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dem damaligen Team an der European Media Laboratory GmbH, darunter

besonders Dr. Berenike Litz, für die Motivation und langjährige Freund-
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[Grammar is...]

[14] A gateway to liberation, a cure to the blemishes of speech, purifier of

all (other) disciplines, it shines as being applied to them.

[15] Just as all thing-classes depend upon word-classes similarly, in this

world, this (grammar) is the basis of all disciplines.

[16] It is the first rung on the ladder towards liberation, it is the straight

Royal Road for those desirous of (reaching) that goal.

(Citation from [Pilla, 1971], the English translation of Bhartrhari’s Vākyapadı̄ya,

Indian grammarian and language philosopher of the 7th century.)
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Chapter 1

Introduction

Discussions about what constitutes natural languages, how they are learnt,

or how they change over time have always been an omnipresent topic in

linguistics and can be traced back many decades in history. At all times,

the study of grammar – the art of letters – has been a major issue in lan-

guage research. Antoine Furetière, for instance, member of the Académie

Française, depicted grammar’s importance and presence in the 17th cen-

tury ”...au royaume d’eloquence” [Furetière, 1658] – in eloquence’s king-

dom – where the various disciplines of a language’s grammar and style are

displayed as troupes that are fighting each other (see Figure 1.1).

In modern linguistics, similar discussions are still ongoing, adding not only

an additional computational perspective on languages (I will talk about

that later in this section) but also having grammar’s relevance for a lan-

guage’s meaning as a topic. This means that there are grammar theories,

that consider the linguistic discipline of semantics not as a separate part

of a language’s grammar but as a major part of it, equally important as

other linguistic disciplines as for instance morphology or tense. This work

focuses on such a grammar theory.

Today, there is a strong, additional computational perspective on lan-

guages. Formal grammars are needed to be machine-processable – both

to understand language but also to generate it.

Formal models of di↵erent kinds of language phenomena are created (lin-
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Figure 1.1: The allegory of grammar and style [Furetière, 1658].

guistic engineering) and used in areas which require natural language pro-

cessing (NLP). Linguistic engineering and particularly grammar engineer-

ing, one of its sub-disciplines focusing on the development of formal, op-

erational i.e. machine-processable grammars, still constitutes a serious

bottleneck in the development of applicable natural language processing

systems as for example spoken dialogue systems, automatic translation

systems, chatbots, or question answering systems. And these systems are

suddenly everywhere! We have advanced from rule-based chatbots like

ELIZA [Weizenbaum, 1966] that started being explored in the 60ies al-

ready to corpus-based chatbots [Serban et al., 2018] or a hybrid architec-

ture of such [Paranjape et al., 2020]. Technology is finally that advanced

that we can access data anywhere at anytime. That we can process it
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on devices like our phones. These advancements paved the way for us

getting used to using speech assistants, for instance, in our cars, being on

walks, and even in our own homes – to support us with simple tasks like

navigation, calling or sending text messages, or even turning the lights on

or o↵ without having to get up from the chair. Lately, we’ve also started

using them in education [Bahja et al., 2020] or to support us in our daily

life at work with various predefined scenarios (see e.g. [Rizk, 2020]). Our

children grow up with user interfaces that allow spoken language input

and will be used to this convenience much more than we can be. And why

should they eventually abstain from this convenience in their work lives?

Gartner, a leading technological research and consulting firm, predicts

that until 2025 50% of all employees will be using a digital assistant of

any kind daily. We can see the pace of this trending topic comparing it

to 2019, where it has still been only approximately 2% [Bradley, 2020].

Amy Webb, well-known futurist and CEO of the Future Today Institute

and professor at the New York University, recently stated that a major

(exciting!) advancement with respect to speech assistants is that they do

not only understand what we say but also what we mean by it. But is

that really true? How satisfied are we when having used a chatbot to

upgrade our recent flight? How happy are we when we try to book va-

cation with the HR chat bot? What has happened when we start being

frustrated with the system and turn to other mechanisms of resolving our

requests and tasks? Speech systems, no matter how advanced, will always

lag behind when it comes to understanding real spoken language. And we

believe that there will always be manual, human input needed in order to

cover language phenomena occurring in natural language interaction with

a system.

Over the years, linguists proposed various grammar theories or linguis-

tic formalisms some of which have been modelled from a computational

perspective to be usable in NLP systems of various kinds. The gram-

mar theory which constitutes this work’s focus is part of the Construction

Grammar framework. The reasons for this choice will be made clear within
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the course of this work.1

Engineering a machine-processable Construction Grammar for use in NLP

systems is still being researched and improved. At this stage of research in

computational construction grammar, there are numerous open issues that

leave enough room for trying out new ways of representing constructivist

ideas.

There is promising progress – especially in the development of Fluid Con-

struction Grammar exciting results have been yielded – and also a growing

interest in machine-readable Construction Grammar formalisms as can for

instance be tracked by the numerous publications and talks at linguistic

conferences as for instance the yearly ICCG.2 More concretely, recent ad-

vances in Fluid Construction Grammar have, for instance, demonstrated

progress in solving two visual dialogue tasks [Verheyen et al., 2023], a vi-

sual question answering benchmark [Nevens et al., 2019], or mining opin-

ions on the web [Willaert et al., 2022]. Additionally, there is a lively ex-

change with researchers stemming from other grammar formalisms, as e.g.

Head-driven Phrase Structure Grammar (HPSG) [Pollard and Sag, 1994],

Sign-based Construction Grammar (SBCG) [Sag, 2012] or cognitive lin-

guists in general (see e.g. publications from the yearly International Cog-

nitive Linguistics Conference (ICLC)3 or AFLICO conferences4 or two

earlier publications [Micelli, 2009] or [van Trijp, 2009]).

Concluding the above, the main motivation for developing this work are

the challenges grammar engineering in general and Construction Gram-

mar engineering in particular (see also [van Trijp et al., 2022]) is still fac-

ing nowadays, and the fact that current systems have still not reached a

1The two existing computational formalisms that base on construction grammar are
Fluid Construction Grammar and Embodied Construction Grammar. They both were
developed for very special purposes and will be discussed in more detail in Section 2,
dealing with this work’s theoretical background.

2The International Conference on Construction Grammar (ICCG) (see e.g.
uajd.↵.cuni.cz/en/node/546 )

3See https://www.cognitivelinguistics.org/en/event/detail/international-cognitive-
linguistics-conferences-iclcs.

4See http://www.aflico.fr
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satisfying maturity when it comes to natural language interaction, even

after these major advances in technology and seemingly endless amounts

of data and computing power, grammatical formalisms like the ones dis-

cussed in this work, might help in getting a bit closer to real language

interaction filling in a few of the gaps detailed further below.5 Figure 1.2

represents the main challenges of grammar engineering alongside with its

major themes. All of them will be further elaborated on in the following

section.

Reusability

Representation

Applicability

Editability

Relevance

Evaluation

Extensibility

Coverage

Figure 1.2: Major challenges in grammar engineering and especially in
engineering constructing grammars.

1.1 Main Motivation

Formal grammars resulting from traditional generative grammar formal-

ization approaches usually consist of a set of terminal symbols, i.e. a

lexicon, and of various rules.

When dealing with natural language, it was soon realized, that those tra-

ditional grammar accounts were able to handle a lot of natural language

phenomena, but as soon as it came to issues concerning for instance agree-

ment between the subject and the predicate of the sentence, they failed,

which means in this case that they tended to over-generate. Therefore,

so called unification grammars were developed, adding constraints to the

rules of context-free grammars and feature structures to their instances.

Thus, the mentioned shortcomings were eliminated as for instance over-

generation could be prevented and agreement could be checked. Those

5See also [Weissweiler et al., 2022] on investigations on constructional knowledge of
large-language models and their limits on capturing constructional meaning.
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grammar formalisms are extremely powerful, but still one issue of major

importance is completely neglected within those frameworks which is the

significance of grammar’s contribution to semantics. This work will put

semantics and a holistic grammar formalism in its center.

Amongst other things, the above mentioned deficiencies lead to the de-

velopment of a formal approach of grammar called Construction Gram-

mar [Lako↵, 1987, Fillmore and Kay, 1987, Talmy, 1988, Goldberg, 1995,

Kay, 2002], to cite just a few publications on that topic. Construction

Grammar presents a particular cognitively motivated grammar framework

which allows for exactly one data type: a so-called construction. Construc-

tions exist on every level of language and are pairings of form and function,

which means that even syntactic structures – constituting the form side of

a construction – can possibly contribute meaning to utterances. While the

category of linguistic form of constructions covers any variety of formal

grammatical components as for instance components concerning morphol-

ogy, the lexicon, or syntax of a language, the category of linguistic function

includes information which is in traditional linguistics generally subsumed

under the terms semantics or pragmatics.

Construction Grammar was mainly developed to handle phenomena occur-

ring in natural language which were problematic to be dealt with in other

theories beforehand as, for instance, partial utterances, ellipses, coercion,

i.e. the usage of verbs as being ditransitive although their conventional

use is an (in-)transitive one or as well as conversational implicatures. Fur-

thermore, it presents a theory that o↵ers a plausible explanation of how

language can possibly be acquired.6 In addition to that, language research

through centuries has proven that language is a complex adaptive system

[Steels, 2000, Beckner et al., 2009] and that a constructional approach to

language analysis o↵ers the most promising linguistic framework to ex-

plore and potentially represent this flexibly.

6See for example [Tomasello, 2003] or [Lieven and Tomasello, 2008] for a usage-
based approach on language acquisition.
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For exactly this reason, amongst others to be elaborated further, we adopt

a constructivist position of grammar representation in this work, meaning

that a grammar should ideally include every layer of language, i.e. form

and meaning or function as suggested in construction grammar theory. We

are aware of the fact that statistical systems are successfully used in areas

that apply NLP as for instance in machine translation, human-machine

interaction, or machine learning for language understanding. The most

successful systems nowadays are, however, hybrid systems which combine

both statistical and symbolic natural language processing and there is a

growing consensus in the field that hybrids will continue to achieve the

best results in, for instance, the area of machine translation [Wilks, 2009a].

Purely statistical applications have by now reached a point where only

small further improvements can be expected. This fact motivates the

development of symbolic grammar formalisms for natural languages to

provide a base for deep natural language processing.

The progress towards formalizing constructions and towards a machine-

processable construction grammar architecture raises a number of promis-

ing issues and challenging questions (see, for example, publications by

[Kay, 2002, Bergen and Chang, 2005, Steels, 2011, Steels, 2017]).

And at this stage of research both in the field of theoretical and com-

putational construction grammar, open issues leave lots of room for ex-

perimenting with or studying various ways of representing constructivists’

ideas. This work attempts to fill in some of the open issues. It will de-

liver a formalization of construction grammar using the state-of-the art in

knowledge representation and exemplifying it with an example sentence.

As graphically represented in Figure 1.2, various points are important in

the development of computational implementations of grammars in gen-

eral which will be discussed and included in the herein proposed frame-

work. With the main focus on the implementation of a construction gram-

mar based on ontologies, we consider the following points as being essential

in its design and development and raise the following questions:
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Applicability

How ’easily-operable’ is the gram-

mar? Are there usable editors which

can graphically display the struc-

tures? With which domain of appli-

cation can it deal?

Reusability

Which already existing modules can

be reused in the grammar? For

example, the integration of existing

(linguistic) knowledge bases already

covering specific linguistic knowledge

as for instance Frames as represented

in FrameNet into other grammars,

prove to be extremely complicated

or even impossible without making

major changes to the grammar’s for-

mat. Also, integrating di↵erent do-

main knowledge or already existing

partial grammars constitutes a chal-

lenge.
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Extensibility

Techniques of development should

be documented for improving long-

term and multi-developer maintain-

ability of the grammar. The gram-

mar should be easily extendable (also

by non-experts), especially to di↵er-

ent domains as we can never fore-

see the exact needs of any end user.

Extensions, and especially large-scale

extensions, of grammars mostly turn

out to be problematic. Often expert

knowledge is required to build fur-

ther grammatical components, the

model does not scale and its perfor-

mance decreases the bigger the gram-

mar gets.

The grammar should be relevant in

theoretical and computational lin-

guistics: The development of the

grammar should be understandable

for other research communities. It

should be applicable in the field of

natural language processing. In gen-

eral, formalisms are necessary and

useful in testing the linguistic accu-

racy of hypotheses to find out, for

example, if they are contradicting or

exact enough to be operational.
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Coverage

To build grammars that can be

distinguished from so-called ”toy

grammars” which can merely deal

with a handful of linguistic struc-

tures, the coverage of a grammar is

another main issue that has to be

tackled in the discipline of grammar

engineering. So far, there do not ex-

ist many deployable, broad coverage

grammars and none does based on

the constructivist framework.

The main questions raised within

this context are:

1. How big is the grammar,

i.e. its lexicon and more

complex grammatical construc-

tions, and can it be extended

(including an extension of the

domain)?

2. How big is the e↵ort to extend

the grammar?

3. How powerful is the gram-

mar (e.g. measured by the

amount of grammatical phe-

nomena that it captures)?
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Representation

What is the representational format

of the grammar? The grammar for-

mat should be in line with the state-

of-the art in knowledge representa-

tion. This way, compatibility issues

can be avoided as standard tools for

representation can be used. In addi-

tion, extensibility and editability are

thereby made easier and it can be

ensured that the latest technology is

applied.

Editability

How time-consuming, i.e. complex is

it to edit the grammar? The gram-

mar should be editable within a rea-

sonable amount of expertise. The

availability of editors for non-expert

and non-technical users are of utmost

importance to help in grammar engi-

neering, extending, and editing.

Evaluation

It would be helpful to have a

common ground to compare gram-

mars. There should be propos-

als concerning evaluation methodolo-

gies and metrics which can capture

the added benefits of deep linguistic

analysis as well as evaluation tech-

niques which can compare grammars

across languages and linguistic theo-

ries (cf. [Marques and Beuls, 2016]).

The questions raised in each of this

lists’ bullet points should be an-

swered within an evaluation.
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To summarize, many problems and open issues in the field of grammar

engineering base on the absence of a common or shared vocabulary or

agreed standard format of how linguistic knowledge of any kind should

ideally be represented. With such a format for instance reusability and

accessibility of the linguistic knowledge base would be increased.

Another major deficiency is the absence of intuitively-to-use editors, tools

and conventionalized engineering methods defining precisely how to ideally

build a reusable, accessible and scalable grammar model including large-

scale coverage. All of the mentioned deficiencies additionally result in the

fact that there is no common ground on which di↵erent grammars’ quality,

e�ciency, performance, and coverage could be compared. This work aims

at providing such a common ground, exemplifying the framework by a

pre-population of instances and integration of various modules according

to the state of the art in knowledge representation. Let’s have a closer

look into what exactly this work comprises.

1.2 Thesis Aim and Contribution

Two decades ago, within the Semantic Web e↵ort,7 machine-readable se-

mantics has been added to content retrieved on the World Wide Web so

that it could be processed by machines [Berners-Lee et al., 2001]. This

content did not only consist of data encoded in html-tables but also of

running, natural language texts found on websites – even back then it

had been a mixture of structured and unstructured data. The challenge

still remains: How to make texts machine-understandable? Natural lan-

guage texts are complex, ever changing systems. This work tries to add to

solving this challenge with the help of ontologies including lexical gram-

matical constructions that equally focus on form and meaning of each of

their constituents.

7http://www.w3.org/standards/semanticweb/



Section 1.2 – Thesis Aim and Contribution 13

Ontologies have been the Semantic Web’s basic building blocks and have

been continuously used as knowledge representation for natural language

processing applications.8 They developed into a state of the art represen-

tational method when it comes to formally describing a set of concepts

and the relationships that hold between those concepts.

What we suggest in this work is a formalization of construction gram-

mar by means of formal ontologies. The result of this undertaking is a

powerful ontological model which is enriched with a cognitively motivated

grammar layer to be used in natural language applications.

To account for extensibility, it will additionally be elaborated in detail

how further knowledge sources can be integrated into the model since its

format is conform to the state of the art in knowledge representation. Basic

linguistic information for instance such as parts-of-speech, case, number

and grammatical gender that are parts of basic constructions can be in-

tegrated by adding an ontological plugin which we developed and which

is called LingInfo. Furthermore, domain-specific information has been in-

tegrated to our grammar framework stemming from a knowledge source

being organized consistent with FrameNet’s structure [Baker et al., 1998],

a knowledge base including a huge dataset of semantic frames consistent

with Frame Semantic theory. Construction grammar and Frame Seman-

tics are sister theories in cognitive linguistics and many constructivist

approaches to grammar claim that the constructions’ semantics is repre-

sented by frames. However, how exactly this relation is made explicit is

left underspecified and most analyses only focus on the skeletal meanings

[Goldberg, 1995, p. 28] that underlie grammatical constructions. This

gap may cause inconsistencies in the development of both theories and

8The successful and continuous use of ontologies for Semantic Web or natural lan-
guage processing applications can for instance be traced at the yearly held International
Semantic Web Conference http://swsa.semanticweb.org/content/international-
semantic-web-conference-iswc or in numerous publications as for instance
[Hitzler et al., 2009, Davies et al., 2006, Bateman, 2010, Hitzler and Shimizu, 2018] or
[Sharma et al., 2019].
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leaves a lot of crucial issues unaddressed within cognitive linguistics.

To summarize, the herein presented e↵ort enables easy access to or even

integration of various already existing (linguistic) knowledge sources cou-

pled with constructions. Thereby, the coverage of the grammar model can

be increased incrementally and even provides interfaces to further couple

it with additional knowledge sources. Each step is well documented by

discussing both the ideas and the principles behind the design of the model

and its implementation and engineering issues.

The present work tries to provide some missing jigsaw pieces in build-

ing a grammar model fitting into the construction grammar framework

which can be deployed in natural language processing systems including

the following objectives:

• It provides a concrete method of implementing a formalization of

construction grammar based on ontologies. This method is well

documented in order to make the ideas and analyses reusable for in-

stance for extending the framework with additional (domain) knowl-

edge or even for writing new grammars.

• By providing a standardized grammar format that NLP tools using

ontologies can use (see e.g. [Mahesh and Nirenburg, 1995]), reusabil-

ity for various NLP applications is guaranteed.

Concrete advantages coming with the ontological format and the

herein used engineering environment are listed in the next section.

• We integrate various external knowledge bases and describe the in-

terface where this knowledge can be tied to the grammar model so

that it can possibly be further extended similarly.

Finally, the model represents a rich knowledge base for di↵erent kinds of

linguistic information which can benefit from the advantages that come

with ontologies, especially with the use of a foundational ontology, which

include the following:
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• It is compatible with other ontologies based on the same founda-

tional ontological model.

• The foundational ontology provides a setting including deep and

well-defined semantics.

• It provides a reference point that enables a comparison to other

ontologies.

• It enables merging with other ontologies.

• It enables the reuse of a predefined set of entities.

• Its consistency can be checked automatically by using existing tools

(see for instance [Baclawski et al., 2002]).

• Editors providing visualizing tools or search functions (among other

functions) are already available.

• Applying standard ontology learning mechanisms to extend the gram-

mar including its lexicon is possible.

• In case the ontology gets too big concerning its instances, they can

be externally stored for instance in Jena9, providing storage of data

in ontological format in a relational database.

It is not in the scope of this work to provide a solution to all currently

existing grammar engineering problems. Also, we do not claim to provide

a grammar without weaknesses which can be compared to those power-

ful formalisms developed within decades by a group of scientists as this

work is not part of a broad grammar engineering project. However, the

contribution of this thesis aims at contributing to formal construction

grammar development as this promising grammar theory is still searching

for a robust, usable, flexible and extendable computational grammar for-

malism to be applied in natural language processing systems. Therefore,

we deep dived into existing construction grammar formalisms, identified

9See http://jena.apache.org/.
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some weaknesses, picked out crucial constructivist ideas and elementary

parts of the grammar engineering process and describe their modelling in

detail with the help of one example sentence within a representative and

widely-used ontological framework. The sentence will be modelled within

that ontological framework that is intended to be reused and extended in

future increasing construction grammar’s visibility and attempting to iron

some weaknesses out.

1.3 Organization of the Thesis

This thesis is structured as follows:

Following the general introduction given in this Chapter, Chapter 2 presents

the theoretical background relevant to this work in four sections:

It starts with presenting an overview of relevant grammar theories in lin-

guistics arguing why linguistic formalisms are needed at all and gives a

short historic overview on grammar debates. It then introduces genera-

tive grammars and typed feature structure grammars. The chapter con-

tinues with discussing why computational implementations of linguistic

formalisms are fundamentally important before presenting main issues in

grammar engineering in computational linguistics in general and briefly

presenting those grammar implementations relevant for this work in par-

ticular. The next section introduces formal ontologies, the definition, for-

mats and engineering in general. It introduces foundational ontologies

and describes how linguistic knowledge is represented in ontologies. Fi-

nally, schemas and frames used for semantic representation are introduced.

The subsequent Chapter 3 presents a detailed description of all compo-

nents being important for the herein produced work. It starts with an

introduction to construction grammar in general and continues with a

comparison on the two existing computational construction grammars,

i.e. Embodied Construction Grammar and Fluid Construction Grammar.

It then discusses the motivation and merits of a further computational for-
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malization of construction grammar. Additionally, the employed founda-

tional ontology is presented and the motivation for this choice elaborated

on. The chapter continues with an overview of the LingInfo model that

enables the integration of basic linguistic information into an ontology and

closes with a few remarks on constructional meaning.

Chapter 4 represents the heart of this work. It starts with an informal con-

structional analysis of the selected example sentence that is used through-

out this work and specifies the implementation details of the ontological

grammar model that is created (called ECtoloG). It describes its various

components, i.e. lexical, compositional and other constructions, in great

detail. The following section focuses on how linguistic information is rep-

resented in constructions and modeled in the ECtoloG. The upcoming part

of the chapter focuses on the meaning representation of constructions, i.e.

on schemas and frames. A case study is presented that deals with the

integration of FrameNet frames into construction grammars. The chapter

ends with a summary of the so far obtained merits.

In the subsequent Chapter 5, a proposed example language processing

flow is presented where the ECtoloG is used. The application flow is first

described and then stepwise processed. It starts with an automatic cor-

pus creation, a conversion into parser-readable format, the constructional

analysis of the sentence, the conversion of the output into further process-

able information. The chapter then describes the automatic population of

the ECtoloG and the LingInfo model with all terms and the appropriate

linguistic information of the created natural language corpus. The tools

and scripts that are used are described.

Chapter 6 ends with a summary of the ECtoloG’s contribution to the con-

struction grammar and ontology communities and suggests various ideas

on how to continue the reported e↵orts and explorations.





Chapter 2

Theoretical Foundations

The following chapter deals with the theoretical background of this work

describing the state of the art in those fields we consider being important

for the creation of our grammar model as described in further detail in

Chapter 4. Additionally, it already introduces the main di↵erences of ex-

isting grammar implementations and issues that are considered important

in this work.

The first section includes basic information on grammars in theoretical

linguistics. It also includes a discussion why we believe formalisms are

necessary in linguistics. The subsequent section deals with those gram-

mars applied in the field of computational linguistics, i.e. with concrete

computationally applicable implementations of grammars, already intro-

ducing implementations based on construction grammars. This section,

as well, starts with a short discussion, why we believe that linguistics

is in need of computational models of the theories it suggests. Subse-

quently a section on formal ontologies follows, including their definition,

their formats, various engineering approaches, a definition of foundational

ontologies and their adequacy and the state of the art in representing lin-

guistic knowledge in ontologies. The chapter concludes with a section on

Frame Semantics, regarded as a complementary framework to Construc-

tion Grammar. It sketches out frames and other frame-based templates as

for instance image or executive schemas. Those templates play a crucial
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role in natural language understanding or reasoning.

2.1 Grammars in Linguistics

Why do we need linguistic formalisms at all? This section focuses mainly

on exactly that question. In addition, it will be discussed what constitutes

a grammar in theoretical linguistics followed by a brief presentation of

di↵erent kinds of grammars and their major features.

2.1.1 Linguistic Formalisms

The question to be answered in this section is why linguistic formalisms

are needed at all and – subsequently – as there already exist dozens of

those formalisms – why we present yet another one with again a di↵erent

flavor. As especially the second question will be answered along the course

of this thesis, it will briefly be motivated here.

As previously mentioned, the development of linguistic formalisms started

in the late 1950s (see for instance [Garvin, 1954, Tesnière, 1959]). How to

model these formalisms as suggested during the past decades and adding

up to dozens of ways nowadays has mainly been and still is developed

to eventually make linguistics a proper science. Research fields such as

mathematics, geography, or physics use formalisms that are shared in

the respective communities. The formalisms give guidelines about which

names to use, which representations or inference procedures per respective

areas. The same need for a common language or a common denominator

arises in linguistics. The answer to the maybe obvious question, why there

exist so many di↵erent grammar theories in linguistics instead of agreeing

on a common one, as it is done for instance in algebra, is that it is still

a mystery how linguistic structures are grounded in the brain. Scientists

still argue about how language is learnt. This uncertainty makes it that

di�cult to ground linguistic structures in reality.

When studying various linguistic formalisms it becomes clear that they

have to adhere to a variety of principles which will be listed below:
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• Above all, a linguistic formalism has to be clear and precise. This

principle holds for all the following points listed below.

• A linguistic formalism should represent well-defined notations for

structures and processes relevant in the language they aim to de-

scribe. An example for a linguistic structure is for instance a noun

phrase which can possibly be composed of a determiner and a noun.

As shown in Figure 2.1, a noun and a determiner are then combined

into a larger unit (the noun phrase). Whole sentences could be cap-

tured in such tree-like structures, assigning parts of speech to their

components (as here noun and determiner). The model presented

in this work will give examples of linguistic structures which can be

captured and suggests how additional ones can be added.

noun phrase

der Mann
 engl. 'the man'

determiner

der 
engl. 'the'          

noun

Mann
engl. 'man'         

Figure 2.1: The phrase structure of a noun phrase.

In this work, semantic structures that underly complex syntactic

structures are regarded as being important in particular. A famous

example is for instance a caused-motion construction, in detail de-

scribed in Goldberg [Goldberg, 1995]. Caused-motion constructions

describe that X causes Y to move Z. They are composed of a sub-

ject, a direct object and an oblique object on the syntactic side.

On their semantic sides, those sentence parts play di↵erent roles in

a sentence. While the subject plays the role of the agent of the
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caused-motion event, the direct object plays the role of a mover or a

moving thing and the oblique object acts as a goal in a prepositional

phrase. Goldberg’s example sentence is She sneezed the napkin o↵

the table. Where it is the caused motion constructions that con-

tributes to the meanings of the parts of the sentence that it is her

(the agent) sneezing that causes the napkin (the moving thing) to

move o↵ the table (the goal of the prepositional phrase).

• As languages show many regularities, as e.g. in German the con-

jugation of verbs, a linguistic formalism has to capture those. This

aspect is also important for learning, as novel verbs might enter the

speech community and immediately those rules can be applied to

form the di↵erent conjugational paradigms. This leads directly to

another aspect which has to be captured:

• A linguistic formalism should take into account what is necessary to

successfully interpret and produce well-formed utterances. Also it

has to be flexible enough to be expandable as new forms or meanings

might enter the speech community. Therefore, ways to acquire those

and the link between a form and its function in communication have

to be defined.

To check whether those requirements are met by a linguistic formalism,

implementations of those grammars are necessary. Section 2.2.1 briefly

goes into this issue. Before, however, we will give an overview on grammar

debates and look a bit closer at a few linguistic formalisms to get an

overview of the theoretical linguistic foundations.

2.1.2 Short Historic Overview on Grammar Debates

Already for decades, there have been debates in linguistics about what

language is, how it is acquired, and what exactly constitutes a language’s

grammar. In sciences in general, but especially in the debates on gram-

mars the so-called ’nature-nurture’-debate is omnipresent and deals with
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which parts of a language or – to be more specific – of a grammar are al-

ready given or innate and which parts have to be learned. While this

discussion whether word-meaning mappings were universal or conven-

tional can already be back-dated to the six orthodox Indian schools of

thought1 and discussions within from approximately the 7th century BCE

[Raja, 1969, Arapura and Raja, 1990], Chomsky kept this discussion vi-

tal in modern linguistics advocating the generative approach to grammar

(see for example [Chomsky, 1957, Chomsky, 1965] or more detailed infor-

mation in Section 2.1.3).

Following those generative approaches to grammar, recently more func-

tional (as e.g. proposed by [Dik, 1978]), usage-based and cognitive ap-

proaches to language and its grammar proposed by cognitive linguists in

the late 1980s (for instance by [Fillmore and Kay, 1987, Lako↵, 1987] or

[Langacker, 1987]) became more and more influential trying to explain

language learning based on cognitive mechanisms as, for instance, with

the help of frame-based categorization abilities.

To make the various approaches to grammar more powerful, various mod-

els of linguistic knowledge were being developed within the research field of

theoretical linguistics. Noam Chomsky again was the first person propos-

ing a formalization of generative grammars and – more specifically –

proposing a hierarchy which is known today as the Chomsky Hierarchy

[Chomsky, 1957]. Within the following sections, let’s have a look at a

short overview of grammars in theoretical linguistics, starting with a short

summary of the mentioned Chomsky Hierarchy before passing on to typed

feature structure grammars.

2.1.3 Generative Grammars in Theoretical Linguis-

tics

Generally speaking, a grammar can be described as being a generative

mechanism that allows to generate strings of di↵erent kinds of signs of

any kind of length, such as for example phonemes, words, morphemes,

1For a brief overview, see https://en.wikipedia.org/wiki/Indian philosophy
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and so forth.

Within the mentioned Chomsky-Hierarchy, Noam Chomsky classified gram-

mars into four di↵erent types which will be listed below.2

The most general definition of a grammar is the following where A,B 2
�;! 2 ⌃⇤ and ↵, �, � 2 �⇤ = (� [ ⌃)⇤:

A grammar G = h�,⌃,R, Si is a quadruple consisting of the following

four components:

1. A finite set � of nonterminal symbols. Typically this set contains

syntactic categories as, for example, NPs (nominal phrases), PPs

(prepositional phrases) or parts of speech as, for instance, V (verb)

or N (noun).

2. A finite set ⌃ of terminal symbols (� \ ⌃ = ↵). This set includes

all atomic parts which are defined by the grammar whereas atomic

means not decomposable.

3. A finite set R ✓ �⇤ ⇥ �⇤ of production rules with a left and a right

side where terminal or nonterminal symbols can be found

4. A start symbol S 2 �

The four types of grammars di↵er from each other with respect to the

constraints on the set of rules R.

Type-0-Grammar/Unrestricted Grammar:

A grammar is unrestricted in case its rules have the following form:

↵! � where ↵ 6= ✏ and ↵ /2 ⌃⇤

2The following definitions follow those by [Klabunde, 1998] who gives a detailed
introduction to the subject.
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The only constraint on the set of rules R is that at least one nonterminal

symbol is substituted by an arbitrary string over �. In other words, there

has to be at least one nonterminal symbol on the left side of each rule.

Besides, on both sides of the rules all elements of the complete alphabet

� are allowed. This constraint makes languages which are generated with

those grammars highly complex, therefore, they are not used in computa-

tional applications.

Type-1-Grammar/Context-sensitive Grammar:

A grammar

G = h�,⌃,R, Si is context-sensitive in case all of its rules have the follow-

ing form:

↵A� ! ↵�� where ↵, �, � 2 �⇤,A 2 �, � 6= ✏ or S ! ✏

That means that a nonterminal symbol A can only be substituted by

a word � from the complete alphabet in case it occurs in the context ↵

�. Context-sensitive grammars contain rules that have strings on both

sides.

Type-2-Grammar/Context-free Grammar:

A grammar G = h�,⌃,R, Si is context-free in case all of its rules have the

following form:

A ! ↵ where A 2 � and ↵ 2 �⇤ = (� [ ⌃)⇤

Rules of context-free grammars require a single symbol on their left side.

