
UNIVERSITÄT BREMEN

DISSERTATION

Optimization under Explorable Uncertainty:
Beyond the Worst-Case

vorgelegt von
Jens Schlöter, M.Sc.

geboren in Georgsmarienhütte

Vom Fachbereich 3 – Mathematik und Informatik
der Universität Bremen

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Gutachter*innen: Prof. Dr. Nicole Megow
Prof. Dr. Ola Svensson

Tag der wissenschaftlichen Aussprache: 10. November 2023

Bremen, 2024

Acknowledgments

First and foremost, I want to thank my advisor Nicole Megow for the chance to pursue my PhD
in her group, for her support and for introducing me to the field of combinatorial optimization
and optimization under uncertainty. I am thankful for all the fruitful research discussions and
for the great atmosphere in her group. Furthermore, I want to thank all my collaborators. In
particular, I want to thank Thomas Erlebach, Murilo Santos de Lima, Christoph Dürr and
Evripidis Bampis, who worked with me on the topic of this thesis. We started working with
Thomas and Murilo shortly after I started my PhD and I very much appreciate the opportunity
to learn from them about research early on. I also want to thank Ola Svensson for taking on
the second assessment of this thesis.

Moreover, I am grateful to all of my colleagues for all the discussions and the great
environment in the office. In particular, I want to thank Alex Lindermayr and Lukas Nölke for
proofreading different parts of this thesis. A special thanks goes to Alex for all the fun “side”
projects that distracted me when I was frustrated with the progress on my thesis and turned
into very nice results.

Finally, I want to thank my family and friends for the support throughout my PhD.

Bremen, January 2024 Jens Schlöter

iii

Table of Contents

1 Introduction 1
1.1 Outline . 3

2 Preliminaries and Structural Results 7
2.1 Explorable Uncertainty: Formal Problem Definitions 8

2.1.1 Basic Definitions for Problems under Explorable Uncertainty 8
2.1.2 Hypergraph Orientation and Sorting under Explorable Uncertainty . . 8
2.1.3 The Minimum Spanning Tree Problem under Explorable Uncertainty 10
2.1.4 Set Selection under Explorable Uncertainty 11

2.2 Competitive Analysis . 13
2.2.1 Worst-Case Analysis and Lower Bounds 13
2.2.2 Lower Bounds on the Adversarial Competitive Ratio 14
2.2.3 Competitive Analysis Beyond the Worst-Case 17

2.3 Local Bounds on OPT and the Witness Set Algorithm 19
2.3.1 Witness Sets and the Witness Set Algorithm 19
2.3.2 Mandatory Elements and Preprocessing Algorithms 22
2.3.3 A Witness Set Algorithm for Hypergraph Orientation 22
2.3.4 A Witness Set Algorithm for Set Selection 25
2.3.5 The Limits of the Witness Set Algorithm Beyond the Worst-Case . . 26

2.4 Related Work . 27

3 Orienting (Hyper)graphs under Explorable Stochastic Uncertainty 31
3.1 Introduction . 32

3.1.1 Our Results . 33
3.1.2 Related Work . 34
3.1.3 Outline . 34

3.2 Preliminaries . 35
3.2.1 Preprocessing, Mandatory Vertices and Mandatory Probabilities . . . 36
3.2.2 Lower Bounds on the Stochastic Competitive Ratio 38
3.2.3 Witness Sets and the Vertex Cover Instance 39
3.2.4 Lower Bounds on the Expected Optimal Query Cost 41
3.2.5 Vertex Cover-based Algorithms . 42
3.2.6 Hardness of the Offline Problem . 43

3.3 A Threshold Algorithm for Orienting Graphs 45
3.4 Threshold Algorithm for Arbitrary Query Costs 49

3.4.1 Fractional Lower Bounds on the Expected Optimum 50
3.4.2 A Threshold Algorithm for Arbitrary Query Costs 51

3.5 A Threshold Algorithm for Orienting Hypergraphs 53
3.5.1 Computing Mandatory Probabilities 53
3.5.2 A Threshold Algorithm for Orienting Hypergraphs 55
3.5.3 Bounds on the Necessary Adaptivity 56

3.6 Vertex Cover-Based Algorithms: Special Cases 57
3.6.1 Orienting Bipartite Graphs with Arbitrary Query Costs 58

v

3.6.2 Orienting a Special Star with Arbitrary Query Costs 60
3.6.3 Orienting a Single Hyperedge with Uniform Query Costs 65

3.7 Concluding Remarks . 69

4 Sorting and Hypergraph Orientation under Uncertainty with Predictions 71
4.1 Introduction . 72

4.1.1 Our Results . 73
4.1.2 Outline . 74

4.2 Preliminaries, Tradeoff Lower Bounds and Error Measures 75
4.2.1 Preliminaries . 76
4.2.2 Accuracy of Predictions . 79

4.3 Hypergraph Orientation . 82
4.3.1 Learning-augmented Algorithm With Respect To the Hop Distance . 83
4.3.2 Learning-augmented Algorithm w.r.t. the Mandatory Query Distance 88
4.3.3 Non-Integral Parameter Gamma via Randomization 92

4.4 Sorting under Explorable Uncertainty . 94
4.4.1 A Learning-augmented Algorithm for Sorting 95
4.4.2 Computing the Clique Partition . 98
4.4.3 Guarantee depending on the Number of Wrong Predictions 101

4.5 Learnability of Predictions . 103
4.5.1 Learning with Respect to the Hop Distance 103
4.5.2 Learning with Respect to the Mandatory Query Distance 105

4.6 Concluding Remarks . 107

5 Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty109
5.1 Introduction . 110

5.1.1 Our Results . 112
5.1.2 Outline . 112

5.2 Preliminaries . 113
5.2.1 Lower Bound on the Consistency and Robustness Tradeoff 113
5.2.2 Error Metrics . 114
5.2.3 Witness Sets and Mandatory Edges 116

5.3 Overview of Techniques . 122
5.3.1 Basic Algorithmic Framework . 122
5.3.2 Algorithmic Ideas . 122

5.4 Prediction Mandatory Edges and New Structural Results 123
5.4.1 New Criteria to Identify Witness Sets and (Prediction) Mandatory Edges124
5.4.2 Prediction Mandatory Free Instances 126
5.4.3 Relation Between Prediction Mandatory Edges and The Hop Distance 128

5.5 Making Instances Prediction Mandatory Free 129
5.5.1 Algorithm and Overview of the Algorithmic Ideas 130
5.5.2 Formal Analysis of the Algorithm 132

5.6 Optimal Consistency and Robustness Tradeoff 136
5.6.1 Optimal Tradeoff for Prediction Mandatory Free Instances 136
5.6.2 Optimal Tradeoff for General Instances 139

5.7 An Error-Sensitive Algorithm . 140
5.7.1 Error-Sensitive Algorithm for Prediction Mandatory Free Instances . 140
5.7.2 Error-Sensitive Algorithm for General Instances 145

5.8 Concluding Remarks . 146

vi

6 Set Selection under Explorable Stochastic Uncertainty via Covering Techniques147
6.1 Introduction . 148

6.1.1 The Covering Point of View . 149
6.1.2 Our Results . 151
6.1.3 Further Previous Work . 152
6.1.4 Outline . 155

6.2 Disjoint MINSET . 156
6.3 Algorithmic framework . 159

6.3.1 Offline Problems and Hardness of Approximation 159
6.3.2 Algorithmic framework . 160
6.3.3 Proof of the Hardness of Approximation 164

6.4 MINSET with Deterministic Right-Hand Sides 165
6.5 MINSET under uncertainty . 167
6.6 The Maximization Variant of MINSET . 176
6.7 Concluding Remarks . 177

References 179

Zusammenfassung (German) 189

vii

Chapter 1

Introduction

When solving optimization problems that arise in real-world applications, uncertainty in the
input data and incomplete information are major challenges. Consider for example varying
transportation times depending on traffic conditions or weather, unknown execution times
of tasks to be scheduled, variable parameters such as bandwidth and demands, dynamically
changing locations of moving agents, or decentralized data that is updated infrequently.

Since uncertainty is ubiquitous in a wide range of real-world applications, there has been
plenty of research devoted to providing mathematical frameworks for modeling uncertainty
in optimization problems. A first major framework is online optimization, where parts of
the input are initially unknown and the missing data is revealed incrementally over time.
Whenever new data arrives, an optimization algorithm has to make irrevocable decisions
on how to handle the new information (cf., e.g., [BE98]). Stochastic optimization refers
to a setting where the uncertain input data is modeled via (known or unknown) probability
distributions. The goal is to find solutions that perform good in expectation or with high
probability. The actual realizations of the uncertain parts of the input are usually revealed
sequentially in a number of stages (cf., e.g., [BL11]). In the third major framework, robust
optimization, the uncertainty is typically modeled by an, explicitly or implicitly, given set of
scenarios that could potentially occur. The most common goal is to find a single solution that
performs reasonably well for every possible scenario (cf., e.g., [BGN09]).

All these models have in common that the uncertain information is either revealed passively
over time or not at all. Optimization algorithms for problems in these models have to
cope with this type of passively revealed uncertainty and have to make decisions based on
incomplete information. In particular, they do not have the option, not even at a cost, to
actively obtain new information that helps to handle the optimization task at hand. In a number
of real-world applications however, the possibility to query uncertain parts of the input at
a certain cost is a reasonable assumption. Uncertain execution times could for example be
determined by executing further analysis (cf. [Sha16] for an example in maintenance work
using fault analysis), variable parameters such as the bandwidth of a network connection
can be measured, dynamically changing locations of moving agents can be determined
via communication [Kah91] and decentralized data can be updated by queries to a master
database [OW00].

The area of explorable uncertainty was introduced in a seminal paper by Kahan [Kah91]
and considers exactly such scenarios where uncertain parts in the input of an optimization
problem can be queried to reveal more information. As queries are costly, the goal is to
minimize the query cost necessary to find an optimal (or approximative) solution for the
underlying optimization problem. In particular, the model considers uncertainty in numerical
input parameters. Instead of having access to the precise values of these parameters, we
are given uncertainty intervals that are guaranteed to contain the corresponding precise
values, but we do not have any information on where inside the interval the value actually
is. Since the optimal solution of the underlying optimization problem can depend on the
uncertain parameters, finding an optimal (or approximative) solution with respect to the

1

1. Introduction

uncertain values might be impossible without obtaining further information. Thus, the
goal in explorable uncertainty is to design algorithms that query uncertain parameters until
the revealed information is sufficient to determine an optimal solution to the underlying
optimization problem, with the objective to minimize the query cost. This thesis, and the
majority of existing research in the field, considers adaptive algorithms for problems under
explorable uncertainty that are allowed to take the results of previous queries into account
when deciding upon the next query.

As an example, consider the classic minimum spanning tree problem, where we are given
an undirected graph G = (V,E) with edge weights we for all e ∈ E. The goal is to find a
minimum spanning tree (MST), i.e., a subset T ⊆ E of minimum weight w(T) =

∑︁
e∈T we

such that the subgraph G′ = (V, T) is connected and contains no cycles. Under explorable
uncertainty, the precise edge weights we are initially unknown. Instead, we only have access
to uncertainty intervals Ie = (Le, Ue), for all e ∈ E, that are guaranteed to contain the precise
edge weights, i.e., we ∈ Ie. The goal remains to find an MST for the unknown precise edge
weights. To find such an MST despite the lack of information on the weights, we are allowed
to query edges and a query to an edge e reveals the precise weight we at query cost ce. The task
is to design algorithms that adaptively query edges until the revealed information is sufficient
to determine an MST w.r.t. the precise weights, while minimizing the total query cost.

So far, explorable uncertainty has mostly been studied in the adversarial (or worst-case)
setting, where we assume that query results are returned in a worst-case manner. Since
there usually exist problem instances that cannot be solved without querying all uncertain
parameters, algorithms in this setting are typically analyzed in an instance-dependent way
via competitive analysis. We give a formal definition later, but we say that an algorithm is
ρ-competitive for a problem under explorable uncertainty if, for every problem instance, the
query cost of the algorithm is larger by a factor of at most ρ than the optimal query cost for
that particular instance. The minimum ρ for which an algorithm is ρ-competitive is called the
competitive ratio of the algorithm.

The most studied problems in adversarial explorable uncertainty are selection-type prob-
lems, e.g., selecting the minimum [Kah91], sorting [HL21], selecting the k’th smallest
element [Kah91; Fed+03], selecting a minimum spanning tree [Hof+08; EH14; MMS17]
and geometric problems [Bru+05]. These problems are well-understood and admit constant-
competitive algorithms with matching lower bounds. All these problems have in common that
they essentially (but non-trivially) can be reduced to comparing single uncertainty intervals and
that the lower bounds are caused already by very simple problem instances. Once we have to
compare two sets (sums) of uncertainty intervals, no deterministic algorithm can have a better
competitive ratio than Ω(n) [EHK16], where n is the number of given uncertainty intervals.
This lower bound of Ω(n) translates to combinatorial optimization problems under explorable
uncertainty such as computing the shortest path in a graph [Fed+07], knapsack [Mei18] and
maximum matchings [Mei18], and prevents us from obtaining non-trivial results for these
problems.

Motivated by these simple and strong lower bounds, this thesis asks the question whether
worst-case query results and having no additional information on the uncertain input param-
eters (apart from the uncertainty intervals) is too pessimistic. Going back to the example
applications, the quality of links measured using metrics such as throughput and reliability in
a wireless network often fluctuates over time within a certain interval. The actual quality of a
link can be obtained via a new measurement. If we wish to build a minimum spanning tree
using links that currently have the highest link quality and want to minimize the additional
measurements needed, we arrive at the MST problem under explorable uncertainty. Assuming
that we do not have any additional information on the results of the measurements might how-
ever be too pessimistic, as one can for example use machine learning methods to predict the
precise link quality based on time-series data of previous link quality measurements [Abd+20].

2

1. Introduction

Since these predictions are not completely accurate, we might still want to execute queries
to guarantee that we find an MST with respect to the current link quality, but the additional
information might be helpful to select the query strategy. As another example, the known past
location and maximum movement speed of a mobile node yields an uncertainty interval that is
guaranteed to contain the current location. However, using statistical tools one might be able
to predict the most likely true location of the node based on past movement data.

In this thesis, we consider different problems under explorable uncertainty and analyze
them in settings that go beyond the worst-case. Several frameworks for analyzing algorithms
beyond the worst-case have for example been discussed in [Rou20]. Here, we study a
learning-augmented and a stochastic setting for problems under explorable uncertainty.

In the learning-augmented setting, we assume access to predictions on the uncertain values.
Given the rise of artificial intelligence and machine learning (ML) methods in recent decades,
it seems reasonable to expect predictions of good accuracy. However, there is no guarantee
and the predictions might be arbitrarily wrong for some instances. Thus, we aim at designing
algorithms that achieve an improved competitive ratio if the predictions are of good accuracy,
and at the same time match the performance guarantees of algorithms without access to
predictions even if the predictions are arbitrarily wrong. This corresponds to a recent research
trend that considers the usage of untrusted predictions for online algorithms; we later give an
overview of related work in this field. Adopting the notions introduced in [LV21; PSK18], we
say that an algorithm is α-consistent if it is α-competitive when the predictions are correct,
and it is β-robust if it is β-competitive even if the predictions are arbitrarily wrong. Ideally,
we want to guarantee a smooth transition between consistency and robustness depending on a
prediction error. In Chapters 4 and 5, we design learning-augmented algorithms for several
problems under explorable uncertainty and analyze them using these notions.

Another model for analyzing problems under explorable uncertainty beyond the worst-case
is the stochastic setting. Instead of assuming that the query results are returned in a worst-case
manner, we assume that they are drawn from (known or unknown) probability distributions
over the corresponding intervals. In contrast to the learning-augmented setting, the stochastic
information is reliable and algorithms are analyzed with respect to the ratio between the
expected query cost of an algorithm and the expected optimal solution cost. In Chapters 3
and 6, we consider problems under explorable uncertainty in different stochastic settings and
design algorithms that, in expectation, improve upon adversarial lower bounds.

Overall, the results of this thesis will illustrate that we can improve upon adversarial lower
bounds for problems under explorable uncertainty when analyzing them beyond the worst-
case. To achieve these improved results, we design several new algorithms using algorithmic
techniques and analyses that have not yet been used for problems in this field. We hope that
our results and technical contributions lay the foundation for further research on problems
under explorable uncertainty beyond the worst-case.

1.1 Outline

This thesis considers several problems under explorable uncertainty in the learning-augmented
and stochastic setting. In the following, we give a chapter-wise outline of its concrete contents.
While the different chapters are not independent of each other and, in particular, reference
each other, they can all also be read standalone.

Chapter 2: Preliminaries and Structural Results

In this chapter, we give general definitions and notation for optimization problems under
explorable uncertainty and formally define the concrete problems that we consider throughout
this thesis. We define worst-case (or adversarial) competitive analysis, which is usually

3

1. Introduction

employed to analyze the performance of algorithms for problems under explorable uncertainty.
In the process, we survey existing lower bounds on the best possible worst-case performance
guarantees that can be achieved for our problems. We briefly discuss the stochastic setting and
learning-augmented algorithm design for problems under explorable uncertainty, two types of
analysis that go beyond the worst-case and will be used in the consecutive chapters.

In the second part of the chapter, we discuss the witness set algorithm [Bru+05], a powerful
tool for designing algorithms that achieve good performance guarantees in the worst-case.
To this end, we summarize existing results that show how to employ this algorithm for the
problems considered in this thesis and generalize them to not only minimize the number of
queries but also more general query costs. The summary includes several techniques that
allow to compare the query cost of an algorithm with the query cost of an optimal solution.
While nearly all existing results on optimization under explorable uncertainty use worst-case
analysis and the witness set algorithm, we finish the second part of this chapter with a brief
discussion on the limits of this algorithm in settings beyond the worst-case.

Finally, we give an overview of previous related work in the field of explorable uncertainty.
Bibliographic remark: This chapter includes some structural results that are based on

joint work with T. Erlebach, M. de Lima and N. Megow [Erl+23; Erl+20] and joint work with
the same group of authors with the addition of E. Bampis and C. Dürr [Bam+21]. Further, the
chapter contains some observations from [MS23]. Therefore, some parts correspond to or are
identical with [Erl+23; Erl+20; Bam+21; MS23].

Chapter 3: Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

This chapter considers the hypergraph orientation problem under explorable uncertainty in
the stochastic setting. Given a hypergraph with uncertain vertex weights that follow known
probability distributions, we study the problem of querying vertices of minimum total cost
until the identity of a vertex with minimum weight can be determined for each hyperedge.
Querying a vertex incurs a cost and reveals the precise weight of the vertex, drawn from the
given probability distribution. Using stochastic competitive analysis, we compare the expected
query cost of an algorithm with the expected cost of an offline optimal query set for the given
instance.

For the general problem, we give a polynomial-time f(α)-competitive algorithm, where
f(α) ∈ [1.618 + ϵ, 2] depends on the approximation ratio α for an underlying vertex cover
problem. We also show that no algorithm using a similar approach can be better than 1.5-
competitive.

Furthermore, we give polynomial-time 4/3-competitive algorithms for orienting bipartite
graphs with arbitrary query costs and for orienting hypergraphs with a single hyperedge and
uniform query costs. We complement both of these results with matching lower bounds.

Bibliographic remark: This chapter is mainly based on joint work with E. Bampis,
C. Dürr, T. Erlebach, M. de Lima and N. Megow [Bam+21]. Some minor structural results are
based on joint work with T. Erlebach, M. de Lima and N. Megow [Erl+23; Erl+20]. Therefore,
some parts correspond to or are identical with [Erl+23; Bam+21; Erl+20].

Chapter 4: Sorting and Hypergraph Orientation under Uncertainty with Predictions

We consider learning-augmented algorithms for hypergraph orientation under explorable
uncertainty and the special case of sorting a set of uncertainty intervals. In the learning-
augmented setting, we assume access to untrusted predictions for the uncertain vertex weights.
Our algorithms provide improved performance guarantees for accurate predictions while
maintaining worst-case guarantees that match the best possible guarantees without access to
predictions. For hypergraph orientation, for any integral γ ≥ 2, we give an algorithm that

4

1. Introduction

achieves a competitive ratio of 1 + 1/γ for correct predictions and γ for arbitrarily wrong
predictions. For sorting, we achieve an optimal solution for accurate predictions while still
being 2-competitive for arbitrarily wrong predictions. These tradeoffs are best possible. We
also consider different error metrics and show that the performance of our algorithms degrades
smoothly with the prediction error in all the cases where this is possible.

Bibliographic remark: This chapter is mainly based on joint work with T. Erlebach,
M. de Lima and N. Megow [Erl+23] that will also appear in the proceedings of IJCAI 2023.
Some results are based on a different joint work with the same group of authors [Erl+22;
Erl+20]. Therefore, some parts correspond to or are identical with [Erl+23; Erl+22; Erl+20].

Chapter 5: Learning-Augmented Algorithms for Minimum Spanning Tree with Uncer-
tainty

This chapter studies learning-augmented algorithms for the minimum spanning tree problem
under explorable uncertainty, a fundamental combinatorial optimization problem that has been
central also to the research area of explorable uncertainty. We are given a (multi)graph with
uncertain edge weights that can be revealed via queries. Our aim is to minimize the number
of queries necessary to obtain sufficient information for identifying a minimum spanning
tree. For all integral γ ≥ 2, we present algorithms that are γ-robust and (1 + 1

γ)-consistent
and show that this tradeoff is best possible. Furthermore, we argue that the hop distance,
an error metric introduced in the previous chapter, is a useful measure for the amount of
prediction error and design algorithms with performance guarantees that degrade smoothly
with the hop distance. Our results demonstrate that access to untrusted predictions can help to
circumvent the known lower bound of two, without any degradation of the worst-case ratio.
In the process, we provide new structural insights for the minimum spanning tree problem
under explorable uncertainty that might be useful in the context of query-based algorithms
regardless of predictions.

Bibliographic remark: This chapter is mainly based on joint work with T. Erlebach,
M. de Lima and N. Megow [Erl+22]. Some results are based on a different joint work with
the same group of authors [Erl+23]. Therefore, some parts correspond to or are identical
with [Erl+23; Erl+22].

Chapter 6: Set Selection under Explorable Stochastic Uncertainty via Covering Tech-
niques

Finally, we consider the set selection problem under explorable stochastic uncertainty. Given
subsets of uncertain weights, we study the problem of identifying the subset of minimum
total weight (sum of the uncertain weights contained in the set) by querying as few weights as
possible. This set selection problem is of intrinsic importance within the field of explorable
uncertainty as it implies strong adversarial lower bounds for a wide range of interesting
combinatorial problems such as knapsack and matchings [Mei18]. We consider a stochastic
problem variant and give algorithms that, in expectation, improve upon these adversarial
lower bounds. The key to our results is to prove a strong structural connection to a seemingly
unrelated covering problem with uncertainty in the constraints via a linear programming
formulation. We exploit this connection to derive an algorithmic framework that can be used
to solve both problems under uncertainty, obtaining nearly tight bounds on the competitive
ratio. This is the first non-trivial stochastic result concerning the sum of unknown weights
without further structure known for the set.

Bibliographic remark: This chapter is mainly based on joint work with N. Megow [MS23].
Therefore, some parts correspond to or are identical with [MS23].

5

Chapter 2

Preliminaries and Structural Results

In this chapter, we give general definitions and notation for optimization problems under
explorable uncertainty and formally define the concrete problems that we consider throughout
this thesis. We define worst-case (or adversarial) competitive analysis, which is usually
employed to analyze the performance of algorithms for problems under explorable uncertainty.
In the process, we survey existing lower bounds on the best possible worst-case performance
guarantees that can be achieved for our problems. We briefly discuss the stochastic setting and
learning-augmented algorithm design for problems under explorable uncertainty, two types of
analysis that go beyond the worst-case and will be used in the consecutive chapters.

In the second part of this chapter, we discuss the witness set algorithm [Bru+05], a
powerful tool for designing algorithms that achieve good performance guarantees in the worst-
case. To that end, we summarize existing results that show how to employ this algorithm for
the problems considered in this thesis and generalize them to not only minimize the number
of queries but also more general query costs. The summary includes several techniques that
allow to compare the query cost of an algorithm with the query cost of an optimal solution.
While nearly all existing results on optimization under explorable uncertainty use worst-case
analysis and the witness set algorithm, we finish the second part of this chapter with a brief
discussion on the limits of this algorithm in settings beyond the worst-case.

Finally, we give an overview of previous related work in the field of explorable uncertainty.
Bibliographic remark: The first and second section of this chapter include some structural

results that are based on joint work with T. Erlebach, M. de Lima and N. Megow [Erl+23;
Erl+20] and joint work with the same group of authors with the addition of E. Bampis and
C. Dürr [Bam+21]. Therefore, some parts correspond to or are identical with [Erl+23; Erl+20;
Bam+21].

Contents
2.1 Explorable Uncertainty: Formal Problem Definitions 8

2.1.1 Basic Definitions for Problems under Explorable Uncertainty . . . 8
2.1.2 Hypergraph Orientation and Sorting under Explorable Uncertainty 8
2.1.3 The Minimum Spanning Tree Problem under Explorable Uncertainty 10
2.1.4 Set Selection under Explorable Uncertainty 11

2.2 Competitive Analysis . 13
2.2.1 Worst-Case Analysis and Lower Bounds 13
2.2.2 Lower Bounds on the Adversarial Competitive Ratio 14
2.2.3 Competitive Analysis Beyond the Worst-Case 17

2.3 Local Bounds on OPT and the Witness Set Algorithm 19
2.3.1 Witness Sets and the Witness Set Algorithm 19
2.3.2 Mandatory Elements and Preprocessing Algorithms 22
2.3.3 A Witness Set Algorithm for Hypergraph Orientation 22
2.3.4 A Witness Set Algorithm for Set Selection 25

7

2. Preliminaries and Structural Results

2.3.5 The Limits of the Witness Set Algorithm Beyond the Worst-Case 26
2.4 Related Work . 27

2.1 Explorable Uncertainty: Formal Problem Definitions

We start by giving general definitions for problems under explorable uncertainty and introduce
the problems considered in this thesis. In explorable uncertainty, we generally consider
combinatorial optimization problems with uncertainty in the numeric input parameters. Instead
of having access to the precise values of these parameters, we initially only know uncertainty
intervals that are guaranteed to contain the precise values. The uncertain input parameters can
be queried to reveal their precise values, and our goal is to adaptively query parameters until
we have sufficient information to optimally solve the underlying optimization problem. In
this context, adaptivity means that the selection of the next query is allowed to depend on the
precise values revealed by previous queries. Each query comes at a cost and our goal is to
minimize the total query cost.

2.1.1 Basic Definitions for Problems under Explorable Uncertainty

During the course of this thesis, we use Q to refer to a set of queries or query set. Depending
on the concrete problem, a query set contains different types of elements. In one problem we
will for example query edges of a graph, while in another problem we query vertices.

Let P denote the problem-dependent set of such uncertain and queryable elements. Then,
each e ∈ P has a precise value or weight we that is initially unknown. Instead, we only
know the uncertainty interval Ie that is guaranteed to contain we. A query to e reveals the
precise weight we and, therefore, reduces the uncertainty interval to Ie = {we}. We call an
uncertainty interval trivial if it only contains the corresponding precise weight. Consequently,
uncertainty intervals that contain more than one value are called non-trivial.

For all problems considered in this thesis, the uncertainty intervals are either open, i.e.,
Ie = (Le, Ue), or trivial. This is a standard technical assumption in explorable uncertainty,
which we justify in Section 2.2. We call Le and Ue the upper and lower limit of Ie. If
Ie = {we}, then Ue = Le = we.

A query set Q ⊆ P is feasible if querying Q reveals sufficient information to optimally
solve the underlying combinatorial optimization problem. The feasibility of a query set is
problem dependent and we characterize it for the concrete problems down below. We use Q
to refer to the set of all feasible query sets. Each uncertain element e ∈ P has a query cost
ce ≥ 0. We denote the cost of a query set Q by c(Q) =

∑︁
e∈Q ce. Our goal is to (adaptively)

find a feasible query set Q minimizing c(Q).
If ce = ce′ for all queryiable elements e, e′ ∈ P , then we say that the query costs are

uniform. In that case, minimizing the query cost c(Q) is equivalent to minimizing the number
of queries |Q|. Otherwise, we speak of arbitrary query costs.

2.1.2 Hypergraph Orientation and Sorting under Explorable Uncertainty

We consider the hypergraph orientation problem under uncertainty [Bam+21], which captures
several selection and sorting problems.

In this problem, we are given a hypergraph H = (V,E) with uncertain vertex weights and
our task is to orient each hyperedge S ∈ E towards the vertex of minimum precise weight in S.
In line with the definitions given above, each vertex v ∈ V is associated with an uncertainty
interval Iv = (Lv, Uv) and an, initially unknown, precise weight wv ∈ Iv. See Figure 2.1 for
an example instance of the hypergraph orientation problem.

8

2. Preliminaries and Structural Results

8

7

6

3

2

1

5

4

8

7

6

3

2

1

5

4

Vertex

Weight
1
2
3
4
5
6
7
8

1 5 10

FIGURE 2.1: Example instance for the hypergraph orientation problem. Hyper-
graph H = (V,E) with the vertices V = {1, . . . , 8} and hyperedges E =
{{1, 2, 3, 4, 5, 6, 7, 8}, {6, 7, 8}, {1, 2, 3}} (left) and uncertainty intervals for the vertices
with (initially uncertain) precise weights indicated by green circles (right).

A query of a vertex v has cost cv, reveals its precise weight wv and, thus, reduces its
uncertainty interval to Iv = {wv}. To orient the hypergraph, we have to adaptively query
vertices to learn their precise weights until we have sufficient information to find the orientation
of the hyperedges. Thus, a query set Q ⊆ V is called feasible if querying Q reveals sufficient
information to find the orientation. After querying Q, we must be able to orient each hyperedge
S towards a vertex v such that v is of minimum precise weight for the weights wu of vertices
u ∈ Q and all possible realizations wu ∈ Iu of the precise weights of unqueried vertices
u ∈ V \Q. Note that it suffices to identify the vertex of minimum weight in each hyperedge S
and it is not required to determine the precise weight of that vertex. Our goal is to (adaptively)
find a feasible query set, while minimizing the query costs.

The following lemma fully characterizes feasible query sets. Note that the characterization
depends on uncertain precise vertex weights. Thus, an algorithm cannot necessarily use it to
decide whether a query set Q is feasible without actually querying Q.

Lemma 2.1.1. Consider an instance of hypergraph orientation under explorable uncertainty
with hypergraph H = (V,E) and uncertainty intervals Iv for all v ∈ V . A query set Q ⊆ V is
feasible if and only if it, for each hyperedge S, satisfies at least one of the following conditions:

1. Q contains all vertices v in S with non-trivial uncertainty intervals Iv that contain the
minimum precise weight w∗ = minu∈S wu of the vertices in S.

2. Let v ∈ S be a vertex of minimum weight in S, i.e., wv = w∗ = minu∈S wu. Q contains
all vertices u ∈ S \ {v} with intervals that intersect Iv and wu ≥ Uv holds for all
u ∈ S \ {v}.

Proof. Consider an instance of hypergraph orientation under explorable uncertainty with
hypergraph H = (V,E) and uncertainty intervals Iv for all v ∈ V . Let Q ⊆ V be a query set.

We prove the lemma by showing for each hyperedge S that we have sufficient information
to orient S after querying Q if and only if Q satisfies at least one condition of the lemma. To
that end, let S ∈ E be an arbitrary hyperedge.

First, assume that Q satisfies the first condition of the lemma for hyperedge S and contains
all vertices in S with non-trivial uncertainty intervals that contain w∗ = minu∈S wu. Since
querying Q reduces the uncertainty intervals of all vertices v ∈ Q to Iv = {wv} and all
vertices in S satisfy wv ≥ w∗, the vertices in Q must have a lower limit of at least w∗ after
querying Q. By assumption, each vertex v in S \Q has a lower limit Lv ≥ w∗ even before

9

2. Preliminaries and Structural Results

querying Q. Thus, after querying Q, all vertices u ∈ S satisfy w∗ ≤ Lu and at least one vertex
v ∈ S must satisfy Uv = Lv = wv = w∗. This implies that no vertex in S can have a smaller
precise weight than v and, therefore, we have sufficient information to orient S towards v.

Next, assume that Q satisfies the second condition of the lemma for hyperedge S. Then,
there is a vertex v of minimum precise weight in S, wu ≥ Uv holds for all u ∈ S \ {v},
and Q contains all vertices u ∈ S \ {v} with Iu ∩ Iv ̸= ∅. By assumption, Lu ≥ Uv holds
for all u ∈ (S \ {v}) \Q even before querying Q. Furthermore, since querying Q reduces
the intervals Iu of all u ∈ Q to Iu = {wu} and all u ∈ Q satisfy wu ≥ Uv, we have
Lu = Uu = wu ≥ Uv for all u ∈ Q after querying Q. This implies that Lu ≥ Uv holds for all
u ∈ S \ {v} after querying Q. Thus, no vertex in S can have a smaller weight than v and we
have sufficient information to orient S towards v.

Finally, assume that Q does not satisfy any of the conditions of the lemma for some
hyperedge S. Since Q does not satisfy the first condition, there must be a vertex v ∈ S \Q
with a non-trivial interval Iv that contains w∗. We distinguish between the cases wv = w∗

and wv ̸= w∗.
If wv ̸= w∗, then there exists a vertex u ∈ S \ {v} with w∗ = wu ∈ Iv. This means

that querying Q does not give us sufficient information to orient S as we cannot verify
w∗ = wu ≤ wv without querying v.

Next, assume wv = w∗. As Q also does not satisfy the second condition, there either must
be a vertex u ∈ (S \{v})\Q with Iv ∩ Iu ̸= ∅ or wu ∈ Iv must hold for a vertex u ∈ S \{v}.
Let u be such a vertex of minimum Lu. In the former case, even after querying Q, we cannot
distinguish between realizations of precise weights where wv < wu and v is of minimum
weight in S and realizations of precise weights where wu < wv and u is of minimum weight
in S. In the latter case, we cannot verify wv ≤ wu without querying v. Thus, in both cases,
we do not have sufficient information to orient S even after querying Q. This implies that Q
is not feasible.

For the example instance of Figure 2.1, the query set Q = {1, 2, 4, 6, 7} satisfies the
conditions of the lemma and, thus, is feasible. Since Q contains the vertices 1 and 2, it satisfies
the first condition for the red hyperedge, since it contains 4, it satisfies the first condition for
the olive hyperedge, and since it contains 6 and 7, it satisfies the second condition for the blue
hyperedge.

We also consider the special case where we are given a graph G = (V,E) instead of a
hypergraph. We refer to this special case as graph orientation. Another important special case
of hypergraph orientation is when the input graph is a simple graph that is exactly the interval
graph induced by the uncertainty intervals I = {Iv | v ∈ V }. This special case corresponds
to the problem of sorting a set of unknown values represented by uncertainty intervals and,
therefore, we refer to it as sorting under uncertainty.

2.1.3 The Minimum Spanning Tree Problem under Explorable Uncertainty

The next problem we consider is the minimum spanning tree (MST) problem under explorable
uncertainty. We are given a (multi)graph G = (V,E) with initially uncertain precise edge
weights we ∈ R+ for all e ∈ E. For each edge e, we are given an uncertainty interval Ie that
contains we and is either open or trivial, i.e., Ie = (Le, Ue) or Ie = {we}. A query of edge e
has cost ce, reveals the precise weight we and, thus, reduces the corresponding uncertainty
interval to Ie = {we}.

The task is to determine a minimum spanning tree with respect to the initially uncertain
precise weights we. A spanning tree of G is a subgraph of G that contains no cycles and
connects all the vertices of G, and a minimum spanning tree is a spanning tree of G with
minimum total edge weight. During the course of this thesis, we characterize a spanning

10

2. Preliminaries and Structural Results

e5 e6

e7 e8

e9 e10

e1

e2

e3

e4

Weight

Edge

•
•
•

e1

e2

e3

e4

e5

e6

•
•
•

1 5 10

FIGURE 2.2: Example instance for the MST problem under explorable uncertainty. Graph
(left) and uncertainty intervals with precise weights for the edges e1 and e4 illustrated by
green circles (right).

tree by its edge set and say that T ⊆ E is a spanning tree if the subgraph G′ = (V, T) is a
spanning tree. For the minimum spanning tree problem, a query set is called feasible if it
reveals sufficient information to identify an MST. Our goal is to adaptively find a feasible
query set of minimum cost.

To more formally define feasible and optimal query sets, we say that a query set Q ⊆ E is
feasible if there exists a set of edges T ⊆ E such that T is an MST for the precise weights we

of all e ∈ Q and every possible combination of edge weights in Ie for the unqueried edges
e ∈ E \ Q. That is, querying a feasible query set Q must give us sufficient information to
identify a spanning tree T that is an MST for the precise weights no matter what the precise
weights of the unqueried edges E \Q actually are. Note that it is sufficient to identify an MST
and not required to compute the precise weight of that MST. We call a feasible query set Q
optimal if it has minimum cost c(Q) among all feasible query sets.

Figure 2.2 shows an example instance for the MST problem under explorable uncertainty.
We can observe that the query set Q = {e1, e4} is feasible for this instance and that the edges
{e1, e5, . . . , e10} induce an MST for the instance. No matter where the precise weight of
an edge ei with i ∈ {5, . . . , 10} lies within its respective uncertainty interval, it is uniquely
minimal in a cut and, therefore, has to be part of every MST. Thus, we can conclude that the
edges {e5, . . . , e10} are part of the MST without executing any queries. Besides those edges,
an edge in {e1, . . . , e4} of minimum precise weight among those edges has to be part of the
MST to ensure connectivity. Since the uncertainty intervals of those edges intersect, we have
to execute queries to find such an edge. For this example, querying Q = {e1, e4} suffices to
prove that e1 has minimum weight in {e1, . . . , e4} independent of the precise weights of the
unqueried edges e2 and e3.

2.1.4 Set Selection under Explorable Uncertainty

The final problem we consider is the set selection problem under explorable uncertainty. We
are given a set of n uncertain weights represented by uncertainty intervals I = {I1, . . . , In}
and a family of m sets S = {S1, . . . , Sm} with S ⊆ I for all S ∈ S . A weight wi ∈ R+ lies
in its uncertainty interval Ii, is initially unknown, and can be revealed via a query at cost ci.
The weight of a subset S ∈ S is w(S) =

∑︁
Ii∈S wi and our goal is to determine a subset of

minimum weight and the corresponding weight while minimizing the total query cost. Note
that the latter requirement is in contrast to the previous problems

We again assume that each interval Ii ∈ I is either open (non-trivial) or trivial, i.e.,
Ii = (Li, Ui) or Ii = {wi}. Based on the uncertainty intervals, we can define intervals

11

2. Preliminaries and Structural Results

S1
I1

I2

S2

I3

I4

I5
S3

I6

S4
I7

I8

0 1 2 3 4 5

(A)

0 1 2 3 4 5 6 7 8 9 10 11 12

IS1

IS2

IS3

IS4

(B)

FIGURE 2.3: Example instance for set selection under explorable uncertainty with intervals
I = {I1, I2, . . . , I8} and sets S = {S1, S2, S3, S4} with S1 = {I1, I2}, S2 = {I3, I4, I5},
S3 = {I4, I5, I6} and S4 = {I7, I8} (A) and the corresponding uncertainty intervals ISj for
the sets Sj with j ∈ {1, . . . , 4} (B).

IS for the sets S ∈ S. To that end, we define the lower limit LS =
∑︁

Ii∈S Li and the
upper limit US =

∑︁
Ii∈S Ui. If S contains only trivial uncertainty intervals, then we define

IS = [LS , US] = {w(S)} and call IS trivial. Otherwise, we define IS = (LS , US). Clearly,
the weight w(S) of a set S ∈ S is contained in the interval IS , i.e., w(S) ∈ IS . We call IS the
uncertainty interval of set S. See Figure 2.3 for an example instance including the uncertainty
intervals of the sets.

Since the intervals IS of the sets S ∈ S can intersect, we might have to execute queries
to determine the set of minimum weight. A query to an interval Ii reveals the precise
weight wi and, thus, replaces both, Li and Ui, with wi. This also gives us new information
about the intervals IS of sets S with Ii ∈ S. In a sense, a query to an Ii ∈ S reduces the
range (LS , US) in which w(S) might be by increasing LS by wi − Li and decreasing US by
Ui − wi; see Figure 2.4 for an illustration. We use LS and US to refer to the initial limits
and LS(Q) and US(Q) to denote the lower and upper limits of a set S ∈ S after querying
a set of intervals Q ⊆ I. Let w∗ = minS∈S w(S) be the initially uncertain minimum
set weight. To solve the problem, we have to adaptively query a set of intervals Q until
US∗(Q) = LS∗(Q) = w∗ holds for some S∗ ∈ S and LS(Q) ≥ w∗ holds for all S ∈ S . Only
then, we know for sure that w∗ is indeed the minimum set value and that S∗ achieves this
value. We say that a set Q is feasible if it satisfies these conditions (cf. Chapter 6 for a full
characterization of feasible query sets). Our goal is again to adaptively find a feasible query
set Q of minimum cost c(Q).

For the example of Figure 2.3, the query set Q = {I1, I2, I5, I7} is feasible; cf. Figure 2.5
for an illustration of the instance after querying Q. After querying Q, we have US1(Q) =
LS1(Q) = w(S1) and LSi(Q) > w(S1) for all i ∈ {2, 3, 4}. Thus, querying Q proves that
set S1 has a weight of w(S1) and that no other set has a smaller weight, which implies that Q
is feasible.

Ii

wi − Li Ui − wi

IS1

IS2

wi − Li Ui − wi

FIGURE 2.4: Example of how a query to an interval Ii changes the intervals of two sets
S1, S2 with Ii ∈ S1 ∩ S2 in the set selection problem under explorable uncertainty.

12

2. Preliminaries and Structural Results

S1
I1

I2

S2

I3

I4

I5
S3

I6

S4
I7

I8

0 1 2 3 4 5

(A)

0 1 2 3 4 5 6 7 8 9 10 11 12

IS1

IS2

IS3

IS4

(B)

FIGURE 2.5: Instance of Figure 2.3 after querying Q = {I1, I2, I5, I7}: (A) Updated
uncertainty intervals I and (B) updated set uncertainty intervals.

2.2 Competitive Analysis

During the course of this thesis, we design algorithms (or query policies) that adaptively query
feasible query sets for the problems introduced above. In this section, we discuss how to
analyze the performance of such algorithms.

For all problems considered in this thesis, there exist input instances that require queries
to all queryable elements in order to solve the underlying problems. Thus, instead of giving
absolute performance bounds, we analyze our algorithms in an instance-dependent manner by
employing competitive analysis.

In competitive analysis, we compare the query cost of our algorithm against the query
cost of an offline optimal solution. Here, an offline optimal solution refers to the optimal
feasible query set that can be computed by an algorithm that knows all query results up-front
before actually executing any queries. In a sense, the offline optimal solution is the cheapest
certificate that someone without up-front access to the query results can query to obtain enough
information to verify an optimal solution for the given instance of the underlying optimization
problem. Since an online algorithm that does not know the query results up-front operates
with less information on the input than the offline optimal solution, it cannot necessarily match
the cost of the offline solution, even if it has unlimited running time and space.

In the following, we define different types of competitive analysis. We start with adversar-
ial or worst-case competitive analysis and survey existing lower bounds on the best worst-case
performance guarantees achievable for our problems. While most existing results on problems
under explorable uncertainty employ this form of analysis, the main contribution of this thesis
is to go beyond the worst-case. To this end, we also define learning-augmented and stochastic
competitive analysis.

2.2.1 Worst-Case Analysis and Lower Bounds

In the adversarial or worst-case setting, we assume that query results are revealed in a worst-
case manner, i.e., we assume that an adversary chooses the query results in such a way that
leads to the worst performance of our algorithm. The following definition formalizes this
setting. Note that a problem instance J refers to an input instance including fixed but initially
unknown precise weights.

Definition 2.2.1 (Adversarial competitive ratio). Consider a problem under explorable uncer-
tainty and let ALG be a fixed deterministic algorithm for this problem. For an instance J of
the problem let ALG(J) denote the query cost needed by ALG to solve J and let OPT(J)

13

2. Preliminaries and Structural Results

v u

(A)
Iv

Iu

(B)

Iv

Iu

(C)

Iv

Iu

(D)

FIGURE 2.6: Lower bound example for the (hyper)graph orientation problem under ex-
plorable uncertainty. Shows the input graph (A), the uncertainty intervals (B), and two
possible realization of precise vertex weights (C,D).

denote the offline optimal query cost necessary to solve J . The competitive ratio of ALG is

max
J∈J

ALG(J)

OPT(J)
,

where J refers to the set of all instances of the considered problem. We say that ALG is
ρ-competitive if it has a competitive ratio of at most ρ.

2.2.2 Lower Bounds on the Adversarial Competitive Ratio

To further illustrate adversarial competitive analysis, we review existing lower bounds on
the adversarial competitive ratio for the problems considered in this thesis, starting with the
hypergraph orientation problem. We will see later in this chapter that all these lower bounds
are tight, meaning that there exist algorithms with matching competitive ratios.

Theorem 2.2.2 (Kahan [Kah91]). No deterministic algorithm has a competitive ratio better
than 2 for the hypergraph orientation problem under explorable uncertainty in the adversarial
setting, even for uniform query costs. This lower bound also holds for sorting and graph
orientation.

Proof. Consider the (non-hyper) graph and uncertainty intervals given in Figure 2.6a and Fig-
ure 2.6b with uniform query costs, i.e., cv = cu = 1. Since we are given only a single
(non-hyper) edge and the uncertainty intervals of the vertices intersect, the input is a valid
instance for hypergraph orientation, graph orientation and sorting under explorable uncertainty.

Every algorithm, including the offline optimum, has to execute queries until it has sufficient
information to determine the orientation of the only edge {u, v}. As the uncertainty intervals
of u and v intersect, each such algorithm has to execute at least one query.

Fix a deterministic algorithm ALG. If ALG starts by querying u, then the precise weight
of u might be revealed to be contained in the intersection of both uncertainty intervals, i.e.,
wu ∈ Iv ∩ Iu. This means that ALG still does not have sufficient information to determine the
orientation as the still unknown wv could still be both, larger or smaller, than wu. This forces
ALG to also query v. But then, the precise weight of v might be revealed to be contained in
Iv \ Iu (cf. Figure 2.6c), which means that the offline optimal solution for the instance queries
only v. Thus, the algorithm has a query cost of 2 for the instance specified by the Figures 2.6a
and 2.6c while the optimal solution has a query cost of only 1.

Symmetrically, if ALG queries v first, then it has a query cost of 2 for the instance
specified by the Figures 2.6a and 2.6d while the optimal solution has a query cost of only 1.

Since each deterministic algorithm has to start by querying either v or u, we can conclude
that for every deterministic algorithm there exists an instance on which the algorithm executes
twice as many queries as the offline optimal solution. This implies an adversarial competitive
ratio of at least two.

Note that the lower bound example of Theorem 2.2.2 essentially boils down to comparing
two uncertain weights with intersecting uncertainty intervals. For the minimum spanning tree

14

2. Preliminaries and Structural Results

e1

e2 e3

(A)

Ie2

Ie3

Ie1

(B)

Ie2

Ie3

(C)

Ie2

Ie3

(D)

FIGURE 2.7: Lower bound example for the minimum spanning tree problem under ex-
plorable uncertainty. Shows the input graph (A), the uncertainty intervals (B), and two
possible realization of precise weights of the edges e2 and e3 (C,D).

problem, one can prove a lower bound of 2 by constructing a graph with uncertainty intervals
that lead to the same situation.

Theorem 2.2.3 (Erlebach et al. [Hof+08]). No deterministic algorithm has a competitive ratio
better than 2 for the minimum spanning tree problem under explorable uncertainty in the
adversarial setting, even for uniform query costs.

Proof. Consider the graph and uncertainty intervals given in Figure 2.6a and Figure 2.6b and
assume uniform query costs, i.e., ce1 = ce2 = ce3 = 1. Independent of where the precise edge
weights are in their respective uncertainty intervals, edge e1 is contained in every MST. Thus,
to solve the problem, every deterministic algorithm only has to query until it has sufficient
information to decide whether e2 or e3 is of larger precise weight.

This leads to exactly the same situation as in the proof of Theorem 2.2.2. If a deterministic
algorithm starts by querying e2, then it has a query cost of 2 for the instance specified by
the Figures 2.7a and 2.7c while the offline optimal solution has a query costs of only 1.
Symmetrically, if a deterministic algorithm starts by querying e3, then it has a query cost of 2
for the instance specified by the Figures 2.7a and 2.7d while the offline optimal solution has a
query cost of only 1. This implies the theorem.

While the lower bounds for hypergraph orientation and MST under explorable uncertainty
are based on the comparison of two uncertain weights, we can construct a stronger lower
bound for set selection under explorable uncertainty by exploiting that we have to compare
sums of uncertain weights. Erlebach et al. proved a lower bound of 2d on the adversarial
competitive ratio for the problem variant that does not require us to compute the the minimum
set weight, where d is the cardinality of the largest given set [EHK16]. A slight modification
of their lower bound example allows us to obtain a lower bound of d on the adversarial
competitive ratio for our problem variant where we have to also determine the minimum set
weight.

Theorem 2.2.4 (Erlebach et al. [EHK16]). No deterministic algorithm has a competitive ratio
better than d for the set selection problem under explorable uncertainty in the adversarial
setting, even for uniform query costs, where d is the cardinality of the largest set in the input.

Proof. Consider the instance given in Figure 2.8, which consists of the uncertainty intervals
I = {I0, . . . , Id} and sets S = {S1, S2} with S1 = {I1, . . . , Id} and S2 = {I0}. For
i ∈ {1, . . . , d}, the uncertainty intervals are Ii = (0, 1). Interval I0 is trivial with I0 = {0.65}.
See Figure 2.8 for an illustration of the instance.

Since S2 only contains the trivial interval I0, we already know that w(S2) = w0 =
0.65 and it only remains to determine whether w(S1) is smaller than 0.65. Based on the
given intervals, we only know that w(S1) is contained in the interval IS1 = (LS1 , US1) =
(
∑︁

Ii∈S1
Li,
∑︁

Ii∈S1
Ui) = (0, d). Recall that a query to an interval Ii ∈ S1 reveals wi and,

thus, reduces the interval that could potentially contain w(S1) to (LS1 + (wi − Li), US1 −
(Ui − wi)).

15

2. Preliminaries and Structural Results

.

Weight
0 1 2 3d− 1 d

S1

Id
Id−1

•
•
•

I3
I2
I1

IS1

I0 S2

w(S2)

FIGURE 2.8: Lower bound example for the set selection problem under explorable uncer-
tainty. The instance consists of the intervals I = {I0, . . . , Id} and the sets S = {S1, S2}
with S1 = {I1, . . . , Id}, S2 = {I0}, I0 = {0.65} and Ii = (0, 1) for i ∈ {1, . . . , d}. Also
shows the interval IS1 for the set S1.

Fix an arbitrary deterministic algorithm ALG. Since the precise weights wi are unknown
to ALG, it cannot distinguish the intervals I1, . . . , Id and queries these intervals in an arbitrary
order until it has sufficient information to decide whether w(S1) ≥ 0.65.

Assume without loss of generality that ALG queries the intervals in increasing order of
their indices. Then, the precise weights might be revealed as wi = ε for all i ∈ {1, . . . , d− 1}
for an infinitesimally small ε > 0. But then, even after querying I1, . . . , Id−1, the value w(S1)
can still be anywhere in the interval (ε ·(d−1), 1+ε ·(d−1)). Thus, ALG can still not decide
whether w(S1) ≥ 0.65 and has to also query Id. This leads to a total of d queries by ALG.
If this last query reveals wd = 1− ε, then querying only Id reduces the interval IS1 that can
potentially contain w(S1) to (1− ε, d− ε) and, therefore, suffices to prove that w(S1) > 0.65.
Thus, we get ALG = d and OPT = 1, which implies the theorem. See Figure 2.8 for an
illustration of the precise weights.

We can also use adversarial competitive analysis to justify the assumption that the given
uncertainty intervals are either open or trivial by giving stronger adversarial lower bounds
for the problem variants where the intervals can be closed. Such lower bounds exist for all
problems considered in this thesis, except for the sorting problem for which Halldórsson and
de Lima [HL21] showed that 2 remains a tight bound on the competitive ratio even for closed
uncertainty intervals. The following theorem states the stronger lower bounds for the other
problems.

Theorem 2.2.5 (Erlebach et al. [Hof+08; EHK16], Kahan [Kah91]). If the given uncertainty
intervals can be closed, then no deterministic algorithm can have an adversarial competitive
ratio better than n for the hypergraph orientation, minimum spanning tree or set selection
problem under explorable uncertainty. Here, n is the number of given uncertainty intervals.
For set selection, this holds even for instances where all sets have cardinality one.

Proof. First, consider a hypergraph orientation instance with hypergraph H = (V,E), vertices
V = {v1, . . . , vn}, a single hyperedge S = V , closed uncertainty intervals Ivi = [0, 10] for
all i ∈ {1, . . . , n} and uniform query costs. The goal is to adaptively query vertices until
we have sufficient information to orient the only hyperedge towards a vertex of minimum
precise weight. Since the uncertainty intervals are closed, querying a vertex vi with wvi = 0
immediately solves the instance as no vertex vj with i ̸= j can have a smaller weight than 0.

A deterministic algorithm ALG cannot distinguish between the intervals of the different
vertices and, therefore, queries the vertices in an arbitrary order until the instance is solved.

16

2. Preliminaries and Structural Results

Ivn
Ivn−1 •

•
•

Iv3
Iv2
Iv1

FIGURE 2.9: Uncertainty intervals and precise weights for the lower bound example of The-
orem 2.2.5 for the hypergraph orientation problem.

Assume without loss of generality that ALG queries the vertices in increasing order of their
indices. Then, an adversary can reveal the precise weights of all vi with i < n as wvi = 1. This
means that the instance is not solved even after the algorithm queried the vertices v1, . . . , vn−1

as vertex vn could still have a weight wvn < 1 or wvn > 1. This forces the algorithm to also
query vn leading to a query cost of ALG = n. If the adversary then reveals wvn = 0, then
querying only vn would have been sufficient to solve the instance, which implies OPT = 1.
Thus, ALG = n ·OPT. See Figure 2.9 for an illustration.

For set selection, consider an instance with uncertainty intervals I = {I1, . . . , In} and
Ii = [0, 10] for all Ii ∈ I, and sets S = {S1, . . . , Sn} with Si = {Ii} for all i ∈ {1, . . . , n}.
Since all sets have size one, this problem is equivalent to the hypergraph orientation problem
with a single hyperedge with the only difference that we require to determine the precise
minimum weight of the intervals. For the lower bound instance above however, this does not
make a difference and we can prove a lower bound for set selection in exactly the same way.

For the minimum spanning tree problem, consider an instance consisting of a single cycle
with edges {e1, . . . , en} and closed uncertainty intervals Iei = [0, 10] for all i ∈ {1, . . . , n}.
The problem comes down to determining the edge with maximum weight on the cycle. We
can prove a lower bound of n in the same way as for hypergraph orientation, but now the
adversary reveals the last weight as wen = 10. See Figure 2.10 for an illustration.

2.2.3 Competitive Analysis Beyond the Worst-Case

In the previous section, we reviewed lower bound instances for the adversarial competitive
ratio of all problems considered in this thesis. All these lower bounds hold for quite simple
instances but require a very specific worst-case realization of precise weights. The assumption
that the precise weights are realized in such a worst-case manner and that the algorithm has no
additional knowledge (apart from the uncertainty intervals) about them, might in many cases
be too pessimistic.

For this reason, we consider different models for optimization under explorable uncer-
tainty where we assume access to additional information on the precise weights and analyze
our algorithms beyond the worst-case. To that end, we define the stochastic setting and

e1

e2

e3

e4 e5

e6

Ien
Ien−1 •

•
•

Ie3
Ie2
Ie1

FIGURE 2.10: Graph, uncertainty intervals, and precise weights for the lower bound example
of Theorem 2.2.5 for the minimum spanning tree problem.

17

2. Preliminaries and Structural Results

learning-augmented algorithm design, two less pessimistic models to analyze algorithms for
optimization under explorable uncertainty.

The Stochastic Setting Consider any problem under explorable uncertainty with the uncer-
tainty intervals I = {I1, . . . , In}. In the stochastic setting, we assume that each interval Ii ∈ I
is associated with a probability distribution di over the uncertainty interval Ii = (Li, Ui). In
contrast to the adversarial setting, we assume that the precise weight wi of Ii is drawn from
Ii according to the distribution di. During the course of this thesis, we will assume that the
distributions of different intervals are independent of each other and consider scenarios where
the distributions are known or unknown to the algorithm.

To analyze algorithms for optimization under explorable uncertainty in the stochastic
setting, we use the stochastic competitive ratio. Note that in the stochastic setting, a problem
instance J is associated with distributions instead of initially unknown precise weights. The
offline optimal query cost OPT(J) necessary to solve J now depends on the distributions di
instead of the fixed but hidden precise weights wi. Thus, OPT(J) is a random variable. Since
an adaptive algorithm ALG can decide its next query depending on results of previously exe-
cuted queries, the execution and cost of ALG on instance J also depends on the distributions
and, thus, ALG(J) is also a random variable. The stochastic competitive ratio considers the
expected values of OPT(J) and ALG(J).

Definition 2.2.6 (Stochastic competitive ratio). Consider a problem under stochastic ex-
plorable uncertainty and let ALG be a fixed deterministic algorithm for this problem. For an
instance J of the problem let ALG(J) denote the query cost needed by ALG to solve J and
let OPT(J) denote the offline optimal query cost necessary to solve J . The competitive ratio
of ALG is

max
J∈J

E[ALG(J)]

E[OPT(J)]
,

where J refers to the set of all instances of the considered problem. We say that ALG is
ρ-competitive in the stochastic setting if it has a stochastic competitive ratio of at most ρ.

In Chapters 3 and 6 we consider the hypergraph orientation and set selection problems
under stochastic explorable uncertainty and design algorithms for these problems that improve
upon the adversarial lower bounds in terms of their stochastic competitive ratio. The only
previous work in the stochastic setting we are aware of is by Chaplick et al. [Cha+21] and
considers sorting and other special cases of hypergraph orientation; we will discuss their
results in Chapter 3.

Learning-Augmented Algorithm Design In learning-augmented algorithm design, we
assume access to untrusted predictions on the given problem instance. For a problem under
explorable uncertainty with the uncertainty intervals I = {I1, . . . , In}, we could for example
have access to predictions wi on the precise weights wi of all intervals Ii ∈ I. Since these
predictions are untrusted, we might have wi ̸= wi for some intervals Ii ∈ I and, therefore, an
algorithm still has to execute queries in order to solve the underlying problem w.r.t. the precise
weights. However, adaptive algorithms can use these predictions to decide their next query.

If the predictions are accurate, they can help algorithms to improve upon adversarial lower
bounds. In the lower bound instance of Figure 2.6 for example, an accurate prediction on
whether the weights wv or wu are contained in the intersection of both intervals would help
to decide what vertex to query first. Relying too much on the predictions however, could
potentially lead to worse competitive ratios than the adversarial lower bounds if the predictions
are faulty.

18

2. Preliminaries and Structural Results

The goal in learning-augmented algorithm design is to give algorithms that perform better
than adversarial lower bounds if the predictions are correct, but still achieve good performance
guarantees even if the predictions are arbitrarily bad. To formalize these properties, we employ
the notions of α-consistency and β-robustness as introduced in [LV21; PSK18].

Definition 2.2.7 (Consistency and robustness). Consider a problem under explorable un-
certainty with uncertainty intervals I = {I1, . . . , In} and let ALG be a fixed deterministic
algorithm for this problem with access to untrusted predictions wi on the precise weights wi

for all intervals Ii ∈ I. We say that ALG is α-consistent if it has an adversarial competitive
ratio of at most α for completely accurate predictions, i.e., if wi = wi for all Ii ∈ I. The
algorithm is β-robust if it achieves an adversarial competitive ratio of at most β even for
arbitrarily wrong predictions.

Note that consistency and robustness only formulate the two extreme cases in terms of
prediction quality, perfect predictions and arbitrarily wrong predictions. In learning-augmented
algorithm design we aim at giving more fine-grained performance guarantees that smoothly
transition between consistency and robustness depending on suitably defined prediction errors.

In Chapters 4 and 5, we consider hypergraph orientation and the MST problem under
explorable uncertainty with untrusted predictions. We will discuss suitable error measures
for these problems, give consistent and robust algorithms with guarantees depending on
these errors, and prove bounds on the optimal tradeoff between consistency and robustness.
Furthermore, we discuss the learnability of the predictions with respect to different error
measures. To our knowledge, there exists no previous work on explorable uncertainty in
learning-augmented algorithm design.

2.3 Local Bounds on OPT and the Witness Set Algorithm

After we have seen adversarial lower bounds for our problems in the previous section, we now
consider algorithms that match these lower bounds.

To that end, we discuss techniques that allow comparisons between the query costs of an
algorithm and an optimal solution. Based on these techniques, we consider the witness set
algorithm [Bru+05], a powerful framework that is used for the majority of existing results on
optimization under explorable uncertainty. While the witness set algorithm in the literature is
only stated for uniform query costs, we generalize it to arbitrary query costs by using a local
ratio technique. To our knowledge, this generalization is not yet published in the literature.
Afterwards, we show how to apply the generalized witness set algorithm to hypergraph
orientation and set selection under explorable uncertainty and match the adversarial lower
bounds of the previous section. We remark that the application of the witness set algorithm for
set selection is largely based on existing work by Erlebach et at. [EHK16] and only generalized
to arbitrary weights. The application of the witness set algorithm to hypergraph orientation
exploits the observations by Kahan [Kah91] for the problem of orienting a single hyperedge.
The witness set framework can also be applied to match the adversarial lower bound of the
minimum spanning tree problem [Hof+08]; we discuss this application in Chapter 5.

While nearly all existing results on optimization under explorable uncertainty use worst-
case analysis and the witness set algorithm, we finish this section by briefly discussing the
limits of the witness set algorithm in settings beyond the worst-case.

2.3.1 Witness Sets and the Witness Set Algorithm

We continue by surveying existing algorithms for our problems under explorable uncertainty.
The absolute majority of those algorithms are analyzed in the adversarial setting and we focus

19

2. Preliminaries and Structural Results

Algorithm 1: Abstract formulation of the witness set algorithm for uniform query
costs by Bruce et al. [Bru+05].

Input: Instance of a problem under explorable uncertainty with uniform query costs
and the set of queryable elements P .

Output: A feasible query set Q for the given problem instance.
1 Q← ∅;
2 while The problem is not solved yet do
3 Query all elements of a witness set W ⊆ P \Q;
4 Q← Q ∪W ;

5 return Q;

on these algorithms. In particular, we consider the algorithms for our problems that match the
adversarial lower bounds of the previous section. All these algorithms are implementations
of the witness set algorithm as introduced by Bruce et al. [Bru+05], which is based on the
concept of witness sets.

Definition 2.3.1 (Bruce et al. [Bru+05]). Consider an instance of a problem under explorable
uncertainty with the set of queryable elements P . A subset W ⊆ P is a witness set if every
feasible solution for the given problem instance contains at least one member of W . That is,
|W ∩Q| ≥ 1 for all Q ∈ Q, where Q is the set of feasible query sets for the given instance.

In most existing work on explorable uncertainty with uniform query costs, witness sets are
the key concept to compare the queries selected by an algorithm with the queries of an optimal
solution as even the optimal solution must contain at least one member of each witness set.
The core idea of the witness set algorithm [Bru+05] for uniform query costs is to repeatedly
query disjoint witness sets until the given problem is solved. For pseudocode see Algorithm 1.
Bruce et al. [Bru+05] showed that querying only small witness sets is sufficient to achieve
good competitive ratios, as formalized by the following theorem.

Theorem 2.3.2 (Bruce et al. [Bru+05]). Consider a problem under explorable uncertainty with
uniform query costs. If the witness set algorithm can solve every instance of this problem while
only querying witness sets of size at most ρ, then the witness set algorithm is ρ-competitive for
the problem.

Proof. Consider an arbitrary problem under explorable uncertainty and an arbitrary instance
of this problem with the set of queryable elements P . By assumption of the theorem, the
witness set algorithm can solve this instance by querying only witness sets of size at most ρ.

Let k denote the number of iterations of the while-loop that the witness set algorithm
executes to solve the problem instance while only querying witness sets of size at most
ρ in Line 3. Furthermore, let Qi with i ∈ {1, . . . , k} denote the set of queries executed
by the algorithm in the i’th execution of the while-loop. By definition of Line 3, we have
Qi ∩ Qi′ = ∅ for all i, i′ ∈ {1, . . . , k} with i ̸= i′. The assumption of the theorem implies
|Qi| ≤ ρ for all i ∈ {1, . . . , k}. Thus, the number of queries executed by the algorithm is
ALG =

∑︁
i∈{1,...,k} |Qi| ≤ ρ · k.

Next, consider the set OPT of queries executed by an optimal solution for the problem
instance. As all sets Qi with i ∈ {1, . . . , k} are witness sets, we have |Qi ∩OPT| ≥ 1. Since
the sets Qi are pairwise disjoint, this directly implies |OPT| ≥ k.

Thus, we can conclude ALG ≤ ρ · k ≤ ρ · |OPT|, which implies the theorem.

While Bruce et al. [Bru+05] only considered uniform query costs, it is not hart to generalize
the witness set algorithm to arbitrary (non-negative) query costs by employing a local ratio

20

2. Preliminaries and Structural Results

Algorithm 2: Abstract formulation of the witness set algorithm for arbitrary query
costs.

Input: Instance of a problem under explorable uncertainty with the set of queryable
elements P and arbitrary query costs ce ≥ 0 for all e ∈ P .

Output: A feasible query set Q for the given problem instance.
1 Q← ∅;
2 c′e ← ce for all e ∈ P ;
3 while The problem is not solved yet do
4 W ← witness set with W ⊆ P \Q;
5 δ ← mine∈W c′e;
6 c′e ← c′e − δ for all e ∈W ;
7 Query W ′ = {e ∈W | c′e = 0};
8 Q← Q ∪W ′;

9 return Q;

technique; see [Bar+04] for a survey on the local ratio technique. In contrast to the case
of uniform weights, the witness set algorithm for arbitrary query costs cannot necessarily
afford to compute and query a complete witness set W in each iteration. This is, because W
might contain very expensive queries that are not part of the optimal solution. Executing these
expensive queries might already by enough for the algorithm to not be ρ-competitive anymore.
Instead, the witness set algorithm for arbitrary query costs (cf. Algorithm 2) computes a
witness set W and the minimum query cost δ over the elements of W . Since W is a witness
set, even the optimal solution has to invest query costs of at least δ into querying elements of
W . The algorithm then reduces the query costs of all members of W by δ and queries only
the elements of W whose query costs were reduced to zero (cf. Lines 4 to 8 in Algorithm 2).
We show that this adjustment of the witness set algorithm is sufficient to obtain the following
generalization of Theorem 2.3.2.

Theorem 2.3.3. Consider a problem under explorable uncertainty with arbitrary query costs.
If the witness set algorithm for arbitrary query costs can solve every instance of this problem
while only considering witness sets of size at most ρ in Line 4, then the witness set algorithm
is ρ-competitive for the problem.

Proof. Consider an arbitrary problem under explorable uncertainty and an arbitrary instance
of this problem with the set of queryable elements P . By assumption of the theorem, the
witness set algorithm for arbitrary query costs only considers witness sets of size at most ρ in
Line 4.

Let k denote the number of iterations of the while-loop executed by the algorithm. For
each iteration i ∈ {1, . . . , k}, let δi denote the value δ as computed by the algorithm in Line 5
during iteration i. Furthermore, let ci : P → R+ denote the current function c′ as used by the
algorithm at the end of iteration i and let c0 denote the initially given query costs. Note that
the choice of δ in Line 5 ensures that ci(e) ≥ 0 for all e ∈ P and all i ∈ {1, . . . , k}. Finally,
let OPTi denote the cost of an optimal solution for the current problem instance at the end of
iteration i and query costs ci. Let OPT0 = OPT denote the cost of an optimal solution for
the initially given query costs and the initial instance.

We first lower bound the optimal query cost for the given instance. As the query costs ci
remain non-negative over the execution of the algorithm, we have OPTi ≥ 0. We argue that
OPTi ≤ OPTi−1 − δi holds for all i ∈ {1, . . . , k}. This implies OPT = OPT0 ≥

∑︁k
i=1 δi.

To prove that OPTi ≤ OPTi−1 − δi holds for all i ∈ {1, . . . , k}, consider an arbitrary
iteration i and let Wi denote the set W as computed by the algorithm in the execution of
Line 4 during iteration i. Since Wi is a witness set, every feasible query set, including the

21

2. Preliminaries and Structural Results

optimal solution for query costs ci−1, has to query at least one member of Wi. Thus, by
reducing the query cost of each member of Wi by δi, we decrease the cost of each feasible
solution by at least δi. This implies that the optimal solution for the instance at the end of
iteration i with query costs ci is cheaper than the optimal solution for the instance at the end
of iteration i− 1 with query costs ci−1 by at least δi. Thus, OPTi ≤ OPTi−1 − δi, and we
can conclude OPT ≥∑︁k

i=1 δi.
To finish the proof, we show ALG ≤ ρ ·∑︁i∈{1,...,k} δi for the query cost ALG of the

witness set algorithm. Since the algorithm only queries elements e with c′e = 0, the total query
cost of the algorithm is at most

∑︁
e∈P c0(e)− ck(e), which is the total reduction of the query

costs over the execution of the algorithm. By definition of Lines 5 and 6, this value is exactly∑︁
i∈{1,...,k} |Wi| · δi. As the sets Wi are witness sets of size at most ρ, we get

ALG ≤
∑︂
e∈P

c0(e)− ck(e) =
∑︂

i∈{1,...,k}
|Wi| · δi ≤ ρ ·

∑︂
i∈{1,...,k}

δi ≤ ρ ·OPT,

which implies the theorem.

2.3.2 Mandatory Elements and Preprocessing Algorithms

An important special case of witness sets are those of cardinality one. We say that a queryable
element that comprises a witness set of size one is mandatory because every feasible query set
must contain such elements.

Definition 2.3.4 (Mandatory Elements). Consider an instance of a problem under explorable
uncertainty with the set of queryable elements P . An element e ∈ P is mandatory for the
instance if e ∈ Q holds for every Q ∈ Q, where Q is the set of all feasible query sets for the
instance.

Identifying mandatory elements is an important part of many algorithms under explorable
uncertainty because they can be queried without ever worsening the competitive ratio of the
algorithm. This often happens in a preprocessing step that also transfers the input instance
into a certain structure; we will see examples for such preprocessing steps in Chapters 3 to 5.

2.3.3 A Witness Set Algorithm for Hypergraph Orientation

We now consider an implementation of the witness set algorithm for hypergraph orienta-
tion under explorable uncertainty. The implementation exploits results and observations by
Kahan [Kah91] for the problem of orienting a single hyperedge.

Recall that we are given a hypergraph H = (V,E) and uncertainty intervals Iv for each
v ∈ V . Each vertex has an initially unknown precise weight wv ∈ Iv that can be revealed via
a query at cost cv and each uncertainty interval Iv is either open or trivial, i.e., Iv = (Lv, Uv)
or Iv = {wv}. Our goal is to adaptively query vertices until we have sufficient information
to orient each hyperedge S ∈ E towards a vertex of minimum precise weight in S, while
minimizing the total query costs.

In order to define the witness set algorithm, we first give characterizations of mandatory
elements and witness sets for hypergraph orientation under explorable uncertainty.

Mandatory Vertices We first give a full characterization of mandatory vertices based on
the precise weights of the vertices. Since the precise weights are initially unknown, we cannot
directly use this characterization to identify mandatory vertices within an algorithm. Therefore,
we also give criteria to identify mandatory vertices based only on the structure of the vertex
intervals and precise weights revealed by already executed queries.

22

2. Preliminaries and Structural Results

Lemma 2.3.5. Consider an instance H = (V,E) for hypergraph orientation under explorable
uncertainty. A vertex v ∈ V with a non-trivial uncertainty interval Iv is mandatory if and
only if there is a hyperedge S ∈ E with v ∈ S such that either (i) v is a minimum-weight
vertex of S and wu ∈ Iv for some u ∈ S \ {v}, or (ii) v is not a minimum-weight vertex of S
and wu ∈ Iv for a minimum-weight vertex u of S.

A common proof technique to show that a vertex v ∈ V is mandatory, is to consider the
query set V \ {v}. Showing that querying every vertex except v does not solve the problem
implies that v is mandatory. Vice versa, if querying V \ {v} solves the problem, then v is not
mandatory. This proof idea also translates to different problems under explorable uncertainty.

Proof. If v is a minimum-weight vertex of hyperedge S with a non-trivial uncertainty interval
Iv that contains wu of another vertex u ∈ S \ {v}, then S cannot be oriented even if we
query all vertices in S \ {v} as we cannot prove wv ≤ wu without querying v. If v is not a
minimum-weight vertex of a hyperedge S with v ∈ S and Iv contains the minimum weight w∗

of S, then S cannot be solved even if we query all vertices in S \ {v}, as we cannot prove that
w∗ ≤ wv without querying v.

If Iv is a minimum-weight vertex of hyperedge S, but wu /∈ Iv for every u ∈ S \ {v},
then S \ {v} is a feasible solution for orienting S, as querying it proves that all vertices in
S \ {v} have a larger weight than v. If v is not a minimum-weight vertex of hyperedge S
and Iv does not contain the minimum weight of S, then again S \ {v} is a feasible solution
for S. If every hyperedge S that contains v falls into one of these two cases, then querying all
vertices except v is a feasible query set for the whole instance.

Explicitly, Lemma 2.3.5 only enables us to identify mandatory vertices given full knowl-
edge of the precise weights, but it also implies criteria to identify known mandatory vertices,
i.e., vertices that are known to be mandatory given only the intervals, and precise weights
revealed by previous queries.

We call a vertex leftmost in a hyperedge S if it has an interval of minimum lower limit
among the vertices in S. Note that if a leftmost vertex v in S has a trivial uncertainty interval
Iv = {wv}, then no vertex in S can have a smaller precise weight than v and we therefore
already know that we can orient S towards v. We say that a hyperedge is solved, if we already
have sufficient information to orient the hyperedge. If a hyperedge has a leftmost vertex with
a trivial uncertainty interval, then the hyperedge is solved. The following corollary follows
directly from Lemma 2.3.5 and gives a characterization of known mandatory vertices.

Corollary 2.3.6. Consider an instance H = (V,E) for hypergraph orientation under ex-
plorable uncertainty. If the interval of a leftmost vertex v in a not yet solved hyperedge S
contains the precise weight of another vertex in S, then v is mandatory. In particular, if v is
leftmost in (a not yet solved) S and Iu ⊆ Iv for some u ∈ S \ {v}, then v is mandatory.

The latter part of the corollary was also directly proven by Chaplick et al. [Cha+21]. Note
that executing queries can change which vertices are leftmost in a hyperedge S and can also
change the applicability of the corollary. This is, because the definition of leftmost and the
corollary depend on the intervals and a query to a vertex v changes the uncertainty interval Iv
from (Lv, Uv) to {wv}.

Witness Sets We continue by giving a characterization of witness sets. In order to match
the adversarial lower bound of 2 (cf. Theorem 2.2.2), we rely on identifying witness sets of
size at most 2. If we always can identify a witness set of at most two as long as the instance is
not solved yet, then we can implement the witness set algorithm for arbitrary query costs and
apply Theorem 2.3.3 with ρ = 2. To this end, we can use the following characterization that
was originally given by Kahan [Kah91].

23

2. Preliminaries and Structural Results

Lemma 2.3.7 (Kahan [Kah91]). Consider an instance H = (V,E) for hypergraph orientation
under explorable uncertainty. Let S ∈ E be a not yet solved hyperedge of H . A set {v, u} ⊆ S
with Iv ∩ Iu ̸= ∅ and v or u leftmost in S is a witness set.

Proof. We show the lemma via proof by contradiction. Assume for the sake of contradiction
that {u, v} is as described in the lemma but not a witness set. Then, by the definition of
witness sets (cf. Definition 2.3.1), there must exist a feasible query set Q ⊆ V with v, u ̸∈ Q.
In particular, the query set Q = V \ {u, v} must be feasible and, therefore, reveal sufficient
information to orient the hyperedge S of the lemma towards a vertex v∗ of minimum precise
weight in S.

Assume without loss of generality, that v is leftmost in S. Consider the problem instance
after querying Q. If wv′ ∈ Iv for some v′ ∈ S \ {v, u}, then v would be mandatory
by Lemma 2.3.5 and {u, v} would clearly be a witness set. Since v is leftmost in S, it
therefore must hold wv′ ≥ Uv for all v′ ∈ S \ {u, v}. Thus, no vertex in S \ {u, v} can be of
minimum precise weight in S.

As Iv ∩ Iu ̸= ∅, there exist both, a realization of the precise weights wv and wu with
wv < wu and a realization of precise weights with wv > wu. In one of those realizations we
have to orient S towards v and in the other we have to orient S towards u. Without querying
at least one of v and u, we cannot distinguish between those realizations and, therefore, do not
have sufficient information to orient S. This implies that Q is not feasible; a contradiction.

The Witness Set Algorithm Using the characterizations of mandatory vertices and witness
sets (Lemmas 2.3.5 and 2.3.7), we can implement the witness set algorithm for hypergraph
orientation under explorable uncertainty. Algorithm 3 formalizes this implementation. Lines 5
to 7 and Lines 9 to 13 implement Lines 4 to 8 of the abstract witness set Algorithm 2 using the
characterizations of Lemmas 2.3.5 and 2.3.7. When applying the two lemmas, the algorithm
always considers the current instance. That is, the instance with the uncertainty intervals
after executing all previous queries. This allows us to exploit Theorem 2.3.3 and prove the
following theorem. We remark that this result is also implied by the results in [GSS16], but
only indirectly and with a pseudo-polynomial running time.

Theorem 2.3.8. There exists a 2-competitive algorithm for hypergraph orientation under
explorable uncertainty with arbitrary query costs.

Proof. We prove the theorem by showing that Algorithm 3 is 2-competitive for hypergraph
orientation under explorable uncertainty.

Consider an arbitrary instance for hypergraph orientation under explorable uncertainty
with hypergraph H = (V,E), uncertainty intervals Iv for all v ∈ V and query costs cv ≥ 0
for all v ∈ V . To prove that the algorithm indeed solves the given instance, we have to argue
that we always can find a mandatory vertex with Lemma 2.3.5 or a witness set of size two
with Lemma 2.3.7 as long as the instance is not solved yet. This then implies that the algorithm
indeed terminates and, therefore, solves the instance. Assume for the sake of contradiction that
we cannot apply Lemmas 2.3.5 and 2.3.7 but the instance is not solved yet. If we can neither
apply Lemma 2.3.5 nor Lemma 2.3.7, then this means that the interval Iv of the leftmost
vertex v (after executing all previous queries) of each not yet solved hyperedge S ∈ E does
not contain the precise weight wu of a u ∈ S \ {v} that has already been queried and is not
intersected by the interval Iu of an u ∈ S \ {v} that is still unqueried. Otherwise, we could
apply one of the lemmas. But since v is leftmost in S, this means that v must be of minimum
precise weight in S. Thus, we already know the orientation and the problem is already solved.

It remains to bound the query cost c(ALG) of Algorithm 3 for the instance. Since the
algorithm implements the witness set algorithm and only considers witness sets of size one or
two, we can apply Theorem 2.3.3 with ρ = 2 to conclude that c(ALG) ≤ 2 · c(OPT), where

24

2. Preliminaries and Structural Results

Algorithm 3: Witness set algorithm for hypergraph orientation under explorable
uncertainty with arbitrary query costs.

Input: Instance of hypergraph orientation under explorable uncertainty: Hypergraph
H = (V,E) with uncertainty intervals Iv and query costs cv ≥ 0 for all
v ∈ V .

Output: A feasible query set Q for the given problem instance.
1 Q← ∅;
2 c′v ← cv for all v ∈ V ;
3 while The problem is not solved yet do
4 while There exists a vertex v ∈ V \Q that is mandatory by Corollary 2.3.6 do
5 c′v ← 0;
6 Query v;
7 Q← Q ∪ {v};
8 if The problem is not solved yet then
9 W ← A witness set W ⊆ V \Q with |W | = 2 identified by Lemma 2.3.7;

10 δ ← minv∈W c′v;
11 c′v ← c′v − δ for all v ∈W ;
12 Query W ′ = {v ∈W | c′v = 0};
13 Q← Q ∪W ′;

14 return Q;

c(OPT) is the optimal query cost for the instance. This implies 2-competitiveness and, thus,
the theorem.

2.3.4 A Witness Set Algorithm for Set Selection

We consider an implementation of the witness set algorithm for the set selection problem under
explorable uncertainty. Recall that we are given a set of n uncertain weights wi represented by
uncertainty intervals I = {I1, . . . , In}with wi ∈ Ii and a family of m sets S = {S1, . . . , Sm}
with S ⊆ I for all S ∈ S . The intervals Ii are either open or trivial, i.e., Ii = (Li, Ui) or
Ii = {wi}, and can be queried at cost ci to reveal the precise weight wi. The goal is to
determine a subset of minimum weight and the corresponding weight while minimizing the
total query cost, where the weight of a subset S is w(S) =

∑︁
Ii∈S wi.

Erlebach et al. [EHK16] gave a witness set algorithm for the variant of set selection under
explorable uncertainty with uniform query costs where the goal is still to determine the subset
of minimum weight but it is not required to determine the precise weight of that set. Their
algorithm achieves a competitive ratio of 2d with d = maxS∈S |S|, i.e., d is the cardinality of
the largest set. We adjust their algorithm to our problem variant and show that the adjusted
algorithm achieves a competitive ratio of d, which matches the lower bound of Theorem 2.2.4.
Furthermore, we state the algorithm for arbitrary weights.

