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Abstract

Robotic manipulation is a complex field that still faces numerous challenges. With
the development of collaborative robots, the end-effector area is just beginning to
gain traction, and electrically driven end-effectors are just starting to be widely used
in the industry. One of the fundamental requirements for a robot to achieve practical
applications is stable grasping. However, in reality, most stable grasping relies on
specific static conditions and human experience. As the robotic industry continues
to develop more complex and diverse applications, the need for stable grasping to
support these high-level applications increases. To achieve more complex and sta-
ble grasping functions, a complex end-effector, such as a dexterous hand, becomes
essential hardware.

This thesis focuses on building a novel practical dexterous hand that can be used
in robotic manipulation research. To make better use of the dexterous hand, visual-
based grasp planning, and tactile-based stable grasping are necessary to form a sta-
ble grasping system. In this thesis, three crucial topics were selected and divided into
three parts of the work: dexterous hand, grasp planning, and stable grasping.

The dexterous hand part includes the main design work of a modular three-
finger dexterous hand called DoraHand and partial work on another one called Eagle
Shoal. The performance of the DoraHand and the tactile sensor module is showcased
through experiments. Two-finger and five-finger versions of the DoraHand have also
been developed and tested in real applications, providing a reliable hardware foun-
dation for further research.

The grasp planning part focuses on providing a grasp planning solution for the
dexterous hand. As an essential function of using an end-effector, this part starts
with an analytic solution that considers the limitations of the dexterous hand mech-
anism and grasp quality evaluation. A grasp planning network has been developed
using both analytic and data-driven approaches. The network features a multi-finger
grasp plan representation method and has been successfully verified.

The stable grasping part is the final application of this thesis, where the hardware
provides the foundation and the stable grasping algorithm utilizes the tactile sensor.
An open-source visual-tactile dataset has been developed using the Eagle Shoal dex-
terous hand. The stable grasping algorithm, built based on this dataset, has been
successfully verified with different types of end-effectors, including DoraHand and
suction cup gripper.

Overall, these three parts of work constitute the critical components of a stable
grasping system using a dexterous hand. This system and related dataset enable
further research in stable grasping and robotic manipulation.

The primary objective of this thesis has been successfully achieved with the de-
velopment of DoraHand, which has been used by over twenty research institutes and
companies. The algorithms developed for grasp planning and stable grasping serve
as a foundation for future research in this field, while the dataset can be used as a
benchmark for comprehensive robotic research. Further development is needed to
explore the potential applications of the dexterous hand in robotic manipulation.





Zusammenfassung

Robotermanipulation ist ein komplexes Gebiet, das noch vor vielen Herausforderun-
gen steht. Mit der Entwicklung kollaborativer Roboter gewinnt der Bereich der End-
effektoren gerade erst an Dynamik, und elektrisch angetriebene Endeffektoren wer-
den in der Industrie gerade erst in großem Umfang eingesetzt. Eine der grundle-
genden Anforderungen an einen Roboter für praktische Anwendungen ist das sta-
bile Greifen. In der Realität hängt das stabile Greifen jedoch meist von spezifischen
statischen Bedingungen und menschlicher Erfahrung ab. Da die Roboterindustrie
immer komplexere und vielfältigere Anwendungen entwickelt, steigt der Bedarf an
stabilem Greifen zur Unterstützung dieser anspruchsvollen Anwendungen. Um kom-
plexere und stabilere Greiffunktionen zu erreichen, ist ein komplexer Endeffektor,
wie zum Beispiel eine geschickte Hand, eine wesentliche Hardwarekomponente.

In dieser Arbeit geht es um den Bau einer neuartigen, praktischen, geschickten
Hand, die in der Forschung zur Robotermanipulation eingesetzt werden kann. Um
die geschickte Hand besser nutzen zu können, sind eine visuell basierte Greifplanung
und ein taktil basiertes, stabiles Greifsystem unerlässlich, um ein stabiles Greifsys-
tem zu bilden. In dieser Arbeit wurden drei entscheidende Themen ausgewählt und
in drei Teile unterteilt: geschickte Hand, Greifplanung und stabiles Greifen.

Der Teil geschickte Hand umfasst den Hauptentwurf einer modularen geschickte
Hand mit drei Finger namens DoraHand und Teilarbeiten an einer anderen Hand
namens Eagle Shoal. Die Leistungsfähigkeit der DoraHand und des taktilen Sensor-
moduls wird durch Experimente demonstriert. Versionen der DoraHand mit zwei-
und fünf Finger wurden ebenfalls entwickelt und in realen Anwendungen getestet
und bieten eine zuverlässige Hardware-Basis für weitere Forschungen.

Der Teil zur Greifplanung konzentriert sich auf die Bereitstellung einer Lösung
zur Planung des Greifens mit der geschickten Hand. Da die Verwendung eines End-
effektors eine wesentliche Funktion darstellt, beginnt dieser Teil mit einer analytis-
chen Lösung, die die Einschränkungen des Mechanismus der geschickten Hand und
die Bewertung der Qualität des Greifsystems berücksichtigt. Mit Hilfe von analytis-
chen und datengesteuerten Ansätzen wurde ein Griffplanungsnetz entwickelt. Das
Netzwerk verfügt über eine Methode zur Darstellung einer Planung des Greifens mit
mehreren Fingern und wurde erfolgreich überprüft.

Der Teil zum stabilen Greifen ist die letzte Anwendung dieser Arbeit, bei der
die Hardware die Grundlage bildet und der stabile Algorithmus des Greifsystems
den taktilen Sensor nutzt. Es wurde ein visueller taktiler Open-Source-Datensatz
entwickelt, der die geschickte Hand von Eagle Shoal verwendet. Der stabile Algo-
rithmus des Greifsystems, der auf diesem Datensatz basiert, wurde erfolgreich mit
verschiedenen Arten von Endeffektoren überprüft, einschließlich der DoraHand und
Saugnapf-Greifer.

Insgesamt bilden diese drei Einzelteile der Arbeit die entscheidenden Komponen-
ten eines stabilen Greifsystems mit einer geschickten Hand. Dieses System und der
zugehörige Datensatz ermöglichen weitere Forschungen zum stabilen Greifen und
zur Robotermanipulation.



Das Hauptziel dieser Arbeit wurde mit der Entwicklung von DoraHand erfolgre-
ich erreicht, das bereits von über zwanzig Forschungsinstituten und Unternehmen
verwendet wird. Die entwickelten Algorithmen zur Greifplanung und zum stabilen
Greifen dienen als Basis für zukünftige Forschungen auf diesem Gebiet, während
der Datensatz als Benchmark für umfassende Roboterforschung verwendet werden
kann. Weitere Entwicklungen sind notwendig, um die möglichen Anwendungen der
geschickten Hand bei der Robotermanipulation zu erforschen.
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Chapter 1

Introduction

This chapter serves as the entry point of this thesis and is divided into five primary
sections. Section 1.1 outlines the motivation behind the thesis and illustrates the
relevance of the main topics addressed. Section 1.2 establishes the primary objectives
of this thesis. Section 1.3 highlights the significant contributions that this project
makes to the field. Section 1.4 introduces the primary structure of this thesis. Section
1.5 summarizes the outcomes and results of this thesis.

1.1 Motivation

The manipulation function for a universal robot is crucial. However, achieving this
remains a challenge due to several factors, such as complex hardware, sensing capa-
bilities, dynamic control, multi-level planning, unstructured environments, and oth-
ers. One fundamental requirement within this domain is achieving stable grasping,
which remains a significant challenge in the field of robotics.

Figure 1.1 presents a diagram of a robotic manipulation system that integrates
essential hardware and software components. The hardware system should include
robot base, robotic arm, end-effector, controller, vision sensor, and other sensors.
Meanwhile, the software system should encompass motion control, arm planner,
grasp planner, task planner, visual processor, and other sensor processors.

Figure 1.1: Structure of a stable grasping system

2
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The main motivation behind this thesis is to enhance robotic manipulation
through the development of dexterous hand hardware and related software. To
achieve this goal, several critical components have been identified and labeled in
Figure 1.1. These components include the end-effector, other sensors, grasp plan-
ner, visual sensor processor, and other sensor processors. These components can be
grouped into three primary areas of focus: 1.1.1 dexterous hand, 1.1.2 grasp plan-
ning, and 1.1.3 stable grasping. By addressing these key areas, this thesis introduces
a system with a novel dexterous hand hardware, a visual-based grasp planning com-
ponent, and a tactile-based stable grasping component. This thesis aims to make
contributions to the field of robotic manipulation with such a system.

1.1.1 Dexterous Hand

An end-effector is a critical component for accomplishing dexterous tasks, and a dex-
terous hand end-effector can provide even greater capabilities. Drawing inspiration
from the human hand, which plays a vital role in human bodies, serves as a funda-
mental direction for designing a dexterous hand.

The structure and Degrees of Freedom (DOF) of the human hand are illustrated
in Figure 1.2 [ElKoura and Singh, 2003]. The hand has a total of 27 DOF: 5 DOF in
the thumb, 2 for extension and flexion, and 3 for the thumb base joint; 4 DOF in each
finger, 3 for extension and flexion, and 1 for abduction and adduction; and 6 DOF
in the wrist, including rotation and translation [Agur and Dalley, 2009]. Designing a
dexterous hand with the same number of DOF and structure can help achieve similar
dexterity for the robot, but it is not an easy task due to limitations such as actuator,
material, lifetime, maintenance, etc.

Figure 1.2: Bones and joints of the hand

Designing a dexterous hand for stable grasping does not necessarily require as
many DOF as a human hand. To achieve stable grasping and perform certain manip-
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ulation tasks, a dexterous hand that is both user-friendly and sufficiently complex
is necessary. In addition to motion capability, sensing capability is also important
and can enhance the dexterity of the hand. Referring to the human hand, tactile and
joint sensing become essential components, augmenting the hand’s overall capabili-
ties. Furthermore, maintenance and cost should be limited to enable widespread use
in research areas. Thus, one of the motivations of this work is to help to lower hard-
ware barriers, allowing researchers to focus on the other areas that have not been
well studied. Such work needs to find a balance between the requirements of DOF,
sensing capability, maintenance, cost, and others.

1.1.2 Grasp Planning

Grasping in daily life is diverse, and while human grasp strategies may seem nat-
ural, they vary depending on the object being grasped. To understand the detailed
process of grasping an object to complete a transport or manipulation task, it can be
divided into three stages as shown in Figure 1.3 [Chang et al., 2010]. The pre-grasp
manipulation stage involves target sensing and grasp planning based on input data
before grasping. The grasp acquisition stage involves interacting with the object and
surroundings to achieve stable grasping. The post-grasp manipulation stage involves
maintaining stable grasping and completing the manipulation task, often requiring
dynamic stability during the process. The focus of grasp planning is on the pre-grasp
manipulation stage.

Figure 1.3: Three stages of grasp

Current work on grasp planning includes two primary approaches: analytic and
data-driven [Bohg et al., 2013]. Analytic approaches have been extensively studied
for various grasping cases in specifically defined environments, but are not widely
used in complex scenes. Data-driven approaches are increasingly popular due to
advancements in deep learning, with most works focusing on simple end-effectors
such as parallel grippers and suction cup grippers.

Considering the complex control of the dexterous hand, more parameters need to
be trained in a model, making it difficult to achieve good results. An analytic ap-
proach may help improve training efficiency. Combining analytic and data-driven
solutions may leverage the advantages of both methods and improve the overall per-
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formance. Considering the characteristics of the dexterous hand, more works needs
to be explored compared to solutions for simple end-effectors.

1.1.3 Stable Grasping

In a grasping task as mentioned in Figure 1.3, the second and third stages heavily
rely on sensing capabilities. For humans, ensuring stable grasping, lifting the tar-
get, and adjusting force and pose according to weight or external forces are natural
processes that involve many steps, especially in sensor data processing.

Human possess several types of sensing capabilities, including visual sensing,
which provides the most critical human sensing data; audio sensing, which plays a
secondary role; and tactile sensing, which is crucial among other types of sensing
[Boff and Lincoln, 1988]. By leveraging these sensing capabilities, humans can per-
form grasp-related tasks with high quality. In robotics, visual processing is the most
popular area for providing target information, guiding the robot, and aiding manip-
ulation; audio processing is a more mature area, and the key issue is the Natural
Language Processing (NLP) part, and most robots are controlled by the programs
without audio; tactile processing is not widely used currently but can provide more
information for manipulation.

In a stable grasping task, the visual data is often occluded during grasping, the
tactile data with more sensitive features play a more important role. Existing work
related to tactile-based stable grasping relies on specific hardware. However, due to
the universality of grasping stability, utilizing learning methods and sufficient data
may provide solutions that can be easily applied to different hardware.

1.2 Objectives

The main objective of this thesis is to develop a user-friendly and practical dexterous
hand, related grasp planning, and stable grasping algorithms, and contribute to the
field of stable grasping in robotic manipulation. Based on the motivation discussed
earlier, three specific objectives have been identified for this work.

1. A modular dexterous hand. Develop a user-friendly and practical modular
dexterous hand equipped with sufficient DOF and tactile sensing capability for
robotic manipulation research. The design should consider the layout and main
components to ensure user-friendliness. The modular design and tactile sensing
module are key features.

2. Grasp planning with visual data. Develop a grasp planning solution that
uses visual data input and takes advantage of analytic and data-driven ap-
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proaches to realize grasp planning for a dexterous hand. This solution utilizes
more DOF of the dexterous hand.

3. Stable grasping with tactile data. Develop a stable grasping solution that
uses tactile data input to predict grasp stability and realize stable grasping with
a dexterous hand. This includes building a visual-tactile dataset and developing
a stable grasping solution that utilizes this dataset.

1.3 Contributions

With the objectives mentioned in the previous section, this thesis project has been
developed and has contributed to three main areas: dexterous hand design, visual-
based grasp planning, and tactile-based stable grasping.

The first major contribution of this thesis is the development of a novel modular
dexterous hand product. This work includes two designs of the dexterous hand: Ea-
gle Shoal[Wang et al., 2019a] and DoraHand[Wang et al., 2022]. This thesis mainly
introduced a fully-actuated modular three-finger dexterous hand, including a tactile
sensor module that can help provide an affordable dexterous hand for manipulation
research. Two-finger and five-finger hands were also developed using the finger mod-
ule. This work has resulted in final products that are used in more than twenty
universities and research institutes.

The second major contribution of this thesis is the development of a novel grasp-
ing planning method for the dexterous hand. This method uses contact points instead
of a grasp box to present the grasp plan and combines analytic and data-driven ap-
proaches to generate a grasp plan tailored to the design of the dexterous hand. It has
been successfully employed in real-world scenarios and verified through experimen-
tation.

The third major contribution of this thesis is the development of a visual-tactile
dataset and a grasp stability prediction method for robotic manipulation. This visual-
tactile dataset included the Red, Green, and Blue (RGB) data, Depth data, tactile
data, and joint data simultaneously [Wang et al., 2019b]. It has been valuable for
researchers without access to hardware and can assist with simulation work. Us-
ing this dataset, stable grasping has been achieved through the development of a
grasp stability evaluation method [Wang and Kirchner, 2021]. The stability predic-
tion method employs a neural network to achieve high performance stability and can
generalize to the field of time-series data.

In conclusion, the contributions of this thesis can serve as a valuable resource
for researchers in the field of robotic grasping by providing comprehensive work that
integrates hardware, datasets, and algorithms. Figure 1.4 summarizes the main
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achievements of this work, which can facilitate future developments in robotic ma-
nipulation.

Figure 1.4: Contributions of the thesis

1.4 Structure of the Thesis

This thesis is organized into five parts: Part I Introduction and State of the Art,
Part II Dexterous Hand, Part III Grasp Planning, Part IV Stable Grasping, Part V
Conclusion and Outlook. Figure 1.5 shows the overall structure of this thesis.

Figure 1.5: Structure of the thesis

Part I Introduction and State of the Art This part comprises two chapters that
primarily focus on the introduction and state of the art. Chapter 1 Introduction
provides the motivation, objectives, contributions, structure of the thesis, and dissem-
ination of scientific results. The Chapter 2 State of the Art provides an overview
of the state of the art in three different areas: dexterous hand, grasp planning, and
stable grasping.



8 Chapter 1. Introduction

Part II Dexterous Hand This part focuses on the design and evaluation of a three-
finger dexterous hand and consists of two chapters. Chapter 3 Dexterous Hand
Design outlines the design concept, key components mechanism, and whole system
design. These sections provide a comprehensive overview of the dexterous hand de-
sign process. Chapter 4 Experiment and Performance Evaluation covers basic
performance, sensing capability, and extension applications. These results demon-
strate the capability of the dexterous hand through suitable evaluation methods.

Part III Grasp Planning This part focuses on the development of grasp planning
for the dexterous hand using a combination of two different approaches: analytic and
data-driven. The resulting technology enables the dexterous hand to perform grasp-
ing tasks. This part comprises two chapters. Chapter 5 Analytic Grasp Planning
for Three-Finger Dexterous Hand presents the analytic analysis and algorithm
for the three-finger dexterous hand. Chapter 6 Visual-Based Grasp Planning
explains the combined solution process of analytic and data-driven approaches and
shows application results.

Part IV Stable Grasping This part focuses on stable grasping with tactile data
and covers the development of a dataset and grasp stability prediction. This part
comprises two chapters. Chapter 7 Visual-Tactile Dataset introduces details
about the visual-tactile dataset. Chapter 8 Tactile-Based Stable Grasping ex-
plains the stable grasping algorithm based on the dataset and showcases the final
results of the stable grasping tasks accomplished by the project.

Part V Conclusion and Outlook This part contains the final chapter, Chapter
9 Conclusion and Outlook. This chapter serves as a conclusion and outlook of the
thesis by summarizing accomplished work and providing conclusions related to the
hardware, dataset, and algorithms. Additionally, this section provides an outlook for
the entire project.

1.5 Dissemination of Scientific Results

The scientific results presented in this thesis have been disseminated through vari-
ous channels, including 1.5.1 journals, 1.5.2 conferences, 1.5.3 posters, 1.5.4 invited
guest lectures, 1.5.5 awards and nominations, and 1.5.6 patents.
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1.5.1 Journals

1. Wang Tao, Yang Chao, Kirchner Frank, Du Peng, Sun Fuchun, and Fang
Bin (2019). Multimodal grasp data set: A novel visual–tactile data set for
robotic manipulation. International Journal of Advanced Robotic Systems,
16(1), 1729881418821571.

2. Wang Tao, Xie Zheng, Li Yuan, Zhang Yan, Zhang Hao, and Kirchner Frank
(2022). DoraHand: A Novel Dexterous Hand with Tactile Sensing Finger Mod-
ule. Industrial Robot, 49(4), pp. 658-666.

1.5.2 Conferences

1. Wang Tao, Geng Zhanxiao, Kang Bo, and Luo Xiaochuan (May, 2019). Eagle
Shoal: A new designed modular tactile sensing dexterous hand for domestic
service robots. In 2019 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 9087-9093.

2. Wang Tao, and Kirchner Frank (July, 2023). Grasp stability prediction with
time series data based on STFT and LSTM. In 2023 IEEE International Con-
ference on Advanced Robotics and Mechatronics (ICARM).

1.5.3 Posters

1. Wang Tao, Gong Shandong, Salman Yusuf, Chen Shuqu, Zhang Hao, Kirchner
Frank (Nov, 2019). Design a Dexterous Hand for the Logistic Robot in Bin
Picking. In 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Late breaking results posters.

1.5.4 Invited Guest Lectures

1. Wang Tao (8 Nov, 2019). Stable grasping in the field of logistics. In 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Workshop, Manipulation through Contacts: Bridging the Gap between Re-
search Community and Industry.

2. Wang Tao (12 May, 2021). Robotic Technologies in Logistics. Department of
Mechanical and Energy Engineering, Southern University of Science and Tech-
nology, Shenzhen, China.
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1.5.5 Awards and Nominations

1. 3rd place, In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2nd Robotic Grasping and Manipulation Competition, Ser-
vice Robot Track, Vancouver, British Columbia, Canada.

2. Best Paper Award in Service Robotics - Finalist, In 2019 IEEE International
Conference on Robotics and Automation (ICRA), Montreal, Canada.

3. DIA Silver, DoraHand, 2020, Design Intelligence Award.

4. Winner, DoraHand-F3, 2021, Red Dot Design Award.

5. Winner, DoraHand-3F, 2022, iF Design Award.

1.5.6 Patents

1. Wang Tao, Kang Bo, Robotic finger, USD829249S1, United States.

2. Wang Tao, Xie Zheng, Multi-freedom overload-proof multi-finger dexterous
hand, CN114734469A, China.

3. Wang Tao, Xie Zheng, Modularized dexterous five-finger hand, CN216372242U,
China.

4. Wang Tao, Chen Shuqu, Xu Yi, Dexterous hand finger and multi-finger dexter-
ous hand, CN211362291U, China.

5. Wang Tao, Chen Shuqu, Force sensor, force sensing device, method for measur-
ing and calculating force, and storage medium, CN110749393A, China.

6. Wang Tao, Chen Shuqu, A force sensing structure, dexterous hand finger and
multi-finger dexterous hand, CN110640775A, China.

7. Wang Tao, Chen Shuqu, Force sensing structure, dexterous hand finger and
multi-finger dexterous hand, CN211362292U, China.

8. Wang Tao, Chen Shuqu, Xu Yi, Dexterous hand finger and multi-finger dexter-
ous hand, CN110640776A, China.

9. Wang Tao, Chen Shuqu, Force sensor based sliding prediction method and de-
vice, electronic equipment and storage medium, CN110793693A, China.

10. Wang Tao, Xie Zheng, Li Yuan, Chen Shuqu, Huang Zhongying, Embedded sys-
tem for dexterous hand, US20230173684A1, United States.



1.5. Dissemination of Scientific Results 11

11. Xie Zheng, Wang Tao, Finger-detachable dexterous robotic hand,
WO2021223631A1, PCT.

12. Xie Zheng, Wang Tao, Dexterous hand with detachable fingers, CN212825430U,
China.

13. Xie Zheng, Wang Tao, A dexterous hand with detachable fingers,
US20230166410A1, United States.

14. Chen Shuqu, Wang Tao, Xie Zheng, Li Yuan, Huang Zhongying, Dexterous hand
embedded system, CN212919403U, China.
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Chapter 2

State of the Art

This chapter provides an overview of the state of the art in stable grasping systems
and is divided into three distinct sections. Section 2.1 provides a survey of the field
of dexterous hand hardware. Section 2.2 presents research on grasp planning al-
gorithms. Section 2.3 introduces the work related to datasets and stable grasping.
Section 2.4 summarizes the main points of this chapter.

2.1 Dexterous Hand

Currently, there is no precise definition for a dexterous hand. The term "dexterous" is
generally understood to mean "Having the ability to perform a difficult action quickly
and skillfully with the hands" [Cambridge, 2023]. This explanation emphasizes the
importance of hand manipulation skills. Due to the lack of a precise definition, there
are no clear constraints on design parameters such as DOF, materials, and actuators.
As a result, some end-effectors with fewer DOF can still be considered dexterous
hands. A key feature of a dexterous hand can be summarized as one that enables
a robot to perform dexterous operations. This feature can serve as a guide for the
design of dexterous hands.

Dexterous hand hardware can be classified into different types based on various
criteria such as material and actuation method. From the perspective of material,
rigid materials can guarantee precise movement while soft materials can adapt to the
target more easily. With the trend of combining rigid and soft materials, an increas-
ing number of mixed-material dexterous hands are being developed [Yan et al., 2022].
In this thesis, the main focus is on hands made of rigid materials for more precise
movements. Therefore, this section is divided by actuation method and includes two
subsections, 2.1.1 under-actuated dexterous hand and 2.1.2 fully-actuated dexterous
hand.

13
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2.1.1 Under-Actuated Dexterous Hand

Under-actuated systems have fewer actuators than their DOF. A primary application
of this concept is in the design of dexterous hands, which can utilize fewer actuators
to control more DOF. Such designs offer several benefits, including reduced cost, less
space occupied in the joint, and improved weight distribution. However, a drawback
of under-actuated designs is their limited control, which requires reliance on external
forces or the environment. Several popular designs in this area are described below.

