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A B S T R A C T

State space reconstructions of nonlinear dynamical system contain
within their metric and topological properties information about the
causal influences between different observables. The expansive dis-
tortions among different observables not only reflect the directed
coupling strengths, but also the dependency of effective influences
on the systems temporally varying state. Estimation of expansions
from pairs of time series is straightforward, either directly from intra-
neighborhood relations or the mapping between reconstructions. Two
approaches to compute expansive distortions are demonstrated using
analytical and numerical analysis in a range of complex dynamical
systems. The biggest challenge for the inference of causal influences
is reached in synchronising systems or system perturbed by large
amounts of noise. Remarkably, expansive distortions no only give in-
sight into just the interaction scheme, but provide a time-dependent
measure for these interaction. These new methods offer a potential
tool to gain insight into interactions of (nonlinear) dynamical system
for a wide range of disciplines.
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Some ideas and figures have appeared previously in the publications
listed below. Chapter 4 covers [1] - details on which parts and figures
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at the beginning of said chapter. Chapter 5 deals with the entirety of
[2] while providing additional details.
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1
M O T I VAT I O N & I N T R O D U C T I O N

Nothing without cause,

nothing without e�ect.

(Plutarch, 47-120 AD)

Why? - Trying to answer this simple question is a permanent com-
panion in the human pursuit of knowledge and wisdom. Aspiration
for insight and comprehension of our surrounding world is fueled by
curiosity and the desire to answer this question.

Ancient natural philosophers, like Aristotle [5], did not limit them-
selves to the qualitative observation of nature, but strove to under-
stand the underlying reasons. This interlacing of causes with their
resulting effects enables inference and understanding of the under-
lying mechanisms. Understanding permits the selective control and
manipulation of causes to achieve different effects, i.e. knowledge
about causes for improved growth of crops provides more bountiful
harvests.

But singling out the sole one fundamental cause of an event is diffi-
cult. Nevertheless, we possess an intuitive understanding of causality
- a windmill does not cause the wind to blow, but is spun by the wind.
Our intuition is not only based upon the correlated occurrences of
wind and spinning windmills, but is supported by additional infor-
mation. In fact, we are capable of stopping the windmill and observ-
ing whether the wind will continue blowing, supplying the needed
auxiliary information to identify wind as a cause and spinning wind-
mills as an effect.

Interventions are possible for (simple) man-made objects, like a wind-
mill, but might be impossible, undesirable or too risky in other cases.
We can not impact the motion of celestial objects. We do not want
to change ecosystems. We can not risk to impact our climate systems
in a possibly more harmful way. We want to identify possible causes
and effects, but only by observing - without intervening.

Indeed, hypothetical interventions are the basis for Judea Pearls math-
ematical formulation of causality [6]. Here, counterfactual interven-
tions uncover causal relations if a suitable structural model of a sys-
tem exists. Judea Pearl covers this theory in [6] and also also provides
a deeper dive into the more philosophical history of causality.

Nevertheless, there is a plethora of methods to infer causal influences
from just observations. In general, multiple variables of a system are
observed over time and the resulting time series are analyzed. Cor-
relation measures [7–10] evaluated the simultaneous occurrence of
events, but require additional information to infer causal influences.
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2 motivation & introduction

Thus it is advantageous to employ directional methods. The most
established is Wiener-Granger-causality [3, 11] inferring causal links
from the prediction of future states. An alternative are for example
methods originating from information theory, e.g. transfer entropy
[12].

We developed two methods to infer causal influences, topological causal-
ity (TC) [1] and the cross projection method (CPM) [2]. The starting
point for these methods is the work of Sugihara et al. [4, 13] that com-
bines the prediction of future states with the reconstruction of the
state space to infer causal influences. We were able to show that causal
influences can be directly inferred from just the underlying properties
of dynamical systems resulting from Takens theorem [14].

In essence, this is based on the following consideration: Let a system
X unidirectional influence another system Y. Obviously, Y receives
information about X. Furthermore, states of Y will contain informa-
tion about states of a X, while states of X by assumption cannot have
’knowledge’ about Y. For certain classes of dynamical systems Tak-
ens’ Theorem [14–17] allows the reconstruction of the underlying
state space. Due to incoming information from X subsystem Y can
not only reconstruct its own dynamic, but more importantly the over-
all dynamic of (X, Y). If information is also transmitted from Y to X, X
is also able to reconstruct the overall dynamic. Here, our key insight
is that expansive local distortions of neighborhoods reflect the causal
influence between system components X and Y [1].

The expansive distortions are already visible in a simple example: In
Figure 1 the reconstruction of the state space of a system comprised
of the subsystems Y (left) and X (right) are shown. On the one hand,
(sub-)systems are unilateral coupled from X to Y (upper row) and
on the other hand the (sub-)systems are uncoupled. In both cases, a
generic reference point is chosen in Y and its neighbors are shown in
blue in the state space of Y. Here, both neighborhoods are of some-
what identical size. Each point in Y is linked by its time index t to a
corresponding point in X, these points are marked in blue in the state
space of X (right column). There are clear differences in the distribu-
tion of these point for coupled and uncoupled systems. For an exist-
ing coupling the reconstruction using variables from Y uncovers the
underlying manifold of the overall system (X, Y). Thus, the searched
neighbors remain somewhat close in X. In contrast, for the case of no
coupling the reconstruction of Y only contains its own dynamic - the
distribution of neighbors in X is random.

This random distribution of neighbors equates to the maximum ex-
pansion and our proposed methods infer no causal influence. Iff there
are interactions from X to Y the causal influence is larger than zero and
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Figure 1: State spaces of an exemplary dynamical system, comprised of two
subsystem X and Y. The reconstructed state space of Y is shown
in the left column and for X in the right column. The upper row
is a system with an unilateral interaction X to Y and the bottom
row a system with no interactions. Blue dots signify the nearest
neighbors of a reference point (left column) and their correspond-
ing putative neighbors are shown in red (right column).

we propose that the local distortions of the neighborhood size are a
suitable measure for causal influence.

Later, Section 3.6 will pick up upon this foundation of our work again,
but first of all some fundamentals are needed that the first chapter
of this work provides. The first half is dealing with a selection of re-
quired fundamental properties and terms from the field of dynamical
systems. While the latter half elucidates the astonishing consequences
of Takens’ theorem and its extensions.

The following chapter gives an overview of methods inferring causal
influences from time-series. Finally, it covers the aforementioned in-
sight that expansive properties are a proxy for causal influences in
more detail.

The third chapter deals with our first proposed method topological
causality (TC) [1] published by Harnack, Laminski, Schünemann and
Pawelzik. Initially, it is explained how to measure expansive proper-
ties directly from the mappings between state space reconstructions.
Then a selection of successful applications is provided and the chap-
ter ends with an example of a limit-cycle system for which TC fails
to uncover the correct causal influences without additional modifica-
tions.

Ultimately, this lead to further improvements of topological causal-
ity and resulted in our second approach, the cross projection method
(CPM), published by Laminski and Pawelzik [2]: Expansive proper-
ties can be more robustly estimated by not looking at expansions
among different state space reconstructions but instead within each



4 motivation & introduction

reconstruction, respectively. The first part of this chapter elucidates
this new method, while a second part deals with a selection of ap-
plications. Then, a set of suitable modifications and design choices
are introduced. These modification are not only suitable for our own
work, but can prove suitable for other related methods and were ad-
vantageous when dealing with synchronizing systems.

The last chapter of this work discloses some final thoughts, integrates
the work in the existing literature, discusses future possibilities and
highlights challenges.



2
D Y N A M I C A L S Y S T E M S & TA K E N S T H E O R E M

In the midst of chaos,

there is also opportunity.

(Sun Tzu)

Before delving into methods for the detection of causal influences,
some basics principles will be introduced in this chapter. The con-
cepts for the detection of causal influences we developed - and relat-
able methods - are based on insights from the fields of chaos theory
and dynamical systems. The central idea is the reconstruction of the
state space using Takens’ Theorem [14]. In the first part of this chap-
ter we will focus on dynamical systems, while the second part focuses
on Takens’ Theorem.

The dynamic evolution of systems is imperative in the understanding
and modelling of phenomena in all natural sciences. Applications
range from pendulums in the Newtonian Mechanics, over predator-
prey-relations in population dynamics [18] to the modeling of neu-
ronal dynamics [19] in neuroscience. One of the first contributions
is the work of french mathematician Henri Poincaré on the classical
three body problem of celestial mechanics [20]. Broadly speaking, a
dynamical system is a mathematical model describing the time evo-
lution of a system. In general, a dynamical system can be depicted
in the state space, where each point in time is represented by a point
in state space. The evolution in time forms trajectories in state space,
that are the basis for a range of characteristic properties of the dynam-
ical system. For example, the analysis of stable trajectories identifies
attracting structures in state space, referred to as attractor.

Often, the complete state of a dynamical system is not observable, but
rather only a selection of variables is measurable. The fundamental in-
sight of Takens is that neither all degrees of freedom, nor the underly-
ing equations of the dynamical systems are necessary to construct the
state space [14]. Indeed, a single observable and its delayed copies are
sufficient to construct a homeomorphic copy of the attractor (of the
dynamical system) in state space. Remarkably, this also works if the
underlying dynamical system is unknown, although some character-
istics like the dimension and time-delay have to be estimated.

Along the way this chapter is introducing a set of typical dynami-
cal systems, e.g. the logistic map [21] and the Lorenz attractor [22].
Initially, these systems are illustrating basics concepts in this chapter,
but we will encounter them in the following chapters again. Due to
their simplicity and their relevance in ongoing research they provide
an ideal testing ground for the detection of causal influences.

5



6 dynamical systems & takens theorem

2.1 dynamical systems

An (autonomous) dynamical system is linking something - typically
the state ξ of a system - with an update rule for the evolution over
time t. The update rule f for discrete time t ∈ Z is called a map and
iterates the next states ξ1 from an initial state ξ(0).

ξ1 = f(ξ(0)), ξt = f
t(ξ(0))

The state at time t is given by repeated application of the map t-times.
For processes in the real physical world time is in general viewed as
a continuous quantity - the time evolution is typical not discrete, but
rather continuous in time, i.e. t ∈ R. Here, the time evolution is givenAlthough, one might

argue it is not. by the flow ξi(t) = Ωt(ξ(0)) or rather the rate of change of a state
dξ(t)
dt - the velocity of the state. The typical formulation is a differen-

tial equation linking the current state ξ(t) and its velocity:

ξ̇ :=
ξ(t)

dt
= F(ξ(t)), ξ(t = 0) = ξ0

Combining this differential equation with an initial state ξ(t = 0) =

ξ0 is called an initial value problem. The solution of this problem de-
scribes the time evolution of a single initial state ξ0. The more general
concept is the flow Ωt of F, a mapping with identity relation, group
law and Lipschitz continuity describing the global time evolution -
the evolution of all possible initial states ξ0.

m

l

~g

ϕ

Figure 2: Schematic
of the math-
ematical
pendulum

One of the simplest examples of a dynamical
system in (Newtonian) mechanics is the free
undampened (mathematical) Pendulum Fig-
ure 2. The pendulum consist of a mass m at-
tached to a mass-less string of length l and is
under the effect of the the gravitational force
~F = m~g. The deflection of the pendulum is
given by the angle ϕ(t), but the angle ϕ(t) is
not the complete state ξ(t) of the pendulum.
For example consider the position of the pen-
dulum depicted in Figure 2, from the deflec-
tion alone it is not even possible to determine
if the pendulum is moving counter- or clock-
wise. The pendulum has two degrees of free-
dom and thus the state is a tuple of two vari-
ables ξ(t) = (ϕ(t),ω(t)), the angle ϕ(t) and
angular velocity ω(t). Consequently two ordi-
nary differential equations are governing the time evolution of the
(free friction less) pendulum:

ϕ̇(t) = ω(t)

ω̇(t) = −
g

l
sinϕ(t)

(1)



2.1 dynamical systems 7

These two equations and an initial condition fully describe the state
of the pendulum for each point in time t, the first equation indicates
the change in angle ϕ̇, angular velocity, and the second the change in
angular velocity ω̇(t), angular acceleration. The solution of these dif- The mathematical

pendulum for
example can be
simplified by small
angle approximation
or solved using
elliptical integrals
[23].

ferential equations enables one to derive all future states from one
known state, e.g. t = 0. This state (ϕ(t),ω(t)) also includes informa-
tion about all past states and thus the whole previous time evolution
of the dynamical system. This is especially evident if the space of all
possible states is considered - the state space.

2.1.1 State Space

The aforementioned pendulum has a two dimensional state space
spanned by the angle ϕ(t) and the angular velocity ω(t) Figure 3,
which represents all combinations of ϕ(t) and ω(t). Figure 3 (a)
shows the state space and one initial condition (red dot) of the pen-
dulum, its time evolution is forming a circle-shaped (clockwise) tra-
jectory in state space. After one complete oscillation the pendulum
returns to its initial state (red dot) forming a closed ellipsoid in state
space - states on it will remain evolving over time only along this path.
However, this trajectory is not only unique for this initial condition,
but rather all states on its path are valid starting states that share the
same conserved total energy. A selection of typical trajectories in state Both figures are

generated by solving
Equation 1
numerically (using a
Runge-Kutta
algorithm).

Figure 3: (a) State space (ω over ϕ) of the mathematical pendulum. A red
circle signifies the initial state (ϕ0,ω0) = (0.5, 0) and the gray
gradient shows the time evolution of the state, with darker gray
corresponding to moments in time close to the initial state.
(b) Phase portrait of the mathematical pendulum. The dashed line
marks the boundary between closed (oscillating) and open (circu-
lating) trajectories. Colored dots mark stable (red) and unstable
(blue) fixed points of the pendulum.

A finite dimensional
state space, e.g. the
manifold mappings
or ordinary
differential
equations, is often
referred to as phase
space.

space (for the mathematical pendulum) is shown in Figure 3 (b). This
so called phase portrait enables to study the whole dynamic range
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of a system, for the pendulum especially the behaviour for different
total energy is captured. The trajectory from (a) and similar closed
trajectories are delimited by dashed lines.Confusingly circular

trajectories in state
space are not

circular pendulum
motions.

All closed trajectories in this area represent oscillations of the pen-
dulum, i.e. the typical pendulum swings between maximum ampli-
tudes. The trajectories outside of this area are circulating solution.
Here, the energy is sufficient that the pendulum is rolling over its at-
tachment point and circulates around it. Finally, two more trajectories
are marked in red and blue colors - the two fixed points of the pen-
dulum. Fixed points of a dynamical system are states invariant under
time-evolution. The red point is the resting position of the pendulum
and a stable fixed point, the blue point is the upside down position
of the pendulum - an unstable fixed point.

2.1.2 Discrete and Contionous Systems

The aforementioned pendulum has a continuous analytic solution.
Differential equations not necessarily have an analytic solution or it
is more practical to evaluate them numerically and thus convert a
continuous system into a discretized counterpart.

Consider for example the logistic function used by Pierre F. Verhulst
to model population growth [24]:More precisely

dN
dt = rN−αN2,

but we use the
dimension-less case.

dx(t)

dt
= Rx(t)(1− x(t)) (2)

The initial step to discretize a system is the choice of a appropri-
ate discretization, instead of continuous time, appropriate time steps
(for this system), e.g. of length ∆t = 1 s, are chosen. By choosing a
discretization, the derivative dx(t)

dt can be approximated by the (for-
ward) finite difference dx(t)

dt |t=t0 ≈
x(t0+∆t)−x(t0)

∆t and the continu-
ous variables can be evaluated at the chosen time steps x(t0). Some
arithmetic manipulations [25] and renaming yields the equation for
the time-discrete logistic map [21]:

x(t+ 1) = rx(t)[1− x(t)] (3)

The shown equations appear analogous, but have distinct charac-
teristic. For example, the logistic map (Equation 3) exhibits chaotic
behavior in certain parameter ranges, while the continuous one di-
mensional differential equation (Equation 2) can not show chaotic
behaviour [26]. The discretization of a system is not a trivial opera-
tion and the properties of the system can change, especially if a poor
discretization was chosen. To avoid this, the later discussed systems
of differential equations are integrated using a fourth order Runge-
Kutta algorithm [27] and a small step size.Small time steps

means small in
respect to the time

scale of interest.
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2.1.3 Determinism and Chaos

A property of dynamical system that was only discussed implicitly is
determinism. The future states of a deterministic system are generated
without randomness, intuitively this is true for the aforementioned
pendulum (and the logistic map). Here, the pendulum position and
velocity and its governing differential equation are sufficient to deter-
mine the future uniquely.

Figure 4: Sensitive dependence on
initial conditions of the
modified logistic map
x(t1) = rx(t)[1 − x(t)] &
y(t + 1) = mod1[x(t) +

y(t)]. The color-bar de-
notes time steps after the
initial state.

However, a deterministic system
does not have to be fully prede-
termined, non-linearities of the dy-
namic and/or uncertain initial con-
ditions can cause seemingly ran-
dom erratic behaviour, i.e. diverg-
ing trajectories in state space. This
sensitive dependence on initial con-
dition is one of the formal criteria
for a chaotic system [26]. Along-
side determinism chaotic system
feature aperiodic long-term dynam-
ics.

For example consider a two dimen-
sional deterministic system, the
first component being governed by
the logistic map x(t+1) = rx(t)[1−
x(t)] and the second by y(t+ 1) =

mod1(x(t) + y(t)). If we choose a
state and the area around it in state
space as a set of initial conditions
(dark blue area in Figure 4) and evolve each initial condition over
time, already a few time steps will be sufficient to spread the state
over the state space. This sensitive dependence on initial conditions
is typical for chaotic systems and can be quantified by the exponential
divergence of trajectories - the Lyapunov exponent [28].

2.1.4 Strange Attractor

Studying the pendulum we already encountered an attractor and its
counterpart the repellor - the fixed points marked in Figure 3. If a
dampened pendulum is considered, it is even more straightforward
what characterises an attractor. Here, the dissipative nature of the
system will cause the it to strive towards the resting position (for
large time scales) - a single point in state space attracting all trajecto-
ries.
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Besides attracting fixed points there are also attracting orbits in state
space. A simple example is a pendulum clock, where the driving force
by the escapement mechanism counteracts the dissipative energy loss
via friction and thus generates an attracting periodic orbit in state
space.

The final type of attractor is the so called strange attractor , which willOriginated by David
Ruelle and Floris
Takens describing

fluid flows.

we will consider later extensively in form of the Lorenz and Rössler
systems. A strange attractor has a fractal structure in state space, often
times this fractal structure is based on the chaotic nature of the under-
lying dynamical system. Interestingly, trajectories in state space will
converge to the attractor and become arbitrarily close to one another,
but due to the chaotic nature two initial points will also diverge overThere are also

strange non chaotic
attractors.

time, but will not diverge from the attractor. This leads to the fascinat-
ing property of a globally stable, but locally unstable system.

Figure 5: The attractor of the
Rössler system (blue)
and a trajectory (red)
converging onto the
attractor.

This section is merely supposed to
be a brief insight; there is a plethora
of textbooks covering this and re-
lated topics, e.g. [29]. As an exam-
ple for an strange attractor consider
the following system of three ordi-
nary differential equations:

ẋ = −(y+ z)

ẏ = x+ ay

ż = b+ (x− c)z

(4)

Equation 4 Known as the Rössler
attractor [30] this system has be in-
fluential in the study chaos. In Fig-
ure 5 the Rössler attractor is shown
in state space (blue). Furthermore
we see the trajectory (red) of a ini-
tial conditions striving towards the
attractor.

2.1.5 Dimension

Before we can talk about the center piece of this section, Takens The-
orem, we have to briefly discuss dimensions. Not only is this vital for
Takens Theorem, but we are able to infer information about the causal
structure of a system from just the dimension of subsystems.

