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Abstract
This research aims to enhance current methods for the optimal feedback control of
complex nonlinear dynamical systems via online parameter identifications. Accurate
knowledge of the system parameters is essential in numerous practical applications to
ensure effective control. A considerable number of advanced control algorithms use
model-based approaches. However, the model parameters may often be unknown or
subject to change over time. This could result in deviations from the feedback control
objective, increased expected costs, and even divergence of the controller.

The main objective of this thesis is to develop a combined online parameter identi-
fication and model-based controller approach that allows continuously estimating the
model parameters of a nonlinear system. The available real-time measurements of the
system are used to compute an approximation of the searched parameters. This re-
peated parameter estimation enables the control algorithm to adapt to the changing
system dynamics and maintain optimal control accuracy. This study investigates three
approaches. First, a coupled algorithm is developed that employs parameter identifi-
cations during operation to adapt a linear quadratic regulator using techniques from
parametric sensitivity analysis. Additionally, an approach is presented that also exam-
ines the information quality in the data used to predict the probability of success of the
parameter estimation. This process enables the suspension of parameter estimates in
case of insufficient information. An adaptive control algorithm using nonlinear model
predictive control (NMPC) and online parameter identification is proposed as a third
alternative. The NMPC method is based on the repeated solution of optimal control
problems, including system dynamics in their constraints. As such, the overall perfor-
mance is significantly influenced by the model quality. The controller can continuously
update the utilized model to account for changing system parameters, thus enabling
full adaptivity. All proposed techniques rely on highly efficient numerical methods for
solving nonlinear optimization problems (NLP) and the potential to transfer related
problems from optimal control into an NLP by discretization.

The proposed approaches are extensively evaluated by conducting simulations and com-
paring them to the existing standard control methods. The findings indicate that
the suggested online parameter identification significantly improves control performance
compared to traditional static approaches. In particular, it compensates for model un-
certainties, disturbances, and changes in system dynamics, leading to a robust control
performance.





Zusammenfassung
Diese Forschungsarbeit befasst sich mit dem Ansatz, bestehende Verfahren zur optimalen
Regelung von komplexen nichtlinearen dynamischen System durch online durchgeführte
Parameteridentifikationen zu erweitern. In vielen praktischen Anwendungen sind genaue
Kenntnisse über die Systemparameter von entscheidender Bedeutung, um eine effektive
Regelung zu gewährleisten. Bei einer Vielzahl an hochentwickelten Regelungsalgorithmen
handelt es sich um modellbasierte Ansätze. Dabei sind allerdings die Modellparameter
häufig nicht vollständig bekannt oder können sich im Laufe der Zeit ändern. Dies kann
zu Abweichungen vom Regelungsziel, einer Erhöhung der erwarteten Kosten und sogar
zu Divergenz führen.

Das Hauptziel dieser Arbeit besteht darin, einen kombinierten Ansatz aus online
Parameteridentifikation und modellbasiertem Regler zu entwickeln, der es ermöglicht, die
Modellparameter eines nichtlinearen Systems kontinuierlich zu schätzen. Dabei werden
die verfügbaren Echtzeitmessungen des Systems genutzt um eine Approximation der ge-
suchten Parameter zu berechnen. Diese kontinuierliche Parameterschätzung ermöglicht
eine Adaption des Regelalgorithmus an die sich ändernde Systemdynamiken und gewähr-
leistet eine optimale Regelungsgenauigkeit. In dieser Arbeit werden drei verschiedene
Ansätze verfolgt. Zum einen wird ein gekoppelter Algorithmus entwickelt, der Parame-
teridentifikationen während des Betriebes nutzt, um einen linearen quadratischen Re-
gulator mit Methoden der parametrischen Sensitivitätsanalyse anzupassen. Desweiteren
wird ein Ansatz vorgestellt, der zusätzlich die Informationsgüte in den herangezoge-
nen Daten untersucht, um die Erfolgswahrscheinlichkeit der Parameterschätzung zu
prognostizieren. Dieses Vorgehen ermöglicht es bei unzureichender Informationslage die
Parameterschätzungen auszusetzen. Als eine dritte Option wird ein adaptiver Regel-
algorithmus vorgestellt, der auf einem nichtlinearen modellprädikitiven Regler (NMPC)
und online Parameteridentifikationen beruht. Der NMPC Ansatz basiert auf der wieder-
holten Lösung von Optimalsteuerungsproblemen, die in ihren Nebenbedingungen unter
anderem die Systemdynamik beinhalten. Dadurch hängt die Performance stark von der
Güte des Modells ab. Die kontinuierlichen Anpassungen dieses Modells im laufenden
Betrieb ermöglichen eine Adaption des gesamten Reglers an sich änderende System-
parameter. Alle diskutierten Methoden basieren dabei auf hocheffizienten numerischen
Verfahren zur Lösung von nichtlinearen Optimierungsproblemen (NLP) und der Mög-
lichkeit verwandte Probleme aus der optimalen Steuerungstheorie per Diskretisierung
in ein solches NLP zu überführen.

Um die Leistungsfähigkeit der Ansätze zu evaluieren, werden umfangreiche Simulationen
durchgeführt und mit den existierenden Standardregelungsmethoden verglichen. Die Er-
gebnisse zeigen, dass die vorgeschlagene online Parameteridentifikation eine signifikante
Verbesserung der Regelungsleistung im Vergleich zu herkömmlichen statischen Ansätzen
bietet. Insbesondere ermöglicht sie die Kompensation von Modellunsicherheiten, Stö-
rungen und Änderungen der Systemdynamik, was zu einer robusten Regelungsfähigkeit
führt.
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1. Introduction

This chapter briefly overviews the importance of parameter identification and its use to
improve control algorithms in the presented work. Additionally, the dissertation’s key
contributions are outlined, and an overview of the entire thesis is given.

1.1. Motivation and Rationale

Parameter identification is the process of estimating unknown quantities within a math-
ematical model. The numerical problem of parameter identification (PI), also called
parameter estimation, nonlinear regression or data fitting is one of the most encoun-
tered issues in many practical applications that rely on mathematical modeling. These
problems classically originate from almost all major scientific fields, such as engineer-
ing [BC12; BLM09], robotics [SVD07; YG18], chemistry [Küp+09], medical technology
[Ges+17; Sch08] or financial mathematics [YLP20]. Such a system model is often de-
signed linearly since the analysis and numerical methods are easier to handle and based
on a profound theory. Nevertheless, most processes are nonlinear in practice, so a fine-
tuned nonlinear model often better reproduces the system’s behavior. If this model
is time-dependent, then it is called a dynamical system, and the arising problems are
so-called nonlinear dynamic parameter identification problems (NDPIP). This type of
problem often occurs when a mathematical model is to be generated for an actual sys-
tem process as close to reality as possible. Nowadays, the term digital twin is often
used in this context, cf. [Liu+22; Tao+22]. For example, if a robotic system such as
an industrial robotic manipulator or an autonomous car is to be controlled, a model
that is as accurate as possible is required. With this model, the system behavior can
be planned and predicted by describing how the available control variables affect the
process under consideration. It enables the user to predict and analyze the process be-
havior. Additionally, most industrial plants and processes should also operate optimally
with regard to a predefined criterion, such as time, costs, or safety. The performance
of the optimization methods used for this purpose is often based on the accuracy of the
employed model, see Nelles [Nel01].

The general routine of finding a suitable system model is called system identification.
This term covers the entire workflow, from defining the model design and model structure
to data collection, estimation of individual model parameters, and validation of the
model with test data. The standard approach to system identification is that all of
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the above points are satisfactorily addressed prior to system operation. The model is
defined and identified before the system is running and is then used for all further actions
and tasks with the real process, such as operational planning, development of a control
strategy, and optimization. However, in reality, hardly any process can be described
precisely in its entirety, and the model found remains error-prone. Furthermore, changes
in the real system may occur over time, such as wear or changed operating conditions.
Therefore, it is desirable that the mathematical model is also adapted during operation.
For this reason, we propose to perform the parameter estimation online. Here, online
means that the parameter identification is performed during system execution.

Suppose we want to control a certain system while optimizing it with respect to a
specific objective. The theoretical approach to such a problem is open-loop control. In
this context, an optimal control curve is computed based on the currently available
model information and then executed on the system. In general, however, models are
prone to inaccuracies and may deviate from the optimal solution. This implies that the
previously generated control curves are no longer optimal. Consequently, large model
errors can prevent the control objective from being achieved. Furthermore, the predicted
costs may not be achieved, which usually corresponds to a cost increase. In addition,
constraints may be violated, which is particularly critical in many applications, as they
are often technical constraints, system limits, or even security regulations, cf. [Gle23;
Brü+21].

Typically, deviations caused by model errors or external disturbances are compensated
by feedback control. There, current system information, such as state measurements, is
used to counteract deviations and stabilize the system. The flow of information from the
system output to the controller closes the control loop, so the term closed-loop control
is often chosen as well. Feedback control usually requires an additional control effort
that is added to a reference control to compensate for disturbances. For example, this
reference control can be a previously calculated optimal open-loop control. The goal of
optimal feedback control is to transform an actual state into the desired state by state
feedback while optimizing for a specific criterion. One of the most common approaches in
engineering is the linear quadratic regulator (LQR) or Riccati controller. It is part of the
class of linear optimal control methods. Modern control theory offers a comprehensive
basis for optimal controllers for linear systems, see Anderson et al. [APD71; KS72;
HRS06]. The quality of the controller, however, depends on the accuracy of the model
used to determine the feedback law. If the system changes, the feedback gain must be
recalculated. This task is usually too time-consuming to be performed during system
operation. Büskens [Büs09] introduced a solution to this problem by addressing the
LQR problem as a nonlinear parametric optimization problem and using results from
the theory of parametric sensitivities to adapt the control law to known parametric
disturbances. In his work, Tietjen [Tie12] showed the equivalence between nonlinear
optimization problems and linear quadratic control problems. In a case where variations
in the model parameters are given, this allows the approximation of parameter-perturbed
solutions of the LQR problem using methods of parametric sensitivity analysis. Further,
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these approximation methods are extended to optimal observer and observer-control
methods. In both works, it is assumed that the parametric deviations are known.

The disadvantage of linear control approaches for nonlinear processes is that, despite
accuracy and adaptation, linearization always introduces an additional error. The tran-
sition to using nonlinear control methods enables the direct use of nonlinear system
models instead. With the steady increase in computing power, more and more nonlinear
approaches in feedback control are being used in real-world applications. A well-known
modern method is nonlinear model predictive control (NMPC), classified as an optimal
nonlinear closed-loop control method. The idea is to solve an optimal control prob-
lem (OCP) on a certain time horizon each time new measurements are taken. Then,
only the first part of the optimized control up to the next sample is executed on the
system. Next, the time interval is shifted forward, and an optimal control problem is
solved anew. During this process, new measurement information can be included, such
as initial values for the system states in the optimal control problem. That is why
NMPC can be interpreted as a feedback control method that compensates for distur-
bances in the system. A detailed description of the method can be found in Rawlings
et al. [RMD17] and Grüne and Pannek [GP17]. The accuracy of the system model
utilized has a significant impact on the controller performance. Schomakers [Sch14] ob-
served for an NMPC controller for trajectory optimization that while state errors were
adequately compensated for, the correction of model errors proved difficult. Therefore,
Seelbinder [See17] suggests that a combination of the NMPC algorithm and adaptive
model would be preferable.

Feedback control offers a good possibility to react to general unpredictable disturbances
or system internal errors. In general, however, no adjustments are made to the models
used in the control algorithm during the execution of the process. Existing approaches to
provide an online adaptation of the system models for the linear as well as for the nonlin-
ear case can be found in adaptive control methods, see Åström and Wittenmark [ÅW09].
They are designed to adapt the controller to unknown or changing parameters in the sys-
tem. In the linear domain, self-tuning regulators (STR) [ÅW73; ÅW09], model-reference
adaptive systems (MRAS) [Lan74], gain scheduling [RS00; AA00] and stochastic adaptive
control [Wit75] are well-known. It is distinguished between indirect and direct adaptive
controllers. Indirect adaptive controllers use methods based on online parameter estima-
tion of model parameters and then use this information to compute a new feedback gain
matrix. Direct adaptive control methods directly estimate the controller parameters,
i.e., the gains. In this context, the control algorithms developed in this thesis can be
considered as indirect adaptive controllers. For the presented control strategies, different
established methods of optimal feedback control, such as Riccati control and NMPC, are
combined with online nonlinear parameter identification. In this case, the estimation
problem provides current parameter estimates for the model used in the controller so
that it can be adapted to changes in the system.
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1.2. Thesis Goals and Contributions

This thesis aims to design and develop control algorithms for nonlinear dynamical sys-
tems that can be adapted to unknown parametric perturbations in the system. For this
purpose, nonlinear optimization methods for the online identification of model para-
meters and techniques of linear and nonlinear optimal control are combined. Two
approaches are followed here. On the one hand, an adaptive linear-quadratic con-
troller based on parametric sensitivities is extended by an online parameter identification
method. This provides current estimates of parametric disturbances during system ex-
ecution. On the other hand, a nonlinear model predictive controller is combined with
online parameter estimation. This advanced nonlinear control method allows the di-
rect use of the nonlinear system model, which is expected to result in higher prediction
quality and better control performance.

In all approaches, nonlinear parameter identification determines unknown or time-
varying model parameters from online collected measurement data. These parameters
can be integrated into the considered system in an arbitrary nonlinear way, i.e., there is
no restriction to a specific type of model. To identify the parameters, methods of non-
linear optimization are applied. For this, the error between the measurements and the
output of the nonlinear model is minimized. A modern SQP-based solver for nonlinear
optimization problems is utilized. This approach allows high flexibility in the objective
function of the PI problem as well as in desired constraints. Numerical investigations of
two application examples demonstrate the real-time capability of the applied parameter
estimation methods.

The first algorithm combines nonlinear parameter identification with an adapted Riccati
controller. The conditions that must be imposed on the PI to further fulfill the require-
ments to apply the sensitivity-adapted LQ controller are addressed. Furthermore, the
problem of having enough informative data for online identification is discussed. In this
context, the advantages and disadvantages of an additional inspection of the level of
information in the data in the form of an approximation of the Fisher information ma-
trix are discussed. The resulting second adaptive control and identification algorithm is
numerically verified using the example of an inverted pendulum on a controlled cart.

Another goal of the thesis is to extend a nonlinear model predictive controller with real-
time nonlinear parameter estimation to improve its performance. The efficiency and
accuracy of NMPC depend strongly on the quality of the predictions made within the
algorithm. By regularly adapting the system model, improved control results can be
achieved. Furthermore, this third presented algorithm can tackle parametric perturba-
tions in the model, which lead to divergence in the standard NMPC approach. Compared
to the classical method, these advantages are shown in a comprehensive numerical anal-
ysis using the example of the pendulum-cart system. Furthermore, the performance of
the presented adaptive model predictive controller is validated on the highly nonlinear
example of an industrial robotic manipulator.
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Contributions

This thesis investigates the connection between nonlinear online parameter identification
and optimal control algorithms for dynamical systems. The scientific contribution of this
thesis can be divided into three central aspects.

• The first aspect deals with the formal requirements for nonlinear online parameter
identification to enable real-time sensitivity-based corrections for a linear quadratic
regulator using the estimated parameters. To the author’s knowledge, there is no
other research in this direction. Previous works by Büskens [Büs98] and Tiet-
jen [Tie12] assume known parametric perturbations. This thesis also presents an
extension with identifiability checks to facilitate practical applications.
• The second major focus is on the numerical investigation of the real-time applica-

bility of the nonlinear parameter identification method in the context of nonlinear
model predictive control. The numerical investigations show that online model
adaptations positively influence the stability behavior of the control algorithm.
• As a third contribution, it is demonstrated that all treated nonlinear problems,

parameter identification, LQR, and optimal control, can be efficiently solved
using the same approaches from optimal control and thus the same software
TransWorhp. It is demonstrated that the full discretization approach provides a
universal real-time solution method for these problems.

1.3. Thesis Structure

The thesis is divided into seven chapters. This introduction chapter is followed by five
main chapters and a concluding one. In Chapter 2, we describe the problem of para-
meter identification. We discuss what parameter identification is commonly used for
and how we consider it here in particular. In Section 2.2, we introduce the basic nonlin-
ear optimization theory. The formulation of a general nonlinear optimization problem
(NLP) and the necessary and sufficient optimality conditions for the solution are pre-
sented. Furthermore, the numerical solution method of sequential quadratic program-
ming (SQP) is outlined, which will be used as a standard solution method in this thesis.
The parameter-dependent nonlinear optimization problem is formulated, and the main
features of the parametric sensitivity analysis are presented. With the main theorem of
parametric sensitivity analysis, real-time strategies for approximating perturbed solu-
tions can be formulated. This is the basis for later formulating a perturbation-adaptive
linear quadratic regulator.

Based on the theory of nonlinear programming, the nonlinear dynamic parameter iden-
tification problem is formulated in 2.3. Next, Section 2.4 describes our preferred solution
approach using full discretization of the dynamics and subsequent solution of the prob-
lem as NLP. The advantages and shortcomings of this approach compared to other
commonly used approaches are discussed. Further, special aspects of solving parameter
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identification problems are discussed, such as the choice of the initial guess, the scaling of
system states, and the sufficient information content of trajectories for identification.

Chapter 3 focuses on the basics of the linear quadratic regulator. It starts in Section 3.1
by introducing the basic definitions of linear and nonlinear control systems. Based on
this, Section 3.2 presents the linear quadratic regulator problem (LQR). Besides the
classical solution of this problem via the algebraic Riccati equation, an alternative way
via formulating and solving it as an optimization problem is provided. As a next step,
parametric dependencies are introduced to the LQR problem, and it is shown that by
transformation to an NLP, it is possible to use methods from parametric sensitivity
analysis. In particular, this allows a real-time approximation of the solution of the
perturbed LQR problem from the nominal solution of the unperturbed problem using
sensitivity differentials.

The crossover to nonlinear control is made in the following Chapter 4. First, the basic
idea of nonlinear model predictive control (NMPC) is explained, followed by the neces-
sary basics of optimal control and the solution of such problems by direct methods in
Section 4.2. Therein, the same approach of full discretization of the dynamical system is
pursued as described in Chapter 2. Then, the algorithm for classical NMPC is presented
in more detail. Section 4.4 introduces different types of NMPC formulations and provides
the associated stability theory. Characteristics that are crucial in the design of a model
predictive controller, such as the length of the prediction horizon, the computation times
for solving the individual OCPs, or the quality of the prediction model, are highlighted
in 4.5. In Section 4.6 the chapter concludes by introducing existing approaches to handle
uncertainties in the NMPC setting.

In Chapter 5 an adaptive control approach is developed that uses the previously pre-
sented approaches for nonlinear parameter identification and the LQ regulator with
real-time approximations from Section 3.3. First, we discuss the formulation options for
the involved PI problem. Then, in Section 5.2, the first adaptive control algorithm is
presented in detail. Additionally, it is described in Section 5.3 how computations of the
Fisher information matrix can help to assess the success probability of the PIs. Finally,
the functionality of the proposed control methods is demonstrated by numerical investi-
gations using the benchmark problem of an inverted pendulum on a cart system in 5.4.
In particular, the influence of time intervals with insufficient data for PI is discussed.

An equivalent approach is followed in Chapter 6 to develop the nonlinear adaptive con-
troller. Here, the classical nonlinear model predictive control approach is extended by
online parameter identification. First, the exact formulation of the parameter estima-
tion problem is discussed. Then Section 6.2 presents the combined algorithm. This
is followed by a numerical analysis of the functionality and efficiency of the presented
controller on the pendulum-cart system in 6.4. To further prove the strong closed-loop
performance of the proposed controller, a two-joint industrial robot is used in numerical
simulations comparing the proposed algorithm to standard NMPC.
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This thesis concludes with a summary of the results and a discussion of possible direc-
tions for future research in Chapter 7. Two sections in the Appendix provide additional
information on the numerical evaluations in Chapters 5 and 6. These are the computa-
tion of the Fisher information matrix and additional figures on the numerical evaluations
for different scenarios for the inverted pendulum on a cart.
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2. Nonlinear Parameter Identification

As the introduction indicates, parameter estimation in dynamical systems is relevant in
many application domains. In the same way, many different mathematics disciplines are
involved or closely related to it. The most relevant ones concerning this work are shown
in Figure 2.1. The areas of Modeling and System Identification can be understood
here more as encompassing terms, of which PI is an essential component. Including
data knowledge in predefined models and identifying specific model parameters make
these models valuable for practitioners. Nonlinear optimization methods and numerical
integration techniques for solving nonlinear differential equations are fundamental math-
ematical concepts needed to solve optimization problems with differential equations as
constraints. Furthermore, statistical approaches for the determination of model para-
meters can allow further statements about the solution, e.g., the calculation of so-called
confidence intervals, in which the solution lies with a certain probability. In addition,
there is the theoretical application-specific knowledge, for example, with a mechanical
or electrical engineering background, associated with the problem. All this makes the
parameter identification process a highly complex problem. It should be noted that it is
beyond the scope of this dissertation to address all of these issues to their full extent. In
this thesis, the focus is on the methods of numerical optimization. The necessary basics
are presented for the other fields, and references to further literature are given.

Within this chapter, we first highlight the relevance and significance of nonlinear dy-
namical parameter identification problems (NDPIP) in research and society. Then, the
mathematical fundamentals of nonlinear constrained optimization are discussed, which
are used as a basis for the further theory of the numerical solution of NDPIP. Finally,
some difficulties and pitfalls in this context are discussed. The structure of this chapter
and the theoretical background to the numerical solution of NDPIP are based on a book
by Schittkowski [Sch02]. The notation and the introduction to optimization theory are
oriented towards the work of Büskens [Büs98] and Echim [Ech14].

2.1. Introduction and Motivation

Parameter identification methods can build a connection between data and models. The
challenge in implementing a theoretically developed model is that not all important
parameters involved in the model are known. These unknown parameter values can be
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Figure 2.1.: Mathematical disciplines involved in nonlinear parameter identification with
respect to dynamical systems.

determined by measuring data at the system input and output and evaluating them
comparatively.

Why do we need mathematical models for real-world problems? – The answer is usually
an economic motive. Models can be realized at low cost and offer the possibility to
simulate and analyze a system, even before the construction or the final design. This can
avoid costly physical tests and construction errors. Furthermore, situations that would
not be possible or even dangerous in reality can be simulated, such as overload tests
or other extreme situations. Furthermore, they are used for advanced control design
and optimization procedures. Nelles [Nel01] states that the performance of the final
solution of such an optimization or optimal control problem usually has the quality of
the underlying model as an upper bound. This motivates the great need for sophisticated
identification techniques.

In the following, we assume that we have a model output function of our process that
gives us the output for some input variables. However, this model is supposed to contain
unknown parameters. If measurements of the system outputs and the corresponding
inputs are available, then the parameters can be identified using a data-driven method.
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In this work, we formulate the parameter identification problem as a least squares prob-
lem. We utilize this special form of an optimization problem, where the sum of squares
of distances of a system model from some collected measurements is minimized to es-
timate unknown model parameters. Within the context of parameter estimation, these
distances are also called the residuals of the problem. If the model perfectly represented
the data, the residuals would be zero.

Definition 2.1.1 (Least Squares Estimation Problem)
Let yi ∈ Rny be measurements and xi ∈ Rnx inputs at discrete time points with
M ∈ N and i = 0, . . . ,M . Further it is h : Rnx × Rnp → Rny the system model
function with the unknown parameter vector p ∈ Rnp . Then the problem

min
p
F (p) :=

1

2

M∑
i=0

∥h(xi, p)− yi∥2q (2.1)

is called least squares estimation problem.

The definition of the distance depends on the used norm ∥·∥q. In the application example
in Chapter 5, we will assume a normally distributed error in the measurement data and,
therefore, use the Euclidean norm. Nevertheless, in Subsection 2.4.4, alternative norms
for specific user-oriented cases are discussed.

The least-squares problem is well-known in mathematical programming. In the special
case of a static linear model, where the output depends linearly on the parameters, the
problem (2.1) above simplifies solving a system of linear equations. This happens when
black-box modeling is performed using polynomials, and it can then be resolved with
QR decomposition, as demonstrated in Jung [Jun19]. Such linear optimization methods,
however, can only be applied if the model output is linear in the parameters. If the un-
known parameters enter the model output function nonlinearly, then nonlinear optimiza-
tion methods must be considered, e.g., gradient-based methods, see Schröder [Sch17].

The parameter identification problem becomes more complex because we want to con-
sider dynamical systems. That is, the h introduced above in (2.1) is describing the
solution of a dynamical system, for example, of a system of ordinary differential equa-
tions, i.e., ẋ(t, p) = f(x(t), t, p), t ∈ R. This can be considered by adding the dynamical
system equations as constraints to the optimization problem. Also, for this kind of non-
linear and dynamic data fitting problem, many mathematical algorithms exist to solve
problems without additional general constraints, compare Schittkowski [Sch02]. Stan-
dard approaches are the Gauss-Newton method and the Levenberg-Marquardt method
as described in [GMW81].

An alternative to parameter estimation using optimization problems is the use of state
observers. The well-known Kalman Filter (KF) introduced by Kalman [Kal60] and
Kalman and Bucy [KB60] is usually applied in case of incomplete feedback to estimate
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the unmeasured state variables in linear problems. In the case of (weakly) nonlin-
ear systems, the Extended Kalman Filter (EKF), see Sorenson [Sor70], Anderson and
Moore [AM12], or the Unscented Kalman filter (UKF), Julier et al. [JUD95], can be
used. Classically, these methods are known as state estimators, where a predictor-
corrector method estimates the system behavior recursively. From the current state at
a time, the state at the next time is predicted, and then this estimate is corrected by
the new measurement. In addition, parameters can also be estimated by extending the
state vector of the dynamical system by introducing a parameter of the model as a new
constant system state. Knowledge of the process noise and the measurement noise is
crucial for the success of the filter methods.

In the context of this work, we will further extend the above problem (2.1) to include
nonlinear equality and inequality constraints. In other words, we consider the solution
of general nonlinear dynamical parameter identification problems with constraints. We
will employ solution approaches that are mainly known in the field of optimal control.
By using direct solution methods, we remain flexible in choosing the norm in the ob-
jective function. Moreover, we may include user-defined constraints. In these direct
solution methods, we first discretize the dynamics of the underlying problem by creating
additional constraints and then solve the resulting nonlinear optimization (NLP) prob-
lem using constrained optimization methods. Therefore, in the following Section 2.2, we
introduce the basics of nonlinear constrained optimization and the numerical solution
method sequential quadratic programming (SQP).

2.2. Nonlinear Optimization

As already mentioned, we will transfer the parameter identification problem to a nonlin-
ear optimization problem (NLP), which then has to be solved primarily. In Section 3.2,
the linear quadratic regulator problem will also be reduced to a finite optimization prob-
lem. Furthermore, NLPs will appear when we reduce the optimal control problem within
the NMPC algorithm in Chapter 4 to a finite NLP by time discretization and integration
of the differential equations. Therefore, Section 2.2.1 gives an introduction to nonlin-
ear optimization. Introductions to the theory can also be found in Büskens [Büs98],
Jungnickel [Jun15], Durea and Strugariu [DS14] among many others. Highly recom-
mended textbooks for a deeper introduction to the theory of optimization and detailed
explanations are, for example, Geiger and Kanzow [GK02] and Nocedal [NW06].

2.2.1. Nonlinear Programming

We start with the formulation of the standard problem of nonlinear optimization, also
called a nonlinear programming problem.
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Definition 2.2.1 (Nonlinear Program)
Let x ∈ Rnx and F : Rnx → R and g : Rnx → Rm be functions. Then the problem

min
x

F (x),

w.r.t. gi(x) = 0, i = 1, . . . ,me,

gi(x) ≤ 0, i = me + 1, . . . ,m

(2.2)

is called nonlinear program (NLP). The function F is called objective or cost
function with optimization variables x. The vector x = (x1, . . . , xnx)

T ∈ Rnx

of independent variables x1, . . . , xnx is often referred to as vector of decision vari-
ables. Further is g the function of equality and inequality constraints, where me

is the number of equality constraints.

(2.2) is formulated as a minimization problem. If a maximization is desired, this can
be achieved by negating the objective function. To develop solution strategies for the
presented problem (2.2), terms like feasible set and local minimum are needed. These
are specified in the following.

Definition 2.2.2 (Feasible Set)
Let g be the function from Definition 2.2.1, then we call

S = {x ∈ Rnx |gi(x) = 0, i = 1, . . . ,me, gi(x) ≤ 0, i = me + 1, . . . ,m}

the feasible set. Any point x ∈ S is called feasible point.

Now we can define the term of a local minimum of the problem (2.2). It is often also
referred to as local solution or minimizer of the function F .

Definition 2.2.3 (Minimum/Minimizer)
Assuming the preconditions from Definitions 2.2.1 and 2.2.2, then a vector x∗ ∈
S is called a local minimizer of the function F on the set S, if there exists a
neighborhood V(x∗) ⊆ Rnx of x∗ such that

F (x∗) ≤ F (x), ∀x ∈ S ∩ V .

The value F (x∗) is called a local minimum of F . If V = Rnx applies, one says that
x∗ is the global minimizer of F on S and F (x∗) is the global minimum of F .

Next, we want to discuss the role of constraints. A constraint is called active if gi(x) = 0,
i ∈ {1, 2, . . . ,m} holds. Note that within the feasible set, the equality constraints are
always active. When introducing necessary and sufficient optimality conditions for a
local solution of (2.2) in Section 2.2.1, we will see that only active constraints influence
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the search for a minimum. Providing a set of active constraints is reasonable since
this set can change during the numerical process. We need a special assumption on
the constraints to formulate the following optimality conditions. It is called constraint
qualification or regularity in a more general form.

Remark. In the following, the continuous differentiability of F and g is always assumed.

Definition 2.2.4 (Active Set, Regularity, Normality)
Assume the problem (2.2) and let x ∈ S be a feasible point of (2.2).

(i) We call the index set Ī(x) = {i ∈ {me+1, . . . ,m}| gi(x) = 0} the set of active
inequality constraints. The entire active constraints are characterized by the
index set called active set I(x) = Ī(x) ∪ {1, . . . ,me}.

(ii) Then x is regular, if the gradients ∇xgi(x) for i ∈ {1, . . . ,me} are linearly
independent and there exists a v ∈ R \ {0} with

∇xgi(x)v < 0, i ∈ Ī(x),
∇xgi(x)v = 0, i = 1, . . . ,me.

(iii) x is normal, if the gradients of active constraints ∇xgi(x), i ∈ I(x) are linearly
independent.

Several formulations of these regularity conditions exist. The conditions (ii) in Defini-
tion 2.2.4 are also known as Mangasarian-Fromowitz constraint qualifications (MFCQ).
If a point x fulfills condition (iii), it satisfies the linear independence constraint qualifi-
cations (LICQ). These are more restrictive than the MFCQ.

Necessary and Sufficient Optimality Criteria

The Lagrangian function is the most important tool for characterizing optimality
conditions. In literature, different formulations can be found. For example, Schit-
tkowski [Sch02] subtracts the constraints from the objective instead of adding them.
Nevertheless, this eventually results in an equivalent formulation. We use the following
definition.

Definition 2.2.5 (Lagrangian Function, Lagrangian Multiplier)
For λ ∈ Rm, λ = (λ1, . . . , λm)

T the Lagrangian function L : Rnx × Rm → R of
problem (2.2) is defined by

L(x, λ) := F (x) + λTg(x) = F (x) +
m∑
i=1

λigi(x).

The variables λi are called the Lagrangian multipliers of (2.2).
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In this context, x is also called the primal and λ the dual variable of the nonlinear pro-
gram (2.2). Using the Lagrangian function, we now introduce the well-known optimality
conditions, the Karush-Kuhn-Tucker conditions (KKT), for problem (2.2).

Definition 2.2.6 (Karush-Kuhn-Tucker Conditions)
Consider problem (2.2) with continuously differentiable functions F and g.

(i) Then the conditions

(a) ∇xL(x, λ) = ∇xF (x) + λT∇xg(x) = 0,
(b) λi ≥ 0, i ∈ Ī(x),
(c) λi = 0, i /∈ I(x),

are called Karush-Kuhn-Tucker conditions of (2.2).
(ii) A vector (x, λ) ∈ Rnx × Rm that satisfies the KKT-conditions is a Karush-

Kuhn-Tucker point, KKT-point or also critical point.

The following theorem gives necessary first-order optimality conditions. It states that
at a local solution, the gradient of the objective function can be represented by a linear
combination of gradients of active constraints. The Lagrangian multipliers specify the
influence of the constraints on the objective function.

Theorem 2.2.7 (Karush-Kuhn-Tucker Condition with MFCQ, [GK02])
Let x∗ ∈ Rnx be a local minimizer of (2.2) and x∗ fulfills the MFCQ. Then there
exist Lagrangian multipliers λ∗ ∈ Rm, such that the tuple (x∗, λ∗) is a KKT-point
of (2.2).

If we strengthen the constraint qualification to LICQ, the Lagrangian multipliers are
even unique.

Theorem 2.2.8 (Karush-Kuhn-Tucker Condition with LICQ, [GK02])
Let x∗ be a local minimizer of (2.2) and x∗ fulfills the LICQ. Then there exist unique
Lagrangian multipliers λ∗ ∈ Rm, such that the tuple (x∗, λ∗) is a KKT-point of (2.2).

The KKT conditions extend the general condition that in the optimum, the derivative
of the objective function must be equal to zero, ∇xF (x

∗) = 0, to constrained problems.
Theorem 2.2.8 shows that inactive inequality constraints do not affect the optimality
conditions because their corresponding Lagrangian multipliers equal zero.

It is important to note that every local minimizer is a critical point, but not every critical
point is also directly a local solution to the problem. Properties of the Hessian matrix of
the Lagrangian function are used to formulate the necessary and sufficient second-order
conditions in order to identify the local minimizer from the set of critical points.
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Theorem 2.2.9 (Necessary and Sufficient 2nd Order Conditions, [GK02])
Let x∗ ∈ Rnx be a local minimum of the problem (2.2) and x∗ be normal (x∗ satisfies
the LICQ). Further, let F be two times differentiable and gi be two times continu-
ously differentiable for i = 1, . . . ,m in a neighborhood of x∗. Then for the critical
cone

C(x∗) := {v ∈ Rnx |∇xgi(x
∗)v = 0, for i ∈ Ī(x∗) and λi > 0,

∇xgi(x
∗)v ≤ 0, for i ∈ Ī(x∗) and λi = 0,

∇xgi(x
∗)v = 0, for i = 1, . . . ,me},

the following holds.

(i) (Necessary 2nd-Order Conditions)
There exist uniquely defined Lagrangian multipliers λ∗ ∈ Rm and the Hessian
matrix of the Lagrangian function is positive semidefinite on the critical cone:

vT∇2
xxL(x

∗, λ∗)v ≥ 0, ∀ v ∈ C(x∗).

(ii) (Sufficient 2nd Order Conditions)
Let the Hessian matrix satisfy the condition

vT∇2
xxL(x

∗, λ∗)v > 0, ∀ v ∈ C(x∗) \ {0},

then there exist a neighborhood U(x∗) of x∗ and a constant c > 0 such that x∗
is a strong local minimizer of (2.2):

F (x) ≥ F (x∗) + c∥x− x∗∥2, ∀ x ∈ S ∩ U(x∗).

The necessary and sufficient conditions can thus be used to set up an algorithm to
search for local solutions of (2.2). Usually, one is initially satisfied with the search for
KKT-points of (2.2), even if this might lead to saddle points or even maximizers. If a
candidate is found, optimality can be checked using the criterion from Theorem 2.2.9.