When designing a dexterous hand, the human hand is often used as a
reference due to its remarkable capabilities. The Shadow Dexterous Hand
[ShadowRobotCompany, 2013] is a renowned example of a dexterous hand, which
uses a tendon-driven actuation method to drive twenty-four DOF similar to the hu-
man hand. It has twenty actuators for fully-actuated DOF and four under-actuated
DOF. The under-actuated part is similar to the Distal Interphalangeal (DIP) and
Proximal Interphalangeal (PIP) joints in the human finger. Although the tendon-
driven hand design makes finger movements more flexible, it has the disadvantage
of increasing the weight of the arm and the complexity of the tendons inside the hand,
and its lifetime is limited. There are two versions of the hand, one with motors and
the other with air muscles. The motor version has better control performance and
is the latest solution. This dexterous hand is a combination of fully-actuated and
under-actuated designs, and more like a fully-actuated hand. It shows the manipu-
lation capabilities of a design that mimics the human hand, and can enable diverse
manipulation skills like manipulating a Rubik’s cube [Akkaya et al., 2019]. Figure
2.1 shows the Shadow Dexterous Hand and its application in manipulating a Rubik’s
cube.

Figure 2.1: Shadow Dexterous Hand and application with Rubik’s cube

Compared to the traditional materials used in hand design, Three Dimensional
(3D) printing offers a very quick design and optimization loop, making it popular for
prototype designs. With sufficient precision and an appropriate design, the material
itself can be used in the final product. The concept of under-actuated design simpli-
fies the actuation method in anthropomorphic robotic hands, making them easier to
use. The OLYMPIC hand [Liow et al., 2019] is a typical hand built using 3D printed
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materials. It uses a tendon-driven design, which can achieve a large grasping force
with a power grasp. To overcome drawbacks in lifetime and maintenance, this hand
takes advantage of a modular design, separating the tendon and actuator into two
main parts. The modular design helps to make the tendon-driven mechanism more
reliable and the assembly process much easier. The connection design with bevel gear
makes the connection more reliable and user-friendly. The separate design can help
to keep the actuator with a longer lifetime and easier to replace the parts that are
prone to wear. The hand is shown in Figure 2.2.

Figure 2.2: OLYMPIC hand and finger structure

As an extension of 3D print material, many soft material hands use 3D structures
as molds to manufacture their structure. The RBO Hand 2 [Deimel and Brock, 2016]
is a typical example of a hand that uses rubber and compressed air for actuation.
The design with soft material and compressed air is common in the soft mate-
rial hand area and is an efficient way to achieve a power grasp without damag-
ing the target object. The fabric inside the finger modules helps maintain their
shape, preventing unexpected deformation. By combining several PneuFlex mod-
ules, the anthropomorphic hand can perform thirty-one types of grasp gestures and
exhibit dexterity. Combined with a highly stretchable liquid metal strain sensor
[Farrow and Correll, 2015], the hand can monitor its deformation status, and assist
the grasping task [Wall et al., 2017]. With a 3D printed model, it is easy to produce
finger modules with similar designs and materials. However, achieving consistent
movement, limited control capability, and preventing air leaks with higher pressure
are major issues for such designs. Figure 2.3 shows the hand’s structure.

In contrast to anthropomorphic hands with many DOF, some dexterous hands
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Figure 2.3: RBO Hand 2 and liquid metal strain sensor

with different layouts can also provide reliable grasping. The BarrettHand
[Townsend, 2000, Barrett, 2012] has been a well-known robotic hand since its intro-
duction in 2000. It is an under-actuated hand with a total of eight DOF and four
actuators. Each finger has two DOF, and both joints are driven by a motor through
a TorqueSwitchT M mechanism and cable. A clutch and belleville spring washers are
used in the mechanism, allowing the front joint angle to change separately when
the external torque exceeds a certain value. The two joints in the palm are driven
by one gear, which moves in a mirrored direction, making the two finger directions
mirrored. The under-actuated design allows the hand to adapt well to the environ-
ment, providing sufficient force and adapting to situations when the hand and the
environment are not ideally positioned. However, the hand cannot change its finger
trajectory without external force. The finger movement follows a fixed trajectory and
cannot support fine-tuning of joint values. Thus, the hand can only be used as a par-
allel gripper until it touches the target, after which the joint motion is determined by
the target and environment. The hand and joint structure are shown in Figure 2.4.

Figure 2.4: BarrettHand and TorqueSwitchT M mechanism

The BarrettHand has the advantage of a fingernail, similar to a human nail,
which allows it to grasp thin objects such as cards. In terms of sensors, the hand
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has tactile sensor modules in its tips and palm, which contain sensor arrays that
provide tactile data during grasping. Additionally, fingertip torque can be measured
through foil strain gages inside the finger. Figure 2.5 shows the fingernail and sensor
designs.

Figure 2.5: BarrettHand fingernail and sensors

Figure 2.6: BLT Gripper and compliant grasping process

In addition to hands made of a single material, there are also designs that com-
bine both rigid and soft materials. The BLT Gripper [Kim et al., 2020] is one such
design that takes advantage of the benefits of both materials. With five degrees of
freedom for three-finger hand, each finger module contains one motor providing rota-
tional motion, one in the palm providing three fingertip motions through a lead screw,
and one for finger base rotation. The combination of finger joint motion and finger-
tip motion allows the hand to perform precise pinches and compliant grasps with
ease. The grasping process of the BLT gripper can be broken down into several steps,
including parallel pinching, inclining the fingertip, and compliant grasping using a
belt. The belt provides good compliance and enhances the stability of the grasp. It
is a novel material that is different from soft materials like rubber. Kinematic anal-
ysis in the design is critical for achieving optimal dexterity. The hand also features
a modular design and uses motors and gearboxes to transmit power directly. Figure
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2.6 shows the hand’s design.
The hands introduced are under-actuated dexterous hands that with fewer ac-

tuators than their DOF. Through various driver methods, materials, actuators, and
combinations, these hands have different advantages in their respective areas. Char-
acteristics of these dexterous hands can include high DOF, modular fingers, soft ma-
terials, unique layouts, sensing capabilities, combined materials, and more. These
features can aid in the design of the dexterous hand in this thesis.

2.1.2 Fully-Actuated Dexterous Hand

A fully-actuated dexterous hand has the same number of actuators as its DOF, al-
lowing for precise control and greater dexterity. However, this design also has limita-
tions, such as output torque, volume, and weight, which must be balanced to achieve
optimal performance. Here are some examples of typical fully-actuated dexterous
hands.

Figure 2.7: DLR-HIT-Hand and finger joint structure

Like the under-actuated hand mimics the human hand, the fully-actuated hand
can also mimic the human hand. The DLR-HIT-Hand [Liu et al., 2008] is a fully-
actuated hand that mimics the human hand with a similar layout. It has thirteen
DOF, with three fingers and one thumb in total. Unlike the tendon structure used in
the Shadow Dexterous Hand, the DLR-HIT-Hand uses a BrushLess Direct Current
(BLDC) motor to drive the joint through a harmonic reducer. The connection between
the DIP and PIP joints is mechanically coupled by a rigid linkage and driven by one
motor. The finger base uses two motors to control the two DOF separately. All of these
actuators are mounted inside the finger and palm, which makes the total volume
smaller. However, the joint output performance is limited by the small motor inside
the joint with a value of 10 N fingertip force. The motor and reducer inside the joint
may be more fragile due to the limited torque and rigid driven structure. The control
board is located inside the finger module, allowing for faster data process and motion
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control. The main structures of the hand are shown in Figure 2.7.
Due to the complex structure of the tiny joint, maintenance can be difficult inside

one joint. Similar to the OLYMPIC hand, this issue can be addressed through the
use of a modular finger design that separates the fragile and strong components.
This approach has also been implemented in other fully-actuated hand designs. The
Sandia Hand [Quigley et al., 2014] is a dexterous hand with a real modular finger
design, where each finger module can be easily replaced. There are three DOF in
each finger module, including two for extension and flexion and one for abduction and
adduction. This design makes it easier to replace the finger module, which benefits
maintenance. The layout and number of finger modules can also be changed with
different palm designs according to different requirements. The hand is shown in
Figure 2.8.

Figure 2.8: Sandia Hand, finger module, and various extensions

Figure 2.9: Allergo Hand, finger module, and Direct Current (DC) motor unit

In addition to the modular finger design, the modular concept can also be applied
at the joint level. The Allergo Hand [ROBOTICS, 2012] is a typical design with mod-
ular motor units, where each finger has four DOF. The actuator in each joint uses the
same DC motor unit, making it easier and more cost-effective to maintain the hand.
The speed of each finger joint is fast enough for most daily life scenarios, including
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dynamic grasping flying objects [Salehian et al., 2016]. However, one drawback of
this design is that the motor in the base joint bears several times more torque than
the motor at the front tip, requiring a balance between total dimensions and output
force. Additionally, this hand needs to add external tactile sensors separately for ma-
nipulation tasks that require tactile feedback. The hand, finger, and DC motor unit
are shown in Figure 2.9.

When designing a dexterous hand with high dexterity and no limitations in shape
and layout, many specialized designs can be considered. One such example is the
roller grasper [Yuan et al., 2020], which has a unique structure. To achieve its dex-
terity, the hand combines complex hand actions into two types of motion: grasping
and rolling. By combining rollers and fingers, the hand can perform certain tasks
more easily than a human hand, and in some cases, the rotation of objects can be
controlled more effectively. This type of end-effector has the potential to improve
robot manipulation efficiency by extracting key features in the target scene and us-
ing a specific design to cover the required function. It is a good example of balancing
versatility and efficiency. Figure 2.10 shows the design of the hand.

Figure 2.10: Roller grasper module and example of rotating small cube

The fully-actuated dexterous hands introduced in this discussion demonstrate the
potential benefits of precise control over the DOF and enhanced dexterity. The use
of DC motors in many designs enables a more compact layout, while the design of
modular fingers and modular motor units simplify the design and maintenance pro-
cess and promotes versatility across different applications. With the diverse manip-
ulation functions provided by the fully-actuated design, a practical dexterous hand
design can consider a wider range of possibilities. Then, the dexterous hand in this
thesis uses a fully-actuated design for more practical functions.
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2.2 Grasp Planning

Grasp planning for a robot involves determining how to grasp an object, including
the pose of the arm and the parameters of the end-effector. When using a dexter-
ous hand with a higher DOF, the process becomes more complex. Grasp planning
methodologies can be broadly divided into two approaches: analytic and data-driven
[Bohg et al., 2013]. The analytic approach uses mathematical models to generate
feasible grasps based on the physical properties of the object, while the data-driven
approach relies on learning from data to generate grasp plans. In this section, these
two approaches and related datasets are introduced in more detail in three subsec-
tions, 2.2.1 analytic approach, 2.2.2 data-driven approach, and 2.2.3 dataset for grasp
planning.

2.2.1 Analytic Approach

Analytic approaches have been developed over a long period of time and the field
of grasp planning was dominated by them before 2000 [Zhang et al., 2022]. At the
core of the analytic approach is grasp closure, which can be categorized into form-
closure and force-closure. If a contact is self-sufficient in maintaining itself with-
out reference to the applied forces, it can be regarded as form-closure. If a con-
tact is maintained by the action of certain forces, it can be regarded as force-closure
[Dizioğlu and Lakshiminarayana, 1984]. The differences between these two typical
cases can be easily observed in Figure 2.11.

Figure 2.11: Typical cases of form-closure and force-closure

The grasp-closure problem and its assumptions have been extensively studied
in the literature. Various works have investigated the verification of force-closure
grasps for both Two Dimensional (2D) and 3D objects by making certain assump-
tions about the contact model and contact point location [Zhang et al., 2022]. In Liu’s
work, a 2D object grasping with force-closure can be simplified to a nonmarginal equi-
librium with a three-finger hand, and the 3D case can be derived from the 2D case
[Li et al., 2003]. Furthermore, it can also verify that a 3D object can be grasped with
force-closure by a three-finger hand. By applying different methods to verify grasp-
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closure conditions, a grasp plan that satisfies the requirement of grasp-closure can
be obtained.

In addition to ensuring grasp-closure, it is also important to select the best grasp
plan during the grasp planning process. A widely used solution evaluates the grasp
quality using specific criteria based on the Grasp Wrench Space (GWS). The GWS is
defined as the convex hull of all possible wrenches that could be imposed through the
contact points [Ferrari and Canny, 1992]. The wrench is a vector W defined as shown
in Equation 2.1, where F is the force component and T is the torque component. The
quality of a grasp can be defined in terms of the GWS and evaluated through convex
hull calculation.

W =
[
F

T

]
(2.1)

Based on the GWS, Li proposed a method for evaluating grasp quality and gen-
erating a grasp plan. This method uses the finger position on the touched edges to
obtain the Graspable Finger Position Regions (GFPR), which represents all stable
grasping solutions within the GWS [Li et al., 2002]. The GFPR can be obtained by
computing the hyperplane of each contact point. By considering the errors and ad-
justment range of each grasp plan, solutions inside the inscribed hypersphere of the
GFPR provide a more stable status. The diameter of the hypersphere can be used as
a grasp quality criterion. The finger position value at the center of the hypersphere
is considered the best grasp plan. An example of the GFPR for three fingers is shown
in Figure 2.12. Overall, Li’s method provides a useful approach for selecting the op-
timal grasp plan by considering both grasp stability and quality, based on the GWS
and GFPR.

Figure 2.12: The hypersphere in GFPR

There are many similar analytic solutions for different situations, as shown in
Table 2.1 [Zhang et al., 2022]. However, the application of these solutions is lim-
ited by various assumptions. The representation of the grasp plan includes two
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main methods: Contact points and Independent Contact Regions (ICRs). The com-
plex nature of real-world objects and target scenes makes the calculation more
challenging, especially for 3D objects. To address more complex situations, 3D
simulators such as GraspIt! [Miller and Allen, 2004], V-REP [Rohmer et al., 2013],
Gazebo [Koenig and Howard, 2004], and Pybullet [Pybullet, 2016] can be useful tools.
GraspIt! is a widely used simulator that focuses on the grasping function and can
easily generate grasp candidates that meet grasp-closure requirements through sim-
ulation. With the help of these simulators, grasp planning can become easier, and
there remains a gap between reality and the simulation environment.

Table 2.1: Summary of some analytic grasp planning methods
Author & Year Representation Type Fingers Object

[Nguyen, 1988] Contact points & ICRs Frictional 2,3,4,7 Polygons & Polyhedra

[Markenscoff and Papadimitriou, 1989] Contact points Frictionless 3,4 Polyhedra

[Faverjon and Ponce, 1991] Contact points Frictional 2 Curved Shapes

[Ferrari and Canny, 1992] Contact points Frictional 2,3 Polygons

[Ponce and Faverjon, 1995] ICRs Frictional 3 Polygons

[Ponce et al., 1997] ICRs Frictional 4 Polyhedra

[Smith et al., 1999] Contact points Frictional 2 Polygons

[Liu, 2000] Contact points Frictional n Polygons

[Ding et al., 2001] Contact points Frictional n 3D Objects

[Zhu and Wang, 2003] Contact points Frictional n 3D Curved Objects

[Pollard, 2004] Contact points & ICRs Frictional n 3D Objects

[Jia, 2004] Contact points Frictional 2 Curved Objects

[Cornelia and Suárez, 2005] ICRs Frictionless 4 2D Discrete Objects

[Cornella and Suárez, 2005] ICRs Frictional n Polygons

[Niparnan and Sudsang, 2006] Contact points Frictional 3 2D Objects

[Roa and Suárez, 2008] ICRs Frictional n 3D Objects

[Roa and Suárez, 2009] ICRs Frictional n 3D Objects

Figure 2.13: End-effectors and grasp poses in GraspIt!
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In conclusion, the analytic solution for grasp planning can provide an optimal
grasp in theory and is highly dependent on the input physical parameters such as
the hand, object, and physical characteristics. It provides a solid theoretical foun-
dation for grasp planning. However, this approach may not be adaptable to some
complex environments, especially for some unsatisfied assumptions. As a supple-
ment, data-driven approaches have been developed to address some limitations and
provide adaptive grasp planning solutions.

2.2.2 Data-Driven Approach

In recent years, with the rise of deep learning, data-driven approaches for grasp plan-
ning have gained popularity among researchers [Bohg et al., 2013]. These methods
often use neural networks to perform grasp planning and evaluate grasp quality, re-
sulting in a stable grasp plan. The following content discusses some typical solutions
based on data-driven approaches.

With some modifications, the bounding box of an object in an object detection
application can be modified to represent a grasp plan. Guo trained a Deep Neu-
ral Network (DNN) using 2D images to enable a robot to grasp a target object
[Guo et al., 2017]. This approach is mainly based on object detection neural net-
works, where the grasp rectangle is rotated using the rotation angle parameter, and
the output parameters include x, y, width, height, and angle. It provides an efficient
solution for generating grasp plans for different objects. A typical representation of a
2D grasp plan in DNN work can be seen in Figure 2.14 [Guo et al., 2017].

Figure 2.14: Definition of 2D grasp plan

To gather more data to train the network, Pinto addressed this issue by
using the Baxter robot to generate 50,000 data points through self-supervision
[Pinto and Gupta, 2016]. The grasping area was set on a table with a Table-Top
scene, and the vision sensor provided real-world grasp feedback. This approach in-
volves labeling the grasp poses in 2D images, validating them through grasp trails,
and gathering data over a long period. With enough data, good results can be
achieved. The experimental scene from this study is shown in Figure 2.15.
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Figure 2.15: Data collection with Baxter robot

Using multiple robots can improve the efficiency of the data collection and
training process compared to using a single robot. Levine used 14 robots to per-
form random grasps over 800,000 times, collecting grasp data for training a DNN
[Levine et al., 2018]. These robots were set up with a uniform layout and followed a
consistent data collection procedure, grasping items within a designed bin to ensure
a continuous loop of grasping. This approach shows promise in terms of data gath-
ering and sharing, as the robots can share the data they collect and improve their
capability as a collective. The test scene is shown in Figure 2.16.

Figure 2.16: Collecting grasping data with fourteen robots

To improve the performance of 2D grasp planning with a neural network,
apart from providing more training data, segmenting the target object first can
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help to simplify the grasp planning issue. Dong proposed a two-step approach
[Dong et al., 2021]. First, the target object is segmented using Mask R-CNN
[He et al., 2017]. Then, the segmented object is input into the grasp planning net-
work. This design simplifies the background of the target object and improves per-
formance compared to other 2D grasp planning models. This solution highlights the
importance of segmentation in the environment for improving grasp planning perfor-
mance and can also help simplify the generation of training samples for the grasp
planning network. The image data processing procedure is shown in Figure 2.17.

Figure 2.17: Grasp plan procedure of 2D grasp planning with Mask R-CNN

Since 2D images cannot provide comprehensive data in real-world scenarios,
using 3D data to train neural networks can improve performance. Mahler set
up a simulation environment and built a dataset consisting of millions of point
cloud data, which was used to train a Grasp Quality Convolutional Neural Net-
work (GQ-CNN) with an analytic metric. The GQ-CNN selects the best grasp plan,
achieving a 93% success rate with eight types of known objects[Mahler et al., 2016,
Mahler et al., 2017, Mahler et al., 2018]. This work has been extended to the parallel
gripper and suction cup gripper. With a large dataset, this approach allows for easier
application of different end-effectors. The experiment setup and process are shown
in Figure 2.18.

Figure 2.18: Grasp plan procedure of Dex-Net 2.0
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When it comes to grasping with diverse end-effectors in robots, it is crucial to have
a method that is universally applicable across different end-effectors. AdaGrasp is
an approach that addresses this challenge by training the network with twelve dif-
ferent end-effectors, enabling it to generate various grasp plans based on the specific
characteristics of each end-effector [Xu et al., 2021]. This approach represents a step
towards creating a universal network for different end-effectors. The evaluation of
grasps in AdaGrasp is performed using a DNN, which is trained with the outcome of
success or failure. Although the target scene and end-effector types in this method
are limited, the approach holds promise for the development of universal grasping
networks.

Figure 2.19: Adagrasp with different end-effectors

Considering these introductions, it is clear that data-driven approaches are data-
intensive, and many existing solutions offer efficiency, adaptability, and strong per-
formance. However, certain failure cases still exist, and the quality evaluation part
primarily relies on data training. To improve the precision of grasp planning and
accelerate the learning rate of the grasping process, a combination of analytic and
data-driven methods can be used. This combination can help overcome the limita-
tions of data-driven solutions by incorporating prior knowledge and expertise into
the grasp planning process. The following subsection introduces datasets that are
related to the prior knowledge of grasp planning.

2.2.3 Dateset for Grasping Planning

Datasets play a crucial role in data-driven approaches, serving as a com-
mon foundation for evaluating different solutions based on standardized crite-
ria. Simulation-based datasets are widely used for data collection due to their
convenience and ability to encompass diverse objects and scenarios. For exam-
ple, Goldfeder built the Columbia dataset using the simulation software GraspIt!
[Miller and Allen, 2004], which contains nearly 22,000 grasping samples involving
daily life items [Goldfeder et al., 2009]. Some samples from this dataset are show-
cased in Figure 2.20. These simulation-based datasets provide a good starting point
for grasping and can help researchers optimize their solutions with fewer trials in
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the real world.

Figure 2.20: Grasp pose data in Columbia dataset

Physical world benchmarks are also crucial for evaluating solution performance.
Various works have defined some object sets for research in the grasping domain. Ob-
ject sets such as the Karlsruhe Institute of Technology (KIT) object set and the Yale-
CMU-Berkeley (YCB) object set provide common objects along with corresponding
3D models, enabling researchers to focus on algorithms and ensuring more universal
output [Kasper et al., 2012, Calli et al., 2015]. Some objects from the YCB object set
are displayed in Figure 2.21.

Figure 2.21: Objects in YCB object set

To gather robot grasping data in the physical world and make it easier for robots,
Zhang generated demonstrated data through Virtual Reality (VR) and applied it
to object manipulation [Zhang et al., 2018]. This process involves mapping human
demonstrated actions to robot joint actions. The training results are significantly in-
fluenced by the number of samples, with the success rate improving from 20% to 80%
when the sample number is increased from 11 to 109. These results highlight the
importance of high-quality datasets for robotic manipulation. The experiment scene
is shown in Figure 2.22.

Compared to data produced by simulators or robots, there is a vast amount of
video data related to human manipulation available on the internet. Utilizing such
data can be the most convenient way to gather data. Pierre conducted a study in this
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Figure 2.22: Gather data with PR2 through VR control

direction, utilizing human manipulation video data to teach robots how to perform
the pouring tasks, as illustrated in Figure 2.23. Leveraging this data helps acquire
a larger dataset without the constraints of robotic hardware [Sermanet et al., 2018].
However, this approach requires additional efforts in key-point detection, knowledge
transfer from the human body to the robot, and related technologies. The value of this
type of dataset will increase as the extraction of valuable data from videos becomes
more precise and convenient.

Figure 2.23: Learning pouring action from human action

Based on the aforementioned datasets, virtual datasets accelerate algorithm de-
velopment iterations, object sets provide the common objects, robot datasets provide
convenient data for robotic systems, and human datasets hold promise for future ad-
vancements. The importance of the dataset for data-driven approaches is clear. The
present thesis work is also inspired by these works and utilizes data to develop deep
learning-based grasp planning.

2.3 Stable Grasping

Stable grasping focuses on the procedures that occur after pre-grasp manipulation,
including grasp acquisition and post-grasp manipulation. Compared to grasp plan-
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ning in a static situation, stable grasping mainly focuses on the dynamic process. The
key to stable grasping is evaluating grasp stability. In order to achieve stable grasp-
ing under various scenarios, a large amount of data is required to identify unstable
conditions. This section introduces the related data and algorithms, and is divided
into two subsections: 2.3.1 dataset for stable grasping, and 2.3.2 grasp stability eval-
uation.

2.3.1 Dataset for Stable Grasping

Similar to human senses, both visual and tactile data are important for robots to
achieve better performance. However, in the case of unstable grasping, visual data
may be occluded by the hand, making tactile sensing more important for evaluating
grasping stability. Since tactile data needs to be acquired through contact between
the object and sensor, this collection process is more complex than collecting visual
data.

To evaluate grasp stability, the interaction between the hand and object is crucial.
Slip is a key feature of unstable grasping and serves as an indicator of instability.
As a result, slip detection during the grasping process has been a focal point for
many researchers [Heyneman and Cutkosky, 2016]. To acquire pure slippage data,
experiments can be conducted with relative motion between sensors and objects. The
experiment involves moving the finger to generate slippage data, and an example
is shown in Figure 2.24 [Kobayashi et al., 2012]. These data can be used for slip
detection and stability evaluation.

Figure 2.24: Gather slip data with relative motion and verify the slip detection

To achieve stable grasping with learning, it is important to have both pos-
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itive and negative data in tactile datasets. These data can be used to iden-
tify features of instability and develop algorithms for grasp stability evaluation
[Stachowsky et al., 2016, Liu et al., 2018, Hildebrandt et al., 2008]. The occurrence
of unstable cases during normal grasping can provide diverse data. Some researchers
have acquired data during normal grasping cases. Chebotar used the BioTac sensor
to gather data during random grasping processes, providing more diverse data with a
46% failure rate in 1,000 grasps [Chebotar et al., 2016a, Chebotar et al., 2016b]. The
test scene was set inside a bowl to improve experiment efficiency. This type of data
includes more than just slip and can be used for comprehensive grasp stability eval-
uation. The experiment scene is more useful in Table-Top grasping works and can be
seen in Figure 2.25.

