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Abstract

This work deals with the investigation of climate extremes using data from global circula-
tion models. These models are one of the main tools that are used by climate scientists to
study and quantitatively assess the future effects of climate change. Climate extremes like
droughts, heat waves or heavy rain can potentially have severe consequences on people
and economies worldwide, and changes in climate extremes can cause these effects to
become more severe in the future, so a quantitative investigation of changes in climate
extremes is of high relevance.

After a general introduction to the climate system, to climate extremes and to the ma-
thematical investigation of extremes we discuss in the first part of the work the validation
of climate models in terms of extremes. When validating a climate model, data from a
historical run of it are compared to observed data. Validation is often done with respect
to mean values and covariances, validation with respect to extremes is less common.
We present a method for model validation in terms of extreme values based on classical
extreme value theory. We also compare the spatial dependencies of extremes between
model and observational data by using a clustering algorithm. We apply these methods
to data from the Alfred Wegener Institute Earth System Model and from other models of
the Coupled Model Intercomparison Project CMIP6. We find that both the distribution of
climate extremes at a fixed location and the spatial structure of extremes are in general
well met by the climate models. However, a systematic overestimation or underestimation
of climate extremes can be detected in some regions, in particular in mountainous areas.

The second part of the work investigates how climate models predict climate extremes
to change in the future. To this end, we design statistical models to globally describe
changes in extreme temperatures over time. This enables us to investigate how large
the changes in the extremes will be and how quickly they will take place, depending on
the location. It turns out that there is a tendency for stronger and quicker changes over
land, while changes over the ocean are slower and more gradual. We investigate different
statistical models and analyze their performance. We also find that in the Arctic region
the changes in extremes are characterized by a rapid increase in variance followed by a
slower change in mean values, which differs from the behavior in other regions. This can
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be explained by themelting of sea taking place in theArctic that influences the local climate.

In the third part of the work, we discuss somemethods to investigate spatial dependen-
cies of extremes in more detail. If an extreme event affects a large area simultaneously, it
can have particularly severe consequences. Max-stable processes are one possible approach
for the statistical investigation of climate extremes and their spatial dependencies. Most of
the existing models, however, are only of limited applicability if the data investigated cover
a large and heterogeneous area. We discuss a clustering approach that has recently been
proposed to address this issue. We show that there are cases in which that approach is not
well applicable, propose an alternative method and use computer-simulated data to eval-
uate the two approaches. We obtain that our proposed approach can lead to better results
in some cases. The work on this algorithm is intended to be a first step towards applying
similar methods also to climate model data.
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Chapter 1

Introduction

1.1 Motivation

In Quechua, the language of the Inca, the word for ”in front of” also has the meaning ”in
the past”, and the word for ”behind” can also mean ”in the future”. The idea behind this
choice of words is a notion of going backwards into the future, into the unknown that is
not visible, while keeping in sight experiences and events lying in the past.

Currently, global climate change causes mankind to face a future that is maybe more
uncertain than ever, with possibly drastic changes awaiting us (IPCC, 2021). Using
information about and experiences from the past, it is to some extent possible to reduce
our uncertainty of what the future will bring, so that we do not move toward the future
blindly, but use our knowledge in the best possible way to keep negative consequences
under control or adapt to them.

To predict future developments of the Earth’s climate, one of the main assets used by
climate scientists are global circulation models (GCMs). These are large-scale computer
programs based on the physical equations and properties governing the climate system,
which are calibrated based on the known or estimated climatic conditions of historic and
prehistoric past times (Stocker, 2013). Using different scenarios of how future greenhouse
gas emissions will develop, climate models are used to create simulations of the future
climate and study their predictions about the effects of climate change. Climate models
necessarily have to simplify the immensely complex climate system of the Earth and some
parts of the climate system are still not understood well, therefore the accuracy of the
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simulations is inevitably limited (Parker, 2013).

One of the concerns associated with climate change is a possible increase in frequency
and magnitude of climate extremes. Climate extremes like heat waves, droughts and
heavy rain can have devastating effects on human societies, ecosystems and enonomy,
and therefore a precise understanding of how they will develop in the future is crucial
(Seneviratne et al., 2012). This understanding can be increased also by using climate
models, keeping in mind the limitations in the simulation accuracy mentioned above.

1.2 Aims and scope of this thesis

In this dissertation, which is based on an interdisciplinary project combining mathematics
and climate science, it will be investigated how well climate models are able to describe
climate extremes, and what changes to climate extremes are predicted by climate models.
In addition to that, a possible improvement of a method to analyze the spatial structure of
climate extremes is presented. Given the seriousness and urgency of climate change and in
particular of changes in climate extremes, research on these topics is of high importance.
In particular, the following three research questions are addressed:

1. Using historical runs of climate models, how well do the statistical properties of climate
extremes in the simulated data match with those of observed climate extremes?

Addressing this question sheds light on how well climate models are able to simulate
extremes under current climatic conditions. Comparing historical runs of a climate model
to observed data can be used to validate the climate model: The reliability of a model that
is not able to simulate the current climate accurately is probably limited also when it comes
to future simulations. Validation of climate models is often done by comparing mean
values and covariances (Tapiador et al., 2012), and less attention is given to validation in
terms of climate extremes. Our investigation puts focus specifically on validation in terms
of extremes, and uses different mathematical approaches to investigate the accuracy of
climate models in that regard. When comparing climate model and observed data, we will
focus on the distribution of extremes at fixed locations and on the location of regions in
which extremes occur simultaneously.
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It needs to be noted that even if a climate model simulates climate extremes well
under current conditions, it is not guaranteed that is does so also in future scenarios.
Nevertheless, an investigation of the accuracy of a climate model under historic conditions
will give some insight on how much confidence can be put in its predictions regarding the
future development of climate extremes.

2. How do climate models predict climate extremes to change in the future?

As already stated, one of themain purposes of climatemodels is to conduct simulations
to describe the future effects of climate change. Analyzing the output of future simulations
with respect to climate extremes will help us obtain a better understanding of this aspect
of climate change. While similar investigations have already been done regionally and
for the next few decades (for example Panagoulia et al., 2014; Sarhadi and Soulis, 2017),
the development of extremes in the more distant future and on a global level is still less
well understood (Rummukainen, 2013; IPCC, 2021). To address this, we extend existing
statistical models for time-dependent extremes to make them more flexible and to make
them applicable specifically to changes in climate extremes under some of the scenarios
of the future development of climate. We will apply these statistical models to data from
different climate models that cover a time span of more than three centuries. We will apply
different statistical models and discuss and compare their results.

Changes in climate extremes will be investigated in terms of their timing and of the
magnitude of the changes, as both of these parameters are important for assessing the
possible consequences of the changes. In addition to that, also the regional variability of
the changes will be investigated, as it is well-known that changes in extremes can vary
considerably depending on the region (Xie et al., 2015).

3. How can statistical methods to describe the spatial structure of extremes be improved?

Extreme climate events can occur simultaneously throughout large areas, or also in
separate remote regions of the world, and this may cause particularly high damage. It is
therefore of interest to investigate climate extremes not only at one fixed location, but also
in a spatial context, and to understand how extremes at different locations influence each
other.
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There exist some statistical models that can be used for this task, but most of them
require to assume a certain kind of spatial homogeneity of the data. That assumption is
not reasonable if the data cover a large and heterogeneous area, restricting the applications
of said models to smaller areas like Switzerland (Ribatet et al., 2015). One recently
developed approach to overcome this issue is to divide the area of investigation into
different smaller regions on which the statistical models can then be applied (Saunders
et al., 2021). We will discuss this approach and demonstrate that there are cases in which it
is of limited applicability because the resulting regions do not necessarily fulfill the desired
requirements. We then propose an alternative approach and we conduct a simulation
study which points out that it can lead to improved results. These results are a first step to
conducting a spatial investigation of extremes also for data from global climate models.

These three questions are each the topic of a published or submitted article. Historical
runs of climate models are investigated in ”Variability and extremes: statistical validation
of the Alfred Wegener Institute Earth System Model (AWI-ESM)” (Contzen et al., 2022).
The projected future developments of climate extremes are discussed in ”Long-term
development of temperature extremes in a warming Earth” (Contzen et al., 2023). Meth-
ods to investigate the spatial structure of extremes are investigated in ”Regionalization
approaches for the spatial analysis of extremal dependence” (Contzen et al., in press).

The structure of this thesis will follow the research questions outlined above. In the next
chapter, an introduction to climate models and to the Earth’s climate system in general is
given. It is followed by a chapter exploring the mathematical foundations of extreme value
theory that will be used throughout the work. The three research questions will each be
addressed in one chapter based on the corresponding article. Parts of the introduction and
methods sections of the articles are incorporated in the introductory chapters of the thesis.
In the final chapter of the thesis, the conclusions that have been drawn in the previous
chapters are summarized and discussed.

1.3 Own contributions to this work

All three papers on which this work is based were written in collaboration with Thorsten
Dickhaus and Gerrit Lohmann. For each of them, I wrote the manuscript and conducted
the statistical analyses. Thorsten Dickhaus and Gerrit Lohmann supervised the work,
reviewed the manuscripts and made corrections.
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For the first paper, Thorsten Dickhaus and Gerrit Lohmann were responsible for the
initial concept and the design of the study. I conducted the analyses and evaluated the
results, and I also designed the new dissimilarity measure that was used for the clustering.
Thorsten Dickhaus contributed to the statistical methodology used in the study, and Gerrit
Lohmann helped with the interpretation of the results and the writing of the introduction
and the conclusion.

For the second paper, the idea to use non-stationary GEV distributions to investigate
future changes of extremes was developed jointly by the three of us. I suggested to use
logistic functions to describe the changes in the parameters. Thorsten Dickhaus suggested
using a simulation study as a proof of concept on the applicability of the models, and
Gerrit Lohmann contributed to the analysis of the results and to the conclusions that were
drawn from them.

The concept of the third paper was designed by myself, and I also designed the sim-
ulation study and the examples that were used to discuss the theoretical attributes of the
clusterings. ThorstenDickhaus helpedwith the statistical analysis and contributedmuch to
thework by pointing out areas inwhich improvementswere necessary in previous versions
of the manuscript.
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Chapter 2

The climate system and climate
models

2.1 Climate and climate change

The weather conditions at a certain time and place, like temperature, wind speed or
precipitation, are determined by a complex interplay of numerous factors. Due to the
highly non-linear nature of the atmosphere and ocean dynamics and due to their chaotic
behavior (a small change in an initial state can accumulate over time and lead to a highly
different outcome), an accurate weather forecast is not feasible for more than two weeks in
advance even if the initial state were known completely (Holton and Hakim, 2013). The
investigation of the statistical properties of the weather at a certain location, however, is
possible on time scales of years, decades and even longer. These statistical properties are
subsumed under the term climate, and while the study of climate does not allow for the
prediction of the exact weather at a certain time and place, information like the average
weather conditions and their variability, as well as probabilities for extreme weather events
still provide invaluable information for the agricultural sector, healthcare, urban planning
and many other areas (Ruddiman, 2008).

Instrumental measurements for climate variables started in the second half of the
19th century with initially only a few observation stations in selected regions of the
world. Over time, weather stations have become much more frequent and measurement
methods have improved (Jones, 2001). Technological advances like satellites (starting in
the 1970s) allow for a fine-gridded measurement of many climate variables, including
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some which were previously inaccessible (like the temperature in the troposphere for
instance). For the investigation of the climate further back in the past, it is necessary to
rely on historical documents or on proxy data like tree rings or pollen records, giving a
much less accurate picture than instrumental measurements (Helle and Schleser, 2004;
Soon and Baliunas, 2003). The information that can be gained from those sources is
usually more sparse and more inaccurate for time periods that are further in the past.
One important method that provides rather detailed data about the climate in the last
few hundred thousands of years is the investigation of ice cores from Greenland and
Antarctica. The thickness and chemical composition of the yearly layers of the ice can
be used to draw conclusions about past temperatures and other climatic conditions, and
air enclosed in the ice provide information of the atmospheric composition (Delmas,
1992). However, this method is limited to regions near the poles. In other regions, anal-
ysis of sediments can be used to gain information about the long-term past (He et al., 2020).

The data collected from all those methods show that the climate is a permanent process
of transition over time, with changes that can range from relatively small variations
on an annual or decadal time-scale to large-scale long-term trends over the course of
thousands or even millions of years. External factors like the strength of the Sun or the
characteristics of the Earth’s rotation around it are called ”forcings” and provide the most
fundamental influences on the climate system. As a prominent example, the start and end
of the ice ages was heavily influenced by periodic changes in the Earth’s orbit, known as
Milanković cycles (Ruddiman, 2008). The climate system itself can be internally divided
into the components atmosphere, hydrosphere (oceans, rivers and lakes), biosphere
(vegetation), land surface and cryosphere (ice and snow), and all of these components
influence themselves and each other in a complex set of interactions, parts of which are
still insufficiently understood. Fig. 2.1 depicts some of these interaction between different
parts of the climate system. The random and chaotic nature of some of these internal
processes in the climate system result in a natural internal variability of the climate (Rohli
and Vega, 2018).

In addition, human actions have been influencing Earth’s climate, with the earliest
detectable effects maybe as far back as 6, 000 years ago, when the cultivation of rice
possibly led to an increase of methane in the atmosphere, preventing a natural cooling that
would otherwise have occurred due to orbital changes (Ruddiman, 2008). In the recent
200 years, the industrialization and the large-scale emission of greenhouse gases like CO2
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Figure 2.1: Simplified schematic of major components of the climate system, including hu-
man contributions, and their influences on each other (U.S. Climate Change Program, 2003,
Fig. 2.5).
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into the atmosphere have started to cause even stronger changes in the climate system
(Seneviratne et al., 2012). When investigating the climate, the human (or anthropogenic)
contributions are usually considered as an external forcing, as opposed to the natural
trends and variability discussed above.

Earth is currently experiencing a warming of the land surfaces, the ocean and the
atmosphere on a global scale, and there is a broad consensus that this is predominantly
caused by humans (IPCC, 2012). However, the study of observational data to quantify
these changes poses several challenges. First, the data coverage very much depends on the
region investigated. In some regions, like sub-Saharan Africa, the amount of available data
is limited because systematic measurement does not exist or has been started only recently
(Dinku, 2019). But also long-term observations can exhibit missing values, or quality
issues due to changed measurement methods over time. Long-term records may also be
distorted at some measurement stations because of changes of the local environment, like
the growth of cities (Koedel et al., 2022). All of these need to be taken into account when
analyzing observational records. Furthermore, due to the short time span of observational
records, it is often difficult to distinguish precisely between anthropogenic changes and
those that are part of a natural variability on a decadal scale. This applies in particular to
variables for which a broad data coverage relies on satellite measurements, for instance
the strength of tropical cyclones (Sobel et al., 2016).

Regardless of their causes, changes in climate have always had a strong effect on
human societies. In Zhang et al. (2007), it is shown that in historic times, periods of
cooling were often followed by an increased instability of the society and the outbreak
of wars. As an example, a cooling period in the fourth and fifth century AD, the Late
Antique Little Ice Age, coincided with a period of extensive warfare in regions as far apart
as Europe and Northern China (Büntgen et al., 2016; Yang et al., 2021), and a period of
prolonged drought might have contributed to the collapse of the Maya civilization in the
eighth to tenth century (Douglas et al., 2015). A review summary by Carleton and Hsiang
(2016) collects recent empirical studies that find correlations between climate variables
and various social factors like mortality, crime rate, or productivity all around the globe.
For these reasons, it is evident that a large-scale global climate change as the one we are
currently experiencing can have tremendous consequences on mankind.
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2.2 Climate extremes

The Intergovernmental Panel on Climate Change (IPCC) defines a climate extreme as
”the occurrence of a value of a weather or climate variable above (or below) a threshold
value near the upper (or lower) ends of the range of observed values of the variable”
(Seneviratne et al., 2012, page 116). Some possible types of extremes are heatwaves,
droughts, heavy rainfall, storms, and hurricanes or cyclones. All of these can cause high
damage to natural environments (Zscheischler et al., 2014), agriculture (Toreti et al., 2019),
human health, societies and economies (Jongman et al., 2014; Ciais et al., 2005; Kovats
and Kristie, 2006), which is the reason why possible future changes in climate extremes
are particularly concerning. The damage of an extreme event depends not only on the
strength of the event itself, but also on a variety of other factors, in particular the exposure
and vulnerability of the area where it occurs (Cardona et al., 2012). Extremes that occur
over a long time or over a large-scale area may have especially severe consequences,
as the possibilities to mitigate their effects, for instance by providing humanitarian aid,
are limited. The same applies if two different types of extremes occur at the same time
and location, for example heat and drought (compound extremes). Extremes can also
strengthen each other in a positive feedback loop (Cooney, 2012).

To quantify the strength of extremes, different measures, called extreme indices, exist.
Commonly used are for example the maximum value of maximum daily temperature over
a given time period or the number of consecutive summer days (days that exceed 25◦C) as
indices for heat. The number of days exceeding a certain precipitation threshold (10mm or
20mm) is one of the possible indices for heavy rain (Karl et al., 1999). The Expert Team on
Climate Change Detection and Indices (ETCCDI) has defined a list of 27 extreme indices
that are often used for the investigation of extremes (Table 2.1).

There are numerous ways in which climate extremes can change over time: They
can change in terms of their magnitude, their frequency, their duration, and their spatial
distribution. A thorough investigation of the future changes in climate extremes is im-
portant to assess the risks and potential damages that can be caused by them. To explain
how extremes can change in more detail, we take as an example those extremes that are
defined as the events when a certain climate variable exceeds a fixed threshold value. The
threshold value is defined as a certain percentile based on the (empirical) distribution of
the variable in a reference period. Examples for this type of extremes include the ETCCDI
indices TX10p or TN90p (see Table 2.1). Assume that the climate variable follows a normal
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Table 2.1: The 27 core indices of the ETCCDI (ETCCDI, 2009). Abbreviations used: TN
–daily minimum temperature. TX –daily maximum temperature. TG –daily average tem-
perature. RR –daily amount of precipitation. Percentiles are based on the reference period
1961− 1990.
ID Name
FD Number of frost days (TN < 0◦C)
SU Number of summer days (TX > 25◦C)
ID Number of icing days (TX < 0◦C)
TR Number of tropical nights (TN > 20◦C)
GSL Growing season length (based on a consecutive period of days with

TG > 5◦C)
TXx Monthly maximum value of TX
TNx Monthly maximum value of TN
TXn Monthly minimum value of TX
TNn Monthly minimum value of TN
TX10p Percentage of days with TX < 10th percentile
TN90p Percentage of days with TN > 90th percentile
TX90p Percentage of days with TX > 90th percentile
WSDI Warm spell duration index (consecutive days with TX > 90th per-

centile)
CSDI Cold spell duration index (consecutive days withTN < 10th percentile)
DTR Daily temperature range (Monthly mean difference between TX and

TN)
Rx1day Monthly maximum 1-day precipitation
Rx5day Monthly maximum consecutive 5-day precipitation
SDII Average amount of precipitation on wet days (RR ≥ 1mm)
R10mm Annual number of days with RR > 10mm
R20mm Annual number of days with RR > 20mm
Rnnmm Annual number of days with RR > nnmm, nn a user-defined threshold
CDD Maximum length of dry spell (consecutive days with RR < 1mm)
CWD Maximum length of wet spell (consecutive days with RR ≥ 1mm)
R95pTOT Annual total precipitation on days when RR ≥ 95th percentile
R99pTOT Annual total precipitation on days when RR ≥ 99th percentile
PRCPTOT Annual total precipitation

distribution. If the mean of the distribution increases over time while the variance stays
the same, the probability that the threshold value is exceeded will increase. The same
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is true if the mean of the distribution stays the same but its variance increases. Both
types of changes can also be combined, which can lead to a stronger effect. In Fig. 2.2,
taken from IPCC (2001), these changes and their influence on extremes are illustrated.
For non-normal distributions, another possible effect is that the heavy-tailedness of the
distribution increases, meaning that ”outliers” occur more frequently, which would also
influence the frequency of extremes. This very simplified example already shows that
changes in extremes are complex and in order to quantify them, an investigation of changes
in the mean value of a climate variable is not enough.

