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Abstract

X-ray computed tomography (CT) is a highly relevant imaging technique with clinical and
industrial applications. At its core, CT involves an image reconstruction task from detector
measurements that are acquired from multiple projection angles. Improving CT reconstruction
using deep learning, which is being explored and utilized in various fields, is a subject of recent
and current research.

This thesis comprises six papers, whose contributions can be summarized as two-fold. First,
several deep learning approaches are compared quantitatively and qualitatively, involving the
creation of a benchmark dataset as well as the realization and evaluation of challenges for learned
low-dose and sparse-view CT reconstruction. Second, several extensions of the deep image prior
(DIP)—an unsupervised deep learning image reconstruction framework—are investigated. This
includes its application to CT using total-variation regularization, pretraining on synthetically
generated data, and uncertainty estimation via a probabilistic model. These extensions benefit
DIP-based CT reconstruction in several ways, such as an improved reconstruction quality, an
accelerated reconstruction process, and the identification of potential errors in the reconstruction.
Additionally, a Bayesian experimental design approach utilizing the uncertainty estimation is
studied for the selection of scanning angles based on a pilot scan.

Complementing the papers, which are included without any modifications in the second part of
this thesis, the first part introduces relevant foundations, as well as a large overview of literature
on deep learning for CT reconstruction.





Zusammenfassung

X-ray Computertomographie (CT) ist ein wichtiges bildgebendes Verfahren, das sowohl klin-
ische als auch industrielle Anwendung findet. Zentral bei der CT ist die Bildrekonstruktion
anhand von Detektormessungen, die für verschiedene Projektionswinkel aufgenommen werden.
Die Entwicklung verbesserter CT-Rekonstruktionsalgorithmen mittels Deep Learning (deutsch:
tiefem Lernen), welches für verschiedenste Anwendungsbereiche erforscht und genutzt wird, ist
Gegenstand neuester Untersuchungen.

Diese Arbeit enthält sechs Artikel, deren Beitrag wie folgt zusammengefasst werden kann.
Einerseits werden einige Deep-Learning-Ansätze quantitativ und qualitativ verglichen, wofür
unter anderem ein Benchmark-Datensatz erstellt wurde und kleine Wettbewerbe zur gelernten
Rekonstruktion von CT-Daten mit geringer Dosis und mit wenigen Projektionswinkeln durchge-
führt und ausgewertet wurden. Andererseits werden mehrere Erweiterungen für den Deep Image
Prior (DIP)—ein unüberwachter Deep-Learning-Ansatz zur Bildrekonstruktion—untersucht. Dies
umfasst seine Anwendung auf CT unter Verwendung von Totalvariations-Regularisierung, das
Vortrainieren auf synthetisch generierten Daten sowie die Unsicherheitsschätzung mittels eines
probabilistischen Modells. Diese Erweiterungen nützen der DIP-basierten CT-Rekonstruktion
auf mehrere Weisen, etwa durch eine verbesserte Rekonstruktionsqualität, einen beschleunigten
Rekonstruktionsprozess und die Identifikation potenzieller Fehler in der Rekonstruktion. Zusät-
zlich wird ein Bayesianischer Versuchsplanungsansatz untersucht, der die Unsicherheitsschätzung
nutzt, um die aufzunehmenden Projektionswinkel basierend auf einem Pilot-Scan auszuwählen.

Als Ergänzung zu den Artikeln, die unverändert im zweiten Teil dieser Arbeit eingebunden
sind, werden im ersten Teil zum einen relevante Grundlagen eingeführt, und zum anderen wird
ein großer Überblick über die Literatur zu Deep Learning für CT-Rekonstruktion gegeben.
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Chapter i

Preliminaries

i.1 Outline

This cumulative thesis is based on six selected papers and is organized in two parts. Part II
directly includes the papers, and part I provides foundations and literature context.

Part I is split in two chapters, where chapter 1 introduces the inverse problem of computed
tomography as well as deep learning, and chapter 2 covers the application of deep learning to
computed tomography reconstruction.

Before the two main parts, we list the papers included in this thesis in section i.2. For each
paper, we describe it shortly, clarify author contributions, and point out its context including
forward-references to the relevant sections in part I chapter 2. In section i.3, some used notation
and abbreviations are tabularized.
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i.2 Papers and author contributions

Six papers [252, 23, 253, 30, 14, 31] are included in this thesis, which incorporate the main
contributions of the author. From the other publications, the works [97, 96, 307, 33, 272] involved
contributions of the author to a lesser extent and therefore have not been selected to be part of the
cumulative thesis, but are relevant to the topic and will also be discussed in part I chapter 2. The
contributions to other co-authored papers [342, 340, 20] during the time as a Ph.D. student are
minor and are less relevant to this thesis. Below, we list the six included papers while clarifying
author contributions. Throughout the thesis, we use purple instead of regular blue numbers
when citing any of the included papers in order to highlight their integration in the context in a
non-intrusive way.
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LoDoPaB-CT, a benchmark dataset for low-dose CT reconstruction [252]

Citation:
J. Leuschner, M. Schmidt, D. O. Baguer, and P. Maass. “LoDoPaB-CT, a benchmark
dataset for low-dose computed tomography reconstruction”. In: Scientific Data 8.1 (2021),
p. 109. issn: 2052-4463. doi: 10.1038/s41597-021-00893-z

Description:
We construct a public dataset of paired CT images and simulated low-dose observations,
designed for training and benchmarking learned reconstruction methods. The ground truth
data is extracted from the LIDC-IDRI database [18].

Contributions:
Maximilian Schmidt and Johannes Leuschner contributed equally. Peter Maass pointed out
the need for a public CT reconstruction benchmark dataset and organized an initial meeting,
where we received valuable input from experienced community members. Maximilian
Schmidt and Johannes Leuschner designed, curated, implemented and documented the
dataset. Maximilian Schmidt contributed most to the conceptualization and writing, and
also by testing. The technical dataset creation and the supporting DIVαℓ library, which
includes simple access to the dataset, were mainly developed by Johannes Leuschner. Daniel
Otero Baguer implemented the U-Net post-processing reconstruction method serving as a
first reference and also contributed to the curation.

Context and connections with chapter 2:
A large-scale paired dataset is a prerequisite for many of the methods described in chapter 2.
The dataset served as a prerequisite for our benchmarks in [23] and [253], and has been
frequently used (as weak but easy-to-access indicators, on 6th of July 2023, Crossref counted
26 citations of the published article, Google Scholar counted 76 citations of the preprint
or published article, and Zenodo counted several thousand data downloads). The included
U-Net baseline is a directly trained post-processing, which is described in section 2.1.1.

Links:
https://www.nature.com/articles/s41597-021-00893-z — Open access paper
https://zenodo.org/record/3384092 — Dataset
https://github.com/jleuschn/dival — DIVαℓ: Utilities and reference method collection
https://github.com/jleuschn/lodopab_tech_ref — Technical reference data and scripts
https://lodopab.grand-challenge.org — Challenge website with public leaderboard

5

https://doi.org/10.1038/s41597-021-00893-z
https://www.nature.com/articles/s41597-021-00893-z
https://zenodo.org/record/3384092
https://github.com/jleuschn/dival
https://github.com/jleuschn/lodopab_tech_ref
https://lodopab.grand-challenge.org


CT reconstruction using DIP and learned reconstruction methods [23]

Citation:
D. O. Baguer, J. Leuschner, and M. Schmidt. “Computed tomography reconstruction
using deep image prior and learned reconstruction methods”. In: Inverse Problems 36.9
(2020), p. 094004. doi: 10.1088/1361-6420/aba415

Description:
We investigate deep image prior [249] with total variation regularization [265] (DIP+TV)
for CT reconstruction and benchmark it against different learned reconstruction approaches
given a varying amount of training data. For the low-data regime, in which DIP+TV
competes with learned methods, we propose to combine both by leveraging an initial learned
reconstruction.

Contributions:
Daniel Otero Baguer came up with the ideas behind this paper. Implementation of all
methods and experiments were split between all three authors. The implementation uses the
DIVαℓ library (https://github.com/jleuschn/dival) principally developed by Johannes
Leuschner, and, in turn, implementations and trained networks from this paper were
integrated into DIVαℓ afterwards by Johannes Leuschner.

Context and connections with chapter 2:
This paper applied (and to the best of our knowledge established) the DIP+TV method [249,
265] for CT reconstruction, which is described in section 2.7.1. The benchmark with learned
methods compares the reconstruction accuracy and data efficiency of several methods falling
in the categories of directly trained post-processing reconstruction (section 2.1.1), end-to-
end trained learned iterative reconstruction (section 2.5.1) and fully learned reconstruction
(section 2.6), along with the unsupervised DIP+TV and classical methods.

Links:
https://iopscience.iop.org/article/10.1088/1361-6420/aba415 — Open access paper
https://github.com/oterobaguer/dip-ct-benchmark — Code and results
https://github.com/jleuschn/dival — DIVαℓ: Utilities and reference method collection

6

https://doi.org/10.1088/1361-6420/aba415
https://github.com/jleuschn/dival
https://iopscience.iop.org/article/10.1088/1361-6420/aba415
https://github.com/oterobaguer/dip-ct-benchmark
https://github.com/jleuschn/dival


Quantitative comparison of DL-based . . . methods for . . . CT applications [253]

Citation:
J. Leuschner, M. Schmidt, P. S. Ganguly, V. Andriiashen, S. B. Coban, A. Denker, D.
Bauer, A. Hadjifaradji, K. J. Batenburg, P. Maass, and M. van Eijnatten. “Quantitative
Comparison of Deep Learning-Based Image Reconstruction Methods for Low-Dose and
Sparse-Angle CT Applications”. In: Journal of Imaging 7.3 (2021). issn: 2313-433X. doi:
10.3390/jimaging7030044

Description:
We compare eight deep-learning-based reconstruction methods and three classical recon-
struction methods using two large-scale datasets (LoDoPaB-CT [252] and Apple CT [86]).
It summarizes results from open challenges, which have been started during the Code
Sprint 2020 online event on “Benchmarking Deep Learning based CT Image Reconstruction
Methods”.

Contributions:
Initiated by Maureen van Eijnatten, Carola Bibiane Schönlieb, Peter Maass and Kees
Joost Batenburg, the Code Sprint 2020 event was planned and organized by Maureen
van Eijnatten, Poulami Somanya Ganguly, Maximilian Schmidt and Johannes Leuschner.
While the LoDoPaB-CT [252] dataset already existed, the Apple CT datasets [86] were
created in preparation of the Code Sprint 2020 by Sophia Bethany Coban, Vladyslav An-
driiashen, Poulami Somanya Ganguly, Maureen van Eijnatten and Kees Joost Batenburg,
collaborating with the GREEFA company. Dominik Bauer and Amir Hadjifaradji took
part in the challenges and contributed descriptions of their submitted methods. Johannes
Leuschner coordinated the technical evaluation of the methods. In addition to external
submissions, existing methods were included; some had already been implemented in our
DIVαℓ library [251], others use code by Daniël Maria Pelt, Tianlin Liu, Alexander Denker
and Sophia Bethany Coban. Maximilian Schmidt, Poulami Somanya Ganguly, Vladyslav
Andriiashen, Sophia Bethany Coban, Alexander Denker, Maureen van Eijnatten and Jo-
hannes Leuschner undertook the comparative evaluation and presentation of results.

Context and connections with chapter 2:
This paper compares several deep learning methods described in chapter 2, more precisely
directly trained post-processing reconstruction with different architectures (section 2.1.1),
post-processing reconstruction using a normalizing flow (section 2.1.3), an end-to-end trained
learned iterative reconstruction (section 2.5.1), a fully learned reconstruction method (sec-
tion 2.6) and DIP+TV reconstruction (section 2.7.1).

Links:
https://www.mdpi.com/2313-433X/7/3/44 — Open access paper
https://lodopab.grand-challenge.org — Challenge website with public leaderboard
https://apples-ct.grand-challenge.org — Challenge website
https://zenodo.org/record/4460055 — Model parameter results
https://zenodo.org/record/4459962 — Reconstruction results for LoDoPaB-CT
https://zenodo.org/record/4459250 — Reconstruction results for Apple CT
https://github.com/jleuschn/learned_ct_reco_comparison_paper — Code and material
https://github.com/jleuschn/dival — Part of code and model parameter results

7

https://doi.org/10.3390/jimaging7030044
https://www.mdpi.com/2313-433X/7/3/44
https://lodopab.grand-challenge.org
https://apples-ct.grand-challenge.org
https://zenodo.org/record/4460055
https://zenodo.org/record/4459962
https://zenodo.org/record/4459250
https://github.com/jleuschn/learned_ct_reco_comparison_paper
https://github.com/jleuschn/dival


An educated warm start for DIP-based micro CT reconstruction [30]

Citation:
R. Barbano, J. Leuschner, M. Schmidt, A. Denker, A. Hauptmann, P. Maass, and B. Jin.
“An Educated Warm Start for Deep Image Prior-Based Micro CT Reconstruction”. In: IEEE
Transactions on Computational Imaging 8 (2022), pp. 1210–1222. doi: 10.1109/TCI.2022
.3233188

Description:
We investigate a pretraining on synthetic data to initialize the U-Net weights of DIP+TV
[249, 265, 23] for CT reconstruction. A speed-up and stabilization of the subsequent
unsupervised deep image prior (DIP) optimization is demonstrated on real-measured 2D
and 3D µCT data.

Contributions:
Riccardo Barbano, who brought up the idea, and Johannes Leuschner contributed equally by
principally designing, implementing and conducting the experiments. Maximilian Schmidt
and Alexander Denker helped by discussing and evaluating ideas. Andreas Hauptmann,
Peter Maaß and Bangti Jin provided advice on the focus and presentation as well as support
on technical and methodological aspects.

Context and connections with chapter 2:
This paper presents an extension of the DIP+TV applied to CT [23] (section 2.7.1), by
pretraining the network to perform post-processing (section 2.1.1) on synthetic data.

Links:
https://ieeexplore.ieee.org/document/10003972 — Paper (non-open access)
https://arxiv.org/abs/2111.11926 — Preprint (accepted version)
https://github.com/educating-dip/educated_deep_image_prior — Code
https://zenodo.org/record/7234749 — Material and results
https://educateddip.github.io/docs.educated_deep_image_prior — Website
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Uncertainty estimation for CT with a linearised DIP [14]

Citation:
J. Antoran, R. Barbano, J. Leuschner, J. M. Hernández-Lobato, and B. Jin. “Uncertainty
Estimation for Computed Tomography with a Linearised Deep Image Prior”. In: Transac-
tions on Machine Learning Research (2023). issn: 2835-8856. url: https://openreview.n
et/forum?id=FWyabz82fH

Description:
We propose a method to estimate uncertainty of deep image prior (DIP) reconstructions,
based on a hierarchical prior model placed over the convolutional kernels. Utilizing a
linearized network model that is expanded around the original DIP weights, we obtain a
Gaussian predictive posterior, with the mean being the original DIP reconstruction. Hyper-
parameters of the prior model are obtained by marginal likelihood maximization, employing
gradient estimation techniques to scale to real-measured 2D µCT data. While the predictive
posterior covariance can be represented in closed form, sampling and patch-wise evaluation
allow for scalable estimation.

Contributions:
Javier Antorán and Riccardo Barbano first devised the method, presented it as a sympo-
sium contribution [29] and contributed equally to this work. Johannes Leuschner joined
the development to scale to higher resolutions. Model and methodology were primarily
elaborated by Javier Antorán. Riccardo Barbano and Johannes Leuschner mainly developed
the numerical implementation and conducted most of the experiments while conferring with
Javier Antorán and Bangti Jin. All authors contributed to the development and presentation
of the paper.

Context and connections with chapter 2:
This paper presents an uncertainty estimation framework (section 2.9) for the DIP+TV
applied to CT [23] (section 2.7.1).

Links:
https://openreview.net/forum?id=FWyabz82fH — Open access paper and review
https://github.com/educating-dip/bayes_dip — Code
https://zenodo.org/record/7282279 — Material and results
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Bayesian experimental design for CT with the linearised DIP [31]

Citation:
R. Barbano, J. Leuschner, J. Antorán, B. Jin, and J. M. Hernández-Lobato. Bayesian
Experimental Design for Computed Tomography with the Linearised Deep Image Prior.
Presented at ICML Workshop on Adaptive Experimental Design and Active Learning in the
Real World (ReALML) 2022, July 22, Baltimore, MD, USA. 2022. doi: 10.48550/ARXIV.2
207.05714

Description:
We develop a method to select additional CT scanning angles based on a sparse pilot scan. A
greedy angle selection strategy is employed that maximizes either the expected information
gain or the expected squared error, informed by different image prior covariance models.
Using the image prior covariance of a linearized deep image prior [14], improvements upon
equidistant angle selection are obtained on a dataset with clear preferential directions.

Contributions:
Riccardo Barbano, Johannes Leuschner and Javier Antorán contributed equally. Javier
Antorán elaborated the approach while Riccardo Barbano and Johannes Leuschner imple-
mented the method, constructed the dataset, and designed and conducted the experiments.
José Miguel Hernández-Lobato and Bangti Jin gave advice on the focus and methodology.

Context and connections with chapter 2:
This paper investigates Bayesian experimental design for optimized angle selection in CT
based on a pilot scan, using an image covariance obtained from a linearized deep image
prior [14] uncertainty model (section 2.9) for the DIP+TV (section 2.7.1).

Links:
https://arxiv.org/abs/2207.05714 — Preprint
https://github.com/educating-dip/bayesian_experimental_design — Code
https://zenodo.org/record/6635902 — Results
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i.3 Notation and abbreviations

notation examples meaning

x⊤, X⊤ transposition of a vector or matrix

X:,0, X3,:,: selection of matrix or tensor slices, any dimension with index “:” is kept

X⃗ vectorization of a matrix, X ∈ Rm,n ⇒ X⃗ = [X0,:, . . . , Xm−1,:]
⊤ ∈ Rm·n

1D, 2D, 3D one-dimensional/one dimension, two-dimensional/two dimensions, . . .

w.r.t. with respect to

i.i.d. independent and identically distributed

≈ approximately equals

≪ much smaller than

x := . . ., . . . =: x define x

R(A) range (image) of function A

⊕ direct sum of spaces

⊥ orthogonal complement of a subspace

∝ is proportional to

argmin
x∈X

L(x) element x ∈ X that minimizes L(x) (assuming existence)

ãrgmin
x∈X

L(x) element x ∈ X found by “early-stopped” iterative minimization of L(x)

L(X,Y ) space of linear maps between vector spaces X and Y

[00] citation

[00] citation of work that is included in the cumulative dissertation (part II)
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abbreviation meaning

AD automatic differentiation

ADMM alternating direction method of multipliers

ART algebraic reconstruction technique

BCE binary cross-entropy

CNN convolutional neural network

CT computed tomography

DEQ deep equilibrium models

DIP deep image prior

DRN dilated residual network

FBP filtered back-projection

FDK Feldkamp-Davis-Kress

FFT fast fourier transform

GAN generative adversarial network

GCN graph convolutional network

INR implicit neural representations

MACE multi-agent consensus equilibrium

MAP maximum a posteriori

MAR metal artifact reduction

MLP multi-layer perceptron

MRI magnetic resonance imaging

MSE mean squared error

PET positron emission tomography

PGD projected gradient descent

PnP Plug-and-Play

PSNR peak signal-to-noise ratio

RED regularization by denoising

ROI region of interest

SGD stochastic gradient descent

SSIM structural similarity index measure

TV total variation
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Foundations and literature overview
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Chapter 1

Inverse problems,
computed tomography and
deep learning

1.1 Inverse problems

Mathematical models usually aim to describe the effects that are observed given a certain cause.
One is often interested in solving the inverse problem, which asks the opposite question: Given
some observations, what has been the cause for it?

One class of inverse problems is concerned with physical systems modeled by partial differential
equations, which together with a set of parameters determine the behaviour of the system. Here,
the aim is to identify unknown parameter values based on measured quantities. The parameters
can be of different kinds. They can, for example, specify the spatial distribution of a quantity
at an initial time point, represent a boundary value, or represent a coefficient involved in the
equations. Tomographic reconstruction constitutes another class of inverse problems. Here, the
spatial distribution of a quantity is asked to be reconstructed from a set of measured line integral
values of this quantity.

Solving an inverse problem can be challenging for various reasons. In practical applications,
the observations are most often noisy measurements. If the solution depends on the observations
in a sensitive way, then even minor uncertainty in the observations translates to major uncertainty
in the solution. Another potential issue is non-uniqueness, meaning that multiple solutions can
explain the observations equally well. For example, tomographic reconstruction of high-resolution
images from an undersampled set of measurements (e.g. sparse-view or limited-view computed
tomography [353]) involves this difficulty, meaning that the true solution cannot be recovered
without ambiguity (unless incorporating additional information). In addition to noise perturbing
the observations, the forward model might also be inaccurate, e.g., simplifying the true physical
behaviour, which might be unknown or computationally intractable. Finally, solving inverse
problems often requires difficult and costly numerical optimization.

Before considering practical solution approaches, we first recite a few mathematical considera-
tions. For this purpose, the following, very abstract definition serves as a starting point.

Definition 1 (Exact inverse problem) Assume the relation between a space of causes X and
a space of observable effects Y is given exactly by a mapping A : X → Y (“forward model”). The
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task of finding the set A−1
set(y) := {x ∈ X | Ax = y} for given y ∈ Y is called exact inverse

problem.

Note that this formulation is idealized for at least two reasons: (i) observations are usually
perturbed, e.g. by measurement noise, and (ii) perfect knowledge of the model A is assumed.

For an exact inverse problem, existence and uniqueness of a solution are determined by the
cardinality of the solution set A−1

set(y): One can distuingish the cases A−1
set(y) = ∅ (no solution),

|A−1
set(y)| = 1 (unique solution) and |A−1

set(y)| > 1 (multiple solutions).
The properties of the inversion function A−1

set(y) are commonly used to classify an inverse
problem as either well-posed or ill-posed. Different definitions have been used in the literature,
including those of Hadamard [159] and Nashed [303], which are stated in the following.

1.1.1 Ill-posedness
In practice one usually must expect y to be perturbed (e.g. a noisy measurement), so it seems
natural to consider whether the solution (set) depends stably on y. Intuitively speaking, A−1

set(y)
should be similar for the non-perturbed and the perturbed value of y.

Hadamard’s definition of well-posedness requires the problem to be uniquely solvable for
all y ∈ Y . This allows to describe the inversion with the mapping A−1 : Y → X such that
A−1

set(y) = {A−1(y)}. Requiring A−1 to be continuous in a general topological sense completes
the definition:

Definition 2 (Ill-posedness in the sense of Hadamard) The exact inverse problem for a
model A : X → Y between topological spaces X and Y is called well-posed in the sense of
Hadamard [159] if the following conditions hold:

1. For all y ∈ Y , there exists x ∈ X solving Ax = y. (surjectivity of model A : X → Y )

2. For all y ∈ Y , the solution of Ax = y is unique. (injectivity of model A : X → Y )

3. The inverse mapping A−1 : Y → X is continuous.

Otherwise (if any of these conditions is violated), the problem is called ill-posed in the sense of
Hadamard.

An important subclass of inverse problems are those posed by a linear model A ∈ L(X,Y )
between Hilbert spaces X and Y , which we will consider in the following. For finite-dimensional
spaces X and Y , the generalized (Moore–Penrose) inverse [293, 320], denoted by A+, addresses
the problem of unique solvability by:

• generalizing the inverse problem to the minimization of observation error in the Y -norm
x∗ ∈ L := argmin

x∈X
∥Ax− y∥Y (allowing for approximate solutions if Ax ̸= y ∀x ∈ X);

• choosing the minimum norm solution x∗ = argmin
x∈L

∥x∥X (resolving possible ambiguity).

The notion of generalized inverses has been generalized to linear operators between general Hilbert
spaces [384, 43, 47, 48, 117], which is somewhat more involved, e.g. requiring the domain of A to
be decomposable as the direct sum of the null-space and the carrier of A, and only allowing the
generalized inverse to be defined for y ∈ R(A)⊕R(A)⊥ ⊆ Y [43, 117].

Being able to uniquely solve the generalized inverse problem, there remains the question
whether the generalized inverse A+ is stable (analogously to condition 3 in definition 2). The
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following definition of well-posedness by Nashed identifies a generalized linear inverse problem
to be well-posed if and only if A+ is continuous (or, equivalently, bounded), via the equivalent
condition of the range of A being closed [184]:

Definition 3 (Ill-posedness in the sense of Nashed) Consider the generalized inverse prob-
lem for a linear model A : X → Y between Hilbert spaces X and Y . The problem is called
well-posed in the sense of Nashed [303] if the range of A is closed; otherwise the problem is called
ill-posed in the sense of Nashed.

If A has an inverse A−1, it coincides with A+, and thus ill-posedness in the sense of Nashed
implies ill-posedness in the sense of Hadamard due to condition 3 in definition 2.

An inverse problem with finite-dimensional range of the linear model A is always well-posed
in the sense of Nashed; thus problems that are discretized in finite dimensions—like it is usually
done in order to solve an inverse problem numerically—are well-posed, regardless of potential
ill-posedness of the original analytical problem. However, the solution can still depend sensitively
on the (noisy) observations if A has small singular values (i.e., the problem is ill-conditioned),
and the term “ill-posed” is also commonly used for such problems [163]. In general, the singular
value decay of A is informative about the degree of ill-posedness: A problem is commonly called
mildly ill-posed if the decay is polynomial, and severely ill-posed if the decay is exponential [115,
21, 184].

In the remainder of section 1.1, we stick to the assumption of X and Y being Hilbert spaces,
which also means that they have norms ∥ · ∥X and ∥ · ∥Y induced by their scalar products.

1.1.2 Regularization

The aforementioned instabilities arising in inverse problems cause a need for regularizing techniques.
Even if the model does not allow for exact and robust inversion (e.g., due to noise that would
be amplified excessively, or because of a non-injective model A), one can still aim for a robust
inversion method that approximates the true solution. Regularization can be accomplished in
different ways.

Instead of only minimizing the observation error, variational regularization adds a regular-
ization term to the objective function. Classical examples for regularization terms are the ℓ2
norm (known as Tikhonov regularization [228]), which promotes small solution values, and total
variation (TV regularization [335, 331]), which promotes solutions with small gradients. With
iterative methods, such as the Landweber iteration [162], early stopping is another effective way
to regularize the solution, and can in fact be related to variational regularization [237, 148, 422].
Further regularization strategies include approximate analytic inversion and discretization as
regularization—see [45] and [21, sec. 2.4] for more detailed overviews.

Studying the regularized solution of inverse problems can be approached from different
view-points. We will briefly depict both the classical deterministic and the statistical approach.

Deterministic approach

In classical regularization theory, the observations yδ ∈ Y are assumed to contain noise that is
bounded by some constant δ,

yδ = Ax+ ϵ, ∥ϵ∥Y ≤ δ. (1.1)

For this setting, a regularization method is formed by a family of continuous operators param-
eterized by a regularization parameter, along with a parameter choice function depending on
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the noise level δ and optionally also on yδ, that yields approximate solutions converging to the
minimum norm solution as δ → 0 [115].

Example 1 A Tikhonov regularization can be formalized as the operator family {Rα}α>0,

Rα : Y → X, yδ 7→ argmin
x∈X

∥Ax− yδ∥2Y + α∥x∥2X , (1.2)

with a suitable choice function for the parameter α, e.g. any continuous monotonously decreasing
function δ 7→ α(δ) fulfilling α(δ) → 0 and δ2/α(δ) → 0 for δ → 0 [116].

A parameter choice function that does not depend on yδ, but only on δ, is called an a priori
choice, while a choice that takes yδ into account is called a posteriori. A well-known a posteriori
choice was proposed by Morozov [294]: Since the true solution x has a residual norm ∥Ax− yδ∥Y
of up to δ (see eq. (1.1)), it appears reasonable to choose the regularization parameter α such that
the regularized solution Rα(y

δ) has a residual norm of similar magnitude, ∥ARα(y
δ)− yδ∥ ≈ δ.

Classical theory also studies convergence rates and the stability of regularization methods.
For example, a variant of Morozov’s discrepancy principle yielding a Tikhonov regularization with
order-optimal convergence is proposed in [114], and [299] studies the best stability that can be
achieved depending on the regularity that is assumed for the solution. Constraints on the set of
possible solutions, such as regularity, are called source conditions, and provide the basis for proofs
of convergence rates [58, 122, 21]. Convergence results for total variation (TV) regularization of
linear inverse problems are shown e.g. in [196].

Statistical approach

So far, all variables and the model have been considered to be deterministic, with the cause x and
noise ϵ being unknown. In the statistical approach, one instead models the inverse problem with
random variables. More precisely, x is assumed to follow a prior distribution with density p(x)
modeling information about x that is available before observing yδ, and the dependence of yδ on
x is modeled in terms of the conditional probability distribution with density p(yδ |x), which is
also called likelihood. See [210] for a more detailed introduction to statistical inversion.

Solving the inverse problem in the statistical sense extends to recovering the full posterior
distribution with density p(x | yδ), i.e., estimating probabilities for all possible solutions x given
an observation yδ. In contrast, the deterministic approach reports a single estimate for x. From
an estimated posterior distribution, one can obtain point estimates, such as its maximum, called
the maximum a posteriori (MAP) estimate, but also other statistical quantities, such as its mean,
known as the conditional mean, as well as interval estimates. To estimate some quantities, e.g. the
conditional mean and standard deviation, it is sufficient to sample from the estimated posterior
distribution, so an explicit formulation of the estimated density is not necessarily required. For
simplicity, we only consider finite-dimensional Hilbert spaces X = Rn and Y = Rm in the
following.

Bayes’ rule [37, 195] provides us with the relation

p(x | yδ) = p(x) p(yδ |x)
p(yδ)

,

stating that the posterior density for given yδ is proportional to the product of prior density
and likelihood, normalized by the marginal density p(yδ), which must be non-zero and can be
disregarded for many purposes as a constant that does not depend on x.

Comparing with the deterministic approach, the likelihood function p(yδ |x) models both the
mapping from X to Y and the noise, while the prior density p(x) plays a regularizing role. In
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fact, many classical regularizations have a statistical interpretation; e.g. the Tikhonov functional
that is minimized in eq. (1.2) can be motivated as follows:

Example 2 Consider finite-dimensional Hilbert spaces X = Rn and Y = Rm. Without knowledge
of yδ, we assume the cause x to follow a normal distribution x ∼ N (0, σ2

xIn). Consider a mapping
A : X → Y and additive normal-distributed noise ϵ ∼ N (0, σ2

yIm) for the observation model,
leading to the conditional probability distribution yδ |x ∼ N (Ax, σ2

yIm). For the prior density
and likelihood function we obtain

p(x) ∝ e−∥x∥2X/(2σ2
x)

p(yδ |x) ∝ e−∥yδ −Ax∥2Y /(2σ2
y)

and hence for the posterior density:

p(x | yδ) ∝ p(x) p(yδ |x) = e−∥x∥2X/(2σ2
x)− ∥yδ −Ax∥2Y /(2σ2

y).

The resulting MAP estimate, which is found by minimizing the posterior negative log-likelihood
− log(p(x | yδ)), coincides with the Tikhonov-regularized solution Rα(y

δ) with α = σ2
y/σ

2
x (see

eq. (1.2)).

Many other minimization functionals for variational regularization can be motivated in the same
way, i.e. by summing the negative log-likelihoods of the prior p(x) and the observation model
p(yδ |x) [21].

The discrepancy principle of Morozov, which we previously discussed in the context of choosing
the regularization parameter in a deterministic approach, can also be transferred to statistical
inverse problems, e.g. to define stopping criteria for iterative solvers [50]. More vaguely speaking,
the discrepancy principle says to solve the problem only up to the given accuracy of observations,
where the accuracy is given by noise bounds in the deterministic approach or instead by properties
of random distributions (such as the noise level σy in example 2) in the statistical approach.

1.2 Computed tomography

Obtaining images visualizing the interior of a subject or object in a non-invasive way is important
in many applications. Especially for medical diagnostic, imaging is a crucial tool. Various
imaging modalities exist, with the most prominent ones being based on X-ray attenuation,
magnetic resonance, nuclear emission, or ultrasound. With the present section, we give a brief
introduction to X-ray computed tomography (CT), focusing on reconstruction techniques and
challenges. Besides medical applications, X-ray CT is useful for many other applications in
industry, engineering and science [401]. Our introduction to X-ray CT is, among others, based on
the book [60] (see also the more compact chapter [61]).

In the 1970s, the first medical X-ray CT scanners became commercially available, making it
the first tomographic modality applied to human bodies. While a single X-ray radiograph projects
the attenuation information of a volume onto a 2D plane, thus leading to superposition of the
structures at different depths, computed tomography combines acquisitions from multiple angles
to reconstruct images with significantly higher contrast. A source emitting X-ray quanta rotates
around the subject, and the radiation after passing through the subject is detected on the opposite
side in order to quantify the attenuation. Since the third generation of CT scanners, a sufficiently
large fan-beam of X-rays emitted by the source can be captured by the detector simultaneously,
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Figure 1.1: Illustration of a 2D fan-beam CT geometry.

allowing for a continuous rotation of the source while acquiring projections. Figure 1.1 illustrates
a 2D fan-beam geometry: For different angles λ, the attenuation at multiple detector pixels is
acquired, corresponding to different X-ray paths (parameterized by γ).

Given the measurements of a CT scan, a tomographic reconstruction problem needs to solved
in order to obtain the CT image. Clearly, CT reconstruction is an inverse problem, where the
model describes the scanning process, the observation is formed by detector measurements, and
the unknown quantity to be recovered is an image that indicates the X-ray attenuation at each
location in the subject. The whole scanning process is non-deterministic, mostly due to the
emission, transmission and detection of X-ray quanta being statistical in nature [60]. Ideally, a
model should incorporate the various stochastic effects (including ones that are more challenging
to simulate, such as Compton scattering [276]). However, for simplicity and tractability, one
typically formulates a model consisting of a deterministic forward model and a noise model,
chained sequentially.

In a simplified model of CT scanning, the deterministic forward model performs integration
over lines corresponding to the paths of X-ray quanta traveling from the source to the detector.
First, we assume a monochromatic X-ray source, in which all quanta have the same energy level.
For each line L, Beer-Lambert’s law of attenuation relates the detected intensity I to the intensity
without attenuation I0 (i.e., if vacuum would be scanned) via

I = I0 exp

(
−
∫
p∈L

x(p) dp

)
,

where x(p) denotes the linear attenuation coefficient at location p. By isolating the integral over
x on the right-hand side, the linear equation

− log

(
I

I0

)
=

∫
p∈L

x(p) dp (1.3)

is obtained, which is more convenient in practice. The log-transformed measurements − log(I/I0)
are called post-log data, and they are often computed in a pre-processing step in order to linearize
the model.
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In a CT scan, intensities are acquired for a set of lines through the interior of the scanner.
E.g., for a 2D image space, the fan-beam geometry depicted in fig. 1.1 presents one such set of
lines, parameterized by λ and γ:

Gfan := {L(λ, γ) | λ ∈ [0, 2π), γ ∈ [−γmax, γmax]}, L(λ, γ) := {psrc(λ) + t d(λ, γ) | t > 0},

psrc(λ) := Rsrc

(
cosλ
sinλ

)
, d(λ, γ) := sin γ

(
− sinλ
cosλ

)
− cos γ

(
cosλ
sinλ

)
,

where Rsrc > 0 is the radius at which the source rotates around the origin and γmax denotes the
maximum fan angle (cf. [98]). Intensities are measured for each line L(λ, γ) in the geometry. One
typically assumes that the subject is contained in a region that is fully covered by the fan, and
that the attenuation coefficient x(p) for points p outside this region is zero. Thus, the integration
over L in eq. (1.3) can be restricted to the line segment inside this region. The idealized, linear
and noise-free forward model of CT is then given by the operator that maps x to the post-log
intensities (eq. (1.3)) for all lines in the scanning geometry. For example,

Afan : X → Y, [Ax](λ, γ) :=

∫
p∈L(λ,γ)

x(p) dp

describes the forward operator for the fan-beam geometry. In an analytical setting, the projection
space Y and the image space X are function spaces over subsets of [0, 2π)×R and R2, respectively,
with some regularity assumptions being made in order to obtain a well-defined, invertible
reconstruction problem [304]. In practice, the measurements are obtained for a finite number of
source angles λi, i = 0, . . . , k − 1 and a finite number of detector pixels γj , j = 0, . . . , l − 1, and
one aims to obtain a discrete reconstruction with r × r pixels; thus, the elements from X and Y
are represented by vectors in Rr·r

≥0 and Rk·l
≥0, respectively, and their linear relation A is represented

by a matrix in Rk·l×r·r
≥0 , whose entries specify the intersection of each line with each pixel. We

examplarily used a 2D fan-beam geometry to illustrate the definition of a forward model, but
other geometries can be defined similarly; e.g., a standard 3D cone-beam geometry definition
only differs in using a 2D detector with an additional fan angle γ⊥ perpendicular to the rotation
plane of the source and considering a 3D reconstruction space.

Mathematical analysis often considers the parallel-beam geometry, which consists of parallel
lines from multiple source positions for each rotation angle; in this case, A is the Radon transform,
whose inversion is presented in [325]. Image space and projection space are related in a more
elementary way for the Radon (parallel-beam) transform, but extensions exist for the transforms of
other geometries; see [304] for functional analysis background on CT transforms and reconstruction.

1.2.1 Basic theory
In order to recite a few classical results, let us define the 2D parallel-beam geometry

GRadon := {L(α, s) | α ∈ [0, π), s ∈ R}, L(α, s) :=

{
s

(
cosα
sinα

)
+ t

(
− sinα
cosα

) ∣∣∣∣ t ∈ R
}

and the Radon transform integrating over each of the lines in GRadon,

ARadon : X → Y, [ARadon x](α, s) :=

∫
p∈L(α,s)

x(p) dp,

where X denotes the absolutely integrable functions on R2 (commonly, X and Y are chosen to
be Schwartz spaces on R2 and [0, π)× R, respectively). The most central result is the projection-
slice theorem, also called Fourier-slice theorem, which states that the 1D Fourier-transformed
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parallel-beam projection values from an angle equal the 2D Fourier-transformed image values
along the line with this angle:

Theorem 1 (Projection-slice theorem) Let F1D and F2D denote the Fourier transform for
functions on R and R2, respectively. Assuming that all involved integrals exist, the equality[

F1D
(
[ARadon x](α, ·)

)]
(r) = [F2D x](r cosα, r sinα)

holds for all angles α ∈ [0, π) and frequencies r ∈ R.

A derivation of this result can be found in [211], and an elegant proof for n-dimensional Radon
and X-ray transforms between Schwartz spaces is given in [304].

The projection-slice theorem already implies a direct analytical inversion formula for the
reconstruction of x from y = ARadon x, which can be described as three steps:

1. Apply the 1D Fourier transform w.r.t. the detector coordinate s, i.e.
y(α, s) 7→ [F1D(y(α, ·))](r) =: ŷ(α, r).

2. Apply the coordinate transform from polar to Cartesian coordinates (u, v) = (r cosα, r sinα),
which by theorem 1 yields ŷ(α, r) = [F2D x](u, v) =: x̂(u, v).

3. Apply the inverse 2D Fourier transform, which recovers F−1
2D x̂ = x.

In practice, Fourier-based direct reconstruction would bear difficulties due to the polar-to-Cartesian
coordinate transform with the regular discrete sampling of angles and detector pixels. Since the
measurements y are usually sampled on a rectangular grid of angles α and detector pixels s, they
only determine the values of F2D x = x̂ on a polar grid, whose points have increasing distance for
higher frequencies. In order to apply a standard inverse 2D fast fourier transform (FFT), these
values need to be interpolated on a rectangular grid of frequencies u, v (called “regridding”).

Instead, a different direct inversion formula, called filtered back-projection (FBP), forms the
basis for a class of commonly used reconstruction formulas. The FBP, which may also be derived
using the projection-slice theorem, combines a filtering step and a simple back-projection step
that distributes each value of the projection space uniformly over the line along which it has been
integrated according to the forward model. Mathematically, simple back-projection for ARadon
coincides (up to a constant scaling factor) with the adjoint of ARadon,

A∗
Radon : Y → X, [A∗

Radon y](p0, p1) =
1

π

∫ π

α=0

y(α, p0 cosα+ p1 sinα) dα

(see e.g. [306] for a proof that this is the adjoint). The filtering step is most easily expressed in
the 1D Fourier space of the projections as the multiplication with the absolute frequency |r|:

Theorem 2 (Filtered back-projection) Given a function x over R2 for which all involved
integrals are well-defined, its Radon transform y = ARadon x relates to the original function x by

x =
1

2
A∗

Radon hramp y,

where hramp = F−1
1D ◦

[
ŷ(α, ·) 7→ | · | ŷ(α, ·)

]
◦ F1D is the ramp filter, which point-wise multiplies

ŷ(α, r) with the absolute frequency |r|.

A proof of this theorem is found e.g. in [119, Theorem 6.2].
Alternatively to the projection-domain filtering, the simple back-projection A∗

Radony can be
deconvolved in the image domain, which is known as the filtered layergram inversion formula [60].
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1.2.2 Reconstruction
The inverse problem of CT reconstruction in the analytical setting is ill-posed in the sense of
Nashed, since the range of A is non-closed, since A is a compact linear operator with infinite
rank on a bounded domain [209], meaning that the generalized inverse A+ is not continuous.
The singular values of the Radon transform tend to 0, which makes the inversion unstable.
However, the singular value decay is rather slow, and the inversion of 2D and 3D Radon and X-ray
transforms is classified as modestly ill-posed in [304]. For a practical discretized reconstruction—as
already noted in the final paragraph of section 1.1.1—Nashed’s notion of ill-posedness does not
apply, but the problem is ill-conditioned, so the inversion is sensitive to noise. Reconstruction
from undersampled projections is especially difficult, since the linear system is underdetermined.

CT reconstruction is possible with many different approaches. The previously stated FBP
(theorem 2) points out a direct, efficient way for parallel-beam geometries. However, parallel-beam
geometries are seldomly used in practice. FBP type and other analytical inversion formulas also
exist for fan-beam and cone-beam geometries, but are more involved; see e.g. [98]. A popular
approximate method for cone-beam reconstruction similar to FBP is the Feldkamp-Davis-Kress
algorithm [120]. Data from commonly used geometries can also be rebinned to other geometries
that allow for easier reconstruction; for example, the 3D cone-beam data can be rebinned to
parallel-fan-beam data, which uses a 2D fan-beam geometry for each slice. In the FBP (and
similar inversion formulas), the ramp filter emphasizes high frequency components, it presents an
unstable inversion and amplifies noise. For stabilization, the ramp filter is commonly combined
with a low-pass filter [39, 209], e.g. a Hann or cosine window filter. This effectively regularizes
the inversion, which then is only approximate but more stable.

Alternative to direct (approximate) inversion formulas, iterative methods form a powerful
group of approaches for CT reconstruction. Iterative methods are designed to solve optimization
problems, e.g., minimizing a variational regularization objective,

x∗ ∈ argmin
x

D(Ax, yδ) + αR(x), (1.4)

where D measures the data discrepancy and R is a regularization term, weighted by a parameter
α ≥ 0. Iterative reconstruction offers great modeling freedom w.r.t. the forward model A, noise
statistics guiding the choice of D, and regularizing prior knowledge. Different optimization
schemes can be employed. For example, a constrained formulation of the total variation (TV)
reconstruction problem is solved using projection onto convex sets and steepest descent with
adaptive step-size (ASD-POCS) in [352], and Chambolle-Pock algorithms are applied to a TV-
regularized objective in the form of eq. (1.4) with D(Ax, yδ) = ∥Ax − yδ∥1 in [377]. Simple,
yet effective optimization of eq. (1.4) is also possible with a variant of gradient descent, such as
the Adam optimizer [221]. As already mentioned in section 1.1.2, besides explicit regularization,
iterative methods can induce regularization when stopped early, aiming to find a point in the
optimization at which image details are sufficiently reconstructed while part of the noise has not
yet been fitted. Often, a reconstruction by e.g. FBP is used to initialize the iterative process,
which leads to faster convergence, and when using early stopping can also act like a prior.

We now give a brief overview of iterative reconstruction approaches, following the review in
[42], which is organized by the different involved modeling aspects. The discretized forward model
A is the minimum of modeling used by all iterative approaches. A classical family of iterative
approaches is based on the algebraic reconstruction technique (ART), which applies Kaczmarz’s
method to solve the (in practice only approximate) linear system of equations Ax = yδ [304].
While original ART [150] updates the result only by the information of a single measurement
(i.e. one row of the linear system of equations) in each iteration, the simultaneous ART (SART)
[11] uses all measurements from one source angle at a time, and the simultaneous iterative
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reconstruction technique (SIRT) [141] uses all measurements from all angles in each update step.
Updates of ART, SART and SIRT are additive, but there are also multiplicative variants of ART
(MART) [150]. ART-based approaches model the discretized acquisition geometry more precisely
than FBP-based inversion formulas. The sequential use of groups of measurement data, e.g. in
SART, is generalized in a concept called ordered subsets (OS). In OS-SIRT [416], projections
from groups of multiple angles are used, thus falling in between SART and SIRT. Ordered subsets
are also used in combination with other iterative methods discussed in the following. Statistical
reconstruction also includes a noise model, which is mainly determined by the statistical process
of photon emission, attenuation and detection, which can be modeled jointly with one Poisson
distribution [60]. For ultra-low-dose scans, electronic noise also becomes relevant, which is usually
modeled as Gaussian noise. If the measurements are log-transformed in order to obtain a linear
model (eq. (1.3)), this modulates the noise statistics, and the resulting post-log noise is often
approximated as Gaussian [269]. When using ultra-low dose, photon starvation occurs, which
cannot be accurately modeled in post-log domain; some statistical methods for ultra-low-dose CT
therefore use a non-linear pre-log model [126]. The optimization for statistical reconstruction
can be realized e.g. with maximum-likelihood expectation maximization (ML-EM) [234, 277],
convex maximum a posteriori (MAP) optimization [236, 235, 40], or based on iterative coordinate
descent (ICD) [338, 380, 46]. Additional modeling aspects include further refinement of the
geometry [380, 79], taking into account the non-infinitesimal extent of the source and/or the
detector pixels, additional physical effects, such as the non-linear effects of polyenergetic X-rays
[112] and scattering. Improving advanced aspects of the model can improve reconstruction quality
and avoid artifacts (see section 1.2.3) in the first place, but comes with increased computational
cost and may require additional knowledge. However, the flexibility to use sophisticated, more
accurate models is the main strength of iterative reconstruction, which therefore is often referred
to as model-based iterative reconstruction (MBIR). Regularization with prior information about
the image can support the reconstruction. Besides the already mentioned TV regularization,
which encourages image gradient sparsity, other regularizations include an edge-preserving variant
of TV [381], bilateral filters and non-local means [417].

1.2.3 Reconstruction artifacts

Reconstructions contain structured errors, called artifacts, due to many factors, ranging from the
practical acquisition to inaccurate modeling. We shortly describe some of the artifacts, which are
discussed in more detail e.g. in [60, 341]. Most of the artifacts are inevitable with FBP-based
reconstruction, whereas suitable (model-based) iterative reconstruction can alleviate some of the
following problems.

As detector pixels and the source focal spot have a non-infinitesimal size, only an average
intensity for a collection of rays can be measured at each detector pixel. This leads to blurring,
and also streaking artifacts at paths for which the detector pixel averages very different intensities
(i.e. paths tangential to edges), because the attenuation, if assumed to be uniform across the
detector pixel, is underestimated due to the logarithmic dependence of attenuation and intensity.
These artifacts are called partial volume artifacts, and the underestimation at edges is also called
edge effect. Another cause of artifacts is the physical effect of beam hardening : In practice, the
X-ray quanta have different energies and are attenuated differently depending on the energy and
attenuating material, leading to a non-linear acquisition. Since lower energy X-rays experience
stronger attenuation in general, the spectrum of transmitted X-rays is shifted to higher energies,
giving rise to the name beam hardening. In the reconstruction from the intensity measurements
of a standard detector that integrates over the X-rays of all energies, this leads to streaking and
cupping artifacts, where cupping artifacts can be more easily compensated for by calibration,
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while streaking artifacts, which occur at rays through high-density areas, are typically more
persistent. Due to the effect of Compton scattering (which actually contributes to the attenuation
mechanism of CT), some X-ray quanta change their energy, do not travel along a straight line and
may hit the detector at a different location. As the standard model is based on direct radiation
only, the scattered radiation adds noise to the signal. For detector areas that receive very little
radiation due to high attenuation of the direct X-rays, the scattering noise is strong compared
to the signal. This can lead to scattering artifacts in the form of streaks through areas of high
attenuation. If metal is present in the imaged volume, it leads to severe metal artifacts due to
the strong attenuation (or blocking) of rays that pass through the metal pieces, caused by beam
hardening, scattering and the edge effect, among others. Motion artifacts occur when the subject
being imaged performs movements, such as breathing or heart beats. Reducing scanning times
helps to reduce these artifacts. While there are technical limitations, current scanners perform
rotations in less than a second. With very fast scanning, detector afterglow may become relevant,
i.e., the activation of detector pixels that lasts for a short time frame can affect subsequent
acquisitions, and thus lead to artifacts unless a correction is employed. Sampling artifacts, also
called aliasing artifacts, may occur when the measurements are undersampled, i.e., the condition
of Shannon is not satisfied [180].

1.2.4 Reconstruction purpose and challenges

CT reconstructions usually serve a down-stream task, e.g. a diagnosis or a segmentation. Hence,
the ultimate goal of improving reconstruction quality is to facilitate reliable extraction of the
features relevant for this task, by a human inspector and/or a machine.

Appropriate CT imaging includes several challenges, driven by practical demands and poten-
tials. In medical imaging, the radiation dose needs to be kept as low as possible, since it carries
a risk of causing of cancer [54]. A low dose is most directly achieved by using a low radiation
intensity, which leads to an increased noise-to-signal ratio. Alternatively, a fast scanning that
only acquires projections from few (equidistant) source angles, called sparse-view CT, also leads
to dose reduction at the cost of undersampling the measurements; short scanning times are also
desirable in both medical imaging and industrial applications [444, 59, 453], e.g. to reduce motion
artifacts and for economical reasons. In some applications, projections can be acquired only from
a limited angular range [123], called limited-view CT, which is particularly difficult due to the
contiguous missing projection part and constitutes a severely ill-posed inverse problem due to its
ill-conditioning [93, 304].

Challenging, practically founded conditions thus motivate the development of reconstruction
algorithms that are capable of sufficiently accurate and artifact-reduced reconstruction for the
given purpose.

1.3 Deep learning

Using artificial deep neural networks as models for machine learning, which is then called deep
learning, has become the predominant approach in many complex applications, such as speech
and image recognition, natural language processing and autonomous driving to name a few.

An artificial neural network can be abstractly represented by a parameterized mapping
y = fθ(x), θ ∈ Rp, that computes outputs y ∈ Y = Rdout from inputs x ∈ X ⊆ Rdin . The
parameters θ are learned in order to solve a certain task by an optimization procedure. Typically,
the learning relies on large datasets on which the network is trained, but there exists a variety of
forms:
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• Supervised learning employs a dataset of pairs (xi, y
∗
i )i=0,1,...,N−1 of inputs and desired

outputs. The outputs y∗i are also called “labels” (such as the class in classification or
segmentation tasks [164], but the term is also used with regression tasks [393]).

• Semi-supervised learning utilizes both a small dataset of pairs (xi, y
∗
i )i=0,1,...,M−1 and a

large dataset of unlabelled data (xi)i=0,1,...,N−1, M ≪ N (see [421] for a survey).

• Unsupervised learning only has access to unlabeled data, such as a dataset of inputs
(xi)i=0,1,...,N−1 (e.g. clustering [286] or Noise2Inverse [179]), a dataset of desirable samples
(y∗i )i=0,1,...,N−1 (e.g. generative models [383]), two independent (i.e. non-paired) datasets
of inputs and desirable outputs (e.g. CycleGAN [450]), or in some cases just a single data
instance x0 (e.g. deep image prior [249]).

• Reinforcement learning lets a virtual agent learn by trial and error, so the data is generated
during the learning process by interacting with the environment (see [22] for a survey).

In this thesis we will consider supervised and unsupervised deep learning in the context of CT
reconstruction.

1.3.1 History of neural networks
Artificial neural networks, or short neural networks, have been studied since the 1940’s. The
neurophysiologist and cybernetician Warren S. McCulloch and the logician Walter H. Pitts
developed a calculus inspired by the principles of biological neural networks [282]. Donald O.
Hebb proposed the Hebbian learning mechanism, which is a form of unsupervised learning based
on the way neural connections are strengthened in human brains [173]. The basic perceptron, very
roughly modeling biological neurons, was invented by Frank Rosenblatt [334]. Aleksĕı Ivakhnenko
created the group method of data handling (GMDH), constituting the first working multi-layer
neural networks (although named differently at that time) [200, 199, 339]. Despite some early
successful applications, such as MADALINE [399] suppressing echoes on a telephone line, neural
network research slowed down. The study of perceptrons halted in 1969 when Marvin Minsky
and Seymour Papert showed limitations of basic forms [288], like the inability to learn the XOR
boolean operation with a single-layer perceptron; moreover the computational hardware resources
available at that time were insufficient for learning large neural networks. Instead, research
temporarily focused more on symbolic artificial intelligence [367].

In the 1980’s, neural networks research was revived as connectionism became popular again,
mainly in the form of parallel distributed processing [281]. Core principles consisted in connecting
many simple units—like artificial neurons—to a large network capable of learning complex tasks,
and in the distributed representation within the network [281, 148]. One significant (re-)discovery
from this time was the gation algorithm allowing for efficient learning with deep neural networks
[263, 336]. Early successful applications include protein structure prediction [323], handwritten
ZIP code and alphabet recognition [240, 441] as well as medical image analysis [440, 439].
Convolutional neural network (CNN) architectures were already used for visual tasks at this time,
starting with the neocognitron [127, 148], which in turn is based on research by David Hubel and
Torsten Wiesel on the visual cortex of mammals [194]. Limited computational resources combined
with some unsolved problems, like vanishing gradients [182], delayed the further development
of deep learning. Nevertheless, both methodological advances, such as the long short-term
memory (LSTM) architecture [183] and the efficient pretraining of deep belief networks [181],
and increasing availability of computational power and large datasets finally enabled the highly
successful application in various fields. Several challenge competitions were won using deep neural
networks in the early 2010’s, among others in computer vision, leveraging the accelerated training
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Figure 1.2: A multi-layer perceptron (MLP), which is a fully connected feedforward neural
network. Wi and bi are the weights and biases of the i-th layer, and φi is the activation function
(e.g. ReLU : x 7→ max(0, x)) applied in each neuron xi,j , j = 0, 1, . . . of the layer.

with graphics processing units (GPUs) [309, 158]. Today, deep learning is a very active area
of research with many applications [348]. Although artificial neural networks are inspired by
neuroscience, they are now independently utilized as computational models, without the aim to
model biological neural networks [148].

1.3.2 Basic principles of neural network
Artificial neural networks are typically structured in uniform layers of neurons. The activations
of all neurons in a layer form an activation vector xk ∈ Rdout,k (where k identifies the layer).
Figure 1.2 illustrates a multi-layer perceptron (MLP), which is a fully connected feedforward
network. In a feedforward network, the information is processed by a chain of L layers y =(
f
[L−1]
θL−1

◦ f [L−2]
θL−2

◦ · · · ◦ f [0]
θ0

)
(x); if on the contrary there are feedback connections—i.e., if the graph

of the layers processing the information contains cycles—the network is called a recurrent neural
network (RNN).

Layers can be arbitrary functions, which need to be (sub-)differentiable in order to train
the network via gradient descent. In practice, it is common to use convex functions with few
non-differentiable points, for which one can simply choose a subgradient. A prominent example
is the activation function ReLU : x 7→ max(0, x), which is both cheap to compute and found to
perform well [145].

A prototypical layer applies an affine transformation on its input vector sk ∈ Rdin,k , followed
by a non-linear activation function φk:

f
[k]
θk

(sk) = φk

(
Wk sk + bk

)
, Wk(θk) ∈ Rdout,k×din,k , bk(θk) ∈ Rdout,k . (1.5)

The matrix Wk determines the weights for each input-output combination and the vector bk is an
additive bias. Both Wk and bk are parameterized by the layers’ parameters θk (sometimes also
called “weights”). In a fully connected (dense) layer, each entry of Wk is a separate parameter,
e.g. [W⃗⊤

k , b⊤k ] = θ⊤k . Other layer types, for example convolutional layers (see section 1.3.4), do not
connect every input with every output and/or share parameters across multiple weight entries.

The parameters θ of a network are usually optimized by some kind of minibatch stochastic
gradient descent (SGD) [305] of a loss ℓ(y) placed on the output of the network, using reverse mode
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automatic differentiation (AD) to compute the gradients w.r.t. the parameters. This application
of reverse mode AD is also called backpropagation, and is very efficient compared to forward
mode AD because the loss is a scalar. To compute the gradient w.r.t. the parameters θ0 of the
first layer of a feedforward neural network, one needs to evaluate the product of the Jacobian
matrices of the loss and all layers,

∇θ0ℓ|fθ(x) = ∇yℓ J
[L−1] J [L−2] · · · J [0], (1.6)

where ∇yℓ = ∇yℓ|fθ(x) ∈ R1×dout , J [k] = ∇θkf
[k]
θk

(sk)
∣∣
θk

∈ Rdout,k×dθk and sk are the layer
inputs saved from a so-called forward pass that computes fθ(x); reverse mode AD evaluates the
right-hand side of eq. (1.6) from the left, yielding first the gradients ∇θL−1

ℓ|fθ(x) = ∇yℓ J
[L−1],

∇θL−2
ℓ|fθ(x) = ∇yℓ J

[L−1] J [L−2], etc., and finally ∇θ0ℓ|fθ(x). This approach is computationally
much cheaper than forward mode AD, which would first evaluate J [0], then J [1] J [0], etc., which
are all matrices, until the final multiplication with the vector ∇yℓ. A downside of reverse mode
AD is the requirement to save the intermediate layer inputs sk during the forward pass, which
can impose large memory requirements; this can be partially relaxed by only saving some layer
inputs and recomputing the others as needed, but usually such extra costs are avoided if possible.

There exists a large variety of neural network architectures, including (among many others)
RNNs with LSTMs or gated recurrent units (GRUs), CNNs, transformers, and implicit neural
representations. In this thesis, we only use CNNs; a brief general introduction will follow in
section 1.3.4. Before, we take a look at supervised learning with neural networks.

1.3.3 Supervised deep learning
The most classical supervised approach defines a per-sample loss function L : Y × Y → R and
trains the network fθ by minimizing the empirical risk over the training dataset (xi, y

∗
i )i=0,1,...,N−1,

Remp(θ) =

N−1∑
i=0

L(fθ(xi), y
∗
i ). (1.7)

By training on many representative data points, the ultimate aim is to generalize to previously
unseen data of the same kind. Here, “data of the same kind” means that it stems from the same
data-generating distribution [148].

Assuming a deterministic dependence of y on x, one can formalize the ideal solution to the
task as a hypothetical function y∗ = f∗(x) returning the ideal output y ∈ Y for any input x ∈ X.
We would like the network fθ to approximate f∗. A perfectly generalizing network approximates
f∗ on its full domain X, despite the training being performed on a limited number of examples.

Obviously, one requirement is that the network has sufficient expressivity (or capacity) to
approximate f∗. The existence of such networks is covered by universal approximation theorems
[186, 185, 91], which prove the capability of neural network families to approximate arbitrary
functions in a function space, e.g. continuous functions on compact sets. Most results consider
either arbitrarily wide or arbitrarily deep networks.

In addition to a sufficiently expressive network architecture, a learning algorithm is needed to
find suitable network parameters θ. The by far most common approach is to employ a variant of
minibatch stochastic gradient descent, e.g. Adam [221], to minimize the empirical risk eq. (1.7) on
the training data. Compared to standard gradient descent, which would optimize the empirical
risk over the whole training dataset, minibatch stochastic gradient descent both makes the training
feasible by reducing the data per gradient step to a small minibatch of samples and is found
to have a regularizing effect [356, 148]. Network weights are usually initialized randomly in

28



order to let the neurons behave differently, thus “breaking the symmetry” that would be present
with fixed-value initialization; differently from weights, biases may be initialized zero (cf. [148]).
Several techniques can be employed to support the learning, including data augmentation [350],
explicit regularization like weight decay (corresponding to an ℓ2-penalty on the network weights),
or dropout [363], which randomly replaces part of the activation values in some layers with zero
at each training step in order to prevent overfitting.

The generalizing properties of a network depend on many factors, including the data, archi-
tecture and optimization technique. If the training dataset is not representative or too small,
the relevant structures cannot be extracted from it. Choosing an appropriate architecture can
direct the learning towards certain kinds of information processing, e.g. when using convolutional
neural networks for visual features (see section 1.3.4). Optimization of a neural network refers to
finding a “good” local optimum in the typically non-convex loss landscape, which requires a good
balance of exploration and stability. The learning dynamics are of course an interplay of all of
these factors.

A network is said to overfit if a small training loss (1.7) is achieved, but generalization to new
data of the same kind fails. This can happen if the network simply memorized the training dataset
without learning relevant structures for the actual task. To estimate the performance on new
data, one usually splits off a validation set from the training set and evaluates the empirical risk
on this unseen data at certain intervals during the training. If this validation loss increases over
time while the training loss is decreasing, this is an indication for overfitting. A common form
of early stopping thus consists in selecting the network parameters that achieved the minimum
validation loss.

The no free lunch theorems [402] state, vaguely speaking, that without prior knowledge no
learning algorithm can be better than random guessing when averaging over all possible tasks.
However, learning is usually concerned with solving specific tasks, for which performance can
obviously differ between methods. Moreover, it is still possible to develop rather general learning
techniques that perform well on a number tasks which might be more relevant to us than other
more hypothetical tasks (see also [148]).

1.3.4 Convolutional neural network architectures

The most popular architectures for image processing tasks are based on convolutions, and thus
called convolutional neural networks (CNNs) [241]. Other applications of CNNs include time series,
speech and natural language processing, however recurrent neural networks and transformers are
more typical in these fields. Recently, transformers are also emerging in computer vision [219],
constituting an alternative to classical CNN architectures.

CNN building blocks

Convolutional blocks are typically composed of few layers, with one of them being a learned
convolution operation, followed or preceded by a non-linear activation function (cf. section 1.3.2)
and a normalization (e.g. batch normalization [197] or group normalization [411]). They can also
include down- or up-sampling operations. Depending on whether series, images or image volumes
are processed, 1D, 2D or 3D convolutions are used. In addition to the 1, 2 or 3 signal dimensions,
a channel dimension is used to represent multiple features. For example, 2D image data with
red, green, and blue light components would have three channels, represented with shape R3,H,W .
The activations of hidden layers typically have much more channels, allowing to represent and
combine many features. In the following description we choose the 2D image setting for clarity,
with 1D or 3D convolutions working analogously.

29



The convolution operation applies different convolution filters for each input-output channel
combination and sums over the input channels:

conv2dK,b : RCin,H,W → RCout,H,W ,

conv2dK,b(s)cout,:,: :=

(
Cin−1∑
cin=0

Kcout,cin,:,: ⋆ scin,:,:

)
+ bcout ∀ cout = 0, . . . , Cout − 1,

where K ∈ RCout,Cin,F,F contains the filters of size F × F and b ∈ RCout contains bias values.
The way the channels are mixed can be seen as a matrix-vector multiplication, i.e., the “matrix”
of filters K is multiplied with the “vector” of signals s, where convolution is applied instead of
multiplication for each matrix-vector element pair. The filters K and bias values b form the
learnable parameters. As conv2dK,b is an affine transformation, it can be viewed as one specific
way to parameterize Wk and bk in eq. (1.5) by K and b. Compared to a fully connected layer, the
number of parameters is reduced greatly due to the convolutions operating on F ×F windows only.
Usually, the convolution “⋆” is actually implemented as a cross-correlation (which is equivalent to
convolution with flipped filters),

⋆ : RF,F × RH,W → RH,W ,

(f ⋆ g)j0,j1 =
F−1∑
f0=0

F−1∑
f1=0

ff0,f1gj0+f0,j1+f1 ∀ j0 = 0, . . . ,H − 1, j1 = 0, . . . ,W − 1,

where gj0+f0,j1+f1 with invalid indices j0 + f0 /∈ {0, . . . ,H − 1} or j1 + f1 /∈ {0, . . . ,W − 1}
evaluates to a padding value (e.g. zero).

Convolutional architectures most commonly include down-sampling and/or up-sampling
operations. Down-sampling can be realized by strided convolution, which applies the convolutional
kernels only at an equidistant locations—for example, a strided convolution with stride 2 skips
every second location, reducing each signal dimension by a factor of two. Strided convolution is
equivalent to standard convolution followed by sub-sampling. Another form of down-sampling
are pooling layers, which applies a reduction to the elements inside small windows. The most
common reduction type is taking the maximum value (max-pooling), which adds non-linearity to
the network in contrast to taking the mean (average-pooling) and induces invariance to small
shifts (as long as the maximum element stays within the pooling region) [148]. Usually, the
size and stride of pooling windows are chosen to be equal (called local pooling), such that the
signal is essentially divided in non-overlapping blocks; however overlapping windows have also
been used [229]. Pooling operates on the signal dimensions only and is applied to each channel
individually. While the computational complexity of pooling is more similar to sub-sampling
by using a stride in the preceding convolution, one can also contrast it with using an additional
strided convolution in place of the pooling. Of course an additional convolution introduces
more learned parameters and has increased computational cost, but it allows to learn different,
channel-mixing down-sampling patterns, and is found to perform competitively not only due
to the increased number of parameters [361]. As both max-pooling and strided convolution
effectively sub-sample the input, they potentially cause high-frequency artifacts in the gradients
[308], or aliasing artifacts, which could be remedied by using a smoother pooling variant [177].
Nevertheless, max-pooling and strided convolution are used successfully and most commonly.

Similar to down-sampling, up-sampling can be realized via a convolution variant which is
known under the names transposed convolution, fractionally strided convolution, up-convolution,
or (inappropriately) deconvolution. Transposed convolution is equivalent to first inserting zero
values between the original signal values, such that the original values appear on a grid with
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some stride (i.e. the up-sampling factor per signal dimension), followed by a standard convolution
operation. Other forms of up-sampling are given by various kinds of interpolation, e.g. nearest-
neighbor or (bi-/tri-)linear interpolation. As interpolation contains no learned parameters, one
might want to apply a standard learned convolution after it. The authors of [308] propose this
approach of interpolation followed by convolution, and favor it over transposed convolution, which
they observe to produce checkerboard artifacts in some cases.

Besides convolutions, non-linear activations, and down- and up-sampling, it is often helpful
or even necessary to include normalization layers, such as batch normalization [197]. Batch
normalization usually facilitates more stable and faster training, as well as better generalization
[337, 271]. While in the original paper the authors suggested to insert batch normalization
layers before activation functions, other orders are now also used successfully and sometimes
lead to faster convergence [166]. As batch normalization relies on statistics computed across
a minibatch, it is likely to cause problems when applied with very small minibatch sizes due
to unstable estimates. In such cases, group normalization is an alternative that is independent
of the minibatch size [411]. Two special cases of group normalization are commonly known as
layer normalization (with one group containing all channels) and instance normalization (with
single-element groups for all channels).

Dropout [363] can be employed to reduce overfitting when training CNNs. While both
dropout and batch normalization have regularizing effects, dropout is more explicit in this regard,
and can be adjusted via the dropout rate parameter. However, combining dropout with batch
normalization is noticed to perform suboptimal in some cases (but not in others), which has lead
to recommendations in the literature to either be aware of and to address potential problems
arising from the combined use, or to use batch normalization only when uncertain [257, 134].