Figure 2.25: Experimental setup for collecting tactile data during grasping

In contrast to the piezoresistive mechanism used in BioTac, there are other sen-
sors that based on visual sensors. Li used the GelSight sensor to acquire grasp data
and build a dataset with GelSight and external visual data [Li et al., 2018]. This
type of sensor provides tactile data in the form of visual images, which have the same
format as external visual data. Both types of images are input into a DNN model
to realize the slip detection function. The test scene and data can be seen in Figure
2.26.

The introduction of datasets for stable grasping shows the differences between
gathering data from designed relative motion and real grasping processes. While
current datasets primarily focus on tactile data, new datasets are emerging that en-
compass the entire grasping process. A comprehensive dataset that combines various
types of data, including tactile and visual information, holds the potential for enhanc-
ing fine manipulation skills and advancing robot capabilities. Such a dataset would
enable researchers to reconstruct the entire process and conduct extensive simula-
tions, accelerating research progress.
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Figure 2.26: Experiment with GelSight, external image, and GelSight image

2.3.2 Grasping Stability Evaluation

Grasp stability is used to describe the grasp status, and its evaluation can indicate
the grasp status. For an unstable grasp, there may be features such as vibration or
slip. These features can be used for evaluating grasp stability. Considering that ex-
ternal conditions may change during a manipulation task, grasp stability prediction
should be used in the loop control of stable grasping.

Predicting slips before gross motion occurs can ensure more stable grasping. This
predictable incipient slip event can be evaluated using measurements of changes in
contact position, force, and vibrations [Stachowsky et al., 2016]. For force data, some
works use a threshold to judge the status in the time and frequency domain. Such
solutions can achieve good results under specific situations but require experience in
adjusting the threshold. Figure 2.27 shows slip detection with a threshold on wavelet
coefficients [Zhang et al., 2016].

Figure 2.27: Judge status through a threshold on frequency domain

To model grasp stability prediction with an optimal method, it is important to use
a high quality sensor. Since the grasp is held by the force status, a force sensor is a di-
rect way to sense the force change. This allows for immediate prediction of instability
based on the changed value. Barrett built a device to gather the slip data, compared
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Figure 2.28: Acquiring slip data with different tactile sensors

data from three different sensors, and treated the issue as a classification issue in
the frequency domain [Heyneman and Cutkosky, 2016]. Karl used three kinds of tac-
tile sensors to gather the data and classified the status through Long Short-Term
Memory (LSTM) with data in the time domain [Van Wyk and Falco, 2018]. The ex-
periment process is shown in Figure 2.28.

Compared to the force sensor with faster change, visual-based sensors judge sta-
bility through deformation changes. These changes can only be detected after a large
enough force value changes [Dong et al., 2017]. This makes the visual sensors not
the optimal choice, but they can provide some other features related to deformation
and texture. Figure 2.29 shows the prediction through a visual-based tactile sensor.

Figure 2.29: Relative translation shift on the visual sensor

By using data from a force sensor and setting a threshold to judge grasp stability
based on time and frequency domains, reasonable prediction results can be obtained
for certain tested items. There are many methods that treat stability issue as a clas-
sification issue with good results. However, the object’s material, weight, and shape
may influence the classification results. Therefore, a large library is required to main-
tain these features [Cavallo et al., 2014, Fernandez et al., 2014]. Like the application
of LSTM, a learning-based approach with generalization capability is more suitable
for handling complex situations.
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2.4 Conclusion

This chapter introduces the state of the art in three related directions of this thesis.
The current progress is constantly being updated, and trends in different areas can
be clearly seen in the latest research. The development of the dexterous hand is mov-
ing in a more practical direction. Influenced by the development of robotic arms and
mobile bases, the usage of the dexterous hand is closer to real-world applications. The
trend in grasp planning is more clearly shown, with analytic approaches dominating
research before 2000 and data-driven approaches becoming more popular in recent
years. Combining analytic and data-driven methods is becoming a clearer trend and
can result in more efficient outcomes. The area of stable grasping is not as popu-
lar currently, limited by hardware and unresolved grasp planning issues. However,
there have been some breakthroughs in grasp stability due to datasets and learning
methods. More extensive datasets and breakthroughs in learning methods are still
necessary. With these trends in mind, the work in this thesis is introduced in the
following chapters.
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Chapter 3

Dexterous Hand Design

A dexterous hand is the fundamental hardware in this thesis. With a well-designed
dexterous hand, robots can perform tasks more efficiently. As introduced in the first
chapter, the goal of this thesis is to design a user-friendly and practical modular dex-
terous hand for robotic manipulation tasks and serve as practical robotic hardware
for robotic applications. Section 3.1 presents the design concept of the dexterous
hand. Section 3.2 introduces the detailed design of the key components. Section 3.3
presents the dexterous hand from the mechanical, electronic, and embedded perspec-
tives. Section 3.4 provides a summary of this chapter.

3.1 Design Concept

For stable grasping and manipulation, a dexterous hand with at least three fingers
is necessary. As requirements become more diverse, additional fingers can enhance
dexterity. However, it’s crucial to balance complexity and performance in hardware
design, which is the core concept of the design.

Due to the advantage of modular design, the necessary fingers can be equipped
as needed, which can be adapted to different situations and reduce hardware costs.
This hand employs a modular design and chooses a three-finger dexterous hand as
the basic version. To achieve a stable grasping function, tactile sensing capability is
necessary and a key feature of a dexterous hand. These two features are key points in
the design of a dexterous hand and are introduced in two subsections: 3.1.1 degrees
of freedom and hand layout, and 3.1.2 sensing capability.

3.1.1 Degrees of Freedom and Hand Layout

In a modular design, the DOF and hand layout are important factors. These two
elements determine the drive method, motion range and manipulation capability.

36
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Detailed discussions on these topics can be found in follows: 3.1.1.1 finger degrees of
freedom, and 3.1.1.2 hand layout.

3.1.1.1 Finger Degrees of Freedom

As previously mentioned in the introduction subsection 1.1.1, the human hand has a
total of twenty-one DOF: five DOF in the thumb and four DOF in each finger. Since
the thumb has a unique base and location, the finger module design for the dexterous
hand primarily refers to the other four fingers. The design related to the thumb is
discussed in the 3.1.1.2 hand layout.

Among the four DOF shown in the finger structure diagram in Figure 3.1, the DIP
joint is typically an under-actuated joint and cannot be fully controlled by most peo-
ple. This adaptive structure can be realized with elastic or soft material. Considering
function and cost, a finger module with fully-actuated DOF can realize more diverse
functions and the adaptive structure can be an extension of this hand. Therefore, the
DIP DOF is ignored in the basic design, and each finger has three DOF: two for exten-
sion and flexion, and one for abduction and adduction, all of which are fully-actuated
to mimic the function of the PIP joint and Metacarpophalangeal (MCP) joint.

Figure 3.1: DIP, PIP, and MCP in one finger

With a total of three DOF, it is critical to assign these degrees of freedom to
one finger. Compared to the MCP joint, integrating two DOF into the mechanical
structure requires a structure like a ball hinge or universal joint, which makes the
drive structure more complex, limits actuator selection, and reduces the structural
strength. Considering design complexity, total weight, and output torque, it is better
to separate these two DOF, assigning one DOF to the finger and another to the palm.
The number of DOF in one finger module is decided to be two, and the other DOF is
assigned in the palm. The joint change can be seen in Figure 3.2.

Figure 3.2: The finger DOF layout change
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With the number of DOF, the modular concept needs to be defined at a specific
level. There are two different choices: driver module, and component module. The
AllergoHand is a driver module design [ROBOTICS, 2012], while the SandiHand is
a component module design [Quigley et al., 2014]. The driver module has limitations
in joint torque but has a simple design, and the cost of the actuator can be lower. The
component module has a complex design but offers flexible choices in components.
Referring to these factors, a comparison table can be seen in Table 3.1.

Table 3.1: Comparison of two module types
Type Module volume Total volume Structure complex Module assembly Torque Cost

Driver module Small 2 Big 1 Simple 2 Hard 1 Low 1 Low 2

Component module Big 1 Small 2 Complex 1 Easy 2 High 2 High 1
1 The higher score like 2 means better than 1.

Considering the requirements of a dexterous hand, modularity is a key feature
that makes usage and maintenance more convenient. Referring to other dexterous
hands that have experienced issues during use, such as broken finger joints, tendon
failure, and motor failure. These issues are mostly related to the finger part, which
is the most fragile part of a dexterous hand. Designing the hand with a component
module and designing the finger module for easy disassembly allows users to replace
the whole finger module without complex operations during maintenance. The final
design takes the whole finger as a component module to realize a user-friendly design.

In designing the finger module, the choice of actuation method for the finger
joint is a crucial factor. Referring to different solutions in other dexterous hands
[Ma et al., 2013a], various solutions exist to meet the requirements of full actuation,
including tendon-driven, linkage, and gearbox designs, which are shown in Figure
3.3.

Figure 3.3: Three types of actuation method

Tendon-driven designs are popular as they mimic the mechanism of the human
hand. They have the advantage of being lighter at the end of the hand and can pro-
vide faster motion. However, they have a more complex tendon structure, requiring
more maintenance, especially due to material inelastic deformation and wear prob-
lems. Given the goal of creating a design that is easy to use and maintain, it was not
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chosen for this solution.
Linkage solutions have become popular in recent years, particularly in the field of

brushless motors and legged robots. They offer the advantage of good explosive force
and quick reaction. However, the linkage structure occupies a large space and needs
enough space for movement. This factor affects the flexibility and adaptability of the
finger design. A requirement with one DOF is more suitable for such a solution.

The gearbox design is the most traditional and widely used solution. It provides
enough torque and strength to the joint with a certain gearbox. This approach has
been chosen to ensure the joint is both slim and powerful. Even though it is a tra-
ditional solution, it still poses challenges, such as being lightweight, providing suffi-
cient power, and being easy to use.

A comparison of these three solutions can be found in Table 3.2. The gearbox
solution with a simple design and limited cost was selected for the final design.

Table 3.2: Comparison of different actuation methods
Solution Joint volume Total volume Structure Maintenance Cost

Tendon-driven Small 3 Medium 2 Complex 1 Complex 1 Medium 2

Linkage Big 1 Big 1 Medium 2 Medium 2 High 1

Gearbox Medium 2 Small 3 Simple 3 Simple 3 Low 3
1 The higher score like 2 means better than 1.

3.1.1.2 Hand Layout

The hand layout is mainly concerned with the allocation of DOF and the positional
relationship between the fingers and palm. This is important for a dexterous hand
because the layout influences the hand’s gestures and grasp range, which are directly
related to its dexterity.

The number of fingers is the first factor that influences the layout. From the per-
spective of force analysis, three fingers are the basic requirements for an end-effector
that can manipulate an object in three-dimensional space without the external envi-
ronment and force, and it is the most economical design. Therefore, this thesis mainly
focuses on the design of a three-finger dexterous hand with fully-actuated DOF.

The layout of the finger location is important for the relationship among the three
fingers. A human-like layout is widely used in bionic hands to mimic the function
of the human hand and make robotic actions more human-like. However, with this
layout, the joint motion of the thumb becomes complex when three fingers are needed
to form a force-closure status. To simplify the design of the thumb base, the layout
can be simplified by moving the thumb location to the middle of the other two fingers.
The layout change process can be seen in Figure 3.4. In these layouts, all three fingers
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have the same function, and the middle finger can be regarded as the thumb. The
complex motion of the thumb base can be replaced by the motion of the robot arm.
Then, the thumb base can be set as fixed with the palm, and the two DOF in the palm
are with the other two fingers.

Figure 3.4: The human hand layout and the layout designs

With the defined layout and DOF distribution, the remaining issue is the DOF
type for the two finger bases. Figure 3.5 shows three potential layouts for the dex-
terous hand. Each layout has different advantages, which can be compared in Table
3.3.

Figure 3.5: Three layouts of the three-finger hand

Table 3.3: Comparison of three types of layout
Layout Volume Gesture number Tiny object Grasp range Strength

Layout 1 Small 3 Low 1 Medium 2 Small 1 High 3

Layout 2 Big 1 High 3 Hard 1 Big 3 Low 1

Layout 3 Medium 2 Medium 2 Easy 3 Medium 2 Medium 2
1 The higher score like 2 means better than 1.

Layout 1 mimics the DOF in the human finger MCP. It can only perform par-
allel grasp with three fingers. Tiny objects can be grasped by decreasing the gap
between two fingers. This layout has been used in the Robotiq three-finger hand
[Robotiq, 2008]. Layout 2 has the largest layout and can grasp larger items. The dis-
tance under the two-finger model is bigger and can accommodate three fingers on one
side. The main drawback is that the long arm of the two fingers may be fragile and
there may be issues with backlash and synchronization. This layout has been used in
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the BarrettHand [Townsend, 2000]. Layout 3 provides a small layout, and the motion
at the base of the two finger bases can provide angle change. It can also change to a
two-finger version. A similar layout has been used in the Schunk three-finger hand
[Schunk, 2008].

After comparing different layouts, two dexterous hands with layout 2 and lay-
out 3 have been developed. Layout 2 has been used for the one named Eagle Shoal
[Wang et al., 2019a], which has more diverse gestures and is aimed to be used in a
domestic environment. Layout 3 has been chosen as the ideal candidate for the three-
finger DoraHand [Wang et al., 2022], which offers a suitable range of gestures and a
more stable structure, and is aimed to be used in an industrial environment.

3.1.2 Sensing Capability

The sensing capability of a dexterous hand is crucial, as it determines the type and
amount of data that can be collected. This directly influences the function and per-
formance of the hand. The sensing capabilities of a dexterous hand can be divided
into two types: 3.1.2.1 internal sensing and 3.1.2.2 external sensing.

3.1.2.1 Internal Sensing

Internal sensing refers to sensors that provide internal data of the dexterous hand
and are not directly affected by external factors. Common examples include angle,
current, and acceleration sensors, which are essential for controlling the hand’s mo-
tion and monitoring its status. For this dexterous hand, joint angle, current, and
temperature sensors were chosen as internal sensors due to their maturity and nu-
merous references.

The joint angle sensor measures the joint angle, and various types are available
in the industry, such as capacitance, resistance, optical, and hall effect sensors. To
ensure a longer lifetime, easier assembly, and simpler maintenance, a non-contact
sensor is preferred. In this design, the hall effect sensor is a good choice. Its basic
mechanism can be seen in Figure 3.6.

Figure 3.6: Mechanism of hall effect sensor

The joint angle provided by the hall sensor is used for position and velocity control.



42 Chapter 3. Dexterous Hand Design

To enhance control performance, current control is added to the inner control loop.
The current sensor is mounted on the control board. A temperature sensor is used to
protect the motor from potential over-temperature risks inside the joint.

3.1.2.2 External Sensing

External sensing refers to sensors that provide external data for the dexterous hand,
including visual, tactile, force, torque, and other sensors. Visual sensors such as the
RGB and RGB and Depth (RGBD) sensors can be mounted either inside or outside the
hand to provide visual data during the grasping process. Considering the potential
of visual occlusion and the performance of different visual sensors, mounting the
sensor outside the hand is often a better option. The mechanical interface for the
visual sensor is designed on the base of the hand.

Tactile feedback is essential for informing the robot about its interactions with
target objects and is crucial for performing robotic manipulation. Tactile sensing in
robots is defined as the process of detecting and measuring a given property of a
contact event in a predetermined area and subsequent preprocessing of the signals
at the sensor level itself – before sending them to higher levels for perceptual inter-
pretation [Dahiya et al., 2009, Dahiya and Valle, 2008]. According to this definition,
tactile sensing data can be obtained using various sensors that can detect contact
events. For a robot component, tactile feedback can be generated with various data
such as force, pressure, visual, and others.

There are numerous sensors available that can provide tactile feedback, including
those based on mechanisms such as the piezoelectric effect, air pressure, electromag-
netic fields, visual, capacitance change, and piezoresistive effect. These different
sensors need to be analyzed to determine which is most suitable for this application.

Sensors that utilize the piezoelectric effect are commonly used in weight scales
and other high-precision measurement instruments. These sensors detect micro de-
formations within their structure, and use the relationship between force and de-
formation to calculate the force value and direction. One advantage of this type of
sensor is that its structure can be modified according to different designs, and can
sense six-dimensional force and torque. However, one drawback is that the structure
is usually large to provide enough space to mount the sensor. This type of sensor can
sense the force applied to the structure but cannot sense where it is applied. This
makes it more suitable for use at the wrist between the hand and the robot arm.
Figure 3.7 shows a popular sensor [ATI, 1989].

One type of sensor that employs an air pressure mechanism is a viable option.
These sensors are constructed with a hermetic space that contains an air pressure
sensor and sufficient empty space. When touched, the outer surface of the hermetic
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Figure 3.7: Strain gauges, measurement circuit, and six-axis F/T sensor

space deforms, causing a change in pressure within the space. The sensor can then
measure the value of this pressure change. With calibration, the sensor can provide
the force value. This type of sensor is sensitive and can take advantage of mature air
pressure sensor technology. However, there are two main considerations with this
type of sensor. First, the material used to construct the sensor should be soft enough
to cause a sufficient pressure change, but the force value may be influenced by the
deformation of the soft material. Secondly, the soft material on the sensor limits
its thickness and it cannot be too small. Figure 3.8 (a) shows a typical air pressure
sensor TakkTile [Tenzer et al., 2014].

Sensors with an electromagnetic mechanism utilize magnetism to detect the posi-
tion of the top layer and convert it into force and deformation measurements. Like air
pressure sensors, this type of sensor requires a soft material, but the limited mate-
rial and dimension can restrict the design of the hand. Figure 3.8 (b) shows a typical
electromagnetic sensor ReSkin [Bhirangi et al., 2021].

Figure 3.8: TakkTile and ReSkin sensors

Visual sensors are currently a popular type of tactile sensor. These sensors
provide a visual image of the touch surface, which can facilitate research on the
influence of texture. This type of sensor has evolved from the original GelSight
[Yuan et al., 2017] to many different designs with similar mechanisms, including Gel-
Slim [Donlon et al., 2018], Digit [Lambeta et al., 2020], and others. These sensors
can provide enough texture information and the touch position can be clearly dis-
played. The force can be calculated through the calibration of visual and deformation
images. The visual output of these sensors also offers a more convenient way to com-
bine visual and tactile information. However, one main concern with this type of
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sensor is its large size. There must be a distance between the touch surface and the
visual sensor, even when using a reflector. This volume issue limits the hand and
makes it unsuitable for most cases. Some typical sensors are shown in Figure 3.9.

Figure 3.9: GelSight, GelSlim, and Digit sensors

Sensors based on capacitance change and the piezoresistive effect are traditional
sensors with simple mechanisms, as shown in Figure 3.10. Capacitive sensors detect
changes in capacitance between two parts and the force can be calculated through
calibration. These sensors can be manufactured with a thin dimension. Although the
capacitance change of one sensor only provides one value, a high-density array can
be manufactured for planar force sensing. Piezoresistive sensors are based on the
relationship between resistance and force. The force causes the micro deformation of
the sensor surface, resulting in a change in resistance. The linearity of the piezore-
sistive sensor output is good and its properties are stable. Sensor arrays for planar
sensing can also be produced. The most famous tactile sensor with this mechanism
is the BioTac shown in Figure 3.11 [SynTouch, 2007, Su et al., 2012].

Figure 3.10: Mechanism of capacitive and piezoresistive sensors

After comparing these options, capacitive and piezoresistive tactile sensors with
advantages in dimension, design compatibility, and cost, were determined to be the
better choice for this design. Considering actual manufacturing and production lev-
els, the piezoresistive sensor was selected for use in the tactile module.

3.2 Key Components Design

Building on the concepts discussed in the previous section, the design process re-
quires further exploration and comparison of various solutions and components. This
section presents the design of key components and consists of three subsections: 3.2.1
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Figure 3.11: Sensor structure inside BioTac

modular finger, 3.2.2 sensor module, and 3.2.3 tip function and shape.

3.2.1 Modular Finger

To guarantee finger performance and achieve extensibility, it is important to design
a finger with a small dimension, sufficient motion range, and sufficient joint power.
Some key considerations include joint range, joint layout, finger structure, and other
structures. These factors contribute to the design of a finger that is both functional
and scalable.

Figure 3.12: Joint range and fingertip motion range

Joint range As discussed in the subsection 3.1.1, the finger module has two DOF
and the motion range of each finger is important. As shown in Figure 3.12, a larger
motion range improves the manipulation capability of the finger, but also increases
the dimension of the intersection area, reducing the volume of the base knuckle and
space for the motor. To determine the motion range of the finger joint, it is necessary
to measure the motion range of a human finger, especially during the grasping task.
Refer to the joint range of human finger joints in Table 3.4 [Bain et al., 2015], the
maximum angle is the active flexion angle of PIP at 101◦, and the minimum negative
value of MCP at -19◦. The joint range during the grasp task is from -5◦ to 93◦. Based
on these values, and considering that the negative motion range has no significant
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influence on finger design, the motion range of the finger joint can be set at ± 90◦.
This range can already cover all the range required for grasping tasks, and the neg-
ative motion range can help realize special gestures and leave enough space to avoid
obstacles.

Table 3.4: Human finger joint motion range under different situations

Joint
Active/◦ 90% Activities Functional/◦ Pre-grasp & Grasp Functional/◦

Extension Flexion Minimum Maximum Minimum Maximum

MCP all -19 90 19 71 -5 77

PIP all -7 101 23 87 16 93

DIP all -6 84 10 64 1 72

Joint layout The position of the motor is crucial in the joint layout, and there are
two methods of mounting the motor. These two designs are used in the Eagle Shoal
and DoraHand versions respectively. The main difference between these designs is
the number of parts in the finger structure: two or three. The two-part design has a
smaller total volume and lower integration cost, allowing for a smaller total volume
of the hand. The three-part design has no motor in the front part, allowing its shape
to be designed to meet specific requirements and be replaced with other components.
The three-part version is more practical during usage and research. The comparison
figure and table can be seen in Table 3.5 and Figure 3.13.

Table 3.5: The main difference between the two designs
Layout Volume Output force Fingertip dimension Extension

Eagle Shoal Small 2 Small 1 Big 1 Hard 1

DoraHand Big 1 Big 2 Small 2 Easy 2
1 The higher score like 2 means better than 1.

Figure 3.13: Comparison of two-part and three-part fingers

Finger structure When designing the finger joint, careful consideration must be
given to the selection of the motor and reducer. The length of each knuckle is crucial
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and can be determined by referring to human fingers lengths. In this design, the
DIP and PIP are merged into one part, and the length of these two knuckles in the
finger should be similar, and set with a value around 50 mm. For the joint motion
parameters, referencing other dexterous hands, the fingertip force is set at around
20 N, and the finger joint motion speed is set at around 60°/s. To account for the
different torque requirements of each joint, the torque added on joint 0 and joint 1
can be calculated as shown in Equation 3.1 and Figure 3.14.

Figure 3.14: Torque on different joints

T⃗j0 = L⃗j0 × F⃗

T⃗j1 = L⃗j1 × F⃗
(3.1)

In Equation 3.1, F⃗ represents the external force, L⃗j0 and L⃗j1 represent the dis-
tance from external force to joint 0 and joint 1, respectively, and T⃗j0 and T⃗j1 represent
the torque on joint 0 and joint 1, respectively. This calculation shows that the max-
imum torque on joint 0 can be twice that of joint 1. To ensure the finger joint speed
is not too slow, the motors in joint 0 and joint 1 should be different, with the output
torque of joint 0 being more than twice that of joint 1.

Figure 3.15: Structure of finger module

Due to the limited volume in the finger knuckle, a worm gearbox is selected for
joint 1, as it can be smaller and output greater torque. A planetary gear reducer and
a set of bevel gears are used in joint 0 to transmit the torque. With the selection of the
gearbox and motor, the main part of the finger joint is decided. Each finger module
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includes two motors and two force sensors, with two sensor modules mounted inside
the two knuckles. The whole structure of the finger module can be seen in Figure3.15.