Witness Sets We start by giving a characterization of witness sets. Since our problem variant
has more constraints on feasible query sets, we can give a slightly simpler characterization than
in [EHK16]. Recall that, for each S ∈ S, the interval IS = (LS , US) with LS =

∑︁
Ii∈S Li

and US =
∑︁

Ii∈S Ui is guaranteed to contain the precise weight w(S) =
∑︁

Ii∈S wi of
S (with the exception of when S contains only trivial intervals, then we have to define
IS = [LS , US] = {w(S)}). The following lemma gives a characterization of witness sets

25

2. Preliminaries and Structural Results

based on the intervals IS . The proof of the lemma heavily exploits that we have to determine
the minimum set weight w∗ and not only identify the set of minimum weight.

Lemma 2.3.9. Consider a not yet solved instance of set selection under explorable uncertainty
with the set of intervals I and the family of subsets S . Let S be a set in S of minimum lower
limit, i.e., LS = minS′∈S LS′ . Then, the non-trivial intervals in S form a witness set.

Proof. Let S ∈ S be as described in the lemma and let w∗ be the (potentially still uncertain)
minimum set weight, i.e., w∗ = minS∈S w(S). Furthermore, let N(S) ⊆ S denote the subset
of non-trivial intervals in S.

Since the instance is not solved yet, there cannot be a set S′ ∈ S that only contains trivial
intervals and has minimum lower limit in S. If there was such a set, then w(S′) = LS′ and
no other set in S could have a smaller weight than w(S′). This means that we would already
know that S′ is a set of minimum weight and, as S′ only contains trivial intervals, would
already have sufficient information to compute w∗ = w(S′). This is a contradiction to the
instance not being solved yet. Thus, such a set cannot exist and we must have N(S) ̸= ∅.

We show the lemma via proof by contradiction. To that end, assume that there exists
a feasible query set Q ⊆ I for the instance with Q ∩ N(S) = ∅. Then, the query set
Q = I \ N(S) must also be feasible. Since Q ∩ N(S) = ∅, querying Q does not change
the interval IS of set S. Thus, even after querying Q, we still have that IS = (LS , US) is
non-trivial. As queries can only increase the lower limits of other sets S′ ∈ S \ {S}, set S
remains of minimum lower limit even after querying Q. This means that, even after querying
Q, set S can still potentially be the set of minimum weight. Since IS is still non-trivial, this
also implies that we still do not have sufficient information to compute w∗, even after querying
Q. Thus, Q is not feasible and we arrive at a contradiction.

The Witness Set Algorithm Using the characterization of witness sets, we can again give an
implementation of the witness set algorithm (cf. Algorithm 4). Since Lemma 2.3.9 implies that
there always exists a witness set of size at most d = maxS∈S |S| as long as the instance is not
solved yet, the algorithm clearly solves the given instance. Thus, we can apply Theorem 2.3.3
to conclude the following theorem.

Theorem 2.3.10. There exists a d-competitive algorithm for set selection under explorable
uncertainty, where d is the cardinality of the largest given set.

2.3.5 The Limits of the Witness Set Algorithm Beyond the Worst-Case

In the previous section, we have seen that implementations of the witness set algorithm achieve
the best possible adversarial competitive ratios for set selection and hypergraph orientation
(and by extension sorting) under explorable uncertainty. Furthermore, we will see in Chapter 5
that the same holds for the minimum spanning tree problem.

While this shows that the witness set algorithm is a powerful tool to achieve best possible
adversarial guarantees, we can also observe that it is tailored towards this kind of worst-
case analysis. By considering only witness sets of a cardinality that (at most) matches the
corresponding worst-case lower bound, the algorithm will never worsen its competitive ratio
beyond the lower bound, but it will also not significantly improve upon the worst-case lower
bounds even if we consider the learning-augmented or stochastic setting.

In particular, applying the Theorems 2.3.2 and 2.3.3 as a black box can never lead to an
improvement over the adversarial lower bounds because we would have to guarantee that we
only query witness sets smaller than the adversarial lower bound. Clearly, such a guarantee
would contradict the existence of the corresponding lower bound.

26

2. Preliminaries and Structural Results

Algorithm 4: Witness set algorithm for set selection under explorable uncertainty
with arbitrary query costs.

Input: Instance of the set selection under explorable uncertainty with the set of
uncertainty intervals I, the family of sets S and query costs ci ≥ 0 for all
Ii ∈ I.

Output: A feasible query set Q for the given problem instance.
1 Q← ∅;
2 c′i ← ci for all Ii ∈ I;
3 while The problem is not solved yet do
4 W ←Witness set with W ⊆ I \Q identified with Lemma 2.3.9;
5 δ ← minIi∈W c′i;
6 c′i ← c′i − δ for all Ii ∈W ;
7 Query W ′ = {Ii ∈W | c′i = 0};
8 Q← Q ∪W ′;

9 return Q;

However, using different techniques, breaking the adversarial lower bounds in settings
beyond the worst-case remains possible. Consider for example the lower bound instance
of Theorem 2.2.2 for hypergraph orientation. If we consider this instance in the stochastic
setting and the probability that one of the weights is contained in the intersection of the
intervals is very small, then the witness set algorithm will still have a stochastic competitive
ratio close to 2. If we on the other hand would start by querying just one of the vertices and
query the second one only if necessary, then the expected cost of our algorithm for the instance
would improve significantly.

This small example illustrates that we need new algorithms that do not purely rely on
witness sets in order to improve in settings that go beyond the worst-case. During the course
of this thesis, we design several such algorithm for all our problems that either significantly
extend the witness set framework or use completely novel techniques.

2.4 Related Work

While we will also summarize chapter-specific related work in all following chapters of
this thesis, we conclude this chapter by giving a brief general overview of previous work in
explorable uncertainty and related fields. The overview ignores the following papers as this
thesis is based on them and their results are content of the following chapters: [Erl+22; MS23;
Bam+21; Erl+23; Erl+20; MS21].

Previous works in the field of explorable uncertainty assume no knowledge of stochastic
information and aim for algorithms that perform well even in a worst-case. The line of research
on (adversarial) explorable uncertainty has been initiated by Kahan [Kah91] in the context
of selection problems. In particular, he showed for the problem of identifying all maximum
elements of a set of uncertain values that querying the intervals in order of non-increasing
right endpoints requires at most one more query than the optimal query set. Subsequent work
addressed finding the k-th smallest value in a set of uncertainty intervals [GSS16; Fed+03],
caching problems in distributed databases [OW00], computing a function value [KT01], sort-
ing [HL21], and classical combinatorial optimization problems, such as shortest path [Fed+07],
the knapsack problem [Goe+15], scheduling problems [Dür+20; Ara+18; AE20; AE21;
AD23], the MST problem and matroids [Hof+08; EH14; MMS17; FMM20; MS19; MÇ22].

Most related to our work are previous results on the MST problem and sorting with
explorable uncertainty. For the MST problem with uncertain edge weights represented by

27

2. Preliminaries and Structural Results

open intervals, a 2-competitive deterministic algorithm was presented and shown to be best
possible [Hof+08]. The algorithm is based on the concept of witness sets. The algorithm
from [Hof+08] repeatedly identifies a witness set of size 2 that corresponds to two candidates
for the maximum-weight edge in a cycle of the given graph, and queries both its elements.
It is also known that randomization admits an improved competitive ratio of 1.707 for the
MST problem with uncertainty [MMS17]. Both, a deterministic 2-competitive algorithm
and a randomized 1.707-competitive algorithm, are known for the more general problem of
finding the minimum base in a matroid [EHK16; MMS17], even for the case with non-uniform
query costs [MMS17]. If the input graph is a cactus graph, then there is a best possible
1.5-competitive randomized algorithm for arbitrary query costs [MÇ22]. A different variant
of the MST problem under explorable uncertainty considers uncertainty in the position of the
vertices instead of in the edge weights. In this variant, the vertices are points in the euclidean
space but their precise positions are uncertain within given (open or trivial) uncertainty sets.
A vertex can be queried to reveal its precise position. The weight of an edge is the euclidean
distance between its endpoints and the task is to query vertices until an MST with respect to
those weights can be determined. Erlebach et al. [Hof+08] gave a 4-competitive algorithm
and a matching lower bound for this problem with uniform query costs. As their algorithm
is again a witness set algorithm, it seems likely that the result extends to non-uniform query
costs via a local ratio technique. In terms of randomized algorithms, there is a lower bound
of 2.5 on the competitive ratio and a 2.5-competitive algorithm for a graph class similar to
cactus graphs and uniform query costs [MÇ22].

For the problem of sorting a single set of uncertain values, a 2-competitive algorithm
exists (even with arbitrary query costs) and is best possible [HL21]. In the case of uniform
query costs, the algorithm simply queries witness sets of size 2. In the case of arbitrary costs,
it first queries a minimum-weight vertex cover of the interval graph corresponding to the
instance and then executes any remaining queries that are still necessary. For uniform query
costs, the competitive ratio can be improved to 1.5 using randomization [HL21].

While most of the works mentioned above consider the same objective as the problems
considered in this thesis, i.e., to minimize the query costs, some of the scheduling prob-
lems [Dür+20; AE20; AE21; AD23] consider a combined objective that takes the query costs
and the objective of the underlying scheduling problem into account. More precisely, they
assume that the processing times of the jobs to be scheduled are uncertain but can be queried.
For each job, an upper bound on the processing time is part of the input. If a job is not queried,
then it has to be processed for as long as the upper bound demands. A query of a job might
reduce the processing time of the job but also takes time that contributes to the scheduling
objective. Thus, the scheduling objective includes both, the cost incurred by the processing of
the jobs and the query costs.

While the majority of previous works on explorable uncertainty considers adaptive algo-
rithms and queries that return precise uncertain values, there are some exceptions. Erlebach,
Hoffmann and de Lima [EHL23] consider selection problems in a model with limited adaptiv-
ity. In their model, queries are executed in rounds. In each round, an algorithm can query up-to
k elements in parallel and the goal is to minimize the number of rounds. Merino and Soto
consider the MST problem in a completely non-adaptive setting [MS19]. Gupta, Sabharwal
and Sen [GSS16] as well as Megow, Meißner and Skutella [MMS17] also consider queries
that return smaller uncertainty intervals instead of precise values.

The learning-augmented results of this thesis are the first to consider explorable uncer-
tainty in the recently proposed framework of online algorithms using (machine-learned)
predictions [MV17; PSK18; LV21]. After work on revenue optimization [MV17] and online
caching [LV21], Kumar et al. [PSK18] studied online algorithms with respect to consistency
and robustness in the context of classical online problems, ski-rental and non-clairvoyant
scheduling. They also studied the performance as a function of the prediction error. This

28

2. Preliminaries and Structural Results

work initiated a vast growing line of research. Studied problems include rent-or-buy problems
[PSK18; GP19; WZ20], revenue optimization [MV17], scheduling and bin packing [PSK18;
Ang+20; Mit20; Lat+20; ALT21; ALT22; LM22; Bam+22; LX21], caching and metrical
task systems [LV21; Roh20; Ant+23; Wei20], matching [Kum+19; Ant+20], graph prob-
lems [Kum+19; LMS22; Ebe+22; APT22] and secretary problems [Düt+21; Ant+20]. We
refer to [LM23] for a more complete list of related work in the field of learning-augmented
algorithm design. Very recently and in a similar spirit as our work, Lu et al. [Lu+21] studied
a generalized sorting problem with additional predictions. Their model strictly differs from
ours, as they focus on bounds for the absolute number of pair-wise comparisons whereas we
aim for query-competitive algorithms. Overall, learning-augmented online optimization is a
highly topical concept which has not yet been studied in the explorable uncertainty model.

The only previous work we are aware of that explicitly considers stochastic explorable
uncertainty is by Chaplick, Halldórsson, de Lima and Tonoyan [Cha+21]. Their main result is
a dynamic program that minimizes the expected query cost for the problem of sorting a set of
uncertain values. The stochastic competitive ratio of that problem remains open. They also
consider the problem of finding the minimum in a set of uncertain values with arbitrary query
costs and give a randomized 1.5-approximation of the, in expectation, best query strategy.

Also related to stochastic explorable uncertainty is the result by Maehara and Yam-
aguchi [MY20], who consider packing ILPs with (stochastic) uncertainty in the cost coeffi-
cients, which can be queried. They present a framework for solving several problems and
bound the absolute number of iterations that it requires to solve them, instead of the competi-
tive ratio. In terms of our problems, this result is related to the set selection problem and we
further discuss it in Chapter 6. In another work, Wang et al. [WGW22] consider selection-type
problems in a somewhat related model. In contrast to the explorable uncertainty setting, they
consider different constraints on the set of queries that, in a way, imply a budget on the number
of queries. They solve optimization problems with respect to this budget, which has a very
different flavor than our setting of minimizing the number of queries.

While all previous works in explorable uncertainty have uncertain numerical input param-
eters, there also is a line of related works where the existence of certain entities is uncertain
but can be queried [GV06a; Von07; Blu+20; Beh+19; AKL19; BBD22]. Most of these works
consider scenarios where edges in a graph exist with a certain probability and a query of an
edge reveals whether it actually exists. For example, Behnezhad et al. [BBD22] showed that
vertex cover can be approximated within a factor of (2 + ϵ) with only a constant number of
queried edges per vertex, where the constant can depend on the probability that an edge exists.

Further works that are different from explorable uncertainty but somewhat related include
research on the tradeoff between exploration and exploitation when coping with uncertainty in
the input data. Here, stochastic models are often assumed, e.g., in work on multi-armed ban-
dits [Tho33; BC12; GGW11] and the Weitzman’s Pandora’s box problem [Wei79], and more
recently query-variants of combinatorial optimization problems; see, e.g.,[Sin18; Gup+19],
and specific problems such as stochastic knapsack [DGV08; Ma18], orienteering [Gup+15;
BN15], matching [Che+09; Ban+12], and probing problems [GN13; GNS16].

29

Chapter 3

Orienting (Hyper)graphs under
Explorable Stochastic Uncertainty

This chapter considers the hypergraph orientation problem under explorable uncertainty in
the stochastic setting. Given a hypergraph with uncertain vertex weights that follow known
probability distributions, we study the problem of querying vertices of minimum total cost
until the identity of a vertex with minimum weight can be determined for each hyperedge.
Querying a vertex incurs a cost and reveals the precise weight of the vertex, drawn from the
given probability distribution. Using stochastic competitive analysis, we compare the expected
query cost of an algorithm with the expected cost of an offline optimal query set for the given
instance.

For the general problem, we give a polynomial-time f(α)-competitive algorithm, where
f(α) ∈ [1.618 + ϵ, 2] depends on the approximation ratio α for an underlying vertex cover
problem. We also show that no algorithm using a similar approach can be better than 1.5-
competitive.

Furthermore, we give polynomial-time 4/3-competitive algorithms for orienting bipartite
graphs with arbitrary query costs and for orienting hypergraphs with a single hyperedge and
uniform query costs. We complement both of these results with matching lower bounds.

Bibliographic remark: This chapter is mainly based on joint work with E. Bampis,
C. Dürr, T. Erlebach, M. de Lima and N. Megow [Bam+21]. Some minor structural results are
based on joint work with T. Erlebach, M. de Lima and N. Megow [Erl+23; Erl+20]. Therefore,
some parts correspond to or are identical with [Erl+23; Bam+21; Erl+20].

Contents
3.1 Introduction . 32

3.1.1 Our Results . 33
3.1.2 Related Work . 34
3.1.3 Outline . 34

3.2 Preliminaries . 35
3.2.1 Preprocessing, Mandatory Vertices and Mandatory Probabilities . 36
3.2.2 Lower Bounds on the Stochastic Competitive Ratio 38
3.2.3 Witness Sets and the Vertex Cover Instance 39
3.2.4 Lower Bounds on the Expected Optimal Query Cost 41
3.2.5 Vertex Cover-based Algorithms 42
3.2.6 Hardness of the Offline Problem 43

3.3 A Threshold Algorithm for Orienting Graphs 45
3.4 Threshold Algorithm for Arbitrary Query Costs 49

3.4.1 Fractional Lower Bounds on the Expected Optimum 50
3.4.2 A Threshold Algorithm for Arbitrary Query Costs 51

3.5 A Threshold Algorithm for Orienting Hypergraphs 53

31

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

3.5.1 Computing Mandatory Probabilities 53
3.5.2 A Threshold Algorithm for Orienting Hypergraphs 55
3.5.3 Bounds on the Necessary Adaptivity 56

3.6 Vertex Cover-Based Algorithms: Special Cases 57
3.6.1 Orienting Bipartite Graphs with Arbitrary Query Costs 58
3.6.2 Orienting a Special Star with Arbitrary Query Costs 60
3.6.3 Orienting a Single Hyperedge with Uniform Query Costs 65

3.7 Concluding Remarks . 69

3.1 Introduction

In this chapter, we consider the hypergraph orientation problem under explorable uncertainty in
the stochastic setting. Recall that we are given a hypergraph H = (V,E) with uncertain vertex
weights and our task is to orient each hyperedge S ∈ E towards a vertex of minimum precise
weight in S. Each vertex v ∈ V has an initially uncertain weight wv and is associated with
an uncertainty interval Iv that is either open or trivial, i.e., Iv = (Lv, Uv) or Iv = {wv}. We
call Lv and Uv the lower and upper limit of Iv. If Iv is trivial, then we define Lv = Uv = wv.
The precise weight wv of a vertex v can be revealed by a query at cost cv ≥ 0, and our goal
is to adaptively query vertices until we have sufficient information to orient all hyperedges.
See Section 2.1.2 for an example problem instance.

In the stochastic setting, each vertex v additionally has a known continuous probability
distribution1 dv over the uncertainty interval Iv = (Lv, Uv), and the precise weight wv of v
is drawn independently from dv. We assume that Iv is the minimal interval that contains the
support of dv, i.e., Lv is the largest value satisfying P[wv ≤ Lv] = 0 and Uv is the smallest
value satisfying P[wv ≥ Uv] = 0. An algorithm can sequentially make queries to vertices to
learn their weights until it has enough information to identify the minimum-weight vertex of
each hyperedge. A set Q ⊆ V of queries is called feasible if querying Q reveals sufficient
information to determine the orientation of each hyperedge. If all vertices have the same
query cost, we say that the query costs are uniform and assume w.l.o.g. that cv = 1 for all
v ∈ V . Otherwise, we speak of arbitrary query costs. For S ⊆ V , we define the query cost
as c(S) =

∑︁
v∈S cv. The objective of an algorithm is to minimize the expected cost of the

queries it makes.
We analyze our algorithms in terms of their stochastic competitive ratio (see also Defini-

tion 2.2.6 in Chapter 2): For a problem instance J , let ALG(J) denote the query cost required
by a deterministic algorithm ALG to solve J and let OPT(J) denote the minimal query cost
required to solve J . For a fixed realization of vertex weights, OPT(J) refers to the cost of an
optimal feasible query set that can be computed by an algorithm that knows all query results of
the realization up-front before actually executing any queries but still has to compute a feasible
query set. Since the precise weights are drawn from probability distributions, ALG(J) and
OPT(J) are random variables with the expected values E[ALG(J)] and E[OPT(J)]. The
stochastic competitive ratio is defined as

max
J∈J

E[ALG(J)]

E[OPT(J)]
,

1We assume the distribution is given in such a way that P[wv ∈ (a, b)] can be computed in polynomial time
for every v ∈ V, a, b ∈ R. For all our algorithms it suffices to be given a probability matrix: rows correspond
to vertices v, columns to elementary intervals (ti, ti+1), and entries to P[wv ∈ (ti, ti+1)], where t1, . . . , t2|V |
represent the sorted elements of {Lv, Uv|v ∈ V }.

32

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

where J is the set of all problem instances. We say that an algorithm is ρ-competitive if it has
a stochastic competitive ratio of at most ρ. During this chapter, all competitive ratios refer to
the stochastic setting unless explicitly stated otherwise.

Besides the general hypergraph orientation problem, we also consider the special case
where we are given a graph G = (V,E) instead of a hypergraph, called the graph orientation
problem. If G is the interval graph defined by I = {Iv | v ∈ V }, i.e., {u, v} ∈ E if and only
if Iu ∩ Iv ̸= ∅, then we speak of the sorting problem as orienting the graph corresponds to
sorting the vertices by their precise weights.

3.1.1 Our Results

Our first main result (Section 3.3) is an algorithm for the graph orientation problem with
competitive ratio 1

2(α +
√︁
8− α(4− α)), assuming we have an α-approximation for the

vertex cover problem (which we need to solve on an induced subgraph of the given graph).
This factor is always between ϕ ≈ 1.618 (for α = 1), and 2 (for α = 2). For α < 2, this is an
improvement compared to the adversarial lower bound of 2 (cf. Theorem 2.2.2 in Chapter 2).
The algorithm has a preprocessing phase with two steps. First, we compute the probability
that a vertex is mandatory, i.e., that it has to be queried by every algorithm in order to solve
the instance. We query all vertices with a mandatory probability over a certain threshold. The
second step uses an LP relaxation of the vertex cover problem to select some further vertices
to query. Next, we compute an α-approximation of the vertex cover on a subgraph induced by
the preprocessing and query the vertices in the resulting solution. The algorithm finishes with
a postprocessing that only queries mandatory vertices. For the analysis, we show two main
facts: (1) the expected optimal solution can be bounded by the expected optimal solutions
for the subproblems induced by a partition of the vertices; (2) for the subproblem on which
we compute a vertex cover in case of uniform query costs, the expected optimal solution can
be bounded by applying the Kőnig-Egerváry theorem [Sch03] on a particular bipartite graph.
When given arbitrary query costs, we utilize a technique of splitting the vertices in order to
obtain a collection of disjoint stars with obvious vertex covers that imply a bound on the
expected optimum.

We further show how to generalize the algorithm to hypergraphs (Section 3.5). Unfor-
tunately, in this case it is #P-hard to compute the probability of a vertex being mandatory,
but we can approximate the probability via sampling. This yields a randomized algorithm
that attains, with high probability, a competitive ratio arbitrarily close to the expression given
above for graphs. To generalize the previous approach, we need to solve the vertex cover
problem on an induced subgraph of an auxiliary graph that contains, for each hyperedge of
the given hypergraph, all edges between the vertex with the leftmost interval and the vertices
whose intervals intersect that interval.

We also consider a natural alternative algorithm (Section 3.6) that starts with a particular
vertex cover solution and then adaptively queries remaining vertices. We prove a competitive
ratio of 4/3 on special cases, namely, for bipartite graphs with arbitrary costs and for a single
hyperedge with uniform costs, and complement these results with matching lower bounds.

All our algorithms first non-adaptively query a vertex cover of an auxiliary graph and
afterwards adaptively query carefully selected remaining vertices until the instance is solved.
We call such algorithms vertex cover-based. We prove that no vertex cover-based algorithm
is better than 1.5-competitive for the general hypergraph orientation problem. Furthermore,
we study how much adaptivity in the query strategy is actually necessary to achieve good
competitive ratios. While our results for graph orientation require only two non-adaptive
query rounds, we show that more than two rounds are necessary to achieve a competitive ratio
better than log n for hypergraph orientation.

33

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

3.1.2 Related Work

Graph orientation problems are fundamental in the areas of graph theory and combinatorial
optimization. Usually, graph orientation refers to the task of giving an orientation to edges in
an undirected graph such that some given requirement is met. Different types of requirements
have been investigated. While Robbins [Rob39] initiated research on connectivity and reach-
ability requirements already in the 1930s, most work is concerned with degree-constraints;
cf. overviews given by Schrijver [Sch03, Chap. 61] and Frank [Fra11, Chap. 9].

Our requirement, orienting each edge towards its vertex of minimum weight, becomes
non-trivial and challenging when there is uncertainty in the vertex weights. While there are
different ways of modeling uncertainty in the input data, the model of explorable uncertainty
was introduced by Kahan [Kah91]. He considers the task of identifying the minimum element
in a set of uncertainty intervals, which is equivalent to orienting a single hyperedge. Unlike in
our model, no distributional information is known, and an adversary can choose weights in a
worst-case manner from the intervals. Kahan [Kah91] showed that querying the intervals in
order of non-decreasing left endpoints requires at most one more query than the optimal query
set, thus giving a competitive ratio of 2. Further, he showed that this is best possible in the
adversarial model.

Subsequent work addresses finding the k-th smallest value in a set of uncertainty in-
tervals [GSS16; Fed+03], caching problems [OW00], computing a function value [KT01],
and classical combinatorial optimization problems, such as shortest path [Fed+07], knap-
sack [Goe+15], scheduling problems [Dür+20; Ara+18; AE20], minimum spanning tree
and matroids [Hof+08; EH14; MMS17; FMM20; MS19; Erl+22]. Recent work on sorting
elements of a single or multiple non-disjoint sets is particularly relevant as it is a special case
of the graph orientation problem [Erl+23; HL21]. For sorting a single set in the adversarial
explorable uncertainty model, there is a 2-competitive algorithm and it is best possible, even
for arbitrary query costs [HL21]. The adversarial competitive ratio can be improved to 1.5 for
uniform query cost by using randomization [HL21]. Algorithms with limited adaptivity have
been proposed in [EHL23].

Although the adversarial model is arguably pessimistic and real-world applications often
come with some distributional information, surprisingly little is known on stochastic variants of
explorable uncertainty. The only previous work we are aware of is by Chaplick et al. [Cha+21],
in which they studied stochastic uncertainty for the problem of sorting a given set of uncertain
values, and for the problem of determining the minimum element in a single set of uncertain
values. They showed that the optimal decision tree (i.e., an algorithm that minimizes the
expected query cost among all algorithms) for a given instance of the sorting problem can
be computed in polynomial time. The competitive ratio of that algorithm remains open. For
the minimum problem, they leave open whether an optimal decision tree can be determined
in polynomial time, but give a 1.5-competitive algorithm and an algorithm that guarantees a
bound slightly smaller than 1.5 on the expectation of the ratio between the query cost of the
algorithm and the optimal query cost. Note that the expectation of this ratio is different to the
stochastic competitive ratio, which we defined as the ratio of the expectations. The problem
of scheduling with testing [LMS19] is also in the spirit of stochastic explorable uncertainty
but less relevant here.

3.1.3 Outline

In Section 3.2, we start by introducing preliminary results that are necessary to design and
analyze our algorithms, and also give lower bounds on both, the competitive ratio and the
(expected) optimal solution cost. Afterwards, we introduce the class of vertex cover-based
algorithms, which characterizes all algorithms that we use in this chapter and give a lower

34

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

bound on the competitive ratio for this class of algorithms. In Section 3.3, we give a threshold
algorithm that falls into this class of algorithms and analyze it for the graph orientation
problem with uniform query costs. The subsequent Section 3.4 generalizes this result to
arbitrary query costs. In Section 3.5, we generalize the results of the previous sections to
hypergraphs. The key challenge when orienting hypergraphs is that the computation of certain
probabilities that are necessary to execute our algorithms becomes #P -complete. We give
a sampling algorithm that allows us to approximate the necessary probabilities and use it to
design a randomized algorithm that matches the results of the previous sections with a high
probability. Finally, in Section 3.6, we give an algorithm that achieves the best expected query
cost among all vertex cover-based algorithms. We analyze this algorithm for the special cases
of orienting bipartite graphs with arbitrary query costs and orienting a single hyperedge with
uniform query costs.

3.2 Preliminaries

The hypergraph orientation problem and the graph orientation problem have already been
defined in Section 2.1 and we have seen some structural results for the problem in Section 2.3.3.
For the sake of readability, we restate these results here. Afterwards, we extend them to the
stochastic setting and discuss how to use them to lower bound the expected optimal query cost
for a given instance.

To this end, we briefly restate the concept of mandatory vertices (cf. Sections 2.3.2
and 2.3.3) and show how the probability for a vertex to be mandatory can be computed. Next,
we briefly restate the concept of witness sets (see also Section 2.3.1) and use it to define the
vertex cover instance associated with an instance of the hypergraph orientation problem. Such
vertex cover instances allow us to give more global lower bounds on the optimal query cost.
Exploiting these bounds, we give a full characterization of the expected optimal query cost.

The vertex cover instance is not only useful to lower bound the expected optimum but also
allows us to define a class of algorithms, the vertex cover-based algorithms. All algorithms
considered in this chapter fall into this class.

Finally, we also give a lower bound on the stochastic competitive ratio showing that no
algorithm can achieve a ratio better than 4

3 .

Basic definitions. Recall that we measure the performance of an algorithm by comparing
the expected cost of the queries it executes to the expected optimal query cost. Formally,
given a realization of the precise weights, we call a query set Q ⊆ V feasible if querying Q
permits one to identify the minimum-weight vertex in every hyperedge. We already proved
the following characterization of feasible query sets in Chapter 2.

Lemma 2.1.1. Consider an instance of hypergraph orientation under explorable uncertainty
with hypergraph H = (V,E) and uncertainty intervals Iv for all v ∈ V . A query set Q ⊆ V is
feasible if and only if it, for each hyperedge S, satisfies at least one of the following conditions:

1. Q contains all vertices v in S with non-trivial uncertainty intervals Iv that contain the
minimum precise weight w∗ = minu∈S wu of the vertices in S.

2. Let v ∈ S be a vertex of minimum weight in S, i.e., wv = w∗ = minu∈S wu. Q contains
all vertices u ∈ S \ {v} with intervals that intersect Iv and wu ≥ Uv holds for all
u ∈ S \ {v}.

An optimal query set is a feasible query set of minimum query cost. Since this depends on
the probabilistic realization of the precise weights, we denote by E[OPT] the expected query

35

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

cost of an offline optimal query set. Note that each realization of precise weights might have
a different optimal query set, so E[OPT] is not the expected cost of a certain query set but
the expected query cost over the different optimal query sets of all realizations. Similarly, we
denote by E[ALG] the expected query cost of the query set queried by an algorithm ALG. The
supremum of E[ALG]/E[OPT], over all instances of the problem, is called the competitive
ratio of A. Alternatively, one could compare E[ALG] against the cost E[A∗] of an optimal
adaptive algorithm A∗. However, in explorable uncertainty, it is standard to compare against
the optimal query set, and, since E[OPT] is a lower bound on E[A∗], all our algorithmic
results translate to this alternative setting.

We say that a vertex v ∈ S is leftmost in a hyperedge S ∈ E if the uncertainty interval Iv
of v has minimum lower limit among the intervals of the vertices in S, i.e., Lv = minu∈S Lu.
If a hyperedge S ∈ E contains a leftmost vertex v with a trivial uncertainty interval, then
clearly no other vertex in S can have a smaller weight than v and we already know the
orientation of S. Thus, we can assume without loss of generality that no hyperedge contains a
leftmost vertex with a trivial uncertainty interval, since otherwise we could simply remove
the hyperedge. Let v be a leftmost vertex in a hyperedge S ∈ E. Then we can also assume
that Iv ∩ Iu ̸= ∅ for all u ∈ S \ {v}, because otherwise the vertex u could be removed from
the hyperedge S as we would already know that wv < wu and that u cannot be of minimum
weight in S. For the special case of graphs, this means that we assume Iv ∩ Iu ̸= ∅ for each
{u, v} ∈ E, since otherwise we could simply remove the edge. The following assumption
summarizes these observations.

Assumption 3.2.1. We assume without loss of generality that all problem instances for
hypergraph orientation under explorable uncertainty satisfy the following properties:

1. No hyperedge S ∈ E has a leftmost vertex v with a trivial uncertainty interval Iv.

2. If v is leftmost in a hyperedge S, then Iv ∩ Iu ̸= ∅ for all u ∈ S \ {v}.

3.2.1 Preprocessing, Mandatory Vertices and Mandatory Probabilities

Our algorithms exploit that some vertices are part of every feasible query set. If we can
identify such a vertex, then we can query it without ever worsening the competitive ratio. A
vertex v is called mandatory if it belongs to every feasible query set for the given realization.
For example, if for some edge {u, v}, vertex u has already been queried and its value wu

belongs to the non-trivial interval Iv, then v is known to be mandatory as it is impossible to
decide whether wv < wu or wv ≥ wu without querying v. We restate the following lemma
that fully characterizes mandatory vertices (see Section 2.3.3 for the corresponding proof).

Lemma 2.3.5. Consider an instance H = (V,E) for hypergraph orientation under explorable
uncertainty. A vertex v ∈ V with a non-trivial uncertainty interval Iv is mandatory if and
only if there is a hyperedge S ∈ E with v ∈ S such that either (i) v is a minimum-weight
vertex of S and wu ∈ Iv for some u ∈ S \ {v}, or (ii) v is not a minimum-weight vertex of S
and wu ∈ Iv for a minimum-weight vertex u of S.

The lemma directly implies the following corollary that was also directly proven in [Cha+21,
Section 3]. Recall that a hyperedge S is solved if we already have sufficient information
to orient S. In particular, if there exists a left-most vertex v in a hyperedge S with a trivial
uncertainty interval, then S is solved as no vertex in S can have a smaller weight than v.

Corollary 2.3.6. Consider an instance H = (V,E) for hypergraph orientation under ex-
plorable uncertainty. If the interval of a leftmost vertex v in a not yet solved hyperedge S
contains the precise weight of another vertex in S, then v is mandatory. In particular, if v is
leftmost in (a not yet solved) S and Iu ⊆ Iv for some u ∈ S \ {v}, then v is mandatory.

36

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

Iv

Iu1

Iu2

•
•
•

Iuk−1

Iuk

FIGURE 3.1: Illustration of the structure of the uncertainty intervals of the vertices in a
hyperedge S = {v, u1, . . . , uk} of a preprocessed instance.

Thus, if there is a leftmost vertex v of a not yet solved hyperedge S ∈ E with Iu ⊆ Iv
for some u ∈ S \ {v}, then every algorithm can query such a vertex, without worsening the
competitive ratio. Similarly, if a not yet solved hyperedge contains vertices u and v such that v
has not been queried yet and is the leftmost vertex, while a query of u has revealed that wu ∈ Iv,
then it follows from Lemma 2.3.5 that v is mandatory for every realization of the unqueried
vertices. This also means that if we query a vertex that is mandatory by Corollary 2.3.6,
then the information revealed by the query can lead to another vertex becoming mandatory
by Corollary 2.3.6. Thus, it can make sense to iteratively and exhaustively apply the corollary
until we cannot use it to identify anymore mandatory vertices. In particular, this can be done
as a preprocessing step and most of our algorithms assume without loss of generality that the
input instance is already preprocessed in this manner.

Definition 3.2.2. An instance of hypergraph orientation under explorable uncertainty with
hypergraph H = (V,E) and uncertainty intervals Iv for all v ∈ V is preprocessed, if it does
not contain vertices that can be identified as mandatory by using Corollary 2.3.6. That is, for
every hyperedge S ∈ E, there is no leftmost vertex v ∈ S with Iu ⊆ Iv for an u ∈ S \ {v}.

The assumption of a preprocessed input instance is particularly useful because it allows
us to further characterize the structure of the uncertainty intervals as in the following lemma.
Figure 3.1 illustrates the structure as described in the lemma for a single hyperedge. We
remark that the structure from the lemma holds for an initial preprocessed instance. Once we
execute queries, it can change again. However, even then an algorithm can retain the structure
by querying mandatory vertices according to Corollary 2.3.6.

Lemma 3.2.3. Consider a preprocessed instance of hypergraph orientation under explorable
uncertainty with hypergraph H = (V,E) and uncertainty intervals Iv for all v ∈ V . Then,
each hyperedge S ∈ E satisfies the following properties:

1. S has a unique leftmost vertex v with a non-trivial uncertainty interval.

2. Iu ∩ Iv ̸= ∅ and Iu \ Iv ̸= ∅ for all u ∈ S \ {v}.

Proof. Consider an arbitrary hyperedge S ∈ E. By Assumption 3.2.1, S does not have a
leftmost vertex with a trivial uncertainty interval. Thus, there must be a leftmost vertex v ∈ S
with a non-trivial uncertainty interval Iv = (Lv, Uv). Assume there is a second leftmost vertex
v′ ∈ S with v ̸= v′. Since v and v′ are both leftmost, we have Lv = Lv′ . But then, either
Iv ⊆ Iv′ or Iv′ ⊆ Iv must hold; a contradiction to the instance being preprocessed. This
implies that S satisfies the first property of the lemma.

Next, consider a vertex u ∈ S \ {v}. Assumption 3.2.1 directly implies Iu ∩ Iv ̸= ∅.
Since v is the unique leftmost vertex of S, we have Lv < Lu. Thus, Iu \ Iv = ∅ would imply
Iu ⊆ Iv, a contradiction to the instance being preprocessed.

37

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

x

z

y x
y

z

1/2 1/2

ϵ 1− ϵ
ϵ 1− ϵ

px = 1− (1− ϵ)2

py = 1/2
pz = 1/2

FIGURE 3.2: Instance and mandatory probabilities used in the proof of Theorem 3.2.5.

Corollary 2.3.6 gives us a criterion to identify mandatory vertices based only on the
graph and the structure of the intervals and allows us to preprocess instances. The full
characterization of mandatory vertices (cf. Lemma 2.3.5) on the other hand, cannot necessarily
be directly applied by an algorithm to identify more mandatory vertices, as it depends on the
unknown precise vertex weights. Since we consider the stochastic setting however, we might
be able to use that characterization to compute the probability that a vertex v is mandatory.
For each vertex v ∈ V , we denote this mandatory probability by pv. Querying vertices v ∈ V
with a high mandatory probability pv will be a key element of our algorithms. For graphs, pv
is easy to compute as, by Lemma 2.3.5, v is mandatory if and only if Iv is initially non-trivial
and wu ∈ Iv for some neighbor vertex u. Hence, we can observe the following.

Observation 3.2.4. Consider an instance of graph orientation under stochastic explorable
uncertainty with graph G = (V,E) and uncertainty intervals Iv for all v ∈ V . The mandatory
probability of a vertex v with a non-trivial uncertainty interval Iv can be written as pv =
1−∏︁u:{u,v}∈E P[wu ̸∈ Iv] and can be computed in polynomial time.

For hypergraphs, however, we show in Section 3.5 that the computation of pv is #P-hard,
even if all hyperedges have size 3. Luckily it is not difficult to get a good estimate of the
probabilities to be mandatory for hypergraphs using sampling, as we show in Section 3.5.

3.2.2 Lower Bounds on the Stochastic Competitive Ratio

Using the previously defined mandatory probabilities, we give the following lower bounds on
the stochastic competitive ratio.

Theorem 3.2.5. Every algorithm for the graph orientation problem under explorable stochas-
tic uncertainty has competitive ratio at least 4

3 , even for uniform query costs and even if no
restriction on the running time of the algorithm is imposed. For the hypergraph orientation
problem under explorable stochastic uncertainty, the lower bound holds even when orienting
a single hyperedge. For arbitrary query costs, this lower bound holds even for orienting a
single (non-hyper) edge.

Proof. We first show the lower bound for the graph orientation problem with uniform query
costs. Consider three vertices x, y, z, with Ix = (0, 2) and Iy = Iz = (1, 3), and uniform
query costs cx = cy = cz = 1. The only edges are {x, y} and {x, z}. The probabilities are
such that P[wx ∈ (1, 2)] = 1

2 and P[wy ∈ (1, 2)] = P[wz ∈ (1, 2)] = ϵ, for some 0 < ϵ≪ 1
2 ;

see Figure 3.2. If wx ∈ (0, 1], which happens with probability 1
2 , querying only x gives us

sufficient information to orient both edges. If wx ∈ (1, 2) and wy, wz ∈ [2, 3), which happens
with probability 1

2(1− ϵ)2, querying y and z gives sufficient information to orient both edges.
Otherwise, all three vertices must be queried to identify the orientations of the edges. This
gives us

E[OPT] =
1

2
· 1 + 1

2
(1− ϵ)2 · 2 + 1

2

(︁
1− (1− ϵ)2

)︁
· 3 = 2− (1− ϵ)2

2
,

38

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

which tends to 3
2 as ϵ approaches 0. Since y and z are identical and we can assume without

loss of generality that an algorithm always queries a vertex first that it knows to be mandatory
(if there is such a vertex), we only have three possible algorithms to consider:

1. First query x. If wx ∈ (1, 2), then query y and z. The expected query cost is 2.

2. First query y. If wy ∈ (1, 2), then query x, and query z if wx ∈ (1, 2). If wy ∈ [2, 3),
then query z, and query x if wz ∈ (1, 2). The expected query cost is 1 + 3

2ϵ + (1 −
ϵ)(1 + ϵ), which tends to 2 as ϵ approaches 0.

3. First query y. Whatever happens, query x, then query z if wx ∈ (1, 2). The expected
query cost is 5

2 , so this is never better than the previous options.

With either choice (even randomized), the competitive ratio tends to at least 4
3 as ϵ→ 0.

For the hypergraph orientation problem, consider the instance that consists of a single
hyperedge {x, y, z} with the uncertainty intervals and distributions as used in the lower bound
for graph orientation; see Figure 3.2. For this instance, the expected optimal query cost is
the same as in the previous lower bound. Furthermore, it suffices to consider the same three
algorithms with the same expected query costs. Thus, the lower bound translates.

For arbitrary query costs, consider a single edge {x, y} with costs cx = 1 and cy = 2. We
again use the uncertainty intervals and distributions given in Figure 3.2. The expected optimal
query cost is

E[OPT] =
1

2
· cx+

1

2
· (1− ϵ) · cy+

1

2
· (1− (1− ϵ)) · (cx+ cy) =

cx + cy
2

+
ϵcx
2

= 1.5− ϵ

2
.

We only have two decision trees to consider:

1. First query x. If wx ∈ (1, 2), query y. The expected query cost is cx + 1
2 · cy = 2.

2. First query y. If wy ∈ (1, 2), query x. The expected query cost is cy + ϵ · cx = 2 + ϵ,
which tends to 2 as ϵ approaches 0.

With either choice (even randomized), the competitive ratio tends to at least 4
3 as ϵ→ 0.

3.2.3 Witness Sets and the Vertex Cover Instance

Another key concept of our algorithms is to exploit witness sets [Bru+05; Hof+08]. Recall
that a subset W ⊆ V is a witness set if W ∩Q ̸= ∅ for all feasible query sets Q. Witness sets
can be used to lower bound the optimal query cost. We restate the following characterization
of witness sets for hypergraph orientation (see Section 2.3.3 for a proof).

Lemma 2.3.7 (Kahan [Kah91]). Consider an instance H = (V,E) for hypergraph orientation
under explorable uncertainty. Let S ∈ E be a not yet solved hyperedge of H . A set {v, u} ⊆ S
with Iv ∩ Iu ̸= ∅ and v or u leftmost in S is a witness set.

As we have seen in Section 2.3.3, we can use Lemma 2.3.7 within the witness set
algorithm to achieve an adversarial competitive ratio of 2. However, our goal is to achieve
better competitive ratios in the stochastic setting and, therefore, we cannot rely on using such
techniques as a blackbox.

Instead, we design new techniques that rely on stronger lower bounds on the expected
optimal query cost. Lemma 2.3.7 allows us to locally lower bound the optimal query cost for
a single hyperedge. To lower bound the optimal query cost for the complete hypergraph, we
define the following vertex cover instance.

39

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

Vertex

Weight
v1

v2

v3

v4

v5

v6

v7

v8

1 5 10

v8

v4

v1

v7

v6

v5

v2

v3

FIGURE 3.3: Example instance for the hypergraph orientation problem and the corresponding
vertex cover instance. For a Hypergraph H = (V,E) with the vertices V = {v1, . . . , v8}
and hyperedges E = {{v1, v2, v3, v4, v5, v6, v7, v8}, {v6, v7, v8}, {v1, v2, v3}}, the figure
shows the uncertainty intervals (left) and the corresponding vertex cover instance (right).
The differently colored edges indicate the vertex cover instances for the single hyperedges.

Definition 3.2.6. Consider an instance of hypergraph orientation under explorable uncertainty
with hypergraph H = (V,E) and uncertainty intervals Iv for all v ∈ V . The vertex cover
instance of H is the graph Ḡ = (V, Ē) with {v, u} ∈ Ē if and only if there is a not yet solved
hyperedge S ∈ E such that v, u ∈ S, v is leftmost in S and Iv ∩ Iu ̸= ∅. For the special case
of a graph G instead of a hypergraph H , it holds that Ḡ = G.

See Figure 3.3 for an example vertex cover instance. Since each edge of the vertex cover
instance Ḡ is a witness set by Lemma 2.3.7, we can observe that each feasible query set Q is
a vertex cover of Ḡ. This leads to the following observation, which will turn out to be very
helpful for lower bounding the expected optimal query cost.

Observation 3.2.7. Given an instance of hypergraph orientation with hypergraph H = (V,E)
and uncertainty intervals Iv for all v ∈ V , consider the vertex cover instance Ḡ = (V, Ē).
Let V C denote a minimum-weight vertex cover of Ḡ using the query costs cv as weights for
the vertices. Then, c(V C) ≤ OPT for every realization of precise weights.

For preprocessed instances, the vertex cover instance has another useful property: If
querying a vertex cover of the vertex cover instance does not solve the problem, then we can
solve it by only querying vertices that are known to be mandatory by Corollary 2.3.6. The
following lemma formalizes this property.

Lemma 3.2.8. Given a preprocessed instance of hypergraph orientation with hypergraph
H = (V,E) and uncertainty intervals Iv for all v ∈ V , let Q be an arbitrary vertex cover of
Ḡ. After querying Q, for each hyperedge S ∈ E, we either know the orientation of S or can
determine it by exhaustively querying according to Corollary 2.3.6.

Proof. Consider an arbitrary hyperedge S and let v be leftmost in S. As the instance is
preprocessed, the leftmost vertex is unique by Lemma 3.2.3. If the interval of v is not
intersected by any Iu with u ∈ S \ {v} before querying Q, then we clearly already know the
orientation. Thus, assume otherwise. Since the instance is preprocessed, we, by Lemma 3.2.3,
have Iu ̸⊆ Iv and Iv ̸⊆ Iu for all u ∈ S \ {v} (before querying Q). By definition, a vertex
cover of the vertex cover instance Ḡ contains either (i) v or (ii) S \ {v}.

Consider case (i) and let u be leftmost in S \ {v}. If querying v reveals wv ̸∈ Iu,
then v has minimum weight in S and we know the orientation of S. If querying v reveals
wv ∈ Iu, then the query reduces Iv to {wv} and u becomes mandatory by Corollary 2.3.6 as

40

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

Iv = {wv} ⊆ Iu and u is leftmost in S after querying v. After querying u (to exhaustively
apply Corollary 2.3.6), we can repeat the argument with the vertex leftmost in S \ {u, v}.
Thus, exhaustively applying Corollary 2.3.6 gives us the orientation.

Consider case (ii). If querying S \ {v} reveals that there exists no vertex u ∈ S \ {v}
with wu ∈ Iv, then v must be of minimum weight in S. Otherwise, the uncertainty interval of
some u ∈ S \ {v} was reduced to {wu} ⊆ Iv and we can apply Corollary 2.3.6. After that,
all elements of S are queried and we clearly know the orientation.

3.2.4 Lower Bounds on the Expected Optimal Query Cost

To analyze our algorithms and achieve improved stochastic competitive ratios, we require
stronger lower bounds on E[OPT]. Let R be the set of all possible realizations of precise
weights and let OPT(R) for R ∈ R be the optimal query cost for realization R. By Obser-
vation 3.2.7, the minimum weight of a vertex cover of Ḡ (using the query costs as weights)
is a lower bound on the optimal query cost for each realization and, thus, on E[OPT]. This
observation in combination with Lemma 2.3.5 also gives us a way to identify an optimal query
set for a fixed realization, by using the knowledge of the exact vertex weights.

For a graph G = (V,E) and a subset U ⊆ V , we use G[U] to refer to the subgraph of G
induced by U .

Lemma 3.2.9. Consider a preprocessed instance of hypergraph orientation under explorable
uncertainty with hypergraph H = (V,E) and uncertainty intervals Iv for all v ∈ V . For a
fixed realization R, let M be the set of vertices that are mandatory for the realization of precise
weights (cf. Lemma 2.3.5), and let V CM be a minimum-weight vertex cover of Ḡ[V \M]
(using the query costs as weights). Then, M ∪ V CM is an optimal query set for realization R.

Proof. Consider a preprocessed instance of hypergraph orientation under explorable uncer-
tainty with hypergraph H = (V,E), uncertainty intervals Iv for all v ∈ V , and a fixed
realization of precise weights wv for all v ∈ V .

Clearly, c(M) + c(V CM) ≤ OPT(R) as all vertices in M are mandatory and all edges
in Ḡ[V \M] are witness sets by Lemma 2.3.7. Furthermore, set Q = M ∪ V CM is a vertex
cover for Ḡ and contains all mandatory vertices. By Lemma 3.2.8, this suffices to conclude
that Q is feasible, which implies the lemma.

To analyze the performance of our algorithms, we compare the expected cost of the
algorithms to the expected cost of the optimal solution. By Lemma 3.2.9, c(M) + c(V CM) is
the minimum query cost for a fixed realization R of a preprocessed instance, where M ⊆ V is
the set of mandatory elements in the realization and V CM is a minimum-weight vertex cover
for the subgraph Ḡ[V \M] of the vertex cover instance Ḡ = (V, Ē) induced by V \M . Thus,
the optimal solution for a fixed realization is completely characterized by the set of mandatory
vertices in the realization. Using this, we can characterize the expected optimal query cost
for a preprocessed instance as E[OPT] =

∑︁
M⊆V p(M) · c(M) +

∑︁
M⊆V p(M) · c(V CM),

where p(M) denotes the probability that M is the set of mandatory elements. Using that∑︁
M⊆V p(M) · c(M) =

∑︁
v∈V pv · c(v) holds since both terms describe the expected cost

for querying mandatory vertices, we can derive the following characterization of E[OPT]:

E[OPT] =
∑︂
v∈V

pv · cv +
∑︂
M⊆V

p(M) · c(V CM).

A key technique for our analysis is to lower bound E[OPT] by partitioning the opti-
mal solution into subproblems and discarding dependencies between elements in different
subproblems. The following definition and lemma make this more concrete.

41

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

Definition 3.2.10. Consider a preprocessed instance of hypergraph orientation under ex-
plorable stochastic uncertainty with hypergraph H = (V,E). For a realization R and any
subset S ⊆ V , let OPTS = minQ∈Q c(Q ∩ S), where Q is the set of all feasible query sets
for realization R.

Lemma 3.2.11. Consider a preprocessed instance of hypergraph orientation under explorable
stochastic uncertainty with hypergraph H = (V,E). Let S1, . . . , Sk be a partition of V . Then
E[OPT] ≥∑︁k

i=1 E[OPTSi].

Proof. We start the proof by characterizing E[OPTSi] for each i ∈ {1, . . . , k}. Let R ∈ R an
arbitrary realization and let M ⊆ V denote the set of vertices that are mandatory in realization
R. By Lemma 3.2.9, the optimal solution for that realization needs to contain all mandatory
elements of Si, and resolve all remaining dependencies between vertices of Si, i.e., query a
minimum-weight vertex cover V CSi

M for the subgraph Ḡ[Si \M]. Thus, we arrive at

E[OPTSi] =
∑︂
v∈Si

pv · cv +
∑︂
M⊆V

p(M) · c(V CSi
M). (3.2.1)

By summing Equation (3.2.1) over all i ∈ {1, . . . , k}, we obtain the lemma:

k∑︂
i=1

E[OPTSi] =
k∑︂

i=1

⎛⎝∑︂
v∈Si

pv · cv +
∑︂
M⊆V

p(M) · c(V CSi
M)

⎞⎠
=
∑︂
v∈V

pv · cv +
∑︂
M⊆V

p(M) ·
(︄

k∑︂
i=1

c(V CSi
M)

)︄
≤
∑︂
v∈V

pv · cv +
∑︂
M⊆V

p(M) · c(V CM) = E[OPT],

where the second equality follows from S1, . . . , Sk being a partition. The inequality follows
from

∑︁k
i=1 c(V CSi

M) being the cost of a minimum weighted vertex cover for a subgraph of
Ḡ[V \M], while c(V CM) is the minimum cost for a vertex cover of the whole graph.

3.2.5 Vertex Cover-based Algorithms

Using the vertex cover instance, we can not only lower bound E[OPT], but also define a class
of algorithms that exploits Observation 3.2.7.

Definition 3.2.12. An algorithm for solving a preprocessed instance of hypergraph orientation
under explorable uncertainty is called vertex cover-based if it implements the following
pattern:

1. Non-adaptively query a vertex cover V C of Ḡ.

2. Iteratively query mandatory vertices until the minimum-weight vertex of each hyperedge
is known: For each hyperedge S ∈ E for which the minimum weight is still unknown,
query the vertices in order of left interval endpoints until the vertex of minimum weight
is found.

By definition of the second step, each vertex cover-based algorithm clearly orients each
hyperedge. Furthermore, the proof of Lemma 3.2.8 implies that each vertex queried in the
second step is indeed mandatory for all realizations that are consistent with the currently
known information, i.e., the weights of the previously queried vertices.

42

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

x
y

z

ϵ 0 1− ϵ

1/2 0 1/2

ϵ 1− ϵ

cx = k
cy = 1

cz = k

FIGURE 3.4: Lower bound example for orienting a single hyperedge.

All the algorithms we propose in this chapter are vertex cover-based and we show that this
framework can be used to improve upon the adversarial lower bound of 2. However, we also
give lower bounds for algorithms that follow this pattern.

Theorem 3.2.13. No vertex cover-based algorithm has competitive ratio better than 3
2 for

hypergraph orientation under explorable stochastic uncertainty. This result holds even in the
following special cases:

1. The graph has only a single hyperedge but the query costs are not uniform.

2. The query costs are uniform and the vertex cover instance Ḡ is bipartite.

3. The instance is a non-bipartite graph orientation instance with uniform query costs.

Proof. Case 1. Consider the instance consisting of a single hyperedge {x, y, z} with intervals
and query costs as shown in Figure 3.4. Each vertex cover-based algorithm has to query a vertex
cover of Ḡ in the first stage. As the edge set of the vertex cover instance consists of the two
edges {x, y} and {x, z}, each algorithm either queries A1 = {x}, A2 = {y, z} or a superset
of one of them in the first stage. Since querying supersets of A1 or A2 in the first stage never
improves in comparison to just querying A1 or A2, we discard that option. For ϵ tending to zero,
the expected cost of the two-stage algorithms are E[A1] = E[A2] = k+1+ 1

2 · k = 3
2 · k+1,

while the expected optimum is E[OPT] = 1+ 1
2 · k+ 1

2 · k = k+1. Therefore, for k tending
to infinity, the competitive ratio approaches 3

2 .
Case 2. The argumentation is analogous to the proof of the first case but uses the instance

in Figure 3.5. The hyperedges are S1, . . . , Sk, with Si = {xi, y, z1, . . . , zk}.
Case 3. The argumentation is analogous to the proof of Case 1 but uses the instance in

Figure 3.6.

3.2.6 Hardness of the Offline Problem

We conclude the section by proving that the offline variant of hypergraph orientation under
explorable uncertainty is NP-hard. The offline variant is the problem of computing a feasible
query set of minimum query costs for a fixed realization of precise weights and given full
knowledge of the precise weights.

x1

..
.

xk
y

z1...

zk

ϵ 0 1− ϵ

ϵ 0 1− ϵ

1/2 0 1/2

ϵ 1− ϵ

ϵ 1− ϵ

x1 z1

y

xk zk

...

...

...

...

FIGURE 3.5: Lower bound example for the hyperedge orientation problem. The vertex cover
instance is shown in the complete bipartite graph at the right.

43

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

x1

..
.

xk
y

z1...

zk

1− ϵ 0 ϵ

1− ϵ 0 ϵ

1/2 0 1/2

ϵ 1− ϵ

ϵ 1− ϵ
y

x1 z1
x2 z2

xk zk

...

...

...

...

FIGURE 3.6: Lower bound example for the graph orientation problem with uniform query
costs. The subgraph induced by {x1, . . . xk, z1, . . . , zk} is complete bipartite, and y is a
universal vertex (adjacent to all others).

a

b c

d

(A)

a

b

ab1

ab2

c
bc1 bc2

d

cd2

cd1
bd1 bd2

ad1 ad2

(B)

Ia Ib Ic Id
Iab1

Iab2

Ibc1
Ibc2

Icd1
Icd2

Iad1
Iad2

Ibd1
Ibd2

(C)

FIGURE 3.7: NP-hardness reduction for the hypergraph orientation problem from the vertex
cover problem on 2-subdivision graphs. (a) A graph and (b) its 2-subdivision. (c) The
corresponding instance for the hypergraph orientation problem.

Theorem 3.2.14. The offline variant of hypergraph orientation under explorable uncertainty
is NP-hard.

Proof. The proof uses a reduction from the vertex cover problem for 2-subdivision graphs,
which is NP-hard [Pol74]. A 2-subdivision graph is a graph H which can be obtained from
some graph G by replacing each edge by a path of length four (with three edges and two new
vertices). The graph in Figure 3.7b is a 2-subdivision of the graph in Figure 3.7a.

Given a graph H which is a 2-subdivision of a graph G, we construct an instance of graph
orientation under uncertainty G′ = (V ′, E′) as follows. First, we set G′ = H , i.e., we use the
2-subdivision as the input graph for our graph orientation instance. It remains to define the
intervals and precise weights.

For the original vertices of G, we define the intervals in a way such that no two intervals
intersect each other. For an edge e = {u, v} of G, let v1 and v2 denote the vertices introduced
to replace e when creating the 2-subdivision H . We define the intervals Iv1 and Iv2 such that
two intervals of Iv, Iv1 , Iv2 , Iu intersect if and only if the corresponding vertices define an
edge in G′ = H . As illustrated in Figure 3.7c, placing the intervals in such a way is clearly
possible.

44

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

Finally, we can assign precise weights such that, for any edge {u, v} ∈ E′, neither
wv ∈ Iu nor wu ∈ Iv. By definition of the intervals, this is possible. To orient each edge,
we have to query at least one endpoint. By definition of the precise weights, querying one
endpoint is sufficient to orient any edge. Clearly, on such instances, every solution to the
offline variant of the graph orientation problem corresponds to a vertex cover of H , and
vice-versa.

Note that the reduction used to prove the theorem preserves the approximation fac-
tor, i.e., an α-approximation for the offline variant of hypergraph orientation implies an α-
approximation for vertex cover on 2-subdivision graphs. Since Chlebík and Chlebíková [CC07]
showed hardness of approximation for vertex cover on 2-subdivision graphs, we can conclude
the following corollary.

Corollary 3.2.15. The offline variant of hypergraph orientation under explorable uncertainty
is APX-hard.

3.3 A Threshold Algorithm for Orienting Graphs

In this section, we introduce a vertex cover-based algorithm for the graph orientation problem
with uniform query costs. The techniques and analysis used in this section can be generalized
to hypergraph orientation and arbitrary weights; we do so in the subsequent sections.

As a subproblem, our algorithm solves a vertex cover problem. This problem is NP-hard
and 2-approximation algorithms are known [YG80]. For several special graph classes, there
are improved algorithms [Hal02]. Using an α-approximation for vertex cover as a black box,
we achieve a competitive ratio between ϕ ≈ 1.618 (α = 1) and 2 (α = 2) as a function
depending on α. This function is shown in Figure 3.8.

The main idea behind Algorithm 5 is motivated by the lower bounds on E[OPT] from the
previous section. For one, we know that vertices with a high mandatory probability are likely to
be part of OPT. Intuitively, querying such vertices cannot be too bad for our competitive ratio.
Thus, Algorithm 5 selects vertices with a mandatory probability larger than a certain threshold
d ∈ (0, 1] (cf. Line 1) as part of the vertex cover that is queried in the first phase of the vertex
cover-based algorithm (cf. Line 5). Then, we know by Observation 3.2.7 that a minimum
vertex cover of the vertex cover instance is a lower bound on E[OPT] (for graph orientation,
the vertex cover instance is just the input graph). So the algorithm approximates a minimum
vertex cover for the subgraph that remains after removing the already selected vertices with
high mandatory probabilities (cf. Lines 2-4) and queries it in the first phase (cf. Line 5). For
technical reasons that ease the analysis, the algorithm executes a preprocessing of the vertex

1 1.2 1.4 1.6 1.8 2

1.6

1.8

2

Vertex cover approximation factor α

C
om

pe
tit
iv
e
ra
tio

FIGURE 3.8: Competitive ratio of THRESHOLD for different approximation factors α of the
vertex cover problem blackbox.

45

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

Algorithm 5: THRESHOLD

Input: Preprocessed instance of graph orientation under stochastic explorable
uncertainty with graph G = (V,E), distributions dv and uncertainty intervals
Iv for each v ∈ V . Threshold parameter d ∈ (0, 1] and an α-approximation
black box for the vertex cover problem.

1 Let M = {v ∈ V | pv ≥ d};
2 Solve (LP) for G[V \M] and let x∗ be an optimal basic feasible solution;
3 Let V1 = {v ∈ V | x∗v = 1} and similarly V1/2, V0 ;
4 Use the α-approximation black box to approximate a vertex cover V C ′ for G[V1/2];
5 Query Q = M ∪ V1 ∪ V C ′; /* Q is a vertex cover */
6 Query the mandatory elements of V \Q ;

cover instance by using the following classical LP relaxation, for which each optimal basic
feasible solution is half-integral [NJ75], before actually approximating the vertex cover:

min
∑︁

v∈V cv · xv
s.t. xv + xu ≥ 1 ∀{u, v} ∈ E

xv ≥ 0 ∀v ∈ V
(LP)

After querying the vertex cover in Line 5, the algorithm, as every vertex cover-based algorithm,
only queries remaining vertices if they are mandatory (cf. Line 6). Since the algorithm already
queried all vertices with a high mandatory probability (cf. Line 1), we can bound the expected
number of queries in Line 6. Formalizing these ideas, we analyze our algorithm to show the
following theorem.

Theorem 3.3.1. Given an α-approximation with 1 ≤ α ≤ 2 for the vertex cover problem (on
the induced subgraph G[V1/2], see Line 4), THRESHOLD with parameter d ∈ (0, 1] achieves
a competitive ratio of max{1d , α + (2 − α) · d} for the graph orientation problem under
explorable stochastic uncertainty with uniform query costs. Optimizing d yields a competitive
ratio of 1

2(α+
√︁

8− α(4− α)). The running time of THRESHOLD is polynomial in the input.

Proof. Since Q is a vertex cover for G, querying it in Line 5 and resolving all remaining
dependencies in Line 6 solves the graph orientation problem by Lemma 3.2.8. Note that V \Q
is an independent set in G, and, thus, after querying Q we exactly know which elements of
V \Q are mandatory. Hence, it is known after Line 5 which nodes in V \Q are mandatory,
and they can be queried in Line 6 in arbitrary order (or in parallel).

As we argued in Section 3.2, the mandatory probabilities for a graph orientation instance
can be computed in polynomial time and, therefore, Line 1 can be executed in polynomial
time. Since the α-approximation blackbox has polynomial running time by assumption, all
other steps of the algorithm, and thus the complete algorithm, can be executed in polynomial
time.

We continue by showing the competitive ratio of max{1d , α+(2−α) ·d}. Algebraic trans-
formations show that the optimal choice for the threshold is d(α) = 2/(α+

√︁
8− α(4− α)).

The desired competitive ratio for THRESHOLD with d = d(α) follows.
The algorithm queries set Q, and all other vertices only if they are mandatory, hence

E[ALG] = |Q|+
∑︂

v∈V \Q
pv = |M |+ |V1|+ |V C ′|+

∑︂
v∈V0

pv +
∑︂

v∈V1/2\V C′
pv. (3.3.1)

The expected optimal cost can be lower bounded by partitioning and Lemma 3.2.11:

E[OPT] ≥ E[OPTM] + E[OPTV1∪V0] + E[OPTV1/2
]. (3.3.2)

46

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

In the remaining part of the proof, we compare E[ALG] with E[OPT] component-wise.
We can lower bound E[OPTM] by

∑︁
v∈M pv using Equation (3.2.1). By definition of M ,

it holds that E[OPTM] ≥∑︁v∈M pv ≥ d · |M |. Thus,

|M | ≤ 1

d
· E[OPTM]. (3.3.3)

Next, we compare |V1|+
∑︁

v∈V0
pv with E[OPTV1∪V0]. For this purpose, let G[V1 ∪ V0]

be the subgraph of G induced by V1 ∪ V0, and let G′[V1 ∪ V0] be the bipartite graph that is
created by removing all edges between elements of V1 from G[V1∪V0]. Note that there cannot
be edges between vertices of V0 in G[V1 ∪ V0] by definition of V0. The following statement
can be shown by slightly adjusting arguments from [NJ75, Theorem 2].

Claim 3.3.2. We claim that V1 is a minimum vertex cover for G′[V1 ∪ V0].

Proof. Assume otherwise. Then there is a vertex cover V C∗ for G′[V1 ∪ V0] with c(V C∗) <
c(V1). Since we consider uniform query costs c, we have c(V C∗) = |V C∗| and c(V1) = |V1|.
Let R1 = V1 \ V C∗ and let A0 = V0 ∩ V C∗, then V C∗ = (V1 \ R1) ∪ A0. Since
c(V C∗) < c(V1), we get c(R1) > c(A0). We define a solution x′ for the LP Relaxation of
Line 2 in THRESHOLD as follows:

x′v =

{︄
1
2 if v ∈ R1 ∪A0

x∗v otherwise,

where x∗ refers to the solution computed in Line 2 of THRESHOLD. The objective value c(x′)
of x′ is c(x′) = c(x∗)− 1

2 · c(R1) +
1
2 · c(A0), where c(x∗) is the objective value of x∗. We

argue that x′ is feasible for the LP relaxation, which contradicts the optimality of x∗.
All edges that are only incident to elements of V1/2 = V \ (V1 ∪ V0) are still covered,

because the values of the corresponding variables were not changed. Each edge between some
u ∈ V1/2 and some v ∈ V1 is still covered because x′u = 1

2 and x′v ≥ 1
2 holds by definition

of x′. Edges between elements of V1 are covered for the same reason. Since there are no
edges between elements of V0, it remains to consider an edge between some u ∈ V0 and some
v ∈ V1. If v ∈ V1 ∩ V C∗, then x′v = 1, and the edge is covered. If v ∈ V1 \ V C∗ = R1, then
u ∈ A0 because V C∗ is a vertex cover for G′

V1∪V0
. By definition of x′, we have x′v = 1

2 and
x′u = 1

2 , and, therefore, the edge is covered. This implies that x′ is feasible, which contradicts
the optimality of x∗. Thus, V1 is a minimum weighted vertex cover for G′

V1∪V0
.

Claim 3.3.2 allows us to apply the famous Kőnig-Egerváry theorem [Sch03] on the
bipartite graph G′[V1 ∪ V0] and its minimum vertex cover V1. By the theorem there is a
matching h mapping each v ∈ V1 to a distinct h(v) ∈ V0 with {v, h(v)} ∈ E. Denoting
S = {h(v) | v ∈ V1}, we can infer E[OPTV1∪V0] ≥ E[OPTV1∪S] + E[OPTV0\S].

Any feasible solution must query at least one endpoint of all edges of the form {v, h(v)}
as those are witness sets by Lemma 2.3.7 and Assumption 3.2.1. This implies E[OPTV1∪S] ≥
|V1|. Since additionally ph(v) ≤ d for each h(v) ∈ S by definition of the algorithm, we get∑︂

v∈V1

(︁
1 + ph(v)

)︁
≤ (1 + d) · |V1| ≤ (1 + d) · E[OPTV1∪S]. (3.3.4)

By lower bounding E[OPTV0\S] with
∑︁

v∈V0\S pv and using (3.3.4), we get

|V1|+
∑︂
v∈V0

pv =
∑︂
v∈V1

(︁
1 + ph(v)

)︁
+

∑︂
v∈V0\S

pv (3.3.5)

≤ (1 + d) · E[OPTV1∪S] + E[OPTV0\S] ≤ (1 + d) · E[OPTV1∪V0].

47

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

Finally, consider the term |V C ′|+∑︁v∈V1/2\V C′ pv. Let V C∗ be a minimum cardinality

vertex cover for G[V1/2]. Then, it holds |V C∗| ≥ 1
2 · |V1/2|. This is, because in the optimal

basic feasible solution to the LP relaxation x∗, each vertex in V1/2 has a value of 1
2 . A vertex

cover with |V C∗| < 1
2 · |V1/2| would contradict the optimality of x∗. The following part of

the analysis crucially relies on |V C∗| ≥ 1
2 · |V1/2|, which is the reason why THRESHOLD

executes the LP relaxation-based preprocessing before applying the α-approximation.
The expected cost of the algorithm for the subgraph G[V1/2] is |V C ′| +∑︁v∈I′ pv ≤

|V C ′|+ d · |I ′| with I ′ = V1/2 \ V C ′ as the algorithm queries V C ′ in Line 5 and the vertices
in I ′ only if they are mandatory in Line 6. Since |V C ′| ≥ |V C∗| ≥ 1

2 · |V1/2|, there is a
tradeoff between the quality of |V C ′| and the additional cost of d · |I ′|. If |V C ′| is close
to 1

2 · |V1/2|, then it is close to |V C∗| but, on the other hand, |I ′| then is close to 1
2 · |V1/2|,

which means that the additional cost d · |I ′| is high. Vice versa, if the cost for |V C ′| is high
because it is larger than 1

2 · |V1/2|, then |I ′| is close to zero and the additional cost d · |I ′|
is low. We exploit this tradeoff and upper bound |V C′|+d·|I′|

|V C∗| in terms of the approximation
factor α of the vertex cover approximation. Assume that the approximation factor α is tight,
i.e., |V C ′| = α · |V C∗|. Since d ≤ 1, this is the worst case for the ratio |V C′|+d·|I′|

|V C∗| . (In other
words, if the approximation factor was not tight, we could replace α by the approximation
factor that is actually achieved and carry out the following calculations with that smaller value
of α instead, yielding an even better bound.) Using |V C ′| = α · |V C∗| and |V C∗| ≥ 1

2 · |V1/2|,
we can derive

|I ′| = |V1/2| − |V C ′| = |V1/2| − α · |V C∗| ≤ (2− α) · |V C∗|.

For the cost of the algorithm for subgraph G[V1/2], we get

|V C ′|+ d · |I ′| ≤ α · |V C∗|+ d · (2− α) · |V C∗| = (α+ (2− α) · d) · |V C∗|.

Since |V C∗| ≤ E[OPTV1/2
], this implies

|V C ′|+ d · |I ′| ≤ (α+ (2− α) · d) · E[OPTV1/2
]. (3.3.6)

Combining Equations (3.3.1), (3.3.3), (3.3.5), and (3.3.6), we can upper bound the cost of
the algorithm:

E[ALG] = |M |+ |V1|+
∑︂
v∈V0

pv + |V C ′|+
∑︂

v∈V1/2\V C′
pv

≤ 1

d
· E[OPTM] + (1 + d) · E[OPTV1∪V0] + (α+ (2− α) · d) · E[OPTV1/2

]

≤ max

{︃
1

d
, (1 + d), (α+ (2− α) · d)

}︃
· E[OPT],

where the last inequality follows from the lower bound on E[OPT] in Equation (3.3.2).
Observe that for any d ∈ (0, 1] and α ∈ [1, 2], it holds that (α+ (2− α) · d) ≥ (1 + d). We
conclude that E[ALG] ≤ max{1d , (α+(2−α)·d)}·E[OPT], which implies the theorem.

We show that the above analysis for THRESHOLD is tight.

Theorem 3.3.3. The analysis of THRESHOLD is tight. More precisely, there is no threshold
d ∈ (0, 1] such that the competitive ratio of THRESHOLD is less than the Golden ratio
ϕ = (1 +

√
5)/2.

Proof. Consider THRESHOLD with some threshold d ∈ (0, 1]. We give two instances of the
graph orientation problem with uniform query costs and show that the algorithm has either

48

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

Iv

Iu
ϵ

d− ϵ

1− ϵ

1− d+ ϵ

v u

(A)

v

u1

u2

•
•
•

un

Iv

Iu1

•
•
•

Iun

1− ϵ

d

ϵ

1− d

1− ϵ ϵ

(B)

FIGURE 3.9: Instance of graph orientation under explorable stochastic uncertainty as used
in the proof of Theorem 3.3.3

a competitive ratio of at least 1 + d− ϵ, for an arbitrarily small ϵ > 0, or at least 1/d. This
implies the lower bound.

As the first instance, consider a single edge {u, v} and mandatory probabilities pu = d− ϵ
and pv = ϵ (see Figure 3.9 (A) for an illustration). Threshold finds a basic feasible solution
for the vertex cover LP relaxation for the edge {u, v}, say xLP

u = 0 and xLP
v = 1. It queries v,

and then it still has to query u with probability pu = d − ϵ. Thus, the expected number of
queries is 1 + d− ϵ. The expected optimal number of queries on the other hand is not larger
than 1 + ϵ as this expected cost can be achieved by the algorithm that starts by querying u and
only queries v if it is mandatory. This implies the competitive ratio of THRESHOLD is at least
1+d−ϵ
1+ϵ , which tends towards 1 + d for ϵ→ 0.

As a second instance, consider a star with the center v and n edges {v, ui} for i ∈
{1, 2, . . . , n}. Let pv = 1 and pui = d (see Figure 3.9 (B) for an illustration). Then the
algorithm queries v and all ui due to the threshold d, whereas it would have been sufficient
to query v first and then continue with querying ui only if needed, that is, with probability
pui = d for each i. The algorithm has cost n+ 1, while the optimal cost is at most 1 + n · d.
Thus, the competitive ratio is at least (n+1)/(1+n · d), which tends to 1/d for n→∞.

3.4 Threshold Algorithm for Arbitrary Query Costs

In this section, we generalize the analysis of the threshold algorithm for orienting graphs to
arbitrary query costs. Even for arbitrary query costs, the algorithm remains largely the same.
In contrast to the uniform problem variant, the adjusted algorithm solves a weighted version
of (LP), and a weighted vertex cover problem of Ḡ[V1/2]. In both instances, the query costs
are used as weights.

However, the analysis of the uniform variant does not directly translate to the weighted
setting. In particular, when analyzing the subgraph Ḡ[V1 ∪ V0], we applied the unweighted
Kőnig-Egerváry theorem. For each v ∈ V1, this gave us a distinct partner vertex h(v) ∈ V0

with {v, h(v)} ∈ Ē. THRESHOLD queries v, and h(v) only if necessary, leading to an
expected query cost of 1 + d for the vertices {v, h(v)}. Since OPT has to query at least one
of {v, h(v)}, this gave us the local competitive ratio of 1 + d.

In the weighted setting, this argumentation does not work anymore. Intuitively, instead of
charging the complete query cost cv of an v ∈ V1 to a single partner h(v), Kőnig-Egerváry

49

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

now distributes the query cost cv to multiple vertices in V0. Also, multiple vertices in V1 might
distribute query cost to the same u ∈ V0.

Therefore, we require new tools in the analysis. To this end, we introduce new fractional
lower bounds on E[OPT]. Afterwards, we use these lower bounds to analyze THRESHOLD

for arbitrary query costs.

3.4.1 Fractional Lower Bounds on the Expected Optimum

A key part of our analysis for uniform query costs was the application of Lemma 3.2.11,
which states E[OPT] ≥∑︁k

i=1 E[OPTSi] for any partition S1, . . . , Sk of V . For the case of
arbitrary query costs, we rely on fractionally assigning a vertex v to multiple parts of the
partition and applying a corresponding variant of Lemma 3.2.11. To this end, we define a
fractional partition of V .

Definition 3.4.1. Given a hypergraph H = (V,E), let S be a family of subsets of V and let
f : V × S → [0, 1]. We say that (S, f) is a partial fractional partition of V if

⋃︁
S∈S S ⊆ V ,∑︁

S∈S f(v, S) ≤ 1 for all v ∈ V , and f(v, S) = 0 for all v ∈ V and S ∈ S with v ̸∈ S. If
additionally

⋃︁
S∈S S = V and

∑︁
S∈S f(v, S) = 1 for all v ∈ V , then (S, f) is a fractional

partition.

Intuitively, the function f of a fractional partition (S, f) assigns fractions of each v ∈ V
to the subsets S ∈ S with v ∈ S. In particular, we want to distribute the query cost cv
of a vertex v fractionally over the sets S ∈ S with v ∈ S. We define the fractional costs
c′S,f (v) = f(v, S) · cv for vertex v and the different sets S of the fractional partition (S, f).
For subsets U ⊆ V , let c′S,f (U) =

∑︁
v∈U c′S,f (v). By definition, the fractional costs of

a vertex v sum up to at most cv, i.e.,
∑︁

S∈S c′S,f (v) ≤ cv. If (S, f) is not partial, then∑︁
S∈S c′S,f (v) = cv. Using these definitions, we show a generalized version of Lemma 3.2.11

for fractional partitions.

Definition 3.4.2. Consider a preprocessed instance of hypergraph orientation under ex-
plorable stochastic uncertainty with hypergraph H = (V,E). Let (S, f) be a partial frac-
tional partition of H . For a realization R of precise weights and any subset S ∈ S, let
OPTS,f = minQ∈Q c′S,f (Q ∩ S), where Q is the set of all feasible query sets for realiza-
tion R.

Lemma 3.4.3. Consider a preprocessed instance of hypergraph orientation under explorable
stochastic uncertainty with hypergraph H = (V,E). Let (S, f) be a partial fractional
partition of H . Then, E[OPT] ≥∑︁S∈S E[OPTS,f].

Proof. We start the proof by characterizing E[OPTS,f] for each S ∈ S. Let R ∈ R be a
realization in which M is the set of mandatory elements.

In line with Lemma 3.2.9, the solution corresponding to OPTS,f needs to contain all
mandatory elements of S, and resolve all remaining dependencies between vertices of S, i.e.,
query a minimum-weight vertex cover V CS

M for the subgraph Ḡ[S \M] with respect to to
the fractional vertex costs c′S,f (v) = f(v, S) · cv. Thus, we get

E[OPTS,f] =
∑︂
v∈S

pv · c′S,f (v) +
∑︂
M⊆V

p(M) · c′S,f (V CSi
M).

=
∑︂
v∈S

pv · f(v, S) · cv +
∑︂
M⊆V

p(M) ·

⎛⎝ ∑︂
v∈V CS

M

f(v, S) · cv

⎞⎠ ,

50

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

where p(M) denotes the probability that M is the set of mandatory vertices. Summing over
all S ∈ S , we obtain the lemma:

∑︂
S∈S

E[OPTS,f] =
∑︂
S∈S

⎛⎝∑︂
v∈S

pv · f(v, S) · cv +
∑︂
M⊆V

p(M) ·

⎛⎝ ∑︂
v∈V CS

M

f(v, S) · cv

⎞⎠⎞⎠
≤
∑︂
v∈V

pv · cv +
∑︂
M⊆V

p(M) ·

⎛⎝∑︂
S∈S

∑︂
v∈V CS

M

f(v, S) · cv

⎞⎠
≤
∑︂
v∈V

pv · cv +
∑︂
M⊆V

p(M) · c(V CM) = E[OPT],

where the first inequality follows from (S, f) being a partial fractional partition. The sec-
ond inequality follows from

(︂∑︁
S∈S

∑︁
v∈V CS

M
f(v, S) · cv

)︂
being the cost of a minimum

weighted vertex cover for a relaxation of Ḡ[V \M].

3.4.2 A Threshold Algorithm for Arbitrary Query Costs

We consider an adjusted variant of THRESHOLD for graph orientation with arbitrary query
costs that, in contrast to THRESHOLD for the uniform problem variant, solves a weighted
version of (LP), and a weighted vertex cover problem in Line 4. In both cases, we use the
query costs cv as weights for the vertices in the vertex cover instances. Since these changes
do not affect the pseudocode, we still refer to Algorithm 5 in the following theorem and proof.

Theorem 3.4.4. Given an α-approximation with 1 ≤ α ≤ 2 for the weighted vertex cover
problem (on the induced subgraph G[V1/2], see Line 4), the adjusted THRESHOLD with
parameter d achieves a competitive ratio of max{1d , α+ (2− α) · d} for graph orientation
under explorable stochastic uncertainty with arbitrary query costs. Optimizing d yields a
competitive ratio of 1

2(α+
√︁

8− α(4− α)). The running time of THRESHOLD is polynomial
in the input size.

Proof. The expected cost of the adjusted THRESHOLD for arbitrary query costs is

E[ALG] = c(Q) +
∑︂

v∈V \Q
cv · pv

= c(M) + c(V1) + c(V C ′) +
∑︂
v∈V0

cv · pv +
∑︂

v∈V1/2\V C′
cv · pv

as the algorithm starts by querying Q = M ∪V1 ∪V C ′ (cf. Line 5) and queries the remaining
vertices only if they are mandatory (cf. Line 6).

Analogously to the analysis of THRESHOLD for uniform query costs, we compare E[ALG]
and E[OPT] component-wise. Remember that E[OPT] is characterized by Equation (3.3.2):

E[OPT] ≥ E[OPTM] + E[OPTV1∪V0] + E[OPTV1/2
].

The bounds in Equations (3.3.3) and (3.3.6) regarding E[OPTM] and c(M), and E[OPTV1/2
]

and c(V C ′) +
∑︁

v∈V1/2\V C′ cv · pv, respectively, can be generalized straightforwardly by just
plugging in the more general query cost function into the analysis of Theorem 3.3.1. Only
generalizing Equation (3.3.5) requires more effort.

To that end, we compare c(V1) +
∑︁

v∈V0
cv · pv and E[OPTV1∪V0]. According to

Claim 3.3.2, V1 is a minimum weighted vertex cover for the bipartite graph G′[V1 ∪ V0]

51

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

that is created by removing all edges within the partitions V1 and V0 from the subgraph
induced by V1 ∪ V0. In contrast to the uniform query cost variant, we cannot apply the Kőnig-
Egerváry theorem for unweighted vertex covers. Instead, the theorem gives us a function
π : E → R with

∑︁
{u,v}∈E π(u, v) ≤ cv for each v ∈ V1 ∪ V0. By duality theory, the

constraint is tight for each v ∈ V1, and π(u, v) = 0 holds if both u and v are in V1 (or if
there is no edge between v and u). Thus, we can interpret π as a function that distributes the
complete query cost cv of each v ∈ V1 to the neighbors of v outside of V1. For each u ∈ V0,
let τu denote the remaining part of cu that is not used by π to cover the weight of any v ∈ V1,
i.e., τu = cu −

∑︁
{u,v}∈E π(u, v). We can rewrite c(V1) +

∑︁
u∈V0

cu · pu as

∑︂
v∈V1

⎛⎝cv +
∑︂
u∈V0

π(u, v) · pu

⎞⎠+
∑︂
u∈V0

τu · pu.