CNN architectures

Figure 1.3 shows three CNN architectures developed for different tasks. We first consider the task
of supervisedly learned image recognition, in which the network extracts information from an
image. The network processing usually involves several down-sampling steps, reducing the image
resolution while increasing the numbers of channels to represent many features, before finally
computing the output, e.g. via fully connected layers or average-pooling followed by an output
activation like softmax. The first example shown in fig. 1.3, VGG-16 [354], is a standard network
for classification on ImageNet [95] with 1000 classes at a size of (224 px)2, trained on more than
a million images. It improved upon the AlexNet architecture [229], which previously won the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2012), mainly by increasing depth,
and thus the number of non-linearities, while using smaller (3×3) kernels and thereby reducing the
number of parameters. Several configurations of the VGG architecture were presented, ranging
from 11 to 19 layers with 133 to 144 millions of parameters. To address the problem of vanishing
or exploding gradients arising from the backpropagation through many layers, the ResNet [170]
architecture was proposed, which, by introducing shortcut connections, allows for the training
of much deeper networks. In a ResNet, many residual blocks (cf. fig. 1.4) are chained, each
of which learns a deviation from a shortcut signal that skips over the convolutions. ResNet
configurations with up to 152 layers were presented for ImageNet, which despite the increased
depth have fewer parameters and lower computational complexity than VGG networks [170].
Other popular CNNs for image recognition tasks include GoogLeNet [374], Inception-ResNet-V2
[375] and Darknet-19 [327]. Image recognition networks can learn to extract quite general features
in the first part of the network, which enables their re-use, e.g. by adapting and fine-tuning
a network that was pretrained to perform classification on ImageNet for the use in a different
image recognition task, or as a so-called backbone in an object detection system [44, 349]. Many
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VGG-16 [354] — image recognition
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DCGAN generator [324] — image generation
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U-Net [333] — image-to-image translation
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Figure 1.3: CNN architecture examples for different tasks. Gray boxes depict image-type
activations, with the width indicating the number of channels (also specified above) and with
the vertical position indicating the image resolution (top =̂ fine, bottom =̂ coarse). Non-image
activations are visualized as white boxes containing the number of neurons inside.
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batch norm ReLU conv batch norm ReLU conv +

Figure 1.4: A residual block, bypassing information via an additive shortcut connection. Using
residual blocks facilitates the training of very deep so-called residual networks (ResNets) [170].
The shown block has the structure proposed in [171]; other variants use a different order of
operations, e.g., placing ReLU after summation, or apply a 1×1 convolution in the shortcut
connection, optionally using stride a stride to perform down-sampling [170, 171].

pretrained networks (including but not limited to image recognition tasks) are publicly available
from online repositories such as PyTorch Hub (https://pytorch.org/hub/) or TensorFlow Hub
(https://www.tensorflow.org/hub).

Image generation, which is in some sense converse to image recognition, aims at generating
images of a certain kind. The network learns to generate images from a distribution, being only
provided with a training dataset of samples. Generative networks can be conditional on some
user-specified variable, e.g. a class label or an input image, which can be fed into the network at
arbitrary locations. Typically, the network transforms a simple random input while up-sampling
several times. The second example in fig. 1.3 shows the generator part of DCGAN [324], which
is a generative adversarial network (GAN) [149, 154]. GANs are a popular family of generative
systems, made up of a generator and a discriminator network, where the latter has the role to
predict whether an image is real or “faked” by the generator, thus encouraging the generator to
produce images that are indistinguishable from real images. Other generative approaches include
variational autoencoders (VAEs) [222, 322], energy-based models (EBM) [242] including diffusion
models [357, 359, 87], autoregressive models [310] and normalizing flows [330, 313]; see [53, 111]
for reviews and [383] for a book on deep generative approaches.

As a third task for CNNs we consider image-to-image translation (including image segmen-
tation) that involves both aspects of feature extraction and of image generation. Architectures
for such tasks often have an encoder-decoder structure, like the U-Net [333] (see fig. 1.3), which
was proposed for medical image segmentation. The encoder extracts features and takes the role
of capturing context, involving down-sampling of the signal, while the decoder synthesizes the
segmentation map by processing, up-sampling and combination of the encoder signals at different
scales, which are forwarded via shortcut connections. U-Net variants are popular in many medical
imaging tasks, including segmentation [351], post-processing reconstruction [151] and synthesis
[395]. Other popular architectures are based on variational autoencoders [222] or GANs, and
sometimes also leverage standard recognition networks; for surveys, see [287] on segmentation
methods, and [312] on image-to-image translation methods in general.

Network architecture definitions generally include some freedom of choice, regarded to as
hyperparameters. For example, typical hyperparameters of CNNs are the number of scales and
the number of channels for each of the convolutional layers. The choice of hyperparameters can
have significant influence on a networks performance and may require some tuning for the specific
task. Among others, it controls the expressivity of network parts and the risk of overfitting.
Limited computational resources may also guide the hyperparameter choice. While it is common
to perform manual hyperparameter searches, e.g. by training multiple supposedly interesting
configurations, automated approaches for this task exist and are regarded to as neural architecture
search (NAS; see [329] for a survey).
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Chapter 2

Deep-learning-based reconstruction
for computed tomography

As computed tomography is an important tool for both medical and industrial applications, it
comes at no surprise that the success of deep learning has motived research on how to leverage its
capabilities to improve CT reconstruction. E.g. for medical diagnosis, a high reconstruction quality
is required, while the potentially harmful radiation dose should be as low as possible. Additional
application-determined obstacles may hinder the reconstruction, such as a limited angular range
from which projections can be measured or the presence of metal in medical scans. Artifacts in
the reconstruction should be avoided as far as they are detrimental for the purpose of the scan.
Hence, there is a great demand for better algorithms that solve challenging reconstruction tasks.
In this chapter, we will give an overview of the great variety of deep learning approaches for
X-ray CT reconstruction, which provides context for all our papers included in this cumulative
dissertation, especially [252, 23, 253, 30]. Subsequently, we briefly discuss uncertainty estimation,
which can help to assess the reliability of reconstructed features, and Bayesian experimental
design for optimized acquisition, providing context for [14] and [31], respectively.

We consider the inverse problem of recovering the X-ray attenuation image x ∈ Rn, x ≥ 0,
from measurements yδ ∈ Rm, which are assumed to stem from the model

yδ = Ax+ ϵ, (2.1)

where A ∈ Rm×n denotes the forward projection operator (mapping between the discrete spaces)
and ϵ ∈ Rm denotes the perturbations (e.g. noise) which can depend on x.

Most image reconstruction methods are in principle quite generally applicable, e.g. to different
imaging modalities or image restoration tasks, for which the model is commonly formulated like
in eq. (2.1), but differing in the forward operator A, the noise type and the image distributions.
However, it is worth pointing out that tomographic imaging involves an operator A that transforms
the image globally, while most natural image restoration tasks, such as deblurring or inpainting,
deal with local transformations. Additional practical differences between applications lie in the
data availability, especially for training supervised models, as well as the accurate knowledge of
the operator A and the model for perturbations ϵ. Both data availability and operator knowledge
are excellent for X-ray CT, especially compared to less popular imaging modalities. While vendor-
specific acquisition models used to hinder the direct utilization of real medical projection data,
progress is being made in this direction, and reconstruction from public real medical projection
data is becoming possible (e.g. [387] reconstructing from the LDCT-and-Projection-data [291]).
However, obtaining ground truth images, especially paired ones corresponding directly to degraded
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Other 2.7.4

Other 2.8

Figure 2.1: Outline of sections 2.1–2.8, which summarize deep learning approaches for CT

measurements or images, is an inherently difficult or even impossible task. Therefore, the creation
of paired training datasets involves simulation of at least the degradation process (which is done
in [291]), and it is also common to use fully simulated measurements with high-quality images
serving as ground truth. Besides CT, magnetic resonance imaging (MRI) is another modality
with very active deep learning research and outstanding public resources.

In our overview of reconstruction approaches, we solely focus on works evaluating their method
on X-ray CT reconstruction tasks, only occasionally mentioning approaches from related fields.
Despite the serious attempt to give an exhaustive overview, the list of discussed works in the
present chapter is most likely incomplete due to the enormous publication activity in this field.

Sections 2.1–2.8 are organized by grouping the methods into categories of different learning
strategies. A graphical outline is shown in fig. 2.1. The first groups of methods combine an
existing reconstruction method with learned post-processing of the image (section 2.1), learned
pre-processing of the measurements (section 2.2), learned prior pre-computation (section 2.3),
or learned pre- and post-processing (section 2.4). The used training methodology includes
standard supervised learning as well as generative modeling techniques, such as adversarial
training and normalizing flows; note that ground-truth-free approaches falling in the categories
of learned pre- and/or post-processing are covered later in section 2.7. Another group is called
learned iterative reconstruction (section 2.5), which is derived from iterative reconstruction, e.g.
by unrolling and modifying a finite number of iterations of a classical scheme into a network
architecture, by applying a previously trained network in each iteration, or by iteration-wise
training. Learned iterative reconstruction also includes methods that learn a regularization, either
in the form of a learned “denoising” step in a plug-and-play approach, or explicitly as a learned
regularization term to be included in the objective for iterative reconstruction. Some approaches
follow the ambitious aim of learning the full inversion directly, which we refer to as fully learned
reconstruction (section 2.6). Other approaches stand out by not requiring ground truth data
(section 2.7), including e.g. the deep image prior (DIP), implicit neural representations (INRs),
and Noise2Noise- and Noise2Inverse-based approaches. Methods that are not covered in the
preceding sections are discussed in section 2.8. Estimation of uncertainty in the reconstructions
is briefly discussed in section 2.9. Finally, we mention the current adoption into practice in
section 2.10, and close with a review and outlook in section 2.11.
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Note that the variable naming typically used in the machine learning and the inverse problems
community differ in a potentially confusing way: In section 1.3, we used the naming style of
machine learning that associates x with network inputs and y∗ with desired outputs (labels);
instead, when employing a network to predict a solution to the inverse problem eq. (2.1), it needs
to map the input yδ to an output x∗. We will henceforth use the variable naming of inverse
problems. Throughout the chapter, when stating training loss functions, we will use the notation
of expected values over dataset samples, e.g. E(yδ

i ,x
∗
i )
[ · ], that should be understood as empirical

estimates on a minibatch in each training step (cf. section 1.3.3).

2.1 Learned post-processing reconstruction

One way to introduce deep learning to image reconstruction consists in learned post-processing
of preliminary reconstructions obtained by other methods. An analytical inversion formula is
typically used to obtain the preliminary reconstructions, such as filtered back-projection (FBP)
or Feldkamp-Davis-Kress (FDK) reconstruction, since they are efficient to evaluate. Subsequently,
the task of the network amounts to the removal of artifacts, structured noise and in some cases
blurring, which occur in classical reconstructions of e.g. sparse-view and low-dose CT. Thus,
learning solely takes place in the image domain, for which deep learning is extensively studied in
other applications as well, facilitating re-use of methodological advances to some degree.

Clearly, a non-injective preliminary reconstruction method could potentially discard important
information that the network might not be able to recover. Including regularization in the first
step can provide the network with input reconstructions of higher quality, which can be beneficial,
depending on both how well the regularization suits the data and what can effectively be learned
by the network from training data.

Learned post-processing methods can be roughly categorized by their training strategy. We
will first consider directly trained methods, before turning to paired and unpaired adversarial
training methods and to normalizing flows.

2.1.1 Directly trained post-processing reconstruction

Direct training uses a dataset of pairs (x̃i, x
∗
i )i=0,1,...,N−1 of preliminary reconstructions x̃i and

ground truth images x∗
i by minimizing the empirical risk

Remp(θ) = E(x̃i,x∗
i )

[
L(fθ(x̃i), x

∗
i )
]
. (2.2)

Typically, the loss L is implemented using the ℓ2-distance (mean squared error, MSE), the
ℓ1-distance (mean absolute error, MAE), the structural similarity index measure (SSIM), or a
combination of these. Some approaches also include a term comparing h(fθ(x̃i)) with h(x∗

i ),
where h is feature extraction or segmentation function, e.g. implemented by a previously trained
network.

Early works falling in the category of learned post-processing reconstruction include [72, 73,
74, 215, 176] for low-dose CT and [446, 161, 205, 444, 415] for sparse-view CT. Many approaches
utilize residual learning via shortcut (or skip) connections in the network architecture; some even
directly add the input x̃i to the network output such that the network path effectively learns to
solve the potentially simpler task of predicting residuals x∗

i − x̃i instead of clean images x∗
i (see

[161] for a persistent homology analysis comparing the residual and original manifold).
Variants of the U-Net [333], which originally was developed for medical segmentation, are

popular architecture choices for post-processing reconstruction [205, 452, 300]. It has also been

36



proposed to employ a U-Net in frequency domain (which relates to a synthetic parallel-beam
sinogram as discussed in section 1.2.1), combined with an image-domain U-Net [85]. A different
architecture called mixed-scale dense (MS-D) networks is proposed in [317], in which all layers
are densely connected with skip connections, i.e., each layer receives the outputs of all preceding
layers as its input. All layers operate at the same image size; instead of down- and up-sampling
operations known from encoder-decoder type networks, dilated convolutions are used to perform
processing at multiple scales. MS-D networks use a single output channel in each layer, resulting
in a comparatively small number of parameters. A framelet-based multi-scale architecture is
proposed in [425], linking classical image processing and network-based image processing. Other
recently used architectures utilize dilated residual network (DRN) [438] parts and attention
modules, the building blocks of transformers (cf. [155]): In [379], a DRN is applied for CT
post-processing; in [255], a two-stage network architecture is used, including a DRN, channel
attention modules, and a self-calibration module between the network stages; in [279], fused
attention modules are inserted in a DRN. These works also utilize a perceptual loss, either based
on activations of a pretrained VGG-16 network [379, 279] or using the encoder part of a separately
trained autoencoder [255], combined with classical ℓ2, ℓ1 and/or SSIM loss terms. Multi-head
attention modules are used in [445] in a network that first processes low- and high-frequency image
components individually, before merging both network paths. A graph convolutional network
(GCN) [223] using an encoder-decoder structure is proposed in [75]. Both DRNs and GCNs are
techniques used to enlarge the receptive field, which helps to process non-local features.

While the preliminary reconstruction is most often obtained by an analytical inversion formula,
which is computationally cheap and also preserves a direct relationship to the measurement data
such that the structure of artifacts might be easier to learn, other reconstruction methods can be
used as well. An example is SARTConvNet [392] (inspired by FBPConvNet [205]), which uses
SART reconstructions for limited angle CT in order to provide the network with higher quality
preliminary reconstructions.

For temporally resolved (4D) cone-beam CT, it is proposed in [448] to not only input the
sparse-view phase images to a post-processing CNN, but also a motion-blurred reconstruction
from projections of all phases, which is regarded to as a prior image guiding the CNN.

2.1.2 Adversarially trained post-processing reconstruction

Using a training strategy involving adversarial losses is usually motivated by the aim to produce
detail-rich images, overcoming a tendency towards over-smooth reconstructions observed with
other methods, such as directly trained methods, especially if an ℓ2 loss is used, or methods
using manual priors like TV. Adversarially trained post-processing methods differ in the required
training data. Approaches derived from a conditional generative adversarial network (GAN)
setting [289, 198] require a paired dataset of input and ground truth images (x̃i, x

∗
i )i=0,1,...,N−1,

while other methods only need unpaired datasets (x̃i)i=0,1,...,N−1 and (x∗
j )j=0,1,...,M−1. We first

discuss adversarially trained post-processing approaches that use a conditional setting, before
later turning to unpaired approaches.

While conventional GAN approaches [149] aim to generate new images from a distribution
after learning from a dataset of example images, conditional GANs (cGANs) [289] can be used for
image-to-image translation tasks [198]. In cGAN-based image-to-image processing, an input image,
called the conditioning, is provided to the generator and optionally also to the discriminator,
while the random input provided to conventional GAN generators may be omitted.

Post-processing reconstruction approaches based on cGANs use a supervised training strategy
on paired data (x̃i, x

∗
i )i=0,1,...,N−1, employing a two-fold loss consisting of both an adversarial

discriminator-based part and a ground-truth-based reconstruction loss term. Arguably, this
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procedure shares more similarity with directly trained post-processing than with GANs, since
both approaches use a reconstruction loss term computed on supervised pairs (x̃i, x

∗
i ), and, in

the absence of a random input, the generator acts as a deterministic function transforming a
degraded (e.g. low-dose) input image to a reconstruction. While for this reason randomization is
artificially reintroduced via test-time dropout in [198], the image-to-image tasks considered in
[198] are different from CT post-processing, for which test-time dropout seems to be uncommon
in this context. However, the low-dose CT input images do contain (structured) noise.

There are several GAN variants computing the adversarial losses in different ways. Tradi-
tionally, GANs use binary cross-entropy (BCE) on a sigmoid-activated discriminator output, i.e.,
Lbce(b, c) = −c log(b)− (1− c) log(1− b), where b is the sigmoid-activated discriminator output
and c = 0 or c = 1 encodes “fake” or “real”, respectively. Alternatively, adversarial losses can use
least squares (LSGANs [278]) or a loss derived from the Wasserstein distance (WGANs [17]). The
reconstruction loss term, e.g. realized with ℓ2-distance, ℓ1-distance, SSIM and/or a perceptual
loss, is added to the adversarial generator loss, using some constant weighting factor λ > 0. This
results e.g. (shown here for a BCE-based GAN) in the following generator and discriminator
losses for post-processing reconstruction:

LG(θG) = E(x̃i,x∗
i )

[
Lbce(DθD (GθG(x̃i)), 1) + λL(GθG(x̃i), x

∗
i )
]
, (2.3)

LD(θD) = Ex̃i

[
Lbce(DθD (GθG(x̃i)), 0)

]
+ Ex∗

i

[
Lbce(DθD (x

∗
i ), 1)

]
. (2.4)

Here, the adversarial Lbce parts encourage the generator to produce realistic images, while the
image-domain loss L guides it to match the ground truth, like in eq. (2.2). Generator and
discriminator may be trained alternatingly or simultaneously.

Most adversarially trained CT post-processing approaches target the task of low-dose image
denoising. In [403], a traditional-GAN-based approach mixed with ℓ2 image-domain loss is
introduced. The works [420, 428] propose WGAN-based approaches, where [420] applies a
VGG-based perceptual reconstruction loss, whereas [428] proposes to replace the VGG-based
loss by a combined ℓ1 and SSIM loss in order to avoid potential content distortion, while also
extending the method to use a 3D CNN. Another WGAN-based approach is presented in [27],
employing a U-Net with custom multi-scale dilated blocks in the skip connections as a generator,
and using a reconstruction loss that in addition to the ℓ2-distance also penalizes differences of
image gradients between reconstruction and ground truth. The MAP-NN proposed in [344]
also employs a WGAN loss, combined with an ℓ2 and a Sobel-filter-based edge reconstruction
loss, while using a sequential network architecture containing five residual U-Net-like blocks
with a single output channel, which gradually process the input image and thus allow to report
multiple reconstructions with different “denoising” strengths; the results are compared with those
from commercial iterative reconstruction algorithms in a reader study, reporting favourable or
comparable performance at a shorter computation time. In [193], an LSGAN-based approach is
developed, also using both image and image gradient domain reconstruction losses, but employing
in each domain a separate special discriminator with U-Net architecture of which not only the
decoder’s but also the encoder’s output is used in the adversarial loss in order to obtain local
discriminative feedback for the generator, regularized by the CutMix technique. A different
application is targeted in [230], namely the super-resolution of 3D CT images to from thick
to thin slices on different body parts, using a GAN with enhanced discriminator conditioning
including both the thick-slice image and meta information about the slice, combined with an ℓ1
reconstruction loss.

We note that among the previously discussed works, discriminator conditioning is only used
in [230], where its usefulness is demonstrated for the therein considered virtual thin slice super-
resolution task on different body parts. In contrast, the other aforementioned adversarially trained
post-processing methods for low-dose denoising [403, 420, 27, 193] do not pass the degraded
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input to the discriminator, with [403] reporting an observed bias towards the discriminator’s
performance when using discriminator conditioning. This deviates from the typical cGAN setting,
in which both generator and discriminator are provided with the same conditioning [289, 198].

In [231], a special network structure is used for the discriminator, comprising a shared encoder
before branching into (i) a decoder trained via a reconstruction loss, (ii) a global discriminator
classifying the entire image, and (iii) a per-pixel segmentation discriminator. The discriminator
loss consists of the reconstruction loss, adversarial classification and segmentation losses, and
consistency losses that enforce the classification and segmentation predictions to stay similar when
passing the discriminator’s decoder output instead of the standard input to the discriminator.
The generator is trained using the corresponding adversarial losses as well as supervised image
and image gradient losses.

A CycleGAN-based approach that uses paired training data, which enables the inclusion of
synthetic consistency losses in addition to the non-paired adversarial and cycle consistency losses
of standard CycleGAN [450], is proposed in [165] for post-processing of cone-beam reconstructions.

We now turn to training strategies that do not require paired training data, but only separate
datasets of low-dose images (x̃i)i=0,1,...,N−1 and normal-dose images (x∗

j )j=0,1,...,M−1. In order
to enforce correspondence of the generated output with the respective degraded input image,
unpaired approaches mostly resort to a reconstruction loss based on the input image, as paired
ground truth data is unavailable. One such method is presented in [376], which combines a
CycleGAN [450] with a reconstruction loss term that compares the generated reconstructions
with BM3D-denoised [92] versions of the low-dose input images. The works [315] and [427] use
an ℓ2 reconstruction loss comparing the generator output directly with the low-dose input; [315]
uses a GAN with Kullback-Leibler (KL) divergence, and [427] uses a WGAN and additionally
employs a VGG-based perceptual loss comparing the features of generator outputs with those of
unpaired normal-dose images, aiming to learn general high-level semantic features of normal-dose
CT images. A CycleGAN-based approach for multiphase CT is proposed in [216], using training
images from a low-dose and a normal-dose phase, which only loosely match each other (i.e. they
may be considered in between paired and unpaired data); the training loss contains, in addition
to the adversarial and cyclic losses, identity losses that encourage each of the two generators to
keep its output close to its input when applied to images from its target distribution.

2.1.3 Normalizing flows for post-processing reconstruction

Normalizing flows (NFs) [330] constitute another generative modeling framework. Here, an
invertible network fθ defines a mapping between the data space (e.g. CT images) and a latent
probability space that is equipped with a simple density pZ( · ) from which it is also easy to draw
samples (e.g. a normal distribution). This model implies a density in data space pX( · ) that
is given by the change-of-variables formula pX(x) = pZ(fθ(x)) |Jfθ (x)|, where |Jfθ (x)| denotes
the Jacobian determinant of fθ w.r.t. its input evaluated at x. The network fθ is trained to
maximize the density pX(x∗) for the data samples x∗ of a training dataset. From the trained NF,
new samples can be generated by drawing samples z from the latent distribution and applying
the network inverse f−1

θ . One benefit of NFs over GANs and VAEs is the ability to efficiently
evaluate the likelihood pX(x) of new samples x according to the flow model. NFs require special
architectures. First, the network needs to be invertible, e.g. implemented as a sequence of invertible
building blocks. Each invertible building block should allow for efficient computation of the
inverse operation (for sampling) as well as the Jacobian determinant (for training). At the same
time, the network composed of these blocks should have sufficient expressivity. Several block types
have been proposed, including various kinds of coupling blocks [102] and Lipschitz-constrained
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i-ResNet blocks [41]; see [53] for an overview. Due to the invertibility, the latent space must have
the same dimension as the data space (at least when numbers are quantized as with computers).
To reduce the high computational and memory demands of maintaining the full dimension in
all intermediate activations, [103] proposes a multi-scale architecture that successively factors
out parts of the information via shortcuts to the latent output. Since the network blocks are
invertible, another strategy to significantly reduce memory consumption while slightly increasing
computational cost during training consists in recomputing the activations during the backward
pass via the inverse operations, as proposed in [118].

Like other generative models, NFs can be conditional [400, 16]. In a conditional NF, the
invertible network receives a conditioning input x̃ that may be used in all layers and is trained to
maximize the conditional density pX(x∗ | x̃) on a paired dataset of condition inputs and ground
truth images (x̃i, x

∗
i )i=0,1,...,N−1. For all possible conditions x̃, the conditional network fθ(x; x̃)

needs to be an invertible function between its input x and its output; however, the condition x̃
may be processed by non-invertible operations. Conditional NFs can be applied to estimate the
posterior density of an inverse problem, which is the conditional density of reconstructions for a
given observation (see the statistical approach in section 1.1.2).

In [97, 96], a conditional NF is used for low-dose CT reconstruction. The therein proposed
method does not directly use yδ, but instead utilizes FBP reconstructions for the conditioning
input x̃, thus falling in the category of post-processing reconstruction. The network is trained to
maximize the conditional density given the FBP pX(x∗ | x̃) via the change-of-variables formula

pX(x∗ | x̃) = pZ(fθ(x
∗; x̃))

∣∣Jfθ(·;x̃)(x∗)
∣∣ ,

where
∣∣Jfθ(·;x̃)(x∗)

∣∣ denotes the Jacobian determinant of fθ(x; x̃) w.r.t. its input x evaluated at
x∗. Using a paired dataset of FBPs and ground truth images (x̃i, x

∗
i )i=0,1,...,N−1, the negative

log-likelihood is minimized:

LNF(θ) = E(x̃i,x∗
i )

[
− log pX(x∗

i | x̃i)
]
= E(x̃i,x∗

i )

[
− log pZ(fθ(x

∗
i ; x̃i))− log

∣∣Jfθ(·;x̃i)(x
∗
i )
∣∣].

After training, the likelihood of reconstruction candidates x can be evaluated, and reconstruction
samples can be drawn via z′ ∼ pZ , x′ = f−1

θ (z′). Note that the conditional NF yields a full
distribution of reconstructions, which may be used to estimate the model’s uncertainty. From
samples, statistics such as the pixel-wise mean and standard deviation can be easily computed.
Practically, the pixel-wise mean over e.g. 100 or 1000 reconstruction samples is reported as the final
reconstruction in [97, 96]. Other estimators could be used in principle, however initial experiments
in [96] to minimize the negative log-likelihood according to the flow (MAP estimation), as well
as minimizing a classical data discrepancy term regularized by the negative log-likelihood have
lead to worse reconstruction quality in terms of peak signal-to-noise ratio (PSNR) and SSIM
compared to the pixel-wise mean. The pixel-wise standard deviation may be interpreted as an
indicator of how uncertain the model is about each of the pixel values.

For pZ , [97] uses a normal distribution density (where − log pZ( · ) equals 1
2∥ · ∥2 up to a

constant), and [96] experiments with choosing either a normal distribution or a radial distribution
(where − log pZ( · ) equals 1

2∥ · ∥
2 + (n− 1) ln(∥ · ∥) up to a constant, with n denoting the number

of image pixels), for which, in contrast to the high-dimensional normal distribution, the typical set
matches the high-density region near the mean (zero). It is observed that the radial distribution,
while not leading to consistent improvements, requires less samples to obtain a good reconstruction,
and the samples show much smaller deviations. We note that here the latent density pZ is, like
in [103, 16], not conditioned on x̃; however, this would be possible and has been used in [400] for
different applications.

Based on NICE [102] and RealNVP [103], a multi-scale architecture using affine coupling
blocks is used in [97], while employing i-RevNet down-sampling [201] and Haar down-sampling
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[16]. The conditioning is integrated into the affine coupling blocks via the contained CNN parts
that are not required to be invertible. A non-invertible conditioning CNN is used to process the
FBP before feeding it to the conditional coupling blocks at each scale, trained jointly with the
invertible flow network. In [96], both a multi-scale architecture and an iUNet architecture [118]
are considered. Learned invertible down-sampling, which has been proposed in [118], has been
used for both architectures. Affine coupling blocks are used for the multi-scale architecture and
additive coupling blocks are used for the iUNet. Three different conditioning networks are tested
for the multi-scale architecture, among which ResNet conditioning performs best. For the iUNet
architecture, a U-Net conditioning is used, connected to the iUNet at the respective scales.

Conditional normalizing flows have also been studied for the application of nano-CT [272],
using a simulated dataset, which features random object shifts for each scanning angle to model
inexactness of the forward operator but does not contain noise. Here, the initial reconstructions
are obtained by FBP, by RESESOP-Kaczmarz [51], or by a Dremel approach [108], where operator
is inexactness is taken into account by the latter two methods. Both multi-scale and iUNet
architectures are tested, as well as variants of both that are trained residually, which is found to
be important. A direct U-Net post-processing is found to perform better than the flow-based
approaches, but the flow-based approaches allow for further evaluation of the estimated posterior,
e.g. for uncercainty estimation.

2.2 Learned pre-processing reconstruction

Complementary to learned post-processing reconstruction, in learned pre-processing reconstruction
the network is applied before a classical reconstruction method. Thus, the network usually operates
in the domain of CT measurements (sinograms). However, the network (or part of it) may operate
in the image domain by using reconstruction and forward projection layers.

Many learned pre-processing methods target sinogram interpolation for sparse-view CT. Direct
reconstruction from sparse-view measurements suffers from streaking artifacts. This motivates
to interpolate the sinogram to a higher angular resolution prior to reconstruction. Besides
classical approaches, such as directional sinogram interpolation [436] or self-similarity exploiting
interpolation [217], deep learning methods have been developed for this task, predicting the
missing projections at intermediate angles given the sparse-view projections. Metal artifact
reduction (MAR) is another major application for learned pre-processing. Metal objects corrupt
the measurements due to beam hardening and scattering, among others. The trace in the sinogram
corresponding to the X-rays passing through a metal object is effectively destroyed, and other
sinogram parts are slightly corrupted as well (see section 1.2; a survey of classical learning-free
MAR techniques is found in [144]). Learned pre-processing methods for MAR thus need to
solve a sinogram restoration task. They are commonly trained to predict a metal-free sinogram,
which in particular includes the prediction of the sinogram values inside the metal trace. Some
methods restrict the learned corrections to the metal trace, hence preserving the other sinogram
parts, which usually do not suffer from significant corruptions due to the metal. Identifying the
metal parts requires a segmentation (e.g. based on thresholding) in practice; during training
on simulated data the true mask can be used directly. The metal parts can be inserted back
afterwards to obtain the final reconstruction. Other applications for learned pre-processing include
limited-view CT, interior CT and cycloidal CT.

In this section, we only consider approaches with supervised and optionally also adversarial
training; few ground-truth-free pre-processing approaches are included in section 2.7.2.
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2.2.1 Directly trained pre-processing reconstruction

A typical direct training for pre-processing minimizes the empirical risk

Remp(θ) = E(yδ
i ,y

∗
i )

[
L(fθ(y

δ
i ), y

∗
i )
]

(2.5)

for some loss function L on a paired dataset (yδi , y
∗
i )i=0,1,...,N−1 of degraded and reference

measurements. The dimension of degraded measurements yδi and reference measurements y∗i
may be different, e.g., for sparse-view sinogram interpolation yδi contains projections from fewer
angles than y∗i . Both image-domain and/or sinogram-domain losses may be used, e.g., a reference
reconstruction can be obtained from y∗i using a classical method and compared to an image-domain
network output. When training with data simulated from images and an image-domain loss
should be included, it is of course preferable to alter eq. (2.5) such that the ground truth image
x∗
i is directly passed to L in addition to or instead of y∗i .

Sparse-view sinogram interpolation has been investigated in [244, 247, 261] using residual
CNNs. U-Net architectures have been used for this task in [106, 38, 107, 245], with [107, 245]
operating on sinogram patches instead of full sinograms. In [106], the method is also applied to
sinogram inpainting in limited-view CT.

For the mild limited-view problem of short scans in a cone-beam geometry that use an angular
range of π instead of the required 2π, [413] proposes a filtering approach: Learns a projection
filtering layer (implemented in Fourier domain, equivalent to a single full-size convolution kernel)
for the Feldkamp-Davis-Kress (FDK) reconstruction formula, trained end-to-end via an image-
domain reconstruction loss. This approach presents a learned counterpart of classical filtering,
e.g. based on Parker weights [316, 398].

MAR is targeted in [143] using a shallow 3-layer CNN receiving sinograms that have been
initially processed by normalized metal artifact reduction (NMAR) [285], trained with a deep
supervision loss comparing each layer’s output to the metal-free sinogram in the ℓ2 distance; at
test time, the CNN reconstruction is averaged pixel-wise with the initial NMAR reconstruction,
and additional averaging is applied around the metal object in the image domain. In [138],
a 10-layer CNN is trained to directly predict a metal-free sinogram version from the metal-
containing sinogram, using an ℓ2 loss. A modified U-Net is used in [451] to predict the values
inside metal traces from an input sinogram in which the traces have been erased based on a
threshold segmentation; it is trained using a combined loss consisting of squared error terms
comparing the predicted sinogram with the ground truth sinogram in terms of (i) their values in
the metal trace area only, (ii) their gradients along the spatial detector dimension, aiming to avoid
discontinuities at the border of the metal trace, and (iii) their sums along the spatial detector
dimension in order to fulfill the Helgason–Ludwig consistency conditions (HLCC, cf. [250]). Even
though learned pre-processing produces a refined sinogram, a network operating in the image
domain may be utilized to implement this task. In [429], both image- and sinogram-domain
networks are employed to perform the pre-processing: Sinogram values inside the metal traces
are initially filled in by linear interpolation, and reconstructions from both the metal-containing
and the linearly interpolated sinogram are passed to a U-Net that predicts a prior image, which
is forward projected and subtracted from the linearly interpolated sinogram to form the input of
a pyramid U-Net, which has access to the metal trace mask in all layers and predicts a residual
sinogram whose values are added to the linearly interpolated values inside the metal trace; both
networks are trained simultaneously using an ℓ1 reconstruction loss on the prior U-Net output,
an ℓ1 loss on the predicted sinogram inside the metal trace only, an additional ℓ1 loss on the full
predicted sinogram for more efficient learning, and an FBP loss on the predicted sinogram in
order to prevent secondary artifacts in the final FBP reconstruction. Another pre-processing
approach for MAR, which only uses an image-domain network and in fact uses a post-processing
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training procedure (with a loss derived from eq. (2.2) instead of eq. (2.5)), is taken in [442]: An
image-domain CNN receives corresponding patches from three preliminary reconstructions, (i)
with metal artifacts from the original sinograms, (ii) with beam-hardening correction, and (iii)
from the sinogram with linearly interpolated values inside the metal trace, from which it is trained
to produce a metal-free image patch; subsequently, a k-means-based tissue processing is applied
to create a prior image with constant value for the water area, and its forward projection is used
to replace the sinogram values inside the metal trace, followed by FBP and insertion of the metal
parts.

For low-dose sinogram denoising, [273] uses a shallow feature extractor, blocks of convolutional
layers that are densely connected by skip connections within each block, and global residual
learning including an attention module before subtracting the noisy sinogram. In [283], a
supervised sub-network trained on only a small dataset of low-dose/high-dose sinogram pairs is
combined with an unsupervised sub-network utilizing a large dataset of low-dose sinograms.

In interior CT, truncated sinograms are acquired, which target a region of interest (ROI),
but are insufficient for exactly reconstructing the ROI, because the external region contributes
to the measured projections although not being fully scanned. A U-Net is trained in [218] to
predict extended sinograms from such truncated sinograms before applying FBP reconstruction.
Another approach, also applied to interior CT as well as to limited-view CT, is proposed in
[190, 192] based on a constrained formulation of TV reconstruction (see e.g. [352]); in addition
to the standard discrepancy contraint ∥Ax − yδ∥2 < tolnoise on the measured projections, the
constraint ∥Avirt x − Avirt xprior∥2 < tolprior is placed on the virtual projections that are not
measured but are relevant for the reconstruction, using an image xprior predicted by a U-Net.
From a learned pre-processing perspective, the virtual projection constraint would be interpreted
as a second discrepancy constraint with an individual tolerance. However, since it only applies to
non-measured data, it can also be viewed as a regularization using pre-computed learned prior
information; such approaches will be discussed in section 2.3, including the work [191], which is
a continuation of [192]. For cycloidal CT, which yields incomplete cycloidal projections due to
simultaneous rotation and translation, a mixed-scale dense (MS-D) network [317] (cf. section 2.1.1)
is employed in [318] to enhance the interpolated cycloidal projections; training is performed using
full projections that are aquired at few angles, interleaved with the cycloidal acquisition.

2.2.2 Adversarially trained pre-processing reconstruction

Like for post-processing, conditional GANs (cGANs) have been used as a sinogram pre-processing
as well. A supervised loss comparing the generator output with ground truth is included in
addition to the adversarial loss, analogous to eq. (2.4).

In [139], a modified U-Net is used as a cGAN-generator for sparse-view sinogram interpolation,
trained with an adversarial loss and an ℓ2 loss comparing the generated sinogram with the ground
truth sinogram.

For limited-view CT, a generator with encoder-decoder CNN structure is used in [24], trained
with an adversarial loss and an ℓ2 loss comparing the completed part of the generated sinogram
with the ground truth. Similarly, a modified U-Net is used in [260], but here an adversarial loss is
combined with both sinogram- and image-domain ℓ1 losses, comparing not only the generated
sinogram with the ground truth sinogram but also the FBP reconstructions from each with
each other, respectively. A different, indirect approach via image space is used in [12]: The
incomplete sinogram is transformed by a 1D CNN to a latent vector, from which a generator
directly predicts an intermediate reconstruction, trained using both an ℓ2 reconstruction loss
and a discriminator-based adversarial loss. At test time, the forward projection of the generated
intermediate reconstruction is computed for the missing angles to complete sinogram, followed by
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classical reconstruction.
A cGAN-based approach with a U-Net-based generator is used in [140] for MAR, completing

the values inside metal traces, which are erased from the input sinogram, trained using an
adversarial loss and an ℓ2 loss in the sinogram domain.

While [410] mainly focuses on magnetic particle imaging (MPI), the authors also apply the
proposed projection generation approach to sparse-view 3D CT. The generator receives projections
from two adjacent angles as its input and predicts the projection at the intermediate angle. This
can be used to double the number of projection views, and may be repeated to successively
increase the number of views. Hence, it presents a form of sparse-view sinogram interpolation, but
differs from most approaches by performing angle-wise prediction from two adjacent projections,
which in the 3D setting is a 2D processing task, whereas most other approaches are applied to
2D settings and process a full 2D sinogram, which consists of the 1D projections from all angles,
at once. The projection generator in [410] is trained with an adversarial loss combined with ℓ2
and SSIM losses.

2.3 Learned prior pre-computation

Learning may also be used to compute prior information (typically a prior image xprior) for
subsequent use in a classical (typically iterative) reconstruction method. This approach shares
similarity with learned pre-processing (section 2.2) in the sense that the network is applied as
a first step before the classical reconstruction. However, the network output is here used to
form a regularization functional. Some similarity also exists with Plug-and-Play regularization
(section 2.5.3) and learned regularization functionals (section 2.5.4), which we will cover later,
and which differ from learned prior pre-computation in that they evaluate a network on each
of the iterates during an iterative scheme. With learned prior pre-computation, instead, the
regularization functional only uses the output of a network that is evaluated before starting the
iterative scheme.

In [226], a simple Tikhonov regularization functional ∥x− xprior∥2 is used where the image
xprior is computed by learned post-processing reconstruction; experiments are shown for 3D low-
dose CT using a patch-wise operating network. By prescribing the regularization term form, the
classical regularization theory is inherited directly. The field-of-view extension approach in [190,
192], which we already described in the last paragraph of section 2.2.1, also classifies as a learned
prior pre-computation approach with the regularizing constraint ∥Avirt x−Avirt xprior∥2 < tolprior
on the virtual projections, where xprior is provided by a U-Net. Continued studies in this direction
are presented in [191], exploring different networks for the prior image generation (FBPConvNet,
Pix2pixGAN), as well as different ways of integrating the prior information in a minimization
objective, either in the projection domain or directly in the image domain.

In [407], a so-called DRONE architecture is proposed for sparse-view CT, utilizing multiple
sub-networks, which ultimately yield an interpolated prior sinogram yprior and a prior image
xprior. These are then used in minimization objective terms ∥Afull x− yprior∥2 and TV(x−xprior),
respectively, where Afull is the full (non-sparse) forward projection model and TV denotes a
total-variation functional.

2.4 Learned pre- and post-processing reconstruction

The previous sections discussed methods that apply either a post-processing network after obtain-
ing an initial reconstruction or a pre-processing network on projection data before reconstruction.
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When denoting the classical reconstruction as an operator A† : Rm → Rn, post-processing
reconstruction reads fθ ◦A† and pre-processing reconstruction reads A† ◦ fθ. Now, we turn to
learned methods comprising both pre- and post-processing, i.e., which at reconstruction time
perform three sequential steps: (i) learned pre-processing, (ii) classical reconstruction, and (iii)
learned post-processing. This typically can be written as fθ = fpost,θ ◦ A† ◦ fpre,θ. Some pre-
and post-processing methods directly forward a preliminary non-learned reconstruction x̃ as an
additional input to the post-processing network part, i.e. fθ(yδ, x̃) = [fpost,θ( · , x̃)◦A† ◦fpre,θ](y

δ).
The most common choice for A† is an FBP operator. In some cases a simple back-projection is
used in place of A†, leaving more of the filtering task to the network parts (cf. the analytical
inversion discussed in section 1.2.1).

We note that other methods exist that interleave learned processing steps with classical
reconstruction steps in a more intertwined manner, e.g. in learned iterative reconstruction
(section 2.5) or other approaches (section 2.8).

While the three evaluation steps of learned pre- and post-processing reconstruction are
sequential, many of these approaches simultaneously train the pre- and post-processing parts
end-to-end in a single network fθ performing all steps, e.g. using a loss of the form

Remp(θ) = E(yδ
i ,x

∗
i )

[
L(fθ(y

δ
i ), x

∗
i )
]
.

Adding the option to use a preliminary reconstruction x̃ and a projection-domain loss comparing
with ground truth projection data y∗ (weighted by a constant factor λ > 0), we obtain the more
general loss
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Some approaches utilize a separate pretraining of the projection-domain network.
Multiple works target sparse-view reconstruction with a pre-processing network that refines

interpolated sparse-view projection data, combined with an image-domain post-processing network.
In [430], the pre-processing part fpre,θ applies bicubic interpolation to the sparse-view projections
followed by a residual U-Net, and FBPs from both the output of fpre,θ and the sparse-view
projections form the input of an image-domain residual U-Net; first, the projection-domain
network is pretrained separately using projection ground truth data, and subsequently the
complete network fθ is trained end-to-end with alternating optimization steps for fpre,θ and
fpost,θ. A U-Net-like architecture with Haar down-sampling as the first and Haar up-sampling as
the last layer is used in [243] for both the projection- and the image-domain network, where fpre,θ
processes linearly interpolated sparse-view projection data; the complete network fθ is trained
end-to-end. In [447], a slice-by-slice approach for the reconstruction from 3D sparse-view helical
projection data is proposed: The 3D helical sparse-view data is first linearly interpolated and
then mapped to slice-wise 2D fan-beam data using a U-Net that receives the section of the helical
data that is relevant for the respective slice as multiple 2D channels, followed by FBP and a
smaller U-Net for image-domain refinement; residual connections are used to wrap both networks,
which in the projection domain is realized by adding the 2D fan-beam forward projections of a
classical 3D reconstruction from the sparse-view helical data. The helical-to-fan-beam-projection
network is pretrained separately before joint end-to-end training. Separate training of pre- and
post-processing networks is used in [188], which facilitates the patch-wise (and thus memory-
efficient) training of the two residual 3D U-Nets, which refine the linearly interpolated sparse-view
projections and the reconstructed image, respectively. [25] proposes end-to-end training with two
multi-level wavelet CNNs (MWCNNs), which are U-Net-like architectures with Haar down- and
up-sampling between the different scales; training losses are placed both on the output of the first
MWCNN refining linearly interpolated sparse-view projections and on the output reconstruction
of the image-domain MWCNN.
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Some approaches also target sparse-view CT, but do not interpolate the sparse-view sinogram
with the pre-processing network. A closed-loop dual-domain training approach is proposed
in [156], where a sinogram-to-image mapping consisting of a pre-processing U-Net, FBP and
a post-processing U-Net is trained not only with a standard supervised loss, but also via a
simultaneously learned image-to-sinogram mapping consisting of a U-Net and forward projection
on which a sinogram-domain loss is placed. In [388], a Swin-based transformer is used in the
sinogram domain, followed by FBP, and a residual image-domain network, which additionally
receives a direct FBP reconstruction; supervised training losses are placed on the sinogram-domain
transformer output, the FBP reconstruction from the sinogram-domain transformer output, and
the final image-domain network output.

Metal artifact reduction is targeted in [262], where sinogram values inside the metal traces
are first linearly interpolated, then a sinogram-enhancement network is used to replace the
values inside metal traces, and FBPs from both the linearly interpolated sinogram and the
network-enhanced sinogram are passed to an image-enhancement network. End-to-end training
is performed using a three-fold loss, consisting of two losses that compare the sinogram- and
image-domain network outputs with the respective ground truth and a Radon consistency loss on
the sinogram-domain output that compares its FBP with the ground truth image in order to
avoid the potential introduction of secondary artifacts due to the sinogram-enhancement.

For low-dose CT, [136] uses a network consisting of a shallow 1D CNN in the projection
domain, FBP inversion and a residual encoder-decoder CNN [74] in the image domain. It is
trained end-to-end using a combined ℓ2 and VGG-based loss. In [204], an end-to-end trained
network is formed by a projection-domain U-Net with long 1D convolution kernels operating in
the detector pixel dimension, followed by simple back-projection and an image-domain U-Net.
Here, the projection-domain 1D U-Net plays the role of a learned filtering step that replaces the
classical ramp filter of FBP or FBP-based post-processing. The method is applied to different
sparse-view settings.

2.5 Learned iterative reconstruction

A family of learned reconstruction methods is inspired by iterative reconstruction schemes, while
modifying it to contain learned components. Several such approaches exist, differing in the
iterative reconstruction algorithm that is adapted, the components that are learned, the training
strategy and the provable convergence guarantees.

2.5.1 End-to-end trained (unrolled) iterative reconstruction

When fixing the number of iterations, they can simply be unrolled as network layers, yielding a
network architecture that can be trained end-to-end. The network learns from a dataset of pairs
(yδi , x

∗
i )i=0,1,...,N−1 of measurements yi and ground truth images x∗

i by minimizing the empirical
risk
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δ
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∗
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]
, (2.6)

where the network fθ may reuse the measurements yi in each layer to compute (learned) iterative
update steps.

Two such end-to-end trained iterative networks are partially learned gradient descent [3] and
learned primal-dual [2], which are inspired by gradient descent and the primal dual hybrid gradient
(PDHG) method [68], respectively. The original algorithms only serve as loose templates for
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these learned algorithms, with several modifications being applied. Most importantly, gradient or
proximal operators are replaced by learned convolution blocks, while optionally providing original
gradient information as inputs to the convolution blocks. Additionally, memory variables are
introduced to pass on information to subsequent iterations, and learned primal-dual furthermore
generalizes the update steps to be freely learned, instead of enforcing the form they take in
PDHG, and learns individual parameters for each iteration. This results in powerful architectures
allowing for flexible processing, which in the case of learned primal-dual also takes places in the
dual domain, i.e. the CT measurement (projection) domain. Learned primal-dual performed very
well and also learned efficiently from a moderate number of data pairs in our evaluations [23,
253]. Similarly, JSR-Net [435] unrolls an algorithm based on the alternating direction method of
multipliers (ADMM), approximating inverse and thresholding operators with CNNs operating in
both image and projection domain. Another ADMM-based unrolled architecture is presented in
[169], with each iteration being structured into four blocks performing sinogram restoration, image
reconstruction, residual denoising using a CNN, and a multiplier update, where the denoising
CNN and several other parameters of the modified scheme are learned.

The learned experts’ assessment-based reconstruction network (LEARN) [71] unrolls gradient
descent and uses 3Layer-CNNs for learned residual update terms that are added to the standard
non-learned gradient descent updates, motivated by viewing the CNNs as implementations in the
place of fields-of-experts regularization steps. Compared to partially learned gradient descent,
which uses the standard gradients only as inputs to convolution blocks, this approach stays
closer to the original algorithm by directly adding the gradient. Individual CNN parameters and
step sizes are learned for each iteration of the LEARN architecture, increasing the flexibility.
An extended variant of LEARN called LEARN++ [443] integrates additional networks in the
projection domain, which perform inpainting operations on sparse-view data. Similar to LEARN,
SCRED-Net [267] also learns a residual update term added to standard gradient descent updates,
but in order to achieve scalability only considers a stochastic subset of projections at each step
(similar to some ART-based methods, which however are usually non-stochastic, see section 1.2.2)
and shares the parameters across all iterations. AirNet [70] unrolls fused analytical and iterative
reconstruction (AIR) [131], which is based on the proximal gradient method for a regularized
objective while replacing the adjoint A⊤ in the gradient steps w.r.t. the data discrepancy term
with an analytical reconstruction operator A†, but instead of performing proximal steps for
the regularizer term applies CNNs to perform residual updates, with the CNNs being densely
connected in the sense that each CNN also receives the inputs of the CNNs at the previous
iterations. An extension of AirNet for temporally resolved CT data from multiple respiratory
phases has been proposed in [69]. The recently presented ADMM-SVNet [394] also introduces a
learned component via a regularization: It unrolls an ADMM-based scheme to optimize a sparsity
regularized objective, using two U-Nets in place of the sparse transformation and its adjoint.
ADMM-SVNet also learns hyperparameters of ADMM. In [227], a U-Nets cascade is used that
alternates network parts with data consistency layers that minimize the error in the projection
domain regularized by the forward projected output of the preceding network part. Like the
previously discussed schemes, LEARN, LEARN++, SCRED-Net, AirNet, ADMM-SVNet and
U-Nets cascade are trained end-to-end via an objective of the form (2.6).

An unrolled CNN architecture called ΨDONet is proposed in [56], which resembles iterations
of the iterative shrinkage-thresholding algorithm (ISTA) while representing the normal operator
A∗A in the wavelet domain by decomposition into subbands, downsampling, convolution and
upsampling operations, under the assumption that A∗A is a convolutional operator (which is the
case e.g. for the considered limited-view parallel-beam CT). Based on this representation, the
network learns an additive modification of the central part of the convolutional kernel of A∗A.
The paper includes convergence results.
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2.5.2 Iteration-wise trained iterative reconstruction

In the SUPER learning framework [259] supervisedly learned reconstruction steps are alternated
with classical iterative reconstruction steps. Training is carried out sequentially for each learned
reconstruction step, attempting to predict ground truth images from the output of the preceding
iterative reconstruction step. Each classical iterative step performs a predefined number of
iterations and is applied “offline” on the outputs of the preceding previously trained network,
before training the subsequent network. Prior information can be included in the classical
unsupervised steps.

Momentum-Net [82] generalizes a block proximal extrapolated gradient method using a
majorizer (BPEG-M) [81, 80], which is in turn based on the block proximal gradient framework
[418]. At each iteration, an individual image refining CNN is employed, which is used to ℓ2-
regularize a model-based objective for the subsequent reconstruction step. Each reconstruction
step uses a majorization of the regularized model-based objective, which is then minimized by
single proximal gradient step (per iteration). Additionally, momentum-based extrapolation is
used for acceleration. Like in SUPER learning, training is carried out iteration-wise, aiming to
predict ground truth images from the result of the previous iteration. The usage of individual
CNN parameters for each iteration enables efficient processing, but complicates the study of
convergence as the number of iterations tends to infinity. Still, the authors prove convergence under
an assumption of asymptotical non-expansiveness for the sequence of subsequent CNN operator
pairs, which is validated empirically, along with assumptions similar to those for BPEG-M.

2.5.3 Plug-and-Play regularization

Plug-and-Play (PnP) regularization is based on the concept of employing an existing algorithm
performing a denoising-like operation in each iteration of an iterative scheme for regularizing
purposes, without differentiating the denoising algorithm w.r.t. to its input. Thus the PnP
regularization framework can use denoisers that do not allow for efficient back-propagation, and
it is very flexible in combining different data discrepancy objectives and denoiser-induced “priors”.
Before turning to individual publications in the context of CT, we first outline the introduction
of PnP frameworks in general.

A family of iterative schemes minimizes a regularized objective using proximal splitting, where
each iteration is split into three steps: (i) a discrepancy-based update, (ii) a regularizer-based
update, and (iii) a dual variable update step. The regularizer-based update only depends on
the regularization term, which encodes prior information (e.g. as the negative log-likelihood of
a prior distribution model, cf. section 1.1.2) and can often be interpreted as a denoising step.
This modular structure provides the foundation for [386] to propose a general PnP framework, in
which the regularizer-based update step is flexibly replaced with a denoising-like operation. It
presents an algorithmic way to implicitly induce prior-like information, giving rise to the term
PnP priors, even though no prior model is explicitly formulated. A different framework called
regularization by denoising (RED) [332] also incorporates a denoising-like operation (denoted
by f(x)) flexibly, but explicitly formulates the regularization term as R(x) = 1

2x
⊤(x− f(x)). In

RED, the denoising engine f(x) is assumed to fulfill homogeneity and passivity conditions, and
the gradient of R(x) is then approximated as ∇xR(x) = x−f(x), which avoids to differentiate the
denoiser f . Therefore the RED framework falls in the category of Plug-and-Play regularization,
while still offering an (approximate) explicit regularization term. The convergence of RED with
weaker assumptions on the denoiser is shown in [328] when using the proximal gradient algorithm.
Another PnP-type framework [62] solves for a multi-agent consensus equilibrium (MACE), where
the individual agents can each implement a data discrepancy or regularization component flexibly.

48



The consensus equilibrium is solved for using Mann iteration, for which convergence analysis is
included in [62].

An ADMM-based PnP approach with a residual deep CNN denoiser is applied to low-dose CT
in [424]. Another PnP-style approach based on projected gradient descent (PGD) is proposed in
[157] for sparse-view CT, implementing the projector as a CNN, which takes the role of projecting
iterates towards the set of desired solutions and is trained for this purpose beforehand; in order
to deal with the CNN projector not necessarily being a true projection onto a convex set, the
authors propose a relaxed PGD (RPGD) scheme that ensures convergence when the number
of iterations tends to infinity. [346] follows a similar idea, but, varying from the standard PnP
framework, it applies conjugate gradient (CG) steps, alternated with CNN steps (relaxed via a
fixed hyperparameter) using a encoder-decoder architecture with a bottleneck. A PnP approach
based on half-quadratic splitting (HQS) is proposed for low-dose CT in [132], using a pre-log
statistical forward model and a three-layer CNN denoiser. Also based on HQS, [203] presents
a PnP approach for sparse-view CT using a U-Net-based denoiser receiving a noise level map
as additional input. A tuning-free ADMM-based PnP approach is applied to sparse-view CT in
[396], using a residual U-Net denoiser receiving an additional noise level map input combined
with actor-critic reinforcement learning for automated parameter selection determining whether
to terminate, the denoising strength, and a penalty parameter encouraging termination if not
improving substantially. In the family of RED approaches, [369] presents a block coordinate
variant of RED (BC-RED), which per iteration updates one randomly selected image patch,
using a patch-wise denoising network; it is applied to sparse-view CT. In [370], this approach is
extended by parallelizing block updates (by allowing to operate on an old iterate) and additionally
alternating over measurement blocks stochastically (i.e., stochastic gradients); experiments are
performed on low-dose CT. Sufficient conditions for convergence are given in both [369] and
[370]. A RED approach combining reconstruction and angle calibration is presented in [414] for
sparse-view CT, using Nesterov accelerated gradient descent with a residual CNN denoiser. In
[275], a partial Mann fixed-point iteration scheme solving for a MACE [62, 362] is applied to
temporally resolved (4D) cone-beam CT reconstruction from sparse-view or limited-view data;
one agent implements data discrepancy, complemented by three regularizing agents operating in
the orthogonal xy, yz and xz planes, which utilize a denoising CNN receiving five slices from
consecutive time points (called “2.5D”). An algorithm based on approximate message passing
(AMP) is proposed in [321] for sparse-view CT: In order to apply standard AMP, which performs
well for compressed sensing with i.i.d. random Gaussian operators, to a CT setting, the authors
suggest to use a preconditioning and a Poisson noise model; a BM3D denoiser is used in [321],
but the method allows for general denoisers, including learned ones.

2.5.4 Learned regularization functionals

Besides the previously discussed Plug-and-Play regularization approaches, one can also learn an
explicit regularization functional Rθ(x). For example, [83] presents a learned regularization for
sparse-view CT, although not using a neural network but a learned sparsifying transform matrix
that maps image patches to sparse codes; once the sparsifying transform is learned, it is used
in an ℓ1-based regularization term of the reconstruction objective, which is then minimized by
alternating image steps implemented via ADMM and sparse coding steps via hard-shrinkage. Deep
learning offers the opportunity to learn more complex regularizing functionals, but complicates
the analysis unless a special form or conditions are assumed for the functional. In this section, we
only consider non-trivial learned regularization functionals in the sense that learned operations are
applied on the argument x of the functional; other approaches that only utilize network-provided
prior information as part of a classical regularization functional have been covered in section 2.2.
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In [270], the authors propose to train an adversarial critic (discriminator) network, which is
then used as a regularization functional in standard gradient descent. The critic is trained like
for WGANs [17], distuingishing preliminary reconstructions from ground truth images in terms
of the Wasserstein distance while (softly) enforcing a Lipschitz constant ≤ 1. Unpaired training
data is sufficient, and the paper includes theoretical analysis as well as experiments on sparse
view CT. This framework of adversarial regularizers is specialized in [297] to use an input-convex
network [10], allowing the authors to prove convergence of the resulting regularization and the
existence of a sub-gradient descent scheme for solving it. In terms of practical performance, the
convexity constraint on the network architecture is reported to be beneficial in some experiments
(limited-view CT, deblurring) but restrictive in others (sparse-view CT). Provably convergent
learned regularization is also studied in [254], called network Tikhonov (NETT), under some
assumptions including coercivity of the network; an encoder-decoder training scheme is employed,
learning to extract either the artifacts or a zero image from a corrupted or a clean image,
respectively, and the norm of the encoder output is then used as the regularization term in the
reconstruction objective, which is solved with alternating gradient descent. While NETT originally
was applied to photoacoustic tomography (PAT), sparse-view CT experiments are presented in
[49], which proposes the non-stationary iterated network Tikhonov (iNETT), based on NETT
and non-stationary iterated Tikhonov [206], avoiding tuning of the regularization parameter. To
prove convergence of iNETT, the network is required to be uniformly input-convex, for which the
authors introduce a U-Net-based architecture. A different approach called total deep variation
(TDV) [225] learns a network-based regularization term by solving a discretized optimal control
problem with fixed depth on training data, where the network parameters and the stopping time
present the optimizable parameters; at reconstruction time, the learned regularizer term and a
data discrepancy term form an objective that is minimized by gradient descent with Lipschitz
backtracking. The authors point out that the regularizer may be reused across different problems,
and indeed use a regularizer trained via the optimal control problem of denoising for sparse-view
CT reconstruction. In [152], a shallow learned convex regularizer is proposed, targeting reliability
and interpretability. A multi-gradient-step denoiser fulfilling convexity, existence and Lipschitz
constraints is trained to solve a denoising problem, using learned convolutions and learnable linear
spline activations, which corresponds to a regularization term that is the sum of convex ridges
with learned profile functions that are splines of second degree. The constraints enable theoretical
guarantees, and like in total deep variation and Plug-and-Play regularization, this denoiser can
be trained without knowledge of the forward model, and indeed is constructed as a universal
denoiser before applying it to the target application, which in this case is sparse-view CT.

2.5.5 Implicit depth models

Network models with implicit depth can be defined via a fixed-point equation; a prominent
example are deep equilibrium models (DEQs) [26, 142]. A single network block is trained
such that its repeated evaluation leads to a fixed-point solution forming the reconstruction by
minimizing an implicit loss comparing the fixed point with the ground truth image. To compute
the gradients of this loss during training, only the activations for the single network block must
be stored, but typically a Jacobian-based linear system must be solved (approximately) in each
step, which is computationally demanding. The network block can be interpreted as a layer of a
network whose depth is defined by the number of evaluations, which can be chosen arbitrarily
at test time to reach convergence. In the two subsequently summarized works, implicit depth
models are applied to sparse-view CT reconstruction.

Feasibility-based fixed-point networks (F-FPNs) with implicit depth, alternating the applica-
tion of a neural network consisting of residual CNN blocks with diagonally relaxed orthogonal
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projections (DROP) [66], are proposed in [172], using Jacobian-free backpropagation (JFB) [128]
to train the fixed-point network. Fixed-point networks generally allow for training with a memory
consumption that is independent of the number of iterations, and JFB training additionally
avoids the computational cost of solving a Jacobian-based linear system.

In [266], an online variant of deep equilibrium RED is proposed, approximating the gradient
with respect to the data discrepancy using random minibatches of the measurement in each
step (like in stochastic gradient descent) in order to make the complexity independent from the
measurement dimension. The considered deep equilibrium RED is a gradient-descent-based DEQ
that takes the form of regularization by denoising (RED) using steepest descent.

2.5.6 Other learned iterative reconstruction approaches

In [296], unrolled iterative reconstruction (section 2.5.1) and learned adversarial regularizers [270]
(see section 2.5.4) are combined. An unrolled iterative network with an architecture like learned
primal-dual [2] and a CNN regularizer are trained jointly in an alternating manner. Thereby
the CNN regularizer acts as a critic (discriminator), which is trained via a Wasserstein distance
loss to distuingish ground truth images from outputs of the unrolled iterative network, whereas
the unrolled iterative network is trained to counteract the critic and to minimize a discrepancy
loss, i.e. the training loss for the unrolled iterative network forms a variational regularization
objective with the CNN regularizer. After training, the unrolled iterative network is evaluated to
predict the reconstruction, optionally followed by a refining image-space gradient descent using
the variational regularization objective with fixed regularizer network parameters.

Mainly motivated as a technique to stabilize learned reconstruction against perturbations
including adversarial attacks, an analytic compressed iterative deep (ACID) scheme is proposed
and studied in [408, 409], which combines an existing reconstruction network, a compressed
sensing module that suppresses non-sparse components and data residual computation.

Based on ACID, the PRIOR approach is developed in [189] for temporally resolved (4D)
cone-beam CT, which integrates a motion-blurred prior image obtained from all projections as
an additional network input, like the post-processing approach [448] mentioned at the end of
section 2.1.1.

2.5.7 Remarks on and approaches targeting scalability

In practice, learned iterative reconstruction methods tend to be computationally expensive. One
reason is the involvement of the forward model, which in the application of CT requires the
evaluation of forward- and back-projections in each iteration. For end-to-end trained networks, the
number of iterations is a limiting factor, since during the training with many unrolled iterations
the intermediate activations occupy a large amount of memory, and the traversal of all layers is
time-consuming. This cost is avoided with other approaches by different means: SUPER and
Momentum-Net apply greedy iteration-wise training, PnP and explicit regularization approaches
train a single network in advance and implicit depth models use fixed-point network training
(with some using Jacobian-free backpropagation). Hence these approaches are potentially easier
to scale to higher resolutions and 3D CT images. A greedy iteration-wise approach specifically
targeting scalability is presented in [404], which sequentially trains the CNNs that are inserted
between the update steps of proximal gradient descent, with each CNN processing image patches
instead of full images. While the greedy strategy may hinder the learning to find global optima to
some extent, it greatly reduces memory requirements during training, both by training only one
network part at a time, and, most importantly, by enabling the purely image-based patch-wise
training for each iteration, which is decoupled from the forward model. A different scalable
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approach that facilitates end-to-end training is developed in [167], called multi-scale iterative
reconstruction. It performs iterations at different resolution levels, moving from a coarse to the
desired resolution. Especially in 3D, lowering the resolution in the earlier iterations significantly
reduces memory usage and computation time. This upsampling iterative network part is followed
by a (residual) U-Net for additional processing, with both network parts being connected at
different resolutions via skip connections. Compared to typical 2D approaches, both [404, 167]
use relatively few iterations while employing larger network structures. In [404], a U-Net is used
in each iteration, with the authors noting that using deep networks per iteration was important
to compensate for the suboptimal local optima found by the greedy training strategy. In [167],
prepending iterations with lower resolution is only possible or beneficial up to a certain level
of coarseness, and the subsequent U-Net connects and extends the network, yielding a rather
large multi-scale structure. Both approaches thus somehow combine the iterative network idea
with more complex architectural components compared to the shallow networks usually found in
end-to-end trained iterative 2D architectures. Besides computational and memory complexity
of training, the reconstruction process with learned iterative schemes is typically more time-
consuming than learned pre- and/or post-processing reconstruction due to the computation of
multiple iterations involving both network and forward-/back-projections. This also applies to
unrolled end-to-end trained methods, although those usually involve a relatively small number
of iterations, while other learned iterative methods can have (theoretically) arbitrary numbers
of iterations depending on a stopping criterion, such as implicit depth models (section 2.5.5),
Plug-and-Play regularization (section 2.5.3) and learned regularization functional approaches
(section 2.5.4).

2.6 Fully learned reconstruction

Some approaches follow a radical strategy of learning the entire inversion process directly from
data while using only little, rather abstract knowledge of the forward model. Such full learning is
clearly more ambitious and usually expected to require more training data (see also the benchmark
results in [23] matching this expectation).

In [423] and [378], the network input is constructed as a stack of single-angle back-projection
images for each angle of a sparse-view geometry, i.e. each input channel is a stripe image constructed
from a 1D projection. While the single-angle back-projections are computed according to the
forward model, their combination is up to the network, so a substantial part of the inversion
is learned. A 20-layer CNN is trained in [423] to reconstruct from this input in a patch-wise
manner (using 8× 8 patches from 64× 64 images). Instead, a WGAN-based training including
an ℓ1 reconstruction loss is performed in [378], using full 128× 128 images; we note that from the
description in [378] it not clear whether the simulated sparse-view projections contain noise.

A twelve-layer architecture called iCT-Net is proposed in [258], where only abstract model
information is incorporated via the non-learned second-to-last layer that applies individual
rotations to each channel. The authors compare segments of the architecture to steps of a
filtered back-projection pipeline. The first five layers learn a signal correction, implemented via
convolutions operating along the detector pixel dimension followed by dense mixing of channels
corresponding to the angle dimension. The next four layers learn a filtering via various convolutions
and mixing. Finally, there remains a learned counterpart to the backprojection, which is realized
as a fully connected layer transforming the features to image space, followed by the non-learned
rotation layer, and a final layer combining the rotated images to a reconstruction. The training
is conducted in two stages, first using simulated data for a pretraining of individual network
parts and also for a preliminary end-to-end training, before performing end-to-end training on
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real-measured data. Experiments are shown for sparse-view, short-scan and interior CT, as well
as combinations of these. Based on the iCT-Net architecture, the iCTU-Net is proposed in [36]
for MAR, and also took part in our low-dose and sparse-view CT benchmark in [253].

The so-called iRadonMAP [168] rather closely resembles filtered back-projection, using a fully
connected filtering layer operating in the detector pixel dimension (shared across all angles) and
a learned sparse sinusodial back-projection layer, in which the locations of non-zero connections
between sinogram pixels and image pixels are predefined, but the weights are learned. The
output of the back-projection layer is subsequently refined by a residual CNN part. All training is
performed end-to-end, first pretraining with (noise-free) simulated data based on ImageNet, before
subsequently using clinical data for fine-tuning on sparse-view and low-dose tasks. We include
a reimplementation of iRadonMAP in our comparison in [23], however without a pretraining,
but instead trying to learn directly from our simulated benchmark datasets while studying the
performance depending on the dataset size. The results confirm that iRadonMAP requires much
more training data compared to other, not fully learned approaches (which is expected to be
adressed at least to some degree by pretraining as proposed in [168]).

A hierarchical approach is proposed in [124, 125], decomposing the transformation from
sinogram to image space into a sequence of sparse operations. The sinogram, which contains line
integrals for each angle and detector pixel, is gradually transformed via intermediate representa-
tions containing integrals of shorter, partial line segments with a reduced angle resolution, until
reaching a reconstructed image. These transforms are naturally sparse and are implemented using
learned sparse layers with predefined locations of the non-zero connections (like for the sinusodial
back-projection layer of iRadonMAP). Both the sinograms and the images have a size of 512×512
pixels, which allows the total dimension to stay the same throughout the transform sequence.
The network additionally contains convolutional layers before and after the transforms. Training
is first performed on pure noise image data and corresponding forward projections without adding
measurement noise in order to learn the inversion process, including an individual pretraining of
the transform layers as well as a preliminary end-to-end training. Subsequently, the network is
trained on simulated low-dose clinical CT data.