Other structures Another important factor to consider is the structure inside the
joint. The gearbox with a large reduction and self-locking mechanism can help main-
tain the joint position and save power during grasping. However, the self-locking
mechanism can also lead to accidental injury when external torque exceeds the max-
imum bearing torque of the joint. To address this, a protection structure is necessary
for each joint. This structure uses a spring plunger to limit external force. When
the torque exceeds the joint’s maximum bearing torque, the plunger releases and the
joint enters free-moving mode, separating from the actuation module. The force anal-
ysis scheme can be found in Figure 3.16. The force is calculated using the Equation
3.2, where Tmax represents the joint’s maximum bearing torque, FT represents the
torque force on the coupling, the rc represents the radius of the coupling, the Fp is
the plunger’s spring force, the θ represents half the angle of the mating groove on the
coupling. This design significantly extends the joint’s lifespan.

Tmax = FT rc = Fprc/sin(θ) (3.2)

Figure 3.16: Scheme of force between joint and coupling

Furthermore, to improve sensor data acquisition and processing and enhance con-
trol, joint angle and finger boards are located inside the finger module with minimal
space requirements as shown in Figure3.15. This approach enables the finger mod-
ule to function as an independent unit, contributing to the overall modularity and
flexibility of the design.

3.2.2 Tactile Module

As mentioned in subsection 3.1.2, the tactile sensor plays a crucial role in enabling
the robot to perform manipulation tasks. Compared with integrating commercially
available tactile sensors, incorporating a tactile module within each component is
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more stable and guarantees contact with objects. This subsection introduces the tac-
tile module in two steps: 3.2.2.1 sensor layout, and 3.2.2.2 tactile module design.

3.2.2.1 Sensor Layout

Due to space limitations and production difficulties, film sensors utilizing the piezore-
sistive effect mechanism are a suitable option for integration within the hand design.
Instead of building a big sensor with a large area, using a sensor array to form a sens-
ing plane and obtain a large sensing area is a common method. Existing literature
shows that sensor arrays are widely used for data feedback in robot hand designs
[Yousef et al., 2011, D. et al., 2009]. The common sensor array is typically sparse and
covered with a top surface, as depicted in Figure 3.17. To achieve a better sensor
design, two key points that need to be considered.

Figure 3.17: Tactile sensor array

One key consideration is the top surface for the sensor array. Without a top sur-
face, sensors in the sensor array are independent and gaps exist between adjacent
sensors, regardless of the number of sensors in the array. When the robot hand grasps
a tiny object, only sensors in direct physical contact provide data output, leading to
data loss due to discontinuity. To address this, a surface is needed on top of these
sensors to maintain contact and distribute force. Surfaces with both soft and rigid
materials are available. A soft surface guarantees contact between the surface and
sensor and supports multi-point contact, but deformation may cause sensing force to
change. A rigid surface ensures accurate force distribution but can only sense the
position of combined forces.

Another consideration is the relationship between sensor area and precision. Re-
ducing the area of one sensor also reduces its contact surface, leading to unexpected
contact. Unstable contact with a small area leads to bigger errors for the film sensor.
Therefore, the design of the sensor module should prefer a solution that can sense
continuous force and has a stable sensing area. A rigid surface and large area sensor
are applied in the design.

After conducting extensive experiments, the film force sensor I-MOTION IMS-
C10 shown in Figure 3.18 was chosen. It has a small thickness of 0.22 mm and a
range of 10 N with a resolution of 10 mN. The detailed design of the sensor module is
introduced next.
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Figure 3.18: The sensor module, sensor board, and film sensor

3.2.2.2 Tactile Module Design

The design of the sensor module structure is crucial for achieving continuous force
detection. Since three points can determine a plane, the force distribution on the
surface of the contact points can be determined using fewer sensors. As shown in
Figure 3.19, two sensors are used in each finger knuckle module, which is limited by
the width of the finger, and four sensors are used in the palm area.

Figure 3.19: Scheme of the sensor module

A force application plane with struts structure and rubber mats shaped to fit
the effective perception area ensures stable contact with the sensor. The application
plane can transmit force to the sensors through the struts, regardless of the contact
point with the object. The combined force and combined contact point position can be
calculated using Equation 3.3. The force Fc is the combined external force, the Fs0

and Fs1 are the component forces on the struts, and the m is the number of component
forces. The xs0 and xs1 are the distances from strut i = 0, 1 to the origin point, and
the n is the number of struts. The xc is the position of the combined force in that
direction, and the vxc is the velocity of the force moving in the x direction.


Fc =

∑m
i=0 Fsi

xc =
∑n

i=0 Fsixsi/Fc

vxc = x′
c

(3.3)
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To sense force in a plane and enhance its capabilities, the palm module has been
designed with four sensors, as illustrated in Figure 3.20. The coordinates in the
palm module are set along the y and z axes, corresponding to the x axis in the finger
module. The combined force Fc is calculated as the sum of Fsi, and the position yc

and zc are determined using the positions ysi and zsi of the struts. The velocities vyc

and vzc are also calculated using these position values. The Fs0, Fs1, Fs2 and Fs3 are
component forces on the four sensors. The combined force position and velocity can
be calculated using Equation 3.4.



Fc =
∑m

i=0 Fsi

yc = (Fs0ys0 − Fs2ys2)/(Fs0 + Fs2)

zc = (Fs3zs3 − Fs1zs1)/(Fs1 + Fs3)

vyc = y′
c

vzc = z′
c

(3.4)

Figure 3.20: Structure of palm layout

Figure 3.21: The detailed structure of the sensor module

All of these calculations are based on the assumption that the contact between
the sensor and strut is optimal and their relative positions are fixed. However, if
external forces are not only vertical, the resulting change in position can also affect
sensor accuracy. To address this issue, rubber is used to increase the contact area
and is attached to the sensing area to maintain a fixed relationship. The rubber is
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pasted on the sensor to ensure a fixed position between the rubber and the sensor.
For the relationship between the rubber and force application plan, unlike solutions
that involve adding preload or fluid, keeping a gap between the rubber and force
application plane can reduce maintenance difficulty. This gap is controlled with a
minimal margin to avoid significant errors. These details are crucial in the module
design and can be seen in Figure 3.21.

With this design, the sensor unit can continuously detect force and significantly
aid in sensing slip motion. Additionally, a larger sensor array can be replaced by
fewer sensors, reducing the total costs.

3.2.3 Tip Function and Shape

The tip of the finger module is important as it can perform a variety of functions. A
well-designed tip with specific shape and extension capabilities is critical for accom-
plishing various tasks. This subsection introduces the design of the tip function and
shape.

Figure 3.22: Grasp pose in bin-picking

Compared to common scenarios such as grasping on a table or shelf, grasping
items inside a bin is more challenging for the end-effector. Considering the bin-
picking scene can help improve its capability. A hand used for bin-picking should
have a thin tip and be able to perform various gestures, as shown in Figure 3.22.
These gestures facilitate tip manipulation tasks and allow fingers to access narrow
spaces, especially in bin-picking. The fingertip is designed to meet this requirement
by being as thin as possible. The hard surface in the tip area, combined with the
rubber, is inspired by the human finger, which consists of the nail and finger pad.
This design can adapt to complex environments and make grasping easier and more
stable.

As the finger base joint range in the palm is ± 90◦, the two fingers can grasp items
with both sides of the fingertip. It is important to have the sensing capability on both
sides of the tip area. To achieve two-sided sensing of the sensor module, a special
structure is designed in the tip that keeps a gap between the module and separates
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Figure 3.23: Structure of fingertip and force diagram

the sensing part into two sections. When force is applied from the front or back, it is
transmitted through the sensor strut and added to the support structure. This sensor
module helps the tip to sense in both directions. The tip structure and force diagram
can be seen in Figure 3.23.

For dexterous hand usage, researchers often have diverse hardware requirements,
particularly when new sensors need to be evaluated, markers need to be added, or
structures need to be replaced [Kawasaki et al., 2002]. The tip is designed with an
easily disassembled structure that can be extended or replaced with other compo-
nents. The tip structure can be seen in Figure 3.24.

Figure 3.24: Structure of fingertip

3.3 Whole System Design

With the design concept and key components in place, it is necessary to complete the
whole system design from a full-view perspective. The application industry and sce-
narios play a decisive role in determining the payload capacity of the dexterous hand.
Collaborative robots with payloads ranging from 5-10 kg have been widely adopted
to ensure safety and cooperation with workers. Considering the estimated weight of
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the dexterous hand to be around 1-2 kg, a payload capacity of 6 kg is suitable and
can cover most grasping and manipulation requirements. Based on this application
requirement, the design of the dexterous hand can be divided into three subsections:
3.3.1 mechanical design, 3.3.2 electronic layout, 3.3.3 embedded and application soft-
ware.

3.3.1 Mechanical Design

The mechanical design covers all structural designs, including the components pre-
sented in the previous subsections. This subsection has two additional sections to
discuss: 3.3.1.1 modular hardware interface and 3.3.1.2 dimension and layout.

3.3.1.1 Modular Hardware Interface

With the designed finger module, the modular hardware interface serves to connect
the finger module to the palm. There are two basic requirements for the modular
hardware interface: reliable connection and easy assembly.

Inspired by connectors used in consumer electronics, the design utilizes Pogo
Pins, which are spring-loaded pins, for stable electrical connection. The design uses
spring plungers and magnetic connectors for reliable mechanical connection, where
the spring plunger provides force and location functionality, and the magnetic con-
nection enhances the connection force. The force diagram between the finger and
palm can be checked in Figure 3.25.

Figure 3.25: Scheme of the force on the finger

With the force diagram, the force calculation process is presented in Equation
3.5, which includes forces acting on the finger. These forces include the combined
force Fc, the spring plunger force Fs, the magnetic force Fm, the Pogo Pins force
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Fp, the friction force Ff , and external forces F0 and F1 applied to fingers 0 and 1,
respectively. Additionally, θ0 and θ1 are the angles of fingers 0 and 1, respectively,
and µ is the friction coefficient between the finger base and palm. The reaction force
Fr balances all forces in the horizontal direction, and Lr is the distance from the Fr

point to the connection point. The other parameters include L0 and L1, which are the
lengths of each finger knuckle, and Lb, which is the distance between joint 0 and the
connection point. As indicated by the equation, horizontal component forces lead to
a larger reaction force Fr and friction force Ff . Components are chosen based on a
worst-case scenario in which an external force is exerted in a vertical direction.


Fc = Fs + Fm − Fp + Ff ≥ F0sin(θ0) + F1sin(θ0 + θ1)

Ff = µFr

Fr = (F0L0/2 + F1L1/2 + L0F1cos(θ1) + Lb(F0cosθ0 + F1cos(θ0 + θ1)))/Lr

(3.5)

Figure 3.26: Structure of finger base

Based on this force analysis, suitable parameters for the spring plunger and mag-
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netic connector can be calculated. With proper selection, the structure can withstand
vertical plug forces of up to 3 kg, which is sufficient for a hand with a 6 kg payload.
The structure is used for three finger bases, with two finger bases connected to two
rotation bases inside the palm with a limited range of rotation, and the other one
directly connected to the palm base. Each rotation base is driven by a motor through
spur gears. The design is shown in Figure 3.26.

3.3.1.2 Dimension and Layout

The mechanical part must meet the previously mentioned requirements, and the lay-
out should consider the dimensions of the target objects, such as those in the YCB
objects set [Calli et al., 2015]. The common dimensions of daily life objects are usu-
ally limited to 100 mm, with the maximum dimension generally restricted to 150 mm.
Given a finger knuckle length around 50 mm, the finger distance on the palm can be
determined. The finger location is shown as an isosceles triangle and the coordinate
definition is shown in 3.27.

Figure 3.27: The dimension and coordinate definition of DoraHand

In addition to the layout, it is crucial to perform a strength analysis for each com-
ponent during the design phase. Due to the considerations of self-weight, aluminum
alloy is used in most parts of the hand, and plastic is used in some non-structural
parts, such as the shell. Deformation of these components should be minimized and
controlled within a small range to ensure proper functioning. Especially for the force
application plane in the sensor module, the plane needs to maintain a tiny deforma-
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tion to ensure accurate force results. After finalizing these details, the hand with
various gestures is shown in Figure 3.28. Figure 3.28 (a) shows three different ges-
tures with three fingers. Figure 3.28 (b) shows three different gestures with two
fingers and with a positive grip. Figure 3.28 (c) shows three different gestures with
two fingers and with a reverse grip. These nine gestures can be used as the basic
gestures during grasping tasks.

Figure 3.28: Different hand gestures with DoraHand

3.3.2 Electronic Layout

To make the module more user-friendly, each finger and the palm are equipped with
a dedicated control board. Since the boards in each module have similar functions,
system configuration is simplified. There is a finger board for each finger, a pico board
for the palm, and a main board for the whole system. The finger board is responsible
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for data collection, motor control, and communication. The pico board has a similar
function as the finger board and can be expanded via onboard connectors. The main
board is responsible for the communication and power supply of the whole system.
The finger board, pico board, and main board are shown in Figure 3.30, and the
overall structure can be seen in Figure 3.29.

Figure 3.29: Structure of the electronic and embedded system

Figure 3.30: The finger board, pico board, and main board

The finger board is capable of collecting two joint position data, two current data,
and four tactile sensor data with 10 bit and 1 kHz each. The Controller Area Net-
work (CAN) bus protocol is employed for better expandability, with the MCP2515
and VP231 chips serving as the controller and transceiver respectively. Each board
acts as an independent motion node within the hand system and is interconnected
via Flexible Printed Circuit (FPC). In addition to the main board, a power module is
embedded in the palm, receiving 24 V input voltage and outputting 5 V and 12 V.

To facilitate the connection of the finger module, a hot-swap function is devel-
oped for the hand. This feature ensures that fingers can be plugged in or out while
the hand is powered and operating. In addition to mechanical design support, some
changes have been made to the electronic design. When the finger module is in-
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stalled, the power and communication of the finger module are activated, and when
the finger module is not in place, the power and communication of the finger module
are turned off. This is accomplished by detection circuitry in the main board. When
a finger is connected, the detection voltage can be measured at the finger position,
then starts and gradually increases the finger supply voltage, and then start commu-
nication. When not connected, the circuit remains open. Different detection voltages
are enabled for each finger position and used for finger position recognition.

3.3.3 Embedded and Application Software

The Embedded and application software includes the work related to the embedded
software and the corresponding application software on the user side. The communi-
cation framework is illustrated in Figure 3.30. The communication framework uses
CAN communication between the finger boards and the main board, and Serial Pe-
ripheral Interface (SPI) between the pico boards and the main board. The hand has
three fingers, with redundant ports for the addition of more fingers and actuators.
Hardware trigger is utilized to ensure synchronization of each device’s action time
with multiple clients in the communication loop. Through the position, current and
force data obtained by the board from the sensor feedback, the hand supports the
loop control of position, velocity, current and force based on the integral-separated
Proportional Integral Derivative (PID) method. Each module has been calibrated to
meet requirements and can join the the CAN bus when plugged into place, allow-
ing the main board to establish communication with any new fingers. The hand can
communicate with other hosts via Universal Serial Bus (USB) or Ethernet, with a
communication frequency of 60 Hz.

The application software includes a user interface with basic control functions for
the dexterous hand, supporting data viewing and loop control with target commands.
The interface visualizes sensor data values and shows the relation of force value and
position in 2D drawing. A script mode supports script command execution, and a
Control Performance Assessment (CPA) function assesses and adjusts joint parame-
ters through a dedicated PID test module. The CPA function can help to adjust the
joint parameter according to the running state and user requirements. Some main
pages of the user interface can be seen in Figure 3.31.

In addition to the user interface, a library that supports communication via both
USB and Ethernet is provided. Data can be subscribed through Robot Operating
System (ROS) or ROS2 topics, and tasks can be executed through ROS or ROS2 ser-
vices. The application software, library code, and Unified Robot Description Format
(URDF) can be found on GitHub [Dorabot, 2021a].
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Figure 3.31: Some main pages of the user interface
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3.4 Conclusion

The chapter provides an overview of the design of a fully-actuated modular three-
finger dexterous hand product, discussing the concept and key design details. The
tactile sensor module in the hand uses piezoresistive film sensors to provide excel-
lent tactile sensing capabilities. The modular finger design has good scalability and
maintainability, and a user-friendly interface enables hot-swapping of fingers. The
hardware meets requirements for stable grasping and robotic manipulation, with
sufficient DOF, tactile sensing, strong grasp force, easy-to-use, practicality, and af-
fordability. The next chapter focuses on its verification and evaluation to explore
potential applications.
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Chapter 4

Experiment and Performance
Evaluation

After designing the dexterous hands, Eagle Shoal and DoraHand, the hardware un-
derwent several iterations during testing and usage. The latest version is the sixth
iteration of DoraHand, which has addressed several drawbacks observed in different
cases. This chapter aims to establish an evaluation procedure for dexterous hands
and focuses on the experiments and performance evaluation of DoraHand. It is di-
vided into four sections: Section 4.1 presents the basic parameters and capabilities of
the hand. Section 4.2 showcases the capabilities of the sensor module. Section 4.3 in-
troduces the work of extending to two-finger and five-finger versions of the dexterous
hand. Section 4.4 provides a summary of this chapter.

4.1 Basic Performance

In the basic performance section, the fundamental parameters and grasping capa-
bilities of the dexterous hand are demonstrated through experiments. This section
includes two subsections: 4.1.1 experiment design and 4.1.2 performance.

4.1.1 Experiment Design

The basic parameters of a dexterous hand include its overall dimensions, weight,
joint number and range, joint speed and precision, tactile sensor number and param-
eters, communication type and rate, grasping force, and capability. Most of these
parameters are physical and can be easily measured using common measuring tools.
The experiment design focuses on the measurement of grasping force and grasp ca-
pability.

As a basic parameter, grasping force does not have uniform criteria across differ-
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ent hands due to variations in their layouts. The test uses two force parameters to
demonstrate performance: encompassing grip payload and fingertip grip force. En-
compassing grip payload is the maximum payload that the hand can grasp using a
power grasp gesture. This value may be influenced by the shape, diameter, and fric-
tion coefficient of the target object. For this test, a cylinder with a diameter of 62 mm
and enough strength to avoid visible deformation is selected, with a friction coeffi-
cient of around 0.6. The weight is changed by tying weights to the cylinder. Fingertip
grip force is the maximum force output by the fingertip and can demonstrate the
grasp force when using the tip. Grip force is measured using an electronic scale be-
tween the fingertips [Ma et al., 2013b]. The measurement states of two parameters
are shown in Figure 4.1.

Figure 4.1: Two force parameter measurement methods

Grasp capability is also an important factor in evaluating basic performance. To
test this capability, the hand is mounted on a robot arm, and the object is positioned
for grasping. To standardize the evaluation criteria, the YCB object set was selected
as the test set. This set includes 77 types of objects in 5 categories commonly found
in daily life. The standard grasping procedure consists of four steps to grasp objects.

1. Reaching the pre-grasp pose.

2. Grasping the target object with position control and with no or tiny gap.

3. Using current control to ensure a stable and suitable force.

4. Controlling the robot arm with a translation motion for grasp stability verifica-
tion.
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Some special items not included in the object set were also added to the test,
including cooked eggs with shells peeled off, circuit boards, and credit cards. These
items can demonstrate the hand’s ability to grasp soft and thin objects. For tools like
scissors, the ability to manipulate them also needs to be tested.

4.1.2 Performance

The basic parameters of the hand can be calculated and obtained through control and
designed experiments. These parameters are listed in Table 4.1. The joint sensor
feedback provides a resolution of 0.01◦ and a precision of ± 0.1◦. The encompassing
grip payload of the hand is around 6 kg, and the fingertip grip force is around 25 N.

Table 4.1: Basic parameters of DoraHand
Dimension L-W-H Weight Finger weight Joint number & range Joint speed & precision

126 mm-143 mm-221 mm 1400 g 180 g 8 / ± 90◦ 70°/s / ± 0.1◦

Sensor module number Input power Communication type & rate Fingertip grip force Encompassing grip payload

7 24 V / 2 A Ethernet or USB / 60 Hz 25 N 6 kg

Compared with other dexterous hands, Table 4.2 shows a comparison of some
main parameters [Ma et al., 2013a]. The DoraHand is the only modular hand with
finger modules that support the hot-swap function. It has advantages in terms of
DOF, weight, and payload. Its sensing ability can meet most requirements for robotic
manipulation research and supports integration with other types of sensors and com-
ponents.

Table 4.2: Main parameters comparison with different dexterous hands
Hand Finger/actuator number Grasp range/mm Tactile sensor Weight/g Grip force/N

SDH Hand 3/7 239 Yes 1950 /

Barrett Hand 3/4 240 Yes 1200 15

Robotiq 3-Finger 3/2 155 / 2300 15-60

Allergo Hand 4/16 238 / 1500 /

BLT gripper 3/5 206 / 1200 10

Eagle Shoal 3/8 212 Yes 790 10

DoraHand 3/8 200 Yes 1250 25

The grasp capability test was conducted with the objects discussed in the exper-
iment design. All objects in the test set can be grasped, and some objects can be
grasped using several different gestures. The egg is stably grasped by the dexterous
hand using the current control mode without damage. The scissors can be opened
and closed by finger motion. These objects demonstrate that the DoraHand has good
grasp and manipulation capabilities. Figure 4.2 shows fifteen typical sample results.



66 Chapter 4. Experiment and Performance Evaluation

Figure 4.2: Grasp different objects with DoraHand
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4.2 Sensing Capability

Sensing capability is a crucial feature of dexterous hands. In addition to the range,
sampling rate, and film sensor unit precision, the evaluation of the tactile sensor
module capability should also encompass static sensing precision and dynamic sens-
ing capability. This part of the work is presented in two subsections: 4.2.1 experiment
design, and 4.2.2 performance.

4.2.1 Experiment Design

To evaluate the static sensing precision, the force distribution on several film sensors
inside the module can be used. The experiment is designed to add a force to the
sensor module and calculate the force adding position to verify performance. For
this purpose, a device must be designed to measure and verify precision. The device
includes two motion DOF in the horizontal and vertical directions. The load module
controls the vertical direction and can control the payload using feedback from a force
sensor. The linear module controls horizontal motion to test the position sensing
precision of the sensor module. This device can be used for a single sensor, finger
module, or palm module with different fixtures, as shown in Figure 4.3. With this
device, the experiment procedures for static sensing can be designed in four steps:

1. Mount the component on the base and move the force tip to the target horizontal
position.

2. Add a predefined payload value for a predefined time length, and record sensor
data, and position.

3. Unload and move to the next horizontal position with a predefined distance.

4. Repeat the loading procedure and record data.

In the experiment for static sensing, the predefined payload is set at 50% of the
sensor range, with a value of 10 N for the finger sensor module. The horizontal
moving step is set at 1 mm, and the motion precision can reach 0.01 mm. To minimize
the impact of sudden force changes, the payload adding process is slow and the sensor
data used for analysis is extracted after the force is stable.

The tests on this device mainly focus on static performance. However, a dynamic
capability experiment is also necessary to verify the sensing capability during the
grasping process, especially in cases where slippage occurs. This dynamic sensing
performance test can be designed in a simple way by grasping an object on a plane
and recording the tactile sensor data throughout the test. The change in sensor data
can represent the tactile sensing capability in a natural way.
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Figure 4.3: Device for sensor calibration and evaluation

4.2.2 Performance

The force sensing range and precision are first evaluated with the device. The force
sensing range of a single film sensor is 10 N, the finger knuckle tactile sensor module
is 20 N, and the palm tactile sensor module is 40 N. The precision of a single film
sensor can reach ± 3%, and creep in 10 minutes is around 1.5%. The precision of one
tactile sensor module is around ± 5%, which may be influenced by the precision of
the mechanical structure. The minimum sensing force is 100 mN, and the force value
changes with 10 mN increments which can help the hand to manipulate soft items
and sense the stiffness difference of objects.

Figure 4.4: Sensor module data with static test
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The second part of the experiment focuses on static sensing precision, where the
front finger knuckle is selected to test the performance of the tactile sensor module.
The test results are shown in Figure 4.4, with a total test distance of 22 mm. The
position can be calibrated and can reach a precision with a maximum error of ± 5%,
which is around ± 1 mm. The most significant error occurred at the edge of the
testing area and was caused by differences in contact conditions between the sensor
and rubber.

The third part of the experiment focuses on dynamic sensing capability and is
shown in Figure 4.5. The force sensing by the sensor module can reach 60 Hz, which
meets the requirements for grasp stability evaluation. The force shows a grasping
process starting from 0.1 s, with a rapid increase from 0.35 s to 0.45 s, followed by a
force balance process from 0.5 s to 1.0 s, with a significant change at 1.0 s. A force
balance process that happened in the hand can be detected with such data.