Another important fact to keep in mind is the regionality of extremes. It was already
mentioned that the impact of an extreme depends on the exposure and vulnerability of
the affected region. In addition to that, the changes in extremes also vary spatially due
to regional changes in the climate system. Climate change can lead to changes in wind
patterns and in the strength and position of ocean currents, and these changed patterns can
have an influence on extremes and can cause their changes to differ widely across regions
(Xie et al., 2015).

2.3 Climate models

In order to improve the understanding of the climate system in general, to answer questions
about the current climate change and to draw predictions on how that change will develop
in the future, climate models are an important tool. In the following introduction we will
follow Stocker (2013). Climate models aim to simulate the Earth’s climate by performing
calculations based on the known physical principles and equations that govern the climate
system. These equations include basic physical conservation laws like the conservation of
mass and of energy as well as for example the Navier-Stokes equations that describe the
behavior of dynamic fluids. Climate models exist for different parts of the climate system,
like the ocean, the atmosphere, the vegetation and the land ice. They can also be applied to
different geographical areas: Some models investigate the climate globally, others focus on
a specific region. All models have in common that the divide the area of investigation into
a (two- or three-dimensional) grid and calculate averaged values on each grid cell. The
physical equations used include partial differential equations, which implies that climate
models also divide the time frame of investigation into different sections. Starting with an
initial configuration, they calculate the values of the climate variables step by step using
numerical methods like the Euler scheme. Themost comprehensive models are GCMs that
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Figure 2.2: Schematic depiction of how changes in mean and in variance can influence the
probability of temperature extremes (IPCC, 2001, Figure 2.32).
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are applied on a global scale and that consist of different sub-models for the atmosphere,
the ocean and for other parts of the climate system. As all the different parts of the climate
system are interconnected, the sub-models are intertwined in a process called coupling:
A time step is calculated for one of the sub-models, and the resulting values are used as
boundary conditions for other ones. This way, the different model parts constantly and
successively influence each other.

For the run of a climate model an initial configuration has to be provided, which is
based on our knowledge of how the Earth’s climate is or how it was at the time for which
the model run is done for. In addition to the initial values, the temporal evolution of the
external forcings that influence the climate system has to be provided to the model. This
includes time series of solar activity and other orbital parameters, data about volcanic
activity as well as human-induced greenhouse gas emissions. If the model is used to
simulate the climate of the last decades, known data for these forcings can be used, in all
other cases the forcing data is based on estimated or predicted values.

Both the spatial division into grid cells and the temporal division into time slices
necessarily lead to unavoidable inaccuracies in the calculations and when choosing a grid
size, a trade-off has to be made between a higher accuracy and faster computation times.
Recent advances in computing have made it possible to steadily increase grid sizes and
improve estimation accuracy, but there are still processes in the climate system that happen
on scales that are smaller than the grid sizes currently used and that cannot be captured
by current climate models. For those processes, simplifications are used that calculate
plausible values, sometimes on a stochastic basis. The functions to calculate those values
depend on unknown parameters and to determine suitable values for them, a process
called ”tuning” is applied: The models are run with different sets of parameters and the
model results are then evaluated. For models that are used to simulate future climate
change, the evaluation is done by using historical runs of the models and by comparing
them to data derived from observations. Model runs describing prehistoric conditions
like the climate of the Last Glacial Maximum (ca. 21000 years ago) can also be included
in the evaluation process, increasing the general applicability of the climate models. The
use of tuning necessarily adds uncertainty to the model results and it can not be taken for
granted that a tuned parameter value based on historic runs of the models is also valid for
a changed climate in the future.
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The tuning, the use of averaged values for grid cells and time slices and the fact that
parts of the climate system are still insufficiently understood are one large source of
uncertainty for climate models (model uncertainty). Another source of uncertainty is the
internal variability of the climate system and its random nature. This source of uncertainty
cannot be removed, while model uncertainty might decrease as climate models become
better in the future. When it comes to future simulations, a third source of uncertainty is
that the development of the forcings, especially the anthropogenic ones, is hard to predict.
This scenario uncertainty becomes stronger if the predictions of the climate models reach
further into the future (Zhang and Chen, 2021).

To assess the accuracy of climate models, it is essential to validate them by comparing
the results of historical runs with data from observations. Usual methods for validating
climate models include the evaluation of mean values and covariances and the comparison
of empirical cumulative distribution functions. These analyses can also be conducted over
seasonal and annual averages (climatologies) or along latitudinal/longitudinal transects
(Tapiador et al., 2012). When validation is done regarding climate extremes, it is also
common to compare the ETCCDI extreme indices (Sillmann et al., 2013; Zhang et al., 2011).

To make the different climate models better comparable, many models participate in
the Coupled Model Intercomparison Project (CMIP), coordinated by the Working Group
on Coupled Modelling of the World Climate Research Programme. Models participating
in CMIP follow common standards regarding the formatting of the model output, and the
results are stored in a central location. Additionally, each model runs a set of standardized
experimental setups (Diagnostic, Evaluation and Characterization of Klima experiments)
as well as a simulation of the historical climate starting from 1850. The current, sixth phase
of CMIP has started in 2016. For future simulations, different scenarios of the projected
greenhouse gas emissions exist, ranging from a quick reduction of emissions in the next
decades to steadily increasing emissions throughout the twenty-first century. These
Representative Concentration Pathways (RCP) are used for future runs of the CMIP5
models, in CMIP6 they have been replaced by the Shared Socioeconomic Pathways (SSP),
which also take into account predictions for global societal and economic developments
(Riahi et al., 2017).
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2.4 Observed and predicted changes in extremes

There have been numerous recent examples of devastating climate extreme events, like
a heat wave over Siberia in 2020 and one over the Pacific Northwest (USA, Canada) in
2021 causing hundreds of casualties and extensive forest fires (Overland, 2021), or severe
floods caused by heavy rainfall in Western Europe in 2021 that killed more than 200 people
and caused damage of almost 50 billion Euro (Mohr et al., 2023). These events are not
just isolated incidents, as it has been observed that the frequency of high-temperature
extremes has increased in many regions of the world since the 1950s, while cold extremes
have become less common (Dong et al., 2017). Precipitation extremes show a more
mixed picture, with an increase in precipitation extremes in most locations, but to a
varying degree, and a decrease in other places (Fischer and Knutti, 2016). Regarding
changes in other types of extremes, like the frequency of tropical hurricanes, there is
still a high uncertainty, partially due to a lack of data and of consistent measurement
methods (Seneviratne et al., 2012). As changes in extremes are currently observable and
can be expected to continue in the future, researchers have been increasingly focusing
on that topic in recent years (IPCC, 2012; Rahmstorf andCoumou, 2011;Horton et al., 2016).

To investigate how changes in extremes are described by climate models, Kim et al.
(2020) have analyzed historical runs of 32 CMIP5 and 30 CMIP6 models globally with
respect to the 27 extreme indices by the ETCCDI. They found that the CMIP5models simu-
late the extreme temperature indices reasonably well in most regions, with warm biases in
South America andmid-latitude Asia and with cold biases in the high latitudes. The warm
biases are reduced in the CMIP6 models while the cold ones still remain in them. For
precipitation indices, the CMIP6 models show on average results that are better aligned to
the observational data sets than the CMIP5 models, but there is a large inter-model spread.
This spread, in combination with a tendency to underestimate precipitation extremes, had
also been identified for CMIP5 models in a study investigating their performance over the
United States (Wuebbles et al., 2014). Zhu et al. (2020) have compared multiple CMIP5
and CMIP6 models with a gridded observational data set, focusing on the simulation of
climate extremes in China. They found in general a good agreement of the temperature
indices for annual minima, averages and maxima, and a slightly worse agreement with
regard to the number of cold nights and warm days.

King et al. (2021) show that a change in extremes caused by anthropogenic influence
is detectable already in historical runs of climate models in many locations, especially
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for temperature extremes and in the tropics. Fischer et al. (2021) infer that according
to climate models, the probability of record-shattering events is expected to increase
markedly in the next decades. According to their analyses, heat waves spanning several
weeks can be up to seven times more likely in the end of the twenty-first century than
they are now. Donat et al. (2020) undertook a detailed evaluation of several historical
data sets and climate model runs with respect to extremes, and confirmed that a general
warming trend is apparent both in the observational records and in the climate model
runs. They point out that climate models fail to reproduce the spatial heterogeneity
visible in the observed data, and that it’s still unclear what the causes for this mismatch
are. For example, a region in the Mid West of the U.S. exhibits a decrease of temper-
ature extremes, in opposition to most other parts of the worlds, but this effect is not
reproduced by most climate models. Models also tend to underestimate the decrease of
cold extremes. When it comes to precipitation extremes—for which the changes are more
spatially heterogeneous than for temperature extremes—climatemodels and observational
data generally agree on the sign of the changes in regions with a good data coverage, but
themagnitude of changes ismore debated, and themodel varywidely in their assessments.

Regarding future changes, CMIP5 models show an increase in extreme temperature
on a global level that is approximately in a linear relationship with greenhouse gas emis-
sions (Donat et al., 2020; IPCC, 2012). Pall et al. (2007) explain that the increase in ex-
tremeprecipitation follows very roughly the increase ofwater-holding capacity in the atmo-
sphere, which depends exponentially on the air temperature as specified by the Clausius-
Clayperon equation and increases by approximately 7% per degree warming. However,
they point out that in many regions, changes of the regional wind and ocean current pat-
terns are expected, and those will likely cause changes to be different than the Clausius-
Clayperon equation would suggest in some regions. It is also worth nothing that Iles et al.
(2020) show that the use of a finer model resolution leads to an improved regional simula-
tion accuracy with respect to extremes.
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Chapter 3

Extreme value theory

3.1 Univariate extreme value theory

3.1.1 Introduction to the topic

All definitions of extremes have in common that the events in question are typically rare,
which makes statistical investigations difficult. Classical univariate extreme value theory
focuses mainly on two approaches to overcome this issue: Block Maxima (BM) and Peaks
over Threshold (PoT). The two approaches are based on different definitions of extremes:
In the BM approach, maxima are taken over consecutive blocks into which the data have
been grouped. In the PoT approach, a fixed threshold is set and only those data values
that exceed it are considered. This makes the BM approach applicable for example to
investigate ETCCDI extreme indices like Rx1day, the monthly or annual maximum of
daily precipitation. The PoT approach can be used for indices like FD, SU, or ID (number
of frost/summer/icing days), which are all defined as the number of days for which
daily maximum or minimum temperatures are higher or lower than a fixed temperature
threshold (see Table 2.1). Note that it is possible to use the PoT approach to investigate
extremes below a threshold by multiplying the data values with −1. The two methods will
now be discussed in more detail.

3.1.2 The Block Maxima approach

The BM approach relies on the fact that under mild regularity conditions, the distribution
of the block-wise maxima of the data can be approximated by a Generalized Extreme Value
(GEV) distribution. Parametric inference can then be used to estimate the distribution pa-
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rameters and draw conclusions about the behavior of the extremes. This approach is often
used in climatology and hydrology, examples include Coles et al. (2003); Onwuegbuche
et al. (2019); Villarini et al. (2011).

We will now discuss the mathematical theory behind the approach, following McNeil
et al. (2015) and de Haan and Ferreira (2006). Let n ∈ N and X1, . . . , Xn be independent
and identically distributed (iid) real-valued random variables. LetM(n) = maxni=1Xi. The
goal is to investigate the limiting distribution ofM(n) as n→ ∞. If the Xi have cumulative
distribution function (cdf) G, then the cdf of M(n) is Gn, which tends to 0 for all x with
G(x) < 1. This will make the limiting distribution ofM(n) often degenerate, i.e. the random
variable is almost surely equal to some fixed value. For example, ifXi ∼ U [0, 1], thenMn(n)

will tend to a random variable which is almost surely equal to 1. To avoid degenerate limits,
we introduce normalizing sequences an ∈ R, bn > 0 and assume that

max(X1, . . . , Xn)− an
bn

d−→
n→∞

Y (3.1)

for a non-degenerate random variable Y (the notations d→ and d
= denote convergence and

equality in distribution, respectively). The following convergence of types theorem will
give us insights how the choice of the normalizing sequences can affect the limiting distri-
bution:

Theorem 3.1.1. Let (Yn)n∈N be random variables and an ∈ R, bn > 0 and ãn ∈ R, b̃n > 0

normalizing sequences. If

Yn − an
bn

d−→
n→∞

Y , Yn − ãn

b̃n

d−→
n→∞

Ỹ (3.2)

and Y , Ỹ not degenerate, then the limits a = limn→∞
ãn−an
bn

and b = limn→∞
b̃n
bn

exist and

Ỹ
d
=
Y − a

b
. (3.3)

This implies that the limiting distribution Y of Eq. (3.1) is unique up to affine transfor-
mations. In de Haan and Ferreira (2006) it is further shown that the limiting distribution
must be max-stable:

Definition 3.1.1. A random variable Y is max-stable if it is non-degenerate and if for all
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n ∈ N there are an ∈ R, bn > 0:

max(Y1, . . . , Yn)− an
bn

d
= Y (3.4)

for independent copies Y1, . . . , Yn of Y .

Theorem 3.1.2. Let (Xi)i∈N be iid random variables and an ∈ R, bn > 0, n ∈ N normalizing
sequences and assume that

max(X1, . . . , Xn)− an
bn

d−→
n→∞

Y (3.5)

for some non-degenerate random variable Y . Then, Y must be max-stable.

As shown by Fisher, Tippett andGnedenko (Fisher and Tippett, 1928; Gnedenko, 1943),
max-stable random variables must belong to the parametric family of GEV distributions:

Theorem 3.1.3. A max-stable random variable must follow a GEV distribution. Its cdf is of the
form

Fµ,σ,γ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

exp(− exp(−x−µ
σ )) γ = 0

exp(−(1 + γ · x−µσ )
− 1

γ ) γ ̸= 0, γ x−µσ > −1

0 γ > 0, γ x−µσ ≤ −1

1 γ < 0, γ x−µσ ≤ −1

(3.6)

with parameters location (µ), scale (σ > 0) and shape (γ).

The location and scale parameters of the GEV distribution can roughly be com-
pared to mean and standard deviation of the normal distribution, in the sense that if
Y ∼ GEV(µ, σ, γ) then Y + a ∼ GEV(µ + a, σ, γ) and bY ∼ GEV(bµ, bσ, γ). The shape
parameter controls how heavy-tailed the distribution is: If γ < 0, the distribution is
a reversed Weibull distribution and has a finite right endpoint at −1/γ. If γ = 0, the
distribution is a Gumbel distribution and it has exponential tails (like for example also
the normal distributions). If γ > 0, the distribution is a Fréchet distribution with heavy
tails. In the latter case, strong positive outliers have a higher chance to occur than for
distributions with exponential tails. Note that there is some inconsistency in the literature:
In some works, an alternate parametrization of the GEV distribution is used, the shape
parameter of that definition is the negative of the shape parameter used here.
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If random variables (Xi)i∈N fulfill Eq. (3.5) for some sequences of normalizing con-
stants, then, according to the convergence of types theorem, the shape parameter γ of the
limiting GEV distribution is the same for all sequences of normalizing constants for which
convergence occurs. It is said that their distribution is in the max-domain of attraction ofHγ ,
with Hγ = GEV(0, 1, γ), and the normalizing sequences can always be chosen such that
the normalized maxima converge to a Hγ distributed variable.

When using GEV distributions in practical applications, a fixed, preferably rather large
block size n is selected, the data are grouped into blocks of size n and the block-wise
maxima are taken. The block-wise maxima are assumed to be GEV distributed. When
selecting a block size, a bias-variance tradeoff has to be taken into account: For a low block
size, the resulting parameter estimates tend to be biased because the convergence to the
GEV distribution holds only asymptotically. A high block size, on the other hand, will lead
to a limited amount of block-wise maxima that can be analyzed and therefore to a higher
variance in the estimates.

3.1.3 The Peaks over Threshold approach

This work focuses mostly on the BM approach, and that is also the approach that will be
used in the following chapters. However, the basic principles of the PoT approach shall be
outlined here briefly. The PoT approach investigates the distribution of those parts of the
data that exceed a certain fixed threshold. For a random variable X define the conditional
excess distribution function Fu as

Fu(x) = Pr(X ≤ u+ x|X > u) =
F (u+ x)− F (u)

1− F (u)
(3.7)

for a fixed threshold u that is below the right endpoint xF ofX (which can be infinite). The
Pickands-Balkema-De Haan theorem states the following:

Theorem3.1.4. LetX1, . . . , Xn be independent copies ofX . IfX is in themax-domain of attraction
of some Hγ , then it holds

lim
u↑xF

sup
0<x<xF−u

|Fu(x)−Gµ,σ,γ(x)| = 0. (3.8)
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Gµ,σ,γ(x) is the pdf of the generalized Pareto (GP) distribution, which fulfills

Gµ,σ,γ(x) =

⎧⎨⎩1− (1 + γ x−µσ )−1/γ γ ̸= 0

1− exp(−x−µ
σ ) γ = 0

(3.9)

for parameters µ, σ > 0, γ.

For thresholds that are high enough, this theorem makes it possible to approximate
the distribution of the data that exceed the threshold with a GP distribution.

Like for the BM approach, there exists a bias-variance trade-off for the PoT approach:
Choosing a threshold that is too high will lead to few data points exceeding the threshold
and to a high variance of the estimators, while a threshold that is too low will result in a
bias.

3.1.4 Parameter estimation

To estimate the parameter of a GEV distribution from a data sample, the classical
maximum-likelihood estimator (MLE) can be used. We write the parameter tuples as
θ = (µ, σ, γ), which are elements of Θ = {(µ, σ, γ) ∈ R3|σ > 0}, and we denote the density
of the corresponding GEV distribution by fθ. Assuming iid GEV distributed random
variables Y1, . . . , Yn, the MLE is the estimator that maximizes the product of the densities

θ̂ = argmaxθ∈Θ

n∏︂
i=1

fθ(Yi) (3.10)

or equivalently the sum of their logarithms

θ̂ = argmaxθ∈Θ

n∑︂
i=1

log fθ(Yi). (3.11)

Plugging in sample values y1, . . . , yn allows to calculate the maximum-likelihood estimate
of the GEV parameters for the sample. It is a well-known result that maximum-likelihood
estimators are strongly consistent and asymptotically normal under certain regularity
conditions (Harald, 1946). For GEV distributions, these conditions are not fulfilled as
they include the requirement that all densities have the same support, whereas for GEV
distributions the support depends on the parameter values. It was not until 2017 that
Bücher and Segers (2017) showed that strong consistency and asymptotic normality



24 CHAPTER 3. EXTREME VALUE THEORY

hold for the MLE for the GEV distribution for the case γ < −1
2 . The other cases are not

investigated in detail in Bücher and Segers (2017), but the authors mention earlier works
that indicate that asymptotic normality does not hold for γ > 1

2 .

An alternative approach is using probability-weighted moment estimators (PWME).
For a random variable Y with pdf F , it is possible to define probability-weighted moments
βr := E[Y F (Y )r]. In Hosking et al. (1985), it is shown that for the GEV distribution the
equality

βr = (r + 1)−1(µ− σ(1− (r + 1)γΓ(1− γ))/γ) (3.12)

holds for γ ̸= 0, γ < 1. The equations for β0, β1 and β2 can then be solved to obtain formulas
for the three GEV parameters, and estimators for the probability-weighted moments can
be calculated from a data sample y1, . . . , yn by first sorting the sample values in increasing
order y(1) ≤ · · · ≤ y(n) and then using

β̂r = n−1
n∑︂
i=1

(i− 1)(i− 2) . . . (i− r)

(n− 1)(n− 2) . . . (n− r)
y(i) (3.13)

as an unbiased estimator for βr. According to Hosking et al. (1985), probability-weighted
moment estimators have ”low variance and no severe bias, and they compare favorably
with estimators obtained by the methods of maximum likelihood”.