The previously shown Rössler system consists of three differential
equations, intuitively we used a three dimensional euclidean space
(x(t),y(t), z(t)) to visualize the system. But in fact, we have to dis-
tinguish between the space in which an object is embedded, and the
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dimension of an object. The latter is an intrinsic property of an ob-
ject and attributed to the degrees of freedom, i.e. the number of in-
dependent coordinates/parameters. Consider a (straight) line and a
circle, both are one dimensional objects - one independent coordinate
is sufficient to describe any position on the circle. But a two dimen-
sional euclidean space is necessary to embed, i.e. visualize, the circle.
Even worse, objects do not necessarily have an integer dimension, Smooth continuous

time dynamical
systems need at least
a dimension of two
to exert chaotic
behavior.

the Rössler system for example has neither a dimension of two nor a
dimension of three.

The classical example to derive the dimension of a fractal object is
the British coastline [31]. Consider a circle and the coastline, both
are measured with an increasingly more precise ruler. In the case of
the circle the measurement will approach the correct circumference,
but the length of the coastline will keep increasing with smaller and
smaller gaps measured. Accounting for this, the coastline is covered
in increasingly smaller square boxes. In doing so, one is able to derive Circles are more

general for higher
dimensions.

the fractal dimension of the coastline. Because the number of boxes
N(ε) necessary to cover a a one dimensional object increases linear
with the size ε of said box, for a two dimensional object quadratic. In
fact for a D-dimensional object N scales exponential with the dimen-
sion N(1/ε) ≈ εD. The box counting dimension [32] is defined by:

Dbox = lim
ε→0

ln(N)

ln(1/ε)
(5)

where ε is the size of boxes and N the number of boxes.

Instead of an object, it is more interesting to consider the dimension
of a (state) space filled by point clouds. Similar to the box count-
ing dimension we can derive the dimension these points clouds. By
covering the whole space with a multidimensional checkerboard of
size ε. If we count the probability P(ε) of a checkerboard cell being
populated while varying the size ε, we can define the information
dimension [33]:

Dinf = lim
ε→0+

N∑
i=1

Pi(ε) ln[Pi(ε)]
ln(ε)

= lim
ε→0+

< ln[Pi(ε)] >
ln(ε)

(6)

An added advantage of the information dimension is that it is deriv-
able from basic properties of our measure for causal influence (Chap-
ter 5).
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2.2 state space reconstruction

In the previous section we covered the state space of well known
systems, i.e. systems already modeled by mathematical equations
or dynamics resulting from their known underlying equations. For
(chaotic) dynamical system, observed in nature or studied in experi-
ments, the full set of governing equations is often not available. But
rather single or multiple variables are observed as a function of time.
Already this seemingly incomplete information about a system can
be sufficient to (re-)construct the state space of an attractor. In the
following sections we will look at Takens’ Theorem, its extensions
by Sauer[17] and Stark [16, 34] and the foundation by Whitney [35].
Using these concepts the state space of a strange attractor can be con-
structed from a single measured variable.

2.2.1 Embedding

The basis for state space reconstruction is Whitney’s embedding the-
orem [35], stating: ’Any smooth manifold M of dimension m can be
embedded into R2m’. Meaning that the image of a m-dimensional
manifold is unfolded in a 2m dimensional euclidean space - no points
are mapped to the same point in euclidean space preserving its struc-
ture. Being more graphic one can consider the symbol ′8 ′, on this
plane (two dimensional) paper there is a self intersection in the mid-
dle. An additional dimension is needed to completely unfold it. In
the case of a m-dimensional system, there is a set of 2m independent
observables that can be considered a map from the manifold of the
system and thus Whitney’s theorem implies that these observables
are sufficient to reconstruct the state space.

2.2.2 Takens’ Theorem

Floris Takens showed in 1981 [14] that only a single observable is
necessary to reconstruct the state space. Instead of 2m + 1 signals
2m+ 1 delayed copies [x(t), x(t− τ), x(t− 2τ), ..., x(t− (2m+ 1)τ)] of
a single observable are sufficient.

As a first intuition, consider a simple system like the pendulum that
is governed by a set of equations of motion that only consists of po-
sition α(t) and its derivatives. A state in state space is given by the
vector [α(t), α̇(t), α̈(t), ...]. The angular velocity α̇(t) can be assessed
via the difference quotient, similarly higher orders of derivatives can
be assessed, thus the vector becomes

[α(t),
α(t) −α(t− τ)

τ
,
α(t) − 2α(t− τ) +α(t− 2τ)

τ2
, ...].
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It is straightforward that for this simple system only delayed copies
α(t) are necessary to construct the state space. In general, these copies
do not have to be in the form of difference quotients, but rather
[α(t),α(t− τ),α(t− 2τ), ...] are sufficient.

As an example let us consider the three dimensional Lorenz system
[22], governed by the following equations:

ẋ = σ(y− x)

ẏ = x(ρ− z) − y

ż = xy−βz

(7)

The system originates from meteorology and shows for a typical set
of parameters (σ, ρ,β) a famously butterfly shaped attractor in state
space, as shown Figure 6. This shape still remains visible if the state
space is reconstructed using only one coordinate, e.g. x(t) or y(t)
as shown in Figure 6. The trajectory in the space spanned by x(t), In fact, due to

symmetry z(t) is an
exception of the
initial Takens’
theorem.

Figure 6: Lorenz attractor for (σ, ρ,β) = (10, 28, 8/3) (a) and reconstructions
of the Lorenz system from x(t) (b) and y(t) (c).

x(t+ 2τ) and x(t+ 2τ) is shown in (b) and is homeomorphic to the The typical example
for a
homeomorphism are
a donut and coffee
cup.

original space meaning that all topological properties are preserved
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in [x(t), x(t + τ), x(t + 2τ)] and the two shapes can be transformed
into one another just by continuous stretching and bending.

An important consequence is the preservation of neighborhood rela-
tions, close neighbors in the original space (x,y, z) remain close neigh-
bors in the reconstructed space [x(t), x(t+ τ), x(t+ 2τ)]. This property
is vital for defining causality measures in the following Chapter 3.
Before continuing extensions of Takens theorem shall be considered
briefly and the computation of parameters for the embedding are dis-
cussed. The theoretical requirements for embedding parameters are
straightforward, but for practical purposes it is necessary to discuss
the choice of embedding parameters. On a side note, it shall also be
remarked that similar results were separately obtained by Packard et
al. [15] and Aeyels [36].

2.2.3 Mathematical Formulation

The prior section introduced Takens theorem heuristically for the ex-
ample of a Lorenz system. In fact, Takens’ theorem is not a single
theorem, but rather a collection of theorems for the embedding of
continuous, discrete or discretization of continuous dynamical sys-
tems.

The time evolution for the continuous Lorenz system (t ∈ R) in Fig-
ure 6 is described by the set of differential equations Equation 7, or a
suitable discretization. Since the aforementioned Lorenz system is a
continuous dynamical system with a time evolution governed by the
flow t→ ϕ(ft(x)), x ∈M, we will only show Takens Theorem for this
type of system. The full set of theorems and their respective proofs
are found in the original manuscript of Floris Takens [14]. In particu-
lar, the formulation for discrete system which will be our focus when
dealing with simulated or experimental sets of data.

Typically, not the full set of variables is recorded by an observer out-
side of the system. An observable is a smooth function ϕ : M → R,
typically of one or a subset of system variables. In practice the observ-
able ϕ(t) can be contaminated by (external) measurement noise, e.g.
ϕt = ft(xt) + ηt. The problem is this: if, for some dynamical system
with time evolution ft() we know the functions t→ ϕt(ft(x)), x ∈M,
then how can we obtain information about the original dynamical
system (and manifold) from this.
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Theorem 1 (Takens Theorem [14]) Let M be a compact manifold of di-
mension m. For pairs (f,ϕ), f : M → M a smooth diffeomorphism and Note that the

notation is changed
in comparison to the
original formulation.

y : M → R a smooth function, it is a generic property that the map
Φ(f,ϕ)(x) : M→ R2m+1, defined by

Φ(f,ϕ)(x) = [ϕ(x),ϕ(f(x)), ...,ϕ(f2m(x)] (8)

is an embedding; by "smooth" we mean at least C2.

Takens Theorem on its own is only valid for deterministic dynamical
systems, more specifically delay coordinate maps. Covering a wider
range of (dynamical) systems Sauer et al. generalised Takens’ Theo-
rem to fractal dimensions, enabling the state space recovery of fractal
dimensional dynamical systems like the Lorenz-system [17]. Two fur-
ther extensions validate Takens’ Theorem for externally forced and
stochastic systems [16, 34]. For the case of external stochasticity -
measurement noise - filtering is useful to improve the state space
reconstruction. There are also more complex filtering schemes like
the so called Kalman-Takens algorithm [37] combining the recovery
of unknown (underlying) variables and the reconstruction of the state
space of said variables.

2.2.4 Estimating the embedding parameters

It is not by chance that the butterfly-shaped Lorenz attractor is clearly
reflected in its reconstructions (Figure 6), the embedding delay τ was
chosen carefully to fully unfold the attractor. For chaotic oscillators,
like the Lorenz systems, a fourth of the average period is a good
heuristic for an embedding delay. In general, a small embedding de-
lay τ is preferable to prevent the attractor folding onto itself, theoreti-
cal assumptions what constitutes a good τ are discussed in [38].

In practice, a small τ still guaranteeing a linear independence of x(t)
and x(t+ τ) is required. We have chosen the first minimum of the av-
erage mutual information [39] between x(t) and x(t+ τ) as a criterion
for independence. Broadly speaking, mutual information measures For the Lorenz

system (Figure 6) τ
was derived
exemplary in
Figure 11.

how much information about x(t) is uncovered by knowing x(t+ τ),
and vice versa. The first minima (of mutual information) depending
on τ constitutes an embedding delay, for which x(t) and x(t+ τ) are
sufficiently independent.

For unknown systems we have to also estimate an embedding dimen-
sion. For this purpose the false nearest neighbor algorithm of Kennel et
al. [40] is suitable. A time series x(t) is embedded for different increas-
ing embedding dimensions n and for each embedding the nearest
neighbors are searched. A mismatch in the neighbor relations while
transitioning from a dimension n to a higher dimension n+ 1 indi-
cates that the attractor is not fully unfolded in n. A suitable embed-
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ding dimension m is a dimension for which said neighbor relations
do not change.

Alternatively, there are also methods like the wavering product [41]
estimating both, embedding delay τ and embedding dimension m. A
more extensive and detailed discussion of suitable methods is pro-
vided in the overview paper by Bradley et al. [42].

There are also specialized methods to improve the reconstruction in
certain cases. If multiple variables are observed, it can be advanta-
geous to use mixed embeddings [43] from two or more variables.
In the case of the aforementioned Lorenz system, a possible mixed
embedding would be (x(t), x(t + τ),y(t + 2τ)). Besides that, a non
uniform choice of τ, i.e. (x(t), x(t+ τ1),y(t+ 2τ2)), is improving the
reconstruction if different timescales are present [44]. For the scope
of this work, we restricted the reconstruction of the state space to an
uniform embedding using a single observable. The embedding pa-
rameters (τ,m) are estimated using mutual information and a false
nearest neighbor algorithm.

2.3 conclusion

The purpose of this chapter was twofold. On the one hand, basic con-
cepts from the field of dynamical systems were introduced. On the
other hand, Takens theorem was introduced providing the basis for
Chapter 5 and Chapter 4. The central idea is the possibility to uncover
the topology, dynamics and neighbor relations of an underlying dy-
namical system from a single observable.

In the following pages, the observables are two scalar time-series
[x(1), .., x(t), .., x(N)] and [y(1), ..,y(t), ..,y(N)] of length N either from
different (sub-)systems or from a joint dynamical system. Since the
time evolution ft() of the time-series is implicitly included in the no-
tation x(t) and the measurement function is assumed to be ϕt(x(t)) =
x(t), the notation of Equation 8 is simplified. The embedding or state
space reconstruction of an observed time-series x(t) is given by:

rx(t) = [x(t), x(t+ τ), .., x(t+ (m− 1)τ)] (9)

In general, the latter sections consider two observables, x(t)t and y(t),
and the relation between their respective reconstructions rx(t) and
ry(t) that both share the same time-delay τ and dimension m, which
are derived from the respective time-series.
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C A U S A L I T Y

The most merciful thing in

the world, I think, is the

inability of the human

mind to correlate all its

contents.

(H.P. Lovecraft)

The world surrounding us is dynamic and subject to change. In the
previous chapter we contemplated a basic ideas of dynamical sys-
tems - the state. The state is comprised of all information necessary to
progress towards the future. In general, we do not consider the over-
all state, but the state of subsystems and parts of systems; pendulums,
balls or fluids, interacting with their surrounding environment.

A ball does not suddenly start moving due to some intrinsic state,
but rather because of external influences, its likely someone kicked
it - there is a cause. If a telephone is ringing, it is because somebody
is calling. The motion of a ball and ringing of a phone are effects
of their respective cause and succeed the cause in a predictable way.
The temporal sequence always begins with a cause and ends with an
effect. The effect can also become a cause - our ball in motion hits
another ball and initiates its motion. In fact, one could argue chaining
together cause and effect pairs describes a flow of time. This concept Annoyingly,

Quantum
Mechanics suggest
this must not
necessarily be the
case.

of causality has a long history ranging back to the beginnings of
natural philosophy [5].

The aim of this chapter is describing how these intuitive concepts and
notions of causality can be transferred to the context of time series
analysis. Already the introduction of this work differentiated in its
choice of words between causality and causal influences. This demarca-
tion is not only intentional, but necessary in the context of time-series.
Here, it is not the ultimate goal to identify the single cause, but rather
elucidate the structure of the underlying system. The inference of true
causality always requires intervention into the dynamics of a system
[6]. While causal analysis is only a step to learn or validate existing
hypotheses about a system or process in question. The term causal
influence is strongly linked to the employed method of causal analysis
and its relation to structural properties of the investigate system, e.g.
coupling weights.

The first part of this chapter illustrates that when dealing with time
series it is reasonable to consider effective time-dependent causal influ-
ences to infer interactions. The second part covers a selection of state
of the art methods to infer the interaction structure or causal influ-
ences from time-series. Finally, the last section returns to Figure 1 and
the introduction elucidating how interactions between (sub-)systems
lead to expansive distortions in the state space reconstructions and

17
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thus preludes the introduction of our methods to infer causal influ-
ences.

3.1 from observed time series to causal influences

The intuitive understanding of cause and effect pairs is transferable
to an observed time-series (of a dynamical system) and the cause
is identifiable in said time-series. But already small modifications
of a dynamical system complicate the deciphering of cause and ef-
fect directly from the observed time series. Moreover, in the case of
time-series not a single event, but rather the interaction between time-
series is of interest.

As an example for an observed time series let us review a simple
dynamical system, e.g. the pendulum (Equation 1), with a dampen-
ing force and perturbed by a short external pulse - a nudging of the
pendulum. Instead of the whole system only the angle ϕ and the
time series of the disturbance are observed and shown in Figure 7.
For this simple case the temporal sequence is even visually identifi-
able, the (red) disturbance is succeeded by a dent in the time series
of ϕ. The cause - δ-pulse - and the effect - the change in angle - are
clearly distinguishable. A hypothetical measure of causal influenceTime-series were

generated by solving
the differential

equations using a
Runge-Kutta scheme

time

Figure 7: Time series (of the angle ϕ) of a harmonic oscillator shown in
blue. The dashed line shows the angle of the harmonic oscillator
disturbed by a delta-pulse (red). The light red area marks the area
of causal influence.

C should only detect an interaction in the short period of the dis-
turbance (light red). Otherwise there should be no significant causal
influence C = 0.

Already for a slightly more complex case visual inspection of the
time-series is ambiguous. Consider the same system perturbed by a
periodic external force, i.e. Fexternal = F cos(ωt), shown in red in
Figure 8.
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time

Figure 8: Time series (of the angle ϕ) of a harmonic oscillator with external
driver shown in blue and the time series of the external force (red).
The light red area marks a hypothetical area of causal influence
from external driver to the angle ϕ.

Here, the external input forces the pendulum into another frequency.
Clearly, the external driver is the cause for this change of motion.
However, this is not evident from the observed time series alone - es-
pecially if only a short section is observed. Simple correlation based
methods can quantify that the external forcing and the harmonic os-
cillator are synchronous, but cannot infer a direction of influence. In
contrast, topological causality will infer a dominant influence originat-
ing from the external driver, at least until the oscillator is fully syn-
chronous with the frequency of the external forcing. Admittedly, other

methods would do so
as well.In addition, the strength of the influence might vary according to the

state of the system. This is even more evident for bilaterally interact-
ing system, for example a predator-prey model:

dx

dt
= x−αxy

dy

dt
= −y+βxy (10)

This Lotka-Volterra-model [18] describes two cross interacting species,
where the prey population is inhibited by large predator populations
and the predator populations is excited by large prey populations.
The shifts in population size are shown in Figure 9.

In this system, individual parts influence each other depending on
the system state - predator and prey populations swap between cause
and effect over time. Thus, it is most suitable to describe the influ-
ences by a time-dependent index describing the causal relations. As
an example the background is the causal influence inferred by CPM. CPM merely serves

as a illustrations,
thus any details are
omitted (for now).

This causal influence shifts with the state of the systems from time pe-
riods of dominant direction of causal influence from predator to prey
to periods of ’equilibrium’ and periods of (dominant) prey to preda-
tor influences.
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Figure 9: Predator (dashed) and prey (solid line) population of a Lotka-
Volterra-model. A causal influence (derived by CPM) is signified
by the background color. Red corresponds to strong influences
from prey to predator and blue vice versa.

Systems, like the aforementioned predator-prey model, also pose two
other common difficulties for a measure of causal influences. Appar-
ent interaction can be generated by confounding factors, like environ-
mental variables or shared interactions with other species. Besides
that, interactions should remain detectable, if an intermittent (unob-
served) part of a dynamical system facilitates the interaction(s).

Subsequently, dynamical systems with known structure are used as
a testing ground. For these system the interactions are controlled by
coupling weights wi→j, making the relation between these weights
and the causal influence C relevant. In particular, changing the strength
of a weight wx→y - a stronger influence from X to Y - must be re-
flected in the causal influence Cx→y. For small weights Cx→y this is a
(linear) function of the weight wx→y.

If the interaction between identical subsystems is assessed, it is mean-
ingful to consider causal asymmetries α, to uncover the dominant di-
rection of influence :The quantity shown

in Figure 9 is α.

α =
Cx→y −Cy→x
Cx→y +Cy→x

For strong couplings and/or systems with highly similar dynamics
systems parts can synchronize. For complete synchronization state-
ments about causal influences are meaningless, since the individual
dynamics no longer posses any degrees of freedom and none of the
(sub-)systems has unique information. In this case, our methods will
infer maximum causal influence in both directions. At least, up to com-
plete synchronization the causal asymmetry is a reliable quantity.Interventions in the

form of noise or
observation of

transient dynamics
can also prove

helpful.

Besides that, there are other, more universal, limiting factors to ac-
count for when dealing with observed data. In general, the measure-
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ment period and resolution is limited. Thus any method for inference
of causal influences should need as little data as possible, while a signif-
icance criterion controls if sufficient data is available. The quality of
data - measurement or intrinsic noise - should have preferably no or
a predictable influence. In particular, no false positive causal influences
should be induced by noise.

3.2 correlation

Evaluating the existence and strength of interactions and influences in
observed data traces back to the work of Sir Francis Galton [7]. Here,
the correlation coefficient was designed as a purely statistical crite-
rion quantifying the simultaneous occurrence of different features,
e.g. different proportions of skeletons studied by Sir Francis Galton.
Per construction, correlations are a symmetric measure and do not
have to relate to causal influences.

3.2.1 Pearson correlation coefficient

Originally, the mathematical formulation of said correlation coeffi-
cient was published by Bravais [8], but in general, it is referred to as
the Pearson correlation coefficient [9]:

ρX,Y =
cov(X, Y)
σXσY

(11)

The coefficient is composed of the covariance cov(X, Y) of the data
sets X and Y, and their respective standard deviations σX and σY . Its
limiting cases are independent data sets X and Y equating to ρX,Y = 0

and ρX,Y = 1 for dependent data sets. Two data sets are dependent, if
one is an affine transformation of the other.