Figure 4.5: Sensor module data with dynamic test

In conclusion, The sensor unit performs well in sensing capability, force point
position, and dynamic tactile sensing. The sensor unit design achieves nearly ± 5%
perception accuracy in static experiments and can detect vibration data in dynamic
scenarios. With this sensor unit, the robot hand can perform better in tactile sensing
and stable grasping research.
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4.3 Extension Applications

The dexterous hand capability is evaluated in its three-finger version in previous
sections. As a modular dexterous hand with finger modules, the extension capability
also needs to be evaluated. Common applications with two and five-finger hands
have been designed. In addition to these extensions, researchers can also change
the layout and mechanism design to meet different requirements. Two parts of the
experiment were designed: 4.3.1 two-finger hand, and 4.3.2 five-finger hand.

4.3.1 Two-Finger Hand

This experiment aims to showcase the extension capability of the finger module and
demonstrate the capability of the two-finger hand. To showcase the manipulation
capabilities, an actual requirement of the sample pipetting operation experiment has
been designed. This operation involves several key actions: picking up a tube, un-
screwing the tube cap, operating the pipette, tightening the tube cap, and placing the
tube back. The end-effector must be able to manipulate both the tube cap and the
pipette. Due to the limited dimensions of the tube, the cap can only be grasped with
two fingers, and operating the pipette can be accomplished with one DOF. With these
requirements, combining the two-finger and three-finger hands can accomplish the
whole procedure. The details of this work are divided into two parts: 4.3.1.1 main
hardware design, and 4.3.1.2 application performance.

4.3.1.1 Main Hardware Design

To meet the requirements of sample pipetting operation, several hardware compo-
nents need to be designed. These include a two-finger hand, a pipette operation
device with a three-finger hand, and the overall system layout.

The two-finger hand includes two finger modules, which means the electronic
hardware can remain the same as the three-finger hand, with the only difference
being the layout of the palm. To increase the flexibility of the palm, two rotational
DOF in the three-finger palm are kept. The overall layout of the two-finger hand
is similar to that of the three-finger hand, but without the thumb position. Due to
the limited space on the palm of the two-finger hand, a finger knuckle tactile sensor
module is used to replace the three-finger hand palm. The design of the two-finger
hand can be seen in Figure 4.6 (a).

The three-finger hand is used to grasp tubes and operate a pipette. The finger
in the thumb position is used to operate the pipette, while the other two fingers are
used for grasping tubes. A linkage structure is mounted on the finger in the thumb
position and is controlled through the hand’s control system. This structure can be
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Figure 4.6: Design of two-finger hand and three-finger hand

seen in Figure 4.6 (b).
To loosen the tube cap, a large enough torque is needed, and the friction at the

fingertips needs to be increased. All fingertips have been modified and mounted with
3D-printed components. The tip designs for both the two-finger and three-finger
hands are slightly different due to their different uses. The designs for this appli-
cation are shown in Figure 4.7.

Figure 4.7: Fingertip design for tube operation

The remaining parts include a Universal Robots (UR)5 robot arm, a RealSense
D435, two rotational bases for two two-finger hands, a barcode scanner, two tube
racks, a pipette tip rack, and other materials for pipette operation. The entire appli-
cation system can be seen in Figure 4.8.

4.3.1.2 Application Experiment

Referring to a real-world application of sample pipetting, the detailed operation flow
of the experiment can be broken down into several steps.

1. Pick up a new tube from the rack and place it in the two-finger hand.
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Figure 4.8: The system of sample pipetting application

2. Pick up the sample tube from the rack, scan its barcode, and place it in the
two-finger hand.

3. Loosen the cap of the sample tube and pick it up.

4. Get a new pipette tip and absorb the sample from the sample tube.

5. Close the cap of the sample tube.

6. Loosen the cap of a new tube and pick it up.

7. Transfer the sample to the new tube.

8. Close the cap of the new tube.

9. Put the pipette tip in the recycle bin.

10. Move the new tube back to its rack.

11. Move the sample tube back to its rack.

The application is completed with two-finger and three-finger hands. The opera-
tion for pipetting is integrated with the hand control and is smooth. Picking up tiny
objects like caps is easy with two finger grasping. The biggest challenge during the
experiment is operating the tube cap. The force required to loosen the cap must be
large enough and the grasp must be stable enough. Otherwise, any change in the
cap’s position within the fingers causes failure when closing it. This challenge has
been addressed with this finger module design. The process of loosening the cap of a
new tube is shown in Figure 4.9.

This application demonstrates the capabilities of both two-finger and three-finger
hands, including sufficient fingertip force for loosening caps, precise hand operation
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Figure 4.9: Dexterous hand application in pipette application

for handling small objects like tube caps, flexible fingertip extension, and easy re-
design of the three-finger hand. Furthermore, one advantage of the two-finger hand
is its smaller palm size, which allows it to fit into narrow spaces that require more
precise manipulation.

4.3.2 Five-Finger Hand

The five-finger hand extension experiment focuses on its design and basic perfor-
mance. The five-finger dexterous hand is designed using five finger modules mounted
onto a newly designed palm. Referring to the DOF in a human hand, there are
twenty-one DOF in the hand. Considering that the four DOF in four DIP joints have
been ignored with the finger module, there remain seventeen DOF in the hand, which
include ten DOF in the five finger modules. This means that seven additional DOF
need to be added to the five-finger palm. Like the human hand, there are four DOF
for abduction and adduction at the base of four fingers, which can be simplified using
a linkage structure. The remaining three DOF are located at the base of the thumb.
Specifically, two DOF have been added to the base of the thumb finger and one DOF
has been added to the base of the other four fingers. The design of the five-finger
hand can be seen in Figure 4.10.

The sensor design for the five-finger hand is similar to the palm tactile sensor of
three-finger hand, but has been modified to fit the shape of the hand. In total, two
sensor modules and four motors have been added for the five-finger hand. Due to
the increased requirements for motor control and sensor acquisition, the extension
function of the main board and pico board is applied in this design, using one main
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Figure 4.10: Design of five-finger hand

board and two pico boards.

The five-finger hand has a total of seventeen DOF and is driven by fourteen mo-
tors. The joint range of each finger is still kept at ± 90◦, with the range of joint A1

and A1 being -10◦ - 0◦, the range of joint A3 being -30◦ - 90◦, and the range of joint
A4 being ± 30◦. The hand weights 2.5 kg. With the same finger module as the three-
finger hand, the fingertip grip force is the same value of 25 N. The encompassing
grip payload highly depends on the shape of the object. With the same cylinder, it
can provide more than 7 kg payload during testing. In addition to finger torque and
palm material, the limitation of the five-finger hand’s payload is also influenced by
the torque and strength of the thumb base. The basic parameters of the five-finger
hand are shown in Table 4.3.

Table 4.3: Basic parameters of five-finger hand
Dimension L-W-H Weight Finger weight Joint number Joint speed & precision

300 mm-220 mm-64 mm 2500 g 180 g 14 70°/s / ± 0.5◦

Sensor module number Input power Communication type & rate Fingertip grip force Encompassing grip payload

13 24 V / 4 A Ethernet or USB / 60 Hz 25 N 7 kg
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The five-finger hand was tested with various gestures and grasping actions,
demonstrating its ability to mimic most human hand gestures. Examples of these
tests can be seen in Figure 4.11. The design and usage of the five-finger dexterous
hand show the versatility of its modular design, allowing users to customize it ac-
cording to their specific needs.

Figure 4.11: Different gestures and grasp poses with five-finger hand
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4.4 Conclusion

This chapter provides a comprehensive evaluation of the dexterous hand from three
different perspectives, offering valuable insights into effective evaluation methods
for the hardware and showcasing its capabilities. This evaluation process serves as
a useful guide for advancing research in robotic manipulation and gaining a deeper
understanding of the dexterous hand’s capabilities and user-friendliness. The results
of the evaluation clearly demonstrate the high performance of the dexterous hand. Its
basic parameters can meet most requirements when compared to other hands. The
integrated tactile sensing module shows good performance and can support tactile-
related applications. The finger module has good extension capability, and besides
the hot-swap function, the extensions of both two-finger and five-finger hands have
been verified. The following part focuses on grasp planning with the DoraHand,
specifically its ability to execute grasps using a combination of analytic and data-
driven methods.
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Chapter 5

Analytic Grasp Planning for
Three-Finger Dexterous Hand

Grasping is essential for the successful use of a dexterous hand. Despite significant
progress in 2D and 3D analytic grasping development, it remains a complex field that
requires consideration of various conditions. To better demonstrate the capabilities
of the dexterous hand and provide a reference, it can be helpful to focus on a common
and simplified scene. This thesis project focuses on grasp planning within the Table-
Top scene, with targets simplified as 2D polygons from a top view.

This chapter introduces analytic grasp planning for the three-finger dexterous
hand DoraHand. It is divided into four sections. Section 5.1 provides a basic analysis
for grasp planning. Section 5.2 presents the grasp plan with the limitations of the
dexterous hand. Section 5.3 verifies the algorithm with actual calculations. Section
5.4 provides a summary of this chapter.

5.1 Analytic Analysis

Previous research has extensively studied analytic grasp planning [Li et al., 2002,
Zhang et al., 2022]. However, to accommodate the specific hand layout and limita-
tions of the three-finger hand in this thesis, additional work is required. This section
is divided into two subsections: 5.1.1 grasp plan with force-closure, and 5.1.2 grasp
plan with quality evaluation.

5.1.1 Grasp Plan with Force-Closure

For grasping, form-closure is a stable status that is difficult to achieve and limited by
the dimension and shape of the target. Force-closure, on the other hand, is an achiev-
able status for a dexterous hand. The grasp plan with force-closure will be delivered

78
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in this work. To achieve a force-closure grasp plan, force and moment equilibrium
must be simultaneously achieved. This subsection focuses on the 2D situation within
the target Table-Top scene. Before the analysis, certain assumptions must be made
to define the target scene.

1. The object is a rigid body with precise geometry and evenly distributed mass;

2. A Coulomb static friction model defines the friction cone, with a constant coeffi-
cient µ;

3. The touch point and force can be applied perfectly;

If the grasp reaches force-closure in 2D space, the force and moment in the GWS
should have a value of 0⃗ as shown in Equation 5.1.

W =
[

F⃗

M⃗

]
=

[
0⃗
0⃗

]
(5.1)

According to the definition of Coulomb friction, a force f⃗i is applied at point Ci, and
there exists a friction cone defined by two unit vectors e⃗i1 and e⃗i2. The force vector
f⃗i can be represented with two parameters, ki1 and ki2, as shown in Equation 5.2.
The directions of the unit vectors e⃗i1 and e⃗i2 are determined by the contact surface
normal vector n⃗c and friction coefficient µ, and the angle between them is 2α, where
α = arctan(µ). With the vector from the point O to the contact position as r⃗oi, the
moment produced by the external force can be calculated as m⃗oi = r⃗oi × f⃗i. Figure
5.1 illustrates the relationship between the force and moment at the contact point Ci

and point O.

f⃗i = ki1e⃗i1 + ki2e⃗i2, kil, ki2 ≥ 0 (5.2)

Figure 5.1: Coulomb friction, force, and moment

By combining the force and moment equations with the GWS equation, the force
and moment equilibrium situation with n fingers can be presented in equations 5.3,
5.4, 5.5.
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F⃗ =
n∑

i=1
f⃗i =

n∑
i=1

(ki1e⃗i1 + ki2e⃗i2) = 0⃗, kil, ki2 ≥ 0 (5.3)

M⃗ =
n∑

i=1
m⃗oi =

n∑
i=1

r⃗oi × f⃗i =
n∑

i=1
r⃗oi × (ki1e⃗i1 + ki2e⃗i2) = 0⃗, kil, ki2 ≥ 0 (5.4)

W =
[

F⃗

M⃗

]
=

[ ∑n
i=1(ki1e⃗i1 + ki2e⃗i2)∑n

i=1 r⃗oi × (ki1e⃗i1 + ki2e⃗i2)

]
=

[
0⃗
0⃗

]
(5.5)

Figure 5.2: Frictional three-finger 2D grasp

For the development of the algorithm to verify the force-closure situation shown in
these equations, some assumptions and changes to the conditions are needed. Based
on the previous work on analytic approaches, many propositions have been well stud-
ied and verified. For a 2D grasp with three fingers, parallel grasping is a special case
that can be simplified as two fingers grasping in the force and moment equilibrium
part. Therefore, the following discussion only considers non-parallel grasping cases.
Proposition 1 provides a statement about force-closure: nonmarginal equilibrium can
achieve force-closure [Ponce and Faverjon, 1995]. When considering force and mo-
ment equilibrium, there are three typical cases, as illustrated in Figure 5.2. In case
(a), it is clear that these three forces cannot intersect at one point, and the moment
cannot achieve equilibrium. Case (b) can reach force and moment equilibrium when
the three force directions and values are fixed. This situation is marginal equilib-
rium and cannot meet the requirement of force-closure. Case (c) is the most stable
one, and there is a range for the values of kij , i = 1, 2, 3, j = 1, 2. This situation is a
force-closure with nonmarginal equilibrium.

Proposition 1. A 2-D, three-finger grasp that achieves nonmarginal equilibrium also
achieves force closure.

When force-closure is achieved with nonmarginal equilibrium, moment equilib-
rium should be reached at any reference point. By selecting one point inside Ci,
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i ∈ 1, 2, 3 as the coordinate point and choosing i = 2, the moment calculation on point
C2 can be simplified as shown in Equation 5.6 and should be 0⃗. The scheme is shown
in Figure 5.3. In a force-closure case, for the i ∈ 1, 2, 3, there should be M⃗i = 0⃗.

M⃗ = M⃗i = m⃗21 + m⃗23 = ⃗C2C1 × (k11e⃗11 + k12e⃗12) + ⃗C2C3 × (k31e⃗31 + k32e⃗32) = 0⃗ (5.6)

Figure 5.3: Moment equilibrium at point C2

Due to moment equilibrium, m⃗ij and m⃗ik should have opposite signs. Then it can
be represented as m⃗ij · m⃗ik < 0. Since the value is influenced by many factors, the
sign of each part can help to calculate more easily. Two sign functions are defined
for the equilibrium calculation. The first sign function is called Sgn_3(x), whose
definition is shown in Equation 5.7. It can be used for the judgment of the component
moment at each contact point, Sgnmij = Sgn_3(m⃗ij1) + Sgn_3(m⃗ij2), where m⃗ij1 =

⃗CiCj × e⃗j1 and m⃗ij2 = ⃗CiCj × e⃗j2. The second sign function is called Sgn_2(x), whose
definition is shown in Equation 5.8. It can be used for the judgment of the combined
moment at point Ci, SgnMi = Sgn_2(Sgnmij · Sgnmik). If SgnMi == −1, it means
that it is impossible to reach moment equilibrium at point Ci. If SgnMi == 1, it
means that it is possible to reach moment equilibrium and meet the force-closure
requirement at point Ci. The algorithm for moment equilibrium judgment can be
checked in Algorithm 1.

Sgn_3(x) =


1, x > 0

0, x = 0

−1, x < 0

(5.7)

Sgn_2(x) =

1, x ≤ 0

−1, x > 0
(5.8)
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Algorithm 1 Moment equilibrium judgment
1: function MOMENT EQUILIBRIUM JUDGMENT FUNCTION(points)
2: Calculate r⃗ij , e⃗ik, i, j = 1, 2, 3, k = 1, 2 from points
3: n = 0
4: for i = 1, 2, 3 do ▷ Check moment equilibrium at point Ci

5: for j = 1, 2, 3, j ̸= i do
6: for k = 1, 2 do
7: m⃗ijk = r⃗ij × e⃗jk

8: end for
9: Sgnmij = Sgn_3(m⃗ij1) + Sgn_3(m⃗ij2)

10: end for
11: SgnMi = Sgn_2(Sgnmij · Sgnmik), i ̸= j ̸= k
12: if SgnMi == 1 then
13: n = n + 1
14: end if
15: end for
16: if n == 3 then
17: return True
18: else
19: return False
20: end if
21: end function

The judgment provided by the Algorithm 1 can help to quickly judge the situa-
tion, but it cannot guarantee that force and moment equilibrium are achieved at the
same time and cannot prove that the equilibrium is nonmarginal equilibrium. A suf-
ficient condition for the force-closure situation is still needed. Proposition 2 can meet
this requirement and help to confirm the interaction zone of the contact point force
[Ponce and Faverjon, 1995].

Proposition 2. A necessary and sufficient condition for the existence of three nonzero
contact forces, not all of them being parallel, which achieve equilibrium is that there
exist three forces in the friction cones at contact points which positively span the plane
and whose lines of action intersect at some point.

For the positively span, it can be achieved when the three forces meet the re-
quirement of SgnMi == 1 for i = 1, 2, 3. If m⃗ij > 0, there should be m⃗ik < 0, and the
direction of f⃗k should be located between ⃗CkCi and e⃗k2. Otherwise, m⃗ik > 0 and equi-
librium cannot be reached. This situation means that e⃗k1 in the f⃗k = kk1e⃗k1 + kk2e⃗k2

can be replaced by ⃗CkCi and form a new function of f⃗k = ck1 ⃗CkCi+kk2e⃗k2. This change
can make the calculation of ck1 and kk2 locate in the available range and help to re-
duce some calculations. For this consideration, when there is a potential case that
can meet equilibrium, it can check the ek1 and ek2 for whether the vector is located be-
tween the line of CiCk and CjCk. Set the Ci, Cj , Ck, ek1, ek2 in a clockwise direction,
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define the check and replace equation as Equation 5.9, there can get a new disposition
H that can help to calculate the result faster. Based on the Proposition 2, combined
with the updated disposition H, there can get the Proposition 3 [Li et al., 2003].



If Sgn_3( ⃗CiCk × e⃗k1) ∗ Sgn_3( ⃗CjCk × e⃗k1) > 0

e⃗k1 =


⃗CkCi/ |CiCk| If Sgn_3( ⃗CiCk × e⃗k1) > 0 and Sgn_3( ⃗CjCk × e⃗k2) < 0
⃗CiCk/ |CiCk| If Sgn_3( ⃗CiCk × e⃗k1) < 0 and Sgn_3( ⃗CjCk × e⃗k2) > 0

0⃗ Others

If Sgn_3( ⃗CiCk × e⃗k2) ∗ Sgn_3( ⃗CjCk × e⃗k2) > 0

e⃗k2 =


⃗CkCj/ |CjCk| If Sgn_3( ⃗CjCk × e⃗k2) < 0 and Sgn_3( ⃗CiCk × e⃗k1) > 0
⃗CjCk/ |CjCk| If Sgn_3( ⃗CjCk × e⃗k2) > 0 and Sgn_3( ⃗CiCk × e⃗k1) < 0

0⃗ Others
(5.9)

Proposition 3. A necessary and sufficient condition for the three-finger equilibrium
grasp is that the intersection of the three double-side friction cones is not empty while
the disposition H is done.

With the disposition H and the Proposition 3, the remaining challenge is to solve
for the intersection points. When there are intersection points within the friction
cones, it means that the intersection points of two friction cones should be located
inside the third friction cone. Otherwise, there will be no intersection points among
the three friction cones.

Figure 5.4: Twelve intersection points of friction cones

To calculate the interaction points of two friction cones at point Cj and Ck, the
points of Pjkn, n = 1, 2, 3, 4 can be obtained. If a point is locate inside the friction
cone of Ci, there should be Sgn_3( ⃗CiPjkn × e⃗i1) · Sgn_3( ⃗CiPjkn × e⃗i2) <= 0. With the
requirement of not empty and considering the marginal equilibrium, there should
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at least three of these twelve points meet the equation. The points that are inside
corresponding friction cones form a list of points P . When the requirement of not
empty is met, the force-closure status can be achieved. The non-empty zone can be
used for the next step of quality evaluation. The scheme can be seen in Figure 5.4,
where e⃗j1 has been changed according to the disposition H, and the Pjk1 and Pjk2

located in the same position. The algorithm for the friction cone intersection points
judgment is presented in Algorithm 2.

Algorithm 2 Friction cone intersection points judgment
1: function FRICTION CONE INTERSECTION POINTS JUDGMENT FUNCTION(points)
2: for i = 1, 2, 3 do ▷ Check the intersection point location
3: j = (i + 1)%3
4: k = (j + 1)%3
5: for n = 1, 2, 3, 4 do
6: if Sgn_3( ⃗CiPjkn × e⃗i1) · Sgn_3( ⃗CiPjkn × e⃗i2) <= 0 then
7: if Pjkn ̸= points in P then
8: P.append(Pjkn)
9: end if

10: end if
11: end for
12: end for
13: if len(P ) ≥ 3 then
14: return True
15: else
16: return False
17: end if
18: end function

5.1.2 Grasp Plan with Quality Evaluation

In Proposition 3, when a non-parallel grasp plan is force-closure, the three force fric-
tion cones can intersect and form a convex cone. The points inside this cone reach
force-closure. The size of the convex cone is influenced by the friction cone angle and
direction. A larger convex cone allows for a greater range of adjustment in force di-
rection and value, enabling the grasp to adapt to different materials more effectively.

During the grasping process, two main points need to be considered: the margin
on the grasp condition and the margin on the grasp position. The first point is related
to the fact that the contact status and friction parameters may differ from the values
used for calculation, and these differences can have a significant impact on the result.
The second point is related to the error of detection and execution, the grasp position
needs a suitable margin that can guarantee that the actual grasping also meets the
force-closure. All of these factors can be considered as finding a larger available range
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for each contact point force.

In reality, the friction coefficient is often unknown, and the real force may not
entirely follow the Coulomb static friction model. Therefore, the friction coefficient µ

is defined as a constant value in the calculations. Since the area value is positively
correlated with the friction coefficient µ, comparing the margin can still indicate the
quality of the grasp plan.

For the comparison of the margin, there are three parameters related to the inter-
section area that can be used for comparison. Area Ac is the interaction area of the
three contact points. Area An is the area of the interaction convex cone. Radius rn

is the largest inscribed circle radius of the interaction convex cone. The value of Ac

has no relationship with the direction of force, it shows the capability of bearing an
external torque and can also be used for evaluating parallel grasp plan, but it cannot
guarantee force-closure situations. On the other hand, the value of An can indicate
the flexibility of the grasp, a larger area can be more stable, and the value means it
already meets the force-closure requirement. The rn can better represent the stabil-
ity when considering all three points together. The best grasp plan passes through
the center of the circle, ensuring that position and force have the greatest stability
range. The quality evaluation algorithm can be determined by sorting parameters in
the following sequence: rn, An, and Ac. Figure 5.5 illustrates the difference among
these three criteria.

Figure 5.5: Three criteria for grasp quality evaluation

Compare to non-parallel grasping, equilibrium situations with parallel grasping
are easier to calculate and evaluate. The Ac can be used in parallel grasping and
evaluated, the larger area Ac, the greater grasp stability. In the specific situation for
DoraHand, because the distance between finger 1 and finger 2 cannot be changed, the
grasp plan can be evaluated with the distance between two edges and the dimension
of the target object.
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5.2 Grasp Planning with Hand

In addition to evaluating the quality of the grasp plan, another important consider-
ation is the layout of the hand and the range of its joint. All grasp plans must meet
the constraints of hand layout and joint range. The grasp plan, including the hand
joint coordinate, is shown in Figure 5.6.

Figure 5.6: Coordinate definition in grasp plan

In the Table-Top scene, the grasp gesture used is limited. To increase stability,
the front tip is set in a vertical direction, meaning that the joint angles of the two
finger joints are negative to each other. This can help simplify the equation by using
one finger joint angle. The position of the fingertips can be described using the joint
value with Equations 5.10 - 5.12.

x1 = x0 + df1cos(θ0 − 90◦) + lf10sin(θ10)cos(θ0 − θ00)

y1 = y0 + df1sin(θ0 − 90◦) + lf10sin(θ10)sin(θ0 − θ00)

θ1 = θ0 − θ00 − 180◦

(5.10)


x2 = x0 + df2cos(θ0 + 90◦) + lf20sin(θ20)cos(θ0 + θ01)

y2 = y0 + df2sin(θ0 + 90◦) + lf20sin(θ20)sin(θ0 + θ01)

θ2 = θ0 + θ01 − 180◦

(5.11)


x3 = x0 + df3cos(θ0 − 180◦) + lf30sin(θ30)cos(θ0 − 180◦)

y3 = y0 + df3sin(θ0 − 180◦) + lf30sin(θ30)sin(θ0 − 180◦)

θ3 = θ0

(5.12)

In this context, xi, yi, and θi, where i ∈ 1, 2, 3, represent the position parame-
ters of fingertip i in the grasp plan. x0, y0 represent the position of the coordinate
center of the palm, dfi, i ∈ 1, 2, 3, represents the position parameter of the finger
base, lfij , i ∈ 1, 2, 3, j ∈ 0, 1, represents the length of each finger i joint j. θij ,
i ∈ 0, 1, 2, 3, j ∈ 0, 1 represents the value of joint j for each part i. The complete
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position and joint command for this dexterous hand and arm are given by vector
[x0, y0, θ0, θ00, θ01, θ10, θ20, θ30]. The remaining commands are fixed under the condi-
tion of Table-Top grasping and grasping an object with vertical fingertips.

