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Abstract

Density functional tight binding (DFTB) theory is an approximate method de-
rived from density functional theory (DFT). Accurate and transferable parametriza-
tion is one of the key issues of DFTB development. Over the past two decades,
machine learning (ML) has expanded significantly in physics, chemistry, and mate-
rials science, which also shows a potential application in the DFTB parametrization.
This thesis concentrates on the parametrization of DFTB through both traditional
and machine learning based methods.

First, we have focused on parametrizing a solid-state battery system consisting
of lithium, phosphorus, sulfur, and chlorine elements, which shows great potential
as a solid-state electrolyte. The resulting DFTB parametrization of the electronic
and repulsive components yields reasonable accuracy of band structures and op-
timized geometries of DFTB calculations, comparable to the results of DFT cal-
culations. Second, we have introduced the tight-binding machine learning toolkit
(TBMaLT), an open source framework designed to incorporate physical insights into
machine learning to predict quantum mechanical properties. The toolkit contains
the DFTB layer with flexible interfaces that allow for the generations of Hamiltonian
and overlap matrices. We have comprehensively described the DFTB layer and ma-
chine learning methodologies employed in TBMaLT, and a detailed analysis of the
implementation features.Third, we have explored the applications of TBMaLT in
molecular systems. The DFTB-ML workflow enables the optimization of electronic
properties by generating two-centre integrals, either by training the basis function
parameters (compression radii) or directly optimizing diatomic integrals. The on-
site energies were also tuned. All machine learning approaches have successfully
improved electronic property predictions, and multiple electronic properties can
be optimized simultaneously for all approaches. Training on the basis functions
yielded more consistent results of different electronic properties, with the obtained
Hamiltonian and overlap matrices falling within physically reasonable ranges. Fi-
nally, we have extended the DFTB-ML framework to incorporate periodic boundary
conditions, including bulk systems with different lattice types, defect systems, and
slab systems consisting of silicon and carbon elements, as the training and testing
systems. The reference property for the machine learning was based on band struc-
tures obtained through DFT calculations using a hybrid functional. The DFTB-ML
model enables the improvement of band structure calculations across various chem-
ical environments, showcasing the capacity of the DFTB-ML framework to predict
band structures with high accuracy of the hybrid functional level at an approximate
method computational cost. Besides, the DFTB-ML model also exhibits excellent
scaling transferability, enabling training on small systems and prediction on larger
ones.
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1 INTRODUCTION

1 Introduction

In the last several decades, there has been an increase in the accumulation of data from
computational simulations and experiments, along with high-throughput computational
approaches. As a consequence, the analysis of emerging data and extraction of knowl-
edge requires the utilization of various innovative techniques, including machine learning.
Within the field of computational science, density functional tight binding (DFTB) theory
is an approximate method that enables efficient simulation of large systems. To perform
DFTB calculations on a specific system, a parametrization process is required to generate
the so-called Slater-Koster tables for different atomic pairs. It is worth noting that the
accuracy of DFTB calculations heavily depends on the quality of the chosen parametriza-
tion. With the rapid development of machine learning algorithms and hardware, machine
learning applications have expanded significantly in physics, chemistry, and materials
science, with potential applications in the DFTB parametrization.

This thesis concentrates on the parametrization of DFTB through traditional and ma-
chine learning-based approaches. In this chapter, we will provide a brief overview of the
development of computational science. We will then discuss the development of artificial
intelligence and its applications in data-driven science. Next, we will focus on DFTB
and its parametrization, as well as the state-of-the-art applications of data-driven tech-
niques in DFTB and other semiempirical methods. The successful combination of machine
learning and theoretical methods has motivated our work in this thesis, which focuses on
improving the performance of DFTB calculations by incorporating machine learning.

1.1 Development of the Science Paradigms

The development of scientific paradigms has reshaped scientific research. Schleder [1]
provides a historical perspective on the development of scientific paradigms, as depicted
in Figure 1.1. The first paradigm was an empirical science paradigm, while the sec-
ond paradigm that emerged in the last few centuries focused on theoretical science and
generated many successful theoretical models, including the Schrödinger equation. The
complexity of the Schrödinger equation [2] makes it challenging to generate analytical so-
lutions for real material systems. Consequently, many efforts have been made to simplify
the Schrödinger equation, and methods in computational science have become feasible
solutions in various fields [3]. Hartree-Fock theory (HF) and density functional theory
(DFT) have been widely used among these methods. In particular, DFT has become one
of the most popular methods for electronic structure calculations due to its high accuracy
and efficiency. For larger systems, approximate methods such as DFTB can provide rea-
sonable accuracy while computationally significantly more efficient than DFT. Developing
efficient and accurate computational methods has played a significant role in advancing
scientific research, leading to a third paradigm. With the aid of computational methods,
scientists are now able to tackle problems that were previously impossible to solve with
reasonable accuracy.

Data-driven techniques, such as artificial intelligence (AI), have demonstrated their
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1 INTRODUCTION 1.1 Development of the Science Paradigms

Figure 1.1: The science paradigms in human history: empirical, theoretical, computa-
tional, and data-driven. Adapted from reference [1].

power in many scientific areas [1, 4, 5]. AI is a general concept that aims at creating
intelligent machines. In 1950, Alan Turing posed the question, ”Can machines think?”
which became known as the Turing test [6]. The Turing test involves determining whether
a machine can exhibit human intelligence. The last several decades have witnessed the
emergence of AI or machine learning as a powerful tool in various fields, including nat-
ural language processing (NLP) [7, 8] and computer vision (CV) [9]. Deep learning is a
subset of the machine learning algorithm family based on neural networks (NNs). NNs
are inspired by biological neurons and have been widely used in various fields, such as
speech recognition, object recognition, object detection, and genomics [10]. The first
generation of NNs is the multi-layer perceptron (MLP) [11], which was introduced in
1967 by Amari. In the 1980s, the backpropagation algorithm [12] was developed and
applied to convolutional neural networks (CNNs), which are particularly effective for
image-processing tasks. The field of deep learning has experienced substantial progress
in recent times, particularly with the introduction of notable techniques such as gen-
erative adversarial networks (GANs) [13], long short-term memory (LSTM) [14], and
transformer [15]. These developments have profoundly impacted the field, leading to sig-
nificant improvements in various applications. Recently, transformer-based models [15]
such as generative pre-trained transformer (GPT) [16], and bidirectional encoder repre-
sentations from transformers (BERT) [17] have achieved state-of-the-art performance in
various fields, including language processing, sentiment analysis, and science.

Data-driven science can be a pure artificial intelligence model or a combination of ap-
proaches developed in the computational science paradigm. Combining machine learning
with underlying physical models has shown promising results in producing more trans-
ferable predictions of quantum mechanical properties. Previous reviews have extensively
covered the application of machine learning in these fields [4, 18, 19, 20]. Machine learn-
ing based force fields show great promise by combining the accuracy of ab initio methods
with the efficiency of force fields. Two widely used machine learning algorithms are kernel
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1 INTRODUCTION 1.2 DFTB as a Computational Approach

based and neural networks based methods, both of which have succeeded in numerous
applications. For example, in the field of atomic simulations, the Gaussian approxima-
tion potential (GAP) [21] based force field has reproduced DFT calculations for bulk and
nanostructured phosphorus systems and has been used to calculate the transition between
molecular and network liquid phases. Neural networks based force fields typically extract
distance and angle information from a set of coordinates to reproduce energies, potential
energy surfaces, and other properties. Examples include the Behler and Parrinello neural
network (BPNN) [22] and the deep tensor neural network (DTNN) [23].

1.2 DFTB as a Computational Approach

Many efforts have been made to simplify the Schrödinger equation. DFT is a quantum
mechanical method used to describe the physical properties of atoms, molecules, and
solids. Hohenberg and Kohn proposed the fundamental principles in 1964 [24], and later
the so-called Kohn-Sham equation [25] made DFT a more practical tool for theoretical
calculations. The key idea of DFT is based on the electron density as the fundamental
variable, which avoids the ”exponential wall” of the computational complexity as found
in wavefunction methods. By applying the self-consistent field method (SCF), we can
solve the Kohn-Sham equation and generate physical properties. However, approximate
methods, such as DFTB, are practical choices for large systems with more than hundreds
of atoms.

The non-self-consistent-charge DFTB (non-SCC DFTB) is an approximate method de-
rived from DFT and is based on a linear combination of pseudo-atomic orbitals (LCAO)
basis set [26]. The self-consistent-charge DFTB (SCC-DFTB) method has been de-
rived [27] by applying the second-order expansion of the Kohn-Sham total energy in DFT
with respect to the charge fluctuations. Currently, Hamiltonian and overlap matrices for
DFTB calculations are built based on pre-calculated parameter sets, and no integrals need
to be calculated during runtime. This feature makes the computational speed comparable
to other semiempirical simulation methods. The accuracy of DFTB calculations depends
on the pre-calculated Slater-Koster tables obtained from the DFTB parametrization. The
parametrization of DFTB can be classified into two parts: electronic parametrization and
repulsive parametrization. Numerous approaches have been developed to generate both
sets of parameters. Electronic parametrization usually involves tuning the basis parame-
ters to minimize the errors of band structures between DFT and DFTB calculations. On
the other hand, the repulsive parametrization is usually based on energies from a series
of geometries. With the electronic and repulsive parametrization, Slater-Koster tables
can be generated and are ready for DFTB calculations. The good balance between effi-
ciency and accuracy makes DFTB suitable for large systems and large time scales when
compared with DFT. DFTB has been widely applied in various fields, including physics,
chemistry, materials science, and biology [28, 29, 30]. These applications include large
organic molecules [28, 31], metal-organic frameworks [32], and proteins [33, 34].
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1 INTRODUCTION 1.2 DFTB as a Computational Approach

Electronic Parametrization

The parameters to be tuned in electronic parametrization are responsible for confining
the atomic orbitals and the electronic densities [27, 35]. The confinement of orbitals and
electronic densities can improve the performance of DFTB calculations since the orbitals
and densities of free atoms are usually too diffuse and unsuitable for calculations of accu-
rate two-centre integrals [35]. The parameters to be tuned in electronic parametrization
are so-called compression radii.

