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Abstract

This thesis deals with optimization problems that involve complex subtasks. Treating
these problems as nonlinear programs often leads to difficulties in the numerical
solution, for example the convergence to undesired local solutions for poor initial
guesses.

To circumvent these problems, the concept of decomposition is introduced. The
complex subtask is modeled by artificial variables and constraints. On the one
hand, this increases the dimensionality of the problem, which on the other hand
allows a user to employ suitable initialization strategies. This idea is applied to the
problem classes of nonlinear parameter identification for dynamical systems and
bilevel optimization. For the latter, a reformulation method is developed, which is
based on embedding a fixed number of Sequential Quadratic Programming iteration
steps to solve the subtask given as a nonlinear program.

The focus of this work is on the numerical verification of different decomposition
approaches. Using the examples of a pendulum and a robotic system, it is demon-
strated that the choice of the problem formulation in combination with a suitable
initialization strategy influences the region of attraction of the global solution of the
associated parameter identification problem. Finally, an extension of a single shoot-
ing homotopy approach is presented. In the area of bilevel optimization, examples
are used to show that the number of embedded iteration steps increases the region
of attraction of the global solution. The newly developed method is also compared
with other established methods. Using a collection of bilevel problems, its handling,
flexibility, and efficiency are investigated. It is also demonstrated for both problem
classes that a decomposition has only a minor impact on computation times due to
the exploitation of sparsity. In addition, decomposition allows to keep the required
number of iterations stable despite poor initial guesses.

The obtained results show that both problem classes can be considered under a
common aspect. Important criteria, such as the robustness or the region of attraction
of the global solution, can be influenced solely by reformulating the problem.

iii





Zusammenfassung

Diese Arbeit befasst sich mit Optimierungsproblemen, die komplexe Unteraufgaben
aufweisen. Werden diese Probleme als nichtlineare Programme behandelt, führt dies
oft zu Schwierigkeiten bei der numerischen Lösung, zum Beispiel Konvergenz zu
unerwünschten lokalen Lösungen bei schlechten Anfangsschätzungen.

Um diese Probleme zu umgehen wird das Konzept der Zerlegung eingeführt. Die
komplexe Unteraufgabe wird durch künstliche Variablen und Nebenbedingungen
modelliert. Dies erhöht einerseits die Dimensionalität des Problems, welche es ande-
rerseits erlaubt, geeignete Initialisierungsstrategien zu verwenden. Diese Idee wird
auf die Problemklassen der nichtlinearen Parameteridentifikation für dynamische
Systeme und Bileveloptimierung angewendet. Für Letztgenanntes wird eine Um-
formulierungsmethode entwickelt, welche auf der Einbindung einer festen Anzahl
an Iterationsschritten eines Sequentiellen Quadratischen Programmierungsansat-
zes zur Lösung der Unteraufgabe basiert. Die Unteraufgabe ist in diesem Fall ein
nichtlineares Optimierungsproblem.

Der Fokus dieser Arbeit liegt auf der numerischen Überprüfung von verschiedenen
Zerlegungsansätzen. Anhand der Beispiele eines Pendels und eines Robotiksystems
wird demonstriert, dass die Wahl der Problemformulierung in Kombination mit einer
geeigneten Initialisierungsstrategie Einfluss auf den Einzugsbereich der globalen Lö-
sung des Parameteridentifikationsproblems hat. Abschließend wird eine Erweiterung
eines Single Shooting-Homotopieansatzes vorgestellt. Im Bereich der Bilevelopti-
mierung wird anhand von Beispielen gezeigt, dass die Anzahl der eingebundenen
Iterationsschritte den Einzugsbereich der globalen Lösung vergrößert. Das neu entwi-
ckelte Verfahren wird zudem mit anderen etablierten Methoden verglichen. Anhand
einer Sammlung von Bilevelproblemen wird dessen Handhabung, Flexibilität und
Effizienz untersucht. Es wird außerdem für beide Problemklassen demonstriert, dass
eine Zerlegung nur geringfügigen Einfluss auf Rechenzeiten aufgrund der Ausnutzung
von schwach-besetzten Matrizen hat. Darüber hinaus ermöglicht die Zerlegung, dass
die erforderliche Anzahl von Iterationen auch bei schlechten Ausgangswerten stabil
bleibt.
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Die erzielten Ergebnisse verdeutlichen, dass beide Problemklassen unter einem
gemeinsamen Aspekt betrachtet werden können. Wichtige Kriterien, wie die Ro-
bustheit oder der Attraktionsbereich der globalen Lösung, können allein über eine
Reformulierung des Problems beeinflusst werden.

vi



Acknowledgments

I would like to express my sincere gratitude to my advisor Prof. Dr. Christof Büskens
for his lasting confidence in my work, for the encouraging discussions, and for his
patience with me. Moreover, I am very grateful for the opportunities he has given
me for my professional and personal development.

I am also deeply indebted to Prof. Dr. Kathrin Flaßkamp, whom I have considered
an academic role model since my undergraduate studies. Throughout the years, she
has been a constant source of support, knowledge, and advice. I am grateful for the
numerous discussions and the valuable impulses for my research. Lastly, I would like
to thank her for reviewing this dissertation.

For two exciting months, I relocated my research to the University of Southamp-
ton, where the investigations on bilevel optimization began. I am grateful to
Prof. Dr. Jörg Fliege for his hospitality and for the many interesting and fruitful
discussions on the decomposition approach.

Thanks should also go to all of my colleagues for contributing to such a pleasant
working atmosphere. Moreover, thanks to Dr. Matthias Knauer, Ivan Mykhailiuk,
Dr. Shruti Patel, and Matthias Rick for proofreading parts of this thesis, and special
thanks to Marcel Jacobse for proofreading the entire document. Many thanks to
Dr. Margareta Runge, who has been an outstanding companion over the years. I am
fortunate to look back on countless moments when we motivated each other to
get things done. A big thanks to Marek Wiesner for the excellent collaboration,
including all the fun nonsense in and out of the office.

I acknowledge funding from the University of Bremen and the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation), project number 281474342.

Without the moral support of friends and family, I could not have made this
journey. I am particularly grateful to Johann Funk, Janina Goos, and Lisa Müller
for constantly reminding me that there is life outside of writing a dissertation. Most
of all, I am grateful to my parents Karin and Uwe and my brother Tore for their
unconditional love, support, and understanding.

vii





Contents

List of Acronyms xiii

List of Figures xv

List of Tables xvii

List of Algorithms xix

1 Introduction 1

2 Nonlinear Programming 9
2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Regularity Conditions . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Numerical Solution Methods . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Sequential Quadratic Programming . . . . . . . . . . . . . . . 14
2.2.2 Interior-Point Methods . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 The NLP Solver WORHP . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Sparse Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Decomposition Methods 23
3.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Problem Formulations . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ix



3.2 Decomposition in Parameter Identification for Dynamical Systems . 36
3.2.1 Original Problem Formulation . . . . . . . . . . . . . . . . . 38
3.2.2 Transcription . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.3 Reduced Formulation . . . . . . . . . . . . . . . . . . . . . . 45
3.2.4 Direct Multiple Shooting . . . . . . . . . . . . . . . . . . . . 50
3.2.5 Decomposed Formulation . . . . . . . . . . . . . . . . . . . . 56

3.3 Decomposition in Bilevel Programming . . . . . . . . . . . . . . . . . 62
3.3.1 Original Problem Formulation . . . . . . . . . . . . . . . . . 63
3.3.2 Single-Level Reformulation . . . . . . . . . . . . . . . . . . . 65
3.3.3 Reduced Formulation . . . . . . . . . . . . . . . . . . . . . . 66
3.3.4 KKT Formulation . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.5 Decomposed Formulation . . . . . . . . . . . . . . . . . . . . 71

3.4 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.4.1 Relation to the Concept . . . . . . . . . . . . . . . . . . . . . 85
3.4.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Applications and Numerical Results 89
4.1 Parameter Identification for a Pendulum . . . . . . . . . . . . . . . . 89

4.1.1 Comparison Setup . . . . . . . . . . . . . . . . . . . . . . . . 90
4.1.2 Initialization Strategies . . . . . . . . . . . . . . . . . . . . . 91
4.1.3 Local Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.1.4 Computational Characteristics . . . . . . . . . . . . . . . . . 96

4.2 Parameter Identification for a Robotic System . . . . . . . . . . . . . 97
4.2.1 Idealized Example . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.2 Comparison of Transcription Methods . . . . . . . . . . . . . 100
4.2.3 Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2.4 Real-World Scenario . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 A Non-Unique Lower-Level Problem . . . . . . . . . . . . . . . . . . 105
4.3.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 106
4.3.2 Reduced Objective Function . . . . . . . . . . . . . . . . . . . 107
4.3.3 Regions of Attraction . . . . . . . . . . . . . . . . . . . . . . 108

4.4 Increasing the Region of Attraction . . . . . . . . . . . . . . . . . . . 109
4.4.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 110

x



4.4.2 Reduced Objective Function . . . . . . . . . . . . . . . . . . . 110
4.4.3 Regions of Attraction . . . . . . . . . . . . . . . . . . . . . . 111
4.4.4 Computational Characteristics . . . . . . . . . . . . . . . . . 114

4.5 Bilevel Decomposition Applied to a Problem Library . . . . . . . . . 115
4.5.1 Comparison Setup . . . . . . . . . . . . . . . . . . . . . . . . 116
4.5.2 Number of Provided SQP Steps . . . . . . . . . . . . . . . . . 119
4.5.3 Solution Strategies . . . . . . . . . . . . . . . . . . . . . . . . 121
4.5.4 Fischer-Burmeister Smoothing . . . . . . . . . . . . . . . . . 124
4.5.5 Computational Characteristics . . . . . . . . . . . . . . . . . 127

4.6 A Combined Homotopy-Optimization Approach . . . . . . . . . . . . 129
4.6.1 Single Shooting Homotopy Method . . . . . . . . . . . . . . . 131
4.6.2 Homotopy Parameter Embedding . . . . . . . . . . . . . . . . 135

5 Conclusions 139
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography 145

xi





List of Acronyms

BFGS Broyden–Fletcher–Goldfarb–Shanno . . . . . . . . . . . . . . . . . . . . . . . . . 17
D-BP Decomposed Bilevel Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
D-DPIP Decomposed Dynamical Parameter Identification Problem . . . 56
D-KKT-BP Decomposed-KKT Bilevel Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 74
FB Fischer-Burmeister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
IP Interior-Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
IQR Interquartile Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
IVP Initial Value Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
KKT Karush-Kuhn-Tucker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
KKT-BP KKT Bilevel Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
LICQ Linear Independence Constraint Qualification . . . . . . . . . . . . . . . . 11
MPCC Mathematical Program With Complementarity Constraints . . 69
MS-DPIP Multiple Shooting Dynamical Parameter Identification Problem 51
NLP Nonlinear Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
O-BP Original Bilevel Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
ODE Ordinary Differential Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
O-DPIP Original Dynamical Parameter Identification Problem . . . . . . . . 40
PDE Partial Differential Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
QP Quadratic Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
R-BP Reduced Bilevel Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
R-DPIP Reduced Dynamical Parameter Identification Problem . . . . . . . 46
SQP Sequential Quadratic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 2

xiii





List of Figures

1.1 Scheme for solving optimization tasks . . . . . . . . . . . . . . . . . 1

3.1 Sketch of a mathematical pendulum. . . . . . . . . . . . . . . . . . . 41
3.2 Measurements of the pendulum system . . . . . . . . . . . . . . . . . 42
3.3 Reduced objective function (pendulum, one-dimensional) . . . . . . . 47
3.4 Single and multiple shooting . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 Converging to the global solution . . . . . . . . . . . . . . . . . . . . 59
3.6 Influence of Nit on the solution . . . . . . . . . . . . . . . . . . . . . 80
3.7 Influence of Nit on the computation time . . . . . . . . . . . . . . . 84

4.1 Reduced objective function (pendulum, two-dimensional) . . . . . . 93
4.2 Attraction regions (reduced formulation, pendulum) . . . . . . . . . 93
4.3 Attraction regions (multiple shooting formulation, pendulum) . . . . 95
4.4 Computational characteristics (pendulum) . . . . . . . . . . . . . . . 97
4.5 Robotic systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.6 Optimized trajectories of the robot’s movement (synthetic data) . . 101
4.7 Influence of Ns on the robustness and solution quality . . . . . . . . 102
4.8 Relative densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.9 Optimized trajectories of the robot’s movement (real data) . . . . . 105
4.10 Validation of the robot’s parameter identification . . . . . . . . . . . 105
4.11 Lower-level objective function (Problem 4.1) . . . . . . . . . . . . . . 107
4.12 Reduced objective function (Problem 4.1) . . . . . . . . . . . . . . . 107
4.13 Attraction regions (all formulations, Problem 4.1) . . . . . . . . . . . 109
4.14 Feasible reduced objective function (Problem 4.2) . . . . . . . . . . . 111
4.15 Attraction regions (reduced and KKT formulation, Problem 4.2) . . 112

xv



4.16 Convergence frequencies (Problem 4.2) . . . . . . . . . . . . . . . . . 113
4.17 Computational characteristics (Problem 4.2) . . . . . . . . . . . . . . 115
4.18 Influence of Nit on solving BOLib . . . . . . . . . . . . . . . . . . . . 120
4.19 Relative errors (BOLib, non-adaptive strategy) . . . . . . . . . . . . . 123
4.20 Relative errors (BOLib, Fischer-Burmeister smoothing) . . . . . . . . 126
4.21 Performance profiles (BOLib, reduced and KKT formulation) . . . . 128
4.22 Performance profiles (BOLib, decomposed formulations) . . . . . . . 129
4.23 Homotopy synchronization . . . . . . . . . . . . . . . . . . . . . . . . 133
4.24 Reduced objective function in homotopy formulation (pendulum) . . 134
4.25 Measurements of a robotic system . . . . . . . . . . . . . . . . . . . 136
4.26 Reduced homotopy-optimization objective function (robot) . . . . . 137
4.27 Convergence behavior of homotopy formulations . . . . . . . . . . . 138

xvi



List of Tables

2.1 WORHP configuration parameters . . . . . . . . . . . . . . . . . . . . . 21
2.2 Software and hardware specifications . . . . . . . . . . . . . . . . . . 22

3.1 Kepler example in decomposition notation . . . . . . . . . . . . . . . 31
3.2 Notation of state representations . . . . . . . . . . . . . . . . . . . . 45
3.3 Problem dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.4 Problem classes in decomposition notation . . . . . . . . . . . . . . . 86

4.1 Initialization strategies (pendulum) . . . . . . . . . . . . . . . . . . . 92
4.2 Convergence frequencies (pendulum) . . . . . . . . . . . . . . . . . . 94
4.3 Nominal model parameters (idealized robotic system) . . . . . . . . 100
4.4 Success rates of solution strategies (BOLib) . . . . . . . . . . . . . . 122
4.5 Success rates of complementarity constraint formulations (BOLib) . . 125

xvii





List of Algorithms

A Full-step exact-Hessian SQP . . . . . . . . . . . . . . . . . . . . . . . 15
B Primal-dual interior-point method . . . . . . . . . . . . . . . . . . . 20

C Fischer-Burmeister smoothing . . . . . . . . . . . . . . . . . . . . . . 125
D Homotopy continuation for single shooting . . . . . . . . . . . . . . . 135

xix





Chapter 1

Introduction

One of the key aspects in many technical fields is cost reduction. Although usually
understood in a monetary sense, costs are arbitrary. It can be of interest to reduce
the energy required, the effort, the time, or the deviation from a reference. Although
these aims are manifold and diverse, a common tool is often used for its achievement:
optimization. Its application requires a thorough problem formulation with decisions
on design variables, optimization criteria, or restrictions. Once such a problem is
formulated, modern implementations of optimization algorithms can be used for its
solution.

The underlying process can often be broken down to a simple scheme, as illustrated
in Figure 1.1. Consider the task to steer a car driving from one position to another.
This can be achieved by solving an optimal control problem, which would be the
starting point or the original problem. As solving this is usually not straight-forward,
a common strategy is to reformulate it as a problem for which established solution
methods exist. We call this the formulation of the original problem. In a subsequent
step, it is solved by an algorithm. This reformulation step has the advantage that
modern implementations can be used. In the end, a practitioner is of course interested

Original problem Formulation Algorithm Solution

Initialization

Figure 1.1: Schematic representation of a process for solving optimization tasks. The focus in this
work is on the problem formulation.
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Chapter 1 Introduction

in obtaining a solution, for example an optimal steering maneuver. Usually, the user
has a limited view on the process, because both the formulation and the choice of
the solution procedure require expert knowledge. However, these two aspects play
an important role and can significantly influence finding a solution as well as its
quality.

As general formulation, we are concerned with so-called nonlinear programs (NLPs).
Here, one aims to either minimize or maximize a function by finding those design
variables that produce the smallest or largest possible output, respectively. Often,
these variables are subject to restrictions of various complexity. The problems of
interest are characterized by nonlinear functions and a finite number of variables and
constraints. Formulations can differ by their dimensions (for example the number
of optimization variables and constraints), their implementation effort, or their
robustness when used by a specific algorithm. The latter aspect describes the ability
of an algorithm in combination with the problem formulation to converge successfully.
This criterion also gives information about the interplay between formulation and
algorithm.

Only in rare cases, NLPs can be solved analytically. In many cases, numerical
routines need to be applied. They can be divided into global and local algorithms.
The former (see [87] for an overview) aim to find the best solution among all
local ones. Many global optimization techniques have in common that a sequence
of problems is solved using local optimization routines and typically, the overall
computational efforts are much larger than in local optimization. Consequently,
manageable problem dimensions are much smaller. For many types of optimization
problem classes, a global solution is desired, but the computational effort should still
be adequate. Mainly for this reason, we abstain from applying global optimization
algorithms in the following and instead focus on local routines, which are designed to
converge to the closest local solution for a given initialization of optimization variables.
There exists a large variety of iterative local algorithms, for example Sequential
Quadratic Programming (SQP) [16], trust-region methods [41], or Interior-Point (IP)
approaches [44]. In this work, we assume that the algorithm (see Figure 1.1) is a
fixed one and will use the SQP and IP methods provided by the NLP solver WORHP
[20, 71] for solving the occurring problems. It might seem that fixing the algorithm
is a hard restriction, but in fact, it is even desirable to keep solution processes as
general as possible and thus, one strives to use the same algorithm for a variety of
problems.

As mentioned before, it is usually of interest to compute a global solution of the
given problem. However, the objective function value may not be the only criterion

2



worth considering. For real-world applications in particular, a reliable and robust
solution process is required by practitioners. In other words, it is desired that the
algorithm converges to the same solution even for poorly chosen initial guesses. In
that regard, a solution’s region of attraction can loosely be defined as the set of
optimization variable initializations from within a pre-specified region that enable
the solver to converge to that solution. A similar definition is for example given by
Mykhailiuk et al. [86].

In many applications, an accurate representation of reality is required. Complex
models, nonlinear terms, costly evaluations, or even embedded iterative schemes
find their way into the system design. Consequently, these aspects occur in the
optimization process, which is typically built around all the design decisions. Despite
the advantages of an accurate model description, difficulties within the optimization
process are likely to occur: costly evaluations add up within the solution process,
the model may react sensitively to its input, or highly nonlinear terms appear. Due
to the latter, the problem may become nonconvex, which leads to multiple local
solutions although only a global solution is usually of interest. From a practical point
of view, local algorithms may be trapped in the closest minimum, depending on
the initialization. Since optimization is often only one part in automated processes,
practitioners have to rely upon the outcome. In real-time environments, this may
even be a crucial factor, as a poor solution quality may induce an undesired system
behavior.

In this work, it is proposed to address the aforementioned challenges only by
modifying the way the original problem is formulated (compare Figure 1.1). The
technique in use is decomposition: replace complex terms within a problem by suitable
artificial variables and constraints. Focusing on this part has the consequence that
other aspects will find less attention, in particular the choice of the optimization
algorithm. Two problem classes that exhibit the above-mentioned challenges find
closer attention within this work: parameter identification for dynamical systems
and bilevel programming.

Many time-dependent systems can be modeled by ordinary differential equations
(ODEs). They shall be used for simulation or (optimal) control. In a preceding
step, however, the model needs to be adapted to the given circumstances. While
the general structure of the equations of motion is often known, parameters p in the
ODE need to be calibrated for the specific system at hand. They can be identified by
minimizing the distance between the ODE’s solution q and measurements q̄, recorded

3



Chapter 1 Introduction

at Nm time points ti. This task can be written in the following form:

minimize
p, q

Nm∑︂

i=1
(q(ti; p) − q̄i)2

subject to q solves ODE(p).

A common way to solve these problems is the direct approach, which makes use of
a time discretization. Instead of the original problem above, a finite-dimensional
NLP involving a discretized version of q is solved. For its formulation, there exist
several techniques that lead to equivalent problems. However, all of them may
be suited differently well for being solved by standard solvers. It is, for example,
well-known that the single shooting approach is less robust than a direct multiple
shooting method [12]. What receives less attention in the literature is the problem
of local solutions, although their occurrence is a common phenomenon. In [47], this
is addressed with the help of global optimization and regularization. The latter is
also used in [72] to reduce the number of local solutions. Still, what influences the
convergence to specific minima has not yet been fully investigated.

The class of bilevel optimization deals with problems involving a subordinate problem.
Hence, two levels exist. The upper-level problem depends on the solution of the
lower-level problem, which can itself be parameterized in the upper-level variables.
Such a problem may be written in the following form:

minimize
x, y

F (x, y)

subject to y solves NLP(x).

This intricate structure makes this problem challenging in many facets. For its
numerical solution, a reduction to a single-level NLP is common. There exist
several possibilities, for example using value functions [127] or including lower-level
optimality conditions into the upper-level problem (see [3], for example). The
resulting problems are often nonconvex and the issue of local solutions inevitably
arises. In addition, customized algorithms are often required for their solutions.

Although the two problem classes appear to stand alone, they share some common
characteristics. For their practical solution, they can be formulated as an NLP, solv-
able by standard algorithms. Both problems require solving another parameterized
task, which is why it is desirable to find a common approach. Parameter identification
requires solving an ODE, while an NLP needs to be solved in bilevel programming.
From a numerical point of view, this comes down to embedding iterative schemes
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within a problem. Two questions directly emerge from this interaction:

– How can such embeddings be formulated?
– Is it possible to apply similar techniques for both classes?

Aims and Contributions

The goal of this work is to reliably find desired minima using decomposition tech-
niques. The development of customized NLP formulations is in the center. Those
reformulations should meet certain criteria when a standard local optimization
algorithm is applied to solve them:

(i) The solution process shall be robust. Even for poor solver initializations, the
algorithm shall converge.

(ii) A practitioner shall be able to influence the algorithmic behavior. By adequate
solver initializations, convergence to desired minima shall be enabled.

(iii) For such a desired solution, the region of attraction shall be enlarged. Suitable
initialization and formulation choices shall compensate for poor initial guesses.

(iv) The computational effort shall remain moderate. Even though the reformula-
tions suffer from higher dimensions, their specific structures shall be exploited.

To this end, the idea of decomposition is illuminated. Starting from an original
problem, a naive reformulation approach is examined and called into question.
Subsequently, alternative formulations building on the idea of decomposition are
developed and analyzed. This abstract concept of decomposition is applied to two
problem classes.

For the area of parameter identification, an experimental comparison of different
existing transcription methods is provided. For this purpose the methods are initially
derived and examined on the basis of the above aspects. Using the example of a
mathematical pendulum, it is shown that a parameter identification problem can
exhibit several local solutions. It is demonstrated that the choice of shooting nodes
in multiple shooting as well as their initialization influences the solution quality
significantly. Similar studies using a more complex example of a robotic system
provide comparable results. They add new insights to the existing, but expandable
literature. In addition, an extension to an existing homotopy method is developed.
The idea is to embed the homotopy continuation procedure into a single NLP. This
approach is independent of the chosen transcription method. Initial experiments
demonstrate its applicability.

5



Chapter 1 Introduction

For the area of bilevel programming, the contributions are two-fold. On the one
hand, a novel reformulation technique is developed. It is based on embedding a
finite number of SQP iteration steps into an optimization problem. Thus, it builds
upon the well-known Karush-Kuhn-Tucker (KKT) approach. It is compatible with
Fischer-Burmeister (FB) smoothing techniques and allows customized initialization
strategies. On the other hand, this approach is compared against other existing
reformulations with the help of extensive numerical experiments. Examinations
of specific examples show how a solution’s region of attraction can be increased
by applying the novel method. The highlight is the application of the considered
methods on a problem library, which is not yet the standard in the corresponding
literature.

Overview

As the formulation and numerical solution of NLPs are key aspects of this work, the
necessary preliminaries are given in Chapter 2. The basic definitions, theorems,
and concepts are formally presented. Equal attention is given to numerical solution
methods for NLPs. Two standard algorithms, that find application in the latter
chapters, are introduced in their basic form. This chapter is a reproduction of
existing theory.

The abstract problem formulation is developed in Chapter 3, in which the problem
of interest is formally introduced. A categorization into the mathematical context
as well as illustrative case studies follow. Next, the idea of decomposition is applied
to the problem classes of parameter identification and bilevel programming. In both
cases, the structure is identical: First, the original problem is formally introduced
and the reformulation as NLP is discussed. Next, a reduced version is presented
and possible drawbacks are discussed. Subsequently, an alternative decomposed
formulation is introduced and its possible advantages are highlighted. In the case
of parameter identification, existing transcription methods like single and multiple
shooting as well as full discretization are introduced and analyzed. In bilevel
programming, a reduced approach, the well-known KKT approach, as well as a
newly developed decomposed approach are discussed. This approach is illustrated by
examples that cover aspects like solution quality and sparsity considerations. Finally,
variations of this approach are discussed, for example FB techniques.

Chapter 4 is a collection of examples to substantiate the hypotheses made in
this work. It consists of comparing formulation techniques against each other with
respect to several criteria. In particular, the effects to parameter identification
are analyzed with respect to a mathematical pendulum and a robotic system. For
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bilevel programming, two example problems are discussed in detail with respect to
the region of attraction. The novel reformulation method is subsequently tested
on a library of problems. Many examples within this chapter are accompanied by
investigating computational aspects such as computation times or required numbers
of iterations. This chapter closes with an idea to enhance a homotopy algorithm
for parameter identification by combining it with optimization. It is illustrated by
examples and initial experiments.

The dissertation closes with a short summary of its findings, concluding remarks,
and an outlook on possible extensions.
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Chapter 2

Nonlinear Programming

Optimization problems occur in almost every field of application, and their solution
is often a difficult endeavor. They can be formulated in various forms, for example
involving dynamical models, being unconstrained or constrained, or as optimization
tasks that require solving a nested optimization problem. A common approach
to solving different problems similarly is to reformulate them as standard finite-
dimensional nonlinear programs. A formulation in a standardized manner has
the advantage that one can make use of state-of-the-art solution methods that
are designed to solve a broad range of these problems. Although this problem
reformulation often involves approximations or reductions at some point, it is a
well-established procedure.

This chapter has the purpose of giving a brief introduction into the topic of nonlinear
programming. In the following, the standard problem formulation is presented
and necessary theoretical concepts are introduced. Besides a formal introduction,
numerical solution methods are presented. This chapter lays the foundation for all
following investigations in this thesis.

2.1 Theory

The following introduction is a composition of contents from [40], [49], and [89].
Whenever necessary, a more precise reference is given.

2.1.1 Problem Formulation

In nonlinear programming, one is interested in finding the value of an optimization
variable z ∈ Rnz that optimizes a given objective function F : Rnz → R with
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Chapter 2 Nonlinear Programming

respect to constraints z ∈ S ⊆ Rnz . Here, S is assumed to be represented by
inequality constraints G(z) ≤ 0nG1 for a function G : Rnz → RnG and equality
constraints H(z) = 0nH for a function H : Rnz → RnH :

S := {z ∈ Rnz : G(z) ≤ 0nG , H(z) = 0nH}.

An optimization problem is called an NLP if at least one of the involved functions is
nonlinear.

Due to the following remark, we restrict ourselves to minimization tasks, in other
words we aim at finding those variables z ∈ S for which F attains a minimal value.

Remark 2.1 It holds that maxF (z) = − min −F (z).

The described problem formulation is summarized in the following notion:

Problem 2.2 (NLP)
Find variables z ∈ Rnz that

minimize F (z)

subject to G(z) ≤ 0nG
H(z) = 0nH .

A point z that fulfills the constraints is called a feasible point, while the set S
containing all feasible points is called the feasible region. If it is empty, the problem
is called infeasible. If Gi(z) = 0 for z ∈ Rnz and an i ∈ {1, . . . , nG}, this constraint
is called active at z; the set

I(z) := {i ∈ {1, . . . , nG} : Gi(z) = 0)}

is called the set of active constraints at z, or short the active set. For the characteri-
zation of optimal points, the notion of a neighborhood has to be introduced. For a
point ẑ ∈ Rnz and a radius δ > 0, the set

Uδ(ẑ) := {z ∈ Rnz : ∥z − ẑ∥2 ≤ δ}

is called δ-neighborhood of ẑ. With the collected ingredients, optimal points can be
defined.

1The symbol 0n represents an n-dimensional column vector containing zeros.
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2.1 Theory

Definition 2.3 For (NLP), a feasible point z⋆ ∈ S is a

(i) local minimum if there is a δ > 0 such that F (z⋆) ≤ F (z) for all z ∈ Uδ(z⋆)∩S;
(ii) strict local minimum if there is a δ > 0 such that F (z⋆) < F (z) for all

z ∈ Uδ(z⋆) ∩ S, z ̸= z⋆;
(iii) global minimum if F (z⋆) ≤ F (z) for all z ∈ S;
(iv) strict global minimum if F (z⋆) < F (z) for all z ∈ S, z ̸= z⋆.

This definition, however, is practically not applicable, since F would have to be
evaluated at an infinite number of points to find out whether a given point is optimal.
Therefore, conditions are introduced which provide a criterion to check whether a
given point is optimal.

Definition 2.4 The Lagrange function L : Rnz × RnG × RnH → R is defined as

L(z, λ, µ) = F (z) + λTG(z) + µTH(z)

and λ and µ (or synonymously their components) are called Lagrange multipliers or
dual variables, while z is also referred to as being the primal variable.

To be prepared for the following considerations, we assume that F , G, and H are
twice continuously differentiable from now on.

2.1.2 Regularity Conditions

To formulate conditions for a local minimum, so-called regularity conditions (or
constraint qualifications) have to be introduced.

Definition 2.5 A feasible point z ∈ S fulfills the Mangasarian-Fromovitz Constraint
Qualification if ∇Hi(z), i = 1, . . . , nH , are linearly independent and there exists
a vector d ∈ Rnz such that ∇Gi(z)Td < 0 for i ∈ I(z) and ∇Hi(z)Td = 0 for
i = 1, . . . , nH . In this case, z is called a regular point.