A major part of natural languages can be covered with context-free gram-

mars (although Chomsky argued that natural languages are not context-

free). However, as for instance shown by Shieber [Shieber, 1985], there

are a few structural properties that go beyond their capacities.
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Type-3-Grammar/Regular Grammar:

A grammar G = h�,⌃,R, Si is right regular in case its rules have the

following form:

A! ! and A! !B where A,B 2 � and ! 2 ⌃⇤

and left regular in case its rules have the following form:

A! ! and A! B!

A formal language is regular in case it can be described with the help

of a regular expression.

Context-free grammars are able to capture a lot of natural language phe-

nomena. Phenomena such as the segmentation of complex expressions

into parts (being possibly complex, as well) can for example be described.

However, there is no way to describe generalizations in a satisfying way

with context-free grammars’ nonterminal symbols [Kolb, 2004]. For ex-

ample, a grammar that generates singular and plural noun phrases should

use di↵erent nonterminal symbols for each phrase as, for example, NPsg

or NPpl. From a formal perspective those variables are completely di↵er-

ent. Their appearance, however, suggests a certain structural similarity.

One possible solution to this problem is to use feature structures to model

complex categories. Those structures play a crucial role in so-called Uni-

fication Grammars, often also called constraint-based formalisms or typed

feature structure grammars. Those grammars and their basic building

blocks – the feature structures – will be the topic of the following section.
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2.1.4 Typed Feature Structure Grammars

Basically, typed feature structure grammars are grammars in which the

non-terminal symbols are replaced by feature structures and which use fea-

ture structure unification as an operation. This chapter defines the notions

of feature structure and of unification. Amongst others, the logic of typed

feature structures is described in [Pereira and Shieber, 1984, Shieber, 1986]

and in [Carpenter, 1992] and an overview on Unification Grammars can

be found in [Francez and Wintner, 2011].

Feature structures o↵er a flexible way to represent (linguistic) informa-

tion. They are mainly used to present complex objects that have di↵erent

characterizing features or attributes. They basically are lists of features

– or of attributes – where each feature can be assigned to a value, being

either atomic or as well complex, i.e. another feature structure. Therefore,

another frequently used term instead of the term feature structure is the

term attribute-value pair.

Additionally, feature structures constitute the lexicon entries of unifica-

tion grammars, while context-free grammars list atomic categories. Since

the information which is encoded in feature structures is highly rich, the

lexicon has to be organized in a clearly structured way. This is normally

done via inheritance.3

The following formal definitions follow [Carpenter, 1992] and Copestake’s

shorter versions [Copestake, 2000] who adhered to Carpenter, as well.

Definition Typed Feature Structure Grammar: A typed feature

structure grammar G = hT,✓, F,⇥i is a tuple which consists of the fol-

lowing components:

1. hT,✓i: A type hierarchy which is a finite bounded complete partial

order

2. F : A set of feature symbols

3There are unification grammars that do not use the traditional inheritance mecha-
nisms as for instance Fluid Construction Grammar (see Section 2.2.3 and for instance
[De Beule and Steels, 2005, Steels, 2017]).
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3. ⇥: A set of typed feature structures

Definition Typed Feature Structure: A typed feature structure ✓ 2 ⇥

over T and F is a rooted, directed, labeled graph. It is a tuple hQ, r, �, ✓i,
where

1. Q is a finite set of nodes

2. r 2 Q ( r is the root node)

3. ✓ : Q! T is a partial typing function

4. � : Q⇥ F ! Q is a partial feature value function

In general, feature structures are displayed in a frame-like attribute-value

matrix (see [Carpenter, 1992]). Figure 2.2 displays a simple attribute-

value matrix describing a person. The feature structure is of type person

and lists the features name, surname, birthday, father and mother. The

first mentioned features are assigned to atomic values. The feature father

is assigned to another feature structure again of type person. The same

is the case for the feature mother. This displays the way of how recursion

can be modeled with the help of feature structures.

2

66666666666666664

person
name Mary
surname Doe
birthday 1.1.1980

father

2

666664

person

name John

surname Doe

birthday 2.2.1950

father ...

3

777775

mother ...

3

77777777777777775

Figure 2.2: An attribute-value matrix describing a person.

Unification is a kind of pattern matcher. It enables merging information

content of two feature structures and also, in case their content is incom-

patible, it rejects the merger. The following presents the formal definition.
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Definition Unification: The unification F
T
F 0 of two feature struc-

tures F and F 0 is the greatest lower bound of F and F 0 in the collection

of feature structures ordered by subsumption[Copestake, 2000]4.

Today, the most widely used unification grammars are Lexical Functional

Grammar (LFG) [Bresnan, 2001], Functional Unification Grammar (FUG)

[Kay, 1984], Categorial Unification Grammar (CUG) [Kartunnen, 1989],

Tree Adjunction Grammar (TAG) [Joshi and Schabes, 1997], Head-Driven

Phrase-Structure Grammar (HPSG) [Pollard and Sag, 1994] and Construc-

tion Grammar (CxG) [Goldberg, 1995]. For all of those frameworks com-

putationally operational formalisms were developed and used in various

applications concerning linguistic processing or grammar development,

more or less successfully. The research field dealing with the develop-

ment of operational grammars is computational linguistics. Grammars

are approached from such a perspective in the following section.

2.2 Grammars in Computational Linguis-

tics

The interdisciplinary research field of computational linguistics is inter-

ested in providing computational models of written or spoken natural lan-

guage to automatically process natural language in, for instance, parsing,

language production, or stemming (see, for instance, a standard reference

by [Jurafsky and Martin, 2008]). The field of computational linguistics

is tightly connected to the field of Artificial Intelligence as no language

can ever be modelled completely without including learning paradigms to

at least cover phenomena like language change. Language understand-

ing or translation rely heavily on included machine learning paradigms to

become e�cient and scalable.

4Subsumption describes the ordering of feature structures. A feature structure F
subsumes F 0 if its type is more general. Any feature f defined in F is also defined in
F 0. That means that the feature f in F subsumes the feature f 0 in F 0.
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Part of this linguistic engineering e↵ort concerns itself with developing

machine-readable and operational implementations of grammars. Gram-

mars are especially needed to enable natural language processing in various

application areas such as for instance in strongly Artificial Intelligence-

related fields as machine translation, text understanding, or speech recog-

nition. Therefore, the grammars have to be made explicit and then

machine-readable, which means they have to be formalized and then im-

plemented.

The following sections describe the aspects of grammar engineering which

are, as already mentioned, considered as being major challenges in that

field in general and mentions several existing grammar formalizations,

which are considered important for this work.

2.2.1 Computational Implementations of Linguistic

Formalisms

Why is there a need to computationally implement linguistic formalisms

at all? Computational implementations of linguistic formalisms present

in our opinion a crucial step relevant for any kind of linguistic theory to

be able to validate the hypotheses and assumptions it makes. In order for

a linguistic formalism to be fully operational, i.e. to be made machine-

processable, to be used in parsing or producing natural language phrases

or sentences or other linguistic constructions, its hypotheses need to be

validated. They have to be accurate and non-contradicting, i.e. clear and

precise. They need to be reproducible and unique. The issues raised here

will be further discussed in more detail in the course of this thesis and

especially be raised in the first sections of Chapter 3 with a specific focus

of why this work is valuable to research in language processing. Section

3.3 covers the main issues of the contribution of this work and argues for

a new implementation of a specific linguistic theory, namely Construction

Grammar.

Let’s have a closer look at di↵erent aspects that should be accounted

for when implementing grammars followed by a short overview of several
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grammar implementations which are fundamental for this work.

2.2.2 Implementing Grammars in General

The technical term for the complete process of developing a machine-

interpretable grammar is grammar engineering. The discipline of gram-

mar engineering deals with the development of grammars which can be

used in natural language processing systems such as for example in spoken

dialogue systems or question-answering systems. It includes the applica-

tion of conventionalized methods, tools and techniques in order to come to

the result – the grammar implementation. The development of large-scale

grammars mostly takes over several years and is conducted in general by

a number of scientists. Typically, the result of those projects is a powerful

grammar formalism which is usable by those applications it was designed

for.

As already mentioned in the introduction of this work, there are vari-

ous issues which are of major importance within the field of grammar

development (see Figure 1.2)), which are repeated in the following list

and further elaborated in relation to this work:

• Applicability: The grammar has to be applicable to the domain and

in the system it was designed for. Once this goal has been achieved,

the question is raised how applicable it is in another domain or even

in another system.

• Reusability: As grammar engineering always starts with thoroughly

investigating the language in question, several steps might be ob-

solete if already existing sources can be incorporated, including for

instance partial grammars or di↵erent domain-specific knowledge.

• Extendability/Maintainability: While engineering a model, docu-

mentation should be created to enable researchers to continue the

work on the grammar or extend it - either manually or automati-
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cally. This is especially important as languages change as we speak

and new constructions enter the speech community continuously.

• Coverage: In case a grammar is supposed to be employed in ’real-

world’ applications, its coverage has to be as broad as possible.

Nowadays, statistical grammar implementations dominate the mar-

ket but work on symbolic grammar formalisms is promising and up

to now, hybrid systems yield the best results compared to strictly

statistical ones (see for instance [Van Eecke et al., 2022]).

• Relevance: Both in the field of linguistic theory and especially in the

field of computational implementation, construction grammar still

presents a relatively young theory. This fact leaves many issues still

unresolved and open to further research. Through its formal, com-

putational implementation, assumptions have to be made explicit

and might add valuable insights to those theories. The formalism

gains further visibility through additional case studies and might

potentially be advanced and adopted further.

• Evaluation: Evaluation of grammar implementations is a complex

endeavour and one example is to in general take into account what

can be parsed and what eventually cannot. This allows a compari-

son of grammar implementations of di↵erent grammar theories based

on their precision or coverage in parsing (and also in production in

case the grammar captures the relevant rules). What should not be

neglected, however, is the amount of invested man-power in design-

ing and engineering them. With smaller grammar implementations

di↵erent evaluation features can be of higher importance. A gram-

mar formalisms crafted by a few researchers cannot be compared in

coverage with a formalism engineered by a community.

• Editability: People who are not used to implement on computers

might be hesitant or even ’pushed away’ if there is too much im-

plementation involved in creating a grammar. Therefore, editors
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and other visual interfaces are of great help for any grammar engi-

neer to lower the barrier and improve the user experience eventually

increasing adoption.

• Representation: The format of the grammar is of major importance

in case it is supposed to be employed in natural language processing

systems of di↵erent kinds. Therefore, it is necessary to take into

account the state of the art in knowledge representation. This will

increase adoption, ease evaluation, and even coverage as useful tools

might exist for e.g. editing or extending a formalism.

2.2.3 Grammar Implementations

Unification Grammar is one of the most commonly used grammatical for-

malisms. Within the last decades, powerful computational implementa-

tions have been engineered for several unification based formalisms.

Some examples are:

• Functional Unification Grammar (FUG) [Kay, 1984]

• Categorial Unification Grammar (CUG) [Kartunnen, 1989]

• Head-driven Phrase Structure Grammar (HPSG) [Pollard and Sag, 1987]

or [Pollard and Sag, 1994]5

• Lexical Functional Grammar (LFG) [Bresnan, 2001, Borjars et al., 2019]

• Tree Adjoining Grammar (TAG) [Joshi and Schabes, 1997]

• Sign-Based Construction Grammar (SBCG) [Sag, 2012]

• Construction Grammar and its computational implementations Em-

bodied Construction Grammar (ECG) [Bergen et al., 2001] and Fluid

5You can find a list of key publications on HPSG at [Müller, 2021]
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Construction Grammar (FCG) [Steels, 2005, Steels, 2011, Steels, 2012,

Steels, 2017]6

All of these formalisms have implemented feature structures in one way

or the other and use unification (see Section 2.1.4 for definitions).

One of the main challenges of grammar engineering is that up to now no

standardized methods for e�cient grammar engineering exist including,

for example, for the development of frameworks for grammar engineering

[Uszkoreit and Zaenen, 1997, Bender et al., 2002]. Instead, it is an ex-

tremely labor-intensive mostly manual process.

The following sections shortly present the main features of three of the

mentioned unification grammar implementations: Head-Driven Phrase

Structure Grammar (hpsg), Fluid Construction Grammar (fcg) and Em-

bodied Construction Grammar (ecg). The reasons for this choice are the

following:

We chose HPSG since it is widely used and plays a major role in compu-

tational linguistics today. After almost 30 years of research, HPSG rep-

resents a formalism standing on a solid foundation and possessing wide-

coverage grammars for various languages like French, English, Korean,

Japanese, Spanish or German.7

Two of the existing construction grammar implementations are examined

here since Construction Grammar per se presents a promising, relatively

young grammar theory still leaving many issues open both regarding its

theoretical foundation and the existing implementations of it. Yet, there

is lots of room for experimenting and improving existing implementations

or extend them to further applications. Additionally, since the model

described in this work deals with construction grammar, too, the two al-

ready existing implementations should be examined. Their rather specific

6Section 3.2 presents and compares the two main computational implementations
of construction grammar.

7See for instance [Müller, 2008] or the proceedings of the yearly HPSG conference
at http://web.stanford.edu/group/cslipublications/cslipublications/HPSG/ .
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domains of application will be described in more detail in the following

sections. The grammar examples in the sections on Fluid Construction

Grammar and Embodied Construction Grammar have been implemented

by the author.

Head-driven Phrase Structure Grammar Head-driven Phrase Struc-

ture Grammar [Pollard and Sag, 1987, Pollard and Sag, 1994] can look

back on more than 30 year of research. Meanwhile, it is one of the mainly

used grammar formalisms in computational linguistics and various imple-

mentations exist covering di↵erent languages as for instance English, Ger-

man, Chinese and Maltese.8 HPSG is a lexicalized grammar theory, i.e.

that almost all grammatical information is part of the lexicon. While the

lexicon presents a richly-structured hierarchy instead of a list of entries,

only a few grammatical rules are needed to take care of the constraints for

processing the lexicon. It is head-driven meaning that the nucleus or head

of a phrase is obligatory and determines relevant features of that phrase.

As an example is the verb, for instance, the head of a verbal phrase – and

not eventual objects – and determines information like number or person

of the phrase. HPSG is a monostratal theory which means it has only

one level of representation: the sign. A sign takes into account the func-

tion and the form of its components, as defined by [de Saussure, 1985].

HPSG uses – as all of the below described implementations of typed fea-

ture structure grammars – an implementation of typed feature structures

to represent both lexicon entries and phrases.

Figure 2.3 shows an attribute-value matrix of the lexical item soccer player

in HPSG notation.

All types of feature structures in HPSG are of type sign combining the

two attributes PHON and SYNSEM. That means that each feature structure of

this type contains information of these two attributes. The PHON attribute

contains all phonological information of the feature structure, SYNSEM the

specification of its syntactic and semantic properties. SYNSEM’s value is

8The grammar implementations for German, Chinese and Maltese can be inspected
at http://hpsg.fu-berlin.de/ stefan/Pub/hpsg-lehrbuch-grammatiken.html
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again a feature structure of type synsem containing the two attributes

LOCAL and NON-LOCAL. LOCAL contains the attributes CAT (for category),

containing syntactic information and CONT (for content) contains semantic

information. Figure 2.3 specifies under CAT that soccer player is a noun

and that its CASE is determined by the HEAD of the phrase. Case congru-

ency between an accompanying determiner and the noun is ensured with

the help of a variable (here 1) that is attached to both CASE attributes in

the CAT attribute. The CONT attribute links soccer player to an INSTANCE

X wich can be another feature structure, an ontological instance, or some

other entity containing further semantic information on the item.9

2

6666666666666664

phon soccer player

synsem|loc

2

666666666664

cat

2

66664

head
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case 1

noun

�

subcat
D
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⇤E

cat

3

77775

cont


inst X

soccer player

�

loc
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777777777775

word

3

7777777777777775

Figure 2.3: An attribute value matrix for the lexical item soccer player in
HPSG notation.

Embodied Construction Grammar Embodied Construction Gram-

mar (ecg) represents a formal and explicit model of construction gram-

mar which was developed within the Neural Theory of Language project

(NTL), an interdisciplinary research e↵ort oriented towards investigating

cognitive phenomena, seeking answers to the question: How do humans

learn and use language? 10 and the EDU project (EDU).11 It has mainly

9For further and fine-grained information and introductory de-
tails we refer to the well-established hpsg literature, mainly to
[Pollard and Sag, 1987, Pollard and Sag, 1994] and [Müller, 1999] and to their
website at http://hpsg.stanford.edu/

10See http://www.icsi.berkeley.edu/NTL/ and [Feldman, 2006] for a detailed descrip-
tion of the Neural Theory of Language.

11http://www.eml-development.de/english/research/edu/index.php
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been developed to be applied in a simulation-based language understand-

ing system (see for instance [Chang et al., 2002, Bergen and Chang, 2005,

Chang, 2008]) which – to our knowledge – unfortunately has never com-

pletely been put together. Several high-value components were developed

but they never were integrated into one single system.

Embodied Construction Grammar grew out of the cognitive linguistics-

based construction grammar framework. Within the framework of Lako↵’s

Neural Bridging Theory [Lako↵ and Johnson, 1999], ecg represents an ex-

tension which gets more and more the status of a separate approach in

the area of construction grammatical research.

While other approaches consider language as completely independent from

the organism which uses it, it is displayed in ecg that several character-

istics of the language user’s sensorimotor system can influence his or her

language. The needed dynamic and inferential semantics in ecg is rep-

resented by so-called embodied schemas. These schemas are comparable

to and include some image schemas known from traditional cognitive se-

mantics. They constitute schematic recurring patterns of sensorimotor

experience [Johnson, 1987, Lako↵, 1987].

As proposed by traditional construction grammar theory, the main build-

ing blocks are constructions ranging from lexical constructions to highly

complex structures.12

We’ve implemented an example ecg grammar and Figure 2.4 shows an ex-

ample lexical construction for the term soccer player.13The format of ecg

reflects the influence of constraint programming languages and inheritance-

based ontologies: special keywords (in boldface) are used to indicate in-

ternal structure and express inheritance relations and other constraints,

and dotted slot chains are used to refer to non-local structures. On the

surface, ecg closely resembles a data structure.

12Of course it is the grammar engineer’s choice how fine-grained his grammar should
be and smaller constructions than lexical ones like for instance morpheme constructions
are possible.

13More detailed information on implementation details of ecg is given in Section
3.2. For even further information we refer to the ECG literature.
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construction SoccerPlayer-Cxn 
    subcase of Noun, Person 
    constructional 
       self.number ← singular 
    form : Word 
       self.f.orth ← “Fußballspieler” 
    meaning 
       evokes ReferentDescriptor as ref    
       ref.ont-category ← @SoccerPlayerSchema 
       ref.quantity ← 1 

Figure 2.4: A construction for the lexical item soccer player in ecg nota-
tion.

The high-level structure of the construction includes three blocks, where

keywords (shown in boldface) are used to indicate special terms and struc-

tures: the constructional block contains information relevant to the con-

struction as a whole, while the form and meaning blocks (or poles) contain

information relevant to each of those domains.

In fact, the SoccerPlayer-Cxn construction is defined within a larger net-

work of structures, including other constructions to which it is related

and schemas in each of the form and meaning domains. These structures

will be described in more detail later, but we highlight here a few of the

notations that express constructional constraints.

• The subcase of declaration defines a multiple inheritance hierar-

chy over constructions, here identifying the SoccerPlayer-Cxn as a

specific kind of Noun and Person. Inheritance makes all features of

a parent construction automatically available in the subcase.

• Various notations allow flexible reference to di↵erent accessible struc-

tures. The self keyword allows self-reference, i.e. reference to the

construction currently being defined. The special names self.f and

self.m refer to the construction’s form and meaning poles, respec-

tively. Slot chains of the form x.y allow reference to a non-local

feature (or role) y accessible through a local structure x.
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• ecg includes a fixed set of constraint types for expressing category

constraints and role-filler binding. Category constraints are indi-

cated with a colon (i.e., the form pole must be a Word), and role-

filler constraints of the form x y indicate that role (or feature) x is

filled by the (atomic) value y (i.e., the form pole is associated with

the orthographic string shown).

• The meaning pole illustrates some additional notations specific to

ecg. The evokes ReferentDescriptor as ref declaration indicates

that there is a structure of category ReferentDescriptor present, re-

ferred to by the local name ref and discussed more below. Here we

note that it has a feature ont-category that is constrained to be filled

by @SoccerPlayerSchema. (The @ symbol is used to allow reference

to an external conceptual ontology.)

Fluid Construction Grammar Around 2001 a congruent and parallel

development has led to Fluid Construction Grammar (fcg), a computa-

tional implementation of construction grammar’s features. Compared to

other unification-based formalisms such as hpsg [Pollard and Sag, 1994]

it provides a number of mechanisms that allow a more fine-grained con-

trol over the interaction between constructions. It is arguably one of the

most advanced computational construction grammar formalisms and is

the only one that can handle both parsing and production using the same

set of constructions rather than using separate generation and parsing pro-

cedures.14 So far, fcg has mainly been applied in research on the emer-

gence and evolution of grammatical phenomena [Steels, 2001, Steels, 2004,

van Trijp, 2008, Steels, 2017]. Current investigations include studies on

how construction grammars can be learnt from semantically annotated

corpora [Doumen et al., 2023] or through communicative interactions (see

[Nevens et al., 2022, Beuls and Van Eecke, 2023] and also

[Beuls and Van Eecke, 2024]), and how they can be used in an approach to

capture narrative-based language understanding [Van Eecke et al., 2023].

14Please find a more detailed discussion of the importance and noteworthiness of
reversible grammars in [van Trijp, 2010].
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At first, the focus was on the lexical domain, which then moved further

to the level of grammar [Steels, 2005, van Trijp, 2008, van Trijp, 2017].

Recent advances demonstrate fcg’s application in reasoning intensive vi-

sual dialogue tasks [Verheyen et al., 2023], or visual question answering

[Nevens et al., 2019].

fcg combines various ideas of di↵erent constructivists’ approaches. It rep-

resents, for instance, a usage-based model of language [Langacker, 2000],

and the formalism is unification-based [Kay and Fillmore, 1999]. Addi-

tionally, aspects of Radical Construction Grammar approach [Croft, 2005]

are implemented, which are, for example, realized in the fact that the set

of linguistic categories, semantic roles, or syntactic features are all open.

Language is seen as a complex and adaptive system that evolves over

time through verbal interaction within a community [Steels, 2003]. The

main goal of Steels and his team has not been to cover all existing natural

language phenomena as they occur in natural languages as they are but

to build models of the processes that go on in languages concerning the

emergence and adaptation of new forms or meanings, i.e. constructions

[Steels and De Beule, 2006]. However, several e↵orts in fcg have led to a

number of so-called mini-grammars that focus on the modeling of various

complex language phenomena in di↵erent languages as for instance in Ger-

man [van Trijp, 2011, Micelli, 2012], Hungarian [Beuls, 2011] or Spanish

[Beuls, 2012] showing that this can be covered with fcg, as well. Figure

2.5 shows an example lexical entry in fcg notation.

Regarding its format, it reflects the influence of the LISP programming

language: internal structure is indicated with parenthesized lists employ-

ing prefix-list notation, and variable names are marked with a leading

question mark. fcg structures look more like a program than a data

structure.

The structure in Figure 2.5 makes use of the basic fcg def-fcg-cxn predi-

cate for defining constructions followed by the construction’s name and a

list of its semantic (sem-cat) and syntactic categories (syn-cat). Leading

question marks as in ?soccer-player-unit or ?ref indicate that these are
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(def-fcg-cxn soccer-player

((?soccer-player-unit

(sem-cat (referent-descriptor ?ref)

(ont-category soccer-player)

(quantity 1))

(syn-cat  (lex-cat noun)

(number singular)

(gender masculine)))

<-

(?soccer-player-unit

(HASH meaning ((find-entity ?ref [soccer-player])))

--

(HASH form ((sequence "Fußballspieler" ?start ?end))))))

Figure 2.5: The lexical construction for the German term Fußballspieler,
i.e. soccer player in English, in fcg notation.

variable names. Units specify the constraints and categorizations relevant

to each domain. The variable ?ref (corresponding to the Referent structure

connected to the word Fußballspieler in the informal analysis) is of onto-

logical category [soccer-player] (where square brackets denote reference to

an ontology item) and can also be categorized as a referent-descriptor, in

addition to its quantity being 1. The list of syntactic categories denotes

that this construction is of category noun, its number value is singular,

and its grammatical gender masculine. The construction lists its form and

meaning features following the arrow (<-) preceded by the HASH opera-

tor. Detailed information on fcg’s syntax and semantics is described in

[Van Eecke, 2018] or can be found in the Babel Wiki.15

A fully operational version of fcg which is implemented in a substrate

15https://emergent-languages.org/wiki/docs/recipes/fcg/syntax-and-semantics/
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of Common LISP can be downloaded for testing or conducting own ex-

periments.16 For further information on comparing fcg and ecg, please

consult Section 3.2.

2.3 Formal Ontologies

This section gives an overview on formal ontologies. First, we introduce

the concept and the various existing formats of ontologies. Furthermore,

methodologies used in generally engineering ontologies are described. Sec-

tion 2.3.4 gives a short overview of popular existing foundational ontologies

and Section 2.3.5 concludes this Section with a short description on the

representation of linguistic information in ontologies.

2.3.1 Definition of Ontology

Originally, ontology describes a philosophical discipline describing the

study of being or existence. The term is used in computer science where

an ontology defines the terminology, the concepts, and their relationships

towards each other in a specific domain of application. Following Gru-

ber [Gruber, 1993] ”an ontology is an explicit specification of a concep-

tualization”. It is a knowledge base where concepts and the relations

among them are agreed upon and formally defined. Unlike simple tax-

onomies, where the single relation among the contained elements is in-

heritance (so-called is a-relations), an ontology represents a network-like

structure with logical relations between its elements. The most basic rela-

tion between concepts is inheritance. Often there are axioms added that

express more fine-grained relationships and constrain their interpretation

(see [Guarino, 1998]).

Guarino [Guarino, 1998] defines three di↵erent kinds of ontologies (see

also Figure 2.6):

• Top-level ontologies: Top-level ontologies are often called foun-

dational or upper ontologies. In this work we will adopt the term

16www.fcg-net.org
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top-level ontology

domain ontology task ontology

application ontology

Figure 2.6: Hierarchy and types of ontologies as defined by
[Guarino, 1997].

foundational ontology. They represent general, domain-independent

knowledge. There exist just about a dozen freely available founda-

tional ontologies, as, for instance, the Cyc-ontology [Lenat, 1995],

SUMO17 or DOLCE18. [Oberle, 2006] gives a detailed overview on

foundational ontologies. Section 2.3.4 briefly sketches out the most

popular ones.

• Domain or Task ontologies: Task ontologies define the ter-

minology of a specific domain or application area, whereas di↵erent

experts have to agree upon a common understanding of the termi-

nology and its meaning. An example is the Financial Industry Busi-

ness Ontology[FIBO, 2022] or the Ontology for Strongly Sustainable

Business Models [Upward and Jones, 2016].

• Application ontologies: Application ontologies model a limited

part of the real world. They can be compared to traditional data

models.

17http://ontology.teknowledge.com/, last checked May 20, 2022
18http://www.loa-cnr.it/DOLCE.html, last checked May 20, 2022
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2.3.2 Ontology Formats

RDF/RDFS The RDF (short for Resource Description Framework)

data model19 has been developed by the W3C to be used to make state-

ments about resources in the Semantic Web. Those statements are usually

subject-predicate-object expressions. It enables the description of prop-

erties of resources of the world wide web in a machine readable and pro-

cessable way. It is the basis of OWL which will be described briefly in the

following paragraph.

RDFS (short for RDF schema20) allows to describe complex relations be-

tween RDF resources. An rdf:property is a relation between a sub-

ject resource and one or more object resources. The two instances of

rdf:property of highest interest for this work are rdfs:domain and

rdfs:range. rdfs:domain states that any resource with a given prop-

erty is an instance of one or more specified classes, and rdfs:range is

used stating that the values of a property are instances of one or more

specified classes. Examples can be found in Section 4.4.

OWL OWL (short for Web Ontology Language)21 is another W3C stan-

dard which is technically based on RDF. The main di↵erence of OWL com-

pared to other ontology languages as for instance DAML+OIL or RDF is

that it includes more powerful operators as for instance and, or or nega-

tion. It is based on a di↵erent logical model which allows not only to

define concepts but also to describe them. Additionally, the use of rea-

soners (as e.g. Pellet [Pellet, 2022]) is possible which checks the ontology’s

consistency. One can distinguish between three di↵erent kinds of OWL

versions:

• OWL-Lite:22 This version is syntactically the simplest one. In gen-

eral, it is used in cases where simple class hierarchies and constraints

19http://www.w3.org/RDF/, last checked May 20, 2022
20https://www.w3.org/TR/rdf-schema/, last checked May 20, 2022
21http://www.w3.org/TR/owl-features/, last checked May 20, 2022
22http://www.w3.org/TR/2004/REC-owl-features-20040210/#s3, last checked May

20, 2022
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are needed.

• OWL-DL:23 DL stands for Description Logic which constitutes OWL-

DL’s basis. It is more expressive than the Lite version and allows the

use of ontology reasoners to verify the consistency of the ontologies.

Description Logics enable knowledge representation in a well-formed

and structured way. Description Logics is equivalent to First Order

Logic.

• OWL-Full:24 OWL-Full is the most expressive version of the dif-

ferent OWL languages allowing predicate logics on a higher level.

In return the price to pay is that using reasoners is not possible

anymore since ontologies being in OWL-Full become partially unde-

cidable, i.e. not everything can be calculated anymore.

2.3.3 Ontology Engineering in General

Engineering an ontology is a cumbersome and time-consuming task, es-

pecially, when done manually. Therefore, there is quite some literature

suggesting supportive guidelines (see e.g. [Noy and McGuinness, 2001,

Antoniou and van Harmelen, 2004, Falbo, 2014]). The subsequent steps

are suggested by [Noy and McGuinness, 2001]:

1. Determine the domain and scope of the ontology: The deci-

sions made in this step determine exactly which domain the ontology

will cover and for which applications the ontology will be useful. To

determine the scope it is suggested to ask so-called competency ques-

tions [Grüninger and Fox, 1995], which are questions a system using

the ontology should be able to answer.

2. Consider reusing existing ontologies

23http://www.w3.org/TR/2004/REC-owl-features-20040210/#s4, last checked May
20, 2022

24http://www.w3.org/TR/2004/REC-owl-features-20040210/#s4, last checked May
20, 2022
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3. Enumerate important terms in the ontology

4. Define the classes and the class hierarchies

5. Define the properties of classes

6. Define the facets of the slots: Here, constraints need to be de-

termined as, for instance, the allowed values of a slot, the classes’

cardinality and which relations are allowed between which classes.

7. Create instances

2.3.4 Foundational Ontologies

To get an overview on several freely available foundational ontologies,

we refer the interested reader to, for instance, [Oberle, 2006]. Exam-

ples for popular foundational ontologies are DOLCE [Masolo et al., 2005,

Borgo and Masolo, 2009], the Object-Centered High-Level Reference On-

tology (OCHRE) [Schneider, 2003], OpenCyc (https://cyc.com/ ), and Sug-

gested Upper Merged Ontology (SUMO) [Niles and Pease, 2001].

As a more detailed description of each of those foundational ontologies

is not in the scope of this work, we continue with a short description of

DOLCE, which is the foundational ontology that is chosen as a base of

our model. Please refer to the mentioned literature for more information

on the other ontologies.

DOLCE DOLCE - which is the first module of the WonderWeb library

of foundational ontologies [Masolo et al., 2005, Borgo and Masolo, 2009] -

is based on first order logic (OWL-DL) and has a strong cognitive bias.

