models such as the barodesy
model described in Section 5.2.1. MESHFREE has successfully been applied for the
simulation of complex continuum mechanics problems in industry, like vehicles traveling
through water[160], flow inside impulse-type turbines [193], solution mining [232], injection
molding [307], wet metal cutting [304], and phase change processes [189].

Point Clouds and Generalized Finite Difference Approximation

An overview on point cloud generation for meshfree methods is given in [291]. MESHFREE
employs an advancing front procedure [232] that first discretizes the boundary and then
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Figure 5.2: Axial stress-strain-curve of an oedometric test, see [231], with axial stress −σ1 and
axial strain ε1.

iteratively the interior of the continuum domain depending on a given point interaction
radius. Each point carries the physical information (such as velocity, pressure, temperature,
stress, etc.) and is moved with the continuum velocity in a Lagrangian formulation
[292]. Distortions caused by the movement can be corrected purely locally by adding
and deleting points.

Discretizing the governing PDEs in their strong formulation, GFDM generalizes classical
finite differences to (scattered/irregular) point clouds. Thereby, all numerical derivatives
(function values, x-, y-, z-derivatives or Laplacian) are computed as linear combination
of neighboring function values, where the neighbors of a point are determined by the
point’s interaction radius. The necessary coefficients/stencils are computed by a weighted
least squares method. For more details on generalized finite difference approximation
we refer to [193, 232, 290].

Data Generation

Using the MESHFREE software, we generate parameters-stress pairs to train our neural
network. Here, we use the physical and numerical model presented in [251] including
corresponding boundary conditions for the cylindrical oedometric test. As described in
[231], the axial stress on the 3D point cloud (Figure 5.3) is averaged over all points of
the sample to determine the resulting data for a parameters-stress pair, see Figure 5.4.
For simplicity, the representation in this figure is dependent on time and not on axial
strain as in Figure 5.2. Note that we use the settings for the dense sample in [231] with
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fixed interaction radius h = 0.01m, loading/unloading rate vp = ∓0.001m
s , and fixed time

step size ∆t = 0.0015s for all parameters-stress pairs. The choice of the parameters that

Table 5.1: Value bounds for sampling of the parameters for the data generation

Parameters Base value Lower bound Upper bound
(BV) (BV − 5%) (BV + 5%)

c1 −1.7637 × 100 −1.8519 × 100 −1.6755 × 100

c2 −1.0249 × 100 −0.1076 × 100 −0.9737 × 100

c3 0.5517 × 100 0.5241 × 100 0.5793 × 100

c4 −1.1740 × 103 −1.2327 × 103 −1.1153 × 103

c5 −4.1750 × 103 −4.3838 × 103 −3.9663 × 103

c6 2.2180 × 103 2.1071 × 103 2.3289 × 103

ec0 0.8703 × 100 0.8268 × 100 0.9138 × 100

constitute the data set are selected uniformly within predefined intervals. Guided by expert
knowledge (see Section 5.2.1), a base value is selected and the interval is constructed
around it by adding and subtracting 5% of this base value to obtain the lower and upper
bounds of this interval as shown in Table 5.1.

Figure 5.3: Initial 3D MESHFREE point cloud for the cylindrical oedometric test (filled circles:
interior points, non-filled circles: boundary points), see [251].

Figure 5.4: Example of generated input data samples for different parameters.
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5.3 Proposed Method

The proposed method is inspired by both Reduced Order Models (ROM) and Neural
Networks (NN). ROMs have been popular for a long time in dealing with PDEs, and even
more when dealing with parameter identification problems, as outlined in Section 5.1.1.
NNs have become popular over recent years not only due to their success in computer vision
[190], natural language processing [140], but also due to the availability of data and growing
computing power [103, 201]. The efficient combination of both methods [24] has already
achieved remarkable results not only in simple problems but also in more complex problems
such as cardiac electrophysiology [95] (where the use of proper orthogonal decomposition
(POD) further improves the results [94]), fluid flow [93], non-linear models [61, 92], etc.

5.3.1 PCA-NN

We implement a variation of the PCA-NN architecture presented in [24], which uses a
meshless operator for the evaluation of the solution of a PDE by combining ideas of ROM
with deep learning. First, for given training data (λi, ui), obtain a model reduction by
the use of principal component analysis (PCA) for both the input (parameter λ) and
output (solution u). Only the coefficients of a finite number of PCA components are
retained. Thus, PCA reduces the dimensions of both the input and output spaces to finite
dimensional latent spaces. Second, use a NN to map the coefficients of the respective
representations in these latent spaces.

The evaluation of this operator approximation for a novel parameter λ is highly efficient:
compute the scalar products with the specified finite number of PCA components, map
these coefficients to the latent coefficients of the output space with the NN, approximate
the solution of the PDE by an expansion using these coefficients and the PCA on the
output side. A simplified architecture of this method is shown in Figure 3.6.

The formulation of this approach is in a function space setting and hence mesh-free.
For implementation purposes, however, we have to specify how to compute the scalar
products with the PCA components. These are only given numerically, usually by their
values specified at discrete points (in our case time steps).

This PCA-NN operator has been used in [188, 217] in a multiscale plasticity problem
to map strain to stress.

5.3.2 Workflow

In our problem, the goal is to learn the parameters µ ∈ dµ , with dµ = 7, from the
variation of the axial stress −σ1 ∈ d over time t, where d = 675 is the fixed number
of time steps corresponding to ∆t = 0.0015, see Section 5.2.3. The data set generated
from MESHFREE is therefore a vector pair (µ,−σ1).

Our adopted procedure can be broken down into four major steps as illustrated in Figure
5.5:
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• Data Generation: Using MESHFREE and the setup described in Section 5.2.3,
generate parameters-stress pairs (µi,−σi

1) with i = 1, 2, . . . , Ntrain +Ntest. These are
snapshots of the full order model that is based on the GFDM described in Section
5.2.3.

• Training (Offline Stage): The first Ntrain data pairs are used to train the PCA-NN
neural network. During training, the average L2-loss

Li(µ, µ̂) = 1
dµ

dµ∑
`=1

∥∥∥∥∥µi
` − µ̂i

`

µi
`

∥∥∥∥∥
2

(5.3)

is obtained and its average over the training data

L(µ, µ̂) = 1
Ntrain

Ntrain∑
i=1

Li(µ, µ̂) (5.4)

is optimized, see Algorithm 3 in Section 5.3.2 for further details. µ̂ is the output of
the model which is a composition of PCA applied on the axial stress −σ1 followed
by the neural network.

• Testing (Online Stage): Once the network is trained, it is used for testing with the
next Ntest unseen data. Testing proceeds as shown in Algorithm 4 in Section 5.3.2.
The network’s performance is evaluated with the loss function given in Equation 5.4,
but averaged over the Ntest parameters by

L(µ, µ̂) = 1
Ntest

Ntest∑
i=1

Li(µ, µ̂). (5.5)

• Verification Stage (optional): This stage is used to ascertain the efficiency of the
proposed model. Here, the material parameters µ̂ learned from the neural network
are used as input to MESHFREE simulations, in order to compare the resulting
stress −σ̂1 with the stress −σ1 obtained from the ground truth parameters µ. The
difference is measured using the relative L2-error given by

E(−σ1,−σ̂1) = 1
Ntest

Ntest∑
i=1

Ei(−σ1,−σ̂1), (5.6)

where

Ei(−σ1,−σ̂1) =
∥∥∥∥∥σi

1 − σ̂i
1

σi
1

∥∥∥∥∥
2
. (5.7)

Network Architecture

In our numerical examples, we followed the outline described in [24] and used a fully
connected feed-forward neural network (FCN) for the mapping of the stress latent space
(output of PCA on stress) to the parameters. The number of nodes per layer starts from
d, 500, 1000, 2000, 1000, 500, and finally dµ (which is the number of parameters to be learned,
here 7). d is considered a hyperparameter, which has to be tuned. In our case, d = 50 lead
to the best results. For the PCA, we use standard randomized singular vector decomposition
(SVD) implementations [126, 268]. Figure 5.5 illustrates the overall PCA-NN architecture.
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Fi g u r e 5. 5: C o m pl et e  w or k fl o w of t h e pr o p o s e d a p pr o a c h.

Al g o ri t h m

As a p ur el y d at a- dri v e n  m et h o d, n o p h ysi cs or  P D E is n e e d e d i n t h e tr ai ni n g of t h e n e ur al

n et w or k.  H o w e v er, t h e d at a us e d t o tr ai n t h e n et w or k is o bt ai n e d fr o m  M E S H F R E E’s

G F D M f or s ol vi n g t h e u n d erl yi n g  P D E.  B y tr ai ni n g t h e n et w or k  wit h t h es e n u m eri c all y-
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We s p e cif y t h e al g orit h m f or t h e c o nti n u u m  m e c h a ni cs pr o bl e m d es cri b e d i n S e cti o n

5. 2. 1 usi n g t h e b ar o d es y  m o d el.  T h e tr ai ni n g d at a is t h e p air µ i , − σ i
1 ,  wit h e a c h µ i ∈ R d µ

a n d − σ i
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is a v ail a bl e i n t h e p a p er fr o m t h e a ut h or at [ 2 9 9]

5. 4 N u m e ri c al  R e s ul t s
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7 5 % is us e d f or tr ai ni n g.  D uri n g tr ai ni n g, t h e r el ati v e L 2 - err or of t h e i n di vi d u al p ar a m et ers

is e v al u at e d a n d t h eir a v er a g e is t h e l oss f u n cti o n  mi ni mi z e d f or o pti mi zi n g t h e p ar a m et ers

of t h e n e ur al n et w or k.  H o w e v er, d u e t o t h e n at ur e of t his l oss f u n cti o n, t h e l e ar ni n g of

t h e p ar a m et ers of hi g h er  m a g nit u d e is f a v or e d d uri n g tr ai ni n g as c a n b e s e e n i n  Fi g ur e

5. 6 a.  We o bs er v e t h at t h e l oss f or p ar a m et ers c 4 , c5 , a n d c 6 (t h at ar e all of t h e or d er of
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(a) Individual parameters with unscaled parameters.