The following definition provides another constraint qualification:

Definition 2.6 A feasible point z ∈ S fulfills the Linear Independence Constraint
Qualification (LICQ) if ∇Gi(z), i ∈ I(z), and ∇Hi(z), i = 1, . . . , nH , are linearly
independent. In this case, z is called a normal point.
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Chapter 2 Nonlinear Programming

Their relation is described in the following theorem:

Theorem 2.7 Let z ∈ S be a feasible point at which the LICQ is fulfilled. Then,
the Mangasarian-Fromovitz Constraint Qualification is also fulfilled at this point.

The proof can be found in [49, Theorem 2.41], for example.

2.1.3 Optimality Conditions

The definitions of regularity and the Lagrange function allow formulating optimality
conditions. We begin with the necessary, so-called KKT conditions, which make use
of the derivative of L with respect to z:

∇zL(z, λ, µ) = ∇F (z⋆) + ∇G(z⋆)Tλ+ ∇H(z⋆)Tµ.

Theorem 2.8 Let z⋆ denote a local minimum of (NLP). If z⋆ is regular, then there
exists a vector λ ∈ RnG and a vector µ ∈ RnH such that the following conditions
hold:

∇zL(z⋆, λ, µ) = 0nz , (2.1 )
G(z⋆) ≤ 0nG , (2.2 )
H(z⋆) = 0nH , (2.3 )

λTG(z⋆) = 0, (2.4 )
λ ≥ 0nG . (2.5 )

A proof can be found in [49], for example.

Remark 2.9 Condition (2.4) is in so-called scalar-product form, while it is often
equivalently stated as λiGi(z⋆) = 0 for i = 1, . . . , nG.

Remark 2.10 If z⋆ is normal, then the Lagrange multipliers are unique.

A point (z⋆, λ, µ) satisfying the conditions (2.1) to (2.5) is called a KKT point.
The presented conditions are also called first-order conditions, since only first-order
derivatives of the Lagrange function are needed. To formulate second-order conditions,
we have the following theorem:
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2.2 Numerical Solution Methods

Theorem 2.11 Let z⋆ denote a local minimum of (NLP). If z⋆ is regular, then
there exists λ ∈ RnG and µ ∈ RnH such that (2.1) to (2.5) hold and

dT∇2
zzL(z⋆, λ, µ)d ≥ 0

for all d ∈ C(z⋆) with

C(z⋆) := {d ∈ Rnz : dT∇Gi(z⋆) ≤ 0 for i ∈ I(z⋆) and λi = 0,
dT∇Gi(z⋆) = 0 for i ∈ I(z⋆) and λi > 0,
dT∇Hj(z⋆) = 0 for j = 1, . . . , nH}.

C(z⋆) is called the critical cone at z⋆.

This is proven in [49], for example.

Theorem 2.8 does not only give necessary conditions, it serves in many numerical
solution methods as a termination criterion. However, it is not ensured that z⋆ is a
minimum point. Sufficient second-order conditions are needed:

Theorem 2.12 If there exist vectors λ ∈ RnG and µ ∈ RnH such that (2.1) to (2.5)
hold and

dT∇2
zzL(z⋆, λ, µ)d > 0

for all d ∈ C(z⋆)\{0nz}, then z⋆ is a strict local minimum of (NLP).

A proof of this theorem can also be found in [49].

2.2 Numerical Solution Methods

Only in rare cases, (NLP) can be solved analytically. For the majority of problems,
especially in the context of real-world applications, one cannot expect to be able to
calculate a solution by hand. In this section, therefore, we are concerned with the
numerical solution of (NLP). Many algorithms are based on constructing a sequence
of iterates. During the course of the algorithm, this sequence is supposed to converge
to a local minimum. In practice, this amounts to iteratively improving an initial
guess until first-order optimality conditions are fulfilled up to a given tolerance.
Although each problem class benefits from tailored solution methods, there are two
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Chapter 2 Nonlinear Programming

approaches that have turned out to be efficient and applicable in the majority of
cases: SQP and IP methods — introduced in the following.

2.2.1 Sequential Quadratic Programming

The idea of SQP is to improve an initial guess iteratively by solving a suitable, easier-
to-solve subproblem. However, before starting to derive a basic SQP algorithm, some
major ingredients have to be defined. SQP methods are based on solving quadratic
programs (QPs), which are characterized by a quadratic objective function with
linear equality and inequality constraints. To be precise, for vectors c ∈ Rnd , d ∈ Rnd ,
v ∈ Rnv , w ∈ Rnw , and matrices A ∈ Rnv×nd , B ∈ Rnw×nd , and W ∈ Rnd×nd , a
standard QP is given as follows:

Problem 2.13
Find variables d ∈ Rnd that

minimize 1
2d

TWd+ cTd

subject to Ad ≤ v

Bd = w.

Remark 2.14 If W is positive semi-definite, Problem 2.13 is a convex QP.

As in Theorem 2.8, we can formulate necessary optimality conditions for this problem2.
Thus, there exist dual variables ι ∈ Rnv and κ ∈ Rnw such that

Wd+ c+ATι+BTκ = 0nd ,
Ad− v ≤ 0nv ,
Bd− w = 0nw ,

ιT(Ad− v) = 0,
ι ≥ 0nv

holds. In this case, constraint qualifications are not needed to formulate necessary
optimality conditions due to the linearity of the constraints. There exist many

2Necessary optimality conditions for QPs will be used in Subsection 3.3.5, where they will appear
as artificial problem constraints.
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2.2 Numerical Solution Methods

Algorithm A Full-step exact-Hessian SQP

1: Choose z[0], λ[0], µ[0], set k = 0
2: while Termination criterion is not fulfilled do
3: Solve (QP) and obtain d[k] together with λ[k+1], µ[k+1]

4: Update z[k+1] = z[k] + d[k]

5: Update k ← k + 1
6: end while

advanced solvers for the numerical solution of Problem 2.13, such as qpOASES [36],
HPIPM [46], or WORHP’s internal solvers [62].

With an initialization zini := z[0], the general idea of SQP methods is to iteratively
improve a current iterate z[k] by the solution d[k] of a suitable quadratic subproblem.
This is formulated in such a way that its objective function serves to approximate
the Lagrange function L and the constraints linearize the original ones in (NLP)
with the current iterate as evaluation point. Herein, the dual variables λ and µ have
to be updated as well, which is why they have to be initialized, too. For the exact
Hessian H := ∇2

zzL(z, λ, µ), the problem reads as follows:

Problem 2.15 (QP)
Find variables d ∈ Rnz that

minimize 1
2d

THd+ ∇F (z)Td

subject to G(z) + ∇G(z)Td ≤ 0nG
H(z) + ∇H(z)Td = 0nH .

The basic procedure is now given by Algorithm A. Usually, the termination criterion
is fulfilled when a KKT point is approximated. Since H might not be positive
definite everywhere, (QP) can exhibit multiple KKT points. In order to be able
to formulate the following convergence theorem, one chooses that point that has a
minimal distance to the one determined in the previous step (compare [49]).

Theorem 2.16 Let (z⋆, λ, µ) be a normal KKT point of problem formulation (NLP)
for which G(z⋆) + λ ̸= 0nG and sufficient second-order conditions 2.12 hold3. Then
there exists an ϵ > 0 such that for each initial guess

(︂
z[0], λ[0], µ[0]

)︂
∈ Uϵ(z⋆, λ, µ) and

each sequence
{︂(︂
z[k], λ[k], µ[k]

)︂}︂
generated by Algorithm A, the following statements

are true:
3The condition G(z⋆) + λ ̸= 0nG is also called strict complementarity.
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(i) Algorithm A is well-defined and
{︂(︂
z[k], λ[k], µ[k]

)︂}︂
converges to (z⋆, λ, µ).

(ii) The convergence rate is superlinear.
(iii) If ∇2F , ∇2Gi (i = 1, . . . , nG), and ∇2Hj (j = 1, . . . , nH) are locally Lipschitz

continuous, the convergence rate is quadratic.

A proof of this theorem can be found in [49].

Up to now, it is not intuitively clear how the specific choice of (QP) can be de-
rived. To get an understanding, we consider the following exclusively equality-
constrained NLP:

Problem 2.17
Find variables z ∈ Rnz that

minimize F (z)

subject to H(z) = 0nH .

The corresponding Lagrange function is given by L̄(z, µ) = F (z) + µTH(z) with
multipliers µ ∈ RnH . For a regular optimal point z⋆, the KKT conditions read

K(z⋆, µ) :=

⎛
⎝∇zL̄(z⋆, µ)

H(z⋆)

⎞
⎠ = 0nK .

Applying Newton’s method to solve this system of equations leads to the iteration
scheme

∇K
(︂
z[k], µ[k]

)︂
⎛
⎝z[k+1] − z[k]

µ[k+1] − µ[k]

⎞
⎠ = −K

(︂
z[k], µ[k]

)︂
(2.6)

wherein (omitting function inputs for readability)

∇K =

⎛
⎝∇2

zzL̄ ∇HT

∇H 0nH×nH

⎞
⎠.

For d := z[k+1] − z[k] and η := µ[k+1], (2.6) becomes
⎛
⎝∇2

zzL̄ ∇HT

∇H 0nH×nH

⎞
⎠

⎛
⎝ d

η − µ[k]

⎞
⎠ = −

⎛
⎝∇zL̄

H

⎞
⎠,
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2.2 Numerical Solution Methods

which can be equivalently transformed to
⎛
⎝∇2

zzL̄ ∇HT

∇H 0nH×nH

⎞
⎠

⎛
⎝d
η

⎞
⎠ = −

⎛
⎝∇F
H

⎞
⎠

due to the definition of L̄. This is also known as Lagrange-Newton method. Finally,
this equation is identical to the KKT conditions of (QP) if inequality constraints are
omitted, which justifies the usage of this specific QP. With inequality constraints,
this approach of applying Newton’s method to the KKT conditions is not applicable.
Practically, they are simply added to the respective QPs within SQP.

Line Search Methods

Algorithm A is the basis for many extensions and improvements. In its current
form, the algorithm converges to a local minimum only if the initial guess lies within
a specific region around the minimum. For globalization, a step size α ∈ (0, 1] is
introduced in each iteration via

z[k+1] = z[k] + α[k]d[k].

There are several methods for its computation, for example via merit functions or
filter methods. For an overview, we refer to Nocedal’s and Wright’s textbook [89].

Quasi-Newton Methods

The algorithm requires the computation of the Hessian of the Lagrange func-
tion H = ∇2

zzL, which can be costly on the one hand and might not always be
positive definite, on the other hand. This can affect the convergence behavior. In-
stead, it is common to approximate the Hessian matrix in each iteration, for example
using Broyden–Fletcher–Goldfarb–Shanno (BFGS) (see [89]) or Davidon-Fletcher-
Powell [42] approximations.

2.2.2 Interior-Point Methods

Another widely applied class of algorithmic approaches are IP methods, to which
a brief introduction is given in the following. The considerations are based on a
review article by Forsgren et al. [44], while the structure is inspired by the overview
in [125].
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We consider the following exclusively inequality-constrained NLP:

Problem 2.18
Find variables z ∈ Rnz that

minimize F (z)

subject to G(z) ≥ 0nG .

As the name already suggests, the main idea in IP methods is to iteratively approach
a local optimal solution from the interior of the feasible set. This can be achieved by
using so-called barrier functions B, which consist of the original objective function F
and a barrier term B, which only depends on the inequality constraints G. A famous
example for such a function is the commonly used logarithmic barrier term4

Blog(z) := −
nG∑︂

k=1
log(Gk(z)),

which fulfills the desired condition that for

lim
j→∞

z[j] ∈ ∂S

with S being the feasible set, it holds for z[j] ∈ So that

lim
j→∞

B
(︂
z[j]

)︂
= ∞ (2.7)

for j ≥ 0. Herein, the interior of a set A is denoted as Ao, while its boundary
reads ∂A. Hence, for a sequence of interior feasible points that converge to the
boundary of the feasible set, the barrier term converges to infinity. The corresponding
barrier function is then given as

B(z, ν) := F (z) + νBlog(z)

= F (z) − ν
nG∑︂

k=1
log(Gk(z))

with ν > 0 being the so-called barrier parameter. Next we consider the following
parametric optimization problem:

4This is only defined for inactive points (Gk(z) ̸= 0).
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Problem 2.19
Find variables z ∈ Rnz that

minimize B(z, ν).

Instead of solving the original problem, a sequence of these parametric problems is
solved for a fixed value of ν, respectively. By construction, solutions that correspond
to ν > 0 are feasible interior points due to (2.7). The connection to the original
problem from Section 2.1 can now be established by comparing the necessary
optimality conditions. Since Problem 2.19 is unconstrained, they read as follows:

∇zB(z, ν) = ∇F (z) −
nG∑︂

k=1

ν

Gk(z)
∇Gi(z)

= 0nz .

In a next step, we introduce the variable

λν,i := ν

Gi(z)

for an i ∈ {1, . . . , nG}, which can be transformed to

λν,iGi(z) = ν. (2.8)

It can easily be seen that λν,i ≥ 0 and thus, it can be interpreted as a perturbed
complementarity condition, similar to (2.4). For decreasing values of ν, the original
condition is finally approached.

In primal-dual IP methods, the newly introduced variables λ̃ := λν ∈ RnG and the
original ones are treated independently: condition (2.8) is also taken into account
within the problem. This leads to the necessary optimality conditions

⎛
⎝∇F (z) − ∇G(z)Tλ̃

diagG(z)λ̃− νnG

⎞
⎠ = 0nz+nG

(diagG(z) is the diagonal matrix of the components of G(z)), which can be solved
by Newton’s method. For additionally equality-constrained problems, Problem 2.19
is extended:
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Algorithm B Primal-dual interior-point method

1: Choose z[0], λ̃[0], µ̃[0] with z[0] ∈ S, ν[0] > 0, set k = 0
2: while Termination criterion is not fulfilled do
3: Solve Problem 2.20 and obtain z[k+1], λ̃[k+1], µ̃[k+1]

4: Choose ν[k+1] with 0 < ν[k+1] < ν[k]

5: Update k ← k + 1
6: end while

Problem 2.20
Find variables z ∈ Rnz that

minimize B(z, ν)

subject to H(z) = 0nH .

Necessary optimality conditions of this problem now read

Σ
(︂
z, λ̃, µ̃, ν

)︂
:=

⎛
⎜⎜⎜⎝

∇F (z) − ∇G(z)Tλ̃− ∇H(z)Tµ̃
diagG(z)λ̃− νnG

H(z)

⎞
⎟⎟⎟⎠ = 0nz+nG+nH (2.9)

with Lagrange multipliers µ̃ ∈ RnH . The application of Newton’s method leads to
the following linear system of equations for one step:

⎛
⎜⎜⎜⎝

H
(︂
z, λ̃, µ̃

)︂
−∇G(z)T −∇H(z)T

ΛG∇G(z)T G(z) 0nG×nz

∇H(z) 0nH×nG 0nH×nz

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

∆z
∆λ̃
∆µ̃

⎞
⎟⎟⎟⎠ = −Σ

(︂
z, λ̃, µ̃, ν

)︂
.

Herein,

H
(︂
z, λ̃, µ̃

)︂
= ∇2F (z) −

nG∑︂

i=1
λ̃i∇2Gi(z) −

nH∑︂

i=1
µ̃i∇2Hi(z)

denotes the corresponding Hessian matrix. Iteratively solving the system of equa-
tions (2.9) for successively decreasing values of ν yields the basic primal-dual interior-
point method, summarized in Algorithm B. The algorithm iterates until a termina-
tion criterion is fulfilled, typically the check for necessary optimality conditions of
Problem 2.18.

20



2.2 Numerical Solution Methods

Parameter Default value Used value

KeepAcceptableSol True False
LowPassFilter True False
InitialLMest True False
ScaledKKT True False
Ares [42, 41, 42, 43, 44, 41, 50] [50]

Table 2.1: Modified WORHP configuration parameters for all presented computations.

The given algorithm only describes the basic procedure. Numerous extensions and
modifications exist. In combination with an efficient implementation, IP methods
have become the state-of-the-art for solving a large variety of NLP problems. State-
of-the-art software tools are IPOPT (see [120]) or WORHP’s IP solver, see [71].

2.2.3 The NLP Solver WORHP

In this thesis, several types of optimization problems are formulated as standard
NLPs. They all have to be solved numerically with the requirement that even
large problems can be solved in a reasonable time. Therefore, the NLP solver
WORHP5 [20] is used in this thesis. WORHP provides both a solver based on SQP and an
IP algorithm [71]. It is designed for the numerical solution of large-scale problems,
although small to medium-sized problems can also be solved efficiently.

WORHP is highly adjustable to the use-case at hand and therefore, several configuration
parameters can be changed from their default values. In all the computations
throughout this thesis, the following options are used if not stated otherwise: First
and second-order derivatives are computed via finite differences. Features like
termination heuristics or recovery strategies are disabled to maintain a consistent
iteration behavior and to make numerical analyses more reliable. The changed
parameters are collected in Table 2.1. For all the computations, a tolerance of 10−6

is used (optimality, feasibility, complementarity). These computations are executed
on different computers, their specifications are listed in Table 2.2.

There exist several libraries that build upon WORHP, for example the optimal control
software TransWORHP (mentioned in [69]), which is also used within this work for the
numerical solution of dynamical parameter identification problems.

5The abbreviation “WORHP” stands for “We Optimize Really Huge Problems”.

21



Chapter 2 Nonlinear Programming

Parameter identification Bilevel programming

WORHP 1.11 1.15
Central processing unit Intel® Core™ i7-4790

(4 cores, 8 threads)
AMD Ryzen™ 7 PRO 4750u
(8 cores, 16 threads)

Base frequency 3.6 GHz 1.7 GHz
Random-access memory 32 GB 32 GB
Operating system Debian 8 Ubuntu 20.04

Table 2.2: Software and hardware specifications.

2.2.4 Sparse Matrices

When applying second-order methods to solve an NLP, first and second-order
derivatives (gradient of objective function, Jacobian matrix of constraints, and
Hessian matrix of Lagrange function) need to be computed. For large-scale problems,
this can lead to high computational efforts. However, specific problem formulations
may exhibit sparsity in these derivatives. In the following, the concept of sparse
matrices is defined. The definition we choose goes back to [51] and is, for example,
also used in [48].

Definition 2.21 A matrix A ∈ Rm×n with entries aij , i = 1, . . . ,m, j = 1, . . . , n is
called sparse if aij = 0 for many tuples (i, j). With the number of non-zero entries
denoted as nnz, a sparsity measure for a matrix A ∈ Rm×n is given by

δrel(A) := nnz
nm

∈ [0, 1].

If δrel(A) = 1, the matrix is called dense. For values near zero, we call the matrix
sparse.

Remark 2.22 In the special case of a Jacobian or Hessian matrix, entries that are
zero independent of the evaluation point are structural zeros. A non-zero entry can
still contain a numerical zero.
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Decomposition Methods

This chapter discusses the idea of decomposition: replacing complex terms in a
problem formulation with more tractable ones. This involves the introduction of
artificial optimization variables and constraints. To this end, the general concept is
formally introduced in Section 3.1, including a literature review and initial examples.
We then present two specific problem classes in which the idea of decomposition
finds application. We give introductions to the field of parameter identification in
dynamical systems and to the problem class of bilevel programming. Although both
areas are usually distinct, we apply the concepts of Section 3.1 to them in a similar
way and demonstrate their applicability. Parameter identification (Section 3.2)
belongs to the field of optimization with constraints involving time-dependent,
dynamical equations. In this case, decomposition strategies are well-known, but
their impact on finding desired local solutions has not been fully investigated.
Therefore, we introduce this field with a focus on decomposition properties. In
bilevel programming (Section 3.3), evaluating the problem functions involves the
solution of another parameterized optimization problem. In addition to a formal
introduction to the problem class, a novel concept for decomposition is presented
and analyzed. Both mathematical areas have in common that the original problem
contains a complex term in the problem functions, namely the solution of an ODE
or an NLP.

3.1 Concept

The focus within this work is on finding suitable formulations for a given optimization
problem (compare Figure 1.1). The interplay between such a formulation and the
given algorithm is important for being successful. Since we fix the algorithm choice
and aim to use state-of-the-art NLP solvers, we concretize the idea of finding
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suitable formulations for a given problem in this section. The general idea that
will be presented in the following is decomposition: split up difficult terms in the
problem formulation and embed those parts into the overall problem by adding
artificial variables and constraints. This idea will be described more formally in the
following.

3.1.1 Problem Formulations

We consider optimization problems of the standard type (as in Problem 2.2) with
optimization variables z ∈ Rnz . Evaluating the problem-defining functions requires
the “evaluation” of a subtask ψ parameterized in z. This “evaluation” can correspond
to a simulation of a model, the execution of an algorithm, or the evaluation of a
generic function, for example. The outcome — a motion, a final iterate, or a solution —
is denoted as w ∈ Rnw . To emphasize that ψ represents something arbitrary, yet
non-trivial or costly to evaluate, we denote it as ψ[z].

In many applications, one can think of z being the variables of interest, while w
corresponds to a model simulation. The model here would be parameterized in z
and represents the practitioner’s system of interest. When it comes to formulating
an optimization problem, a naive approach would be to optimize only with respect
to z, while the model is simulated in the background in each iteration the algorithm
performs.

The Reduced Problem

Although the output w of ψ is required to evaluate problem-defining functions, the
above-described optimization problem can be formulated only in terms of z. We call
this a reduced problem, since the number of variables and constraints is reduced to a
minimum.

Problem 3.1 (R-NLP)
Find variables z ∈ Rnz that

minimize F(z, ψ[z])

subject to G(z, ψ[z]) ≤ 0nG

H(z, ψ[z]) = 0nH .
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This is a problem in standard NLP form. However, every evaluation of F , G,
or H requires evaluating ψ at z. Hence, the second component of each function is
said to have an implicit nature and the underlying expression is called an implicit
constraint [58], because it is hidden in such a way that the algorithm only operates
on z. This is why we call z the primary variable and w the secondary variable. At
first sight, this formulation offers advantages:

Reduced problem dimensions can keep the computational effort and memory re-
quirements low.

Simplified implementation is given due to the separation of both tasks. An NLP
solver can be combined with existing tools to evaluate ψ.

Anytime availability (as it is called in [15]) means that a solution of the underlying
task is available at any stage of the overlaying algorithmic process. It may not
appear to be necessary to solve the underlying task up to a high precision as
long as the algorithm for the reduced problem has not converged. However,
this can be advantageous in online frameworks, where an optimization process
can be interrupted due to external factors. If this happens, one still has access
to a solution of the underlying task.

However, this problem formulation exhibits disadvantages, which may not be visible
in first place.

Computation time can depend heavily on ψ, although problem dimensions are
reduced to a minimum. Consider the case that ψ[z] represents solving a partial
differential equation (PDE) that is parameterized in z. In typical scenarios, nw
(the dimension of the outcome given as discretized state variables in time and
space) is much larger than nz and solving the PDE becomes a time-consuming
process. When an algorithm is run to solve this problem, the PDE would
have to be solved every time the algorithm needs to evaluate F , G, or H.
Furthermore, in gradient-based methods, derivatives that depend on ψ have to
be computed. In case finite differences are used, the computational burden
can quickly become large due to numerous function evaluations.

Highly nonlinear terms may arise due to the application of ψ. Often, nonlinear
problems are nonconvex, which allows them to have multiple local solutions.
Converging to the global solution is a well-known challenge in local methods.

Consistency in evaluating ψ is important for the algorithm that is used to solve
the problem. Consider the case that evaluating ψ corresponds to applying an
iterative scheme (parameterized in z) until a given tolerance is reached. In
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unfortunate cases, the scheme terminates close to the tolerance for a certain
parameterization, while for another value it falls far below the tolerance. This
can lead to overall differentiability issues.

Reachability restrictions can occur due to reduced image spaces. The evaluation
of F , for instance, is restricted by the image space of ψ. Of course, this is
intended for the problem’s solution, but it is not necessary during the solution
process. In the corresponding iteration steps, an exact solution of the subtask
is not required, which may allow the solver to find better values for F . In
particular, this could enable a solver to overcome local solutions which would
be attained in unlucky cases of reachability restrictions1.

Despite the many disadvantages, the reduced problem formulation can be found in
many applications.

Decomposition Strategies

The concept followed in this work is decomposition. The idea is to introduce a set of
artificial variables and constraints which represent the evaluation of ψ. Hence, it
will be optimized with respect to primary and secondary variables simultaneously.
To this end, the variable space is extended by w. An intuitive approach is to add
the artificial constraint w = ψ[z], which allows formulating the following problem:

Problem 3.2
Find variables z ∈ Rnz and w ∈ Rnw that

minimize F(z, w)

subject to G(z, w) ≤ 0nG

H(z, w) = 0nH

H0(z, w) := w − ψ[z] = 0nw .

This formulation already offers advantages due to the splitting of the variables.
The problem functions can be evaluated at a larger set of possible values, namely
at (z, w) instead of (z, ψ[z]). This is possible since w is no longer dependent and will
be optimized simultaneously to z. However, this formulation still has a drawback:
evaluating the constraints still requires evaluating the expression ψ, which happens
in every iteration of an overlaying optimization algorithm. As we assume that this
is a costly procedure, these costs add up within the optimization process. Thus, it

1This phenomenon finds closer attention in Example 3.22.
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is desirable to find a formulation which completely avoids evaluating ψ. However,
the connection between z and w may not get lost. Generally, it suffices that this
connection is given at the end of the optimization process — not at each problem
function evaluation. In particular, we require it to be given implicitly once the
optimization algorithms terminates successfully. The aim is to avoid evaluating ψ.
This leads to the following task:

Find conditions Gψ(z, w) ≤ 0nGψ
and Hψ(z, w) = 0nHψ

that make evaluating ψ re-
dundant.

Once these conditions are found, we can formulate a decomposed problem in standard
NLP form.

Problem 3.3 (D-NLP)
Find variables z ∈ Rnz and w ∈ Rnw that

minimize F(z, w)

subject to G(z, w) ≤ 0nG

Gψ(z, w) ≤ 0nGψ

H(z, w) = 0nH

Hψ(z, w) = 0nHψ
.

With this reformulation, repeated evaluations of ψ[z] are avoided and even become
obsolete. The question remains under which circumstances such a reformulation can
be found. Finding a general answer to this question is not trivial. For insights, we
refer to the following sections.

3.1.2 Examples

The following examples shall illustrate potential fields of application for the concept
of decomposition.

Symbolic Expressions

We start the list of examples on a very general level. Symbolic expressions or arbitrary
terms could be decomposed into their individual parts, which are then reassembled
as artificial constraints via slack variables. To realize this in an automated way,
techniques from the “AI Feynman” algorithm [112] could be used. There, among other
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simple mathematical operations, so-called “basic functions” are used to represent
arbitrary functions via a tree graph. In addition, other properties of these functions
are exploited, such as symmetries or separability (additive and multiplicative). A
similar procedure is also used for automatic differentiation [53]. Here, the chain rule
is applied recursively to elementary functions and operations to determine partial
derivatives. This could also be used to decompose an arbitrary term to obtain
a reformulation in the sense discussed here. Whether this approach is profitable,
however, remains to be investigated.

Iterative Procedures

In the case where ψ represents the application of an iterative procedure, parameterized
in z, the decomposition could be applied as follows: Since the number of steps required
to apply this procedure depends on the input z, a consistent underlying process
can be guaranteed by fixing the number of steps to N . Then, one would treat each
iterated variable as an artificial optimization variable. They are then connected by
artificial constraints representing the iterative scheme. Thus, the iterates are no
longer determined by applying the underlying algorithm, but by the algorithmic
steps of the overlying algorithm. Thus, finding a feasible solution represents the
application of the underlying algorithm. Formally, we introduce the optimization
variables

w1, w2, . . . , wN ∈ Rnw

which represent the sequence of iterates generated by the respective algorithm. They
are linked by the applied iteration scheme and embedded into the problem as artificial
constraints. For a sufficiently large N , w is (hopefully) approximated by wN , and we
obtain an almost equivalent problem formulation. This idea is pursued in Section 3.3
and analyzed using the example of bilevel programming.

Implicit Equations

Let ψ[z] represent solving the implicit equation

Ĥ(z, w) = 0nĤ (3.1)

for w. The function Ĥ : Rnz ×Rnw → RnĤ is at least once continuously differentiable.
Since we cannot assume that w has an explicit form, the system in (3.1) has to be
solved numerically, for example using Newton’s method. For an initial starting point
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w0, we have the iteration

wk+1 = wk + ∆wk, k = 0, 1, 2, . . .

in which ∆wk is the solution of the linear system

∇wĤ(z, wk)∆wk = −Ĥ(z, wk).

This allows formulating a reduced version as in (R-NLP). For each evaluation of
the problem functions, (3.1) has to be solved numerically, which can lead to several
problems. First, the algorithm needs to be initialized by choosing w0 and — since z
changes its value during the optimization process — this initial guess needs to be
updated adequately. One strategy is to update the initialization by the previously
obtained solution. However, for large changes in z, this can be risky. Second,
appropriate termination tolerances have to be chosen, and third, this inner iterative
scheme has to be applied numerous times, which can be time-consuming.

The decomposed counterpart of the reduced problem uses (3.1) as an artificial
constraint while treating w ∈ Rnw as an optimization variable. Although problem
dimensions increase, the previously-mentioned challenges become obsolete, because
the explicit application of Newton’s method is no longer necessary. Since the equation
is treated as a problem constraint, its handling falls into the responsibility of the
optimization algorithm. In the notation of (D-NLP), we have Hψ = Ĥ, while Gψ
is not needed. One disadvantage of this decoupling is to lose the possibility to set
a specific tolerance for (3.1) (the termination tolerance for Newton’s method). In
decomposed form, the constraint’s tolerance of the optimization algorithm would also
be employed for this equation. However, this issue can be addressed by adding scaling
tolerances in the overlaying problem. For illustration, we consider the following
example2:

Example 3.4: Kepler’s Equation
We consider the problem of finding the date d at which Earth (in cartesian coordi-
nates (cx, cy, cz)) is closest to the given coordinate (1, 0, 0). Herein, (cx, cy, cz) is
determined by the so-called true anomaly ϕ, which represents an angle. Its calcu-
lation, on the other hand, requires to compute the so-called eccentric anomaly E

2At this point the author would like to thank Dr. Matthias Knauer for providing this illustrative
example. Details on the application can be found in [26].
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by solving the nonlinear equation

E − e sin(E) −M(d) = 0. (3.2)

It depends on the eccentricity e and the mean anomaly M , which is a linear
transformation of d. All in all, the following dependencies can be observed:

d
linear−−−−→ M

implicit nonlinear equation−−−−−−−−−−−−−−−−−→ E
nonlinear−−−−−−→ ϕ

nonlinear−−−−−−→ (cx, cy, cz)

Thus, we can follow that

(cx, cy, cz) = (cx(d), cy(d), cz(d)).