All previously discussed fully learned approaches incorporate some notion of back-projection or
rotation in the architecture. In contrast, DUG-RECON [213] only uses standard CNN components.
Its reconstruction pipeline consists of a sinogram-denoising U-Net, a reconstruction U-Net that
transfers from sinogram to image domain, and a residual CNN for image super-resolution. The
reconstruction U-Net is trained as the first part (G1) of a double U-Net generator (DUG), where
the second generator (G2) transforms the image back to a sinogram, trained alternatingly with
supervised losses on G1 and G2 individually, and on G2 ◦ G1 w.r.t. the weights of G1. The
denoising and super-resolution networks are trained supervisedly, using an ℓ2 loss for the denoising
and a VGG-based perceptual loss for the super-resolution network, respectively. Experiments are
shown for low-dose CT.

Another approach that only involves standard CNN architecture components is proposed in
[212], using an encoder-decoder structure, but the learning of the reconstruction task is assisted
by injecting down-scaled filtered back-projections as additional inputs of the final decoder blocks.
This can be interpreted as blending fully learned with post-processing reconstruction. The network
is called a low-resolution reconstruction aware convolutional encoder-decoder (LRR-CED) and
has a U-Net-like architecture, of which two variants are studied, one using densely connected
convolutional blocks and another more standard U-Net architecture. LRR-CED is applied to
sparse-view CT. Both [213] and [212] are included in the publicly accessible thesis [214].

In [419], an architecture is proposed that consists of (i) a transformer-based sinogram-domain
module, (ii) a fully learned residual-CNN-based module predicting errors in the filtered back-
projection based on the sinogram information, and (iii) a final image-domain U-Net module. By
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adding the predicted errors to the filtered back-projection before passing it to the final U-Net,
the approach is similar to a learned post-processing, but here the error prediction is fully learned.
Training is performed using several losses, including supervised ℓ1 losses on each of the three
modules, as well as additional losses on the sinogram transformer output, one of which compares
the values of coinciding beam paths within the predicted fan-beam sinogram, and the other
compares the second derivatives of the predicted sinogram with those of ground truth sinograms.
The approach targets low-dose CT.

2.7 Ground-truth-free learned reconstruction

As obtaining ground truth data is usually expensive, risky (e.g. for the health of the patient)
or in other ways infeasible, there is a great demand for reconstruction methods that can be
learned without ground truth. Here, “without ground truth” also rules out non-paired collections
of ground truth images as required e.g. by learned adversarial regularizers (cf. section 2.5.4).
The training of ground-truth-free methods is unsupervised and typically involves a loss enforcing
consistency of the network output with the measurements or degraded images while exploiting
useful biases or effects induced by the network architecture and training strategy. In some
ground-truth-free approaches, training is only performed at reconstruction time using just the
measurements yδ, while others utilize an external dataset of measurements or degraded images.
Ground-truth-free approaches may also be called self-supervised, since the reconstruction is
learned solely from degraded “unlabelled” input(s), but, different from typical self-supervised
learning, most ground-truth-free approaches do not conduct a second supervised learning step
using the self-supervisedly learned predictions [28].

One popular ground-truth-free framework is the deep image prior (DIP), which we will discuss
in section 2.7.1 including several extensions. Ground-truth-free approaches using coordinate-based
implicit neural representations, which deviate from the standard array-based image processing, will
be covered subsequently in section 2.7.2. Finally, approaches based on Noise2Noise or Noise2Inverse
are discussed in section 2.7.3, and other ground-truth-free approaches in section 2.7.4.

2.7.1 Deep image prior
A powerful unsupervised image reconstruction framework, named deep image prior (DIP), has
been introduced half a decade ago [249]. It can be viewed from the classical inverse problems
perspective: Given corrupted observations yδ ≈ Ax we wish to reconstruct the true image x.
Applications presented in the original paper [249] include denoising (A is identity), deblurring (A
is convolution) and inpainting (A is restriction), focusing on natural images, but DIP is now also
applied to various tomographic reconstruction tasks [147, 88, 146, 129, 23, 449, 104, 34, 233, 30,
224]. A main advantage of DIP lies in the fact that it does not require a training dataset, which
would be difficult or impossible to obtain in some applications, but only the measurements yδ.

The central idea of DIP is to reparameterize the image x as the output of a (usually convolu-
tional) neural network fθ(z). Thus, image pixel values are not optimized directly, but instead by
learning the network parameters θ,

θ∗ ∈ ãrgmin
θ∈Rp

D(Afθ(z), y
δ),

reporting x∗ := fθ∗(z) as the reconstruction. The iterative optimization of this objective typically
requires early stopping (denoted by “ ˜ ”) to avoid overfitting to the corruptions contained in
yδ. Traditionally, the network input z is chosen as a fixed noise image with i.i.d. pixel values, but
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it can be any image from which the network is able to generate useful output images. The loss
function can be chosen like in the classical formulation of inverse problems: For example, one can
choose the negative logarithm of a likelihood function model p(yδ |Ax) for the discrepancy D,
such as the mean squared error (MSE) for a Gaussian noise model, or a Poisson regression loss
for a Poisson noise model (see eq. (9) in [253], used e.g. in [146, 23, 253]).

Learning via the network architecture instead of directly optimizing the image pixels is found to
effectively “regularize” the solution [249]. While one might notice that minimizing D(Afθ(z), y

δ) is
mathematically equivalent to the constrained minimization of D(Ax, yδ) s.t. x ∈ {fθ(z) | θ ∈ Rd},
this only loosely relates to the working mechanism of DIP: Overparameterized network architec-
tures are commonly used, which are capable of outputting virtually any image including noise,
and the optimization is neither able nor aiming to find a global minimizer of D, instead relying
on early stopping and the so-called inductive bias of learning via the architecture, that leads to a
faster learning of natural images than of noise. Although this empirically observed behaviour
has been studied in the literature [77, 67, 175, 347], its theoretical understanding is not yet
complete. Some formal results exist for special architectures: Deep decoder was proposed as
an alternative underparameterized architecture for DIP without spatial convolutions and with
non-learned upsampling operations, which is less prone to overfitting and is proven to be incapable
of fitting white Gaussian noise in the single-layer case [174]. Another more theoretically motivated
approach is called the analytic deep prior (ADP) [105], which uses an unrolled proximal gradient
architecture. Existence, stability and convergence results have been proven for the ADP [19].
For other more commonly used CNN architectures, the regularizing effects largely remain an
empirical finding.

The implicit regularization induced by DIP can be mixed with explicit regularization by
including a regularization term R : X → R in the loss, like for variational regularization:

θ∗ ∈ ãrgmin
θ∈Rp

D(Afθ(z), y
δ) + αR(fθ(z)).

If the explicit regularization fits the targeted image class well and is weighted suitably, it plays
the role of a useful additional prior that leads to reduced overfitting and can also improve the
reconstruction quality. A common choice for R is total variation (TV). DIP with TV regularization
(DIP+TV) has been used for compressed sensing and image restoration tasks [385, 265, 64] as
well as for CT reconstruction in [23, 34, 100].

Plug-and-Play regularization for Deep Image Prior

Regularizers can also be constructed by employing an existing denoising method via the plug-and-
play (PnP) priors [386] or the regularization by denoising (RED) [332] framework. Approaches
combining DIP with RED and PnP have been developed, which are called DeepRED [280]
and PnP-DIP [372]. Of course, the regularization (or denoiser) can also be learned from data
[385, 121]. Most methods involving a more complex regularization or prior information use an
alternating direction method of multipliers (ADMM) optimization scheme instead of standard
gradient descent variants. The combination of DIP with learned/PnP/RED regularization has
been applied to different reconstruction tasks, including the closely related modality of positron
emission tomography (PET) [366]; for X-ray CT, a constrained DIP optimization with RED
(cDIP-RED) has been applied for artifact removal [65], however, as a post-processing method it
operates in image space only and does not involve the CT forward operator A.
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Stein’s unbiased risk estimator for Deep Image Prior

Employing the Stein’s unbiased risk estimator (SURE) [364] as DIP’s training loss presents another
technique to prevent overfitting to measurement noise. While SURE itself is only applicable to
denoising (A = Id), it has been extended to inverse problems with a non-trivial forward operator
A, known as generalized SURE (GSURE) [113]. If the forward operator is rank-deficient (e.g. in
sparse-view CT), GSURE resorts to estimating the projected error in the range of A⊤, which
only provides a poor estimate of the true error [284, 5]. Nevertheless, promising results utilizing
GSURE have been presented for deblurring and super-resolution [1] while optimizing via ADMM,
as well as for undersampled MRI [208]. Also for MRI, [5] proposes an ensembling method over
different randomized sampling patterns and images to overcome the inaccuracy of the projected
GSURE estimate. To the best of our knowledge, GSURE-based DIP reconstruction has not been
applied to CT reconstruction yet.

As far as the aforementioned regularizing techniques lead to a stabilized DIP optimization
with reduced overfitting to measurement noise, this partially mitigates the need for a suitable
early stopping. However, it needs to be expected that overfitting cannot be prevented completely,
and developing early stopping criteria for DIP is a relevant subject of ongoing research [391, 256,
207, 390] that complements the stabilization efforts.

Bayesian approaches for Deep Image Prior

Multiple approaches to cast the DIP to a Bayesian framework have been developed, aiming to
approximate the posterior. Essential goals with Bayesian DIP frameworks include overfitting
reduction and the ability to perform uncertainty estimation. A simple way consists in using
Monte-Carlo dropout (MCD) [130, 238], where dropout is applied both during optimization and
afterwards when evaluating the network. The mean of Monte-Carlo samples is then reported as
the reconstruction. This MCD approach has been successfully applied to CT reconstruction in
[100], combined with TV regularization. In the application of natural image restoration, another
Bayesian DIP variant based on stochastic gradient Langevin dynamics (SGLD) [397] has been
proposed in [77], which injects noise in the gradients at each iteration and collects the iterates
as samples after a burn-in phase. While [77] reports SGLD-based DIP to be effective against
overfitting, it is evaluated as a baseline in [238] on medical image denoising tasks, where severe
overfitting behaviour is observed with SGLD-based DIP and MCD-based DIP is proposed instead.
In [382], both SGLD- and MCD-based DIP are reported to overfit with medical images at some
point, and instead a mean-field variational inference (MFVI) approach with an automated prior
selection strategy is presented, showing reduced overfitting. However, we note that the works [77,
238, 382] do not consider CT reconstruction but image restoration tasks. A MFVI-based DIP
approach with posterior temperature optimization is applied to sparse-view CT reconstruction
in [239]. Bayesian DIP approaches in general allow for uncertainty estimation, which we will
briefly discuss in section 2.9, including our linearized DIP predictive posterior [14] that allows
for calibrated uncertainty estimation given a readily optimized DIP network, i.e. without any
changes to the deep image prior architecture or optimization.

Pretrained Deep Image Prior

DIP can also be combined with pretraining. For DIP-based PET denoising, pretraining is
performed in [89] on a dataset of anatomical prior images from CT or MRI and corresponding
noisy PET images, where MRI or CT images serve as the network input and noisy PET images
serve as the target outputs. Unlike in typical supervised training, the more available noisy PET
images are used instead of ground truth images. Then, the network with parameters initialized
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from pretraining is fine-tuned to denoise a particular PET image by DIP-style optimization
of the last few layers while fixing the parameters of the first network part. An improvement
of reconstruction accuracy is observed with the pretraining initialization compared to classical
random initialization. This approach is combined with a SURE loss in [90]. We study DIP
pretraining for CT reconstruction in [30]. Here, the main focus is to speed up the reconstruction,
which for standard non-pretrained DIP takes a practically prohibitive amount of time (e.g.,
several hours), since the network is optimized from scratch for each reconstruction. Pretraining is
performed as the supervised post-processing (cf. section 2.1.1) of FBPs on a simple-to-generate
synthetic dataset of random ellipsoid ground truth images and corresponding FBPs from simulated
noisy measurements, serving as the network output and input respectively. Significant speed-up
is observed for real-measured µCT datasets [57, 99] using 2D and 3D settings. A modified, more
decoder-focused U-Net architecture is used for the 3D experiments. The performance evaluation
is complemented by a singular value analysis to gain insights about the pretraining mechanism.

We note that all experiments in [30] use a linear output activation, yet a sigmoid output
activation can improve non-pretrained DIP, significantly accelerating its convergence and slightly
improving maximum PSNR on some datasets. However, we find the optimization with sigmoid
output to require gradient clipping with a suitable maximum norm parameter, and we only
recently became aware of this possibility. In more recent works [307, 33] (proposing different
methods based on pretrained DIP discussed in the next section), we show results using a sigmoid
output, including experiments on similar settings like in [30], thus clarifying to which extent the
usage of a sigmoid output with suitably gradient-clipped optimization improves DIP without
pretraining (also compared to pretrained DIP). We find the advantage of using a sigmoid output
to be highly data-dependent: The experiment on the Lotus root [57] in [307] shows comparable
results to those in [30], whereas for the experiment on the 2D Walnut [99] in [33] (with a slightly
different geometry) the use of sigmoid boosts the non-pretrained DIP very notably, while a reduced
adaptation flexibility of the pretrained DIP with sigmoid is observed, leading to a slightly reduced
maximum PSNR compared to the non-pretrained DIP. We also refer the reader to Appendix C of
[307], where we comment on different architecture choices and the need to fine-tune the gradient
clipping maximum norm when using a final sigmoid activation.

Future work on pretrained DIP could experiment with adversarial pretraining, either cGAN-
based and including a supervised reconstruction loss, or fully GAN-based with random network
input. The cGAN-based variant, which stays closer to the currently used post-processing
pretraining, has the benefit that it can exploit operator-specific knowledge about FBP artifact
removal, while the pretraining of the fully GAN-based variant would be agnostic of the forward
operator, so the same pretraining could be used for different geometries, but can only learn about
the image distribution.

A DIP-related approach using a Noise2Noise-inspired [248, 406] network and including a
pretraining performed solely on low-dose images is proposed in [405], but we decide to discuss this
work in section 2.8, since it only utilizes the network via an image-domain regularization term in
a scheme that jointly optimizes over the reconstructed image and the network parameters.

Pretrained Deep Image Prior on Subspaces

In addition to initializing the DIP network with the parameters from pretraining, one can restrict
the subsequent unsupervised optimization to a subspace defined via the pretraining. This promises
to reduce overfitting by limiting the parameter search space. We investigate two such approaches
in [307, 33].

The SVD-DIP approach [307] applies an idea that in [368] was proposed in the application
of few-shot segmentation: Singular value decompositions of the pretrained parameters for the
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convolutional layers are computed, and only the singular values are then optimized for the target
task, while the singular vectors are kept fixed. Applied to pretrained DIP reconstruction, we find
this approach to stabilize the optimization, indeed reducing the overfitting behaviour.

The Subspace-DIP approach [33] constructs a low-dimensional affine linear subspace for all
network parameters based on several checkpoints collected during the pretraining. To obtain
the subspace basis, first the parameter vectors from the checkpoints are treated as columns of a
matrix, of which the top k singular vectors are computed. The singular vector matrix is then
sparsified along the parameter dimension by only keeping a number of rows with the largest
ℓ2 norm (leverage score [109]). This sparsified matrix forms the basis of the low-dimensional
affine linear subspace, and the final pretrained parameters specifies its translation. By restricting
the parameters to this subspace, the optimization becomes a low-dimensional problem, which
makes it feasible to apply fast approximate second order optimization methods, such as the
limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) [264] and approximate
natural gradient descent (NGD) [9]. These methods converge in few iterations, and the overfitting
is reduced successfully with the Subspace-DIP.

2.7.2 Implicit neural representations

Coordinate-based implicit neural representations (INR), e.g. [355], use an alternative way of
representing images (and signals in general), where one does not form a matrix or tensor to
specify the image values on a predefined discrete grid, but instead constructs a function, which
maps (continuous) image coordinates to image values at the specified coordinates. In INRs, the
function is a neural network (e.g. a multi-layer perceptron, short MLP), often preceded by a
function encoding the coordinates in a higher-dimensional space.

In [433], an INR is used in a DIP-like manner for sparse-view cone-beam CT, with a so-called
neural attention field (NAF) module that encodes equidistantly sampled points along X-ray paths
with a learned hash encoder before applying an MLP to predict the attenuation value at the
encoded coordinates. Projections are synthesized from these attenuation values via summation
along the X-ray paths and compared to the measured projections in the loss for unsupervised
DIP-style training. To obtain a final discrete 3D reconstruction, the network is evaluated for each
point on a voxel grid.

A different approach using a DIP-style learned INR as an intermediate step is proposed in
[432] for limited-view, sparse-view and super-resolution CT. The INR uses a Fourier feature
encoding of the image coordinates and an MLP to predict the attenuation, from which sinograms
with arbitrary resolution are generated via a projection layer. Unsupervised DIP-style training is
applied via a loss comparing these sinograms with the measured ones. After the optimization,
the final generated sinogram is used in a regularized objective solved by a classical reconstruction
algorithm.

For sparse-view sinogram interpolation, [371] proposes an INR directly operating in the
sinogram domain, where a Fourier feature encoding and MLP map sinogram coordinates to
sinogram values. Different reconstruction methods are explored for the subsequent reconstruction
using the fully sampled sinogram, including Plug-and-Play regularization and learned post-
processing. In both [432] and [371], the INR plays the role of an unsupervised pre-processing.

A test-time adaptation framework utilizing INRs for two purposes is proposed in [358],
constructed around a given trained black-box model. First, an INR with SIREN architecture
[355] is used to adapt an FBP from the input sinogram in order to match the black-box model’s
training input distribution more closely. This is done by a stopping heuristics while fitting the
INR to the FBP, which selects the point minimizing the ratio of the difference between the
black-box model outputs evaluated for the current and a previous INR image over the difference
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of these two INR images before the ratio increases for the first time. Then, the black-box model
is applied on the resulting adapted input image to produce a prior reconstruction. Finally, a
second INR is optimized DIP-style using a variational objective consisting of a discrepancy term
and an ℓ1 regularization term comparing the INR output to the prior reconstruction, after an
initial phase of optimizing the INR to match the prior reconstruction (like proposed in our DIP
work [23]).

2.7.3 Noise2Noise, Noise2Inverse and related approaches

Noise2Noise [248] is a training strategy, which uses pairs of noisy images for the network input
and target, hence not requiring ground truth images. Multiple approaches based on Noise2Noise
have been developed for low-dose CT. As one usually does not have access to multiple low-dose
measurements (i.e., with the same image content but different noise realizations), single low-dose
measurements are split synthetically in order to generate the training data. This way, the training
only requires a collection of (independent) low-dose measurements (yδi )i=0,1,...,N−1, whereby the
training set may be separate from the target set. Such a self-supervised approach for pure
denoising is known as Noise2Self [35], which has been adapted to inverse problems including CT
in Noise2Inverse [179, 178], where the noise is assumed to be element-wise independent in the
projection domain, but not in the image domain.

A Noise2Noise approach is followed in [431], in which each measurement yδi is split into two
synthetic versions with half of the original dose according to a shifted Poisson model, which
guarantees independent noise realizations. The two synthetic versions are then used as input and
target for the network training, which is applied either in the projection domain or in the image
domain after applying FDK reconstruction, although in the latter case the zero-mean assumption
of Noise2Noise is only approximately fulfilled. The network is then used for denoising of scans
acquired using half the dose compared to that of the original training measurements yδi .

In Noise2Inverse [179] for CT, each measurement yδi is partitioned into subsets of uniformly
distributed projection angles (i.e. each of the K subsets includes every K-th angle starting at a
different offset). Training pairs of input and target images are generated by selecting one subset (or
multiple ones), and computing FBPs once using only the projections from the complement of the
subset (forming the input image) and once using only the projections from the subset (forming
the target image). At test time, a reconstruction is computed as the pixel-wise average of the
network output when evaluating it on each of the complement FBPs. The authors also experiment
with swapping the roles of input and target images, but find that the higher-quality complement
FBPs are more useful as input images than they are as target images. Noise2Inverse has been
extended to 3D, dynamic and diffraction CT in [178]. In an independent, previously published
work [406], the special case for K = 2 of the Noise2Inverse splitting and averaging evaluation is
studied, i.e. selecting the even and odd projection angles, respectively, to compute two FBPs.
Here, the so-called consensus loss includes an additional ℓ2 term encouraging equality of the
network outputs for each of the FBPs. As an alternative deployment strategy circumventing
projection-domain manipulation at test time, the authors of [406] suggest one could train another
network supervisedly to predict the first network’s outputs from such low-dose images.

A self-supervised approach combining classical iterative optimization with DIP optimization
via a Noise2Noise-consensus regularization is proposed in [405]. The sinogram is split into two
sets of projections, similar to the even-odd splitting in [406] but slightly randomized, from which
two FBPs, i.e. two images with different noise realizations, are computed. In the reconstruction
objective, the data discrepancy term is combined with three ℓ2 losses involving the network
evaluated on each of the FBPs. Two of these losses compare the output of the network when
applied on one of the FBPs with the respective other FBP (like in Noise2Inverse [179] and [406]),
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and one loss compares the pixel-wise average of both network outputs with the image variable.
Both the image variable and the network parameters are optimized jointly in an alternating
manner, using patches for the network optimization. Here the training is self-contained like that
of DIP, meaning that it does not use an external dataset of measurements, but only the target
measurement yδ.

2.7.4 Other ground-truth-free learned approaches

A self-supervised and self-contained approach is proposed for temporally resolved (4D) cone-beam
CT in [274]. It uses a residual CNN with dense connections to post-process a series of sparse-view
phase images, each of which comprises information specific to a temporal phase, but is subject
to sparse-view artifacts. To this end, a training dataset is created from the 4D cone-beam
projection data by splitting it into sparse-view pseudo-average subsets incorporating projections
from different breathing phases, whose reconstructions show streaking artifacts similar to those
of the sparse-view phase images. Reconstructions from the sparse-view pseudo-average subset
are used as training inputs, and a high-quality reconstruction from all projections (but without
temporal information) is used as the training target. After training, the network is applied on
the sparse-view phase images to predict a series of refined phase images.

Another self-supervised, but not self-contained approach is presented in [220], training a
projection-domain denoising network via a loss based on the Poisson unbiased risk estimator
(PURE) for pre-log data or a weighted Stein’s unbiased risk estimator (WSURE) for post-log
data. The divergence term is approximated with a single Monte-Carlo sample. After applying
the projection-domain denoiser as a pre-processing, the reconstruction is obtained via FBP.

2.8 Other approaches

A very early deep learning approach is the neural network FBP (NN-FBP) [319] for sparse-view
CT. A small network architecture is composed of multiple FBPs with learned filters and biases,
sigmoid activation, and learned pixel-wise affine linear combination of those FBP-based images,
followed by a final sigmoid activation. It is extended to cone-beam CT with FDK reconstruction
instead of FBP in [232], called NN-FDK, using the same network architecture like NN-FBP.

A Fourier-based reconstruction method, directly based on the Fourier slice theorem, is proposed
in [101], where the regridding, i.e. the interpolation from polar to Cartesian coordinates in Fourier
domain, is realized via a multi-scale network (cf. section 1.2.1).

For limited-view CT, [160] combines the learned pre-processing from [412] with learned
unrolled iterative artifact removal based on [76] (which shares similarity with the unrolled LEARN
approach [71] with the identity operator). Both parts are trained separately.

A shearlet-based approach for limited-view CT is proposed in [55], first performing a non-
learned reconstruction with a shearlet-domain sparsity-regularization to split the shearlet space in
a visible and an invisible part. The visible part is determined by the non-zero shearlet coefficients
obtained from this sparsity-regularized reconstruction, while the other coefficients, forming the
invisible part, are predicted by a U-Net. This can be viewed as an inpainting task in shearlet
domain, after which the final reconstruction is obtained as the inverse shearlet transform of the
combination of both parts. Note that the concept of only learning the parts that can not be
measured is shared with the works [190, 192, 191] (see section 2.3) and also with deep null-space
learning [343], although the methodologies differ substantially.

In [326], a learned approach is proposed for estimating object boundaries in limited-view CT,
which, similarly to [55], first employs a non-learned reconstruction with sparsity-regularization in
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the domain of dual-tree complex wavelet coefficients, before applying a combination of morpholog-
ical operations and two U-Nets. The first network serves as a learned thresholding operation to
identify the visible parts of the wavefront set, and the second network extends the visible to the
invisible parts. Finally, while they do not form a complete reconstructed image, the estimated
boundaries can be visualized as an overlay over the reconstruction, in which the boundaries may
be obfuscated by stretching artifacts due to the missing projections.

The thesis [268] is concerned with deep learning for cardiac CT reconstruction, involving
learned motion and metal artifact detection and removal. Networks are employed e.g. for motion
vector prediction, segmentation and inpainting.

A dual-domain architecture is proposed in [426], that contains a main branch consisting of
dual-domain blocks, as well as a controller branch and a fusion branch. The input features are
extracted both from the sinogram and from a preliminary reconstruction, and there are skip
connections bypassing each dual-domain block, so the network does not need to fully learn the
reconstruction from sinogram domain (i.e. it could learn a post-processing), yet it can combine
information from both domains via the dual-domain blocks. Each dual-domain block contains
sinogram-to-image and image-to-sinogram CNN blocks, which use a final adaptive average pooling
layer to adapt the output dimension of the block to that of the respective target domain, followed
by an image-domain self-attention module. The main branch also includes sinogram-domain
skip connections. With the image-domain controller and fusion branches, the main branch block
outputs are further refined, involving a scalar adjustment parameter α that is supposed to provide
a trade-off between detail preservation and artifact removal. To this end, the authors propose
to first train the main branch separately using image-domain and sinogram-domain ℓ1 losses
while setting α = 0, before then keeping the main branch fixed, setting α = 1 and training the
controller and fusion branches via a combined VGG-based perceptual and WGAN loss.

In [135], a cGAN-based approach is proposed, using an architecture with parallel image-domain
and projection-domain streams. Both streams are connected at multiple points by interactive
information flow (IIF) network parts, which involve forward projection and FBP for the domain
transfer, before they are fused in a final block, which also receives the low-dose image and
includes a multi-head attention block. Note that the architecture shares some similarity with
unrolled iterative networks (section 2.5.1) due to the repeated connection via IIF parts. The
network is trained with a direct reconstruction loss and with adversarial losses from patch-based
discriminators, one operating on the output image while also receiving the low-dose image, and
the other operating on the image gradients.

A so-called multi-domain integrative Swin transformer network (MIST-net) is proposed in
[311] for sparse-view CT, first including a network structure operating in both sinogram and
image domain, connected via FBP and projection layers as well as residual connections, before
applying a vision transformer network using shifted windows (Swin) on the output image of the
first network part.

A recently studied family of generative approaches are score-based diffusion models [359]. To
apply them to inverse problems, a conditional sampling algorithm is designed in [360], which
combines the learned unconditional score function and data consistency with the measurements
yδ. In [84], a manifold constrained gradient correction is proposed in order to keep the sampling
path on the data manifold. Both works [360, 84] show results for sparse-view CT. The learning
of these models “only” requires a dataset of clean images (x∗

i )i=0,1,...,N−1 and is agnostic of the
forward (and noise) model, which is only used in the conditional sampling algorithm at test
time. This is in contrast to the post-processing approaches based on GANs or normalizing
flows discussed in section 2.1.2 and section 2.1.3, most of which require paired training data
(x̃i, x

∗
i )i=0,1,...,N−1, and the others require unpaired data (x̃i)i=0,1,...,N−1 and (x∗

j )j=0,1,...,M−1,
in either case involving degraded images x̃i, which are specific to the measurement process;
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additionally, the post-processing approaches do not directly involve the measurements yδ at test
time, but only the initial reconstruction. In principle, diffusion models also allow for uncertainty
estimation based on conditional samples, but this possibility has not been explored in [360, 84].

The ultimate goal of CT reconstruction is usually a down-stream task such as classification or
segmentation, so it stands to reason that one may specifically target those tasks when training a
learned reconstruction method. To this end, a joint training of a reconstruction network and a
classification or segmention network is proposed in [4]. The loss function balances an accuracy
loss for the target task with a reconstruction loss via a hyperparameter, which softly enforces
a meaningful intermediate output of the reconstruction network. With a sensible balancing
parameter, improved performance is empirically observed, not only compared to sequential
training of both networks, but also compared to end-to-end training using only the accuracy loss,
i.e. the reconstruction loss appears to regularize the training.

On a related note, some down-stream tasks do not necessarily require a reconstructed image
as an intermediate step, and can be solved by directly interpreting the sinogram [94, 246, 133];
this is however outside the topic of this thesis focussing on CT reconstruction.

2.9 Uncertainty estimation

Reconstructions are not error-free in practice. For some part, this is inevitable, as the acquisition
process yields noisy and often undersampled or in other ways degraded measurements, which
are insufficient for precise image reconstruction. Additionally, errors might be introduced by
inaccurate modeling and the reconstruction method. From a Bayesian perspective, the ultimate
goal is the recovery of the posterior distribution, given an accurate likelihood and a suitable
prior model (see the statistical approach in section 1.1.2). Hence the reconstruction naturally
involves uncertainty, which one might want to assess for multiple reasons. An accurate uncertainty
estimate allows to judge the reliability and may be used for example in subsequent automated
image analysis tasks or to improve the reconstruction method [32].

Most reconstruction approaches only yield a reconstructed image, but no uncertainty informa-
tion. Examples of deep learning approaches including uncertainty in the reconstruction model
are normalizing flows (section 2.1.3), diffusion models (section 2.8), Bayesian approaches for DIP
(section 2.7.1) and uncertainty-aware unrolled iterative reconstruction as proposed in [110]. In
[14], we propose an uncertainty estimation framework for DIP that is applied post-hoc after
completing the DIP optimization, providing a Gaussian model approximating the posterior by
linearizing the network around the DIP solution and placing priors on the convolutional kernels.
Note that g-prior feature normalization is proposed in this context in [13], which we did not
yet use in our work [14] on the linearized DIP uncertainty framework, but which we use in [31]
for scanning angle selection with a linearized DIP using a single variance prior on all network
parameters. Our angle selection approach [31] can be seen as an example for utilizing uncertainty
to improve the reconstruction.

Well-calibrated uncertainty quantification is a subject of ongoing research and typically bears
computational challenges; for further reading, we refer to the recent review [32] on uncertainty
quantification in medical image synthesis, including CT reconstruction.

2.10 Adoption into practice

Multiple deep-learning-based CT reconstruction solutions are commercially available and have
been cleared by the U.S. Food and Drug Administration (FDA) for clinical practice [373]. These
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include the Advanced Intelligent Clear-IQ Engine (AiCE) by Canon Medical Systems [52, 301],
TrueFidelity by GE HealthCare [187, 314], and Precise Image by Philips [6, 153]. AiCE and
Precise Image are post-processing reconstruction approaches. AiCE (Canon) receives an initial
reconstruction of a so-called hybrid iterative reconstruction (hybrid-IR), which is faster than
model-based iterative reconstruction (MBIR), but does not yield the same image quality [7];
Precise Image (Philips) post-processes FBPs. The TrueFidelity (GE) model directly receives raw
data, and no further information on the used network architecture is found in the whitepaper [187].
Besides these vendor-specific approaches, there also exist vendor-agnostic noise reduction (i.e.,
image post-processing) solutions, including ClariCT.AI by ClariPi Inc. [302, 78] and PixelShine
by AlgoMedica [8, 365].

The recent systematic review in [345] identified several studies evaluating the reconstruction
of abdominal images with TrueFidelity (GE) and AiCE (Canon). Overall, the authors conclude
that the quality is improved significantly, and dose reduction is possible, although care should be
taken to select an appropriate level, especially to reconstruct small liver lesions [345]. Difficulties
to faithfully reconstruct small low-contrast lesions at lower doses have also been reported for
non-learned iterative reconstruction (IR) by multiple studies [292]. Among the studies reviewed
in [345], the majority of readers favored the deep-learning-based reconstruction over both FBP
and IR at the same dose level, and a dose reduction potential of more than 50% is reported on
average.

2.11 Review and outlook

Deep learning for CT reconstruction is an active field, with a great variety of approaches being
studied and with first solutions being deployed in practice [373]. While the results are promising,
there is clearly a demand for further research on the sensible design, training and application of
deep-learning-based CT reconstruction approaches [437, 298, 345].

Demanded properties of deep-learning-based CT reconstruction approaches include accuracy
(especially regarding task-relevant image features), robustness (ideally guaranteed), sufficient
generalization, interpretability, satisfiable training data requirements, and computational feasibility
[389, 253, 437, 298]. Achieving all of these properties simultaneously is challenging. In some
aspects there are natural limitations, such as that an ill-posed (or ill-conditioned) forward operator
does not allow for simultaneously accurate and stable inversion (cf. [298]).

An often endorsed paradigm is to combine deep learning with classical techniques and theory,
which allows to integrate both learned and hand-crafted information, and can aid interpretability
[21, 389, 434, 298]. The recent survey [298] covers learned reconstruction methods with convergence
guarantees, and concludes that the classical variational regularization framework and convex
analysis largely form the basis for both the design and analysis of these methods. Yet, the
authors of [298] also note that guarantuee-possessing methods may be outperformed empirically
by other, heuristics-based methods, whose theoretical understanding is incomplete; for example,
constraining a network to be input-convex enables guarantees but may limit its expressivity [297].
The learned methods with convergence guarantees reviewed in [298] include learned regularization
functionals (section 2.5.4), deep equilibrium models (section 2.5.5), some post-processing networks
([425, 343]), PnP regularization (section 2.5.3), learned optimization of variational objectives, as
well as Bayesian approaches with learned PnP or generative priors. Note that not all of these
methods have been applied to CT reconstruction yet, but are suitable in principle. Regarding
the robustness of deep-learning-based approaches, the often observed vulnerability to adversarial
attacks, which identify small input perturbations that greatly disturb the output, has raised
concerns [15]. On a converse note, adversarial examples use optimized worst-case perturbations,
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which are not necessarily realistic, and may also be found for classical iterative TV reconstruction
[137]. Strategies to achieve robustness against adversarial examples as well as the severity of
adversarial vulnerability are studied in the literature e.g. for MRI [63, 295]. As mentioned in
[298], such robustness investigations typically cover supervisedly learned end-to-end methods, but
no unsupervised approaches (e.g. PnP regularization, learned regularization functionals, DIP,
etc.), which could be subject of future research.

In practice, the acquisition of training data is challenging. The supervised training of a
learned low-dose reconstruction method relies on a paired dataset of low-dose measurements
(or initial reconstructions) and ground truth. While a large paired dataset of high quality
offers great opportunities for data-driven knowledge extraction, its construction bears difficulties.
Ground truth images (or sinograms) are especially difficult to obtain, since scanning with sufficient
resolution and dosage is expensive or infeasible [389] and potentially harmful to the scanned subject.
Consequently, reconstructions from reasonable high-dose acquisitions still contain imperfections,
but are nevertheless commonly used as ground truth (e.g. in the training of the commercial AiCE
[52] and TrueFidelity [187]). An alternative way to construct ground truth is to synthesize virtual
images, possibly also using deep learning techniques [389], but naturally bears the risk of not
being realistic and representative of the true image distribution. Besides these difficulties to
obtain ground truth (which of course also apply to unsupervised methods requiring ground truth
images), the creation of a paired dataset for supervised training involves an additional challenge
by requiring corresponding low-dose (or otherwise degraded) measurements. If a pair of real
high-dose and real low-dose measurements should be used, it must be ensured that the imaged
content remains unchanged between the two measurements. Alternatively, low-dose measurements
may be simulated from the high-dose measurements [291] or from the ground truth images in more
or less sophisticated ways [389, 252], again bearing a risk of being unrealistic. If the ground truth
is synthetic, simulation is in fact the only option to obtain low-dose measurements. Limitations
of the dataset, such as imperfections in the ground truth or simulation of the measurements, or
the under-representation of rare but important pathologies [434], may impair the learning. Some
learned methods require a large training dataset to perform well [23].

Even though the commercial introduction of supervisedly trained reconstruction methods
has demonstrated the possibility of constructing acceptable training data, the aforementioned
challenges motivate the investigation of methods with low data requirements, especially for
CT applications with scarce data availability. These include unsupervised methods, which do
not need paired data, and in particular ground-truth-free methods (section 2.7). Intermediate
strategies to deal with limited data availability consist in transfer learning [437] and training on
simulated dataset followed by fine-tuning on real data [389]. Following a similar direction in the
context of ground-truth-free methods, the pretrained DIP [30] and methods based thereon [307,
33] combine a pretraining on an easy-to-generate simulated paired dataset with unsupervised
DIP-style fine-tuning.

To evaluate the use of deep-learning-based reconstruction and to identify dose reduction
potential, the image quality must be assessed, ideally considering the down-stream task such as a
medical diagnosis. In methodological research, standard image metrics such as PSNR or SSIM
are commonly employed to compare image quality. While easy to quantify and reproducible, they
might not be indicative of its the actual value for the down-stream task [202, 290]; thus, expert
reader studies, although laborious and inherently subjective to some degree, are needed for image
quality assessment, unless the down-stream task is fully automated and its correct results (labels)
are known. Besides the reconstructed image itself, decision-making can potentially benefit from
estimated reconstruction uncercainty [32], interpretability of how the learned method determines
the reconstruction (i.e., understanding its internal “reasoning” if possible) [389, 434], and from
external information [434].
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LoDoPaB-CT, a benchmark 
dataset for low-dose computed 
tomography reconstruction
Johannes Leuschner 1,2 ✉, Maximilian Schmidt 1,2 ✉, Daniel Otero Baguer 1 & 
Peter Maass1

Deep learning approaches for tomographic image reconstruction have become very effective and have 
been demonstrated to be competitive in the field. Comparing these approaches is a challenging task as 
they rely to a great extent on the data and setup used for training. With the Low-Dose Parallel Beam 
(LoDoPaB)-CT dataset, we provide a comprehensive, open-access database of computed tomography 
images and simulated low photon count measurements. It is suitable for training and comparing deep 
learning methods as well as classical reconstruction approaches. The dataset contains over 40000 
scan slices from around 800 patients selected from the LIDC/IDRI database. The data selection and 
simulation setup are described in detail, and the generating script is publicly accessible. In addition, 
we provide a Python library for simplified access to the dataset and an online reconstruction challenge. 
Furthermore, the dataset can also be used for transfer learning as well as sparse and limited-angle 
reconstruction scenarios.

Background & Summary
Tomographic image reconstruction is an extensively studied field. One popular imaging modality in clinical and 
industrial applications is computed tomography (CT). It allows for the non-invasive acquisition of the inside of an 
object or the human body. The measurements are based on the attenuation of X-ray beams. To obtain the internal 
distribution of the body from these measurements, an inverse problem must be solved. Traditionally, analytical 
methods, like filtered back-projection (FBP) or iterative reconstruction (IR) techniques, are used for this task. 
These methods are the gold standard in the presence of enough high-dose/low-noise measurements. However, 
as high doses of applied radiation are potentially harmful to the patients, modern scanners aim at reducing the 
radiation dose. There exist several strategies, but all introduce specific challenges for the reconstruction algo-
rithm, e.g. undersampling or increased noise levels, which require more sophisticated reconstruction methods. 
The higher the noise or undersampling, the more prior knowledge about the target reconstructions is needed to 
improve the final quality1. Analytical methods are only able to use very limited prior information. Alternatively, 
machine learning approaches are able to learn underlying distributions and typical image features, which con-
stitute a much larger and flexible prior. Recent image reconstruction approaches involving machine learning, in 
particular deep learning (DL), have been developed and demonstrated to be very competitive2–8.

DL-based approaches benefit strongly from the availability of comprehensive datasets. In the last years, a 
wide variety of CT data has been published, covering different body parts and scan scenarios. For the training of 
reconstruction models, the projections (measured data) are crucial but are rarely made available. Recently, Low 
Dose CT Image and Projection Data (LDCT-and-Projection-data)9 was published by investigators from the Mayo 
Clinic, which include measured normal-dose projection data of 299 patients in the new open DICOM-CT-PD 
format. The AAPM Low Dose CT Grand Challenge data10 includes simulated measurements, featuring 30 dif-
ferent patients. The Finish Inverse Problems Society (FIPS) provides multiple measurements of a walnut11 and a 
lotus root12 aimed at sparse data tomography. Recently, Der Sarkissian et al.13 published cone-beam CT projection 
data and reconstructions of 42 walnuts. Their dataset is directly aimed at the training and comparison of machine 
learning methods. In magnetic resonance imaging, fastMRI14 with 1600 scans of humans knees is another prom-
inent example.

1Center for Industrial Mathematics, University of Bremen, Bibliothekstr. 5, 28359, Bremen, Germany. 2These authors 
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Other CT datasets focus on the detection and segmentation of special structures like lesions in the recon-
structions for the development of computer-aided diagnostic (CAD) methods15–20. Therefore, they do not include 
the projection data. The LIDC/IDRI database15, which we use for the ground truth of our dataset (cf. section 
“Methods”), targets lung nodule detection. FUMPE16 contains CT angiography images of 35 subjects for the 
detection of pulmonary embolisms. KiTS201917 is built around the segmentation of kidney tumours in CT 
images. The Japanese Society of Radiology Technology (JSRT) database18 and the National Lung Screening Trial 
(NLST) in cooperation with the CT Image Library (CTIL)19,20 each contain scans of the lung. These datasets can 
also be used for the investigation of reconstruction methods by simulating the missing measurements.

Different learned methods have been successfully applied to the task of low-dose reconstruction7. However, 
comparing these approaches is a challenging task since they highly rely on the data and the setup that is used 
for training. The main goal of this work is to provide a standard dataset that can be used to train and bench-
mark learned low-dose CT reconstruction methods. To this end, we introduce the Low-Dose Parallel Beam 
(LoDoPaB)-CT dataset, which uses the public LIDC/IDRI database15,21,22 of human chest CT reconstructions. 
We consider these, in the form of 2D images, to be the so-called ground truth. The projections are created by 
simulating low photon count CT measurements with a parallel beam scan geometry. Due to the slice-based 2D 
setup, each of the generated measurements corresponds directly to a ground truth slice. Thus, the reconstruction 
process can be carried out slice-wise without rebinning23, which would have to be applied to the measurements 
for 3D helical cone-beam geometries commonly used in modern scanners9 to allow for the slice-wise use of a 
2D reconstruction algorithm. In order to generalise from our dataset to the clinical 3D setup, the effect of rebin-
ning needs to be evaluated. Also, learned algorithms directly targeted at 3D reconstruction should be considered 
in this case, which at the moment are barely computationally feasible24, but presumably outperform 2D recon-
struction algorithms applied to rebinned measurements. Despite the generalisation to the 3D case not being 
straight-forward, our dataset allows to train and compare a large number of approaches applicable to the 2D 
scenario, which we expect to yield insights for the design of 3D algorithms as well.

Paired samples constitute the most complete training data and could be used for all kinds of learning. In par-
ticular, methods that require independent samples from the distributions of images and measurements, or only 
from one of these distributions, can still make use of the dataset. In total, the dataset features more than 40000 
sample pairs from over 800 different patients. This amount of data and variability can be necessary to successfully 
train deep neural networks25. It also qualifies the dataset for transfer learning. In addition, the included measure-
ments can be easily modified for sparse and limited angle scan scenarios.

Methods
In this section, the considered mathematical model of CT is stated first, followed by a detailed description of the 
dataset generation. This starts with the LIDC/IDRI database15, from which we extract the ground truth recon-
structions. Finally, the data processing steps are described, which are also summarised in a semi-formal manner 
at the end of the section. As a technical reference, the script26 used for generation is available online (https://
github.com/jleuschn/lodopab_tech_ref).

Parallel beam CT model. We consider the inverse problem of computed tomography given by

x x y( ) (1)ε+ = δA A

with:
•A the linear ray transform defined by the scan geometry,
• x the unknown interior distribution of the X-ray attenuation coefficient in the body, also called image,
• ε a sample from a noise distribution that may depend on the ideal measurement Ax,
• yδ the noisy CT measurement, also called projections or sinogram.
More specifically, we choose a two-dimensional parallel beam geometry, for which the ray transform A is the 

Radon transform27. It integrates the values of x:2→ fulfilling some regularity conditions (cf. Radon27) along the 
X-ray lines
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for all parameters s ∈ and ϕ∈ [0, π), which denote the distance from the origin and the angle, respectively (cf. 
Figure 1). In mathematical terms, the image is transformed into a function of (s, ϕ),
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which is called projection, since for each fixed angle ϕ the 2D image x is projected onto a line parameterised by 
s, namely the detector. Visualisations of projections as images themselves are called sinograms (cf. Figure 2). The 
projection relates to the ideal intensity measurements I1(s, ϕ) at the detector according to Beer-Lambert’s law by
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where I0 is the intensity of an unattenuated beam.
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In practice, the measured intensities are noisy. The noise can be classified into quantum noise and detector 
noise. Quantum noise stems from the process of photon generation, attenuation and detection, which as a whole 
can be modelled by a Poisson distribution28. The detector noise stems from the electronic data acquisition system 
and is usually assumed to be Gaussian. It would play an important role in ultra-low-dose CT with very small 
numbers of detected photons29 but is neglected in our case. Thus we model the number of detected photons and, 
by this, the measured intensity ratio with

N s N x s I s
I

N s
N

( , ) Pois( exp( ( , ))), ( , ) ( , ) ,
(5)1 0

1

0

1

0
ϕ ϕ

ϕ ϕ
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where N0 is the mean photon count without attenuation and Pois(λ) denotes the probability distribution defined by
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For practical application, the model needs to be discretised. The forward operator is then a finite-dimensional 
linear map A : n → m, where n is the number of image pixels and m is the product of the number of detector 
pixels and the number of angles for which measurements are obtained. The discrete model reads

~Ax Ax y Ax Ax N N N N Ax( ) , ( ) ln( / ), Pois( exp( )) (7)1 0 1 0ε ε+ = = − − − .
∼ ∼δ

Here, Pois(λ) denotes the joint distribution of m Poisson distributed observations with parameters λ1, …, λm, 
respectively. Note that since the negative logarithm is applied to the observations, the noisy post-log values yδ do 
not follow a Poisson distribution but the distribution resulting from this log-transformation. However, taking the 
negative logarithm is required to obtain the linear model and therefore is most commonly applied as a preproc-
essing step. For our dataset, we consider post-log values by default.

The Radon transform is a linear and compact operator. Therefore, the continuous inverse problem of CT is 
mildly ill-posed in the sense of Nashed30,31. This means that small variations in the measurements can lead to 
significant differences in the reconstruction (unstable inversion). While the discretised inverse problem is not 
ill-posed, it is typically ill-conditioned28, which leads to artefacts in reconstructions obtained by direct inversion 
from noisy measurements.

Fig. 1 Visualisation25 of the parallel beam geometry.

Fig. 2 The Shepp-Logan phantom (left) and its corresponding sinogram (right).
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For our discrete simulation setting, we use the described model with following dimensions and parameters:

• Image resolution of 362 px × 362 px on a domain of size 26 cm × 26 cm.
• 513 equidistant detector bins s spanning the image diameter.
• 1000 equidistant angles ϕ between 0 and π.
• Mean photon count per detector bin without attenuation N0 = 4096.

LIDC/IDRI database and data selection. The Lung Image Database Consortium (LIDC) and Image 
Database Resource Initiative (IDRI) published the LIDC/IDRI database15,21,22 to support the development of CAD 
methods for the detection of lung nodules. The dataset consists of 1018 helical thoracic CT scans of 1010 individ-
uals. Seven academic centres and eight medical imaging companies collaborated for the creation of the database. 
As a result, the data is heterogeneous with respect to the technical parameters and scanner models.

Both standard-dose and lower-dose scans are part of the dataset. Tube peak voltages range from 120 kV to 140 
kV and tube current from 40 mA to 627 mA with a mean of 222.1 mA. Labels for the lung nodules were created 
by a group of 12 radiologists in a two-phase process. The image reconstruction was performed with different 
filters, depending on the manufacturer of the scanner. Figure 3 shows examples of the provided reconstructions. 
The LIDC/IDRI database is freely available from The Cancer Imaging Archive (TCIA)22. It is published under the 
Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/).

The LoDoPaB-CT dataset is based on the LIDC/IDRI scans. Our dataset is intended for the evaluation of 
reconstruction methods in a low-dose setting. Therefore, we simulate the projection data, which is not included 
in the LIDC/IDRI database. In order to enable a fair comparison with good ground truth, scans that are too noisy 
were removed in a manual selection process (cf. section “Technical Validation”). Additional scans were excluded 
due to their geometric properties, namely an image size different from 512 px × 512 px, a too small area of valid 
pixel values (cf. subsection “Ground truth image extraction” below), or a different patient orientation. The com-
plete lists of excluded scan series are given in file series_list.json in the technical reference repository26. In the end, 
812 patients remain in the LoDoPaB-CT dataset.

The dataset is split into four parts: three parts for training, validation and testing, respectively, and a “chal-
lenge” part reserved for the LoDoPaB-CT Challenge (https://lodopab.grand-challenge.org/). Each part contains 
scans from a distinct set of patients, as we want to study the case of learned reconstructors being applied to 
patients that are not known from training. The training set features scans from 632 patients, while the other parts 
contain scans from 60 patients each. Every scan contains multiple slices (2D images) for different z-positions, of 
which only a subset is included. The amount of extracted slices depends on the slice thickness obtained from the 
metadata. As slices with small distances are similar, they may not provide much additional information while 
increasing the chances to overfit. The distances of the extracted slices are larger than 5.0 mm for >45% and larger 
than 2.5 mm for >75% of the slices. In total, the dataset contains 35820 training images, 3522 validation images, 
3553 test images and 3678 challenge images.

Remark. We propose to use our default dataset split, as it allows for a fair comparison with other methods that 
use the same split. However, users are free to remix or re-split the dataset parts. For this purpose, randomised 
patient IDs are provided, i.e., the same random ID is given for all slices obtained from one patient. Thus, when 
creating custom splits it can be regulated whether—and to what extent—data from the same patients are con-
tained in different splits.

Ground truth image extraction. First, each image is cropped to the central rectangle of 362 px × 362 px. 
This is done because most of the images contain (approximately) circle-shaped reconstructions with a diameter 
of 512 px (cf. Figure 3). After the crop, the image only contains pixels that lie inside this circle, which avoids value 
jumps occurring at the border of the circle. While this yields natural ground truth images, we need to point out 
that the cropped images, in general, do not show the full subject but some interior part. Hence, it is unlikely for 
methods trained with this dataset to perform well on full-subject measurements.

Fig. 3 Scans from the LIDC/IDRI database15 with poor quality, good quality and an artefact. The shown HU 
window is [−1024, 1023].
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For some scan series, the circle is subject to a geometric transformation either shrinking or expanding the 
circle in some directions. In particular, for a few scan series, the circle is shrunk such that it is smaller than the 
cropped rectangle. We exclude these series, i.e. those with patient IDs 0004, 0032, 0102, 0116, 0120, 0289, 0368, 
0418, 0541, 0798, 0926, 0972 and 1000, from our dataset, which allows to crop all included images consistently 
to 362 px × 362 px.

The integer Hounsfield unit (HU) values obtained from the DICOM files are dequantised by adding uniform 
noise from the interval [0, 1). By adding this noise, the discrete distribution of stored values is transformed into 
a continuous distribution (up to the floating-point precision), which is a common assumption of image models. 
For example, the meaningful evaluation of densities learned by generative networks requires dequantization32, 
which in some works33 is more refined than the uniform dequantization applied to the HU values in our dataset.

In the next step, the linear attenuations µ are computed from the dequantised HU values using the definition 
of the HU,
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which corresponds to the largest HU value that can be represented with the standard 12-bit encoding, i.e. (212–1–
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The Eqs. (8) and (11) are applied pixel-wise to the images.

Projection data generation. To simulate the measurements based on the virtual ground truth images, the 
main step is to apply the forward operator, which is the ray transform (Radon transform in 2D) for CT. For this 
task we utilise the Operator Discretization Library35 (ODL) with the ‘astra_cpu’ backend36.

Remark. We choose ‘astra_cpu’ over the usually favoured ‘astra_cuda’ because of small inaccuracies 
observed in the sinograms when using ‘astra_cuda’, specifically at angles 0, 

2
π  and π and detector positions 

−1/ 2 l
2

 and 1/ 2 l
2

 with l being the length of the detector. The used version is astra-toolbox==1.8.3 on 
Python 3.6. The tested CUDA version is 9.1 combined with cudatoolkit==8.0.

In order to avoid “committing the inverse crime”37, which, in our scenario, would be to use the same discrete 
model both for simulation and reconstruction, we use a higher resolution for the simulation. Otherwise, good 
performance of reconstructors for the specific resolution of this dataset (362 px × 362 px) could also stem from 
the properties of the specific discretised problem, rather than from good inversion of the analytical model. We 
use bilinear interpolation for the upscaling of the virtual ground truth from 362 px ×362 px to 1000 px ×1000 px.

Fig. 4 Data generation algorithm.
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The non-normalised, upscaled image is projected by the ray transform. Based on this projection, Ax, the meas-
ured photon counts ∼N 1 are sampled according to Eq. (7). The sampling in some cases yields photon counts of 
zero, which we then replace by photon counts of 0.1. Hereby strictly positive values are ensured, which is a pre-
requisite for the log-transform in the next step (cf. Wang et al.38). The negative logarithm of the photon counts 
quotient max(0, 1, ∼N 1)N0 is taken, resulting in the post-log measurements yδ according to Eq. (7) (up to the 0.1 
photon count approximation). Finally, yδ is divided by µmax to match the normalised ground truth images. A 
summary of all steps can be found in Fig. 4 (Data generation algorithm).

Remark. Although the linear model obtained by the log-transform is easier to study, in some cases pre-log mod-
els are more accurate. See Fu et al.29 for a detailed comparison. For applying a pre-log method, the stored obser-
vation data µ= δ�y y / max must be back-transformed by �µ− ⋅ yexp( )max . To create physically consistent data pairs, 
the ground truth images should then be multiplied with µmax, too.

Remark. Note that the minimum photon count of 0.1 can be adapted subsequently. This is most easily done 
by filtering out the highest observation values and replacing them with −log(ε0/4096)/µmax, where ε0 is the new 
minimum photon count.

Data Records
The LoDoPaB-CT dataset is published as open access on Zenodo (https://zenodo.org) in two repositories. The 
main data repository39 (https://doi.org/10.5281/zenodo.3384092) has a size of around 55GB and contains obser-
vations and ground truth data of the train, validation and test set. For each subset, represented by *, the following 
files are included:

•	 CSV files patient_ids_rand_*.csv include randomised patient IDs of the samples. The patient IDs of 
the train, validation and test parts are integers in the range of 0–631, 632–691 and 692–751, respectively. The 
ID of each sample is stored in a single row.

•	 Zip archives ground_truth_*.zip contain HDF540 files of the ground truth reconstructions.
•	 Zip archives observation_*.zip contain HDF5 files of the simulated low-dose measurements.
•	 Each HDF5 file contains one HDF5 dataset named data, that provides several samples (128 except for the last 

file in each ZIP file). For example, the n-th training sample pair is stored in the HDF5 files observa-
tion_train_%03d.hdf5 and ground_truth_train_%03d.hdf5 where the placeholder %03d
is floor (n/128). Within these HDF5 files, the observation or ground truth is stored at entry (n mod 128) of 
the HDF5 dataset data.

The second repository41 for the challenge data (https://doi.org/10.5281/zenodo.3874937) consists of a single zip 
archive:
•	 observation_challenge.zip contains HDF5 files of the simulated low-dose measurements.

The structure inside the HDF5 files is the same as in the main repository.

Technical Validation
Ground truth & data selection. Creating high-quality ground truth images for tomographic image recon-
struction is a challenging and time-consuming task. In computed tomography, one option is to cut open the 
object after the scan or use 3D printing42, whereby the digital template of the object is the reference. In general, 
this also involves high radiation doses and many scanning angles. This combination makes it even harder to gen-
erate ground truth images for medical applications.

For low-dose CT reconstruction models, the primary goal is to match the normal-dose reconstruction qual-
ity of methods currently in use. Therefore, normal-dose reconstructions from classical methods, e.g. filtered 
back-projection, are an adequate choice as ground truth. This simplifies the process considerably.

The ground truth CT reconstructions of LoDoPaB-CT are taken from the established and well-documented 
LIDC/IDRI database. An independent visual inspection of one 2D slice per scan was performed by three of the 
authors. Figure 3 shows three examples of such slices. A five-star rating system was used to evaluate the image 
quality and remove noisy ground truth data, like the first slice in Fig. 3. Scans with artefacts, e.g. from photon 
starvation due to dense material (cf. Figure 3 (right)), were in general not removed, as the artefacts only affect 
a few slices of the whole scan. The slice in the middle of Fig. 3 represents an ideal ground truth. The following 
procedure was then used to exclude scans based on their rating:

1. Centring of the ratings from each evaluator around the value 3.
2. Calculation of the mean rating and the variance for each looked at 2D slice.
3. For a variance <1, the mean was used as the rating score. Otherwise, the scan is evaluated by all three 

authors together.
4. All scans with a rating ≤2 are excluded from the dataset.

These excluded scans are listed at key “series_excluded_manual_low_q_filter” in file series_list.json  
in the technical reference repository26.

Reference reconstructions & quantitative results. To validate the usability of the proposed dataset 
for machine learning approaches, we provide reference reconstructions and quantitative results for the standard 
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filtered back-projection (FBP) and a learned post-processing method (FBP + U-Net). FBP is a widely used ana-
lytical reconstruction technique (cf. Buzug28 for an introduction). If the measurements are noisy (due to the low 
dose), FBP reconstructions tend to include streaking artefacts. A typical approach to overcome this problem is 
to apply some post-processing such as denoising. Recent works3,4,8 have successfully used convolutional neural 
networks, such as the U-Net43. The idea is to train a neural network to create clean reconstructions out of the 
noisy FBP results.

In this initial study, for the FBP, we used the Hann filter with a frequency scaling of 0.641. We selected these 
parameters based on the performance over the first 100 samples of the validation dataset. For the post-processing 
approach (FBP + U-Net), we used a U-Net-like architecture with 5 scales. We trained it using the proposed 

Fig. 5 Different baseline reconstructions from the FBP and FBP + U-Net methods. The ground truth images 
are part of the LoDoPaB-CT test set. The window [0, 0.45] corresponds to a HU range of ≈[−1001, 831].
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dataset by minimising the mean squared error loss with the Adam algorithm44 for a maximum of 250 epochs with 
batch size 32. Additionally, we used an initial learning rate of 10−3, decayed using cosine annealing until 10−4. 
The model with the highest mean peak signal-to-noise ratio (PSNR) on the validation set was selected from the 
models obtained during training. Sample reconstructions are shown in Fig. 5.

Table 1 depicts the obtained results in terms of the peak signal-to-noise ratio (PSNR) and structural sim-
ilarity45 (SSIM) metrics (cf. “Evaluation practice” in the next section for a detailed explanation). As it can be 
observed, the post-processing approach, which was trained using the proposed dataset, outperforms the classical 
FBP reconstructions by a margin of 5 dB. This demonstrates that the dataset indeed contains valuable data ready 
to be used for training machine learning methods to obtain CT reconstructions with higher quality than the 
standard methods.

Usage Notes
Download & easy access. The whole LoDoPaB-CT dataset39,41 can be downloaded directly from the 
Zenodo website. However, we recommend the Python library DIVα�46 (https://github.com/jleuschn/dival) for 
easy access of the dataset. The library includes specific functionalities for the interaction with the provided 
dataset.

Remark. Access to the dataset on Zenodo might be restricted or slow in some regions of the world. In this case 
please contact one of the corresponding authors to get an alternative download option.

DIVα� is also available through the package index PyPI (https://pypi.org/project/dival). With the library, the 
dataset is automatically downloaded, checked for corruption and ready for use within two lines of Python code:

from dival import get_standard_dataset
dataset = get_standard_dataset(‘lodopab’).

Remark. When loading the dataset using DIVα�, an ODL35 RayTransform implementing the forward oper-
ator is created. This requires a backend, the default being ‘astra_cuda’, which requires both the astra toolbox36

and CUDA to be available. If either is unavailable, a different backend (‘astra_cpu’ or ‘skimage’) must be 
selected by keyword argument impl.

In addition, DIVα� offers multiple options to work with the LoDoPaB-CT dataset:

•	 Access the train, validation and test subset and draw a specific number of samples.
•	 Sort the data by the patient ids.
•	 Use the pre-log or post-log data (cf. projection data generation in the “Methods” section).
•	 Evaluate the reconstruction performance.
•	 Compare with pre-trained standard reconstruction models.

evaluation practice. Since ground truth data is provided in the dataset, we recommend using so-called 
full-reference methods for the evaluation. The peak signal-to-noise ratio (PSNR) and the structural similarity45

(SSIM) are two standard image quality metrics often used in CT applications42,47. While the PSNR calculates 
pixel-wise intensity comparisons between ground truth and reconstruction, SSIM captures structural distortions.

Peak signal-to-noise ratio. The PSNR expresses the ratio between the maximum possible image intensity and the 
distorting noise, measured by the mean squared error (MSE),
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Here x is the ground truth image and �x  the reconstruction. Higher PSNR values are an indication of a better 
reconstruction. We recommend choosing maxx = max(x) − min(x), i.e. the difference between the highest and 
lowest entry in x, instead of the maximum possible intensity, since the reference value of 3071HU is far from the 
most common values. Otherwise, the results can often be too optimistic.

Structural similarity. Based on assumptions about the human visual perception, SSIM compares the overall 
image structure of ground truth and reconstruction. Results lie in the range [0, 1], with higher values being better. 
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training set validation set test set

PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM

FBP 30.45 ± 2.65 0.7415 ± 0.1314 30.75 ± 2.52 0.7577 ± 0.1231 30.52 ± 3.10 0.7372 ± 0.1467

FBP + U-Net 36.17 ± 3.75 0.8623 ± 0.1228 36.74 ± 3.28 0.8819 ± 0.1017 35.84 ± 4.59 0.8443 ± 0.1501

Table 1. Baseline performance. Values are the mean and standard deviation over all samples.
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where µj�  and jµ  are the average pixel intensities, �jσ  and σj the variances and Σj the covariance of �x  and x at the j-th 
local window. Constants =C K L( )1 1

2 and =C K L( )2 2
2 stabilise the division. Following Wang et al.45 we choose 

K1 = 0.01 and K2 = 0.03 for the technical validation in this paper. The window size is 7 × 7 and 
L = max(x) − min(x).

Test & challenge set. The test data is the advised subset for offline model evaluation. To guarantee a fair compar-
ison, the data should be in no way involved in the training process or hyperparameter selection of the model. We 
recommend using the whole test set and select the above-mentioned parameters for PSNR and SSIM. Deviations 
from this setting should be mentioned.

In addition, a challenge set without ground truth images is provided. We encourage users to submit their chal-
lenge reconstructions to the evaluation website (https://lodopab.grand-challenge.org/). All methods are assessed 
under the same conditions and with the same metrics. The performance can be directly compared with other 
methods on a public leaderboard. Therefore, we recommend to report performance measures on the challenge 
set for publications that use the LoDoPaB-CT dataset without modifications, in addition to any evaluations on 
the test set. In accordance with the Biomedical Image Analysis (BIAS) guidelines48, more information about the 
challenge can be found on the aforementioned website.

Further usage. Scan scenarios. The provided measurements and simulation scripts can easily be modified 
to cover different scan scenarios:

•	 Limited and sparse-angle problems can be created by loading a subset of the projection data, e.g. a sparser 
setup with 200 angles was already used by Baguer et al.25.

•	 Super-resolution experiments can be mimicked, by artificially binning the projection data into larger pixels.
•	 To study lower or higher photon counts, the dataset can be re-simulated with a different value of N0 (e.g. using 

resimulate_observations.py26 by changing the value of PHOTONS_PER_PIXEL).

The provided reconstructions can still be used as ground truth for all listed scenarios.

Transfer learning. Transfer learning is a popular approach to boost the performance of machine learning models 
on smaller datasets. The idea is to first train the model on a different, comprehensive data collection. Afterwards, 
the determined parameters are used as an initial guess for fine-tuning the model on the smaller one. In gen-
eral, the goal is to learn to process low-level features, e.g. edges in images, from the comprehensive dataset. The 
adaption to specific high-level features is then performed on the smaller dataset. For imaging applications, the 
ImageNet database49, with over 14 million natural images, is frequently used in this role. The applications range 
from image classification50 to other domains like audio data51.

Transfer learning has also been successfully applied to CT reconstruction tasks. This includes training on 
different scan scenarios52,53, e.g. a different number of angles, as well as first training on 2D data and continuing 
on 3D data54. He et al.55 simulated parallel beam measurements on some of the natural images contained in 
ImageNet. Subsequently, the training was continued on CT images from the Mayo Clinic10. LoDoPaB-CT, or 
parts of the dataset, can be used in similar roles for transfer learning. Additionally, the ground truth data from 
real thoracic CT scans may be advantageous for similar CT reconstruction tasks compared to random natural 
images from ImageNet56.

Nonetheless, we advise the user to check the applicability for their specific use case and reconstruction model. 
Re-simulation or other changes to the LoDoPaB-CT dataset might be needed, especially for datasets with differ-
ent scan geometries. Additionally, simulated data can not capture all aspects of real-world measurements and 
therefore cause reconstruction errors. For a comprehensive study on the benefits and challenges of transfer learn-
ing for medical imaging, we refer the reader to the publication by Raghu et al.56.

Remark. An example for a simulation script with a fan beam geometry on the ground truth data can be found 
in the DIVα�46 library: dival/examples/ct_simulate_fan_beam_from_lodopab_ground_
truth.py.

Limits of the dataset. The LoDoPaB-CT dataset is designed for a methodological comparison of CT 
reconstruction methods on a simulated low-dose parallel beam setting. The focus is on how a model deals with 
the challenges that arise from low photon count measurements to match the quality of normal-dose images. Of 
course, this represents only one aspect of many for the application in real-world scenarios. Therefore, results 
achieved on LoDoPaB-CT might not completely reflect the performance on real medical data. The following 
limits of the dataset should be considered when evaluating and comparing results:

•	 The simulation uses the Radon transform and Poisson noise. Real measurements can be influenced by addi-
tional physical effects, like scattering.

•	 Modern CT machines use advanced scanning geometries, like helical fan beam or cone beam. Specific chal-
lenges for the reconstruction can arise compared to parallel beam measurements (cf. Buzug28).

•	 In general, the goal is to reconstruct a whole 3D subject and not just a single 2D slice. Reconstruction meth-
ods might benefit from additional spacial information. On the other hand, requirements on memory and 
compute power can be higher for methods that reconstruct 3D volumes directly.

https://doi.org/10.1038/s41597-021-00893-z
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•	 Image metrics, e.g. PSNR and SSIM, cannot express and cover all aspects of high-quality CT reconstruction. 
An additional assessment by experts in the field can be beneficial.

•	 The ground truth images are based on reconstructions from normal-dose medical scans. As such, they can 
contain noise and artefacts. The measurements are created from this “noisy” ground truth. Therefore, a per-
fect reconstruction model would re-create the imperfections. Approaches that are designed to remove them 
can score lower PSNR and SSIM values, although their reconstruction quality might be higher.

•	 A crop to a region of interest is used for the ground truth images (cf. “Ground truth image extraction”). 
Hence, the results for full-subject measurements can be different.

Code availability
Python scripts26 for the simulation setup and the creation of the dataset are publicly available on Github (https://
github.com/jleuschn/lodopab_tech_ref). They make use of the ASTRA Toolbox36 (version 1.8.3) and the 
Operator Discretization Library35 (ODL, version ≥0.7.0). In addition, the ground truth reconstructions from 
the LIDC/IDRI database21 are needed for the simulation process. A sample data split into training, validation, 
test and challenge part is also provided. It differs from the one used for the creation of this dataset in order to 
keep the ground truth data of the challenge set undisclosed. The random seeds used in the scripts are modified 
for the same reason. The authors acknowledge the National Cancer Institute and the Foundation for the National 
Institutes of Health, and their critical role in the creation of the free publicly available LIDC/IDRI database used 
in this study.
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Abstract
In this paper we describe an investigation into the application of deep learning
methods for low-dose and sparse angle computed tomographyusing small train-
ing datasets. To motivate our work we review some of the existing approaches
and obtain quantitative results after training them with different amounts of
data. We find that the learned primal-dual method has an outstanding perfor-
mance in terms of reconstruction quality and data efficiency. However, in gen-
eral, end-to-end learned methods have two deficiencies: (a) a lack of classical
guarantees in inverse problems and (b) the lack of generalization after train-
ing with insufficient data. To overcome these problems, we introduce the deep
image prior approach in combination with classical regularization and an initial
reconstruction. The proposed methods achieve the best results in the low-data
regime in three challenging scenarios.