That means, that it was designed based on the underlying ontological

concepts of natural language and human commonsense. Therefore, it

is a so-called descriptive ontology as opposed to revisionary ontologies

which may impose that only entities extended in space and time exist (see

[Masolo et al., 2003] for a more detailed discussion). DOLCE has already

been applied in di↵erent domains such as law [Gangemi et al., 2003b],



Section 2.3 – Formal Ontologies 47

biomedicine [Battaglia, 2004] or has been explored to model the variety of

engineering features [Sanfilippo and Borgo, 2015].

The fundamental distinction that is made within DOLCE is that between

Perdurants and Endurants. While Perdurants describe processes or

events, Endurants define objects or substances. The main relation be-

tween Perdurants and Endurants is that of participation, which means

that an Endurant participates in a Perdurant as, for example, a person

(i.e. an Endurant) participates in his or her life (which is a Perdurant).

Furthermore, DOLCE defines Qualities and Abstracts. Qualities in-

clude basic entities that can be measured or perceived as, for example,

size, shape, color, sound or smells. The class of Abstracts includes Re-

gions as, for example, time or space. DOLCE’s basic concept hierarchy is

partly depicted in Figure 2.7.

Figure 2.7: DOLCE’s basic concept hierarchy [Masolo et al., 2005].
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2.3.5 Representation of Linguistic Knowledge in On-

tologies

Currently, linguistic information of ontology classes and properties as

listed below is mostly missing or represented in impoverished ways in

ontologies, leaving the semantic information in it without a grounding to

the human cognitive and linguistic domain.

The following list gives examples of useful linguistic information of ontol-

ogy classes and their properties:

• Part-of-speech: Representation of the part of speech of the head

of the term like noun, verb or adjective.

• Language-ID: ISO-based unique identifier for the language of each

term

• Morphological and syntactic decomposition: Representation

of the morphological and syntactic structure (segments, head, mod-

ifiers) of a term.

• Part-of-speech-specific information: Representation of for in-

stance the case of a noun, the person or number of a conjugated

verb and so forth.

The subsequent paragraphs briefly sketch out various existing approaches

tackling those issues and are published in a research paper by the author

et al. [Buitelaar et al., 2006].

Simple Knowledge Organization Systems (SKOS) One approach

to express linguistic information in an ontology is the SKOS format.25

It enables the formalized representation of di↵erent types of controlled

vocabularies as for instance taxonomies or thesauri. However, there is a

technical and conceptual reason why SKOS does not provide the linguistic

information we wish our model to have as previously listed above:

25http://www.w3.org/TR/swbp-skos-core-guide/
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On the technical side, SKOS uses sub-properties - skos:prefLabel and

skos:altLabel - of rdfs:label together with xml:lang to attach mul-

tilingual terms to concepts. The RDFS specification defines the range of

rdfs:label to be rdfs:Literal. In the definition of rdfs:subPropertyOf

it is determined that the range of skos:prefLabel and skos:altLabel is

also (or a specialization of) rdfs:Literal. As we wish to attach more lin-

guistic information to ontology classes than simply attaching multilingual

strings, we consider this approach as insu�cient for the current scenario.

The conceptual problem we see with SKOS for the use in our scenario is

that it mixes linguistic and semantic knowledge. SKOS uses skos:broader

and skos:narrower to express ”semantic” relations without clearly stat-

ing the semantics of these relations intentionally, and defines the subprop-

erties skos:broaderGeneric/narrowerGeneric to have class subsump-

tion semantics (i.e., they inherit the rdfs:subClassOf semantics from

RDFS).

Wordnets and OntoWordNet Alternative lexicon models concentrate

on the definition of a top ontology for lexicons instead of linguistic features

for domain ontology classes and properties, see e.g. [Bateman et al., 1995]

and [Alexa et al., 2002]. Similarly, the proposed OntoWordNet model

[Gangemi et al., 2003a] aims at merging the foundational ontology DOLCE

[Gangemi et al., 2002] with WordNet to provide the latter with a formal

semantics.

Lexical Markup Framework Some initiatives of the ISO TC37/SC426

working group on the management of language resources continue the work

from previous standardization initiatives, like EAGLES (Expert Advisory

Group on Language Engineering Standards) for morphological and syntac-

tic annotation and ISLE (International Standards for Language Engineer-

ing) for the representation of lexicon entries. In the various initiatives of

ISO TC37/SC4 the focus is on the more abstract level of meta-annotation

and of frameworks supporting the creation and the exchange of anno-

26https://isotc.iso.org/livelink/livelink?func=llworkspace (checked May 28, 2022)
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tations, data structures and resources. An important part of this work

consists of the definition of procedures for the creation and maintenance

of data categories for various annotation frameworks. Data categories are

formalized representations of the most relevant linguistic concepts, such

as part of speech, or lemma and so forth.

None of the briefly introduced methods of displaying linguistic information

of ontology classes or properties serve our purpose completely. Wordnets,

for instance, lack the linguistic features that are needed and SKOS mixes

linguistic and semantic knowledge. Therefore, the decision has been made

to use a model that the author and others designed within the SmartWeb

project [Wahlster, 2007] for exactly the purpose that is needed in this

work. The model is called LingInfo [Buitelaar et al., 2006] and will be

presented in detail in Section 3.5.

2.4 Frames and Schemas

Having had a brief look at what constitutes a construction, let’s in this

section focus on that side of a construction that constitutes its meaning.

Let’s have a look at what can possibly fill the meaning pole of a construc-

tion and what is used later in the engineering portion of this thesis.

The section starts with a short description of two di↵erent types of se-

mantic schemas. Then Frame Semantics is briefly introduced together

with its online application, i.e. the FrameNet database [Baker et al., 1998]

The section ends with a short overview of the kicktionary, a semantic

database based on the FrameNet project and on the work of Seelbach

[Seelbach, 2001] and Gross [Gross, 2002].

2.4.1 Schemas

Schemas are (mental) structures listing most important features of an as-

pect of the world. In contemporary cognitive linguistics, they are consid-
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ered crucial structures of experience and we believe they can be valuable

being used in natural language processing and reasoning. Two instances

of schemas will be described in further detail below: Executing schemas

and image schemas.

Executing Schemas

Research in language processing or robotics and AI have shown that active

models of actions and events are needed to act quickly in an uncertain

and dynamic world. To model these kinds of actions, executive schemas,

(or x-schemas) have been defined [Feldman et al., 1996, Narayanan, 1997]

that allow a system to draw inferences about actions or events quickly

as they are representations tightly coupling action, execution monitoring,

error-correction or failure recovery. To perform a simulation, it executes

an internal model of the action or event in question. In the context of

language understanding, x-schemas are mainly represented as Petri nets

[Murata, 1989] which are models of discrete, distributed systems used in

all kinds of areas of research that need modelling of e.g. business processes

or theoretical biology. Basic Petri nets are weighted, bipartite graphs

consisting of connected places containing tokens that represent a predicate

of the world and transitions. The connections are input and output arcs.

Tokens are moved from input to output places when a transition fires.

Image Schemas

Image Schemas constitute schematic recurring patterns of sensorimotor

experience [Johnson, 1987, Langacker, 1987], i.e. they enable the map-

ping of spatial onto conceptual structure. Since 1980, the notion of image

schema has been the touchstone notion of cognitive linguistics (see, for

instance, [Lako↵ and Johnson, 1980]).

Thorough investigations gave evidence for common mechanisms for ac-

tion and perception (so-called mirror neurons) in the F5 area of the hu-

man brain [Rizzolatti et al., 1996]. What can be claimed based on these



52 Chapter 2 – Theoretical Foundations

findings is that natural language understanding in humans is active sim-

ulation. Schematic knowledge, then, might provide a framework whereby

the schematic roles assigned to various values can serve as simulation pa-

rameters and help natural language systems improve their performance.

That image schemas are actually present in our speech can, for example,

be seen in their use in spatial utterances or prepositions [Kuhn, 2005].

Typically, when being depicted, a schema consists of its name and a list of

roles. Example image schemas are for instance the Containment schema,

the Near-Far schema or the Source-Path-Goal schema as depicted in

Figure 2.8.

schema SPG

trajector 

source

path 

goal 

means

Figure 2.8: The Source-Path-Goal Schema

The Source-Path-Goal is called schema SPG followed by the list of its

roles trajectory, source, path, goal and means.

2.4.2 Frames

According to standard Frame Semantic theory, frames are abstract ‘scenes’

or ‘situations’ needed for understanding the semantic structure of a word

[Fillmore, 1982, p. 115]. They are encyclopedic cognitive structuring de-

vices, parts of which are indexed by words associated with it and used in

the service of understanding [Fillmore, 1985a].

Frames are the basic building blocks of Frame Semantics [Fillmore, 1982]

and designate concepts (comparable to schemas or scripts). The structure



Section 2.4 – Frame Semantics 53

is based on Fillmore’s claim that the meaning of words should be described

against the background of connected knowledge.

Frame Semantics and Construction Grammar are complementary frame-

works of contemporary linguistics. Although their relation has already

been studied extensively [Fillmore, 1985b, Matsumoto, 1989, Fujii, 1993,

Goldberg, 1995, Petruck, 1996, Östman and Fried, 2005, Goldberg, 2006a,

Boas, 2008, Verhagen, 2009], it still lacks a precise operationalization. A

full operationalization should ideally include the integration of Frame Se-

mantics with Construction Grammar in a computational fashion, i.e. in

the form of an automatic parser/generator of sentences into and from their

frame semantic meanings.

One of the computational implementations of construction grammar, ECG,

has specifically been designed to support a frame-based semantic repre-

sentation. Section 3.2 will go into further details of this topic.

FrameNet

Within this spirit, the Berkeley FrameNet project [Baker et al., 1998] has

built an online database documenting the range of semantic and syntactic

combinatory possibilities (valences) of each word or lexical unit in each of

its senses.

The FrameNet database contains more than ten thousand English lexical

units and, more recently, similar e↵orts for several other languages such

as German, Spanish and Japanese are made. All lexical units are anno-

tated with their semantic frames based on example sentences in which the

respective frames and frame elements are marked. The corpus-oriented

approach of the FrameNet project makes that it is tightly connected to

empirical observations. It o↵ers linguists a very valuable tool for explor-

ing theoretical issues and challenges in applied linguistics that require text

understanding or production facilities and in principle, this provides the

basis for automatic information retrieval, language generation and intelli-

gent machine translation [Boas, 2002, Wilks, 2009b].27

27For more information see http://framenet.icsi.berkeley.edu/.
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The Kicktionary – a multilingual electronic dictionary containing soccer-

specific language – has been created based on FrameNet and is shortly

described in the section below.

The Kicktionary: Description and Motivation for its Usage

The Kicktionary is a multilingual online dictionary containing soccer-

specific language.28 The Kicktionary is, however, much more than an ordi-

nary electronic lexicon: It is a semantic database based on Frame Seman-

tics, using the methodology of the FrameNet project [Baker et al., 1998]

and the work of Seelbach [Seelbach, 2001] and Gross [Gross, 2002].

All in all, the dictionary contains about 1900 lexical units, which are

grouped into about 100 frames. Those frames can in turn be grouped into

sixteen di↵erent scenarios. An extensive list of all of the Kicktionary’s

frames and scenarios can be found on the website. Figure 2.9 lists the

sixteen scenarios and gives one example frame per scenario.

The reasons why this semantic database is of interest for this work can be

summarized as follows:

1. It contains the most important words, phrases, and other construc-

tions regarding soccer language in the three di↵erent languages Ger-

man, English and French (initially we are only interested in the

German subpart of the data).

2. Its structure is not like the structure of any ”regular” electronic

dictionary but it is similar to FrameNet’s structure.

How we actually make use of the Kicktionary and its particular structure in

the ontological framework that is going to be engineered, will be described

in detail in Section 4.7.

Let’s now dive into the following chapter where the decisions that were

taken are being discussed regarding:

28You can find the Kicktionary and all information related to it on its website at
http://www.kicktionary.de.
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Figure 2.9: Scenarios of the Kicktionary with example Frames.

• Grammar theory: What has been picked for the grammar engineer-

ing e↵ort described in this work?

• Components: What are the specific components of the grammar

engineering e↵ort?

• Advantages and disadvantages: What are the pros and cons of the

decision making process?





Chapter 3

Taking our Pick

This chapter presents the details on the decision-making process on which

formalism to chose as a linguistically theoretical foundation for the model

that is being built later on. It describes the motivation behind the reason

why construction grammar has been selected, starting with a detailed de-

scription of construction grammar’s current trends and detailing out the

main characteristics of Vanilla Construction Grammar.

Subsequently, it presents a detailed comparison of the two existing repre-

sentational formalisms FCG and ECG, highlighting their representational

choices with the help of a simple example. The section that follows that

comparison provides the main motivation and merits of a new formal-

ization instead of adapting or improving one of the previously presented

formalisms.

Then, the foundational ontology is described that has been chosen as the

ontological basis of the grammar model. The subsequent section describes

the LingInfo model, that we have designed to present linguistic information

of ontology classes and properties, while the chapter ends with a descrip-

tion of further modeling decisions, which are assumed as being known in

the subsequent chapters.
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3.1 Searching for the Right Grammar Frame-

work: Construction Grammar

Chapter 2 outlined the various approaches to grammars both in theoretical

and in computational linguistics. As mentioned, a constraint-based for-

malism is of advantage when dealing with natural language data. Of the

existing unification-based grammars we consider construction grammar

(see for instance [Fillmore and Kay, 1987, Langacker, 1987, Lako↵, 1987,

Goldberg, 1995, Croft, 2001, Goldberg, 2006b]) as being the right gram-

mar framework for applicable NLP systems since it comprises several ad-

vantageous features which will be detailed in this section.

Construction grammar originates from earlier insights in functional and

usage-based models of language mainly proposed by cognitive linguists

in the late 1980s (see [Lako↵, 1987, Fillmore and Kay, 1987, Talmy, 1988,

Kay, 2002]). Over the last decades, the construction grammar framework

has been gaining more and more attention. This is mostly due to the fact

that language phenomena that could not be dealt with earlier in other

grammar frameworks (as in for instance traditional generative grammar

[Pinker, 1989]) suddenly can be described in a simpler and more plausible

way.

Another reason is that the usage-based approach construction grammar of-

fers, represents a way to describe early language development in a satisfac-

tory way [Tomasello and Brooks, 1999, Tomasello, 2003, Tomasello, 2014].

The term construction grammar still does not designate a completely de-

fined lingustic theory but stands for a variety of approaches of di↵erent

flavours of a grammar framework. Still it remains unclear which of those

approaches will develop into a well defined theory or which will converge.

However, exchange and discussion of the approaches is very dynamic.

We see following three main streams in construction grammar to be dis-

tinguished (see [Fischer and Stefanowitsch, 2006]):

1. The first approach is strongly based on Frame Semantics when it
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comes to the representation of the semantic pole of a construc-

tion [Fillmore, 1982] (see Section 2.4) and is mainly represented by

works of Charles Fillmore and Paul Kay [Fillmore and Kay, 1987,

Fillmore, 1988, Kay, 1997]. Concerning syntactic aspects this ap-

proach is getting more and more similar to Pollard’s and Sag’s Head-

driven Phrase Structure Grammar (HPSG) [Pollard and Sag, 1994]

(see Section 2.2.3).

2. The second main approach has a strong cognitive linguistic bias and

is mainly advocated, amongst others, by George Lako↵ [Lako↵, 1987]

and Adele E. Goldberg [Goldberg, 1995, Goldberg, 2006b]. This ap-

proach, as well, tends to be based on Frame Semantics. However,

it additionally includes ideas of Generative Semantics [Lako↵, 1987],

Cognitive Grammar [Langacker, 1987, Langacker, 1991], Natural Se-

mantic Metalanguage [Wierzbicka, 1996], Lexical Functional Gram-

mar [Bresnan, 2001] and Conceptual Semantics [Jackendo↵, 1983].

Embodied Construction Grammar originates from this approach.

3. Croft’s Radical Construction Grammar [Croft, 2001] comprises the

third approach. It is typologically motivated. Croft basically claims

that all formal grammatical structures are language or construction-

specific and that there is no such thing as, for instance, universal

syntactic categories.

As di↵erent as they are, all of those di↵erent approaches feature exactly

one formal data type which is a so-called construction and do not employ

rules as e.g. tranformational rules. Therefore, all variations of construc-

tion grammar are non-derivational and monostratal. Monostratal means

that there is one single description level (i.e. one stratum). Furthermore,

construction grammars are not modular since constructions constrain both

form and meaning.

This work uses Vanilla Construction Grammar as its basis. In the fol-

lowing, the main characteristics of Vanilla Construction Grammar will be
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introduced, featuring all characteristics that the previously mentioned dif-

ferent constructivist approaches have in common1 [Croft, 2005] and at the

same time what distinguishes them from other grammar theories as for

instance from projection-based theories like HPSG (see Section 2.1.4) or

LFG [Bresnan, 2001].

In Vanilla Construction Grammar every level of a language, i.e. syntax,

semantics, pragmatics, discourse, morphology, phonology, and prosody,

are considered equal and can be mapped to corresponding constructions.

This fact yields one main di↵erence between the two streams called West

Coast Grammar [Langacker, 1987, Lako↵, 1987] and East Coast Gram-

mar [Chomsky, 1965, Katz, 1972], i.e. generative approaches: construc-

tion grammar o↵ers a vertical - not a horizontal - organisation of any

knowledge concerning a language’s grammar. That is, that generative

grammars split form from function: form is constituted by formal com-

ponents of the grammar as for instance syntax, morphology or a lexicon,

and the conventional function is defined by semantics. Constructions, in

contrast, can unify several of these levels as displayed in Figure 3.1.

Morphology

Syntax

Semantics

Phonology

Pragmatics
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Figure 3.1: Construction grammar’s position in a language’s grammar.
Constructions can exist on every level of a language.

In Langacker’s terms all constructions of a language form ”a structured

inventory of the speaker’s knowledge of the conventions of their languages”

1A very clear and detailed overview of the similarities and main di↵erences of the
constructivists’ theories (in German) is given in [Fischer and Stefanowitsch, 2006].
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[Langacker, 1987, p.73-76] [Goldberg, 1995, p.67]. This inventory is struc-

tured as a network, i.e. there are at least taxonomic links among the

constructions [Diessel, 2004] which represents a relevant di↵erence in con-

trast to generative grammars.

There are various definitions of the term construction. We adhere to the

one by Goldberg [Goldberg, 1995, p.4] where it is stated that

• ”C is a construction iffdef C is a form-meaning pair < Fi, Si > such

that some aspect of Fi or some aspect of Si is not strictly predictable

from C’s component parts or from other previously established con-

structions.”

The constructions’ form (Fi) contains its formal components, e.g. syntac-

tical or morphological information, while Si contains the meaning compo-

nents. Instead of e.g. Lako↵’s definition of a construction (see [Lako↵, 1987,

p.467]) the additional condition of non-compositionality of a construction

is included in Goldberg’s definition. See the example for the need of a

caused-motion construction to fully define the meaning of the example

sentence in (1).

To define constructions in simple words it can be said that constructions,

in general, are form and meaning pairings, whereby a form can be any

linguistic unit, from phonemes, morphemes to clauses, and its meaning

is represented by a conceptual schema, consistent with the definition of

schemas in cognitive semantics. There is the discussion if meaning is

the right term to describe the whole range of what this part of any con-

struction can express. Some construction grammarians preferably use the

term function instead (see also [Goldberg, 2006b, p.214]). However, Croft

[Croft, 2001, p.19] uses the term meaning but states that it is ”intended

to represent all of the conventionalized aspects of a construction’s func-

tion...”. Basically, the definition depends on the definition of meaning.

We follow Croft’s suggestion and use meaning for all possible functions of

a construction including semantic and pragmatic aspects.
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Construction grammars have originally been devised to handle actually

occurring natural language, notoriously containing non-literal, metaphor-

ical, elliptic, context-dependent or underspecified linguistic expressions.

This fact constitutes one of the major reasons why we consider it to be the

right grammar formalism for use in natural language processing systems.

There are theories that consider linguistic rules as algebraic forms which

help in combining morphemes or words, not providing the newly formed

structure with any additional meaning. Construction grammar, however,

considers every construction itself on every level of language analysis as a

meaningful linguistic symbol. Each construction presents a template for

how linguistic signs can be used during communication. To give one con-

crete more complex example, the Passive-Construction is briefly described

following Tomasello. Tomasello cites this specific construction since the

subject of a passive sentence is not the agent, which typically is the role

the subject plays, but the patient of the ongoing process [Tomasello, 2003,

p.5f.]. Therefore, it can be claimed that the meaning of a sentence is not

the meaning of its component words but of the used constructions, i.e.

again, there is no explicit separation between syntax and semantics.

This claim, that grammatical phenomena contribute to the semantics of a

sentence, as well, can be evidenced further with one of Goldberg’s famous

example sentences [Goldberg, 1995, p.29] as briefly described in Section

2.1.1 and summarized here:

(1) He sneezed the napkin o↵ the table.

The whole meaning of this sentence cannot be gathered from the distinct

meanings of the discrete words. For example, the direct object the napkin

is not postulated by the intransitive verb to sneeze. Grammar theories

adhering to the principle of lexical projection, however, would postulate a

new meaning of the verb sneeze, determining that it even needed three ar-

guments: X causes Y to move Z by sneezing. In an analog way, new

meanings for each verb used in another environment as it normally is ex-

pected in would be posited, resulting in massive verb polysemy. The con-

struction account as described by Goldberg, for instance, therefore, avoids
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implausible verb senses (as just mentioned for the example verb sneeze).

According to Goldberg the additional meaning of caused motion which is

added to the conventional meaning of the verb sneeze is o↵ered by the

respective caused-motion construction. Additionally, she states that the

argument structure of sentences, therefore, cannot be determined solely by

the verb of a sentence - as it is claimed in grammar frameworks as HPSG,

LFG or Role and Reference Grammar [Van Valin and LaPolla, 1997] but

is determined by higher-level constructions.

A case study illustrating a field topology approach within the context of

Fluid Construction Grammar focuses in particular on the double object

construction in ditransitive sentences. The completely operational solu-

tion shows, how, for instance, German constituent ordering determines

information structure of a sentence [Micelli, 2012].

The third characteristic that Croft states as being one of vanilla con-

struction grammar2 is that syntactic constructions are di↵erent to their

schematicity in contrast to being, for instance, substantive, specific or lex-

ical. ”A more schematic construction describes a complex structure [...]”

[Croft, 2005, p.2]. This complex structure is a construction in which other

constructions are combined into one unit, as, for example, the caused-

motion construction mentioned by Goldberg or the transitive argument

linking construction, which is ”a maximally schematic syntactic unit”

[Croft, 2005, p.2].

What follows is that individual constructions can di↵er along three dimen-

sions [Langacker, 2003] which are sketched out below:

• Generality: describes the extent to which the constructional

schema is schematic rather than specific, e.g. highly specific con-

structions are lexical expression as found, for example, in early child

language or idioms.

• Productivity: describes the extent to which a constructional schema

2Vanilla as in the sense of something without any additional and optional extras,
i.e. something basic, the simplest version of something. See also https://www.merriam-
webster.com/dictionary/vanilla.
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is accessible for sanctioning new instances, e.g. so-called extensions

via analogy or reanalyses.

• Compositionality: describes the extent to which the meaning and

form of the whole are predictable from those of its parts in accor-

dance with corresponding sanctioning schemas.

Especially in the light of language variation and change - and, therefore,

robust and scalable natural language understanding - it is important to

note that constructions can change their location over time or text in this

three dimensional space in any direction.

A nice natural language example is the phrase be going to. The phrase

changed through the process of reanalysis from a purposive directional

construction with a non-finite complement as, e.g., in Jane is going to

marry Bill to the auxiliary be going to which involves then the change

of aspect from progressive to future, since there already is an inference

of futurity from purposives [Hopper and Traugott, 2003]. The be going

to construction is nowadays more general than it has been before the

reanalysis process.

The following section compares the two existing computational construc-

tion grammar frameworks FCG and ECG with the help of a simple ex-

ample phrase, thereby highlighting their main features, similarities and

di↵erences.

3.2 Comparing Ecg and Fcg: A Case Study

This section compares the two computational frameworks Fluid Con-

struction Grammar (fcg) (see, among others, [Steels, 2005, Steels, 2011,

Steels, 2012]) and Embodied Construction Grammar (ecg) (see among

others [Chang et al., 2002, Bergen and Chang, 2005, Chang, 2008]).3 Both

of these representational formalisms are quite similar in terms of their ex-

pressive capabilities and basic operators and are rooted in the construction

3Parts of this section have been published by the author et al. here
[Chang et al., 2012].
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grammar tradition, sharing basic assumptions about the nature of linguis-

tic units and the crucial role played by contextual factors. Nonetheless,

they have arisen from di↵erent perspectives and with di↵erent goals: fcg

was designed to support computational language game experiments that

address the evolution of communication in populations of (robotic) agents,

as well as for modeling language change and can be employed both for lan-

guage understanding and generation, while the main focus of ecg has been

on language understanding and supporting cognitive modeling of human

language acquisition and use, with a focus on natural language interpre-

tation and not generation.

Each formalism is also the centrepiece of a broader scientific framework

tackling the fundamental issues above, albeit from di↵erent perspectives

and with di↵erent goals. While these endeavors are theoretically com-

patible, they nonetheless have somewhat di↵erent orientations that have

in turn given rise to some di↵erences in their respective formalizations.

Some of these di↵erences may be described as superficial notational vari-

ations in formal devices, while others reflect more substantial divergences

in emphasis, implementation or interpretation. It will be presented how

these di↵ering emphases motivated di↵erent design choices in the two for-

malisms and illustrate the linguistic and computational consequences of

these choices through a small case study. Results of this comparison may

sharpen issues relevant to computational construction grammar in gen-

eral and may hold lessons for broader computational investigations into

linguistic phenomena. They also might o↵er open research issues support-

ing the modeling project that will be presented in Chapter 4. Section 3.3

addresses the motivation and merits of a new representational formalism

of construction grammar in detail.

Shared theoretical and methodological commitments Before turn-

ing to the case study, some basic theoretical commitments shared by

the two research frameworks under consideration are briefly summarized.

Broadly speaking, both are identified with constructional, cognitive and

usage-based approaches to language. Constructions are taken to be the
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basic units of language, and meanings correspond to particular ways of

conceptualizing or construing a situation. Language is also assumed to

be inherently embodied, grounded and communicative: language users

have sensorimotor capacities that shape their conceptual categories, and

they are grounded in particular environments with specific communicative

goals.

Most relevantly, both formalisms were designed to support working sys-

tems that actually instantiate structures and processes that are elsewhere

typically described only discursively. This commitment to supporting lan-

guage use means that it is not su�cient merely to represent linguistic

knowledge in formal notation; rather, the processes that interact with that

knowledge must also be specified, and considerations related to processing

(e.g., search space, storage, e�ciency) must guide representational choices

at the level of both individual constructions and the formal notation itself.

Linguistic representations in both frameworks are also assumed to interact

closely with structures in other domains, including in particular embod-

ied, situational and world knowledge. The two frameworks di↵er in the

details of how such interactions are modeled, and even in how terms like

embodiment are used. This will be briefly discussed in the paragraph

below.

For the purposes of this section, however, we mainly focus on the specif-

ically linguistic knowledge expressed by the two grammatical formalisms

and their mechanisms of use. Both frameworks take these to be con-

ceptually distinguishable from the details of sensorimotor representations;

world (ontological) knowledge; general mechanisms of inference and belief

update; and specific mechanisms of contextual grounding and reference

resolution. We will also refrain from addressing in detail how language

learning is modeled in each framework, though we will highlight some

connections to these topics where relevant.

Embodiment The term embodiment describes the interaction of the

body and the mind. During the 1980s mainly Rodney Brooks (see e.g.

[Brooks, 1991]) brought the embodiment theory into the research area of
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Artificial Intelligence. Questions were raised as, for example, if simple

movements could influence decision-making and studies were conducted

that confirmed that assumption. Especially in Cognitive Science the em-

phasis on the body increased.

Nuñez defines full embodiment as ”an embodied-oriented approach that

has an explicit commitment to all of cognition, not just to low-level aspects

of cognition such as sensory-motor activity or locomotion (lower levels

of commitment)” [Nunez, 1999, p.42]. Dourish [Dourish, 2001] discusses

embodied interaction – rejecting the strict separation between body and

mind4 – a novel approach to the design of user interfaces and interactive

experiences of computation where, for instance, user interfaces are moved

into the real world and become tangible.

In this work, we follow his definition – similar to ECG’s and FCG’s under-

standing of embodiment – and belief that language is inherently embodied,

situated and communicative: language users have sensorimotor capacities

that shape their conceptual categories, and they are grounded in particular

environments with specific communicative goals. Both formalisms are un-

derstood to provide a narrow interface to richer embodied representations

and ontological world knowledge.

Acquisition One of the stronger beliefs of any constructivist approach

concerning language acquisition is that language emerges through the

speaker’s both physical and social experience. Furthermore, it addition-

ally develops through language contact. This is what is meant when it

is stated that construction grammar is a usage-based model of grammar.

The dynamic character of constructions and schemas and also their dif-

ferent levels of abstraction resemble that feature in both formalisms.

4(Mind-body dualism as discussed in early philosophy and strongly defended by
René Descartes.
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3.2.1 Informal Example Constructional Analysis

The German nominal phrase ”der Fußballspieler” (engl. the soccer player)

will serve as an example phrase which will be informally analyzed in the

following. A traditional analysis might identify a determiner (der; engl.

the), a noun (Fußballspieler, engl. soccer player) and a noun phrase (NP)

which combines the determiner and the noun in their appropriate order.

For a construction-based approach, it is crucial to consider the utterance’s

meaning as well: a speaker uttering “der Fußballspieler” is engaging in an

act of reference, picking out an individual soccer player uniquely identifi-

able to the hearer in the current discourse context.

A straightforward constructional analysis might have the structure shown

in Figure 3.2, with three constructions:

• Der: The word form der constrains the referent to be uniquely

identifiable to the hearer in context; other determiners may restrict

features like number (einige Fußballspieler, engl. some soccer play-

ers) or case (des Fußballspielers, engl. of the soccer player).

• SoccerPlayer: The word form Fußballspieler constrains the refer-

ent’s ontological category to a soccer player and its grammatical case

to not be genitive in singular; other nouns might specify a di↵erent

case (Fußballspielers) or otherwise constrain qualities of the referent

(for instance, semantic role, gender, animacy, or countability).

• DeterminedNP: This phrasal construction has two constituents,

corresponding to the two constructions above. It imposes a word

order constraint (der must precede Fußballspieler), and its mean-

ing is a referent in context—in fact the same referent constrained

by the two constituents. Here, the relevant constraints do not con-

flict; in general, such compatibility or agreement in features must be

enforced between determiners and nouns (hence, e.g., *der Fußball-

spielers).

The constructions in the middle of Figure 3.2 reflect the phrase’s con-

stituent structure, mirroring that of a traditional syntactic parse tree
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DeterminedNP

FORM MEANING

Fußballspieler

der

Referent
ont-category
quantity
givenness

soccer player
1
uniquely-
identifiable

Referent
givenness uniquely-

identifiable

Referent
ont-category
quantity

soccer player
1

DER

FUSSBALLSPIELER

Figure 3.2: Graphical depiction of an informal analysis of an example
noun phrase. Constructions (in the center) link the domains of form (left)
and meaning (right). Each of the constructions shown here (the Deter-
minedNP construction and its two constituents, the Der and Fußball-
spieler constructions) contributes to and constrains the particular refer-
ent specified by the phrase.

(based on a phrase structure analysis). However, since these are not just

syntactic symbols but constructions, each construction also has a link

(shown by horizontal bars) to form (on the left) and meaning (on the

right). The form domain contains the relevant word forms, where the

dotted arrow indicates the time line (and therefore word order).