Instead of directly comparing this expression to E[OPTV1∪V0], we first use π and τ to
create a fractional partition of V1 ∪ V0 and exploit Lemma 3.4.3 to further lower bound
E[OPTV1∪V0]. For each v ∈ V1, let Hv = {v} ∪ {u | u ∈ V0 ∧ π(u, v) > 0} and define
S = {Hv | v ∈ V1} ∪ {V0}. Furthermore let f : V × S → [0, 1] with

f(u,Hv) =

⎧⎪⎨⎪⎩
1 if u = v
π(u,v)
cu

if u ∈ Hv \ {v}
0 otherwise

and

f(u, V0) =

{︄
τu
cu

if u ∈ V0

0 otherwise.

Clearly (S, f) is a partial fractional partition of V0 ∪ V1 and, thus,

E[OPTV1∪V0] ≥
∑︂
v∈V1

E[OPTHv ,f] + E[OPTV0,f]

≥
∑︂
v∈V1

E[OPTHv ,f] +
∑︂
u∈V0

f(u, V0) · pu · cu

=
∑︂
v∈V1

E[OPTHv ,f] +
∑︂
v∈V0

pu · τu

holds by Lemmas 3.4.3 and 3.2.9.
We continue by further lower bounding E[OPTHv ,f]. Observe that the subgraph of the

vertex cover instance induced by Hv is a star with the center v and the leaves Hv \ {v}. With
respect to the fractional costs c′Hv ,f

(u) = f(u,Hv) · cu for all u ∈ Hv, the cost of a minimum
weighted vertex cover for this subgraph is cv. This is because c′Hv ,f

(v) = f(v,Hv) · cv = cv
and c′Hv ,f

(Hv \ {v}) =
∑︁

u∈Hv\{v} f(u,Hv) · cu =
∑︁

u∈Hv\{v} π(u, v) = cv, where the last
equality holds by definition of π.

Thus, E[OPTHv ,f] ≥ cv holds by Observation 3.2.7, and, therefore,

E[OPTV1∪V0] ≥
∑︂
v∈V1

E[OPTHv ,f] +
∑︂
v∈V0

pu · τu

≥ c(V1) +
∑︂
u∈V0

τu · pu.

52

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

Finally, we compare c(V1) +
∑︁

v∈V0
cv · pv against this lower bound on E[OPTV1∪V0] by

using that
∑︁

u∈V0
π(u, v) ≤ cv holds for all v ∈ V1 and that pu ≤ d holds for all u ∈ V0:

c(V1) +
∑︂
u∈V0

cu · pu

≤
∑︂
v∈V1

⎛⎝cv +
∑︂
u∈V0

π(u, v) · d

⎞⎠+
∑︂
u∈V0

τu · pu

≤
∑︂
v∈V1

(1 + d) · cv +
∑︂
u∈V0

τu · pu

≤(1 + d) · E[OPTV1∪V0].

The rest of the analysis follows the same pattern as for the uniform query costs.

3.5 A Threshold Algorithm for Orienting Hypergraphs

In this section, we generalize THRESHOLD to hypergraphs. The algorithms and analyses of
the previous sections exploit several properties of the graph orientation problem that do not
directly transfer to hypergraphs.

To achieve a polynomial running time, we used that the mandatory probabilities can
easily be computed for graphs. For hypergraphs, we show that computing these probabilities
becomes #P-hard, and show how to approximate them via sampling.

Then, the algorithm exploits that, for graphs, the vertex cover instance Ḡ (cf. Defini-
tion 3.2.6) is equal to the input graph G. This means that after querying the vertex cover in
Line 5 of Algorithm 5, we, for each edge e, either know the orientation of e or the remaining
unqueried endpoint of e is mandatory by Lemma 2.3.5. The algorithm can use this to identify
all vertices that became mandatory after Line 5 and non-adaptively query them (cf. Line 6).
This clearly solves the problem as it queries the only remaining unqueried endpoint for each
edge with a still unknown orientation. For hypergraphs, this is not the case anymore and the
algorithm has to operate more adaptively after querying the vertex cover.

To conclude the section, we show that this additional adaptivity is indeed necessary by
giving a lower bound for algorithms that employ less adaptivity.

3.5.1 Computing Mandatory Probabilities

Recall that we denote by pv the probability that a vertex v is mandatory. For graphs, pv is easy
to compute as, by Lemma 2.3.5, v is mandatory if and only if wu ∈ Iv for some neighbor
vertex u. Hence, pv = 1−∏︁u:{u,v}∈E P[wu ̸∈ Iv]. For hypergraphs, however, we can show
that the computation of pv is #P-hard, even if all hyperedges have size 3.

Theorem 3.5.1. Computing the mandatory probabilities pv for a hypergraph H = (V,E) is
#P-hard, even if all hyperedges have size 3.

Proof. The proof consists of a reduction from the #P-hard problem of counting the number of
vertex covers of a given graph G = (V,E) [Vad01]. We construct the following instance of
the hypergraph orientation problem.

Let v′ be a new vertex, which does not belong to V . We construct the hypergraph
H = (V ∪ {v′}, E′), where every edge {u, v} ∈ E from the original graph corresponds to
an hyperedge in E′ of the form {u, v, v′}. The value wv associated to every vertex v ∈ V
follows a distribution on the interval Iv = (iε, 2 + iε) for an arbitrary ε with 0 < ε < 1/n,
where i is the index of v for some arbitrary fixed ordering of V . The role of the shift by ε is to

53

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

avoid that two intervals contain each other. The distribution on Iv is constructed such that wv

is less than 1 with probability 1/2 and at least 1 with probability 1/2. The weight associated
to vertex v′ belongs to the interval (1, 2 + (n+ 1)ε).

What is the probability that v′ is mandatory? By Lemma 2.3.5, vertex v′ is mandatory if
and only if there exists a hyperedge {u, v, v′} with wv, wu ∈ Iv′ = (1, 2 + (n+ 1)ε). Thus,
for every realization of the vertices, it is only crucial which of them have weight less than 1.
Let T ⊆ V be the set of the vertices with a value below the threshold 1. Every potential set T
has the same probability 1/2n.

Now, v′ is mandatory due to a set {u, v, v′} if and only if both values wu, wv are at least 1.
This means that v′ is not mandatory if and only if the set T defined by the realization is
a vertex cover for the graph G. In other words the probability that v′ is mandatory equals
1 − ℓ/2n, where ℓ is the number of vertex covers of G. As a consequence, computing this
probability is #P-hard.

Luckily, it is not difficult to get a good estimate of the probabilities to be mandatory for
hypergraphs using sampling.

Lemma 3.5.2. There is a polynomial-time randomized algorithm that, given a hypergraph
H = (V,E), a vertex v ∈ V , and parameters ϵ, δ ∈ (0, 1), produces a value y such that
|y − pv| ≥ ϵ with probability at most δ. Its time complexity is O(|V | · |E| · ln(1/δ)/ϵ2).
Proof. The algorithm consists of independently drawing k = ⌈ln(2/δ)/(2ϵ2)⌉ realizations
of the vertex values, and determining for each realization whether v is mandatory by using
Lemma 2.3.5. The output y is the fraction of realizations where this event happened.

For the analysis, let Xi
v be the random variable indicating whether v is mandatory in

the i-th realization. These variables are independent and have mean pv. Using Hoeffding’s
concentration [Hoe94] bound, we have

P

[︄⃓⃓⃓⃓
⃓1k

k∑︂
i=1

Xi
v − pv

⃓⃓⃓⃓
⃓ > ϵ

]︄
< 2 exp(−2kϵ2).

The choice of k is motivated by the following equivalent inequalties.

2 exp(−2kϵ2) ≤ δ

−2kϵ2 ≤ ln(δ/2)

k ≥ ln(2/δ)/(2ϵ2).

For the time complexity, we observe that verifying if a vertex is mandatory in a sampled
realization can be done in time O(|V | · |E|): We can iterate over the hyperedges E and, for
each hyperedge S ∈ E, decide in time O(|V |) whether the vertices in S render v mandatory
by Lemma 2.3.5.

The practical implementation of the sampling algorithm makes use of the given probability
matrix. Let t1, . . . , t2|V | be the sorted elements of {Lv, Uv|v ∈ V }, defining elementary
intervals of the form (ti, ti+1). The given probability matrix specifies for every given vertex
v ∈ V the probability that its weight wv belongs to a given interval (ti, ti+1). Instead of
sampling the actual weights, we only sample the elementary intervals to which they belong.
Hence, for a fixed sample, we know for each hyperedge S in which elementary interval M
its minimum weight lies. In this setting, the vertices that are mandatory because of S can be
determined as follows, again using Lemma 2.3.5:

• If at least two weights of vertices in G belong to M , then all vertices v ∈ S with
M ⊆ Iv = (Lv, Uv) are mandatory.

54

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

Algorithm 6: THRESHOLD for Hypergraphs
Input: Preprocessed instance of hypergraph orientation under stochastic explorable

uncertainty with hypergraph H = (V,E), distributions dv and uncertainty
intervals Iv for each v ∈ V . Threshold parameter d ∈ (0, 1] and an
α-approximation black box for the vertex cover problem

1 For each v ∈ V , approximate mandatory probability pv using Lemma 3.5.2;
2 Let M = {v ∈ V | pv ≥ d};
3 Solve (LP) for Ḡ[V \M] and let x∗ be an optimal basic feasible solution;
4 Let V1 = {v ∈ V | x∗v = 1} and similarly V1/2, V0 ;
5 Use the α-approximation black box to approximate a vertex cover V C ′ for Ḡ[V1/2];
6 Query Q = M ∪ V1 ∪ V C ′; /* Q is a vertex cover for Ḡ */
7 for S ∈ E do
8 while The orientation of F is not known yet do
9 Query the leftmost vertex of S;

• Otherwise, let m ∈ S be the unique vertex whose weight lies in M . We then have:

– Every other vertex u ∈ S with M ⊆ Iu is mandatory.

– If some vertex u ∈ S has its weight in Im, then m is also mandatory.

The union of the mandatory vertices of all hyperedges then gives the set of all mandatory
vertices.

3.5.2 A Threshold Algorithm for Orienting Hypergraphs

The threshold algorithm for hypergraphs, Algorithm 6, uses the sampling algorithm of
Lemma 3.5.2 to approximate the mandatory probabilities of all vertices (cf. Line 1). Until
Line 6, the algorithm mostly behaves like the threshold algorithm for graphs, but it computes
the vertex cover on the vertex cover instance Ḡ instead of the input graph.

Afterwards, starting at Line 7, the algorithm iterates through the hyperedges and, if the
orientation of a hyperedge is not yet known, repeatedly queries the leftmost vertex of the
hyperedge until the orientation is known. By resolving the remaining hyperedges in this way,
we only query mandatory vertices by Lemma 2.3.5 as shown in the proof of Lemma 3.2.8.

Theorem 3.5.3. For ϵ, δ > 0 and given an α-approximation with 1 ≤ α ≤ 2 for the
vertex cover problem (on the induced subgraph Ḡ[V1/2] of the vertex cover instance given by
Definition 3.2.6, cf. Line 5), the THRESHOLD algorithm for hypergraphs solves hypergraph
orientation under explorable stochastic uncertainty with competitive ratio

R =
1

2

(︂
α+

√︁
α2 + 4(2− α)(1 + αϵ+ (2− α)ϵ2) + (4− 2α)ϵ

)︂
with probability at least 1− δ. Its running time is upper bounded by the complexities of the
sampling procedure and the vertex cover black box procedure.

Proof. The majority of the analysis directly transfers from the proofs of Theorem 3.3.1
and Theorem 3.4.4. In Line 2 of Algorithm 6, we use a different threshold d(α) = 1/R+ ϵ,
which algebraic transformations prove to be the optimal choice.

Apart from that, the analysis only differs in the use of the approximated mandatory
probabilities. We use a random estimation Yv of pv, instead of the precise probability, using
the procedure described in Lemma 3.5.2 with parameters ϵ and δ′ such that 1− δ = (1− δ′)n.

55

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

Iv1

Iv2

Iv3

Iv4

•
•
•

Ivn−1

Ivn

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

0

0

0

0

0 0 0

0 0

0

0

0

0

0

FIGURE 3.10: Instance of hypergraph orientation under explorable stochastic uncertainty
with a single hyperedge {v1, v2, . . . , vn} as used in the proof of Theorem 3.5.4.

As a result, with probability at least 1 − δ, we have that for every vertex v, the estimation
Yv has absolute error at most ϵ. In case of this event, we obtain the following bound on the
cost (which is optimized for the chosen value of d), namely E[ALG] ≤ max{ 1

d−ϵ , (1 + d+
ϵ), (α + (2 − α)(d + ϵ))} · E[OPT], by repeating the analysis of Theorem 3.3.1 with the
approximated probabilities.

3.5.3 Bounds on the Necessary Adaptivity

In contrast to the algorithm for graphs, the THRESHOLD algorithm for hypergraphs uses
additional adaptivity after querying the vertex cover. We remark that this is necessary for all
vertex cover-based algorithms. To show this, we define a a strict two-stage algorithm to be
an algorithm with two stages that non-adaptively queries a set V1 of vertices in the first stage
and then, after receiving the answers to the queries of V1, determines a set V2 of vertices that
it queries non-adaptively in the second stage. The algorithm must guarantee that, after the
second stage, it has sufficient information to solve the problem. Our next theorem shows that
strict two-stage algorithms cannot have a good competitive ratio.

Theorem 3.5.4. No strict two-stage algorithm can have competitive ratio o(log n) for hyper-
graph orientation under explorable stochastic uncertainty, even for a single hyperedge with
uniform query costs.

Proof. Consider an instance of hypergraph orientation under stochastic explorable uncertainty
with a single hyperedge {v1, . . . , vn} and uncertainty intervals

• Iv1 = (1, n+ 1) and

• Ivi = (i, n+ 2) for 2 ≤ i ≤ n.

The probability distributions are such that, for each uncertainty interval (a, b), the probability
is 1/2 for the precise weight to be in (a, a + 1), and 1/2 for the precise weight to be in
(b− 1, b). So the weight of each interval is either at its left end or at its right end, and each of
these events happens with probability 1/2. See Figure 3.10 for an illustration.

If we query the vertices in order of their left interval endpoints until the instance is
solved, we are done as soon as one interval has its weight at its left end. So each vertex has
probability 1/2 to be the last one we need to query, and the expected number of queries is 2.
So E[OPT] ≤ 2.

Now consider an arbitrary strict two-stage algorithm ALG. Assume that the algorithm
queries k intervals in the first stage.

56

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

Algorithm 7: BESTVC
Input: Preprocessed instance of hypergraph orientation under explorable stochasitc

uncertainty with hypergraph H = (V,E) and Iv and pv for each v ∈ V .
1 Compute a minimum-weight vertex cover V C for Ḡ using weights c̄v = (1− pv) · cv;
2 Query V C;
3 for S ∈ E do
4 while The orientation of S is not known yet do
5 Query the leftmost vertex of S;

Consider the event E that each of the vertices queried by ALG in the first stage has
its weight at the right end. The event E occurs with probability 1/2k and, if it occurs,
the algorithm must query all n − k remaining vertices in the second stage. Otherwise, it
could happen that all queries in the second stage also yield a weight at the right end of the
corresponding interval, and then it is impossible to decide whether an unqueried vertex has
minimum weight. Thus, the expected cost of ALG is

E[ALG] = k +
1

2k
(n− k) =

n

2k
+ k

(︃
1− 1

2k

)︃
If k ≥ (1/2) log n, the term k(1− 1/2k) is in Ω(log n). If k < (1/2) log n, the term n/2k is
in Ω(

√
n). So, in any case, E[ALG] = Ω(log n) while E[OPT] ≤ 2.

3.6 Vertex Cover-Based Algorithms: Special Cases

In this section, we further characterize the, in expectation, best vertex cover-based algorithm
and show that it achieves an improved competitive ratio for the problems of orienting a
bipartite graph and orienting a single hyperedge with uniform query costs.

Consider an arbitrary vertex cover-based algorithm ALG. It queries a vertex cover V C in
the first stage and continues with elements of V \ V C only if they are mandatory. Thus,

E[ALG] = c(V C) +
∑︂

v∈V \V C

pv · cv

=
∑︂
v∈V C

(pv · cv + (1− pv) · cv) +
∑︂

v∈V \V C

pv · cv

=
∑︂
v∈V

pv · cv +
∑︂
v∈V C

(1− pv) · cv.

Since the term
∑︁

v∈V pv · cv is independent of V C, ALG is the best possible vertex cover-
based algorithm if the vertex cover V C minimizes

∑︁
v∈V C(1 − pv) · cv. We refer to this

algorithm as BESTVC and formalize it with Algorithm 7.
To implement BESTVC, we need the exact value pv, for all v ∈ V , and an optimal

algorithm for computing a weighted vertex cover. As mentioned in Section 3.2, the first
problem is #P-hard in hypergraphs, but it can be solved exactly in polynomial time for graphs.
The weighted vertex cover problem can be solved optimally in polynomial time for bipartite
graphs.

In general, BESTVC has competitive ratio at least 1.5 (cf. Theorem 3.2.13). However, we
show in the following that it is 4/3-competitive for two special cases: Orienting a bipartite
graph with arbitrary query costs and orienting a single hyperedge with uniform query costs.

57

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

It remains open whether BESTVC still outperforms THRESHOLD if the vertex cover is only
approximated with a factor α > 1.

3.6.1 Orienting Bipartite Graphs with Arbitrary Query Costs

We start by considering BESTVC for orienting bipartite graphs. In particular, we prove the
following theorem, which is tight due to Theorem 3.2.5.

Theorem 3.6.1. BESTVC is 4
3 -competitive for the bipartite graph orientation problem under

explorable stochastic uncertainty.

Our proof of the theorem relies on reducing the problem to the special case of orienting a
weighted star with probabilities such that both vertex cover-based algorithms for orienting the
star (querying the center first and querying the leaves first, respectively) have equal expected
cost. We prove the following lemma in the subsequent section and use it as a blackbox to
show Theorem 3.6.1.

Lemma 3.6.2. Consider the problem of orienting a star G = (V,E) with center v ∈ V . Let
L and R be the vertex cover-based algorithms that query V C1 = {v} and V C2 = V \ {v} in
the first stage, respectively. If E[L] = E[R], then L is 4

3 -competitive.

We show now how to use this lemma as a blackbox in order to analyse BESTVC for
bipartite graphs.

Proof of Theorem 3.6.1. Lemma 3.6.2 states that BESTVC is 4
3 -competitive for the problem

of orienting stars if both vertex cover-based algorithms (either querying the leaves or the center
first) have the same expected cost. In this proof, we divide a given bipartite instance into sub-
problems that fulfill these requirements, and use the result for stars to infer 4

3 -competitiveness
for bipartite graphs.

Let V C be a minimum-weight vertex cover (with weights c̄v = cv · (1− pv)) as computed
by BESTVC in the first phase. In the remainder of the proof, we use the term weight of vertex
v to refer to c̄v = (1 − pv) · cv. By the Kőnig-Egerváry theorem (e.g., [Sch03]), there is
a function π : E → R with

∑︁
{u,v}∈E π(u, v) ≤ cv · (1 − pv) for each v ∈ V . By duality

theory, the constraint is tight for each v ∈ V C, and π(u, v) = 0 holds if both u and v are
in V C (or if there is no edge between u and v). Thus, we can interpret π as a function that
distributes the weight of each v ∈ V C to its neighbors outside of V C.

For each v ∈ V C and u ∈ V \ V C, let λu,v := π(u,v)
(1−pu)·cu denote the fraction of the

weight of u that is used by π to cover the weight of v. Moreover, for u ∈ V \ V C, let
τu := 1−∑︁{u,v}∈E λu,v be the fraction of the weight of u that is not used by π to cover the
weight of any v ∈ V C. Then, we can write the expected query cost of BESTVC as follows:

E[BESTVC] =
∑︂
v∈V C

(︃
cv +

∑︂
u∈V \V C

pu · λu,v · cu
)︃
+

∑︂
u∈V \V C

pu · τu · cu. (3.6.1)

In order to bound this expected cost of BESTVC in terms of E[OPT], we first use
λ and τ to define a fractional partition (S, f) as defined in Definition 3.4.2 of the vertex
set V and use Lemma 3.4.3 to derive a lower bound on E[OPT]. For each v ∈ V C, let
Hv = {v}∪ {u | u ∈ V \V C with λu,v > 0}, and define S = {Hv | v ∈ V C}∪ {V \V C}.
We complete the definition of the fractional partition (S, f) by defining f as

f(u,Hv) =

⎧⎪⎨⎪⎩
1 if u = v

λu,v if u ∈ Hv \ {v}
0 otherwise,

58

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

and

f(u, V \ V C) =

{︄
τu if u ∈ V \ V C

0 otherwise.

Clearly, (S, f) is a fractional partition of V . By Lemma 3.4.3 and Equation (3.2.1), we
get the following lower bound on E[OPT]:

E[OPT] ≥
∑︂
S∈S

E[OPTS,f]

≥
∑︂
v∈V C

E[OPTHv ,f] + E[OPTV \V C,f]

≥
∑︂
v∈V C

E[OPTHv ,f] +
∑︂

u∈V \V C

pu · f(u, V \ V C) · cu

=
∑︂
v∈V C

E[OPTHv ,f] +
∑︂

u∈V \V C

pu · τu · cu.

Comparing Equation (3.6.1) with this lower bound on E[OPT], we notice that the term∑︁
u∈V \V C pu · τu · cu shows up in both inequalities. Thus, to bound E[BESTVC] in terms

of E[OPT], it only remains to bound
∑︁

v∈V C(cv +
∑︁

u∈V \V C pu · λu,v · cu) in terms of∑︁
v∈V C E[OPTHv ,f]. We do so component-wise and compare cv +

∑︁
u∈V \V C pu · λu,v · cu

to E[OPTHv ,f] for each v ∈ V C.
The value E[OPTHv ,f] corresponds to the expected optimum for the subproblem which

considers the subgraph induced by Hv with query costs c′u = f(u,Hv) · cu for all u ∈ Hv

and using the original mandatory probabilities pu for all u ∈ Hv. The subgraph is a star
with center v and leaves Hv \ {v}. Considering the two vertex cover-based algorithms L and
R on this instance, where L is the algorithm that queries V C1 = {v} in the first stage and
R is the algorithm that queries V C2 = Hv \ {v} in the first stage, we can observe that the
expected costs of L and R are c′v +

∑︁
u∈Hv\{v} pu · c′u = cv +

∑︁
u∈Hv\{v} pu · λu,v · cu and

pv · c′v +
∑︁

u∈Hv\{v} c
′
u = pv · cv +

∑︁
u∈Hv\{v} λu,v · cu, respectively. By definition of λ, we

have (1− pv) · cv =
∑︁

u∈Hv\{v}(1− pu) · λu,v · cu, which implies

c′v +
∑︂

u∈Hv\{v}
pu · c′u = cv +

∑︂
u∈Hv\{v}

pu · λu,v · cu

= pv · cv +
∑︂

u∈Hv\{v}
λu,v · cu

= pv · c′v +
∑︂

u∈Hv\{v}
c′u.

Thus, L and R have the same expected cost for the subproblem. This allows us to ap-
ply Lemma 3.6.2 and conclude that both, L and R, are 4

3 -competitive for the subproblem.
This implies

c′v +
∑︂

u∈Hv\{v}
pu · c′u = cv +

∑︂
u∈Hv\{v}

pu · λu,v · cu ≤
4

3
· E[OPTHv ,f].

We remark that applying the lemma requires pv to be independent of each pu with u ∈ Hv;
otherwise, the subproblem does not correspond to the star orientation problem. As the input
graph is bipartite, such independence follows by definition.

59

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

Using this inequality, the lower bound on E[OPT] and Equation (3.6.1), we conclude that
BESTVC is 4/3-competitive:

E[BESTVC] =
∑︂
v∈V C

(︃
cv +

∑︂
u∈V \V C

pu · λuv · cu
)︃
+

∑︂
u∈V \V C

pu · τu · cu

≤ 4

3
·
∑︂
v∈V C

E[OPTHv ,f] +
∑︂

u∈V \V C

pu · τu · cu

≤ 4

3
· E[OPT].

3.6.2 Orienting a Special Star with Arbitrary Query Costs

The proof of the main result of the previous section uses Lemma 3.6.2 as a blackbox. In this
section, we proceed by proving the lemma.

Lemma 3.6.2. Consider the problem of orienting a star G = (V,E) with center v ∈ V . Let
L and R be the vertex cover-based algorithms that query V C1 = {v} and V C2 = V \ {v} in
the first stage, respectively. If E[L] = E[R], then L is 4

3 -competitive.

Proof. For each v ∈ V , let Xv be an indicator variable denoting whether v is mandatory.
Note that pv = P[Xv = 1]. The analysis relies on Xv being independent from Xu for each
u ∈ V \ {v}. In the graph orientation problem, a vertex u is mandatory if the exact weight of
at least one v with {u, v} ∈ E is contained in Iu. Thus, vertex u being mandatory depends
only on the direct neighbors of u. Since we consider a start with center v and leaves V \ {v},
v does not share any neighbors with any u ∈ V \ {v}. Thus, Xv and Xu are independent.
This also implies that Xv and L are independent. In the following let Bv = V \ {v} denote
the set of leaves. Thus, for the expected costs of the algorithms, we have

E[L] = cv +
∑︂
u∈Bv

pu · cu = pv · cv + c(Bv) = E[R]. (3.6.2)

We start our analysis by handling a special case.

Special Case c(Bv) ≤ cv. If c(Bv) ≤ cv, querying the leaves is always the best strategy
if the center is not mandatory, i.e., if Xv = 0, independently of whether the elements of Bv

are mandatory or not. Similarly, if the center is mandatory, i.e., if Xv = 1, querying the center
first is always the best strategy. Thus, we can write E[OPT] as

E[OPT] = pv · E[L | Xv = 1] + (1− pv) · E[R | Xv = 0]

= pv · E[L] + (1− pv) · c(Bv)

= pv · E[L] + (1− pv) · (E[L]− pv · cv)
= E[L]− pv · (1− pv) · cv,

where the second equality uses the fact that Xv and L are independent, and the third equality
uses E[L] = E[R]. Since 0 ≤ pv ≤ 1, we get pv · (1− pv) · cv ≤ cv

4 . This directly implies

E[L]
E[OPT]

=
E[L]

E[L]− pv · (1− pv) · cv
≤ cv

cv − pv · (1− pv) · cv
≤ cv

cv − 1
4 · cv

≤ 4

3
,

60

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

where the second inequality uses that E[L] ≥ cv and that the left fraction is maximized when
E[L] is minimized. This implies that we achieve the desired competitive ratio for the special
case c(Bv) ≤ cv. For the remainder of the analysis, we assume c(Bv) > cv.

Characterizing E[L] and E[OPT]. We begin by characterizing E[L] in terms of condi-
tional expectations using the law of total expectation:

E[L] = pv · E[L | Xv = 1] + (1− pv) · E[L | Xv = 0].

Since Xv and L are independent, it follows that E[L | Xv = 1] = E[L]. If the center is
mandatory, i.e., Xv = 1, we know that both OPT and L have the same expected value. That
is, E[OPT | Xv = 1] = E[L | Xv = 1].

Thus, we are more interested in the case when Xv = 0. For this case, we know that

E[L | Xv = 0] = E[L] = cv +
∑︂
u∈Bv

pu · cu = E[R] = pv · cv + c(Bv).

But whether algorithm L is the best possible strategy depends on how much query cost of
the leaves is mandatory. We have two cases. In the first case, where a realization satisfies∑︁

u∈Bv
(1 − Xu) · cu ≥ cv, querying the center first is a better strategy than querying the

leaves first, even if the center is not mandatory. This is because
∑︁

u∈Bv
(1−Xu) · cu is the

query cost of leaves that are not mandatory. Every feasible query set has to query either v
or all such leaves, but it is not necessary to query both (if v is also not mandatory). As the
non-mandatory leaves are more expensive than v, querying the center instead is optimal. In
the second case, where the realization satisfies

∑︁
u∈Bv

(1−Xu) · cu < cv, querying the leaves
is the better strategy if additionally Xv = 0, using the same argumentation as for the first case.

Consider the case where
∑︁

u∈Bv
(1 − Xu) · cu ≥ cv. Recall that c(Bv) denotes the

total query cost of the leaves. Since algorithm L only queries the leaves that are mandatory,
the query cost for L on the leaves is at most c(Bv) −

∑︁
u∈Bv

(1 − Xu) · cu ≤ c(Bv) − cv.
As L additionally queries the center v, the total query cost of L is at most c(Bv). Thus,
we can write the expected cost for this case as E[L | Xv = 0 ∧ ∑︁u∈Bv

(1 − Xu) ≥
cv] = c(Bv) − s, where s with c(Bv) ≥ s ≥ 0 describes the slack between c(Bv) and
E[L | Xv = 0 ∧∑︁u∈Bv

(1 −Xu) · cu ≥ cv]. Define qL := P
[︁∑︁

u∈Bv
(1−Xu) · cu ≥ cv

]︁
,

then we can further characterize E[L | Xv = 0] by again using the total law of expectation:

E[L | Xv = 0] = qL · E
[︂
L
⃓⃓⃓
Xv = 0 ∧

∑︂
u∈Bv

(1−Xu) · cu ≥ cv

]︂
+ (1− qL) · E

[︂
L
⃓⃓⃓
Xv = 0 ∧

∑︂
u∈Bv

(1−Xu) · cu < cv

]︂
= qL · (c(Bv)− s) + (1− qL) · E

[︂
L
⃓⃓⃓
Xv = 0 ∧

∑︂
u∈Bv

(1−Xu) · cu < cv

]︂
.

Recall, again, that if
∑︁

u∈Bv
(1 −Xu) · cu ≥ cv, then L is optimal (as argued above). This

implies that, if qL = 1, then E[L] = E[OPT] and the lemma immediately follows. Thus, in
the following, assume qL < 1. This in particular means that we can safely divide by (1− qL).

61

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

Using the above characterization of E[L | Xv = 0] and the fact that E[L | Xv = 0] =
E[L] = E[R] = pv · cv + c(Bv) holds by the independence of L and Xv, we can derive

pv · cv + c(Bv) = qL · (c(Bv)− s) + (1− qL) · E
[︂
L
⃓⃓⃓
Xv = 0 ∧

∑︂
u∈Bv

(1−Xu) · cu < cv

]︂
⇔(1− qL) · E

[︂
L
⃓⃓⃓
Xv = 0 ∧

∑︂
u∈Bv

(1−Xu) · cu < cv

]︂
= pv · cv + (1− qL) · c(Bv) + qL · s

⇔E
[︂
L
⃓⃓⃓
Xv = 0 ∧

∑︂
u∈Bv

(1−Xu) · cu < cv

]︂
= c(Bv) +

1

1− qL
· pv · cv +

qL
1− qL

· s.

Plugging in this equality into the previous characterization for E[L | Xv = 0], we get

E[L | Xv = 0] = qL · (c(Bv)− s) + (1− qL) · E
[︂
L
⃓⃓⃓
Xv = 0 ∧

∑︂
u∈Bv

(1−Xu) · cu < cv

]︂
= qL · (c(Bv)− s) + (1− qL) ·

(︃
c(Bv) +

1

1− qL
· pv · cv +

qL
1− qL

· s
)︃
.

Finally, we use this, and again the independence of L and Xv, to characterize E[L]:

E[L] = pv · E[L | Xv = 1] + (1− pv) · E[L | Xv = 0]

= pv · E[L] + (1− pv) · E[L | Xv = 0]

= pv · E[L] + (1− pv) · qL · (c(Bv)− s)

+ (1− pv) · (1− qL) ·
(︃
c(Bv) +

1

1− qL
· pv · cv +

qL
1− qL

· s
)︃
.

To characterize E[OPT], observe that the only case where OPT and L differ is the case
where Xv = 0 and

∑︁
u∈Bv

(1−Xu) · cu < cv. For that case, OPT queries only the leaves at
cost c(Bv). Thus, we can write E[OPT] as

E[OPT] = pv · E[L] + (1− pv) · qL · (c(Bv)− s) + (1− pv) · (1− qL) · c(Bv),

where we also use that c(Bv) − s is the expected optimal cost conditioned on Xv = 0 and∑︁
u∈Bv

(1−Xu) · cu ≥ cv, as we already argued.

Upper bounding the competitive ratio. We now use the characterizations of E[L] and
E[OPT] to show 4

3 -competitiveness. Consider the difference between E[L] and E[OPT], then

E[L]− E[OPT] = pv · E[L] + (1− pv) · qL · (c(Bv)− s)

+ (1− pv) · (1− qL) ·
(︃
c(Bv) +

1

1− qL
· pv · cv +

qL
1− qL

· s
)︃

− pv · E[L]− (1− pv) · qL · (c(Bv)− s)− (1− pv) · (1− qL) · c(Bv)

= (1− pv) · (1− qL) ·
(︃
c(Bv) +

1

1− qL
· pv · cv +

qL
1− qL

· s
)︃

− (1− pv) · (1− qL) · c(Bv)

= (1− pv) · (pv · cv + qL · s).

We can use this difference to upper bound the competitive ratio by

E[L]
E[OPT]

≤ E[L]
E[L]− (1− pv) · pv · cv − (1− pv) · qL · s

.

62

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

We continue by upper bounding qL · s. Consider again the characterization of E[L]. Under
the conditions Xv = 0 and

∑︁
v∈Bv

(1−Xu) · cu < cv, we already showed the expected value
of L is larger than c(Bv) by 1

1−qL
· pv · cv + qL

1−qL
· s. By Equation (3.6.2), the difference

between c(Bv) and the cost of L can never be larger than cv. Thus,

1

1− qL
· pv · cv +

qL
1− qL

· s ≤ cv

=⇒ pv · cv + qL · s ≤ cv · (1− qL)

=⇒ qL · s ≤ cv · (1− pv)− cv · qL
=⇒ qL · (cv + s) ≤ cv · (1− pv)

=⇒ qL ≤ cv ·
1− pv
cv + s

.

This implies

E[L]
E[OPT]

≤ E[L]
E[L]− (1− pv) · pv · cv − (1− pv) · qL · s

≤ E[L]
E[L]− (1− pv) · pv · cv − cv ·(1−pv)2·s

cv+s

.

Moreover, we can observe that this upper bound decreases for increasing E[L], so we only
need a lower bound on E[L]. In the characterization of E[L], the expected cost of L under the
condition Xv = 0 and

∑︁
u∈Bv

(1−Xu) · cu ≥ cv is c(Bv)− s. Since the cost of L can never
be smaller than cv as L starts by querying v, we get c(Bv)− s ≥ cv and, thus, c(Bv) ≥ cv+ s.
So the expected cost of the algorithm is E[L] = E[R] = c(Bv) + cv · pv ≥ cv + s+ pv · cv.
By plugging this into the ratio we obtain:

E[L]
E[OPT]

≤ cv + pv · cv + s

cv + pv · cv + s− (1− pv) · pv · cv − cv ·(1−pv)2·s
cv+s

We can now use

cv · (1− pv)
2 · s

cv + s
=

cv · (1− pv)
2 · s

cv · (1 + s
cv
)

=
(1− pv)

2 · s
1 + s

cv

to write the ratio as

E[L]
E[OPT]

≤ cv + cv · pv + s

cv + pv · cv + s− (1− pv) · pv · cv − (1−pv)2·s
1+ s

cv

=
1 + pv +

s
cv

1 + pv +
s
cv
− (1− pv) · pv −

(1−pv)2· s
cv

1+ s
cv

.

Assume cv > 0; we can do this w.l.o.g. because we can query free elements in a preprocessing
step. Let s′ = s

cv
. Then we have that

E[L]
E[OPT]

≤ 1 + pv + s′

1 + pv + s′ − (1− pv) · pv − (1−pv)2·s′
1+s′

= f(pv, s
′).

63

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

Showing 4
3 -competitiveness. To complete the proof, we show that f(pv, s′) ≤ 4

3 for
any 0 ≤ pv ≤ 1 and s′ ≥ 0. We can rewrite

f(pv, s
′) =

(1 + s′)(1 + pv + s′)
1 + s′ + (1 + s′)pv + (1 + s′)s′ − (1 + s′)pv + (1 + s′)p2v − (1− pv)2 · s′

=
(1 + s′)(1 + pv + s′)

1 + s′ + (1 + s′)s′ + (1 + s′)p2v − (1− pv)2 · s′

=
(1 + s′)(1 + pv + s′)

1 + s′ + s′ + s′2 + p2v + s′p2v − (1− pv)2 · s′

=
(1 + s′)(1 + pv + s′)

1 + s′ + s′ + s′2 + p2v + s′p2v − s′ + pvs′ − s′p2v

=
(1 + s′)(1 + pv + s′)

1 + s′ + s′2 + p2v + 2pvs′

=
(1 + s′)(1 + pv + s′)
1 + s′ + (pv + s′)2

.

We fix the value of s′ and look for critical points, so we consider the partial derivative of
f(pv, s

′) on pv, which is

∂

∂pv
f(pv, s

′) = −(1 + s′)(p2v + 2pv(1 + s′) + s′2 + s′ − 1)

((pv + s′)2 + 1 + s′)2
.

The denominator is clearly always greater than zero.
First, let us consider s′ ≥ 1

ϕ =
√
5−1
2 . If s′2 + s′ − 1 ≥ 0, which always holds for

s′ ≥ 1
ϕ , then clearly

∂

∂pv
f(pv, s

′) ≤ 0, so f(pv, s
′) is non-increasing and is maximized when

pv = 0. Let g(s′) = f(0, s′) =
(1 + s′)2

1 + s′ + s′2
; then

d

ds′
g(s′) =

1− s′2

(1 + s′ + s′2)2
, and the only

critical point is obtained by taking
d

ds′
g(s′) = 0, which holds when s′ = 1. It is clear that

d

ds′
g(s′) ≥ 0 for 0 ≤ s′ ≤ 1 and

d

ds′
g(s′) ≤ 0 for s′ ≥ 1, so g(s′) has a global maximum

when s′ = 1. Thus, the maximum value of f(pv, s′) for s′ ≥ 1
ϕ and pv ≥ 0 is f(0, 1) = 4

3 .

Now assume 0 ≤ s′ < 1
ϕ . Let us look at the critical points by taking

∂

∂pv
f(pv, s

′) = 0.

Since the denominator is always positive and s′ ≥ 0, we only have a zero when

N(pv, s
′) = p2v + 2pv(1 + s′) + s′2 + s′ − 1 = 0,

which by the quadratic formula yields pv = −1 − s′ ±
√
s′ + 2. Since we need pv ≥ 0,

we have pv = −1 − s′ +
√
s′ + 2. We claim that this is always a maximum point. Clearly,

∂

∂pv
f(pv, s

′) ≥ 0 whenever N(pv, s
′) ≤ 0 and vice-versa, but

∂

∂pv
N(pv, s

′) = 2(1+pv+s′),

which is non-negative for pv, s′ ≥ 0, so N(pv, s
′) is non-decreasing. We can conclude that

∂

∂pv
f(pv, s

′) ≥ 0 for 0 ≤ pv ≤ −1 − s′ +
√
s′ + 2 and

∂

∂pv
f(pv, s

′) ≤ 0 for −1 − s′ +
√
s′ + 2 ≤ pv ≤ 1, so we have a maximum point at pv = −1− s′ +

√
s′ + 2. Finally, let

h(s′) = f(−1− s′ +
√
s′ + 2, s′) =

(1 + s′)
√
s′ + 2

2s′ + 4− 2
√
s′ + 2

.

64

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

We have that
d

ds′
h(s′) =

1

4
√
s′ + 2

, which is always non-negative for s′ ≥ 0. Thus, h(s′) is

a non-decreasing function, so its maximum for 0 ≤ s′ < 1
ϕ is attained when s′ tends to 1

ϕ .

Therefore, for 0 ≤ s′ < 1
ϕ and pv ≥ 0, we have that f(pv, s′) ≤ h(1ϕ) =

√
5+3
4 < 4

3 .

3.6.3 Orienting a Single Hyperedge with Uniform Query Costs

Next, we analyze BESTVC for the special case of orienting a single hyperedge with uniform
query costs.

Theorem 3.6.3. BESTVC has a competitive ratio at most min{43 , n+1
n } for the hypergraph

orientation problem on a single preprocessed hyperedge with n+ 1 ≥ 2 vertices and uniform
query costs. For a hyperedge with only two vertices, the algorithm is 1.207-competitive.

Proof. Let S = {v0, v1, . . . , vn} be the single hyperedge. We assume that v0, v1, . . . , vn are
ordered by non-decreasing left endpoints of their uncertainty intervals Iv0 , . . . , Ivn . That is,
v0 is the leftmost vertex of S and, by our assumptions in Section 3.2, all intervals Iv1 , . . . , Ivn
intersect Iv0 , but none of them is contained in Iv0 .

In this setting, by Definition 3.2.6, the vertex cover instance is a star with center v0 and
leaves v1, . . . , vn. Thus, we only have to consider two vertex cover-based algorithms: the
algorithm L that queries vertex cover {v0} in the first stage, and the algorithm R that queries
{v1, . . . , vn} in the first stage. Note that, while the vertex cover instance is a star, we cannot
apply the analysis of Lemma 3.6.2 in Section 3.6.2: This is because that analysis requires the
mandatory probabilities of v0 and each vi with 1 ≤ i ≤ n to be independent, which is not the
case here.

If n ≥ 3, it is sufficient to consider algorithm L. The algorithm simply queries the vertices
in order of left endpoints, starting with v0, until we can identify the minimum element. If v0
is also queried by OPT, we have L = OPT. Otherwise, OPT must query all of v1, . . . , vn,
and the competitive ratio is at most n+1

n ≤ 4
3 . Since L is 4

3 -competitive in this case, so is
BESTVC.

So it remains to consider the cases n = 1 and n = 2. For n = 1, the configuration of the
intervals is shown in Figure 3.11. Here, p is the probability that the weight of v0 is contained
in I1, and q is the probability that the weight of v1 is contained in I0. Note that in this case p
and q correspond to the mandatory probabilities of v1 and v0.

I0

I1

1− p p

q 1− q

FIGURE 3.11: Configuration for a hyperedge with two vertices.

We can assume that q ≥ p (otherwise, we swap I0 and I1 and flip the x-axis). Since OPT
has to query at least one vertex and only queries a second one if both are mandatory, we have
E[OPT] = 1 + pq. Algorithm L queries I0 first and has E[L] = (1− p) · 1 + p · 2 = 1 + p.

The ratio
1 + p

1 + pq
for 0 ≤ p ≤ 1 and p ≤ q ≤ 1 is maximized for q = p, in which case it

is
1 + p

1 + p2
. The derivative of f(p) =

1 + p

1 + p2
is f ′(p) =

1− 2p− p2

(1 + p2)2
, which is positive for

0 ≤ p < −1 +
√
2, equal to 0 for p = −1 +

√
2, and negative for 1 +

√
2 < p ≤ 1. Hence,

the maximum of f(p) in the range 0 ≤ p ≤ 1 is attained at p0 = −1 +
√
2 ≈ 0.4142 with

value f(p0) =
1+

√
2

2 ≈ 1.207. Thus, BESTVC is 1.207-competitive for n = 1.

65

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

It remains to consider case n = 2. The configuration of the intervals is shown in
Figure 3.12. Note that the order of the right endpoints of Iv1 and Iv2 is irrelevant for the proof.

Iv0

Iv1

Iv2

p0 p1 p2

q1 q2 q3

r2 r3

FIGURE 3.12: Configuration for three intervals.

Again, we only have to consider the two vertex cover-based algorithms L and R. We have:

E[OPT] = p0 · 1 + p1 · 2 + p2(q1 · 2 + q2 · 3 + q3(r2 · 3 + r3 · 2))
E[L] = p0 · 1 + p1 · 2 + p2(q1 · 2 + q2 · 3 + q3 · 3)
E[R] = 3− q3r3

By definition, BESTVC has an expected value of at most min{E[L],E[R]}, and, thus, the
competitive ratio is at most

min{E[L],E[R]}
E[OPT]

.

First, we want to remove some parameters to simplify our calculations. Note that if we
move ε probability from q2 to q1, then E[OPT] and E[L] decrease by p2ε, while E[R] is
unchanged. So we can assume that q2 = 0. Furthermore, if we move ε probability from p1
to p0, then E[OPT] and E[L] decrease by ε, while E[R] is unchanged. So we can assume that
p1 = 0. This gives

E[OPT] = p0 · 1 + p2(q1 · 2 + q3(r2 · 3 + r3 · 2))
E[L] = p0 · 1 + p2(q1 · 2 + q3 · 3)
E[R] = 3− q3r3.

Now we rename the parameters as

p := p2, 1− p = p0, q := q1, 1− q = q3, r := r2, 1− r = r3.

The equations then become

E[OPT] = 1 + p+ p(1− q)r

E[L] = 1 + p(2− q)

E[R] = 2 + r + q − qr.

The corresponding picture with renamed parameters is shown in Figure 3.13.

Iv0

Iv1

Iv2

1− p 0 p

q 0 1− q

r 1− r

FIGURE 3.13: Configuration for three intervals assuming p1 = q2 = 0.

66

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

Case 1: E[L] ≤ E[R]. We want to show

E[L] ≤ 4

3
· E[OPT]. (3.6.3)

This inequality (3.6.3) can be transformed as follows

3 · E[L] ≤ 4 · E[OPT]

⇔ 3 + 3p(2− q) ≤ 4 + 4p+ 4p(1− q)r

⇔ 2p+ 4pqr ≤ 1 + 4pr + 3pq.

This is clearly satisfied for p = 0, so we can divide by p and get

2 + 4qr ≤ 1

p
+ 4r + 3q. (3.6.4)

With respect to p, this inequality is most difficult to satisfy if p is as large as possible. To
see how large p can be, we look back at our assumption for the current case, E[L] ≤ E[R].
Expanding this assumption gives

1 + p(2− q) ≤ 2 + r + q − qr.

This can be reformulated as
p ≤ 1 + r + q − qr

2− q
. (3.6.5)

We now distinguish two cases depending on whether the right-hand side of (3.6.5) is larger
than 1 or not.

Case 1.1:
1 + r + q − qr

2− q
≥ 1. This condition is equivalent to

1 + r + q − qr ≥ 2− q

⇔ r + 2q ≥ 1 + qr. (3.6.6)

In this case, we can set p to 1. Instead of inequality (3.6.4), it now suffices to show

2 + 4qr ≤ 1 + 4r + 3q

⇔ 1 + 4qr ≤ 4r + 3q. (3.6.7)

By (3.6.6) we have
1 + 4qr = 1 + qr + 3qr ≤ r + 2q + 3qr.

Thus, to show (3.6.7) it suffices to show

r + 2q + 3qr ≤ 4r + 3q

⇔ 3qr ≤ 3r + q.

This is obviously satisfied as 3qr ≤ 3r follows from q ≤ 1.

67

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

Case 1.2:
1 + r + q − qr

2− q
< 1. This condition is equivalent to

1 + r + q − qr < 2− q

⇔ r + 2q < 1 + qr.

⇒ 4qr + 4q2r2 > 4r2q + 8rq2 (3.6.8)

In the last step, we have multiplied the inequality with 4qr. In this case, we can set p to
1 + r + q − qr

2− q
. Instead of Inequality (3.6.4) it now suffices to show

2 + 4qr ≤ 2− q

1 + r + q − qr
+ 4r + 3q

⇔ (1 + r + q − qr)(2 + 4qr − 4r − 3q) ≤ 2− q

⇔ 2− 2r − q − 5qr − 4r2 − 3q2 + 7q2r + 8qr2 − 4q2r2 ≤ 2− q

⇔ 7q2r + 8qr2 ≤ 2r + qr + 4r2 + 3q2 + (4q2r2 + 4qr).

By (3.6.8), it suffices to show that

7q2r + 8qr2 ≤ 2r + qr + 4r2 + 3q2 + 4r2q + 8rq2.

This can be transformed into

4qr2 ≤ 2r + qr + 4r2 + 3q2 + rq2.

This clearly holds because 4qr2 ≤ 4r2 follows from q ≤ 1.

Case 2: E[L] ≥ E[R]. We want to show

E[R] ≤ 4

3
· E[OPT]. (3.6.9)

This inequality can be transformed to

6 + 3r + 3q − 3qr ≤ 4 + 4p+ 4p(1− q)r

⇔ 2 + 3r + 3q + 4pqr ≤ 3qr + 4p+ 4pr

⇔ p(4 + 4r − 4qr) ≥ 2 + 3r + 3q − 3qr, (3.6.10)

Expanding our assumption E[L] ≥ E[R] gives

2 + r + q − qr ≤ 1 + p(2− q).

This can be reformulated as

1 + r + q + pq ≤ 2p+ qr

⇔ p(2− q) ≥ 1 + r + q − qr

⇔ p ≥ 1 + r + q − qr

2− q
. (3.6.11)

68

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

We observe that this is only possible if the right-hand side of (3.6.11) is at most 1, so we must
have the following for this to be possible.

1 + r + q − qr ≤ 2− q

r + 2q ≤ 1 + qr

However, we will not need to use this fact in the remainder of the proof.
Inequality (3.6.10) is most difficult to satisfy if p is as small as possible, so in view

of (3.6.11) we can set p =
1 + r + q − qr

2− q
and then prove the following inequality to

establish (3.6.10).

1 + r + q − qr

2− q
(4 + 4r − 4qr) ≥ 2 + 3r + 3q − 3qr

⇔ 2r + 5qr + 4r2 + 3q2 + 4q2r2 ≥ 8qr2 + 7q2r (3.6.12)

We show that (3.6.12) holds by showing the following inequalities

5qr + 4r2 ≥ 8qr2, (3.6.13)

2r + 3q2 + 4q2r2 ≥ 7q2r. (3.6.14)

Inequality (3.6.13) holds because 5qr ≥ 5qr2 and 4r2 ≥ 4qr2, so 5qr + 4r2 ≥ 9qr2 ≥ 8qr2.
To show (3.6.14), we distinguish two cases for r.

Case 2.1: r ≤ 3
5 . In this case, 3q2 ≥ 5q2r and hence 2r + 3q2 ≥ 2q2r + 5q2r = 7q2r.

Thus, (3.6.14) holds.

Case 2.2: r > 3
5 . In this case, we have 4q2r2 ≥ 4q2r · 35 ≥ 2q2r, and hence 2r + 3q2 +

4q2r2 ≥ 2q2r + 3q2r + 2q2r = 7q2r, so (3.6.14) also holds in this case.

The previous analysis improves upon a (n+ 1)/n-competitive algorithm by Chaplick et
al. [Cha+21] in case that the hyperedge has two or three vertices. It is not hard to show a
matching lower bound for two vertices and, due to Theorem 3.2.5, the algorithm also achieves
the best possible competitive ratio for three vertices.

3.7 Concluding Remarks

In this chapter, we presented algorithms for the (hyper)graph orientation problem under
stochastic explorable uncertainty and showed that the adversarial lower bounds can be broken
in expectation. Open questions include determining the competitive ratio of BESTVC for
the general (hyper)graph orientation problem under explorable stochastic uncertainty, and
investigating how the algorithm behaves if it has to rely on an α-approximation to solve the
vertex cover subproblem. Our analysis suggests that, to achieve a competitive ratio better
than 1.5, algorithms have to employ more adaptivity than vertex cover-based algorithms;
exploiting this possibility remains an open problem.

Finally, it would be interesting to characterize the vertex cover instances arising in our
THRESHOLD algorithm. By definition of THRESHOLD, no vertex in such instances has a
very high mandatory probability. In the case of graph orientation, this means for every edge
{u, v} that a significant fraction of the probability mass in the distributions of u and v must
be outside the intersection Iu ∩ Iv of the corresponding uncertainty intervals Iv and Iu. Since
this is not possible for every combination of input graph and uncertainty intervals, it restricts

69

3. Orienting (Hyper)graphs under Explorable Stochastic Uncertainty

the class of graphs that occur in the vertex cover instances of THRESHOLD. In addition to the
relevance from a combinatorial point of view, such a characterization may allow an improved
α-approximation algorithm for those instances.

70

Chapter 4

Sorting and Hypergraph Orientation
under Uncertainty with Predictions

In this chapter, we consider learning-augmented algorithms for hypergraph orientation under
explorable uncertainty and the special case of sorting a set of uncertainty intervals. Given
a hypergraph with uncertain vertex weights, we study the problem of querying vertices
until the identity of a vertex with minimum weight can be determined for each hyperedge.
Since queries are costly, we aim at minimizing the number of queries. In the learning-
augmented setting, we assume access to untrusted predictions for the uncertain vertex weights.
Our algorithms provide improved performance guarantees for accurate predictions while
maintaining worst-case guarantees that match the best possible guarantees without access to
predictions. For hypergraph orientation, for any integral γ ≥ 2, we give an algorithm that
achieves a competitive ratio of 1 + 1/γ for correct predictions and γ for arbitrarily wrong
predictions. For sorting, we achieve an optimal solution for accurate predictions while still
being 2-competitive for arbitrarily wrong predictions. These tradeoffs are best possible. We
also consider different error metrics and show that the performance of our algorithms degrades
smoothly with the prediction error in all the cases where this is possible.

Bibliographic remark: This chapter is mainly based on joint work with T. Erlebach,
M. de Lima and N. Megow [Erl+23] that will also appear in the proceedings of IJCAI 2023.
Some results are based on a different joint work with the same group of authors [Erl+22;
Erl+20]. Therefore, some parts correspond to or are identical with [Erl+23; Erl+22; Erl+20].

Contents
4.1 Introduction . 72

4.1.1 Our Results . 73
4.1.2 Outline . 74

4.2 Preliminaries, Tradeoff Lower Bounds and Error Measures 75
4.2.1 Preliminaries . 76
4.2.2 Accuracy of Predictions . 79

4.3 Hypergraph Orientation . 82
4.3.1 Learning-augmented Algorithm With Respect To the Hop Distance 83
4.3.2 Learning-augmented Algorithm w.r.t. the Mandatory Query Distance 88
4.3.3 Non-Integral Parameter Gamma via Randomization 92

4.4 Sorting under Explorable Uncertainty 94
4.4.1 A Learning-augmented Algorithm for Sorting 95
4.4.2 Computing the Clique Partition 98
4.4.3 Guarantee depending on the Number of Wrong Predictions 101

4.5 Learnability of Predictions . 103
4.5.1 Learning with Respect to the Hop Distance 103

71

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

4.5.2 Learning with Respect to the Mandatory Query Distance 105
4.6 Concluding Remarks . 107

4.1 Introduction

The emerging research area of learning-augmented algorithm design has been attracting in-
creasing attention in recent years. For online algorithms, it was initiated in [LV21] for caching
and has fostered an overwhelming number of results for numerous problems, including online
graph problems [Kum+19; LMS22; Ebe+22; APT22] and scheduling problems [PSK18;
Ang+20; Mit20; Lat+20; ALT21; ALT22; LM22; Bam+22; LX21]. In this and the consecutive
chapter, we consider learning-augmented algorithms for problems under explorable uncer-
tainty and start by designing learning-augmented algorithms for hypergraph orientation under
explorable uncertainty.

To this end, we briefly restate the problem definition as initially given in Section 2.1.2
of Chapter 2. In the hypergraph orientation problem under explorable uncertainty, we are
given a hypergraph H = (V,E). Each vertex v ∈ V is associated with an uncertainty interval
Iv and an, initially unknown, precise weight wv ∈ Iv. Each uncertainty interval Iv is either
open or trivial, i.e., Iv = (Lv, Uv) or Iv = {wv}. We call Lv and Uv the lower and upper limit
of v. If Iv is trivial, then we define Lv = Uv = wv. A query of v comes at cost cv, reveals its
precise weight wv and reduces its uncertainty interval to Iv = {wv}. Our task is to orient each
hyperedge S ∈ E towards a vertex of minimum precise weight in S. An adaptive algorithm
can sequentially make queries to vertices to learn their weights until it has enough information
to identify a minimum-weight vertex of each hyperedge. A set Q ⊆ V is called feasible if
querying Q reveals sufficient information to find the orientation. As queries are costly, the
goal is to (adaptively) find a feasible query set Q of minimum query cost c(Q) =

∑︁
v∈Q cv.

In this chapter, we only consider uniform query costs, i.e., we have cv = cu for all u, v ∈ V .
In this case, our objective is to minimize the number of queries and to find a feasible query set
of minimum cardinality. See Section 2.1.2 for an example instance and feasible query set.

An important special case of the hypergraph orientation problem is when the input graph
is a simple graph that is exactly the interval graph induced by the uncertainty intervals
I = {Iv | v ∈ V }, i.e., {u, v} ∈ E for u ̸= v if and only if Iv ∩ Iu ̸= ∅. This special
case corresponds to the problem of sorting a set of unknown values represented by a set of
uncertainty intervals and, therefore, we refer to it as sorting under uncertainty.

As in the previous chapters, we analyze our algorithms for hypergraph orientation under
explorable uncertainty in terms of their competitive ratio as defined in Section 2.2. In contrast
to the previous chapter, we resort to worst-case competitive analysis. Recall that, for a given
problem instance, OPT denotes an offline optimal feasible query set. In case of uniform query
costs, an algorithm is ρ-competitive if it executes, for any problem instance, at most ρ · |OPT|
queries. The competitive ratio of an algorithm is the smallest ρ such that the algorithm is
still ρ-competitive. As the query results are uncertain and, to a large extent, are the deciding
factor whether querying certain vertices is a good strategy or not, the problem has a clear
online flavor. In particular, the uncertainty prevents 1-competitive algorithms, even without
any running time restrictions.

Variants of hypergraph orientation have been widely studied since the model of explorable
uncertainty has been proposed [Kah91]. Sorting and hypergraph orientation are well known to
admit efficient polynomial-time algorithms if precise input data is given, and they are well
understood in the setting of explorable uncertainty: The best known deterministic algorithms
are 2-competitive, and no deterministic algorithm can be better [Kah91; HL21; Bam+21];
see also Sections 2.2.2 and 2.3.3. For sorting, the competitive ratio can be improved to 1.5

72

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

using randomization [HL21]. In case of general hypergraph orientation, the deterministic
lower bound of 2 translates to a randomized lower bound of 1.5 but, to our knowledge, there
are no randomized algorithms for that problem yet. In the stochastic setting, where the
precise weights of the vertices are drawn according to known distributions over the intervals,
there exists a 1.618-competitive algorithm for hypergraph orientation and a 4/3-competitive
algorithm for orienting a single hyperedge, as shown in Chapter 3. For the stochastic sorting
problem, the algorithm with the optimal expected query cost is known, but its competitive
ratio remains open [Cha+21].

In this chapter, we consider a third model (to the adversarial and stochastic setting) and
assume that the algorithm has, for each vertex v, access to a prediction wv ∈ Iv for the
unknown weight wv. These predicted weights could for example be computed using machine
learning (ML) methods or other statistical tools on past data. Given the emerging success of
ML methods, it seems reasonable to expect predictions of high accuracy. However, there are no
theoretical guarantees and the predictions might be arbitrarily wrong, which raises the question
whether an ML algorithm performs sufficiently well in all circumstances. In the context of
hypergraph orientation and explorable uncertainty, we answer this question affirmatively by
designing learning-augmented algorithms that perform very well if the predictions are accurate
and still match the adversarial lower bounds even if the predictions are arbitrarily wrong.

To formalize these properties, we use the notions of α-consistency and β-robustness [LV21;
PSK18] (see also Section 2.2.3): An algorithm is α-consistent if it is α-competitive when the
predictions are correct, i.e., wv = wv for all v ∈ V , and it is β-robust if it is β-competitive no
matter how wrong the predictions are. Additionally, we aim at guaranteeing a smooth transition
between consistency and robustness by giving performance guarantees that gracefully degrade
with the amount of prediction error. This raises interesting questions regarding appropriate
ways of measuring prediction errors, and we explore several such measures. Analyzing
algorithms in terms of error-dependent consistency and robustness allows us to still give
worst-case guarantees (in contrast to the stochastic setting of the previous chapter) that are
more fine-grained than guarantees in the pure adversarial setting.

4.1.1 Our Results

We show how to utilize possibly erroneous predictions for hypergraph orientation and sorting
under explorable uncertainty. For sorting, we present an algorithm that is 1-consistent and
2-robust, which is in a remarkable way best possible: the algorithm identifies an optimal query
set if the predictions are accurate, while maintaining the best possible worst-case ratio of 2
for arbitrary predictions. For hypergraph orientation, we give a 1.5-consistent and 2-robust
algorithm and show that this consistency is best possible when aiming for optimal robustness.

Our major focus lies on a more fine-grained performance analysis with guarantees that
improve with the prediction accuracy. A key ingredient in this line of research is the choice
of error measure quantifying this (in)accuracy. We propose and discuss three different error
measures k#, kh and kM : The number of inaccurate predictions k# is natural and allows
a smooth transition between consistency and robustness for the sorting problem. However,
for the general hypergraph orientation, we prove that this measure is too crude to allow for
improvements upon the lower bound of 2 for the setting without predictions. We therefore
introduce the hop distance kh, a general error metric for problems under explorable uncertainty
that takes the structure of the uncertainty intervals into account. Furthermore, we propose
another new error measure kM called mandatory query distance which is tailored to problems
with explorable uncertainty. It is defined in a more problem-specific way than kh, and we
show it to be more restrictive in the sense that kM ≤ kh. We give formal definitions of
the three error measures in Section 4.2. For the sorting problem, we obtain an algorithm
with competitive ratio min{1 + k

|OPT| , 2}, where k can be any of the three error measures

73

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

considered, which is best possible. For the hypergraph orientation problem, we provide an
algorithm with competitive ratio min{(1 + 1

γ−1)(1 +
kM

|OPT|), γ}, for any integral γ ≥ 2. This
is best possible for kM = 0 and large kM . With respect to the hop distance, we achieve
the stronger bound min{(1 + 1

γ)(1 +
kh

|OPT|), γ}, for any integral γ ≥ 2, which is also best
possible for kh = 0 and large kh. While the consistency and robustness tradeoff of the
kM -dependent algorithm is weaker, we remark that the corresponding algorithm requires less
predicted information than the kh-dependent algorithm and that the error dependency can be
stronger, as kM can be significantly smaller than kh.

The parameter γ of these algorithmic results can be thought of as a confidence parameter
regulating how much the algorithm should trust the given predictions: If one expects predic-
tions of high accuracy, then a large value of γ should be selected to exploit the expected high
accuracy. On the other hand, if one expects unreliable predictions, then it might be better to
select a small value of γ to maintain a strong robustness against bad predictions. Further, we
note that the parameter γ is in both results restricted to integral values since it determines
sizes of query sets, but a generalization to reals γ ≥ 2 is possible via randomization at a small
loss in the guarantee.

While our algorithm for sorting has polynomial running time, the algorithms for the
hypergraph orientation problem may involve solving an NP-hard vertex cover problem. We
justify this increased complexity by the NP-hardness of the offline version of the problem
(cf. Section 3.2.6 in Chapter 3).

4.1.2 Outline

We start the chapter in Section 4.2 by restating some preliminary results on hypergraph
orientation under explorable uncertainty that were already presented in Chapters 2 and 3,
and extend them to the learning-augmented setting with access to predictions. Furthermore,
we introduce and discuss several prediction errors that measure the quality of the given
predictions. During the course of the first section, we also give lower bounds on the best
possible consistency and robustness tradeoffs.

Afterwards, in Section 4.3, we consider learning-augmented algorithms for the general
hypergraph orientation problem under explorable uncertainty with predictions and give two
algorithms, one for each of the two main error measures we are considering, that achieve
the best possible tradeoff with respect to their respective error metric. These algorithms
combine the idea of the witness set algorithm (cf. Section 2.3.3) and the idea of vertex cover-
based algorithms as introduced in the previous chapter (cf. Chapter 3). In order to achieve a
consistency that improves upon the worst-case lower bound of two while still maintaining a
good robustness, we extend these concepts by exploiting the additional information given by
the predictions.

For the main algorithmic result of this chapter in Section 4.4, we consider sorting under
explorable uncertainty with predictions and give a single algorithm achieving the optimal
consistency and robustness tradeoff, while at the same time simultaneously matching the
optimal error-dependency for all three error measures. Building on the ideas of the algorithms
for the more general hypergraph orientation problem, we exploit the particular structure
of sorting instances and employ a charging scheme based on a clique partition to achieve
improved results for the special case.

Finally, in Section 4.5, we prove learnability results for the predictions with respect to
the different error measures. To that end, we use the framework of PAC learnability [Val84]
to show that we can approximately learn the predictions that in expectation minimize the
respective error measure. We give more formal definitions in Section 4.5.

74

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

I1

I2

Iβ

..
.

I0

FIGURE 4.1: Lower bound example as used in the proof of Theorem 5.2.1. Shows the
uncertainty intervals of an instance of hypergraph orientation under explorable uncertainty
with prediction that consists of a single hyperedge with the vertices {0, 1, . . . , β}. The green
circles illustrate the precise weights while the red crosses illustrate the predicted weights.

4.2 Preliminaries, Tradeoff Lower Bounds and Error Measures

During this chapter, we consider hypergraph orientation under explorable uncertainty with
predictions. So we are given a hypergraph H = (V,E), uncertainty intervals Iv for all v ∈ V
and predicted weights wv for all vertices v. As usual, our goal is to query vertices until we
have sufficient information to orient each hyperedge and to minimize the number of queries.
Since the predictions can be inaccurate, we still have to execute queries to guarantee that
we find a correct orientation with respect to the precise weights. In contrast to the previous
chapters, however, we now can use the predicted weights to select our query strategy.

An algorithm for the hypergraph orientation problem under explorable uncertainty with
predictions that assumes the predicted weights to be completely accurate, i.e., wv = wv for all
v ∈ V , can exploit the characterization of optimal solutions given in Lemma 3.2.9 to compute
a query set that is optimal if the predicted weights are indeed correct. Querying this set leads
to 1-consistency but may perform arbitrarily bad in case of incorrect predictions, as we show
down below.

On the other hand, known 2-competitive algorithms for the adversarial problems without
predictions [Kah91; HL21], as for example the witness set algorithm of Section 2.3.3, are not
better than 2-consistent. Furthermore, the algorithms for the stochastic setting of Chapter 3 do
not guarantee any robustness at all. Thus, we need new algorithms and techniques to achieve
improved consistency and robustness tradeoffs. The lower bound of 2 on the adversarial
competitive ratio without predictions (cf. Section 2.2.2) rules out any robustness factor less
than 2 for our model, so we aim at matching this lower bound in terms of robustness.

To quantify the best possible consistency and robustness tradeoff, we give the following
lower bound. This lower bound for example shows that 1-consistent algorithms cannot be
better than n-robust and that 2-robust algorithms cannot be better than 1.5-consistent. This
means that 1.5-consistency is best possible for algorithms which match the lower bound of 2
in terms of robustness. We remark that this lower bound does not hold for the sorting problem.
In fact, we show an improved tradeoff for sorting under explorable uncertainty in Section 4.4.

Theorem 4.2.1. Let β ≥ 2 be a fixed integer. For hypergraph orientation under explorable
uncertainty with predictions, there is no deterministic β-robust algorithm that is α-consistent
for α < 1 + 1

β . And vice versa, no deterministic α-consistent algorithm with α = 1 + 1
β′

for some integer β′ ≥ 1 is β-robust for β < β′. The result holds even for orienting a single
hyperedge or a simple (non-hyper) graph.

Proof. Assume, for the sake of contradiction, that there is a deterministic β-robust algorithm
that is α-consistent with α = 1 + 1

β − ε for some ε > 0. Consider an instance with vertices
{0, 1, . . . , β}, a single hyperedge that contains all β + 1 vertices, and intervals and predicted
weights as in Figure 4.1. If the predictions are correct, then vertex 0 has minimum weight in
the hyperedge. In that case, the optimal query set is {1, . . . , β} as it is impossible to verify

75

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

w0 = w0 ≤ wi = wi for all i ∈ {1, . . . , β} without querying all vertices in {1, . . . , β} and
querying those vertices suffices to identify 0 as the vertex of minimum precise weight. The
algorithm must query the vertices {1, . . . , β} first, as otherwise it would query β + 1 vertices
in case all predictions are correct, while the optimal query set is of size β; a contradiction to
the algorithm being α-consistent for an α < 1 + 1

β .
Suppose without loss of generality that the algorithm queries the vertices {1, . . . , β} in

increasing order. Consider the adversarial choice wi = wi, for i = 1, . . . , β − 1, and then
wβ ∈ I0 and w0 /∈ I1 ∪ . . . ∪ Iβ . This forces the algorithm to query also vertex 0 in order to
prove w0 ≤ wβ , while an optimal solution only queries vertex 0. Thus, any such algorithm
has robustness at least β + 1, a contradiction to the algorithm being β-robust. Figure 4.1
illustrates this adversarial choice.

The second part of the theorem directly follows from the first part and the known general
lower bound of 2 on the competitive ratio [Hof+08; Kah91] (see also Section 2.2.2). Assume
there is an α-consistent deterministic algorithm with α = 1 + 1

β′ for some integer β′ ≥ 1. If
β′ < 2, then the statement follows from the lower bound of 2, so assume β′ ≥ 2. Consider
the instance above with β = β′ − 1. Then the algorithm has to query vertices {1, . . . , β} first
to ensure α-consistency, as otherwise it would have a competitive ratio of β+1

β > 1 + 1
β′ = α

in case that all predictions are correct. By the argumentation above, the robustness factor of
the algorithm is at least β + 1 = β′.

To prove the result for the (non-hyper) graph orientation problem, the only difference is
that we use edges {0, i} for 1 ≤ i ≤ β instead of a single hyperedge containing all vertices.
The rest of the proof remains the same.

A main goal of this chapter is to design algorithms that match this optimal consistency
and robustness tradeoff. To this end, we continue by introducing preliminary results that help
us to achieve this goal.

4.2.1 Preliminaries

Recall that we say a vertex v ∈ S is leftmost in hyperedge S ∈ E if the uncertainty interval Iv
of v has minimum lower limit among the intervals of the vertices in S, i.e., Lv = minu∈S Lu.
If a hyperedge S ∈ E contains a leftmost vertex v with a trivial uncertainty interval, then
clearly no other vertex in S can have a smaller weight than v and we already know the
orientation of S. Thus, we can assume without loss of generality that no hyperedge contains a
leftmost vertex with a trivial uncertainty interval, since otherwise we could simply remove
the hyperedge. Let v be a leftmost vertex in a hyperedge S ∈ E. Then we can also assume
that Iv ∩ Iu ̸= ∅ for all u ∈ S \ {v}, because otherwise the vertex u could be removed
from the hyperedge S since we would already know that wv < wu and, therefore, that u
cannot be of minimum weight in S. For the special case of graphs, this means that we assume
Iv ∩ Iu ̸= ∅ for each {u, v} ∈ E, since otherwise we could simply remove the edge. The
following assumption summarizes these observations. Note that we used the same assumptions
in Chapter 3.

Assumption 3.2.1. We assume without loss of generality that all problem instances for
hypergraph orientation under explorable uncertainty satisfy the following properties:

1. No hyperedge S ∈ E has a leftmost vertex v with a trivial uncertainty interval Iv.

2. If v is leftmost in a hyperedge S, then Iv ∩ Iu ̸= ∅ for all u ∈ S \ {v}.

Basic Preliminaries The crucial structure and unifying concept in hypergraph orientation
and sorting under explorable uncertainty without predictions are witness sets [Bru+05], as

76

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

we have seen in Section 2.3.3. Witness sets are the key to any comparison with an optimal
solution. Recall that a “classical” witness set is a set of vertices for which we can guarantee
that any feasible solution must query at least one of these vertices. In the classical setting
without access to predictions, sorting and hypergraph orientation admit 2-competitive online
algorithms that rely essentially on identifying and querying disjoint witness sets of size two
(cf. Section 2.3.3). We refer to witness sets of size two also as witness pairs and restate the
following characterization of witness pairs; see Section 2.3.3 for a proof. To that end, recall
that a hyperedge S ∈ E is not solved if we do not know the orientation of S yet.

Lemma 2.3.7 (Kahan [Kah91]). Consider an instance H = (V,E) for hypergraph orientation
under explorable uncertainty. Let S ∈ E be a not yet solved hyperedge of H . A set {v, u} ⊆ S
with Iv ∩ Iu ̸= ∅ and v or u leftmost in S is a witness set.

In terms of learning-augmented algorithms, completely relying on querying witness pairs
ensures 2-robustness, but it does not lead to any improvements in terms of consistency. In
order to obtain an improved consistency, we need stronger local guarantees. To this end, recall
that a vertex is mandatory (cf. Section 2.3.2), if it is part of every feasible query set. We restate
the following lemma that allows us to fully characterize mandatory vertices; see Section 2.3.3
for a proof.

Lemma 2.3.5. Consider an instance H = (V,E) for hypergraph orientation under explorable
uncertainty. A vertex v ∈ V with a non-trivial uncertainty interval Iv is mandatory if and
only if there is a hyperedge S ∈ E with v ∈ S such that either (i) v is a minimum-weight
vertex of S and wu ∈ Iv for some u ∈ S \ {v}, or (ii) v is not a minimum-weight vertex of S
and wu ∈ Iv for a minimum-weight vertex u of S.

Prediction Mandatory Vertices While the lemma gives us a full characterization of manda-
tory vertices, it depends on the precise weights of the vertices, which are initially unknown.
Identifying mandatory vertices based on the interval structure alone is not always possible, as
otherwise there would be a 1-competitive algorithm contradicting the adversarial lower bound
of 2.

In the learning-augmented setting however, we have access to additional information
in form of the untrusted predictions wv on the precise weights wv. Using this additional
information, we can identify vertices that are mandatory under the assumption that the
predictions are correct, i.e., wv = wv for all v ∈ V . We call such vertices prediction
mandatory.

Definition 4.2.2. Given an instance of hypergraph orientation under explorable uncertainty
with predictions with hypergraph H = (V,E), uncertainty intervals Iv for all v ∈ V and
predicted weights wv ∈ Iv for all v ∈ V . A vertex v ∈ V is prediction mandatory if it
is mandatory for the realization of precise weights where all predictions are correct, i.e.,
wv = wv for all v ∈ V .

For correct predictions, querying prediction mandatory vertices can never worsen the
competitive ratio as even the optimal solution must query such vertices. However, in the lower
bound example of Theorem 4.2.1, the vertices 1, . . . , β are prediction mandatory and we have
seen that querying those vertices leads to the worst possible robustness. One aspect of our
algorithms will be to carefully balance the exploitation of prediction mandatory vertices with
other methods that allow us to still achieve a good robustness. In order to do so, we have to
identify prediction mandatory vertices. We can do this by using Lemma 2.3.5 with respect to
the predicted weights instead of the precise weights:

77

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

Lemma 4.2.3. Consider an instance of hypergraph orientation under explorable uncertainty
with predictions. A vertex v with a non-trivial uncertainty interval Iv is prediction mandatory
if and only if there is a hyperedge S ∈ E with v ∈ S such that either (i) v has minimum
predicted weight in S and wu ∈ Iv for some u ∈ S \ {v}, or (ii) v doesn’t have minimum
predicted weight in S and wu ∈ Iv for vertex u with minimum predicted weight in S.

Lemma 4.2.3 can be shown by using the proof of Lemma 2.3.5 and replacing the precise
weights with the predicted weights. Since we have full access to the predicted weights wv, we
can use this lemma to identify and compute all prediction mandatory vertices, which allows
us to use such vertices within our algorithms.

Preprocessed Instances and the Offline Algorithm As also discussed in Chapter 3,
the Lemma 2.3.5 does not only enable us to identify mandatory or prediction mandatory
vertices given full knowledge of the precise or predicted weights, but also implies criteria to
identify known mandatory vertices, i.e., vertices that are known to be mandatory given only
the hypergraph, the intervals and precise weights revealed by previous queries. To identify
such vertices, we restate the following corollary.

Corollary 2.3.6. Consider an instance H = (V,E) for hypergraph orientation under ex-
plorable uncertainty. If the interval of a leftmost vertex v in a not yet solved hyperedge S
contains the precise weight of another vertex in S, then v is mandatory. In particular, if v is
leftmost in (a not yet solved) S and Iu ⊆ Iv for some u ∈ S \ {v}, then v is mandatory.

Every algorithm can query vertices that are known to be mandatory according to Corol-
lary 2.3.6 without ever worsening its competitive ratio. As in the previous chapter, we refer to
instances that do not admit vertices that are mandatory by the corollary as preprocessed:

Definition 3.2.2. An instance of hypergraph orientation under explorable uncertainty with
hypergraph H = (V,E) and uncertainty intervals Iv for all v ∈ V is preprocessed, if it does
not contain vertices that can be identified as mandatory by using Corollary 2.3.6. That is, for
every hyperedge S ∈ E, there is no leftmost vertex v ∈ S with Iu ⊆ Iv for an u ∈ S \ {v}.

Our algorithms will heavily exploit the particular structure of preprocessed instances
described by the the following lemma. For a proof of the lemma see Chapter 3.

Lemma 3.2.3. Consider a preprocessed instance of hypergraph orientation under explorable
uncertainty with hypergraph H = (V,E) and uncertainty intervals Iv for all v ∈ V . Then,
each hyperedge S ∈ E satisfies the following properties:

1. S has a unique leftmost vertex v with a non-trivial uncertainty interval.

2. Iu ∩ Iv ̸= ∅ and Iu \ Iv ̸= ∅ for all u ∈ S \ {v}.

Using Lemma 2.3.5 and the structure of preprocessed instances, we define an offline
algorithm, i.e., we assume full access to the precise weights but still want to compute a
feasible query set, that follows a two-stage structure: First, we iteratively query all mandatory
vertices computed using Lemma 2.3.5. After that, the instance is preprocessed and each not
yet oriented hyperedge S has the following configuration: The leftmost vertex v has a precise
weight outside Iu for all u ∈ S \ {v}, and each other vertex in S has precise weight outside Iv.
Thus we can either query v or all other vertices u ∈ S \ {v} with Iu ∩ Iv ̸= ∅ to determine the
orientation. The optimum solution in this configuration is to query a minimum vertex cover in
the vertex cover instance (see Chapter 3 for an example):

78

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

Definition 3.2.6. Consider an instance of hypergraph orientation under explorable uncertainty
with hypergraph H = (V,E) and uncertainty intervals Iv for all v ∈ V . The vertex cover
instance of H is the graph Ḡ = (V, Ē) with {v, u} ∈ Ē if and only if there is a not yet solved
hyperedge S ∈ E such that v, u ∈ S, v is leftmost in S and Iv ∩ Iu ̸= ∅. For the special case
of a graph G instead of a hypergraph H , it holds that Ḡ = G.

See Algorithm 8 for pseudocode of the offline algorithm. For a proof of its optimality, we
refer to the proof of Lemma 3.2.9 in Chapter 3.

Algorithm 8: Offline algorithm for hypergraph orientation under explorable uncer-
tainty.

Input: Hypergraph H = (V,E), intervals Iv and precise weights wv for all v ∈ V .
1 M ← All vertices that are mandatory by Lemma 2.3.5;
2 Query M ; /* First stage of the algorithm */
3 Ḡ[V \M]← Vertex cover instance of H for the instance after querying M ;
4 V C ←Minimum cardinality vertex cover of Ḡ[V \M];
5 Query V C ; /* Second stage of the algorithm */
6 return Q∗ = M ∪ V C;

A key idea of our algorithms is to emulate the offline algorithm using the predicted infor-
mation. We can use the algorithm under the assumption that the predicted weights are correct
and compute an optimal query set for correct predictions. Since blindly following the offline
algorithm might lead to a competitive ratio of n for faulty predictions (cf. Theorem 4.2.1), we
have to augment the algorithm with additional, carefully selected queries. The next lemma
formulates a useful property of vertex cover instances without known mandatory vertices. For
a proof we again refer to Chapter 3.

Lemma 3.2.8. Given a preprocessed instance of hypergraph orientation with hypergraph
H = (V,E) and uncertainty intervals Iv for all v ∈ V , let Q be an arbitrary vertex cover of
Ḡ. After querying Q, for each hyperedge S ∈ E, we either know the orientation of S or can
determine it by exhaustively querying according to Corollary 2.3.6.

4.2.2 Accuracy of Predictions

Since consistency and robustness only consider the extremes in terms of prediction quality,
we aim for a more fine-grained analysis that relies on error metrics to measure the quality
of the predictions. Natural candidates for such measures include the number of inaccurate
predictions k# = |{v ∈ V |wv ̸= wv}| or an ℓ1 error metric such as kℓ1 =

∑︁
v∈V |wv − wv|.

These measures, however, are not meaningful for the hypergraph orientation problem under
explorable uncertainty with predictions. For the number of inaccurate predictions, we can
show that even for k# = 1, the competitive ratio cannot be better than the known bound of 2.
Similar, we can show that if kℓ1 > 0, then no deterministic algorithm can have a competitive
ratio better than 2. Both results hold for instances with any even number of vertices n ≥ 2 and
|OPT| ∈ Ω(n). Thus, even for arbitrarily large instances, the smallest possible (non-zero)
error k# or kℓ1 already leads to a competitive ratio of 2. These results prohibit any more
fine-grained competitive ratios depending on k# or kℓ1 . We note that the lower bound for k#
does not hold for interval graphs (the sorting problem).

Theorem 4.2.4. If k# ≥ 1 or kℓ1 > 0, then any deterministic algorithm for the hypergraph
orientation problem under uncertainty with predictions has competitive ratio ρ ≥ 2. This
result holds even for instances with |OPT| ∈ Ω(n) and an arbitrarily large even number of
vertices n, and even for (non-hyper) graphs.

79

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

I1

I2

In

..
.

In+1

In+2

I2n

..
.

FIGURE 4.2: Uncertainty intervals and predicted and precise weights for the instance used
in the proof of Theorem 4.2.4.

Proof. We first show the lower bound for k# ≥ 1. Consider a hypergraph with vertices
{1, . . . , 2n}, hyperedges Si = {i, n+ 1, n+ 2, . . . , 2n}, for i = 1, . . . , n, and intervals and
predicted weights as depicted in Figure 4.2.