Keywords: inverse problems, deep learning, computed tomography, deep image
prior, neural networks

(Some figures may appear in colour only in the online journal)

1. Introduction

Deep learning approaches to solving ill-posed inverse problems currently achieve state-of-
the-art reconstruction quality. However, they require large amounts of training data, i.e., pairs
of ground truths and measurements, and it is not clear how much is necessary to be able to
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achieve good generalization. For ill-posed inverse problems arising in medical imaging, such
as magnetic resonance imaging (MRI), guided positron emission tomography (PET), magnetic
particle imaging, or computed tomography (CT), obtaining such high amounts of training data
is challenging. In particular, ground truth data is difficult to obtain as it is impossible to take a
photograph of the inside of the human body.What learned methods usually consider as ground
truths are phantoms or high-dose reconstructions obtained with classical methods, such as fil-
tered back-projection (FBP). Thesemethodsworkwell when using a large amount of low-noise
measurements. In MRI, it is possible to obtain these reconstructions, but the data acquisition
process requires a great deal of time. Therefore, one potential benefit of learned approaches in
MRI is the reduction of data acquisition times [30]. In other applications such as CT, it would
be necessary to expose patients to high doses of x-ray radiation to obtain the required training
ground truths.

There is another approach called deep image prior (DIP) [31] that also uses deep neural
networks, for example, a U-Net [45]. However, there is a remarkable difference: the DIP does
not need any learning, i.e., the weights of the network are not trained. This approach seems to
have low applicability because it requires a lot of time for image reconstruction, in contrast to
learned methods. In the applications initially considered, for example, inpainting, denoising,
and super-resolution, it is much easier to obtain or simulate data, which allows for the use of
learned methods, and the DIP does not seem to have an advantage.

In this paper, we aim to explore the application of the DIP together with other deep learning
methods for obtaining CT reconstructions when little training data is available. The struc-
ture of the paper and the main contributions are organized as follows. In section 2, we briefly
describe the CT reconstruction problem. Section 3 provides a summary of related articles and
approaches, together with some background and observations that we use as motivation for
our work. In section 4, we introduce the combination of the DIP with classical regularization
methods and discuss under which assumptions the classical regularization results still hold.
In section 5, we propose a similar approach to the DIP but using an initial reconstruction
given by any end-to-end learned method. Finally, in section 6, we present a benchmark of
the different methods that we have analyzed using varying amounts of data from two standard
datasets.

2. CT

CT is one of the most valuable technologies in modernmedical imaging [9]. It allows for a non-
invasive acquisition of the inside of the human body using x-rays. Since the introduction of CT
in the 1970s, technical innovations such as new scan geometries have extended the limits on
speed and resolution. Current research focuses on reducing the amount of potentially harmful
radiation to which a patient is exposed during the scan [9]. These innovations include mak-
ing measurements using lower intensity x-rays or at fewer angles. Both approaches introduce
particular challenges for reconstruction methods that can severely reduce the image quality. In
our work, we compare several reconstruction methods in these low-dose scenarios for a basic
2D parallel beam geometry (cf figure 1).

In this case, the forward operator is given by the 2D Radon transform [43] and models the
attenuation of the x-ray when passing through a body.We can parameterize the path of an x-ray
beam by the distance from the origin s ∈ R and angle ϕ ∈ [0, π]:

Ls,ϕ(t) = sω (ϕ)+ tω⊥ (ϕ) , ω (ϕ) := [cos(ϕ), sin(ϕ)]T. (1)

The Radon transform then calculates the integral along the line for parameters s and ϕ:

2



122 PAPER 2. CT RECONSTRUCTION USING DIP AND LEARNED RECONSTRUCTION METHODS

Inverse Problems 36 (2020) 094004 D O Baguer et al

Figure 1. Parallel beam geometry.

Ax(s,ϕ) =
∫
R

x
(
Ls,ϕ(t)

)
dt. (2)

According to Beer–Lambert’s law, the result is the logarithm of the ratio of the intensity, I0, at
the x-ray source to the intensity, I1, at the detector

Ax(s,ϕ) = − ln

(
I1 (s,ϕ)
I0 (s,ϕ)

)
= y (s,ϕ) . (3)

Calculating the transform for all pairs (s,ϕ) results in a so-called sinogram, which we also call
an observation. To get a reconstruction x̂ from the sinogram, we have to invert the forward
model. Since the Radon transform is linear and compact, the inverse problem is ill-posed in
the sense of Nashed [39, 40].

3. Related approaches and motivation

In this section, we first review and describe some of the existing data-driven and classical
methods for solving ill-posed inverse problems, that have also been applied to obtain CT
reconstructions. Following this, we review the DIP approach and related works.

In inverse problems one aims at obtaining an unknown quantity, in this case the image of
the interior of the human body, from indirect measurements that frequently contain noise [16,
36, 44]. The problem is modeled by an operator A : X→ Y between Banach or Hilbert spaces
X and Y and the measured noisy data or observation:

yδ = Ax† + τ. (4)

The aim is to obtain an approximation x̂ for x† (the true solution), where τ , with ‖τ‖ � δ,
describes the noise in the measurement.

Classical approaches to solving inverse problems include linear pseudo inverses given by
filter functions [36] or non-linear regularized inverses given by the variational approach

Tα(yδ) ∈ argmin
x∈D

S(Ax, yδ)+ αJ(x), (5)

whereS : Y × Y → R is the data discrepancy,J : X → R ∪ {∞} is the regularizer,D :=D(A) ∩
D(J) and D(A), D(J) are the domains of A and J respectively. Examples of hand-crafted

3
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regularizers/priors are ‖x‖2, ‖x‖1 and total variation (TV). The value of the regularization
parameter α should be carefully selected. One way to do that, in the presence of a validation
dataset with some ground truth and observation pairs, is to do a line-search and select the α
that yields the best performance on average, assuming there is a uniform noise level. Given
validation data {x†i , yδi }Ni=1, the data-driven parameter choice would be

α̂ := argmax
α∈R+

N∑
i=1

�(Tα(yδi ), x
†
i ), (6)

where � : X × X → R is some similarity measure, such as peak signal-to-noise ratio (PSNR)
or structural self-similarity (SSIM).

Data-driven regularized inversion methods for solving inverse problems in imaging have
recently had great success in terms of reconstruction quality [6]. Three main classes of meth-
ods are: end-to-end learned methods [1, 3, 8, 21, 28, 46], learned regularizers [34, 37] and
generative networks [2, 7, 13]. For the study described in this paper, we only focus on the
end-to-end learned methods.

3.1. End-to-end learned methods

In this section, we briefly review some of the most successful end-to-end learned methods.
Most of them were implemented and included in our benchmark.

3.1.1. Post-processing. This method aims at improving the quality of the FBP reconstruc-
tions from noisy or few measurements by applying learned post-processing. Recent works
[11, 28, 42, 48] have successfully used a convolutional neural network (CNN), such as the
U-Net [45], to remove artifacts from FBP reconstructions. In mathematical terms, given a
possibly regularized FBP operator TFBP, the reconstruction is computed using a network
Dθ : X → X as

x̂ := [Dθ ◦ TFBP](yδ) (7)

with parameters θ of the network that are learned from data.

3.1.2. Fully learned. Methods of this type aim at directly learning the inversion process
from data while keeping the network architecture as general as possible. This idea was suc-
cessfully applied in MRI by the AUTOMAP architecture [49]. The main building blocks
consist of fully connected layers. Depending on the problem, the number of parameters
can grow quickly with the data dimension. For mapping from sinogram to reconstruction
in the LoDoPaB-CT dataset [32] (see section 6.1), such a layer would have over 1000×
513× 3622 ≈ 67× 109 parameters. This makes the naive approach infeasible for large CT
data.

He et al [22] introduced an adapted two-part network, called iRadonMap. The first part
reproduces the structure of the FBP. A fully connected layer is applied along s and shared
over the rotation angle dimension ϕ, playing the role of the filtering. For each reconstruction
pixel (i, j) only sinogram values on the sinusoid s = i cos(ϕ)+ j sin(ϕ) have to be consid-
ered and are multiplied by learned weights. For the example above, the number of parameters
in this layer reduces to 5132 + 3622 × 1000 ≈ 13× 107. The second part consists of a post-
processing network. We choose the U-Net architecture for our experiments, which allows for
a direct comparison with the FBP + U-Net approach.

4
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3.1.3. Learned iterative schemes. Another series of works [1, 3, 20, 21] use CNNs to
improve iterative schemes commonly used in inverse problems for solving (5), such as
gradient descent, proximal gradient descent or hybrid primal-dual algorithms. For example,
the proximal gradient descent is given by the iteration

x(k+1) = φJ, α, λk (x
(k) − λkA

∗(Ax(k) − yδ)), (8)

for k = 0, . . . , L− 1, where φJ,α,λ : X→ X is the proximal operator or projector. In [20], the
authors replace the projector by a CNN that is trained to project perturbed reconstructions to
the set of clean reconstructions. However, this approach is not end-to-end because the network
is first trained to do the projection and then inserted into the iterative scheme.

The idea behind end-to-end learned iterative methods is to unroll these schemes with a
small number of iterations, and replace some operators by CNNs with parameters that are
trained using ground truth and observation data pairs. Each iteration is performed by a convo-
lutional network ψθk that includes the gradients of the data discrepancy and of the regularizer
as input in each iteration. Moreover, the number of iterations is fixed and small, e.g., L = 10.
The reconstruction operator is given by Tθ : Y → X with Tθ(yδ) = x(L) and

x(k+1) = ψθk (x
(k), A∗(Ax(k) − yδ),∇J(x(k)))

x(0) = A+(yδ)

for any pseudo inverse A+ of the operator A and θ = (θ0, . . . , θL−1). Alternatively, x(0) could
be just randomly initialized.

Similarly, more sophisticated algorithms, such as hybrid primal-dual algorithms, can be
unrolled and trained in the same fashion. In this work,we used an implementationof the learned
gradient descent [1] and the learned primal-dual method [3].

The above mentioned approaches all rely on a parameterized operator Tθ : Y → X, whose
parameters θ are optimized using a training set of N ground truth samples x†i and their corre-
sponding noisy observations yδi . Usually, the empirical mean squared error is minimized, i.e.,

θ̂ ∈ argmin
θ∈Θ

1
N

N∑
i=1

‖Tθ(yδi )− x†i ‖2. (9)

After training, the reconstruction x̂ ∈ X from a noisy observation yδ ∈ Y is given by x̂ =
Tθ̂(yδ). The main disadvantage of most of these approaches is that they do not enforce data
consistency. As a consequence, some information in the observation could be ignored, yielding
a result that might lack important features of the image. In medical imaging, this is critical
since it might remove an indication of a lesion. Recent works [4, 19] also show that some
methods, such as those which are fully learned or follow the post-processing approach, are
unstable, which means that tiny perturbations in the ground truth or the measurements may
result in severe artifacts in the reconstructions. These are the main motivations for the approach
we introduce in section 5. Nevertheless, there exist other methods [46] that do enforce data
consistency and may not suffer from these instabilities.

3.2. DIP

The DIP is similar to the generative networks approach and the variational method. How-
ever, instead of having a regularization term J(x), the regularization is incorporated by the
reparametrization x = ϕ(θ, z), where ϕ is a deep generative network, for example a U-Net,

5
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Figure 2. The figure illustrates the DIP approach. We use a U-Net architecture with 128
channels at every layer. Some layers have additionally the skip channels (coming from
the dashed arrows). We always use either 4 or 0 skip channels.

Figure 3. Intermediate reconstructions of the DIP approach for CT (ellipses dataset,
see section 6.2). At the beginning the coefficients are randomly initialized from a prior
distribution. The method starts reconstructing the image from global to local details.

with randomly initialized weights θ ∈ Θ, and z is a fixed input such as random white noise.
The approach is depicted in figure 2 and consists in solving

θ̂ ∈ argmin
θ∈Θ

‖Aϕ(θ, z)− yδ‖2, x̂ :=ϕ(θ̂, z). (10)

The weights are optimized by a gradient descent method to minimize the data discrepancy of
the output of the network. In the original method, the authors use gradient descent with early
stopping to avoid reproducing noise. This is necessary due to the overparameterization of the
network, which makes it able to reproduce the noise. The regularization is a combination of
early stopping (similar to the Landweber iteration) and the architecture [14]. The drawback is
that it is not clear how to choose when to stop. In the original work, the authors do this using
a validation set and select the number of iterations that performs best on average in terms of
PSNR.

The prior is related to the implicit structural bias of this kind of deep convolutional net-
works. In the original DIP paper [31] and more recently in [10, 24], it is shown that con-
volutional image generators, optimized with gradient descent, fit natural images faster than
noise and learn to construct them from low to high frequencies. This effect is illustrated in
figure 3.

6
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3.2.1. Related work. The DIP approach has inspired many other researchers to improve it by
combining it with other methods [35, 38, 47], to use it for a wide range of applications [17,
18, 26, 27] and to offer different perspectives and explanations of why it works [10, 12, 14].
In [38], the concept of regularization by denoising (RED) is introduced and it is shown how
the two (DIP and RED) can be merged into a highly effective unsupervised recovery process.
Another series of works also adds explicit priors but on the weights of the network. In [47],
this is done in the form of a multi-variate Gaussian but learning the covariance matrix and the
mean using a small dataset. In [12], a Bayesian perspective on the DIP is introduced by also
incorporating a prior on the weights θ and conducting the posterior inference using stochastic
gradient Langevin dynamics.

So far, the DIP has been used for denoising, inpainting, super-resolution, image decompo-
sition [17], compressed sensing [47], PET [18], MRI [27] among other applications. A similar
idea [26] was also used for structural optimization, which is a popular method for designing
objects such as bridge trusses, airplane wings, and optical devices. Rather than directly opti-
mizing densities on a grid, they instead optimize the parameters of a neural network which
outputs those densities.

3.2.2. Network architecture. In the paper by Ulyanov et al [31], several architectures were
considered, for example, ResNet [23], encoder–decoder (autoencoder) and a U-Net [45].
For inpainting large regions, the Autoencoder with depth = 6 performed best, whereas for
denoising a modified U-Net achieved the best results. The regularization happens mainly
due to the architecture of the network, which reduces the search space but also influences
the optimization process to find more natural images. Therefore, for each application, it
is crucial to choose the appropriate architecture and to tune hyper-parameters, such as the
network’s depth and the number of channels per layer. Optimizing the hyper-parameters is
the most time-consuming part. In figure 4 we show some reconstructions from the ellipses
dataset (see section 6.2) with different hyper-parameter choices. In this case, it seems that
the U-Net without skip connections and depth 5 (encoder–decoder) achieves the best per-
formance. One can see that when the number of channels is too low, the network does not
have enough representation power. Also, if there are no skip channels, the higher the num-
ber of scales (equivalent to the depth), the more the regularization effect. The extraordi-
nary success of this approach demonstrates that the architecture of the network has a sig-
nificant influence on the performance of deep learning approaches that use similar kinds of
networks.

3.2.3. Early-stopping. As mentioned earlier, in [31], it is shown that early stopping has a
positive impact on the reconstruction results. It was observed that in some applications, such
as denoising, the loss decreases rapidly toward natural images, but takes much more time
to go toward noisy images. This empirical observation helps to determine when to stop. In
figure 5, one can observe how the similarity with respect to the ground truth (measured by the
PSNR and the SSIMmetrics) reaches a maximumand then deteriorates during the optimization
process.

4. DIP and classical regularization

In this section we analyze the DIP in combinationwith classical regularization, i.e., we include
a regularization term J : X→ R ∪ {∞}, such as TV. We give necessary assumptions under
which we are able to obtain standard guarantees in inverse problems, such as existence of a
solution, convergence, and convergence rates.

7
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Figure 4. CT reconstructions after 5000 iterations using the DIP with a U-Net architec-
ture and different scales (depths), channels per layer (the network has the same number
of channels at every layer) and number of skip connections (the first two rows do not use
skip connections, i.e., skip: [0, 0, 0, 0, 0]). In the last row all reconstructions use 5 scales
and 128 channels.

Figure 5. Training loss and true similarity (PSNR and SSIM) of CT reconstructions
using theDIP approach. The training was done over 15 000 iterations and the architecture
is an encoder–decoder (no skip channels) with 5 scales and 128 channels per layer.

In the general case, we consider X and Y to be Banach spaces, and A : X→ Y a continuous
linear operator. To simplify notation, we use ϕ(·) instead of ϕ(·, z), since the input to the net-
work is fixed. Additionally,we assume thatΘ is a Banach space, andϕ :Θ→ X is a continuous
mapping.

8



128 PAPER 2. CT RECONSTRUCTION USING DIP AND LEARNED RECONSTRUCTION METHODS

Inverse Problems 36 (2020) 094004 D O Baguer et al

The proposed method aims at finding

θδα ∈ argmin
θ∈Θ

S(Aϕ(θ), yδ)+ αJ(ϕ(θ)) for α > 0 (11)

to obtain

Tα(yδ) :=ϕ(θδα). (12)

With this approach,we eliminate the need for early stopping, i.e., the need to find an optimal
number of iterations. However, we introduce the problem of finding an optimal α, which is a
classical issue in inverse problems. These problems are similar since both choices depend on
the noise level of the observation data. The higher the noise, the higher the value of α or the
smaller the number of iterations for obtaining optimal results.

If the range of ϕ is Ω := rg(ϕ) = X, i.e.,

∀ x ∈ X : ∃ θ ∈ Θ s.t. ϕ(θ) = x; (13)

this is equivalent to the standard variational approach in equation (5). However, although the
network can fit some noise, it cannot fit, in general, any arbitrary x ∈ X. This depends on
the chosen architecture, and it is mainly because we do not use any fully connected layers.
Nevertheless, the minimization in (11) is similar to the setting in equation (5) if we restrict the
domain of A to be D̃(A) :=D(A) ∩ Ω

Tα(yδ) ∈ argmin
x∈˜D

S(Ax, yδ)+ αJ(x), (14)

where D̃ := D̃(A) ∩ D(J). If the following assumptions are satisfied, then all the classical the-
orems, namely well-posedness, stability, convergence, and convergence rates, still hold, see
[25].

Assumption 1. The range of ϕ with respect to θ (parameters of the network), namely Ω, is
closed, i.e., if there is a convergent sequence {xk} ⊂ Ω with limit x̃, it holds x̃ ∈ Ω.

Definition 1. An element x† ∈ D̃ is called a J-minimizing solution if Ax† = y† and ∀ x ∈
D̃ : J(x†) � J(x), where y† is the perfect noiseless data.

Assumption 2. There exists a J-minimizing solution x† ∈ D̃ and J(x†) < ∞.

Assumption 1 guarantees that the restricted domain of A is closed, whereas assumption 2
guarantees that there is a J-minimizing solution in the restricted domain. In appendix A, we
analyze in which cases these conditions hold.

5. DIP with initial reconstruction

In this section,we propose a two-steps approach based on themethod from the previous section.
The idea is to take the result from any end-to-end learned method T : Y → X as initial recon-
struction (first step) and further enforce data consistency by optimizing over its deep-neural
parameterization (second step).

Definition 2 (Deep-neural parameterization). Given an untrained network ϕ :Θ× Z →
X and a fixed input z ∈ Z, the deep-neural parameterization of an element x ∈ X with respect
to ϕ and z is

θx ∈ argmin
θ∈Θ

‖ϕ(θ, z)− x‖2. (15)

9
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Figure 6. Graphical illustration of the DIP approach with initial reconstruction. The blue
area refers to an approximation of some part of the space of natural images.

Algorithm 1. DIP with initial reconstruction.

1: x0 ←T (yδ)
2: z← noise
3: θ0 ∈ argmin

θ
‖ϕ(θ, z)− x0‖2

4: for k← 0 to K − 1 do
5: ω ∈ ∂L(θk)
6: θk+1 ← θk − ηω
7: end for
8: T̂ (yδ)← ϕ(θk, z)

The projection onto the range of the network is possible because of the result of assumption
1, i.e., the range is closed. If ϕ is a deep convolutional network, for example, a U-Net, the deep-
neural parameterization has similarities with other signal representations, such as theWavelets
and Fourier transforms [26]. For image processing, such domains are usually more convenient
than the classical pixel representation.

As shown in figure 6, one way to enforce data consistency is to project the initial recon-
struction into the set where ‖Ax − yδ‖ � δ. The puzzle is that due to the ill-posedness of the
problem, the new solution (red point) will very likely have artifacts. The proposed approach
first obtains the deep-neural parameterization θ0 of the initial reconstruction T (yδ) and then
use it as starting point to minimize

L(θ) := ‖Aϕ(θ, z)− yδ‖2 + αJ(ϕ(θ, z)), (16)

over θ via gradient descent. The iterative process is continued until ‖Aϕ(θ, z)− yδ‖ � δ or

10
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for a given fixed number of iterations K determined by means of a validation dataset. This
approach seems to force the reconstruction to stay close to the set of natural images because
of the structural bias of the deep-neural parameterization. The procedure is listed in algorithm
1 and a graphical representation is shown in figure 6.

The new method T̂ : Y → X is similar to other image enhancement approaches. For
example, related methods [15] first compute the wavelet transform (parameterization), and
then repeatedly perform smoothing or shrinking of the coefficients (further optimization).

6. Benchmark setup and results

For the benchmark, we implemented the end-to-end learned methods described in section 3.1.
We trained them on different data sizes and compared them with classical methods, such as
FBP and TV regularization, and with the proposedmethods. The datasets we use were recently
released to benchmark deep learning methods for CT reconstruction [32]. They are accessible
through the DIVα� python library [33]. We also provide the code and the trained methods in
the following GitHub repository: https://github.com/oterobaguer/dip-ct-benchmark.

6.1. The LoDoPaB-CT dataset

The low-dose parallel beam (LoDoPaB) CT dataset [32] consists of more than 40 000 two-
dimensional CT images and corresponding simulated low-intensity measurements. Human
chest CT reconstructions from the LIDC/IDRI database [5] are used as virtual ground truth.
Each image has a resolution of 362× 362 pixels. For the simulation setup, a simple par-
allel beam geometry with 1000 angles and 513 projection beams is used. To simulate low
intensity, Poisson noise is applied to the projection data. The noise amount corresponds to an
x-ray source that on average emits 4096 photons per detector pixel.We use the standard dataset
split defining in total 35 820 training pairs, 3522 validation pairs and 3553 test pairs. In addi-
tion, we analyze another dataset, LoDoPaB (200), obtained by uniformly sampling 200 angles
from the original 1000 without any further modification.

6.2. Ellipses dataset

As a synthetic dataset for imaging problems, random phantoms of combined ellipses are com-
monly used. We use the ’ellipses’ standard dataset from the DIVα� python library (as
provided in version 0.4) [33]. The images have a resolution of 128× 128 pixels.Measurements
are simulated with a parallel beam geometry with only 30 angles and 183 projection beams.
In addition to the sparse-angle setup, moderate Gaussian noise with a standard deviation of
2.5% of the mean absolute value of the projection data is added to the projection data. In total,
the training set contains 32 000 pairs, while the validation and test set consist of 3200 pairs
each.

6.3. Implementation details

For the DIP with initial reconstruction, we used the learned primal-dual, which has the best
performance among the compared methods (see the results in figure 7). For each data size, we
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Figure 7. Benchmark results of several existing methods and the proposed approaches
(DIP+ TV, learned primal-dual + DIP) on the Ellipses, LoDoPaB (200) and LoDoPaB
datasets. The horizontal lines indicate the performance of data-free methods.

chose different hyper-parameters, namely the step-size η, the TV regularization parameter α,
and the number of iterations K, based on the available validation dataset.

Minimizing L(θ) in (16) is not trivial because TV is not differentiable. In our implementa-
tion we use the PyTorch automatic differentiation framework [41] and the ADAM [29] opti-
mizer. For the Ellipses dataset we use the �2-discrepancy term, whereas for LoDoPaB we use
the Poisson loss.

12
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Figure 8. Reconstructions of test samples using the learned primal-dual method trained
with different amounts of data from the ellipses and LoDoPaB datasets. The �2 data error
measures the discrepancy between the noisy observation and the noise-free projection
of the (reconstructed) image.

6.4. Numerical results

We trained all the methods with different dataset sizes. For example, 0.1% on the ellipses
dataset means we trained the model with 0.1% (32 data-pairs) of the available training data and
0.1% (3 data-pairs) of the validation data. Afterward, we tested the performance of the method

13
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Figure 9. Reconstruction obtained with the FBP method, isotropic TV regulariza-
tion and the DIP approach combined with TV, for test samples from the ellipses and
LoDoPaB datasets. The �2 data error measures the discrepancy between the noisy
observation and the noise-free projection of the (reconstructed) image.

on the first 100 samples of the test dataset (in the original order, i.e., not sorted by patient). This
reduced test dataset was used because some of the methods require a lot of time for reconstruc-
tion, and the mean performance on 100 samples already allows for accurate benchmarking.
The results are depicted in figure 7 and more details can be found in appendix B.

14
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Figure 10. Reconstruction obtained with the FBP method, isotropic TV regularization
and the DIP approach combined with TV, for test samples from the LoDoPaB (200)
dataset. The �2 data error measures the discrepancy between the noisy observation and
the noise-free projection of the (reconstructed) image.

Figure 11. Examples of reconstructions obtained with the DIP + TV approach, the
learned primal-dual method trained with 0.01% and 0.1% of the LoDoPaB (200) dataset
and the DIP + TV approach with initial reconstruction. The �2 data error measures
the discrepancy between the noisy observation and the noise-free projection of the
(reconstructed) image.

As expected, the fully learned method (iRadonMap) requires a large amount of data to
achieve acceptable performance. On the ellipses and LoDoPaB (200) dataset, it outperformed
TV using 100% of the data, whereas on the LoDoPaB dataset, it performed just slightly bet-
ter than the FBP. The learned post-processing (FBP + U-Net) required much less data. It
outperformed TV with only 10% of the ellipses dataset and 0.1% of the LoDoPaB dataset.
On the other hand, we find that the learned primal-dual is very data efficient and achieved

15
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Figure 12. Examples of reconstructions obtained with the DIP approach combined with
TV, the learned primal-dual method trained with 0.1% and 0.2% of the Ellipses dataset
(32 and 64 resp. data-pairs) and the DIP approach with initial reconstruction. The �2
data error measures the discrepancy between the noisy observation and the noise-free
projection of the (reconstructed) image.

16
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the best performance. In figure 8, we show some results from the test set for different data
sizes.

TheDIP+TV approach achieved the best results among the data-freemethods.On average,
it outperforms TV by 1 dB on all the analyzed datasets. In figures 9 and 10, it can be observed
that TV tends to produce flat regions but also produces high staircase effects on the edges.
On the other hand, the combination with DIP produces more realistic edges. For the first two
smaller data sizes of the ellipses and LoDoPaB (200) datasets, it performs better than all the
end-to-end learned methods.

The DIP + TV with initial reconstruction improved the results on the low-data regime for
the ellipses and LoDoPaB (200) datasets. For the higher data sizes and the LoDoPaB dataset,
it did not yield reconstructions with higher quality than those already obtained by the DIP +
TV or learned primal-dual methods. We believe that this approach is more useful in the case
of having sparse measurements and little training data.

In figures 11 and 12, we show some reconstructions obtained using this method for the
LoDoPab (200) and ellipses datasets. The reconstructions have a better data consistency with
respect to the observed data (�2-discrepancy) and higher quality both visually and in terms
of the PSNR and SSIM measures. Moreover, this approach is in general much faster, even if
we also consider the iterations required to obtain the deep-prior/neural parameterization of the
first reconstruction. These initial iterations are much faster because they only use the identity
operator instead of the Radon transform. For example, for the Ellipses dataset, the DIP +
TV approach needs 8000 iterations to obtain optimal performance in a validation dataset (five
ground truth and observation pairs). On the other hand, by using the initial reconstruction,
it needs 4000 iterations with the identity operator and only 1000 with the Radon transform
operator, which results in a 2× speed factor.

7. Conclusions

In this work, we study the combination of classical regularization, deep-neural parameteri-
zation, and deep learning approaches for CT reconstruction. We benchmark the investigated
methods and evaluate how they behave in low-data regimes. Among the data-free approaches,
the DIP + TV method achieves the best results. However, it is considerably slow and does
not benefit from having a small dataset with reference reconstructions. On the other hand,
the learned primal-dual is very data efficient. However, it lacks data consistency when not
trained with enough data. These issues motivate us to adjust the reconstruction obtained with
the learned primal-dual to match the observed data. We solved the puzzle without introducing
artifacts through a combination of classical regularization and the DIP.

The results presented in this paper offer several baselines for future comparisons with other
approaches. Moreover, the proposed methods could be applied to other imaging modalities.
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Appendix A. DIP and classical regularization

The mapping ϕ :Θ→ X has a neural network structure, with a fixed input z ∈ R
n0 , and can be

expressed as a composition of affine mappings and activation functions:

ϕ = σ(L) ◦ K(L) ◦ · · · ◦ σ(2) ◦ K(2) ◦ σ(1) ◦ K(1), (A.1)

where K(i)(x) :=W (i)x + b(i), W (i) ∈ G(i) ⊆ R
ni×ni−1 , b(i) ∈ B(i) ⊆ R

ni , σ(i) : R→ R (applied
component-wise), and θ = (W (L), b(L), . . . ,W(1), b(1)) ∈ G(L) × B(L) · · · × G(1) × B(1) = Θ. In
the following we analyze under which conditions we can guarantee that the range of ϕ (with
respect to Θ) is closed.

Definition 3. An activation function σ :R→ R is valid, if it is continuous, monotone, and
bounded, in the sense there exist c > 0 such that ∀x ∈ X : |σ(x)| � c|x|.

Lemma 1. Let ϕ be a neural network ϕ :Θ→ X with L layers. If Θ is a compact set, and
the activation functions σ(i) are valid, then the range of ϕ is closed.

Proof. In order to prove the result, we show that the range after each layer of the network is
compact.

(a) Let the set V = {Wu : W ∈ G ⊂ R
m×n, u ∈ U ⊂ R

n}, where G and U are compact sets,
i.e., bounded and closed. Since G and U are bounded, it follows that V is bounded.

Let the sequence {W (k)u(k)}, with W (k) ∈ G and u(k) ∈ U, converge to v. Since {W(k)}
and {u(k)} are bounded, there is a subsequence {W (k)ū(k)}, where both {W(k)} and {ū(k)}
converge to W ∈ G and ū ∈ U respectively. It follows that {W (k)ū(k)} converges to Wū,
therefore, v = Wū ∈ V , which shows that V is closed. Thus, V is compact.

(b) From (a), the fact that G(i), B(i) are compact sets, and assuming U(i) ⊂ R
ni−1 is also

compact, it follows that V (i) = {Wu+ b : W ∈ G(i), u ∈ U(i), b ∈ B(i) ⊂ R
ni} is compact.

(c) It is easy to show that if the pre-image of a valid activation σ is compact, then its image
is also compact.

In the first layer, U0 = {z}, which is compact; thus, using (a), (b), and (c) it can be shown
by induction that the range of ϕ :Θ→ Ω is closed. �

All activation functions commonly used in the literature, for example, sigmoid, hyperbolic
tangent, and piece-wise linear activations, are valid. The bounds on the weights of the network
can be ensured by clipping the weights after each gradient update.

Remark 1. An alternative condition to the bound on the weights is to use only valid activa-
tion functions with closed range, for example, ReLU or leaky ReLU. However, it wouldn’t be
possible to use sigmoid or hyperbolic tangent. In our experiments, we observed that having a
sigmoid activation in the last layer of the DIP network performs better than having a ReLU.

Appendix B. Dataset details, hyper-parameters and results

In this appendix, we present all the hyper-parameters tables B3–B10 that were selected for the
method using a validation set. The first two tables B1–B2 depict the number of samples used
for training and validation in each case.

For the data-free baseline approaches, i.e. FBP and TV, we used 100 samples for selecting
the optimal hyper-parameters. In the low-data regime this by far exceeds the number of samples
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Table B1. Amounts of training and validation pairs from the ellipses dataset used for the
benchmark in section 6.

% 0.1 0.2 0.5 1.0 2.0 5.0 10.0 25.0 50.0 100.0

#train 32 64 160 320 640 1600 3200 8000 16 000 32 000
#val 3 6 16 32 64 160 320 800 1600 3200

Table B2. Amounts of training and validation pairs from the LoDoPaB dataset used for
the benchmark in section 6. The last two lines denote the numbers of patients of whom
images are included.

% 0.01 0.1 1.0 10.0 100.0

#train 3 35 358 3582 35 820
#val 1 3 35 352 3522
#patients train 1 1 7 64 632
#patients val 1 1 1 6 60

Table B3. FBP hyper-parameters and results.

Dataset Filter type Low-pass cut-off PSNR (dB) SSIM

Ellipses Hann 0.7051 24.18 0.5939
LoDoPaB (200) Hann 0.5000 28.38 0.6492
LoDoPaB Hann 0.6410 30.37 0.7386

Table B4. TV hyper-parameters and results. The step size is set to 10−3.

Dataset Loss function α PSNR (dB) SSIM

Ellipses �2 7.743 × 10−4 27.84 0.8495
LoDoPaB (200) Poisson 12.63 30.89 0.7563
LoDoPaB Poisson 20.55 32.95 0.8034

Table B5. DIP + TV hyper-parameters and results. For all experiments the number of
channels is set to 128 at every scale. For the output sigmoid activation is used.

Dataset Loss func. Scales Skip channels α step size PSNR (dB) SSIM

Ellipses �2 5 (0, 0, 0, 0, 0) 3.162× 10−4 1 × 10−3 28.94 0.8855
LoDoPaB (200) Poisson 6 (0, 0, 0, 0, 4, 4) 4.0 5 × 10−4 32.51 0.7803
LoDoPaB Poisson 6 (0, 0, 0, 0, 4, 4) 7.0 5 × 10−4 34.44 0.8143

used by the learned approaches, leading to a slight bias of the comparison in favor of the data-
free baseline approaches. For the DIP + TV we used at most 5 samples for validation and
selection of hyper-parameters.
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Table B6. DIP + TV (with initial reconstruction given by the learned primal-dual
method). For all experiments the number of channels is set to 128 at every scale. For
the output sigmoid activation is used.

Dataset Data size (%) Loss func. Scales Skip channels α PSNR (dB) SSIM

Ellipses 0.1 �2 5 (0, 0, 0, 0, 0) 3.162× 10−4 29.23 0.8915
0.2 �2 5 (0, 0, 0, 0, 0) 2.154× 10−4 29.39 0.8911
0.5 �2 5 (0, 0, 0, 0, 0) 2.154× 10−4 29.85 0.904
1.0 �2 5 (0, 0, 0, 0, 0) 2.154× 10−4 30.39 0.915
2.0 �2 5 (0, 0, 0, 0, 0) 2.154× 10−4 30.99 0.9253
5.0 �2 5 (0, 0, 0, 0, 0) 2.154× 10−4 31.44 0.9285
10.0 �2 5 (0, 0, 0, 0, 0) 1.292× 10−4 31.78 0.9337

LoDoPaB (200) 0.01 Poisson 6 (0, 0, 0, 0, 4, 4) 4.0 32.52 0.7822
0.1 Poisson 6 (0, 0, 0, 0, 4, 4) 3.0 32.78 0.7821

Table B7. FBP+ U-Net. The input FBP reconstruction uses a Hann filter with no addi-
tional low-pass filter. Common hyperparameters: scales = 5, skip channels = 4, linear
output (i.e. no sigmoid activation). The maximum learning rate is set to 10−2 or 10−3

and scheduled with either cosine annealing or one-cycle policy.

Dataset Data size (%) Channels Batch size Epochs PSNR (dB) SSIM

Ellipses 0.1 (32, 32, 64, 64, 128) 16 5000 26.33 0.7895
0.2 (32, 32, 64, 64, 128) 16 5000 26.59 0.8042
0.5 (32, 32, 64, 64, 128) 16 5000 26.80 0.8114
1.0 (32, 32, 64, 64, 128) 16 5000 27.12 0.8321
2.0 (32, 32, 64, 64, 128) 16 2500 27.44 0.8323
5.0 (32, 32, 64, 64, 128) 16 1000 27.97 0.8604

10.0 (64, 64, 128, 128, 256) 16 700 28.49 0.8751
25.0 (64, 64, 128, 128, 256) 16 280 28.80 0.8872
50.0 (64, 64, 128, 128, 256) 16 140 29.10 0.8940
100.0 (64, 64, 128, 128, 256) 16 70 29.36 0.8987

LoDoPaB (200) 0.01 (32, 32, 64, 64, 128) 32 5000 29.33 0.7143
0.1 (32, 32, 64, 64, 128) 32 5000 31.58 0.7616
1.0 (32, 32, 64, 64, 128) 32 2000 32.60 0.7818

10.0 (32, 32, 64, 64, 128) 32 500 33.19 0.7931
100.0 (32, 32, 64, 64, 128) 32 250 33.55 0.7994

LoDoPaB 0.01 (32, 32, 64, 64, 128) 32 5000 31.36 0.7727
0.1 (32, 32, 64, 64, 128) 32 5000 33.27 0.7982
1.0 (32, 32, 64, 64, 128) 32 2000 34.62 0.8209

10.0 (32, 32, 64, 64, 128) 32 500 35.18 0.8313
100.0 (32, 32, 64, 64, 128) 32 250 35.48 0.8371

For the learned methods, the numbers of epochs listed in the tables denote the maximum
numbers—the model with best mean PSNR on the validation set reached during training is
selected. In some cases we used a learning rate scheduler that improved the training. More
details can be found in https://github.com/oterobaguer/dip-ct-benchmark.
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Table B8. Learned gradient descent. For all experiments the number of iterations is set
to L = 10. The output of the network is linear, i.e. no sigmoid activation is used.

Dataset Data size (%) Channels Batch size Epochs lr PSNR (dB) SSIM

Ellipses 0.1 32 32 5000 10−3 27.81 0.8580
0.2 32 32 5000 10−3 28.40 0.8769
0.5 32 32 5000 10−3 29.15 0.8955
1.0 32 32 5000 10−3 29.55 0.9027
2.0 32 32 2500 10−3 29.70 0.9051
5.0 32 32 1000 10−3 29.84 0.9077

10.0 32 32 500 10−3 29.88 0.9082
25.0 32 32 200 10−3 29.95 0.9094
50.0 32 32 100 10−3 30.07 0.9121
100.0 32 32 50 10−3 30.30 0.9162

LoDoPaB (200) 0.01 32 20 5000 10−4 29.87 0.7151
0.1 32 20 5000 10−5 31.28 0.7473
1.0 32 20 500 10−5 31.83 0.7602

10.0 64 1 200 10−5 32.41 0.7724
100.0 64 1 20 10−5 32.41 0.7724

LoDoPaB 0.01 32 1 5000 10−3 32.70 0.7860
0.1 32 1 5000 10−3 33.81 0.8043
1.0 32 1 500 10−3 34.29 0.8103

10.0 64 1 100 10−4 34.34 0.8115
100.0 64 1 10 10−4 34.36 0.8122

Table B9. Learned primal-dual. For all experiments the number of iterations is set to
L = 10. The output of the network is linear, i.e. no sigmoid activation is used.

Dataset Data size [%] Channels Batch size Epochs lr PSNR [dB] SSIM

Ellipses 0.1 32 5 5000 10−3 28.09 0.8621
0.2 32 5 5000 10−3 28.45 0.8778
0.5 32 5 5000 10−3 29.35 0.8997
1.0 32 5 5000 10−3 30.11 0.9124
2.0 32 5 2500 10−3 30.84 0.9258
5.0 32 5 1000 10−3 31.44 0.9282

10.0 32 5 500 10−3 31.84 0.9360
25.0 32 5 200 10−3 32.15 0.9367
50.0 32 5 100 10−3 32.21 0.9390
100.0 32 5 50 10−3 32.27 0.9403

LoDoPaB (200) 0.01 32 1 5000 10−3 29.65 0.7343
0.1 32 1 5000 10−3 32.48 0.7771
1.0 32 1 500 10−3 33.21 0.7929

10.0 64 1 100 10−4 33.53 0.7990
100.0 64 1 10 10−4 33.64 0.8020

LoDoPaB 0.01 32 1 5000 10−3 32.68 0.7842
0.1 32 1 5000 10−3 34.65 0.8227
1.0 32 1 500 10−3 35.27 0.8303

10.0 64 1 100 10−4 35.63 0.8401
100.0 64 1 10 10−4 35.73 0.8426
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Table B10. iRadonMap. The U-Net part of the network has the same hyperparameters
for all experiments: scales= 5, skip channels= 4, channels= (32, 32, 64, 64, 128). The
learning rate is set to 10−2. Selection of the sigmoid output is based on the validation
performance; the difference on LoDoPaB with and without sigmoid is marginal.

Dataset Data size (%) Batch size Epochs Sigmoid output PSNR (dB) SSIM

Ellipses 0.1 64 1000 � 17.83 0.2309
0.2 64 1000 � 18.35 0.2837
0.5 64 1000 � 21.41 0.5378
1.0 64 1000 � 22.64 0.6312
2.0 64 1000 � 23.62 0.7042
5.0 64 1000 � 24.77 0.7444

10.0 64 1000 � 25.61 0.8051
25.0 64 400 � 26.56 0.8389
50.0 64 200 � 27.36 0.8615
100.0 64 100 � 28.02 0.8766

LoDoPaB (200) 0.01 32 150 � 14.61 0.3529
0.1 32 150 18.77 0.4492
1.0 32 150 24.63 0.6031

10.0 32 150 31.27 0.7569
100.0 32 30 � 32.45 0.7781

LoDoPaB 0.01 2 150 14.82 0.3737
0.1 2 150 17.67 0.4438
1.0 2 150 22.73 0.5361

10.0 2 150 28.69 0.6929
100.0 2 15 � 30.99 0.7486
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Abstract: The reconstruction of computed tomography (CT) images is an active area of research.
Following the rise of deep learning methods, many data-driven models have been proposed in recent
years. In this work, we present the results of a data challenge that we organized, bringing together
algorithm experts from different institutes to jointly work on quantitative evaluation of several data-
driven methods on two large, public datasets during a ten day sprint. We focus on two applications
of CT, namely, low-dose CT and sparse-angle CT. This enables us to fairly compare different methods
using standardized settings. As a general result, we observe that the deep learning-based methods are
able to improve the reconstruction quality metrics in both CT applications while the top performing
methods show only minor differences in terms of peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM). We further discuss a number of other important criteria that should be taken into
account when selecting a method, such as the availability of training data, the knowledge of the
physical measurement model and the reconstruction speed.

Keywords: computed tomography (CT); image reconstruction; low-dose; sparse-angle; deep learning;
quantitative comparison

1. Introduction

Computed tomography (CT) is a widely used (bio)medical imaging modality, with
various applications in clinical settings, such as diagnostics [1], screening [2] and virtual
treatment planning [3,4], as well as in industrial [5] and scientific [6–8] settings. One of
the fundamental aspects of this modality is the reconstruction of images from multiple
X-ray measurements taken from different angles. Because each X-ray measurement exposes
the sample or patient to harmful ionizing radiation, minimizing this exposure remains an
active area of research [9]. The challenge is to either minimize the dose per measurement or
the total number of measurements while maintaining sufficient image quality to perform
subsequent diagnostic or analytic tasks.
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To date, the most common classical methods used for CT image reconstruction are
filtered back-projection (FBP) and iterative reconstruction (IR) techniques. FBP is a sta-
bilized and discretized version of the inverse Radon transform, in which 1D projections
are filtered by the 1D Radon kernel (back-projected) in order to obtain a 2D signal [10,11].
FBP is very fast, but is not suitable for limited-data or sparse-angle setups, resulting in
various imaging artifacts, such as streaking, stretching, blurring, partial volume effects, or
noise [12]. Iterative reconstruction methods, on the other hand, are computationally inten-
sive but are able to incorporate a priori information about the system during reconstruction.
Many iterative techniques are based on statistical methods such as Markov random fields
or regularization methods where the regularizers are designed and incorporated into the
problem of reconstruction mathematically [13]. A popular choice for the regularizer is
total variation (TV) [14,15]. Another well-known iterative method suitable for large-scale
tomography problems is the conjugate gradient method applied to solve the least squares
problem (CGLS) [16].

When classical techniques such as FBP or IR are used to reconstruct low-dose CT
images, the image quality often deteriorates significantly in the presence of increased
noise. Therefore, the focus is shifting towards developing reconstruction methods in
which a single or multiple component(s), or even the entire reconstruction process is
performed using deep learning [17]. Generally data-driven approaches promise fast and/or
accurate image reconstruction by taking advantage of a large number of examples, that is,
training data.

The methods that learn parts of the reconstruction process can be roughly divided into
learned regularizers, unrolled iterative schemes, and post-processing of reconstructed CT
images. Methods based on learned regularizers work on the basis of learning convolutional
filters from the training data that can subsequently be used to regularize the reconstruction
problem by plugging into a classical iterative optimization scheme [18]. Unrolled iterative
schemes go a step further in the sense that they “unroll” the steps of the iterative scheme
into a sequence of operations where the operators are replaced with convolutional neural
networks (CNNs). A recent example is the learned primal-dual algorithm proposed
by Adler et al. [19]. Finally, various post-processing methods have been proposed that
correct noisy images or those with severe artifacts in the image domain [20]. Examples are
improving tomographic reconstruction from limited data using a mixed-scale dense (MS-D)
CNN [21], U-Net [22] or residual encoder-decoder CNN (RED-CNN) [23], as well as CT
image denoising techniques [24,25]. Somewhat similar are the methods that can be trained
in a supervised manner to improve the measurement data in the sinogram domain [26].

The first fully end-to-end learned reconstruction method was the automated trans-
form by the manifold approximation (AUTOMAP) algorithm [27] developed for magnetic
resonance (MR) image reconstruction. This method directly learns the (global) relation
between the measurement data and the image, that is, it replaces the Radon or Fourier
transform with a neural network. The disadvantages of this approach are the large mem-
ory requirements, as well as the fact that it might not be necessary to learn the entire
transformation from scratch because an efficient analytical transform is already available.
A similar approach for CT reconstruction was iRadonMAP proposed by He et al. [28],
who developed an interpretable framework for Radon inversion in medical X-ray CT.
In addition, Li et al. [29] proposed an end-to-end reconstruction framework for Radon
inversion called iCT-Net, and demonstrated its advantages in solving sparse-view CT
reconstruction problems.

The aforementioned deep learning-based CT image reconstruction methods differ
greatly in terms of which component of the reconstruction task is learned and in which
domain the method operates (image or sinogram domain), as well as the computational
and data-related requirements. As a result, it remains difficult to compare the performance
of deep learning-based reconstruction methods across different imaging domains and
applications. Thorough comparisons between different reconstruction methods are further
complicated by the lack of sufficiently large benchmarking datasets, including ground truth
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reconstructions, for training, validation, and testing. CT manufacturers are typically very
reluctant in making raw measurement data available for research purposes, and privacy
regulations for making medical imaging data publicly available are becoming increasingly
strict [30,31].

1.1. Goal of This Study

The aim of this study is to quantitatively compare the performance of classical and
deep learning-based CT image reconstruction methods on two large, two-dimensional
(2D) parallel-beam CT datasets that were specifically created for this purpose. We opted
for a 2D parallel-beam CT setup to facilitate large-scale experiments with many example
images, whereas the underlying operators in the algorithms have straightforward general-
izations to other geometries. We focus on two reconstruction tasks with high relevance and
impact—the first task is the reconstruction of low-dose medical CT images, and the second
is the reconstruction of sparse-angle CT images.

1.1.1. Reconstruction of Low-Dose Medical CT Images

In order to compare (learned) reconstruction techniques in a low-dose CT setup, we
use the low-dose parallel beam (LoDoPaB) CT dataset [32]. This dataset contains 42,895
two-dimensional CT images and corresponding simulated low-intensity measurements.
The ground truth images of this dataset are human chest CT reconstructions taken from the
LIDC/IDRI database [33]. These scans had been acquired with a wide range of scanners
and models. The initial image reconstruction for creating the LIDC/IDRI database was
performed with different convolution kernels, depending on the manufacturer. Poisson
noise is applied to the simulated projection data to model the low intensity setup. A more
detailed description can be found in Section 2.1.

1.1.2. Reconstruction of Sparse-Angle CT Images

When using X-ray tomography in high-throughput settings (i.e., scanning multiple
objects per second) such as quality control, luggage scanning or inspection of products on
conveyor belts, very few X-ray projections can be acquired for each object. In such settings,
it is essential to incorporate a priori information about the object being scanned during
image reconstruction. In order to compare (learned) reconstruction techniques for this
application, we reconstruct parallel-beam CT images of apples with internal defects using
as few measurements as possible. We experimented with three different noise settings:
noise-free, Gaussian noise, and scattering noise. The generation of the datasets is described
in Section 2.2.

2. Dataset Description

For both datasets, the simulation model uses a 2D parallel beam geometry for the
creation of the measurements. The attenuation of the X-rays is simulated using the Radon
transform [10]

Ax(s, ϕ) :=
∫

R

x

(

s

[

cos(ϕ)
sin(ϕ)

]

+ t

[

− sin(ϕ)
cos(ϕ)

])

dt, (1)

where s ∈ R is the distance from the origin and ϕ ∈ [0, π) the angle of the beam (cf.
Figure 1). Mathematically, the image is transformed into a function of (s, ϕ). For each
fixed angle ϕ the 2D image x is projected onto a line parameterized by s, namely the
X-ray detector.

A detailed description of both datasets is given below. Their basic properties are also
summarized in Table 1.
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Figure 1. Parallel beam geometry. Adopted from [34].

Table 1. Settings of the low-dose parallel beam computed tomography (LoDoPaB-CT) and Apple
CT datasets.

Property LoDoPaB-CT Apple CT

Subject Human thorax Apples
Scenario low photon count sparse-angle
Challenge 3678 reconstructions 100 reconstructions
Image size 362 px× 362 px 972 px× 972 px
Angles 1000 50, 10, 5, 2
Detector bins 513 1377
Sampling ratio ≈3.9 ≈0.07–0.003

2.1. LoDoPaB-CT Dataset

The LoDoPaB-CT dataset [32] is a comprehensive collection of reference reconstruc-
tions and simulated low-dose measurements. It builds upon normal-dose thoracic CT scans
from the LIDC/IDRI Database [33,35], whereby quality-assessed and processed 2D recon-
structions are used as a ground truth. LoDoPaB features more than 40,000 scan slices from
around 800 different patients. The dataset can be used for the training and evaluation of all
kinds of reconstruction methods. LoDoPaB-CT has a predefined division into four parts,
where each subset contains images from a distinct and randomly chosen set of patients.
Three parts were used for training, validation and testing, respectively. It also contains a
special challenge set with scans from 60 different patients. The ground truth images are
undisclosed, and the patients are only included in this set. The challenge set is used for
the evaluation of the model performance in this paper. Overall, the dataset contains 35,820
training images, 3522 validation images, 3553 test images and 3678 challenge images.

Low-intensity measurements suffer from an increased noise level. The main reason is
so called quantum noise. It stems from the process of photon generation, attenuation and
detection. The influence on the number of detected photons Ñ1 can be modeled, based on
the mean photon count without attenuation N0 and the Radon transform (1), by a Poisson
distribution [36]

˜ 1(s, ϕ) ∼ Pois(N0 exp(−Ax(s, ϕ))). (2)

The model has to be discretized concerning s and ϕ for the simulation process. In
this case, the Radon transform (1) becomes a finite-dimensional linear map A : Rn → Rm,
where n is the number of image pixels and m is the product of the number of detector
pixels and the number of discrete angles. Together with the Poisson noise, the discrete
simulation model is given by

Ax+ (Ax) = δ, (Ax) = −Ax− ln( ˜ 1/N0), ˜ 1 ∼ Pois(N0 exp(−Ax)). (3)

A single realization yδ ∈ Rm of δ is observed for each ground truth image, x = x† ∈ Rn.
After the simulation according to (3), all data pairs (yδ, x†) have been divided by
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µmax = 81.35858 to normalize the image values to the range [0, 1]. In the following sections,
θ , yδ and x† denote the normalized values.

The LoDoPaB ground truth images have a resolution of 362 px× 362 px on a domain
of size 26 cm× 26 cm. The scanning setup consists of 513 equidistant detector pixels s
spanning the image diameter and 1000 equidistant angles ϕ between 0 and π. The mean
photon count per detector pixel without attenuation is N0 = 4096. The sampling ratio
between the size of the measurements and the images is around 3.9 (oversampling case).

2.2. Apple CT Datasets

The Apple CT datasets [37] are a collection of ground truth reconstructions and
simulated parallel beam data with various noise types and angular range sampling. The
data is intended for benchmarking different algorithms and is particularly suited for use in
deep learning settings due to the large number of slices available.

A total of 94 apples were scanned at the Flex-Ray Laboratory [8] using a point-source
circular cone-beam acquisition setup. High quality ground truth reconstructions were
obtained using a full rotation with an angular resolution of 0.005 rad and a spatial resolution
of 54.2 µm. A collection of 1D parallel beam data for more than 70,000 slices were generated
using the simulation model in Equation (1). A total of 50 projections were generated over
an angular range of [0,π), each of size 1 × 1377. The Apple CT ground truth images have
a resolution of 972 px× 972 px. In order to make the angular sampling even sparser, we
also reduced the data to include only 10, 5 and 2 angles. The angular sampling ranges are
shown in Figure 2.

  
Figure 2. The angular sampling ranges employed for sparse image reconstructions for (a) 50 (full), (b) 10 (subset of
50 angles), (c) 5 (subset of 50 angles) and (d) 2 angles (subset of 10 angles). The black arrows show the position of the X-ray
source (dot) and the position of the detector (arrowhead). For the sparse-angle scenario, the unused angles are shown in
light gray.

The noise-free simulated data (henceforth Dataset A) were corrupted with 5% Gaus-
sian noise to create Dataset B. Dataset C was generated by adding an imitation of scattering
to Dataset A. Scattering intensity in a pixel u′ is computed according to the formula

S(u′) =
∫
u∈R2

G(u) exp
[
−
(u− u′)2

2σ1(u)2

]
+ H(u) exp

[
−
(u− u′)2

2σ2(u)2

]
, (4)

where |u− u′| is a distance between pixels, and scattering is approximated as a combi-
nation of Gaussian blurs with scaling factors G and H, standard deviations σ1 and σ2.
Scattering noise in the target pixel u′ contains contributions from all image pixels u as
sources of scattering. Gaussian blur parameters depend on the X-ray absorption in the
source pixel. To sample functions G(u), H(u), σ1(u) and σ2(u), a Monte Carlo simulation
was performed for different thicknesses of water that was chosen as a material close to
apple flesh. Furthermore, scaling factors G(u) and H(u) were increased to create a more
challenging problem. We note that due to the computational complexity required, the
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number of slices on which the scattering model is applied is limited to 7520 (80 slices per
apple), meaning the scattering training subset is smaller.

The Apple CT datasets consist of apple slices with and without internal defects.
Internal defects were observed to be of four main types: bitter pit, holes, rot and browning.
A reconstruction of a healthy apple slice and one with bitter pit is shown in Figure 3 as
examples. Each Apple CT dataset was divided into training and test subsets using an
empirical bias elimination method to ensure that apples in both subsets had similar defect
statistics. This process is detailed in [38].

For the network training, the noise-free and Gaussian noise training subsets are further
split into 44,647 training and 5429 validation samples, and the scattering training subset is
split into 5280 training and 640 validation samples.

From the test subsets, 100 test slices were extracted in a similar manner like for the
split in training and test subsets. All evaluations in this paper refer to these 100 test slices
in order to keep the reconstruction time and storage volume within reasonable limits. Five
slices were extracted from each of the 20 test apples such that in total each defect type is
occurring with a pixel count ratio similar to its ratio on the full test subset. Additionally,
the extracted slices have a pairwise distance of at least 15 slices in order to improve the
image diversity. The selected list of slices is specified in the supplementing repository [39]
as file supp_material/apples/test_samples_ids.csv.

Figure 3. A horizontal cross-section of a healthy slice in an apple is shown on the left, and another
cross-section with the bitter pit defects in the same apple on the right.

3. Algorithms

A variety of learned reconstruction methods were used to create a benchmark. The
selection is based on methods submitted by participants for the data challenge on the
LoDoPaB-CT and Apple CT datasets. The reconstruction methods include unrolled archi-
tectures, post-processing approaches, and fully-learned methods. Furthermore, classical
methods such as FBP, TV regularization and CGLS were used as a baseline.

3.1. Learned Reconstruction Methods

In this section, the learned methods included in the benchmark are presented. An
overview of the hyperparameters and pseudocode can be found in Appendix A. All
methods utilize artificial neural networks FΘ, each in different roles, for the reconstruc-
tion process.

Learning refers to the adaption of the parameters Θ for the reconstruction process
in a data-driven manner. In general, one can divide this process into supervised and
unsupervised learning. Almost all methods in this comparison are trained in a supervised
way. This means that sample pairs (yδ, x†) of noisy measurements and ground truth
data are used for the optimization of the parameters, for example, by minimizing some
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discrepancy DX : X × X → R between the output of the reconstruction model TFΘ
and the

ground truth

min
Θ

DX

(

TFΘ
(yδ), x†

)

. (5)

Supervised methods often provide excellent results, but the number of required
ground truth data can be high [34]. While the acquisition of ground truth images is
infeasible in many applications, this is not a problem in the low-dose and sparse-angle
case. Here, reconstructions of regular (normal-dose, full-angle) scans play the role of the
reference.

3.1.1. Post-Processing

Post-processing approaches aim to improve the reconstruction quality of an existing
method. When used in computed tomography, FBP (cf. Appendix B.1) is often used to
obtain an initial reconstruction. Depending on the scan scenario, the FBP reconstruction
can be noisy or contain artifacts. Therefore, it functions as an input for a learned post-
processing method. This setting simplifies the task because the post-processing network
FΘ : X → X maps directly from the target domain into the target domain

x̂ := [FΘ ◦ TFBP](yδ).

Convolutional neural networks (CNN) have successfully been used in recent works to
remove artifacts and noise from FBP reconstructions. Four of these CNN post-processing
approaches were used for the benchmark. The U-Net architecture [40] is a popular choice
in many different applications and was also used for CT reconstruction [20]. The details
of the network used in the comparison can be found in Appendix A.2. The U-Net++ [41]
(cf. Appendix A.3) and ISTA U-Net [42] (cf. Appendix A.6) represent modifications of this
approach. In addition, a mixed-scale dense (MS-D)-CNN [21] is included, which has a
different architecture (cf. Appendix A.4). Like for the U-Net, one can consider to adapt
other architectures originally used for segmentation, for example, the ENET [43], for the
post-processing task.

3.1.2. Fully Learned

The goal of fully learned methods is to extract the structure of the inversion process
from data. In this case, the neural network FΘ : Y → X directly maps from the measurement
space Y to the target domain X. A prominent example is the AUTOMAP architecture [27],
which was successfully used for reconstruction in magnetic resonance imaging (MRI). The
main building blocks consist of fully-connected layers. This makes the network design
very general, but the number of parameters can grow quickly with the data dimension. For
example, a single fully-connected layer mapping from Y to X on the LoDoPaB-CT dataset
(cf. Section 2.1) would require over 1000 × 513 × 3622 ≈ 67 × 109 parameters.

Adapted model designs exist for large CT data. They include knowledge about the
inversion process in the structure of the network. He et al. [28] introduced an adapted
two-part approach, called iRadonMap. The first part uses small fully-connected layers
with parameter sharing to reproduce the structure of the FBP. This is followed by a post-
processing network in the second part. Another approach is the iCT-Net [29], which
uses convolutions in combination with fully-connected layers for the inversion. An ex-
tended version of the iCT-Net, called iCTU-Net, is part of our comparison and a detailed
description can be found in Appendix A.8.

3.1.3. Learned Iterative Schemes

Similar to the fully learned approach, learned iterative methods also define a mapping
directly from the measurement space Y to the target domain X. The idea in this case is
that the network architecture is inspired by an analytic reconstruction operator T : Y → X
implicitly defined by an iterative scheme. The basic principle of unrolling can be explained
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by the example of learned gradient descent (see e.g., [17]). Let J(·, yδ) : X → R be a smooth
data discrepancy term and, possibly an additional regularization term. For an initial value
x[0] the gradient descent is defined via the iteration

x[k+1] = x[k] − ωk∇x J
(

x[k], yδ

)

,

with a step size ωk. Unrolling these iteration and stopping after K iterations, we can write
the K-th iteration as

T (yδ) := (ΛωK
◦ . . . ◦ Λω1)(x[0])

with Λωk
:= id − ωk∇x J(·, yδ). In a learned iteration scheme, the operators Λωk

are
replaced by neural networks. As an example of a learned iterative procedure, learned
primal-dual [19] was included in the comparison. A description of this method can be
found in the Appendix A.1.

3.1.4. Generative Approach

The goal of the statistical approach to inverse problems is to determine the conditional
distribution of the parameters given measured data. This statistical approach is often linked
to Bayes’ theorem [44]. In this Bayesian approach to inverse problems, the conditional
distribution p(x|yδ), called the posterior distribution, is supposed to be estimated. Based on
this posterior distribution, different estimators, such as the maximum a posterior solution
or the conditional mean, can be used as a reconstruction for the CT image. This theory
provides a natural way to model the noise behavior and to integrate prior information
into the reconstruction process. There are two different approaches that have been used
for CT. Adler et al. [45] use a conditional variant of a generative adversarial network
(GAN, [46]) to generate samples from the posterior. In contrast to this likelihood free
approach, Ardizzone et al. [47] designed a conditional variant of invertible neural networks
to directly estimate the posterior distribution. These conditional invertible neural networks
(CINN) were also applied to the reconstruction of CT images [48]. The CINN was included
for this benchmark. For a more detailed description, see Appendix A.5.

3.1.5. Unsupervised Methods

Unsupervised reconstruction methods just make use of the noisy measurements. They
are favorable in applications where ground truth data is not available. The parameters of
the model are chosen based on some discrepancy DY : Y × Y → R between the output of
the method and the measurements, for example,

min
Θ

DY

(

ATFΘ
(·), yδ

)

. (6)

In this example, the output of TFΘ
plays the role of the reconstruction x̂. However,

comparing the distance just in the measurement domain can be problematic. This applies
in particular to ill-posed reconstruction problems. For example, if the forward operator
A is not bijective, no/multiple reconstruction(s) might match the measurement perfectly
(ill-posed in the sense of Hadamard [49]). Another problem can occur for forward operators
with an unstable inversion, where small differences in the measurement space, for example,
due to noise, can result in arbitrary deviations in the reconstruction domain (ill-posed in
the sense of Nashed [50]). In general, the minimization problem (6) is combined with some
kind of regularization to mitigate these problems.

The optimization Formulation (6) is also used for the deep image prior (DIP) approach.
DIP takes a special role among all neural network methods. The parameters are not
determined on a dedicated training set, but during the reconstruction on the challenge data.
This is done for each reconstruction separately. One could argue that the DIP approach is
therefore not a learned method in the classical sense. The DIP approach, in combination
with total variation regularization, was successfully used for CT reconstruction [34]. It is
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part of the comparison on the LoDoPaB dataset in this paper. A detailed description is
given in Appendix A.7.

3.2. Classical Reconstruction Methods

In addition to the learned methods, we implemented the popularly used direct and
iterative reconstruction methods, henceforth referred to as classical methods. They can
often be described as a variational approach

T (yδ) ∈ arg min
x

DY(Ax, yδ) + αR(x),

where DY : Y ×Y → R is a data discrepancy and R : X → R is a regularizer. In this context
T : Y → X defines the reconstruction operator. The included methods in the benchmark
are filtered back-projection (FBP) [10,51], conjugate gradient least squares (CGLS) [52,53]
and anisotropic total variation minimization (TV) [54]. Detailed description of each classical
method along with pseudocode are given in Appendix B.

4. Evaluation Methodology

4.1. Evaluation Metrics

Two widely used evaluation metrics were used to assess the performance of the methods.

4.1.1. Peak Signal-to-Noise Ratio

The peak signal-to-noise ratio (PSNR) is measured by a log-scaled version of the mean
squared error (MSE) between the reconstruction x̂ and the ground truth image x† . PSNR
expresses the ratio between the maximum possible image intensity and the distorting noise

PSNR
(

x̂, x†
)

:= 10 log10

(

L2

MSE(x̂, x†)

)

, MSE
(

x̂, x†
)

:=
1
n

n

∑
i=1

∣

∣

∣
x̂i − x†

i

∣

∣

∣

2
. (7)

In general, higher PSNR values are an indication of a better reconstruction. The
maximum image value L can be chosen in different ways. In our study, we report two
different values that are commonly used:

• PSNR: In this case L = max(x†)− min(x†), that is, the difference between the highest
and lowest entry in x†. This allows for a PSNR value that is adapted to the range of the
current ground truth image. The disadvantage is that the PSNR is image-dependent
in this case.

• PSNR-FR: The same fixed L is chosen for all images. It is determined as the maximum
entry computed over all training ground truth images, that is, L = 1.0 for LoDoPaB-CT
and L = 0.0129353 for the Apple CT datasets. This can be seen as an (empirical) upper
limit of the intensity range in the ground truth. In general, a fixed L is preferable
because the scaling of the metric is image-independent in this case. This allows for a
direct comparison of PSNR values calculated on different images. The downside for
most CT applications is, that high values (=̂ dense material) are not present in every
scan. Therefore, the results can be too optimistic for these scans. However, based on
Equation (7), all mean PSNR-FR values can be directly converted for another fixed
choice of L.

4.1.2. Structural Similarity

The structural similarity (SSIM) [55] compares the overall image structure of ground
truth and reconstruction. It is based on assumptions about the human visual perception.
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Results lie in the range [0, 1], with higher values being better. The SSIM is computed
through a sliding window at M locations

SSIM
(

x̂, x†
)

:=
1
M

M

∑
j=1

(

2µ̂jµj + C1
)(

2Σj + C2
)

(

µ̂2
j + µ2

j + C1

)(

σ̂2
j + σ2

j + C2

) . (8)

In the formula above µ̂j and µj are the average pixel intensities, σ̂j and σj the variances
and Σj the covariance of x̂ and x† at the j-th local window. Constants C1 = (K1L)2 and
C2 = (K2L)2 stabilize the division. Following Wang et al. [55] we choose K1 = 0.01 and
K2 = 0.03 and a window size of 7 × 7. In accordance with the PSNR metric, results for the
two different choices for L are reported as SSIM and SSIM-FR (cf. Section 4.1.1).

4.1.3. Data Discrepancy

Checking data consistency, that is, the discrepancy DY(Ax̂, yδ) between the forward-
projected reconstruction and the measurement, can provide additional insight into the
performance of the reconstruction methods. Since noisy data is used for the comparison,
an ideal method would yield a data discrepancy that is close to the present noise level.

Poisson Regression Loss on LoDoPaB-CT Dataset

For the Poisson noise model used by LoDoPaB-CT, an equivalent to the negative log-
likelihood is calculated to evaluate the data consistency. It is conventional to employ the
negative log-likelihood for this task, since minimizing the data discrepancy is equivalent
to determining a maximum likelihood (ML) estimate (cf. Section 5.5 in [56] or Section 2.4
in [17]). Each element ②δ,j, j = 1, . . . , m, of a measurement ②δ, obtained according to (3)
and subsequently normalized by µmax, is associated with an independent Poisson model
of a photon count ◆̃1,j with

E(◆̃1,j) = E
(

N0 exp(−②δ,jµmax)
)

= N0 exp(−yjµmax),

where yj is a parameter that should be estimated [36]. A Poisson regression loss for y
is obtained by summing the negative log-likelihoods for all measurement elements and
omitting constant parts,

−ℓPois(y | yδ) = −
m

∑
j=1

N0 exp(−yδ,jµmax)(−yjµmax + ln(N0))− N0 exp(−yjµmax), (9)

with each yδ,j being the only available realization of ②δ,j. In order to evaluate the likelihood-
based loss (9) for a reconstructed image x̂ given yδ, the forward projection Ax̂ is passed
for y.