Since (3.2) cannot be solved analytically, it has to be solved numerically — for
example using Newton’s method — and obtaining the variables (cx, cy, cz) becomes
even more complex: Nonlinear functions and their concatenations occur and
an iteration scheme (Newton’s method) has to be applied. Nevertheless, an
optimization problem for the task of finding a specific date can now be formulated.
It is sufficient to only optimize with respect to d, the remaining calculations are
hidden to the solver:

minimize
d

(cx(d) − 1)2 + cy(d)2 + cz(d)2.

This is a problem in reduced, but standard NLP form and can be solved by
standard techniques. However, the inner iteration scheme to solve (3.2) needs to
be executed for each iterated value of the variable d.
Many of the earlier-mentioned difficulties of reduced problem formulations can
be overcome by an equivalent reformulation of the problem in decomposed form
(compare Problem 3.3). We introduce the optimization variable E in combination
with its defining equation as artificial constraint. This has the effect that the
cartesian coordinates become “less nonlinear”, since the numerical solution of the
nonlinear equation is no longer needed. A slightly higher-dimensional problem
can be formulated:

minimize
d,E

(cx(E) − 1)2 + cy(E)2 + cz(E)2

subject to E − e sin(E) −M(d) = 0.

In this formulation, both d and E can be varied. In particular, there is no need
to solve the nonlinear equation explicitly, since it is given as a constraint. To
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Section notation Kepler example

z ∈ Rnz d ∈ R
w ∈ Rnw E ∈ R
evaluate ψ solve E − e sin(E)−M(d) = 0 for E using Newton’s method
Gψ —
Hψ E − e sin(E)−M(d)

Table 3.1: Connections between Example 3.4 and the concept of decomposition.

translate this example into the notation of this section, we refer to Table 3.1. This
procedure of eliminating dependencies can now be further extended, for example
by considering M as an optimization variable together with its defining equation.

3.1.3 Related Work

The introduced setting can be found in very different ways in several other research
works. Within this subsection, we provide some existing directions, highlight several
aspects, and list interesting references.

(Partially) Reduced SQP Methods

The dependencies between w and z can be exploited algorithmically, especially
in the context of Newton-based optimization methods. The starting point are
so-called reduced SQP methods, which were initially developed for general equality-
constrained NLPs [10, 21, 88], but also for inequality-constrained cases [74]. By
a suitable factorization of the constraints’ Jacobian matrix, the QP subproblems
can be solved only on a subspace of variables, which helps to improve the overall
efficiency.

Schulz and Bock [100, 101] develop so-called Partially Reduced SQP Methods, which
exploit the circumstance that w can be seen as a by-product of z. They consider the
problem

minimize
z, w

F(z, w)

subject to H(z, w) = 0nH
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and similarly to (R-NLP), they formulate a reduced version of it. Therein, it is not
necessary to solve H(z, w) = 0nH in each iteration. Instead, they suggest performing
only one Newton-step and develop a modified SQP algorithm based on this. The
Hessian’s size within the QP subproblems is reduced to treating only the primary
variables z, which can be used efficiently in optimal control problems, for example.
The algorithm is extended to include inequality constraints and a convergence
analysis is given.

Optimization Involving Dynamical Systems

Famous examples with reduced and decomposed problem formulations are optimiza-
tion problems involving dynamical systems, for example optimal control or parameter
identification, also known as inverse problems. Using the “first-discretize-then-
optimize” approach, these problems can be formulated in standard NLP form (see
Subsection 3.2.2), either by including the numerical scheme to solve the underlying
dynamical system via artificial variables and constraints (decomposed formulation)
or by repeatedly solving the dynamical system, for example using a parameter- or
control-to-state-mapping (reduced formulation).

Biegler [9] studies optimal control problems involving algebraic-differential equations
and divides the approaches into being sequential and simultaneous, while the focus
is on the latter. For a direct transcription with collocation on finite elements, he
points out that there is a connection between optimality conditions of the NLP and
the discretized variational problem3 and consequently, NLP and optimal control
solutions can be related. Besides, he mentions that the simultaneous approach has
further advantages, for example the capability to deal with instabilities or chaotic
systems.

Heinkenschloss and Vicente [59] use a similar procedure to generalize optimal control
problems and provide an algorithm interface. They focus on scaling and derivative
computation via sensitivity and adjoint equation approaches to overcome problems
arising from time discretization. Based on this, Heinkenschloss [58] focuses on
the reduced problem formulation and provides algorithmic approaches such as a
Conjugate Gradient method and a Gauss–Newton method. He closes with an
example of optimal PDE control. Both works claim that while the decomposed
formulation has its advantages, it is often impractical to use because of the increased
dimensions.

3The “first-optimize-then-discretize” approach leads to a discretized variational problem.
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Wernsing [125] examines the concept of decomposition in an application involving
PDE-constrained optimization. Following a “first-discretize-then-optimize” approach,
the optimization problem can either be formulated in a reduced version4, which
hides solving the PDE from the solver, or in a decomposed way5, which embeds the
discretized PDE into the problem. His numerical investigations clearly show that
the decomposed problem formulation can be solved more efficiently than its reduced
counterpart, while the solution quality remains similar.

Echim [35] formulates both problem formulations in the context of parameter
identification involving ODEs, also using a “first-discretize-then-optimize” approach.
Instead of focusing on convergence rates and efficiency comparisons, the solution
quality is of interest. Robustness studies for an academic example as well as a
real-world application indicate that the decomposed formulation is to be preferred,
since it often leads to finding better solutions. A similar study is presented in
Section 4.1 in this work.

Kaltenbacher [63] compares all-at-once6 with reduced approaches for time-dependent
inverse problems. She investigates the impact of these different formulations on
numerical algorithms such as Landweber-Kacmarz, Landweber iteration, and the
iteratively regularized Gauss–Newton method (see references in [63]). A convergence
analysis in a function space setting is also presented. The numerical results on
an inverse PDE problem indicate computation time benefits for the all-at-once
approach.

Since this problem class is also treated within this thesis, a more sophisticated
literature review is given in Section 3.2. The focus is on parameter identification for
dynamical systems with an emphasis on numerical analyses.

Nonlinear Least-Squares

Schittkowski [99] considers the general nonlinear least-squares objective function

J(u) := 1
2ϕ(u)Tϕ(u)

4This is called Nested Analysis and Design (NAND).
5Simultaneous Analysis and Design (SAND) is the counterpart to NAND.
6The term “all-at-once” refers to simultaneously optimizing with respect to both primary and

secondary variables and can be understood synonymously to “decomposed”.
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with ϕ(u) := (ϕ1(u), . . . , ϕnl(u))T and proposes to introduce the artificial vari-
ables v ∈ Rnl in combination with the artificial constraints

ϕ(u) − v = 0nl .

Hence, J can be written as J(u) = 1
2v

Tv. In case an SQP method is used, algorithmic
advantages can be observed on a set of test problems. The benefit of this is a reduction
in the number of function evaluations and algorithm steps.

Lifting

The idea of introducing artificial variables and constraints to formulate an equiv-
alent problem is also called lifting: optimization variables are lifted into a higher-
dimensional space, potentially leading to improved convergence rates as reported in
several works. This is used in many related areas, among them are numerical dy-
namical optimization (see Section 3.2 for references), global mixed-integer nonlinear
programming within the solver BARON [94], or Newton-type optimization methods
including Newton’s method itself. This is described briefly in the following.

Albersmeyer and Diehl [1] introduce Lifted Newton Methods. They start their study
on root-finding problems J(u) = 0nu with J representing the application of an
algorithm with intermediate variable values

vi := ϕi(u, v1, v2, . . . , vi−1) for i = 1, 2, . . . ,m.

Hence, J(u) can be written as ϕJ(u, v1, v2, . . . , vm). Instead of solving the original
problem, they consider the lifted system of equations

K(u, v) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ1(u) − v1

ϕ2(u, v1) − v2
...

ϕm(u, v1, . . . , vm−1) − vm

ϕJ(u, v1, . . . , vm)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

representing the algorithm steps. Newton’s method is analyzed for this case and an
approach for an efficient derivative computation is given. The lifted system can be
solved efficiently using structure exploitation, which is called “condensing” therein.
They show that under specific assumptions, one can expect faster local convergence
to the optimal solution while having fewer additional costs per iteration. This idea
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is extended to the class of Newton-type optimization via Gauss–Newton methods
and SQP, for which they provide lifted versions and demonstrate their benefits
on large-scale example problems. Lifted Newton Methods can be interpreted as
a generalization of direct multiple shooting methods known from optimal control
or parameter identification. The theoretical focus within their work lies in deter-
mining the convergence rate for a simplified setting, while they observe impressive
improvements on complex examples.

The approach proposed in this work differs from Lifted Newton Methods in such
a way that the algorithm to solve the lifted problem remains as it is. On the
one hand, this reduces the implementation effort. The design of adapted solvers is
avoided, existing solvers can be used. On the other hand, strategies for improving the
efficiency, such as condensing, are not considered. However, this aspect is addressed
from the perspective of sparsity exploitation. They also mention that lifted schemes
benefit from more initialization freedom, but the possible consequences find less
attention. In problems with multiple local solutions, an adequate initialization can
strongly influence which solution is found. This aspect is given more attention in
this work, especially in Section 4.1.

Zach and Bourmaud [129] study lifting approaches within robust cost optimization, in
which one aims to minimize functions Γ(θ) = ∑︁N

i=1 γ(∥ϕi(θ)∥) with respect to θ ∈ Rnp ,
while the functions ϕi represent residual functions; γ is a so-called robust kernel
function. These types of objective functions usually possess many local minima due
to their high nonconvexity. To escape poor local solutions, they introduce lifting vari-
ables vi, that can be seen as confidence weights, via ∑︁N

i=1
(︂
a(vi)∥ϕi(θ)∥2

2 + δ(a(vi))
)︂

with a(v) := v2 (for example) and δ being convex and increasing. By initializing
them with large values, the objective function is smoothed. In their lifting approach,
they optimize simultaneously with respect to θ and vi. Hence, they embed the
original objective function in a higher-dimensional search space. A similar approach
is also investigated in this work. In Section 4.6, this idea is applied to homotopy
continuation for parameter identification in dynamical systems.

Alternating Direction Method of Multipliers

This method is originally designed for convex and separable objective func-
tions F(z, w) = F1(z) + F2(w) and linear constraints Az+Bw = c (with matrices A
and B and a vector c). The idea is to minimize the (augmented) Lagrange function
with respect to z and w in an alternating way while updating the dual variables. Un-
der some mild assumptions, this procedure is guaranteed to converge to the optimal
solution (compare [17]). It was also successfully applied to nonconvex problems (see
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for example [121] and references therein). The challenge is to reformulate a given
problem in the above way taking the separability of F into account. The approach
used in this work differs from the method due to the simultaneous optimization with
respect to z and w.

All in all, the idea of adding artificial variables and constraints finds application in
many optimization-related research areas.

3.2 Decomposition in Parameter Identification for
Dynamical Systems

For many technical processes from a wide variety of fields, general models exist that
describe the dynamical behavior. The structure of these models is usually known, as
they are often based on physical laws. To ensure an accurate simulation or control
of the underlying system, the model must be adapted to the specific application.
This is usually done by calibrating the model parameters using measurements from
the system.

In this section, the dynamical systems of consideration are given as ODEs. These
models cover a wide range of applications from many fields, for example biology [109],
chemistry [92], or mechanics [75]. The aim is to identify scalar parameters within
the model equations that influence the model behavior. Roughly speaking, this
is achieved by adjusting these parameters until the corresponding model output
matches given system measurements best.

This field is challenging in several disciplines. Without appropriate measurements,
the parameter identification will not succeed. Optimal experimental design can be
used to generate experiments that can lead to identifying relevant model parameters,
see [7] for instance.

Another crucial decision is whether to use the so-called direct or the indirect approach.
In the direct one, the choice of the optimization algorithm is an important factor and
subject of many research articles. Possible algorithms are Levenberg-Marquardt [76]
or Gauss–Newton algorithms [13] for nonlinear least-squares problems, SQP or IP
methods for general purpose NLPs (as introduced in Section 2.2 and used within
Chapter 4).

With regard to Section 3.1, evaluating the underlying complex term means nu-
merically solving the ODE. Hence, the choice of the integration scheme is also an
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important decision, which often depends on the specific problem at hand. While
state-of-the-art integration schemes like Runge-Kutta methods often perform suffi-
ciently well, other types like variational integrators7 (see [39] for example) also have
their advantages.

Furthermore, the way the objective function is formulated can have a strong influence
on the computational result. Typically, least-squares formulations (ℓ2 functions) are
used. There are also other possibilities, such as the ℓ1 objective function studied
by Kostina [70]. She shows that this type of objective function is very suitable for
measurements with outliers. Furthermore, it is shown that quasi-Newton algorithms
(such as BFGS approximations in SQP) are not suitable for parameter estimation and
introduce “stable solutions”, which are characterized by continuous and differentiable
dependence on perturbations, for example measurement perturbations. So-called
“unstable solutions” are recognized by a slow convergence behavior of the Gauss–
Newton method they use.

This section focuses on NLP formulations of a parameter identification problem and
their impacts on finding solutions.

The NLP formulation can have a decisive influence on the result of the parameter
identification task. Although different problem formulations may equivalently rep-
resent the same original problem, they do show a different algorithmic behavior,
and thus some formulations are more suitable than others. In the following, we
will investigate some above-mentioned aspects in more detail. In particular, we
will focus on the latter aspect and aim to answer the following question: how can
the original parameter identification problem be reformulated so that an algorithm
reliably converges to the desired solution?

Remark 3.5 The studied problem belongs to the class of inverse problems: given
an observed output of a system, one searches for the “cause”. Herein, the output is
given in terms of measurements. The unknown parameters in the ODE model are
the cause. Typically, inverse problems are ill-posed, which means that one of the
properties

– “existence”,
– “uniqueness”,
– or “continuous dependency on the measurements”

7Variational integrators can also be of Runge-Kutta type.

37



Chapter 3 Decomposition Methods

is violated8. To obtain a well-posed problem, regularization is a common step, which
means that a term is added to the objective function to smooth it. By this, an
early convergence to local minima is aimed to be avoided. However, regularizing a
problem requires at least some vague knowledge of the desired parameter values,
and also introduces some bias into the problem.

In the following, the problem of interest is formally introduced.

3.2.1 Original Problem Formulation

For a function s : R × Rnq × Rnp → Rnq , we consider the dynamical system

q̇(t) = s(t, q(t), p) (3.3)

with t representing the time variable ranging in the time interval [ta, tb] with ta < tb.
In the field of parameter identification, ta = 0 is a common choice. A state at a
specific time point is denoted by q(t). We assume s to be Lipschitz continuous in q,
such that there exist unique solutions q(t; p, qa) ∈ Rnq for all initial values qa ∈ Rnq
and all parameter values p ∈ Rnp (see [56], among others).

Remark 3.6 The term q(t; ω) denotes the explicit dependency on the time vari-
able t and an implicit dependency on an arbitrary ω ∈ Rnw , for example due to a
parameterization of the corresponding dynamics.

Remark 3.7 It is also common to consider systems of the form

q̇(t) = s(t, q(t), u(t), p)

with an additional input function u : R → Rnu . Usually, it represents a piecewise
continuous control term. In parameter identification tasks, measurements of u would
influence the dynamics. For simplicity, however, we omit this dependency in the
following.

We assume that this model is able to accurately represent a real-world time-dependent
system. This system operates with a nominal parameter vector p⋆ ∈ Rnp , which
is unknown to a practitioner. To simulate the system or for control purposes, this
parameter needs to be identified. For this, one needs to obtain measurements of

8This definition goes back to Hadamard [55].
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system states that correspond to this parameter choice. From an application point of
view, one can only expect to have a finite number of measurement points at specific
time points. One can think of sensors that measure only at a given frequency. We
explicitly allow that not all components of the states have to be measured. Indeed,
this is a typical circumstance. It can be caused by missing sensors, for example, and
can restrict the practitioner to using certain algorithms9. In case of incomplete state
information, we collect the indices of the measured state variables in the set

J := {j ∈ {1, . . . , nq} : there exist measurements for state variable qj}

and q J describes those components of q for which measurements exist. Its com-
plement — the index set of unmeasured state variables — is denoted as J c and
analogously, q J c are the unmeasured states. We assume that the measurements are
given at Nm discrete time points

ta = t̄1 < · · · < t̄Nm = tb

for each measured state variable, and denote them as

q̄k =
(︂
q̄

[t̄1]
k , . . . , q̄

[t̄Nm ]
k

)︂T
∈ RNm

for k ∈ J . It is inevitable that measurements are corrupted by noise and therefore,
one cannot assume that the model is able to reproduce the measurements in an
exact way. Thus, we cannot expect to find model parameters p that fulfill

q J (ti; p) = q̄[t̄i]

for i ∈
{︁
t̄1, . . . , t̄Nm

}︁
. This is why one wants to find those parameter values that

lead to a solution of the ODE (3.3) on [ta, tb] which approximates the measurements
in the best way. The phrase “best” implies the search for those parameters that
optimize a given criterion. This task can be formulated as minimizing the term10

1
2

Nm∑︂

i=1

⃦⃦
⃦q J

(︁
t̄i; p

)︁
− q̄[t̄i]

⃦⃦
⃦

2

2
,

while it is required that the state q is a solution of the dynamical system (3.3)
for t ∈ [ta, tb].

9It is also common to consider indirectly measured states, for example measuring only the product
of two states instead of the corresponding factors.

10Scaling by 1
2 is a common choice in the literature.
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Remark 3.8 One can expect that a single measurement point for a specific
state k ∈ J at a given time point q̄

[t̄i]
k is affected by an additive error ϵ that

is independent and normally distributed with zero mean and variance σ2 (usually
written as ϵ ∼ N

(︁
0, σ2)︁

). Hence, the objective function can be formulated as

1
2

Nm∑︂

i=1

1
σ2
i

⃦⃦
⃦q J

(︁
t̄i; p

)︁
− q̄[t̄i]

⃦⃦
⃦

2

2
.

This choice is motivated by the fact that its global minimizer corresponds to a global
maximizer of the likelihood function, hence to a parameter set which is the most
likely one to lead to the given measurements. A detailed derivation is given in [105],
for instance. However, we do not follow this approach and assume that the variances
are constant.

Now, we have collected all ingredients to formulate the original problem, which we
call Original Dynamical Parameter Identification Problem (O-DPIP):

Problem 3.9 (O-DPIP)
Find model parameters p ∈ Rnp and piecewise continuously differentiable
continuous functions q that

minimize 1
2

Nm∑︂

i=1

⃦⃦
⃦q J

(︁
t̄i; p

)︁
− q̄[t̄i]

⃦⃦
⃦

2

2

subject to q̇(t) = s(t, q(t), p) for t ∈ [ta, tb].

Due to the optimization with respect to q, (O-DPIP) belongs to the class of infinite-
dimensional optimization problems.

Before continuing, let us take a look at an academic example.

Example 3.10
We consider the technological system of a pendulum. A point mass is connected to
a rod of length L = 1 m, and we assume that the standard gravity is g = 9.81 m/s2.
The angle between the rod position at rest and the observed rod position is denoted
as θ (see Figure 3.1). Equations of motion can be derived by applying Newton’s
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L

g

θ

Figure 3.1: Sketch of a mathematical pendulum.

Second Law and are given by

θ̈(t) + g

L
sin(θ(t)) = 0.

This can be transformed to the first-order system of coupled ODEs

q̇1(t) = q2(t),

q̇2(t) = − g

L
sin(q1(t))

for t ∈ [ta, tb], q1 = θ, and q2 = θ̇. We assume that the rod length L is the only
unknown and that measurements q̄1 ∈ RNm (see Figure 3.2) are given at Nm = 101
equidistant points in the time interval [0, 10]. This corresponds to a measurement
step size of h̄ = 0.1. These measurements are created artificially by integrating the
ODE using the classical Runge-Kutta scheme with initial values (q1a, q2a) =

(︁
π
6 , 0

)︁

and the nominal parameter L = L⋆ = 1. They are perturbed as described above,
using a variance value of σ2 = 0.01. The corresponding original problem has the
following form:

minimize
L, q1, q2

1
2

Nm∑︂

i=1

(︂
q1

(︁
t̄i; z

)︁
− q̄

[t̄i]
1

)︂2

subject to q̇1(t) = q2(t), t ∈ [0, 10]

q̇2(t) = − g

L
sin(q1(t)), t ∈ [0, 10].

Although the pendulum belongs to one of the easier nonlinear systems, it reveals
interesting and representative phenomena in the field of numerical parameter
identification. It is referred to repeatedly in the remainder of this section, while it
is examined in more detail in Section 4.1.
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Figure 3.2: Perturbed measurement points of the pendulum system (Example 3.10) and the
unperturbed trajectory.

For the solution of optimization problems involving ODEs, two approaches are
established: indirect and direct methods. In the indirect approach, necessary
optimality conditions are derived for (O-DPIP). This results in a boundary value
problem, which is then solved numerically, for example with shooting or collocation
methods. The direct approach uses a discretized, finite-dimensional version of
(O-DPIP), from which KKT points are computed numerically. This approach
follows the strategy to first discretize, then optimize: In a first step, a time-based
discretization is applied and the time interval is represented by a set of discrete time
points {ti}Nd

i=1. Accordingly, the state variable q(·) is approximated by a set of discrete
values q̃[ti], i = 1, . . . , Nd. We call such a transformation of an infinite-dimensional
problem into the standard NLP form transcription.

This is the point where our investigations begin. Problem 3.9 can be reformulated
(or transcribed) in several, possibly equivalent ways, which can all be passed to an
NLP solver. From the perspective of a practitioner, the aim should be to find a
formulation which has beneficial properties, for example stable iteration processes,
moderate computation times, or robustness with respect to solver initializations.
The latter aspect addresses the ability to finding desired local solutions reliably. In
the following, we present several formulations of the original problem and discuss
their advantages and drawbacks, accompanied by examples.

3.2.2 Transcription

In this work, the direct approach is used to solve parameter identification problems
involving dynamical systems. In regard to the concept of decomposition (as intro-
duced in Subsection 3.1.1), we are interested in the numerical behavior of different
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transcription techniques, which are categorized as being sequential or simultaneous,
see [9] for an overview.

The former approach is characterized by only optimizing with respect to the primary
variables p and qa. The initial value qa is here also considered to be a primary
variable, since the solution of the ODE uniquely depends on p and qa. The secondary
state variables are then obtained by simulating the model using the primary variables,
which is numerically solving the ODE. In regard to the definitions in Subsection 3.1.1,
this ansatz corresponds to the reduced formulation which leads to an NLP of small
dimensions.

In the latter approach, the secondary and primary variables are decoupled and
optimized at the same time. Their dependency can now be found in additional
constraints, which makes an external integration redundant. However, problem
dimensions increase. In the wording of Subsection 3.1.1, this corresponds to a
decomposed formulation.

A third option is given by the well-established direct multiple shooting approach,
which combines ideas from both mentioned methods.

In the following, we investigate the single shooting approach (sequential, Subsec-
tion 3.2.3), a direct multiple shooting method (mixed sequential and simultaneous,
Subsection 3.2.4), and the idea of full discretization (simultaneous, Subsection 3.2.5).
What all of these approaches have in common is that a solution of the underlying
ODE has to be approximated by numerical integration, since this solution will be
used in the objective function. A brief introduction to the subject is given in the
following:

Remark 3.11 The approximate solution of initial value problems (IVPs) of the form

q̇(t) = s̃(t, q(t)),
q(ta) = qa

is called numerical integration. For the majority of IVPs, an analytical expression
for a solution is not available. Therefore, numerical routines must be applied. The
general idea is to approximate the solution q(t) on a time interval [ta, tb] by a set of
points q̃[tn], n = 1, . . . , Nd. For a given step size h > 0, explicit Runge-Kutta methods
are defined by the iteration rule

q̃[tn+1] = q̃[tn] + h
s∑︂

i=1
biki,
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in which bi are real coefficients and the integer s denotes the number of stages. These
are given by

k1 = s̃(tn, q̃[tn]),
k2 = s̃(tn + c2h, q̃

[tn] + h(a21k1)),
k3 = s̃(tn + c3h, q̃

[tn] + h(a31k1 + a32k2)),
...

ks = s̃(tn + csh, q̃
[tn] + h(as1k1 + as2k2 + · · · + as,s−1ks−1))

with nodes ci, i = 2, 3, . . . , s, and coefficients aij for 1 ≤ j < i ≤ s. If the coefficient
matrix aij is not in lower-triangular form, the method is called implicit and at each
step, a system of algebraic equations has to be solved. Famous schemes are Explicit
Euler, Classical Runge-Kutta Method, or Trapezoidal Rule. We summarize both
explicit and implicit methods in the iteration rule

q̃[tn+1] = q̃[tn] + hϕ
(︂
q̃[tn], q̃[tn+1]

)︂

with ϕ(·, ·) being the corresponding incremental function.

In the following, several transcription methods are presented. Since all of them involve
numerical integration, a common notation is used. The number of discretization
points is Nd and the equidistant grid

ta = t1 < t2 < · · · < tNd = tb

is used. The corresponding step size between two consecutive discrete time points
amounts to

h := tb − ta
Nd − 1 .

The integration scheme applied to numerically solve the ODE can be represented by
solving the system of equations

HODE(q̃, p) :=

⎛
⎜⎜⎜⎝

q̃[t2] − q̃[t1] − hϕ
(︂
q̃[t1], q̃[t2], p

)︂

...
q̃[tNd ] − q̃[tNd−1] − hϕ

(︂
q̃[tNd−1], q̃[tNd ], p

)︂

⎞
⎟⎟⎟⎠ = 0(Nd−1)nq (3.4)
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Continuous Discretized Measurements

Time interval [ta, tb] {ti}Nd
i=1

{︁
t̄i

}︁Nm

i=1
State q(t) q̃[t] q̄[t̄]

Step size — h̃ := tb−ta
Nd−1 h̄ := tb−ta

Nm−1

Table 3.2: Notation for different state representations.

with q̃[t1] (= qa) being the initial value, which needs to be given. Its solution (in
case there exists one) represents a discretized trajectory at different time points t.
Usually, it is uniquely determined by the initial state and parameter values. To refer
to it, we denote it by q̃(t; qa, p) or q̃

(︂
t; q̃[t1], p

)︂
whenever appropriate.

Remark 3.12 In general, (3.4) can be solved by applying Newton’s method. If the
integration scheme is explicit and ϕ

(︂
q̃[tk], q̃[tk+1], p

)︂
does not depend on q̃[tk+1] for

each k = 1, . . . , Nd − 1, the system can be solved efficiently by sequential evaluations.
This is the case, for example, with the Explicit Euler method.

We assume that measurements are given at Nm equidistant time points t̄i using
a constant step size h̄. To simplify the setting, we restrict ourselves to cases
with Nm = Nd. An overview of the used notation is given in Table 3.2.

Remark 3.13 Often, there are a lot more measurements than discretized state values
(Nm ≫ Nd) and one cannot expect that the corresponding time points overlap
each other. In that case, one would still sum over all measurement points within
the objective function and the discretized states would have to be interpolated.
Alternatively, one can design the numerical integration in such a way that the
discrete trajectory is given at the specific measurements time points.

3.2.3 Reduced Formulation

Since a solution of the dynamical system (3.3) is uniquely determined by its initial
value qa and the parameter value p, a reduced version of Problem 3.9 can be
formulated that corresponds to (R-NLP). In regard to this, we exclusively optimize
for the above-mentioned primary variables. Since the discrete trajectory needs to be
accessed within the objective function, the main idea is, roughly speaking, to solve
the ODE whenever needed.
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The above description leads to an unconstrained optimization problem in NLP
form. The Reduced Dynamical Parameter Identification Problem (R-DPIP) can be
formulated as follows:

Problem 3.14 (R-DPIP)
Find initial state values qa ∈ Rnq and model parameters p ∈ Rnp that

minimize FR(qa, p) := 1
Nd

Nd∑︂

i=1

⃦⃦
⃦q̃ J (ti; qa, p) − q̄[ti]

⃦⃦
⃦

2

2
.

At first sight, the presented formulation offers practical advantages (compare Sub-
section 3.1.1). The number of optimization variables amounts to nq + np, which is
usually reasonably low. Further, there do not exist any constraints, the problem
belongs to the class of unconstrained optimization. Dependent on the problem and
especially the ODE at hand, the computation time can, however, still be large due
to an inappropriate choice of the ODE solver. Especially for high-precision (non-
adaptive) integration schemes (small step sizes, for example), the main computation
time is taken over by repeatedly solving the ODE. This hands over to the fact that
inner and outer iterations are separated: the implementation effort is minimal, since
existing methods can be used. In each call of the objective function, (3.3) needs
to be solved numerically. A further note is that the objective function is usually
highly nonlinear due to the inner numerical integration. Nonconvexity is usually
the consequence, which causes the problem to have multiple local minima. In the
following, a typical example of this phenomenon is illustrated:

Example 3.15
We return to Example 3.10 and investigate the shape of the objective function. For
this we use an Explicit Euler scheme with step size h = 0.005, which corresponds
to Nd = 2001 discretization points. To obtain an idea of the objective function’s
shape, we evaluate it at many values of L, ranging from Llow = 0.2 to Lupp = 2.
Note that it is therefore necessary to fix the initial values to their nominal
values (see Example 3.10). The shape is shown in Figure 3.3. As expected,
the objective function attains its global minimum at L⋆ ≈ 1 (we cannot expect
to find an accurate value due to the error in the numerical integration and
the measurement noise). However, several other local minima occur with similar
objective function values. In particular, we can observe a very “flat local minimum”
in the region (1.6, 1.8). Here, small perturbations in the initial parameters would
not cause the solver to compute a different solution, which is in contrast to
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Figure 3.3: Shape of the objective function of the reduced formulation for the pendulum exam-
ple 3.15 with fixed initial values.

the minima in the region (0.2, 0.4). This aspect is considered more closely in
Section 4.1. The shape of the objective function makes the parameter identification
a challenging task for local methods. Depending on an initial guess for L, the
nearest local minimum is assumed to be found by a solver.

Remark 3.16 In the jargon of inverse problems, the generation of data is called the
forward problem, while the following parameter identification with this data is called
inverse problem. If in both problems the same configurations are used, it is called
an inverse crime11 and should be avoided. For a better imitation of real-world
problems, we circumvent such an inverse crime by using different integration schemes
in the measurement generation in combination with varying step sizes and artificial
measurement perturbations.