Assume w.l.o.g. that the algorithm queries the vertices {1, . . . , n} in the order 1, 2, . . . , n
and the vertices {n + 1, . . . , 2n} in the order n + 1, n + 2, . . . , 2n. Before the algorithm
queries vertex n or 2n, the adversary sets all predictions as correct, so the algorithm will
eventually query n or 2n. If the algorithm queries n before 2n, then the adversary chooses a
weight wn ∈

⋂︁
1≤j≤n In+j for n that forces a query to all vertices n+1, . . . , 2n. Furthermore,

the adversary picks the weights of the vertices n + 1, . . . , 2n as equal to their predictions.
Thus, we have k# = 1 and the algorithm queries 2n vertices while the optimal solution only
queries the vertices n+ 1, . . . , 2n. See Figure 4.2 for an illustration. A symmetric argument
holds if the algorithm queries vertex 2n before vertex n: In this case, the adversary selects
w2n ∈

⋂︁
1≤j≤n Ij and all other predicted weights are correct. Then, we again have k# = 1

and the algorithm queries 2n vertices while the optimal solution only queries the vertices
1, . . . , n.

For (non-hyper) graphs, we use edges {i, j} for all 1 ≤ i ≤ n, n+ 1 ≤ j ≤ 2n instead of
hyperedges. The rest of the proof remains the same, which concludes the proof for k# ≥ 1.

Next, we show the part of the theorem with regard to kℓ1 > 0. We use the same lower
bound instance as before but slightly adjust it: We move the predicted weights of the vertices
1, . . . , n arbitrarily close to the lower interval borders of the vertices n+ 1, . . . , 2n such that
they are still outsides of those intervals. Symmetrically, we move the predicted weights of the
vertices n + 1, . . . , 2n arbitrarily close to the upper interval border of the vertices 1, . . . , n
such that they are still outsides of those intervals. If the algorithm queries vertex n before 2n,
then the adversary picks wn ∈

⋂︁
1≤j≤n In+j arbitrarily close to the lower interval borders of

the vertices n+1, . . . , n such that wn is still contained in those intervals. Symmetrically, if the
algorithm queries vertex 2n before n, then the adversary picks w2n ∈

⋂︁
1≤j≤n Ij arbitrarily

close to the upper interval borders of the vertices 1, . . . , n such that wn is still contained in
those intervals. All other weights are chosen according to their predictions. In both cases,
we have an arbitrarily small kℓ1 > 0 and the algorithm queries 2n vertices while the optimal
solution only queries n vertices. The latter can be shown with the same arguments as in the
proof for k# ≥ 1.

The lower bound example of Theorem 4.2.4 illustrates that more fine-grained competitive
ratios depending on k# or kℓ1 are not possible, as even a small error prevents an improvement
over the lower bound of 2 for algorithms without access to predictions. The intuitive reason
for this is that both measures completely ignore the structure of the uncertainty intervals,
which is crucial for the feasibility of query sets. Thus, we need more refined measures that
take the interval structure into account.

80

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

Iv1

Iv2

Iv3

Iv4

k+(v1) = 2

k+(v2) = 3

k+(v3) = 0

k+(v4) = 0

Iv1

Iv2

Iv3

Iv4

FIGURE 4.3: Example for the error measures kh and kM for the hypergraph orientation
problem with a single hyperedge S = {v1, v2, v3, v4}. Circles illustrate precise weights and
crosses illustrate the predicted weights. Shows predictions and precise weights with a total
hop distance of kh = 5 and mandatory query distance of kM = 1 (left) and kh = 3 and
kM = 1 (right).

As a first refined measure, we consider the hop distance. It is very intuitive even though it
requires some technical care to make it precise. If we consider only a single predicted weight
wv for some v ∈ V , then, in a sense, this value predicts the relation of the precise weight wv

to the intervals of vertices u ∈ V \ {v}. In particular, w.r.t. a fixed u ∈ V \ {v}, the value
wv predicts whether wv is left of Iu (wv ≤ Lu), right of Iu (wv ≥ Uu), or contained in Iu
(Lu < wv < Uu). For a vertex v and any vertex u ∈ V \ {v}, we define the function ku(v)
that indicates whether the relation of wv to interval Iu changes compared to the relation of wv

and Iu. To be more precise, ku(v) = 1 if wv ≤ Lu < wv, wv ≤ Lu < wv, wv < Uu ≤ wv or
wv < Uu ≤ wv, and ku(v) = 0 otherwise. Based on this function, we define the hop distance
of a single vertex as k+(v) =

∑︁
u∈V \{v} ku(v). Intuitively k+(v) for a single v ∈ V counts

the number of relations between wv and intervals Iu with u ∈ V \ {v} that are not accurately
predicted. For a set of vertices V ′ ⊆ V , we define k+(V ′) =

∑︁
v∈V ′ k+(v). Finally, we

define the hop distance by kh = k+(V). For an example see Figure 4.3.
Note that k# = 0 implies kh = 0, so Theorem 5.2.1 implies that no algorithm can

simultaneously have competitive ratio better than 1 + 1
β if kh = 0 and β for arbitrary kh.

While the hop distance takes the interval structure into account, it does not distinguish
whether a “hop” affects the feasibility of a query set. Therefore, we introduce a third and
strongest error measure based on the sets of (prediction) mandatory elements.

Let IP be the set of prediction mandatory elements, and let IR be the set of really
mandatory elements. The mandatory query distance is the size of the symmetric difference
of IP and IR, i.e., kM = |IP∆IR| = |(IP ∪ IR) \ (IP ∩ IR)| = |(IP \ IR) ∪ (IR \ IP)|.
Intuitively, the error measure kM captures differences between the sets of feasible query sets
for the predicted weights and the precise weights: If there is a vertex v ∈ IP \ IR, then all
feasible query sets for correct predictions contain v while there exist feasible query sets for
the precise weights that do not contain v (and vice versa for v ∈ IR \ IP).

Figure 4.3 (right) shows an example with kM = 1. Considering the precise weights in
the example, both {v1} and {v2, v3, v4} are feasible solutions. Thus, no element is part of
every feasible solution and IR = ∅. Assuming correct predicted weights, we have that v1 is
mandatory by Lemma 2.3.5 and, therefore, IP = {v1}. It implies kM = |IP∆IR| = 1.

Obviously, kM is a problem-specific error measure as, in a given set of uncertainty
intervals, different intervals may be mandatory for different problems. In contrast, we can
define different problems on the same set of uncertainty intervals and the error kh remains the
same. For instances of hypergraph orientation, we can relate kM to kh.

Theorem 4.2.5. For any instance of hypergraph orientation under uncertainty with predictions,
the hop distance is at least as large as the mandatory query distance, i.e., kM ≤ kh.

81

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

Proof. Consider an instance of hypergraph orientation with hypergraph H = (V,E) and
uncertainty intervals I = {Iv | v ∈ V }, precise weights w and predicted weights w. Recall
that IP and IR are the sets of prediction mandatory elements and mandatory elements,
respectively. Observe that kM counts the vertices that are in IP \ IR and those that are in
IR \ IP . We will show the claim that, for every vertex v in those sets, there is a vertex u
such that the weight of u passes over Lv or Uv (or both) when going from wv to wv, i.e.,
wu ≤ Lv < wu, wu ≤ Lv < wu, wu < Uv ≤ wu or wu < Uv ≤ wu. This means that
each vertex v ∈ IP∆IR is mapped to a unique pair (u, v) such that the weight of u passes
over at least one endpoint of Iv, and hence each such pair contributes at least one to the hop
distance kh. This implies kM ≤ kh.

It remains to prove the claim. Consider an v ∈ IP \ IR. (The argumentation for intervals
in IR \ IP is symmetric, with the roles of w and w exchanged.) As v is not in IR, replacing
all intervals for vertices in I \ {v} by their precise weights yields an instance that is solved.
This means that in every hyperedge S ∈ E that contains v, one of the following cases holds:

(a) v is known not to be the minimum of S w.r.t. precise weights w. This means that there
is a vertex u in S with wu ≤ Lv.

(b) v is known to be the minimum of S w.r.t. precise weights w. This means that all vertices
u ∈ S \ {v} satisfy wu ≥ Uv.

As v is in IP , replacing all intervals of vertices in V \ {v} by their predicted weights yields
an instance that is not solved. This means that there exists at least one hyperedge S′ ∈ E that
contains v and satisfies the following:

(c) All vertices u in S′ \ {v} satisfy wu > Lv, and there is at least one such u with
Lv < wu < Uv.

If S′ falls into case (a) above, then by (a) there is a vertex u in S′ \ {v} with wu ≤ Lv,
and by (c) we have wu > Lv. This means that the weight of u passes over Lv. If S′ falls into
case (b) above, then by (c) there exists an vertex u in S′ \ {v} with wu < Uv, and by (b) we
have wu ≥ Uv. Thus, the weight of u passes over v. This establishes the claim, and hence we
have shown that kM ≤ kh for the hypergraph orientation problem.

4.3 Hypergraph Orientation

We consider the general hypergraph orientation problem, and design learning-augmented
algorithms with respect to the error measures kh and kM . For error measure kh, we give an
algorithm that matches the lower bound on the optimal consistency and robustness tradeoff
of Theorem 4.2.1 and gracefully degrades between consistency and robustness with a linear
error dependency on kh.

To match the lower bound on the consistency and robustness tradeoff, we, for a given
γ ∈ N≥2, have to guarantee (1 + 1

γ)-consistency and γ-robustness. As we observed before,
following the offline algorithm based on the predicted information can lead to an arbitrarily
bad robustness while using just the witness set algorithm will not improve upon 2-consistency.
The idea of our algorithm is to emulate the offline algorithm using the predicted information
and to combine it with the witness set algorithm. To illustrate this idea, assume γ = 2, so
we have to guarantee 1.5-consistency and 2-robustness. To combine both algorithms, we
consider strengthened witness sets, which are sets W ⊆ V of size three such that every feasible
solution queries at least two members of W . If we repeatedly query strengthened witness
sets, then we achieve a competitive ratio of at most 1.5, matching our target consistency.
Clearly, strengthened witness sets cannot always be identified based on the given graph and

82

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

intervals alone. If we always could identify a strengthened witness set when the instance is not
solved yet, then we would have a 1.5-competitive algorithm by repeatedly querying such sets,
contradicting the lower bound of 2 on the adversarial competitive ratio (cf. Theorem 2.2.2).
Therefore, we have to identify strengthened witness sets based on the predicted information,
i.e., we identify sets W of cardinality three such that each feasible solution contains at least
two members of the set if the predictions of the elements in W are correct. Since we can
only identify strengthened witness sets based on the predicted information, we cannot afford
to just query the complete set, as we might lose the guarantee on the set if the predictions
are faulty, which could violate our target 2-robustness. To that end, we query such sets in
a carefully selected order that allows us to detect errors that might cause us to violate the
2-robustness after at most two queries within the set. We select the first two queries within
the set in such a way that they form a witness set. So even if there is an error within these
queries, we can discard the third query and the two queries we already executed will never
violate 2-robustness as they form a witness set. Furthermore, we will show that we can charge
all executed queries that violate the consistency bound to a distinct error.

Our algorithm does this repeatedly until we cannot identify strengthened witness sets
anymore, not even by using the predictions. After that, the instance has a certain structure that
allows us to solve it with an adjusted second phase of the offline algorithm while achieving the
optimal consistency and robustness tradeoff of Theorem 4.2.1 with linear error dependency.

If γ > 2, then the first phase of our algorithm repeatedly identifies a strengthened witness
set and γ − 2 prediction mandatory vertices. It then queries the γ − 2 prediction mandatory
vertices and afterwards proceeds to query the strengthened witness sets as described above.
We show that this adjustment allows us to achieve the optimal tradeoff with linear dependency
on kh for every integral γ ≥ 2.

With respect to error measure kM , we first show that a consistency and robustness tradeoff
matching Theorem 4.2.1 is not possible with linear error dependency on kM . Instead, we
design an algorithm with a slightly worse consistency and robustness tradeoff but with a
linear error dependency on kM . The tradeoff is best possible for algorithms with linear error
dependency on kM . Since kM ≤ kh, the competitive ratio of this second algorithm can be
better than the ratio of the kh-dependent algorithm for certain instances. We achieve the
kM -dependent bound by giving a simpler algorithm that emulates the offline algorithm and
augments it with additional queries. We remark that this algorithm only requires access to the
set of prediction mandatory vertices, which is a weaker type of prediction than access to the
predicted weights w.

4.3.1 Learning-augmented Algorithm With Respect To the Hop Distance

We start by designing an algorithm that achieves the optimal consistency and robustness
tradeoff (cf. Theorem 4.2.1) with a linear error dependency on the hop distance kh. The
following theorem summarizes our main result with respect to error measure kh.

Theorem 4.3.1. There is an algorithm for hypergraph orientation under explorable uncer-
tainty with predictions that, given γ ∈ N≥2, achieves a competitive ratio of min{(1 + 1

γ)(1 +
kh/|OPT|), γ}.

As mentioned in the introduction of this section, our algorithm is based on identifying
strengthened witness sets using the predicted weights, i.e., sets W ⊆ V with |W | = 3 such
that every feasible solution contains at least two elements of W if the predictions are accurate.
We want to be able to query W in such a way that (i) the first two queries in W are a witness
set and (ii) after the first two queries in W we either have detected a prediction error or can
guarantee that each feasible solution indeed contains two elements of W (no matter if the
predicted weights of vertices outside W are correct or not).

83

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

To achieve this, we identify prediction mandatory vertices that are not only mandatory if
all predicted weights are correct but become mandatory if a single predicted weight is correct.
To that end, we use the following definition.

Definition 4.3.2. We say that a predicted weight wu enforces another vertex v if u and v have
non-trivial uncertainty intervals, wu ∈ Iv, and u, v ∈ S, where S is a hyperedge such that
either v is leftmost in S, or u is leftmost in S and v is leftmost in S \ {u}.

If the predicted weight wu of a vertex u enforces another vertex v and the predicted weight
of u is accurate, then after querying u we know for sure that v is indeed mandatory. The
following lemma formulates this property.

Lemma 4.3.3. If wu enforces v, then {v, u} is a witness set. Also, if wu ∈ Iv, then v is
mandatory.

Proof. Since wu enforces v, there must be a hyperedge S with v, u ∈ S such that wu ∈ Iv
and either v is leftmost in S or u is leftmost in S and v is leftmost in S \ {u}. The first claim
of the lemma follows from Lemma 2.3.7 as one of u, v is leftmost in S and Iv ∩ Iu ̸= ∅.

Consider the second claim of the lemma. If v has minimum precise weight in S or is
leftmost in S, then the second claim follows from Lemma 2.3.5 and Corollary 2.3.6. Otherwise,
the fact that wu ∈ Iv and that v is leftmost in S \ {u} implies that Iv contains the minimum
precise weight, so the claim follows from Lemma 2.3.5.

We can now define our Algorithm 9. Within the definition of the algorithm, the current
instance always refers to the problem instance obtained after executing all previous queries.
We say that a vertex is prediction mandatory for the current instance, if it is mandatory if the
predicted weight of all not yet queried vertices are correct. Note that there can be vertices that
are prediction mandatory for the current instance but not prediction mandatory for the initial
instance (and vice versa). The current vertex cover instance refers to the vertex cover instance
of the current instance.

The algorithm ensures that the current instance always remains preprocessed by exhaus-
tively querying vertices that are mandatory by Corollary 2.3.6 (cf. Lines 1, 7 and 13). The
Lines 9 to 12 identify and query strengthened witness sets. They do so by identifying a witness
set {u,w} such that the predicted weight wu enforces another vertex v. Only if wu ∈ Iv, the
algorithm also queries v. If that is the case, then Lemma 4.3.3 implies that v is mandatory and,
therefore, every feasible solution must query at least two members of {u, v, w}. If such a triple
{u, v, w} of vertices does not exist but there still is a vertex u such that wu enforces a vertex
v, then the algorithm just queries v in Line 12. We will prove that this never violates the target
consistency or robustness. If γ > 2, then the algorithm precedes this step by querying (up-to)
γ − 2 predictions mandatory vertices in Lines 4 to 8. The algorithm does this repeatedly as
long as possible and afterwards queries a minimum vertex cover of the current vertex cover
instance in Line 15. Exploiting Lemma 3.2.8, the remaining instance can then be solved by
exhaustively querying vertices that are mandatory due to Corollary 2.3.6 (cf. Line 16).

We proceed by proving three more important properties of the algorithm that will help us
to prove Theorem 4.3.1.

The Lemma 4.3.3 implies that if wu enforces v and the predicted value of u is correct, then
v is mandatory. This directly implies that v is prediction mandatory for the current instance:
If the predicted weight of all not yet queried vertices are correct, then the predicted weight of
u is correct and v is mandatory. This leads to the following corollary.

Corollary 4.3.4. Consider a point of execution of the algorithm in which a predicted weight wu

enforces another vertex v. Then v is prediction mandatory for the current instance.

84

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

Algorithm 9: Learning-augmented algorithm for the hypergraph orientation problem
under explorable uncertainty with respect to the hop distance kh

Input: Hypergraph H = (V,E), intervals Iv and predictions wv for all v ∈ V
1 while there is a known mandatory vertex v by Corollary 2.3.6 do query v;
2 repeat
3 Q← ∅;
4 P ← set of prediction mandatory vertices for current instance;
5 while P ̸= ∅ and |Q| < γ − 2 do
6 pick and query some u ∈ P ; Q← Q ∪ {u};
7 while there is a known mandatory vertex v by Corollary 2.3.6 do query v;
8 P ← set of prediction mandatory vertices for the current instance;

9 if ∃ distinct u, v, w s.t. wu enforces v and {u,w} is a witness set for the current
instance by Lemma 2.3.7 then

10 query u,w;
11 if wu ∈ Iv then query v ;
12 else if ∃v, u such that wu enforces v then query v ;
13 while there is a known mandatory vertex v by Corollary 2.3.6 do query v;
14 until the current instance has no prediction mandatory vertices ;
15 Compute and query a minimum vertex cover Q′ for the current vertex cover instance;
16 while there is a known mandatory vertex v by Corollary 2.3.6 do query v;

Next, we show that there is at most one iteration of the repeat-loop that executes less than
γ − 2 queries in Line 6 or no queries in Lines 10–12.

Lemma 4.3.5. Every iteration of the repeat-loop in Algorithm 9 (cf. Lines 1–14) apart from the
final one executes γ − 2 queries in Line 6 and at least one query in Lines 10–12. Furthermore,
if an iteration executes a query in Lines 10–12, then it executes γ − 2 queries in Line 6.

Proof. Consider an iteration of the repeat-loop that executes less than γ − 2 queries in Line 6.
Then, the while-loop from Line 5 to Line 8 terminates because the current instance has no
prediction mandatory vertices. This means that the algorithm also does not execute any
queries in Lines 10–12 as there cannot be a predicted weight wu that enforces another vertex
v because v would be prediction mandatory for the current instance by Corollary 4.3.4. Since
the algorithm does not execute queries in Lines 10–12, the current instance still does not
contain prediction mandatory vertices at the end of the current iteration of the repeat-loop,
which implies that the loop terminates.

To conclude the proof, consider an iteration of the repeat-loop that executes γ − 2 queries
in Line 6 but no queries in Lines 10–12. No queries in Lines 10–12 imply that there is no
wu that enforces a vertex v. Since the current instance is preprocessed, this means that for
each hyperedge S we have that (i) wu ̸∈ Iv for the unique leftmost vertex v in S and all not
yet queried vertices u ∈ S \ {v} and (ii) wv ̸∈ Iu for the unique leftmost vertex v in S and
all not yet queried vertices u ∈ S \ {v}. If the predictions of the not yet queried vertices are
correct, then we can find the orientation of each hyperedge S by either querying the unique
leftmost vertex v in S or all not yet queried vertices in S \ {u}. This implies that no vertex is
prediction mandatory for the current instance and, therefore, the loop terminates.

We prove the following lemma that helps us to prove that queries in Line 12 will never
violate our target consistency or robustness.

Lemma 4.3.6. Let u, v be a pair that satisfies the condition in Line 12 of Algorithm 9 leading
to a query of v. After querying v, vertex u will either become mandatory by Corollary 2.3.6

85

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

and be queried in the next execution of Line 13 or for each hyperedge S containing u we
either know the orientation of S or know that u cannot be of minimum weight in S.

Proof. Consider the instance before v is queried. Due to the failed test in Line 9, for every
hyperedge S containing v, the following facts hold:

1. If u is leftmost in S, then the orientation of S is already known, or v ∈ S and v is the
only vertex in S \ {u} with an interval that intersects Iu.

2. If u is not leftmost in S but intersects the interval of the leftmost vertex v′ in S, then
v = v′.

3. If u is not leftmost in S and does not intersect the interval of the leftmost vertex in S,
then u is certainly not of minimum weight in S.

If condition (1) holds and the orientation of S is not known then, after querying v, either
wv /∈ Iu and the orientation of S is determined, or wv ∈ Iu and u becomes mandatory
by Corollary 2.3.6.

If condition (2) holds, then either wv ̸∈ Iu and u is certainly not of minimum weight in S,
or wv ∈ Iu and u becomes mandatory due to Corollary 2.3.6. The result follows trivially if
condition (3) holds.

Intuitively, the lemma means that if vertex u does not become mandatory by Corol-
lary 2.3.6 after querying v, then the algorithm will never even consider vertex u anymore
as all hyperedges containing u are either resolved or have an orientation that is completely
independent of vertex u. If that is the case, then the algorithm queries exactly one vertex
of the witness set {u, v}. This can never lead to a violation of the target consistency and
robustness as even the optimal solution has to query at least one member of {u, v}. If on the
other hand u becomes mandatory, then either the predicted weight wu is correct and v is also
mandatory by Lemma 4.3.3 or the predicted weight of wu is wrong. In the former case even
OPT queries u and v, so queries to those vertices certainly do not lead to a violation of the
target consistency. In the latter case, {u, v} is still a witness set and we will show that we can
charge one of the queries against a prediction error caused by vertex u, so queries to {u, v} do
not violate robustness or error-dependency.

Using these insights, we are finally ready to prove Theorem 4.3.1.

Proof of Theorem 4.3.1. Before we prove the performance bounds, we remark that the algo-
rithm clearly solves the given instance by definition of the final two lines of the algorithm
and Lemma 3.2.8. Next, we separately show that the algorithm executes at most γ · |OPT|
queries and at most (1+ 1

γ)(|OPT|+kh) queries. Let ALG denote the set of queries executed
by the algorithm.

Proof of |ALG| ≤ γ · |OPT| (robustness). We start by proving the robustness bound.
Vertices queried in Line 11 are mandatory due to Lemma 4.3.3 and, thus, in any feasible
solution. Clearly, querying those vertices will never worsen the competitive ratio of ALG. To
analyze all further queries executed by ALG, fix an optimal solution OPT.

Consider an iteration of the repeat-loop in which some query is performed in Lines 10–12.
Let P ′ be the set of vertices queried in Lines 6, 10 and 12. If the iteration queries a vertex
v in Line 12 that is enforced by the predicted weight wu of a vertex u, then we include
u in P ′ independent of whether the algorithm queries u at some point or not. Note that,
by Lemma 4.3.6, such a vertex u is considered in exactly one iteration as it either is queried
directly afterwards in Line 13 or will never be considered again be the algorithm (as we argued
above). Using this and the fact that we never query vertices multiple times, we can conclude

86

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

that the sets P ′ of different iterations are pairwise disjoint. We continue by showing that all
such sets P ′ are also witness sets of size at most γ and, thus, querying them never violates the
γ-robustness.

By Lemma 4.3.3, P ′ contains exactly γ − 2 vertices queried in Line 6. Furthermore, P ′

contains either two vertices u and w queried in Line 10 or two vertices u and v as considered
in Line 12. Either way, we have |P ′| = γ.

Next, we argue that P ′ is a witness set. If Line 10 is executed, then note that {u,w} ⊆ P ′

is a witness set. If a query is performed in Line 12, then note that {v, u} ⊆ P ′ is a witness set.
In both cases, P ′ contains a witness set and, therefore, is a witness set itself. We conclude
that P ′ is a witness set of size γ and, thus, querying P ′ never worsens the competitive ratio
below γ.

Let V ′ be the set of unqueried vertices in Line 4 during the iteration of the repeat-
loop consisting of Lines 1–14 in which no query is performed in Lines 10–12. Recall that
Lemma 4.3.5 states that there is at most one such iteration and it has to be the last iteration of
the loop. If no such iteration exists, then let V ′ denote the set of unqueried vertices before
Line 15.

If the orientation is not yet known at this point, then the instance is not yet solved and
we have |OPT ∩ V ′| ≥ 1. Furthermore, |Q| ≤ γ − 2 holds for the set of queries executed in
the iteration of the repeat-loop in which no query is performed in Lines 10–12. This implies
|Q| ≤ (γ − 2) · |OPT ∩ V ′|.

Let Q′ denote the set of all vertices queried in Lines 15 and 16. Since the queries of
Line 15 are a minimum vertex cover for the current instance and this instance is preprocessed,
they are a lower bound on |(OPT ∩ V ′) \Q| by Lemma 2.3.7. Additionally, all queries of
Line 16 are mandatory and thus their number is at most |(OPT ∩ V ′) \Q|. This implies that
|Q′| ≤ 2 · |(OPT ∩ V ′) \Q|. Combining the bounds for |Q| and |Q′|, we get |Q|+ |Q′| ≤
γ · |OPT ∩ V ′|.

All remaining vertices queried by ALG have been queried in Lines 1, 13 and 7. Thus,
they are mandatory, part of any feasible solution, and never violate the γ-robustness. This
concludes the proof of the robustness bound.

Proof of |ALG| ≤ (1+ 1
γ)(|OPT|+kh) (consistency and error-dependency). We continue

by proving consistency and error-dependency. Fix an optimal solution OPT. Let k−(u) be the
number of vertices v such that the value of v passes over an endpoint of u, i.e., wv ≤ Lu < wv,
wv ≤ Lu < wv, wv < Uu ≤ wv or wv < Uu ≤ wv. From the arguments in the proof of
Theorem 4.2.5, it can be seen that, for each vertex u that is prediction mandatory at some
point during the execution of the algorithm (not necessarily for the initially given instance)
and is not in OPT, we have that k−(u) ≥ 1. The same holds for not prediction mandatory
vertices that turn out to be mandatory.

For a subset U ⊆ V , let k−(U) =
∑︁

u∈U k−(u). Note that kh = k−(V) holds by
reordering summations.

In the following, we will show for various disjoint subsets S ⊆ V that |S ∩ ALG| ≤
(1 + 1

γ) · (|OPT ∩ S|+ k−(S)). The union of the subsets S will contain ALG, so it is clear

that the bound of (1 + 1
γ) · (1 +

kh
|OPT|) on the competitive ratio of the algorithm follows.

Vertices queried in Line 7 are in any feasible solution, so the set P0 of these vertices
satisfies |P0| ≤ |OPT ∩ P0|.

If there is an execution of the loop consisting of Lines 1–14 that does not perform queries
in Lines 10–12, then let P1 be the set of vertices queried in Line 6. Every vertex u ∈ P1 is
prediction mandatory for the current instance, so if u /∈ OPT then k−(u) ≥ 1. Thus, we have
that |P1| ≤ |P1 ∩OPT|+ k−(P1).

87

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

Let V ′ be the set of unqueried vertices before the execution of Line 15, and let Q′ denote
the vertex cover of Line 15. Since Q′ is a minimum vertex cover of the current vertex cover
instance, we have that |Q′| ≤ |OPT ∩ V ′|. Let M be the set of vertices queried in Line 16.
Each vertex v ∈M is known mandatory because it contains the precise weight wu of a vertex
u ∈ Q. But since v was not prediction mandatory before querying Q′, we have wu /∈ Iv and,
therefore, k−(v) ≥ 1. This implies |V ′ ∩ ALG| = |Q′ ∪M | ≤ |V ′ ∩ OPT| + k−(M) ≤
|V ′ ∩OPT|+ k−(V ′).

Finally, consider an execution of the repeat-loop in which some query is performed in
Lines 10–12. Let Q be the set of vertices queried in Line 6, and let W be the set of vertices
queried in Lines 10–12. If a query is performed in Line 12 and u is queried in Line 13 directly
afterwards, then include u in W as well. Note that |Q| = γ − 2 holds by Lemma 4.3.5. If wu

enforces v in Line 9 or 12, then v is prediction mandatory due to Corollary 4.3.4. Also, note
that k−(Q) ≥ |Q \OPT|, since every vertex in Q is prediction mandatory at some point. If
some v ∈ Q is not in OPT, then k−(v) ≥ 1 as argued above.

We divide the proof in three cases. For a pair {v, u} as in Line 12, note that, due
to Lemma 4.3.5 (and as argued before the proof), u is not considered more than once, and is
not considered in any of the previous cases.

1. If |W | = 1, then some vertex v was queried in Line 12 because wu enforces v, and u is
not queried by the algorithm due to Lemma 4.3.6. Then it suffices to note that {v, u} is
a witness set to see that |Q ∪W | ≤ |OPT ∩ (Q ∪ {u, v})|+ k−(Q).

2. Consider |W | = 2. If W is a pair of the form {u,w} queried in Line 10, then
k−(v) ≥ 1 because wu enforces v but wu /∈ Iv (as v was not queried in Line 11). We can
conceptually move this contribution in the hop distance to u, making k−(v) := k−(v)−1
and k−(u) := k−(u) + 1. If v is considered another time in Line 9 or in another point
of the analysis because it is enforced by some predicted weight, then it has to be the
predicted weight of a vertex u′ ̸= u, so we are not counting the contribution to the hop
distance more than once. If W is a pair of the form {v, u} queried in Line 12 and in
Line 13 directly afterwards, then either W ⊆ OPT or k−(v) ≥ 1: It holds that u is
mandatory, so if v is not in OPT then it suffices to see that wu enforces v to conclude
that k−(v) ≥ 1. Either way, the fact that W is a witness set is enough to see that
|Q ∪W | ≤ |OPT ∩ (Q ∪W)|+ k−(Q) + k−(W).

3. If |W | = 3, then W = {u, v, w} as in Line 9, and |Q ∪W | = γ + 1. As v is queried
in Line 11, it is mandatory by Lemma 4.3.3. Since {u,w} is a witness set, it holds
that v and at least one of {u,w} are contained in any feasible solution. This implies
that at least γ

γ+1 · |Q ∪W | − k−(Q) of the vertices in Q ∪W are also in OPT, so
|Q ∪W | ≤ (1 + 1

γ)(|OPT ∩ (Q ∪W)|+ k−(Q)).

The remaining intervals queried in Lines 1 and 13 are in any feasible solution.

4.3.2 Learning-augmented Algorithm w.r.t. the Mandatory Query Distance

We continue by designing a learning-augmented algorithm with a linear error dependency on
the mandatory query distance kM . Before we do so, we provide the following lower bound
stating that we can only hope for a slightly worse consistency and robustness tradeoff if we
want a linear error dependency on kM .

Theorem 4.3.7. Let γ ∈ R≥2 be fixed. If a deterministic algorithm for hypergraph orientation
under explorable uncertainty with predictions is γ-robust, then it cannot have competitive
ratio better than 1 + 1

γ−1 for kM = 0. If an algorithm has competitive ratio 1 + 1
γ−1 for

kM = 0, then it cannot be better than γ-robust.

88

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

I1
I2

Ib

..
.

Ib+1

Ib+2

Ia

. .
.

(A)

I1
I2

Ib

..
.

Ib+1

Ib+2

Ia

..
.

(B)

I1
I2

Ib

..
.

Ib+1

Ib+2

Ia

..
.

(C)

FIGURE 4.4: Intervals, precise weights and predicted weights as used in the lower bound
instance in the proof of Theorem 4.3.7.

Proof. We first establish the following auxiliary claim, which is slightly weaker than the
statement of the theorem:

Claim 4.3.8. Let γ′ ≥ 2 be a fixed rational number. Every deterministic algorithm for the
hypergraph orientation problem has competitive ratio at least 1 + 1

γ′−1 for kM = 0 or has
competitive ratio at least γ′ for arbitrary kM .

Let γ′ = a
b , with integers a ≥ 2b > 0. Consider an instance with vertices {1, . . . , a},

hyperedges Si = {i, b+1, b+2, . . . , a} for i = 1, . . . , b, and intervals and predicted weights as
depicted in Figure 4.4a. Suppose without loss of generality that the algorithm queries vertices
{1, . . . , b} in the order 1, 2, . . . , b, and the vertices {b+1, . . . , a} in the order b+1, b+2, . . . , a.
Let the predictions be correct for b+ 1, . . . , a− 1, and w1, . . . , wb−1 /∈ I1 ∪ . . . ∪ Ia.

If the algorithm queries vertex a before vertex b, then the adversary sets wa ∈ Ib and
wb /∈ Ia. (See Figure 4.4b.) This forces a query in all vertices {1, . . . , b} as they become
mandatory by Corollary 2.3.6, so the algorithm queries all a vertices, while the optimal
solution queries only the b vertices {b + 1, . . . , a}. Thus, the competitive ratio is at least
a
b = γ′ if kM can be arbitrarily large.

If the algorithm queries b before a, then the adversary sets wa = wa and wb ∈ Ia; see
Figure 4.4c. This forces the algorithm to query all remaining vertices in {b + 1, . . . , a}
as they become mandatory by Corollary 2.3.6, i.e., a queries in total, while the optimum
queries only the a − b vertices in {b + 1, . . . , a}. Note, however, that kM = 0, since the
right-side vertices {b + 1, . . . , a} are mandatory for both predicted and precise weights
by Lemmas 4.2.3 and 2.3.5, while 1, . . . , b are neither mandatory nor prediction mandatory.
Thus, the competitive ratio is at least a

a−b = 1 + 1
γ′−1 for kM = 0. This concludes the proof

of Claim 4.3.8.
Now we are ready to prove the theorem. Let γ ≥ 2 be a fixed rational. Assume that

there is a deterministic algorithm that is γ-robust and has competitive ratio strictly smaller
than 1 + 1

γ−1 , say 1 + 1
γ+ε−1 with ε > 0, for kM = 0. Let γ′ be a rational number with

γ < γ′ < γ + ε. Then the algorithm has competitive ratio strictly smaller than γ′ for arbitrary
kM and competitive ratio strictly smaller than 1 + 1

γ′−1 for kM = 0, a contradiction to
Claim 4.3.8. This shows the first statement of the theorem.

Let γ ≥ 2 again be a fixed rational. Assume that there is a deterministic algorithm that has
competitive ratio 1 + 1

γ−1 for kM = 0 and is (γ − ε)-robust, where ε > 0. As there is a lower
bound of 2 on the robustness of any deterministic algorithm, no such algorithm can exist for
γ = 2. So we only need to consider the case γ > 2 and γ− ε ≥ 2. Let γ′ be a rational number
with γ − ε < γ′ < γ. Then the algorithm has competitive ratio strictly smaller than 1 + 1

γ′−1

for kM = 0 and competitive ratio strictly smaller than γ′ for arbitrary kM , a contradiction to
Claim 4.3.8. This shows the second statement of the theorem.

89

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

This lower bound shows that the kh-dependent guarantee of Algorithm 9 (cf. Theo-
rem 4.3.1) cannot translate to the error measure kM . Instead, for any γ ∈ N≥2, we aim for a
(1 + 1

γ−1)-consistent and γ-robust algorithm with linear error dependency on kM .
To that end, we prove the following tight bound by presenting Algorithm 11 with depen-

dency on kM . We remark that this algorithm only uses the initial set of prediction mandatory
vertices, and otherwise ignores the predicted weights. Since access to this set is sufficient to
execute the algorithm, it requires strictly less predicted information than the Algorithm 11,
which relies on having access to the actual predicted weights.

Theorem 4.3.9. There is an algorithm for hypergraph orientation under explorable uncer-
tainty with predictions that, given an integer parameter γ ≥ 2, has a competitive ratio of
min{(1 + 1

γ−1) · (1 +
kM

|OPT|), γ}.
Before we give a formal proof of the theorem, we start by sketching the main ideas.

The algorithm emulates the two-stage structure of the offline algorithm (cf. Algorithm 8).
Recall that the offline algorithm in a first stage queries all mandatory vertices and in a second
stage queries a minimum vertex cover in the remaining vertex cover instance. Since blindly
following the offline algorithm based on the predicted weights would lead to a competitive ratio
of n, the algorithm augments both stages with additional queries. Algorithm 11 implements
the augmented first stage in Lines 2 to 7 and afterwards executes the second stage.

To start the first phase, the algorithm computes the set P of initial prediction mandatory
vertices (Lemma 2.3.5). In contrast to the kh-dependent algorithm, we fix the set P and do
not recompute it when the instance changes. Then the algorithm tries to find a vertex p ∈ P
that is part of a witness set {p, b} for the current instance. If |P | ≥ γ − 1, we query a set
P ′ ⊆ P of size γ − 1 that includes p, plus b (we allow b ∈ P ′). This is clearly a witness set of
size at most γ, which ensures that the queries do not violate the γ-robustness. Also, at least
a γ−1

γ fraction of the queried vertices are in P , and every vertex in P \OPT is in IP \ IR
and, thus, contributes to the mandatory query distance kM . This ensures, at least locally, that
the queried vertices do not violate the error-dependent consistency. We then repeatedly query
known mandatory vertices, remove them from P and repeat without recomputing P , until P
is empty or no vertex in P is part of a witness set.

We may have one last iteration of the loop where |P | < γ − 1. After that, the algorithm
will proceed to the second phase, querying a minimum vertex cover of the current vertex cover
instance and vertices that become known mandatory by Corollary 2.3.6. For the second phase
itself, we can use that a minimum vertex cover of the vertex cover instance (cf. Definition 3.2.6)
is a lower bound on the optimal solution for the remaining instance by Lemma 2.3.7. Since all
queries of Line 9 are mandatory, the queries of the Lines 8 and 9 are 2-robust for the remaining
instance. Even in combination with the additional at most γ − 2 queries of the last iteration of
the loop, this is still γ-robust. It is not hard to show that each query of Line 9 contributes an
error to kM , which completes the argument.

Formal proof of Theorem 4.3.9. We proceed by turning these arguments into a formal
analysis of Algorithm 11 to prove Theorem 4.3.9. To that end, we first show the following
auxiliary lemma. Recall that IP denotes the set of (initially) prediction mandatory vertices for
the instance and IR denotes the set of vertices that are mandatory for the precise weights.

Lemma 4.3.10. Every vertex queried in Line 9 of Algorithm 11 is in IR \ IP , i.e., mandatory
but not (initially) prediction mandatory.

Proof. Clearly every such vertex is in IR because it is known to be mandatory by Corol-
lary 2.3.6, so it remains to prove that it is not in IP .

If a vertex v ∈ IP is queried in Line 9, then it cannot be queried within the while-loop that
starts at Line 2. Since v is not queried in that loop, the condition for identifying a witness set

90

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

Algorithm 11: Algorithm for hypergraph orientation under uncertainty w.r.t. error
measure kM

Input: Hypergraph H = (V,E), intervals Iv and predictions wv for all v ∈ V
1 P ← set of initial prediction mandatory vertices (characterized in Lemma 2.3.5);
2 while ∃p ∈ P and an unqueried vertex b where {p, b} is a witness set for the current

instance by Lemma 2.3.7 do
3 if |P | ≥ γ − 1 then
4 pick P ′ ⊆ P with p ∈ P ′ and |P ′| = γ − 1;
5 query P ′ ∪ {b}, P ← P \ (P ′ ∪ {b});
6 while there is a known mandatory vertex v by Corollary 2.3.6 do query v,

P ← P \ {v} ;
7 else query P , P ← ∅ ;

8 Compute and query a minimum vertex cover Q′ on the current vertex cover instance;
9 while there is a known mandatory vertex v by Corollary 2.3.6 do query v;

in Line 2 implies that, after executing the loop, v is not leftmost in a not yet solved hyperedge
S with v ∈ S and that the interval of v does not intersect the interval of the leftmost vertex in
a not yet solved hyperedge S with v ∈ S.

As this holds for every hyperedge that contains v, the vertex cannot become known
mandatory in Line 9 and, therefore, is not queried. This implies that a vertex queried in Line 9
cannot be contained in IP and, thus, the lemma.

Using the auxiliary lemma, we now proceed to prove Theorem 4.3.9.

Proof of Theorem 4.3.9. Before we prove the performance bounds, we remark that the algo-
rithm clearly solves the given instance by definition of the final two lines of the algorithm
and Lemma 3.2.8. Next, we separately show that the algorithm executes at most γ · |OPT|
queries and at most (1 + 1

γ−1) · (|OPT|+ kM) queries.

Proof of |ALG| ≤ γ · |OPT| (robustness). Given P ′ ∪ {b} queried in Line 5, at least one
vertex is in any feasible solution since {b, p} is a witness set and, thus, P ′ ∪ {b} is a witness
set of size γ. Therefore, querying P ′ ∪ {b} never worsens the robustness below γ.

Line 7 is executed at most once because the size of P never increases. Fix an optimum
solution OPT, and let V ′ be the set of unqueried vertices before Line 7 is executed (or before
Line 8 if Line 7 is never executed). Let P be the set of vertices queried in Line 7, and let Q be
the queries in Line 8.

If the orientation is already known before querying P and Q, then it must hold P =
Q = ∅ and the lemma clearly holds. If the orientation is not yet known at this point, then
|OPT ∩ V ′| ≥ 1, so |P | ≤ γ − 2 implies |P | ≤ (γ − 2) · |OPT ∩ V ′|. Also, since Q is a
minimum vertex cover of the vertex cover instance, we get |Q| ≤ |OPT∩V ′| by Lemma 2.3.7.
Let M be the set of vertices in V ′ that are queried in Line 9; clearly M ⊆ OPT ∩ V ′ as all
those vertices are mandatory. Thus |P |+ |Q|+ |M | ≤ γ · |OPT ∩ V ′|.

The vertices queried in Line 6 are in any feasible solution, which implies the robustness
bound.

Proof of ALG ≤ (1 + 1
γ−1) · (|OPT|+ kM) (consistency and error-dependency). Fix an

optimal solution OPT. In the following, we will show for various disjoint subsets J ⊆ V that
|J ∩ALG| ≤ (1 + 1

γ−1) · (|OPT ∩ J |+ kJ), where kJ ≤ |J ∩ (IP∆IR)|. The union of the

91

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

subsets J will contain ALG, so it is clear that the bound of (1 + 1
γ−1) · (1 +

kM
|OPT|) on the

competitive ratio of the algorithm follows.
Vertices queried in Lines 6 of Algorithm 11 are part of any feasible solution, hence the set

P0 of these vertices satisfies |P0| ≤ |OPT ∩ P0|.
Given P ′ ∪ {b} queried in Line 5, at least γ−1

γ of the vertices in P ′ ∪ {b} are prediction
mandatory for the initial instance by choice of P ′. Among those, let k′ ≤ kM be the number
of vertices in IP \ IR. Then, |OPT ∩ (P ′ ∪ {b})| ≥ γ−1

γ · |P ′ ∪ {b}| − k′, which gives the
desired bound, i.e., |P ′ ∪ {b}| ≤ (1 + 1

γ−1) · (|OPT ∩ (P ′ ∪ {b})|+ k′).
Every vertex queried in Line 7 that is not in OPT is in IP \ IR. Hence, if there are k′′

such vertices, then the set P of vertices queried in Line 7 satisfies |P | ≤ |OPT ∩ P |+ k′′ <
(1 + 1

γ−1) · (|OPT ∩ P |+ k′′).
Let V ′ be the set of unqueried vertices before Line 8 of Algorithm 11 is executed, and let Q

be the queries in Line 8. Then |Q| ≤ |OPT∩V ′| because Q is a minimum vertex cover of the
vertex cover instance, which is a lower bound on OPT by Lemma 2.3.7. Let M be the set of
vertices that are queried in Line 9. It holds that |ALG∩V ′| = |Q∪M | ≤ |OPT∩V ′|+ |M |,
so the claimed bound follows from Lemma 4.3.10.

4.3.3 Non-Integral Parameter Gamma via Randomization

The parameter γ in Theorems 4.3.1 and 4.3.9 is restricted to integral values since the corre-
sponding algorithms use it to determine sizes of query sets. Nevertheless, a generalization
to arbitrary γ ∈ R+ is possible at a small loss in the guarantee. We give the following
upper bound on the achievable tradeoff between consistency and robustness with linear
error-dependency on kM .

Theorem 4.3.11. For any real number γ ≥ 2, there is a randomized algorithm for the
hypergraph orientation problem under explorable uncertainty with predictions that achieves a
competitive ratio of min{(1 + 1

γ−1 + ξ) · (1 + kM
|OPT|), γ}, for ξ ≤ γ−⌊γ⌋

(γ−1)2
.

Proof. For γ ∈ Z, we run Algorithm 11 and achieve the performance guarantee from Theorem
4.3.9. Assume γ /∈ Z, and let {γ} := γ − ⌊γ⌋ = γ − ⌈γ⌉+ 1 denote its fractional part. We
run the following randomized variant of Algorithm 11. We randomly chose γ′ as ⌈γ⌉ with
probability {γ} and as ⌊γ⌋ with probability 1− {γ}, and then we run the algorithm with γ′

instead of γ. We show that the guarantee from Theorem 4.3.9 holds in expectation with an
additive term less than {γ}, more precisely, we show the competitive ratio

min

{︃(︃
1 +

1

γ − 1
+ ξ

)︃
·
(︃
1 +

kM
|OPT|

)︃
, γ

}︃
, for ξ =

{γ}(1− {γ})
(γ − 1)⌊γ⌋(⌊γ⌋ − 1)

≤ {γ}
(γ − 1)2

.

Following the arguments in the proof of Theorem 4.3.9 on the robustness, the ratio of
the algorithm’s number of queries |ALG| and |OPT| is bounded by γ′. In expectation the
robustness is

E
[︁
γ′
]︁
= (1− {γ}) · ⌊γ⌋+ {γ} · ⌈γ⌉
= (1− {γ}) · (γ − {γ}) + {γ} · (γ − {γ}+ 1)

= γ.

The error-dependent bound on the competitive ratio is in expectation (with |OPT| and kM
not being random variables)

E
[︃(︃

1 +
1

γ′ − 1

)︃
·
(︃
1 +

kM
|OPT|

)︃]︃
=

(︃
1 + E

[︃
1

γ′ − 1

]︃)︃
·
(︃
1 +

kM
|OPT|

)︃
.

92

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

Applying simple algebraic transformations, we obtain

E
[︃

1

γ′ − 1

]︃
=

1− {γ}
⌊γ⌋ − 1

+
{γ}
⌈γ⌉ − 1

=
1− {γ}

γ − {γ} − 1
+

{γ}
γ − {γ}

=
(1− {γ})(γ − {γ}) + {γ}(γ − {γ} − 1)

(γ − {γ} − 1)(γ − {γ})

=
γ − 2{γ}

(γ − {γ} − 1)(γ − {γ}) =
1

γ − 1
− 1

γ − 1
+

γ − 2{γ}
(γ − {γ} − 1)(γ − {γ})

=
1

γ − 1
+

{γ}(1− {γ})
(γ − 1)(γ − {γ} − 1)(γ − {γ}) =

1

γ − 1
+

{γ}(1− {γ})
(γ − 1)⌊γ⌋(⌊γ⌋ − 1)

.

Hence, the error-dependent bound on the competitive ratio is in expectation(︃
1 +

1

γ − 1
+ ξ

)︃
·
(︃
1 +

kM
|OPT|

)︃
with ξ =

{γ}(1− {γ})
(γ − 1)⌊γ⌋(⌊γ⌋ − 1)

≤ {γ}
(γ − 1)2

≤ 1,

which concludes the proof.

We can repeat essentially the same proof to obtain the analogous result for Algorithm 9
and linear error-dependency on kh.

Theorem 4.3.12. For any real number γ ≥ 2, there is a randomized algorithm for the
hypergraph orientation problem under explorable uncertainty with predictions that achieves a
competitive ratio of min{(1 + 1

γ + ξ) · (1 + kh
|OPT|), γ}, for ξ ≤ 1

48 < 0.021.

Proof. For γ ∈ Z, we run Algorithm 9 and achieve the performance guarantee from Theorem
4.3.1. Assume γ /∈ Z. As before, let {γ} := γ − ⌊γ⌋ = γ − ⌈γ⌉+ 1 denote its fractional part.
We run the following randomized variant of Algorithm 9. We randomly chose γ′ as ⌈γ⌉ with
probability {γ} and as ⌊γ⌋ with probability 1− {γ}, and then we run the algorithm with γ′

instead of γ. We show that the guarantee from Theorem 4.3.1 holds in expectation with an
additive term less than {γ}, more precisely, we show the competitive ratio

min

{︃(︃
1 +

1

γ
+ ξ

)︃
·
(︃
1 +

kh
|OPT|

)︃
, γ

}︃
, for ξ =

{γ}(1− {γ})
(γ − 1)⌊γ⌋(⌊γ⌋ − 1)

≤ {γ}
(γ − 1)2

.

Exactly as in the proof of Theorem 4.3.11, we get E[γ′] = γ. The error-dependent bound
on the competitive ratio is in expectation (with OPT and kh not being random variables)

E
[︃(︃

1 +
1

γ′

)︃
·
(︃
1 +

kh
|OPT|

)︃]︃
=

(︃
1 + E

[︃
1

γ′

]︃)︃
·
(︃
1 +

kM
|OPT|

)︃
.

Applying simple algebraic transformations, we obtain

E
[︃
1

γ′

]︃
= {γ} 1

⌈γ⌉ + (1− {γ}) · 1

⌊γ⌋

= {γ} 1

⌈γ⌉ + (1− {γ}) · 1

⌊γ⌋ −
1

γ
+

1

γ

=
1

γ
+

1

γ⌈γ⌉⌊γ⌋ ·
(︃
{γ}γ⌊γ⌋+ (1− {γ}) · ⌈γ⌉γ − ⌈γ⌉⌊γ⌋

)︃
.

93

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

Iv

Iu

FIGURE 4.5: Uncertainty intervals as well as the predicted and precise weights as used in
the proof of Theorem 4.4.1.

As we consider fractional γ > 2, it holds ⌈γ⌉ = ⌊γ⌋+ 1. Using this, we rewrite the term in
brackets as

{γ}γ⌊γ⌋+ (1− {γ}) · (⌊γ⌋+ 1)γ − (⌊γ⌋+ 1)⌊γ⌋
= {γ}γ⌊γ⌋+ (⌊γ⌋+ 1)γ − {γ} · (⌊γ⌋+ 1)γ − (⌊γ⌋+ 1)⌊γ⌋
= (⌊γ⌋+ 1)(γ − ⌊γ⌋)− {γ} · γ
= {γ}(⌊γ⌋+ 1− γ)

= {γ}(1− {γ}),

where the third and fourth equalities come from the fact that γ − ⌊γ⌋ = {γ}. Note that for
{γ} ≥ 0, the expression {γ}(1 − {γ}) is at most 1/4, where it reaches its maximum for
{γ} = 1/2. Further, notice that for fractional γ > 2 it holds that γ⌈γ⌉⌊γ⌋ ≥ 12. We conclude
that

E
[︃
1

γ′

]︃
≤ 1

γ
+
{γ}(1− {γ})

γ⌈γ⌉⌊γ⌋ ≤ 1

γ
+

1

48
<

1

γ
+ 0.021

which proves the theorem.

4.4 Sorting under Explorable Uncertainty

In this section, we consider the special case of the hypergraph orientation problem, where
the input graph is a simple graph G = (V,E) that satisfies {u, v} ∈ E if and only if
Iv ∩ Iu ̸= ∅. That is, G corresponds to the interval graph induced by the uncertainty intervals
I = {Iv | v ∈ V }. To orient such a graph, we have to, for each pair of intersecting
intervals, decide which one has the smaller precise weight. An orientation of the graph
defines an order of the intervals according to their precise weights (and vice versa). Thus,
the problem corresponds to the problem of sorting a single set of uncertainty intervals. Note
that, by querying vertices, the uncertainty intervals change and, thus, the graph induced by the
intervals also changes. When we speak of the current interval graph, we refer to the interval
graph induced by the uncertainty intervals after all previous queries.

As the main result of this section, we give a learning-augmented algorithm for sorting under
explorable with predictions that is 1-consistent and 2-robust with a linear error-dependency
for any k ∈ {k#, kM , kh}. Clearly, no algorithm can be better than 1-consistent, and no
deterministic algorithm can be better than 2-robust by Theorem 2.2.2. Before we give our
algorithmic results, we show that a sublinear error dependency is not possibly by giving a
simple lower bound example.

Theorem 4.4.1. Any deterministic algorithm for sorting or hypergraph orientation under ex-
plorable uncertainty with predictions (even for pairwise disjoint hyperedges) has a competitive
ratio ρ ≥ min{1 + k

|OPT| , 2}, for any error measure k ∈ {k#, kM , kh}.

Proof. Consider the input instance of the hypergraph orientation problem consisting of a
single edge {v, u} with intervals and predicted weights as shown in Figure 4.5.

If the algorithm starts querying Iv, then the adversary sets wv = wv and the algorithm is
forced to query u. Then wu ∈ Iu \ Iv, so the optimum queries only u. It is easy to see that

94

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

k# = kM = kh = 1. A symmetric argument holds if the algorithm starts querying u. In that
case, wu = wu which forces as query to v with wv ∈ Iv \ Iu. Taking multiple copies of this
instance gives the result for any k ≤ |OPT|.

4.4.1 A Learning-augmented Algorithm for Sorting

As a main result of this section, we show the following upper bound that matches Theo-
rem 4.4.1.

Theorem 4.4.2. There exists a single polynomial-time algorithm for sorting under uncertainty
with predictions that is min{1 + k

|OPT| , 2}-competitive for any k ∈ {k#, kM , kh}.

The key observation that allows us to achieve improved results for orienting interval
graphs is the simple characterization of mandatory vertices: any vertex with an interval that
contains the precise weight of another vertex is mandatory [HL21]. This observation is a direct
consequence of Lemma 2.3.5 and the structure of interval graphs. Analogously, each vertex
with an interval that contains the predicted weight of another vertex is prediction mandatory.
Furthermore, Lemma 2.3.7 implies that any two vertices with intersecting intervals constitute
a witness set.

To obtain a guarantee of |OPT|+ k for any measure k, our algorithm (cf. Algorithm 12)
must trust the predictions as much as possible. That is, the algorithm must behave very close
to the offline algorithm under the assumption that the predictions are correct. Recall that the
offline algorithm in a first stage queries all mandatory vertices and in a second stage queries
a minimum vertex cover in the remaining vertex cover instance after the first stage queries.
Algorithm 12 emulates again these two stages. In contrast to the algorithms for general
hypergraph orientation, we cannot afford to augment the stages with additional queries as we
aim at achieving 1-consistency. Thus, we need a new algorithm and cannot apply existing
results.

In the emulated first phase, our algorithm queries all prediction mandatory vertices (cf.
Line 4) and all vertices that are mandatory based on the already obtained information (cf.
Lines 2 and 5). This phase clearly does not violate the |OPT|+k guarantee for k ∈ {kM , kh},
as all queried known mandatory vertices (cf. Lines 2 and 5) are contained in OPT and all
queried prediction mandatory vertices (cf. Line 4) are either in OPT or contribute one to
kM ≤ kh. We will show that the same holds for k = k#. However, the main challenge is to
guarantee 2-robustness. Our key ingredient for ensuring this is the following lemma, which
we show in Section 4.4.2.

Lemma 4.4.3. For an instance of the sorting problem, let IP be the set of prediction mandatory
vertices and M be the set of known mandatory vertices after querying IP (by exhaustively
applying Corollary 2.3.6). Then, we can partition IP ∪M into a set of disjoint cliques C such
that each v with {v} ∈ C either satisfies v ∈ M or Iv ∩ Iu ̸= ∅ for a distinct u ̸∈ IP ∪M .
The partition can be computed in polynomial time.

We can apply the lemma to the queries of the first phase of the algorithm (cf. Line 7).
Given the partition C of the lemma, we know that queries to vertices v that are part of some
C ∈ C with |C| ≥ 2 (or mandatory, i.e., v ∈M) do not violate the 2-robustness as even the
optimal solution can avoid at most one query per clique [HL21]. Thus, we only have to worry
about vertices v ̸∈M with {v} ∈ C. We call such vertices critical isolated vertices. But even
for critical isolated vertices v, the lemma gives us a distinct not yet queried u with Iv ∩ Iu ̸= ∅,
i.e., {v, u} is a witness set.

In line with the offline algorithm, the second phase of the algorithm (cf. Lines 8 to 14)
queries a minimum vertex cover of the remaining instance (the interval graph defined by the
intervals of non-queried vertices). However, to guarantee 2-robustness, we have to take the

95

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

Algorithm 12: Learning-augmented algorithm for sorting under explorable uncer-
tainty with predictions

Input: Interval graph G = (V,E), intervals Iv and predictions wv for all v ∈ V
1 IP ← set of prediction mandatory vertices;
2 while there is a known mandatory vertex v by Corollary 2.3.6 do query v;
3 M1 ← vertices queried in Line 2; S ← IP \M1 ;
4 Query S;
5 while there is a known mandatory vertex v by Corollary 2.3.6 do query v;
6 M2 ← set of vertices queried in Line 5;
7 C ← Clique partition of S ∪M1 ∪M2 such that all isolated vertices v satisfy either

v ∈M1 ∪M2 or Iu ∩ Iv ̸= ∅ for a distinct u ̸∈ S ∪M1 ∪M2 (computed using
Lemma 4.4.3);

8 while the problem is unsolved do
9 let P = x1x2 · · ·xp be a path component of the current interval graph with p ≥ 2

in direction of non-increasing lower limits Lxi ;
10 if p is odd then query {x2, x4, . . . , xp−1};
11 else
12 if x1 is the distinct partner of a critical isolated vertex v (Ix1 ∩ Iv ̸= ∅ and

v ̸∈M1 ∪M2; cf. Lemma 4.4.3) then query {x1, x3, . . . , xp−1};
13 else query {x2, x4, . . . , xp};
14 while there is a known mandatory vertex v by Corollary 2.3.6 do query v;

Iv1

Iv2

Iv3

Iv4

Iv5

FIGURE 4.6: Example showing that it is necessary to query a specific vertex cover in the
second phase to ensure 2-robustness. Circles illustrate precise weights and crosses illustrate
the predicted weights.

witness sets of the critical isolated vertices into account when deciding which vertex cover
to query. To see this, consider the example of Figure 4.6: only v1 is prediction mandatory,
so the first phase of the algorithm just queries v1. After querying v1, there are no prediction
mandatory (or mandatory) vertices left. As the only vertex queried in the first phase, {v1}
must be part of every clique partition. Since v1 is not mandatory, it would qualify as a critical
isolated vertex, and v2 is the only possible distinct partner of v1 with an intersecting interval
that Lemma 4.4.3 could assign to v1. After querying v1, the remaining vertex cover instance
is the path v2, v3, v4, v5. One possible minimum vertex cover of this instance is {v3, v5}, but
querying this vertex cover renders v2 and v4 mandatory by Corollary 2.3.6. Thus, the algorithm
would query all five intervals, which violates the 2-robustness as the optimal solution just
queries {v2, v4}. The example illustrates that the selection of the minimum vertex cover in
the second phase is important to ensure 2-robustness.

The next lemma shows that instances occurring in the second phase indeed have a structure
similar to the example by exploiting that such instances have no prediction mandatory vertices.

Lemma 4.4.4. Each connected component of an interval graph without prediction mandatory
vertices is either a path or a single vertex.

Proof. First, observe that there are no intervals Iv, Iu with Iu ⊆ Iv as this would imply
wu ∈ Iv, which contradicts the assumption as v would be prediction mandatory. Thus, the
graph is a proper interval graph. We claim that the graph contains no triangles; for proper

96

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

interval graphs, this implies that each connected component is a path, because the 4-star K1,3

is a forbidden induced subgraph [Weg67]. Suppose there is a triangle abc, and assume that
La ≤ Lb ≤ Lc; it holds that Ua ≤ Ub ≤ Uc because no interval is contained in another.
Since Ia and Ic intersect, we have that Ua ≥ Lc, so Ib ⊆ Ia ∪ Ic and it must hold that wb ∈ Ia
or wb ∈ Ic, a contradiction to the instance being prediction mandatory free.

Further, we observe that if the intervals of critical isolated vertices intersect intervals of
vertices on such a path component, they must also intersect the interval of an endpoint of
the component. Otherwise, the predicted weight wv of the critical isolated vertex v would
be contained in the interval of at least one vertex on the path component, which contradicts
the vertices on the path not being prediction mandatory. The distinct partner u of a critical
isolated vertex v that exists by Lemma 4.4.3 is an endpoint of such a path component, as we
show in Section 4.4.2.

The second phase of our algorithm iterates through all such connected components and,
for each component, queries a minimum vertex cover (cf. Lines 10, 12 and 13) and all
resulting mandatory vertices (cf. Line 14). If the path is of odd length, then the minimum
vertex cover is unique. Otherwise, the algorithm selects the minimum vertex cover based
on whether the interval of a critical isolated vertex intersects the interval of the first path
endpoint. This case would for example ensure that we pick the “right” vertex cover for the
example instance of Figure 4.6. Lemma 3.2.8 guarantees that the algorithm indeed queries a
feasible query set. The following lemma shows that this strategy indeed ensures 2-robustness
by using Lemma 4.4.3.

Lemma 4.4.5. Algorithm 12 is 2-robust for sorting under explorable uncertainty with predic-
tions.

Proof. Fix an optimal solution OPT. Let M1, M2 and S denote the phase one queries of
the algorithm as defined in the pseudocode. Consider the clique partition C as computed
in Line 7, then all C ∈ C with |C| ≥ 2 satisfy |C| ≤ 2 · |C ∩ OPT| and all C ∈ C with
C ⊆ M1 ∪M2 satisfy |C| ≤ |C ∩ OPT|. The latter holds as all members of M1 ∪M2

are mandatory by Lemma 2.3.5. Queries to vertices that are covered by such cliques do not
violate the 2-robustness. This leaves members of S that are critical isolated vertices in C and
queries of the second phase. We partition such queries (and some non-queried vertices) into
a collectionW such that, for each W ∈ W , the algorithm queries at most 2 · |W ∩ OPT|
vertices in W . If we have such a partition, then it is clear that we spend at most 2 · |OPT|
queries and are 2-robust.

By Lemma 4.4.3, there is a distinct vertex u ̸∈ M1 ∪M2 ∪ S for each critical isolated
vertex v with Iv ∩ Iu ̸= ∅; as we noted above and will show in Section 4.4.2, u is the endpoint
of a path component of the current instance before line 8. We create the partitionW as follows:
Iteratively consider all connected (path) components P of the current instance before line 8.
Let W be the union of P and the critical isolated vertices that are the distinct partner of at
least one endpoint of P . If |W | ≥ 2, add W toW . Then, W contains all critical isolated
vertices of C and all vertices that are queried in the Lines 10, 12, 13 and 14.

We conclude the proof by arguing that each W ∈ W satisfies that the algorithm queries
at most 2 · |W ∩ OPT| vertices in W . By construction, W contains a path component P
and up-to two critical isolated vertices. Furthermore, W itself is a path in the initial interval
graph (in addition to the edges of the path, there may be an additional edge between each
critical isolated vertex of C in W and the second or penultimate vertex of P , but this does
not affect the argument that follows). Consider an arbitrary W ∈ W . If |W | is even, then
|W | ≤ 2 · |W ∩OPT| as all pairs of neighboring vertices in path W are witness pairs. Thus,
assume that |W | is odd. As each critical isolated vertex has a distinct partner by Lemma 4.4.3

97

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

and this partner is an endpoint of a path component, W contains at most one critical isolated
vertex per distinct endpoint of P and, thus, we have |P | ≥ 2.

We divide the analysis in two cases. First assume that |P | = p is odd. Then the algorithm
queries {x2, x4, . . . , xp−1} in Line 10. As P is a path, the precise weight of each queried
vertex can be contained in the interval of at most one other vertex of P and, therefore, force at
most one query in Line 14. This leaves at least one vertex in P ⊆W that is never queried by
the algorithm. Since |W ∩OPT| ≥ ⌊|W |/2⌋ (as the subgraph induced by W contains a path
of the vertices in W), clearly the algorithm queries at most 2 · |W ∩OPT| vertices in W .

Now assume that |P | = p is even. Then either x1 or xp (but not both) is the distinct
partner of a critical isolated member of W , otherwise |W | would be even. If Ix1 intersects
the interval Iv of the critical isolated vertex v, then the algorithm queries {x1, x3, . . . , xp−1}
in Line 12. If wx1 forces a query to x2 in Line 14 because wx1 ∈ Ix2 , then |{x1, x2, v}| ≤
2 · |{x1, x2, v} ∩OPT| and the remaining vertices W ′ = W \ {x1, x2, v} form an even path,
which implies |W ′| ≤ 2 · |W ′ ∩OPT| and, therefore |W | ≤ 2 · |W ∩OPT|. If wx1 forces
no query to x2 in Line 14 because wx1 ̸∈ Ix2 , then |{x1, v}| ≤ 2 · |OPT ∩ {x1, v}| and we
analyze W ′ = W \ {x1, v} as in the subcase for odd |P |. Hence, the algorithm queries at
most 2 · |W ∩OPT| intervals of W .

If Ixp intersects the interval Iv of critical isolated member v, then we can analyze W
analogously.

Lemma 4.4.6. Algorithm 12 spends at most |OPT|+ kM ≤ |OPT|+ kh queries.

Proof. We show that the algorithm spends at most |OPT|+ kM queries. Theorem 4.2.5 then
implies |OPT|+ kM ≤ |OPT|+ kh . Fix an optimum solution OPT. Every vertex queried
in Lines 2 and 5 is in OPT by Lemma 2.3.5. Every vertex queried in Line 4 that is not in
OPT is clearly in IP \ IR and contributes one to kM .

For each path P considered in Line 9, let P ′ be the vertices queried in Lines 10–13. It
clearly holds that |P ′| ≤ |P ∩OPT|. Finally, every vertex queried in Line 14 is in IR \ IP ,
and therefore contributes to kM , because we query all prediction mandatory vertices at the
latest in Line 4.

4.4.2 Computing the Clique Partition

We continue by proving Lemma 4.4.3 and restate it here for the sake of readability:

Lemma 4.4.3. For an instance of the sorting problem, let IP be the set of prediction mandatory
vertices and M be the set of known mandatory vertices after querying IP (by exhaustively
applying Corollary 2.3.6). Then, we can partition IP ∪M into a set of disjoint cliques C such
that each v with {v} ∈ C either satisfies v ∈ M or Iv ∩ Iu ̸= ∅ for a distinct u ̸∈ IP ∪M .
The partition can be computed in polynomial time.

We describe how to compute a clique partition C of IP ∪M that satisfies the lemma. To
that end, consider the set IP \M . The elements of M are allowed to be part of a clique of
size one, so we ignore them for now. Each v ∈ IP \M is prediction mandatory because it
contains the predicted weight of some other vertex u (cf. Lemma 4.2.3 and recall that the
input instance is an interval graph). For each such v we pick an arbitrary π(v) ∈ V with
wπ(v) ∈ Iv as the parent of v. Next, we build a forest of arborescences (rooted out-trees)
that contains all vertices of IP \M (and some additional vertices) and define it by its arcs
E . Afterwards, we use E to define the clique partition of the lemma. We construct E by just
iteratively considering all elements v ∈ IP \M in an arbitrary order and add (π(v), v) to E if
that does not create a cycle. Each so constructed arborescence contains at most one vertex
that is not in IP ∪M , and this vertex has to be the root of the arborescence.

98

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

Algorithm 13: Algorithm to create a clique partition from a forest of arborescences.
Input: Forest of arborescences E , set of prediction mandatory vertices IP , set of

known mandatory vertices M .
1 Cv ← ∅ for all v ∈ V ; S ← IP ∪M ;
2 while S ̸= ∅ do
3 let v be a deepest vertex in the forest of arborescences (I, E) among those in S;
4 if (π(v), v) ∈ E then
5 Cπ(v) ← {v′ ∈ S : (π(v), v′) ∈ E};
6 if π(v) ∈ S then Cπ(v) ← Cπ(v) ∪ {π(v)};
7 S ← S \ Cπ(v);

8 else Cv ← {v}; S ← S \ Cv;

9 return C = {Cv | v ∈ V ∧ Cv ̸= ∅} ;

Based on E , we create a first clique partition C using Algorithm 13. Since all vertices in set
Cv, as created by the algorithm, contain the predicted weight wv, the created sets are clearly
cliques. Each of the partial clique partitions (created for a single arborescence in the forest of
arborescences) may contain at most a single clique of size one. To satisfy the lemma, each
such clique {v} must either satisfy v ∈M or needs a distinct u ̸∈ IP ∪M with Iv ∩ Iu ̸= ∅.

If the root of the arborescence is in M , then the only clique {v} of size one created for
the arborescence contains the root of the arborescence. Since the root is in M , the cliques for
the arborescence satisfy the lemma. If the root of the arborescence is not in IP ∪M , then
the vertex v in the clique of size one might not be the root of the arborescence but a direct
child of the root. In that case, the parent π(v) of v (the vertex in the clique of size 1) is not
in IP ∪M and we use π(v) as the distinct partner u ̸∈ IP ∪M with Iv ∩ Iu ̸= ∅ of v. We
remark that there must be such a π(v) that is the endpoint of a path component in the subgraph
induced by V \ (IP ∪M) as otherwise there must be a vertex u on the path with wv ∈ Iu;
a contradiction to the vertices on the path not being part of IP . We pick this endpoint of a
path component as the partner of v. In case we run into this situation for multiple cliques {v}
of different arborescences but with the same π(v), we can just merge all those cliques into
a single one. This results in a clique as the intervals of all vertices in those smaller cliques
contain the predicted weight wπ(v).

The problematic case is when the root of the arborescence is part of IP \M . Note that
this can only be the case if the parent π(r) of the root r is also part of the arborescence, as
otherwise the corresponding edge (π(r), r) would have been added and r would not be the
root. So the parent π(r) of the root r is also part of the arborescence but the edge (π(r), r)
was not added because it would have created a cycle. We handle this situation by showing the
following auxiliary lemma. It states that in this case we can revise the clique partition of that
arborescence in such a way that all cliques in that clique partition have size at least 2. The
auxiliary lemma then concludes the proof of Lemma 4.4.3.

Lemma 4.4.7. Consider an out-tree (arborescence) T on a set of prediction mandatory
vertices, where an edge (u, v) represents that wu ∈ Iv. Let the root be r. Let vertex m
with wm ∈ Ir be a descendant of the root somewhere in T . Then the vertices in T can be
partitioned into cliques (sets of pairwise overlapping intervals) in such a way that all cliques
have size at least 2.

Proof. We refer to the clique partition method of Lines 2–8 in Algorithm 13 as algorithm CP.
This method will partition the nodes of an arborescence into cliques, each consisting either
of a subset of the children of a node, or of a subset of the children of a node plus the parent

99

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

Ii

Ir

Im

Ia

Ib

Iq

FIGURE 4.7: Illustration of path from Ir to Im’s child Iq in T

of those children. In the case considered in this lemma, all cliques will have size at least 2,
except that the clique containing the root of the tree may have size 1.

We first modify T as follows: If there is a node v in T that is not a child of the root r
but contains wr, then we make r the parent of v (i.e., we remove the subtree rooted at v and
re-attach it below the root). After this transformation, all vertices whose intervals contain wr

are children of r.
Apply CP to each subtree of T rooted at a child of r. For each of the resulting partitions,

we call the clique containing the root of the subtree the root clique of that subtree. There are
several possible outcomes that can be handled directly:

• At least one of the clique partitions has a root clique of size 1. In that case we combine
all these root cliques of size 1 with r to form a clique of size at least 2, and we are done:
This new clique together with all remaining cliques from the clique partitions of the
subtrees forms the desired clique partition.

• All of the clique partitions have root cliques of size at least 2, and at least one of them
has a root clique of size at least 3. Let s be the root node of a subtree whose root clique
has size at least 3. We remove s from its clique and form a new clique from s and r,
and we are done.

• All of the clique partitions have root cliques of size exactly 2, and at least one of the
children v of r has wv ∈ Ir. Then we add r to the root clique that contains v. We can
do this because all intervals in that root clique contain wv.

Now assume that none of these cases applies, so we have the following situation: All of
the clique partitions have root cliques of size exactly 2, and every child v of r has its predicted
weight outside Ir, i.e., wv /∈ Ir. In particular, m, the vertex that makes r prediction mandatory
(wm ∈ Ir), cannot be a child of r.

Let T ′ be the subtree of T that is rooted at a child of r and that contains m. Let the root of
T ′ be v.

Observe that Iv is the only interval in T ′ that contains wr, because all vertices with
intervals containing wr are children of r in T . Assume w.l.o.g. that wv lies to the right of Ir.
Then all intervals of vertices in T ′, except for Iv, lie to the right of wr. See Figure 4.7 for an
illustration of a possible configuration of the intervals on the path from r to m (and a child q
of m) in T .

Now re-attach the subtree Tm rooted at m as a child of r (ignoring the fact that wr is not
inside Im), and let Tv = T ′ \ Tm denote the result of removing Tm from T ′. Re-apply CP to
the two separate subtrees Tm and Tv. The possible outcomes are:

• The root clique of at least one of the two subtrees has size 1. We can form a clique by
combining r with those (one or two) root cliques of size 1. As both Iv and Im intersect

100

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

Ir from the right, the resulting set is indeed a clique. Together with all other cliques
from the clique partitions of Tm and Tv, and those of the other subtrees of r in T , we
obtain the desired clique partition.

• The root cliques of both subtrees have size at least 2. We add r to the root clique of
Tm. That root clique contains only vertices with intervals containing wm, and Ir also
contains wm, so we do indeed get a clique if we add r to that root clique. This new
clique, together with all other cliques from the clique partitions of Tm and Tv, and those
of the other subtrees of r in T , forms the desired clique partition.

This concludes the proof of the lemma.

4.4.3 Guarantee depending on the Number of Wrong Predictions

We continue by proving that Algorithm 12 executes at most |OPT|+ k# queries. This then
concludes the proof of Theorem 4.4.2.

Recall that, in order to compute the clique partition of Lemma 4.4.7, we, for each v ∈
IP \M fix an arbitrary π(v) ∈ V with wπ(v) ∈ Iv as the parent of v. These parents will be
used in the following proofs.

To prove the k#-dependent guarantee, we need the following auxiliary lemma.

Lemma 4.4.8. Fix the state of set S as in Line 3 of Algorithm 12. For each vertex u, let
Su = {v ∈ S : π(v) = u}. For any path P considered in Line 9 and any vertex u ∈ P that is
not an endpoint of P , it holds that Su = ∅.

Proof. Suppose by contradiction that some u ∈ P that is not an endpoint of P has Su ̸= ∅.
Let a and b be its neighbors in P , and let v ∈ Su. We have that wu /∈ Ia ∪ Ib, otherwise
either a or b would be prediction mandatory and, therefore, have been queried in Line 4.
Thus (Iv ∩ Iu) \ (Ia ∪ Ib) ̸= ∅, because wu ∈ Iv but wu ̸∈ Ia ∪ Ib. It is not the case that
Iv ⊆ Iu or Iu ⊆ Iv: If Iv ⊆ Iu, then u would have been queried in Line 2 before P is
considered; if Iu ⊆ Iv, then v would have been queried in Line 2 and v /∈ S. Therefore it
must be that Iv ⊆ Ia ∪ Iu ∪ Ib, otherwise Ia ⊆ Iv or Ib ⊆ Iv (again a contradiction for v ∈ S)
since (Iv ∩ Iu) \ (Ia ∪ Ib) ̸= ∅ and a, u, b forms a simple path in the interval graph. However,
if Iv ⊆ Ia ∪ Iu ∪ Ib, then v would have forced a query to a, b or u in Line 5 as one of the
corresponding intervals must contain wv and, thus, becomes mandatory by Corollary 2.3.6.
This is a contradiction to a,b and u being part of path P .

Theorem 4.4.9. Algorithm 12 performs at most |OPT|+ k# queries.

Proof. Fix an optimum solution OPT. We partition the vertices in V into sets with the
following properties. One of the sets S̃ contains vertices that are not queried by the algorithm.
We have a collection S ′ of vertex sets in which each set has at most one vertex not in OPT,
i.e., |S′ \OPT| ≤ 1 for all S′ ∈ S ′. Also, if it has one vertex not in OPT, then we assign a
distinct prediction error to that set, in such a way that each error is assigned to at most one set.
The vertex corresponding to the prediction error does not need to be in the same set. Let V ′

be the set of vertices with a prediction error (wv ̸= wv for all v ∈ V ′) assigned to some set
in S ′. Finally, we have a collectionW of vertex sets such that for every W ∈ W it holds that
|ALG ∩W | ≤ |W ∩ OPT| + k#(W \ V ′), where k#(X) is the number of vertices in X
with incorrect predictions. If we have such a partition, then it is clear that we spend at most
OPT+ k# queries.

We begin by adding a set that contains all vertices queried in Lines 2 and 5 (M1 ∪M2 in
the Pseudocode) to S ′; all such vertices are clearly in OPT, and we do not need to assign a
prediction error.

101

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

Fix the state of S as in Line 3. To deal with the vertices queried in Line 4, we add to S ′
the set Su = {v ∈ S : π(v) = u} for all u ∈ V . Note that each such set is a clique, because
the corresponding intervals of all vertices in Su contain wu and we are considering an interval
graph. Therefore, using Lemma 2.3.7, at most one vertex in Su is not in OPT, and if that
occurs, then wu ̸= wu, and we assign this prediction error to Su.

Let P = x1x2 · · ·xp with p ≥ 2 be a path considered in Line 9, and let P ′ be the set of
intervals in P that are queried in the following execution of Lines 10, 12 or 13. It clearly
holds that |P ′| = ⌊|P |/2⌋ ≤ |P ∩OPT| as P is a path and each edge defines a witness set
by Lemma 2.3.7. It also holds that at most k#(P ′) intervals in P are queried in Line 14: Each
vertex u ∈ P ′ can force a query to at most one vertex v in Line 14 as weight wu can only
be contained in the interval of at most one neighbor v of u in the path, and in that case the
predicted weight of u is incorrect because wu ∈ Iv but wu /∈ Iv, or v would have been queried
in Line 4. We will create a set W ∈ W and possibly modify S ′, in such a way that P ⊆W
and P ′ ∩ V ′ = ∅, so it is enough to show that

|ALG ∩W | ≤ |W ∩OPT|+ k#(P
′). (4.4.1)

We initially take W as the vertices in P . By Lemma 4.4.8, it holds that Su = ∅ for any
u ∈ P with u ̸∈ {x1, xp}. If Sx1 ⊆ OPT, then we did not assign a prediction error to Sx1 .
Otherwise, let v be the only vertex in Sx1 \ OPT. The predicted weight of Ix1 is incorrect
because wx1 ∈ Iv, and it must hold that x1 ∈ OPT, or OPT would not be able to decide the
order between x1 and v (as Iv ∩ Ix1 ̸= ∅ which implies that {v, x1} is an edge and, therefore,
a witness pair). If x1 /∈ P ′, then we will not use its error in the bound of |ALG ∩W | to prove
Equation (4.4.1). Otherwise, we add v to W and remove it from Sx1 , and now we do not need
to assign a prediction error to Sx1 anymore as v was the sole member of Sx1 not in OPT.
We do a similar procedure for xp, and since at most one of x1, xp is in P ′ by definition of
Lines 10, 12 and 13, we only have two cases to analyze: (1) W = P , or (2) W = P ∪ {v}
with π(v) ∈ {x1, xp}.

1. W = P . Clearly |ALG∩W | ≤ |P ′|+k#(P
′) ≤ |W ∩OPT|+k#(P

′) as we already
argued that each member of P ′ (the vertices queried in Lines 10, 12 or 13) can lead to
at most one additional query in Line 14 and only if it has an incorrect predicted weight.

2. W = P ∪ {v}, with π(v) ∈ {x1, xp}. Suppose w.l.o.g. that π(v) = x1. Remember
that x1 ∈ P ′, that x1 ∈ OPT, that v ̸∈ OPT and that the predicted weight of x1 is
incorrect. Since x1 ∈ P ′, it holds that |P | is even and x2 /∈ P ′. We have two cases.

(a) x2 is not queried in Line 14. Then x1 does not force a query in Line 14, so

|ALG ∩W | ≤ |P ′ ∪ {v}|+ k#(P
′ \ {x1})

= |P ′|+ 1 + k#(P
′ \ {x1})

≤ |P ∩OPT|+ k#(P
′)

≤ |W ∩OPT|+ k#(P
′).

(b) x2 is queried in Line 14. Then x1, x2 ∈ OPT, and |OPT ∩ (P \ {x1, x2})| ≥
|P ′ \ {x1}| because |P | is even. Therefore,

|ALG ∩W | ≤ |P ′ ∪ {x2, v}|+ k#(P
′ \ {x1})

≤ |P ∩OPT|+ 1 + k#(P
′ \ {x1})

≤ |W ∩OPT|+ k#(P
′).

Finally, we add the remaining intervals that are not queried by the algorithm to S̃.

102

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

4.5 Learnability of Predictions

In this section, we argue about the learnability of our predictions with regard to the different
error measures for a given instance of hypergraph orientation H = (V,E) under explorable
uncertainty with the set of uncertainty intervals I = {Iv | v ∈ V } and n := |V | vertices.
To this end, we prove the predictions to be probably approximately correct (PAC) learn-
able [Val84]. The formal definition for this type of learnability results is part of the theorem
statements in the following two subsections.

We assume that the realization w of precise weights for I is i.i.d. drawn from an unknown
distribution D, and that we can i.i.d. sample realizations from D to obtain a training set. Let
H denote the set of all possible prediction vectors w, with wv ∈ Iv for each Iv ∈ I. Let
kh(w,w) denote the hop distance of the prediction w for the realization with the precise
weights w. Since w is drawn from D, the value kh(w,w) is a random variable. Analogously,
we consider kM (w,w) with regard to the mandatory query distance. Our goal is to learn
predictions w that (approximately) minimize the expected error Ew∼D[kh(w,w)] respectively
Ew∼D[kM (w,w)]. In the following, we argue separately about the learnability with respect to
kh and kM .