Once the contact point locations Ci, i = 1, 2, 3, are determined, the normal direc-
tion of the contact plane can be obtained. From this, the grasp plan can be determined
in the data format of [xci, yci, θci], where i = 1, 2, 3. The calculation process is divided
into parallel and non-parallel cases. The non-parallel case parameter of the dexter-
ous hand can be obtained using Equation 5.13. When the θ00 = 0◦, and θ01 ̸= 0◦, the
equation need to be changed to calculate the angle on the non-zero angle side first.



θ0 = θc3

θ00 = θ0 − θc1 − 180◦

θ01 = θc2 − θ0 + 180◦

θ10 = arcsin((xc1 − xc3)sin(θ0) − (yc1 − yc3)cos(θ0) − df1
lf10sin(θ00) ), θ00 ̸= 0◦

x0 = xc1 − df1sin(θ0) + lf10sin(θ10)cos(θc1)

y0 = yc1 + df1cos(θ0) + lf10sin(θ10)sin(θc1)

θ20 = arcsin(

√
(xc2 − x0 + df2sin(θ0))2 + (yc2 − y0 − df2cos(θ0))2)

lf20
)

θ30 = arcsin(

√
(xc3 − x0 + df3cos(θ0))2 + (yc3 − y0 + df3sin(θ0))2)

lf30
)

(5.13)

For the parallel grasping case with three fingers, both θ00 and θ01 are equal to
0◦. The joint value of three fingers is set to the same value to achieve symmetrical
grasping. The calculation result of parallel grasp is shown in Equation 5.14.



θ0 = θc3

θ00 = 0◦

θ01 = 0◦

θ10 =

arcsin(

√
(xc1 − xc3 − df10sin(θ0) − df30cos(θ0))2 + (yc1 − yc3 + df10cos(θ0) − df30sin(θ0))2

(lf10 + lf30)2 )

x0 = xc1 − df1sin(θ0) + lf10sin(θ10)cos(θc1)

y0 = yc1 + df1cos(θ0) + lf10sin(θ10)sin(θc1)

θ20 = θ10

θ30 = θ10

(5.14)
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Additionally, it is important to note that the joint limitations for each finger joint
are within [−90◦, 90◦]. These limitations must be considered during grasp planning.
If the grasp plan does not meet these requirements, it cannot be used with the dexter-
ous hand. Furthermore, when the hand moves in 3D space, the coordinates should
be transformed using the transformation matrix. The entire process, from grasp
planning to determining palm position and joint value, can be accomplished using
Algorithm 3.

Algorithm 3 Grasp parameters calculation
1: function GRASP PARAMETERS CALCULATION FUNCTION(points)
2: for i = 1, 2, 3 do
3: j = (i + 1)%3
4: k = (j + 1)%3
5: if θci == θcj and abs(θci − θck) == 180◦ then ▷ Parallel grasping case
6: Joint_value = [x0, y0, θ0, 0◦, 0◦, θ10, θ20, θ30]
7: if Joint_value in the range [−90◦, 90◦] then
8: return Joint_value
9: else

10: return NULL
11: end if
12: else ▷ Non-parallel grasping case
13: Joint_value = [x0, y0, θ0, θ00, θ01, θ10, θ20, θ30]
14: if Joint_value in the range [−90◦, 90◦] then
15: return Joint_value
16: else
17: return NULL
18: end if
19: end if
20: end for
21: end function

5.3 Verification of the Analytic Algorithm

The previous section outlines an analysis and calculation process for obtaining a
grasp plan with a 2D input. An algorithm is necessary to describe and execute the
process which can be divided into three main parts. The first part involves gener-
ating the grasp plan with three points and their corresponding direction. This can
be accomplished in two steps: selecting the contact edges and forming the edge list,
then generating the point using a specific percentage of each edge vector. The second
part involves verifying the result with the dexterous hand by sequentially applying
Algorithm 1 and 2, and calculating the rc, Ac, and An. The third part involves sorting
the grasp plans based on rc, Ac, and An, and selecting the best grasp plan to output
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the joint values. These values can then be obtained using Algorithm 3. The complete
procedure is illustrated in Algorithm 4.

Algorithm 4 Analytic grasp plan
1: function ANALYTIC GRASP PLAN FUNCTION(edges)
2: for i in len(edges) do ▷ Select the contact edges
3: for j in len(edges), j ̸= i do
4: for k in len(edges), k ̸= j ̸= i do
5: Push [i, j, k] into edge_list
6: end for
7: end for
8: end for
9: for edge in edge_list do ▷ Generate grasp points on the edge

10: for i in num do
11: for j in num do
12: for k in num do
13: point[0] = ⃗edge[0] ∗ i/num

14: point[1] = ⃗edge[1] ∗ j/num

15: point[2] = ⃗edge[2] ∗ k/num
16: Push point into point_list
17: end for
18: end for
19: end for
20: end for
21: for point in point_list do ▷ Check force-closure and calculate the parameter
22: if Moment equilibrium judgment(point) then
23: if Friction cone intersection points judgment(point) then
24: Calculate rn, An, Ac with point
25: Push [point, rn, An, Ac] to plan_list
26: end if
27: end if
28: end for
29: Sort plan_list with rn, An, Ac ▷ Sequence grasp plan and output joint value
30: for plan in plan_list do
31: if Grasp parameters calculation(point) then
32: Return plan, Joint_value
33: end if
34: end for
35: end function

To validate the algorithm, a polygon was selected and the DoraHand parameters
were used to generate grasp plans. These plans were then sorted based on their rn

values and the best grasp plan was identified. The friction coefficient is a critical
factor that influences the number of grasp plans. Since it is difficult to determine the
actual coefficient and ensure consistency, it can only be decided using experimental
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data. In real applications, a list can be used to assign different values to the target
using object detection results. In this experiment, a common value of µ = 0.55 was
used for the friction coefficient.

For the verification calculation, a polygon with the points
[(6, 17), (33, 6), (56, 8), (62, 31), (45, 54), (18, 37)] and a unit of 1 mm was used. Three
edges were selected out of the six edges and each edge was divided into num = 10
equal parts. Considering the sequence of three edges, there are a total of 60,000
grasp plans. After the calculation and evaluation, 11,514 plans met the force-closure
requirement. There were 9,446 plans with rn larger than 1 mm, 6,587 plans with rn

larger than 2 mm, and 1,526 plans with rn larger than 5 mm. The largest rn is 9.29
mm.

Figure 5.7 illustrates five sample grasp plans, including plans with rn of 9.29 mm,
5 mm, 2 mm, 1 mm, and the minimum of 0.001 mm. In (a), the grasp plan has a larger
rn, An, and Ac are large and have similar values. For (b)-(d), the An is much smaller
than the Ac. Considering the detection error and actual physical parameters, a po-
sition difference with 2 mm is not enough for a stable grasp. The (e) is an extreme
case close to marginal equilibrium, the intersection zone includes several results but
the actual margin is limited. The experimental results demonstrate the fundamen-
tal capabilities of the grasp planning algorithm and confirm its ability to select the
best grasp plan while considering force-closure and hand layout. Combined with the
vision process algorithm, it can be used for grasp planning.

Figure 5.7: Grasp plans with different rn

5.4 Conclusion

This chapter presents an analytical analysis and algorithm for generating grasp
plans in a Table-Top scene using a three-finger dexterous hand. The results demon-
strate that the analytic analysis can provide effective solutions with sufficient input
parameters and calculations, and can output the optimal grasp plan that meets the
force-closure requirement. The radius rn, area An, and area Ac can be used as eval-
uation criteria and have been verified. However, there are some limitations to the
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analytic solution, including the complexity of the calculations and the potential for
increased complexity with more complex target shapes. Additionally, the visual pro-
cess for acquiring the target item shape may have variance at the edges of the target,
making the analysis more complex and time-consuming in real-world applications.
Inspired by the visual process, a trial with a learning method for generating grasp
plans may provide an easy-to-use solution. The next chapter introduces a visual-
based learning approach for grasp planning.
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Chapter 6

Visual-Based Grasp Planning

Visual data is the fundamental data in grasp tasks. By integrating visual processing
with grasp planning, the planning process can be simplified compared to using visual
processing alone. As a visual processing and data-driven approach, deep learning has
experienced a boom and has been applied in diverse applications. It can effectively
analyze the complex information contained in the image. However, data-driven ap-
proaches for grasp planning often face challenges such as insufficient data and lower
success rates compared to purely visual applications. The diversity of robot grasping
tasks and the difficulty in gathering data have hindered progress in this area.

This chapter presents a visual-based grasp planning approach that combines
widely used deep learning-based visual techniques with analytic approaches to
achieve better results. The target scene remains the same as in the previous sec-
tion: the Table-Top scene. The chapter is divided into four sections. Section 6.1
introduces the basic concept of the approach. Section 6.2 describes the framework
and key components of the model. Section 6.3 shows the performance of the grasp
planning. Section 6.4 provides a summary of this chapter.

6.1 Design Concept

In the field of grasp planning, analytic solutions have been developed for a long time,
and issues with multiple definitions can be resolved using appropriate methods. How-
ever, there remains a gap between theory and practice. The ability to adapt to com-
plex scenes may make the computation complex. A solution that incorporates deep
learning capabilities may help with the sampling process and generate more diverse
plans. As shown in Figure 1.3, the grasp planning work is in the first stage of pre-
grasp manipulation, and can be divided into three steps: 1) gathering data about the
target item; 2) proposing available grasp poses based on existing data; 3) excluding
some solutions and selecting the best one according to the environment. Combined
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with an analytic approach, a deep learning-based grasp planning approach can cover
all three of these steps.

For step 1, precise object detection is crucial in the grasping process. It helps to ac-
curately segment and classify objects and retrieve information from past experiences.
This can be achieved through a neural network trained on relevant data.

For step 2, a grasp plan can be proposed by a model. The model’s ability to gen-
eralize can help it be applied to more complex scenes that are difficult to generate
using traditional methods. An analytic solution can also provide evaluation results
for training the network.

For step 3, the grasp plan should be verified by an analytic solution. This part of
the work involves evaluating the grasp plan with consideration for the limitations of
the hardware and target scene.

By combining both methods, the approach can leverage the strengths of each:
using a DNN to improve sampling efficiency and an analytic method to guarantee
availability, and outputting a grasp plan with available parameters. The advantages
of deep learning can be applied in the field of object detection and grasp plan proposal,
similar to object detection and key point detection in the visual area. The network
can help simplify the environment for the analytic approach. The analytic solution
can be applied in a simplified environment and used for evaluation, providing a more
precise and available result for the grasping task.

6.2 Deep Learning Based Grasp Planning

Building on the concepts introduced in the previous section, this section will detail
the design of the deep learning-based grasp planning approach. There section can
be introduced with four subsections: 6.2.1 key parameters of grasp plan, 6.2.2 grasp
plan framework, and 6.2.3 training data and training details.

6.2.1 Key Parameters of Grasp Plan

Several key parameters need to be involved in a grasp plan for a robotic end-effector,
including position, and control parameters. For some common deep learning-based
work, the output grasp plan is defined as shown in Figure 6.1 (a) and includes five
parameters: x, y, width, height, and θ. However, for the requirements of a dexterous
hand, these definitions can be further optimized.

In most common grasping cases, the end-effector is a parallel gripper that can-
not change the height parameter corresponding to the distance between the fingers
on one side. This only works for a few dexterous hands with a layout like Robotiq
three-finger hand. The width parameter aims to guide the opening distance of the
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end-effector. However, according to actual results, this parameter usually does not
function in most cases. The usual strategy is to open with the largest range or a
suitable distance according to obstacle information. The θ is usually generated with
some sparse angles, and choosing too many angles may affect the efficiency. Typically,
the angle step is set to a value like 10◦. With these considerations, the grasp box is
limited and cannot provide enough grasp plan information for a dexterous hand. A
new grasp plan presentation is necessary for dexterous hands.

Figure 6.1: Grasp plan with grasp box and contact points

As analyzed in the analytic section, the presentation of contact points can cover
the information required by a dexterous hand. Using contact points can help make
the plan more flexible. Therefore, the grasp plan should include the position and
direction of contact points. A grasp plan with n fingers can be presented as (xi, yi, θi),
i = 1, 2, · · · , n. Figure 6.1 (b) shows a grasp plan using contact points. Considering
the output, the location (xi, yi) of each contact point is output directly by the neural
network, and the direction θi of each contact point is determined by the normal vector
of the contact surface. Then the grasp plan consists of two parts: the contact points
by the neural network, and the normal vector direction of each contact point. With
these considerations, the output of the framework is decided.

6.2.2 Grasp Plan Framework

As a visual-based approach that leverages the capabilities of the DNN, the object
detection and segmentation component should be included within the framework.
Compared to an end-to-end solution, separating the framework into several parts can
provide more information and explain the work process. It can also better integrate
with the analytic approach. As the key parameters required by the grasp plan, three
main components are necessary: object detection and segmentation, grasp point gen-
eration, and grasp plan evaluation. The structure of the network is illustrated in
Figure 6.2.

The object detection and segmentation component takes the target scene as in-
put and outputs the detection and segmentation results for the next component.
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Figure 6.2: Framework of visual-based grasp planning

The resulting mask is then used as input for the next module, helping to remove
the background and ensure that grasp planning focuses on the target object. The
mask of the target object is also used in the grasp plan evaluation component,
where it serves as the polygon for force-closure calculation. The object detection
and segmentation module takes advantage of Mask R-CNN [He et al., 2017], train-
ing the network based on a pre-trained model and referring to the config file of
e2e_mask_rcnn_r_50_fpn_1x.yaml [Massa and Girshick, 2018]. The output dimen-
sion is changed with the object types in the experiment.

The grasp point generation component takes the mask as input and outputs grasp
points, which are the contact points used for the grasp plan. The number of con-
tact points is decided by the number of fingers. These points are fed into the grasp
quality evaluation component. The model is built based on a Visual Geometry Group
(VGG)16 model [Simonyan and Zisserman, 2014] and takes reference from facial key-
point detection work [Alex, 2021].

Compared to a typical keypoint detection network, the main difference is that
for an object, there are unlimited numbers of grasp solutions, whereas facial key-
point only include one ground truth. This key difference must be described by the
loss function, meaning that the loss function that calculates the distance between
predicted results and label results cannot meet all requirements. The loss function
should introduce the grasp quality evaluation component to check whether the grasp
plan is suitable for a dexterous hand from several perspectives and score it, including
four parts: 1) point distance; 2) point location; 3) grasp stability; 4) grasp dimension.

The point distance should guarantee these three points has enough distance that
can be regarded as a three finger grasp. The point location means the point should be
on the edge of the target object. The grasp stability can be evaluated by an analytic
solution, where the point direction is calculated from the normal direction of the
contact point, and stability is determined according to force-closure criteria. The
grasp dimension is used to ensure that the grasp plan is suitable for a dexterous
hand and should be designed with different types of end-effectors. These four parts
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will be used in the loss function to help train the grasp point generation network.
All four of these points are considered at four levels in the loss function to improve
training results.

The grasp plan evaluation part evaluates grasp points and converts the avail-
able ones into a grasp plan that meets the requirements of a dexterous hand. This
component also needs to consider the other parameters, including the Table-Top as-
sumptions and others. When a grasp plan output by the network does not meet the
requirements, it will translate or rotate the mask and input it into the grasp point
generation module again until a plan that passes the criteria is found. With this
module, it can guarantee that the grasp plan for the robot is available and can suc-
cessfully grasp the target.

6.2.3 Training Data and Training Details

As introduced in the grasp plan framework, there are two networks that require
training samples. There are two types of samples: the mask of the target object, and
the grasp points of the target object.

Figure 6.3 (a) shows the training sample for Mask R-CNN. The base learning rate
was set to 0.005 and with a weight decay of 0.0001. The number of images per batch
was set to 2 and the training steps were set to 180,000 steps. The segmentation result
on the validation set shows good performance on segmentation. The segmentation
result is shown in Figure 6.3 (b).

Figure 6.3: Training sample and test result of the object segmentation model

Figure 6.4 (a) shows the training sample for the grasp point generation model,
and Figure 6.4 (b) shows the grasp points result. The base learning rate was set to
0.0001 and the training steps were set to 15,000 steps. The number of input data per
batch was set to 1. The combination of distance loss and analytic loss is important in
this framework. The weight of distance loss represents the importance of the sample
data, while the weight of analytic loss represents the importance of analytic anal-
ysis. To obtain an optimized loss function, a comparison with these two ratios was
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performed, with the ratio range changed from 0% to 100%, and finally obtaining the
best result with 50% L1 loss and 50% analytic loss. The loss value for each criterion
was defined through the training process. The comparison between 100% L1 loss and
the combined solution can be seen in Table 6.1. The success rates are compared in
both the training set and the test set and are evaluated with four analytic criteria.
The function of the training sample guarantees basic performance, while analytic
loss improves upon it.

Figure 6.4: Training sample and test result of grasp point generation model

Table 6.1: Grasp test statics

Type

Training set Test set

Point Point Grasp Grasp Point Point Grasp Grasp

distance location stability dimension distance location stability dimension

L1 loss 90% 32% 30% 24% 100% 81% 76% 67%

Combination 95% 33% 30% 26% 100% 86% 81% 72%

Figure 6.5: Grasp planning process

The entire grasp planning process can be seen in Figure 6.5. The steps include
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inputting visual data, segmenting it with Mask R-CNN, obtaining grasp points, and
finally obtaining a grasp plan. The training machine has an Intel i9-9900KF CPU
and a GTX 1080 Ti GPU. The framework is built with PyTorch 1.4.0, CUDA 10.0.130,
and Python 3.6.9.

6.3 Performance Evaluation

The main objective of the evaluation process is to verify the real-world capability of
the grasp planner. An experiment was conducted to verify the grasp result with a
real dexterous hand.

For the objects in the experiment, many different types are present in a Table-
Top scene. According to the shape and dimensions of the DoraHand, twelve objects
with certain characteristics were selected from the YCB object set and some common
shape objects. The dimension range is 50 mm - 360 mm, and the shapes include cube,
cuboid, triangle, arch, bottle, and special shapes. These objects can be seen in Figure
6.6. The model was trained with all of these objects.

Figure 6.6: Twelve types of objects for grasp planning test

Table 6.2: Grasp test success rate

Total
Item 1 Item 2 Item 3 Item 4 Item 5 Item 6

80% 100% 100% 100% 90% 100%

93.3%
Item 7 Item 8 Item 9 Item 10 Item 11 Item 12

100% 90% 90% 80% 100% 90%

There grasp success rate criteria were used for this learning approach. It is the
rate at which the grasp plan can be executed and successfully grasp the item. The
grasp test was conducted 120 times, with 10 times for each item. These two criteria
are presented in Table 6.2. The total success rate is 93.3%, and there are some failure
grasp plans. Figure 6.7 shows three typical failure cases. In (a), the distance between
the points is too close, and the force direction of point two has a wrong value. This is
caused by the jagged edge of the mask causing the wrong normal vector direction. In
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(b), point two is inside the target and has the wrong direction. This is caused by an
error in the function for checking whether it is on the edge. In (c), the item cannot
be grasped with a two finger grasp and the direction has errors to be executed. The
force-closure can be achieved with this grasp but cannot be completed by hand. These
errors show that, the object detection and segmentation, and the grasp plan evalua-
tion part need to be improved with higher precision, and there are still missing some
criteria for the grasping capability of the hand. For further development, evaluating
the grasp plan in a simulation environment with kinetic parameters may help to get
a more comprehensive evaluation. Some successful grasp cases can be seen in Figure
6.8.

Figure 6.7: Some failed grasp plans

Figure 6.8: Some typical grasps with DoraHand
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6.4 Conclusion

The visual-based grasp planning approach defined a grasp plan representation with
contact points. The training result performed well in the experiment and demon-
strated grasp plans with a good success rate. With the input of visual data, the
combination of analytic and data-driven approaches can provide a solution for grasp
plan cases in a Table-Top scene. With the grasp plan used in this work, a dexterous
hand can be used in a grasp planning task and able to take advantage of multiple
DOF. This work indicates the importance of evaluation work with more detailed pa-
rameters, and more training data can help to get better results. The following part
will focus on tactile-based stable grasping, and the next chapter will mainly introduce
work related to the dataset for stable grasping.
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Part IV

Stable Grasping
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Chapter 7

Visual-Tactile Dataset

Stable grasping is a crucial aspect of robotic manipulation, and evaluating grasp
stability is essential for achieving it. To accurately evaluate grasp stability, data
related to the grasping status is necessary. The features of the grasp status need
to be extracted from the data and will directly influence the evaluation approach.
Building upon the hardware designed in the previous chapter, this chapter focuses
on constructing an open-source dataset that includes visual, tactile, and other data
that can be used to evaluate grasp stability. This chapter is divided into four sections:
Section 7.1 introduces the design of the dataset and related experiments. Section 7.2
presents the detailed process. Section 7.3 provides an analysis of the dataset. Section
7.4 summarizes this chapter.

7.1 Dataset and Experiment Design

Before creating a suitable dataset, it is necessary to determine its scope and design
the experiment. This section is divided into two subsections: 7.1.1 dataset definition,
and 7.1.2 experiment design.

7.1.1 Dataset Definition

The first step in developing a dataset for robotic manipulation is to define the data
that needs to be included. This dataset is intended to evaluate grasp stability and
provide comprehensive data to help analyze the entire process. Ideally, it should col-
lect sufficient data to reconstruct the environment and recover the grasping process.

To reconstruct the target environment, a fundamental element is a 3D space. The
3D models of the end-effector, robot arm, and target object can be obtained from their
design models or object set. The RGB and depth visual sensors should be used to
capture the entire grasping process. These data provide the basic information for the
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visual reconstruction of the grasping process.
In the visual data, the end-effector may be occluded during grasping. Therefore,

joint data of each joint must be recorded to recover the grasping process. Additionally,
tactile data is a crucial component, and the end-effector should provide tactile data
throughout the entire process and meet the requirements for recording the tactile
data between the end-effector and the object. Based on these considerations, the
dataset should include the following data:

1. The basic experimental conditions.

2. RGB and depth images and videos of the entire grasping process.

3. Joint values of the joints in the dexterous hand.

4. Tactile data from the dexterous hand.

7.1.2 Experiment Design

With the requirements of a dataset for robotic manipulation and to facilitate the
grasp stability evaluation, a common grasping scenario on a table is selected for the
experiment. The experiment is designed with some hardware including an Eagle
Shoal dexterous hand, two RealSense SR300 cameras, and a UR5 robot arm. These
components are arranged around a 600 mm x 600 mm platform, as shown in Figure
7.1. A layer of sponge is placed on top of the platform to reduce the effects of react-
ing forces from the surface, and a soft flannel sheet covers the platform to prevent
interference from light reflection. The UR robot arm is positioned at the back of the
platform with the Eagle Shoal attached to it. One SR300 camera is placed on the op-
posite side of the UR arm to capture the front view of the grasping process, while the
other SR300 camera is located to the left of the platform to record the lateral view.

The Eagle Shoal is a dexterous hand designed with a two-part finger and the
palm layout 2, and is shown in Figure 3.5. It features three fully-actuated fingers
and one fully-actuated palm, providing a total of eight DOF. The hand is equipped
with seven tactile sensor modules, including a total of sixteen film sensor units, and
their distribution is similar to that of the DoraHand. These sensors measure the
normal force applied to them in mN. The hand can transmit sensor data at a rate of
40 Hz via a CAN bus. Figure 7.2 shows the positions of the film sensors and position
sensors. The joint sequence is the same as that in the position data file. The red
number on the fingers and palm represents the film sensor positions and numbers in
the tactile data file. Table 7.1 displays the main parameters of the robot hand.

Two SR300 RGBD cameras were used to record the grasping process from two
different vertical angles. However, since the cameras use the same structured light to
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Figure 7.1: Experimental setup for data collection

Figure 7.2: The main structure of Eagle Shoal

Table 7.1: Basic parameters of Eagle Shoal
Dimension L-W-H Weight Joint number & range Joint speed & precision

128mm-100mm-185mm 790 g 8 / ± 90◦ 72°/s / ± 0.3◦

Film sensor number & range Input power Communication type & rate Encompassing grip payload

16 / 10 N 12 V / 2 A CAN / 40 Hz 2 kg
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obtain depth data, interference between the two cameras can occur. To prevent this,
an opaque material was used to block the lateral camera’s structured light projector
during the experiment. Only the front camera’s depth video and both cameras’ RGB
videos were recorded. The resolution and frequency of the RGB and Depth videos
were set to 640 x 480 and 18 Hz, respectively.