At this point, we want to point out that non-active constraints do not influence the eval-
uation of necessary or sufficient conditions. This is due to the relation λi = 0 ∀i /∈ I(x)
from Definition 2.2.6. For this reason, a so-called vector of active constraints is often
used in numerical solution methods. We define the vector of active constraints and the
corresponding Lagrangian multiplier as

ga := (gi)i∈I(x∗), λa ∈ Rna , where na := |I(x∗)|. (2.3)

This notation will simplify the following advanced formulations.
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Sequential Quadratic Programming

Numerous approaches are available for numerically solving the presented nonlinear op-
timization problems. We focus here on sequential quadratic programming (SQP) since
this method is used to compute the numerical results presented in the following chap-
ters. Further solution methods and the associated theory are described in more detail
in Geiger and Kanzow [GK02] and Nocedal and Wright [NW06].

Sequential quadratic programming is among the best-known and most powerful op-
timization algorithms to solve problems of the form (2.2). It is based on iteratively
solving quadratic subproblems to determine a descent method’s search direction to get
further iterations. For this purpose, the nonlinear program (2.2) is locally approximated
by a convex subproblem. Such a subproblem is usually obtained by a quadratic approx-
imation of the Lagrangian function and a linearization of the constraints. In the next
step of the algorithm, the solution of the subproblem is used as a search direction of the
descent method to solve the original problem.

In general, a descent method is designed to find a minimum by iteratively moving in a
search direction d[k] ∈ Rn by step sizes α[k] ∈ R starting from an initial estimate x[0]
with the iteration counter k ∈ N \ {0}. The k-th iteration is given by

x[k+1] = x[k] + α[k]d[k]. (2.4)

The search direction should be a descent direction of the Lagrangian function.

Definition 2.2.10 (Descent Direction)
Let f : Rnx → R be a mapping. The vector d ∈ Rnx , d ̸= 0 is a descent direction
of f in x, if there exists an a ∈ R, a > 0 with

f(x+ αd) < f(x), for all α ∈ (0, a).

A sufficient condition for a descent direction is given in Jungnickel [Jun15] with the
following theorem.

Theorem 2.2.11 ([Jun15])
Let f : Rnx → R be a function that is differentiable in x ∈ Rnx . Then every vector
d ∈ Rnx with

∇f(x)Td < 0

is a descent direction of f in x.

In every main iteration of the SQP method, the problem (2.2) is locally approximated by
a quadratic subproblem. This problem has the optimization variables d[k] = x[k+1] − x[k]
to find a descent direction of the Lagrangian.

17



Definition 2.2.12 (Quadratic Subproblem)
The quadratic optimization problem

min
d[k]∈Rnx

1

2
d[k]

T∇2
xxL

(
x[k], λ[k]

)
d[k] +∇xF

(
x[k]

)T
d[k]

w.r.t. gi
(
x[k]

)
+∇gi

(
x[k]

)T
d[k] = 0, i = 1, . . . ,me, (2.5)

gi
(
x[k]

)
+∇gi

(
x[k]

)T
d[k] ≤ 0, i = me + 1, . . . ,m,

is called quadratic subproblem of (2.2).

Very efficient solution methods exist for this quadratic problem to solve the subproblems
more efficiently and reliably, [Gef17]. Common solution methods are the active-set strat-
egy and the so-called interior-point methods. This thesis uses the NLP-solver Worhp
and the implemented SQP method applies the interior point method.

If the Hessian of the Lagrangian function ∇2
xxL(x

[k], λ[k]) is positive definite, then the
solution d[k] of (2.5) is a descent direction of the Lagrangian function in x[k] and can be
used as search direction for (2.2). In many applications, however, the exact computa-
tion of the Hessian is impossible or would mean a disproportionate effort. A possible
approach to solve the quadratic subproblems is the approximation of the Hessian by fi-
nite differences. Increasingly, automatic differentiation methods, such as the automatic
differentiation library ADOL-C, are used, see Walther and Griewank [WG09]. In many
implementations of SQP methods, the Hessian is approximated by a Quasi-Newton ap-
proximation, where the Hessian is replaced by a positively definite matrix H [k] in each
iteration step. This is computed from the previous iteration using an update formula.
Well known approaches are the BFGS methods from Broyden [Bro70], Fletcher [Fle70],
Goldfarb [Gol70] and Shanno [Sha70]. The update of the Hessian then results in:

H [k+1] = H [k] +
y[k]y[k]

T

y[k]
T
d
− H [k]d[k]d[k]

T
H [k]

d[k]
T
H [k]d[k]

,

with d[k] = x[k+1] − x[k] and y[k] = ∇F
(
x[k+1]

)
−∇F

(
x[k]

)
.

(2.6)

The positive definiteness of the sequence {H [k]}k∈N can only be guaranteed in combina-
tion with the Wolfe-Powell rule for the step sizes α[k] in equation (2.4). If the Armijo rule
is to be applied as a step size strategy, the modified BFGS formula is recommended by
Powell [Pow78]. If H [k] is symmetric and positive definite, then also H [k+1] is symmetric
and positive definite, see Geiger and Kanzow [GK02].

By ensuring that the Hessian or its approximation is positive definite, we establish that
d[k] is a descent direction of the Lagrangian function. This search direction can then
be used to update the state by x[k+1] = x[k] + α[k]d[k]. It can be shown that this local
SQP method converges superlinear for initial values (x[0], λ[0]) in a certain neighborhood
of a local minimum x∗. With further assumptions, even quadratic convergence can be
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Algorithm 2.1 Sequential Quadratic Programming (SQP)
1: Choose initial guesses (x[0], λ[0]) ∈ Rnx × Rm and H [0] ∈ Rnx × Rnx symmetric and

positive definite.
2: k = 0
3: if (x[k], λ[k]) is a KKT-point of (2.2) then
4: STOP
5: else
6: Compute a solution d[k] of (2.5) in x[k] with corresponding Lagrangian multipliers
λ[k+1], where ∇2

xxL(x
[k], λ[k]) is replaced by H [k].

7: Determine the step size α[k].
8: Compute new estimate x[k+1] = x[k] + αd[k].
9: Compute H [k+1].

10: k = k + 1
11: end if

proven. In general, however, this neighborhood of initial values around x∗ for that the
algorithm converges is unknown. To achieve convergence for arbitrary initial values,
globalization strategies are used. For this purpose, the step size α is considered when
calculating the new iterated values in equation (2.4). To determine a suitable step size,
a line search is done in the direction of dk, where dk is the solution of the quadratic
subproblem. A common method is the one-dimensional line search according to the
Armijo method, [Arm66].

At this point, we can formulate the described SQP method in Algorithm 2.1. In the
best case, the globalized SQP method converges to the local one after a finite number
of steps and then shows at least a superlinear convergence.

2.2.2. Parametric Nonlinear Programming

In practical applications, the objective function to be minimized often depends not
only on the optimization variables x ∈ Rnx , but also on parameters p ∈ P ⊂ Rnp .
Therefore, parametric nonlinear optimization problems are of special interest in this
work. For this reason, the formulation of (2.2) in Definition 2.2.1 is extended by nonlinear
parameters to a parametric nonlinear program, short NLP(p). The parameters p are also
called perturbations. In the following, the concept of parametric sensitivity analysis is
introduced, and its fundamental theorem is presented. These approaches will be used
in the further steps of this thesis to enable real-time updates for the linear quadratic
regulator.

According to Definition 2.2.1 we define the parametric nonlinear program, also called
perturbed nonlinear program, as follows.

19



Definition 2.2.13 (Parametric Nonlinear Program)
Let x ∈ Rnx , p ∈ P ⊂ Rnp and f : Rnx × Rnp → R and g : Rnx × Rnp → Rm be
functions. The problem

min
x

F (x, p),

w.r.t. gi(x, p) = 0, i = 1, . . . ,me,

gi(x, p) ≤ 0, i = me + 1, . . . ,m.

(2.7)

is called parametric nonlinear program (NLP(p)).

For a fixed reference value p = p0 ∈ P and F (x) := F (x, p0) the definition of a minimum
point of (2.7) is analogous to Definition 2.2.3. In the same way, the statements for the
necessary and sufficient optimality conditions in Propositions 2.2.7, 2.2.8, and 2.2.9 can
be formulated for a fixed p0 ∈ P . For the nominal perturbation p0 ∈ P , the problem
NLP (p0) is denoted as unperturbed or nominal problem.

2.2.3. Parametric Sensitivity Analysis

The parametric sensitivity analysis of nonlinear optimization problems is a technique
to systematically analyze the influence of parameters on the optimal solution of the
optimization problem. Fiacco et al. [Fia+83] provide a comprehensive topic overview.
Their work covers the basic results of parametric sensitivity analysis of nonlinear opti-
mization problems and lays the foundation for the following work in this area. We will
only discuss the essential results for the further chapters and follow the arguments of
Büskens [Büs02].

Considering the nominal problem NLP(p0) for a fixed nominal parameter p0 ∈ P , we can
study the differentiability properties of the optimal solution in a neighborhood of this
nominal parameter p0 with respect to perturbations p. An important consequence of
the sufficient second-order optimality conditions of Subsection 2.2.1 is that the optimal
solution x(p) and the corresponding Lagrangian multipliers λ(p) of NLP(p0) become
differentiable functions of the parameter p. The following theorem ensures the existence
of such functions and their feasibility.

Theorem 2.2.14 (Parametric Sensitivity Theorem on the Differentiability
of Optimal Solutions)
Let F and g be defined as in Definition 2.2.13 and be twice continuously differentiable
with respect to x. Further, let ∇xF , ∇xg and g be once continuously differentiable
with respect to p. Further assume that x∗ ∈ Rnx is a strictly regular local solution
of (2.7), i.e. (x∗, λ∗) ∈ Rnx × Rm fulfills the necessary and sufficient optimality
conditions for a fixed p0 ∈ P . Then there exists a neighborhood P0 ⊂ P of p0
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and two uniquely defined, continuously differentiable functions x : P0 → Rn and
λ : P0 → Rm with the following properties:

(i) It is x(p0) = x∗ and λ(p0) = λ∗.
(ii) The active set is unchanged: I(x(p), p) ≡ I(x(p0), p0), ∀p ∈ P0.a
(iii) The gradients of the active constraints are linearly independent, i.e.

rank(∇xg
a(x(p), p)) = na, ∀p ∈ P0.

(iv) x∗(p) and λ∗(p) fulfill the strict sufficient second-order optimality conditions
from Theorem 2.2.9 for all p ∈ P0 and particularly (x∗(p), λ∗(p)) is a strict local
minimum of (2.7).

aFor (2.7) the active set is defined as I (x(p), p) := Ī (x(p), p) ∪ {1, . . . ,me} with the set of active
inequality constraints Ī (x(p0), p0) := {i ∈ {me + 1, . . . ,m}| gi(x(p), p) = 0}.

Proof. A detailed proof can be found in Fiacco et al. [Fia+83].

In Fiacco’s proof, all constraints are considered. [Büs98] shortens the proof considerably
by focusing on the active constraints. Reviewing some of the main elements of the
argumentation guides to an explicit representation of the sensitivity derivatives using
only the nominal solution. Corresponding to the definitions in (2.3) we use the notation
ga(p) ∈ Rna and λa(p) ∈ Rna for the vector of active constraints. The necessary KKT
conditions from Definition 2.2.6 for the variables sought (x(p), λa(p)) can be written as

K(x∗, λ∗,a, p) :=

(
∇xL(x

∗, λ∗,a, p)
ga(x∗, p)

)
=

(
∇xF (x

∗, p) + (λ∗,a)T∇xg
a(x∗, p)

ga(x∗, p)

)
= 0.

Due to the differentiability assumptions of the Sensitivity Theorem 2.2.14 the Jacobian
of K(x∗, λ∗,a, p) with respect to (x, λa) can be calculated as

∇(x,λa)K(x∗, λ∗,a, p) =

(
∇2
xL(x

∗, λ∗,a, p) ∇xg
a(x∗, p)T

∇xg
a(x∗, p) 0

)
. (2.8)

The matrix in equation (2.8) is called Kuhn-Tucker matrix or KKT-matrix. Since the
sufficient conditions are assumed to be satisfied, the invertibility of the KKT matrix can
be proven by some algebraic considerations [Büs98]. Thus, all preconditions for applying
the classical theorem about implicit functions are given. It follows that x∗ = x∗(p) and
λ∗,a = λ∗,a(p) are differentiable functions in a neighborhood P0 of the nominal parameter
p0 and that they satisfy the equation K(x∗(p), λ∗,a(p), p) = 0, for all p ∈ P0. Next, we
derive the total differential from K with respect to p by using the chain rule and evaluate
it in the nominal parameter p = p0. We use the abbreviating notations x∗0 := x∗(p0) and
λ∗,a0 := λ∗,a(p0). This leads to a system of linear equations for the sensitivity differentials
of the optimal solution and multipliers:(

∇2
xL(x

∗
0, λ

∗,a
0 , p0) ∇xg

a(x∗0, p0)
T

∇xg
a(x∗0, p0) 0

)( dx
dp
(p0)

dλa

dp
(p0)

)
+

(
∇2
xλL(x

∗
0, λ

∗,a
0 , p0)

∇pg
a(x∗0, p0)

)
= 0. (2.9)
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The invertibility of the KKT matrix leads to an explicit representation of the sensitivity
differentials by transforming (2.9) to( dx

dp
(p0)

dλa

dp
(p0)

)
= −

(
∇2
xL(x

∗
0, λ

∗,a
0 , p0) ∇xg

a(x∗0, p0)
T

∇xg
a(x∗0, p0) 0

)−1 (∇2
xλL(x

∗
0, λ

∗,a
0 , p0)

∇pg
a(x∗0, p0)

)
. (2.10)

The KKT-matrix and sensitivity differentials can be obtained by post-optimality anal-
ysis, e.g., finite differences or automatic differentiation to compute the first and second-
order derivatives. In the following, we use the sensitivity differentials (2.10) to compute
approximations of a perturbed solution for a linear quadratic regulator, see Section 3.3.2.
This is done by approximating the perturbed solution by the nominal solution for the
unperturbed problem and the sensitivity differentials.

Sensitivity-based Approximation of the Perturbed Solution

The presented differentiability properties of the optimal solution of the parametric op-
timization problem provide the basis for strategies for real-time approximation of the
perturbed solutions. The idea is to approximate the solution of problem (2.7) by a first-
order Taylor expansion. This requires the nominal solution x(p0) and the sensitivity
differentials dx

dp
(p0) from Theorem 2.2.14:

x∗(p) ≈ x̃(p) := x(p0) +
dx

dp
(p0)∆p, ∆p := p− p0. (2.11)

As the nominal solution and sensitivity derivatives can be computed offline, this esti-
mation can be done with minimal numerical effort. If a deviation ∆p from the nominal
parameter value is detected, an approximation of the exact solution x(p) can be achieved
online by a simple matrix-vector multiplication and a vector addition. In contrast to
recalculating the solution, this is numerically much more efficient. In [Büs02], an error
analysis as a function of the deviation ∆p is presented for the differences between the
approximations by sensitivity-based updates and the exact solution.

Theorem 2.2.15 (Error Analysis, [Büs02])
Let the assumptions of the Sensitivity Theorem 2.2.14 hold and let the functions F
and g be three times continuously differentiable with respect to their arguments.
Then there exists a neighborhood P0 ⊂ P of p0, so that for all ∆p := p − p0 ∈ P0

the error estimates hold:

∥x(p)− x̃(p)∥ = O(∥∆p∥2),
∥F (x(p), p)− F (x̃(p), p)∥ = O(∥∆p∥2),

∥ga(x̃(p), p)∥ = O(∥∆p∥2),
∥λa(p)− λ̃a(p)∥ = O(∥∆p∥2),

∥∇xL(x̃(p), λ̃
a(p), p)∥ = O(∥∆p∥2).
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The linear approximation of the solution can be expected due to the linear Taylor ap-
proximation. In the case of unconstrained NLP problems, an additional order in the
objective function can be obtained, [Büs02]. An analytical statement about the size of
the set P0 from Theorem 2.2.14 cannot be made in general, so this has to be investigated
numerically in advance.

2.2.4. The Optimization Software WORHP

In the context of the presented work, different nonlinear optimization problems of the
form (2.2) appear several times. They arise during the formulation of the parameter
identification problems and the solution of optimal control tasks with direct methods.
For the solution of such problems, the previously presented SQP method is used. An
efficient implementation is given with the optimization software Worhp, see Büskens
and Wassel [BW13]. It implements the SQP method so that the quadratic subproblem
is solved with an interior point method.

The solver’s name is an acronym for "We Optimize Really Huge Problems" and indicates
that it was developed to solve very large problems, i.e., those with many optimization
variables and constraints. The numerical solution of such large problems generally re-
quires very high computational and memory resources, since especially the gradients and
the Hessian matrix of the Lagrangian function are needed. For specific problem classes,
sparsely populated structures often appear in the derivative information, i.e., many of
the entries in the Jacobian and Hessian matrix are zero. Worhp takes advantage of
the fact that only the entries that do not disappear must be stored, see Wassel [Was13].
By specifying the structure of the non-zero entries within the derivative matrices, the
computational effort and, thus, the computation time can be reduced. Examples of large
and sparse optimization problems are the discretized dynamical parameter identification
problems, which appear in Subsection 2.4.3, and general optimal control problems, as in
Section 4.2.

The software was developed in 2008 under the direction of the University of Bremen in
cooperation with the University of the German Federal Armed Forces Munich in projects
of the German Aerospace Center DLR and the European Space Agency ESA. Since then,
new extensions have continuously enhanced and supplemented the implementations. In
2012 the transcription tool TransWorhp was added, see Subsection 4.2.3 and Knauer
and Büskens [KB12]. Moreover, the possibility of parametric sensitivity analysis was
added with the WorhpZen module, see Kuhlmann et al. [KGB18]. This makes sen-
sitivity information accessible that is already obtained during the SQP process, which
includes sensitivity derivatives of the optimal solution, the constraints, the objective
function, and second-order derivatives of the objective function within the NLP. Thus,
post-optimality analyses can be performed. We use this information to apply parametric
real-time corrections, see Subsection 3.3.2.
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2.3. The Nonlinear Dynamical Parameter
Identification Problem

In the following, we return to the question of how parameters in a dynamical model
can be determined to optimally represent a given real system with respect to a specific
objective. Furthermore, we will deal with the numerical solution of the resulting prob-
lems and discuss two different solution approaches. First, we need the definition of a
parameter-dependent dynamical model.

Definition 2.3.1 (Parametric Dynamical Model)
For a time interval [t0, tf ] ⊂ R let f : D → Rnx be a twice continuously differentiable
function with domain D ⊆ Rnx × Rnp × [t0, tf ]. The differential equation

ẋ(t) = f(x(t), p, t)

is then called parametric dynamical model.

In the following, the term dynamics of the system is used synonymously to dynamical
model. Given an initial condition x(t0) = x0, the dynamical model in Definition 2.3.1 has
exactly one solution, see Theorem 2.4.2. The solution of the system at time t ∈ [t0, tf ] is
denoted by x(t;x0, p) to express that the solution implicitly depends on the initial state
and the parameters. For the sake of simplicity, the explicit dependence of each state x
on p is not written x(t) = x(p, t).

The problem of parameter identification can now be formulated as an infinite-dimensional
nonlinear optimization problem with the system dynamics in the constraints.

Definition 2.3.2 (Nonlinear Dynamical Parameter Identification Problem)
Let the function f be a parametric dynamical model from Definition 2.3.1 and
g(x, p) : Rnx × Rnp → Rm be a function, that is twice continuously differentiable
with respect to both arguments. Let ti ∈ [t0, tf ] for i = 0, . . . ,M be discrete time
points with t0 < t1 < · · · < tM and yi ∈ Rnx corresponding measurements. Then
y = (y0, . . . , yM)T is called a set of measurement data.

The optimization problem

min
x0,p

F (x0, p) :=
1

2M

M∑
i=0

∥x(ti;x0, p)− yi∥22,

w.r.t. ẋ(t) = f(x(t), p, t), for t ∈ [t0, tf ],

x(t0) = x0,

g(x(t), p) ≤ 0,

(2.12)

is called nonlinear dynamical parameter identification problem (NDPIP).
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Here, the term x(ti;x0, p) denotes the solution of the initial value problem in the con-
straints for fixed p and x0 evaluated at time ti. The basic idea in (2.12) is to minimize the
distances between the measured values and the model output at the respective points in
time. Instead of directly minimizing the residuals ∥x(ti)−yi∥2, a least-squares approach
is chosen using the square of the errors. This provides the numerical advantage that
the objective function is everywhere differentiable. It can be advantageous to weigh
individual summands of the objective function. Then, the objective function is said to
be of weighted least-squares type:

F (x0, p) :=
1

2M

M∑
i=0

wi∥x(ti;x0, p)− yi∥22.

The weights wi ∈ R for i = 0, . . . ,M can be particularly interesting if, for example,
the variance of the observations is known, see Subsection 5.3.1 on maximum likelihood
estimation. If additional information about the parameters is given, it may be useful
to restrict the search space. Therefore, any nonlinear constraints on the searched para-
meters are allowed as general equality or inequality constraints with a function g(·, ·).
This includes simple box constraints, where upper and lower bounds are given for the
parameters to be optimized., i.e., pl ≤ p ≤ pu with pl, pu ∈ Rnp . This can be important
if the parameters have physical meanings, e.g., they cannot be negative.

It should be noted that in the context of this thesis, only ordinary differential equations
are considered for the dynamical system. For example, an extension to partial differential
equations is described in Schittkowski [Sch02] and Wernsing [Wer18]. Furthermore, it
is noted that in addition to the searched parameters, the initial system states x0 are
optimized since it is assumed that these are only available as error-prone measurements.
Due to the dynamics in the constraints, the problem (2.12) shows analogies to optimal
control problems. We will look at these problems later in the context of nonlinear model
predictive control in Chapter 4. In optimal control problems, the states and controls are
infinite-dimensional optimization variables that have to be approximated in time. In the
same way, the system states x(t; p) are to be optimized in (2.12), which are the solutions
of the dynamical system in the constraints. The system model can also include controls,
which are not yet explicitly mentioned in this chapter because they are fixed within the
parameter identification process and enter the optimization problem as input data. To
obtain a problem in the standard form (2.2), methods from the theory of optimal control
such as full discretization are applied to the parameter identification problem.

2.4. Numerical Solution of NDPIP

We distinguish two solution approaches to solve nonlinear optimization problems with a
dynamical system as a constraint. The general procedure of the two methods is shown
schematically in Figure 2.2. The classical approach to solving the (2.12) is shown on the
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NDPIPCLASSICAL APPROACH

solve IVP

evaluate F and g

constrained NLP

check

termination criterion

compute new iterate

of optimization variables

optimization
routine, e.g. SQP

solution

FULL DISCRETIZATION

evaluate F, g, and

constraints from

discretized IVP

constrained NLP with
additional constraints

check

termination criterion

compute new iterate

of optimization variables

optimization
routine, e.g. SQP

solution

outsourcing IVP discretization

Figure 2.2.: Comparison of numerical solution approaches for nonlinear dynamical para-
meter identification problems. Classical approach with external IVP solver on the left
and full discretization on the right.

left side. The strategy is to outsource the solution of the so-called initial value problem
(IVP) in the constraints. This is the problem of finding the solution to the differential
equations with the given initial values in the constraints of (2.12). So, whenever the
optimization procedure needs to evaluate the state x(t) at a time t, e.g., when evaluating
the objective function, the IVP is solved by an external integration procedure. This
external solver can be, for example, a shooting method.

On the right side, the full discretization method is illustrated. It embeds the numerical
solution of the IVP into the optimization problem. For this purpose, additional equality
constraints are introduced within the NLP. In the next subsections, the definitions for
former terms are given, and the different solution approaches are formulated in more
detail. Further, we discuss their advantages and disadvantages.

2.4.1. Initial Value Problems

The differential equations with initial values in the constraints of (2.12) are called ini-
tial value problems. To solve them numerically, we first need some theoretical back-
ground.
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Definition 2.4.1 (Parametric Initial Value Problem)
Let f : D → Rnx be a parameter-dependent dynamical model according to Def-
inition 2.3.1, i.e., f is a twice continuously differentiable function with domain
D ⊆ Rnx × Rnp × [t0, tf ]. Further, let (x0(p), t0) ∈ Rnx × [t0, tf ] be a given ini-
tial condition. The problem

ẋ(t) = f(x(t), p, t),

x(t0) = x0(p),
(2.13)

is called parametric initial value problem (IVP(p)) for the initial value x0(p).

We neglect again to directly write out the dependence of x on p. Under the given
conditions, the following theorem ensures the existence of a continuously differentiable
unique solution of (2.13).

Theorem 2.4.2 (Picard-Lindelöf)
Given is (2.13) from Definition 2.4.1 with fixed p ∈ Rnp . Let the system function f be
continuous on D in t and Lipschitz-continuous with respect to the state x, i.e. there
exists a positive Lipschitz constant L with ∥f(x1, p, t) − f(x2, p, t)∥ ≤ L∥x1 − x2∥
for all (x1, p, t), (x2, p, t) ∈ D. Then for each initial state x0(p) ∈ Rnx and initial
time t0 ∈ [t0, tf ] there exists exactly one solution x(t;x0, p, t0) of (2.13). The solution
is defined for all times t in an open maximum existence interval I := I(x0, p, t0) ⊂ R
with t0 ∈ I.

Proof. A proof of the theorem is shown in Grüne and Junge [GJ16] or Heuser [Heu95].

Due to the continuous differentiability of f on a compact support, the Lipschitz condi-
tion is fulfilled in Theorem 2.4.2, and a unique solution of the initial value problem (2.13)
is ensured. In his book, Heuser [Heu95] provides different examples for the analytical
solution of (linear) differential equations. In general, however, solving more complex non-
linear differential equation systems in a closed form is impossible. This makes numerical
methods that can provide sufficiently accurate approximations all the more important.
Therefore, numerical methods are necessary, which can at least provide sufficiently ac-
curate approximated solutions.

A standard approach to numerically solve the initial value problem (2.13) is to perform a
suitable discretization of the time interval and approximate the exact solution at the grid
points. Time discretization reduces the continuous system to a finite, discrete system.
This can then be solved numerically in a simplified form. The idea of discretization is to
replace a region with a grid. Instead of a solution that is defined over the whole region,
the discretized solution is obtained only at the grid points.
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Definition 2.4.3 ((Equidistant) Grid)
Let G := {τi | i = 0, . . . , N} be a discretization, or grid, of the time interval
[t0, tf ] ⊂ R, i.e. τi ∈ [t0, tf ] ⊂ R for i = 0, . . . , N with N ∈ N and τi < τi+1, for
all i = 0, . . . , N − 1 and τ0 := t0 and τN := tf . We call Gh an equidistant dis-
cretization or equidistant grid respectively with step size h ∈ R, if additionally
τi+1 − τi = h is valid for all i = 0, . . . , N − 1.

We search for approximations x̃i ≈ x(τi) at discrete time points τi on the equidistant
grid Gh. All discretized states are summarized in

x̃ := (x̃T0 , . . . , x̃
T
N)

T ∈ Rnx·(N+1).

One of the most familiar methods for solving initial value problems is explicit Euler’s
method. It is a method of order one and is based on a Taylor approximation of x(t). For
an equidistant discretization Gh of the time interval [t0, tf ] with the fixed step size h ∈ R
an approximation of the solution of (2.13) can be obtained by the recursive formula

x̃i+1 := x̃i + hf(x̃i, p, τi), for i = 0, . . . , N − 1, and x̃0 := x0.

This procedure motivates the use of general one-step methods of the form

x̃i+1 := x̃i + hΦ(x̃i, p;h; f), for i = 0, . . . , N − 1, and x̃0 := x0. (2.14)

Here, the incremental function Φ(x̃i, p;h; f) serves as a placeholder to describe with
(2.14) any one-step method. It should be chosen so that the approximated solution
matches the exact solution as closely as possible. For the Euler method it applies
that Φ(x̃i, p;h; f) := f(x̃i, p, τi). With this idea, other methods of higher order can be
developed to solve (2.13), such as the class of (s-staged) explicit Runge-Kutta methods.

Definition 2.4.4 ((s-staged) Explicit Runge-Kutta Method)
For an s ∈ N with constant coefficients aij, bi, ci ∈ R, ki ∈ Rnx for i = 1, . . . , s and
j = 1, . . . , s− 1, we call the one-step method (2.14) specified by

Φ(x̃, p;h; f) :=
s∑
i=1

bi · ki,

with ki := f
(
x̃+ h

i−1∑
j=1

aij · kj, p, τi + cih
)
,

(2.15)

an (s-staged) explicit Runge-Kutta method.

In this work, the preferred methods are the trapezoidal method

x̃i+1 := x̃i +
h

2

(
f(x̃i, p, τi) + f(x̃i+1, p, τi+1)

)
, (2.16)
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and the Hermite-Simpson method

x̃i+ 1
2
:=

1

2
(x̃i+1 + x̃i) +

h

8

(
f(x̃i, p, τi)− f(x̃i+1, p, τi+1)

)
,

x̃i+1 := x̃i +
h

6

(
f(x̃i, p, τi) + f(x̃i+ 1

2
, p, τi+ 1

2
) + f(x̃i+1, p, τi+1)

)
,

(2.17)

with an additional function evaluation at the intermediate point τi+ 1
2
= 1

2
(τi + τi+1).

These two implicit methods have order of O(h2) and O(h4), respectively. Since the
computational effort of these methods is proportional to the number of single steps, one
will try to choose the step size h as large as possible while keeping the discretization
error as small as possible. Therefore, one-step methods are often extended by step size
strategies. More detailed information on step size strategies and the construction of
general higher-order methods is provided by Bulirsch and Stör [BS05].

2.4.2. Classical Approach

The classical solution approach of (2.12) is to combines an NLP solver with an IVP
solver. The procedure is depicted on the left side in Figure 2.2. Whenever the optimizer
has to evaluate the state x(t; p) in the objective function at a time t, the IVP is solved
by an external integration method. Common approaches are the single-shooting or
multiple-shooting method, Schittkowski [Sch02].

Single Shooting

When applying a single-shooting method to solve the IVP, the given dynamics are in-
tegrated forward in time to provide the states at a specific time point. This can be
achieved by any one-step method (2.14). The resulting NLP reduces to:

min
x̃0,p

F (x̃, p) :=
1

2M

M∑
i=0

∥x̃(ti; p, x̃0)− yi∥22,

w.r.t. g(x̃(ti), p) ≤ 0, for i = 0, . . . , N.

Since for fixed parameters p and given initial values x̃0, the solution of the IVP is uniquely
determined due to Theorem 2.4.2, only these values are defined as optimization variables.
Thus x̃(t0; p) = x̃0 and x̃(ti; p) is the solution of IVP at time ti, 1 ≤ i ≤M . These states
at discrete time points are only needed internally to evaluate the cost function. In this
manner, only the searched parameters are optimized and the problem remains small
compared to the full discretization approach. Due to the process of sequential inte-
gration and optimization, the dynamics of the underlying system are fulfilled in every
iteration step to an accuracy of a numerical discretization error, Flaßkamp [Fla13]. One
disadvantage is that the objective function is highly nonlinear due to the numerical
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integration and can, therefore, have many local minima, see Schittkowski [Sch02]. Fur-
thermore, the method is relatively sensitive to disturbances in the initial values. This
is especially relevant when considering data over a longer time horizon. To compensate
for this, a good initial guess for the parameters is needed.

Multiple Shooting

The multiple-shooting approach is proposed, for example, in [VTK04; Boc+13] as a way
to overcome the lack of robustness of the single-shooting approach. For this method,
so-called shooting nodes ξj ∈ R, for j = 1, . . . , k and k ∈ N, are introduced at which the
integration is restarted. The time interval [t0, tf ] is thus divided into subintervals. The
IVP is solved on the subintervals [ξj, ξj+1] by an external integration procedure as in
the single-shooting approach. For the additional initial values x̃(ξj), new optimization
variables x̃ξj are introduced for j = 1, . . . , k. In order to obtain a continuous solution
of the IVP on the whole time interval at the end of the optimization, continuity condi-
tions are implemented at the shooting nodes. They ensure that the endpoints of each
subinterval coincide with the initial values of the next interval. This is realized with
additional nonlinear equality constraints of the form

x̃ξj+1
− x̃(ξj+1; p, x̃ξj) = 0, for j = 1, . . . , k − 1.

The resulting optimization problem is

min
x̃ξ,p

F (x̃ξ, p) :=
1

2M

M∑
i=0

∥x̃(ti; p, x̃ξκ(i))− yi∥
2
2,

w.r.t. x̃ξj+1
− x̃(ξj+1; p, x̃ξj) = 0, for j = 1, . . . , k − 1,

g(x̃(ti), p) ≤ 0, for i = 0, . . . ,M,

with x̃ξ = (x̃ξ1 , . . . , x̃ξk). Here, the expression x̃(ti; p, x̃ξκ(i)) describes the solution x̃
obtained by integrating the dynamics from the initial value xξκ(i) to time ti. In this
context, κ(i) is the index of the nearest smaller shooting node to the time stamp of the
current measurement yi, i.e. κ(i) := max1≤j≤k{j : ξj ≤ ti}, cf. Schäfer et al. [Sch+18].
The number of optimization variables in the NLP increases by the number of introduced
shooting nodes. If only one node is used, we again get the well-known single-shooting
method since the ODE is integrated over the entire time interval. If the number of
shooting nodes coincides with the number of time discretization steps, we get the full
discretization method, which we present in the following section.

2.4.3. Full Discretization

In the case of full discretization, the constraints of the given (2.13) are discretized before
optimization. The numerical integration methods explained in the previous Subsec-
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tion 2.4.1 are used for this. In this way, the states at each discretization point are
transformed into optimization variables, and the dynamical system is turned into indi-
vidual constraints. For the sake of simplicity, we will discretize the dynamics on the time
grid of measurements in the following representation. Thus, the number of discretiza-
tion grid points equals the number of measurements, N = M . This is not necessarily
the case. Since the number of discretization points strongly influences the size of the
resulting optimization problem and, thus, the required computational effort, reducing
the number of grid points may be of interest. In particular, if there is a large amount
of closely sampled data, a larger discretization step size can be selected. If only a few
or non-equidistant measurements are available, it may be necessary to interpolate them
at the discretization points of the dynamics. This can be done, for example, with lin-
ear interpolation. Note that in this case, an interpolation error is introduced. If we
choose as many discretization points as measurements, we obtain the following problem
formulation:

Definition 2.4.5 (Discretized Nonlinear Dynamical Parameter Identifica-
tion Problem)
Let f be the parametric dynamical model from Definition 2.3.1. Let y = (y0, . . . , yM)T

be given measurements yi ∈ Rnx for i = 0, . . . ,M at discrete time points ti ∈ R
with t0 < t1 < · · · < tM . Furthermore, let Φ(x̃j, p;h; f) be any explicit or implicit
one-step method with step size h. The optimization problem

min
x̃0,p

F (x̃0, p) :=
1

2M

M∑
i=1

∥x̃(ti; p, x̃0)− yi∥22,

w.r.t. x̃j+1 = x̃j + h · Φ(x̃j, x̃j+1, p;h; f), for j = 0, . . . ,M − 1,

x̃(t0) = x̃0,

g(x̃(tj), p) ≤ 0, for j = 0, . . . ,M,

(2.18)

with x̃ = (x̃0, . . . , x̃N=M) is called discretized nonlinear dynamical parameter
identification problem (dNDPIP).