Regarding electronic parametrization, previous studies suggest that reasonably accurate
results can be obtained by employing a compression radius that is 1.85 times the covalent
radius of the corresponding elemental species [35]. The empirical values based on covalent
radius can not satisfy the electronic parametrization in many systems, and the compres-
sion radii need further tuning in many cases. Many methods and toolkits [36, 37, 38] have
been developed to generate and optimize the parameters in electronic parametrization.
Markov et al. developed a toolkit SKPAR [39] using particle swarm optimization (PSO),
which can be used to optimize electronic parameters in DFTB, such as compression radii.
Jenness et al. [40] developed an automatic parametrization which optimises scaling fac-
tors for the covalent radii in the confinement term without the need for empirical fitting.
Then the optimized scaling factor can be used for generating diatomic Hamiltonian and
overlap integrals.

With the electronic parametrization of DFTB, many parameter sets can be used for
DFTB electronic calculations. Wahiduzzaman et al. [38] proposed a parametrization
scheme to generate electronic parameter sets of DFTB that covers the periodic table.
The band structures were tested on over 100 systems using the generated parameter set
that outperformed band structures from previous parameters [38]. Markov et al. [41, 42]
developed a parameter set siband-1-1 which contains DFTB electronic parametrization
for Si, O and H systems and this parameter set can reproduce band structures of Si/SiO2

from experimental values.

Repulsive Parametrization

Repulsive parametrization enables DFTB to predict total energies and forces. The
repulsive parametrization aims to achieve results close to reference values, usually DFT.
The physical properties used in the repulsive parametrization can be energies, forces
or Hessians [43]. Many toolkits have been developed to generate repulsive terms. The
methods used to generate repulsive term includes genetic algorithms (GAs) [44], PSO [36],
curvature constrained splines (CCS) [45, 46] and Chebyshev interaction model for efficient
simulation (ChIMES) [47].

In the early stage of the repulsive parametrization, the fitting process has been hand-
constructed [27] for diatomic element pairs. Knaup et al. [48] tried the initial step towards
automating the fitting of the repulsive potential using splines combined with a genetic al-
gorithm. Bossche et al. [44] developed TANGO (Tight-binding Approximation eNhanced
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1 INTRODUCTION 1.3 Combining Machine Learning and Approximate Methods

Global Optimization), which can realize an automatic parametrization for the pairwise
repulsive potentials. Pairwise splines have been frequently used in repulsive parametriza-
tion [48]. The common problems of splines are oscillatory behaviour and nonmonotonocity.
Krishna et al. [46] proposed constraints on the curvature of the repulsive potential to solve
the aforementioned problems. Two-body potentials lack flexibility for large data sets and
complex chemical environments. A many-body Chebyshev polynomials [47, 49] has been
applied for repulsive potential fitting and achieved promising results in various systems.
With parameters from repulsive parametrization, DFTB can be used to calculate energies
and forces. One popular parameter set mio-1-1 [27] has been developed and widely used
in energy calculations and geometry optimizations for organic molecules. The organic
and biological systems (3ob-3-1) parameter set [50] has an overall improved performance
compared with the mio-1-1 set, especially for non-covalent systems, and hydrogen bond
in the water dimer.

1.3 Combining Machine Learning and Approximate Methods

Approximate methods derived from HF and DFT [51, 52] are often used for systems that
can not afford the use of more accurate methods like DFT and HF. Further efforts are
required to enhance the formalism and parametrization of these approximate methods,
in order to achieve a reasonable level of accuracy for diverse and intricate chemical en-
vironments. Despite the efforts, the approximated formalism and parameters limitation
restricts the applications of the approximate methods.

The machine learning technique in the fourth paradigm can be a promising solution
to the aforementioned problems. Machine learning combined with approximate methods
have been applied and achieved significant improvements [53]. The combination of ma-
chine learning and approximate methods aims to leverage the strengths of both approaches
while mitigating their respective weaknesses. Approximate methods are known for their
transferability and quantum insights, while machine learning excels in predicting accurate
physical properties and extracting patterns from complex chemical environments. The
most straightforward method of combing machine learning and approximate methods (or
low-level methods) is ∆-machine learning [54]. ∆-machine learning trained the difference
between approximate methods and more accurate reference data. ∆-machine learning
has been applied in various applications, such as improving semiempirical method PM7
model performance [55], improving solution-phase molecular properties predictions [56],
etc.

Another popular strategy [57, 58] is incorporating machine learning with static pa-
rameters in semiempirical methods. Zhou et al. [57] have developed an interpretable
Hamiltonian-based model by incorporating a quantum chemistry framework into a deep
neural network. This was achieved by replacing static parameters with machine-learned
values inferred from the local environment. The strategy of incorporating machine learn-
ing with parameters in semiempirical methods has been accelerated by the development
of machine learning frameworks, such as PyTorch, which enables easy parameter opti-
mization with the help of backward gradient updates [59].
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1 INTRODUCTION 1.4 Outline

When combining machine learning and DFTB, most of the previous work focuses on
repulsive fitting [60, 61, 62, 63, 64]. Kranz [60] used unsupervised machine learning to
learn two-body repulsive potentials. Panosetti et al. [64] proposed kernel based meth-
ods and displayed significantly improved accuracy for force predictions compared with
3ob-3-1 set. Stöhr [61] used a deep tensor neural network to learn many-body repulsive
potentials. Bissuel and co-workers [62] investigated the machine-learned repulsive poten-
tials for the pure silicon system and achieved good performance on energetic, vibrational,
and structural properties. Besides, ∆-machine learning [63, 65] has emerged as a promis-
ing solution for accurate DFTB calculations. This approach utilizes machine learning
techniques to predict the energy difference between DFTB and reference energies. These
previous investigations show that machine learning based repulsive potential can improve
the accuracy and transferability significantly compared with previous pairwise repulsive
potential.

For incorporating DFTB electronic parametrization and machine learning, Li [66] used
spline or machine-learned models to generate the diatomic Hamiltonian integrals for
DFTB calculations, leading to improved accuracy of electronic properties. The lack of
well-defined basis functions in machine learning methods has limited their extensibility
and transferability, rendering them unable for molecular orbital calculations. To address
this limitation, an interesting research topic is to optimize and predict chemical envi-
ronment adaptive basis function parameters to improve extensibility and transferability.
This research topic uses a similar strategy in previous work [57, 58], incorporating machine
learning with static parameters in semiempirical methods. This thesis explores this strat-
egy by optimizing the compression radii to ensure a well-defined basis. We compare the
extensibility and transferability of this method to the method of generating Hamiltonian
integrals directly (without a well-defined basis) obtained from machine learning.

For electronic properties in periodic boundary conditions, if we extend from DFTB
to more general tight binding methods, many work using machine learning to optimize
tight binding parameters to improve band structure performance [67, 68, 69]. Previous
work includes using pure machine learning models or incorporating machine learning with
physical models to predict the density of states (DOS) or band structures. Peano and
coworkers [67] combined tight binding and deep learning to rapidly explore and optimize
band structures and classify their topological characteristics. Knøsgaard and cowork-
ers [68] reproduced GW band structures of 2D materials using machine learning-based
DFT calculations. Schattauer and coworkers [69] employed machine learning to derive
tight-binding parametrizations for the electronic structure of defects with DFT accuracy
level. These applications show that machine learning can be applied in various chemical
environments, including molecules and solids.

1.4 Outline

The field of data-driven science has many successful examples, with the combination of
physical models and machine learning often leading to accurate and transferable results.
This thesis presents a novel approach of combining DFTB with machine learning to achieve
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1 INTRODUCTION 1.4 Outline

more accurate DFTB calculations.

Our work begins by developing parameters for electronic and repulsive parametrization
in lithium-ion batteries (LIBs), enabling accurate predictions of electronic band structures
and geometry optimization. We demonstrate the accuracy of our DFTB parametrization
by comparing band structures and optimized geometries with DFT results.

Motivated by the successes of data-driven science, we have implemented the tight bind-
ing machine learning toolkit (TBMaLT), an open source framework that allows for stan-
dard DFTB calculations, high throughput DFTB calculations, and DFTB-ML framework
for DFTB parametrization.

We employ this DFTB-ML framework in TBMaLT for molecular systems, utilizing
three distinct approaches to construct Hamiltonian and overlap matrices for DFTB cal-
culations. These approaches involve optimizing basis function parameters, which can
be done through global or local optimization. Additionally, we also explored the direct
optimization of the Hamiltonian and overlap integrals.

Finally, we have extended our framework to periodic boundary conditions. We have op-
timized band structures of bulk, slab, and defect systems together with hybrid functional
accuracy, enabling accurate band structure calculations with low computational cost.

