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Abstract

Conformational phase spaces of N-glycans under the
computational microscope

Glycans have an extremely important influence on all living matter on Earth. For in-
stance, their occurrence in eukaryotic cells as post-translational modifications confers di-
verse functions to the underlying proteins. However, the so-called ‘sugar code’ that draws
the connection between glycan structure and function still remains to be deciphered. Its
unraveling is hampered by the vast amount of monosaccharide types, chemical substituents
and linkages, resulting in a very large variety of complex glycan configurations. In addi-
tion, especially N-glycans are typically more flexible than proteins, a consequence of their
many freely rotating torsion angles along the glycosidic bonds. The result is a large set
of multiple conformations that can be adopted by each single N-glycan, opening a ‘third
dimension’ of the sugar code beyond primary sequence and molecular topology. The ques-
tion remains to which extent this third dimension is biologically relevant, and if there exist
relationships between the sequence, the three dimensional structure, and the function of
N-glycans in their various biological environments.

The flexibility of N-glycans pushes experimental approaches to their limits when it
comes to structure determination. Techniques like NMR and X-ray crystallography can
determine time-averaged structures, but can not resolve structural ensembles of individual
glycan conformers. Experimental methods are, however, of great importance for the deter-
mination of where and which N-glycans are attached to specific proteins. Computational
techniques such as MD simulations can utilize this information to construct molecular gly-
coprotein models and explore the many accessible glycan conformers in order to predict
their function at the molecular level. However, so far it could not be confirmed that MD
approaches can correctly describe and sample glycan conformer distributions. Moreover,
no adequate reduced representation of the high-dimensional phase space of all possible
glycan conformations was available.

These shortcomings have hindered the computational study of N-glycans, especially
regarding their ‘third dimension’ functionality and the impact of the latter on proteins.
Therefore, this work tied into these current issues, both introducing fundamentally new
methodological advances in the field of computational structural glycobiology and apply-
ing them to systems of high biological relevance.

We laid the foundation for our progress by introducing a novel and generally applicable
naming convention for glycan conformers based on their adopted set of torsion angles. This
enabled a clear and IUPAC-conform way of addressing quantitatively the third dimension
of the sugar code. The automated assignment of conformer strings is made available to the
glycobiology community through the python package GlyCONFORMER, allowing for the
analysis and visualization of individual glycan distributions. Further, we developed a new
enhanced-sampling MD scheme, overcoming the obstacle of convergence when sampling
the full conformational phase space of glycan structures. The satisfactory performance
of this methodological workflow was first demonstrated for free N-glycans in solution,
comparing different glycan configurations and validating different force field parameter
sets.

iii



Abstract

The workflow was then successfully applied to glycoprotein systems, unraveling the
impact of glycan conformations on protein behavior. In particular, a pathogenic enzyme
of the class trans-sialidase was investigated, studying how surface N-glycosylation and its
dynamics can influence enzyme stability and activity. A recombinant trans-sialidase from
the African parasite Trypanosoma congolense was expressed in CHO Lec1 cells, reproduc-
ing the natively expected high-mannose type N-glycans. MALDI-TOF MS experiments
determined the N-glycosylation pattern for eight N-glycosylation sites. Removal of these
N-glycans via Endoglycosidase H treatment revealed no change in secondary struture in
circular dichroism measurements, but led to a decrease in substrate affinity relative to the
untreated enzyme, without an impact on the conversion rate. MD simulations could pro-
vide mechanistic insights into interactions between the highly flexible N-glycans and some
conserved amino acids located at the catalytic site. These interactions led to conforma-
tional changes, possibly enhancing substrate accessibility and enzyme-substrate complex
stability. Sequence alignments further revealed the conservation of N-glycosylation se-
quons among different Trypanosoma species, pointing to a newly discovered, conserved
glycan-mediated enzymatic regulation mechanism, adding a new entry to the sugar code
dictionary. Further analysis of the conformational phase spaces of interacting glycans re-
vealed a shift in their conformer distributions, underlining the importance of their struc-
tural flexibility.

In addition, interactions of glycans within the catalytic site of the carbohydrate-active
enzyme α-mannosidase II were examined, studying how the boat conformation of the to
be cleaved saccharide unit is induced in the transition state of the catalytic cleavage re-
action. We could identify a large shift in the conformational phase space upon binding
of the glycan to the catalytic site. However, this was not sufficient to induce a change in
pucker conformation. In this system, a mutual dependence between torsional and pucker
degrees of freedom could be excluded. The structural rearrangement is likely induced by
a shift of the electron density in the sugar ring induced by the interplay of a binding Zn2+

ion and the surrounding amino acids of the binding pocket.

Unraveling hidden correlations between a glycan’s structure and its function will en-
able future studies of how glycan structures drive important biological processes, such as
disease mechanisms or enzyme-controlled signaling. For instance, our methodological ad-
vances could already validate the performance of the GlycoSHIELD software, able to graft
realistic N-glycans on any glycoprotein, e.g. the SARS-CoV-2 Spike protein. Further,
structural features of other glycan types, such as the polysaccharide fucoidan, could be
examined, revealing previously unknown structural rearrangements upon chemical modifi-
cations. Although the limitations of the fixed-charge force fields used in this work remain,
we are now able to quantify them and pave the way for improved parameterizations. This
is especially necessary because there still exists a lack of polarizable or machine-learning-
based force fields for carbohydrates. All the studied systems revealed new facets of the
postulated ‘third dimension’ of the sugar code, providing biochemically relevant examples
of how the code’s dictionary can be deciphered by means of our newly developed MD
methodology.
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Zusammenfassung

Untersuchung der konformationellen Phasenräume von
N-glykanen unter dem virtuellen Mikroskop

Glykane haben einen äußerst wichtigen Einfluss auf alle Lebewesen unserer Erde. So ver-
leiht ihr Vorkommen in eukaryotischen Zellen als posttranslationale Modifikation einer
Vielzahl von Proteinen verschiedene Funktionen. Der so genannte „Zuckercode“, welcher
die Verbindung zwischen Glykanstruktur und -funktion herstellt, wurde allerings noch
nicht entziffert. Seine Entschlüsselung wird durch die hohe Anzahl an Monosacchariden,
chemischen Substituenten und Bindungen erschwert, was zu einer enormen Vielfalt kom-
plexer Glykan-Konfigurationen führt. Darüber hinaus sind insbesondere N-Glykane in der
Regel flexibler als Proteine, was auf die vielen frei drehbaren Torsionswinkel entlang der
glykosidischen Bindungen zurückzuführen ist. Das Ergebnis ist eine Vielzahl von Konfor-
mationen für ein einziges N-Glykan, was eine „dritte Dimension“ des Zuckercodes jenseits
von Primärsequenz und molekularer Topologie eröffnet. Es bleibt allerdings die Frage,
inwieweit diese dritte Dimension biologisch relevant ist und ob es einen Zusammenhang
zwischen der Sequenz, der dreidimensionalen Struktur und der Funktion von N-Glykanen
in ihren verschiedenen biologischen Umgebungen gibt.

Die Flexibilität von N-Glykanen bringt experimentelle Ansätze bei der Strukturbes-
timmung an ihre Grenzen. Techniken wie NMR und Röntgenkristallographie können zwar
zeitlich gemittelte Strukturen bestimmen, aber keine strukturellen Ensembles einzelner
Glykan-Konformer auflösen. Nichtsdestotrotz sind experimentelle Methoden von großer
Bedeutung, um zu bestimmen wo und welche N-Glykane an bestimmte Proteine gebunden
sind. Computertechniken wie MD-Simulationen können diese Informationen nutzen, um
die Funktion von N-Glykanen auf molekularer Ebene vorherzusagen, indem eine Vielzahl
von unterschiedlichen Glykan-Konformern für eine modellierte Glykoproteinstruktur erzeugt
wird. Bislang konnte jedoch nicht bestätigt werden, dass MD-Ansätze die Verteilung
der Glykan-Konformer korrekt beschreiben und erfassen können. Darüber hinaus war
keine reduzierte Darstellung des hochdimensionalen Phasenraums aller möglichen Glykan-
Konformationen verfügbar, welche diesen adäquat wiederspiegeln würde.

Diese Unzulänglichkeiten haben die computergestütze Untersuchung von N-Glykanen
bisher verhindert, insbesondere im Hinblick auf die Funktionalität ihrer „dritten Dimen-
sion“ und deren Auswirkungen auf Proteine. Daher knüpft diese Arbeit an die aktuelle
Problematik an, indem sie einerseits grundlegend neue methodologische Fortschritte auf
dem Gebiet der computergestützten, strukturellen Glykobiologie einführt und andererseits
auf Systeme von hoher biologischer Relevanz anwendet.

Wir legten den Grundstein für unsere Fortschritte mit der Einführung einer neuar-
tigen und allgemein anwendbaren Namenskonvention für Glykan-Konformer, basierend
auf den Werten ihrer Torsionswinkel. Dies ermöglichte eine quantitative, eindeutige und
IUPAC-konforme Darstellung der dritte Dimension des Zuckercodes. Die automatisierte
Zuweisung von Konformer-Strings wird der Glykobiologie-Community durch das Python-
Paket GlyCONFORMER zur Verfügung gestellt und ermöglicht die Analyse und Visu-
alisierung individueller Glykanverteilungen. Darüber hinaus haben wir ein neues MD-
Verfahren entwickelt, welches das Konvergenzproblem von Glykanstrukturen überwindet,
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indem der gesamten konformationellen Phasenraums exploriert und abgedeckt werden
kann. Die zufriedenstellende Leistung dieses methodischen Arbeitsablaufs wurde zunächst
für freie N-Glykane in Lösung demonstriert, wobei verschiedene Glykan-Konfigurationen
verglichen und verschiedene Kraftfeldparametersätze validiert wurden.

Die entwickelte Methodik wurde dann erfolgreich auf Glykoproteinsysteme angewandt,
um die Auswirkungen der Glykan-Konformationen auf das Proteinverhalten zu entschlüs-
seln. Insbesondere wurde ein pathogenes Enzym aus der Klasse der Trans-Sialidasen
untersucht, um herauszufinden, wie die Oberflächen-N-Glykosylierung und ihre Dynamik
die Stabilität und Aktivität des Enzyms beeinflussen können. Eine rekombinante Trans-
Sialidase aus dem afrikanischen Parasiten Trypanosoma congolense wurde in CHO Lec1-
Zellen exprimiert und reproduzierte die nativ erwarteten N-Glykane mit hohem Man-
nosegehalt. In MALDI-TOF MS-Experimenten wurde das N-Glykosylierungsmuster für
acht N-Glykosylierungsstellen bestimmt. Die Entfernung dieser N-Glykane durch die Be-
handlung mit Endoglykosidase H ergab keine Veränderung der Sekundärstruktur in Cir-
cular Dichoism Messungen, führte jedoch zu einer Verringerung der Substrataffinität im
Vergleich zum unbehandelten Enzym, ohne Auswirkungen auf die Umwandlungsrate. MD-
Simulationen konnten mechanistische Erkenntnisse über die Wechselwirkungen zwischen
den hochflexiblen N-Glykanen und einigen konservierten Aminosäuren an der katalytis-
chen Stelle liefern. Diese Wechselwirkungen führten zu Konformationsänderungen, die
möglicherweise die Zugänglichkeit des Substrats und die Stabilität des Enzym-Substrat-
Komplexes verbesserten. Sequenzalignments zeigten darüber hinaus, dass Glykosylierungs-
sequenzen bei verschiedenen Trypanosoma-Spezies konserviert sind, was auf einen neu
entdeckten Glykan-vermittelten enzymatischen Regulierungsmechanismus hindeutet. Die
Analyse der Konformationsphasenräume interagierender Glykane ergab eine Verschiebung
ihrer Konformerverteilungen, was die Bedeutung ihrer strukturellen Flexibilität unterstre-
icht. Darüber hinaus wurden die Wechselwirkungen von Glykanen innerhalb der katalytis-
chen Bindestelle des kohlenhydrataktiven Enzyms α-Mannosidase II untersucht, wobei her-
ausgefunden werden sollte, wie die Bootkonformation der zu spaltenden Saccharideinheit
im Übergangszustand der katalytischen Spaltungsreaktion induziert wird. Wir konnten
eine große Verschiebung im Konformationsphasenraum nach der Bindung des Glykans an
die katalytische Stelle feststellen. Dies reichte jedoch nicht aus, um eine Änderung der
Pucker-Konformation zu bewirken. Zumindest für dieses System konnte eine gegenseit-
ige Abhängigkeit zwischen Torsions- und Pucker-Freiheitsgraden ausgeschlossen werden.
Die strukturelle Umordnung wird wahrscheinlich durch eine Verschiebung der Elektronen-
dichte im Zuckerring ausgelöst, die durch das Zusammenspiel eines bindenden Zn2+-Ions
und der umgebenden Aminosäuren der Bindungstasche hervorgerufen wird.

Die Entschlüsselung verborgener Korrelationen zwischen der Struktur eines Glykans
und seiner Funktion wird künftige Studien darüber ermöglichen, wie Glykanstrukturen
wichtige biologische Prozesse steuern, etwa Krankheitsmechanismen oder enzymgesteuerte
Signalübertragungen. So konnten unsere methodischen Fortschritte bereits die Leistung
der GlycoSHIELD-Software validieren, die in der Lage ist, realistische N-Glykane auf jedes
beliebige Glykoprotein, z. B. das SARS-CoV-2-Spike-Protein, zu modellieren. Darüber
hinaus konnten die strukturellen Merkmale anderer Glykanarten, wie z. B. des Polysac-
charids Fucoidan, untersucht werden, um bisher unbekannte strukturelle Umlagerungen
nach chemischen Modifikationen aufzudecken. Obwohl die Beschränkungen der in dieser
Arbeit verwendeten Kraftfelder bestehen bleiben, sind wir nun in der Lage, diese zu
quantifizieren und den Weg für verbesserte Parametrisierungen zu ebnen. Dies ist vor
allem deshalb notwendig, weil es immer noch einen Mangel an polarisierbaren oder auf
maschinellem Lernen basierenden Kraftfeldern für Kohlenhydrate gibt. Alle untersuchten
Systeme zeigten neue Facetten der postulierten dritten Dimension des Zuckercodes und
lieferten biochemisch relevante Beispiele dafür, wie das Wörterbuch des Zuckercodes mit
Hilfe unserer neu entwickelten MD-Methodik entschlüsselt werden kann.
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1. The uprising of carbohydrates

1 | The uprising of carbohydrates

1.1 The sugar code

The discovery of the double helix and its four unique nucleotides of which our genes
are composed heralded the start of the era of coding in biology. It was in 1953 when
James Watson and Francis Crick, with the help of Rosalind Franklin and Maurice Wilkins,
deciphered the genetic code and were the first to show that biological macromolecules
are capable of storing information based on the arrangement of individual monomers in
programmed order.1–4 The elucidated deoxyribonucleic acid (DNA) was considered as the
first alphabet of life, with its four nucleotides (letters) giving rise to different genes (words).
The 20 amino acids occurring in proteins were considered the second alphabet, being linked
to the genetic code and dependent on it.5 In earlier times the story came to a halt at this
point, as no further logical concepts could be identified in other biomolecular classes.
It would have been, however, detrimental to consider only those concepts, where the
information stored in a sequence is translated directly into another sequence. It would have
prevented us from exploring more complex and hidden forms of coding capability, involving
additional components like decoders to decipher the code into signals. Fortunately, 40
years after the discovery of the genetic code, carbohydrates entered the scene when proteins
were found to specifically recognize sugars like ligand molecules6, suggesting a decoding
capability.7 In order to test the carbohydrate information-storing potential, the number of
possible words (peptides or oligosaccharides) that are possible to spell from a predefined set
of letters (amino acids, monosaccharides) can be compared. Considering 20 different amino
acids or monosaccharides to form a hexapeptide or hexasaccharide respectively, one gets
eight orders of magnitude less peptides (6.4 ∗ 107) than oligosaccharide structures (1.44 ∗
1015). This reflects the huge size of vocabulary one can achieve with polysaccharides.7,8

To be able to appreciate this comparison, one has to understand the atomic buildup of
carbohydrates and their fundamental difference compared to nucleic acids and peptides.
Monosaccharides are the most simple form of carbohydrates, representing the building
blocks for oligosaccharides (composed by less than ten monomers)- and larger polysaccha-
rides, called glycans. Without substituents, they present the chemical formula CnH2nOn,
where n is larger than three and defines the class of sugar. They consist of several polyhy-
droxyl groups with an aldehyde or ketone group, whereby we only consider the aldehyde in
this dissertation. Monosaccharides can interchange between their open-chain or cyclic form
through a reversible nucleophilic addition reaction, whereby the cyclic form is predomi-
nant both in solution and in the solid state, and is mandatory to build up oligosaccharides
(Figure 1.1).9 A hemiacetal group forms at carbon C1, called the reducing end.
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Figure 1.1: D-glucose in its transition from an open-chain to a cyclic form.
The reversible rearrangement is occurring through the formation of a cyclic hemiacetal.
Carbon atoms are represented in gray, oxygen in red and hydrogen in white.

Next to the well known five- and six-carbon sugars, a special sugar class, the sialic
acids, consist of a nine-carbon backbone and should be mentioned to stress the diversity
of possible carbon atom numbers in monosaccharides (compare Figure 1.2 (i) neuraminic
acid).10 Further, there are different monosaccharide types having an identical number of
carbon atoms, but vary in the configuration around their chiral centers (carbon atom at-
tached to four different groups). These different configurations are called isomers. For
instance, D-glucose and D-mannose are a special pair of isomers, named epimers. They
are called epimeric at carbon C2, as their structures are identical except for the orienta-
tion of the hydroxyl group at C2 (Figure 1.2 (ii)).9 Another form of isomerism is denoted
through the prefixes D- and L-, indicating stereoisomers that are mirror-images of them-
selves, altered in the configuration at C5 for hexoses in the open-chain form (compare the
hydroxyl group orientations of L-fucose and D-mannose in Figure 1.2). As almost all sug-
ars considered in this thesis exist in the D-configuration, unless specified differently, the
D- prefixes will not be mentioned specifically from here on. Independently of their form,
monosaccharides can further be modified by chemical groups like N-acetyl or N-glycolyl,
generating derivatives of monosaccharides like N-acetyl glucosamine or neuraminic acid
(Figure 1.2 (iii)). Before continuing with the assembly of monosaccharides into chains, it
should be noted that in their cyclic form, the C1 carbon atom represents an additional
chiral center (anomeric carbon). This gives rise to two possible configurations, termed
α− and β− anomer, depending on the orientation of the hydroxyl group at C1 and the
stereogenic center furthest from the anomeric carbon (C5) (Figure 1.2 (iv)).9 This char-
acteristic is important in the linkage formation process, as the configuration at C1 defines
if the linkage is termed α− or β−. Glycosidic linkages are enzymatically formed in a con-
densation reaction, linking two monosaccharide residues via an oxygen atom. In contrast
to peptide bonds, any carbon atom of the monosaccharide ring connected to a hydroxyl
group can form a glycosidic bond, generating a high degree of linkage possibilities. There
is only one restriction, namely that the linkage be formed between the anomeric carbon
at the reducing end and any other hydroxyl group, for example in the case of lactose,
which is composed of the monosaccharides galactose and glucose, or glycogen, a polysac-
charide of several glucose subunits (Figure 1.2 (v)).9 Due to this, oligosaccharides gain
a polarity that is defined by their reducing and nonreducing ends, similar to the amino
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and carboxyl termini in polypeptides or the 5’ and 3’ termini in polynucleotides.9 Further
diversification of oligosaccharides is achieved via the introduction of branches, meaning
that a sugar is involved in three or more glycosidic linkages, for examples via its C1, C3
and C6 atoms. Important biopolymers like glycogen or N-glycans rely on this branching
principle (Figure 1.2 (vi)).

Figure 1.2: The coding capability of carbohydrates. Different monosaccharide types
are defined by their number of carbon atoms and orientation of hydroxyl groups. They
can be further diversified by the addition of chemical groups and consideration of their
anomeric configuration. Each monosaccharide can be chained to another one by the for-
mation of glycosidic bonds, formed between the reducing end and any other carbon atom
connect to a hydroxyl group. The formation of chains can become even more complex when
introducing branches. Carbon atoms are represented in gray, oxygen in red, nitrogen in
blue and hydrogen in white.

To summarize the above mentioned structural features, carbohydrates can vary in (i)
their carbon number; (ii) their epimers; (iii) chemical modifications; (iv) anomeric config-
uration; (v) linkage position and (vi) branching position (Figure 1.2).7 These characteris-
tics allow for more diverse configurations than achievable with nucleotides or amino acids,
which can only be linked in one hard coded fashion by either phosphodiester or peptide
bonds. The explicit informational properties harbored by glycans were already mentioned
by Winterburn and Phelps in the 1970s.11 However, it took sugars much longer to be con-
sidered as the third alphabet of life.5 The ability to decode the complex glycome (generic
term for the entire complement of carbohydrates in an organism) was missing. The story
of the decoding machinery had its beginning in the 1930s when Sumner and Howell12 dis-
covered the sugar specificity of lectins, a class of carbohydrate-binding proteins. Lectins
lack any enzymatic activity, are distinct from antibodies and encode sugars without act-
ing on them.13 The precise recognition however, similar to a key-and-lock mechanism13,
became apparent much later when three-dimensional structures were accessible and struc-
tural motifs, chemical groups and type of bonds feasible to analyze.6 Nowadays, at least
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13 different protein folds are known for glycan recognition, assumed to result from the
evolutionary adaptation of the protein surface to the ligand structure, where lectins can
especially bind larger carbohydrate structures with anomeric extension.13 Although there
are countless different carbohydrate structures, most lectins recognize only a single car-
bohydrate type like a single epimer structure, realized by a certain special arrangement
of amino acids in the binding site.13 Adhesion of glycans to lectins can trigger diverse
signaling pathways in cells, also including those with severe consequences like cell cycle
arrest or induction of apoptosis.13

In summary, the flow of biological information starting with nucleotides decoding
amino acid sequences does not stop after the translation of proteins, but is rather the
starting point for enzymes to generate a new glycan code, from the third alphabet of life,
the monosaccharides.5 Unraveling the functional meaning and cellular responses of certain
glycan words is comparable to the compilation of a dictionary for the glycan vocabulary
and has only begun in recent years to be put together.14 If one wants to understand the
fundamentals and far-reaching implications of the sugar code, one must first shed light on
the ubiquitous occurrence of glycans inside and outside of cells as well as their routes of
synthesis.

1.2 Glycan types and their functionality

In 1861, it was shown by Butlerow that formaldehyde in alkaline solution allowed for
the synthesis of molecules like fructose, which could be further converted to glucose and
mannose by condensation and rearrangement reactions.14–16 These prebiotic reaction con-
ditions could be a hint that carbohydrates were utilized already by ancestral primitive
microorganisms, existing around three billion years ago.16 Nowadays, it is a fact that
carbohydrates can be found in all three domains of life, indicated by the presence of
carbohydrate-active enzymes (CAZymes). The enzyme class comprises glycoside hydro-
lases, polysaccharide lyases and glycosyltransferases, modifying the glycome at different
levels of complexity. The comprehensive existence of CAZymes is underscored by the fact
that they account for about 1-3 % of the genome of most organisms.17 This tremendous
enzyme machinery creates many diverse types of glycans, which are particularly different
comparing prokaryotic and eukaryotic cells, although the focus will be on the latter.

Carbohydates occur seldom as monosaccharides except for their role as a source of
energy. They are found more often as building blocks to form more complex glycan struc-
tures. One needs to clearly differentiate between free glycans and those that are conju-
gated to biomolecules. Freely occuring polysaccharides undertake the task of mechanical
support, like cellulose in plants, or represent a long-term energy storage as amylose or
amylopectin. Different linkage possibilities and anomeric configurations take effect when
comparing the types of monosaccharides present in the above mentioned glycans. They
all exclusively consist of repeating units of glucose, however, either linked via β1 → 4 or
α1 → 4 bonds in the case of cellulose and amylose, respectively. When amylose strands
are additionally cross-linked via α1 → 6 bonds, the more complex amylopectin is gener-
ated. The chemical modification of glucose by N-acetylation to form N-acetylglucosamine
bridges the gap from cellulose in plants to chitin, providing mechanical support in the ex-
oskeleton of insects having the same β1 → 4 bond type. It should have become clear that
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these non-conjugated carbohydrates predominantly consist of repeating units of the same
monosaccharide type and linkage, not forming a good basis for diverse glycan structures
to build a complex glycan vocabulary.

Therefore, more attention should be drawn to conjugated carbohydrates that can be found
inside and outside of eukaryotic cells. Conjugated glycans are so called ‘glycosides’, gen-
erated through the formation of a linkage between a monosaccharide and an aglycone
(organic molecule without sugar residues). The primary sugar unit is then further pro-
cessed to yield a complex glycan with diverse monosaccharide and linkage types. One can
roughly divide conjugated glycans into classes, depending mostly on their monosaccharide-
aglycone linkage but also cellular location.

Figure 1.3: Diversity of glycans inside and outside of cells. The extracellular
glycocalyx consists of glycolipids like glycosphingolipids and proteoglycans like glypican
or CD44 with their respective glycosaminoglycans attached, either heparan sulfate or
hyaluronic acid. Additionally, the majority of transmembrane or membrane-associated
proteins is glycosylated by N- and O-glycans. N-glycosylations were also detected for
extracellularly detected RNA. Intracellularly, only small and most often O-GlcNAcs can
be found attached to proteins. Monosaccharides are represented as hexagons and colored
according to the Symbol Nomenclature For Glycans (SNFG).18

Starting at the extracellular site, it can be recognized that every eukaryotic cell is
coated by a dense and complex layer of glycans, called the ‘glycocalyx’.19 It consists mostly
of glycosides like glycoproteins, proteoglycans with glycosaminoglycans and glycolipids,
although also free glycans do occur (Figure 1.3).20 In 2021, also ribonucleic acid (RNA)
was discovered to harbor N-glycans and being displayed on cell surfaces. However, nothing
is yet known about the precise attachment sites or their detailed function.21 One has to
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imagine, when looking at a cell from a distance, that there are probably no phospholipids
or membrane proteins to be seen, but a hairy undergrowth of various glycan structures.
This is due to the size of the glycocalyx spanning 0.5 to 5 µm of the extracellular space
around human cells, varying depending on the cell type, organ location and vascular
flow.22–25 Therefore, it appears as if cells would wear a sugar code to depict information
on their surface for communication and signaling with its surrounding. Predicting the
function of the glycocalyx as an interface between the cell and the extracellular space
was troublesome in the past, if only because of its complexity. However, it could be
shown that the glycocalyx serves as a physical protective barrier against pathogens, as
a mechanosensor for endothelial cells in the blood stream, as a storage compartment. It
also influences cell morphology, membrane organization, and cancer progression to only
mention a few of its functions.20

To shed light on the huddle the glycocalyx represents, the individual conjugated glycan
classes should be briefly entangled. First of all, the many different types of phospholipids
making up the lipid bilayer of cell membranes are accompanied by glycolipids, where
glycosphingolipids (GSLs) are the most abundant subclass in vertebrates.26 GSLs are
formed by at least one monosaccharide which is linked to a ceramide molecule, consisting
of a sphingoid base (long-chain aliphatic amine) and a fatty acid moiety. Sphingosine is the
most common sphingoid base in mammals and the fatty acid component in ceramindes
can vary in length and saturation level. The primary sugar residue (mostly β-linked
glucose or galactose) can be further elongated by glycosyltransferases prior to the GSLs
being displayed at the outer leaflet of the plasma membrane (Figure 1.3).27 They are
diversified by different glycan structures, whereby more than 400 different ones built from
twelve monosaccharide types could be detected, forming constructs involving up to 20
residues.27,28 GSLs can make up a significant proportion of total lipids in membranes such
as the myelin of axons or erythrocytes.29,30 They are responsible for cell-cell adhesion
via trans carbohydrate-carbohydrate interactions often mediated by divalent cations, and
modulate apoptosis, cell proliferation and intracellular transport.27,31–34

Next to lipid components, membranes also consist of transmembrane or membrane-
associated proteins. Many of these are glycosylated via co-translational or post-trans-
lational modification processes, resulting in the attachment of sugar or glycan molecules
to the polypeptide chain. In comparison to other types of protein post-translational mod-
ifications like phosphorylation, acetylation or methylation, glycosylation tops all of them
in terms of size and complexity, and represents an ubiquitously occurring modification.35

A special class with enormously large glycans are the proteoglycans, which consist of a
protein ‘core’ and attached glycosaminoglycan chains. Glycosaminoglycans (GAGs) are
huge, linear polysaccharides, where a number of 80 monosaccharides per glycan chain
is not unusual. They consist of repeated disaccharide units, comprising an amino sugar
(e.g. N-acetylglucosamine or N-acetylgalactosamine) and an uronic acid (glucuronic acid
or iduronic acid).36 Common GAGs are hyaluronic acid, keratan sulfates, heparins and
heparan sulfates, which can be further modified by the addition of sulfate groups, by fuco-
sylation or sialylation (Figure 1.3).36 Hyaluronic acid is not directly linked to the protein
core but rather servers as a ligand, where all the latter mentioned ones are covalently
linked to asparagine, serine or threonine residues. There are only a little over 50 pro-
teoglycans known, whereby many are also secreted into the extracellular matrix (ECM),
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promoting its assembly and mechanics as well as modulating force transmission.37,38 One
transmembrane proteoglycan example is the CD44 receptor, whose expression is upreg-
ulated in cancer cells and promotes migration and invasion processes in metastases.39

Its hyaluronic acid ligand, upon binding, can activate matrix metalloproteinases and cy-
toskeleton signaling involved in tumor progression (Figure 1.3).39,40 Proteoglycans can
have several GAGs attached, whereby the amount is not fixed but can vary over time
depending on factors like cell type, enzyme availability and environmental conditions.

Glycoproteins are characterized by their more complex type of glycans. However,
similarly to proteoglycans, they also occur on the cell surface in the form of transmem-
brane or membrane-associated proteins. They differ from proteoglycans in the sense that
their glycans are much smaller in size and have different structural features (Figure 1.3).
However, they share the commonality of glycosidic linkage types, which can not only
be formed between sugars but also to hydroxy amino acids such as serine and threo-
nine (O-glycosidic linkage) or asparagine (N-glycosidic linkage).9 Protein glycosylation is
recognized throughout the whole phylogenetic tree, where a total of 13 monosaccharides
and 8 amino acids forming over 41 types of glycosidic linkage types.13,41 In contrast to
the very few identified proteoglycans, it is remarkable that over half of all eukaryotic
proteins are glycoproteins and that around 90 % of those are N-glycosylated.42 Due to
this excess, N-glycans deserve to be surveyed with more attention. Well-known examples
comprise the immunoglobulin IgG, where the glycosylation pattern determines whether
an antibody glycoform is pro-inflammatory, containing galactose-deficient N-glycans, or
anti-inflammatory, when harboring sialylated N-glycans.43 This ubiquitous glycosylation
form is derived from the covalent tethering of glycans to the polypeptide chain via the
terminal NH2 group of asparagine residues (Glycanβ1→N ). The enzyme-regulated attach-
ment requires the occurrence of asparagine in the amino acid sequence motif N-X-S/T,
where X can be any amino acid except proline in order to be recognized for glycosyla-
tion (Figure 1.4). There are three structurally different N-glycan types: high mannose,
complex and hybrid, whereas the latter one is a mix of the two previous ones. They are
all sharing the same oligosaccharide core structure consisting of two N-acetylglucosamine
(GlcNAc) residues followed by three branched mannoses (Man): Manα1→6 [Manα1→3]
Manβ1→4 GlcNAcβ1→4 GlcNAcβ1→N (Figure 1.4).44 It is a biantennary glycan with the
first mannose residue serving as a branching point for α1 → 3 and α1 → 6 linkages. The
reason for the conservation of this specific core structure is not yet unraveled. Only specu-
lations about its origin can be made, which hint in the direction of intrinsic benefits of the
Manβ1→4GlcNAcβ1→4GlcNAcβ1 structure for the folding energetics of the underlying pro-
tein.45 Common monosaccharide types are galactose (Gal), L-fucose (Fuc) and sialic acids
(Sia) like N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc), next
to Man and GlcNAc. N-glycans can not only be branched in its core but also several times
further along the branches, forming tree-like structures. Phosphorylation, acetylation or
sulfation are modifications that are typical for proteins, but also confer another level of
complexity to glycans after their synthesis, although this fine-tuning of the vocabulary
is common to all three alphabets of life.14 Many different N-glycans can be built from
these various structural components, for example over 100 different configurations could
be identified in the nematode Caenorhabditis elegans.46 The number of glycans attached
to a protein is not only defined by the number of N-X-S/T motifs, but also by the protein
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conformation. This affects the substrate recognition ability of required CAZymes for pro-
cessing, enzyme availability and nucleotide sugar metabolism.44,47 A probable resulting
site-specific heterogeneity creates temporally and spatially flexible glycosylation patterns
on a protein, further increasing the size of the glycoproteome. There is a differentia-
tion between micro- and macroheterogeneity, where micro heterogeneity corresponds to
the variation of glycan structures at a specific glycosylation site and macro heterogeneity
defines the site occupancy of the whole protein.48

Figure 1.4: Molecular details of N-glycosidic bonds and different N-glycan types.
N-glycans arise through a covalent bond between the side chain of an asparagine (N)
residue and a monosaccharide, as long as the asparagine occurs in the amino acid motif N-
X-S/T, where X can be any amino acid except proline, and serine (S) or threonine (T). The
glycosidic bond is formed via a nitrogen atom and is therefore termed N-glycosidic linkage.
There are different forms of N-glycans, the most dominant ones being the high-mannose
type and complex type glycans. The conserved core consisting of five monosaccharides is
highlighted in light gray. Carbon atoms are represented in gray, oxygen in red, nitrogen in
blue and hydrogen in white. Monosaccharide symbols are used according to the Symbol
Nomenclature For Glycans (SNFG) in congruence with the nomenclature of the Consor-
tium for Functional Glycomics.49 The N-gycan models were drawn using DrawGlycan.50

O-linked glycans should also be mentioned. They have a higher diversity compared to
N-linked glycans since many sugar core structures are possible and the number of sugar
residues in a chain vary from one to many. Glycosidic bonds can be formed between the
hydroxyl group of serine or threonine residues to either Fuc, Man, Gal, GlcNAc, glucose
(Glc) or xylose (Xyl). Without the necessity of a recognition sequence for the enzymatic
attachment of O-glycans, glycosylation predictions solely based on the protein sequence
are more difficult.

In general, glycosylations impart a discrete recognitional role to the protein and
broaden the range of its functionality.11 For instance, they are able to regulate the fold-
ing, stability and function of the underlying protein, provide target structures for lectins
and specific antibodies, and mediate cell-matrix interactions as well as cell-cell recog-
nition.43,51 Genetic defects in glycosylation, termed congenital disorder of glycosylation
(CDG), although rare, often result in embryonic death or a range of severe symptoms and
retardation, highlighting the vital role of glycans.52 The earliest hypotheses, discussing
why proteins are glycosylated, were brought up by Edwin Eylar in 1966 and Winterburn
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and Phelps in 1972.11,53 They suggested that glycosylation either serves as a marker for
extracellular transport, like a postage stamp, or codes for the topological location within
the organism.11 It is indisputable that the majority of glycoproteins occur on the extracel-
lular site of cells; however, glycosylated proteins can also be found in a variety of cellular
compartments.

When leaving the glycocalyx and travelling inwards into the cytoplasm, glycosylation
of proteins becomes less diverse. There are actually only a few modifications known, all
being based on an O-linkage and the attachment of single monosaccharides like GlcNAc,
Glc, Fuc or Man to serine or threonine (Figure 1.3).19 O-GlcNAc is quantitatively prob-
ably the most common type of glycoconjugate that can be found on over 6000 proteins,
represented in all functional classes and cellular compartments.54 Its function is hard to
summarize as it depends on the specific environment, development stage and of course the
protein type. Clinical examples that are influenced by O-GlcNAcylation include Diabetes
mellitus Type 2, breast cancer and lung cancer.55

Not to be forgotten is the glycosylation machinery, which is located entirely within the
cell. It is the basis for the enormous diversity of glycan structures, as these are not directly
encoded in the genome but produced and modified by a complex template-independent
network of enzymes. It reflects on the fact that the sugar code is not built on the same
principles as the genetic code, which is simply replicated based on a template, but rather
follows much more intertwined concepts due to its complex generation procedure. There
are around 250 – 500 genes that are devoted to the synthesis and remodeling of glycan
chains, giving rise to the already mentioned CAZymes, primarily acting in the endoplas-
mic reticulum (ER) and Golgi apparatus.13 The biosynthetic pathway of N-glycans in
eukaryotes is divided into the production of the dolichol pyrophosphate (Dol-P-P)-linked
precursor Glc3Man9GlcNAc2 and is followed by the attachment, trimming and subsequent
elongation of the glycan at the polypeptide chain.44 The first phase starts with the sub-
sequent addition of individual monosaccharides (first: two GlcNAc, second: nine Man,
third: three Glc) to the lipid-like polyisoprenoid molecule Dol-P-P at the ER membrane
facing the cytoplasm. The different monosaccharide types are mostly derived via epimer-
ization from the carbon and energy sources glucose or fructose, transported into the cell
and further enzymatically converted.56 For the elongation of an oligosaccharide by a new
sugar residue via a glycosidic linkage, monosaccharides first need to be activated via the
addition of nucleoside diphosphates, for example uridine diphosphate (UDP) or guanosine
diphosphate (GDP), forming nucleotide sugars.57 They provide sufficient energy in their
phosphor – ester bond to form the ‘high – energy’ glycosidic linkage by glycosyltrans-
ferases, where the individual steps to assemble the 14-sugar glycan Glc3Man9GlcNAc2 are
performed by a conserved set of asparagine-linked glycosylation enzymes at the cytoplas-
mic and luminal site of the ER.58 Transfer of the dolichol-linked precursor en bloc to the
asparagine of a recognition sequence in a protein is mediated by the oligosaccharyltrans-
ferase (OST), occurring co-translationally and post-translationally in the ER lumen with
the release of Dol-P-P (Figure 1.5).59
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Figure 1.5: Schematic N-glycosylation synthesis pathway in eukaryotes. The
N-glycan precursor is transferred to the polypeptide chain by oligosaccharyltransferase
(OST) in the ER lumen, prior to further trimming and decoration in the ER and Golgi.
The action of various enzymes is orchestrated to convert high-mannose type N-glycans into
hybride and complex ones. The processed protein is depicted as a coil in red and glycan
structures are represented with their monosaccharide symbols according to the SNFG.
Adapted from Essentials of Glycobiology, 4th Edition.44

Following attachment, the N-glycan is trimmed by the interplay of several enzymes,
such as α-glucosidase I & II cleaving off the three Glc and α-mannosidase I cleaving off
one terminal Man. In most cases the final structure is Man8GlcNAc2, where ER chaper-
ones also regulate folding of the glycoprotein before transfer to the Golgi.60–62 Shuttling
of premature glycoproteins to the cis-Golgi leads to additional trimming and formation of
Man5GlcNAc2 by the action of α1-2 mannosidases IA, IB, and IC.62 The resulting small
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high-mannose type N-glycan is the key building block for subsequent hybrid and complex
N-glycan synthesis, performed in the medial and trans-Golgi. Prior to cleavage of two fur-
ther mannoses by α-mannosidase II, a GlcNAc residue needs to be attached to the C2 of the
α1-3Man via the mannosyl glycoprotein N-acetylglucosaminyltransferase (MGAT1), form-
ing GlcNAcMan3GlcNAc2.63,64 After the addition of another GlcNAc sugar via MGAT2,
all glycans become complex, and GlcNAc, Gal, Fuc or Sia residues are gradually linked. It
is particularly important to understand that enzymes like glycosidases and glycosyltrans-
ferases are depending on the prior action of other glycosylation enzymes, as their substrate
recognition is fine-tuned, although they are also often acting on the same acceptor or donor
types and therefore compete for their substrates.44

Additionally, glycans along the whole pathway may also escape certain processing
steps, which is not necessarily bad, as high-mannose type N-glycans do originate from
this mechanism, resulting in structures of the form Man5−9GlcNAc2. Therefore, conse-
quences of incomplete glycan processing can result in i) the degradation and recycling of
the glycoprotein, ii) secretion of an immature glycoprotein to the plasma membrane or
iii) secretion of a mature glycoprotein harboring diverse high mannose or hybrid type N-
glycans on its surface. It is worth emphasizing that the outlined N-glycosylation pathway
is only an example and the expression of glycosidases and glycosyltransferases is highly
flexible, depending on the species, cell type and physiological conditions.

It is the outlined temporal and spatial flexibility of glycosylation patterns that leads
to a constantly changing sugar vocabulary on proteins and makes the interpretation of
glycan words and the creation of a dictionary so difficult. The impact of glycans is as
diverse as their structures, whereby recognition and reading by proteins leads to a spe-
cific biochemical function or signal. This means that the information transfer must follow
certain rules, which we need to understand if we want to decode the sugar code. What
has been disregarded until now is that particular residues are recognized not only due to
their monosaccharide type, but also their position in a branching structure or their global
conformation. An example for such topological recognition specificity is the enzyme α2,6-
sialyltransferase that transfers a 2→6-linked sialic acid to one of the termini of complex
N-glycans. It preferentially adds to the 1→3-linked branch (with a specificity orders of
magnitude larger than on other sites) although the residues on the 1→6-linked branch are
chemically identical back to the mannose at the junction (Galβ1→4GlcNAcβ1−2Manα−).65

Another example is the differential conformer selection of lectins14, where a plant and an
animal lectin bind to the same glycan tree, but to different conformations.66 It becomes
visible that there is an enormous impact of the three-dimensional glycan structure on
glycan recognition processes and underscores its vital role in deciphering the sugar code.