Mean Squared Error on Apple CT Data

On the Apple CT datasets we consider the mean squared error (MSE) data discrepancy,

MSEY(y, yδ) =
1
m
‖y − yδ‖

2
2. (10)

For an observation yδ with Gaussian noise (Dataset B), this data discrepancy term is
natural, as it is a scaled and shifted version of the negative log-likelihood of y given yδ. In
this noise setting, a good reconstruction usually should not achieve an MSE less than the
variance of the Gaussian noise, that is, MSEY(Ax̂, yδ) ≥ [0.05 1

m ∑
m
j=1(Ax†)j]

2. This can be
motivated intuitively by the conception that a reconstruction that achieves a smaller MSE
than the expected MSE of the ground truth probably fits the noise rather than the actual
data of interest.

In the setting of yδ being noise-free (Dataset A), the MSE of ideal reconstructions would
be zero. On the other hand the MSE being zero does not imply that the reconstruction
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matches the ground truth image because of the sparse-angle setting. Further, the MSE can
not be used to judge reconstruction quality directly, as crucial differences in image domain
may not be equally pronounced in the sinogram domain.

For the scattering observations (Dataset C), the MSE data discrepancy is considered,
too, for simplicity.

4.2. Training Procedure

While the reconstruction process with learned methods usually is efficient, their
training is more resource consuming. This limits the practicability of large hyperparameter
searches. It can therefore be seen as a drawback of a learned reconstruction method if they
require very specific hyperparameter choices for different tasks. As a result, it benefits a
fair comparison to minimize the amount of hyperparameter searches. In general, default
parameters, for example, from the original publications of the respective method, were
used as a starting point. For some of the methods, good choices had been determined for
the LoDoPaB-CT dataset first (cf. [34]) and were kept similar for the experiments on the
Apple CT datasets. Further searches were only performed if required to obtain reasonable
results. More details regarding the individual methods can be found in Appendix A. For
the classical methods, hyperparameters were optimized individually for each setting of the
Apple CT datasets (cf. Appendix B).

Most learned methods are trained using the mean squared error (MSE) loss. The
exceptions are the U-Net++ using a loss combining MSE and SSIM, the iCTU-Net using
an SSIM loss for the Apple CT datasets, and the CINN for which negative log-likelihood
(NLL) and an MSE term are combined (see Appendix A for more details). Training curves
for the trainings on the Apple CT datasets are shown in Appendix D. While we consider
the convergence to be sufficient, continuing some of the trainings arguably would slightly
improve the network. However, this mainly can be expected for those methods which are
comparably time consuming to train (approximately 2 weeks for 20 epochs), in which case
the limited number of epochs can be considered a fair regulation of resource usage.

Early stopping based on the validation performance is used for all trainings except for
the ISTA U-Net on LoDoPaB-CT and for the iCTU-Net.

Source code is publicly available in a supplementing github repository [39]. Further
records hosted by Zenodo provide the trained network parameters for the experiments on
the Apple CT Datasets [57], as well as the submitted LoDoPaB-CT Challenge reconstruc-
tions [58] and the Apple CT test reconstructions of the 100 selected slices in all considered
settings [59]. Source code and network parameters for some of the LoDoPaB-CT experi-
ments are included in the DIVαℓ library [60], for others the original authors provide public
repositories containing source code and/or parameters.

5. Results

5.1. LoDoPaB-CT Dataset

Ten different reconstruction methods were evaluated on the challenge set of the
LoDoPaB-CT dataset. Reconstructions from these methods were either submitted as part
of the CT Code Sprint 2020 (http://dival.math.uni-bremen.de/code_sprint_2020/, last
accessed: 1 March 2021) (15 June–31 August 2020) or in the period after the event (1
September–31 December 2020).

5.1.1. Reconstruction Performance

In order to assess the quality of the reconstructions, the PSNR and the SSIM were cal-
culated. The results from the official challenge website (https://lodopab.grand-challenge.
org/, last accessed: 1 March 2021) are shown in Table 2. The differences between the
learned methods are generally small. Notably, learned primal-dual yields the best perfor-
mance with respect to both the PSNR and the SSIM. The following places are occupied
by post-processing approaches, also with only minor differences in terms of the metrics.
Of the other methods, DIP + TV stands out, with relatively good results for an unsuper-

http://dival.math.uni-bremen.de/code_sprint_2020/
https://lodopab.grand-challenge.org/
https://lodopab.grand-challenge.org/
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vised method. DIP + TV is able to beat the supervised method iCTU-Net. The classical
reconstruction models perform the worst of all methods. In particular, the performance
of FBP shows a clear gap with the other methods. While learned primal-dual performs
slightly better than the post-processing methods, the difference is not as significant as one
could expect, considering that it incorporates the forward operator directly in the network.
This could be explained by the beneficial combination of the convolutional architectures
used for the post-processing, which are observed to perform well on a number of image
processing tasks, and a sufficient number of available training samples. Otero et al. [34]
investigated the influence of the size of the training dataset on the performance of different
learned procedures on the LoDoPaB-CT dataset. Here, a significant difference is seen
between learned primal-dual and other learned procedures when only a small subset of
the training data is used.

Table 2. Results on the LoDoPaB-CT challenge set. Methods are ranked by their overall performance. The highest value for
each metric is highlighted. All values are taken from the official challenge leaderboard https://lodopab.grand-challenge.
org/evaluation/challenge/leaderboard/ (accessed on 4 January 2021).

Model PSNR PSNR-FR SSIM SSIM-FR Number of Parameters

Learned P.-D. 36.25 ± 3.70 40.52 ± 3.64 0.866 ± 0.115 0.926 ± 0.076 874,980
ISTA U-Net 36.09 ± 3.69 40.36 ± 3.65 0.862 ± 0.120 0.924 ± 0.080 83,396,865
U-Net 36.00 ± 3.63 40.28 ± 3.59 0.862 ± 0.119 0.923 ± 0.079 613,322
MS-D-CNN 35.85 ± 3.60 40.12 ± 3.56 0.858 ± 0.122 0.921 ± 0.082 181,306
U-Net++ 35.37 ± 3.36 39.64 ± 3.40 0.861 ± 0.119 0.923 ± 0.080 9,170,079
CINN 35.54 ± 3.51 39.81 ± 3.48 0.854 ± 0.122 0.919 ± 0.081 6,438,332
DIP + TV 34.41 ± 3.29 38.68 ± 3.29 0.845 ± 0.121 0.913 ± 0.082 hyperp.
iCTU-Net 33.70 ± 2.82 37.97 ± 2.79 0.844 ± 0.120 0.911 ± 0.081 147,116,792
TV 33.36 ± 2.74 37.63 ± 2.70 0.830 ± 0.121 0.903 ± 0.082 (hyperp.)
FBP 30.19 ± 2.55 34.46 ± 2.18 0.727 ± 0.127 0.836 ± 0.085 (hyperp.)

5.1.2. Visual Comparison

A representative reconstruction of all learned methods and the classical baseline
is shown in Figure 4 to enable a qualitative comparison of the methods. An area of
interest around the spine is magnified to compare the reproduction of small details and
the sharpness of edges in the image. Some visual differences can be observed between
the reconstructions. The learned methods produce somewhat smoother reconstructions
in comparison to the ground truth. A possible explanations for the smoothness is the
minimization of the empirical risk with respect to some variant of the L2-loss during
the training of most learned methods, which has an averaging effect. The convolutional
architecture of the networks can also have an impact. Adequate regularization during
training and/or inference can be beneficial in this case (cf. Section 6.2.2 for a suitable class
of regularizers). Additionally, the DIP + TV reconstruction appears blurry, which can be
explained by the fact that it is the only unsupervised method in this comparison and thus
has no access to ground truth data. The U-Net and the two modifications, U-Net++ and
ISTA U-Net, show only slight visual differences on this example image.

https://lodopab.grand-challenge.org/evaluation/challenge/leaderboard/
https://lodopab.grand-challenge.org/evaluation/challenge/leaderboard/
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Figure 4. Reconstructions on the challenge set from the LoDoPaB-CT dataset. The window [0, 0.45] corresponds to a HU
range of ≈[−1001, 831] .

5.1.3. Data Consistency

The mean data discrepancy of all methods is shown in Figure 5, plotted against
their reconstruction performance. The mean difference between the noise-free and noisy
measurements is included as a reference. Good-performing models should be close to this
empirical noise level. Values above the mean can indicate a sub-optimal data consistency,
while values below can be a sign of overfitting to the noise. A data consistency term is only
explicitly used in the TV and DIP + TV model. Nevertheless, the mean data discrepancy
for most of the methods is close to the empirical noise level. The only visible outliers are
the FBP and the iCTU-Net. A list of all mean data discrepancy values, including standard
deviations, can be found in Table 3.
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Figure 5. Mean data discrepancy −�Pois between the noisy measurements and the forward-projected
reconstructions, respectively the noise-free measurements. Evaluation is done on the LoDoPaB
challenge images.

Table 3. Mean and standard deviation of data discrepancy−�Pois. Evaluation is done on the LoDoPaB
challenge images.

Method −�Pois(Ax̂ | yδ)/10
9

Learned Primal-Dual −4.022182± 0.699460
ISTA U-Net −4.022185± 0.699461
U-Net −4.022185± 0.699460
MS-D-CNN −4.022182± 0.699460
U-Net++ −4.022163± 0.699461
CINN −4.022184± 0.699460
DIP + TV −4.022183± 0.699466
iCTU-Net −4.022038± 0.699430
TV −4.022189± 0.699463
FBP −4.021595± 0.699282

−�Pois(Ax† | yδ)/109

Ground truth −4.022184± 0.699461

5.2. Apple CT Datasets

A total of 6 different learned methods were evaluated on the Apple CT data. This
set included post-processing methods (MS-D-CNN, U-Net, ISTA U-Net), learned iterative
methods (learned primal-dual), fully learned approaches (iCTU-Net), and generative
models (CINN). As described in Section 2.2, different noise cases (noise-free, Gaussian
noise and scattering noise) and different numbers of angles (50, 10, 5, 2) were used. In total,
each model was trained on the 12 different settings of the Apple CT dataset. In addition
to the learned methods, three classical techniques, namely CGLS, TV, and FBP, have been
included as a baseline.

5.2.1. Reconstruction Performance

A subset of 100 data samples from the test set was selected for the evaluation (cf.
Section 2.2). The mean PSNR and SSIM values for all experiments can be found in Table 4.
Additionally, Tables A3–A5 in the appendix provide standard deviations and PSNR-FR
and SSIM-FR values.
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Table 4. Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) (adapted to the data range of each ground truth
image) for the different noise settings on the Apple CT datasets. Best results are highlighted in gray. See Figures A7 and A8
for a visualization.

Noise-Free PSNR SSIM

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 38.72 35.85 30.79 22.00 0.901 0.870 0.827 0.740
ISTA U-Net 38.86 34.54 28.31 20.48 0.897 0.854 0.797 0.686
U-Net 39.62 33.51 27.77 19.78 0.913 0.803 0.803 0.676
MS-D-CNN 39.85 34.38 28.45 20.55 0.913 0.837 0.776 0.646
CINN 39.59 34.84 27.81 19.46 0.913 0.871 0.762 0.674
iCTU-Net 36.07 29.95 25.63 19.28 0.878 0.847 0.824 0.741
TV 39.27 29.00 22.04 15.95 0.915 0.783 0.607 0.661
CGLS 33.05 21.81 12.60 15.25 0.780 0.619 0.537 0.615
FBP 30.39 17.09 15.51 13.97 0.714 0.584 0.480 0.438

Gaussian Noise PSNR SSIM

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 36.62 33.76 29.92 21.41 0.878 0.850 0.821 0.674
ISTA U-Net 36.04 33.55 28.48 20.71 0.871 0.851 0.811 0.690
U-Net 36.48 32.83 27.80 19.86 0.882 0.818 0.789 0.706
MS-D-CNN 36.67 33.20 27.98 19.88 0.883 0.831 0.748 0.633
CINN 36.77 31.88 26.57 19.99 0.888 0.771 0.722 0.637
iCTU-Net 32.90 29.76 24.67 19.44 0.848 0.837 0.801 0.747
TV 32.36 27.12 21.83 16.08 0.833 0.752 0.622 0.637
CGLS 27.36 21.09 14.90 15.11 0.767 0.624 0.553 0.616
FBP 27.88 17.09 15.51 13.97 0.695 0.583 0.480 0.438

Scattering Noise PSNR SSIM

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 37.80 34.19 27.08 20.98 0.892 0.866 0.796 0.540
ISTA U-Net 35.94 32.33 27.41 19.95 0.881 0.820 0.763 0.676
U-Net 34.96 32.91 26.93 18.94 0.830 0.784 0.736 0.688
MS-D-CNN 38.04 33.51 27.73 20.19 0.899 0.818 0.757 0.635
CINN 38.56 34.08 28.04 19.14 0.915 0.863 0.839 0.754
iCTU-Net 26.26 22.85 21.25 18.32 0.838 0.796 0.792 0.765
TV 21.09 20.14 17.86 14.53 0.789 0.649 0.531 0.611
CGLS 20.84 18.28 14.02 14.18 0.789 0.618 0.547 0.625
FBP 21.01 15.80 14.26 13.06 0.754 0.573 0.475 0.433

The biggest challenge with the noise-free dataset is that the measurements become
increasingly undersampled as the number of angles decreases. As expected, the recon-
struction quality in terms of PSNR and SSIM deteriorates significantly as the number of
angles decreases. In comparison with LoDoPaB-CT, no model performs best in all scenarios.
Furthermore, most methods were trained to minimize the MSE between the output image
and ground truth. The MSE is directly related to the PSNR. However, minimizing the MSE
does not necessarily translate into a high SSIM. In many cases, the best method in terms
of PSNR does not result in the best SSIM. These observations are also evident in the two
noisy datasets. Noteworthy is the performance of the classical TV method on the noise-free
dataset for 50 angles. This result is comparable to the best-performing learned methods,
while the other classical approaches show a clear gap.

Noisy measurements, in addition to undersampling, present an additional difficulty
on the Gaussian and scattering datasets. Intuitively, one would therefore expect a worse
performance compared to the noise-free case. In general, a decrease in performance can be
observed. However, this effect depends on the method and the noise itself. For example,
the negative impact on classical methods is much more substantial for the scattering
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noise. In contrast, the learned methods often perform slightly worse on the Gaussian
noise. There are also some outliers with higher values than on the noise-free set. Possible
explanations are the hyperparameter choices and the stochastic nature of the model training.
Overall, the learned approaches can reach similar performances on the noisy data, while
the performance of classical methods drops significantly. An additional observation can be
made when comparing the results between Gaussian and scattering noise. For Gaussian
noise with 50 angles, all learned methods, except for the iCTU net, achieve a PSNR of at
least 36 dB. In contrast, the variation on scattering noise with 50 angles is much larger.
The CINN obtains a much higher PSNR of 38.56 dB than the post-processing U-Net with
34.96 dB.

As already observed on the LoDoPaB dataset, the post-processing methods (MS-D-
CNN, U-Net and ISTA U-Net) show only minor differences in all noise cases. This could
be explained by the fact that these methods are all trained with the same objective function
and differ only in their architecture.

5.2.2. Visual Comparison

Figure 6 shows reconstructions from all learned methods for an apple slice with bitter
pit. The decrease in quality with the decrease in the number of angles is clearly visible. For
2 angles, none of the methods are able to accurately recover the shape of the apple. The
iCTU-Net reconstruction has sharp edges for the 2-angle case, while the other methods
produce blurry reconstructions.









    













Figure 6. Visual overview of one apple slice with bitter pit for different learned methods. Evaluated on Gaussian noise. The
quality of the reconstruction deteriorates very quickly for a reduced number of angles. For the 2-angle case, none of the
methods can reconstruct the exact shape of the apple.

The inner structure, including the defects, is accurately reconstructed for 50 angles
by all methods. The only exception is the iCTU-Net. Reconstructions from this network
show a smooth interior of the apple. The other methods also result in the disappearance of
smaller defects with fewer measurement angles. Nonetheless, a defect-detection system
might still be able to sort out the apple based on the 5-angle reconstructions. The 2-angle
case can be used to assess failure modes of the different approaches. The undersampling
case is so severe that a lot of information is lost. However, the iCTU-Net is able to produce
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a smooth image of an apple, but it has few similarities with the ground truth apple. It
appears that the models have memorized the roundness of an apple and produce a round
apple that has little in common with the real apple except for its size and core.

5.2.3. Data Consistency

The data consistency is evaluated for all three Apple CT datasets. The MSE is used
to measure the discrepancy. It is the canonical choice for measurements with Gaussian
noise (cf. Section 4.1.3). Table A6 in the appendix contains all MSE values and standard
deviations. Figure 7 shows the results depending on the number of angles for the noise-free
and Gaussian noise dataset.

Figure 7. Mean squared error (MSE) data discrepancy between the measurements and the forward-projected reconstructions
for the noise-free (left) and Gaussian noise (right) dataset. The MSE values are plotted against the number of angles used
for the reconstruction. For the Gaussian dataset, the mean data discrepancy between noisy and noise-free measurements is
given for reference. Evaluation is done on 100 Apple CT test images. See Table A6 for the exact values.

In the noise-free setup, the optimal MSE value is zero. Nonetheless, an optimal
data consistency does not correspond to perfect reconstructions in this case. Due to the
undersampling of the measurements, the discretized linear forward operator A has a non-
trivial null space, that is, x̃ ∈ X, apart from x̃ = 0, for which Ax̃ = 0. Any element from
the null space can be added to the true solution x† without changing the data discrepancy

A
(
x† + x̃

)
= Ax† + Ax̃ = Ax† + 0 = Ax† = y.

In the Gaussian setup, the MSE between noise-free and noisy measurements is used
as a reference for a good data discrepancy. The problem from the undersampling is also
relevant in this setting.

Both setups show an increase in the data discrepancy with fewer measurement an-
gles. The reason for the increase is presumably the growing number of deviations in the
reconstructions. In the Gaussian noise setup, the high data discrepancy of all learned
methods for 2 angles coincides with the poor reconstructions of the apple slice in Figure 6.
Only the TV method, which enforces data consistency during the reconstruction, keeps a
constant level. The main problem for this approach are the ambiguous solutions due to the
undersampling. The TV method is not able to identify the correct solution given by the
ground truth. Therefore, the PSNR and SSIM values are also decreasing.

Likewise, the data consistency was analyzed for the dataset with scattering noise. The
MSE values of all learned methods are close to the empirical noise level. In contrast, FBP
and TV have a much smaller discrepancy. Therefore, their reconstructions are most likely
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influenced by the scattering noise. An effect that is also reflected in the PSNR and SSIM
values in Table 4.

6. Discussion

Among all the methods we compared, there is no definite winner that is the best on
both LoDoPaB-CT and Apple CT. Learned primal-dual, as an example of a learned iterative
method, is the best method on LoDoPaB-CT, in terms of both PSNR and SSIM, and also
gives promising results on Apple CT. However, it should be noted that the differences in
performance between the learned methods are relatively small. The ISTA U-Net, second
place in terms of PSNR on LoDoPaB-CT, scores only 0.14 dB less than learned primal-dual.
The performance in terms of SSIM is even closer on LoDoPaB-CT. The best performing
learned method resulted in an SSIM that was only 0.022 higher than the last placed learned
method. The observation that the top scoring learned methods did not differ greatly in
terms of performance has also been noted in the fastMRI challenge [61]. In addition to the
performance of the learned methods, other characteristics are also of interest.

6.1. Computational Requirements and Reconstruction Speed

When discussing the computational requirements of deep learning methods, it is
important to distinguish between training and inference. Training usually requires signifi-
cantly more processing power and memory. All outputs of intermediate layers have to be
stored for the determination of the gradients during backpropagation. Inference is much
faster and less resource-intensive. In both cases, the requirements are directly influenced
by image size, network architecture and batch size.

A key feature and advantage of the learned iterative methods, post-processing meth-
ods and fully-learned approaches is the speed of reconstruction. Once the network is
trained, the reconstruction can be obtained by a simple forward pass of the model. Since
the CINN, being a generative model, draws samples from the posterior distribution, many
forward passes are necessary to well approximate the mean or other moments. Therefore,
the quality of the reconstruction may depend on the number of forward passes [48]. The
DIP + TV method requires a separate model to be trained to obtain a reconstruction. As
a result, reconstruction is very time-consuming and resource-intensive, especially on the
972 px × 972 px images in the Apple CT datasets. However, DIP + TV does not rely on a
large, well-curated dataset of ground truth images and measurements. As an unsupervised
method, only measurement data is necessary. The large size of the Apple CT images is also
an issue for the other methods. In comparison to LoDoPaB-CT, the batch size had to be
reduced significantly in order to train the learned models. This small batch size can cause
instability in the training process, especially for CINN (cf. Figure A14).

Transfer to 3D Reconstruction

The reconstruction methods included in this study were evaluated based on the
reconstruction of individual 2D slices. In real applications, however, the goal is often to
obtain a 3D reconstruction of the volume. This can be realized with separate reconstructions
of 2D slices, but (learned) methods might benefit from additional spatial information.
On the other hand, a direct 3D reconstruction can have a high demand on the required
computing power. This is especially valid when training neural networks.

One way to significantly reduce the memory consumption of backpropagation is to
use invertible neural networks (INN). Due to the invertibility, the intermediate activations
can be calculated directly and do not have to be stored in memory. INNs were successfully
applied to 3D reconstructions tasks in MRI [62] and CT [63]. The CINN approach from our
comparison can be adapted in a similar way for 3D data. In most post-processing methods,
the U-Net can be replaced by an invertible iUnet, as proposed by Etmann et al. [63].

Another option is the simultaneous reconstruction of only a part of the volume. The
information from multiple neighboring slices is used in this case, which is also referred
to as 2.5D reconstruction. Networks that operate on this scenario usually have a mixture
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of 2D and 3D convolutional layers [64]. The goal is to strike a balance between the speed
and memory advantage of the 2D scenario and the additional information from the third
dimension. All deep learning methods included in this study would be suitable for 2.5D
reconstruction with slight modifications to their network architecture.

Overall, 2.5D reconstruction can be seen as an intermediate step that can already be re-
alized with many learned methods. The pure 3D case, on the other hand, requires specially
adapted deep learning approaches. Technical innovations such as mixed floating point
precision and increasing computing power may facilitate the transition in the coming years.

6.2. Impact of the Datasets

The type, composition and size of a dataset can have direct impact on the performance
of the models. The observed effects can provide insight into how the models can be
improved or how the results translate to other datasets.

6.2.1. Number of Training Samples

A large dataset is often required to successfully train deep learning methods. In order
to assess the impact of the number of data pairs on the performance of the methods, we
consider the Apple CT datasets. The scattering noise dataset (Dataset C), with 5280 training
images, is only about 10% as large as the noise free dataset (Dataset A) and the Gaussian
noise dataset (Dataset B). Here it can be noted that the iCTU net, as an example of a fully
learned approach, performs significantly worse on this smaller dataset than on dataset
A and dataset B (26.26 dB PSNR on Dataset C with 50 angles, 36.07 dB and 32.90 dB on
Dataset A and Dataset B with 50 angles, respectively). This drop in performance could
also be caused by the noise case. However, Baguer et al. [34] have already noted in their
work that the performance of fully learned approaches heavily depends on the number of
training images. This could be explained by the fact that fully learned methods need to
infer most of the information about the inversion process purely from data. Unlike learned
iterative methods, such as learned primal-dual, fully learned approaches do not incorporate
the physical model. A drop in performance due to a smaller training set was not observed
for the other learned methods. However, 5280 training images is still comprehensive.
Baguer et al. [34] also investigated the low-data regime on LoDoPaB-CT, down to around
30 training samples. In their experiments, learned primal-dual worked well in this scenario,
but was surpassed by the DIP + TV approach. The U-Net post-processing lined up between
learned Primal-Dual and the fully learned method. Therefore, the amount of available
training data should be considered when choosing a model. To enlarge the training set, the
DIP + TV approach can also be used to generate pseudo ground truth data. Afterwards, a
supervised method with a fast reconstruction speed can be trained to mimic the behavior
of DIP + TV.

6.2.2. Observations on LoDoPaB-CT and Apple CT

The samples and CT setups differ greatly between the two datasets. The reconstruc-
tions obtained using the methods compared in this study reflect these differences to some
extent, but there were also some effects that were observed for both datasets.

The sample reconstructions in Figures 4 and 6 show that most learned methods
produce smooth images. The same observation can be made for TV, where smoothness
is an integral part of the modeling. An extension by a suitable regularization can help to
preserve edges in the reconstruction without the loss of small details, or the introduction
of additional noise. One possibility is to use diffusion filtering [65], for example, variants
of the Perona-Malik diffusion [66] in this role. Diffusion filtering was also successfully
applied as a post-processing step for CT [67]. Whether smoothness of reconstructions is
desired depends on the application and further use of the images, for example, visual or
computer-aided diagnosis, screening, treatment planning, or abnormality detection. For
the apple scans, a subsequent task could be the detection of internal defects for sorting them
into different grades. The quality of the reconstructions deteriorates with the decreasing
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number of measurement angles. Due to increasing undersampling, the methods have to
interpolate more and more information to find an adequate solution. The model output is
thereby influenced by the training dataset.

The effects of severe undersampling can be observed in the 2-angle setup in Figure 6.
All reconstructions of the test sample show a prototypical apple with a round shape
and a core in the center. The internal defects are not reproduced. One explanation is
that supervised training aims to minimize the empirical risk on the ground truth images.
Therefore, only memorizing and reconstructing common features in the dataset, like the
roundness and the core, can be optimal in some ways to minimize the empirical risk on
severely undersampled training data. Abnormalities in the data, such as internal defects,
are not captured in this case. This effect is subsequently transferred to the reconstruction of
test data. Hence, special attention should be paid to the composition of the training data.
As shown in the next Section 6.2.3, this is particularly important when the specific features
of interest are not well represented in the training set.

In the 5-angle setup, all methods are able to accurately reconstruct the shape of the
apple. Internal defects are partially recovered only by the post-processing methods and
the CINN. These approaches all use FBP reconstructions as a starting point. Therefore,
they rely on the information that is extracted by the FBP. This can be useful in the case of
defects but aggravating for artifacts in the FBP reconstruction. The CINN approach has
the advantage of sampling from the space of possible solutions and the evaluability of the
likelihood under the model. This information can help to decide whether objects in the
reconstruction are really present.

In contrast, Learned Primal-Dual and the iCTU-Net work directly on the measure-
ments. They are more flexible with respect to the extraction of information. However, this
also means that the training objective strongly influences which aspects of the measure-
ments are important for the model. Tweaking the objective or combining the training of
a reconstruction and a detection model, that is, end-to-end learning or task-driven recon-
struction, might be able to increase the model performance in certain applications [68,69].

6.2.3. Robustness to Changes in the Scanning Setup

A known attribute of learned methods is that they can often only be applied to
data similar to the training data. It is often unclear how a method trained in one setting
generalizes to a different setting. In CT, such a situation could for example arise due to
altered scan acquisition settings or application to other body regions. Switching between
CT devices from different manufacturers can also have an impact.

As an example, we evaluated the U-Net on a different number of angles than it was
trained on. The results of this experiment are shown in Table 5. In most setups the PSNR
drops by at least 10 dB when evaluated on a different setting. In practice, the angular
sampling pattern may change and it would be cumbersome to train a separate model for
each pattern.

Table 5. Performance of a U-Net trained on the Apple CT dataset (scattering noise) and evaluated on different angular
samplings. In general, a U-Net trained on a specific number of angles fails to produce good results on a different number of
angles. PSNR and SSIM are calculated with image-dependent data range.

Training
Evaluation 50 Angles 10 Angles 5 Angles 2 Angles

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

50 angles 39.62 0.913 16.39 0.457 11.93 0.359 8.760 0.252
10 angles 27.59 0.689 33.51 0.803 18.44 0.607 9.220 0.394
5 angles 24.51 0.708 26.19 0.736 27.77 0.803 11.85 0.549
2 angles 15.57 0.487 14.59 0.440 15.94 0.514 19.78 0.676
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6.2.4. Generalization to Other CT Setups

The LoDoPaB-CT and Apple CT datasets were acquired by simulating parallel-beam
measurements, based on the Radon transform. This setup facilitates large-scale experi-
ments with many example images, whereas the underlying operators in the algorithms
have straightforward generalizations to other geometries. Real-world applications of CT
are typically more complex. For example, the standard scanning geometries in medical
applications are helical fan-beam or cone-beam [36]. In addition, the simulation model
does not cover all physical effects that may occur during scanning. For this reason, the
results can only be indicative of performance on real data.

However, learned methods are known to adapt well to other setups when retrained
from scratch on new samples. It is often not necessary to adjust the architecture for this
purpose, other than by replacing the forward operator and its adjoint where they are
involved. For example, most learned methods show good performance on the scattering
observations, whereas the classical methods perform worse compared to the Gaussian
noise setup. This can be explained by the fact that the effect of scattering is structured,
which, although adding to the instability of the reconstruction problem, can be learned to
be (partially) compensated for. In contrast, classical methods require the reconstruction
model to be manually adjusted in order to incorporate knowledge about the scattering.
If scattering is treated like an unknown distortion (i.e., a kind of noise), such as in our
comparison, the classical assumption of pixel-wise independence of the noise is violated by
the non-local structure of the scattering. Convolutional neural networks are able to capture
these non-local effects.

6.3. Conformance of Image Quality Scores and Requirements in Real Applications

The goal in tomographic imaging is to provide the expert with adequate information
through a clearly interpretable reconstructed image. In a medical setting, this can be an
accurate diagnosis or plan for an operation; and in an industrial setting, the image may be
used for detection and identification of faults or defects as part of quality control.

PSNR and SSIM, among other image quality metrics, are commonly used in publica-
tions and data challenges [61] to evaluate the quality of reconstructed medical images [70].
However, there can be cases in which PSNR and SSIM are in a disagreement. Although
not a huge difference, the results given in Table 4 are a good example of this. This often
leads to the discussion of which metric is better suited for a certain application. The PSNR
expresses a pixel-wise difference between the reconstructed image and its ground truth,
whereas the SSIM checks for local structural similarities (cf. Section 4.1). A common issue
with both metrics is that a local inaccuracy in the reconstructed image, such as a small
artifact, would only have a minor influence on the final assessment. The effect of the artifact
is further downplayed when the PSNR or SSIM values are averaged over the test samples.
This is evident in some reconstructions from the DIP + TV approach, where an artifact
was observed on multiple LoDoPaB-CT reconstructions whereas this is not reflected in
the metrics. This artifact is highlighted with a red circle in the DIP + TV reconstruction in
Figure A9.

An alternative or supporting metric to PSNR and SSIM is visual inspection of the
reconstructions. A visual evaluation can be done, for example, through a blind study
with assessments and rating of reconstructions by (medical) experts. However, due to
the large amount of work involved, the scope of such an evaluation is often limited. The
2016 Low Dose CT Grand Challenge [9] based their comparison on the visibility of liver
lesions, as evaluated by a group of physicians. Each physician had to rate 20 different
cases. The fastMRI Challenge [61] employed radiologists to rank MRI reconstructions. The
authors were able to draw parallels between the quantitative and blind study results, which
revealed that, in their data challenge, SSIM was a reasonable estimate for the radiologists’
ranking of the images. In contrast, Mason et al. [71] found differences in their study
between several image metrics and experts’ opinions on reconstructed MRI images.
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In industrial settings, PSNR or related pixel-based image quality metrics fall short
on assessing the accuracy or performance of a reconstruction method when physical
and hardware-related factors in data acquisition play a role in the final reconstruction.
These factors are not accurately reflected in the image quality metrics, and therefore the
conclusions drawn may not always be applicable. An alternative practice is suggested
in [72], in which reconstructions of a pack of glass beads are evaluated using pixel-based
metrics, such as contrast-to-noise ratio (CNR), and pre-determined physical quantification
techniques. The physical quantification is object-specific, and assessment is done by
extracting a physical quality of the object and comparing this to a reference size or shape.
In one of the case studies, the CNR values of iterated reconstructions suggest an earlier
stopping for the best contrast in the image, whereas a visual inspection reveals the image
with the “best contrast” to be too blurry and the bead un-segmentable. The Apple CT
reconstructions can be assessed in a similar fashion, where we look at the overall shape of
a healthy apple, as well as the shape and position of its pit.

6.4. Impact of Data Consistency

Checking the discrepancy between measurement and forward-projected reconstruc-
tion can provide additional insight into the quality of the reconstruction. Ground truth
data is not needed in this case. However, an accurate model A of the measurement process
must be known. Additionally, the evaluation must take into account the noise type and
level, as well as the sampling ratio.

Out of all tested methods, only the TV, CGLS and DIP + TV approach use the discrep-
ancy to the measurements as (part of) their minimization objective for the reconstruction
process. Still, the experiments on LoDoPaB-CT and Apple CT showed data consistency on
the test samples for most of the methods. Based on these observations, data consistency
does not appear to be a problem with test samples coming from a comparable distribu-
tion to the training data. However, altering the scan setup can significantly reduce the
reconstruction performance of learned methods (cf. Section 6.2.3). Verification of the data
consistency can serve as an indicator without the need for ground truth data or continuous
visual inspection.

Another problem can be the instability of some learned methods, which is also known
under the generic term of adversarial attacks [73]. Recent works [74,75] show that some
methods, for example, fully learned and post-processing approaches, can be unstable. Tiny
perturbations in the measurements may result in severe artifacts in the reconstructions.
Checking the data discrepancy may also help in this case. Nonetheless, severe artifacts
were also found in some reconstructions from the DIP + TV method on LoDoPaB-CT.

All in all, including a data consistency objective in training (bi-directional loss), could
further improve the results from learned approaches. Checking the discrepancy dur-
ing the application of trained models can also provide additional confidence about the
reconstructions’ accuracy.

6.5. Recommendations and Future Work

As many learned methods demonstrated similar performance in both low-dose CT
and sparse-angle CT setups, further attributes have to be considered when selecting a
learned method for a specific application. As discussed above, consideration should also
be given to reconstruction speed, availability of training data, knowledge of the physical
process, data consistency, and subsequent image analysis tasks. An overview can be found
in Table 6. From the results of our comparison, some recommendations for the choice and
further investigation of deep learning methods for CT reconstruction emerge.
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Table 6. Summary of selected reconstruction method features. The reconstruction error ratings reflect the average per-
formance improvement in terms of the evaluated metrics PSNR and SSIM compared to filtered back-projection (FBP).
Specifically, for LoDoPaB-CT improvement quotients are calculated for PSNR and SSIM, and the two are averaged; for the
Apple CT experiments the quotients are determined by first averaging PSNR and SSIM values within each noise setting over
the four angular sampling cases, next computing improvement quotients independently for all three noise settings and for
PSNR and SSIM, and finally averaging over these six quotients. GPU memory values are compared for 1-sample batches.

Model

Reconstruction

Error (Image Metrics)

Training

Time

Recon-
Struction

Time
GPU

Memory

Learned

Para-
Meters

Uses DY

Discre-
Pancy

Operator

Required

Learned P.-D. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ no ⋆ ⋆ ⋆

ISTA U-Net ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ no ⋆ ⋆

U-Net ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ no ⋆ ⋆

MS-D-CNN ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ no ⋆ ⋆

U-Net++ ⋆ ⋆ - ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ no ⋆ ⋆

CINN ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ no ⋆ ⋆

DIP + TV ⋆ ⋆ ⋆ - - ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 3+ yes ⋆ ⋆ ⋆ ⋆

iCTU-Net ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ no ⋆

TV ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ - ⋆ ⋆ ⋆ ⋆ 3 yes ⋆ ⋆ ⋆ ⋆

CGLS - ⋆ ⋆ ⋆ ⋆ - ⋆ ⋆ 1 yes ⋆ ⋆ ⋆ ⋆

FBP ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ - ⋆ ⋆ 2 no ⋆ ⋆ ⋆ ⋆

Legend LoDoPaB Apple CT Rough values for Apple CT Dataset B
Avg. improv. over FBP (varying for different setups and datasets)

⋆ ⋆ ⋆ ⋆ 0% 0–15% >2 weeks >10 min >10 GiB >108 Direct
⋆ ⋆ ⋆ 12–16% 25–30% >5 days >30 s >3 GiB >106 In network
⋆ ⋆ 17–20% 40–45% >1 day >0.1 s >1.5 GiB >105 For input
⋆ 50–60% ≤0.02 s ≤1 GiB ≤105 Only concept

Overall, the learned primal-dual approach proved to be a solid choice on the tested
low photon count and sparse-angle datasets. The applicability of the method depends
on the availability and fast evaluation of the forward and the adjoint operators. Both
requirements were met for the 2D parallel beam simulation setup considered. However,
without adjustments to the architecture, more complicated measurement procedures and
especially 3D reconstruction could prove challenging. In contrast, the post-processing
methods are more flexible, as they only rely on some (fast) initial reconstruction method.
The performance of the included post-processing models was comparable to learned
primal-dual. A disadvantage is the dependence on the information provided by the
initial reconstruction.

The other methods included in this study are best suited for specific applications due
to their characteristics. Fully learned methods do not require knowledge about the forward
operator, but the necessary amount of training data is not available in many cases. The
DIP + TV approach is on the other side of the spectrum, as it does not need any ground
truth data. One downside is the slow reconstruction speed. However, faster reconstruction
methods can be trained based on pseudo ground truth data created by DIP + TV. The CINN
method allows for the evaluation of the likelihood of a reconstruction and can provide
additional statistics from the sampling process. The invertible network architecture also
enables the model to be trained in a memory-efficient way. The observed performance
for 1000 samples per reconstruction was comparable to the post-processing methods. For
time-critical applications, the number of samples would need to be lowered considerably,
which can deteriorate the image quality.

In addition to the choice of model, the composition and amount of the training data
also plays a significant role for supervised deep learning methods. The general difficulty
of application to data that deviate from the training scenario was also observed in our
comparison. Therefore, the training set should either contain examples of all expected
cases or the model must be modified to include guarantees to work in divergent scenarios,
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such as different noise levels or number of angles. Special attention should also be directed
to subsequent tasks. Adjusting the training objective or combining training with succes-
sive detection models can further increase the value of the reconstruction. Additionally,
incorporating checks for the data consistency during training and/or reconstruction can
help to detect and potentially prevent deviations in reconstruction quality. This potential is
currently underutilized by many methods and could be a future improvement. Further-
more, the potential of additional regularization techniques to reduce the smoothness of
reconstructions from learned methods should be investigated.

Our comparison lays the foundation for further research that is closer to real-world
applications. Important points are the refinement of the simulation model, the use of
real measurement data and the transition to fan-beam/cone-beam geometries. The move
to 3D reconstruction techniques and the study of the influence of the additional spatial
information is also an interesting aspect. Besides the refinement of the low photon count
and sparse-angle setup, a future comparison should include limited-angle CT. A first
application of this setting to Apple CT can be found in the dataset descriptor [38].

An important aspect of the comparison was the use of PSNR and SSIM image quality
metrics to rate the produced reconstructions. In the future, this assessment should be
supplemented by an additional evaluation of the reconstruction quality of some samples
by (medical) professionals. A multi-stage blind study for the evaluation of unmarked
reconstructions, including or excluding the (un)marked ground truth image, may provide
additional insights.

Finally, a comparison is directly influenced by the selection of the included models.
While we tested a broad range of different methods, there are still many missing types,
for example, learned regularization [18] and null space networks [76]. We encourage
readers to test additional reconstruction methods on the datasets from our comparison and
submit reconstructions to the respective data challenge websites: (https://lodopab.grand-
challenge.org/, last accessed: 1 March 2021) and (https://apples-ct.grand-challenge.org/,
last accessed: 1 March 2021).

7. Conclusions

The goal of this work is to quantitatively compare learned, data-driven methods
for image reconstruction. For this purpose, we organized two online data challenges,
including a 10-day kick-off event, to give experts in this field the opportunity to benchmark
their methods. In addition to this event, we evaluated some popular learned models
independently. The appendix includes a thorough explanation and references to the
methods used. We focused on two important applications of CT. With the LoDoPaB-
CT dataset we simulated low-dose measurements and with the Apple CT datasets we
included several sparse-angle setups. In order to ensure reproducibility, the source code
of the methods, network parameters and the individual reconstruction are released. In
comparison to the classical baseline (FBP and TV regularization) the data-driven methods
are able to improve the quality of the CT reconstruction in both sparse-angle and low-
dose settings. We observe that the top scoring methods, namely learned primal-dual
and different post-processing approaches, perform similarly well in a variety of settings.
Besides that, the applicability of deep learning-based models depends on the availability
of training examples, prior knowledge about the physical system and requirements for the
reconstruction speed.

Supplementary Materials: The following are available online at https://zenodo.org/record/446005
5#.YD9IiIsRVPZ; https://zenodo.org/record/4459962#.YD9IqIsRVPZ; https://zenodo.org/record/
4459250#.YD9GtU5xdPY.

https://lodopab.grand-challenge.org/
https://lodopab.grand-challenge.org/
https://apples-ct.grand-challenge.org/
https://zenodo.org/record/4460055#.YD9IiIsRVPZ
https://zenodo.org/record/4460055#.YD9IiIsRVPZ
https://zenodo.org/record/4459962#.YD9IqIsRVPZ
https://zenodo.org/record/4459250#.YD9GtU5xdPY
https://zenodo.org/record/4459250#.YD9GtU5xdPY
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Appendix A. Learned Reconstruction Methods

Appendix A.1. Learned Primal-Dual

The Learned Primal-Dual algorithm is a learned iterative procedure to solve inverse
problems [19]. A primal-dual scheme [77] is unrolled for a fixed number of steps and the
proximal operators are replaced by neural networks (cf. Figure A1). This unrolled architec-
ture is then trained using data pairs from measurements and ground truth reconstructions.
The forward pass is given in Algorithm A1. In contrast to the regular primal-dual algorithm,
the primal and the dual space are extended to allow memory between iterations:

x = [x(1), . . . , x(Nprimal)
] ∈ XNprimal ,

h = [h(1), . . . , h(Ndual)
] ∈ YNdual .

For the benchmark Nprimal = 5 and Ndual = 5 was used. Both the primal and
dual operators were parameterized as convolutional neural networks with 3 layers and
64 intermediate convolution channels. The primal-dual algorithm was unrolled for K = 10
iterations. Training was performed by minimizing the mean squared error loss using the
Adam optimizer [78] with a learning rate of 0.0001. The model was trained for 10 epochs
on LoDoPaB-CT and for at most 50 epochs on the apple data, whereby the model with the
highest PSNR on the validation set was selected. Batch size 1 was used. Given a learned
primal-dual algorithm the reconstruction can be obtained using Algorithm A1.
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Algorithm A1 Learned Primal-Dual.
Given learned proximal dual and primal operators Γθd

k
, Λθ

p
k

for k = 1, . . . , K the reconstruction

from noisy measurements yδ is calculated as follows.

1. Initialize x[0] ∈ XNprimal , h[0] ∈ YNdual

2. for k = 1 : K

3. h[k] = Γθd
k

(

h[k−1], A(x
[k−1]
(2) ), yδ

)

4. x[k] = Λθ
p
k

(

x[k−1],
[

A(x
[k−1]
(1) )

]∗
(h

[m]
(1) )

)

5. end

6. return x̂ = x
[K]
(1)

Figure A1. Architecture of the learned primal dual algorithm unrolled for K = 5 iterations. We used
a zero initialization for h[0] and the FBP reconstruction for x[0]. Adapted from [19].

Appendix A.2. U-Net

The goal of post-processing methods is to improve a pre-computed reconstruction.
For CT, the FBP is used to obtain an initial reconstruction. This reconstruction is then used
as an input to a post-processing network. For the enhancement of CT reconstructions,
the post-processing network is implemented as a U-Net [20]. The U-Net architecture,
as proposed by Ronneberger et al. [40], was originally designed for the task of semantic
segmentation, but has many properties that are also beneficial for denoising. The general
architecture is shown in Figure A2. In our implementation we used 5 scales (4 up- and
downsampling blocks each) both for the LoDoPaB-CT and the Apple CT datasets. The skip
connection between same scale levels mitigates the vanishing gradient problem so that
deeper networks can be trained. In addition, the multi-scale architecture can be considered
as a decomposition of the input image, in which an optimal filtering can be learned for
each scale. There are many extensions to this basic architecture. For example, the U-Net++
(cf. Appendix A.3) extends the skip connections to different pathways.

The used numbers of channels at the different scales are 32, 32, 64, 64, and 128. For all
skip connections 4 channels were used. The input FBPs were computed with Hann filtering
and no frequency scaling. Linear activation (i.e., no sigmoid or ReLU activation) was used
for the network output. Training was performed by minimizing the mean squared error
loss using the Adam optimizer. For each training, the model with the highest PSNR on the
validation set was selected. Due to the different memory requirements imposed by the
image sizes of LoDoPaB-CT and the Apple CT data, different batch sizes were used. While
for LoDoPaB-CT the batch size was 32 and standard batch normalization was applied,
for the Apple CT data a batch size of 4 was used and layer normalization was applied
instead of batch normalization. On LoDoPaB-CT, the model was trained for 250 epochs
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with learning rate starting from 0.001, reduced to 0.0001 by cosine annealing. On the Apple
CT datasets, the model was trained for at most 50 epochs with fixed learning rate 0.001.

Figure A2. Architecture of the mutli-scale, post-processing U-Net. The general architecture of a U-Net
consists on a downsampling path on the left and a upsampling path on the right with intermediate
connection between similar scales. Adapted from [40].

Appendix A.3. U-Net++

The U-Net++ was introduced by Zhou et al. [41], the network improves on the original
U-Net [40] architecture by incorporating nested and dense convolution blocks between
skip connections. In U-Net, the down-sample block outputs of the encoder are directly
input into the decoder’s up-sample block at the same resolution. In U-Net++, the up-
sampling block receives a concatenated input of a series of dense convolutional blocks at
the same resolution. The input to these dense convolutional blocks is the concatenation
of all previous dense convolutional blocks and the corresponding up-sample of a lower
convolutional block.

The design is intended to convey similar semantic information across the skip-pathway.
Zhou et al. suggest that U-Net’s drawback is that the skip connections combine semantically
dissimilar feature maps from the encoder and decoder. The results of these dissimilar
semantic feature maps can limit the learning of the network. As a result, they proposed
U-Net++ to address this drawback in the U-Net architecture. The purpose of the network
is to progressively gain more fine-grained details from the nested dense convolutional
blocks. Once these feature maps are combined with the decoder feature maps, it should, in
theory, reduce the dissimilarity between the feature maps [41]. U-Net++ has shown to be
successful in nodule segmentation of low-dose CT scans.

For our comparison on the LoDoPaB-CT dataset, we adopted a U-Net++ architecture
with five levels, four down-samples reduced by a factor of 2 and four up-samples. The
numbers of filters per convolutional block were 32, 64, 128, 256, 512 for the different levels,
respectively. Each convolutional block contained two convolutional layers, each followed
by batch normalization and ReLU activation. Input FBPs computed with Hann filtering
and no frequency scaling were used. Linear activation (i.e., no sigmoid or ReLU activation)
was used for the network output.

The loss function was chosen as a combination of MSE and SSIM,

α MSE(x̂, x†) + (1 − α)(1 − SSIM(x̂, x†)).

Empirically, the mixed loss function with weighting of 0.35 and 0.65 for MSE and
SSIM, respectively, provided the best results.

The optimizer used for this task was RMSprop [79] with a weight decay of 1 × 10−8

and momentum of 0.9. The model was trained for 8 epochs with a learning rate of 1 × 10−5

using a batch size of 4, and the model with the lowest loss on the validation set was selected.
Source code and model weights are publicly available in a github repository (https:

//github.com/amirfaraji/LowDoseCTPytorch, last accessed: 1 March 2021).

https://github.com/amirfaraji/LowDoseCTPytorch
https://github.com/amirfaraji/LowDoseCTPytorch
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Appendix A.4. Mixed-Scale Dense Convolutional Neural Network

The Mixed-Scale Dense (MS-D) network architecture was introduced by
Pelt & Sethian [21]. The main properties of the MS-D architecture are mixing scales
in every layer and dense connection of all feature maps. Instead of downscaling and
upscaling, features at different scales are captured with dilated convolutions, and multiple
scales are used in each layer. All feature maps have the same size, and every layer can
use all previously computed feature maps as an input. Thus, feature maps are maximally
reused, and features do not have to be replicated in multiple layers to be used deeper in
the network. The output image is computed based on all layers instead of only the last one.

The authors show that MS-D architecture can achieve results comparable to typical
DCNN with fewer feature maps and trainable parameters. This enables training with
smaller datasets, which is highly important for CT. Furthermore, accurate results can usu-
ally be achieved without fine-tuning hyperparameters, and the same network architecture
can often be used for different problems. A small number of feature maps leads to less
memory usage in comparison with typical DCNN and enables training with larger images.

Figure A3. Architecture of the MS-D neural network for width of 1 and depth of 3, feature maps are
drawn as light blue squares. Colored lines represent dilated convolutions, different colors correspond
to different dilation values. Black lines represent 1 × 1 convolutions that connect the input and all
feature maps to the output image. Adapted from [21].

The networks used equally distributed dilations with intervals from 1 to 10. The
depth was 200 layers for the LoDoPaB-CT dataset and 100 layers for the Apple CT datasets.
For the input FBPs, Hann filtering and no frequency scaling were used. The training was
performed by minimizing MSE loss using the Adam optimizer with a learning rate of 0.001,
using batch size 1. The model was trained for 15 epochs on LoDoPaB-CT and for at most
50 epochs on the apple data, whereby the model with the highest PSNR on the validation
set was selected. Data augmentation consisting of rotations and flips was used for the
apple data, but not for LoDoPaB-CT.

Appendix A.5. Conditional Invertible Neural Networks

Conditional invertible neural networks (CINN) are a relatively new approach for
solving inverse problems [47,80]. Models of this type consist of two network parts (cf.
Figure A4). An invertible network F represents a learned transformation between the
(unknown) distribution X of the ground truth data and a standard probability distribution
Z , e.g., a Gaussian distribution. The second building block is a conditioning network C,
which includes physical knowledge about the problem and encodes information from the
measured data as an additional input to F.

A CINN was successfully applied to the task of low-dose CT reconstruction by
Denker et al. [48]. Their model uses a multi-scale convolutional architecture as proposed
in [81] and is built upon the FrEIA (https://github.com/VLL-HD/FrEIA, last accessed:
1 March 2021) python library. For the experiments in this paper, several improvements
over the design in [48] are incorporated. The structure of the invertible network F and the
conditioning network C are simplified. Using additive coupling layers [82] with Activation
Normalization [83] improves stability of the training. Replacing downsampling operations
with a learned version from Etmann et al. [63] prevents checkerboard artifacts and enhances

https://github.com/VLL-HD/FrEIA
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the overall reconstruction quality. In addition, the negative log-likelihood (NLL) loss is
combined with a weighted mean-squared error (MSE) term

min
Θ

[
log pZ

(
FΘ

(
x†,CΘ(yδ)

))
+ log

∣∣∣det(JFΘ(x†,CΘ(yδ)
))∣∣∣+ αMSE

(
F−1
Θ (z,CΘ(yδ)), x†

)]
.

The applied network has 5 different downsampling scales, where both spatial dimen-
sions are reduced by factor 2. Simultaneously, the number of channels increases by a factor
of 4, making the operation invertible. After each downsampling step, half the channels are
split of and send directly to the output layer. In total, the network has around 6.5 million
parameters. It is trained with the Adam optimizer and a learning rate of 0.0005 for at most
200 epochs using batch size 4 (per GPU) on LoDoPaB-CT and for at most 32 epochs using
batch size 3 on the apple data. The best model according to the validation loss is selected. A
Gaussian distribution is chosen for Z . The MSE weight is set to α = 1.0. After training, the
reconstructions are generated as a conditioned mean over K = 1000 sample reconstructions
from the Gaussian distribution (cf. Algorithm A2).

Figure A4. Architecture of the conditional invertible neural network. The ground truth image x is
transformed by FΘ to a Gaussian distributed z. Adapted from [48].

Algorithm A2 Conditional Invertible Neural Network (CINN).
Given a noisy measurement, yδ, an invertible neural network F and a conditioning network C. Let
K ∈ N be the number of random samples that should be drawn from a normal distribution N (0, I).
The algorithm calculates the mean and variance of the conditioned reconstructions.

1. Calculate FBP: c0 = TFBP(yδ).

2. Calculate outputs of the conditioning: c = CΘ(c0)

3. for k = 1 : K

4. z[k] ∼ N (0, I)

5. x̂[k] = F−1
(
z[k], c

)
6. end

7. Calculate mean: x̂ = 1
K ∑k x̂

[k]

8. Calculate variance: σ̂ = 1
K ∑k

(
x̂[k] − x̂

)2

Appendix A.6. ISTA U-Net

The ISTA U-Net [42] is a relatively new approach based on the encoder-decoder
structure of the original U-Net. The authors draw parallels from the supervised training
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of U-Nets to task-driven dictionary learning and sparse coding. For the ISTA U-Net the
encoder is replaced by a sparse representation of the input vector and the decoder is
linearized by removing all non-linearities, batch normalization and additive biases (cf.
Figure A5). Given a data set of measurements and ground truth pairs {yδ i, x†

i }
M
i=1 the

training problem can be formulated as a bi-level optimization problem

min
{θ,γ},λ>0

1
M

M

∑
i=1

1
2
‖Dγαyδ i ,θ − x†

i ‖
2
2

where αyδ i ,θ = arg min
α≥0

1
2
‖Dθα − yδ i‖

2
2 + ‖λ ⊙ α‖1,

where ⊙ denotes the Hadamard product. Using an encoder dictionary Dθ the correspond-
ing sparse code αθ can be determined with the iterative thresholding algorithm (ISTA, [84])
with an additional non-negativity constraint for the sparse code. Liu et al. [42] use a learned
variant of ISTA, called LISTA [85], to compute the sparse code. LISTA works by unrolling
ISTA for a fixed number of K iterations

α
[k]
yδ ,θ = ReLU

(

α
[k−1]
yδ ,θ + ηDT

κ

(

yδ − Dθα
[k−1]
yδ ,θ

)

− ηλ
)

,

with k = 1, . . . , K. In their framework they additionally untie the parameters for Dκ and
Dθ , although both dictionaries have the same structure. The forward pass of the network is
given in Algorithm A3.

For all experiments, K = 5 unrolled ISTA iterations were used. On LoDoPaB-CT, five
scales with hidden layer widths 1024, 512, 256, 128, 64 were used and the lasso parameters
λ were initialized with 10−3. For the Apple CT datasets, the network appeared to be
relatively sensitive with respect to the hyperparameter choices. For the noise-free data
(Dataset A), five scales with hidden layer widths 512, 256, 128, 64, 32 were used and λ was
initialized with 10−5. For Datasets B and C, six scales, but less wide hidden layers, namely
512, 256, 128, 64, 32, 16, were used and λ was initialized with 10−4. In all experiments,
input FBPs computed with Hann filtering and no frequency scaling were used. A ReLU
activation was applied to the network output. The network was trained by minimizing
the mean squared error loss using the Adam optimizer. For LoDoPaB-CT, the network
was trained for 20 epochs with a learning rate starting from 2 × 10−4, reduced by cosine
annealing to 1 × 10−5, using batch size 2. For the Apple CT datasets, the network was
trained for at most 80 epochs with a learning rate starting from 1 × 10−4, reduced by cosine
annealing to 1 × 10−5, using batch size 1, whereby the model with the highest PSNR on the
validation set was selected.

Source code is publicly available in a github repository (https://github.com/liutianlin0
121/ISTA-U-Net, last accessed: 1 March 2021). A slightly modified copy of the code used
for training on the Apple CT datasets is also contained in our github repository (https:
//github.com/jleuschn/learned_ct_reco_comparison_paper, last accessed: 1 March 2021).

Sparse code

Figure A5. Architecture of the ISTA U-Net adapted from [42]. The sparse code α replaces the
downsampling part in the standard U-Net (cf. Figure A2).

https://github.com/liutianlin0121/ISTA-U-Net
https://github.com/liutianlin0121/ISTA-U-Net
https://github.com/jleuschn/learned_ct_reco_comparison_paper
https://github.com/jleuschn/learned_ct_reco_comparison_paper
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Algorithm A3 ISTA U-Net.
Given a noisy input yδ, learned dictionaries Dκ , Dθ , Dγ and learned step sizes η and λ the recon-
struction using the ISTA U-Net can be computed as follows.

1. Calculate FBP: x̂ = TFBP(yδ)

2. Initialize α
[0]
yδ = 0

3. for k = 1 : K

4. α
[k]
yδ

= ReLU
(

α
[k−1]
yδ

+ ηDT
κ

(

x̂ − Dθα
[i−1]
yδ

)

− ηλ
)

5. end

6. return x̂ = Dγα
[K]
yδ

Appendix A.7. Deep Image Prior with TV Denoising

The deep image prior (DIP) [86] takes a special role among the listed neural network
approaches. In general, a DIP network F is not previously trained and, therefore, omits
the problem of ground truth acquisition. Instead, the parameters Θ are adjusted iteratively
during the reconstruction process by gradient descent steps (cf. Algorithm A4). The main
objective is to minimize the data discrepancy of the output of the network for a fixed
random input z

min
Θ

DY(AFΘ(z), yδ). (A1)

The number of iterations have a great influence on the reconstruction quality: While
too few can result in an overall bad image, too many can cause overfitting to the noise of
the measurement. The general regularization strategy for this problem is a combination
of early stopping and the architecture itself [87], where the prior is related to the implicit
structural bias of the network. Especially convolutional networks, in combination with
gradient descent, fit natural images faster than noise and learn to construct them from low
to high frequencies [86,88,89].

The loss function (A1) can also be combined with classical regularization.
Baguer et al. [34] add a weighted anisotropic total variation (TV) term and apply their
approach to low-dose CT measurements. The method DIP + TV is also used for this
comparison. The network architecture is based on the same U-Net as for the FBP U-Net
post-processing (cf. Appendix A.2). It has 6 different scales with 128 channels each and
a skip-channel setup of (0, 0, 0, 0, 4, 4). The data discrepancy DY was measured with a
Poisson loss (see Equation (9)) and the weight for TV was chosen as α = 7.0. Gradient
descent was performed for K = 17, 000 iterations with a stepsize of 5 × 10−4.

Algorithm A4 Deep Image Prior + Total Variation (DIP + TV).

Given a noisy measurement yδ, a neural network FΘ with initial parameterization Θ[0], forward
operator A and a fixed random input z. The reconstruction x̂ is calculated iteratively over a number
of K ∈ N iterations:

1. for k = 1 : K

2. Evaluate loss: L = D
(

AF
Θ[k−1](z), yδ

)

+ α TV
(

F
Θ[k−1](z)

)

3. Calculate gradients: ∇
Θ[k−1] = ∇ΘL

4. Update parameters: Θ[k] = Optimizer
(

Θ[k−1],∇
Θ[k−1]

)

5. Current reconstruction: x̂[k] = F
Θ[k](z)

6. end
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Appendix A.8. iCTU-Net

The iCTU-Net is based on the iCT-Net by Li et al. [29], which in turn is inspired by the
common filtered back-projection. The reconstruction process is learned end-to-end, that is,
the sinogram is the input of the network and the output is the reconstructed image. The
full network architecture is shown in Figure A6.

First, disturbances in the raw measurement data, such as excessive noise, are sup-
pressed as much as possible via 3× 3 convolutions (refining layers). The corrected sinogram
is then filtered using 10× 1 convolutions (filtering layers). The filtered sinogram maintains
the size of the input sinogram. Afterwards, the sinogram is back-projected into the image
space. This is realized by a d× 1 convolution with N2 output channels without padding,
where d is the number of detectors in the sinogram and N is the output image size. This
convolution corresponds to a fully connected layer for each viewing angle, as it connects
every detector element with every pixel in the image space. The results for each view are
reshaped to N × N sized images and rotated according to the acquisition angle. A 1× 1
convolution combines all views into the back projected image. Finally, a U-Net further
refines the image output.

To significantly lower the GPU memory requirements, an initial convolutional layer
with stride 1× 2 was added, to downsample the LoDoPaB sinograms from 1000 to 500 pro-
jection angles. For the apple reconstruction the number of detector elements d and the
output image size N were halved. After reconstruction the image size was doubled again
using linear interpolation. Training was performed using the Adam optimizer with a
learning rate of 0.001 and batch size 1. For LoDoPaB-CT the mean squared error loss and
for Apple CT the SSIM loss function was used. The network was trained for 2 epochs on
LoDoPaB-CT and for at most 60 epochs on the Apple CT datasets, without validation based
model selection (i.e., no automated early stopping).

Figure A6. Architecture of the iCTU-Net.

Appendix B. Classical Reconstruction Methods

Appendix B.1. Filtered Back-Projection (FBP)

The Radon transform [10] maps (or projects) a function x(u), u = (u1, u2), defined
on a two-dimensional plane to a function Ax(s, ϕ) defined on a two-dimensional space of
lines, which are parameterized by distance to the origin, s and the angle ϕ of the normal.
The Radon transform is given by

Ax(s, ϕ) :=
∫
R

x

(
s

[
cos(ϕ)
sin(ϕ)

]
+ t

[
− sin(ϕ)
cos(ϕ)

])
dt,

A simple inversion idea consists in back-projecting the intensities Ax(s, ϕ) to those
positions u in the image x(u) that lie on the corresponding lines parameterized by s and ϕ,
that is, those positions that contribute to the respective measured intensity. Mathematically,
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the back-projection is described by the adjoint Radon transform A∗, also provided in [10].
To obtain an inversion formula, the projections Ax need to be filtered before the back-
projection (see e.g., [36] for a derivation and an alternative formula applying a filter after
obtaining the back-projection A∗Ax). A generic FBP reconstruction formula reads

x̂ =
1
2
A∗F−1| · |WF yδ,

where F denotes the one-dimensional Fourier transform along the detector pixel dimension
s, | · | denotes the Ram-Lak filter, which multiplies each frequency component with the
absolute value of the frequency, and W is a low-pass filter (applying a window function).
While from perfect projections Ax(s, ϕ) exact recovery of x(u) is possible by choosing a
rectangular window function for W, in practice W is also used to reduce high frequency
components. This stabilizes the inversion by reducing the impact of noise present in
higher frequencies. Typical choices for W are the Hann or the Cosine window. Sometimes
the resulting weighting function is additionally shrunk along the frequency axis with a
frequency scaling factor, which leads to removal of all frequency components above a
threshold frequency.

For all experiments the implementation of ODL [90] was used in conjunction with
the ASTRA toolbox [91]. Suitable hyperparameters have been determined based on the
performance on validation samples and are listed in Table A1. The FBPs used for post-
processing networks were computed with the Hann window and without frequency
scaling. The Hann window thereby serves as a pre-processing step for the network and the
frequency scaling was omitted in order to keep all information available.

Table A1. Hyperparameters for filtered back-projection (FBP).

Window Frequency Scaling

LoDoPaB-CT Dataset Hann 0.641

Apple CT Dataset A
(Noise-free)

50 angles Cosine 0.11
10 angles Cosine 0.013
5 angles Hann 0.011
2 angles Hann 0.011

Apple CT Dataset B
(Gaussian noise)

50 angles Cosine 0.08
10 angles Cosine 0.013
5 angles Hann 0.011
2 angles Hann 0.011

Apple CT Dataset C
(Scattering)

50 angles Cosine 0.09
10 angles Hann 0.018
5 angles Hann 0.011
2 angles Hann 0.009

Appendix B.2. Conjugate Gradient Least Squares

The Conjugate Gradient Least Squares (CGLS) method is the modification of the
well-known Conjugate Gradient [52] where the CG method is applied to solve the least
squares problem AT Ax̂ = ATyδ. Here, A ∈ Rm×n is the geometry matrix, yδ ∈ Rm×1 is the
measured data and x̂ ∈ Rn×1 is the reconstruction. CGLS is a popular method in signal
and image processing for its simple and computationally inexpensive implementation and
fast convergence. The method is given in Algorithm A5, codes from [92].

Our implementation also includes a non-negativity step (negative pixel values equal
to zero), applied to the final iterated solution. There is no parameter-tuning done for
this implementation since the only user-defined parameter is the maximum number of
iterations, K.
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Algorithm A5 Conjugate Gradient Least Squares (CGLS).

Given a geometry matrix, A, a data vector yδ and a zero solution vector x̂[0] = 0 (a black image) as
the starting point, the algorithm below gives the solution at kth iteration.

1. Initialise the direction vector as d[0] = ATyδ.

2. for k = 1 : K

3. q[k−1] = Ad[k−1], α = ‖d[k−1]‖2
2/‖q[k−1]‖2

2

4. Update: x̂[k] = x̂[k−1] + αd[k−1], b[k] = b[k−1] − αq[k−1]

5. Reinitialise: q[k] = ATq[k−1], β = ‖q[k]‖2
2/‖d[k−1]‖2

2, d[k] = q[k] + βd[k−1]

6. end

Appendix B.3. Total Variation Regularization

Regularizing the reconstruction process with anisotropic total variation (TV) is a com-
mon approach for CT [93]. In addition to the data discrepancy D, a weighted regularization
term is added to the minimization problem

TTV(yδ) ∈ arg min
x

D(Ax, yδ) + α(‖∇hx‖1 + ‖∇vx‖1), (A2)

where ∇h and ∇v denote gradients in horizontal and vertical image direction, respectively,
and can be approximated by finite differences in the discrete setting. TV penalizes variations
in the image, e.g., from noise. Therefore, it is often applied in a denoising role. A number of
optimization algorithms exist for minimizing (A2) [54]. The choice and exact formulation
depend on the properties of the data discrepancy term.

For our comparison, we use the standard DIVαℓ implementation of TV. Adam gradient
descent minimizes (A2), whereby the gradients are calculated by automatic differentiation
in PyTorch [94] (cf. Algorithm A6).

Algorithm A6 Total Variation Regularization (TV).

Given a noisy measurement yδ, an initial reconstruction x̂[0], a weight α > 0 and a maximum
number of iterations K.

1. for k = 1 : K

2. Evaluate loss: L = D
(

Ax̂[k−1], yδ

)

+ α
(∥

∥

∥
∇h x̂[k−1]

∥

∥

∥

1
+

∥

∥

∥
∇v x̂[k−1]

∥

∥

∥

1

)

3. Calculate gradients: ∇x̂[k−1] = ∇xL

4. Update: x̂[k] = Optimizer
(

x̂[k−1],∇x̂[k−1]

)

5. end

For the data discrepancy D, a Poisson loss (see (9)) was used for LoDoPaB-CT, while
the MSE was used for the Apple CT datasets. Suitable hyperparameters have been deter-
mined based on the performance on validation samples and are listed in Table A2. For
lower numbers of angles, a very high number of iterations was found to be beneficial,
leading to very slow reconstruction (≈17 min per image for K = 150,000 iterations, which
we chose to be the maximum). In all cases an FBP with Hann window and frequency
scaling factor 0.1 was used as initial reconstruction.
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Table A2. Hyperparameters for total variation regularization (TV).

Discrepancy Iterations Step Size α

LoDoPaB-CT Dataset −ℓPois 5000 0.001 20.56

Apple CT Dataset A
(Noise-free)

50 angles MSE 600 3 × 10−2 2 × 10−12

10 angles MSE 75,000 3 × 10−3 6 × 10−12

5 angles MSE 146,000 1.5 × 10−3 1 × 10−11

2 angles MSE 150,000 1 × 10−3 2 × 10−11

Apple CT Dataset B
(Gaussian noise)

50 angles MSE 900 3 × 10−4 2 × 10−10

10 angles MSE 66,000 2 × 10−5 6 × 10−10

5 angles MSE 100,000 1 × 10−5 3 × 10−9

2 angles MSE 149,000 1 × 10−5 4 × 10−9

Apple CT Dataset C
(Scattering)

50 angles MSE 400 5 × 10−3 1 × 10−11

10 angles MSE 13,000 2 × 10−3 4 × 10−11

5 angles MSE 149,000 1 × 10−3 4 × 10−11

2 angles MSE 150,000 4 × 10−4 6 × 10−11

Appendix C. Further Results

Table A3. Standard deviation of PSNR and SSIM (adapted to the data range of each ground truth image) for the different
noise settings on the 100 selected Apple CT test images.