The previous example has revealed that the integration of the dynamics for some
parameter values may lead to undesired values of the objective function. In fact, it
is even possible that an ODE cannot be solved for certain parameter values and a
numerical solution by integration techniques is no longer possible. Consequently,
this would lead to a failure of an NLP solver since the objective function could not
be evaluated. This behavior is presented in the following example (compare [11]):

Example 3.17
We consider a Lotka-Volterra model, which describes the behavior of an ecological
system consisting of predator q1 and prey q2. For time t, the dynamical behavior

11Rainer Kress [24] is usually associated with this term.
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is given by

q̇1(t) = −k1q1(t) + k2q1(t)q2(t),
q̇2(t) = k3q2(t) − k4q1(t)q2(t).

For parameter values (k1, k2, k3, k4) = (0.5, 0.5, 0.5,−0.2) in combination with
initial values (q1(0), q2(0)) = (0.4, 1), the solution exhibits a singularity at t̂ ≈ 3.3
and thus, the system cannot be integrated, which lets the reduced formulation
fail for times going beyond t̂.

Initialization of (R-DPIP)

If there exist measurements for all state variables (and especially at t = ta), it is
reasonable to use qaini = q̄[t̄1]. For unmeasured states, one needs to “guess” suitable
values, which can be based on expert knowledge, for instance. It is much more
difficult to guess suitable parameter initializations. If a parameter has a physical
interpretation, one can focus on a specific area in which the optimal parameter should
be located. However, one always needs to include inaccuracies of the integrator or
in the measurements which can alter the expected optimal value. For non-physical
parameters, there is often no other choice than to guess.

Computation of Derivatives

A natural and often used idea to solve (R-DPIP) is to use gradient-based approaches,
such as Newton-type methods. They require computing the derivative of the objective
function FR(z) with respect to the optimization variables z := (qa, p). Since FR
contains the ODE’s numerical solution q̃, which depends on qa and p, the derivatives

∂q̃

∂qa
and ∂q̃

∂p

have to be computed as well. According to [91], there are mainly three approaches:

(i) External differentiation is the application of finite difference methods to com-
pute the desired derivatives, for example via

∂q̃(t; qa, p)
∂pi

≈ 1
h̃

(︂
q̃
(︂
t; qa, p+ h̃ei

)︂
− q̃(t; qa, p)

)︂
.

Herein, h̃ is a small step size and ei denotes the i-th unit vector.
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(ii) Internal differentiation is a differentiation of the applied integration scheme.
We refer to [11] or [12] for details.

(iii) Solving sensitivity equations simultaneously to the original system is the third
option. The sensitivity ∂q

∂z (t) =: S(t; z) can be obtained by solving the IVP

Ṡ(t; z) = ∂s

∂q
(t, q(t), p)S(t; z) + ∂s

∂z
(t, q(t), p)

S(ta; z) = [1nq×nq , 0nq×np ].

Recall that s is the right-hand side of the original ODE from (3.3).

(R-DPIP) is in standard NLP form (as in Problem 2.2) and can therefore be solved by
state-of-the-art iterative gradient-based solvers. The derivatives ∇zFR(z) ∈ Rnq+np

and ∇2
zzFR(z) ∈ R(nq+np)×(nq+np) are usually dense.

Literature Review

The reduced formulation is known under several names. The term initial value
approach emphasizes that a solution of the ODE is solely dependent on its initial
values (and the unknown parameters, of course). The approach is often referred to
as the single shooting method. This terminology stresses that for an evaluation of
the objective function, it is necessary to integrate the system of ODEs once for the
current parameters and initial values. Shooting here refers to integrating the model
equations. Since the integration is hidden to the optimization solver, it is also often
called being black-box.

Despite its many well-known disadvantages, the reduced formulation is still widely
used in many works on parameter identification problems. However, it is often
recognized that it has numerical difficulties. Bock [12] lists and demonstrates many
pitfalls of the single shooting method in parameter identification (and suggests the
use of a multiple shooting method, see Subsection 3.2.4). Peifer and Timmer [91]
compare the initial value approach with a multiple shooting method. Their numerical
results on examples from biochemical processes demonstrate that the problems are
rarely solvable, and when they are, undesirable solutions are frequently computed.
Ribeiro and Aguirre [93] also compare single and multiple shooting with a focus on
the objective function. However, they test their methods on the logistic map instead
of using an ODE, but again the results show that many local minima occur and that
more advanced problem formulations (such as multiple shooting) tend to produce
more desirable solutions. Michalik et al. [77] develop an extension, the so-called
“Incremental single shooting”, which solves the parameter identification problem on a
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small time and data interval and increases it successively. Vyasarayani et al. [117–119]
investigate a homotopy continuation method for the single shooting approach12.

3.2.4 Direct Multiple Shooting

The idea of direct multiple shooting is to combine the external numerical integration
and a higher-dimensional search space. This is achieved by splitting the time interval
into smaller parts with the introduction of so-called shooting nodes. These nodes
serve as initial values from which the numerical integration is restarted. Thus,
the ODE needs to be solved multiple times, but on shorter time intervals. In the
optimization problem, the values at these nodes are treated as additional variables
that need to be optimized. To make sure that one solves the original problem,
so-called continuity constraints are introduced which ensure that initial values from a
sub-interval match with final values from the prior sub-interval at a solution point.

Formally, we introduce Ns equidistantly distributed shooting nodes τ on the inter-
val [ta, tb] that fulfill

ta = τ1 < τ2 < · · · < τNs < tb

and — for simplicity — we demand each of them to correspond to one of the time
points used in the discretization for the numerical integration. Hence, it shall hold
that

τi ∈ {t1, . . . , tNd−1}

for i = 1, . . . , Ns (in analogy to the choice of the measurement time points). Note
that we can avoid setting the last time point as a shooting node, which is, for instance,
not the case in optimal control problems due to the existence of control terms that
may also have an effect there. At each of these nodes, the ODE is integrated up
to the next one. Thus, the length of each time interval depends on the number of
shooting nodes: one node (τ1 = ta) corresponds to the reduced formulation (as in
Subsection 3.2.3), two nodes correspond to two intervals of halved length, and so on.
In the resulting problem formulation, the shooting node values

q̃[τ1], q̃[τ2], . . . , q̃[τNs ]

12This approach is extended by the author in Section 4.6.
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(which we collect as q̃[·]) are then treated as optimization variables. To obtain
a continuous state trajectory (a solution of the original ODE) at the end of the
optimization process, constraints need to be introduced which guarantee that final
values from one sub-interval coincide with initial values from the following sub-
interval. Hence, it should hold that

q̃
(︂
τj+1; q̃[τj ], p

)︂
= q̃[τj+1]

for j = 1, . . . , Ns − 1. These are usually highly nonlinear constraints due to the
(hidden) numerical integration which is necessary to obtain q̃

(︂
τj+1; q̃[τj ], p

)︂
. The

corresponding optimization problem now takes on the following form of a Multiple
Shooting Dynamical Parameter Identification Problem (MS-DPIP):

Problem 3.18 (MS-DPIP)

Find variables q̃[τ1], . . . , q̃[τNs ] ∈ Rnq and p ∈ Rnp that

minimize 1
Nd

Nd∑︂

i=1

⃦⃦
⃦q̃ J

(︂
ti; q̃[τl(i)], p

)︂
− q̄[ti]

⃦⃦
⃦

2

2

subject to q̃
(︂
τj+1; q̃[τj ], p

)︂
− q̃[τj+1] = 0nq for j = 1, . . . , Ns − 1

with l(i) := max
1≤j≤Ns

{j : τj ≤ ti} representing a shooting node index.

Remark 3.19 It is not necessary that the shooting nodes are distributed on the time
interval in an equidistant manner. In [50], for instance, it is shown how shooting
nodes can be selected adaptively. It is also common that the ODE is solved on
each sub-interval accurately using either an adaptive integration method or a small
integration step size. This is, in fact, one of the many advantages of multiple
shooting methods: a more accurate approximation of the solution of the ODE does
not necessarily imply higher problem dimensions. However, in this work, we focus less
on an accurate ODE solution and more on the effects of higher problem dimensions.

The multiple shooting approach can be seen as both a sequential and simultaneous
transcription method and is often characterized as being in between both ideas. On
the one hand, integration still takes place that is invisible to the solver. However,
this is only done on a smaller time interval and is therefore less likely to cause
problems. On the other hand, the search space on NLP level is increased and finding
better solutions may be easier due to the enhanced flexibility.
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Figure 3.4: Illustration of direct multiple shooting and comparison against single shooting for the
pendulum example. Gray crosses: measurement points; red circle: initial value for
single shooting; red dotted line: single shooting trajectory; blue circles: measurement
values at shooting nodes; blue lines: multiple shooting trajectories.

Example 3.20
For illustration, we consider the pendulum example with all ingredients from
Example 3.10 and Example 3.15. We introduce 10 equidistantly distributed
shooting nodes on the time interval. Thus, the problem dimensions increase from
1 + 2 = 3 to 1 + 2 · 10 = 21 variables and 2 · 9 = 18 constraints are added. Still,
the problem has a low size, but one can already have a premonition of potential
advantages, as illustrated in Figure 3.4. Here, the model is evaluated with a
poor initial parameter guess for the single shooting method. The corresponding
trajectory is far off the measurements. If the integration is restarted at the
shooting nodes, initialized by the measurements, the model cannot deviate too
much due to the shortened time horizon. In this example, the number of shooting
nodes is selected manually. With fewer nodes, the effects would not be visually
obvious.

Initialization of (MS-DPIP)

In addition to the primary variables as described in the respective paragraph in
Subsection 3.2.3, the shooting node values q̃[τi] (i = 1, . . . , Ns) as secondary variables
need to be initialized. A natural way is to choose the corresponding measurement
values (as far as they exist). This leads to an excellent initial guess, which can help
a solver overcoming undesired local minima13.

13This aspect is investigated in Section 4.1.
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Computation of Derivatives

The introduction of shooting nodes increases the problem dimensions: the number
of optimization variables rises from np + nq to np +Nsnq, the number of constraints
amounts to nq(Ns − 1). The resulting derivatives exhibit sparse structures that
originate from the specific problem formulation. Starting with the objective function,
we need to distinguish different cases:

(i) If each measurement point corresponds to the location of a shooting node
(t̄i ∈ {τ1, . . . , τNs}, i = 1, . . . , Nm), the objective function is independent of p.

(ii) If there are less shooting nodes than measurement points (Ns < Nm), the
objective function’s gradient is dense. This is the typical case.

(iii) In case there are at least two shooting nodes between two measurement points,
the objective function would only depend on the last one that is located directly
in front of the next measurement point (see the definition of l in (MS-DPIP)).
Thus, the gradient can be sparse — in practice, however, this case can be
neglected.

In the following, we assume to be in case (ii).

The constraints, consisting of continuity conditions, are more important for sparsity
considerations. Since a shooting node only depends on the previous one (as initial
value) and the parameters, a block structure arises. In the following, we collect the
optimization variables in z :=

(︂
q̃[·], p

)︂
and the constraints in

HMS(z) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

q̃
(︂
τ2; q̃[τ1], p

)︂
− q̃[τ2]

...
q̃
(︂
τNs−1; q̃[τNs−2], p

)︂
− q̃[τNs−1]

q̃
(︂
τNs ; q̃[τNs−1], p

)︂
− q̃[τNs ]

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R(Ns−1)nq .

Its derivative with respect to q̃[·] has a sparse block structure:

∇q̃[·]HMS(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1 −I
r2 −I

rNs−2 −I
rNs−1 −I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R(Ns−1)nq×Nsnq
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with partial derivatives14

ri := ∂q̃

∂q̃[τi]

(︂
τi+1; q̃[τi], p

)︂
∈ Rnq×nq

and I ∈ Rnq×nq being the identity matrix. The partial derivative with respect to
the model parameters is generally dense:

∇pHMS(z) =

⎛
⎜⎜⎜⎝

∂q̃
∂p

(︂
τ2; q̃[τ1], p

)︂

...
∂q̃
∂p

(︂
τNs ; q̃[τNs−1], p

)︂

⎞
⎟⎟⎟⎠ ∈ R(Ns−1)nq×np .

Next, we denote the objective function in (MS-DPIP) as FMS(z). Each component
of its gradient only depends on the respective shooting node in combination with
the model parameters. For the Lagrange function

LMS(z, µ) := FMS(z) +
Ns−1∑︂

i=1
µT
iHMSi(z),

we therefore obtain the following partial derivatives:

∇q̃[·]LMS(z, µ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∇q̃[τ1]FMS(z)
∇q̃[τ2]FMS(z)

...
∇
q̃[τNs−1]FMS(z)

∇
q̃[τNs ]FMS(z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1µ1

−µ1 + s2µ2
...

−µNs−2 + sNs−1µNs−1

−µNs−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ RNsnq ,

∇pLMS(z) = ∇pFMS(z) +
Ns−1∑︂

i=1
∇pHMSi(z)Tµi ∈ Rnp ,

which are dense. The Lagrange multipliers are denoted as µ ∈ R(Ns−1)nq . Following,
the mixed second-order derivatives

∇2
q̃[·]pLMS ∈ RNsnq×np and ∇2

pq̃[·]LMS ∈ Rnp×Nsnq

describe dense matrices, as well. Obviously, this is also the case for the deriva-
14These derivatives can be computed via sensitivity equations, for example.
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tive ∇2
ppLMS ∈ Rnp×np . The second-order derivative with respect to the shooting

nodes ∇2
q̃[·]q̃[·]LMS is a block-diagonal matrix, and hence, the Hessian matrix of the

Lagrange function has the following form:

∇2LMS =

⎡
⎢⎢⎢⎣

× ×

× ×

⎤
⎥⎥⎥⎦ ∈ Rnz×nz .

Herein, the symbol × denotes a non-zero element of appropriate size. Empty spaces
correspond to structural zeros. It can be seen that each additional shooting node
increases the dimensions, adds another diagonal block, and increases the absolute
number of non-zero elements.

For optimal control problems15, which are similar to parameter identification prob-
lems, Büskens [18] shows that there exists an optimal number of shooting nodes
with respect to an efficient derivative computation, in which the number of non-zero
elements is the basis for his calculations. Due to the absence of control terms
(as optimizable quantities) in parameter identification problems, this statement is
not valid in our specific setting. Here, the computational demand rises. Roughly
speaking, each additional shooting node leads to another block in the respective
matrices.

The question, how many shooting nodes one should introduce, is still not answered.
On the one hand, less shooting nodes lead to a smaller problem with more complex
“hidden” numerical simulations of the ODE. On the other hand, more shooting
nodes increase the problem dimensions, but reduce the amount of inner iterations
due to the shorter time intervals. In total, however, this amount stays the same.
Additionally, it depends on the tolerance for the constraint violation up to which
accuracy the ODE is solved.

The required number of shooting nodes to successfully solve a problem depends
strongly on the dynamics and the given measurements, as it can be seen in Figure 3.4.
Too few shooting nodes allow longer time integrations, which may lead to large
deviations from the measurements using poor initial parameter guesses. Conversely,
even with poor initial parameters, many shooting nodes reduce the possibility of
deviations from the measurements due to the shorter time horizons. This phenomenon
is investigated on an example in Section 4.1, where the number of shooting nodes is
in the focus.
15Instead of model parameters, a time-dependent control term is considered.
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Literature Review

The multiple shooting method has its origins in the solution of boundary value
problems and found early mention in [65] and [107]. The resulting system of
equations is usually solved numerically using Newton’s method. This technique can
also be used in optimization problems in which the system of equations is treated
as artificial constraints, as explained above. In the case of dynamical parameter
identification problems, Bock is one of the main contributors, for early works we
refer to [11, 12]. Since then, multiple shooting has become the subject of countless
research papers. Although many contributions exist in which it is applied to solve
optimal control problems, parameter identification has also gained interest in the
past. Bock et al. [14] investigate multiple shooting for differential-algebraic equations,
while Müller and Timmer [81] apply this approach to PDEs. Zimmer et al. [131]
focus on the landscape of the objective function within stochastic systems. They
show that multiple shooting reduces the number of local minima on the one hand
and has a smoothing effect on the objective function, on the other hand.

To demonstrate its advantages, multiple shooting is often compared to single shoot-
ing, see for example the references in Subsection 3.2.3. In this context, several
characteristics are also pointed out by means of an academic example given in
Section 4.1.

3.2.5 Decomposed Formulation

A disadvantage of the reduced formulation is that the solver cannot directly optimize
for the discretized trajectories, although explicitly used in the objective function.
This can be partly overcome by direct multiple shooting methods, in which the
problem dimensions are increased to attain more flexibility in the solution process.
Still, numerical integration takes place that is hidden to a solver.

The idea of decomposition is to optimize for both the trajectories and the parameters
simultaneously by including each step of the integration procedure in the problem
formulation. Consequently, the ODE does not have to be solved in each iteration
of an NLP solver — the solution trajectories are allowed to be infeasible during
the course of optimization. Thus, the trajectories can be optimized directly to
minimize the objective function while, at the same time, being optimized to fulfill the
equations representing the integration scheme. This results in a so-called Decomposed
Dynamical Parameter Identification Problem (D-DPIP).
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Problem 3.21 (D-DPIP)

Find variables q̃[t1], q̃[t2], . . . , q̃[tNd ] ∈ Rnq and p ∈ Rnp that

minimize 1
Nd

Nd∑︂

i=1

⃦⃦
⃦q̃ [ti]

J − q̄[ti]
⃦⃦
⃦

2

2

subject to HODE(q̃, p) = 0(Nd−1)nq .

In this problem, it is no longer necessary to simulate the system in each iteration of
the used solution algorithm, since this is implicitly achieved once a solution of the
optimization problem is found. In fact, this is already achieved once a feasible point
is found — a feasible point of (D-DPIP) corresponds to a trajectory generated by a
numerical integration scheme applied to the dynamics. All dependencies are now
explicit.

In contrast to (R-DPIP), it does no longer matter whether the incremental function
is explicit or implicit. To also address a drawback, adaptive integration methods
cannot be used in this formulation, since a fixed time grid needs to be given to
formulate the optimization problem.

Initialization of (D-DPIP)

In analogy to the description for multiple shooting (see Subsection 3.2.4), the
discretized trajectory can be initialized using the measurements. If measurement and
discretization grid do not coincide, intermediate values can be interpolated. This
initialization can have a strong effect on the algorithmic behavior. For demonstration,
we illustrate the advantages of added dimensions in combination with excellent initial
guesses in the following example:

Example 3.22
Again, we return to Example 3.10 with the specifications made in Example 3.15.
For optimization variables

z =
(︃
q̃

[t1]
1 , q̃

[t1]
2 , . . . , q̃

[tNd ]
1 , q̃

[tNd ]
2 , L

)︃T
,
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the decomposed problem attains the following form:

minimize
z

1
Nm

Nm∑︂

i=1

(︂
q̃

[t̄i]
1 − q̄

[t̄i]
1

)︂2

subject to q̃
[tk+1]
1 − q̃

[tk]
1 − hq̃

[tk]
2 = 0, k = 1, . . . , Nd − 1

q̃
[tk+1]
2 − q̃

[tk]
2 + h

g

L
sin

(︂
q̃

[tk]
1

)︂
= 0, k = 1, . . . , Nd − 1

0 ≤ L

L ≤ 2.

Note that the scaling factor 1
2 is replaced by 1

Nm
to eliminate the dependency

on the number of measurement points. With Nd = 2001 discretization points,
the problem exhibits 4003 variables with 4002 constraints, including two box
constraints.
In this example, we want to compare the behavior of WORHP’s SQP algorithm
for this and the corresponding reduced problem formulation. We restrict the
initial values to be close to their nominal ones (this is necessary for visualization
aspects — for differing initial values, the shape in Figure 3.3 would no longer be
valid). Next, we initialize the parameter as Lini = 1.4 and the state variable q̃1ini
by the measurements, q̃2ini is initialized constantly by zero (which corresponds
to the nominal initial value). For discretization points without corresponding
measurement points, a linear interpolation is applied for initialization.
The results are presented in Figure 3.5, which shows the objective function’s shape
(of the reduced problem formulation, see Figure 3.3). It is not surprising that
the algorithm applied to the reduced formulation does not converge to the better
minimum: the implicit constraints require that the iterates remain on the blue
line. When the algorithm is applied to the decomposed problem formulation,
several observations can be made. The initialization allows starting at an excellent
objective function value near zero and the incorporated integration allows moving
through the parameter space in a more flexible way: the better minimum can be
attained.

Computation of Derivatives

In this approach, the number of optimization variables and equality constraints is
usually large. This can have a severe impact on computation times, especially for
second-order methods as they are used in this work. Due to the specific form of the
constraints, the derivatives possess a specific structure, which can be exploited.
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Figure 3.5: Optimization paths projected onto the objective function of the reduced formulation
for the pendulum example.

In the following, we denote the objective function in Problem 3.21 as FD, while the
equality constraints consisting of the integration scheme will be called HD. In this
approach, the optimization variables amount to

z :=
(︂
q̃[t1]T q̃[t2]T · · · q̃[tNd ]T pT

)︂T
∈ RNdnq+np .

We assume that there exist measurements for all states (that is J = {1, . . . , nq}) and
hence, the objective function depends on all discrete state variables. We obtain

∇q̃FD(z) = 2
Nd

⎛
⎜⎜⎜⎜⎜⎜⎝

q̃[t1] − q̄[t1]

q̃[t2] − q̄[t2]

...
q̃[tNd ] − q̄[tNd ]

⎞
⎟⎟⎟⎟⎟⎟⎠

and since it does not explicitly depend on p, we have ∇pFD(z) = 0np . If only
J ⊊ {1, . . . , nq}, there would be additional structural zero elements.

To investigate the function of the constraints

HD(z) :=

⎛
⎜⎜⎜⎝

q̃[t2] − q̃[t1] − hϕ
(︂
q̃[t1], q̃[t2], p

)︂

...
q̃[tNd ] − q̃[tNd−1] − hϕ

(︂
q̃[tNd−1], q̃[tNd ], p

)︂

⎞
⎟⎟⎟⎠ ∈ R(Nd−1)nq
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we make the following abbreviations for the purpose of a better readability:

ki,j := −Inq×nq − h∇
q̃[ti]ϕ

(︂
q̃[tj ], q̃[tj+1], p

)︂
∈ Rnq×nq ,

k̂i,j := Inq×nq − h∇
q̃[ti]ϕ

(︂
q̃[tj ], q̃[tj+1], p

)︂
∈ Rnq×nq ,

and

ri := ∇pϕ
(︂
q̃[ti], q̃[ti+1], p

)︂
∈ Rnq×np

with I being the identity matrix of respective dimension. Due to the integration
scheme given as a one-step method, the partial derivative of the constraints with
respect to the discretized states has a sparse structure, as shown in the following
pattern:

∇q̃HD(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

k1,1 k̂2,1

k2,2 k̂3,2

kNd−1,Nd−1 k̂Nd,Nd−1

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R(Nd−1)nq×Ndnq .

Here we assume that the integration scheme is implicit; for explicit ones the structure
would differ slightly. Since the ODE-defining function s depends on the model
parameters p, the partial derivative of HD with respect to p is generally dense:

∇pHD(z) = −h

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1

r2
...

rNd−2

rNd−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R(Nd−1)nq×np .

In the following, the structure of the Hessian (with respect to z) of the Lagrange
function

LD(z, µ) := FD(z) +
Nd−1∑︂

i=1
µT
iHDi(z)

with Lagrange multipliers µ ∈ R(Nd−1)nq will be derived. It can be easily seen that
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the gradients

∇q̃LD(z, µ) = 2
Nd

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q̃[t1] − q̄[t1]

q̃[t2] − q̄[t2]

...
q̃[tNd−1] − q̄[tNd−1]

q̃[tNd ] − q̄[tNd ]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1,1µ1

ŝ2,1µ1 + s2,2µ2
...

ŝNd−1,Nd−2µNd−2 + sNd−1,Nd−1µNd−1

ŝNd,Nd−1µNd−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ RNdnq

and

∇pLD(z, µ) = −h
Nd−1∑︂

i=1

(︂
µT
i ri

)︂T
∈ Rnp

are generally dense, but the Hessian matrix has a sparse structure. Although the
partial second derivatives ∇2

q̃pLD and ∇2
ppLD are usually dense, the second derivative

with respect to the discretized states is sparse with the following pattern:

∇2
q̃q̃LD(z, µ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× ×
× × ×

× × ×
× ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ RNdnq×Ndnq .

Hence, the Hessian matrix

∇2
zzLD =

⎛
⎝∇2

q̃q̃LD ∇2
q̃pLD

∇2
pq̃LD ∇2

ppLD

⎞
⎠ ∈ Rnz×nz

is also sparse, since the number of discretization points is usually significantly larger
than the number of model parameters.16

16For an example of sparsity properties, we refer to Subsection 4.2.1 within this work.

61



Chapter 3 Decomposition Methods

Literature Review

The decomposed approach is often referred to as full discretization, since each
discrete point in the integration scheme is treated as an optimization variable. This
transcription strategy can often be found in the context of optimal control problems,
for example in [9] or in [8], where also a section on parameter estimation can be found.
Fliege et al. [25] apply the full discretization approach to trajectory optimization in
the application of disaster assessment. For parameter identification, the decomposed
approach has found less attention than the multiple shooting approach. Still, it
is used in [52] for aircraft applications, in [124] for dry machining in industrial
manufacturing, or in [31] for estimating parameters within a rover model.

3.3 Decomposition in Bilevel Programming

In this section, we consider finite-dimensional optimization problems that require the
solution of a nested, parameterized problem. More precisely, the objective function
and the constraints depend on upper-level variables and lower-level variables. The
latter minimize another objective function with respect to constraints, both of them
can be parameterized in the upper-level variables. These types of problems are called
bilevel programs and are typically difficult to solve due to their intricate structure.

Bilevel optimization problems appear in a rising number of areas, such as transporta-
tion [113], economics [5], chemical industry [23], or inverse optimal control [2]. The
corresponding problems usually differ in their structure, which requires a careful
choice of solution methods.

The development of algorithms for the global solution of general nonlinear bilevel
programs is often a challenging task. Guaranteed convergence is usually given under
strict conditions on a specific problem. Therefore, it is desirable to find general
reformulations that interact well with existing nonlinear programming methods.
Since this involves the efficient computation of local solutions, one needs to find
problem formulations that are more likely to converge to global solutions. Equally
important for a newly designed algorithm is its general applicability: it should be
able to solve a wide variety of problems, not just perform well on a few illustrative
examples.

Bilevel programming fits into the framework presented in Subsection 3.1.1, since
an evaluation of the problem-defining functions requires obtaining the solution of
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another optimization problem. From the numerical point of view, this solution is
obtained by applying an iterative algorithm.

In this section, it is demonstrated how decomposition can be applied to this class of
optimization problems. In particular, a novel reformulation method to transform the
given problem into a single-level one is presented. We present a reduction technique
based on the idea that the numerical solution process of the lower-level problem
is incorporated into the upper level by artificial constraints and variables. More
precisely, we choose an SQP method. In contrast to solving the lower-level problem
in each iteration, it is implicitly solved once the whole problem is solved, and we
therefore allow iterates that are infeasible for the lower-level problem during the
course of the outer iteration. The usage of local methods like SQP generally comes
at the price of converging to local solutions. With the presented reformulation,
however, a lower-level response is no longer dictated by upper-level variables, which
increases the possible search space for a chosen solver. With the help of sophisticated
initializations, the chance of converging to better or even global solutions can be
influenced.

The approach presented in the following is inspired by direct methods for dynamical
parameter identification problems as in the previous section. We adapt the idea of
full discretization by adding SQP iteration steps for solving the lower-level problem
as artificial constraints to the upper level of the original bilevel problem considered
here. The aim is to achieve similar effects as in ODE-constrained optimization.

3.3.1 Original Problem Formulation

We consider nonlinear optimization problems that involve a subordinate nonlinear
problem, which we call lower-level problem (LL). This problem depends on a pa-
rameter x ∈ Rnx , while it is solved for y ∈ Rny . Its objective function is given by
f : Rnx × Rny → R, constraints are called g : Rnx × Rny → Rng :

Problem 3.23 (LL)
Find variables y ∈ Rny that

minimize f(x, y)

subject to g(x, y) ≤ 0ng .
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As we do not make any assumptions on the convexity of (LL), there may exist a
set of solutions instead of a single one. Our bilevel problems of interest depend on
the variables x and y, while it is a constraint that the latter is a solution of (LL).
The upper-level objective function is F : Rnx × Rny → R, the upper-level constraints
function is called G : Rnx × Rny → RnG . With these ingredients, we can formulate
the Original Bilevel Problem (O-BP):

Problem 3.24 (O-BP)
Find upper-level variables x ∈ Rnx and lower-level variables y ∈ Rny that

minimize F (x, y)

subject to G(x, y) ≤ 0nG
y ∈ arg min

v
f(x, v)

s.t. g(x, v) ≤ 0ng .

This problem class is topic of many books (for example [30] or [104]) and the following
descriptions partly stem from them. Whenever necessary, more precise references
are given.

Remark 3.25 We formulate the problems using inequality constraints only. This is
justified by the fact that, on the one hand, the following considerations also apply to
equality constraints, and, on the other hand, all the numerical examples that follow
only involve inequality constraints.

Due to the constraint

y ∈ arg min
v

f(x, v)

s.t. g(x, v) ≤ 0ng ,
(3.5)

bilevel problems represent an intricate class of optimization problems and finding a
solution is typically a challenging task. Since there may not exist a unique solution
of (LL), but several ones, different strategies for choosing one of them can be applied.
In the so-called optimistic approach, that solution is selected which is the best
suitable for the upper-level problem. Here, both levels cooperate. Contrarily, in the
pessimistic approach, all lower-level solutions are taken into account and hence, the
worst one needs to be selected. From now on, we follow the optimistic perspective.
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There are different solution strategies to solve Problem 3.24. To directly address
(O-BP), there exist techniques such as a bounding algorithm in [79] or a tabu search
in [61]. Most strategies, however, rely on reformulating the problem as (or reducing
it to) a single-level problem. Once such a single-level reformulation is found, one
can use the theory, methods, and software mentioned in Chapter 2 to solve it.

3.3.2 Single-Level Reformulation

To make use of the theory and algorithms for standard nonlinear programming, one
often reformulates (O-BP) as a problem of type (NLP). It is desirable to construct
problems that share the same solutions and are thus equivalent. However, this is
only possible in rare cases, for example when the lower-level problem is convex. For
general nonlinear and nonconvex problems, one can usually not assume to find an
equivalent problem formulation.