1.3 Conformational flexibility of glycans

Note: Throughout the dissertation the biochemical definition of configuration and con-
formation is used. A configuration describes the relative position of atoms in a molecule,
which can only be altered through cleaving and reforming chemical bonds. A conformation
is the shape of a molecule that can be adopted by means of rotation around single bonds.
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It was Emil Fischer in 1894, who discovered the specificity of enzymes like invertase (hy-
drolyzing saccharose in fructose and glucose) for their substrate configurations (epimers
and anomeric configurations), concluding that the correct configuration of the substrate
in the protein binding pocket is required to fit like a key to a lock.67 Almost hundred
years later, nuclear magnetic resonance (NMR) and Molecular Dynamics (MD) simula-
tions discovered the conformational flexibility of glycans, enabling them to switch between
diverse low-energy conformers, in contrast to existing as one rigid three-dimensional struc-
ture.68–70 It was the beginning of an hypothesis presuming that due to the different con-
formers adopted by one glycan configuration, there must be a bunch of keys which can
be selected by a receptor.71 The different conformers are part of a conformational phase
space that sketches a landscape with maxima and minima of energy, where the movement
from one valley to the next is a rapid process. This has long been overlooked in exper-
imental techniques because of the usage of crystallography, as glycans can prevent the
crystallization process and are often enzymatically removed prior to experiments.14

Figure 1.6: Torsion angles and puckering: Conformational variables describing
the key degrees of freedom of polysaccharides. Depicted are two disaccharides
connected via a 1→4 and 1→6 glycosidic linkage, respectively, with torsion angles ϕ, ψ
and ω for their geometrical description. Carbon atoms are represented in gray, oxygen
in red, nitrogen in blue and hydrogen in white. Green arrows indicate the direction of
elongation. Existing puckering conformations can be described by the spherical pucker
coordinates ϕ, θ and Q, locating the chair conformers at the poles (C), the boat (B)
or skew-boat (S) conformers at the equator and the half-chair (H) and enveloped (E)
conformers inbetween (not shown).72

Primarily, conformers differ in their torsion angles around the glycosidic linkages be-
tween monosaccharides. Depending on the linkage type, there are either two or three
torsion angles per linkage, denoted ϕ, ψ and, in the case of 1→6 linkages, ω (Figure 1.6).
1→6 linkages represent a special case, as the C6 carbon is not part of the six-membered
saccharide ring, introducing an additional degree of freedom and therefore a third tor-
sion angle. The relative positions of the individual saccharide monomers within each
possible conformer are stabilized by hydrogen bonds between the hydroxyl groups of the
monomers.73,74 Torsion angles are defined as ϕ = O5′–C1′–Ox–Cx, ψ = C1′–Ox–Cx–
C(x–1) and ω = O6–C6–C5–O5, with x being the carbon number of the linkage at the
non-reducing end. An exception are the 2→6 angles between Gal and Neu5Ac, which are
defined as ϕ = O6′–C2′–O6–C6, ψ = C2′–O6–C6–C5 and ω = O6–C6–C5–O5.

Furthermore, the second structural feature is characterized by the distortion of the
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six-membered ring, also called puckering (Figure 1.6). It describes the position of the
six atoms within the ring, 4-5 located on the same plane and 1-2 out-of-plane, depending
on the conformation. There exist 38 puckering conformations which can be grouped into
classes termed chair (C), half-chair (H), enveloped (E), skew-boat (S) or boat (B).75 Chair
and boat conformations exhibit out-of-plane atoms on opposite sites, the former having
one atom up and one down (1C4, 4C1), the latter both atoms up or down (e.g. 2,5B, B1,4).
Half-chair (e.g. OH5, OH1) and skew-boat (e.g. 3S1, 5S1) conformers display four and
three consecutive atoms on a plane, respectively, having two atoms out of plane, one up
and one down. Envelope conformers contain only one out-of-plain atom (e.g. 3E, E3).
All conformers can be unambiguously mapped in a three-dimensional fashion using the
spherical pucker coordinates ϕ, θ and Q, introduced by Cremer and Pople.72 Monosaccha-
rides occur predominantly in the chair conformations 1C4 or 4C1, depending on the sugar
type, especially when they are involved in glycosidic linkages. It is believed that due to
the equatorial alignment of sugar residues in a glycan accomplished by chair conformers,
there are no steric hindrances or repulsions between atoms that are involved in hydrogen
bonds, favoring this puckering.76 Interconversion between pucker conformers depends on
the monosaccharide type and the chemical environment, as well as on the exocyclic groups,
which where shown to have an immense impact on the determination of energetical bar-
riers between the different puckering conformers.77

The flexibility of glycans can be thought as the wacky movement of skydancers, con-
stantly in motion with arms jumping up and down, heads moving from left to right, from
front to back. It is unsurprising that nature is touching upon this feature, realizing that
different conformations can affect enzymatic reactivity.77 In the broadest sense, the gly-
cobiology community is aware of the conformational flexibility of glycans, however, we
are only beginning to understand its impact on the glycan functionality discussed in the
above section. Especially, hard to unveil is the even further diversification of the sugar
code due to the bunch of keys a single glycan represents, instead of only one. In most
cases, we are in the dark; not able to grasp the still underestimated essential presence of
glycan structures on biological macromolecules, due to lack of knowledge or of shortage of
appropriate methodologies.

1.4 Structural glycobiology

To shed a little light on the dark, we want to pick up on the conformational flexibility of
carbohydrates, also considered as the third dimension of the sugar code.13 We focus on N-
glycans in particular; their omnipresence on many protein surfaces and their sizes of seven
to around thirty monosaccharides in eukaryotic cells make them a valuable target. When
turning towards the investigation of their three-dimensional structures, one still experi-
ences a lasting lack of suitable experimental methods to capture the many conformers a
certain glycan configuration can adopt. Information about the average three-dimensional
structures (average of glycan conformations) adopted by N-glycans, characterized by tor-
sion angles along the glycosidic linkages, can in general be obtained by NMR or, in some
cases, X-ray diffraction.78 However, X-ray crystallography is highly unqualified to capture
rapid motions in molecules, due to the required crystalline nature of the sample. Even the
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structural resolution of glycoproteins can be troublesome, as the hydrophilic and flexible
N-glycans prevent crystallization and enzymatic cleavage of attached structures or muta-
tion of N-glycosylation sites to prevent their modification is necessary.79 If glycans remain
attached, the maximum amount of structures resolved is limited to those that are in close
contact to the protein surface, which might be the case for GlcNAc residues present in the
core of N-glycans or glycans that act as ligands in a catalytic site. This issue leads to a
great loss of information on glycosylation patterns and glycan conformations, as until now
most structures are still resolved via X-ray crystallography.80 Additional problems, like
a missing common naming convention of glycan residues in the past, concur to the fact
that only around 0.9 % of PDB entries are glycoproteins, in contrast to their ubiquitous
occurrence.78 A more successful technique in the structure determination of N-glycans is
NMR, providing information about the linkage, anomeric configuration and glycan con-
formation.81 For example the nuclear Overhauser effect (NOE) can deliver information
about linkage conformations, but it is limited to short ranges (only up to 5 Å). Several
NOEs are needed to unambigously map one conformer and in the end one only obtains an
average three-dimensional structure, as measurements are executed on the millisecond to
second time scale, during which the glycan can adopt several different conformations.81

The same averaging problem also applies to NMR J -coupling constants, providing infor-
mation about torsion angles of different glycan conformations.81 One point from which
both methods, X-ray crystallography and NMR, are suffering is the large amount of pro-
tein sample required, because the expression in bacterial systems, which generally yields
the largest amounts, is problematic for glycoproteins.

In principle, only atomic-scale simulations are able to capture the dynamic behavior
and deliver full details of the probability distribution of possible conformers in an N-glycan
population.77,82,83 The shortcoming of experimental methods and advantages of MD sim-
ulations was already recognized in the 1990s when simulating disccharides, although the
early potential energy functions could not match experimental NMR values.69 Even to-
day the accuracy of employed force fields and the ergodicity of the used methods are the
two most crucial points in order to obtain correct conformer distributions and still re-
quire refinement.84,85 In particular, the slow transition between different conformational
(rotameric) states prevents efficient phase-space sampling and convergence of conformer
distributions in plain MD simulations.86,87 For this reason, various enhanced-sampling
MD techniques have been used to facilitate the crossing of relevant energy barriers and
accelerate transition probabilities. These will be described in chapter 2 of this dissertation.
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1.5 Objectives - N-glycans from different perspectives

This work aims to address current issues in the field of computational structural glycobiol-
ogy. Summarizing the points mentioned above, there is a lack of proper glycan conformer
sampling in MD simulations because of their high flexibility imposed by the many torsion
angles. Along that line, there is no uniform glycan conformer labeling scheme imple-
mented, preventing the possibility to quantify conformations and validate if and which
are of greater importance. These global issues prevent the elucidation of the third di-
mension of the sugar code in MD simulation approaches, although this methodology is
one of the most promising techniques in the glycobiology field to study three-dimensional
structure-function relationships. In this dissertation the focus will be on both method-
ological advances as well as their application to solving current scientific questions:

• Chapter 3 covers the development of a novel enhanced sampling scheme applied
to free N-glycans in solution in order to tackle their flexibility in MD simulations
(Figure 1.7 left).

• Chapter 4 discusses the impact of post-translationally added N-glycans on the struc-
ture and function of the parasitic enzyme trans-sialidase from Trypanosoma con-
golense, which is known to be an important virulence factor of the disease try-
panosomiasis (Figure 1.7 middle).

• Chapter 5 deals with a putative mutual dependence between torsion angles and
puckering of N-glycans, especially when serving as substrate for CAZymes (Figure
1.7 right).

Figure 1.7: Overview of chapter organization. Investigation of N-glycans in vari-
ous physiological environments: first on their own in solution, second when attached as
post-translational modifications to proteins, and third when being substrates in catalytic
binding sites.

The three chapters present results that were obtained in separately conducted and indi-
vidually conceptualized studies. However, they are interconnected by their aim to add
more insights into the concept of the sugar code, having a common focus on the flexibility
of N-glycans and its function in various biological settings (sequence to three-dimensional
structure-to-function relationship). The following sections outline the aim of each of the
three mentioned chapters in more detail.
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1.5.1 On their own - Exploring the flexibility of N-glycans

It may seem arbitrary to analyze a molecular compound on its own, if this only exists in
a conjugated fashion. There are, however, several issues associated with the simulation of
N-glycans at the molecular level which have to be resolved prior to the investigation of
biologically relevant systems.

First, the unraveling of the sugar code is strongly impaired by the lack of standard struc-
tural descriptors, such as α-helices and β-sheets for polypeptides. Moreover, the non-
linear, branched architecture of glycan chains and the variability of the type of linkages
between the sugar monomers prevents the description of their three-dimensional structure
in terms of a few conformational variables, as done in proteins via the two-dimensional rep-
resentation of a Ramachandran plot.88 Consequently, a glycan conformer labeling scheme
is required to facilitate the fundamental study of three-dimensional structure-property re-
lationships in N-glycan systems.

Second, computational studies in the past have shown that even enhanced sampling tech-
niques, including replica-exchange MD (REMD)89, Hamiltonian replica-exchange MD (H-
REMD) with solute scaling (REST2)90, well-tempered metadynamics 91 and Umbrella
Sampling (US)92, do not necessarily guarantee the convergence of N-glycan distributions
when simulated free in solution. The flexibility of individual glycan branches is reminis-
cent of the conformational variability of disordered peptides. For instance, methods based
on bias potentials applied to specific collective variables (CVs), such as well-tempered
metadynamics, have so far focused on only few specific torsion angles (e.g. ω)87, not giv-
ing justice to the structural complexity of N-glycans with multiple branches.87,93–95 Also
CV-independent methods such as REMD do not guarantee complete phase-space sam-
pling87,93,96, and require elaborate pre-calculations when used together with additional
bias potentials.94,97 Hence, there is a need to overcome these difficulties by developing
new sampling approaches and achieving converged N-glycan conformer distributions.
Third, even converged trajectories do not guarantee correct conformer distributions per
se, as the underlying empirical force field performance is reliant on a correctly param-
eterized potential energy landscape. There are several biomolecular force fields includ-
ing carbohydrate parameters that vary in their conceptual setup, the extent of available
monosaccharide types and parameterization attempts.98 A comparison of these is neces-
sary, monitoring their performance in comparison to experimental results as differences
were found when simulating free glycans as well as protein bound ones.84,99 Methodological
advances covering the above mentioned issues are introduced in chapter 2 and 3 and their
usefulness tested in various application scenarios like the sequence to three-dimensional
structure paradigm of N-glycans.

1.5.2 At the side - Importance of surface glycosylation for neglected
tropical diseases.

The post-translational modification of proteins by glycan molecules became popular and
recognized during the last century. However, it only experienced a great boost during the
SARS-CoV-2 pandemic, where studies about the N-glycan shield of the spike protein pre-
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dicted its involvement in the recognition process via its receptor angiotensin-converting
enzyme 2 (ACE2) by modulating the conformational dynamics of the receptor binding
domain (RBD). This was made possible by the usage of experimentally determined glyco-
sylation patterns in purely computational MD studies.100,101 The spike protein is a great
example for the exploitation of our sugar code by pathogens like enveloped viruses. As
they replicate in human cells and utilize their internal glycosylation machinery, N-glycan
patterns on viral receptor-attachment proteins or membrane-fusion proteins located in
the outer membrane are identical to our own.102 Glycans therefore facilitate infections
by increasing transmission, viral binding to host cells or pathogenicity as they can mask
antigenic sites, evading antiviral therapy due to a lack of antibody generation.102

Even pathogens that do not use the intracellular replication machinery of their hosts
can still benefit from its N-glycosylated compounds. For instance, trans-sialidase (TS)
enzymes, from the Glycoside Hydrolase Family 33, that are expressed on the surface of
different species of parasitic Trypanosoma (T.), unicellular flagellate protozoa, utilize N-
glycan compounds for their survival. The membrane-anchored enzymes cleave terminal
Sia residues from host-cell glycoconjugates and transfer them to galactose residues on
their own surface.103–105 This surface sialylation has different beneficial functions for the
parasite, which is unable to synthesize Sia de novo. During the cyclic trypanosomal life
cylce, which alternates between a mammalian host and the tsetse fly as a vector106,107,
TSs particularly promote the survival of the trypanosome in the insect vector and enable
it to escape the host’s immune system.108–112 The associated neglected tropical diseases
can infect different mammalian hosts depending on the actual trypanosomal species; it
includes the human pathogen T. cruzi, causing Chagas disease in South America, T. bru-
cei gambiense and T. brucei rhodesiense, causing human African trypanosomiasis, also
known as sleeping sickness, as well as animal pathogens being responsible for the animal
African trypanosomiasis (mainly T. brucei brucei, T. congolense, T. vivax).103,104,113,114

Typical symptoms of trypanosomiases are weight loss, anemia accompanied by fatigue
and immunosuppression. Focusing here on the animal African pathogens; they cause fatal
economic losses in agricultural sectors due to reduction of cattle population by 30 – 50 %
and meat as well as milk production by 50 %, also leading to increased abortion rates and
decreased birth rates in livestock.115 These effects are causative agents for the overall re-
duction of benefits from livestock and farming, making it a top unstable form of sustenance.
Thus, proper treatment of the disease and especially control of the parasite or vector are
important. As TSs represent important virulence factors, they are also promising drug
targets or vaccine candidates to combat the fatal diseases caused by trypanosomes. Their
detailed study is therefore of high interest and is dealt with in chapter 4.

In addition to their catalytic activity involving the transfer of a sugar residue, of
which the mechanism was under study for many years, only little attention has been
drawn to the N-glycosylation sites present in the sequences of TSs.116–119 The existence
of high-mannose type N-glycans has been inferred indirectly by concanavalin A (ConA)
purification for many TSs in early years.104,120,121 Also other trypanosomal surface proteins
were reported to harbor shorter high-mannose type N-glycans.122–129 However, the lack
of experimental data about detailed glycosylation patterns of TS enzymes has aggravated
the study of the impact of surface glycosylation. Only the high number of recent studies
providing increased evidence for N-glycans modulating substrate binding and turnover in
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various enzymes, like human proteases, where the influence was shown to be site-specific
depending on the occupancy and diversity of N-glycans 130–133, has motivated us to deep
dive into the study of surface glycosylation and its impact on TS activity. First, the
dominant N-glycan types at each glycosylation site had to be experimentally determined,
in order to be able to build an atomistic model of the glycan shield around the protein.
Further, a combination of experimental approaches and MD simulations was employed to
investigate the impact of N-glycans on substrate binding, potentially inherent to several
members of the TS enzyme family.

1.5.3 In the middle - Induction of glycan conformations by CAZymes

Figure 1.8: Catalytic mechanisms of glycoside hydrolases. A Bond cleavage oc-
curs between the residues -1 and +1, where the monosaccharide at position -1 (facing
the non-reducing end and representing the leaving group) is distorted towards a pucker
conformation different from 4C1. B Excerpt from the mode of action of inverting and re-
taining glycoside hydrolases, both of which contain a distorted sugar residue at position -1
in their transition state. An oxocarbenium ion is stabilized through an electron donation
from the ring oxygen, leading to a positive charge at the anomeric carbon. This results in
a distortion from the relaxed 4C1 conformation into a structure where the C1, C2, C5, and
O atoms are as coplanar as possible, which is true for some boat, half-chair and envelope
conformations. Redrawn from Aldèvol et al.134

Next to their role as post-translational modifications, glycans also serve as ligands for
enzymes grouped under the term CAZymes, like glycoside hydrolases (GH) or glyco-
syltransferases (GT). There are almost 300 families of discreet folds known that have
carbohydrate-binding activity within CAZymes; a result of the need to adapt to the many
different glycan structures available.135 The diversity of enzymes is especially required
under the consideration that GHs and GTs are solely responsible for the formation or
breakage of all glycosidic bonds and the transfer of all carbohydrate residues within a
cell. Especially the reaction mechanisms of GHs are of particular interest, as the glycan
substrates undergo conformational changes regarding their puckering at monosaccharide
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position -1 when bound to the catalytic site, being slightly different for different GH fam-
ilies and different substrates (Figure 1.8 A).77,134 The rearrangement is often necessary
to achieve an axial linkage or oxocarbenium-ion character, resulting in a higher catalytic
efficiency for adjacent bond cleavage, irrespective of the hydrolytic mechanism being in-
verting or retaining (Figure 1.8 B).77,134 The origin of this conformational pucker change
is debated to either arise through the chemical environment of the catalytic pocket or from
global conformational changes of the glycan itself.134 This fundamental research question
was left unanswered in the past due to missing structural complexes of CAZymes with
their corresponding carbohydrate substrates.134 Although this issues has been resolved for
many examples in recent years, the structural flexibility of glycan substrates as well as the
dynamical nature of enzyme scaffolds give rise to major problems when studied by theo-
retical methods like MD simulations, molecular docking or quantum mechanics/molecular
mechanics (QM/MM) approaches. It is either a lack of convergence in MD simulations due
to incomplete sampling of the substrate’s degrees of freedom, a limited receptor flexibility
in molecular docking algorithms, or the too short timescales in QM/MM approaches.136

As it is assumed that the precise conformation of the carbohydrate substrate has a sig-
nificant effect on catalysis, the exploration of the complete conformational phase space of
the glycan within the binding pocket is indispensable, especially, in order to answer the
question whether certain glycan conformers favor monosaccharide pucker conformations at
position -1 that are structurally prone to enzymatic cleavage. We aimed at addressing the
outlined conformational versus chemical debate by employing α-mannosidase II (GMII)
as a model system in chapter 5, knowing that its glycosylation reaction follows a pucker
itinerary involving rearrangements from 4C1 over OS2 to B2,5 in its transition state. If
the distorted pucker conformation in the transition state is achieved by the enzyme via its
chemical environment or by a restricted conformational shape of the glycan in the binding
site was examined via enhanced sampling MD simulations, QM calculations as well as
employment of dimensionality reduction algorithms.
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2 | The computational microscope

Note: Parts of this chapter are taken from the publication: I.L. Grothaus, G. Bussi, L.
Colombi Ciacchi, Exploration, representation and rationalization of the conformational
phase-space of N-glycans, Journal of Chemical Information and Modelling, 62(20):4992–
5008, 2022.137

Figure 2.1: Respiratory aerosol with Delta SARS-CoV-2 virus particle from an
all-atom MD simulation. The coronavirus (purple) with its Spike proteins (light blue)
is surrounded by components of the deep lung fluid like mucins (red), albumin (green)
as well as lipids (orange). The simulation box comprises over one billion atoms and was
run for over 2 ns.138 Figure copied with permission from Lorenzo Casalino and Abigail
Dommer (Amaro Lab, UC San Diego). Modeling: Abigail Dommer, Lorenzo Casalino,
Fiona Kearns, Mia Rosenfeld, Nicholas Wauer, Clare Morris, Rommie Amaro (Amaro
Lab, UC San Diego).
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Molecular dynamics simulations were developed in the 1950s139, as a theoretical and
computational technique that explicitly moves atoms in condensed matter over time. It
enables the visualization of dynamical processes on an atomistic scale, often giving insights
into mechanisms that can not be resolved by wetlab experiments. The progress in the
field of MD simulation techniques and the increase in computational power have brought
us to a complexity level where we can build up systems containing several millions of
atoms and reach time scales up to milliseconds. Compared to the pathetic computational
time of few picoseconds (ps) for a protein in the 1970s140, nowadays, MD simulations
can be characterized as a computational microscope depicting whole organelles or even
cells. The recent investigation of a SARS-CoV-2 virus in an aerosol particle via all-atom
MD simulations, one of the largest biological systems that has been modeled so far, gave
important insights into our understanding of airborne disease transmission (Figure 2.1).138

In order to understand how biology can be modeled with a computer, the mathematical
concepts behind MD simulations and the limitations of the method should be discussed.
The most prominent issues can be summarized by the following three points141:

• accuracy of force field parameters, which influence a correct description of the sim-
ulation system,

• limitation of simulation time, which can prevent the exploration of processes of
interest,

• dimensionality of output data, which can hamper the interpretation of results.

In contrast to protein-related systems, less attempts have been performed to overcome
these limitations in the study of glycans. The following three sections discuss the limi-
tations with reference to the glycan perspective, highlighting the state of art and finally
presenting improvements and new routes of investigation.

2.1 The approximation of energies

The basic concept behind MD is to solve Newton’s equations of motion in order to move
atoms over time, generating a trajectory in phase space. More precisely, Newton’s second
law can describe the time evolution of the position of N classical particles, depending on
the acting force Fi(t) on each particle i with mass mi:

Fi(t)
mi

= ai(t), with ai(t) = r̈i(t). (2.1.1)

The resulting acceleration ai(t) is the second time derivative (indicated by double dots)
of the particle’s position ri(t), which can therefore be calculated via integration. Bold
letters always indicate vectors. The forces (F1(t), ...,FN (t)) acting on the particles arise
from the interaction among all individual particles in the system and can be derived from
the gradient of the potential energy Epot(r1(t), r2(t), ..., rN (t)) = Epot(r(t)):

Fi(t) = −∂Epot(r(t))
∂ri

, (2.1.2)
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under the assumption that no energy is lost due to friction or dissipation. Hence, the
forces are considered to be purely conservative and the total energy of the system Etot can
be described by the sum of the kinetic energy Ekin and Epot:

Etot = Ekin + Epot =
N∑︂

i=1

1
2mi · v2

i + Epot(r), with vi = ṙi, (2.1.3)

where the first time derivative of the particle positions ri enters into the formula of Ekin and
is defined as the velocity vi. The conservation of energy can be proven by differentiating
equation 2.1.3 with respect to time and (∂Etot

∂t = 0), equalizing to zero. The total energy
can also be expressed via the Hamiltonian H as a function of the position and momentum
pi = mi · vi of each particle i, similarly to equation 2.1.3:

H(r,p) =
N∑︂

i=1

p2
i

2mi
+ Epot(r), (2.1.4)

with (p = p1,p2, ...,pN ). Taking the partial derivative with respect to pi and ri, respec-
tively, yields the Hamilton’s equations of motion:

∂H

∂pi
= pi

mi
= ṙi, (2.1.5)

∂H

∂ri
= dEpot

dri
= −Fi = −ṗi, (2.1.6)

which determine the position vectors and momenta of the N particles as a function of time.
The integration of these differential equations for a many-body problem is analytically
not possible and therefore numerical integration is performed by breaking down the time
t into short time steps δt. This implies that the force Fi(t) acting on each particle in its
current positions ri(t) is computed each time step and remains constant during δt until
the new position at t + δt is predicted from equation 2.1.1. Finite-difference approaches
are the method of choice for the determination of positions and its time derivatives, using
truncated Taylor expansions:

ri(t+ δt) = ri(t) + vi(t)δt+ 1
2ai(t)δt2 + O(δt3) (2.1.7)

vi(t+ δt) = vi(t) + ai(t)δt+ O(δt2), (2.1.8)

with O(δtN ) being the order of the truncation error. One example used throughout this
dissertation is the Leap Frog algorithm142 that updates positions at time t and velocities
at time t± 1

2δt. The determination of velocities at a mid-step, ‘leaping’ over the positions,
have shown to increase the stability and accuracy of the algorithm. First, the current
positions ri(t) are used to obtain the accelerations ai(t) from the forces Fi(t) acting on
the particles according to equation 2.1.1. The velocities at the next mid-step vi(t + 1

2δt)
are then derived from the velocities at the previous mid-step vi(t− 1

2δt) and the current
accelerations:

vi

(︃
t+ 1

2δt
)︃

= vi

(︃
t− 1

2δt
)︃

+ ai(t)δt+ O(δt2). (2.1.9)

23 of 176



2.1. The approximation of energies 2. The computational microscope

The updated positions ri(t+ δt) are finally obtained from the previous positions and the
updated velocities:

ri(t+ δt) = ri(t) + vi

(︃
t+ 1

2δt
)︃

+ O(δt2). (2.1.10)

In order to obtain Ekin and Epot at the same time, the velocity vi(t) can be estimated
from the average of the velocities of the previous and next time-step. The velocities at the
previous mid-step vi(t− 1

2δt) are most often missing at the beginning of an MD simulation
(t = t0) and can be estimated from the Maxwell-Boltzmann distribution fv, providing the
probability for the velocity vector [vx, vy, vz] as a function of temperature:

fv(vx, vy, vz) =
(︃

m

2πkBT

)︃ 3
2

exp
[︄
−
m(v2

x + v2
y + v2

z)
2kBT

]︄
, (2.1.11)

with kB being the Boltzmann constant and m the particle mass. The most probable
velocity at temperature T can be calculated from the maximum of the distribution, as
well as the mean velocity from the weighted integral over all possible velocities.

The various known finite-difference algorithms like Verlet143, Velocity Verlet144 or
Leap Frog only differ in the truncation error of the Taylor expansion. The derivation of
the time step δt = 2 fs generally used in standard MD simulations is further explained in
appendix A.1.

2.1.1 The potential energy function of force fields

When integrating the Newton’s equations of motion, in principle only mi, ai and Fi are
required as inputs. However, from equation 2.1.2 it becomes apparent that the potential
energy Epot is required to derive Fi. In MD simulations an empirical potential energy
function is utilized to determine Epot at every step for every particle in the system. This
approach is only an approximation but it often delivers acceptable accuracies due to the
high number of parameters that are included in the calculation of Epot, allowing the repro-
duction of experimental bulk phase properties.145 The widely used Class I potential energy
function consists of a bonded part that corresponds to connected atoms in a molecule and
a nonbonded part describing the interatomic electrostatic and van der Waals (vdW) in-
teractions145:

Epot = Ebonded + Enonbonded (2.1.12)

The potential energy arising from the connectivity of atoms is described by a sum over
all bonds of lengths b, all valence angles θ and all torsion angles, differentiating between
proper (ϕ) and improper (φ) torsions:

Ebonded =
∑︂

bonds

kb(b− b0)2 +
∑︂

angles

kθ(θ − θ0)2 +
∑︂

improper
torsions

kφ(φ− φ0)2+

∑︂
torsions

6∑︂
n=1

kϕ,n(1 + cos(nϕ− δn)).
(2.1.13)

Herein, kb, kθ, kϕ, kφ are the force constants, b0, θ0, φ0 the respective equilibrium values, δn

the phase shift and n the multiplicity of the function.145 In this representation, bonds and
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angles are described through simple harmonic potentials according to Hooke’s law. Torsion
angles are expressed by the first few terms of a Fourier cosine series. The improper term is
used to describe the so-called out-of-plane bending of trigonal groups, which is important
for the description of aromatic rings to ensure the maintenance of planarity.

In the nonbonded part, the electrostatic term is described by the Coulomb potential
(first sum) and the vdW term typically by the Lennard-Jones (LJ) 6-12 potential (second
sum) in a pairwise fashion:

Enonbonded =
∑︂
i<j

qiqj

4πε||ri − rj ||
+
∑︂
i<j

ϵij

⎡⎣(︄ σij

||ri − rj ||

)︄12

− 2
(︄

σij

||ri − rj ||

)︄6
⎤⎦ , (2.1.14)

in which qi and qj are the partial atomic charges on each particle i and j, and ||ri − rj ||
the distance between atoms i and j. ε is the dielectric constant in vacuo, ϵij the well
depth of the particle pair potential and σij the distance where the potential reaches a
minimum. The Lennard-Jones potential handles short distance repulsive interactions with
the r−12 term and attractive dispersive interactions at long ranges with the r−6 term.
When computing heteroatomic interactions between two different atom types i and j, the
Lorentz-Berthelot146 combination rules are applied:

ϵij = √
ϵii · ϵjj , (2.1.15)

σij = σii + σjj

2 . (2.1.16)

Dispersive vdW and electrostatic interactions between atoms that are separated by less
than three bonds are not considered in the non-bonded part and a special 1-4 interaction
scaling term is applied to atoms separated by three covalent bonds, reducing their magni-
tude of interaction. Thereby, bonded atoms separated by two other atoms (three bonds)
do not only feel the potential term of the torsion angle but also a nonbonded contribution.

In most biomolecular MD simulations each atom present in the system is simulated
explicitly (so-called all-atom approach). Therefore, the aforementioned particles symbol-
ize atoms that are treated as point masses with a fixed atom-centered point charge, which
is a very minimalistic description of the quantum mechanical (QM) reality. This radical
approximation is necessary in order to access biologically relevant system sizes and time
scales, as quantum mechanical calculations, based on the solution of the Schrödinger Equa-
tion, exhibit extremely poor computational scaling.145 Each element (e.g. C) is further
divided into specific subgroups and labeled accordingly (OC for a carbon bonded to an
oxygen or CH3 for a carbon bonded to three hydrogens), incorporating the chemical envi-
ronment and linkage of each atom resulting from different hybridization states. Molecules
are therefore treated as mechanical systems, where atoms are connected by springs, which
can not be broken in the duration of a simulation. The above mentioned contributions to
the total potential energy of the system require the careful consideration of long-distance
effects, where the concept of periodic boundary conditions and suitable methods to de-
scribe long range interactions accurately are explained in the appendix A.2 and A.3.
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2.1.2 Biomolecular force fields

The physical model described above for the approximation of potential energies of an
all-atom system (equation 2.1.12) is referred to as a force field. It also includes required
parameters that enter into the calculation of the energy function such as equilibrium val-
ues and force constants. A quite general form of the function is given in equations 2.1.13
and 2.1.14, however it needs to be noted that depending on the force field type, the terms
entering into the function can vary although the separation into bonded and nonbonded
interactions is conserved. The parameter set is even more force field depended and mostly
determines the quality of performances for the applied molecular system. Depending on
the parameters, their values are estimated from matching MD simulations to experimental
studies or quantum mechanical calculations. Parameters are most often derived for small
model compounds and further generalized to build up a molecule from many small func-
tional groups, ensuring transferability of the parameterization to many diverse molecular
structures.

The parameterization procedure is usually performed in a sequential fashion: First,
force constants of bonds and angles can be derived from infrared radiation (IR), Raman
scattering or QM-based normal-mode analysis and corresponding equilibrium values from
X-ray crystallography or QM calculations.147 Subsequently, the partial atomic charges for
the Coulomb potential are derived from the electrostatic potential (ESP) of the molecule
calculated from ab initio QM simulations.148 Atom-centered point charges that reproduce
the QM ESP are determined, under restraints which guarantee the same point charge on
equivalent atoms.149 Next, the ϵij and σij vdW parameters can be derived from crystal
structures but are more commonly taken directly from MD simulations.147 Especially the
accurate description of bulk phase properties is highly dependent to the dispersive inter-
actions. Usually parameters are fine-tuned by comparing to experimental properties like
liquid densities, heats of vaporization or free energies of hydration. Lastly the torsional
terms are optimized, eminently influencing the performance of a force field due to the large
structural changes they can induce.148 Parameters are obtained from ab initio QM calcula-
tions, via torsion scanning calculations, where the potential energy surface for the rotation
around the torsional axis is determined. In subsequent MD simulations, the torsional force
field term is then fitted to reproduce the rotational profile. The performance can be eval-
uated against experimentally measured frequencies and energy differences.147,148 As the
torsion angle term is fitted last, it is mainly affected by the parameterization of 1-4 in-
teractions (non bonded interactions separated by three bonds), influencing the torsional
energy.148

The large amount of parameters to fit and the dependency and correlation between
the different terms make the parameterization procedure a difficult task. The parameters
highly depend on each other and sometimes also lack physical significance as approxima-
tions have to be made in order to provide a certain degree of generalization for different
types of systems and need to incorporate solvent effects. All these compromises make
the force field concept in its current form purely empirical. Its application will therefore
necessarily result in foreseeable shortcomings and inaccuracies that can only in part be
reduced by continuous refinement of parameter sets.
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The outcome of this parameterization ambiguity is a divergent evolution of several dif-
ferent force fields for the same biomolecules, requiring a critical comparison and assess-
ment regarding their performance for different applications. Commonly used biomolec-
ular force fields for the simulation of carbohydrates or protein-carbohydrate systems are
for instance the Chemistry at Harvard Molecular Mechanics (CHARMM)150–152, AM-
BER153–155, Groningen Molecular Simulation (GROMOS)156–159 or OPLS-AA.160,161 They
mostly do not only provide parameters for standard amino acids, but also for lipids, RNA,
DNA, carbohydrates and ions, enabling the simulation of complex biological systems. Un-
fortunatly, the GROMOS and OPLS-AA force fields only provide a small parameter set
of monosaccharides and are rather suited for the simulation of unlinked glycans.162 Since
the simulation of glycoconjugates is desired in this work, the focus will mostly lie on the
CHARMM and AMBER force fields, providing parameters for most pyranoses and fura-
noses.162 The latest CHARMM force field version called CHARMM36 provides parameters
for proteins, nucleic acid, lipids and carbohydrates in an additive fashion. Additionally,
there is the CHARMM General force field (CGenFF) for any organic molecule that can
be combined with the all-atom CHARMM36. The structuring of the AMBER force field
family is different, as there exist individual force field names for each biological compound.
For instance the latest versions are termed ‘ff19SB’ for proteins153, ‘GLYCAM06j’ for car-
bohydrates155, ‘lipids21’ for lipids163 and ‘gaff2’ for small organic molecules164, whereby
they can all be combined within one simulation.

The differences between the functional forms of both force fields, as well as alternative
approaches for obtaining force field parameters should shorty be discussed to highlight the
general divergences. The current CHARMM36 force field version was derived from the
first all-atom CHARMM force field termed CHARMM22 with improvements of side-chain
dihedral parameters and reoptimization against high-level QM data.165,166 The CHARMM
force field especially deviates from the standard Class I potential energy function in the
bonded part, as it is extended by two extra terms in addition to those in equation 2.1.13.
On the one hand, the valence angle between terminal atoms (1,3) is improved by the
harmonic Urey-Bradley term:

EUB =
∑︂

angles1,2,3
kUB(r1,3 − r1,3;0)2, (2.1.17)

where kUB represents the force constant, r1,3;0 the equilibrium value and r1,3 the instan-
taneous value of the distance.145 On the other hand, the correction map term CMAP
enhances the correct conformational properties and secondary structures in peptide bonds
along the ϕ and ψ angles, enabled by a cubic spline potential that corrects the two-
dimensional energy surface along ϕ and ψ. It can however not be assumed that these two
terms impact the performance of the glycan parameters as the Urey-Bradley term only
acts on terminal atoms that likely do not influence the rotation around torsion angles and
CMAP is only applied to peptide bonds. Regarding the parameterization philosophy, the
CHARMM force field performance is optimized to be relevant in condensed-phase applica-
tions, reproducing densities and heats of vaporization of bulk liquids.145 Partial charges are
derived by the supramolecular approach167, where the minimum interaction energies and
distances between functional groups and water molecules are first determined by ab initio
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simulations. Charges are then optimized to reproduce these values in MD simulations of
the corresponding compound with the TIP3P water model.148

The first all atom force field of the AMBER family for the explicit simulation with wa-
ter molecules was AMBER ff94. Over the subsequent force field versions, primarily torsion
angles parameters have been refined using QM calculations and experimental data sets for
small peptides. The functional form of the AMBER family strictly follows that of equa-
tions 2.1.13 and 2.1.14 without any additional terms, therefore being almost identical to
the CHARMM force field in terms of glycan simulations due to the point discussed above.
The two force fields, however, differ regarding the parameterization of partial charges, as
the AMBER family tries to obtain atomic charges that reproduce the electrostatic po-
tential computed from QM calculations using Hartree-Fock in the gas phase.165,168 The
problem that these charges do not reproduce polarizability in the bulk phase is counter-
acted by the usage of the HF/6-31G* level of theory, overestimating the dipole moment
by 15-20 % compared to gas phase values.148

Nevertheless, the solutions in all parameterization approaches are highly dependent on
the geometry-optimized structure used for the QM calculations and of course also on the
level of quantum theory used. The resulting uncertainty is reflected in the huge variety of
atomic partial charges that can be found in different force fields.98,165 A large impact can
also have the treatment of hydrogen bonds that occur between individual monosaccharides.
These are namely not explicitly treated by either force fields through an extra term, but
rather just modeled through electrostatic and vdW terms, and are therefore dependent on
the correct parameterization of such.

2.2 The sampling problem

2.2.1 Thermodynamic ensembles and their state functions

A molecular dynamics simulation is an ensemble of particles obeying Newton’s law, from
whose collective motion statistical information can be extract that we call the four laws
of thermodynamics. Consequently, MD simulations are based on the concept of statisti-
cal mechanics that describes the microscopic interaction of individual particles. Classical
thermodynamics is just a collective view of statistical mechanics, where a system is de-
scribed by bulk macroscopic properties. The systems’ properties can be expressed by
thermodynamic variables, where there are intensive variables (system size independent)
like pressure p, temperature T , chemical potential µ or concentration c, and extensive
variables (system-size dependent) like volume V enthalpy H, entropy S or internal energy
U . The following paragraphs briefly outline the applied thermodynamic concepts and
draw the link between simulated, microscopic particles and macroscopic properties of the
system.

Consider a box with walls, having a fixed volume V , filled with N particles, which
are moved over time according to Newton’s second law as described above, guaranteeing
conservation of the total energy Etot. This thermodynamic system depicts a so-called
NVE ensemble, as the three variables V, N and Etot are kept constant. The ensemble
concept originates from statistical mechanics, where a macroscopic system with certain
constraints, fixed variables, is described by a large number of microscopic conformations.
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An ensemble is the collection of microstates which the system can adopt within the macro-
scopic constraints. A certain macroscopic state is characterized by a collection of different
microscopic conformations. Thermodynamic properties Amacro of a macroscopic state can
be derived from the behavior of the microstates by calculating statistical averages. These
statistical averages can be obtained in two different ways:

i) Via the calculation of time averages ⟨A⟩time, where the property A is derived
from the average of individual values At, taken on by the system while it visits
different microstates over time:

Amacro = ⟨A⟩time ≈ 1
Nδt

Nδt∑︂
t=1

At, (2.2.1)

with Nδt being the total number of time steps. The approximate relation be-
comes an equality only if Nδt → ∞.

ii) Via the calculation of ensemble averages ⟨A⟩ensemble, where the property A
is derived from an average over a collection of adopted microstates (Nmicrostate)
at a fixed time point:

Amacro = ⟨A⟩ensemble ≈
Nmicrostate∑︂

k=1
A(Γk)P (Γk), (2.2.2)

where Γk denotes one point of the phase space of the simulated system. In
general, this is a 6N-dimensional space defined by the set of all positions rk

and momenta pk in each microstate k. For our simulations, momenta are
not of interest, therefore we only consider the reduced, 3N-dimensional, phase
space Γ = {Γk} = {rk}. Within microstate k, rk = r1, r2, ..., ri, ... with ri =
(xi, yi, zi), i being the particle index and x, y, z the particles coordinates. As
classical force fields do not allow for a change in configuration, variation of r
only gives rise to different conformations and therefore Γ is also referred to as
the conformational space. Later in this work, the conformational phase space
is redefined to adapt to the application of glycan systems. P (Γk) denotes the
probability to observe the microstate k.