(b) Individual parameters with scaled parameters.

(c) Average loss, with scaled parameters.

Figure 5.6: Loss during training on both training and test data
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Figure 5.7: Comparison of ground truth (MESHFREE simulation in blue) and learned parameters
(PCA-NN in orange) for four randomly chosen examples of the oedometric test.

1000) is minimized, while for the other parameters (that are of the order of 1) the loss is
almost not minimized. As a remedy, the parameters of lower magnitude are scaled such
that they are of the same order (of 1000) as the parameters of higher magnitude. In this
way, learning of all individual parameters is achieved as shown in Figure 5.6b. Figure 5.6c
illustrates the overall loss as average of the individual losses.

We obtained an average relative L2-error of 2.63 × 10−3 on the test data set. Figure
5.7 shows the comparison of the ground truth (input to the MESHFREE simulation in
blue) and the learned parameters (PCA-NN in orange) for four randomly selected examples.
The learned parameters of these four examples were further used in a verification step in
order to compare the resulting MESHFREE output axial stress with that produced by
the ground truth parameters. The average relative error obtained was 4.12 × 10−3. This
is illustrated in Figure 5.8 (top), where there is an obvious overlap of the axial stresses
from the learned parameters with those from the ground truth parameters. Figure 5.8
(bottom) shows the corresponding relative L2-errors.
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Figure 5.8: Comparison of MESHFREE outputs using ground truth parameters and learned
parameters for four randomly chosen examples of the oedometric test (top) as well as corresponding
relative L2-errors.

5.5 Conclusions and Outlook

The presented results highlight the potential of deep learning in continuum mechanics,
specifically in material parameters identification for complex material models – a task
that up till now depends heavily on expert knowledge if not trial and error. By exploiting
deep learning methods, we obtain the model parameters from MESHFREE simulations.
It will be equally interesting to see how the results change when experimental data is
used instead of or in addition to simulation data.

The proposed method is an important first step since simulation and experimental results



93 93

are almost always noisy in real-life problems. An interesting future study will be to look at
the effect of different noise levels on the neural network’s strength in parameter identification.
This is a common practice in the field of inverse problems. For example, [244] studied the
effects of noise on both function-approximating networks and neural operators for PDEs.
There, the PCA-based method–when fed with noise–did not deviate so much from the
noiseless case for increasing noise level. This is also promising for our application problem.



Anyone who attempts to generate random numbers by
deterministic means is, of course, living in a state of sin.

— John von Neumann

6
Solving the Electrical Impedance

Tomography Inverse Problem

A famous PDE-based inverse problem–the Calderón problem–is studied in this chapter.
Both analytical methods and DL-based methods are used to solve this problem, and
insights are drawn thereof. It is based on the following article:

Derick Nganyu Tanyu, Jianfeng Ning, Andreas Hauptmann, Bangti Jin and Peter
Maass. “Electrical Impedance Tomography: A Fair Comparative Study on Deep
Learning and Analytic-based Approaches”. In: Manuscript submitted for publication
(Nov. 2023). Preprint to be made available on arXiv.

6.1 Introduction and motivation

This chapter investigates deep learning concepts for the continuous model of electrical
impedance tomography (EIT). EIT is one of the most intensively studied inverse problems,
and there already exists a very rich body of literature on various aspects [31, 305]. EIT
as an imaging modality is of considerable practical interest in noninvasive imaging and
non-destructive testing. For example, the reconstruction can be used for diagnostic purposes
in medical applications, e.g. monitoring of lung function, detection of cancer in the skin
and breast and location of epileptic foci [143]. Similarly, in geophysics, one uses electrodes
on the surface of the earth or in boreholes to locate resistivity anomalies, e.g. minerals or
contaminated sites, and it is known as geophysical resistivity tomography in the literature.

Since its first formulation by Calderón [41], the issue of image reconstruction has received
enormous attention, and many reconstruction algorithms have been proposed based on
regularised reconstructions, e.g., Sobolev smoothness, total variation and sparsity. Due
to the severe ill-posed nature of the inverse problem and the high degree of non-linearity

94
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of the forward model, the resolution of the obtained reconstructions has been modest
at best. Nonetheless, the last years have witnessed significant improvement in the EIT
reconstruction regarding resolution and speed. This impressive progress was primarily
driven by recent innovations in deep learning, especially deep neural network architectures,
high-quality paired training data, efficient training algorithms (e.g., Adam), and powerful
computing facilities, e.g., graphical processing units (GPUs).

This study aims to comprehensively and fairly compare deep learning techniques for
solving the EIT inverse problem. This study has several sources of motivation. First, the
classical, analytical setting of EIT is severely ill-posed, to such an extent that it allows only
rather sketchy reconstructions when employing classical regularisation schemes. Unless
one utilises additional a priori information, there is no way around the ill-posedness.
This has motivated the application of learning concepts in this context. Incorporating
additional information in the form of typical data sets and ground truth reconstructions
allows constructing an approximation of a data manifold specific to the task at hand. The
structures that distinguish these manifolds are typically hard to capture by explicit physical-
mathematical models. To some extent, TV- or sparsity-based Tikhonov functionals exploit
these features. However, learning the prior distribution from sufficiently large sets of training
data potentially offers much greater flexibility than these hand-crafted priors. Second, there
already exists a growing and rich body of literature on learned concepts for EIT; see, e.g.,
the recent survey [176] and Section 6.3 for a detailed description of the state of the art.
Nevertheless, most of these works focus on their own approaches, typically showing their
superiority compared to somewhat standard and basic analytical methods. In contrast, we
aim at a fair and more comprehensive comparison of different learned concepts and include
a comparison with two advanced analytical methods (i.e., D-bar and sparsity methods).

It is worth mentioning that inverse problems pose a particular challenge for learned
concepts due to their inherent instability. For example, directly adapting well-established
network architectures, which have been successfully applied to computer vision or imaging
problems, typically fail for inverse problems, e.g., medical image reconstruction tasks. Hence,
such learned concepts for inverse parameter identification problems are most interesting in
terms of developing an underlying theory and the performance on practical applications.
Indeed, the research on learned concepts for inverse problems has exploded over the past
years, see e.g. the review [10] and the references cited therein for a recent overview of
the state of the art. Arguably, the two most prominent fields of application for inverse
problems are PDE-based parameter identification problems and tasks in tomographic image
reconstruction. These fields actually overlap, e.g. when it comes to parameter identification
problems in PDE-based multi-physics models for imaging. The most common examples
in tomography are X-ray tomography (linear) and EIT (non-linear). Hence, one may also
regard this study as being prototypical of how deep learning concepts should be evaluated
in the context of non-linear PDE inverse problems.
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The rest of the chapter is organised as follows. In Section 6.2, we describe the continuum
model for EIT, and also two prominent analytic-based approaches for EIT reconstruction,
i.e., sparsity and D-bar method. Then, in Section 6.3, we describe four representative deep
learning-based approaches for EIT imaging. Finally, in Section 6.4, we present an extensive
array of experiments with a suite of performance metrics to shed insights into the relative
merits of the methods. We conclude with further discussions in Section 6.5.

6.2 Electrical impedance tomography

Mathematically speaking, the continuous EIT problem aims at determining a spatially-
varying electrical conductivity σ within a bounded domain Ω by using measurements
of the electrical potential on the boundary ∂Ω. The basic mathematical model for the
forward problem is the following elliptic PDE:

−div(σ∇u) = 0, in Ω, (6.1)

subject to a Neumann boundary condition σ ∂u
∂n = j on ∂Ω, which satisfies a compatibility

condition
∫

∂Ω jdS = 0. An EIT experiment consists of applying an electrical current j
on the boundary ∂Ω and measuring the resulting electrical potential φ = u|∂Ω on ∂Ω.
The Neumann to Dirichlet (NtD) operator Λσ,N : j 7→ φ maps a Neumann boundary
condition j to the Dirichlet data φ = u|∂Ω on ∂Ω.

In practice, several input currents are injected, and the induced electrical potentials
are measured; see [55, 163] for discussions on the choice of optimal input currents. This
data contains information about the underlying NtD map Λσ,N . The inverse problem is to
determine or at least to approximate the true unknown physical electrical conductivity σ†

from a partial knowledge of the map. This inverse problem was first formulated by Calderón
[41], who also gave a uniqueness result for the linearised problem. The mathematical theory
of uniqueness of the inverse problem with the full NtD map Λσ,N has received enormous
attention, and many profound theoretical results have been obtained. For an in-depth
overview of uniqueness results, we refer to the monograph [154] and survey [305].

6.2.1 Theoretical background

This section introduces the mathematical model of the EIT problem and the discrepancy
functional used for reconstructing the conductivity σ. Let Ω be an open-bounded domain
in d (d ≥ 2) with a Lipschitz boundary ∂Ω, and let Λσ,N denote the NtD map of
problem (6.1). We employ the usual Sobolev space for the Neumann boundary data
σ ∂u

∂n = j ∈ H̃− 1
2 (∂Ω), respectively Dirichlet boundary condition u = φ ∈ H̃

1
2 (∂Ω) on ∂Ω.