The meaning domain contains several structures labeled Referent, each

listing features constrained to particular values (where ont-category is an

abbreviation for ontological category). Essentially, this structure summa-

rizes any information that is important for determining the actual referent

of an expression in the current context. The double-headed arrows be-

tween the Referents indicate that their values are shared (with values that
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originate non-locally, i.e. through such a binding, shown in italics). The

dashed border of the two Referent structures contributed by the lexical

constructions indicates a slightly di↵erent relationship than that between

theDeterminedNP construction and its Referent; we return to this point

below.

As should be apparent, even a noun phrase as simple as der Fußballspieler

involves many representational choices, with reasonable alternatives vary-

ing in both the complexity of the structures defined and the generality of

the phenomena they account for. Our goal here is not to argue for the

particular analysis adopted here as the best or most general one possible;

rather, we focus on the basic representational toolkit involved for express-

ing a variety of concepts and relations and compare those available in the

ecg and fcg formalisms.

3.2.2 Formalizing Constructions

Constructions both in ecg and in fcg are – following traditional construc-

tion grammar approaches – (mostly) composed of a form and the meaning

pole. We say “mostly”, as in fcg it is possible to have purely syntactic or

purely semantic constructions. To explain those specific constructions is,

however, beyond the scope of this work and we refer to the fcg literature

for an explanation. The form pole in both notational frameworks can be

constituted by any linguistic symbol, be it a morpheme, a lexeme or a

whole phrase and the meaning pole can be assigned to the construction’s

function.

3.2.3 Lexical Constructions

The class of lexical constructions contains all linguistic units that have a

separate entry in a dictionary, i.e. so-called headwords. It also includes

idioms as, for instance, to kick the bucket or compounds as the example

lexical item Fußballspieler. Both example constructions for Fußballspieler

are shown in Figure 3.3. On the left hand side, the construction is shown

in fcg and on the right hand side in ecg notation, respectively.
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(def-cxn SoccerPlayer () 
    ((?top 
        (TAG ?meaning
                 (meaning (== (find-entity?ref [SoccerPlayer]))))) 
    ((J ?SoccerPlayer-unit ?top)
        ?meaning
        (sem-cat ((ReferentDescriptor ?ref) 
                        (ont-category ?ref [SoccerPlayer]) 
                        (quantity ?ref 1))))) 
<--> 
    ((?top
        (TAG ?form
                 (form (== (orth ?word “Fußballspieler))))) 
    ((J ?SoccerPlayer-unit ?top) 
      ?form
      (syn-cat ((word ?word) 
                     (lex-cat ?word noun) 
                     (number ?word singular)))))) 

construction SoccerPlayerCxn 
    subcase of Noun
    constructional
        self.number ← singular 
    form : Word
        self.f.orth ← “Fußballspieler” 
    meaning
        evokes ReferentDescriptor as ref
        ref.ont-category ← @soccerplayer

ref.quantity ← 1

Figure 3.3: The lexical construction for the German term Fußballspieler
(soccer player in English) both in fcg (left) and ecg (right) notation.

Both structures capture a relatively straightforward pairing of form (the

orthographic string “Fußballspieler”) and meaning (the soccer player on-

tological category associated with a referent, whose quantity is addition-

ally specified as 1). They also include grammatical information (i.e., that

Fußballspieler is a singular noun), though they di↵er in precisely how this

information is expressed.

A few di↵erences in basic format are apparent even at first glance. Roughly

speaking, the format of fcg reflects the influence of the LISP program-

ming language: internal structure is indicated with parenthesized lists em-

ploying prefix-list notation, and variable names are marked with a leading

question mark. In contrast, the format of ecg reflects the influence of con-

straint programming languages and inheritance-based ontologies: special

keywords (in boldface) are used to indicate internal structure and express

inheritance relations and other constraints, and dotted slot chains are used

to refer to non-local structures. In a nutshell, on the surface, fcg looks

more like a program, and ecg more closely resembles a data structure.

The sections below take a closer look at the two constructions in 3.3. To

ease comparison, we focus on how each construction captures the informal
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linguistic analysis described in the previous section.

Nominal Constructions in Fcg: The Fcg structure in Figure 3.3

makes use of the basic fcg def-cxn predicate for defining constructions.5

which consists of two main sections (or poles) separated by a double-

headed arrow (<–>), corresponding to the meaning (or semantic) and

form (or syntactic) domains. Each of these poles includes two units, one

named ?top and one named ?SoccerPlayer-unit (where the leading ques-

tion mark indicates that these are variable names); this latter unit is a

J-unit (as indicated by the operator J). Regular units (i.e., non-J-units,

in this case labeled ?top) and J-units together specify the constraints and

categorizations relevant to each domain, though they di↵er in the kinds

of information they typically contain. Broadly speaking, constraints in

regular units of lexical constructions tend to be based on perceptual or

cognitive categorizations, while those in the J-units correspond instead

to specifically linguistic features and categorizations, typically expressed

using semantic and syntactic categories (specified in sem-cat and syn-cat

lists, respectively).6

Concretely, then, the definition organizes the various elements of the in-

formal analysis in terms of which domain they belong with (meaning or

form) and whether they are specifically linguistic. In the meaning do-

main, the variable ?ref (corresponding to the Referent structure connected

to the word Fußballspieler in the informal analysis) plays a central role:

the ?top-unit specifies that ?ref is of ontological category [SoccerPlayer]

(where square brackets denote reference to an ontology item). In the J-

unit, the predicates in the sem-cat list specify additional constraints on

?ref, namely that it can also be categorized as a ReferentDescriptor and

5Please note that the notation described in this comparison uses a dated ver-
sion of FCG notation. Current grammars are written in an adapted syntax. For
more information we refer to [Van Eecke, 2018] and the Babel wiki: https://emergent-
languages.org/wiki/docs/recipes/fcg/syntax-and-semantics/.

6Regular units and J-units also behave di↵erently during language processing. We
refer the interested reader to Section 6.1 in [Chang et al., 2012] where the special role
of the J- operator and other notations (such as the TAG operator) during language
processing is discussed in more detail.
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that its quantity is 1. As in the ecg description above, the Referent-

Descriptor is intended to bundle all constraints on a referent imposed by

various constructions, corresponding to the information shown in the Ref-

erent structures in the informal analysis.7

In the form domain below <–>, the analogous central variable is ?word;

the ?top-unit includes the constraint (orth ?word “Fußballspieler”), which

specifies the orthographic form of ?word, while the constraints listed in the

J-unit’s syn-cat feature express its additional syntactic categorizations: as

a word whose lexical category is noun and whose number value is singular.

Nominal Constructions in ecg: We now turn to the right side of 3.3,

which shows a simple ecg construction for Fußballspieler. The high-level

structure of the construction includes three blocks, where keywords (shown

in boldface) indicate special terms and structures. The constructional

block contains information relevant to the construction as a whole, while

the form and meaning blocks (or poles) contain information relevant to

each of those domains. These poles are themselves structured, and can be

referenced and constrained within the construction. The self keyword al-

lows self-reference (i.e., reference to the construction being defined), while

the special names self.f and self.m refer to the construction’s form and

meaning poles, respectively.

The SoccerPlayerCxn construction is defined as a subcase, that is a

more specific instance, of the Noun construction. In fact, ecg construc-

tions are all defined in a multiple inheritance lattice, and a separate lattice

defines represent schematic form and meaning categories, or schemas.

Accessible structures can be constrained to instantiate particular schema

categories.

Each block contains various constraints that apply to the relevant domain,

drawn from a fixed set of possibilities. We highlight a few of the notations

that express these constraints:

• The constraint that the form of any construction should be of a cer-

7The term’s name is chosen to avoid confusion with the actual referent, i.e., a
concrete entity in context that satisfies those constraints.
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tain type is expressed with the help of the : operator. This operator

enables the assignment of a special type of schema or construction

to a certain role. For instance, the schema Word is assigned to

the form pole of all lexical constructions. The only role the schema

Word lists is the orth role. The orthographic form of the lexeme,

idiom or compound in quotation marks is assigned to it with the

help of the assignment operator  . This operator assigns atomic

values to specific roles. In this example, the string ”Fußballspieler”

is assigned to the orth role of the SoccerPlayerCxn.

• Category constraints are indicated with a colon (i.e., the form pole

must be a Word), and role-filler constraints of the form x  y

indicate that role (or feature) x is filled by the (atomic) value y (i.e,

the form pole is associated with the orthographic string shown).

• The evokes ReferentDescriptor as ref declaration indicates that

there is an instance of category ReferentDescriptor present, ac-

cessible using its local name ref. Subsequent constraints specify

that its feature ont-category be filled by @soccerPlayer and its

quantity set to 1. (Like the square brackets in the fcg definition,

the @ symbol indicates reference to an external conceptual ontology.)

In short, the construction indicates that the SoccerPlayerCxn is a

kind of Noun; asserts constraints on the constructional (or grammati-

cal) number feature and the particular orthographic form; and evokes a

ReferentDescriptor of a specified ontological category and quantity.

Determiners in Ecg and Fcg: Basic lexical constructions for deter-

miners constrain a referent, just like the earlier presented SoccerPlay-

erCxn construction, but instead of specifying its ontological category,

they typically constrain features like number, gender and proximity, and,

as they do in German, case. As a detailed description of the modeling of

determiners both in ecg and fcg would go beyond the scope of this work,

we refer to related literature: For an fcg approach to determination in



Section 3.2 – Comparing ECG and FCG 75

German see [van Trijp, 2012], for an example how ecg could possibly deal

with determination in German please see [Micelli, 2004].

3.2.4 A First Comparison

Given the shared theoretical and methodological commitments mentioned

in the previous paragraph, is not entirely surprising, that the two for-

malisms have much in common: each represents the basic forms and

meanings involved, as well as additional grammatical information asso-

ciated with reference, as expressed by common nouns and determiners.

But these examples also exhibit some striking di↵erences. Perhaps the

most important distinction between the formalisms is the treatment of

categories and inheritance. ecg structures are all defined within inheri-

tance lattices specifying constructional and other relationships. Many ecg

notations thus allow reference to other existing structures, for example to

inherit features and values, or to assert values or bindings on connected

structures. fcg constructions, on the other hand, rely on category lists

associated with each domains; each construction is thus relatively stand-

alone, and defined independently of other structures that may contain

similar information. In the sections below, we discuss several representa-

tional consequences of this fundamental di↵erence.

Inheritance and Categorization

Categories play a prominent role in most linguistic theories: they cap-

ture generalizations about shared structure and behavior across di↵erent

linguistic units. Part of speech categories, semantic (or thematic) roles,

lexical subcategorization types, speech act types, and phonological cate-

gories are all well-established ways of carving up various linguistic domains

into groups exhibiting similar properties. Both ecg and fcg allow such

categories to be expressed, but they di↵er in the approaches taken, as well

as the degree to which the relationships among categories is made explicit.

The ecg approach to categories is based on inheritance networks, where

shared properties are expressed at the highest level of generalization pos-
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sible and inherited by subsidiary categories and instances. That is, ecg

constructions are defined (using the subcase of relation) within a multi-

ple inheritance hierarchy. Structures and constraints defined in any base

(or parent) constructions are inherited by and accessible to their subcases,

and thus need not be explicitly specified. The subcase can impose addi-

tional constraints, or refine existing constraints.

Categories are a fundamental notion in fcg, expressed as predicates in

the sem-cat and syn-cat lists. Constructions that have such predicates

in common implicitly form a category. Inheritance networks have not yet

been much explored in fcg: there is no explicit notion of inheritance for

constructions, meaning or form components, or semantic and syntactic

categories. A few developments, however – such as the use of templates

[Steels, 2011] and distinctive feature matrices [van Trijp, 2011] – can be

seen as moving in this direction. Templates, for example, provide a means

of capturing similarities across constructions, allowing a more concise, uni-

form declaration of constructions. Note, however, that templates currently

serve mainly as an abbreviation: they do not specify inheritance relation-

ships. That is, there is no mechanism for allowing one construction to

refer to or inherit from another, and more general lexical categories like

Noun are not themselves defined as structures that can inherit features.

Of course, the use of templates in fcg is relatively recent and their pre-

cise form is still under development. Thus it may be possible to extend

the template approach to exploit the benefits of inheritance and type hi-

erarchies. These benefits become especially important as grammars grow

larger: keeping track of the various dependencies between constructions

for any non-trivial language phenomenon is a tedious undertaking. Adopt-

ing approaches based on inheritance would enable more concise grammars

that reduce errors.

Form and Meaning Representations

The lexical examples we have seen also illustrate di↵erent approaches to

representing the domains of form and meaning. Organizationally, fcg
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distinguishes specifically linguistic categorizations (as listed in sem-cat

and syn-cat) from the concrete forms and meanings taken to be based on

perceptual or cognitive categorizations (associated with the meaning and

form parameters. ecg constructions do not explicitly represent this dif-

ference in the notation itself (except for the use of @ to denote ontological

categories). A more important di↵erence lies in how these categories are

represented. As noted before, all categorizations (linguistically specific or

not) in fcg are expressed in predicate-argument format, and are indepen-

dently defined as part of each relevant construction. The particular style

of semantic representation can vary; though the examples shown in this

section have a declarative flavor (following the informal analysis presented

before), other studies show how it is also possible to adopt procedural se-

mantics [Spranger and Loetzsch, 2011] or frame semantics.

Ecg, by contrast, was designed specifically to support frame-based seman-

tic representations; it thus includes as part of the formalism notational

tools for defining schematic structures, called embodied schemas or just

schemas. Those schemas represent the needed dynamic and inferential

semantics in ecg. They are schematic, role-based conceptual and seman-

tic structures and describe an embodied, parameter-based representation

of language. Special semantic expressiveness is achieved with the help of

various semantic operators (as for instance the evokes operator). The

evokes operator has parallels in Frame Semantics [Fillmore, 1982] and

Cognitive Grammar [Langacker, 1987]. It presents one of the main di↵er-

ences between ecg and other unification-based grammars. This operator

allows that some roles which are essential for the understanding process

can be imported, which means they are made accessible for that specific

construction or schema. Langacker uses the notions of profile and base to

explain this notion, whereby base describes the background which exactly

contains or evokes the cognitive domains that are necessary in order to

completely understand the meaning of a word, phrase or sentence. The

profile can only exist in relation to the base [Langacker, 1987, p.183↵.].

Langacker’s hypotenuse example can elucidate the relation between the

two notions and is depicted in Figure 3.4:
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a) b) c) 

Figure 3.4: Langacker’s hypotenuse example (see [Langacker, 1987,
p.183↵.]).

A hypotenuse only exists while having the picture of a complete right-

angled triangle in mind. In Figure 3.4 a) you see the base connected with

the profile. Figure 3.4 b) shows the isolated base. If you do not consider the

hypotenuse within the domain of a right triangle, it loses its meaning and

displays an ordinary straight line. The display of the isolated hypotenuse

can be seen in Figure 3.4 c).

They are again defined within an inheritance lattice. ecg schemas re-

semble depictions of semantic frames and image schemas in the literature,

and are similarly used to bring together a set of associated and interde-

fined roles or features comprising a complex concept. The roles defined in

a schema can be referred to and constrained by other schemas and con-

structions. Hence, both lexical constructions assert form constraints on

the orth role of the Word schema, as well as meaning constraints on

the roles of the ReferentDescriptor.

As with constructions, we see that ecg emphasizes the interdefined nature

of constructions and their associated forms and meanings. Separately de-

fined schemas capture various linguistic generalizations and expectations,

allowing brevity in definitions and enforcing some consistency across con-

structions. fcg constructions, meanwhile, each independently define their

relevant predicates, which are therefore less constrained. This tradeo↵ –

between explicit representation of generalizations on the one hand, and

freedom of expression on the other – will manifest itself in several other

ways to be discussed.
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Constructional Features and Grammatical Categories

The two formalisms di↵er, finally, in how certain kinds of grammatical

information are treated. Specifically, while all categories and constraints

in fcg must be in either the meaning or form pole, ecg allows some

information to be expressed in the constructional lattice:

• Constructional inheritance: Lexical and grammatical categories (like

noun and verb) can themselves be represented as constructions and

associated with specific roles and values. Thus, the SoccerPlay-

erCxn construction can be defined as a subcase of the Noun con-

struction, inheriting relevant properties it may share with other

nouns.

• Constructional features: The constructional domain itself can be

defined as having particular features, often inherited from ancestral

types. It is, for instance, possible, to define schemas in the construc-

tional domain that list various grammatical features like for instance

agreement features. These are not strictly about either the form or

meaning domain; rather, they are associated with the constructional

connection between the two.

In both cases above, the equivalent information can be expressed in fcg

but must be explicitly included in every constructional definition. In each

formalism, it remains largely at the discretion of the grammar writer how

to decide precisely which features ought to be defined and what domain

they belong in.

3.2.5 Compositional Constructions

Compositional constructions are constructions which are on a higher level

of abstraction than lexical ones. This means, that constructions exist

which combine di↵erent, smaller constructions into one bigger unit, i.e.

into a compositional construction. Hereby, those grammatical construc-

tions exhibit hierarchical constituent structure, which is one of their defin-

ing feature. Like lexical constructions, such constructions can impose
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constraints in both the form and meaning domains, such as word order

(form) or role-filler bindings (meaning). They may also enforce compati-

bilities, or agreement, across constituents. Both ecg and fcg have ways

of introducing constituents, specifying relational constraints and enforc-

ing agreement. The DetNoun construction will serve as an example. It

combines a determiner and a noun into a larger phrasal unit.

Determined NPs in Ecg The DetNoun construction in Figure 3.5

shows an example of how a determined NP with constituent structure

might be defined in ecg. The intuition behind the analysis is that such

phrases draw on both determiners and nouns to provide crucial informa-

tion for constraining an act of reference, resulting in a single larger unit

(as in the informal analysis from before).

Again, the subcase of operator is used to mark inheritance. A construc-

tion can inherit form and meaning information from other constructions.

That means, that roles of the higher constructions they inherit from are

accessible and can be modified locally. The DetNoun construction com-

bines a determiner construction and a noun construction into one unit,

i.e. into a so-called referring expression. That means that the resulting

unit is a subcase of the RefExpr construction– which is the class of

constructions describing referring expressions. Referring expressions in-

clude for instance pronouns, entities or proper names, i.e. every kind of

construction that could be used for making reference to some object.

Phrasal constructions, as well as lexical ones, consist of a form and a

meaning pole. In addition, they have a so-called constructional block, in

which several constructional constituents, here one constituent of type

determiner and one of type a common noun, and additional constraints

are specified. The determiner and the noun are given local names, here d

and c respectively, that allow simple access to their respective form and

meaning poles within this construction.

In the constructional block, agreement between the determiner and the

respective noun can be checked. This is done with the help of the$ oper-

ator - the so-called identification operator (see [Bergen and Chang, 2005]).
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This operator constrains that the fillers of the two roles - here, for instance,

the determiner’s grammatical gender (d.gender) and the grammatical gen-

der of the noun (c.gender) - are identical. In this example construction,

agreement is between gender and number of both the Determiner and

the CommonNoun construction. The DetNoun would not fire if gen-

der and number of the determiner and the noun would not match, i.e. if

the roles gender and number of both constructions were not filled with

identical values.8

As previously mentioned, the self keyword allows self-reference of the

construction itself. Therefore, what happened here is that the case of the

unit built by this construction is identical to the case of the determiner

that is included in the larger unit. In the example grammar built for this

work, we decided to encode case in determiner constructions and not in

noun constructions. Similarly, the value of the number feature of the noun

construction is shared by the resulting referring expression.

Turning to the form domain of the construction, the form poles of the two

constituents are specified as coming in a particular order: the form of the

determiner has to come before the form of the noun. The two components

of this construction do not immediately have to follow each other. Instead,

modifiers like for instance one or several adjectives are allowed in between

them.9

In the meaning pole of the DetNoun construction it is determined, that

the meaning of the common noun (referred to as c.m in Figure 3.5), used

in this respective construction, is assigned to the meaning of the resulting

compositional construction (see self.m $ c.m ).

The needed dynamic and inferential semantics in ecg - what fills the so-

8In spoken language, and especially in dialects, sometimes the gender of nouns di-
verges from the standard (e.g. German: die Butter (engl. the butter, gender: female),
Swabian der Butter (gender: male). This fuzziness is not accounted for in the gram-
mar description. However, this could be learnt and either be stored in the grammar
itself (e.g. that Butter can either be female or male) or the parser could allow both
combinations.

9This understanding of before corresponds to Allen’s definition of his interval rela-
tions [Allen, 1983] and states that the determiner construction has to be in front of the
noun construction. The meets operator, however, forces constituents to follow each
other immediately, i.e. no modifiers are allowed in between the two constituents.
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Construction DetNoun

subcase of RefExp

constructional

  d:Determiner

  c:CommonNoun

  self.case        

  self.number   

    d.gender        

  d.number     

form:

  d.f      before     c.f

meaning: 

  self.m           <-->    c.m

d.case

c.number

c.gender

c.number

<-->

<-->

<-->

<-->

Figure 3.5: The DetNoun construction: A compositional construction
for the resulting referring expression combined of a determiner and a com-
mon noun in ecg notation.

called meaning pole - is represented by embodied schemas. More detailed

information on the di↵erent schemas and their usage in ecg is given in

a later paragraph. Before we turn to an example how determined NPs

might be realized in fcg.

Determined NPs in Fcg Grammatical constructions express constraints

on aspects of syntactic and semantic structure that link their meanings

into a larger whole. Figure 3.6 shows how a determined NP construction

for German might be realized in fcg notation. Similarly to the infor-

mal analysis described above and to the DetNPCxn in ecg, it combines

smaller units (a determiner and a noun) into one single larger unit. It is



Section 3.2 – Comparing ECG and FCG 83

a coupled feature structure that consists of the two poles: the meaning

(part above the double-headed arrow of the construction) and the form

pole (part below the double-headed arrow of the construction).10

In the meaning pole, the two units that will be combined are semantically

constrained. Di↵erent feature-value pairs constrain, for instance, that

both the referent of the determiner (called ?determiner-unit) and the

referent of the noun (called ?entity-unit) will be identical: Note that

the construction uses the same logic variable (?e) for the referent the

determiner is referring to and the referent the noun is referring to, to

ensure that they are the same.

The new unit being built after the construction has found appropriate

units to combine into a determined NP will as well refer to that referent

and will get further semantic categories:

(determined +) ;; it will be determined

(definite +) ;; it will be a definite NP

(indefinite -) ;; it won’t be an indefinite NP

referent ;; it is a referent, that other higher-level

constructions can refer to

Turning to the form pole of the construction, similarly, both the deter-

miner and the noun are constrained, however, in their grammatical fea-

tures like gender, case or number (to name just a few). Additionally, word

order is constrained with the help of the meets operator (or keyword),

analogous to how word order is handled in ecg.

Comparing Grammatical Constructions The two approaches to rep-

resenting complex constructions demonstrated in the preceding sections

are both capable of expressing constituency, word order and agreement.

They di↵er, however, in several key respects.

10As ecg is only used in parsing, fcg examples that talk about application of fcg
constructions will focus as well only on parsing. However, please note that all con-
structions that are shown here, were tested for both parsing and production and work
perfectly well in both directions.
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(def-phrasal determined-noun-phrase ()
         ((?top (sem-subunits (== ?determiner-unit ?entity-unit))
                (footprint (==0 determined-noun-phrase-entry)))
          (?determiner-unit 
           (referent ?e)
           (sem-cat (==1 (definite ?def)
                         (indefinite ?indef))))
          (?entity-unit 
           (referent ?e)
           (sem-cat (==1 entity)))
          ((J ?np-unit ?top (?determiner-unit ?entity-unit))
           (referent ?e)
           (sem-cat (==1 (determined +)
                         (definite ?def)
                         (indefinite ?indef)
                         referent)) ;; referent-feature is added to meaning of entity unit
           (footprint (== determined-noun-phrase-entry)))) 
         <-->
         ((?top (syn-subunits (== ?determiner-unit ?entity-unit))
                (TAG ?form
                     (form (== (meets ?determiner-unit ?entity-unit))))
                (footprint (==0 determined-noun-phrase-entry)))
          (?determiner-unit
           (syn-cat (==1 (pos determiner)
                         (number (== ?number)) ;; aggreement checks
                         (gender ?gender)
                         (case ?case)
                         (definite ?def)
                         (indefinite ?indef))))
          (?entity-unit 
           (syn-cat (==1 (number (== ?number)) ;; aggreement checks
                         (gender ?gender)
                         (case ?case)
                         (function nominal))))
          ((J ?np-unit ?top (?determiner-unit ?entity-unit))
           ?form
           (syn-cat (==1 (pos (== ref-expression))
                         (case ?case)
                         (number (== ?number))
                         (gender ?gender)
                         (determined +)
                         (definite ?def)
                         (indefinite ?indef)))
           (footprint (== determined-noun-phrase-entry)))))

Figure 3.6: The DetNoun construction: A compositional construction
for the resulting referring expression combined of a determiner and a com-
mon noun in fcg notation.

First, as elsewhere, the ecg formalism avails itself of type lattices for

both constructions and schemas. Thus, various constraints require that

relevant features are defined and accessible for a given structure (i.e., a
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slot chain like det.number implies that det is defined as having inherited

a number role). This stands in sharp contrast with fcg, which does not

require typing of this kind: previously unspecified features are added dur-

ing processing if not already defined, and only if it is explicitly indicated

that this should be the case. The less type-constrained approach of fcg

may be seen as a double-edged sword: while it leaves more freedom of

choice, it also requires that the grammar writer maintain the soundness of

his or her grammars and ensure that the relevant semantic and syntactic

categories of constituent units are percolated properly to newly created

units. For instance, although the ?DeterminedNP in the DeterminedNP

construction unit is specified as an instance of the ReferentDescrip-

tor schema, neither its givenness or ont-category values are specified.

These could be inferred from its constituents, and the template could per-

haps be changed to do this automatically, but again, doing so would be far

from trivial. In contrast, ecg makes some structural assumptions that al-

low certain constraints to be succinctly stated, though possibly at the cost

of flexibility. Thus the identification of the various ReferentDescriptors

allows all their roles to be bound with one constraint, both across con-

stituents and with the overall resulting construction. Second, the two

formalisms allow somewhat di↵erent options with respect to how particu-

lar kinds of features are expressed. As noted earlier, grammatical features

and categories are typically expressed in the constructional domain in ecg

(though as demonstrated above, agreement can also be enforced just in the

form or meaning domain). As with the lexical constructions, fcg tends

to express such grammatical information by including it as a syntactic

category. This di↵erence may not ultimately a↵ect expressive power, but

it does reflect di↵erent theoretical views of particular linguistic concepts.

We refrain in this section from going into detail of how processing is han-

dled in both formalisms and refer the interested reader to read the com-

plete paper by the author et al. [Chang et al., 2012], where a comparison

of the two di↵erent models is elaborated in further detail.

The above presented comparison shows that it is a highly complex un-

dertaking to compare two di↵erent computational models that are on the
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one hand two computational models of “the same” grammar model, which

are, however, used in two completely di↵erent systems, being designed for

completely di↵erent reasons, by completely di↵erent people in again dif-

ferent contexts, thus, being completely di↵erent in many of their design

choices. This challenge and finding also undermines why an evaluation of

a grammar formalism is highly complex and can in our eyes almost never

be holistic and comparable.

The following section draws on what we have learnt so far from the compar-

ison of the two existing computational construction grammar frameworks

and tries to motivate why it might be of value to investigate other ways

of representing construction grammar’s core notions.

3.3 Main Motivation for and Merits of a

New Formalization

Besides the fact that we believe that statistical natural language process-

ing systems have reached a point where only small further improvements

can be made and we advocate symbolic grammar formalisms at least to

support those systems, we believe that construction grammar formalisms

might aid in achieving better deep natural language processing systems

being able to process language at a level that understands meanings, dis-

ambiguates constructions depending on a certain context, grasps implied

meanings, or makes inferences.

The main motivation for proposing another constructional grammar model

and not using one of the existing frameworks presented in the previous sec-

tion is that at this early stage of research in the field of computational

models of construction grammar, we consider it being worth investigating

another way of representing construction grammar’s main features exper-

imenting with the formalism o↵ering complementary advantages.

Both ECG and FCG are parts of highly impressive systems and especially

FCG has recently been improved impressively with regard to applying it

to deep natural language processing (e.g. [Verheyen et al., 2023]). How-
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ever, the treatment of categories and inheritance made me choose ECG as

a basis for engineering a version of construction grammar based on ontolo-

gies. ECG structures are all defined within inheritance lattices specifying

constructional and other relationships. Many ECG notations thus allow

reference to other existing structures, for example, to inherit features and

values. FCG constructions, on the other hand, rely on category lists asso-

ciated with each domains; each construction is thus relatively standalone,

and defined independently of other structures that may contain similar

information. The closer look at ECG and FCG in the previous section

might have already illustrated a few open issues that might be in need

of improvement or further investigation. Especially, since the original do-

mains of application of both of the two frameworks are rather specific and

have not been aimed at being used in conversational systems - at least

initially.

FCG, at present, is developed within an active network of researchers

and gains more and more visibility in various communities (see, e.g.,

[Steels, 2005, Steels, 2011, Steels, 2012, Steels, 2017] or https://www.fcg-

net.org/ ). The current FCG implementation shows great promise for be-

ing used for deep natural language understanding11 and studies are contin-

uously being carried out for various natural language phenomena in di↵er-

ent languages (see, for instance, [Nevens et al., 2019, Verheyen et al., 2023,

Willaert et al., 2022]) allowing FCG engineering in an innovative, new en-

vironment [van Trijp et al., 2022].

However, several issues mentioned in the section on grammar engineer-

ing in general (see Section 2.2.2) are still to be further discussed and

investigated in both FCG and ECG as for instance reusability, grammar

extension, the addition of richer semantics, evaluation of grammars, com-

parison among grammars in the same or even another formal notation and

the addition of already existing knowledge bases.

As with the link to ontologies, it has been defined in both of them, however,

the ontologies used in most experiments are far from being as elaborate

as ontologies nowadays can possibly be. Working with ontologies in a

11See recent advances with FCG on visual question answering [Nevens et al., 2019].
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natural language understanding system and on building digital assistants

for the enterprise including past and current research studies dealing with

building ontologies to be used in NLP further pushed the idea of including

a constructional grammar layer in such an ontology to find out if that is

actually possible and eventually beneficial for NLP systems.12 Addition-

ally, the network-like structure of both constructions and schemas – also

mirrored in ECG’s lattice structure – supports the decision to formalizing

construction grammar within a formal ontological model.

The main goal of this undertaking is not to replace any of the existing

formalisms, but rather to give new impulses to further improvement and

maybe show another direction that might better future computational

construction grammar research and give the grammar theory further vis-

ibility in further communities.

Formal ontologies represent the state of the art in knowledge representa-

tion. Section 2.3 introduced formal ontologies and their formats, defined

the term, listed the main steps to be taken in ontology engineering, in-

troduced the main foundational ontologies and discussed several di↵erent

possibilities of how to represent linguistic knowledge in ontologies.

Ontologies o↵er various new and semantically rich possibilities how con-

structions and schemas can be related to each other: The lattice that can

be built both among constructions and among schemas within an ontology

can be much more semantically fine-grained, as relations in an ontology

go beyond simple inheritance relations, which basically come for free in an

ontology. Existing editors, as for example protégé13 facilitate accessibility,

readability and extensions of ontologies in various ontological formats.14

The format which results from building the ontological grammar model

is one of its major advantages. As previously discussed, grammar engi-

neering is often done in a non-e�cient way, resulting in models that are

di�cult to reuse and di�cult to adapt to new application areas or even

12We refer the reader to literature on that topic as, e.g., [Wahlster, 2007,
Alatrish et al., 2014, Kersloot et al., 2020].

13http://protege.stanford.edu/
14See Section 2.3.2 for a short description of di↵erent ontology formats.
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impossible to be used in di↵erent processing models. Since ontologies are

used in a variety of applications and especially since natural language pro-

cessing with ontologies is getting more and more popular, we believe that

our model can be of benefit in various existing applications that can al-

ready handle ontological formats.