It is obvious that time averages can be easily obtained from MD techniques by simulating
the system over a longer time period, capturing its visited microstates along the progression
of the trajectory. On the other hand, ensemble averages are often present in wetlab
experiments, for example when the adsorption of a protein sample is measured having a
large (of the order of 1020) number of identical molecules dissolved in solution adopting
different microstates.

The ergodic hypothesis is a postulate in statistical mechanics combining the two out-
lined approaches. It states that the ensemble average gives the same solution as the time
average for equilibrium properties, providing that the time is long enough and the ensemble
large enough:

Amacro = ⟨A⟩time = ⟨A⟩ensemble. (2.2.3)

This fundamental concept allows to predict macroscopic ensemble properties based on
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single-molecule MD simulations adopting various microstates over time, under appropri-
ate constraints set on the thermodynamic variables (T, p, V,E,N). The choice of the con-
straints defines the type of ensemble. All of them are thermodynamic ensembles, meaning
that they are in their statistical equilibrium. Their choice in an MD simulation depends
on the variables that are controlled in experimental studies one wants to compare to.
The NVE ensemble, also called microcanonical ensemble, is an isolated thermodynamic
system with rigid, adiabatic walls. As it has impermeable walls it can not interact with
its surrounding and hence the temperature can not be fixed, although this is crucial in
every biological system. More appropriate are the canonical (NVT ) or isothermal-isobaric
(NpT ) ensembles, having a fixed temperature T as well as fixed volume V or pressure p,
respectively. The canonical ensemble can be envisioned as a closed thermodynamic sys-
tem having rigid and diathermic walls, allowing for an energy exchange with an isothermal
heat bath to control the temperature. The constraints of the NpT ensemble are even more
similar to typical wet lab experiments, where the volume and energy of the system can
change.
When solving Newton’s equations of motion directly, the NVE ensemble applies, whereas
in NVT and NpT ensemble simulations, the additional use of thermostats and barostats
are required. For this purpose, the simulation box is coupled to a heat or pressure bath
in order to exchange energy and keep the desired variables fixed.148 For the mentioned
ensembles, the temperature and therefore also the energy are not truly constant in the
simulation praxis due to several factors including integration errors that sum up over the
simulation time, heating due to frictional or external forces as well as drift during equi-
libration.169 Commonly applied barostats and thermostats are described in detail in the
appendix A.4.

Each ensemble harbors a unique thermodynamic probability distribution of microstates
P (k), depending on their energies E(k). Since in our case we only include the positions
in our phase-space definition Γ = {rk} and not the momenta {pk}, the following deriva-
tions only include the potential energy Epot(rk) and not the kinetic energy Ekin(pk). For
instance, the canonical probability distribution of finding a microstate rk with potential
energy Epot(rk) = E(rk) is given by

PNV T (rk) = e−βE(rk)

ZNV T
, (2.2.4)

with β = 1
kBT . The nominator is the Boltzmann factor and ZNV T the canonical partition

function:
ZNV T =

∑︂
k

e−βE(rk). (2.2.5)

In contrast, the probability distribution function of the NpT ensemble

PNpT (rk) = e−βE(rk)eβpV (rk)

ZNpT
, (2.2.6)

also includes the pressure p and volume of the specific microstate V (rk). The isothermal-
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isobaric partition function ZNpT is

ZNpT =
∑︂

k

e−βE(rk)eβpV (rk). (2.2.7)

The ensemble-dependent partition function describes the statistical properties of the sys-
tem under the assumption of thermodynamic equilibrium. It serves as a normalization
constant, making sure that the probabilities sum up to 1, partitioning the individual
microstates depending on their corresponding energies. For instance, in the canonical
ensemble: ∑︂

k

P (rk) = 1
Z

∑︂
k

e−βE(rk) = 1
Z
Z = 1. (2.2.8)

The probability distribution of microstates obtained from a molecular dynamics simu-
lation can now be employed to derive the available energy in the system to perform work,
and thus to predict the thermodynamic behavior of the system. In order to draw the
connection between a microscopic description and a macroscopic state function, one needs
to link statistical mechanics to classical thermodynamics.148 This can be done using the
Boltzmann-Planck equation of an ideal gas, relating the number of microstates in a system
W to its entropy S:

S = kB lnW. (2.2.9)

This equation shows that the equilibrium state of the system is characterized by the
highest number of microstates, because this gives the maximum entropy, according to the
second law of thermodynamics. Equation 2.2.9, however, assumes that all microstates are
equally probable, which is not the case in a general thermodynamic system, and therefore
it should be rewritten as

S = −kB

∑︂
k

P (rk) lnP (rk). (2.2.10)

Under the assumption of the canonical ensemble (omitting here the subscript NV T ),
lnP (rk) = −βE(rk) − lnZ, giving:

S = kB

∑︂
k

P (rk) (βE(rk) + lnZ) . (2.2.11)

This can be rearranged to:

S = kBβ
∂ lnZ
∂β

+ kB lnZ,

considering that∑︂
k

P (rk)E(rk) = ⟨E⟩ = 1
Z

∑︂
k

e−βE(rk)E(rk) = 1
Z

− ∂Z

∂β
= −∂ lnZ

∂β
,

(2.2.12)

defining ⟨E⟩ as the average potential energy of all possible microstates. By further sub-
stituting β = 1

kBT , one obtains:

S = ∂kBT lnZ
∂T

= −∂F

∂T
, (2.2.13)
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with
F = −kBT lnZNV T (2.2.14)

expressing the Helmholtz free energy F , the thermodynamic potential of the canonical
ensemble. Equation 2.2.14 is a so-called bridge equation, as it relates the thermodynamic
potential of the microstate, the partition function, with the thermodynamic potential of
the macrostate, i.e. the property whose minimum defines the equilibrium value.148 The
Helmholtz free energy can also be exclusively expressed by thermodynamic variables by
noting that:

⟨E⟩ = −∂ lnZ
∂β

= ∂(βF )
∂β

= F + β
∂F

∂β
= F + TS, (2.2.15)

which results in
F = U − TS (2.2.16)

because the physical constraint of energy conservation imposes that the internal energy
U be equal to the ensemble average of the potential energy ⟨E⟩. Equation 2.2.16 implies
that the free energy of a state does depend on the interatomic interactions of the system
through its internal energy term as well as on entropic effects. The Helmholtz free energy
is applicable under canonical conditions, however experimental studies representing physi-
ological conditions are mostly conducted under isothermal-isobaric conditions. Therefore,
the NpT ensemble is often used in MD simulations, where the thermodynamic potential is
the Gibbs free energy, which can also be derived from its partition function via the bridge
equation:

G = −kBT lnZNpT . (2.2.17)

It can further be expressed, similarly to the Helmholtz free energy (equation 2.2.16),
considering also the pressure-volume product to incorporate the work associated with a
change of volume :

G = U + pV − TS = H − TS, (2.2.18)

with H being the enthalpy.

Free energy differences are able to predict the spontaneous evolution direction of a ther-
modynamic process. For example, in a chemical reaction the change in free energy ∆G
specifies the maximum amount of energy that can be exchanged during a process and de-
termines if the evolution from an initial state x to a final state y happens spontaneously.170

States x and y are two subsystems in the NpT ensemble, for instance a ligand in solu-
tion (state x) versus a ligand bound to a protein (state y), considering stability of both
states as well as a local ergodicity. The process of moving from state x to y is favorable if
∆G < 0, irrespective of the separating barrier, and therefore can happen spontaneously.
If ∆G > 0, the reaction requires an external source of energy to go from a low energy
state x to a high energy state y, and a change of state is rather unlikely.

The separating barrier between states x and y determines the rate of crossing from
one to the other, majorly influencing the reaction kinetics. However, it is important to
consider the equilibrium rate, as the process should be at all times in equilibrium with
its surroundings to neglect other contributing energy forms like friction.170 In order to
estimate the free energy difference between states x and y, defined as sets of microstates

32 of 176



2.2. The sampling problem 2. The computational microscope

k ∈ x and k ∈ y, their bridge equations from equation 2.2.17 can be combined170:

∆G = Gy −Gx = −kBT [lnZy − lnZx]. (2.2.19)

Substituting Z by equation 2.2.7 yields:

∆G = −kBT ln
∑︁

k∈y e
−βE(rk)eβpV (rk)∑︁

k∈x e
−βE(rk)eβpV (rk) , (2.2.20)

which can further be simplified by rearranging equation 2.2.6 and substituting
e−βE(rk)eβpV (rk):

∆G = −kBT ln
∑︁

k∈y P (rk) · Z∑︁
k∈x P (rk) · Z

= −kBT ln Py

Px
. (2.2.21)

The ratio Py

Px
, and thus the free energy difference ∆G, can be estimated from MD sim-

ulations when enough crossing events between state x and y are ensured to guarantee
sufficient statistics. Indeed, it is now even possible to compute individual free energies for
different states, e.g.:

Gy = −kBT lnPy = −kBT ln Ny

Nstates
, (2.2.22)

by simply counting how often the system is visiting state y (Ny), divided by the total
number of visits of all states Nstates. Note, however, that only differences’ of free energy
and not absolute values are physically meaningful. Further advantageous is that the free
energy of a thermodynamic system is a state function and only depends on the state of
the system, not on its history, regardless of the underlying ensemble.

In MD simulations it is often reasonable to calculate free energy changes along a certain
reaction coordinate, also called collective variable (CV). For example, in protein folding
a CV along the helicity of a peptide backbone or in ligand binding studies a CV along
the distance between a ligand and protein pocket can used. The obstacles that can occur
during these approaches are further addressed in section 2.2.2, introducing methods for
accurate and converged free energy calculations.

2.2.2 Free energy methods

Molecular dynamics simulations aim at predicting the time evolution of an atomistic sys-
tem, capturing its multiple conformational changes in order to identify behavioral patterns
that provide information about reaction mechanisms like ligand binding or structural
changes in biological contexts. As already outlined above, statistical mechanics provides
the framework for estimating probabilities of individual microstates, e.g. conformers of
a molecule, allowing for the assessment of their phase-space distribution. In order to
approximate the microstate probability distribution and subsequently derive macroscopic
properties from a molecular simulation, a sufficient sampling of the conformational phase
space is required to obtain reliable estimates. This is due to the fact that the ergodic
hypothesis (equation 2.2.3) is only valid under the assumption that t is infinite when cal-
culating the time average ⟨A⟩time of a macroscopic property, ensuring that all microstates
have been sufficiently visited. Therefore, it needs to be guaranteed that the simulation time
is long enough to allow for multiple crossings of relevant free energy barriers separating
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conformer states. Additionally, only converged simulations reproduce a valid probability
distribution P , which is necessary to estimate correct free energies. The prediction of free
energy profiles along certain system variables, such as distances between atoms or the he-
licity of a polypeptide chain, is crucial as they play fundamental roles in anticipating the
evolution of the system and can also be compared directly to experiments. The resulting
free energy distribution allows for the identification of (meta)stable states, predicting the
equilibrium structures of a molecule which is, for instance, extremely important in the
field of protein folding.

The outlined requirements most often can not be achieved with standard (unbiased)
MD simulations, as the prerequisite of barrier crossings and therefore ergodicity is limited
by the available computational power, restricting the accessible timescale in a simulation.
Furthermore, with an increasing number of atoms within a molecular system, the degrees
of freedom and therefore number of conformations rapidly increase. As biological systems
mostly involve several hundreds of molecules like amino acids, lipids and saccharides, they
represent complex systems in which the observation of certain effects needs to be enforced.
In order to overcome this sampling problem, various approaches have been developed to
facilitate barrier crossings during the accessible time scale of MD simulations. There are
only certain degrees of freedom exhibiting high free energy barriers, but these are often
also the most important for a chemical reaction to occur or a protein to adopt a different
conformation. It is therefore necessary to first identify the correct CVs in order to allow
the required transition to occur or the required region of the conformational phase space to
be explored. Due to the complexity of the simulated systems it is often not advantageous
to achieve complete ergodicity of the whole conformational phase space, e.g. sampling all
possible folded and unfolded conformations of a protein. It is rather desirable to obtain
ergodicity only along the significant CVs to yield quantitative estimates of probability
distributions, e.g. differentiating between an active and inactive protein conformation.
A CV describing the transition between two states is ideally the committor function,
having a value of 1

2 at the transition point between the two states.141 It is however very
rare that an explicit reaction coordinate can be identified as a committor, and CVs are
rather chosen upon chemical intuition.141 Independently of the methodology applied, the
identification of relevant CVs harboring high energy barriers and allowing for restricted
phase-space exploration is crucial for the success of the method and the requirement of
ergodicity. There are CV-dependent and CV-independent methods, differing in the extent
of perturbation of the system. The kinetics of the system is mostly not captured by
either of them, only being able to predict equilibrium probability distributions rather
than transition rates between states.141 Furthermore, barrier heights are not invariant to
the choice of CV, making kinetic interpretations very dangerous. Calculated free energy
barriers should therefore not be used to estimate rates, as their height is highly influenced
by the sampling method at hand.

The following paragraphs shortly outline important enhanced sampling techniques un-
der the constraints of a canonical ensemble, especially those that have already been applied
to the sampling of glycan structures namely (H-)REMD, REST2 and well-tempered meta-
dynamics (as mentioned in section 1.5.1). We then introduce a newly derived enhanced
sampling approach, combining the CV-based method Replica Exchange with Collective-
Variable Tempering (RECT) with the CV-independent method REST2 in order to improve
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in particular the sampling of glycan structures.

2.2.3 Replica exchange

Temperature and Hamiltonian replica exchange

Figure 2.2: Scheme of a temperature replica exchange MD simulation. A complex
model glycan (blue: GlcNAc, green: Man, yellow: Gal, purple: Neu5Ac) solvated in water
(gray) is shown on the left, where the temperature increase is applied to all atoms of
the system (red box around simulation box). Nα replicas are simulated in parallel, where
coordinates are frequently exchanged between neighboring replica, based on the Metropolis
criterion. The temperature is scaled geometrically across the replica ladder to facilitate
barrier crossings along degrees of freedom that are stuck in free energy minima.

The replica exchange approach is an overlapping technique, where multiple ensembles
are simulated in parallel. They are coupled by exchanging conformations such that the
different microstates have defined probability distributions in multiple ensembles.141 Tem-
perature replica exchange (REMD) was first formulated for MD simulations in 1999, sim-
ulating a total of Nα replicas simultaneously at different temperatures (Figure 2.2).89 It
falls under the category of extended-ensemble algorithms, allowing for the exchange of
conformation rm of replica m with the conformation rn of replica n. The different confor-
mations achieve different probability distributions due to a different temperature in each
replica, but sharing the same conformational phase space.141 The probability P (rα) of a
single conformation rα in replica α is given by:

P (rα) = e−βαE(rα)

Zα
, (2.2.23)

obeying the Boltzmann distribution. It follows that the joint probability distribution of
the extended ensemble PREMD across Nα replicas (α = 1, ..., Nα) is given by the product
of Boltzmann factors of each replica:89

PREMD = exp
(︄

−
Nα∑︂
α

βαE(rα)
)︄

=
Nα∏︂
α

P (rα), (2.2.24)

with βα = 1
kBTα

indicating the different temperatures in each replica. Whether or not an
exchange of conformations rm and rn between replica m and n is permitted, is evaluated by
the individual transition probabilities of the forward P (rm, βm; rn, βn) and reverse process
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P (rn, βm; rm, βn). Imposing detailed balance conditions for the exchange process on the
transition probability P (rm, βm; rn, βn) to converge towards an equilibrium distribution
yields:89

PREMD(X)P (rm, βm; rn, βn) = PREMD(X ′)P (rn, βm; rm, βn), (2.2.25)

with X = (..., rm, βm; rn, βn, ...) and X ′ = (..., rn, βm; rm, βn, ...). Since terms from replicas
that are not exchanged can be dropped, rearrangement leads to:

P (rm, βm; rn, βn)
P (rn, βm; rm, βn) = PREMD(X)

PREMD(X ′) = e(−∆mn(REMD)), (2.2.26)

with the exchange ratio:

∆mn(REMD) = (βn − βm)(E(rm) − E(rn)). (2.2.27)

Applying the Metropolis acceptance criterion finally yields the transition probability de-
pending on the individual potential energies in replica m and n:

P (rm, βm; rn, βn) =
{︄

1 for ∆ ≤ 0
e−∆mn(REMD) for ∆ > 0

, (2.2.28)

giving values in the range from 0 to 1. It can be inferred that to obtain a sufficient exchange
probability, the potential energy distributions of replica m and n must overlap. As the
width of the energy distribution of each state gets smaller by a factor N1/2 with increasing
the number of atoms N , the spacing of temperatures across the replica ladder must become
smaller, which means that the number of replicas to span the same temperature range
needs to increase for larger simulation systems.141

Another replica-based approach similar to temperature replica exchange is Hamiltonian
replica exchange (H-REMD), which was introduced three years later.171 Instead of the
temperature, the Hamiltonian is scaled over the replica ladder, representing a more general
implementation, implying that REMD is only a special case. The probability P (rα) of a
single conformation rα in replica α is similar to equation 2.2.23 given by:

P (rα) = e−βEα(rα)

Zα
, (2.2.29)

with β being the same in all replica. The transition probability P (rm, Em; rn, En) =
P (m → n) = min{1, e−∆mn(H−REMD)} here depends on the energy in replica m and n:

∆mn(H −REMD) = β[(Em(rn) + En(rm)) − (Em(rm) + En(rn))], (2.2.30)

imposing the Metropolis acceptance criterion.

Replica exchange with solute scaling - REST 2

The problematic narrow spacing of replicas in (H-)REMD for large systems was tackled by
Liu et al.172 in 2005 introducing replica exchange with solute tempering (REST). This was
further refined by Wang et al.90 in 2011 leading to the updated replica exchange with solute
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scaling (REST2) scheme. Instead of scaling the whole system, only a smaller subsystem of
the simulation box is influenced by the replica ladder, and also the exchange probability
depends only on the energy of the subsystem. To be precise, the system is divided into
a solute part that is going to be scaled, and a solvent part that is left unscaled. Often
the solute part is a protein, peptide or, in this work, a glycan that should be enhanced
sampled, whereas the solvent part is represented by the surrounding water molecules and
ions (Figure 2.3). The potential energy in replica m of the system is subdivided into three
parts that are differently scaled:

EREST 2
m (rm) = βm

β0
Epp(rm) +

√︄
βm

β0
Epw(rm) + Eww(rm), (2.2.31)

with Epp being the potential energy of the solute (protein-protein interactions), Epw the
potential energy of the protein-water interactions and Eww the solvent energy (water-water
interactions). The scaling factor βm

β0
especially influences the intramolecular potential

energy of the solute, depending on the ratio of the effective temperature Tm in replica m
and ground temperature T0 in the ground replica 0:

βm

β0
= 1/kBTm

1/kBT0
= kBT0
kBTm

= T0
Tm

= λ (2.2.32)

with λ spanning the range between 1 for the ground temperature and 0 for an infinitely
high temperature. In REST2 the Hamiltonian of the system is scaled by λ instead of
directly scaling the temperature. However, it is often referred to a replica having an
effective temperature, as a doubled temperature is equivalent to a halved energy173:

P (r) ∝ e
− E(r)

(2·kBT ) = e
− (E(r)/2)

kBT . (2.2.33)

Figure 2.3: Scheme of a replica exchange with solute scaling (REST2) MD
simulation. A complex model glycan (blue: GlcNAc, green: Man, yellow: Gal, purple:
Neu5Ac) solvated in water (gray) is shown on the left, where the system is separated into
a solvent (water and ions) and solute part (glycan atoms). Across the replica ladder the
Hamiltonian of the solute part is scaled by a factor λ, which is equivalent to increasing the
temperature and therefore termed effective temperature (solute part highlighted in red).
Replicas are simulated in parallel, and coordinates are exchanged between neighboring
replicas, based on the Metropolis criterium. λ is scaled geometrically across the replica
ladder to facilitate barrier crossings along degrees of freedom that are stuck in energy
minima.
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Therefore, a scaling factor smaller than 1 is used to scale the potential energy of the
solute part to facilitate the exploration of different conformations by lowering barriers lying
between them. The acceptance ratio between replica m and n is given by the Metropolis
acceptance criterion

P (m → n) = min{1, e−∆mn(REST 2)} (2.2.34)
with

∆mn(REST 2) = (βm − βn)

[︄
(Epp(rn) − Epp(rm)) +

√︁
β0√︁

βm +
√︁

βn

(Epw(rn) − Epw(rm))

]︄
(2.2.35)

only depending on the scaled energy terms Epp and Epw. Under the approximation that
neighboring replica m and n have similar temperatures (βm ≈ βn), the fluctuations of the
reduced potential energy term in replica m,

Epp + 1
2
√︂

β0
βm

Epw, (2.2.36)

determine the exchanges to replica n, where exchanges are performed under thermo-
dynamic equilibrium. The implementation of choice used in this study173, in particu-
lar, scales non-bonding force field terms, electrostatics (atom charges by

√
λ) and vdW

(Lennard-Jones parameter ϵ by λ), and only torsion terms (by λ), as scaling of bonds and
angles resulted in no beneficial effect.90

2.2.4 Metadynamics

Well-tempered metadynamics

Despite the generality of the above mentioned CV-independent methods, sometimes an
explicit biasing of a specific CV is more effective, as it is assumed that the system or
reaction of interest can be described by few reaction coordinates. Therefore, it is reasonable
to use a non-overlapping, single replica approach, in which adaptive biasing potentials are
employed, as such well-tempered metadynamics.91 This is a refinement of the originally
introduced metadynamics technique from Laio and Parinello in 2002174, which is related
to the density of state estimation method from Wang and Landau.175 Assuming that the
system of interest is metastable, it is necessary to define a CV s(r) that can differentiate
between the different minima, whose distribution can be described by:

P (s) ∝ e
− F (s)

kBT , (2.2.37)

depending on the free energy F along s. The free energy profile F (s) is not known a
priori and needs to be estimated. Generally, a specific value of s can be estimated from
the unbiased free energy function:

F (s) = −kBT ln
∫︂

dr δ(s(r) − s)e− E(r)
kBT + C, (2.2.38)

with C as an arbitrary constant and the Dirac δ describing all the conformations cor-
responding to s.176 As discussed, it is to be feared that under standard MD conditions
the system is trapped in one of its metastable states, not able to cross existing barriers
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within the available simulation time. The desirable probability distribution P (s) and the
corresponding free energy profile F (s) would not be correct. Therefore, an external bias
B(s) is applied in the CV space, allowing the system to emerge from minimum energy
basins and explore all regions of the CV. The resulting biased free energy F ′(s) is related
to the underlying unbiased profile:

F ′(s) = −kBT ln
∫︂

dr δ(s(r) − s)e− E(r)+B(s(r))
kBT + C ′ = F (s) +B(s) + C ′ − C, (2.2.39)

showing that the bias needs just to be subtracted from F ′(s) to recover the unbiased free
energy.176

Figure 2.4: Scheme of a metadynamics simulation. A complex model glycan (blue:
GlcNAc, green: Man, yellow: Gal, purple: Neu5Ac) solvated in water (gray) is shown on
the left, where an ω torsion angle is selected as CV (black arrow). Along the progression
of the simulation, a bias in the form of small Gaussians (green hills) is iteratively added to
the force field torsion angle potential at its current position (red dot). Due to the increase
of the energy level, a transition from state x to y via the barrier is facilitated. Inverting
the sum of accumulated bias potentials (gray distribution) gives an approximation of the
free energy landscape.

Generally speaking, the bias potential B(s) is approaching an optimal shape if it is
the negative of its corresponding free energy B(s) = −F (s), ultimately flattening the en-
ergy landscape, making existing barriers disappear. Well-tempered metadynamics almost
achieves this by an iterative procedure, where a history-dependent bias potential is built
in the form of small Gaussians e− (s−s(t′))2

2σ2 that are added in the CV space (Figure 2.4).
They are positioned every τG time units with a width (σ) and height (wG), where the bias
potential B(s, t) in the simulation is given by a sum of Gaussians:

B(s, t) =
t′<t∑︂

t′=0,τG,...

w exp
[︃
B(s(t′), t′)
kB∆T

]︃
exp

[︄
−(s− s(t′))2

2σ2

]︄
, (2.2.40)

with the deposition rate w = wG/τG. The height of the Gaussian is scaled down by a factor

e
B(s(t′),t′)

kB∆T , taking into account the bias potential at the same point where the Gaussian
is supposed to be centered. ∆T is an input parameter that has temperature units and
is explained more in detail below. In terms of an iterative procedure, this means that
at each τG a new Gaussian is placed at the current position, with a height depending
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on the amount of Gaussians already deposited nearby. This prevents the underlying free
energy landscape to be overfilled, pushing the system into nonphysical high free energy
states, and allows the bias to converge over the simulation time.176 The scaling of the
Gaussian heights disrupts the flat histogram properties B(s) = −F (s), implying that the
sum B(s) + F (s) no longer becomes flat but that both properties are rather connected in
the long time limit through:

B(s, t → ∞) = − ∆T
T + ∆T (F (s) − C(t)), (2.2.41)

where the bias is only the fraction ∆T
T +∆T of the negative of the free energy.91

Combining the derivation of the bias potential with the distribution that is sampled when
the bias is applied (equation 2.2.37 & 2.2.39), we obtain:

P ′(s, t → ∞) ∝ e
− F ′(s)

kBT = e
− F (s)+B(s,t)

kBT = e
− F (s)

kB(T +∆T ) . (2.2.42)

It follows that the bias potential is equivalent to allowing s to be explored at an effec-
tive higher temperature T + ∆T .176 If ∆T → ∞, standard metadynamics is reproduced,
whereas ∆T = 0 implies standard unbiased sampling. During the setup of a metadynamics
simulation, the width σ, the deposition pace τG, the initial height wG and the bias factor
γ = T +∆T

T , depending on the choice of ∆T , needs to be given.
Gaussians can only be placed in a low-dimensional space of the CV, ensuring the repet-

itive exploration of the same value s, only differing in the visited microstates rk. Repetitive
exploration of the same values of s results in the repetitive additions of Gaussians to the
potential, discouraging the system from visiting these conformations again and exploring
new regions of the CV space. This approach would not be possible in the full confor-
mational phase space, as the system would literally never explore the same point twice
due to the high dimensionality. It is said that well-tempered metadynamics is limited to
approximately biasing three CVs simultaneously, as the bias becomes multi-dimensional
and its storage need scales exponential with the number of CVs.

Replica exchange with Collective-Variable Tempering - RECT

The limitation of well-tempered metadynamics to only a few number of CVs that need
to be carefully chosen can be overcome by the introduction of a multi-replica approach,
combining the overlapping technique H-REMD with non-overlapping well-tempered meta-
dynamics. Replica exchange with Collective-Variable Tempering (RECT)177 is able to en-
hance tenths of CVs simultaneously at the cost of simulating several replica of the system
in parallel. In the standard well-tempered metadynamics formulation, the bias potential
evolves according to the following equation of motion:

Ḃ(s, t) = w exp
[︃
B(s(t), t)
kB∆T

]︃
exp

⎡⎣−
NCV∑︂
z=1

(sz − sz(t))2

2(σz)2

⎤⎦ , (2.2.43)

where z iterates over a total number of CVs, NCV , that are simultaneously biased in a
multi-dimensional fashion, if desired. RECT simplifies this by enhanced sampling NCV
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degrees of freedom separately, via the application of concurrent one-dimensional history-
dependent potentials, where z represents the index for each CV:

Ḃ
z(sz) = w exp

[︃
Bz(sz(t), t)
kB∆T

]︃
exp

[︄
−(sz − sz(t))2

2(σz)2

]︄
. (2.2.44)

The evolution of the individual biases will depend on the marginal probability for each
CV z:

P (sz) ∝
∫︂
ds1...dsz−1dsz+1...dsNCV P (s1, s2, ..., sNCV ), (2.2.45)

flattening the distribution for each CV.177 Selected CVs can however be correlated, as they
are usually not orthogonal to each other. This raises the concern that applied concurrent,
separate bias potentials are not acting just on a single CV but also affecting the distribution
of others.177 A self-consistent construction of the multiple one-dimensional bias potentials
eliminates the effect of an additional effective bias that arises due to the correlation of CVs,
ensuring that the marginal probability is flattened.177 The degree of flatness is controlled
by the bias factor γ, which is correlated to the boosting temperature ∆T applied to each
CV as in well-tempered metadynamics. An unbiased sampling is achieved by setting
∆T = 0, corresponding to γ = 1, where a flat histogram is obtained by ∆T = ∞, γ = ∞.

Figure 2.5: Scheme of a replica exchange with collective-variable tempering
(RECT) simulation. A complex model glycan (blue: GlcNAc, green: Man, yellow: Gal,
purple: Neu5Ac) solvated in water (gray) is shown on the left, where all torsion angles N
are selected as CVs (black arrows). Similar to a temperature replica exchange simulation,
replicas are simulated in parallel, however not the temperature but the bias factor γ of
the well-tempered metadynamics (WTmetaD) scheme is scaled over the replica ladder.
Along the progression of the simulation, one-dimensional bias potentials are iteratively
added to each CV. The highest replica having theoretically ergodic sampling is connected
to the unbiased ground replica (γ = 1 = standard MD) via the replica ladder. Frequent
exchanges of coordinates according to the Metropolis criterion allow for conformations
explored in higher replicas to travel down to the ground replica, whose distribution is
finally analyzed. The RECT approach combines the replica exchange scheme with well-
tempered metadynamics to allow for the simultaneous explicit biasing of dozens of CVs.

Interpolating between these two extreme sampling conditions using a number of in-
creasing γ values can connect ergodic sampling achieved by high γ values with unbiased
conditions. This can be exploited in a Hamiltonian replica exchange fashion, scaling γ over
the replica ladder and performing a low-dimensional concurrent metadynamics simulation
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in each replica (Figure 2.5). The ground replica (γ = 1,∆T = 0) represents a standard MD
simulation, which is connected through frequent exchanges with higher replicas. These
enhance the transition rates above relevant energy barriers trough the acting of multiple
bias potentials on selected CVs. To be precise, each CV is biased in each replica, while
the bias factor, i.e. the extent of biasing, is different in each replica. The acceptance
probability between replica m and n ensuring detailed balance conditions is determined
by P (m → n) = min{1, e−∆mn(RECT )} with

∆mn(RECT ) =
∑︁

z B
z
m(sz

n) +∑︁
z B

z
n(sz

m)
kBT

−
∑︁

z B
z
m(sz

m) +∑︁
z B

z
n(sz

n)
kBT

. (2.2.46)

This is equivalent to the exchange probability of H-REMD, with the only difference that
exchanges are dependent on the sum of bias potentials instead of on directly modified
Hamiltonians. The application of concurrent well-tempered metadynamics to a large
number of local CVs ensures importance sampling, while a small set of critical CVs is not
necessarily needed to be known a priori. There are also other metadynamics-based sam-
pling techniques employing a replica ladder, such as multiple walker, parallel-tempering
metadynamics or bias-exchange metadynamics.178–180 None of these methodologies were
ever applied to the study of glycans before.

2.2.5 Tackling the flexibility of N-glycans

The enhanced sampling of N-glycans has already been performed in order to explore the
diversity of three-dimensional structures that can be achieved, as their rotation around
many torsion angles complicates an accurate prediction of the conformational phase space.
The prediction of a correct distribution of glycan conformations in MD simulations be-
comes a significant task as more and more proteins and membranes are modeled, taking
their modifications by the attachment of chemical groups into account. Only focusing on
a correctly folded protein is not enough anymore, since especially glycans have shown to
be important interaction partners in cellular environments and their conformations deci-
sive for the interaction.77,134 As outlined already in the introduction, several enhanced
sampling techniques have so far failed to capture a converged conformer distribution for
different N-glycan types when simulated in an unbound fashion free in solution.87,93–97.
The difficulties of employing standard MD, Hamiltonian REMD and well-tempered meta-
dynamics for the sampling of glycans will be shown in the following example, using the
complex N-glycan A2G2S2 as a model system (Figure 2.6). It consists of four GlcNAc,
three Man, two Gal and two Neu5Ac residues, harboring one ω torsion angle that is known
to adopt several different conformations, corresponding to multiple energy minima.

When assessing the suitability of a method, it is crucial to monitor the sufficient explo-
ration of all energy minima of all degrees of freedom that contribute to the phase-space ex-
ploration. In terms of glycan sampling, this suggests that in particular the rotation around
torsion angles needs to be verified, but also the puckering of individual monosaccharides.
The transition between energy minima is therefore compared for the representative tor-
sion angles ω3−8 and ψ1−2 as well as the puckering variable θ of one monosacchride in the
glycan structure. Standard MD of A2G2S2 was performed at 310.15 K for 50 ns without
any restraints, using the CHARMM36 force field for the glycan atoms and TIP3P as a
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water model. In the application of H-REMD, 48 replicas were simulated over an effective
temperature range of 310.15 K to 500 K for 50 ns. Replica exchanges were attempted
every 400 steps with average exchange probabilities of around 10 %. The well-tempered
metadynamics simulation was based on the standard MD conditions with a bias on the
torsion angle ω3−8 with the following parameters: γ = 14, τ = 500steps, σ = 0.35, wG = 4.

Figure 2.6: Variable progression under different sampling schemes. A complex
model glycan called A2G2S2 (blue: GlcNAc, green: Man, yellow: Gal, purple: Neu5Ac)
was simulated separately under three different sampling conditions: standard MD, well-
tempered metadynamics (WTmetaD) biasing the ω3−8 torsion angle and H-REMD, scaling
the Hamiltonian to achieve an effective temperature up to 500 K in the highest replica.
Only few or no transitions could be seen along the torsion angle ω3−8 (connecting sac-
charide units 3 and 8) and pucker coordinate θ7 (of saccharide units 7) under unbiased
conditions. The explicit sampling of ω3−8 via well-tempered metadynamics evokes multi-
ple transitions in the CV space, whereby the exploration of ψ1−2 and θ7 is restricted. The
simulation time of 50 to 100 ns is shown (instead of 0 to 50 ns), since the adaptive biasing
requires some time to evolve to its full potential. The application of H-REMD allows for
the exploration of another minimum in θ7, although ω3−8 is lacking full exploration. Red
circles indicate regions of missing exploration.

Along the progression of the MD simulation, only few transitions can be found for
the flexible ω3−8 torsion angle and exploration of only one minimum for θ7 (Figure 2.6).
The ψ1−2 torsion angle is more often fluctuating between two states at -1 and 2 rad.
Applying well-tempered metadynamics to ω3−8 allows for the exploration of the whole
CV space along ω3−8, with multiple transitions between states (Figure 2.6), at least for
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the explicitly biased torsion angle. The transitions along ψ1−2 are limited to the global
minimum compared to standard MD, a side effect of the biasing of ω3−8, due to which
only conformers that reside within one minimum of ψ1−2 are sampled. Further, no ex-
ploration of the puckering along θ7 except for the global minimum can be observed in
the metadynamics run. In contrast, H-REMD is able to let the system escape the energy
minimum along θ7 by sampling another mininum around 1.5 rad (Figure 2.6). However,
the exploration of ω3−8 is suffering as only the two major energy basins are visited. Since
well-tempered metadynamics does not explore different puckering conformations and un-
biased torsion angles, whereas pure replica exchange methods like H-REMD suffer from
poor convergence along multiple torsion angles87, the combination of both methodologies
implemented in RECT is suggested. Instead of only biasing the most dominating CVs in
the system, all torsion angles should be explicitly sampled via the application of RECT.
Furthermore, the number of replicas required to scale within a certain temperature range
can be reduced by employing REST2 instead of H-REMD, where only the glycan atoms
are defined as the solute region and therefore subjected to a scaled Hamiltonian, leaving
the water atoms at ground temperature.

REST-RECT

Figure 2.7: Scheme of a REST-RECT simulation. A complex model glycan (blue:
GlcNAc, green: Man, yellow: Gal, purple: Neu5Ac) solvated in water (gray) is shown
on the left, where all torsion angles N are selected as CVs (black arrows). The RECT
methodology is applied to all CVs, whereas all glycan atoms are additionally defined as the
solute region for sampling via the REST2 algorithm. Over the replica ladder not only the
bias factor γ of well-tempered metadynamics is scaled, but also λ of the REST2 scheme
acts on the Hamiltonian of the glycan atoms. This combination does not only allow for
the explicit biasing of selected CVs (here torsion angles) but also of all other degrees of
freedom of the glycan, e.g. puckering of saccharide units.

As the name of the algorithm already suggests, REST-RECT is a combination of the two
replica exchange methodologies REST2 and RECT. It combines scaling the solute part of
a system by an altered Hamiltonian with concurrent well-tempered metadynamics, where
both replica exchange algorithms share the same replica ladder (Figure 2.7). In detail,
both λ, scaling the Hamiltonian of the solute, and γ, influencing the bias potentials of the
selected CVs, are scaled over the replica ladder simultaneously. By choosing γ = 1 and
λ = 1 for the ground replica, standard and unbiased MD conditions are ensured, which
allows for the direct evaluation of the sampled probability distribution. Using a geometric
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progression for the increase of γ values and decrease of λ values over the replica ladder, the
system becomes highly biased in higher replicas. Especially the increase of γ will gradually
flatten the marginal distribution of selected CVs over the replica ladder, where the decrease
of λ enhances all degrees of freedom in the solute part and ultimately provides sampling
of unidentified CVs that are crucial for the full exploration of the system. Sampling
of an ergodic probability distribution from the unbiased ground replica is achieved by
exchanges of conformations across the replica ladder, where conformations explored in the
most ergodic replica can travel down to the ground replica.

The acceptance probability is composed of contributions from the REST2 and RECT
algorithm by

P (m → n) = min{1, e−∆mn(REST −RECT )} (2.2.47)
with:

∆mnREST − RECT = (βm − βn)

[︄
(Epp(rn) − Epp(rm)) +

√︁
β0√︁

βm +
√︁

βn

(Epw(rn) − Epw(rm))

]︄

+

∑︁
z

Bz
m(sz

n) +
∑︁

z
Bz

n(sz
m)

kBT
−

∑︁
z

Bz
m(sz

m) +
∑︁

z
Bz

n(sz
n)

kBT
.

(2.2.48)

This formula is very similar to the one from the first application of solute tempering
metadynamics, where replica exchange with solute tempering was combined with meta-
dynamics in a similar fashion to enhance the exploration of the free energy surface of the
protein G helix by Carlo Camilloni et al.181 Only the scaling of the Epw term is altered,
being the major difference between solute tempering and solute scaling, while the single
bias potential of metadynamics is replaced by the sum of potentials from RECT.

Figure 2.8: Progression of CVs in a REST-RECT simulation. When applying
the REST-RECT scheme to the complex glycan from Figure 2.6, the algorithm is able
to sample along torsion angles and pucker coordinates. The progression along ω3−8 and
θ7 shows the repetitive exploration of different CV states. The simulation time of 50 to
100 ns is shown (instead of 0 to 50 ns) as the adaptive biasing requires some time to evolve
to its full potential.

The complex N-glycan A2G2S2 introduced above can also be enhanced sampled via
REST-RECT, choosing a λ scaling from 1 to 0.4, representing a temperature increase
from 310.15 K to 800 K over 12 replicas. Due to the reduced number of replicas necessary
to span the same temperature range as compared to H-REMD, we decided to extend the
temperature range up to 800K in order to sample the puckering even more effectively. The
metadynamics parameter γ was scaled from 1 in the ground replica to 14 in the highest
replica, with all torsion angles serving as CVs. A simulation time of 500 ns per replica with
exchange attempts every 400 steps between neighboring replicas was chosen. Transitions
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between states can be observed for both torsion angles as well as puckering coordinates
already within 50 ns (Figure 2.8). The sampling of all torsion angles and puckering
conformations via REST-RECT should therefore ensure the complete exploration of the
conformational phase space for glycan structures. The still rather few transitions observed
for the puckering coordinate can be further validated and refined using the sampling of
conformations also in higher replica through the Weighted Histogram Analysis Method
described below.

Figure 2.9: Assessing the performance of a REST-RECT simulation. The en-
hanced sampling of glycan A2G2A2 via REST-RECT needs to be validated in terms of
sufficient replica exchanges, employing the following quantities: A Histogram of the po-
tential energy distribution within each replica, considering only energy terms that are
also contributing to the exchange probability. B Mixing of replica indices over the time
progression of the trajectory. A well intermixed, wide distribution of colors represents
many successful replica exchanges. C Round trip times for representative replicas with
the x-axis showing the progression over time, plotted against the duration of each round
trip in ns. Every blue cross indicates the duration of one round trip, whereas the red
dotted line marks the average over all recorded round trips in that replica.

A critical point for all replica exchange methods is the assessment of frequent replica
exchanges through a sufficient overlap of potential energy distributions in each replica.
There are several parameters that should be evaluated, giving a hint for exchanges and
coherently indicating convergence of the simulation. First of all the most obvious quantity,
the histogram of potential energies in each replica according to equation 2.2.36, can be
plotted, as it majorly determines the success of exchanges (Figure 2.9 A). It is important
to not plot the potential energy of the whole system but only the contributing parts of Epp

and Epw. When overlaps of histograms from neighboring distributions can be observed,
it indicates that replica exchanges are theoretically possible. The actual exchanges per
attempted swap can be visualized plotting the replica indices over the simulation time for
the multiple simulations run in parallel, graphically indicating a proper mixing of replicas
by a colorful plot (Figure 2.9 B). This visual assessment can be supplemented with the
calculation of replica round trip times, defined as the time each replica requires to travel
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up and down the ladder, completing one whole round trip (Figure 2.9 C). Each round trip
in the different replicas took around 20 ns, which resulted in approximately 25 round trips
per simulation, with 10 being sufficient as a rule of thumb (Personal communication from
Giovanni Bussi). Last but not least, the exchange probabilities are calculated along the
progression of the simulation, where values over 30 % indicate a good exchange rate but
still do not necessarily guarantee a sufficient number of round trips for each replica.