Throughout, we make use of the space H̃1(Ω), which is a subspace of the Sobolev space
H1(Ω) with vanishing mean on ∂Ω, i.e., H̃1(Ω) = {v ∈ H1(Ω) :

∫
∂Ω vds = 0}. The spaces

H̃
1
2 (∂Ω) and H̃− 1

2 (∂Ω) are defined similarly. These spaces are equipped with the usual
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norms. We normalise the solution of the Neumann problem by enforcing
∫

∂Ω uds = 0,
so that there exists a unique solution u ∈ H̃1(Ω). We denote the Dirichlet-to-Neumann
(DtN) map by Λσ,D. Then we have Λσ,N = Λ−1

σ,D, i.e., DtN and NtD maps are inverse to
each other. In usual regularised reconstruction, we employ the NtD map Λσ,N , whereas
in the D-bar method, we employ the DtN map Λσ,D.

An EIT experiment consists of applying a current j and measuring the resulting potential
φ on ∂Ω, and it is equivalent to solving a Neumann forward problem with the physical
conductivity σ†, i.e. φ = Λσ,Nj, on ∂Ω. In practice, the boundary potential measurements
are collected experimentally, and thus φ is only an element of the space L2(Γ). see e.g. [44].
Note that the continuum model is mostly academic. A more realistic model is the so-called
complete electrode model (CEM) for EIT [152, 286], which models contact impedances
and localised electrode geometries. The CEM is finite-dimensional by construction, leading
to different mathematical challenges and reconstruction methods.

The solvability, uniqueness and smoothness of the continuum model with respect to
Lp norms can be derived using Meyers’ gradient estimate [229], as in [270].

Theorem 6.2.1. Let Ω be a bounded Lipschitz domain in d (d ≥ 2). Assume that
σ ∈ L∞(Ω) satisfies λ < σ < λ−1 for some fixed λ ∈ (0, 1). For f ∈ (Lq(Ω))d and
h ∈ Lq(Ω), let u ∈ H1(Ω) be a weak solution of

−div(σ∇u) = −div(f) + h in Ω.

Then, there exists a constant Q ∈ (2,+∞) depending on λ and d only, Q → 2 as λ → 0
and Q → ∞ as λ → 1, such that for any 2 < q < Q, we obtain u ∈ W 1,q

loc (Ω) and for any
Ω1 ⊂⊂ Ω

‖u‖W 1,q(Ω1) ≤ C(‖u‖H1(Ω) + ‖f‖Lq(Ω) + ‖h‖Lq(Ω)),

where the constant C depends on λ, d, q, Ω1 and Ω.

In Theorem 6.2.1, the boundary condition for the problem can be general. Its effect
enters the W 1,q-estimate through the term ‖u‖H1(Ω). In addition, no regularity has been
assumed on σ. Generally, a precise estimate of the constant Q(λ, d) is missing, but in the
2D case, a fairly sharp estimate of Q(λ, d) was derived in [11].

6.2.2 Conventional EIT reconstruction algorithms

EIT suffers from a high degree of non-linearity and severe ill-posedness, as typical of
many PDE inverse problems with boundary data. However, its potential applications have
sparked much interest in designing effective numerical techniques for its efficient solution.
Numerous numerical methods have been proposed in the literature; see [31, Section 7]
for an overview (up to 2002). These methods can roughly be divided into two groups:
regularised reconstruction and direct methods. Below, we give a brief categorisation of
conventional reconstruction schemes.
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The methods in the first group are of variational type, i.e., based on minimising a
certain discrepancy functional. Commonly the discrepancy J is the standard least-squares
fitting, i.e., the squared L2(∂Ω) norm of the difference between the electrical potential
due to the applied current j and the measured potential φ:

J(σ) = 1
2‖Λσ,Nj − φδ‖2

L2(∂Ω),

for one single measurement (j, φδ). One early approach of this type is given in [56], which
applies one step of a Newton method with a constant conductivity as the initial guess.
Due to the severe ill-posedness of the problem, regularisation is beneficial for obtaining
reconstructions with improved resolution [82, 155, 278]. Commonly used penalties include
Sobolev smoothness [165, 227] for a smooth conductivity distribution, total variation
[141], Mumford-Shah functional [270], level set method [60] for recovering piecewise
constant conductivity, sparsity [100, 164, 166] for recovering small inclusions (relative
to the background). The combined functional is given by

Ψ(σ) = J(σ) + αR(σ),

where R(σ) denotes the penalty, and α > 0 is the penalty weight. The functional Ψ(σ)
is then minimised over the admissible set

A = {σ ∈ L∞(Ω) : λ ≤ σ ≤ λ−1 a.e. Ω},

for some λ ∈ (0, 1). The set A is usually equipped with an Lp(Ω) norm (1 ≤ p ≤ ∞). One
may also employ data fitting other than the standard L2(∂Ω)-norm. The most noteworthy
one is the Kohn-Vogelius approach, which lifts the boundary data to the domain Ω and
makes the fitting in Ω [32, 182, 317]; see also [179] for a variant of the Kohn-Vogelius
functional. In practice, the regularized formulations have to be properly discretized,
commonly done by means of finite element methods [99, 167, 168, 269], due to the spatially
variable conductivity and irregular domain geometry. Newton-type methods have also been
applied to EIT [199, 200]. Probabilistic formulations of these deterministic approaches are
also possible [28, 78, 98, 173], which can provide uncertainty estimates on the reconstruction.

The methods in the second group are of a more direct nature, aiming at extracting
relevant information from the given data directly, without going through the expensive
iterative process. Bruhl et al [37, 38] developed the factorisation method for EIT, which
provides a criterion for determining whether a point lies inside or outside the set of inclusions
by carefully analysing the spectral properties of certain operators. Thus, the inclusions can
be reconstructed directly by testing every point in the computational domain. The D-bar
method of Siltanen, Mueller and Isaacson [240, 283] is based on Nachman’s uniqueness proof
[242] and utilises the complex geometric solutions and nonphysical scattering transform for
direct image reconstruction. Chow, Ito and Zou [59] proposed the direct sampling method
when there are only very few Cauchy data pairs. The method employs dipole potential
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as the probing function and constructs an indicator function for imaging the inclusions in
EIT, and it is easy to implement and computationally cheap. Other notable methods in
the group include monotonicity method [131], enclosure method [153], Calderón’s method
[25, 281], and MUSIC [5, 6, 198] among others. Generally, direct methods are faster than
those based on variational regularisation, but the reconstructions are often inferior in
terms of resolution and can suffer from severe blurring.

These represent the most common model-based inversion techniques for EIT reconstruc-
tion. Despite these important progress and developments, the quality of images produced
by EIT remains modest when compared with other imaging modalities. In particular,
at present, EIT reconstruction algorithms are still unable to extract sufficiently useful
information from data to be an established routine procedure in many medical applications.
Moreover, the iterative schemes are generally time-consuming, especially for 3D problems.
One possible way of improving the quality of information is to develop an increased focus
on identifying useful information and fully exploiting a priori knowledge. This idea has
been applied many times, and the recent advent of deep learning significantly expanded
its horizon from hand-crafted regularisers to more complex and realistic learned schemes.
Indeed, recently, deep learning-based approaches have been developed to address these
challenges by drawing on knowledge encoded in the dataset or structural preference of
the neural network architecture.

We describe the sparsity approach and D-bar method next, and deep learning ap-
proaches in Section 6.3.

6.2.3 Sparsity-based method

The sparsity concept is very useful for modelling conductivity distributions with “simple”
descriptions away from the known background σ0, e.g. when σ consists of an uninteresting
background plus some small inclusions. Let δσ† = σ† − σ0. A “simple” description
means that δσ has a sparse representation with respect to a certain basis/frame/dictionary
{ψk}, i.e., there are only a few non-zero expansion coefficients. The `1 norm δσ can
promote the sparsity of δσ [67]

Ψ(σ) = J(σ) + α‖δσ‖`1 , with ‖δσ‖`1 =
∑

k

|〈δσ, ψk〉|. (6.2)

Under certain regularity conditions on {ψk}, the problem of minimising Ψ over the set
A is well-posed [165].

Optimisation problems with the `1 penalty have attracted intensive interest [30, 35,
67, 320]. The challenge lies in the non-smoothness of the `1-penalty and high-degree
nonlinearity of the discrepancy J(σ). The basic algorithm for updating the increment
δσi and σi = σ0 + δσi by minimising Ψ formally reads

δσi+1 = Ssα(δσi − sΛ′∗
σi,N (Λσi,Nj − φδ)),
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where s > 0 is the step size, Λ′
σi,N

denotes the Gâteaux derivative of the NtD map
Λσi,N in σ, and Sλ(t) = sign(t) max(|t| − λ, 0) is the soft shrinkage operator. However,
a direct application of the algorithm does not yield accurate results. We adopt the
procedure in Algorithm 8. The key tasks include computing the gradient J ′ (Steps 4-5)
and selecting the step size (Step 6).