Similar to the description in Subsection 3.2.2, we present different ways of refor-
mulation and outline some of their characteristics: a reduced formulation (Subsec-
tion 3.3.3), the well-known KKT approach (Subsection 3.3.4), and an alternative
method, which will be called decomposed formulation (Subsection 3.3.5) in the
following. They all have in common that they can be represented in terms of a
standard NLP and thus, numerical routines such as SQP algorithms can be applied
to find a solution candidate. However, all of them have their individual advantages
and drawbacks.

Often, the requirement to find global solutions is reduced to finding local solutions
by a problem transformation that allows the use of efficient local methods. Never-
theless, finding global solutions is the subject of many research articles. In [116],
the KKT approach is used to compute global solutions of quadratic and linear
problems. A combination with global search algorithms is given in [108]. Kleniati
and Adjiman developed a special branch-and-bound technique using a value function
reformulation [67, 68]. In [79], an algorithm is developed that computes the global
minimum of bilevel programs with nonconvex lower-level problems. In addition
to the mentioned references, a comprehensive overview of applications, solution
methods, and theoretical foundations is given in [104].

Since we aim to apply second-order optimization methods to solve problems in the
presented formulations, we assume that all functions are sufficiently smooth. In
particular, the decomposed approaches in Subsection 3.3.5 require the functions to
be four times continuously differentiable.
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3.3.3 Reduced Formulation

In the general case, a solution of the lower-level problem depends on its parameteri-
zation x ∈ Rnx . Therefore, it is obvious to formulate a reduced version of (O-BP),
which corresponds to the reduced problem (R-NLP). We consider the upper-level
variable x as primary variable, while a solution y⋆ of (LL) represents the secondary
variable. As introduced in Subsection 3.1.1, we optimize only for the primary
variables. Since the lower-level solution y⋆ must be accessed within the objective
function, the main idea, roughly speaking, is to solve (LL) whenever needed. This is
where the expression ψ[x] comes in again.

Remark 3.26 As already mentioned, there may exist more than one solution of the
lower-level problem. In this case, one has to be careful which solution to choose.
From a theoretical point of view, one would have to compute all existing solutions
to select the best or worst one, dependent on whether an optimistic or pessimistic
approach is used.

To avoid computing all existing solutions, we make the following assumption:

Assumption 3.27 We assume that there exists a unique mapping from x to a
lower-level solution y⋆. This is also called, with additional specifications, strong
stability [30].

In simple examples, it may be possible to formulate ψ explicitly. In practice,
however, this mapping results in the numerical solution of (LL) parameterized in x, a
possibly highly nonlinear operation. A finite sequence of algorithm steps is performed
until an approximate solution is found, depending only on the initialization, the
parameterization, and possibly algorithm configurations. All in all, this is a complex
and intricate behavior that depends on the problem at hand, with the advantage
that a solution is approximated if the convergence requirements of the algorithm are
met. The expression ψ connects the upper- with the lower-level problem, we call the
resulting problem a Reduced Bilevel Problem (R-BP):

Problem 3.28 (R-BP)
Find variables x ∈ Rnx that

minimize F (x, ψ(x))

subject to G(x, ψ(x)) ≤ 0nG .
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To solve this problem, there are decisions that have to be made:

– Which algorithm to use for the lower-level problem?
– How to initialize the lower-level problem?
– How to proceed in case the algorithm fails to compute a solution of the

lower-level problem?

Problem 3.28 also has some advantages, such as reduced problem dimensions (nx op-
timization variables, nG constraints) or the reduced implementation effort.

Initialization of (R-BP)

Since we consider general bilevel problems, it is not easy to make an intelligent
initial guess without further information. In the reduced problem formulation, one
only needs to initialize the upper-level variables x. However, to evaluate F or G,
(LL) has to be solved numerically, for which we use a local algorithm that depends
on an initialization. There are several possible strategies. One could use the same
initialization over and over again, or one could use the previously-found optimal
solution as the starting point for the next run. If the lower-level solution is not too
sensitive to its parameterization, the latter strategy can reduce the computation
time or even help the solver to find a solution.

Computation of Derivatives

Computing derivatives of problem functions in (R-BP) can be complicated. If the
mapping ψ is unique and continuously differentiable, the derivatives depend on ∇xψ,
which can be difficult to compute if given only implicitly. It requires computing
directional derivatives, which in turn requires solving another quadratic program,
as noted in [30]. Thus, using a gradient-based algorithm to solve a bilevel problem
in the reduced formulation can quickly become difficult. Alternatively, ∇xψ can be
seen as the sensitivity of the lower-level solution to the parameterization x. Since
this sensitivity can be obtained efficiently (see for example [19]), it is an interesting
option. From a structural point of view, the resulting matrices are usually dense.

Literature Review

The reduced approach, also known as implicit function approach, is often used in
gradient-free respective evolutionary methods [45]. In this regard, a genetic algorithm
is presented by Li and Wang [73] for nonlinear bilevel optimization problems. In [103],
it is presented how to avoid repeated lower-level optimizations. If the lower-level
problem is unique, y is implicitly given by x, and descent methods can be applied.
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For example, this is presented by Vicente et al. [114] for quadratic programs. To
avoid the uniqueness condition, Dempe [29] developed a bundle algorithm based on
regularization of the lower-level problem. In [90], non-smooth lower-level problems
are considered with a focus on adding an abstract algorithm to the upper-level
problem, which is closely related to this reduced formulation.

3.3.4 KKT Formulation

A classical way of reformulating (O-BP) is to replace the condition of being a solution
of the lower-level problem (condition (3.5)) by first-order necessary optimality
conditions (KKT conditions) of the respective problem. Since these conditions
involve lower-level Lagrange multipliers λ ∈ Rng , they are additionally introduced as
optimization variables. With the Lagrange function ℓ : Rnx × Rny × Rng → R, given
by

ℓ(x, y, λ) := f(x, y) + λTg(x, y),

the resulting problem reads as follows (compare KKT conditions in Theorem 2.8),
we call it a KKT Bilevel Problem (KKT-BP):

Problem 3.29 (KKT-BP)
Find variables x ∈ Rnx , y ∈ Rny , and λ ∈ Rng that

minimize F (x, y)

subject to G(x, y) ≤ 0nG
∇yℓ(x, y, λ) = 0ny

g(x, y) ≤ 0ng
λTg(x, y) = 0

λ ≥ 0ng .

The problem dimensions have increased in comparison to the reduced approach:
there are nz := nx + ny + ng optimization variables and nC := nG + ny + 2ng + 1
constraints.

In case the lower-level problem is convex and suitable regularity assumptions are
fulfilled, the solution sets of (O-BP) and (KKT-BP) coincide. However, for the
practical computation of a solution, one can show that for every feasible point the

68



3.3 Decomposition in Bilevel Programming

regularity assumptions for Theorem 2.8 are not fulfilled. This is due to the conditions

g(x, y) ≤ 0ng ,
λTg(x, y) = 0,

λ ≥ 0ng ,
(3.6)

which transform (KKT-BP) into a so-called mathematical program with comple-
mentarity constraints (MPCC), which not only entails theoretical issues, but is
also difficult to solve numerically. To circumvent these issues, one often replaces
the system (3.6) by an equivalent reformulation. The Fischer-Burmeister (FB)
function Φ: R2 → R (see [37]), given by

Φ(a, b) = a+ b−
√︁
a2 + b2,

possesses the desired properties, namely

Φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

The non-differentiability of Φ can be overcome by using smoothing techniques as
discussed in [37] or [64]. Utilizing the FB function instead of system (3.6) leads to
the following problem formulation:

Problem 3.30 (KKT-FB-BP)
Find variables x ∈ Rnx , y ∈ Rny , and λ ∈ Rng that

minimize F (x, y)

subject to G(x, y) ≤ 0nG
∇yℓ(x, y, λ) = 0ny

Φ(λi,−gi(x, y)) = 0 for i = 1, . . . , ng.

Initialization of (KKT-BP)

In addition to the upper-level variables x, the lower-level variables y ∈ Rny and
multipliers λ ∈ Rng need to be initialized. There are several possibilities: For a
given xini, the lower-level problem could be solved in advance to use the corresponding
solution and Lagrange multipliers as an initial guess for (KKT-BP). Alternatively,
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the Lagrange multipliers are often initialized as either 0ng or 1ng . In [43], they are
initialized as max{0.01,−g(xini, yini)}.

Computation of Derivatives

For the following investigations, we use the formulation (KKT-BP), in which we
denote the system of constraints as C. The Jacobian of C then exhibits the following
sparsity pattern:

∇C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × 0nG×ng

× × ×
× × 0ng×ng

× × ×
0ng×nx 0ng×ny ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Due to the introduction of the Lagrange multiplier λ as an optimization variable,
some entries are structural zeros.

The Lagrange function of (KKT-BP) is LK(x, y, λ, µ) = F (x, y) + µTC(x, y, λ) with
Lagrange multipliers µ ∈ RnC . It is easy to see that

(︂
∇xLT

K ∇yLT
K ∇λLT

K

)︂T
does

not contain structural zeros (except those of the given problem). The Hessian matrix
of the Lagrange function only possesses one block of zeros, caused by λ again:

∇2LK =

⎡
⎢⎢⎢⎣

× × ×
× × ×
× × 0ng×ng

⎤
⎥⎥⎥⎦.

Hence, sparsity depends mainly on the given problem and less on the KKT formula-
tion.

Literature Review

The KKT formulation has received much attention and is considered to be one of
the standard approaches to bilevel programming. Since the problem formulation
is an MPCC, research in this direction can be found in [27] or [128] (in which the
corresponding constraints are called “equilibrium constraints”). Theoretical studies
on optimality conditions and constraint qualifications can be found in [28]. Allende
and Still [3] developed a smoothing algorithm for the complementarity conditions
within the KKT approach and present numerical results. The KKT formulation
can be solved in several ways, such as vertex enumeration or branch-and-bound

70



3.3 Decomposition in Bilevel Programming

algorithms. Kim et al. [66] investigate the use of NLP methods to solve such
problems.

3.3.5 Decomposed Formulation

The KKT approach can already be seen as being a decomposition of the original
problem, since artificial variables and constraints are introduced. In this part,
we build upon this by a further decomposition. The main idea is to incorporate
the lower-level iterative process — assumed to be given by an SQP method — into
the upper-level problem via artificial constraints and variables. For that purpose,
condition (3.5) is replaced by a set of constraints which imitate the process of
numerically solving the lower-level problem. Similar to the KKT reduction scheme,
this approach can be seen as simultaneously optimizing the upper- and the lower-level
problem. Since the lower-level variables are no longer dictated by the upper-level
ones, they can be optimized independently. This procedure is presented in the
following in more detail.17

Solving the Lower-Level Problem

In this part, we consider the lower-level problem (LL) for a fixed x. Thus, it is
parameterized in x, while it is solved for y. The corresponding Lagrange function is
given by

ℓ(x, y, λ) := f(x, y) + λTg(x, y).

As presented in Subsection 2.2.1, the basic idea in SQP methods is to iteratively
improve an initial guess by solving quadratic approximations of the original nonlinear
program. With regard to the setting described here, the QP has the following form:

Problem 3.31 (LL-QP)
Find variables d ∈ Rny that

minimize 1
2d

T∇2
yyℓ(x, y, λ)d+ ∇yf(x, y)Td

subject to g(x, y) + ∇yg(x, y)Td ≤ 0ng .

17Propositions 3.35 and 3.39 originate from a private communication with Prof. Dr. Jörg Fliege in
2019.
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Once a solution d with corresponding dual variable ν is found, the iterates are updated
in the following way with αk being some step size (compare Subsection 2.2.1):

yk+1 = yk + αkdk, (3.7)
λk+1 = νk. (3.8)

As a necessary requirement for the following investigations, we use a full step αk = 1
instead of performing a line search. The procedure of solving the lower-level QP and
updating the variables is repeated until necessary optimality conditions are satisfied
up to a given tolerance. The process of solving the lower-level problem for a given
initial guess (yini, λini) can be formulated as follows:

Step 1 solve (LL-QP) with x, yini, λini and obtain (d1, ν1)
update y2 = yini + d1
update λ2 = ν1

...
...

Step Nit − 1 solve (LL-QP) with x, yNit−1, λNit−1 and obtain (dNit−1, νNit−1)
update yNit = yNit−1 + dNit−1
update λNit = νNit−1

In practice, solving (LL-QP) comes down to finding a point (d, ν) ∈ Rny × Rng that
fulfills the corresponding KKT conditions

g(x, y) + ∇yg(x, y)d ≤ 0ng , (3.9)
∇2
yyℓ(x, y, λ)d+ ∇yf(x, y) + ∇yg(x, y)Tν = 0ny , (3.10)

νT(g(x, y) + ∇yg(x, y)d) = 0, (3.11)
ν ≥ 0ng . (3.12)

Note that such a KKT point is a solution only if (LL-QP) is convex. All in all, the
procedure of numerically solving (LL) can be formulated as blocks of equality and
inequality constraints for which a feasible point has to be found. In analogy to the
concept presented in Subsection 3.1.1, the main idea for finding a reformulation
of (O-BP) is to replace solving the lower-level problem by new constraints that
represent the iteration scheme described above using the KKT conditions of (LL-QP).
Once these constraints are satisfied, yNit hopefully represents an approximation to a
solution of the lower-level problem, depending on Nit.
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Embedding the Algorithm into the Upper-Level Problem

We introduce artificial variables

y1, . . . , yNit−1 ∈ Rny ,

which represent the values of the SQP iterations. They refer to the update step

yk+1 = yk + dk.

Then, we replace the optimization variable y with yNit , which represents the variable
at iteration step Nit. Under certain assumptions (those that the SQP method
convergences, compare Theorem 2.16), and especially when Nit is chosen sufficiently
large, yNit represents an approximate lower-level KKT point found by the imitated
SQP algorithm at the end of the (upper-level) optimization process.

Note that the iteration steps yi are no longer implicitly dependent on each other
as it is the case in the usual iterative process of the SQP method. Here, they can
be optimized independently, the iterative behavior is decomposed. We replace the
process of solving a QP by adding its KKT conditions (3.9), (3.10), (3.11), and (3.12)
with corresponding dual variables ν as constraints. By incorporating them into
the problem, we obtain a reformulation of the original bilevel problem that can
be interpreted as solving the upper and the lower level simultaneously. Thus, all
dependencies are now of an explicit nature, as desired.

Within the described process, we have to deal with two types of Lagrange multipliers.
λ corresponds to the Lagrange function of the lower-level problem, while ν represents
the dual variable that results from solving (LL-QP). However, due to the update
step (3.8), we only need to add the Lagrange multipliers λ1, . . . , λNit as new variables.
They represent the sequence of Lagrange multipliers generated by the imitated SQP
process. In particular, λ1 is the initial guess for solving the first QP, λ2 = ν1
represents both the solution of the first QP and the initial guess for the second QP,
and so on.

Due to (3.7), we further replace each dk by yk+1 −yk for k = 1, . . . , Nit −1 to obtain a
problem formulation that depends on x, y1, . . . , yNit , and λ1, . . . , λNit . Thus, we can
finally formulate another single-level reformulation of (O-BP), we call it Decomposed
Bilevel Problem (D-BP).
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Problem 3.32 (D-BP)
Find variables x, y1, . . . , yNit , λ1, . . . , λNit that

minimize F (x, yNit)

subject to G(x, yNit) ≤ 0nG
g(x, yk) + ∇yg(x, yk)dk ≤ 0ng , k = 1, . . . , Nit − 1

∇2
yyℓkdk + ∇yfk + ∇yg(x, yk)Tλk+1 = 0ny , k = 1, . . . , Nit − 1

λT
k+1(g(x, yk) + ∇yg(x, yk)dk) = 0, k = 1, . . . , Nit − 1

λk ≥ 0ng , k = 1, . . . , Nit

with dk := yk+1 − yk, ℓk := ℓ(x, yk, λk), and fk := f(x, yk) for k = 1, . . . , Nit − 1.

Since the Hessian matrix ∇2
yyℓ(x, y, λ) of the lower-level problem needs to be com-

puted and this problem shall be solved using second-order optimization methods
later in this work, we require that the lower-level functions be four times continuously
differentiable.

The artificial constraints and variables aim to imitate an SQP algorithm, which
itself aims to approximate KKT points. Consequently, the corresponding conditions
are not explicitly part of the problem formulation, they are aimed to be satisfied
implicitly. Hence, an alternative to the problem formulation above is to include the
conditions

∇yℓ(x, yNit , λNit) = 0ny ,
g(x, yNit) ≤ 0ng ,

λT
Nitg(x, yNit) = 0,

λNit ≥ 0ng

explicitly in addition to the existing ones. The condition

λNit ≥ 0ng

is already included in (D-BP). This allows investigating another decomposed ap-
proach, for which a feasible point directly satisfies the lower-level KKT conditions.
Herein, the number of constraints increases by ny + ng + 1. A Decomposed-KKT
Bilevel Problem (D-KKT-BP) can be formulated as follows:
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Problem 3.33 (D-KKT-BP)
Find variables x, y1, . . . , yNit , λ1, . . . , λNit that

minimize F (x, yNit)

subject to G(x, yNit) ≤ 0nG
g(x, yk) + ∇yg(x, yk)dk ≤ 0ng , k = 1, . . . , Nit − 1

∇2
yyℓkdk + ∇yfk + ∇yg(x, yk)Tλk+1 = 0ny , k = 1, . . . , Nit − 1

λT
k+1(g(x, yk) + ∇yg(x, yk)dk) = 0, k = 1, . . . , Nit − 1

∇yℓ(x, yNit , λNit) = 0ny
g(x, yNit) ≤ 0ng

λk ≥ 0ng , k = 1, . . . , Nit

with dk := yk+1 − yk, ℓk := ℓ(x, yk, λk), and fk := f(x, yk) for k = 1, . . . , Nit − 1.

This formulation is a combination of (KKT-BP) and (D-BP). The following inves-
tigations, however, consider (D-BP) exclusively. Still, this variation is practically
tested and compared against other approaches within the corresponding sections in
Chapter 4.

The proposed reformulation offers both numerical advantages and disadvantages.
When comparing the different sets of constraints that are present in the original
problem and in the decomposed one, compromises have to be made. In the original
problem (O-BP), we can formulate the condition that y solves the lower-level problem
as follows:

y ∈ ψ[x] := arg min
y

{︁
f(x, y) : g(x, y) ≤ 0ng

}︁
.

When comparing this constraint to those introduced in (D-BP), we immediately
notice that the original requirement of having a global solution (as one of possibly
many solutions) has to be alleviated to finding a single local one (also compare
Assumption 3.27). This is due to the local character of the embedded SQP scheme and
may become necessary if the lower-level problem is not convex. Thus, for x ∈ Rnx and
an initial guess (y1, λ1) ∈ Rny × Rng , the variable yNit is uniquely given by applying
Nit SQP iteration steps. Hence, there exists a function ψNit : Rnx × Rny × Rng → Rny
with

yNit = ψNit(x, y1, λ1).
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Under specific regularity assumptions, the fulfillment of both types of constraints
leads to the same solution in the limit: ψ can be represented by ψNit :

Remark 3.34 As long as the LICQ (Definition 2.6) and sufficient second-order condi-
tions (Theorem 2.12) hold and (y1, λ1) is in the region of attraction of a lower-level
solution (y⋆, λ⋆), it holds that

lim
Nit→∞

ψNit(x, y1, λ1) ∈ ψ[x]

for all x ∈ Rnx (compare Theorem 2.16).

Under specific assumptions, we do not lose solutions when solving the reformulated
problem.

Proposition 3.35 Let (x̂, ŷ) be a solution of (O-BP). If the lower-level problem is
convex and the LICQ holds at ŷ with respect to the constraint function g(x, ·) for all
x that fulfill G(x, ŷ) ≤ 0nG, then there exists a λ such that

(x̂, ŷ, . . . , ŷ, λ, . . . , λ)

is a solution of Problem 3.32.

Proof Being a solution of (O-BP) implies that ŷ is a lower-level solution. Thus,
there exists a λ for which the corresponding KKT conditions

∇yf(x̂, ŷ) + ∇yg(x̂, ŷ)Tλ = 0ny ,
g(x̂, ŷ) ≤ 0ng ,

λTg(x̂, ŷ) = 0,
λ ≥ 0ng

are fulfilled. With dk = yk+1 − yk = ŷ − ŷ = 0ny for k = 1, . . . , Nit − 1, (D-BP)
reduces to the KKT approach with additional redundant constraints. Under the
given assumptions, this approach is known to be equivalent to the original problem
(see for example [3]). □

The proposition reveals that redundancies in (D-BP) can occur. Multiple combina-
tions of y1, . . . , yNit−1 and λ1, . . . , λNit−1 may lead to the same values of yNit and λNit .
Hence, we cannot expect to find strict local minima (compare Definition 2.3).
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The problem dimensions depend on Nit, the number of lower-level SQP it-
eration steps: (D-BP) exhibits nG + (Nit − 1)(ng + ny + 1) + ngNit constraints
and nx +Nit(ny + ng) variables. Since one does not know in advance how many
iteration steps the SQP algorithm needs to solve the lower-level problem, an intuitive
way is to choose Nit large, which leads to high problem dimensions. However, the
general problem formulation exhibits sparse structures (which will be examined
later), independent of the specific problem at hand.

A clear advantage is that the difficult constraint (3.5) in the original problem
formulation is replaced by a set of constraints that allows us to use standard NLP
solvers. In particular, it is not necessary to invoke an external solver, since the
lower-level problem is solved implicitly once the overall problem is solved.

Another drawback is the introduction of the Nit − 1 constraint blocks of type

g + ∇gd ≤ 0ng ,
λT(g + ∇gd) = 0,

λ ≥ 0ng ,

which transform the problem into an MPCC causing numerical difficulties. However,
in analogy to the KKT approach (compare Problem 3.30), the above-mentioned
constraints can be replaced by using FB functions. In practice, however, smoothed
version would be applied in order to overcome the nonsmoothness caused by Φ. This
allows formulating another version of the decomposed approach:

Problem 3.36 (D-FB-BP)
Find variables x, y1, . . . , yNit , λ1, . . . , λNit that

minimize F (x, yNit)

subject to G(x, yNit) ≤ 0nG
∇2
yyℓkdk + ∇yfk + ∇yg

T
kλk+1 = 0ny , k = 1, . . . , Nit − 1

Φ
(︁
(λk+1)i,−(gk + ∇ygkdk)i

)︁
= 0, i = 1, . . . , ng,

k = 1, . . . , Nit − 1
λ1 ≥ 0ng

with dk := yk+1 − yk, ℓk := ℓ(x, yk, λk), gk := g(x, yk), and fk := f(x, yk)
for k = 1, . . . , Nit − 1.
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Avoiding the complementarity constraints can also be applied to the other approach,
in which the lower-level optimality conditions are directly included:

Problem 3.37 (D-KKT-FB-BP)
Find variables x, y1, . . . , yNit , λ1, . . . , λNit that

minimize F (x, yNit)

subject to G(x, yNit) ≤ 0nG
∇2
yyℓkdk + ∇yfk + ∇yg

T
kλk+1 = 0ny , k = 1, . . . , Nit − 1

∇yℓ(x, yNit , λNit) = 0ny
Φ

(︁
(λk+1)i,−(gk + ∇ygkdk)i

)︁
= 0, i = 1, . . . , ng,

k = 1, . . . , Nit − 1
Φ((λNit)i,−(g(x, yNit))i) = 0, i = 1, . . . , ng

λ1 ≥ 0ng

with dk := yk+1 − yk, ℓk := ℓ(x, yk, λk), gk := g(x, yk), and fk := f(x, yk) for
k = 1, . . . , Nit − 1.

In practice, these formulations are applied sequentially: Φ is replaced by a smoothed
version, for which a smoothing parameter will be driven to zero. This approach is
described in detail in Section 4.5. For the remaining investigations within this part,
however, we consider (D-BP) exclusively.

Remark 3.34 gives a statement about the behavior in the limit of the underlying SQP
method. We are, however, interested in the numerical solution of bilevel problems,
which implies fixing Nit to a finite number. Thus, we cannot expect the solutions
to be exact. The choice of Nit is left to the user and is not trivial. In case the
lower-level problem has a specific form, however, Nit is known beforehand:

Theorem 3.38 If the lower-level problem (LL) is a convex QP, a solution of (D-BP)
with Nit = 2 is a solution of (O-BP).

Proof Nit = 2 corresponds to embedding one SQP iteration into the problem. Since
one step is sufficient to find a solution of convex quadratic programs, yNit = y2 solves
the lower-level problem in case a feasible point is found. In addition, the constraints
representing the iterative behavior reduce to the KKT conditions of the lower-level
problem. They are sufficient, since the problem is convex. □
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For arbitrary problem types, however, it is not possible to determine a suitable Nit
beforehand. The number of required iterations depends not only on the initial
guess, but also on the user’s choice of solver options, such as optimality or feasibility
tolerances. Still, there are some strategies for determining Nit:

– Solve the lower-level problem in advance with the implemented SQP algorithm
and use the required number of iterations as lower bound for Nit.

– Start with Nit = 2 and solve (D-BP). Use the solution as an initial guess for
another solver run with increasing values of Nit.18

– Use an arbitrarily large value for Nit.

Directly related is the search for criteria which guarantee that, for a given Nit, a
solution corresponds to a solution of the lower-level problem. A suitable criterion
is the search direction dk = yk+1 − yk, which vanishes, once a KKT point is found.
This fact can be used to formulate the following:

Proposition 3.39 Let (x, y1, . . . , yNit , λ1, . . . , λNit) be a solution of (D-BP), in
which the lower-level problem is assumed to have the same properties as in Proposi-
tion 3.35. Suppose that yNit−1 = yNit and λNit−1 = λNit . Then (x, yNit) is a solution
of (O-BP).

This is proven by similar arguments as in the proof for Proposition 3.35 and based
on the observation that a similar KKT formulation is obtained. In practice, however,
one would consider ∥yNit−1 − yNit∥2 < ϵ instead of yNit−1 = yNit .

Example 3.40
We demonstrate several aspects of (D-BP) by investigating an example from [78].
For upper-level variables x ∈ R and lower-level variables y ∈ R, the task is to

minimize
(︃
x+ 1

2

)︃2
+ 1

2y
2

subject to −1 ≤ x ≤ 1

y ∈ arg min
v

1
2xv

2 + 1
4v

4

s.t. −1 ≤ v ≤ 1.

A local optimal solution is given by (x⋆, y⋆) = (−0.25, 0.5) and the corresponding
upper-level function value is 0.1875. We solve this problem in formulation (D-BP)

18This strategy is applied in Section 4.5.
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Figure 3.6: Influence of the number of imitated iteration steps Nit on solving the bilevel problem
in Example 3.40 in the decomposed formulation. Dashed lines mark reference or
tolerance (only bottom right) values. The abbreviations F ⋆ := F

(︁
x⋆, y⋆Nit

)︁
and∇yℓ⋆ :=

∇yℓ
(︁
x⋆, y⋆Nit , λ

⋆
Nit

)︁
are used.

using the initial guesses

xini = −1,
yk ini = 2,

λk ini =
(︂
5 5

)︂T

for k = 1, . . . , Nit. The NLP is solved by WORHP’s SQP algorithm for varying values
of Nit, which is shown in Figure 3.6. Although WORHP terminates successfully for
each use of Nit = 2, . . . , 6, the solutions do not represent a solution of the lower-
level problem. To verify this, we consider the lower-level stationarity condition
∇yℓ(x⋆, yNit

⋆, λNit
⋆) = 0. When allowing Nit = 7 SQP iteration steps, the solution

finally is a lower-level minimum (up to the used tolerance 10−6). We can also
observe that the solutions as well as their corresponding objective function value
converge to their reference values. This example demonstrates that on the one
hand, Nit has to be chosen carefully, and on the other hand, that a post-processing
of a computed solution should be performed to check for lower-level solutions.19

19This example is published by Sch., Fliege, Flaßkamp, and Büskens in [98].
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Initialization of (D-BP)

Due to the potentially large number of variables, there are several strategies for
initialization. As mentioned earlier, one strategy for choosing Nit is to solve the
lower-level problem in advance for given xini, yini, and λini. The resulting values at
the intermediate variables have to be stored and can be used to initialize (D-BP).
This would allow starting close to a feasible solution. Alternatively, an interpolation
between the initial guess and the solution can be applied instead of storing the
values. An adaptive initialization used within a sequential solution strategy (see
Subsection 4.5.3) may also be suitable. Still, finding an adequate guess is not trivial
and depends on the given problem.

Computation of Derivatives

For large values of Nit, the resulting NLP (Problem 3.32) can easily become high-
dimensional and difficult to solve, even if the corresponding original bilevel problem
has only a few variables. However, the required derivatives have sparse structures
that can be exploited by modern solvers.

The objective function depends only on the variables x and yNit , which leads to the
following structure of its gradient ∇F :

∇F =
[︂
× ×

]︂T ∈ Rnx+Nit(ny+ng).

Due to the embedded iterative process in the constraints (which we summarize as C),
the Jacobian matrix ∇C consists of three parts: a column block representing the
dependency on the upper-level variable x and two series of column blocks for the
iteration steps of y and λ, respectively. This is illustrated for Nit = 4:

∇C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x y1 y2 y3 y4 λ1 λ2 λ3 λ4

× ×
× ×
× × × × k=1

× × ×
× ×
× × × × k=2

× × ×
× ×
× × × × k=3

× × × ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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For optimization variables z :=
(︂
xT yT

1 yT
Nit λT

1 λT
Nit

)︂T
and Lagrange multi-

pliers µ ∈ RnC , we denote the Lagrange function of (D-BP) as

L(z, µ) = F (x, yNit) +
nC∑︂

i=1
µiCi(z).

Its Hessian matrix has the following sparsity pattern:

∇2
zzL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × × × × × × × × × × × × ×
× × × × ×
× × × × × × ×
× × × × × × ×
× × × × ×

× × ×
× × × × × × ×
× × × × × × ×
× × × × ×
× × ×
× × × ×
× × × ×
× × ×

× ×
× × × ×
× × × ×
× × ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since we expect all functions to depend on x, the first row and the first column
are dense. The large block consisting of structural zeros in the south-east corner is
due to the Lagrange multipliers λ1, . . . , λNit , which enter the problem formulation
linearly.