The ontological framework described in detail in the next chapter combines

two ontological modeling frameworks endowed with a construction gram-

mar layer. Next to the support via dedicated editors and inference engines,

one of the central advantages of the ensuing ontological model lies in its

compatibility with other ground ontologies. To enable this compatibility,

the choice of the foundational ontology has to be considered carefully. We

decided to use the Descriptive Ontology for Linguistic and Cognitive Engi-

neering (abbrev: DOLCE) [Masolo et al., 2003, Gangemi and Mika, 2003]

including two additional ontological frameworks: Descriptions & Situa-

tions (abbrev.: DnS) [Gangemi and Mika, 2003] and the Ontology of In-

formation Objects (abbrev.: OIO) [Guarino, 2006], which are both exten-

sions of the foundational ontology. The following section presents a de-

tailed description of all mentioned ontological frameworks and motivates

the reason why they have been selected.

3.4 Which Foundational Ontology is Used

in this Work and Why?

The foundational ontology that is used as centerpiece of the ontologi-

cal framework is the Descriptive Ontology for Linguistic and Cognitive

Engineering (DOLCE) [Masolo et al., 2003, Gangemi and Mika, 2003].15

Main reason for this decision has been the fact that DOLCE is based on

first order logic and that it is cognitively motivated. That means that

it was designed based on the underlying ontological concepts of natural

15See also Section 2.3.4 on a discussion of DOLCE’s ontological choices and a brief
description.
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language and human commonsense. Therefore, it is a so-called descriptive

ontology.16 Descriptiveness is considered important for our undertaking

since the concepts and relations that are being modeled are artifacts of

human common sense.

We decided to integrate construction grammar’s main building blocks into

DOLCE’s extensional module Descriptions and Situations (DnS), which

again contains an extensional ontological module which is the Ontology of

Information Objects (OIO). Therefore, the structure of both modules will

be described in more detail in the following section.

Descriptions and Situations The Descriptions and Situations on-

tology is an extension of the DOLCE ontology [Gangemi and Mika, 2003,

Gangemi et al., 2004]. It is an ontology which is plugged into DOLCE

and which o↵ers a way to talk about non-physical entities as for instance

plans, mental contents, or roles, and – most important here – language or

linguistic items. This fact made us consider it the perfect fit to represent

constructions embedded within this ontological framework. How exactly

the features of construction grammar are engineered in tune with the used

ontological framework will be described in Chapter 4.

Descriptions : According to the definition from the DnS ontology, the

class of Descriptions represents mental objects, states, or conceptualiza-

tions. That means that we can consider Descriptions are the ontological

equivalents of meaning.

Situations : A Situation, on the other hand, is a non-agentive social

object representing a state of a↵airs, a relationship or e.g. a fact. It only

exists in case it satisfies a Description and in case it is the Setting

for at least one entity from the ground ontology [Gangemi et al., 2004].

For integrating the DnS ontology into the foundational ontology DOLCE,

the class Situation is introduced as a (new) top category. Addition-

ally, the class Description is inserted as a subclass of the non-physical

class Endurant. Some examples of Descriptions and of Situations are

16For a more detailed discussion see [Masolo et al., 2003].
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listed in Table 3.1 below (see [Gangemi et al., 2004] for more details and

for more examples of Descriptions and Situations).

Description Situation
Theory Model
Plan Plan execution
Play Performance
Rules of game Play a game

Table 3.1: Examples of classes of Descriptions and corresponding classes
of Situations [Gangemi et al., 2004].

Ontology of Information Objects (OIO) Information Objects

provide the formal representation of Descriptions. This is ensured with

the help of the expresses property. In other words, the expresses prop-

erty describes the relation between signs (i.e. Information objects) and

their meaning, which is ontologically reified in Descriptions. That means

that, for instance, iconic or linguistic objects are Information objects.

The class of Information objects constitutes a class of the D&S ontol-

ogy, and more precisely, a subclass of the class Social object.

Information objects are ordered by a Code, which can be any system

of information encoding as, for instance, the German language. They can

be about any entity. Unlike the property expresses, about requires a

situation to be about something. Information objects are realized

by entities, to be more concrete, for example, by strings.

The basic design pattern of the Ontology of Information Objects is dis-

played in Figure 3.7.

In the center you find the class InformationObject. The relations the

class has to other ontology classes which were previously mentioned are

displayed by directed arrows which are labeled with the name of the re-

spective property and which point to the classes InformationObject is

related to (the property’s so-called range).

For our work, the two properties of major importance are the expresses

and the realizes property and their two respective inverse properties:
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InformationEncodingSystem InformationObject

Particular

Description

InformationRealization SituationAgent Parameter Role

Social Object

defines

interpretedBy about realizedBy

refersTo

orderedBy expresses

conceivesOf

satisfies

setting

Figure 3.7: Structure of the Descriptions & Situations Ontology and the
Ontology of Information Objects.

expresses-by and realized-by. How we make use of them will be de-

scribed in the sections on the concrete modeling of constructions and

schemas in the following Chapter.

Figure 3.8 provides a concrete example of an instance in the D&S and

OIO framework. It shows the ontological representation of the former

German soccer player Michael Ballack :

There exists a social object, which is Michael Ballack in this concrete

case. This Information Object is ordered by or expressed according

to the German language, which is an instance of the class Information

Encoding System. It expresses the concept or the meaning (which is

the Description) of Michael Ballack. It is realized by the actual string

Michael Ballack. This Information Object is about a Particular,

which is Ballack in a specific context. The Situation that Ballack has

played in the German national team is the setting for the Particular

and at the same time satisfies the Description which again is the con-

ceptualization of Michael Ballack.

There are several reasons why the combination of ontological modules just

presented provides the ideal setting for integrating a construction grammar
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InformationEncodingSystem InformationObject

Particular

Description

InformationRealization

Situation

AgentParameterRole

Social Object

defines defines

interpretedBy about realizedBy

refersTo

orderedBy expresses

conceivesOf

satisfies

setting

German language Michael 
Ballack

concept
SoccerPlayer

actual string 
"Michael Ballack"

Ballack playing 
in the national 

team...
Ballack in 

specific context

Figure 3.8: Concrete example representation of a former German soccer
player called Michael Ballack.

layer. The following summarizes the main reasons:

• DOLCE is cognitively motivated. Since construction grammar is a

grammar formalism which is heavily based on cognitive grammar,

this feature has to be given.

• Descriptions are the ontological representations of meaning. They

will serve as the meaning pole of constructions, capturing meaning

representations as image schemas or frames. Additionally, the link

to other knowledge resources can be established here. The following

section goes into further details on what exactly will be included in

the class of Descriptions.

• Information objects realize Descriptions. According to the def-

inition of the class of information objects, linguistic items, as,

for instance, constructions, can be subsumed under this superclass.

Therefore, both the form side of constructions – that is their ortho-

graphic form – and the constructions as a whole unit fit perfectly in

this ontology class.

The following section introduces the LingInfo Model, a model designed

to add linguistic information as parts of speech or grammatical gender to

ontology classes and their instances.
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3.5 The LingInfo Model

This section introduces the ontological LingInfo model allowing to add

rich, linguistic information to ontology classes and properties.17 We cre-

ated this model since no existing approach displaying linguistic informa-

tion in ontologies fulfilled the needs of the project back then (see Sec-

tion 2.3.5 for a short presentation of those approaches) and allows now

even further elaboration when building a construction grammar based

on ontologies. We do need exactly that: An ontological model that can

include rich and fine-grained linguistic features (and that is easily exten-

sible) keeping syntactic and semantic, ontology-based knowledge repre-

sentations separate. Available resources like Wordnets, for instance, lack

the linguistic features that are needed (see e.g. [Bateman et al., 1995,

Alexa et al., 2002]) and SKOS18 mixes linguistic and semantic knowledge.

Compared to those and the approaches introduced in Section 2.3.5, the

LingInfo model clearly keeps the linguistic and semantic, ontology-based

knowledge representations separate: The ontology is represented using the

semantic relations defined in RDFS or OWL-Full with linguistic knowledge

attached to classes and properties.

The main advantage: LingInfo constitutes an ontological model in

RDF/RDFS that can provide ontologies with linguistic information, as-

suming they are in the same ontological format. It contains linguistic

information for di↵erent languages, momentarily for English, French, and

German, and can easily be extended to other languages. Main objective

of this ontology is to provide a mapping between ontological concepts and

lexical items, i.e. to provide a grounding to the human linguistic domain.

That means, that the possibility is o↵ered to assign linguistic informa-

tion as, for instance, the orthographic term, its grammatical gender, its

part-of-speech, stem etc. to the respective classes and properties of an

ontology.

17The model has originally been developed within the SmartWeb project
[Wahlster, 2007] by the author et al. See [Buitelaar et al., 2006].

18http://www.w3.org/TR/swbp-skos-core-guide/
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Applications which need to have a link between text and concepts of an

ontology (or vice versa) are in need of a model like LingInfo or a sim-

ilar one, assigning that kind of information to its ontology classes and

instances.

Figure 3.9 shows the integration of the simplified LingInfo lexicon model

into an ontology in need of linguistic information for its concepts. This is

done via the definition of a meta-class and a meta-property (turquoise,

dashed boxes top part of Figure 3.9). In the classes portion of that figure,

you can see an example domain ontology class o:DomainOntologyClass

(green box). This class inherits the property lio:PropertyWithLingInfo

from its parent class lio:ClassWithLingInfo and, therefore, can be linked

by it to its instance lio:LingInfo (box in orange in the bottom part of

Figure 3.9) comprising the linguistic features like its language-ID (i.e. an

ISO-based unique identifier for the language of each term), its orthographic

form, and the morpho-syntactic decomposition of the term. The arrows

linking the boxes are properties linking classes and instances.

rdfs:subClassOf

meta-classes

classes

rdfs:Class

lio:ClassWithLingInfo

lio:ClassWithLingInfo

…

instances

lang
term
morpho-syntactic decomposition

lio:LingInfo

o:DomainOntologyClass

rdfs:subClassOf

lio:PropertyWithLingInfo

lio:PropertyWithLingInfo

meta-properties

rdfs:Slot
rdfs:subClassOf

URI
propertiesLe

ge
nd

Rdfs:type

labelled 
propertylabel

Figure 3.9: A simplified version of the LingInfo model with an example
ontology class and associated LingInfo instance linked by properties.
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Figure 3.10 shows the same model enriched with a concrete example.

rdfs:subClassOf

meta-classes

classes

rdfs:Class

lio:ClassWithLingInfo

instanceslio:PropertyWithLingInfo

URI
propertiesLe

ge
nd

Rdfs:type

lio:PropertyWithLingInfo

meta-properties

rdfs:Slot
rdfs:subClassOf

rdfs:
subClassOf

o:FootballPlayer

lio:ClassWithLingInfo

o:Midfielder
lio:ClassWithLingInfo

lio:PropertyWithLingInfo

o:Defender
lio:ClassWithLingInfo

lio:PropertyWithLingInfo... ...

rdfs:subClassOf

lio:LingInfo
lang de
orthographic
Form Abwehrspieler

…

lio:LingInfo
lio:PropertyWithLingInfo

labelled 
propertylabel

gender male

lang

orthographic
Form

…
gender

de

Mittelfeldspieler

male

Figure 3.10: A simplified version of the LingInfo model with example
ontology classes and associated LingInfo instances.

The ontology classes (example here: o:FootballPlayer) is defined as

a subclass of the meta-class lio:ClassWithLingInfo. All subclasses of

lio:ClassWithLingInfo can define LingInfo instances (orange boxes at

the bottom of Figure 3.10). Those instances represent the linguistic fea-

tures (feat:linginfo) of a term of the respective class. Table 3.2 lists the

complete morpho-syntactic information of a term in the LingInfo ontology,

a few of them represented in the orange boxes of Figure 3.10.

The domain ontology classes are the classes o:FootballPlayer with the

respective subclasses o:Defender and o:Midfielder. Those classes are

instances of the meta-class lio:ClassWithLingInfo. With the help of the

meta-property lio:PropertyWithLingInfo the mentioned domain ontol-

ogy classes are linked to LingInfo instances. Those instances contain then

the orthographic form of the term (like e.g. ”Abwehrspieler” - the Ger-

man term for English defender), the language ID (”de” for German) and
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Slot Name Domain Class Allowed Values
case WordForm Symbol: nom, gen, dat

or acc
orthographicForm WordForm and Morpheme String
gender WordForm Symbol: male, female or

neuter
part of speech WordForm Symbol: noun, verb, adj,

det, conj, prep, adv,
auxVerb

number WordForm Symbol: singular or plu-
ral

root WordForm Instances of class Root
inflection InflectedWordForm Instances of class Affix

Table 3.2: Morpho-syntactic information as encoded in the LingInfo
model.

morphosyntactic information as listed in Table 3.2.19

LingInfo is one of the essential puzzle pieces we need to engineer the

ontological construction grammar. Let’s see which further puzzle pieces

are needed.

3.6 Further Picks

This section briefly summarizes further choices that have been made, start-

ing with the one on constructional meaning representation.

3.6.1 Constructional Meaning

Construction grammar regards the meaning of any construction equally

important as any other linguistic discipline. The question is now how to

formally model meaning in a formal construction grammar. As previously

discussed, most of the FCG grammar engineers opted for first order logic

to represent constructional meaning. As the grammar formalism seems,

however, to be agnostic towards which meaning representation is used,

19A diagram of the complete LingInfo model can be found in the appendix.
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there are a few studies that go beyond first order logic and use procedural

semantics instead (see for instance [Spranger and Loetzsch, 2011]). Then

again, there have been attempts to integrate FrameNet frames into FCG

constructions (see also [Micelli et al., 2009]).

ECG, however, presents meaning by using so-called embodied schemas.

Section 2.4.1 introduced frames and schemas which present the meaning

representations that form the basis of ECG’s embodied schemas. The

previous comparison of FCG and ECG discussed both meaning represen-

tations in more detail.

While integrating the construction grammar layer into the foundational

ontology the need for more specific information to enable deep language

processing has quickly become obvious. We decided to build a hierarchy

out of the most important image schemas and to include this hierarchy

into the ontological framework. This image schema hierarchy can then be

the foundation for further schemas to be connected even deeper than for

instance the schema lattice that has been created in ECG grammars. The

subsequent paragraph briefly presents the motivation behind building the

hierarchy, while Section 4.6 goes into the technical details of engineering

it.

An Image Schema Hierarchy As already mentioned in Section 2.4.1,

image schemas gained much popularity in cognitive sciences in the 1980s.

This popularity is presently still increasing in various domains, leaving

di↵erent groups work on image schema hierarchies or using a schema rep-

resentation as meaning representations in their natural language under-

standing systems.20

The image schema hierarchy built in this work presents a dense network

of schematic, role-based knowledge. It contains the basic image schemas

that we consider as most important and that we believe are necessary for

20See for instance [Kuhn, 2005, Kuhn, 2007] for the use of image schemas in the
geospatial domain or [Gromann and Macbeth, 2019] for how to crowd source image
schemas to be further used in language processing.



Section 3.6 – Further Picks 99

our task. How we came to our decision which schemas to include in the

hierarchy and also how the hierarchy looks like in detail will be described

later in Section 4.6. In order to avoid misunderstandings please note that

it is not claimed that this hierarchy is complete in any way or that it might

present the only acceptable version. It rather presents a starting point to

be elaborated or modified when need arises.

The following Chapter 4 presents a detailed description of the implementa-

tion details of the resulting ontological framework (which has been called

ECtoloG), employing all modules having been presented in this chapter.

It details all layers of the framework and every step in constructing it

while pointing out the main challenges and advantages of the approach.





Chapter 4

ECtoloG - Engineering of a

Computational Construction

Grammar

This chapter describes the implementation details of a formalization of

(Vanilla) Construction Grammar including important ECG-flavored fea-

tures – hence, the resulting model is called ECtoloG. It is described how

construction grammar’s building blocks are integrated into the earlier

introduced ontological modeling framework DOLCE and its extensional

modules Descriptions and Situations and Ontology of Information Ob-

jects. Additionally, the chapter provides detailed descriptions of the vari-

ous sources that have been integrated into the ontological framework and

of the respective integration processes.

The chapter is structured as follows: The first section deals with setting

up the ontological modeling framework and describing how the ontologi-

cal extensions are integrated. It is followed by an informal constructional

analysis of the sentence, showing which constructions might be identified

contributing to the sentence’s meaning. What follows are several sections

on the concrete engineering of the grammar features, starting with con-

structions – fully instantiated and abstract constructions. The sections
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are divided into general modeling descriptions and into parts describing

concrete natural language examples. The running example sentence of

this and the following chapters is the sentence:

(1) Perrotta liegt am Boden.

Perrotta is lying on the ground.

After a detailed description of the needed constructions – lexical and com-

positional ones – it is described how additional linguistic information as,

for instance, parts-of-speech or morphological information can be modeled

in the ECtoloG. Furthermore, a section describing the creation of a basic

image schema hierarchy and its integration into the ontology follows. Ad-

ditionally, it is discussed in the chapter’s pre-last section how the model

can be enriched with frames and scenarios. The chapter concludes with

a discussion of the lessons the engineering e↵ort holds and a summary of

the gains of the engineering e↵ort.

4.1 Setting up the Framework

To set up the ontological modeling framework including the foundational

ontology and its extensions described in 3.4, the following files have to be

loaded into an ontology editor:1

• DOLCE-Lite.owl (representing DOLCE (see 2.3.4)

• ExtDns.owl (representing the Descriptions and Situations ontology

(DnS) (see Section 3.4))

• Information.owl (representing the Ontology of Information Objects

(OIO) (see Section 3.4))2

1In this work Protégé version 3.3.1 (see http://protege.stanford.edu/ ) is used.
2In this work version 397 of the mentioned ontologies is used. Additionally, the

lite version of DOLCE is used in this work; see http://www.loa-cnr.it/DOLCE.html for
detailed comments on the lite version of DOLCE and the other mentioned modules.
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This is done by creating a new owl project – which we call ECtoloG – and

importing the Information.owl ontology. This ontology in turn imports

the DnS ontology, which in turn imports the DOLCE ontology. This way

of modeling incrementally ensures that all changes and additions to the

ontology are directly saved in the ECtoloG.owl file and that none of the

predefined modules are accidentally changed.

The resulting module hierarchy in the ECtoloG is displayed in Figure 4.1.

 DOLCE-Lite.owl Information.owl ExtDnS.owl 

owl:imports 

ECtoloG.owl 

owl:imports owl:imports 

Figure 4.1: The module hierarchy in the ECtoloG.

It employs the ontology-import construct owl:imports. This construct

is defined in the OWL vocabulary as instance of the OWL built-in class

owl:OntologyProperty. Each of those instances has to identify the class

owl:Ontology both as their domain and as their range.3

As already discussed in Section 2.3.4, we consider the use of a founda-

tional ontology - in this special case of DOLCE - as highly necessary for

our undertaking. The main reasons for this decision are again briefly

summarized in the following list:

1. A foundational ontology provides a modeling basis, i.e. a pre-defined

set of entities that can be reused.

2. A comparison among other ontological approaches is made possible

since the foundational ontology provides a reference point.

3See http://www.w3.org/TR/owl-ref/ for more information on those constructs or
more details on any owl related issues.
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3. The integration of existing domain ontologies which were built in

tune with the hierarchy of the foundational ontology used in the

model is made easier.

4. Within a foundational ontology design patterns for re-occurring mod-

eling needs are defined.

After having set up the ontological framework, the actual modeling of con-

structions can begin. This engineering e↵ort will be described in the fol-

lowing sections. Before, however, the example sentence mentioned above

is informally analyzed, to find out which constructions might be needed

for its successful constructional analysis.

4.2 Informal Example Constructional Anal-

ysis

Let’s now have a closer look at the example sentence sentence Perrotta

liegt am Boden (engl. Perrotta is lying/lies on the ground). It will be

informally linguistically analyzed below – an analysis necessary for any

construction grammatical flavour.

A traditional analysis might identify at first a name, a verb, a preposition

and a noun. Then the analysis might include several compositional con-

structions capturing phrases and finally the complete sentence like, for

instance, a NoArgClauseConstruction, a NomArgClauseCon-

struction and a ClausePlusPathConstruction. Part of those con-

structions’ task is to put all of the sentence’s components into their ap-

propriate order.

As we are looking at a constructional analysis, it is important to consider

the sentence’s meaning, as well. The speaker finds himself in a current

discourse context in which the hearer has to be able to find out what and

who the speaker is referring to, i.e. the referent has to be uniquely iden-

tifiable and the act of reference has to be obvious.
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A straightforward constructional analysis could identify the following con-

structions:

• Perrotta: The word form Perrotta constrains the referent to be

a kind of entity. Linguistic information like its grammatical case

(here: nominative) and gender (here: masculine) might be included

in this construction or in a parent construction of that construction

which hands down its properties to the construction. Other qualities

of the referent like animacy, countability or semantic role might be

identified directly here, as well.

• Liegt: The word form liegt constrains the speech act to be of a spe-

cial kind of self motion. Grammatical properties might be included

as for instance its part of speech (here: verb), that it is inflected

(here: 3rd person singular) and its grammatical tense (here: simple

present).

• Am: The word form am is identified as a preposition which con-

strains its referent to be of a specific grammatical case (here: da-

tive). Its meaning might include a version of the trajector-landmark

schema.

• Boden: The word form Boden constrains its referent to be of gram-

matical categories singular, masculine and nominative, dative or

accusative (here: dative). It is a common noun whose referent is

constrained to be a kind of uniquely identifiable entity.

• NoArgClauseConstruction: This clause construction has an

inflected verb as its only constituent. Its meaning is the same as

the meaning of the verb it captures, i.e. the meaning of the verb

percolates to the new unit that is being built by this construction.

• NomArgClauseConstruction: This clause construction can have

several constituents: A referring expression which is constrained

to have the grammatical case nominative and a clause construc-

tion of any kind (as for instance a sole inflected verb (here called a
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NoArgClause) or a more complex clause like a prepositional clause

(here called ClausePlusPath)). It imposes a word order on its con-

stituents (the referring expression precedes the clause). The con-

struction’s meaning might be a predication schema.

• CasePrepPathPhraseConstruction: This construction com-

bines a referring expression with a preposition. Compatibility in its

grammatical features as e.g. case has to be enforced.

• ClausePlusPathConstruction: This clause construction com-

bines any kind of clause with any kind of path specifier. Its meaning

might be a trajector-landmark schema. Compatibility in features as

for instance grammatical case and gender must be enforced.

Figure 4.2 graphically depicts the informal analysis of the example sen-

tence. Constructions in the center link the domains of form (left) and

meaning (right). Each of the constructions shown here contributes to and

constrains the meaning of the whole sentence.

The constructions are displayed in the middle of the figure. Complex

constructions are depicted in grey, lexical ones in white. Each construction

has a link (shown by horizontal bars) to form (on the left) and meaning

(on the right). The form domain contains the relevant word forms, where

the dotted arrow indicates the time link (and therefore word order).

The meaning domain contains several structures. Each structure lists

features constrained to particular values. Essentially, this structure sum-

marizes any information that is important for determining the meaning

of the sentence in the current context. Values between the structures are

shared which is ensured by using identical value names.

A sentence as simple as our example sentence shows apparently many

representational choices with reasonable alternatives varying in both the

complexity of the structures defined and the generality of the phenomena

they account for. The goal here is not to argue for the particular analysis

adopted here as the most general or even the best one; rather, it focuses

on expressing a variety of concepts and relations available in the ECtoloG.
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Figure 4.2: Graphical depiction of the informal constructional analysis of
the German example sentence Perrotta liegt am Boden (engl. Perrotta is
lying on the ground).
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4.3 Constructions in the ECtoloG

A construction in the ECtoloG is – in tune with Goldberg’s definition

[Goldberg, 1995, p.4] (see also Section 3.1) – a linguistic unit that com-

bines a certain kind of form with a certain kind of meaning of that unit.

Constructions in the ECtoloG can exist on various levels of abstraction,

i.e. can be as fine-grained or as complex as the engineer wishes them to

be. Looking at fine-grained, linguistic information, quite some morpho-

logical information is provided through the included LingInfo model as

previously described in Section 3.5. The details on the exact integration

of the LingInfo model and what information it exactly contains will be

further described in Section 4.5. How morphological constructions could

be integrated into the model will be briefly discussed in the final discussion

of this work.

Comparable to how constructions and schemas are ordered in ECG, they

are ordered in an inheritance network in the ECtoloG. While in ECG the

subcase of operator is used to mark inheritance, in the ECtoloG an is-a

relation holds between subclasses and their parent or superclasses. This

e↵ects that subclasses inherit all of the properties of their respective super-

classes. A construction can have more than one superclass and multiple

inheritance is, therefore, possible.

In the ECtoloG, constructions are defined as edns:information-objects.4

Their meaning pole is constituted by a schema while their form pole is

constituted by instances of the inf:writing and inf:word5 classes. A

detailed description of their structure and how they are modeled will be

described in Section 4.4.

The following presents a more formal definition of constructions in the

4edns is the namespace of the class information-object. It uniquely identifies the
class’ a�liation to the DnS ontology.

5inf is the namespace of the classes writing and word. It uniquely identifies their
a�liation to the Ontology of Information Objects.
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ECtoloG using Goldberg’s definition [Goldberg, 1995, p.4] cited in Sec-

tion 3.1 as a foundation and adding the second paragraph needed for our

purposes. The extension is needed to formally define how exactly a for-

mal construction is built within the ECtoloG, leveraging the ontological

foundation provided by embedding it into the DOLCE framework.

Definition Construction in the ECtoloG:

Definition following A. Goldberg: ”C is a construction iffdef C is a

form-meaning pair < Fi, Si > such that some aspect of Fi or some aspect

of Si is not strictly predictable from C’s component parts or from other

previously established constructions.”[Goldberg, 1995, p.4].

Definition extension for ECtoloG:

C is a subclass of an edns:information-object with the following re-

strictions on its inherited properties:

1. 9 edns:expresses some ECtoloG:schema and

2. 9 edns:realized-by inf:writing

This definition ensures that each construction in the ECtoloG is a sub-

class of the class edns:information-object inheriting its properties.

These properties in turn are restricted in a way that they only allow

exactly one instance of the class of ECtoloG:schema to be the filler of the

edns:expresses property and the class inf:writing to be the filler of

the edns:realized-by property.

More details and how exactly those restrictions and the ECtoloG construc-

tions are modeled in the ontological framework and what they precisely

mean will be the topic of the following section.
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4.4 Modeling of Constructions in the EC-

toloG

The complete, complex network of constructions can be divided into two

basic categories of constructions: lexical constructions and compositional

constructions. The following sections 4.4.1 and Section 4.4.2, respectively,

present a definition of those terms. Section 4.4.3 describes the few addi-

tionally needed constructions that do not exactly fit into these categories

and gives an explanation why they are required nevertheless.

In ontologies, properties express relations between ontology classes. They

ensure that one class (the domain) is linked to another class (the so-

called range) through a certain property (see Section 2.3.2 for a defini-

tion). Constructions in the ECtoloG are modeled as subclasses of the class

edns:information-objects. This means that all properties of this class

are inherited by constructions, so all constructions share certain proper-

ties. The most important ones will be detailed further below.

To create constructions in the ontology, we’ve first created a subclass of the

class edns:information-objects that will include all ECtoloG construc-

tions called ECtoloG:construction.6 According to the specification of

the DnS ontology each instance or subclass of edns:information-objects

inherits – amongst others – the following properties:7

• Any edns:information-object can be edns:realized-by a physical-

realization. This physical realization can be an instance of the classes

inf:voice, inf:writing, and inf:gesture.

In other words, the class edns:information-object is the domain

and the class inf:physical-realization the range of the property

edns:realized-by.

6ECtoloG denotes the namespace of the class ECtoloG:construction It uniquely
identifies the class’ a�liation to the ECtoloG ontology. What follows the colon is the
name of the class.

7For more detailed information on edns:information-objects and the class’ prop-
erties see [Gangemi et al., 2004] and Section 3.4.
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• Information objects can express a description (being linked with

the edns:expresses property) and a description can in turn be

expressed-by an information object (as the link via the property is a

bi-directional link).

• Information objects are ordered-by an information-encoding-system

as e.g. a classification system with the edns:ordered-by property.

Figure 4.3 graphically depicts what has been described previously and

shows the classes and their relations to each other.

information-object description information-encoding-system 
ordered-by 

expresses 

expressed-by 

realized-by 

physical-realization 

Figure 4.3: Information-objects in the ontological modeling framework
and their direct relations to other classes. Arrows are relations and boxes
are ontological classes. The arrows show in which direction the relation
between the classes holds. You can see that, for instance, the relation
between an edns:information-object and a edns:description is bi-
directional.

As a construction constitutes a pairing of form and meaning in tune

with the original theory of construction grammar, both its meaning pole

and its form pole need to be modeled in the ECtoloG. To be more spe-

cific, each constructional instance needs to be linked with its construc-

tional form and its constructional meaning. To accomplish this, both the

edns:realized-by property and the edns:expresses property can be of

use. According to the specification of the DnS ontology, edns:expresses

can be defined as a relation between information objects that are used as

representations (signs) and their content, i.e. their meaning or conceptu-

alization. This property is, therefore, used to link the construction to its

meaning. In other words, the domain of the edns:expresses property
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will be an information object and its range will be a description. This will

be elaborated in more detail in the next section.

The form pole of the construction, on the other hand, can be modeled with

the help of the edns:realized-by property. This property designates

that a non-physical object is realized by a (physical) representation. For

us, this means that a construction – being a non-physical object – can

be realized by a physical representation which might be, for instance, its

orthographic form. Again, this can be put in other words: The domain

of the edns:realized-by property is an information object and its range

a physical representation. This will again be elaborated more in the next

section. Figure 4.4 graphically depicts what has just been explained.

edns:description inf:physical-realization

ECtoloG:construction

edns:information-object

edns:expresses

subclass-of

ends:realized-by

Figure 4.4: A construction in the ECtoloG embedded into in the DOLCE
framework. Boxes are ontological classes and arrows relations between
those classes.

The ontology class edns:description fits perfectly to represent the on-

tological equivalent of a meaning or a conceptualization representation

of the ECtoloG’ constructions. This means that the schemas which are

supposed to constitute the meaning pole of constructions are modeled as
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being a subclass of the class edns:descriptions. Thereby, the new class

ECtoloG:schema inherits the super-classes’s properties and among them

the edns:expresses property which in turn can now be directly used to

engineer the meaning pole of the construction.

How exactly the two poles of lexical or compositional constructions are

modeled will be described in more detail in the following sections with the

help of concrete example constructions.

4.4.1 Modeling of Lexical Constructions

We define the class of lexical constructions that it contains all linguistic

units that have a separate entry in a dictionary, i.e. so-called headwords.

This class can also include idioms like to kick the bucket or compound

words as, for instance, soccer player, since the meaning of none of these

linguistic units can completely be determined by the meanings of the dis-

tinct words composing it.8 As previously mentioned, traditional construc-

tions – and more specifically here – lexical constructions constitute form

and meaning pairings. The modeling of both their meaning and of their

form pole in the ECtoloG will be the topic of this section.

First of all, two new classes are defined:

• ECtoloG:schema and

• ECtoloG:lexicalConstruction

ECtoloG:schema is modeled as a subclass of the class edns:description

while ECtoloG:lexicalConstruction is modeled as a subclass of the class

ECtoloG:construction. Since that class in turn is a subclass of the class

edns:information-object the class ECtoloG:lexicalConstruction in-

herits, among other properties, the edns:expresses property. Figure 4.5

displays this structure graphically.

8See the definition of a construction in Section 4.4.
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ECtoloG:schema ECtoloG:lexicalConstruction

edns:description

ECtoloG:construction

edns:information-object

subclass-of
subclass-of

subclass-of

Figure 4.5: Highest level of constructional engineering in the ECtoloG.