The fundamental weakness of a linear coefficient are evident in (sim-
ple) toy examples, i.e. Anscombe’s quartet [45] or the datasaurus
dozen [46]. Here, diverse data sets yield the ambiguous result of The data sets have

the same simple
properties (e.g. mean
and variance), but
distinct
distributions.

matching correlation coefficients. Nonlinear measures, like Spearman
correlation [10], remedy this limitation.

3.2.2 Cross correlation

As aforementioned, we do not want to consider X and Y as an un-
sorted collection of data points, but rather time-resolved observables
- the time-series {x(t)} and {y(t)}. Here, it is sensible to incorporate
temporal features of the data-set. In particular, influences can be evi-
dent after some time τ, which is reflected in a time-resolved variant
of the Pearson correlation coefficient:

ρx,y(τ) =
cov(x(t),y(t− τ))

σxσy
(12)
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In essence, ρx(t),y(t−τ)(τ) is the same coefficient as Equation 11, but
x(t) and y(t) are shifted against each other by τ. The chronological
order of influences is most obvious by normalizing ρx(t),y(t−τ)(τ)

over τ.

3.3 wiener-granger causality

A correlated occurrence of events must not and often does not corre-
spond to a cause and effect pair - correlation is not causation. Moreover,
a directionless measure, like correlation, is not suitable to determine
cause and effect without additonal information.

Presumably, the most famous and widespread method for detection
of causal influences is Granger Causality [3] (WGC) [3, 11]. Granger
adapted the work of Wiener [47] formulating a (directional) predic-
tion based approach that is based upon two fundamental assump-
tions:

(a) the cause occurs before the effect

(b) the cause contains unique information about the effect

In consequence, a cause can be used to predict an effect. The basic
idea is simple, suppose we want to predict future values of a stochas-
tic process X using all available information U and predict the future
using all information, excluding some other stochastic process U/Y.
If Y contains unique information about X, the prediction of X will be
improved incorporating Y: Y Granger-causes X.

Typically, not all information U, but rather a subset of observed vari-
ables is available. Thus, in its most basic form Granger causality is
limited to systems that can be modeled, e.g. in its simplest form by
(linear) auto-regressive models. A simple bivariate linear autoregres-
sive model is given by:In general, the model

can also include drift
terms and noise with

arbitrary variance.

(
x(t+ 1)

y(t+ 1)

)
=

(
Mxx Mxy

Myx Myy

)(
x(t)

y(t)

)
+

(
εx(t+ 1)

εy(t+ 1)

)

The future of both time-series is given by a linear combination of past
values at time t and additional noise term εi(t) ∈ N(0,σ2).

In Figure 10 x(t) and y(t) are shown for M = [0.88, 0.1; 0, 0.98] - a
unidirectional influence from past values y(t) to future values x(t+1).
In the shown time-series peaks and troughs of y(t) are leading their
counter-parts in x(t). Thus, it is likely the future peaks in x(t+ 1) can
be better predicted using information from y(t).
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Figure 10: Time series (100 steps) generated by a bivariate autoregressive
model using M = [0.88, 0.1; 0, 0.98] and σi = 1. The blue line is
the time-series x(t) and the red line y(t), the yellow line shows a
random time-series ξ(t) with µξ = 0 and σξ = σx.

Quantifying this insight, the time-series x(t) and y(t) are used to fit
a model, e.g. a linear vector autoregressive model:

x̄(t+ 1) =

p∑
i=0

Axxx(t− i) +

q∑
i=0

Axyy(t− i) + Ex|y(t)

ȳ(t+ 1) =

p∑
i=0

Ayxx(t− i) +

q∑
i=0

Ayyy(t− i) + Ey|x(t) (13)

In this generalization of the generating model p past values up to
x(t) and q past values up to y(t) are used to predict future values.
Trivially, for the time-series shown above p = q = 1 is the best fit, but
for arbitrary time-series a more general model is necessary.

Whether y(t) and its past values are used in the prediction changes
the residual or prediction error Ex(t). If Ex(t) is reduced by includ-
ing y(t), then Y Granger-causes X [48]. A simple way to introduce
a measure for causal influences bound between 0 and 1 is using the
variance of the residuals either incorporating y(t) (var(Ex|y)) or not
incorporating y(t) in the prediction, (var(Ex)): A measure limited to

[0, 1] is not
mandatory, but eases
the comparison of
different approaches.

GCy→x = ln
(
var(Ex(t))

var(Ex|y(t))

)
Here, no influence corresponds to 0 and maximum influence to 1.

In general, Wienger-Granger causality is not limited to linear vector
autoregressive models. Different regression models can overcome lim-
itations posed by the investigated time-series, e.g. in the case of non-
linear [49] or non-stationary [50] problems. Due to its understand-
able and simple concept and its versatility Wiener-Granger causality
is widely accepted, e.g. in neuroscience [51], biology [52], and eco-
nomics [53].
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In applications where causal influences in different frequency ranges
are of interest, Wiener-Granger causality can also be transformed to
Fourier space. The Fourier transformed vector autoregressive model
is given by:A Fourier

transformation [54]
is given by: ĝ(f) =∫∞∞ dxg(x)e−2πixf.

(
A(f) B(f)

C(f) D(f)

)(
x(f)

y(f)

)
=

(
Ex|y(f)

Ey|x(f)

)

For more details on how to infer a spectral Granger-causality from
this transformed model refer to [55, 56].

3.4 mutual information and transfer entropy

A more general variant of Wiener-Granger causality originates from
information theory. The basic idea is to quantify the amount of shared
and/or transferred information.

Naturally, the first step is quantifying the information within an ob-
servable, e.g. in the discrete variable X. The information entropy orIndeed, X can also be

some time-series
x(t).

so called Shannon entropy [57] is measuring exactly this:

H(X) =
∑
x

p(x) log2
( 1

p(x)

)
The probability of the occurrence x is p(x), the second factor, log2(

1
p(x)),Notably, certain

(p(x) = 1) and
impossible

(p(x) = 0) outcomes
do not contribute to

the entropy.

is quantifying the amount of information of said event - rare events
contributing more information. In principle, the base of the logarithm
is arbitrary, but log2() divides the entropy into units of bits. The toss
of a fair coin contains one bit of information, the throw of a six sided
die log2(6) ≈ 2.6 bits. The amount of bits can also be thought of the
smallest number of yes/no-questions to determine the outcome. For a
coin the single question ’Heads?’ is sufficient, while for the case of the
six-sided die the questions ’Larger 3?’ and ’Even?’ are not enough to
determine the outcome.

Knowing that information is a measurable quantity, one can compare
information of a variable X with another one Y or derive the amount
of shared information. For the joint probability of the two variables
pXY(x,y) and the marginals p(x) =

∑
y pXY(x,y) the mutual infor-

mation [58] is then given by:To avoid confusion
with later notations
the typical notation

of I(X; Y) is replaced
by MI(X; Y).

MI(X; Y) =
∑
x,y

pXY(x,y)log
pXY(x,y)
pX(x)pY(y)

The mutual information is the overlap or shared information of X and
Y. In other words, if Y is known how much information is revealed
about X or translated to yes/no-questions: how many less question have
to be asked about X.
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Figure 11: Mutual information MI(x(t); x(t + τ)) between the time-series
x(t) and x(t + τ) of the Lorenz attractor (Figure 6) for τ be-
tween 0 and 1000. τ1 (red line) is marking the first minima of
MI(x(t); x(t+ τ)).

Importantly, mutual information is a symmetric quantity and thus
suffers from the same drawbacks as correlations and is not suitable
to infer causal influences. However, it is a useful measure to derive
optimal parameters for state space reconstruction (Section 2.2.4). In
Figure 11 the mutual information is shown for the times-series x(t)
of the Lorenz-attractor depicted in Figure 6. As a parameter for state
space reconstruction the first (local) minimum at τ1 = 172 is a good
choice, since x(t) and x(t+ τ) share little information - corresponding
to an unfolded state space reconstruction.

A measure suitable to derive causal influences is the so called Transfer
entropy [12] that shares the same basic thought as Wiener-Granger-
causality and in the case of vector-auto-regressive models matches
Wiener-Granger-causality. Since this short section only aims to illus-
trate the basic idea of methods from information theory, we will only
illustrate the notion of transfer entropy using Figure 12. For a com-
prehensive and detailed view consider for example [58] or other text-
books on this topic. Noteworthy, the

interaction
information can, in
contrast to other
quantities, also be
negative.

Figure 12: Venn diagram (of infor-
mation) illustrating infor-
mation theoretic quanti-
ties. Each circle (blue, red,
green) is the entropy of
the respective variable. A
selection of relevant areas
are labeled. Mutual infor-
mation is the pairwise over-
lap of circles, the (dark
green) overlap between all
circles is the interaction in-
formation and the purple
area the transfer entropy
MI(x;y|z).
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In Figure 12 each circle represents the information of one variable, i.e.
X, Y, Z. The intersection of two circles, i.e. the union of dark green
and purple colored areas represents the amount of shared informa-
tion (the mutual information, MI(x;y)). More interesting is just con-
sidering the purple area. The amount of shared information between
Y and X that is not contained in Z.

This can be easily transferred to time-series and then gives an analog
measure to Wiener-Granger causality. Suppose blue circle is the infor-
mation within a time-series [y(t), ..,y(t− L)], and the information of
another time-series is the union of the other two circles, future val-
ues x(t) depicted by the red circle and past values x(t− 1), .., x(t− L)
by the green. Naturally, future and past share some information, but
there can be information in future x(t) (red) that is contained in past
values of y(t), ..,y(t− L) (blue), but not covered its own past (green).
The resulting quantity is called transfer entropy or conditional mutual
information and measures the amount of this information [12]:

Ty→x =MI[(x(t); {y(t− 1), ..,y(t− L)}|{x(t− 1), .., x(t− L)}]

This directly links to Wiener-Granger causality: More information
about x(t) in the past of y(t), ..,y(t−L) also means a better prediction
of this future.

3.5 causal influences from state space reconstructions

3.5.1 Existing Methods - Convergent Cross Mapping

The convergent cross map convergent cross mapping [4] (CCM) method
proposed by Sugihara et al. [4, 13] shares the basic idea of WGC esti-
mating causal influences from the prediction of future values. However,
these predictions are not based on past values of the time series, but
rather points in the vicinity on the underlying manifold are used for
prediction.

Consider two observed time series {x(t)} and {y(t)} that causally influ-
ence the respective other. Due to Takens theorem [14] the underlying
manifolds, rx(t) and ry(t), can be reconstructed. Furthermore due to
the bilateral interaction, both reconstructions recover the whole over-
all state space (X, Y) and are homeomorphic copies of each other.

In particular, the nearest neighbors around a reference point remain
close-by. Thus, CCM projects the nearest neighbors tx around rx(tx)
to the other space ry(tx). The new neighbors are weighted based on
their distance to the reference point t in X and used to predict y(t+ 1).
The prediction error is then quantified via the Pearson cross correla-
tion coefficient between predicted next time-step and actual next step
ρ(y(t+ 1), ŷ(t+ 1)|MX). Varying the amount of available data reveals
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the underlying causal influences, since the predictive power scales dif-
ferently based on the interaction strength.

In Figure 13 one of the examples from Sugihara et al. [4] is repro-
duced. Two time-series from an experimental measurement of a predator-
prey systems are shown in (a). The time-series were analyzed using
the same approach as [4], the resulting cross map skill from predator
to prey (blue) and vice versa (red) is depicted in (b). The higher cross
mapping skill is inferred for the top-down direction originating from
the predator. In combination with the reverse direction convergent
cross mapping infers a bidirectional interaction with a stronger causal
influence from prey to predator.

0 50
0

100

200

300

400
(a)

20 40 60

0.6

0.7

0.8

0.9
(b)

Figure 13: (a) Time series of a predator-prey system. The blue curve shows
the prey population and red the predator. The population size is
measured as count/mL. The analysis was done using the same
parameters as in [4] - the time-series were embedded using τ =

1 and m = 3, (b) Cross map skills measured by Pearson cross
correlation coefficient ρ. The blue curves show ρ for the mapping
prey to predator and red vice versa.

While Sugihara et al. showed in their original [4] and following work
[59] the power of this new method, it could be shown in other works
that CCM is flawed. Yielding wrong directions of dominant influ-
ences for synchronizing system [60–62], e.g. in the case of flue-humidity
interactions.

At heart, both our later proposed methods (topological causality and For more details on
CCM, refer to [4]
and its
supplementary
materials.

cross projection method), are motivated by CCM, but render the predic-
tion of future states unnecessary. Instead the transferred information
between system is inferred from metric properties of the state space
reconstructions. In fact, already the metric and topological properties
of these manifolds allow to infer causal relations [1, 63–65].
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3.5.2 Dimension of (sub)-systems

The basis for CCM, and other methods alike, is provided by the fun-
damental properties of (coupled) dynamical systems resulting from
Takens theorem [14]. In principle, these fundamental properties are
sufficient to infer causal influences by comparing the dimensions of
(sub-)systems.

Consider a system comprised of subsystems X, Y,Z,W as shown in
Table 1 and their respective observed time-series. The reconstruction
from these time-series differ, especially their dimension.

Z

X

Y W

observable reconstructed system

X {X}

Y {X, Y,Z}

Z {X, Y,Z}

W {X, Y,W,Z}

Table 1: (left) Interaction structure of a system comprised of 4 subsystems
(X, Y,Z,W), arrows indicating the direction of interaction.
(right) Observable and the respective reconstructable (sub)-system.

Since X has only outgoing interactions no information about the other
subsystem is available in the observable x(t) resulting in a recon-
structed system of only the subsystem {X}. Other subsystems further
downstream (in the flow of information) also have information about
the former subsystems i.e. an observable z(t) of subsystem Z is able to
reconstruct the joint space of {X, Y,Z}. Indeed, the joint space {X, Y,Z}
is also a reconstruction from the observable y(t) due to the backwards
connection from Z to Y. Only an observable from subsystemW yields
the a reconstruction of the full overall system.

As illustrated in Table 1 the reconstruction using different observables
contains information about the interactions between (sub-)systems. In
fact, the dimension of the reconstructed space indicates the share of
information about a subset of the overall system included in a single
observable and can be used as binary criterion for interactions be-
tween subsystems [66]. In the example shown above the space recon-
structed from W has the highest dimension and represents the whole
space of the system {X, Y,W,Z}. A higher dimension corresponding
to an observable that reconstructed a greater fraction of the whole
system and thus being later in the interaction-chain, e.g. having more
incoming connections from different subsystems.

Often, causal influences of systems with bidirectional interactions are
especially interesting, for these it is not sufficient to only consider the
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dimension. Here, not only the dimension of the reconstructed spaces,
but additional properties of reconstructions have to be used.

3.6 expansive distortions of neighborhoods

Expansive properties as a proxy for casual influences were touched
upon in the introduction and illustrated in Figure 1. The images
shown are based on a set of (coupled) logistic maps:

x(t+ 1) = x(t)[Rx(1− x(t)) −wy→xy(t)]

y(t+ 1) = y(t)[Ry(1− y(t)) −wx→yx(t)] (14)

The introduction briefly elucidates expansive properties for the case
of uncoupled and unilaterally coupled logistic maps. Here, we also
show the case of bilaterally coupled maps in Figure 14.

Figure 14: Reconstruction ry(t) (a) and rx(t) (b) of the state space of two
noise free unilaterally coupled logistic maps with wy→x =

0,wx→y = 0.3,Rx = Ry = 3.82. 103 data points are shown
in grey and the ten nearest neighbours in ry(t) around a refer-
ence point are shown in blue in (a) and their images in X (red
circles) in (b). (c) & (d) show the equivalent results for uncou-
pled coupled logistic maps (wy→x = 0,wx→y = 0), while (e)
& (f) show reconstructions for bilaterally coupled logistic maps
(wy→x = 0.1,wx→y = 0.2). The embedding dimension is m = 4

and the time-delay τ = 1 for all cases.

The picture above shows the state spaces ry(t) and rx(t) reconstructed
from time series of the aforementioned logistic maps. The rows from
top to bottom deal with unilateral coupled, (a) & (b), uncoupled, (c)
& (d), and bidirectionally, (e) & (f), coupled logistic maps.
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Already, the shown reconstructions are insightful and clearly show
the increasing dimension postulated in the previous section. With an
existing connection from X to Y (middle row), the one dimensional
line in the reconstructions space widens to a two dimensional object
suggesting causal influences from X to Y.

The basis for the link between expansive properties and causal in-
fluences is the following simple consideration: Let a system X unidi-
rectional influence another system Y. Obviously, Y receives informa-
tion about X. Furthermore, states of Y will contain information about
states of a X, while states of X by assumption cannot have ’knowl-
edge’ about Y. For certain classes of dynamical systems Takens’ Theo-
rem [14–17] allows the reconstruction of manifolds of the dynamic (as
shown in Figure 14). Due to incoming information from X subsystem
Y can not only reconstruct its own dynamic, but more importantly
the overall dynamic of (X, Y). A key insight is that expansive local
distortions reflect these causal influence between system components
X and Y.

Consider a reference point t for the unilaterally coupled maps. The
closest neighbors tk of the reference point are marked in blue in (d).
Their respective time index tk links them with a set of putative neigh-
bors in the reconstruction in X (c). If Y would have unlimited infor-
mation about X, neighbors around a reference point in rx(t) and ry(t)
were identical. In general, this is not the case, also the putative neigh-
bors shown in (c) are more spread than a typical set of neighbors. A
stronger coupling weight wx→y, results in more transferred informa-
tion and more localized neighbors. The expansion of neighborhoods
is thus inversely related to coupling weight and causal influence.

For vanishing weight (upper row) neighbors are spread of the whole
reachable state space and are on par with random neighbors. If in-
formation is also transmitted from Y to X - the systems are bilateral
interacting - X is also able to reconstruct the overall state space (bot-
tom row). Both state reconstruction are homeomorphic to the overall
dynamic - topologically they are equivalent and local neighborhoods
are only distorted in relation to the respective other space.

The following chapters deal with our two methods, topological causal-
ity and cross projection method, quantifying these expansive properties
to infer causal influences. Topological causality estimates the expansive
properties directly from the local mappings between state space re-
constructions. This allows to derive causal influences in a straightfor-
ward, analytically tractable manner.

Expansive properties can be more robustly estimated by looking not
at expansion between different state space reconstructions but instead
within each reconstruction, respectively. This is done by comparing
the sizes of local neighbourhoods in one state space reconstruction
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with both, the projections of neighbours from the other state space
reconstruction and random neighbours. The resulting expansive dis-
tortions of neighborhoods in the manifold not only capture possible
dimensional conflicts among state reconstructions [63], but also al-
lows for a statistical criterion to control for false positive detection of
causal influences. A fundamental advancement of CPM from TC is the
notion that the neighborhood sizes are only compared in one space
rendering this method invariant to differing scales of the state space
reconstructions and less sensitive to fluctuations of densities.

Chicharro et al. [67] improved these distance based methods by look-
ing at the rank of neighbors instead of their distance. However, our
methods have the advantage of being time-resolved, resulting in state- Or areas of strong

interaction in state
space.

dependent measure for causal influences that can also infer changes in
the dominant direction of influence.

Using inter neighborhood relations to estimate causality is not a novel
concept of CPM (introduced in Chapter 5). There is a selection of
other methods also using the expansive properties either directly or
indirectly. Čenys et al. [68] termed the average distance in the cor-
responding space the mean conditional dispersion and noticed that for
small ε there will be a dependence on the coupling strength. Vari-
ous other distance based approaches, e.g. [69], were proposed that
use a fixed number of neighbors instead of a fixed neighborhood
size. These methods compare the distance to the nearest neighbors
with the conditioned distance and/or the mean distance to all other
points. Our methods:

topological causality
[1] and cross
projection method
[2].

3.7 conclusion

The notion of causality is strongly associated with intervention. When
dealing only with observed time-series it is more suitable to consider
causal influences. The inference of causal influence is used as a tool
to elucidate hidden or not apparent interactions between systems or
system parts. It is supposed to facilitate a better description of a sys-
tem.