4.5.1 Learning with Respect to the Hop Distance

We prove the following theorem that states learnability w.r.t. kh.

Theorem 4.5.1. Given a fixed instance of the hypergraph orientation problem under explorable
uncertainty with graph G = (V,E) and intervals Iv for all v ∈ V . For any ε, δ ∈ (0, 1),
there exists a learning algorithm that, using a training set of size m, returns predictions
w ∈ H, such that Ew∼D[kh(w,w)] ≤ Ew∼D[kh(w,w

∗)] + ε holds with probability at
least (1 − δ), where w∗ = argminw′∈H Ew∼D[kh(w,w

′)]. The sample complexity is m ∈
O
(︂
(log(n)−log(δ/n))·(2n)2

(ε/n)2

)︂
and the running time is polynomial in m and n.

We refer to k+(v) (cf. Section 4.2.2) as the hop distance of a vertex v ∈ V . Since each
Iv is an open interval, there are infinitely many predictions w, and, thus, the set H is also
infinite. In order to reduce the size of H, we discretize each Iv by fixing a finite number
of potentially predicted values wv of Iv. We define the set Hv of predicted values for Iv as
follows. Let {B1, . . . , Bl} be the set of lower and upper limits of intervals in I \ Iv that are
contained in Iv. Assume that B1, . . . , Bl are indexed by increasing value. Let B0 = Lv and
Bl+1 = Uv and, for each j ∈ {0, . . . , l}, let hj be an arbitrary value of (Bj , Bj+1). We define
Hi = {B1, . . . , Bl, h0, . . . , hl}. Since two values wv, w

′
v ∈ (Bj , Bj+1) always lead to the

same hop distance for vertex v, there will always be an element of Hv that minimizes the
expected hop distance for v. As kh(w,w) is just the sum of the hop distances over all v ∈ V ,
and the hop distances of two vertices v and v′ with v ̸= v′ are independent, restrictingH to
the setH1 ×H2 × . . .×H|E| (assuming the vertices are enumerated from 1 to |V |) does not
affect the accuracy of our predictions. EachHv contains at most O(|V |) values, and, thus, the
discretization reduces the size ofH to at most O(|V ||V |). In particular,H is now finite.

To efficiently learn predictions that satisfy Theorem 4.5.1, we again exploit that the hop
distances of two vertices v and v′ with v ̸= v′ are independent. This is, because the hop
distance of v only depends on the predicted weight wv and the precise weight wv, but is
independent of all wv′ and wv′ with v ̸= v′. Let k+v (wv, wv) denote the hop distance k+(v)
of vertex v for the predicted weight wv and the precise weight wv, and, for each v ∈ V , let w∗

v

denote the predicted weight that minimizes Ew∼D[k
+
v (wv, wv)]. Since the hop distances of

the single vertices are independent, the vector w∗ then minimizes the expected hop distance
of the complete instance. Thus, if we can approximate the individual w∗

v, then we can show
Theorem 4.5.1.

103

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

Lemma 4.5.2. Given a fixed instance of the hypergraph orientation problem under explorable
uncertainty with graph G = (V,E) and intervals Iv for all v ∈ V . For any ε, δ ∈ (0, 1),
and any v ∈ V , there exists a learning algorithm that, using a training set of size m ∈
O
(︂
(log(|V |)−log(δ))·|V |2

ε2

)︂
, returns a predicted weight wv ∈ Hv in time polynomial in |V |

and m, such that Ew∼D[k
+
v (wv, wv)] ≤ Ew∼D[k

+
v (wv, w

∗
v)] + ε holds with probability at

least (1− δ), where w∗
v = argminwv∈H Ew∼D[k

+
v (wv, wv)].

Proof. We show that the basic empirical risk minimization (ERM) algorithm already satisfies
the lemma. ERM first i.i.d. samples a training set S = {w1, . . . , wm} of m precise weight
vectors from D. Then, it returns the wv ∈ Hv that minimizes the empirical error hS(wv) =
1
m

∑︁m
j=1 k

+
v (w

j
v, wv).

Recall that, as a consequence of the discretization, Hv contains at most O(|V |) values.
SinceHv is finite, and the error function k+v is bounded by the interval [0, |V |], it satisfies the
uniform convergence property; cf. [SB14]. (This follows also from the fact thatHv is finite
and, thus, has finite VC-dimension; cf. [Vap92].) This implies that, for

m =

⌈︃
2 log(2|Hi|/δ)|V |2

ε2

⌉︃
∈ O

(︃
(log(|V |)− log(δ)) · |V |2

ε2

)︃
,

it holds Ew∼D[k
+
v (wv, wv)] ≤ Ew∼D[k

+
v (wv, w

∗
v)] + ε with probability at least (1 − δ),

where wv is the predicted weight learned by ERM (cf. [SB14; Vap99]). As |Hv| ∈ O(|V |),
ERM also satisfies the running time requirements of the lemma.

Proof of Theorem 4.5.1. Let ε′ = ε
|V | and δ′ = δ

|V | . Furthermore, letHmax = argmaxHv |Hv|.
To learn predictions that satisfy the theorem, we first sample a training set S = {w1, . . . , wm}
with m =

⌈︂
2 log(2|Hmax|/δ′)|V |2

ε′2

⌉︂
. Next, we apply Lemma 4.5.2 to eachHv to learn a predicted

weight wv that satisfies the guarantees of the lemma for ε′, δ′. In each application of the
lemma, we use the same training set S that was previously sampled.

For each wv learned by applying the lemma, the probability that the guarantee of the
lemma is not satisfied is less than δ′. By the union bound this implies that the probability that
at least one wv with v ∈ V does not satisfy the guarantee is upper bounded by

∑︁
v∈V δ′ ≤

|V | · δ′ = δ. Thus, with probability at least (1 − δ), all wv satisfy Ew∼D[k
+
v (wv, wv)] ≤

Ew∼D[k
+
v (wv, w

∗
v)] + ε′. Since by linearity of expectations

Ew∼D[kh(w,w
∗)] =

∑︂
v∈V

Ew∼D[k
+
v (wv, w

∗
v)],

we can conclude that the following inequality, where w is the vector of the learned predicted
values, holds with probability at least (1− δ), which implies the theorem:

Ew∼D[kh(w,w)] =
∑︂
v∈V

Ew∼D[k
+
v (wv, wv)]

≤
∑︂
v∈V

Ev∼D[k
+
v (wv, w

∗
v)] + ε′

≤
(︄∑︂

v∈V
Ew∼D[k

+
v (wv, w

∗
v)]

)︄
+ |V | · ε′

≤ Ew∼D[kh(w,w
∗)] + ε.

104

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

4.5.2 Learning with Respect to the Mandatory Query Distance

Next, we argue about the learnability w.r.t. kM . Since each Iv is an open interval, there are
infinitely many predictions w, and, thus, the setH is also infinite. In order to reduce the size
ofH, we discretize each Iv by fixing a finite number of potentially predicted weights wv of Iv
using the same technique as in the previous section for kh.

The following lemma shows that we do not lose any precision by using the discretized
H. Here, for any vector w of predicted weights, Iw denotes the set of prediction mandatory
vertices. In particular,H is now finite.

Lemma 4.5.3. For a given instance of the hypergraph orientation problem with intervals I,
let w be a vector of predicted weights that is not contained in the discretizedH. Then, there is
a w′ ∈ H such that Iw = Iw′ .

The lemma implies that, for each w, there is an w′ ∈ H that has the same error w.r.t. kM
as w. Thus, there always exists an element w of the discretizedH such that w minimizes the
expected error over all possible vectors of predicted weights.

Proof of Lemma 4.5.3. Given the vector of predicted weights w, we construct a vector w′ ∈ H
that satisfies the lemma.

For each wv, we construct w′
v as follows: If wv = Bj for some j ∈ {1, . . . , l}, then we

set w′
v = Bj , where Bj is defined as in the definition of the discretizedHv. Otherwise it must

hold wv ∈ (Bj , Bj+1) for some j ∈ {1, . . . , l}, and we set w′
v = hj , where hj is defined as

in the discretization. Then, for each u ∈ V \ {v}, it holds wv ∈ Iu if and only if w′
v ∈ Iu.

We show that each v ∈ Iw is also contained in Iw′ . Since v is mandatory assuming precise
weights w, Lemma 2.3.5 implies that there is a hyperedge S such that either (i) wv is the
minimum weight of S and wu ∈ Iv for some u ∈ S \ {v} or (ii) wv is not the minimum
weight of S but contains the weight wu of the vertex u with minimum weight wu in S.

Assume v satisfies case (i) for the predicted weights w. By construction of w′ it then also
holds w′

u ∈ Iv. Thus, if v has minimum weight in S for the weights w′, then v ∈ Iw′ by
Lemma 2.3.5. Otherwise, some v′ ∈ S \ {v} must have the minimum weight w′

v′ in S for
the weights w′. Since v has minimum weight for the weights w, it must hold w′

v′ < w′
v but

wv′ ≥ wv. By construction of w′, this can only be the case if w′
v′ , wv′ ∈ Iv. This implies that

v satisfies case (ii) for the weights w′ and, therefore v ∈ Iw′ by Lemma 2.3.5.
Assume v satisfies case (ii) for the predicted weights w. By construction of w′ it then

also holds w′
u ∈ Iv. Thus, if u has minimum weight in S for the weights w′, then v ∈ Iw′ .

Otherwise, some u′ ∈ S \ {u} must have minimum weight in S for the weights w′. If u′ = v,
then v satisfies case (i) for the weights w′ and, therefore, v ∈ Iw′ by Lemma 2.3.5. If u′ ̸= u,
then it must hold w′

u′ < w′
u but wu′ ≥ wu as u has minimum weight in S for weights w but

u′ has minimum weight in S for weights w′. By construction and since wu ∈ Iv, this can
only be the case if w′

u′ , wu′ ∈ Iv. This implies that v satisfies case (ii) for the weights w′ and,
therefore v ∈ Iw′ by Lemma 2.3.5.

Symmetrically, we can show that each v ∈ Iw′ is also contained in Iw, which implies
Iw = Iw′ .

Recall that kM is defined as kM = |IP∆IR|, where IP is the set of predictions mandatory
elements and IR is the set of mandatory elements. In contrast to learning predictions w
w.r.t. kh, a vertex v ∈ I being part of IP∆IR depends not only on wv and wv, but on the
predicted and precise weights of vertices V \ {v}. Thus, the events of v and u with v ̸= u
being part of IP∆IR are not necessarily independent. Therefore, we cannot separately learn
the predicted weights wv for each v ∈ V , which is a major difference to the proof for kh in
the previous section.

105

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

Since the discretized H is still finite and kM is bounded by [0, n], we still can apply
empirical risk minimization (ERM) to achieve guarantees similar to the ones of Theorem 4.5.1.
However, because we cannot learn the wv separately, we would have to find the element ofH
that minimizes the empirical error. ERM first i.i.d. samples a training set S = {w1, . . . , wm}
of m precise weights vectors from D. Then, it returns the predicted weights w ∈ H that
minimizes the empirical error kS(w) =

1
m

∑︁m
j=1 kM (wj , w). As H is of exponential size,

a straightforward implementation of ERM requires exponential running time. We use this
straightforward implementation to prove the following theorem.

Theorem 4.5.4. Given a fixed instance of the hypergraph orientation problem under explorable
uncertainty with graph G = (V,E) and intervals Iv for all v ∈ V . For any ε, δ ∈ (0, 1),
there exists a learning algorithm that, using a training set of size m, returns predictions
w ∈ H, such that Ew∼D[kM (w,w)] ≤ Ew∼D[kM (w,w∗)] + ε holds with probability at
least (1− δ), where w∗ = argminw′∈H Ew∼D[kM (w,w′)]. The sample complexity is m ∈
O
(︂
(n·log(n)−log(δ))·n2

ε2

)︂
and the running time is exponential in n.

Proof. Since |H| ∈ O(nn) and kM is bounded by [0, n], ERM achieves the guarantee
of the theorem with a sample complexity of m ∈ O

(︂
(n·log(n)−log(δ))·(n)2

(ε)2

)︂
; for details

we refer to [SB14; Vap92]. The prediction w ∈ H that minimizes the empirical error
kS(w) =

1
m

∑︁m
j=1 kM (wj , w), where S = {w1, . . . , wm} is the training set, can be computed

by iterating through all elements of S ×H . Thus, the running time of ERM is polynomial in
m but exponential in n.

To circumvent the exponential running time, we present an alternative approach. In
contrast to kh, for a fixed realization, the value kM only depends on IP . Instead of showing
the learnability of the predicted weights, we prove that the set IP that leads to the smallest
expected error can be (approximately) learned. To be more specific, let P be the power set of
V , let Iw denote the set of mandatory vertices for the realization with precise weights w, and
let kM (Iw, P) with P ∈ P denote the mandatory query distance under the assumption that
IP = P and IR = Iw. Since w is drawn from D, the value Ew∼D[kM (Iw, P)] is a random
variable. We show the following theorem.

Theorem 4.5.5. Given a fixed instance of the hypergraph orientation problem under explorable
uncertainty with graph G = (V,E) and intervals Iv for all v ∈ V . For any ε, δ ∈ (0, 1),
there exists a learning algorithm that, using a training set of size m ∈ O

(︂
(n−log(δ))·n2

ε2

)︂
,

returns a predicted set of mandatory vertices P ∈ P in time polynomial in n and m, such
that Ew∼D[kM (Iw, P)] ≤ Ew∼D[kM (Iw, P ∗)] + ε holds with probability at least (1 − δ),
where P ∗ = argminP ′∈P Ew∼D[kM (Iw, P ′)].

Note that this theorem only allows us to learn a set of prediction mandatory vertices P
that (approximately) minimizes the expected mandatory query distance. It does not, however,
allow us to learn the predicted weights w that lead to the set of prediction mandatory vertices
P . In particular, it can be the case, that no such predicted weights exist. Thus, there may not
be a realization with precise weights w and kM (Iw, P) = 0. On the other hand, learning P
already allows us to execute Algorithm 11 for the hypergraph orientation problem. Applying
Algorithm 12 for the sorting problem would require knowing the corresponding predicted
weights w.

Proof of Theorem 4.5.5. We again show that the basic empirical risk minimization (ERM) al-
gorithm already satisfies the lemma. ERM first i.i.d. samples a training set S = {w1, . . . , wm}
of m precise weight vectors from D. Then, it returns the P ∈ P that minimizes the empirical
error kS(P) = 1

m

∑︁m
j=1 kM (Iwj , P). Since P is of exponential size, i.e., |P| ∈ O(2n), we

106

4. Sorting and Hypergraph Orientation under Uncertainty with Predictions

cannot afford to naively iterate through P in the second stage of ERM, but have to be more
careful.

By definition, P contains O(2n) elements and, thus, is finite. Since P is finite, and
the error function kM is bounded by the interval [0, n], it satisfies the uniform convergence
property (cf. [SB14]). This implies that, for

m =

⌈︃
2 log(2|P|/δ)n2

ε2

⌉︃
∈ O

(︃
(n− log(δ)) · n2

ε2

)︃
,

it holds Ew∼D[kM (Iw, P)] ≤ Ew∼D[kM (Iw, P ∗)] + ε with probability at least (1 − δ),
where P is the set P ∈ P learned by ERM (cf. [SB14; Vap99]).

It remains to show that we can compute the set P ∈ P that minimizes the empirical
error kS(P) = 1

m

∑︁m
j=1 kM (Iwj , P) in time polynomial in n and m. For each v, let pv =

|{Iwj | 1 ≤ j ≤ m∧ v ∈ Iwj}| and let qv = m− pv. For an arbitrary P ∈ P , we can rewrite
kS(P) as follows:

kS(P) =
1

m

m∑︂
j=1

kM (Iwj , P) =
1

m

m∑︂
j=1

|Iwj∆P |

=
1

m

m∑︂
j=1

|P \ Iwj |+ |Iwj \ P |

=
1

m

⎛⎝∑︂
v∈P

qv +
∑︂
v ̸∈P

pv

⎞⎠ .

A set P ∈ P minimizes the term kS(P) = 1
m(
∑︁

v∈P qv +
∑︁

v ̸∈P pv), if and only if, qv ≤ pv
holds for each v ∈ P . Thus, we can compute the P ∈ P that minimizes kS(P) as follows:

1. Compute qv and pv for each Iv ∈ I.

2. Return P = {v ∈ V | qv ≤ pv}.

Since this algorithm can be executed in time polynomial in n and m, the theorem follows.

4.6 Concluding Remarks

In this chapter, we showed how to exploit access to untrusted predictions to circumvent known
lower bounds for hypergraph orientation and sorting under explorable uncertainty and sparked
the discussion on error measures by presenting two new metrics, the hop distance and the
mandatory query distance, tailored to problems under explorable uncertainty. We proved
relations between the different errors and fully characterized the best possible consistency and
robustness tradeoffs for the respective errors.

For most of our algorithmic results, we assumed access to predictions on all precise
weights. However, for the kM -depend algorithm for hypergraph orientation, we noticed that
access to only the set of prediction mandatory vertices suffices to achieve the best possible
tradeoff w.r.t. the mandatory query distance. This raises the question whether there exist
further prediction models that require less information but still allow good consistency and
robustness results. As a next research step, we suggest investigating such prediction models.

Furthermore, it would be interesting to investigate what tradeoff bounds are possible for
the sorting problem if we only have access to the set of prediction mandatory vertices instead
of the predicted weights.

107

Chapter 5

Learning-Augmented Algorithms for
Minimum Spanning Tree with
Uncertainty

In this chapter, we study how to utilize (possibly erroneous) predictions to solve the minimum
spanning tree problem under explorable uncertainty, a fundamental combinatorial optimization
problem that has been central also to the research area of explorable uncertainty. We are given
a (multi)graph with uncertain edge weights that can be revealed via queries. Our aim is to
minimize the number of queries necessary to obtain sufficient information for identifying
a minimum spanning tree. For all integral γ ≥ 2, we present algorithms that are γ-robust
and (1 + 1

γ)-consistent, meaning that they use at most γ|OPT| queries if the predictions are
arbitrarily wrong and at most (1 + 1

γ)|OPT| queries if the predictions are correct, where
|OPT| is the optimal number of queries for the given instance. We show that this tradeoff is
best possible. Furthermore, we argue that the hop distance (see also Chapter 4) is a useful
measure for the amount of prediction error and design algorithms with performance guarantees
that degrade smoothly with the hop distance. Our results demonstrate that access to untrusted
predictions can help to circumvent the known lower bound of two (see also Section 2.2.2),
without any degradation of the worst-case ratio. In the process, we provide new structural
insights for the minimum spanning tree problem under explorable uncertainty that might be
useful in the context of query-based algorithms regardless of predictions.

Bibliographic remark: This chapter is mainly based on joint work with T. Erlebach,
M. de Lima and N. Megow [Erl+22]. Some results are based on a different joint work with the
same group of authors [Erl+23; Erl+20]. Therefore, some parts correspond to or are identical
with [Erl+23; Erl+22; Erl+20].

Contents
5.1 Introduction . 110

5.1.1 Our Results . 112
5.1.2 Outline . 112

5.2 Preliminaries . 113
5.2.1 Lower Bound on the Consistency and Robustness Tradeoff 113
5.2.2 Error Metrics . 114
5.2.3 Witness Sets and Mandatory Edges 116

5.3 Overview of Techniques . 122
5.3.1 Basic Algorithmic Framework 122
5.3.2 Algorithmic Ideas . 122

5.4 Prediction Mandatory Edges and New Structural Results 123
5.4.1 New Criteria to Identify Witness Sets and (Prediction) Mandatory

Edges . 124

109

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

5.4.2 Prediction Mandatory Free Instances 126
5.4.3 Relation Between Prediction Mandatory Edges and The Hop Distance128

5.5 Making Instances Prediction Mandatory Free 129
5.5.1 Algorithm and Overview of the Algorithmic Ideas 130
5.5.2 Formal Analysis of the Algorithm 132

5.6 Optimal Consistency and Robustness Tradeoff 136
5.6.1 Optimal Tradeoff for Prediction Mandatory Free Instances 136
5.6.2 Optimal Tradeoff for General Instances 139

5.7 An Error-Sensitive Algorithm . 140
5.7.1 Error-Sensitive Algorithm for Prediction Mandatory Free Instances 140
5.7.2 Error-Sensitive Algorithm for General Instances 145

5.8 Concluding Remarks . 146

5.1 Introduction

We continue our study of learning-augmented algorithms in the area of optimization under
explorable uncertainty and focus on the fundamental minimum spanning tree (MST) problem.
Recall that in this problem we are given a (multi)graph G = (V,E) with uncertain precise
edge weights we ∈ R+ for the edges e ∈ E. The edge weights are initially unknown and, for
each edge e, we instead are given an uncertainty interval Ie that contains the unknown precise
edge weight we and is either open or trivial, i.e., Ie = (Le, Ue) with we ∈ Ie or Ie = {we}.
An edge e is called trivial if the corresponding uncertainty interval Ie is trivial. We call Le

and Ue the lower and upper limit of Ie. If Ie = {we}, then Ue = Le = we. A query of edge e
has cost ce, reveals the precise weight we and, thus, reduces the corresponding uncertainty
interval to Ie = {we}.

Our task is to determine a minimum spanning tree with respect to the initially uncertain
precise weights we. A spanning tree of G is a subgraph of G that contains no cycles and
connects all the vertices of G, and a minimum spanning tree (MST) is a spanning tree of G
with minimum total edge weight. We characterize a spanning tree by its edge set and say that
T ⊆ E is a spanning tree if the subgraph G′ = (V, T) is a spanning tree. For the minimum
spanning tree problem, a query set is called feasible if it reveals sufficient information to
identify an MST (not necessarily the precise weight of the MST). Our goal is to find a feasible
query set of minimum cost.

To more formally define feasible and optimal query sets, we say that a query set Q ⊆ E is
feasible if there exists a set of edges T ⊆ E such that T is an MST for the precise weights we

of all e ∈ Q and every possible combination of edge weights in Ie for the unqueried edges
e ∈ E \ Q. That is, querying a feasible query set Q must give us sufficient information to
identify a spanning tree T that is an MST for the precise weights no matter what the precise
weights of the unqueried edges E \Q actually are. We refer to Section 2.1.3 for an example
instance and feasible query set. A feasible query set Q is optimal if it has minimum cost
c(Q) =

∑︁
e∈Q ce among all feasible query sets. In this chapter, we consider unit query costs,

i.e., ce = 1 for all e ∈ E, so the cost of a query set Q is equal to its cardinality |Q|.
As in all previous chapters, we study adaptive strategies that make queries sequentially

and utilize precise weights revealed by previous queries to decide upon the next query. As
there exist input instances that are impossible to solve without querying all edges, we evaluate
such adaptive algorithms in an instance-dependent manner: For each input, we compare the
number of queries made by an algorithm with the best possible number of queries for that
input, using competitive analysis (see also Section 2.2 for a formal definition). For the sake

110

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

of readability, we briefly restate the definition. Recall that, for a given problem instance,
OPT denotes an arbitrary optimal query set. An algorithm is ρ-competitive if it, for any
problem instance, has query cost at most ρ · c(OPT). For uniform query costs as considered
in this chapter, an algorithm is ρ-competitive if it, for any problem instance, executes at most
ρ · |OPT| queries. The competitive ratio of an algorithm is the minimum ρ for which the
algorithm is ρ-competitive.

While MST under explorable uncertainty is not a classical online problem where the input
is revealed passively over time, the query results are uncertain and, to a large degree, dictate
whether decisions to query certain edges were good or not. For analyzing an algorithm, it
is natural to assume that the query results are determined by an adversary. This gives the
problem a clear online flavor and prohibits the existence of 1-competitive algorithms even if
we have unlimited running time and space [Hof+08]. We note that competitive algorithms
in general do not have any running time requirements, but all our algorithms for the MST
problem run in polynomial time.

The MST problem is among the most widely studied problems in the research area
of explorable uncertainty and has been a cornerstone in the development of algorithmic
approaches and lower bound techniques [Hof+08; EH14; EH15; MMS17; FMM20; MS19;
MÇ22]. The best known deterministic algorithm for MST with uncertainty is 2-competitive,
and no deterministic algorithm can be better [Hof+08] (see Section 2.2.2 for the lower bound
instance). For randomized algorithms, there is a lower bound of 1.5 on the competitive ratio
and an upper bound of 1.707 [MMS17]. If the input graph is a cactus graph, then there is a
best possible 1.5-competitive randomized algorithm for arbitrary query costs [MÇ22]. Further
work considers the non-adaptive problem, which has a very different flavor [MS19]. The
offline problem, i.e., the problem of computing an optimal feasible query set while knowing
the query results in advance, can be solved to optimality in polynomial time [EH14]. This
is in contrast to the hypergraph orientation problem for which we showed NP-hardness of
the offline problem in Chapter 3. Erlebach et al. [Hof+08] also considered the MST problem
in the euclidean plane with uncertain vertex positions and gave a 4-competitive witness set
algorithm.

In this chapter, we once more consider the learning-augmented setting (see also Sec-
tion 2.2.3) and assume that an algorithm has, for each edge e, access to a prediction we ∈ Ie
for the unknown precise edge weight we. Since these predictions might be wrong, an algo-
rithm still has to execute queries in order to guarantee that it finds an MST w.r.t. the initially
unknown precise edge weights. However, the prediction can be used to select the query
strategy and, if they are of high accuracy, help to reduce the query costs.

These predictions could for example be obtained by using machine learning (ML) methods.
Given the tremendous progress in artificial intelligence and ML in recent decades, it seems
reasonable to expect that the predictions are of good accuracy, but there is no guarantee and
the predictions might be completely wrong. This lack of provable performance guarantees
for ML often causes concerns regarding how confident one can be that an ML algorithm will
perform sufficiently well in all circumstances. We address the very natural question whether
the availability of such predictions can be exploited by query algorithms for the MST problem
under explorable uncertainty. Ideally, an algorithm should perform very well if predictions are
accurate, but even if they are arbitrarily wrong, the algorithm should not perform worse than
an algorithm without access to predictions.

Building on the algorithmic techniques and further results introduced in the previous
chapter for the hypergraph orientation problem, we design learning-augmented algorithms
for the minimum spanning tree problem under explorable uncertainty that improve upon
the adversarial lower bound if the predictions are of high accuracy while at the same time
achieving provable performance guarantees even for arbitrarily bad predictions. While our
algorithms for the MST problem will reuse some ideas and techniques as used in the previous

111

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

chapter, they require substantial additional work and structural results specific to the minimum
spanning tree problem. During the course of this chapter, we will discuss the similarities and
differences between both problems.

To analyze the performance of our algorithms, we again adopt the notions of consistency
and robustness as introduced in [LV21; PSK18] (see also Section 2.2.3 for a formal definition).
Recall that an algorithm is α-consistent if it is α-competitive when the predictions are correct,
and it is β-robust if it is β-competitive no matter how wrong the predictions are. Furthermore,
we are interested in a smooth transition between the case with correct predictions and the case
with arbitrarily wrong predictions. We aim for performance guarantees that degrade gracefully
with increasing prediction error. To this end, we will consider the same error measures as
introduced in the previous chapter.

Given predicted weights for the uncertainty intervals, it is tempting to simply run an
optimal algorithm under the assumption that the predictions are correct. This corresponds
to the offline problem using the predicted weights as precise weights and can be solved in
polynomial time using the algorithm by Erlebach et al. [EH14]. While this is optimal with
respect to consistency, it might give arbitrarily bad solutions in the case when the predictions
are faulty. Instead of blindly trusting the predictions, we need more sophisticated strategies
to be robust against prediction errors. This chapter is dedicated to designing such strategies,
which requires new lower bounds on an optimal solution, new structural insights, and new
algorithmic techniques.

5.1.1 Our Results

We give algorithms for the MST problem with uncertainty that are parameterized by a
hyperparameter γ reflecting the user’s confidence in the accuracy of the predictor. For any
integral γ ≥ 2, we present a (1 + 1

γ)-consistent and γ-robust algorithm, and show that this is
the best possible tradeoff between consistency and robustness. In particular, for γ = 2, we
obtain a 2-robust and 1.5-consistent algorithm. It is worth noting that this algorithm achieves
the improved competitive ratio of 1.5 for accurate predictions while maintaining the best
possible worst-case ratio of 2.

Our main result is a second and different algorithm with a more fine-grained performance
analysis which obtains a guarantee that improves with the accuracy of the predictions. Similar
to the hypergraph orientation problem of the previous chapter, very natural, simple error
measures such as the number of inaccurate predictions or the ℓ1-norm of the difference between
predicted and precise weights turn out to prohibit any reasonable error-dependency. Therefore,
we consider again the hop distance kh (see also Chapter 4), which takes structural insights
about the uncertainty intervals into account. Our main result is a learning-augmented algorithm
with a competitive ratio with a linear error-dependency min{(1 + 1

γ) +
5·kh
|OPT| , γ +1}, for any

integral γ ≥ 2. This result nicely illustrates the usefulness of the hop distance as a problem
independent error measure for problems under explorable uncertainty with predictions.

We remark that PAC-learnability of the predictions and the removal of the integrality
condition in the upper bounds on parameter γ via randomization can be shown analogously to
the previous chapter.

5.1.2 Outline

We start the chapter in Section 5.2 by giving a lower bound on the best possible tradeoff
between consistency and robustness. Furthermore, we adjust the error measures of the previous
chapter for the MST problem and discuss their limits. To conclude the first section, we review
existing results for the MST problem under explorable uncertainty that will later on be used
in the design of our learning-augmented algorithms. Afterwards, in Section 5.3, we give an

112

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

Ie1

Ie2

Ieβ

. .
.

Ie0

FIGURE 5.1: Uncertainty intervals for the lower bound example of Theorem 5.2.1. Red
crosses indicate predicted weights and green circles show precise weights.

overview of the basic algorithmic framework that our learning-augmented algorithms will
implement.

In Section 5.4 we prove several new structural results that will be the foundation of our
algorithms and their analysis. These structural results might be of independent interest also
for the MST problem under explorable uncertainty without predictions. In Section 5.5 we give
a first algorithm that transforms arbitrary instances of the MST problem with predictions into
instances with a “nice” structure. The algorithm does so while achieving a guarantee in range
of the optimal consistency and robustness tradeoff.

Afterwards, we design algorithms for instances with such a nice structure. In Sections 5.6
and 5.7 we separately give and analyze such algorithms with and without error-dependent
guarantees. In combination with the algorithm that transforms arbitrary instances into nice
instances, these algorithms achieve our algorithmic main results.

5.2 Preliminaries

We start the chapter by reviewing existing results on the MST problem under explorable
uncertainty and also give new preliminary results that lay the foundation for our learning-
augmented algorithms.

First, we give a lower bound on the best possible tradeoff between consistency and
robustness for the MST problem under explorable uncertainty with predictions. Afterwards,
we revisit the error measures as introduced in the previous chapter and adjust them for the
MST problem.

Finally, we summarize (and slightly extend) existing structural results for the MST problem
under explorable uncertainty. Later in this chapter, we will further extend these structural
results and exploit them in our learning-augmented algorithms.

5.2.1 Lower Bound on the Consistency and Robustness Tradeoff

We give the following lower bound on the optimal tradeoff between consistency and robustness
for the MST problem under explorable uncertainty with predictions. The proof of the theorem
uses the same idea as the corresponding lower bound for hypergraph orientation in the previous
chapter but slightly adjusts it to the MST problem.

Theorem 5.2.1. Let β ≥ 2 be a fixed integer. For the MST problem under explorable
uncertainty with predictions, there is no deterministic β-robust algorithm that is α-consistent
for α < 1 + 1

β . And vice versa, no deterministic α-consistent algorithm with α = 1 + 1
β′ for

some integer β′ ≥ 1 is β-robust for β < β′.

Proof. Assume, for the sake of contradiction, that there is a deterministic β-robust algorithm
that is α-consistent with α = 1+ 1

β − ε for some ε > 0. Consider the instance that consists of
a single cycle with the edges e0, e1, . . . , eβ and uncertainty intervals as indicated in Figure 5.1.

113

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

To solve this given instance, an algorithm has to query edges until it identifies an edge
of maximum precise weight in the cycle. Then, the set of all edges except this one clearly
forms an MST with respect to the precise weights. Observe that, if the predicted weights of
the figure are indeed correct, the optimal query set is {e1, . . . , eβ} as we cannot prove that the
weights of these edges are smaller than the predicted weight of e0 without querying them. For
the precise weights as indicated in the figure on the other hand, it suffices to query e0 in order
to prove that it has maximum precise weight.

To be α-consistent, the algorithm must query the edges {e1, . . . , eβ} first, as otherwise it
would query β + 1 edges in case all predictions are correct, while there is an optimal query
set of size β, which would imply a consistency of 1 + 1

β > α.
Suppose w.l.o.g. that the algorithm queries the edges {e1, . . . , eβ} in order of increasing

indices. Consider the adversarial choice wei = wei , for i = 1, . . . , β − 1, and then weβ ∈ Ie0
and we0 /∈ Ie1∪ . . .∪Ieβ . This forces the algorithm to query also e0, while an optimal solution
only queries e0. Thus, any such algorithm has robustness at least β + 1, a contradiction.

The second part of the theorem directly follows from the first part and the known general
lower bound of 2 on the competitive ratio [Hof+08; Kah91]; see also Section 2.2.2. Assume
there is an α-consistent deterministic algorithm with α = 1 + 1

β′ for some integer β′ ≥ 1. If
β′ < 2, then the statement follows from the lower bound of 2, so assume β′ ≥ 2. Consider
the instance above with β = β′ − 1. Then the algorithm has to query vertices {1, . . . , β} first
to ensure α-consistency, as otherwise it would have a competitive ratio of β+1

β > 1 + 1
β′ = α

in case that all predictions are correct. By the argumentation above, the robustness factor of
the algorithm is at least β + 1 = β′.

This tradeoff lower bound again proves that fully trusting the predictions leads to an
arbitrarily bad robustness and motivates the usage of more involved algorithmic techniques. A
main goal of this chapter is to design algorithms that match this tradeoff lower bound.

5.2.2 Error Metrics

Since consistency and robustness only capture the extremes in terms of prediction quality,
we aim for a more fine-grained performance analysis giving guarantees that depend on the
quality of the predictions. To achieve this, we need error measures that capture the quality of
the predictions. A very natural, simple error measure is the number of inaccurate predictions
k# = |{e ∈ E |we ̸= we}|. However, as we have seen for the hypergraph orientation problem
in Chapter 4, we can show that even for k# = 1 the competitive ratio cannot be better than
the known bound of 2, even if |OPT| ∈ Ω(|E|) for any even number of edges |E|.

Lemma 5.2.2. Even if k# = 1, any deterministic algorithm for the MST problem under
uncertainty with predictions has competitive ratio ρ ≥ 2. This result holds even for instances
with |OPT| ∈ Ω(|E|) and an arbitrarily large even number of edges |E|.

Proof. Consider an input graph that consists of a path P with n edges e1, e2, . . . , en and n
parallel edges en+1, en+2, . . . , e2n between the endpoints of the path. See Figure 5.2a for
an illustration of this graph. Each edge ei is given with an uncertainty interval Ii and a
predicted weight wei . The structure of the intervals and their predicted weights is shown in
Figure 5.2b. If all the predictions are correct, the MST consists of the path P , and this can
be verified either by querying the n edges of P , or by querying the n parallel edges between
the endpoints of P . Assume w.l.o.g. that an algorithm queries the path edges in the order
e1, e2, . . . , en and the parallel edges in the order en+1, en+2, . . . , e2n. Before the algorithm
queries en or e2n, the adversary sets all predictions as correct, so the algorithm will eventually
have to query en or e2n. If the algorithm queries en before e2n, then the adversary chooses a

114

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

e3

e2. . .

en e1

en+1
en+2

. . .
e2n−1
e2n

(A) Input graph.

I1

I2

In

..
.

In+1

In+2

I2n

..
.

(B) Interval structure.

FIGURE 5.2: Instance for a lower bound based on the number of inaccurate predictions.
(a) Input graph for the MST problem under explorable uncertainty. (b) Uncertainty intervals
of the 2n edges. Red crosses indicate predicted weights, and green circles show precise
weights.

weight wen ∈ Ien+1 ∩ . . .∩Ie2n for en (illustrated in Figure 5.2b). This forces the algorithm to
also query en+1, . . . , e2n and the adversary picks predicted weights for the remaining parallel
edges as correct, so the optimal solution only queries en+1, . . . , e2n. A symmetric argument
holds if the algorithm queries e2n before en. In either case, the MST is P and the optimal
query set consists of n queries, while the algorithm is forced to make 2n queries. Furthermore,
only a single prediction is incorrect, so k# = 1.

The reason for the weakness of the measure k# is that it completely ignores the interleaving
structure of intervals. Similarly, an ℓ1 error metric such as

∑︁
e∈E |we − we| would not be

meaningful because only the order of the weights and the interval endpoints matters for our
problem.

To address this weakness, we return to the error measure hop distance as introduced in the
previous chapter for hypergraph orientation and define it for the MST problem.

The definition is quite intuitive even though it requires some technical care to make it
precise. If we consider only a single predicted weight we for some e ∈ E, then, in a sense,
this weight predicts the relation of the precise weight we to the intervals of edges e′ ∈ E \ {e}.
In particular, w.r.t a fixed e′ ∈ E \ {e}, the weight we predicts whether we is left of Ie′
(we ≤ Le′), right of Ie′ (we ≥ Ue′), or contained in Ie′ (Le′ < we < Ue′). Interpreting the
prediction we in this way, the prediction is “wrong” (w.r.t. a fixed e′ ∈ E \{e}) if the predicted
relation of the precise weight we to interval Ie′ is not actually true, e.g., we is predicted to
be left of Ie′ (we ≤ Le′) but the actual we is either contained in or right of Ie′ (we > Le′).
Formally, we define the function ke′(e) that indicates whether the predicted relation of we to
Ie′ is true (ke′(e) = 0) or not (ke′(e) = 1). More precisely, ke′(e) = 1 if we ≤ Le′ < we,
we ≤ Le′ < we, we < Ue′ ≤ we or we < Ue′ ≤ we, and ke′(e) = 0 otherwise. With the
prediction error k+(e) for a single e ∈ E, we want to capture the number of relations between
we and intervals Ie′ with e′ ∈ E \ {e} that are not accurately predicted. Thus, we define
k+(e) =

∑︁
e′∈E\{e} ke′(e). For a set of edges E′ ⊆ E, we define k+(E′) =

∑︁
e∈E′ k+(e).

Consequently, with the error for the complete instance we want to capture the total number of
wrongly predicted relations and, therefore, define it by kh = k+(E). See Figure 5.3 for an
example.

Symmetrically, we can define k−(e) =
∑︁

e′∈E\{e} ke(e
′) and k−(E′) =

∑︁
e∈E′ k−(e)

for subsets E′ ⊆ E. Then k+(E) = kh = k−(E) follows by reordering the summations.
We give the following lower bound on the competitive ratio as a function of kh.

115

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

e1e2

e3 e4

Ie1

Ie2

Ie3

Ie4

k+(e1) = 2

k+(e2) = 3

k+(e3) = 0

k+(e4) = 0

k−(e1) = 1

k−(e2) = 1

k−(e3) = 2

k−(e4) = 1

FIGURE 5.3: Example of a single cycle (left) with uncertain edge weights from intersecting
intervals Ie1 , Ie2 , Ie3 , Ie4 (right). Green circles illustrate precise weights and red crosses
illustrate the predicted weights. The predictions have a hop distance of kh =

∑︁4
i=1 k

−(ei) =∑︁4
i=1 k

+(ei) = 5.

Theorem 5.2.3. Any deterministic algorithm for MST under explorable uncertainty with
predictions has a competitive ratio ρ ≥ min{1 + kh

|OPT| , 2}.
Proof. Consider the instance of Figure 5.4 with the three edges e1, e2 and e3 of a triangle.
Clearly, edge e3 is part of any MST independent of the precise weights, so it remains to
determine which of e1 and e2 has larger edge weight. If the algorithm ALG starts querying e1,
then the adversary picks we1 ∈ Ie2 and the algorithm is forced to query e2. Then we2 ∈
Ie2 \ Ie1 , so the optimum queries only e2. It is easy to see that kh = 1 and, thus, |ALG|

|OPT| =

2 = min{1 + kh
|OPT| , 2}. A symmetric argument holds if the algorithm starts by querying e2.

In that case, we2 ∈ Ie1 and the algorithm is forced to query e1. Then we1 ∈ Ie1 \ Ie2 , so the
optimum queries only e1. Again, kh = 1 and, thus, |ALG|

|OPT| = 2 = min{1 + kh
|OPT| , 2}. Taking

multiple copies of this instance (connected by a tree structure), gives the same results for
larger values of kh and |OPT|.

In Chapter 4, we also considered the error measure mandatory query distance kM for the
hypergraph orientation problem under explorable uncertainty with predictions. While this
measure can be defined analogously for the MST problem, we will not consider it in this
chapter and it remains an open question whether there is a learning-augmented algorithm with
a non-trivial error-dependency on kM .

5.2.3 Witness Sets and Mandatory Edges

In order to design our learning-augmented algorithms for the MST problem under explorable
uncertainty, we first review existing results that we will later extend to the problem variant
with predictions.

All known algorithms for the problem without access to predictions [Hof+08; EH14;
MMS17] heavily exploit the concept of witness sets [Bru+05] (see also Section 2.3). Recall
that a subset W ⊆ E is a witness set if W ∩Q ̸= ∅ for all feasible query sets Q, i.e., every
algorithm (including the optimal query set) has to query at least one member of a witness
set. Witness sets are the key to the analysis of all known algorithms for the MST problem

e3

e2e1

Ie1

Ie2

Ie3

FIGURE 5.4: Lower bound example for the proof of Theorem 5.2.3. Circles illustrate precise
weights and crosses illustrate the predicted weights.

116

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

e1e2

e3 e4

Ie1

Ie2

Ie3

Ie4

FIGURE 5.5: Example of a single cycle (left) with uncertain edge weights from intersecting
intervals Ie1 , Ie2 , Ie3 , Ie4 (right). Circles illustrate precise weights and crosses illustrate the
predicted weights. For the example, {e1, e2} is the set of all mandatory edges and {e1} is
the set of all edges that would be mandatory if the predictions were correct.

under explorable uncertainty as they allow for a comparison of an algorithm’s query set to an
optimal solution.

An important special case are witness sets of cardinality one, i.e., edges that are part of
every feasible query set. We call such edges mandatory. The identification of mandatory
edges is especially important, as every algorithm can query mandatory edges without ever
worsening its competitive ratio.

For an example of mandatory edges, consider Figure 5.5. In the example, we see the
uncertainty intervals and precise weights of four edges that form a simple cycle. We can
observe that both e1 and e2 are mandatory for this example. To see this, assume that e1 is not
mandatory. Then, there must be a feasible query set Q with e1 ̸∈ Q for the instance, which
implies that Q = {e2, e3, e4} must be feasible. But even after querying Q to reveal the precise
weights of e2, e3 and e4, it still depends on the still unknown precise weight of e1 whether
there exists an MST T with e1 ∈ T (only if we1 ≤ we2) and/or e1 ̸∈ T (only if we2 ≤ we1).
Even after querying Q there is no spanning tree T that is an MST for each possible edge
weight in Ie1 of the unqueried edge e1 and, thus, Q is not feasible. This implies that e1 is
mandatory, and we can argue analogously that e2 is mandatory as well.

Lower and Upper Limit Trees In order to identify witness sets and mandatory edges, we
consider the lower and upper limit trees of a given instance of the MST problem under ex-
plorable uncertainty. This structural concept has been introduced by Megow et al. in [MMS17]:

Definition 5.2.4 (Lower and upper limit trees). Given an instance of the MST problem under
explorable uncertainty with graph G = (V,E) and uncertainty intervals Ie for all e ∈ E, a
lower limit tree of the instance is an MST TL with respect to the edge weights

wL
e =

{︄
Le + ϵ if Ie is non-trivial
we if Ie is trivial

for all e ∈ E and an infinitesimally small ϵ > 0. Similarly, an upper limit tree of the instance
is an MST TU with respect to the edge weights

wU
e =

{︄
Ue − ϵ if Ie is non-trivial
we if Ie is trivial.

Note that a query to an edge e with a non-trivial uncertainty interval Ie = (Le, Ue) changes
the interval Ie to Ie = {we} and, therefore, also changes the upper and lower limit of Ie to
we. By changing the upper and lower limits of an edge, the upper and lower limit trees of the
instance can also change. This means that the trees change during the application of a query
algorithm. We use the term current instance to refer to the problem instance after all previous

117

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

e1

e2

e3

e4
e5

e6

e7

(A) Ie1

Ie2

Ie3

Ie4

Ie5

Ie6

Ie7

(B)
e2

e3

e4
e6

e7

(C)

e2

e3

e4
e5

e7

(D)

FIGURE 5.6: Part (A) and (B) of the figure show an input instance of the MST problem
under explorable uncertainty. Part (C) shows the lower limit tree and part (D) shows the
upper limit tree of the instance. After querying edge e6 to reduce the uncertainty interval of
e6 to the precise weight indicated by the green circle, the upper and lower limit tree both
have the form shown in part (D).

queries. With the current upper and lower limit tree we refer to the upper and lower limit tree
of the current instance. See Figure 5.6 for an example.

Mandatory Edges and Preprocessing For a given instance of the MST problem under
explorable uncertainty, fix an upper limit tree TU and a lower limit tree TL. A very useful
property of TU and TL is that all edges in TL \ TU are mandatory, as was shown in [MMS17].

Lemma 5.2.5 (Megow et al. [MMS17]). Let TL and TU be lower and upper limit trees of a
given instance of the MST problem under explorable uncertainty with graph G = (V,E) and
uncertainty intervals Ie for e ∈ E. Each edge e ∈ TL \ TU with a non-trivial uncertainty
interval Ie is mandatory.

Proof. Let TL and TU be lower and upper limit trees of a given instance of the MST problem
under explorable uncertainty with graph G = (V,E) and uncertainty intervals Ie for e ∈ E.

Assume TL ̸= TU and let e be an arbitrary edge in TL \ TU with a non-trivial uncertainty
interval. We argue that e is mandatory.

Let Xe denote the set of edges in the cut between the two connected components of the
subgraph induced by TL \ {e}. Since TL is a lower limit tree, e must be an edge with a
minimum lower limit in Xe as otherwise TL would not be an MST for the edge weights wL

(cf. Definition 5.2.4). Furthermore, for the same reason, there cannot be a trivial edge e′ ∈ Xe

with Le′ = we′ = Le. This means that if we is close enough to Le, then e has the unique
minimum precise weight among the edges in Xe and, thus, has to be part of every MST for
the instance independent of what the precise weights of the other edges actually are.

Let Ce denote the unique cycle in TU ∪ {e}. Since TU is an MST for the edge weights
wU (cf. Definition 5.2.4) and e ̸∈ TU , it must hold that e is an edge of maximum upper limit
in Ce. Furthermore, there cannot be a trivial edge e′ ∈ Ce with Ue′ = we′ = Ue. This means
that if we is close enough to Ue, then e has the unique maximum precise weight among the
edges in Ce and, thus, cannot be part of any MST for the instance independent of what the
precise weights of the other edges actually are.

Without querying e, it is not possible to distinguish between the case where e has to be
part of every MST and the case where e cannot be part of any MST. Thus, e is mandatory.

118

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

A direct consequence of this lemma is that an algorithm for the MST problem under
explorable uncertainty can always query all non-trivial edges in TL\TU without ever worsening
its competitive ratio until the lower and upper limit trees are equal for the current instance.
We can extend this argument and show that an algorithm can always ensure that TL and TU

are unique and satisfy TL = TU by only querying mandatory edges and contracting/deleting
edges with trivial uncertainty intervals.

Lemma 5.2.6. Given an instance of the MST problem under explorable uncertainty with
graph G = (V,E) and uncertainty intervals Ie for e ∈ E. By querying only mandatory edges
we can obtain an instance with TL = TU such that TL and TU are the unique lower limit tree
and upper limit tree, respectively.

Proof. Let TL be a lower limit tree for a given instance and let TU be an upper limit tree.
According to Lemma 5.2.5, all elements of TL \ TU are mandatory and we can repeatedly
query them for (the adapting) TL and TU until TL = TU . We refer to this process as the first
preprocessing step.

Consider an f ∈ E \ TU and the cycle C in TU ∪ {f}. If f is trivial, then the precise
weight wf is maximal in C and we may delete f without loss of generality. Assume otherwise.
If the upper limit of If is uniquely maximal in C, then f is not part of any upper limit tree.
If there is an l ∈ C \ {f} with Uf = Ul, then T ′

U = TU \ {l} ∪ {f} is also an upper limit
tree. Since TL \ T ′

U = {l}, we may execute the first preprocessing step for TL and T ′
U . We

repeatedly do this until each f ∈ E \ TU has the uniquely maximal upper limit in the cycle C
in TU ∪ {f}. Then, TU is unique.

To achieve uniqueness for TL, consider some l ∈ TL and the cut X of G between the two
connected components of TL \ {l}. If l is trivial, then the precise weight wl is minimal in X
and we may contract l without loss of generality. Assume otherwise. If Ll is uniquely minimal
in X , then l is part of every lower limit tree. If there is an f ∈ X \ {l} with Ll = Lf , then
T ′
L = TL \ {l} ∪ {f} is also a lower limit tree. Since T ′

L \ TU = {f} follows from TL = TU ,
we may execute the first preprocessing step for T ′

L and TU . We repeatedly do this until Ll for
each l ∈ TL is uniquely minimal in the cut X of G between the two connected components of
TL \ {l}. Then, TL is unique.

The Lemma 5.2.6 can be interpreted as a preprocessing step that allows an algorithm to
ensure that the instance has unique upper and lower limit trees TU and TL with TL = TU

without worsening its competitive ratio. Thus, we refer to such instances as preprocessed.
Going back to the example of Figure 5.6, the initially given instance is not preprocessed as
TL ̸= TU . After querying edge e6, the instance of the example becomes preprocessed.

Definition 5.2.7. We call an instance of the MST problem under explorable uncertainty
preprocessed, if the instance has a unique lower limit tree TL, a unique upper limit tree TU

and satisfies TL = TU .

As we remarked before, querying edges can change the lower and upper limit trees of a
problem instance. In particular, the lower limit tree for the problem instance after querying a
feasible query set Q must be an MST with respect to the precise weights. Given an instance
with unique TL = TU , we can show that each e ∈ TL that is not part of the MST for the
precise weights is mandatory. Similarly, each e ̸∈ TL that is part of the MST for the precise
weights is mandatory as well. A stronger version of this observation is as follows.

Lemma 5.2.8. Let G = (V,E) be an instance with unique lower and upper limit trees
TL = TU and let G′ be an instance with unique lower and upper limit trees T ′

L = T ′
U obtained

from G by querying set Q ⊆ E, then e ∈ TL∆T ′
L = (TL \ T ′

L) ∪ (T ′
L \ TL) implies e ∈ Q.

119

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

Proof. Let e ∈ TL\T ′
L, then e ∈ TL and TL being unique imply that e has the unique minimal

lower limit in the cut Xe of G between the two connected components of TL \ {e}. Thus, e
is part of every lower limit tree for G. For e not to be part of T ′

L, it cannot have the unique
minimal lower limit in the cut Xe of G′ anymore. Since querying elements in Xe \ {e} only
increases their lower limits, this can only happen if e ∈ Q.

Let e ∈ T ′
L \ TL. Then TL = TU and T ′

L = T ′
U imply e ∈ T ′

U \ TU . Since e ̸∈ TU and
TU is unique, it follows that e has the unique largest upper limit in the cycle Ce of TU ∪ {e}.
Thus, e is not part of any upper limit tree for G. For e to be part of T ′

U , it cannot have the
unique largest upper limit in the cycle Ce of G′ anymore. Since querying elements in Ce \ {e}
only decreases their upper limits, this can only happen if e ∈ Q.

Identifying Witness Sets and the Witness Set Algorithm The lower and upper limit trees
do not only allow us to identify mandatory edges by using the previous two lemmas, but can
also be used to identify larger witness sets.

To that end, consider an arbitrary preprocessed instance of the MST problem under
explorable uncertainty with the unique lower limit tree TL. Based on TL, we can give criteria
to identify witness sets and define the witness set algorithm for the MST problem. Let
f1, . . . , fl denote the edges in E \ TL ordered by non-decreasing lower limits Lfi . Then, Ci

with i ∈ {1, . . . , l} denotes the unique cycle in TL∪{fi}. By definition and since the instance
is preprocessed, edge fi has the unique largest upper and lower limit on the cycle Ci. Define
Gi = (V,Ei) with Ei = TL ∪ {f1, . . . , fi} and G0 = (V, TL).

Before we consider the criteria to identify witness sets as given in [MMS17], we restate
their auxiliary lemma stating that a feasible query set for the complete problem instance must
also be feasible for the subproblem instances defined by the subgraphs Gi with i ∈ {1, . . . , l}.
For a proof of the lemma, we refer to [MMS17].

Lemma 5.2.9 (Megow et al. [MMS17, Lemma 4.1]). Let i ∈ {1, . . . , l}. Given a feasible
query set Q for the graph G = (V,E) with uncertainty intervals Ie for e ∈ E, the set
Qi := Q ∩ Ei is a feasible query set for Gi = (V,Ei) with the same uncertainty intervals Ie
for the edges e ∈ Ei.

The next lemma helps us to iteratively identify minimum spanning trees for subgraphs Gi

with increasing i, while only querying witness sets of size at most two until we have found an
MST for the complete instance. In particular, if we have already identified an MST Ti−1 for
instance Gi−1, the lemma gives us criteria to identify a witness set of size at most two on the
unique cycle C in Ti−1 ∪ {fi}. For a proof of the lemma, we again refer to [MMS17].

Lemma 5.2.10 (Megow et al. [MMS17, Lemma 4.2 and ff.]). For some realization of edge
weights and some i ∈ {1, . . . , ℓ − 1}, consider the problem instance after querying some
feasible query set Qi for graph Gi. Let Ti be the determined MST for graph Gi, let C be the
cycle closed by adding fi+1 to Ti and let g ∈ C \ {fi+1} be an edge with Ig ∩ Ifi+1

̸= ∅.
Then, fi+1 has the largest upper limit on cycle C and any feasible query set for Gi+1 contains
fi+1 or g. Moreover, if Ig ⊆ Ifi+1

, then fi+1 is mandatory.

Exploiting these two lemmas, the witness set algorithm (cf. Section 2.3 for a general,
abstract formulation) for the MST problem achieves a competitive ratio of 2 without access to
predictions [Hof+08; MMS17]. Given an MST Ti−1 for subgraph Gi−1, the Algorithm 14
finds an MST of instance Gi by considering the unique cycle C in Ti−1 ∪ {fi} and repeatedly
querying witness sets W ⊆ C of size at most two until it identifies an edge h of maximum
precise weight in C. Then, Ti = (Ti−1 ∪ {fi}) \ {h} is the MST for instance Gi.

Theorem 5.2.11 (Erlebach et al. [Hof+08], Megow et al. [MMS17]). The witness set algorithm
is 2-competitive for the minimum spanning tree problem under explorable uncertainty.

120

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

Algorithm 14: Witness set algorithm for minimum spanning tree under explorable
uncertainty.

Input: Preprocessed instance of the minimum spanning tree problem under
explorable uncertainty with graph G = (V,E) and uncertainty intervals Ie for
all e ∈ E.

Output: A feasible query set Q for the given problem instance.
1 Q← ∅;
2 T ← lower limit tree TL of the current instance;
3 f1, . . . , fl ← edges in E \ TL ordered by non-decreasing lower limit Lfi ;
4 for i from 1 to l do
5 C ← unique cycle in T ∪ {fi};
6 repeat
7 W ⊆ C \Q←Witness set of size at most two computed via Lemma 5.2.10;
8 Query W ;
9 Q← Q ∪W ;

10 until We identified an edge h of maximum precise weight in C;
11 h← edge of maximum precise weight in C;
12 T ← (T ∪ {fi}) \ {h} ;

13 return Q;

Proof. To prove the theorem, we can first observe that the current tree T at the beginning
of iteration i of the for-loop is an MST for instance Gi−1 = TL ∪ {f1, . . . , fi−1}. We can
proof this via induction over i. For i = 1, we have that T = TL is the only spanning tree for
instance Gi−1 = G0 and, thus, also an MST. For larger i, we have T = (T ′ ∪ {fi−1}) \ {h},
where T ′ by induction hypothesis is an MST for instance Gi−2 and h is an edge of maximum
precise weight in the cycle C of T ′ ∪ {fi−1} (cf. Line 12). This directly implies that T is an
MST for instance Gi−1.

The fact that the current tree T at the beginning of each iteration i of the for-loop is an
MST for instance Gi−1 allows us to apply Lemma 5.2.10 on the cycle C in T ∪ {fi}. So
if the algorithm executes queries in Line 8, then it queries a witness set of size at most two.
Since all those witness sets are pairwise disjoint, this implies a competitive ratio of at most
two.

It remains to argue that the algorithm computes a feasible query set. We already argued
that the current T is always an MST for the subinstance Gi−1. The argumentation also holds
for a hypothetical iteration l+ 1 and, thus, implies that the final T is an MST for the complete
instance. However, this implication relies on the repeat-loop being able to identify an edge h
of maximum precise weight in the current cycle C. To finish the proof, we have to argue that
whenever we do not know an edge of maximum precise weight in C yet, Lemma 5.2.10 gives
us a witness set W ⊆ C to query in Line 8.

To this end, assume that we do not know an edge of maximum precise weight in C yet
but also cannot apply Lemma 5.2.10 to identify a witness set W ⊆ C. Let fi denote the edge
of maximum upper limit in C. If fi has a trivial uncertainty interval, either because it was
already queried or had a trivial interval initially, then fi clearly has maximum precise weight
in C. Thus, assume otherwise. As we cannot identify a witness set by using Lemma 5.2.10, it
must hold that Ig ∩ Ifi = ∅ for all g ∈ C \ {fi}. But then, fi clearly has maximum precise
weight in C, a contradiction.

We remark that, while the witness set algorithm is stated for uniform query costs, it can be
extended to arbitrary query costs by using the local ratio technique of Section 2.3.

121

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

While the witness set algorithm achieves the best possible adversarial competitive ratio of
two, using it as a black box will never improve over 2-consistency in the learning-augmented
setting. Since the witness set algorithm does not allow us to obtain an improved consistency
and the offline algorithm of [EH14] that blindly trusts the predictions is n-robust by the
tradeoff lower bound of Theorem 5.2.1, we need new algorithmic techniques in order to match
the best possible consistency and robustness tradeoff. In the following section, we give an
overview of these techniques before implementing them in the remainder of this chapter.

5.3 Overview of Techniques

We give an overview of the algorithmic techniques that we use in our learning-augmented
algorithms later in this chapter. In order to match the tradeoff lower bound, we aim for
(1 + 1

γ)-consistent and γ-robust algorithms for each integral γ ≥ 2.

5.3.1 Basic Algorithmic Framework

Our algorithm follows the same basic framework as the learning-augmented algorithms of
the previous chapter for hypergraph orientation and sorting under explorable uncertainty. The
implementation of the framework however will be very specific to the MST problem under
explorable uncertainty.

As for the learning-augmented algorithms of the previous chapter, the basic framework
proceeds in two phases: The first phase runs as long as there are prediction mandatory edges,
i.e., edges that must be contained in every feasible query set under the assumption that the
predictions are correct. Such edges can for example be identified using the offline algorithm
by Erlebach et al. [EH14] and we later give further criteria to identify such edges. In this
phase, we exploit the existence of those edges and their properties to execute queries with
strong local guarantees, i.e., each feasible query set contains a large portion of our queries if
the predictions are correct. The basic idea of this phase is analogous to the first phase of the
algorithm for hypergraph orientation with a hop distance dependent guarantee. However, the
identification of query sets with strong local guarantees is far more involved for the minimum
spanning tree problem and a main technical contribution of this chapter.

For the second phase, we observe and exploit that the absence of prediction mandatory
queries implies that the predicted optimal solution is a minimum vertex cover in a bipartite
auxiliary graph. The challenge here is that the auxiliary graph can change with each wrong
prediction. To obtain an error-dependent guarantee we need to adaptively query a dynami-
cally changing minimum vertex cover. This is in contrast to the algorithms for hypergraph
orientation of the previous chapter. Those algorithms could afford to non-adaptively query a
minimum vertex cover of an auxiliary graph and still guarantee at least 2-robustness. For the
minimum spanning tree problem, we show that non-adaptively querying the complete vertex
cover can lead to an arbitrarily bad robustness. Handling this additional need for adaptivity in
the second framework phase is a main technical contribution of this chapter.

5.3.2 Algorithmic Ideas

During the first phase, we generalize the classical witness set analysis. As in the previous
chapter, we extend this concept by considering strengthened witness sets of three elements
such that any feasible query set must contain at least two of them. Since we cannot always
find strengthened witness sets based on structural properties alone (otherwise, there would
be a 1.5-competitive algorithm for the problem without predictions), we identify such sets
under the assumption that the predictions are correct. Even after identifying such edges, the
algorithm needs to query them in a careful order: if the predictions are wrong, we lose the

122

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

guarantee on the elements, and querying all of them might violate the robustness. In order to
identify strengthened witness sets, we provide new, more global criteria to identify additional
witness sets (of size two) beyond the ideas used by the witness set algorithm. During the first
phase, we repeatedly query γ − 2 prediction mandatory edges together with a strengthened
witness set, which ensures (1 + 1

γ)-consistency. We query the elements in a carefully selected
order while adjusting for errors to ensure γ-robustness.

For the second phase, we observe that the predicted optimal solution of the remaining
instance is a minimum vertex cover V C in a bipartite auxiliary graph representing the structure
of potential witness pairs (edges of the input graph correspond to vertices of the auxiliary
graph). For instances with this property, we aim for 1-consistency and 2-robustness; the best
possible tradeoff for such instances. If the predictions are correct, each edge of the auxiliary
graph is a witness pair. However, if a prediction error is observed when a vertex of V C is
queried, the auxiliary graph changes. This means that some edges of the original auxiliary
graph are not actually witness pairs. Indeed, we show that the size of a minimum vertex cover
can increase and decrease and does not constitute a lower bound on |OPT|. This is in contrast
to the hypergraph orientation problem of the previous two chapters.

If we only aim for consistency and robustness, we can circumvent this problem by
selecting a distinct matching partner h(e) ̸∈ V C for each e ∈ V C applying Kőnig-Egerváry’s
Theorem (duality of maximum matchings and minimum vertex covers in bipartite graphs, see
e.g. [BLW86]). By querying the elements of V C in a carefully chosen order until a prediction
error is observed for the first time, we can guarantee that {e, h(e)} is a witness set for each
e ∈ V C that is already queried. In the case of an error, this allows us to extend the previously
queried elements to disjoint witness pairs and guarantee 2-robustness. Then, we can switch to
an arbitrary (prediction-oblivious) 2-competitive algorithm for the remaining queries.

If we additionally aim for an error-sensitive guarantee, however, handling the dynamic
changes to the auxiliary graph, its minimum vertex cover V C and matching h requires
substantial additional work. In particular, querying the partner h(e) of each already queried
e ∈ V C in case of an error might be too expensive for the error-dependent guarantee. However,
if we do not query these partners, the changed instance still depends on them, and if we charge
against such a partner multiple times, we can lose the robustness. Our solution is based on an
elaborate charging/counting scheme and involves:

1. keeping track of matching partners of already queried elements of V C;

2. updating the matching and V C using an augmenting path method to bound the number
of elements that are charged against multiple times in relation to the prediction error;

3. and querying the partners of previously queried edges (and their new matching part-
ners) as soon as they become endpoints of a newly matched edge, in order to prevent
dependencies between the (only partially queried) witness sets of previously queried
edges.

The error-sensitive algorithm achieves a competitive ratio of 1 + 1
γ + 5kh

|OPT| , at the price
of a slightly increased robustness of γ + 1 instead of γ.

5.4 Prediction Mandatory Edges and New Structural Results

In order to identify strengthened witness sets for the first framework phase, we need new
criteria to identify witness sets and prediction mandatory edges. Recall that an edge e ∈ E is
prediction mandatory if every feasible query set contains e under the assumption that we = we

for all e ∈ E. Note that in the context of adaptive algorithms, it might happen that an edge
is not prediction mandatory for the initial instance but might become prediction mandatory

123

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

e1e2

e3 e4

Ie1

Ie2

Ie3

Ie4

FIGURE 5.7: Example instance consisting of a simple cycle with uncertainty intervals
and prediction weights as indicated by the red crosses. For the initial instance, no edge is
prediction mandatory. After querying e1 to reveal the precise weight as indicated by the
green circle, e2 becomes prediction mandatory.

given the precise weights revealed by already executed queries. To be more precise, assume
that an algorithm already queried a subset Q of the edges. Then, there might be an edge that is
not mandatory under the assumption that we = we for all e ∈ E, but is mandatory given the
precise weights we of all e ∈ Q under the assumption that the predicted weights of the not yet
queried edges are correct, i.e., we = we for all e ∈ E \Q. Thus, there is a difference between
being prediction mandatory for the initially given instance and being prediction mandatory for
the current instance after querying a subset Q ⊆ E.

See Figure 5.7 for an example consisting of a single cycle with four edges e1, . . . , e4. In
the example, no edge from {e2, e3, e4} is initially prediction mandatory as querying just e1
would prove e1 to be maximal on cycle if the predicted weight w1 was correct. However,
after querying e1 and revealing the precise weight of e1, the edge e2 becomes predictions
mandatory: Given the precise weight of e1 and assuming that the predicted weights of e2, e3
and e4 are correct, it is not possible to prove that the weight of e2 is larger than we3 without
querying e2. Thus, e2 became prediction mandatory .

If not stated otherwise, we use the term prediction mandatory in reference to being
prediction mandatory for the current instance after executing all previous queries.

In this section, we derive criteria to identify prediction mandatory edges and connect the
existence of edges that are prediction mandatory but not mandatory for the precise weights to
the hop distance error. The latter part will be important when analyzing algorithms with error
dependencies on the hop distance.

Furthermore, we give a characterization of instances without prediction mandatory edges.
We will exploit this characterization in the second phase of our basic framework.

5.4.1 New Criteria to Identify Witness Sets and (Prediction) Mandatory Edges

We introduce new structural properties to identify witness sets. Existing algorithms for MST
under uncertainty [Hof+08; MMS17] essentially follow the algorithms of Kruskal or Prim,
and only identify witness sets in the cycle or cut that is currently under consideration. As an
example for this, see the witness set algorithm (cf. Algorithm 14).

Let TL be the lower limit tree of a preprocessed instance of the minimum spanning tree
problem under explorable uncertainty with graph G = (V,E). Furthermore, let f1, . . . , fl
denote the edges in E \ TL indexed by non-decreasing lower limit Lfi . Lemma 5.2.10
shows how to identify a witness set on the cycle closed by fi+1 after an MST for graph
Gi = (V, TL ∪ {f1, . . . , fi}) has already been determined. Known algorithms for MST under
uncertainty build on this by iteratively resolving cycles closed by adding the edges f1, . . . , fl
one after the other (and analogously for cut-based algorithms). We design algorithms that
query edges with a less local strategy; this requires to identify witness sets involving edges
fi+1 without first verifying an MST for Gi. The following two lemmas provide new structural
insights that are fundamental for our algorithms.

124

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

Lemma 5.4.1. Given a preprocessed instance for the MST problem under explorable uncer-
tainty with graph G = (V,E), lower limit tree TL, and the edges {f1, . . . , fl} ⊆ E \ TL

indexed by non-decreasing lower limit. For all i ∈ {1, . . . , l}, let Ci denote the cycle in
TL ∪ {fi}. If fi has a non-trivial uncertainty interval and there exists an li ∈ Ci \ {fi} with
Ili ∩ Ifi ̸= ∅ such that li ̸∈ Cj for all j < i, then {li, fi} is a witness set. Furthermore, if
wli ∈ Ifi , then fi is mandatory.

Proof. Consider the set of edges Xi in the cut of G defined by the two connected components
of TL \ {li}. By assumption of the lemma, li, fi ∈ Xi. However, fj ̸∈ Xi for all j < i, as
otherwise li ∈ Cj would hold for an fj ∈ Xi with j < i, which contradicts the assumption.

Let Ei = TL ∪ {f1, . . . , fi}. Then, we can observe Xi ∩ Ei = {fi, li}. Let Q be any
feasible query set. By Lemma 5.2.9, Qi−1 = Ei−1 ∩ Q verifies an MST Ti−1 for Gi−1.
Consider the unique cycle C in Ti−1 ∪ {fi}. By Lemma 5.2.10, fi has the largest upper limit
in C after querying Qi−1 \ {li}. Since fi ∈ Xi, fi ∈ C and C is a cycle, there must be
another edge in Xi \ {fi} that is part of C. We already observed Xi ∩ Ei = {li, fi}, so we
have li ∈ C. Lemma 5.2.10 implies that {fi, li} is a witness set. If wli ∈ Ifi , then fi must be
queried to identify the maximal edge in C, so it follows that fi mandatory.

Although phrased based on cycles, the Lemma 5.4.1 actually gives us a criteria to identify
witness sets and mandatory edges based on cuts (cf. the cut Xi in the proof). We continue
with a similar lemma based on cycles. To prove this second lemma, we require the following
additional auxiliary lemma.

Lemma 5.4.2. Given a preprocessed instance for the MST problem under explorable uncer-
tainty with graph G = (V,E) and lower limit tree TL. Let Q be a feasible query set that
verifies an MST T ∗. Consider any path P ⊆ TL between two endpoints a and b, and let e ∈ P
be the edge with the largest upper limit in P (before querying Q). If e ̸∈ Q, then the unique
path P̂ ⊆ T ∗ from a to b is such that e ∈ P̂ and e has the largest upper limit in P̂ after Q has
been queried.

Proof. For each i ∈ {0, . . . , l} let T ∗
i be the MST for Gi as verified by Qi = Q ∩ Ei and let

Cî be the unique cycle in T ∗
i−1 ∪ {fi}. Then T ∗

i = T ∗
i−1 ∪ {fi} \ {hi} holds where hi is an

edge of maximum precise weight in Cî.
Let e be the edge of the lemma. Assume e ̸∈ Q. We claim that there cannot be any Cî with

e ∈ Cî such that Qi verifies that an edge e′ ∈ Cî with Ue′ ≤ Ue is maximal in Cî. Assume
otherwise. If e′ ̸= e, Qi would need to verify that we ≤ we′ holds. Since Ue′ ≤ Ue, this can
only be done by querying e, which is a contradiction to e ̸∈ Q. If e′ = e, then Ĉi still contains
edge fi and we have e ̸= fi by assumption of the lemma. Since TL = TU , fi has a larger
lower limit than e. To verify that e is maximal in Ĉi, Qi needs to prove we ≥ wfi > Lfi .
This can only be done by querying e, which is a contradiction to e ̸∈ Q.

To finish the proof of the lemma, we show via induction on i ∈ {0, . . . , l} that each T ∗
i

contains a path P ∗
i from a to b with e ∈ P ∗

i such that e has the largest upper limit in P ∗
i after

Qi has been queried.
Base case i = 0: Since G0 = (E, TL) is a spanning tree, T ∗

0 = TL follows. Therefore
P ∗
0 = P is part of TL and by assumption e ∈ P has the largest upper limit in P ∗

0 .
Inductive step: By induction hypothesis, there is a path P ∗

i from a to b in T ∗
i with e ∈ P ∗

i

such that e has the largest upper limit in P ∗
i after querying Qi. Consider cycle Ĉi+1. If an

edge e′ ∈ Ĉi+1 \ P ∗
i is maximal in Ĉi+1, then T ∗

i+1 = T ∗
i ∪ {fi+1} \ {e′} contains path P ∗

i .
Since e by assumption is not queried, e still has the largest upper limit on P ∗

i = P ∗
i+1 after

querying Qi+1 and the statement follows.
Assume some e′ ∈ P ∗

i ∩ Ĉi+1 is maximal in Ĉi+1, then Ue′ ≤ Ue follows by induction
hypothesis since e has the largest upper limit in P ∗

i . We already observed that Ĉi+1 then

125

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

cannot contain e, as otherwise e would have been queried to verify that e′ has maximum
precise weight in Ĉi+1. Consider P ′ = Ĉi+1 \ P ∗

i . Since e′ ∈ P ∗
i is maximal in Ĉi+1,

we can observe that P ′ ⊆ T ∗
i+1 holds. It follows that path P ∗

i+1 = P ′ ∪ (P ∗
i \ Ĉi+1) with

e ∈ P ∗
i+1 is part of T ∗

i+1. As e is not queried, it still has a larger upper limit than all edges
in P ∗

i . Additionally, we can observe that after querying Qi+1 no u ∈ P ′ can have an upper
limit Uu > Ue′ . If such an u would exist, querying Qi+1 would not verify that e′ is maximal
on Ĉi+1, which contradicts the assumption. Using Ue ≥ Ue′ , we can conclude that e has the
largest upper limit on P ∗

i+1 and the statement follows.

Using this auxiliary lemma, we are ready to prove the next criterion to identify witness
sets and (prediction) mandatory edges.

Lemma 5.4.3. Given a preprocessed instance for the MST problem under explorable uncer-
tainty with graph G = (V,E), lower limit tree TL, and the edges {f1, . . . , fl} ⊆ E \ TL

indexed by non-decreasing lower limit. For all i ∈ {1, . . . , l}, let Ci denote the cycle in
TL ∪ {fi}. Consider cycle Ci with i ∈ {1, . . . , l}. If an edge li ∈ Ci \ {fi} has a non-trivial
uncertainty interval such that Ili ∩ Ifi ̸= ∅ and li has the largest upper limit in Ci \ {fi}, then
{fi, li} is a witness set. Furthermore, if wfi ∈ Ili , then li is mandatory.

Proof. To prove the lemma, we have to show that each feasible query set contains at least
one element of {fi, li}. Let Q be an arbitrary feasible query set. By Lemma 5.2.9, Qi−1 :=
Q∩Ei−1 is a feasible query set for Gi−1 = (V,Ei−1) with Ei−1 = TL ∪ {f1, . . . , fi−1} and
verifies some MST Ti−1 for Gi−1. We show that li ̸∈ Qi−1 implies either li ∈ Q or fi ∈ Q.

Assume li ̸∈ Qi−1 and let C be the unique cycle in Ti−1 ∪ {fi}. Since TL = TU , edge
fi has the largest upper limit in C after querying Qi−1. While we only assume TL = TU for
the initially given instance, Lemma 5.2.10 implies that fi still has the largest upper limit in C
after querying Qi−1.

If we show that li ̸∈ Qi−1 implies li ∈ C, we can apply Lemma 5.2.10 to derive that
{fi, li} is a witness set for graph Gi, and thus either fi ∈ Qi ⊆ Q or li ∈ Qi ⊆ Q. For the
remainder of the proof we show that li ̸∈ Qi−1 implies li ∈ C. Let a and b be the endpoints
of fi, then the path P = Ci \ {fi} from a to b is part of TL and li has the largest upper limit
in P by assumption. Using li ̸∈ Qi−1 we can apply the auxiliary Lemma 5.4.2 to conclude
that there must be a path P̂ from a to b in Ti−1 such that li has the largest upper limit on P̂
after querying Qi−1. Therefore, C = P̂ ∪ {fi} and it follows li ∈ C.

If wfi ∈ Ili and li ̸∈ Qi−1, then li must be queried to identify the maximal edge on C, so
li is mandatory.

5.4.2 Prediction Mandatory Free Instances

We say an instance of the MST problem under explorable uncertainty with predictions is
prediction mandatory free if it contains no prediction mandatory edges. A key part of
our algorithms (the entire first framework phase) is to transform instances into prediction
mandatory free instances while maintaining a competitive ratio that allows us to achieve the
optimal consistency and robustness tradeoff overall. In order to do so, we rely on the following
characterization of prediction mandatory free instances (cf. Figure 5.8 for an illustration).

Lemma 5.4.4. Given a preprocessed instance of the MST problem under explorable uncer-
tainty with graph G = (V,E), lower limit tree TL, uncertainty intervals Ie and predicted
weights we ∈ Ie for all e ∈ E. Let f1, . . . , fl denote the edges in E \ TL index by non-
decreasing lower limit and let Ci denote the unique cycle in TL ∪ {fi}. The instance is
prediction mandatory free if and only if wfi ≥ Ue and we ≤ Lfi holds for each e ∈ Ci \ {fi}
and each cycle Ci with i ∈ {1, . . . , l}.

126

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

Ifi
Ili

..
.

FIGURE 5.8: Intervals in a prediction mandatory free cycle, where fi is the only edge on the
cycle outside of the lower limit tree TL. Predictions are indicated as red crosses.

Proof. For the first direction, assume wfi ≥ Ue and we ≤ Lfi holds for each e ∈ Ci \ {fi}
and each cycle Ci with i ∈ {1, . . . , l}. Then each fi ∈ E\TL is predicted to be maximal on Ci

and each e ∈ TL is predicted to be minimal in Xe, the cut between the components of TL \{e}.
Assuming the predictions are correct, we observe that each vertex cover of the bipartite graph
Ḡ is a feasible query set [EH14], where Ḡ = (V̄ , Ē) with V̄ = {e ∈ E | Ie is non-trivial}
and Ē = {{fi, e} ⊆ V̄ | i ∈ {1, . . . , l}, e ∈ Ci \ {fi} and Ie ∩ Ifi ̸= ∅}. Since both
Q1 := TL and Q2 := E \ TL are vertex covers for Ḡ, Q1 and Q2 are both feasible query sets
under the assumption that the predictions are correct. This implies that no element is part of
every feasible solution because Q1 ∩Q2 = ∅. We can conclude that no element is prediction
mandatory and the instance is prediction mandatory free.

Next, we show that instance G being prediction mandatory free implies that wfi ≥ Ue

and we ≤ Lfi holds for each e ∈ Ci \ {fi} and each cycle Ci with i ∈ {1, . . . , l}; via
contraposition. Assume there is a cycle Ci such that wfi ∈ Ie or we ∈ Ifi for some
e ∈ Ci \ {e}. Let Ci be such a cycle with the smallest index.

If wfi ∈ Ie for some e ∈ Ci \ {e}, then also wfi ∈ Ili for the edge li with the largest
upper limit in Ci \ {fi}. This implication holds because the instance is preprocessed and we
have TL = TU . Under the assumption that the predictions are correct, Lemma 5.4.3 implies
that li is mandatory and, thus, prediction mandatory. This means that G is not prediction
mandatory free.

Assume we ∈ Ifi . We can observe that e ̸∈ Cj for each j < i. As the instance is
preprocessed and the edges in E \ TL are ordered by non-decreasing lower limit, we ∈ Ifi
and j < i would otherwise imply we ∈ Ifj . Since we assumed that Ci is the first cycle with
this property, e ∈ Cj leads to a contradiction. Under the assumption that the predictions are
true, Lemma 5.4.1 implies that fi is mandatory and, thus, prediction mandatory. It follows
that G is not prediction mandatory free.

Using this characterization of prediction mandatory free instances, we can observe that,
once an instance is prediction mandatory free, it remains so even if we query further elements,
as long as we maintain unique TL = TU , i.e., keep the instance preprocessed. The following
lemma formalizes this observation.

Lemma 5.4.5. Let G be a preprocessed and prediction mandatory free instance of the MST
problem under explorable uncertainty with predictions and let G′ be an instance with unique
T ′
L = T ′

U that is obtained from G by querying a set of edges Q, where T ′
L and T ′

U are the
lower and upper limit trees of G′. Then, G′ is prediction mandatory free.

Proof. Let G = (V,E) and G′ = (V ′, E′) as well as TL = TU and T ′
L = T ′

U be as described
in the lemma. We show that G being prediction mandatory free implies that G′ is prediction
mandatory free via proof by contradiction. To that end, assume that G′ is not prediction
mandatory free.

Let T ′
L be the lower limit tree of G′, let f ′

1, . . . , f
′
l′ be the (non-trivial) edges in E′ \ T ′

L

ordered by non-decreasing lower limit, and let C ′
i be the unique cycle in T ′

L ∪ {f ′
i}. By

assumption, T ′
L = T ′

U holds and T ′
L = T ′

U is unique. We can w.l.o.g. ignore trivial edges
in E′ \ T ′

L as those are maximal in a cycle and can be deleted and we can w.l.o.g. ignore

127

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

trivial edges in T ′
L as those can be contracted. Since G′ is not prediction mandatory free, there

must be some C ′
i such that either we ∈ If ′

i
or wf ′

i
∈ Ie for some non-trivial e ∈ C ′

i \ {f ′
i}

(cf. Lemma 5.4.4).
Assume e ̸∈ TL. As e is part of T ′

L = T ′
U , Lemma 5.2.8 implies that e must have been

queried and therefore is trivial, which is a contradiction. Thus, assume e ∈ TL. We distinguish
between the two cases we ∈ If ′

i
and wf ′

i
∈ Ie and separately show that both cases lead to a

contradiction.
First, consider the case we ∈ If ′

i
. As G is prediction mandatory free, the assumption

implies e ̸∈ Cf ′
i

and fi′ ̸∈ Xe, where Cf ′
i

is the cycle in TL ∪ {f ′
i} and Xe is the cut between

the two components of TL \ {e} in G. Note that f ′
i ̸∈ TL must hold by Lemma 5.2.8 because

f ′
i is not in T ′

L and is non-trivial in both G and G′. Thus, TL ∪ {f ′
i} indeed contains a cycle

Cf ′
i
.
Since C ′

i is a cycle containing e, it must contain a second edge f from the cut Xe.
This edge f closes a cycle Cf in TL ∪ {f} with e ∈ Cf . As f ∈ C ′

i \ {f ′
i} ⊆ T ′

L but
f ̸∈ TL, Lemma 5.2.8 implies that f was non-trivial in instance G but became trivial in G′,
i.e., was queried. By Lemma 5.4.4, the instance G being prediction mandatory free implies
we ̸∈ If where If denotes the uncertainty interval of f before querying it. The fact that
we ∈ If ′

i
but we ̸∈ If implies Lf ′

i
< Lf . So even before being queried, f had a larger lower

limit than f ′
i . By querying f , its lower limit can only increase. Thus, f has a larger lower

limit in C ′
i than f ′

i . This is a contradiction to T ′
L being the lower limit tree of the preprocessed

instance G′.
Next, consider the case with wf ′

i
∈ Ie. Remember that f ′

i is non-trivial and f ′
i ̸∈ T ′

L = T ′
U .