Noise-Free Standard Deviation of PSNR Standard Deviation of SSIM

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 1.51 1.63 1.97 2.58 0.022 0.016 0.014 0.022
ISTA U-Net 1.40 1.77 2.12 2.13 0.018 0.018 0.022 0.037
U-Net 1.56 1.61 2.28 1.63 0.021 0.019 0.025 0.031
MS-D-CNN 1.51 1.65 1.81 2.09 0.021 0.020 0.024 0.022
CINN 1.40 1.64 1.99 2.17 0.016 0.019 0.023 0.027
iCTU-Net 1.68 2.45 1.92 1.93 0.024 0.027 0.030 0.028
TV 1.60 1.29 1.21 1.49 0.022 0.041 0.029 0.023
CGLS 0.69 0.48 2.94 0.70 0.014 0.027 0.029 0.039
FBP 0.80 0.58 0.54 0.50 0.021 0.023 0.028 0.067

Gaussian Noise Standard Deviation of PSNR Standard Deviation of SSIM

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 1.56 1.63 2.00 2.79 0.021 0.018 0.021 0.022
ISTA U-Net 1.70 1.76 2.27 2.12 0.025 0.021 0.022 0.038
U-Net 1.66 1.59 1.99 2.22 0.023 0.020 0.025 0.026
MS-D-CNN 1.66 1.75 1.79 1.79 0.025 0.024 0.019 0.022
CINN 1.53 1.51 1.62 2.06 0.023 0.017 0.017 0.020
iCTU-Net 1.98 2.06 1.89 1.91 0.031 0.032 0.039 0.027
TV 1.38 1.26 1.09 1.62 0.036 0.047 0.039 0.030
CGLS 0.78 0.49 1.76 0.68 0.014 0.026 0.029 0.037
FBP 0.91 0.58 0.54 0.50 0.028 0.023 0.028 0.067
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Table A3. Cont.

Scattering Noise Standard Deviation of PSNR Standard Deviation of SSIM

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 1.91 1.80 1.71 2.47 0.017 0.016 0.016 0.060
ISTA U-Net 1.48 1.59 2.05 1.81 0.023 0.019 0.019 0.038
U-Net 1.76 1.56 1.81 1.47 0.015 0.021 0.027 0.024
MS-D-CNN 2.04 1.78 1.85 2.03 0.023 0.022 0.015 0.020
CINN 1.82 1.92 2.32 2.25 0.019 0.024 0.029 0.030
iCTU-Net 1.91 2.09 1.78 2.29 0.030 0.031 0.033 0.040
TV 2.53 2.44 1.86 1.59 0.067 0.076 0.035 0.062
CGLS 2.38 1.32 1.71 0.95 0.020 0.020 0.026 0.032
FBP 2.23 0.97 0.80 0.68 0.044 0.025 0.023 0.058

Table A4. PSNR-FR and SSIM-FR (computed with fixed data range 0.0129353 for all images) for the different noise settings
on the 100 selected Apple CT test images. Best results are highlighted in gray.

Noise-Free PSNR-FR SSIM-FR

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 45.33 42.47 37.41 28.61 0.971 0.957 0.935 0.872
ISTA U-Net 45.48 41.15 34.93 27.10 0.967 0.944 0.907 0.823
U-Net 46.24 40.13 34.38 26.39 0.975 0.917 0.911 0.830
MS-D-CNN 46.47 41.00 35.06 27.17 0.975 0.936 0.898 0.808
CINN 46.20 41.46 34.43 26.07 0.975 0.958 0.896 0.838
iCTU-Net 42.69 36.57 32.24 25.90 0.957 0.938 0.920 0.861
TV 45.89 35.61 28.66 22.57 0.976 0.904 0.746 0.786
CGLS 39.66 28.43 19.22 21.87 0.901 0.744 0.654 0.733
FBP 37.01 23.71 22.12 20.58 0.856 0.711 0.596 0.538

Gaussian Noise PSNR-FR SSIM-FR

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 43.24 40.38 36.54 28.03 0.961 0.944 0.927 0.823
ISTA U-Net 42.65 40.17 35.09 27.32 0.956 0.942 0.916 0.826
U-Net 43.09 39.45 34.42 26.47 0.961 0.924 0.904 0.843
MS-D-CNN 43.28 39.82 34.60 26.50 0.962 0.932 0.886 0.797
CINN 43.39 38.50 33.19 26.60 0.966 0.904 0.878 0.816
iCTU-Net 39.51 36.38 31.29 26.06 0.939 0.932 0.905 0.867
TV 38.98 33.73 28.45 22.70 0.939 0.883 0.770 0.772
CGLS 33.98 27.71 21.52 21.73 0.884 0.748 0.668 0.734
FBP 34.50 23.70 22.12 20.58 0.839 0.711 0.596 0.538

Scattering Noise PSNR-FR SSIM-FR

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 44.42 40.80 33.69 27.60 0.967 0.954 0.912 0.760
ISTA U-Net 42.55 38.95 34.03 26.57 0.959 0.922 0.887 0.816
U-Net 41.58 39.52 33.55 25.56 0.932 0.910 0.877 0.828
MS-D-CNN 44.66 40.13 34.34 26.81 0.969 0.927 0.889 0.796
CINN 45.18 40.69 34.66 25.76 0.976 0.952 0.936 0.878
iCTU-Net 32.88 29.46 27.86 24.93 0.931 0.901 0.896 0.873
TV 27.71 26.76 24.48 21.15 0.903 0.799 0.674 0.743
CGLS 27.46 24.89 20.64 20.80 0.896 0.738 0.659 0.736
FBP 27.63 22.42 20.88 19.68 0.878 0.701 0.589 0.529
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Table A5. Standard deviation of PSNR-FR and SSIM-FR (computed with fixed data range 0.0129353 for all images) for the
different noise settings on the 100 selected Apple CT test images.

Noise-Free Standard Deviation of PSNR-FR Standard Deviation of SSIM-FR

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 1.49 1.67 2.03 2.54 0.007 0.006 0.010 0.019
ISTA U-Net 1.37 1.82 2.21 2.21 0.005 0.010 0.020 0.034
U-Net 1.53 1.66 2.33 1.68 0.006 0.012 0.019 0.026
MS-D-CNN 1.46 1.71 1.90 2.15 0.006 0.011 0.021 0.015
CINN 1.35 1.65 2.09 2.21 0.004 0.007 0.023 0.025
iCTU-Net 1.82 2.54 2.03 1.91 0.014 0.017 0.020 0.023
TV 1.54 1.32 1.28 1.36 0.006 0.023 0.026 0.018
CGLS 0.71 0.51 2.96 0.56 0.009 0.029 0.033 0.045
FBP 0.77 0.46 0.38 0.41 0.011 0.015 0.029 0.088

Gaussian Noise Standard Deviation of PSNR-FR Standard Deviation of SSIM-FR

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 1.52 1.68 2.04 2.83 0.006 0.008 0.013 0.016
ISTA U-Net 1.65 1.78 2.36 2.17 0.008 0.010 0.018 0.034
U-Net 1.61 1.62 2.05 2.24 0.007 0.012 0.019 0.024
MS-D-CNN 1.62 1.80 1.84 1.84 0.008 0.011 0.015 0.014
CINN 1.50 1.59 1.65 2.09 0.007 0.016 0.017 0.019
iCTU-Net 2.07 2.12 1.93 1.90 0.020 0.021 0.026 0.024
TV 1.30 1.26 1.15 1.50 0.014 0.027 0.030 0.019
CGLS 0.63 0.45 1.76 0.53 0.012 0.028 0.034 0.043
FBP 0.83 0.46 0.38 0.41 0.014 0.015 0.029 0.088

Scattering Noise Standard Deviation of PSNR-FR Standard Deviation of SSIM-FR

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 1.92 1.85 1.81 2.51 0.005 0.007 0.014 0.038
ISTA U-Net 1.56 1.68 2.17 1.89 0.010 0.014 0.014 0.035
U-Net 1.72 1.63 1.91 1.59 0.010 0.012 0.024 0.024
MS-D-CNN 2.02 1.84 1.96 2.08 0.008 0.012 0.016 0.019
CINN 1.74 1.97 2.41 2.21 0.005 0.011 0.016 0.022
iCTU-Net 1.96 2.14 1.79 2.32 0.016 0.023 0.022 0.030
TV 2.43 2.35 1.80 1.49 0.048 0.074 0.040 0.051
CGLS 2.28 1.24 1.67 0.83 0.016 0.021 0.030 0.035
FBP 2.14 0.87 0.66 0.55 0.028 0.016 0.020 0.078
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Figure A7. PSNR and SSIM depending on the number of angles on the Apple CT datasets.

Figure A8. PSNR and SSIM compared for all noise settings and numbers of angles.
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Table A6. Mean and standard deviation of the mean squared difference between the noisy measurements and the forward-
projected reconstructions, respectively the noise-free measurements, on the 100 selected Apple CT test images.

Noise Free MSE ×109

Number of Angles 50 10 5 2

Learned Primal-Dual 0.083± 0.027 0.405± 0.156 1.559± 0.543 2.044± 1.177
ISTA U-Net 0.323± 0.240 0.633± 0.339 2.672± 1.636 17.840± 12.125
U-Net 0.097± 0.093 1.518± 0.707 5.011± 3.218 31.885± 17.219
MS-D-CNN 0.117± 0.088 0.996± 0.595 3.874± 2.567 20.879± 12.038
CINN 0.237± 0.259 1.759± 0.348 3.798± 2.176 33.676± 16.747
iCTU-Net 2.599± 3.505 6.686± 8.469 14.508± 16.694 18.876± 12.553
TV 0.002± 0.000 0.001± 0.000 0.000± 0.000 0.001± 0.000
CGLS 1.449± 0.299 29.921± 6.173 752.997± 722.151 22.507± 13.748
FBP 12.229± 3.723 89.958± 9.295 159.746± 15.596 273.054± 114.552
Ground truth 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000

Gaussian Noise MSE ×109

Number of Angles 50 10 5 2

Learned Primal-Dual 19.488± 5.923 19.813± 5.851 20.582± 5.690 32.518± 4.286
ISTA U-Net 19.438± 5.943 20.178± 6.060 21.167± 6.052 32.435± 9.782
U-Net 19.802± 6.247 22.114± 6.364 23.645± 6.527 38.895± 17.211
MS-D-CNN 19.348± 5.921 20.056± 5.930 23.080± 5.959 47.625± 18.133
CINN 19.429± 5.891 21.069± 5.663 29.517± 7.296 42.876± 15.471
iCTU-Net 25.645± 9.602 25.421± 9.976 38.179± 22.887 41.956± 15.942
TV 18.760± 5.674 18.107± 5.395 20.837± 5.510 18.514± 5.688
CGLS 87.892± 23.312 71.526± 17.600 262.616± 151.655 98.520± 18.245
FBP 31.803± 9.558 109.430± 14.107 179.260± 19.744 292.692± 109.223
Ground truth 19.538± 6.029 19.505± 6.019 19.551± 6.028 19.483± 6.086

Scattering Noise MSE ×109

Number of Angles 50 10 5 2

Learned Primal-Dual 541.30± 311.82 579.14± 317.59 549.30± 328.41 435.07± 260.02
ISTA U-Net 553.64± 355.14 557.03± 342.67 575.94± 338.82 522.33± 365.58
U-Net 629.62± 353.54 635.91± 343.31 550.54± 340.27 642.20± 295.46
MS-D-CNN 579.86± 332.39 585.18± 331.93 533.35± 331.21 606.55± 365.25
CINN 638.80± 355.24 619.47± 353.47 603.53± 362.96 649.30± 409.83
iCTU-Net 622.51± 348.32 622.63± 335.28 652.18± 359.00 573.46± 324.00
TV 3.35± 5.02 3.19± 4.83 2.96± 4.47 2.55± 6.33
CGLS 6.40± 6.39 34.71± 8.16 286.20± 205.42 19.92± 14.01
FBP 12.48± 6.88 73.53± 10.19 144.70± 15.82 221.79± 59.71
Ground truth 610.47± 355.25 610.40± 355.16 611.23± 354.51 620.11± 386.79

Figure A9. Example of an artifact produced by DIP + TV, which has only minor impact on the evaluated metrics (especially
the SSIM). The area containing the artifact is marked with a red circle.
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Appendix D. Training Curves

Figure A10. Training curves of Learned Primal-Dual on the Apple CT dataset. Dashed lines: average
validation loss computed after every full training epoch; solid lines: running average of training loss
since start of epoch. Duration of 20 epochs on full dataset: ≈10–17 days, varying with the number
of angles.
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Figure A11. Training curves of ISTAU-Net on the Apple CT dataset. Dashed lines: average validation
PSNR in decibel computed after every full training epoch; marks: selected model. Duration of
20 epochs on full dataset: ≈10 days for hidden layer width 32+ and 5 scales, respectively ≈5.5 days
for hidden layer width 16+ and 6 scales.
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Figure A12. Training curves of U-Net on the Apple CT dataset. Dashed lines: average validation loss
computed after every full training epoch; solid lines: running average of training loss since start of
epoch. Duration of 20 epochs on full dataset: ≈1.5 days.
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Figure A13. Training curves ofMS-D-CNN on the Apple CT dataset. Dashed lines: average validation
loss computed after every full training epoch; solid lines: running average of training loss since start
of epoch. Duration of 20 epochs on full dataset: ≈20 days.
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Figure A14. Training curves of CINN on the Apple CT dataset. Dashed lines: average validation loss
computed after every full training epoch; solid lines: running average of training loss (at every 50-th
step) since start of epoch. For some of the trainings, the epochs were divided into multiple shorter
ones. Duration of 20 epochs on full dataset: ≈2.5 days (using 2 GPUs).
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Figure A15. Training curves of iCTU-Net on the Apple CT dataset. Opaque lines: loss for a validation
sample (after every 500-th step); semi-transparent lines: training loss (at every 500-th step). Duration
of 20 epochs on full dataset: ≈3 days.
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An Educated Warm Start For Deep Image
Prior-Based Micro CT Reconstruction

Riccardo Barbano†, Johannes Leuschner†, Maximilian Schmidt, Alexander Denker, Andreas Hauptmann,
Peter Maass and Bangti Jin

Abstract—Deep image prior (DIP) was recently introduced
as an effective unsupervised approach for image restoration
tasks. DIP represents the image to be recovered as the out-
put of a deep convolutional neural network, and learns the
network’s parameters such that the model output matches
the corrupted observation. Despite its impressive reconstructive
properties, the approach is slow when compared to supervisedly
learned, or traditional reconstruction techniques. To address
the computational challenge, we bestow DIP with a two-stage
learning paradigm: (i) perform a supervised pretraining of the
network on a simulated dataset; (ii) fine-tune the network’s
parameters to adapt to the target reconstruction task. We
provide a thorough empirical analysis to shed insights into the
impacts of pretraining in the context of image reconstruction. We
showcase that pretraining considerably speeds up and stabilizes
the subsequent reconstruction task from real-measured 2D and
3D micro computed tomography data of biological specimens.
The code and additional experimental materials are available at
educateddip.github.io/docs.educated_deep_image_prior/.

I. INTRODUCTION

Inverse problems in imaging center around recovering an
unknown image x ∈ Rn of interest from the noisy measure-
ment yδ = Ax+ η, where yδ ∈ Rm is the noisy measurement
data, A the linear forward operator, and η an i.i.d. noise
(e.g. Gaussian noise η ∼ N (0, σ2I)). Due to the inherent
ill-posedness of the problem, suitable regularization is crucial
and is key for a successful recovery of x [1]–[3].

Over the last years, deep learning methods have been
successfully applied to solve all types of imaging problems,
with supervised training being the dominant paradigm [4], [5].
That means, a deep neural network is trained to restore the
image from noisy data using a set of paired training data. A
large number of such high-quality paired training data may
be needed [6]. Except simulated data, these are usually not
obtainable, or too expensive to collect. Further challenges arise
from the distributional shifts of the test data (e.g. change of
image class, noise level or forward operator at test time).
Ideally, the trained model should be robust to these changes,
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and transfer its reconstructive properties from one domain
to another using as little additional data as possible [7]–[9].
Unfortunately, this is often not the case.

An effective solution to these challenges is deep image prior
(DIP) [10], which represents a new approach to regularize
image restoration. Rather than taking the supervised route, DIP
learns to reconstruct without reference data, by assuming that
a natural image can be well represented by a convolutional
neural network (CNN). This is achieved by training the
network’s parameters to generate an image that fits the data yδ
(often equipped with suitable early stopping). The method is
very attractive for imaging tasks with scarce training data. DIP
has received enormous attention in the imaging community,
and delivered state-of-the-art performance for unsupervised
methods on a number of imaging tasks, including computed to-
mography (CT) [6], [11], magnetic resonance imaging (MRI)
[12], positron emission tomography (PET) [13]–[15] and com-
pressive ptychography [16], closely matching its supervised
counterparts.

While DIP has been shown to be effective, it is not free from
drawbacks. Notably, it requires “fresh training” each time it
is deployed, which leads to high computational overhead and
demanding VRAM requirements at test time when compared
to supervised counterparts [4], [17], [18]; the latter ones only
require one feed-forward pass through the network and thus
computationally cheap. This inefficiency is considerably exac-
erbated by the fact that DIP requires a lengthy (and unstable)
optimization process [6], [19]. For example, reconstructing a
single image of resolution (501 px)2 requires approximately
30-50k iterations to reach the early-stopping point, which
translates to 3-5 h of computing-time on NVIDIA GeForce
RTX 2080Ti/1080Ti. It gets even worse in the 3D setting:
a (167 px)3 reconstruction takes approximately one day on
NVIDIA GeForce RTX 3090 using mixed precision! This
hinders its applicability to solve imaging inverse problems,
especially when fast reconstruction is critical. These observa-
tions motivate us to explore the following:

Can DIP benefit from pretraining for accelerating subse-
quent reconstructive tasks? If so, can we easily construct
an informative dataset to warm-start DIP? How do induc-
tive biases of pretraining impact the reconstructive task?
Pretraining is one well-established paradigm to address data

scarcity in supervised learning [20], [21]. Models are often
pretrained using large-scale datasets, and fine-tuned on target
tasks that have less training data [22]. However, the idea
of pretraining has not received the attention it deserves for
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DIP, and presents a new challenge. The challenge is to learn
(via supervised pretraining) feature representations that are
transferable and generalizable to subsequent fine-tuning.

To overcome the computational challenge, we systemati-
cally explore a supervised pretraining strategy for accelerating
DIP-based µCT reconstruction, and introduce an effective two-
stage learning paradigm. Our contributions can be summa-
rized as follows. We develop an effective strategy to greatly
accelerate the convergence of DIP for µCT reconstruction,
by recasting DIP within the “supervised pretraining + un-
supervised fine-tuning” paradigm. We show that carefully
designed pretraining with simulated data from a synthetic
image class can considerably speed up and stabilize DIP-
based µCT reconstruction with real-measured data, including
computationally demanding 3D tasks, for which we develop
a specialized U-Net architecture to perform DIP-based µCT
reconstruction under the constraint of 24GB VRAM. To the
best of our knowledge, this is the first successful 3D µCT
reconstruction using DIP. The experiment results show that
despite its simplicity, it can be highly effective. Further, we
conduct a thorough experimental study to shed insights into
the mechanism of knowledge transfer between the supervised
pretraining and unsupervised fine-tuning stages, including a
novel linear analysis of pretraining, which exhibits sparsity-
promoting in the parameters’ bases.

The paper is organized as follows. We describe the standard
DIP in Section II and related works in Section III. In Section
IV, we present the two-stage framework for DIP. We give the
experimental details and results in Sections V and VI, and
analyze the impact of pretraining in Section VII.

II. DEEP IMAGE PRIOR

The idea of DIP [10] is to find a minimizer of the fidelity
‖Ax− yδ‖2, by representing the unknown x as the output of
a CNN, x = ϕθ(z), where z ∈ Rn is a fixed random vector
(often pixel-wise i.i.d. samples of random noise), and θ ∈ Rp
denotes the network’s parameters to be learned. A U-Net [23]
like architecture is commonly used for the network. DIP solves

θ∗ ∈ argmin
θ
‖Aϕθ(z)− yδ‖2,

and presents ϕθ∗(z) as the reconstruction. Note that the train-
ing of the network parameters θ coincides with the recovery
process, and has to be repeated for each measurement. The
procedure is unsupervised, and guided by the principle of
matching the forward projected network output Aϕθ(z) to the
measurement data yδ . Due to the overparameterization of the
neural networks used in DIP, a direct minimization of the loss
can suffer from overfitting. DIP often uses early-stopping to
deliver a satisfactory reconstruction: the update of θ is stopped
early to avoid overfitting to the noise [10]. This has motivated
developing automated rules for early stopping [24], [25].

III. RELATED WORKS

a) Deep Image Prior: Since the first proposal in [10],
there have been several important developments on DIP.
Heckel et al. [26] propose deep decoder, using under-
parameterized networks to ease the need for early-stopping.

Dittmer et al. [27] study DIP through the lens of regularization
theory [1]–[3], and Cheng et al. [28] discuss its connec-
tion with Gaussian processes as the number of architecture
channels grows to infinity, and propose the use of Bayesian
learning. There are several efforts to combine DIP with explicit
regularization to improve the reconstruction quality. [6], [29]
propose the use of total variation penalty for stabilizing the
learning process, and [30] combines DIP with regularization
by denoising. Besides, the use of explicit regularization sig-
nificantly relaxes the need of early stopping. Jo et al. [24]
propose to penalize the complexity of the reconstruction using
Stein’s unbiased risk estimator. See also [25] for a stopping
criterion based on monitoring the running variance of iterate
sequence and references therein for further discussions. [6]
suggests at test-time to start optimizing a randomly initialized
DIP to match a reconstruction, produced by another method.
Heckel and Soltanolkotabi [31] prove that for compressed
sensing, an untrained CNN can approximately reconstruct
signals and images that are sufficiently structured, from a
near minimal number of random measurements. The very
recent work [32] establishes the equivalence of "analytic"
DIP with the standard Tikhonov regularization, and several
basic properties in the lens of classical regularization theory.
This work complements and expands on these existing studies
by addressing the computational challenge associated with
regularized DIP, especially the works [6], [29], where the
regularized DIP was proposed and empirically demonstrated.

b) Advances in Pretraining: Supervised pretraining on
ImageNet has been established as a common practice in com-
puter vision. Neural networks are pretrained to solve image
classification, and transferred to downstream tasks (e.g. object
detection [33], [34] and semantic segmentation [35]). How-
ever, pretraining on ImageNet does not necessarily improve the
accuracy of the downstream task [36], and similar observations
about pretraining on ImageNet are made about medical image
classification [37]. Within tomographic imaging, several works
[38], [39] employ transfer learning to adapt a trained neural
network from one task setting to another. Our work shares
similarities with these works in adapting to changes of the
image distribution. These works focus on supervised end-to-
end fine-tuning, whereas we focus on an unsupervised learning
framework: we study pretraining with a synthetic dataset as
a means for accelerating DIP reconstruction on measured
µCT data, and provide a detailed analysis of its acceleration
mechanism. Very recently, Gilton et al [7] proposes to fine-
tune the pretrained model so as to accommodate model errors,
but unlike this work, the image distribution is unchanged.
Inspired by an early version of this paper, Knopp and Grosser
[11] also demonstrated the potential of warm-starting DIP for
dynamic tomography.

IV. PROPOSED METHOD

The TV-regularized DIP approach obtains x∗ by

θ∗t ∈ argmin
θ

{
lt(θ) := ‖Aϕθ(z)− yδ‖2 + γ TV (ϕθ(z))

}
,

x∗ = ϕθ∗t (z), (1)
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θ∗s → θinit

θ∗t ∈ argmin
θ

lt(θ; yδ)

x∗ = ϕθ∗t (z)

argmin
θ

ls(θ; {(xn, A†ynδ )}Nn=1) 3

fine-tuningpretraining

A

synthetic simulated

Fig. 1. A two-stage learning paradigm. The parameters θ of the U-Net are
first optimized on a dataset comprising ordered pairs of synthetic ground truth
images xn and simulated measurement ynδ . The optimal configuration θ∗s is
then used to warm-start the unsupervised fine-tuning on real µCT data.

where ϕθ is a CNN, and γ ≥ 0 balances the data consistency
with the regularization term TV(ϕθ(z)), which denotes the
total variation seminorm on the network output ϕθ(z), defined
as TV(x) = ‖∇hx‖1 + ‖∇vx‖1, where ∇h and ∇v denote
the derivative in the horizontal and vertical directions. Several
studies [6], [29] found that incorporating the total variation
penalty is beneficial to DIP. The loss lt in (1) is optimized
with Adam [40], by randomly initializing θ. The learning is
performed as (single-batch) test time adaptation to yδ .

In this work, we recast DIP into the “supervised pretraining
+ unsupervised fine-tuning” paradigm as a two-stage process,
called educated DIP (EDIP); see Fig. 1 for a schematic illus-
tration of the framework. In the first stage, we pretrain the net-
work ϕθ(A

†yδ), where A† is an approximate inverse operator
(e.g. filtered back-projection (FBP) for CT [41]). The training
is carried out on a synthetic dataset D = {(xn, ynδ )}Nn=1,
composed of N pairs drawn from the joint distribution of
ground truth xn and corresponding simulated measurement ynδ .
This step is tailored to the target reconstruction task in (1), and
learns the optimal parameters θ∗s via supervised training,

θ∗s ∈ argmin
θ

{
ls(θ) :=

1

N

∑
(xn,ynδ )∈D

‖ϕθ(A†ynδ )− xn‖2
}
. (2)

Note that ϕθ receives A†ynδ as its input (instead of the random
noise in [10]), serving as a post-processing reconstructor [42].
The objective of this stage is to enforce “benignant” inductive
biases via supervised learning. This educates DIP with knowl-
edge contained in the dataset D, which is then exploited, but
still needs to be amended, in solving the reconstruction task
in (1).

In the second stage, for a given new query measurement yδ ,
we use the optimal parameters θ∗s obtained in the pretraining
stage to initialize the network ϕθ(A

†yδ) in (1) so as to get DIP
up to speed in handling target tasks on real-measured data.
That is, we regard the DIP optimization as a self-adaptation
step, where the parameters θ are fine-tuned unsupervisedly,
with their drift conditioned on θ∗s . Note that the robustness
of this method at test time does not rely solely on how
well the pretraining stage anticipates distributional shifts. The
model makes a good use of pretraining — the supervised
pretraining stage sets and constrains the stage — but adapts
to distributional shifts at test time, and reserves its right to
amend the received supervision.

There are several possible variants of the basic framework.
U-Net consists of two parts, a decoder with parameters θdec,
and an encoder with parameters θenc. A direct variant of EDIP
is to fine-tune only the decoder parameters θdec, but fixing the
encoder parameters to the educated guess θ∗s,enc, which are
regarded as a shared (between stages) feature extractor. At test
time, we solve (1) only with respect to θdec and rely on the
pretraining to construct a suitable “universal” encoding. Thus,
the learned reconstructor ϕθ∗ recovers from the measurement
data with θ∗ = (θ∗s,enc, θ

∗
t,dec). This variant with the fixed

encoder (FE) is termed as EDIP-FE.

V. DATASETS

A. Synthetic Training Dataset

We pretrain on a synthetic training dataset of images com-
posed of ellipses or ellipsoids with random position, shape,
orientation and intensity values, which are commonly used to
train and evaluate learned reconstruction methods. This image
class encompasses basic building blocks of more complex
images, while favoring piece-wise smoothness. Synthetic data
is particularly useful when it is infeasible to collect high-
quality ground truth images reassembling the image class of
the target reconstructive task, while enabling the learning of
features tailored to the inversion of the forward operator A. In
the experiments, we use datasets of 32 000 training and 3200
validation images generated on-the-fly using ODL [43]. The
image resolution and the distribution of the ellipses / ellipsoids
can be easily adapted to match different target data. The
synthetic projection data is computed by forward projecting
the ground truth images and adding 5% white noise. Fig. 2
shows an exemplary ground truth image and reconstructions
obtained by the FBP and U-Net from the simulated noisy data.

Fig. 2. An exemplary ground truth image used in the pretraining stage. The
FBP and U-Net reconstructions are also shown. The measurement data yδ is
simulated using the Walnut Sparse 120 setting, adding 5% white noise.

B. Real µCT Measurement Data

We evaluate our approach on two real µCT datasets to
showcase the effectiveness of the approach. The forward
operator A is a ray transform matching a 2D or 3D cone-
beam geometry (cf. Fig. 3 for 2D). The scanner rotates around
the object (or, equivalently, the object is rotated inside the
scanner), taking projections from different source angles λ.
Within each projection, each detector pixel (e.g. parameterized
by γ) measures the intensity for a specific line, attenuated by
the object.



202 PAPER 4. AN EDUCATED WARM START FOR DIP-BASED MICRO CT RECONSTRUCTION

4

λ

γ

X-
ra

y s
ou

rce

de
te

cto
r

Fig. 3. Diagram of the 2D cone-beam geometry (a.k.a. fan-beam geometry).

a) X-ray Lotus Root Dataset: µCT measurements of a
Lotus root slice filled with different materials are available
from [44]. The dataset contains fan-beam measurements corre-
sponding to a 2D volume slice, with 120 projections at angles
equally distributed over [0, 360◦) and 429 detector pixel values
each. The sparse matrix modeling the forward operator for
an image resolution (128 px)2 is used. In the evaluation, we
consider the setting of Sparse 20: a 6-fold angular sub-
sampling, 20 angles, equally distributed over [0, 360◦). We
use a TV-regularized reconstruction from all 120 projection
angles, obtained by Adam, as the reference solution.

b) X-ray Walnut Dataset: A collection of cone-beam
µCT measurement data from 42 Walnuts was provided in [45].
For each walnut, a set of three 3D cone-beam measurements
is included, each obtained with a different source position.
Projections are acquired at 1200 angles equally distributed
over [0, 360◦), with a resolution of 972 detector rows and 768
detector columns. A volume resolution of (501 px)3 is used.
We consider reconstructing a single 2D slice from a suitable
subset of detector pixel measurements, and 3D reconstruction
with a downscaled image resolution of (167 px)3. For the
2D task, we use the setting of Sparse 120: a 10-fold
angular sub-sampling with 120 angles, equally distributed
over [0, 360◦); for 3D, we consider the settings 3D Sparse
20 and 3D Sparse 60 with 20 and 60 equally distributed
angles, and sub-sample the projection rows and columns by
a factor of 3. The 3D settings are chosen to mimic industrial
applications, where a high degree of sparsity is often desired.
The approximations A†yδ are computed via the Feldkamp-
Davis-Kress (FDK) algorithm [46]. FDK is an FBP-based
algorithm with a weighting step for cone-beam measurements,
and is still denoted as “FBP”. To achieve accurate automatic
differentiation of the forward projection operator in 2D, we
utilize its sparse matrix representation. In 3D, we opt for
forward and backward projection routines of ASTRA via
tomosipo [47]. We use the ground truth provided with the
dataset [45], which was obtained with accelerated gradient
descent using the measurements from all 1200 projection
angles and all three source positions.

VI. EXPERIMENTS AND RESULTS

Throughout, we denote the type of the network input z used
for a method in brackets: for example, “DIP (noise)” refers to
the standard DIP with noise input, while “EDIP (FBP)” stands
for the educated DIP with FBP input.

A. Neural Network Architecture

For 2D settings, we adopt the U-Net proposed by [6], but
replace batch-normalization layers with group-normalization
layers. For 3D µCT reconstructions, we fine-tune the architec-
ture, cf. Fig. 4, since the standard 3D U-Net — originally in-
troduced for segmentation [48] — does not meet our memory
constraint, and a naively reduced version leads to sub-optimal
reconstructions. We modify the U-Net architecture as follows:
(i) reduce the numbers of channels per convolutional layer
in the encoder; (ii) increase the expressivity of the decoder
by chaining subsequent convolutional layers with decreasing
number of channels; (iii) remove skip connections. Due to
memory constraints (i.e. 24 GB VRAM), we use a 3-scale 3D
U-Net.

Fig. 4. The architecture of the proposed 3D U-Net. Each light-blue bar
corresponds to a multi-channel feature map. Arrows denote the different
operations.

B. Evaluation Metrics

We measure the reconstruction quality via peak signal-to-
noise ratio (PSNR), and include structural similarity index
measure (SSIM) [49] for reconstructions. To assess the con-
vergence speed, we employ two metrics: steady PSNR and
rise time (denoted by � in the figures). The steady PSNR
is the median PSNR over the last 5k iterations. The rise
time is the iteration number at which we reach the baseline
PSNR (i.e. DIP’s steady PSNR) up to a threshold 0.1 dB. In
addition, we always consider the iteration-wise median PSNR
over repeated runs of the same experiment (with varying seeds)
for these metrics; we use 5 runs for 2D and 3 runs for 3D.
The variability between runs does arise not only from random
initialization of the network parameters or noise input, but also
from numerical effects in parallel computations on GPU. The
optimal reconstruction ϕθmin-loss(z) is taken from the iteration
with minimum loss value lt(θmin-loss) = mini∈0...N lt(θ

[i]).
This remedies non-monotonous loss minimization, yet the
(E)DIP optimization plots and steady PSNR computations use
the actual iterate to facilitate a direct analysis.

C. Hyperparameter’s Selection

The learning rate and regularization parameter γ are fine-
tuned for standard DIP. For EDIP, we do not conduct additional
hyperparameter search, but use the values identified for DIP.
These hyperparameters values also perform well for EDIP,
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Fig. 5. The optimization of EDIP versus DIP on Lotus Sparse 20. The
symbols ? and N denote initial PSNR and rise time, respectively, and the
horizontal dashed line indicates the steady PSNR of DIP (noise).

Fig. 6. Checkpoint selection on the Shepp-Logan phantom for the initial
EDIP (FBP) model parameters for the Lotus Sparse 20 setting.

which saves us from performing an individual search for each
pretraining checkpoint (to be defined next).

D. Selection of the Checkpoints

Multiple parameters’ configurations (i.e. θ∗s ) may be ob-
tained from the pretraining stage: repeated runs (varying
random initializations) and multiple checkpoints along the
optimization trajectory of each run. From a set of checkpoints,
one needs to identify solutions maximizing the speed-up at test
time. More broadly, this is an open question. In the experi-
ments below, the selection strategy is based on assessing the
performance on the Shepp-Logan phantom [50], a standard test
image within the medical imaging community. The checkpoint
leading to the shortest rise time is then selected, among those
with a steady PSNR that is at most 0.25 dB lower than the
maximum steady PSNR of any checkpoint. This selection is
carried out for 2D reconstruction settings; 3D runs use the best
performing checkpoint for computational reasons. For Lotus
Sparse 20, we repeat the pretraining 3 times (varying the
seed) and collect checkpoints after every 20 epochs, training
for a maximum of 100 epochs. For the Walnut Sparse 120,
we pretrain for 20 epochs, and retain the minimum validation
loss checkpoint of each run. For the 3D Walnut settings, we
pretrain for a maximum of 2 epochs, and retain checkpoints
every 0.125 epochs (i.e. 4k gradient updates).

E. The Lotus Root

Table I shows the convergence properties of EDIP and DIP
for Lotus Sparse 20. We include in our analysis cases
where the FBP A†yδ is fed as the input (instead of noise)
when solving (1) for DIP, and inputting noise for EDIP. EDIP
significantly outperforms DIP in terms of the convergence
speed for either a fixed noise image or FBP.

EDIP only takes 195 (and 723 for noise input) iterations
to reach −0.1 dB of the baseline PSNR, against 4.1k iter-
ations needed for DIP. Thus, pretraining greatly accelerates
the convergence. The optimization process is considerably
more stable (cf. Fig. 5), implying a possibly much more

TABLE I
QUANTITATIVE EVALUATION FOR THE LOTUS SPARSE 20.

Ellipses-Lotus Sparse 20

Rise time (Max PSNR; iters) Steady PSNR

DIP (noise) 3848 (31.17; 8846) 31.10
DIP (FBP) 3622 (31.25; 8813) 31.17
DIP-FE (noise) 6118 (31.10; 9818) 31.00
EDIP (FBP) 195 (31.65; 981) 31.21
EDIP (noise) 723 (31.53; 3548) 31.39
EDIP-FE (FBP) 226 (31.59; 1421) 31.26
TV – – 30.73

favorable loss landscape for EDIP. Thus, pretraining stabilizes
the optimization process of DIP, which is highly desirable
in practice. Note that EDIP-FE, which fixes the encoder
parameters to the pretrained ones θ∗s,enc, is as fast as EDIP,
and the reconstruction quality of EDIP and EDIP-FE are
largely comparable with each other. With fewer parameters
to be updated, EDIP-FE is computationally lighter than EDIP
(since backpropagation is only needed for the decoder, and
the forward pass through the encoder can be pre-computed
beforehand). Fig. 7 shows the reconstruction (along with the
reference and FBP) for Lotus Sparse 20. We observe that
pretraining can also boost the performance of DIP: EDIP
considerably overshoots the baseline PSNR, cf. Fig. 5. This
suggests that pretraining, if coupled with proper early-stopping
(approximately a few hundred iterations after the rise time),

TABLE II
CHECKPOINTS’ COMPARISON FROM THE PRETRAINING STAGE FOR EDIP

(FBP) ON LOTUS SPARSE 20. THE CHECKPOINT FROM RUN 2 AFTER 100
EPOCHS IS SELECTED USING THE SHEPP-LOGAN DATA (CF. FIG. 6)

Epochs Rise time (Max PSNR; iters)

Run 0
100 247 (31.49; 1545)

60 174 (31.56; 842)
20 291 (31.61; 1614)

Run 1
100 162 (31.53; 779)

60 243 (31.53; 1755)
20 390 (31.56; 1518)

Run 2
100 195 (31.65; 981)

60 194 (31.58; 1083)
20 318 (31.51; 1706)



204 PAPER 4. AN EDUCATED WARM START FOR DIP-BASED MICRO CT RECONSTRUCTION

6

Fig. 7. EDIP versus DIP reconstruction on Lotus Sparse 20. From the
5 runs (varying the seed), the one with the (closest to) median PSNR was
selected for each method.

Fig. 8. EDIP versus DIP reconstruction of Walnut sparse 120.

TABLE III
QUANTITATIVE EVALUATION FOR THE WALNUT.

Ellipses/Ellipsoids-Walnut Sparse 120 3D Sparse 20 3D Sparse 60

Rise time (Max PSNR; iters) Steady PSNR Rise time (Max PSNR; iters) Steady PSNR Rise time (Max PSNR; iters) Steady PSNR

DIP (noise) 20 373 (34.02; 25 357) 33.87 17 200 (30.68; 23 477) 30.37 49 041 (34.05; 58 901) 33.93
DIP (FBP) 13 778 (34.07; 28 094) 33.90 13 016 (31.32; 25 063) 31.19 27 873 (34.37; 53 731) 34.22
EDIP (FBP) 4496 (33.92; 13 039) 33.56 3739 (31.48; 10 689) 30.94 11 247 (34.35; 40 810) 34.18
EDIP-FE (FBP) 4384 (33.91; 12 540) 33.70 2979 (31.38; 10 749) 30.93 14 520 (34.33; 45 259) 34.15
TV – – 31.67 – – 28.89 – – 33.35

can lead to better reconstructions.
To maximize the speed-up, we select the warm-start con-

figuration θ∗s on the Shepp-Logan phantom. Fig. 6 shows the
validation runs. We select θ∗s from run 2 after 100 epochs since
it results in the smallest rise time. Interestingly, a substantial
overshoot of baseline PSNR is observed on the Shepp-Logan
phantom, possibly due to its in-distribution nature with respect
to the ellipses. Table II reports the rise time at test time for
different checkpoints collected for each run. The results indi-
cate that the checkpoint selection does impact the achievable
acceleration factor, but not the maximum PSNR.

F. The Walnut

Fig. 8 shows the reconstructed Walnut slice; see Table III
for quantitative results. A speed-up is observed, similar to the
Lotus root: EDIP takes about 30min at rise time (approxi-
mately 4.4k iterations), whereas DIP (with noise input) takes
2 h and 30min at rise time (approximately 20.4k iterations)
with NVIDIA GeForce RTX 2080Ti. A TV regularized recon-
struction of the Walnut takes 6min, and requires 1.7k gradient
steps to converge to 31.67 dB. EDIP takes only 3min (after
421 iterations) to match 31.67 dB. In 6min, EDIP reaches
32.80 dB, with a gain of 1.1 dB. Finally, DIP-FE / EDIP-FE
report similar performances to DIP / EDIP.

On a minor note, it is observed that EDIP better reconstructs
finer structures (e.g. the wrinkled shell), and DIP suffers from
over-smoothing artifacts. This concurs with the observation

for Lotus Sparse 20: by incorporating the knowledge con-
tained in the synthetic training data, pretraining can boost the
performance of DIP.

Similar observations can be made for reconstructing the
Walnut volume, cf. Fig. 9 for 3D reconstructions along the
yz, xz, and xy axes and Table III for quantitative results.
EDIP reconstruction from the 3D Sparse 20 data takes
approx. 1.5 h with a NVIDIA GeForce RTX 3090, and leads
to 33.77 dB in PSNR, compared to 7.3 h and 5.53 h for DIP
(with noise / FBP as input). EDIP matches the PSNR of
a TV reconstruction in about 30min, gains 1 dB over TV
after additional 20min, and it takes 2.3 h to observe a 2 dB
gain. The 3D Sparse 60 leads to similar speed-up. It takes
20 h for DIP with noise as input. Inputting the FBP results
already in a considerable speed-up (about 11 h), whereas
EDIP requires only 4 h. In sum, pretraining on the synthetic
ellipsoids dataset greatly accelerates the convergence of DIP
for 3D µCT reconstruction.

Last, we briefly comment on the convergence of the
optimization process, cf. Fig. 10. The overall convergence
behavior for 2D and 3D is similar to Lotus Sparse 20:
pretraining stabilizes DIP optimization and greatly accelerates
the convergence. Fig. 11 shows the convergence and stability
of the loss in (1). The variation of the loss value is reduced if
EDIP is used. As a practical post-hoc strategy to overcome the
instability of the DIP optimization scheme, the reconstructed
image is taken as the network output at minimum loss.
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Fig. 9. 3D Walnut reconstruction of EDIP pretrained on ellipsoids dataset, compared to standard DIP, at three different slices.

Fig. 10. The optimization of EDIP versus DIP for the Walnut reconstruction
in 2D (top) and 3D (bottom). The symbols ? and N denote initial PSNR
and rise time, respectively, and the horizontal dashed line indicates the steady
PSNR of DIP (noise).

VII. INVESTIGATION OF THE ROLE OF PRETRAINING

In this section, we first motivate why we use a standard
pretraining strategy instead of resorting to more sophisticated
schemes, and then we shed insight into the mechanism of
knowledge transfer via pretraining, highlighting favorable as
well as detrimental properties.

Fig. 11. The min-loss and PSNR computed with the min-loss output
for Walnut Sparse 120 (left). Loss variation (i.e. |lt(θ[i+1]) − lt(θ[i])|)
and respective histograms computed over three intervals (right). The moving
average uses a window size of 100 iterations.

a) Standard, Adversarial, Meta?: In this work, we adopt
the standard pretraining paradigm within our pretraining stage,
as described in Sec. IV. The choice is informed by comparing
standard pretraining, adversarial pretraining [51], [52] and
model agnostic meta-learning (MAML) [53], [54] on the
Lotus Sparse 20. Adversarial pretraining uses a projected
gradient descent attack (PGD-L2 [55], [56]). MAML-based
pretraining obtains a parameters’ configuration training on
six different tasks, comprising three different image classes:
ellipses, rectangles [57], and natural images from the PASCAL
VOC segmentation dataset [58], as well as two different
noise distributions: Gaussian and Poisson. We do not vary



206 PAPER 4. AN EDUCATED WARM START FOR DIP-BASED MICRO CT RECONSTRUCTION

8

the forward operator A, since the pretraining stage is tailored
to a known acquisition geometry; varying the structure of A
(e.g., via sparsification) would only withhold from the model
operator-specific knowledge, and introduce artifacts that are
not expected to be found in the subsequent reconstruction
tasks. We investigate whether the parameters’ configurations,
found with adversarial pretraining and MAML, lead to general
representations adapting faster to the subsequent reconstruc-
tion problem. It is observed from Tab. IV that all three
pretraining strategies lead to parameters’ configurations that
adapt to the subsequent reconstruction task with approximately
similar speed-up. Even if the adaptation to the subsequent task
shows on par properties, adversarial pretraining and MAML
introduce a significant computational overhead, which we find
unnecessary. The latter can be attributed to the facts that
adversarial pretraining requires the inclusion of an inner loop
optimization to design the attack (adding 62h to the wall-clock
time); MAML’s outer loop updates θs, while the inner one
(with one step of stochastic gradient descent) adapts θs to a
given task. MAML, instead, increases (×5) the overall VRAM
required.

TABLE IV
QUANTITATIVE EVALUATION OF ALTERNATIVE PRETRAINING

STRATEGIES FOR THE LOTUS ALONG WITH THE WALL-CLOCK TIME
RECORDED ON A NVIDIA RTX 2080TI.

Ellipses-Lotus Sparse 20

Rise time (Max PSNR; iters) (VRAM; batch size) Time

EDIP (FBP) 195 (31.65; 981) (5941MiB; 32) 23h
Adv.-L2-EDIP (FBP) 143 (31.24; 1175) (6093MiB; 32) 85h
MAML-EDIP (FBP) 545 (31.54; 1512) (7949MiB; 8) 31h

b) In Need to Amend: Figs. 7 and 8 show that the
reconstructions obtained by directly deploying the pretrained
network (i.e. ϕθ∗s ) on the FBP of the real-measured µCT
data do enjoy good reconstructive properties, but the images
tend to be overly-smooth and severely affected by ellipses-like
artifacts, which are naturally present in the synthetic training
dataset. Indeed, initializing the network’s parameters to the
pretrained configuration, on both Lotus and Walnut, shows a
gain of 5.8 dB, and of 9.4 dB (Sparse 120), 6.7 dB (3D
Sparse 20), 2 dB (3D Sparse 60) over the FBP. The
pretrained model enjoys high input-robustness, and feature
reuse plays a very important role in the EDIP reconstruction.
However, the feature reuse mechanism leads to undesirable
hallucinatory behaviors, as evidenced by the ellipses-like ar-
tifacts, which is a form of inductive biases induced by the
synthetic image class. This also indicates the importance of
properly designing the synthetic dataset used in the pretraining
stage, from which the features are learned, and the strong
dissimilarity between the synthetic training data and real
test data may actually deteriorate the performance. In the
supplementary materials, we showcase one potential pitfall
of the “supervised pretraining + unsupervised fine-tuning”
paradigm for DIP, resorting to synthetic data generated by a
by far too specific and less diverse image class, i.e., human
brain images for the supervised learning stage.

The knowledge enforced via the synthetic dataset needs to
be properly amended so that the reconstructed images recover

a more realistic texture. This is achieved at the fine-tuning
stage by enforcing the data consistency. Amending the knowl-
edge acquired via pretraining protects from hallucinations due
to (inevitable) distributional shifts, thereby overcoming a well-
known drawback of supervised learned reconstructors [59].

c) Investigating Feature Reuse: In a similar spirit to [60],
we feed a noise image to EDIP (trained on pairs of FBP
and ground truth image), which makes any visual features
learned in the pretraining stage useless. This allows us to
disentangle influencing factors involved in the fine-tuning
stage. We consistently observe faster convergence of EDIP
with respect to the standard DIP for the Lotus dataset. EDIP
(fed with FBP) still results in faster convergence, which agree
well with the intuition that decreasing feature reuse leads to
diminishing benefits. Fig. 12 (left) shows that EDIP remolds
the noise image differently compared to the standard DIP.
The learned inductive biases prioritize reshaping the noise
image as ellipse-like structures. The model makes an educated
reconstruction. The features learned during pretraining are
invariant of the input. The pretrained model is then adapted
by enforcing data-consistency via (1).

On the Walnut, cf. Fig. 12 (right), the benefit of pretraining
is less pronounced, if a noise image input is used. This might
be due to the fact that the Walnut has a higher resolution and
many more fine details, which are not present in the training
dataset. Nonetheless, pretraining can still remold noise input
into a walnut faster than DIP, yet the FBP input (used in the
pretraining) is even more effective. These observations fully
agree with that for Lotus.

d) Getting θ∗s Right: The starting point θ∗s of fine-tuning
can impact the adaptation speed. A selection procedure of θ∗s
is desired to maximize transferable performance (e.g. speed-
up). On the 2D setting, pretraining for more epochs (100 vs.
20) leads to a faster adaptation. This is clearly observed on
the Lotus, possibly due to the in-distribution nature of the
image class with respect to the ellipses dataset. However,
on more complex tasks (3D Sparse 20 and 3D Sparse
60), extensive pretraining leads to overfitting the image class,
and enforcing dataset-specific knowledge appears detrimental
to the transfer. Fig. 13 shows that extensively pretraining U-
Net for 2 epochs (i.e. 64k gradient updates with 32k ellipsoid
volumes), albeit yielding the highest initial PSNR, leads to
a sub-optimal convergence: the network output is effectively
constrained, as an over-trained φθ∗ after 2 epochs has little
freedom to amend. This is also observed on the 3D Sparse
60 setting.

e) Spectral Evaluation: We propose a spectral analysis
to understand the “education” by linearizing the non-linear
forward map F (θ) = Aϕθ(A

†yδ) at θ0:

F (θ) = F (θ0) + F ′(θ0)(θ − θ0),

with F ′(θ0) = Aϕ′θ0 ∈ Rm×p with ϕ′θ0 = ∂ϕθ/∂θ|θ=θ0 ∈
Rn×p denoting the Jacobian of the network’s output w.r.t.
θ. We use the subspace spanned by leading right singular
vectors vi of F ′(θ0) (i.e. with the largest singular values)
as a faithful representation of the network’s parameter space,
which determines the dynamics of the learning process. Due
to the high-dimensionality of the output and parameter spaces,
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Fig. 12. Iterates collected throughout the EDIP/DIP reconstruction from Lotus Sparse 20 (left) and Walnut Sparse 120 (right), after different numbers
of iterations. A video showing the reconstruction process is available at https://educateddip.github.io/docs.educated_deep_image_prior/.

Fig. 13. The optimization of EDIP using parameters from different check-
points for EDIP (FBP) on Walnut 3D Sparse 20. The symbols � and �
denote initial PSNR and rise time, respectively, and the horizontal dashed line
indicates the steady PSNR of DIP (noise).

directly computing ϕ′
θ0

is intractable. We approximate the first
� singular vectors of F ′(θ0) via randomized singular value
decomposition (rSVD) [61], [62], and proceed in two steps
(cf. Algorithm 1):

Stage #1: Randomized Range Finder. To construct a sub-
space capturing most of the action of F ′(θ0), we draw a
Gaussian random matrix Ω ∈ Rp×� and form F̄ = F ′(θ0)Ω ∈
Rm×�. To avoid the direct evaluation of ϕ′

θ0
, for any column

ω of Ω, we use a finite difference approximation: ϕ′
θ0
ω =

(ϕθ0+εω − ϕθ0−εω)/(2ε), where ε > 0 is a small constant.
Then we find an orthonormal matrix Q ∈ Rm×� for the range
of F̄ , using the standard QR factorization [61], [62].

Stage #2: Direct SVD. Next we construct a low-rank matrix
B = Q�F ′(θ0) ∈ R�×p, or equivalently, B� = F ′(θ0)

�Q,
which can be computed via backpropagation, and then ap-
proximate the singular values and the right singular vectors of
F ′(θ0) by that of B ≈ UΣV � (with the last few discarded as

Algorithm 1 rSVD for Linearized Forward Map
Require: the Jacobian matrix F ′(θ0), the target rank κ, and

oversampling parameter o
1: Draw a p×(� = κ+o) Gaussian random matrix Ω = (ωij)
2: Form F̄ = F ′(θ0)Ω
3: Construct an orthonormal basis Q of range(F̄ ) using QR

decomposition
4: Form the matrix B = Q�F ′(θ0)
5: Compute the SVD of B = W Σ̃�Ṽ�

6: Return Σ̃κ, Ṽκ

oversampling: default choice 5). Since the size of B ∈ R�×p is
much smaller than that of F ′(θ0), a direct SVD computation
is indeed feasible.

In the analysis, we use the 995 leading singular values and
the corresponding right singular vectors, which are used to
represent the parameters. We investigate EDIP and DIP, both
receiving the FBP as the input, and respectively approximate
the singular vectors of the Jacobian, evaluated at three check-
points during the fine-tuning stage (θinit, θ[100], θconv). Fig. 14
summarizes our empirical findings, showing the right singular
values component-wise plots and Hoyer measure of sparsity
[63], [64]. Hoyer measure takes a value 0 if the vector is dense
(i.e. all components are equal and non-zero) and 1 if it is 1-
sparse. The histogram is computed for the two sets of singular
vectors, i.e., {v1, . . . , v20} and {v976, . . . , v995}, separately, in
order to examine the behavior at the different frequency bands.
For DIP, the singular vectors are equally distributed throughout
the parameter space (at θinit) and across different singular
values. During the fine-tuning stage, we observe a “relevance
shift” towards the decoder’s parameters (at θ[100] and at θconv,
respectively), which is attributed to the fact that the heavy-
lifting of representing the target image is actually done by the
decoder. This is also consistent with our experimental find-
ings: EDIP-FE shows very similar reconstruction properties to
EDIP. For EDIP, pretraining enforces a hierarchical structure

https://educateddip.github.io/docs.educated_deep_image_prior/
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Fig. 14. The evolution of right singular vectors of the linearized forward map (i.e., the Jacobian) w.r.t. the network parameters θ for EDIP (FBP) versus
DIP (FBP) on Lotus Sparse 20 dataset. The parameters are ordered like they occur in the network, i.e. lower positions on the parameters axis refer to the
encoder while higher positions refer to the decoder. (a) and (b) show mean histograms for the right singular vectors v1, . . . , v20 and v976, . . . , v995, which
represent the low-frequency and high-frequency bands of the singular vectors, respectively; the numbers in brackets denote Hoyer measure of sparsity [63],
[64].

Fig. 15. The singular values of the linearized forward map (i.e., the Jacobian)
w.r.t. the network parameters θ, at θconv and θinit for EDIP (FBP) and DIP
(noise) on Lotus Sparse 20 data.

(i.e. a relevance shift towards the decoder’s parameters), and
again sparsity is clearly observed after pretraining. Pretraining
strongly promotes sparsity in the basis of the parameter space,
which is further promoted in the fine-tuning stage. This is
observed in both low and high frequency bands. It is worth
noting that even though individual singular vectors exhibit
sparsity, the parameter vector θ does not necessary exhibit
a very high level of sparsity, since the linear combination
might spoil it. The emerging sparsity during pretraining may
facilitate pruning the network, which however is still to be
systematically explored.

Interestingly, pretraining also induces a shift in the singular
values spectrum, and the overall behavior does not vary much
during adaptation, cf. Fig. 15. In contrast, for DIP, the shift

is quite dramatic in terms of the magnitude, as well as the
number of singular values larger than a given threshold. This
may offer an explanation to the very different dynamics of
the optimization scheme for the pretrained model and the
model trained from scratch: in the linearized regime, the
singular value spectrum essentially determines the dynamics
of gradient type algorithms (along with the learning rate), and
the dramatic shift of the singular value spectrum of the DIP
Jacobian may have contributed to the undesirable unsteady
convergence behavior of DIP and indicates the necessity of
carefully tuning the learning rate schedule in order to achieve
a stable convergence behavior.

VIII. CONCLUSIONS

Our work advances unsupervised deep learning-based to-
mographic reconstruction. We develop a two-stage learning
paradigm for accelerating DIP in image reconstruction. It
consists of a supervised pretraining stage on a simulated
dataset to educate DIP and then a fine-tuning stage which
adapts the network parameters to a single test image. The ex-
tensive experimental evaluation clearly shows that pretraining
on simulated data can significantly speed up, and stabilize DIP
reconstruction for 2D / 3D real-measured sparse-view µCT.
The empirical study also indicates that the pretraining stage
can facilitate learning a suitable feature representation, and that
adapting only the decoder’s parameters during the fine-tuning
stage is sufficient to ensure good reconstruction accuracy. The
novel spectral analysis of the linearized model indicates a
strong correlation of the sparsity pattern with the pretraining,
and a drastically different shift of the singular values spectrum
for the standard DIP and the educated version.

There are several avenues for further research. First, there
are other techniques for learning a good initialization for
neural networks, e.g., model-agnostic meta-learning (MAML)
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[53] and adversarial pretraining [51], [52]. These strategies are
also promising, but their full potentials are yet to be explored
within the context of DIP reconstruction. In the spirit of ANIL
(Almost No Inner Loop) [54], we would suggest using a
variant that simplifies the inner loop optimization so as to
improve the scalability of MAML. Second, given the emerging
sparsity pattern in singular vectors, it is natural to ask whether
one can exploit for even faster adaptation, e.g., via pruning or
optimizing in low-dimensional subspaces. Third, the proposal
utilizes the specific forward operator in the pretraining stage,
and hence the pretrained neural network is specialized, where
specialization to the target task is believed to be helpful.
However, addressing multiple settings (e.g., different imaging
modalities and multiple image classes) simultaneously is of
course of interest.
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SUPPLEMENTARY MATERIAL A
µCT MEASUREMENT DATA

A. Cone-Beam Geometry

On the Lotus root, we employ the sparse matrix provided
with the dataset. For the 2D Walnut setting, a sparse matrix
resembling the 2D cone-beam projection is constructed from
the ASTRA geometry, by selecting a single volume slice, and
a suitable subset of the 3D cone-beam projection lines. This
is a non-standard 2D fan-beam setting: (i) the rotation axis is
slightly tilted; (ii) the voxels / pixels are weighted according
to the 3D projections, which differs from the 2D projection
weighting. Specifically, in the integration of the beams for each
detector “pixel”, the contributing area / interval is spreading
in two vs. one dimension(s) with increasing distance from the
source, so the beam density decreases antiproportionally to the
squared distance vs. antiproportionally to the distance. For the
3D Walnut settings, ASTRA’s direct projection routines are
employed via tomosipo. The backward gradients are approx-
imated by back-projection. The geometry definition has been
adapted to match the sub-sampling applied to the volume and
the measurements.

B. X-ray Walnut Details

From the collection of 42 Walnuts, we consider measure-
ments of Walnut 1 taken with source position (or orbit) 2. The
slice with offset +3px from the middle slice (i.e. zero-based
index 253) is selected for the 2D reconstruction task. A subset
of projection values is determined from the provided ASTRA
geometry by computing the 3D forward projection of a mask,
containing ones for the selected 2D slice and zeros for all
other voxels. We choose one single detector row per column
and angle with maximum intensity. A sparse matrix represent-
ing the forward projection is constructed from the ASTRA
forward projection routine for each unit vector, for which the
transposed matrix gives an exact adjoint of the Jacobian, used
in computing the gradient of (1). The more efficient ASTRA
back-projection routine is not directly applicable due to the
pseudo-2D geometry: some of the excluded detector rows
close to the selected ones contribute to the selected 2D slice
in the back-projection. Another workaround (without matrix
assembly) is to copy the measurement values from the selected
rows to the neighboring rows (a.k.a. edge-mode padding); we
use this to compute approximate FDK reconstructions. For
computing the gradient of the data fitting term in (1), using
the padding followed by the back-projection via ASTRA leads
to degraded results, so we use the sparse matrix multiplication
instead, which yields accurate gradients.

The implementation and the sparse matrix are available at
https://educateddip.github.io/docs.educated_deep_image_prior/.

SUPPLEMENTARY MATERIAL B
METHODOLOGY

A. 2D Network architecture

Fig. 16. The architecture of the U-Net used for the 2D experiments. Each
light-blue bar corresponds to a multi-channel feature map. Arrows denote the
different operations. The number of channels is set to 128 at every scale.

Figure 16 shows the network architecture used. We adopted
the architecture proposed by [6], with the only difference
being that we replace batch-normalization layers with group-
normalization layers.

See also Figure 4 in the main text showing the U-Net
architecture used for the 3D experiments.

B. The Loss

Our DIP implementation uses the loss function

l′t(θ) :=
1
m‖Aϕθ(z)− yδ‖22 + γ′ TV(ϕθ(z)),

with the anisotropic total variation penalty TV(x) =
‖∇hx‖1+‖∇vx‖1, where m is the number of detector pixels
(length of yδ) and ∇h and ∇v are the discrete difference
operators in the horizontal and vertical directions, respectively.

C. Hyperparameter Search

For each setting, suitable hyperparameters for DIP (noise)
are selected by grid search. While the learning rate 1e−4 is
(near) optimal in all cases, the TV-regularization parameter γ′

varies both with the µCT geometry and between validation
data (i.e. Shepp-Logan phantom, simulated data) and test data
(i.e. Lotus or Walnut, real data).

https://educateddip.github.io/docs.educated_deep_image_prior/
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TABLE V
HYPERPARAMETERS FOR (E)DIP ON VALIDATION AND TEST DATA.

Validation Learn. rate γ′ Iters.

Lotus Sparse 20 1e−4 4e−5 37 500
Lotus Limited 45 1e−4 1e−6 15 000
↪→ EDIP (FBP) 1e−4 4e−6 10 000
Walnut Sparse 120 1e−4 2e−7 50 000

Test Learn. rate γ′ Iters.

Lotus Sparse 20 1e−4 1e−4 10 000
Lotus Limited 45 1e−4 6.5e−5 10 000
Walnut Sparse 120 1e−4 2e−7 30 000
↪→ EDIP[-FE] (noise)

pretrained on ellipses
5e−4 to 1e−4 2e−7 30 000

Walnut 3D Sparse 20 1e−4 1e−1 30 000
Walnut 3D Sparse 60 5e−5 1e−1 60 000

The hyperparameters used for DIP and EDIP are listed in
Table V. The parameters are fine-tuned on DIP (noise), except
for the override values specified in the rows starting with
“↪→”. For only two cases, we observe the hyperparameters
that are optimal for DIP (noise) to be severely sub-optimal for
EDIP. For instance, no speed-up is observed for EDIP (noise),
applied to the Walnut Sparse 120, after pretraining on the
ellipses dataset, if the default learning rate 1e−4 is used; while
a higher learning rate leads to an unstable optimization. A
“warm-up” learning rate scheduling with an initial learning
rate of 5e−4, which is linearly decreased to 1e−4 over the first
5k iterations reveals a substantial speed-up. We use the same
learning rate scheduling with DIP (noise), but fail to observe
any improvement. Similarly, we observe that validating on the
Shepp-Logan phantom for the Lotus Limited 45 setting
requires the regularization parameter γ′ to be increased to
4e−6 (instead of 1e−6) for EDIP (FBP) to converge.

TABLE VI
HYPERPARAMETERS FOR LOTUS GOLD-STANDARD REFERENCE

RECONSTRUCTION.

Reference Learn. rate γ′ Iters.

Lotus (full 120) TV 1e-3 5e−5 1000

TABLE VII
HYPERPARAMETERS FOR TV BASELINES ON TEST DATA.

Test Learn. rate γ′ Iters.

Lotus Sparse 20 TV 5e−4 1e−4 5000
Lotus Limited 45 TV 5e−4 4e−5 5000
Walnut Sparse 120 TV 5e−4 4e−7 10 000
Walnut 3D Sparse 20 TV 5e−4 2e−1 5000
Walnut 3D Sparse 60 TV 5e−4 1e−1 5000

SUPPLEMENTARY MATERIAL C
EXTENDED EXPERIMENTAL RESULTS

Here we report additional details about the experiments.

A. The Lotus (Continued)

We also include a limited-view setting, named Lotus
Limited 45: 45 angles, range [0, 135◦) in steps of 3◦.

Fig. 17 shows exemplary reconstructions on the test-fold of
the synthetic datasets used for pretraining, for both Sparse
20 and Limited 45. The FBP suffers severe streak artifacts,
but the trained U-Net can recover the shapes well.

Ellipses-Lotus Sparse 20

Ellipses-Lotus Limited 45

Fig. 17. Exemplary reconstructions from the synthetic training datasets for
Lotus Sparse 20 and Limited 45.

The PSNR convergence of EDIP on Lotus root for the
Limited 45 setting is shown in Fig. 18; the reconstructions
are reported in Fig. 19. These numerical results indicate
analogous conclusions as for the case of Sparse 20.

Table VIII reports overall tabular results for Lotus Sparse
20 and Lotus Limited 45. Rise time is defined to be the
minimal number of iterations after which the PSNR reaches
steady PSNR of DIP (noise) minus 0.1 dB. Both maximum
PSNR and steady PSNR are computed using the iteration-
wise median PSNR history over the 5 repeated runs (varying
the random seed). For steady PSNR, the median value of the
median PSNR history over the last 5k iterations is considered.
The convergence of TV is observed to be very stable, and we
report the final PSNR. Initial PSNR is the mean value over
the 5 repeated runs.

It is observed that pretraining can substantially accelerate
and stabilize the convergence of DIP. The acceleration factor
is more substantial, when considering the FBP as input. The
maximum PSNR (Max. PSNR) and steady PSNR suggest
that pretraining also improves the reconstruction quality. The
performance of EDIP-FE is largely comparable to EDIP.

Fig. 20 shows the convergence of the loss in (1) and of the
PSNR, where the PSNR is computed using the network output
with minimum loss reached until the current iteration. Using
the minimum loss output is a practical way to overcome the
instability of DIP optimization, clearly observed in the plots
with the raw data in the main analysis. Pretraining greatly
accelerates and stabilizes subsequent unsupervised training of
EDIP, when compared to the standard DIP. This indicates a
more favorable optimization landscape of EDIP / EDIP-FE
than that of DIP. A stable convergence in practice is important
for designing stopping rules for DIP / EDIP.



PAPER 4. AN EDUCATED WARM START FOR DIP-BASED MICRO CT RECONSTRUCTION 213

15

TABLE VIII
QUANTITATIVE EVALUATION FOR LOTUS SPARSE 20 AND LOTUS LIMITED 45 WITH EDIP BEING PRETRAINED ON ELLIPSES DATA.

Ellipses-Lotus Sparse 20 Limited 45

Rise time (Max PSNR; iters) Steady PSNR Init PSNR Rise time (Max PSNR; iters) Steady PSNR Init PSNR

DIP (noise) 3848 (31.17; 8846) 31.10 11.17 5470 (29.85; 9690) 29.69 11.17
DIP (FBP) 3622 (31.25; 8813) 31.17 11.33 5419 (29.84; 8898) 29.69 11.32
DIP-FE (noise) 6118 (31.10; 9818) 31.00 11.17 5142 (29.82; 8884) 29.69 11.17
DIP-FE (FBP) 4516 (31.19; 7677) 31.13 11.33 5056 (29.83; 9891) 29.67 11.32
EDIP (FBP) 195 (31.65; 981) 31.21 27.04 524 (29.83; 2734) 29.68 27.55
EDIP (noise) 723 (31.53; 3548) 31.39 14.28 682 (29.94; 4445) 29.80 14.34
EDIP-FE (FBP) 226 (31.59; 1421) 31.26 27.04 245 (29.85; 5533) 29.72 27.55
EDIP-FE (noise) 1414 (31.46; 4278) 31.39 14.28 1279 (29.95; 7095) 29.86 14.34
TV – – 30.73 – – – 29.62 –

Fig. 18. The optimization of EDIP versus DIP on Lotus Limited 45.
All traces are the mean PSNR of 5 runs (varying the seed). The notations �
and � denote the initial PSNR and rise time, respectively, and the horizontal
dashed line indicates steady PSNR of DIP (noise).

Fig. 19. Lotus reconstruction of EDIP versus DIP on Lotus Limited 45
data. From the 5 runs (varying the seed), the one with the (closest to) median
PSNR was selected for each method. The reported reconstructions are the best
reconstruction (i.e. reconstruction at the minimum loss value).

B. The Walnut (Continued)

The quantitative results in Table IX validate our findings on
the Lotus root. See also Figs. 21 and 22–23 for convergence
behavior and exemplary reconstructions.
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TABLE IX
QUANTITATIVE EVALUATION FOR WALNUT SPARSE 120 WITH EDIP BEING PRETRAINED ON ELLIPSES DATA. FOR THE EXPERIMENTS MARKED WITH

“*” A HIGHER INITIAL LEARNING RATE WAS USED (SEE TABLE V).