The simplest approach to investigate the interaction structure are cor-
relations. However, undirected measures, like correlations, lack the
ability to infer a direction of influence. State of the art methods (for
inference of causal influences) are able to do this by assessing the pre- ’This’ = deriving an

directed measure for
causal influences

diction quality of future states. In contrast, to these methods, our pro-
posed approach solely relies on expansive distortions of state space
reconstruction and provides a time resolved measure for causal influ-
ences.
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T O P O L O G I C A L C A U S A L I T Y

The true delight is in the

�nding out rather than in

the knowing.

(Isaac Asimov)

The closing part of previous chapter already introduced the key in-
sight and basis of topological causality [1] (TC). Local distortions in
the mappings between state-space reconstructions of different observ-
ables reflect the time dependent efficacy of causal links among the
underlying system components.

The causality measure, topological causality, derived from this insight
is analytically accessible for simple systems and for more complicated
ones can be estimated in a model free, data driven manner. For deter-
ministic systems the expansive distortions of mappings among time-
delay state space reconstructions from different observables not only
reflect the directed coupling strengths, but also the dependency of
effective influences on the system’s temporally varying state.

This chapter addresses said concept of topological causality, introduced
by Harnack, Laminski, Schünemann and Pawelzik in [1]. The first sec-
tion elucidates how to to uncover causal influences from the expansive
properties of state space reconstruction and especially how to mea-
sure the expansions. The second section covers some basic results as
a proof of concept. Both of these sections are also covered in the pub-
lication [1] and its supplementary material in a similar manner. The
last section showcases two examples, where topological causality fails
to infer the correct underlying direction of causal influences.

4.0.1 Contributions to Topological Causality

The original publication was designed by Daniel Harnack and Klaus
R. Pawelzik. Daniel Harnack wrote the manuscript for publication,
did most of the calculations, analysed and performed simulations
and prepared the figures. I contributed to development and testing of
numerical procedures, provided a draft text for the section on numer-
ical methods in the paper and designed Figure 17. Maik Schünemann
provided the mathematics for invariance under transformations and
the connection to information theory as well as draft for the corre-
sponding section in the paper.

In particular, Figure 15 and Figure 16 and their encompassing text
have strong correlations with [1]. The notation was overhauled to bet-
ter match with the rest of this work. The section dealing with ana-
lytical results is partly based on supplementary materials of [1] and

33
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on my master thesis [70], part of these results are also featured in
the supplement of [1]. While the last section is discussed in the Bach-
elor thesis of Ronja Gronemeyer [71], to which I contributed in the
supervision.

4.1 from expansive distortions to topological causal-
ity

Following the argumentation in Harnack et al. [1], consider a dy-
namical system Z composed of two subsystems, X and Y, governed
by

ẋ(t) = f(x,wy→xµx(y)) ẏ(t) = g(y,wx→yµy(x)),

where µi(i) denote fixed scalar functions and wi→j coupling con-
stants. x(t) and y(t) are the multidimensional states of the individuali, j ∈ {x,y}

systems components.

The trajectories (x(t), y(t)) form an invariant manifold in the state
space of the joint dynamical system. A manifold in a delay coordinateOnly a single

variable of the
multidimensional

states x and y is
used for

reconstruction.

space is visited by ri(t) = [i(t), i(t+ τ), (i(t+ 2τ), . . . , i(t+(m− 1)τ))]

- the reconstruction (Equation 9) via Takens theorem.

The two manifolds, rx and ry, are topologically equivalent if home-
omorphic mappings between the manifolds exist. If both wx→y 6= 0

and wy→x 6= 0, also homeomorphic mappings between the recon-
structions exist, i.e. Mx→y, from rx to ry, and My→x, from ry to rx.
To illustrate how these mappings between reconstructions relate to
directed effective influence, consider the following thought experi-
ment:For a more explicit

example consider the
neighbor relations in

Figure 14.
First, a system with unidirectional interaction is observed, i.e.wx→y 6=
0; wy→x = 0. By virtue of Takens’ theorem, a unique mapping My→x
from reconstruction ry to rx exists. However, the reverse direction
Mx→y does not exist, since X has no information about Y. This is
illustrated in Figure 15 (a) by a joint manifold (rx, ry) lying folded
over rx but uniquely over ry: ry(t) is not uniquely determined for all
states rx(t). Locally, Mx→y can be attributed a diverging expansion
property: since close neighbors of a given point rx(t) correspond to
distant parts of the joint density (rx, ry), i.e. local expansions extend
to macroscopic scales. In contrast, close neighbors around a reference
point ry(t) remain in the vicinity of the corresponding point rx(t), the
mapping in this direction preserves the neighborhood relations. Note
here that somewhat counter-intuitively the influence from x to y is
reflected in the ’backward’ mapping My→x: the existence of My→x
implies an interaction from X to Y.Mti→j is the local

linearization of the
mapping Mi→j. Now increasing wy→x while keeping wx→y > wy→x leads to mutual

but asymmetric interactions. Reconstructions rx and ry will now, both,
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(a) (b) (c)

Figure 15: The relation of points rx and ry on multidimensional manifolds
illustrated in 1-d. The joint manifold represented by (rx, ry) can
be interpreted as the function mediating the mappings Mi→j be-
tween both spaces, and local linearizationsMti→j of the mappings
as the slope around a reference point. (a) When only wx→y 6= 0,
a one-to-one mapping My→x from ry to rx exists, but not in
the reverse direction: ry(t) is not uniquely determined for all
states rx(t). Locally, Mtx→y can be attributed a diverging expan-
sion property: since close neighbors of a given point rx(t) corre-
spond to distant parts of the joint density (rx, ry), i.e. local ex-
pansion extend to macroscopic scales. The dashed lines visualize
the non-uniqueness. (b) Here, both couplings are non-zero, but
wx→y > wy→x. Larger independence of x implies a stronger ex-
pansion byMx→y than byMy→x at most reference points, which
is indicated by the higher slope of (rx, ry) when seen from rx. (c)
If no coupling exists, the expansion diverges in both directions.

reveal the same global system state. However, the weaker coupling
from Y to X implies that a neighborhood of states around ry(t) is
larger than the corresponding neighborhood around rx(t) for most
reference points t: Both rx and ry are driven away from their state
at time t by a combination of internal dynamics and the external
influence from the other variable, but Y is more so due to the stronger
coupling wx→y. This entails that Mt

x→y will be more expanding than
the mapping Mt

y→x, and the joint manifold (rx, ry) lying uniquely
over both reconstruction spaces, but more ’steeply’ over rx (Figure 15

(b)).

If wy→x is now decreased again to approach 0, the expansion etx→y
will increase until it diverges at the point where (rx, ry) folds in on it-
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self as seen from rx (Figure 15 (a)). This happens at wy→x = 0, where
the mapMx→y looses uniqueness and corresponding points to neigh-
bors in rx lie scattered over the whole dynamical range of ry. Thus we
equate infinite expansion to the non-existence of the corresponding
mapping.

Consequently, when the couplings among X and Y vanish altogether,
both component systems will behave independently and the density
of the resulting joint manifold factorizes. When observed from ref-
erence states rx(t) and ry(t), the mappings can be considered in-
finitely expanding, since for most reference points close neighbors
correspond to distant points in the respective other space (Figure 15

(c)).

Following these topological considerations, local expansions of theIn hindsight, metric
causality would be a
more suitable name.

mappings between reconstruction manifolds of two observables can
be utilized for a graded measures of the directed causal influences be-
tween component systems represented by these observables.

Assuming that the mappings between reconstruction are differen-
tiable,Mt

i→j denotes the local linearization (Jacobian matrix) ofMi→j
at the reference point t: Given that {ti1, ..., tik} are the time indices of
the nearest neighbors in ri to the reference point ri(t), Mt

i→j is the
linear approximation of the mapping that projects {ri

(
ti1
)

, ..., ri
(
tik
)
}

to {rj
(
ti1
)

, ..., rj
(
tik
)
}. In practice, we analyze the expansion eti→j ofNote that neighbors

are searched in i are
projected to rj.

Mt
i→j, which is determined by the singular values σtk(M

t
i→j) ofMt

i→j
larger than 1:

eti→j =
∏
k

max (1,σtk(M
t
i→j)) . (15)

The expansion eti→j is inversely related to the strength of causal in-
fluence j → i. Moreover, this expansion is not only depending on the
coupling weights, but also on the state of the system, so that different
regions in state space could be characterized by different directions
of causal dominance. To measure such state dependent asymmetry of
causal influence, we define an index −1 6 αt 6 1:

αt =
log(etx→y) − log(ety→x)
log(etx→y) + log(ety→x)

(16)

This definition is motivated by the relation of the log expansions to
loss of certainty in information theoretical terms (Supplementary Ma-
terials of [1]). Additionally, it is suitable to define a mean causal asym-
metry −1 6 α 6 1 index by averaging over the states visited during
the dynamics:

α =
〈log(etx→y) − log(ety→x)〉t
〈log(etx→y) + log(ety→x)〉t

(17)
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However, α and αt do not differentiate between the qualitatively dif-
ferent situations of balanced strong and balanced weak influence. For
this purpose and the case of unilateral interactions it is more feasible
to quantify the strength of causal influence (TC) instead of an asymme-
try index:

Cx→y =
1

1+ 〈log
(
ety→x

)
〉t

Ctx→y =
1

1+ log
(
ety→x

) (18)

C ∈ [0, 1] satisfies the following two fundamental intuitions about
causal influences: TC from component system X to Y vanishes if no
causal link exists (wx→y = 0), and for small couplings it is a monotonous
function of the coupling weight wx→y. Note that also here the impor- For certain coupling

schemes of logistic
maps even a linear
function of wi→j

tant distinction between TC and coupling weight holds: C depends
on the coupling weights as well as on the current state of the system
and the internal dynamics of each component.

4.2 exemplary results for topological causality

Again, consider time series generated by coupled logistic maps (Equa-
tion 2) as an example. The state space of the system is shown in
Figure 16 (a), for each point its color signifies the respective time-
resolved asymmetry index αt. The mixture of

colors results from
the projection to the
x(t) − y(t)-plan,
later Figure 20
shows an unfolded
space (for unilateral
interaction).

The asymmetry index αt changes for different regions of the state
space. However, for close states these changes are continuous - similar
states share a similar causal asymmetry.

These fluctuation are also reflected in the representation of αt over
time (Figure 16 (b)). The changes of the dominant direction of causal
influences corresponds to various dynamical regimes among the time
courses of rx(t) and ry(t) and are rather volatile. This is due to the
nature of logistic maps, where a future state is in a completely differ-
ent region of state space as its predecessor. This also obvious to see
in x(t) and y(t) , shown in Figure 16 (b) & (c). When the influence
from X to Y is stronger than the reverse direction (blue region), i.e.
etx→y > e

t
y→x, the trajectory of y(t) shows stronger fluctuations than

the one of x(t).

Lastly, the average causal asymmetry α is shown for different combi-
nations of coupling weights in Figure 16 (d). The fact that α 6= 0 for
wx→y = wy→x reflects the difference between the dynamical equa-
tions for x(t) and y(t), and highlights again the expansion is not a
mere proxy for the coupling weight, but actually measures the effec-
tive influence exerted along the causal link.
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Figure 16: (a) The state-space dependent αt in a system given by Equa-
tion 14 is shown for wx→y = 0.05, wy→x = 0.02. (b) A segment
of αt and the corresponding time courses (c) of x(t) and y(t) for
the same coupling weights. Different regimes of dominant causal
direction give rise to different dynamical motifs. If αt is close to
0 for subsequent time points (light gray), x and y synchronize.
If αt varies strongly around 0 (dark gray), X and Y desynchro-
nize. When the causal influence from one variable to the other is
dominant, here from X to Y (blue), the trajectory of y(t) shows
higher amplitude excursions than the one of x(t). (d) The mean
asymmetry index α for the same system with varying coupling
strengths.

As an example of a more complex case that is not analytically tractable,
consider a system of coupled Rössler equations [30] described by:

ẋi(t) = −fiyi(t) − zi(t) +wj→izj(t)

ẏi(t) = fixi(t) + 0.1yi(t)

żi(t) = 0.1+ zi(t)[xi(t) − 14], i = 1, 2 (19)
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The frequency parameters f1 ≈ 0.99 and f2 ≈ 0.85 are incommen-
surable and coupling weights are set to w1→2 = 0.2, w2→1 = 0.6.
The observables yi(t) are shown in Figure 17 (d). Both variables are
not directly part of the interaction between the individual oscillators.
Thus, their respective time-series do not show any effects of the inter-
action.

The chosen interaction by the additive term wj→izj(t) guarantees a
strong state dependence of the interaction. Strong causal influences are Causal influences

can also be derived
for other coupling
schemes, but the
clear state
dependence is most
prevalent using
zi(t)

only expected if the driving zi component deviates from the xi-yi-
plane. Exactly, in these peaks the derived measures for causal influence
show the strongest asymmetry, (a) and (b). The state, and more im-
portantly time, dependence of the interaction is even more evident,
if the time resolved causal influence Ct2→1 is shown with the variable
z2(t) that drives the interaction in this direction (c).

Figure 17: Two bidirectionally coupled Rössler systems Equation 19 with
w1→2 = 0.2, w2→1 = 0.6. The time series of 105 data points
were generated with a step size of dt = pi/25 and embedded
with dimension m = 13 and τ = 12. αt and Ct2→1 are shifted to
be aligned with the temporal mean t+ 1/2(m− 1)τ of the corre-
sponding reconstructions ri(t). (a) & (b) Local asymmetry αt of
104 points shown on projections of the attractor to each system.
(c) Ct2→1 (blue) for 200 consecutive time steps and the correspond-
ing time series of z2 (red). The dashed line marks chance level. (d)
Time series y1 and y2 used to estimate Ct2→1.
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4.2.1 Analytical Results

For some (simple) system, e.g. coupled logistic maps Equation 2, TC
remains analytically tractable. Consider logistic maps, for simplic-
ity the internal dynamics are substituted with gx(t) & gy(t) respec-
tively:

x(t+ 1) = x(t)[Rx(1− x(t)) −wy→xy(t)] = gx(t) −wy→xx(t)y(t)

y(t+ 1) = y(t)[Ry(1− y(t)) −wx→yy(t)] = gy(t) −wx→yy(t)x(t)

For small perturbations, i.e. small neighborhoods, the mapping from
rx to ry can be linearized around a reference point ri(t) = (i(t), i(t+
1)), such that (j(t), j(t+ 1))T =Mt

i→j(i(t), i(t+ 1))
T is

Mt
i→j =

1

wjij(t)

(
g′i(t)wjij(t) −1

(g′i(t)wjii(t))(g
′
j(t)wijj(t)) −(g′j(t)wiji(t))

)

with g′i(t) = Ri(1− 2i(t)) being the derivative of the internal dynam-
ics of i(t). In this example one singular value of Mt

i→j is greater 1The arrows in the
subscript are
removed for

compactness
(wij = wi→j).

and attributed to the expansive direction of the (linearized) mapping.
Thus, the expansion is

etj→i =
1

|wi→j|
χ(wx→y,wy→x, x(t),y(t)).

The leading factor 1/wi→j is dominating the expansion for small
weights and χ(wx→y,wy→x, x(t),y(t)) is mostly constant. Only for
large weights the expansion becomes a function of all weights and
the system state.

Thus, comparing analytical and numerical results it is sensible to in-
troduce an asymmetry index purely derived from (small) weights:

αw =
wy→x −wx→y
wy→x +wx→y

(20)

Figure 18: Causal asymmetry αTC for
two coupled logistic maps
over the asymmetry of
weights αw. N = 103

data points were embed-
ded with an embedding di-
mension m = 4 and time-
delay τ = 1 for different
coupling weights.

For small coupling this is in good agreement with the analytic results,
in Figure 18 the causal asymmetry α is shown over αw for coupling
weights forming an uniformly distributed αw. As can be seen theMore Details are

provided in the
supplement of [1].
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asymmetries are in good agreement apart from the the limiting cases
αw = ±1. Here, one coupling weight is big, thus the state of the
system also contributes strongly to the expansion and to αTC.

Numerically, TC appears straightforward to compute by fitting the
Jacobian of the mapping between local neighborhoods and then cal-
culating the singular values. However, in practice we found two con-
secutive principle component analysis are needed to be numerically
stable, for more details refer to the supplemental material of [1]. For
synchronizing systems and/or system disturbed by strong noise this
proved not reliable enough requiring an overhauled or improved vari-
ant of TC.

4.3 synchronization in coupled limit-cycles

So far, all examples covered cases in which TC obtained reliable and
somewhat predictable results, but in two cases TC fails. The first
problem is noise leading to wrong neighbors and thus affecting the
computation of mappings between reconstructions. We managed to
(somewhat) overcome this in [1] by refining the numerical methods,
in particular by including the aforementioned principle component
analysis. Furthermore, there is a wide range of methods to reduce
noise, rendering this problem, in general, manageable. The second
problem is the inference of the wrong dominant direction of influ-
ence (in certain systems) and this is shown in the following example.
In the end, this lead us to refine TC with the approach covered in
Chapter 5. In hindsight,

synchronization is a
problem for all
methods inferring
causal influences.

For a system prone to synchronization, consider a set of two coupled
Fitzhugh-Nagumo neurons. This simplified neuronal model consists
of a voltage-like and a recovery variable described by two coupled
differential equations allowing to model the biological phenomena
underlying spike-generation:

ẋ1 = x1 −
1

3
x31 − x2 + I+Ωi→j, Ωi→j = wi→j

1

1+ e−3xi

ẋ2 = f(x1 − 0.8x2 + 0.7) (21)

On their own each neuron forms a limit cycle in the state space if the
input current I is between 0.4 6 I 6 1.42. Two neurons are linked
via the coupling functions Ωi→j. Already, for an unilateral coupling
wi→j = 0.75 & wj→i = 0 they are synchronizing and form a shared Indeed,

non-identical
Fitzhugh-Nagumo
neurons also
synchronize.

limit cycle. In Figure 19 (a) the projection of this limit cycle on the
x-y-plane is shown with the color indicating the causal asymmetry
αt.

The causal influence changes depending on the state of driving and
driven subsystem. However, for a unilateral coupling scheme this
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Figure 19: Two unilaterally coupled (wi→j = 0.75 & wj→i = 0) Fitzhugh-
Nagumo-Neurons: The differential equations are solved using a
step size of dt = 0.1 and N = 105 data points of the time series
were embedded using an embedding dimension of m = 5 and
time-delay of τ = 1000dt using k = 100 neighbors. (a) shows the
projection of the state space as x-y-plane. The color coding reflects
the causal asymmetry αt. (b) A section of the time-series of the
voltage-variable x(t) (blue) and y(t) (red), the single oscillation is
equivalent to one cycle in the state space. (c) The (euclidean) dis-
tance of two consecutive time steps (in the reconstruction spaces
rx(t) and ry(t)) as a proxy for instantaneous velocity. (d) The
causal asymmetry αt (grey) and a renormalized asymmetry α̂t
(black)

must not change the sign of α and thus predicting the wrong di-
rection of causal influence.

Taking a closer look reveals changes in velocity along the the limit
cycle. Since dt is fixed, a good proxy for the velocity is the distance
between two (temporal) consecutive states, i.e. rx(t) and rx(t + dt),
shown in Figure 19 (c). Comparing these velocities with the causal
asymmetry shows that the changes in αt are caused by different veloc-
ities along the limit-cycle.

In fact, re-normalizing the expansions with the local velocities

êi→j = ei→j
vrx(t)

vry(t)

yields an asymmetry α̂t invariant against these velocities changes
(Figure 19 (c)) that is either 0 or positive. This is a better agreement
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for a synchronizing unilateral system: Either the right direction of
causal influences is detected or the systems are synchronized and thus
indistinguishable yielding αt = 0.

More details, e.g. different coupling schemes (with matching results)
were studied in the Bachelor thesis of Ronja Gronemeyer [71].