By including the initial states as optimization variables, measurement inaccuracies in the
initial values are taken into account. Thus, the dynamics of the system can be adapted
to the measurement data in the best possible way. The discretization introduces new
optimization variables so that the resulting optimization problem (2.18) has a high num-
ber of constraints. As a result, it appears much more complex than the original (2.12).
However, often the derivatives of the objective function, the constraints, the ODE sys-
tem, and the Hessian do not depend on all the optimization variables, leading to a sparse
structure of these matrices. This also applies to optimization problems resulting from
discretized dynamic problems with a one-step method, [Ech14]. The software library
Worhp uses the SQP method outlined in Subsection 2.2.1 and can exploit sparse struc-
tures in the derivative matrices, as explained in Section 2.2.4. Thus, such problems can
be solved with high efficiency.
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The main advantage of the full discretization approach is that the initial value problem
formulated in the constraints of (2.12) does not have to be solved in every iteration step
of the optimizer to evaluate the objective function. Instead, the IVP is solved implicitly
during the iteration process. Furthermore, the feasibility of the optimization variables
has to be guaranteed only at the end of the iteration process. Therefore, the dynamic
equations have to be valid only at the end of the optimization when all constraints are
fulfilled with a certain accuracy. In particular, this means that a feasible initial guess p0
for the parameters is unnecessary, as is the case with classical approaches. Here, feasible
means that the initial value problem from Definition 2.4.1 has a solution at an initial
value p0 ∈ Rnp . If such a feasible initial guess cannot be provided, this usually has the
effect of divergence of the numerical method. For the full discretization approach, such
initial values do not pose a problem, even though the choice of the initial guess may
influence the result of the optimization, compare Subsection 2.4.4.

2.4.4. Special Aspects of the Numerical Solution Process

Here, we discuss some special aspects of solving nonlinear dynamical parameter identi-
fication problems by numerical optimization methods. The consideration of these ad-
ditional aspects can contribute significantly to a better and more efficient numerical
solution to the identification problem.

Dependence on Initial Guess

The presence of many local minima is a typical problem in nonlinear dynamical para-
meter identification problems. In general, the choice of the initial guess highly affects
which minimum is found by a nonlinear optimization algorithm. Echim [Ech14] moti-
vates to use the full discretization approach. There, numerical examples show that it is
more robust to the initial guess than the classical approach with an external IVP solver,
especially when many local minima occur. The convergence of the local SQP method
depends on the choice of initial estimates for the parameters since a specific convergence
rate can only be shown for a neighborhood around the optimal solution, see Subsec-
tion 2.2.1. In general, however, the size of this neighborhood is unknown. Therefore,
special attention should be paid to an excellent choice of initial guesses. Within the tran-
scription tool TransWorhp we also provide initial estimates for the discretized solution
trajectory x̃, see Subsection 4.2.3. In this work, the measured data at the respective
discretization points or a value interpolated from neighboring measured points are used
for this purpose. Thus, a very good initial guess for the values can be provided.

Furthermore, it may be beneficial to first optimize problems with a small number of dis-
cretization points and then use the solution as a ‘good’ initial guess for a finer resolution
optimization problem. We apply this approach, for example, in the offline computation
of the feedback gain for the linear quadratic regulator in Subsection 5.4.4.
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Scaling of System States

Let x(t) ∈ Rnx be the time-dependent state vector of a dynamical system as described
in Definition 2.3.1:

ẋ(t) = f(x(t), p, t),

with dynamics f : Rnx ×Rnp ×R→ Rnx . The objective function for parameter identifi-
cation problems consists of the squared errors of the distances of the system states x(t)
to the measurement values y(t) ∈ Rnx . If the domains of the different system states
are of different orders of magnitude, the error terms have unbalanced influences on the
objective function. The effect of certain variables on the minimization of the objective
function would thus be larger than that of others. Furthermore, large size imbalances
can also lead to ill-conditioned matrices and thus to numerical problems within the
optimization, [Büs98]. Measurements and system states are scaled before solving the
optimization problem to avoid such problems. In the context of this thesis, a linear
scaling approach is chosen to adjust the quantities:

x̄i(t) = cixi(t), t ∈ [t0, tf ] ⊂ R, i = 1, . . . , nx,

ȳi(t) = ciyi(t), t ∈ [t0, tf ] ⊂ R, i = 1, . . . , nx,
(2.19)

for a fixed c ∈ Rnx , where x̄(t) ∈ [−1, 1]nx is the scaled version of x(t) to the interval
[−1, 1]nx and ȳ(t) ∈ [−1, 1]nx of y(t), respectively. Note that the scaling is applied to
the vector-valued variables and dynamics component-wise.

Given some measured data, the scaling factor is computed from the largest absolute
value to

ci =
1

max
t
| yi(t) |

, i = 1, . . . , nx.

In the case that max
t
yi(t) = 0 holds for some i ∈ {1, . . . , nx}, we set ci = 1. The scaling

of the states also needs to be considered in the system dynamics. Let f̄ : [−1, 1]nx×Rnp×
R→ Rnx be the scaled dynamics and x̄(t) be the solution of the differential equation

˙̄x(t) = f̄(x̄(t), p, t), t ∈ R.

Then the differentiation of the first equation in (2.19) with respect to the time t yields

˙̄x(t) = cẋ(t).

Thus we get
˙̄x(t) = cf(x(t), p, t).

The optimization results can then be easily scaled back using the scaling factors and
rearranging the equations (2.19) to x(t).
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Different Norms for the Objective Function

The standard choice for the norm in the objective function is the Euclidean or 2-norm,
i.e., the sum of the squares of the errors. However, sometimes, using a different norm
to estimate parameters can be desirable. For example, one can use the L∞-norm to
minimize the maximum of the absolute values of the distance between the model and
the measured data. Another alternative to fit the model to the measured data is the
L1-norm. Here, the sum of the absolute values of the residuals is minimized. Both
cases lead to non-differentiable objective functions. This requires a transformation into
a smooth nonlinear program, which can then be solved with a standard method, e.g.,
an SQP algorithm [Sch02].

We have decided to use the 2-norm here since it has certain advantages. In particular,
this way generates a quadratic objective function in the full discretization approach. This
is numerically advantageous, although we would like to emphasize that the approaches
used in this thesis are not committed to this choice.

Practical Identifiability and Persistent Excitation

Another question that arises with respect to parameter identification concerns the iden-
tifiability of the parameters. On the one hand, the so-called structural identifiability can
be analyzed. The focus here is on whether the used model is well-defined. That is, the
dynamical system under consideration can be solved uniquely and thus, the parameters
can be identified, [BÅ70]. We will not discuss this aspect further here and implicitly
assume it since we consider the model in our context to be given and not free to choose.

The identifiability of parameters in practical applications is very interesting for this
work. This is known as practical identifiability, which refers to whether parameters in
a dynamical model can be effectively identified in concrete applications. The aim is
to determine whether the available model input and output information is sufficient
for parameter identification. For example, identifying the parameter that determines
the steering ratio between the steering wheel and tire angles is crucial in a car model.
However, if arbitrary accelerations, but only constant zero angular velocity, is provided,
the parameter is practically not identifiable.

In offline (system) identification, the term persistent excitation is often encountered.
This involves analyzing how much the input signal excites the system so that model
outputs can be used to determine system parameters. Aström and Wittenmark [ÅW09]
give an excitation condition for linear time-invariant dynamical models. It can be used
to determine the order of persistent excitation (PE) of the input signal, which specifies
the number of parameters that can be determined from this input. For example, the
unit step function is persistently exciting of order one and a random signal would be PE
of any degree. Miranda-Colorado and Moreno-Valenzuela [MM17] analyze various input
signals on PE to identify a nonlinear servomechanism in closed-loop identification. The
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system is nonlinear but linear in the parameters. Further, Adetola and Guay [AG07;
ADG09] examine conditions for parameter convergence that can be checked for some
specific classes of nonlinear systems.

The field of optimal experimental design (OED) deals with the question of how to design
experiments for parameter identification. Essentially, it involves strategically searching
for inputs that allow accurate identification when combined with the corresponding
outputs they produce. Additionally, they also optimize a chosen objective function.
An overview of relevant work in OED for dynamical systems is given, for example, in
Franceschini and Macchietto [FM08]. Experiments are often optimized for the shortest
possible duration or maximum information content. There, the concept of persistent
excitation of the system is also fundamental. For this purpose, formulations based on
the so-called Fisher information matrix (FIM) are often used in the objective functions
to be optimized, Bar-Shalom et al. [BLK01]. Thus, for a given parameter estimator, a
probability statement can be made about the quality of the obtained parameters under
certain assumptions on the model and measurements. In this thesis, the FIM is used in
Chapter 5 to make statements about the information content of the used data within
the proposed algorithm and to decide if a parameter identification should be made.

Evaluation of the Identification Result

The evaluation of parameter identification results can be approached in different ways.
The chosen strategy usually depends on the application. For example, suppose a high-
quality model based on physical assumptions exists for a process to be modeled. In that
case, parameter identification often aims to estimate individual unknown or imprecise
physical parameters. The result of the identification process p ∈ Rnp can then be
evaluated by the distance to the true parameter values p∗ ∈ Rnp .

εp = ∥p∗ − p∥2

is used. This metric is particularly valuable for evaluating algorithm performance when
simulated data is used and the true parameters are known. If a sequence of parameter
estimates {pi}, i = 1, . . . ,M at M ∈ N discrete points in time is available, the root mean
squared error (RMSE) can be considered as a measure:

RMSEp :=

√∑M
i=1(p

∗
i − pi)2
M

.

This will also be the used approach in the following chapters. Note, that for p ∈ Rnp it
applies also that RMSEp ∈ Rnp .

A different approach is required in real-world applications where the true value is un-
known. In this case, model validation is performed to evaluate the identified model.
This is done by splitting the measurements into two sets. With the so-called training
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data {yi}T for i ∈ J ⊂ N, the model is trained on only a subset of the measured data.
The remainder is the validation data {yi}V for i ∈ J̄ ⊂ N. The sets J and J̄ are chosen
so the intersection is empty, i.e., J ∩ J̄ = ∅. Once the identification result is available,
the model is tested with the validation data to determine the model quality. For that,
the error for the validation data is computed by

εV =
1

| J̄ |
∑
i∈J̄

∥x(ti; p, x0)− yi∥22,

where x(ti; p, x0) is the solution of ẋ(t) = f(t, x(t), p), x(t0) = x0 corresponding to the
measurements yi for i ∈ J̄ . This approach is widely used in offline identification and is
especially common in machine learning and neural network training.
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3. Optimal Linear Feedback Control

This chapter presents the theoretical foundations of an adaptive linear quadratic regula-
tor. The basic definitions of linear and nonlinear control systems and the fundamentals
of system theory for linear systems are introduced. Based on this, the linear quadratic
regulator (LQR) problem and its classical solution via the algebraic Riccati equation
are presented. Further, an alternative solution method is demonstrated by solving the
LQR problem as an optimization problem. This approach allows the usage of methods of
parametric sensitivity analysis in the case of parametric perturbations. Thus, a real-time
approximation of the solution of the parametric LQR problem can be applied.

3.1. Fundamentals of Systems Theory

Mathematical systems theory is concerned with finding, formulating, and analyzing theo-
retical statements about the behavior of dynamical control systems, i.e., time-dependent
control systems. These can be formulated in different ways, in continuous-time as well
as in discrete-time, such as transfer functions, ordinary, or partial differential equations.
This chapter will focus on continuous-time models with ordinary differential equations.
An fundamental property of the systems under consideration in the following is the de-
pendence on the control variable u, used to influence the system. Practical examples of
controls are the acceleration and steering angle of a car or the thrusters of a rocket.

When considering a real control process from a system’s theoretical point of view, it
is essential to have a suitable mathematical model available. Next, the definitions of
nonlinear and linear control systems are given. Furthermore, we present how to linearize
nonlinear systems to make the linear theory also applicable to them.

We formulate the definitions for control systems as parameter-dependent systems since
we will refer to them in the following Chapters 4, 5, and 6. For the sake of simplicity,
the following theoretical considerations on controllability and stability in the Subsections
3.1.2, 3.1.3, and 3.1.4 are made under the assumption of a fixed parameter. The chapter
is based on the statements from Grüne [Grü18] and Büskens [Büs19], where also more
detailed explanations of systems theory can be found.
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3.1.1. Control Systems

As a basis for the further discussions, we define for a parameter vector p ∈ Rnp a linear
parametric control system as follows.

Definition 3.1.1 ((Autonomous) Linear Parametric Control System)
Let A : Rnp×[t0, tf ]→ Rnx×nx , B : Rnp×[t0, tf ]→ Rnx×nu , C : Rnp×[t0, tf ]→ Rny×nx ,
D : Rnp × [t0, tf ] → Rny×nu , x : [t0, tf ] → Rnx and u : [t0, tf ] → Rnu be sufficiently
smooth matrix- or vector-valued functions. For t ∈ [t0, tf ] ⊂ R, x0 ∈ Rnx and
p ∈ Rnp a linear parametric control system is given by

ẋ(t) = A(p, t)x(t) + B(p, t)u(t),

x(t0) = x0,

y(t) = C(p, t)x(t) +D(p, t)u(t).

(3.1)

The vector x(t) and the vector u(t) are called the state and the control of the
system. The vector y(t) represents the output variables of the system, where
ny ≤ nx applies. Moreover, t0 indicates the initial time with corresponding initial
state x0. If the system matrices in (3.1) do not depend on the time, i.e.,

A(p, t) ≡ A(p), B(p, t) ≡ B(p), C(p, t) ≡ C(p), D(p, t) ≡ D(p),

the system is called autonomous or time-invariant.

For p ∈ Rnp the linear map A(p, ·) is acting on the state space and is referred to as the
state transition matrix, B(p, ·) the input or control matrix, C(p, ·) the output matrix and
D(p, ·) the feedthrough matrix of the linear parametric control system (3.1). For later
use, we define nonlinear parametric control systems:

Definition 3.1.2 ((Autonomous) Nonlinear Parametric Control System)
Let f : D → Rnx and g : D → Rny be sufficiently smooth functions with D ⊂ Rnx ×
Rnu × Rnp × [t0, tf ] and x0 ∈ Rnx . The problem

ẋ(t) = f(x(t), u(t), p, t),

x(t0) = x0,

y(t) = g(x(t), u(t), p, t),

(3.2)

is called a parametric nonlinear control system. The terms for states and
controls apply accordingly to Definition 3.1.1. If the state and output equations
in (3.2) do not depend on the time, i.e.,

f(x(t), u(t), p, t) ≡ f(x(t), u(t), p), g(x(t), u(t), p, t) ≡ g(x(t), u(t), p),

the system is called autonomous or time-invariant.
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A time-dependent system can be transformed into an autonomous system by introducing
an additional state variable representing the time. If the state of the system remains
unchanged without the influence of controls or disturbances, it is at rest. Such a point
is called an equilibrium.

Definition 3.1.3 (Equilibrium Point)
Assume the autonomous systems from Definition 3.1.1 and 3.1.2 for a fixed p ∈ Rnp

are given. Then the solution (x̂, û) ∈ Rnx × Rnu of the equation

A(p)x̂+B(p)û = 0

or respectively
f(x̂, û, p) = 0

is called equilibrium (point) or stationary point for p.

It can be shown, that any equilibrium (x̂, û) ̸= (0, 0) can be transformed to the stationary
point (x̂, û) = (0, 0), [Büs19]. Thus, it is assumed in the following, without loss of
generality, that the origin (x̂, û) = (0, 0) is the desired equilibrium point.

Linear controllers appear in many practical applications, even if the original control
system is nonlinear. For this purpose, the nonlinear system equations are linearized at
an equilibrium (x̂, û) of the system. Assume (x̂, û) = (0, 0) is an equilibrium for a fixed
p ∈ Rnp . Then the system matrices are given by

A = ∇xf(x̂, û, p), B = ∇uf(x̂, û, p),

C = ∇xg(x̂, û, p), D = ∇ug(x̂, û, p).

The linearization is based on the approximation of the nonlinear functions f(·) and g(·)
by a Taylor series expansion. It is, therefore, sufficiently exact only in a neighborhood
around the operating point. The accuracy of the linearization, therefore, depends on
the distance of the current state x(t) and the control u(t) to the chosen equilibrium
point (x̂, û). In the following, the considerations are restricted to autonomous linear
control systems. This restriction to linear controlled systems facilitates the following ad-
vanced theoretical investigation of the dynamical behavior of the systems. For simplicity,
we will neglect the parameter dependency in the following theoretical considerations of
this chapter. However, all statements remain valid for a fixed p ∈ Rnp .

3.1.2. Controllability

Consider a linear control system with an initial state x(t0) = x0 ∈ Rnx of the form

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) +Du(t).
(3.3)
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A frequently occurring question in the analysis of a system described by (3.3) is con-
trollability, i.e., the possibility to influence the states by manipulating the inputs of the
system. This is examined by searching for points x0, x1 ∈ Rnx and a time t1 for which a
control function u : [t0, tf ] → Rnu can be found, so that x(t1;x0, u) = x1 holds. In this
case, we denote the solution trajectory of the dynamical system (3.3) with initial state
x0 and given control u as x(·;x0, u). In other words, we are searching for points, that
could be connected by a solution trajectory.

Definition 3.1.4 (Controllable/Reachable Point)
Consider the linear control system (3.3).

(i) A state x0 ∈ Rnx is called controllable to a state x1 ∈ Rnx at time t1 > 0,
if and only if there exists a control function u ∈ U([t0, tf ],Rnu) with x1 =
x(t1;x0, u).1

(ii) The point x1 is then called reachable from x0 at time t1.

If any point x0 ∈ Rnx is controllable to any other state x1 ∈ Rnx , then we call the
underlying system (3.3) controllable. By a translation the case of the controllability of
any x0 ∈ Rnx to any state x1 ∈ Rnx can be reduced to the controllability of x̄0 = 0 to any
state x̄1 = x1 − x(t1;x0, 0) ∈ Rnx . For the controllability analysis, this characterization
also motivates to consider the set R(t) of states that can be reached at time t with an
appropriate control u starting from the origin x0 = 0.

Definition 3.1.5 (Controllable/Reachable Set)
Consider the linear control system (3.3).

(i) The reachable set of x0 = 0 at time t ≥ 0 is given by

R(t) = {x(t) ∈ Rnx | there exists u : [t0, tf ]→ Rnu such that x(t) = x(t; 0, u)}.

(ii) The controllable set of x1 = 0 at time t ≥ 0 is given by

C(t) = {x0 ∈ Rnx | there exists u : [t0, tf ]→ Rnu with x(t;x0, u) = 0}.

For the continuous formulation of system (3.3) the relation R(t) = C(t) applies for all
t > 0, cf. [Grü18]. If the system (3.3) is controllable, it is R(t) = Rnx . Note that the
controllability of system (3.3) is independent of the matrices C and D. This is why,
instead of saying that the system (A,B,C,D) is controllable, it is often said that the
pair (A,B) is controllable. Now, we can formulate a constructive tool commonly used
to prove controllability in practice.

1Here U(D, I) denotes a function space that maps from D to I. When considering controls we often
utilize the space of piecewise continuous functions from [t0, tf ] to Rnu , denoted by C0,p([t0, tf ],Rnu).

40



Theorem 3.1.6 (Controllability Criterion of Kalman, [Grü18])
Consider a linear control system of the form (3.3) with state space dimension nx.
Then the following statements are equivalent.

(i) (A,B) is controllable.
(ii) The controllability matrix of (A,B) has full rank, i.e.,

rank
([
B AB . . . An−1B

])
= nx.

The size of the controllability matrix can grow significantly, and the computation of the
rank often leads to numerical difficulties. The Hautus criterion provides an alternative to
check the controllability of linear systems without the need to compute the controllability
matrix. For that all eigenvalues λi and corresponding eigenvectors vi ∈ Rnx , i = 1, . . . , nx
of the matrix A are computed and it is tested whether for all i = 1, . . . , nx it holds that
vTi B = 0, see Grüne [Grü18].

3.1.3. Observability

In many real applications, it is impossible to measure a system’s complete state vector
x(t) to compute the control u(t). In most cases, it can only be assumed that certain
values y(t) ∈ Rny are known. Particularly, the dimension of the output can be smaller
than the number of system states, i.e., ny ≤ nx. In practice, it may be necessary to
reconstruct the states from the measured output variables with the help of the system
dynamics. The concept of state observability specifies whether this possibility exists at
all time points.

Definition 3.1.7 (Observability)
Consider the linear control system (3.3).

(i) A state x ∈ Rnx is called observable if the initial state x0 can be uniquely
determined from the known input function u(t) and the output y(t) on a finite
time interval [t0, t].

(ii) The linear dynamical system (3.3) is called fully observable if every state x ∈
Rnx is observable.

We formulate a criterion for linear autonomous systems of the form

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t).
(3.4)

The following criterion can verify the observability of such a system.
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Theorem 3.1.8 (Observability Criterion of Kalman, [Grü18])
Consider a linear control system of the form (3.4) with state space dimension nx.
Then the system (A,B,C) is fully observable if and only if the observability matrix
has full rank, i.e.,

rank

⎛⎜⎜⎜⎝
C
CA
...

CAn−1

⎞⎟⎟⎟⎠ = nx.

It is said that (A,C) is observable if the system (A,B,C) is observable. Furthermore,
the similarity of the criteria for controllability and observability is remarkable. There is
a duality between observability and controllability, as (A,C) is observable if and only
if (AT , CT ) is controllable, see Heij et al. [HRS06]. This motivates the definition of the
dual problem to system (3.4) by

ẋ(t) = ATx(t) + CTu(t)

y(t) = BTx(t).

The dual system (AT , BT ) is then fully observable if (A,B) is fully controllable. Fur-
thermore, the dual system (AT , CT ) is controllable if (A,C) is observable.

For the rest of this thesis, we will assume full-state feedback for simplicity so that the
observability of the considered system is assumed. The construction of observer methods,
e.g., Luenberger observers, to compute the full system state in case of incomplete state
feedback, can be found in [Tie12].

3.1.4. Stability

In the following, we will introduce the concept of stability of dynamical systems. In
this context, stability means that small perturbations should have a limited effect on
the temporal behavior of the system states. This means that if a system at rest is
brought out of balance, the dynamics automatically counteract the perturbation, and the
system is returned to its original position. Stability is often an important objective when
selecting control functions to achieve satisfactory system performance. Furthermore, we
will introduce how an appropriate choice of the control input variables could stabilize
an unstable system.

When defining stability, we first consider autonomous linear differential systems without
controls of the form

ẋ(t) = Ax(t), x(t0) = x0 ∈ Rnx . (3.5)

Obviously, the null vector is an equilibrium of the system (3.5), i.e., ˙̂x = Ax̂ = 0. As
mentioned before, any rest position x̂ ̸= 0 can be transformed into a rest position with
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x̂ = 0. Thus the question is whether the state vector converges to zero starting from an
initial value x(0) = x0 = 0.

Definition 3.1.9 (Stability)
Let x̂ = 0 be a rest position of the system (3.5).

(i) The rest position x̂ = 0 is stable, if for all ε ∈ R, ε > 0 there exists a δ ∈ R,
δ > 0, such that

∥x(t;x0)∥ ≤ ε

is fulfilled for all t ≤ t0 and for all initial values x0 with ∥x0∥ ≤ δ.
(ii) The rest position x̂ = 0 is called asymptotically stable, if it is stable and

there additionally exists a neighborhood U ⊆ Rnx of x̂, such that for all x0 ∈ U :

lim
t→∞
∥x(t;x0)∥ = 0.

Next, we give a criterion that uses the eigenvalues of the state transition matrix to check
for the stability of the system (3.5).

Theorem 3.1.10 ([Grü18])
Consider the linear time-invariant differential system (3.5) with matrix A ∈ Rnx×nx

with eigenvalues λj ∈ C, λj = aj + ibj and j = 1, . . . , nx. The equilibrium x̂ = 0
is asymptotically stable if and only if all eigenvalues have a negative real part, i.e.,
aj < 0 for all j = 1, . . . , n.

In this case, where every eigenvalue of the matrix A has a strictly negative real part,
A is called a Hurwitz matrix or Hurwitz for short. Another instrument for the analysis
of stability properties are Lyapunov functions, for which a comprehensive theory also
exists for nonlinear model functions, see Grüne [Grü18].

So far, we have considered the stability of systems without control input. For a system
with control inputs, i.e of the form

ẋ(t) = Ax(t) + Bu(t),

x(0) = x0,
(3.6)

the concept of stability can then be transferred as follows.

Definition 3.1.11 (Stabilizability)
A linear system of the form (3.6) is called stabilizable, if for any x0 ∈ Rnx there
exists a control function u(t), such that limt→∞ ∥x(t;x0)∥ = 0 is fulfilled.

If we want to stabilize an unstable system, this can be done by the use of (state) feedback
control. The idea is to use the current state to determine the new input variables. The
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control function u(t) is then defined by the state of the system x(t):

u(t) = µ(x(t)). (3.7)

The function µ : Rnx → Rnu is called a control law. According to our linear setting, it
is reasonable to assume the control law also as linear, i.e., u(t) = −Kx(t). The matrix
K ∈ Rnu×nx is also referred to as feedback gain. Inserting this control law into the
system (3.6) results in a closed-loop system

ẋ(t) = (A− BK)x(t),

x(0) = x0.
(3.8)

Note, that the closed-loop feedback system no longer depends on the control u(t). With
the Definition 3.1.11 and the control u(t) = −Kx(t) we can directly formulate the
following lemma for the stability of the closed-loop system (3.8).

Lemma 3.1.12
A linear system of type (3.6) can be stabilized if and only if there exists a matrix
K ∈ Rnu×nx , so that the system (3.8) is asymptotically stable.

This means that we can use the state feedback to manipulate the system’s stability. By
a sophisticated design of the feedback gain K, the eigenvalues of the system are shifted
into the stable range, i.e., the real parts of the eigenvalues of (A−BK) are negative.

3.2. Linear Quadratic Regulator

The general task of control algorithms is to transfer the current state x(t) of a system
into a specified reference state xref by a suitable selection of the control u(t). There are
numerous approaches to realizing this task. These include the classic P, I, and D con-
trollers and their combination to PID controllers, Lunze [Lun16]. For decades, optimal
controllers have been particularly important in this field. The classical approaches aim
to achieve a reference state using linear state feedback. Optimal controllers additionally
seek to minimize a certain target criterion at the same time, e.g., the energy required
to transfer the system into the target state. The linear quadratic regulator (LQR) is
a well-known linear optimal controller. Another important class of optimal controllers
is the so-called H∞-control, which is particularly robust to model uncertainties and
disturbances, cf. Zhou and Doyle [ZD98].

In the following section, we will discuss the LQR in more detail. First, the definition of
the LQR problem is formulated, followed by a variant form using the LQR for state track-
ing. Then, the classical solution using the algebraic Riccati equation and an alternative
based on solving finite-dimensional nonlinear optimization problems are explained. The
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section is based on the theoretical work of Hespanha [Hes09] and is structured according
to Tietjen [Tie12].

3.2.1. Problem Formulations and the Algebraic Riccati Equation

The linear quadratic regulator problem is formulated as an optimal control problem
with an infinite time horizon. A quadratic objective function and linear constraints
characterize it.

Definition 3.2.1 (Linear Quadratic Regulator Problem)
Let x(t) ∈ Rnx be the state of a linear dynamical system with initial value x(0) =
x0 ∈ Rnx and u(t) ∈ Rnu the control for all t ∈ [0,∞]. With the matrices A ∈ Rnx×nx ,
B ∈ Rnx×nu , Q ∈ Rnx×nx , and R ∈ Rnu×nu we can formulate the linear quadratic
regulator problem or short LQR-problem as

min
x,u

∫ ∞

0

x(t)TQx(t) + u(t)TRu(t) dt

w.r.t. ẋ(t) = Ax(t) + Bu(t),

x(0) = x0.

(3.9)

The LQR approach allows setting the relative influence of the quantities u(t) and x(t) on
the controller design by choosing the entries of the matrices R and Q. These weighting
matrices adjust the behavior of the controller. With higher values for the components
of the matrix Q, the focus is put on the stabilization of the state. If the control effort
should be kept low, this can be realized by higher weights in R. A sophisticated choice
of Q and R is not always intuitive and is often solved as an independent problem with
high numerical effort, Kemper [Kem15].

In Figure 3.1 it is shown how the current system state x(t) is used to determine the
control to

u(t) = −Kx(t).

If the feedback gain K is found by solving the linear quadratic controller problem from
Definition 3.2.1, then an optimal controller is obtained.

Plant

−K

u(t)
C

y(t)

disturbances

x(t)

Figure 3.1.: The control loop
with LQR.
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K

u(t)

Linear-Quadratic
Regulator

C
y(t)

disturbances

x(t)

+

−

xref(t)−

uref(t)
+

Figure 3.2.: The control loop with LQR for tracking
a reference.
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The classical linear quadratic regulator is designed to regulate the system to the final
state xref ≡ 0. However, it can also be modified by a coordinate transformation to
track different states. This is illustrated in Figure 3.2. For this purpose, the desired
trajectory xref (t) to be tracked can be selected beforehand. Furthermore, a reference
control uref ̸= 0 can be chosen, to which the feedback control is then added. As a
result, we obtain the following problem formulation:

Definition 3.2.2 (Linear Quadratic Tracking Problem)
Assume the linear dynamical system from Definition 3.2.1, a reference trajectory
xref (t) ∈ Rnx and a reference control uref = (0) ∈ Rnu . Then we call

min
x,u

∫ ∞

0

(x(t)− xref (t))TQ(x(t)− xref (t)) + (u(t)− uref )TR(u(t)− uref ) dt

w.r.t. ẋ(t) = Ax(t) + Bu(t),

x(0) = x0,

a linear quadratic tracking problem.

In order to apply the linear control law in this case, the transformation must be consid-
ered here as well, and it is

u(t) = −K (x(t)− xref (t)) + uref . (3.10)

This transfer has the advantage that the feedback control strategy can include feed-
forward control strategies. In [Hes09], this problem is also treated under the term
optimal set-point control. A formulation for the discrete case can be found in [Cat89].
We assume to have complete state space information. In the case of incomplete state
space information, an additional output y(t) = Cx(t) with y(t) ∈ Rny and C ∈ Rny×nx

can be considered, compare Definition 3.1.1. In the following, it is shown that the
solution of LQR problems is obtained from the algebraic Riccati equation (ARE). For
this purpose, the ARE is defined, and some special properties of this matrix equation
are given, which are required to solve LQR problems.

Definition 3.2.3 (Algebraic Riccati Equation)
Let A ∈ Rnx×nx , B ∈ Rnx×nu , Q ∈ Rnx×nx and R ∈ Rnu×nu be matrices. If R
is invertible, then the algebraic Riccati equation (ARE) for the linear control
system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0,

is defined as

ATS + SA− SBR−1BTS +Q = 0, (3.11)

with a matrix S ∈ Rnx×nx .
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The following theorem indicates under which assumptions on the matrices A, B, Q, and
R the algebraic Riccati equation has a solution. Furthermore, a special property of the
solution is shown.

Theorem 3.2.4 ([Hes09])
Let Q ∈ Rnx×nx be positive semi-definite and R ∈ Rnu×nu be positive definite.
Furthermore let the system (A,B) be stabilizable and the pair (A,

√
Q) be observ-

able. Then the algebraic Riccati equation (3.11) has exactly one positive definite
solution S∗ and this matrix S∗ is symmetric.

The remarkable result is that the positive definite solution S∗ of the algebraic Riccati
equation (3.11) guarantees an asymptotically stable behavior of the closed-loop system
without the direct consideration of the linear quadratic controller problem. With the
prior information under which assumptions a solution of (3.11) exists, it is possible to use
various numerical solution methods, for example, Newton’s method. A good overview of
different approaches to solve (3.11) is given by Bunse-Gerstner [Bun89]. In the following,
we take an alternative approach to obtain an optimal solution for the (3.9) problem.

3.2.2. Optimal Solution of LQR

With the former statements, the theorem about the optimal solution of LQR problems
can be formulated as follows.

Theorem 3.2.5 (Optimal Solution of LQR)
Let the system (A,B) be stabilizable and (A,

√
Q) observable, Q ∈ Rnx×nx positive

semi-definite and R ∈ Rnu×nu positive definite, then the following statements hold:

• The algebraic Riccati equation

ATS + SA− SBR−1BTS +Q = 0

has a unique positive definite solution S∗.
• The feedback law

u(t) = −Kx(t), t ∈ [0,∞], K := R−1BTS∗

minimizes the (3.9)-problem.
• The optimal objective function value of (3.9) is given by x(0)TS∗x(0).

Proof. See Benner [Ben09].

For this reason, the LQ regulator is often referred to as the Riccati regulator or Riccati
controller. Tietjen [Tie12] shows that the solution of a (3.9) problem is equivalent to the
solution of a corresponding (2.2). For this, the infinite-dimensional optimization problem

47



is transformed into a finite-dimensional unconstrained optimization problem, which can
take advantage of the well-studied results of nonlinear unconstrained optimization theory
and the existing optimality criteria for optimization problems.

Suppose we already have such an optimal feedback law. Then we insert this into (3.9).
This leads to

min
K

∫ ∞

0

x(t)TQx(t) + x(t)TKTRKx(t) dt

w.r.t. ẋ(t) = Ax(t)− BKx(t),
x(0) = x0.

(3.12)

This represents the transformation from an infinite-dimensional optimization problem
in x and u to a constrained finite-dimensional optimization problem in K ∈ Rnu×nx . We
can further simplify this problem by inserting the solution of the differential equation
in the constraints directly into the objective function and thus obtain an unconstrained
nonlinear optimization problem. Since the differential equation in the constraint is linear,
the exact solution is given as a function of the initial value x0 ∈ Rnx and gain K by

x(t;K, x0) = e(A−BK)tx0 , t ∈ [0,∞). (3.13)

Inserting the solution (3.13) into the objective function of the problem in (3.12) results
in the unconstrained finite-dimensional nonlinear optimization problem

min
K

J(K) =

∫ ∞

0

x(t;K, x0)
TQx(t;K, x0) + x(t;K, x0)

TKTRKx(t;K, x0) dt. (3.14)

Tietjen [Tie12] shows that transforming the LQR control process into the NLP prob-
lem (3.12) represents an equivalence. This also clarifies the origin of the gain K for the
formulation of the feedback control law u(t) = −Kx(t). The feedback gain is given by
the uniquely-defined positive definite solution of (3.11). We can now consider the (3.9)
problem without any restrictions as a finite-dimensional nonlinear optimization prob-
lem (2.2). This transfer allows the use of advanced methods from optimization, such
as parametric sensitivity analysis. Furthermore, the idea of real-time approximations of
disturbed solutions can be extended to the class of LQR problems.

3.3. Real-Time Adaption of the Linear Quadratic
Regulator

As we have seen before, solving an LQR problem is equivalent to solving a corresponding
NLP. This solution approach enables the application of parametric sensitivity analysis
methods to parametric LQR problems. In particular, sensitivity information is used
to estimate changes within the control law if disturbances in the parameter values of
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the system matrices occur. The idea of updating the linear feedback matrices by para-
metric sensitivities was first presented for LQR problems with full state feedback by
Büskens [Büs09]. Furthermore, Tietjen [Tie12] extended this approach to systems with
incomplete state feedback and transferred the approximation algorithms to optimal ob-
server methods. The basics of sensitivity analysis for parametric nonlinear programs have
already been shown in Subsection 2.2.2. For further steps, we first need the theoretical
background on how these methods can adapt the LQR gain in the presence of parametric
disturbances. We base our argumentation on the approach of Tietjen [Tie12].