According to Lemma 5.2.8, this implies f ′
i ̸∈ TL = TU . Let Cf ′

i
be the cycle in TL ∪ {f ′

i}.
Since G is prediction mandatory free, we have wf ′

i
̸∈ Ie′ for each e′ ∈ Cf ′

i
\ {f ′

i}, which
implies Ue > Ue′ . This means that the largest upper limit on the path between the two
endpoints of f ′

i in T ′
U = T ′

L is strictly larger than the largest upper limit on the path between
the two endpoints of f ′

i in TU = TL. We argue that this cannot happen , which leads to
contradiction to e ∈ TL and wf ′

i
∈ Ie.

Let P be the path between the endpoints a and b of f ′
i in TU and let P ′ be the path between

a and b in T ′
U . Define UP to be the largest upper limit on P . Observe that the upper limit

of each edge can only decrease from TU to T ′
U since querying edges only decreases their

upper limits. So each e′ ∈ P ′ ∩ P cannot have a larger upper limit than UP . It remains to
argue that the upper limit of each e′ ∈ P ′ \ P cannot be larger than UP . Consider the set S
of maximal subpaths S ⊆ P ′ such that only the endpoint vertices of S are also on path P .
Each e′ ∈ P ′ \ P is part of such a subpath S. Let S be an arbitrary element of S that only
contains edges of P ′ \ P , then there is a cycle C ⊆ S ∪ P with S ⊆ C. Assume e′ ∈ S has a
strictly larger upper limit than UP , then an element of S has the unique largest upper limit on
C. It follows that subpath S cannot be part of any upper limit tree in the instance G′. This in
turn means that path P ′ cannot be part of any upper limit tree of G′, a contradiction to the
assumption that P ′ is a path in T ′

U .

5.4.3 Relation Between Prediction Mandatory Edges and The Hop Distance

We establish a relation between the set EM ⊆ E of mandatory edges, the set EP ⊆ E of
prediction mandatory edges, and the hop distance kh.

Lemma 5.4.6. Consider an instance of the MST problem under explorable uncertainty with
graph G = (V,E), uncertainty intervals Ie and with predicted weights we ∈ Ie for all e ∈ E.
Let EM ⊆ E denote the set of mandatory edges and let EP ⊆ E denote the set of prediction
mandatory edges. Each e ∈ EM∆EP satisfies k−(e) ≥ 1. Consequently, kh ≥ |EM∆EP |.

128

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

Note that the following proof is essentially an adjusted variant of the proof of Theo-
rem 4.2.5 for the hypergraph orientation problem.

Proof. Consider an instance G = (V,E) with uncertainty intervals Ie = (Le, Ue), precise
weights we and predicted weights we for all e ∈ E. Let EP and EM be the mandatory queries
with respect to the predicted and precise weights, respectively. We claim that, for every interval
Ie of an edge e ∈ EP∆EM , there is an interval Ig of an edge g that lies on a cycle with e
such that at least one of the following inequalities holds wg ≤ Le < wg, wg < Ue ≤ wg,
wg ≤ Le < wg or wg < Ue ≤ wg. This then implies k−(e) ≥ 1 for all e ∈ EM∆EP and,
thus, the lemma.

We continue by proving the claim. Consider an edge e ∈ EP \EM . (The argumentation
for edges in EM \EP is symmetric, with the roles of w and w exchanged.) As e is not in EM ,
replacing all intervals Ig for g ∈ E \ {e} by their precise weights yields an instance that is
solved. This means that for edge e one of the following cases applies:

(a) e is known to be in the MST. Then there is a cut Xe containing edge e (namely, the cut
between the two vertex sets obtained from the MST by removing the edge e) such that
e is known to be a minimum weight edge in the cut, i.e., every other edge g in the cut
satisfies wg ≥ Ue.

(b) e is known not to be in the MST. Then there is a cycle Ce in G (namely, the cycle that
is closed when e is added to the MST) such that e is a maximum weight edge in Ce, i.e.,
every other edge g in the cycle satisfies wg ≤ Le.

As e is in EP , replacing all intervals Ig for g ∈ E \ {e} by their predicted weights yields an
instance Π that is not solved. Let T ′ be the minimum spanning tree of G′ = (V,E \{e}) for Π.
Let C ′ be the cycle closed in T ′ by adding e, and let f be an edge with the largest predicted
weight in C ′ \ {e}. Then there are only two possibilities for the minimum spanning tree of G
for Π: Either T ′ is also a minimum spanning tree of G (if we ≥ wf), or the minimum spanning
tree is T ′ ∪ {e} \ {f}. As the instance by assumption is not solved, it must be the case that we
cannot determine whether e is in the minimum spanning tree or not without querying e. If e
satisfied case (a) with cut Xe above, then there must be an edge g in Xe \ {e} with wg < Ue,
because otherwise e would also have to be in the MST of G for Π, a contradiction. Thus,
wg < Ue ≤ wg. If e satisfied case (b) with cycle Ce above, then there must be an edge g in
Ce \ {e} with wg > Le, because otherwise e would also be excluded from the MST of G for
Π, a contradiction. Thus, wg ≤ Le < wg. In conclusion k−(e) ≥ 1, which establishes claim
and lemma.

The proof of the lemma states that e ∈ EP∆EM implies k−(e) ≥ 1. We remark that for
this implication to hold it is not important that e ∈ EP∆EM holds for the set EP of edges
that are prediction mandatory for the initially given instance. If e ∈ EP∆EM holds at some
point during the execution of an adaptive query algorithm for the set of edges EP that are
prediction mandatory for the current instance at that point of the execution, then k−(e) ≥ 1.

5.5 Making Instances Prediction Mandatory Free

In this section, we consider the implementation of the first framework phase for the MST
problem under explorable uncertainty with predictions. Remember that the first phase consid-
ers problem instances that are not prediction mandatory free and queries sets of edges with
strong local guarantees until the instance becomes prediction mandatory free. The goal is to
transform the instance into a prediction mandatory free one while still being in range to match
the consistency and robustness tradeoff lower bound (cf. Theorem 5.2.1) with a linear error
dependency on kh. Formally, we will give an algorithm that achieves the following theorem.

129

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

Theorem 5.5.1. For every integer γ ≥ 2. Given an instance of the MST problem under
explorable uncertainty with predictions, there is an algorithm that queries a set of edges
ALG such that the problem instance becomes prediction mandatory free after querying
ALG. Furthermore, the algorithm satisfies |ALG| ≤ min{(1 + 1

γ) · (|(ALG∪D)∩OPT|+
k+(ALG) + k−(ALG)), γ · |(ALG ∪D) ∩OPT|+ γ − 2} for an optimal query set OPT
of the complete instance and a set D ⊆ E \ALG of unqueried edges that do not occur in the
remaining instance after executing the algorithm as they can w.l.o.g. be deleted or contracted
after querying ALG.

The set D of the theorem are edges that, even without being queried by the algorithm, are
proven to be maximal in a cycle or minimal in a cut. Thus, they can be deleted or contracted
w.l.o.g. and do not exist in the instance remaining after executing the algorithm anymore.
This is an important property as it means that the remaining instance is independent of D
and ALG (as all elements of ALG are already queried). Since the theorem compares |ALG|
with |(ALG ∪ D) ∩ OPT| instead of just |OPT|, this will allow us to combine the given
guarantee of the theorem with the guarantees of dedicated algorithms for prediction mandatory
free instances. We will do so in Sections 5.6 and 5.7. However, we have to be careful with
the additive term γ − 2, but we will see that we can charge this term against the improved
robustness of our algorithms for prediction mandatory free instances.

For the remainder of this section, we design and analyze an algorithm that satisfies Theo-
rem 5.5.1.

5.5.1 Algorithm and Overview of the Algorithmic Ideas

We present Algorithm 15 which transforms arbitrary instances into prediction mandatory free
instances while maintaining the guarantees of Theorem 5.5.1. Within the algorithm, Xl for an
l ∈ TL refers to the set of edges in the cut between the two connected components of TL \ {l}.
Furthermore, as usual, Ci refers to the cycle in TL ∪ {fi}.

We start by giving a summary of the ideas behind the algorithm before we move on to the
formal analysis.

In each iteration the algorithm starts by querying edges that are prediction mandatory for
the current instance. The set of prediction mandatory elements can be computed in polynomial
time as shown in [EH14]. We use their algorithm as a blackbox to compute such edges.

The algorithm sequentially queries such edges until either γ − 2 prediction mandatory
edges have been queried or no more exist (cf. Line 1). After each query, the algorithm ensures
unique TL = TU by using Lemma 5.2.6. Note that the set of prediction mandatory elements
with respect to the current instance can change when elements are queried, and therefore we
query the elements sequentially. By Lemma 5.4.6, each of the at most γ − 2 elements is either
mandatory or contributes one to the hop distance. This means that such queries will never
violate the consistency and error-dependent part of the desired guarantees, i.e., the first term
of the minimum in Theorem 5.5.1. They might however violate the γ-robustness.

In order to still guarantee robustness and in line with the basic framework described
in Section 5.3, the algorithm afterwards tries to identify a strengthened witness set, i.e., a set
of three edges such that every feasible solution must query at least two of them. The algorithm
finds such sets under the assumption that the predictions are correct and queries them in a
careful order such that it can decide after two queries whether the selected edges are indeed
a strengthened witness set, independent of whether the predictions of not yet queried edges
are correct or not. If the edges are indeed a strengthened witness set, the algorithm queries
also the third edge, which guarantees that the γ + 1 queries of the iteration locally achieve the
desired guarantee. Otherwise, we show that the two already queried edges form a witness set
and that we can charge the missing third query against a distinct error.

130

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

Algorithm 15: Algorithm to make instances prediction mandatory free
Input: Uncertainty graph G = (V,E) and predictions we for each e ∈ E

1 Ensure unique TL = TU . Sequentially query prediction mandatory elements (while
ensuring unique TL = TU) until either γ − 2 prediction mandatory elements are
queried or the instance is prediction mandatory free;

2 Let TL be the lower limit tree and f1, . . . , fl be the (non-trivial) edges in E \ TL

ordered by non-decreasing lower limit;
3 foreach Ci with i = 1 to l do
4 if Ci is not prediction mandatory free then
5 Let li be an edge with largest upper limit in Ci \ {fi};
6 if wfi ∈ Ili and wli ∈ Ifi then Query {fi, li} ; // cf. Fig. 5.9(a)
7 else if wfi ∈ Ili then // cf. Fig. 5.9(b)
8 if ∃l′i ∈ Ci \ {fi, li} with Il′i ∩ Ifi ̸= ∅ then
9 l′i ← edge in Ci \ {fi, li} with the largest upper limit;

10 Query {fi, li}, query l′i only if wfi ∈ Ili and wli ̸∈ Ifj for all j with
li ∈ Cj ;

11 else Query li, query fi only if wli ∈ Ifi ;

12 else if wl′i
∈ Ifi for some l′i ∈ Ci then // cf. Fig. 5.9(c)

13 l′i ← edge with the largest upper limit in {l ∈ Ci \ {fi} | wl ∈ Ifi};
14 if ∃fj ∈ Xl′i

\ {fi, l′i} with Ifj ∩ Il′i ̸= ∅ then
15 fj ← edge in Xl′i

\ {fi, l′i} with the smallest lower limit;
16 Query {fi, l′i}, query fj only if wl′i

∈ Ifj and wfi ̸∈ Ie for all
e ∈ Ci \ {fi};

17 else Query fi, query l′i only if wfi ∈ Il′i ;

18 Restart at Line 1;

In order to identify such edges, the algorithm considers the lower limit tree TL and the
edges f1, . . . , fl in E \TL ordered by non-decreasing lower limit. As before, we denote by Ci

the cycle in TL ∪ {fi}. The algorithm iterates through i ∈ {1, . . . , l} until the current cycle
Ci either has we ∈ Ifi or wfi ∈ Ie for some e ∈ Ci \ {fi}. We call such cycles not prediction
mandatory free and all other cycles prediction mandatory free. Note that if the current instance
is still not prediction mandatory free, it must contain at least one not prediction mandatory
free cycle by Lemma 5.4.4. Thus, the algorithm must find such a cycle in every iteration
except the final one.

If it finds such a cycle Ci, closed by fi, it queries edges on the cycle and possibly future
cycles as follows. Let li denote the edge in Ci \ {fi} with largest upper limit. As Ci is not
prediction mandatory free, the configuration of li and fi and their predicted weights must be
one of those illustrated in Fig. 5.9(a)–(c). In each case, the algorithm queries one to three
edges while ensuring 1.5-consistency and 2-robustness locally for those queries, as well as a
more refined guarantee depending on prediction errors that will be needed when the algorithm
is used as part of our error-sensitive algorithm in Section 5.7. Line 6 handles the case of
Fig. 5.9(a), Lines 7–11 the case of Fig. 5.9(b), and Lines 12–17 the case of Fig. 5.9(c). We
now briefly sketch the analysis of these three cases and defer the formal statements and proof
details to Lemmas 5.5.2, 5.5.3 and 5.5.4 in the consequent section.

In Line 6, we can show that {li, fi} is a witness set (giving local 2-robustness) and either
|OPT ∩ {li, fi}| = 2 (giving local 1-consistency) or k+({li, fi}) ≥ 1. For the queries made
in Line 10, we can show that if the algorithm queries three edges, OPT must query at least

131

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

Ifi

Ili

..
.(a)

Ifi

Ili

..
.(b)

Ifi

Ili

Il′i

..
.(c)

FIGURE 5.9: with predictions indicated as red crosses. (a) Intervals in a prediction manda-
tory free cycle. (b)–(d) Intervals in a cycle that is not prediction mandatory free.

two of them (ensuring 1.5-consistency and 1.5-robustness). If the algorithm queries only
the two edges fi and li, they form a witness set (2-robustness) and k+({fi, li}) ≥ 1. For
Line 11, we show that if the algorithm queries only li, then {fi, li} is a witness set and fi can
be deleted from the instance without querying it (giving 1-consistency and 1-robustness). If
the algorithm queries fi and li, they form a witness set and k+({fi, li}) ≥ 1. The guarantees
we can prove for queries made in Lines 12–17 are analogous, except that the edge l′i can be
contracted instead of deleted if the algorithm queries only fi in Line 17. After processing
Ci in this way, the algorithm restarts. The algorithm terminates when all Ci are prediction
mandatory free, which holds at the latest when all edges in E have been queried.

We sketch the proof of Theorem 5.5.1. Elements queried in Line 1 to ensure unique
TL = TU are mandatory by Lemma 5.2.6 and can be ignored in the analysis. Each iteration
of the algorithm queries a set Pi of up to γ − 2 prediction mandatory edges e in Line 1,
each of which is mandatory or satisfies k−(e) ≥ 1 by Lemma 5.4.6, showing |Pi| ≤ |P ∩
OPT| + k−(Pi). In the last iteration, these are the only queries, and they contribute the
additive term γ − 2 to the bound. In each iteration prior to the last, a set Wi of at most
3 queries is made in Line 6, 10, 11, 16 or 17. These cases are covered by the following
possibilities: (1) The set Wi consists of three edges, and OPT contains at least two of them,
giving |Wi| ≤ 1.5 · |OPT ∩Wi| and |Wi| ≤ |OPT ∩Wi| + 1; (2) The set Wi consists of
two edges, and either OPT contains both or OPT contains one of them and k+(Wi) ≥ 1,
giving |Wi| ≤ 2 · |OPT∩Wi| and |Wi| ≤ |OPT∩Wi|+ k+(Wi); (3) The set Wi contains a
single edge e and we can delete or contract another edge g(e) such that {e, g(e)} is a witness
set, giving |Wi| ≤ |OPT ∩ {e, g(e)}|. Combining these bounds over all iterations yields
Theorem 5.5.1, where the union of the edges g(e) constitutes the set D.

To conclude we observe that all edges queried by Algorithm 15 can, w.l.o.g., be contracted
or deleted: Since all queried edges are trivial and we ensure unique TL = TU , we can observe
that each queried e ∈ TL = TU is minimal on a cut and can be contracted, and each queried
e ̸∈ TL = TU is maximal on a cycle and can be deleted. This allows us to treat the instance
after the execution of the algorithm independently of all previous queries, which will turn out
to be a useful property when combining the algorithm with dedicated algorithms for prediction
mandatory free instances in Sections 5.6 and 5.7.

5.5.2 Formal Analysis of the Algorithm

We continue by turning the ideas of the previous section into a formal analysis of the algorithm.
The main part of the analysis considers the three different configurations of not prediction
mandatory free cycles (cf. Figure 5.9) and proves the local guarantees of the queries that the
algorithm executes for the respective case. To this end, we prove the following three lemmas
stating that, in each iteration of Algorithm 15, the queries made in one excution of Lines 6–17
locally satisfy 1.5-consistency and 2-robustness. All lemmas consider a cycle Ci such that
all Cj with j < i are prediction mandatory free, li is the edge with the largest upper limit
in Ci \ {fi} and predictions are as indicated in Figure 5.9(a) (Lemma 5.5.2), Figure 5.9(b)
(Lemma 5.5.3), and Figure 5.9(c) (Lemma 5.5.4).

132

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

Recall the following notation: As usual, we use TL to refer to the lower limit tree of the
current instance and f1, . . . , fl to refer to the edges in E \TL ordered by non-decreasing lower
limits. By Gi = (V,Ei) we denote the subgraph with the edges Ei = TL ∪ {f1, . . . , fl} and
for a query set Q we use Qi to refer to the subset Q ∩ Ei.

Lemma 5.5.2. Let {fi, li} denote a pair of edges queried in Line 6 of Algorithm 15, then
{fi, li} is a witness set, and either both edges are mandatory or k+({fi, li}) ≥ 1.

Proof. By assumption, all Cj with j < i are prediction mandatory free. We claim that this
implies li ̸∈ Cj for all j < i. Assume, for the sake of contradiction, that there is a Cj with
j < i and li ∈ Cj . Then, TL = TU and j < i imply that fi and fj have larger upper and lower
limits than li and, since Lfi ≥ Lfj , it follows Ili ∩ Ifi ⊆ Ili ∩ Ifj . Thus, wli ∈ Ifi implies
wli ∈ Ifj , which contradicts cycle Cj being prediction mandatory free. This allows us to
apply Lemma 5.4.1 and conclude that {fi, li} is a witness set.

Consider any feasible query set Q for the current instance G, then Qi−1 verifies the MST
Ti−1 for graph Gi−1 and Q needs to identify the maximal edge on the unique cycle C in
Ti−1 ∪ {fi} since Qi has to be feasible for Gi by Lemma 5.2.9. Following the argumentation
of Lemma 5.4.1, we can observe li, fi ∈ C. Since we assume TL = TU , we can also observe
that fi has the largest upper limit in C after querying Qi−1. By Lemma 5.4.2, li has the largest
upper limit in C \ {fi} after querying Qi−1 \ {li}.

If wli ∈ Ifi , then fi is mandatory according to Lemma 5.4.1. Otherwise, wli ≤ Lfi < wli

and k+(li) ≥ 1. If wfi ∈ Ili , then li is mandatory according to Lemma 5.4.3. Otherwise,
wfi≥Uli>wfi and k+(fi) ≥ 1. In conclusion, either {fi, li} ⊆ Q for any feasible query set
Q or k+({fi, li}) ≥ 1.

Lemma 5.5.3. Let {fi, li, l′i} denote the edges of Line 10. If the algorithm queries all three
edges, then |{fi, li, l′i} ∩OPT| ≥ 2. Otherwise, k+({fi, li}) > 0 and |{fi, li} ∩OPT| ≥ 1.

Let {li, fi} denote the edges of Line 11. If the algorithm queries only li, then |{fi, li} ∩
OPT| ≥ 1 and fi can be deleted from the instance without querying it. Otherwise, k+({fi, li}) >
0 and |{fi, li} ∩OPT| ≥ 1.

Proof. By assumption, all Cj with j < i are prediction mandatory free. According to
Lemma 5.4.3, {fi, li} is a witness set.

Consider the first part of the lemma, i.e., the edges {fi, li, l′i} of Line 10. Assume first
that the algorithm queries all three edges. By Line 10, this means that wfi ∈ Ili and wli ̸∈ Ifj
for each j with li ∈ Cj . According to Lemma 5.4.3, wfi ∈ Ili implies that li is mandatory.
Consider the relaxed instance where li is already queried, then wli ̸∈ Ifj for each j with
li ∈ Cj implies that li is minimal in Xli (the cut between the two connected components of
TL \ {li}) and that the lower limit tree does not change by querying li. This implies that l′i is
the edge with the largest upper limit in Ci \ {fi} in the relaxed instance and, by Lemma 5.4.3,
{fi, l′i} is a witness set. Thus, |{fi, li, l′i} ∩OPT| ≥ 2.

Next, assume that the algorithm queries only {fi, li}. Then, either wfi ̸∈ Ili or wli ∈ Ifj
for some j with li ∈ Cj . Note that if wli ∈ Ifj holds for some j with li ∈ Cj , then, by
the ordering of the edges in E \ TL, the statement holds for some j ≤ i. If wfi ̸∈ Ili , then
wfi ≥ Uli > wfi and k+(fi) ≥ 1 follows. If wli ∈ Ifj , then wli ≤ Lfj < wli and k+(li) ≥ 1
follows. Note that wli ≤ Lfj holds for i = j because the if-statement in Line 6 failed and for
j < i it holds as the corresponding cycle Cj is prediction mandatory free by assumption. In
conclusion, if either wfi ̸∈ Ili or wli ∈ Ifj for some j with li ∈ Cj , then k+(fi, li) ≥ 1.

Consider the second part of the lemma, i.e., the elements {fi, li} of Line 11. Assume first
that the algorithm queries only li. Clearly, |{fi, li} ∩ OPT| ≥ 1 as {fi, li} is a witness set.
Consider the cycle Ci. As fi is not queried, it follows wli ̸∈ Ifi . Furthermore, by definition
of Line 11, it holds Il′i ∩ Ifi = ∅ for all l′i ∈ Ci \ {fi, li}. Thus, fi is proven to be uniquely

133

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

maximal on cycle Ci and, therefore, can be deleted from the instance. Next, assume that the
algorithm queries li and fi. Clearly, |{fi, li} ∩ OPT| ≥ 1 still holds. As fi is queried, we
have wli > Lfi ≥ wli and, therefore, k+({fi, li}) ≥ 1.

The next lemma can be shown using analogous arguments.

Lemma 5.5.4. Let {fi, l′i, fj} denote the edges of Line 16. If the algorithm queries all three
edges, then |{fi, l′i, fj} ∩OPT| ≥ 2. Otherwise, k+({fi, l′i}) > 0 and |{fi, l′i} ∩OPT| ≥ 1.

Let {l′i, fi} denote the edges of Line 17. If the algorithm queries only fi, then |{fi, l′i} ∩
OPT| ≥ 1 and l′i can be contracted from the instance without querying it. Otherwise,
k+({fi, l′i}) > 0 and |{fi, l′i} ∩OPT| ≥ 1.

Proof. By assumption, all Cj with j < i are prediction mandatory free. We claim that this
implies l′i ̸∈ Cj for all j < i. Assume, for the sake of contradiction, that there is a Cj with
j < i and l′i ∈ Cj . Then, TL = TU and j < i imply that fi and fj have larger upper and lower
limits than l′i and, since Lfi ≥ Lfj , it follows Il′i ∩ Ifi ⊆ Il′i ∩ Ifj . Thus, wl′i

∈ Ifi implies
wl′i
∈ Ifj , which contradicts Cj being prediction mandatory free. This allows us to apply

Lemma 5.4.1 to conclude that {fi, l′i} is a witness set.
Consider the first part of the lemma, i.e., the edges {fi, l′i, fj} of Line 16. Assume first that

the algorithm queries all three elements. By Line 16, this means that wl′i
∈ Ifi and wfi ̸∈ Ie

for each e ∈ Ci. According to Lemma 5.4.1, wl′i
∈ Ifi implies that fi is mandatory. Consider

the relaxed instance where fi is already queried, then wfi ̸∈ Ie for each e ∈ Ci implies that fi
is maximal in cycle Ci and that the lower limit tree does not change by querying fi. It follows
that fj is the edge with the smallest index (observe that j > i must hold by the argument at
the beginning of the proof) and l′i ∈ Cj in the relaxed instance and, by Lemma 5.4.1, {fj , l′i}
is a witness set. Thus, |{fi, l′i, fj} ∩OPT| ≥ 2.

Next, assume that the algorithm queries only {fi, l′i}. Then, either wl′i
̸∈ Ifi or wfi ∈ Ie

for some e ∈ Ci. If wl′i
̸∈ Ifi , then wl′i

≤ Lfi < wl′i
and k+(l′i) ≥ 1 follows. If wfi ∈ Ie,

then wfi ≥ Ue > wfi and k+(fi) ≥ 1 follows. Therefore, wl′i
̸∈ Ifi or wfi ∈ Ie for some

e ∈ Ci implies k+({fi, l′i}) ≥ 1.
Consider the second part of the lemma, i.e., the elements {fi, l′i} of Line 17. Assume

first that the algorithm queries only fi. Clearly, |{fi, l′i} ∩OPT| ≥ 1 as {fi, l′i} is a witness
set. Consider the cut Xl′i

between the two connected components of TL \ {l′i}. As l′i is not
queried, it follows wfi ̸∈ Il′i . Furthermore, by definition of Line 17, it holds Ifj ∩ Il′i = ∅ for
all fj ∈ Xl′i

\ {fi, l′i}. Thus, l′i is proven to be uniquely minimal in cut Xl′i
and, therefore, can

be contracted from the instance. Next, assume that the algorithm queries fi and l′i. Clearly,
|{fi, l′i} ∩ OPT| ≥ 1 still holds. As l′i is queried, we have wfi < Ul′i

≤ wfi and, therefore,
k+({fi, l′i}) ≥ 1.

Using these three lemmas, we are finally ready to give a full proof of Theorem 5.5.1.

Proof of Theorem 5.5.1. Since Algorithm 15 only terminates if Line 4 determines each Ci

to be prediction mandatory free, the instance after executing the algorithm is prediction
mandatory free by definition and Lemma 5.4.4. All elements queried in Line 1 to ensure
unique TL = TU are mandatory by Lemma 5.2.6 and never worsen the performance guarantee.

During the course of the proof, we use iteration to refer to one execution of the algorithm
starting from the first line until it restarts or terminates. Since the last iteration does not query
in Lines 6, 10, 11, 16 and 17, the last iteration queries at most γ − 2 edges. All those edges
are prediction mandatory and they cause the additive part in the second term of the minimum.
In the following, we consider iterations i, that are not the last iteration. Each such iteration i
queries a set Pi of γ − 2 prediction mandatory elements in Line 1 and a set Wi in Line 6, 10,
11, 16 or 17. By Lemma 5.4.6, each e ∈ Pi is either mandatory or k−(e) ≥ 1.

134

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

Consider an arbitrary iteration i (that is not the last one). Then, |Pi| ≤ |OPT∩Pi|+k−(Pi)
holds by by the argument above.

Assume Wi was queried in Line 6, 10 or 16, then Lemmas 5.5.2 to 5.5.4 imply |Wi| ≤ 3
2 ·

(|Wi ∩OPT|+ k+(Wi)). Thus, |Wi∪Pi| ≤ (1+ 1
γ)·(|OPT∩(Wi∪Pi)|+k+(Wi)+k−(Pi)).

At the same time, the lemmas imply that either |Wi| = 2 and Wi is a witness set or |Wi| = 3
and each feasible query set must contain at last two members of Wi. In both cases we have
|Wi ∪ Pi| ≤ γ · |OPT ∩ (Wi ∪ Pi)|.

Putting it together, we get |Wi ∪ Pi| ≤ min{(1 + 1
γ) · (|OPT ∩ (Wi ∪ Pi)|+ k+(Wi) +

k−(Pi)), γ · |OPT ∩ (Wi ∪ Pi)|}. Let K1 denote the union of all sets Wi ∪ Pi that satisfy
the assumption and let J1 denote the index set of the corresponding sets. Note that the sets
Wi ∪ Pi for different indices i are pairwise disjoint as the algorithm never queries edges
multiple times. Thus, we get

|K1| =
∑︂
i∈J1
|Wi ∪ Pi|

≤
∑︂
i∈J1

min{(1 + 1

γ
)(|OPT ∩ (Wi ∪ Pi)|+ k+(Wi) + k−(Pi)), γ|OPT ∩ (Wi ∪ Pi)|}

≤ min{(1 + 1

γ
)(|OPT ∩ K1|+ k+(K1) + k−(K1)), γ|OPT ∩ K1|}.

Assume now that Wi was queried in Line 11 or 17. Let ei ∈ Wi denote the ele-
ment that is queried first, and let g(ei) denote the element that either is queried second
or deleted/contracted after the first query. Since each g(ei) is either queried or deleted/-
contracted, no such edge is considered more than once. Lemmas 5.5.3 and 5.5.4 imply
|Wi| ≤ (|(Wi ∪ {g(ei)}) ∩OPT|+ k+(Wi)) and |Wi| ≤ 2 · |(Wi ∪ {g(ei)}) ∩ OPT|.
Thus, |Wi ∪ Pi| ≤ (1 + 1

γ) · (|OPT ∩ (Wi ∪ {g(ei)} ∪ Pi)| + k+(Wi) + k−(Pi)) and
|Wi| ≤ γ · |(Wi ∪ {g(ei)} ∪ Pi) ∩ OPT|. Let K2 denote the union of all sets Wi ∪ Pi that
satisfy the assumption, let J2 denote the index set of the corresponding sets, and let G denote
the union of all corresponding {g(ei)}:

|K2|
=
∑︂

Wi∈J2
|Wi ∪ Pi|

≤
∑︂

Wi∈J2
min{|OPT ∩ (Wi ∪ {g(ei)} ∪ Pi)|+ k+(Wi ∪ Pi), γ|OPT ∩ (Wi ∪ {g(ei)} ∪ Pi)|}

≤ min{|OPT ∩ (K2 ∪ G)|+ k+(K2) + k−(K2), γ|OPT ∩ (K2 ∪ G)|}.

Let K3 denote the queries of the last iteration. Recall that D is the set of edges in E \ALG
that can be deleted/contracted by the algorithm before the final iteration. By definition, G ⊆ D.
Furthermore, note that |K3| ≤ γ − 2 and |K3| ≤ |OPT ∩ K3| + k−(K3). The latter holds
by Lemma 5.4.6 as the edges in K3 are prediction mandatory for the current instance when
they are queried.

Since K1, K2 ∪ G and K3 are pairwise disjoint, we can conclude

|ALG1| = |K1|+ |K2|+ |K3|

≤ min{(1 + 1

γ
) · (|(ALG ∪D)∩OPT|+ k+(ALG) + k−(ALG))

, γ · |(ALG ∪D)∩OPT|+ γ − 2}.

135

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

5.6 Optimal Consistency and Robustness Tradeoff

In this section, we design an algorithm that achieves the optimal tradeoff between consistency
and robustness, matching the lower bound of Theorem 5.2.1. To this end, we prove the
following theorem.

Theorem 5.6.1. For every integer γ ≥ 2, there exists a (1 + 1
γ)-consistent and γ-robust

algorithm for the MST problem under explorable uncertainty with predictions.

To show this result, we design an algorithm for prediction mandatory free instances
with unique TL = TU , which corresponds to the second framework phase as described
in Section 5.3. We run it after Algorithm 15, which obtains such special instances from
arbitrary instances with the query guarantee of Theorem 5.5.1. The combination of both
algorithms will achieve the optimal tradeoff.

Note that we only prove consistency and robustness for the algorithm of this section. We
extend the algorithm to also achieve an error-dependency in Section 5.7.

5.6.1 Optimal Tradeoff for Prediction Mandatory Free Instances

We give a 1-consistent and 2-robust algorithm for prediction mandatory instances. Note that
this tradeoff is optimal for such instances as it achieves optimality if the predictions are correct
and otherwise matches the adversarial lower bound of two (cf. Theorem 2.2.3).

Theorem 5.6.2. There exists a 1-consistent and 2-robust algorithm for preprocessed prediction
mandatory free instances of the MST problem under explorable uncertainty with predictions.

Consider a preprocessed prediction mandatory free instance with graph G and lower limit
tree TL. Recall the following notation: Let f1, . . . , fl again denote the edges in E \TL ordered
by non-decreasing lower limits and let Ci with i ∈ {1, . . . , l} denote the cycle in TL ∪ {fi}.
For an edge l ∈ TL, let Xl denote the set of edges in the cut between the two connected
components of TL \ {l}.

In a prediction mandatory free instance, each fi ∈ E \ TL is predicted to be maximal on
cycle Ci, and each l ∈ TL is predicted to be minimal in Xl. This is a direct consequence of
the characterization of such instances given in Lemma 5.4.4.

If these predictions are correct, then TL is an MST and the optimal query set is a minimum
vertex cover in a bipartite graph Ḡ = (V̄ , Ē) with V̄ = E (excluding trivial edges) and
Ē = {{fi, e} ⊆ V̄ | i ∈ {1, . . . , l}, e ∈ Ci \ {fi} and Ie ∩ Ifi ̸= ∅} [EH14; MMS17]. We
refer to Ḡ as the vertex cover instance. The fact that the (predicted) optimal query set is a
minimum vertex cover of the vertex cover instance was shown in [EH14], but we also discuss
later in this section why this is the case.

As a consequence of this fact, just querying a minimum vertex cover of the vertex cover
instance guarantees optimality if the predictions are correct and, thus, 1-consistency. Recall
that for the hypergraph orientation problem of the previous chapter, the size of such a minimum
vertex cover was also a lower bound on the size of the optimal query set independent of whether
the predictions are correct or not. This property essentially allowed us to non-adaptively query
the complete vertex cover and still guarantee 2-robustness. For the minimum spanning tree
problem however, this property does not hold. The reason for this is that if a query reveals that
an fi is not maximal on Ci or an l ∈ TL is not minimal in Xl, then the vertex cover instance
changes. Such a change can drastically increase and decrease the size of the minimum vertex
cover.

To see this, consider the example instance of Figure 5.10. The figure shows a prediction
mandatory free instance with TL = {l1, . . . , ln/2} and E \ TL = {f1, . . . , fn/2}. Given the
graph and uncertainty intervals of the figure, the corresponding vertex cover instance Ḡ is the

136

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

. . .

f1

f2

•
•
•

fn/2

l1 l2 l3 ln/2

•
•
•

•
•
•

If1
If2

If3

Ifn/2

Il1

Il2

Il3

Iln/2

FIGURE 5.10: Graph G = (V,E) (left) and uncertainty intervals of G (right). The black
edges (l1, . . . , ln/2) form the lower limit tree TL and the blue edges (f1, . . . , fn/2) are the
edges outside of TL. Circles illustrate precise weights and crosses illustrate the predicted
weights.

. . .

f1

f2

•
•
•

fn/2

l1 l2 l3 ln/2

l1

l2

l3

•
•
•

ln/2

fn/2

•
•
•

f3

f2

f1

FIGURE 5.11: Uncertainty graph G = (V,E) (left) and corresponding vertex cover instance
Ḡ (right). The black edges (l1, . . . , ln/2) form the lower limit tree TL.

complete bipartite graph with the partitions TL and E \ TL. Thus, both TL and E \ TL are
minimum vertex covers of size n/2. However, if the predictions are wrong and the precise
weights are as depicted in the figure, then querying only l1 and f1 solves the instance. This
show that the size of the initial minimum vertex cover is no lower bound on |OPT| and that
changes in the vertex cover instance can decrease the size of the minimum vertex cover.

The example of Figure 5.11 shows that the inverse is true as well, i.e., that changes in the
vertex cover instance can increase the size of the minimum vertex cover. The figure shows an
instance with graph G = (V,E) and the corresponding vertex cover instance Ḡ when using
the uncertainty intervals of the previous Figure 5.10. The instance is prediction mandatory
free and the minimum vertex cover of the vertex cover instance is {f1, l1}. However, for the
precise weights of Figure 5.10, querying {f1, l1} proves that f1 is part of the MST but l1 is
not. After querying {f1, l1}, the new lower limit tree is the path f1, ln/2, . . . , l3, l2, l1 and all
edges outside of the lower limit tree connect the endpoints of the path. The resulting graph has
the same form as the one in Figure 5.10 and the vertex cover instance is the complete bipartite
graph. So, the size of the new minimum vertex cover is (n/2)− 1 (as l1 and f1 have already
been queried), which shows that the size of the minimum vertex cover can increase.

These two examples illustrate that a 2-robust algorithm cannot afford to non-adaptively
query the complete vertex cover of the vertex cover instance, which is a major difference to
the algorithms for the hypergraph orientation problem of the previous chapter. Instead, the
algorithm has to be more adaptive.

Let V C denote a minimum cardinality vertex cover of the vertex cover instance. The
idea of our algorithm (cf. Algorithm 16) is to sequentially query each e ∈ V C and charge
for querying e by a distinct non-queried element h(e) such that {e, h(e)} is a witness set.
Querying exactly one element per distinct witness set implies optimality. To identify h(e) for
each element e ∈ V C, we use the fact that Kőnig-Egerváry’s Theorem (cf., e.g., [BLW86])

137

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

on the duality between minimum vertex covers and maximum matchings in bipartite graphs
implies that there is a matching h that maps each e ∈ V C to a distinct e′ ̸∈ V C. While
the sets {e, h(e)} with e ∈ V C in general are not witness sets, querying V C in a specific
order until the vertex cover instance changes (because of a prediction error) guarantees that
{e, h(e)} is a witness set for each already queried e. The algorithm queries in this order until
it detects a wrong prediction or solves the problem. If it does not find a prediction error,
then it just queries V C and, thus, is 1-consistent. Otherwise, it finds a wrong prediction and
therefore only has to guarantee 2-competitiveness. In that case, it queries the partner h(e) of
each already queried edge e. Since all those {e, h(e)} are witness sets, querying them never
worsens the competitive ratio below 2. Afterwards, the algorithm can just solve the remaining
instance by using a 2-competitive algorithm, e.g., the witness set algorithm [MMS17; Hof+08]
of Section 5.2.3.

The key part of this idea is to specify an order for querying V C that guarantees that
{e, h(e)} is a witness set for each e ∈ V C that is queried before a prediction error is detected.
The following lemma specifies this order and shows that it satisfies the property.

Lemma 5.6.3. Let l′1, . . . , l
′
k be the edges in V C ∩ TL ordered by non-increasing upper limit

and let d be such that the precise weight of each l′i with i < d is minimal in cut Xl′i
between

the components of TL \ {l′i}, then {l′i, h(l′i)} is a witness set for each i ≤ d. Let f ′
1, . . . , f

′
g be

the edges in V C \ TL ordered by non-decreasing lower limit and let b be such that the precise
weight of each f ′

i with i < b is maximal in the cycle Cf ′
i

of TL ∪ {f ′
i}, then {f ′

i , h(f
′
i)} is a

witness set for each i ≤ b.

Proof. We separately prove the first and second statement of the lemma.
Proof of the first statement. Consider an arbitrary l′i and h(l′i) with i ≤ d. By definition

of h, the edge h(l′i) is not part of the lower limit tree. Consider Ch(l′i)
, i.e., the cycle in

TL ∪ {h(l′i)}. We claim that Ch(l′i)
only contains h(l′i) and edges in {l′1, . . . , l′k} (and possibly

irrelevant edges with intervals that do not intersect Ih(l′i)). To see this, recall that l′i ∈ V C by
definition of h implies h(l′i) ̸∈ V C. For V C to be a vertex cover, each e ∈ Ch(l′i)

\ {h(l′i)}
must either be in V C or have an uncertainty interval that does not intersect h(l′i).

Consider the relaxed instance where the precise weight for each l′j with j < d and j ̸= i
is already known. By assumption each such l′j is minimal in its cut Xl′j

. Thus, we can w.l.o.g.
contract each such edge. This means that in the relaxed instance l′i has the largest upper limit
in Ch(l′i)

\ {h(l′i)}. According to Lemma 5.4.3, {l′i, h(l′i)} is a witness set.
Proof of the second statement. Consider an arbitrary f ′

i and h(f ′
i) with i ≤ b. By

definition of h, the edge h(f ′
i) is part of the lower limit tree. Let Xi be the cut between the

two components of TL \ {h(f ′
i)}, then we claim that Xi only contains h(f ′

i) and edges in
{f ′

1, . . . , f
′
g} (and possibly irrelevant edges with uncertainty intervals that do not intersect

Ih(f ′
i)

). To see this, assume an fj ∈ {f1, . . . , fl} with fj ̸∈ V C and Ifj ∩ Ih(f ′
i)
̸= ∅ was

part of Xi. Since fj ̸∈ V C, each edge in Cj \ {fj} must either be part of V C or have an
uncertainty interval that does not intersect Ih(f ′

i)
, as otherwise V C would not be a vertex

cover for the vertex cover instance. But if fj is in cut Xi, then Cj must contain h(f ′
i). By

definition, we have h(f ′
i) ̸∈ V C, which is a contradiction to V C being a vertex cover as

{fj , h(f ′
i)} would not be covered. We can conclude that Xi only contains h(f ′

i) and edges in
{f ′

1, . . . , f
′
g}.

Consider the relaxed instance where the precise weight for each f ′
j with j < b and j ̸= i

is already known. By assumption each such f ′
j is maximal in its cycle Cf ′

j
. Thus, we can

w.l.o.g. delete each such edge. This means that f ′
i has the smallest lower limit in Xi \ {h(f ′

i)}
in the relaxed instance, which allows us to apply Lemma 5.4.1 to conclude that {f ′

i , h(f
′
i)} is

a witness set.

Using this lemma, it is not hard to prove Theorem 5.6.2.

138

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

Algorithm 16: 1-consistent and 2-robust algorithm for prediction mandatory free
instances.

Input: Prediction mandatory free graph G = (V,E) with unique TL = TU .
1 Compute maximum matching h and minimum vertex cover V C for Ḡ;
2 Set W = ∅, and let f ′

1, . . . , f
′
g and l′1, . . . , l

′
k be as described in Lemma 5.6.3;

3 for e chosen sequentially from the ordered list f ′
1, . . . , f

′
g, l

′
1, . . . , l

′
k do

4 Query e and add h(e) to W ;
5 if k+(e) ̸= 0 then
6 Query set W solve the instance with a 2-competitive algorithm;

Proof of Theorem 5.6.2. We first show 1-consistency. Assume that all predictions are correct,
then V C is an optimal query set and k+(e) = 0 holds for all e ∈ E. It follows that Line 6
never executes queries and the algorithm queries exactly V C. This implies 1-consistency.

Next, we prove the 2-robustness. If the algorithm never queries in Line 6, then the
consistency analysis implies 1-robustness. Suppose Line 6 executes queries. Let Q1 denote
the set of edges that are queried before the queries of Line 6 and let Q2 = {h(e) | e ∈ Q1}.
Then Q2 corresponds to the set W as queried in Line 6. By Lemma 5.6.3, each {e, h(e)} with
e ∈ Q1 is a witness set. Further, the sets {e, h(e)} are pairwise disjoint. Thus, |Q1 ∪Q2| ≤
2 · |OPT∩ (Q1 ∪Q2)|. Apart from Q1 ∪Q2, the algorithm queries a set Q3 in Line 6 to solve
the remaining instance with a 2-competitive algorithm. So, |Q3| ≤ 2 · |OPT \ (Q1 ∪Q2)|
and, adding up the inequalities, |ALG| ≤ 2 · |OPT|.

5.6.2 Optimal Tradeoff for General Instances

We show that the algorithm that first executes Algorithm 15 and then Algorithm 16 satisfies
the guarantees of Theorem 5.6.1, i.e., achieves the optimal consistency and robustness tradeoff.
In order to do so, we carefully combine Theorems 5.5.1 and 5.6.2.

Proof of Theorem 5.6.1. Let ALG = ALG1∪ALG2 be the query set queried by the algorithm,
where ALG1 and ALG2 are the queries of Algorithm 15 and Algorithm 16, respectively. Let
P ⊆ ALG1 denote the edges queried in the last iteration of Algorithm 15. Furthermore, let D
denote the set of edges in E \ALG1 that can be deleted or contracted during the execution of
Algorithm 15. This implies D ∩ALG2 = ∅.

Assume first that ALG2 = ∅. Then, querying ALG1 solves the problem. Theorem 5.5.1
directly implies (1+ 1

γ)-consistency. However, due to the additive term of γ− 2 in the second
term of the minimum, the theorem does not directly imply γ-robustness. Recall that the
additive term is caused exactly by the queries to P . As the algorithm executes queries in
the last iteration, it follows that the instance is not solved at the beginning of the iteration
(a solved instance is prediction mandatory free and would lead to direct termination). Thus,
|OPT\ ((ALG1∪D)\P)| ≥ 1 and |P | ≤ (γ−2) · |OPT\ ((ALG1∪D)\P)|. Ignoring the
additive term caused by P , Theorem 5.5.1 implies |ALG1\P | ≤ γ ·|OPT∩((ALG1∪D)\P)|.
As |ALG| = |ALG1 \ P |+ |P |, adding up the inequalities implies |ALG| ≤ γ · |OPT|.

Now, assume that ALG2 ̸= ∅. Let OPT = OPT1 ∪OPT2 be an optimal query set with
OPT1 = OPT ∩ (ALG1 ∪D) and OPT2 = OPT \ (ALG1 ∪D). Theorem 5.5.1 implies
|ALG1 \ P | ≤ γ · |OPT1 \ P | (since the additive term in Theorem 5.5.1 is caused by P).

By Theorem 5.6.2, ALG2 ̸= ∅ implies OPT2 ̸= ∅. Thus, |OPT2| ≥ 1 and |P | ≤
(γ − 2) · |OPT2|. Furthermore, Theorem 5.6.2 also implies |ALG2| ≤ 2 · |OPT2| and, thus,
|ALG2 ∪ P | ≤ γ · |OPT2| Adding up the inequalities for |ALG1 \ P | and |ALG2 ∪ P |, we
get |ALG| ≤ γ · |OPT| and, therefore, γ-robustness.

139

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

In terms of consistency, Theorem 5.5.1 implies |ALG1| ≤ (1 + 1
γ) · |OPT1| if all

predictions are correct and Theorem 5.6.1 implies |ALG2| = |OPT2| if all predictions are
correct. Together, the inequalities imply (1 + 1

γ)-consistency.

5.7 An Error-Sensitive Algorithm

In this section, we extend the algorithm of Section 5.6 to obtain error sensitivity. To that end,
we show the following theorem.

Theorem 5.7.1. For every integer γ ≥ 2, there exists a min{1+ 1
γ +

5·kh
|OPT| , γ+1}-competitive

algorithm for the MST problem under explorable uncertainty with predictions.

The guarantee of the theorem does not quite match the tradeoff lower bound of Theo-
rem 5.2.1, as the robustness of the algorithm is slightly worse. We remark that the precise
robustness of our algorithm is max{3, γ + 1

|OPT|}, which might be smaller than γ + 1 but
still does not match the lower bound. It remains open whether an algorithm with linear
error-dependency on kh that matches the tradeoff lower bound is possible.

To achieve the guarantee of the theorem, we again design a dedicated algorithm for
prediction mandatory free instances and use it in combination with Algorithm 15, which
transforms general instances into prediction mandatory free ones.

5.7.1 Error-Sensitive Algorithm for Prediction Mandatory Free Instances

We give an algorithm for prediction mandatory free instances that asymptotically matches the
error-dependent guarantee of Theorem 5.2.3 at the cost of a slightly worse robustness. The
following theorem formalizes the precise competitive ratio of the algorithm.

Theorem 5.7.2. There exists a min{1 + 5·kh
|OPT| , 3}-competitive algorithm for preprocessed

and prediction mandatory free instances of the MST problem under explorable uncertainty
with predictions.

We first describe the ideas behind the algorithm that satisfies the theorem and in particular
describe the similarities and differences to Algorithm 16 of the previous section. Afterwards,
we move on to formally analyze the algorithm.

Algorithmic ideas. We follow the same basic strategy as Algorithm 16, the algorithm for
prediction mandatory free instances without error-dependency. The main difference is that
Algorithm 16 just executes a 2-competitive algorithm for the problem without predictions once
it detects an error. This is sufficient to achieve the optimal tradeoff as we, if an error occurs,
only have to guarantee 2-competitiveness. To obtain an error-sensitive guarantee however, we
have to ensure both, |ALG| ≤ 3 · |OPT| and |ALG| ≤ |OPT|+ 5 · kh, even if errors occur.
We cannot guarantee this by using a 2-competitive algorithm as a black box whenever we
detect an error. Furthermore, we might also not be able to afford queries to the complete set W
(Algorithm 16, Line 6) in the case of an error as this might violate |ALG| ≤ |OPT|+ 5 · kh.
Thus, we need a different algorithm to achieve error-dependency.

We adjust the algorithm to query elements of f ′
1, . . . , f

′
g and l′1, . . . , l

′
k as described

in Lemma 5.6.3 not only until an error occurs but until the vertex cover instance changes. That
is, until some edge f that at the beginning of the iteration is not part of TL becomes part of the
lower limit tree, or some edge l that at the beginning of the iteration is part of TL is not part of
the lower limit tree anymore. We again use the set W , to store all matching partner h(e) of
queried edges e. Once the instance changes, we recompute both, the bipartite graph Ḡ as well
as the matching h and minimum vertex cover V C for Ḡ. Instead of querying the complete

140

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

Algorithm 17: Error-sensitive algorithm for prediction mandatory free instances of
the MST problem under explorable uncertainty

Input: Preprocessed and prediction mandatory free instance of the MST problem
under explorable uncertainty with graph G = (V,E) and lower limit tree TL

1 Compute maximum matching h and minimum vertex cover V C for Ḡ and set W = ∅;
2 Let f ′

1, . . . , f
′
g and l′1, . . . , l

′
k be as described in Lemma 5.6.3 for V C and h;

3 L← TL, N ← E \ TL;
4 for e chosen sequentially from the ordered list f ′

1, . . . , f
′
g, l

′
1, . . . , l

′
k do

5 If e is non-trivial, i.e., has not been queried yet, query e and add h(e) to W ;
6 Ensure unique TL = TU . For each query e′, if ∃a s.t. {e′, a} ∈ h, query a ;
7 Let Ḡ′

= (V̄
′
, Ē

′
) be the vertex cover instance for the current instance;

8 if Some e′ ∈ L is not in TL or some e′ ∈ N is in TL then
9 repeat

10 Let Ḡ = Ḡ
′ and h̄ = {{e′, e′′} ∈ h | {e′, e′′} ∈ Ē

′};
11 Compute h and V C by completing h̄ with an augmenting path algorithm;
12 Query R = (V C ∪ h(V C)) ∩ (W ∪ {e′ | ∃e ∈W with {e, e′} ∈ h}) ;
13 Ensure unique TL = TU . For each query e′, if ∃a s.t. {e′, a} ∈ h, query a;
14 Let Ḡ′

= (V̄
′
, Ē

′
) be the vertex cover instance for the current instance;

15 until R = ∅;
16 Restart at Line 2. In particular, do not reset W ;

set W as in Algorithm 16, we only query the elements of W that occur in the recomputed
matching, as well as the new matching partners of those elements. And instead of switching to
a 2-competitive algorithm, we restart the algorithm with the recomputed matching and vertex
cover.

Algorithm 17 formalizes this approach. In the algorithm, TL and TU always refer to
the current lower and upper limit trees after all previous queries. Furthermore, h denotes a
matching that matches each e ∈ V C to a distinct h(e) ̸∈ V C; we use the notation {e, e′} ∈ h
to indicate that h matches e and e′. For a subset U ⊆ V C let h(U) = {h(e) | e ∈ U}. For
technical reasons, the algorithm does not recompute an arbitrary matching h but follows the
approach of Lines 10 and 11: Whenever the vertex cover instance changes from Ḡ to Ḡ

′,
the algorithm considers the partial matching h̄ consisting of all elements that are part of the
matching for Ḡ and still form edges for Ḡ′. Based on this partial matching h̄, the algorithm
then computes a new matching for Ḡ′ by using a standard augmenting path algorithm. After
that, the algorithm queries all elements e of set W that became part of the new matching as
well as their new matching partners h(e). The idea behind computing the new matching in
this particular way is that an arbitrary maximum matching h might contain too many elements
of W , which would lead to too many additional queries.

The final difference to the previous Algorithm 16 is that whenever the new algorithm
queries mandatory edges e′ to ensure unique TL = TU in Lines 6 and 13, it also queries the
current matching partner h(e′) of e′ if e′ is part of the current matching. Since each such
queried edge e′ is mandatory but not prediction mandatory, it not only must be part of every
optimal query set but also incurs an error by Lemma 5.4.6. Thus, the algorithm can afford to
query both e′ and h(e′) without violating the target guarantee.

Formal analysis. We continue by formally analyzing the algorithm. Let ALG denote the
queries of Algorithm 17 on a preprocessed and prediction mandatory free instance and let OPT

141

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

denote a fixed optimal query set. We show Theorem 5.7.2 by proving |ALG| ≤ |OPT|+5 ·kh
and |ALG| ≤ 3 · |OPT|.

Before we show the two inequalities, we state some key observations about the algorithm.
We argue that an element e′ can never be part of a partial matching h̄ in an execution of
Line 10 after it was already added to set W . Recall that the vertex cover instances only
contain non-trivial elements. Thus, if an element e is queried in Line 5 and the current partner
e′ = h(e) is added to set W , then the vertex cover instance at the next execution of Line 10
does not contain the edge {e, e′} and, therefore, e′ is not part of the partial matching h̄ of that
line. As long as e′ is not added to the matching by Line 11, it, by definition, can never be part
of a partial matching h̄ in an execution of Line 10. As soon as the element e′ is added to the
matching in some execution of Line 11, it is queried in the following execution of Line 12.
Therefore, e′ can also not be part of a partial matching h̄ in an execution of Line 10 after it is
added to the matching again. This leads to the following observation.

Observation 5.7.3. An element e′ can never be part of a partial matching h̄ in an execution
of Line 10 after it is added to set W . Once e′ is added to the matching again in an execution
of Line 11, it is queried directly afterwards in Line 12, and cannot occur in Line 5 anymore.

We first analyze all queries that are not executed in Line 12. Let Q1 ⊆ ALG denote the
queries of Line 5, i.e., Q1 contains the “regular” queries that are executed as part of the vertex
cover in the order of Lemma 5.6.3. For each e ∈ Q1 let h∗(e) be the matching partner of e at
the time it was queried, and let h∗(Q1) =

⋃︁
e∈Q1
{h∗(e)}. Finally, let Q2 denote the queries

of Lines 6 and 13 to elements of h∗(Q1), and let Q3 denote the remaining queries of those
lines. With the following lemma we show that the queries of Q1 ∪Q2 ∪Q3 satisfy the target
guarantees.

Lemma 5.7.4. |Q1∪Q3∪h∗(Q1)| ≤ 2 · |OPT∩ (Q1∪Q3∪h∗(Q1))| and |Q1∪Q2∪Q3| ≤
|OPT ∩ (Q1 ∪Q3 ∪ h∗(Q1))|+ k−(Q2 ∪Q3).

Proof. First, consider Q1 and h∗(Q1). By Lemma 5.4.5, the instance is prediction mandatory
free at the beginning of each restart of the algorithm. By Lemma 5.6.3, each {e, h∗(e)} with
e ∈ Q1 is a witness set. We claim that all such {e, h∗(e)} are pairwise disjoint, which implies
|Q1∪h∗(Q1)| ≤ 2 · |OPT∩(Q1∪h∗(Q1))|. If the sets were not pairwise disjoint, an element
of {e, h∗(e)} must occur a second time in Line 5 after e is queried and h∗(e) is added to W .
Thus, either e or h∗(e) must become part of a recomputed matching in line 10. Edge e will not
be part of such matching as it has already been queried. By Observation 5.7.3, edge h∗(e) will
also never be part of a such a matching. Thus, the sets {e, h∗(e)} with e ∈ Q1 are pairwise
disjoint and we get |Q1 ∪ h∗(Q1)| ≤ 2 · |OPT ∩ (Q1 ∪ h∗(Q1))|.

Consider an e ∈ Q2 ⊆ h∗(Q1) and let e′ ∈ Q1 with h∗(e′) = e. Since e′ ∈ Q1, it was
queried in Line 5. Observe that e must have been queried after e′, as otherwise either e′ would
not have been queried in Line 5 (but together with e in Line 6 or 13), or e would not have been
the matching partner of e′ when it was queried; both contradict e′ ∈ Q1 and h∗(e′) = e. This
and Observation 5.7.3 imply that, at the time e is queried, its current matching partner is either
the trivial e′ or it has no current partner. So, e must have been queried in Line 6 or 13 because
it was mandatory and not as the matching partner of a mandatory edge. Thus, each query of Q2

is mandatory but, by Lemma 5.4.5, not prediction mandatory at the beginning of the iteration
in which it is queried. Therefore, Lemma 5.4.6 implies that all mandatory elements e of Q2

have k−(e) ≥ 1. Thus, k−(Q2) ≥ |Q2|. Together with the observation that all {e, h∗(e)} are
pairwise disjoint witness sets, this implies |Q1 ∪Q2| ≤ |OPT ∩ (Q1 ∩ h∗(Q1))|+ k−(Q2).

By the argument above, no element of Q3 was queried as the matching partner to an
element of Q2 ∪ Q1. Thus, by Lemma 5.2.6 and the definition of the algorithm, at least
half the elements of Q3 are mandatory, and we have |Q3| ≤ 2 · |OPT ∩Q3|, which implies
|Q1 ∪Q3 ∪ h∗(Q1)| ≤ 2 · |OPT ∩ (Q1 ∪Q3 ∪ h∗(Q1))|.

142

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

Since at least half the elements of Q3 are mandatory, we have 1
2 |Q3| ≤ |OPT ∩ Q3|.

By the same argument as for Q2, all mandatory elements e of Q3 have k−(e) ≥ 1. Thus,
k−(Q3) ≥ 1

2 · |Q3|. Combining k−(Q3) ≥ 1
2 · |Q3| and 1

2 |Q3| ≤ |OPT ∩ Q3| implies
|Q3| ≤ |OPT ∩ Q3| + k−(Q3). Together with the inequality for |Q1 ∪ Q2|, we get |Q1 ∪
Q2 ∪Q3| ≤ |OPT ∩ (Q1 ∪Q3 ∪ h∗(Q1))|+ k−(Q2 ∪Q3).

Note that the first part of Lemma 5.7.4, i.e., |Q1 ∪ Q3 ∪ h∗(Q1)| ≤ 2 · |OPT ∩ (Q1 ∪
Q3 ∪ h∗(Q1))|, captures not only all queries outside of Line 12 but also all queries of Line 12
to elements of set W = h∗(Q1). Thus, to prove |ALG| ≤ 3 · |OPT|, it remains to analyze
the remaining queries of Line 12 that do not go to elements of set W . Let Q′

4 denote the
set of such queries. Observe that Line 12 only executes queries to members of W and their
recomputed matching partners. By Observation 5.7.3, each element of W is considered at
most once in Line 12. This implies |Q′

4| ≤ |W |. Since |W | ≤ |OPT| (as shown in the proof
of the previous lemma), we can conclude the following lemma.

Lemma 5.7.5. |ALG| ≤ 3 · |OPT|.

Next, we show |ALG| ≤ |OPT| + 5 · kh. Lemma 5.7.4 implies |Q1 ∪ Q2 ∪ Q3| ≤
|OPT ∩ (Q1 ∪Q3 ∪ h∗(Q1))|+ k−(Q2 ∪Q3). Hence, it remains to upper bound |Q4| with
Q4 = ALG \ (Q1 ∪ Q2 ∪ Q3) by 4 · kh. By definition, Q4 only contains edges that are
queried in Line 12. Thus, at least half the queries of Q4 are elements of W that are part of
the matching h. By Observation 5.7.3, no element of W is part of the partial matching h̄ in
Line 10. So, in each execution of Line 12, at least half the queries are not part of h̄ in Line 10
but added to h in Line 11. Our goal is to bound the number of such elements.

We start with some definitions. Define Gj as the problem instance at the j’th execution
of Line 11, and let G0 denote the initial problem instance. For each Gj , let Ḡj = (V̄ j , Ēj),
T j
L and T j

U denote the corresponding vertex cover instance and lower and upper limit trees.
Observe that each Gj has unique T j

L = T j
U , and, by Lemma 5.4.5, is prediction mandatory

free. Let Yj denote the set of queries made by the algorithm to transform instance Gj−1 into
instance Gj . We partition Q4 into subsets Sj , where Sj contains the edges of Q4 that are
queried in the j’th execution of Line 12. We claim |Sj | ≤ 4 ·k+(Yj) for each j, which implies
|Q4| ≤

∑︁
j |Sj | ≤ 4 ·∑︁j k

+(Yj) ≤ 4 · kh. To show the claim, we rely on the following
lemma.

Lemma 5.7.6. Let l, f be non-trivial edges in Gj such that {l, f} ∈ Ēj−1∆Ēj , then
k−(l), k−(f)≥1. Furthermore, k+(Yj) ≥ |U | for the set U of all endpoints of such vertex
cover instance edges {l, f}.

Proof. We separately consider non-trivial edges l, f with {l, f} ∈ Ēj−1 \ Ēj and {l, f} ∈
Ēj \ Ēj−1

Case {l, f} ∈ Ēj−1 \ Ēj . Since {l, f} ∈ Ēj−1, one edge in {l, f} must be in T j−1
L and

one must be outside of T j−1
L by definition of the vertex cover instance. Assume w.l.o.g. that

l ∈ T j−1
L and f ̸∈ T j−1

L . Let Cj−1
f be the unique cycle in T j−1

L ∪ {f} and let Xj−1
l be the

set of edges between the two connected components of T j−1
L \ {l}. Then, l ∈ Cj−1

f and

f ∈ Xj−1
l hold again by the definition of the vertex cover instance. By Lemma 5.2.8 and

because l and f are non-trivial in Gj , the fact that l ∈ T j−1
L and f ̸∈ T j−1

L implies l ∈ T j
L and

f ̸∈ T j
L.

Since {l, f} ̸∈ Ēj , we have l ̸∈ Cj
f and f ̸∈ Xj

l . Each cycle containing f must contain

an edge of Xj−1
l \ {f} and, therefore, there must be some l′ ∈ Cj

f with l′ ∈ Xj−1
l \ {f, l}.

This implies l′ ∈ T j
L. On the other hand, T j−1

L ∩ Xj−1
l = {l} and, therefore, l′ ̸∈ T j−1

L .

143

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

Lemma 5.2.8 implies that l′ must have been queried while transforming instance Gj−1 into
instance Gj .

As Gj−1 is prediction mandatory free, wl′ ≥ Ul > Lf holds by Lemma 5.4.4. However,
we have wl′ ≤ Lf as wl′ > Lf would be a contradiction to T j

L being a lower limit tree. We
can conclude wl′ ≥ Ul > wl′ and wl′ > Lf ≥ wl′ , which implies k−(l), k−(f) ≥ 1.

Case {l, f} ∈ Ēj \ Ēj−1. Assume w.l.o.g. that l ∈ T j
L and f ̸∈ T j

L. Since l and f are
non-trivial, Lemma 5.2.8 implies e ∈ T j−1

L and f ̸∈ T j−1
L .

As {f, l} ∈ Ēj and f ̸∈ T j
L, the definition of the vertex cover instance Ḡj implies l ∈ Cj

f

such that If ∩ Il ̸= ∅, where Cj
f is the unique cycle in T j

L ∪ {f}.
Remember that f ∈ Xj

l since f ̸∈ T j
L and l ∈ Cj

f . The fact that {f, l} ̸∈ Ēj−1 implies

l ̸∈ Cj−1
f . Thus, there must be an element l′ ∈ T j−1

L ∩ (Xj
l \ {l, f}) such that l′ ∈ Cj−1

f .

As the instance is prediction mandatory free, l′ ∈ Cj−1
f implies wl′ ̸∈ If (more precisely

wl′ ≤ Lf). Further, Xj
l ∩ T j

L = {l} holds by definition and implies l′ ̸∈ T j
L. According to

Lemma 5.2.8, l′ ∈ T j−1
L \ T j

L implies that l′ must have been queried in order to transform
instance Gj−1 into instance Gj . If wl′ ∈ Il, then wl′ < Ul, which implies that l does not have
the smallest upper limit in cut Xj

l . This is a contradiction to T j
L being an upper limit tree,

which is the case as instance Gj is preprocessed.
If wl′ ̸∈ Il, then also wl′ ≥ Ul (wl′ ≤ Ll cannot be the case because l′ would have the

smallest lower limit in Xj
l which would contradict l′ ̸∈ T j

L). As Il∩If ̸= ∅ holds by definition
of the vertex cover instance Gj , we can conclude that wl′ ≥ Ul implies wl′ > Lf . So we have
wl′ ≤ Lf < wl′ , which implies k−(f) ≥ 1.

Similarly, l ∈ Cj
f , Il ∩ If ̸= ∅ and l, f being non-trivial imply Lf < Ul. Thus, we have

wl′ ≤ Lf < Ul ≤ wl′ , which implies k−(l) ≥ 1.
Since all errors of both cases are caused by elements that have been queried to transform

Gj−1 into Gj , i.e., are contained in Yj , the arguments in both cases also imply k+(Yj) ≥ |U |
for the set U of all endpoints of vertex cover instance edges {l, f} that are covered by one of
the cases.

Lemma 5.7.7. |ALG| ≤ |OPT|+ 5 · kh.

Proof. We show |Sj | ≤ 4 · k+(Yj) for each j, which, in combination with Lemma 5.7.4,
implies the lemma. Consider an arbitrary Sj and the corresponding set Yj . Further, let hj−1

denote the maximum matching computed and used by the algorithm for vertex cover instance
Ḡj−1, and let h̄j−1 = {{e, e′} ∈ hj−1 | {e, e′} ∈ Ēj}. Finally, let hj denote the matching
that the algorithm uses for vertex cover instance Ḡj . That is, hj is computed by completing
h̄j−1 with a standard augmenting path algorithm. As already argued, at least half the elements
of Sj are not matched by h̄j−1 but are matched by hj (cf. Observation 5.7.3).

We bound the number of such elements that are not matched in h̄j−1 but become matched
in hj by exploiting that hj is constructed from h̄j−1 via a standard augmenting path algorithm.
By definition, each iteration of the augmenting path algorithm increases the size of the current
matching (starting with h̄j−1) by one and, in doing so, matches two new elements. In total, at
most 2 · (|hj | − |h̄j−1|) previously unmatched elements become part of the matching, where
|hj | and |h̄j−1| denote the size of the respective matching. Thus, |Sj | ≤ 4 · (|hj | − |h̄j−1|).

We show (|hj | − |h̄j−1|) ≤ k+(Yj). According to Kőnig-Egerváry’s Theorem, the size
of hj is equal to the size |V Cj | of the minimum vertex cover for Ḡj . We show |V Cj | ≤
|h̄j−1| + k+(Yj), which implies (|hj | − |h̄j−1|)=|V Cj | − |h̄j−1| ≤ k+(Yj), and, thus, the
claim. Let V Cj−1 = {e ∈ V Cj−1 | ∃e′ s.t. {e, e′} ∈ hj−1}, then |V Cj−1| = |hj−1|.

We prove that we can construct a vertex cover for Ḡj by adding at most k+(Yj) elements
to V Cj−1, which implies |V Cj | ≤ |hj−1|+ k+(Yj). Consider vertex cover instance Ḡj and
set V Cj−1. By definition, V Cj−1 covers all edges that are part of partial matching h̄j−1.

144

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

Consider the elements of V̄ j that are an endpoint of an edge in {e, f} ∈ Ēj∆Ēj−1 with
e, f non-trivial in Gj . By Lemma 5.7.6, k−(e) ≥ 1 for each such e and k+(Yj) ≥ |U | for the
set U of all such elements. Thus, we can afford to add U to the vertex cover.

Next, consider an edge {e, f} ∈ Ēj that is not covered by V Cj−1 ∪ U . Since {e, f} is
not covered by U , it must hold that {e, f} ∈ Ēj ∩ Ēj−1. Thus, {e, f} was covered by V Cj−1

but is not covered by V Cj−1. This implies {e, f} ∩ V Cj−1 ̸= ∅ but {e, f} ∩ V Cj−1 = ∅.
Assume w.l.o.g. that e ∈ V Cj−1. Then, there must be an e′ such that {e, e′} ∈ hj−1 but
{e, e′} ̸∈ h̄j−1.

This gives us that {e, e′} ∈ Ēj∆Ēj−1. Since {e, f} is not covered by U , the edge e′

must be trivial in Gj but non-trivial in Gj−1 as otherwise {e, e′} ∈ Ēj∆Ēj−1 would imply
e ∈ U . Thus, e′ must have been queried (i) as a mandatory element (or a matching partner) in
Line 6 or 13, (ii) as part of V Cj−1 in Line 5 or (iii) in Line 12. Case (ii) implies e′ ∈ V Cj−1,
contradicting e ∈ V Cj−1. Cases (i) or (iii) imply a query to the matching partner e of e′,
which contradicts {e, f} ∈ Ēj (as e would be trivial). Since all cases lead to a contradiction,
we get that {e, f} is covered by V Cj−1 ∪ U , which implies that V Cj−1 ∪ U is a vertex
cover for Ḡj . Lemma 5.7.6 implies |U | ≤ k+(Yj). So |V Cj | ≤ |h̄j−1| + k+(Yj), which
concludes the proof.

The Lemmas 5.7.5 and 5.7.7 directly imply Theorem 5.7.2.

5.7.2 Error-Sensitive Algorithm for General Instances

We show that the algorithm that first executes Algorithm 15 and then Algorithm 17 satisfies
the guarantees of Theorem 5.7.1. In order to do so, we carefully combine Theorems 5.5.1
and 5.7.2.

Proof of Theorem 5.7.1. We remark that we actually show a robustness of max{3, γ+ 1
|OPT|},

which might be smaller than γ + 1.
Let ALG = ALG1 ∪ALG2 be the query set queried by the algorithm, where ALG1 and

ALG2 are the queries of Algorithm 15 and Algorithm 17, respectively. Let P ⊆ ALG1 denote
the edges queried in the last iteration of Algorithm 15. Furthermore, let D denote the set of
edges in E \ALG1 that can be deleted or contracted during the execution of Algorithm 15. It
follows D ∩ALG2 = ∅

Assume first that ALG2 = ∅. Then, querying ALG1 solves the problem. Theorem 5.5.1
directly implies

|ALG| = |ALG1| ≤ (1 +
1

γ
) · (|OPT∩(ALG1 ∪D)|+ k+(ALG1) + k−(ALG1))

and
|ALG1 \ P | ≤ γ · |OPT ∩ (ALG1 ∪D)|

as the additive term of γ − 2 is caused by P .
Thus, the error-dependent guarantee follows immediately. However, due to the additive

term of γ − 2 in the second term of the minimum, the second inequality does not directly
transfer to |ALG| as |ALG| ≤ (γ + 1) · |OPT| might not hold. Recall that the additive term
is caused exactly by the queries to P . Since the algorithm executes queries in the last iteration,
the instance is not solved at the beginning of the iteration (a solved instance is prediction
mandatory free and would lead to direct termination). Thus, |OPT \ ((ALG1 ∪D) \ P)| ≥ 1
and, therefore |P | ≤ (γ− 2) · |OPT \ ((ALG1 ∪D) \ P)|. Ignoring the additive term caused

145

5. Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty

by P , Theorem 5.5.1 implies |ALG1\P | ≤ γ ·|OPT∩((ALG1 ∪D) \ P)|. We can conclude

|ALG| = |ALG1 \ P |+ |P |
≤ γ · |OPT ∩ ((ALG1 ∪D) \ P)|+ (γ − 2) · |OPT \ ((ALG1 ∪D) \ P)|
≤ γ · |OPT|.

Now, assume that ALG2 ̸= ∅. Let OPT = OPT1 ∪ OPT2 be an optimal query set with
OPT1 = OPT ∩ (ALG1 ∪D) and OPT2 = OPT \ (ALG1 ∪ D) .̧ By Theorem 5.6.2,
ALG2 ̸= ∅ implies OPT2 ̸= ∅. Thus, |OPT2| ≥ 1. Furthermore, by Theorem 5.7.2, we
have |ALG2| ≤ 3 · |OPT2|. As |P | ≤ γ − 2 and |OPT2| ≥ 1, this gives us |ALG2 ∪ P | ≤
(γ + 1) · |OPT2|. Theorem 5.5.1 implies |ALG1\P | ≤ γ · |OPT1 \ P | (as the additive term
in Theorem 5.5.1 is caused by P). Together, the inequalities imply |ALG| ≤ (γ + 1) · |OPT|
and, thus (γ + 1)-robustness.

We remark that, for γ ≥ 3, the robustness improves for increasing |OPT|. To see
this, note that if γ ≥ 3, then |ALG2 ∪ P | ≤ γ · |OPT2| + 1 and, in combination with
|ALG1 \P | ≤ γ · |OPT1 \P |, also |ALG| ≤ γ · |OPT|+1. Thus, for γ ≥ 3, the robustness
of the algorithm is actually γ + 1

|OPT| . For γ = 2, the robustness is 3 = γ + 1. Combined,
the robustness is max{3, γ + 1

|OPT|}.
We continue by showing |ALG| ≤ (1 + 1

γ) · |OPT|+ 5 · kh. Theorem 5.5.1 implies
|ALG1| ≤ (1 + 1

γ) · (|OPT1| + 2 ·max{k+(ALG1), k
−(ALG1)}). Since γ ≥ 2, we have

(1+ 1
γ)·2 < 5 and can rewrite |ALG1| ≤ (1+ 1

γ)·|OPT1|+5·max{k+(ALG1), k
−(ALG1)}.

Theorem 5.7.2 implies |ALG2| ≤ |OPT2|+5 ·k′h, where k′h is the error for the input instance
of the second phase. That is, the instance that does not contain any edge of ALG1 since those
can be deleted/contracted after the first phase. This implies for the error kh of the complete
instance that no error that is counted by max{k+(ALG1), k

−(ALG1)} is considered by
k′h and, therefore, max{k+(ALG1), k

−(ALG1)} + k′h ≤ kh. Thus, we can combine the
inequalities to |ALG| ≤ (1 + 1

γ) · |OPT|+ 5 · kh.

5.8 Concluding Remarks

In this chapter, we showed how to utilize untrusted predictions to achieve the optimal con-
sistency and robustness tradeoff for the MST problem under explorable uncertainty. For
accurate predictions, the bound improves upon the adversarial lower bound of two, while it
matches the lower bound for arbitrarily wrong predictions. We also designed an algorithm
with linear error-dependency on the hop distance kh, which, in combination with the results
of the previous chapter, nicely illustrates the utility of this measure for several problems
under explorable uncertainty. Since this latter algorithm does not quite match the optimal
consistency and robustness tradeoff, a next research step would be to investigate whether such
a tradeoff is possible with error-dependency.

We remark that we can show PAC-learnability of the predictions w.r.t. kh by using the same
proof as in Section 4.5 for the hypergraph orientation problems, since this proof is problem
independent. Furthermore, we also remark that the integrality condition on parameter γ can
be removed via randomization using the same technique as in the proof of Theorem 4.3.12 for
the hypergraph orientation problem with the same small additive loss in the guarantee.

Further generalizations of this problem include to consider arbitrary query costs and
arbitrary matroids. All previous results on the MST problem under explorable uncertainty
without predictions extend to the more general problem of finding a minimum weight base of
a matroid [Hof+08; MMS17]. A next research step would be to check whether the same holds
for the results of this chapter.

146

Chapter 6

Set Selection under Explorable
Stochastic Uncertainty via Covering
Techniques

In this chapter, we consider the set selection problem under explorable stochastic uncertainty.
Given subsets of uncertain weights, we study the problem of identifying the subset of minimum
total weight (sum of the uncertain weights contained in the set) by querying as few weights as
possible. This set selection problem is of intrinsic importance within the field of explorable
uncertainty as it implies strong adversarial lower bounds for a wide range of interesting
combinatorial problems such as knapsack and matchings [Mei18]. We consider a stochastic
problem variant and give algorithms that, in expectation, improve upon these adversarial
lower bounds. The key to our results is to prove a strong structural connection to a seemingly
unrelated covering problem with uncertainty in the constraints via a linear programming
formulation. We exploit this connection to derive an algorithmic framework that can be used
to solve both problems under uncertainty, obtaining nearly tight bounds on the competitive
ratio. This is the first non-trivial stochastic result concerning the sum of unknown weights
without further structure known for the set. In contrast to most existing results on explorable
uncertainty, the analysis of our algorithm does not rely on witness sets at all. We hope that our
novel approach for tackling the set selection problem lays the foundation for solving more
general problems in the area of explorable uncertainty.

Bibliographic remark: This chapter is mainly based on joint work with N. Megow [MS23].
Therefore, some parts correspond to or are identical with [MS23].

Contents
6.1 Introduction . 148

6.1.1 The Covering Point of View . 149
6.1.2 Our Results . 151
6.1.3 Further Previous Work . 152
6.1.4 Outline . 155

6.2 Disjoint MINSET . 156
6.3 Algorithmic framework . 159

6.3.1 Offline Problems and Hardness of Approximation 159
6.3.2 Algorithmic framework . 160
6.3.3 Proof of the Hardness of Approximation 164

6.4 MINSET with Deterministic Right-Hand Sides 165
6.5 MINSET under uncertainty . 167
6.6 The Maximization Variant of MINSET 176
6.7 Concluding Remarks . 177

147

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

6.1 Introduction

In the previous chapters of this thesis, we considered hypergraph orientation, sorting and
the minimum spanning tree problem under explorable uncertainty. All these problems have
in common that they admit constant competitive ratios, even in the adversarial setting, that
can be improved to smaller constants beyond the worst-case. In this chapter, we move on to
problems that adversarially only allow competitive ratios linear in the input size and our goal
is to improve to sublinear competitive ratios beyond the worst-case.

To this end, we mainly consider the set selection problem (MINSET) under explorable
uncertainty. In this problem, we are given a set of n uncertain weights represented by
uncertainty intervals I = {I1, . . . , In} and a family of m sets S = {S1, . . . , Sm} with S ⊆ I
for all S ∈ S . A precise weight wi lies in its uncertainty interval Ii, is initially unknown, and
can be revealed via a query. The precise weight of a subset S ∈ S is w(S) =

∑︁
Ii∈S wi. Our

goal is to determine a subset of minimum precise weight as well as the corresponding precise
weight by using a minimal number of queries. It can be seen as an optimization problem with
uncertainty in the coefficients of the objective function:

min
∑︁m

j=1 xj
∑︁

Ii∈Sj
wi

s.t.
∑︁m

j=1 xj = 1

xj ∈ {0, 1} ∀j ∈ {1, . . . ,m}.
(SETSELIP)

Since the precise wi’s are uncertain, we do not always have sufficient information to just
compute an optimal solution to (SETSELIP) and instead might have to execute queries in order
to determine such a solution. An algorithm for MINSET under uncertainty can adaptively
query intervals to reveal weights until it has sufficient information to determine an optimal
solution to (SETSELIP). Adaptivity in this context means that the algorithm can take previous
query results into account to decide upon the next query.

In this chapter, we consider the stochastic problem variant, where we assume that all
weights wi are drawn independently at random from their intervals Ii according to un-
known distributions di. As usual, we analyze an algorithm ALG in terms of its com-
petitive ratio (see also Section 2.2): for the set of problem instances J , it is defined as
maxJ∈J E[ALG(J)]/E[OPT(J)], where ALG(J) is the number of queries needed by ALG
to solve instance J , and OPT(J) is the minimum number of queries necessary to solve the
instance.

MINSET is a fundamental problem and of intrinsic importance within the field of ex-
plorable uncertainty. The majority of existing works considers the adversarial setting, where
query outcomes are not stochastic but returned in a worst-case manner. Selection type prob-
lems have been studied in the adversarial setting and constant (matching) upper and lower
bounds are known, e.g., for selecting the minimum [Kah91], the k-th smallest element [Kah91;
Fed+03], a minimum spanning tree [Hof+08; EH14; MMS17; Erl+22], sorting [HL21] and
geometric problems [Bru+05]. However, these problems essentially boil down to comparing
single uncertainty intervals and identifying the minimum of two unknown weights. Once we
have to compare two (even disjoint) sets and the corresponding sums of unknown weights, no
deterministic algorithm can have a better adversarial competitive ratio than n, the number of
uncertainty intervals. This has been shown by Erlebach et al. [EHK16] for MINSET, and it im-
plies adversarial lower bounds for classical combinatorial problems, such as, knapsack [Mei18]
and matchings [Mei18], and solving integer linear programs (ILPs) with uncertainty in the
cost coefficients [Mei18] as in (SETSELIP) above. Thus, solving MINSET under stochastic
uncertainty is an important step towards obtaining improved results for this range of problems.
As a main result, we provide substantially better algorithms for MINSET under stochastic

148

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

S1
I1

I2

S2

I3

I4

I5
S3

I6

S4
I7

I8

0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 10 11 12

IS1

IS2

IS3

IS4

FIGURE 6.1: Instance for set selection under explorable uncertainty with intervals I =
{I1, I2, . . . , I8} and sets S = {S1, S2, S3, S4} with S1 = {I1, I2}, S2 = {I3, I4, I5},
S3 = {I4, I5, I6} and S4 = {I7, I8} (left) and the corresponding uncertainty intervals ISj

for the sets Sj with j ∈ {1, . . . , 4} (right). Green circles illustrate the precise weights.

uncertainty. This is a key step for breaching adversarial lower bounds for a wide range of
problems.

For the stochastic setting, the only related results we are aware of concern sorting [Cha+21]
and hypergraph orientation [Bam+21] (see also Chapter 3). Asking for the sum of unknown
weights is substantially different.