4.4 conclusion

Expansive distortions in state space reconstructions reflect causal in-
fluences. The concept of topological causality computes these distortions
from the local mappings between state space reconstructions result-
ing in a time-resolved measure for causal influence. In simple systems
TC is fully analytically tractable and in systems with weak interac-
tions TC has a linear relation to coupling weights.

In contrast to existing methods like [3, 4], TC infers these causal in-
fluences directly from the properties of the state space. Synchronous
behaviour in a systems (like the neuronal model) can cause TC to
infer wrong directions of dominant influence requiring a new ap-
proach.





5
C R O S S P R O J E C T I O N M E T H O D

All that is gold does not

glitter, Not all those who

wander are lost..

(J.R.R. Tolkien)

The previous chapter (Chapter 4) introduced the basic idea of Topo-
logical causality: Local distortions in the mappings between state-space
reconstructions based on different observables reflect the time depen-
dent efficacy of causal links among the underlying system compo-
nents.

However, as shown in the end of the previous chapter (Section 4.3) it
is particularly difficult to infer the dominant direction of causal influ-
ence for synchronising systems. This resulted in a refined approach
called cross projection method [2] (CPM) - a more stable advancement
of TC that will be covered in this chapter.

The basic idea of this approach is straightforward and closely resem-
bles the concept of TC, but uses the fact that already the neighbor-
hood relations are sufficient to quantify expansive distortions. If (sub-
)systems are fully connected, the corresponding points to a set of
neighbors in X, will not be randomly distributed in Y. The extent of
the distribution of this projected set of neighbors is directly linked to
the expansive distortions derived by TC.

Using these inter neighborhood relations to estimate causal influences
is not new. For interrelated subsystems spatial neighbors within a
small range ε in one reconstruction will have corresponding points
in the other reconstruction that are within a range of similar scale.
Čenys et al. [68] derived the average distance of neighborhoods notic-
ing that for small distances there will be a dependence on the cou-
pling strength. Various other distance based approaches, as e.g. in
[69] were proposed that use a fixed number of neighbors instead of a
fixed neighborhood size. These methods compare the distance to the
nearest neighbors with the conditioned distance and/or the mean dis-
tance to all other points. Chicharro et. al. [67] improved these distance
based methods by quantifying the rank of neighbors instead of their
distance. In doing so their method was independent from different
subsystem scales and the detection of causal influences was improved.
While these methods have their merits and drawbacks their relation
to TC is at most indirect.

This chapter covers the concept of (CPM). Part of the results where
already published by Laminski (myself) and Pawelzik in [2]. Addi-
tional sections are added to add more context or details that where
not covered in original publication. The first section introduces this

45
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alternative method, in particular how to infer expansive properties
and thus causal influences from inter neighbor relations. The next ad-
dresses basic properties of CPM, dependence on coupling weights,
noise and the amount of available data. Then some additional (and
necessary) improvements of CPM are introduced overcoming some
of the more challenging applications. These are introduced in the fi-
nal section, ending with a selection of results from experimentally
measured time-series.

5.1 expansive properties from inter-neighborhood re-
lations

Like Topological Causality this alternative approach relies on the ex-
pansion of manifolds of reconstructed observables by combining lo-
cal and global properties of the relations among nearest neighbours
of reference points in both reconstructions to estimate said expan-
sions.

Again, consider time series from dynamical systems composed of two
subsystems X and Y. For example, two unilaterally (wy→x = 0 and
wx→y = 0.3) coupled logistic maps:

x(t+ 1) = x(t)[Rx(1− x(t)) −wy→xy(t)] + ηx(t)

y(t+ 1) = y(t)[Ry(1− y(t)) −wx→yx(t)] + ηy(t) (22)

with reflecting boundaries, system parameters Ri and subjected to ad-
ditive Gaussian noise ηi(t) ∈ N(0,σ),

〈
ηi(t)ηj(t

′)
〉
= δi,jδt,t ′σ

2.

For now, we will consider the noise-free case. Here, the time-delay
reconstruction of subsystem X can be projected to a single dimension
and therefore the whole system can be visualized in three dimensions
by showing x(t) over the (y(t),y(t+ 1))-plane (Figure 20).

It shall be noted that the space X is actually curved, but the curvatureA 2 dimensional
manifold in rx(t) =

(x(t), x(t+ 1))
is sufficiently small, monotonic and non self-intersecting to not influ-
ence local neighborhood relations. Thus, the visualisation in Figure 20

only using x(t) to represent the space X is justified. Besides that, the
space (x(t), x(t+ 1)) can parameterised using parabolic coordinates
yielding the same neighborhood relations.

Each point (shown in Figure 20) is identified by its unique time index
t ∈ N as well as its location in both reconstructions. For a reference
point t we determine the k nearest neighbours in both reconstructed
spaces txl and tyl , l = 1, ..., k. The (euclidean) distances from the ref-txl are time-indices

of neighbors in rx erence point to these neighbours in their respective origin space are
Lx(t, txl ) and Ly(t, t

y
l ). Furthermore each neighbor also has a corre-

sponding location - via the time-index - in the respective other recon-
struction space, this distance between reference point and putative
neighbors is denoted as Lx(t, t

y
l ) and Ly(t, txl ).Notation: the

subscript of Li is
denoting the space
in which distances
are measured and

the superscript in til
the space in which

neighbors have been
searched.
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Figure 20: x(t) over y(t) and y(t+ 1) for the noise free unilaterally coupled
logistic maps with wy→x = 0,wx→y = 0.3,Rx = Ry = 3.82, to-
gether with the projection of the manifold on the y(t + 1)-y(t)-
plane and the x(t)-axis. 103 data points are shown in blue the 10

nearest neighbours of a reference point are shown in colour in
both, the manifold and the projections (grey). The first 10 neigh-
bours searched in Y (X) are shown in red (green).

Looking at the neighbors txl of a given reference point (green asterisk
in Figure 20), it is evident that they are close to each other in their
origin space X, but dispersed over the whole space Y. This random
distribution in Y is to be expected: If there is no interaction from
Y to X, no information about Y can be transferred to X. In contrast,
since wx→y > 0, information about X is contained in Y and thus
the neighbors tyl (red diamonds in Figure 20), are not only localized
around the reference point in Y, but also their images remain close
together in X. Coupling weights

wi→j lead to
expansive
distortions in the
reverse direction
J→ I

With increasing coupling wx→y the neighbors in X become more lo-
calized resulting in the limiting case of perfect information preserva-
tion - the neighbours txl and tyl become identical. In the other limit-
ing case, wy→x = 0, no information about X is included in Y and the
images of the neighbors are spread randomly over the whole space.
Thus, by calculating a distance based on random neighbors, we ob-
tain a chance-level as an upper bound for the distance of neighbors
Li(t, ti∗l ). More details for a suitable chance-level are provided in Sec-
tion 5.3.2.

A more detailed view on the neighborhoods is depicted in Figure 21

by showing the distances of the first k = 1, .., 20 neighbors for some
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Figure 21: (a) Distances Lx(t, txk) from a reference point t to the k-th neigh-
bor (red pluses) and the k-th putative neighbor Lx(t, t

y
k) (blue

dots). Blue and red dashed lines mark the respective size of
the overall neighborhood, measured as the maximum distance
of neighbors up to k. A dashed black line marks a chance level
(average cumulative maximum distance of random neighbors) (b)
Same as (a), but for distances Ly(t, tik) measure in the other recon-
struction ry.

arbitrary reference point. Red pluses signify the distances to the origi-
nal neighbors of a reference point t, while the blue dots are distances
from the reference point derived using the metric of X and the neigh-
bor relations of Y (a) and vice versa (b) - so called putative neighbors.
The dashed lines show a proxy for the size of the neighborhood of
k neighbors. Here, the maximum distance up to the k-th neighbor
is chosen to reflect the neighborhood size, other suitable options are
discussed in Section 5.3.4.

The neighborhood size of the chance-level (black) and the original
neighbors (red) limit (on average) the distances of the putative neigh-
bors. If the neighbors ty contain information about X, the putative
neighbors in Lx(t, ty) in X will be between those limits. The more
information is contained, the closer Lx(t, ty) will resemble the orig-
inal neighborhood size. In contrast, the putative neighbors Ly(t, tx)
are close to or above chance-level, since the neighborhood tx has no
information about Y and the putative neighbors resemble random
points.

In general, not the causal relations of a single reference points is of
interest, but rather global properties of the entire time series. Thus,
the spread of neighbors in I searched in J is quantified as the mean
logarithmic size of the neighborhood dji(k):x∗,y∗ denoting

random neighbors.

d
j
i(k) =

〈
log(max[(Li(t, t

j
l)]l=1..k)

〉
t∧E

i, j = x,y, x∗,y∗ (23)
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The random neighbourhoods are averaged over both ensembles E and
the reference points, whereas for the non-random neighbours the av-
erage is only over the reference points. Ensemble refers to E

different sets of
random neighbors.These neighborhood sizes can be visualized in plots of the mean loga-

rithmic neighbourhood sizes dji(k) as functions of κ = ψ(k) − log(N),
where k is the number of neighbours, N the amount of data and ψ is
the digamma-function (Figure 22).
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Figure 22: Logarithmic neighbourhood sizes d
j
i(k) over κ(k) = ψ(k) −

log(N) for noise free unilateral coupled logistic maps (wx→y =

0,wy→x = 0.2 and Rx = Ry = 3.82) from N = 103 data points.
The observables were embedded with m = 4 and τ = 1 and
100 ensembles were used for chance-level-estimation. (a) dxx(k)
shown as plus signs, dyx(k) shown as dotted line and the respec-
tive chance-level dy

∗
x (k) (dashed line). (b) dyy(k) shown as plus

signs, dxy(k) shown as dotted line and the respective chance-level
dx
∗
y (k) (dashed line). Furthermore the five-fold standard error is

shown for each dji(k) as a grey shade.

This particular choice of the abscissa allows for an unbiased estimate
of the fractal (information) dimensions D1 (Equation 6) of the sub-
systems by estimating the inverse slope of Dx1 = [∆dxx(k)/∆ψ(k)]

−1

(resp. Dy1 ) [72]. In the present example the manifold reconstructed
from observable X (a) has a smaller dimension than the attractor re-
constructed from the influenced observable Y (b). While dimensional
conflicts provide a sufficient criterion for the direction of causal in-
fluence in unilaterally coupled deterministic systems [63], they are
useless for mutually coupled systems. In this general case a different
criterion for determining the dominant direction of causal influence is
needed.

For this purpose not only dxx(k), but also dyx(k) and dy∗x (k) are taken
into account. Here, the size of a random neighborhood dy∗x (k) is used
as an upper bound. If information is transferred from X to Y, the im-
age of neighbors in Y will (in X) be between this upper bound and
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dxx(k), Figure 22 (a). In contrast, no information is conveyed from Y to
X, thus dxy(k) matches the random neighborhood dx∗y (k). With dxx(k)
providing a lower bound and d∗x(k) an upper bound for the size of the
k-th neighbourhood, the size dxy(k) can be used to define a measure
for the relative amount of information preserved within the neigh-
bourhood in y. With these insights, we use the ratio of the distance
between dxx(k) and dyx(k) and the chance-level dy

∗
x (k) to define the

causal influence (of CPM) Ĩx→y(k):

Ĩx→y(k) =
d
y∗
x (k) − dyx(k)

d
y∗
x (k) − dxx(k)

(24)

Note that 0 6 Ĩx→y 6 1 and therefore Ĩx→y ' 0means that x does not
influence Y at all. If Ĩx→y ' 1 Y ’knows everything’ about X, which
suggests that X has a strong influence on Y.

In analogy to TC (Equation 17), we introduce a measure for the asym-
metry of causal influences α:

α =
Iy→x − Ix→y
Iy→x + Ix→y

To determine significance we use the standard error (SE) of the mean
logarithmic neighbourhood sizes SE(dji), as shown e.g. in Figure 22

(a). With increasing neighborhood size k the dji(k) will inevitable co-
incide limiting significance to small k. Therefore significance is deter-
mined for each neighborhood size l = 1, .., k separately, a significant
difference is given if there is no overlap between the 5-fold SE’s (i.e.
dx∗x − 5SE(dx∗x ) > dyx + 5SE(d

y
x)).

In all further examples we use the average Ii→j =
〈
Ĩi→j(k)

〉
k

for
obtaining a causal influence that is independent of a specific neighbor-
hood. Here k is always small, e.g. 20, and we require that at least 75%
of all contributions k = 1, .., l to the mean are significant.75% of 20 neighbors

is not any specific
statistical criterion,
but proved reliable

in practice.

5.2 fundamental properties

As a described in Chapter 3, certain fundamental properties are de-
sirable for a measure of causal influences. For starters, this section will
look at the relation of coupling weights and causal influences and the
influence of internal and external perturbations by noise. For simple
examples (logistic maps), in which interactions are governed by cou-
pling weights wi→j, a measure for causal influence must be function
of said weights wi→j. Furthermore, the impact of data limitation is
considered as well.
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5.2.1 Dependence on coupling weights

Firstly, we investigate the dependence of our measure on the coupling
weights. For this purpose, two logistic maps are coupled bilaterally
and the causal influence is determined for different coupling weights.
As a start, consider the mean logarithmic neighborhood sizes dji(k)
shown in Figure 23 for two sets of coupling weights. The dji(k) for
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Figure 23: Logarithmic neighbourhood sizes dji(k) over κ for noise free uni-
lateral coupled logistic maps (wx→y = 0.00316,wy→x = 10−4

(black) and wy→x = 10−1 (blue) and Rx = Ry = 3.92) from
N = 103 data points. The observables were embedded with
m = 4 and τ = 1 and 102 ensembles were used for chance-
level-estimation. (a) dxx(k) shown as plus signs, dyx(k) shown as
dotted line and the respective chance-level dy

∗
x (k) (dashed line).

(b) dyy(k) shown as plus signs, dxy(k) shown as dotted line and
the respective chance-level dx

∗
y (k) (dashed line). Furthermore the

five-fold standard error is shown for each dji(k) as a grey shade.
For the sake of clarity, the standard error for the blue curves is
only shown for the non overlapping curves (dyx(k) and dyy(k)).

two small weights wx→y = 3.16 · 10−3 and wy→x = 10−4 are shown
in black. Notably, dyx(k) and dxy(k) are within the respective chance-
levels - the coupling weights are too small to detect a meaningful
causal influence. Furthermore, the slope of dxx(k) and dyy(k) are match-
ing. Both state space reconstructions of the subsystems have roughly
the same dimension and the reconstruction space only represents the
respective subsystem. Increasing the weight wx→y = 10−3 leads (pri-
marily) to changes in dyx(k) and dyy(k) (shown in blue).

On one hand, the slope of dyy(k) decreases in Figure 23 (a) equating to
an increase of the dimension of the reconstruction ry. The increased
weight wx→y enables more information transfer from X to Y and now
not only the subsystem Y, but rather to the overall system (X, Y) is re-
constructed in rx. The causal influence Ix→y remains unchanged, since Remember, each

causal influence is
only derived from
quantities in either
(a) or (b).
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the enumerator in Equation 24 still vanishes (dx∗x (k) − dyx(k) ≈ 0).
On the other hand, neighbors in Y contain information about X lead-
ing to dyx(k) deviating from the chance-level (blue dots in (b)). This
increases the causal influence Iy→x.

A wider range for coupling weights and the resulting causal influences
is shown in Figure 24. Here, one weight, wx→y, is fixed to one of
the three values (0, 0.00316, 0.032) and the other, wy→x, is changed
over three orders of magnitudes. The resulting causal influence Iy→x
(black symbols) is a monotonic function of its corresponding couplingblack symbols = {

square, triangle,
circle }

weight wy→x and is rather independent of the three counter direc-
tional couplings wx→y (circles, triangles, squares). The reverse direc-
tion Ix→y (grey symbols) is largely unaffected by the weight wy→x
not only for a small range of wy→x, but over all three shown differ-
ent magnitudes of coupling strength. However, for couplings smaller
than 10−3 no significant causal influence is detectable.
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Figure 24: Causal Influence between bilaterally coupled logistic maps. 2 ·104
data points were generated with Rx = Ry = 3.92, the observed
time series were embedded with m = 4 and τ = 1 and we used
the k = 20 nearest neighbors to determine the causal influence
and E = 103 permutations for the chance-level. Black lines show
Iy→x corresponding to the varied coupling wy→x, grey lines
show the reverse direction with the coupling wx→y fixed at 0
(circles), 0.00316 (squares) and 0.032 (triangles).

5.2.1.1 Relation to Topological Causality

For the example of logistic maps analytical results of TC were shown
in Section 4.2.1. In particular, it was shown that the expansion esti-
mated by TC is directly proportional to the coupling weights, ei→j ∝
1

wj→i
. For CPM we are not able to derive analytical results, but at least

for coupled logistic maps the relation to the coupling weights can be
derived indirectly.

Recapping briefly, TC derives the expansion from a fixed number of
nearest neighbors k in I and the corresponding putative neighbors in
J. The product of the singular values σtl larger one of the mappingPutative neighbors

in J refers to a
selection of points
associated due to

their neighborhood
in I
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Mi→j between these neighbors is the expansion, Equation 15:

eti→j =
∏
l

max (1,σtl(M
t
i→j))

In [1] it was shown that the logistic maps in question only have one
singular value larger one - a single expansive direction. The expan-
sion is thus equivalent to the largest singular value σmax and the
largest eigenvalue λmax = (σtmax)

2 respectively. Here, the expansion
also characterizes the relative change of neighborhood sizes going
from I to J. This is also reflected in the ratio of (logarithmic) neigh-
borhood size, which is a good proxy for the eigenvalue λdmax:

edi→j = λ
d
max ≈

exp(< dji(k) >t)

exp(< dii(k) >t)

Here, the enumerator exp(< dii(k) >t) is the size of the original neigh-
bors and the denominator exp(< dii(k) >t) reflects the size of the cor-
responding putative neighbors. Depending on the choice of metric,
this ratio either underestimates (e.g. euclidean distance) or matches
the eigenvalue (Chebyshev-distance). Analogous to TC a causal asym-
metry αd can be derived, shown in Figure 25.

αd =
edi→j − e

d
j→i

edi→j + e
d
j→i
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Figure 25: Causal asymmetry between bilaterally coupled logistic maps. 104

data points were generated with Rx = Ry = 3.92, the observed
time series were embedded with m = 4 and τ = 1 and we used
the k = 20 nearest neighbors to determine the causal influence
and E = 102 permutations for the chance-level. Different combi-
nations of coupling weights wx→y and wy→x between 0.005 and
0.1 were chosen.

In comparison this yields a good agreement with the asymmetry of
TC and the coupling weights. Atleast for the

simple case of
coupled logistic
maps.
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5.2.2 Sensitivity & Specificity

The causal influence of small coupling weights is not always possible
to detect. Taking a close look at small coupling weights in Figure 24,
it is evident that small weights (< 10−3) were not detectable. These
small causal influences are only detectable if large(r) amounts of data
are used. For illustration, we can look upon the dji(k) to understand
how an increased amount data points facilitates the detection of these
small causal influences. This time dji(k) are shown for fixed coupling
weights wx→y and wy→x, but the amount of data is increased from
N = 103 (black curves) to N = 8 · 103 (blue curves).

-10 -5
-8

-6

-4

-2

0

(a)

-10 -5
-8

-6

-4

-2

0

(b)

Figure 26: Logarithmic neighbourhood sizes dji(k) over κ for noise free uni-
lateral coupled logistic maps (wx→y = 0.005,wy→x = 0.05 and
Rx = Ry = 3.92) from N = 103 (black) data points and N = 8 · 103
(blue). The observables were embedded with m = 4 and τ = 1

and 102 ensembles were used for chance-level-estimation. (a)
dxx(k) shown as plus signs, dyx(k) shown as dotted line and the
respective chance-level dy

∗
x (k) (dashed line). (b) dyy(k) shown as

plus signs, dxy(k) shown as dotted line and the respective chance-
level dx

∗
y (k) (dashed line). Furthermore the five-fold standard er-

ror is shown for each dji(k) as a grey (or light blue) shade.