3.3.1. Parameter-Dependent LQR

The linear quadratic regulator problem (3.9) is expanded to nonlinear disturbances p in
the system matrices.

Definition 3.3.1 (Parametric Linear Quadratic Regulator Problem)
Let p ∈ P ⊂ Rnp be the vector of constant parameters and x(t) ∈ Rnx the state of a
system with initial value x0(·) : P → Rnx and u(t) ∈ Rnu the control for all t ∈ [0,∞].
With the mappings A(·) : P → Rnx×nx , B(·) : P → Rnx×nu , Q(·) : P → Rnx×nx and
R(·) : P → Rnu×nu we can formulate the parametric linear quadratic regulator
problem (LQR(p)) as

min
x,u

∫ ∞

0

x(t)TQ(p)x(t) + u(t)TR(p)u(t) dt

w.r.t. ẋ(t) = A(p)x(t) + B(p)u(t),

x(0) = x0(p).

(3.15)

The problem (3.15) corresponds to (3.9) for a fixed p ∈ P . We make the assumption
that for an initial perturbation p0 ∈ P ⊂ Rnp all required assumptions for A(p0), B(p0),
Q(p0) and R(p0) in Theorem 3.2.5 are fulfilled. Then there exists an optimal feedback
law

u(t) = −K(p0)x(t). (3.16)

The notation K(p0) explicitly states the dependence of the gain K on p0. We can now
replace the control in (3.15) with the feedback law (3.16) and transform the infinite-
dimensional problem (3.15) to a parametric finite-dimensional nonlinear optimization
problem with constraints. In general, this can be formulated in (2.7) by

min
x,K,p

J(K, p) =

∫ ∞

0

x(t)TQ(p)x(t) + x(t)TK(p)TR(p)K(p)x(t) dt

w.r.t. ẋ(t) = A(p)x(t)− B(p)K(p)x(t),

x(0) = x0(p).

(3.17)
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Thanks to the existence and uniqueness of initial value problems with linear differential
equations, the constraint’s differential equation possesses a uniquely defined solution
denoted as x(t) = x(t;K(p), p). This solution depends on the perturbation p and the
coefficients of the feedback matrix K(p). The solution can be inserted directly into the
objective function analogous to Subsection 3.2.2. This transforms (3.17) to an uncon-
strained nonlinear parametric optimization problem.

min
K,p

J(K, p) =

∫ ∞

0

x(t;K, p)TQ(p)x(t;K, p) + (Kx(t;K, p))TR(p)Kx(t;K, p)dt (3.18)

When determining a feedback matrix K(p) for a given perturbation p, it is possible to
employ conventional nonlinear optimization techniques, such as the sequential quadratic
programming methods (SQP). This is an alternative to the solution approaches used for
the algebraic Riccati equation.

3.3.2. Adaptive LQR

In the following, we study situations where online parametric perturbations occur. More
precisely, this corresponds to a situation where, during a concrete realization of the Ric-
cati control on a specific application system, deviations ∆p from a given nominal value p0
with p = p0+∆p are expected. In this case, the feedback law given by u(t) = −K(p0)x(t)
is no longer optimal. The control law can even become unstable, which means that the
objective function value is no longer limited, and a new computation of the feedback gain
K(p0 +∆p) is required. Even in less dramatic cases, a new computed gain is desirable,
but usually too time-consuming. We have already shown in Subsection 2.2.3 how the
solutions of nonlinear parametric optimization problems can be updated with respect to
the perturbation parameters through a Taylor approximation. This is done by adapting
the feedback law with sensitivity-based updates. Thus, a real-time alternative to the
recalculation of the feedback gain is provided.

Next, we show under which conditions the optimal gain K(p) is a continuously differen-
tiable function with respect to p, and we present a formula for the computation of the
sensitivity derivatives.

Theorem 3.3.2 (Approximation Theorem for Parametric Linear Quadratic
Regulator Problems)
Let the mappings A(·) : P → Rnx×nx , B(·) : P → Rnx×nu , Q(·) : P → Rnx×nx and
R(·) : P → Rnu×nu and x0(·) : P → Rnx be three times continuously differentiable
with respect to p. For p0 ∈ Rnp let (A(p0), B(p0)) be stabilizable, (A(p0),

√
Q(p0))

observable, Q(p0) ̸= 0 positive semi-definite and R(p0) positive definite. Then there
exists an environment U(p0) ⊂ Rnp of p0 and a uniquely defined continuously differ-
entiable function K(·) : U(p0)→ Rnu×nx with the following properties:
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• For all p ∈ U(p0) the feedback gain K(p) satisfies the necessary and sufficient
optimality conditions of the disturbed (3.15).
• There is exactly one positive definite solution S∗(p) of the algebraic Riccati

equation

A(p)TS + SA(p) +Q(p)− SB(p)R(p)−1B(p)TS = 0,

with
K(p) = R(p)−1B(p)TS∗(p).

• It is
dK(p0)

dp
= −∇2

KJ(K(p0), p0)
−1▽K,p J(K(p0), p0).

• The feedback law
u(t) = −K(p)x(t), t ∈ [0,∞],

is optimal with respect to the perturbed objective function J(K(p), p) and
defines an asymptotic stable feedback system with the objective function value
J(K(p), p) = xT0 S

∗(p)x0.
• For the approximation of the perturbed feedback matrix

K̃(p) = K(p0) +
dK

dp
(p0)∆p,

the following estimates apply for all p ∈ U(p0):

∥K(p)− K̃(p)∥ = O(∥∆p∥2),
∥J(K(p), p)− J(K̃(p), p)∥ = O(∥∆p∥3).

Proof. The proof can be found in [Tie12].

According to Theorem 3.3.2 a solution of the problem (3.15) exists as a function K(p)
which is continuously differentiable with respect to p. To estimate this function in a
point p ̸= p0, we use a first-order Taylor series approximation of the form

K(p) ≈ K̃(p) = K(p0) +
dK

dp
(p0)∆p. (3.19)

This method of sensitivity updates for the feedback law has several advantages. First of
all, the only additional numerical effort to achieve this online method is the multiplication
of the sensitivity derivative dK

dp
(p0) with the perturbation ∆p which generally corresponds

to the multiplication of a tensor of the dimension nu × nx × np with a vector of the
dimension np.
The feedback law of the parametric LQ regulator becomes

u(t) = −K(p)x(t) ≈ −K̃(p)x(t) = −
(
K(p0) +

dK

dp
(p0)∆p

)
x(t). (3.20)
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The nominal solution K(p0) and the sensitivity derivatives dK
dp
(p0) can be computed

offline. Therefore, this method is particularly applicable to real-time operations. The
linear approximation of the perturbed feedback law leads to a quadratic approximation of
the objective function and, thus, to a significant improvement of the solution’s optimality.
This also means a remarkable enhancement in the stability of the solution because the
objective function of an unstable problem would tend to infinity. A disadvantage of the
presented method is that no statements about the size of the environment U(p0) can be
made. Therefore, it is necessary to check for each application which orders of magnitude
are feasible for the parameter perturbations to obtain satisfactory results by parametric
sensitivity analysis. This can be done by numerical simulations.
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4. Nonlinear Model Predictive Control

4.1. Introduction

We now turn to nonlinear feedback control after introducing linear optimal feedback
controllers in the form of LQR. For this purpose, the idea of model predictive control
(MPC) is explained in this chapter. This method allows, in particular, for the control of
constrained processes. Linear model predictive control is theoretically well understood
and is widely used in industrial applications, cf. [ML99; Lee11]. In general, most real
processes are nonlinear, and the necessary linearization of the system introduces inac-
curacies in the control process. Nonlinear model predictive control (NMPC) avoids this
by directly including the nonlinear system model. Figure 4.1 shows the control loop for
model predictive control with full state feedback. It is based on solving nonlinear optimal
control problems (OCP). In an OCP, an optimal control is computed, which transfers
a system from an initial state to a final state. In this process, an objective functional
is minimized, and the differential equations of the system and additional constraints
must be satisfied. Instead of completely executing the found solution on the system,
NMPC applies only a first sequence of the optimal control on the considered system. As
soon as measurements y of the system’s current state are available, the OCP is adapted,
i.e., the new measurements are used as initial values and the time horizon is shifted
forward. Then, the new OCP is solved again. This results in the optimal open-loop
control becoming an optimal closed-loop control strategy. By using a nonlinear model,
the process behavior can usually be predicted better than with controls computed from
a linearized model. Another advantage of NMPC is the straightforward integration of

Plant
Optimal
Control
Problem

Model

u

Model Predictive Controller

+

sensor noise

output
y

y

initial guess
x0,u0

Figure 4.1.: The basic control loop for nonlinear model predictive control (NMPC).

53



equality and inequality constraints in the OCP. However, the good predictive properties
of a nonlinear model predictive controller are also accompanied by difficulties. Among
other things, the computational effort is significantly increased, and the proof of a stabi-
lization property of the controller is more challenging than in the linear case. However,
with certain assumptions on the problem, there are also stability results for NMPC.
For this purpose, terminal constraints are often added as a state constraint to ensure
stability, see Graichen [Gra12]. Comprehensive information on nonlinear MPC can be
found in [GP17; RMD17; RL19].

Section 2.2 provided all preconditions to cope with static optimization problems and
to solve them with numerical methods, like the SQP approach. Furthermore, for the
solution of nonlinear parameter identification problems, we have included constraints
that involve dynamics in time, compare Definition 2.3.2. To solve these problems, we
have used the full discretization of the dynamics. This approach has allowed us to offload
the need for our optimization variables to satisfy the system dynamics at each time point
into the constraints, thus avoiding the costly solution of the differential equation each
time the objective function is evaluated. The original idea of this approach comes from
the solution of optimal control processes. The basis of nonlinear optimal control problems
are usually nonlinear control systems, as we already encountered in Definition 3.1.2. In
this context, the trajectories of the control and state variables that are optimal with
respect to certain selected criteria while preserving the system behavior and constraints
are sought. Moreover, these control problems are the basic modules for nonlinear model
predictive control.

This chapter starts by explaining the basic notions of optimal control theory and derives
Pontryagin’s theoretical conditions for their solvability in Subsection 4.2.1. Then Subsec-
tion 4.2.2 briefly discusses different approaches for the numerical solution of OCPs, par-
ticularly focusing on direct methods. Based on this, the transcription tool TransWorhp
that belongs to the NLP solver Worhp is briefly introduced and explained. The second
part of this chapter is then devoted to the formulation of the NMPC algorithm and
presents the stability statements for different formulation possibilities. Finally, impor-
tant techniques for efficient application are explained. The first part of this chapter on
the theoretical foundations of OCPs is based on Liberzon [Lib11] and Büskens [Büs98].
The second part on NMPC follows the arguments of Graichen [Gra12] and Grüne and
Pannek [GP17].
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4.2. Nonlinear Optimal Control

Henceforth, we will consider autonomous parametric nonlinear control systems of the
same form as in Definition 3.1.2. For t ∈ [t0, tf ] we consider the system:

ẋ(t) = f(x(t), u(t), p), x(t0) = x0 ∈ Rnx . (4.1)

The goal of optimal control is to find control maneuvers u(t) ∈ U ⊆ Rnu that control a
system (4.1) optimally, i.e., minimizing a given cost functional, for a given control task.
We assume without loss of generality that it is t0 = 0. Further, let the components
in the state vector be piecewise continuous differentiable and the controls be piecewise
continuous1:

x ∈ C1
p([t0, tf ],Rnx) and u ∈ C0

p([t0, tf ], U).

Moreover, we assume that for a fixed parameter p, the autonomous function f : Rnx ×
U → Rnx is locally Lipschitz in x to guarantee the existence and uniqueness of solutions,
see Liberzon [Lib11]. We assume the parameter dependence of the dynamical system
in the following but will skip explicitly writing out the parameter notation to keep the
expressions concise.

4.2.1. Standard Nonlinear Optimal Control Problem

Before formulating an optimal control problem, we first need a functional that we want
to optimize. We define this cost functional as follows.

Definition 4.2.1 (Cost Functional)
Let the functions φ : Rnx → R and l : Rnx × Rnu → R be sufficiently often continu-
ously differentiable. Then

J(x, u, tf ) = φ(x(tf )) +

∫ tf

t0

ℓ(x(t), u(t)) dt

is called the objective functional or cost functional.

Here, tf denotes the final time, and x(tf ) is the corresponding final state of the controlled
system. The mapping ℓ is called the running cost and φ the final cost. The optimal
control process is called a Bolza problem using this type of objective functionals. If the
final cost is zero, it is called a Lagrangian problem. The final cost is also called the
Mayer term. If φ ̸= 0 holds and at the same time the running cost vanishes, the OCP is

1Here, Cj(I,Rn) denotes the class of j-times continuously differentiable functions from a domain
I ⊂ Rk to Rn, and Cj

p(I,Rn) ⊂ Cj−1(I,Rn) the class of j-times piecewise continuously differentiable
functions. This is a standard notation where Cp refers to piecewise and is not related to the
parameters at this point.
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called Mayer problem. The different representations of an optimal control problem are
equivalent and can be transformed into each other, compare Liberzon [Lib11].

A distinction is made between problems with fixed final time tf and those with free final
time. If the objective of a control problem is to minimize the final time, i.e., to drive the
system to the desired state as quickly as possible, the cost functional is of the form

J(x, u, tf ) =

∫ tf

t0

1dt.

In this case, tf is introduced as an additional optimization parameter. Thus, a problem
with free final time can be transformed into a problem with fixed final time. Therefore,
in the following, we assume problems with fixed final time.

The optimal control problem can now be formulated as the minimization problem of
the cost functional J(x, u) while satisfying the dynamical control system (4.1). Often,
additional constraints are imposed on the initial state x(t0) and final state x(tf ). For
this purpose, we consider boundary constraints ψ(x(t0), x(tf )) = 0 depending on the
initial and final states of the system. In many applications, we also need to impose more
general constraints on the states and the controls in the form of inequality constraints
c(x(t), u(t)) ≤ 0 for almost all time points t ∈ [t0, tf ]. These additional constraints are
often referred to as path constraints. If the constraints c depend only on the states x,
we speak of state constraints. If the function c, in turn, depends only on the controls u,
the constraints are called control constraints. Often these are simple box constraints
umin ≤ u(t) ≤ umax for t ∈ [t0, tf ] and umin, umax ∈ Rnu .

Definition 4.2.2 (Optimal Control Problem (OCP))
Let J(x, u) be a nonlinear functional according to Definition 4.2.1. Then the problem

min
x,u

J = φ(x(tf )) +

∫ tf

t0

ℓ(x(t), u(t)) dt

w.r.t. ẋ(t) = f(x(t), u(t)), t0 ≤ t ≤ tf ,

ψ(x(t0), x(tf )) = 0,

c(x(t), u(t)) ≤ 0, t0 ≤ t ≤ tf ,

(4.2)

is called an optimal control problem (OCP). The constraints are defined by
sufficiently often continuously differentiable functions ψ : Rnx × Rnx → Rnψ and
c : Rnx × Rnu → Rnc with nψ, nc ∈ R, 0 ≤ nψ ≤ 2nx.

How can the solutions of such an optimal control problem with fixed final time be
characterized? First, this can be done by their admissibility and, in the second step, by
their optimality.
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Definition 4.2.3 (Admissible and Optimal Solution)
A solution (x∗, u∗) of the system (4.1) that satisfies the constraints of (4.2) on the
time interval [t0, tf ] is called an admissible solution. Moreover, if the admissible
solution (x∗, u∗) satisfies

J(x∗, u∗) ≤ J(x, u, p),

for all admissible solutions (x, u) then it is called optimal solution. In this case,
the vector x∗ denotes the optimal trajectory and u∗ the optimal control of the
problem (4.2).

Necessary Optimality Conditions

For the formulation of necessary conditions and the famous Pontryagin minimum prin-
ciple, we consider an 4.2 without path constraints. The dynamical system is assumed
to be autonomous, and the cost function is assumed to be time-independent. The Pon-
tryagin minimum principle was established by Pontryagin around 1955 as a maximum
principle and proved in the following years by Pontryagin et al. [Pon+62]. Together
with the Hamilton-Jacobi-Bellman equation, it represents the central theory of optimal
control for characterizing optimal solutions of optimal control processes. We start with
defining the Hamiltonian function and introduce adjoint variables.

Definition 4.2.4 (Hamiltonian and Adjoint Variable)
Let λ0 ∈ R be a constant and λ ∈ Rnx a column vector. Then the function
H : Rnx × Rnu × Rnx × R→ R defined as

H(x, u, λ, λ0) := λ0ℓ(x, u) + λTf(x, u)

is called the Hamiltonian to the control process (4.2). The vector λ is called
adjoint variable or co-state to x.

The main result of the theory of optimal control processes can now be formulated.

Theorem 4.2.5 (Pontryagin Minimum Principle)
Let the functions φ, ℓ, f , and ψ be continuous, and continuous differentiable with
respect to x and u. Further, let (x∗, u∗) be an optimal solution of the problem (4.2)
without state-control or state constraints.
Then, there exist multipliers λ0 ∈ R, ρ ∈ Rnψ and a continuous and a piecewise
continuously differentiable function λ(t) : [t0, tf ]→ Rn, such that the following hold:

(i) It is l0 ≥ 0, (l0, ρ, λT (t)) ̸= 0, ∀ t ∈ [t0, tf ].
(ii) For all points t ∈ [t0, tf ] in which u∗ is continuous, it holds
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(a) the optimality condition

H(x∗(t), u∗(t), λ(t), l0) = min
u∈U
H(x∗(t), u(t), λ(t), l0),

(b) and the adjoint differential equation

λ̇T (t) = −∇xH(x∗(t), u∗(t), λ(t), λ0),

(iii) The transversality conditions apply:

λ(t0) = −∇x(t0)(λ0φ(x
∗(tf )) + ρTψ(x∗(t0), x

∗(tf )))
T ,

λ(tf ) = ∇x(tf )(λ0φ(x
∗(tf )) + ρTψ(x∗(t0), x

∗(tf )))
T .

(iv) In the special case of autonomous processes it is

H(x∗(t), u∗(t), λ(t), l0) = constant, ∀ t ∈ [t0, tf ].

(v) In the case of a free final time tf it holds

H(x∗(t∗f ), u∗(t∗f ), λ(t∗f ), l0) = 0.

Proof. A proof can be found in [Lib11].

The minimum principle leads to a two-point boundary value problem that has to be
solved. However, finding analytical solutions is often difficult, even for small problems
with simple dynamics. An analytical solution is rarely possible in more complex appli-
cations, so numerical algorithms are needed to approximate the solutions.

4.2.2. Numerical Solution Methods

The solution methods for optimal control problems can be divided into two approaches:
the direct and the indirect methods. In this thesis, direct methods are applied. For this
reason, the indirect approaches are discussed very briefly before the implementation of
the direct methods is described in more detail.

Indirect Methods

Indirect methods use the Pontryagin minimum principle and reduce the problem (4.2)
to a two-point boundary value problem. The necessary optimality conditions of the
optimal control theory are used to eliminate the control u from (4.2). For this purpose,
a Hamiltonian function is introduced as described in Section 4.2.1, and Pontryagin’s
minimum principle 4.2.5 is used. The obtained boundary value problem can be solved
by shooting methods [BS05]. Indirect methods are known for their high accuracy but
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require a deep understanding of the control theory by the user. Additionally, providing
accurate initial estimates for the adjoint variables can be challenging [Büs98; Lib11].

Direct Methods

The direct solution approach is based on the direct discretization of control and
state variables, which approximates the infinite-dimensional problem (4.2) by a finite-
dimensional nonlinear optimization problem (2.2). The resulting optimization problem
can then be solved with appropriate methods, such as the SQP method presented in
Section 2.2.1. This also has the advantage that comparatively little theoretical knowl-
edge from the field of control theory is required for its application. In addition, the
solution of the adjoint equations is avoided, but if necessary, they can be computed
afterward from the NLP solution. In the past, one of the main disadvantages of direct
methods was the low accuracy of the solution. Today’s high computing capacities allow
for fast computation times and large memory capacities. So, a fine discretization of
the problems can be used, and highly accurate solutions are obtained. Today’s high
computing power allows for fast computation times and large memory capacities so that
a fine discretization of the problems can be used and highly accurate solutions can be
obtained.

For the numerical solution, the integral in the objective function and the right-hand side
of the differential equations of (4.2) have to be evaluated. For this, we need approxima-
tions of the states and controls at selected grid points. To get them, the time interval
[t0, tf ] is replaced by an equidistant grid Gh with discrete-time points τi for i = 0, . . . , N
and N ∈ N, compare Subsection 2.4.1. Then the states are discretized at these time
points,

x̃i ≈ x(τi), for i = 0, . . . , N.

The discretization of the controls is done analogously by

ũi ≈ u(τi), for i = 0, . . . , N.

All discretized states and controls are then summarized in a state and control vector

x̃ := (x̃T0 , . . . , x̃
T
N)

T ∈ Rnx·(N+1)

and
ũ := (ũT0 , . . . , ũ

T
N)

T ∈ Rnu·(N+1).

Then the differential equations in (4.1) can be discretized with any integration scheme
as described in Subsection 2.4.1, e.g., an explicit Runge-Kutta method, cf. (2.15). If
the integral term, i.e., the running cost, (4.2) is nonzero, then the integral is numerically
approximated between two time points τi and τi+1 by∫ τi+1

τi

ℓ(x(t), u(t)) dt ≈ (τi+1 − τi)ℓ(x̃i, ũi).
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A more general integration rule is obtained using Euler’s method. With∫ τi+1

τ0

ℓ(x(t), u(t)) dt ≈
∫ τi

τ0

ℓ(x(t), u(t)) dt+ (τi+1 − τi)ℓ(x̃i, ũi), for i = 0, . . . , N − 1,

we get ∫ τf

τ0

ℓ(x(t), u(t)) dt ≈
N−1∑
i=0

(τi+1 − τi)  
=h

ℓ(x̃i, ũi).

Further approximation methods for integrals, also called quadrature formulas, can be
found in Schwarz and Köckler [SK11]. We obtain the discretized version of (4.2) after
full discretization.

Definition 4.2.6 (Discretized Optimal Control Problem (dOCP))
Let Φ(x̃, ũ;h; f) be a one-step method with step size h and Gh an equidistant grid
of the time interval [t0, tf ] with the discrete time points τi ∈ Gh, τ0 < τ1 < · · · < τN .
Then

min
x̃,ũ

J = φ(x̃0, x̃N) +
N−1∑
i=0

hℓ(x̃i, ũi)

w.r.t. x̃i+1 − x̃i − h · Φ(x̃, ũ;h; f) = 0, for i = 0, . . . , N − 1,

ψ(x̃0, x̃N) = 0,

c(x̃, ũ) ≤ 0,

(4.3)

describes the discretized optimal control problem to Definition 4.2.2.

The states x̃ and control ũ can be combined into a vector z ∈ R(nx+nu)·(N+1) of opti-
mization variables and also the constraints can be grouped together, thus obtaining a
finite-dimensional optimization problem of the form (2.2)

min
z

F (z),

w.r.t. gi(z) ≤ 0, i = 0, . . . ,m.

This problem can now be solved with known methods and solvers for NLPs, such as
Worhp.

4.2.3. TransWORHP

The software library TransWorhp (’Transcription for Worhp’) extends the NLP
solver Worhp from Subsection 2.2.4 with methods for solving optimal control prob-
lems [KB12]. Different direct methods for transcribing the optimal control problem into
an optimization problem are provided, such as full discretization, multiple shooting, and
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pseudospectral methods. The resulting nonlinear optimization problem is then solved
using Worhp.

In the context of this work, we use the full discretization approach to solve both the
dynamic parameter identification problems, as described earlier in Section 2.4, and the
optimization problems that arise in the context of nonlinear model predictive control.
TransWorhp currently provides Euler’s method, the trapezoidal rule, and the Hermite-
Simpson method as integration methods for solving the differential equation system.
This work primarily uses the trapezoidal method presented in (2.16). It is applied to
integrate system dynamics in both the parameter identification problems in Chapter 5
and Chapter 6 and the OCPs that arise in the context of NMPC in Chapter 6. Only
for the offline computation of the feedback gain K(p0) in the adLQR+PI-Algorithm 5.1,
the Hermite-Simpson method described in (2.17) is applied. In full discretization, all
control variables and all state variables are used for optimization, which can lead to
very large NLP problems depending on the level of refinement of the discretization grid.
However, these problems have sparse structures in the derivative matrices, so they can
be solved particularly efficiently with Worhp, cf. Section 2.4.3. For Worhp and
TransWorhpthe user can choose from different. For example, they allow for a choice of
transcription methods.

The transcription tool has been successfully used in many different areas of industry and
research. For example, TransWorhp has been used in the context of optimal maneuver-
ing of ships [RWB17]. Further, Rick et al. [Ric+19] apply the transcription tool to OCPs
in a model predictive controller for an autonomous driving project. Other applications
include optimal trajectory planning for robots [Rau14], space applications [KB19], and
parameter identification of dynamical systems [Ech14; Sch+18]. Next, we address the
role of optimal control problems in nonlinear model predictive control.

4.3. The Basic Principles of NMPC

An NMPC algorithm aims to determine a nonlinear control law for a nonlinear con-
strained system. Common applications are stabilization tasks or state-tracking tasks.
The general NMPC method is based on the repeated solution of dynamic optimal con-
trol problems on a moving finite time horizon. System dynamics and possible state and
control constraints need to be considered. A distinction is made between the general
process time t ∈ [t0, tf ] ⊂ R and the internal time τ ∈ [0, T ]. Here T denotes the
prediction horizon on which the state trajectory of the system is predicted.

Figure 4.2 shows schematically how the NMPC algorithm works. At the current process
time tk, k ∈ N+

0 , the internal time is τ = τ0 := 0. The current measured value of the
system at this time xk := x(tk) is used as the initial value for the current optimal control
problem. Thus, x̄[k]0 := x̄[k](τ = 0) = xk applies to the internal trajectory. Using the
system dynamics, the future behavior on the prediction interval [0, T ] can be predicted.
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Figure 4.2.: Schematic visualization of the NMPC procedure at time tk; using the current
measurements xk, an OCP with x̄[k]0 = xk is solved on the prediction horizon [0, T ] and
the optimal control ū∗ is applied on the interval [tk, tk+1].

By solving the optimal control problem, an optimal control ū∗,[k](τ ; x̄[k]0 ) for τ ∈ [0, T ] is
obtained that minimizes a previously defined objective functional J(x̄[k]0 , ū

[k]).
The predicted trajectories of the states and the controls are each shown as dashed blue
lines in Figure 4.2. The measurements of the real system are represented as points
{xk, xk−1, . . . , x0} and {uk, uk−1, . . . u0}. If the used model perfectly represents the sys-
tem behavior and no external disturbances affect the process, and if the optimal control
process could be solved on an infinite time horizon, the computed solution would be
optimal for all t ≥ tk. In reality, the solution of an OCP on an infinite time horizon
can only be approximated numerically. Moreover, disturbances and model uncertainties
exist in almost every real-world application. External influences, such as wind or tem-
perature changes, may occur, or internal parameters change over time, e.g., resistances.
As a result, measurements x(tk+T ) usually deviate from the predicted system behavior
x̄[k](τ = T ). To be able to react to uncertainties, only the first part of the computed
control is applied to the process:

u(tk + τ) = ū∗,[k]
(
τ ; x̄

[k]
0

)
for τ ∈ [0,∆t), (4.4)

where ∆t = tk+1 − tk is the sampling time. The corresponding trajectory of the states
is given by

x(tk + τ) = x̄∗,[k]
(
τ ; x̄

[k]
0

)
for τ ∈ [0,∆t). (4.5)

When new measurements xk+1 are provided at time tk+1, the time interval for the optimal
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control problem is shifted forward by ∆t in time. The new data xk+1 is used as the initial
state, and a new control is determined by solving the revised OCP on the shifted time-
domain τ ∈ [0, T ]. Therefore, the terms receding horizon control or moving horizon
control are often used synonymously with model predictive control. Overall, the system
trajectories of x(t) and u(t) are composed of the optimal solutions x̄∗,[k](τ) and ū∗,[k](τ)
on the time segments of the successive NMPC iterations. Thus, with consecutive process
time t ∈ [t0,∞), we obtain:

u(t) = u(tk + τ) = ū∗,[k]
(
τ ; x̄

[k]
0

)
for τ ∈ [0,∆t),

x(t) = x(tk + τ) = x̄∗,[k]
(
τ ; x̄

[k]
0

)
for τ ∈ [0,∆t),

for t ∈ [tk, tk+1), k ∈ N+
0 . Since it is x̄[k]0 = xk the definition of u(t) corresponds to the

definition of a feedback control law in (3.7), that we already used in the linear case. The
reference state xref (t) is the desired equilibrium state to which the system should be
transferred or stabilized. It is common to consider the stabilization of the origin of the
system, f(0, 0) = 0. This is because any other equilibrium (xref , uref ) ∈ Rnx ×Rnu with
f(xref , uref ) = 0 can be transformed to the origin by

x̂ = x− xref and û = u− uref .

However, a time-dependent (previously determined) trajectory can also be followed. For
this purpose, the distance to the predicted trajectory to xref (t) is minimized within the
objective function of the OCP. This is done in addition to optimizing the control effort.
Continuing as before in Definition 4.2.1, we consider an objective functional of the form

J(xk, ū) = φ(x̄(T )) +

∫ T

0

ℓ(x̄(τ), ū(τ)) dτ.

Basic assumptions for the existence of a solution are that the integral cost term ℓ(x̄, ū)
and the final cost φ(x̄) are continuously differentiable in their arguments and positive
definite functions with ℓ(0, 0) = 0 and φ(0) = 0. Further, for theoretical stability
statements, we need that for certain constants cℓ, Cℓ > 0 and cφ, Cφ > 0 the following
quadratic estimates are valid:

cℓ(∥x∥2 + ∥u∥2) ≤ ℓ(x, u) ≤ Cℓ(∥x∥2 + ∥u∥2), (4.6)
cφ∥x∥2 ≤ φ(x) ≤ Cφ∥x∥2. (4.7)

A typical choice for the objective function is equivalent to our former Definition 4.2.1:

J(xk, ū
[k]) = x̄[k](T )TPx̄[k](T ) +

∫ T

0

x̄[k](τ)TQx̄[k](τ) + ū[k](τ)TRū[k](τ) dτ, (4.8)

with symmetric and positive definite weighting matrices P ∈ Rnx×nx , Q ∈ Rnx×nx , and
R ∈ Rnu×nu . These can be used by the user to choose a weight between running and
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final costs. The optimal control problem that has to be solved at time tk ∈ [t0, tf ] within
an MPC iteration can be represented more generally as:

min
ū[k]

J(x̄
[k]
0 , ū

[k]) = φ(x̄[k](T )) +

∫ T

0

ℓ(x̄[k](τ), ū[k](τ)) dτ

w.r.t. ˙̄x[k](τ) = f(x̄[k](τ), ū[k](τ)), τ ∈ [0, T ],

x̄[k](0) = xk,

x̄[k](T ) ∈ S,
x̄[k](τ) ∈ X, τ ∈ [0, T ],

ū[k](τ) ∈ U, τ ∈ [0, T ].

(4.9)

It is assumed that the function on the right-hand side of the differential equation system
in problem (4.9) is continuously differentiable and that for every x̄

[k]
0 ∈ X and every

control trajectory ū[k](τ) ∈ U , τ ∈ [0, T ] exists a bounded solution of the dynamical
system. Moreover, let f(0, 0) = 0 and establish the initial conditions based on the
current measured states xk. In (4.9), the states and control constraints are given by sets
to simplify the formulation of stability statements for model predictive control:

x̄[k](τ) ∈ X ⊆ Rn, for all τ ∈ [0, T ],

and,
ū[k](τ) ∈ U(x) ⊆ Rnu , for all τ ∈ [0, T ].

For the following theoretical statements, some further assumptions are needed on the
sets X and U(x), among others. It is assumed that X and U(x) are convex and that
U(x) is additionally compact. Moreover, the origin should lie inside the sets:

0 ∈ X ⊆ Rnx and 0 ∈ U ⊆ Rnu .

Furthermore, we introduce the set for terminal conditions S ⊆ X with 0 ∈ S. This
is important in model predictive control for the stability propositions in the following
Section 4.4. Assuming that the optimal control process (4.9) is solvable, the basic
procedure of nonlinear model predictive control can be summarized in Algorithm 4.1.
The central question now is under which conditions stability according to Definition 3.1.9
can be shown for the NMPC process.

4.4. Different NMPC Formulations and Stability

The applicability of NMPC to real processes depends crucially on the efficient solution
of the optimal control problem and the stability of the closed-loop system. Even if the
optimization algorithm finds a solution to the OCP, this fact alone does not guarantee
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Algorithm 4.1 Basic Nonlinear Model Predictive Control (NMPC)
1: Set time t0 = 0.
2: Choose a prediction horizon T for the OCP.
3: Set iterator k = 0.
4: Measure the current system state x(tk).
5: Set the initial state of the OCP to x̄

[k]
0 = x̄[k](τ0 = 0) := x(tk) and solve 4.9 on

τ ∈ [0, T ].
6: Denote the obtained optimal control sequence ū∗,[k](·) ∈ U and apply its first se-

quence as control to the system for the sample time ∆t.
7: Set k = k + 1 and continue with point 4.

closed-loop stability. The main results concerning closed-loop stability for nonlinear sys-
tems are based on very different techniques. These include using terminal constraints
or penalty terms in the objective functional and Lyapunov functions or invariant sets.
Usually, the regulator problem, i.e., the stabilization of the origin, is considered in the
state-space framework [CB07]. The definition of stability, we introduced for linear sys-
tems in Definition 3.1.9, is also valid for nonlinear systems. Without loss of generality,
the origin is considered as an equilibrium of the system. The length of the prediction
horizon and possible terminal conditions have an important influence on the stability
of the MPC scheme. Thus, terminal constraints of the form x̄[k](T ) ∈ S can be help-
ful to guarantee the stability. However, guaranteeing the existence of a solution in the
constrained MPC formulation is difficult, and the numerical effort required to solve the
OCP is usually much higher than in the case of a free final state. For this reason, these
aspects are the focus of the following statements. The former assumptions on the state
and control sets will enable the following statements. Note that in applications, it is
often hard or impossible to verify them, and the applicability of NMPC is proven by
numerical experiments.

4.4.1. Infinite Time Horizon

For better readability, we omit writing the index of the OCP in this section. Consider
first the optimal control problem with an infinite time horizon.

min
ū

J(x̄0, ū) =

∫ ∞

0

ℓ(x̄(τ), ū(τ)) dτ

w.r.t. ˙̄x(τ) = f(x̄(τ), ū(τ)), τ ∈ [0,∞),

x̄(0) = xk,

x̄(τ) ∈ X, ū(τ) ∈ U, τ ∈ [0,∞).

(4.10)

The problem has neither a terminal cost term in the objective functional nor terminal
constraints. This is because, if there exists an optimal solution (x̄∗, ū∗) of Problem (4.10),
then the objective functional must have a finite value, i.e., limτ→∞ ℓ(x̄∗(τ), ū∗(τ)) = 0.
Thus, the desired final states are reached for an objective functional with integral term
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satisfying condition (4.6). A first theorem on the stability of the NMPC algorithm can
be formulated.

Theorem 4.4.1 (Stability of NMPC with Infinite Time Horizon, [Gra12])
Let the set Γ ⊆ X of all initial conditions xk, for which the optimal control process
with infinite time horizon (4.10) is solvable, be nonempty. Then, the origin of the
controlled system (4.1) is asymptotically stable in terms of limt→∞ ∥x(t)∥ = 0.