3.1.5 Seasonality and trend

The convergence of block maxima to a GEV distribution required the underlying data to
be iid. For climate data, this assumption is often not plausible, as climate variables can
exhibit both seasonal variations and long-term trends. When the blocks are chosen in
such a way that the boundaries between blocks are aligned with the seasonal pattern (for
example when using annual maxima), it is often still possible to apply GEV distributions.
For example, when grouping daily temperature data from the northern hemisphere into
annual blocks, the maxima will predominantly be attained in the summer and the winter
data could be discarded without changing the results. It can effectively be assumed that
the data are iid with a lower block size. An alternative approach to deal with seasonality is
to investigate block maxima over different seasons, for example to investigate the seasonal
maxima of daily winter (spring, summer, fall) data separately.
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To deal with trends in the data, it can be assumed that the trends have no ef-
fect on the distribution except for shifting it over time. Filtering approaches can then
be used to separate the trend from the data and fit GEV distributions to the detrended data.

If it is desired to explicitly investigate how extremes change over time, it is possible to
employ GEV distributions with parameters changing over time. Location, scale and shape
of the GEV distribution are then expressed as functions of the time that are parametrized
with a parameter vector θ:

Y (t) ∼ GEV(µθ(t), σθ(t), γθ(t)). (3.14)

If a data sample (t1, y1), . . . , (tn, yn) is given, maximum-likelihood can be applied to obtain
an estimator for θ.

3.2 Multivariate extreme value theory

3.2.1 Max-stable vectors

In the investigation of extremes it is often of interest to also take into account spatial depen-
dency, as extremes that occur at two different locations at the same time can cause particu-
larly high damage. To this end, the considerations of the previous section can be extended
to multidimensional random variables. Using component-wise operations, we can define
max-stable vectors analogously to the univariate case:

Definition 3.2.1. A random vector Y is max-stable if its margins are non-degenerate and
there are sequences of vectors cn, dn > 0 such that:

max(Y1, . . . , Yn)− cn
dn

d
= Y (3.15)

for independent copies Y1, . . . , Yn of Y .

As in the univariate case, it holds:

Theorem 3.2.1. Let (Xi)i∈N be iid random vectors and cn, dn > 0 sequences of normalizing vectors
and assume that

max(X1, . . . , Xn)− cn
dn

d−→
n→∞

Y (3.16)
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for some random vector Y with non-degenerate marginal distributions. Then, Y must be max-stable.

The univariate marginal distributions of amax-stable vector Y must necessarily be GEV
distributions. It is common practice to assume that all univariate margins follow the same
distribution after a suitable marginal transformation. This follows an idea from copula
theory, where the margins of a multivariate distribution are transformed to be uniformly
distributed, making it easier to focus on the dependency structure of the distribution. The
approach is based on Sklar’s theorem (Sklar, 1959):

Theorem 3.2.2. Let F be a joint d-dimensional probability distribution function with margins
F1, . . . , Fn. Then there exists a copula (i.e. a d-dimensional probability distribution function with
U [0, 1] distributed margins) C such that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (3.17)

If F1, . . . , Fn are absolutely continuous, then C is unique.

In the context of max-stable vectors the margins are usually assumed to have a
GEV(0, 1, 1) distribution (also called a unit Fréchet distribution) instead of a uniform
distribution. A max-stable vector with unit Fréchet margins is called a simple max-stable
vector. The distribution of a simple max-stable vector can be described as follows (de Haan
and Ferreira, 2006):

Theorem 3.2.3. Let Y = (Y (1), . . . , Y (n)) be a simple max-stable vector. Then it holds for all
y1, . . . , yn ∈ R that

Pr(Y (1) ≤ y1, . . . , Y
(n) ≤ yn) = exp(−V (y1, . . . , yn)) (3.18)

for a function V that is positive and that is homogeneous of degree −1 (i. e. it fulfills
V (ax1, . . . , axn) = a−1V (x1, . . . , xn) for all x1, . . . , xn ∈ R and a > 0). V can also be expressed
as

V (y1, . . . , yn) =

∫︂
Sn

max
i=1,...,n

wi
yi

dH(w) (3.19)

for some finite measure H , with Sn := {w ∈ [0, 1]n|
∑︁n

i=1wi = 1}.

Because of the absolute continuity of the GEV distribution and Sklar’s theorem, V can
be uniquely determined also for max-stable vectors that are not simple.
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A useful summary measure for the interdependency of a max-stable vector Y is the
extremal coefficient, which is defined as

θ = V (1, . . . , 1), (3.20)

with V as above. The extremal coefficient can take values between 1 and n, with 1 corre-
sponding to comonoticity and n corresponding to stochastic independence of the compo-
nents of the vector. In the case of a two-dimensional vector Y = {Y (1), Y (2)}, the extremal
coefficient (which takes values between 1 and 2) can be estimated from a data sample by us-
ing the madogram estimator by Ribatet et al. (2015) and Cooley et al. (2006). They rewrite
θ as

θ =
1 + 2ν

1− 2ν
(3.21)

with the madogram ν = 1
2E[|FY (1)(Y (1))− FY (2)(Y (2))|], where FY (1) , FY (2) are the pdf’s of

Y (1) and Y (2). For a data sample (y(1)1 , y
(2)
1 ), . . . , (y

(1)
m , y

(2)
m ), withm ∈ N the sample size, the

madogram can be estimated by replacing the pdf’s with their empirical counterparts

ν̂ =
1

2m(m+ 1)

m∑︂
i=1

⃓⃓⃓ m∑︂
j=1

(1
y
(1)
j ≤y(1)i

− 1
y
(2)
j ≤y(2)i

)
⃓⃓⃓
, (3.22)

and consequently, the extremal coefficient can be estimated as

θ̂ =
1 + 2ν̂

1− 2ν̂
. (3.23)

3.2.2 A clustering algorithm for multivariate extremes

To investigate the dependence structures of a higher-dimensional max-stable vector
(Y (1), . . . , Y (n)), n > 2, a hierarchical clustering algorithm can be used. Hierarchical
clustering is used to group an indexed set of n objects (here, the indices of the components
of the random vector) into disjoint subsets. To apply the algorithm, a dissimilarity
measure must be provided for all pairs of objects. The dissimilarities can be written in
a dissimilarity matrix D ∈ Rn,n, this matrix must fulfill Di,j = Dj,i ≥ 0 and Di,i = 0

for all 1 ≤ i, j ≤ n. In addition to that, the desired number of clusters and the linkage
criterion (see below) has to be prescribed. The algorithm starts by treating each point
as a separate cluster in the first step. In the next step, the pair of points with the lowest
dissimilarity is merged into one cluster. In each subsequent step, two of the remaining
clusters are merged into one, and this is repeated until the prescribed number of clusters is
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reached. The dissimilarity between two clusters that consist of more than one point is de-
termined based on the linkage criterion: If single linkage is used, the dissimilarity between
two clusters is the minimum of all dissimilarities between points from the clusters. Com-
plete linkage uses themaximumof the dissimilarities instead, and average linkage the average.

The application of hierarchical clustering to max-stable vectors is due to Bernard et al.
(2013). All two-dimensional margins (Y (i), Y (j)), 1 ≤ i, j ≤ n of a max-stable vector are
max-stable again and an estimate for their extremal coefficient θ̂i,j can be calculated. A
dissimilarity matrix can then be defined as

Di,j := θ̂i,j − 1. (3.24)

Under thismeasure, two indices i, j are ’similar’ and likely to be grouped into the same clus-
ter if the corresponding extremal coefficient is close to 1, so if the variables Y (i), Y (j) show
a high degree of extremal dependence. The clustering algorithm will therefore determine
subsets of indices for which the corresponding random variables tend to have concurrent
extremes.

3.2.3 Theory of max-stable processes

The extremal coefficients and the resulting clustering algorithms that were presented in
the last section only give a summary the dependence structure of extremes at different
locations. It is of interest to design mathematical models that can be fitted to given multi-
variate data and thus allow for inference on the full multivariate distribution. Assuming
that the data investigated represent observations at different measurement stations which
are located in R2, it is also desirable to create a model not only for those locations, but also
for all other points in the same area. This leads us to considering not random vectors but
stochastic processes on a compact subset S of R2. The following section on max-stable
processes will mostly follow Ribatet (2017) and Ribatet et al. (2015).

A stochastic process {Y (s)}s∈S attributes to each element s ∈ S a random variable
Y (s). We will often use the short notation Y for {Y (s)}s∈S and, unless stated otherwise,
consider from now on only processes with almost surely (a.s.) continuous sample paths.
This property implies that the distribution of such a process is completely determined by
its finite-dimensional marginal distributions. The definition of max-stability for processes
is analogous to the one for random variables and vectors, only using this time continuous
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functions for the normalizion:

Definition 3.2.2. A stochastic process Y is max-stable if it is non-degenerate and there are
sequences of continuous functions cn, dn : S → R, dn(·) non-negative such that:

{︂max(Y1(s), . . . , Yn(s))− cn(s)

dn(s)

}︂
s∈S

d
= {Y (s)}s∈S (3.25)

for independent copies Y1, . . . , Yn of Y .

It holds:

Theorem 3.2.4. Let (Xi)i∈N be iid stochastic processes and cn, dn : S → R, dn(·) non-negative,
sequences of continuous functions and assume that

{︂max(X1(s), . . . , Xn(s))− cn(s)

dn(s)

}︂
s∈S

d−→
n→∞

{Y (s)}s∈S (3.26)

for some stochastic process Y with non-degenerate finite-dimensional marginal distributions. Then,
Y must be max-stable.

All finite-dimensional marginal distributions of a max-stable process must necessarily
be max-stable random vectors, so the results from the previous section are applicable. In
particular, we assume as before that (after the application of marginal transformations) all
univariate marginal distributions are unit Fréchet and call such a process a simple max-stable
process. From the previous section, we know that for each max-stable process, the marginal
distribution corresponding to some data points s1, . . . , sn must fulfill

Pr(Y (s1) ≤ y1, . . . , Y (sn) ≤ yn) = exp(−Vs1,...,sn(y1, . . . , yn)) (3.27)

for a function Vs1,...,sn that is positive and homogeneous of degree −1. The class of func-
tions that are positive and homogeneous of degree −1 is too broad to be written using a
finite set of parameters, so in order to perform parametric inference, the set of possible
functions has to be restricted in a suitable manner. Assume a parametric subclass of max-
stable processes with a parameter space Ψ, which implies in particular that the functions
Vs1,...,sn are parametrized as V ψ

s1,...,sn with ψ ∈ Ψ for all s1, . . . , sn ∈ S . Before discussing
possible choices of parametric sub-classes, we first investigate the log-likelihood in more
detail. Applying the mixed derivative ∂s1 . . . ∂sn, it follows from (3.18) that the likelihood
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fψs1,...,sn fulfills

fψs1,...,sn(y1, . . . , yn) = exp(−V ψ
s1,...,sn(y1, . . . , yn))·∑︂

τ∈Pn

(−1)|τ |
|τ |∏︂
i=1

∂|τi|

∂yτi
V ψ
s1,...,sn(y1, . . . , yn), (3.28)

where the elements of Pn are the partitions τ of {s1, . . . , sn}. Each partition divides
{s1, . . . , sn} into subsets τ1, . . . , τl, with |τ | = l. In particular, the bivariate densities can be
calculated as

fψs1,s2(y1, y2) = exp
(︂
− V ψ

s1,s2(y1, y2)
)︂
·(︂ ∂

∂y1
V ψ
s1,s2(y1, y2)

∂

∂y2
V ψ
s1,s2(y1, y2)−

∂2

∂y1∂y2
V ψ
s1,s2(y1, y2)

)︂
. (3.29)

In practical applications, amax-stable process is fitted to data that are given on a finite set of
locations T ⊆ S (for example the locations of weather stations). Denote the (unit Fréchet
distributed) data at location t ∈ T by y(1)t , . . . , y

(m)
t withm ∈ N the sample size. The number

of partitions of a set with n elements is equal to the Bell number Bn. With increasing n,
these numbers soon gets very large: From n = 10 on, the Bell numbers are greater than
100, 000, and they exceed the value of one billion for n ≥ 16. Numerical optimization of
the likelihood is computationally not feasible in these cases, and the classical maximum-
likelihood approach is therefore usually not applicable to the multivariate density of all
data points in T . As a remedy, it is common to use a composite likelihood approach instead:
Maximum-likelihood estimation is not carried out by maximizing the full log-likelihood,
but instead by maximizing the sum of bivariate marginal log-likelihoods

ψ̂ = argmax
ψ∈Ψ

L(ψ) (3.30)

with

L(ψ) =

m∑︂
i=1

∑︂
t1 ̸=t2∈T

log fψt1,t2(y
(i)
t1
, y

(i)
t2
). (3.31)

To reduce numerical complexity, it is also common practice to include only those pairs
(t1, t2) in Eq. (3.31) for which ∥t1 − t2∥ does not exceed a certain threshold (throughout
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this work, ∥ · ∥ denotes the Euclidean norm).

The general approach behind composite likelihoods is as follows: Assume that
Y1, . . . , Yn are iid random variables with values in Rd, d ≥ 2 and with pdf f(y, θ⋆), with θ∗,
the true parameter, being an element of the set of possible parameter values Θ ⊆ Rp. Let
further {Ai|i ∈ I} be a countable set of marginal or conditional events on Rd. If asymptotic
normality holds for the maximum-likelihood estimator θ̂n (remember that under suitable
regularity conditions for f and Θ we have that as n → ∞, √n(θ̂n − θ∗) converges in dis-
tribution to a normal distribution with zero mean and variance equal to the inverse of the
Fisher information), then for the composite likelihood L(y, θ) :=

∑︁
i∈I
∑︁n

j=1 f(yj ∈ Ai, θ)

and the corresponding estimator θ̂cn := argmaxθL(y, θ) it holds
√
n(H(θ∗)J(θ∗)−1H(θ∗))

1/2(θ̂
c

n − θ∗)
d−→

n→∞
N (0, Idp), (3.32)

where M 1/2 denotes the matrix root of M and with H(θ∗) = −E[∇2L(Y, θ∗)] and
J(θ∗) = Var(L(Y, θ∗)). This property gives the rationale for maximizing the sum of the
likelihoods of the bivariate marginal distributions in place of the full likelihood.

In Chapter 6, max-stable models will also be fitted to data on subsets of T . To introduce
the notation for this, letM ⊆ T be a subset of T with at least two elements, then we write
the corresponding composite likelihood as

LM (ψ) =
m∑︂
i=1

∑︂
t1 ̸=t2∈M

log fψt1,t2(y
(i)
t1
, y

(i)
t2
) (3.33)

and the corresponding estimator as

ψ̂M = argmax
ψ∈Ψ

LM (ψ). (3.34)

3.2.4 Parameteric models for max-stable processes

In order to derive parametric models for max-stable processes, the following stochastic re-
presentation for simple max-stable processes (de Haan, 1984; Penrose, 1992) can be used:

Theorem 3.2.5. Let Y be a simple max-stable process. Then,

{Y (s)}s∈S
D
=
{︂
max
i≥1

ζiZ
(i)(s)

}︂
s∈S

, (3.35)
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where (ζi)i∈N are the points of a Poisson point process with intensity measure dΛ(ζ) = ζ−2dζ and
{Z(i)}i∈N are independent copies of a non-negative stochastic process Z that fulfills E[Z(s)] = 1 for
all s ∈ S.

The process Z is called spectral process of Y . Several representations (using different
distributions of Z) can exist for one max-stable process. Using the spectral representation,
various parametric models for simple max-stable processes have been constructed by re-
stricting the underlying spectral processes to selected parametric families. One of the first
was the Smith process (Smith, 1990), which uses as spectral process the process Z given by

Z(s) = ϕ(s− Ui,Σ), (3.36)

where ϕ is a two-dimensional Gaussian density with mean 0 and covariance matrix Σ, and
the Ui are uniformly distributed on S. The intuition is to give a model for extreme rainfall:
The copies of the spectral process correspond to the spatial extents of different storms in
the area, and the points of the Poisson process describe the intensity of the storm. Note that
the intensity measure of the Poisson process is dΛ(ζ) = ζ−2dζ, so with a high probability
only few points of the Poisson process will be far away from zero. A realization of a Smith
process is depicted in Fig. 3.1a.

The Smith process is quite restrictive, as the only random element in its spectral process
is the location of the Gaussian density. A more flexible approach is the Brown-Resnick pro-
cess, derived by Kabluchko et al. (2009) based on Brown and Resnick (1977), which uses as
spectral process

Z(s) = exp(ϵ(s)− γ(s)),

where ϵ is a Gaussian process with (spatially) stationary increments and γ its semi-
variogram. Note that the distribution of Z does not depend on the variance of ϵ, only on
the semi-variogram. Following Kabluchko et al. (2009) and Ribatet (2017), a common
choice for the semi-variogram is

γ(h) = ∥h/λ∥α,

with λ > 0, 0 < α ≤ 2, making ϵ a fractional Brownian motion. Using Eq. (3.35), it can be
calculated that for s1, s2 ∈ S

Vs1,s2(y1, y2) =
1

y 1

Φ
(︂√︁2γ(h)

2
− log y2/y1√︁

2γ(h)

)︂
+

1

y 2

Φ
(︂√︁2γ(h)

2
− log y1/y2√︁

2γ(h)

)︂
,
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Figure 3.1: Realizations of max-stable processes. (a) Smith process with Σ = Id2, (b)
Brown-Resnick process with γ(h) = ∥h∥, (c) Schlather process with ρ(h) = exp(−∥h/∥),
(d) Extremal-t process with ρ as in (c) and ν = 10. For visual reasons all univariate
marginal distributions have been transformed to uniform distributions.
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where h = ∥s1 − s2∥ and Φ is the standard normal distribution function. A realization of a
Brown-Resnick process is depicted in Fig. 3.1b

A different approach is followed by Schlather (2002), who defines the Schlather process
using as spectral process

Z(s) =
√
2πmax(0, G(s)),

withG a standard Gaussian process with a covariance function ρ that is spatially stationary
(it depends only on the distance h = ∥s1 − s2∥ between the two points s1, s2 ∈ S; we will
use the notation ρ(h) instead of ρ(s1, s2)). A realization of a Schlather process is depicted
in Fig. 3.1c.

For the Schlather process, it holds

Vs1,s2(y1, y2) =
1

2
(
1

y 1

+
1

y 2

)
(︂
1 +

√︄
1− 2(1 + ρ(h))y1y2

(y1 + y2)2

)︂
(3.37)

with h = ∥s1 − s2∥. The pairwise extremal coefficients thus fulfill

θs1,s2 = 1 +

√︃
1− 1 + ρ(h)

2
. (3.38)

Remember that Y (s1) and Y (s2) are stochastically independent if and only if the extremal
coefficient θs1,s2 is equal to 2. For the Schlather process the highest attainable value of
the extremal coefficient is 1 +

√︁
1/2 < 2, so the bivariate distributions of a Schlather

process always exhibit extremal dependence, even if the underlying Gaussian variables
are uncorrelated. This is due to the heavy-tailedness of the Poisson process compared to
the Gaussian process, causing a tendency for extremes to occur simultaneously as they
tend to be caused by high values in the Poisson process.

To avoid this limitation, Opitz (2013) proposed a model using a spectral process that is
also heavy-tailed. Schlather’s model was extended to the so-called extremal-t model, using
as spectral process

Z(s) = cν max(0, G(s))ν

with ν ≥ 1fixed,G as in the Schlathermodel and cν a constant that ensures thatE[Z(s)] = 1.
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For this process, it holds

Vs1,s2(y1, y2) =
1

y 1

Tν+1

(︂ (y2/y1)
1/ν − ρ(h)

(ν + 1)−1/2(1− ρ(h)2)1/2

)︂
+

1

y 2

Tν+1

(︂ (y1/y2)
1/ν − ρ(h)

(ν + 1)−1/2(1− ρ(h)2)1/2

)︂
with h as before and Tν+1 the cdf of the Student-t distribution with (ν + 1) degrees of
freedom. A realization of an extremal-t process is depicted in Fig. 3.1d.