Meaning Pole As already mentioned in the previous sections, the mean-

ing poles of constructions can be filled with conceptual schemas. Those

schemas can represent the (dynamic) semantics of constructions. The EC-

toloG follows ECG in this area and includes frame-based knowledge and –

more precisely – executing schemas, and image schemas.9

To assign a meaning to a lexical construction it has to be made explicit

where exactly in the ontology that schematic meaning is encoded, i.e. the

link between the construction itself and the construction’s meaning has

to be defined. To fill the meaning pole of a lexical construction with

a schematic meaning, a restriction on the edns:expresses property is

defined:

• 9 edns:expresses some ECtoloG:schema

This restriction determines that at least one of the edns:expresses prop-

erty’s values is of type ECtoloG:schema. Modeling this restriction is done

by means of the built-in owl:someValuesFrom constraint. The restriction

9See 2.4.1 for a definition of those terms and the Sections 4.6 and 4.7 for more
information on the way of precisely modeling them in the ontology.
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holds for all constructions that express a schema, that is for the complete

class ECtoloG:lexicalConstruction. It has obviously no e↵ect on the

whole class of constructions, i.e. it is possible that there are constructions

that do not express a single schema. Compositional constructions, for

instance, whose meaning might be a composite of all constructions and

schemas that constitute that compositional construction (and even more)

do not express an instance of a single schema (see Section 4.4.2).

As mentioned in the previous section, edns:expresses is defined as a re-

lation between information objects that are used as representations (signs)

and their content, i.e. their meaning or conceptualization. Content, then,

is reified as a description, which constitutes the reason why the class of

ECtoloG:schema has been modeled as such. What exactly can be sub-

sumed under the class ECtoloG:schema and a detailed description of the

modeling of those schemas will be described in more detail in Section 4.7.

Form Pole The form pole of each construction is modeled with the

help of the edns:realized-by property, defined in the previous section.

It is inherited from the class edns:information-object, the superclass

of ECtoloG:construction.

The class edns:physical-realization fills the range of the property

edns:realized-by. This class is the superclass of the classes inf:voice,

inf:writing and inf:gesture. The form pole of lexical constructions

in the ECtoloG is supposed to be ’filled’ with the orthographic form of

the word the construction describes. Therefore, an instance of the class

inf:writing is defined, which then fills the form pole of the respective

construction. This instance has inherited once again a relation which con-

nects it to instances of the class inf:word. It is predefined that instances

of inf:word can be realized by instances of the inf:writing class. As de-

termined in the ontology, words can be realized in various ways, i.e. they

can, for instance be uttered or written. With linking the class inf:word

to inf:writing we define that the forms of lexical constructions have to

be written realizations of words. This is realized in an analogous way
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as the meaning pole has been implemented: A restriction on the class

ECtoloG:lexicalConstruction is defined. This restriction is listed in

the following:

• 9 edns:realized-by inf:writing

This restriction states that at least one value of the edns:realized-by

property has to be of type inf:writing.

Figure 4.6 graphically depicts how lexical constructions are modeled in

the ECtoloG.

ECtoloG:ExampleConstruction

ECtoloG:ExampleSchema ECtoloG:ExampleWriting

ECtoloG:Example

ed
ns
:e
xp
re
ss
es

edns:realized-by
edns:realizes

Meaning Form

Figure 4.6: Lexical Constructions in the ECtoloG: The boxes are construc-
tions, the arrows are the relations that hold between them. On their mean-
ing side, constructions express an ECtoloG:schema. On their form side,
they are realized by an inf:writing which in turn realizes an inf:word.

The class ECtoloG:lexicalConstruction captures classes for all common

parts-of-speech as listed in standard dictionaries, as for instance the classes

ECtoloG:determinerConstruction, or ECtoloG:verbConstruction, as

graphically displayed in Figure 4.7.

Subclasses of the class ECtoloG:lexicalConstruction which addition-

ally make reference to some object in the world, like for instance classes

that capture common nouns, pronouns, or proper names are in addition
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Figure 4.7: Example lexical constructions in the ECtoloG.

subclasses of the class ECtoloG:referringConstruction. This class is a

subclass of the class ECtoloG:construction and inherits again – among

others – the edns:expresses property from that class. A restriction has

been imposed on this class stating that the values of the edns:expresses

property have to be of type ims:entity schema, the most upper class of

the image schema ontology, described in more detail in Section 4.6.10

The following paragraph presents a concrete example of what has pre-

viously been explained.

A Concrete Example

The concrete example sentence – repeated here for the reader’s convenience

– is the following:

(2) Perrotta liegt am Boden.

Perrotta is lying on the ground.

The four lexical constructions that are needed to parse or produce that

sentence are constructions for each single word, i.e. for Perrotta, liegt,

am, and for Boden. Each lexical construction will be described in detail

in the following. You will find more detailed information on the schemas

10ims denotes the namespace of the class ims:schema. It uniquely identifies the
classÕ a�liation to the image schema ontology.
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that will be mentioned and how they are embedded in the image schema

hierarchy in the respective Section 4.6

ECtoloG:PerrottaConstruction: As a first step, a new subclass of

ECtoloG:LexicalConstruction is created which is called

ECtoloG:SecondnameConstruction. Additionally, this class is a subclass

of ECtoloG:referringExpressionConstruction since constructions for

last names make a reference to an entity. Then, a subclass of this class

has to be defined called ECtoloG:PerrottaConstruction.

It is necessary, to be able to treat this class as an instance in order to

assign additional linguistic information to it with the help of the later de-

scribed LingInfo model. Therefore, it is additionally typed as a subclass

of the class LingInfo:ClassWithLingInfo. Which linguistic information

is assigned to this construction and how exactly this is done in general

and more specifically with this construction will be described in Section

4.5.1.

Meaning Pole: With the help of the inherited edns:expresses property,

the construction ECtoloG:PerrottaConstruction is linked to an instance

of the ims:FootballplayerSchema called ECtoloG:PerrottaSchema.

Through this relation the meaning pole of the construction in question is

defined.

The meaning of the ECtoloG:PerrottaConstruction might be presented

by the following Schema displayed in Figure 4.8.

Form Pole: To define the ECtoloG:PerrottaConstruction’s form pole,

the inherited property edns:realized-by is used. It links the class to

an instance of inf:writing. This instance has to be created in the on-

tology and is called ECtoloG:PerrottaWriting. To link this instance in

turn to its orthographic representation, an instance of the class inf:word

has to be created. It is called ECtoloG:Perrotta and is linked through

the edns:realizes property to the instance ECtoloG:PerrottaWriting.

Figure 4.9 displays the classes, instances and their relations towards each

other.
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schema Referent

ont-category                           person
givenness          uniquely identifiable
quantity      1

Figure 4.8: A possible presentation of the Referent schema in the EC-
toloG.

ECtoloG:PerrottaConstruction

ECtoloG:PerrottaSchema ECtoloG:PerrottaWriting

ECtoloG:Perrotta

ed
ns
:e
xp
re
ss
es

edns:realized-by
edns:realizes

Meaning Form

Figure 4.9: The ECtoloG:PerrottaConstruction in the ECtoloG. The
boxes are constructions, the arrows are the relations that hold between
them. On their meaning side, constructions express an ECtoloG:schema.
On their form side, they are realized by a subclass of the class inf:writing
which in turn realizes a subclass of the class inf:word.

ECtoloG:LiegtConstruction: First, ECtoloG:VerbConstruction is

defined being a subclass of ECtoloG:LexicalConstruction. This class

subsumes all constructions defining verbs. A restriction is imposed on that

construction that states that all values of the edns:expresses property

have to be of type ims:x schema. This ensures that any verb meaning
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contains an x-schema.11 The further modeling of the construction is done

in an analogous way as it has been specified in the previous paragraph

for the lexical construction ECtoloG:PerrottaConstruction: The con-

struction is also an instance of the class LingInfo:ClassWithLingInfo.

Additionally, it is linked via the edns:expresses property to an instance

of the class ims:x schema: the ECtoloG:LiegenSchema. This schema is

in turn an instance of both the class ims:static schema and the class

ims:self-Motion-XSchema. You will find more information on those

schemas in Section 4.6 and its following sections.

ECtoloG:AmConstruction: A subclass of the class containing lexical

constructions is defined that is called ECtoloG:PrepositionConstruction.

Again, a class is defined being the subclass of that construction called

ECtoloG:CasePrepConstruction. The ECtoloG:AmConstruction is de-

fined as an instance of that class. Similar to the other lexical constructions,

this class is of type LingInfo:ClassWithLingInfo.

A condition which constrains that all values of the edns:expresses prop-

erty have to be of type ims:trajector-landmark schema is imposed on

the class ECtoloG:CasePrepConstruction.

ECtoloG:BodenConstruction: This construction is an instance of the

class ECtoloG:noun-maleSgNomConstruction which constitutes a sub-

class of the class ECtoloG:CommonnounConstruction again a subclass of

the class ECtoloG:LexicalConstruction. As with all lexical construc-

tions, the instance is also of type LingInfo:ClassWithLingInfo to en-

able adding linguistic information to it.

A constraint is imposed on the class ECtoloG:CommonnounConstruction

saying that the meaning pole of this construction’s instances is restricted

to be of type ims:entity schema. In this specific case, the construction is

linked to the ECtoloG:BodenSchema, an instance of the ims:Ground Schema

11This modeling step should be improved in future since not all verbs are action
verbs. For the time being we model this that way, since for the test domain (which is
going to be soccer) this seems to be true for most of the verbs.
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via the edns:expresses property. The form pole is modeled according

to the standard way of modeling it: linking the construction to an in-

stance of inf:writing – called ECtoloG:BodenWriting – and that in-

stance via the edns:realizes property to an instance of inf:word –

called ECtoloG:Boden, respectively.

The following section describes how more complex constructions are mod-

eled in the ECtoloG.

4.4.2 Modeling of Compositional Constructions

Compositional constructions are complex constructions that are on a higher

level of abstraction than lexical ones. They are constructions that combine

more than one construction into one unit, i.e. into a compositional con-

struction. A simple example is the DeterminerNounConstruction that

combines a determiner and a noun into a determined noun phrase. A

more complex construction is, for instance, a clause construction like the

ClausePlusPathConstruction, combining a clause with a path specifier.

A concrete example of that compositional construction is given below.

Let’s have a look at how to exactly represent compositional constructions

in the ECtoloG.

edns:concept

ECtoloG:construction-parameter

edns:parameter

subclass-of

subclass-of

Figure 4.10: Step 1 to model complex constructions in the ECtoloG. A
class ECtoloG:construction-parameter is defined as a subclass of the
class edns:parameter, which in turn is a subclass of edns:concept.
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Initially, a class ECtoloG:construction-parameter is defined that de-

notes a subclass of the class edns:parameter, which in turn is a subclass

of edns:concept (see Figure 4.10).

According to the DnS ontology’s specification, the class edns:parameter

represents the qualities of perdurants or of endurants (see 2.3.4 for a

definition and a basic concept hierarchy giving examples). While per-

durants describe processes or events, endurants define objects or sub-

stances. They can also be requisites for some role or course. Requisites

are defined being constraints over the attributes of entities. In that line,

a edns:requisite-for relation holds between edns:parameter and the

concept for roles, figures or courses (see Figure 4.11).

edns:parameterconcept for roles, courses, etc. edns:requisite-for

Figure 4.11: The edns:requisite-for relation linking edns:parameter
(its domain) with the concept for roles, figures, or courses (its range).

Now, we find this relation to be exactly the right one to combine more

than one construction into one unit, i.e. to be able to engineer complex

constructions. It will be used to eventually link the following two classes to

each other: edns:construction-parameter and ECtoloG:construction.

To implement this linkage with the edns:requisite-for property, first,

the class of edns:information-object being added to the range of the

edns:requisite-for property.

Eventually, this results in the class edns:parameter being the domain

of the edns:requisite-for property and edns:information-object its

range (see Figure 4.12).

ECtoloG:construction being a subclass of edns:information-object

and the class ECtoloG:construction-parameter in turn a subclass of the

class edns:parameter, results in the fact that those classes inherit their

parent classes’ properties. Therefore, ECtoloG:construction-parameter

can now fill the domain of the edns:requisite-for property and the class
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edns:parameteredns:information-object edns:requisite-for

Figure 4.12: The edns:requisite-for relation linking edns:parameter
(its domain) with the class edns:information-object (its range).

ECtoloG:construction its range (see Figure 4.13).

ECtoloG:construction-parameterECtoloG:construction edns:requisite-for

Figure 4.13: The edns:requisite-for relation linking the class
ECtoloG:construction-parameter (its domain) with the class
edns:construction (its range).

As a next step, we use the edns:requisite-for property to constrain

the attributes of one of their entities, concretely, we define a property re-

striction that is mainly necessary for ECtoloG:construction-parameter

stating that all values of the edns:requisite-for property have to be

of a certain type, i.e. ECtoloG:construction. The use of the term only

determines exactly that.

• 8 edns:requisite-for only ECtoloG:construction

This restriction determines that from now on all instances of the class

ECtoloG:construction-parameter can be included into a compositional

construction, and, therefore, be used to form compositional constructions.

One last step is, however, still missing for lexical constructions to be united

in complex ones: To enable the usage of lexical constructions as compo-

nents of more abstract constructions, all lexical constructions are defined

to be instances not only of the class ECtoloG:lexicalConstructions –

a subclass of the class ECtoloG:construction – but also of the class

ECtoloG:construction-parameter. Figure 4.14 presents a final sum-

mary of what has been described in the previous paragraphs.
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ECtoloG:construction-parameter

edns:parameter

edns:concept

subclass-of

subclass-of

edns:requisite-foredns:information-object

ECtoloG:construction

subclass-of

edns:requisite-for

inherited down

Figure 4.14: Prerequisites to model complex constructions in the ECtoloG.

Now we have defined how complex constructions can theoretically be im-

plemented. What is still needed to concretely model specific ones, i.e.

to determine exactly which constructions are supposed to be used in ex-

actly which more abstract construction, new properties have to be defined.

These properties are all sub-properties of the edns:requisite-for prop-

erty. The number of subproperties of the edns:requisite-for property

that are being implemented, depends on the number of components a

complex construction can possibly have.

To account for the form constraints which can hold in compositional con-

structions, the properties have been indexed with increasing numbers: 1

is followed by 2 etc.

The following paragraphs describe those complex constructions in detail

that are needed to for the analysis of the example sentence.12

As having been elaborated in Section 4.2, the following compositional con-

structions are included in our analysis of the example sentence, putting

all of the sentence’s components into their appropriate order:

• ECtoloG:NoArgClauseConstruction

12Please keep in mind that it is a subjective undertaking which constructions are
considered needed for a satisfying analysis.
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• ECtoloG:NomArgClauseConstruction

• ECtoloG:ClausePlusPathConstruction

• ECtoloG:CasePrepPathPhrase

First of all, the class ECtoloG:ClauseConstruction is created which con-

stitutes a subclass of the class ECtoloG:CompositionalConstruction. At

the same time, the class ECtoloG:ClauseConstruction is made a subclass

of the class ECtoloG:construction-parameter, as well, since clauses of-

ten are a part of more complex constructions. This way of modeling

enables the use of all clause constructions in more complex constructions

that are on a higher level of abstraction than simple clauses.

ECtoloG:ClauseConstruction

ECtoloG:CompositionalConstructionECtoloG:construction-parameter

subclass-ofsubclass-of

Figure 4.15: The class ECtoloG:ClauseConstruction
as subclass of ECtoloG:CompositionalConstruction and
ECtoloG:construction-parameter.

We will define that the meaning pole of a complex construction is deter-

mined to be a simple predication which is modeled in the ontology as a

ims:predication schema. To ensure this, we need to impose a restriction

on the edns:expresses property of ECtoloG:ClauseConstruction that

states that at least one value of the edns:expresses property has to be

of type ims:predication schema.

• 9 edns:expresses some ims:predication schema

Figure 4.16 displays a summary of what has been described.
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ECtoloG:ClauseConstruction

ECtoloG:CompositionalConstructionECtoloG:construction-parameter

subclass-ofsubclass-of

edns:expressesims:predication_schema

Figure 4.16: Clause constructions in the ECtoloG: The
class ECtoloG:ClauseConstruction as a subclass of
both classes ECtoloG:CompositionalConstruction and
ECtoloG:construction-parameter and linked as domain to the
range ims:predication schema via the edns:expresses property.

For the analysis of the example sentence, first, the three subclasses of the

class ECtoloG:ClauseConstruction are defined:

• ECtoloG:NoArgClauseConstruction

• ECtoloG:NomArgClauseConstruction

• ECtoloG:ClausePlusPathConstruction

Furthermore, the class ECtoloG:PathSpecifier is created. It is a subclass

of the class ECtoloG:Construction and ECtoloG:CasePrepPathPhrase

is its direct subclass. Figure 4.17 summarizes the network and inheritance

relations of those complex constructions in the ECtoloG. All mentioned

constructions will be described in more detail in the following paragraphs.

ECtoloG:NoArgClauseConstruction: As previously mentioned, this

clause construction has as its only constituent an inflected verb. Just like

all clause constructions, the construction inherits the edns:requisite-for

property from its parent construction. As the construction itself has

only one constituent, only one sub-property of edns:requisite-for is

created. This property is called ECtoloG:requisite NoArgClauseCxn.

A restriction is imposed on the construction stating that all values of

the ECtoloG:requisite NoArgClauseCxn property have to be of type
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ECtoloG:CompositionalConstruction

ECtoloG:CasePrepPathPhrase

ECtoloG:PathSpecifier

subclass-of

ECtoloG:Constructionsubclass-of subclass-of

ECtoloG:ClauseConstruction

subclass-of

ECtoloG:NoArgClauseConstruction

ECtoloG:NomArgClauseConstruction

ECtoloG:ClausePlusPathConstruction

subclass-of

subclass-of

subclass-of

Figure 4.17: Compositional constructions and path specifier in the EC-
toloG.

ECtoloG:verbConstruction. This way of modeling ensures that the sin-

gle component of that construction is of type ECtoloG:verbConstruction

(see Figure 4.18).

ECtoloG:NoArgClauseConstructionECtoloG:verbConstruction ECtoloG:requisite-NoArgClauseCxn

Figure 4.18: The ECtoloG:NoArgClauseConstruction: linked
via the ECtoloG:requisite NoArgClauseCxn property to
ECtoloG:verbConstruction.

ECtoloG:NomArgClauseConstruction: This clause construction can

include several constituents: referring expressions in the nominative and a

clause construction of any kind. Two sub-properties of edns:requisite-for
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are defined, at first, to ensure that this construction can actually combine

two other constructions into one unit and, furthermore, to ensure that the

first constituent precedes the second constituent.

The sub-properties are called ECtoloG:requisite NomArgClauseCxn1 and

ECtoloG:requisite NomArgClauseCxn2.

A restriction is imposed on the construction stating that all values of

the property ECtoloG:requisite NomArgClauseCxn2 have to be of the

specific type ECtoloG:ClauseConstruction. In this way the type of the

second component of that construction is determined. The just mentioned

way of constructional engineering also ensures that simple sentences like

Perrotta sits consisting of a referring expression and an inflected verb (be-

ing a NoArgClauseConstruction) would be captured by this construction

as well as more complex ones like our example sentence.

The second restriction states that the construction’s second component

has to be of type ECtoloG:ReferringExprCxn, i.e. the range of the

ECtoloG:requisite NomArgClauseCxn1 property is filled by the class

ECtoloG:ReferringExprConstruction. Figure 4.19 shows the modeling

of the form pole of this construction in the ECtoloG.

ECtoloG:construction-parameter

ECtoloG:ClauseConstruction

ECtoloG:ReferringExpCxn

ECtoloG:NomArgClauseConstruction

subclass-of

ECtoloG:ClauseConstruction edns:requisite-for

requisite_NomArgClauseCxn_1 subclass-of

subclass-ofrequisite_NomArgClauseCxn_2

Figure 4.19: The form pole of the ECtoloG:NomArgClauseConstruction
in the ECtoloG.

The restriction on the inherited edns:expresses property that links a

clausal construction to its meaning states that at least one value of that

property has to be of type ims:predication schema.13 This way, this

13See Section 2.4.1 on more information on the predication schema.
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clausal construction adds the meaning encoded in the predication schema

to the whole sentence.

ECtoloG:ClausePlusPathConstruction: This construction combines

any kind of clause with any kind of path specifier. Therefore, it needs two

subproperties of the edns:requisite property, one for each of its con-

stituents. The first subproperty states that its range has to be of type

ECtoloG:ClauseConstruction and the second one that its range has to

be of type ECtoloG:PathSpecifierConstruction. As depicted in Fig-

ure 4.17, the class ECtoloG:PathSpecifierConstruction is directly a

subclass of ECtoloG:Construction (see Figure 4.20). Its meaning pole

is filled with a ims:trajector-landmark schema, adding this meaning

to the clause ECtoloG:ClausePlusPathConstruction that is being con-

structed.

ECtoloG:construction-parameter

ECtoloG:PathSpecifierConstruction

ECtoloG:ClauseConstruction

ECtoloG:ClausePlusPathConstruction

subclass-of

ECtoloG:ClauseConstruction edns:requisite-for

requisite_ClausePlusPath_1 subclass-of

subclass-ofrequisite_ClausePlusPath_2

Figure 4.20: ECtoloG:ClausePlusPathConstruction: Its form pole mod-
elled in the ECtoloG.

ECtoloG:CasePrepPathPhraseConstruction: This clausal construc-

tion combines a preposition and a referent into one phrasal unit. It

is a subclass of the class ECtoloG:PathSpecifierConstruction. As

the class has two constituents, two subproperties of the edns:requisite

property are defined. For each of those properties constrains are de-

fined: While values of the ECtoloG:requisite CasePrepPathCxn1 have

to be of type ECtoloG:CasePrepConstruction, values of the property
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ECtoloG:requisite CasePrepPathCxn2, however, have to be of type

ECtoloG:referringExpressionCxn (see Figure 4.21).

ECtoloG:construction-parameter

ECtoloG:referringExpressionCxn

ECtoloG:CasePrepConstruction

ECtoloG:CasePrepPathPhraseCxn

subclass-of

ECtoloG:PathSpecifierConstruction edns:requisite-for

requisite_CasePrepPathCxn_1 subclass-of

subclass-ofrequisite_CasePrepPathCxn_2

Figure 4.21: ECtoloG:CasePrepPathPhraseConstruction: Its form pole
modelled in the ECtoloG.

Additionally, a constraint is imposed on the edns:expresses property

stating that at least one value of the edns:expresses property has to be

of type ims:trajector-landmark schema which results in the fact that

the meaning pole of this construction is denoted by that specific schema.

4.4.3 Modeling of Other Constructions

During the course of the last section, several constructions have been men-

tioned, that have not directly been addressed in the previous informal

constructional analysis in Section 4.2. They are, however, necessary to

successfully analyze the example sentence, including to completely com-

pose its meaning.14 The following briefly describes those constructions.

ECtoloG:ReferringExpressionConstruction: This class is a subclass

of the class ECtoloG:construction and includes referring expressions,

i.e. constructions that make reference to any kind of entity. Concrete

examples from our example sentence are, for instance, lexical construc-

tions like the ECtoloG:BodenConstruction for the German word Bo-

14Please note that with ’complete meaning’ we mean our subjective understanding
of completeness.
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den (engl. ground) or even more complex constructions like, for in-

stance, the ECtoloG:CasePrepConstruction. The meaning pole of the

ECtoloG:ReferringExpressionConstruction is filled with a subclass of the

class ECtoloG:schema, i.e. with an ims:Entity-Schema that denotes the

meaning of entities of any kind (see Figure 4.22).

ims:Entity-Schema

ECtoloG:schema

subclass-of

ECtoloG:ReferringExpressionConstruction

ECtoloG:construction

subclass-of

edns:expresses

edns:expresses

Figure 4.22: How the ECtoloG:ReferringExpressionConstruction’s
meaning pole is filled with ims:Entity-Schema.

ECtoloG:PathSpecifierConstruction: This construction is a direct

subclass of the ECtoloG:construction. Its meaning pole is filled with a

ims:trajector-landmark-schema. This happens through making it the

range of the edns:expresses property.

By linking the construction to the ims:trajector-landmark-schema, its

meaning is added to the clause that is being built by the construction (see

Figure 4.23).

ims:trajector-landmark-schema

ECtoloG:schema

subclass-of

ECtoloG:PathSpecifierConstruction

ECtoloG:construction

subclass-of

edns:expresses

edns:expresses

Figure 4.23: How the ECtoloG:PathSpecifierConstruction’s meaning
pole is filled with ims:trajector-landmark-schema.
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ECtoloG:CasePrepConstruction: This construction is a direct sub-

class of ECtoloG:construction. The meaning pole of the construction is

filled with a ims:trajector-landmark-schema whose meaning is added

to the clause that is being built by the construction (see Figure 4.24).

ims:trajectory-landmark-schema

ECtoloG:schema

subclass-of

ECtoloG:CasePrepConstruction

ECtoloG:construction

subclass-of

edns:expresses

edns:expresses

Figure 4.24: How the ECtoloG:CasePrepConstruction’s meaning pole is
filled with ims:trajector-landmark-schema.

More information on the sentence’s semantics and the mentioned image

schemas will be given below in Section 4.6.

4.5 Linguistic Information

Since linguistic information as grammatical gender, case, number, person

or part-of-speech of a word is needed for automatically analyzing natural

language texts, this information needs to be modeled, as well, in the EC-

toloG. The following sections firstly describe which linguistic information

we want to have encoded in the various constructions. Then our approach

of representing the mentioned information is described in detail.

4.5.1 Linguistic Information in Constructions

Constructions – mostly lexical ones but also more complex constructions

describing referring expressions – need linguistic information to enable

their successful application in higher level, i.e. compositional construc-

tions. With successfully we mean that, for example, the possibility to

check the agreement between a determiner construction and a noun con-

struction regarding case, number and gender, needs to be given.
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The information that is needed in lexical constructions is common lin-

guistic information as listed in standard dictionaries.

The German language has four di↵erent cases allowing flexibility in word

order since the actors of a sentence are marked by case and not by their

position in a sentence, as opposed to the English language where the role

of a referent can be determined by its position in a sentence, as English

has a strict SVO word order. The cases that need to be encoded in com-

mon noun constructions are nominative, genitive, dative, and accusative.

Additionally, information on number (singular or plural) and grammatical

gender of that noun in question has to be marked.

Constructions describing verbs have to include information on its number,

person, the verbform (inflected, infinitive, past participle and imperative)

and its tense (past or present).

In constructions describing determiners, case information, number and

grammatical gender needs to be encoded, as well. As can be seen, the same

information as for nouns is needed, since in the analysis process agreement

between determiner and noun constructions needs to be checked.

There is, of course, a vast amount of design choices that can be taken

now how to successfully encode grammatical and/or linguistic informa-

tion in a construction grammar. Within the same grammar formalisms,

di↵erent grammar engineers might take di↵erent decisions in how to en-

code this kind of information. In ECG, for instance, we have decided

to encode case information in separate constructions which serve as par-

ent constructions for the constructions that hold a specific kind of case,

whereas another ECG grammar engineer might encode case information

directly in the lexical construction itself.

In any case, the design choice we took for this work is to put linguistic

information in an ontological module that will be adapted to the onto-

logical modeling framework (see the next section for more details). This

way, even complete ontology classes or properties of the ECtoloG can be
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assigned to specific linguistic features as listed above, which presents the

main advantage of this approach besides the high reusability factor. In-

formation like this is mostly missing in today’s ontologies. Sometimes it

is represented in little elaborate fashion, leaving the semantic information

that is encoded in the ontology without grounding to the human linguistic

and cognitive domain. There are various approaches to model linguistic

information in ontologies as, for example, SKOS15, or alternative lexicon

models (see Section 2.3.5 for an overview). One of the main problems is

that most of these approaches put their focus on e.g. the definition of a

top ontology for lexicons and not on the assignment of linguistic features

for domain ontology classes and properties as desired in our case.16

There exists one model that partly fulfills the mentioned demands and

which we designed together with di↵erent partners within the SmartWeb

project [Wahlster, 2007] to provide the SmartWeb ontology with linguis-

tic information, i.e. the LingInfo model (see [Buitelaar et al., 2006] and

Section 3.5). We decided to model linguistic information in the ECtoloG

partly inspired by the structure of that model but integrating it more

tightly into the DOLCE/DnS/OIO framework. Therefore, it can be of

use for other ontologies in need of linguistic information, as well, provided

that those ontologies are based on the same foundational ontology. Ad-

ditionally, we avoid modeling redundant classes and properties and reuse

what is possible of the beforehand set-up framework.

The following section presents a detailed description of the integration

of linguistic information into the ECtoloG.

15http://www.w3.org/TR/swbp-skos-core-guide/
16See also Section 3.5 on more details on those approaches.
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4.5.2 Modeling Linguistic Information in the EC-

toloG

A first consideration has been to integrate the LingInfo model as is into the

ontological DOLCE framework where the ECtoloG is embedded. However,

we quickly encountered that the integration of the original LingInfo model

into the SmartWeb ontologies brought about several disadvantages:

1. The LingInfo model is quite separate from the ontology it is inte-

grated into. All LingInfo classes can be found at the same level as

the most upper class owl:class.

2. There are various classes and properties in the Ontology of Informa-

tion Objects that are equivalent in their meaning to the properties

and classes of the LingInfo ontology which results in redundantly

encoded information in the ontology.

A further point is that, generally speaking, linguistic information is imple-

mented in a less elaborate way in the OIO as it is defined in the LingInfo

model. Due to the mentioned shortcomings and the fact that linguistic

information could be modeled more elaborate in the ontological frame-

work we use in this work, we believe it makes sense to adapt the LingInfo

ontology exactly to our needs and integrate it more tightly into the on-

tological modeling framework that was described in the Section 2.3, to

be more specific, into the Ontology of Information Objects to receive a

tightly integrated linguistic component in our ECtoloG and to enable the

employment of this version of the LingInfo ontology within the founda-

tional framework of DOLCE/DnS/OIO within other domain ontologies.

Classes and properties of the OIO and DnS which are of value for our

model are adopted, classes and properties that are missing but necessary

in order to be able to represent the linguistic information listed above are

added to the model and are given the namespace LingInfo to uniquely

identify their a�liation to the LingInfo model.

To create the LingInfo model within the ontological framework a so-called
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meta-class needs to be introduced. A meta-class is a class whose in-

stances are themselves classes. This way you can ensure that a class can

have properties which are otherwise only applicable to instances but at

the same time retain the attributes of ontology classes.17 Meta-classes

are instances of owl:class. The class LingInfo:ClassWithLingInfo is

created as an instance of owl:class and is therewith a meta-class. The

class LingInfo:ClassWithLingInfo is linked via the LingInfo:linginfo

property to the class LingInfo:Linginfo. Instances of the so-calledmeta-

class LingInfo:ClassWithLingInfo are, therefore, again linked through

the LingInfo:linginfo property to instances of the LingInfo:LingInfo

class.

To ensure that constructions can be linked with their respective linguistic

information that is modelled in this ontology, every construction in need

of linguistic information is an instance of LingInfo:ClassWithLingInfo.

Every linguistic information is modelled as instance of LingInfo:LingInfo.

Figure 4.25 displays the inheritances of those classes and their relations

towards each other. A concrete example below will add further under-

standing to this theoretical modelling.

owl:class Metaclass
LingInfo:ClassWithLingInfo any ECtoloG

construction

LingInfo:LingInfo

LingInfo:linginfo LingInfo:linginfo

instance-of instance-of

instance-of any Linginfo
instance

Legend:

Each class in an ontology is an instance
of the class owl:class

Instances of owl:class; they are used to
be able to treat classes as instances

Individuals of a class

classes

meta-
classes

instances

Figure 4.25: The LingInfo structure in the ECtoloG.