Exploiting the patterns20 of ∇zF , ∇zC, and ∇2
zzL influences the computation time,

in particular for high-dimensional problems in combination with a large Nit. This
aspect is illustrated in the following example:
20Sparse matrices, as introduced in Subsection 2.2.4, can be stored efficiently to save memory and

computation time. In the coordinate storage format, a non-zero value is stored as a triplet
consisting of the row and column indices and the value. By imposing certain restrictions, more
efficient algorithms can be used for matrix operations. WORHP uses this format internally [106].
Users have to provide the coordinates of non-zero values.
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3.3 Decomposition in Bilevel Programming

Example 3.41
We consider the following bilevel problem (as in [6]): For upper-level vari-
ables x ∈ R2 and lower-level variables y ∈ R2,

minimize − x2
1 − 3x2 − 4y1 + y2

2

subject to x2
1 + 2x2 − 4 ≤ 0

x1, x2 ≥ 0
y ∈ arg min

v
2x2

1 + v2
1 − 5v2

s.t. g(x, v) ≤ 02

v1, v2 ≥ 0

with

g(x, v) :=

⎛
⎝−x2

1 + 2x1 − x2
2 + 2v1 − v2 − 3

−x2 − 3v1 + 4v2 + 4

⎞
⎠.

To demonstrate the effects of exploiting sparse structures, we solve this problem
using the decomposed approach for different values of Nit. We consider four cases,
all of them with respect to (D-BP).

1. Both the Jacobian J of the constraints and the Hessian H of the Lagrange
function are assumed to be dense.

2. The Jacobian’s sparsity pattern is exploited, the Hessian’s is not.
3. The Jacobian is assumed to be dense, while the Hessian is sparse.
4. For both matrices, the sparsity patterns are exploited.

For each of these possibilities, we solve the problem using Nit = 2, . . . , 50 and
measure the overall computation time. We divide it by the number of required
iterations the solver WORHP has to perform to eliminate this dependency. Hence, an
average value per iteration is obtained and the actual minimum found (compare
Example 3.40, where different values of Nit lead to different solutions) plays only
a minor role. In this case, we can even observe convergence to the same minimum
for each value of Nit. The results are visualized in Figure 3.7. For the purpose of
a consistent comparison, each bar corresponds to a solver run in which the relative
error to the reference objective function value is less than 5 % (for details on the
relative error definition, we refer to Section 4.5). Hence, a missing bar represents
an unsuccessful solver run and does not distort the result. Not surprisingly, the
average computation time is large when structure exploitation is not used. In
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Figure 3.7: Influence of Nit on the computation time required to solve the bilevel problem in
Example 3.41 for different levels of sparsity.

all other cases, however, the computation time can be kept at a desirable low
level despite increasing problem dimensions. Only for small values of Nit and full
sparsity exploitation does the average computation time unexpectedly deviate from
the present trend. For comparison, the reduced approach here needs 1.83 × 10−2 s,
the KKT approach 3.7 × 10−4 s on average per iteration.

Literature Review

This approach is inspired by the decomposed formulation within the field of dynamical
parameter identification. To the best of the author’s knowledge, such a reformulation
of (O-BP) has not been investigated before. An initial reference by the author can
be found in [98].

3.4 Connections

Both parameter identification and bilevel programming fit into the framework of
decomposition (as introduced in Section 3.1). Here, we provide a summary of the
respective connections and outline similarities and differences between them.
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3.4 Connections

Formulation Number of variables Number of constraints

(R-DPIP) np + nq 0
(MS-DPIP) np +Nsnq (Ns − 1)nq
(D-DPIP) np +Ndnq (Nd − 1)nq

(R-BP) nx nG

(KKT-BP) nx + ny + ng nG + ny + 2ng + 1
(KKT-FB-BP) nx + ny + ng nG + ny + ng

(D-BP) nx +Nit(ny + ng) nG + (Nit − 1)(ng + ny + 1) +Nitng

(D-KKT-BP) nx +Nit(ny + ng) nG +Nit(ng + ny) +Nitng +Nit − 1
(D-FB-BP) nx +Nit(ny + ng) nG + (Nit − 1)(ny + ng) + ng

(D-KKT-FB-BP) nx +Nit(ny + ng) nG +Nit(ny + ng) + ng

Table 3.3: Problem dimensions after transcription (parameter identification) or single-level reduc-
tion (bilevel programming).

3.4.1 Relation to the Concept

The problem class of dynamical parameter identification is a prototype for decompo-
sition. Here, the original problem is an infinite-dimensional optimization problem
involving an ODE which is parameterized in terms of model parameters and initial
values, both of which serve as primary variables. The resulting state trajectories
are secondary variables. After transcription, one can formulate a reduced variant,
a decomposed variant, and direct multiple shooting as a mixture of the two. The
complexity lies in the numerical solution of the ODE, which can be embedded in the
problem in several ways.

The problem class of bilevel programming also fits seamlessly into the framework
presented here. In this context, the original problem is a bilevel problem that involves
a subordinate optimization problem parameterized in upper-level variables that serve
as primary variables. The corresponding solution, required in the upper level,
represents the secondary variables. For this problem, one can — as well — formulate
a reduced variant and two decomposed variants of different complexity.

A comparison of problem dimensions is given in Table 3.3, while the findings and
relations to the concept are summarized in Table 3.4.
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Parameter Identification for Dynamical Systems

Original problem O-DPIP (Problem 3.9)
Expression ψ Numerical solution of IVP

q̇(t) = s(t, q(t), p), t ∈ [ta, tb], q(ta) = qa

Primary variables z Initial state values qa and model parameters p
Secondary variables w Discretized state trajectories q̃
Formulations R-DPIP (Problem 3.14)

MS-DPIP (Problem 3.18)
D-DPIP (Problem 3.21)

Bilevel Programming

Original problem O-BP (Problem 3.24)
Expression ψ Numerical solution of NLP

miny f(x, y) s.t. g(x, y) ≤ 0ng

Primary variables z Upper-level variables x
Secondary variables w Lower-level variables y
Formulations R-BP (Problem 3.28)

KKT-BP (Problem 3.29)
KKT-FB-BP (Problem 3.30)
D-BP (Problem 3.32)
D-KKT-BP (Problem 3.33)
D-FB-BP (Problem 3.36)
D-KKT-FB-BP (Problem 3.37)

Table 3.4: Connections between the presented problem classes and the concept of decomposition.

3.4.2 Comparison

The investigated problem classes relate to the concept similarly. In the reduced
formulation, an iterative procedure is applied in the background, invisible to the
optimization algorithm. For this, standard implementations can be used, which
makes an integration into the overall problem convenient. The complexity of this
evaluation depends on the specific problem. If the underlying routine is very complex,
the total effort for solving the overall problem can quickly become large. In the
decomposed formulation, the computational cost depends mainly on the chosen
number of discretization and iteration points. However, in both problem classes,
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sparse matrices resulting from the artificial constraints can be exploited to reduce
the computational effort. Not only the computational cost, but also the accuracy of
the solution of the underlying task is influenced by this number. For the numerical
solution of an ODE, a sufficiently small step size (defined through the number of
discretization points) needs to be given in order to obtain an adequate approximation
of the solution. Too few points can quickly lead to undesirably high truncation errors.
In bilevel programming, the number of iteration steps available to solve the lower-
level problem can influence the solution’s accuracy as well, which is demonstrated in
Example 3.40.

Despite the obvious similarities, closer inspection reveals many differences. The inter-
mediate values — either the discretized state trajectories or the imitated lower-level
iteration steps — are used in the corresponding objective function, so proper initial-
ization is beneficial. While in parameter identification all intermediate values are
used and their initialization is even intuitive, decomposition in bilevel programming
is different: Only the last iteration point, as an approximation to the lower-level
solution, is used in the objective function; all other intermediate values occur only in
the constraints. Therefore, their initialization may not be as essential as in parameter
identification. Providing useful initializations is also not an easy task.
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Chapter 4

Applications and Numerical Results

This chapter is a collection of examples that explore the idea, reveal characteristics,
and analyze the behavior of decomposition methods for parameter identification
and bilevel programming. The presented applications build upon the decomposi-
tion techniques introduced in Chapter 3. We present a mixture of examples, from
illustrative academic examples with extensive numerical evaluations to problems in-
volving real-world data up to testing methods on a full library of academic problems.
Starting in the field of parameter identification, extensive numerical comparisons
of transcription methods are presented. The academic example of a mathematical
pendulum (Section 4.1) reveals several interesting properties, while similar experi-
ments are conducted on a real-world example of an industrial robot (Section 4.2).
For the area of bilevel programming, the region of attraction is in the focus of two
examples (Section 4.3 and Section 4.4). Since the decomposed approach marks a
novel development in this area, it is tested on a library of problems in Section 4.5.
The chapter closes with the idea of a homotopy-optimization approach for parameter
identification (Section 4.6).

4.1 Parameter Identification for a Pendulum

In this section, we compare the presented transcription techniques (reduced, multiple
shooting, decomposed formulation) against each other from a numerical point of
view. In particular, we study the algorithmic behavior when the NLP solver WORHP
is applied to solve the parameter identification problem initially introduced in
Example 3.10. The comparison criteria are manifold. Although computation times
and convergence rates always play an important role when comparing different setups,
the focus of this study is on the distribution of computed solutions. In particular, we
are interested in making statements about the occurrence of different local minima.
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We aim to answer the question which formulation is more likely to generate desired
solutions and give reasons why this may be the case.

At first, it has to be distinguished between the question of why a given problem
possesses multiple local solutions and why an algorithm in combination with the
chosen problem formulation converges to a particular solution. For the first question,
there are many possible answers.

– Local minima can emerge from long time horizons coupled with an oscillatory
system behavior.

– Local minima can originate from a problem’s ill-posedness.
– Local minima occur due to redundancies within the dynamical model.

This list is not exhaustive. Parameter identification problems are known to have
multiple local solutions, as demonstrated by Moles et al. [80] using a biochemical
example. In general, the latter question can be answered by the locality of the solution
algorithm, whose behavior is mainly influenced by a user-given initialization.

Many research works deal with comparing transcription techniques for dynamical
parameter identification problems in a numerical way. Peifer and Timmer [91]
compare the reduced formulation against a multiple shooting approach for two
biochemical problems. They consider the number of convergent runs, the occurrence
of the global minimum, and the computational load. Hamilton [57] compares the
number of convergent runs for different noise levels for the above-mentioned methods
for two chaotic systems.

4.1.1 Comparison Setup

We continue with the examples already presented (Examples 3.10, 3.15, and 3.22)
and define the region of interest to be the rectangle

[plow, pupp] ×
[︂
q̃

[t1]
2low

, q̃
[t1]
2upp

]︂
= [0.2, 2] × [−1, 1]. (4.1)

The second initial value q̃[t1]
2 can be varied since measurements only exist for the

first state. The first initial value is fixed, mainly for visualization purposes. For
the following comparisons, 1000 initial guesses are chosen randomly from the region
in (4.1). They are obtained by latin hypercube sampling, which has the property
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4.1 Parameter Identification for a Pendulum

of giving a representative selection while having a moderate sampling size. This is
realized using the MATLAB routine lhsdesign1.

The investigation in Example 3.22 demonstrates that the initialization of parameter
identification problems can heavily influence the algorithmic behavior and also, to
which solution an algorithm converges. To make quantitative statements about
the distribution of solutions and to compare the presented transcription methods
consistently, several initialization strategies are considered. The numerical analyses
are then of Monte–Carlo-type and aim at finding the average behavior of a method
by performing numerous experiments using different initial guesses that sufficiently
cover the region of interest.

4.1.2 Initialization Strategies

At first, the unmeasured initial state values q̃ [t1]
J c ini and initial parameters pini are

generated randomly by the previously described approach. To initialize q̃ [t1]
J ini, we

use the corresponding measurement, which is in general an adequate choice. In the
decomposed formulation as well as in the multiple shooting approach, the discretized
trajectories (or parts thereof in the latter case) also need to be initialized. For this
purpose, we make use of the following strategies:

Strategy I All the discretized state values q̃[ti], i = 2, . . . , Nd (respectively q̃[τi],
i = 2, . . . , Ns) are obtained by numerically integrating the ODE with
initial values and parameters as described above. The integration
method is identical to the one used in the optimization process. For
comparison purposes, this is the most intuitive strategy.

Strategy II The measurements are used for initialization. If there are fewer
measurements than discretization points (Nm < Nd), a linear in-
terpolation is used to initialize the intermediate discretized points.
Unmeasured state variables are initialized by the outcome of a forward-
integration.

Strategy III The only difference to Strategy II is that unmeasured state variables
are initialized by the initial value q̃ [t1]

J c .

1A documentation of lhsdesign can be found at https://de.mathworks.com/help/stats/
lhsdesign.html.

91

https://de.mathworks.com/help/stats/lhsdesign.html
https://de.mathworks.com/help/stats/lhsdesign.html


Chapter 4 Applications and Numerical Results

Variables Initial guess

p Random
q̃

[t1]
J Measurements

q̃
[t1]
J c Random

Strategy I Strategy II Strategy III

q̃
[ti]
J , i = 2, . . . , Nd Integrated Measurements Measurements

q̃
[ti]
J c , i = 2, . . . , Nd Integrated Integrated Constant q̃ [t1]

J c

Table 4.1: Initialization strategies for solving the pendulum parameter identification problem.

On NLP level, the Lagrange multipliers also need to be initialized. Although WORHP
offers a heuristic approach, we initialize them all with the constant zero, which
is a common choice. A summary of initialization strategies is given in Table 4.1.
Although shooting methods have the explicit advantage that a solution of the
dynamical system can be arbitrarily well approximated, we restrict ourselves to using
the same step size as in the full discretization approach. This allows us to compare
the accuracy of the computed solutions when the same integration scheme is used
in both formulations. In the following examples, we highlight specific features and
algorithmic behavior.

4.1.3 Local Solutions

As there are only two primary variables, the shape of the objective function can
be visualized (see Figure 4.1). In comparison to the one with only one variable (in
Figure 3.3), the overall shape does not change qualitatively. Several valleys again
reveal the existence of multiple local solutions.

For each random point in the specified initialization area, we solve the problem in its
reduced version to obtain an overview of all solutions attained. We do not only obtain
the number of attained minima, but also approximations of the regions of attraction
of each minimum. The outcome, visualized in Figure 4.2, is not surprising. The
initial parameter guess strongly influences the algorithmic behavior and consequently,
it determines to which local solution the algorithm converges. Individual solutions
may deviate from the expected position due to numerical inaccuracies or algorithm-
specific features. In total, the regions of attraction approximately agree with the
ones presumed from Figure 4.1.
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Figure 4.1: Shape of the objective function using the reduced formulation of the pendulum example.
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Figure 4.2: Regions of attraction of local solutions (indicated by color) using the reduced formula-
tion.

In a first step, we directly compare the reduced problem with its decomposed coun-
terpart, and again we are mainly interested in the regions of attraction. We use both
algorithms offered by WORHP with standard configurations with the modifications
listed in Table 2.1. Derivatives are computed by finite differences. The corresponding
results are summarized in Table 4.2. When applying Strategy I — using initial
trajectory guesses resulting from an integration with the reduced problem initializa-
tions — the results are qualitatively similar. Thus, simply increasing the problem
dimensions does not lead to any advantages in finding better solutions. This is true
for both algorithms, the differences are only minimal. With Strategy II — initializing
states with measurements if possible — the higher problem dimensions pay off: the
solution corresponding to the nominal value L = 1 is always obtained with the IP
algorithm. This makes the optimization independent of the choice of the initial
parameter. The same results are obtained for Strategy III. The SQP algorithm
produces qualitatively similar results with only a few deviations. In particular, there
are a few unsuccessful runs for all formulations except when using Strategy I.

In summary, decomposing the problem by adding dimensions and embedding the inner
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Problem
formulation

Local minimum attained
(in %, sorted by objective function value)

WORHP IP #1 #2 #3 #4 #5 #6 #7 #8 †

Reduced 34.5 33.8 13.2 7.2 5.1 4.5 1.7 0 0
Decomposed (I) 33 35.4 12.9 7.4 5.1 3.7 2.5 0 0
Decomposed (II) 100 0 0 0 0 0 0 0 0
Decomposed (III) 100 0 0 0 0 0 0 0 0

WORHP SQP #1 #2 #3 #4 #5 #6 #7 #8 †

Reduced 30.6 33.2 13.5 5.9 6.9 2.8 1.2 0.1 5.8
Decomposed (I) 33.2 35.1 13 7.4 5.1 3.7 2.5 0 0
Decomposed (II) 84.7 0 0.2 3.8 5.1 3.4 2.3 0 0.5
Decomposed (III) 91.9 0 2 2.6 0.5 2.3 0 0 0.7

Table 4.2: Frequencies of convergence to different local solutions for the reduced and decomposed
formulation with different initialization strategies. Unsuccessful runs are marked by a †.

integration process into the problem in combination with an intelligent initialization
enables the solver to overcome local, undesired solutions.

Next, we investigate the role that multiple shooting plays in this numerical analysis.
In particular, we are interested in the number of shooting nodes one has to introduce
to attain similar results as in the fully decomposed variant. The multiple shooting
procedure is therefore implemented with the purpose of a consistent comparison (as
explained in full details in Subsection 3.2.4):

– Variables at shooting nodes are initialized with respect to the strategies from
Table 4.1.

– For the numerical integration of the ODE on the shortened time intervals, the
same scheme as for single shooting with identical step size is used.

Thus, we focus on the influence of additional shooting nodes on the algorithmic
behavior of a solver and again, we accept the fact that more accurate solutions might
be computable when a more accurate ODE solution is obtained between shooting
nodes. In principle, we could add up to Nd − 1 shooting nodes, observe the outcome,
and study the algorithmic behavior. Our experiments, however, indicate that this is
not necessary. Figure 4.3 shows the regions of attraction for different values of Ns.
One shooting node corresponds to the reduced formulation (compare Figure 4.2).
By successively increasing Ns, one can observe that the global minimum is attained
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Figure 4.3: Regions of attraction of local solutions (indicated by color) of the pendulum example
for multiple shooting using initialization strategy II.

95



Chapter 4 Applications and Numerical Results

more often, while the regions of attraction of the other local solution decrease in their
size and finally vanish for Ns = 70. Hence, the parameter identification becomes
independent of the initialization of the primary variables. Due to the increased
number of optimization variables, the shape of the reduced objective function is
only valid along a feasible trajectory. Further, these variables are initialized by the
corresponding measurement values, which allows the solver to remain close to the
measurements during the integration.

In summary, local and undesired solutions can be overcome by adding shooting
nodes with corresponding initialization. It can also be observed that in rare cases,
the solver is not able to converge to a solution. Such an outcome can have different
reasons, but further experiments indicate that this can be avoided by adjusting
solver-specific settings.

4.1.4 Computational Characteristics

Due to highly enlarged problem dimensions, it is reasonable to investigate the
computation time. The reduced formulation benefits from small problem dimensions
and therefore, the NLP can be solved quickly. The largest fraction of the computation
time, however, is spent on repeatedly solving the ODE. This is avoided in the
decomposed variant, but enlarged problem dimensions come into play. In this
specific example, the solver has to handle 4003 variables with 4002 constraints. Thus,
the Hessian matrix of the corresponding Lagrange function has 16024009 entries.
Due to the sparsity structure, most of them are structural zeros and can therefore
be neglected.

The computation times are compared in the left part of Figure 4.4. We only take
those optimization runs into account that converge to the best found solution. For
the purpose of a consistent comparison, we exclude those runs that started at a
point from which the other investigated method did not converge, respectively. In
other words, we use the intersection of initial guesses that lead to computing the
desired solution. In the median, the reduced formulation only needs approximately
0.03 s respectively 0.04 s until the global minimum is found and also the interquartile
ranges (IQRs) are favorably low. Although the problem dimensions are much larger
in the decomposed formulation, the required computation time is only marginally
increased. The IP algorithm needs 0.18 s, while the SQP method needs 0.29 s in the
median. It is not surprising that the reduced approach converges quickly as it only
converges for initial guesses in the close vicinity of the global minimum.
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Figure 4.4: Computational characteristics of the parameter identification for the pendulum exam-
ple.2

When considering the average number of major iterations (right part in Figure 4.4),
a clear advantage of the decomposed approach can be observed. Not only are the
median numbers of iterations (six and eight) smaller than those of the reduced
approach (11 and 13), but also the IQRs. The reduced method shows scatter, while
the decomposed variant yields stable values. In other words, decomposition stabilizes
the solution process. This can be beneficial if dynamical parameter identification
problems have to be solved repeatedly in online settings. Here, a practitioner relies
upon a uniform solution process, time-consuming and unexpected iterative behavior
should be avoided while an adequate solution quality should still be maintained.

Regarding the algorithm, we can conclude that the IP method of WORHP is preferable
for this example, although the differences are far from being significant.

4.2 Parameter Identification for a Robotic System

Parameter identification with simple or academic underlying models can manifest
interesting properties, as shown in the previous section. For more complex models
originating from the real applications, parameter identification can become a challeng-
ing task, especially for multiple model parameters being identified simultaneously. In
this section, the transcription methods are applied to solve parameter identification
problems for a multi-link robotic system. The aim is to compare these methods

2The box plot diagrams used in this chapter (Figures 4.4 and 4.17) share the following conventions:
The boxes range from the 25th to the 75th sample percentile, their distance is called the
interquartile range (IQR). The middle line denotes the sample median. The whiskers extend the
IQR by a factor of 1.5, all other points are assumed to be outliers.
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θ1

θ2

(a) Idealized robotic system. (b) Industrial robot DENSO VS-050.

Figure 4.5: Robotic systems.

with respect to robustness and their ability to find desired solutions. The following
investigations originate from two conference papers:

[95] K. Schäfer, M. Runge, K. Flaßkamp, and C. Büskens. “Parameter Identification
for Dynamical Systems Using Optimal Control Techniques”. In: 2018 European
Control Conference (ECC). 2018, pp. 137–142. doi: 10.23919/ECC.2018.
8550045

[96] K. Schäfer, K. Flaßkamp, and C. Büskens. “A Numerical Study of the Ro-
bustness of Transcription Methods for Parameter Identification Problems”. In:
Proceedings in Applied Mathematics and Mechanics 18.1 (2018), e201800101.
doi: 10.1002/pamm.201800101

First, we consider an idealized robotic system (see Figure 4.5a). After that, the
methods are validated on a real-world application (see Figure 4.5b).

4.2.1 Idealized Example

To demonstrate and analyze different transcription methods, an academic example
of an idealized robotic system with two degrees of freedom is used. Both links of
the robot have cylindrical shapes and are connected via joints that can rotate as
illustrated in Figure 4.5a. We assume that the joints can be controlled externally,
for example by torques or currents.

To derive the equations of motion, we use the Euler-Lagrange approach. The joint
angles θ = (θ1, θ2) serve as generalized coordinates and the corresponding joint
angular velocities θ̇ =

(︂
θ̇1, θ̇2

)︂
as their derivatives. We formulate the system’s
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Lagrangian Lr as the difference between kinetic and potential energy in the following
way:

Lr
(︂
θ, θ̇

)︂
= 1

2

2∑︂

i=1
mi

⃦⃦
⃦Ṡi

⃦⃦
⃦

2
+ 1

2

2∑︂

i=1
ωT
i Iiωi −

2∑︂

i=1
migSi,z.

Herein, m1 and m2 are the masses of the links, Si = Si(θ) is the position of the center
of mass of link i relative to the base frame, ωi = ωi

(︂
θ̇
)︂

is the angular velocity of link i
relative to the base frame, Ii is the inertia tensor of link i, and g is the gravitational
constant. The dynamical behavior is described by forced Euler-Lagrange equations

d

dt

∂Lr

∂θ̇
− ∂Lr

∂θ
= fr (4.2)

with the external forcing term

fr
(︂
θ̇, I

)︂
= −κ1 tanh

(︂
aθ̇

)︂
− κ2θ̇ + κ3I,

in which I = (I1, I2) represents the currents flowing through the joint motors. After
calculating the relevant terms in (4.2), this equation can be written in the common
form

Mr(θ)θ̈ = Fr
(︂
θ, θ̇

)︂
+ fr

(︂
θ̇, I

)︂
. (4.3)

As these equations are standard formulations for robotic motions, we abstain from a
detailed derivation of the dynamics and instead refer to [83].

Equation (4.3) is highly nonlinear due to the complex dynamics in this robotic system.
It can also be seen that all model terms (Mr, Fr, and fr) involve time-independent
(physical or modeling) parameters, which we collect in the parameter vector p ∈ Rnp .
All in all, there are np = 19 parameters that can be identified. To create artificial
measurements, an arbitrary set of parameters (see Table 4.3) and arbitrary — yet
meaningful — inputs I for the currents are chosen. The system is then simulated
for a given time interval of three seconds with a higher-order integration method in
combination with an adequate step size.

The goal is to simultaneously identify the parameters collected in p by using the
methods introduced in Section 3.2. The identifiability of p, however, cannot be
guaranteed and would have to be checked beforehand. In fact, it is likely that this
is not the case due to parameter redundancies. We refrain from this check in the
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Model parameter Symbol Link 1 Link 2 Unit

Mass m 6 23 kg
Center of mass: x sx 0 0 m
Center of mass: y sy 0 0 m
Center of mass: z sz — 0.2875 m
Moment of inertia: x Ix — 0.6912 kgm2

Moment of inertia: y Iy — 0.6912 kgm2

Moment of inertia: z Iz 0.03 0.115 kgm2

Viscous friction factor κ1 1 2 Nm/s
Dry friction factor κ2 8 3 Nm
Current factor κ3 0.7 0.4 —
Modeling factor a 50 50 —

Table 4.3: Nominal model parameters used for the idealized robotic system.

following, since we focus on comparing methods instead of finding a realistic set of
parameters.

4.2.2 Comparison of Transcription Methods

In the following, the setup of the parameter identification problem is described:
We choose to approximate the simulated joint angles and joint angular velocities.
The model parameters are bounded by box constraints: pilow ≤ pi ≤ piupp for each
i ∈ {1, . . . , np}. The measurements serve as initial guesses for the state variables,
whereas the initial model parameters are set arbitrarily, but in their respective
order of magnitude. To solve the optimization problems, second-order information is
approximated by using BFGS methods provided by the solver. To make computations
comparable with each other, we use the Explicit Euler method with the constant
step size h = 0.01 in all the applied methods.

Figure 4.6 shows the measurements and the state trajectories resulting from solving
the NLPs originating from the multiple shooting method with five shooting nodes
as well as the full discretization approach. Both of the methods converge to a
local minimum, but the solution by full discretization obviously (objective value
of 6.5 × 10−2 against 5.016) finds a better one. It can be seen that the multiple
shooting approach only reproduces the general dynamical behavior of the system,
while the full discretization approach is more accurate. An explanation is that
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Figure 4.6: Solution trajectories obtained using full discretization and multiple shooting with 5
shooting nodes for the idealized robotic system.

multiple shooting converges to a local solution, while the other method is able to
converge to a desired one.

These results only cover a specific use case, namely for a single given initialization.
For different initial guesses, the solutions might be qualitatively different. To make
more general statements, we aim to have a closer look at the performance of multiple
shooting regarding the fitting quality and also, to which extent the different methods
tend to converge to a solution. Thus, we are interested in both the robustness with
respect to different initializations and the average solution quality a method is able
to produce.

To investigate the methods for robustness, experiments of Monte–Carlo-type are
conducted. The initial model parameters, which are given to the solver, are sampled
randomly. The initial guesses for the remaining optimization variables (in the case
of multiple shooting and full discretization) are chosen to coincide with the corre-
sponding measurement values. We solve each NLP using multiple shooting (msk3)
with k shooting nodes for k = 1, . . . , 3014, and full discretization. The optimization
outcomes are divided into three groups: successful meaning that a local minimum is
found; inapplicable solution meaning that a minimum is found, but the corresponding
objective function value is larger than a given threshold, indicating that the solution

3Single shooting is expressed as ms1.
4This is due to a three-second time interval with a step size of 0.01.
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Figure 4.7: Influence of the number of shooting nodes on robustness and solution quality for the
robot example.

cannot be meaningful; and unsuccessful meaning that the solver does not find a
solution of the NLP.

The results are shown in Figure 4.7a, in which a clear tendency can be observed: an
introduction of shooting nodes leads to a more robust behavior in the sense that the
NLP solver was able to find a local minimum more often. With only a few shooting
nodes, about half of all problems can be solved. However, the robustness increases
and stabilizes already with about 50 shooting nodes. With even more nodes, about
90 % of all problems can be solved. Consequently, the unsuccessful runs behave
contrarily. Inapplicable solutions occur in about 10 % of all problems when only a
few shooting nodes are considered. These numbers also stabilize until only a few
outliers produce these solutions using many shooting nodes.

Finding a local minimum in parameter identification does not automatically mean
approximating the measurements well. Here, we observe that more robust methods
generally find solutions that approximate measurements better (see Figure 4.7b).
When only successful runs are considered, the average objective function value
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shrinks from about 1.8 for single shooting to 0.39 for 297 shooting nodes. Again, a
clear trend can be seen to favor increasing the number of shooting nodes.

As already mentioned, it is not guaranteed that the parameters (or a subset of them)
are identifiable, possibly due to parameter redundancies or measurements that carry
too little information. Therefore, it is possible to find combinations of parameters
that lead to close or even identical values of the objective function. This also favors
the occurrence of multiple local solutions. However, the aspect described here does
not degrade the findings made in this section, since the focus is on the problem
formulations and their ability to find desired solutions.

4.2.3 Sparsity

The application of multiple shooting or full discretization leads to sparse matrices
that describe the NLP-specific derivatives. To illustrate this behavior dependent on
the number of shooting nodes, we make use of the relative density of a matrix δrel
introduced in Subsection 2.2.4. It depends on the number of non-zero elements nnz
and the total number of entries. If we denote the corresponding objective function
by Fms and the constraints’ function by Cms, the relative densities of ∇Fms and
∇Cms read

δrel(∇Fms) = nnz(∇Fms)
nz

and

δrel(∇Cms) = nnz(∇Cms)
nznC

,

and for the Hessian matrix H of the Lagrange function, since it is symmetric, we
have

δrel(H) = nnz(H)
1
2nz(nz + 1)

.

As mentioned in Subsection 3.2.4, nnz increases strictly monotonically with the
number of shooting nodes. Modern NLP solvers are able to exploit these sparsity
structures. By increasing the number of shooting nodes, we increase the dimension-
ality of the NLP, but due to the specific structure in the objective function and new
constraints, the relative densities of the Jacobian of the constraints and the Hessian
matrix of the Lagrange function decrease. This is illustrated in Figure 4.8.
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Figure 4.8: Relative densities of NLP matrices. Dashed and dotted lines belong to full discretization,
solid lines to multiple shooting for different numbers of shooting nodes.

4.2.4 Real-World Scenario

We consider the 6-link robot DENSO VS-050 (see Figure 4.5b), which finds appli-
cations in many industrial fields. In contrast to the idealized robotic system, this
one does not have easily-describable shapes and especially a higher number of links
and joints. This makes the parameter identification a challenging task. We focus on
parameters of the first two links and therefore assume that the links three to six serve
as an extension of link two, such that the respective joints are fixed. This allows us
to use the dynamical system from the idealized robot. We are further able to produce
real measurements via the robot’s sensors. As in the previous investigation, we use
the joint angles and joint angular velocities as quantities to be fitted and apply the
full discretization method, in which the ODE is solved using the trapezoidal rule.