7



2 THEORETICAL REVIEW

2 Theoretical Review

This chapter presents the theoretical foundations used in this work, primarily focusing on
DFT and DFTB theory. The chapter begins with an overview of solutions and approxi-
mations to the many-body Schrödinger equation (MBSE) and traces the development of
modern DFT theory. We introduce key concepts such as the Hohenberg-Kohn theorem,
the Kohn-Sham method, and the development of exchange-correlation functionals. Ad-
ditionally, we introduce DFTB theory, beginning with the approximation from standard
DFT and progressing to DFTB with second-order and third-order corrections. As the
performance of DFTB is heavily dependent on its parametrization, we also describe some
widely used DFTB parametrization methods.

2.1 Many-Body Schrödinger Equation

For a stationary MBSE, with nuclei positions R and electron positions r, the equation
can be expressed as:

ĤΨ({ri}, {Ri}) = EΨ({ri}, {Ri}), (2.1)

where Ĥ is the Hamiltonian operator, Ψ({ri}, {Ri}) is the wavefunction of nuclei and
electrons, E is the energy. Hamiltonian operator consists of the kinetic energy term of
the electrons T̂ e, the kinetic energy term of the nuclei T̂ I , the nuclei-nuclei interaction
VI−I, the electron-electron interaction Ve−e and the electron-nuclei interaction Ve−I . The
Hamiltonian in atomic units can be written as:

Ĥ = −1

2

n∑︂
i

∇2
i −

N∑︂
I

1

2
∇2

I +
1

2

n,n∑︂
i ̸=j

1

|ri − rj|
+

1

2

N,N∑︂
I ̸=J

ZIZJ

|RI −RJ |
−

n∑︂
i

N∑︂
I

ZI

|ri −RI |
, (2.2)

where n and N are the numbers of electrons and nuclei respectively, and ZI is the charge of
nuclei I. Many efforts have been made to simplify the MBSE [70, 71, 72, 73, 74, 75, 76, 77],
with the key issue being to reduce the computational expense while still preserving an
acceptable level of accuracy.

Because nuclei are much heavier than electrons, Born and Oppenheimer [70] assumed
that the electrons and nuclei can be treated separately, and the electrons are assumed to
respond instantaneously (adiabatically) to changes in the nuclei. The electronic Hamil-
tonian in the Born-Oppenheimer (BO) approximation is expressed as:

Ĥelect = −1

2

n∑︂
i

∇2
i −

N∑︂
I

n∑︂
i

ZI

|RI − ri|
+

1

2

n,n∑︂
i ̸=j

1

|ri − rj|
. (2.3)

The BO approximated electronic Schrödinger equation is still too complex to be solved,
and many approaches [71, 72, 73, 74] have been developed to generate feasible solutions
to simplify the MBSE further. One of the approaches was introduced by Hartree in
1927 [71, 72]. The wavefunction in the Hartree approximation is written as a product of
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2 THEORETICAL REVIEW 2.2 Density Functional Theory

single-particle wavefunctions Ψ({ri}) = ψ(r1)ψ(r2) . . . ψ(rN). This leads to the following
eigenvalue problem of the single-particle wavefunction:[︃

−1

2
∇2 + Vext(r) +

∫︂
n(r′)

|r− r′|
dr′

]︃
ψi(r) = ϵiψi(r), (2.4)

where the first part is the kinetic term, and the second term is the external potential which
is the potential for attraction to the nuclei. n(r) is the electron density and ϵi are the
eigenvalues. Later, Slater and Fock [73, 74] noted that the Hartree ansatz does not yield
antisymmetric wavefunctions. One solution to this problem is using Slater determinants
so that the corresponding wavefunction in the Hartree-Fock (HF) method is expressed as
Ψ({ri}) = A

∏︁N
j=1 ψ(rj), where A is the antisymmetrizing operator. The spin-unpolarized

formalism for the closed-shell HF equation is

EHF =
∑︂
i

Hi +
∑︂
ij

(Jij −Kij) (2.5)

Hi = fi

∫︂
drψ∗

i (r)

[︃
−1

2
∇2 + Vext(r)

]︃
ψi(r) (2.6)

Jij =
1

2
fifj

∫︂∫︂
dr1dr2ψ

∗
i (r1)ψi(r1)

1

r12
ψ∗
j (r2)ψj(r2) (2.7)

Kij =
1

4
fifj

∫︂∫︂
dr1dr2ψ

∗
i (r1)ψj(r1)

1

r12
ψ∗
j (r2)ψi(r2), (2.8)

where Hi is the single-particle contribution describing kinetic energy and potential energy
of electron i, Jij is the Coulomb term, and Kij is the exchange term. The occupation
of eigenstate i is denoted as fi ∈ [0, 2]. The solution of the HF equation is obtained
through the self-consistent field (SCF) method. The HF equation includes the correct
exchange interactions but does not include the correlation effects. In order to account
for the electron correlation effects, some post-HF methods such as configuration inter-
action (CI) [78] have been developed. However, highly accurate post-HF methods are
computationally very demanding and can only be applied to small systems. Therefore,
semiempirical methods simplified from HF have been developed and can be used for large
systems. The most frequently used semiempirical methods include modified neglect of di-
atomic overlap (MNDO) [79], Austin model 1 (AM1) [80], and parametric model number
7 (PM7) [81, 82].

2.2 Density Functional Theory

The 1998 Nobel Prize in Chemistry was awarded to Walter Kohn for his development of the
DFT [83]. This section introduces the two main contributions of Kohn: the Hohenberg-
Kohn theorem [24] and the Kohn-Sham equation [25]. Subsequently, the development of
exchange-correlation functionals is briefly introduced.
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2.2.1 Hohenberg-Kohn Theorem

In 1964, the publication from Hohenberg and Kohn [24] was a milestone of modern DFT,
and two main theorems were introduced in the paper:

Theorem 1 The ground state electron density of a bound system in an external poten-
tial, except for an additive constant, determines this potential uniquely.

The first theorem can be proved by contradiction [24, 83]. Hohenberg and Kohn [24]
further defined the universal functional of density n(r)

F [n(r)] = ⟨Ψ|T̂ + Û |Ψ⟩, (2.9)

where Ψ is a functional of n(r), and T̂ and Û are the kinetic energy operator and the
Coulomb repulsion of the electron-electron operator, respectively. This universal func-
tional is valid for any number of particles and any external potential. For a given external
potential, the energy functional is

E[n(r)] =

∫︂
drVext(r)n(r) + F [n(r)], (2.10)

where Vext(r) is the external potential. With the definition of the energy functional and
the constrained condition

∫︁
drn(r) = N , where N is the number of electrons in the system,

the second theorem is:

Theorem 2 The energy functional in Eq. (2.10) is guaranteed to deliver the lowest
energy only when the input density is the true ground state density n0(r).

Based on Theorem 1, the external potential uniquely determines the electron density
for the ground state wavefunction Ψ. Theorem 2 states that for the ground state of
the system, which corresponds to the lowest energy state, the input density must be the
ground state density n0(r).

2.2.2 Kohn-Sham Method

The Thomas-Fermi (TF) theory, which dates back to 1927 and was proposed by Thomas [75]
and Fermi [76], is a rudimentary form of modern DFT. However, Kohn demonstrated that
the HF theory provides better descriptions of the atomic ground states compared to the
TF method [83]. In 1965, Kohn proposed a Hartree-like formulation based on the Hartree
equations [25], which also follows the Hohenberg-Kohn principle. This equation is the
so-called Kohn-Sham (KS) equation:

EKS[n(r)] = T [n(r)] +

∫︂
drVext(r)n(r) +

1

2

∫︂∫︂
drdr′

n(r)n(r′)

|r− r′|
+ EXC[n(r)]. (2.11)

The first term is the kinetic energy functional, while the second component denotes the
energy term due to the external potential. The third term is the Hartree term containing
the Coulomb repulsion, and the last term refers to the exchange-correlation energy term.
Notably, the last term remains a challenge for the development of DFT.
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2.2.3 Solutions of the Kohn-Sham Method

The minimization of the energy functional is a variational problem. The electron density
of single particle wavefunction Φi(r) must satisfy the following conditions:

⟨Φi(r)|Φi(r)⟩ = 1;n(r) =
occ∑︂
i

fi|Φi(r)|2, (2.12)

where fi is the occupation number. With the Lagrange parameters ϵi and applying the
variational principle at the ground state energy, we get

δ

δΦ∗
i (r)

{︂
EKS[n(r)] +

occ∑︂
i

fiϵi[1 −
∫︂
dr|Φi(r)|2]

}︂
= 0. (2.13)

Using the relation δn(r)
δΦ∗

i (r)
= 2Φi(r) and Eq. (2.13), we get[︂

−1

2
∇2 + Vext(r) + VH([n(r)], r) + VXC([n(r)], r) − ϵi

]︂
Φi(r) = 0. (2.14)

The above set of equations are the so-called KS equations. Collecting Vext, VH and VXC

into the effective potential Veff

Veff([n(r)], r) = Vext(r) + VH([n(r)], r) + VXC([n(r)], r), (2.15)

the KS equations can be written as[︂
−1

2
∇2 + Veff([n(r)], r) − ϵi

]︂
Φi(r) = 0. (2.16)

In real calculations, the single particle basis is usually expanded with a complete basis
set |φν⟩ and coefficients Ciν as |Φi⟩ =