2.2.6 WHAM

When running a replica-exchange simulation, often solely the unbiased ground replica is
analyzed for its distribution along a collective variable s(r), discarding lots of additional
sampling time achieved in higher replicas, due to the bias that is imposed on these distribu-
tions. It is possible to reweight these biased distributions P ′(s) with the application of the
Weigthed Histogram Analysis Method (WHAM)182, obtaining the unbiased distribution
P (s) using a weight w(s):

P (s) ∝ w(s)P ′(s). (2.2.49)

It is important to recognize the effect of the bias potential on the individual distributions
in each replica α, which are altered according to:

Pα(s) ∝ e
− E(r)+Bα(s(r))

kBT = e
− Bα(s(r))

kBT P (s). (2.2.50)

As the different replicas are subjected to different bias potentials Bα(s(r)), the corre-
sponding free energy is given by:

Fα(s) = −kBT lnPα(s) = F (s) +Bα(s(r)) + Cα, (2.2.51)

with F (s) being the unbiased free energy and Cα a constant that is different in each replica
α, ensuring normalization of the biased probability. Rearranging the above equation
results in the expression of the unbiased free energy F (s):

F (s) = −kBT lnPα(s) −Bα(s) + Cα. (2.2.52)

According to the name of the method, the aim is to construct a weighted histogram from
which an unweighting is performed to derive P (s). In order to do so, s is divided into a
total number of Ngrid bins, where nα

j is the number of frames that fall into the jth bin in
replica α. The probability P (nα

1 , n
α
2 , ..., n

α
Ngrid
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distributions:
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, n2

1, ..., nNα
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Ngrid∏︂
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j (2.2.53)

with Pj being the unbiased distribution in bin j, Pα
j the biased distribution in bin j and

replica α and wα
j the corresponding weight. The weight consists of the bias potential bα

j

and the normalization constant Cα:

wα
j = bα

j C
α = e

−
Bα

j
kBT · Cα, (2.2.54)
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where frames with a high bias potential are weighted less. The variational parameters Pj

and Cα in equation 2.2.53 have to be determined under the constrain of ∑︁j P
α
j b

α
j C

α = 1,
which can be done by finding a set of values for Pj that maximizes the likelihood of
observing the trajectory.183 This can be performed using a set of Lagrange multipliers
where, after some manipulation, the WHAM equations emerge:

Pj = Nj∑︁
αN

αbα
j C

α
(2.2.55)

and
Cα = 1∑︁

j Pjbα
j

, (2.2.56)

where Nα = ∑︁
j n

α
j and Nj = ∑︁

α n
α
j . It becomes apparent that Pj and Cα can not be

explicitly solved as they are dependent on each other. However, a self-consistent scheme
can be applied, starting with Cα = 1 and recursively iterating until the values of Pj and
Cα are not changing anymore. In the application of WHAM, the chronological sequence of
replicas is not important, as all conformations from all replicas are counted in the jth bin
Nα = ∑︁

j n
α
j . Therefore, the individual trajectories of each replica can be concatenated

and the weight for each frame i results from:

wi = 1∑︁
αC

αwα
i

, (2.2.57)

with wα
i being the weight in each replica α for frame i.

2.3 Reducing dimensions

Note: Notations in this section are mainly chosen with reference to the publication of Hel-
frecht et al. 2020.184

MD provides an extreme amount of data as all coordinates and velocities for each atom
of the system can theoretically be saved every 1 or 2 fs, providing information about the
conformation and structural arrangement in a time-dependent manner. Considering that
simulated systems harbor on average between 10’000 (solvated glycan) to 500’000 atoms
(solvated protein), it is hard to decipher which essential features contribute to the observa-
tions of interest in such structurally complex systems. Here one can appreciate the value of
the already mentioned collective variables, differentiating between conformational states of
a molecule and following transitions over time. Hence, the identification of suitable CVs is
not only crucial for CV-dependent methods, but also directly related to the interpretation
of any kind of MD simulations, as they also allow for a low-dimensional representation of
the system.141 Unlike crystalline solids or clusters of identical atoms, biomolecules mostly
have a complex energy landscapes that is far from being symmetrical.185 It can be taken
advantage of the fact that the conformational phase space of most biological systems of
interest is characterized by a few high probability areas, along with several metastable
states, whereas the rest of the space is factually never sampled and the probabilities tend
to be zero.141 Therefore, CVs are desired which describe the accessible conformations in
a projected fashion, spanning a new low-dimensional map.
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In the context of simulating N-glycan structures, there is a large number of possible
CVs that can be used in order to define the conformational states of the system, where
a detailed structural analyses requires the rationalization of this high-dimensional vector
space. Dimensionality reduction techniques can help with an efficient graphical represen-
tation of the glycan’s conformational phase space but can also provide information about
the most important structural features to differentiate between conformations. Such pro-
jections possibly reveal mutual functional dependencies and hidden correlations among
the many CVs.

The outlined problem can be addressed by different machine-learning algorithms, tak-
ing the molecular trajectory as a set of high-dimensional vectors and performing a data
reduction operation. It should be kept in mind that all of these algorithms result in a
projection with a lower information content, keeping only the necessary features to de-
scribe the important states of a system. The underlying mathematical models for the
different dimensionality reduction techniques have in common that they impose certain
assumptions on the high-dimensional data. For instance, it is assumed that sampled data
points from a trajectory cluster around few representative three-dimensional structures or
that all adoptable conformations lie on a linear or non-linear low-dimensional manifold.185

The different obstacles going hand in hand with the application of certain dimensionality
reduction techniques will be discussed explicitly for the methods applied in this study.

The data set to be analyzed with a dimensionality reduction algorithm should ideally
be derived from an unbiased MD simulation, where a series of random high-dimensional
vectors {rt}, sampled every t time points, represent the conformations with coordinates
r, sampled from the distribution P (r). If, however, enhanced sampling algorithms are
employed for the simulation, the system will sample from the biased distribution P ′(r),
which can be reweighted to P (r) through the calculation of a weight wt for each frame
according to equation 2.2.57. Under the assumption of simulating a free N-glycan in
solution, there are different components included in one coordinate framework rt that are
of different importance to the quantity of interest, which is in this case the conformation of
the N-glycan. For instance, the position of water atoms can be generously neglected, but
also the pure Cartesian coordinates of the sugar atoms probably hold little information
about the three-dimensional glycan structure, as thermal fluctuations make the data set
noisy. Chemical intuition can help in this context, considering that especially torsion
angles should be able to describe large motions in glycan structures, as it is also true for
proteins with their backbone angles.185 Consequently, it is important to reduce the noise
and dimension of the data set a priori to enhance the possibility of obtaining an informative
projection, as it is nothing else than an illustration of how the random vectors {rt} are
distributed in relation to each other in the low-dimensional space. The notation {rt},
spanning the phase space based on Cartesian coordinates is replaced by {Xi}, describing
the high-dimensional vector set comprised of all torsion angles (ϕ, ψ and ω) present in a
glycan structure, iterating over i frames.
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2.3.1 Principle component analysis

There are multiple strategies that have been developed for MD trajectories in recent years
to map a high-dimensional feature matrix X of shape nsamples × nfeatures onto a low-
dimensional latent-space matrix T. Their applicability mainly depends on the underlying
data structure.186 In the case of N-glycans, only Principle Component Analysis (PCA)187

has so far been used to reduce the dimensions of the conformational phase space, how-
ever taking Cartesian coordinates as input and therefore being less informative.188 We
focus here on various algorithms differing in their linearity and assumption about the
high-dimensional data structure, that should be tried in order to obtain a reasonable low-
dimensional projection of glycan conformations. For instance, PCA projects the data onto
the linear eigenvector space defined by the k largest eigenvalues obtained by diagonaliza-
tion of the covariance matrix C of X. The low-dimensional representation in form of a
latent-space matrix T with shape nsamples × nP CA is defined by:

T = XPXT , (2.3.1)

where PXT projects between feature and latent space. PXT can be estimated from the
eigenvalue decomposition of the covariance matrix C = XTX:

C = UCΛCUT
C, (2.3.2)

where ΛC contains the eigenvalues on the diagonal in decreasing order and UC the corre-
sponding eigenvectors as columns. The projection matrix PXT = ÛC, where ÛC only con-
tains the desired top k eigenvectors (the principal components). The highest eigenvalues
correspond to the features of maximum data variance and the corresponding eigenvectors
are used as axes for e.g. two-dimensional or three-dimensional graphs representing the
low-dimensional projection. It is further possible to perform the reverse projection PT X ,
namely approximating X in terms of T:

XP CA = TPT X , (2.3.3)

to assess the performance of the projection. The resulting reconstruction error l is calcu-
lated from the difference of the original feature matrix and the approximated:

l = ||X − XP CA||2= ||X − XPXT PT X ||2, (2.3.4)

with || || being the Frobenius norm.

2.3.2 Diffusion map

In contrast, Diffusion map189 is a non-linear method, where the connectivity (or diffusion
distance) between individual data points (in our case, individual N -glycan conformations)
is quantified by the likelihood of transitioning from one to the other, expressed with the
help of a diffusion kernel function. Data points of X are projected onto a two-dimensional
matrix T so that the diffusion distances in the high-dimensional feature space can be
approximated by Euclidean distances between points in the reduced space. This ensures
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the preservation of the local vector-space structure, so-called isometric embedding. In
this work, Diffusion maps were computed based on the same algorithm as described by
Bottaro et al.190, using a Gaussian kernel. First, pairwise euclidean distances between
frames i and j for all nsamples are calculated in the nfeature-dimensional space, yielding
the redundant square matrix D of shape nsamples × nsamples. Subsequently, the adjacency
matrix K is computed with Gaussian kernel:

Kij = exp
(︄

−D2
ij

2σ2

)︄
, (2.3.5)

with σ defining the size of the neighborhood. It considers only three-dimensional struc-
tures that are significantly similar, ensuring that the transition probability is small for
dissimilar three-dimensional structures. A transition matrix T is constructed iteratively
over t iterations:

T(t+1) = d
−1/2
(t) Ttd

−1/2
(t) , (2.3.6)

with d being the diagonal degree matrix of the Gaussian kernel and T(0) = K, making
it normalized and symmetric190 in contrast to the original implementation of Diffusion
maps.189 Additionally, this yields results equivalent to the recently introduced bi-stochastic
kernel method.191 It follows that the nsamples ×nsamples shaped transition matrix Tij gives
the probability of a direct transition from sample i to j. An eigenvalue decomposition of T
as in the case of PCA is yielding the highest eigenvalues and corresponding eigenvectors,
defining the latter as the diffusion components that span the low-dimensional projection.

2.3.3 Sketch-map

The non-linear Sketch-map algorithm192,193 is based on a different approach named multi-
dimensional scaling (MDS).194 It does not reproduce an isometric mapping but was de-
veloped in order to focus on a projection that includes the most relevant information,
discarding additional information about the deposition of points in high-dimensions.186

The mutual distance of data points in X is conserved in T by the application of a sigmoid
function focusing on the reproduction of intermediate distances, rather than far-away dis-
tances which are dominated by the topology of the high-dimensional space. In practice,
the following stress function is to be minimized to produce a mapping:

χ2 =

⎛⎝∑︂
j ̸=i

wiwj

⎞⎠−1∑︂
j ̸=i

wiwj [F (Rij) − f(rij)]2, (2.3.7)

with wi being the weight of point i, Rij and rij the distances between points i and j in
high- and low-dimensional space, respectively.193 The distances are transformed by two
sigmoid functions F and f , for the high-dimensional and low-dimensional space, of form:

s(r) = 1 − (1 + (2(a/b) − 1)(r/σ)a)−b/a, (2.3.8)

where a and b determine the rate at which the functions approach 0 or 1 and σ the
switching distance.193 In F and f the distance σ is the same. Their values are close to
0 when r is smaller than σ and tend towards 1 if r is greater than σ. This ensures that

51 of 176



2.3. Reducing dimensions 2. The computational microscope

the algorithm pays most attention to points that are close to the parameter σ, which
should be determined from analyzing the histogram of pairwise distances Rij , identifying
intermediate distances that could correspond to stable conformations. The values a and
b are chosen differently for F and f , termed aD, bD for F and ad, bd for f . For larger
sample sizes, sketch-map is not applied to the whole data set but the initial projection is
done on selected landmark points, which can be identified through e.g. random sampling
or farthest point sampling. The data subset is arranged in the low-dimensional space and
the remaining data points projected using an out-of-sample embedding. This is sometimes
required, as in the case of sketch-map, since the computational expense of many algorithms
scales quadratically or cubically with the number of input points.186

2.3.4 Kernel principle covariates regression

Finally, beside these unsupervised techniques, there are also supervised algorithms, which
make use of information included in an additional property matrix Y of shape nsamples ×
nproperties. A recent example is the kernel principal covariates regression model (kP-
covR)184, which combines the robust methods of linear regression and PCA. Linear re-
gression aims at determining a linear relation between the input features X and target
properties Y, essentially finding a weight PXY that minimizes the error of the reconstruc-
tion

Ŷ = XPXY . (2.3.9)

As PXY minimizes the loss

l = ||Y − Ŷ||2= ||Y − XPXY ||2, (2.3.10)

it can be obtained after matrix rearrangements:

PXY = (XT X + λI)−1XTY, (2.3.11)

with I being a unit vector. λ is a regularization parameter that, when set greater than zero,
adds noise to the data in order to reduce overfitting and is hence called ridge regression.
The loss in ridge regression extends to

l = ||Y − XPXY ||2+λ||PXY ||2. (2.3.12)

For the application of principal covariates regression, linear regression and PCA are
combined using a parameter α in order to modulate the weight of each method, corre-
sponding to a combined loss

l = α||X − XPXT PT X ||2+(1 − α)||Y − XPXT PT Y ||2, (2.3.13)

with PXT PT Y = PXY .184 It tries to find a low-dimensional representation of X that
simultaneously reduces the information loss and error in predicting Y, by diagonalising a
modified covariance matrix. The projection matrix becomes:

PXT = C−1/2ÛC̃Λ̂C̃
1/2
, (2.3.14)
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with C̃ being an augmented version of C and Λ̂ a trunctated version of Λ.184 On top, the
kernel trick can be applied, finally yielding kPcovR using a radial basis function (Gaussian
kernel):

k(X − X′) = exp(−γ||X − X′||2), (2.3.15)

for pairs of samples X,X′. The hyperparameter γ can uncover non-linear relations be-
tween samples, improves the latent space projection T, and increases the regression per-
formance.184 For a more detailed derivation, especially of the Kernel methods, we refer to
the original publication of Helfrecht et al. 2020.184

2.4 Dependence of experiments and simulations

Note: Parts of this section are taken from the publication: S.M. Ayala Mariscal, M.L.Piga-
zzini, Y. Richter, M. Özel, I.L. Grothaus, J. Protze, K. Ziege, M. Kulke, M. ElBediwi, J.
Vermaas, L. Colombi Ciacchi, S. Köppen, F. Liu, J. Kirstein, Identification of a HTT-
specific binding motif in DNAJB1 essential for suppression and disaggregation of HTT,
Nature Communications 13, 4692, 2022.195

The following section aims at highlighting the importance and significance of perform-
ing experimental studies in conjunction with computational modeling techniques. Our
Huntington study, which revealed atomistic insights into important protein-peptide inter-
actions by interweaving many different scientific approaches, will serve as a motivating
example without much methodological detail.

The Huntington’s disease (HD) is a neurodegenerative disorder that is induced by the
expansion of a glutamine stretch in the first exon of the protein huntingtin (HTT)1. The
large ubiquitous protein is trimmed by alternative splicing and caspase-mediated cleavages,
yielding the N-terminal first exon of HTT that contains a pathological polyQ expansion
(HTTExon1).196 Above a threshold of Q ≥ 39, the disease is fully penetrant with an
inverse correlation between the polyQ length and the age of onset. The severity of the
disorder depends directly on the polyQ length. The HTTExon1 peptide forms amyloid
fibrils whenever an expanded polyQ stretch is present, leading to aggregation of fibrils
in both the cytoplasm and nucleus of HD patient’s neurons.197 HTTExon1 consists of
a highly conserved N-terminal stretch of 17 amino acids (N17), the polyQ domain that
facilitates amyloid formation and a C-terminal proline-rich domain (PRD), composed of
two stretches of proline repeats (P1 and P2) (Figure 2.10 A left).

Suppression of the pathogenic HTTExon1Q48 could be achieved by means of a chap-
erone complex that consisted of the heat shock protein Hsc70, a class II J-domain protein
DNAJB1, and the nucleotide exchange factor Apg218. In order to gain insight into the
interaction between HTTExon1Q48 and the three chaperones, experimental collaborators
performed non-specific cross-linking mass spectrometry that revealed an interaction be-
tween the HTT peptide and DNAJB1. DNAJB1 could be shown to bind to the second
proline stretch (P2) of the PRD with its C-terminal domain (CTD) and more precisely
with the hinge region between CTDI and CTDII involving a Huntingtin binding motif
(HBM)(Figure 2.10 A). They could pinpoint the interaction with HTTExon1Q48 to 9
amino acids in the DNAJB1 sequence that also harbor two positively charged residues,
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K242 and H244, where in particular the latter one is highly conserved. Using a fluorescence
resonance energy transfer (FRET) assay, it was possible to study the fibrilization of HTT,
where the addition of the trimeric chaperone complex, Hsc70, DNAJB1 and Apg2 could
suppress HTTExon1Q48 fibrilization for > 20 h (Figure 2.10 B magenta curve). However,
substitution of H244 by alanine (H244A) completely abrogated the ability of DNAJB1 to
suppress HTT fibrilization together with Hsc70 and Apg2 (Figure 2.10 B green and purple
curves (DNAJB1H244A + Hsc70 and Apg2)). Our collaborators concluded that mutating
H244 by alanine severely limits the ability of the trimeric chaperone complex (DNAJB1,
Hsc70, and Apg2) to suppress HTTExon1Q48 fibrilization, and this defect could also not
be rescued by increasing the concentration of the DNAJB1 variant (Figure 2.10 B purple
curve).

Figure 2.10: Experimentally determined Huntingtin binding motif (HBM) of
DNAJB1 for the Huntingtin peptide Exon 1 (HTTExon1Q48). A Schematic
peptide structure of HTTExon1Q48, having the N17 domain at its N terminus, followed
by the polyQ region and two polyP regions. The proposed binding motif within DNAJB1
lies between the CTD1 and CTD2 domain, binding to the second polyP region (P2) of
HTTExon1Q48. B FRET measurements as a readout of HTTExon1Q48 aggregation over
time in the absence (black curve) and presence of Hsc70, Apg2 and DNAJB1wt (magenta)
or variants (green/purple). Figure adopted from Ayala et al. 2022.195

Atomistic details and a mechanistic understanding of the conserved binding interface
were however so far lacking and prevented a complete understanding of the protein-peptide
complex formation. To structurally analyze the complex formed between DNAJB1wt or
DNAJB1H244A and HTTExon1Q48 computationally, we first needed to predict, refine
and then dock a HTTExon1Q48 model to DNAJB1. As there is little structural infor-
mation available for HTTExon1Q48, an initial starting structure was predicted by the
homology modeling algorithm I-TASSER198 serving as input structure, followed by a
more intensive refinement via the enhanced-sampling TIGER2h algorithm, performed by
Martin Kulke.199,200. Representative structures from five identified minimum free energy
clusters of HTTExon1Q48 were docked to DNAJB1wt, employing the rigid-docking server
HDOCK. Only two clusters lead to a reasonable complex formation with DNAJB1wt, in-
volving the HBM and P2 in the binding interface (see for further details Supplementary
Figure 3c in Ayala et al. 2022195). The two assemblies were further subjected to 500 ns of
MD simulation, forming stable complexes with DNAJB1wt (see WT model and contact
map in Figure 2.11). Major contacts of amino acids of the P2 of the PRD were formed to
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P243, H244, N245, I246, and K248 of DNAJB1wt. Due to hydrogen bonding between E173
and the H244 side chain, only the backbone atoms of H244 are facing P2 of HTTExon1Q48

(see enlarged WT molecular model in Figure 2.11). We then docked the minimum struc-
tures of HTTExon1Q48 to the DNAJB1 mutation variant DNAJB1H244A. Interestingly,
the clusters soon detached and moved away from the HBM of DNAJB1H244A, leading
to a very faint contact map (Figure 2.11). Due to the missing hydrogen bond between
residues 173 and 244, the alanine side chain at position 244 rotated outwards, preventing
its backbone to firmly bind to HTTExon1Q48. In summary, our in silico analysis fully
supports the experimental finding that the P2 region of HTTExon1Q48 forms stable con-
tacts with the HBM of DNAJB1, including residues 238–246 (Figure 2.11). H244 plays a
fundamental role in stabilizing the complex via hydrogen bond interactions with its back-
bone, as observed in the WT model to HTTExon1Q48. Substitutions of H244 by alanine
break these bonds and destabilize the complex, explaining the inability of DNAJB1H244A
to suppress HTT fibrilization together with Hsc70 and Apg2.

This thematic detour away from glycosylations has clearly demonstrated the far-reaching
possibilities that MD simulations provide to interpret experimental results and use them
as a starting point for deeper insights. Whenever possible, this mindset was applied in the
following result chapters.

Figure 2.11: Atomistic simulations explain experimental findings. MD snapshots
of monomeric DNAJB1wt and DNAJB1H244A in complex with HTTExon1Q48(left).
Atomistic structure of the HBM of DNAJB1wt or DNAJB1H244A and P2 of
HTTExon1Q48, interacting via hydrogen bonds (dotted lines) or non-bonding interactions
(middle). DNAJB1 (gray) with highlighted amino acids with a coloring code accord-
ing to the atom types: hydrogen (white), carbon (cyan), oxygen (red), nitrogen (blue).
The HBM is colored in cyan. The domains of HTTExon1Q48 are indicated by different
colors: polyQ (orange), PRD (P1 and P2: red; residues between P1 and P2: black),
N17 (green) and highlighted amino acids in CPK style. Contact maps of DNAJB1wt or
DNAJB1H244A and HTTExon1Q48, focus on the HBM and P2 domain (right). Contact
maps were constructed by averaging the contacts over the last 400 ns of the MD simulation
and additionally averaging over interactions recorded for cluster 1 and 2 of HTTExon1Q48
with DNAJB1. Distances were converted by a rational switching function, defining the
contact distance (inflection point) at 1 nm, where a value of 1 represents a close contact
and 0 no contact. Residues 173, 174, and 244 are highlighted with a red box. Figure
adopted from Ayala et al. 2022.195
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3 | On their own: The phase space

The artistic phase space of N-glycans. Diverse N-glycan conformers of M5 bathing
in their free energy landscape, flagged by corresponding conformer labels. They are il-
luminated by a puckering sun imposing distortions like chair and boot conformations on
each saccharide ring.137
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Note: Parts of this chapter are taken from the publication: I.L. Grothaus, G. Bussi,
L. Colombi Ciacchi, Exploration, representation and rationalization of the conformational
phase space of N-glycans, Journal of Chemical Information and Modelling, 62(20):4992–
5008, 2022.137

The three main general limitations of MD simulations discussed in chapter 2 also directly
apply to the simulations of carbohydrates. In this chapter, possible improvements based
on enhanced sampling and dimensionality reduction techniques are proposed and tested
to counteract these shortcomings. First the phase space spanned by Cartesian coordinates
to describe the conformation of glycans is replaced by a new conformer description that
is only dependent on torsion angles, under the assumption that these are the main de-
grees of freedom. This description is exploited to assess the performance of the enhanced
sampling technique REST-RECT, evaluating the convergence of phase-space exploration
and simultaneously tackling the problem of limited simulation times. The resulting high-
dimensional output data set is further reduced by dimensionality reduction techniques
in order to help the interpretation of the obtained results, aiming at a low-dimensional
comparison of global glycan conformers that has not been possible so far. The outlined
workflow is finally applied to a set of diverse applications comprising the comparison of
different N-glycan structures and the performance of current biological force fields.

3.1 Testing

3.1.1 GlyCONFORMER

As detailed in section 1.3, N-glycans are multi-branched structures, characterized by the
specific linkages between saccharides monomers. Each glycosidic linkage gives rise to
at least two torsion angles (ϕ and ψ), while 1→6 and 2→6 linkages harbor an additional
torsion angle ω. Based on these structural characteristics, we constructed an unambiguous
labeling scheme to distinguish different conformers of the same N-glycan. The scheme is
also applicable to other glycans, independently of their size, number or type of branches
and amount of substituents such as fucosylation. Each conformer is identified by a digit
string of length Nz, equal to the number of torsion angles in the glycan. For N-glycans,
the string begins at the free reducing end, consisting of a β 1 → 4 - linked GlcNAc dimer
followed by a mannose residue. For each linkage, the linear string reports digits assigned
to ϕ, ψ and ω (if applicable), in this order. In correspondence of a junction (leading e.g. to
an α 1→6 and a α 1→3 branch after the first mannose), a string separator is introduced,
labeled according to the C atom at the branch origin (e.g. 6– for 1→6 linkages). The
string continues first along the branch of the higher C atom (6 in our case) until reaching
the terminal residue, prior to returning to the last junction and following the branch
of the next-lower C atom (3 in our case). Additional modifications like the attachment
of fucose residues or bisecting GlcNAc residues are included after all other branches are
assigned. The separators of primary branches are labelled with bold numbers (6– or 3–),
for clarity. The string digits indicate in which intervals of values the torsion angle lies,
following the IUPAC nomenclature for dihedrals201. Namely, the digits for ϕ and ψ and
the corresponding interval of radian values are :
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C = [−0.52, +0.52)

G+ = [+0.52, +1.57)

A+ = [+1.57, +2.62)

T = [+2.62, π] or [−π, −2.62)

A− = [−2.62, −1.57)

G− = [−1.57, −0.52).

The digits for ω are:

gg = [−2.62, 0)

gt = [0, 2.62)

tg = [2.62, π] or [−π, −2.62).

Figure 3.1: Example of conformer string generation. Assignment of a conformer
string to the complex N-glycan A4G4S4 (blue: GlcNAc, green: Man, yellow: Gal, purple:
Neu5Ac, red:Fuc) drawn with DrawnGlycan50, based on its torsion angle conformations.
The various branches of a glycan are ranked according to their type of linkage and calcu-
lated free energy profiles of the torsion angles aligned in the corresponding order. Their
free energy minimum basins are labeled with respect to the IUPAC nomenclature for tor-
sion angles. For each adopted conformation along a trajectory, the value of each torsion
angle in the string is evaluated, assigned to a minimum and correspondingly labeled. The
outcome is an ordered string of digits that represents the global conformation of a glycan.

The assignment of each torsion angle to a given interval is performed in the following way.
First, the free-energy profile associated with rotation along the torsion angle is calculated
from an MD trajectory (most often enhanced sampling MD is necessary in order to achieve
converged profiles). The positions of the free-energy minima are then labeled according
to the nomenclature above. All angles belonging to the same free-energy basin (around a

59 of 176



3.1. Testing 3. On their own: The phase space

minimum between the two neighboring maxima) are finally labeled equally to the mini-
mum of their basin (Figure 3.1). As a last step, each recorded set of torsion angles from
a frame of a trajectory is translated into a conformer string, built according to the rules
above. The scanning of free energy profiles for minima and maxima and the subsequent
assignment according to the IUPAC nomenclature are a tedious task if done by hand.
Therefore, the workflow was automatized in the python package GlyCONFORMER, cat-
egorizing free energy profiles according to the scheme in Figure 3.1. The package can also
read in a feature matrix X of shape nsamples ×nfeatures, where the features are equal to all
torsion angles of the analyzed glycan, and convert the torsion angle values of each frame
into the respective conformer strings. This data set can be subsequently used to construct
a histogram with the individual conformers selected as bins, yielding a conformer distribu-
tion (see below, e.g. Figure 3.3). In order to assess statistical features of this distribution,
block averaging can be performed, separating the data set into evenly distributed blocks.
The average of all blocks X̄ = 1

N

∑︁N
j=1Xj is calculated over N = 10 blocks, where Xj is

the average calculated within each jth block. Error bars are calculated as standard devi-

ations of the sampling distribution (standard error of the mean): std(X̄) =
√︃

var(X̄)
N , with

the variance of the sampling distribution var(X̄) = ( N
N−1)

[︂
1
N

∑︁N
j=1X

2
j − ( 1

N

∑︁N
j=1Xj)2

]︂
.

To further analyze the convergence of conformer populations, moving averages can be
calculated for the individual conformers over the simulation time. The outlined analysis
represents a fundamental basis for the assessment of glycan simulations, as the conformer
string incorporates all degrees of freedom that are necessary to describe the global glycan
conformation. The approach is applied to the evaluation of REST-RECT simulations of
various N-glycans in the following sections.

In chapter 2 the phase space has been defined as Γ = {rk} being the 3N -dimensional
phase space of N atoms that is spanned by the Cartesian coordinates of the simula-
tion box. From here on, the conformational phase space expression is redefined and
adapted for the application to glycans’ three-dimensional structure. Namely, Γ = {z} =
{ϕi, ψi, ωi}i=1,...,Nlinkages

, where z is the vector of all Nz torsion angles present in a cer-
tain glycan structure, and ϕi, ψi, ωi describing the specific torsion angles of each linkage
i. Consequently, the 3N -dimensional space is reduced to Nz dimensions, which normally
range between 10 and 20 for typical N-glycans. Therefore, a microstate corresponds to
a certain sequence of torsion angle values, while we define a conformer as a cluster of
conformations having all the same conformer strings.

3.1.2 REST-RECT simulations

The proposed REST-RECT methodology was applied to a set of six biologically relevant
N-glycans, namely three high-mannose types, M5 FM5 M9, and three complex types,
A2G2 A2G2S2 and A4G4S4 (Figure 3.2).
Their three-dimensional structures were constructed using the CHARMM-GUI Glycan
Modeller, based on averaged three-dimensional structures from the Glycan Fragment
Database202–205. Each N-glycan was solvated with a 15 Å thick water layer in a cubic
box. For A2G2S2 and A4G4S4, two and four sodium counter-ions were added, respec-
tively, to compensate for the net negative charges resulting from Neu5Ac. MD simulations
were performed with the GROMACS code, version 2018.4206, patched with the PLUMED
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package, version 2.6207. The CHARMM36150–152 force field was used for the N-glycan
molecules in combination with the CHARMM-modified TIP3P water model (mTIP3P)208.
For the CHARMM36 force field, the recent correction to a previous faulty implementation
affecting in particular the ring inversion properties of Neu5Ac has been applied in all sim-
ulations209. The leap-frog algorithm was used as an integrator with a 2 fs time step and
the LINCS algorithm210 was employed to constrain bonds connected to hydrogen atoms.
Temperature control was realized via velocity rescaling211 using a time constant of 0.1 ps,
setting a reference temperature of 310.15 K. The pressure was set to 1 bar with a com-
pressibility of 4.5 x 10−5 bar−1, and kept constant via the Parrinello-Rahman barostat
with a time constant of 5 ps. The Verlet list scheme212 was employed with a neighbor
list updated every 80 steps. The calculation of electrostatic interactions was done with
the Particle Mesh Ewald (PME)213 method using a cut-off distance of 1.2 nm for the real
space contribution.

Figure 3.2: Relevant N-glycan structures. Model systems employed in this study,
namely three high-mannose type N -glycans (M5, FM5, M9) and three complex N -glycans
(A2G2, A2G2S2, A4G4S4). They have been drawn with DrawnGlycan50 where GlcNAc
is blue, Man is green, Gal is yellow, Neu5Ac is purple and Fuc is red.

The following steps were performed in order to equilibrate the systems: First, an energy
minimization of water and ions was performed using the steepest-descent algorithm with
a tolerance of 1000 kJ mol−1 nm−1, restraining the N-glycan atoms. Then, the solvent
was equilibrated in one NVT and one NpT run, each lasting 1 ns, with restrained N-
glycan atoms. After that, a second energy minimization of all atoms was performed
with no constraints, with the same parameters as before. Finally, unrestrained NVT and
NpT equilibration runs were performed, lasting 1 ns and 100 ns, respectively. For each
simulated system, two different starting conformers, named s1 and s2, were generated by
setting the ω angle of the 6– branch either to a gt (for s1) or a gg (for s2) conformation.
Separate simulations starting with the two initial conformations s1 and s2 were performed
to validate the convergence of the conformer distributions for the different simulation
techniques employed.
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Figure 3.3: Performance of REST-RECT for high-mannose type N-glycan con-
formational exploration. Comparison of REST-RECT with plain MD simulations for
systems M5, FM5 and M9 using the CHARMM36 force field. The upper panel includes
atomistic structures of each glycan, visualized with the 3D-SNFG tool of VMD214. The
middle panel shows the moving average for the three most populated conformer clusters
using a window size of 100 ns (REST-RECT) and 1.2 µs (MD), corresponding to the same
sampling time. Two separate simulations were performed with differing initial starting
conformations (s1 and s2). The lower panel reports the resulting conformer distributions.
The conformer string is given on the x-axis, where each digit stands for a torsion angle, the
letter representing the occupied free-energy minima. Dots are used instead of letters when
no change could be observed in comparison with the most populated conformer cluster.
The gray boxes highlight a key conformational difference between REST-RECT and MD
simulations, with a depicted free energy landscape of the corresponding angle (inserts).
Only conformers with a probability higher than 2.5 % are plotted.

In the REST-RECT simulations, the whole N-glycan was defined as the solute, whose
Hamiltonian was scaled in replica α by means of a scaling factor λα acting on the long
range electrostatics, the Lennard-Jones interactions, as well as the dihedral angles. For
non-neutral systems a neutralizing background was automatically added via GROMACS.
We used 12 replicas and a geometric progression of λα values equal to 1, 1, 0.92, 0.84,
0.77, 0.71, 0.65, 0.60, 0.55, 0.50, 0.46, 0.42, spanning an effective temperature ladder from
310.15 K to 800.00 K. Note that both the ground replica (α = 0) and the first replica
(α = 1) were simulated at the same ground temperature T0 = 310.15 K, for convenience of
the RECT implementation and analysis. Water and ions were always kept at the ground
temperature. Replica exchanges were attempted every 400 steps, following a Metropolis-
Hastings acceptance criterion. In the RECT part, all Nz torsion angles, as listed below, of
the simulated glycan were defined as CVs and biased simultaneously byNz one-dimensional
potentials in each replica α. Nz amounted to 14, 17, 24, 17, 23 and 37 for M5, FM5, M9,
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A2G2, A2G2S2 and A4G4S4, respectively. The αth replica was biased with a bias factor γα

following a geometric progression of values equal to 1, 1.2, 1.46, 1.82, 2.3, 2.94, 3.78, 4.89,
6.34, 8.23, 10.7, 14 over the replica ladder. Gaussian hills were deposited at time intervals
of τG = 1 ps, with a width of 0.35 rad and a height corresponding to hα = (kB∆Tα/τ)×τG,
where kB is the Boltzmann constant, ∆Tα = T0(γα − 1) the boosting temperature and
τ = 4 ps the characteristic time for the bias evolution in the RECT part. The geometric
progressions of λα and γα ensured sufficient overlaps of the potential energy distributions
at all temperatures, resulting in uniform round trip times for the different replicas (see
supporting information of Grothaus et al. 2022137 for round trip time plots of each N-
glycan).

Figure 3.4: Performance of REST-RECT for complex type N-glycan conforma-
tional exploration. Comparison of REST-RECT with plain MD simulations as in Figure
3.3 for the systems A2G2, A2G2S2 and A4G4S4 using the CHARMM36 force field.

We note that the ground replica was fully unbiased (λ0 = 1, γ0 = 1), allowing for an
unbiased statistical distribution of frames, which could be trivially used in all subsequent
analyses. The first replica was biased, but kept at the ground temperature (λ1 = 1,
γ1 = 1.2) to ensure sufficient overlaps between the first two replicas. The inclusion of
higher-order replicas in the analyses requires the application of WHAM182. However,
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including replicas up to α = 4 in the analyses did not result in a more effective sampling.
Higher replicas should not enter the analyses because of the expected low ensemble overlap
with the reference replica. Enhanced-sampling REST-RECT simulations were compared
to standard MD at 310.15 K to assess the exploration of the conformational phase space
spanned by the torsional angles of the N-glycan. A fair comparison of the two methods
was ensured by using the same total simulation time, amounting to 6 µs for standard MD
and to 500 ns for each replica in the REST-RECT simulations, which included 12 replicas.

The obtained probability distributions for the individual conformers and the moving
average for the three most probable ones are shown in Figure 3.3 for the high-mannose
type N-glycans and in Figure 3.4 for the complex N-glycans. Labeling of conformers, in
line with the official IUPAC nomenclature for dihedral angles201, was performed as de-
scribed above with our own GlyCONFORMER python package. The first notable result
is that stable and consistent conformer population distributions were obtained already
after about 100 ns of REST-RECT simulation, irrespective of the starting conformation
s1 or s2, as shown in the upper panels of Figure 3.3 and 3.4. In contrast, especially for
high-mannose type N-glycans and A2G2, plain MD simulations displayed large fluctua-
tions, poor convergence and significant dependency upon the starting conformation for
individual conformers. This resulted in much larger error bars associated with the con-
former distribution histograms (Figure 3.3 lower panel) in comparison with the enhanced-
sampling simulations. For A2G2S2 and A4G4S4 (Figure 3.4) the conformer distributions
and moving average plots are rather similar, however converged results can be obtained
within much short times via REST-RECT, as replicas are parallelized. Furthermore, for
M9 standard MD simulations even predicted a different most stable conformer than REST-
RECT. The ψ angle in the main 1→6 linkage between two mannose residues (gray box in
Figure 3.3, lower panel) remained stuck in a G− free-energy minimum and did not reach
the global-minimum T conformation predicted by REST-RECT. The analysis further re-
vealed interesting common patterns of torsion-angle conformations in certain structural
elements across the investigated models. For instance, the sequence G−A+G−A+ was
predicted as the global minimum of the chitobiose core for all glycans, and the G+Tgg

sequence characterizes the 1→6 linkages in most cases. Moreover, there was an evident
preference for a gg conformation of the ω angle, which originates from the gauche effect.83

Assessing the exploration of the second structural feature, the puckering of saccha-
ride units, was realized by the comparison of two-dimensional free energy profiles along
the pucker coordinates θ and ϕ for standard MD and REST-RECT simulations. The
two-dimensional pucker plots were calculated using the Mollweide projection, also termed
homolographic or elliptical projection (Figure 3.5 A). This pseudocylindrical map projec-
tion is equal-area, meaning that areas, densities and, thus, free energy values are preserved.
Only representative results for glycan A2G2S2 are depicted as it harbors the four most
common monosaccharide types. The obtained free energy maps are comparable for all
the other N-glycans (Figure 3.5 B). Under standard MD simulations, the Gal, Man and
GlcNAc residues adopt solely the chair conformation 4C1, whereby Neu5Ac, next to its
minimum around 1C4, also explores boat and skew-boat conformations. In comparison to
REST-RECT, especially the GlcNAc monosaccharide lacks exploration of the chair confor-
mation 1C4 and several minima along the equator. However, Gal and Man do not explore
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any other conformations except for 4C1 also under REST-RECT sampling. In terms of
convergence, which can only be realistically analyzed for Neu5Ac and GlcNAc (Figure 3.5
C), a minimum energy chair conformation is reached after around 100ns and progresses
with a stable probability of roughly 97%, where contributions from the other states are
only minor. In the limits of the applied CHARMM36 force field, REST-RECT enhances
sampling along the variables θ and ϕ for certain monosaccharide types through the scaling
of the Hamiltonian, alias increasing the effective temperature.

Figure 3.5: Performance of REST-RECT for complex N-glycan pucker confor-
mations. A 2D schematic representation of the Cremer-Pople puckering coordinates θ
and ϕ and structure of the complex glycan A2G2S2. The structure has been drawn with
DrawnGlycan50 where GlcNAc is blue, Man is green, Gal is yellow and Neu5Ac is pur-
ple. B Free energy profiles of various monosaccharides originating from the sampling of
A2G2S2 via REST-RECT and classical MD starting from three-dimensional structure s1.
C Moving average to assess the convergence of the puckering free energy profiles along
θ for the monosaccharides in B for two independent start conformations s1 and s2. θ
typically harbors three minima, which can be associated with two chair conformations
(4C1,

1C4) and one boat or skew-boat conformation (B). θ values were classified as 4C1
when being in the range [0 − 1.0), B between [1.0 − 2.25) and as 1C4 between [2.25 − π],
with a window size of 10000 datapoints using 50000 in total.