Figure 4.9 shows the obtained optimal state trajectories, which approximate the
measurements in a qualitatively sufficient way. Since we are interested in finding a
set of parameters that is applicable not only for one scenario, but in a more general
case, we validate the identified parameters by simulating the system for a different
experimental measurement, which is shown in Figure 4.10. The identified parameters
lead to a model output (using again the trapezoidal rule) that describes the real
measurements well.

However, the validation fails for qualitatively different measurements, which might
be explained by providing too little information in the measurements. Still, full
discretization proves to be applicable even in real-world scenarios.
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Figure 4.9: Solution trajectories obtained using the full discretization approach for the real-world
robotic system.
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Figure 4.10: Simulation of the robotic system with the identified model parameters using mea-
surements different to those used for parameter identification.

4.3 A Non-Unique Lower-Level Problem

Bilevel optimization problems are often transformed into single-level problems, which
are then solved with local algorithms. These algorithms tend to find the closest local
solution, depending on a provided initial guess. In bilevel programming, the lower-
level problem can be non-unique: multiple local solutions may exist (which is to say
that Assumption 3.27 does not hold). Besides, the KKT approach cannot distinguish
between minima and maxima, which can be disadvantageous. The reduced approach
as well as the decomposed approaches developed in this work can overcome these
problems, at least partly. This section illustrates this phenomenon by analyzing an
example problem.

105



Chapter 4 Applications and Numerical Results

4.3.1 Problem Description

We consider an example from [78], which has the following form:

Problem 4.1
Find upper-level variables x ∈ R and lower-level variables y ∈ R that

minimize (x+ 0.6)2 + y2

subject to x ∈ [−1, 1]
y ∈ arg min

v
f(x, v)

s.t. v ∈ [−1, 1]

with

f(x, v) := v4 + 4
30(1 − x)v3 +

(︂
−0.02x2 + 0.16x− 0.4

)︂
v2

+
(︂
0.004x3 − 0.036x2 + 0.08x

)︂
v.

Both the upper- and the lower-level problem are one-dimensional, have a nonlinear
objective function and box constraints. According to [78], the lower-level problem
has three KKT points for all x ∈ [−1, 1]:

y1 = −0.5 + 0.1x,
y2 = 0.4 − 0.1x,
y3 = 0.1x.

They are visualized in Figure 4.11 in combination with the objective function. For

−1 ≤ x < −1
2 ,

the unique global minimum is y2; for

−1
2 < x ≤ 1,

y1 is the unique global minimum; for x = −1
2 , two minima exist: y = −0.55 and

y = 0.45; y3 describes a maximum. This non-uniqueness of KKT points of the
lower-level problem has consequences for all investigated problem formulations. In
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Figure 4.11: Lower-level objective function and KKT points of Problem 4.1.
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Figure 4.12: Shape of the objective function of the reduced formulation of Problem 4.1. Isolated
points represent maximum points of the lower-level problem.

the reduced approach, for instance, the expression ψ mapping x to a KKT point
y is not unique. It depends on both the current x and the initial guess chosen for
solving the lower-level problem, which solution is finally attended. This can lead to
a nonsmooth behavior.

4.3.2 Reduced Objective Function

The objective function of the reduced approach is visualized in Figure 4.12. Although
there is only one optimization variable, one has to take the y-dependency into
account. The function ψ(x) requires solving the lower-level problem numerically
by an algorithm, which is initialized by yini. For visualization, the region [−1, 1]2
is approximated by a grid and for each point on this grid, the objective function is
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evaluated. Figure 4.12 reveals the complex nature of Problem 4.1. Two separated
regions indicate two solutions, which we denote as the local and the global one. For
some points — those satisfying y = 0.1x— the inner minimization converges to a
maximum. As these points correspond to better upper-level objective values, they
falsify the shape. Thus, it depends on the initialization of the lower-level problem,
to which minimum the algorithm is likely to converge.

4.3.3 Regions of Attraction

To illustrate the behavior of the approaches introduced in Section 3.3, we again
select a grid inside [−1, 1]2 to be used as initializations for the problem formulations.
As for the generation of the reduced objective function visualization, we solve
problems of type (R-BP) for Problem 4.1 using initializations xini and lower-level
initializations yini from this grid. Similarly, we solve (KKT-BP) for initializations xini
and yini from the grid and Lagrange multipliers

λini = max{0.01,−g(xini, yini)},

as in [43].

The results are visualized in Figure 4.13. For the reduced formulation (see Fig-
ure 4.13a), it depends heavily on the solver initialization, which minimum is attained.
This is not surprising in view of the shape of the reduced objective function. It is
noteworthy that the lower-level maximum point is never attained for all initializa-
tions. A possible explanation for this behavior is that a sophisticated NLP algorithm
for solving the inner problem is used. Thus, the goal of minimization is taken into
account. This is in contrast to the KKT formulation (see Figure 4.13b), for which the
algorithm converges to the maximum point in the majority of cases. This happens
due to the specifics of the formulation: the constraints only demand to find a KKT
point, which also includes maximum points. Since the upper-level objective value of
the lower-level maximum point is smaller than those of the actual minima, this point
is attained frequently in this formulation. In the reduced approach, a minimization
process is utilized, and this information is missing in the KKT approach: a clear
disadvantage, verified by the obtained results.

As this minimization process is imitated in the decomposed approaches, they show
a different picture. Next to the global and local minimum, the maximum point
is also attained. Figures 4.13c and 4.13d show the respective results for Nit = 10,
where the variables are initialized as yiini = yini and λiini = max{0.01,−g(xini, yiini)}
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Figure 4.13: Regions of attraction of local solutions for Problem 4.1 using different problem
formulations. Blue dots indicate convergence to the global minimum, red dots
convergence to the local one. Green dots represent convergence to the lower-level
maximum point. Empty grid points indicate unsuccessful solver terminations.

for i = 1, . . . , Nit. Here, both approaches behave qualitatively similar. Additional
experiments indicate that the outcome does not change significantly by varying Nit.

This example illustrates that the KKT approach suffers from a missing minimization
information, which is naturally given in the reduced approach and, to some extent,
given in the decomposed methods.

4.4 Increasing the Region of Attraction

One desired property of the decomposition idea is to make the problem more robust
with respect to poor solver initializations. Directly connected to this is an enlarged
region of attraction: a desired solution should be found for many initial guesses,
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not only for those in the solution’s close vicinity. In this section, we illustrate this
property in the case of bilevel optimization with a simple example.

4.4.1 Problem Description

We consider the following bilevel problem:

Problem 4.2
Find upper-level variables x ∈ R and lower-level variables y ∈ R that

minimize 16x2 + 9y

subject to −4x+ y ≤ 0
−x ≤ 0
y ∈ arg min

v
(x+ v − 20)4

s.t. 4x+ v − 50 ≤ 0
−v ≤ 0.

According to [102], Problem 4.2 has a local solution at z⋆loc := (x⋆loc, y
⋆
loc) = (7.2, 12.8)

with the upper-level objective value F (x⋆loc, y
⋆
loc) = 2304 and a global solution at

z⋆glo :=
(︂
x⋆glo, y

⋆
glo

)︂
= (11.25, 5) with the function value F

(︂
x⋆glo, y

⋆
glo

)︂
= 2250. The

lower-level feasible objective function5 — in comparison to the one from the previous
example (see Figure 4.11) — has a unique global minimum for each x.

4.4.2 Reduced Objective Function

To visualize the feasible objective function of the reduced approach, we evaluate
it on 501 equidistant values of x on the interval [0, 20]. Evaluating this function
requires solving the lower-level problem numerically. The underlying optimization
is initialized by yini = 4, but any other (meaningful) value would lead to the same
results, which are shown in Figure 4.14. Several observations can be made:

– As mentioned before, two minima exist: a local one at x⋆loc = 7.2 and a global
one at x⋆glo = 11.25. Hence, it depends on xini, which minimum will be attained,
since we use local algorithms.

5The objective function is evaluated only at points satisfying the constraints.
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Figure 4.14: Shape of the feasible objective function of the reduced formulation of Problem 4.2.

– This function is non-smooth with a kink at x ≈ 10, which may lead to difficulties
for a solver.

– At x ≈ 5, for example, numerical inaccuracies lead to function values which
deviate slightly from the expected ones.

Due to the existence of several solutions, it depends on the algorithm initialization,
which one will be attained. Figure 4.14 already indicates that the reduced approach
may have difficulties in finding the global solution.

4.4.3 Regions of Attraction

As in previous parts, we define the region of attraction for z⋆loc and z⋆glo as the set of
initializations zini := (xini, yini) within the region [0, 20]2 which lead to the respective
solutions when a suitable algorithm is applied. For computational reasons, the
region is represented by a grid of 21 equidistant points in both variables. Hence, for
each investigated formulation, we solve the corresponding problem 441 times using
different initializations and count how often the local or the global solution is found.
Here, we treat a computed value as a local or global solution if it does not deviate
more than 0.5 % from the respective optimal function value. An unsuccessful solver
run is defined as a failure of the solver to find a KKT point (up to the given tolerance).
Although the resulting outcome is no longer trustworthy, it is still interesting to
observe the algorithmic behavior. Thus, the solver may converge unsuccessfully to a
solution. Only small deviations from the reference values indicate that the solver
may be close to satisfying the optimality conditions.

Although the reduced approach operates only on the upper-level variables x, the
lower-level problem has to be initialized as well. Hence, we solve the problem for all
combinations. The results are visualized in Figure 4.15a. Due to the shape of the
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Figure 4.15: Regions of attraction of local solutions for Problem 4.2 using different problem
formulations. Blue dots indicate convergence to the global minimum, red dots
convergence to the local one. Filled dots indicate a successful solver termination,
unfilled ones the opposite. Empty grid points indicate convergence to a point different
from the local or global solution.

objective function (see Figure 4.14), the distribution of solutions is not surprising.
For xini ∈ {10, 11, 12}, the global solution can be found for almost all yini. For other
values of xini, either the local solution is found or the solver terminates unsuccessfully
at a completely different point. Overall, we can observe that the reduced approach
is not robust, since it does not converge reliably.

The KKT approach, on the other hand, performs differently. Here, we initialize the
Lagrange multipliers as follows:

λini = max
{︁
0.01ng ,−g(xini, yini)

}︁
,

as it is also done in [43] (the max-function is evaluated component-wise). The results
are visualized in Figure 4.15b. The global solution is found in approximately 41.3 %
of all cases. With this formulation, the algorithm also converges to the local solution,
but it does not converge successfully. This can be interpreted as an advantage, since
the global minimum is the one to be preferred.

For the decomposed formulations, we are interested in the influence of Nit, the number
of provided lower-level iteration steps. We initialize all variables yi (i = 2, . . . , Nit)
as yini and λi identical to those in the KKT approach for i = 2, . . . , Nit. As before,
we solve the problem using 441 combinations of initial guesses, which is now done
for Nit = 2, . . . , 50. As we consider two variants of the decomposed approach, a total
of 43218 problems are solved. Again, we count how often the global or the local
solution is found.
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Figure 4.16: Fractions of algorithm runs that converge to the global (upper) or local (lower)
solution for different problem formulations. Filled dots and solid lines represent
successful solver runs.

The results can be seen in Figure 4.16. Analogous to the reduced and KKT approach,
we distinguish between successful and unsuccessful solver terminations. The upper
graphic shows, how often the global solution is computed for different problem
formulations. With the reduced formulation, the global solution can only be found
in approximately 16.8 % of all tries, while the KKT approach finds it in 41.3 %
of the cases. The decomposed approach (the one without explicitly having KKT
conditions) already performs well for Nit = 2: the global solution can be found in
48.5 % of the cases. In view of the results for the remaining values of Nit, however,
this needs to be regarded as an outlier. The same holds for Nit = 12, where an
extraordinary value of 56.2 % is attained. Except for these two outliers, a trend is
observable: for increasing values of Nit, the global solution can be found more often.
This approach outperforms the KKT formulation for Nit ≥ 18 (with only a single
exception). In most of the cases, the solver terminates successfully when the global
solution is attained. Only for Nit ∈ [26, 39], the solver has more difficulties.

For this example, the combination of the decomposed and the KKT approach appears
to be even more beneficial. For each Nit (except for outliers), it performs better than
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the corresponding decomposed variant. Further, it outperforms the KKT approach
already for values of Nit ≥ 11. The best solution is attained for Nit = 49 with 56.5 %
of all cases converging to the global solution. Moreover, this approach shows fewer
differences between successful and unsuccessful solver terminations, which indicates
higher robustness. In total, we observe that for increasing values of Nit, the global
solution is found more often, leading to an increased region of attraction.

The lower graphic shows the same evaluations for the local solution. Here, the reduced
approach converges successfully in 33.1 % of the cases and without a successful
termination code in 64.4 %. The KKT approach converges to the local solution
in 58 %, but fails to terminate successfully. The decomposed approach shows an
interesting behavior: it converges to the local solution in some cases only for Nit ≥ 8
and Nit ≤ 22, but the solver fails to terminate successfully. Only for some outliers
around Nit = 17, the local solution can be found successfully in some rare cases.
Combining the decomposed and the KKT approach yields a completely different
behavior: Up to Nit = 17, the number of times the local solution is found decreases,
while it rises again up to Nit = 21. For Nit ≥ 22, however, the tendency is again
decreasing. In none of these cases, the solver was able to fulfill the KKT conditions
(except for only one outlier at Nit = 23). An interpretation of this behavior is not
trivial. We can conclude that only the reduced approach is able to reliably compute
local solutions, all other methods do not find them.

4.4.4 Computational Characteristics

We have seen that decomposition can help to increase the region of attraction.
However, it comes at the price of higher problem dimensions, possibly leading to
increased computation times. To obtain an overview of computational characteristics
for this study, we evaluate statistical quantities that describe the computation time
and the number of major iterations that the underlying algorithm has to perform
to converge successfully. For a consistent comparison, we restrict the samples to
correspond to those runs that converge to the global minimum. Similar to evaluations
for the pendulum (see Subsections 4.1.3 and 4.1.4), we exclude those runs that started
at a point from which the other investigated method does not converge, respectively.
Thus, the intersection of initial guesses that yield the global minimum with a
successful termination criterion is used. Since the reduced approach only converges
in rare cases, taking it into account would reduce the sample size immensely. Hence,
we exclude this method for the following investigations. Still, the experiments show
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Figure 4.17: Computational characteristics for different formulations of Problem 4.2. Only those
runs are considered for which all formulations converge to the global solution, which
amounts to a sample size of 50. The decomposed variants show results for Nit = 18.

that the reduced approach converges quickly with only a few iterations. This is not
surprising, since it converges only for initial guesses close to the solution.

The computational characteristics of the other methods are visualized in Figure 4.17.
With respect to computation time (on the left), the KKT approach converges quickly,
the median time is 6.8325 × 10−3 s, which is significantly lower than the decomposed
approaches. However, one has to take the dimensionality into account, as the results
shown correspond to a choice of Nit = 18. Under this aspect, the decomposed
approaches still converge sufficiently fast from an absolute perspective. The graphic
on the right is more expressive: The median numbers of iterations for the KKT
approach and the decomposed one are quite similar (48.5 and 50.5), while the
combination of those has the median iteration number 80. The IQR, instead, puts
the decomposed variants in the foreground. While the KKT approach has an IQR of
69 iterations, the IQR of the decomposed approach is only 21. Here, the combination
of the decomposed and the KKT approach exhibits a slightly larger IQR of 31.
Hence, the algorithmic behavior of the decomposed methods is much more consistent
and reliable.

4.5 Bilevel Decomposition Applied to a Problem Library

The aim of this section is to compare the methods introduced in Section 3.3 with
respect to several criteria. In particular, we want to examine whether the novel
ideas for decomposition can compete with established methods, such as the KKT
approach. In the previous sections, the decomposed approaches have been applied
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to several individual examples to demonstrate their specific characteristics. Here,
they are applied to a larger set of problems representing different challenges. Thus,
the applicability of the methods as well as their ability to reliably recover nominal
solutions is of interest.

4.5.1 Comparison Setup

The methods developed in Section 3.3 are tested on several examples originating
from the Bilevel Optimization LIBrary of Test Problems (BOLib) [130]. It consists of
173 bilevel problems, divided into 11 so-called simple, 24 linear, and 138 nonlinear
ones. The library is given as MATLAB code6. It defines a problem by providing the
functions F , G, f , and g as well as their first and second derivatives. In particular,
the Jacobian matrices ∇yf and ∇yg as well as the Hessians ∇2

yyf and ∇2
yyg are

given, which makes an exact computation of the Hessian matrix ∇2
yyℓ possible. We

focus on the 138 nonlinear bilevel problems, from which we exclude 14 problems that
do not fit into our framework, two problems with non-differentiable functions, and six
problems that do not have a known optimal solution. All in all, we consider 116 bilevel
problems for our evaluations, which do not exceed the dimensions nx = 10, ny = 10,
nG = 13, and ng = 20. The problem HenrionSurowiec2011 is parametrized in c = 1
and IshizukaAiyoshi1992a in M = 1.5.

Extensive numerical tests are not yet established in the development of bilevel
programming methods. Nevertheless, BOLib is already used in several works, for
example in the area of stochastic linear bilevel programming [82] or, more often, in
the area of lower-level value function reformulations [34, 38, 111]. This approach is
also investigated by Fliege et al. [43], who penalize the value function in the objective
of the upper-level problem. The resulting optimality conditions are then solved by a
Gauss–Newton-type method. Although their approach differs from the one studied
here by the type of reformulation (value function vs KKT-type), we can adopt some
of their algorithmic choices and visualization options.

The problems are reformulated using the methods presented in Section 3.3. To solve
them numerically, we use the NLP solver WORHP, for which the library is translated
from MATLAB to C++. Within WORHP, we choose the SQP method. While the exact
derivatives provided in the library are used to formulate the constraints for the
problem formulations, the derivatives required by the SQP method are computed
by finite differences. Although an exact computation would be possible, we use

6The source code is published at https://biopt.github.io/bolib/.
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this approach to remain consistent with other investigations in this work. For all
computations, a tolerance of 10−5 is used (optimality, feasibility, complementarity).
The computation time is limited by 30 s.

For benchmarking purposes, BOLib provides the true or best known solutions xref
and yref as well as the corresponding objective function values Fref := F (xref, yref)
and fref := f(xref, yref). In the following, we denote a computed solution as x⋆
and y⋆ and their corresponding upper- and lower-level objective function values as
F ⋆ := F (x⋆, y⋆) and f⋆ := f(x⋆, y⋆). To measure the quality of a computed solution,
we introduce the relative error

rX := |X⋆ −Xref|
1 + |Xref|

with X ∈ {F, f} in accordance with [43]. We consider a computed solution to
match its reference solution if the corresponding relative errors rF and rf are less
than 5 %.

To compare the methods, several decisions have to be made. On the formulation level,
there exist multiple possibilities to incorporate the complementarity constraints. They
can either turn the problem into an MPCC or one can make use of the (smoothed)
FB version. Another aspect lies in the nature of the decomposed approaches. Due to
the parameterization in Nit, solving sequences of these problems may be a strategy
superior to selecting a specific value of Nit. On the NLP level, an initial guess has
to be provided.

To evaluate the results, several criteria have to be considered. The strongest one is
the ability to recover the nominal solution, which is given for each problem instance
of interest. Finding the nominal solution here means computing a solution with a
relative error less than a given tolerance. Although the upper-level objective function
value is the most important quantity here, the lower-level objective function value
also needs to be close to its nominal solution. Otherwise, the constraint that the
lower-level solution must be found may be violated. Another point of interest is the
solver’s ability to produce a positive termination message, preferably one that says
that a local solution has been found. This means an approximate fulfillment of KKT
conditions for that particular problem formulation. However, a solver may be able
to approximate reference values up to the given relative error tolerance, but may fail
to terminate successfully. This will also be considered in the following investigations.
If the lower-level KKT conditions are not part of the respective problem formulation
(for example, in the decomposed approach), they are evaluated after the optimization
has terminated to make statements about this criterion as well. All in all, we come
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up with several criteria of interest that can be analyzed on their own or even in
combination with each other. Their purpose is to help to describe and analyze the
numerical results.

KKTF The solver terminates successfully, an approximate KKT point of the
respective formulation is found. This criterion describes the ability of
the solver to converge to a solution with a given formulation. Note that
for the decomposed approach, this does not necessarily mean that a
lower-level KKT point is found.

KKTLL An approximate lower-level KKT point is found. For the KKT and the
decomposed-KKT approach, this criterion is fulfilled whenever a feasible
point is found. For the reduced approach, this criterion cannot be
evaluated since it only operates on the upper-level variables. Thus, we
assume that it is always fulfilled, unless the inner optimization fails. For
the decomposed approach, an additional evaluation of KKT conditions
in x and yNit has to be done.

KKTF,LL The solver terminates successfully for a given formulation and the
corresponding solution is a lower-level KKT point.

REFUL The upper-level reference objective function value Fref is approximately
found. For a tolerance ϵF , it holds that rF < ϵF .

REFLL The lower-level reference objective function value fref is approximately
found. For a tolerance ϵf , it holds that rf < ϵf .

REFUL,LL Both reference objective function values are approximately found.

While the initializations of x and y or respectively y1, . . . , yNit vary within the
following sections, the Lagrange multipliers are always initialized in the same way:

λini = min{δ,−g(xini, yini)}

or respectively

λk ini = min{δ,−g(xini, yk ini)}

for k = 1, . . . , Nit. Here, we follow the approach used in [43] and choose δ = 0.01.
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4.5.2 Number of Provided SQP Steps

The crucial part of formulating a bilevel problem as a D-BP is the choice of Nit,
the provided lower-level iteration steps. Too few imitated iterations may not be
able to produce a lower-level KKT point (compare Example 3.40), while too large
values of Nit highly increase the problem dimensions, and — in spite of its inherent
sparsity — computing a solution may be connected to lots of efforts. It is not possible
to provide a general recommendation on how to choose Nit. For this reason, an
explorative study on this choice is conducted. In particular, each problem instance
(in total 116, see previous part) is solved using the decomposed approach for a fixed
value of Nit. Here, Nit ranges from its minimum value of 2 up to a value of 50
(further experiments indicate that choosing even larger values is not advantageous).
We choose initializations that are provided in the library.

For each solver run, we evaluate the criteria previously defined in Subsection 4.5.1.
They are visualized in Figure 4.18 as bar charts. At the top, criteria for the
formulation itself are displayed. Several aspects can be observed. For Nit = 2, in
almost 88 % of all problem instances the solver terminates successfully, a KKT point
is found. However, this value needs to be interpreted carefully, since it does not
necessarily mean that the original bilevel problem is solved. In particular, only
in 47.4 % of the cases, the reference upper-level objective function value can be
approximated. By increasing the value of Nit, one can observe a slight decrease in
the successful solver termination rates, which is also not surprising. Larger values of
Nit correspond to more complex problem formulations and, possibly, the occurrence
of fewer local solutions. However, this decrease is not significant, which is contrary
to the increase one can observe for the reference KKT solutions, at least for Nit ≤ 11.
A rising trend is observable, which finds its peak at Nit = 11: in 59.5 % of the cases,
the reference solution is found. This behavior matches the expected one, since the
solver now has more flexibility to imitate lower-level convergent algorithm runs. For
Nit > 11 — in contrast — the picture is not as clear as before and an interpretation
is non-trivial. It is not true that an increase in Nit leads to finding the reference
solution more often. There seems to be a breaking point at Nit = 11, though. For
only a small amount of problems, the reference solution is found, but it does not fulfill
the corresponding KKT conditions. This can be explained by different tolerances
that are used for the relative error and KKT conditions.

With regard to the lower level (the middle graphic), a similar behavior can be
observed with one exception: the number of times the KKT conditions are fulfilled
rises for increasing Nit (up to Nit = 8) instead of dropping (as it is the case for the

119



Chapter 4 Applications and Numerical Results

2 5 10 15 20 25 30 35 40 45 50
20

40

60

80

Nit

N
um

be
r

of
pr

ob
le

m
s

[%
]

KKTF REFUL KKTF ∧ REFUL

2 5 10 15 20 25 30 35 40 45 50
20

40

60

80

Nit

N
um

be
r

of
pr

ob
le

m
s

[%
]

KKTLL REFLL KKTLL ∧ REFLL

2 5 10 15 20 25 30 35 40 45 50
20

40

60

80

Nit

N
um

be
r

of
pr

ob
le

m
s

[%
]

KKTF,LL REFUL,LL

KKTF ∧ REFUL,LL KKTF,LL ∧ REFUL,LL

Figure 4.18: The influence of Nit on the number of problems solved with respect to several criteria.
For each Nit, BOLib is solved with the decomposed approach. Top: criteria with
regard to the problem formulation and the upper level. Middle: criteria with regard
to the lower level. Bottom: mixed criteria.
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upper level). This also matches the expected behavior, since many problems might
not be solved with only a few lower-level iteration steps. Other than that, these
results are similar to the ones for the upper level.

In the lower graphic, the most important criteria are visualized. One can again
observe a rising trend for all criteria up to Nit ≈ 11, which then roughly stabilizes.
Similar to the results above, one can observe that a lower-level reference point
does not represent a KKT point in only a few cases. The best result can be found
for Nit = 17 or Nit = 42: in 53.4 % of all cases, the computed solution is a KKT
point in both levels and approximates the corresponding reference values as well.

This initial investigation already allows drawing some conclusions:

– For this kind of initialization, Nit should be chosen larger than 11.
– It is inevitable to check whether a computed solution really represents a

lower-level KKT point.
– For the majority of problems, the reference solution can be recovered. However,

there are also many problems that could not be solved.

Thus, it may not be the best idea to choose the same fixed Nit for all problems. In-
stead, choosing Nit individually for each problem may be a promising alternative.

4.5.3 Solution Strategies

In the following, the initialization is changed: the initial guess from the library
is replaced by zeros. Hence, we put ourselves in the position that we do not
have any information about the respective problem at hand. It is expected that
this initialization is challenging. Further, we introduce a solution strategy for the
decomposed approaches. Different to the investigations before, we no longer fix a
specific Nit. Instead, a given problem is initially solved for Nit = 2. After, it is
checked whether the result fulfills the criterion KKTF,LL. We choose this criterion
because a reference solution is typically not available outside this analysis. Hence,
until KKTF,LL is fulfilled, Nit is increased by one with a maximum value of 50. This
approach allows applying an adaptive strategy: while KKTF,LL is not fulfilled, the
variables can be initialized by those from the previous run. Since the number of
variables increases, the updated yN and λN can be chosen identical to yNit−1 and
λNit−1, respectively. Another obvious strategy is to only increase Nit and leave the
variables as they are. Both approaches have their advantages and it is not directly
clear which one is suited better. For comparison, both approaches are tested for the
decomposed formulations, the results can be found in Table 4.4. The non-adaptive

121



Chapter 4 Applications and Numerical Results

Decomposed Decomposed-KKT
Adaptive Non-adaptive Adaptive Non-adaptive

KKTF 100 106 103 109
KKTLL 102 102 102 109
KKTF,LL ∧ REFUL,LL 62 62 59 64

Table 4.4: Number of problems solved by the decomposed and decomposed-KKT approach using
different solution strategies.

strategy beats the adaptive one with respect to the criteria KKTF, KKTLL, and
KKTF,LL ∧ REFUL,LL, both in the decomposed and the decomposed-KKT approach.
Although the difference between the strategies is not significant, we consider the
non-adaptive one exclusively in the following.

To compare all methods against each other, we focus on the relative error in the
upper level, which we compute after each solver run for each formulation. Hence,
four formulations compete against each other: (R-BP), (KKT-BP), (D-BP), and (D-
KKT-BP) using the non-adaptive strategy. The results are visualized in Figure 4.19.
The relative errors are sorted in an increasing order and presented against the number
of problems exhibiting this error level or less.

The upper graphic shows the outcome of all solver runs, independent of any evaluation
criterion. One can observe that all formulations produce similar outcomes at the
error tolerance: for 69 and 70 problems, the reference upper-level value can be
recovered. It is surprising that the reduced approach here performs similarly to
the other approaches. A possible explanation may lie in the trivial nature of the
problems. With regard to the accuracy, however, the reduced approach produces
worse error values than the other approaches.

If we instead only consider those runs for which the solver constitutes to have found
an optimal solution (the middle graphic), the picture changes. The reduced approach
can only solve 36 problems, while the other approaches only lose some problem
instances. Here, an initial tendency can be observed: the decomposed approaches
perform better than the KKT approach, more problems can be solved up to the
allowed error tolerance. Using this criterion, the reduced approach only solves 20
problems with a relative error of approximately 10−6, while the decomposed approach
solves 44 problems with an accuracy of 10−7.

A similar trend can be observed in the lower graphic, in which only those runs are
considered that lead to lower-level reference KKT points. Here, the combination
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Figure 4.19: Relative error performance comparison using the non-adaptive strategy. The results
are filtered according to the criterion in the box.
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of the decomposed and the KKT approach performs slightly better than the other
ones with respect to quality and quantity. The reduced approach can, in total, only
solve 31 problems below the desired tolerance.

The presence of complementarity constraints in the KKT and decomposed approaches
causes difficulties for numerical solvers. An often used alternative is FB smoothing.
This is used within the following part with a different solver initialization.

4.5.4 Fischer-Burmeister Smoothing

Similar to the previous paragraph, we choose a trivial initialization for the NLPs,
namely ones instead of zeros. Again, the non-adaptive strategy is chosen for the
decomposed approaches. However, we modify the specific formulation: instead of
using complementarity constraints of the form

g(x, y) ≤ 0ng ,
λTg(x, y) = 0,

λ ≥ 0ng ,

we use the FB approach (compare Subsection 3.3.4). We extend this approach
by using a smoothing version of it (as being done in [43]), which makes use of a
perturbation parameter τ . Within this setting, the smoothed FB function Φτ is
defined as

Φτ (λ, x, y) := −λj + gj(x, y) +
√︂
λ2
j + gj(x, y)2 + 2τ .

For τ > 0, it holds that Φτ (λ, x, y) = 0 if and only if λj > 0, −gj(x, y) > 0,
and −λjgj(x, y) = τ . Instead of solving a single problem using the non-smoothed
FB function, we solve a series of problems with τ → 0. In particular, the procedure
in Algorithm C is used. For the decomposed approaches and the strategy chosen
therein, the number of problems to be solved increases drastically: for each Nit, the
procedure described above is applied. The advantages of the FB formulation are
presented in Table 4.5, in which it can be seen that in most cases this formulation is
superior to the one as an MPCC. These results justify our choice to focus on FB
smoothing and to neglect the MPCC formulations.