∑︁
ν Ciν |φν⟩. The KS equations become

Ĥ|Φi(r)⟩ =
∑︂
ν

Ĥ|Ciνφν(r)⟩ = ϵi|Φi(r)⟩. (2.17)

With the multiplication of ⟨φµ| on the left side, we get the generalized eigenvalue problem
HC = ϵSC: ∑︂

ν

Ciν(Hµν − ϵiSµν) = 0, (2.18)

with Hµν and Sµν being:

Hµν = ⟨φµ|Ĥ|φν⟩ =

∫︂
drφ∗

µ(r)
[︂
−1

2
∇2 + Veff([n(r)], r)

]︂
φν(r)

Sµν = ⟨φµ|φν⟩ =

∫︂
drφ∗

µ(r)φν(r). (2.19)

In the KS method, similar to the HF method, the solution of the KS equations involves
a self-consistent problem, necessitating the use of iterative techniques to obtain a solution.
Initially, an electron density n0(r) is guessed and used to solve the Kohn-Sham equation,
which will generate a newly updated electron density. The calculation reaches convergence
when the electron density difference between two iterative steps becomes smaller than a
tolerance value.
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2.2.4 Exchange-Correlation Functionals

Reasonable approximations of the exchange-correlation functional are crucial for DFT.
Perdew and Schmidt [84] introduced Jacob’s ladder for the exchange-correlation functional
approximation. This ladder consists of five different levels, with higher rungs potentially
offering more accurate calculations but also more complicated exchange-correlation func-
tional constructions. The five levels are:

1 local-density approximation (LDA)

2 generalized gradient approximation (GGA)

3 meta-GGA

4 hybrid functional

5 random phase approximation (RPA) like functional.

In the following part, rungs 1, 2, and 4 will be briefly introduced since these methods will
be used later in this thesis.

We proceed from simple to complex. LDA has been derived from the homogeneous
electron gas model [85], and the LDA exchange-correlation energy term is written as:

EXC[n(r)] =

∫︂
drn(r)εXC[n(r)], (2.20)

where εXC is the exchange-correlation energy per electron of a homogeneous electron gas.
Previous work [83] shows that LDA achieves a 10 − 20% error in ionization energies of
atoms and dissociation energies of molecules and a 1% accuracy level in bond lengths.

LDA-based methods have been widely used in the 1970s. Later GGA-based calculations
have shown that GGA, which considers the gradient of the density for non-homogeneous
electron density situations, can significantly reduce the error of atomization energies and
total energies [86, 87].

EGGA
XC [n(r)] =

∫︂
drn(r)εXC[n(r),∇n(r)], (2.21)

In 1991, Perdew and Wang developed the PW91 functional [88] with second-order gradi-
ent expansion exchange-correlation energy, which works well in many different systems,
contributing to the improvements of energies in atoms and molecules. In 1996, the Perdew-
Burke-Ernzerhof functional (PBE) [89] was developed to address many of the problems
in PW91, and it has been widely used since then.

Hybrid functionals which incorporate some HF-like exchange can provide accurate
atomic energies and bond length calculations [90]. In 1993, Becke [91] has given an ap-
proach to construct DFT with HF exchange energy, where the exchange energy is written
as:

EB3LYP
X = 0.8ELDA

X + 0.2EHF
X + 0.72EB88

X . (2.22)
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The terms ELDA
X , EHF

X and EB88
X are the LDA exchange energy, the HF exchange energy

and the Becke88 exchange energy [92], respectively. The correlation energy is written as

EB3LYP
C = 0.19EVWN3

C + 0.81ELYP
C , (2.23)

where EVWN3
C and ELYP

C are the Vosko–Wilk–Nusair III [93] and the Lee–Yang–Parr [87]
correlation energies, respectively. Another popular hybrid functional is the Heyd-Scuseria-
Ernzerhof (HSE) functional [94, 95], which is given by

EHSE
XC = αEHF, SR

X (µ) + (1 − α)EPBE, SR
X (µ) + EPBE, LR

X (µ) + EPBE
C , (2.24)

where SR and LR denote the short-range exchange and the long-range exchange parts,
respectively. The parameter µ determines the range separation of the Coulomb term
according to

1

r
=

erfc(µr)

r
+

erf(µr)

r
, (2.25)

where the first and second terms are the SR and the LR contributions, respectively. In
the HSE06 method [95], α and µ are chosen as 0.25 and 0.2, respectively.

2.3 Density Functional based Tight Binding Theory

2.3.1 Introduction to DFTB

The Kohn-Sham equation without approximation is

E =
∑︂
i

fi

⟨︃
Φi

⃓⃓⃓
−1

2
∇2 + Vext

⃓⃓⃓
Φi

⟩︃
+

1

2

∫︂∫︂
drdr′

n(r)n(r′)

|r− r′|
+ EXC[n(r)] + EII, (2.26)

where fi is the occupation of state Φi and EII is the energy term covers the nuclei-nuclei
repulsion. When considering an approximation, one possibility is to use a reference density
n0 = n0(r) subject to a density fluctuation δn = δn(r) so that with this approximation,
we expand the total energy up to the second order:

E[n0 + δn] =
∑︂
i

fi

⟨︃
Φi

⃓⃓⃓
−1

2
∇2 + Vext + VH[n0] + VXC[n0]

⃓⃓⃓
Φi

⟩︃
+

1

2

∫︂∫︂ ′(︂ 1

|r− r′|
+
δ2EXC[n0]

δnδn′

)︂
δnδn′

− 1

2

∫︂∫︂ ′ n0n
′
0

|r− r′|
+ EXC[n0] −

∫︂
VXC[n0]n0 + EII.

(2.27)

here, δn(r) had been substituted by δn and
∫︁
dr by

∫︁
. The first line of Eq. (2.27) is the

so-called band-structure energy. The second line is the second-order correction term, and
the third line is the so-called repulsive term. In DFTB, the input density is composed of
a sum of compressed densities of neutral atoms, and there is no consideration of charge
transfer in this band-structure term. The single particle wavefunction can be expanded
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into a set of atomic orbitals φµ using a linear combination of atomic orbitals (LCAO)
ansatz with coefficients Ciµ:

Φi(r) =
∑︂
µ

Ciµφµ(r). (2.28)

To calculate two-centre integrals, the effective potential is decomposed into atomic-like
contributions. There are two ways to decompose the effective potential: the potential
superposition and density superposition. In the potential superposition, the potential
is approximated as Veff([n0, r]) ≈

∑︁
i V

eff
i ([n0

i (ri)], ri) while in the density superposition
Veff([n0, r]) ≈ Veff(

∑︁
i n

0
i (ri)). The Hamiltonian can then be written as:

HµAνA =

on−site⏟ ⏞⏞ ⏟
⟨φµA

| − 1

2
∇2 + V A

eff|φνA⟩+

crystal−field⏟ ⏞⏞ ⏟∑︂
B ̸=A

⟨φµA
|V B

eff |φνA⟩ (2.29)

HµAνB =

two−centre⏟ ⏞⏞ ⏟
⟨φµA

| − 1

2
∇2 +

{︃
V A
eff(rA) + V B

eff(rB)
Veff([n0

A + n0
B], r)

}︃
|φνB⟩+

three−centre⏟ ⏞⏞ ⏟∑︂
C ̸=B ̸=A

⟨φµA
|V C

eff|φνB⟩ , (2.30)

where A, B, and C denote the orbital centres. When the crystal-field terms are neglected,
only the on-site terms are retained in HµAνA . In DFTB, the on-site terms are the eigen-
values ϵ of free atoms instead of using compressed atoms, which ensures the correct DFT
dissociation limits. The on-site terms are

HµAνA = ϵνA , µA = νA. (2.31)

In Eq. (2.30), the three-centre terms are neglected while the two-centre terms are retained
in HµAνB , the resulting equation is

HµAνB = ⟨φµA
| − 1

2
∇2 +

{︃
V A
eff(rA) + V B

eff(rB)
Veff([n0

A + n0
B], r)

}︃
|φνB⟩. (2.32)

The wavefunctions and the atomic densities in the two-centre terms are calculated from
pseudo-atoms within a confinement potential Vconf(r):[︂

−1

2
∇2 + Veff([n0

A(r)]) + Vconf(r)
]︂
φνA = ϵνAφνA . (2.33)

The confining term is usually a harmonic potential. The pseudo-atoms can offer a better
initial guess of densities in compound systems than free atoms [35]. The confinement term
will be discussed later in detail in the electronic parametrization section. If we represent
the overlap ⟨φµ|φν⟩ as Sµν , the Hamiltonian and overlap lead to a generalized eigenvalue
problem

∑︂
ν

Ciν(Hµν − ϵiSµν) = 0. (2.34)

Solving this generalized eigenvalue problem yields eigenvalues and eigenvectors, and phys-
ical properties can be calculated based on the eigenvalues and eigenvectors.
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The second-order correction in Eq. (2.27) becomes significant for systems with chem-
ical bonding between different types of atoms. The second-order term in Eq. (2.27)
becomes [27]

E2 =
1

2

∑︂
AB

∫︂∫︂ ′
Γ[r, r′, n0]δnA(r)δnB(r′), (2.35)

where Γ represents the Hartree and XC terms. The density variation δnA of atom A can
be expanded as a series of radial and angular functions:

δnA(r) =
∑︂
lm

KmlF
A
ml(r−RA)Ylm

(︂ r−RA

|r−RA|

)︂
≈ ∆qAF

A
00(|r−RA|)Y00, (2.36)

where FA
ml denotes the corresponding radial dependency on atom A, Ylm gives the angular

dependency, Kml are expansion coefficients, and atomic charge fluctuations are Mulliken
charges qA with respect to the neutral atoms ZA: ∆qA = qA − ZA. Taking charge con-
servation into consideration, we obtain

∑︁
A ∆qA =

∫︁
δn(r). Substituting Eq. (2.36) into

Eq. (2.35), we obtain the second-order energy term:

E2 =
1

2

∑︂
AB

∆qA∆qBγAB (2.37)

γAB =

∫︂∫︂ ′
Γ[r, r′, n0]

FA
00(|r−RA|)FB

00(|r−RB|)
4π

(2.38)

Assuming an exponential decay for the charge fluctuations, the normalized spherical
charge densities are [27]

δnA(r) =
τ 3A
8π
e−τA|r−RA|, (2.39)

where the new parameter τA has been introduced. Neglecting the second-order exchange-
correlation term in the second line of Eq. (2.27) and only considering the second-order
Coulomb term, we get

γAB =

∫︂∫︂ ′ 1

|r− r′|
τ 3A
8π
e−τA|r−RA| τ

3
B

8π
e−τB |r−RB |. (2.40)

Setting R = |RA − RB| and following the transformations in a previous work [27], we
obtain

γAB =
1

R
− S(R, τA, τB), (2.41)

where S is a short-range function. When A equals to B and R = 0, we get

S(R, τA, τA)
R→0
=

5

16
τA +

1

R
. (2.42)

If we assume R → 0, the second-order contribution can be approximately expressed using
so-called chemical hardness (Hubbard parameters). The Hubbard parameters UA are the

second derivatives of free atomic energies EA from DFT (UA = δ2EA

δq2A
), and we request that

1

2
∆q2AγAA =

1

2
∆q2AUA. (2.43)
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From Eq. (2.42) and Eq. (2.43) we get the following:

τA =
16

5
UA. (2.44)

Finally, adding the band structure term and second-order term in Eq. (2.27), we obtain

E1 + E2 =
∑︂
i

fi⟨Φi|Ĥ0|Φi⟩ +
1

2

N∑︂
A,B

∆qA∆qBγAB. (2.45)

The SCC-DFTB has been derived [27] by applying the second-order expansion, and the
energy term depends on the Mulliken charge fluctuations. In SCC-DFTB, Hubbard pa-
rameters are constant and derived from DFT calculations of the free atoms. However, the
Hubbard parameters of positively charged atoms are larger than neutral atoms while the
Hubbard parameters of negatively charged atoms are smaller [96]. Therefore, in the third-
order DFTB approach, the atomic charge-dependent Hubbard U parameters have been
introduced [96]. Additionally, the so-called DFTB3 scheme also introduces a modified γh

parameter for H-X pairs to improve the electrostatic treatment within the second-order
terms, where H denotes hydrogen, and X represents another heavy atom. The modified
second-order Hamiltonian and third-order DFTB Hamiltonian can be written as

H2
µν =

Sµν

2

∑︂
C

(γhAC + γhBC)∆qC

H3
µν = Sµν

∑︂
C

(
∆qAΓAC

3
+

∆qBΓBC

3
+ (ΓAC + ΓBC)

∆qC
6

)∆qC ,

(2.46)

where ΓAB is the derivative of γAB with respect to the charge, and γh represents the
modified term for H-X pairs in the second-order Hamiltonian. Incorporating the third-
order term and modifying the second-order term improve the overall performance of DFTB
calculations, especially for hydrogen-bonded systems.

Beyond SCC-DFTB and third-order DFTB method, DFTB has been expanded for var-
ious systems and applications. The extensions of SCC-DFTB include DFTB+U [97] for
correlated materials, non-equilibrium Green’s function (NEGF) [98] for transport calcu-
lations, real-time time-dependent DFTB (TD-DFTB) for excited state simulations [99]
and DFTB with different non-covalent interactions [100, 101, 102, 103] for some chemical
and biological systems.

The last line in Eq. (2.27) is the so-called repulsive term. By approximating the repul-
sive interaction as pairwise interactions, it can be written as:

Erep =
1

2

∑︂
A

∑︂
B ̸=A

EAB
rep (|RA −RB|), (2.47)

where EAB
rep (|RA −RB|) is the repulsive interaction between atom A and B, and depends

only on the distances between atom A and B. The repulsive term is usually fitted from
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the difference between reference energies and DFTB electronic energies Eelect. The refer-
ence energies are usually obtained from DFT calculations and the electronic energies are
usually the summation of band structure energies and SCC energies. Further details of
the repulsive potential parametrization will be discussed later.

Periodic boundary conditions

For crystal systems, due to translational symmetry, we can use one unit cell to perform
the simulations under periodic boundary conditions. The Bloch condition must be fulfilled
for crystal systems:

Φk
i (r + R) = Φk

i (r)eikR, (2.48)

where R is the translation vector in terms of unit vectors and k is the crystal momentum
vector. In order to satisfy the Bloch condition, we use the following basis expansion in
periodic systems

Φk
i (r) =

∑︂
µ

Ck
iµβ

k
µ(r), (2.49)

where Ck
iµ are the eigenvector coefficients of the Bloch functions βk

µ and eigenstate i at
crystal momentum k. The Bloch functions βk

µ(r) are

βk
µ(r) =

1√
N

∑︂
R

φµ(r−R)eikR, (2.50)

where the N means the number of unit cells in the system. Then we obtain

Φk
i (r) =

1√
N

∑︂
µ

Ck
iµ

∑︂
R

φµ(r−R)eikR. (2.51)

The Hamiltonian and overlap matrices elements will be

Hµν(R) = ⟨φµ(r)|Ĥ|φν(r−R)⟩eikR

Hk
µν =

∑︂
R

Hµν(R)eikR (2.52)

Sµν(R) = ⟨φµ(r)|φν(r−R)⟩eikR

Sk
µν =

∑︂
R

Sµν(R)eikR.

The eigenvalues and eigenvectors are determined at each k-point separately using the
following generalized eigenvalue problem:∑︂

ν

Hk
µνC

k
iν = ϵki

∑︂
ν

Sk
µνC

k
iν . (2.53)

With a set of k-points sampling the Brillouin zone and with the weighting parameter of
each k-point, we can perform DFTB calculations in periodic systems. High-symmetry
k-points and the weights are included for the band structure calculations.
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2.3.2 DFTB Electronic parametrization

The Hamiltonian from atom A and B in DFTB can be seen in Eq. (2.32). There are
two ways to construct Veff between A and B as discussed before. The first is potential
superposition Veff[nA

0 ]+Veff[nB
0 ], and the second is density superposition Veff[nA

0 +nB
0 ]. Pre-

vious work [104] shows that using density superposition can improve energies, vibrational
frequencies and reaction barriers while using potential superposition can achieve better
results in band structure calculations. In DFTB electronic parametrization, a confining
potential is added to tune both the electronic wavefunctions and the electron densities.
The confining potential is often written in the form of

Vconf = (
r

r0
)n, (2.54)

where the value of the power parameter n is usually set to 2. The so-called compression
radius r0 is used to tune the confinement of wavefunctions and electron densities. The
key of DFTB electronic parametrization is to get optimized confinement parameters, and
many previous works have been developed to search the optimized parameters [105, 47,
44, 40, 36]. The empirical values based on covalent radii are not accurate enough for some
applications, and compression radii are needed to be tuned according to the applications
of interest [50, 106]. In addition, the on-site energies derived from the eigenvalues of
free atoms are also crucial in the electronic parametrization. Both compression radii and
on-site energies will be discussed later in this thesis.

2.3.3 DFTB Repulsive Parametrization

The repulsive term is essential for some DFTB calculations, such as geometry optimization
calculations or molecular dynamics (MD) simulations. The pairwise repulsive interaction
is described in Eq. (2.47). In this thesis, the curvature constrained splines (CCS) [45, 46]
method has been applied for repulsive parametrization. The constraints used in CCS
ensure the pairwise repulsive potentials without spurious oscillations. The repulsive po-
tentials in CCS are constructed in cubic spline format. The repulsive in CCS is written
as:

Erep = vTc + wTϵ, (2.55)

where wTϵ represents the one-body term to correct the atomic energy difference between
reference energies and DFTB energies. ϵ is the one-body energy term and w represents
the number of atoms. v is the vector of energies [45] and c are the coefficients of the
cubic spline functions to be determined. When fitting repulsive potentials, the objective
function (J) of total K configurations has been defined, which is the difference between
reference and DFTB energies. The J function can be written as
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J =
1

2

K∑︂
k=1

(Ek
rep + Ek

elec − Ek
ref)

2

=
1

2
||erep − (eref − eelect)||22 =

1

2
||Vc + Wϵ− e||22

, (2.56)

where

V =

⎡⎢⎢⎢⎣
v11 v12 · · · v1N
v21 v22 · · · v2N
...

...
. . .

...
vK1 vK2 · · · vKN

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

v∈RK×N

,e =

⎡⎢⎢⎢⎣
E1

ref − E1
elec

E2
ref − E2

elec
...