Algorithm 8: Sparsity reconstruction for EIT.
Input: σ0 and α
Result: an approximate minimiser δσ

1 Set δσ0 = 0;
2 for i ← 1, . . . , I do
3 Compute σi = σ0 + δσi;
4 Compute the gradient J ′(σi);
5 Compute the H1

0 -gradient J ′
s(σi);

6 Determine the step size si;
7 Update inhomogeneity by δσi+1 = δσi − siJ

′
s(σi);

8 Threshold δσi+1 by Ssiα(δσi+1);
9 Check stopping criterion.

10 end

Gradient evaluation Evaluating the gradient J ′(σ) = −∇u(σ) · ∇p(σ) involves solving
an adjoint problem

−∇ · (σ∇p) = 0, in Ω, with σ
∂p

∂n
u(σ) − φδ on ∂Ω.

Note that Indeed, J ′(σ) is defined via duality mapping J ′(σ)[λ] = 〈J ′(σ), λ〉L2(Ω), and thus
J ′(σ) ∈ (L∞(Ω))′ may be not smooth enough. Instead, we take the H1

0 (Ω) metric for σ, by
defining J ′

s(σ) via J ′(σ)[λ] = 〈J ′
s(σ), λ〉H1

0 (Ω). Integration by parts yields −∆J ′
s(σ)+J ′

s(σ) =
J ′(σ) in Ω and J ′

s(σ) = 0 on ∂Ω. The assumption is that the inclusions are in the interior
of Ω. J ′

s is also known as Sobolev gradient [243] and is a smoothed version of the L2(Ω)-
gradient. It metrises the set A by the H1

0 (Ω)-norm, thereby implicitly restricting the
admissible conductivity to a smoother subset. Numerically, evaluating the gradient J ′

s(σ)
involves solving a Poisson problem and can be carried out efficiently. Using J ′

s, we can
locally approximate Ψ(σ) = Ψ(σ0 + δσ) by

Ψ(σ0 + δσ) − Ψ(σ0 + δσi) ∼ 〈δσ − δσi, J
′
s(σi)〉H1(Ω) + 1

2si
‖δσ − δσi‖2

H1(Ω) + α‖δσ‖`1 ,

which is equivalent to

1
2si

‖δσ − (δσi − siJ
′
s(σi))‖2

H1(Ω) + α‖δσ‖`1 . (6.3)

Upon identifying δσ with its expansion coefficients in {ψk}, the solution to problem
(6.3) is given by

δσi+1 = Ssiα(δσi − siJ
′
s(σi)),

This step zeros out small coefficients, thereby promoting the sparsity of δσ.
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Step size selection Usually, gradient-type algorithms suffer from slow convergence, e.g.,
steepest descent methods. One way to enhance its convergence is due to [17]. The idea
is to mimic the Hessian with sI over the most recent steps so that sI(δσi − δσi−1) ≈
J ′

s(σi) − J ′
s(σi−1) holds in a least-squares sense, i.e.,

si = arg min
s

‖s(δσi − δσi−1) − (J ′
s(σi) − J ′

s(σi−1))‖2
H1(Ω).

This gives rise to one popular Barzilai-Borwein rule
si = 〈δσi − δσi−1, J

′
s(σi) − J ′

s(σi−1)〉H1(Ω)/〈δσi − δσi−1, δσi − δσi−1〉H1(Ω) [17, 66]. In
practice, following [320], we choose the step length s to enforce a weak monotonicity

Ψ(σ0 + Ssα(δσi − sJ ′
s(σi))) ≤ max

i−M+1≤k≤i
Ψ(σk) − τ

s

2‖Ssα(δσi − sJ ′
s(σi)) − δσi‖2

H1(Ω),

where τ is a small number, and M ≥ 1 is an integer. One may use the step size by the
above rule as the initial guess at each inner iteration and then decrease it geometrically by
a factor q until the weak monotonicity is satisfied. The iteration is stopped when si falls
below a prespecified tolerance sstop or when the maximum iteration number I is reached.

The above description follows closely the work [166], where the sparsity algorithm was
first developed. There are alternative sparse reconstruction techniques, notably based on
total variation [33, 99, 270, 333]. For example, [33] presented an experimental (in-vivo)
evaluation of the total variation approach using a linearized model, and the resulting
optimisation problem solved by the primal-dual interior point method; and the work [333]
compared different optimisers. Due to the non-smoothness of the total variation, one
may relax the formulation with the Modica-Mortola function in the sense of Gamma
convergence [167, 270].

6.2.4 The D-bar method

The D-bar method of Siltanen, Mueller and Isaacson [283] is a direct reconstruction
algorithm based on the uniqueness proof due to Nachman [242]; see also Novikov [249].
That is, a reconstruction is directly obtained from the DtN map Λσ,D, without going through
an iterative process. Note that the DtN map Λσ,D can be computed as the inverse of the
measured NtD map Λσ,N when full boundary data is available. Below we briefly overview the
classic D-bar algorithm assuming σ ∈ C2(Ω), with a positive lower bound (i.e., σ ≥ c > 0
in Ω), and σ ≡ 1 in a neighbourhood of the boundary ∂Ω. In this part, we consider an
embedding of 2 in the complex plane, and hence we will identify planar points x = (x1, x2)
with the corresponding complex number x1 + ix2, and the product kx denotes complex
multiplication. For more detailed discussions, we refer interested readers to the survey [240].

First, we transform the conductivity equation (6.1) into a Schrödinger-type equation
by substituting ũ =

√
σu and setting q = ∆

√
σ/

√
σ and extending σ ≡ 1 outside Ω.

Then we obtain

(−∆ + q(x))ũ(x) = 0, in 2. (6.4)
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Next we introduce a class of special solutions of equation (6.4) due to Faddeev [84], the
so-called complex geometrical optics (CGO) solutions ψ(x, k), depending on a complex
parameter k ∈ \ {0} and x ∈ 2. These exponentially behaving functions are key
to the reconstruction. Specifically, given q ∈ Lp( 2), 1 < p < 2, the CGO solutions
ψ(x, k) are defined as solutions to

(−∆ + q(x))ψ(·, k) = 0, in 2,

satisfying the asymptotic condition e−ikxψ(x, k) − 1 ∈ W 1,p̃( 2) with 2 < p̃ < ∞. These
solutions are unique for k ∈ \ {0} as shown in [242, Theorem 1.1]. Then D-bar algorithm
recovers the conductivity σ from the knowledge of the CGO solutions µ(x, k) = e−ikxψ(x, k)
at the limit k → 0 [242, Section 3]

lim
k→0

µ(x, k) =
√
σ, x ∈ Ω.

Numerically, one can substitute the limit by k = 0 and evaluate µ(x, 0). The recon-
struction of σ relies on the use of an intermediate object called non-physical scattering
transform t, defined by

t(k) =
∫

2
ek(x)µ(x, k)q(x)dx,

with ek(x) := exp(i(kx + k̄x̄)), where over-bar denotes complex conjugate. Since µ is
asymptotically close to one, t(k) is similar to the Fourier transform of q(x). Meanwhile,
we can obtain µ by solving the name-giving D-bar equation

∂̄kµ(x, k) = 1
4πk̄

t(k)e−k(x)µ(x, k), k 6= 0, (6.5)

where ∂̄k = 1
2( ∂

∂k1
+ i ∂

∂k2
) is known as the D-bar operator. To solve the above equation,

scattering transform t(k) is required, which we can not measure directly from the experiment,
but t(k) can be represented using the DtN map. Indeed, using Alessandrini’s identity
[4], we get the boundary integral

t(k) =
∫

∂Ω
eik̄x̄(Λσ,D − Λ1,D)ψ(x, k)ds.

Note that Λ1,D can be analytically computed, and only Λσ,D needs to be obtained from
the measurements. Here, we will employ a Born approximation using ψ ≈ eikx, leading
to the linearised approximation

texp(k) ≈
∫

∂Ω
eik̄x̄(Λσ,D − Λ1,D)eikxds. (6.6)

This linearised D-bar algorithm can be efficiently implemented. First, one computes
the texp(k) from the measured DtN map Λσ,D, and then one solves the D-bar equation
(6.5). Note that the solutions of (6.5) are independent for each x ∈ Ω and one can
efficiently parallelise over x. This leads to real-time implementations and is especially
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relevant for time-critical applications, e.g., monitoring purposes. The fully nonlinear D-bar
algorithm would require first computing ψ by solving a boundary integral equation and
then computing the scattering transform t(k).

The above algorithm assumes infinite precision and noise-free data. When the data is
noise corrupted with finite measurements, the measured DtN map Λσ,D is not accurate,
and then the computation of t(k) becomes exponentially unstable for |k| > R. Thus, for
practical data, we need to restrict the computations to a certain frequency range so as
to stably compute t(k). Below we choose R = 5 for noise-free data and R = 4.5, R = 4
for 1% and 5% noisy measurements, respectively. This strategy of reducing the cut-off
radius for noisy measurements is shown to be a regularisation strategy [180]. The final
algorithm can be summarised as outlined below in Algorithm 9.

Algorithm 9: D-bar algorithm using texp

Input: Λσ,D and R
Result: Regularised reconstruction of σ

1 Compute analytic Λ1,D;
2 Evaluate texp(k) for |k| < R by (6.6);
3 Solve the D-bar equation (6.5);
4 Obtain σ(x) = µ(x, 0)2 for x ∈ Ω;

Besides the D-bar method, there are other analytic and direct reconstruction methods
available, e.g., enclosure method [153], monotonicity method [131], direct sampling method
[59], and Calderón’s method [25, 281]. The common advantage of these approaches is
their computational efficiency, but unfortunately, also the directly inherited exponential
instability to noise. While there are strategies to deal with noise, e.g., reducing the cut-
off radius, the reconstruction quality does suffer: the reconstructions tend to be overall
smooth. Additionally, there may be theoretical limitations to the reconstructions that can
be obtained. For example, for the classic D-bar algorithm, it is C2 conductivities, and for
the enclosure methods, we can only find the convex hull of all inclusions. Thus, it is very
interesting to discuss how deep learning can help overcome these limitations.