Since the solution of an optimal control process with an infinite time horizon can only
be approximated numerically, statements for problems on finite time horizons are more
relevant for us.

4.4.2. Finite Time Horizon

To ensure stability despite a finite time horizon T <∞, several options are presented in
[Gra12]. The first version provides equality constraints on the final state. The resulting
optimal control problem then becomes

min
ū

J(x̄0, ū) =

∫ T

0

ℓ(x̄(τ), ū(τ)) dτ

w.r.t. ˙̄x(τ) = f(x̄(τ), ū(τ)), τ ∈ [0, T ],

x̄(0) = xk,

x̄(T ) = 0,

x̄(τ) ∈ X, ū(τ) ∈ U, τ ∈ [0, T ].

(4.11)

This demands that the optimal state trajectory x̄∗(τ ; x̄0) reaches the origin exactly at the
end of the prediction horizon T . Assuming that, the following theorem holds.

Theorem 4.4.2 (Stability of NMPC with Finite Time Horizon and Termi-
nal Constraint, [Gra12])
Let the set Γ ⊆ X of all initial conditions xk, for which the optimal control process
with finite time horizon (4.11) is solvable, be nonempty. Then, the origin of the
system (4.1) is asymptotically stable.

The set Γ is the region of attraction and can become very small, especially for a short
prediction horizon T . In practice, especially when disturbances occur, this can lead to
the fact that solvability can no longer be guaranteed. In addition, the equality constraint
can increase the numerical solution effort. Alternative formulations replace the equality
constraint with a final region. For this purpose, a set Sε ⊆ X with 0 ∈ Sε is defined, in
which the final states should lie. The optimizer is given some freedom by softening the
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constraints, which may increase its convergence rate. Moreover, the terminal conditions
in the objective functional are again considered by adding the function φ(x(T )).

min
ū

J(x̄0, ū) = φ(x(T )) +

∫ T

0

ℓ(x̄(τ), ū(τ)) dτ

w.r.t. ˙̄x(τ) = f(x̄(τ), ū(τ)), τ ∈ [0, T ],

x̄(0) = xk,

x̄(T ) ∈ Sε,
x̄(τ) ∈ X, ū(τ) ∈ U, τ ∈ [0, T ].

(4.12)

If additional assumptions are imposed on the final region, asymptotic stability can be
proved:

Theorem 4.4.3 (Stability of NMPC with Finite Time Horizon and Termi-
nal Region, [Gra12])
Let the set Γ ⊆ X of all initial values xk, for which the optimal control process with
finite time horizon described in (4.12) is solvable, be nonempty. Moreover, let the
set Sε = {x ∈ Rnx | φ(x) ≤ ε} ⊆ Γ with ε > 0 be compact and nonempty. Further,
let there exist a control law µ(x) ∈ U for all x ∈ Sε such that

∂φ

∂x
f(x, µ(x)) + ℓ(x, µ(x)) ≤ 0, ∀ x ∈ Sε (4.13)

holds. Then the origin of the system (4.1) is asymptotically stable.

The above Theorem 4.4.3 requires the existence of a control law µ(x) such that the
final cost weight φ(x) satisfies the inequality (4.13). This inequality is also known as
the control Lyapunov inequality. A function φ(x) that satisfies (4.13) is called a control
Lyapunov function. In linear MPC, the control Lyapunov inequality can be guaranteed in
a relatively straightforward (and even global) way by using the solution of the algebraic
Riccati equation to formulate the terminal cost term and using the LQR controller as a
feedback law. In the nonlinear case, an additional weighting must be introduced between
the terminal cost term and the integral term in the objective functional to ensure the
existence of a nonvanishing terminal region Sε. More approaches to the construction of
φ can be found in Chen and Allgöwer [CA98].

Using a final region Sε instead of a strict equality constraint, the set of initial values for
which the optimal control process is solvable has significantly increased. The set should
be as large as possible, preferably Sε = X. This yields the same optimal control problem
as in (4.12), but with free final states:

min
ū

J(x̄0, ū) = φ(x(T )) +

∫ T

0

ℓ(x̄(τ), ū(τ)) dτ

w.r.t. ˙̄x(τ) = f(x̄(τ), ū(τ)), τ ∈ [0, T ],

x̄(0) = xk,

x̄(τ) ∈ X, ū(τ) ∈ U, τ ∈ [0, T ].

(4.14)
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Finally, although there are no explicit conditions on the final states in the optimal
control problem, the asymptotic stability again depends on the existence of a final re-
gion Sε.

Theorem 4.4.4 (Stability of NMPC with Finite Time Horizon, [Gra12])
Let the set Γ ⊆ X of all initial values xk, for which the optimal control process (4.14)
is solvable, be nonempty. Moreover, there exists a compact and nonempty set Sε =
{x ∈ Rnx | φ(x) ≤ ε} ⊆ Γ with ε > 0 and a control law µ(x) ∈ U(x) for all x ∈ Sε
such that

∂φ

∂x
f(x, µ(x)) + ℓ(x, µ(x)) ≤ 0, ∀ x ∈ Sε (4.15)

holds. Then the origin of the system (4.1) is asymptotically stable.

Graichen [Gra12] shows that in this case the region of attraction is defined as the compact
set

Γα = {x ∈ Γ| J(x̄0 = x, ū∗) ≤ α}, with α = β

(
1 +

cℓ
Cφ

T

)
. (4.16)

Here, the constants cℓ, Cφ > 0 are from our assumptions in (4.6). In particular, it
is emphasized that the region of attraction increases with a longer prediction horizon.
Accordingly, the set of solvable problems and, in particular, the set of controllable per-
turbations can be influenced by the choice of the prediction horizon.

To summarize, the theoretical aspects of nominal stability for nonlinear model predictive
control are understood very well, and many different NMPC formulations can be used
to guarantee the stability of the closed-loop control system. However, many practical
problems exist in NMPC, that are the motivations of current research, for example,
robust NMPC methods, [GP17; LP14].

4.5. Further Considerations on NMPC

Many advanced challenges and problems, such as the delays caused by computation
times, need to be considered in the context of NMPC. In the following sections, we
address some of these issues, but it is beyond the scope of this thesis to go into detail.

Length of the Prediction Horizon

We have just observed that a longer prediction horizon can increase the stability of the
considered MPC problem. However, with a larger prediction horizon, the computation
time required to solve the OCP also increases. Further, when considering problem (4.10),
we have shown that stability can be guaranteed for an infinitely long horizon even
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without a final cost term. Thus, the obvious question is whether asymptotic stability
can also be guaranteed without final cost weighting for a sufficiently long horizon.

If a problem formulation without final cost term in the objective functional and with-
out final state constraints is considered, exponential stability can be shown under more
restrictive assumptions, [Gra12; GP17]. Among other things, the (local) Lipschitz con-
tinuity of the control law is required here. However, it is only ensured that a finite
minimum horizon Tmin exists so that the controlled system is stable for all T ≥ Tmin.
Nevertheless, in practice, this value is usually yet to be discovered. In particular, the suf-
ficient size of the prediction horizon depends strongly on the system under consideration
and is usually determined through simulation.

In general, the lowest possible computation time for the OCP is a crucial point for
the applicability of NMPC methods. NMPC formulations with final cost weighting or
with a sufficiently long horizon are particularly well suited for implementation in the
real process since the numerical effort is usually lower for formulations with a free final
state. Moreover, the computational effort is significantly influenced by the length of the
prediction horizon and the number of discretization points. Therefore, problem-specific
trade-offs between accuracy and performance have to be made.

Computation Times of the OCPs

The presented standard NMPC Algorithm 4.1 assumes that the considered optimal
control problems can be solved immediately and that the computed control sequence is
instantly applied to the process. In practice, however, it is clear that the computation
time will always lead to delays. For relatively slow processes, such as production planning
or chemical processes, this can often be feasible without further problems. Special
techniques may need to be applied to incorporate computation time for faster dynamics,
such as robotics or autonomous vehicles with low response times. Some of the most
interesting results in this direction include real-time iterations [Die+05], advanced-step
NMPC [ZB09], and multilevel iterations [Kir+10].

The problem of time delay can be illustrated as follows. At any point in time tk within
the NMPC procedure, the initial states xk = x(tk) are measured, and an OCP is solved.
This requires a time span ∆t. At the time tk+∆t, the resulting optimal control sequence
is applied to the system with the initial states x(tk+∆t)) instead of tk and xk. The more
computing time is spent on solving the OCP, the longer is the delay. The delay generally
causes the computed control sequence to be no longer optimal but only suboptimal. In
the worst-case scenario, this can lead to infeasibility or even instability. Therefore,
strategies for reducing delays or dealing with delays are recommended, especially for
fast-sampled systems, La [La16].

• One approach yields to make the solution of the OCP faster by not waiting for the
full convergence of the optimization algorithm but performing only a few iterations.
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Often, this provides a good approximation of the optimal solution. For this pur-
pose, the solver performs only a few iterations that fulfill certain properties, such
as the reduction of the target function, see, for example, the section nonoptimal
NMPC in [GP17].
• Another concept are real-time iterations or real-time NMPC, [Die+05]. This is also

a Newton-type method for optimization in NMPC. The process is characterized by
a parallel solution of the system dynamics and the current solution estimates of
the optimizer, resulting in an efficient online optimization algorithm.
• A different concept for dealing with delays is advanced-step NMPC. The main idea

of this approach is to use the current control action to predict the future state of
the plant to solve the OCP in advance as the current sampling period develops,
[ZB09]. A similar approach is proposed by Findeisen and Allgöwer in [FA04], where
conditions are provided under which the stability of the closed-loop control can be
guaranteed.
• Current research is also focused on multi-level iteration schemes that extend the

idea of real-time iterations, [Kir+10; NAD19; Fra+12]. These algorithms take into
account different time scales inherent in the dynamical model by updating the data
of the feedback-generating quadratic program, i.e., Hessian and Jacobian matrices,
at different levels.
• In addition, there is a close relationship between the successive OCPs. Not only

their structure but also their solutions are likely to be similar. Therefore, it makes
sense to use the computed solution of an OCP to initialize the next OCP. This could
immediately ensure feasibility and a good approximation of the optimal solution.
The initialization technique includes so-called warm-start strategies, where the en-
tire computed control sequence u(t0), u(t1), . . . , u(tN−1) becomes the initialization
for the next OCP, and shift-initialization strategies, where the next OCP is ini-
tialized by u(t1), u(t2), . . . , u(tN−1), u(tN−1). For the shift strategy, the trajectory
should be continued meaningfully, e.g., constant or by extrapolation.

In the context of this work, delays originating from OCP computation times are ne-
glected. However, knowing that this problem arises in almost all real applications, we
attempt to keep the computation times of the individual optimal control problems low.
For this purpose, shift initialization strategies are applied.

Multistep NMPC

The NMPC method described so far requires the solution of the optimal control problem
on each sampling interval. However, if it is not achievable to solve the OCP within this
time window despite all efforts, a compromise can be provided by the multistep NMPC
scheme. This approach implements not only one control step of the computed solution
but several steps at once. For this purpose, a so-called control horizon TC ≤ T is chosen,
with TC = κ∆t and κ ∈ N, κ ≥ 1. After solving the OCP on the prediction horizon T ,
the solution is then applied to the system for the duration of the control horizon TC .
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Algorithm 4.2 describes the general procedure of the multistep NMPC scheme. Its
basic structure corresponds to the standard NMPC Algorithm 4.1. For κ = 1 the two
algorithms are even identical. The important difference is that in step 6 of Algorithm 4.2
the application interval [tk, tk + TC ] of the optimal control is extended. Using terminal
constraints in the OCPs, as described in Section 4.4, the corresponding stability proofs
can be extended from standard NMPC to multistep procedures, [GP17]. The stability
results for problems without stabilizing terminal conditions can also be adapted to the
multistep method, [Grü+10].

One advantage of multistep NMPC is that it reduces the number of optimal control
problems to be solved compared to the classical NMPC. This allows more time to solve
each OCP. The disadvantage of the method is that the controlled system runs in open-
loop mode for a longer time. This means that deviations and disturbances cannot be
reacted to during this phase. Therefore, multistep NMPC is usually less robust than
classical NMPC. Approaches to overcome this drawback are multistep NMPC with re-
optimization or multistep NMPC with sensitivity updates, [YB13; GP15]. Gerdts shows
the feasibility of multistep NMPC schemes in a numerical comparison with standard
NMPC using a tracking problem for a car model, [Ger18]. The comparison of the
performance and robustness of the methods shows that although the multistep schemes
have larger tracking errors than the classical NMPC scheme, they are feasible.

We will take advantage of this approach to be able to use NMPC in fast-sampled systems.
For this purpose, we apply longer sequences of the computed optimal control of an NMPC
step in our numerical examples.

4.6. NMPC with Uncertainties

Our previous considerations in this chapter assumed that we accurately represent the
true process with our system model. However, this is hardly the case in real applications
since either unknown disturbances can occur, non-modeled interactions are present, or

Algorithm 4.2 Multistep NMPC
1: Set time t0 = 0.
2: Choose a prediction horizon T for the OCP and a control horizon TC = κ∆t, with
κ ∈ N, κ ≥ 1 and TC ≤ T .

3: Set iterator k = 0.
4: Measure the current system state x(tk).
5: Set the initial state of the OCP to x̄

[k]
0 = x̄[k](τ0 = 0) := x(tk) and solve 4.9 on

τ ∈ [0, T ].
6: Denote the obtained optimal control sequence ū∗,[k](·) ∈ U and apply its first κ

sequences for the time [tk, tk + TC ] as control to the system.
7: Set k = k + κ and continue with point 4.
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the system changes over time. This results in nonlinear perturbed system dynamics,
which can be written as

ẋ(t) = f (x(t), u(t), v(t), p) . (4.17)

Here, v(t) denotes disturbances or measurement noise, and p describes parametric uncer-
tainties of the system. The influence of such perturbations often results in a mismatch
between the predicted and realized trajectories. The question is whether we can still
reach our control objective. There are further unknowns. To what extent are the previ-
ous stability statements still valid? How can the used OCPs be formulated to generate
closed-loop stability further?

Answers to these questions are classically provided by concepts in the areas of robust
NMPC and stochastic NMPC. These offer a systematic investigation of the effects of
certain disturbance and uncertainty classes. In the robust case, the perturbations and
parameters in (4.17) are usually assumed to lie in compact sets P ,V : p ∈ P ⊆ Rnp , v(t) ∈
V ⊆ Rnx . In contrast, stochastic approaches assume the disturbances and parameters
to be random variables with certain probability distributions, i.e., v(t) ∼ Pv, p ∼ Pp.
Typically, instead of the problem formulation (4.2) then a constrained stochastic optimal
control problem (SOCP) is considered:

min
x,u

Ex0
[
φ(x(tf )) +

∫ tf

t0

ℓ(x(t), u(t)) dt

]
w.r.t. ẋ(t) = f(x(t), u(t), v(t), p), t0 ≤ t ≤ tf ,

x(t0) = x0,

u(t) ∈ U, t0 ≤ t ≤ tf ,

v(t) ∼ Pv, p ∼ Pp,
Prx0 [ci(x(t), u(t)) ≤ 0] ≥ βi, for t0 ≤ t ≤ tf and all i = 1, . . . , nc,

(4.18)

where Ex0 [·] denotes the conditional expectation and Prx0 [·] the conditional probability.
Both expressions indicate the dependence on the initial state x(t0) = x0. The objective of
(4.18) is the minimization of the expectation value of the cost function, which depends on
the solution of the perturbed dynamical system in the constraints. General constraints
are typically defined in the form of chance constraints over the prediction horizon

Prx(t0)[ci(x(t), u(t)) ≤ 0] ≥ βi.

With these, for given lower bounds βi ∈ R for i = 1, . . . , nc, it is required that each
constraint ci(x(t), u(t)) ≤ 0, i = 1, . . . , nc, must be fulfilled for all t0 ≤ t ≤ tf with at
least this probability βi, [Mes16].

The following subsections briefly mention some prominent concepts of robust NMPC and
stochastic MPC as related work. Furthermore, we introduce some new approaches from
the more recent field of learning-based NMPC, [Hew+20]. There are several advanced
ideas on how to deal with uncertainties and to adapt the controller. In particular, we
discuss so-called adaptive NMPC schemes in Subsection 4.6.2.
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4.6.1. Robust NMPC

Considering the nonlinear perturbed dynamical system described in (4.17), robust MPC
methods aim to analyze all possible solutions of a disturbed optimal control problem
in the MPC setting. For nonlinear MPC, the analysis of robustness properties is an
ongoing research area. In Findeisen and Allgöwer [FA02] three different robust NMPC
approaches that directly consider uncertainties are presented.

One is robust NMPC based on open-loop min-max problems. In this formulation, the
standard NMPC setup is maintained, but the cost function to be minimized is formu-
lated to include the worst-case perturbation. This results in a min-max problem. One
disadvantage is that additional stability constraints may result in not finding a fea-
sible solution. Another approach is H∞-NMPC. For this, the standard H∞-problem2

is considered in the context of NMPC. However, solving the infinite horizon min-max
problem can be very time-consuming. The third method is a robust NMPC scheme that
optimizes a feedback control law instead of the input signals. In this way, it can be
achieved that between the sampling points, feedback enables the controller to react to
disturbances. However, the complexity of the computation is often unacceptable, Magni
et al. [Mag+02]. We refer to [FA02; May14; HV19] for more detailed information. A
comprehensive overview of stochastic MPC gives Mesbah [Mes16; Mes+14].

The classical robust and stochastic NMPC methods belong to offline methods, i.e., there
is a strict separation between the controller design phase and the application phase of
the control. In this work, we are particularly interested in adapting controllers during
operation. Therefore, we want to focus on online learning methods. This involves
adjusting the controller based on collected data during operation.

4.6.2. Learning-Based and Adaptive NMPC

The research areas of learning-based, data-based NMPC, and adaptive NMPC contain
many different concepts. We can only address a few of them here. A more detailed
overview of the existing methods is given by Hewing et al. [Hew+20]. The field of
learning-based NMPC is divided into three main areas: 1) the goal of model learning,
2) controller-parameter learning, and 3) NMPC with safe learning.

1) The first one aims to improve model quality automatically. This focuses on learn-
ing the system model during online operation. Since the performance of NMPC
strongly depends on a sufficiently accurate model representation, these methods
aim at learning the system dynamics from data during operation or between two

2H∞-control is a robust control technique. It is based on uncertainty modeling, resulting in an extended
transfer function used to compute the H∞-controller. The term H∞ refers to a special vector norm
in the Hardy function space.
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instances when performing repetitive tasks. In particular, the optimal control prob-
lems to be solved in the NMPC process are modified, and thus the predictions are
improved.

2) The second approach attempts to address the parameterization of the NMPC con-
troller directly. In this context, attention is paid less to the prediction model and
more to the remaining configurations, such as the cost function, the constraints,
or the prediction horizon, and the overall behavior of the MPC controller is op-
timized. There are numerous research activities on directly learning the MPC
controller, e.g., [LK18] aim to learn the robust NMPC policy employing deep neu-
ral networks, and Hertneck et al. [Her+18] propose a neural network-based NMPC
framework with guarantees of stability and constraint satisfaction.

3) The third research area deals with NMPC as a complement to learning-based con-
trol methods to achieve safety during operation and learning, [Kol+18; Wab+21].
In this case, the optimization of the objective function is separated from the con-
dition of constraint satisfaction using MPC techniques.

In this thesis, the focus is directed to the first field, the learning of the system model.
Therefore, it is described further. Much research has been undertaken in this area for
linear system models, where results for controller stability for certain problem classes
exist, [LCA19]. In Aswani et al. [Asw+13], a learning MPC algorithm based on statistical
learning techniques is presented that uses linear approximate models of the system along
with a bound on the uncertainty to improve controller performance. Further, adaptive
model predictive control algorithms for linear, time-invariant systems with constraints
are presented in [Tan+14; BZB18; Ter+19].

However, we are most interested in nonlinear models. Research in nonlinear model
learning in NMPC is further divided into parametric and nonparametric approaches. The
first field aims to determine the parameter values from the data so that the model output
matches the observations as closely as possible. In contrast, nonparametric concepts form
their estimate of the model function directly from the measurements. These are often
based on neural networks like in [Sha08; Hed13]. There is also recent research in the
area of data-driven MPC, which builds on the fundamental lemma of Willems [Wil+05].
The lemma provides a way to parameterize all trajectories of a linear time-invariant
system based on a data trajectory with persistently exciting input component [Ber+22].
A model-free, data-based approach is used to design an optimal predictive controller,
and current research is addressing the formulation of stability statements for different
linear system formulations, [SFW22; Sch+22; Bil+22; Hua+21].

Our interest is in parametric modeling approaches. The works on parameter learning
methods by Mayne and Michalska [MM93] and Adetola et al. [ADG09] estimate nonlin-
ear system models but are linear in parameters. Advanced studies on online learning of
nonlinear parametric models are the subject of current research. Valluru and Patward-
han [VP19] develop a controller combining integrated frequent real-time optimization
and adaptive NMPC. There, a common dynamic model based on state and parameter
estimation is used to update the steady-state model for real-time optimizations and
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the dynamical model used for predictions in NMPC. Hanover et al. [Han+22] propose
a hybrid adaptive NMPC to learn and compensate for model uncertainties online and
demonstrate its performance on a quadrocopter. They expect future work to include
online updates of the dynamical model.

From a broader perspective, there is also related research in the area of iterative learning
control, see Cuelei and Bordons [CB08]. Furthermore, Recht [Rec19] provides in his
review on reinforcement learning a brief discussion of learning an MPC controller in this
context. A further challenge in online learning is the question of sufficient data and the
resulting trade-off between information acquisition and optimal performance. This issue
is considered in the research on dual NMPC, [Mes18; La16]. We will briefly discuss ideas
on dual NMPC in the outline in Section 7.2.

The proposed approach for an adaptive NMPC described in Chapter 6 of this thesis can
be classified in the area of parametric model-based NMPC, where the aim is to learn
the nonlinear system dynamics by nonlinear parameter identification.
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5. Online Parameter Estimates for
Linear Optimal Feedback Control

In this chapter, we present an approach that extends the method of sensitivity-based
updates for LQR from Subsection 3.3.2 using online identification for parametric per-
turbations. The approach of reacting to parametric perturbations with sensitivity-based
updates for the feedback gain of LQR was analyzed in detail by Tietjen [Tie12]. We
will refer to this method as adaptive LQR in the following and abbreviate it as adLQR.
Tietjen also shows in his thesis on two simulative examples that the performance of
adLQR is similar to a real recalculation of the feedback gain. However, previous research
using the sensitivity-based updates for LQR has always assumed that the parametric
perturbations ∆p = p − p0, i.e., the deviations from the initial assumed values p0, are
known. This condition can be fulfilled, for example, if the parameters are controller
settings, more precisely, if they are associated with changes in the matrices Q(p) or
R(p). Also, parametric disturbances in easily measurable quantities, such as the initial
state, for example, the position of a car, can be determined directly. However, if the
parametric changes appear as part of a complex system model, they usually cannot be
accessed directly. Therefore, within this thesis, a new approach is developed to perform
data-based parameter identification online to determine these unknown changes during
operation. Preliminary numerical tests of this method have shown promising results,
see [RFB21]. The procedure is illustrated in Figure 5.1.

Plant

K(p)

K(p) ≈ K(p0)
+ dK

dp (p0)∆p

Adaptive
LQR

Parameter
Identification

u(t)

p0

x(t)

sensor noise

+

y(t)

disturbances

+
xref(t)−

p

−
uref(t)

+

K(p0),
dK
dp

(p0)

Adaptive LQR and PI

Figure 5.1.: The control loop with adaptive LQR and online parameter identification.
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In contrast to the closed loop LQ regulator introduced in Section 3.2, a parameter identi-
fication process is integrated. It is shown as an extra red block in the bottom right-hand
corner. This enables us to use measured data sampled from the output y(t) to com-
pute estimates for model parameters of the plant under consideration. These estimates
are then provided to the controller to calculate an approximation of the feedback gain
K(p). This is done using the initial gain matrix K(p0) and the tensor of sensitivities
that are previously computed offline. The depicted disturbances are internal and ex-
ternal influences that cause the model parameters to change. An additive noise in the
measurements accounts for disturbances originating from sensors.

The process starts by computing the feedback control gain K(p0) and the sensitivities
dK
dp
(p0) for the initial parameters p0 and given reference states xref and control uref in a

first step. This is done offline by solving the Problem 3.18. Now, we can use this initial
gain K(p0) to control the system during execution. Since we expect the parameters p to
change or to be perturbed, we use the real-time approximation method adLQR to control
the system. This is

u(t) = −
(
K(p0) +

dK

dp
(p0)∆p

)
x(t), with ∆p := p− p0. (5.1)

During the operation of the plant, measurements y are taken. We assume here full-state
feedback, so all system states can be measured. The measured values then correspond
to the states plus an unknown measurement noise

y(t) = Cx(t) + v(t), with v(t) ∈ Rnx . (5.2)

For full-state feedback, the matrix C in equation is the identity matrix. The measure-
ments are used for the real-time approximations of the control law. Additionally, they are
also fed to the online parameter identification. The samples are collected at equidistant
discrete time points ti, i = 0, 1, . . . ,M−1, with M ∈ N. The difference between two time
points is called the sample time ∆t. For each execution, the parameter identification is
performed on an equally-sized data sampling horizon Ts. The identification procedure
is performed periodically with a time interval of TPI to identify changes ∆p := p− p0 in
the parameter. Subsequently, the updated parameters p are provided for the adaptation
process of the linear quadratic controller.

The rest of the chapter is organized as follows. First, we introduce how the identification
problem in this LQR environment is formulated as a nonlinear optimization problem.
Then, we formalize the algorithm that combines the adaptive linear quadratic controller,
adLQR, with this nonlinear dynamic parameter identification problem. In the following,
we will refer to this combined method as adLQR+PI. Additionally, we will present an
extension of the algorithm in which the Fisher information matrix is used to assess the
information content of the data. The chapter concludes with a numerical investigation
of the presented method using the example of an inverted pendulum on a cart.
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5.1. Formulation of NDPIP for adLQR+PI

We start with the formulation of the parameter identification problem for the combined
algorithm adLQR+PI. Assume that we are performing parameter identification for the
k-th time, with k ∈ N0, and that we have M ∈ N measurements y[k]i ∈ Rnx , i =
0, . . . ,M − 1, where nx is the number of system states. The superscript here indicates
the affiliation to the k-th PI problem. The subscript numbers are all the samples that
belong to this problem. The current time is t[k]M−1. Thus, we identify the parameters for
the k-th time interval as

I [k] = [t
[k]
0 , t

[k]
M−1] ⊂ [0, T ],

which extends from the current time by a duration of Ts into the past and includes M
measurements at discrete time points t[k]0 < t

[k]
1 < · · · < t

[k]
M−1 ∈ I [k]. Let the set of

measurements be
{y}[k] := {y[k]0 , . . . , y

[k]
M−1}.

These measurements correspond to our system states x (plus an additional measurement
noise) at these time points, (5.2). Therefore, we can use the measurements directly for
the objective function of our identification problem. This we define as

F (x
[k]
0 , p

[k]) :=
1

2M

M−1∑
i=0

w
[k]
i

x(t[k]i ;x
[k]
0 , p

[k])− y[k]i
2

2
. (5.3)

Each summand of the objective function is weighted by a factor w[k]
i , which can be cho-

sen by the user. In the simplest case, the weights are w[k]
i = 1 for all i = 0, . . . ,M − 1.

However, these weights can also be used to reflect the reliability of individual measure-
ments if, for example, the stochastic distribution of the measurements is known. In the
same way, we assume in the numerical simulations in Section 5.4 that the measurements
are normally distributed and that we know this distribution. Therefore, their variance is
used for weighting to indicate how reliable the included measurements are. To formulate
the NDPIP according to Definition 2.3.2 we add the nonlinear dynamical system of the
considered process, including the unknown parameters as a constraint. We obtain the
following identification problem.

min
x
[k]
0 ,p[k]

F (x
[k]
0 , p

[k]) =
1

2M

M−1∑
i=0

w
[k]
i

x(t[k]i ;x
[k]
0 , p

[k])− y[k]i
2

2

w.r.t. ẋ(t) = f(x(t), ũ(t), p[k], t),

x(t
[k]
0 ) = x

[k]
0 ,

g(x(t), p[k]) ≤ 0.

(5.4)

Within the constraints, we insert the measured controls that were used to generate the
data under consideration. However, since these are only available to us at the discrete
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times of the measurements, we need to approximate the control in between. For this
purpose, we denote the approximation of the control u by ũ. It is equal to the measured
control at each sample time point, and in between two samples, it is the result of a linear
interpolation of the two adjacent points.

5.1.1. Alternative Approaches

For certain applications, the question might arise whether it is sufficient to identify
only the linearized model ẋ(t) = A(p)x(t) + B(p)u(t). This may be the case for simple
dynamics, but in this work, we aim to develop an approach that is generally applicable
even for highly nonlinear systems. Nevertheless, it may be of interest to the user to
determine the parameters for the linearized model since this is used directly in the
linear control laws. Thus, the identified system matrices can be used in other methods.
The corresponding identification problem would have the following form:

min
x
[k]
0 ,p[k]

F (x
[k]
0 , p

[k]) =
1

2M

M−1∑
i=0

w
[k]
i

x(t[k]i ;x
[k]
0 , p

[k])− y[k]i
2

2

w.r.t. ẋ(t) = A(p[k])x(t) + B(p[k])ũ(t),

x(t
[k]
0 ) = x

[k]
0 .

(5.5)

It is expected that a comparison of the true parameters and the parameters determined
by problem (5.5) is no longer possible or reasonable in the direct quantitative range.
This stems, in particular, from the fact that the linearization error also enters into the
result of the parameter identification.

We briefly present another approach, which was investigated in our research. It results
from approaching the problem mainly from a control perspective. The idea here is to use
the feedback law directly, in contrast to the first approaches where we treat the controls
u(t) as fixed values on the already passed time interval I [k]. Previously, the controls had
entered the NDPIP as the fixed measured values ũ(t) determined by the feedback law
u(t) = −

(
K(p0) +

dK
dp
(p0)∆p

[k]
)
y[k](t). Here, instead of using the measured states y[k],

we use the optimization variables x that are to be identified.

min
x
[k]
0 ,p[k]

F (x
[k]
0 , p

[k]) =
1

2M

M−1∑
i=0

w
[k]
i

x(t[k]i ; p[k])− y[k]i
2

2

w.r.t. ẋ(t) = f(x(t), (K(p0) +
dK

dp
(p0)∆p

[k]
)
x(t))  

=u(t)

, p[k], t),

x(t
[k]
0 ) = x

[k]
0 .

(5.6)
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Algorithm 5.1 adLQR+PI
1: Choose the start time t0, initial states x0, reference states xref , and controls uref .
2: Choose the nominal parameters p[0] = p0, data sampling horizon Ts and frequency

of parameter identification TPI .
3: Compute offline K(p0) and dK

dp
(p0) by solving the LQR problem (3.18).

4: Execute the system for t ∈ I [0] = [t0, t0 + Ts] with the control law

u(t) = −
(
K(p0) +

dK

dp
(p0)(p

[0] − p0)
)(
y(t)− xref (t)

)
+ uref (t).

5: Collect measurements {y}[0] with sample time ∆t.
6: Set (x

[1]
0 , p

[1])← argmin of NDPIP in (5.4) with k = 0.
7: for k = 1, 2, . . . do
8: Execute the system for a time period of TPI with the control law

u(t) = −
(
K(p0) +

dK

dp
(p0)(p

[k] − p0)
)(
y(t)− xref (t)

)
+ uref (t).

9: Take measurements {y}[k] with sample time ∆t.
10: Set (x

[k+1]
0 , p[k+1])← argmin of NDPIP (5.4).

11: end for

This approach (5.6) seems unorthodox from the point of view of system identification.
However, it has its justification if the aim is exclusively to identify a good controller
and not necessarily to deal with true system parameters. In this work, we assume that
we have a relatively good model of our system under consideration and that we not
only want to control it optimally but also to improve the model further. Therefore, we
decided to use the first problem formulation (5.4).

5.2. The Algorithm adLQR+PI

At this point, we formulate the combined method of the adaptive linear quadratic reg-
ulator with online parameter estimation denoted as adLQR+PI in Algorithm 5.1. We
initialize the procedure by choosing an initial time t0 ∈ R, initial states x0 ∈ Rnx , and
reference states and controls xref ∈ Rnx and uref ∈ Rnu . For the parameter identifica-
tion, we specify a initial guess p[0] = p0 ∈ Rnp , the data sampling horizon Ts ∈ R, and
the value TPI ∈ R, i.e., the frequency with which an NDPIP is performed. Then, we
start with the preprocessing phase. In this first phase, the offline computations of the
feedback gain and the tensor of sensitivities are performed, and initial measurements for
the update process are collected. This is because no measurements are available at the
start to identify parameters. Then, as a next step, the classical parameter-dependent
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LQR problem is solved offline using the initial parameters p0. We thereby obtain the
feedback gain K(p0) and the sensitivities dK

dp
(p0). Combining (3.10) and (5.1) results in

the following control law:

u(t) = −
(
K(p0) +

dK

dp
(p0)(p

[0] − p0)
)
(y(t)− xref (t)) + uref (t).

This is then applied to the system under consideration for an initial time interval of
length Ts. In our setting for the numerical tests, we assume the parameters to be equal
to the initial guess at the beginning. It is p[0] − p0 = 0, so that no approximation of the
gain is done and the control law is,

u(t) = −K(p0) (y(t)− xref (t)) + uref (t).

In the first sampling horizon, measurements y[0]i are collected at each sampling time
t
[0]
i ∈ [t0, t0 + Ts], i = 0, 1, . . . ,M − 1 with an equidistant sample time ∆t = ti+1 − ti.

The sample time ∆t is specified by the system, for example, by the performance of the
sensors. For the data set {y}[0] = {y[0]0 , y

[0]
1 , . . . , y

[0]
M−1} the first parameter identification

can now be performed. The result is used as a new parameter estimate p[1] and the
preprocessing phase is completed with step 4.

The feedback gain is now updated to K(p0) +
dK
dp
(p0)(p

[k] − p0) as described in (5.1).
The system is further controlled with the adapted control law

u(t) = −
(
K(p0) +

dK

dp
(p0)(p

[k] − p0)
)
(y(t)− xref (t)) + uref (t).

This is done over a time period of TPI , the fixed interval between two parameter iden-
tifications. Again, measurements are collected with the sample time ∆t. The data
collected during this time is added to the previous dataset {y}[k−1]. For this, a corre-
sponding number of measurements at the front of the set are sorted out to obtain the
dataset {y}[k] that will be used in the next NDPIP. Thus, a consistently large time hori-
zon Ts is always considered for the parameter identification. More precisely the interval
I [k] = [t

[k]
0 , t

[k]
M−1] = [t

[k−1]
0 + TPI , t

[k−1]
M−1 + TPI ] is used. The next step in Algorithm 5.1 is

to update the parameter estimate with the solution of the NDPIP. After that, the new
parameter p[k] enters the feedback law again in step 8 to adapt it.