EK
ref − EK

elec

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

Eref−Eelec∈RK

,WT =

⎡⎢⎢⎢⎣
w1

w2

...
wK

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞
w∈Rm×1

, (2.57)

where N is the number of nodes in cubic spline functions, e is the error between the
reference and DFTB electronic energy, and W is a collection of w in Eq. (2.55) for all
configurations. Eq. (2.56) can be written as

J =
1

2
||Mx − e||22, (2.58)

where M = [V W ] and xT = [c ϵ]. The minimization of the objective function
1
2
||Mx-e||22 can be transferred to a quadratic programming (QP) problem

min(
1

2
xTPx + qTx)

Subject to Gx < h
, (2.59)

where P = MTM and q = −MTe. The G and h are constraint matrices. The CCS
method [46] can effectively avoid the oscillations in the second derivatives of the repul-
sive potentials and the issue of sparse data by incorporating monotonous and sparsity
constraints. However, the repulsive potentials obtained from CCS have limited global
transferability, and this is also a common problem for pairwise potentials. Other ap-
proaches have been proposed to address this limitation, such as considering many-body
effects using non-linear neural networks [61] or using a Chebyshev polynomial-based ap-
proach [47].
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3 Machine Learning Review

Tom M. Mitchell [107] proposed a widely accepted definition of machine learning, which
is often cited: A computational algorithm learns from experience E concerning task T
and performance P of task T improves with experience E. The machine learning tasks
in the current landscape can be broadly classified into two main categories: classification
and regression. Classification is about predicting the labels or categories of a given input,
usually discrete, while regression is about predicting the continuous values with a given
input. Regression tasks are commonly encountered within the domains of physics and
chemistry, involving the prediction of physical properties. Machine learning approaches
can be further categorized into three main types: supervised, unsupervised, and rein-
forcement. For our purposes, we will primarily focus on supervised learning. Supervised
learning typically requires input and output data (targets), while unsupervised learn-
ing focuses on learning concise representations of unlabelled input data. Reinforcement
learning, on the other hand, is based on reward and teaches a learner how to behave in
order to maximize the cumulative reward. For supervised learning, the input is usually
derived from geometries for atomic simulation purposes, while the output data of the
simulations represents the machine learning targets. These input and output data can
be split for training and testing data sets. The supervised learning algorithms usually
undergo iterative optimization using the training data set, allowing them to learn from
the input-output pairs. Subsequently, the trained models are evaluated using the testing
data to assess their performance.

In this chapter, our attention shifts toward the theoretical aspects of supervised machine
learning, specifically focusing on the machine learning algorithms and methods employed
in this thesis. We examine the commonly used workflow for supervised machine learning
in scientific research, encompassing data collection, techniques for generating machine
learning input through data representation, selecting appropriate machine learning mod-
els, and the algorithms utilized for the learning process. Subsequently, we discuss each
component individually, emphasizing the machine learning algorithms employed in this
thesis: the random forest algorithm and neural networks.

3.1 Machine Learning Workflow

The development of science paradigms accompanies the research workflow evolutions. As
shown in Figure 3.1, Butler et al. [18] introduced the evolution of the research workflow
from the computational science paradigm to the data-driven science paradigm. The first
generation follows a traditional approach where the input is geometric data and is pro-
cessed using computational methods. The second generation employs global optimization
algorithms, such as the evolutionary algorithm, to generate chemical structures based
on their composition. The third generation focuses on the machine learning workflow,
encompassing the following procedures:

1. Data set collection, usually includes geometries and machine learning targets
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2. Representation of chemical systems and machine learning input generation

3. Selection of type of learning according to the learning task

4. Selection of an appropriate machine learning algorithm, fine-tuning hyperparameters
(parameters controlling the learning process, such as the learning rate), training, and
validating the machine learning model

Figure 3.1: Evolution of the research workflow in computational chemistry. Adapted
from reference [18].

The outlined steps provide a comprehensive overview of the machine learning workflow
employed in this thesis. Machine learning serves as a means of parametrizing the data set.
The data set typically consists of geometries and corresponding machine learning targets,
which can be physical properties like energies [108] or physical model parameters [57]
for learning used in calculations. The chosen representation method effectively extracts
pertinent information from the geometries as machine learning input, enabling a represen-
tation of the chemical environment based on geometries. Once machine learning input and
output have been acquired, the subsequent steps involve selecting suitable machine learn-
ing algorithms and determining their corresponding hyperparameters for model training.
Commonly used machine learning algorithms include neural networks (NNs) [22, 34], sup-
port vector machine (SVM) [109], random forest (RF) [110, 111], and Gaussian process
regression (GPR) [4]. For many scientific problems, machine learning algorithms have
been extensively tested, and the results have shown that certain algorithms exhibit more
significant promise than others for specific predictions [111, 112]. For example, the ran-
dom forest algorithm has demonstrated superior prediction capabilities in the context of
synthetic reactions within multidimensional chemical space [111]. When dealing with a

21



3 MACHINE LEARNING REVIEW 3.2 Data Collection and Visualization

specific task that has yet to be previously investigated, it is crucial to assess the predic-
tive capabilities of machine learning algorithms on testing data sets. Furthermore, the
tuning of hyperparameters, particularly in the case of neural networks, holds significant
importance [53]. Properly optimizing hyperparameters can greatly enhance the perfor-
mance of machine learning algorithms. Subsequent sections will provide comprehensive
explanations of each step, emphasizing the methods employed in this thesis.

3.2 Data Collection and Visualization

The generation of data sets is a critical component of the data-driven science paradigm,
as it directly impacts the reliability and applicability of machine learning models in prac-
tical applications [113]. The data set used for machine learning should represent the task
at hand well. If the distributions of the data set used for training and testing are too
narrow, the resulting machine learning model can not be applied to real-world problems.
Typical data sets used for machine learning to enhance atomic simulations include data
from ab initio molecular dynamics (AIMD) trajectories [114, 115] and data sets of small
molecules and molecular conformers. Well-known materials data resources, such as the
materials project [116], automatic-flow for materials discovery (AFLOW) [117], computa-
tional materials repository (CMR) [118], novel-materials-discovery (NOMAD) [119], and
organic materials database (OMD) [120] provide valuable data sets for research purposes.
Moreover, specific data sets of small molecules like ANI-1 [108] and ANIx [121], which use
the ANAKIN-ME model (Accurate NeurAl networK engINe for Molecular Energies), or
ANI for short, have been used in this thesis and previous research [66]. ANI-1 is a data set
that spans conformational and configurational space and contains small organic molecules
of up to 8 heavy atoms, demonstrating its applicability to much larger systems of 10–24
heavy atoms [108]. Other widely used data sets include quantum mechanical (QM) based
data sets QM7 [122] and QM9 [123], and molecular dynamics 17 (MD17) [124].

Visualizing and analyzing the data sets is desirable once the machine learning data set
is generated. Though these visualization methods have not been applied in this thesis,
they are important to comprehend the underlying patterns and identify data points with
unusual attributes, especially for new data sets. A typical data set for organic molecules
comprises millions of geometries [121, 122, 124], along with ranges of properties such as
energies and band gaps. The coordinates of geometries are high-dimensional, 3n for n
atoms. Dimension reduction methods have been used to represent and visualize the geo-
metric patterns of a data set. Commonly used methods include kernel principal compo-
nent analysis (KPCA) [125], t-distributed stochastic neighbour embedding (t-SNE) [126],
and sketch-map [127]. The basic idea of these dimension reduction methods is that if
geometries are similar in high-dimensional space, they will remain close to each other
in low-dimensional mapping. The dimension reduction methods can be used to analyze
the data set distributions. For instance, Cheng et al. [20] used KPCA to map amorphous
carbon in two-dimensional projections. The results show that carbon atoms with different
chemical environments have been automatically separated.
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3.3 Data Representation

The representation method, also called descriptor, fingerprint, or feature, is crucial in
applied machine learning. It involves transforming Cartesian coordinates to machine
learning input and extracting patterns and regularities from geometries. Significant ef-
forts in this field [128, 129] have greatly advanced the application of machine learning
in physics, chemistry, and materials science. To make the learning efficient, the rep-
resentation method should be invariant to translational, rotational, and permutational
symmetries of given geometries [130, 131]. Besides symmetry invariances, practical repre-
sentation requirements include completeness, smoothness, and additivity [19]. Complete-
ness means that inequivalent geometries should be different, smoothness requires that
smooth deformations correspond to smooth representation method output, and additiv-
ity suggests that a representation of geometry should be allowed to be decomposed into
a sum of local environments (such as atom centred environments). Several previous re-
views [19, 132] summarise current representation development. Michele et al. [19] have
summarised the current most commonly used features of atomic geometries in seven phy-
logenetic trees. The commonly used groups include potential fields, density correlation
features, and atomic symmetry functions. The limitations of different representations
are still under debate [22, 133, 134, 135, 136, 137]. The chosen method should uniquely
represent the chemical environments and be computationally accessible. The choice of
representation method usually depends on the machine learning task, data set size, and
machine learning algorithms. Imbalzano and co-workers [138] suggest that a simple rep-
resentation method with fewer dimensions can perform better using the testing data set
because complex representation tends to overfit the training data set. Guyon and co-
workers [139] introduce a general workflow of representation method selection.

In this section, we introduce two representation methods that have been widely used in
machine learning applications in science: smooth overlap of atomic positions (SOAP) [137]
and atom-centred symmetry functions (ACSFs) [128]. These methods will be further
utilized in the subsequent parts of this thesis.