6.3 Deep learning-based methods

The integration of deep learning techniques has significantly advanced EIT reconstruction.
It has successfully addressed several challenges posed by the non-linearity and severe
ill-posedness of the inverse problem, leading to improved quality and reconstruction
accuracy. Researchers have achieved breakthroughs in noise reduction, edge retention, and
spatial resolution, making EIT a more viable imaging modality in medical and industrial
applications. This success is mainly attributed to the extraordinary approximation ability
of DNNs and the use of a large amount of paired training datasets.

First, much effort has been put into designing DNNs architectures for directly learning
the maps from the measured voltages U to conductivity distributions σ, i.e., training a
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DNN Gθ such that σ ≈ Gθ(U). Li et al. [209] proposed a four-layer DNN framework
constituted of a stacked autoencoder and a logistic regression layer for EIT problems. Tan
et al. [297] designed the network based on LeNet convolutional layers and refined it using
pooling layers and dropout layers. Chen et al. [52] introduce a novel DNN using a fully
connected layer to transform the measurement data to the image domain before a U-Net
architecture, and [323] a DenseNet with multiscale convolution. Fan and Ying [85] proposed
DNNs with compact architectures for the forward and inverse problems in 2D and 3D,
exploiting the low-rank property of the EIT problem. Huang et al. [148] first reconstruct
an initial guess using RBF networks, which is then fed into a U-Net for further refinement.
[279], uses a variational autoencoder to obtain a low-dimensional representation of images,
which is then mapped to a low dimension of the measured voltages as well. We refer to
[51, 208, 264, 321] for more direct learning methods.

Second, combining traditional analytic-based methods and neural networks is also a
popular idea. Abstractly, one employs an analytic operator R and a neural network Gθ

such that σ ≈ Gθ(R(U)). One example is the Deep D-bar method [128]. It first generates
EIT images by the D-bar method, then employs the U-Net network to refine the initial
images further. Along this line, one can design the input of the DNN from Calderón’s
method [43, 293], domain-current method [314], one-step Gauss-Newton algorithm [228]
and conjugate gradient algorithm [331]. Inspired by the mathematical relationship between
the Cauchy difference index functions in the direct sampling method, Guo and Jiang [117]
proposed the DDSM proposed in [117] employs the Cauchy difference functions as the
DNN input. Yet another popular class of deep learning-based methods that combines
model-based approaches with learned components is based on the idea of unrolling, which
replaces components of a classical iterative reconstructive method with a neural network
learned from paired training data (see [236] for an overview). Chen et al. [50] proposed a
multiple measurement vector (MMV) model-based learning algorithm (called MMV-Net)
for recovering the frequency-dependent conductivity in multi-frequency electrical impedance
tomography (mfEIT). It unfolds the update steps of the alternating direction method of
multipliers for the MMV problem. The authors validated the approach on the Edinburgh
mfEIT Dataset and a series of comprehensive experiments. See also [49] for a mask-guided
spatial–temporal graph neural network (M-STGNN) to reconstruct mfEIT images in cell
culture imaging. Unrolling approaches based on the Gauss-Newton have also been proposed,
where an iterative updating network is learned for the explicitly computed Gauss-Newton
updates [138] or a proximal type operator [62]. Likewise, a quasi-Newton method has been
proposed by learning an updated singular value decomposition [285].

Reconstruction methods in these two groups are supervised in nature and rely heavily
on high-quality training data. Even though there are a few public EIT datasets, they are
insufficient to train DNNs (often with many parameters). In practice, the DNN is learned
on synthetic data, simulated with phantoms via, e.g., FEM. The main advantage is that
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once the neural network is trained, at the inference stage, the process requires only feeding
through the trained neural network and thus can be done very efficiently. Generally, these
approaches perform well when the test data is close to the distribution of the training data.
Still, their performance may degrade significantly when the test data deviates from the
setting of the training data [7]. This lack of robustness with respect to the out-of-distribution
test data represents one outstanding challenge with all the above approaches.

Third, several unsupervised learning methods have been proposed for EIT reconstruction.
Bar et al. [15] employ DNNs to approximate voltage functions {uj}J

j=1 and conductivity
σ and then train them together to satisfy the strong PDE conditions and the boundary
conditions, following the physics-informed neural networks (PINNs) [261]. Furthermore,
data-driven energy-based models are imparted onto the approach to improve the convergence
rate and robustness for EIT reconstruction [256]. Bao et al. [14] exploited the weak
formulation of the EIT problem, using DNNs to parameterise the solutions and test
functions and adopting a minimax formulation to alternatively update the DNN parameters
(to find an approximate solution of the EIT problem). Liu et al. [218] applied the deep
image prior (DIP) [306], a novel DNN-based approach to regularise inverse problems, to
EIT, and optimised the conductivity function by back-propagation and the finite element
solver. Generally, the methods in this group are robust with respect to the distributional
shift of the test data. However, each new test data requires fresh training, and hence,
they tend to be computationally more expensive.

In addition, several neural operators, e.g., [211, 223, 302], have been designed to
approximate mostly forward operators. The recent survey [244] discusses various extensions
of these neural operators for solving inverse problems by reversed input-output and studied
Tikhonov regularisation with a trained forward model.

6.3.1 Deep D-bar

In practice, reconstructions obtained with the D-bar method suffer from a smoothing
effect due to truncation in the scattering transform, which is necessary for finite and
noisy data but leaves out all high-frequency information in the data. Thus, we cannot
reconstruct sharp edges, and subsequent processing is beneficial. An early approach to
overcome the smoothing is to use a nonlinear diffusion process to sharpen edges [129].
In recent years, deep learning has been highly successful for post-processing insufficient
noise or artefact-corrupted reconstruction [169].

In the context of the deep D-bar method, we are given an initial analytic reconstruction
operator Rd-bar that maps the measurements (i.e., the DtN map Λσ,D for EIT) to an initial
image, which suffers from various artefacts, primarily over-smoothing. Then a U-Net Gθ [271]
is trained to improve the reconstruction quality of the initial reconstructions, and we refer to
the original publication [128] for details on the architecture. Thus, we could write this process
as σ ≈ Gθ(Rd-bar(Λσ,D)), where the network Gθ is trained by minimising the `2-loss of D-bar
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reconstructions to ground-truth images. Specifically, given a collection of N paired training
data {(σ†

i ,Λδ
σ†

i ,D
)}N

i=1 (i.e., ground-truth conductivity σ†
i and the corresponding noisy

measurement data Λδ
σ†

i ,D
), we train a DNN Gθ by minimising the following empirical loss

L(θ) = 1
N

N∑
i=1

‖σ†
i − Gθ(Rd-bar(Λδ

σ†
i ,D

))‖2
L2(Ω),

This can be viewed as a specialised denoising scheme to remove the artefacts in the initial
reconstruction Rd-bar(Λδ

σ†
i ,D

) by the D-bar reconstructor Rd-bar. The loss L(θ) is then
minimised with respect to the DNN parameters θ, typically by the Adam algorithm [177],
a very popular variant of stochastic gradient descent. Once a minimiser θ∗ of the loss
L(θ) is found, given a new test measurement Λδ

σ,D, we can obtain the reconstruction
Gθ∗(Rd-bar(Λδ

σ,D)). Thus at the testing stage, the method requires only additional feeding of
the initial reconstruction Rd-bar(Λδ

σ,D) through the network Gθ∗ , which is computationally
very efficient. This presents one distinct advantage of a supervisedly learned map.

Several extensions have been proposed. Firstly, the need to model boundary shapes in
the training data can be eliminated by using the Beltrami approach [12] instead of the classic
D-bar method. This allows for domain-independent training [127]. A similar motivation
is given by replacing the classic U-net that operates on rectangular pixel domains with a
graph convolutional version; this way learned filters are domain and shape-independent [136,
138]. Similarly, the reconstruction from Calderón’s method [25, 281] can be post-processed
using U-net, leading to the deep Calderón’s method [43]. Distinctly, the deep Calderón’s
method is capable of directly recovering complex valued conductivity distributions. Finally,
even the enclosure method can be improved by predicting the convex hull from values
of the involved indicator function [282].