3.1.3 Low dimensions

The set of strings associated with the most-populated conformer clusters of a given N-
glycan is an already reduced representation of the highly-dimensional conformational phase
space spanned by the Cartesian coordinates. However, such conformer strings are lengthy
and become cumbersome when comparing different N-glycan systems. In addition they do
not give a measure of the structural proximity among the different conformers within one
glycan, as all torsion angles are considered as equally important. We therefore investigated
the ability of the dimensionality reduction techniques introduced in chapter 2.3 (PCA,
Diffusion map, Sketch map, kPcovR) to deliver two-dimensional representations of the
conformer clusters in an efficient and physically meaningful manner, using all torsion
angles as input features.
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Figure 3.6: Performance analysis of the four different dimensionality reduction
techniques: Principle component analysis (PCA),diffusion map, sketch-map and kernel
principle covariates regression (kPcovR). Eigenvalues of the covariance matrix (y-axis)
are plotted against the corresponding components (x-axis) for PCA and diffusion maps.
For sketch-map, the histogram of pairwise distances plotted for randomly picked points
at a given distance (Rij) is shown. The parameter σ was chosen from this probability
distribution, as it represents the switching distance for the sigmoid function, defining which
distances are considered close or far in the sketch-map algorithm. At last, regression of the
kPcovR algorithm is shown by plotting the property matrix Y against the reconstructed
property variables Ŷ. Points are colored according to their associated loss.

We always included 31250 data points from the ground replica of REST-RECT sim-
ulations (nsamples), with the different torsion angles of each N-glycan defined as features
(nfeatures), resulting in a feature matrix X with shape nsamples × nfeatures. In order to
account for the periodicity of the torsion angles, their sin and cos values were used in
the feature matrix X instead of their radian values, in all cases except for Sketch map.
PCA calculations were performed with the scikit-learn package215. Diffusion maps were
calculated with an inhouse python script, where the parameter σ, defining the size of the
neighborhood including similar conformational structures, was set equal to 1.7. Sketch
maps were calculated with the DimRed module of PLUMED (version 2.6). The ma-
trix of dissimilarities between the frames in the feature space were calculated using the
Euclidean distance measure. 500 landmark points were obtained from farthest point sam-
pling and subjected to minimization of the stress function. The switching distance was
chosen equal to 2.5 for all N-glycans, which lies roughly in the middle of the range of
distances characterized by Gaussian fluctuations (Figure 3.6). We set aD = bD = 4 in
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the high-dimensional space, and ad = bd = 2 in the low-dimensional space, as defined
by Ceriotti and co-workers (see chapter 2.3)193. The tolerance for the conjugate gradient
minimization was set to 10−3, using 20 grid points in each direction and 200 grid points
for interpolation. 5 annealing steps were used and the remaining trajectory data were
projected on the constructed sketch-map.

The recently developed kPcovR algorithm was employed as described in the tutorials at
https://github.com/lab-cosmo/kernel-tutorials, using the scikit-cosmo implemen-
tation. Besides the feature matrix X, the conformer strings assigned to each frame were
employed as properties in the property matrix Y. Prior to fitting, the input was centered
and standardized by removing the mean and scaling the data to obtain a unit variance.
We note that our data set was used as a whole and not split into separate training and
testing data sets. A Gaussian kernel with γ = 1 was used and mixing parameters α were
calculated for each simulated glycan on a subset of 1000 frames for two dimensions, leading
to values of 0.1 for M5, 0.5 for FM5, 0.9 for M9 and 0.1 for A2G2S2. The regularization
parameter λ was set to 10−4 for the linear regression part. The error of the linear regres-
sion part was assessed by comparing the true properties Y and the predicted properties
Ŷ.

Figure 3.7: Dimensionality reduction of the conformational phase space of M5.
Comparison of four different dimensionality reduction algorithms to cluster the distinct
conformers of N-glycan M5. Principle component analysis (PCA), diffusion map and
sketch-map employ all M5 torsion angles as features, whereas kernel principle covariates
regression (kPcovR) additionally uses the conformer strings as properties. Each gray
point corresponds to one frame and colored points to the respective conformers given in
Figure 3.3. Sampling was performed from REST-RECT simulations (only s1).
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Example projections of the four dimensionality reduction techniques are depicted for
glycan M5 in Figure 3.7, where only selected representations are shown in Figure 3.8
for FM5, M9 and A2G2S2. PCA and diffusion map generated almost identical two-
dimensional representations for M5 (Figure 3.7) and gave similar eigenvalue progressions
along the PCA/Diffusion components for all analyzed N-glycans (Figure 3.6). There was
an obvious gap observed between the first few eigenvalues (two for the case of M5 shown
in Figure 3.6) and the remaining ones, indicating that corresponding structural features
are more important than others in differentiating the glycan conformers. Having a closer
look at the PCA of M5, PC1 differentiates conformers along their ω torsion angle in the
side branch 6–, and PC2 along the main branch 6–, corresponding to 25.0 % and 19.5 %
of variance in the underlying data, respectively. Knowing that the highest variance is
included in the rotations around ω torsion angles gave us an a posteriori justification for
the two selected initialization states s1 and s2, differing in the states of ω in 6–, situated in
very different energetical conformers. The differentiation of conformers from each other by
two ω angles gave rise to four main groups of conformer clusters (Figure 3.7). The overlap
between clusters in each of those groups originated from the fact that these conformers
only differ in ψ angles, which apparently can not be resolved in this two-dimensional
representation, revealing the limitations of the PCA and Diffusion map algorithms. In
fact, it is interesting to note that the number of highest, well-separated PCA or Diffusion-
map eigenvalues is equal to the number of ω angles present in glycan structures M5 (two),
FM5 (three) and A2G2S2 (one)(Figure 3.6). In this respect, M9 is an exception, presenting
only one well-separated eigenvalue (corresponding to the 6– branch), but harboring two ω
angles. Correspondingly, in the two-dimensional PCA map there is a clear separation of
cluster conformers along the PC1 component, but some overlap along the PC2 component
(Figure 3.8). The Sketch-map algorithm clustered conformers in a similar way to PCA and
diffusion map, differing only in the overall spatial arrangement, but with marginally better
separation of the clusters for M5, FM5 and M9 (Figures 3.7 and 3.8). In contrast, for glycan
A2G2S2 no separation of conformers could be achieved, basically having all conformers
collapsed onto one central point (Figure 3.8). This is probably due to its structural
setup and the corresponding conformer distribution, where especially the conformers with
a lower probability (colors light orange, orange and red in Figure 3.8 and 3.4) differ
only in the ω angle of the terminal Sia residues. This feature can apparently not be
mapped properly by the sketch-map algorithm, whereas also the switching distance σ was
most complicated to determine, as the histogram of pairwise distances harbors only one
maximum (Figure 3.6). In general, sketch-map analysis does not allow for a ranking of
most important components and thus for an unbiased identification of the most important
structural features of the system. The kPcovR algorithm separated the most-occupied
conformers in the most effective way, resulting in clustered clouds with only little overlap
to neighboring ones (Figure 3.7 and 3.8). However, the algorithm did not allow for a
meaningful interpretation of how conformers are separated or clustered together, since no
characteristic feature could be assigned to the kPcovR principal components. It rather
seems that the clusters were ranked according to their population probabilities along
PC1, as suggested by the progression of colors from left to right in the two-dimensional
map. The separation along PC2 seems to be consistent with the PC1 component of the
classical PCA projection. The calculated losses for the regressions in kPcovR can only
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be interpreted as relative values, as Y consists of discrete conformers, but the linearity
between Y and Ŷ along the target (red line) is very clear (Figure 3.6). From this analysis,
we conclude that, for the investigated systems, PCA, diffusion map and sketch-map can be
used almost interchangeably with respect to their physical meaning, while kPcovR may be
useful whenever a two-dimensional representation with well-separated conformer clusters
depending on their population distribution is sought for. In the further applications only
PCA is employed, as it is the most straightforward and computationally effective algorithm
and gives consistent results for all tested N-glycan systems.

Figure 3.8: Comparison of dimensionality reduction techniques for various N-
glycans. Each gray point corresponds to one frame and colored points to the respective
conformers given in Figure 3.3 and 3.4. Sampling was performed from REST-RECT
simulations (only s1). Dimensionality reduction projections for N-glycans FM5, M9 and
A2G2S2 using Principle component analysis (PCA), sketch-map or Kernel principle co-
variates regression (kPcovR).

We were able to show that REST-RECT simulations provide converged conformer dis-
tributions with complete sampling of all torsion and puckering angles within a few hundred
nanoseconds of cumulative time, with better accuracy and using less computational time
than long standard MD simulations. Sufficiently short round trip times reveal the strength
of the RECT method, capable of biasing more than 20 CVs simultaneously while still en-
suring adequate diffusion in the replica space. This behavior originates from an adjusted
ergodicity by scaled bias factors over the replica ladder, ensuring a proper compensation
of free energy barriers by a self-consistent addition of one-dimensional bias potentials.177

Alternative methods such as temperature REMD89 are computationally too demanding in
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solvated systems.216 Bias-exchange metadynamics217 would have required more replicas
for the same number of biased CVs, and would have only enabled biasing them one at a
time.177 It may be argued that some of the chosen CVs are in fact redundant; in particu-
lar, axial ϕ torsion angles in α-linkages occupy only the gauche conformation (G+) due to
the so-called exoanomeric effect. This is due to the favorable overlap of one oxygen lone-
electron pair with the antibonding orbital of the adjacent C–O bond83,218,219, an effect
that needs to be appropriately mapped by torsion, Lennard-Jones and Coulomb terms in
force-field potentials. However, there is no computational advantage in excluding those
CVs from the biased scheme, and is indeed reassuring to see that the results do confirm
such background-knowledge details.

Comparison of the newly introduced conformer strings easily reveals differences and
similarities, which are immediately traceable to specific linkages and torsion angles. Pre-
vious classifications of identified conformers were performed with less clear nomenclature
rules. For instance, the groups ‘backfold’, ‘half backfold’, ‘tight backfold’, ‘extended-a’
and ‘extended-b’ were defined according to their ψ and ω torsion values of the first 1→6
linkage. These groups can still be differentiated using a low-dimensional representation
constructed by PCA (see Figure S11 for A2G2 in supporting information of Grothaus et
al. 2022137). In line with a previous study, we found that ‘half backfold’ conformers is in
fact part of the ‘backfold’ cluster.87 However, this classification system is again limited to
the description of only one single branch.

The application of dimensionality reduction techniques to N-glycans has so far been
limited to PCA using atom coordinates as input features.188,220 Nevertheless, clustering of
glycan conformers has been already performed in the past, using e.g. end-to-end distances
between glycan branches to describe their flexibility and identify the main conformers.93

Additionally, the usage of spherical coordinates was introduced to describe the dynamical
behaviour of the 6– branch, albeit the procedure was applied to the description of only one
single branch.96 Our successful application of various dimensionality-reduction techniques
to represent the high-dimensional phase space of N-glycans highlights their enormous po-
tential in delivering a consistent analysis of the most-populated conformer clusters, while
simultaneously providing meaningful information about the most important structural
features behind the used descriptive variables. This becomes very important for glycans
composed of diverse monosaccharide units arranged in complex branched chains, present-
ing additional chemical modifications (fucolsylation, sialylation) and including more than
two ω torsional angles, making structural relationships not as intuitive as for small glycans
like M5.
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3.2 Applications

Figure 3.9: Schematic overview of the joint workflow for the study of N-glycans’
conformations. Free N -glycans in solution are simulated employing the enhanced-
sampling method REST-RECT to accelerate transitions over barriers for all torsion angles
and pucker coordinates. Conformer strings are then constructed based on the free energy
landscape of each torsion angle. Individual conformers are grouped together according
to these strings, and conformer distributions constructed from the simulated trajecto-
ries. Low-dimensional representations of the conformer clusters are finally generated using
dimensionality-reduction methods.

After having demonstrated that the REST-RECT methodology accurately samples the
phase space of N-glycans and that PCA delivers meaningful low-dimensional representa-
tions, a new workflow for computational glycan studies was proposed (Figure 3.9). The
practicality of the such is illustrated by its application to two on going research questions,
namely:

• How is the global conformation of an N-glycan altered by its size and shape?

• How are biomolecular force fields performing in the reproduction of realistic N-glycan
three-dimensional structures?

Finally the usefulness of the method is illustrated on a real-life example, improving the
predictive power of the newly developed GlycoSHIELD software.221

3.2.1 The influence of glycan size on the conformational phase space

The enzyme machinery in the ER and Golgi apparatus is constantly trimming and elon-
gating glycan structures, leading to a diverse bunch of differently sized and compositioned
N-glycans (Figure 1.5). As there is not one final N-glycan structure but also intermediate
constructs that can escape further processing steps, the resulting diversity and its impact
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is puzzling. In order to address this phenomenon from a structural point of view, the
global conformation of various N-glycan structures was compared to verify the impact of
additional monosaccharide residues. In detail, the conformational landscape of the already
mentioned high-mannose type and complex N-glycans was analyzed (Figure 3.2). To this
purpose, PCA was employed to represent the free-energy maps associated with the con-
formational ensembles of five glycan models in two dimensions. Whenever two different
feature matrices X stemming from separate simulations were compared to each other,
the corresponding data sets were concatenated prior to PCA calculation. Free energy
differences (∆G) along the principal components 1 and 2 defining the low-dimensional
latent-space matrix T were calculated by constructing two-dimensional histograms with
35 bins and converting the histogram probabilities P according to G = −kBT ln(P ).

Figure 3.10: PCA free-energy maps comparing different structural features of
N-glycans. The upper panels compares the three high-mannose type N-glycans M5,
FM5 and M9, whereas the lower panels compares A2G2 against its sialylated variant
A2G2S2. Only the torsion angles common to all structures (boxes around the schematic
glycan models) where used as features in the analysis. A common PCA was performed by
concatenating the datasets of M5, FM5, M9 and those of A2G2 and A2G2S2, respectively.
Sampling of the phase space was performed with REST-RECT simulations, starting from
the s1 conformation. Glycan structures have been drawn with DrawnGlycan50 where
GlcNAc is blue, Man is green, Gal is yellow, Neu5Ac is purple and Fuc is red.

We especially focused on the influence that various chemical modifications (fucosyla-
tion, sialylation, variation of branch length) might have on the resulting ensembles. In
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doing so, we included in the analysis only the structural features common to all compared
structures, highlighting the effect of the mentioned modifications on the free-energy maps
(Figure 3.10). In general, the analysis showed that the core structure of the high-mannose
type N-glycans was only marginally affected by addition of further residues. Fucosylation
of M5 (FM5) had no effect at all on the conformational free-energy landscape, whereas
elongation of the branches by further mannose units (M9) led to a slight stabilization of
the main conformer and destabilization of the secondary minima at larger PC1 values
(Figure 3.10, upper row). Instead, sialylation of A2G2 (A2G2S2) with additional Neu5Ac
units on both branches deepened slightly all three secondary energy minima at the expense
of the most-populated region of the conformational phase space in the bottom-right corner
of the map (Figure 3.10, lower row). From the here examined N-glycans, it can certainly
be stated that apparently no new phase space regions are explored, but rather already vis-
ited regions traveled with an altered frequency. It can be concluded that there exists no
general rule associated with the elongation of glycan branches. This can lead to the reduc-
tion of flexibility, deepening certain energy minima as in the case of high-mannose glycans,
or slight increase in conformational diversity, as for the complex N-glycan A2G2S2. The
proposed workflow, however, turns out to be a useful tool in dealing with multiple glycan
structures simultaneously, being able to evaluate structural differences on a global scale.

The comparison of conformer distributions upon chemical modifications like the addition
of core fucosylation or sialylation have also been shown in previous studies to leave the
equilibrium distribution almost unaffected222, although the here used PCA representation
visualizes the results much more comprehensively. When analyzing glycan structures on a
detailed torsion-angle-based level, the focus lies on the more flexible ω angles, preferably
found in their gauche conformation as outlined for the different N-glycans.74 Both exper-
imental and computational studies of M9 suggested that it is mainly confined in a gauche
conformer, meaning that the ω torsion angle in the 6– branch should be in a gg confor-
mation, which is in agreement with our findings.220,223,224. The observed stabilization of
the global minimum of M9 after elongation of M5 branches by 1→2-linked mannose units
(Figure 3.10) is probably due to an increased number of inter-branch hydrogen bonds.225

3.2.2 Force field accuracy

The performance of MD simulations always depends to a large extent on the used force
fields and their parameters. Force fields are continuously developed and refined for se-
lected systems and cases, such as the stability of protein-carbohydrate complexes, the
conformational behaviour of linear polysaccharides, or the ring distortions of monosac-
charide units.84,85,99 Generally speaking, all already mentioned biomolecular force field
families have been shown to have good performance in reproducing the behavior and pre-
dicting experimental data of polysaccharide systems, with few exceptions.83,85 However,
depending on the saccharide size, the property under investigation and the required level
of detail, differences among the force field families do emerge, which can be traced back
to how well the steric, electrostatic, and torsional energy terms represent the physical
reality and mimic the actual glycan behaviour.83 The frequent revisions of the force-field
parametrization of torsional terms, up to the present day, indeed shows that a correct
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description of rotational barriers in glycan systems is not at all straightforward.98 Car-
bohydrate force fields have been especially compared for the simulation of protein-glycan
complexes, where N-glycans were viewed rather on a macroscopic scale without a detailed
analysis of their conformer distributions.84,100,226 We however consider N-glycans on a mi-
croscopic scale, estimating the force field performance based on precise distributions of the
individual torsion angles and puckering coordinates. This detailed analysis becomes espe-
cially important where glycans do not only serve as surface modifications that randomly
interact with surrounding amino acids, but undergo specific interactions like a substrate
in a protein pocket. The already mentioned example of lectins and glycan processing
enzymes indicates the importance of conformer selection by protein binding sites, as also
small molecular compounds adopt specific conformations when bound to a protein.14,66

Torsion angles

The developed workflow for the simulation and analysis of N-glycans also allows for the
assessment of the structural prediction capability of different force fields. Here, we com-
pared the two most widely used force fields for protein and carbohydrate systems, namely
CHARMM36 and GLYCAM06j. Enhanced sampling simulations of N-glycan M5, M9,
A2G2 and A2G2S2 using REST-RECT were performed with the GLYCAM06j155 force
field in combination with the standard version TIP3P water model (sTIP3P)227 in addi-
tion to the above mentioned simulations using the CHARMM36 force field. We note that
the GLYCAM06j force field parameters in a GROMACS format were obtained from the
CHARMM-GUI Glycan Modeller, while constructing the glycan structure and simulation
box. This Amber force field parameter input generation for GROMACS is available since
version 3.6. Comparative plots of REST-RECT and MD simulations as in Figure 3.3,
however employing the GLYCAM06j force field, are available as supporting information
in Grothaus et al. 2022.137 Detailed results for A2G2S2 are shown as an example in
Figure 3.11, whereas the other glycans are depicted in a reduced representation in Fig-
ure 3.12. The comparison revealed very substantial differences for A2G2S2 in terms of
both conformer distributions and free-energy landscapes, and even the global-minimum
structures were different. CHARMM36 predicted that the majority of conformers (and
thus the global free-energy minimum) cluster on the right-bottom region of the PCA map,
in contrast to GLYCAM06j, which predicted a global minimum in the left-bottom region.
The position of the secondary minima was also different in the two cases. Comparison of
the predicted conformer strings indicated that the major differences arise from the ψ angle
of the main branch 6– as well as the two ω angles of the terminal 1→6 linkages between
Gal and Neu5Ac (Figure 3.11, lower panels). In the global-minimum three-dimensional
structure predicted by CHARMM36, ψ was in a T conformation and ω in a gt conforma-
tion. These conformations changed to G+ and tg in the global-minimum three-dimensional
structure predicted by GLYCAM06j, respectively.
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Figure 3.11: Assessing force field performance for glycan A2G2S2. Comparison
of the conformational phase space (torsion angles) of A2G2S2, predicted by REST-RECT
simulations with either the CHARMM36 or the GLYCAM06j force field. The upper panels
show the PCA maps of conformer clusters and the corresponding free-energy landscapes.
The clusters are colored in accordance to the conformer distributions shown in the lower
panels. Free energy profiles along selected torsion angles (indicated by the gray rectangles)
are represented besides the conformer strings and labeled with the conformations of the
free energy minima. The PCA was constructed by concatenating the datasets of the two
force field simulations.

By looking at the one-dimensional profiles along selected torsion angles, it becomes evi-
dent that the discrepancies arise from only subtle differences in the force field parametriza-
tions. For instance, the free-energy differences between the T and G+ conformations of the
ψ angle, or between the gt and tg conformations of the ω angle, were less than 5 kJ/mol.
However, such small differences have a profound effect on the resulting multi-dimensional
free-energy landscape, and lead to rather distant global minima, as observed above. Similar
considerations hold for M5, M9 and A2G2 (Figure 3.12) although the conformer distribu-
tions were less dramatically different than in the case of A2G2S2, rather having altered
relative depths of the same minima. In the next section we will show that these force field
differences led to markedly different predictions of NMR spectroscopic fingerprints for the
various glycan populations.

75 of 176



3.2. Applications 3. On their own: The phase space

Figure 3.12: Comparison of glycans’ phase
spaces explored by the CHARMM36 or GLY-
CAM06j force field with respect to torsion an-
gles. Free energy profiles along principle components
1 and 2, for N-glycans M5, M9 and A2G2. The local
and global regions of the conformational phase space
explored by REST-RECT simulations was assessed
when employing either CHARMM36 or GLYCAM06j
as force field. PCAs were constructed by concatenat-
ing the datasets of the two force field simulations for
each glycan type, respectively.

J-coupling calculations

Validation of glycan three-dimen-
sional structures obtained from
REST-RECT simulations was car-
ried out by comparing theoreti-
cally calculated with experimen-
tally measured scalar 3JH,H NMR
coupling constants. A compar-
ison of experimental NMR data
with the corresponding observ-
ables predicted theoretically by
the two force fields was performed
to ascertain which one can be con-
sidered more accurate in terms
of torsion angle description. The
comparison is meaningful only for
ω torsion angles in α 1 → 6
linkages, since ϕ and ψ lack the
necessary proton pair, whereas
the JH5,H6 and JH5,H6′ constants
can be both computed and mea-
sured (see Figure 3.13 below for
the atom nomenclature).228 As
shown above, the largest variabil-
ity among the different conform-

ers of N-glycans originated from the ω torsion angles around the 1→6 O-glycosidic link-
ages, suggesting that the use of 3JH,H coupling constants is meaningful and enables a clear
validation of the predicted three-dimensional glycan structures.228 The three protons H5,
H6, and H6’ harbored by these linkages (see Figure 3.13) give rise to well-defined NMR
J-coupling constants, whose values depend on the relative distances between the H nuclear
spins, and thus on the conformation of the ω angles. We note that caution must be taken
when comparing the results of different force fields because of the inconsistencies in atom
labeling conventions. In particular, the H6 (H6S) and H6’ (H6R) hydrogens are named
‘H61’ and ‘H62’ in CHARMM36, respectively, while the opposite names (‘H62’ and ‘H61’)
are used in GLYCAM06j.

Theoretical calculations were performed by ensemble averages of the coupling con-
stants computed for all conformers sampled by the REST-RECT simulations, using three
different parametrizations of the empirical Karplus equation, namely:

1) The equation of Altona and Haasnoot229:

3JH,H = P1 cos2 ω + P2 cosω + P3 +
4∑︂

i=1
△χi {P4 + P5 cos2(ζiω + P6 |△χi |)} ,
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where the sum runs over the different substituents (in our case, H, C and two O),
the P parameters are taken from the original data set, the electronegativity values
△χi are equal to 0 for H, 0.4 for C and 1.3 for O and the substituent orientations ζi

are either -1 or 1. The equation is applied to the torsion angles ω = H5–C5–C6–H6
or ω = H5–C5–C6–H6′. For example, the former has electronegativity values of 0.4
for i=1, 1.3 for i=2 and 3, 0 for i=4, with ζ1,2 = 1 and ζ3,4 = −1.

2) The equations of Stenutz230:

3JH5,H6′ = 5.08 + 0.47 cosω + 0.90 sinω − 0.12 cos 2ω + 4.86 sin 2ω

3JH5,H6 = 4.92 − 1.29 cosω + 0.05 sinω + 4.58 cos 2ω + 0.07 sin 2ω

with ω = O5 − C5 − C6 −O6.

3) The equations of Tafazzoli231:

3JH5,H6′ = 5.06 + 0.45 cosω − 0.90 cos 2ω + 0.80 sinω + 4.65 sin 2ω

3JH5,H6 = 4.86 − 1.22 cosω + 4.32 cos 2ω + 0.04 sinω + 0.07 sin 2ω

with ω = O5 − C5 − C6 −O6.

The general equation of Altona and Haasnoot can be applied to different kinds of linkages
due to the flexible choice of substituents and was already used before in the evaluation
of glycan MD simulations.96 We decided for the additional use of the two further equa-
tions from Stenutz and Tafazzoli, which are derived specifically from J-coupling constants
computed with density functional theory for a model aldopyranosyl ring and D-glucose/D-
galactose. As all variants of Karplus equations are purely relying on empirical parameters,
derivations of the computed J-coupling constants from the experimentally observables are
expected. The comparison of the different forms of Karplus equations should reveal the
extent of such deviations and facilitate the classification of the obtained values. We stress
that the assessment of computed Karplus values is only reliable when the ergodicity of
the simulations is fulfilled, which requires complete phase-space sampling by means of
converged simulations, as in the case of REST-RECT. Convergence is required because
NMR measurements do not give results for a single glycan conformer, but output time-
averaged and ensemble-averaged conformational data. The computed coupling constants
were therefore averaged over all 62500 frames in each REST-RECT simulation of the dif-
ferent N-glycans (considering only the simulation with starting conformation s1). Block
averaging was used to compute error bars, as described above for the probability distri-
butions.

For the main branch of M5, GLYCAM06j led to better agreement between the exper-
imental and theoretical JH5,H6 and JH5,H6′ frequencies, whereas
CHARMM36 performed better for the side branch (Figure 3.13 ). Regarding M9, CHARMM36
performed better than GLYCAM06j for both ω angles, although both force fields overes-
timated the JH5,H6′ frequency by over 2 Hz. We would like to note that the experimental
J-couplings of M9 were only reported as approximations in the original paper228, but used
here due to the lack of other data sources.
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Figure 3.13: Validation of the ω angle popula-
tions by comparison of computed and experi-
mental NMR J-coupling constants for M5, M9,
A2G2228 and A2G2S297,232. The upper-left panel
shows the stereochemistry of an ω angle in a gg con-
formation along its C5 and C6 atoms, with labeled
protons. The legend on the right reports the color
code of the plots below, referring to the three differ-
ent parametrizations of the Karplus equation used to
compute the J-coupling constants. A table including
all values explicitly can be found in the supporting in-
formation of Grothaus et al. 2022.137

For the single ω torsion angle
in A2G2, CHARMM36 predicted
slightly better frequencies than
GLYCAM06j. For the sialylated
variant A2G2S2, no experimental
parameter of the ω torsion an-
gle between two Man residues was
available, therefore the compari-
son was made for the J-coupling
constants of the 1→ 6 linkage be-
tween Gal and Neu5Ac. In this
case, the experimental values were
collected for a different glycan,
namely trisaccharide sialyl-α-(2-
6)-lactose97,232, but could be used
here as an approximation, be-
cause this glycan carries the same
terminal branches as A2G2S2.
The predicted CHARMM36 val-
ues of both JH5,H6 and JH5,H6′

were in very good agreement with
the experimental ones.

Puckering

So far we only focused on the
torsion angles of the N-glycan
molecules, which were considered
as explicit RECT collective vari-
ables in our simulations. How-
ever, the combination with the
REST2 method allowed also good
sampling of other structural de-
grees of freedom, in particular
of the puckering conformations
of the individual monosaccha-
ride units. Whether the pucker-
ing free-energy landscapes repre-

sented by the Cremer-Pople parameters were dependent on the force field was investigated
by constructing two-dimensional polar free-energy maps in a way that conserves the area
defined by intervals of the θ and ϕ pucker coordinates. As usual, the free energy was
computed from the histograms of conformer population probability in the ground replica
of the REST-RECT simulations (only of starting conformation s1). In Figure 3.14 we
show puckering maps for all saccharide units present in the complex N-glycan A2G2S2,
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comparing simulations using the CHARMM36 and GLYCAM06j force fields.
Analysis of the pucker landscapes along the branches of A2G2S2, which is composed

of very diverse monosaccharide units, revealed a strong propensity for the chair confor-
mation 4C1, except for the terminal Neu5Ac units that were in a 1C4 conformation for
both force fields. However, the relative boat propensities were quite different for the dif-
ferent units, being very low or absent for Man and Gal units, more evident for GlcNAc
units and strongest for Neu5Ac units. We note that GLYCAM06j, in comparison with
CHARMM36, generally predicted a broader exploration of the pucker phase space, result-
ing in an increased appearance of local minima and smaller energy differences between
different regions of the maps. Only the terminal Neu5Ac units presented very similar
maps for both force fields, with the same distribution of minima and a similar degree of
phase-space exploration.

Figure 3.14: Force field performance regarding saccharide ring distortion. Free
energy surfaces along the Cremer-Pople puckering coordinates θ and ϕ for all saccharide
units in A2G2S2, comparing the CHARMM36 and GLYCAM06j force fields. Collective
variables were computed from REST-RECT simulations by histogram construction and
conversion to free energies. The 2D puckering plots of each monosaccharide are arranged
in accordance to their position in the N-glycan structure as depicted in the schematic
model. The puckering free energy profile is explained more in detail in Figure 3.5. The
schematic glycan has been drawn with DrawnGlycan50 where GlcNAc is blue, Man is
green, Gal is yellow and Neu5Ac is purple.

3.2.3 Concluding remarks

We have performed an in-depth analysis of the N-glycan conformer distributions predicted
by the CHARMM36 and GLYCAM06j force fields, focusing on converged free energy pro-
files of torsion angles that shape the three-dimensional glycan structure and its flexibility.

79 of 176



3.2. Applications 3. On their own: The phase space

The observed different phase-space distributions for A2G2S2 and A2G2, as well as the dif-
ferent conformer distributions for M5 and M9, originate from different free energy profiles
around the ψ and ω torsion angles in 1→ 6 linkages. Especially the ψ angle of branch 6–
in A2G2 and A2G2S2 is a critical feature, which differentiates between two main conform-
ers, previously named ‘backfold’ and ‘extended’.96 CHARMM36 consistently produced
conformer distributions with only a few high populated states, whereas GLYCAM06j pro-
duced broader distributions and flatter associated free-energy landscapes. Overall, neither
force field reproduced all sparsely available experimental J-coupling constants with great
accuracy (i.e., within the intrinsic error bars of the theoretical method), but CHARMM36
seemed to deliver better structural predictions than GLYCAM06j, especially in the cases
of M9 and A2G2S2. To further improve force field performance, the contribution of tor-
sional energy and electrostatic interactions needs to be balanced with great care.98 The
two force fields under investigation, CHARMM36 and GLYCAM06, especially differ in
the latter term: CHARMM36 adjusts partial atomic charges to fit solute-water interac-
tions of carbohydrate fragments computed with quantum mechanical methods, whereas
the partial charges of GLYCAM06s are derived from the restrained electrostatic potential
(RESP) method.98 This leads to two very different sets of charge values.

The three tested parametrizations of the Karplus equation yielded consistent results,
although they are all based on different empirical parameters or functional forms, so that
some discrepancies are both expected and unavoidable. In terms of experimental data,
3JH,H coupling constants recorded for a complete N-glycan structure are difficult to obtain
or rather difficult to interpret, as the resulting spectra suffer heavily from signal overlaps.
It is rather common to determine the torsion angle preference of mono-, di- or trisaccha-
rides, although the influence of the global glycan structure with its interactions is lost
and presents only a limiting case.83,233 It is therefore not surprising that the complete
N-glycan structures investigated in this study are not available in the Glycan fragment
database.234 Therefore only very limited experimental data were accessible and rather few
parameters for the ω torsion angles of M5, M9, A2G2228 and partially of A2G2S297,232

could be used for comparison. Advanced J-coupling techniques involving isotope labeling
of glycan structures, recording of multi-dimensional spectra as well as addressing carbon
and nitrogen atoms are summarized in a very detailed recent review.235 Other NMR ob-
servables like the nuclear Overhauser effect (NOE), which has already been used for glycan
structure determination 96, are problematic, because three or more NOEs are required for
an unambiguous assignment. Moreover, the r−6 dependence of the NOE does not allow
for a straightforward averaging of conformations.81. Rather, a direct calculation of NOEs
from converged MD trajectories has been proposed.236 Three-dimensional structures de-
rived from X-ray crystallography lack dynamical information, and are more helpful in
cases where protein-carbohydrate complexes are analyzed and the glycan conformation is
restricted by the surrounding amino acids.81

In contrast to the torsion angle analysis, no suitable experimental method or data
set covering the whole glycan structure could be identified to verify which force field re-
produces the natural puckering behavior more correctly. Several computational studies
revealed the importance of ring flipping events in determining the polysaccharide con-
former distribution99,237, where the degree of puckering flexibility is influenced by the
molecular context and size of the N-glycan.77,238 It is therefore questionable if experi-
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mental datasets for mono-, di- or trisaccharides are a reliable source for judgment. One
is left with comparison to e.g. electronic structure calculations, whereby even these are
mostly performed for monosaccharides.77 However, in line with our observations, previous
studies of glycan monomers and trimers did notice differences in the puckering landscapes
predicted by different force fields, and in particular pointed towards a better performance
of the CHARMM36 force field.99 It is however yet to be determined if especially the re-
stricted puckering of Man and Gal residues in the CHARMM36 force field is due to their
embedding in a larger glycan structure or require a force field reparameterization, as QM
calculations have predicted the occurrance of boat and various other conformations at least
for monosaccharides.77 Accurate prediction of ring-inversion free-energies is expected to be
very important for strongly constrained systems, such as glycan chains bound in protein
pockets and subjected to enzymatic reactions, where ring-inversion is often a key step of
substrate activation before e.g. hydrolysis of the adjacent linkages.134 This issue will be
investigated in chapter 5.

Regarding the chosen water model, we limited out study to the standard TIP3P
model, due to its use for the parameterization of carbohydrate force fields, at least for
the CHARMM family. However, more complex water models like TIP4P-Ew or TIP5P
have been shown to positively impact the predicted carbohydrate aggregation and protein-
carbohydrate interactions.239–241 A recent review about modeling of complex carbohy-
drates summarizes the difficulties that might arise from the usage of different water mod-
els.162 As the AMBER family does not depend on a specific water model for the param-
eterization of non-bonded interactions, more advanced water models could be tested to
study glycan structures, although at the expense of larger computational cost.165,239 The
influence of ion parameterization can be largely ignored in this context, as low salt concen-
trations (less than 100 mM) are adequately modeled by default force field parameters.165

The employed enhanced sampling method ensures ergodicity of the performed simu-
lations, their accuracy in predicting experimental observables however remain limited by
the functional form and parametrization of the employed force fields. It was already dis-
cussed that optimization of parameters is an elaborate task and sometimes restricted to
a boost in accuracy for only specific applications, but also new potential energy functions
including more parameters like the Class II functional form do not represent a realistic
option for further improvements due to the even larger set of variables to parameter-
ize.145 A different and much more straight forward approach would be the incorporation
of available experimental data as a restrain in ensemble-restrained simulations, classically
imposing harmonic restraints on each observable, with the experimental reference depict-
ing the center.165 Another very similar approach is the emerging concept of the maximum
entropy principle, either reweighting simulations a posteriori or optimizing them on-the-fly
by experimental parameters in order to enforce a certain ensemble average.242 However,
care has to be taken to prevent overfitting.165 The general limitation of these approaches
is the requirement of sufficient and accurate experimental data sets like RMSD values,
NMR parameters or scattering data. Moreover, these approaches would just improve the
performance of single simulations and not lead to a general improvement of transferable
force field parameters, loosing the achieved progress with every new simulation system.

The here-examined N-glycans have been the subject of several previous investigations.
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A2G2S2 has been studied by Yang and coworkers94 using REST2 in combination with
Hamiltonian bias potentials, employing the CHARMM36 force field. This approach is
similar to REST-RECT, the only difference being that Yang and coworkers used biasing
profiles on the torsional angles as obtained in preliminary umbrella sampling simulations,
whereas in our RECT scheme the compensating profiles are computed on the fly. In fact,
the reported free energy profiles for individual torsion angles on ref.94 are overall in agree-
ment with our CHARMM36 simulations, demonstrating converged phase-space sampling
in both studies.

A2G2 was previously investigated by REMD using the GLYCAM06g force field, and
the predicted relative populations of the ω angle (O6–C6–C5–C4) in branch 6– amounted
to 71 % and 28 % for the gg and gt conformers, respectively.96 Our simulations with the
GLYCAM06j force field, however, gave average values of 80 % for gg, 11 % for gt and 9 %
for tg. While the force field versions g and j only differ in the atom labeling for consistency
with other AMBER force fields or in the addition of parameters for protein-carbohydrate
linkage, the simulations by Nishima and coworkers96 differ from ours with respect to
the type of sampling method. We believe that our REST-RECT simulations provide a
more complete phase-space sampling, as demonstrated by the very good convergence and
the clear independency of the chosen initial configurations. Other earlier investigations
of A2G2 using the CHARMM36 force field revealed a distribution of 52 % gg vs 48 %
gt conformations in the ω torsion angle (O6–C6–C5–O5).87 Our values of 71 % for gg
and 29 % for gt computed with CHARMM36, however, are closer to the experimentally
estimated values of 65 % and 35 %, respectively.87,243 As identical force field parameters
were used in both studies, the associated differences can have multiple reasons, namely
(i) the use of the sTIP3P water model in contrast to the mTIP3P model used here, again
pointing towards the need of better assessing the performance of different solvent models;
(ii) incomplete phase-space sampling in the earlier simulations; (iii) the fact that in their
simulations Galvelis and coworkers prevented ring inversion for all monosaccharide rings,
although there are hints about a possible influence of puckering states on the glycan linkage
conformations.237,244

3.2.4 GlycoSHIELD

An immediate need for a sufficiently well explored phase space arose during the devel-
opment of the GlycoSHIELD software, mainly developed by our collaborator Mateusz
Sikora from the Max Planck Institute of Biophysics.221 GlycoSHIELD is a web appli-
cation (https://mpibp-hummer.pages.mpcdf.de/glycoshield-md/) that allows for a
quick and easy covalent glycosylation of proteins at identified glycosylation sites, yielding
an ensemble of possible glycan conformations. The user can upload a protein structure in
pdb format, specify where the residue is supposed to be attached, and select the desired
glycan type from a set of diverse glycan structures (Figure 3.15). A conformer library,
harboring dozens of conformations for a certain glycan, are step-by-step grafted on the
uploaded protein structure, where conformations are discard upon structural clashes with
surrounding amino acids. The outcome is a selection of possible glycan conformers virtu-
ally attached to the protein surface, helping in the evaluation of the molecular shield that
is created by glycosylations and its influence on masking interaction sites of antibodies,
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drugs or other biomolecules.

Figure 3.15: GlycoSHIELD workflow. The user needs to input a 3D protein structure
with identified glycosylation sites, where glycans from the library of conformers not clash-
ing with the protein are grafted onto the surface. Results are exported in pdb format and
can be further visualized and analyzed by software packages like VMD. Figure adapted
from Mateusz Sikora.221

In order to predict reliable results, the conformer library must contain all accessible
conformers that a certain glycan is able to adopt. Conformational ensembles can be gen-
erated using standard MD simulations, however the exploration of the whole phase space
region would be questionable, as argued before in this thesis. Therefore, REST-RECT
simulations of the three representative N-glycans, M5 A2G2S2 and A4G4S4, differing
in size and composition, were compared to previously performed MD simulations in or-
der to ascertain if conformer distributions from unbiased trajectories are sufficient for a
confromer library construction (Figure 3.16). The low-dimensional free energy profiles,
depicting explored conformers for each glycan type, revealed that indeed very long stan-
dard MD simulations access all conformers that were also sampled during REST-RECT
simulations. However, the individual conformer distributions were not sampled correctly,
as expected, deviating in the depth of explored minima, especially for M5 and A4G4S4.
As GlycoSHIELD only aims at generating a conformational ensemble that includes all
possible glycan conformers but does not incorporate their individual distributions, unbi-
ased MD simulations are sufficient in this case.

The novelty of GlycoSHIELD is represented by the fact that the web application can
be run from any personal computer and only takes minutes to be performed. In contrast to
MD simulations that require expert knowledge and days on high performance computers to
obtain such conformational ensembles for bound glycans, the grafting method can be seen
as an easy first step in the assessment of glycan influences before performing more elaborate
studies.
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Figure 3.16: Comparison of glycans’ phase
spaces explored by unbiased MD or REST-
RECT simulations with respect to torsion an-
gles. Free energy profiles along principle components
1 and 2, for N-glycans M5, A2G2S2 and A4G4S4.
PCAs were constructed by concatenating the datasets
of the two simulations techniques for each glycan type,
respectively, using all torsion angle as input features.