Smooth overlap of atomic positions

SOAP is a widely used method, especially in kernel-based machine learning algo-
rithms [140, 4]. SOAP belongs to the density correlation family of the representation
method. Besides SOAP, density correlation family includes Faber-Christensen-Huang-
Lilienfeld (FCHL) [134, 141], N -body iterative contraction of equivariants (NICE) [142],
spectral neighbour analysis potential (SNAP) [143], the moment tensor potential (MTP) [144],
and atomic cluster expansion (ACE) [145]. SOAP represents the atomic environment by
expanding a Gaussian atomic density on each atom.

ρZ(r) =
Z∑︂
i

e−
1

2σ2 |r−Ri|2 , (3.1)

where the summation for i runs over all the atoms in the system with the atomic number
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Z and position Ri. The width of Gaussian atomic density is controlled by the smearing
σ. When expanding the Gaussian density with orthonormal radial basis functions and
spherical harmonics, we get

ρZ(r) =
∑︂
nlm

cZnlmgn(r)Ylm(θ, ϕ), (3.2)

where gn(r) are the orthonormal radial basis functions, Ylm(θ, ϕ) are the spherical har-
monics and n, l,m are the quantum numbers. The parameter cZnlm can be generated from
an inner product:

cZnlm =

∫︂∫︂∫︂
R3

dV gn(r)Ylm(θ, ϕ)ρZ(r). (3.3)

With parameters cZnlm, the partial power spectra defined in previous work [137] as SOAP
output is

pZ1,Z2

nn′l = π

√︃
8

2l + 1

∑︂
m

(cZ1
nlm)∗cZ2

nlm, (3.4)

where nmax are the number of radial basis functions and lmax are the maximum degree of
spherical harmonics. The partial power spectra vector pZ1,Z2

nn′l encompasses the interactions
between unique atomic pairs Z1 and Z2, unique radical basis functions n and n′ up to
nmax, and angular degree values up to lmax. By predefining the element species, nmax, and
lmax, the final output of the SOAP descriptor will be a collection of pZ1,Z2

nn′l with different
Z, n and l to represent atomic environments.

Atom-centred symmetry functions

The idea of ACSFs is to transform positions into symmetry functions and satisfy transla-
tional and rotational invariant principles. Besides, ACSFs show reasonable computational
efficiency and achieve high accuracy in a previous work [146]. With the introduction of
cutoff functions fc, radial functions, and angular functions, ACSFs can be defined as:
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G1
i =

all∑︂
j ̸=i

fc(Rij)

G2
i =

all∑︂
j ̸=i

e−η(Rij−Rs)2fc(Rij)

G3
i =

all∑︂
j ̸=i

cos(κRij)fc(Rij)

G4
i = 21−ζ

all∑︂
j,k ̸=i

(1 + λ cos θijk)ζe−η(R2
ij+R2

ik+R2
jk)fc(Rij)fc(Rik)fc(Rjk)

G5
i = 21−ζ

all∑︂
j,k ̸=i

(1 + λ cos θijk)ζe−η(R2
ij+R2

ik)fc(Rij)fc(Rik),

(3.5)

where G1 is the sum of the predefined cutoff function fc, G
2 is a term that multiplies

Gaussians and cutoff function values, and G3 is a Fourier-series-like expansion with the
radial environment, which should be carefully used because there may appear both positive
and negative terms in the sum. G4

i and G5
i are typical angular environment parameters.

Rij is the distance between atoms i and j, Rs is a radial distance parameter to control the
distance shift, and parameter η controls the width of the Gaussian functions. Parameter
κ in G3 can tune the period length in the cosine functions. In G4

i and G5
i , the parameter

ζ is responsible for the angular resolution while λ is -1 or +1.

The ACSFs are defined for combinations of unique elements and unique element pairs,
resulting in a large number of unique pairs of angular symmetry functions when the system
contains multiple element species, given by 1

2
Nelem(Nelem + 1), where Nelem is the number

of unique element species. The number of unique pairs increases rapidly with the number
of unique element species. To overcome this problem, weighted ACSFs (wACSFs) have
been proposed [147]. The so-called element-dependent weighting functions have been
introduced in wACSFs. The weighting functions can represent the chemical environment
of different element pairs and avoid the need for using element pair combinations. The
wACSFs were tested using the QM9 data set and achieved comparable performance to
the results obtained with ACSFs.

3.4 Machine Learning Model Selection and Estimation

With given data representation as input and machine learning targets as output, the ma-
chine learning model selection aims to find the best machine learning algorithms on the
learning data set D. In general, we have to split the data set into the training set and
the testing set. Hyperparameters θ are used to control the machine learning algorithms.
Therefore, the task is to evaluate the learning algorithms and tune hyperparameters θ, so
that the selected algorithm can perform well with the testing data set. The errors on the
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training data set and testing data set are called training errors and generalization errors.
The ideal model generally has well-tuned hyperparameters that generate the minimum
generalization error. The learning models must be trained with chosen hyperparameters
to yield generalization errors. The training errors can not be used to evaluate the per-
formance of the learning models since we can not exclude the possibility of overfitting
and underfitting. Overfitting refers to a phenomenon where a machine learning model
achieves a high level of performance on the training data but fails to predict the testing
set. Overfitting is typically accompanied by the inclusion of irrelevant details and noise,
which suggests that the model is simply memorizing the training data instead of learning
from it. In contrast, underfitting is the opposite, where the model fails to capture the
underlying patterns in the training data. Unlike overfitting, the solution for underfitting
can be increasing the complexity of the training model by adding more parameters.

Many methods have been developed to select and estimate machine learning models.
The frequently used methods include hold out, k−fold cross validation, and bootstrapping.
When using the hold out method, the data set D will be split into training data set S
and testing data set T , where D = S ∪ T and S ∩ T = ∅. The testing data set is
used to estimate the performance of the generalization error. One important issue is to
determine the ratios of training and testing data sets. If the training ratio is high, the
training data set S is close to data set D, and the estimation based on testing data set
T will become unstable. In contrast, if the training ratio is low, the training data set
S will fail to capture the underlying patterns of data set D, resulting in a fidelity issue.
Usually the training ratio is between 2

3
and 4

5
[125]. The k−fold cross validation splits

the data set D into k folds D1 · · ·Dk, where D = D1 ∪D2 · · · ∪Dk, Di ∩Dj = ∅(i ̸= j).
The model is then trained and evaluated sets for k times, with each fold serving as a
training and testing set. In each iteration, one fold is used as the testing set, and the
remaining k−1 folds are used for training the model. The final performance of the model
is typically assessed by aggregating the performance measures obtained from k iterations.
The k−fold cross validation is unsuitable when the data set is huge because of the high
computational expense. The basic idea of another sampling technique, bootstrapping, is
to create multiple data sets by sampling with replacement from the original data set D
with n samples. By repeatedly sampling from the data, new data set D′ is generated,
each time with the same size. For n samplings, the limit of the samples that had not
been selected is limn→∞(1− 1

n
)n ≈ 0.368. Bootstrapping is especially popular in ensemble

learning [148].

For the machine learning algorithm, the hyperparameters will also influence the per-
formance of model selection. The practical solution to tune hyperparameters is to choose
values from the hyperparameter ranges. For example, if we have three hyperparameters
and we choose five values for each hyperparameter, we have 125 models in total. Hy-
perparameter tuning is the essential yet computationally expensive step in some cases,
especially in neural networks with large training sets. To distinguish it from the testing
data set used for model selection, the data set used for hyperparameter tuning is usually
called the validation data set. The workflow with validation data set for hyperparameter
tuning is the so-called training-validation-test protocol, and this protocol is frequently
used to tune hyperparameters in machine learning, especially in neural networks.
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3.5 Machine Learning Algorithms

3.5.1 Random Forest

The random forest is a widely used ensemble algorithm for both classification and regres-
sion tasks [148, 149, 150, 151]. Ensemble learning, a powerful machine learning technique,
aims to enhance the predictive performance of a model by combining multiple individual
learners (known as weak learners) to create a more robust and accurate strong learner.
In the context of classification tasks, a weak learner [152] refers to a relatively simple
and less accurate learning algorithm. However, it is expected to perform better than
random classification, achieving an accuracy of more than 50%. On the other hand, a
strong learner represents a powerful learning algorithm (such as the random forest) with
high accuracy and impressive predictive capabilities in the given task. The key objective
of ensemble learning lies in determining whether the performance obtained from multi-
ple weak learners surpasses that of any individual constituent weak learning algorithm
alone. According to Hoeffding’s inequality [153], assuming weak learners are independent
of each other, the errors from the ensemble learning (strong learner) decrease significantly
and eventually tend towards zero as the number of weak learners increases. This property
allows ensemble methods like the random forest to achieve remarkable predictive accuracy.

The decision tree algorithm [154] is a commonly employed weak learner within the
random forest ensemble algorithm. The random forest is an extension of the bagging
method pioneered by Breiman [148]. Both the random forest and bagging algorithms
rely on the decision tree algorithm as its fundamental building block. To provide a clear
understanding of the concept of the random forest algorithm, we will briefly introduce
the decision tree and bagging algorithms before delving into the random forest.

Decision Tree

A decision tree is a hierarchical, tree-like model representing decisions and their possible
consequences or outcomes and can be used for both classification and regression tasks.
The hierarchy of the tree suggests that it is an ordered structure and a directed acyclic
graph composed of a set of nodes. Each node represents a decision, with the simplest case
being binary, as depicted in Figure 3.2. The crucial matter is the division of the data set
within the decision node, which will be elaborated upon in subsequent discussions.