To embed the Linginfo model into the ontological modeling framework

17See further https://www.w3.org/TR/owl-ref/; last checked May 22, 2022
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described in Section 4.1, LingInfo:LingInfo is made a subclass of the

class inf:linguistic-object. Now, each class that should have linguis-

tic information assigned to it, has to be an instance of the meta-class

LingInfo:ClassWithLingInfo.

In a next step, an instance of LingInfo:LingInfo has to be defined con-

taining the item that is linked to an instance of the class inf:word through

the property LingInfo:MorphosyntacticDecomposition.

All children of the class LingInfo:LingInfo also inherit the property

LingInfo:lang. This allows that the language ID can be assigned to

each instance of the class LingInfo:LingInfo.

As a next step, two subclasses of the class inf:word have to be created:

LingInfo:Stem and LingInfo:InflectedWordForm.

The class inf:word o↵ers the following relevant properties: LingInfo:case,

LingInfo:gender, LingInfo:partofspeech, and LingInfo:number. Ad-

ditionally to the complete structure of the LingInfo model as it is embed-

ded into the ontological modeling framework, the symbols that can fill the

range of those mentioned properties are listed in Figure 4.26.18

The class LingInfo:InflectedWordForm is the domain of the property

LingInfo:inflection whose range can in turn be filled with instances of

the class LingInfo:Affix. That class again has two subclasses, one con-

taining derivational a�xes and another one subsuming inflectional a�xes.

LingInfo:Affix is a subclass of inf:morpheme which again is a subclass

of inf:linguistic-object.

The class inf:morpheme is also connected to the class inf:word via the

property LingInfo:root. LingInfo:root connects instances of inf:word

to instances of the class LingInfo:Root, a subclass of inf:morpheme.

Additionally, the class inf:word has a subclass LingInfo:Stem which is

connected to it via the property LingInfo:isComposedOf. This property

is useful and necessary in cases where the stem is a complex one being

18The used namespaces make explicit when a class of the ontological modeling frame-
work is used.
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LingInfo:ClassWithLingInfo

linginfo LinginfoInstance*

LingInfo:linginfo

LingInfo:LingInfo

lang Symbol
de
en…

morphosyntacticDecomposition Instance* inf:word

inf:word

LingInfo:gender
male

female
neuter

LingInfo: 
partofspeech

symbol

noun
verb

determiner
preposition
pronoun

LingInfo:case

nominative
genitive
dative

accusative

LingInfo:number singular
plural LingInfo:Affix

LingInfo:InflectedWordForm

inflection inflectionInstance*

inf:word Instance* inf:word

LingInfo:inflection

LingInfo:InflectionalAffix

LingInfo: 
DerivationalAffix

inf:morpheme
LingInfo:Stem

isComposedOf Instance* inf:word

LingInfo: 
isComposedOf LingInfo:Root

subclass-of

subclass-of

subclass-of

subclass-of

subclass-of

symbol

symbol

symbol

LingInfo:root

LingInfo:morphosyntacticDecomposition

Figure 4.26: Classes and their properties to model linguistic information.

composed of various lexemes as e.g. in the term Fußballspieler, where the

stem of the word is composed of the terms Fußball and Spieler.

The design of linguistic information as described in the previous para-
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graphs entails that for each lexical construction a corresponding instance

of the class LingInfo:LingInfo needs to be modeled. Therefore, one

LingInfo:LingInfo instance for each lexical item in the example sen-

tence is defined.

Each of the lexical constructions for the lexical items representing the

example sentence is connected via the LingInfo:linginfo property to

their respective instance of LingInfo:LingInfo. This feature is given

since all classes of constructions are additionally to being subclasses of

the class ECtoloG:lexicalConstruction also instances of the meta-class

LingInfo:ClassWithLingInfo.

As the structure of modeling the linguistic information of lexical items

is pretty straightforward, the most complex one – which is the inflected

verb liegt – has been picked from the example sentence and will serve as

an example.

The class for the construction ECtoloG:liegtConstruction is linked to

the LingInfo:Linginfo instance LingInfo:liegt with the help of the

property LingInfo:linginfo. Figure 4.27 displays that structure.

owl:class Metaclass
LingInfo:ClassWithLingInfo

ECtoloG:
liegtConstruc

tion

LingInfo:LingInfo

LingInfo:linginfo LingInfo:linginfo

instance-of instance-of

instance-of LingInfo:liegt

Legend:

Each class in an ontology is an instance
of the class owl:class

Instances of owl:class; they are used to
be able to treat classes as instances

Individuals of a class

classes

meta-
classes

instances

Figure 4.27: Modeling linguistic information for the instance
ECtoloG:liegt.

Figure 4.28 presents the complete linguistic information that is modeled
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for the LingInfo:liegt instance in the ECtoloG besides giving some brief

explanation, similar to the model presented in Figure 4.26.

ECtoloG:liegtConstruction

LingInfo:liegt

lang Symbol de

LingInfo:morphosyntacticDecomposition

instance of LingInfo:linginfo

ECtoloG:liegt

partofspeech symbol verb

number singularsymbol

t

instance of 
LingInfo:InflectedWordForm
which is an instance of
LingInfo:WordForm

LingInfo:wordform

instance of 
LingInfo:InflectionalAffix 
which is an instance of
LingInfo:Affix

lieg_root instance of LingInfo:root

person symbol 3rd

lieg instance of 
LingInfo:Stem

instance of 
LingInfo:ClassWithLingInfo

LingInfo:linginfo

LingInfo:root

LingInfo:inflection

LingInfo:isComposedOf

Figure 4.28: Example LingInfo structure for the instance ECtoloG:liegt.

The described way of representing linguistic information of lexical con-

struction does not only present a model that can be reused in other on-

tologies where linguistic information is to be assigned to ontology classes

but also enhances the grammar formalism that is proposed in this work as
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the LingInfo model o↵ers a way of accounting for morphological features

of constructions. It can, for instance, provide a system with information

on the composition of complex stems, inflectional or derivational a�xation

of a term or of its root.

The following section describes how the meaning pole of constructions

is engineered and presents an ontological module containing basic image

schemas.

4.6 Schematic Meaning in Constructions

This section describes how constructional meaning is represented in the

ECtoloG. It first presents a basic hierarchy of image schemas. However,

the ontological framework does not only include image schemas as known

from cognitive science (see also Section 2.4) but also other frame-based

knowledge, resulting in a dense network of connected schematic and role-

based structures.

As already mentioned in previous chapters of this work, the meaning of

constructions can be contributed by schemas which constitute parameter-

based conceptual semantic feature structures. Section 3.6.1 briefly pre-

sented how other computational construction grammars deal with seman-

tic knowledge in their formalisms. The way how semantics is represented in

the ECtoloG relates strongly to how it is dealt with traditionally in ECG.

FCG being mainly agnostic in which semantic representation the engi-

neer chooses in the implementation, however, also has a way of presenting

frame-based knowledge, but this is mainly secondary choice by FCG gram-

mar engineers and the grammars that include frame-based semantics are

essentially proofs of concepts. [Micelli et al., 2009] describes such a proof

of concept and discusses its major issues. We refer the reader go Section

2.4 for a brief definition of frames and di↵erent kinds of schemas, which

are integrated into an ontology, as described in detail in the following

paragraphs.
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Where to integrate constructional meaning in the ECtoloG First

of all, it has to be determined, where exactly the image schema hier-

archy is going to be located within the ontological framework. To en-

able being employed in the meaning pole of constructions, the class of

ims:image schema is modeled as a subclass of the class ECtoloG:schema

in turn a subclass of edns:description (see Figure 4.29).

ims:image_schema

ECtoloG:schema

edns:description

subclass-of

subclass-of

Figure 4.29: Location of the image schema hierarchy in the ontological
framework.

Remember that a constraint has been imposed on what actually can fill

the meaning pole of an ECtoloG:construction – repeated below for

the readers convenience – stating that at least one of the values of the

edns:expresses property is of type ECtoloG:schema:

• 9 edns:expresses some ECtoloG:schema

As a result, anything that is located below the class ims:image schema

can provide a meaning for an ECtoloG:construction.

The Image Schema Ontology First of all, those schemas that are

consistently repeated and intensely discussed in the traditional cognitive

linguistics literature are collected, to define an ontological model contain-

ing the most important image schemas needed for language understanding

(see Figure 4.30).19 The is-a relation holds between the classes and denotes

that a certain schema is a subclass of another one.
19Please note, that we do not claim that this collection of image schemas is in any

way complete or carved in stone. It rather presents a suggestion to be elaborated
further depending on specific needs of an application scenario.
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Figure 4.30: A suggested hierarchy of the most important image schemas.
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Primarily, the findings are based on schemas mainly described by Lako↵,

Johnson or both [Lako↵ and Johnson, 1980, Johnson, 1987]. The motion

schemas that have been added to this basic hierarchy have been suggested

by Mandler [Mandler, 1992]. Some of the natural language examples are

taken from [Loos et al., 2004].

Five categories of image schemas have been defined, each category con-

taining in turn further schemas:

Category 1: Spatial image schemas ims:space schemas:

• ims:verticality schema [Johnson, 1987]: A verticality schema is

an image schema that involves up and down relations as, for instance,

standing upright, climbing stairs [Loos et al., 2004] or watching wa-

ter rise in a pool.

• ims:center-periphery schema [Lako↵, 1987, Johnson, 1987]: This

is an image schema that involves a physical or metaphorical core

and edge, and degrees of distance from the core. Examples are an

individual’s social sphere, with family and friends at the core and

others having degrees of peripherality ([Loos et al., 2004]).

• ims:up-down schema [Lako↵, 1987]: An up-down schema is a spatial

image schema that is used with a respect to a vertical axis. Natural

language examples are - mostly metaphorical - as in “sad is down”

or “happy is up” ([Lako↵ and Turner, 1989, p.275]).

• ims:front-back schema [Lako↵, 1987]: A spatial image schema de-

noting the location or an object with respect to another one.

• ims:near-far schema [Johnson, 1987]: Given a center and a pe-

riphery, the near far schema is experienced as stretching along our

perceptual or conceptual perspective [Lako↵ and Turner, 1989, p.125]

• ims:contact schema [Johnson, 1987]
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• ims:straight schema [Cienki, 1997]

• ims:left-right schema [Clausner and Croft, 1999]

Category 2: Locomotion image schemas ims:locomotion schemas:

• ims:locomotion schema [Dodge and Lako↵, 2005, p.72-84]: The lo-

comotion schema includes various roles as gait, speed, e↵ort and

body parts. Therefore, di↵erent kinds of locomotion can be distin-

guished from each other by for instance their speed. For instance,

crawling or run are two motion types that involve a locomotion

schema and distinguish each other by speed and by the body parts

that are involved in the movement.

Category 3: Motion image schemas ims:motion schemas: Motion

schemas as defined by [Mandler, 1992] involve a kind of animacy whereby

animate objects are able to fulfill a movement on their own while inanimate

objects need an external force to move.

• ims:inanimate-motion schema [Mandler, 1992]: An inanimate mo-

tion schema involves a kind of force applied to the object that fulfills

the motion. A natural example is the verb push.

• ims:animate-motion schema [Mandler, 1992]: An animate motion

schema is an image schema that is active when animate objects fulfill

motions on their own, like walking.

• ims:self-motion schema [Mandler, 1992]: Mandler defines the im-

age schema of self motion as a kind of animate motion schema where

an object fulfills a movement without an external force.

• ims:caused-motion schema [Mandler, 1992]: A caused motion im-

age schema is a kind of inanimate motion schema that involves the

external force to be set in motion.
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Category 4: Containment image schemas ims:containment schemas:

Containment schemas are image schemas that are composed of the follow-

ing physical or metaphorical entities:

• a boundary

• an enclosed area or a volume

• an excluded area or an excluded volume [Lako↵, 1987, Johnson, 1987].

The following image schemas belong to the category of containment image

schemas:

• ims:container schema [Lako↵, 1987, Johnson, 1987]

• ims:surface schema [Johnson, 1987]

• ims:full-empty schema [Johnson, 1987]

Category 5: Force image schemas ims:force schemas: [Johnson, 1987,

42-44] Force schemas are image schemas that involve causal interaction in-

volving the following entities:

• source and target

• direction and intensity

• path of motion of both the source and the target

• a sequence of causation [Loos et al., 2004].

• ims:force schema [Lako↵, 1987]: A natural language example for

the force schema is wind or gravity. A metaphorically example is

love as a physical force.

• ims:attraction schema [Lako↵, 1987, Johnson, 1987]: An attrac-

tion schema is active when an object pulls another object towards

itself by asserting either a physical or a metaphorical force on another

object. Examples are magnetism, gravity, or romance [Loos et al., 2004].
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• ims:balance schema [Lako↵, 1987, Johnson, 1987]: A balance schema

involves two counteracting forces (both physical or metaphorical).

An example is a temperature.

• ims:blockage schema [Lako↵, 1987, Johnson, 1987]: A blockage schema

is a force image schema that involves a force that is blocked by an

obstacle.

• ims:compulsion schema [Lako↵, 1987, Johnson, 1987]: A compul-

sion schema is a force image schema that included an external force

pushing an object (metaphorically or physically). An example is the

experience of a person being pushed by strong wind.

• ims:counterforce schema [Lako↵, 1987, Johnson, 1987]: A coun-

terforce schema involves at least two opposing forces that meet either

physically or metaphorically. An example is a soccer game where two

opposing teams fight against each other.

• ims:diversion schema [Lako↵, 1987, Johnson, 1987]: A diversion

schema is a force schema that involves a force that e↵ects a redi-

rection, e.g. being directed o↵ course by a strong current while

paddling.

• ims:enablement schema [Lako↵, 1987, Johnson, 1987]: An enable-

ment image schema is a force schema that involves having the power

to perform an action.

• ims:restraint-removal schema [Lako↵, 1987, Johnson, 1987]: A

restraint-removal schema is a schema that involves the removal of a

barrier to an action of a force.

Interschematic Relations Having determined which schemas build

the foundation of the image schema ontology, the relations that hold in-

between the schemas are to be defined. Due to the fact that the image

schemas are embedded in an ontological framework, those relations can go

beyond simple inheritance and can result in a semantically dense network.
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Literature is rather scarce on that topic, which means that the relations

are defined according to our understanding on the schemas’ usage and

function.

Following the assumption made in Embodied Construction Grammar and

being grounded in Cognitive Grammar [Langacker, 1987] and Frame Se-

mantics [Fillmore, 1982], schemas can be evoked by or can evoke other

schemas, i.e. particular schematic roles of another schema can be im-

ported into and thereby made accessible to another schema. A schema

can, therefore, be defined against the background of another schema (see

Section 3.2.4 on the evokes operator). This evokes relation can find its

place within the ECtoloG: The property ECtoloG:evokes and its inverse

counterpart property ECtoloG:evoked-by are defined as subproperties of

the edns:generically-dependent-on property and its inverse property

edns:generic-dependent, respectively (see Figure 4.31).

edns:generically-dependent-on

parent properties

edns:generic-dependent

subproperties

ECtoloG:evokes ECtoloG:evoked-by

Figure 4.31: Definition of the ECtoloG:evokes and its inverse counterpart
property ECtoloG:evoked-by in the ontological framework.

Generic dependence is a relation that has already been modeled in the

foundational ontology and has been defined as the dependence on an in-

dividual of a given type at some time. In our understanding, this rela-

tion models the possibility of creating copies of information objects that

take place or exist some place or some time. We suggest that there is

a generic dependence between schemas that evoke other schemas or be-

tween schemas that are evoked by other schemas, respectively. Therefore,

the previously mentioned properties edns:generically-dependent-on

and edns:generic-dependent are determined as parent properties of

the properties ECtoloG:evokes and its corresponding reverse property
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ECtoloG:evoked-by.

Schematic Roles As a first approach, schema roles were modeled as

instances or classes, depending on the schemas’ nature. It seemed obvious

to us that roles should be treated as ontology classes or instances, respec-

tively. However, a vast amount of problems arose thereby which lead to

a di↵erent approach solving those issues: Schematic roles are modeled as

properties in the ECtoloG, instead. The first approach is shortly sketched

out in the subsequent paragraph, pointing out the main problems arising

by having taken the firstly mentioned modeling approach. Afterwards,

the second approach is described in the subsequent paragraphs.

Modeling Schematic Roles as Instances or Classes In our first ap-

proach of modeling schematic roles an ontology class ims:schematic-role

is defined as a subclass of the edns:concept class, as depicted in Figure

4.32.

ims:schematic-role

edns:concept

subclass-of

Figure 4.32: Definition of the class ims:schematic-role in the ontological
framework.

According to the specification of the DnS ontology, a concept is classi-

fied as a non-physical object which again is defined by a description. Its

function is classifying entities from a ground ontology in order to build

situations that can satisfy the description. Schematic roles are parame-

ters that allow other schemas or constructions to refer to the schema’s

key variable features. For instance, the role of a trajector in a trajector-
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landmark schema can be played by the same entity that denotes the mover

in a caused motion schema.

In the image schema ontology, schematic roles are modeled with the help

of the edns:defines property, at first. This means that a schema defines

its schematic roles by this property, as graphically displayed in Figure

4.33.

ims:schematic-role

edns:concept

subclass-of

ims:schema

edns:description

subclass-of

edns:defines

edns:defines

Figure 4.33: Being a subclass of edns:description, the class
of ims:schema inherits the edns:defines property. The class
edns:schematic-role can fill the property’s range.

The following restriction on the class ims:schematic-roles is defined:

• 9 edns:defined-by some ims:schema

It determines that at least one of the values of the edns:defined-by

property is of type ims:schema. The domain of the edns:defines prop-

erty is edns:description. As the class ims:schema is a subclass of

edns:description, it can fill the property’s domain. Its range, how-

ever, is set to either edns:concepts or edns:figures. As previously

mentioned, the parent class for schematic roles is edns:concepts, which

automatically makes it a possible candidate for the property’s range. The

cardinal problem occurring hereby is that it is not possible to fill the roles

by entire ontology classes. This, however, is necessary in a lot of cases,

since the parameters of a schema do often not refer to atomic values but

possibly to whole classes of entities. An example is the Source-Path-Goal

schema as depicted in Section 2.4.1, where the source or the goal can be a

landmark that in turn can be any kind of referent. Here we would need to
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use a class denoting spatial referents as the range for the edns:defines

property – not a single instance of that class. This problem is not to

be overcome in another way than to model schematic roles as properties,

instead.

Modeling Schematic Roles as Properties Each role of each single

image schema is represented by a certain property. The domain of the

respective property is set to the corresponding schema class, while its

range is set to the corresponding class whose subclasses and instances can

possibly fill its range (see Figure 4.34).

range:
class or instance that can fill the 

range of the schema role

domain: 
schema class schema role

Figure 4.34: Schematic roles as properties with a schema class as domain
and a class whose subclasses and instances can fill its range.

This way, the problem mentioned in the previous paragraph that roles

cannot be filled by ontology classes is overcome: It is now possible to fill

roles of schemas either with complete classes or with single instances of

classes.

The following section goes into detail of which FrameNet frames have been

integrated into the ECtoloG.

4.7 Schemas: Frames

A detailed definition of Frames has already been given in Section 2.4.2.

They are the building blocks of FrameNet, an online database containing

more than ten thousands of English lexical units, annotated with their

corresponding semantic frames. The following describes how the Kick-

tionary has been integrated into the ECtoloG (see Section 2.4.2 for a brief

description of the Kicktionary and a brief motivation for its usage in this

work).
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Integration of the Kicktionary As a first step, it has to be investi-

gated if frames, scenarios or even both comply with schemas as they are

defined in this work. Scenarios, as defined in the Kicktionary, correspond

to events taking place during a soccer game. A scenario can be described

as a schema, listing all the roles that are later inherited by the frames

which are subordinates of the respective scenario.

A concrete example is the Scenario Chance listing the following roles:

• goal, team, opportunity, player, source, shot

The Frame Create Chance needs the following roles:

• goal, team, player

Unfortunately, there is no is-a relation between Scenarios and Frames.

This means that the Kicktionary’s hierarchy of Scenarios and Frames can-

not automatically be integrated into the ECtoloG. Instead, the integration

has to be conducted manually, thereby carefully deciding on the relations

that hold between them.

For now, it is assumed, that either a is-a relation or a evokes relation

holds between Scenarios and Frames. However, future work might include

a more thorough investigation if this issue is true for all Scenarios and

Frames, also for all of those encoded in the FrameNet database, and to

find out a way how to automatically map the roles between constructions

and frames, scenarios and schemas. This is, however, not in the scope of

this work.

4.8 Sum Up: What Have We Gained So

Far?

In the previous chapter, we described the concrete engineering of the EC-

toloG. We showed exactly how simple and complex constructions and

schemas are modeled and which external knowledge bases can be included

and how. At this point, we would like to pause for a moment and sum
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up which benefits and which advantages might so far be won with the

modeling of a constructional grammar within an ontological framework.

At this point, the benefits of the resulting ontological framework can be

summed up as follows:

• Formal Construction Grammar: The ontological framework in-

cludes construction grammar’s major components, which are con-

structions on di↵erent levels of abstraction, i.e. complex and simple

ones. It o↵ers those constructions a solid, well-grounded foundation

into which they can be integrated and benefit from its format.

• Semantically Well-Defined Relations: Constructions in the EC-

toloG can now be connected with semantically rich relations going

beyond inheritance relations as the ontological framework o↵ers a

well-defined, dense semantic network.

• Image Schema Ontology: The ontological framework includes a

basic image schema ontology, where most important image schemas

are collected and semantically related to each other. Those seman-

tically well-defined relations come with the ontology they are in-

tegrated into. Additionally, the image schema ontology o↵ers an

extendable base that could serve other scientists as a base.

• Focus on Semantics To our knowledge, the ECtoloG is far more

fine-grained, well-defined and semantically dense than the ontologies

used currently in other Construction Grammar formalisms.

• Applicability: There is no need for a dedicated editor for either

modeling the grammar or visualizing it as state of the art ontology

editors as, for instance, protégé can be used.

• Reusability: Its standardized format guarantees reusability of the

model. In addition, it allows the reuse of already existing modules

as we previously saw, like the Kicktionary or the LingInfo model.
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• Extensibility: The ECtoloG o↵ers an interface where further Frames,

Scenarios, and of course constructions can be integrated. Domain

ontologies or other modules to cover certain phenomena that are

needed can be integrated in a straightforward way given they are

based on the same foundational ontology. In addition, it allows to

reuse existing ontology learning models to automatically extend and

populate the ontology.

• Relevance: The undertaking is relevant in theoretical and com-

putational linguistic. We aimed at describing everything in a com-

prehensive way so it can be used, reconstructed or extended by the

interested research community.

• Coverage: Currently, the grammar contains approximately 150

classes and 500 instances. To extend the lexicon, semi-automatic

methods might be of most value as proposed in the next chapter.20

• Representation: Its standardized, state-of-the-art ontological for-

mat format makes the ECtoloG comparable to other ontologies based

on the same foundational ontological framework.

• Editability: The amount of expertise to edit the grammar is con-

sidered reasonable. The user group might be extended by using

a known and standard ontological format from standards gramamr

engineers to ontology experts and engineers. Existing editors of-

fer a vast amount of accessible learning materials that allow quick

onboarding.

• New Format that Opens New Possibilities: The ECtoloG of-

fers a new framework of formalized construction grammar based on

ontologies to be experimented with.

Of course, the model does not come without flaws. As every grammar

and ontology engineering e↵ort, it does include a huge amount of manual

20You can find the ECtoloG and a readme file including exact numbers on the ac-
companying USB stick.
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work. However, future work might include the incorporation of various

machine learning mechanisms. This issue will further be discussed in the

final Chapter 6.

The following chapter focuses on an example application of the engineered

ontological model and describes the di↵erent steps taken in that process.





Chapter 5

Application and Population

This chapter describes an example how the ECtoloG could be utilized in

an NLP system that uses ontology-based knowledge sources. The main

idea pursued in this example is the following:

Given a domain-specific ontology – incorporated into the ECtoloG – which

models processes and objects that are particular for that specific domain,

natural language processing and partial natural language understanding

is performed with the help of a constructional analyzer, using the infor-

mation from the ECtoloG as its knowledge source.

Additional tools are described that provide a representation of the pro-

cessed sentences in RDF triples at the end of the complete application

flow. The last section of this chapter presents a way how to automatically

populate the ECtoloG with instances to increase its coverage.

5.1 Ontological Levels

Briefly recapitulated, the ECtoloG is assumed to present an ontological

framework – together with the foundational ontology it is based on and

with all additional modules that have been integrated, as for instance the

image schema hierarchy or the LingInfo model, as presented in detail in

the Sections 4.6↵. of the previous chapter. The main benefits have just
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been summarized, one of them being its extensibility: A domain-specific

ontology can be plugged into this framework and represent the knowledge

source in form of constructions and schemas that might be needed for

processing example sentences from that specific domain. As important

as the constructional and schematic format are the well-defined relations

between those constructs. The domain ontology has to additionally meet

the requirement that its format is compatible with the ECtoloG’s format.

As the ECtoloG is, however, built in OWL, representing the state of the

art in ontological modeling, this requirement is not expected to represent

a problem.

To ensure that the ECtoloG is as simply extensible as possible, it has

been divided into di↵erent levels, depending on the nature of the ontology

classes. Each of those levels is supposed to be extensible in one way or

another, especially the ECtoloG’s coverage, however, has to be extensible

so that it can potentially be used not only for domain-specific but also for

domain-independent natural language processing.

The lowest level of the ECtoloG contains domain-specific constructions

and schemas, representing objects and processes typical for that domain

on a separate level, called domain layer. On top of this level, you find the

domain-independent layer, containing domain-independent constructions

and corresponding schemas. Followed by the foundational level. Figure

5.1 shows the layered design of the ECtoloG.

The foundational layer consists of the DOLCE ontology, and its ex-

tensions DnS and OIO (see Section 3.4. It constitutes the ontological

foundation the ECtoloG has been built on. The domain-independent

layer then contains both abstract constructions as, for instance, lexical

ones and abstract schemas like the ECtoloG:schema definition. Those

schemas and constructions are assumed to be that general that they occur

in several di↵erent domains. They are still on a higher level of abstraction

than concrete constructions and schemas contained in the domain layer,

and include main parts of the image schema hierarchy as described in
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Section 4.6. Then, there is the additional domain layer that includes

domain-specific constructions and corresponding schemas. Examples for

those instances are the ECtoloG:FußballspielerConstruction and the

corresponding ECtoloG:FußballspielerSchema. Detailed examples for

both domain-specific constructions and schemas have already been given

in the Sections 4.2↵., where an example sentence from the soccer domain

has been constructionally analyzed, first informally and then using con-

structions and schemas as formally represented in the ECtoloG.

The resulting ontological model presents a rich knowledge base with densely

intertwined semantic relations holding between its classes and instances,

which can possibly be used as a knowledge source for a parser, analyzing

natural language. Given that we assume a construction grammatical ap-

proach to language processing, both form and meaning, we need a parser

that takes into account both of these phenomena. As argued in the be-

ginning of this work, the complete meaning of a sentence is not covered

by the mere sum of its parts but complex constructions might add signifi-

cantly to the meaning. Therefore, we have been searching for a construc-

tional analyzer that fulfills standard parsing techniques, working out the

grammatical structure of natural language sentences based on both their

constructional and their schematic composition which yielded exactly two

results: One that is included in the Fluid Construction Grammar frame-

work and uses FCG grammars as input and one that uses ECG grammars

as its input. There is no constructional analyzer yet that takes a grammar

formalism in ontological format as its input.

As the implementation of such a constructional analyzer is not in the scope

of this work and the ECtoloG is heavily based on Embodied Construction

Grammar (and also because the output of the analyzer that is used in

ECG is currently preferred by the author as it appears to be easier to be be

grasped), it has been decided to use the secondly mentioned constructional

analyzer. The following sections describe the various steps of an example

analysis in detail.
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Figure 5.1: The di↵erent ontological levels in the ECtoloG.
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5.2 Application Flow

This section describes the application flow, detailing each step of the com-

plete processing cycle. It stays on a more abstract level in describing them,

while later sections in this chapter detail a concrete application example

(see Sections 5.3↵.).

Figure 5.2 shows the complete processing cycle, which is described in detail

the following sections below.

text

Parser Input

Constructional Analysis 
of the Text

Parser Output

ECtoloG

input

parser-
readable 
format

input

2. converted to

output

output

 7. converted to

6. 
semantic 

specification

1. corpus

RDF

5. integrate

parser-readable 
format

3.
constructional 

analyzer

4. 
unknown 

constructions

Figure 5.2: Example processing cycle on how to use the ECtoloG with the
constructional analyzer.

Parser Input

1. Corpus: The corpus used in this work includes domain-specific nat-
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ural language sentences. The chosen domain is the soccer domain

and the corpus contains sentences from a news ticker from di↵erent

soccer matches. Section 5.3.1 gives more details on the corpus, the

language used therein, as well as on its creation.

2. Format Adaptation: Conversion from ECtoloG format into

parser-readable format: The parser that is being used can con-

structionally analyze sentences. To perform the analysis, it needs a

construction grammar as its input. The parser has been designed

to utilize grammars in ECG format.1 Now, there are two ways to

overcome this incompatibility and to be able to use both the EC-

toloG and the constructional analyzer: First, the analyzer has to

be adapted to take grammars in ontological format as input, or,

second, the ECtoloG needs to be converted into parser-processable

format. In this work, the decision has been made to choose the sec-

ond approach. The proposal of changing the format of the ECtoloG

to be parser-readable is of course against many of the advantages

and values the ECtoloG brings, especially when it comes to values

like the state of the art in knowledge representation that increases

e�ciency when it comes to reusability or extensibility. However, it

would go heavily beyond the scope of this work to now implement

a constructional analyzer that can use the ECtoloG as its input

grammar. Other tools like editors or reasoners can be used with

the ECtoloG out of the box and these advantages are not to be ne-

glected. Plus, an example analysis might motivate someone else to

implement a constructional analyzer that takes ontologies as input

in another research project.

Constructional Analysis of the Text

3. The constructional analyzer that is used for parsing in this work is

described in [Bryant, 2004]. The parser is robust enough, to deal

1For more information, see the introduction to ECG and the syntax of some example
constructions in Section 2.2.3.
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with non-grammatical or incomplete sentences. The parsing pro-

cess can be divided into two sub-processes: semantic chunking and

semantic integration.

Similarly to the Abney parser [Abney, 1996], the constructional an-

alyzer works on di↵erent levels. Constructions can belong to a spe-

cific level, depending on their level of abstraction. Lexical construc-

tions, for instance, are level 0-constructions, while a relative clause-

construction might be on level 4. The parser works bottom-up, and

starts with level 0 constructions, i.e. with the lexical constructions.

Then bigger chunks are analyzed, like noun phrases or prepositional

phrases. The analysis is complete when there are no more units to

be analyzed and no more constructions to be applied.

So-called construction recognizers do not only search for syntactic

units in a sentence, but also check the semantics of those units once, a

construction can be applied. The parser also performs backtracking

and goes back to a point in analysis where it had several choices

when coming to the end of an analysis without having parsed the

complete sentence, yet. Then it tries another track until it finds a

satisfying analysis. The final step in the analysis process is to check

if the constraints in the feature structures are met. Parts of the

analysis are stored in a chart.

In the final step – called semantic integration – those chunks that

include the complete sentence are put together. Those analyses that

include more semantic features are ranked higher then those where

not all features and constraints are satisfied.

Parser Output

4. Dealing with Missing Constructions: In case the constructional

analyzer discovers a construction it does not yet recognize during an

analysis process, it returns a message, that the construction is not

yet present in its grammar. This construction has to be added to

its input grammar. This can happen automatically, by triggering an

external ontology learning mechanism or manually (see next step).
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5. Ontology Extension: In case the ontology has to be extended,

the manual process, as described in detail in Chapter 4.4, is per-

formed. Automatic or semi-automatic ontology learning mechanisms

could be applied, as introduced, for example, in [Cimiano, 2006] or

in [Litz, 2010].