One possible choice for the correlation function ρ in the Schlather or extremal-t process
is ρ(h) = exp(−∥h/λ∥α) with λ > 0 and 0 < α ≤ 2 (Ribatet, 2017). To model anisotropic
behavior, Davis et al. (2013) proposed to use

ρ(h) = exp(−∥Ah∥α) (3.39)

instead, with A a 2× 2 transformation matrix, meaning that

A =

(︄
sin(γ)/a cos(γ)/(a+ b)

− cos(γ)/(a+ b) sin(γ)/b

)︄
(3.40)

with parameters a > 0, b ≥ 0 and γ ∈ [0, π). The level sets of ρ are then not circular, but
elliptical with a and a + b proportional to the lengths of the minor and major axes and γ
the angle between the x-axis and the major axis of the ellipsis. In climate data, elliptical
level sets are preferable over the circular ones of isotropic covariance functions because the
presence of ocean currents, a predominant wind direction or topographical boundaries
frequently cause the extremal dependence structure of two points to depend not only on
their distance, but also on the direction.

All the models discussed up to this point share the property that the finite-dimensional
distributions do not change if the data points are shifted in space: they are spatially station-
ary. For data that cover a heterogeneous area in which dependence structures of extremes
are expected to vary depending on the region, thesemodels are therefore of limited applica-
bility. An approach to cover also these cases is theHuser-Genton process (Huser andGenton,
2016), which extends the extremal-t processes by using a non-stationary Gaussian process
as underlying spectral process. Huser-Genton processes are constructed using Gaussian
kernels, making use of an idea by Paciorek and Schervish (2006): For the correlation func-
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tion, we do not use a 2 × 2 transformation matrix A for the whole space like in Eq. (3.39),
but instead one matrix As for each point s ∈ S such that the map s ↦→ As is continuous.
Let further Ωs = (ATs As)

−1 and R(x) = exp(−xα) for x ∈ R, x ≥ 0. Then, a non-stationary
Gaussian process can be constructed such that its covariance structure is given by

ρ(s1, s2) = |Ωs1 |
1/4|Ωs2 |

1/4
⃓⃓⃓Ωs1 +Ωs2

2

⃓⃓⃓−1/2

R
(︂√︃

(s1 − s2)T
(︂Ωs1 +Ωs2

2

)︂−1
(s1 − s2)

)︂
. (3.41)

This reduces to the extremal-t process from the previous section if As is constant on the
whole space. To fit Huser-Genton processes to data, the entries of the matrices As are
parametrized and then regression is used with suitable covariates like longitude, latitude
and altitude.

Another approach to tackle the investigation of spatially heterogeneous data is the use
of clustering: The area of investigation is divided into different clusters, and then a station-
ary max-stable model is fitted to each cluster. The disadvantage of this approach is that the
resulting model does not describe the dependency between two points that are in different
clusters. We will discuss clustering approaches for max-stable processes in more detail in
Chapter 6.
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Chapter 4

Validation of climate models using
historical data

4.1 Introduction to the chapter

As discussed in Section 2.3, coupled global circulation models are of paramount impor-
tance to assess the magnitude of future climate change quantitatively, and it is essential
to validate these models by comparing historical runs of the models to observational
data. While climate models are able to reproduce many climate phenomena across the
globe, their reliability regarding extremes requires additional evaluation. This is the case
because of the large impacts of extremes on the natural environment, the economy and
the human health (Ciais et al., 2005; Kovats and Kristie, 2006) and also because of the fact
that due to the inherent nature of extreme events, their evolution can differ from that of
the mean and the variance (Schär et al., 2004; IPCC, 2012). In this chapter, we will investi-
gate and validate historical runs of several CMIP6models with respect to climate extremes.

We will evaluate the performance of the fully coupled Alfred Wegener Institute-Earth
System Model AWI-ESM1.1LR (Shi et al., 2020; Lohmann et al., 2020; Ackermann et al.,
2020) in terms of its accuracy regarding variability and extremes of precipitation, putting
special focus on spatially concurrent precipitation extremes. The main questions are
whether the model is able to accurately reproduce extreme events in different regions and
whether spatial dependencies and concurrent extremal events are modeled adequately.
We compare model data from a historical run of the AWI-ESM to the global precipitation
reanalysis data set CRU TS4.04 (Harris et al., 2020). We start with investigating variability
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and extremes locally using empirical statistical parameters and by fitting a GEV distribu-
tion to annual precipitation maxima. Then, we use the clustering algorithm by Bernard
et al. (2013) (see Chapter 3.2.2) to group the data into different spatial regions based on
their similarity in terms of extremal behavior. We extend and generalize the dissimilarity
measure by Bernard et al. (2013) to have it take into account also the dissimilarity of the
marginal distributions. The resulting clusters are compared for model and observational
data and they are used to analyze the ability of the climate model to reproduce spatial
dependencies of precipitation extremes.

Our main focus lies on the AWI-ESM and we present our methods using data from
this model. We also present a measure for the model accuracy in regard to extremal
precipitation, and apply it to a set of different CMIP6 models. Results will be discussed in
detail for the AWI-ESM and for the model identified as having the best model accuracy.
The methods have also been applied to 26 other models participating in CMIP6, the results
for those models can be found in the supplementary material to Contzen et al. (2022).

Model validation in terms of precipitation extremes is already an active research topic.
Tabari et al. (2016) investigate the performance of global and regional climate models
using the peaks-over-threshold approach. An evaluation of regional and global climate
models using extreme precipitation indices is conducted by Bador et al. (2020), revealing
a tendency for stronger extremes in regional models. A similar result was obtained by Ma-
hajan et al. (2015) by comparing climate model and observational precipitation data over
the United States using GEV distributions. Timmermans et al. (2019) conduct pairwise
comparisons of the precipitation extremes of numerous gridded observation-based data
sets and find considerable differences between the data sets especially in mountainous
regions. Precipitation extremes over India are investigated by Mishra et al. (2014) using
GEV distributions and comparisons of indices with a focus on changes over time.

It is also not a new approach to apply clustering algorithms to climate data. Among
others, it has been used to define climate zones in the United States (Fovell and Fovell,
1993) and globally (Zscheischler et al., 2012), and to find regions with similar trends
in their climatic change over Europe (Carvalho et al., 2016). Those analyses focus on
mean values and on their temporal differences, respectively, while we apply clustering
specifically to uncover connections regarding climate extremes.
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This chapter is structured as follows: After introducing the data sets in Section 4.2, we
present the methods used in Section 4.3. The results from applying them to the data are
presented in Section 4.4. A section on conclusions and discussions finalizes the chapter.

4.2 Data analyzed in this chapter

The observational data are reanalyzed monthly precipitation data in mm over land
(excluding Antarctica) from the CRU TS4.04 data set (Harris et al., 2020; University of
East Anglia Climatic Research Unit et al., 2020) with data ranging from 1901 to 2019. We
restrict the time frame to the years 1930 to 2014 in order to have a sufficiently large area
with non-missing data and to be consistent with the climate model data. The grid size
is 0.5◦ × 0.5◦, the data have been obtained by interpolating observations from more than
4.000 weather stations using angular distance weighting.

At some locations and time points, no data from nearby weather stations had been
available to use for interpolation. In these cases, the creators of the CRU TS4.04 data set
used a value from a climatology instead. These climatology values are not very informative
in terms of extremes and too many of them would distort the analyses, therefore all grid
points with more than 5% climatology values and additionally all grid points with at least
twelve consecutive months of climatology values are excluded from our analysis. This
results in the exclusions of larger regions in northern and central Africa, in Indonesia, in
central Asia and in the polar regions. In the figures showing geographical data in this
chapter, those regions are coloured in grey.

The climate model used is the coupled model AWI-ESM1.1LR. It is based on the AWI
Earth System Model (AWI-ESM1), which consists of the AWI Climate Model (Sidorenko
et al., 2015; Rackow et al., 2018), but with interactive vegetation. The model comprises the
atmosphere model ECHAM6 (Stevens et al., 2013), which is run with the T63L47 setup
(that is, a horizontal resolution of 1.85◦ × 1.85◦ and 47 vertical layers) and the ocean-sea
ice model FESOM1.4 (Wang et al., 2014), which employs an unstructured grid, allowing
for varying resolutions from 20km around Greenland and in the North Atlantic to around
150km in the open ocean. The land surface processes are computed by the land surface
model JSBACH2.11 (Reick et al., 2013). The model considers the surface runoff toward
the coasts, deploying a hydrological discharge model that also includes freshwater fluxes
by snowmelt (Hagemann and Dümenil, 1997). AWI-ESM1 has been extensively used and
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described in the context of paleoclimate changes as well as of changes of the recent and
future climate (Shi et al., 2020; Lohmann et al., 2020; Ackermann et al., 2020; Niu et al.,
2021). The historical run is documented in Danek et al. (2020) and has been directly used
in Ackermann et al. (2020) and Keeble et al. (2021). The model takes furthermore part in
CMIP6/PMIP4 activities (Brierley et al., 2020; Brown et al., 2020; Otto-Bliesner et al., 2021;
Kageyama et al., 2021a,b).

In our analysis, we restrict the time frame of the model data to the years 1930 to 2014,
as in the observational data. We investigate monthly precipitation (sum of convective
precipitation and large-scale precipitation) in mm/month. We use bilinear interpolation
to scale the reanalysis data to the grid of the atmospheric component of the climate model
and take into account only those interpolated grid points that correspond to locations
with given observed data, excluding the oceans and the regions with incomplete data
mentioned above.

4.3 Methods used in this chapter

We first perform an univariate analysis of extremes, so we investigate the time series of
each spatial location (henceforth referred to as grid point) separately, and all operations
and analyses described are conducted for each grid point. Since the focus here is not
on evaluating the effects of long-time trends, we apply a seasonal-trend decomposition
using Loess (Cleveland et al., 1990) on the data and subtract the trend from the data
but readd the mean value of the trend, resulting in data for which we assume temporal
stationarity. Then, as a first comparison between the data sets, we investigate differences
in the empirical mean and empirical standard deviation of the annually maximized
precipitation data.

We group the monthly precipitation data from observations and the climate model
into one-year block maxima and fit a GEV distribution to the block-wise maxima at each
grid point. In our case, we have a relatively small block size of 12 (months per year)
and a number of block-wise maxima of 90 (years of investigation). The GEV parameters
are estimated using the PWME method. We test the goodness of fit using a one-sided
Kolmogorov-Smirnov-test at significance level 5%. The null hypothesis of the test is that
the annually maximized data follow the GEV distribution having the probability-weighted
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moments estimates as distribution parameters.

We also use the parametric bootstrap method with 2500 resamples to compute 95%

confidence intervals for each GEV parameter and for the 95% quantiles of the distributions.
Confidence intervals for the GEV parameters based on asymptotic normality also exist for
the probability-weightedmoments estimators, but, as shown byHosking et al. (1985), they
have a high bias and variance if the shape parameter is far away from zero. In our data,
for several time series such a value is estimated for the shape parameter, and comparisons
between the confidence intervals based on bootstrap and those based on asymptotic
normality also confirmed large differences in these cases. For the sake of methodological
consistency and because we also use the bootstrap for the confidence intervals of the
95% quantiles, we calculated the GEV parameter confidence intervals using bootstrap for
all time series. Since this method is quite time-consuming, it could also be advocated
to choose the method of confidence interval calculation based on the estimated shape
parameter value.

To compare the performance of different CMIP6 models, we introduce as a measure
for the accuracy of the extremal precipitation an Average Weighted Quantile Difference
(AWQD). For this measure, the absolute differences betweenmodel and observational 95%
GEV quantiles, weighted with the cosine of the latitude, are averaged. The weighting ac-
counts for the fact that the grid cells do not have an equal size for all grid points, and the
average is taken because of the different model resolutions. For G the set of grid points and
estimated quantiles q̂0.95,mod(g) and q̂0.95,obs(g) for g ∈ G, we therefore define

AWQD :=
1

|G|
∑︂
g∈G

cos(lat(g)) · |q̂0.95,mod(g)− q̂0.95,obs(g)|. (4.1)

In the second part of the analyses, we investigate the spatial distributions of climate
extremes. To this end, we use the madogram estimator to calculate extremal coefficients
and they apply the clustering algorithm presented in 3.2.2. Remember that this algorithms
uses a dissimilarity function based on the estimated extremal coefficients for all pairs of
grid points g1, g2 ∈ G:

D0(g1, g2) := θ̂X,Y − 1 (4.2)

withX and Y representing the GEV distributions at the grid points g1 and g2, respectively.



42 CHAPTER 4. VALIDATION OF CLIMATE MODELS USING HISTORICAL DATA

Note that the extremal coefficient is invariant under rank transformations and espe-
cially that it does not depend on the values of the GEV parameters of the marginal
distributions. It may be desirable to also include the dissimilarity of the marginal
distributions in the clustering. As a further generalized dissimilarity measure we propose

Dλ(g1, g2) := (1− λ)D0(g1, g2) + λ
(︂1
3
dµ(g1, g2) +

1

3
dσ(g1, g2) +

1

3
dγ(g1, g2)

)︂
, (4.3)

where λ ∈ [0, 1) is a weighting parameter and with

dµ(g1, g2) :=
|µ̂g1 − µ̂g2 |

maxh1,h2∈G |µ̂h1 − µ̂h2 |
∈ [0, 1] (4.4)

the normalized distance between the location parameter estimates at the grid points g1
and g2 (analogous for dσ and dγ). Instead of an equal weighting, it would also be possible
to use different weights for dµ, dσ and dγ , but the selection of a set of weights that is
clearly better suited to describing GEV distribution dissimilarity is difficult. It could be
argued to put more weight on the shape parameter since this parameter describes the
heavy-tailedness of the distribution and therefore the strength of its extremes relative
to the non-extreme values. On the other hand, we will see in the next section that the
uncertainty in the shape parameter estimation is considerably higher than the uncertainty
in the estimation of the other two parameters at least for our data, which would speak
against weighting shape parameter differences too strongly.

To choose a suitable number of clusters, we consider an approach by Salvador andChan
(2004) called the L-Method. In each step of the hierarchical clustering, the two clusterswith
minimal dissimilarity are combined, therefore we can plot the number of clusters versus
the dissimilarity between them, resulting in a graph called the evaluation graph. The dis-
similarity between clusters necessarily grows as the total number of clusters is reduced.
The idea of Salvador and Chan (2004) is to find a point from which on the growth rate of
the dissimilarity measure increases considerably. It can then be expected that the clusters
up to this point combine rather similar data points, while combining them to larger ones
would yield artificial results. To determine such a point of change, in the first step, a suit-
able range of the number of clusters is selected. For our example, we consider different
ranges starting with 10 and having no more than 550 clusters. Now, for each possible point
of change c in this range, the horizontal axis of the graph is divided into the two parts to the
left and the right of that point, and a linear regression line is fitted to each of the two partial
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graphs. The root mean squared errors (RMSEs) of the two regression lines are weighted
with the number of points involved in the regression analysis and summed up. The point
of change with the minimal combined RMSE is chosen as the suitable cluster number. As
an alternative method, we set the number of clusters to the highest possible number such
that a fixed threshold dissimilarity between clusters is not exceeded (Threshold method).
This number can easily be read off of the evaluation graph.

4.4 Results of this chapter

We start with calculating for each grid point the empirical mean and standard deviation
of the annually maximized data, as can be seen in Fig. 4.1. In most regions, similar mean
values can be observed. A notable overestimation of the annual maxima ofmonthly precip-
itation by the climate model takes place in the Himalayas and along the western continent
coasts of the Americas. Underestimation occurs most prominently in the Amazon region
and parts of Central America, as well as in Bangladesh and East Asia. Looking at the stan-
dard deviation, a similar pattern as for the empirical mean can be observed, but with a
stronger tendency for underestimation, which occurs also in India and the northern part
of Australia. In Fig. 4.2 a) and b), quantile-quantile plots (QQ-plots) of empirical mean
and standard deviation are displayed. The quantiles of the empirical mean are in gen-
eral similar, but the highest quantiles show a strong discrepancy. Regarding the standard
deviation, this tendency is much more pronounced, corresponding to the larger areas of
underestimation of empirical standard deviation we identified in Fig. 4.1. The difference in
empirical mean and the difference in empirical standard deviation are plotted against each
other in Fig. 4.2 c). It is visible that in many cases, overestimation (underestimation) of
the empirical mean corresponds also to overestimation (underestimation) of the empirical
standard deviation. A similar case of heteroscedasticity has also been noted in Lohmann
(2018) when investigating Holocene climate.

As pointed out by Katz and Brown (1992), the frequency of extreme events is strongly
influenced by changes (or, in this case, misestimation) of themean aswell as of the variance
of a distribution. Therefore, an over- and underestimation of extremes can be expected in
certain regions based on the results in Figs. 4.1 and 4.2.

Fitting the GEV distributions to the data and applying KS-Tests to check the goodness
of fit, the hypothesis of a GEV distribution with the estimated parameters is not rejected
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Figure 4.1: The empirical mean (a, c, e) and empirical standard deviation (b, d, f) of the
annual maxima of monthly precipitation of the AWI-ESM model data set (a, b) and of the
CRU TS4.04 reanalysis data set (c, d) and their difference (model data minus reanalysis
data; e, f). Values exceeding the scale limits are truncated. Units are mm/month.
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Figure 4.2: QQ-Plots comparing the empirical mean values (a) and the empirical standard
deviations (b) of the annuallymaximizedmonthly precipitation of the CRUTS4.04 reanaly-
sis data set and of the AWI-ESMmodel data set. Deviance of empirical mean and standard
deviation plotted against each other (c). Units are mm/month.
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Figure 4.3: P-values of Kolmogorov-Smirnov tests for the hypothesis that the data follow
a GEV distribution with parameters estimated using probability-weighted moments. Test
results for the AWI-ESM climate model (a) and for the CRU TS4.04 reanalysis data (b).

for nearly all grid points in both observational and climate model data, except for parts of
the Sahara and some isolated points.

The estimated parameter values are depicted in Fig. 4.4. In Fig. 4.5, the differences be-
tween model and observational parameters are depicted. Shaded areas are areas in which
the model parameter falls into the 95% confidence interval of the corresponding obser-
vation parameter and vice versa. We can observe a similarity between the anomaly of the
location parameters and the anomaly of the empirical means discussed above, and likewise
a similarity between the anomalies of scale parameters and empirical standard deviations.
For the location parameter, we observe high differences quite often, and the parameters
estimated for one data set seldom fall into the confidence interval derived from the other
data set. The estimated scale parameters are coveredmore often by the confidence intervals
derived from the other data set, although there are also large regions with a high difference
in the two estimates. The estimated shape parameters are covered by the confidence inter-
vals at many locations, but it needs to be noted that the estimator of the shape parameter
is known to be sensitive to small variations in the data. Therefore, the confidence intervals
calculated using the parametric bootstrap tend to be large and not particularly informative.
In Fig. 4.6, the anomalies of the 95% upper quantiles of the estimated GEV distributions
are depicted, again with shaded areas indicating quantiles lying within the confidence lev-
els determined using parametric bootstrap. Climate extremes are most strongly overesti-
mated by the model in the mountainous regions of the Himalaya, the Andes and the Rocky
Mountains. An underestimation of climate extremes takes place most notably in the Ama-
zon region and parts of eastern Asia. This corresponds well to the regions of over- and
underestimation of the empirical means and standard deviations and the implications of
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Figure 4.4: The estimated GEV parameters location (a, b), scale (c, d) and shape (e, f) for
AWI-ESM climate model data (a, c, e) and for reanalysis data (b, d, f). Values exceeding
the scale limits are truncated. Units are mm/month.

such misestimations discussed above.

We apply the hierarchical clustering algorithms using the two dissimilarity measures
D0 and D0.25 as introduced in the previous section. The numbers of clusters determined
using the L-Method with selected cluster ranges (from 10 to a maximal number of
clusters m) and using the threshold method with selected threshold dissimilarities h is
documented in Table 4.1.

The results of the L-Method seem to depend rather strongly on the data set investi-
gated and the value of m (compare for example the results for m = 250 and m = 300

for measure D0), making this method less suitable for the comparison of two data sets.
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Figure 4.5: Difference between AWI-ESM model and observational GEV parameter esti-
mates: Location parameter (a), scale parameter (b) and shape parameter (c). Values ex-
ceeding the scale limits are truncated. Units are mm/month.
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Figure 4.6: Difference of the 0.95-quantiles of the estimated GEV distribution for AWI-ESM
model and observational data. Values exceeding the scale limits are truncated. Units are
mm/month.
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Table 4.1: The number of clusters for AWI-ESM climate model and observational data de-
termined with the L-Method (above the middle line) and the threshold method (below
the middle line) for different ranges/thresholds and for dissimilarity measure D0 (top)
and D0.25 (bottom).