Since κ(k) = ψ(k) − log(N) is a function of both the number of neigh-
bors k and amount of data N, changing N leads to a shift along the
x-axis. Besides that, more data changes the density of the state space
resulting in a shrinkage of local neighborhoods. In other words, more
data equates to using a smaller original neighborhood (dxx & d

y
y) as

a basic quantity. In combination, this results in dxx and d
y
y shifting

along their respective slopes. In contrast, the average size of random
neighborhoods is not impacted by the increased density, thus theAssuming the

density changes are
somewhat uniformly.

chance-level (blue dots) is just shifted horizontally. The size of the
putative neighborhoods dyx & dxy shifts as well and more importantly
due the more localized original neighbors the size of the putative
neighborhoods decreases. This is especially evident for the small cou-
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pling weight wx→y = 0.005, where dyx(k) now significantly deviates
from chance-level enabling the detection of a weight induced causal
influence previously too small for detection.

A wider range of different amounts of data is shown in Figure 27.
Due to symmetry only Ix→y needs to be shown in Figure 27. The
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Figure 27: Bilaterally coupled logistic maps Rx = Ry = 3.92 embedded with
τ = 1 and m = 4, 103 ensembles were generated to estimate
chance-level. The upper row, (a)-(c), shows the causal influence
Ix→y for wy→x = 0.05 and varying wx→y between 0 and 0.1.
The bottom row, (d)-(f), shows the same causal influence, but for
a fixed wx→y = 0.05 and varying wy→x between 0 and 0.1. (a),(d)
Varying amount of data between 103 and 104. (b),(e) Causal in-
fluence for additive internal noise. The amplitude of the noise
is varied between 0 and 8% of the standard deviation of the un-
perturbed system. (c),(f) Additive external noise is added to the
observed time-series. The standard deviations of noise is varied
between 0 and 8% of the amplitude of the unpolluted system.
For all noise polluted results time-series of 104 data points were
used and for better visualisation contour lines mark lines of equal
causal influence.

upper row shows a varying weight wx→y between 0 and 0.1 and
wy→x = 0.05 is fixed and vice versa in the bottom row. For better
visualisation isolines are used to mark equal causal influences. For this
system at least 103 data points are needed to detect significant causal
influences and the required amount of data points increases for declin-
ing coupling strength. Using the example of the causal influence Ix→y,
which depends on the varying coupling weight wx→y, it is evident
that there is not enough data to significantly detect a causal influence
for small wx→y. Note that regardless of the amount of data, no false
positives are detected.



56 cross projection method

Alongside insufficient amounts of data intrinsic and external noise
might obscure the underlying causal structure. To demonstrate noise
robustness we injected intrinsic and external additive Gaussian noise
for varying coupling weights in the logistic maps Figure 27 (b),(c)
& (e),(f). The internal noise is added according to Equation 22. The
standard deviation of the noise is symmetric for both (sub-)systems
σ = σηx = σηy and varied between 0% and 8% of the standard devi-
ation of the unperturbed systems. While noise lowers the estimated
causal influence in both cases, in this example causal influence is still
correctly determined.

However, the causal influence still depends on the coupling weight
and amount of induced noise. Thus, it has to be noted that for the
case of strong noise ση/σ→∞ and fixed weights the causal influence
will converge to zero. In particular, small coupling weights will not
be detected, although increased amounts of data will remedy this to
some degree.

A closer look, how noise affected the causal influences via the dji(k) is
shown in Figure 28 and Figure 29. Since logarithmic neighborhood
sizes for both, intrinsic and external noise, closely resemble one an-
other, only external noise, shown in Figure 28, is discussed and inter-
nal noise is only shown for the sake of completeness.
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Figure 28: Logarithmic neighbourhood sizes dji(k) over κ for bilaterally cou-
pled logistic maps (wx→y = 0.005,wy→x = 0.05 and Rx = Ry =

3.92) from N = 103 data points. The observables were embedded
with m = 4 and τ = 1 and 102 ensembles were used for chance-
level-estimation. Black curves show the results for systems free
of noise and blue curves show additive (uncorrelated) external
noise of σ = 0.0125 on both maps.(a) dxx(k) shown as plus signs,
d
y
x(k) shown as dotted line and the respective chance-level dy

∗
x (k)

(dashed line). (b) dyy(k) shown as plus signs, dxy(k) shown as dot-
ted line and the respective chance-level dx

∗
y (k) (dashed line).
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The black symbols correspond to an unperturbed system, while the
blue symbols are external noise of σ2 = 0.0125. The random neigh-
borhoods are largely invariant to noise (overlapping dashed lines). In
contrast, the nearest neighbor distances, dxx(k) and d

y
y(k), increase,

since noise blurs the shape of the attractor. In particular, in unex-
plored directions of state space. For example, the logistic maps no
longer has its signature parabola shape in state space, but gains an
additional thickness. However, the crucial effect of noise is on the The state space is no

longer parabola, but
banana-shaped.

quantities are dyx(k) and dxy(k) (dotted lines). These quantities are in-
directly affected through dxx(k) and dyy(k), but moreover the injection
of noise destroys neighborhood relations.

Here, two effects are influencing dyx(k) (and dyx(k)). Briefly, only con-
sider just dyx(k). On one hand noise in Y shifts false nearest neighbors
into the vicinity of a reference point in Y. These are indeed the closest
points to a reference point in Y, but their adjacency is only due to
to noise and thus their corresponding points in X have an arbitrary
distance to the reference point. On the other hand even if the correct
neighbors are classified in Y, their corresponding points in X are rear-
ranged due to the noise in this part of the subsystem. In combination,
both effects increase dyx(k) and results in a decrease of causal influence
in Figure 27. Furthermore, this suggest that a more reliable way to
determine the nearest neighbors will improve the detection of causal
influences. This will be discussed in section Section 5.3.6. Already moving

average filters can
lead to better nearest
neighbors in the
presence of noise.
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Figure 29: Logarithmic neighbourhood sizes dji(k) over κ for bilaterally cou-
pled logistic maps (wx→y = 0.005,wy→x = 0.05 and Rx = Ry =

3.92) from N = 103 data points. The observables were embedded
with m = 4 and τ = 1 and 102 ensembles were used for chance-
level-estimation. Black curves show the results for systems free
of noise and blue curves show additive (uncorrelated) intrinsic
noise of σ = 0.0125 on both maps. (a) dxx(k) shown as plus signs,
d
y
x(k) shown as dotted line and the respective chance-level dy

∗
x (k)

(dashed line). (b) dyy(k) shown as plus signs, dxy(k) shown as dot-
ted line and the respective chance-level dx

∗
y (k) (dashed line).
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5.2.3 Application of CPM to a 10-species Lotka-Volterra system

As an example for a more complex system dealing with both, limited
amounts of data and intrinsic noise, we consider a ten species Lotka-
Volterra system [73] modeled as a generalisation of a discrete two
species Ricker model with added stochasticity:

Nt+1 = Ntexp(−r +WNt + ηt),ηt ∈ N(0, 0.1I)

The interaction matrix W is represented in Fig. Figure 30 (a) and the
intrinsic growth rates are given by

r = −[3, 2.1, 1.12, 2.8, 1.4, 2.1, 1.12, 3, 2.1, 1.12]T (25)

The interaction matrix inferred using CPM is shown in the Figure 30

(b). CPM is correctly recovering the block-wise structure of the inter-
action matrix, but due to the limited amount of data (N = 300) the
smallest interactions can not correctly by determined in all 25 simula-
tions.
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Figure 30: (a) Coupling matrix W of a 10-Species Ricker model. A darker
color signifies a larger entry in W. (b) Interaction matrix W

derived using CPM, circles represent true positive entries and
squares false positives. The interaction matrix was derived from
time series of length 300 and embedded using a delay of τ = 1

and embedding dimension of m = 8 using the first k = 20 neigh-
bors. The simulation was repeated 25 times, the radius of the
circle is proportional to the proportion of detection. The color of
the circle is the average value of CPM over all 25 simulations.

It shall be noted, the presentation, in particular the choice of radius
instead of volume to represent the proportion of detection, is in anal-
ogy to [73].
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5.2.4 Time continuous systems - Lorenz attractor

Up to now, the causal influence was contemplated in time discrete sys-
tems, but likewise determination of the direction of causal influence is
viable in time continuous systems, e.g. two coupled Lorenz-systems.
The Lorenz systems are coupled by their x-components and are given
by the set of following differential equations:

ẋi = −µi(xi − yi) +Ωj→i + ση
x
i (26)

ẏi = ρixi − yi − xizi + ση
y
i

żi = −θizi + xiyi + ση
z
i

with < ηλi η
γ
j >= δijδλγδ(t− t

′),

with the typical set of parameters µi = 28, ρi = 8/3 and θi = 10. To
account for the intrinsic noise the differential equations are solved by
the (explicit) Euler scheme. The external additive Gaussian noise is
superimposed onto the measured observable, in this case xi + σηexti .
The coupling function is chosen linearly by Ωj→i = wj→ixj. In this
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Figure 31: Asymmetry index between two Lorenz oscillators (N = 104 data
points) with slightly different frequencies and coupled by their
y-components (θ1/2 = 10, ρ1 = 28.5, ρ2 = 27.5, θ1/2 = 8/3). The
time series were embedded with m = 9 and τ = 10, using k = 20

neighbors and E = 102 ensembles were used to estimate chance-
level. The noise free asymmetry is shown in black. Coloured cir-
cles represent internal noise with σ = 2 (green) and additive ex-
ternal noise with σ = 2 (red).
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case the causal asymmetry has a (somewhat) linear functional relation
with the asymmetry derived from weights, (αw =

wy→x−wx→y
wy→x+wx→y

). In
Figure 31 the coupling weights wi→j are chosen in a way that αw is
spread uniformly. Even for both, external (red) and intrinsic (green)
noise, the direction of causal influence is determined correctly by α.
However, in the presence of noise the causal influence is weakened
and the asymmetry less pronounced, which is in agreement with the
previously considered example of logistic maps.

However, since the change in causal influence depends on the cou-
pling weight, strong asymmetric noise injection, e.g. strong noise in
X and no noise in Y, could disguise the causal influence enough lead-
ing to a wrong classification of the dominant direction of causal in-
fluence. These spurious influences and possible remedies to prevent
it even in the case of strong noise are discussed in a later section,
Section 5.4.

5.3 design choices

While the basic idea of CPM was already introduced in Section 5.1
some details and alternative design choices have not been discussed.
This section will explain the choice of chance-level, discuss a time-
resolved variant of CPM, elaborate on the estimation of neighborhood
size, compare rank and distance-based CPM and finally go over im-
provements in the selection of nearest neighbors. The first section are
more or less straightforward and typical approaches already estab-
lished in literature, the latter section (selection of neighbors) could
also disclose beneficial ideas for related methods.

5.3.1 Temporal Neighbors

In systems like the logistic maps (temporal) consecutive neighbors are
far apart. But in continuous systems like the Rössler system (shown in
Figure 32) time evolves along paths in state space. Thus, a neighbor-
hood around a reference point also contains its temporal neighbors.
In particular, for small integration step-sizes dt many neighbors are
temporal neighbors. The neighborhood size is supposed to be invari-
ant against changes in δt and temporal correlations with the refer-
ence point shall be avoided. Thus, the immediate temporal neighbors
(t± 2mτ) are excluded from the neighborhood search.

In fact, there is an argument to be made to only allow the closest
neighbor per path, the neighborhood size then corresponds to the
spread in the Poincaré-section [74]. In practice, we rarely found many
close neighbors from the same path, not warranting the considerably
larger computing cost. However, this might be a specific property ofThe shown example

is simplified
projection.
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Figure 32: Section of the state space
of a Rössler system. Lines
connect consecutive points
in time. Empty circles rep-
resent the temporal neigh-
bors of the red reference
point.

the investigated systems and could prove necessary in other scenar-
ios.

5.3.2 Choice of Chance-Level

The straightforward and simple way to define a chance-level for the
neighborhood size is to choose a set of k random neighbors tx∗l . The
extent of this random neighborhood is then the chance-level for the
neighborhood size of k neighbors.

Instead an ensemble E of surrogate neighbors is generated by shifting
the time indices of all actual neighbors of each reference point with
a random time shift δtE. The shift is random, but also excludes tem-
poral neighbors δtE > ±2mτ. In essence, the time series are shifted
against each other. When applying this random time shift to the time
index of neighbors txl in space X, a given reference point t becomes
associated with a set of points tx

∗
l and has distances Ly(t, tx

∗
l ) to the

images of these points in space Y.

In doing so causal relations of neighborhoods between different ob-
servables are removed while the temporal correlations within the
set of surrogate neighbors are preserved. In the results presented in
this work the chance-level is derived from temporally shifted random
neighborhoods.

5.3.3 Time-resolved CPM

In Chapter 4 it was shown that TC ([1]) is able to provide a time-
resolved measure for causal influences. In fact, CPM can be modified
to retain a temporal resolution. For this purpose, the temporal av-
erage in Equation 23 is omitted from the logarithmic neighborhood
size:

d̄
j
i(k, t) =

〈
log(max[(Li(t, t

j
l)]l=1..k)

〉
E
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In analogy to the original causal influences (Equation 24) and asymme-
tries time-resolved variants, Īi→j(t) and ᾱ(t), are derived for CPM.
The chance-level d̄∗i (k, t) can still be averaged over the ensembles, but
the other d̄ji(k, t) are volatile and depend strongly on single neigh-
bors. Therefore, in Figure 33 all d̄ji(k, t) smaller than the correspond-
ing chance-level contribute to Īi→j(t) and no criterion for significance
is used.

Figure 33: Two bidirectionally coupled Rössler systems with w2→1 = 0.2
and w1→2 = 0.6. The time series of 105 data points were em-
bedded with dimension m = 13 and τ = 3. αt and It2→1 are
shifted to be aligned with the temporal mean t+ 1/2(m− 1)τ of
the corresponding reconstructions rxi(t). (a) & (b) Local asymme-
try αt of 104 points shown on projections of the attractor to each
system. (c) It2→1 (black) for 200 consecutive time steps and the
corresponding time series of z2 (red). (d) Time series y1 and y2
used to estimate It2→1.

The example used earlier are two bidirectional coupled Rössler-systems,
described by:

ẋi(t) = −fiyi(t) − zi(t) +wj→izj(t)

ẏi(t) = fixi(t) + 0.1yi(t)

żi(t) = 0.1+ zi(t)[xi(t) − 14]

The systems are coupled via additive input of the respective other zj-
component into xi. {f1, f2} are set to {0.99, 0.85} and y1(t) and y2(t)
are used as measurements from the individual systems.
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The causal measures (of CPM) are shown in Figure 33 (a) & (b) (ᾱ(t))
and (c) (Īx→y(t)). By choosing the coupling function in the way shown
above, a strong causal influence i→ j is only expected if the driving zi
component deviates from 0. Both, ¯α(t) and Īi→(t), capture this tem-
poral structure, which is not obvious from the time courses of the ob-
served time series y1, y2 (Figure 33 (d)). This is especially evident in
the direct match with z2(t) (c). These results match the results of TC Side note: the

title-page shows
CPM for the
unilateral coupled
case.

qualitatively and even outperform it in some-sense: There is no causal
influence from 2 to 1 for z2 = 0, It2→1 drops to approximately zero,
while TC still inferred some influence for this case (Figure 17).

5.3.4 Neighborhood Size

In Section 5.1 the neighborhood size was estimated as the maximum
distance of k neighbors to a reference point. In other word, the neigh-
borhood size is the hyper-sphere covering all k neighbors. It is ev-
ident that this choice is strongly dependent on the position of the
most distant neighbors. Being less prone to single outliers should be
achievable by using the mean or median distance of the neighbors as
a measure of neighborhood size. In Figure 34 all three measures are All three are still

averaged over
reference points.
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Figure 34: Logarithmic neighbourhood sizes dji(k) over κ for unilateral cou-
pled logistic maps (wx→y = 0.00316,wy→x = 0.1 and Rx = Ry =

3.92) from N = 103 data points and N = 8 · 103. The logistic maps
are perturbed by additive intrinsic Gaussian noise N(0, 0.01 · 1).
The observables were embedded with m = 4 and τ = 1 and
102 ensembles were used for chance-level-estimation. (a) dxx(k)
shown as plus signs, dyx(k) shown as dotted line and the respec-
tive chance-level dy

∗
x (k) (dashed line). (b) dyy(k) shown as plus

signs, dxy(k) shown as dotted line and the respective chance-level
dx
∗
y (k) (dashed line). Different colors represent different mea-

sures for neighborhood size, black lines are the maximum dis-
tance, blue lines the mean and red lines the median.

shown for a system of two coupled logistic maps perturbed by intrin-



64 cross projection method

sic noise. The mean logarithmic neighborhood size is derived from
the maximum (back), mean (blue) and median (red) distance of k
neighbors. All three are qualitatively equivalent and only vary quanti-
tatively. In general, noise does not impact outliers stronger, but rather
changes the whole neighborhood layout. Thus, other approaches, dis-
cussed in Section 5.3.6, are necessary.The curves for mean

and median are
strongly overlapping

and can be hard to
see in Figure 34

5.3.5 The Rank as a proxy for Neighborhood Size

Another alternative to estimate the size of neighborhoods can be
achieved by ranking neighbors. The basic idea: neighbors are ranked
according to their distance to the reference point, i.e. the k-th neigh-
bor searched in I has the rank Ri(t, tik) = k. The corresponding point
in J is linked by their shared time index tik. Finding this time index
in the ranking Rj(t, t

j
k) yields the ranking of these putative neighbors

Rj(t, tik). These ranks are comparable to the neighborhood size Lij(k).
Comparing with dij(k) it is sensible to look upon the mean logarith-
mic rank Rdij(k) =< log(Rj(t, tik)) >t. Figure 35 shows the compar-
ison between maximum rank and maximum distance of neighbors.
Again, both measures are only quantitatively different. Naturally, be-
sides the maximum rank, mean or median rank can be considered as
well.The superscript d

just denotes that
these Rdij(k) are the
analog to dij(k) but
derived from ranks.
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Figure 35: Logarithmic neighbourhood sizes dji(k) over κ for noise free uni-
lateral coupled logistic maps (wx→y = 0.00316,wy→x = 0.1 and
Rx = Ry = 3.92) from N = 103 data points. Red lines use the
ranking of neighbors compute an neighborhood size. The observ-
ables were embedded with m = 4 and τ = 1 and 102 ensembles
were used for chance-level-estimation. (a) dxx(k) shown as plus
signs, dyx(k) shown as dotted line and the respective chance-level
d
y∗
x (k) (dashed line). (b) dyy(k) shown as plus signs, dxy(k) shown

as dotted line and the respective chance-level dx
∗
y (k) (dashed line).

Black lines correspond to the maximum distances, while red lines
are using the rank of neighbors as a proxy for neighborhood size.
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5.3.6 Noise perturbed neighborhoods

If a system is subject to noise, neighbor relations change. False neigh-
bors are moved into neighborhoods and correct neighbors are re-
moved. Section 5.2.2 shows that this affects the size of neighborhoods
in both spaces.

To improve the neighborhood relations a measure to evaluate the
quality of neighborhoods is needed. For this purpose neighbors are
searched in the reconstruction of the unperturbed time series x(t).
The time-series is from the example system of a unilaterally coupled
Lorenz→Lorenz system. Like in the previous section, neighbors can
be ranked according to their distance to the reference point t, e.g. the
k-th neighbor in X has rank R0x(t, txk) = k. This is true for all reference
points and their respective k-th neighbor, trivially the average rank of
all k-th neighbors is

〈
R0x(t, txk)

〉
= k.