During the experiment, point clouds were used to segment the target object and
calculate its dimensions and centroid for grasping. The grasp plan in this experiment
was simple: the centroid was selected as the grasp center, and applied in different
grasping approaches from the side or top. The strategy used in the grasping process
involved using position control to reach the pre-grasp pose and achieving grasping
with current control. The recording part of the experiment was automatically trig-
gered by the task scheduler. The main program controlled the experiment procedure,
sent the control commands to the UR5 arm via socket, and sent control commands to
the Eagle Shoal via CAN bus. The software environment used was Ubuntu 14.04 and
ROS Indigo, which consists of three parts: visual, data recording, and task schedul-
ing.

To meet the requirements of the experiment, objects were carefully selected based
on several criteria: 1) grasp dimensions within a range of 150 mm; 2) different shapes
such as cylinders, rectangles, and special shapes; 3) different surface materials; 4)
ability to contain different payloads. Ten objects were selected from the YCB object
set and daily life objects based on these criteria. These objects are displayed in Figure
7.3.

Figure 7.3: Selected objects for visual-tactile dataset
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7.2 Experiment and Data Format

With the defined scope of the dataset, the dataset can be created using the hardware
and experiment. This section includes two subsections: 7.2.1 experiment, and 7.2.2
data format.

7.2.1 Experiment

Various factors such as shape, size, weight, and grasping gestures need to be consid-
ered to construct a comprehensive dataset. For the selected set of objects, different
grasping gestures were defined by grasping from three directions: back, right, and
top. And grasping status is changed by adjusting the object weight, grasp force, and
grasp position. With these conditions in place, the experimental process was carried
out with a specific procedure, as illustrated in Figure 7.4.

Figure 7.4: Grasping experiment pipeline

1. Place the object at the center of the table and use the front camera to capture
point cloud data. Filter, segment, and locate the target object’s position using
the point cloud.

2. Add a random error within ± 5 mm to the object’s half-height center position to
generate a grasp plan and control the robot arm to approach it.

3. Based on the object’s dimensions, control the robot hand to assume a pre-grasp
gesture using position loop mode, then switch to current loop mode to grasp
with a predefined current.

4. Wait for 1 second to ensure stability, then lift the object with the arm at a speed
of 20 mm/s.
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5. After the robot arm has lifted to a certain position, judge the grasp status based
on changes in each finger’s position. If the difference in finger joint angle ex-
ceeds a threshold during lifting, it indicates that the object was dropped during
the process and this grasp is labeled as a failure; otherwise, it is labeled as a
success.

6. If the label is a failure, open the hand directly and prepare for the next grasp.
If the label is a success, for light objects, place them down and open the hand;
for heavy or easily slipped objects, open the hand and drop them directly.

7. Place the object back to the center of the table, control the robot arm to return
to its initial position, and wait for the next loop.

During the experiment, it was observed that the soft surface of objects and the
structure of the tactile sensor made it challenging for the fingers to obtain significant
sensor values during grasping. To ensure noticeable value changes, grasping gestures
were designed to involve the use of only three fingertips. Additionally, in cases such
as grasping cylinders using a power grasp pose, it provided reliable sensor feedback,
eliminating the need for tip grasping poses.

7.2.2 Data Format

After collecting data from the sensors, several processing steps were performed. The
data was organized and saved into a folder path with a specific name format, such as
"object type/current value_object weight/grasp direction/attempt sequence/filename".
Within the folder, three types of data were stored: ".txt" files containing text data like
force and label; ".jpg" files containing image data captured at different directions and
time steps; ".mp4" files containing video data that recorded the entire test process.
In the case of depth images in CV_16UC1 format and videos in 8-bit and 3-channel
format, for the depth video, the high 8-bit data was saved in the red channel, the low
8-bit data in the blue channel, and to enhance video clarity, the middle 8-bit data was
added to the green channel.

A total of nearly 3,000 test rounds were conducted, resulting in a dataset compris-
ing 2,550 sets of valid visual and tactile data. The dataset can be accessed on GitHub
[Wang, 2018] for further exploration and analysis.

7.3 Dataset Introduction

After conducting the experiment and performing basic processing, the dataset was
completed and made available as open-source. This section introduces the compo-
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sition of the dataset and presents some detailed data. It includes two subsections:
7.3.1 statistic of the dataset, and 7.3.2 raw data.

7.3.1 Statistic of the Dataset

The dataset consists of data with various conditions, including weights, forces, di-
rections, and object types. It can be divided into two sets: Empty and Non-empty.
The main difference between these two sets is whether the objects are empty or non-
empty. In the test of empty cases, all of these grasps were successful due to the low
weight of the objects. In the test of non-empty cases, include both successful and
failed attempts. Each test contains four kinds of data, and the data statistics are
shown in Table 7.2.

1. T1 represents the tactile sequence and label document data. The tactile data
consists of 16 channels of data from the tactile sensors, recorded over 400 time
steps for a duration of 24 seconds. The label document records the time steps
at which different commands are sent, and the final success or failure label for
each grasp attempt.

2. T2 represents the position sequence data. The position sequence data consists
of 8 joint positions, recorded over 400 time steps for a duration of 24 seconds.

3. I represents the image data. The image data comprises four images for each
grasp attempt, with two time steps captured from each of the two cameras.

4. V represents the video data. The video data includes two RGB videos and one
Depth video for each grasp attempt.

Table 7.2: Dataset statistics
Part Type Weight Current/mA Direction Trail Data type Total

Empty 10 objects empty 50/100/150 back/right/top 10 times T1/I 900 sets

Non-empty 10 objects half/full 50/100/150 back/right/top 10 times T1/T2/I/V 1650 sets

Figure 7.5 presents the number of successful and failed grasps for each object in
the dataset. The overall success rate for the 2,550 grasp attempts is 66.27%. Based
on the dataset statistics, objects with a cylindrical shape, such as Cola, Crisp, and
Tomato, are relatively easier to grasp. Additionally, surface deformation plays a sig-
nificant role in the grasping process, as objects with less deformation, such as Cheez
and Sugar, exhibit a higher success rate. For some objects like Cheez and Water, the
number of test attempts was relatively small, and part of the test was not performed
to protect the hand, because the weight of the object in the half or full state was too
heavy to grasp in some directions.
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Figure 7.5: Success and failure data in the dataset

7.3.2 Raw Data

This subsection provides an introduction to the dataset by showcasing examples of
different types of raw data. Since different gestures have a notable impact on tactile
data, there is a comparison to illustrate and explain the variations in the data. Figure
7.6 and Figure 7.7 display two sets of tactile data along with corresponding time
labels. In both figures, the horizontal axis represents time in s, while the vertical
axis represents the tactile value in mN. The acquisition rate for tactile data is 16.7
Hz.

Figure 7.6 shows one set of data belonging to the Empty set. The path of the data
is Cola/150_26/right/8/tactile.txt, which provides specific information about the ob-
ject type (Cola), current value (150 mA), object weight (26 g), grasp direction (right),
attempt sequence (8th), and data type (tactile sequence data). Three time steps are
labeled with the corresponding label document. These three vertical lines in the
figure represent the time pf sending the position loop, current loop, and lifting com-
mands respectively. Obvious changes in the tactile values can be observed around
each labeled step. After several steps of the green position loop line, the hand grad-
ually makes contact with the object, resulting in an increase in tactile values. The
object may shift position, leading to corresponding changes in the tactile values, as
indicated by sensor 10. Following the yellow current loop line, the hand switches to
current loop mode, resulting in a further increase in tactile values before reaching
a stable status. Once the red lifting line is reached, tactile values begin to change
again, with some sensors such as sensor 9 exhibiting rapid changes. After several
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Figure 7.6: Visualization of raw tactile data Cola/150_26/right/8/tactile.txt

seconds, the arm moves down and the hand opens, causing a sudden drop in tactile
values. If part of the object touches the plane earlier during the object moving down,
the tactile data increase when there is a touch and drop to zero when fully opened,
like the changes in sensor 2. For some heavy objects with unstable state, the hand is
set to open directly at the highest position, and the tactile data will drop earlier.

Figure 7.7 shows one set of data belonging to the Non-empty set. The path of
the data is Scrub/150_866/top/5/tactile.txt, which provides specific information about
the object type (Scrub), grasping current value (150 mA), object weight (866 g), grasp
direction (top), attempt sequence (5th), and data type (tactile sequence data). It is
a failed attempt where an object was dropped during the lifting process. Unlike the
label document in the empty set, the red line in Figure 7.7 represents the time when
the arm reached the highest position. This label can help to find the time range of
grasping faster. A significant change in tactile values can be observed in sensor 3
at around 7 s, between the yellow and red lines. This change indicates the point at
which the object began to drop. The tactile values recorded after the red line are
a result of the current loop grasping with no object present, causing the sensors to
make contact with the hand itself.

The tactile data in these two figures clearly highlights the significant changes in
tactile data at each key time step, and show some differences between the Empty
and Non-empty data. These changes and difference serve as crucial indicators for
understanding and analyzing the grasping process.
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Figure 7.7: Visualization of raw tactile data Scrub/150_866/top/5/tactile.txt

Figure 7.8: Visualization of position data Scrub/150_866/top/5/pos.txt
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In addition to tactile data, analyzing joint positions in the robot hand pro-
vides valuable insights into the grasp status. Figure 7.8 illustrates 8 channels of
joint position values over a duration of 24 seconds. The data shown in the figure,
Scrub/150_866/top/5/pos.txt, corresponds to the same attempt as Figure 7.7, where
"pos" represents the hand joint position data. Upon observing the position data, it
can be noted that after the position loop line, each joint angle changes rapidly and
stabilizes after several steps. With the transition to the current loop mode, joints 1
and 3 exhibit small position changes before achieving a new force balance. During
the interval between the current loop and the highest position, around 7 s, the object
drops and the hand gradually closes with the current loop, corresponding to the force
change observed in Figure 7.7. By analyzing the joint position data, one can easily
identify the status of the robot hand at each time step, which can greatly assist in
determining the grasp status.

The image data contains four images from two different directions at two different
time steps: two at the start time of the test, and the other two at the time when
the current loop command was sent. These images display the relative positional
relationship between the hand and the object, with a sample image shown in Figure
7.9.

Figure 7.9: Image captured by two cameras Scrub/150_866/top/5/*.jpg

Furthermore, the video includes two RGB videos and one Depth video. These
videos can be utilized to reconstruct the scene with a model of the dexterous hand,
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robot arm, and objects. Part of the video data is shown in Figure 7.10, where rows
one to three are video screenshots of left, front, and front depth videos, respectively.

Figure 7.10: Several frames in video Scrub/150_866/top/5/*.mp4

The combination of tactile, label, position, image, and video data offers a compre-
hensive understanding of the grasping process and contributes to a more accurate
evaluation of the overall grasp performance. With the various types of data, there
are many potential applications. For instance, tactile data can classify objects, vi-
sual data instruct the robot on grasping techniques and maintaining stable grasps,
the combination of tactile and position data can analyze micro movements during
grasp, and the combination of tactile and visual data can evaluate grasp stability.
This dataset enables researchers to leverage the strengths of different data types to
achieve tasks related to robotic manipulation.

7.4 Conclusion

This chapter presents the construction and introduction of the visual-tactile dataset
created using the Eagle Shoal dexterous hand. With a detailed explanation of the
creation process and composition of the dataset, users can gain a comprehensive un-
derstanding of its contents. This dataset includes 2,550 sets of data that may be
useful for stable grasping and tactile sensing applications. Based on the statistics,
the dataset shows some key factors during the grasping process and demonstrates its
potential usage for stable grasping. While it is not a perfect dataset that provides all
information during the grasping process, it is a good trial that combines the visual
and tactile data and focuses on the grasping process. The next chapter focuses on the
stable grasping based on this dataset.
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Chapter 8

Tactile-Based Stable Grasping

As robotics technology advances and expands into new applications, the ability to
grasp objects has become increasingly important. This is particularly true in emerg-
ing fields such as logistics, where robots need to handle a wide variety of items. To
ensure stable grasping of various objects, robots must be equipped with grasp stabil-
ity evaluation capabilities, allowing them to assess and adjust their grasp as needed
to ensure it is appropriate for the object.

This chapter will introduce the stable grasping function based on tactile data,
using the dataset presented in the previous chapter. The chapter is divided into five
sections. Section 8.1 defines the problem to be solved. Section 8.2 introduces the
approach for achieving stable grasping. Section 8.3 introduces the training details
and defines the experiments. Section 8.4 demonstrates the capabilities of the stable
grasping function. Section 8.5 provides a summary of this chapter.

8.1 Problem Description

Evaluating the grasp status and responding to it is critical for stable grasping, and
the problem is to find the evaluation criteria. Unstable grasps are caused by un-
balanced force or torque, resulting in vibration or slip. Slip is an important feature
of unstable grasping and can be indicated by a slip signal when relative motion oc-
curs parallel to the contact surface. Referring to the work on slip detection can help
evaluate grasp stability. By analyzing research on unstable grasping and slip, grasp
stability can be evaluated on three levels [Chen et al., 2018].

1. Vibration.

2. Vibration and incipient slip.

3. Vibration and gross slip.

117



118 Chapter 8. Tactile-Based Stable Grasping

Vibration is the initial signal that occurs in all three phases and can be detected
by a tactile sensor. To find a faster approach to detect unstable state, it is neces-
sary to confirm the difference that happened between the force and deformation.
This relationship is shown in Equation 8.1, which describes the relationship be-
tween the deformation of a thin, homogeneous plate and the corresponding forces
[Stachowsky et al., 2016]. In the equation, u(x, y) represents the deformation of the
central plane of the plate, f(x, y) represents the distribution of transverse load along
the plate, and Q is the parameter related to Young’s modulus, Poisson ratio, and plate
dimensions. It is clear that force is highly related to the deformation of the surface
u(x, y). Since the change of force is related to the second and fourth derivatives of the
deformation, the change in force f(x, y) value is faster than other values.

∂4u(x, y)
∂x4 + 2∂2u(x, y)

∂x2
∂2u(x, y)

∂y2 + ∂4u(x, y)
∂y4 = −f(x, y)

Q
(8.1)

As shown in the equation, if tactile sensors can directly measure force changes,
they can respond faster than other sensors when there is vibration. They can im-
mediately detect unstable state based on changed values [Van Wyk and Falco, 2018].
Although some visual-based sensors can assess grasp stability through deformation
changes [Dong et al., 2017], these changes can only be detected after a significant
change in force or displacement occurs.

Based on the tactile sensor data in the built visual-tactile dataset, an algorithm
will be developed to evaluate robotic grasp stability and achieve stable grasping using
these data. Since the tactile data is time series data, and the features for an unstable
state are similar across different sensors, it is possible to develop a model that can
generalize to other types of time series data. To detect unstable state earlier and
maintain stable grasping, a grasp stability prediction function should be developed.
Tactile-based stable grasping can be achieved with loop control of feedback from the
grasp stability prediction component.

8.2 Stable Grasping Function

For a stable grasping function that requires grasp stability prediction and general-
ization, a prediction method based on deep learning is developed, and the function
can be achieved with loop control. This section is divided into three subsections: 8.2.1
grasp stability features, 8.2.2 grasp stability prediction framework, and 8.2.3 stable
grasping algorithm.
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8.2.1 Grasp Stability Features

To evaluate grasp stability, it is important to identify features of a grasp, including
both stable and unstable grasp. Since force guarantees stable grasping, changes in
force value are a primary feature. However, when slippage occurs with low frequency
and sampling is also at low frequency, the force-closure check may still be achieved
at all sampling times. Therefore, changes in force values over a certain period are
necessary for evaluating grasp stability.

Following the idea of evaluating stability based on force changes over a certain
period, features in the frequency domain can also be helpful. The Fourier transform
of force data is shown in Equation 8.2 [Van Wyk and Falco, 2018]. While changes in
the joint force f(t) may be similar, component forces F (w) at different frequencies can
help to show significant differences when the grasp becomes unstable.

F (w) =
∫ ∞

−∞
f(t)e−jwt dt (8.2)

Figure 8.1: Force data Short-Time Fourier Transform (STFT) result

Figure 8.1 shows a set of force data and the corresponding STFT results. The
red line in Figure 8.1 shows the change in force, while the block in the background
represents the corresponding frequency composition. These significant changes in
time and frequency can be detected and classified. From the frequency components
in Figure 8.1, it can be concluded that the grasp status can be distinguished using
frequencies of 3 - 5Hz. Higher frequency resolution and a larger range can be even
more helpful.

Through these analyses, features of grasp stability can be detected in both time
and frequency domains. A grasp stability prediction solution can predict and inte-
grate these two features for reliable and fast results.
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8.2.2 Grasp Stability Prediction Framework

To maintain stable grasping, it is better to predict the status of the grasp earlier.
The work in this subsection is defined as a grasp stability prediction framework. To
account for changes in force values over a certain period, a model is needed that can
incorporate the influence of certain steps.

LSTM is a special type of Recurrent Neural Network (RNN) that can learn long-
term dependencies [Hochreiter and Schmidhuber, 1997, Sak et al., 2014]. The basic
module structure is shown in Figure 8.2 [Christopher, 2015]. This type of network
has been applied in speech recognition, translation, and other cases that require
processing time series data [Graves et al., 2013, Sutskever et al., 2014]. Researchers
have also applied LSTM for slip detection, such as Convolutional LSTM (ConvL-
STM), which performs well in highly dense sensor arrangements [S. et al., 2019], an-
other study connected the output of a Convolutional Neural Network (CNN) with
LSTM to process visual-tactile data and demonstrated good slip detection results
[Li et al., 2018]. Applications with new features can be explored to enhance the grasp
stability prediction performance based on this strong foundation of LSTM methods.

Figure 8.2: Basic unit of LSTM

The input of a basic unit of LSTM is shown in Figure 8.2, includes the data Xt,
Ct−1, and ht−1. Xt is the data input at time step t, Ct−1 is the cell state at time step
t − 1, and ht−1 is the output of the cell at time step t − 1. Each cell combines the
current input and previous output, which realizes the capability to learn long-term
dependencies. The grasp stability prediction network can take the tactile sensor data
as the input and output the grasp stability prediction result.

Due to the features in the frequency domain, using STFT to extract features and
input them into the network is worth trying. With a suitable candidate model, a
duration of force and STFT data are input into an LSTM to extract features and
output prediction results. It is expected that the combination of STFT and LSTM will
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produce better results. The structure of the LSTM model is outlined in Figure 8.3,
with inputs from xt1 to xtn representing several frames. After comparing different
output methods, the last step output is taken as the prediction result.

Figure 8.3: Framework of LSTM model

To combine STFT and LSTM, a variety of experiments have been performed. Fig-
ure 8.4 presents the designed framework for grasp stability prediction. The input is
force data, followed by a feature extractor that includes STFT and LSTM components.
These are combined in a subsequent Fully Connected (FC) layer, and the output is
used as the prediction result.

Figure 8.4: The basic structure of the network

8.2.3 Stable Grasping Algorithm

As the stable grasping function aims to ensure the stable status of the grasp, it is
necessary to monitor the status during the entire grasping process. Based on the
grasp stability prediction framework, the stable grasping function can be achieved
with a loop control with the output status. Due to the presence of several DOF in
an end-effector and the fact that grasp status is highly dependent on contact status,
there are some key factors that need to be considered in this algorithm: 1) Grasp
stability status; 2) Grasp plan; 3) Control type. Algorithm 5 shows the basic solution
for stable grasping, and the specific loop control should be combined with the specific
case.
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Algorithm 5 Stable grasping
1: function STABLE GRASPING FUNCTION(forces)
2: while Grasping do
3: Status = Grasp stability prediction(forces)
4: if Status == unstable then
5: for finger in grasp_plan do ▷ Update the control command
6: Check contact points and control type
7: Change values in control_command
8: end for
9: Send control_command

10: end if
11: end while
12: end function

8.3 Training Details and Experiment Setup

This section aims to refine and train the model according to the framework and de-
sign experiments for verification on the DoraHand and other time series data. To
achieve these goals, this section is organized into five subsections: 8.3.1 common con-
figuration, 8.3.2 experiment setup for LSTM, 8.3.3 experiment setup for combined
models, 8.3.4 experiment setup for stable grasping, and 8.3.5 experiment setup for
generalizaion ability.

8.3.1 Common Configuration

With analysis and testing on the data, common configurations can be set, including
the input data and some parameters for LSTM and STFT.

The label in the datasets only represents the grasping result, so the unstable
state must be manually labeled. Especially for the purpose of prediction, the label
should be given earlier. Based on the procedure of the robotic hand grasping, lifting,
and releasing the item, it is clear that the item will drop when the force is at 0.
Since an unstable state must occur before a drop, the unstable state is labeled with
the assumption that the grasp will become unstable during 20 time steps and 1.2
seconds before the drop. If the probabilities of the unstable and stable states are the
same in the 20 time steps, the actual success rate of labeling should be lower than
93.75%, which is calculated with 160 steps in total.

The LSTM model was built using Tensorflow [Abadi et al., 2016]. After some ini-
tial tests, a basic LSTM core with 128 units was chosen. Grasp stability prediction
was treated as a two-class classification problem and an output with softmax was
produced. The model was initialized with zeros and cross-entropy was used as the
loss function. Hyper-parameters were optimized based on a comparison of output re-
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sults. The learning rate, which is important in the training process, was set to 0.0006
using the Adam optimizer during training [Kingma and Ba, 2014].

For the STFT, the input force data frequency is 16.7 Hz, and the target slipping
frequency is 3-5 Hz. The STFT is set with a 20 time steps window size and uses a
rectangular window. The window is shifted with every time step, resulting in a data
size of n steps with 10 frequency bands. Because the time from the grasping phase to
the opening phase is shorter than 9 seconds, a batch size of 160 is chosen to guarantee
enough effective data.

8.3.2 Experiment Setup for LSTM

Grasp stability prediction is considered a classification problem. The performance
of the LSTM classifier is compared with other traditional classifiers, such as Naive
Bayes (NB) [John and Langley, 2013], K-Nearest Neighbors (KNN) [Altman, 1992],
and Support Vector Machine (SVM) [Hearst et al., 1998], using the sixteen channels
of data in the dataset as input, and set the percentages of the train set and the test
set to 80% and 20%, respectively. The KNN classifier was set with k = 3, and the
SVM kernel was chosen with Radial Basis Function (RBF).

Compared to the Fscore used in some classification problems [Veiga et al., 2015],
the prediction result of the entire grasping process and whether the output has the
function of prediction are more important. Two criteria are set for evaluating the
solutions: 1. the success rate, which is the rate at which the prediction matches the
label; 2. the ahead drop rate, which is the rate at which the prediction is ahead of the
step at which the item is dropped.

Figure 8.5: Definitions of grasp from different directions

The generalization ability of the model is important. By including data from ten
objects with three different grasp directions in the dataset, the model’s ability to han-
dle differences in grasp directions and object types can be validated and optimized.
As shown in Figure 8.5, different directions and items will affect the position of con-
tact points during grasping. For example, if the model is trained with data from the
back direction, it is expected to perform poorly in the top direction. Similarly, differ-
ent object types also have an influence on the model’s performance. The comparison
experiment will sequentially remove data of different types and directions, and com-
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pare the results to understand the generalization ability of the model and the impact
of different data on model training.

8.3.3 Experiment Setup for Combined Models

The combination of LSTM and STFT is intended to improve the model’s ability to
extract features. A suitable network structure must be explored and found through
different combination methods. A variety of designed models are shown in Figure 8.6.
Option (a) is the original one, where force data is input into LSTM to obtain output
results. Option (b) uses the frequency data as input. Option (c) uses the ten channels
of frequency data and one channel of force data as input. Option (d) builds two LSTM
parts to separately input the frequency data and the force data, then combines the
output. The performance comparison of these four solutions can help to find the final
model.

Figure 8.6: Four types of model

8.3.4 Experiment Setup for Stable Grasping

With these models listed in the subsection 8.3.3, the stable grasping function can be
realized with actual dexterous hand hardware. The DoraHand, shown in Figure 8.7
(a), is chosen as the hardware. The force sensor in each finger is similar to the Eagle
Shoal’s sensor in the dataset, and the data frequency is set at 40 Hz. Before the stable
grasping function test, the performance of different models is compared based on the
sensor data acquired from DoraHand’s picking process.