6.1.1 The Covering Point of View

Our key observation is that we can view MINSET as a covering problem with uncertainty in
the constraints. To see this, we focus on the structure of the uncertainty intervals and how a
query affects it. We assume that each interval Ii ∈ I is either open (non-trivial) or trivial,
i.e., Ii = (Li, Ui) or Ii = {wi}; a standard technical assumption in explorable uncertainty
(cf. Section 2.2.1 in Chapter 2). In the latter case, Li = Ui = wi. We call Li and Ui the
lower and upper limit. For a set S ∈ S, we define the lower limit LS =

∑︁
Ii∈S Li and

upper limit US =
∑︁

Ii∈S Ui. If S contains only trivial uncertainty intervals, then we define
IS = [LS , US] = {w(S)} and call IS trivial. Otherwise, we define IS = (LS , US) . Clearly,
the weight w(S) of a set S ∈ S is contained in the interval IS , i.e., w(S) ∈ IS . We call IS
the uncertainty interval of set S. See Figure 6.1 for an example.

Since the intervals IS of the sets S ∈ S can overlap, we might have to execute queries to
determine the set of minimum precise weight. A query to an interval Ii reveals the precise
weight wi and, thus, replaces both, Li and Ui, with wi. In a sense, a query to an Ii ∈ S reduces
the range (LS , US) in which w(S) might lie by increasing LS by wi − Li and decreasing US

by Ui−wi. See Figure 6.2 for an example. We use LS and US to refer to the initial limits and
LS(Q) and US(Q) to denote the limits of a set S ∈ S after querying a set of intervals Q ⊆ I .

Let w∗ = minS∈S w(S) be the initially uncertain minimum precise set weight. To solve
the problem, we have to adaptively query a set of intervals Q until US∗(Q) = LS∗(Q) = w∗

holds for some S∗ ∈ S and LS(Q) ≥ w∗ holds for all S ∈ S . Only then, we know for sure

Ii

wi − Li Ui − wi

IS1

IS2

wi − Li Ui − wi

FIGURE 6.2: Example of how a query to an interval Ii changes the intervals of two sets
S1, S2 with Ii ∈ S1 ∩ S2 in the set selection problem under explorable uncertainty.

149

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

S1
I1

I2

S2

I3

I4

I5
S3

I6

S4
I7

I8

0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 10 11 12

IS1

IS2

IS3

IS4

FIGURE 6.3: Instance of Figure 6.1 after querying Q = {I1, I2, I5, I7}: Updated uncertainty
intervals I (left) and updated set uncertainty intervals (right).

that w∗ is indeed the minimum set weight and that S∗ achieves this weight. Figure 6.3 shows
the structure of an instance that has been solved. For an instance (I,S) of MINSET, the
following integer linear program (ILP) with ai = wi − Li for all Ii ∈ I and bS = w∗ − LS

for all S ∈ S formulates this problem:

min
∑︁

Ii∈I xi
s.t.

∑︁
Ii∈S xi · ai ≥ bS ∀S ∈ S

xi ∈ {0, 1} ∀Ii ∈ I
(MINSETIP)

Here, the variable xi, Ii ∈ I, indicates whether interval Ii is selected to be queried (xi = 1)
or not (xi = 0) and our objective is to minimize the number of queries.

Observe that this ILP is a special case of the multiset multicover problem (see, e.g., [RV98]).
If ai = wi − Li = 1 for all Ii ∈ I and bS = w∗ − LS = 1 for all S ∈ S , then the problem is
exactly the classical SETCOVER problem with I corresponding to the SETCOVER sets and S
corresponding to the SETCOVER elements.

The optimal solution to (MINSETIP) is the optimal query set for the corresponding
MINSET instance; this is not hard to see but we also formally prove it with the following
lemma.

Lemma 6.1.1. Solving MINSET is equivalent to solving (MINSETIP).

Proof. We show the lemma by proving the following claim: A query set Q ⊆ I is feasible for
MINSET if and only if vector x, with xi = 1 for all Ii ∈ Q and xi = 0 otherwise, is a feasible
solution for the corresponding (MINSETIP).

Let Q be feasible for MINSET, and let x be a vector with xi = 1 for all Ii ∈ Q and
xi = 0 otherwise. By definition, each feasible solution for MINSET must query all non-
trivial elements of some set S∗ with w(S∗) = w∗ as this is the only way to determine
the minimum set weight w∗. Let N(S∗) denote those non-trivial elements, then we can
rewrite the initial lower limit of S∗ as LS∗ = w∗ +

∑︁
Ii∈N(S∗)(Li − wi). This implies

w∗ − LS∗ =
∑︁

Ii∈N(S∗)(wi − Li). As N(S∗) ⊆ Q, we get
∑︁

Ii∈S∗ xi · (wi − Li) =∑︁
Ii∈S∗∩Q(wi − Li) ≥ w∗ − LS∗ . Thus, x satisfies the constraint for S∗.

Next, consider a set S ∈ S with S ̸= S∗. Since Q is feasible, LS(Q) has to be at least w∗

as otherwise querying Q would not prove that w∗ is indeed the minimum set weight. After

150

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

querying Q, the lower limit of set S is

LS(Q) =
∑︂

Ii∈S\Q
Li +

∑︂
Ii∈S∩Q

wi

=
∑︂
Ii∈S

Li −
∑︂

Ii∈S∩Q
Li +

∑︂
Ii∈S∩Q

wi

= LS +
∑︂

Ii∈S∩Q
(wi − Li).

Thus, LS(Q) = LS +
∑︁

Ii∈S∩Q(wi − Li) ≥ w∗ must hold, which implies
∑︁

Ii∈S∩Q(wi −
Li) ≥ w∗ − LS and

∑︁
Ii∈S xi · (wi − Li) ≥ w∗ − LS . We can conclude that x is feasible.

For the other direction consider a feasible solution x for (MINSETIP) and the cor-
responding set Q = {Ii | xi = 1}. Consider some set S∗ with w(S∗) = w∗. As∑︁

Ii∈N(S∗)(wi−Li) = w∗−LS∗ and
∑︁

Ii∈S∗\N(S∗)(wi−Li) =
∑︁

Ii∈S∗\N(S∗)(wi−wi) = 0,
it must hold xi = 1 for all Ii ∈ N(S∗) for x to be feasible. Thus, Q contains all non-trivial
elements of some set S∗ with w(S∗) = w∗. To show that Q is a feasible solution for MINSET,
it remains to show that LS(Q) ≥ w∗ for all S ̸= S∗. Consider an arbitrary S ̸= S∗. As∑︁

Ii∈S xi · (wi −Li) ≥ (w∗ −LS), we have
∑︁

Ii∈S∩Q(wi −Li) ≥ w∗ −LS , which implies
LS(Q) = LS +

∑︁
Ii∈S∩Q(wi − Li) ≥ w∗.

The lemma shows that (MINSETIP) models MINSET. Under uncertainty however, the
coefficients ai = wi − Li and right-hand sides bS = w∗ − LS of the ILP are unknown to
us. We only know that ai ∈ (Li − Li, Ui − Li) = (0, Ui − Li) because ai = (wi − Li)
and wi ∈ (Li, Ui). Only once we query an interval Ii, the precise weight wi and, thus, the
coefficient ai is revealed to us. In a sense, to solve MINSET under uncertainty, we have to
solve (MINSETIP) with uncertainty in the coefficients and with irrevocable decisions. For
the rest of the chapter, we interpret MINSET under uncertainty in exactly that way: We
have to solve (MINSETIP) without knowing the coefficients in the constraints. Whenever
we irrevocably add an interval Ii to our solution (i.e., set xi to 1), the information on the
coefficients (in form of wi) is revealed to us. Our goal is to add elements to our solution
until it becomes feasible for (MINSETIP), and to minimize the number of added elements.
In this interpretation, the terms “querying an element” and “adding it to the solution” are
interchangeable, and we use them as such.

Our main contribution is an algorithmic framework that exploits techniques for classical
covering problems and adapts them to handle uncertainty in the coefficients ai and the right-
hand sides bS . This framework allows us to obtain improved results for MINSET under
stochastic uncertainty and for a variant of that problem with deterministic right-hand sides.

6.1.2 Our Results

We design a polynomial-time algorithm for MINSET under stochastic uncertainty with compet-
itive ratioO(1τ ·log2m), where m is the number of sets (number of constraints in (MINSETIP))
and parameter τ characterizes how “balanced” the distributions of precise weights within the
given intervals are. More precisely, τ = minIi∈I τi and τi is the probability that wi is larger
than the center of Ii (e.g., for uniform distributions τ = 1

2). All our results assume τ > 0. We
remark that the hidden constants in the performance bound depend on the upper limits of the
given intervals. Assuming those to be constant is a common assumption; see, e.g., [MY20].
Even greedy algorithms for covering problems similar to (MINSETIP) without uncertainty
have such dependencies [RV98; Vaz01; Dob82]. While there exist non-greedy algorithms
for covering problems without such dependencies [KY01; KY05], it remains open whether
they can be adjusted to the setting with uncertainty and, in particular, irrevocable decisions.

151

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

Dependencies on parameters such as τ are quite standard and necessary [MY20; Blu+20;
GV06a; Von07; BBD22]. For example, in [MY20] the upper bounds depend on the probability
to draw the largest value of the uncertainty interval, which is an even stricter assumption that
does not translate to open intervals.

Our result is the first stochastic result in explorable uncertainty concerning the sum of
unknown weights and it builds on new methods that shall be useful for solving more general
problems in this field. The ratio is independent of the number of elements, n. In particular for
a small number of sets, m, this is a significant improvement upon the adversarial lower bound
of n [EHK16].

As MINSET contains the classical SETCOVER problem, an approximation factor better
thanO(logm) is unlikely, unless P=NP [DS14]. We show that this holds also in the stochastic
setting, even with uniform distributions. We further show that 2

τ is a lower bound for MINSET

under stochastic explorable uncertainty, even if the sets are pairwise disjoint. Hence, the
dependencies on logm and 2

τ in our upper bounds are necessary.
In the special case that all given sets are disjoint, we provide a simpler algorithm with

competitive ratio 2
τ , which matches the lower bound. This is a gigantic improvement compared

to the adversarial setting, where the lower bound of n holds even for disjoint sets [EHK16].
We remark that all our results for MINSET translate to the maximization variant of the

problem, where we have to determine the set of maximum weight (cf. Section 6.6).
Algorithmically, we exploit the covering point of view to introduce a class of greedy algo-

rithms that use the same basic strategy as the classical SETCOVER greedy algorithm [Chv79].
However, we do not have sufficient information to compute and query an exact greedy choice
under uncertainty as this choice depends on uncertain parameters. Instead, we show that it is
sufficient to query a small number of elements that together achieve a similar greedy value
to the exact greedy choice. If we do this repeatedly and the number of queries per iteration
is small in expectation, then we achieve guarantees comparable to the approximation factor
of a greedy algorithm with full information. It is worth noting that this way of comparing an
algorithm to the optimal solution is a novelty in explorable uncertainty as all previous algo-
rithms for adversarial explorable uncertainty (MINSET and other problems) exploit witness
sets. A witness set is a set of queries Q such that each feasible solution has to query at least
one element of Q, which allows to compare an algorithm with an optimal solution.

We also consider the variant of (MINSETIP) under uncertainty with deterministic right-
hand sides. We give a simplified algorithm with improved competitive ratio O(1τ · logm).

6.1.3 Further Previous Work

Since MINSET under uncertainty can be interpreted as both, a query minimization problem
and a covering problem with uncertainty, we in the following summarize related previous
work from both fields.

Previous Related Work on Query Problems

For adversarial MINSET under uncertainty, Erlebach et al. [EHK16] show a (best possible)
competitive ratio of 2d, where d is the cardinality of the largest set. In the lower bound
instances, d ∈ Ω(n). The algorithm repeatedly queries disjoint witness sets of size at most
2d. This result was stated for the setting in which it is not necessary to determine the precise
weight of the minimal set; if the weight has to be determined, the bounds change from 2d to d
(cf. Section 2.3 in Chapter 2).

Further related work on MINSET includes the result by Maehara and Yamaguchi [MY20],
who consider packing ILPs with (stochastic) uncertainty in the cost coefficients, which can
be queried. They present a framework for solving several problems and bound the absolute

152

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

number of iterations that it requires to solve them, instead of the competitive ratio. However,
as we argue down below, their algorithm has competitive ratio Ω(n) for MINSET under
uncertainty, even for uniform distributions. Thus, it does not improve upon the adversarial
lower bound.

Also, Wang et al. [WGW22] consider selection-type problems in a somewhat related
model. In contrast to our setting, they consider different constraints on the set of queries that,
in a way, imply a budget on the number of queries. They solve optimization problems with
respect to this budget, which has a very different flavor than our setting of minimizing the
number of queries.

Furthermore, there is related work in a setting, where a query reveals the existence of
entities instead of numeric values, e.g., the existence of edges in a graph, c.f. [Blu+20;
GV06a; Von07]. For example, Behnezhad et al. [BBD22] showed that vertex cover can be
approximated within a factor of (2 + ϵ) with only a constant number of queried edges per
vertex. As edges define constraints, the result considers uncertainty only in the right-hand
sides.

Comparison with Maehara and Yamaguchi [MY20]

We consider the framework by Maehara and Yamaguchi [MY20] on the set selection problem.
Since their algorithm is designed for maximization problems, we consider the maximization
variant of MINSET, i.e., we have to find the set S ∈ S of maximum w(S) and determine the
corresponding weight. We remark that all our results also translate to the maximization variant
(cf. Section 6.6).

The algorithm by Maehara and Yamaguchi, in each iteration, solves the LP-relaxation
of the optimistic version of the given ILP, which assumes wi = Ui for all Ii ∈ I. In
this case, the ILP under consideration formalizes the set selection problem (and not the
query minimization problem as formalized by (MINSETIP)). The following LP-relaxation
formulates the optimistic LP for a set selection instance (I,S):

max
∑︁

Ii∈I xi · Ui

s.t.
∑︁

Ii∈S xi ≥ yS · |S| ∀S ∈ S∑︁
Ii∈I xi ≤

∑︁
S∈S yS · |S|∑︁

S∈S yS = 1
0 ≤ xi ≤ 1 ∀Ii ∈ I
0 ≤ yS ≤ 1 ∀S ∈ S

Here variable yS models whether set S is selected as the set of maximum weight (yS = 1)
or not (yS = 0) and the third constraint makes sure that, at least integrally, exactly one set
is selected. The variables xi model whether an interval Ii is part of the selected set or not,
and the first two constraints ensure that (integrally) exactly the members of the selected set
S (with yS = 1) are selected. Note that we use this ILP instead of (SETSELIP) because the
algorithm by Maehara and Yamaguchi requires variables that correspond to elements that
can be queried. The algorithm in each iteration solves the LP-relaxation to obtain an optimal
fractional solution (x, y), and queries each Ii with probability xi.

In the following, we give an instance of the set selection problem under stochastic
explorable uncertainty for which the algorithm has a competitive ratio of Ω(n). Let I =
{I0, . . . , In} with I0 = {n} and Ii = (0, 1 + ϵ), i > 0, for some small ϵ > 0. Let
S = {S1, S2} with S1 = {I0} and S2 = {I1, . . . , In}. Assume uniform distributions and
consider the algorithm that queries the intervals of S2 in an arbitrary order. In expectation,
this algorithm only needs a constant number of queries to solve the instance and prove
w(S1) > w(S2).

153

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

The algorithm by Maehara and Yamaguchi on the other hand, in the first iteration, solves
the LP-relaxation and obtains the optimal solution (x, y) with x0 = 0 and xi = 1 for all
i ≥ 1. This means that all elements of S2 are queried with a probability of 1. Thus, the
algorithm queries at least n elements, which implies a competitive ratio of Ω(n). This means
that applying the algorithm by Maehara and Yamaguchi [MY20] to the set selection problem
does not improve upon the adversarial lower bound.

Previous Work on Covering Problems with Uncertainty

We continue by summarizing previous work on covering problems in different adversarial and
stochastic settings.

In the online version of SETCOVER [Alo+09], we are given a ground set of elements and
a family of subsets of these elements. In contrast to offline SETCOVER, we do not necessarily
have to cover all elements of the ground set. Instead, the members of the ground set that we
do actually have to cover arrive online in an adversarial manner. Whenever an element arrives,
we have to cover it by irrevocably adding a set containing the element to our solution, unless a
previously added set already contains the element. In a sense, online SETCOVER is a variant
of (MINSETIP) under uncertainty, where only the right-hand sides are uncertain in {0, 1}
and all left-hand side coefficients are known and either one or zero. In contrast to MINSET

under uncertainty, the adversary for online SETCOVER is in a sense more powerful when
selecting the right-hand sides as they do not depend on a common weight w∗. Because of
these differences, online SETCOVER has a very different flavor to MINSET under uncertainty.
The same holds for the stochastic version of online SETCOVER [GKL23; Gra+13], where the
subset of elements to be covered is drawn from a probability distribution.

A different stochastic variant of SETCOVER considers a two-stage version of the prob-
lem [SS04]. In the first stage, we do not yet know which members of the ground set actually
need to be covered. After the first stage, the elements to be covered are drawn from a probabil-
ity distribution and in the second stage we have full knowledge of the elements to be covered.
The crux of this two-stage variant is that adding sets to the solution in the first stage can be
cheaper than adding them to the solution during the second stage. This again leads to a very
different flavor than our setting.

While these SETCOVER variants consider uncertainty in the set of elements that need to be
covered, Goemans and Vondrák [GV06b] consider a variant where the elements to be covered
are certain but there is uncertainty in which elements are covered by the sets. For each set, a
vector describing the elements that are covered by the set is drawn according to a probability
distribution. This corresponds to a variant of (MINSETIP), where all right-hand sides are one
but the left-hand side coefficients are uncertain in {0, 1}. Even in comparison to MINSET

under uncertainty with deterministic right-hand sides, there are several further difference
besides the restriction of the coefficients to values in {0, 1}. For one, [GV06b] assumes
access to the probability distributions. In particular, their algorithms are able to compute
certain expected values. For our stochastic setting, we do not have sufficient information
to compute expected values and the adversary still has some power in the selection of the
unknown distributions as long as it respects the balancing parameter. On the other hand, their
SETCOVER variant allows some distributions that are not possible in MINSET. In particular,
an interval Ii in MINSET has the same coefficient ai = (wi−Li) in each constraint for a set S
with Ii ∈ S. Such a restriction does not exist in the problem considered in [GV06b]. This in a
sense makes their problem incomparable to MINSET under uncertainty. Furthermore, [GV06b]
analyzes the approximation ratio instead of the competitive ratio. That is, they compare the
expected objective value of an algorithm against the expected objective of the best possible
algorithm instead of the expected optimum. To that end, they give an m-approximation
for the stochastic SETCOVER variant. If sets can be added to the solution multiple times

154

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

while each time drawing a new realization from the same distribution, they give a O(logm)-
approximation.

Besides related work on stochastic SETCOVER variants, there is previous related work
on the more general (stochastic) submodular covering problem (cf., e.g., [Wol82; AAK19;
GGN21]). In the submodular covering problem, we are given a ground set of elements E
and a submodular function f : 2E → N+. The goal is to find a subset S ⊆ E of minimum
cardinality such that f(S) = f(E). This non-stochastic submodular covering problem
contains offline MINSET [Wol82], i.e., (MINSETIP) with full knowledge of the coefficients
and right-hand sides. To see this, consider an instance (I,S) of MINSET. We can interpret
the intervals as the ground set of elements, i.e., E = I and use the submodular function
f(Q) =

∑︁
S∈S min{∑︁Ii∈S∩Qwi − Li, w

∗ − LS} for Q ⊆ E. Then, f(E) is the sum of
right-hand sides of (MINSETIP) and f(Q) = f(E) holds for a subset Q ⊆ I = E if and
only if Q is feasible for (MINSETIP). The best-known algorithm for the submodular covering
problem achieves an approximation ratio of O(log(f(E))) [Wol82] and no polynomial-time
algorithm can be better unless P=NP [DS14].

In the stochastic submodular covering problem, we are given random variables X1, . . . , Xn

that independently realize to subsets of E according to known probability distributions. The
task is to sequentially and irrevocably add random variables Xi to the solution X until
f(
⋃︁

Xi∈X Xi) = f(E). Whenever a random variable Xi is added to the solution, the real-
ization of the variable is revealed. While this general setting is similar to MINSET under
uncertainty, there are some differences. In the stochastic submodular covering problem, the
value f(

⋃︁
Xi∈X Xi) only depends on the realizations of the random variables in X . For the

submodular function defined above for a MINSET instance, the function value f(Q) depends
also on the uncertain w∗ and, therefore, on elements outside of Q. Furthermore, as the intervals
I in a MINSET instance are continuous, modeling them as a stochastic submodular covering
instance would require some form of discretization. Independent of these differences, all
results on the stochastic submodular covering problem (to our knowledge) assume known
distributions and actively use them, which is in contrast to our stochastic setting. Furthermore,
all these results analyze the approximation ratio instead of the competitive ratio. Thus, exist-
ing results for the stochastic submodular covering problem cannot directly be applied to our
stochastic setting. This also holds for a range of problem variants that have been considered in
the literature (see, e.g., [GK11; KNN17; INZ16; DHK16; NKN20]).

6.1.4 Outline

To start the rest of the chapter, we, in Section 6.2, consider the special case of MINSET under
uncertainty with pairwise disjoint sets. For this special case, we give a lower bound of 2

τ on the
competitive ratio and a matching upper bound. These bounds nicely illustrate the challenges
caused by the uncertainty and the techniques that we use to tackle them, also later on for the
general problem.

Afterwards, in Section 6.3, we move on to the general MINSET and discuss the hardness of
approximation as well as approximations of the offline problem variant. Based on observations
for the offline problem, we introduce an algorithmic framework that can be used to solve
MINSET under uncertainty.

For the remaining chapter, we show how to implement the framework for MINSET under
uncertainty with deterministic right-hand sides (Section 6.4) and for the general MINSET

(Section 6.5). Using these implementations and our observations for the special case of disjoint
sets, we prove our algorithmic results.

155

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

6.2 Disjoint MINSET

Consider the special case of MINSET where all sets are pairwise disjoint, i.e., S ∩ S′ = ∅
for all S, S′ ∈ S with S ̸= S′. We call this special case disjoint MINSET. Disjoint MINSET

is of particular interest as it gives lower bounds for several problems under adversarial
explorable uncertainty, cf. [EHK16; Mei18]. To illustrate the challenges posed by having
stochastic uncertainty in the input, we give the following lower bound. Recall that the
balancing parameter is defined as τ = minIi∈I τi, where τi is the probability that wi is
larger than the center of Ii. We use ALG and OPT to refer to an algorithm and an optimal
solution, respectively. Slightly abusing the notation, we use the same terms to also refer to the
corresponding numbers of queries.

First, we show the following lower bound that even holds for known probability distribu-
tions. Afterwards, we prove a slightly stronger bound exploiting unknown distributions.

Theorem 6.2.1. For any τ > 0, no deterministic algorithm for MINSET under uncertainty
has a competitive ratio better than 1

τ , even if all given sets are pairwise disjoint and the
distributions are known.

Proof. Consider an instance with the set of uncertainty intervals I = {I0, I1, . . . , In} with
I0 = {0.65} and Ii = (0, 1) for all i ̸= 0, and sets S = {S1, S2} with S1 = {I0} and
S2 = I \ {I0}. See Figure 6.4 for an illustration. Define the distributions di with i ̸= 1
as di(a) = (1 − τ) if a = ϵ, di(a) = τ if a = 0.7 and di(a) = 0 otherwise, for some
infinitesimally small ϵ > 0.

If there exists some Ii ∈ S2 with wi = 0.7, then OPT = 1 as a query to that interval
already proves that S1 is the set of minimum weight since w(S1) = 0.65 < 0.7. Otherwise,
OPT = n. Therefore, E[OPT] = (1− (1− τ)n) + (1− τ)n · n and limn→∞ E[OPT] = 1.

Since I0 is trivial and all Ii with i ̸= 0 are identical with the same distribution, each
deterministic algorithm ALG will just query the elements of S2 in some order until it either
reaches an Ii with wi = 0.7 or has queried all intervals. This implies that ALG is a geometrical
distribution with success probability τ and, therefore, E[ALG] = min{n, 1τ }. For n towards
infinity, we get

lim
n→∞

E[ALG]

E[OPT]
=

1

τ
.

.

Weight
0 1 2 3n− 1 n

S1

In
In−1

•
•
•

I3
I2
I1

IS1

I0 S2

w(S2)

FIGURE 6.4: Lower bound example for the set selection problem under explorable un-
certainty consisting of the intervals I = {I0, . . . , In} and the sets S = {S1, S2} with
S1 = {I1, . . . , In}, S2 = {I0}, I0 = {0.65} and Ii = (0, 1) for i ∈ {1, . . . , d}.

156

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

Next, we show a slightly stronger bound for unknown distributions. The lower bound
instance heavily exploits that, for unknown distributions, the adversary still has some power
when selecting the probability distributions.

Theorem 6.2.2. For any τ > 0, no deterministic algorithm for MINSET under uncertainty
has a competitive ratio better than 2

τ , even if all given sets are pairwise disjoint.

Proof. Consider the same instance as in the proof of Theorem 6.2.1 but with different, now
unknown distributions. Since the distributions are unknown, an algorithm cannot distinguish
the intervals I1, . . . , In even if they have different distributions. This means that the adversary
still has some power and can set the distributions in a worst-case manner for the algorithm, as
long as the distributions respect balancing parameter τ .

To that end, consider a fixed value τ and an arbitrary deterministic algorithm ALG. As
ALG cannot distinguish the intervals I1, . . . , In, we can assume w.l.o.g. that it queries the
intervals in order of their indices until the instance is solved. For all 0 < i < n, the adversary
sets the distribution to di(a) = τ for a = 0.51, di(a) = (1 − τ) for a = ϵ and di(a) = 0
otherwise, for some infinitesimally small ϵ > 0. Finally, the adversary sets distribution dn
to dn(a) = 1 for a = 0.7 and dn(a) = 0 otherwise. These distributions clearly respect the
balancing parameter τ .

For these distributions, we always have w(S2) > w(S1) as wn > w(S1) holds with a
probability of one. Thus, every algorithm has to query until the lower limit of set S2 increases
to a value of at least w(S1). For ALG, this is the case once it found two intervals Ii with
i < n and wi = 0.51 or once it queries interval In in case no two such intervals exist. Thus,
the expected query cost is E[ALG] ≥ min{ 2τ , n}. The optimal solution on the other hand
only queries In and is done after a single query. Therefore, E[OPT] = 1 and the competitive
ratio of ALG is at least min{ 2τ , n}. We can conclude the theorem by picking a sufficiently
large value for n.

We continue by giving a quite simple algorithm for disjoint MINSET that matches the
lower bound of Theorem 6.2.2.

In disjoint MINSET, each Ii occurs in exactly one constraint for one set S in the cor-
responding (MINSETIP). Thus, each set S defines a disjoint subproblem and the optimal
solution OPT of the instance is the union of optimal solutions for the subproblems. The
optimal solution for a subproblem S is to query the elements Ii of S in order of non-decreasing
(wi − Li) until the sum of those coefficients is at least (w∗ − LS).

Under uncertainty, we adapt this strategy and query in order of non-decreasing (Ui − Li).
While this does not guarantee that we query the interval with maximum (wj − Lj) in S,
it gives us a probability of τ to query an interval Ii such that (wi − Li) is at least half the
maximum (wj − Lj). We will prove that this is sufficient to achieve the guarantee. Since we
do not know w∗, we do not know when to stop querying in a subproblem. We handle this by
only querying in the set S of minimum current lower limit as the subproblem for this set is
clearly not yet solved. Algorithm 18 formalizes this approach.

Theorem 6.2.3. There is an algorithm for disjoint MINSET under uncertainty with competitive
ratio at most 2

τ .

Proof. Consider a fixed realization of weights wi and the corresponding (MINSETIP) instance.
For each S ∈ S, a feasible solution Q must satisfy

∑︁
Ii∈S∩Q(wi − Li) ≥ (w∗ − LS). This

implies |Q ∩ S| ≥ |P ∗
S | for the minimum cardinality prefix P ∗

S of I1, . . . , Ik that satisfies∑︁
Ii∈P ∗

S
(wi − Li) ≥ w∗ − LS , where S = {I1, . . . , Ik} and all Ii are indexed by non-

increasing wi − Li. As the sets are disjoint, we get OPT =
∑︁

S∈S |P ∗
S |.

Using this, we show that Algorithm 18 satisfies the theorem. To this end, let Xj be a
random variable denoting the number of queries in iteration j of the outer while-loop of

157

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

Algorithm 18: Algorithm for disjoint MINSET under uncertainty.
Input: Instance of MINSET under uncertainty with pairwise disjoint sets.

1 Q← ∅;
2 while the problem is not solved do
3 Smin ← argminS∈S LS(Q);
4 repeat
5 Ii ← argmaxIj∈Smin\Q Uj − Lj ; Query Ii; Q← Q ∪ {Ii};
6 until wi − Li ≥ 1

2 · (Ui − Li) or Smin has been completely queried;

Algorithm 18 and let Yj be an indicator variable indicating whether iteration Yj is actually
executed (Yj = 1) or not (Yj = 0).

We prove the theorem by separately showing
∑︁

j P[Yj = 1] ≤ 2 · E[OPT] and E[Xi |
Yj = 1] ≤ 1

τ . Since

E[ALG] =
∑︂
j

E[Xj] =
∑︂
j

P[Yj = 0]E[Xj | Yj = 0] +
∑︂
j

P[Yj = 1]E[Xj | Yj = 1]

=
∑︂
j

P[Yj = 1]E[Xj | Yj = 1]

follows from E[Xj | Yj = 0] = 0 and the law of total expectations, the two inequalities imply
the theorem.

Note that
∑︁

j P[Yj = 1] is just the expected number of iterations of the algorithm. Thus,
if we show for each realization of precise weights that the number of iterations is at most
2 ·OPT, we directly get

∑︁
j P[Yj = 1] ≤ 2 · E[OPT].

Consider a fixed realization. For each S, let hS denote the number of iterations with
Smin = S. We claim that hS ≤ 2 · |P ∗

S |. Then, OPT ≥∑︁S∈S |P ∗
S | implies

∑︁
j P[Yj = 1] ≤

2 · E[OPT].
Let j be an iteration with Smin = S, let Gj denote the queries of this iteration and let Qj

denote the set of all previous queries. Observe that P ∗
S \Qj ̸= ∅. Otherwise, the definition of

P ∗
S would either imply that the lower limit of S after querying Qj is larger than w∗, which

contradicts Smin = S, or that the lower limit is equal to w∗, which implies that the problem is
already solved.

We argue that we have
∑︁

Ii∈Gj
wi − Li ≥ 1

2 · maxIi∈S\Qj
wi − Li. Intuitively, this

inequality means that ALG in each iteration with Smin = S increases LS by at least half as
much as even OPT could. In case that interval Ii = argmaxIi∈S\Qj

wi − Li is contained in
Gj , the inequality clearly holds. Otherwise, let Ii′ denote the last element that is queried in
the iteration. Then, wi′ − Li′ ≥ 1

2 · (Ui′ − Li′) ≥ 1
2 ·maxIi∈S\Qj

wi − Li, where the first
inequality holds as Ii′ is the last query of the iteration and the second inequality holds by the
order in which the elements of S are queried by the algorithm. Thus, this last interval Ii′ alone
satisfies the inequality.

The inequality suffices to conclude that
∑︁

Ii∈Qj∩S wi−Li ≥
∑︁

Ii∈P ∗
S
wi−Li holds after

at most 2 · |P ∗
S | iterations with Smin = S. As Smin ̸= S holds for all following iterations, the

claim hS ≤ 2 · |P ∗
S | follows.

Next, we show the second inequality, E[Xj | Yj = 1] ≤ 1
τ . If an iteration j of the

outer while-loop is executed (Yj = 1), the repeat statement queries intervals Ii until either
(wi − Li) ≥ 1

2 · (Ui − Li) or Smin ⊆ Q. Thus, it terminates at the latest when it finds an
Ii with (wi − Li) ≥ 1

2 · (Ui − Li). The number of queries until such an interval occurs is
described by a geometric distribution with success probability at least τ . So, in expectation,
this number is at most 1

τ and we can conclude E[Xj | Yj = 1] ≤ 1
τ .

158

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

We remark that Theorems 6.2.2 and 6.2.3 imply that, even with full knowledge of the
distributions, the competitive ratio for disjoint MINSET cannot be improved by more than a
factor of two compared to the ratio with unknown distributions.

6.3 Algorithmic framework

In the previous section, we have seen an algorithm for disjoint MINSET under uncertainty
with a tight competitive ratio. The key observation that allowed us to achieve that ratio was
the simple characterization of an (offline) optimal solution. In this section, we consider the
offline variant of the general MINSET and give inapproximability results that prevent such
simple characterizations for optimal solutions of the general problem. Thus, we need alter-
native algorithms and, based on observations for the offline problem, present an algorithmic
framework that can be used to solve MINSET under uncertainty.

6.3.1 Offline Problems and Hardness of Approximation

We refer to the problem of solving (MINSETIP) with full knowledge of the precise weights
wi (and w∗) as offline problem. This means that we have full knowledge of all coefficients of
the ILP. For MINSET under uncertainty, we say that a solution is optimal, if it is an optimal
solution for the corresponding offline problem. We use OPT to refer to an optimal solution
and, slightly abusing the notation, to its objective value.

Offline MINSET contains the classical SETCOVER problem and, thus, it is as hard to
approximate. This result transfers to the stochastic setting, even for uniform distributions. Re-
sults by Dinur and Steurer [DS14] imply the following, as we formally prove in Section 6.3.3.

Theorem 6.3.1. For any fixed α > 0, it is NP-hard to compute a query strategy that is
(1 − α) · ln(m − 1)-competitive for MINSET under uncertainty even if the precise weight
wi of each Ii is drawn independently and uniformly at random from (Li, Ui). The same
inapproximability holds also for offline MINSET.

On the positive side, we can approximate offline MINSET by adapting covering results
(see, e.g.,[Chv79; Dob82; RV98; KY01; KY05]). In particular, we want to use greedy
algorithms that iteratively and irrevocably add elements to the solution that are selected by a
certain greedy criterion. Recall that “adding an element to the solution” corresponds to both,
setting the variable xi of an interval Ii ∈ I in (MINSETIP) to one and querying Ii. While we
are technically not restricted to greedy algorithms when solving offline MINSET, our goal
is to later on generalize the offline algorithm to the setting with uncertainty and irrevocable
decisions. Hence, greedy algorithms seem to be a suitable choice.

Since the greedy criterion for adding an element depends on previously added elements,
we define a version of (MINSETIP) that is parametrized by the set Q ⊆ I of elements that
have already been added to the solution and adjust the right-hand sides to the remaining
covering requirement after adding Q. Recall that ai = wi − Li and bS = w∗ − LS . Here,
bS(Q) = max{bS −

∑︁
Ii∈Q∩S ai, 0} and b(Q) =

∑︁
S∈S bS(Q).

min
∑︁

Ii∈I\Q xi
s.t.

∑︁
Ii∈S\Q xi · ai ≥ bS(Q) ∀S ∈ S

xi ∈ {0, 1} ∀Ii ∈ I \Q
(MINSETIP-Q)

Based on this ILP, we adjust the algorithm by Dobson [Dob82] for the multiset multicover
problem to our setting (cf. Algorithm 19). The algorithm scales the coefficients such that all
non-zero left-hand side coefficients are at least 1. We refer to such instances as scaled. Then
it greedily adds the element to the solution that reduces the right-hand sides the most, i.e.,

159

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

Algorithm 19: Greedy algorithm by Dobson [Dob82] for offline MINSET.
Input: An instance of offline MINSET, i.e., an instance of (MINSETIP)

1 smin = minIi∈I : ai>0 ai; ∀S ∈ S : b′S = bS
smin

; ∀Ii ∈ I : a′i = ai
smin

;
2 while ∃S ∈ S : b′S(Q) ≥ 1 do
3 Ii ← argmaxIj∈I\Q gc(Q, Ij); Query Ii; Q← Q ∪ {Ii};
4 while the problem is not solved do
5 Ii ← argmaxIj∈I\Q gs(Q, Ij); Query Ii; Q← Q ∪ {Ii};

the interval Ii ∈ I \Q that maximizes gc(Q, Ii) = b′(Q)− b′(Q ∪ {Ii}) (a′ and b′ indicate
scaled coefficients). For a subset G ⊆ I, we define gc(Q,G) = b′(Q)− b′(Q ∪G).

After b′S(Q) < 1 for all S ∈ S , we can exploit that all scaled non-zero coefficients a′i are
at least one. This means that adding an element Ii ∈ I \Q satisfies all remaining constraints of
sets S with Ii ∈ S. Thus, the remaining problem reduces to a SETCOVER instance, which can
be solved by using the classical greedy algorithm by Chvatal [Chv79]. This algorithm greedily
adds the element Ii ∈ I \Q that maximizes gs(Q, Ii) = A(Q)−A(Q ∪ {Ii}) with A(Q) =
|{S ∈ S | b′S(Q) > 0}|, i.e., the element that satisfies the largest number of constraints that
are not already satisfied by Q. For a subset G ⊆ I , we define gs(Q,G) = A(Q)−A(Q∪G).

During the course of this chapter, we refer to gc(Q, Ii), gs(Q, Ii), gc(Q,G) and gs(Q,G)
as the greedy values of Ii and G, respectively.

Theorem 6.3.2 (Follows from Dobson [Dob82]). Algorithm 19 is a polynomial-timeO(logm)-
approximation for offline MINSET. The precise approximation factor is ρ(γ) = ⌈ln(γ ·m ·
maxS(w

∗ − LS))⌉ + ⌈ln(m)⌉ with smin = minIi∈I : (wi−Li)>0(wi − Li), γ = 1/smin and
m = |S|.

During the remaining course of the chapter, we will state the competitive ratios of our
algorithms in terms of ρ. To that end, define ρ̄(γ) = ⌈ln(γ ·m·maxS,S′(US−LS′)⌉+⌈ln(m)⌉,
which is an upper bound on ρ(γ). Under uncertainty, we compare against ρ̄ to avoid the
random variable w∗. For constant Ui’s, ρ̄ and ρ are asymptotically the same.

We remark again that the approximation ratio of Algorithm 19 has dependencies on the
numerical input parameter smin and maxS(w

∗−LS). While there exist algorithms that achieve
an approximation ratio ofO(logm) for the offline problem without such dependencies [KY01;
KY05], these algorithms are not greedy and it remains open whether there exist algorithms
with this improved ratio that execute irrevocable decisions, even with full knowledge of the
coefficients. Thus, we consider Algorithm 19 and aim at extending it for the setting under
uncertainty.

6.3.2 Algorithmic framework

We introduce our algorithmic framework that we use to solve MINSET under uncertainty.
Ideally, we would like to apply the offline greedy algorithm. However, since the coefficients
ai = wi − Li and bS = w∗ − LS are unknown, we cannot apply Algorithm 19 to solve
MINSET under uncertainty as we cannot compute the element that maximizes the greedy
value gc or gs.

While we cannot precisely compute the greedy choice, our strategy is to approximate it
and to show that approximating the greedy choice is sufficient to obtain the desired guarantees.
To make this more precise, consider an iterative algorithm for (MINSETIP), i.e., an algorithm
that iteratively adds pairwise disjoint subsets G1, . . . , Gh of I to the solution. For each j,
let Qj =

⋃︁
1≤j′≤j−1Gj′ , i.e., Qj contains the elements that have been added to the solution

before Gj . If the combined greedy value of Gj is within a factor of α to the best greedy value

160

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

for the problem instance after adding Qj , then we say that Gj α-approximates the greedy
choice. The following technical definition makes this more precise and the subsequent lemma
connects the definition to the actual greedy values while taking into account that there are two
different greedy values gc and gs (cf. Algorithm 19).

Definition 6.3.3. For a (MINSETIP) instance with scaled coefficients and optimal solution
OPT, let α ∈ R≥1 and consider the corresponding instance of (MINSETIP-Q) for some
Q ⊆ I. A set G ⊆ I \Q α-approximates the current greedy choice after adding Q if either

1. A(Q ∪G) ≤ (1− 1
α·OPT) ·A(Q) or

2. b′(Q) ≥ 1 and b′(Q ∪G) ≤ (1− 1
α·OPT) · b′(Q).

Intuitively, the two conditions of the following lemma seem like a more appropriate
definition of approximating a greedy choice. While the conditions of the lemma imply
that the definition above is satisfied, in our proofs it will sometimes be easier to directly
show that the definition is satisfied, without using the lemma. Therefore, we use the more
technical Definition 6.3.3 but the lemma captures the intuition behind the definition.

Lemma 6.3.4. For a scaled instance of (MINSETIP), Q ⊆ I, α ≥ 1 and G ⊆ I \Q:

1. If b′S(Q) < 1 for all S ∈ S and gs(Q,G) ≥ 1
α ·maxIi∈I\Q gs(Q, Ii), then G satisfies

the first condition of Definition 6.3.3 and, thus, α-approximates the greedy choice.

2. If b′(Q) ≥ 1 and gc(Q,G) ≥ 1
α · maxIi∈I\Q gc(Q, Ii), then G satisfies the second

condition of Definition 6.3.3 and, thus, α-approximates the greedy choice. This holds
even if some non-zero coefficients a′i are smaller than 1.

Proof. First, assume that b′S(Q) < 1 for all S ∈ S and consider a set G ⊆ I \ Q with
gs(Q,G) ≥ 1

α ·maxIi∈I\Q gs(Q, Ii).
Let I∗ = argmaxIi∈I\QA(Q)−A(Q ∪ {Ii}) = argmaxIi∈I\Q gs(Q, Ii). By assump-

tion b′S(Q) < 1 for all S ∈ S and, as we consider a scaled instance, a′i ≥ 1 for all Ii ∈ I.
Thus, the remaining instance is a set cover instance as adding an interval Ii to the solution
satisfies all constraints S with Ii ∈ S that have not already been satisfied by Q.

Let OPTQ denote the optimal solution for the remaining instance after adding Q to the
solution, i.e., the optimal solution to (MINSETIP-Q). Using a standard set cover argument, we
can observe that A(Q)

OPTQ
≤ A(Q)−A(Q∪{I∗}) as the optimal solution satisfies the remaining

constraints at cost OPTQ, but a single interval can satisfy at most A(Q) − A(Q ∪ {I∗})
constraints. Note that this argument only holds because all left-hand side coefficients are at
least as large as the right-hand sides. Otherwise, adding an interval Ii later, i.e., after Q′ ⊃ Q
has already been added to the solution, could satisfy more constraints, i.e., A(Q)−A(Q ∪
{Ii}) < A(Q′)−A(Q′ ∪ {Ii}). This is one of the reasons why the offline greedy algorithm
uses two greedy criteria.

By assumption and definition of gs, we have α·(A(Q)−A(Q∪G)) ≥ maxIi∈I\QA(Q)−
A(Q∪{Ii}) and, therefore, A(Q)

OPTQ
≤ α·(A(Q)−A(Q∪G)). Rearranging the latter inequality,

we obtain A(Q∪G) ≤ A(Q) ·
(︂
1− 1

αOPTQ

)︂
. Since OPT ≥ OPTQ for the optimal solution

OPT of the complete instance, we get A(Q ∪G) ≤ A(Q) ·
(︁
1− 1

αOPT

)︁
. This implies that

G satisfies the first condition of Definition 6.3.3.
For the second part of the lemma, assume b′(Q) ≥ 1 and consider a set G ⊆ I \Q with

gc(Q,G) ≥ 1
α ·maxIi∈I\Q gc(Q, Ii).

Let I∗ = argmaxIi∈I\Q b′(Q)− b′(Q ∪ {Ii}) = argmaxIi∈I\Q gc(Q, Ii). Observe that
b′(Q)
OPTQ

≤ b′(Q) − b′(Q ∪ {I∗}) as the optimal solution covers the remaining constraints

161

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

at cost OPTQ, but a single interval can decrease the total slack between left-hand and
right-hand sides of (MINSETIP-Q) by at most b′(Q) − b′(Q ∪ {I∗}). By assumption and
definition of gc, we have α · (b′(Q) − b′(Q ∪ G)) ≥ maxIi∈I\Q b′(Q) − b′(Q ∪ {Ii}) and,

therefore, b′(Q)
OPTQ

≤ α · (b′(Q) − b′(Q ∪ G)). Rearranging the latter inequality, we obtain

b′(Q ∪G) ≤ b′(Q) ·
(︂
1− 1

αOPTQ

)︂
. Since OPT ≥ OPTQ for the optimal solution OPT of

the complete instance, we get b′(Q ∪ G) ≤ b′(Q) ·
(︁
1− 1

αOPT

)︁
. This and the assumption

b′(Q) ≥ 1 imply that G satisfies the second condition of Definition 6.3.3. Note that the
argument for the second case does not use that all non-zero coefficients are at least one. Thus,
the statement also holds if there are coefficients 0 < a′i < 1.

With the following lemma, we bound the number of iterations j in which Gj α-approximates
the current greedy choice via an adjusted set cover greedy analysis.

Lemma 6.3.5. Consider an arbitrary algorithm for (MINSETIP) that scales the coefficients
by factor γ and iteratively adds disjoint subsets G1, . . . , Gh of I to the solution until the
instance is solved. The number of groups Gj that α-approximate the current greedy choice
(after adding Qj =

⋃︁
1≤j′≤j−1Gj′) is at most α · ρ(γ) ·OPT.

Proof. We first show that the number of iterations j with b′(Qj) ≥ 1 and b′(Qj ∪ Gj) ≤
(1− 1

α·OPT) · b′(Qj), i.e., the number of iterations that satisfy the second condition of Defini-
tion 6.3.3, is at most α⌈ln(γ ·m ·maxS(w

∗ − LS))⌉ ·OPT.
Let Ḡ1, . . . , Ḡk ⊆ I denote the sets that are added to the solution by the algorithm and

satisfy the second condition of Definition 6.3.3. Assume that the sets are indexed in the order
they are added. For each j ∈ {1, . . . , k}, let Q̄j ⊆ I denote the set of intervals that are added
to the solution before Ḡj . Note that {Ḡ1, . . . , Ḡj−1} ⊆ Q̄j , but Q̄j might contain additional
added groups that just do not satisfy the second condition of Definition 6.3.3.

By assumption, b′(Q̄j ∪ Ḡj) ≤ (1 − 1
α·OPT) · b′(Q̄j). A recursive application of this

inequality and the fact that (1− x) < e−x for all x ∈ R \ {0} implies

b′(Q̄j ∪ Ḡj) ≤ b′(∅) ·
(︃
1− 1

αOPT

)︃j

< b′(∅) · e− j
αOPT .

Thus, after j = α · OPT · ⌈ln b′(∅)⌉ iterations that satisfy the second condition of Def-
inition 6.3.3, we have b′(Q̄j ∪ Ḡj) < b′(∅) · e− ln b′(∅) = 1. But if b′(Q̄j ∪ Ḡj) < 1,
then there can be no further iteration that satisfies the second condition of Definition 6.3.3.
Thus, the number of such iterations is at most α · OPT · ⌈ln b′(∅)⌉. Since b′(∅) is up-
per bounded by γ · m · maxS(w

∗ − LS) as we have m constraints with scaled right-
hand side values of at most γ · maxS(w

∗ − LS), the number of such iterations is at most
α · ⌈ln(γ ·m ·maxS(w

∗ − LS)⌉ ·OPT.
Next, we show that the number of iterations j with A(Qj ∪Gj) ≤ (1− 1

α·OPT) ·A(Qj),
i.e., the number of iterations that satisfy the first condition of Definition 6.3.3, is at most
α⌈ln(m)⌉ ·OPT. The proof is essentially a copy of the previous case.

Let Ḡ1, . . . , Ḡk ⊆ I denote the sets that are added to the solution by the algorithm and
satisfy the first condition of Definition 6.3.3. Assume that the sets are indexed in the order
they are added. For each j ∈ {1, . . . , k}, let Q̄j ⊆ I again denote the set of intervals that
are added to the solution before Ḡj . Note that {Ḡ1, . . . , Ḡj−1} ⊆ Q̄j , but Q̄j might contain
additional sets that just do not satisfy the first condition of Definition 6.3.3.

By assumption, A(Q̄j ∪ Ḡj) ≤ (1 − 1
α·OPT) · A(Q̄j). A recursive application of this

inequality and the fact that (1− x) < e−x for all x ∈ R \ {0} implies

A(Q̄j ∪ Ḡj) ≤ A(∅) ·
(︃
1− 1

αOPT

)︃j

< A(∅) · e− j
αOPT .

162

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

Thus, after j = α·OPT·⌈lnA(∅)⌉ such iterations, we have A(Q̄j∪Ḡj) < A(∅)·e− lnA(∅) = 1.
But if A(Q̄j ∪ Ḡj) < 1, then A(Q̄j ∪ Ḡj) = 0 and the instance is solved and no further
iteration is executed. Since A(∅) is upper bounded by the number of constraints m, the number
of iterations that satisfy the first condition of Definition 6.3.3 is at most α⌈ln(m)⌉ ·OPT.

In total, at most α⌈ln(m)⌉ ·OPT iterations satisfy the first condition of Definition 6.3.3
and at most α · ⌈ln(γ ·m ·maxS(w

∗ − LS)⌉ ·OPT iterations satisfy the second condition
of Definition 6.3.3. In summation, there are at most α · (⌈ln(γ · n ·maxe∈E be)⌉+ ⌈ln(n)⌉) ·
OPT = α · ρ(γ) ·OPT iterations that satisfy Definition 6.3.3.

The lemma states that the number of groups Gj that α-approximate their greedy choice
is within a factor of α of the performance guarantee ρ(γ) of the offline greedy algorithm. If
each Gj α-approximates its greedy choice, the iterative algorithm achieves an approximation
factor of maxj |Gj | · α · ρ(γ). Thus, approximating the greedy choices by a constant factor
using a constant group size is sufficient to only lose a constant factor compared to the offline
greedy algorithm.

This insight gives us a framework to solve MINSET under uncertainty. Recall that the
wi’s (and by extension the ai’s and bS’s) are uncertain and only revealed once we irrevocably
add an Ii ∈ I to the solution. We refer to a revealed wi as a query result, and to a fixed set of
revealed wi’s for all Ii ∈ I as a realization of query results. Consider an iterative algorithm.
The sets Gj can be computed and queried adaptively and are allowed to depend on (random)
query results from previous iterations. Hence, Xj = |Gj | is a random variable. Let Yj be an
indicator variable denoting whether the algorithm executes iteration j (Yj = 1) or terminates
beforehand (Yj = 0). We define the following class of iterative algorithms and show that
algorithms from this class achieve certain guarantees.

Definition 6.3.6. An iterative algorithm is (α, β, γ)-GREEDY if it satisfies:

1. For every realization of query results; each Gj α-approximates the greedy choice after
querying Qj for the instance with coefficients scaled by γ.

2. E[Xj | Yj = 1] ≤ β holds for all iterations j.

Theorem 6.3.7. Each (α, β, γ)-GREEDY algorithm for MINSET under uncertainty achieves
a competitive ratio of α · β · ρ̄(γ) ∈ O(α · β · log(m)).

Proof. Consider an (α, β, γ)-GREEDY algorithm ALG for MINSET. The expected cost of
ALG is E[ALG] =

∑︁
j E[Xj]. Using the total law of expectations, we get

E[ALG] =
∑︂
j

P[Yj = 1]E[Xj | Yj = 1] + P[Yj = 0]E[Xj | Yj = 0]

=
∑︂
j

P[Yj = 1]E[Xj | Yj = 1],

where the last inequality holds because E[Xj | Yj = 0] = 0 (if the algorithm terminates
before iteration j, then it adds no more elements to the solution and, thus, Xj = 0). By the
second property of Definition 6.3.6, this implies E[ALG] ≤ β ·∑︁j P[Yj = 1].

Thus, it remains to bound
∑︁

j P[Yj = 1], which corresponds to the expected number of
iterations of ALG. Consider a fixed realization of query results, then, by the first property of
(α, β, γ)-GREEDY, each Gj α-approximates its greedy choice for the (MINSETIP) instance
of the realization scaled by factor γ. Then, Lemma 6.3.5 implies that the number of iterations
is at most α · ρ(γ) ·OPT, which is upper bounded by α · ρ̄(γ) ·OPT. As this upper bound on
the number of iterations holds for every realization and OPT is the only random variable of
that term (since we substituted ρ with ρ̄), we can conclude

∑︁
j P[Yj = 1] ≤ α · ρ̄(γ) ·E[OPT],

which implies E[ALG] ≤ α · β · ρ̄(γ) · E[OPT].

163

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

6.3.3 Proof of the Hardness of Approximation

In the following, we show that (MINSETIP) is not only a special case of the multiset multicover
problem but also contains the hard instances of this problem.

Erlebach et al. [EHK16] showed that offline MINSET, for the problem variant where it
is not necessary to compute the weight w∗, is NP-hard via reduction from vertex cover. In
the reduction by [EHK16] all intervals of the set S∗ with w(S∗) = w∗ are trivial and, thus,
the result translates to the problem variant where one has to compute w∗. In the following,
we strengthen this result by showing that the offline problem is as hard to approximate
as SETCOVER.

In SETCOVER, we are given a set of elements U = {1, . . . , n} and a family of sets
S̄ = {S̄1, . . . , S̄m} with S̄j ⊆ U . The goal is to find a subset H ⊆ S̄ of minimum cardinality
such that

⋃︁
S̄j∈H S̄j = U .

Theorem 6.3.8. There is an approximation-factor preserving reduction from SETCOVER to
offline MINSET.

Proof. Given an instance (U, S̄) of SETCOVER, we construct an offline MINSET instance as
follows:

1. Add a trivial interval Ir = {wr}.

2. Add a single set C = {Ir}.

3. For each j ∈ U , add a set Sj .

4. For each S̄i ∈ S̄:

(a) Add an interval Ii = (Li, Ui) with Li = 0, Ui = wr + δ and wi = wr + ϵ for a
common δ > ϵ > 0 and some infinitesimally small ϵ > 0.

(b) For each j ∈ S̄i, add interval Ii to set Sj .

This reduction clearly runs in polynomial time. To finish the proof, we show the following
claim: There is a SETCOVER solution H of cardinality k if and only if there is a feasible
query set Q for the constructed offline MINSET instance with |Q| = k.

By definition of the constructed instance, set C = {Ir} is the set of minimum weight
w∗ = wr. Each feasible query set Q for the offline MINSET instance must prove that
LS(Q) ≥ wr holds for each S ∈ S \ {C}. Recall that LS(Q) is the lower limit of S after
querying Q. By definition of the constructed intervals and sets, a query set Q is feasible if and
only if |Q ∩ S| ≥ 1 for each S ∈ S \ {C}, i.e., Q has to contain at least one element of each
S ∈ S \ {C}.

For the first direction, consider an arbitrary set cover H for the given SETCOVER instance
and construct Q = {Ii | S̄i ∈ H}. Clearly |Q| = |H|. Since H is a set cover, each j ∈ U
is contained in at least one S̄i ∈ H . If j ∈ U is contained in S̄i, then, by construction, Ii is
contained in Sj . Thus, as H covers all elements j ∈ U , set Q contains at least one member of
each Sj ∈ S \ {C} and, therefore, is a feasible query set.

For the second direction, consider an arbitrary feasible query set Q of the constructed
instance and construct H = {S̄i | Ii ∈ Q}. Clearly, |Q| = |H|. Since Q is feasible, it
contains at least one member of each Sj ∈ S \ {C}. If Ii ∈ Sj is contained in Q, then,
by construction, set S̄i ∈ H covers element j. As Q contains at least one member of each
Sj ∈ S \ {C}, it follows that H covers U .

Dinur and Steurer [DS14] showed that it is NP-hard to approximate SETCOVER within
a factor of (1− α) · lnn for any α > 0, where n is the number of elements in the instance,

164

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

Algorithm 20: MINSET with deterministic right-hand sides.
Input: Instance of MINSET with deterministic right-hand sides.

1 Q = ∅; Scale a and b by 2
smin

to a′ and b′ for smin = minIi∈I : Ui−Li>0 Ui − Li;
2 while the problem is not solved do
3 if b′(Q) ≥ 1 then g = ḡc else g = ḡs;
4 repeat
5 Ii ← argmaxIj∈I\Q g(Q, Ij); Query Ii; Q← Q ∪ {Ii};
6 until the problem is solved or wi − Li ≥ 1

2 · (Ui − Li);

via a reduction running in time n1/α. Consider the construction of Theorem 6.3.8. Since
the sets in the constructed offline MINSET instance correspond to the elements in the input
SETCOVER instance, the construction implies the following corollary. Note that the corollary
uses ln(m− 1) instead if ln(m) because the reduction introduces the extra set C.

Corollary 6.3.9. For every α > 0, it is NP-hard to approximate offline MINSET within a
factor of (1 − α) · ln(m − 1), where m = |S| is the number of sets. The reduction runs in
time m1/α.

We show that Theorem 6.3.8 and Corollary 6.3.9 apply also to MINSET under stochastic
explorable uncertainty, even if the precise weight wi of each Ii is drawn independently and
uniformly at random from (Li, Ui).

Theorem 6.3.1. For any fixed α > 0, it is NP-hard to compute a query strategy that is
(1 − α) · ln(m − 1)-competitive for MINSET under uncertainty even if the precise weight
wi of each Ii is drawn independently and uniformly at random from (Li, Ui). The same
inapproximability holds also for offline MINSET.

Proof. The hardness of approximation for offline MINSET follows directly from Corol-
lary 6.3.9.

We continue to show the statement on MINSET under uncertainty with uniform distri-
butions. Consider the reduction of Theorem 6.3.8 with wr towards 0 and/or δ towards∞.
With wr running towards 0 and/or δ running towards∞, the probability that it is sufficient
to query one Ii ∈ Sj to show that wr ≤ LSj (Q), for some query set Q, goes towards 1.
Thus, the probability that any set Q that contains at least one member of each S ∈ S is
feasible goes towards one as well. Thus, limwr→0 E[OPT] = limδ→∞ E[OPT] = |H∗|,
where H∗ is the optimal solution for the input SETCOVER instance. Therefore, by Theo-
rem 6.3.8, in order to be ((1− α) · lnm)-competitive, the query strategy has to compute an
((1− α) · lnn)-approximation for set cover. This implies NP-hardness.

6.4 MINSET with Deterministic Right-Hand Sides

We consider a variant of MINSET under uncertainty, where the right-hand sides bS of the
ILP representation (MINSETIP) are deterministic and explicit part of the input. Thus, only
the coefficients ai = (wi − Li) remain uncertain within the interval (0, Ui − Li). For this
problem variant, it can happen that the instance has no feasible solution. In that case, we
require every algorithm (including OPT) to reduce the covering requirements as much as
possible. As we consider the stochastic problem variant, recall that the balancing parameter is
defined as τ = minIi∈I τi for τi = P[wi ≥ Ui+Li

2].

Theorem 6.4.1. For τ > 0. There is an algorithm for MINSET under uncertainty with
deterministic right-hand sides and a competitive ratio of 2

τ · ρ(γ) ∈ O(1τ · logm) with
γ = 2/smin for smin = minIi∈I : Ui−Li>0 Ui − Li.

165

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

The algorithm of the theorem loses only a factor 2
τ compared to the greedy approximation

factor ρ(γ) on the corresponding offline problem. We show the theorem by proving that
Algorithm 20 is an (α, β, γ)-GREEDY algorithm for α = 2, β = 1

τ and γ = 2
smin

with
smin = minIi∈I : Ui−Li>0 Ui−Li. Then, Theorem 6.3.7 implies the theorem. We remark that
we scale by 2

smin
instead of 1

smin
because of technical reasons that will become clear in the

proof of the theorem.
The algorithm scales the coefficients by factor γ; we use a′ and b′ to refer to the scaled

coefficients. The idea of Algorithm 20 is to execute the greedy Algorithm 19 under the
assumption that ai = Ui − Li (and a′i = γ(Ui − Li)) for all Ii ∈ I that were not yet added to
the solution. As ai = (wi − Li) ∈ (0, Ui − Li), this means that we assume ai to be slightly
larger than its largest possible value. Consequently, smin is the smallest (non-zero) coefficient
ai under this assumption. The algorithm computes the greedy choice based on the optimistic
greedy values

ḡc(Q, Ii) =
∑︂

S∈S : Ii∈S
b′S(Q)−max{0, b′S(Q)− γ(Ui − Li)}

(if b′(Q) ≥ 1) and

ḡs(Q, Ii) = |{S ∈ S : Ii ∈ S | b′S(Q) > 0 ∧ b′S(Q)− γ(Ui − Li) ≤ 0}|

(otherwise). That is, the greedy values under the assumption ai = Ui − Li. We call these
values optimistic as they might overestimate but never underestimate the actual greedy values.
For subsets G ⊆ I, we define ḡs(Q,G) and ḡc(Q,G) analogously.

In contrast to gs and gc, Algorithm 20 has sufficient information to compute ḡs and ḡc,
and, therefore, the best greedy choice based on the optimistic greedy values. The algorithm
is designed to find, in each iteration, an element Ii with gc(Q, Ii) ≥ 1

2 · ḡc(Q, Ii) for the
current Q (or analogously for ḡs and gs). We show that (i) this ensures that each iteration
2-approximates the greedy choice and (ii) that finding such an element takes only 1

τ attempts
in expectation.

Proof of Theorem 6.4.1. Let j be an arbitrary iteration of the outer while-loop, Xj denote
the number of queries during the iteration, and Yj indicate whether the algorithm executes
iteration j (Yj = 1) or not (Yj = 0).

Assuming Yj = 1, the algorithm during iteration j executes queries to elements Ii

until either wi − Li ≥ 1
2(Ui − Li) or the problem is solved. Since wi ≥ (Ui+Li)

2 implies
wi−Li ≥ 1

2(Ui−Li) and P[wi ≥ (Ui+Li)
2] ≥ τ holds by assumption, the number of attempts

until the current Ii satisfies the inequality follows a geometric distribution with success
probability at least τ . Hence, E[Xj | Yj = 1] ≤ 1

τ ; proving Property 2 of Definition 6.3.6.
We continue by proving Property 1 of Definition 6.3.6. Consider a fixed realization. Let

Ḡj denote the queries of iteration j except the last one and let Ij̄ denote the last query of
iteration j. Then Gj = Ḡj ∪ {Ij̄} is the set of queries during the iteration. Finally, let Qj

denote the set of queries before iteration j. We show that Gj 2-approximates the greedy
choice of the scaled instance, which implies Property 1 of Definition 6.3.6.

If the iteration solves the problem, then Gj clearly 1-approximates the greedy choice and
we are done. Thus, assume otherwise. We distinguish between the two cases (1) b′(Qj) ≥ 1
and (2) b′(Qj) < 1.

Case (1): We show first that Gj 2-approximates the greedy choice if b′(Qj) ≥ 1. In
this case, we have g = ḡc (cf. Line 3). By choice of Ij̄ , we have ḡc(Qj ∪ Ḡj , Ij̄) =
maxIi∈I\(Qj∪Ḡj)

ḡc(Qj ∪ Ḡj , Ii), i.e., Ij̄ has the best optimistic greedy value when it is
chosen.

166

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

As the iteration does not solve the instance, we have (wj̄ − Lj̄) ≥ 1
2(Uj̄ − Lj̄) by Line 6.

This directly implies that the actual greedy value of Ij̄ is at least half the optimistic greedy
value, i.e., gc(Qj ∪ Ḡj , Ij̄) ≥ 1

2 · ḡc(Qj ∪ Ḡj , Ij̄).
Since the best optimistic greedy value is never smaller than the best actual greedy

value, we get gc(Qj ∪ Ḡj , Ij̄) ≥ 1
2 · maxIi∈I\(Qj∪Ḡj)

gc(Qj ∪ Ḡj , Ii). This allows us
to apply Lemma 6.3.4 to get b′(Qj ∪ Ḡj ∪ {Ij̄}) ≤ (1 − 1

2OPT) · b′(Qj ∪ Ḡj). Using
b′(Qj∪Ḡj) ≤ b′(Qj) and Gj = Ḡj∪{Ij̄}, we can conclude b′(Qj∪Gj) ≤ (1− 1

2OPT)·b′(Qj),
which shows that Gj satisfies Condition 2 of Definition 6.3.3.

Case (2): Next, we show that Gj 1-approximates the greedy choice if b′(Qj) < 1. In this
case, we have g = ḡs (cf. Line 3). Similar to the previous case, we have ḡs(Qj ∪ Ḡj , Ij̄) =
maxIi∈I\(Qj∪Ḡj)

ḡs(Qj ∪ Ḡj , Ii), i.e., Ij̄ has the best optimistic greedy value when it is
chosen.

From b′(Qj) =
∑︁

S∈S b′S(Qj) < 1 follows b′S(Qj) < 1 for all S ∈ S. Furthermore,
every element Ii with wi − Li ≥ 1

2Ui − Li satisfies ai = wi − Li ≥ smin
2 and, therefore

a′i = γai =
2

smin
· ai ≥ 1. This means that adding Ii to the solution satisfies all constraints

for sets S with Ii ∈ S that are previously not satisfied. Thus, the optimistic greedy value
ḡs(Qj , Ii) and the actual greedy value gs(Qj , Ii) are the same, i.e., ḡs(Qj , Ii) = gs(Qj , Ii),
as adding Ii cannot satisfy more constraints even if the coefficient ai was Ui − Li. This
observation is crucial for the remaining proof and the reason we scale with γ = 2

smin
instead

of 1
smin

.
Since the iteration does not solve the instance by assumption, we have (wj̄ − Lj̄) ≥

1
2(Uj̄ −Lj̄) by Line 6. As argued above, this implies that Ij̄ has the best optimistic and actual
greedy value when it is added to the solution, i.e., gs(Qj ∪ Ḡj , Ij̄) = ḡs(Qj ∪ Ḡj , Ij̄) =
maxIi∈I\(Qj∪Ḡj)

ḡs(Qj ∪ Ḡj , Ii). Thus, even under the assumption that all elements Ii of
I \ (Qj ∪ Ḡj) have coefficients ai = (Ui − Li), interval Ij̄ achieves the best greedy value.

Let LB denote the optimal solution value for the remaining instance after querying
Qj ∪ Ḡj under exactly this assumption that ai = (Ui − Li) and a′i = γ(Ui − Li) for all
Ii ∈ I \ (Qj ∪ Ḡj). Clearly LB ≤ OPT.

Under the assumption that a′i = γ(Ui−Li) for all Ii ∈ I\(Qj∪Ḡj), the instance is scaled
(i.e., it satisfies that all non-zero coefficients are at least one). Thus, we can apply Lemma 6.3.4
under the assumption to get A(Qj ∪ Ḡj ∪{Ij̄}) ≤ (1− 1

LB) ·A(Qj ∪ Ḡj). Since LB ≤ OPT,
this gives us A(Qj ∪ Ḡj ∪ {Ij̄}) ≤ (1− 1

OPT) ·A(Qj ∪ Ḡj). Using A(Qj ∪ Ḡj) ≤ A(Qj)

and Gj = Ḡj ∪ {Ij̄}, we can conclude A(Qj ∪Gj) ≤ (1− 1
OPT) ·A(Qj), which shows that

Gj satisfies Condition 2 of Definition 6.3.3 for α = 1.

6.5 MINSET under uncertainty

We consider the general MINSET under uncertainty. In contrast to the previous section,
we now also have uncertainty in the right-hand sides of (MINSETIP). Since we consider
the stochastic problem variant, recall that the balancing parameter is τ = minIi∈I τi with
τi = P[wi ≥ Ui+Li

2]. Our goal is to iteratively add intervals from I to the solution until it
becomes feasible for (MINSETIP). To that end, we prove the following main result.

Theorem 6.5.1. For τ > 0. There is an algorithm for MINSET under uncertainty with
a competitive ratio of O(1τ · logm · ρ̄(γ)) ⊆ O(1τ · log2m) with γ = 2/smin for smin =
minIi∈I : (Ui−Li)>0(Ui − Li).

Exploiting Theorem 6.3.7, we prove the statement by providing Algorithm 21 and showing
that it is an (α, β, γ)-GREEDY algorithm for α = 2, γ = 2/smin and β = 1

τ (⌈log1.5(m ·
(2/smin) ·maxIi∈I(Ui−Li))⌉+ ⌈log2(m)⌉). Note that α and γ are defined as in the previous

167

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

section for MINSET with deterministic right-hand sides and will be used analogously. For
β on the other hand, we require a larger value to adjust for the additional uncertainty in the
right-hand sides bS = w∗ − LS for the uncertain w∗. Notice that we do not have sufficient
information to just execute Algorithm 20 for MINSET with deterministic right-hand sides as
we need the right-hand side values to compute even the optimistic greedy values.

To handle this additional uncertainty, we want to ensure that each iteration of our algorithm
α-approximates the greedy choice for each possible value of w∗. To do so, we compute and
query the best optimistic greedy choice for several carefully selected possible values of w∗.

To state our algorithm, we define a parametrized variant of (MINSETIP) that states
the problem under the assumptions that w∗ = w for some w and that the set Q ⊆ I has
already been queried. The coefficients are scaled to a′i = (2/smin)(wi − Li) and b′S(Q,w) =
max{(2/smin)(w−LS)−

∑︁
Ii∈Q∩S a′i, 0}. As before, let b′(Q,w) =

∑︁
S∈S b′S(Q,w) denote

the sum of right-hand sides.

min
∑︁

Ii∈I\Q xi
s.t.

∑︁
Ii∈S\Q xi · a′i ≥ b′S(Q,w) ∀S ∈ S

xi ∈ {0, 1} ∀Ii ∈ I
(MINSETIP-QW)

As the right-hand sides are unknown, we define the greedy values for every possible value
w for w∗. To that end, let gc(Q, Ii, w) = b′(Q,w) − b′(Q ∪ {Ii}, w) and gs(Q, Ii, w) =
A(Q,w) − A(Q ∪ {Ii}, w), where A(Q,w) = |{S ∈ S | b′S(Q,w) > 0}| denotes the
number of constrains in (MINSETIP-QW) that are not yet satisfied. As before, gc(Q, Ii, w)
and gs(Q, Ii, w) describe how much adding Ii to the solution reduces the sum of right-hand
sides and the number of non-satisfied constraints, respectively; now under the assumption
that w∗ = w. For subsets G ⊆ I \ Q, we define the greedy values in the same way, i.e.,
gs(Q,G,w) = A(Q,w)−A(Q ∪G,w) and gc(Q,G,w) = b′(Q,w)− b′(Q ∪G,w).

Since our algorithm again does not have sufficient information to compute the precise
greedy values gs(Q, Ii, w) and gc(Q, Ii, w) even for a fixed w, we again use the optimistic
greedy values defined in the same way as in the previous section. That is

ḡc(Q, Ii, w) =
∑︂

S∈S : Ii∈S
b′S(Q,w)−max{0, b′S(Q,w)− γ(Ui − Li)}

and

ḡs(Q, Ii, w) = |{S ∈ S : Ii ∈ S | b′S(Q,w) > 0 ∧ b′S(Q,w)− γ(Ui − Li) ≤ 0}|.

For subsets G ⊆ I \Q, the optimistic greedy values are defined analogously.
Similar to Algorithm 20, we would like to repeatedly compute and query the best optimistic

greedy choice until the queried Ii satisfies wi − Li ≥ Ui−Li
2 (cf. the repeat-statement). How-

ever, we cannot decide which greedy value, ḡc or ḡs, to use as deciding whether b′S(Q,w∗) < 1
depends on the unknown w∗. Instead, we compute and query the best optimistic greedy choice
for both greedy values (cf. the for-loop). Even then, the best greedy choice still depends on
the unknown right-hand sides. Thus, we compute and query the best optimistic greedy choice
for several carefully selected values w (cf. the inner while-loop) to make sure that the queries
of the iteration approximate the greedy choice for every possible w∗. Additionally, we want to
ensure that we use at most β queries in expectation within an iteration of the outer while-loop.

To illustrate the ideas of the algorithm, consider an iteration of the outer while-loop. In
particular, consider the for-loop iteration with g = ḡc within this iteration. Let Q′ denote the
set of queries that were executed before the start of the iteration. Since we only care about
the greedy value gc if there exists some S ∈ S with b′S(Q

′) ≥ 1 (otherwise we use ḡs and gs

168

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

Algorithm 21: Algorithm for MINSET under uncertainty.
Input: Instance of MINSET under uncertainty.

1 Scale all coefficients with γ = 2/smin for smin = minIi∈I : (Ui−Li)>0(Ui − Li);
2 Q← ∅, wmin← minimum possible value w∗ (keep up-to-date);
3 while the problem is not solved do
4 foreach g from the ordered list ḡc, ḡs do
5 d← 1; Q′ ← Q;
6 if g = ḡc then wmax ← max possible value w∗;
7 else wmax ← max w s.t. b′S(Q,w) < 1 for all S ∈ S;
8 while ∃wmin ≤ w ≤ wmax such that maxIh∈I\Q g(Q, Ih, w) ≥ d do
9 repeat

10 w ← min wmin ≤ w ≤ wmax s.t. maxIh∈I\Q g(Q,w, Ih) ≥ d ;
11 Ii ← argmaxIh∈I\Q g(Q, Ih, w); Query Ii; Q← Q ∪ {Ii};
12 Q1/2 ← {Ij ∈ Q \Q′ | wj − Lj ≥ Uj−Lj

2 };
13 if g = ḡc then d← gc(Q

′, Q1/2, w) else d← gs(Q
′, Q1/2, w);

14 until wi − Li ≥ Ui−Li
2 or ∄w ≤ wmax : maxIh∈I\Q g(Q,w, Ih) ≥ d ;

instead), we assume that this is the case. If not, we use a separate analysis for the for-loop
iteration with g = ḡs.

Our goal for the iteration is to query a set of intervals Q̄ that 2-approximates the best
greedy choice I∗ after querying Q′, i.e., it has a greedy value gc(Q′, Q̄, w∗) ≥ 1

2gc(Q
′, I∗, w∗)

and, thus, satisfies Lemma 6.3.4. To achieve this for the unknown w∗, the algorithm uses
the parameter d, which is initialized with 1 (cf. Line 5), the minimum possible value for
ḡc(Q

′, I∗, w∗) under the assumption that there exists some S ∈ S with b′S(Q
′) ≥ 1. In

an iteration of the inner while-loop, the algorithm repeatedly picks the minimal value w
such that the best current optimistic greedy choice has an optimistic greedy value of at
least d (cf. Line 10). If no such value exists, then the loop terminates (cf. Lines 8, 14).
Afterwards, it queries the corresponding best optimistic greedy choice Ii for the selected value
w (cf. Line 11). Similar to the algorithms of the previous section, this is done repeatedly until
wi − Li ≥ (Ui − Li)/2.

The key idea to achieve the 2-approximation with an expected number of queries that does
not exceed β, is to always reset the value d to gc(Q

′, Q1/2, w), where Q1/2 is the subset of all
intervals Ij that have already been queried in the current iteration of the outer while-loop and
satisfy wj − Lj ≥ (Uj − Lj)/2 (cf. Lines 12, 13). This can be seen as an implicit doubling
strategy to search for an unknown value. It leads to an exponential increase of d over the
iterations of the inner while-loop, which will allow us to bound their number.

With the following lemma, we prove that this choice of d also ensures that the queries of
the iteration indeed 2-approximate the best greedy choice for w∗ if there exists a S ∈ S with
b′S(Q

′, w∗) ≥ 1. If there is no such set, we can use a similar proof w.r.t. greedy value gs. For
an iteration j of the outer while-loop, let Gj be the set of queries during the iteration and let
Qj =

⋃︁
j′<j Gj denote the queries before the iteration (cf. Q′ in the algorithm).

Lemma 6.5.2. If there is an S ∈ S with b′S(Qj , w
∗) ≥ 1, then Gj 2-approximates the greedy

choice for the scaled instance with w = w∗ after querying Qj .

Proof. For an arbitrary but fixed realization, consider an iteration j of the outer while-loop
such that there exists a set S ∈ S with b′S(Qj , w

∗) ≥ 1.
Consider the subset Ḡj ⊆ Gj of queries that were executed with g = ḡc before the

increasing value w (cf. Line 10) surpasses w∗. That is, Ḡj only contains intervals that were

169

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

queried for a current value w ≤ w∗. Let Īi be the element of Ḡj that is queried last. Finally,
let d̄j denote the value d computed by the algorithm in Line 13 directly after querying Īi. We
continue to show that Gj 2-approximates the greedy choice of (MINSETIP-QW) for Q = Qj

and w = w∗.
Observe that gc(Qj , Ḡj , w

∗) ≥ d̄j . To see this, recall that d̄j was computed in Line 13
after Īi was queried. Thus, d̄j = gc(Q

′, Q1/2, w) for Q′ = Qj , Q1/2 = {Ij ∈ Ḡj | wj−Lj ≥
Uj−Lj

2 } and some value w with w ≤ w∗ by assumption. Since w∗ ≥ w and Q1/2 ⊆ Ḡj , the
greedy value gc(Qj , Ḡj , w

∗) can never be smaller than d̄j = gc(Q
′, Q1/2, w). This implies

gc(Qj , Ḡj , w
∗) ≥ d̄j .

We continue by showing that d∗ ≤ 2 · gc(Qj , Ḡj , w
∗) holds for the best greedy value d∗

at the start of the iteration, i.e., d∗ = maxIi∈I\Qj
gc(Qj , Ii, w

∗). As Ḡj ⊆ Gj , this implies
d∗ ≤ 2 · gc(Qj , Gj , w

∗) and, thus, that Gj satisfies Definition 6.3.3.
To upper bound d∗, first observe that the best optimistic greedy value d′ after querying

Ḡj ∪ Qj is smaller than d̄j , i.e., d′ = maxIi∈I\(Qj∪Ḡj)
ḡc(Qj ∪ Ḡj , Ii, w

∗) < d̄j . This
follows directly from Line 10 as Īi is the last query for a value w ≤ w∗ by assumption. As
gc(Qj , Ḡj , w

∗) ≥ d̄j , we get gc(Qj , Ḡj , w
∗) ≥ d′.

By definition of gc, the best greedy value after querying Qj can never be larger than the
sum of the greedy value of Ḡj after querying Qj and the best optimistic greedy value after
querying Ḡj ∪ Qj . Thus, we have d∗ ≤ gc(Qj , Ḡj , w

∗) + d′ ≤ 2 · gc(Qj , Ḡj , w
∗). This

proves that Gj satisfies Lemma 6.3.4 and, thus, concludes this proof.

Using a similar proof, we show the following lemma for the case where b′S(Q
′, w∗) < 1

for all S ∈ S , which together with Lemma 6.5.2 implies Property 1 of Definition 6.3.6. While
the main arguments remain the same as for the previous lemma, the more discrete nature of
the greedy values gs and ḡs poses several additional technical challenges that need to be taken
care of. For an iteration j of the outer while-loop, let Gj again be the set of queries during
the iteration and let Qj =

⋃︁
j′<j Gj denote the queries before the iteration (cf. set Q′ in the

algorithm).

Lemma 6.5.3. If b′S(Qj , w
∗) < 1 for all S ∈ S, then Gj 2-approximates the greedy choice

for the scaled instance with w = w∗ after querying Qj .

Proof. For an arbitrary but fixed realization, consider an iteration j of the outer while-loop
such that b′S(Qj , w

∗) < 1 for all S ∈ S . Our goal is to prove that Gj approximates the greedy
choice for the scaled instance with w = w∗ after querying Qj within a factor of two. That
is, we have to prove A(Qj ∪ Gj , w

∗) ≤ (1 − 1
2·OPT) · A(Qj , w

∗). Recall that A(Qj , w
∗)

denotes the number of constraints that are not yet satisfied in the (MINSETIP-QW) instance
for Q = Qj and w = w∗.

Consider the subset Ḡj ⊆ Gj of queries to intervals Ii that were executed with g = ḡs
for a current value w ≤ w∗ during iteration j of the outer while-loop. Let Pj ⊆ Gj denote
the queries of the iteration that were executed before Ḡj , i.e., that were executed during the
iteration of the for-loop with g = ḡc. Note that Q′ = Qj ∪ Pj is the set of intervals queried
before the beginning of the for-loop iteration with g = ḡs during iteration j of the outer
while-loop.

Proof outline. We start the proof by making some preliminary observations regarding
greedy value gs and the scaling factor γ that will be crucial for the remainder of the proof.
Then we proceed by proving that Ḡj approximates the greedy choice of (MINSETIP-QW) for
Q = Qj ∪ Pj and w = w∗ within a factor of 2. To this end, we first derive a lower bound on
the greedy value gs(Qj ∪ Pj , Ḡj , w

∗) and afterwards compare this lower bound with OPT.
Finally, we use the fact that Ḡj 2-approximates the greedy choice after querying Qj ∪ Pj to
show that Gj approximates the greedy choice of (MINSETIP-QW) for Q = Qj and w = w∗

within a factor of 2.

170

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

Preliminary observations. Before we start with the proof, recall that an interval Ii with
(wi − Li) ≥ 1

2 · (Ui − Li) satisfies a′i =
2·(wi−Li)

smin
≥ Ui−Li

smin
≥ 1 by choice of the scaling

parameter γ = 2
smin

. This implies that adding Ii to the solution satisfies all constraints for sets
S with Ii ∈ S as long as we are considering values w with b′S(Qj , w) ≤ 1 for all S ∈ S . Thus,
for such intervals and values w, the greedy value gs of Ii is then equal to the optimistic greedy
value ḡs as even under the assumption a′i = γ(Ui −Li) adding interval Ii cannot satisfy more
constraints. By assumption, this in particular holds for all values w ≤ w∗. This also means
that the greedy values gs and ḡs of such intervals Ii only increase with an increasing value w,
as long as b′S(Qj , w) ≤ 1 still holds for all S ∈ S .

Lower bound on gs(Qj ∪ Pj , Ḡj , w
∗). We continue by deriving a lower bound on

gs(Qj ∪ Pj , Ḡj , w
∗). Let Īi be the element of Ḡj that is queried last and let d̄j denote the

value d computed by the algorithm in Line 13 directly after querying Īi. We first observe
that gs(Qj ∪ Pj , Ḡj , w

∗) ≥ d̄j . To see this, recall that d̄j was computed in Line 13 after Īi
was queried. Thus, d̄j = gs(Q

′, Q1/2, w) for Q′ = Qj ∪ Pj , Q1/2 = {Ij ∈ Ḡj | wj − Lj ≥
Uj−Lj

2 } and some value w with w ≤ w∗ by assumption. Since w∗ ≥ w and Q1/2 ⊆ Ḡj , the
greedy value gs(Qj∪Pj , Ḡj , w

∗) can never be smaller than d̄j = gs(Q
′, Q1/2, w) according to

the observations stated at the beginning of the proof. This implies gs(Qj ∪ Pj , Ḡj , w
∗) ≥ d̄j .