Ellipses-Walnut Sparse 120

Rise time (Max PSNR; iters) Steady PSNR Init PSNR

DIP (noise) 20 373 (34.02; 25 357) 33.87 6.88
DIP (FBP) 13 778 (34.07; 28 094) 33.90 6.26
DIP-FE (noise) 14 289 (34.02; 23 573) 33.88 6.88
DIP-FE (FBP) 13 421 (34.19; 23 266) 33.97 6.26
EDIP (FBP) 4496 (33.92; 13 039) 33.56 25.67
EDIP (noise) * 9561 (34.12; 23 352) 33.95 12.22
EDIP-FE (FBP) 4384 (33.91; 12 540) 33.70 25.67
EDIP-FE (noise) * 21 760 (33.89; 29 159) 33.75 12.22
TV – – 31.67 –

TABLE X
QUANTITATIVE EVALUATION FOR WALNUT 3D SPARSE 20 AND 3D SPARSE 60 WITH EDIP BEING PRETRAINED ON ELLIPSOIDS DATA. BOTH

MAXIMUM PSNR AND STEADY PSNR ARE COMPUTED USING THE ITERATION-WISE MEDIAN PSNR HISTORY OVER 3 REPEATED RUNS (VARYING THE
RANDOM SEED). FOR STEADY PSNR, THE MEDIAN VALUE OF THE MEDIAN PSNR HISTORY OVER THE LAST 5K ITERATIONS IS CONSIDERED. THE

CONVERGENCE OF TV IS VERY STABLE, AND WE REPORT THE FINAL PSNR. INITIAL PSNR IS THE MEAN VALUE OVER THE 3 REPEATED RUNS. ALL
PSNR VALUES ARE IN dB.

Ellipsoids-Walnut 3D Sparse 20 3D Sparse 60

Rise time (Max PSNR; iters) Steady PSNR Init PSNR Rise time (Max PSNR; iters) Steady PSNR Init PSNR

DIP (noise) 17 200 (30.68; 23 477) 30.37 7.29 49 041 (34.05; 58 901) 33.93 7.29
DIP (FBP) 13 016 (31.32; 25 063) 31.19 8.19 27 873 (34.37; 53 731) 34.22 8.62
EDIP (FBP) 3739 (31.48; 10 689) 30.94 19.77 11 247 (34.35; 40 810) 34.18 20.17
EDIP-FE (FBP) 2979 (31.38; 10 749) 30.93 19.77 14 520 (34.33; 45 259) 34.15 20.17
TV – – 28.89 – – – 33.35 –

SUPPLEMENTARY MATERIAL D
VALIDATING PRETRAINING

Different checkpoints are obtained from multiple pretraining
runs (varying the random seed), and by collecting checkpoints
along the optimization trajectory from each run. We identify
the parameters’ configuration to be used at test time from these
checkpoints by selecting the one with the best performance on
a validation set. To this end, we design a reconstructive task
based on the Shepp-Logan phantom, a standard test image
created to assess reconstruction algorithms. The phantom is
by construction within the ellipses data manifold and shares
the same noise distribution of ellipses measurements. The
checkpoint leading to the shortest rise time is selected, among
those with a steady PSNR that is at most 0.25 dB lower than
the maximum reached steady PSNR.

We repeat the pretraining three times (varying the seed) and
collect checkpoints after every 20 epochs for Lotus Sparse
20 and Lotus Limited 45, training for a maximum of
100 epochs. We also include the checkpoint for which the
model shows minimum validation loss. For Walnut Sparse
120 we pretrain for 20 epochs, and retain only the minimum
validation loss checkpoint. Fig. 24 shows the convergence of
the pretraining on the ellipses datasets for the Lotus and the
Walnut settings, along with the learning rate scheduling.

At the validation stage, each checkpoint is evaluated by
performing EDIP fine-tuning on simulated data of the Shepp-
Logan phantom. The validation runs for Lotus Sparse 20,
Lotus Limited 45, and Walnut Sparse 120 are shown
in Figs. 25 and 27, respectively. In the Lotus settings, starting
EDIP fine-tuning using checkpoints from a later epoch (e.g.
60, 80, 100) is more beneficial. Nonetheless, even pretraining

for fewer epochs (e.g. 20) can already greatly benefit the
EDIP fine-tuning, although to a lesser degree. Pretraining
considerably ameliorates the quality of the reconstruction of
the Shepp-Logan phantom for both Lotus and Walnut settings.
Especially for the Lotus Limited 45 setting, it substantially
increases the reconstruction quality.

We then investigate whether the selected checkpoints that
then are used for the test data — both the Lotus and the Walnut
could be considered an out-of-distribution image class — are
still optimal as we switch from the simulated measurements
of the Shepp-Logan phantom to the real-measured test data.
Fig. 26 and Fig. 28 show the PSNR convergence on the test
data using different checkpoints. While we observe a different
behavior between validation and test data, the validation
selects one of the best two checkpoint.
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Fig. 20. Min-loss and PSNR computed with the min-loss output for Lotus
Sparse 20 (left). Loss variation (i.e. |lt(θ[i+1])−lt(θ[i])|) and respective
histograms computed over three intervals (right). The moving average uses
a window size of 100 iterations.

Fig. 21. The optimization of EDIP using different checkpoints for EDIP
(FBP) on Walnut 3D Sparse 60 data. The notations � and � denote
the initial PSNR and rise time, respectively, and the horizontal dashed line
indicates steady PSNR of DIP (noise).

Ellipsoids-Walnut 3D Sparse 20

Fig. 22. Exemplary reconstructions from the synthetic training dataset of
ellipsoids images for Walnut 3D Sparse 20.

Ellipsoids-Walnut 3D Sparse 60

Fig. 23. Exemplary reconstructions from the synthetic training dataset of
ellipsoids images for Walnut 3D Sparse 60.
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Fig. 24. Pretraining convergence. Solid lines show the running mean of the training loss since the start of the respective epoch; dashed lines show the mean
validation loss evaluated after each epoch (on a set of 3200 held-out images).

Fig. 25. Validation runs on the Shepp-Logan phantom for selecting the initial EDIP (FBP) model parameters for data in the Lotus Sparse 20 and Limited
45 geometry. For Sparse 20 the model from training run 2 after 100 epochs is selected because it has the shortest rise time (with a sufficiently high steady
PSNR), whilst, for Limited 45 run 1 after 100 epochs is selected.
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Fig. 26. Optimization of EDIP using different checkpoints considered during
validation (see Fig. 25) for EDIP (FBP) on Lotus Sparse 20 data. The
parameters from run 2 after 100 epochs are selected by the validation. The
notations N and ? denote the initial PSNR and rise time, respectively, and the
horizontal dashed line indicates steady PSNR of DIP (noise).

Fig. 27. Validation runs on the Shepp-Logan phantom for selecting the initial
EDIP (FBP) model parameters for the Walnut Sparse 120 geometry. The
model from training run 1 is selected because it has the shortest rise time
(with a high steady PSNR).

Fig. 28. Optimization of EDIP using parameters from different training
runs considered during validation (see Fig. 27) for EDIP (FBP), on Walnut
Sparse 120 data. The parameters from run 1 are selected by the validation.
The notations N and ? denote the initial PSNR and rise time, respectively,
and the horizontal dashed line indicates steady PSNR of DIP (noise).
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SUPPLEMENTARY MATERIAL E
ABLATION STUDY AND LIMITATIONS

We showcase one potential pitfall of the “supervised pre-
training + unsupervised fine-tuning” paradigm for DIP, resort-
ing to a by far too specific and less diverse image class. Instead
of the ellipses dataset, we use human brain images for the
supervised learning stage. We consider MRI images of the
human brain from the ACRIN-FMISO-Brain (ACRIN 6684)
dataset from https://wiki.cancerimagingarchive.net/x/kQIGAg.
For the synthetic dataset, we normalize the extracted 2D
slices and (mis)interpret the values to be X-ray attenuation
coefficients. We use a random data split on patient level,
leading to 30 917 training images and 4524 validation images.
Both training and validation images are augmented by random
rotations. Fig. 29 shows an exemplary reconstruction of the
brain dataset, whilst Fig. 30 reports the pretraining conver-
gence.

Brain-Walnut Sparse 120

Fig. 29. Exemplary reconstructions from the synthetic training dataset of
brain images for Walnut Sparse 120.

Fig. 30. Pretraining convergence.

In Fig. 31, we show the validation on the Shepp-Logan.
Fig. 32 compares DIP and EDIP trained on the brain dataset.
EDIP performs worse than DIP.

Fig. 33 suggests that checkpoints from repeated pretraining
runs also lead to similar subpar results. We observe the inade-
quacy of the brain dataset (of its education!). Pretraining on the
brain dataset induces too dataset specific inductive biases from
which EDIP fails to escape, leading to slow convergence and
sub-optimal steady PSNR. Possibly the implicit regularization
exerted by the pretraining on the brain dataset essentially
restricts the networks from leaving a “pretrained landscape”
of sub-optimal parameters’ configurations.

We then check whether using earlier checkpoints would lead
to better transferable performances. We, indeed, observe that

Fig. 31. Validation runs on the Shepp-Logan phantom for selecting the initial
EDIP (FBP) model parameters pretrained on the brain dataset for data in the
Walnut Sparse 120 geometry. The model from training run 1 is selected
because it has the shortest rise time. Despite the relatively high number of
50k iterations, the (E)DIP optimizations do not fully converge yet.

Fig. 32. The optimization of EDIP versus DIP pretrained on the brain dataset
compared to standard DIP on Walnut Sparse 120 measurement data. All
traces are the mean PSNR of 5 repetitions of the same experimental run
(varying the random seed). See Tab. XI for complementary tabular results.
The notations � and � denote the initial PSNR and rise time, respectively.

TABLE XI
QUANTITATIVE EVALUATION RESULTS FOR EDIP ON WALNUT SPARSE
120 AFTER PRETRAINING ON THE BRAIN DATASET FOR 20 EPOCHS. NO
RISE TIME CAN BE REPORTED, BECAUSE THE PSNR IS NOT REACHING

THE STEADY PSNR OF DIP (NOISE) MINUS 0.1dB WITHIN THE 30K
ITERATIONS. SEE TABLE IX FOR THE CORRESPONDING RESULTS FROM

STANDARD DIP AND FROM PRETRAINING ON ELLIPSES DATA.

Brain-Walnut Sparse 120 — pretrained for 20 epochs

Rise time (Max PSNR; iters) Steady PSNR Init PSNR

EDIP (FBP) – (33.51; 29 982) 33.35 25.49
EDIP (noise) – (32.67; 29 875) 32.29 12.23
EDIP-FE (FBP) – (33.43; 29 862) 33.24 25.49
EDIP-FE (noise) – (31.06; 29 989) 30.39 12.23

an early-stopping of the pretraining stage on the brain dataset
ameliorates EDIP, cf. Fig. 35. The longer we pretrain on the
brain dataset, the worse EDIP performs subsequently.

https://wiki.cancerimagingarchive.net/x/kQIGAg
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Fig. 33. The optimization of EDIP using parameters from different training
runs considered during validation (see Fig. 31) for EDIP (FBP), pretrained on
the brain dataset, on Walnut Sparse 120 measurement data. The parameters
from run 1 are the ones selected by the validation. The notations � and �
denote the initial PSNR and rise time, respectively, and the horizontal dashed
line indicates steady PSNR of DIP (noise).

Fig. 34. Walnut reconstruction of EDIP pretrained on brain dataset, compared
to standard DIP. From the 5 runs (varying the seed), the one with the (closest
to) median PSNR was selected for each method. See Fig. 8 for the Walnut
reconstruction with EDIP pretrained on the ellipses dataset.

Fig. 35. The optimization of EDIP using parameters from different epochs for
EDIP (FBP) on Walnut Sparse 120 measurement data while pretraining
on the brain dataset. The notations � and � denote the initial PSNR and rise
time, respectively, and the horizontal dashed line indicates steady PSNR of
DIP (noise).
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Abstract

Existing deep-learning based tomographic image reconstruction methods do not provide
accurate uncertainty estimates of their reconstructions, hindering their real-world deployment.
This paper develops a method, termed as linearised deep image prior (DIP), to estimate the
uncertainty associated with reconstructions produced by the DIP with total variation (TV)
regularisation. We endow the DIP with conjugate Gaussian-linear model type error-bars
computed from a local linearisation of the neural network around its optimised parameters.
To preserve conjugacy, we approximate the TV regulariser with a Gaussian surrogate. This
approach provides pixel-wise uncertainty estimates and a marginal likelihood objective for
hyperparameter optimisation. We demonstrate the method on synthetic data and real-
measured high-resolution 2D µCT data, and show that it provides superior calibration of
uncertainty estimates relative to previous probabilistic formulations of the DIP. Our code is
available at https://github.com/educating-dip/bayes_dip.

1 Introduction
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Figure 1: X-ray reconstruction (501×501 px2) of a wal-
nut (left), the absolute error of its CT reconstruction
(top) and pixel-wise uncertainty (bottom).

Inverse problems in imaging aim to recover an un-
known image x ∈ Rdx from the noisy measurement
y ∈ Rdy

y = Ax + η, (1)

where A ∈ Rdy×dx is a linear forward map, and
η i.i.d. Gaussian noise, i.e. η ∼ N (0, σ2

yI). Many
tomographic reconstruction problems take this form,
e.g. computed tomography (CT). Due to the inherent
ill-posedness of the problem, e.g. dy ≪ dx, suitable
regularisation / prior is crucial for the successful
recovery of x (Tikhonov & Arsenin, 1977; Engl et al.,
1996; Ito & Jin, 2014).

∗ Equal contribution.
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In recent years, deep-learning based approaches have achieved outstanding performance on a wide variety
of tomographic problems (Arridge et al., 2019; Ongie et al., 2020; Wang et al., 2020). Most deep learning
methods are supervised; they rely on large volumes of paired training data. Alas, these often fail to generalise
out-of-distribution (Antun et al., 2020); small deviations from the distribution of the training data can
lead to severe reconstruction artefacts. Pathologies of this sort call for both unsupervised deep learning
methods—free from training data and thus mitigating hallucinatory artefacts (Bora et al., 2017; Heckel
& Hand, 2019; Tölle et al., 2021)—and uncertainty quantification (Kompa et al., 2021; Vasconcelos et al.,
2022)—informing the user about (un)reliability in reconstructions.

We focus on the deep image prior (DIP), perhaps the most widely adopted unsupervised deep learning
approach (Ulyanov et al., 2018). DIP regularises the reconstructed image x̂ by reparametrising it as the
output of a deep convolutional neural network (CNN). It does not require paired training data, relying solely
on the structural biases induced by the CNN architecture. The DIP has proven effective on tasks ranging
from denoising and deblurring to challenging tomographic reconstructions (Liu et al., 2019; Baguer et al.,
2020; Knopp & Grosser, 2022; Darestani & Heckel, 2021; Gong et al., 2019; Cui et al., 2021; Barutcu et al.,
2022). Nonetheless, the DIP only provides point reconstructions without uncertainty estimates.

In this work, we equip DIP reconstructions with reliable uncertainty estimates, which is an under-explored
topic. In literature, there are two notable probabilistic reformulations of the DIP (Cheng et al., 2019; Tölle
et al., 2021), but their focus is on preventing overfitting rather than accurately estimating uncertainty.
Distinctly from these, we only estimate the uncertainty associated with a specific reconstruction, instead
of characterising a full posterior over all candidate images. We achieve this by computing Gaussian-linear
model type error-bars for a local linearisation of the DIP around its mode (Mackay, 1992; Khan et al.,
2019; Immer et al., 2021b), and refer to the method as linearised DIP. Linearised approaches have recently
provided state-of-the-art uncertainty estimates for supervised deep learning models (Daxberger et al., 2021b).
Unfortunately, the total variation (TV) regulariser, ubiquitous in CT reconstruction, makes inference in the
linearised DIP intractable and it does not lend itself to standard Laplace (i.e. local Gaussian) approximations
(Helin et al., 2022). We tackle this issue using predictive complexity prior (PredCP) (Nalisnick et al., 2021)
to construct covariance kernels that induce properties similar to that of the TV prior while preserving
Gaussian-linear conjugacy. Finally, we discuss several techniques to scale the method to large DIP networks
and high-resolution 2D images.

We showcase our approach on high-resolution CT reconstructions of real-measured 2D µCT projection data,
cf. fig. 1. Empirically, the method’s pixel-wise uncertainty estimates predict reconstruction errors more
accurately than existing approaches to uncertainty estimation with the DIP. This is not at the expense of
accuracy in reconstruction: the reconstruction obtained using the standard regularised DIP method (Baguer
et al., 2020) is preserved as the predictive mean, ensuring compatibility with advancements in DIP research.

The contributions of this work can be summarised as follows.

• We propose a novel approach to bestow reconstructions from the TV-regularised DIP with uncer-
tainty estimates, by constructing a local linear model by linearising the DIP around its optimised
reconstruction and providing the model’s error-bars as a surrogate for those of the DIP.

• We give an efficient implementation of the method, scaling up to high-resolution µCT data, and
yielding far more accurate uncertainty estimation than existing probabilistic formulations of the DIP.

The rest of this paper is organised as follows. Section 2 provides an extended discussion of the related work.
Section 3 recalls preliminaries for the linearised DIP. Section 4 discusses the design of a tractable Gaussian prior
mimicking the TV prior. Section 5 and section 6 present the linearised DIP and its efficient implementation.
Section 7 presents the experimental investigations on synthetic and real-measured high-resolution µCT data.
Section 8 concludes the article. Fully detailed derivations and additional experimental results are given in the
supplementary material (SM).

Since this paper’s first appearance, the proposed method was used by Barbano et al. (2022b) to actively
select X-ray scanning angles, resulting in a 30% reduction in angles needed to obtain a given reconstruction
PSNR, and extended by Antoran et al. (2023), scaling it to larger problems by drawing samples with SGD.
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2 Related Work

2.1 Advances in the deep image prior

Since its introduction by Ulyanov et al. (2018; 2020), the DIP has been improved with early stopping (Wang
et al., 2021), TV regularisation (Liu et al., 2019; Baguer et al., 2020) and pretraining (Barbano et al., 2022c;
Knopp & Grosser, 2022; Barbano et al., 2023). We build upon these recent advancements by providing a
scalable method to estimate the error-bars of DIP’s reconstructions. Obtaining reliable uncertainty estimates
for DIP reconstructions is a relatively unexplored topic. Building upon Garriga-Alonso et al. (2019) and
Novak et al. (2019), Cheng et al. (2019) show that in the infinite-channel limit, the DIP converges to a
Gaussian process (GP). In the finite-channel regime, the authors approximate the posterior distribution over
the DIP’s parameters with stochastic gradient Langevin dynamics (SGLD) (Welling & Teh, 2011). Laves
et al. (2020) and Tölle et al. (2021) use factorised Gaussian variational inference (Blundell et al., 2015) and
MC dropout (Hron et al., 2018; Vasconcelos et al., 2022), respectively. These probabilistic treatments of DIP
primarily aim to prevent overfitting, as opposed to accurately estimating uncertainty. While they can deliver
uncertainty estimates, their quality tends to be poor. In fact, obtaining reliable uncertainty estimates from
deep-learning based approaches, like the DIP, largely remains a challenging open problem (Antorán, 2019;
Snoek et al., 2019; Ashukha et al., 2020; Foong et al., 2020; Barbano et al., 2022a; Antorán et al., 2020).
In the present work, we obtain uncertainty estimation by performing Bayesian inference with respect to
the DIP model locally linearised around its optimised parameters. This is distinct from the aforementioned
approaches in that we only model a local mode of the posterior distribution.

2.2 Bayesian inference in linearised neural networks

The Laplace method is first applied to deep learning in (Mackay, 1992). It has seen a recent popularisation
as the best performing approach when it comes to Bayesian reasoning with neural networks (Daxberger et al.,
2021b;a). Specifically, Khan et al. (2019) and Immer et al. (2021b) show that the linearization step improves
the quality of uncertainty estimates. Immer et al. (2021a), Antorán et al. (2022) and Antorán et al. (2022)
explore the linear model’s evidence for model selection. Daxberger et al. (2021b) and Maddox et al. (2021)
introduce subnetwork and finite differences approaches, respectively, for scalable inference with linearised
models. Inference in the linearised model is highly attractive compared to alternative approaches because it
is post-hoc and it preserves the reconstruction obtained through the DIP optimisation as the predictive mean.
This line of work is also related to the neural tangent kernel (Jacot et al., 2018; Lee et al., 2019; Novak et al.,
2020), in which NNs are linearised at initialisation.

3 Preliminaries

3.1 Total variation regularisation

The imaging problem given in eq. (1) admits multiple solutions consistent with the observation y. Thus,
regularisation is needed for stable reconstruction. Total variation (TV) is perhaps the most well established
regulariser (Rudin et al., 1992; Chambolle et al., 2010). The anisotropic TV semi-norm of an image vector
x ∈ Rdx imposes an L1 constraint on image gradients:

TV(x)=
∑
i,j

|Xi,j −Xi+1,j |+
∑
i,j

|Xi,j −Xi,j+1|, (2)

where X ∈ Rh×w denotes the vector x reshaped into an image of height h by width w, and dx = h · w. This
leads to the regularised reconstruction formulation

x̂ ∈ argmin
x∈Rdx

L(x) with L(x) := ∥Ax− y∥2
2 + λTV(x), (3)

where the hyperparameter λ > 0 determines the strength of the regularisation relative to the fit term.

3
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3.2 Bayesian inference for inverse problems

The Bayesian framework provides a consistent approach to uncertainty estimation in imaging problems (Kaipio
& Somersalo, 2005; Stuart, 2010; Seeger & Nickisch, 2011). The image to be recovered is treated as a random
variable. Instead of finding a single best reconstruction x̂, we aim to find a posterior distribution p(x|y) that
scores every candidate x ∈ Rdx according to its agreement with the observation y and prior belief p(x). The
loss in eq. (3) can be viewed as the negative log of an unnormalised posterior, i.e. p(x|y)∝exp(−L(x)), and x̂
as its mode, i.e. the maximum a posteriori (MAP) estimate. The least squares loss corresponds to a Gaussian
likelihood p(y|x) = N (y; Ax, I) and the TV regulariser to a prior over images p(x) ∝ exp(−λTV(x)).

The posterior is obtained by updating the prior over images with the likelihood as

p(x|y) = p(y)−1p(y|x)p(x), (4)

for p(y) =
∫

p(y|x)p(x)dx the normalising constant, also known as the marginal likelihood (MLL). This
latter quantity provides an objective for optimising hyperparameters, e.g. the regularisation strength λ. The
presence of different reconstructions with high probability under the posterior indicates uncertainty.

Our work partially departs from this framework in that it solely concerns itself with characterising plausible
reconstructions around the mode x̂ (Mackay, 1992). This has two key advantages, i) tractability: the likelihood
induced by NN reconstructions is strongly multi-modal, and both analytically and computationally intractable.
In contrast, the posterior for the local model is Gaussian; ii) interpretablity: even if we could obtain the
full posterior, downstream stakeholders not versed in probability are likely to have little use for it. A single
reconstruction and its pixel-wise uncertainty may be more interpretable to end-users (Bhatt et al., 2021).

3.3 The Deep Image Prior (DIP)

The DIP (Ulyanov et al., 2018; 2020) reparametrises the reconstructed image as the output of a CNN x(θ)
with learnable parameters θ ∈ Rdθ and a fixed input, which we have omitted from our notation for clarity.
The DIP can be seen as a reparametrisation that provides a favourable structural bias towards natural images.
Penalising the TV of the DIP’s output avoids the need for early stopping and improves reconstruction fidelity
(Liu et al., 2019; Baguer et al., 2020). The resulting optimisation problem is given by

θ̂ ∈ argmin
θ∈Rdθ

∥Ax(θ)− y∥2
2 + λTV(x(θ)), (5)

and the recovered image is given by x̂ = x(θ̂). U-Net is the standard choice of CNN architecture (Ronneberger
et al., 2015). Although the parameters θ must be optimised separately for each new measurement y, we
follow (Barbano et al., 2022c; Knopp & Grosser, 2022) to reduce the cost with task-agnostic pretraining.

3.4 Bayesian inference with linearised neural networks

Adopting the DIP parametrisation of the reconstructed image, as in section 3.3, makes the Bayesian posterior
in eq. (4) intractable. Instead, this work only characterises the uncertainty associated with a specific
regularised reconstruction x̂, obtained via eq. (5). To this end, we take a tangent linear model of the CNN
x(θ) around its optimised parameters θ̂ (Mackay, 1992; Khan et al., 2019; Immer et al., 2021b),

h(θ) := x(θ̂) + J(θ − θ̂), (6)

where J := ∂x(θ)
∂θ |θ=θ̂ ∈R

dx×dθ is the Jacobian of the CNN function x(θ) with respect to its parameters θ

evaluated at θ̂. We obtain error-bars for the DIP reconstruction x(θ̂) using h(θ). For Gaussian noise and a
Gaussian prior on θ, we have a conjugate setting; the posterior over the linearised model’s reconstructions
is a Gaussian N (x; x(θ̂), Σx|y), and the marginal likelihood of the linearised model can be used to tune
hyperparameters (Mackay, 1992; Immer et al., 2021a; Antorán et al., 2022; Antorán et al., 2022).

Computing both the posterior covariance Σx|y and the marginal likelihood naively has cost O(d3
θ). For large

U-Nets, this is impracticable (Daxberger et al., 2021b). In section 5 and section 6, we derive a dual approach
with a cost O(d3

y) and detail an efficient implementation. Furthermore, when using the (non-quadratic) TV
regulariser, conjugacy is lost. Indeed, the TV regulariser does not admit a Laplace (quadratic) approximation.
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4 The total variation as a conditionally Gaussian prior

First, we study the construction of tractable non-DIP-based priors for CT reconstruction. The gained
understanding sheds insights into incorporating the TV-based priors into the linearised DIP framework.
The regularised loss in eq. (3) can be interpreted as the negative log of an unnormalised posterior over
reconstructions. In this context, the TV regulariser corresponds to the prior

p(x) = Z−1
λ exp(−λTV(x)), (7)

where Zλ =
∫

exp(−λTV(x)) dx is its normalisation constant (the prior is improper, since constant vectors
are in the null space of the derivative operator). Working with the prior p(x) is intractable since Zλ does not
admit a closed form. The Laplace method, which consists of a locally quadratic approximation, does not
solve the issue because the second derivative of the TV regulariser is zero everywhere it is defined.

To enforce local smoothness in the reconstruction, we construct a Gaussian prior N (x; µ, Σxx) with mean
µ ∈ Rdx and covariance Σxx ∈ Rdx×dx given by the Matern-1/2 kernel

[Σxx]ij,i′j′ = σ2 exp
(
−d(i− i′, j − j′)

ℓ

)
, (8)

where i, j index the spatial locations of pixels of x, as in eq. (2), and d(a, b) =
√

a2 + b2. The hyperparameter
σ2 ∈ R+ informs the pixel amplitude while the lengthscale parameter ℓ ∈ R+ determines the correlation
strength between nearby pixels. The expected TV associated with our Gaussian prior is

κ := Ex∼N (µ,Σxx)[TV(x)] = cσ
√

1− exp(−ℓ−1), (9)

with c a constant. See appendix A for a derivation. Below we may omit the dependence of κ on (ℓ, σ2) from
the notation. For fixed pixel amplitude σ2, the expected reconstruction TV κ is a bijection of the lengthscale
ℓ. We leverage this fact within the PredCP framework of Nalisnick et al. (2021) to construct a prior over ℓ
that favours reconstructions with low expected TV

p(ℓ) = Exp(κ) |∂κ/∂ℓ| , (10)

where Exp is the density of the exponential distribution. The resulting hierarchical prior over images

x|ℓ ∼ N (µ, Σxx), ℓ ∼ Exp(κ) |∂κ/∂ℓ| (11)

is Gaussian for fixed ℓ, and thus the prior is conditionally conjugate to Gaussian-linear likelihoods. Figure 2
shows agreement between samples, drawn with Hamiltonian Monte Carlo, from the described TV-PredCP
prior and the intractable TV prior, both qualitatively and in terms of distribution over image TV. The TV
prior produces samples with more correlated nearby pixel values than the factorised prior. The TV-PredCP
prior captures this effect and produces even smoother samples, likely due to the presence of longer range
correlation in the Matern-1/2 covariance.

5 The linearised DIP

In this section, we build a probabilistic model to characterise posterior reconstructions around θ̂, a mode of
the regularised DIP objective (obtained using eq. (5)). Section 5.1 describes the construction of a linearised
surrogate for the DIP reconstruction. Section 5.2 describes how to compute the surrogate model’s error-bars
and use them to augment the DIP reconstruction. Section 5.3 discusses how we include the effects of TV
regularisation into the surrogate model. Finally, in section 5.4, we describe a strategy to choose the surrogate
model’s prior hyperparameters using a marginal likelihood objective.

5.1 From a prior over parameters to a prior over images

After training the DIP to an optimal TV-regularised setting x̂ = x(θ̂) using eq. (5), we linearise the network
around θ̂ by applying eq. (6), and obtain the affine-in-θ function h(θ). The error-bars obtained from Bayesian

5
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Figure 2: Samples from priors. From left to right. Plot 1 shows a histogram of the average sample TV
reporting an overlap between the TV and TV-PredCP priors. The factorised Gaussian prior results in larger
TV values. Plot 2 shows an analogous histogram using samples from the linearised DIP (lin.-DIP) fitted
to a KMNIST image, where the hyperparameters (ℓ, σ2) have been optimised both with and without the
TV-PredCP term. The TV-PredCP term in the DIP hyperparameter optimisation leads to smoother samples
with less artefacts. Plots 3-5 show samples from the TV, TV-PredCP, and factorised Gaussian priors proposed
in section 4, drawn using Hamiltonian Monte Carlo (HMC). Plots 6-7 show prior samples from the linearised
DIP, which produces samples containing the structure of the KMNIST image used to train the network.

inference with h(θ) will tell us about the uncertainty in x̂. To this end, consider the hierarchical model,

y|θ ∼ N (Ah(θ), σ2
yI), θ|ℓ ∼ N (0, Σθθ(ℓ)), ℓ ∼ p(ℓ) with h(θ) := x(θ̂) + J(θ − θ̂), (12)

where we place a Gaussian prior over the parameters θ that, in turn, depends on the lengthscale ℓ. Conditioned
on the value of ℓ, this is a conjugate Gaussian-linear model and thus the posterior distribution over θ has a
closed Gaussian form. Learning the lengthscale ℓ will allow us to incorporate TV constraints into the computed
error-bars, cf. section 5.3. We have introduced the noise variance σ2

y as an additional hyperparameter which
we will learn using the marginal likelihood (cf. section 5.4).

To provide intuition about the linearised model, we push samples from θ ∼ N (θ; 0, Σθθ), through h. The
resulting reconstruction samples are drawn from a Gaussian distribution with covariance Σxx ∈ Rdx×dx given
by JΣθθJ⊤ and are shown in fig. 2. Here, the Jacobian J introduces structure from the NN function around
the linearisation point θ̂. It introduces features from the KMNIST character that the DIP was trained on.

5.2 Efficient posterior predictive computation

We augment the DIP reconstruction x̂ with Gaussian predictive error-bars computed with the linearised
model h described in eq. (12), yielding N (x; x̂, Σx|y). The posterior covariance Σx|y is given by

Σx|y = J(σ−2
y J⊤A⊤AJ + Σ−1

θθ )−1J⊤ = Σxx − ΣxyΣ−1
yy Σ⊤

xy, (13)

which is derived in appendix B. Here, Σxx = JΣθθJ⊤, Σxy = ΣxxA⊤ and Σyy = AΣxxA⊤ + σ2
yI. The

constant-in-θ terms in h do not affect the uncertainty estimates, and thus the error-bars match those of the
simple linear model Jθ. Importantly, eq. (13) depends on the inverse of the observation space covariance Σ−1

yy ,
as opposed to the covariance over reconstructions, or parameters. Equation (13) scales as O(dxd2

y) as opposed
to O(d3

x) or O(d3
θ) for the more-standard-in-the-literature output (reconstruction) space or parameter space

approaches, respectively (Immer et al., 2021b; Daxberger et al., 2021a).

5.3 Incorporating TV-smoothness into our model as a prior

We impose constraints on h’s error-bars, such that the model only considers low TV reconstructions as
plausible. For this, we place a block-diagonal Matern-1/2 covariance Gaussian prior on the linearised model’s
weights, similarly to Fortuin et al. (2021). We introduce dependencies between parameters in the same CNN
convolutional filter as

[Σθθ]kij,k′i′j′ = σ2
d exp

(−d(i− i′, j − j
′)

ℓd

)
δkk′ , (14)

where k indexes the convolutional filters in the CNN, δkk′ denotes Kronecker symbol, and (i, j) index the
spatial locations of specific parameters within a filter. The lengthscale ℓd regulates the filter smoothness.

6
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Intuitively, an image generated from convolutions with smoother filters will present lower TV. Indeed,
in appendix C we show a bijective relationship between this quantity and the filter lengthscale. The
hyperparameter σ2

d determines the marginal prior variance. Both parameters are defined per architectural
block d ∈ {1, 2, . . . , D} in the U-Net and we write ℓ = [ℓ1, ℓ2, . . . , ℓD] and σ2 = [σ2

1 , σ2
2 , . . . , σ2

D]. The chosen
U-Net architecture is fully convolutional and thus eq. (14) applies to all parameters, reducing to a diagonal
covariance for 1× 1 convolutions. A U-Net diagram highlighting these prior blocks is in fig. 3.

To enforce TV-smoothness, we adopt the strategy given in section 4. Since choosing a large ℓ enforces
smoothness in the output, a prior placed over the filter lengthscales ℓ can act as a surrogate for the TV prior.

To make this connection explicit, we construct a TV-PredCP (Nalisnick et al., 2021)

p(ℓ) =
D∏

d=1
p(ℓd) =

D∏
d=1

Exp(κd)
∣∣∣∣∂κd

∂ℓd

∣∣∣∣ , (15)

with κd := E
θ∼N (θ̂d,Σθdθd

)
∏D

i=1,i ̸=d
δ(θi−θ̂i) [λTV(h(θ))] (16)

being the expected TV of the CNN output over the prior uncertainty in the parameters of block d when all
other entries of θ are fixed to θ̂.
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Figure 3: A schematic of the U-Net architecture used
in the numerical experiments on Walnut data (see sec-
tion 7.2). For KMNIST, we use a reduced, 3-scale
U-Net without group norm layers (see fig. 20). Each
light-blue rectangle corresponds to a multi-channel fea-
ture map. We highlight the architectural components
corresponding to each block 1, . . . , D for which a sepa-
rate prior is defined with red and yellow boxes.

We relate the expected TV κd to the filter lengthscale
ℓd via the change of variables formula. The indepen-
dence across blocks of p(ℓ) ensures dimensionality
preservation, formally needed in changing variables.
It follows from the triangle inequality that

∑
d κd

is an upper bound on the expectation under the
distribution Eθ∼N (θ̂,Σθθ)[TV(h(θ))], cf. appendix C.

Note that eq. (15) can be computed analytically.
However, its direct computation is costly and we
instead rely on numerical methods described in sec-
tion 6. In fig. 2 (cf. plot 2 and plots 6-7), we show
samples from N (x; 0, Σxx) where ℓ is chosen using
the marginal likelihood with TV-PredCP constraints
(cf. also section 5.4). Incorporating the TV-PredCP
leads to smoother samples with less discontinuities.

5.4 Type-II MAP learning of hyperparameters

The calibration of the predictive Gaussian error-
bars depends on the choice of the hyperparameters
(σ2

y, σ2, ℓ) of the hierarchical model in eq. (12) (An-
torán et al., 2022). For a given ℓ, Gaussian-linear
conjugacy yields a closed form marginal likelihood
objective to learn the hyperparameters. In turn, to learn ℓ, we combine the above objective with the
TV-PredCP’s log-density, which acts as a regulariser. The resulting expression resembles a Type-II MAP
(Rasmussen & Williams, 2005) objective

log p(y|ℓ; σ2
y, σ2) + log p(ℓ; σ2) ≈

− 1
2σ−2

y ||y −Ax(θ̂)||22 −
1
2 θ̂⊤

h Σ−1
θθ (ℓ, σ2)θ̂h −

1
2 log |Σyy| −

D∑
d=1

κd(ℓ, σ2) + log
∣∣∣∣∂κd(ℓ, σ2)

∂ℓd

∣∣∣∣ + B, (17)

where B is independent of (σ2
y, σ2, ℓ) and the vector θ̂h ∈ Rdθ is the posterior mean of the linear model’s

parameters. See appendix B for the detailed derivation. The bottleneck in evaluating eq. (17) is the log-
determinant log |Σyy| of Σyy, which has a cost O(d3

y). We go on to describe scalable ways to approximate the
log-determinant and other costly quantities required for prediction.

7
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6 Towards scalable computation

In a typical tomography setting, the dimensionality dx of the image x̂ and dy of the observation y can be
large, e.g. dx > 1e5 and dy > 1e3. Thus holding the input space covariance matrices (e.g. Σxx and Σx|y) in
memory is infeasible. The latter complicates computing log |Σyy| in eq. (17) (or its gradients), and its inverse
in Σx|y, cf. eq. (13), which scale as O(d3

y) and O(dxd2
y), respectively. To scale the approach, we only access

Jacobian and covariance matrices through matrix–vector products (matvecs), i.e. products resembling v⊤
x Σxx

and v⊤
y Σyy for vx ∈ Rdx and vy ∈ Rdy . We compute vy ∈ Rdy through successive matvecs as

v⊤
y Σyy = v⊤

y (AJΣθθJ⊤A⊤ + σ2
yI), (18)

and we compute v⊤
x Σxx similarly. We compute Jacobian vector products v⊤

θ J⊤ for vθ ∈ Rdθ using forward
mode automatic differentiation (AD) and v⊤

x J using backward mode AD, both with the functorch library
(He & Zou, 2021). We compute products with Σθθ by exploiting its block diagonal structure. All these
operations can be batched using modern numerical libraries and GPUs.

6.1 Conjugate gradient log-determinant gradients

For the Type-II MAP optimisation in eq. (17), we estimate the gradients of log |Σyy| with respect to the
parameters of interest ϕ using the stochastic trace estimator (Gibbs & MacKay, 1996; Gardner et al., 2018)

∂ log |Σyy|
∂ϕ

= Tr
(

Σ−1
yy

∂Σyy

∂ϕ

)
= Ev∼N (0,P )

[
v⊤Σ−1

yy

∂Σyy

∂ϕ
P −1v

]
, (19)

where P is a preconditioner matrix. We approximately solve the linear system v⊤Σ−1
yy for batches of probe

vectors v using the GPyTorch preconditioned conjugate gradient (PCG) implementation (Dong et al., 2017).

The preconditioner P is constructed using r-rank randomised SVD, by approximating AJΣθθJ⊤A⊤ as Ũ Λ̃Ũ⊤,
using a randomised eigendecomposition algorithm (Halko et al., 2011; Martinsson & Tropp, 2020) with
Ũ ∈ Rdy×r and r = 200≪ dy. The algorithm is described in detail in appendix E. Since P depends on the
hyperparameters ϕ, we interweave the updates of P with the optimisation of eq. (17).

6.2 Ancestral sampling for TV-PredCP optimisation

For large images, exact evaluation of the expected TV with eq. (16) is intractable. Instead, we estimate the
gradient of κd with respect to ϕ = (σ2, ℓ) using a Monte-Carlo approximation

∂κd

∂ϕ
= Eθd∼N (θ̂d,Σθdθd

)

[
∂TV(x)

∂x
Jd

∂θd

∂ϕ

]
, (20)

where Jd = ∂x(θ)
∂θd
|θd=θ̂d

, ∂TV(x)
∂x is evaluated at the sample x=Jdθd and ∂θd

∂ϕ is the reparametrisation gradient
for θd, a prior sample of the weights of CNN block d. Since the second derivative of the TV semi-norm is
almost everywhere zero, the gradient for the change of variables volume ratio is

∂2κd

∂ϕ2 = Eθd∼N (θ̂d,Σθdθd
)

[
∂TV(x)

∂ϕ
Jd

∂2θd

∂ϕ2

]
. (21)

6.3 Posterior covariance matrix estimation by sampling

The covariance matrix Σx|y is too large to fit into memory for high-resolution tomographic reconstructions.
Instead, we follow Wilson et al. (2021) in drawing samples from N (x; 0, Σx|y) via Matheron’s rule

xx|y = x0 + ΣxyΣ−1
yy (ϵ−Ax0); x0 = Jθ0; θ0 ∼ N (0, Σθθ); ϵ ∼ N (0, σ2

yI). (22)

The biggest cost lies in constructing Σyy, which is achieved by applying eq. (18) to the standard basis vectors
Σyy = [e1, e2, ... edy ]⊤Σyy. We then perform its Cholesky factorisation as an intermediate step towards matrix

8



PAPER 5. UNCERTAINTY ESTIMATION FOR CT WITH A LINEARISED DIP 231

Published in Transactions on Machine Learning Research (12/2023)

inversion, both relatively costly operations. Fortunately, we only have to repeat these once, after which the
sampling step in eq. (22) can be evaluated cheaply. Alternatively, as in eq. (19), we can compute the solution
of the linear system, Σ−1

yy vy for any vy via PCG, without explicitly assembling (and thus storing in memory)
the measurement covariance matrix, or computing its Cholesky factorisation. This approach allows us to
scale the sampling operation to large measurement spaces, where the matrix Σyy may not fit in memory.

Since only nearby pixels of the predictions are expected to be correlated, we estimate cross covariances for
patches of only up to 10 × 10 adjacent pixels. Using larger patches yields no improvements. We use the
stabilised formulation of Maddox et al. (2019): Σ̂x|y = 1

2k [
∑k

j=1 diag(xj)2 + xjx⊤
j ] for (xj)k

j=1 samples from
the posterior predictive distribution over a patch. Note that the samples from eq. (22) are zero mean.

6.4 Faster low-rank Jacobian matvecs

Table 1: Wall-clock time on an A100 GPU for the
different steps of our algorithm when applied to high-
resolution CT (details in section 7.2). Computations
reported below the dotted line are in double precision.
The time taken by Jacobian matvecs during sampling
is given in parenthesis.

wall-clock time
DIP optim. (after pretraining (Barbano et al., 2022c)) <0.1 h
Hyperparam. optim. (MLL) 26.2 h
Hyperparam. optim. (TV-MAP) 35.4 h

Assemble Σyy 2.7 h
Draw 4096 posterior samples 2.4 h
- (Evaluate 4096 times 2× v⊤

θ J⊤ + 1× v⊤
x J) 2.4 h

Draw 4096 posterior samples (J̃ & PCG) 0.3 h
- (Evaluate 4096 times 2× v⊤

θ J̃⊤ + 1× v⊤
x J̃) < 0.1 min

Table 1 shows that the Jacobian matvecs—
implemented through forward and backward mode
AD— required for sampling from the posterior pre-
dictive (that is 2× v⊤

θ J⊤ and 1× v⊤
x J) take ≈ 100 %

of this step’s computation time (2.4 h). To accelerate
sampling, we construct a low-rank approximation
of the Jacobian J̃ , which we store in memory. We
compute v⊤

θ J̃⊤ and v⊤
x J̃ via matvec, as opposed to

AD. This allows for fast approximation of v⊤
y Σyy by

substituting J̃ into eq. (18). This brings the time
needed for sampling from the posterior predictive
down from 2.4 hours to less than a minute. We con-
struct J̃ similarly to the low-rank preconditioner P
(see section 6.1 and appendix E). That is, following
Halko et al. (2011), we build a rank-r approximation to J , by accessing only to matvecs with J and J⊤.
While offering a well-calibrated alternative to uncertainty quantification within the DIP framework, it incurs
computational overhead (see table 1) when compared to MC dropout, which only require a forward pass
through the network to generate a single sample.

Algorithm 1 summarises image reconstruction and uncertainty estimation with the linearised DIP.

Algorithm 1: Linearised deep image prior (lin.-DIP) inference
Inputs: noisy measurements y, a CNN x(·), probabilistic model’s hyperparameters, whether to use fast

approximate posterior sampling fast_sampling

1 θ̂ ← fit_DIP(y, x(θ)) // by minimising eq. (5)
2 θ̂h ←find_linearised_MAP(y, x(θ̂)) // using Algorithm 1 from Antorán et al. (2022)
3 σ2

y, {σ2
d, ℓd}D

d=1 ← optimise_hyperparams(y, x(θ̂), θ̂h) // by maximising eq. (17) with
estimators eqs. (19) to (21) and solving linear systems with PCG

4 if not fast_sampling then
5 Σyy ← assemble_covariance(x(θ̂), σ2

y, {σ2
d, ℓd}D

d=1) // by applying eq. (18) to rows of Idy

6 Σ̂x|y ← posterior_sampling(x(θ̂), {σ2
d, ℓd}D

d=1, Σyy) // using eq. (22)
7 else
8 J̃ ← construct_lowrank_Jacobian(x(θ̂)) // by randomised SVD, cf. section 6.4
9 Σ̂x|y ← fast_sampling(x(θ̂), σ2

y, {σ2
d, ℓd}D

d=1, J̃) // using eq. (22) with J̃ and PCG
Output: mean reconstruction x(θ̂), posterior covariance estimate Σ̂x|y

9
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7 Experiments

Here, we experimentally evaluate: i) the properties of the models and priors discussed in sections 4 and 5, and
whether they lead to accurate reconstructions and calibrated uncertainty; ii) the fidelity of the approximations
described in section 6; and iii) the performance of the proposed method linearised DIP (lin.-DIP) relative to
the previous MC dropout (MCDO) based probabilistic formulation of DIP (Laves et al., 2020). We attempted
to include DIP-SGLD (Cheng et al., 2019) in our analysis, but were unable to get the method to produce
competitive results on tomographic reconstruction problems. For each individual image to be reconstructed,
we employ the following linearised DIP inference procedure: i) optimise the DIP weights via eq. (5), obtaining
x̂ = x(θ̂); ii) optimise prior hyperparameters (σ2

y, ℓ, σ2) via eq. (17); iii) assemble and Cholesky decompose
Σyy with eq. (18) (this step can be accelerated using approximate methods sections 6.3 and 6.4); iv) compute
posterior covariance matrices either via eq. (13), or estimate them via eq. (22); cf. Algorithm 1.

7.1 Small scale ablation analysis: reconstruction of KMNIST digits

The initial analysis uses simulated CT data obtained by applying eq. (1) to 50 images from the test set of the
Kuzushiji-MNIST (KMNIST) dataset: 28× 28 (dx = 784) grayscale images of Hiragana characters (Clanuwat
et al., 2018). We choose the noise standard deviation to be either 5% or 10% of the mean of Ax, denoted as
η(5%) or η(10%). The forward map A is a discrete Radon transform, assembled via ODL (Adler et al., 2017).
We use a U-Net with 3 scales and 76905 parameters (a down-sized net compared to the one in fig. 3).

7.1.1 Comparing linearised DIP with network-free priors

Table 2: Quantitative results for inference with the
different priors introduced in section 4. We report both
the PSNR of E[x|y], which denotes the posterior mean
reconstruction, and the PSNR of x̂, which denotes the
posterior mode found through optimisation.

log-likelihood E[x|y] x̂
Fact. Gauss. 0.30± 0.17 16.15± 0.38 14.89± 0.38
TV 0.49± 0.14 16.32± 0.38 16.29± 0.41
TV-PredCP 0.65 ± 0.12 16.55 ± 0.39 17.48 ± 0.39
lin.-DIP (MLL) 1.63± 0.08 − 19.46 ± 0.52
lin.-DIP (TV-MAP) 1.63± 0.09 − 19.46 ± 0.52

We first evaluate the priors in section 4, i.e. TV
prior, TV-PredCP with a Matern-1/2 kernel, and
a factorised Gaussian prior, and perform inference
in the setting where the map A collects 5 angles
(dy = 205) sampled uniformly from 0◦ to 180◦ and
is applied to 50 KMNIST test set images. Here,
10% noise is added. This results in a very ill-posed
reconstruction problem, maximising the relevance of
the prior. We select the σ2

y and λ hyperparameters
for the factorised Gaussian prior and the TV prior
respectively such that the posterior mean’s PSNR is maximised across a validation set of 10 images from
the KMNIST training set. We keep the choice of σ2

y and λ hyperparameters from the first two models for
our experiments with the third model: Matern-1/2 with TV-PredCP prior over ℓ. For all priors, we perform
inference with the NUTS HMC sampler. We run 5 independent chains for each image. We burn these in for
3× 103 steps each and then proceed to draw 104 samples with a thinning factor of 2.

We evaluate test log-likelihood using Gaussian Kernel Density Estimation (KDE) (Silverman, 1986). The
kernel bandwidth is chosen using cross-validation on 10 images from the training set. The results in table 2
show that the TV-PredCP performs best in terms of the test log-likelihood and both posterior mean and
posterior mode PSNR, followed by the TV and then the factorised Gaussian. This is somewhat surprising
considering that this prior was designed as an approximation to the intractable TV prior. We hypothesise
that this may be due to the Matern model allowing for faster transitions in the image than the TV prior,
while still capturing local correlations, as shown qualitatively in fig. 2. This property may be well-suited
to the KMNIST datasets, where most pixels either present large amplitudes or are close to 0. DIP-based
predictions provide 2dB higher PSNR reconstructions than the non-DIP based priors, thus linearised DIP
handily obtains a better test log-likelihood than the more-traditional methods.

7.1.2 Comparing calibration with DIP uncertainty quantification baselines

Using KMNIST, we construct test cases of different ill-posedness by simulating the observation y with four
different angle sub-sampling settings for the linear operator A: 30 (dy=1230), 20 (dy=820), 10 (dy=410) and
5 (dy=205) angles are taken uniformly from the range 0◦ to 180◦. We consider two noise configurations by
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Figure 4: Exemplary character recovered from y (using 5 angles and η(5%)) with lin.-DIP and DIP-MCDO
along with respective uncertainty estimates. lin.-DIP provides vastly improved uncertainty calibration.
For lin.-DIP, the colour-map is shared between |x̂− x| and std-dev, and TV-MAP refers to Type-II MAP
optimisation of hyperparameters.

adding either 5% or 10% noise to the exact data Ax. We evaluate all DIP-based methods using the same
50 randomly chosen KMNIST test set images. To ensure a best-case showing of the methods, we choose
appropriate hyperparameters for each number of angles and white noise percentage setting by applying
grid-search cross-validation, using 50 images from the KMNIST training dataset. Specifically, we tune the
TV strength λ and the number of optimisation iterations for the DIP. Due to the reduced image size, we
apply linearised DIP as in section 5, without approximate computations. As an ablation study, we include
additional baselines: linearised DIP without the TV-PredCP prior over hyperparameters (labelled MLL), and
DIP reconstruction with a simple Gaussian noise model consisting of the back-projected observation noise
N (x; x̂, σ2

AI), with σ2
A = σ2

yTr((A⊤A)†)d−1
x where σ2

y=1 (labelled σ2
y=1). Note that non-dropout methods

share the same DIP parameters θ̂, and thus the same mean reconstruction. Hence, higher values in log-density
indicate better uncertainty calibration, i.e. the predictive standard deviation better matches the empirical
reconstruction error. DIP-MCDO does not provide an explicit likelihood function over the reconstructed
image. We model its uncertainty with a Gaussian predictive distribution with covariance estimated from 214

samples. MNIST images are quantised to 256 bins, but our models make predictions over continuous pixel
values. Thus, we simulate a de-quantisation of KMNIST images by adding a noise jitter term of variance
approximately matching that of a uniform distribution over the quantisation step (Hoogeboom et al., 2020).

Table 3: Mean and std-err of test log-likelihood computed over 50 KMNIST test images.
η (5%) #angles: 5 10 20 30
DIP (σ2

y = 1) 0.68 ± 0.14 1.57 ± 0.02 1.85 ± 0.02 2.02 ± 0.02
DIP-MCDO 0.74 ± 0.13 1.60 ± 0.02 1.87 ± 0.02 2.05 ± 0.02
lin.-DIP (MLL) 1.90 ± 0.14 2.57 ± 0.09 2.94 ± 0.10 3.09 ± 0.12
lin.-DIP (TV-MAP) 1.88 ± 0.15 2.59 ± 0.10 2.96 ± 0.10 3.11 ± 0.12

η (10%) #angles: 5 10 20 30
DIP (σ2

y = 1) 0.27± 0.17 1.31± 0.04 1.62± 0.03 1.76± 0.04
DIP-MCDO 0.42 ± 0.14 1.39 ± 0.04 1.70 ± 0.03 1.85 ± 0.04
lin.-DIP (MLL) 1.63 ± 0.08 2.11 ± 0.07 2.43 ± 0.07 2.59 ± 0.08
lin.-DIP (TV-MAP) 1.63 ± 0.09 2.13 ± 0.07 2.45 ± 0.08 2.61 ± 0.08

Table 4: PSNR [dB] / SSIM of the reconstruction posterior mean, averaged over 50 KMNIST test images.
η (5%) #angles: 5 10 20 30
DIP 21.42/ 0.890 27.92/ 0.977 31.21/ 0.988 32.93/ 0.991
DIP-MCDO 20.95/0.882 28.26/ 0.977 31.65/0.986 33.45/0.990

η (10%) #angles: 5 10 20 30
DIP 19.46/ 0.846 24.56/ 0.956 27.27/ 0.974 28.57/ 0.980
DIP-MCDO 18.91/0.830 24.76/0.953 27.72/0.972 29.09/0.978

Table 3 shows the test log-likelihood for all the methods and experimental settings under consideration. The
peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) index of posterior mean reconstructions are
given in table 4. All methods show similar PSNR with the standard DIP (with TV regularisation) obtaining
better PSNR in the very ill-posed setting (5 angles) and MCDO obtaining marginally better reconstruction in
all others. Despite this, the linearised DIP provides significantly better uncertainty calibration, outperforming
all baselines in terms of test log-likelihood in all settings. Figure 4 shows an exemplary character recovered
from a simulated observation y (using 20 angles and 5% noise) with both linearised DIP and DIP-MCDO along
with their associated uncertainty maps and calibration plots. DIP-MCDO systematically underestimates
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Figure 5: Reconstruction of a 501× 501 px2 slice of a scanned Walnut using lin.-DIP and DIP-MCDO along
with their respective uncertainty estimates. The zoomed regions (outlined in red) are given in top-left.

uncertainty for pixels on which the error is large, explaining its poor test log-likelihood. The pixel-wise
standard deviation provided by linearised DIP (TV-MAP) better correlates with the reconstruction error.

7.1.3 Evaluating the fidelity of sample-based predictive covariance matrix estimation

We evaluate the accuracy of the sampling, conjugate gradient and low rank approximations to the predictive
covariance Σx|y discussed in section 6. We compute the exact predictive covariance with eq. (13) as a reference,
which is tractable for KMNIST, and do not use patch-based approximations or stabilised covariance estimators.
Table 5 shows that estimating Σx|y using samples does not decrease the performance. Using a low-rank
approximation to J and computing linear solves with PCG lose at most 0.32 nats in test log-likelihood with
respect to the exact one, but result in almost an order of magnitude speedup at prediction time.

Table 5: Evaluation of our approximate covariance
estimation methods in terms of test log-likelihood
over 10 KMNIST test images considering the 20 angle
(dy = 820) setting and using lin.-DIP (MLL).

η (%)
exact

cov. eq. (13)
sampled

cov. eq. (22)
sampled

cov. (J̃) eq. (22)
sampled cov.

(J̃ & PCG) eq. (22)
5 2.80± 0.06 2.80± 0.06 2.68± 0.09 2.62± 0.09
10 2.26± 0.06 2.26± 0.06 2.21± 0.06 2.22± 0.06

Table 6: Test log-likelihood, PSNR and structural
similarity (SSIM) on the Walnut. We compare all
lin.-DIP variants with DIP-MCDO.

1× 1 2× 2 10× 10 PSNR [dB] SSIM
DIP-MCDO 0.03 1.68 2.47 23.49 0.730
lin.-DIP (MLL) 2.09 2.25 2.43 26.35 0.789
lin.-DIP (MLL, J̃ & PCG) 1.88 2.05 2.24 − −
lin.-DIP (TV-MAP) 2.21 2.40 2.60 − −
lin.-DIP (TV-MAP, J̃ & PCG) 2.24 2.46 2.65 − −

7.2 Linearised DIP for high-resolution CT

We now demonstrate the approach on real-measured cone-beam µCT data of a walnut (Der Sarkissian et al.,
2019). We reconstruct a 501× 501 px2 slice (dx = 251 001) using a sparse subset of measurements taken from
60 angles and 128 detector rows (dy = 7680), using the U-Net in fig. 3 which has about 3 million parameters.
Here, Σxx is too large to store in memory and Σyy too expensive to assemble repeatedly, and we use the full
suite of approximations in section 6. Since the Walnut data is not quantised, jitter correction is not needed.

During MLL and Type-II MAP optimisation, many layers’ prior variance goes to σ2
d ≈ 0, cf. appendix D. This

phenomenon is known as “automatic relevance determination” (Mackay, 1996; Tipping, 2001), and simplifies
our linearised network, preventing uncertainty overestimation. We did not observe this effect when working
with KMNIST images and smaller networks. We display the MLL and MAP optimisation profiles for the
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Figure 7: The comparison of uncertainty calibration: the pixel-wise error |x̂−x| overlaps with the uncertainties
provided by the lin.-DIP. DIP-MCDO, instead, severely underestimates uncertainty. The scale of the pixel-wise
standard deviation (std-dev) obtained including the TV-PredCP matches the absolute error more closely
than when the hyperparameters are optimised without. Using J̃ & PCG results in overestimating uncertainty
in the tails. LL stands for test log-likelihood.

active layers (i.e. layers with high σ2
d) in fig. 6. Type-II MAP hyperparameters optimisation drives σ2 to

smaller values, compared to MLL. This restricts the linearised DIP prior, and thus the induced posterior,
to functions that are smooth in a TV sense, leading to smaller error-bars, cf. fig. 7. As the optimisation of
eq. (17) progresses, ℓ1, ℓ11 fall into basins of new minima corresponding to larger lengthscales. This results in
more correlated dimensions in the prior, further simplifying the model.
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Figure 6: Optimisation trajectories for hyperparam-
eters of the U-Net’s first and last 3 × 3 convolutions
(ℓ1, σ2

1 , ℓ11, σ2
11), last 1 × 1 convolution (σ2

1×1,3) and
noise variance σ2

y for the Walnut data.

Density estimation described in section 6.3, is con-
ducted in double precision (64 bit floating point)
since single precision led to numerical instability in
the assembly of Σyy, and also in the estimation of
off-diagonal covariance terms for larger patches. In
table 6, we report test log-likelihood computed using
a Gaussian predictive distribution with covariance
patches of sizes 1× 1, 2× 2 and 10× 10 pixels. Mean
reconstruction metrics are also reported. Figure 5
displays reconstructed images, uncertainty maps and
calibration plots. In this more challenging task, DIP-
MCDO performs poorly relative to the standard DIP
formulation eq. (5) in terms of PSNR. DIP-MCDO
underestimates uncertainty, and its uncertainty map
is blurred across large sections of the image, placing
large uncertainty in well-reconstructed regions and
vice-versa. In contrast, the uncertainty map provided
by linearised DIP is fine-grained, concentrating on
regions of increased reconstruction error. Linearised DIP provides over 2.06 nats per pixel improvement in
terms of test log-likelihood and more calibrated uncertainty estimates, as reflected in the Q-Q plot in fig. 7.
Furthermore, the use of TV-PredCP prior for MAP optimisation yields a 0.12 nat per pixel improvement
over the MLL approach. Interestingly, using low-rank Jacobians and PCG for sampling provides a small
performance boost when using the TV-PredCP prior. Figure 7 reveals that these approximations result
in uncertainty overestimation (a known issue (Antoran et al., 2023)) which is compensated by the more
restrictive TV-PredCP prior.

8 Conclusion

We have proposed a probabilistic formulation of the deep image prior (DIP) that utilises a linearisation
of the DIP network around the mode of the loss and a Gaussian-linear hierarchical prior on the network
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parameters mimicking the total variation prior (constructed via the predictive complexity prior framework).
The approach yields well-calibrated uncertainty estimates on tomographic reconstruction tasks based on
simulated observations and real-measured µCT data. The empirical results suggest that both the DIP
reparametrisation and the TV regulariser provide good inductive biases for high-quality reconstructions and
well-calibrated uncertainty estimates. The method is shown to provide by far more calibrated uncertainty
estimates than existing MC dropout approaches to uncertainty estimation with the DIP. However, this comes
at a larger computational cost. Fortunately, since the first appearance of this work, Antoran et al. (2023)
have developed techniques that reduce the cost of our linearised DIP inference by two orders of magnitude.
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A Designing total variation priors

To develop a probabilistic DIP, we describe first how to design a tractable TV prior. We reinterpret the TV
regulariser eq. (2) as a prior over images, favouring those with low ℓ1 norm gradients

p(x) = Z−1
λ exp(−λTV(x)), (23)

where Zλ =
∫

exp(−λTV(x)) dx. This prior is intractable because Zλ does not admit a closed form; thus
approximations are necessary. We now explore alternatives without this limitation.

A.1 Further discussion on the TV regulariser as a prior

It is tempting to think that we do not need the PredCP machinery in section 5.3 to translate the TV
regulariser into the parameter space. Indeed, the Laplace method simply involves a quadratic approximation
around a mode of the log posterior, without placing any requirements on the prior used to induce said
posterior. Hence, we can decompose the Hessian of the log posterior log p(θ|y) into the contributions from
the likelihood and the prior as

∂

∂θ2 (log p(y|Ax(θ)) + log p(x(θ))) |θ=θ̂

and realise that the log of the anisotropic TV prior p(x) ∝ exp(−λTV(x)) as in eq. (23) is only once
differentiable. Ignoring the origin (where the absolute value function is non-differentiable), we obtain:

∂

∂θ2 log p(x(θ))|θ=θ̂ ∝ −
∂

∂θ2 TV(x(θ))|θ=θ̂ = 0.

Thus, a naive application of the Laplace approximation would eliminate the effect of the prior, leaving the
posterior ill defined. In practice, one may smooth the non-smooth region around the origin, but the amount
of smoothing can significantly influence the behaviour of the Hessian approximation.

A.2 Further discussion on inducing TV-smoothness with Gaussian priors

A standard alternative to enforce local smoothness in an image is to adopt a Gaussian prior p(x) = N (x; µ, Σxx)
with covariance Σxx ∈ Rdx×dx given by

[Σxx]ij,i′j′ = σ2 exp
(
−d(i− i′, j − j′)

ℓ

)
, (24)

where i, j index the spatial locations of pixels of x, as in eq. (2), and d(a, b) =
√

a2 + b2 denotes the Euclidean
vector norm. Equation (24) is also known as the Matern-1/2 kernel and matches the covariance of Brownian
motion (Guttorp & Gneiting, 2005). The hyperparameter σ2 ∈ R+ informs the pixel amplitude while the
lengthscale parameter ℓ ∈ R+ determines the correlation strength between nearby pixels. The TV in eq. (2)
only depends on pixel pairs separated by one pixel (d = 1), allowing analytical computation of the expected
TV associated with the Gaussian prior

κ := Ex∼N (µ,Σxx)[TV(x)] = c
√

σ2(1− ρ), (25)

with the correlation coefficient ρ = exp(−ℓ−1) ∈ (0, 1) and c = 4
√

dx(
√

dx−1)/
√

π for square images. See
appendix A.3 for derivations. Increasing ℓ (for a fixed σ2) favours x with low TV on average, resulting in
smoother images. The prior N (x; µ, Σxx) is conjugate to the likelihood implied by the least-square fidelity
N (y; Ax, σ2

yI), leading to a closed form posterior predictive distribution and marginal likelihood objective
with costs O(d3

y) and O(d2
ydx), respectively.

A.3 Derivation of the identity eq. (9)

The identity follows from the following result (appendix, (McGraw & Wong, 1994)). The short proof is
recalled for the convenience of the reader.
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Lemma A.1. Let X and Y be normal random variables with mean µ, variance σ2 and correlation coefficient
ρ. Let Z = |X − Y |. Then

E[Z] = 2√
π

√
σ2(1− ρ).

Proof. Clearly, X−Y follows a Gaussian distribution with mean 0 and variance 2σ2(1−ρ). Then the random
variable

W = Z2

2σ2(1− ρ) =
( X − Y√

2σ2(1− ρ)

)2

follows χ2
1 distribution. Then

E[
√

W ] =
∫ ∞

0
W

1
2

1
Γ( 1

2 )
√

2
W

1
2 −1e− W

2 dW =
√

2
Γ( 1

2 )
=
√

2√
π

,

where Γ(z) denotes the Euler’s Gamma function, with Γ( 1
2 ) =

√
π. Then it follows that

E[Z] =
√

2σ2(1− ρ)E[
√

W ] = 2√
π

√
σ2(1− ρ).

This shows the assertion in the lemma.

Now by the marginalisation property of multivariate Gaussians, any two neighbouring pixels of x for
x ∼ N (µ, Σxx) satisfy the conditions of Lemma A.1, with ρ = exp(−ℓ−1) ∈ (0, 1). Thus Lemma A.1 and the
trivial fact dx = h× w imply

κd = EN (x;µ,Σxx)[TV(x)] = 2[2hw − h− w]√
π

√
σ2(1− ρ).

In particular, for a square image, h = w =
√

dx, we obtain the desired identity in eq. (9).

B Derivation of the linearised deep image prior

B.1 Posterior predictive covariance

We provide an alternative derivation of the posterior predictive covariance of the linearised DIP by reasoning
in the parameter space. First we have linearised the neural network x(θ), turning it into a Bayesian basis
function linear model (Khan et al., 2019). The probabilistic model in eq. (12) is thus:

y|θ ∼ N (Ah(θ), σ2
yI), θ|ℓ ∼ N (0, Σθθ) ,

and the linearised Laplace approximate posterior distribution over weights is given by Immer et al. (2021b)

p(θ|y) ≈ N (θ; θ̂, Σθ|y) with Σθ|y =
(

σ−2
y J⊤A⊤AJ + Σ−1

θθ

)−1
. (26)

In this work we exploit the equivalence between basis function linear models and Gaussian Processes (GP),
and perform inference using the dual GP formulation. This is advantageous due to its lower computational
cost when dθ >> dy, which is common in tomographic reconstruction.

We switch to the dual formulation using the SMW matrix inversion identity, we have

Σθ|y =
(

σ−2
y J⊤A⊤AJ + Σ−1

θθ

)−1
= Σθθ − ΣθθJ⊤A⊤(σ2

yI + AJΣθθJ⊤A⊤)−1AJΣθθ (27)

The predictive distribution over images can be built by marginalising the NN parameters in the conditional
likelihood p(x|y) =

∫
p(x|θ)p(θ|y) dθ. Since h(·) is a deterministic function, we have p(x|θ) = δ(x− h(θ)) and∫
p(x|θ)p(θ|y) dθ =

∫
δ(x− h(θ))N (θ; θ̂, Σθ|y) dθ = N (x; x̂, JΣθ|yJ⊤).
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Note that this assumes θ̂ to be a mode of the DIP training loss eq. (5). In practise, this will not be satisfied
and thus the posterior mean of the linear model θ̂h, which is given as the minima of the linear model’s loss
introduced in section 5.4, will not match that of the NN, that is, θ̂. Using the linear model’s exact mode
is only necessary for the purpose of constructing the marginal likelihood objective (Antorán et al., 2022;
Antorán et al., 2022) (see also appendix B.2). However, for the purpose of making predictions, assuming θ̂ to
be the mode allows us to keep the DIP reconstruction x̂ as the predictive mean.