Again, as in the previous study, we consider the upper-level relative error in combina-
tion with various criteria. The results are visualized in Figure 4.20. The top graphic
shows all solver runs, independent of any evaluation criterion. For 70 problems, the
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Algorithm C Fischer-Burmeister smoothing
1: Given: a problem formulation P ▷ The KKT approach, for example
2: Set k = 1, initialize τk = 0.4, choose β = 10−6

3: while τk ≥ β do
4: Solve problem P , obtain solution z⋆

5: Update τk+1 = (τk)k+1

6: Update k ← k + 1
7: Initialize P with the previously found solution z⋆

8: end while

KKT Decomposed Decomposed-KKT
MPCC FBs MPCC FBs MPCC FBs

KKTF 104 109 110 110 110 112
KKTLL 113 114 109 113 112 113
KKTF,LL ∧ REFUL,LL 61 69 65 63 65 70

Table 4.5: Number of problems solved by the KKT, the decomposed, and decomposed-KKT
approach using different complementarity constraint formulations (“Fischer-Burmeister
smoothing” is abbreviated by “FBs”).

reduced approach is able to recover the reference value of the upper-level objective
function. The decomposed and decomposed-KKT approaches follow, while the KKT
approach is able to recover the reference values in 82 out of 116 cases. This is also
the case for the accuracy, with one exception. When it comes to high precision
(that is, low error values), the reduced approach outperforms the other methods.
It solves 31 problems up to an accuracy of 4.4 × 10−9, 10 problems more than the
KKT approach for this error level.

However, if we consider only those runs with a positive solver termination (middle
graphic), the picture changes significantly. The number of successes of the reduced
approach shrinks to 43, while the other methods are more robust. The KKT and
the decomposed-KKT approaches both find the reference value in 78 cases. This
ranking is also reflected in the accuracy: the decomposed-KKT approach performs
better than its decomposed counterpart.

If we go one step further and restrict the results to lower-level reference solutions
only, the decomposed-KKT approach performs best with 70 problems solved to their
reference value. Using this strict criterion, the reduced approach solves only 37 prob-
lems to the desired tolerance. It also has significantly worse error values than the
other approaches.
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Figure 4.20: Relative error performance comparison using FB smoothing. The results are filtered
according to the criterion in the box.
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The results demonstrate that the newly developed decomposed approaches can
compete with the established KKT approach and are able to outperform it under
strict evaluation criteria.

Similar studies have been carried out by Fliege et al. in [43], as mentioned at the
beginning of this section. They also consider BOLib as a benchmark library to test
their methods, which are based on a lower-level value function reformulation. They
achieve better results than those presented here, but under less restrictive conditions,
especially with respect to the relative error criterion.

4.5.5 Computational Characteristics

In addition to the solution quality in terms of the relative error, other criteria must
not be neglected. We are also interested in the effort required to obtain these results.
Common quantities of interest are the computation time or the number of iterations
required, which can be easily compared for a single problem instance. For a whole
set of problems, instead, we use so-called performance profiles.

Remark 4.3 A common way to visually compare the performance of different solvers
on a set of problems is to use performance profiles. For ns solvers and np problems, the
comparison is done with respect to a measurable quantity qp,s ̸= 0 for p = 1, . . . , np
and s = 1, . . . , ns. The computation time, the number of iterations, or the number
of function evaluations are examples of such quantities. The performance ratio is
then defined as

rp,s := qp,s
min{qp,s : s ∈ {1, . . . , ns}}

and describes how a solver s performed in comparison to the solver with the best
performance. If problem p cannot be solved by solver s, rp,s is ∞. The performance
profile is defined via the cumulative distribution function

Ks(T ) := 1
np

|p ∈ {1, . . . , np} : rp,s ≤ T |.

When comparing two solvers, larger values of Ks(T ) indicate a better performance.
The efficiency of a solver s is given by Ks(1) and provides a criterion for com-
parison with the other solver. Its counterpart is the robustness, which is given by
limT→∞Ks(T ) and describes the percentage of problems that can be solved by this
solver. For a thorough introduction, we refer to [32].
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Figure 4.21: Performance profiles with reduced and KKT approaches in MPCC formulation.
Success criterion is KKTF ∧ REFUL with ϵF = 0.2.

Independent of problem dimensions, the decomposed approaches in combination
with the chosen strategy and the FB smoothing procedure require lots of effort due
to the large number of problems that have to be solved. This is why we restrict this
comparison to problems in MPCC formulation. With regard to the decomposed
approaches, runs for specific values of Nit are compared instead of using one of the
solution strategies from above.

The previously assumed criteria for success are accurate, but also restrictive. For this
investigation, such a restriction is no longer necessary and we require a successful
run to fulfill KKTF ∧ REFUL only. The error tolerance is relaxed to ϵF = 0.2. For
the decomposed approach, an additional check for lower-level optimality conditions
is made.

At first, we compare the reduced formulation against the KKT approach in Fig-
ure 4.21. With respect to the numbers of iterations (Figure 4.21b), each method
outperforms the other one similarly often (36 % and 37 % at T = 1), but the KKT
approach is more robust with 64 % solved problems against 41 %. With respect to
computation time (Figure 4.21a), the KKT approach is superior. Contrary to the
number of iterations, the computation time efficiency is significantly larger than the
one from the reduced approach (62 % and 9 %). This is not surprising, since each
function evaluation requires the numerical solution of another NLP.

In a second step, the decomposed approaches are compared against each other in
Figure 4.22. The library is solved with both formulations exemplarily for Nit = 20
and Nit = 40. With respect to both the computation time and the required number
of iterations, the decomposed approach is more efficient than the decomposed-KKT
one. This behavior is expected for the computation time (Figure 4.22a), since
the latter approach exhibits some more constraints. Still, it is interesting to see
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Figure 4.22: Performance profiles with decomposed approaches in MPCC formulation. Success
criterion is KKTF ∧ REFUL with ϵF = 0.2.

that these additional constraints also have an impact on the number of iterations
(Figure 4.22b). The decomposed approach performs significantly better here. In the
long run, both formulations are able to solve a similar amount of problem instances.
One should note that these results have to be handled with care. Although this
behavior can be observed for many values of Nit, there exist cases with a contrary
outcome.

4.6 A Combined Homotopy-Optimization Approach

In this section, an idea for enhancing the reduced formulation within the field of
parameter identification is investigated. A particular advantage of the multiple
shooting or the full discretization approach is the decoupling of the discretized
states from the model parameters. The trajectories are allowed to remain near the
measurements, independent of the current iterate of the parameter vector. In fact, it
is not possible to transfer this property to the reduced problem formulation. Herein,
the state trajectory is implicitly given by the current parameter value, which is one
reason why undesired solutions occur during the course of optimization. In this
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section, a modification of the underlying dynamical system is presented which allows
the reduced formulation to have a similar property of remaining close to the desired
trajectories.

The presented methodology is based on research works by Vyasarayani et al. It is
initially presented in [118], mostly for mechanical systems with parameters that are
allowed to enter nonlinearly into the dynamics. They present the main algorithm and
validate it using several numerical examples. Further, they discuss the connection to
the field of homotopy continuation [119]. In particular, the approach is introduced
as a method of natural parameter continuation [33], and finally, compared to the
differential-equation-based continuation approach [123]. Again, they verify their
method by several numerical examples and also compare it to a linear regression
approach. Finally, Vyasarayani et al. [117] investigate the method analytically and
conclude that the originally highly nonlinear objective function becomes quadratic
upon the introduction of an observer term in combination with a homotopy parameter.
They present numerical results to support their findings. A similar ansatz is pursued
by Leander et al. [72] for stochastic differential equations, for example.

In the following remark, a brief introduction to homotopy approaches is given.

Remark 4.4 For a given difficult problem, the general idea of homotopy methods is
to solve an easy problem instead and to transform it back slowly into the original
problem. Often, this mentioned transformation is alternatively stated as deformation
or morphing procedure. Parts of the following short introduction to the topic stem
from [4], to which we also refer for details. Originally, the difficult problem consists
of solving a system of nonlinear equations

F(v) = 0N ,

in which F : RN → RN is a smooth function. If a zero point is at least approx-
imately known, Newton’s method can be used to compute a solution. However,
this might not be the case for poor initial values, and therefore, the homotopy
map H : RN × R → RN with

H(v, 1) = G(v)

and

H(v, 0) = F(v)

is introduced with G : RN → RN being a smooth function. It is important that G is
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an easy function with known zero points. Often, the convex homotopy function

H(v, ω) := ωG(v) + (1 − ω)F(v)

is used. Alternatively, the global homotopy

H(v, ω) := F(v) − ωF(v̂)

for a starting point v̂ finds applications in many cases. To find a zero of F , the idea is
to trace a curve c(s) ∈ H−1(0) from an initial guess (vini, 1) to a solution (v⋆, 0). This
curve is (provided it exists) implicitly defined. Numerically, this is achieved by solving
a sequence of problems, in which a solution is used as an initial guess for the next
step, while slowly decreasing the homotopy parameter ω by a decrement ∆ω. One
can show that under certain assumptions (especially a sufficiently small decrement),
this process converges [4].

In [122], the problem under consideration is changed from finding zeros of nonlinear
functions to solving optimization problems. For other problem classes, for instance
parameter identification, an adequate homotopy map needs to be designed.

In the following, we present an extension to the single shooting homotopy algorithm
from the literature. This extension is based on the idea of lifting, as described in
Subsection 3.1.3. The homotopy parameter will be lifted to being an optimization
variable, which reduces the effort for solving a series of NLPs (as originally proposed
in the literature) to solving only a single, slightly larger one, which internally
contains the before-mentioned homotopy continuation. All findings are accompanied
by numerical examples.

4.6.1 Single Shooting Homotopy Method

In the introduction to parameter identification in Section 3.2, the transformation of
the original problem takes place at transcription level. A different NLP formulation
can offer advantages, for example the ability to find better solutions or a reduced
computation time despite larger problem dimensions. Contrarily, the transformation
presented here is performed at modeling level. The ODE in (3.3) is augmented by a
so-called observer term. This has the effect that the behavior of the model is changed
considerably. To solve the original problem, this newly added term is combined
with a homotopy parameter, which is driven to zero while solving the perturbed
problems.
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In dynamical parameter identification problems, the shape of the objective function
is not known in general and depends on many factors, for instance the length
of the time interval, the measurement quality, or the accuracy of the integration
scheme in use. It is also not obvious how to formulate a suitable function for the
homotopy procedure. Thus, instead of modifying the objective function explicitly,
the approach presented in [118] proposes to modify the model given by the dynamical
system (3.3). Still, this has an implicit effect on the objective function due to the
combination of integration and optimization within the single shooting method.
In this approach, the right-hand side of the dynamical system is augmented by a
so-called observer term e : R → Rnq multiplied by a homotopy parameter ω ∈ [0, 1]
and a synchronization matrix K ∈ Rnq×nq with non-negative entries:

q̇(t) = s(t, q(t), p) + ωKe(t). (4.4)

Herein, the k-th component (k ∈ {1, . . . , nq}) of the observer term e(t) for t ∈ [ta, tb]
is defined as

ek(t) :=
{︄

0 if k ̸= J ,
q̄k(t) − qk(t) if k ∈ J ,

in which q̄(t) describes an approximation to the measurements, for example via
linear interpolation for t between two measurement points. In other words, the
dynamical equations are augmented only for the observed states by the difference
between measurements and states in combination with a homotopy parameter and a
synchronization matrix.

This has a strong effect on the dynamic behavior of the system. Obviously, for ω = 0,
the original system is recovered. For sufficiently large entries of K and ω close
to 1, the influence of the dynamics s is reduced, and a synchronization between
observed states and measurements takes place. This also implies that the influence
of the parameter vector p is reduced and the system is forced to stay close to the
measurements, even if strongly differing parameter values (compared to the true
ones) are assumed. To illustrate this effect, we use our pendulum example again.

Example 4.5
In this example, the influence of the synchronization matrix K is investigated for
the simple pendulum, see Example 3.10. We restrict ourselves to the case that
K is a scalar multiple of the identity matrix, and for the purpose of readability,
the notation K corresponds to both the matrix and the value of its elements. For
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Figure 4.23: Synchronization behavior of the extended dynamical model using the homotopy
parameter value ω = 1.

illustration purposes, we restrict the time interval to [0, π]. We again assume that
there exist measurements for the angle θ corresponding to the true parameter
value L⋆ = 1. These are perturbed by an additive error with variance σ2 = 0.01.
We use the Explicit Euler scheme for ODE simulation. For ω = 1, two scenarios
are investigated:

(i) The behavior of the model for a fixed parameter L = 3 and varying synchro-
nization matrices K, see Figure 4.23a.

(ii) The behavior of the model for fixed synchronization values K = 25 and
varying parameter values L, see Figure 4.23b.

For L = 3 and K = 0 — which corresponds to the original model with a poor
parameter guess, see also Figure 3.3 — the model cannot reproduce the measure-
ments. A qualitatively different behavior is observed. For increasing values of K,
however, the model response converges to the measurements, until a sufficient
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Figure 4.24: Shape of the objective function used in Example 4.6 with K = 25 and fixed initial
values.

approximation is obtained at K = 25. Consequently, the influence of L almost
vanishes. On the other hand, for fixed K = 25 corresponding to a dominating
observer term, the model behaves almost independently of the parameter L and
its response is almost identical for differing parameter values.

The modification of the dynamical system also impacts the corresponding objective
function in (R-DPIP), as illustrated subsequently.

Example 4.6
We continue with Example 3.15 and focus on the objective function, which is
shown in Figure 3.3 for the single shooting approach. Multiple local minima
complicate the search for a good minimum if only a poor initial parameter guess is
available. We can examine the shape of the introduced homotopy map (4.4) for an
additional degree of freedom, the homotopy parameter ω. Figure 4.24 shows the
objective function with synchronization values K = 25. As expected, the original
shape (as in Figure 3.3) is recovered for ω = 0. For ω = 1, a quadratic shape is
attained, and the only minimum is approximately at L⋆ = 1. In between, the
function is shaped like a valley.

The idea introduced by Vyasarayani et al. is to perform a numerical homotopy
continuation in ω. For a given synchronization matrix K with sufficiently large
entries, a sufficiently small decrement ∆ω and an initial value ω = 1, the algorithm
proceeds as follows: In a first step, the problem of consideration is solved to optimality.
Next, the obtained solution (qa, p)⋆ is used to initialize a following problem, in which
ω is reduced by the amount ∆ω. This is iterated until the model is recovered
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Algorithm D Homotopy continuation for single shooting
1: Given: a problem P in reduced formulation, K, and (qa, p)ini
2: Initialize ω = 1 and ∆ω satisfying ω (mod ∆ω) = 0
3: while ω ≥ 0 do
4: Solve P , obtain a solution (qa, p)⋆
5: Update (qa, p)ini ← (qa, p)⋆
6: Update ω ← ω −∆ω
7: end while

(ω = 0) and a solution of the original problem is found. The described procedure is
summarized in Algorithm D.

If the algorithm parameters are chosen adequately, it can be shown that the procedure
converges to the true solution. Local minima can be avoided by remaining close
to the desired trajectory at each (homotopy) iteration step. Nevertheless, we are
interested in finding decomposed problem formulations that can be characterized
by a larger parameter space while leading to the same solutions. The described
algorithm exhibits a different kind of complexity, hidden in Step 4. It requires
the repeated application of an NLP solver for the numerical solution of a reduced
dynamical parameter identification problem for varying parameters. In fact, the
described procedure can be very inefficient. This depends mainly on the choice of
∆ω. For small decrement values, the reduced problem has to be solved many times.
Although we expect that the solutions will not vary too much from each other, and
therefore only a few iterations (at the NLP level) need to be applied, the overall
performance can still be poor.

To circumvent these issues, we propose to modify the approach: instead of having a
series of similar optimization problems, solve only one slightly larger problem using
parameter embedding.

4.6.2 Homotopy Parameter Embedding

Although the approach described above is able to find desired solutions, it still
exhibits disadvantages and leaves room for improvements. For small decrements,
many problems have to be solved consecutively. Although our numerical observations
indicate that small decrements are not necessary in the majority of cases, we suggest
embedding the presented homotopy continuation into a more general nonlinear
optimization framework. Up to now, ω is decreased by the same amount ∆ω in
each homotopy iteration. It is also conceivable that a much larger step towards
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Figure 4.25: Measurements used in Example 4.7.

the desired value could be taken. Thus, we aim at an adjusted choice of homotopy
parameters, which leads to more efficient homotopy paths. Possibly, this can achieve
the same result by a smaller number of iterations. The general idea now is to include
the homotopy parameter ω as an optimization variable in our problem formulation
and take advantage of the fact that an initial guess must be chosen by initializing
this variable as ωini = 1. To recover the original problem formulation at the end of
the optimization course, we add a penalty term ρ : R → R to the objective function.
Since this transforms the strong condition ω = 0 into a weak one, it has to be
selected carefully. It also needs to be designed with the requirement that it vanishes
for the desired homotopy value of zero, hence it should hold that

ρ(ω = 0) = 0.

With the homotopy parameter embedded into the problem, the homotopy path is
controllable by the solver and can be influenced by a user, for example by adjusting
the penalty term. Furthermore, it is now possible to increase ω in the course of the
optimization. Most of all, the series of problems is reduced to only one problem
instance. We demonstrate the solution behavior with the help of an example.

Example 4.7
We consider the robotic system introduced in Section 4.2 with two links that are
connected via joints. Given artificial joint angle measurements θ̄ (Figure 4.25a)
and experimental input data I (Figure 4.25b) on the time interval [0, 5], the aim
is to identify only the single parameter ι2 representing a moment of inertia of the
second link. Its nominal value is 0.61.
This allows us to evaluate the corresponding objective function O at different
values, see Figure 4.26a. In addition to the expected global minimum, the objective
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Figure 4.26: Shapes of the objective functions used in Example 4.7.

function exhibits many local minima, which makes the parameter identification
a challenging task for local methods. Augmenting the dynamics leads to an
objective function Oaug (Figure 4.26b) that has a valley around the global minimum.
The penalty term ρ(ω) = ω gives the objective function Open

aug a different shape
(Figure 4.26c): the valley remains close to ω = 0, but transforms to an ascending
plane for increasing values.
To demonstrate the algorithmic behavior, we set ι2ini = 0.8, ωini = 1 using K = 4
and solve the problem with WORHP’s SQP method. As expected, single shooting
converges quickly to a local minimum, while the homotopy formulations each find
the global one (Figure 4.27). In this example, three steps are already sufficient
to converge to the global minimum. We can observe that the presented method
chooses a different homotopy path, which leads to a marginally faster convergence.7

Although the penalty term is responsible for driving the homotopy parameter to
zero, there is no theoretical guarantee that an accurate value of zero is actually
attained at the end of the optimization process. This is a major drawback of the

7This example is published by Sch., Flaßkamp, Fliege, and Büskens in [97].
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proposed method. However, several strategies can be applied to make sure that the
original problem really is solved. We propose to add a post-optimal solution analysis
in case a homotopy parameter different from zero is computed. A promising strategy
is to use the found solution as an initialization for the original problem formulation.
If such a strategy is included, it makes sense to solve the initial problem on a coarse
discretization grid for efficiency reasons. In the next step (with the adjusted initial
guess), an advanced grid can be used to accurately approximate the underlying
ODE model. Thus, the embedded homotopy-optimization can also be seen as an
intelligent strategy to find a suitable initial guess.

Originally, the method was developed to overcome one of the disadvantages of reduced
problem formulations, namely the convergence to undesired local solutions. However,
we have seen in the previous sections that full discretization or multiple shooting
can overcome this disadvantage. Nevertheless, it depends on the initialization which
solutions are computed. To further improve the robustness, an extension would be
to apply the combined homotopy-optimization also to full discretization. Since the
necessary model modification takes place at the modeling level, it can be applied to
all presented transcription techniques with minimal implementation effort.
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Conclusions

This chapter begins with a brief summary of the main results of this thesis, continues
with a list of promising direct extensions, and ends with an outlook on potential
future research directions.

5.1 Summary

The goal of this thesis was to develop reformulations of optimization problems that
reliably find desired minima when standard nonlinear programming algorithms are
used. To this end, the idea of decomposition was introduced: reformulating complex
parts within a problem formulation by introducing new optimization variables
and constraints. Since local algorithms are used, one goal was to overcome early
convergence to undesired local solutions and to enable the solver to converge to
desired minima. We considered two classes of problems in which decomposition can
be applied.

In the area of parameter identification for dynamical systems, transcription tech-
niques were surveyed under the aspects of local solutions, sparsity, and initialization
possibilities. A numerical study on a mathematical pendulum showed that the
introduction of shooting nodes in the direct multiple shooting approach in combi-
nation with a suitable variable initialization increases the region of attraction of
the global minimum. Although the problem dimensions are significantly increased
in the full discretization approach, the computation time could be kept desirably
low. Moreover, a stabilized convergence process, indicated by the required number
of iterations, could be observed. The decomposed approach requires only a few
iterations, regardless of the solver initialization, in contrast to the reduced version.
For a more complex robotic system with real measurements, the findings could be
confirmed. A higher degree of decomposition leads to a higher robustness of the
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solver and allows finding solutions with lower objective values. These investigations
were based on Monte–Carlo-type experiments, in which the initialization of the
primary variables was varied, while the secondary variables were initialized in a
customized, advantageous way. Furthermore, a combined homotopy-optimization
approach was developed. The idea is to treat a homotopy continuation parameter
in the dynamical system as an additional optimization variable, thus reducing the
number of problems to one. Initial experiments with the reduced approach provided
a proof of concept.

In the bilevel optimization part, the focus was on developing a novel reformulation
technique based on the idea of decomposition. While the reduced approach applies
an NLP algorithm in the background to compute a KKT point, the KKT approach
includes the necessary optimality conditions directly in the problem. The idea of
the decomposed approach is to embed a given number of SQP steps for computing
a KKT point into the problem. An extension of this formulation is a combination
with the KKT approach. Monte–Carlo-type experiments varying the upper-level
variables revealed interesting aspects for all considered problem formulations. In
the case of a non-unique lower-level problem, an example demonstrates that the
KKT approach may fail, while the reduced and the decomposed approaches perform
advantageously. Another example focuses on the quality of solutions. Here, the
region of attraction of the global minimum can be increased by incorporating more
lower-level iteration steps into the problem. Finally, the decomposed approaches as
well as the other investigated methods are applied to a library of bilevel problems.
The results show that the newly developed reformulation technique is able to compete
with existing approaches. For certain solution strategies even a superior behavior
could be observed. With regard to the computation time, however, the decomposed
approaches cannot compete with the other ones. Nevertheless, it is interesting to see
that the KKT approach performs significantly better than the reduced formulation,
even though the problem dimensions are increased. A superior convergence speed,
indicated numerically by the required number of iterations, is one of the reasons for
this.

It has been demonstrated that these two problem classes — despite their different
nature — can be viewed from a common point and decomposition can be applied.
Only by reformulating a given problem, we have managed to make the solution
process more robust and to enlarge the region of attraction, while keeping the
computational effort moderate. All in all, the hypotheses made in this work have
been numerically confirmed.
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5.2 Outlook

The concept of decomposition opens many doors for future research. Some extensions
are listed and discussed below. A broader perspective is then taken to comment on
possible future research directions.

Direct Extensions

In the field of parameter identification, it has been demonstrated that decomposed
formulations can be advantageous in several facets. However, they are associated
with an increased implementation effort. The question in which situations the
reduced approach might be an adequate choice is still open. An intuitive answer
would be to have an initial guess of the model parameters that is already close to the
solution and thus local minima can be ignored. However, other factors may influence
the algorithmic behavior, such as the dimensions of the dynamical system in the
background, the measurement errors, the length of the time interval, or the algorithm
used. Therefore, it would be desirable to have an automated decision-making process
for the most promising formulation based on hyperparameters of the problem, for
example based on machine learning.

In the multiple shooting method, the level of decomposition can be scaled by the
number of shooting nodes. It is, however, not obvious how to choose this number.
On the one hand, one aims to keep the problem dimensions small, but on the other
hand, the findings in this work suggest incorporating many nodes to overcome local
solutions. An automated decision-making process as described above could also be
helpful here. Another idea is to modify the algorithm properties, which was not
considered in this work. By using a penalty method instead of SQP in combination
with a low weighting of the constraints’ penalty term, the solver could focus on
minimizing the objective function instead of fulfilling the constraints. Thus, adding
only a single shooting node (Ns = 2) could break up the rigid reduced objective
function and pave the way to a global solution.

The results demonstrate that decomposition within ODE-constrained optimization
is able to influence the algorithmic behavior. Hence, it would be desirable to transfer
these effects to other problem classes, as it is already done in the area of recurrent
neural networks. In [110], it is shown that the full discretization approach enables
a reliable convergence to desired solutions. Another idea for transfer may lie in
general nonlinear programs involving the term exp(z). If instead we consider the
ODE ẏ(t) = zy(t) with y(0) = 1 and t ∈ [0, 1], we could replace exp(z) by the
ODE’s solution y(t) = exp(zt) evaluated at t = 1. Next, the IVP would be treated
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as additional constraints, for which again a full discretization transcription can be
applied. It would be interesting to investigate whether this “shift of nonlinearities”
leads to changes in the algorithmic behavior.

In bilevel optimization, it would be of great interest to see if the idea of multiple
shooting applies here as well. Following this, it could be fruitful to hide some
lower-level iteration steps from the solver and only embed continuity constraints
making sure that the iteration steps are connected. This would even allow using
appropriate NLP solvers and not being restricted to a full-step exact-Hessian SQP
method.

The former possible extension illuminates a drawback of the decomposed approach.
In its current form, it makes use of a full-step exact-Hessian SQP algorithm. How-
ever, it is standard to consider a line search for the step sizes αk in the update
step yk+1 = yk + αkdk. It is usually designed to take a sufficient decrease in both the
objective function and constraint violation into account. For this, a merit function is
minimized, an inexact solution is often sufficient. Future studies should concentrate
on incorporating such a line search into the problem. Additional variables repre-
senting the step sizes at the respective iteration steps would have to be introduced.
They would be subject to conditions making sure that a sufficient decrease is made
in each iteration. As exact line searches (for example via Wolfe conditions [126]) are
often avoided due to performance reasons, they could easily be included here via
suitable constraints. Hence, the step sizes would be identified simultaneously with
the other variables. Another promising extension is to use approximations of the
lower-level Hessian matrix instead of its analytic computation. In analogy to the
line search, future studies should examine how to embed update formulae like BFGS
into the decomposed problem.

A natural alternative to embedding SQP algorithms is using IP methods, in particular
primal-dual approaches. The corresponding iteration steps would have to be included
similarly. A comparison of both approaches using the problem library could lead to
interesting insights. Besides, this could be the starting point for a generalization of
the concept using arbitrary lower-level solution methods.

The decomposition for bilevel optimization is a heuristic approach. It is based on
the idea of full discretization within ODE-constrained optimization. The numerical
results demonstrate the strengths of this reformulation and provide more than only
a proof of concept. Still, a theoretical analysis is needed to validate the observed
effects. Constraint qualifications, necessary optimality conditions, or convergence
proofs of the presented strategies will be important issues for future research.
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5.2 Outlook

Independent of the problem class, derivatives (apart from structural aspects) have
found less attention in this work. They are approximated via finite differences within
the chosen solver. However, an exact computation could bring several advantages,
for example increased precision, but also reduced computation times, especially in
the reduced approaches. In parameter identification, differentiating the numerical
integration scheme would be an interesting feature. In bilevel programming, the
use of parametric sensitivities for the reduced approach could be a useful extension.
Providing automatic differentiation approaches could also be advantageous here.

Widening the Perspective

The idea of decomposition has been applied to specific use cases in this work:
underlying iterative procedures have been decomposed and lifted into the problem
formulation. The realization had to be done manually with a lot of attention to detail.
Therefore, future studies should aim at an abstraction of this concept. The automatic
embedding of any iterative procedure, independent of its actual appearance, would
be an interesting next step. Steps in this direction have already been taken, for
example in [90] with a background in bilevel optimization, or in [1] as generalizations
of multiple shooting.

Not only iterative procedures, but also general nonlinear terms can be decomposed.
This is also mentioned in [1] and the effects are demonstrated exemplarily. It raises
the question under which circumstances this is advantageous, or whether a reduced
version might be sufficient. Thus, it would be desirable to have a measure that
evaluates the complexity of a given expression. Concepts for this exist, among others,
in the theory of dynamical systems via Lyapunov exponents or linear approximation
distances [60]. Conversely, it would also be interesting to measure the complexity of
a given decomposition and make comparisons with its reduced counterpart. Based
on these measures, one would then have to find criteria that predict when or even to
what extent an expression can be decomposed.

The approach in this work has been to influence the computation of a desired
solution, in our case the global one, by reformulating a problem and then applying
an algorithm. In fact, the algorithm can play an important role in this scenario
as well. This property is called “implicit bias” and is often mentioned in the field
of deep learning (for example [22]) as well as in single-level or bilevel optimization
(see [54] or [115]). It is shown that the gradient descent method, for instance, has
a bias towards convergence to certain solutions. This encourages the investigation
of the role that algorithms play in this work. It could be studied whether the
algorithm — biased towards a specific solution — and the formulation — aimed at
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Chapter 5 Conclusions

increasing the global solution’s region of attraction — work towards conflicting goals
or whether they support each other.

This hands over to a more detailed look at those certain, specific, or desired solutions.
All these terms aim at describing the quality of a solution, which is usually given by
the corresponding objective function value as a primary criterion. However, other
secondary criteria may also be of interest, and a desired solution is said to satisfy
both. In such a setting, a global solution might turn out to be inferior to a local
solution that performs better on the secondary criterion. Although in this work the
global solution is the desired one, a secondary criterion has been implicitly taken into
account: by applying decomposition, we increased the region of attraction for this
solution. By changing the perspective, one could make this consideration explicit,
based on the following idea. For a fixed problem formulation, a secondary criterion
is defined and applied to all occurring solutions to measure their quality. Here, the
works of Mykhailiuk et al. [84, 85] should be mentioned. The so-called “parametric
stability score” is introduced as a secondary quality criterion for NLP solutions to
quantify the influence of parameter perturbations. It is shown that a global solution
is not necessarily the desired one, as other local solutions may have higher scores.
For future research, it would be interesting to combine both approaches by explicitly
considering secondary quality criteria in the formulation design.

The potential future research directions described above cover the aspects mentioned
at the beginning of this thesis (Figure 1.1): “formulation”, “algorithm”, and “solution”.
In the long run, the combination of these aspects could lead to a holistic approach
to solving application-based nonlinear optimization problems.
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