6. Semantic Specification: In case the constructional analyzer does

not find any unknown constructions in the analysis process, it out-

puts a so-called semantic specification (SemSpec) of the processed

sentence. The semantic specification lists those schemas that are

needed for understanding that sentence. Co-indices unambiguously

mark identical entities in the sentence. The following section will

present a semantic specification resulting from parsing an example

sentence.

7. Format Adaptation: Automatic Conversion into RDF: To be

more compliant with ontological formats and with the way how infor-

mation is represented in the web, the SemSpec should be converted

into an ontological format. It has been tested how to automatically

convert it into RDF. How exactly that conversion process works will

be explained in more detail in Section 5.3.5.

5.3 Concrete Application of the Processing

Cycle

The focus of this section lies in describing a concrete example application

of the workflow that has been briefly illustrated in the previous section.

5.3.1 Corpus Creation and Description

As previously mentioned, construction grammar’s strength lies in how it

represents both form and meaning of a linguistic unit. Also, in how it deals

with real, occurring language, that uses metaphors, partial language, or

new terms, invented on the spot. The corpus that is used in this work
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contains data like that. That data has automatically been collected from

the ARD live news ticker, containing comments on soccer games of the

FIFA soccer world cup in 2006.2

The match report describing the match Italy against France and more

concretely the example sentence in (3) will serve as the showcase.

(3) Perrotta liegt am Boden.

Perrotta is lying on the floor.

As mentioned, the news tickers contain comments on soccer matches. Each

minute of a match there are one or two new messages which are posted on

the web site. The sentences are full of information and relatively short.

Structured and semi-structured content that is embedded inside HTML

documents can be extracted reasonably well, using increasingly automatic

wrapper systems, as for instance presented in [Kushmerick et al., 1997]

or [Simon, 2005]. Text wrappers, also called agents, can extract natural

language data from web pages. Those texts can then be processed further,

as described in the previous section. The text wrapper agent extracts text

from a website when given a specific URL and stores that text into a

text file. The data collected in the text file still needs to be cleaned.

The cleaning process includes the removal of HTML leftovers, does minor

substitutions of signs or new lines, and splits the text into one single

sentence per line. The time tags of the events are kept, as those might

become useful at some later point in time.

2Due to a change in law, the mentioned sites do not exist anymore and the news
tickers are no longer available online. The law states that data like that has to be
deleted after a year.
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5.3.2 Conversion from ECtoloG into Parser-Readable

Format

Table 5.1 shows both the number of constructions and schemas that are

needed for the analysis of example sentence (3).3 The respective ECtoloG

containing all those constructions and schemas, as well as a list containing

the converted versions of those constructions and schemas, is attached to

this work and can be inspected on the accompanying USB stick.4

Constructions Schemas
total 23 23
domain independent 18 19
domain specific 5 4

Table 5.1: Amount of constructions and schemas needed to construction-
ally analyze the example sentence Perrotta liegt am Boden.

Constructions or schemas are counted as being domain independent when

it is likely that they occur in other domains as often as they occur in this

one. Else, they are domain-specific, as is, for instance the name of a soccer

player, like Perrotta.

5.3.3 Constructional Analyzer: Parsing of the Sen-

tence

This subsection provides a short description of the parsing process of the

example sentence. We refer to [Bryant, 2004] for further details on the

analyzer’s architecture and parsing processes.

The constructional analyzer performs semantic analysis by means of a

3Note, that as in every work dealing with linguistic analyses, this analysis contains
many subjective decisions. There are numerous ways to constructionally analyze that
sentence, depending not only on how fine-grained the analysis might be, i.e on how
small the smallest linguistic unit is, but also on how the semantics of the constructions
are represented.

4Note that the ECtoloG contains many more constructions and schemas, however,
the ones listed in the table are the ones that are needed for the constructional analysis
of the example sentence and where we put the current attention on.
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semantic chunker and a chart. It analyzes semantics and syntax in par-

allel. During the analysis constructions and schemas that represent the

semantics of the sentence are retrieved and finally arranged in a so-called

semantic specification (SemSpec) of the sentence. This semantic specifica-

tion is constituted by a coindexed lattice of schema instances. In the next

section the resulting SemSpec of the example sentence can be inspected.

Since no unknown constructions were discovered in the analysis of the

example sentence, the next two steps of the application flow dealing with

how to deal with unknown constructions can be skipped, and the reader is

referred to Section 4.4 and the respective literature on automatic ontology

extension.

5.3.4 Semantic Specification

The parser outputs a semantic specification for each processed sentence.

This SemSpec is a graph and an example is displayed in Figure 5.3. It

represents the resulting SemSpec for the example sentence in 3.

Ground1 of type Ground 

SelfMotion1 of type SelfMotion 
        protagonist:  {Entity5} 
        means:  {Lie1} 
        path:  {TrajectorLandmark3} 

TrajectorLandmark3 of type 
TrajectorLandmark 
        trajector:  {Entity5} 
        landmark:  {Ground1} 
        relation:  {"am"} 

Lie1 of type Lie 
        path:  {TrajectorLandmark3} 
        executor:  {Entity5} 
        scene:  {SelfMotion1} 
        smscene:  {SelfMotion1} 

Entity5 of type Perrotta 
        distribution: single 
        givenness: namedEntity 
        sex: male 
        status: player 
        name: SimonePerrotta 

Figure 5.3: SemSpec for Perrotta liegt am Boden.

The semantic specification lists the schemas that are necessary for under-

standing that sentence. First comes the name of the instance then its type

followed by the roles that are part of the schema. When a role is linked

to another schema, its value is listed in brackets. When it is a symbol, it
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follows the colon after the role name. Roles that denote the same entities

are referring to each other by the co-indices following their schema name.

Figure 5.3 displays five schemas that jointly determine the meaning of the

sentence: a ground schema, a self-motion schema, a trajector-landmark

schema, a lie-schema and an entity schema..

• Ground1: According to the specification, Ground1 is an instance of

the ground schema. This is indicated by saying that it is of type

Ground.

• SelfMotion1: This schema is of type SelfMotion. This schema has

three roles: protagonist, means, and path. The values of these

roles are embraced in brackets.

• TrajectorLandmark3: The TrajectorLandmark3 is an instance of

the TrajectorLandmark schema. IT has three roles: trajector,

landmark, and relation. The values of these roles is embraced in

brackets.

• Lie1: This schema is of type Lie. It has four roles: path, executor,

scene, smscene. The values of these roles is embraced in brackets.

• Entity5: This schema is of type Perrotta. The schema has five

roles: distribution, givenness, sex, status and name. The values

of these roles is embraced in brackets.

In a next step, the graph can be converted into ontological format. This

way, it is made interpretable by tools taking ontologies as input. We

propose RDF triples as output so that RDF validators can be used for

verification. The following section describes the conversion in more detail.

5.3.5 Automatic Conversion into RDF

This section describes the automatic conversion of the semantic specifica-

tion into RDF with the help of a rule-based conversion tool, that we have

implemented in the context of a previous research project. The tool has
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been named *2RDF tool and its source can be found on the accompanying

USB stick.5

Using the rule-based *2RDF tool, RDF instances can automatically be

generated based on a semantic specification in a process consisting of the

following steps:

1. Mapping: The first step includes the mapping from the source

structure elements to the target structure elements, i.e. from schema

instances, or roles to corresponding ontology concepts:

The transformation process starts by defining simple mappings to

create RDF instances for each node. If the source tag set is identi-

cal to the ontology’s naming of concepts and properties no mapping

rules are required. The mapping-engine, then, derives the appropri-

ate concepts and properties from the ontology.

Otherwise, a tag can be mapped manually to an ontology concept or

a property. Lists of instances can be converted if declared as a list.

Lists may, however, violate the hierarchical concept/property order

and have to be declared using a list rule list <tag>, where < tag >

indicates that all nodes beneath this list node will be interpreted as

concept - fillers for the property defined by the parent node of the

list tag. Additionally, there is a maplist rule, which has a concept

tag as parent node. Here, the property has to be provided with the

rule, the list node will be mapped to this property.

2. Expansion: Most ontologies model the world in a very fine-grained

way. Oftentimes, more fine-grained than it is described on web

pages. Ontology axioms, for example, may require to distinguish be-

tween roles and types, endurants or perdurants (see Section 2.3.4).

Therefore, the expansion rules are defined in a way to cover such

cases. Expansion rules are production rules that anchor on onto-

logical concepts or properties. When these anchors occur during

5For a brief description of RDF, the Resource Description Framework, see Section
2.3.2.



170 Chapter 5 – Application

the transformation, additional instances are potentially inserted at

that place generating additional instances to conform to the target

ontology axioms.

3. Merging: Redundant instances are merged.

The SmartWeb ontology6 is used as a reference ontology for the *2RDF

tool for the conversion of SemSpecs into RDF triples. Using a di↵erent

ontology than the ECtoloG enables us to test the conversion of SemSpecs

from di↵erent domains than just the soccer domain as the SmartWeb

ontology combines various distinct domain ontologies, besides a domain

ontology containing concepts from the language used in the soccer do-

main. Therefore, mapping rules for the SmartWeb’s ontology concepts

are required.

For converting the respective SemSpec in Figure 5.3 into RDF triples,

initially, a list of mapping rules has to be created manually. The created

list of rules for the example sentence in (3) looks as follows:

list SEMSPEC

insert sportevent:FootballPlayer[smartdolce:HAS-DEMOMINATION]

smartdolce:denomination[smartdolce:NAME]

insert sportevent:Field[smartdolce:HAS-DEMOMINATION]

smartdolce:denomination[smartdolce:NAME]

concept SelfMotion navigation:SelfTransportation

property protagonist smartsumo:hasAgent

property trajector smartsumo:hasTrajector

concept TrajectorLandmark navigation:SelfTransportation

concept Lie smartsumo:BodyPosition

concept executor smartsumo:hasTrajector

concept Ground sportevent:Field

6The SmartWeb ontology can be found at http://www.smartweb-
project.de/ontology.html
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concept Perrotta sportevent:FootballPlayer

property name smartdolce:HAS-DENOMINATION

These mapping rules map both the concept and property names that are

used in the semantic specification to the names of the ontology concepts.

Additionally, the property smartdolce:HAS-DENOMINATION is added as a

football player has a name and that information had been modeled di↵er-

ently in the SmartWeb ontology.

To summarize, the processing cycle starts with the parser reading in the

example sentence and the parser-readable grammar. The sentence is con-

structionally analyzed and outputs a SemSpec, containing the sentence’s

schematic meaning. The *2RDF tool reads in both the SemSpec and

the list of rules and initiates the conversion process, from the seman-

tic specification into RDF triples. Finally, the tool outputs structured,

machine-interpretable RDF triples for the example sentence:

<rdf:RDF

<sportevent:FootballPlayer

rdf:about="http://www.eml-d.de/ecg#Entity1">

<smartdolce:HAS-DENOMINATION>Perrotta</smartdolce:

HAS-DENOMINATION>

</sportevent:FootballPlayer>

<smartsumo:BodyPosition rdf:about=

"http://www.eml-d.de/ecg#Lie1"/>

<navigation:SelfTransportationrdf:about=

"http://www.eml-d.de/ecg#TrajectorLandmark1">

<smartsumo:hasTrajector rdf:resource=

"http://www.eml-d.de/ecg#Entity1"/>

</navigation:SelfTransportation>

</rdf:RDF>
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If needed, the output RDF structure can be automatically validated with

an RDF validator. Among other advantages, validated triples save data

consumers from wrong or malformed input. In addition, the output shows

what data form is considered valid. Thereby, the RDF triples are displayed

as a directed graph. Figure 5.4 displays the directed graph, generated by

the RDF validator found at http://www.w3.org/RDF/Validator/.
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Figure 5.4: The RDF statements as a directed graph.

5.4 Semi-Automatic Population of the EC-

toloG and the Integrated LingInfo Model

Populating an ontology is a tedious manual task. You’ve by now carefully

followed the description of how to create constructions in the ECtoloG in

Sections 4.4↵. There are open source tools that can help in automating

certain steps to save time so we can work towards a semi-automatic way

of ontology population. We’ll be using the open source software package

Morphy to morphologically analyze, synthesize, and determine the part-

of-speech of terms for the German language automatically.7

The following sections describe the (semi-)automatic population both of

the ECtoloG and of the integrated LingInfo model.

7See https://www.wolfganglezius.de/morphy/, last checked May 27, 2022 and
[Lezius, 2000].



Section 5.4 – Concrete Application of the Processing Cycle 173

5.4.1 Automatic Population of the ECtoloG

To increase the ECtoloG’s coverage, it has to be populated with classes

and instances, i.e. in our case with constructions. Parts of this process can

be automated by using tools performing state-of-the-art linguistic analysis

as mentioned before. The analysis process of the Morphy tool is described

below. We have improved Morphy’s usability a bit by building a simple

user interface that helps generating sorted word lists fromMorphy’s output

files more intuitively (see Figure 5.5). This UI allows to easily create

lists of words sorted alphabetically and by their grammatical attributes

like part of speech, grammatical gender, number, etc. We’ve selected

attributes according to classes of constructions we would like to create in

the ontology. Figure 5.5 shows all part of speeches including the respective

attributes that can be used for sorting in the Morphy UI. You can find a

detailed description on how to use it and the source code for the UI on

the accompanying USB stick.

General Workflow To use the Morphy tool for the analysis of files, you

can either use it online or it can be installed on a local machine. Morphy

creates two files in its analysis process: one storing analyzed words (saved

as *.lem), and one storing unknown ones (saved as *.unb). Morphy o↵ers

a user interface to enter the unknown words and store them for later

analyses in its database. This way, you can analyze a complete file even

if certain terms are missing in the data base. The analysis of each term

of each sentence yields information about its stem, its part-of-speech, its

case, its number, and its grammatical gender. The result of the analysis

is the foundation that is now used to create sorted word lists. Now the

UI Morphy Output Filter (MOF) comes into play. It reads in Morphy’s

output file (the one called *.lem) and generates exactly those word list

that have been entered into the user interface.

The user is o↵ered various options: Lists can be generated from a selected

Morphy-Output-File (selectable in the upper left corner of the applica-

tion’s interface) for the following parts of speech: nouns, verbs, adjec-
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Figure 5.5: Screenshot displaying the user interface of the Morphy Output
Filter.

tives, proper nouns, pronouns, adverbs, prepositions, conjunctions and

negations. Then, various additional criteria can be selected for each part

of speech: for instance, in the case of nouns the user can decide which

case, number or gender the noun list should contain. The di↵erent selec-

tion criteria are all displayed in the screenshot.

Concrete Example As previously described in Section 5.3.1, natural

language texts are extracted from specific websites and further processed

automatically with the help of simple perl scripts, in a way that in the
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end the plain texts are stored – one sentence per line – in a text file.

Meta-information or empty rows are automatically removed by using these

scripts that have been created for this purpose. The cleaned-up text files

are afterwards analyzed by Morphy, yielding world lists sorted as described

above that can be used as input for creating new, lexical constructions in

the ECtoloG. Each term of a list is used as new instance of a lexical

construction including the linguistic information that has been acquired

in the analysis process.

To finish the creation of the form pole of each lexical construction in

the ECtoloG, the LinInfo model needs to be populated with respective

instances. The following sub-section describes exactly that.

5.4.2 Automatic Population of the LingInfo model

Similarly to what has been described above, the LingInfo model is pop-

ulated with respective instances. All information that is required for a

lexical item in the LingInfo, i.e. word class, gender, or language is re-

trieved from the output of the Morphy analysis. This means that all

terms that have been retrieved in the analysis and are stored in a sorted

word list get their LingInfo instances in the ontology.

A simple script allows for reading in the word list and creating one in-

stance per word list entry for a certain parent class in the ontology that

has to be entered manually. This way, the ontology engineer can decide

how much coverage the lexicon in the ontology should have.

The last two sections described how lexical constructions can be automat-

ically created with a focus on the form side of the construction only. This

means that the lexical constructions will be created as instances of con-

structions embedded in the ECtoloG as described in the previous chapters.

In addition, their LingInfo equivalents can also be automatically created

so that all linguistic information that is needed for a lexical construction as

described is represented in the ontology. What is missing is the link to its

meaning pole, i.e. the respective schema of the construction. Currently,
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this step has to be done completely manually. However, the foundation

of image schemas that has been described in sections 4.6↵. can help em-

bedding respective missing schemas and creating those meanings that are

needed.

The following chapter summarizes the findings and gives an outlook on

topics to build upon in future.



Chapter 6

Conclusions, Future Issues

and Final Discussion

In this work, we have proposed a formalization of construction grammar

by means of formal ontologies. The result of this undertaking is a powerful

ontological model which is enriched with a cognitively motivated grammar

layer that can be used in natural language applications – especially those

making use of ontologies already.

We’ve elaborated on why the decision to create a new formalism makes

sense and, in addition, why we have decided to base it on construction

grammar and more specifically on Embodied Construction Grammar.

The following section summarizes the outcomes of implementing the pro-

posed framework.

6.1 Outomes Modeling the ECtoloG

The following summarizes what has been described and achieved by now:

• Natural language processing systems like spoken dialogue systems,

automatic translation systems, chatbots, or question answering sys-

tems are suddenly everywhere. Computing power and needed tech-

nology finally reached a point where the masses adopted them – be

it in your homes, cars, or on your smartphones. However, natural
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language processing and especially grammar engineering still consti-

tutes a serious bottleneck in the development of applicable natural

language processing systems. Speech systems, no matter how ad-

vanced, will always lag behind when it comes to understanding real

spoken language. And we believe that there will always be manual,

human input needed in order to cover language phenomena occurring

in natural language interaction with a system. We consider propos-

als on how to automate certain tasks and o↵ering robust enough

frameworks including rich semantic foundations of high value.

• We have adopted a constructivist position of grammar representa-

tion in this work, meaning that a grammar should ideally include

every layer of language, i.e. form and meaning or function as sug-

gested in construction grammar theory as Construction Grammar

has mainly been developed to handle phenomena that occur in nat-

ural language that other theories were not able to su�ciently handle

(see Section 1.1).

• The progress towards formalizing constructions and towards a con-

struction grammar architecture that is machine-processable raises

a number of promising issues and challenging questions. And at

this stage of research both in the field of theoretical and compu-

tational construction grammar, open issues leave lots of room for

experimenting with or studying various ways of representing con-

structivists’ ideas (see Section 3.2). This work attempted to fill in

some of the open issues and delivered a formalization of construction

grammar using the state-of-the art in knowledge representation and

exemplifying it concretely with the help of one formalized example

sentence.

• Chapter 3 detailed out, which existing resources absolutely make

sense to be reused, potentially extended as in the case of the LingInfo

model 3.5 and eventually integrated into an ontological foundation

with a good reputation across academia.
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• The tight integration into the foundational ontology of constructions

of di↵erent complexity, be it lexical or grammatical ones, has been

described in much detail in Sections 4↵.

• We’ve proposed example areas of application in Chapter 5 as an

input source in a natural language processing system using a con-

structional analyzer and a potential processing cycle on how to use

outcomes of the analysis further 5.3.

• Section 5.4 showed the automatic population and thereby the ex-

tension of the lexicon. This way, the ontology can contain quickly

domain knowledge used to analyze texts from a certain domain.

Recapturing from Chapter 1, grammar engineering and therefore also con-

struction grammar engineering faces a multitude of challenges. Figure 6.1

repeats the summary of major challenges.

Reusability

Representation

Applicability

Editability

Relevance

Evaluation

Extensibility

Coverage

Figure 6.1: Major challenges in grammar engineering and especially in
engineering constructing grammars.

Let’s have a look at how the previously described representation of an

ontological construction grammar, i.e. of the ECtoloG, and the used engi-

neering environment attempted to tackle these challenges summarized in

the following:

• The proposed and described approach provides a concrete method of

implementing a formalization of construction grammar based on on-

tologies. This method is well documented in order to make the ideas

and analyses reusable, extending the framework with additional (do-

main) knowledge or even for writing new grammars.
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• By providing a standardized grammar format which NLP tools that

use ontologies can use, reusability for various NLP applications is

guaranteed. Current research studies dealing with building ontolo-

gies to be used in NLP further pushed the idea of including a con-

structional grammar layer in such an ontology to find out if that is

actually possible and eventually beneficial for NLP systems

• Concrete advantages coming with the ontological format are that

they o↵er various new and semantically rich possibilities how con-

structions and schemas can be related to each other: The lattice that

can be built both among constructions and among schemas within an

ontology can be much more semantically fine-grained, as relations in

an ontology go beyond simple inheritance relations, which basically

come for free in an ontology. In addition, the format of the ECtoloG

is compatible with other ontologies that are based on the same foun-

dational model which automatically increases the compatibility and

extensibility of the ECtoloG.

• Existing editors, like protégé facilitate accessibility, readability and

extensions of ontologies in various ontological formats.

• The format which results from building the ontological grammar

model is one of its major advantages. As previously discussed, gram-

mar engineering is often done in a non-e�cient way, resulting in

models that are di�cult to reuse and di�cult to adapt to new ap-

plication areas or even impossible to be used in di↵erent processing

models. Since ontologies are used in a variety of applications and es-

pecially since natural language processing with ontologies is getting

more and more popular, we believe that our model can be of benefit

in various existing applications that can already handle ontological

formats.

• Looking at the proposed processing cycle in Chapter 5, the seman-

tics of analysed sentences based on the presented formalism are made

machine-interpretable and usable for further use and processing. In
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addition, analyzed sentences can automatically be converted into

RDF triples, thereby their semantic representation is easily in com-

pliance with common standards of knowledge representation.

• Embedding constructions and schemas into a foundational ontology

provides a setting including semantics and a modelling basis that en-

ables a comparison to other ontologies that can be used as reference

points.

• The standardised format enables merging with other ontologies.

• Existing tools allow the automatic check of the ontology’s consis-

tency.

• Extending the grammar can be achieved by applying standard on-

tology learning mechanisms.

In addition, the ECtoloG provides added scientific value for the construc-

tion grammar community. It o↵ers a formalization by means of formal

ontologies which is:

• Extendable by external (linguistic) knowledge bases (as exemplified

with the LingInfo ontology)

• Reusable, by adopting or extending the ideas and analyses for ex-

tending the presented framework with additional (domain) knowl-

edge or even for writing further, even more elaborate grammars

• Reusable in NLP tools that require knowledge to be represented in

ontological format

• Applicable to any domain that o↵ers a domain-specific ontology and

is compliant with the DOLCE ontology foundation

6.2 Outlook

Sentence formation “...is a process of free creation;” ([Chomsky, 2006],

p.18).
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As argued before, we believe that systems dealing with natural language

input and especially with spoken natural language input need to be able to

be robust enough to deal with the creative use of natural language. Speech

systems, no matter how advanced these days, will always lag behind when

it comes to understanding real spoken language. And there will always

be human, manual input needed to cover real spoken languages. What

has been proposed in this work is a formalism embedded in a founda-

tional ontology allowing on the one hand to create further constructions

to increase coverage in a well documented graphical user interface but

also to use state-of-the-art ontology learning mechanisms to be used to do

that automatically. By reusing and relying on standard ontological mod-

elling rules, we tried to decrease complexity in creating new constructions.

We suggest the outcome of this work to be explored further in multiple

ways. It is considered as a foundation that can be used to be embedded

in an existing language processing system using ontologies based on the

DOLCE framework. It can be explored further by the construction gram-

mar community. We expect the dense semantic foundation to allow for

novel deep semantic modelling of constructional meaning. Especially the

frame-based meaning representation has in our opinion strong potential to

make language understanding even better and increase adoption through

an increase in user satisfaction. Because these kinds of approaches to

language understanding might eventually allow to speak to the system in

your language instead of adopting theirs.
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Figure A.1: The complete LingInfo model.



A.2 An Image Schema Hierarchy

Figure A.2: A hierarchy of most important image schemas



List of Acronyms

CUG Categorial Unification Grammar

CxG Construction Grammar

DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering

DnS Descriptions and Situations

EAGLES Expert Advisory Group on Language Engineering Standards

ECG Embodied Construction Grammar

FCG Fluid Construction Grammar

FUG Functional Unification Grammar

HPSG Head-Driven Phrase-Structure Grammar

ISLE International Standards for Language Engineering

LFG Lexical Functional Grammar

MOF Morphy Output Filter

NLP Natural Language Processing

NP Noun Phrase

OCHRE Object-Centered High-Level Reference Ontology

OIO Ontology of Information Objects

OWL Ontology Web Language

OWL-DL OWL-Description Logic

RDF Resource Description Framework

RDFS Resource Description Framework Schema



SVO Subject Verb Object

SKOS Simple Knowledge Organization Systems

SUMO Suggested Upper Merged Ontology

TAG Tree Adjunction Grammar

UI User Interface





List of Figures

1.1 The allegory of grammar and style . . . . . . . . . . . . . 2

1.2 Challenges in grammar engineering . . . . . . . . . . . . . 5

2.1 Phrase structure of a noun phrase . . . . . . . . . . . . . . 21

2.2 An attribute-value matrix describing a person. . . . . . . . 28

2.3 Attribute value matrix in HPSG . . . . . . . . . . . . . . . 36

2.4 Lexical construction in ECG . . . . . . . . . . . . . . . . . 38

2.5 Lexical construction in FCG . . . . . . . . . . . . . . . . . 41

2.6 Hierarchy and types of ontologies . . . . . . . . . . . . . . 43

2.7 DOLCE’s basic concept hierarchy . . . . . . . . . . . . . . 47

2.8 The Source-Path-Goal Schema . . . . . . . . . . . . . . . . 52

2.9 Scenarios of the Kicktionary with example Frames. . . . . 55

3.1 Construction grammar . . . . . . . . . . . . . . . . . . . . 60

3.2 Informal analysis of an example noun phrase . . . . . . . . 69

3.3 Lexical construction for Fußballspieler in ECG and FCG . 71

3.4 Hypotenuse example by Langacker . . . . . . . . . . . . . 78

3.5 A determiner-noun-construction in ECG . . . . . . . . . . 82

3.6 A determiner-noun-construction in FCG . . . . . . . . . . 84

3.7 DnS and OIO . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.8 LingInfo example . . . . . . . . . . . . . . . . . . . . . . . 93

3.9 The LingInfo model simplified . . . . . . . . . . . . . . . . 95

3.10 The LingInfo model simplified with example . . . . . . . . 96

4.1 The module hierarchy in the ECtoloG. . . . . . . . . . . . 103

4.2 Informal constructional analysis of a sentence . . . . . . . 107

211



4.3 Information-objects in the ECtoloG . . . . . . . . . . . . . 111

4.4 A construction in the ECtoloG . . . . . . . . . . . . . . . 112

4.5 Highest level of constructional engineering in the ECtoloG 114

4.6 Modeling lexical constructions in the ECtoloG . . . . . . . 116

4.7 Example lexical constructions in the ECtoloG . . . . . . . 117

4.8 Referent schema in the ECtoloG . . . . . . . . . . . . . . . 119

4.9 Lexical construction in the ECtoloG . . . . . . . . . . . . . 119

4.10 Modelling complex constructions in the ECtoloG . . . . . 121

4.11 Example linking domain and range on the highest level . . 122

4.12 Example linking domain and range on class level . . . . . . 123

4.13 Example linking domain and range for constructions . . . . 123

4.14 Prerequisites to model complex constructions in the ECtoloG124

4.15 Example complex constructions in the ECtoloG . . . . . . 125

4.16 Example complex constructions in the ECtoloG . . . . . . 126

4.17 Compositional constructions in the ECtoloG . . . . . . . . 127

4.18 Concrete example of a complex construction in the ECtoloG 127

4.19 Form pole of a complex construction in the ECtoloG . . . 128

4.20 Form pole of a complex construction in the ECtoloG . . . 129

4.21 Form pole of a complex construction in the ECtoloG . . . 130

4.22 Complex meaning pole in the ECtoloG . . . . . . . . . . . 131

4.23 Complex meaning pole in the ECtoloG . . . . . . . . . . . 131

4.24 Complex meaning pole in the ECtoloG . . . . . . . . . . . 132

4.25 The LingInfo structure in the ECtoloG . . . . . . . . . . . 136

4.26 Classes and their properties modelling linguistic information 138

4.27 Concrete example modeling linguistic information . . . . . 139

4.28 Example LingInfo structure . . . . . . . . . . . . . . . . . 140

4.29 Image schema hierarchy in ECtoloG . . . . . . . . . . . . . 142

4.30 Suggested image schema hierarchy . . . . . . . . . . . . . . 143

4.31 Property definitions in ECtoloG . . . . . . . . . . . . . . . 148

4.32 Class ims:schematic-role definition . . . . . . . . . . . . 149

4.33 Modeling schemas in the ECtoloG . . . . . . . . . . . . . . 150

4.34 Example modeling of schemas in ECtoloG . . . . . . . . . 151



5.1 The di↵erent ontological levels in the ECtoloG. . . . . . . 160

5.2 Example processing cycle using ECtoloG . . . . . . . . . . 161

5.3 SemSpec for Perrotta liegt am Boden. . . . . . . . . . . . . 167

5.4 The RDF statements as a directed graph. . . . . . . . . . . 172

5.5 Morphy output filter UI . . . . . . . . . . . . . . . . . . . 174

6.1 Challenges in grammar engineering . . . . . . . . . . . . . 179

A.1 The complete LingInfo model. . . . . . . . . . . . . . . . . 206

A.2 A hierarchy of most important image schemas . . . . . . . 207


	Introduction
	Main Motivation
	Thesis Aim and Contribution
	Organization of the Thesis

	Theoretical Foundations
	Grammars in Linguistics
	Linguistic Formalisms
	Short Historic Overview on Grammar Debates
	Generative Grammars in Theoretical Linguistics
	Typed Feature Structure Grammars

	Grammars in Computational Linguistics
	Computational Implementations of Linguistic Formalisms
	Implementing Grammars in General
	Grammar Implementations

	Formal Ontologies
	Definition of Ontology
	Ontology Formats
	Ontology Engineering in General
	Foundational Ontologies
	Representation of Linguistic Knowledge in Ontologies

	Frames and Schemas
	Schemas
	Frames


	Taking our Pick
	Searching for the Right Grammar Framework: Construction Grammar
	Comparing Ecg and Fcg: A Case Study
	Informal Example Constructional Analysis
	Formalizing Constructions
	Lexical Constructions
	A First Comparison
	Compositional Constructions

	Main Motivation for and Merits of a New Formalization
	Which Foundational Ontology is Used in this Work and Why?
	The LingInfo Model
	Further Picks
	Constructional Meaning


	ECtoloG - Engineering of a Computational Construction Grammar
	Setting up the Framework
	Informal Example Constructional Analysis
	Constructions in the ECtoloG
	Modeling of Constructions in the ECtoloG
	Modeling of Lexical Constructions
	Modeling of Compositional Constructions
	Modeling of Other Constructions

	Linguistic Information
	Linguistic Information in Constructions
	Modeling Linguistic Information in the ECtoloG

	Schematic Meaning in Constructions
	Schemas: Frames
	Sum Up: What Have We Gained So Far?

	Application and Population
	Ontological Levels
	Application Flow
	Concrete Application of the Processing Cycle
	Corpus Creation and Description
	Conversion from ECtoloG into Parser-Readable Format
	Constructional Analyzer: Parsing of the Sentence
	Semantic Specification
	Automatic Conversion into RDF

	Semi-Automatic Population of the ECtoloG and the Integrated LingInfo Model
	Automatic Population of the ECtoloG
	Automatic Population of the LingInfo model


	Conclusions, Future Issues and Final Discussion
	Outomes Modeling the ECtoloG
	Outlook
	References

	Appendix
	The Complete LingInfo Model
	An Image Schema Hierarchy

	List of Acronyms
	List of Figures