B.2 Laplace marginal likelihood and Type-II MAP in eq. (17)

For the purpose of uncertainty estimation, we tune the hyperparameters of our linear model using the marginal
likelihood of the conditional-on-ℓ Gaussian-linear model introduced in eq. (6). The posterior mode of the
TV-regularised linearised model is given by θ̂h = argminθh

σ−2
y ∥Ah(θh) − y∥ + λTV(h(θh)). However, we

substitute the TV with a multivariate Gaussian surrogate p(θ|ℓ). Now we derive the marginal log-likelihood
(MLL) for the linearised model conditional on ℓ following Antorán et al. (2022). In Bayes rule

log p(θ|y, ℓ; σ2
y, σ2) = log p(y|θ; σ2

y) + log p(θ|ℓ; σ2)− log p(y|ℓ; σ2
y, σ2),

we isolate the MLL log p(y|ℓ; σ2
y, σ2), evaluate at the linear model’s posterior mode θ = θ̂h and obtain

log p(y|ℓ; σ2
y, σ2) = log p(y|θ=θ̂h; σ2

y) + log p(θ=θ̂h|ℓ; σ2)− log p(θ=θ̂h|y, ℓ; σ2
y, σ2). (28)

The log-density log p(y|θ = θ̂h; σ2
y) quantifies the quality of the model’s fit to the data y, and is given by

log p(y|θ = θ̂h; σ2
y) = −dy

2 log(2π)− 1
2 log |σ2

yI| − 1
2σ2

y

∥y −Ah(θ̂h)∥2
2.

However, since our predictive mode is given by the DIP reconstruction and not the linear model’s reconstruction,
we depart from the exact expression for the linear model’s MLL and use −dy

2 log(2π)− 1
2 log |σ2

yI| − 1
2σ2

y
∥y −

Ax(θ̂)∥2
2 as the data fit term instead. The weight-mode log prior density log p(θ=θ̂h|ℓ, σ2) is given by

log p(θ=θ̂h|ℓ, σ2) = −dθ

2 log(2π)− 1
2 log |Σθθ| −

1
2 θ̂⊤

h Σ−1
θθ θ̂h.

Evaluating the Gaussian posterior log density over θ at its mode θ̂h cancels the exponent of the Gaussian and
leaves us with just the normalising constant

log p(θ=θ̂h|y, ℓ; σ2
y, σ2) = −1

2 log |Σθ|y| −
dθ

2 log(2π)

By the matrix determinant lemma, the determinant |Σθ|y| is given by

|Σθ|y| = |σ−2
y J⊤A⊤AJ + Σ−1

θθ |
−1 = |AJΣθθJ⊤A⊤ + σ2

yI|−1|Σθθ||σ2
yI|. (29)

Thus, the linearised Laplace marginal likelihood is given by

log p(y|ℓ; σ2
y, σ2) =− 1

2 log |σ2
yI| − 1

2σ2
y

∥y −Ax(θ̂)∥2
2 −

1
2 log |Σθθ| −

1
2 θ̂⊤

h Σ−1
θθ θ̂h

− 1
2 log |AJΣθθJ⊤A⊤ + σ2

yI|+ 1
2 log |Σθθ|+

1
2 log |σ2

yI|+ C

=− 1
2σ2

y

||y −Ax(θ̂)||22 −
1
2 θ̂⊤

h Σ−1
θθ θ̂h −

1
2 log |AJΣθθJ⊤A⊤ + σ2

yI|+ C (30)

where C captures all terms constant in (σ2
y, ℓ, σ2). Recall that Σyy = AJΣθθJ⊤A⊤ + σ2

yI. Next we turn to
the TV-PredCP prior over ℓ

log p(ℓ; σ2) = −
D∑

d=1
κd + log

∣∣∣∣∂κd

∂ℓd

∣∣∣∣ , with κd := EN (θ̂d,Σθdθd
)
∏D

i=1,i ̸=d
δ(θi−θ̂i) [λTV(h(θ))] .
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Hence we obtain the following Type-II maximum a posteriori (MAP)-style objective:

log p(y, ℓ; σ2
y, σ2) ≈ logN (y; 0, Σyy) + log p(ℓ; σ2)

=1
2

(
−σ−2

y ||y −Ax(θ̂)||22 − θ̂⊤
h Σ−1

θθ θ̂h − log |Σyy|
)
−

D∑
d=1

κd + log
∣∣∣∣∂κd

∂ℓd

∣∣∣∣ + C.

C Additional details on our TV-PredCP

C.1 Correspondence to the formulation of Nalisnick et al. (2021)

The original formulation of the TV-PredCP (Nalisnick et al., 2021) defines a base model q(x) = p(x|a = a0)
and an extended model p(x) = p(x|a = τ). The (hyper)parameter τ determines how much the predictions
of the two models vary. A divergence D(p(x|a = a0)||p(x|a = τ)) is placed between the two distributions
and a prior placed over the divergence. This divergence is mapped back to the parameter τ using the
change of variables formula. To see how our approach eq. (10) falls within this setup, take p(x|a = τ)
to be p(x) = N (x; µ, Σxx(σ2, ℓ)), where the lengthscale ℓ takes the place of τ . The base model sets the
lengthscale to be infinite, or equivalently the correlation coefficient ρ to be 1, q(x) = N (x; µ, Σxx(σ2

x,∞)).
As a divergence, we choose D(p, q) = Ep[TV(x)]− Eq[TV(x)]. We have defined our base model to be one in
which all pixels are perfectly correlated and thus have the same value. This results in the expected TV for
this distribution taking a value of 0. We end up with our divergence simply matching the expected TV under
the extended model EN (µ,Σxx)[TV(x)]. Even when an expected TV of 0 is not attainable for any value of ℓ,
as is the case when using the DIP eq. (15), there still exists a base model which will be constant with respect
to our parameters of interest and can be safely ignored.

C.2 An upper bound on the expected TV

To ensure dimensionality preservation, we define our prior over ℓ in eq. (15) as a product of TV-PredCP
priors, one defined for every convolutional block in the CNN, indexed by d,

p(ℓ) = p(ℓ1)p(ℓ2) ... p(ℓD) =
D∏

d=1
π(κd)

∣∣∣∣∂κd

∂ℓd

∣∣∣∣ , with κd := EN (θ̂d,Σθdθd
)
∏D

i=1,i ̸=d
δ(θi−θ̂i) [TV(h(θ))] .

This formula differs from the expected TV in eq. (9), which doesn’t discriminate by blocks κ :=
EN (θ̂,Σθθ) [TV(h(θ))]. By the triangle inequality,

∑
d κd upper bounds the expectation under N (θ̂, Σθθ):

EN (θ̂,Σθθ) [TV(h(θ))] =
∑

(i,j)∈S

EN (θ̂,Σθθ) [|(Jiθ − Jjθ)|] =
∑

(i,j)∈S

EN (θ̂,Σθθ)

[
|
∑

d

(Jid − Jjd)θd)|
]

≤
∑

(i,j)∈S

∑
d

EN (θ̂d,Σθdθd
) [|(Jid − Jjd)θd|] =

∑
d

EN (θ̂d,Σθdθd
)
∏D

c=1,c ̸=d
δ(θc−θ̂c)

 ∑
(i,j)∈S

|(Ji − Jj)θ|

 =
∑

d

κd,

where S is the set of all adjacent pixel pairs. Thus, the separable form of the TV prior as a regulariser for
MAP ensures that the expectated TV under the joint distribution of parameters is also regularised.

C.3 Discussing monotonicity of the TV in the prior lengthscales

In order to apply the change of variables formula in eq. (15), we require bijectivity between ℓd and κd. In
the simplest setting, both variables are one-dimensional, making this constraint easier to satisfy. In fact, it
suffices to show monotonicity between the two.

In practice, we use the linearised model in eq. (6) for inference. In fig. 8, we show very compelling numerical
evidence for the monotonicity. We observe that κ increases in ℓ since large values for ℓ lead to an increased
marginal variance σ2 over images. After fixing the marginal variance to 1, the lengthscales have a monotonically
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Figure 8: Experimental evidence of monotonicity computed over 50 KMNIST test images for the linearised
network used in the KMNIST experiments. Horizontal axis represents lengthscale ℓ ∈ [0.01, 100]. κ is
estimated with 10k Monte Carlo samples. In the bottom row we fix the marginal variances of JΣyyJ⊤ in
image space to be 1. This allows us to observe the smoothing effect from ℓ. We use the first and last value to
normalise over different KMNIST sample. The monotonicity implies the desired invertibility of the mappings
ℓ and κ. We draw 500 samples to estimate k.

decreasing relationship with the expected TV. However, analytically studying the monotonicity is delicate.
We investigate the issue in the linear setting to she insights (which also matches our experimental setup):

κd = EN (θ̂,Σθθ)
∏D

j=1,j ̸=d
δ(θj−θ̂j)[TV(h(θ))] = EN (θ̂,Σθθ)

∏D

j=1,j ̸=d
δ(θj−θ̂j)

[ ∑
i

|h(θ)i − h(θ)i+1|
]
, (31)

assuming that the output is a 1D signal so there is only one derivative to simplify the discussion. First we
derive the distribution of h(θ)i − h(θ)i+1. Note that h(θ) can be written as h(θ) = h0 + J(θ − θ̂), by slightly
abusing the notation h0 to denote the vectors constant with respect to ℓd and i indices an entry of the vector
(Jθ) ∈ Rdx . Note that the constant vector h0 depends on the choice of the based point θ = 0 (or equally
plausible θ = θ̂), but it does not play a role in TV(h(θ)), since it cancels out from the definition of TV(h(θ)).
Then, we can rewrite it as an inner product between two vectors

h(θ)i − h(θ)i+1 = (Jθ)i − (Jθ)i+1 = (Ji − Ji+1)θd = viθd,

where Ji ∈ R1×dθd denotes our NN’s Jacobian for a single output pixel i (i.e. the ith row of the Jacobian
matrix J , corresponding to the block parameters θd ∈ R1×dθd ) and vi = Ji − Ji+1 ∈ R1×dθd , i = 1, . . . , dx − 1.
Now, the block parameters θd is distributed as θd ∼ N (0, Σθdθd

), in the expectation in eq. (31), whereas
the remaining parameters are fixed at the mode θ̂j , j ̸= d, i.e.

∏D
j=1,j ̸=d δ(θj − θ̂j). Let Vd ∈ R(dx−1)×dθd

correspond to the stacking of the vectors vi ∈ R1×dθd , i.e. the Jacobian of the network output with respect
to the weights in convolutional group d. Since the affine transformation of a Gaussian distribution remains
Gaussian, Vdθd is distributed according to Vdθd ∼ N (0, VdΣθdθd

V ⊤
d ). Note that the matrix VdΣθdθd

V ⊤
d is

not necessarily invertible, and if not, as usual, the inverse covariance should be interpreted in the sense of
pseudo-inverse. Let a =: Vdθd ∈ Rdx−1. Then

κd = Ea∼N (0,VdΣθdθd
V ⊤

d
)

[ ∑
i

|ai|
]

=
∑

i

Eai∼N (0,viΣθdθd
v⊤

i
)[|ai|].

The distribution of |ai| follows a half-normal distribution, and there holds (cf. eq. (3) of Leone et al. (1961))

Eai∼N (0,viΣθdθd
v⊤

i
)[|ai|] =

√
2
π

(viΣθdθd
v⊤

i ) 1
2 .
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Consequently,

κd =
√

2
π

∑
i

(viΣθdθd
v⊤

i ) 1
2 and ∂κd

∂ℓd
=

√
1

2π

∑
i

(viΣθdθd
v⊤

i )− 1
2 vi

∂

∂ℓd
Σθdθd

v⊤
i . (32)

It remains to examine the monotonicity of viΣθdθd
v⊤

i in ℓd. Indeed, by the definition of Σd, we have

∂

∂ℓd
[Σθdθd

(ℓd)]j,j′ = ∂

∂ℓd
σ2

d exp
(
− d(j, j′)

ℓd

)
= σ2

dd(j, j′)
ℓ2

d

exp
(
− d(j, j′)

ℓd

)
,

and thus
∂

∂ℓd
viΣθdθd

v⊤
i = σ2

d

ℓ2
d

∑
j

∑
j′

vi,jd(j, j′) exp
(
− d(j, j′)

ℓd

)
vi,j′ .

Then it follows that if the vectors vi were arbitrary, the monotonicity issue would rest on the positive
definiteness of the associated derivative kernel. For example, for a Gaussian kernel e

− (x−y)2
ℓd (i.e. d is the

squared Euclidean distance), the associated kernel k(x, y) is given by (x − y)2e
− (x−y)2

ℓd . This issue seems
generally challenging to verify directly, since (x− y)2 is not a positive semidefinite kernel by itself on R, even
though the Gaussian kernel e

− (x−y)2
ℓd is indeed positive semidefinite. Thus, one cannot use the standard Schur

product theorem to conclude the monotonicity. Alternatively, one can also compute the Fourier transform of
the kernel k(x) = x2e−x2 directly, which is given by

F [k(x)](ω) = 2− ω2

4
1√
2

e− ω2
4 .

see the proposition below for the detailed derivation. Clearly, the Fourier transform of the kernel x2e−x2

is not positive over the whole real line R. By Bochner’s theorem (see e.g. p. 19 of Rudin (1990)), this
kernel is actually not positive. The fact that the kernel is no longer positive definite makes the analytical
analysis challenging. This observation holds also for the Matern-1/2 kernel, see the proposition below. These
observations clearly indicate the risk for a potential non-monotonicity in ℓ. Nonetheless, we emphasise that
this condition is only sufficient, but not necessary, since the kernel is only evaluated at lattice points (instead
of arbitrary scattered points). We leave a full investigation of the monotonicity to a future work, given the
compelling empirical evidence for monotonicity in both the NN and linearised settings.

Now we give Fourier transforms of the associated kernel for the Gaussian and Matern-1/2 kernels.
Proposition 1. The Fourier transforms of the functions x2e−x2 and |x|e−|x| are given by

F [x2e−x2
](ω) = 2− ω2

4
√

2
e− x2

4 and F [|x|e−|x|](ω) = 2(1− ω2)√
2π(1 + ω2)2

.

Proof. Recall that the Fourier transform F [e−x2 ] of the Gaussian kernel e−x2 is given by

F [e−x2
](ω) = 1√

2π

∫ ∞

−∞
e−x2

e−iωxdx = 1√
2

e− ω2
4 .

Direct computation shows
k′′(x) = 4x2e−x2

− 2e−x2
= 4x2e−x2

− 2k(x).
Taking Fourier transform on both sides and using the identity F [k′′(x)](ω) = −ω2F [f(x)](ω), we obtain

−ω2F [f(x)](ω) = 4F [x2e−x2
](ω)− 2F [f(x)](ω),

which upon rearrangement gives the desired expression for F [x2f(x)]. Next we compute F [|x|e−|x|](ω):

F [|x|e−|x|](ω) = 1√
2π

∫ ∞

−∞
|x|e−|x|e−iωxdx

= 1√
2π

∫ ∞

−∞
|x|e−|x|(cos ωx− i sin ωx)dx = 2√

2π

∫ ∞

0
xe−x cos ωxdx,
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since sin ωx is odd and the corresponding integral vanishes. Integration by parts twice gives∫ ∞

0
xe−x cos ωxdx = −xe−x cos ωx|∞x=0 +

∫ ∞

0
e−x(cos ωx− ωx sin ωx)dx

=
∫ ∞

0
e−x cos ωxdx−

∫ ∞

0
ωxe−x sin ωxdx

=
∫ ∞

0
e−x cos ωxdx + ωxe−x sin ωx|∞x=0 −

∫ ∞

0
e−x(ω sin ωx + ω2x cos ωx)dx.

Rearranging the identity gives∫ ∞

0
xe−x cos ωxdx = 1

ω2 + 1

∫ ∞

0
e−x cos ωxdx− ω

ω2 + 1

∫ ∞

0
e−x sin ωxdx

This and the identities∫ ∞

0
e−x cos ωxdx = 1

1 + ω2 and
∫ ∞

0
e−x sin ωxdx = ω

1 + ω2 ,

immediately imply

F [|x|e−|x|](ω) = 2√
2π

∫ ∞

0
xe−x cos ωxdx = 2(1− ω2)√

2π(1 + ω2)2
.

This shows the second identity.

D Additional experimental discussion

In this section, we provide additional empirical evaluation of the uncertainty estimates obtained with the
linearised DIP. Validating the accuracy of the uncertainty estimates is crucial for their reliable integration
into downstream tasks and computer human interaction workflows, as discussed by Antorán et al. (2021),
Bhatt et al. (2021), and Barbano et al. (2021).

D.1 Evaluating approximate computations

We validate the accuracy of our approximate computation presented in section 6 on the KMNIST dataset.
KMNIST is the perfect ground for this evaluation due to the fact that the low-dimensionality of dx and dy

guarantees computational tractability of the inference problem, allowing us to benchmark the approximations
we introduce in section 6, against exact computation. In this section, if not stated otherwise, we carry out
our investigations with the setting where the forward operator A, comprises 20 angles, and we add 5% noise
to Ax. We repeat the analysis on 10 characters taken from the test set of the KMNIST dataset. We assess
the suitability of the Hutchinson trace estimator for the gradient of the log-determinant (section 6.1), and
the ancestral sampling for the TV-PredCP gradients (section 6.2). Figure 9 and fig. 10 show hyperparameter
optimisation (σ2

y, σ2, ℓ) using exact and estimated gradients. The hyperparameters trajectories match closely;
we only observe tiny oscillations when using estimated gradients. The log-determinant gradients ∂log|Σyy|

∂ϕ

are estimated using 10 samples, v ∼ N (0, P ). The PCG for solving v⊤Σ−1
yy uses a maximum of 50 iterations

(with a early stopping criterion in place if a tolerance of 1.0 is met). We use a randomised SVD-based
preconditioner P (cf. 6.1), where the rank, r, is chosen to be 200, and P is updated every 100 steps. The
TV-PredCP gradients are estimated using 500 samples.

We assess the approximations introduced in section 6.3; the accuracy of the estimation of the posterior
covariance matrix, but most importantly, the estimation of the test log-likelihood. For large image sizes (e.g.
the Walnut cf. section 7.2), it is infeasible to store the posterior predictive covariance matrix Σx|y ∈ Rdx×dx ,
which in single precision would require 250 GB of memory. However, it can be made computationally cheaper
if we consider smaller image patches of pixels, neglecting the inter-patch-dependencies. This assumes the
covariance matrix Σx|y to be block diagonal. Figure 11 shows the effect of neglecting inter-patch-dependencies.
The log-likelihood increases with increasing patch-size (i.e. with more inter-dependencies being taken into
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Figure 9: Hyperparameters’ optimisation in eq. (17) for lin.-DIP excluding PredCP (MLL), computing exact
gradients as well as resorting to the approximate numerical methods discussed in section 6.1 (i.e. PCG-based
log-determinant gradients) on 10 KMNIST images.

Figure 10: Hyperparameters’ optimisation in eq. (17) for lin.-DIP including TV-PredCP (TV-MAP), comput-
ing exact gradients as well as resorting to the approximate numerical methods discussed in section 6.1 (i.e.
PCG-based log-determinant gradients) and section 6.2 (i.e. ancestral sampling for TV-PredCP term) on 10
KMNIST images.
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Figure 12: KMNIST character recovered from a simulated observation y (using 10 angles and η(5%)) with
lin.-DIP, DIP-MCDO and along with their uncertainty estimates and histogram plots.

account). Figure 11 shows how well the test log-likelihood is approximated when resorting to posterior
predictive covariance matrices estimated via sampling using eq. (22), while sweeping across different numbers
of samples and patch-sizes. As expected, estimating the log-likelihood for larger patch-sizes requires more
samples. On KMNIST, 1024 samples are sufficient for almost perfect approximation of the test log-likelihood,
when approximating the posterior predictive covariance matrix with patch-size of 28 × 28. Note that a
patch-size of 28× 28 on KMNIST implies that no inter-patch-dependencies are neglected.

D.2 Further discussion on KMNIST

We include additional experimental figures to support the discussion about the experiments in section 7.1.2.
Figure 12, fig. 13, fig. 14, and fig. 15 are analogous to fig. 4, yet show a KMNIST character for four different
problem settings: 10 angles and 20 angles, and the two noise regimes.

Figure 16 and fig. 17 show the hyperparameters’ optimisation via Type-II MAP and MLL outlined in
section 5.4. The use of our TV-PredCP prior leads to smaller marginal variances and larger lengthscales.
This restricts our prior over reconstructions to smooth functions. The TV-PredCP introduces additional
constraints into the model by encouraging the prior to contract (stronger parameter correlations and smaller
posterior predictive marginal variances. In turn, this results in a more contracted posterior, which we observe
as a larger Hessian determinant.
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Figure 13: KMNIST character recovered from a simulated observation y (using 20 angles and η(5%)) with
lin.-DIP, DIP-MCDO along with their uncertainty estimates and histogram plots.
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Figure 14: KMNIST character recovered from a simulated observation y (using 10 angles and η(10%)) with
lin.-DIP, DIP-MCDO along with their uncertainty estimates and histogram plots.
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Figure 15: KMNIST character recovered from a simulated observation y (using 20 angles and η(10%)) with
lin.-DIP, DIP-MCDO along with their uncertainty estimates and calibration plots.
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Figure 16: Optimisation of (ℓ, σ2) via MLL and Type-II MAP for 3× 3 convolution layers belonging to the
small U-Net used for KMNIST. Thicker dotted lines refer to the optimisation of the exemplary reconstruction
shown in fig. 4 while transparent lines correspond to other KMNIST images. The TV-PredCP leads to larger
prior lengthscales ℓ and lower variances σ2.

Figure 17: Hyperparameters’ optimisation via MLL and Type-II MAP for 1× 1 convolution layers belonging
to the small U-Net used for KMNIST, along with σ2

y. Thicker dotted lines refer to the optimisation of the
KMNIST image shown in fig. 4, while transparent lines correspond to other KMNIST images.
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For the KMIST dataset, one may question whether TV is an ideal regulariser. The TV regulariser enforces
sparsity in the local image gradients. A TV regulariser is highly recommended when we observe sparsity
in the edges present in an image, especially when the edges constitute a small fraction of the overall image
pixels. That is often the case in high-resolution medical images or natural images. Intuitively, the higher the
resolution of the image is, the higher the sparsity level of the edges is. However, in the KMIST dataset, due
to the low resolution of the images, the edges constitute a considerable fraction of the total pixels. Therefore,
a TV regulariser could be sub-optimal. In the KMNIST dataset, it is difficult to distinguish (in TV sense)
what is part of the image structure and what is part of the background. The stroke is only a few pixels wide,
and ground-truth pixel values are generated through interpolation (Clanuwat et al., 2018). Indeed we observe
a larger gain from selecting hyperparameters using Type-II MAP (instead of MLL) for the real-measured
high-resolution Walnut data than for KMNIST.

Furthermore, some KMNIST images present spurious high valued pixels away from the region containing the
handwritten character. This contradicts the modelling assumption in eq. (1) which assumes x is noiseless. Our
likelihood function from eq. (12) is defined over the space of observations y and thus can not account for noise
in x. We translate the uncertainty induced by the observation noise to the space of images by computing the
conditional log-likelihood Hessian with respect to x: −∂2 log p(y|x)

∂x2 = σ−2
y A⊤A ∈ Rdx×dx . This matrix is of rank

at most dy, which potentially can be much smaller than dx due to the ill-conditioning of the reconstruction
problem, and therefore cannot act as a proper Gaussian precision matrix on its own. We incorporate the
noise uncertainty from the observation subspace into the image space by adding the mean of the diagonal of
the pseudoinverse σ2

y(A⊤A)† to the marginal variances of the predictive distribution. This can also be seen as
placing a Gaussian likelihood over reconstruction space, which can be marginalised to recover the predictive
distribution p(x|y) =

∫
N (x; x̂, σ2

yTr((A⊤A)†)d−1
x I)N (θ; θ̂, Σθ|y) dθ = N (x; x̂, JΣθ|yJ⊤ + σ2

yTr((A⊤A)†)d−1
x I).

D.3 Further discussions on Walnut data

We include additional figures to support the discussion in section 7.2. We evaluate the effect of the TV-PredCP
prior for hyperparameter optimisation. We observe that this prior leads to a slightly less heavy tailed standard
deviation histogram. It presents slightly better agreement with the empirical reconstruction error, resulting
in a lager log-likelihood. Figure 18 and fig. 19 show the optimisation of the hyperparameters (σ2

y, ℓ, σ2
θ)

using the method in section 5.4 and approximate computations in section 6. For both MLL and Type2-MAP
learning, the marginal variance for all CNN blocks except the two closest to the output goes to ≈0. This is
due to the representations from these last layer being able to explain the data well on their own. The our
hyperparameter objectives are thus able to eliminate previous layers from our probabilistic model, simplifying
it without sacrificing reconstruction quality. We did not observe this for KMNIST data, possibly because of
our use of a smaller, less overparametrised network without any spare capacity.

E Additional experimental setup details

E.1 Setup for KMNIST experiments

We use a down-sized version of U-Net (Ronneberger et al., 2015), cf. fig. 20, as the reduced output dimension
dx and the simplicity of the problem allow us to employ a shallow architecture without compromising the
reconstruction quality. This problem is computationally tractable removing the need for the approximations
described in section 6. We reduce the U-Net architecture in fig. 3 to 3 scales and 32 channels at each scale,
remove group-normalisation layers and use a sigmoid activation for the output. A filtered back-projection
reconstruction from y is used as the network input.

Table 7 lists the hyperparameters of DIP optimisation for each setting. These values were found by grid-search
on 50 KMNIST training images. The dropout rate p of DIP-MCDO is set to 0.05.

31



254 PAPER 5. UNCERTAINTY ESTIMATION FOR CT WITH A LINEARISED DIP

Published in Transactions on Machine Learning Research (12/2023)

0 2000

iterations

10−1

`1 (In)

10−1

6 × 10−2

7 × 10−2

8 × 10−2

9 × 10−2

`2 (Down 1)

10−1

6 × 10−2

7 × 10−2

8 × 10−2

9 × 10−2

`3 (Down 2)

10−1

6 × 10−2

2 × 10−1

3 × 10−1

`4 (Down 3)

10−1

6 × 10−2

2 × 10−1

3 × 10−1

4 × 10−1

`5 (Down 4)

10−1

6 × 10−2

7 × 10−2

8 × 10−2

9 × 10−2

`6 (Down 5)

10−1

6 × 10−2

7 × 10−2

8 × 10−2

9 × 10−2

`7 (Up 1)
10−1

6 × 10−2

7 × 10−2

8 × 10−2

9 × 10−2

`8 (Up 2)
10−1

6 × 10−2

7 × 10−2

8 × 10−2

9 × 10−2

`9 (Up 3)
10−1

6 × 10−2

7 × 10−2

8 × 10−2

9 × 10−2

`10 (Up 4)

10−1

100

`11 (Up 5)

0 2000

iterations

10−2

10−1

100

σ2
1 (In)

10−3

10−2

10−1

100

σ2
2 (Down 1)

10−3

10−2

10−1

100

σ2
3 (Down 2)

10−3

10−2

10−1

100

σ2
4 (Down 3)

10−3

10−2

10−1

100

σ2
5 (Down 4)

10−3

10−2

10−1

100

σ2
6 (Down 5)

0 2000

iterations

10−3

10−2

10−1

100

σ2
7 (Up 1)

0 2000

iterations

10−3

10−2

10−1

100

σ2
8 (Up 2)

0 2000

iterations

10−3

10−2

10−1

100

σ2
9 (Up 3)

0 2000

iterations

10−3

10−2

10−1

100

σ2
10 (Up 4)

0 2000

iterations

10−3

10−2

10−1

100

σ2
11 (Up 5)

MLL

TV-MAP

Figure 18: Optimisation of (ℓ, σ2) via MLL and Type-II MAP for 3× 3 convolution layers for the Walnut
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Figure 20: A schematic illustration of the reduced U-Net architecture used in the numerical experiments on
KMNIST data. It has 3 scales and does not include group norm layers. Each light-blue rectangle corresponds
to a multi-channel feature map. We highlight the architectural components corresponding to each block for
which a separate prior is defined with red boxes.

Table 7: Hyperparameters of DIP optimisation selected using 50 randomly chosen images from the KMNIST
training set. The λ values refer to our implementation of eq. (5) in which ∥ · ∥2 is replaced with mean squared
error (or the regularisation term is up-scaled by dx).

5% noise 10% noise
#angles 5 10 20 30 5 10 20 30

TV scaling for DIP: λ 1e−5 3e−5 1e−4 1e−4 3e−5 1e−4 3e−4 3e−4
DIP iterations 14 000 29 000 41 000 50 000 7400 13 000 17 000 22 000

E.2 Computing the preconditioner for conjugate gradients

For our preconditioner P , we approximate AJΣθθJ⊤A⊤ —for simplicity denoted as H ∈ Rdy×dy — as Ũ Λ̃Ũ⊤,
using a randomised eigendecomposition algorithm (Halko et al., 2011; Martinsson & Tropp, 2020) with
Ũ ∈ Rdy×r and r ≪ dy. The approach first computes an orthonormal basis capturing the space spanned by
H’s columns. The idea is to obtain a matrix Q with r orthonormal columns, that approximates the range
of H. This is done by constructing a standard normal test matrix Ω ∈ Rdy×r, and computing the (thin)
QR decomposition of HΩ. Once Q is computed, we solve for a symmetric matrix B ∈ Rr×r (much smaller
than H) such that B approximately satisfies B(Q⊤Ω) ≈ Q⊤HΩ. We then compute the eigendecomposition
of B, V ΛV ⊤, and recover Ũ = QV . This method requires O(r) matvecs resembling Hv to construct not
only an approximate basis but also its complete factorisation. Finally, the preconditioner P is defined as
Ũ Λ̃Ũ⊤ + σ2

yI. To compute P −1v efficiently, we make use of the Woodbury identity.

E.3 Setup for X-ray Walnut data experiments

In (Der Sarkissian et al., 2019) projection data sets obtained with three different source positions are provided
for 42 walnuts, as well as high-quality reconstructions of size 5013 px3 obtained via iterative reconstruction
using the measurements from all three source positions. We consider the task of reconstructing a single slice
of size 5012 of the first walnut from a sub-sampled set of measurements using the second source position,
which corresponds to a sparse fan-beam-like geometry. From the original 1200 projections (equally distributed
over 360◦) of size 972× 768 we first select the appropriate detector row matching the slice position (which
varies for different detector columns and angles due to a tilt in the setup), yielding measurement data of size
1200 · 768. We then sub-sample in both angle and column dimensions by factors of 20 and 6, respectively,
leaving dy = 60 · 128 = 7680 measurements. For evaluation metrics, we take the corresponding slice from
the provided high-quality reconstruction as the reference ground truth image x. The sparse operator matrix
A is assembled by calling the forward projection routine of the ASTRA toolbox (van Aarle et al., 2015) for
every standard basis vector, A = A[e1, e2, ... edx

]. While especially for large data dimensions it would be
favourable to directly use the matrix-free implementations from the toolbox, we also need to evaluate the
transposed operation v⊤

y A, which would be only approximately matched by the back-projection routine
(especially for the tilted 2D sub-geometry, which would require padding). Therefore, we resort to the sparse
matrix multiplication via PyTorch.
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The network architecture is shown in fig. 3. Following Barbano et al. (2022c), we pretrain the network to
perform post-processing of filtered back-projection (FBP) reconstructions on synthetic data. The dataset
consists of pairs of images containing random ellipses, and corresponding FBPs from observations simulated
according to eq. (1) with 5% noise. The supervised pretraining accelerates the convergence of the subsequent
unsupervised DIP reconstruction from y. In the DIP phase, the FBP of y is used as the network input.
Table 8 lists the hyperparameters of DIP optimisation. The dropout rate p of DIP-MCDO is set to 0.05.

After DIP optimisation, following Antorán et al. (2022) the network weights are refined for the linearised
model (eq. (6)). We optimise the same loss function as for DIP, but with the linear model eq. (6) instead of
the network model, for 1000 steps. This yields network weights that fit better the subsequent MLL / Type-II
MAP optimisation eq. (17), which employs the linear model.

Table 8: Hyperparameters of DIP optimisation used for the walnut data. The λ value refers to our
implementation of eq. (5) in which ∥ · ∥2 is replaced with mean squared error (or the regularisation term is
upscaled by dx).

TV scaling for DIP: λ 6.5e−6
DIP iterations (after pretraining) 1500

In MLL / Type-II MAP optimisation eq. (17), we use 10 probes to estimate the gradients of the log-
determinant log |Σyy| eq. (19), employing the PCG method for solving v⊤Σ−1

yy using a maximum of 50 steps
with a randomised SVD-based preconditioner P of rank 200 that is updated every 100 steps. The TV-PredCP
gradients eqs. (20) and (21) are estimated using 20 samples. The MLL / Type-II MAP optimisation is run
for 3000 iterations.

The posterior predictive covariance matrices for all methods are estimated by drawing 4096 zero-mean samples
and computing empirical posterior predictive covariance matrix. The latter is done for patch-sizes from
1 × 1 up to 10 × 10 image patches. We use a stabilising heuristic for the estimated covariance matrices,
inspired by Maddox et al. (2019): by letting Σ̃x|y ← αΣx|y + (1− α)diag(diag(Σx|y)), α = 1

2 , the impact of
the off-diagonal entries is reduced. Note that our Gaussian assumption is correct in the case of linearised
DIP but not for MCDO. However, MCDO does not provide a closed form density over the reconstructed
image, only samples. The dimensionality of the reconstruction is too large for exact density estimation on
real-measured data. We thus compute the log-likelihood in the same way as for the linearised DIP, i.e. via a
Gaussian distribution with mean and posterior predictive covariance matrices estimated from samples. The
accelerated sampling method via J̃ & PCG uses a randomised SVD-based 500-rank approximation J̃ of the
Jacobian, and PCG for solving v⊤Σ−1

yy with a maximum of 50 steps along with a randomised SVD-based
preconditioner of rank 400. This sampling variant can be performed in single precision (32 bit floating point).
Thus constructing J̃ is actually much faster than reported in table 1 (0.5 min instead of 0.2 h).
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Abstract

We investigate adaptive design based on a single sparse pilot scan for generating effective scan-
ning strategies for computed tomography reconstruction. We propose a novel approach using
the linearised deep image prior. It allows incorporating information from the pilot measurements
into the angle selection criteria, while maintaining the tractability of a conjugate Gaussian-linear
model. On a synthetically generated dataset with preferential directions, linearised DIP design
allows reducing the number of scans by up to 30% relative to an equidistant angle baseline.

1. Introduction and related work

Linear inverse problems in imaging aim to recover an unknown image x ∈ Rdx from measure-
ments y ∈ Rdy , which are often described by the application of a forward operator A ∈ Rdy×dx ,
and the addition of Gaussian noise ε ∼ N (0, σ2y Idy) as

y = Ax+ ε. (1)

This acquisition model is ubiquitous in machine vision, computed tomography (CT), and mag-
netic resonance imaging among other applications. Due to the inherent ill-posedness of the task
(e.g. dy � dx), suitable regularisation or prior assumptions are crucial for the stable and accu-
rate recovery of x (Tikhonov and Arsenin, 1977; Ito and Jin, 2014). In this work, we focus on
X-ray imaging, a setting with application to both medical and industrial settings (Buzug, 2011).

In CT, an emitter sends X-ray quanta through the object being scanned. The quanta are
captured by dp detector elements placed opposite the emitter. Each row of A tells us about
which regions (pixels) the X-ray quanta will pass through before reaching a detector element
(cf. fig. 1). The number of X-ray quanta measured by a detector pixel conveys information about
the attenuation coefficient of the material present along the quanta’s path. This procedure is
repeated at dB angles, yielding a measurement of dimension dy = dp · dB.

∗. Authors contributed equally. Our code is at github.com/educating-dip/bayesian experimental design
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Figure 1: Left: A schematic diagram of 2D parallel beam CT geometry, used in the experiments.
Top row: the linearised DIP assigns prior variance to pixels where edges are present,
guiding angle selection so that X-ray quanta cover these pixels. Bottom row: the
isotropic linear model’s variance does not depend on the measurements. Angles 45, 135
are chosen since they are oblique and maximise quanta path-length in the image.

In CT, Bayesian experimental design employs prior assumptions to select scanning angles
which are aimed to yield the highest fidelity reconstruction. Adaptive design further incorpo-
rates information gained at previous angles to inform subsequent angle selections (Chaloner and
Verdinelli, 1995). These methods are of great practical interest since they promise to reduce ra-
diation dosages and scanning times. Alas, existing CT design methods often struggle to improve
over equidistant angle choice (Shen et al., 2022). Furthermore, the requisite of additional com-
putations before subsequent scans makes adaptive methods impractical for many applications.

Critically important to experimental design is the choice of prior (Feng, 2015; Foster, 2021).
Linear models allow for tractable computation of quantities of interest for design, but their
predictive uncertainty is independent of previously measured values, disallowing adaptive de-
sign (Burger et al., 2021). More complex model choices make inference difficult, necessitating
approximations which can degrade performance (Helin et al., 2022; Shen et al., 2022).

This work aims to make adaptive design practical by considering a setting where the CT scan
is performed in two phases. First, a sparse pilot scan is performed to provide data with which to
fit adaptive methods. These are then used to select angles for a full scan. We demonstrate this
procedure with a synthetic dataset where a different “preferential” angle is most informative
for each image. Preferential directions appear commonly in industrial CT for material science
and in medical CT for medical implant assessment. We use the linearised Deep Image Prior
(DIP) (Barbano et al., 2022) as a data-dependent prior for adaptive design which preserves the
tractability of conjugate Gaussian-linear models. Unlike simple linear models, the linearised
DIP outperforms the equidistant angle baseline. Finally, we show that designs obtained with
the linearised DIP perform well under traditional (non DIP-based) regularised-reconstruction.

2. Regularised reconstruction and deep image prior

Total Variation (TV) is the most popular regulariser for CT reconstruction (Rudin et al., 1992;
Chambolle et al., 2010). The anisotropic TV semi-norm of an image vector x ∈ Rdx is given by

2
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TV(x) =
∑
i,j

|Xi,j −Xi+1,j |+
∑
i,j

|Xi,j −Xi,j+1|, (2)

where X ∈ Rh×w denotes the vector x ∈ Rdx reshaped into an image of height h by width w,
and dx = h · w. The corresponding regularised reconstruction is obtained by

x? ∈ argmin
x∈Rdx

‖Ax− y‖2 + λTV(x), (3)

where the hyperparameter λ > 0 determines the strength of regularisation.
The DIP (Ulyanov et al., 2020; Baguer et al., 2020) reparametrises the reconstruction x as

the output of a U-net x(θ) (Ronneberger et al., 2015) with a fixed input, which we omit for
clarity, and parameters θ ∈ Rdθ . The resulting reconstruction problem reads

θ? ∈ argmin
θ∈Rdθ

‖Ax(θ)− y‖2 + λTV(x(θ)) and x? = x(θ?). (4)

We follow Barbano et al. (2021) in accelerating optimisation of eq. (4) using pre-trained U-nets.

3. Linear(ised) models for CT experimental design

Let Ba be the set of all possible angles at which we can scan. The task is to choose the
subset of angles B ⊂ Ba which produces the highest-fidelity reconstruction. We shall add
angles sequentially over T steps. The set B(t) denotes the chosen angles up to step t < T , and
B̄(t) = Ba \ B(t) the angles left to choose from. B(0) denotes the set of angles used in the initial
pilot scan, and B = B(T ) the full design. We incorporate a decision to scan at angle β ∈ B̄(t) by
concatenating the matrix Aβ ∈ Rdp×dx , which contains a row for each detector pixel at angle β,
to the operator. After step t, the operator A(t) ∈ Rdp·dB(t)×dx stacks dB(t) of these matrices, with

dB(t) = |B(t)|. Ā
(t) ∈ Rdp·dB̄(t)×dx denotes the forward operator for the angles left to choose from.

For design, we place a multivariate Gaussian prior on x with zero mean and covariance
matrix Σxx ∈ Rdx×dx . Together with the Gaussian noise model in eq. (1), this gives a conjugate
Gaussian-linear model. The vector y(t) ∈ Rdp·dB(t) of all measurements at step t is distributed as

y(t)|x ∼ N (A(t)x, σ2yIdy) with x ∼ N (0,Σxx).

Thus, Σ
(t)
yy = A(t)Σxx(A(t))>+σ2yI is the measurement covariance and the posterior over x is

x|y(t) ∼ N (µx|y(t) ,Σx|y(t)), with

µx|y(t) = Σxx(A(t))>(Σ(t)
yy )−1y(t), and Σx|y(t) = Σxx − Σxx(A(t))>(Σ(t)

yy )−1A(t)Σxx. (5)

The predictive covariance Σx|y(t) completely characterises the uncertainty of the reconstruction
at step t and is the building block for the angle selection criteria in section 3.1. Note that
natural images often exhibit heavy-tailed non-Gaussian statistics (Seeger and Nickisch, 2011).
Additionally, by eq. (5), Σx|y(t) depends on the choice of angles through A(t), but not on the

measurements made at said angles y(t), precluding adaptive design. In section 3.2, we construct
Σxx with correlations between nearby pixels, imitating the effects of the TV regulariser eq. (2),
and with dependence on previous measurements, recovering adaptive design capability. In the
experiments, we use linear models for angle selection and afterwards we discard the predictive
mean µx|y and employ the regularised approaches from section 2 for reconstruction.

3
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3.1 Experimental design with linear models

Acquisition objectives. Since the linear design task is submodular (Seeger, 2009), we greedily
add one single angle per acquisition step 1. We consider two popular acquisition objectives.

The first objective, expected information gain (EIG) (Mackay, 1992a), is the expected reduc-
tion in the posterior entropy H(x|y) from scanning at angle β. At step t, it is given by

EIG := H(x|y(t))− p(yβ |y(t))[H(x|y(t), yβ)] = logdet(σ2yIdB(t)
+ AβΣx|y(t)(Aβ)>) + C (6)

where the constant C = −logdet(σ2yI) is independent of the angle choice. We give a derivation

in appendix A for completeness. Intuitively, the determinant of the matrix AβΣx|y(t)(Aβ)> ∈
Rdp×dp penalises angles for which different detector elements make correlated measurements and
the log term encourages the measurements from all detector pixels to be similarly informative.

The second objective, which we find to perform better empirically, is to choose the angles
for which our prediction has the largest expected squared error (ESE) in measurement space

ESE := p(yβ , x|y(t))[(y
β −Aβx)>(yβ −Aβx)] = Tr(AβΣx|y(t)(Aβ)>) + C. (7)

This objective is equivalent to EIG in the setting where our detector has a single pixel.

Efficient acquisition. Constructing the matrix AβΣx|y(t)(Aβ)> repeatedly for each can-

didate angle β ∈ B̄(t) requires O(dp · dB̄(t)) matrix vector products, which is very costly even
for moderate size scanners. Instead, we estimate the matrix for every angle simultaneously by

drawing K samples from N (0, Ā
(t)

Σx|y(t)(Ā
(t)

)>) with O(K) matrix vector products. That is,

we sample Rdp·dB̄(t) sized vectors built by concatenating the “pseudo measurements” for each
unused angle β ∈ B̄(t). We use Matheron’s rule (Hoffman and Ribak, 1991; Wilson et al., 2021)⊕

β∈B̄(t)

yβk = Ā
(t)
(
xk − Σxx(A(t))>Σ−1yy (ηk + A(t)xk)

)
with

xk ∼ N (0,Σxx) and ηk ∼ N (0, σ2yI), . (8)

Here, k ∈ {1, ...,K} indexes different samples and
⊕

denotes vector concatenation. We compute

AβΣx|y(t)(Aβ)> ≈ K−1
∑K

k=1y
β
k (yβk )>,

which is then used to estimate the acquisition objective eq. (6) or eq. (7). The log term makes
EIG estimates only asymptotically unbiased (i.e. as K → ∞) but we find the bias to be in-

significant. Once the angle β that maximises eq. (6) or eq. (7) is chosen, we update Σ
(t+1)
yy as

Σ(t+1)
yy =

[
Σ
(t)
yy A(t)Σxx(A(t+1))>

A(t+1)Σxx(A(t))> A(t+1)Σxx(A(t+1))>

]
, (9)

and repeat the procedure, i.e. return to eq. (8).

1. Submodularity guarantees this procedure obtains a score within a (1 − 1/e) factor of the optimal strategy.

4
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Figure 2: First 20 angles selected by each method under consideration for an example image.

3.2 Construction of the prior covariance Σxx

Now we describe the construction of the Gaussian prior covariance Σxx ∈ Rdx×dx over reconstruc-
tions. We consider a range of models, building from very simple models to flexible data-driven
ones that allows for adaptive design.

Isotropic model. The simple choice Σxx = σ2xIdx assumes uncorrelated pixels, and it
implies a ridge regulariser for the reconstruction, which is known to perform poorly in imaging.

Matern-1/2 Process. Antorán et al. (2022) employ the Matern-1/2 covariance [Σxx]ij,i′j′ =

σ2x exp(−`−1
√

(i− i′)2 + (j − j′)2), where i, j index the pixel locations in the image x, as a
surrogate for TV. With the hyperparameters σ2x and ` properly chosen, the prior samples and
posterior inferences closely match those obtained with an intractable TV prior.

Linearised deep image prior (Barbano et al., 2022; Antorán et al., 2022). This data-
driven prior is constructed by first fitting a DIP model on the measurements taken during the
pilot scan with eq. (4), and then adopting a linear model on the basis expansion given by the
Jacobian of the trained U-net x(·) with respect to θ evaluated at the optimal point θ?, i.e.
∇θx(θ)|θ=θ? =: J ∈ Rdx×dθ (Immer et al., 2021b). The resulting prior over x is given by

x = Jθ, θ ∼ N (0,Σθ) and thus x ∼ N (0, JΣθJ
>).

The covariance Σxx = JΣθJ
> incorporates information about the pilot measurements through

the features J. It assigns higher prior variance being near the edges in the reconstruction, cf.
fig. 1, which are most sensitive to a change in U-net parameters. The covariance Σθ ∈ Rdθ×dθ
weights different Jacobian entries. We consider two different structures for Σθ.

• The filter-wise block-diagonal matrix of Antorán et al. (2022) uses a separate prior for every
block in the U-net (cf. appendix D.2). This choice uses a large number of hyperparameters.
It risks overfitting to the pilot scan measurements resulting in uncertainty underestimation.

• The neural g-prior (Zellner, 1986; Antoran et al., 2022) is a maximally uninformative diagonal
Gaussian prior with covariance matching the diagonal of U-net’s inverse Fisher information
matrix, denoted s−1, scaled by a constant g (see appendix C for extended discussion). That is

Σθ = g · s−1I, s = d−1
y(t)

dy∑
i=1

([A(t)J]i)
2 ∈ Rdθ , and we choose g = (dy(0)dθ)

−1
dy∑
i=1

((y
(0)
i )2 − σ2y),

where [AJ]i refers to the ith row of the matrix AJ. Computing s does not require measurement
values and we update it every 5 acquired angles. We compute g once using the measurements
from the pilot scan. Our choice of s ensures that the Jacobian entries corresponding to all U-net
weights contribute equally to the marginal prior variance over measurements. Our choice of g
ensures this marginal variance is equal to the empirical second moment of pilot measurements.

All models discussed have a number of free parameters σ2y , σ
2
x, `,Σθ, which we choose to

maximise the model evidence given the pilot scan measurements. See appendix B for details.
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Figure 3: Reconstruction PSNR vs n. angles scanned, averaged across 30 images (5% noise).

4. Experiments and analysis

We simulate CT measurements y from 128×128 pixel images displaying rectangles of random
proportions aligned along a randomly chosen “preferential” direction (see fig. 2 and fig. 4). The
forward operator A is the discrete Radon transform, and either 5% or 10% white noise is added
to the measurement y. We divide the range [0◦, 180◦) into 200 selectable angles (i.e. |Ba| = 200).
The pilot scan measures at 5 equidistant angles, on which we fit all models’ hyperparameters
and the linearised DIP’s U-net (see appendix B). Then, we apply the methods in section 3.1
to produce designs consisting of 35 additional angles. For every 5 acquired angles, we evaluate
reconstruction quality using both the DIP (i.e. eq. (4)), and the traditional TV regularised
approach (i.e. eq. (3)). We include equidistant and random angle selection as baselines. On
an NVIDIA A100 GPU, a full linearised DIP acquisition step with K = 3000 samples takes 9
seconds and the full design takes 5 minutes. Appendix D contains full experimental details.

For the linearised DIP, we consider training our U-net and prior hyperparameters only on
the pilot scan, and also retraining every 5 angles. Figure 2 shows both approaches can identify
and prioritise the preferential direction, leading to reconstructions that outperform the equidis-
tant angle baseline by over 1.5 dB in the range of [10, 15] angles (see fig. 3). During this initial
stage, the linearised DIP requires roughly 30% less scanned angles to match the equidistant base-
line’s performance. The performance gap decreases as we select more angles, although linearised
DIP remains more efficient even after 40 angles. Retraining the U-net provides most benefits
in the large angle regime. It increases focus on preferential directions and consistently provides
gains >0.5dB after 20 angles. All gains over the equidistant baseline are obtained with both
DIP (i.e. eq. (4)) and traditional TV regularised reconstruction (i.e. eq. (3)). In the high 10%
noise setting, gains from experimental design are smaller, but still significant (see appendix E).

The isotropic and Matern-1/2 models’ uncertainty estimates are independent of the pilot
measurements. These models prioritise clustered sets of oblique angles which maximise the
length of quanta trajectories in the image. They perform similar to or worse than random. We
explore this negative result in appendix E, finding it due to overfitting of hyperparameters.

ESE outperforms EIG across models. For the linearised DIP, this gap is smaller when
using the g-prior. We hypothesise that model misspecification and hyperparameter overfitting
may result in poor measurement covariance estimates, in turn degrading EIG estimates.

5. Conclusion and future work

Our results suggest that dependence on the measurement data, i.e. adaptivity, is key to out-
performing equidistant angle selection in CT reconstruction, a notoriously difficult task (Shen

6
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et al., 2022; Helin et al., 2022). Distinctly from previous work, our methods only necessitate a
pilot scan instead of being fully online, increasing applicability. We observe the largest gains
in the 10 to 20 angle regime, where our designs reduce the angle requirement by roughly 30%
without loss of reconstruction quality. This is true for both traditional TV-regularised and DIP
reconstructions. In future, we aim to apply linearised DIP designs to real measurements.

Acknowledgments

We would like to thank Eric Nalisnick and Mark van der Wilk for helpful discussions. R.B.
acknowledges support from the i4health PhD studentship (UK EPSRC EP/S021930/1), and
from The Alan Turing Institute (UK EPSRC EP/N510129/1). The work of B.J. is partially
supported by UK EPSRC grants EP/T000864/1 and EP/V026259/1. J.L. is funded by the
German Research Foundation (DFG; GRK 2224/1), and additionally acknowledges support
from the DELETO project funded by the Federal Ministry of Education and Research (BMBF,
project number 05M20LBB). J.A. acknowledges support from Microsoft Research, through its
PhD Scholarship Programme, and from the EPSRC. J.A. also acknowledges travel support
from ELISE (GA no 951847). This work has been performed using resources provided by the
Cambridge Tier-2 system operated by the University of Cambridge Research Computing Service
(http://www.hpc.cam.ac.uk) funded by EPSRC Tier-2 capital grant EP/T022159/1.

References

J. Antoran and A. Miguel. Disentangling and learning robust representations with natural clus-
tering. In 2019 18th IEEE International Conference On Machine Learning And Applications
(ICMLA), pages 694–699, 2019.

Javier Antorán, James Urquhart Allingham, and José Miguel Hernández-Lobato. Depth uncer-
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Appendix A. Discussion on acquisition objectives

The descriptions that follow are well known within the experimental design community but
may be of interest to readers with a background in CT. Thus we describe these facts for the
convenience of readers, and refer readers to Fedorov (1972); Chaloner and Verdinelli (1995) for
a comprehensive introduction to experimental design and to Mackay (1992a) for a Bayesian
perspective on experimental design.

EIG quantifies the information (in nats) we expect to gain by observing the detector elements’
measurements for an angle or set of angles (Mackay, 1992a). Since our experiments employ
greedy angle selection, we derive EIG for measurements at a single angle β. The generalisation
to the multi-angle setting is straightforward. EIG is the expected decrease in posterior entropy
from observing the detector elements’ measurements at β:

EIG = H(x|y(t−1))− p(yβ |y(t−1))[H(x|y(t−1), yβ)],

where we take an expectation over the new measurement yβ , since EIG is computed before the
measurement yβ is made. For this, we use the posterior predictive distribution p(yβ |y(t−1)) given
our previous measurements y(t−1)

p(yβ |y(t−1)) =

∫
p(yβ |x)p(x|y(t−1)) dx.

For the linear-Gaussian case, this integral can be evaluated in closed form, although this will
not be necessary for our purposes.

EIG is also equal to the mutual information MI(x, yβ |y(t−1)) between the reconstruction
x and the new measurement yβ conditional on the previous measurements y(t−1), giving an
interpretation as aiming to select the angle β most informative towards the reconstruction. For
fixed model hyperparameters, EIG is always greater or equal than 0 since making additional
measurements cannot increase the uncertainty in the reconstruction.

The entropy of a multivariate Gaussian N (µ,Σ) is H = 1
2 logdet(Σ) + d

2(log(2π) + 1). For a
fixed dimensionality d, the second term is constant across design steps and thus we only need to
focus on the log determinant. The entropy does not depend on the distribution mean but only
its covariance. Thus, taking y(t) = [y(t−1), yβ ], we can write

EIG = logdet(Σx|y(t−1))− logdet(Σx|y(t)).

Since the covariance Σx|y(t−1) does not depend on the new angle choice β, maximising EIG
is equivalent to choosing the angle which minimises the updated covariance log-determinant
logdet(Σx|y(t)). Hence, the EIG objective for linear models is also known as the D(eterminant)-
optimal criterion.

We can obtain a more convenient expression for EIG by noting the sequential nature of
Bayesian learning; when data is observed, the prior is updated to a posterior. This posterior
represents the updated beliefs and, as such, acts as a prior distribution for further inferences

p(x|y(t)) =
p(yβ |x)p(x|y(t−1))

p(yβ |y(t−1))
.
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For conjugate Gaussian-linear models, we can apply this principle to obtain the posterior co-
variance at time t from the covariance at time t− 1 using the matrix determinant lemma

logdet(Σx|y(t)) = −logdet(Σ−1
x|y(t−1))− logdet(σ−2y I)− logdet(σ2yI + A

(t)
0 Σx|y(t−1)A

>,(t)
0 ).

Thus, we have

EIG = logdet(Σx|y(t−1))− logdet(Σx|y(t))

= logdet(Σx|y(t−1))− [−logdet(Σ−1
x|y(t−1))− logdet(σ−2y I)− logdet(σ2yI + AβΣx|y(t−1)(Aβ)>)]

= −logdet(σ2yI) + logdet(σ2yI + AβΣx|y(t−1)(Aβ)>)

= logdet(σ2yI + AβΣx|y(t−1)(Aβ)>) + C

where the constant C = −logdet(σ2yI) is independent of angle choice, yielding the objective we
use for angle selection in practise.

The ESE objective in eq. (7) aims to minimise the squared prediction error in measure-
ment space. Objectives of this kind are commonly known as (A)verage-optimal. However,
ESE is A-optimal over measurement space y, not over image space x. ESE is crucially dif-
ferent from minimising the arguably more relevant expected squared reconstruction error, a
more computationally expensive criterion. ESE can be understood as a naive simplification of
EIG, by discarding correlations between detector pixels, making logdet(AβΣx|y(t−1)(Aβ)>) match∑

i<dp
log[AβΣx|y(t−1)(Aβ)>]ii. Then, the order of log and sum are switched, something that will

only be true if every element under the sum is the same. Having reached this point, since the
log function is monotonic, it does not affect angle selection and the criterion matches the trace
of AβΣx|y(t−1)(Aβ)>.

Appendix B. Hyperparameter selection via model evidence maximisation

For the conjugate linear-Gaussian model, the model evidence can be computed in closed form

log p(y) = logN (y; 0,Σyy) = −1

2

(
y>Σ−1yy y + logdet(Σyy)

)
+ C

with Σyy = AΣxxA> + σ2yIdy

and C = −dy/2 log 2π. This expression is straightforward to compute for the isotropic and
Matern-1/2 models. The linear solve against Σyy and log-determiant operations, while costly, are
tractable to perform when the dimensionality of y is low. This is the case in our experimental
setup, where we use the measurements from our 5 angle pilot scan y(0), specifically, dy = dp ·dB =
5 · 183 = 915. We refer to Antorán et al. (2022) for discussion of efficient computation of the
model evidence for the linearised DIP. For additional discussion on the motivation for the model
evidence objective, its applications and pitfalls, we refer to Mackay (1992b); Immer et al. (2021a);
Antorán et al. (2022).

Selecting prior hyperparameters with the model evidence is often claimed to be immune
from overfitting due to the flexibility of the prior model being relatively low. However, when
the number of measurements is small, e.g. after performing the pilot scan, overfitting is still
possible. Indeed we observe the Matern-1/2 model suffers due to this issue in our experiments.
We further discuss this in appendix E.

12
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The risk of overfitting is also high for the linearised DIP model of Barbano et al. (2022);
Antorán et al. (2022). Here, the basis expansion is selected by training a U-net on the pilot
measurements and the number of hyperparameters is twice the number of U-net blocks, making
this prior class very flexible. This has motivated the use of the neural g-prior (Antoran et al.,
2022), discussed in the following section.

Appendix C. Discussion on the neural g-prior

The neural g-prior Σθ = g · s−1I was introduced by Antoran et al. (2022) as an approach to
“normalise” the second moment of the Jacobian feature expansion analogously to standard data
normalisation. This normalisation ensures that the Jacobian entries corresponding to all network
weights contribute equally to the predictions at the train points, or in our case, to the predictions
at the already measured angles. We refer to Antoran et al. (2022) for a full derivation.

Antoran et al. (2022) learn the variance scale g with the model evidence objective. However,
it is well known that this procedure can overfit in the small-data regime. To prevent overfitting,
in this work we choose g using the heuristic

g = (dydθ)
−1

dy∑
i=1

((yi)
2 − σ2y).

This choice is made so that the marginal predictive variance averaged across measurement lo-
cations matches the empirical second moment of the observed targets, which we will denote

[y2] = d−1y
∑dy

i=1 y
2
i . In other words, when using this prior over weights, our prior over mea-

surements will have roughly the “right” variance. To see this, first recall

s = d−1y

dy∑
i=1

([AJ]i)
2

where [AJ]i refers to the ith row of the matrix AJ and we will use [AJ]ij to index each scalar
entry of this matrix. We now expand the average marginal variance across measurements when
using the neural g-prior

d−1y

dy∑
i=1

[Σyy]ii = d−1y

dy∑
i=1

[AJ(gs−1I)A>J>]ii + σ2y

= gd−1y

dy∑
i=1

s−1i

dθ∑
j

[AJ]2ij + σ2y

= ( [y2]− σ2y)d−1θ
dy∑
i=1

dθ∑
j=1

[AJ]2ij∑dy
k=1[AJ]2kj

+ σ2y

= ( [y2]− σ2y)d−1θ
dθ∑
j=1

∑dy
i=1[AJ]2ij∑dy
k=1[AJ]2kj

+ σ2y

= ( [y2]− σ2y)

d−1θ dθ∑
j=1

1

+ σ2y = [y2],

13
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Figure 4: Examples of synthetic images.

showing the property.

For Antorán et al. (2022), model evidence optimisation is the most computationally costly
step of inference. Avoiding model evidence optimisation speeds up inference and thus angle
selection, making our proposed procedure more attractive for a real deployment.

Additionally, in fig. 3, we observe that the EIG objective performs best when combined
with the neural g-prior. Arguably, EIG is a better motivated selection criterion than ESE but
performs worse than equidistant selection when combined with all models except the g-prior
linearised DIP. We hypothesise that model misspecification introduces error in our estimates of
relative marginal variances and covariances across detector pixel measurements, in turn degrad-
ing the performance of EIG. ESE is less sensitive to these, as discussed in appendix A. Since the
neural g-prior is a maximally uninformative prior, it somewhat mitigates model misspecification,
improving the performance of EIG acquisition.

Appendix D. Full experimental setup

D.1 Dataset generation

We use a synthetic dataset comprising images of rectangles with randomised shape, orientation
and intensity values, and simulate CT measurements by applying the forward operator A ∈
Rdy×dx and adding Gaussian noise with standard deviation of 5 % or 10 % of the average absolute
value of the noiseless measurements Ax. Each image has resolution 128 × 128 px2 and shows 3
superimposed rectangles, whose orientation is sampled from a single normal distribution with
zero mean and standard deviation 2.86◦. Thus, images in this class contain edges in roughly
two perpendicular directions. Figure 4 shows example images from the dataset.

D.2 Implementation details for the linearised DIP

The key step of efficiently implementing the linearised DIP is the computation and Cholesky
decomposition of the measurement covariance matrix Σyy. We describe this step in the following
paragraphs and refer to Antorán et al. (2022), which we have followed in our implementation,
for a complete set of details.

Computing the measurement covariance matrix Σ
(t)
yy To assemble or multiply with Σ

(t)
yy ,

we employ matrix-free methods. Our workhorses are the matrix vector products v>x Σxx and

v>y Σ
(t)
yy for vx ∈ Rdx and vy ∈ Rdy . We efficiently compute these products through successive

14
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5 % noise 10 % noise

#angles: 5 10-15 20-30 35-40 5 10-15 20-30 35-40

TV strength λ 1e−2 3e−3 3e−3 3e−3 1e−2 1e−2 1e−2 3e−3
iterations 60 000 30 000 10 000 10 000 60 000 30 000 10 000 10 000

Table 1: Hyperparameters for TV reconstruction. The values for λ are found by grid search on
10 validation images using 5, 10, 20 and 40 angles, and the numbers of iterations are
chosen such that convergence is observed.

matrix vector product with the components of either Σxx, or Σ
(t)
yy , respectively. For instance,

v>y Σ(t)
yy = v>y

(
A(t)JΣθJ

>
(

A(t)
)>

+ σ2yI

)
.

For any vector vθ of appropriate size, we compute Jacobian vector products v>θ J> using forward
mode automatic differentiation (AD) and v>θ J using backward mode AD. For the non g-prior
model, we efficiently compute products with Σθ by exploiting its block diagonal structure. Since
the g-prior covariance matrix is diagonal, computing products with it is straightforward.

Numerically stable sample generation with Matheron’s rule eq. (8) Numerical insta-
bilities can arise during the sample generation with the Matheron’s rule due to the inversion of
Σyy, updated via eq. (9). We resort to a simple regularisation strategy, which consists in adding

to Σ
(t)
yy a small diagonal element εI, where ε is chosen from 1% to 10% of the diagonal mean,

similarly to Lee et al. (2020).

D.3 Hyperparameters for TV and DIP reconstruction

The TV strength (i.e. λ) used in the DIP optimisation and the TV regularised objective, reported
in table 1 and table 2, are found by grid search on 10 validation images. The DIP reconstruction
quality from some images degrades when using many iterations Baguer et al. (2020), so an early
stopping would be beneficial. For the PSNR evaluations of DIP reconstructions, we iterate
for 30 000 steps and select the maximum PSNR for each image; this resembles the ideal early
stopping by using the (in practice unknown) ground truth image, and is done in order to exclude
the complexity of the stopping mechanism from our evaluations. For the DIP optimisations
used for angle selection (i.e. the initial DIP on B(0) and the DIPs retrained every 5 angles),
the numbers of iterations in table 2 are used, which were found by grid search on 10 validation
images.
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5 % noise 10 % noise

#angles: 5 10-15 20-30 35-40 5 10-15 20-30 35-40

TV strength λ 3e−3 3e−3 3e−3 1e−3 1e−2 1e−2 3e−3 3e−3
iterations 19 000 9400 12 000 13 000 11 000 7500 12 000 7100

Table 2: Hyperparameters for DIP reconstruction (including TV regularisation). The values are
found by grid search on 10 validation images using 5, 10, 20 and 40 angles.

1x1 conv + leaky ReLU

bilinear upsampling

3x3 conv with stride 2 + leaky ReLU

3x3 conv + leaky ReLU

1x1 conv + sigmoid

2x (3x3 conv + leaky ReLU)

1 14+3232

32 32

32 32

32 4+32

32

Figure 5: U-net architecture. Each light-blue box corresponds to a multi-channel feature map.
The number of channels is set to 32 at every scale. The arrows denote the different
operations.
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Appendix E. Additional experimental results and analysis

In this section, we include additional experimental figures and discuss them.

Figure 6: First 20 angles selected by each method under consideration for the example image
shown in fig. 1

Figure 6 completes fig. 2 by showing the angles selected by all methods under consideration.
Both linear DIP and linear DIP with g-prior choose very similar angles, with the g-prior resulting
in a very slightly more diverse angle set. Retraining the linearised DIP every 5 angles to update
the basis expansion results in a stronger focus on angles close to the preferential direction. As
expected, the differences with the non-retrained DIP are more pronounced for later selected
angles (i.e. angles 16-20).

The Matern-1/2 model concentrates its selection on oblique angles much more strongly than
the isotropic model. This results in a very non-diverse angle set which achieves very poor
performance. To understand why this happens we first remark that the Matern-1/2 model
generalises the isotropic model and the two are equal when the lengthscale is set to ` = 0. We
investigate the hyperparameters chosen by the model evidence for the Matern-1/2 model and
find that for all images the lengthscale is in the range [40-70]. This value is very large relative
to the size of the image (128× 128) and represents an assumption that the reconstructed image
has only 2 or 3 regions with different pixel intensity values. Under this assumption, only taking
measurements at 3 different angles is justified.

We verify this explanation by examining the ESE scores assigned by the isotropic and Matern-
1/2 models to the first 8 angles chosen in fig. 7 and fig. 8 respectively. The isotropic model chooses
oblique angles. After each new angle is included in the updated operator A(t), the predictive
variance in a region spanning roughly 10◦ around the chosen angles decreases. This is the span
of the detector elements. The uncertainty at other angles remains unchanged because the model
assumes reconstruction pixels to be uncorrelated. By modelling correlations among detector
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Isotropic model, first 8 acquisitions

Figure 7: Variance assigned to each candidate angle during the first 8 design steps by our
Isotropic model.

Matern-1/2 model, first 8 acquisitions

Figure 8: Variance assigned to each candidate angle during the first 8 design steps by our
Matern-1/2 model.

pixels, each additional angle should reduce the Matern-1/2 model’s uncertainty in a larger angle
range (set via the lengthscale), promoting exploration. However, because the lengthcale, which
has overfit the pilot measurements, is very large, each new angle introduced into the operator
reduces the predictive variance of every angle almost equally. As a result, the relative assignment
of predictive variance in angle space remains roughly constant throughout design steps, and all
of the chosen angles become very similar to each other.

Although, it is well known that experimental design is very sensitive to the choice of prior
(Feng, 2015; Foster, 2021), the ease with which the relatively very simple Matern-1/2 model can
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overfit the degree to which this degrades performance was unexpected to us. In future work we
will investigate alternative methods for setting model hyperparameters.

Figure 9 and fig. 10 show the variance assigned to each angle in the first 8 acquidition steps
on an example image (first image from fig. 4) for the linearised DIP and the linearised DIP
with g-prior, respectively. Although the angles selected by the two models are different, both
prioritise similar angle regions.

Linearised DIP, first 8 acquisitions

Figure 9: Variance assigned to each candidate angle during the first 8 design steps by our lin-
earised DIP model.

Linearised DIP with g-prior, first 8 acquisitions

Figure 10: Variance assigned to each candidate angle during the first 8 design steps by our
linearised DIP model with the g-prior.

Figure 11 is a more complete version of fig. 3, including the standard error. Given our 30
image runs, we can conclude that the linearised DIP provides a statistically significant improve-
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ment over the equidistant baseline up to 20 selected angles. By retraining the DIP Jacobians
every 5 angles, we can extend the significant improvements up to 35 scanned angles. In future
we aim to make these statements stronger by running more experiments.

Figure 12 shows our findings on measurement data simulated adding 10% noise. The gains
from experimental design are slightly reduced in the noisier setting, although the conclusions
remain the same. From the EIG expression eq. (6), we can see that noisier measurements should
push our score assignment to be more uniform across angles and thus closer to the equidistant
baseline.

Figure 11: Reconstruction PSNR vs n. angles scanned, averaged across 30 images (5% noise).

Figure 12: Reconstruction PSNR vs n. angles scanned, averaged across 30 images (10% noise).
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