Next the time series x(t) is perturbed with noise x̃(t) = x(t)+ηx,ηx(t) ∈
N(0,σ) and the neighborhood search is repeated. Each point in the
perturbed and unperturbed time series remains identified by the same
time-index t, but neighborhood relations changed due to noise. The l-
th neighbor in X̃ is associated with the time index t̃l. This time index
is linked to a time index tk in X and we can find the correspond-
ing rank of the l-th neighbor in X, e.g. Rηx(t, t̃l) = R0x(t, tk = t̃l). On The superscript 0

denotes the rank of a
noise free
time-series.

average these ranks will be larger for the perturbed time series and
increase with the standard deviation of the added noise. If a neighbor-
hood in the perturbed time series is closely related to the unperturbed
neighborhood, this will be reflected in a small increase in the average
rank. Strongly distorted neighborhoods will be identifiable by large
rank increases.

Figure 36 (a) shows the average rank of the first 200 neighbors of
perturbed time series generated by Equation 26 for a selection of noise
standard deviations between 1.28 and 2 (full lines, with lighter colors
signifying weaker noise). The ranks of the unperturbed (original) time
series are shown as dashed line.

With increasing noise neighborhoods are stronger distorted and the
rank Rηx is increasing signifying a worse conformity with the unper-
turbed neighborhood relations.

To reduce the rank and thus improve the neighborhood relations in
the presence of noise we here discuss three approaches. Firstly, a more
general distance metric can be used. For this purpose we use the
Minkowski distance as a generalization of euclidean and Manhattan
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Figure 36: (a) Average rank of neighbors over the number of neighbors k
for different noise levels shown in shades of grey. The dashed
line marks the base line of the neighbor rank of a unperturbed
time-series. (b) Average rank of the first k = 20 neighbors for 4
different Minkowski distances (0.1 to 2). To improve the neighbor-
hood relations, moving average (blue), shared nearest neighbors
(red) and no method (black). For each curve/bar a time series of
N = 211 data points was generated by Equation 26. For the mov-
ing average filter with a window size of 8 time steps was used
before searching neighbors. (blue bars) The shared nearest neigh-
bors were chosen as a subset of the first 200 neighbors that also
shared 40 neighbors with a reference point (red bars). The black
bars show the rank for a perturbed time series.

distances. In doing so the distance between two points A = (a1,a2, ..)
and B = (b1,b2, ..) is defined by:

D(A,B) =

(
n∑
i

|ai − bi|
p

)(1/p)

An exponent of p = 2 being the Euclidean distance, p between 0.1 and
2 are shown on the abscissa in Figure 36 (b). Secondly, a moving aver-
age filter is chosen to smooth the time series x̃(t) before even search-
ing for neighbors. Lastly, the Jarvis-Patrick Clustering algorithm [75]
is used to validate the shared nearest neighbors (SNN) of each refer-
ence point. As depicted in 36 (b) preprocessing the data by moving
average filtering attains the strongest improvement. The moving aver-
age of a time-series x(t) over p steps is given by:

MAp(x(t)) =
1

p

t∑
i=t−p+1

x(i)

The filter is also used to improve the noise perturbed unilateral cou-
pled Lorenz→Lorenz system used in Figure 39 (a). Here, it is evident
that the improved neighborhoods also improve the detection of causal
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influences and prevent the detection of misleading results in this case
of strong unilateral coupling weights in combination with strong one-
sided noise. This is particularly clear for large coupling weights were
the causal differences ∆I mostly retain a positive sign.

5.4 synchronization

In Section 4.3 a set of Fitzhugh-Nagumo neurons was introduced as a
challenging problem for TC. Retaining some results a re-normalization
of TC was introduced. However, the difficulties are only partly due to
flaws of TC, but rather results of the chosen system. In particular, os-
cillations and synchronization affect the inference of causal influences,
irrespective of the chosen measure.

If two (sub-)systems governed by the same underlying equations but
slightly different parameter values are interacting, synchronous be-
havior is prevalent for a wide range of parameters. The Fitzhugh-
Nagumo analyzed by TC (Section 4.3) are given by:

ẋ1 = x1 −
1

3
x31 − x2 + I+Ωi→j, Ωi→j = wi→j

1

1+ e−3i1

ẋ2 = fi(x1 − aix2 + bi)

The parameter values ai, bi and fi were chosen slightly different,
but due to strong coupling weights wi→j the previously considered
example are two synchronous (sub-) systems. Here, statements about
causal influences are meaningless, maximal influences with no causal
asymmetry are to be expected. Thus, a criterion to determine whether
a system is already fully synchronous is desirable.

In the case of the Fitzhugh-Nagumo neurons strong coupling weights
enforce synchronous dynamics. Different oscillation periods of the
subsystems can further aid or prohibit synchronization. Oscillations periods

are derived for
uncoupled systems.The state space of the affected system rx(t) is shown for a small (uni-

lateral) coupling weight wy→x = 0.3 and slower driving system Y in
Figure 37 (a) and for a faster driving system in (d). The limit-cycle in
(d) is inflated, the affecting system introduced additional degrees of
freedom leading to an increase of the dimension of the system. In con-
trast, for the faster driving system, in (a), the reconstructions forms a
joint limit cycle and the dimension collapses to the dimension of the
affecting system - both subsystems are synchronous.

Whether the (sub-)system are synchronous is directly reflected in the
causal influence Ii→j. The causal influence for varying coupling weights
between 0 and 0.5 and two different ratios of frequencies fx/fy is
shown in (b) and (e). The blue curves correspond to the causal influ-
ence Iy→x - in direction of the non zero coupling weight wy→x. The
red curves show the reverse direction. Already for coupling weights
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wy→x ≈ 0.15 a slow driving system forces the other subsystem to
synchronize, (b). While for a faster driving system at least the domi-
nant direction of causal influences is detectable for all shown weights
(e).All frequencies were

chosen to be
in-commensurable For a fixed coupling weight wy→x certain frequency ratios can also

lead to synchronization. In (c) the causal influence Ii→j is shown for
different frequency ratios between fx/fy ≈ 1/3 and fx/fy ≈ 3/1 and a
fixed unilateral coupling wy→x = 0.3. Again, only for a considerably
faster driving system meaningful causal influences are inferable. Only
for this case the two (sub-)systems are not synchronous. For vanish-
ing coupling weights, (f) CPM detects false positive causal influences, if
the frequency ratio is approximately 1. Here, the uncoupled systems
just appear to be synchronous.
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Figure 37: (a) & (d) show the state space reconstruction rx of the voltage
variable of two unilateral coupled Fitzhugh-Nagumo neurons
(wy→x) with a time-delay τ = 110, equaling roughly a quarter
period. The shown reconstruction is the state space of the driven
subsystem for slow driving system (a) and a fast driving sys-
tem (d). The causal influence between the two unilateral coupled
Fitzhugh-Nagumo neurons is shown for varying coupling weight
wy→x between 0 and 0.5. 103 reference points were chosen from
time series of 104 data points that were embedded using τ = 100
and m = 5. (c) shows the causal influence for a slow driving
systems, the blue curves correspond to Iy→x (in direction of the
changing coupling weight) and the red curve the reverse direc-
tion Ix→y. (e) shows the same results for a fast driving system.
(c) shows Ii→j for different frequency ratios between fx/fy = 1/3

and 3/1 for fixed unilateral coupling wx→y = 0 and wy→x = 0.3.
(f) shows Ii→j for different frequency ratios between fx/fy = 1/3

and 3/1 and not interaction.
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Instead of inspecting the state space for changes of dimension, the
fundamental properties of our method, in particular the logarithmic
neighborhood size dii(k), is linked to the information dimension. Thus
we will use this property as a measure for synchronization, while
investigating the causal influence in time continuous systems with in-
creasing degrees of synchronization. The information dimension is
derived as the the inverse slope of dii(k) overψ(k),D1 ≈

[
∆dii(k)/∆ψ(k)

]−1.
For unilateral coupling this is a sensitive measure, since (as aforemen-
tioned) for complete synchronization the dimension of the driven sys-
tem will drop to the one of the driving system. As an example we use
a Rössler-Lorenz-system as analysed in [62]:

ẋ1 = −6(y1 + z1)

ẏ1 = 6(x1 + 0.2y1)

ż1 = 6[0.2+ z1(x1 − 5.7)]

ẋ2 = −10(x2 − y2)

ẏ2 = 28x2 − y2 − x2z2 +wy
2
1

ż2 = −8/3z2 + x2y2

Since two different dynamical systems are interacting, synchroniza-
tion only occurs for strong coupling weights. In this system synchro-
nization sets in at a critical value of w ≈ 2.5, where the dimensions
of the reconstructions approach each other (grey dashes in Figure 38

(b)). However, the dimensions remain different indicating that full
synchronization is not achieved.

CPM is not only able to detect the correct direction of causal influence
before, but also after this critical coupling is reached (Figure 38 (a)).
We found that intrinsic noise can even improve the detectability of
causal asymmetries (dotted lines in Figure 38). This result is in con-
trast to other approaches [62], where e.g. Convergent Cross Mapping
fails to detect the correct causal direction for strong and weak cou-
plings (38 (d)). Furthermore CPM is able to detect the critical coupling
at which synchronization sets in. In the case of CPM at this critical
coupling the causal influence is increased strongly while the dominant
direction is still correctly determined, e.g. the asymmetry index does
not change its sign even for large w. Besides CPM and CCM we also
show results for method M from [67] (Figure 38 (c)). This methods
performs similar to CPM, but have difficulties detecting the correct
direction of causal influence for very strong coupling weights.
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Figure 38: (a) Causal influence for the (unilaterally) coupled Lorenz →
Rössler system derived from 103 reference points chosen from
time series of length 3 · 104. The time series were embedded with
τ = 2 and m = 7 and E = 103 ensembles were used to derive
a chance-level. Solid lines show the noise free results and dotted
lines the noise perturbed results. The causal influence in direc-
tion of the coupling Ix→y is shown in blue, the reverse direction
in red. (b) The asymmetry α for the noise free (solid lines) and
perturbed system (dotted lines). Grey Lines show the Information
Dimension estimated from the respective time series, solid lines
being the Lorenz-system and dashed line the Rössler-system. (c)
Causal Influence (M-Method) Ix→y (blue) and Iy→x (red) for the
noise free (solid-lines) and for the systems perturbed by Gaussian
white noise (asterisks). (d) Causal Influence (Convergent Cross
Mapping) Ix→y (blue) and Iy→x (red) for the noise free (solid-
lines) and for the systems perturbed by Gaussian white noise
(asterisks).

5.4.1 Asymmetric Noise

A particular challenging case is a unilaterally coupled system influ-
enced by asymmetric additive external noise. Due to the strong asym-
metry in noise and coupling weights, it is rather difficult to infer the
correct direction of causal influence. As an example for such a sys-
tem Chicharro et al. [67] used two coupled Lorenz-oscillators (Equa-
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tion 26) with the unilateral couplingΩ1→2 = w1→2 =: w. This system
synchronizes for strong coupling weights w = wi→j ≈ 9.8. Since the
asymmetry index α is volatile for small coupling weights, we consider
only the enumerator ∆I = Iy→x− Ix→y instead of the full asymmetry
index α. Analogous to Chicharro et al. [67] 100 ensembles were gener-
ated for each coupling weight between 0.05 and 0.05 · 1.05121 and we
show the estimated average causal asymmetry in Figure 39 (a).
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Figure 39: (a) ∆I derived for a system of two coupled Lorenz oscillators
(θ1/2 = 10, ρ1 = 39, ρ2 = 35, θ1/2 = 8/3, Ω1→2 = w1→2(x1 − x2),
Ω2→1 = 0). The unilateral coupling weight wx→y is increasing
from 0 to 17. A fourth-order Runge-Kutta algorithm with step
size 0.005 and down-sampled in intervals of 0.03 time units in-
tegrated the system. After removing the transient N = 211 data
points are used for further analysis and are injected with additive
noise either in x1, x2 or kept free of noise. We use Gaussian white
noise with amplitude of σ = 0.95σxi and all time-series are em-
bedded withm = 8 and τ = 4. The solid black line show the noise
free ∆I, dashed blue lines show perturbations in x1 and dashed
red lines in x2. All results are averaged over 100 ensembles for
each coupling weight and noise condition. (b) shows correspond-
ing results using a moving average filter with a window of 8 time
steps before further analysis. Dots mark ∆I with a significant dif-
ference from 0 derived by a Wilcoxon signed rank test (p = 0.001).

∆I maintains a positive sign, reflecting the unilateral structure of the
Lorenz → Lorenz-system. However, after synchronization (vertical
dashed line) ∆I decreases reflecting the entrainment of the second
Lorenz-Subsystem and the resulting similarity of both subsystems.
To validate that ∆I is different from 0 a Wilcoxon signed-rank test is
used, black dots below mark significant differences from 0. The col-
ored lines show ∆I for asymmetric noise added to the driven Lorenz
(blue) or the driving Lorenz (red). If the affecting subsystem (blue)
is perturbed, the correct sign of ∆I is still detected. Furthermore for
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large weights - synchronization - the unilateral system structure is
better detected. In contrast, for noise in the affected subsystem ∆I

has the wrong sign for a large range of weights and thus masks the
underlying causal structure. As seen above in Figure 39 causality de-
tection in synchronizing system under the influence of strong noise
can lead to misleading results. This is not only true for CPM, but
for a wide range of methods - in the case of unidirectional noise,
methods either suffer if the affecting or the affected system part is
perturbed by noise Figure 40. In general noise destroys the neighbor-
hood relations and thus methods using such wrong neighbourhoods
can yield misleading results. As discussed in the previous section to
improve the detection of causal influences the original neighbourhood
relations have to be better preserved or recovered in the presence of
noise.

5.4.2 Comparison

Previously, Chicharro et al. [67] compared different methods for causal-
ity detection for the Lorenz→Lorenz system. Here, we also show
the corresponding results for Figure 39 for three different methods.
Topological Causality [1] in Figure 40, (a) & (d), the M-method from
Chicharro et. al., (b) & (e), and Sugihara’s CCM method [4] in (c) &
(f).

Black (solid) lines correspond to a noise-free system. Here, all meth-
ods maintain a positive sign, reflecting the unilateral structure of the
Lorenz → Lorenz-system. If noise is injected in only one part of the
system all methods struggle to different degrees. For noise in the af-
fecting system (blue dashed lines) M retains a positive sign and only
for strong coupling (after synchronisation) M and CCM change the
sign indicating the detection of the wrong coupling structure. TC fails
completely to detect the correct direction. For noise injected in the af-
fected system TC and M detect the correct direction, i.e. a positive
sign. CCM detects a wrong direction for weak coupling weights. In
(d)-(f) the moving average filter was also used to improve the neigh-
borhood. Similar as to CPM also M and CCM now better retain a
positive sign and thus the correct causal structure, if the improved
neighborhoods are used. In contrast, TC still detects the wrong direc-
tion of causal influence, albeit the results are improved.
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Figure 40: (a)∆TC, (b) ∆M, (c) ∆CCM derived for a system of two coupled
Lorenz oscillators (θ1/2 = 10, ρ1 = 39, ρ2 = 35, θ1/2 = 8/3,
Ω1→2 = w1→2(x1 − x2), Ω2→1 = 0 ). The unilateral coupling
weight wx→y is increasing from 0 to 17. A fourth-order Runge-
Kutta algorithm with step size 0.005 and down-sampled in in-
tervals of 0.03 time units integrated the system. After removing
the transient N = 211 data points are used for further analy-
sis and are injected with either noise in x1, x2 or kept free of
noise. The injected noise is Gaussian white noise with amplitude
of σ = 0.95σxi and all time-series are embedded with m = 8 and
τ = 4. The solid black line show the noise free ∆I, dashed blue
lines show perturbations in x1 and dashed red lines in x2. All re-
sults are averaged over 100 Ensembles for each coupling weight
and noise condition. (d), (e), (f) show corresponding results using
a moving average filter with a window of 8 time steps before be-
fore further analysis. Dots mark a significant positive or negative
∆X derived by a Wilcoxon signed rank test (p = 0.001).

5.5 experimental measurements

Finally, the viability of CPM is demonstrated for a selection of exper-
imental results. The results presented here were already discussed in
the context of other methods for causal inference, e.g. CCM. Thus the
focus will be an reproducing previous results. The first two examples
are (pairwise) Heart- & breath-rate data [12] and climate data stud-
ied in [76]. The third example, EEG-data, is already discussed in the
supplement of TC [1].
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5.5.1 Heart- & Breath-rate

The first set of experimental data is the bi-variate data Set B of the
Santa Fe Time Series Competition [77] and features heart rate and
breathing rate of a patient with sleep apnea. Schreiber [12] used Trans-
fer Entropy to identify an asymmetry with the dominant direction of
causal influence from heart- to breath-rate.
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Figure 41: Heart-rate (a) and breath-rate (b) of a sleeping apnea patient. (c),
(d) show logarithmic neighborhood sizes for the heart and breath-
ing rate. The data was sampled at 2Hz and embedded with τ = 6
and m = 5, all n = 601 data points were chosen as reference
points. (c) dHH(k) shown as solid line, dBH(k) shown as dotted
line and the respective chance-level dB

∗
H (k) (dashed line). Due to

the small amount of data only the threefold standard deviation
was used to determine the chance-level. (d) dBB(k) shown as solid
line, dHB (k) shown as dotted line and the respective chance-level
dH
∗

B (k) (dashed line).

In agreement with Schreiber [12] the analysis is done on the same
section of n = 601 data points that where sampled at a rate of 2Hz,
shown in Figure 41 (a) & (b). Schreiber concluded that the domi-
nant direction of influence is from heart to breath signal and agree-
ing ’with the observation that the patient breathes in bursts which
seem to occur whenever the heart rate crosses some threshold’. Us-
ing CPM this asymmetry is even more evident in the logarithmic
neighborhood size dji(k) (Figure 41 (c), (d)) and the resulting causal
influence. Only a significant causal influence from heart-rate to breath-
rate IH→B = 0.07 is detected. This is also consistent with results us-
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ing nonlinear Granger Causality [78] and also remains valid if the
sampling rate is changed, e.g. doubled (IH→B = 0.06) or halved
(IH→B = 0.07).

5.5.2 CO2, CH4 and Temperature

The second set of time series stems from climate research, for which
van Nes used CCM to infer causal influences [76]. The goal of the pub-
lication was the validation of feedback effects between temperature T
and climate gases, CO2 and CH4.
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Figure 42: Time-series of T (a), CO2 (b) and CH4 (c) interpolated at a sam-
pling rate of 100 years [79]. (d) Logarithmic neighbourhood sizes
d
j
i(k) over κ. The interpolated time-series were embedded with
m = 5 and τ = 100kyr and 102 ensembles were used for chance-
level-estimation. dTT (k) shown as plus signs and the respective
chance-level d∗T (k) as a dashed line. Colored dots show diT (k), the
color is corresponding to T (blue), CO2 (red) and CH4 (green). (e)
& (f) show analogue results for C02 and CH4.

All three time-series are measurements obtained from Ice-cores. The
original data were published in [80] (T), [81] (CO2) and [82] (CH4).
Due to the nature of the recorded data additional preprocessing has
to be performed. Measurement of the observables is conducted in dif-
ferent depth of Ice-cores: Downcore parts of the Ice-core correspond
to times longer ago. However, the sampling intervals are non regular,
more recent times are sampled in shorter intervals than past times.
Furthermore the measurements are conducted on different Ice-cores
with differing sampling steps.
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Remedying this, all three time-series are interpolated with a sampling
rate of 100 years [79], shown in Figure 42. Consistent results (with the
following results) are also obtained for different sampling rates or bin-
ning the data into bins of equal size containing at least one data point.
Furthermore, the temperature is not directly measured, but inferred
from the deuterium content δD. For more details on the prepocessing
refer to the aforementioned references [76, 79–82].The different choice

of chance-level only
effects the first ≈ 5
neighbors slightly,

qualitative the
results would

remain the same.