6.3.2 Deep direct sampling method

The deep sampling method (DDSM) [117] is based on the direct sampling method (DSM)
due to Chow, Ito and Zou [59]. Using only one single Cauchy data pair on the boundary
∂Ω, The DSM constructs a family of probing functions {ηx,dx}x∈Ω,dx∈ n ⊂ H2γ(∂Ω) such
that the index function defined by

I(x, dx) := 〈ηx,dx , u− uσ0〉γ,∂Ω

‖u− uσ0‖L2(∂Ω)|ηx,dx |Y
, x ∈ Ω, (6.7)

takes large values for points near the inclusions and relatively small values for points
far away from the inclusions, where | · |Y denotes the H2γ(∂Ω) seminorm in and the
duality product 〈f, g〉γ,∂Ω is defined by

〈f, g〉γ,∂Ω =
∫

∂Ω
(−∆∂Ω)γfgds = 〈(−∆∂Ω)γf, g〉L2(∂Ω), (6.8)
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where −∆∂Ω denotes the Laplace-Beltrami operator, and (−∆∂Ω)γ its fractional power via
spectral calculus. Let the Cauchy difference function ϕ be defined by

−∆ϕ = 0 in Ω, ∂ϕ

∂n
= (−∆∂Ω)γ(uσ − uσ0) on ∂Ω,

∫
∂Ω
ϕds = 0. (6.9)

Then the index function I(x, dx) can be equivalently rewritten as

I(x, dx) := dx · ∇ϕ(x)
‖uσ − uσ0‖L2(∂Ω)|ηx,dx |Y

, x ∈ Ω, (6.10)

Motivated by the relation between the index function I(x, dx) and the Cauchy difference
function ϕ and to fully make use of multiple pairs of measured Cauchy data, Guo and
Jiang [117] proposed the DDSM, employing DNNs to learn the relationship between
the Cauchy difference functions ϕ and the true inclusion distribution. That is, DSSM
construct and train a DNN Gθ such that

σ ≈ Gθ(ϕ1, ϕ2, ..., ϕN ), (6.11)

where {ϕi}N
i=1 correspond to N pairs of Cauchy data {g`,Λσ,Ng`}N

`=1. Guo and Jiang [117]
employed a CNN-based U-Net network for DDSM, and later [116] designed a U-integral
transformer architecture (including comparison with state-of-the-art DNN architectures,
e.g., Fourier neural operator, and U-Net). In our numerical experiments, we choose the
U-Net as the network architecture for DDSM as we observe that U-Net can achieve better
results than the U-integral transformer for resolution 64 × 64. For higher resolution cases,
the U-integral transformer seems to be a better choice due to its more robust ability
to capture long-distance information. The following result [117, Theorem 4.1] provides
some mathematical foundation of DDSM.

Theorem 6.3.1. Let {g`}∞
`=1 be a fixed orthonormal basis of H−1/2(∂Ω). Given an arbitrary

σ such that σ > σ0 or σ < σ0, let {g`,Λσ,Ng`}∞
`=1 be the Cauchy data pairs and let {ϕ`}∞

`=1 be
the corresponding Cauchy difference functions with γ = σ0. Then the inclusion distribution
σ can be purely determined from {ϕ`}∞

`=1.

The idea of DDSM was extended to diffusive optical tomography in [118]. Ning et
al. [246] employ the index functions obtained from the DSM as the input of the DNN
for solving inverse obstacle scattering problems.

6.3.3 CNN based on LeNet

Li et al. [209] proposed using CNN to directly learn the map from the measured data and
the conductivity distribution. The employed network architecture is based on LeNet and
refined by applying dropout layer and moving average. The CNN architecture used in the
numerical experiments below is shown in Fig. 6.1. Since the number of injected currents
and the discretisation size differ from that in [209], we modify the input size, network depth,
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kernel size, etc. The input size is 32 × 64. The kernel size is 5 × 5 with zero-padding
max pooling rather than average pooling is adopted to gain better performance. The
sigmoid activation function used in LeNet causes a serious saturation phenomenon, which
can lead to vanishing gradients. So, ReLU is chosen as the activation function below. A
dropout layer is added to improve the generalisation ability of this model. One-half of the
neurons before the first fully connected layers are randomly discarded from the network
during the training process. It can reduce the complex co-adaptation among neurons so
that the network can learn more robust features. In addition, a dropout layer has been
proven to be very effective in training large datasets.

Figure 6.1: The architecture of CNN-based on LeNet.

6.3.4 FC-UNet

Chen et al. [52] proposed a novel deep learning architecture by adding a fully connected
layer before the U-Net structure. The input of the network is given by the difference
voltage uδ

σ − uσ0 . Inspired by a linearized approximation of the EIT problem for a small
perturbation of conductivity distribution σ − σ0:

uδ
σ − uσ0 ≈ J(σ − σ0), (6.12)

where J donates the sensitivity matrix, the method first generates an initial guess of the
conductivity distribution σ from the linear fully connected(FC) layer followed by a ReLU
layer and then feeds it to a denoising U-Net model to learn the nonlinear relationship
further. Thus we could write this process as σ ≈ Gθ(uδ

σ − uσ0) = Gθ2(Gθ1(uδ
σ − uσ0)) with

Gθ1 = FC+ReLU and Gθ2 = U-Net. The authors also proposed an initialisation strategy
to further help obtain the initial guess, i.e., the weights θ1 of the fully connected layer
are initialised with the least-squares solution using training data. The weights θ2 for
the U-Net are initialised randomly as usual. Then, all weights θ = θ1 ∪ θ2 are updated
during the training process. According to the numerical results shown in [52], this special
weight initialization strategy can reduce the training time and improve the reconstruction
quality. With a trained network, different from the deep D-bar and DDSM methods, the
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methods FC-UNet and CNN based on LeNet only involve a forward pass of the trained
network for each testing example.

Based on our numerical experience, dropping the ReLU layer following the fully
connected layer can provide better reconstruction results, at least for the examples in
section 6.4. Thus, for the numerical experiments, we employ the FC-UNet network as
shown in Fig. 6.2, in which only a linear fully connected layer is employed before the U-Net.

In addition, by employing the FC-UNet to extract structure distribution and a standard
CNN to extract conductivity values, a structure-aware dual-branch network was designed
in [51] to solve EIT problems.

Figure 6.2: The architecture of FC-UNet.

6.4 Numerical experiments and results

The core of this work is the extensive numerical experiments. Now, we describe how to
generate the dataset used in the experiments, highlighting its peculiarity and relevance
in real-world scenarios, and also the performance metrics used for comparing different
methods. Last, we present and discuss the experimental results.

6.4.1 Dataset generation and characteristics

Generating simulated data consists of three main parts, which we describe below. The codes
for data generation are available at https://github.com/dericknganyu/EIT_dataset_
generation.

In the 2D setting, we generate N circular phantoms {Pi_i = 1N , all restricted to
the unit circle centred at the origin, i.e., Ω = {(x, y) : x2 + y2 ≤ 1} in the Cartesian
coordinates or {(r, θ) : r ≤ 1, θ ∈ [0, 2π]} in polar coordinates. The phantoms are generated
randomly. Firstly, we decide on the maximum number M ∈ of inclusions. Each phantom
would then contain n inclusions, where n ∈ U{1, . . . ,M}, the uniform distribution over
the set [1, . . . ,M ]. To mimic realistic scenarios in medical imaging, the inclusions are

https://github.com/dericknganyu/EIT_dataset_generation
https://github.com/dericknganyu/EIT_dataset_generation
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elliptical and are sampled such that when n > 1, the inclusions do not overlap. Since the
inclusions are elliptical, each inclusion, (Ej)n

j=1 is characterised by a centre Cj = (hj , kj),
an angle of rotation αj , a major and minor axis aj and bj respectively. The parametric
equation of an ellipse Ej is thus given by

Ej =
{

(x, y) :
(
x
y

)
=
(
hj + aj cos θ cosαj − bj sin θ sinαj

kj + aj cos θ sinαj + bj sin θ cosαj

)
, θ ∈ [0, 2π]

}
. (6.13)

To mimic realistic scenarios in medical imaging, the inclusions are sampled to avoid contact
with the boundary ∂Ω of the domain Ω. For an inclusion Ej , we have x2 + y2 < 0.9
for any (x, y) ∈ Ej . In this way, all phantoms have inclusions contained within Ω. We
illustrate this in Algorithm 10.

Each phantom Pi, i ∈ {1, 2, . . . , N}, has (Ej)n
j=1 inclusions, with n ∈ U{1, . . . ,M}. For

each Ej , we assign a conductivity σi
j ∈ Σj := U(0.2, 0.8) ∪ U(1.2, 2.0). The background

conductivity is set to 1. In this way, given a point (x, y) ∈ Pi in the domain/phantom,
the conductivity σi(x, y) at that point is therefore given by

σi(x, y) =
{
σi

j ∈ Σj , if (x, y) ∈ Ej , j = 1, . . . , n
1, otherwise.

(6.14)

Fig. 6.3b shows an example of a phantom generated in this way.
Next, for any simulated σ, we solve the forward problem (6.1) using the Galerkin finite

element method (FEM) [99, 199], for the injected currents g1 and g2 in (6.15) around
the boundary ∂Ω. The points (x, y) ∈ Pi are thus nodes in the finite element mesh
shown in Fig. 6.3a

g1 = π−1/2 sin(nθ) and g2 = π−1/2 cos(nθ), n = 1, 2, . . . , 16 (6.15)

We use the MATLAB PDE toolbox in the numerical experiment to solve the forward prob-
lem.