We assume here that for p = p0 the original problem 3.15 has a unique solution K(p0).
This is the case if the assumptions on the observability of (A(p0),

√
Q(p0)) and the

stabilizability of (A(p0), B(p0)) from Theorem 3.2.5 are satisfied. For a perturbation
∆p = p− p0, the Theorem 3.3.2 predicts under the conditions on the differentiability of
the system matrices A(p), B(p), Q(p), and R(p) the existence of a neighborhood U(p0)
in which the solution is differentiable with respect to p as well. This means that the
rank of the controllability and observability matrices is also unchanged. The optimal
feedback law u = −K(p)x(t) can then be approximated within this neighborhood by
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using

K(p) ≈ K(p0) +
dK

dp
(p0)∆p.

However, since no statements can be made about the size of the neighborhood, we
must ensure that the perturbed parameters p do not change the structure of our initial
problem. In particular, we need to ensure that the controllability and observability
matrices still have full rank, i.e.,

rank
(
B(p) A(p)B(p) . . . A(p)n−1B(p)

)
= nx

and

rank

⎛⎜⎜⎜⎝
√
Q(p)√

Q(p)A(p)
...√

Q(p)A(p)n−1

⎞⎟⎟⎟⎠ = nx.

A range of acceptable perturbations can be determined in advance by appropriate simu-
lations. For this purpose, numerical tests can be done by choosing different parametric
perturbations and analyzing the effect on the rank of the controllability and observabil-
ity matrices. If the chosen acceptable range is left during the process, recalculation of
the control law may be recommended. We limit the parameters in the identification
problem in the constraint function g with lower and upper bounds by this range.

Remark. In the following, it is assumed that parametric perturbations do not influence
the structure of the initial problem, and, in particular, the rank of the above matrices
remains unchanged.

5.3. Extension of Algorithm adLQR+PI

In this section, we make additional assumptions on the problem that allows us to add
an extension to the previously presented Algorithm 5.1. This additional option uses the
Fisher information matrix (FIM) to evaluate the information content of the collected
data and estimates the probability of a successful parameter identification. Based on
this, it is then decided whether a parameter identification is performed. For this purpose,
the measured data is assumed to be a random variable, and its probability distribution is
known. Furthermore, it is assumed that the individual measurements are independent.
We will denote the Fisher information matrix as Ip in the following.

5.3.1. Fisher Information Matrix and Maximum Likelihood
Estimation

In this subsection, we briefly present the theory for the FIM and how we adapt it for our
use. More detailed information is provided, for example, in Bar-Shalom et al. [BLK01].
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The Fisher information matrix is a statistical approach to measure how much information
some observed data of a random variable contains about some unknown parameters
involved in the underlying model of the random variable. In our case, the measurements
are the realizations of this random variable. Considering the parametric control system
from Definition 3.1.2, it is assumed that the probability distribution of the independent
measurements is normally distributed. Thus, the measurement noise v ∼ N (0,Σ) is
added to the system output. With Σ ∈ Rnx×nx we denote the covariance matrix of the
measurements. The system is

ẋ(t) = f(x(t), u(t), p̃, t), x(t0) = x0 ∈ Rnx ,

y(t) = g(x(t; p̃), u(t), p̃, t) + v(t),
(5.7)

where the initial states are given by x0 = (x01 , . . . , x0nx )
T ∈ Rnx . The parameters that

are needed to fully specify the system (5.7) are the unknown model parameters p̃ and the
initial system states x0. The parameter vector is defined as p := (p̃, x0)

T ∈ Rnp+nx . Now,
for a collected series of measured data {ỹi}i=0,...,M−1 at time points ti the parameters p
are to be found such that the occurrence of these measurements is most probable. Since
we assume to know the error distribution in the measurements, the maximum likelihood
method can be used. For this purpose, the log-likelihood function l(p; ỹ) is defined. It
indicates how likely the parameters are given the measured data. By maximizing the
log-likelihood function, the parameters p∗ are determined that are most likely to produce
the observed data. The solution parameters p∗ are called maximum likelihood estimator.
The associated optimization problem is formulated as

max
p

l(p; ỹ) := −
M−1∑
i=0

(y(ti; p)− ỹi)TΣ−1(y(ti; p)− ỹi)

w.r.t. ẋ(t) = f(x(t), ũ(t), p),

y(t) = g(x(t; p), ũ(t), p) + v(t).

(5.8)

For the problem defined in (5.8), the input signals ũ(t) are the fixed controls that were
applied to the system when obtaining the measurements ỹ. To achieve the well-known
standard minimization problem used in this work, we reformulate (5.8) as

min
p

F (p) :=
M−1∑
i=0

(y(ti; p)− ỹi)TΣ−1(y(ti; p)− ỹi)

w.r.t. ẋ(t) = f(x(t), ũ(t), p),

y(t) = g(x(t; p), ũ(t), p) + v(t).

(5.9)

This problem can now be solved in the same way by utilizing full discretization, as
described in Section 2.4.

Considering the parameter identification problem as a maximum likelihood problem
opens up new possibilities from the existing theory of such problems. One concept uses
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the Fisher information matrix (FIM), which is defined as

Ip :=
M−1∑
i=0

(
d

dp
y(ti, p)

)T

Σ−1

(
d

dp
y(ti, p)

)
. (5.10)

The FIM can be understood as a quantification of the maximum information available
in the data about a parameter. This quantity is used in the Cramèr-Rao inequality to
give a lower bound for the covariance of the maximum likelihood estimator p∗:

Cov(p∗) ≥ I−1
p . (5.11)

The covariance indicates the estimator’s accuracy and thus provides a measure of how
good the estimate can be for the best case with the available data [BLK01]. Thus,
we can use the Fisher information matrix to make a statement about whether a mea-
surement series contains enough information for accurate parameter estimation. The
terms ( d

dp
y(ti, p)) in (5.10) denote the partial derivatives of the states according to the

parameters. These cannot directly be derived analytically. They have to be computed
numerically, e.g., with forward sensitivities, see Stapor et al. [SFH18].

Regarding the FIM, we want to make some remarks that should be taken into account
when using it. We assumed that the model equations exactly describe the true system,
which is generally difficult to attain in real-world applications. As a result, if the given
model is not sufficiently good, an accurate result cannot be expected from the computa-
tion of the FIM either. Furthermore, the statistics are only valid if the FIM is evaluated
at the true parameter values. In general, these are the values we are looking for, so the
result of our FIM estimation depends on the current estimation of the parameters. In
particular, the validity of the FIM relies heavily on the initial estimate of the parameters
since the statements are local.

Also, it is worth mentioning that the FIM grows very fast and is very sensitive to
numerical errors. However, since we keep recalculating it on smaller subsections, this
impact is less severe in our case. Nevertheless, the analysis of the FIM is a good tool
to make a profound statement about the information content of data for parameter
estimation. In particular, it can help to decide whether measurements are not suitable
for a reliable approximation of the parameters. We will examine this further in the
subsequent sections.

5.3.2. The Algorithm adLQR+PI+FIM

In order to benefit from the Fisher information matrix within our algorithm, we assume a
measurement noise with v ∼ N (0,Σ) and that the output data is a normally distributed
random variable. We also assume that the individual measurements are independent
of each other. Further, we slightly modify our objective function in the parameter
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identification problem. For system (5.7) with full-state feedback, i.e., g ≡ id, and the
covariance matrix Σ ∈ Rnx×nx , we obtain an objective function similar to the maximum
likelihood one:

FMHE(x, p
[k]) =

1

2M

M−1∑
i=0

w
[k]
i (x(t

[k]
i ;x

[k]
0 , p

[k])− y[k]i )TΣ−1(x(t
[k]
i ;x

[k]
0 , p

[k])− y[k]i ). (5.12)

This approach still includes our original problem formulation 5.4. It can immediately
be obtained by setting the covariance matrix to the identity matrix, Σ = I ∈ Rnx×nx .

Algorithm 5.2 now supplements the procedure of the previous Algorithm 5.1 with com-
putations of the FIM. The FIM is always estimated before solving an NDPIP, see steps
6 and 14.

Algorithm 5.2 adLQR+PI+FIM
1: Choose start time t0, initial states x0, reference states xref , and controls uref .
2: Choose nominal parameter p[0], data sampling horizon Ts, frequency of parameter

identification TPI and threshold δFIM.
3: Compute offline K(p0) and dK

dp
(p0) by solving the LQR problem (3.18).

4: Execute the system for t ∈ I [0] = [t0, t0 + Ts] with the control law

u(t) = −
(
K(p0) +

dK

dp
(p0)(p

[0] − p0)
)(
y(t)− xref (t)

)
+ uref (t).

5: Collect measurements {y}[0] with sample time ∆t.
6: Compute Fisher information matrix Ip.
7: if tr(I−1

p ) > δFIM then
8: Set (x

[1]
0 , p

[1])← argmin of NDPIP in (5.4) with objective as in (5.12).
9: else Set p[1] ← p[0].

10: end if
11: for k = 1, 2, . . . do
12: Execute the system for a time period of TPI with the control law

u(t) = −
(
K(p0) +

dK

dp
(p0)(p

[k] − p0)
)(
y(t)− xref (t)

)
+ uref (t).

13: Collect measurements {y}[k] with sample time ∆t.
14: Compute Fisher information Ip.
15: if tr(I−1

p ) > δFIM then
16: Set (x

[k+1]
0 , p[k+1])← argmin of NDPIP (5.4) with objective as in (5.12).

17: else Set p[k+1] ← p[k].
18: end if
19: end for
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Figure 5.2.: A schematic illustration of an inverted pendulum on a cart.

It is then checked whether the trace of the FIM exceeds a certain predefined threshold
δFIM ∈ R:

tr(I−1
p ) :=

np∑
i=1

(I−1
p )ii > δFIM.

This criterion is referred to as A-optimality criterion and is used to constrain the esti-
mated average covariance of the parameter estimate. More information on A-optimality
and other alternative criteria can be found in Atkinson et al. [ADT07]. The value δFIM

is initially selected by the user according to the specific problem. It depends on the
magnitude of the parameters and the measurement noise. If the information content
is considered insufficient for parameter estimation, i.e., the trace of the inverse of the
FIM is larger than the threshold, no identification is performed. Instead, the current
parameter estimate is retained, compare step 17.

5.4. Numerical Analysis on the Inverted Pendulum on
a Cart

We use an inverted pendulum on a cart, as depicted in Figure 5.2 as an example to
illustrate the suggested control method. First, we introduce the pendulum-cart system
and discuss the simulation setting. After that, we formulate the parameter-dependent
LQR problem for this example. Next, the assumptions of the approximation theorem
for parametric LQR problems 3.3.2 are verified. Then, for a nominal perturbation p0, we
compute the feedback gain K(p0) and the parametric sensitivities dK

dp
(p0) offline. In the

main part, we simulate the system controlled by the combined adLQR+PI method. We
will consider different experimental scenarios, where we compare our control approach
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to the classical LQR with feedback gain K(p0) and the best possible linear-quadratic
controller rLQR with K(p∗). After each simulation interval, a new optimal feedback gain
K(p∗) is computed, knowing the true parameters. It is denoted by rLQR for repeated
LQR in the following. Note that this optimal control strategy is used as a comparison in
the present simulation but is usually not available in real-world applications because the
parametric perturbations are commonly unknown, and it requires a large computational
effort. In addition, we consider the optimal sensitivity-based adaptive LQR with the up-
dated gain K(p0)+

dK
dp
(p0)∆p

∗ as a further comparison. This is denoted by adLQR in the
following and uses the true values ∆p∗ instead of the identified parameter deviations.

We start with a scenario that assumes constant parameter perturbations, where the task
is to control the system to the rest position xref =

(
0, 0, 0, 0

)T . Subsequently, we will
consider more complex settings in which the parameters change in time and the control
law is continuously adapted. Using this example, we also reveal the difficulties that
can be encountered in online parameter identification, e.g., concerning the information
content of the data. We show how the additional computations of the Fisher information
matrix in Algorithm 5.2 can help. We compare the results of our two algorithms for
different scenarios.

5.4.1. Problem Description

For the classical example of a pendulum cart system, a rod with an attached mass m is
mounted on a cart that moves along a longitudinal axis, see Figure 5.2. The massless
rod is connected to the cart by a joint and can freely move in the joint. The state
y : [0,∞) → R describes the position of the cart. The state θ : [0,∞) → R is the
angle of the rod’s deflection with respect to the vertical axis. The control u : [0,∞)→ R
describes the force acting on the horizontal direction of motion of the cart. The nonlinear
dynamical system is defined by

(M +m)ÿ +mlθ̈ cos(θ)−mlθ̇2 sin(θ) = u

ml2θ̈ −mgl sin(θ) = −mlÿ cos(θ).
(5.13)

The values m = 1kg and M describe the mass of the round mass point and the
mass of the trolley in kilogram. The value l is the length of the rod in meters, and
g = 9.8065m s−2 is the gravitational acceleration. We define the state x = x(t) :=
(y, ẏ, θ, θ̇)T ∈ R4. Then the nonlinear system equations (5.13) are given in state-space
as

ẋ = f(x) =

⎛⎜⎜⎝
x2

1
D
(u+mlx24 sin(x3)−mg sin(x3) cos(x3))

x4
g
l
sin(x3)− cos(x3)

lD
(u+mlx24 sin(x3)−mg sin(x3) cos(x3))

⎞⎟⎟⎠ , (5.14)
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with D =M +m sin2(x3). Linearization of the system around the upright rest position
x̂ =

(
0, 0, 0, 0

)T , using the simplifications sin θ ≈ θ, cos θ ≈ 1 and θ̇2 ≈ 0 for small
angles θ, and assuming a non-vanishing pendulum length and mass l ̸= 0,M ̸= 0 the
equations (5.13) can be written as

(M +m)ÿ +mlθ̈ = u

lθ̈ − gθ = −ÿ.

Then the linear system dynamics in state-space representation are obtained as

ẋ =

⎛⎜⎜⎝
ẋ1
ẋ2
ẋ3
ẋ4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
x2

−mg
M
x3 +

1
M
u

x4
(M+m)g

Ml
x3 +

−1
Ml
u

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 1 0 0
0 0 −mg

M
0

0 0 0 1

0 0 (M+m)g
Ml

0

⎞⎟⎟⎠
  

=:A(p)

x+

⎛⎜⎜⎝
0
1
M

0
−1
Ml

⎞⎟⎟⎠
  
=:B(p)

u. (5.15)

The simplified system dynamics are given by (5.15) in the well-known form

ẋ(t) = A(p)x(t) + B(p)u(t).

The states x(t) ∈ R4 are the position of the cart, the velocity of the cart, the an-
gle of the pendulum, and its angular velocity. The parameter vector is given by
p := (M, l)T ∈ R2.

5.4.2. Simulation Environment and Settings

We consider the nonlinear system equations of the pendulum-cart system (5.14) for
the system simulation with the nominal values M = 10 kg and l = 1m. We define
the parameter vector as p := (M, l)T ∈ R2 and thus it is p0 = (10, 1)T the nominal
parameter value. The simulation of the control process is implemented in Matlab R⃝.
For a simulation horizon T > Ts, the pendulum cart system is simulated on an advancing
time interval of length Ts by integrating the nonlinear system dynamics with the true
parameter values using a Runge-Kutta scheme of fourth order.

The offline computation of the initial control law and the online parameter identifica-
tion problems are implemented in C++ since they are solved with TransWorhp, which is
based on C++. The solver settings and applied methods are described below the numer-
ical tests in Subsections 5.4.4, 5.4.6 and 5.4.7. All computations in this chapter and the
following are executed on a "Lenovo Thinkpad T460s" running "Ubuntu 16.04.7 LTS
(64 bit)" as the Operating System with an "Intel(R) Core(TM) i5-6200U" CPU.
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Sensor Noise

In practical applications, the sensors introduce some disturbances since their measure-
ment accuracy is usually limited. To take this noise source into account in our simula-
tions, we add white Gaussian noise v(t) ∼ N (0,Σ) to the simulated states:

y(t) := x(t) + v(t). (5.16)

For the normal distribution the covariance matrix is diagonal: Σ = diag(σ2
1, ..., σ

2
4),

where σ = (σ1, σ2, σ3, σ4) ∈ R4 is the vector of standard deviations in each state. A
pseudo-random number generator generates the noise v(t) ∈ R4 as normally distributed
noise with mean µ = 0 and standard deviations σi. This sensor noise also disturbs
the measured feedback that the controller directly uses to determine the controls
u(t) = −K(x(t) + v(t)). To address this circumstance, the measurement noise is used
within the integration method in the simulation. In real-world applications, measure-
ment noise in feedback is often reduced with filters. Low-pass filters, such as moving
average filters, are commonly used. However, they can blur signal sharpness as demon-
strated by de Cheveigné and Nelken [CN19]. We do not utilize these filters in the
presented simulation to obtain unbiased results. Consequently, the control appears
slightly noisy since the feedback signal directly influences it.

In the following numerical experiments, a measurement noise v(t) is included with the
standard deviation σ = (0.4, 0.09, 0.004, 0.004) corresponding to (5.16).

Simulation Scenarios

The main goal is to stabilize the upright pendulum position while controlling the
system (5.15) from an initial state x0 to another rest position xref , e.g., the origin
xref =

(
0, 0, 0, 0

)T . In addition, the control effort is to be minimized. This is done by
minimizing the objective function

F (x, u, p) =

∫ ∞

0

(x(t)− xref (t))TQ(x(t)− xref (t)) + u(t)TRu(t) dt. (5.17)

The weights are set to the following values:

R = 0.5 and Q =

⎛⎜⎝0.5 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠.
This implies that the controller wants to reach the position of the cart to a reference
value with a minimum control effort at the same time. To test the performance of our
control algorithms with online parameter identification on the inverted pendulum-cart
system, we consider different parametric perturbations p = p0 +∆p with p0 = (10, 1)T .
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The system is generally considered on a time horizon of T = 120 s except for scenario 0
where we use T = 40 s.

Scenario A ∆p = (2.0, 0.5)T ,

Scenario B ∆p = (6.0, 1.5)T ,

Scenario C ∆p = (−1.0,−0.5)T ,
Scenario D ∆p = (2.0,−0.5)T ,
Scenario E ∆p = (−2.0, 1.0)T ,
Scenario F ∆p = (5.0− 0.1t, 0.5 + 0.01t)T , for t ∈ [0, 120],

Scenario G ∆p =

{
(5.0− 0.1t, 1.8− 0.0004(t− 50)2)T , for t ∈ [0, 50),

(0.14(t− 50), 1.8− 0.0004(t− 50)2)T , t ∈ [50, 120],

Scenario H ∆p = (1.0 + 2.0(log 10(t+ 1)), 0.5 + 0.01t)T , for t ∈ [0, 120],

Scenario I ∆p =

{
(4.0,−0.5)T , for t ∈ [0, 40] or t ∈ (80, 120],

(−3.0,−0.5)T , for t ∈ (40, 80].

(5.18)

Scenario A assumes a constant positive small perturbation of the two parameters. A
large positive constant parameter deviation is considered in scenario B. Scenarios C,
D, and E also consider negative perturbations and various combinations of them. Case
F provides a linearly decreasing mass perturbation from ∆M = 5 to ∆M = −5 and a
linearly increasing perturbation in the pendulum length. In scenario G, the perturbation
in the mass is first linearly decreased and then strongly increased, and the pendulum
length also changes at a moderate rate over the entire period. In the case of H, both
parameters increase with time. Scenario I deals with the case where the mass suddenly
changes while the pendulum length is constantly perturbed with ∆l = −0.5.

Furthermore, the behavior of the algorithm is tested and analyzed in different scenarios
for the reference state. For this purpose, we consider the following different trajectories
for tracking:

Sc. 0 xref (t) =
{
(0, 0, 0, 0)T , for t ∈ [0, 40].

Sc. 1 xref (t) =

⎧⎪⎨⎪⎩
(10, 0, 0, 0)T , for t ∈ [0, 20], (68, 88],

(−10, 0, 0, 0)T , for t ∈ (20, 40], (88, 108],

(0, 0, 0, 0)T , otherwise.

Sc. 2 xref (t) =

{
(−20, 0, 0, 0)T , for t ∈ [0, 20], (40, 60], (80, 100],

(0, 0, 0, 0)T , otherwise.

Sc. 3 xref (t) =

{
(20, 0, 0, 0)T , for t ∈ [0, 50],

(0, 0, 0, 0)T , otherwise.

(5.19)
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Sc. 4 xref (t) =

⎧⎪⎨⎪⎩
(20 + 2 sin(t), 0, 0, 0)T , for t ∈ [0, 20], (80, 100],

(−20 + 2 sin(t), 0, 0, 0)T , for t ∈ (40, 60],

(0, 0, 0, 0), otherwise.

Sc. 5 xref (t) =

⎧⎪⎨⎪⎩
(40 + 3 sin(2t), 0, 0, 0)T , for t ∈ [0, 12], (56, 72],

(−40 + 3 sin(2t), 0, 0, 0)T , for t ∈ (12, 32], (100, 120],

(0 + 3 sin(2t), 0, 0, 0)T , otherwise.

Scenario 0 aims to stabilize the origin xref = (0, 0, 0, 0)T . Further, scenarios 1, 2, and 3
show the cart system moving back and forth with different speeds between two positions
while the pendulum is stabilized in the upright position. Tasks 4 and 6 represent more
dynamic reference states that require constant intervention by the controller. This results
in a permanent excitation of the system, which, as we will see in Subsection 5.4.8,
positively affects the identifiability of the model parameters.

The simulation horizon for the system is fixed to T = 40 s for scenario 0 and T = 120 s
for all other scenarios. In scenario 0, the origin is the reference value and is usually
reached quickly, so we have shortened the simulation horizon for visualization reasons.
The sampling time is set in all cases to ∆t = 0.05 s and the sampling horizon to Ts = 4 s.
This is the time length of a data set used for one parameter identification in each case.
The choice of the data sampling horizon has to be made by the user and is often based on
experience. It is necessary to find a balance between a sufficient horizon length and, thus,
a larger data set on the one hand and the increasing computation time for large data sets
on the other hand. The horizon must be long enough so that a sufficiently large amount
of data is available for successful parameter identification. However, the computation
time should also not become too long for online computation due to a large data set.
Another aspect that needs to be considered is the rate of change of the parameters.
The Fisher information matrix (5.10) can also be helpful here to evaluate whether a
time interval contains enough information for a successful parameter identification or
should be enlarged. We consider different scenarios to demonstrate the system’s different
possibilities in terms of dynamics and parameter changes.

5.4.3. Verification of the Assumptions for adLQR

Next, we check whether all necessary assumptions of the approximation theorem for
parametric LQR problems in Theorem 3.3.2 are fulfilled and, thus, whether we can
apply the presented algorithms that are based on adLQR. The assumptions are that

1. R is positive definite,
2. Q is positive semidefinite,
3. (A(p0), B(p0)) is stabilizable,
4. (A(p0),

√
Q(p0)) is observable,

5. A(p), B(p), Q(p), R(p), and x0(p) are three times continuously differentiable with
respect to p.
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It applies that R = 0.5 > 0 and therefore R is positive definite. This assumption (1.)
is fulfilled. The eigenvalues of Q are λ1 = 0.5 and λ2,3,4 = 0, so that it is λi ≥ 0 for all
i ∈ {1, 2, 3, 4} and thus Q is positive semidefinite and (2.) is true. For assumption (3.)
we compute the controllability matrix with p0 = (10, 1)T :

C :=
(
B(p0) A(p0)B(p0) A(p0)

2B(p0) A(p0)
3B(p0)

)
=

⎛⎜⎜⎝
0 0.1 0 0.0981
0.1 0 0.0981 0
0 −0.1 0 −1.0787
−0.1 0 −1.0787 0

⎞⎟⎟⎠ .

According to the Kalman criterion in Theorem 3.1.6 it holds that rank(C) = 4 and
the system (A(p0), B(p0)) is controllable. The system is therefore also stabilizable since
stabilizability is the weak version of controllability. The observability in (4.) is shown
with the matrix of controllability of the dual system (A(p0)

T ,
√
Q(p0)

T
). For this we

compute

C:=
(√

Q(p0)
T

A(p0)
T
√

Q(p0)
T

A(p0)
T 2√

Q(p0)
T
) A(p0)

T 3√
Q(p0)

T
)

=

⎛⎜⎜⎜⎜⎜⎝
0.7071

... 0
... 0

... 0
...

0 O4×3 0.7071 O4×3 0 O4×3 0 O4×3

0
... 0

... −0.6934
... 0

...

0
... 0

... 0
... −0.6934

...

⎞⎟⎟⎟⎟⎟⎠ ,

with O4×3 ∈ R4×3 is the 4× 3 zero matrix. Since it is rank(C) = 4, the condition (4.) is
fulfilled. It follows that all assumptions for an optimal solution of the LQR problem are
fulfilled, cf. Theorem 3.2.5, and there exists the uniquely defined solution S∗ = S∗(p0)
of the algebraic Riccati equation:

SA(p0) + A(p0)
TS − SB(p0)R

−1B(p0)
TS +Q = 0.

Since the matrices

A(p) =

⎛⎜⎜⎝
0 1 0 0
0 0 −mg

M
0

0 0 0 1

0 0 (M+m)g
Ml

0

⎞⎟⎟⎠ and B(p) =

⎛⎜⎜⎝
0
1
M

0
−1
Ml

⎞⎟⎟⎠
are three times continuously differentiable with respect to p, also the last assumption (5.)
of Theorem 3.3.2 is fulfilled and it exists a neighborhood U(p0) ⊂ R4 of p0 such that the
optimal feedback matrix K(p) : U(p0) → R1×4 is a uniquely continuously differentiable
function for all p ∈ U(p0).
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5.4.4. Offline Computations

To illustrate the procedure, we compute the nominal feedback gain K(p0) for the first
tracking scenario with xref = (0, 0, 0, 0)T . This is accomplished by solving an optimiza-
tion problem of the type 3.12. We compute the nominal feedback gain K(p0) once as
an example for the first tracking scenario with xref = (0, 0, 0, 0)T . This is done by solv-
ing an optimization problem of the type 3.12. Accordingly, we formulate the infinite
optimization problem:

min
K(p0),x

∫ ∞

0

x(t)T
(
Q+K(p0)

TRK(p0)
)
x(t) dt

w.r.t. ˙x(t) = (A(p0)− B(p0)K(p0)) x(t),

x(0) = x0.

We implement this problem using the software library TransWorhp, described in Sub-
section 4.2.3 and use the WorhpZen module to obtain the parametric sensitivities
dK
dp
(p0). The optimization variables are the states x(t) and the elements of the searched

feedback gain K(p0) = (K(p0)1, . . . , K(p0)4) ∈ R4. Since the repeated numerical evalua-
tion of the infinite integral would become too costly, we restrict ourselves to a sufficiently
large time horizon. This is possible because if the integral exists, the remainder that
we cut off from the integral becomes from the integral becomes negligibly small. Ex-
periments have shown that T = 50 s is sufficient for a time discretization with 501
discretization points.

We use a full discretization approach with Hermite-Simpson discretization and obtain
the solution,

K(p0) = (−0.998781,−5.29252,−245.52,−75.1487).

The Hessian matrix is computed by Worhp using finite differences. The computation
of the sensitivity derivatives yields,

dK

dp
(p0) =

⎛⎜⎜⎝
0.00228937 0.00529661
−0.203255 −0.282624
−20.9186 −15.9428
−6.67873 −42.762

⎞⎟⎟⎠ .

Looking at the feedback gain K(p0), we can observe that the control u reacts much more
sensitively to deviations from the reference state xref = (0, 0, 0, 0)T in the angle x3 or
the angular velocity x4 than to deviations in the position x1 or the velocity x2. Further,
we can see from the sensitivities that the gain is very sensitive to disturbances of the
angle and the angular velocity. Thus, we conclude that in the presence of perturbations
in the mass of the cart and the length of the pendulum, the gain will be modified, in
particular in the entries multiplied by the deviations in the angles and angular velocities
by the real-time approximation (K(p) ≈ K(p0) +

dK
dp
(p0)∆p).
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5.4.5. The NDPIP for the Inverted Pendulum on a Cart

We formulate the nonlinear parameter identification problem with the covariance matrix
Σ = diag(0.16, 0.81× 10−2, 1.6× 10−5, 1.6× 10−5) as weighting matrix.

min
x0,p

F (x0, p) :=
1

2M

M∑
i=0

(x(ti; p, x0)− yi)TΣ−1(x(ti; p, x0)− yi),

w.r.t. ẋ(t) =

⎛⎜⎜⎜⎝
x2

1
M+sin2(x3)

(u+ lx24 sin(x3)− g sin(x3) cos(x3))
x4

g
l
sin(x3)− cos(x3)

l(M+sin2(x3))
(u+ lx24 sin(x3)− g sin(x3) cos(x3))

⎞⎟⎟⎟⎠ ,

x(t0) = x0,(
−8.0
−0.5

)
≤ ∆p ≤

(
10.0
2.0

)
.

(5.20)

Further, it is p = p0+∆p with p0 = (10, 1)T . Here, lower and upper bounds are specified
for the parametric perturbations ∆p = (∆M,∆l)T . These include physical limits. For
example, the pendulum length and the mass cannot become zero or negative. Further-
more, the bound on the parameter space can prevent convergence to an undesirable local
minimum. The states of the system are in different ranges of magnitude. Therefore, the
states are adjusted with a scaling factor c = ( 1

20
, 1
10
, 5, 5)T as described in Subsection 2.4.4

to increase the chances for convergence of the optimization.

The problem (5.20) is implemented in TransWorhp. As an initial guess for the para-
meters in the first identification problem, we use p[0] = p0 = (10, 1)T and then use the
solution of the previous problem in each successive problem. The superscript means
the first iteration step in the NLP solution method. The states xi are initialized
at all discretization points by the respective measurements, thus x[0](ti) = yi for all
i = 0, . . . ,M − 1. By providing those initial guesses, the speed of convergence can
be improved. We apply the full discretization approach with a trapezoidal scheme to
transform the problems. The number of discretization points for the NDPIP is set to
N = Ts

∆t
+1 = 41 and thus corresponds to the number of measurements on the considered

interval for simplicity. The resulting NLPs are then solved again with Worhp. The
Hessian matrix is approximated by a BFGS method.

The thresholds for the optimality and complementarity condition of the solution are
changed from the default value 10−6 to 10−5 to speed up the computation times. The
feasibility threshold is kept to maximize compliance with the dynamical system.
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Figure 5.3.: States of the inverted pendulum on a cart for scenario 0-B controlled with
different LQR-based control laws; cart position, cart velocity, pendulum deflection angle,
and pendulum angular velocity for a simulation horizon of T = 40 s.

5.4.6. Numerical Results for Scenario 0-B: Constant
Medium-Sized Parameter Perturbation

In the following, we examine the performance of the presented algorithm adLQR+PI and
compare it to adLQR with the true parameters and the optimal LQR controller rLQR. For
this, we assume that all control algorithms are in operation, and we choose a random
time during operation and see how the controllers react to parametric perturbations.

First, we consider scenario 0-B, cf. (5.18) and (5.19), corresponding to a medium con-
stant parameter perturbation and the stabilization of the origin. We study the sys-
tem on a simulation horizon of T = 40 s. Figure 5.3 shows the states of the simu-
lated inverted pendulum, i.e., the solution of the nonlinear system with the true para-
meters, controlled with different feedback laws. The initial state at time t = 0 is
x0 =

(
−12.127 −0.497 0.348 0.008

)T . The red dashed line shows the reference value.
The blue line represents the classical LQR with feedback gain K(p0) computed for the
nominal parameters. In red is shown the best possible feedback law rLQR with feedback
gain K(p∗). In this case, the feedback matrix is optimized again after each simulation
interval under the knowledge of the true parameters. The yellow curve shows the behav-
ior using the adaptive feedback law adLQR with updated feedback gain K(p0) +

dK
dp
(p∗)
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Figure 5.4.: Control of the inverted pendulum on a cart for scenario 0-B controlled with
different LQR-based control laws for a simulation horizon of T = 40 s.

if the true parameter values would be available to the controller. The performance of
this controller is considered as the benchmark for the proposed algorithm adLQR+PI
with K(p0) +

dK
dp
(p). The states for this combined controller are shown in purple.

All controllers are able to stabilize the system. It can be observed that nominal LQR
develops significantly more oscillation than all other controllers. The proposed algo-
rithm adLQR+PI performs similarly well to the perturbation-optimal controllers rLQR
and adLQR, for which we assumed that the true perturbations are known.

This characteristic can also be observed in the control effort. By looking at the control
curves in Figure 5.4, we can see that the control behavior of adLQR+PI almost exactly
matches that of the optimal adLQR. Quantitatively, this can be shown by comparing
the total control effort over the time under consideration. We present the norms of the
different controls relative to the norm of the perturbation-optimal controller rLQR in
Figure 5.4. It can be observed here that LQR has about 43.96% more control overhead
compared to the optimal rLQR. The adLQR+PI approach requires only about 0.02% more
control effort than the optimal rLQR. In this setup, the perturbation-adapted controller
adLQR with known perturbation requires about 0.07% less control effort than rLQR. It
is noted that the slight noise seen in the control is due to the unfiltered state feedback
in the control law, compare Subsection 5.4.2. We use the objective function (5.17) of
the LQR problem as an additional quality measure for each control algorithm. For this
purpose, we evaluate it a posteriori for the different approaches. The results are shown
in Figure 5.5 and the respective objective function values in Table B.1 in Appendix B.
It is easy to see that the objective function value of classical LQR is more than two
times larger than that of any other controller. The best result can be achieved with
rLQR by repeatedly recalculating the feedback gain online with known perturbations.
The algorithm adLQR has an objective functional of just about 0.05% larger than that of
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Figure 5.5.: Objective function of LQR problem for the inverted pendulum on a cart for
scenario 0-B controlled with different LQR-based control laws for a simulation horizon
of T = 40 s.

rLQR. The algorithm adLQR+PI achieves a very good result since the respective objective
function value is not more than half a percent larger than that of rLQR.

In Figure 5.6, the estimates of the parameter perturbations ∆p are shown as blue dots
for each identification interval. In addition, the true value is depicted in red, which is
constant in this scenario. It can be observed that the first parameter identifications
determine very good estimates for the perturbations up to about t = 6 s. However, in
some cases, the identification results deviate significantly from the true perturbation
value, especially for the second parameter, the pendulum length. This is because the
data in the later intervals does not contain enough information. Then, in the end,
the box constraints become often active. If we look again at Figure 5.3, we can see
that from t = 15 s for the adLQR+PI there is hardly any dynamic behavior left in
the system, compare the purple line. In particular, in the bottom two plots, there is
already from t = 6s almost no motion in the pendulum, making the identification of the
pendulum length impossible. In such a case, we speak of practical non-identifiability of
the parameters, see Section 2.4.4.

For the presented online parameter identification algorithm adLQR+PI, it is desirable
in such a case that no parameter identification is performed, and instead, the para-
meters identified in the last iteration are retained. As soon as there is more dynamic
in the measurements again, the identification of parameters is continued. It would,
of course, be possible to make additional use of data further back in time to enable
parameter identification. However, we are interested in performing a temporary valid
identification for data that is as recent as possible since we generally assume that the
parameters change over time. In this introductory demonstrative scenario, the para-
meters are time-invariant, but most of the other scenarios deal precisely with the case
of dynamic parameters.

For this purpose, we develop the extension with the computation of the Fisher informa-
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Figure 5.6.: Parameter deviation of the inverted pendulum on a cart for scenario 0-B
controlled with different LQR-based control laws for a simulation horizon of T = 40 s.

tion matrix adLQR+PI+FIM, see Algorithm 5.2. There, we use the Fisher information
matrix Ip to estimate the information content of measurements for a possible parameter
estimation. In this example, we approximate the Fisher information matrix with for-
ward sensitivities, see Appendix A.1. Since the diagonal of the inverse of the FIM I−1

p

contains the covariances of the maximum likelihood estimator, the trace of the inverse
is used to indicate the mean accuracy of the parameter estimation. Figure 5.7 shows an
approximation of the trace of the inverse before each PI given the data of the last sam-
pling interval. If this value is larger than the fixed threshold δFIM = 0.2, no parameter
identification is performed, and the previous value is kept: p[k+1] = p[k]. The threshold
is shown as an orange line in Figure 5.7.