Assume for now that the algorithm queried Qs = Ḡj \ Q1/2 before Q1/2. We con-
sider the best optimistic greedy value d∗ after Qj ∪ Pj ∪ Qs has already been queried,
i.e, d∗ = maxIi∈I\(Qj∪Pj∪Qs) ḡs(Qj ∪ Pj ∪ Qs, Ii, w

∗). To bound d∗, first observe that
the best optimistic greedy value d′ after querying Ḡj ∪ Qj ∪ Pj is smaller than d̄j , i.e.,
d′ = maxIi∈I\(Qj∪Pj∪Ḡj)

ḡs(Qj ∪ Pj ∪ Ḡj , Ii, w
∗) < d̄j . This follows directly from

Line 10 as Īi is the last query for a value w ≤ w∗ by assumption. Since we already showed
gs(Qj ∪ Pj , Ḡj , w

∗) ≥ d̄j , we get gs(Qj ∪ Pj , Ḡj , w
∗) ≥ d′.

By definition of ḡs, definition of Q1/2, and the assumption that we only consider values w
with b′S(Q

′, w) < 1 for all S ∈ S , the best optimistic greedy value after querying Qj∪Pj∪Qs

can never be larger than the sum of the optimistic greedy value of Q1/2 after querying
Qj ∪ Pj ∪Qs and the best optimistic greedy value after querying Qj ∪ Pj ∪Qs ∪Q1/2 =
Qj ∪ Pj ∪ Ḡj . By assumption that we only consider values w with b′S(Q

′, w) < 1 for all
S ∈ S , we have ḡs(Qj ∪Pj ∪Qs, Q1/2, w

∗) = gs(Qj ∪Pj ∪Qs, Q1/2, w
∗) (as argued at the

beginning of the proof). Putting it together, we get

d∗ ≤ ḡs(Qj ∪ Pj ∪Qs, Q1/2, w
∗) + d′

= gs(Qj ∪ Pj ∪Qs, Q1/2, w
∗) + d′

≤ gs(Qj ∪ Pj ∪Qs, Q1/2, w
∗) + gs(Qj ∪ Pj , Ḡj , w

∗).

Proving that Ḡj approximates its greedy choice. We continue the proof by using the
inequality for d∗ in order to show that Ḡj approximates its greedy choice.

To this end, we consider a relaxed instance R of (MINSETIP-QW) with Q = Qj ∪Pj and
w = w∗, i.e., we assume that Qj ∪ Pj has already been queried and consider the right-hand
sides b′S(Qj ∪ Pj , w

∗) for all S ∈ S . We relax the instance by increasing the left-hand side
coefficients and decreasing the cost coefficients. Let â denote the relaxed coefficients. First
consider the intervals in Ḡj . For these intervals, we use the original scaled coefficients. That
is, we set âi = a′i = γ(wi − Li). Recall that Q1/2 = {Ii ∈ Ḡj | wi − Li ≥ 1

2(Ui − Li)}
and Qs = Ḡj \ Q1/2. For intervals Ii ∈ Qs, we set the cost coefficients to zero. Thus,
these intervals can be added to any solution without increasing the objective value. All other
intervals keep their cost coefficients of one. For all other intervals Ii ∈ I \ (Qj ∪ Pj ∪ Ḡj),
we set âi = γ(Ui − Li). That is, we assume that the coefficients of these intervals are slightly

171

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

larger than their largest possible value. Since instance R compared to the original instance only
increases left-hand side coefficients and decreases cost coefficients, it clearly is a relaxation
and, thus, LB ≤ OPT for the optimal objective value LB of the relaxed instance R.

Since we assume b′S(Qj∪Pj , w
∗) < 1 for all S ∈ S , the right-hand sides of instance R are

all strictly smaller than one. Furthermore, by choice of the scaling parameter γ, all intervals Ii
satisfy γ(Ui −Li) ≥ 1. Thus, the intervals Ii in Q \ (Qj ∪Pj ∪ Ḡj) have coefficients âi ≥ 1.
By the observations at the beginning of the proof, the same holds for the intervals in Q1/2.
Only the intervals in Qs can potentially have coefficients smaller than the right-hand sides.
This also means that the greedy value gs of an interval Ii ∈ Q \ (Qj ∪ Pj ∪Qs) for instance
R can never be increased by previously adding intervals of Qs to the solution, since adding
Ii already satisfies all constraints for sets S with Ii ∈ S. For intervals in Qs, it might be the
case that previously adding further elements of Qs to the solution increases the greedy value.
This is, because the coefficient of an Ii ∈ Qs might be too small to satisfy a constraint S with
Ii ∈ S but previously adding further intervals from Qs might decrease the right-hand side of
S enough such that adding Ii can satisfy the constraint and, thus, increase the greedy value
of Ii.

Now, consider the number of constraints that are initially not satisfied in R. This number
is exactly the same as in the non-relaxed original instance after querying Qj ∪ Pj since
R uses the exact same right-hand sides. Thus, the number of not yet satisfied constraints
in R is A(Qj ∪ Pj , w

∗). Let d̂ = maxIi∈I\(Qj∪Pj∪Qs) |{S ∈ S | b′S(Qj ∪ Pj , w
∗) >

0 ∧ b′S(Qj ∪ Pj , w
∗)− âi −

∑︁
Ih∈Qs

âh ≤ 0}| denote the maximum number of constraints
that can be satisfied by adding Qs and one interval Ii in Qj ∪ Pj ∪ Qs to the solution for
R. In a sense, d̂ is the best possible greedy value gs for instance R that can be achieve
by adding such a set Qs ∪ {Ii} to the solution. Remember that the elements of Qs do not
incur any costs, so d̂ constraints can be satisfied at cost one. Following the arguments in
the proof of Lemma 6.3.4, this implies d̂ ≥ A(Qj∪Pj ,w

∗)
LB as the optimal solution satisfies

A(Qj ∪ Pj , w
∗) constraints at cost LB but it is impossible to satisfy more than d̂ constraints

with cost one. This last implication crucially uses the observation that the greedy values of
intervals in Q \ (Qj ∪ Pj ∪Qs) cannot increase by previously adding other intervals to the
solution. Because this is the case, even adding an interval later cannot satisfy more than d̂

constraints, which gives us d̂ ≥ A(Qj∪Pj ,w
∗)

LB . We remark that this also is the reason why the
offline Algorithm 19 starts with greedy value gc and only switches to greedy value gs once the
instance reduced to a SETCOVER instance.

Taking a closer look at d̂, we can observe that this greedy value is exactly the sum of the
greedy values gs(Qj ∪ Pj , Qs, w

∗) and d∗ = maxIi∈Q\(Qj∪Pj∪Qs) ḡs(Qj ∪ Pj ∪Qs, Ii, w
∗)

for the non-relaxed instance. This is, because the original instance uses the same right-
hand sides as R, the coefficients of intervals in Qs are the same in both instances, and the
optimistic greedy value ḡs(Qj ∪ Pj ∪ Qs, Ii, w

∗) like instance R already assumes that all
intervals in Q \ (Qj ∪ Pj ∪ Qs) have coefficients larger than all right-hand sides. Thus,
these three arguments imply d̂ = gs(Qj ∪ Pj , Qs, w

∗) + d∗. Combining this equality with
d̂ ≥ A(Qj∪Pj ,w

∗)
LB and the previously derived upper bound on d∗ gives us:

A(Qj ∪ Pj , w
∗)

LB
≤ d̂

= gs(Qj ∪ Pj , Qs, w
∗) + d∗

≤ gs(Qj ∪ Pj , Qs, w
∗) + gs(Qj ∪ Pj ∪Qs, Q1/2, w

∗) + gs(Qj ∪ Pj , Ḡj , w
∗)

= 2 · gs(Qj ∪ Pj , Ḡj , w
∗).

172

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

Here the second equality uses that

gs(Qj ∪ Pj , Qs, w
∗) + gs(Qj ∪ Pj ∪Qs, Q1/2, w

∗)

=(A(Qj ∪ Pj , w
∗)−A(Qj ∪ Pj ∪Qs, w

∗))

+(A(Qj ∪ Pj ∪Qs, w
∗)−A(Qj ∪ Pj ∪Qs ∪Q1/2, w

∗))

=A(Qj ∪ Pj , w
∗)−A(Qj ∪ Pj ∪Qs ∪Q1/2, w

∗)

=A(Qj ∪ Pj , w
∗)−A(Qj ∪ Pj ∪ Ḡj , w

∗)

=gs(Qj ∪ Pj , Ḡj , w
∗).

Plugging in the definition of gs and the inequality LB ≤ OPT yields

A(Qj ∪ Pj , w
∗)

LB
≤ 2 · (A(Qj ∪ Pj , w

∗)−A(Qj ∪ Pj ∪ Ḡj , w
∗))

⇔A(Qj ∪ Pj ∪ Ḡj , w
∗) ≤ A(Qj ∪ Pj , w

∗) · (1− 1

2 · LB)

⇒A(Qj ∪ Pj ∪ Ḡj , w
∗) ≤ A(Qj ∪ Pj , w

∗) · (1− 1

2 ·OPT
).

Thus, Ḡj approximates the greedy choice of (MINSETIP-QW) for Q = Qj ∪Pj and w = w∗

within a factor of 2.
Concluding the proof. Remember that our goal was to show that Gj approximates the

greedy choice for w = w∗ after querying Qj within a factor of 2. To that end, observe that
Pj ∪ Ḡj ⊆ Gj implies A(Qj ∪ Pj ∪ Ḡj , w

∗) ≥ A(Qj ∪ Gj , w
∗) and that Qj ⊆ Qj ∪ Pj

implies A(Qj , w
∗) ≥ A(Qj ∪Pj , w

∗). Plugging these inequalities into the previously derived
inequality for A(Qj ∪Pj ∪ Ḡj , w

∗) yields A(Qj ∪Gj , w
∗) ≤ A(Qj , w

∗) · (1− 1
2·OPT). This

means that Gj also 2-approximates the greedy choice after querying Qj for w = w∗, which
concludes the proof.

Since the Lemmas 6.5.2 and 6.5.3 imply Condition 1 of Definition 6.3.6, it remains to
show Condition 2 in order to apply Theorem 6.3.7. The proof idea is to show that parameter d
increases by a factor of at least 1.5 in each iteration of the inner while-loop with g = ḡc. As
ḡc(Q, Ii, w) is upper bounded by m(2/smin)maxIi∈I(Ui − Li), this means the inner loop
executes at most⌈log1.5(m(2/smin)maxIi∈I(Ui − Li))⌉ iterations for g = ḡc. For g = ḡs,
we can argue in a similar way that at most ⌈log2(m)⌉ iterations are executed. Similar to
the previous section on MINSET with deterministic right-hand sides, we can also show that
each iteration of the inner while-loop executes at most 1

τ queries in expectation. Combining
these insights, we can bound the expected number of queries during an execution of the outer
while-loop by β. Formally proving the increase of d by 1.5 requires to take care of several
technical challenges. The basic idea is to exploit that the interval Ii queried in Line 11 has an
optimistic greedy value of at least d. If it satisfies wi − Li ≥ 1

2(Ui − Li), we show that the
actual greedy value is at least d/2. When d is recomputed in Line 13, then Ii is a new member
of the set Q1/2 and leads to the increase of d/2.

We conclude the section by formalizing this proof idea. For each iteration j of the outer
while-loop, let Xj be a random variable denoting the number of queries executed during
iteration j and let Yj be a variable indicating whether the iteration is executed (Yj = 1) or not
(Yj = 0). We prove the following lemma, which implies that the algorithm also satisfies the
second condition of Definition 6.3.6 and, thus, satisfies Theorem 6.5.1.

Lemma 6.5.4. E[Xj | Yj = 1] ≤ β = 1
τ · (⌈log1.5(m ·

2·maxIi∈I(Ui−Li)

smin
)⌉+ ⌈log2(m)⌉).

173

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

Proof. Consider an iteration j of the outer while-loop of Algorithm 21. In the following, all
probabilities and expected values are under the condition Yj = 1.

For iteration j, let Ajk and Bjk be random variables denoting the number of queries in
iteration k of the inner while-loop for g = ḡc and g = ḡs, respectively. Then, E[Xj] =∑︁

k E[Bjk] +
∑︁

k E[Ajk].
Let Ājk and B̄jk be random variables indicating whether iteration k of the inner while-

loop with g = ḡc and g = ḡs, respectively, is executed (Ājk = 1, B̄jk = 1) or not. Given that
such an iteration is executed, we can exploit that the termination criterion wi ≥ 1

2 · (Ui − Li)
occurs with probability P[(wi − Li) ≥ (Ui − Li)/2] ≥ P[wi ≥ (Ui + Li)/2] ≥ τ to show
E[Ajk | Ājk = 1] ≤ 1

τ and E[Bjk | B̄jk = 1] ≤ 1
τ . Using these bounds and exploiting that

E[Ajk | Ājk = 0] = E[Bjk | B̄jk = 0] = 0, we get

E[Xj] =
∑︂
k

(E[Ajk] + E[Bjk])

=
∑︂
k

P[Ājk = 1] · E[Ajk | Ājk = 1] + P[Ājk = 0] · E[Ajk | Ājk = 0]

+
∑︂
k

P[B̄jk = 1] · E[Bjk | B̄jk = 1] + P[B̄jk = 0] · E[Bjk | B̄jk = 0]

=
∑︂
k

P[Ājk = 1] · E[Ajk | Ājk = 1] +
∑︂
k

P[B̄jk = 1] · E[Bjk | B̄jk = 1]

≤ 1

τ
·
(︄∑︂

k

P[Ājk = 1] +
∑︂
k

P[B̄jk = 1]

)︄
.

Thus, it only remains to bound
∑︁

k P[Ājk = 1]+
∑︁

k P[B̄jk = 1]. We do this by separately
proving

∑︁
k P[Ājk = 1] ≤ ⌈log1.5 (m · (2/smin) ·maxIi∈I(Ui − Li))⌉ and

∑︁
k P[B̄jk =

1] ≤ ⌈log2(m)⌉.
Putting all bounds together, we then get E[Xj] ≤ 1

τ · (
∑︁

k P[Ājk = 1] + P[B̄jk = 1]) ≤
1
τ · (⌈log1.5(m ·

2·maxIi∈I(Ui−Li)

smin
)⌉+ ⌈log2(m)⌉).

Upper bound for
∑︁

k P[Ājk = 1]. Note that
∑︁

k P[Ājk = 1] is just the expected number
of iterations of the inner while-loop with g = ḡc during iteration j of the outer while-loop.
We bound this number by showing that, for every realization of precise weights, the value d
increases by a factor of at least 1.5 in each iteration except possibly the first and last ones. As
d is upper bounded by a = (2/smin) ·m ·maxIi∈I(Ui − Li) (in the sense that the loop will
terminate at the latest when d > a), the number of iterations then is at most ⌈log1.5 (a)⌉ for
every realization of values.

To prove that d increases by a factor of 1.5 in each iteration of the inner while-loop,
consider the last execution of the repeat-statement within an iteration of the inner while-loop
with g = ḡc (that is not the first or last one). Let Ii be the interval queried in that last iteration
of the repeat-statement, let Q denote the set of Ii and all intervals that were queried before
Ii, let Q′ denote the set of all intervals queried before the current execution of the inner
while-loop was started, and let Q1/2 = {Ij ∈ Q \Q′ | wj − Lj ≥ Uj−Lj

2 }. Furthermore, let
w denote the value of Line 10 computed before Ii was queried in the following line. Note that
this notation matches the one used in the algorithm at the execution of Line 12 directly after
Ii was queried.

Let d̄ denote the value d computed by the algorithm before Ii was queried. That is,
d̄ = gc(Q

′, Q1/2 \ {Ii}, w′) for the value w′ that was computed in the previous execution of
Line 10. By choice of Ii, we have ḡc(Q \ {Ii}, Ii, w) ≥ d̄ and gc(Q \ {Ii}, Ii, w) ≥ d̄/2
(since wi − Li ≥ (Ui − Li)/2).

174

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

The value d computed after querying Ii is defined as

d = gc(Q
′, Q1/2, w) ≥ gc(Q

′, Q1/2 \ {Ii}, w) + gc(Q
′ ∪Q1/2 \ {Ii}, Ii, w)

≥ gc(Q
′, Q1/2 \ {Ii}, w) + gc(Q \ {Ii}, Ii, w),

where the first inequality holds by definition of gc and the second inequality holds because
Q \ {Ii} ⊇ Q′ ∪Q1/2 \ {Ii} implies gc(Q′ ∪Q1/2 \ {Ii}, Ii, w) ≥ gc(Q \ {Ii}, Ii, w).

In an iteration of the for-loop with g = gc, the current value w only increases, which
implies w′ ≤ w. Since the greedy value gc only increases for increasing values w, we
get gc(Q′, Q1/2 \ {Ii}, w) ≥ gc(Q

′, Q1/2 \ {Ii}, w′) and, therefore d = gc(Q
′, Q1/2, w) ≥

gc(Q
′, Q1/2 \ {Ii}, w′) + gc(Q \ {Ii}, Ii, w). Plugging in d̄ = gc(Q

′, Q1/2 \ {Ii}, w′) and
gc(Q \ {Ii}, Ii, w) ≥ d̄/2 yields d ≥ 1.5 · d̄.

Note that this only shows that d increases by a factor of 1.5 compared to d̄, the old value
computed in the previous execution of the repeat statement. Our goal was to show that d
increases by factor 1.5 compared to the previous iteration of the inner-while loop. However,
since the value w only increases, the greedy values gc only increase. This implies that d̄ can
only be larger than the corresponding value at the end of the previous iteration of the inner
while-loop. Thus, we have shown that d increases by a factor of 1.5 compared to its value
at the end of the previous iteration of the inner-while loop. This implies

∑︁
k P[Ājk = 1] ≤

⌈log1.5 (m · (2 ·maxIi∈I(Ui − Li))/smin)⌉.
Upper bound for

∑︁
k P[B̄jk = 1]. Next, we use similar arguments to show

∑︁
k P[B̄jk =

1] ≤ ⌈log2(m)⌉. Consider an iteration j of the outer while-loop.
For a fixed realization, we first show that, assuming g = ḡs, the value d increases by a

factor of at least 2 in each iteration of the inner while-loop (except possibly the first and last
ones) during iteration j of the outer while-loop.

By Line 6, iterations with g = ḡs only consider values w with b′S(Q
′, w) < 1 for all

S ∈ S, where Q′ is the set of intervals queried before the start of the current execution
of the inner while-loop. For an interval Ii with (wi − Li) ≥ 1

2 · (Ui − Li), we have
a′i = 2·(wi−Li)

ssmin
≥ Ui−Li

smin
≥ 1. This implies that adding Ii to the solution satisfies all

constraints for sets S with Ii ∈ S (at least for all values w with b′S(Q
′, w) < 1 for all S ∈ S).

Thus, the greedy value gs of Ii is then equal to the optimistic greedy value ḡs as even if
a′i = γ(Ui − Li) the interval cannot satisfy more constraints.

Furthermore, as long as we only consider values w with b′S(Q
′, w) < 1 for all S ∈ S,

the greedy values gs and ḡs of intervals Ii with (wi − Li) ≥ 1
2 · (Ui − Li) can only increase

with increasing w and never increase for decreasing w. The reason for this is that such an
increase in w can only lead to more constraints becoming not satisfied for the right-hand sides
b′S(Q

′, w). Thus, the number of constraints that adding Ii can satisfy only increases. This
also means, that the value w as used by the algorithm will never decrease during the current
iteration of the outer while-loop with g = ḡs.

Using these observations, we can essentially repeat the proof of the previous case to show
that the value d increases by a factor of at least 2 in each iteration of the inner while-loop with
g = ḡs.

Let Ii be the interval queried in the last iteration of the repeat-statement within such an
iteration of the inner while-loop, let Q denote the set of Ii and all intervals that were queried
before Ii, let Q′ denote the set of all intervals queried before the current execution of the inner
while-loop was started, and let Q1/2 = {Ij ∈ Q \Q′ | wj − Lj ≥ Uj−Lj

2 }. Furthermore, let
w denote the value of Line 10 computed before Ii was queried in the following line. Note that
this notation matches the one used in the algorithm at the execution of Line 12 directly after
Ii was queried.

175

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

Let d̄ denote the value d computed by the algorithm before Ii was queried. That is,
d̄ = gs(Q

′, Q1/2 \ {Ii}, w′) for the value w′ that was computed in the previous execution
of Line 10. By choice of Ii, we have ḡs(Q \ {Ii}, Ii, w) ≥ d̄ and gs(Q \ {Ii}, Ii, w) =
ḡs(Q \ {Ii}, Ii, w) ≥ d̄ (since wi − Li ≥ (Ui − Li)/2 and as argued above).

The value d computed after querying Ii is defined as

d = gs(Q
′, Q1/2, w) ≥ gs(Q

′, Q1/2 \ {Ii}, w) + gs(Q
′ ∪Q1/2 \ {Ii}, Ii, w)

≥ gs(Q
′, Q1/2 \ {Ii}, w) + gs(Q \ {Ii}, Ii, w).

Here, the first inequality holds by definition of gs, definition of Q1/2, and by the assumption
that we only consider values w with b′S(Q

′, w) < 1 for all S ∈ S . The second inequality holds
because Q\{Ii} ⊇ Q′∪Q1/2 \{Ii} implies gs(Q′∪Q1/2 \{Ii}, Ii, w) ≥ gs(Q\{Ii}, Ii, w).
Note that this implication only holds under the assumption that b′S(Q

′, w) < 1 for all S ∈ S
and for intervals Ii with a′i ≥ 1.

As argued above, the value w used by the algorithm only increases, i.e., w′ ≤ w. Further-
more, again as argued above, the greedy value gs of intervals Ij with a′j ≥ 1 only increases
for increasing values w. Thus, we get gs(Q′, Q1/2 \ {Ii}, w) ≥ gs(Q

′, Q1/2 \ {Ii}, w′) and,
therefore, d = gs(Q

′, Q1/2, w) ≥ gs(Q
′, Q1/2 \ {Ii}, w′) + gs(Q \ {Ii}, Ii, w). Plugging

in d̄ = gs(Q
′, Q1/2 \ {Ii}, w′) and gs(Q \ {Ii}, Ii, w) ≥ d̄ yields d ≥ 2 · d̄. This implies

that d increased by a factor of at least 2 compared to its old value at the end of the previous
iteration of the inner while-loop. As the greedy value gs is upper bounded by m, we get∑︁

k P[B̄jk = 1] ≤ ⌈log2(m)⌉.

The Lemmas 6.5.2 to 6.5.4 imply that Algorithm 21 satisfies Definition 6.3.6 for α = 2,
γ = 2/smin and β = 1

τ (⌈log1.5(m · 2(maxIi∈I(Ui − Li))/smin)⌉+ ⌈log2(m)⌉). Thus, The-
orem 6.3.7 implies Theorem 6.5.1.

6.6 The Maximization Variant of MINSET

Consider the set selection problem MAXSET, which has the same input as MINSET, but now
the goal is to determine a set of maximum weight and to determine the corresponding weight.

In MAXSET, a set Q ⊆ I is feasible if all non-trivial elements of a set S∗ of maximum
weight w∗ are in Q and US(Q) ≤ w∗ for all sets S ̸= S∗. If Q would not contain all non-
trivial elements of some set S∗ of maximum weight, then the maximum weight w∗ would still
be unknown and the problem would not be solved yet. If US(Q) ≥ w∗ for some S, then both
S∗ and S could still be of maximum value or not and we have not yet determined the set of
maximum value. Thus, the problem would not be solved yet. Our goal is again to adaptively
query a feasible query set and minimize the number of queries.

In the following, we briefly sketch why all our results on MINSET transfer to MAXSET.
Analogous to MINSET, one can show that the following ILP characterizes the problem. That
is, a query set Q is feasible if and only if vector x with xi = 1 if Ii ∈ Q and xi = 0 otherwise
is feasible for the ILP.

min
∑︁

Ii∈I xi
s.t.

∑︁
Ii∈S xi · (Ui − wi) ≥ (US − w∗) ∀S ∈ S

xi ∈ {0, 1} ∀Ii ∈ I
(MAXSETIP)

In the offline setting, the ILP is the exact same special case of the multiset multicover
problem as (MINSETIP), which suffices to observe that all our observations on offline MINSET

translate to offline MAXSET. Under uncertainty, the only difference to MINSET is, that, in
contrast to (MINSETIP), a small weight wi leads to a larger coefficient (Ui − wi) and a

176

6. Set Selection under Explorable Stochastic Uncertainty via Covering Techniques

small weight w∗ leads to larger right-hand sides. Using the inverse balancing parameter
τ̄ = minIi∈I τ̄ i with τ̄ i = P[wi ≤ Ui+Li

2], it is not hard to see, that, even under uncertainty,
MINSET and MAXSET are essentially the same problem. Thus, all our results translate.

6.7 Concluding Remarks

In this chapter, we provided the first results for MINSET under stochastic explorable uncer-
tainty by exploiting a connection to a covering problem and extending techniques for solving
covering problems to our setting with uncertainty.

Since our results, in expectation, break adversarial lower bound instances for a number of
interesting combinatorial problems under explorable uncertainty, e.g., matching, knapsack,
solving ILPs [Mei18], we hope that our techniques lay the foundation for solving more
general problems. In particular if we consider the mentioned problems with uncertainty in the
cost coefficients and our goal is to query elements until we can identify an optimal solution
to the underlying problem, then all these problems admit the same connection to covering
problems as MINSET and can also be written as covering ILPs with uncertain coefficients and
right-hand sides. The difference to MINSET is that the number of constraints in the covering
representation for these problems might be exponential in the input size of the underlying
optimization problem. In a sense, each feasible solution for the underlying optimization
problem would define a constraint in the covering representation. This means that using the
results of this chapter as a blackbox to solve such optimization problems under explorable
uncertainty does not yield sublinear competitive ratios as the number of constraints becomes
too large. For future research, we suggest to investigate whether one can exploit the additional
structure in these constraints to still achieve improved competitive ratios.

With respect to the results of this chapter, we leave open whether the second log factor
in our main result, Theorem 6.5.1, is necessary. Furthermore, the best competitive ratio
achievable in exponential running time also remains open. Finally, we remark that we
expect our algorithms to be parameterizable by the choice of the balancing parameter. We
defined the parameter as the probability that the precise weight is larger than the center of the
corresponding interval. Alternatively, one could pick any fraction of the interval, say one third,
as a threshold and define the parameter as the probability that the precise weight lies outside
the first third of its interval. As the only parts of our algorithm that use the definition of the
balancing parameter are the termination criteria of the repeat-statements, the definition of the
scaling factor γ and the definition of the set Q1/2 in Algorithm 21, we expect that adjusting
these parts to a different balancing parameter suffices to make our algorithms work for such
parameters. The choice of the threshold for the balancing parameter would then influence the
constant factor within the competitive ratios.

177

References

[AAK19] Arpit Agarwal, Sepehr Assadi, and Sanjeev Khanna. Stochastic Submodular
Cover with Limited Adaptivity. In: SODA. SIAM, 2019, pp. 323–342. DOI:
10.1137/1.9781611975482.21.

[Abd+20] Mohamed Abdel-Nasser, Karar Mahmoud, Osama A. Omer, Matti Lehtonen, and
Domenec Puig. Link quality prediction in wireless community networks using
deep recurrent neural networks. In: Alexandria Engineering Journal 59.5 (2020),
pp. 3531–3543. DOI: https://doi.org/10.1016/j.aej.2020.05.
037.

[AD23] Jonatha Anselmi and Josu Doncel. Load Balancing with Job-Size Testing: Per-
formance Improvement or Degradation? In: CoRR abs/2304.00899 (2023). DOI:
10.48550/arXiv.2304.00899.

[AE20] Susanne Albers and Alexander Eckl. Explorable Uncertainty in Scheduling with
Non-uniform Testing Times. In: WAOA. Vol. 12806. Lecture Notes in Computer
Science. Springer, 2020, pp. 127–142. DOI: 10.1007/978-3-030-80879-
2_9.

[AE21] Susanne Albers and Alexander Eckl. Scheduling with Testing on Multiple Iden-
tical Parallel Machines. In: WADS. Vol. 12808. Lecture Notes in Computer
Science. Springer, 2021, pp. 29–42. DOI: 10.1007/978-3-030-83508-
8_3.

[AKL19] Sepehr Assadi, Sanjeev Khanna, and Yang Li. The Stochastic Matching Problem
with (Very) Few Queries. In: ACM Trans. Economics and Comput. 7.3 (2019),
16:1–16:19. DOI: 10.1145/3355903.

[Alo+09] Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor.
The Online Set Cover Problem. In: SIAM J. Comput. 39.2 (2009), pp. 361–370.
DOI: 10.1137/060661946.

[ALT21] Yossi Azar, Stefano Leonardi, and Noam Touitou. Flow time scheduling with
uncertain processing time. In: STOC. ACM, 2021, pp. 1070–1080. DOI: 10.
1145/3406325.3451023.

[ALT22] Yossi Azar, Stefano Leonardi, and Noam Touitou. Distortion-Oblivious Algo-
rithms for Minimizing Flow Time. In: SODA. SIAM, 2022, pp. 252–274. DOI:
10.1137/1.9781611977073.13.

[Ang+20] Spyros Angelopoulos, Christoph Dürr, Shendan Jin, Shahin Kamali, and Marc P.
Renault. Online Computation with Untrusted Advice. In: ITCS. Vol. 151. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 52:1–52:15. DOI:
10.4230/LIPIcs.ITCS.2020.52.

[Ant+20] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary
and Online Matching Problems with Machine Learned Advice. In: NeurIPS.
2020.

179

https://doi.org/10.1137/1.9781611975482.21
https://doi.org/https://doi.org/10.1016/j.aej.2020.05.037
https://doi.org/https://doi.org/10.1016/j.aej.2020.05.037
https://doi.org/10.48550/arXiv.2304.00899
https://doi.org/10.1007/978-3-030-80879-2_9
https://doi.org/10.1007/978-3-030-80879-2_9
https://doi.org/10.1007/978-3-030-83508-8_3
https://doi.org/10.1007/978-3-030-83508-8_3
https://doi.org/10.1145/3355903
https://doi.org/10.1137/060661946
https://doi.org/10.1145/3406325.3451023
https://doi.org/10.1145/3406325.3451023
https://doi.org/10.1137/1.9781611977073.13
https://doi.org/10.4230/LIPIcs.ITCS.2020.52

References

[Ant+23] Antonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak, and Bertrand
Simon. Online Metric Algorithms with Untrusted Predictions. In: ACM Trans.
Algorithms 19.2 (2023), 19:1–19:34. DOI: 10.1145/3582689.

[APT22] Yossi Azar, Debmalya Panigrahi, and Noam Touitou. Online Graph Algorithms
with Predictions. In: SODA. SIAM, 2022, pp. 35–66. DOI: 10.1137/1.
9781611977073.3.

[Ara+18] Luciana Arantes, Evripidis Bampis, Alexander V. Kononov, Manthos Letsios,
Giorgio Lucarelli, and Pierre Sens. Scheduling under Uncertainty: A Query-
based Approach. In: IJCAI. ijcai.org, 2018, pp. 4646–4652. DOI: 10.24963/
ijcai.2018/646.

[Bam+21] Evripidis Bampis, Christoph Dürr, Thomas Erlebach, Murilo Santos de Lima,
Nicole Megow, and Jens Schlöter. Orienting (Hyper)graphs Under Explorable
Stochastic Uncertainty. In: ESA. Vol. 204. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021, 10:1–10:18. DOI: 10.4230/LIPIcs.ESA.
2021.10.

[Bam+22] Evripidis Bampis, Konstantinos Dogeas, Alexander V. Kononov, Giorgio Lu-
carelli, and Fanny Pascual. Scheduling with Untrusted Predictions. In: IJCAI.
ijcai.org, 2022, pp. 4581–4587. DOI: 10.24963/ijcai.2022/636.

[Ban+12] Nikhil Bansal, Anupam Gupta, Jian Li, Julián Mestre, Viswanath Nagarajan, and
Atri Rudra. When LP Is the Cure for Your Matching Woes: Improved Bounds
for Stochastic Matchings. In: Algorithmica 63.4 (2012), pp. 733–762. DOI:
10.1007/s00453-011-9511-8.

[Bar+04] Reuven Bar-Yehuda, Keren Bendel, Ari Freund, and Dror Rawitz. Local Ratio: A
Unified Framework for Approximation Algorithms. In Memoriam: Shimon Even
1935-2004. In: ACM Comput. Surv. 36.4 (2004), pp. 422–463. ISSN: 0360-0300.
DOI: 10.1145/1041680.1041683.

[BBD22] Soheil Behnezhad, Avrim Blum, and Mahsa Derakhshan. Stochastic Vertex Cover
with Few Queries. In: SODA. SIAM, 2022, pp. 1808–1846. DOI: 10.1137/1.
9781611977073.73.

[BC12] Sébastien Bubeck and Nicoló Cesa-Bianchi. Regret Analysis of Stochastic and
Nonstochastic Multi-armed Bandit Problems. In: Found. Trends Mach. Learn.
5.1 (2012), pp. 1–122. DOI: 10.1561/2200000024.

[BE98] Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis.
Cambridge University Press, 1998.

[Beh+19] Soheil Behnezhad, Alireza Farhadi, MohammadTaghi Hajiaghayi, and Nima
Reyhani. Stochastic Matching with Few Queries: New Algorithms and Tools. In:
SODA. SIAM, 2019, pp. 2855–2874. DOI: 10.1137/1.9781611975482.
177.

[BGN09] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust Optimiza-
tion. Vol. 28. Princeton Series in Applied Mathematics. Princeton University
Press, 2009. URL: https://doi.org/10.1515/9781400831050.

[BL11] John R. Birge and François Louveaux. Introduction to Stochastic Programming.
2nd. New York, NY, USA: Springer-Verlag, 2011.

[Blu+20] Avrim Blum, John P. Dickerson, Nika Haghtalab, Ariel D. Procaccia, Tuomas
Sandholm, and Ankit Sharma. Ignorance Is Almost Bliss: Near-Optimal Stochas-
tic Matching with Few Queries. In: Oper. Res. 68.1 (2020), pp. 16–34. DOI:
10.1287/opre.2019.1856.

180

https://doi.org/10.1145/3582689
https://doi.org/10.1137/1.9781611977073.3
https://doi.org/10.1137/1.9781611977073.3
https://doi.org/10.24963/ijcai.2018/646
https://doi.org/10.24963/ijcai.2018/646
https://doi.org/10.4230/LIPIcs.ESA.2021.10
https://doi.org/10.4230/LIPIcs.ESA.2021.10
https://doi.org/10.24963/ijcai.2022/636
https://doi.org/10.1007/s00453-011-9511-8
https://doi.org/10.1145/1041680.1041683
https://doi.org/10.1137/1.9781611977073.73
https://doi.org/10.1137/1.9781611977073.73
https://doi.org/10.1561/2200000024
https://doi.org/10.1137/1.9781611975482.177
https://doi.org/10.1137/1.9781611975482.177
https://doi.org/10.1515/9781400831050
https://doi.org/10.1287/opre.2019.1856

References

[BLW86] Norman Biggs, E Keith Lloyd, and Robin J Wilson. Graph Theory, 1736-1936.
Oxford University Press, 1986.

[BN15] Nikhil Bansal and Viswanath Nagarajan. On the adaptivity gap of stochastic
orienteering. In: Math. Program. 154.1-2 (2015), pp. 145–172. DOI: 10.1007/
s10107-015-0927-9.

[Bru+05] Richard Bruce, Michael Hoffmann, Danny Krizanc, and Rajeev Raman. Efficient
Update Strategies for Geometric Computing with Uncertainty. In: Theory Com-
put. Syst. 38.4 (2005), pp. 411–423. DOI: 10.1007/s00224-004-1180-4.

[CC07] Miroslav Chlebik and Janka Chlebíková. The Complexity of Combinatorial
Optimization Problems on d-Dimensional Boxes. In: SIAM J. Discret. Math. 21.1
(2007), pp. 158–169. DOI: 10.1137/050629276.

[Cha+21] Steven Chaplick, Magnús M. Halldórsson, Murilo S. de Lima, and Tigran
Tonoyan. Query minimization under stochastic uncertainty. In: Theor. Com-
put. Sci. 895 (2021), pp. 75–95. DOI: 10.1016/j.tcs.2021.09.032.

[Che+09] Ning Chen, Nicole Immorlica, Anna R. Karlin, Mohammad Mahdian, and Atri
Rudra. Approximating Matches Made in Heaven. In: ICALP (1). Vol. 5555.
Lecture Notes in Computer Science. Springer, 2009, pp. 266–278. DOI: 10.
1007/978-3-642-02927-1_23.

[Chv79] Vasek Chvátal. A Greedy Heuristic for the Set-Covering Problem. In: Math. Oper.
Res. 4.3 (1979), pp. 233–235. DOI: 10.1287/moor.4.3.233.

[DGV08] Brian C. Dean, Michel X. Goemans, and Jan Vondrák. Approximating the
Stochastic Knapsack Problem: The Benefit of Adaptivity. In: Math. Oper. Res.
33.4 (2008), pp. 945–964. DOI: 10.1287/moor.1080.0330.

[DHK16] Amol Deshpande, Lisa Hellerstein, and Devorah Kletenik. Approximation Al-
gorithms for Stochastic Submodular Set Cover with Applications to Boolean
Function Evaluation and Min-Knapsack. In: ACM Trans. Algorithms 12.3 (2016),
42:1–42:28. DOI: 10.1145/2876506.

[Dob82] Gregory Dobson. Worst-Case Analysis of Greedy Heuristics for Integer Program-
ming with Nonnegative Data. In: Math. Oper. Res. 7.4 (1982), pp. 515–531. DOI:
10.1287/moor.7.4.515.

[DS14] Irit Dinur and David Steurer. Analytical approach to parallel repetition. In:
STOC. ACM, 2014, pp. 624–633. DOI: 10.1145/2591796.2591884.

[Dür+20] Christoph Dürr, Thomas Erlebach, Nicole Megow, and Julie Meißner. An Ad-
versarial Model for Scheduling with Testing. In: Algorithmica 82.12 (2020),
pp. 3630–3675. DOI: 10.1007/s00453-020-00742-2.

[Düt+21] Paul Dütting, Silvio Lattanzi, Renato Paes Leme, and Sergei Vassilvitskii. Sec-
retaries with Advice. In: EC. ACM, 2021, pp. 409–429. DOI: 10.1145/
3465456.3467623.

[Ebe+22] Franziska Eberle, Alexander Lindermayr, Nicole Megow, Lukas Nölke, and
Jens Schlöter. Robustification of Online Graph Exploration Methods. In: AAAI.
AAAI Press, 2022, pp. 9732–9740.

[EH14] Thomas Erlebach and Michael Hoffmann. Minimum Spanning Tree Verification
Under Uncertainty. In: WG. Vol. 8747. Lecture Notes in Computer Science.
Springer, 2014, pp. 164–175. DOI: 10.1007/978-3-319-12340-0_14.

[EH15] Thomas Erlebach and Michael Hoffmann. Query-Competitive Algorithms for
Computing with Uncertainty. In: Bull. EATCS 116 (2015).

181

https://doi.org/10.1007/s10107-015-0927-9
https://doi.org/10.1007/s10107-015-0927-9
https://doi.org/10.1007/s00224-004-1180-4
https://doi.org/10.1137/050629276
https://doi.org/10.1016/j.tcs.2021.09.032
https://doi.org/10.1007/978-3-642-02927-1_23
https://doi.org/10.1007/978-3-642-02927-1_23
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.1287/moor.1080.0330
https://doi.org/10.1145/2876506
https://doi.org/10.1287/moor.7.4.515
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1007/s00453-020-00742-2
https://doi.org/10.1145/3465456.3467623
https://doi.org/10.1145/3465456.3467623
https://doi.org/10.1007/978-3-319-12340-0_14

References

[EHK16] Thomas Erlebach, Michael Hoffmann, and Frank Kammer. Query-competitive
algorithms for cheapest set problems under uncertainty. In: Theor. Comput. Sci.
613 (2016), pp. 51–64. DOI: 10.1016/j.tcs.2015.11.025.

[EHL23] Thomas Erlebach, Michael Hoffmann, and Murilo Santos de Lima. Round-
Competitive Algorithms for Uncertainty Problems with Parallel Queries. In:
Algorithmica 85.2 (2023), pp. 406–443. DOI: 10.1007/s00453- 022-
01035-6.

[Erl+20] Thomas Erlebach, Michael Hoffmann, Murilo S. de Lima, Nicole Megow, and
Jens Schlöter. Untrusted Predictions Improve Trustable Query Policies. In: CoRR
abs/2011.07385 (2020).

[Erl+22] Thomas Erlebach, Murilo Santos de Lima, Nicole Megow, and Jens Schlöter.
Learning-Augmented Query Policies for Minimum Spanning Tree with Uncer-
tainty. In: ESA. Vol. 244. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2022, 49:1–49:18. DOI: 10.4230/LIPIcs.ESA.2022.49.

[Erl+23] Thomas Erlebach, Murilo Santos de Lima, Nicole Megow, and Jens Schlöter.
Sorting and Hypergraph Orientation under Uncertainty with Predictions. In:
CoRR abs/2305.09245 (2023). DOI: 10.48550/arXiv.2305.09245.

[Fed+03] Tomás Feder, Rajeev Motwani, Rina Panigrahy, Chris Olston, and Jennifer
Widom. Computing the Median with Uncertainty. In: SIAM J. Comput. 32.2
(2003), pp. 538–547. DOI: 10.1137/S0097539701395668.

[Fed+07] Tomás Feder, Rajeev Motwani, Liadan O’Callaghan, Chris Olston, and Rina
Panigrahy. Computing shortest paths with uncertainty. In: J. Algorithms 62.1
(2007), pp. 1–18. DOI: 10.1016/j.jalgor.2004.07.005.

[FMM20] Jacob Focke, Nicole Megow, and Julie Meißner. Minimum Spanning Tree under
Explorable Uncertainty in Theory and Experiments. In: ACM J. Exp. Algorith-
mics 25 (2020), pp. 1–20. DOI: 10.1145/3422371.

[Fra11] András Frank. Connections in Combinatorial Optimization. Oxford University
Press, USA, 2011.

[GGN21] Rohan Ghuge, Anupam Gupta, and Viswanath Nagarajan. The Power of Adap-
tivity for Stochastic Submodular Cover. In: ICML. Vol. 139. Proceedings of
Machine Learning Research. PMLR, 2021, pp. 3702–3712.

[GGW11] John Gittins, Kevin Glazebrook, and Richard Weber. Multi-armed Bandit Alloca-
tion Indices. 2nd. Wiley, 2011.

[GK11] Daniel Golovin and Andreas Krause. Adaptive Submodularity: Theory and
Applications in Active Learning and Stochastic Optimization. In: J. Artif. Intell.
Res. 42 (2011), pp. 427–486. DOI: 10.1613/jair.3278.

[GKL23] Anupam Gupta, Gregory Kehne, and Roie Levin. Set Covering with Our Eyes
Wide Shut. In: CoRR abs/2304.02063 (2023). DOI: 10.48550/arXiv.2304.
02063.

[GN13] Anupam Gupta and Viswanath Nagarajan. A Stochastic Probing Problem with
Applications. In: IPCO. Vol. 7801. Lecture Notes in Computer Science. Springer,
2013, pp. 205–216. DOI: 10.1007/978-3-642-36694-9_18.

[GNS16] Anupam Gupta, Viswanath Nagarajan, and Sahil Singla. Algorithms and Adap-
tivity Gaps for Stochastic Probing. In: SODA. SIAM, 2016, pp. 1731–1747. DOI:
10.1137/1.9781611974331.ch120.

182

https://doi.org/10.1016/j.tcs.2015.11.025
https://doi.org/10.1007/s00453-022-01035-6
https://doi.org/10.1007/s00453-022-01035-6
https://doi.org/10.4230/LIPIcs.ESA.2022.49
https://doi.org/10.48550/arXiv.2305.09245
https://doi.org/10.1137/S0097539701395668
https://doi.org/10.1016/j.jalgor.2004.07.005
https://doi.org/10.1145/3422371
https://doi.org/10.1613/jair.3278
https://doi.org/10.48550/arXiv.2304.02063
https://doi.org/10.48550/arXiv.2304.02063
https://doi.org/10.1007/978-3-642-36694-9_18
https://doi.org/10.1137/1.9781611974331.ch120

References

[Goe+15] Marc Goerigk, Manoj Gupta, Jonas Ide, Anita Schöbel, and Sandeep Sen. The
robust knapsack problem with queries. In: Computers & Operations Research 55
(2015), pp. 12–22. DOI: 10.1016/j.cor.2014.09.010.

[Gon+22] Mingyang Gong, Randy Goebel, Guohui Lin, and Eiji Miyano. Improved approx-
imation algorithms for non-preemptive multiprocessor scheduling with testing.
In: J. Comb. Optim. 44.1 (2022), pp. 877–893. DOI: 10.1007/s10878-022-
00865-y.

[GP19] Sreenivas Gollapudi and Debmalya Panigrahi. Online Algorithms for Rent-Or-
Buy with Expert Advice. In: ICML. Vol. 97. Proceedings of Machine Learning
Research. PMLR, 2019, pp. 2319–2327.

[Gra+13] Fabrizio Grandoni, Anupam Gupta, Stefano Leonardi, Pauli Miettinen, Piotr
Sankowski, and Mohit Singh. Set Covering with Our Eyes Closed. In: SIAM J.
Comput. 42.3 (2013), pp. 808–830. DOI: 10.1137/100802888.

[GSS16] Manoj Gupta, Yogish Sabharwal, and Sandeep Sen. The Update Complexity of
Selection and Related Problems. In: Theory of Computing Systems 59.1 (2016),
pp. 112–132. DOI: 10.1007/s00224-015-9664-y.

[Gup+15] Anupam Gupta, Ravishankar Krishnaswamy, Viswanath Nagarajan, and R. Ravi.
Running Errands in Time: Approximation Algorithms for Stochastic Orienteering.
In: Math. Oper. Res. 40.1 (2015), pp. 56–79. DOI: 10.1287/moor.2014.
0656.

[Gup+19] Anupam Gupta, Haotian Jiang, Ziv Scully, and Sahil Singla. The Markovian
Price of Information. In: International Conference on Integer Programming and
Combinatorial Optimization. Springer. 2019, pp. 233–246. DOI: 10.1007/
978-3-030-17953-3_18.

[GV06a] Michel X. Goemans and Jan Vondrák. Covering minimum spanning trees of
random subgraphs. In: Random Struct. Algorithms 29.3 (2006), pp. 257–276.
DOI: 10.1002/rsa.20115.

[GV06b] Michel X. Goemans and Jan Vondrák. Stochastic Covering and Adaptivity. In:
LATIN. Vol. 3887. Lecture Notes in Computer Science. Springer, 2006, pp. 532–
543. DOI: 10.1007/11682462_50.

[Hal02] Eran Halperin. Improved approximation algorithms for the vertex cover prob-
lem in graphs and hypergraphs. In: SIAM Journal on Computing 31.5 (2002),
pp. 1608–1623. DOI: 10.1137/S0097539700381097.

[HL21] Magnús M. Halldórsson and Murilo Santos de Lima. Query-competitive sorting
with uncertainty. In: Theor. Comput. Sci. 867 (2021), pp. 50–67. DOI: 10.
1016/j.tcs.2021.03.021.

[Hoe94] Wassily Hoeffding. Probability inequalities for sums of bounded random vari-
ables. In: The collected works of Wassily Hoeffding. Springer, 1994, pp. 409–
426.

[Hof+08] Michael Hoffmann, Thomas Erlebach, Danny Krizanc, Matús Mihalák, and Ra-
jeev Raman. Computing Minimum Spanning Trees with Uncertainty. In: STACS.
Vol. 1. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany,
2008, pp. 277–288. DOI: 10.4230/LIPIcs.STACS.2008.1358.

[INZ16] Sungjin Im, Viswanath Nagarajan, and Ruben van der Zwaan. Minimum Latency
Submodular Cover. In: ACM Trans. Algorithms 13.1 (2016), 13:1–13:28. DOI:
10.1145/2987751.

183

https://doi.org/10.1016/j.cor.2014.09.010
https://doi.org/10.1007/s10878-022-00865-y
https://doi.org/10.1007/s10878-022-00865-y
https://doi.org/10.1137/100802888
https://doi.org/10.1007/s00224-015-9664-y
https://doi.org/10.1287/moor.2014.0656
https://doi.org/10.1287/moor.2014.0656
https://doi.org/10.1007/978-3-030-17953-3_18
https://doi.org/10.1007/978-3-030-17953-3_18
https://doi.org/10.1002/rsa.20115
https://doi.org/10.1007/11682462_50
https://doi.org/10.1137/S0097539700381097
https://doi.org/10.1016/j.tcs.2021.03.021
https://doi.org/10.1016/j.tcs.2021.03.021
https://doi.org/10.4230/LIPIcs.STACS.2008.1358
https://doi.org/10.1145/2987751

References

[Kah91] Simon Kahan. A Model for Data in Motion. In: STOC. ACM, 1991, pp. 267–277.
DOI: 10.1145/103418.103449.

[KNN17] Prabhanjan Kambadur, Viswanath Nagarajan, and Fatemeh Navidi. Adaptive
Submodular Ranking. In: IPCO. Vol. 10328. Lecture Notes in Computer Science.
Springer, 2017, pp. 317–329. DOI: 10.1007/978-3-319-59250-3_26.

[KT01] Sanjeev Khanna and Wang Chiew Tan. On Computing Functions with Uncer-
tainty. In: PODS. ACM, 2001. DOI: 10.1145/375551.375577.

[Kum+19] Ravi Kumar, Manish Purohit, Aaron Schild, Zoya Svitkina, and Erik Vee. Semi-
Online Bipartite Matching. In: ITCS. Vol. 124. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2019, 50:1–50:20. DOI: 10.4230/LIPIcs.
ITCS.2019.50.

[KY01] Stavros G. Kolliopoulos and Neal E. Young. Tight Approximation Results for
General Covering Integer Programs. In: FOCS. IEEE Computer Society, 2001,
pp. 522–528. DOI: 10.1109/SFCS.2001.959928.

[KY05] Stavros G. Kolliopoulos and Neal E. Young. Approximation algorithms for
covering/packing integer programs. In: J. Comput. Syst. Sci. 71.4 (2005), pp. 495–
505. DOI: 10.1016/j.jcss.2005.05.002.

[Lat+20] Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii.
Online Scheduling via Learned Weights. In: SODA. SIAM, 2020, pp. 1859–1877.
DOI: 10.1137/1.9781611975994.114.

[LM22] Alexander Lindermayr and Nicole Megow. Permutation Predictions for Non-
Clairvoyant Scheduling. In: SPAA. ACM, 2022, pp. 357–368. DOI: 10.1145/
3490148.3538579.

[LM23] Alexander Lindermayr and Nicole Megow. Repository of papers on algorithms
with predictions. 2023. URL: https://algorithms-with-predictions.
github.io/.

[LMS19] Retsef Levi, Thomas L. Magnanti, and Yaron Shaposhnik. Scheduling with
Testing. In: Manag. Sci. 65.2 (2019), pp. 776–793.

[LMS22] Alexander Lindermayr, Nicole Megow, and Bertrand Simon. Double Coverage
with Machine-Learned Advice. In: ITCS. Vol. 215. LIPIcs. 2022, 99:1–99:18.
DOI: 10.4230/LIPIcs.ITCS.2022.99.

[Lu+21] Pinyan Lu, Xuandi Ren, Enze Sun, and Yubo Zhang. Generalized Sorting
with Predictions. In: SOSA. SIAM, 2021, pp. 111–117. DOI: 10.1137/1.
9781611976496.13.

[LV21] Thodoris Lykouris and Sergei Vassilvitskii. Competitive Caching with Ma-
chine Learned Advice. In: J. ACM 68.4 (2021), 24:1–24:25. DOI: 10.1145/
3447579.

[LX21] Shi Li and Jiayi Xian. Online Unrelated Machine Load Balancing with Pre-
dictions Revisited. In: ICML. Vol. 139. Proceedings of Machine Learning Re-
search. PMLR, 2021, pp. 6523–6532. URL: https://proceedings.mlr.
press/v139/li21w.html.

[Ma18] Will Ma. Improvements and Generalizations of Stochastic Knapsack and Marko-
vian Bandits Approximation Algorithms. In: Math. Oper. Res. 43.3 (2018),
pp. 789–812. DOI: 10.1287/moor.2017.0884.

[MÇ22] Corinna Mathwieser and Eranda Çela. Special Cases of the Minimum Span-
ning Tree Problem under Explorable Edge and Vertex Uncertainty. In: CoRR
abs/2211.15611 (2022).

184

https://doi.org/10.1145/103418.103449
https://doi.org/10.1007/978-3-319-59250-3_26
https://doi.org/10.1145/375551.375577
https://doi.org/10.4230/LIPIcs.ITCS.2019.50
https://doi.org/10.4230/LIPIcs.ITCS.2019.50
https://doi.org/10.1109/SFCS.2001.959928
https://doi.org/10.1016/j.jcss.2005.05.002
https://doi.org/10.1137/1.9781611975994.114
https://doi.org/10.1145/3490148.3538579
https://doi.org/10.1145/3490148.3538579
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://doi.org/10.4230/LIPIcs.ITCS.2022.99
https://doi.org/10.1137/1.9781611976496.13
https://doi.org/10.1137/1.9781611976496.13
https://doi.org/10.1145/3447579
https://doi.org/10.1145/3447579
https://proceedings.mlr.press/v139/li21w.html
https://proceedings.mlr.press/v139/li21w.html
https://doi.org/10.1287/moor.2017.0884

References

[Mei18] Julie Meißner. Uncertainty Exploration: Algorithms, Competitive Analysis, and
Computational Experiments. PhD thesis. Technischen Universität Berlin, 2018.
DOI: 10.14279/depositonce-7327.

[Mit20] Michael Mitzenmacher. Scheduling with Predictions and the Price of Mispre-
diction. In: Proceedings of ITCS. Vol. 151. LIPIcs. 2020, 14:1–14:18. DOI:
10.4230/LIPIcs.ITCS.2020.14.

[MMS17] Nicole Megow, Julie Meißner, and Martin Skutella. Randomization Helps Com-
puting a Minimum Spanning Tree under Uncertainty. In: SIAM Journal on
Computing 46.4 (2017), pp. 1217–1240. DOI: 10.1137/16M1088375.

[MS19] Arturo I. Merino and José A. Soto. The Minimum Cost Query Problem on
Matroids with Uncertainty Areas. In: Proceedings of ICALP. Vol. 132. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 83:1–83:14.

[MS21] Nicole Megow and Jens Schlöter. Explorable Uncertainty Meets Decision-
Making in Logistics. In: Dynamics in Logistics: Twenty-Five Years of Inter-
disciplinary Logistics Research in Bremen, Germany. Springer, 2021, pp. 35–
56.

[MS23] Nicole Megow and Jens Schlöter. Set Selection Under Explorable Stochastic
Uncertainty via Covering Techniques. In: IPCO. Vol. 13904. Lecture Notes in
Computer Science. Springer, 2023, pp. 319–333. DOI: 10.1007/978-3-
031-32726-1_23.

[MV17] Andres Muñoz Medina and Sergei Vassilvitskii. Revenue Optimization with
Approximate Bid Predictions. In: NIPS. 2017, pp. 1858–1866.

[MY20] Takanori Maehara and Yutaro Yamaguchi. Stochastic packing integer programs
with few queries. In: Math. Program. 182.1 (2020), pp. 141–174. DOI: 10.
1007/s10107-019-01388-x.

[NJ75] George L. Nemhauser and Leslie E. Trotter Jr. Vertex packings: Structural
properties and algorithms. In: Math. Program. 8.1 (1975), pp. 232–248. DOI:
10.1007/BF01580444.

[NKN20] Fatemeh Navidi, Prabhanjan Kambadur, and Viswanath Nagarajan. Adaptive
Submodular Ranking and Routing. In: Oper. Res. 68.3 (2020), pp. 856–877. DOI:
10.1287/opre.2019.1889.

[OW00] Chris Olston and Jennifer Widom. Offering a Precision-Performance Tradeoff
for Aggregation Queries over Replicated Data. In: VLDB. Morgan Kaufmann,
2000, pp. 144–155.

[Pol74] S. Poljak. A note on stable sets and colorings of graphs. In: Commentationes
Mathematicae Universitatis Carolinae 15.2 (1974), pp. 307–309. URL: https:
//eudml.org/doc/16622.

[PSK18] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving Online Algorithms
via ML Predictions. In: NeurIPS. 2018, pp. 9684–9693.

[Rob39] Herbert E. Robbins. A Theorem on Graphs, with an Application to a Problem of
Traffic Control. In: The American Mathematical Monthly 46.5 (1939), pp. 281–
283. URL: http://www.jstor.org/stable/2303897.

[Roh20] Dhruv Rohatgi. Near-Optimal Bounds for Online Caching with Machine Learned
Advice. In: SODA. SIAM, 2020, pp. 1834–1845.

[Rou20] Tim Roughgarden, ed. Beyond the Worst-Case Analysis of Algorithms. Cam-
bridge University Press, 2020.

185

https://doi.org/10.14279/depositonce-7327
https://doi.org/10.4230/LIPIcs.ITCS.2020.14
https://doi.org/10.1137/16M1088375
https://doi.org/10.1007/978-3-031-32726-1_23
https://doi.org/10.1007/978-3-031-32726-1_23
https://doi.org/10.1007/s10107-019-01388-x
https://doi.org/10.1007/s10107-019-01388-x
https://doi.org/10.1007/BF01580444
https://doi.org/10.1287/opre.2019.1889
https://eudml.org/doc/16622
https://eudml.org/doc/16622
http://www.jstor.org/stable/2303897

References

[RV98] Sridhar Rajagopalan and Vijay V Vazirani. Primal-dual RNC approximation al-
gorithms for set cover and covering integer programs. In: SIAM Journal on Com-
puting 28.2 (1998), pp. 525–540. DOI: 10.1137/S0097539793260763.

[SB14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014.

[Sch03] Alexander Schrijver. Combinatorial Optimization − Polyhedra and Efficiency.
Springer, 2003.

[Sha16] Yaron Shaposhnik. Exploration vs. Exploitation: reducing uncertainty in opera-
tional problems. PhD thesis. Massachusetts Institute of Technology, 2016.

[Sin18] Sahil Singla. The Price of Information in Combinatorial Optimization. In: SODA.
SIAM, 2018, pp. 2523–2532. DOI: 10.1137/1.9781611975031.161.

[SS04] David B. Shmoys and Chaitanya Swamy. Stochastic Optimization is (Almost) as
easy as Deterministic Optimization. In: FOCS. IEEE Computer Society, 2004,
pp. 228–237. DOI: 10.1109/FOCS.2004.62.

[Tho33] William R. Thompson. On the Likelihood that One Unknown Probability Exceeds
Another in View of the Evidence of Two Samples. In: Biometrika 25.3/4 (1933),
pp. 285–294.

[Vad01] Salil P. Vadhan. The Complexity of Counting in Sparse, Regular, and Planar
Graphs. In: SIAM J. Comput. 31.2 (2001), pp. 398–427. DOI: 10.1137/
S0097539797321602.

[Val84] Leslie G. Valiant. A Theory of the Learnable. In: Commun. ACM 27.11 (1984),
pp. 1134–1142. DOI: 10.1145/1968.1972.

[Vap92] Vladimir Vapnik. Principles of risk minimization for learning theory. In: Ad-
vances in neural information processing systems. 1992, pp. 831–838.

[Vap99] Vladimir N Vapnik. An overview of statistical learning theory. In: IEEE trans-
actions on neural networks 10.5 (1999), pp. 988–999. DOI: 10.1109/72.
788640.

[Vaz01] Vijay V Vazirani. Approximation algorithms. Vol. 1. Springer, 2001.

[Von07] Jan Vondrák. Shortest-path metric approximation for random subgraphs. In:
Random Struct. Algorithms 30.1-2 (2007), pp. 95–104. DOI: 10.1002/rsa.
20150.

[Weg67] G. Wegner. Eigenschaften der Nerven homologisch–einfacher Familien im Rn.
PhD thesis. Universität Göttingen, 1967.

[Wei20] Alexander Wei. Better and Simpler Learning-Augmented Online Caching. In:
APPROX/RANDOM. Vol. 176. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020, 60:1–60:17. DOI: 10.4230/LIPIcs.APPROX/RANDOM.
2020.60.

[Wei79] Martin Weitzman. Optimal Search for the Best Alternative. In: Econometrica
47.3 (1979), pp. 641–54.

[WGW22] Weina Wang, Anupam Gupta, and Jalani Williams. Probing to Minimize. In:
ITCS. Vol. 215. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022, 120:1–120:23. DOI: 10.4230/LIPIcs.ITCS.2022.120.

[Wol82] Laurence A. Wolsey. An analysis of the greedy algorithm for the submodular
set covering problem. In: Comb. 2.4 (1982), pp. 385–393. DOI: 10.1007/
BF02579435.

186

https://doi.org/10.1137/S0097539793260763
https://doi.org/10.1137/1.9781611975031.161
https://doi.org/10.1109/FOCS.2004.62
https://doi.org/10.1137/S0097539797321602
https://doi.org/10.1137/S0097539797321602
https://doi.org/10.1145/1968.1972
https://doi.org/10.1109/72.788640
https://doi.org/10.1109/72.788640
https://doi.org/10.1002/rsa.20150
https://doi.org/10.1002/rsa.20150
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.60
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.60
https://doi.org/10.4230/LIPIcs.ITCS.2022.120
https://doi.org/10.1007/BF02579435
https://doi.org/10.1007/BF02579435

References

[WZ20] Alexander Wei and Fred Zhang. Optimal Robustness-Consistency tradeoffs for
Learning-Augmented Online Algorithms. In: NeurIPS. 2020.

[YG80] Mihalis Yannakakis and Fanica Gavril. Edge Dominating Sets in Graphs. In:
SIAM Journal on Applied Mathematics 38.3 (1980), pp. 364–372. DOI: 10.
1137/0138030.

187

https://doi.org/10.1137/0138030
https://doi.org/10.1137/0138030

Zusammenfassung

Bei der Lösung von Optimierungsproblemen in realen Anwendungen sind Unsicherheit
in den Eingabedaten und unvollständige Informationen eine große Herausforderung. Man
denke beispielsweise an schwankende Transportzeiten, unbekannte Ausführungszeiten von
zu planenden Aufgaben, variable Parameter wie Bandbreite und Nachfrage, sich dynamisch
ändernde Standorte von mobilen Agenten oder dezentralisierte Daten, die nur unregelmäßig
aktualisiert werden.

Da Unsicherheit in einer Vielzahl von realen Anwendungen allgegenwärtig ist, wurden
eine Reihe von mathematischen Methoden für die Modellierung von Unsicherheit in Opti-
mierungsproblemen entwickelt. Eine erste wichtige Methode ist die Online-Optimierung,
bei der Teile der Eingaben zunächst unbekannt sind und die fehlenden Daten im Laufe
der Zeit nach und nach aufgedeckt werden. Wann immer neue Daten eintreffen, muss ein
Optimierungsalgorithmus unwiderrufliche Entscheidungen darüber treffen, wie er mit den
neuen Informationen umgehen soll (vgl. z.B. [BE98]). Stochastische Optimierung bezieht
sich auf Probleme, in denen unsichere Eingangsdaten durch (bekannte oder unbekannte)
Wahrscheinlichkeitsverteilungen modelliert werden. Ziel ist es, Lösungen zu finden, die
entweder im Erwartungswert oder mit hoher Wahrscheinlichkeit eine hohe Qualität haben.
Die tatsächlichen Realisierungen der unsicheren Teile der Eingabe werden in der Regel
stufenweise nacheinander aufgedeckt (vgl. z.B. [BL11]). In der dritten weit verbreiteten
Methode, der robusten Optimierung, wird die Unsicherheit in der Regel durch eine explizit
oder implizit vorgegebene Menge von Szenarien modelliert, die möglicherweise eintreten kön-
nten. Üblicherweise ist dann das Ziel, eine einzige Lösung zu finden, die für jedes mögliche
Szenario eine hohe Qualität hat (vgl. z.B. [BGN09]).

Alle diese Modelle haben gemeinsam, dass die unsicheren Informationen entweder passiv
im Laufe der Zeit oder überhaupt nicht offenbart werden. Optimierungsalgorithmen für Prob-
leme in diesen Modellen müssen mit dieser Art von passiv offengelegter Unsicherheit umgehen
und Entscheidungen auf der Grundlage unvollständiger Informationen treffen. Insbesondere
haben sie nicht die Möglichkeit, auch nicht gegen zusätzliche Kosten, aktiv neue Informa-
tionen zu ermitteln, die bei der Lösung der Optimierungsaufgabe helfen. In einigen realen
Anwendungen ist die Möglichkeit, unsichere Teile der Eingabe zu einem bestimmten Preis
abzufragen, jedoch eine naheliegende Annahme. So können unsichere Ausführungszeiten von
zu planenden Aufgaben durch weitere Analysen ermittelt werden (vgl. [Sha16] für ein Beispiel
in der Instandhaltung mittels Fehleranalyse), variable Parameter wie die Bandbreite einer
Netzwerkverbindung können gemessen werden, dynamisch wechselnde Standorte von sich
bewegenden Agenten können durch zusätzliche Kommunikation [Kah91] ermittelt werden
und dezentrale Daten können durch Abfragen an eine Master-Datenbank [OW00] aktualisiert
werden.

Das Gebiet der erforschbaren Unsicherheit wurde in einer initialen Arbeit von Ka-
han [Kah91] eingeführt und betrachtet genau solche Szenarien, in denen unsichere Teile
in der Eingabe eines Optimierungsproblems abgefragt werden können, um mehr Informatio-
nen zu erhalten. Da solche Abfragen kostspielig sind, besteht das Ziel darin, die Abfragekosten
zu minimieren, die notwendig sind, um eine optimale (oder annähernde) Lösung für das zu-
grunde liegende Optimierungsproblem zu finden. Das Modell berücksichtigt insbesondere
die Unsicherheit von numerischen Parametern der Eingabe. Anstatt Zugang zu den genauen

189

Zusammenfassung

Werten dieser Parameter zu haben, werden uns Unsicherheitsintervalle gegeben. Diese Inter-
valle enthalten die genauen Werte der entsprechenden Parameter, wir haben initial aber keine
Information darüber, wo innerhalb des Intervalls der Wert tatsächlich liegt. Da die optimale
Lösung des zugrundeliegenden Optimierungsproblems von den unsicheren Parametern abhän-
gen kann, ist es gegebenenfalls unmöglich eine optimale (oder annähernde) Lösung in Bezug
auf die unsicheren Werte zu finden, ohne weitere Informationen zu erhalten. Daher besteht
das Ziel im Gebiet der erforschbaren Unsicherheit darin, Algorithmen zu entwickeln, die
unsichere Parameter so lange abfragen, bis die aufgedeckten Informationen ausreichen, um
eine optimale Lösung für das zugrundeliegende Optimierungsproblem zu finden. Dabei sollen
die Abfragekosten minimiert werden. Diese Dissertation und die Mehrzahl der bestehenden
Forschungsarbeiten auf diesem Gebiet befassen sich mit adaptiven Algorithmen für Probleme
mit erforschbarer Unsicherheit, die Ergebnisse früherer Abfragen bei der Entscheidung über
die nächste Abfrage berücksichtigen können.

Betrachte als Beispiel das klassische minimale Spannbaum-Problem, bei dem ein un-
gerichteter Graph G = (V,E) mit Kantengewichten we für alle e ∈ E gegeben ist. Ziel
ist es, einen minimalen Spannbaum (MST) zu finden, d.h. eine Teilmenge T ⊆ E mit
minimalem Gewicht w(T) =

∑︁
e∈T we, so dass der Teilgraph G′ = (V, T) zusammen-

hängend ist und keine Kreise enthält. Unter erforschbarer Unsicherheit sind die genauen
Kantengewichte we zunächst unbekannt. Stattdessen haben wir nur Zugriff auf Unsicher-
heitsintervalle Ie = (Le, Ue), für alle e ∈ E, die garantiert die genauen Kantengewichte
enthalten, d.h. we ∈ Ie. Das Ziel bleibt, einen MST für die unbekannten genauen Kan-
tengewichte zu finden. Um einen solchen MST trotz der fehlenden Information über die
Kantengewichte zu finden, können Kanten abgefragt werden, um das genaue Gewicht we

einer Kante e zu Abfragekosten ce zu ermitteln. Die Aufgabe besteht darin, Algorithmen zu
entwerfen, die adaptiv Kanten abfragen, bis die abgefragten Informationen ausreichen, um
einen MST für die genauen Gewichte zu bestimmen und dabei die gesamten Abfragekosten
zu minimieren.

Bisher wurden Algorithmen für erforschbare Unsicherheit meist mit Hilfe von Worst-
Case Analysen untersucht, bei denen wir davon ausgehen, dass Abfrageergebnisse in einer
Art und Weise zurückgegeben werden, die zur schlechtesten Performanz des Algorithmus
führt. Da es in der Regel Probleminstanzen gibt, die nicht gelöst werden können, ohne
alle unsicheren Parameter abzufragen, werden Algorithmen für erforschbare Unsicherheit
typischerweise auf instanzabhängige Weise mittels competitive analysis analysiert. Wir geben
später eine formale Definition, aber wir sagen, dass ein Algorithmus ρ-kompetitiv für ein
Problem unter erforschbarer Unsicherheit ist, wenn für jede Probleminstanz die Abfragekosten
des Algorithmus um einen Faktor von höchstens ρ größer sind als die optimalen Abfragekosten
für die konkrete Instanz. Das minimale ρ, für das ein Algorithmus ρ-kompetitiv ist, nennt man
den competitive ratio des Algorithmus.

Die am meisten untersuchten Probleme im Gebiet der erforschbaren Unsicherheit sind
Auswahlprobleme, z.B, die Auswahl des Minimums [Kah91], Sortierung [HL21], die Auswahl
des k-kleinsten Elements [Kah91; Fed+03], die Auswahl eines minimalen Spannbaums [Hof+08;
EH14; MMS17] und geometrische Probleme [Bru+05]. Für all diese Probleme gibt es konstant-
kompetitive Algorithmen und untere Schranken an den competive ratio, die bessere algorith-
men ausschließen. Außerdem haben diese Probleme gemeinsam, dass sie im Wesentlichen
(aber auf nicht-triviale Weise) auf den Vergleich einzelner Unsicherheitsintervalle reduziert
werden können und dass die unteren Schranken bereits aus sehr einfachen Probleminstanzen
bestehen. Sobald zwei Mengen (Summen) von Unsicherheitsintervallen verglichen werden
müssen, kann kein deterministischer Algorithmus einen besseren competitive ratio haben
als Ω(n) [EHK16], wobei n die Anzahl der gegebenen Unsicherheitsintervalle ist. Diese
untere Schranke von Ω(n) lässt sich auf kombinatorische Optimierungsprobleme unter er-
forschbarer Unsicherheit übertragen, wie z.B. die Berechnung des kürzesten Weges in einem

190

Zusammenfassung

Graphen [Fed+07], das Rucksackproblem [Mei18] und Matchings [Mei18], und verhindert,
dass wir nicht-triviale Ergebnisse für diese Probleme erzielen können.

Motiviert durch diese einfachen und starken unteren Schranken stellt diese Dissertation
die Frage, ob Worst-Case-Abfrageergebnisse und keine zusätzlichen Informationen über die
unsicheren Eingabeparameter (abgesehen von den Unsicherheitsintervallen) zu pessimistisch
sind. Betrachten wir dazu erneut die initialen Anwendungsbeispiele. Die Qualität von Netzw-
erkverbindungen, die anhand von Kennzahlen wie Durchsatz und Zuverlässigkeit in einem
drahtlosen Netzwerk gemessen wird, schwankt oft innerhalb eines bestimmten Intervalls. Die
tatsächliche Qualität einer Verbindung kann durch eine neue Messung ermittelt werden. Wenn
wir einen minimalen Spannbaum mit den Verbindungen aufbauen wollen, die derzeit die
höchste Verbindungsqualität haben, und die zusätzlich benötigten Messungen minimieren
wollen, dann liegt ein minimales Spannbaum-Problem unter erforschbarer Unsicherheit vor.
Die Annahme, dass wir keine zusätzlichen Informationen über die Ergebnisse der Messungen
haben, könnte jedoch zu pessimistisch sein, da man zum Beispiel Methoden des maschinellen
Lernens verwenden kann, um die genaue Verbindungsqualität auf der Grundlage von früheren
Messungen vorherzusagen [Abd+20]. Da diese Vorhersagen nicht immer genau sind, möchten
wir trotzdem neue Messungen durchführen, um zu garantieren, dass wir einen minimalen
Spannbaum in Bezug auf die aktuelle Verbindungsqualität finden. Die zusätzlichen Informatio-
nen in Form der Vorhersagen können dann trotzdem hilfreich dabei sein, die Verbindungen für
zusätzliche Messungen auszuwählen. Als zweites Beispiel, betrachte die unsichere Position
von mobilen Agenten. Der letzte bekannte frühere Standort und die maximale Bewegungs-
geschwindigkeit eines solchen Agenten ergeben ein Unsicherheitsintervall, das garantiert den
aktuellen Standort enthält. Mit Hilfe von statistischen Werkzeugen könnte man jedoch in der
Lage sein, den wahrscheinlichsten wahren Standort des Agenten auf der Grundlage früherer
Bewegungsdaten vorherzusagen.

In dieser Dissertation betrachten wir verschiedene Probleme unter erforschbarer Unsicher-
heit und analysieren sie mit Hilfe von Methoden, die über den Worst-Case hinausgehen.
Mehrere Methoden für die Analyse von Algorithmen jenseits des Worst-Case wurden zum
Beispiel in [Rou20] diskutiert. In dieser Arbeit betrachten wir Algorithmen mit Zugriff auf un-
zuverlässige Vorhersagen oder stochastische Informationen für Probleme unter erforschbarer
Unsicherheit.

Im ersten Fall gehen wir davon aus, dass wir Zugang zu unzuverlässigen Vorhersagen
über die unsicheren Werte haben. Angesichts des Aufschwungs der künstlichen Intelligenz
und des maschinellen Lernens (ML) in den letzten Jahrzehnten scheint es naheliegend zu sein,
Vorhersagen von guter Genauigkeit zu erwarten. Allerdings gibt es dafür keine Garantie, und
die Vorhersagen könnten in einigen Fällen auch beliebig falsch sein. Unser Ziel ist es daher,
Algorithmen zu entwickeln, die einen verbesserten competitive ratio erzielen wenn die Vorher-
sagen von guter Genauigkeit sind, und gleichzeitig die Leistungsgarantien von Algorithmen
ohne Zugang zu Vorhersagen erfüllen, selbst wenn die Vorhersagen komplett falsch sind. Dies
entspricht einem neueren Forschungstrend, der die Verwendung von nicht vertrauenswürdigen
Vorhersagen für Online-Algorithmen in Betracht zieht; wir geben später einen Überblick über
verwandte Arbeiten auf diesem Gebiet. Wie in [LV21; PSK18] eingeführt, ist ein Algorith-
mus α-konsistent, wenn er im Falle von korrekten Vorhersagen α-kompetitiv ist, und er ist
β-robust, wenn er auch für beliebig schlechte Vorhersagen β-kompetitiv ist. Idealerweise
wollen wir einen fließenden Übergang zwischen Konsistenz und Robustheit in Abhängigkeit
von einem Fehlermaß, das die Genauigkeit der Vorhersagen quantifiziert, garantieren. In
den Kapiteln 4 und 5 entwerfen wir Algorithmen mit Zugriff auf unzuverlässige Vorher-
sagen für mehrere Probleme unter erforschbarer Unsicherheit und analysieren sie anhand von
Konsistenz, Robustheit und Fehlerabhängigkeit.

Ein weiteres Modell für die Analyse von Problemen unter erforschbarer Unsicherheit
ist das stochastische Modell. Anstatt davon auszugehen, dass die Abfrageergebnisse so

191

Zusammenfassung

zurückgegeben werden, wie es für die Performanz des Algorithmus am schlimmsten ist,
nehmen wir an, dass sie aus (bekannten oder unbekannten) Wahrscheinlichkeitsverteilungen
über die entsprechenden Unsicherheitsintervalle gezogen werden. Im Gegensatz zu den
unzuverlässigen Vorhersagen sind die stochastischen Informationen zuverlässig, und die
Algorithmen werden im Hinblick auf das Verhältnis zwischen den erwarteten Abfragekosten
eines Algorithmus und den erwarteten Kosten für die optimale Lösung analysiert. In den
Kapiteln 3 und 6 betrachten wir Probleme unter erforschbarer Ungewissheit in verschiedenen
stochastischen Modellen und entwerfen Algorithmen, die, im Erwartungswert, eine bessere
Performanz haben als die unteren Schranken für Worst-Case Analysen.

Insgesamt zeigen die Ergebnisse dieser Arbeit, dass wir die unteren Schranken für mehrere
Probleme unter erforschbarer Unsicherheit verbessern können, wenn wir diese Probleme über
den Worst-Case hinaus analysieren. Um diese verbesserten Ergebnisse zu erreichen, entwerfen
wir mehrere neue Algorithmen mit Hilfe von algorithmischen Techniken und Analysen, die
bisher noch nicht für Probleme in diesem Bereich verwendet wurden. Wir hoffen, dass unsere
Ergebnisse und technischen Beiträge den Grundstein für weitere Forschung zu Problemen
unter erforschbarer Unsicherheit jenseits des Worst-Case legen.

192

	Introduction
	Outline

	Preliminaries and Structural Results
	Explorable Uncertainty: Formal Problem Definitions
	Basic Definitions for Problems under Explorable Uncertainty
	Hypergraph Orientation and Sorting under Explorable Uncertainty
	The Minimum Spanning Tree Problem under Explorable Uncertainty
	Set Selection under Explorable Uncertainty

	Competitive Analysis
	Worst-Case Analysis and Lower Bounds
	Lower Bounds on the Adversarial Competitive Ratio
	Competitive Analysis Beyond the Worst-Case

	Local Bounds on OPT and the Witness Set Algorithm
	Witness Sets and the Witness Set Algorithm
	Mandatory Elements and Preprocessing Algorithms
	A Witness Set Algorithm for Hypergraph Orientation
	A Witness Set Algorithm for Set Selection
	The Limits of the Witness Set Algorithm Beyond the Worst-Case

	Related Work

	Orienting (Hyper)graphs under Explorable Stochastic Uncertainty
	Introduction
	Our Results
	Related Work
	Outline

	Preliminaries
	Preprocessing, Mandatory Vertices and Mandatory Probabilities
	Lower Bounds on the Stochastic Competitive Ratio
	Witness Sets and the Vertex Cover Instance
	Lower Bounds on the Expected Optimal Query Cost
	Vertex Cover-based Algorithms
	Hardness of the Offline Problem

	A Threshold Algorithm for Orienting Graphs
	Threshold Algorithm for Arbitrary Query Costs
	Fractional Lower Bounds on the Expected Optimum
	A Threshold Algorithm for Arbitrary Query Costs

	A Threshold Algorithm for Orienting Hypergraphs
	Computing Mandatory Probabilities
	A Threshold Algorithm for Orienting Hypergraphs
	Bounds on the Necessary Adaptivity

	Vertex Cover-Based Algorithms: Special Cases
	Orienting Bipartite Graphs with Arbitrary Query Costs
	Orienting a Special Star with Arbitrary Query Costs
	Orienting a Single Hyperedge with Uniform Query Costs

	Concluding Remarks

	Sorting and Hypergraph Orientation under Uncertainty with Predictions
	Introduction
	Our Results
	Outline

	Preliminaries, Tradeoff Lower Bounds and Error Measures
	Preliminaries
	Accuracy of Predictions

	Hypergraph Orientation
	Learning-augmented Algorithm With Respect To the Hop Distance
	Learning-augmented Algorithm w.r.t. the Mandatory Query Distance
	Non-Integral Parameter Gamma via Randomization

	Sorting under Explorable Uncertainty
	A Learning-augmented Algorithm for Sorting
	Computing the Clique Partition
	Guarantee depending on the Number of Wrong Predictions

	Learnability of Predictions
	Learning with Respect to the Hop Distance
	Learning with Respect to the Mandatory Query Distance

	Concluding Remarks

	Learning-Augmented Algorithms for Minimum Spanning Tree with Uncertainty
	Introduction
	Our Results
	Outline

	Preliminaries
	Lower Bound on the Consistency and Robustness Tradeoff
	Error Metrics
	Witness Sets and Mandatory Edges

	Overview of Techniques
	Basic Algorithmic Framework
	Algorithmic Ideas

	Prediction Mandatory Edges and New Structural Results
	New Criteria to Identify Witness Sets and (Prediction) Mandatory Edges
	Prediction Mandatory Free Instances
	Relation Between Prediction Mandatory Edges and The Hop Distance

	Making Instances Prediction Mandatory Free
	Algorithm and Overview of the Algorithmic Ideas
	Formal Analysis of the Algorithm

	Optimal Consistency and Robustness Tradeoff
	Optimal Tradeoff for Prediction Mandatory Free Instances
	Optimal Tradeoff for General Instances

	An Error-Sensitive Algorithm
	Error-Sensitive Algorithm for Prediction Mandatory Free Instances
	Error-Sensitive Algorithm for General Instances

	Concluding Remarks

	Set Selection under Explorable Stochastic Uncertainty via Covering Techniques
	Introduction
	The Covering Point of View
	Our Results
	Further Previous Work
	Outline

	Disjoint MinSet
	Algorithmic framework
	Offline Problems and Hardness of Approximation
	Algorithmic framework
	Proof of the Hardness of Approximation

	MinSet with Deterministic Right-Hand Sides
	MinSet under uncertainty
	The Maximization Variant of MinSet
	Concluding Remarks

	References
	Zusammenfassung (German)