With the verified grasp stability prediction function, tactile-based stable grasping
can be tested in real situations using the DoraHand. Four different methods repre-
senting four different grasping situations in daily life were designed: a) grasping an
item with an unknown weight; b) grasping an item while taking a sudden impact; c)
grasping an item while adding weight; d) rotate the item inside hand.

Referring to the stable grasping Algorithm 5, a control loop for the test is shown
in Figure 8.7 (b). After the grasp stability is predicted, the current of the pj and mj
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Figure 8.7: Test procedure with DoraHand

joints will be increased by 5 mA and 10 mA, respectively. The calculation time of
prediction is around 4 ms for each sensor, so with 16 sensors in hand, the total time
for prediction is around 64 ms. The initial current for mj and pj are 25 mA and 50 mA.
The joint current for a 2 kg payload grasping is around 100 mA and 200 mA, which
means unstable state should be detected for over 15 times during the process. With
these tests, the tactile-based stable grasping can be verified and applied in similar
applications.

8.3.5 Experiment Setup for Generalization Ability

To test the model’s generalization ability on other types of time series data, a dif-
ferent end-effector with a different sensor can be selected. In the industrial area,
suction cup grippers are widely used and stable grasping is an important feature for
protecting target items. A suction cup gripper equipped with four suction cups and
four pressure sensors was chosen, as shown in Figure 8.8 (a).

Pressure sensor data was collected at a rate of 71 Hz when the robot performed a
pick & place task. If the gripper cannot provide enough suction force to hold the item
stable, deformation and displacement between the gripper and the item can cause
changes in air pressure, especially if there is an air leak. The pressure data acquired
by the sensor can show such changes and be used for grasp stability prediction.

Figure 8.8 (b) shows the change in air pressure during one pick & place task. The
four channels represent four independent pressure sensors, each with a non-pressure
value of around 6,400. The data is 16-bit digital data in a range of 0-65,536, with
initial values are 6,458, 6,263, 6,357, and 6,458. Because the pressure unit does not
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influence the result, the initial values are subtracted from the pressure sensor data
and fed into the network without calibrating the relationship between the sensor
data and air pressure.

Figure 8.8: Suction cup gripper and pressure sensor data

8.4 Performance and Discussion

According to the experiment designed in the section 8.3, the experiment results are
analyzed and discussed in this section. This includes four subsections: 8.4.1 perfor-
mance of LSTM, 8.4.2 comparison of combined models, 8.4.3 verification on stable
grasping, and 8.4.4 generalization ability on pressure data.

8.4.1 Performance of LSTM

The comparison result with different classifiers is shown in Table 8.1. According to
the table, both LSTM and SVM perform well in terms of success rate. However, upon
detailed examination, it was found that many results of SVM label on the falling
edge, which means the SVM model achieves a good classification result by learning
the falling edge feature. However, the falling edge means the object has already
dropped and cannot help to realize a stable grasp. The LSTM approach has a high
success rate of over 84% and demonstrates the best performance in the ahead drop
rate with 85.88%. This suggests that these results can be used for prediction rather
than detection, the LSTM has a better performance in predicting grasp stability.

One LSTM output of the data Latte/150_325/right/0/tactile.txt is shown in Fig-
ure 8.9. The blue bold line represents the predicted result, while the red bold line
represents the label data. The yellow vertical line represents the time when the cur-
rent loop command was sent, the red vertical line represents the time when the arm
reached the highest position, and the black vertical line represents the time when the
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Table 8.1: Comparison results with different classifiers
Model Success rate Ahead drop

NB 68.81% 65.69%

KNN 79.7% 81.76%

SVM 84.67% 66.67%

LSTM 84.60% 85.88%

object dropped from the hand. The blue bold line drops at three periods, including
the vibration between 3.3 s - 4.3 s, one time between 7.6 s - 8.5 s, and one time at 9.0
s close to the hand open time. Compared with the video data, these three unstable
states are easily observed: a slip when the object was lifted to the highest position,
a collision with the table when the object was put down, and a drop when the hand
opened. The prediction results show that the LSTM model has good performance.

Figure 8.9: LSTM prediction result and video frames of data Latte/150_325/right/0

The comparison of directions and objects was tested separately. According to the
comparison of directions in Table 8.2, the model is trained by 80% of the data in
the training set direction, and the remaining 20% of the data is verified and marked
as self in the table, and the other results are the verification results of the test set
direction data. There was an obvious decrease when tested on different direction sets,
especially for the top set, where the success rate decreased from 83.90% to 66.94%
when tested on the right set. In the top set, the robot hand only grasps the object
with three fingertips with sensor channels of 3, 7, and 11. In cases where the hand
grasps the object with more fingers, the model only learns to predict based on three



128 Chapter 8. Tactile-Based Stable Grasping

tip channels and maybe failed to predict stability based on other channels’ input.

Table 8.2: Direction comparison success rate statistics

Direction
Train set

Back Right Top Back+Right Right+Top Top+Back All

Self 87.38% 82.94% 83.90% 84.29% 82.18% 84.08% 84.60%

Test set

Back / 78.56% 71.42% / 79.93% / /

Right 77.36% / 66.94% / / 77.98% /

Top 76.91% 76.15% / 77.39% / / /

One of the worst cases is shown in Figure 8.10. It is a model trained with the data
in the top direction, and tested with the data in the right direction, and channels 3,
7, and 11 have no obvious value during the test. Although there are data in other
channels, the output prediction result is to keep the value of 0.

The result suggests that the channel difference plays an important role. To de-
crease its influence for a more generalized solution, the input is set with a single
channel. Therefore, each set of data input into the network will include only one
channel.

Figure 8.10: Generalization ability test in different directions with data Co-
la/100_657/right/9/tactile.txt

To test the generalization of the model to different objects, the target object set
was removed and renamed as the self set. 80% of the self set was used for training,
while the remaining 20% self set and the target object were used for testing sepa-
rately. Table 8.3 demonstrates the model’s good generalization ability. Some objects,
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such as Scrub and Water, showed only a slight decrease in the success rate, while
Coffeecup showed a slight gain. This is likely due to the presence of similar objects
in the training set, which is more likely to be generalized. Figure 8.11 presents a test
where an object was dropped during the lifting process, with the black vertical line
ahead of the red vertical line. The prediction result shows that the prediction result
changed to 0 several steps before the object dropped, which can be regarded as a good
prediction result.

Table 8.3: Results of different objects
Name Cheez Coffeecup Cola Crisp Latte Scrub Suger Tomato Water Yellow

Self 82.89% 83.24% 82.72% 83.24% 83.47% 83.47% 83.41% 82.76% 82.86% 83.03%

Target 75.55% 83.67% 76.38% 77.89% 71.81% 81.52% 75.24% 78.65% 80.27% 79.84%

Figure 8.11: Generalization ability test in different objects with data Lat-
te/50_620/right/3/tactile.txt

Based on the comparison of different directions and objects, it is easy that the
deciding factor in the model’s generalization ability is not the value, but rather the
tactile channel influenced by the different contact points. This means that the posi-
tions of finger contact with the object have a significant influence. The generalization
ability can be improved with a more complex dataset that includes enough grasp ges-
tures and by training a model that excludes position differences, which can be used
in all cases with tactile input.
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8.4.2 Comparison of Combined Models

As shown in the test results from the previous subsection, the input of the combined
model is set as single channel data. The performance comparison of the four models
shown in Figure 8.6 is listed in Table 8.4. The (Data + STFT) & LSTM model has the
highest success rate, while the LSTM model has the best ahead drop rate.

Table 8.4: Comparison of four models
Model Success rate Ahead drop

LSTM 75.27% 84.63%

STFT & LSTM 78.39% 67.88%

(Data + STFT) & LSTM 80.09% 67.50%

LSTM + STFT & LSTM 78.93% 69.25%

Predictions from the (Data + STFT) & LSTM model are shown in Figure 8.12 (a)
and (b). The vertical axis represents the Boolean output of stability, where 1 indicates
stable and 0 indicates unstable. The horizontal axis represents the time step, with a
data frequency of 16.7 Hz. The green dotted vertical line represents the time when the
current loop command was sent, the yellow dotted vertical line represents the time
when the lifting command was sent, and the red dash-dot vertical line represents the
time when the object dropped from the hand. The blue thin line shows the normalized
force value, the red dashed bold line illustrates the labeled data, and the blue bold
line represents the prediction result.

Figure 8.12: Prediction result of (Data + STFT) & LSTM model

In Figure 8.12 (a), the force changes significantly after the lifting time step, and
the unstable state is hard to judge from force change. The prediction results closely
matches the label data most of the time, and the predicted unstable point is ahead
of dropping time. Since unstable state time is labeled 20 time steps before dropping
time and cannot be precisely shown in the graph, the prediction data cannot reach
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100% accuracy. However, this type of prediction can still be considered a good result.
Figure 8.12 (b) shows an obvious stability prediction at the lifting time step. As

the force changes to 0, it can be assumed that an unstable state has occurred. How-
ever, upon reviewing the video, there was no obvious evidence of unstable grasping.
This “wrong prediction” is a result of using single channel input. At that time, the
robotic hand lifted the item and the forces of different fingers changed before reach-
ing a new balance to achieve stable grasping. Only this channel witnessed this type
of “unstable state”, but it should still be considered a stable status.

Based on these partial results, there can get two points: 1) STFT data improves
the success rate and enables more precise and stable predictions; 2) time data directly
improves the ahead drop rate and is crucial for grasp stability prediction.

Compared with 84.60% in Table 8.1, training with a single channel results in a
lower success rate, possibly because data from multiple channels can provide addi-
tional information, such as contact information between hand and item. Therefore,
different data channels can be combined in specific use cases to improve the success
rate.

8.4.3 Verification on Stable Grasping

The performance of four different models on DoraHand is shown in Table 8.5 and
Figure 8.13. The success rate is similar to the result of the dataset, with LSTM
and (Data + STFT) & LSTM showing good performance at over 85%. The low ahead
drop rate may be caused by the differences in data acquisition methods. The grasp
stability prediction was tested in a relatively real situation, where no unstable state
occurred during most of the testing time. As a result, the ahead drop rate is not used
for comparison in this case.

Table 8.5: Comparison of four models on DoraHand
Model Success rate

LSTM 89.38%

STFT & LSTM 80.19%

(Data + STFT) & LSTM 87.24%

LSTM + STFT & LSTM 74.39%

When comparing the details of the prediction results, four different phases were
labeled in Figure 8.13 (a): 1) adding force; 2) slipping; 3) holding the item; 4) dropping
the item. LSTM shows the best success rate, as seen in Figure 8.13 (a), but the
prediction result only shows the dropping time in phase 4, which does not meet the
requirements for real-world applications. The other three models with STFT input
predict stability result in phase 2 and output stable result in phase 3, demonstrating
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Figure 8.13: Results of the four models by DoraHand

their grasp stability prediction capability and highlighting the difference in force
change between phase 2 and 3. This comparison shows that frequency data can help
to predict unstable states through changes in force values.

To verify the performance of the stable grasping function, the hand was set to
grasp the item with light force and tested in different situations, as shown in Figure
8.14. Experiments (a) and (b) were separately tested with both disable and enable
stable grasping functions. All four tests use the (Data + STFT) & LSTM model.

The comparison of disabled and enabled stable grasping functions for experiments
(a) and (b) are shown in Figure 8.15. When the stable grasping function was disabled,
the item was dropped as shown in Figure 8.15 (a0) and Figure 8.15 (b0). When the
stable grasping function was enabled, the item was lifted as shown in Figure 8.15
(a1) and Figure 8.15 (b1). The (a1) demonstrates that the stable grasping function
can help to grasp an item with an unknown weight of 2 kg. The (b1) can react quickly
enough to hold the item even if there is a sudden impact with a 2 kg weight. The
experiment (c) in Figure 8.14 (c) becomes more stable as the weight is gradually
increased. The experiment (d) in Figure 8.14 (d) shows the case that rotates the item
inside the hand, the grasping becomes tighter after several rotations.
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Figure 8.14: Four stable grasping test scenarios

Figure 8.15: Results of experiments (a) and (b)
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Force feedback was recorded during these experiments, and it can be easily ob-
served that force increases with the prediction result, as shown in Figure 8.16. Figure
8.16 (a) shows the force change in experiment (b). It can be seen that force increases
within 0.15 s, and a force drop just happened between 0.925 - 1.05 s. This means that
the algorithm is fast enough to predict stability within 1 - 2 time frames of data. 1
time frame includes 16 channels and takes 64 ms for 16 predictions. Figure 8.16 (b)
shows the force change in experiment (d), demonstrating that the force increases step
by step after each prediction.

Figure 8.16: Tactile sensor data of experiments (b) and (d)

With this verification applied on the dexterous hand, three key points are
demonstrated: 1) frequency data can help identify more slip features; 2) the la-
beling method is critical to the training process. A new dataset is needed to
achieve more accurate results by labeling which stages matter for specific use cases.
Labeling methods using other sensors, such as accelerometers, may be helpful
[Al-Shanoon and Ahmad, 2015]; 3) the stable grasping function of the dexterous hand
is already tested by DoraHand, the performance can be used in real use cases and en-
sure the stable grasping with unknown weight items and withstand certain external
forces.

8.4.4 Generalization ability on Pressure Data

According to the designed experiment, data from the pressure sensors was selected
as the input and separated into 316 batches, each with a size of 160 time steps. The
results are shown in Table 8.6 and Figure 8.17.

Among the four models, (Data + STFT ) & LSTM performs the best with the
highest success rate in the 71 Hz test, demonstrating good generalization ability.
All these models have lower performance in the 17.75 Hz test, possibly because the
pressure data during the dropping process of the suction cup gripper changes much
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Table 8.6: The experiment result of four models with suction cup gripper

Model
17.75 Hz 71 Hz

Success rate Success rate

LSTM 64.15% 78.69%

STFT & LSTM 57.11% 71.91%

(Data + STFT) & LSTM 58.25% 78.80%

LSTM + STFT & LSTM 60.11% 76.65%

Figure 8.17: Results of (Data + STFT) & LSTM with suction cup gripper

faster than the tactile data of the dexterous hand.

As seen in Figure 8.17 (a), the output prediction result, represented by the blue
bold line, mostly coincides with the labeled pressure data. However, the pressure
changes too quickly to make a prediction ahead of the drop. The pressure value drops
rapidly when there is a significant vibration or air leakage. The low success rate may
be due to the fact that labeling 20 steps ahead of the drop for slip label is too many
in this case, causing the success rate to decrease to 62.5%.

Figure 8.17 (b) shows a good prediction result by LSTM + STFT & LSTM on 71
Hz data, where the prediction result is located between unstable state label and drop
label. However, the data still changes too quickly and is not sufficient for prediction.
A model trained with higher frequency pressure data and better labeling methods
may help achieve better results.

From this experiment, three key points can be summarized: 1) (Data + STFT) &
LSTM show good capability in stability prediction and can be generalized to other
time series data; 2) features in time series are easier to transfer to other targets than
those in frequency domain; 3) higher frequency data can help to improve training and
prediction results.
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8.5 Conclusion

The grasp stability prediction function for stable grasping has been developed based
on the visual-tactile dataset and verified through different experiments. A compari-
son of several potential models suggests that combining STFT and LSTM improves
the success rate, and input data with a higher frequency significantly benefits the
results.

The stable grasping function is verified with the DoraHand and demonstrated its
capability in real-world use cases. Tests on the pressure sensor data have shown the
generalization ability on time-series data. Data frequency significantly influences the
result when using STFT, with the time domain performing better than the frequency
domain in terms of generalization ability.

In terms of model details, the model of (Data + STFT) & LSTM improves the
precision of grasp stability prediction and can continue to be improved in terms of
ahead drop rate. More STFT & LSTM-based solutions for grasp stability prediction
can be explored. These candidate models can be applied to more realistic situations,
and the applications in tactile-based stable grasping can be further developed.
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Chapter 9

Conclusion and Outlook

This final chapter serves as a conclusion to the thesis, summarizing the work that
has been done, presenting findings related to the research question, discussing the
lessons learned throughout the thesis work, and providing insights for future work.
The chapter is divided into four sections. Section 9.1 presents a summary of the entire
thesis. Section 9.2 introduces some results obtained during the thesis preparation.
Section 9.3 presents the key takeaways and lessons learned from this thesis work.
Section 9.4 provides an outlook on the related technologies for future research.

9.1 Thesis Summary

The primary purpose of this thesis is to develop a novel modular dexterous hand for
a robot grasping system. Stable grasping has been selected as the primary appli-
cation case, as it is a key issue in robotic manipulation. The dexterous hands have
been developed in two types and several versions, and the design of one product,
DoraHand, is introduced with details. To make better use of the dexterous hand,
visual-based grasp planning, and tactile-based stable grasping functions have been
developed based on its capabilities. The work on grasp planning began with an an-
alytic approach and was combined with a deep learning-based approach to achieve
better results. The work on stable grasping started with a visual-tactile dataset,
developed a grasp stability prediction solution using the combination of LSTM and
STFT, and realized stable grasping with the DoraHand. This thesis covers these
three main areas of work: dexterous hand, grasp planning, and stable grasping.

Dexterous hand The design of the dexterous hand involved two types and sev-
eral versions, including the Eagle Shoal and DoraHand, with one key type of Do-
raHand detailed in this thesis. As a modular dexterous hand, its key features
are the modular finger and tactile sensor module. With the modular finger, the
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hand can be extended to different layouts, and two-finger and five-finger version
have been verified and used in the applications. The tactile sensor module en-
ables the dexterous hand’s external sensing capability, which is essential in the
field of robotic manipulation. The tactile sensor module also significantly reduces
the cost of the DoraHand. The Eagle Shoal has won third place in manipulation
competition with its manipulation capability [EagleShoal, 2017]. The DoraHand
has been developed as a product and used by more than twenty research insti-
tutes and companies, winning product design awards including DIA, RedDot, and
IF [Dorabot, 2020a, Dorabot, 2020b, Dorabot, 2021b, Dorabot, 2022]. This work de-
veloped a piratical dexterous hand that can help promote research in robotic manip-
ulation.

Grasp planning The goal of grasp planning is to make better use of the dexterous
hand and ensure its grasp capability. An analytic analysis has been conducted with
the DoraHand and introduces the limitations of the dexterous hand layout to improve
efficiency in the planning stage. As visual processing is an essential part of the entire
system, an approach combining analytic and data-driven approaches has been devel-
oped with a new grasp plan representation for model output. The visual-based grasp
planning has been verified with the DoraHand.

Stable grasping The goal of stable grasping is to act as a fundamental function of a
dexterous hand in applications. With the idea of learning from data, a visual-tactile
dataset has been built, and work based on this dataset has been developed. This
visual-tactile dataset combines visual and tactile data and is open-source. The work
on stable grasping based on this dataset has successfully realized the stable grasping
function and demonstrated the generalization ability in pressure sensor data. With
this work, the dexterous hand can realize the stable grasping function with tactile
data.

The outputs of this work form a stable grasping system that can also serve as a
platform for research related to robotic manipulation. The hardware and open-source
data contribute to the related research areas.

9.2 Further Results

During the preparation of this thesis, work related to the thesis topic has been ongo-
ing, including hardware and software applications.

Dexterous hand iteration With the increasing application of the dexterous hand,
feedback from users has been instrumental in improving its design. The iteration
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started with the Eagle Shoal, which was designed for service robots and gradually
changed to the DoraHand, targeting industrial applications. The design has become
more mature and the components more stable. During the preparation of this thesis,
the DoraHand underwent seven iterations, resulting in new versions of two-finger
and five-finger hands that are more suitable for real-world applications.

Tactile-based interaction By taking advantage of the tactile sensor, interaction
between robot and human can be achieved. The grasp stability prediction used for
the stable grasping function can be used to detect interactions in the human-robot
interaction process. As humans interact with the hand, it can sense differences and
classify them as target interaction commands, which can be a potential application
in human-robot interaction.

9.3 Lessons Learned

In addition to achieving the main objectives of this thesis, general methodologies for
the robotic grasping system have been identified and are presented below.

Ensuring the stability of the dexterous hand As a design that evolves from an
initial idea to a product, the dexterous hand requires detailed design and procedures
to ensure stable performance.

1. Sensor calibration procedure. Sensor calibration is a critical procedure for
the dexterous hand. While there is a specific device designed for calibration,
further detailed work is still needed in practice. During testing, creep situa-
tions in the sensors and impact forces can influence the results. Therefore, it
is necessary to carefully control the procedure of adding the payload, and set
suitable criteria for data fitting and calibration.

2. FPC. The FPC is used in this design. Although it may influence the motion
flexibility of the joint, it is still a better solution during the exploration due to
the balance between limited joint space and lifetime. The thickness, material,
and cable layout of the FPC are also key points that can influence its lifetime.

3. Integration with the robot arm. Due to different integration requirements
with different robot arms, a universal physical interface component is necessary
for integration. Different solutions have been tested, and the current one with
the screw connected in the radial direction can better fix the hand with precision
and stability.
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4. Joint parameter calibration. As the joint parameters may change during
use, several thousand tests are necessary for the joint to reach a good status
and ensure a stable hand. In case of parameters change in the future, a user-
friendly CPA page has been designed to calibrate and change the parameters.

Quality of the dataset During the process of building the visual-tactile dataset,
several points could be improved to enhance its quality, as outlined below.

1. Sensor selection. While the visual sensor used in the dataset has similar
parameters to those used in normal settings, higher quality sensors would be
necessary to improve the data quality, and the interference between different
sensors also needs to be considered.

2. Key point labeling. Although automatic labeling is used in the dataset, some
key points, such as unstable state or slip, are still missed. Additional sensors,
such as acceleration sensors, could help provide more information and improve
the dataset.

3. Influence of object deformation. After thousands of tests, the quality of
objects may have changed and influenced the data quality. Therefore, preparing
more samples with consistent quality would be necessary to guarantee data
quality.

4. Time synchronization.Proper time synchronization is important for a
dataset. The current solution uses the same length of time step, but a better
method with the same timestamp and better synchronization with video data
could improve the dataset.

System in real application While the experiments conducted in this thesis fo-
cused on specific targets, building a complete system for real-world applications in-
volves several considerations that were not covered.

1. Poor quality visual data. In real-world applications, the quality of visual
data is often poor, including RGB and depth data. Point clouds are particularly
susceptible to poor data quality. Backup solutions, multi-view, or multi-test
solutions are necessary to ensure reliable results.

2. Robot arm motion planning. Robot arm motion planning is a key aspect of
real-world applications that was not introduced in this thesis. Collision avoid-
ance and planning speed are critical parameters that can affect the success of
the application.
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3. Uncertain command delays. Delays are common in the real world and can
affect the execution of tasks, especially for manipulation tasks. Estimating de-
lays accurately and monitoring conditions can help improve task performance.

4. Deformation of the target. Real-world objects are not rigid bodies, and de-
formation can significantly affect manipulation tasks, particularly for grasping
tasks that involve dexterous hand end-effectors or suction cup grippers. Sim-
ulating deformation is difficult, and therefore, the ability to adapt to changing
conditions and evaluate grasp stability is crucial.

9.4 Outlook

This section introduces some potential directions that can be built upon the current
system and improved in the next step.

More stable dexterous hand with diverse sensors In terms of dexterous hand
development, there is still much room for improvement. Joint speed, motion pre-
cision, and sensor sensing capability can all be further improved. As visual-based
tactile sensors continue to develop, it may be possible to develop a sensor within a
thin volume. Integrating such sensors into the hand would be a valuable direction
to pursue. For the manipulation capability of the hand, under-actuated joints mimic
the DIP joint can be developed, and DOF in the palm can also be improved.

Higher quality dataset for robotic manipulation In addition to the work pre-
sented in this thesis, there is a growing need for large datasets in the field of robotics
compared to the huge data in vision processing and NLP. High-quality data is par-
ticularly valuable, and there is potential for creating datasets that are as useful as
those currently available in the visual field, where researchers can segment anything
[Kirillov et al., 2023]. The development of such datasets would be an important step
toward achieving high performance in robotics.

Learning-based solutions with task planner In addition to focusing on execut-
ing specific tasks, it is also valuable to consider how these tasks can be connected
to create more complex procedures. Building on the stable grasping, it is possible
to apply this work to complex manipulation tasks. Like chatting with humans,
designing the task with available functions is a reasonable task for a learning-based
solution [OpenAI, 2023]. One potential direction is to explore the use of task planner
to connect individual actions and achieve more intelligent manipulation solutions.
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As Artificial Intelligence (AI) continues to develop, there is great potential for
growth in the field of robotics. As more work from the visual, speech, and NLP fields
are applied to robotics, it is likely that more intelligent systems will be achieved.
Iterative improvements in hardware and algorithms will help bridge the gap between
the virtual and physical worlds.
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