First instance, viruses employ ex-
tensive glycosylation to escape the
immune system by masking in-
teraction sites of their viral sur-
face proteins, preventing the in-
teraction with e.g. antibodies.
Our collaborators compared the
performance of GlycoSHIELD to
that of classical MD simulations
in regards to the algorithm’s abil-
ity to produce realistic glycan
shields. Although the correct con-
formational distributions of the
glycan structures are not repro-
duced by GlycoSHIELD, which
implements just a random selec-
tion of conformers that fit the
spatial constraints, the method-
ology is able to capture impor-
tant features of glycan shielding
like the epitope masking of the
SARS-CoV-2 Spike protein (Fig-
ure 3.17).221

Figure 3.17: Prediction of SARS-CoV-2 Spike protein epitope accessibility by
GlycoSHIELD. A The Spike protein was either glycosylated and sampled via MD sim-
ulations for 10 µs or the glycosylation was reconstructed via GlycoSHIELD. In total, 160
glycan conformers are visualized per glycoslyation site. B For both systems, the shield-
ing of the extracellular domain was calculated due to the presence of glycans on the
surface. The 3D heatmaps visualize accessibility, where higher color intensities indicate
higher shielding. Arrows indicate predicted shielded areas within specific antibody epi-
topes (black lines and hatched areas). Figure adapted from Mateusz Sikora.221
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It turned out that the overall morphology of glycan shields obtained was very similar
for both methods (Figure 3.17 A) and that GlycoSHIELD even correctly predicted the
epitope masking areas of N-glycans in comparison to data from MD simulations (Figure
3.17 B). GlycoSHIELD represents a very useful tool in the rapid generation of glycosylated
proteins in a static fashion that is anyway able to predict realistic glycan shields.
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4 | At the side: #gotglycans

The artistic phase space of a bound N-glycan. The high-mannose type N-glycan
M5 is exploring different conformations although covalently attached to a polypeptide,
shifting the free energy landscape compared to a free N-glycan. Each conformer is flagged
by corresponding conformer labels.
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Note: Parts of this chapter are taken from the publication: Jana Rosenau*, Isabell
Louise Grothaus*, Yikun Yang, Nilima Dinesh Kumar, Lucio Colombi Ciacchi, Sørge
Kelm, Mario Waespy, N-glycosylation modulates enzymatic activity of Trypanosoma con-
golense trans-sialidase, Journal of Biological Chemistry, 298:102403, 2022.245 (* shared
co-first authorship)

Insights obtained in this chapter are due to the collaborative efforts of the working groups
Kelm and Colombi Ciacchi at the University of Bremen. Especially Jana Rosenau (for-
merly Ph.D student in the Kelm lab) and myself were involved with the following contri-
butions: Protein purifications and enzyme activity assays have been alternately performed,
with joint effort regarding data analysis and interpretation. The enzyme data for replicate
2 are from Nilima Dinesh Kumar. Circular dichroism experiments and MD simulations
have been all performed by myself.

In the early months of the COVID-19 pandemic the Twitter hashtags #gotglycans and
#glycotime became famous, emphasizing the urgent need of including glycan structures in
biomolecular simulations and supporting the fact that the century of glycans has begun.
The hype goes back to the discovery of the SARS-CoV-2 spike protein glycan shield (Fig-
ure 3.17), found to be highly important for the recognition and docking to human cells
solely via MD simulations.100 The computational studies of that time are groundbreaking
for future work, highlighting the importance to include post-translational modifications
explicitly in all-atom MD simulations, especially glycans. We have already seen in the pre-
vious chapter that force fields are being continuously developed to meet the requirements
of simulating complex biomolecular systems with different types of molecules, and that
they are mostly capable of meeting experimental standards for unbound glycans in solu-
tion. The simulation of diverse systems is further facilitated by the automated generation
of in silico glycoconjugates like glycoproteins via the CHARMM-GUI Glycan Modeler202,
constantly including more features and broadening the number of possible glycan struc-
tures to attach.203–205 Such technical advances and guiding studies are required in order to
push forward the understanding of N-glycan’s impact on proteins and enzymes, especially
computationally. In this chapter, we will have a deeper look on glycosylated trans-sialidase
(TS) enzymes, since the effect of N-glycosylation on their activtiy has been neglected as
much as the disease in which they play a pivotal role, until now.

Trypanosoma, a parasite genus causing the disease trypanosomiasis, is prevalent in sub –
Saharan Africa and South America, depending on the specific trypanosomal species. The
parasite is infecting mammals like humans and livestock, where the disease can be either
lethal or at least cause fatal economic losses in the agricultural sector (see section 1.5.2).
The outer surface of the parasite, and in particular the glycosylphosphatidylinositol (GPI)-
anchored enzyme TS, was identified as a major virulence factor for the disease and has been
the object of several studies aiming at understanding its function and fundamental bio-
chemical mechanism. The term trypanosomiasis comprises several clinical pictures and dis-
eases, such as the sleeping sickness in Africa and the Chagas disease in South America, all
caused by protozoa of the genus Trypanosoma. We here focus on the African trypanosome
Trypanosoma congolense (T. congolense), infecting all kinds of animals like cattle, horses,
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goats, sheeps, pigs and dogs, whereby even atypical human infections could be identi-
fied quite recently.246 The parasite is transmitted between different mammals by tsetse
flies serving as vectors, biting the host and ingesting or releasing the parasites through
their blood meal. African trypanosomes undergo different life cycle stages, depending on
whether they are in the tsetse fly intestines (procyclic trypomastigotes and epimastigotes),
vascular host system (metacyclic and bloodstream trypomastigotes) or multiply in other
body fluids (bloodstream trypomastigotes).247 Without going into too much detail, it is
important to note that TS enzymes possessed by T. congolense are expressed by procyclic
insect-infective trypanosomes as well as bloodstream-form trypanosomes in mammalian
hosts.248,249 In both life cycle stages, TS are of utmost importance as they ensure the sur-
vival of the parasite under diverse environmental conditions by the preferential transfer of
α2→3-linked Sia residues from host-cell glycoconjugates to terminal β-galactose residues
of glycoproteins present on their own surface, thus creating a new α2→3-glycosidic link-
age.103–105 It was shown that the parasite uses terminal Sia residues to mask its surface,
evading the digestive and trypanocidal environment in the tsetse fly gut, as gene tech-
nical deletion of endogenous TS expression in trypanosomes and consequent absence of
Sia on the surface had lethal effects.112 When present in its bloodstream-form in the vas-
cular system, T. congolense is able to attach to erythrocytes by binding to Sia residues
as shown in an in vitro study.250 Furthermore, TS are involved in desialylation of host
erythrocytes, which contributes to anemia and therefore can cause direct symptoms.248,249

Figure 4.1: Trans-sialidase as a model for surface
modifications via N-glycosylations and concur-
rent glycan processing. Molecular model of Trans-
sialidase 1 originating from Trypanosoma congolense
(TconTS1) with highlighted N-glycosylation sites. As-
paragine residues in the motif N-X-S/T as putative
N-glycosylation sites are highlighted in red. The po-
sition of each asparagine is labelled in the amino acid
sequence and sorted into the catalytic domain (CD)
or the lectin-like domain (LD).

T. congolense harbors 17 dif-
ferent trans-sialidase-like genes,
from which 11 can be com-
bined into the T. congolense TS
(TconTS) family 1, due to their
high amino acid sequence simi-
larity (>96 %). The type 1b
(TconTS1b) is more closely inves-
tigated here, as it has been iso-
lated from procyclic trypomastig-
otes and possesses one of the
highest enzyme activities among
the other TconTS families.251–253

For simplicity, it will be called
TconTS1 from here onwards. Like
all trans-sialidases, TconTS con-
sist of an N-terminal catalytic do-
main responsible for the transfer
of Sia, and of a C-terminal lectin-
like domain whose biological func-
tion remains rather unclear (Fig-
ure 4.1). The catalytic and lectin-
like domain are connected via an
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α-helix.116,117,251 The N-terminus includes a signal sequence for cell secretion, whereas
the C-terminus comprises a potential GPI anchor attachment site.251 An important struc-
tural feature of TconTS1 are the predicted nine N-glycosylation recognition sequences
(N-X-S/T) (Figure 4.1), distributed across both the catalytic and lectin-like domain.251 It
is noteworthy that TS sequences from African trypanosomal species contain a higher num-
ber of putative N-glycosylation sites251,254 compared to the species from South-American
trypanosomes including the structurally closely related T. rangeli sialidase (TranSA), al-
though little has been revealed about the impact of glycans on TS enzymes.245,255,256 Struc-
turally, it has been only postulated that N-glycans could be involved in TconTS oligomer-
ization via binding to a lectin-like domain on the enzyme, creating di- to tetrameric com-
plexes.257 Their influence on enzyme functionality is still under debate for TS from all
species.116,117,258,259 Previous experiments were performed with recombinant TS expressed
by Pichia pastoris producing hypomannosylated N-glycans, revealing no differences in Sia
transfer activity comparing glycosylated and deglycosylated recombinant TS.258,259 As
these larger fungal N-glycans are different from reported glycan structures on other try-
panosomal surface proteins, which usually harbor shorter high-mannose type N-glycans,
no conclusion about the influence of native N-glycosylation on TS activity can be drawn
from these studies.122–129 The data available implies that in general not only the impact
of putative N-glycans on TS enzymes is unresolved, but also that the type and extent of
glycosylation is not known for the different species. For instance, the only crystallized TS
from T. cruzi (TcruTS) was expressed as a recombinant protein containing several muta-
tions in the amino acid sequence, thus leaving the N-glycosylation pattern unresolved.117

The crystallization of TranSA revealed that all five potential N-glycosylation sites were
occupied with N-glycans, although only the innermost monosaccharide could be detected,
giving no hint about the type of N-glycosylation.255 Only purification via concanavalin
A (ConA) columns indirectly confirmed the existence of high-mannose type N-glycans.
However, the detailed structures and site-specific patterns remain unresolved with this
method.104,120,121 If one looks at the problem from another angle, namely assessing which
N-glycans are theoretically possible due to the N-glycosylation machinery expressed in
Trypanosoma, one is left with the description provided for T. brucei 260, producing all
kinds of glycan structures, but there are no database entries on potential oligosaccharyl-
transferase isoforms for T. congolense. Therefore, the N-glycosylation pattern of TconTS1
had to be determined as a first step in order to draw conclusions from subsequent experi-
ments, although only recombinant expression of TconTS was possible. A native expression
presents the difficult obstacles of reduced protein yields, expensive culture conditions and
requirements of a biosafety level 2 laboratory.

4.1 Are they there?

Since other trypanosomal surface proteins were reported to harbor shorter high-mannose
type N-glycans of type M5-9 (5-9ManGlcNAc2)122–129, we expressed recombinant TconTS1
in leuco-phytohemagglutinin (L-PHA)-resistant Lec1 Chinese hamster ovary (CHO)
cells.261,262 This N-glycosylation mutant cell line is unable to synthesize complex and hy-
brid N-glycans, and consequently accumulates high-mannose type N-glycans of the com-
position M5-9 (Figure 3.2), mimicking the situation reported for African trypanosomes.
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A recombinant TconTS1, harboring a SNAP-Strep tag (see Figure S1 and S2 in Rosenau
et al.245), was expressed in monoclonal CHO Lec1 cells, transfected before by Koliwer-
Brandl et al.251, and grown in serum-free CHO medium (Bio&SELL, Feucht, Germany)
or Excell medium supplemented with 50 µg/mL gentamicin sulphate (Lonza™ BioWhit-
taker™, Walkersville, MD, USA) at 37°C and 5% CO2. Due to a transin secretion tag,
the protein could be harvested every second day from the cell culture supernatant and
subsequently stabilized with 10 mM Tris/HCl pH 8.0, 10 mM EDTA, 10 mM ascorbic
acid and 0.02 % sodium azide. Ultracentrifugation was performed at 7,800 rcf for 15 min
followed by 40,000 rcf for 45 min at 4 °C to get rid of any cell debris. The clear su-
pernatant was microfiltered (0.22 µm, PES) and concentrated to 50 mL using a Sarto-
rius Vivacell 250 PES Centrifugal Concentrator (Sartorius, Göttingen, Germany) with
a Molecular Weight Cut-off (MWCO) of 100 kDa and a pressure of 4 bar. Buffer was
exchanged five times with 200 mL of 100 mM Tris/HCl pH 8.0, 150 mM NaCl, 1 mM
EDTA and concentrated to a final volume of 10 mL. The concentrate was centrifuged at
21,000 rcf for 30 min and the recombinant protein was purified from the supernatant with
Strep-Tactin sepharose (IBA, Göttingen, Germany) according to the manufacturer’s pro-
tocol, after that the buffer was exchanged to 10 mM potassium phosphate buffer pH 7.4
using a Vivaspin 6 Centrifugal Concentrator (Sartorius) at 2,000 rcf and 4 °C for 20 min.

Figure 4.2: Quality control of protein
purification. TconTS1 and H-TconTS1
(treated with EndoH for 4 h) were analyzed
by SDS-PAGE with subsequent Coomassie
staining (upper panel with 600 ng of pro-
tein), western blot analysis using an anti-
Strep-tag antibody for the detection of the
protein (middle panel with 400 ng of protein)
and lectin blotting using ConA for the detec-
tion of high-mannose type N-glycans (lower
panel with 100 ng of protein). The exposure
time was 5 sec for the western blot and 60 sec
for the ConA blot.

In order to rate the performance of gly-
cosylated TconTS1, a comparison to an
unglycosylated variant was required. The
most obvious option, introducing point mu-
tations at single N-glycosylation sites, has
not been considered in this work, as it
was important to ensure a correct fold-
ing and function of TconTS1, and co-
translational N-glycosylation is known to
influence protein folding. Numerous exper-
iments performed by collaborators (Sørge
Kelm lab) on site-directed glycosylation
knockout using myelin associated glyco-
protein (MAG; Siglec-4, unpublished data)
have also yielded largely misfolded pro-
teins with loss of function. Furthermore,
TconTS exhibits orders of magnitude lower
specific activity after expression in bacteria
in comparison to expression in CHO-Lec1
cells, providing evidence for misfolding of
the enzyme as a consequence of absence of
N-glycans.263 Therefore we aimed for the selective removal of N-glycans, achieved en-
zymatically by Endoglycosidase H (EndoH) treatment. This cleaves high-mannose type
N-glycans within the chitobiose core and leaves only one GlcNAc residue attached to the
asparagine in the protein sequence. To this aim, 2 mg of TconTS1 were incubated with
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40,000 Units EndoH (New England Biolabs, Frankfurt am Main, Germany) at 37 °C in
2.0 mL 10 mM phosphate buffer at pH 7.4. Subsequent chromatography steps, necessary
to remove EndoH from the target protein in the sample, were performed according to the
manufacturer’s protocols (see caption of Figure 4.4). Finally, the buffer was exchanged
again to 10 mM phosphate buffer at pH 7.4. The resulting EndoH-treated enzyme will
further be termed H-TconTS1 (hypoglycosylated TconTS1), as described in the following
section.

Recombinantly expressed protein samples, TconTS1 and H-TconTS1, were checked for
successful purification and deglycosylation via sodium dodecylsulfate polyacrylamide gel
electrophoresis (SDS-PAGE), western blot and ConA lectin blot analysis (Figure 4.2).
Samples separated via SDS-PAGE were either stained with PageBlue Protein Staining
Solution (Thermo Fisher Scientific) or used for western blot or ConA lectin blot anal-
ysis. For the specific detection of TconTS1, a polyclonal rabbit anti-Strep (IBA) and
a polyclonal, peroxidase-conjugated donkey anti-rabbit antibody (Jackson ImmunoRe-
search, Cambridgeshire, United Kingdom) were used as primary and secondary antibody
in western plot analysis, respectively. In lectin blots, N-glycosylated proteins harboring
high-mannose structures were detected employing ConA-biotin (Galab, Hamburg, Ger-
many) and the VECTASTAIN ABC-HRP Kit (Vector Laboratories, Burlingame, CA,
United States). A clear band shift of approximately 10 kDa between TconTS1 and H-
TconTS1 samples could be inferred from all three blotting techniques, being a result of
the removed N-glycans from H-TconTS1, leading to a lower molecular weight and altered
migration behavior in the gel (Figure 4.2). Clear bands at 120 and 110 kDa in the western
blot confirmed the presence of our desired TconTS samples due to the C-terminal Strep-tag
in the recombinant TconTS construct. High-mannose type N-glycans of the recombinant
protein were detected by ConA lectin blots, where less binding of ConA to EndoH-treated
TconTS1 was indicated by a much weaker signal, however still causing a visible band for
H-TconTS1(Figure 4.2). Due to the lack of complete N-glycan removal after 4 hours of
incubation, different incubation times of up to 48 hours or higher amounts of EndoH en-
zyme were tested. Complete removal of high-mannose type N-glycans could still not be
achieved, probably due to low accessibility of certain N-glycan structures to EndoH. For
this reason, subsequent experiments were performed after overnight incubation with En-
doH for 16 hours, yielding H-TconTS1 samples which represent a hypoglycosylated version
of the target protein.

After having verified that N-glycans were present on recombinantly expressed TconTS1,
the site specific glycosylation pattern was analyzed qualitatively by matrix assistant laser
desorption ionization – time of flight (MALDI-TOF) mass spectrometry (MS). The dis-
tribution of oligosaccharides was evaluated both for TconTS1 and for H-TconTS1 samples
(Figure 4.3 A/B). As the majority of MALDI-TOF experiments were performed during
my Master’s thesis in the lab of Sørge Kelm at the University of Bremen under the super-
vision of Jana Rosenau, the results will only be briefly discussed here to report about the
glycosylation pattern of TconTS1, which is important for the remaining investigations in
this chapter. A more elaborate analysis and technical details can be found in Rosenau et
al.245
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In order to analyze TconTS1 and H-TconTS1 by MALDI-TOF MS, both enzymes were
proteolytically digested to shorter peptide and glycopeptide fragments via trypsin or chy-
motrypsin treatment. N-glycans could be detected because whenever an asparagine residue
in the N-X-S/T motif of a particular glycopeptide was glycosylated, the mass-to-charge
(m/z) ratio increased by exactly the mass of the conjugated N-glycan compared with the
non-glycosylated peptide. Glycopeptides comprising high-mannose type N-glycans were
detected especially in the catalytic domain of TconTS1 with N206 showing the highest
diversity (Figure 4.3 C).

Figure 4.3: Mapping the N-glycosylation profile of untreated (TconTS1) and
hypoglycosylated TconTS1 (H-TconTS1). MALDI-TOF MS analyses were per-
formed to map N-glycosylation sites of TconTS1. Glycopeptides from protease-digested
A TconTS1 and B H-TconTS1 were ConA-purified to concentrate glycopeptides and re-
duce the spectrum complexity. Peak lists were extracted from MALDI-TOF mass spectra,
plotted with python and annotated with corresponding masses and glycopeptide frag-
ments, respectively. Monosaccharide symbols follow the Symbol Nomenclature for Glycans
(SNFG). C Summary of N-glycan structures identified for TconTS1 (glycosylated, G) and
the EndoH-treated H-TconTS1 (H), digested either with trypsin or chymotrypsin. The
spectra were analyzed for masses corresponding to glycopeptides with high-mannose type
N-glycans and for non-glycosylated peptides with potential N-glycosylation sites. Spectra
of H-TconTS1 were additionally analyzed for glycopeptides with HexNAc residues since
at least a residual GlcNAc remains attached to the protein N-glycosylation sites after
EndoH treatment. In another approach, glycopeptides from both proteins were purified
with ConA after protease digestion and spectra were analyzed for masses of peptides with
high-mannose type N-glycans.

The mass difference corresponding to an N-glycan of the composition M5 was predom-
inantly detected at sites N45, N113, N240, N281, N657 and N693 (Figure 4.3 A). Inter-
estingly, also non-glycosylated peptides were detected for four glycosylation sites (N113,
N206, N240 and N693) that were also found glycosylated, underlining the dynamical and
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heterogeneous nature of the N-glycosylation process. Peptides containing N625 were only
found in their non-glycosylated form. When analyzing H-TconTS1, HexNAc residues were
detected for all previously glycosylated sites except for N281, indicating the successful re-
moval of N-glycans from almost all glycosylation sites with one GlcNAc residue remaining
attached (Figure 4.3 B/C). However, oligomannosidic N-glycosylation at N206 was still
detectable after 16 h of EndoH treatment (H entries in N206 column for M5,M6 and M8
in Figure 4.3 C), supported by our ConA lectin blot results, demonstrating the binding
of ConA to H-TconTS1 at long exposure times (Figure 4.2). It can be concluded that the
compiled data reveal N-glycosylation predominantly in the catalytic domain of recombi-
nant TconTS1 with diverse site-specific glycosylation tendencies, including the presence
or absence of various high-mannose type structures.

4.2 What are they doing?

After revealing the pattern of N-glycans on the surface of TconTS1, we did investigate
whether this had an impact on the functionality of the enzyme. The influence on enzyme
activity was monitored in activity assays using fetuin as Sia donor and lactose as accep-
tor substrate, as previously described.251,253 The transfer reaction product 3’sialyllactose
(3’SL) was quantified by high performance anion exchange chromatography (HPAEC) with
pulsed amperometric detection (PAD), allowing for the separation and detection of the
educt lactose, the product 3’SL and free Sia residues, which can also be caused by a trans-
fer to water instead of a carbohydrate acceptor. A detailed explanation of HPAEC-PAD
and calculated kinetic parameters is given in the appendix C. TconTS1 and H-TconTS1
(50 ng) samples were incubated for 30 minutes at 37 °C with 600 µM fetuin-bound Sia
(100 µg dialysed fetuin) and varying concentrations of lactose (0.01-5 mM) in 50 µL of
10 mM potassium phosphate buffer, to calculate the corresponding Michaelis-Menten ki-
netic parameters KM and vmax. The used Sia concentration corresponds approximately to
one third of the Sia concentration reported for glycoproteins in blood serum264,265. How-
ever, human blood serum has a high proportion of protein-bound Sia with α2→6-linkages
that are not utilized by TconTS.266,267 The reaction was terminated with 200 µL ice-cold
acetone in order to yield protein precipitation, which was further carried out overnight
at -20 °C. Subsequently, samples were centrifuged (20 000 rcf, 30 min, 4 °C), the super-
natant lyophilized and resuspended in 125 µL water. The HPAEC-PAD system ICS-5000+
(Dionex/Thermo Fisher Scientific) was used to apply 25 µL sample to a CarboPac100 an-
alytical column (250x2 mm, 8.5 µm, Thermo Fisher Scientific), equipped with a guard
column (50x2 mm, Thermo Fisher Scientific). Chromatography steps were performed at
isocratic conditions with 100 mM NaOH and 100 mM NaOAc for 12 min, followed by a
wash step with 100 mM NaOH and 500 mM NaOAc for 5 min and an equilibration step
for 8 min to previous conditions. Production of 3’SL was quantified with a purchased
3’SL standard (Carbosynth, Compton, United Kingdom). Data acquisition and evalu-
ation was performed with the Dionex software Chromeleon 7.2 SR5 and parameters of
the Michaelis-Menten equation, KM and vmax, were calculated with the curve fit model
of SigmaPlot11. Two biological replicates, with three technical replicates each, revealed
a lower amount of 3’SL produced by H-TconTS1 relative to TconTS1 (Figure 4.4 A).
Interestingly, the calculated vmax values for the Sia acceptor substrate lactose of about
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2.4 µmol 3’SL/(min x mg enzyme) for replicate 1 and 4.1 µmol 3’SL/(min x mg enzyme)
for replicate 2 were found to be identical for glycosylated und deglycosylated enzymes
within the error range, highlighting the structural integrity of H-TconTS1 (Figure 4.4 B).

Figure 4.4: EndoH-treated H-TconTS1 shows higher
KM compared to TconTS1. A/B TS activities for
TconTS1 and H-TconTS1 were determined using fetuin
as Sia donor and a lactose concentration series as Sia
acceptor. Production of 3’sialyllactose was monitored
and Michaelis-Menten kinetic parameters, apparent KM
and vmax as well as kcat for lactose were evaluated using
SigmaPlot11. Data points are means ± standard deviation
of three technical replicates for each biological replicate.
The two replicates were treated differently in the following
way: The H-TconTS1 sample of replicate 1 was purified
after EndoH treatment using Strep-Tactin sepharose to re-
move free glycans and EndoH after that the buffer was
exchanged to 10 mM phosphate buffer at pH 7.4 as al-
ready described. In contrast, the H-TconTS1 sample of
replicate 2 was purified by three chromatography steps,
(i) a PD-10 desalting column (Cytiva, Marlborough ,USA)
to remove free glycans, (ii) by AffiSep® ConA adsorbent
(Galab) to remove remaining proteins with high-mannose
type N-glycans and (iii) an amylose affinity purification
(New England Biolabs) to remove EndoH by its fused
maltose-binding protein.

These results further indi-
cate that the 3’SL produc-
tion rate of TconTS1 at satu-
rated Sia acceptor concentra-
tions is not influenced by its
N-glycosylation state. Differ-
ences in vmax values between
the replicates might be ex-
plained by varying amounts
of active enzyme after pu-
rification and therefore the
kinetic parameters were cal-
culated separately for each
replicate. The KM values
for lactose differed between
TconTS1 (1.7 and 2.0 mM)
and H-TconTS1 (9.0 and
3.2 mM), indicating a 1.6-
to 5-fold lower Sia accep-
tor substrate affinity for H-
TconTS1 relative to TconTS1
(Figure 4.4). The KM values
determined in this study are
similar to the one published
by Koliwer-Brandl et al. of
1.7 mM251, where variations
in the KM of H-TconTS1 be-
tween replicates might be a
result of differences in the
number of N-glycans remaining on these hypoglycosylated TconTS1 preparations.

Comparing our findings to other similar studies shows that most of them did not focus
on detailed kinetic parameters and therefore might have missed the effect of deglycosyla-
tion. For instance, Haynes et al.258 studied the influence of N-glycosylation on T. vivax
TS (TvivTS1) and did not observe an effect on enzyme activity. The same applies to
investigations of a mutated variant of TranSA, which expresses TS activity.259 However,
these studies did not determine the KM values for the substrates used in enzyme reac-
tions. Another study of TranSA, in which the sialidase activity was investigated, did not
observe strong effects on KM when recombinant proteins were expressed in Escherichia
(E.) coli and compared with the native enzymes isolated from trypanosomes.268 However,
the sialidase activity was determined in the absence of a Sia acceptor substrate such as
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lactose. For TcruTS, enzymes expressed in E. coli still showed transfer activity, although
to a lesser extent than observed for the native protein, which might be a result of the
absence of N-glycans and/or incorrect protein folding.256

4.3 How are they doing it?

The revealed correlations between the N-glycosylation status of TconTS1 and the enzyme’s
substrate affinity gave rise to the question about how the modulation takes place. In order
to guarantee that the post-folding removal of N-glycans did not affect the enzyme stability,
we performed circular dichroism experiments to investigate the influence of N-glycans
on the TconTS1’s secondary structure stability. A detailed introduction into circular
dichroism is given in the appendix B. The Applied Photophysics Chirascan spectrometer
(Applied Photophysics Limited, Leatherhead, UK) with the Pro-Data Chirascan software
(v.4.2.22) was used to evaluate circular dichroism spectra, where at least three repetitive
scans over a standard wavelength range of 190 to 250 nm with intervals of 1 nm were
performed. Throughout the experiments, Suprasil quartz cells (Hellma UK Ltd.) were
used with a pathlength of 0.2 mm. Baseline scans were performed with 10mM phosphate
buffer (pH 7.4) only and the baseline subtracted from recorded spectra. Repetitive scans
were averaged before a Savitsky-Golay smoothing filter with smoothing windows of three
data points was applied. Estimates of secondary structural components were predicted
from the circular dichroism spectra using the BeStSel Web server.269,270

Temperature-ramping experiments were performed following the suggestions of Norma
Greenfield271 in order to analyze protein stability, unfolding intermediates and the mid-
point of the unfolding transition (melting temperature, TM). In detail, protein samples
were heated from 20 °C up to 95 °C with 5 °C temperature steps employing the stepped
ramp mode. After 5 min of equilibration time at the respective temperature, at least three
spectra were recorded and averaged. The TM was calculated from the fraction of protein
folded at any temperature (α) defined as:

α = (θT − θU)
(θF − θU) , (4.3.1)

where θT is the ellipticity at any temperature, θU is the ellipticity at the unfolded state
and θF at the folded state. TM is defined as the temperature at which α = 0.5 and also
referred to as the melting temperature.271 In order to calculate α, we chose 195 nm as the
wavelength to plot the recorded mean residue ellipticity ΘMRE values against the temper-
ature. Afterwards, the calculated α values were plotted with respect to the temperature
and a sigmoid fitting curve was used to obtain a precise TM value. As we did not observe
a complete unfolding of TconTS1 in any temperature-ramping experiment, θU is defined
as the average ellipticity of the two highest temperatures. Accordingly, θF was set as the
average ellipticity that was recorded for the two lowest temperatures. Circular dichroism
spectra of TconTS1 and H-TconTS1 were analyzed under similar conditions as used for the
enzyme activity measurements (35 °C), showing no significant difference over the recorded
wavelength range, indicating that both enzymes share the same common secondary struc-
ture (Figure 4.5 A). In fact, calculated secondary structural elements were identical in
both cases, with 37% of β-sheets, 13% of α-helices, 11% of turns and 39% of unstructured
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(other) components. Spectra recorded during temperature-ramping experiments revealed
a high heat stability for both protein preparations, as TconTS1 and H-TconTS1 still kept
intact secondary structural elements up to 95 °C (Figure 4.5 C/D). The variation of the
spectra intensity in the range between 190 and 210 nm during heating indicates a partial
unfolding, taking place between 60 °C and 70 °C, with a (TM) of about 62 °C for both pro-
teins (Figure 4.5 B). Thus, TconTS1 and H-TconTS1 exhibit the same secondary element
distribution and the same heat stability (as quantified by TM for partial unfolding).

Figure 4.5: Influence of N-glycans on the TconTS1 secondary structure and
stability. A Circular dichroism spectra of untreated TconTS1 and EndoH-treated H-
TconTS1 were measured at 35 °C in 10 mM phosphate buffer at pH 7.4 (means ± standard
deviation of two biological replicates). B The midpoint of unfolding (TM = α − factor =
0.5) from a folded state (α-factor ≈ 1.0 at 20 °C) to a partially unfolded intermediate (α-
factor ≈ 0.0 at 95 °C) was determined for TconTS1 and H-TconTS1 by fitting a sigmoid
function to the data. Circular dichroism spectra of temperature-ramping experiments with
TconTS1 C and H-TconTS1 D were recorded in 5 °C steps and a 5 min equilibration time
at each step. The midpoint of unfolding (TM) is determined at 195 nm (dashed line) at
the flex point of a sigmoidal function fitting the temperature curve.

In summary, the circular dichroism experiments did not provide evidence for an altered
overall secondary structure of H-TconTS1 as an explanation for its observed lower sub-
strate affinity. N-glycosylation-induced changes of the tertiary structure still remain as a
possible explanation because they are too subtle to be detected by circular dichroism. The
observed thermal stability of TconTS1 might be explained by the high β-sheet content of
the protein as well as by an extended interface between catalytic and lectin-like domain
stabilized by salt bridges and a well-structured hydrogen bond network, making unfolding
rather unlikely.263 Although N-glycans do not seem to influence the stability of TconTS1
after successful expression, N-glycans are known to be required for proper folding of N-
glycosylated proteins, regulated by the calnexin/calreticulin cycle in the ER.272 Whether
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this is true for TconTS1 still needs to be investigated, although enzymatic activity of bac-
terially expressed TconTS provide evidence for glycosylation-dependent misfolding of the
enzyme.263

As a final step, we employed MD simulations in order to unravel the N-glycan shield
at an atomistic resolution, studying N-glycan dynamics on a site-specific level. Due to the
lack of experimentally derived structures for TconTS enzymes, homology models were gen-
erated by the I-TASSER web server for protein structure and function predictions198,273

based on the recombinant sequence without the transin signal (see Figure S1 and S2 in
Rosenau et al245). The numbering of amino acids is in correspondence with the native
sequence251, although TconTS1 was modeled with the engineered SNAP-Strep tag for
consistency and better comparison with experimental data, requiring restraints to achieve
proper folding of this structural part. In detail, a secondary structure restraint as well
as a structure template for the SNAP-Strep region, generated by I-TASSER beforehand
using only the SNAP-Strep sequence, were employed. Validation of the TconTS1 homol-
ogy model, including a discussion of employed templates and their amino acid sequence
similarity, can be found in the appendix D.

Figure 4.6: Homology models of glycosylated and deglycosylated TconTS1. Gly-
cosylations have been chosen in accordance with the structures identified via MALDI-TOF
MS. The protein backbone is represented in gray with the New Cartoon style. Carbohy-
drates in Licorice representation are colored with Man in green and GlcNAc in blue.
Asparagine residues of putative N-glycosylation sites are colored in red.

In order to generate an N-glycosylated structural model of TconTS1, M5 glycans were
included using the freely accessible CHARMM-GUI Glycan Modeler at positions N45,
N113, N206, N240, N281 and N693, as identified by our MALDI-TOF MS experiments.
M5 was chosen for all sites, as it represents the simplest and most often found N-glycan
in CHO Lec1 cells.262 The experimentally observed heterogeneity of N-glycosylation at
N206 was not considered in our work at this stage. N657 was not glycosylated, although
found in our MALDI experiments, because the model building was already completed at
the time this glycan was found. A disulfide bond between residues C493 and C503 was
formed. In TconTS1, all potential N-glycosylation sites are glycosylated in the catalytic
domain, whereas only one out of four potential sites is glycosylated in the lectin-like domain
(Figure 4.6 A). In the model used to simulate H-TconTS1, single GlcNAc residues were
included at positions that were also occupied in the TconTS1 model, mimicking the residual
monosaccharide after EndoH treatment (Figure 4.6 B). At first, standard MD simulations
were performed for TconTS1 and H-TconTS1, in order to observe the dynamical behavior
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of the covalently linked N-glycans (Figure 4.7). The simulation box was constructed with
CHARMM-GUI, filling it with water molecules to obtain a distance of 15 Å between the
protein and box edge. 22 K+ ions were added for charge neutralization.

Figure 4.7: Analysis of the dynamics of TconTS1’s N-glycan shield. A Atomistic
model of TconTS1 with M5 N-glycans (Man: green, GlcNAc: blue) at the asparagine
residues (red) identified in MALDI-TOF MS experiments. B Interactions between N240
and N113 glycans mediated by hydrogen bonds observed during MD simulations. C
Overlay of all N-glycan positions recorded every 5 ns over a simulation time of 500 ns,
with the protein backbone (gray) aligned in all frames and the active site indicated by an
orange circle. D Same as C, with the protein rotated by 180°. The C-terminal SNAP-
Strep tag is not shown in all structures.

All MD simulations were performed with the GROMACS 2018 version206, using the
CHARMM36m150 force field for proteins and carbohydrates in combination with the
TIP3P water model. The leap-frog algorithm was used as an integrator and the LINCS
algorithm was employed to constrain bonds connected to hydrogens atoms.210 Tempera-
ture coupling was performed with velocity rescaling using a τ parameter of 0.1 ps.211 The
Verlet cut-off scheme was employed for van der Waals parameters using PME and the
standardized parameters suggested for CHARMM36 in the GROMACS manual version
2019.212 Energy minimization of water and ions (with restrained protein) was performed
using the steepest descent algorithm with a tolerance of 1,000 kJ mol−1 nm−1. Equili-
bration of water (with restrained protein) was done in an NVT and an NPT ensemble
for 1 ns, respectively. It followed the energy minimization of the protein (with restrained
water and ions) under the same conditions as before. Finally, unrestrained equilibrations
were performed under NVT and NPT for 1 ns each. The production runs were performed
for 500 ns in the NVT ensemble at 310.15 K, writing coordinates to file every 10 ps. A
time step of 2 fs was set for all simulations, if not mentioned otherwise. The systems were
analyzed and visualized every 500 ps.

Six out of nine asparagine residues in the motif N-X-T/S are located at the tail of
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loop regions (Figure 4.7 A), which are mostly part of turns or coils framing β-sheet
regions. The terminal position and flexibility of these structural elements allow for large
motion amplitudes and internal flexibility of the N-glycan trees. These movements enable
interactions among glycans in structural proximity, for instance intermolecular hydrogen
bonds between the N-glycans at positions N113 and N240 (Figure 4.7 B), notwithstanding
their distance in the protein sequence. Furthermore, an overlay of the averaged glycan
distribution recorded every 5 ns during the simulation (Figure 4.7 C/D) revealed a dense
glycan coverage (shielding) of the protein, especially for the catalytic domain, except for
the direct entrance to the active site (Figure 4.7 C).

4.3.1 The substrate free state

Figure 4.8: Protein-glycan interactions drive active site rearrangements ob-
served in MD simulations of TconTS1 without substrate. A Amino acids of
the catalytic site were in close proximity at the beginning of the simulation (Snapshot
at 100 ns). B D150 moved out of the catalytic site and formed hydrogen bonds with
glycan N206 until the end of the simulation (Snapshot at 350 ns). C Time evolution of
the distance between the center of D150 and the center of R410 for TconTS1 (black) and
H-TconTS1 (gray) as well as numbers of hydrogen bonds for TconTS1 between glycan
N206 and D150/Y151. For H-TconTS1, no hydrogen bonds were observed. D Detail of
the hydrogen bonds (black dashed lines) between D150 and glycan N206 at its terminal
mannose branches. D150 is circled in yellow and the ligand-binding residues Y211 and
Y408 are circled in orange and represented in ball-and-stick with the following color code:
oxygen (red), carbon (cyan), nitrogen (blue), hydrogen (white). The underlying protein
structure is represented in cartoon style in gray with asparagine residues of N-glycosylation
sites showed as red spheres. Glycan color code: Man (green), GlcNAc (blue).

Interactions of N-glycans with highly conserved amino acids essential for the catalytic
activity were analyzed over the 500 ns MD trajectories of TconTS1 and H-TconTS1.251
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We especially focused on D150, E324 and Y438, known to be directly involved in catalysis,
and on R126, R144, Y211, W212, R339, Y408 and R410, which are involved in substrate
binding. In TconTS1, D150 was observed to shift from the interior of the active site
(Figure 4.8 A) towards an exterior position (Figure 4.8 B), increasing its distance from
R410, which was stationary within the active site (Figure 4.8 C). Interestingly, this shift
seems to be stabilized by a hydrogen bond formed between D150 and the N-glycan at
position N206 (Figure 4.8 C/D). Furthermore, detailed analysis revealed that this process
was initiated by hydrogen bond formation between Y151 and the N-glycan at N206, already
leading to a partial shift of D150 and making it more accessible to interact with the N-
glycan (Figure 4.8 C). In contrast, for H-TconTS1, D150 was found to be by far less mobile
(Figure 4.8 C).

4.3.2 The substrate bound state

Figure 4.9: MD simulations of TconTS1 with 3’SL bound to the active center
revealed protein-glycan interactions. A Starting structure. B Snapshot of 3’SL in
the binding pocket, forming hydrogen bonds (black dashed lines) to conserved arginine
residues. C Distance between the center of D150 and the center of R410 for TconTS1
(black) and H-TconTS1 (gray). Number of hydrogen bonds between D150 and glycan
N113 for TconTS1 over the course of the simulation. D D150 interacts with glycan N113
via hydrogen bond formation (black dashed lines) at its mannose branches (snapshot at
97 ns). Color code of the amino acids as in Figure 4.8. Glycan color code: Man (green),
GlcNAc/Glc (blue), Gal (yellow), Neu5Ac (violet).

To analyze if the observed protein-glycan interactions are also dominant in a substrate
bound enzyme state, MD simulations of TconTS1 and H-TconTS1 were performed in
complex with the substrate 3’SL. This substrate model was chosen since its composition is
similar to the typical terminal branches of complex type N-glycans and was already used in
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previous enzyme assays.113 We chose to model the Michaelis complex involving the donor
substrate instead of the acceptor substrate in the covalent intermediate state (bound Sia
to protein) as the crystal structure of a TcruTS/3’SL complex (PDB entry 1S0I) could
perfectly serve as a template. Furthermore, there are no experimental structures of the
covalent intermediate state with a bound acceptor substrate and we chose to rather model
an accurate approximation rather than a faulty actual structure. 3’SL was positioned in
the binding site of the homology-modeled TconTS1 in alignment with the crystal structure
of the TcruTS/3’SL complex (PDB entry 1S0I) by VMD. The position of 3’SL was copied
to the TconTS structure, and the ligand-protein complex was subjected to CHARMM-GUI
for further processing, as described above for the setup up of the simulation cell. In the
starting structure, 3’SL was bound at the acceptor substrate binding site between Y211
and Y408, and in close contact to both D150 and the well-conserved arginines R339 and
R410 (Figure 4.9 A/B). Minimization, equilibration and production runs were performed
as described above, using a timestep of 1 or 2 fs to resolve steric clashes. As already seen
in the substrate-free simulation, D150 of TconTS1 formed hydrogen bonds with mannose
residues of an N-glycan. However, in this case it was N-glycan at N113, which is also
structurally in close proximity to the active site, and not N-glycan at N206 (Figure 4.9
D). This interaction was observed after 20 ns, when D150 moved slightly off the catalytic
site, becoming more accessible for interactions with the N-glycan (Figure 4.9 C). Following
a structural rearrangement of 3’SL within the binding site after around 70 ns, D150 again
interacted with N-glycan N113 and was dragged out of the binding site (Figure 4.9 C). In
striking contrast, amino acids in H-TconTS1 known to be essential for the direct catalytic
activity did not experience any interactions with the residual GlcNAc residues.