By using Algorithm 5.2 with the additional FIM-check, the solution trajectories of the
states and controls in scenario 0 remain qualitatively the same as the results of Al-
gorithm 5.1, compare the Figures B.1 and B.2 in Appendix B. However, a significant
improvement can be observed in the parameter estimates in Figure 5.8. The parameter
estimates without FIM-check are shown in blue, and those with the additional FIM
consultation in green. The FIM checks avoid inaccurate parameter estimates from time
t = 6 s, and the true parameters over time are thus better approximated. We evaluate
the root mean square error (RMSE) in the parametric perturbations as

RMSE∆p :=

√∑NPI
i=1 (∆pi −∆prefi )2

NPI

.

It is computed on the considered simulation interval for the total number of parameter
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Figure 5.7.: Trace of the inverse of the approximated Fisher information matrix Ip of
the inverted pendulum on a cart for scenario 0-B for a simulation horizon of T = 40 s.

identifications denoted with NPI . For Algorithm 5.1 it is

RMSE∆p =

(
3.7538
1.1156

)
and for Algorithm 5.2 with additional FIM checks it results in

RMSE∆p =

(
0.1155
0.1052

)
.

So, in this respect, a significant improvement can be produced, which also leads to a
more stable control result, as we will see in this work. Since the solution trajectories
are similar, one may argue that the parameter mismatches may not matter. In a second
scenario, however, we will see that it is important not to make arbitrary identifications
based on insufficient data. There, we can observe that this is beneficial, for example,
to better stabilize the system behavior in case of a renewed sudden movement. The
computation times per parameter identification are, on average, 50 milliseconds for this
scenario. Since we provide a period of 0.5 seconds for identification, these problems can
be reliably solved online and are real-time capable. Also, the additional 20-30 millisec-
onds for the computation of the FIM can be comfortably handled in this time frame. At
this point, it should be noted that the individual computation times, particularly that
of the rLQR, are neglected for this analysis.

5.4.7. Numerical Results for Scenario 2-G: Large and
Time-Varying Parameter Perturbation

Now, we consider a more complex scenario where the different controllers track the
reference state according to scenario 2 in (5.19). Here, the cart moves continuously back
and forth between the positions x1,ref = 0 and x1,ref = −20. These reference values are
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Figure 5.8.: Comparison of parameter ∆p of the inverted pendulum on a cart for Scenario
0-B with and without additional FIM-check for a simulation horizon of T = 40 s.

again shown as a dashed red line in Figure 5.9. Moreover, we assume that the model
parameters we are interested in change over time, as indicated in parameter scenario
G in (5.18). In Figure 5.9, it can be seen that all control approaches reach the target
positions, although the classical LQR has difficulties stabilizing the system when the
perturbations of the parameters increase. Furthermore, it can be observed that LQR has
a significantly more dynamic response in the deflection of the pendulum and the velocity
of the cart. This is also reflected in the control effort. It can be found in Figure 5.10
that LQR requires almost 90% more control effort than rLQR, while the control approach
adLQR+PI requires only about 1.4% more energy than the optimal rLQR. Regarding the
control effort, adLQR is even better than rLQR by about one and a half percent.

In Figure 5.11, the trace of the inverse of the Fisher information matrix tr(I−1
p ) for the

considered scenario is shown. This is computed for an interval of length 4s. It can be
observed that, as expected, the value for tr(I−1

p ) becomes large in the regions with little
excitation in the system. This means that the variance of the parameter estimates would
be large, and thus, no reliable parameter identification can be performed with this data.
Therefore, the PI is not initialized, and the current parameter estimate is preserved.
The estimated parameters can be found as green diamonds in Figure 5.12. Here, for
comparison purposes, the parameter estimates gained with Algorithm 5.1 without the
FIM-check are also shown in blue. It can be seen that without the preliminary FIM-
check, arbitrary identification results would be produced for some PIs. The pendulum
length is especially sensitive in this way. The mean error between the true and the
estimated parameters is for Algorithm 5.1

ε̄p = 1.6056
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Figure 5.9.: States of the inverted pendulum on a cart for scenario 2-G with additional
FIM-check for a simulation horizon of T = 120 s.

Figure 5.10.: Control of the inverted pendulum on a cart for scenario 2-G with additional
FIM-check for a simulation horizon of T = 120 s.
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Figure 5.11.: Trace of the inverse of the approximated Fisher information matrix Ip for
scenario 2-G.

and for Algorithm 5.2 it is
ε̄p = 1.1025.

This is an improvement of over 30%. At this point, it is emphasized again that the FIM
can only be approximated and, therefore, does not guarantee a good identification result.
In the same manner, it may occur that despite a large value for tr(I−1

p ), a good PI result
could be obtained but is discarded. This is also due, as mentioned in Subsection 5.3.1,
to various sources of error in the computation of the FIM. These include, for example,
introducing an integration error in the numerical computation or evaluating the FIM in
the previously estimated parameters instead of the optimal ones.

Next, the objective function of the LQR problem will be considered again to compare
the different controllers. Thus, the objective function of the LQR problem is evaluated
on the respective solution trajectory. Figure 5.13 shows the objective function FLQR for
scenario 2-G. It can be observed that the perturbation-adapted controllers rLQR, adLQR,
adLQR+PI and adLQR+PI+FIM perform much better than the classical LQR, whose ob-
jective value is about 58% higher than the others. In particular, our proposed algorithms
perform as well as rLQR and adLQR, where the parametric perturbation is taken as known.
The specific values can be found in Appendix B in Table B.1. The results for all com-
binations of tracking and parametric perturbation scenarios for the different controllers
are presented there.

5.4.8. Numerical Results for Scenario 4-F and 5-F: Increasing
the Identifiability

Next, we will analyze two more problem scenarios that show how much effect the prob-
lem formulation has on the parameter identifiability. We consider the state reference
scenarios 4 and 5 from (5.19). Further, we consider the model parameters from scenario
F in (5.18). The desired tracking trajectory assumes that the cart moves back and forth
between the positions x1,ref = 20, x1,ref = 0, and x1,ref = −20. A special consideration
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Figure 5.12.: Comparison of parameter deviation of the inverted pendulum on a cart for
scenario 2-G with and without additional FIM-check.

Figure 5.13.: Objective function of the LQR problem for the inverted pendulum on a
cart for scenario 2-G controlled with different LQR-based control laws for a simulation
horizon of T = 120 s.
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Figure 5.14.: States of the inverted pendulum on a cart for scenario 4-F with additional
FIM-check for a simulation horizon of T = 120 s.

here is that a slight oscillation around the target position is introduced at positions
x1,ref = 20 and x1,ref = −20 using a sine wave. Figure 5.14 shows the reference values
as dashed red lines. It can be observed that all control approaches perform very well in
following the references.

Figure 5.15 shows the trace of the inverse of the Fisher information matrix tr(I−1
p ) for

the considered scenario. It can be observed that the values are significantly smaller
compared to the previous scenario 2-G, indicating a higher information content of the
trajectory. However, most of the time we are still above our threshold of δ = 0.2 and
thus no parameter identification is performed.

The violation of the threshold for the FIM can also be seen in the identified parameters
in Figure 5.16. There, we show the identified parameters in blue and the parameters
from the Algorithm 5.2 with FIM check again in green. The plateaus within the results
with Algorithm 5.2 show that here, the information content of the data is considered
too low for successful identification. Interestingly, in the results of the first algorithm
without FIM-checks, where always a PI is performed, it can be seen that the trajectory
allows good estimation results for the first parameter. The approximation of the second
parameter can still be improved by the FIM checks, which avoid arbitrary estimates in
periods with less information. To achieve this, we double the frequency of the sinusoid
in scenario 5, see Figure 5.17. This gives a very good tracking result for all controllers
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Figure 5.15.: Trace of the inverse of the approximated Fisher information matrix Ip for
scenario 4-F.

Figure 5.16.: Comparison of parameter deviation of the inverted pendulum on a cart for
scenario 4-F with and without additional FIM-check.
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Figure 5.17.: States of the inverted pendulum on a cart for scenario 5-F with additional
FIM-check for a simulation horizon of T = 120 s.

Figure 5.18.: Trace of the inverse of the approximated Fisher information matrix Ip for
scenario 5-F.
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Figure 5.19.: Comparison of parameter deviation of the inverted pendulum on a cart for
scenario 5-F with and without additional FIM-check.

used. Referring to Figure 5.18, it can be seen that the trace value of the inverted FIM
is lower than in scenario 4-F. This means that the information content of the data is
significantly higher.

Looking at the parameter estimates for scenario 5-F in Figure 5.19, we see that the para-
meter identification is better for both algorithms. The improvement in the identification
result shows how much the identifiability of the parameters depends on the available
data. There is almost no need to disable the parameter identification.

Figure 5.20.: Objective function of the LQR problem for the inverted pendulum on a
cart for scenario 4-F controlled with different LQR-based control laws for a simulation
horizon of T = 120 s.

This means that a suitable choice of trajectories can increase the information content.
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Figure 5.21.: Objective function of the LQR problem for the inverted pendulum on a
cart for scenario 5-F controlled with different LQR-based control laws for a simulation
horizon of T = 120 s.

If the choice is most suitable, the need to approximate the information content can
become unnecessary. Thus, the additional effort for the FIM approximation can be
avoided. However, suppose the trajectories are created without such trade-offs or even
synthesized on operation. In that case, the identifiability should be evaluated by an
approximation of the Fisher information matrix, as we have suggested.

The accumulated objective function values of the LQR problem FLQR for scenarios 4-F
and 5-F are shown in Figure 5.20 and Figure 5.21, respectively. It can be observed that
the perturbation adapted controllers rLQR, adLQR, adLQR+PI and adLQR+PI+FIM have
lower values than the classical LQR. In particular, our proposed algorithm performs as
well as rLQR and adLQR, where the parametric perturbation is taken as known. The
individual depicted values can be found in Table B.1 in Appendix B.

5.4.9. Conclusion of the Numerical Results

We define additional differences as performance values for a more concise evaluation
and comparison of the different control methods for all analyzed scenarios. The objec-
tive function value of adLQR with the exact parameters is used as a benchmark. The
differences are defined as

ξ1 = FLQR − FadLQR,

ξ2 = FadLQR+PI − FadLQR,

ξ3 = FadLQR+PI+FIM − FadLQR,

(5.21)

to compare the control laws LQR, adLQR+PI without and with FIM check. For this
purpose, the relative objective function values ξ1, ξ2, and ξ3 are listed in Table 5.1 for all
considered scenarios. They are computed from the values from Table B.1 in Appendix B.

109



The best values for each combination of scenarios and parameters are highlighted in
bold.

A look at the values shows that our approaches for online identification perform better
than the non-adapted classical LQR in almost all cases. The latter becomes unstable
in two cases, where ξ1 = ∞. In almost 80% of the cases, adLQR+PI+FIM gives the
best results concerning the value of the objective function. In about 20% of the of
the scenarios, a better result is obtained without the additional FIM checks. It can be
observed that these are mostly scenarios in which the trajectories can be regarded as
sufficiently informative in large parts. The additional checks, if a parameter identification
should be made, pay off, especially in the cases where there are longer areas with little
information, like the xref in Scenario 3.

Further influencing factors like the sample time and the frequency of executed parameter
identifications affect the quality of the algorithms. If the identifications follow each
other closely with a relatively large amount of data, previously possibly error-prone
identifications can be quickly compensated and make additional FIM-checks unnecessary.
Whether additional FIM-checks should be used or not is a question of implementation
effort, computational power, and the specific application. Overall, it can be said that
adLQR+PI achieves very good results for this example.

Table 5.1.: Relative objective function of the LQR problem for all scenarios for the in-
verted pendulum-cart system. The value in bold indicates the lowest value for each sce-
nario.

Scenario Relative objective Scenario Relative objective
identifier identifier
xref ∆p ξ1 ξ2 ξ3 xref ∆p ξ1 ξ2 ξ3

0 A 164 3 1 3 A 2660 350 70
0 B 20370 60 60 3 B 70010 220 140
0 C 40 0 -2 3 C 640 640 230
0 D 298 11 7 3 D 1210 490 160
0 E 226 32 29 3 E 810 420 10
0 F 1888 60 58 3 F 10020 230 -30
0 G 2236 28 27 3 G 12360 150 -60
0 H 156 -29 -27 3 H 7390 290 180
0 I 1129 -12 -14 3 I 5380 740 450

1 A 2040 720 360 4 A 6380 640 -30
1 B 83310 230 -110 4 B 190000 900 -100
1 C 1150 1430 520 4 C 1440 810 1010
1 D 620 1253 1620 4 D 2450 420 240

Continued on next page
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xref ∆p ξ1 ξ2 ξ3 xref ∆p ξ1 ξ2 ξ3

1 E 1740 810 60 4 E 1890 580 200
1 F 7370 630 580 4 F 17580 370 200
1 G 29170 340 90 4 G 49960 1900 2940
1 H 18570 390 70 4 H 37710 1140 150
1 I 5220 1110 3710 4 I 11140 1030 820

2 A 2630 430 130 5 A 50800 1200 900
2 B 155860 160 260 5 B ∞ 700 1000
2 C 1930 2330 1170 5 C 10000 9100 8800
2 D 240 1440 830 5 D 6400 2000 1600
2 E 2390 720 90 5 E 16700 1400 1000
2 F 8900 450 1190 5 F 229600 700 1500
2 G 45320 640 120 5 G ∞ 600 1400
2 H 33290 430 0 5 H 320700 1200 1700
2 I 6710 1890 1140 5 I 75900 1700 1400
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6. Online Parameter Estimates for
Nonlinear Optimal Feedback
Control

Up to this point, online parameter identification in combination with linear feedback
control was examined. Since we are considering nonlinear parameter identification in
particular, the next step is the combination with nonlinear optimal feedback control. For
this purpose, we consider nonlinear model predictive control as introduced in Chapter 4.
NMPC can be interpreted as a feedback controller since it provides controls adapted to
the current state through feedback with current system information and repeated opti-
mization. In NMPC, a nonlinear dynamical model of the system to be controlled is used
to predict the future behavior of the process as a function of the inputs. The perfor-
mance of the procedure depends highly on the quality of this used model. Therefore, it is
of particular interest to provide an accurate system model. Our approach of additional
online parameter identification addresses this ambition. The initial design started with
a sequential approach in [RFB18]. There, the parameter identification was carried out
for a repeated movement of the system, and a Monte Carlo simulation showed signifi-
cant improvement in the point tracking. The use of online parameter identification in
the NMPC process was introduced in [RFB20]. This approach is the subject of further
discussions in this chapter.

Plant
Optimal
Control
Problem

Model
Parameter

Identification

u

Model Predictive Controller disturbances

+

sensor noise

output
y

y

p0p

initial guess
p0,x0,u0

Figure 6.1.: The control loop with NMPC and online parameter identification.
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Figure 6.1 is a structural representation of the proposed approach of NMPC and non-
linear dynamic parameter identification, denoted as NMPC+PI in the following. There,
the classical NMPC control loop, introduced in Figure 4.1, is extended by an additional
parameter identification. The PI for model adaption is added in the lower red block. It
has the measured system outputs as input. The parameter identification then minimizes
the error between the system output and the model output. The optimal parameters
computed in this step are then fed to the system model in the lower blue block. In this
way, the optimal control problem can be provided with a model that best adapts to the
current conditions. Thus, the predictions in the next OCP can be improved. External
disturbances are those that affect the behavior of the system. As a result, parameters
in the system-describing model can change. Additionally, measurement noise, i.e., dis-
turbances originating from sensors, is taken into account by an additive white Gaussian
noise in the measurements. At each NMPC step, the output states of the system are
measured. These measurements are then used as initial states for the new OCP. Since
the focus of this work is on the identification of model parameters, we assume full-state
feedback to avoid other side effects.

For the online parameter identification, we consider the data of a limited time window
in the past. This finite horizon approach is also used for state estimation in NMPC
schemata, e.g., moving horizon estimation (MHE), [Die+06; Fri+15]. The data horizon
is limited and moved forward in time to keep the computational cost low. Since we
assume that the parameters can change with time, we deliberately take into account
that the knowledge from previous data is lost to a certain extent. However, the already
gained information is indirectly used since the optimal solution of the previous problem
is used as an initial estimate for the current problem.

6.1. The Parameter Identification Problem for NMPC

This section discusses the arising identification problems in more detail. Assume we are
at the current process time tk in our NMPC setup shown in Figure 6.2. It contains
different time axes. For the general system, time t is used. With τ the time within
the current OCP is described, as in the NMPC theory chapter, so an OCP always
starts at τ = 0. The time variable ξ is used within the NDPIP. The optimization
problem for parameter estimation always starts with ξ = 0. During the operation of
the system, measurements are taken. These samples yi are collected at each time ti,
i = 0, . . . , k with a fixed sample time ∆t = ti − ti−1, i = 1, . . . , k. Using this sample
of measurements, we could now set up a parameter identification problem as defined by
2.3.2. This problem, which uses all available data, is called a full information problem
in the MHE context, Rao, Rawlings and Mayne [RRM03]. However, since this may
produce a large amount of data in total, the computation time to solve such a problem
would quickly increase with increasing operating time. These problems could no longer
be solved online. To reduce the computational cost, we use only a limited number of
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Figure 6.2.: Scheme of the different time frames for the parameter identification problem
for NMPC at system time tk; an NDPIP is solved online for measurements from the past
identification horizon.

measurements for parameter identification. For a given number M ∈ N of measurements,
we define the identification horizon as TI :=M∆t. Thus, only the measurements on the
last period [tk − TI , tk] = [tk−M , tk] are used. This approach is advantageous in our case
because we assume time-varying parameters, so only data near in the past is of interest
for determining the current model parameters. The k-th NDPIP can be formulated on
the interval [tk−M , tk] as follows:

min
x
[k]
0 ,p[k]

F [k](x
[k]
0 , p

[k]) :=
M∑
i=0

(
x(ξi; p

[k], x
[k]
0 )− yk−M+i

)T
W

(
x(ξi; p

[k], x
[k]
0 )− yk−M+i

)
w.r.t. ẋ(ξ) = f(x(ξ), ũ(ξ), p[k]), for ξ ∈ [tk−M , tk],

x(ξ0) = x
[k]
0 ,

g(x̄(ξ), p[k]) ≤ 0.
(6.1)

The parametric dynamical model f(x(·), u(·), p) of the considered plant is the same that
is used in the optimal control problems for NMPC. Further yk−M is the measurement
at time tk−M = tk − TI . By ũ(·), we denote an approximation of the controls at the dis-
cretization nodes. It is equal to the measured controls at each sample point, and between
two samples, it is the result of a linear interpolation of the two neighboring samples.
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Algorithm 6.1 NMPC+PI
1: At time t0 choose nominal parameter p[0] := p0.
2: Choose a prediction horizon T for the OCP, an identification horizon TI , and a

threshold δ.
3: Set iterator k = 0.
4: Measure the current system state yk.
5: if k ≥M and k modM = 0 and

∑k
j=k−M

1
M
∥x(tj)− yj∥2 > δ then

6: Perform parameter identification (6.1) for pk on [tk − TI , tk] and
7: set the parameters of the model used in the OCP to pk = arg min (6.1).
8: else Set the parameters of the model used in the OCP to pk = pk−1 for k > 0.
9: end if

10: Set the initial state of the OCP to x̄0 = x̄(τ0 = 0) := yk and solve (4.9) on [tk, tk+T ].
11: Denote the obtained optimal control sequence ū∗(·) ∈ U and apply its first sequence

for the sample time ∆t as control to the system.
12: Set k = k + 1 and continue with step 4.

Additionally, general equality or inequality constraints on the states and parameters are
considered in the function g. In essence, parameters are sought so that the error between
model output and measured output on the last identification horizon is as small as possi-
ble for the applied controls. With the weighting matrix W = diag(w1, . . . , wnx) ∈ Rnx×nx

in the objective function, the influence of each state can be weighted. If it can be as-
sumed that the distributions of the measurement uncertainties are known, then a skillful
choice of the weights as the inverted covariance matrix W = Σ−1 can be useful.

The next step is to formulate the algorithm that combines nonlinear model predictive
control with nonlinear dynamic parameter identification.

6.2. The Combined Algorithm NMPC+PI

The entire process for the described algorithm NMPC+PI is summarized in Algorithm 6.1.
The proposed method extends the classical NMPC Algorithm 4.1 by the option of on-
line nonlinear parameter identification. We initialize the algorithm by choosing an initial
guess for the parameters p[0] := p0 ∈ Rnp , an identification horizon TI ∈ R for data sam-
pling, and a longer prediction horizon T ∈ R with T > TI . The identification horizon is
a multiple of the sample time, i.e., TI = M∆t, so that there are M ∈ N measurements
available for parameter identification. The first interval to consider for parameter iden-
tification is then I [0] = [t0, t0 + TI ]. The if-condition in Algorithm 6.1 specifies when a
parameter identification will be made. The first condition ensures that we have collected
at least M measurements to provide sufficient data. The second condition ensures that
a parameter identification is only performed if M new measurement data are available.
Further, the third condition estimates the deviation of the current trajectory from the
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previously predicted one. For this purpose, the multidimensional mean square error
(MSE) between the predicted states and measurements is computed. The value is then
compared to a previously defined threshold δ ∈ R+, that represents the largest accepted
deviation:

MSEx :=
nx∑
i=1

1

M

k∑
j=k−M

∥xi(tj)− yi,j∥2 > δ.

If this is exceeded, a parameter identification of the type (6.1) is performed. The newly
obtained optimal estimates of the model parameters are used to adapt the model in
the OCP. Subsequently, the optimal control problem is solved using the adapted system
model. The obtained control sequence is then realized on the system, and the procedure
continues with taking new measurements. As a reminder, the notation x̄ and ū are used
for the states and controls of the k-th optimal control problem with the problem internal
time variable τ .

The optimal control problems are solved with the transcription software TransWorhp,
see Subsection 4.2.3. A direct approach via the full discretization method with a trape-
zoidal method is used here. The resulting NLPs are then solved with Worhp. For the
first OCP, the initial guess for the states at each discretization point is generated by
linear interpolation between the initial and target states. For the controls, zero is used
as the initial guess. Afterwards, we use a shift-initialization strategy for the initial guess,
see Subsection 4.5. For this, the solution trajectories of the previous OCP are used as
initial guesses for both the states and the controls. The last section, which does not yet
contain any approximate values, is filled with a constant value equal to the last value of
the previous OCP solution. The derivative structures of the objective function and the
Jacobian are provided to accelerate the computation of the solution. The derivatives are
then computed with Worhp using finite differences. To further exploit the similarity of
successive OCPs for efficient computation, starting from the second OCP, the obtained
Lagrangian multipliers as part of the solution of the previous problem are provided as
initial guesses of the Lagrangian multipliers for the current problem.

TransWorhp is also used to solve the parameter identification problems. Thus, the
differential equations in the constraints are handled by full discretization. For this, a
trapezoidal method is used. In order to increase the efficiency, we provide the deriva-
tive of the objective function together with the derivative structure of the differential
equations. The numerical computation of the derivatives is then done by Worhp with
a BFGS approach. The measurements are used as a reasonable initial guess for the
states. For this purpose, the corresponding measured value or a linear interpolation of
the two neighboring measurements is used for each discretized state. The solutions to
the previous problem are taken as an initial guess for the parameters.

In the following, the performance of the algorithm is analyzed with two numerical exam-
ples. First, we consider the inverted pendulum-cart system in two different task scenarios
with unknown constant parameters and dynamic larger parameter deviations. Second,
we look at a state-tracking task of a robotic manipulator with unknown model para-
meters. For the following numerical evaluations, the proposed NMPC+PI algorithm was
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implemented in the programming language C++. The simulations of the real systems are
also realized within C++. For this, the dynamical systems with the true parameters are
integrated forward with an advanced integration method, i.e., a Runge-Kutta scheme of
fourth order and a fine discretization. The numerical results show an improved stabil-
ity behavior of the nonlinear model predictive controller with the additional parameter
identifications compared to classical NMPC.

6.3. Numerical Analysis on the Inverted Pendulum on
a Cart

We consider again the pendulum-cart system from Section 5.4. In the previous Chapter 5
we controlled this system with different linear controllers and showed that additional
online parameter identifications lead to improved control behavior and reduced control
cost. Now, we examine our nonlinear model predictive control algorithm with online
model adaptations, NMPC+PI, on the same example. We examine what advantages and
disadvantages our proposed algorithm NMPC+PI has compared to the classical NMPC
without model fitting, denoted by NMPC in the following.

6.3.1. The OCP for the Inverted Pendulum on a Cart

The optimal control problem to be solved within the kth-NMPC step is formulated for
the pendulum-cart system as follows:

min
x̄[k],ū[k]

J [k] =

∫ T

0

(x̄[k](τ ; p[k])− xref (τ))TQ(τ)(x̄[k](τ ; p[k])− xref (τ)) · · ·

· · · + ū[k](τ)TR(τ)ū[k](τ) dτ

w.r.t. ˙̄x[k](τ) = f(x̄[k](τ), ū[k](τ), p[k])

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̄
[k]
2 (τ)

1

D[k]
(ū[k](τ) + l[k]x̄

[k]2

4 (τ) sin(x̄
[k]
3 (τ))− g sin(x̄[k]3 (τ)) cos(x̄

[k]
3 (τ)))

x̄
[k]
4 (τ)

g

l[k]
sin(x̄

[k]
3 (τ))− cos(x̄

[k]
3 (τ))

l[k]D[k]

(
ū[k](τ) + l[k]x̄

[k]2

4 (τ) sin(x̄
[k]
3 (τ)) · · ·

· · · − g sin(x̄[k]3 (τ)) cos(x̄
[k]
3 (τ))

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
x̄[k](0) = yk,

x̄[k](τ) ∈ [(−1000,−100,−1,−1)T , (1000, 100, 1, 1)T ],
ū[k](τ) ∈ [−500, 500], for τ ∈ [0, T ],

(6.2)
where it is D[k] =M [k] + sin2(x̄

[k]
3 (τ)). The constraints ensure that the nonlinear system

dynamics (5.14) are satisfied on the considered time horizon. Furthermore, the initial
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state is set to the current system state, which is taken from the current measurement yk.
Box constraints take into account the physical limitations of states and controls. In the
optimal control problem (6.2), the weighting matrices Q(τ) and R(τ) are used to provide
a trade-off between the tracking of individual states and the control effort, also in the
temporal direction. After discretization in time and transcription of the control problem
into an NLP, we choose the weights for each discretized state x(τi) with i = 0, . . . , N−1,
to

Q(τi) = Qi =
1

(N − i)2

⎛⎜⎜⎝
10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

⎞⎟⎟⎠ and R(τi) = 0.1,

where N ∈ N is the number of discretization points. The changing weights for the states
over time have the effect that deviations from the desired state are more influential at
later times than at earlier points. This enables the system to reach the target state at
the end. So, we are in the setting of the Section 4.4.2 with an objective function like the
one presented in (4.8).

6.3.2. The NDPIP for the Inverted Pendulum on a Cart

As in Section 5.4 the parameter vector is defined as p := (M, l)T ∈ R2 and the nominal
value is set to p[0] = p0 = (10, 1)T . The nonlinear dynamical parameter identification
problem at time tk is formulated with D[k] =M [k] + sin2(x3(ξ)) as:

min
x
[k]
0 ,p[k]

F [k] :=
M∑
i=0

(
x(ξi; p

[k], x
[k]
0 )− yk−M+i

)T
W

(
x(ξi; p

[k], x
[k]
0 )− yk−M+i

)
w.r.t. ẋ(ξ) =f(x(ξ), ũ(ξ), p[k]), for ξ ∈ [tk − TI , tk],

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x2(ξ)
1

D[k]

(
ũ(ξ) + l[k]x24 sin(x3(ξ))− g sin(x3(ξ)) cos(x3(ξ))

)
x4(ξ)

g

l[k]
sin(x3(ξ))−

cos(x3(ξ))

l[k](D[k]

(
ũ(ξ) + l[k]x4(ξ)

2 sin(x3(ξ)) · · ·

· · · − g sin(x3(ξ)) cos(x3(ξ))
)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
x(ξ0) = x

[k]
0 ,(

−5.0
−0.5

)
≤ ∆p[k] ≤

(
10.0
2.0

)
.

(6.3)

For the weighting matrix W = diag(w1, w2, w3, w4) ∈ Rnx×nx in the objective function
all entries are initially set to wi = 1, i = 1, 2, 3, 4, and thus all states are weighted
identically. In the constraints, lower and upper bounds are specified for the parametric
perturbations ∆p[k] = (∆M [k],∆l[k])T . Since it is p[k] = p0 + ∆p[k] with p0 = (10, 1)T ,
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these constraints also indirectly provide lower and upper bounds for the parameters.
The controls in the dynamics are an approximation from the measured controls at the
discrete time points described for problem (6.1).

6.3.3. Scenario 0-A: Constant Small Parameter Deviation

First, we consider scenario 0-A from (5.18) and (5.19). This corresponds to a small
constant parameter perturbation ∆p = (2.0, 0.5)T and the stabilization of the origin.
We simulate the system for Ts = 40 s with a sample time ∆t = 0.05 s. In standard
nonlinear model predictive control, an optimal control problem must be solved online
in each NMPC step. The prediction horizon of each OCP is T = 10 s. We choose a
multistep-NMPC approach and solve a new OCP not for every incoming measurement
but one for each 0.2 seconds.

Figure 6.3.: States of the inverted pendulum on a cart for scenario 0-A controlled by
classic NMPC (blue line), NMPC+PI (violet line), optimal NMPC (yellow line) and the
corresponding noisy measurements (dots in similar color); cart position, cart velocity,
pendulum deflection angle, and pendulum angular velocity for a simulation horizon of
T = 40s.
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Thus, the control horizon is TC = 0.2 s. This interval size allows the solution of an
OCP since the computation times for an optimal control problem in this scenario are,
on average, 35ms. Further, it is not too conservatively chosen to account for incoming
feedback sufficiently. The identification horizon is set to TI = 1 s. Thus, we obtain 21
measurements per parameter identification.

Figure 6.3 shows the plots of the states of the pendulum-cart system controlled by
different NMPC methods. The first plot on the top left shows the cart position. The
second graph at the top right shows the cart velocity. Further, the third and fourth plots
depict the pendulum’s angular deflection and angular velocity over time. To simulate
the real system, the nonlinear dynamical system with the true parameters is integrated
forward for each NMPC step with a Runge-Kutta method of fourth order.

We compare the control behavior of three different approaches. First, the classical NMPC
controller is used, which only knows the nominal parameter values. This is shown in
blue. Further, the proposed algorithm NMPC+PI is plotted in violet. The optimal NMPC
controller, which has the true model with the true parameters available at any time,
serves as a further comparison controller and is given in yellow. It can be observed that
all three controllers can stabilize the system over time. However, the classic NMPC needs
considerably longer and, as we will see in the following, also needs considerably more
control effort. The proposed NMPC+PI controller stabilizes the system very quickly. Ini-
tially, it still agrees with NMPC, but with several parameter identifications, it approaches
the optimal NMPC and then performs comparably well. For further illustration, the
measured data is additionally plotted as points. Depending on the method, a similar
color shade is used. The measurement data result from the true simulated states of the
system with a measurement noise implemented as additive normally distributed noise
as described in (5.16). It is Σ = diag(σ2

1, ..., σ
2
4) with the standard deviation vector

σ = (0.4, 0.09, 0.004, 0.004).

In Figure 6.4, the used controls are depicted. The classical NMPC is again plotted in blue,
NMPC+PI in violet, and the optimal NMPC in yellow. We can observe that the two trajec-
tories of NMPC and NMPC+PI are identical until the first parameter identification. After
that, the control effort can be reduced significantly by adjusting the model used in the
OCP in NMPC+PI. Already from t = 6 s, the applied control maneuvers are mainly only
caused by the measurement noise. We use the optimal NMPC as a comparative value.
Then, the classical NMPC requires about 150% more control effort than optimal NMPC,
whereas our approach NMPC+PI requires only 12% more than the optimal controller:

∥uNMPC∥2
∥uopt.NMPC∥2

= 2.4951 and
∥uNMPC+PI∥2
∥uopt.NMPC∥2

= 1.1158.

The computation times for the additional parameter identifications are, on average, 11
milliseconds. The maximum computation time that occurs is 22 milliseconds. This
makes the combined method NMPC+PI real-time capable.
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Figure 6.4.: Control of classic NMPC (blue line), NMPC+PI (violet line) and optimal NMPC
(yellow line) for the inverted pendulum on a cart for scenario 0-A for a simulation
horizon of T = 40 s.

Figure 6.5.: Identified parameter variations ∆p (blue dots) of the inverted pendulum on
a cart for scenario 0-A controlled with NMPC+PI for a simulation horizon of T = 40 s.
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In Figure 6.5, the identified parametric perturbations ∆p are shown as blue dots for
each parameter identification. The red line represents the true parameter perturbations
used within the system simulation. The parameter estimates are close to the true values,
although only 21 measurements per PI are available in this example. The root mean
square error (RMSE) is:

RMSE∆p :=

√∑M
i=1(∆pi −∆prefi )2

M
=

(
0.7940
0.4230

)
.

In this example, N = 21 discretization points are used within the full discretization
method to solve the parameter identification problem. The number may be selected
differently. If necessary, the measurement data will be approximated at the support
points. This is done by linear interpolation of the two surrounding measurements.

For the first scenario 0-A, we demonstrated that the model adaptation in the optimal
control problem significantly improves the control behavior of the NMPC method. Con-
sidering a larger parametric perturbation in the model, e.g., scenario 0-B, the classical
NMPC can no longer stabilize the perturbed system. The proposed combined algorithm,
in contrast, shows good performance here as well. The corresponding diagrams for these
tests can be found in Appendix B.2. The following presents the even more challenging
problem of time-variable parametric perturbations.

6.3.4. Scenario 2-G: Large and Time-Varying Parameter
Deviation

The next scenario that will be considered is scenario 2-G from (5.18) and (5.19). This
represents a task where the cart continuously moves back and forth between the states
xref = (0, 0, 0, 0)T and xref = (−20, 0, 0, 0)T , and the model parameters are changing
over time. For this scenario, we compare the adaptive NMPC+PI controller only with
the optimal optimal NMPC controller since the classical NMPC is not able to stabilize the
system. A graph of the states with the classical NMPC can be found in Appendix B.3.
Figure 6.6 shows the states of the inverted pendulum on a cart for the two other control
approaches. The four plots contain again the curves of the cart position, its velocity,
the pendulum deflection, and the angular velocity of the pendulum over time. It can
be observed that the state tracking with the proposed NMPC+PI approach works very
well, and the trajectories are hardly distinguishable from those of the optimal NMPC.
In Figure 6.7 the control effort of the two controllers is shown. This also highlights the
excellent performance of the presented adaptive approach. The resulting quotient of the
total control effort is:

∥uNMPC+PI∥2
∥uopt.NMPC∥2

= 1.0718.

Only about 7% more control effort is required than for the optimal controller. The
estimates of the parametric deviations ∆p are shown in blue in Figure 6.8. In addition,

123



Figure 6.6.: States of the inverted pendulum on a cart for scenario 2-G controlled by
NMPC+PI (violet line) and optimal NMPC (yellow line) and the corresponding noisy mea-
surements (dots in similar color); cart position, cart velocity, pendulum deflection angle,
and pendulum angular velocity for a simulation horizon of T = 120 s.