D0 AWI-ESM Observations
m = 250 64 146
m = 300 148 148
m = 400 200 296
m = 500 234 291
h = 0.85 143 127
h = 0.825 188 177
h = 0.8 232 221
h = 0.775 280 254

D0.25 AWI-ESM Observations
m = 250 187 102
m = 300 165 142
m = 400 223 140
m = 500 232 265
h = 0.675 118 109
h = 0.65 165 167
h = 0.625 219 220
h = 0.6 281 265

The threshold method generally predicts a similar, but in most cases slightly lower cluster
number for observational data than for climate model data. In Fig. 4.7, the clusters
for both data sets are depicted using the threshold method for dissimilarity measure D0

with threshold h = 0.825 as well as for dissimilaritymeasureD0.25 with threshold h = 0.65.

To exemplify the differences and similarities in the clusterings, we have a closer look
at Europe in the D0-clusterings. In the model data, there is one cluster covering western
Spain and Portugal, one cluster covering eastern Spain, and one cluster consisting of
southern France and Italy. Great Britain and Denmark are in the same cluster, the northern
parts of France together with Belgium and the Netherlands in another one. One cluster
covers Germany and Switzerland, and in Eastern Europe we see several clusters covering
larger areas in the longitudinal direction, for example one cluster over Poland, one over
Ukraine, and one over Turkey and Greece. The clusters in the observational dataset show
a slightly different picture: Here, the whole Iberian Peninsula is in one cluster, and one
large cluster extends over northern France, Belgium, the Netherlands and Germany to the
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Figure 4.7: Clustering of AWI-ESMmodel data (a, b) and observational data (c, d)with the
dissimilarity measure D0 and threshold h = 0.825 (a, c) and with dissimilarity measure
D0.25 and threshold h = 0.65 (b, d).

western parts of Poland. On the other hand, Great Britain and Denmark are now in two
separate clusters. Regarding other parts of the world, it is worth noting that in all four
clusterings a large cluster cluster covering the Sahara (or at least all parts of it for which
there are observations available) can be identified. There are no clusters extending over
two regions that are very far apart from each other, and in general clusters tend to cover
more area in the longitudinal direction than in the latitudinal one.

For the AWI-ESM, we calculated an AWQD of 52.98, making it the third-best of all 27
CMIP6 models analyzed. The AWQDs of the other 26 CMIP6 models analyzed are given
in Table 4.4. In Fig. 4.8, the AWQDs are plotted against the model resolution (the total
number of model grid points in units of 104). A linear regression (red line; intercept:
73.310, slope: −2.368) indicates that models with a higher resolution have a tendency to
describe extremal precipitation better. A test on the significance of the slope parameter
(null hypothesis of the slope parameter being equal to zero) was significant at the 5% level
with a p-value of 0.0357.
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Table 4.2 . Analyzed CMIP6 models and their spatial resolutions and AWQDs.

Model name Reference to data set Resolution AWQD

ACCESS-CM2 Dix et al. (2019) 192× 144 76.73

ACCESS-ESM1.5 Ziehn et al. (2019) 192× 143 85.86

AWI-CM1.1MR Semmler et al. (2018) 384× 192 54.70

AWI-ESM1.1LR Danek et al. (2020) 192× 96 52.98

BCC-CSM2-MR Wu et al. (2018) 320× 160 83.00

CAMS-CSM1.0 Rong (2019) 320× 160 54.35

CanESM5 Swart et al. (2019) 128× 64 88.72

CESM2 Danabasoglu (2019a) 288× 90 63.27

CESM2-FV2 Danabasoglu (2019b) 144× 96 62.99

CESM2-WACCM-FV2 Danabasoglu (2019c) 144× 96 61.51

CNRM-CM6-1 Voldoire (2018) 256× 128 70.57

EC-Earth3-Veg-LR EC-Earth Consortium (2020) 320× 160 44.71

FGOALS-f3-L Yu (2019) 288× 180 60.86

FGOALS-g3 Li (2019) 180× 80 83.08

GISS-E2.1G NASA/GISS (2018) 144× 90 69.92

HadGEM3-GC31-LL Ridley et al. (2019) 192× 144 75.83

INM-CM4.8 Volodin et al. (2019b) 180× 120 67.25

INM-CM5.0 Volodin et al. (2019a) 180× 120 74.32

IPSL-CM6A-LR Boucher et al. (2018) 144× 143 78.26

MIROC-ES2L Hajima et al. (2019) 128× 64 59.95

MPI-ESM1.2-HR Jungclaus et al. (2019) 384× 192 54.16

Continued on next page
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Figure 4.8: The Average Weighted Quantile Difference (AWQD) of the 27 CMIP6 models
considered plotted against the model resolution (number of model grid points in units of
104). In red: Linear regression line (intercept 73.310, slope −2.368).

Table 4.2 – Continued

Model name Reference to data set Resolution AWQD

MPI-ESM1.2-HAM Neubauer et al. (2019) 192× 96 59.87

MRI-ESM2.0 Yukimoto et al. (2019) 320× 160 63.92

NESM3 Cao and Wang (2019) 192× 96 62.12

NorESM2-LM Seland et al. (2019b) 144× 96 55.60

NorESM2-MM Seland et al. (2019a) 288× 192 52.43

TaiESM1.0 Lee and Liang (2020) 288× 192 58.99

The best model in terms of the AWQD is the high-resolution model EC-Earth3-Veg-LR
(EC-Earth Consortium, 2020) with a value of 44.71. We will now discuss results for this
model in more detail, while results for the other models can be found in the supplement.
For the EC-Earth3-Veg-LR, the estimated GEV parameters and anomalies are depicted in
Fig. 4.9. The differences of the 95% quantiles are depicted in Fig. 4.10. The numbers of
clusters determined using the L-Method and the threshold method are found in Table
4.3 and images of clusterings are depicted in Fig. 4.11. QQ-Plots and plots of KS-Tests
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are similar to the corresponding plots for the AWI-ESM. The EC-Earth3-Veg-LR model
predicts climate extremes better than the AWI-ESM in the Himalayas and in the Amazon
region (compare Fig. 4.6 to Fig. 4.10), while it overestimates precipitation extremes more
strongly than the AWI-ESM at the western coast of South America. The number of clusters
is in general higher than for the AWI-ESM, in part probably due to the higher model
resolution (320 × 160 compared to 192 × 96). Note that this increased resolution is also
the reason for the different values for the cluster numbers of the reanalysis data in Tables
4.1 and 4.3, because reanalysis data were in each case interpolated to the climate model
resolution. When comparing again the clusters over Europe using the D0 dissimilarity
measure, it can be observed that in the western part of Europe, model and observational
clusters are in general similar, with only slight differences over the Iberian Peninsula and
with an area covering southern France and northern Italy that is in one cluster in the
model data and in two different clusters in the observational data. In Eastern Europe and
Scandinavia, the differences between the clusterings are larger and it is more difficult to
see correspondences. The general remarks that have been made about the clusterings
while discussing the AWI-ESM data also apply here.
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Figure 4.9: EC-Earth3-Veg-LR climate model estimated GEV parameters (a, c, e) and their
anomaly compared to the reanalysis GEV parameters (b, d, f). The GEV parameters are
location (a, b), scale (c, d) and shape (e, f). Values exceeding the scale limits are truncated.
Units are mm/month.
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Figure 4.10: Difference of the 0.95-quantiles of the estimated GEV distribution for EC-
Earth3-Veg-LR model and observational data. Values exceeding the scale limits are trun-
cated. Units are mm/month.

Figure 4.11: Clustering of EC-Earth3-Veg-LR model data (a, b) and observational data (c,
d) with the dissimilarity measureD0 and threshold h = 0.825 (a, c) and with dissimilarity
measure D0.25 and threshold h = 0.65 (b, d).
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Table 4.3: The number of clusters for EC-Earth3-Veg-LR climate model and observational
data determined with the L-Method (above the middle line) and the threshold method
(below the middle line) for different ranges/thresholds and for dissimilarity measure D0

(top) and D0.25 (bottom).
D0 EC-Earth3-Veg-LR Observations

m = 250 76 89
m = 300 141 90
m = 400 181 94
m = 500 184 272
h = 0.85 173 145
h = 0.825 224 186
h = 0.8 299 240
h = 0.775 366 272

D0.25 EC-Earth3-Veg-LR Observations
m = 250 113 67
m = 300 117 67
m = 400 129 154
m = 500 146 282
h = 0.675 131 116
h = 0.65 203 166
h = 0.625 276 225
h = 0.6 358 279

4.5 Conclusions of this chapter and discussion

We presented approaches and methods to validate climate model outputs by comparing
their extremal behavior to the extremal behavior of observational data. To illustrate these
methods, we compared precipitation extremes between the AWI-ESM and the CRU TS4.04
data set of reanalyzed observations. After an analysis of empirical statistical parameters,
we fitted GEV distributions to the data and analyzed the differences in estimated param-
eters. Then we continued with an analysis of spatial concurrence of extremes based on
a hierarchical clustering approach and a dissimilarity measure derived from bivariate
copula theory. While the empirical statistics are similar for many parts of the world, we can
also identify larger regions of over- and underestimation of empirical means and standard
deviations by the climate model. These misestimations often go hand in hand with a simi-
lar misestimation of the standard deviation (heteroscedasticity), although for the standard
deviation a stronger tendency for underestimation can be observed. Misestimations of
mean and standard deviations translate into a misestimation of extreme values, and this



58 CHAPTER 4. VALIDATION OF CLIMATE MODELS USING HISTORICAL DATA

can be confirmed by the comparison of the fitted GEV distribution parameters and the
0.95-quantiles derived from them. The shape parameter, indicative of the heavy-tailedness
of the distribution, is in general similar betweenmodel and observational data, but because
of the difficulties in reliably estimating this parameter from data (that are in turn a result
of the rareness of extreme events in the data) these results have to be taken with caution.

The cluster analysis based on spatial dependencies and the occurrence of concurrent ex-
tremes shows that there is generally a good agreement between identified clusters. Also the
number of clusters is in general similar, with a slight tendency for a higher cluster number
in the model data. Since it is mostly large-scale weather events and teleconnections con-
tributing to concurrent climate extremes, this may indicate that the basic physical behavior
underlying them is in general well captured by the AWI-ESM. Further analyses can be
conducted to investigate in detail the reasons for different clusterings over selected regions.

In addition to the AWI-ESM, several other CMIP6 models are also analyzed. A
comparison of the model accuracy, measured using an averaged quantile difference, shows
a tendency for higher-dimensional models to capture extremal behavior better.

In addition tomodel validation, the definition of regions with concurrent extremesmay
turn out useful for assessments of risks in an economical context and for insurance. It needs
to be noted, though, that extremes in climate models and in gridded reanalysis data sets
tend to be damped because of the spatial averaging performed during the creation of the
data (Bador et al., 2020). Another possible field of application is palaeoclimatology. The
spatial distribution of precipitation extremes is known to have changed markedly in the
past (Lohmann et al., 2020; Ionita et al., 2021), and clustering based on climate models
could be used to generalize the sparse existing palaeoclimatic data to larger regions.
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Chapter 5

Long-term evolution of temperature
extremes

5.1 Introduction to the chapter

In this chapter, we use climate model data to investigate future changes in temperature ex-
tremes on a global level. While a rising trend in frequency and magnitude of temperature
extremes is currently observed in many regions of the world (Rahmstorf and Coumou,
2011; Lorenz et al., 2019; Seneviratne et al., 2021), these are not taking place uniformly
around the globe, but instead they show a strong dependency on the geographic location
and its climatic conditions (McBride et al., 2022; Twardosz et al., 2021; Trenberth et al.,
2007). However, the focus of most studies is on regional investigations of the development
of temperature extremes. In addition, the evolution of the extremes in future decades
and centuries is less well understood, as mostly only the near future is investigated
(Rummukainen, 2013).

Changes in the expected frequency of extreme events can be caused by changes in
various statistical parameters, like the mean and the variance (Parey et al., 2013). In
addition to that, starting time and duration of changes can also vary in different regions. In
this chapter, we develop statistical models to investigate changes in temperature extremes
in a warming climate on a global scale and for a period of investigation spanning several
centuries. In order to gain insights into future changes of extremes, four Earth system
models will be analyzed with respect to daily temperatures from historical and future
simulations ranging from 1850 to 2300.
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It is expected that the rate of change of extremes will increase in the near future (Smith,
1990). Under the premise thatmankindwill be able to slow and ultimately end the increase
of atmospheric CO2 emissions someday, it can be expected that in consequence, changes
in extreme temperatures will gradually slow down as the climate system will be tending
toward a new equilibrium state (King et al., 2021), although it may still take centuries
for a new stationary state to be completely reached due to slow-changing components of
the climate system (Hansen et al., 2005). Taking these considerations together, we can
expect changes in extreme temperature to follow in general a slow–fast–slow pattern over
time. To describe a transition from an initial value to a final one that starts slowly, then
speeds up and finally decelerates again when approaching the new value, it is common
practice to use a logistic function, which exhibits a characteristic S-shaped form. The first
application of logistic functions in modeling is due to Verhulst, who designed a logistic
growth model to describe the development of biological populations in 1845 (Verhulst,
1845). The motivation in the ecological context is that the population growth is slow at
the beginning (limited by the small population size) as well as at the end (limited by the
lack of natural resources). The logistic growth model has been successfully applied in
biology and epidemiology—a recent example being its application to the spreading of the
coronavirus disease 2019 (Shen, 2020)—and this has motivated its use as a general model
to describe changes from one state to another in fields as varied as linguistics (Altmann,
1983), medicine (Yano et al., 1998) or economics (Kwasnicki, 2013).

To model extremes in a changing climate, we will use non-stationary GEV distributions
with time-dependent distribution parameters. The changes in the distribution parameters
will be described using logistic functions. After fitting the statistical models to the data, we
will analyze the estimated distribution parameters in detail, and we will use the estimates
also to investigate future changes in the distribution quantiles.

Changes in the expected frequency of extreme events can be caused by changes in
the mean values of the GEV distributions, changes in their variability, changes in their
heavy-tailedness or by a combination of these factors (Katz and Brown, 1992; Cooney,
2012; Lewis and King, 2017). The application of non-stationary GEV distributions en-
ables us to investigate which factors contribute to what extent at different geographic
locations. In addition, we will investigate whether changes in the different distribution pa-
rameters occur simultaneously or if changes in some parameters precede changes in others.
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Several non-stationary models based on GEV distributions have been proposed to
describe the influence of climate change on climate extremes: In Panagoulia et al. (2014),
a GEV distribution with the parameters polynomially depending on time was proposed
and its application was showcased using precipitation data from Greece. In a similar way,
in Sarhadi and Soulis (2017), non-stationary models with different degrees of freedom
were constructed and evaluated using Bayesian inference and Markov chain Monte Carlo
techniques. In Tian et al. (2020), an idea first proposed in Cannon (2010) was extended
and neural networks were used to choose between a variety of non-stationary models
with different covariates that can interact with each other. The approach of combining
GEV distributions with logistic functions gives us the possibility to investigate devel-
opments in extreme temperature over a time span of several centuries and on a global
level and to research how changes in extreme temperatures will unfold in different regions.

The rest of this chapter is organized as follows: In Section 5.2, the temperature data
sets are presented. We discuss the logistic models and the model-fitting algorithm we use
in Section 5.3. Before presenting the results of applying the logistic models to the data in
Section 5.5, a simulation study is conducted to investigate the accuracy of the model fitting
algorithm in Section 5.4. A discussion (Section 5.6) follows, and a section on conclusions
and an outlook finalize the chapter.

5.2 Climate data analyzed in this chapter

We investigate daily temperature data at two meters above surface from four global
earth system models. For each earth system model, the data consist of a simulation of
the historical climate from 1850 to 2005 and a future simulation from 2005 to 2300 that
follows the representative concentration pathway RCP8.5 of the Intergovernmental Panel
on Climate Change IPCC (Riahi et al., 2007). The RCP8.5 scenario provides atmospheric
CO2 values until the year 2100. For the years after 2100, the climate model runs with
prescribed CO2 values that are set to the value of the year 2100, see Fig 5.1a. The four
Earth system models used are the model bcc-csm1-1 from the Beijing Climate Center
(Wu et al., 2014, in the following: ”BCC”), the model CCSM4 from the National Center
for Atmospheric Research NCAR (Gent et al., 2011, ”CCSM4”), the CSIRO-Mk3-6-0
(Jeffrey et al., 2013, ”CSIRO”), and the MPI-ESM-LR from the Max Planck Institute for
Meteorology in Hamburg, Germany (Giorgetta et al., 2013, ”MPI-ESM”). All models
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take part in the Climate Model Intercomparison Project CMIP5 (Taylor et al., 2012). In
the plots, the coastline boundaries have been obtained from Natural Earth Version 4.2.0
(http://www.naturalearthdata.com/).

In Fig 5.1b, the evolutions of the annual global mean temperature that are predicted
by the four Earth system models are displayed. They roughly follow an S-shaped form for
each model, but differ strongly among the different climate models in terms of timing and
magnitude of the changes.

5.3 Statistical models for changes in extremes over time

To model the effects of changes in the climate, the GEV distributions we use need to have
time-dependent distribution parameters. Due to the reasoning laid out in the introduction,
we choose logistic functions to describe the change of the GEV parameters over time. The
logistic function we use as the basis for our models is given by

f(x) =
1

1 + exp(−2 · log(19) · x)
. (5.1)

It describes a growth limited by 0 for x → −∞ and by 1 for x → ∞ with the highest
growth rate at x = 0. The constant 2 · log(19) in the exponential function is used for better
interpretability of the parameters of themodelswewill present below, it ensures that 90% of
the change from 0 to 1 takes place in the interval [−1

2 ,
1
2 ]. We use the function in our models

in the following way: For each of the three GEV parameters p ∈ {µ, σ, γ} we describe its
temporal development as

p̂(t) = ps + pc · f
(︂ t− a

b

)︂
. (5.2)

The model parameter ps describes the ”initial state” and pc describes the total magni-
tude of the change. The model parameters a and b control the timing of the change.
Parameter a indicates the time point at which the growth rate is highest (which is also
the time point at which exactly half of the change from ps to ps + pc is completed) and
parameter b indicates the approximate duration of the change (in the sense that 90% of
the total change takes place in the time span [a− b

2 , a+
b
2 ]). See also Fig 5.2 for a visualization.

This leads to the following model:
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Figure 5.1: Atmospheric CO2 concentration and global annual mean temperature. Panel
a: The atmospheric CO2 concentration (in ppm) that was used for the model runs. The
CO2 concentration follows the RCP8.5 scenario (Riahi et al. (2007)) until 2100 and is kept
constant afterwards. Panel b: The annual global mean temperature (in ◦C) according to
the climate model runs.
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Figure 5.2: Visualization of the parameter values of the logistic models. A sigmoidal
curve following Eq (5.2) with parameters a = 2060 and b = 100 is displayed. Parameter a
corresponds to the time point at which half of the transition from ps to ps+pc is completed.
Ninety percent of this transition take place within the interval [a− b

2 , a+
b
2 ], so parameter

b describes the approximate time span of the transition.

Model 1a. The three GEV parameters location, scale and shape are described using a
logistic curve, using for each parameter a different initial value and amount of change. The
parameters a and b are the same for location, scale and shape.

µ̂(t) = µs + µc · f
(︂
t−a
b

)︂
σ̂(t) = σs + σc · f

(︂
t−a
b

)︂
γ̂(t) = γs + γc · f

(︂
t−a
b

)︂
As pointed out in Schär et al. (2004), the evolution of extreme events may be different

from that of mean and variance (which may show different behaviors among themselves).
It may therefore be necessary to allow for changes in location, scale and shape to take place
at different times and over different durations. This leads to the following more complex
model:

Model 1b. This model is the same as Model 1a, but with individual parameters aµ, bµ,



5.3. STATISTICAL MODELS FOR CHANGES IN EXTREMES OVER TIME 65

aσ, bσ and aγ , bγ being used for location, shape and scale of the GEV distribution.