4.3.3 The conformer distribution

Interactions of monosaccharides in a glycan tree with surrounding molecules like amino
acids are associated to a restricted conformational movement. For instance, observed
hydrogen bonds for M5 at position N113 and N206 might restrict the glycan’s overall
movement and thereby favor certain conformers over other. In order to test the dynam-
ical behavior of TconTS1-bound N-glycans, the conformer distribution of glycan N206
was calculated from the substrate free simulation and compared to an M5 glycan in solu-
tion, enhanced sampled via REST-RECT as described in chapter 3 (Figure 4.10 A). The
conformer distribution of glycan N206 is slightly shifted, favoring conformers with a gt

configuration at the first ω angle. It can be further recognized that the second ω angle
only adopts a gg conformation, indicating a certain restriction of the terminal α1 → 6
branch. Comparing the individual PCA plots clearly underlines the restricted conforma-
tional phase-space sampling, additionally indicating that certain conformers are adopted
more frequently than in the free M5 glycan (Figure 4.10 B). In summary, bound M5 at
position N206 is adopting different glycan conformers compared to its free counterpart, as
a consequence of interactions with amino acids Y151 and D150.
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Figure 4.10: Altered conformer distribution for
M5 at N206 in TconTS1. A Glycan conformer
distribution for M5 of a free glycan in solution sampled
via REST-RECT and the bound M5 at position N206
of the substrate free simulation. B Joint PCA of both
data sets and respective free energy landscape.

Figure 4.11: Restricted glycan conformer does
not allow hydrogen bond formation. A Snapshot
at around 150 ns of a classical MD simulation of glyco-
sylated TconTS1 (only M5 glycan at position N206 is
shown for simplicity). The glycan N206 was restrained
to the most populated conformer of M5 in solution:
G−A+G−A+G+TggG+TggG+A−G+A− B No hydro-
gen bonds could be detected between D150/Y151 and
the conformer-restraint glycan N206. Labeling and
coloring as in Figure 4.8.

In order to test whether even a
stiff M5 could interact with cat-
alytic amino acids or if the three-
dimensional structure of the N-
glycan does not play a role in this
context, a classical MD simula-
tion of glycosylated TconTS1 was
performed for 200 ns. The same
settings as mentioned above were
applied, additionally restraining
glycan N206 to the most popu-
lated conformer of M5 in solution
(G−A+G−A+G+TggG+T

ggG+A−G+A−). Although D150
slightly deviates from its initial
position (Figure 4.11 A), there
could be no hydrogen bonds iden-
tified between amino acids D150
or Y151 and glycan N206 (Fig-
ure 4.11 B). It can be concluded
that in agreement with the ob-
served conformer shift for glycan
N206 when interacting with cat-
alytic amino acids (Figure 4.10),
a flexibility of the here studied N-
glycan is apparently relevant for
its functional mechanism.

4.4 Are they conserved?

Diverse high-mannose type N-
glycan structures could be iden-
tified for almost all nine N-
glycosylation sites of TconTS1,
positively impacting the substrate
affinity of the acceptor sub-
strate lactose in the glycosylated
state. Our atomistic simulations
of TconTS1 indicate that glycans
attached to site N206 (and N113) could play a potential role in positioning the proton
donor D150, influencing its ability to act in the enzymatic transfer of Sia, a crucial contri-
bution to substrate conversion.116,252 Recurring hydrogen-bond interactions of D150 with
N-glycans at positions N206 or N113 are the driving force of the conformational change in
the catalytic site which could not be detected for H-TconTS1. This fine tuning of critical
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amino acid side chains’ arrangement might facilitate the initial binding of substrates and
lead to a higher substrate-binding affinity in line with our kinetic data. The study of
the exact mechanism including the whole transfer mechanism with donor and acceptor
substrate exceeds the purpose of this study and would require the application of a hybrid
quantum mechanics/molecular mechanics (QM/MM) approach. Nevertheless, our obser-
vations of hydrogen bond formation between N-glycan N206 and protein residues stand in
direct relation to the heterogeneous N-glycosylation structures observed for N206 (M5-8,
FM5). In fact, the occurance of not trimmed, large high-mannose type N-glycans such
as M8 could be explained by the lack of accessibility of the glycan for glycosidases due
to continuous protein-glycan interations. It was previously shown by biochemical in vitro
assays and computational studies that such protein-glycan interactions decrease glycan
accessibility, which might interfere with glycan trimming.274 This hypothesis is supported
by our observation that EndoH was not able to remove all N-glycans from TconTS1 even
after 16 h of incubation and therefore also EndoH-mediated removal of N-glycans could
be hindered by these interactions. Despite this site-specific analysis, it was interesting
to see that especially N-glycans of the catalytic domain were observed to form a highly
dynamical ‘shield’ enclosing the enzyme, while leaving the entrance to the catalytic center
open for substrate binding (see Figure 4.7).

Due to the nature of MD simulations, being limited in the number of included atoms,
only one protein was simulated at a time, either fully N-glycosylated at all positions that
were experimentally identified in this study, or completely deglycosylated with residual
GlcNAcs, simulating EndoH treatment. Since experiments such as enzyme assays always
represent a cumulative average over all possible protein structures present in the sample,
differences in their glycosylation pattern are very likely, but difficult to examine with our
qualitative approach. This heterogeneity is not accounted for in our MD simulations and
therefore only possible mechanisms for the extreme (fully glycosylated vs. deglycosylated)
cases can be derived. The averaging effect of experimental methods especially applies
to the hypoglycosylated samples, which were shown to be only partially deglycosylated,
mainly at position N206. Therefore, the kinetic effects may even be more pronounced
if N-glycans at position N206 would be completely absent. Site-directed mutagenesis of
these sites could provide further insights, but it remains an open question whether these
mutants would be able to successfully fold into an active enzyme structure.

Figure 4.12: Interspecies conservation of N-glycosyation sites. The sequence align-
ment of TS from T. cruzi (TcruTS, GenBank ID AAA66352), T. brucei brucei (TbruTS,
GenBank ID AAG32055), T. congolense (TconTS1b, GenBank ID HE583284), T. vi-
vax (TvivTS, GenBank ID CCD21087) and the closely related sialidase from T. rangeli
(TranSA, GenBank ID AAC95493) was generated with the ClustalW Alignment tool of
the software Geneious Pro 5.5.9, employing the BLOSUM matrix with a gap opening cost
of 10 and gap penalty cost of 0.1. Conserved glycosylation sites are indicated (red box).
Analysis and figure creation were performed by Jana Rosenau.
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Thinking outside the box and comparing N-glycosylation sites of TconTS1 to other try-
panosomal species revealed conserved glycosylation sites among TS and other sialidases
despite their variations in amino acid sequences. In particular, N206 is conserved in all
TS variants of T. congolense as already described by Waespy et al.257 but also in enzymes
from T. cruzi, T. brucei, T. vivax and sialidase from T. rangeli, as revealed by our amino
acid sequence alignment (Figure 4.12). Additionally, N113 is also conserved in TconTS,
TvivTS and TranSA. Along this line, we propose that there might be a common mecha-
nism of TS activity mediated by N-glycan interactions with amino acids of the active site,
in particular with D150 or its equivalents in other TS. The short time scale and lack of
N-glycans in previously performed MD simulations probably prevented the observation of
the here-observed D150 structural shift.275–278 Intramolecular glycan-protein interactions
are a naturally observed event and have been suggested to regulate the conformation of
proteins and their ability to bind to substrates such as collagen.279,280 This assumption can
be confirmed by our study for TS enzymes and highlights the importance of the protein
expression system to achieve a biologically-correct post-translational modification pattern,
which might also be crucial for accurate protein folding. Furthermore, we underline the
importance of including N-glycans in MD simulations, as they can act as key residues con-
ferring function to the protein, as was also shown for the spike protein of SARS-Cov-2.100
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5 | In the middle: Glycans as sub-
strates

The artistic phase space of an enzymatically bound N-glycan. The high-mannose
type N-glycan M5G0 is restricted in its conformational phase space through the surround-
ing amino acids in the catalytic site. The presence of the protein is shading and altering
the free energy landscape. Each conformer is flagged by corresponding conformer labels.
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The processing of post-translationally added N-glycans is performed by various enzymes
in the ER and Golgi in eukaryotic cells. An important step is the transition from high-
mannose type to complex N-glycans via trimming of Man residues by various mannosi-
dases. Several different cancer types like colon, skin and breast cancers are characterized
by an altered high amount of complex N-glycans on their cell surfaces, correlated with
metastasis growth and disease progression.63,281,282 Inhibition of certain key enzymes in
the glycosylation pathway that bridge the transition from high-mannose type to complex
N-glycans, like α-mannosidase II (GMII), reduced the formation of complex N-glycans and
could be associated with reduced tumor growth and metastasis.283 Unfortunately, treat-
ment with the inhibitor swainsonine or its derivatives showed side effects, which could be
associated with the simultaneous inhibition of lysosomal α-mannosidase.284 Despite exten-
sive efforts to develop potent selective inhibitors, no breakthrough has yet been achieved
that would have enabled clinical application.285

Figure 5.1: The transmembrane Golgi α-mannosidase II. A GMII catalyzes the
two-step hydrolysis of M5G0 to M3G0, first cleaving the α 1→6 linkage yielding M4G0
and subsequently the terminal α 1→3. B Structure of GMII in complex with its substrate
M5G0 (PDB entry: 3CZN). The globular structure consists of an Ig-like domain, harboring
β-sheets (white), and an α/β domain with the catalytic site (gray). C Snapshot of the
binding site with M5G0 bound to the anchor (Q64, Y267, H273, P298, W299, R410),
holding (R343, D340) and catalytic (H90, D92, D204, D341, H471, D472) sites. D Zoom
into the catalytic site, where a Zn ion is sixfold-coordinated involving the amino acids
H90, D92, D204 and H471 as well as the O2 and O3 atoms of the terminal Man residue.
Atomistic glycan structures are represented in Licorice representation and amino acids in
CPK. Atoms are colored by their respective element with carbon in gray, oxygen in red,
nitrogen in blue, hydrogen in white and zinc in yellow. The glycan color code follows the
SNFG regulations.

The mechanisms of distortion of a monosaccharide pucker from its free, low-energy
chair conformation to a strained, distorted one in a GH transition state is important to
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understand in order to reveal the whole catalytic mechanism and gather information for
the development of putative inhibitors.286 The distortion is often necessary in order to
achieve are more favorable conformation of the linkage that is to be cleaved, as well as
create an oxocarbenium ion-like character. There is probably no universal explanation
for this fundamental question, as GHs are characterized by different catalytic mechanisms
(inverting/retaining) and harbor diverse ion types in their binding sites. However, we
aimed at addressing this issue by employing GMII as a model system due to its well
studied catalytic reaction and the available crystal structure of the almost native protein
in complex with its unmodified substrate (PDB entry: 3CZN). We especially focused on
a putative structural role of the flexible glycan substrate itself, as well as the chemical
influence of the Zn ion, which was previously suggested to induce pucker distortion.286,287

Figure 5.2: GMII follows a retaining mechanism
to achieve the transition state. A Atomistic rep-
resentation of the α 1-6 branch, when free in solution.
The terminal Man residue adopts a 4C1 pucker con-
formation, corresponding to the global minimum in
the ϕ/θ puckering plot. B When the α 1-6 branch
is binding to the catalytic site of GMII, the terminal
Man residue adopts a B2,5/

1S5 pucker conformation in
its transition state, forming a deep energy minimum
in the puckering plot. Atomistic glycan structures are
represented in Licorice representation and amino acids
in CPK. Atoms are colored by their respective element
with carbon in gray, oxygen in red, hydrogen in white
and zinc in yellow. The glycan color code follows the
SNFG regulations with Man in green.

GMII belongs to the GH fam-
ily 38, catalyzing the final removal
of two Man residues prior to the
incorporation of diverse monosac-
charides in downstream steps.288

This integral membrane protein is
situated in the medial Golgi, act-
ing on both terminal α1→6 linked
and α1→3 linked mannoses, con-
verting glycan M5G0 (GlcNAc-
Man5GlcNAc2) to M3G0 (Glc-
NAcMan3GlcNAc2) within the
same catalytic binding site (Fig-
ure 5.1 A).289 The amino acid
sequence of GMII is conserved
among many eukaryotes. The
first crystal structure was re-
solved in 2001 for Drosophila
melanogaster, because the human
homologue is difficult to purify in
large amounts.63,289 It consists of
two larger domains, an N-terminal
α/β domain harboring the glycan
binding site and the C-terminal
Ig-like domain, whose function is
yet to be discovered (Figure 5.1 B).63 The structurally unresolved N-terminus is predicted
to serve as a membrane anchor, positioning the protein with its catalytic site facing the
Golgi lumen.

The binding site of GMII consists of three distinct sugar binding regions: the anchor,
holding and catalytic sites (Figure 5.1 C).289 At the anchor site, the GlcNAc residue of the
α1→3 linked branch is stably bound by several conserved amino acids (Y267, W299, P298,
H273), correctly orienting the flexible substrate for hydrolysis. As usual, CAZymes are
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very substrate specific and it is therefore not surprising that the catalytic reaction depends
on the presences of the β1→2 linked GlcNAc residue, as the activity was found to be 80-
fold reduced for the structurally similar glycan M5. The holding site (R343, D340) is able
to accommodate the terminal α1→3 linked branch, however not the longer terminal α1→6
branch, suggesting an initial cleavage of the α1→6 branch prior to the α1→3 one.289 The
catalytic site is characterized by a stably bound Zn ion, sixfold coordinated by oxygens 2
and 3 of the terminal Man residue and amino acids H90, D92, D204 and H471 (Figure 5.1
D).

It is suggested that the mode of action is similar for the cleavage of the two different
linkages, although we focus only on the 1→6 linked mannose here.289 Glycan linkage hy-
drolysis follows a retaining mechanism in GMII, where the substrate is distorted from the
low energy 4C1 pucker over to the transition state conformer OS2/B2,5, to a 1S5 pucker
conformation in the covalent glycosyl–enzyme intermediate state (Figure 5.2). The nucle-
ophile of the reaction is represented by D204 and the acid/base by D341 (Figure 5.2 B).
The detailed reaction mechanism was already studied by QM/MM calculations, showing
that the glycosidic bond dissociates prior to the formation of a covalent bond between the
substrate and D204, where the transition state has a clear oxocarbenium ion-like charac-
ter.290 We focus on the glycan conformation at the very beginning of the reaction, being
interested in how the distortion of the terminal Man residue is induced from a 4C1 confor-
mation free in solution (Figure 5.2 A), to a B2,5/

1S5 pucker before reaching the transition
state (Figure 5.2 B).

5.1 The conformer hypothesis

N-glycans are very flexible molecules, able not only to rotate around their glycosidic bonds
but also to adopt different pucker conformations, even when freely simulated in solution
(see chapter 3).77 It stands to reason that a mutual dependence of pucker conformations
and certain glycan conformers can be assumed. 134 As a first step, the prevailing glycan
conformers in the binding site of GMII need to be determined, as the accessible conformers
might differ from those free in solution. If the conformer distribution deviates from the one
of a free glycan, it is to be investigated whether there is a direct effect on the puckering
propensity of the terminal Man residue at position -1. A sufficient phase-space sam-
pling of the glycan substrate under the additional difficulty posed by the interactions with
surrounding amino acids was tackled by the application of the REST-RECT methodology.

An atomistic model of GMII was built up from the crystal structure with PDB entry
3CZN (from Drosophila melanogaster), having the native ligand structure of M5G0 re-
solved, except for one GlcNAc residue at the non-reducing end. We expect this missing
residue to have no significant impact on the conformer distribution and therefore did not
add it a priori, to stay as close as possible to the experimental conditions. The glycan
is nevertheless termed M5G0 onwards. Only the α/β domain (amino acids 31-510) har-
boring the ligand binding site was included in the model (Figure 5.1 A), keeping the
system as small as possible to save computational resources. An unfolding of the short-
ened C-terminus could not be detected in subsequent simulations and was therefore not
necessary to constraint. Via CHARMM-GUI, the mutation of the nucleophile D204A

110 of 176



5.1. The conformer hypothesis 5. In the middle: Glycans as substrates

was reversed to a deprotonated aspartic acid and D341 converted to its protonated form,
mimicking the optimal conditions for the initialization of a retaining hydrolysis reaction.
Furthermore, missing hydrogens were added and the system solvated in a 12.5 x 12.5 x
12.5 Å3 water box, containing only the Zn2+ as an ion in the binding site. All simu-
lations were performed with GROMACS 2018.4206, patched with PLUMED 2.6207. An
energy minimization, restraining the positions of the heavy atoms of the protein, was per-
formed using the steepest-descent algorithm with a tolerance of 1000 kJ mol−1 nm−1. An
NVT equilibration was subsequently performed for 1 ns with the same restraints as in
the minimization step. Following production runs were always performed under the NPT
ensemble. The leap-frog algorithm was used as an integrator with a 2 fs time step, and
the LINCS algorithm210 was employed to constrain bonds connected to hydrogen atoms.
Temperature control was realized via velocity rescaling211, using a time constant of 0.1 ps,
setting a reference temperature of 310.15 K. The pressure was set to 1 bar with a com-
pressibility of 4.5 x 10−5 bar−1, and kept constant via the Parrinello-Rahman barostat
with a time constant of 5 ps. The Verlet list scheme212 was employed with a neighbor
list updated every 80 steps. The calculation of electrostatic interactions was done with
the PME213 method using a cut-off distance of 1.2 nm for the real space contribution.
A standard MD simulation of the whole system, lasting for 1 ns, was performed with
both, the CHARMM36 and the GLYCAM06j force fields, in order to assess their ability
to convert the pucker at position -1 in the catalytic site from a chair to a distorted boat
or skew boat conformation. Spontaneous happening of this transition is necessary, as the
crystal structure displays only a chair conformation for the terminal Man residue due to
the D204A mutation. Constraints of the distance between the catalytic proton of D341
and the O6 of the α 1→6 linkage to 1.4 Å, as well as of the distance between the oxygens
of D92 and HO2 of the terminal Man residue to 1.6 Å, should induce a distorted pucker
at position -1. The first constraint is important for the catalytic reaction and the second
mimics an experimentally observed hydrogen bond that does not form under standard MD
simulation conditions.290 It turned out that only the GLYCAM06j force field was able to
predict the transition from a chair to a boat conformation as already demonstrated by
Petersen et al. 2009290. The CHARMM36 force field let the terminal Man to persist in a
chair conformation. Therefore, the ff19SB force field153 was used for the protein and ion
atoms, GLYCAM06j for the glycan atoms, and TIP3P as the water model.208

For the sufficient phase-space exploration of ligand M5G0 bound in the catalytic site,
a REST-RECT simulation of the GMII protein-glycan complex was performed. The sim-
ulation setup differed slightly from that of chapter 3, as sampling in this larger molecular
system introduced convergence issues (Figure 5.4 A). First of all, 16 replicas were used
with λα values equal to 1, 0.98, 0.95, 0.92, 0.90, 0.87, 0.84, 0.81, 0.78, 0.75, 0.72, 0.69,
0.65, 0.62, 0.58, 0.55, spanning an effective temperature range from 310.15 K to 570 K.
A geometric progression of λα values turned out to be less efficient regarding replica ex-
changes. The solute region did not only include the glycan atoms, but also the following
amino acids of the binding site: D106, R228, Y267, Y269, D270, H273, R289, D340, R343,
R410, D412, D472, T477 (Figure 5.3 A). These were identified from REST-RECT test
runs, in which they formed hydrogen bonds with monosaccharide atoms, preventing an
efficient exploration of glycan conformers, and therefore hindering convergence. It is no
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coincidence that several of these solute amino acids are also part of the anchor, holding
and catalytic sites of GMII, as it is their natural function to constrain the glycan in the
binding pocket. Water and ions were always kept at the ground temperature. The RECT
part biased all 14 torsion angles simultaneously via one-dimensional bias potentials in
each replica α. The αth replica was biased using a bias factor γα, with values equal to 1,
1.13, 1.27, 1.43, 1.61, 1.82, 2.05, 2.31, 2.60, 2.93, 3.30, 3.72, 4.19, 4.73, 5.32, 6 over the
replica ladder. Several distance constraints were used for different purposes (Figure 5.3
B). On the one hand, the glycan as well as the Zn ion had to remain bound to the binding
site even at higher temperatures. Therefore, distances between Zn and nitrogen atoms of
H90 and H471, as well as Zn and O2 and O3 of the Man residue were kept fixed at 2 Å.
On the other hand, the terminal Man residue should be retained in its distorted pucker
conformation that is associated to the reactant state prior to the transition, in order to
sample the conformational phase space of M5G0 under catalytic conditions. Hence, the
D92-glycan and D341-glycan distance constraints mentioned above were used in addition
to restraining the pucker coordinate θ to 1.5, only allowing for the sampling of boat and
skew boat pucker conformations.

Figure 5.3: REST-RECT setup of GMII in complex with M5G0. A The α/β do-
main with residues 31-510, including the binding site and the ligand, was simulated. The
solute region included all glycan atoms as well as amino acids of the binding site (high-
lighted in CPK style in red): D106, R228, Y267, Y269, D270, H273, R289, D340, R343,
R410, D412, D472, T477. B Harmonic restraints (black dotted lines) were introduced to
keep the Zn ion and the terminal Man residue positioned in the binding site. Atomistic
glycan structures are shown in Licorice representation and amino acids in CPK. Atoms are
colored by their respective element with carbon in gray, oxygen in red, nitrogen in blue,
hydrogen in white and zinc in yellow. The glycan color code follows the SNFG regulations
with Man in green and GlcNAc in blue.

The REST-RECT simulation was run for 500 ns per replica, yielding a total of 8 µs of
cumulative sampling time. The plausibility of the chosen replica exchange parameters was
verified by examining the exchanges of replicas over the replica ladder. Including only 12
replicas, the standard REST-RECT settings from chapter 3 resulted in insufficient replica
overlaps and no exchanges across the whole replica ladder (Figure 5.4 A). However, a
colorful mixing of replica indices could be observed after including 16 replicas with an
exchange acceptance above 50 % for all replicas. Additionally, the replicas underwent
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several round trips with round trip times of 11 ns for the lowest and highest replica
(Figure 5.4 B).

The evidently sufficient replica exchange settings resulted in a converged conformer
distribution for M5G0 bound in the catalytic site of GMII (Figure 5.5 A). The cumulative
average of the three most populated conformers was calculated from the unbiased ground
replica, becoming flat after 350 ns of simulation time. The first 200 ns were discarded, as
the metadynamics potentials first had to take effect, requiring a longer lead time to push
the glycan away from its initial conformation. The subsequently calculated conformer
histogram (Figure 5.5 B) displays that conformers differ mostly in the second ϕ and both
ω angles, as it is also the case for free glycans in solution.

Figure 5.4: Replica details of REST-RECT simulating GMII in complex with
M5G0. A Replica exchanges visualized by plotting the replica index over time along
the replica ladder. 500 exchanges over the course of the simulations are visualized out
of 18000 exchange attempts. On the left, a REST-RECT simulation using 12 replicas
and standard settings from chapter 3 compared to adapted settings using 16 replicas and
altered bias scaling. B Duration of round trip times (rtt) for replica 0 and 15 (ground and
highest replica), along the progression of the simulation. An average of around 10 ns per
round trip (red dotted line) allows for 50 round trips per replica during one REST-RECT
simulation.

The temperature and bias factor ranges in this protein-glycan simulation were shorter
compared to similar simulations of free glycans. This is because major convergence issues
were faced when applying the standard scheme of chapter 3, making it necessary to reduce
the biasing to a minimum, while simultaneously ensuring complete sampling of all degrees
of freedom. Test calculations revealed that a maximum temperature of 550 K was still
sufficient to sample different pucker conformations in conjunction with biasing all torsion
angles. Additionally, also the bias factor could be reduced to a maximum amount of six,
still allowing for a complete sampling of all torsion angles in the highest replica (Figure 5.5
C). The distributions of torsion angle values in the lowest replicas look different from the
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ones in replica 15, as a much smaller bias potential is applied. However, frequent replica
exchanges ensure the mixing of relevant conformers from higher to lower replicas.

The obtained conformer distribution of bound M5G0 was first compared to free M5G0
in solution, validating that a conformer shift is indeed induced by the altered chemical
surrounding of the protein pocket (Figure 5.6 A). Free M5G0 was sampled via REST-
RECT as described in chapter 3 using the GLYCAM06j force field and TIP3P water.
The distributions are not majorly different regarding the overall sampled conformers, but
populate them to a different extent. For instance, the highest populated conformer of free
M5G0 (25 %) only contributes to 6 % for bound M5G0. In contrast, the most populated
conformer of bound M5G0 (32 %) is the fifth conformer in the free M5G0 simulation (6
%).

Figure 5.5: Convergence of the M5G0 conformer distribution. A Cumulative
average of the three most populated conformer clusters according to panel B. B Conformer
distribution for M5G0. The conformer string is given on the x-axis. The gray boxes
highlight key conformational differences between conformers. For A and B, data points
recorded up to 200 ns of simulation were discarded, as the REST-RECT sampling required
lead time to take action. 75000 datapoints were analyzed. C Torsion angle fluctuations
of ϕ 2, ω 2 and ω 3 over the simulation time for replica 0-3 and 15, respectively.

The spatial distribution of both data sets is more easily visualized using a joint PCA
map, e.g. plotting the free energy surfaces independently (Figure 5.6 B). Free M5G0 cov-
ers a larger phase space compared to its bound counter part, probably due to a restrained
movement resulting from the surrounding amino acids. Moreover, the accessible phase-
space region of the bound systems is different in the sense that it includes conformers that
are not sampled in the free system (Figure 5.6). Generally, the three most populated con-
formers of the two systems are not overlapping (Figure 5.6 C). When overlaying the initial
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conformers sampled in the standard MD simulation of 1 ns with induced distorted pucker
conformation for terminal Man with data points from free and bound M5G0 molecules,
it is surprising to observe that they lie in a region that is only sampled by free M5G0
(Figure 5.6 D). It appears that the crystallized conformer is majorly influenced by the
D204A mutation, inducing a conformational change in the first ω angle (gt instead of gg)
that is no longer sampled in subsequent extended simulations in which the mutation was
reversed.

Figure 5.6: Comparing conformer distributions of free and bound M5G0. A
Conformer distribution from Figure 5.5 plotted together with the distribution obtained
from simulating M5G0 free in solution via REST-RECT. B Joint PCA, visualizing the
conformational free energy landscape for free and bound M5G0. C Joint PCA of free and
bound M5G0, highlighting the three most populated conformers, respectively. Coloring is
in accordance to A, with circles for free and squares for bound M5G0. The white coloring
for the second conformer of bound M5G0 is due to the absence of this conformer in A,
as it is not adopted by free M5G0. D Joint PCA of the complete distribution of free and
bound M5G0, where the initial three-dimensional glycan structure from a classical MD
simulation of 1 ns is displayed as red crosses. The terminal Man residue in the catalytic
site was restrained to a boat conformation, counteracting the induced chair conformation
resulting from the mutation D204A in the experimentally determined structure.

After the confirmation of a shifted conformer distribution of bound M5G0 in its reac-
tant state, it is yet to be answered whether this shift is able to affect the relative pucker
propensity in individual monosaccharide units. We addressed this hypothesis from two dif-
ferent perspectives. In a first approach, a free M5G0 glycan in solution was enhanced sam-
pled via REST-RECT, with the pucker coordinate θ harmonically restrained to 1.5 with a
1500 kJ mol−1 force constant, in order to enforce a boat/skew boat conformation. The re-
sulting conformer population shows only slight deviations from the one of an unrestrained
free M5G0 (Figure 5.7 A). Additionally, it does not resemble the histogram obtained from
GMII-bound M5G0 (Figure 5.6 A), except for the reduction of probability of the fourth
conformer.
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Figure 5.7: Mutual dependence of torsion and pucker
conformations in GMII. A Conformer distribution of free
M5G0 compared to its pucker restraint counterpart, fixing a
boat conformation for the terminal α1→6 linked Man. B
Puckering free energy profiles of the terminal α1→6 linked
Man residue from a free M5G0 glycan and from a re-
straint M5G0 glycan, where the conformer was fixed to
the most populated state in the bound GMII simulation
(G−A+G+TggG+TggG+A−G+A−G−G−).

In the second approach,
a free M5G0 in solu-
tion was restrained to
the most populated con-
former (G−A+G+TggG+

TggG+A−G+A−G−G−)
of bound M5G0 (Fig-
ure 5.6 A). The har-
monic restraints on each
torsion angle were ap-
plied using force con-
stants of 5000 kJ mol−1

and the system sub-
jected to a REST2 sim-
ulation with a tempera-
ture range from 310.15
to 800 K in order to en-
hance sample the pucker
conformers of each mono-
saccharide unit in the

glycan tree. Comparison to the unrestrained REST-RECT simulation of free M5G0 re-
vealed that the puckering free energy of the terminal α1→6 linked Man was not influenced
by the restraint (Figure 5.7 B). It can therefore be concluded that there exists no mutual
dependence between glycan conformation and ring distortion states, at least for termi-
nal monosaccharide residues. Whether the same holds true for central residues in longer
polysaccharide chains should be the subject of future studies.

5.2 The charge hypothesis

Given that the conformer hypothesis does not hold, at least for GMII, it is now time to
take a closer look at the Zn ion and its influence on the pucker distortion of M5G0. Due to
its full d-orbital, Zn2+ is an electronically quite stable ion that tends to withdraw electrons
from its coordinating atoms.286 For GH enzymes, it is a rather unusual prosthetic group,
with calcium being the the most prominent divalent cation. Previous QM/MM simulations
assign a catalytical role to Zn, assisting the lengthening of the glycan’s HO2-O2 bond in
the oxocarbenium ion-like transition state, counteracting the electron deficiency around
the C1 anomeric center.290 This consideration only takes effect later in the reaction mech-
anism, once the substrate is already in its distorted pucker shape and does not address
the reason for the conformational change. However, there were also experiment-based
assumptions regarding the Zn ion playing a role in the pucker distortion, driving the re-
action towards catalysis. The presumption is based on a crystallized structure of GMII in
complex with noeuromycin adopting a 1,4B conformation, although no further mechanism
or casual reason was provided.286 The crystal structure of mutant D204A of GMII (PDB
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entry: 3CZN) might give another hint in the direction of the Zn ion playing an active
role in influencing the pucker conformation.289 The terminal Man at position -1 adopts a
low-energy 4C1 chair conformation, potentially a product of the altered coordination of the
Zn ion due to a missing ligation partner. The Zn ion debate is especially interesting given
the fact that the hydrolysis reaction of several other α-mannosidase enzymes, comprising
GH families 76, 92, 47 and 125, can also take place without the presence of a divalent
ion.134,291–293 In the following, we focused on the hypothesis of whether the presence of a
Zn ion could lead to a charge redistribution around the glycan atoms, promoting a con-
formational change of the puckering.

This hypothesis was addressed by quantum chemical calculations, recalculating the par-
tial charges of a free Man residue versus a GMII-bound one (Figure 5.8 A,B). The bound
system (B2,5 conformation) mimics a reduced catalytic site, containing a Zn ion and frag-
ments of the four ligand amino acids (D92, D204, H90, H471). Aspartic acids were reduced
to hydroxyl groups and histidine residues to imidazole rings, resulting in an overall neu-
tral charge of the system. The ab initio QM software ORCA, version 4.2.1, was employed,
using the theoretical model HF/6-31G*. First, CHELPG (CHarges from ELectrostatic
Potentials using a Grid-based method) charges were calculated for the bound system.
Then, the charges were calculated for the free Man unit in exact the same conformation.
In a post-processing step, the CHELPG charges were set to the values for chemically
equivalent atoms. In the bound system, the charges of the terminal Man atoms were mod-
ified so that their sum amounted to zero, discarding the charges computed on the ligand
atoms. Partial charges calculated for the free system are comparable to the ones of the
original GLYCAM06j force field (Figure 5.8 C). Comparing the free to the bound system,
especially the Zn coordinated oxygen atoms O2 and O3 become less negatively charged,
whereas the directly connected C2 atom becomes less positively charged (Figure 5.8 C,D).
This charge redistribution effect is induced by Zn pulling electrons from the negatively
charged oxygen atoms. Whether this redistribution, not observable under standard force
field conditions, is able to induce a change in pucker conformation was further tested by
metadynamics simulations of single Man residues with altered partial charges.

The computed CHELPG charges could be directly employed, as they represent nothing
else than the so-called RESP charges that are used in the AMBER force field family. Two
systems, each having a single Man residue solvated in a TIP3P water box, were built with
partial charges corresponding to the free and bound system. The more important θ angle,
differentiating between chair and boat conformers, was explicitly biased via metadynamics
simulations of 100 ns, in which the bias was positioned every 500 steps, with parameters
γ = 6, σ = 0.1, and wG = 2. The resulting free energy profiles along θ showed no difference
between the two systems, having the same global minimum located at 4C1 (Figure 5.9).
Therefore, just changing the partial charges to account for the effect of the Zn2+ ion in the
GMII binding site is not sufficient to induce a change in pucker conformation. As already
suggested by the crystal structure of PDB entry 3CZN, it is most probably the joint action
of D204 and the Zn ion that upon interaction with the glycan, alter the potential energy
functions around the torsion angles. Therefore, it is possible for M5G0 to position itself
in the catalytic site, adopting a different conformer distribution compared to its freely
solvated counterpart.286
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Figure 5.8: Recalculating charges of the terminal Man in the catalytic site via
Hartree-Fock. A Atomistic structure of a single bound Man residue in the structurally
reduced catalytic site of ManII, only including Zn2+ and fragments of the ligand amino
acids D92, D204, H90 and H471. B Atomistic structure of a single Man residue. C
Detailed list of obtained CHELPG charges from Hartree-Fock calculations for free and
bound M5G0, with a comparison to the available charges in the GLYCAM06j force field.
D Charge differences calculated for each atom of the single Man residue in the bound vs.
free state. Each atom is colored according to its associated charge difference, with red
being negative and blue being positive.

Figure 5.9: Free energy profiles along pucker coordinate
θ for different partial charge sets. Pucker conformations of
glycan M5G0 were enhanced sampled, applying different partial
charges, calculate from QM simulations (Figure 5.8).

In summary, both the
conformer and the charge
hypotheses need to be
discarded, not being the
reason for a ring dis-
tortion in the catalytic
site of GMII at posi-
tion -1. However, the
native glycan conformer
of M5G0 in its reactant
state could be revealed

through extensive sampling via REST-RECT simulations, deviating from the suggested
crystal structure due to the D204A mutation. This significant difference underlines the
importance of careful evaluation of unphysiological crystal structures and the necessity of
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their refinement prior to the derivation of results. We have been able to successfully apply
the REST-RECT methodology to a complex glycan-protein system, ensuring converged
sampling of the glycan conformational phase space, independent of the difficulties con-
nected with the protein-glycan interactions. So far, there was no method available for the
explicit sampling of conjugated glycans and the prediction of converged conformer distri-
butions. Only Yang et al. 2017294 studied a glycosylated HIV envelope protein by means
of enhanced sampling simulations, although no absolute convergence could be achieved
due to insufficient sampling parameters. Consequently, our REST-RECT approach pro-
vides solid ground for studying the crucial impact of topological glycan parameters in
recognition processes with glycan receptors.13

The comparison of the GLYCAM06j and CHARMM36 force field in this glycan-protein
context again underlines the importance of parameter improvement, especially for the
description of pucker conformers in the CHARMM36 force field. QM calculations of single
β-mannose residues suggest a more flat puckering free energy landscape, in line with the
GLYCAM06j force field. The known issue of the GLYCAM06j force field of overestimating
carbohydrate-environment interactions can rather be neglected in this context, as it is
exactly a stable protein-glycan complex we are interested in.162 To check whether the
overestimated electrostatic attractions between hydroxyl groups may have an impact on
the obtained conformer distributions for M5G0 bound to GMII, the usage of better water
models such as TIP5P, and a corresponding rescaling of Lennard-Jones parameters would
be required.162,295
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6 | Conclusion

Originally, the impact of glycan diversity was discovered via the identification of the
ABO blood types by Prof. Watkins and Prof. Morgan in 1952, revealing the antigen’s
epitopes to be different carbohydrates.296,297 Today, it is actually estimated that there
are around 3000 different motives in complex carbohydrates that can be recognized by
glycan-binding proteins, resulting from their enormous coding capability described in the
first chapter of this thesis (Figure 1.2).297 This impressive variety is also found in N-glycan
structures and hampers a rational understanding of clear structure-function relationships
at the basis of a still mysterious sugar code298,299. Detailed studies are required, for
instance, in the case of the most abundant human serum antibody immunoglobulin G
(IgG), where the interaction with its receptor FcγRIII was shown to be modulated by
the type of glycosylation on both proteins, triggering a cellular toxicity response.300 The
compositional heterogeneity of N-glycans that leads to different configurations is further
complemented by their structural flexibility, giving rise to different conformations. The
question remains open, to what extent these accessible conformers, known as the third
dimension of the sugar code, impact the N-glycans’ functions.

6.1 N-glycans’ 3D structure-function relationships

Expectations

Although N-glycans are ubiquitous in eukaryotic cells and associated to various biological
effects, their function is mostly dependent on the monosaccharide composition and pu-
tatively associated three-dimensional structure. We claimed that this three-dimensional
structure-to-function relationship requires a correct and comprehensive description of the
whole ensemble of glycan conformers, motivating a fundamental exploration of the confor-
mational phase space of representative N-glycans in various cellular contexts. Our idea was
addressed mainly by atomistic simulations, because they allow for result interpretation at
the molecular level and the systems to be investigated are only limited by the availability
of force field parameters and structural information. Applying our developed sampling
and analysis workflow of chapter 2 and 3 to differently situated N-glycans throughout the
dissertation, we expected the elucidation of possible three-dimensional structure-function
relationships.

Findings

Comparison of the phase space explored by differently shaped free N-glycans in solution
revealed rather subtle differences in conformer distribution for their common monosaccha-
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ride residues, except for M9 in comparison to M5. Our findings are in agreement with
another computational study that did not identify an effect of core fucosylation and sialy-
lation on the conformational dynamics of complex N-glycans.222 They, however, revealed
an effect of branch galactosylation on the dynamics of the α1-6 branch, shifting the pop-
ulation towards a ‘folded-over’ conformation.222 Consequently, conformational effects due
to the elongation of glycan structures by monosaccharides are possible and can result in
significant biological effect as in the case of IgG Fc glycosylation, where galactosylation of
complex N-glycans is associated to aging and immune activation.222,301,302

Another three-dimensional structure-function effect could be identified for the protein-
bound glycan N206 of TconTS1, which explored a different phase space region as a conse-
quence of protein-glycan interactions. This was estimated to have a significant impact on
the enzyme’s function. Here, the third dimension of the sugar code took effect, allowing
for stable protein-glycan interactions that were not observable when glycan M5 at N206
was restrained to its most populated solution conformer, showing no hydrogen bonding
to both D150 and Y151 (Figure 4.11). This clearly underlines the importance of glycan
flexibility and corresponding shifted conformer distributions. As glycosylation patterns
are known to be dynamical, the occupation of site N206 by other high-mannose type
N-glycans like M7 to M9 could also be expected, although the impact of this change in
glycoform can not be foreseen and would require further MD simulations. The recent ex-
ample of the SARS-CoV-2 Spike protein’s glycosylation sites affecting the stability of the
RBD open conformation, regulating its accessibility to ACE2, underlines the importance
to take the dynamics of glycosylation site heterogeneity into account.303 A dependence
has been revealed between high-mannose type N-glycan size at three important glycosyla-
tion sites (N165, N234, N343) and the N-glycan’s ability to interact with protein domains.
A reduction in glycan size resulted in a shift of adopted protein conformers within the
RBD. Consequently, there exists an intrinsic dependence between glycan configuration
with their associated conformations and site-specific functions. The complete investiga-
tion of the sequence to three-dimensional structure-to-function relationships of N-glycans
for TS enzymes would additionally require the investigation of TS from other trypanoso-
mal species, harboring the same conserved N-glycosylation site but without any known
effects. This could reveal a putatively conserved glycan-mediated enzymatic regulation
mechanism, adding a new entry to the sugar code dictionary for a larger portion of Try-
panosoma species.

The conformation of N-glycans is particularly important when serving as substrates
or interaction partners, because recognition by CAZymes or other glycan-binding proteins
happens at specific binding interfaces with a certain predefined morphology to which the
ligand molecule has to adapt. An effect that goes beyond this expectation was demon-
strated with the application of the REST-RECT methodology to GMII in complex with
its native substrate M5G0. We were able to show that upon binding, not only a subset
of the glycan’s conformational phase space could be adopted compared to free M5G0,
but protein-carbohydrate interactions even led to the exploration of new regions of the
phase space. The fact that only certain conformers can be adopted within the binding site
underlines that GMII only allows for the binding of specific conformer keys from a bunch
of keys corresponding to all possible conformations. This is in line with the key-and-lock
mechanism that was extended for carbohydrates by Barry Hardy in 199771, hypothesiz-
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ing that one glycan configuration harbors multiple keys due to its conformational phase
space. However, our results also suggest a kind of induced-fit model that goes beyond the
original formulation by Daniel Koshland in 1958304, in which the protein undergoes confor-
mational changes to adapt to the ligand structure. Namely, we observe a complementary
induced-fit, in which the glycan ligand is forced out of its equilibrium conformational phase
space due to protein-carbohydrate interactions. Another protein-induced fit was found for
the pucker conformation of the terminal Man residue, where our results did not detect a
self-induction mechanism related to specific glycan conformers favoring the adaptation of
specific pucker coordinates, refuting the assumption of mutual dependence.