In real-life situations, the conductivities of the inclusions are rarely constant. Indeed,
usually, there are textures on internal organs in medical applications. Motivated by this, we
take a step further in generating phantoms, with inclusions having variable conductivities.
This introduces a novel challenge to the EIT problem, and we seek to study its impact on
different reconstruction algorithms. The procedure to generate simulated data remains
unchanged. However, σi

j in equation (6.14) becomes

σi
j = s ◦ f ◦Rαj ,Cj ,

where f : 2 3 (x, y) 7→ 1
2 (sin kxx+ sin kyy) ∈ [−1, 1], Rαj ,Cj is the rotation of centre

Cj = (hj , kj) and angle αj , with respect to the centre and angle of the ellipse Ej respectively;
and s applies a scaling so that the resulting σi

j is either within the range [0.2, 0.8] or
[1.2, 2.0]. Fig. 6.3c shows an example phantom.
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Algorithm 10: Procedure for generating phantoms
Input:

• nodes (x`, y`), ` ∈ {1, 2, . . . , L} from FEM mesh
• N ∈ , number of phantoms
• M ∈ , maximum number of inclusions

Result:
• Phantoms Pi, with conductivity σi, i ∈ {1, 2, . . . , n}

1 select n ∈ U{1, M};
2 for i ← 1, . . . , N do
3 for j ← 1, . . . , n do

/* Sample inclusions and conductivity */
4 Sample Ej , non-overlapping ellipses based on (6.13), within the circle of radius 0.9;
5 Sample σi

j ∈ U(0.2, 0.8) ∪ U(1.2, 2.0);
6 end
7 for `← 1, . . . , L do

/* Evaluate conductivity on mesh nodes */
8 Evaluate σi(x`, y`) based on (6.14) ;
9 end

10 end

(a) Forward solver FEM mesh. (b) Constant σi
j

∣∣3
j=1 inclusions. (c) Textured σi

j

∣∣3
j=1 inclusions.

Figure 6.3: Illustrating of Phantom characteristics used in simulated data.

We also study the performance of the methods in noisy scenarios, i.e. reconstructing
the conductivity from noisy measurements. The resulting solution to the forward problem
u, on the boundary ∂Ω, is then perturbed with normally distributed random noise of
different levels δ:

uδ(x) = u(x) + δ · |u(x)| · ξ(x), x ∈ ∂Ω,

where ξ(x) follows the standard normal distribution N (0, 1).
For the deep learning methods, we employ 20,000 training data and 100 validation

data without noises added. Then we compare the results for 100 testing data with
different noise levels.

We employ several performance metrics commonly used in the literature to compare
different reconstruction methods comprehensively. Table 6.1 outlines these metrics with
their mathematical expressions and specifications. In Table 6.1, σ denotes the ground
truth with mean µσ and variance s2

σ, while σ̂ the predicted conductivity with mean µσ̂

and variance s2
σ̂. σ̂i is the i-th element of σ̂ while σi is the i-th element of σ. N is the

total number of pixels, so that σ = (σi)N
i=1 and σ̂ = (σ̂i)N

i=1.
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Error Metric Mathematical Expression Highlights

Relative Image
Error (RIE)

‖σ̂ − σ‖
‖σ‖

=

N∑
i=1

|σ̂i − σ|

N∑
i=1

|σi|

Evaluates the relative error between the
true value and prediction [52].

Image
Correlation

Coefficient (ICC)

N∑
i=1

(σ̂i − µσ̂) (σi − µσ)√
N∑

i=1

(σ̂i − µσ̂)2

√
N∑

i=1

(σi − µσ)2

Measures the similarity between the true
value and prediction[52, 323].

Dice Coefficient
(DC)

2|X ∩ Y |
|X| + |Y |

Tests the accuracy of the results. It
provides a ratio of pixels correctly pre-
dicted to the total number of pixels—the
closer to 1, the better [116]. For our
experiments, we round the pixel values
to 2 decimal places before evaluation.

Relative L2

Error (RLE)
‖σ̂ − σ‖2

‖σ‖2
=

(
N∑

i=1

|σ̂i − σ|2

)1/2

(
N∑

i=1

|σi|2

)1/2

Measures the relative difference between
the truth and the prediction. The closer
to 0, the better. [116, 323]

Root Mean
Squared Error

(RMSE)

√
1
N

N∑
i=1

(σi − σ̂i)2
Evaluates the average magnitude of the
differences between the truth and the
prediction. [323]

Mean Absolute
Error (MAE)

1
N

N∑
i=1

|σi − σ̂i|
Evaluates the average magnitude of the
differences between the truth and the
prediction[323]

Table 6.1: Description of various performance metrics.

6.4.2 Results and discussions

Tables 6.2 and 6.3 present quantitative values for the performance metrics of various EIT
reconstruction methods, in the presence of different noise levels, δ = 0%, δ = 1% and,
δ = 5%. The considered performance metrics are described in Table 6.1. Understanding
the results requires considering the behaviour of these metrics: For RIE, RMSE, MAE, and
RLE, lower values indicate better performance and the objective is to minimise them; for
DC and ICC, values closer to 1 indicate better performance, and the goal is to maximise
them. Below, we examine the results in each table more closely.

Piece-wise constant conductivities

In the noiseless scenario as depicted in Table 6.2a, FC-UNet shows the best performance
across all metrics, with notably low RIE, RMSE, MAE, and RLE. It also achieves a high
DC and ICC, indicating robustness and accuracy in image reconstruction. The DDSM
also performs well, particularly regarding RIE, RMSE, MAE, and RLE. The Deep D-
bar method exhibits competitive results, although slightly inferior to FC-UNet. Both
Sparsity and D-bar methods show weaker performance compared to the deep learning-
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RIE ICC DC RMSE MAE RLE

Sparsity 0.03844 0.02159 0.79134 0.09989 0.10360 0.03904
D-bar 0.09784 0.01486 0.08581 0.15515 0.16123 0.09928

Deep D-bar 0.03677 0.02627 0.45121 0.09957 0.10269 0.03721
DDSM 0.03450 0.02690 0.48590 0.08793 0.09075 0.03494

FC-UNet 0.01863 0.02954 0.76004 0.06405 0.06615 0.01890
CNN LeNet 0.04951 0.02509 0.18129 0.08579 0.08856 0.05011

(a) δ = 0%

RIE ICC DC RMSE MAE RLE

Sparsity 0.03835 0.02162 0.79263 0.09982 0.10353 0.03894
D-bar 0.08756 0.01429 0.08125 0.14254 0.14798 0.08889

Deep D-bar 0.02738 0.02762 0.75264 0.08477 0.08751 0.02774
DDSM 0.03581 0.02705 0.46511 0.09047 0.09342 0.03630

FC-UNet 0.02159 0.02929 0.72974 0.07170 0.07409 0.02194
CNN LeNet 0.05905 0.02499 0.15198 0.09884 0.10215 0.05988

(b) δ = 1%

RIE ICC DC RMSE MAE RLE

Sparsity 0.03952 0.02159 0.78729 0.10272 0.10658 0.04015
D-bar 0.08585 0.01349 0.06841 0.13870 0.14377 0.08713

Deep D-bar 0.05563 0.02272 0.51711 0.13523 0.13954 0.05648
DDSM 0.04833 0.02412 0.38292 0.11310 0.11704 0.04917

FC-UNet 0.04332 0.02672 0.28293 0.11519 0.11923 0.04415
CNN LeNet 0.13901 0.02312 0.04568 0.21138 0.21876 0.14155

(c) δ = 5%

Table 6.2: The performance of various methods trained and tested with piece-wise constant data
at different noise levels. The neural networks used were trained with noiseless measurements for
the deep learning-based methods.

based methods. The CNN-LeNet method generally has the worst performance metrics,
indicating less accurate image reconstruction.

Under increased noise of δ = 1%, the relative performance of the methods remains
consistent, with FC-UNet still demonstrating strong performance. Also, the Deep D-
bar performs exceptionally well in this case, particularly in terms of RIE, RMSE, MAE,
and RLE. The DDSM also exhibits robust performance under this noise level, while the
CNN LeNet method continues to have the highest values for most metrics, indicating
challenges in handling noise. In contrast, the analytic-based methods of Sparsity and
D-bar show particular robustness to the added noise, evidenced by the unnoticeable
change in the performance metrics.

At a higher noise level δ = 5%, the inverse problem becomes more challenging due to
the severe ill-posed nature; and in the learned context, since the neural networks are trained
on noiseless data, which differ markedly from the noisy data, the setting may be viewed
as an out-of-distribution robustness test. Here, the sparsity method comes on top across
most metrics, having almost maintained constant performance. However, the FC-UNet
continues to maintain the best performance in terms of ICC, emphasising its robustness in
noisy conditions. Deep D-bar and DDSM display competitive results, indicating resilience
to increased noise. The D-bar methods exhibit slightly weaker performance, especially in
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(a) Sample 1. (b) Sample 2.

Figure 6.4: Effects of noise on two piecewise constant samples by various reconstruction methods.

terms of RIE, RMSE, and MAE. In contrast, the CNN LeNet method continues to have
the highest values for most metrics, suggesting difficulty in coping with substantial noise.

Overall, these results illustrate the varying performance of different EIT methods
under different noise levels. The deep learning-based methods, particularly FC-UNet,
exhibit good performance across low noise levels. In contrast, the sparsity method shows
proof of consistent robustness across higher noise levels, indicating their effectiveness in
reconstructing EIT images, even in the presence of noise. Visual results across all the
noise levels are shown for two test samples in Figure 6.4.