In contrast to previous results random neighbors were chosen for the
chance-level. This allows the concurrent display of neighbors searched
in the two other reconstructions, e.g. dCO2T (k) (red) and dCH4T (k)

(green) are shown in (d). The concurrent display allows to already
infer which connection is stronger from inspecting the dji(k) in com-
parison to one another, e.g. CO2 is stronger effecting T than CH4. In
this case the causal influences are somewhat equal, thus the difference
in dji(k) is also not large.Originally, this was

done to save space.
The causal influences resulting from the shown (logarithmic) neighbor-
hood size are shown in Table 2. In agreement with [76], both, influ-
ences from temperature to CO2 and CH4 and in the reverse direc-
tion are detected. Like CCM (in [76]), CPM is detecting a somewhat
stronger outgoing influence from T compared to the feedback connec-
tion.

from \ to T CO2 CH4

T 1 0.2222 .1933

CO2 0.1715 1 0.1089

CH4 0.1560 0.1324 1

Table 2: Causal influences Ii→j between T , CO2 and CH4.

5.5.3 Conclusion

This chapter introduced CPM as measure for expansive distortions
and thus causal influences. The measure can be directly computed
from the neighbor relations resulting in a more resilient and straight-
forward advancement of the concept of topological causality.

The following pages discussed the impact of systems parameters like
coupling weights, amount of available data and noise on CPM us-
ing a range of different dynamical systems as examples. A partic-
ular challenging set of systems was found in systems approaching
synchronization. Here, CPM was still able to infer correct dominant
directions of influences, at least up to synchronization. The point of
synchronization, measured by information dimension, can be directly
derived from the basic quantities of CPM.
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Finally, causal influences are inferred in a selection of experimentally
measured time-series. Here, the results of CPM agree with previously
used approaches.





6
S Y N T H E S I S

6.1 summary of research findings

Interconnected (sub)-systems follow a shared overall dynamic. Here,
observables from a single variable allow the time-delay reconstruc-
tion of the complete state space, using Takens theorem [14–17]. These
reconstructions contain information about causal influences and the
underlying structure of connections. In particular, expansive distor-
tions in time-delay state space reconstructions systematically reflect
effective, time-resolved influences among parts of non-separable de-
terministic system. These expansive distortions are reflected in the
mapping between state space reconstructions and also in the inter
neighborhood relations.

In Chapter 4, topological causality (TC) [1] is introduced as a well
founded and analytically tractable method. TC measures the expan-
sive properties from the mapping between state space reconstructions.
The singular values of the mapping are inversely related to the causal
influence. In doing so, not only an overall global value for inter system
interaction, but rather the time-resolved causal influence can be com-
puted. The estimation of local mappings can be (numerically) chal-
lenging, in particular, when only limited amounts of observations are
available, when the system’s strict determinism is violated (intrinsic
noise), and when measurement noise contaminates the data. Even
greater challenges pose synchronizing systems that can cause TC to
reveal wrong directions of dominant influence.

A more refined approach to compute these expansive distortions in
state space reconstructions, Cross Projection method (CPM) [2], is pre-
sented in Chapter 5. Here, the basic idea remains the same - expansive
distortions are related to causal influences. But CPM derives these (the
expansive properties) directly by projecting neighbor relations from
the affected system(-part) to the respective other system(-part). Since
only neighbor relations are transferred, the state space reconstruction
from different observables are fully separated. This separation en-
sures invariance against different scales in the observables and thus
no additional preprocessing, e.g. z-score or quantile transformation
are required. The opportunity to directly compare projected neighbor-
hoods and random neighborhoods grants a good criterion to prevent
the detection of false positives. Furthermore, by not estimating the
mapping between state space reconstructions the computational cost
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is lowered and CPM can remain a local measure even in higher dimen-
sions. By altering the computation of neighbor size, e.g. by adapting aThe mapping is, in

general, a dimension
× dimension matrix.

different metric, CPM can be tailored to the requirements of the inves-
tigated data, increasing the reliability, in particular in cases of strong
noise pollution. Furthermore, CPM retains important properties ofOr by looking at

mean instead of
maximum size of

neighborhoods.

TC, like the ability to infer time-resolved causal influences, while also
giving further insights like the dimension of reconstructed system(-
parts).

Besides the straightforward result of our two methods to infer causal
influence, the application of said methods also provides additional
insights: e.g. the effects of noise on methods of this kind, the handling
of synchronizing systems and the potential to use noise as an aid
when dealing with synchronization.

Measurement noise not only affects intermediate quantities, like neigh-
borhood size, state-space mapping or prediction error, but already the
location of neighbors in state space reconstructions. The compositionIntermediate in the

sense, that these
quantities are

computed between
neighbor search and

causal influence.

of neighborhoods is changed by removing correct nearest neighbors
and adding false nearest. Improving the neighborhood relations di-
rectly enhances the quality of causal influences and can help compen-
sate for noise. Similar problems affect also other methods based on
the same heuristics.

Originally, TC was overhauled to achieve reliable results in systems
of (simple) coupled oscillators, e.g. Fitzhugh-Nagumos-neurons. A
wide range of coupling weights and/or frequencies force (these) os-
cillators to synchronize and not retain any own intrinsic degrees of
freedom. In such cases causal influences are meaningless. We found the
collapse of the dimension of the driven system onto the dimension
of the driver is a good criterion to quantify at which point the sys-
tems are fully synchronized. Up to this transition CPM is still able toPoint in parameter

space. determine the correct direction of causal influence. Afterwards, mean-
ingful causal influences can only be derived if the synchronization is
broken up, e.g. by transient dynamics or noise. While small amounts
of noise prove helpful, larger amounts distort the state space recon-
structions and mask the underlying influences even for unilateral in-
teractions.

Despite the negatives, a great advantage of TC and CPM is the in-
ference of even time-resolved causal influences. While the inference of
the structure of interactions is insightful, a time resolved an thus time-
dependent measure allows to also recognize opportune moments or
system states to interact with and thus provides a more insightful
view into unknown systems.
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6.2 integration in previous research

The introduction already established the kind of system or observed
data which have been of interest in this work: Time-series generated
or observed from experiments are analyzed retroactive. Thus, meth-
ods based on intervention, like Judea Pearl’s do-operator [6], are not
suitable in this case. Furthermore, we are not looking to acquire corre-
lations between observables that require additional information to es-
tablish directions of causal influences, but are rather seeking a directed
measure for causal influences solely based on the observables.

Observed time series are sorted according to their time-index t and
linked to each other by t. Comparing the prediction of the future
using own predecessors and predecessors of other time-series yields
a (first) measure for causal influences - Wiener-Granger causality [3].
Generalization of Wiener-Granger causality link this concept more
directly to information theory [12].

In general, observed time-series are represented as one-dimensional
vectors, but the underlying dynamical system is often multidimen-
sional. The states of the underlying system can be reconstructed us-
ing Takens theorem [14]. It is clear, if the (reconstructed) state ri(t) de-
scribes the system at time t, the future of similar states ri(t̃+ 1) are re-
lated to the future of ri(t). In particular, the prediction of these future Similar meaning

close-by in the state
space reconstruction.

states can be improved using these close neighbors, yielding a state-
space method relatable to Wiener-Granger causality, proposed by Sug-
ihara et al. [4]. Trivially, this works rather well in (pseudo-)oscillating
systems, where close states to a reference point exist. Sugihara’s con-
vergent cross mapping and other methods demonstrate that causal influ-
ences can be inferred from state space reconstructions.

The fundamental difference of our methods [1, 2] and related ap-
proaches [64, 67] is the inference of causal influences from just prop-
erties of state space reconstructions. Difference regarding

WGC, CMM and
related methods.On of our insights is that precisely the expansive distortions in state

space reconstructions reflect the causal influences. This idea is intro-
duced as the the concept of Topological causality (TC) by Harnack,
Laminski, Schünemann and Pawelzik [1]. In (simple) systems, a direct
relation between TC and the basic properties of system interactions -
coupling weights and system state - can be derived analytically. The
time-resolved nature of TC allows a more detailed view into the in-
teraction structure. In particular, changes in the interactions between time-resolved, also

implies
state-resolved

systems due to different states are revealed by TC.

Our second approach, cross projection method (CPM) [2] is strongly
linked to TC, and even has a direct functional relation to TC. However, For coupled logistic

maps.not quantifying expansive distortions from the mapping between state
space reconstruction, but from neighbor relations has clear advan-
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tages over TC, i.e. higher robustness to noise or lower computational
cost. Furthermore, by just transferring neighbor relations to the re-
spective other space, state space reconstructions from different ob-
servables are fully separated. Thus, the comparison of neighborhood
sizes and our resulting causal influence is invariant against observables
of different scales.

Quantifying causal influences from neighbor relations/distances in state
space reconstructions was already proposed by Chicharro et al. [64,
67]. In general, CPM and the methods of Chicharro et al. differ in
the details of how to quantify neighborhood size and computation of
the resulting measure for causal influences. However, CPM also retains
additional properties. By considering different numbers of neighbors
the logarithmic neighborhood sizes derived by CPM are directly as-
sociated with the Information dimension, allowing an additional cri-
terion for the inference of interactions [66]. Last but not least, CPM
retains the same time-resolved properties as TC. To be fair, the meth-
ods of Chicharro et al. can refined too in this regard.

When listing a selection of methods to infer causal influences it would
be straightforward to pose the question: ’What is the method of choice?’
In my perspective there is no ’all-in-one’ approach. The best method
for a specific application depend on the properties of the observable
in question. For example, in systems with strong stochastic properties
the reconstruction of the state space can be challenging. Thus, WGC
might be preferable to our proposed approaches. In general, a rea-
sonable approach is to use several different methods. This also agrees
with ongoing research, e.g. in [83] the authors discuss key strength
and limitations of several state of the art methods. Ambiguous results
from different methods can offer deeper insights into limitations of
different methods and how to overcome these limitations.

6.3 limitations of tc and cpm

Roughly speaking, the limitations of the proposed method(s), TC and
CPM, can be divided into requirements for the considered observ-
ables and conceptual limitations.

Some general requirements for the investigated observables are dis-
cussed in Chapter 5, focusing on quantities like length of time series
and noise-level and their effect on CPM. Other non-discussed require-
ments are more specific properties for the observable, like stationarity.
In general, we require the observables to have a valid state space re-
construction due to Takens theorem or its extension [14–17]. For the
shown dynamical systems this is guaranteed, but for experimental
results this does not have to be true.Actually, the

z-component of the
Lorenz system is

also an exception.
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In particular, for limited available data weak interactions might pro-
hibit information transfer from far apart system components to be in-
cluded in the state space reconstruction of a distant observable. The far apart in the

structure of the
system

amount of required data, naturally, also depends on the dimension of
the underlying system and the time-delay τ used for reconstruction.
Higher dimensional systems need more available data to sample the
state space reconstruction (somewhat) densely and provide sufficient
neighbors around a reference point. For example, a single period of a
limit cycle is not sufficiently sampled, since all neighbors are unsuit-
able temporal neighbors. Avoiding temporal

correlation, we
exclude these
temporal neighbors
from analysis.

In general, simple limit cycles of oscillating systems can be challeng-
ing for the inference of causal influences. If only a few oscillations pe-
riods from observables with similar frequencies are available, these
systems can appear to have strong causal influences or even seem syn-
chronous - even if the parts of the system are not connected whatso-
ever. I would treat these systems with caution to not predict spurious
causal influence despite of limited available data, but rather due to lim-
ited data. Other methods, like convergent cross mapping [4] seem to
not be affected by limited available data. Although, convergent cross
mapping has problems dealing with synchronization and was found
to yield wrong directions of dominant influences with in synchronous
systems [60–62].

More interesting, are fundamental properties of the investigated sys-
tems that deteriorate the inference of causal influences. Trivially, small
interactions are hard to detect and/or might be non-significant due
to the available amount of data. The other limit case, strong cou-
pling weights and the resulting synchronization of (sub-)systems is
the most challenging (for our methods), but also offers the opportu-
nity for further insights. Before synchronization we are able to make
meaningful statements on direction and strength of causal influences.
Once, both system parts are synchronized this is no longer possible,
not even for unilaterally coupled system. Whether synchronization is
achieved depends on the investigated system and the parameters, e.g.
coupling weights and oscillation frequency.

For example, in the considered coupled Fitzhugh-Nagumo neurons a
faster driving system leads to earlier synchronization for smaller cou-
pling weights. Even for no interaction the system parts can appear
synchronized, especially if only short time-series of (sub-)systems
with similar frequency are considered. We found the only way to deal
with synchronized systems is to artificially break the synchronization.
For example, by considering transient dynamics where subsystems
are still not converged to the limit-cycle or the introduction of addi-
tional noise allowing for degrees of freedom than can be transmitted
via the coupling weights. Transient dynamics

can be induced, e.g.
by shot-noise.



84 synthesis

6.4 theoretical implications

The fundamental insight of TC [1] is that expansive distortions be-
tween state space reconstructions are reflecting causal influences. These
expansive properties can derived from mappings between state space
reconstruction (TC) or neighbor relations within state space recon-
structions (CPM) and are direct consequence of properties of the re-
construction.

In the past a related idea was used for determining the quality of map-
pings [41, 84], where the ratio of the inflations within the respective
spaces was expected to be close to one for homeomorphy while for
topology violations it systematically deviates from one. The concept
of expansive distortions also directly links to the prediction quality
derived by Sugihara’s convergent cross mapping [4]. Naturally, close
neighbors in state space reconstructions have similar states and pro-
vide a good base for prediction.

When system dynamics are too similar or even synchronous, we can-
not infer causal relations, if the respective reconstructions have no
unique degrees of freedom. This also agrees with results from dif-
ferent interacting dynamical system, e.g. a Roessler and a Lorenz
system. Since these subsystems are so different in their respective
structure even for strong coupling some own degrees of freedom are
preserved. Thus, even for strong coupling weights CPM is able to
infer at least the correct dominant direction of causal influence. The
information also reflects this by collapsing (after synchronization) to
the dimension of the driving system, but still retains different dimen-
sions in both subsystems.

In identical (coupled) systems that synchronize with increasing cou-
pling weights, we found the collapse of the information dimension
to provide a suitable criterion quantifying the point at which systems
parts are synchronous. Up to this point CPM (and selection of other
methods [4, 67]) are able to infer the correct direction of influence.
Asymmetrically injected noise to either driver or driven system lead
to the detection of the wrong direction influence. Interestingly, the
different methods are failing for different of the two noise scenarios.
CPM and the methods proposed by Chicharro et al. [67] share the
same basic quantities - local neighborhood sizes, and only differ in
their further usage. We suspect detailed insights in the difference of
these methods yields the possibility for a combined approach that
copes with both, noise in the driver and the driven system.
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6.5 direct extensions of tc and cpm

In Chapter 5 some additions and modifications for our proposed
frameworks were implied covering more recent ideas. In particular,
the choice of correct and non-temporally related neighbors is pre-
sented. These approaches already show (some) success, but further
improvements can be made.

For example, the discussed dynamical systems show specific direc-
tions in state space that are affected by changes in coupling weights.
Fitzhugh-Nagumo neurons show an expansion orthogonal to the tem-
poral evolution of the system, while logistic maps are stretched (with
increasing coupling weight) orthogonally in regards to the manifold
of the uncoupled system. It seems, in both cases, a selection of neigh-
bors along these directions will have a more direct reflection of cou-
pling weights (and thus causal influences). Simple approaches to select
this subset of neighbors can be achieved using principal component
analysis or related methods select neighbors only in specific direction
(in state space reconstructions).

Both, TC and CPM, rely on local expansions, reflected in small lo-
cal neighborhoods. It seems different system scales are affected by
noise to differing degrees. Thus, it might prove beneficial to inves-
tigate larger and/or different neighborhood sizes, if these still re-
flect causal influences. Varying the scale at which a system is viewed
also ties in nicely with the concept of causal emergence [85] suggest-
ing that cause and effect must not necessarily manifest at the same
scale.

In fact, considering local scaling already enabled us to derive the in-
formation dimension directly from neighborhood sizes. Already, this
dimension can gives insight in the interactions between system parts
[66], this binary criterion for causal influence can be more directly in-
corporated in our framework.

All analysis done in this work is done as a pairwise causal analysis
using the same parameters for both observed time-series. However,
already the case of two oscillators with different frequencies suggests
different time-delays τ will be beneficial, since the best reconstruc-
tions of the state space of (pseudo-)oscillating systems is achieved
using one fourth of the period as time-delay. Furthermore, one of the
perks of CPM is the complete separation of state space reconstruc-
tions - only information of neighborhoods is transferred. Thus, it is
straightforward to use different schemes for state space reconstruc-
tion. For example, the combination of two or more observed time-
series. This also indicates a possible generalization of CPM using al-
ready established ideas like causal influences conditioned on other vari-
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ables or combinations of different observables for better state space
reconstruction.

In my opinion, the most astonishing property of CPM (and TC) is
the time- and state-resolved inference of causal influences which also
offers additional applications. For example this could uncover time-
dependence of coupling weights or the on/off-switching for interac-
tions.

Finally, the ending sections of Chapter 5 discussed some examples of
real measured data. This section was limited and just a reproduction
of examples, already analysed by previous methods. More interesting
would be examples where other methods fail and we prevail.

6.6 broader issues to be covered in future work

Just like the proposed frameworks, TC and CPM, other methods, es-
pecially methods based on state space reconstruction, suffer from the
same drawbacks and offer similar improvements. Thus, our ideas to
improve neighborhoods should also prove beneficial for CCM and
other methods alike.

State space methods also have the drawback of operating in the time-
domain. Methods like Wiener-Granger-Causality can also be trans-
formed to the frequency-domain. This is especially advantageous for
experimental results with many short observed time-series. Here, ap-
proaches like multi-tapering allow the combination of the short ob-
servables into a good representation of the frequency domain, while
the state space methods have to rely on the short single representa-
tions of state-space.

Dealing with state space reconstructions a sufficiently dense sam-
pling of the complete state space is needed. In particular, systems
with high dimensional dynamics and/or few available data points
represent the state space only incompletely. For example, CCM was
shown to yield wrong results in synchronous systems [13, 61]. Also
the shown results of short time-series of the 10-species Lotka-Volterra
system (Figure 9) shows in some simulations the inference of false
positive causal influences. A valid criterion that the density of the state
space is sufficiently full will be helpful in this case and prevent false
positives.

In general, the field is missing a meaningful criterion which method
is to be chosen for different available time-series and their respective
properties. In particular, noise, synchronization and/or oscillations
are detrimental for a range of methods. Although, at least for a selec-
tion of methods [83] provides a guide on drawbacks, advantages and
future challenges.



7
C O N C L U S I O N

The simple cause and effect notion of causality is at odds with re-
ciprocal interactions in dynamical system. Feedback loops entangle
cause and effect resulting in observed time-series that are both, cause
and effect. Measures to infer the underlying or hidden interactions
from these observables quantify the effective causal influence [1–4, 12,
64].

The dynamic evolution of interconnected systems cannot be sepa-
rated, the system behaves as a whole. Takens theorem [14] allows
the reconstruction of the state space of this overall dynamic from a
single measured observable. State space reconstruction from differ-
ent observable allow to infer the causal influence from local expansive
distortions.

Topological causality (TC) [1] computes these expansive distortions from
mappings between state space reconstructions of different observ-
ables, resulting in a state-dependent effective measure for causal in-
fluences among parts of non-separable systems. Furthermore, TC is a
model-free approach to infer causal influences that is also analytically
tractable in simple examples.

The revised successor of TC is the cross projection method (CPM) [2].
CPM derives expansive distortions by projecting neighbor relations
between state space reconstructions and comparing the size of these
projections with domestic neighborhoods. Basing the comparison on
the metric of a single state space reconstructions yields a scale invari-
ant, robust approach to quantify expansive distortions.

Both, TC and CPM, have drawbacks, in particular, in systems prone
to synchronization. Here, only CPM is able to infer correct causal influ-
ences up to synchronization. However, the lack of unique information
in the individual state space reconstructions of a fully synchronous
systems also corresponds to no expansive distortions. Systems lack-
ing any unique degrees of freedom mark reasonable upper bound for
the applicability for methods inferring causal influences.

Remarkably, TC and CPM allow to infer state- and time-resolved
causal influences for a range of (deterministic) dynamical systems. Thus,
not only revealing the underlying interaction structure, but also giv-
ing insight into system states that are opportune moments for exter-
nal interventions.
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