Interpretation

The most prominent issues of MD simulations (chapter 2), namely: (i) accuracy of force
fields, (ii) limitation of simulation time and (iii) dimensionality of output data, could
be mostly tackled for the field of computational structural glycobiology. This provides
a suitable framework for the qualitative generation of structural glycan data as well as
their quantitative analysis. Our proposed REST-RECT algorithm overcame the shortage
of simulation time as it did not only allowed for the enhanced sampling of free N-glycans
in solution, but also ensured complete phase-space exploration of protein-bound glycans
despite the constraints dictated by amino acid-glycan interactions. In comparison to other
successful glycan sampling algorithms such as the replica exchange scheme of Yang and
coworkers94, our algorithm presents an easy-to-use approach without the necessity of pre-
calculations or specific CV selection. The great success of converging the protein-bound
glycan simulation of GMII in complex with M5G0 is especially pioneering, as the few
attempts of enhanced sampling protein-bound glycans were either insufficient in terms
of convergence or simply did not validate this critical methodological feature.294,300,305

Further, it needs to be highlighted that we were the first to include the sampling and
convergence of puckering coordinates, being a fundamental feature of especially terminal
monosaccharides when serving as substrates for CAZymes. It can be concluded that
our suggested workflow was able to reveal important features of the third dimension of
the sugar code for all three discussed N-glycan systems, based on the exploration and
comparison of conformational phase spaces.

The development of the here-introduced conformer string based on the torsion angles
setting of N-glycans especially facilitated the task of unraveling the sugar code for various
N-glycan systems. It provides a solid and IUPAC-nomenclature-compliant way of labeling
different N-glycan conformers. The developed python script GlyCONFORMER for an
automated assignment of conformer strings to any sampled N-glycan structure will hope-
fully be helpful in the future to other structural glycobiologists and paves the way for a
uniform glycan conformer labeling. In conjunction with the complementing clustering and
dimensionality reduction analysis, our approach outperforms the previously introduced
spherical coordinates as well as simple ϕ/ψ plots, and can provide a new standardized
way for reporting glycan conformers in the future.96 It is especially able to tackle the
dimensionality of glycans imposed by the many torsion angles, reducing the barrier to
compare structures and draw conclusions from their phase-space distribution. The devel-
oped visualization workflow already proved to be useful not only in our own applications,
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but also in the context of e.g. GlycoSHIELD, validating the reference data sets for grafting
N-glycans on protein structures. The effort to validate and improve force field parame-
ters of glycans could be facilitate in the future by our conformer string and visualization
technique, as already briefly performed in chapter 3.

6.2 Shortcomings

It remains to say that our work did not intend to improve any force field parametrization,
but rather verified them by comparison to experimental studies and particularly highlight-
ing their differences. Despite the usage of the simple water model TIP3P, we could under-
line the difference between puckering coordinates exploration between the CHARMM36
and GLYCAM06j, next to other subtle differences for glycosidic linkages. We have to con-
clude that further evaluation would also require the usage of more accurate water models
like TIP5P, which was not performed within this dissertation due to the compromise be-
tween accuracy and computational efficiency. Further improvement of additive force field
terms for e.g. glycosidic linkages, which are mostly dependent on steric, electrostatic and
torsional energy terms, might reach a performance plateau at some point, resulting from
the lack of polarizability. New approaches like the CHARMM Drude polarizable force
field utilize virtual ‘Drude’ particles that are charged and connected to every polarizable
parent atom via an harmonic spring, mimicking the deformation of the electron cloud of
the parent atom due to the surrounding electrostatic environment.145,306 Although pa-
rameters for most N-glycan monosaccharides and linkages are still missing, a recent work
derived polarizable force field parameters for glucuronic acid and N-acetyl galactosamine
in order to be able to model the unsulfated GAG chondroitin.307 Next to torsion angle
values that were comparable to NMR experiments, it was very interesting to see that the
Drude model, in comparison to the standard one, is able to sample a larger Cremer–Pople
puckering coordinate space, eliminating the restricted sampling of the CHARMM36 force
field reported by us in chapter 3 and 5. The application of polarizable force fields to the
GMII simulation system in chapter 5 would be especially helpful, in order to at least par-
tially include the effect of the Zn2+ ion on the electrostatic potential of the bound glycan
ligand. With the usage of fixed-charged force fields, an elaborate reparameterization of at
least electrostatic and torsion angle parameters for the glycan atoms, but probably also
of other surrounding amino acids, would be necessary.

Furthermore, the field of machine learning also entered the stage in order to improve
parameters for existing classical force fields models.162 Machine learning-based force fields
may provide an even higher accuracy and extend the possibility of MD simulations by
treating even large molecular systems on a QM level, including the natural description
of chemical reactions.308 This is possible due to the estimation of potential energies, de-
pending on the position and charge of atoms in the system, from e.g. ab initio data as
training sets, as it is done in the case of the ANI-1 potential or TORCHMD-NET with a
deep neural network.309,310
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6.3 Perspectives

The chicken-and-egg problem in glycobiology

When elaborating about the aspects of the sugar code, it will not have escaped the attentive
reader that, especially for N-glycans, a high degree of conservation of certain structural
features exists. Especially the first five monosaccharides of the non-reducing end (two
GlcNAc and three Man) and their linkage types are identical for all three N-glycan types,
high-mannose, complex and hybride, forming the so called core of every N-glycan. The
conservation goes back to the internal glycosylation machinery, where Glc3Man9GlcNAc2

is the only precursor for all N-glycans that are able to be synthesized. Independently of the
clade, being it Obazoa (fungi, insects, animal, molluscs), Excavates (single-cell flagellate
organisms, parasites) or Archaeplastida (plants, algae), all eukaryotes exhibit the same
N-glycan core structure.311

Figure 6.1: What was first? Analogy between the classical chicken-and-egg problem
and the question whether glycosyltransferases (GTs) shaped the N-glycan structures or
if only energetically favorable N-glycan structures shaped the catalytic sites of glycosyl-
transferases.

Therefore, the question arises what were the major determinants for the evolution of
this conserved motive: Manα1→6 [Manα1→3] Manβ1→4 GlcNAcβ1→4 GlcNAcβ1→N . One
could hypothesize that the core structure evolved with the availability of GTs that are
known to only catalyze one specific transfer reaction, only forming one linkage type and
therefore being a contingent result of the available enzyme chemistry. In contrast, the con-
served structural features could simultaneously also be the most energetically favorable
ones and GTs might have evolved to construct exactly these features. This fundamental
research question is comparable to the classical chicken-and-egg problem paradox (Figure
6.1).
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Figure 6.2: Variations of the conserved N-glycan core.
On top, the smallest biologically relevant N-glycan is shown,
where the conserved core junction is highlighted in gray. Be-
low, schematic representation of N-glycan core junctions with
varying connectivity between the invariable four monosaccha-
rides. Configurations differ in the carbon that is forming the
glycosidic linkage, where all chemically possible structures have
been generated.

The outlined issue ad-
dresses the mystery of
the sugar code from an-
other perspective. For
instance, the five-membered
monosaccharide core could
be studied to verify if
its structural conserva-
tion is dictated by ther-
modynamic stability. The
next steps in decipher-
ing the conservation of
the N-glycan sugar code
would involve the com-
putation of the free en-
ergy difference between
each core structure that
is varying in connectivity

(Figure 6.2), ranking relative stability of the native configuration against the artificial ones.

The secrets of fucoidan

The topic of thermodynamic stability was also broad up by our collaborator Jan-Hendrik
Hehemann from the Max Planck Institute for Marine Microbiology, curious about the
three-dimensional structure of the complex extracellular matrix polysaccharide fucoidan,
which is secreted by brown algae into the ocean. Depending on the specific species,
it exhibits slightly different composition and linkage patterns, having sulfated fucose as
its main monosaccharide type in common.312 Fucoidan can be described as a bioactive
macromolecule, associated with diverse pharmacological and pharmaceutical applications
such as anti-tumor, anti-coagulant and anti-viral, although the exact mechanisms are
undetermined.313 Its effect was often dependent on the level of sulfation and specific
sulfate pattern, posing the question how polysaccharide conformation is changing upon
alterations of these properties. For instance, an experimentally predicted molecular model
of fucoidan from Laminaria hyperborea consists of an α1-3 Fuc backbone with frequent
small branches of type α1-2 and α1-4 (Figure 6.3 A), where the degree of sulfation was
linked to coagulation.314 Simulation of a short fragment of this polysaccharide (Figure 6.3
B) at different levels of sulfation could give insights into potential conformational effects
that are linked to specific functions.

Enhanced sampling simulations via REST-RECT of the mentioned fucoidan molecule,
sulfated and unsulfated, revealed three main conformers for each variant (Figure 6.3 C/D),
where the conformer strings are completely different for the two molecules. Intramolecu-
lar conformer comparison shows that only one torsion angle is different among the three
main conformers, respectively, mainly altering the orientation of the branches. Counter-
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intuitively, the unsulfated fucoidan exhibits a much higher conformer stability for its first
two conformers (90 %) compared to sulfated fucoidan (70 %), indicating a reduced flexibil-
ity of the unsulfated fucoidan. This finding was surprising as we expected the negatively
charged sulfate groups to repel each other, making carbohydrate-carbohydrate interactions
unfavorable, and therefore allowing for less flexibility and less accessible conformers.

Figure 6.3: Structural ensemble of fucoidan variants. A Putative full-scale struc-
tural model of sulfated fucoidan from Laminaria hyperborea. Adapted from Kopplin et
al.314 B Two-dimensional sequence model of a ten-residue fragment of fucoidan with two
representative branches. C Conformer distribution for the sulfated fucoidan molecule in
B, enhanced sampled via REST-RECT with representative atomistic structures of each
conformer. D Conformer distribution for the unsulfated fucoidan molecule in B, enhanced
sampled via REST-RECT with representative atomistic structures of each conformer. The
reducing end of the fucoidan fragment is indicated by a blue circle/ball and the opposing
end of the α1-3 Fuc backbone by a green circle/ball to enhance visibility.
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Comparing the accessible phase-space region of both fucoidan variants revealed almost
no overlaps, as already indicated by the dissimilar conformer strings (Figure 6.4). The
rigidity of the unsulfated fucoidan is further underlined by only two accessible free energy
minima versus four for sulfated fucoidan (Figure 6.4) We can conclude that a varying
sulfation level induces a change in three-dimensional structure of fucoidan, at least for
the all or nothing cases we have studied here. This result was only possible due to the
application of the REST-RECT approach and our invented conformer string. Further
implications about possible functions of this conformer rearrangement require the future
simulation of larger fucoidan polysaccharides, as depicted in Figure 6.3 A. As already
demonstrated, we would like to note that our developed framework is not limited to
the investigation of N-glycans, but can be extended to glycan classes with other linkage
types, such as O-glycans, GPI-anchors, GAGs, glycosphingolipids or, as in this application,
polysaccharides.

Figure 6.4: Comparison of sulfated and unsulfated fucoidan conformers. A Joint
PCA of the complete distribution of sulfated and unsulfated fucoidan conformers, where
each point represents one sampled frame. B Joint PCA, visualizing the conformational
free energy landscape of sulfated and unsulated fucoidan, separately. The reducing end is
indicated by a blue circle/ball and the opposing end of the α1-3 Fuc backbone by a green
circle/ball to enhance visibility.

6.4 Closing words

Glycobiologist Robert Woods, developer of the GLYCAM force field parameters, stated
in his review about glycan structures from 2018 that:

"Theoretical improvements in carbohydrate modeling have led to a much greater
depth of understanding [...], but they have not profoundly altered many of the
conclusions derived from extremely approximate early models, at least regard-
ing their conformational preferences."83

Although I partly agree with this statement, it must be added that especially glycan-
protein interactions hinder the observation of relevant, bio-active glycan conformers under
standard MD conditions, thus justifying the large effort that was put in this dissertation
to improve carbohydrate sampling techniques for glycoproteins. Further, I can not help
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suspecting that despite the here-introduced elucidation of the third dimension of the sugar
code, its structural origin leading to a high flexibility has not only protein-specific effects,
but the ‘third dimension’ concept also has to be considered at different levels of com-
plexity. On the one hand, there are cases where site-specific and type-specific N-glycans
are necessary in order to confer function to the protein as we have seen for TconTS1 in
this dissertation, but also for examples from the literature like IgG and the SARS-CoV-2
Spike protein.300,303 On the other hand, glycan shields that hide the immunogenic protein
surface from the humoral immune system are due to the N-glycan abundance rather than
their composition, three-dimensional structure, or specific protein-carbohydrate interac-
tions. For instance, coronaviruses that have been circulating among humans for longer
time than SARS-CoV-2 have a denser glycan shield with nearly twice the number of glycan
sites.315,316

Despite our knowledge about certain sequence to three-dimensional structure-to-function
relationships of N-glycans that gradually extend the glycan dictionary,I believe it is still
not generally possible to predict the far-reaching consequences of site-specific protein gly-
cosylation a priori, if it ever will be. It is therefore not superfluous to repeat the immense
importance of properly including N-glycan structures in MD simulations, be it indirectly
through the usage of tools like GlycoSHIELD or directly by means of enhanced sampling
of pre-attached glycan structures.
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A | Molecular dynamics simulation

A.1 Choice of the time step

As mentioned in chapter 2, solving the equations of motion via numerical integration
requires the introduction of a time step δt. Larger time steps maximize the achievable
simulation time. However, forces are kept fixed during each time step, leading to severe
artifacts if the time step is chosen too large, hence the dynamics become nonphysical. An
important parameter to consider when determining an appropriate time step are the fastest
motions in the system in order to ensure the conservation of energy. For biomolecular
systems, these are the vibrational frequencies of bonds, being around 3500 cm−1 for the
fastest bond (O-H). As Nyquist’s theorem317 states that the sampling rate should be at
least twice the frequency of the highest frequency in the wave, we would require a time
step of around 1 fs to consider the fastest vibrating bond. The reciprocal term of the
frequency w, the oscillating period, is:

1
w

≈ 3 · 10−15 s ≈ 3 fs

with

w = 3 · (3 · 1010) cm
s · 3500 1

cm .

(A.1.1)

In order to increase this time step, constrained dynamics can be employed. Here, bond
vibrations (mostly O-H bonds) are replaced by holonomic constraints to eliminate fast
motions in the evaluation of the time step. Several different algorithms have been proposed
for this purpose, with SHAKE318 and LINCS210 being the most popular ones in MD
simulations.

A.2 Periodic boundary conditions

In order to start a simulation by integrating the equations of motion, not only the desired
ensemble needs to be selected, but also special care has to be taken about the simulation
box itself. The box size and shape is determined by three basis vectors b1,b2,b3. Differ-
ent shapes are available, although we only employed cubic boxes here, which is also the
most simple shape to use. Considering a box filled with 100’000 particles, a considerable
fraction of them is interacting with the edges. If these would be treated as physical walls,
the interaction of particles at the edges would be very different from particles in the bulk
and hence altering the thermophysical properties of the system in a nonphysical way.148

In order to mimic bulk conditions in all parts of the simulation box, periodic boundary
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conditions (PBC) are applied. They surround the central simulation box with an infi-
nite number of identical copies, which implies that when a diffusing particle leaves the
box on one side, it immediately enters from the opposite side, conserving the number of
particles.148

A.3 Treating long range interactions

Intramolecular interactions like bonds, angles and dihedrals just consider the direct neigh-
bors of the investigated atoms and therefore bonded terms do not require a special treat-
ment. However, non-bonded terms have interaction ranges several orders larger and would
require the consideration of intermolecular interactions between atoms beyond the walls
of their simulation box. Under PBC conditions, this is especially problematic as the
atom would self-interact through its periodic images, leading to wrong energies. Since
the largest contribution to the potential energy and forces on any atom results from its
nearest neighbors, the first prevention measure is the application of the Minimum Image
Convention (MIC), neglecting interactions with distant periodic images.148 It states that
each atom i only feels the nearest periodic image of any other atom, therefore considering
only interactions within a spherical radius rcut,MIC = L/2 around atom i, with L being
the box length. Furthermore, cut-offs are applied as explained in the following sections.

A.3.1 Verlet cut-off - short range electrostatics

The potential energy function assumes a pairwise additivity of interaction energies and
therefore requires the consideration of 1

2N(N − 1) pairs to determine the potential energy
for a total number of N atoms for long range intermolecular interactions.148 As this cal-
culation is the most resource-consuming part of each MD simulation, it is questionable
whether the pair potential needs to be computed every step, even for atoms that lie on
opposite sides of the simulation cell. Therefore, a spherical cut-off rcut can be introduced,
limiting the number of interaction pairs by:

rij ≤ rcut (A.3.1)

with rij being the distance between atoms i and j.148 In order to prevent the repetitive
calculation of rij every step, Verlet143 proposed a neighbor list which stores nearest neigh-
bors within rcut + δr of each atom i, and is only updated every 10 to 100 steps. The
reservoir δr should guarantee that an atom j diffusing into rcut of atom i is recognized
although the neighbor list was not updated. Instead of the simulation time scaling by
∝ N2, the application of the Verlet list method, especially to the LJ term, reduces it to
∝ N .

A.3.2 Ewald summation - long range electrostatics

The Verlet cut-off scheme can not be applied to speed up the calculation of the electrostatic
interactions, as these decay with r−1. Therefore, their interaction radius exceeds half
of the box length L/2, which is not compatible with the Minimum Image convention.
Because of the long range nature of the electrostatic interactions, it would not even be
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sufficient to consider only the nearest neighbor atoms of the central simulation box, but
also the infinite number of periodic images to guarantee energy conservation. The total
electrostatic interaction energy would be given by:

Eelectrostatic = 1
2

′∑︂
n

N∑︂
i=1

N∑︂
j=1

qiqj

4πε(rij + nL) , (A.3.2)

wherein rij is the real distance between charges and not the minimum-image, and n =

⎛⎜⎜⎝
nx

ny

nz

⎞⎟⎟⎠
the box index vector.148 Self interactions between qi and qj for i = j in the central box
(n = 0) are omitted, indicated by the prime symbol. As the sum is only conditionally
converging, the Ewald summation319 or Smooth Particle Mesh Ewald method (SPME)213

can be employed to obtain a rapid and absolute converging sum. The Ewald summation
splits the electrostatic term into series, where they can be differentiated into short-range
and long-range interactions as well as two correction terms for self interactions Eself and
intramolecular interactions within the same molecule Ecorr:

Eelectrostatic = Eshort−range + Elong−range − Eself − Ecorr. (A.3.3)

The short-range interactions are characterized by each charge qi being surrounded by a
symmetric neutralizing diffusive charge cloud (Gaussian charge distribution), having the
same magnitude as qi but of opposite sign.148 The resulting electrostatic potential of qi and
its charge cloud are given by qi

r erfc(
√
αr), wherein α defines the width of the distribution,

r the intercharge distance and erfc being the complementary error function. The resulting
contribution to Eelectrostatic from all screened charges in the central box is given by148:

Eshort−range = 1
2

N∑︂
i=1

N∑︂
j=1

qiqj

rij
erfc(√αrij), (A.3.4)

when α is chosen large enough as interactions are limited to short ranges. The induced
screening charge requires a second compensating charge distribution of opposite sign to
counteract the first, whereas here the interactions with the periodic images have to be
taken into account. The long-range characteristic of this second charge distribution makes
it necessary to perform it in reciprocal space applying Fourier transformation, in order to
obtain a rapid convergence.148 The long-range part of Eelectrostatic, characterizing interac-
tions of the second compensating charge distribution, is given by:

Elong−range = 1
2
∑︂
k ̸=0

N∑︂
i=1

N∑︂
j=1

4π
V k2 qiqj exp[−ik · (ri − rj)] exp(−k2/4α), (A.3.5)

with k being the reciprocal vector = 2πn/L2. The more efficient SPME method was
developed to improve the efficiency of the computation of this reciprocal part of the Ewald
term.148 First, the charges are assigned to grid points by B-spline functions, interpolating
the reciprocal space on a regular grid. A Fast Fourier Transform algorithm is then applied
to obtain the reciprocal energy term by a single sum over the grid points.
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A.4 Thermostats and Barostats

The temperature T of a system can be directly related to the velocity vi of its particles
by

1
2

N∑︂
i=1

mi · v2
i = 3

2NkBT, (A.4.1)

where both sides of the equation are equal to the kinetic energy Ekin. The instantaneous
temperature T (t) at time point t is given by

T (t) =
∑︁N

i=1
mi
2 v2

i (t)
NfkB

, (A.4.2)

wherein Nf = 3
2N describes the degrees of freedom of the system.148 The most simplistic

way of achieving T (t) = T0, where T0 is the target temperature of the simulation box, is by
adjusting the velocity with a scaling factor c(t), where the resulting temperature change
∆T can be estimated by:

∆T =
∑︁N

i=1
mi
2 (c(t) · vi(t))2

NfkB
−
∑︁N

i=1
mi
2 v2

i (t)
NfkB

(A.4.3)

∆T = (c(t)2 − 1) · T (t) (A.4.4)

and yields a scaling factor of

c(t) =
√︄

T0
T (t) . (A.4.5)

A similar approach that is used in MD simulations is the weak-coupling Berendsen ther-
mostat320, where the coupling is performed every step with a difference in temperatures
T0 and T (t) that is proportional to the rate of change of temperature:

dT (t)
dt

= 1
τ

(T0 − T (t)), (A.4.6)

introducing the coupling parameter τ which adjusts the strength of the coupling. The
scaling factor then becomes

c(t) =

⌜⃓⃓⎷1 + δt

τ

{︄
T0

T (t− 1
2δt)

− 1
}︄

(A.4.7)

considering the leap-frog algorithm for integration.169 The drawback of this method is
that it does not generate a canonical distribution, as the fluctuations of the kinetic energy
are suppressed by the scaling factor. However, the velocity-rescaling thermostat211 is
a modified version of the Berendsen thermostat which ensures a correct kinetic energy
distribution, generating a canonical ensemble, and was therefore used in all MD simulations
in this dissertation. It adds an additional stochastic term enabling a correct kinetic energy
distribution by modifying the kinetic energy directly:

dEkin = δt

τ
(Ekin,0 − Ekin) + 2

√︄
EkinEkin,0

Nf

dW√
τ
, (A.4.8)
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wherein dW is a Wiener noise and Ekin,0 the target value of the kinetic energy.169

Similar to thermostats, there are also barostats which couple the system to an external
pressure in order to rescale e.g. box vectors or coordinates and keep the pressure at a target
value P0. The Berendsen barostat works in the same way as its thermostat, modifying
the equations of motion to relax the instantaneous pressure P according to the rate of
pressure change (compare equation A.4.6):

dP(t)
dt

= 1
τp

(P0 − P(t)), (A.4.9)

wherein τp is the coupling strength to the external pressure. The pressure scaling factor

µ =
(︄

1 + δt

τp
βp {P0 − P(t)}

)︄ 1
3

, (A.4.10)

with βp being the isothermal compressibility, scales the coordinates and the box edges,
leading to a change in volume and hence pressure.169 Also the Berendsen barostat does
not generate a canonical ensemble. However, due to the weak coupling, a smooth change
of the system is ensured. A more sophisticated approach is the Parrinello-Rahman baro-
stat321,322, which is an extended system coupling method, extending the equations of
motion by an additional degree of freedom, namely the desired quantity to control:

d2ri

dt2
= Fi

mi
− Mdri

dt
, (A.4.11)

where the extra term is comparable to a frictional term and M depends on the box
vectors b1,b2,b3 and W−1.169 The mass parameter matrix W−1 defines the strength of
the coupling and relies on the same parameters as the Berendsen barostat, namely βp, τp

and additionally on the largest box matrix element L:

W−1
ij = 4π2βp,ij

3τ2
pL

. (A.4.12)

It allows the box volume as well as its shape to fluctuate, while preserving the canonical
ensemble even for small simulation boxes.
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B | Secondary structure determi-
nation with circular dichroism

Circular dichroism is a spectroscopy technique that is able to obtain conformational in-
formation of protein and nucleic acid structures, based on the optical activity of chiral
molecules.

Figure B.1: Principles of circular dichroism. A Linearly and circularly polarized
light along their direction of propagation. B Schematic setup of a circular dichroism
spectrometer, generating circularly polarized light. Left-handed and right-handed circu-
larly polarized light is passed through a chiral sample that absorbs the two components
differently. The differential absorption is recorded by a detector. C Superposition of
left-handed and right-handed circularly polarized light, that has passed through a sample.
Left: Linearly polarized light is produced, as the magnitude of the electric field vectors
EL and ER (for left and right) is equal. When EL and ER are unequal due to differential
absorption, elliptically polarized light is generated.

Chirality, lacking microscopic mirror symmetry, arises due to the internal structure
of a molecule or its linkage to a chiral center.323 Its optical activity is characterized by
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interaction with linearly polarized light, as it rotates the orientation of the plane of po-
larization about the optical axis. This effect can be measured with a polarimeter like a
circular dichroism spectrometer, equipped with a light source, monochromator, linear po-
larizer and photoelastic modulator (Figure B.1 B). Unpolarized light from a light source is
passed through a monochromator in order to spatially separate the colors of light, filtering
for the wavelengths of interest. A subsequent linear polarizer filters the beam of light, gen-
erating linearly, well-defined polarized light. This is characterized by its electric field vector
oscillating only in one plane along the propagating direction (Figure B.1 A). Circularly
polarized light, with the electric field vector rotating with a constant magnitude about its
propagation direction (Figure B.1 A), is further generated by the modulator, where an al-
ternating electrical field is applied.323 There exists left-handed and right-handed circularly
polarized light, where passage through an optically active sample can result in no absorp-
tion, the same amount of absorption, or differential absorption of one of the components
(AL and AR). In the two former cases, radiation in the originally polarized plane (linear
polarization) would be generated, as the electric field vectors EL and ER have the same
magnitude and opposite rotations (Figure B.1 C). The latter case, where one component
is more strongly absorbed than the other, EL ̸= ER, results in elliptically polarized light,
giving rise to the effect of circular dichroism (Figure B.1 C). The difference in absorption
results from two different refractive indices for left and right circularly polarized light in
chiral molecules, leading to a changed velocity and wavelength for both components as
they pass through the sample. Subsequently, a wavelength-dependent difference in absorp-
tion can be observed. A circular dichroism spectrometer is detecting the two components
separately and assesses their differential absorbance:

∆A = AL −AR, (B.0.1)

in milliabsorbance [mA] units. Another common output unit is ellipticity θ [mdeg], the
angle whose tangent is the ratio of the minor to the major axis of the ellipse (Figure B.1
C):

tan θ = ER − EL
ER + EL

(B.0.2)

It is related to absorbance as:
θ = 32.98 · ∆A. (B.0.3)

In order to correct for the concentration c [g/L] of the sample and pathlength l [cm] of the
cuvette used for measuring, the molar absorbance per residue

∆ϵ = ϵL − ϵR = ∆A
c · l

= θ

c · l · 32.98 [cm−1M−1] (B.0.4)

can be calculated. A more commonly used output unit is mean residue ellipticity ΘMRE

(per residue) in the historical unit [deg cm2dmol−1]:

ΘMRE = ∆ϵ · 3298 = θ ·MRW · 0.1
c · l

, (B.0.5)

with MRW being the mean residue weight, derived from dividing the average molecular
weight M [g/mol] by the number of amino acids N−1. The formula can also be rearranged
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to:
ΘMRE = θ · 0.1

c · l · (N − 1) , (B.0.6)

with c in [mol/l].324

Figure B.2: Representative CD spectra of pro-
teins only containing one of the three main sec-
ondary structure elements. Redrawn from Wei et
al.325

When the dichroism is mea-
sured as a function of wavelength,
a circular dichroism spectrum can
be generated. The type of infor-
mation one can obtain depends
on the employed wavelength re-
gion, where the absorption bands
of proteins and peptides lay in the
ultraviolet (UV) regime. Spec-
tra recorded in the far UV region
between ∼ 180 − 250 nm, corre-
sponding to peptide bond absorp-
tion, provide information about

the amount of secondary structural elements (Figure B.2). If circularly polarized light
is interacting with the protein sample, the electronic structure gives characteristic signals
for different secondary structure elements due to different electronic excitation energies.
For instance, proteins possessing mostly α-helices produce minima at 208 nm and 222 nm,
whereby a maximum is measured at 193 nm.326 Proteins consisting of antiparallel β-sheets
possess a minimum at 218 nm and a maximum at 195 nm.327 In contrast, random coil
structures like in disordered proteins harbor a low ellipticity above 210 nm and produce a
minimum between 190 -200 nm.324,328 In the near UV region between ∼ 260−320 nm one
is able to obtain information about the tertiary structure as it reflects the environments
of the aromatic amino acid side chains.

Next to single point measurements for the determination of structural features, circular
dichorism can also measure changes along several spectra when recorded under changing
conditions. For instance, the thermodynamics of folding and unfolding can be obtained
for proteins, when spectra are measured as a function of temperature.271,329 During the
unfolding process, secondary structural components will eventually denature and the as-
sociated different absorption between folded states like α-helices and unordered structures
like coil yield in a shift of recorded spectra. At characteristic wavelengths, the free energy
∆G of unfolding, the midpoint of the unfolding transition TM and the associated constant
of folding K can be calculated from spectra measured step wise over increasing tempera-
tures.271 Under the assumption that the unfolding path only includes the transition from
the folded state F to the unfolded state U, K can be derived from their difference in
concentration:

K = [F]
[U] . (B.0.7)
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∆G is depended on K:
∆G = −RT lnK, (B.0.8)

with R being the gas constant and T the absolute temperature in Kelvin. The midpoint
of unfolding (TM) is defined as the fraction of folded protein to be one half (α = 0.5),
with α being calculated for different temperatures along the ramping experiment. It can
be determined directly from recorded ellipticity values:

α = (θT − θU)
(θF − θU) , (B.0.9)

where θT is the ellipticity at any temperature, θU is the ellipticity at the unfolded state and
θF at the folded state.271 Plotting calculated α values, recorded at a specific wavelength,
against increasing temperatures typically results in an inverse sigmoid function, where TM

can be accurately determined via fitting. Finally, K can also be expressed in terms of α:

K = α

(1 − α) . (B.0.10)

Compared to NMR spectroscopy or X-ray crystallography, circular dichroism cannot
resolve residual-specific structures in a three-dimensional fashion, but rather provide global
information that support other complementary techniques. Its advantages are the very
rapid measurements without the necessity of advanced sample preparation like the forma-
tion of crystals for X-ray crystallography. The only limitation is represented by the choice
of buffer that is suitable for dissolution of samples, as chloride ions strongly absorb at
wavelength below 195 nm, generating high noisy signals, and are therefore unsuitable for
measurements.323
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C | Quantifying enzyme activity

C.1 Anion exchange chromatography

High performance anion exchange chromatography (HPAEC) with pulsed amperometric
detection (PAD) is a common ion chromatography method for the separation and deter-
mination of mono- and oligosaccharides. It is a physico-chemical separation process that
is based on the distribution of sample molecules between a liquid mobile phase and a solid
stationary phase. Anion exchange chromatography is based on a chromatography column
(stationary phase) that consists of beads with positive charges on their surfaces (here:
quarternary amines) (Figure C.1 A).330 Not only charged but also various neutral mono-
or oligosaccharides can be separated, because they are weak acids, meaning that under
high pH conditions these molecules become ionized and can be separated in their anionic
form, without the necessity for any derivatization. The mobile phase therefore consists
mostly of a sodium hydroxide (NaOH) solution, creating a basic environment in order to
convert target molecules to oxyanions. As a first step in HPAEC the column is equili-
brated with NaOH, prior to the application of a sample containing different carbohydrate
species. Positively charged compounds and those that do not become ionized due to the
strong basic environment would not interact with the column and directly elute, whereas
anionic species are differently retained by the stationary phase, depending on their specific
affinity (Figure C.1 A). Empirical observations have been made, for instance that an in-
crease of branching in a glycan or increase of number of mannose residues is also increasing
the retention time.331 In order to elute carbohydrates that are charged under neutral pH
conditions (like Neu5Ac) from the positively charged stationary column, stronger eluents
are required than for sugars that are uncharged at physiological/neutral pH. This can
be accomplished by increasing concentrations of sodium acetate (NaOAc) in addition to
the standard mobile phase, as acetate ions compete with negatively charged sugars for
the binding to the quarternary amines, which results in elution of the sugars from the
stationary phase. In the end, different carbohydrate species are eluted at different time
points from the column, due to different retention times as a consequence of the interac-
tion with the chromatography column. The subsequent detection of eluted molecules is
based on the direct detection technique PAD under high pH conditions. The electroactive
carbohydrates are oxidized at the surface of a gold electrode (anode) under a positive
potential, generating an electrical current that is integrated over a set time period. The
generated current is proportional to the concentration of the sugar molecule. The applied
potential needs to be optimized to yield high responses for the analyte of interest but low
responses for interfering molecules. Instead of only applying single-potential amperometry,
the pulsed version is necessary because the interaction of carbohydrates fouls the electrode
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over time. Cleaning steps are necessary in-between, meaning the application of high and
low potentials after a certain time period of measurement with the working potential.

Figure C.1: Principles of HPAEC-PAD. A Schematic representation of an anion ex-
change chromatography, differently retaining the molecules in a sample. The stationary
phase (red) is positively charged, whereas the mobile phase (shaded gray) is strongly al-
kaline, generating oxyanion molecules (blue/black) in the sample. Over the time course
of elution, the composition of the mobile phase can vary, adding amounts of competing,
negatively charged acetate ions to ensure that no compounds are retained on the column.
Whenever carbohydrates elute from the column, the detector is giving a signal that is pro-
portional to the concentration of eluted molecules. B Representative spectrum, showing
the signal response (nC) upon elution of lactose, Neu5Ac and 3’SL from our measurements.

In our case, we focused on the separation of lactose from the single residues Neu5Ac
and 3’SL, where they elute in exactly this order, with lactose being the most neutral car-
bohydrate and 3’SL the largest negatively charged one (Figure C.1 B). However, in order
to guarantee unambiguous peak assignment, it is necessary to analyze suitable standards
along the samples measured. For the determination of produced 3’SL, measurements of
different 3’SL standard concentrations (5, 10, 20, 60, 100, 200, 500, 1000 pmol) were per-
formed. The concentration of lactose was not of interest as it represented the educt in the
enzyme reactions and was added in excess. The area under the curve was determined and
plotted against the known concentrations. Finally, the 3’SL amount in enzyme samples
could be determined.
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C.2 Michaelis-Menten kinetics

Figure C.2: Michaelis-Menten
saturation curve. Kinetics of an
enzyme reaction, showing the de-
pendence of substrate concentration
[S] on the reaction rate v. KM is the
substrate concentration where vmax
is half.

In order to further calculate kinetic parameters
from the enzymatic reactions and corresponding
measured 3’SL amounts, we employed the famous
Michaelis-Menten model.332 It defines the speed at
which a product is formed as the reaction rate and
relates it to the concentration of substrate. Under
the assumption that the enzymatic reaction is irre-
versible and the product is not used as a substrate,

the kinetic reaction reads: E + S
k1−−⇀↽−−
k−1

ES k2−−→ P +
E, with E being the enzyme, S the substrate, ES the
enzyme-substrate complex and P the product. Re-
lating this model to our enzymatic reaction at hand,
the enzyme would be TconTS1, the substrate would
be lactose and 3’SL would represent the product.

Although it is theoretically possible that the produced 3’SL is used as a substrate, making
the process reversible, the amount of fetuin-bound Sia in the reaction exceeds the amount
of produced 3’SL by orders of magnitude (600 µmol Sia » 0.0001 µmol 3’SL) and there-
fore back reactions are assumed to be negligible in the short time scale of the experiment.
The Michaelis-Menten model further assumes a quasi-steady state of the enzyme-substrate
complex that:

d[ES]
dt = k1[S][E] − [ES](k−1 + k2) = 0, (C.2.1)

as well as a constant enzyme concentration:

[E] + [ES] = [E]0 = const. (C.2.2)

The former requirement is complied by only measuring in the initial phase of product
formation, which is characterized by a linear growth of product over time when sufficient
amount of substrate is supplied. The latter condition is inherently fulfilled by the exper-
imental setup of the reaction, always using 50 ng of enzyme per tube. Rearrangement of
equation C.2.1 yields:

0 = k1[S]([E]0 − [ES]) − [ES](k−1 + k2), (C.2.3)

k1[S][E]0 = k1[S][ES] + [ES](k−1 + k2) (C.2.4)

[S][E]0 = [S][ES] + [ES]k−1 + k2
k1

. (C.2.5)

We can define k−1+k2
k1

as KM and further substitute:

[S][E]0 = [ES]([S] + KM), (C.2.6)
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[S][E]0
KM + [S] = [ES], (C.2.7)

The reaction rate describes the formation of product over time, depending on k2:

v = d[P]
dt

= k2[ES]. (C.2.8)

Substituting equation C.2.7 into the reaction rate yields:

v = k2[E]0
[S]

KM + [S] = vmax[S]
KM + [S] , (C.2.9)

defining k2[E]0 as vmax. The reaction rate is therefore dependent on the maximum rate
achieved by the system, vmax, on the residual substrate concentration and on KM. The
constant KM is also referred to as the Michaelis constant and is equal to the [S] at which
vmax is half-maximum (Figure C.2). It is recognized as a measure for the substrate affinity
to the enzmye, where smaller values of KM point to higher affinities because less substrate
is required to achieve a maximum conversion rate. In contrast to vmax, the Michaelis
constant is not altered by purity or concentration of enzyme, but of course dependent
on the identity of enzyme and substrate. k2 is also referred to as the turnover number
kcat, reflecting the maximum number of substrate molecules converted per enzyme and
per second.
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D | Homology modeling of TconTS1

Note: Parts of this chapter are taken from the publication: Jana Rosenau*, Isabell Louise
Grothaus*, Yikun Yang, Nilima Dinesh Kumar, Lucio Colombi Ciacchi, Sørge Kelm,
Mario Waespy, N-glycosylation modulates enzymatic activity of Trypanosoma congolense
trans-sialidase, Journal of Biological Chemistry, 298:102403, 2022.245

Due to missing experimental structures of TS from T. congolense, the atomistic structure
of TconTS1 was derived using the I-TASSER web server for protein structure and function
predictions.198,273. The engineered SNAP-Strep was included for consistency and better
comparison with experimental data. The threading algorithm mainly employed TranSA
(PDB entry: 2agsA, 2A75) as well as TcruTS (PDB entry: 1ms9) as templates. Validation
of the homology modeled TconTS1 was performed by an amino acid sequence alignment
of recombinant TconTS1 with TranSA (PDB entry 2ags) and TcruTS (PDB entry: 1ms9)
revealing that 10 out of 14 amino acids predicted to be important for enzymatic activ-
ities are conserved among all compared models (Figure D.1 A). Furthermore, 2 of the
remaining 4 sites are conserved between TconTS1 and TcruTS (Y211, P379) and only the
remaining 2 are not conserved in TconTS1 (A325, Y408). It needs to be noted that espe-
cially Y408, part of the lactose holder pair in the binding site, is replaced by tryptophan
in TranSA and TcruTS and therefore both amino acids resemble each other due to their
hydrophobic character. Coloring of the atomistic structure of TconTS1 by the amino acid
sequence alignment from Figure D.1 A gives the impression that most conserved residues
are located in ß-sheet or α-helix regions (Figure D.1 B). Amino acids of loop regions seem
to be less conserved, probably also being less important for the overall structural folding
and function of the enzyme. Structural alignment of TconTS1 with TranSA and TcruTS
reveals a high similarity of all models with respect to the secondary and tertiary structure
(Figure D.1 C). Only the N-terminal part of TconTS1 is longer compared to TranSA and
TcruTS and therefore cannot be aligned. Independent prediction of the secondary struc-
ture by I-Tasser as well as the inherent thermal mobility of each residue of TconTS1 are
akin to that of TranSA and TcruTS (Figure D.1 D). This is because ß-sheets are dominant
in the catalytic and lectin domain, whereas an α-helix is connecting both domains.
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Figure D.1: Validation of structural model. A Amino acid sequence alignment of
recombinant TconTS1, TranSA (PDB entry: 2ags) and TcruTS (PDB entry: 1ms9) by
ClustalW using the bioinformatics analysis tool MultiSeq implemented in VMD.333 Fully
conserved amino acids are depicted in blue, partially conserved in white and not con-
served in red. Residues of the catalytic domain, which are considered to be important for
enzymatic activity, are surrounded by a black box.252,253 Residue numbering is in corre-
spondence with the native TconTS1 sequence. B 3D structure of TconTS1 in a cartoon
style, where coloring of each amino acid corresponds to A. The C-terminal SNAP-Strep-
Tag is not shown for simplicity. C Structural alignment of TconTS1, TranSA (PDB entry:
2ags) and TcruTS (PDB entry: 1ms9) by VMD represented in cartoon style. Coloring is
in accordance with the Q factor of each residue, where Q is a metric for structural ho-
mology implemented in VMD. Blue corresponds to 100 % structural identity and a color
shift over white to red, to lower and lower identities. D Plot of the normalized B-factor,
representing the inherent thermal mobility of each residue with indication of predicted
secondary structural elements, generated by I-Tasser.198,273
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Despite an amino acids sequence identity of only 37/38 % between recombinant TconTS1
(with SNAP-Strep Tag) and TranSA/TcruTS, the I-Tasser homology model validation sug-
gests a similar secondary structure of TconTS1 compared to other TS from different species
and therefore predicts a similar tertiary model. Conservation of almost all catalytically
involved amino acids in TconTS1 further supports the idea of structural similarity to the
other TS. The I-Tasser confidence score of the recombinant TconTS1 model was given with
-2.99 (range -5 to 2), where a higher value signifies a higher confidence. It is, however,
necessary to note that the artificial SNAP-Strep domain is included in this assessment,
and an analysis of only the native TconTS1 results in a confidence score of -0.63, stating a
much higher reliability. A confidence score of above -1.5 means that more than 90% of the
predictions are correct and therefore our TconTS1 models is considered to be predicted
with an overall correct fold.198.
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