µ̂(t) = µs + µc · f
(︂
t−aµ
bµ

)︂
σ̂(t) = σs + σc · f

(︂
t−aσ
bσ

)︂
γ̂(t) = γs + γc · f

(︂
t−aγ
bγ

)︂
When applying non-stationary GEV distributions, it is often assumed that the only

time-dependent parameters are location and scale, while the shape parameters is kept
constant (Nogaj et al., 2007; Panagoulia et al., 2014). This approach leads us to a second
type of model:

Model 2a. The GEV parameters location and scale are described using a logistic curve,
using for each parameter a different initial value and amount of change. The parameters
a and b are the same for location and scale. The shape parameter is kept constant over the
whole time interval.

µ̂(t) = µs + µc · f
(︂
t−a
b

)︂
σ̂(t) = σs + σc · f

(︂
t−a
b

)︂
γ̂(t) = γconst

Model 2b. This model is the same as Model 2a, but with individual parameters aµ, bµ,
aσ, bσ being used for location and scale of the GEV distribution.

µ̂(t) = µs + µc · f
(︂
t−aµ
bµ

)︂
σ̂(t) = σs + σc · f

(︂
t−aσ
bσ

)︂
γ̂(t) = γconst

The logistic function, as used in the models above, has the limitation that the inflection
point (the point of the strongest growth) is exactly in themiddle of the curve, having always
a value of ps + 1

2pc. To allow for more flexibility, a generalized function that was proposed
in Richards (1959) can be used. For β > 0, the Richards function is defined as

gβ(x) =
(︂
1 + (2β − 1) · exp

(︂
− log

(︂0.95−β − 1

0.05−β − 1

)︂
· x
)︂)︂− 1

β
. (5.3)
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We use it to describe the time-changing GEV parameters p ∈ {µ, σ, γ}:

p̂(t) = ps + pc · gβ
(︂ t− a

b

)︂
. (5.4)

The interpretation of the parameters ps and pc remains unchanged. The parameter a
describes, as before, the time point at which the model attains the midpoint of the change
(the value ps + 1

2pc). In the previous models, this was also the point of the highest
growth rate, while here, the inflection point depends on the value of the parameter
β. For β = 1, the model reduces to the previous model (g1 is equal to f), while the
inflection occurs at a later time point than a for β > 1 and at an earlier time point for
β < 1. The parameter b > 0 controls the velocity of the change in such a way that the
change from ps + 1

20pc to ps + 19
20pc (90% of the total amount of change) takes place

in an interval of length b. Because of the asymmetry of the function gβ for β ̸= 1,
this interval is no longer [a − b

2 , a + b
2 ], but shifted to the left for β > 1 and to the right

for β < 1. In Fig 5.3, plots of themodel function for different parameter values are depicted.

Using the Richards function gβ instead of f in the previousmodels gives us fourmodels
that we denote by adding the letter R to the model name. Compared to the models using
the function f , Model 1aR and 2aR have one additional model parameter β, while Model
1bR and 2bR feature additional model parameters for the non-constant GEV parameters
βµ, βσ and (only Model 1bR) βγ .

Non-stationary GEV distributions can be fitted to data using Maximum Likelihood
Estimators, seeMudelsee (2014), Chapter 6.3 and El Adlouni et al. (2007). In the numerical
optimization, the fitting algorithm L-BGFS-B is used. For this purpose, the models are
reparametrized to no longer use the parameters pc for p ∈ {µ, σ, γ} describing the magni-
tude of change, but parameters pe := ps+pc describing the values after the change instead.
This makes it possible to ensure in an easy way that all values of σ(t) are positive (using
the condition σe > 0 instead of the equivalent −σc < −σs). To determine suitable starting
values for the parameters µs and σs, a stationary GEV distribution is fitted to the first
quarter of the data of the time series investigated, yielding estimates µ̂ and σ̂, and starting
values are selected randomly from the intervals [µ̂ − 5, µ̂ + 5] and [max(0, σ̂ − 5), σ̂ + 5].
The same is done for the parameters µe and σe using the last quarter of the time series
data. Since the estimation of the shape parameter is not very reliable for small samples,
starting values for γs, γe or γconst are not determined that way, but chosen randomly
from the interval [−1, 1]. Random selection from an interval is also done for all other
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Figure 5.3: Visualization of the parameter β of the Richards function. The plot shows
Richards functions gβ for different values of β. The Richards function for β = 1 is identical
to the logistic function f . The point of the highest growth rate is shifted to the right for β > 1
and to the left for β < 1. For all lines depicted, the other parameters used are a = 2050,
b = 100.

model parameters using suitable, large intervals to select values from. The stationary GEV
distributions are fitted using the R package ”EnvStats” (Millard, 2013). Part of our R-code
is based on work by Takahito Mitsui in the context of Mitsui and Crucifix (2017). The
optimization algorithm is run several times with different starting values in order to find a
global maximum of the likelihood function.

To choose the best model out of the different models presented here, we apply the
Bayesian Information Criterion (BIC; Schwarz, 1978). To test the goodness-of-fit of
the models, note that a GEV(µ, σ, γ)-distributed random variable can be transformed
to a GEV(1, 1, 1) distribution (a so-called unit Fréchet distribution) by applying the
transformation

Gµ,σ,γ(z) = max
(︂
0, 1− γ ·

(︂z − µ

σ

)︂)︂− 1
γ
. (5.5)
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By applying Gµ̂,σ̂,γ̂(z) with the (time-dependent) estimated model parameters to the
data, we obtain for each grid point a time series that is unit Fréchet distributed if the model
assumptions are true. We test the hypothesis of the transformed data being unit Fréchet
distributed using a one-sample Kolmogorov-Smirnov test (Stephens, 1970).

5.4 A simulation study to investigate the statistical models

Before applying the statistical models to climate data, we first test how accurately model
parameters can be estimated under ideal conditions. For each of the eight models pre-
sented above, we prescribe values for the model parameters, simulate data following the
corresponding non-stationary GEV distribution, and fit the model to the data. We then
compare the estimated model parameters with the true ones.

In addition to that, we test how susceptible the models that use the logistic function
are to model misspecification. To this end, we simulate data from the models as above,
but replacing the function f from Eq (5.1) with the following three functions of a similar
sigmoidal shape that are known for example as activation functions for neural networks
(Menon et al., 1996; Bagul and Chesneau, 2021):

g1(x) = 1
2 + 1

π arctan
(︂
π
4x
)︂

(5.6)
g2(x) = 1

2 + x

4

√︂
1+x2

4

(5.7)

g3(x) = 1
2 + 1

2erf
(︂
x
√
π

4

)︂
. (5.8)

The simulated data follow a non-stationary GEV distribution with time-dependent distri-
bution parameters µt, σt, γt. We then calculate estimates µ̂t, σ̂t, γ̂t by fitting the original sta-
tistical model (using function f) to the data, and we calculate the time-integrated squared
difference of given and estimated GEV parameters∫︂

t∈T
(pt − p̂t)

2dt (5.9)

for the three GEV parameters p ∈ {µ, σ, γ}.

We simulate 1000 time series of length 150 for each logistic model using the parameters
µs = 20, µc = 10, σs = 2, σc = 1. The parameters for the shape parameter are γs = 0.1 and
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γc = 0.1 (models with a varying shape parameter) or γconst = 0.1 (models with a constant
shape parameter). For the models describing a simultaneous change in all parameters we
use the parameters a = 2075, b = 30, otherwise we use aµ = 2050, bµ = 30, aσ = 2075,
bσ = 30 and, if applicable, aγ = 2100 and bγ = 30. The models based on the Richards
function instead of the logistic function additionally have a parameter β (or parameters
βµ, βσ, βγ , respectively) equal to 5.

It turns out that for each parameter, the estimation quality is similar for all models in
which the parameter occurs. In particular, the estimation is not more inaccurate for the
more complex models with a higher number of parameters. For each parameter, boxplots
of the estimates are depicted in Fig 5.4. Since the estimates are similar for each model,
only the boxplot for one model per parameter is depicted. The boxplots indicate that
the start and change values of the GEV parameters are in general well estimated, and
the same is true for the parameter a and aµ if they exist in the model. The estimates for
parameters b and bµ are in most cases close to the true value, but there are also some cases
of a considerable misestimation (with a true parameter value of 30, the estimates take
values of up to 120). The parameters describing a separate change in scale, aσ and bσ,
are estimated much worse than the other ones, estimates that are far away from the true
value occur regularly. In addition, parameter bσ is in most cases underestimated, with
the median of the estimates being far lower than the true value, while cases of a strong
overestimation of this parameters also occur. The same can be said for the parameters aγ
and bγ , but their estimation accuracy is even lower.

The estimation of the additional β parameters that appear in the models using the
Richards function turned out to be very problematic for all models. The estimated values
are usually far away from the true ones, and even the medians of the estimates are between
50 and 75 and not even close to the true parameter values of 5. A reliable estimation of the
β parameter of the Richards function seems to be impossible in general using the method
we employed here. Because of that, the models using the Richards function will not be
considered further and only the models using the logistic function will be applied to the
data. It was considered also to excludeModel 1b because of the high estimation inaccuracy
of the parameters aγ and bγ , but for the sake of completeness, the model was kept. In the
next section it will be seen that this model is rarely favored by the BIC anyway.

The results of the simulation study investigating model misspecification due to other
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Figure 5.4: The accuracy of the parameter estimation for simulated data. The accuracy
of the maximum likelihood estimators is investigated by applying the models to data that
were generated following the respective model. For each parameter, a boxplot of the esti-
mates is depicted, with the true parameter value indicated in red. Since the results for each
parameter are very similar across the models, only one boxplot is presented per parameter.
The model depicted is 1a (a-f, n, o), 1b (h-m), 2a (g), 1aR (p) and 1bR (q-s).

logistic functions than f are given in Table 5.1. Results are printed only forModel 1a, but are
similar for the other logisticmodels. For data thatwere created using one of the functions gi,
the errors are similar to those using function f . Therefore, model misspecification caused
by the usage of different sigmoidal functions does not have a strong negative impact on the
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estimation accuracy and there is no need for using different functions than f when applying
the models to the data.

Function used Location Scale Shape
f(t) 0.232 0.057 0.008
g1(t) 0.230 0.060 0.008
g2(t) 0.278 0.060 0.008
g3(t) 0.235 0.060 0.008

Table 5.1: The influence ofmodel misestimation on the estimation accuracy. The squared
difference of constructed and estimated GEV parameters is depicted for the GEV parame-
ters location, scale and shape. The data were simulated using the sigmoidal function in the
left-most column of the table while the model that was fitted to the data always uses the
function f(t). The model used is Model 1a, results for the other models are similar. The
errors are averaged over 5000 iterations.

5.5 Application of the models to the data

As mentioned before, the only statistical models that are applied to the data are the four
models based on the logistic function. We apply the models to four different climate
simulations. In Fig 5.5, the best model according to the BIC is depicted at each grid
point for the four data sets. It can be noted that the statistical models with a constant
shape parameter (Model 2a and 2b) are often preferred over those with a varying shape
parameter; one of these models is selected for at least 80% of the grid points for all data
sets. There are many smaller regions in which a model with a varying shape parameter is
preferred, a clear interconnection between those regions could not be identified. On the
other hand, a pattern is visible regarding the question whether a model with simultaneous
changes in location and scale (and, if applicable, shape) parameter is selected or not:
Models with individual change parameters for the different GEV parameters are preferred
almost exclusively in high-latitude regions. In particular, they are preferred throughout
the whole region around the North Pole from ca. 80◦N onward for all four data sets,
and for some data sets in a varying degree also in the high southern latitudes. In the
other regions statistical models with a simultaneous change in the GEV parameters are
predominant.

To investigate the magnitude of changes in extremes, in Fig 5.6, the difference of
the 95% quantile of the fitted GEV distribution in the year 2300 and the quantile of the
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Figure 5.5: The preferredmodel according to the Bayesian InformationCriterion for each
grid point. The logistic models 1a, 1b, 2a and 2b are applied to the yearly maxima of daily
temperature data and the BIC is used to determine the optimal one out of these for each
grid point. Data set used: BCC (a), CCSM4 (b), CSIRO (c), MPI-ESM (d).

distribution in the year 1850 is depicted for each grid point and each data set. The statistical
model used to calculate these values is the one that is preferred by the BIC at that grid
point. While the magnitude of changes varies considerably depending on the data set,
some general tendencies can be identified for all climate model outputs: The quantiles
show in general an increasing trend, regions where the quantiles stay the same or decrease
are an exception for all data sets. The quantile changes are higher over land than over the
ocean, and in most data sets, particularly high changes can be detected in Europe, North
America and parts of Siberia. Compared to the changes in other land regions of the world,
Greenland shows an unusually small increase, in some models even partially a decrease.

For the now following investigation of the individual parameters of the statistical
models, we will focus on model CCSM4 (depicted in panel b of Figs 5.5 and 5.6), which
has the highest resolution of the investigated data sets. The results for the other models
are in general similar, significant deviations will be briefly discussed later.

All four statistical models we use share the parameters µs, µc, σs and σc describing
the starting value and the magnitude of change of the location and scale parameters.
Parameters γs and γc are estimated only for Models 1a and 2a, but for the other models
we can define γs as the constant estimate of the shape parameter and γc as equal to zero.
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Figure 5.6: Changes in the 95%-quantiles. For each grid point, the change in the 95%-
quantile of the fitted GEV distribution over the time interval from 1850 to 2300 is depicted.
The GEV distributions are estimated by fitting the logistic models to yearlymaxima of daily
temperature data. For each grid point, the statistical model that is preferred by the Bayesian
Information Criterion is used. Units are ◦C. Data set used: BCC (a), CCSM4 (b), CSIRO
(c), MPI-ESM (d).

Using this definition, the values of the six parameters are depicted in Fig 5.7. For each
grid point, we show the estimates of themodel that is preferred by the BIC at that grid point.

As expected, the starting value of the location parameter depends highly on the
latitude and the climate zone of the grid point investigated. The starting values of the scale
parameter show a dependency on the continentality of the climate: the scale parameter is
lowest over the oceans and highest in the very continental regions of Siberia, Alaska and
northern Canada. It is also relatively high in Antarctica. The starting values of the shape
parameter are quite homogeneous, attaining mostly slightly negative values that indicate
that no strong positive extremes are present. The only exception to this are some regions
in the Arctic Ocean, north of the regions with the high scale parameter discussed above. In
these regions, the high values of the shape parameter together with low values of the scale
parameter indicate a climate that is in general fairly homogeneous, but with occasionally
strong outliers.

Investigating now the parameters describing the magnitude of change in the GEV
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Figure 5.7: The estimates for the starting values and the amounts of change of the GEV
parameters. The estimates for the parameters µs (a), σs (c), γs (e) and µc (b), σc (d), γc
(f), describing starting value and total amount of change over time of the GEV parameters
location, scale and shape. The models are applied to yearly maxima of daily temperature
data of the climate model CCSM4. For each grid point, the estimates of the model that was
preferred by the Bayesian Information Criterion are depicted. Units are ◦C.

parameters, we detect strong changes in the location parameter especially over land
masses, with an increase of up to 20 ◦C occurring in Europe and the central parts of North
America. The highest changes, however, occur in the high-latitude regions that also feature
a high initial shape parameter. Over the ocean, the changes in the location parameter are
in general much smaller, especially in the Northern Hemisphere.

The scale parameter remains mostly the same in most regions, with a tendency to a
slight increase. The most notable changes occur in the Arctic, where the scale parameter
increases considerably, and in Antarctica, where it decreases. In most regions, the shape
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parameter is predicted to not undergo a change, as statistical models with a constant shape
parameter are preferred by the BIC. Regions exhibiting a change in the shape parameter
are in the Pacific near the equator and south of South America near Antarctica. A notable
exception is a part of Greenland which shows not only a very strong increase in the shape
parameter, but also unusually small increases in the location and the scale parameters.

Since a shift in the location parameter of a GEV distribution directly implies an equal
shift in the quantiles, it is not surprising that the changes in 95% quantiles (Fig 5.6b) show
a similar structure than the changes in the location parameter. The quantile changes are
also affected by the changes in the scale parameter, therefore in Antarctica they are lower
than the change in the location parameter would suggest (due to a decrease in the scale
parameter), and in the Arctic they are higher (due to an increase in the scale parameter
that is stronger than elsewhere).

We now turn our attention to the parameters describing at which time the changes
take place. Models 1a and 2a have one parameter describing the time of change and
one parameter describing its duration that are used for all three GEV parameters si-
multaneously. In Fig 5.8, these parameters are depicted. As before, for each grid point,
the estimates of the statistical model that was favored by the BIC are depicted. If the
selected model at a grid point is not one of Model 1a or 2a, the grid point is grayed
out. For most grid points, the time around which the change takes place is between
2075 and 2125 and the duration of the change is between 240 and 360 years. The most
notable exception to this is the northern Atlantic Ocean, a region in which the duration
of the changes tends to be much longer and highest change rate tends to occur much
later. Changes that start unusually late occur also off the coast of Antarctica. Both
regions are characterized by a ventilation of the deeper layers of the ocean providing an
enhanced effective heat capacity dampening thewarming signal (Lohmann, 2020, see e.g.).

The other two statistical models, models 1b and 2b, have individual change parameters
for the location and the scale (and, in the case of Model 1b, for the shape) parameter.
These values are depicted in Figure 5.9 for the grid points at which one of those models
is chosen. At all grid points, strong differences between the parameters corresponding
to location and those corresponding to scale can be seen, explaining why models that
allow for individual changes in the different parameters perform better there. We focus
on the largest contiguous region for which one of the models is selected, which is the area
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Figure 5.8: The estimates for timing (a) and duration (b) of change, depicted for statis-
tical models with a simultaneous change in all GEV parameters. The models are applied
to yearly maxima of daily temperature data of the climate model CCSM4. For each grid
point, the estimates of the model that was preferred by the Bayesian Information Criterion
are depicted. If the preferred model at a certain grid point does not feature parameters for
simultaneous changes in the GEV parameters, the grid point is grayed out. Units are years.

around the North Pole. In this region, changes in the scale parameter take place much
earlier than those in the location parameter (2000-2100 compared to 2150-2200), and the
scale parameter also changes considerably more rapidly than the location parameter (a
duration of change of 0-120 years compared to 180-300 years).

To illustrate the four statistical models further, for each of them one grid point where
the model is preferred by the BIC is selected. In Fig 5.10, Fig 5.11, Fig 5.12 and Fig 5.13, the
time series for those grid points are depicted, together with the modeled time-dependent
GEV parameters and the median and the upper and lower 95% quantiles of the modeled
GEV distribution.

A first visual inspection indicates that the models seem to fit the data reasonably well.
The most common model is Model 2a, showcased in Fig 5.12 for the grid point 0◦ N, 0◦ E.
A clear logistic shape is visible in the time series of that grid point, which is reflected by a
corresponding change over time of the location parameter. The scale parameter slightly
decreases over time, while the shape parameter stays constant in this model. As already
mentioned, Model 2a is preferred at most grid points, and the corresponding time series
are usually similar to the one presented here.

While the shape parameter is constant in Model 2a, it undergoes a change over time
in Model 1a, for which an example is depicted in Fig 5.10 (grid point 0◦ N, 180◦ E in
the Pacific Ocean). The shape parameter shows an increase over time here, while the
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Figure 5.9: The estimates for timing (a, c, e) and duration (b, d, f) of change for the loca-
tion (a, b), the scale (c, d) and the shape (e, f) parameter, depicted for statistical models
with separate changes in the GEV parameters. The models are applied to yearly maxima
of daily temperature data of the climate model CCSM4. For each grid point, the estimates
of the model that was preferred by the Bayesian Information Criterion are depicted. If the
preferred model at a certain grid point does not feature parameters for separated changes
in the different GEV parameters, the grid point is grayed out. Units are years.

scale parameter decreases at the same time. This indicates a shift to a climate with less
variability in general, but more outliers than before. Model 1a is common in parts of the
Pacific Ocean and it also appears in several small regions around the world.