Textured inclusions scenario

In the noiseless scenario depicted in Table 6.3a, The best-performing method based on
RIE, ICC, RMSE, MAE, and RLE is FC-UNet, with the best values across these metrics.
The sparsity method and DDSM also perform well, being the first runners-up in these
metrics, particularly for DC; the sparsity method achieves the highest values, indicating
good performance, with DDSM as the first runner-up. The worst-performing method
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RIE ICC DC RMSE MAE RLE

Sparsity 0.03869 0.01968 0.79695 0.10473 0.10864 0.03949
D-bar 0.08856 0.01473 0.09956 0.14597 0.15257 0.09063

Deep D-bar 0.03677 0.02627 0.45121 0.09957 0.10269 0.03721
DDSM 0.03559 0.02360 0.42812 0.08930 0.09282 0.03641

FC-UNet 0.02781 0.02639 0.45464 0.07379 0.07679 0.02850
CNN LeNet 0.04930 0.02308 0.18749 0.09010 0.09357 0.05034

(a) δ = 0%

RIE ICC DC RMSE MAE RLE

Sparsity 0.03871 0.01961 0.79497 0.10455 0.10846 0.03951
D-bar 0.07982 0.01381 0.09294 0.13634 0.14231 0.08168

Deep D-bar 0.02738 0.02762 0.75264 0.08477 0.08751 0.02774
DDSM 0.03663 0.02325 0.43803 0.09261 0.09626 0.03750

FC-UNet 0.02980 0.02592 0.42355 0.07957 0.08280 0.03055
CNN LeNet 0.06301 0.02253 0.12531 0.10709 0.11112 0.06426

(b) δ = 1%

RIE ICC DC RMSE MAE RLE

Sparsity 0.03975 0.01961 0.79157 0.10766 0.11177 0.04061
D-bar 0.08015 0.01265 0.07503 0.13590 0.14161 0.08193

Deep D-bar 0.05563 0.02272 0.51711 0.13523 0.13954 0.05648
DDSM 0.04775 0.02091 0.38445 0.11451 0.11883 0.04882

FC-UNet 0.05195 0.02269 0.28514 0.12528 0.12999 0.05312
CNN LeNet 0.17301 0.01907 0.03654 0.25557 0.26481 0.17637

(c) δ = 5%

Table 6.3: The performance of various methods trained and tested with textured data at different
noise levels. The neural networks used were trained with noiseless measurements for the deep
learning-based methods.

across all metrics in this scenario is "D-bar." With a bit of noise of 1% added, the Deep
D-bar surprisingly stands out as the best-performing for most of the considered metrics.
The FC-UNet closely follows it. The sparsity-based method continues to lead in DC.
Like the noiseless scenario, D-bar remains one of the less effective methods across all
metrics. This is depicted in Table 6.3b.

For higher noise levels in Table 6.3c, the sparsity-based methods once again excel in
all metrics but for the ICC, making it the best-performing method. The DDSM and
FC-UNet closely follow in most of these metrics, while the Deep D-bar continues to perform
best in ICC. The CNN LeNet consistently performs the poorest across all metrics and
noise levels, especially in this high-noise scenario.

In summary, the best-performing method varies depending on the specific performance
metric and noise level. Sparsity consistently demonstrates robust performance in both
noiseless and noisy scenarios, while the D-bar is generally less effective. However, in terms of
computational expense, the sparsity method is more expensive. The Deep D-bar, FC-UNet,
and DDSM often serve as strong contenders, shifting their rankings across noise scenarios
and metrics. Meanwhile, CNN LeNet consistently performs the poorest, particularly in
high-noise scenarios (σ = 5%). Figure 6.5 depicts this for two test examples.

Furthermore, for both piecewise constant and textured phantoms, the sparsity-based
method consistently performed well for noisy scenarios. This consistently good performance
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(a) Sample 1. (b) Sample 2.

Figure 6.5: Effects of noise on two textured samples by various reconstruction methods.

of the sparsity concept in detecting and locating inclusions even for higher noise levels is
most remarkable. The error metrics are almost constant over noise levels up to 5%. Hence,
as a side result, we did check the limits of the sparsity concept for very high noise levels,
which not surprisingly showed a sharp decrease in the reconstruction accuracy for very high
noise levels. We show this in Figure 6.6, once again for the two piecewise constant samples
initially displayed in Figure 6.4. The respective performances, all metrics considered, for
these two samples are equally shown in Figure 6.7 (ICC is not plotted for the sake of
visibility since its values are smallest). Figures 6.8 and 6.9 show the corresponding plots
for the textured samples initially displayed in Figure 6.5.

6.5 Conclusion and future directions

In summary, this review has comprehensively examined numerical methods for addressing
the EIT inverse problem. EIT, a versatile imaging technique with applications in various
fields, presents a highly challenging task of reconstructing internal conductivity distributions
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(a) Sample 1.

(b) Sample 2.

Figure 6.6: Effects of additional noise on two piecewise samples by the sparsity method.

(a) Sample 1. (b) Sample 2.

Figure 6.7: Performance variation with noise for two piecewise samples by the sparsity method.

from boundary measurements. We explored the interplay between modern deep learning-
based approaches and traditional analytic methods for solving the EIT inverse problem.
Four advanced deep learning algorithms were rigorously assessed, including the deep
D-bar method, deep direct sampling method, fully connected U-net, and convolutional
neural networks. Additionally, two analytic-based methods, incorporating mathematical
formulations and regularisation techniques, were examined regarding their efficacy and
limitations. Our evaluation involved a comprehensive array of numerical experiments
encompassing diverse scenarios that mimic real-world complexities. Multiple performance
metrics were employed to shed insights into the methods’ capabilities to capture essential
features and delineate complex conductivity patterns.

The first evaluation was based on piecewise constant conductivities. The clear winners
of this series of tests are the analytic sparsity-based reconstruction and the learned FC-
UNet. Both perform best, with slight variations depending on the noise level. This is
not surprising for learned methods, which adapt well to this particular set of test data.
However, the excellent performance of sparsity methods, which can identify and locate
piecewise constant inclusions correctly, is most remarkable.
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(a) Sample 1.

(b) Sample 2.

Figure 6.8: Effects of additional noise on two textured samples by the sparsity method.

(a) Sample 1. (b) Sample 2.

Figure 6.9: Performance variation with noise for two textured samples by the sparsity method.

A noteworthy aspect of this study was the introduction of variable conductivity scenarios,
mimicking textured inclusions and departing from uniform conductivity assumptions. This
enabled us to assess how each method responds to varying conductivity, shedding light on
their robustness and adaptability. Here, the D-bar with learned post-processing achieves
competitive results. The winning algorithm alternates between sparsity, Deep D-bar and
FC-UNet. The good performance of the sparsity concepts is somewhat surprising for these
textured test samples. However, none of the proposed methods was able to reconstruct
the textures reliably for higher noise levels. That is, the quality of the reconstruction
was mainly measured in terms of how well the inclusions were located - which gives a
particular advantage to sparsity concepts.

These results naturally raise questions about the numerical results presented in several
existing EIT studies, where learned methods were only compared with sub-optimal analytic
methods. Our findings clearly indicate that at least within the restricted scope of the
present study, optimised analytical methods can reach a comparable or even superior
accuracy. Of course, one should note that after training, learned methods are much more
efficient and provide a preferred option for real-time imaging.

In conclusion, this review contributes to a deeper understanding of the available solutions
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for the EIT inverse problem, highlighting the role of deep learning and analytic-based
methods in advancing the field.



You can’t connect the dots looking forward; you can only
connect them looking backwards. So you have to trust
that the dots will somehow connect in your future.

— Steve Jobs

7
Summary and Conclusions

The convergence of deep learning and mathematics has undeniably reshaped both disciplines,
ushering in profound advancements. This synergy has led to a two-fold exploration: a
deep dive into the mathematical foundations of deep learning for heightened robustness,
and a strategic application of deep learning to tackle complex mathematical problems,
forging a path for scientific machine learning. This interdisciplinary collaboration has
catalysed a paradigm shift in scientific computing, with a specific focus on partial differential
equations (PDEs). New neural network architectures, purpose-built to address distinct
classes of PDEs, leverage the intrinsic properties of these equations. These pioneering
developments have left an indelible mark on mathematical modelling, particularly in the
context of parametric PDEs, which play a pivotal role in representing natural and physical
processes in science and engineering.

This thesis has been focused on the examination of these specialized neural network
techniques, extending their utility for parametric studies and the resolution of related
inverse problems. Firstly, somewhat basic but interesting PDEs like the Poisson and Darcy
flow equations were studied for both the forward and inverse problems. Neural networks
were seen to be quite applicable in the inverse setting, where multiple solutions of the PDE
are usually needed, as they offer a better cost than classical methods for solving PDEs,
which on the other hand offer a better accuracy. Building on this foundational work, our
research ventured into more intricate PDEs encountered in the scientific and engineering
domains, including but not limited to the Navier-Stokes equation, Helmholtz equation,
advection equation, and Solid mechanics equation. These methodologies underwent rigorous
scrutiny, pitting neural operator-based techniques against classical finite element solvers
and Tikhonov functional-based approaches. Extensive numerical experiments, conducted
across varying noise levels, have illuminated the trade-offs and applicability of these diverse
methods for the multitude of PDE-based challenges they address.

120
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The relevance of this method was equally demonstrated in industrial applications,
with a prominent example being the realm of continuum mechanics in the automotive
industry. This application situates itself in vehicle development, where stress and resulting
strain (deformation) are of importance

A distinct facet of this thesis explored Electrical Impedance Tomography (EIT), an
influential imaging technique with diverse applications. The primary focus was the resolution
of its intricate PDE-based inverse problem. Our inquiry encompassed a comprehensive
examination of deep learning-based and analytic-based strategies, shedding light on their
respective strengths and limitations. We introduced novel variable conductivity scenarios,
mirroring the complexities of real-world applications, and facilitating a nuanced assessment
of the methods’ robustness and adaptability.

In summation, this thesis stands as a testament to the profound transformations that
have unfolded at the intersection of deep learning and mathematics, specifically in the
fields of PDEs and Inverse problems. The deep insights and innovative methodologies
uncovered here will undoubtedly continue to fuel the evolution of scientific computing,
addressing intricate challenges across diverse domains.
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