Figure 6.7.: Control of NMPC+PI (violet line) and optimal NMPC (yellow line) for the
inverted pendulum on a cart for scenario 2-G for a simulation horizon of T = 120 s.
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Figure 6.8.: Identified parametric variations ∆p (blue dots) of the inverted pendulum on
a cart for scenario 2-G controlled with NMPC+PI, reference values (red line).

the true parametric deviations of the system are given as reference values in red. The
initial values ∆M = ∆l = 0 were used in each case. It can be seen that both parameters
are satisfactorily identified. The root mean square error is:

RMSE∆p :=

√∑M
i=1(∆pi −∆prefi )2

M
=

(
0.8991
0.5168

)
.

Smaller outliers in the parameter estimates can appear once a satisfactory stabilization
of the system occurs. As a result, there is less activity in the system, and the data for
parameter identification also contains less information. For such cases, a measure of the
information content of the data, such as the FIM, would again be useful. However, the
additional computation time would be too much of a delay in NMPC. Nevertheless, these
outliers have little effect on the overall behavior of the method since frequent PIs enable
another fast adaptation to be performed. The predictions are significantly improved
by tuning the model in the OCPs with the estimated parametric perturbations. This
results in an improved controller performance in state tracking.

6.4. Numerical Analysis on a Robotic Manipulator

In this section, we demonstrate the functionality of the presented method using a second
example of an industrial robotic manipulator. First, we explain the general approach
to model a robot manipulator with n joints. For the following numerical analysis of
our algorithms, we apply the proposed controller to a robot with two links. For this,
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we formulate the specific optimal control and parameter identification problems. The
performance of the controller NMPC+PI is discussed for a state-tracking task in terms
of tracking accuracy and identification quality in the embedded parameter estimation
process. Furthermore, we compare the control performance of NMPC+PI to classical NMPC
and optimal NMPC.

6.4.1. Dynamical Model for a Robotic Manipulator

A typical industrial robotic manipulator consists of a control unit and a manipulator
arm that is built of separated links and has an end-effector on the top, where tools can
be mounted. The links are connected through rotatory joints. Building a mathematical
model of this multi-body system with rigid links connected through rotational move-
ments ends up in an open-kinematic chain.

Two commonly used methods exist for the representation of the equations of motion
of robotic systems in joint-space formulation, the Newton-Euler formulation and the
Lagrange formulation, see Chapter 2 in Siciliano et al. [Sic08]. In this thesis, the energy-
based Lagrangian method is chosen. For a robotic manipulator with n ∈ N links we
define the joint angles θ = (θ1, . . . , θn)

T as generalized coordinates, their corresponding
joint angular velocities θ̇ = (θ̇1, . . . , θ̇n)

T are the derivatives and i ∈ {1, . . . , n} is the
index of the joint. The Lagrangian L is defined as the difference between the kinetic
energy T and the potential energy V of the system, i.e.,

L(θ, θ̇) = T (θ, θ̇)− V (θ) =
n∑
i=1

Ti −
n∑
i=1

Vi (6.4)

= 1
2

n∑
i=1

mi∥Ṡi∥2 + 1
2

n∑
i=1

ωTi Iiωi −
n∑
i=1

migSi,z,

where Si = (Si,x, Si,y, Si,z)
T is the position of the center of mass of link i relative to the

base frame, mi is the mass of link i, ωi is the angular velocity of link i relative to the
base frame, Ii is the inertia tensor of link i and g = 9.81m s−2 the standard gravitational
constant. For a detailed derivation of the dynamics, we refer to Murray et al. [Mur+94].
The equations of motion for the mechanical system are given by:

d

dt

∂L

∂θ̇
−
∂L

∂θ
= hf , (6.5)

where hf = (hf,1, . . . , hf,n) is the vector of external forces and hf,i is the force that acts
on the i-th generalized coordinate. Examples are moments that act as external controls
on the motors or friction effects. To briefly depict how we obtain the matrices that
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Figure 6.9.: Two link open-chain robotic manipulator with two degrees of freedom.

represent our dynamics, we insert the above-defined Lagrangian function (6.4) in (6.5).
For each coordinate i = 1, . . . , n, it follows that,

hf,i =
d

dt

∂T

∂θ̇i
−
∂T

∂θi
+
∂V

∂θi
=

n∑
j=1

∂2T

∂θ̇j∂θ̇i
θ̈j +

n∑
j=1

∂2T

∂θj∂θ̇i
θ̇j −

∂(T − V )

∂θi

=:
n∑
j=1

Mij(θ)θ̈j − vi(θ, θ̇)− wi(θ).

Finally, the equations of motion can be written in the common compact form:

M(θ)θ̈ = v(θ, θ̇) + w(θ) + hf =: F (θ, θ̇) + hf . (6.6)

The symmetric and positive definite matrix M(θ) ∈ Rn×n is called the manipulator iner-
tia matrix or mass matrix, the vector v(θ, θ̇) ∈ Rn describes the centrifugal and Coriolis
forces and the vector w(θ) ∈ Rn represents the gravitational part. We summarize them
in the force vector F (θ, θ̇) ∈ Rn. Note that the developed ordinary differential equations
of second order in (6.6) show a highly nonlinear behavior due to nested trigonometric
functions.

6.4.2. Problem Description

In the following, we consider a robotic manipulator with two cylindric-shaped links with
diameter d = 20 cm and the lengths l0 = 18.15 cm, l1 = 16.35 cm, l2 = 57.5 cm, compare
Figure 6.9. Further, we assume that all system parameters in the Table 6.1 are known,
except for the two in brackets. The parameters to be estimated are the mass of the
second link and moment of inertia in x of the second link: p = (p1, p2) = (m2, Ix,2) ∈ R2.
The vector of external forces is defined for each robotic link as

hf,i = ki,1ui − ki,2θ̇ − ki,3 tanh(aiθ̇), for i = 1, 2.

It contains the control and forces arising from frictional effects, [Kna01]. The controls
are the currents in each joint.
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Table 6.1.: Model parameters for the robotic manipulator at start time t = 0, the embraced
values are the ones to be estimated.

Parameter Symbol Link 1 Link 2 Unit
mass m 6 (23) kg
center of mass, x sx 0 0 m
center of mass, y sy 0 0 m
center of mass, z sz - 0.2875 m
moment of inertia, x Ix - (0.6912) kgm2

moment of inertia, y Iy - 0.6912 kgm2

moment of inertia, z Iz 0.03 0.115 kgm2

factor current k1 0.7 0.4 -
factor vis. friction k2 1 2 Nm/s
factor dry friction k3 8 3 Nm
factor modeling a 50 50 -

For the robotic manipulator with two links and the parameters from Table 6.1 the mass
matrix and the right-hand side from (6.6) result in,

M(θ, p) =(
0.08265625

(
1− cos2(θ2)

)
p1 + 0.03 + p2 + p2 cos

2(θ2) 0
0 0.08265625p1 + 0.6912

)
,

F (θ, θ̇, p) + hf =(
−0.3125 sin(θ2) cos(θ2)

(
0.529p1 + 6.4p2 − 0.736

)
θ̇1θ̇2 + 0.7u1

0.3125 sin(θ2) cos(θ2)θ̇
2
1

(
0.2645p1 + 3.2p2 − 0.368

)
+ 2.8204 sin(θ2)p1 + 0.4u2

)
.

(6.7)

Both terms now depend on the parameters we defined above. The task is a repeated
pick-and-place job, where a payload is picked up and transported to another position.
This is represented by a point-to-point-control, where the end-effector of the manipulator
moves from a start position, described through a start configuration of the joint angles,
to a desired final position of the end-effector given by the final configuration of the joints.
The start configuration and the desired point to track over time are:

θ(t = 0) =

(
−1

2
π,

3

4

)T

,

θref (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1

2
π,

1

4
π

)T

, for t ∈ [0, 2], (8, 10], (16, 18],(
−1

2
π,

3

4
π

)T

, for t ∈ (2, 4], (6, 8], (10, 12], (14, 16],(
0,

1

4
π

)T

, for t ∈ (4, 6], (12, 14],(
0,

3

4
π

)T

, for t ∈ (18, 20].

(6.8)
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For the simulation, we assume the following true parameters:

p(t) = (m2, Ix,2)
T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23.0, 0.6912)T , for t ∈ [0, 2], (4, 6], (8, 10], (12, 14], (16, 18],

(33.0, 0.6912)T , for t ∈ (2, 4],

(31.1, 0.6912)T , for t ∈ (6, 8],

(36.0, 0.6912)T , for t ∈ (10, 12],

(32.0, 0.6912)T , for t ∈ (14, 16],

(30.3, 0.6912)T , for t ∈ (18, 20].

(6.9)
The changing mass represents some unknown payload that is transported by the robotic
manipulator in the pick-and-place scenario. To simulate the system, we integrate the
nonlinear system dynamics with the true parameter values with the integration scheme
Runge-Kutta of fourth order with a fine discretization. For the measurement simulation,
we add again a white Gaussian noise to the system outputs with v ∼ N (0,Σ) and
Σ = diag(0.12, ..., 0.12) ∈ R4×4.

6.4.3. The OCP for a Robotic Manipulator

For the optimal control problem within NMPC, we optimize the joint angles using the
currents as controls. To formulate the concrete OCP, we must first transform the equa-
tions of motion from second-order to first-order ordinary differential equations. This is
done by introducing two additional optimization variables:

x(t) =
(
x1(t), x2(t), x3(t), x4(t)

)T
:=

(
θ1(t), θ2(t), θ̇1(t), θ̇2(t)

)T
.

We assume the start and final joint angles from (6.8) and that the robotic manipulator
is at a rest at the start and end of each movement. Therefore, we demand the angular
velocities there to be zero. This leads to:

x
[0]
0 =

(
−1

2
π,

3

4
, 0, 0

)T

,

xref (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1

2
π,

1

4
π, 0, 0

)T

, for t ∈ [0, 2], (8, 10], (16, 18],(
−1

2
π,

3

4
π, 0, 0

)T

, for t ∈ (2, 4], (6, 8], (10, 12], (14, 16],(
0,

1

4
π, 0, 0

)T

, for t ∈ (4, 6], (12, 14],(
0,

3

4
π, 0, 0

)T

, for t ∈ (18, 20].

(6.10)

The mass matrix is positive definite by definition and thus invertible. In practice, the
invertibility of the matrix is also guaranteed in the algorithm by the box constraints
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within the parameter identification. The dynamics are reformulated with the values
from (6.7) to:

ẋ(t) =

⎛⎜⎜⎝
ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
x3(t)
x4(t)

[M−1(x, p)(F (x, p) + hf (x, u))]1
[M−1(x, p)(F (x, p) + hf (x, u))]2

⎞⎟⎟⎠ =: f(x, u, p) (6.11)

Here, [·]1 and [·]2 denote the first and second entries of the specified vector, respectively.
Consequently, the optimal control problem to be solved in the k-th NMPC step has the
following form:

min
x̄[k],ū[k]

J [k] =

∫ T

0

(
x̄[k](τ ; p[k])− xref (τ)

)T
Q(τ)

(
x̄[k](τ ; p[k])− xref (τ)

)
· · ·

· · · + ū[k](τ)TR(τ)ū[k](τ) dτ

w.r.t. ˙̄x[k](τ) = f(x̄[k](τ), ū[k](τ), p[k]), for τ ∈ [0, T ],

x̄[k](0) = yk,

x̄[k](τ) ∈ [(−π,−178
180
π,−510

180
π,−408

180
π)T , (π, 178

180
π, 510

180
π, 408

180
π)T ],

ū[k](τ) ∈ [(−200,−200)T , (200, 200)T ], for τ ∈ [0, T ].

(6.12)

Note that the parameters are fixed here to the most recent values from the para-
meter estimation. The reference state is changing over time as described in (6.10) with
x̄ref,[k](τ) := xref (tk+τ) for τ ∈ [0, T ]. The constraints require that the nonlinear system
dynamics (6.11) are satisfied on the considered time horizon. Furthermore, the initial
state is set to the current system state, which is taken from the new measurement yk.
Box constraints are used to take into account the physical limitations of joint angles
in the states and the controls. Note that the values for the controls in this particular
example are dimensionless and can, therefore, be comparatively large. After discretiza-
tion with N ∈ N discretization points, the weights in the objective function for each
discretized state x(τi) with i = 0, . . . , N − 1, are chosen to

Q(τi) = Qi =
1

(N − i)

⎛⎜⎜⎝
100 0 0 0
0 1000 0 0
0 0 10 0
0 0 0 100

⎞⎟⎟⎠ and R(τi) = 0.01.

6.4.4. The NDPIP for a Robotic Manipulator

As described above, the unknown parameters are p = (p1, p2)
T = (m2, Ix,2)

T ∈ R2. The
true values are denoted with p∗(t) and are changing over time as defined in (6.9). The
initial guess for the first NDPIP is p0 := p(t = 0) = (19.0, 0.5)T . Subsequently, the result
of the previous parameter identification is used as the initial guess. This leads to the
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following nonlinear dynamical parameter identification problem at time tk:

min
x
[k]
0 ,p[k]

F [k] :=
M∑
i=0

(
x(ξi; p

[k], x
[k]
0 )− yk−M+i

)T
W

(
x(ξi; p

[k], x
[k]
0 )− yk−M+i

)
w.r.t. ẋ(ξ) = f(x(ξ), ũ(ξ), p[k]), for ξ ∈ [tk − TI , tk],

x(ξ0) = x
[k]
0 ,

p[k] ∈ [(10,−1)T , (40, 1)T ],

(6.13)

where the differential equations in the constraints from (6.11) represent the equations
of motion of the robotic manipulator. The controls are an approximation from the
measured controls at the discrete time points like described for problem (6.1). The box
constraints on the parameters ensure that they remain in physically feasible ranges.

6.4.5. Numerical Results

The described system is simulated for Ts = 20 s with a sample time ∆t = 0.005 s. The
prediction horizon of each OCP is T = 0.6 s. We choose a multistep-NMPC approach
and solve a new OCP every 0.1 seconds. Thus, the control horizon is TC = 0.1 s. The
identification horizon of the parameter identification problems is chosen to TI = 0.2 s,
so that there are 41 measurements available for each NDPIP. The discretization is done
with N = 21 discretization points. This keeps the computation times small enough to
perform online. The mean computation time per PI problem is

∅tPI,NMPC+PI = 93.23ms.

Figure 6.10 shows the states of the manipulator angles and angular velocities for each
link, which is performing a repeated pick-and-place scenario described by (6.10). The
combined approach NMPC+PI is depicted in violet. For comparison, the trajectories for
the classical NMPC and optimal NMPC are displayed in blue and yellow, respectively. The
dotted red line shows the desired reference value for each state, which is tracked within
the objective function of the OCPs. It can be observed that all control approaches are
able to stabilize the system to the desired states. However, standard NMPC is less precise
in reaching the desired states, especially in the angle of the second link. The average
computation time for a solution of an optimal control problem for the classical NMPC
is,

∅tOCP,NMPC = 1505.75ms,

in this example. The average computation time for an OCP for NMPC+PI is,

∅tOCP,NMPC+PI = 291.43ms,
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Figure 6.10.: States of the two-link robot for a pick-and-place scenario controlled by
classic NMPC (blue line), NMPC+PI (violet line), optimal NMPC (yellow line), the cor-
responding noisy measurements (dots in similar color) and the desired reference values
(dotted red line); angle link 1, angle link 2, and angular velocities link 1 and 2.
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Figure 6.11.: The trajectories of the two controls for standard NMPC (blue line), NMPC+PI
(violet line) and optimal NMPC (yellow line) for the two-link robot.

and for the optimal NMPC it is,

∅tOCP,op.NMPC = 254.48ms.

This indicates that providing a better model in the optimal control problem leads to
shorter computation times. That is particularly interesting since computation time is
critical, especially in model predictive control. Even the approximately 250 milliseconds
in the optimal NMPC are still too large for a practical application. For the results
presented, already very good initial estimates of all optimization variables from the
predecessor problem and the Lagrange multipliers from the former problem are used.
However, there are many suggestions on how to shorten the computation times fur-
ther. For example, a smaller number of discretization points could be used. Thus, there
would be fewer optimization variables, and the computational cost would decrease im-
mediately. It is also possible to weaken the tolerances for the optimality of the solution
within the optimizer Worhp, then an optimal solution is accepted earlier. Further-
more, it is another option for acceleration to use the hot start of the optimizer, which
enables a particularly efficient start of the optimization from the previous problem. In
Figure 6.11, the corresponding control trajectories are plotted. Note that the controls
are dimensionless. Comparing the whole control effort of standard NMPC and NMPC+PI
with optimal NMPC as benchmark, we get:

∥uNMPC∥2
∥uop.NMPC∥2

= 0.92855 and
∥uNMPC+PI∥2
∥uop.NMPC∥2

= 0.99866.
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Figure 6.12.: A posteriori computed accumulated objective function value over the com-
plete simulation horizon for the two-link robot; standard NMPC (blue), NMPC+PI (violet)
and optimal NMPC (yellow).

Figure 6.13.: Identified parameters (blue dots) and reference values (red line) for the
two-link robot controlled with NMPC+PI.
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This means that both standard NMPC and NMPC+PI need less control effort than the
optimal NMPC. However, it is important to remember that not only is the control effort
an optimization criterion within the objective function of the OCPs, but also the tracking
of the desired states is another one. Therefore, we evaluate an overall objective function
of the result in a posteriori analysis for comparison. To do this, we accumulate the
objective function from problem (6.12) over time. This contains the weighted squared
tracking error and the control effort. In Figure 6.12, it can be seen that our proposed
algorithm gives a better result than the standard NMPC and is almost as good as the
optimal NMPC, which always has the exact parameters available.

Figure 6.13 shows the online identified parameters as blue dots for each performed para-
meter identification. The true values from (6.9) are shown as references in red. It can be
observed that the changing mass is estimated well. The moment of inertia is estimated
properly only when there is much motion in the system. Otherwise, the constraints on
this second parameter often become active. Overall, however, the parameter identifi-
cations and the associated model adaptations lead to a better tracking behavior of the
controller. The root mean square error in the parameters is:

RMSEp :=

√∑M
i=1(pi − p

ref
i )2

M
=

(
4.4780
0.8130

)
.

Each identification problem is solved with the full discretization approach using N = 21
discretization points. The mean computation time of about 93ms represents considerable
additional computational effort in the NMPC context. Furthermore, other improvements
can be made for faster computation, such as parallelizing the solution of the problems.
However, we have already shown that the additional parameter identifications lead to
savings in computational time for the OCPs, so there is still an absolute advantage.
Overall, the parameter identifications and the associated model adaptations lead to a
better tracking behavior of the controller.
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7. Summary and Outlook

7.1. Summary

Classically, feedback control is used to compensate for model inaccuracies or to react
to disturbances from the environment on the system under consideration. However, the
incoming information about the system behavior is rarely used to adapt the underlying
model of the controller. This work intends to propose new approaches that improve
known feedback control algorithms by online nonlinear parameter identification.

This goal is accomplished in two different ways. First, an adaptive linear quadratic
regulator with sensitivity-based updates is considered. For the adaptations of the feed-
back gain based on parametric sensitivities, the changes in the parameters are needed.
In order to determine the deviations in the model parameters in real-time, this control
concept is combined with an online parameter identification. This means that the sys-
tem model in use is calibrated with the help of measurement data collected online. The
formulation of the parameter estimation problem as a nonlinear optimization problem
with constraints allows the formulation of conditions that ensure the applicability of the
methods from parametric sensitivity analysis. More precisely, they were formulated in
terms of feasibility sets for the parameters in the constraints of the NLP.

A common problem that can arise is insufficiently informative data to determine ef-
fective parameters. This problem is addressed by extending the presented method by
estimating the Fisher information matrix. This provides an estimate of the collected
data’s information content and can help decide whether a PI should be done. The devel-
oped algorithms are investigated using the example of an inverted pendulum on a cart
in different scenarios. It is shown how the online adaptation of the feedback gain can
lead to improved control performance with less control effort. Furthermore, in contrast
to the classical linear quadratic controller, it is possible to stabilize the system even in
case of larger parametric disturbances. It is also demonstrated on time-varying para-
meters, discontinuous reference trajectories, and longer time intervals with little system
motion how the additional computation of the FIM can avoid performing parameter
identifications on insufficiently informative data. Compared to classical LQR and an
optimal adaptive LQR that updates the feedback gain online with the true parameters,
our methods outperformed the classical LQR. They were nearly as good as the optimal
one.
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The second approach of this work is to extend a nonlinear model predictive controller
with model adjustments resulting from online parameter identifications. In particular, it
is presented in this framework that the problems encountered, both the optimal control
problems in the model-predictive controller and the parameter estimation problems, can
be solved using the same direct numerical approaches originating from optimal control
theory. The numerical experiments of the presented algorithm with two examples show
that the model adaptations can improve the controller performance. The numerical
experiments of the presented algorithm on the pendulum-cart system demonstrate that
the model adaptations can reduce the control effort compared to the classical NMPC.
In particular, the quality of state tracking is comparable to that of optimal NMPC that
knows the true parameter values. The results using a robotic manipulator as an example
show an improvement in the objective function value of the OCPs compared to the
standard NMPC, as well as a reduction in the computation time required for solving the
optimal control problems.

7.2. Future Work

In this dissertation, different methods of optimal feedback control and parameter identi-
fication are brought together, where the major challenge is the combination, adaptation,
and tuning of the different methods. All formulations are always kept as general as pos-
sible to obtain an approach independent of the application problem. The contributions
of this thesis can be extended as follows:

• Within the parameter identification problems, an objective function formulation
with the L2 norm was used. However, the solution methods are also capable of
using other formulations such as the L1-norm or the L∞-norm for data fitting.
• Another possibility is to transfer the proposed concepts to other problem classes

than those where the dynamical system is defined by ordinary differential equa-
tions, for example, problems with partial or algebraic differential equations. A
study on problems with constraints involving partial differential equations would
be fascinating since these are common in applications, but there are still some open
research questions.

In addition, it might be of value to analyze how parameter identification, in the form
used here in combination with the adaptive linear quadratic controller, can also serve
as an indicator for evaluating the performance of adLQR. It is of particular interest to
identify when updates of the gain with sensitivity differences are no longer sufficient
to achieve stability. In such a case, a recomputation of the feedback gain should be
initiated. In this context, the sensitivity-based approximation of the feedback gain can
be used as a reasonable initial estimate for the calculations.

In the adLQR+PI algorithm, we formulated conditions on the parameter identification
process that ensure the further feasible use of the parametric sensitivity analysis meth-
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ods. It would be highly relevant to work out equivalent statements for the approach
presented in Chapter 6. These could similarly be formulated from imposed conditions
on the parameter changes by the PI. In this case, it is essential to guarantee that the sys-
tem, which is asymptotically stable as per Theorem 4.4.4, retains this property despite
any modifications in the model parameters.

Another promising aspect is the consideration of the identifiability of the parameters
within the NMPC+PI control algorithm. The computation of the FIM has been omitted
so far due to computational costs in the NMPC setting. Solving optimal control problems
already involves significant computational costs, which are increased in our approach by
solving identification problems. Perhaps a less accurate approximation of the FIM can be
considered as a test of the information content in the data set. Another possible access to
this topic is adaptive dual NMPC. This approach extends ideas from classical dual control
for linear systems, [Fel60b; Fel60a; Åst70]. For that, the objective functions of the
optimal control problems are modified to get more information from the measurements
for the identification. An additional term is added that gives a statement about the
information potential of the control trajectory for future parameter estimation and is
co-optimized. The Fisher information matrix is often used in this context. This aims
to improve the quality of future parameter estimates by allowing small changes in the
trajectories to lead to more information content about the influence of the parameters
on the system. Transferring these ideas to the approaches used in this work would
be most exciting. To this end, the objective function of the optimal control problem in
model predictive control, similarly defined as in (4.8), could be adjusted by an additional
term:

min
x,u

∫ T

0

(x− xref )TQ(x− xref ) + (u− uref )TR(u− uref ) dt+ ω tr
(
I−1
p (u)

)
,

where ω ∈ R is a weighting constant. In the context of dual control, the former objective,
here the integral term, is called the performance control term and the last term the
information gain term. The new information term can be chosen in different ways. We
have formulated the above cost function in terms of the A-optimality criterion on the
Fisher information matrix, which we already know from Subsection 5.3.2. This approach
is also proposed in Feng and Houska [FH18] with a version where each state can be
weighted. Wilson et al. [WSM14; WSM15] use the E-optimality criterion in a sequential
action control approach to get informative trajectories for PI. This criterion deals with
the minimization of the inverse of the smallest eigenvalue of the FIM. Implementing
these approaches for real-time methods is very challenging since covariance matrices or
their derivations with respect to controls are necessary, which can be numerically costly
for nonlinear systems.

The additional term in the cost function leads to a multiobjective optimization problem.
This would then require further investigation of how to determine the weight ω for an
optimal weighting of the different terms, performance control term, and information
term. Current research explores this topic, especially this weighting, [La+16; La16;
FH18; Hou+17].
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The simulations developed for this thesis aim to accurately represent the system behavior
and the effects of various control algorithms. Neglecting the influences of computation
and transmission times is unavoidable in some areas, particularly in the NMPC ap-
proach. However, this has a limited role in the presented results as it primarily relates
to the comparison with other NMPC approaches. For future practical applications of
the proposed approaches, it would be beneficial to incorporate computation delays into
the simulation as an initial endurance test.

Furthermore, the numerical simulations performed within the scope of this work show
promising results. As previously mentioned, the next significant step is the transfer of
the presented algorithms into a real-world system. A seven-degree-of-freedom robotic
manipulator (DENSO VS050) has been studied in the context of this work to inves-
tigate various numerical solution approaches for the parameter identification problems
using real-world data, Schäfer and Runge et al. [Sch+18]. However, to use the con-
trollers presented here, the system must be equipped with additional sensor technology
to measure the true angles of the individual robot links. Another suitable application is
autonomously driving rovers or cars, for which the dynamical system models are often
challenging to parameterize.
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Appendix A.

Fisher Information Matrix

A.1. Computation of the Fisher Information Matrix
for the Inverted Pendulum on a Cart

To compute the Fisher information matrix for our example of the pendulum-cart system,
we again consider the nonlinear system model of the inverted pendulum on a cart given
by (5.13). By using the state x := (y, ẏ, θ, θ̇)T ∈ R4 the equations in (5.13) can be
written in state space form as

ẋ =

⎛⎜⎜⎝
ẋ1
ẋ2
ẋ3
ẋ4

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
x2

1
M+ms2x3

(mlsx3x
2
4 −mgcx3sx3 +mu)

x4
1

M+ms2x3
(
(M+m)gsx3

l
−mcx3sx3x24 − 1

l
cx3u)

⎞⎟⎟⎟⎠ = f(x(t), u, p).

We use the abbreviations sx3 := sin x3 and cx3 := cos x3. Further in our case the control u
is fixed by the feedback law u = −Kx =

(
K1 K2 K3 K4

)
x. The original parameter

vector for parameter identification p̄ := (M, l)T ∈ R2 is extended by the parameters for
the initial states to p := (M, l, x0,1, x0,2, x0,3, x0,4)

T ∈ R7.

To approximate the Fisher information matrix from (5.10), we have to compute the
sensitivities

d

dp
f(x(ti; p), ũ(ti), p).

It is

d

dp
f(x(t; p), ũ(t), p) = ∇xf(x(ti; p), ũ(ti), p)∇px(t, p) +∇pf(x(ti; p), ũ(ti), p),

with the following partial derivatives:
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With the help of these forward sensitivities, we can estimate the Fisher information
matrix for the planned control values as soon as they have been determined. We use
this for the numerical analysis in Subsection 5.4.6.
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Appendix B.

Additional Numerical Results for the
Inverted Pendulum on a Cart
B.1. adLQR+PI+FIM for the Inverted Pendulum on a

Cart for Scenario 0-B

Figure B.1 and B.2 show the states and controls for scenario 0-B with different con-
trollers. The purple plot depicts the results using the proposed Algorithm 5.2 with
additional FIM computations. These are additional visualizations for the numerical
analysis in Subsection 5.4.6.

Figure B.1.: States of the inverted pendulum on a cart for scenario 0-B with additional
FIM-check; cart position, cart velocity, pendulum deflection angle, and pendulum angular
velocity for a simulation horizon of T = 40 s.
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Figure B.2.: Control of the inverted pendulum on a cart for scenario 0-B with additional
FIM-check for a simulation horizon of T = 40 s.

Table B.1 gives the accumulated objective function values for the different controllers
for all possible tracking scenario combinations and parametric perturbations. From
these values, we computed the relative objective function values in Table 5.1 in Subsec-
tion 5.4.6.

Table B.1.: Objective function of the LQR problem for all scenarios for the inverted
pendulum-cart system.

Scenario Objective FLQR
identifier
xref ∆p LQR rLQR adLQR adLQR+PI adLQR+PI+FIM

0 A 5.239× 103 5.031× 103 5.075× 103 5.078× 103 5.076× 103

0 B 3.987× 104 1.949× 104 1.950× 104 1.956× 104 1.956× 104

0 C 4.941× 103 4.898× 103 4.901× 103 4.901× 103 4.899× 103

0 D 4.702× 103 4.395× 103 4.404× 103 4.415× 103 4.411× 103

0 E 5.845× 103 5.623× 103 5.619× 103 5.651× 103 5.648× 103

0 F 8.563× 103 6.639× 103 6.675× 103 6.735× 103 6.733× 103

0 G 1.064× 104 8.379× 103 8.404× 103 8.432× 103 8.431× 103

0 H 5.570× 103 5.395× 103 5.414× 103 5.385× 103 5.387× 103

0 I 5.065× 103 3.910× 103 3.936× 103 3.924× 103 3.922× 103

1 A 4.865× 104 4.656× 104 4.661× 104 4.733× 104 4.697× 104

1 B 1.471× 105 6.376× 104 6.379× 104 6.402× 104 6.368× 104

Continued on next page
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xref ∆p LQR rLQR adLQR adLQR+PI adLQR+PI+FIM

1 C 4.156× 104 4.040× 104 4.041× 104 4.184× 104 4.093× 104

1 D 4.459× 104 4.397× 104 4.397× 104 4.522× 104 4.559× 104

1 E 4.447× 104 4.275× 104 4.273× 104 4.354× 104 4.279× 104

1 F 5.012× 104 4.256× 104 4.275× 104 4.338× 104 4.333× 104

1 G 8.075× 104 5.150× 104 5.158× 104 5.192× 104 5.167× 104

1 H 6.998× 104 5.130× 104 5.141× 104 5.180× 104 5.148× 104

1 I 4.888× 104 4.364× 104 4.366× 104 4.477× 104 4.737× 104

2 A 6.584× 104 6.320× 104 6.321× 104 6.364× 104 6.334× 104

2 B 2.557× 105 9.942× 104 9.984× 104 1.000× 105 1.001× 105

2 C 5.167× 104 4.974× 104 4.974× 104 5.207× 104 5.091× 104

2 D 5.881× 104 5.848× 104 5.857× 104 6.001× 104 5.940× 104

2 E 5.410× 104 5.163× 104 5.171× 104 5.243× 104 5.180× 104

2 F 7.232× 104 6.318× 104 6.342× 104 6.387× 104 6.461× 104

2 G 1.233× 105 7.791× 104 7.798× 104 7.862× 104 7.810× 104

2 H 1.031× 105 6.970× 104 6.981× 104 7.024× 104 6.981× 104

2 I 6.487× 104 5.796× 104 5.816× 104 6.005× 104 5.930× 104

3 A 4.327× 104 4.066× 104 4.061× 104 4.096× 104 4.068× 104

3 B 1.213× 105 5.114× 104 5.129× 104 5.151× 104 5.143× 104

3 C 3.782× 104 3.7213× 104 3.718× 104 3.782× 104 3.741× 104

3 D 3.993× 104 3.870× 104 3.872× 104 3.921× 104 3.888× 104

3 E 4.055× 104 3.976× 104 3.974× 104 4.016× 104 3.975× 104

3 F 4.832× 104 3.821× 104 3.830× 104 3.853× 104 3.827× 104

3 G 5.281× 104 4.043× 104 4.045× 104 4.060× 104 4.039× 104

3 H 5.084× 104 4.340× 104 4.345× 104 4.374× 104 4.363× 104

3 I 4.055× 104 3.518× 104 3.517× 104 3.591× 104 3.562× 104

4 A 9.506× 104 8.862× 104 8.868× 104 8.932× 104 8.865× 104

4 B 2.975× 105 1.073× 105 1.075× 105 1.084× 105 1.074× 105

4 C 7.867× 104 7.719× 104 7.723× 104 7.804× 104 7.824× 104

4 D 8.651× 104 8.406× 104 8.406× 104 8.448× 104 8.430× 104

4 E 8.312× 104 8.124× 104 8.123× 104 8.181× 104 8.143× 104

4 F 9.838× 104 8.0528× 104 8.080× 104 8.117× 104 8.100× 104

4 G 1.433× 105 9.346× 104 9.334× 104 9.524× 104 9.628× 104

4 H 1.344× 105 9.666× 104 9.669× 104 9.783× 104 9.684× 104

4 I 9.218× 104 8.102× 104 8.104× 104 8.207× 104 8.186 + 04

5 A 5.192× 105 4.688× 105 4.684× 105 4.696× 105 4.693× 105

5 B ∞ 5.437× 105 5.360× 105 5.367× 105 5.370× 105

Continued on next page
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xref ∆p LQR rLQR adLQR adLQR+PI adLQR+PI+FIM

5 C 4.064× 105 3.972× 105 3.964× 105 4.055× 105 4.052× 105

5 D 4.514× 105 4.457× 105 4.450× 105 4.470× 105 4.466× 105

5 E 4.263× 105 4.104× 105 4.096× 105 4.110× 105 4.106× 105

5 F 6.785× 105 4.5020× 105 4.489× 105 4.496× 105 4.504× 105

5 G ∞ 4.974× 105 4.941× 105 4.947× 105 4.955× 105

5 H 8.255× 105 5.065× 105 5.048× 105 5.060× 105 5.065× 105

5 I 5.195× 105 4.444× 105 4.436× 105 4.453× 105 4.450× 105
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B.2. NMPC+PI for the Inverted Pendulum on a Cart
Scenario 0-B

Figure B.3 shows the states of the pendulum-cart for scenario 0-B. It is presented as
a comparison to Scenario 0-A in Subsection 6.3.3 to show that with larger parametric
perturbations the classical NMPC can no longer achieve stability, but NMPC+PI stabilizes
the system.

Figure B.3.: States of the inverted pendulum on a cart for scenario 0-B controlled by clas-
sic NMPC (blue), NMPC+PI (violet), optimal NMPC (yellow) and the corresponding noisy
measurements (dots in similar color); cart position, cart velocity, pendulum deflection
angle, and pendulum angular velocity for a simulation horizon of T = 40s.
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B.3. NMPC+PI for the Inverted Pendulum on a Cart
Scenario 2-G

In addition to the plots in Subsection 6.3.4, the following Figure B.4 shows the states
for the classical NMPC for scenario 2-G. The controller is not capable to stabilize the
system.

Figure B.4.: States of the inverted pendulum on a cart for scenario 2-G controlled by clas-
sical NMPC and the corresponding noisy measurements (dots); cart position, cart velocity,
pendulum deflection angle, and pendulum angular velocity for a simulation horizon of
T = 120 s.
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