Model 2b is predominant in the region around the North Pole, an example is depicted
in Fig 5.13 for the grid point 85◦ N, 0◦ E. This model keeps the shape parameter constant
and allows for sigmoidal changes in the location and scale parameters with different
velocities and at different points in time. For the grid points near the North Pole, changes
in the scale parameter are quicker and occur earlier than changes in the location parameter,
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Figure 5.10: Detailed examination of data and fittedmodels at grid point 0◦ N, 180◦E. The
yearly maxima of daily temperature data of the climate model CCSM4 at grid point 0◦ N,
180◦E, together with the non-stationary GEV parameter estimates of the preferredmodel at
this grid point (Model 1a) and the median of the estimated distribution (red line) as well
as the 95% confidence interval (blue lines).
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Figure 5.11: Detailed examination of data and fitted models at grid point 75◦ N, 35◦ W.
The same analysis as in Fig 5.10 for grid point 75◦ N, 35◦ W (Model 1b).

as is also seen in Fig 5.13: In the first 200 years of the investigation period, the variability
of the data is very low, and then it increases rather quickly in the years 2050 through 2100,
while gradual changes in the location parameter follows later.
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Figure 5.12: Detailed examination of data and fitted models at grid point 0◦ N, 0◦ E. The
same analysis as in Fig 5.10 for grid point 0◦ N, 0◦ E (Model 2a).

The fourth statistical model is Model 1b, the most complex of the statistical models
we use and the only one that allows for changes in all three GEV parameters at different
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Figure 5.13: Detailed examination of data and fitted models at selected grid point 85◦ N,
0◦ E. The same analysis as in Fig 5.10 for grid point 85◦ N, 0◦ E (Model 2b).

speeds and points in time. There are only few regions where this model is preferred, one
of them is a part of Greenland including the grid point 75◦ N, 35◦ W, which is analyzed
in Fig 5.11. Besides the increase in the location parameter, we can detect here a strong



82 CHAPTER 5. LONG-TERM EVOLUTION OF TEMPERATURE EXTREMES

decrease of the scale parameter that takes place mostly between 2000 and 2100. The shape
parameter shows a pronounced increase after the year 2100. These model parameters
indicate a complex behavior of the underlying time series that involves different kinds of
changes at different points in time.

The goodness of fit of the statistical models is tested using a Kolmogorov-Smirnov test
at significance level 5%, which is applied for each grid point to the results of the model
that is preferred at that grid point by the BIC. There are only few grid point for which the
hypothesis of the data following the modeled non-stationary GEV distribution is rejected,
see Fig 5.14. It is important to keep in mind that the non-rejection of the hypothesis does
not mean its confirmation, but still, this result is a promising indicator for the general
applicability of the statistical models.

Figure 5.14: P-values of the Kolmogorov-Smirnov test to investigate the goodness of fit.
A Kolmogorov-Smirnov test is applied for each grid point to the results of the statistical
model that is preferred at that grid point by the BIC. The data used are yearly maxima of
daily temperatures of the climatemodel CCSM4. Grid points at which the hypothesis of the
data being GEV distributed with the modeled time-dependent GEV parameters is rejected
at significance level 5% are colored in red.

A detailed analysis of the different parameters of the statistical models was presented
here for the earth system model CCSM4. For the other models, we briefly mention some
key differences to the CCSM4 model. The estimated parameter values that are depicted
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Figure 5.15: As Fig. 5.7, but for model BCC.

Figure 5.16: As Fig. 5.8, but for model BCC.

in Fig. 5.7 through 5.9 for CCSM4 are depicted for the other climate models in Fig. 5.15
through 5.23. The starting values of the three estimated GEV parameters are very similar
for all four earth system models (compare Fig 5.7 and 5.15, 5.18, 5.21, panels a, c, e).
CCSM4 tends to lead to higher values of the scale starting parameter in the high northern
latitudes than the other models. This parameter also shows different values for Antarctica
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Figure 5.17: As Fig. 5.9, but for model BCC.

among the different earth system models. The changes in the location parameter (panel b
of the figures) show a clear land-sea distinction in all four earth system models. In CSIRO,
its values are considerably higher than in the other models, resulting also in the large
difference in 95% quantiles compared to the other three models (Fig 5.6). This climate
model also shows a region south of Africa near Antarctica with an unusually high scale
change (panel d) and a high negative shape change (panel f) that is not identified in the
other climate models. Other than that, all models agree that changes in scale are in general
not high, with the exception of the high latitudes that show a strong increase in scale in
the north and a decrease in scale in the south.

The timing of the simultaneous changes in all parameters also indicates a marked dif-
ference between CSIRO and the other climate models (compare Fig 5.8 and 5.16, 5.19,
5.22). In CSIRO, the time of the highest change rate (panel a of the figures) is in general
approximately 50 years later than in the other models. Besides that, disagreements regard-
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Figure 5.18: As Fig. 5.7, but for model CSIRO.

Figure 5.19: As Fig. 5.8, but for model CSIRO.

ing the timing of changes exist also for the Indian and Pacific Ocean in the high southern
latitudes, for which some models predict a change that starts later and takes longer than in
the CCSM4 model. The prolonged changes in the North Atlantic Ocean that can be seen in
panel b of Fig 5.8 for CCSM4 are not detected for the other earth systemmodels (panel b of
5.16, 5.19, 5.22) and in general, it can be said that the four earth system models show large
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Figure 5.20: As Fig. 5.9, but for model CSIRO.

differences in the higher latitudes, both as to which statistical model is selected (see again
Fig 5.5) and what parameter values are estimated. A common feature of all models is that
near the North Pole, statistical models with separate changes in the location and the scale
parameters are preferred and that the changes in scale precede the changes in location and
also happen more quickly. The models disagree with regard to which regions use a con-
stant and which ones use a variable shape parameter. For the CSIRO earth system model,
separate changes in the location and the scale parameter are predicted inmore regions than
for the other three models, including large parts of Antarctica and the Pacific Ocean near
the Equator (compare Fig 5.9 and 5.17, 5.20, 5.23).

5.6 Discussion of the results of this chapter

We present statistical models for extreme temperature that are applied to global climate
data that span several hundred years and are influenced by climate change. While it is
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Figure 5.21: As Fig. 5.7, but for model MPI-ESM.

Figure 5.22: As Fig. 5.8, but for model MPI-ESM.

not a new approach to use non-stationary GEV distributions to investigate the develop-
ment of climate extremes, most studies assume a dependency of the GEV distribution
parameters on time that is either linear/polynomial (Casati and de Elı́a, 2014; Kharin
and Zwiers, 2005; Sarhadi and Soulis, 2017; Mahajan et al., 2015) or exponential (Hanel
and Buishand, 2010). Consequently, the models are usually applied to data covering
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Figure 5.23: As Fig. 5.9, but for model MPI-ESM.

not more than 100 years. If the goal is to investigate changes in extremes on a longer
time scale, the time frame is usually split up into several intervals of short length and
stationary GEV distributions are fitted to each one. Then, their parameters are compared.
This approach was used for global precipitation in Russo and Sterl (2012), for precipita-
tion and temperature in Australia in Perkins et al. (2014) and for summer temperature
in the United States in Hogan et al. (2019). In Slater et al. (2021), annual maxima of
daily temperature data from several CMIP6 models were investigated and stationary
GEV distributions were fitted to the data at different time intervals. When stationary
distributions are applied, it needs to be assumed that the changes in the investigated
time intervals are not large. It it also more difficult to make statements regarding the
temporal aspects of the changes. Non-stationary GEV distribution are advantageous in
this regard, although it can be difficult to find suitable parametrizations for the parameters.

Our approach of combining logistic functions with GEV distributions to describe
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climate extremes has not been used before to our knowledge. Logistic functions have,
however, been used to describe historical CO2 emissions in many countries (Meng and
Niu, 2011; Çiğdem Köne and Büke, 2010) and have also been applied to future projections
of greenhouse gas concentrations (Pérez-Suárez and López-Menéndez, 2015). Climate
change is closely connected to CO2 concentrations, and the mean global temperature has
been shown to be in an approximately linear relation to them (Matthews et al., 2009).
This further supports the idea of using logistic functions to describe extreme events under
climate change as well.

The results in Slater et al. (2021) that were obtained by fitting stationary GEV distri-
butions to CMIP6 model results are mostly in line with the results of this chapter, even
though we used a different greenhouse gas emission scenario (RCP8.5 vs. SSP370). In
both works, it is noted that the location parameter changes strongly over land and that
this contributes to a large extent to the changes in extremes. A large increase in the shape
parameter over the Arctic was detected in Slater et al. (2021), and for the scale parameter,
they identify a tendency for an increase over time in the tropics and a decrease over time
in high-latitudes. Our study also identifies an increase of scale in the low latitudes and
a decrease of scale in Antarctica, but results for the Arctic are different. Our statistical
models do not predict an increase in the shape parameter in the Arctic, but instead an
incrase of the scale parameter while the shape parameter stays constant (Fig 5.7).

As discussed in the previous section, the Arctic region is unusual with regard to
model selection: It is one of the few regions in which statistical models featuring non-
simultaneous changes in location and scale parameter are preferred. In addition to that,
the changes in the scale parameter are higher than in all other regions. Both results
can be explained with the permanent presence of ice in the Arctic: the temperature of
melting ice does not exceed 0 ◦C, therefore the annual maximum of daily temperature
is close to 0 ◦C as long as ice is present all year long, resulting in a very low variability
of the annual maxima. It is indeed shown (Taylor et al., 2012) that in the RCP8.5 run of
the CCSM4 earth system model, the Arctic becomes ice-free in the 2060s, which is also
the period of time at which the variability of the time series starts to increase (Fig 5.13).
After that, the value of the scale parameter is comparable to other land regions. This
process also explains the complex behavior of the time series in Greenland in (Fig 5.11).
Annual maxima are below 0 ◦C at the beginning of the investigation period. Due to
increasing temperatures, ice begins to melt and the variability decreases, as the annual
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maxima are permanently close to 0 ◦C in the years 2100 through 2200. After that, ice has
completely melted in summer and the variability increases again from 2200 onwards. This
example also shows the limitations of the logistic models we present here: The increased
variability in the years 2250 through 2300 is most likely better modeled by a high scale
parameter than by a high shape parameter. This is also indicated by the results of fitting
a stationary GEV distribution to the values of the time series in Fig 5.11 in the years
2250 through 2300. The fitted values are 1.44 for the scale parameter and 0.12 for the
shape parameter. It is, however, not possible to model a change of the scale parameter
going from a high value to a low value and then back to a high value again using a sig-
moid function, so the BIC favors amodelwith a high shape parameter in later years instead.

It also needs to be emphasized that logistic functions are suitable for the modeling of
future climate only under the condition of a cessation of greenhouse gas emissions in the fu-
ture. For model data that are based on other scenarios, different functions have to be used,
although logistic functions might also be useful for describing data that show a continu-
ously rising trend in the extremes. In particular, the extraction and storage of atmospheric
CO2 in order to revert some consequences of climatic changes (and to prevent others) are
more and more discussed. This is reflected by the SSP scenarios (replacing the RCP sce-
narios) used in the newer IPCC reports (IPCC, 2021), of which some predict a reduction of
the atmospheric CO2 levels starting in the second half of the century. A possible extension
of the logistic models for such a scenario is based on the double logistic function

ps + pc,1 · f
(︂
2 · log(19) · t− ap,1

bp,1

)︂
+ pc,2 · f

(︂
2 · log(19) · t− ap,2

bp,2

)︂
. (5.10)

In this formula, two logistic function are combined, allowing for the description of a
change from one state to another that is not completed, but instead reverted mid-way and
that finally settles on an intermediate value. Such a model could also be useful with the
RCP data sets used here to model the behavior in Greenland region for which sigmoidal
functions are of limited suitability.

Besides that, the methodology presented in this chapter is not restricted to a specific
application. The models or variations of them can also be applied to other data sets and
other scientific questions regarding changes of extremes over time. Thus, the development
of this methodology is a scientific contribution of its own right.
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Our focus is on the univariate analysis of temperature extremes: for each grid point,
the time series of temperature data is investigated separately from all others. For a better
understanding of climate extremes it is important to also investigate multivariate distribu-
tions. For example, climate extremes that take place simultaneously over a large region
are especially problematic because of high damages for economies and possible difficulties
in providing necessary medical or humanitarian aid. It would therefore be interesting to
use spatio-temporal models to describe climate extremes. We will discuss this also in the
concluding remarks at the end of this work.

5.7 The main conclusions of this chapter

We have designed and applied statistical models for the development of temperature
extremes over several centuries that allow us to investigate the magnitude and the timing
of the changes in temperature extremes. In addition, the models differentiate between
changes in the mean, the variability and the distributional shape of the estimated non-
stationary GEV distributions. We summarize the conclusions in the following main points:

1. A strong increase in the 95% quantiles of the annual temperature maxima could
be detected in most regions of the world. In these regions, extremes will continue to rise
and reach unprecedented strengths in the future. This is true especially over continents
and corresponds to the well-known fact that global warming is stronger over land than
over the oceans or in coastal regions (Byrne and O’Gorman, 2018; McBride et al., 2022).
However, we find a disagreement between the earth system models in terms of the total
magnitude of the changes.

2. The development of extremes depends highly on the geographic region. Geograph-
ically varying developments can be detected not only with regard to the magnitude of
changes, but also with regard to their timing, and to the extent to which the changes
in extreme events are caused by changes in the location, the scale or the shape of the
distribution of the annual maxima. For example, changes in the North Atlantic Ocean are
slower than elsewhere.

3. Changes in location and scale of the distributions are predicted to take place
simultaneously in most regions. Most earth system models agree that the highest rate
of change is reached in the time between 2050 and 2100 over land and most parts of the
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oceans. In some high-latitude areas, changes over oceans start much later and last longer.
The velocity of the change tends to be higher over land than over the oceans. Taking this
together with conclusion 2, we can expect large and rather rapid changes in temperature
over land masses over the course of about 100 years.

4. Non-simultaneous changes in the parameters are predicted is the region around the
North Pole, in which an abrupt increase in variability is followed by a gradual increase of
mean values. This is probably caused by the effects of the melting of sea ice. The earth
system models disagree about the nature of the changes in Antarctica and in Greenland,
which could hint to insufficient representations of polar processes in climate models such
as feedbacks with the cryosphere (Ackermann et al., 2020, e.g.). In addition, the statistical
models presented here might not be suitable to describe the complex changes that are
predicted for those regions.
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Chapter 6

Clustering algorithms for max-stable
processes

6.1 Introduction to the chapter

In Chapter 3.2.1, we have laid out how stochastic processes on a compact subset of R2 can
be used to investigate spatial dependencies in a certain region of investigation. We have
presented different parametric sub-classes of max-stable processes that can be used for
parametric inference, like the Brown-Resnick process or the extremal-t process and have
pointed out that because of their spatial stationarity, their application is limited to areas
that are small and rather homogeneous.

One of the possible approaches to apply max-stable processes also to data on larger
regions is the application of a clustering algorithm. The algorithm divides the area of
investigation into smaller sets, onto which stationary max-stable processes can be fitted.
This idea has recently been proposed by Saunders et al. (2021), using as clustering
algorithm the algorithm by Bernard et al. (2013) that we have used in a different context
in Chapter 4. In this chapter, we will build up on this approach. While clustering is a
promising idea to make stationary max-stable processes applicable to data that cover a
large and inhomogeneous area, we will see that the algorithm by Bernard et al. (2013) does
not necessarily produce regions in which spatial stationarity is a reasonable assumption.
We will illustrate this using a simple example of a non-stationary max-stable processes,
and we will propose an alternative clustering algorithm and compare the two algorithms
in a simulation study.
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This chapter is structured as follows: In the next section, we will discuss the cluster-
ing algorithm by Saunders et al. (2021), the limitations we see with it, and our suggested
alternative. Using a simulation study, we investigate the performance of the clustering al-
gorithms in Section 6.3. A section on conclusions and a discussion finalize the chapter.

6.2 Discussion of different clustering algorithms

6.2.1 Clustering based on extremal coefficients

Saunders et al. (2021) suggest to use the hierarchical clustering algorithm by Bernard et al.
(2013) to split the area of investigation into smaller subsets. Recall from Section 3.2.1 that
the dissimilarity measure used in this algorithm is

D1(s1, s2) := θ̂s1,s2 − 1, (6.1)

with θ̂s1,s2 the madogram estimator for the pairwise extremal coefficent θs1,s2 for grid
points s1, s2 ∈ S . In the following, we will use the term Extremal Dependence Clustering
(EDC) for the clustering based on this dissimilarity function.

The EDC algorithm is performed with the goal of defining regions to which spatially
stationary max-stable processes are fitted. It should therefore group points together
in such a way that within the clusters stationarity can be assumed. The dissimilarity
measure by Bernard et al. (2013) is based on the comparison of extremal coefficients and
therefore groups together points with a tendency for concurrent extremes. Within such a
cluster, pairwise extremal dependencies tend to be high in general, which might reduce
the possible extent of spatial non-stationarity. Nevertheless, spatial stationarity is not a
justified assumption within the clusters defined that way, and the dissimilarity measure
by Bernard et al. (2013) was not designed with the intention of finding such regions.

We illustrate this using a concrete example of a non-stationary max-stable process. We
can construct such a process using the approach by Huser and Genton (2016) that we dis-
cussed in Chapter 3.2.4. As a simple example we use a Huser-Genton process on the set
S = [−5, 5]× [−5, 5]with matrix parameters as = 2 constant, bs = (x+ 5)/2, s = (x, y) ∈ S
and γs = 0 constant. The global model parameters are ν = 5 and α = 1. This process
is obviously stationary on the sets {x} × [−5, 5] for all x ∈ [−5, 5], and if we investigate a
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vertical stripe of the form [x − ϵ, x + ϵ] × [−5, 5], ϵ > 0 small, the values of as, bs and γs
in that region are very similar and stationarity is a reasonable approximation. The cluster-
ing based on extremal coefficients, however, does not result in clusters of such a form. In
Fig. 6.1 we show the pairwise extremal coefficients θs,t, t ∈ S for four selected values of
s: s1 = (−3, 2), s2 = (3, 2), s3 = (−3,−2) and s4 = (3,−2). It can be observed also from
Fig. 6.1 that the dependence structures for the points with the same value of x are identical
and that it would therefore be reasonable to group them into the same cluster. However,
the extremal coefficient θs1,s2 is close to 2, so the points s1 and s2 will likely not be grouped
into the same cluster by the EDC clustering. The same holds for the points s3 and s4. In-
stead, pairs of points with a low extremal coefficient, like for example (2, 2) and (3, 2) will
be grouped together even though the dependency structures around these points differ.
Indeed, if we apply the EDC clustering to the true values of the extremal coefficients, we
obtain the clusters depicted in Fig. 6.2, confirming the theoretical considerations we just
made.

6.2.2 Clustering based on local estimates

An approach that is expected to be more suitable to finding spatially stationary regions
is based on the direct comparison of the structures of extremal dependence around two
points. We assume that for each point s ∈ S, the extremal coefficients form a locally elliptic
structure, that is, for all points t ∈ S in the vicinity of s the extremal coefficient θs,t can be
approximated by Rα(∥As(s − t)∥) for some transformation matrix As and some α ∈ (0, 2]

(fixed on the whole process), with Rα(x) = exp(−xα) as in Section 6.2.1. This is obviously
true for stationary extremal-t processes and Huser and Genton (2016) show that it is also
true for the non-stationary processes they designed, so we do not consider this to be a too
severe restriction. Fixing a small ϵ > 0 and choosing values for the global parameters α
and ν, we obtain for each of the locations t ∈ T at which data are given an estimate for At
by using composite maximum likelihood on the sum of the pairwise log-likelihoods for
all pairs (t, u), u ∈ U(t) := {u ∈ T

⃓⃓
∥t − u∥ < ϵ}. Depending on the spatial structure of T ,

some isolated points may have to be excluded beforehand to ensure that U(t) is always of
a sufficient size.

In order to identify structures in the estimates better and to reduce the influence of
outliers, we apply spatial smoothing to the estimated parameters a, b, and γ at every point.
In our application, to smooth the values at t ∈ T we used local averages on a vicinity of
t. Other spatial smoothing algorithms, for example kernel smoothing, are also possible
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Figure 6.1: Illustration of the non-stationary max-stable process on S = [−5, 5] × [−5, 5]
given by the matrix parameters as = 2, bs = (x + 5)/2, s = (x, y) ∈ S and γs = 0 and
the global parameters ν = 5, α = 1. Displayed are the pairwise extremal coefficients for
the points in S relative to (a) s1 = (−3, 2), (b) s2 = (3, 2) , (c) s3 = (−3,−2) and (d)
s4 = (3,−2).
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Figure 6.2: The results of the EDC clustering algorithm, applied to the true extremal co-
effients of the non-stationary max-stable process from Fig. 6.1 using a number of clusters
of 5.

(see for example Wand and Jones, 1994). This results in an estimated matrix Ât for each
location t ∈ T . If we group points with similar values of Ât into one cluster, it is reasonable
to assume that within this cluster spatial stationarity holds approximately.

To determine which of the matrices are considered ’similar’, we compare the shapes
of the elliptical level sets corresponding to them using the Jaccard index. Let Ls := {h ∈
R2
⃓⃓
||Âsh|| ≥ 0.5}. We define a dissimilarity measure as

D2(t1, t2) = 1− |Lt1 ∩ Lt2 |
|Lt1 ∪ Lt2 |

(6.2)

with | · | denoting the area. The value of 0.5 in the definition of Lt is arbitrary, any other
value in (0, 1)would yield the same result. Wewill use the term Local Estimates Clustering
(LEC) for this clustering from now on.

6.2.3 A method to compare different clusterings

To compare the two algorithms, we investigate which of the resulting clusterings is better
suited to fitting stationary max-stable processes to it. Assume that we have fitted both
clustering algorithms to some data and that we have fitted a stationary max-stable process
to each of the resulting clusters. Denote the clusters of the EDC algorithm by {σ1, . . . , σp}
and the clusters of the LEC algorithm by {τ1, . . . , τq}. Each of these elements is a subset
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of T , the different clusters in one clustering are disjoint and their union is the whole set
T . Define M = {σ1, . . . , σp, τ1, . . . , τq} as the set of all clusters. Remember that for each
cluster M ∈ M, the estimated parameters of the corresponding max-stable process ψ̂M
have been calculated by maximizing the composite likelihood LM from Eq. (3.33).

Note that for either clustering algorithm,max-stable processes are fitted only to the data
within the same cluster, so if two points fall into two different clusters, a statisticalmodel for
their dependency is not provided. For this reason, it is not possible to compute or compare
the composite likelihoods on thewhole set T fromEq. (3.31), whichwould otherwise be the
standard approach for evaluating the goodness of fit. The likelihoods of the fitted processes
of the different clusters are not comparable to each other because each one of them is based
on different underlying data. However, it is possible to calculate composite likelihoods on
the intersections of clusters of the two clusterings, that is, on the sets υij = σi∩τj , provided
they contain two or more elements. On each of these intersections a stationary max-stable
process has been fitted for both algorithms, and by comparing the likelihoods the goodness
of fit of the processes on this area can be compared. This leads to ameasure for the goodness
of fit on υij for both algorithms:

L̂
EDC
i,j = Lυij (ψ̂σi), L̂

LEC
i,j = Lυij (ψ̂τj ). (6.3)

Note that both models have the same number of parameters, so we can compare the like-
lihoods directly and do not need a penalty term as in the Akaike or Bayesian Information
Criterion.

6.3 A simulation study to investigate the clustering algorithms

In this section, we compare the two clustering algorithms by means of a simulation study.
To do this, we simulate data from the Huser-Genton model we already investigated in
Section 6.2.1. Remember that we use for this model as global parameters α = 1 and
ν = 5 and as parameters for the local dependencies as = 2, bs = (x + 5)/2 and γs = 0 for
s = (x, y) ∈ S (see Fig. 6.1). We choose a horizontal and vertical resolution of the space
S = [−5, 5] × [−5, 5] equal to 0.2 and simulate data from processes with 250 independent
observations.

For the clustering algorithms, we choose a number of clusters equal to five in both
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Figure 6.3: Results of the EDC algorithm (a) and the LEC algorithm (b) applied to simu-
lated data of a Huser-Genton process as in Fig. 6.1 with 250 observations. The number of
clusters used is five. The colors within the clusters show the estimated value for parameter
b on the stationary-max-stable process that has been fitted to the data on the cluster. For
reference, the true values of the parameter bs used to simulate the data are depicted in (c).

algorithms. In a first investigation, we apply the algorithms using as global parameters
the true values of ν and α. In Fig. 6.3a and Fig. 6.3b, the clusters produced by the two
algorithms are displayed. Stationary max-stable processes are fitted to the data in the
clusters, and the color inside each cluster in Fig. 6.3a and Fig. 6.3b depicts the value of the
corresponding estimate for the parameter b. For reference, the true values of the parameter
bs are depicted in Fig. 6.3c. The true values of the other two parameters as and γs are
constant over the whole space; their estimates are also similar for all clusters and are not
depicted. It can be observed that the clusters of the EDC algorithm are similar to those
derived when applying the EDC algorithm using the true values (Fig. 6.2). In particular,
as in the theoretical case, there is considerable variation in the true values of bs within
some of the clusters. A fitted stationary process cannot account for that variation. The
LEC algorithm results in clusters that form vertical stripes, and on these clusters there
is less variation in the true values of bs. The fitted values on the clusters are therefore
often closer to the true values than for the EDC algorithm (compare Fig. 6.3b and Fig. 6.3c).

The two clustering algorithms are compared using the method described in Section
6.2.3. In Fig. 6.4, we depict the intersections of the clusters of the two algorithms. The
color of each region indicates which algorithm has the better goodness of fit there (darker
color — EDC, lighter color — LEC). It can be observed that the LEC algorithm results in
a better goodness of fit on most regions.
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Figure 6.4: Comparison of the goodness of fit of the two clustering algorithms. For each
intersection of the clusters of the LEC and the EDC algorithm from Fig. 6.3, the goodness
of fit of the two algorithms is compared. Dark blue color indicates that the EDC algorithm
has a better goodness of fit, light blue colors indicates a better goodness of fit of the LEC
algorithm.
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The above analyses present the results for just one simulation and using the true values
for ν and α. For a more general investigation, the simulation of a non-stationary process
and its investigation is repeated another 24 times. As the true values of ν and α are not
known in practical applications, we conduct the analyses also for other parameter values,
using for ν the values 3, 5, and 7 and for α the values 0.7, 1.0, 1.3. The resulting clusters
are of course slightly different each time, but the general structures that can be identified
in Fig. 6.3 stay the same (not depicted). In Fig. 6.5, for each combination of the values for
ν and α, we depict for each point s ∈ S the percentage of the 24 simulations for which
the LEC algorithms has a better goodness of fit on the cluster the point is in. It can be
observed that for each choice of the global parameter values and throughout the area of
investigation, the LEC algorithm exhibits at each point a better goodness of fit for more
than 75% of the realizations.

As a second example for a non-stationary process we use a process with parameters
as = 1 constant, bs = 3 constant and gs = (−x+5) ·π/2. The dependence structure around
each point is locally an ellipse with the angle of the major axis rotating clockwise with
increasing x (vertical for x = −5 , horizontal for x = 0, vertical again for x = 5). In Fig. 6.6a
and Fig. 6.6b we depict for one simulation the clusters produced by the two algorithms,
with the colors of the clusters indicating the value of the estimate of parameter g of the
fitted processes. We depict the true values of parameter gs in Fig. 6.6c. Again, the clusters
of the EDC algorithm group points with a high interdependency together, so their shape
follows the rotation of the ellipses (this is visible especially well in the cluster in the middle
of Fig. 6.6a and the two clusters above it), while the LEC algorithm results in clusters
that form vertical stripes and reconstruct the spatial structure in the parameter values gs,
s ∈ S better. The analysis of the goodness of fit yields similar results as for the first al-
gorithm, with the LEC algorithm being preferred in at least 75% of the cases for every point.

As a third example, we use values of as = (7.5 − ∥s∥)/2 + 1, bs = 0, gs = 0. This
time, the true spatial structure is a bit different, it does not feature vertical stripes, but
instead a circular structurewith the values of gs depending on the distance of s to the center.
This circular structure is visible in the clusters of the LEC algorithm (Fig. 6.7b). It is not
reproduced by the EDC algorithm, which results in clusters that are quite uninformative
this time, as the fitted values for a are very similar for each cluster (Fig. 6.7a). The results
for the goodness of fit are similar to those for the two examples before.



102 CHAPTER 6. CLUSTERING ALGORITHMS FOR MAX-STABLE PROCESSES

Figure 6.5: The analysis depicted in Fig. 6.4 is repeated for 24 independent simulations and
the clustering algorithms are applied using different values for the global parameters ν and
α (true values: 5 and 1.0, respectively). For each point s ∈ §, the percentage of results for
which the LEC algorithm has a better goodness of fit than EDC algorithm on the region the
point is in is depicted.
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Figure 6.6: Results of the EDC algorithm (a) and the LEC algorithm (b) applied to simu-
lated data of a Huser-Genton process with parameters as = 1 constant, bs = 3 constant and
gs = (−x+ 5) · π/2 with 250 observations. The number of clusters used is five. The colors
within the clusters show the estimated value for parameter g on the stationary-max-stable
process that has been fitted to the data on the cluster. For reference, the true values of the
parameter gs are depicted in (c).

Figure 6.7: Results of the EDC algorithm (a) and the LEC algorithm (b) applied to simu-
lated data of a Huser-Genton process with parameters as = (7.5−∥s∥)/2+1, bs = 0, gs = 0
with 250 observations. The number of clusters used is five. The colors within the clusters
show the estimated value for parameter a on the stationary-max-stable process that has
been fitted to the data on the cluster. For reference, the true values of the parameter as are
depicted in (c).
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6.4 Conclusions of this chapter and discussion

We have discussed a clustering algorithm by Saunders et al. (2021) that is used in multi-
variate extreme value theory to group an area of investigation into smaller regions. The
obtained regions are then used to fit parametric stationary max-stable processes to the
data. This allows the application of such processes also to data for which stationarity on
the whole area cannot be assumed. While clustering is in general a sensible and valid
approach to the problem, the dissimilarity measure used previously is not necessarily
suitable to find regions in which stationarity can be assumed, as we have discussed for
one concrete example of a non-stationary max-stable process. We propose a different
dissimilarity measure based on local estimates and demonstrate in a simulation study that
for three different examples of non-stationary data we used, it indeed reconstructs the
dependency structures of the data more accurately and that the processes that were fitted
to the data on the clusters mostly have a better goodness of fit. For more general results
regarding the performance of the two methods, a more formal and mathematically more
strict analysis is required.

The clusters derived using the method by Saunders et al. (2021) do have a useful and
meaningful interpretation in another context: They show regions in which there is a high
extremal dependency between pairs of points. Therefore, a large cluster in a certain area
indicates a tendency for more large-scale extreme events in that region. Finding such
clusters is of relevance for example in the context of insurances or risk management.

The clustering approach in this chapter and the subsequent fitting of max-stable
processes requires choosing two global parameters, and so far, we have not found a
systematic method to do so. For exactly two different choices of the values, the clusters
could be calculated and the goodness of fit of the processes could be compared using the
measure from Section 6.2.3. Unfortunately, this measure does not allow for the comparison
of more than two clusterings at the same time. Carrying out a lot of pairwise comparisons
is time-consuming and does not seem to be a very convenient approach. Besides, there is
no guarantee that the results of these pairwise comparisons do not contradict each other.
A more sophisticated approach is definitely desirable here.

A more general limitation with the approach of using cluster algorithms and then
fitting regional max-stable models is that while those models can be used to describe the
data within one cluster and also give meaningful information about how dependence
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structures vary spatially, they do not enable us to model directly the dependency between
two points that are in different clusters. In this regard, the clustering approach is inferior to
non-stationary max-stable processes like the ones presented in Huser and Genton (2016)
(which are on the other handmore difficult to apply and require the availability of suitable
covariates). It is an interesting future research direction to use the max-stable processes
that have been fitted on the clusters and try to find a way to combine and extend them to a
parsimonious process covering the whole area of investigation.

Another possible application of the clustering algorithms is the spatio-temporal investi-
gation of extremes. When modeling changes over time using GEV distributions with time-
dependent parameters like it was done in the last chapter, the data can be transformed to
have a unit Fréchet distribution over the whole time frame of investigation. By applying
clustering algorithms to the transformed data at different time windows, it is possible to
combine the temporal investigation of changes in extremeswith an investigation of changes
in the spatial dependence structure.
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Chapter 7

Final considerations

7.1 Conclusions

In this chapter, we will recapitulate the results from the previous chapters and outline
how they contributed to answering the research questions we laid out in the introduction.
Afterwards, we will give a brief outlook and discuss potential areas for further research
based on the methods and results used here.

1. Using historical runs of climate models, how well do the statistical properties of climate
extremes in the simulated data match with those of observed climate extremes?

To address this question, we compared annual precipitation maxima between climate
models, in particular the AWI-ESM, and an observational data set. We compared empirical
statistical parameters and the estimated parameters of GEV distributions which we fitted
to the data. We also used a clustering approach to perform an analysis of the spatial
concurrence of extremes in both data sets. As a result, we could observe that the distri-
butions of historical extremes are similar for both data sets in many regions of the world.
However, we also identified larger regions of over- and underestimation of extremes by
the climate model. These misestimations often consist of a misestimation of both the
location and the scale parameter of the GEV distribution, while the shape parameter of
the GEV distribution (which indicates the heavy-tailedness) is in general similar between
model and observational data. Because of the difficulties in reliably estimating the shape
parameter this last result has to be taken with caution.
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The areas in which misestimation takes place are predominantly mountainous areas
like the Andes or the Himalayas. This might be the case due to the fact that the territory
in those areas is very fine-grained, and the climate is very much influenced by local small-
scale topography. As climate models perform their calculations on spatially averaged grid
cells, a complex and variable topography inside a grid cell cannot be adequately modeled
and the resulting extremes are not accurately described. In addition to the AWI-ESM,
several other CMIP6 models are also analyzed, and a comparison of the model accuracy
between the models shows a tendency for the higher-dimensional models to capture the
extremal behavior better, supporting this explanation further.

The cluster analysis we performed identifies regions with a tendency for concurrent
extremes. There is generally a good agreement between the clusters for model and
observational data. Also the estimated number of clusters is in general similar for both
data sets, with a slight tendency for a higher cluster number for the model data. Since
it is mostly large-scale weather events and teleconnections contributing to concurrent
climate extremes, this may indicate that the basic physical behavior underlying them is in
general well captured by the climate models. The lower number of clusters when applying
the clustering algorithms to climate model data might indicate that the complexity and
regional variability of the climate system is not completely reproduced by the models.

To conclude, the statistical distributions of extremes are in general well met by the
climate models, which motivates the use of climate models also to predict future changes
in extremes. In mountainous regions, however, the accuracy of the models is reduced,
indicating that the spatial resolution of the models is not sufficient for an accurate analysis
of those regions. The future predictions of extremes in those areas should therefore be
taken with caution. The accuracy of the modeling of extremes in mountainous areas may
be improved in future generations of climate models that have a higher spatial resolution.

2. How do climate models predict climate extremes to change in the future?

To address this question, we analyzed future simulations of temperature extremes for
several climate models. We fitted non-stationary GEV distributions to the data, with the
parameters of the distributions changing in a slow–fast–slow pattern. The changes in the
different distribution parameters are allowed to take place independently and at varying
time periods, and we tested and compared several different statistical models.
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We can conclude that according to the climate models, the total magnitude of extremes,
measured by analyzing the 95% quantiles of the annual maxima, will increase strongly
over time in most regions of the world. A particularly large change is predicted over land,
and this corresponds to the well-known fact that global warming is stronger over land
than over the ocean. The different models in general agree on this pattern, however, they
differ widely in terms of the predicted amounts of the change.

A geographically varying development can be detected not only with regard to the
magnitude of changes, but also with regard to their timing, and to the extent to which the
changes in extreme events are caused by changes in the location, the scale or the shape of
the distribution of the annual maxima. Changes over the ocean take place more gradually
while changes over land are faster. In most regions, changes in mean and variance take
place simultaneously while the shape parameter of the distribution is predicted to stay
constant. In the Arctic region, however, a different picture emerges: There, climate
variability is predicted to increase rather quickly in the second half of the twenty-first
century, probably due to the melting of ice, whereas changes in the mean values take
longer and come into effect later.

3. How can statistical methods to describe the spatial structure of extremes be improved?

To address this question, we investigated regionalization approaches for max-stable
processes. Max-stable processes can be used for the investigation of climate extremes
and their spatial dependencies on a continuous area. Most existing parametric models
of max-stable processes assume spatial stationarity and are therefore not suitable for
the application to data that cover a large and heterogeneous area. For this reason, it has
recently been proposed to use a clustering algorithm to divide the area into smaller regions
and fit parametric max-stable processes to the data within those regions.

This clustering algorithm groups points together if their pairwise extremal coefficient
is low, which implies a strong extremal dependency of the points. As pointed out in the
chapter, this is not necessarily a good criterion for the clustering, as there are cases in
which it results in regions on which spatial stationarity is not a reasonable assumption.
We propose an alternative clustering algorithm which is based on the comparison of local
estimates of the dependence structures around the different points. In a simulation study
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we demonstrate that this new approach can lead to improved results.

7.2 Outlook

The validation of climate models demonstrated that current global models still have
difficulties in mountainous areas with their fine-grained topography. As mentioned,
future climate models with a higher spatial resolution could provide an improvement
there. Another approach that is currently already applicable is the investigation of regional
climate models. Those models can be run with higher resolutions than the global models,
and a comparison of global and regional climate models in terms of extremes would
provide valuable insights.

This investigation of future changes in climate extremes demonstrated that extremes
are predicted to change strongly in the future, highlighting the dangers that are associated
with that. The currently observable changes inmagnitude and frequency of extreme events
already cause ”widespread adverse impacts on food and water security, human health and
on economies and society and related losses and damages to nature and people” (IPCC,
2023). With even stronger extremes in the future, these problems will becomemore severe.
In our analysis it could be observed that changes in extremes depend strongly on the
region, and this regionally varying behavior needs to be taken into account when assessing
the impacts of climate change. However, our study also pointed out that there are still
large discrepancies between the predictions of the different models, even though they have
been run using the same RCP scenario, indicating that the extent of the changes is still con-
troversial. Further investigations on the causes of those discrepancies would be instructive.

The study of the different clustering algorithms to model spatial dependencies of
extremes suggested that our newly proposed method can address some limitations of the
previous one. As of now, these results rely mostly on simulation studies. Amathematically
more sound treatment of the topic, maybe including proofs of some of the properties of the
different cluster algorithm, would be desirable. Afterwards, an application of the methods
to climate model data would be a logical next step to investigate spatial dependencies of
extremes in climate model data in more detail.

The clustering algorithms can also be applied to data that is not stationary over
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time and to which time-dependent GEV distributions have been fitted (like in Chapter
5). When working with such data, clusters can be calculated for subsets of the data on
different time intervals. The comparison of the clusters would shed light on how spatial
dependencies change over time. Such an investigation could be a first step towards a
complete spatio-temporal model for extremes on a global scale.

Another possible field of application of the results in this work is the investigation of
risks associated with extremes. The analysis of such risks is crucial in particular for insur-
ance and reinsurance companies. While univariate risk analysis is well-established, multi-
variate spatial analysis of risks is still an active research topic. Recently, one approach to
investigate spatial risks using max-stable processes has been developed by Koch (2017).
It would be interesting to combine this approach with non-stationary max-stable models
or with clustering approaches, and on the other hand also to investigate possible temporal
changes of risks. According to the IPCC, ”[d]epending on the level of global warming,
the assessed long-term impacts [of climate change] will be up to multiple times higher
than currently observed for 127 identified key risks, e.g., in terms of the number of affected
people and species. Risks [...] are projected to become increasingly severe with every in-
crement of global warming” (IPCC, 2023). The methods and approaches presented in this
work and the results that were derived from them might offer possibilities to quantify fu-
ture risks more accurately and, in doing so, to lay ground for the evaluation of suitable
adaptive measures to mitigate their effects.
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Ø. Seland, M. Bentsen, D. J. L. Oliviè, T. Toniazzo, A. Gjermundsen, L. S. Graff, J. B. De-
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Ø. Seland, M. Bentsen, D. J. L. Oliviè, T. Toniazzo, A. Gjermundsen, L. S. Graff, J. B. De-
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