The node at the top of the tree is the root node, while the leaf nodes (leaves) are at
the bottom. Figure 3.2 shows an example of a decision tree, where the root node has
two child nodes, indicating a binary decision is made to split the root node. The node to
be split is the parent node, and the resulting nodes after splitting are called child nodes.
In the case of binary decision trees, the child nodes are typically referred to as the left
child node and the right child node. The subsets (data sets of child nodes) should be
non-empty and disjoint. Training a decision tree should be based on a given data set, and
we consider a data set shown in Table 1 to clarify how to train (grow) a decision tree and
how to split the data set of a decision node into two subsets.
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Figure 3.2: Illustration of a decision tree.

Table 1: Data set D for the binary classification task.

label x1 x2 x3 y
1 0 0 0 0
2 0 1 1 0
3 1 1 1 0
4 0 0 0 1
5 1 1 0 1
6 1 1 1 1

In Table 1, the variables x1, x2, and x3 represent the input data (or features), while
y denotes the reference data to be learned. The label {1, 2, 3, 4, 5, 6} indicates the
presence of six samples in the data set. The decision tree algorithm recursively splits the
data into subsets to construct the tree structure. This process of splitting will continue
until a predetermined threshold is reached. When using the data set from Table 1, at
each split, the decision tree algorithm selects the best feature among x1, x2, and x3.
The criterion for selecting the best feature is based on maximizing the so-called impurity
decrease. A predefined objective function is employed to quantify the impurity decrease,
and the highest value of this function corresponds to the maximum impurity reduction.
The objective function of node i and feature j can be defined as:

∆(Di, xj) = I(Di, xj) − pLI(Di
L, xj) − pRI(Di

L, xj), (3.6)

where xj are the chosen features, and Di
R and Di

L are the right child data set and left
data set after splitting. pL is the ratio of samples of the subset Di

L to the data set Di,
the same is for pR. The I is the impurity function, and there are two main impurity
functions: the entropy and the Gini impurity functions. The entropy impurity function
is IE = −

∑︁
k pklog2pk, where k is the samples with k-th class and pk is the ratio of such

samples. In the data set presented in Table 1, the variable k can take on values of 0 or 1,
as there are only two classes for y. The Gini impurity function is IG = 1 −

∑︁
k p

2
k. With
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defined impurity functions, the objective function and the given data set, we can search
over all the features and obtain the best feature corresponding to the maximum objective
function value. Using the best feature, the data set of the parent node is split into DL

and DR. When using the data set from Table 1 and the entropy impurity function, and
choosing feature x1, we can get the IE(D, x1) = −(3

6
log2

3
6

+ 3
6
log2

3
6
) = 1. The subset D1

where the feature x1 equals 0 includes the data set labels {1, 2, 4}. The y values of these
three labels are 2

3
for y = 0 and 1

3
for y = 1. Similarly, the subset D2 where the feature

x1 equals to 1 includes the data set labels {3, 5, 6}. The y values of these three labels are
1
3

for y = 0 and 2
3

for y = 1. The returned entropy function values are:

IE(D1, x1) = −(
2

3
log2

2

3
+

1

3
log2

1

3
) = 0.92,

IE(D2, x1) = −(
1

3
log2

1

3
+

2

3
log2

2

3
) = 0.92,

(3.7)

then we get the returned objective function value of x1 is

∆(D, x1) = IE(D, x1) − (
3

6
∗ 0.92 +

3

6
∗ 0.92) = 0.08. (3.8)

When using the entropy impurity function, the values of the objective function are also
called entropy gain, which measures the impurity decrease of the data set splitting with
a chosen feature. Similarly, we get that the ∆(D, x2) and ∆(D, x3) are 0 and 0.08. When
choosing x2 to split the data set D, the possibilities of y equals 0 and 1 are 50 percent in
both two subsets, which equals the possibilities in data set D. This means the entropy
gain of feature x2 is 0, suggesting no impurity decrease. The value of the impurity gain
of x1 and x3 are the same. In this case, we randomly choose one of these two features as
the best feature to split the data set D.

We have stated how to split the node and determined the best feature. For practical
implementations, we will set a minimum entropy gain (impurity decrease) value, minimum
data set size in the node, and the maximum depth. The depth of a decision tree is the
length of the longest path from a root node to leaf nodes. For instance, if we set the
minimum size of the data set to be 4, the decision tree using the data set from Table 1 will
only split once since the left and right subsets contain only 3 samples after splitting. When
reaching the threshold of the setting values, the tree will stop splitting and obtain leaf
nodes in Figure 3.2. In addition to the training process of a decision tree, the prediction
process and overfitting are also crucial aspects of the decision tree algorithm. Previous
reviews [155] have discussed overfitting in the training process of decision trees, and we
will not delve further into this topic.

From Bagging to Random Forest

The bagging algorithm uses the bootstrapping sampling method to select data set Dbs

from the original data set. The workflow of bagging is shown in Algorithm 1. I(input)
is a function that returns one if the input is True else zero. The decision tree is chosen
as the training algorithm L in Algorithm 1. Finally, bagging usually uses the majority
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vote for the output based on weak learners for calcification tasks and the average value
for regression tasks.

Algorithm 1 Bagging Algorithm

Input:
Training data set D = (x1, y1), (x2, y2), · · · , (xn, yn) with n samples
Learning algorithm L
Training step T

1: for each i ∈ [1, T ] do
2: ht = L(D,Dbs)
3: end for
Output:

H(x) = argmax
∑︁

i I(hi(x) = y)

Based on the bagging method, the random forest introduces so-called feature bagging,
which means that we will randomly choose the subset of the feature for each decision node
in the learning processes. Assuming the dimension of the feature is d and the parameter
k controls the random choosing features. When k equals d, it is the bagging algorithm.
In general, the recommended value of k in the random forest method is log2d [148]. The
recommended value ensures that each tree in the random forest method is unique and
captures different aspects of the data. The random forest training will be more efficient
than bagging and can achieve lower generalization errors—the higher efficiency and better
performance result from the random feature selection. The diversity of the single weak
learner decision tree usually contributes to the lower generalization error. In bagging, one
or a few features can be strong predictors and dominate many single learners, decreasing
the diversity of the single trees.

The random forest can be used to analyze the variable (feature) importance mea-
surement (VIM). To measure the k-th feature importance, we can use the out-of-bag
(OOB) [148] or Gini index to compute the importance. The Gini index is defined using
the previously defined Gini impurity function:

GIkit = Gini indexit(D, xk) =
∑︂
j

pjIG(Dj), (3.9)

where D is the data set of node i in the t-th decision tree, Dj are the subsets of node i, pj
are the ratios of Dj and xk is the k-th variable. When specifying the Gini index change
of node i in the t-th binary decision tree, we get

VIMk
it = GIkit −GIkl,it −GIkr,it, (3.10)

where GIkit is the Gini index before splitting while GIkl,it and GIkr,it are the left and right
nodes after splitting. Then for the k-th feature importance, we sum over all nodes in a
single decision tree and all decision trees used in ensemble learning

VIMk =
∑︂
i

∑︂
t

VIMk
it. (3.11)
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Usually, when we get all the variable importance, we will do a normalization for the
VIM. The obtained VIM values enable the analysis of the random forest model and help
to understand the relationships between the input-output pairs. The detailed information
for VIM using OOB can be found in previous reference [148].

3.5.2 Neural Networks

The concept of artificial neural networks draws inspiration from biological neural networks.
In biological systems, neural networks consist of interconnected neurons communicating
through chemical and electrical synapses. Artificial neural networks emulate this idea,
where neurons become activated when their values surpass a certain threshold. In 1943,
McCulloch and Pitts [156] proposed a simple M-P model known as the perceptron. How-
ever, it was later acknowledged by Marvin and Seymour [157] in 1969 that a single-layer
perceptron was inadequate for solving non-linear problems, and implementing a multi-
layer perceptron (MLP) was deemed unrealistic due to computational constraints and
hardware limitations. The development of the backpropagation algorithm in the 1970s
and 1980s [12] significantly advanced research on neural networks. This algorithm played
a crucial role in enabling efficient training of multilayer perceptrons. Furthermore, in
the 2010s, the emergence of big data propelled neural networks into the spotlight with
the advent of deep learning. We will introduce the neural networks starting from the
perceptron model, followed by MLP and backpropagation algorithm.

Perceptron model

An M-P perceptron neuron has been illustrated in Figure 3.3.

Figure 3.3: Illustration of a M-P perceptron neuron.

As shown in Figure 3.3, a neuron connects with the input and weight parameters,
and we get the prediction of ŷ = f(

∑︁
iwixi + b − θ), where b is the bias, f is the

used activation function and θ is the threshold of the activation function. The value of
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the neuron received is
∑︁

iwixi + b. Once the neuron receives the value, this value will
be compared with the threshold and generate output by utilizing the activation function.
The activation function controls the connections between neurons. The simplest activation
function is a binary function, which returns 1 if the output reaches the threshold else 0.
The extension of the binary function is a linear function f(a) = a, where a is

∑︁
iwixi + b.

Besides linear activation functions, commonly used non-linear activation functions include
rectified linear unit (ReLU) and sigmoid. We have introduced the forward procedure in
the perceptron model. Another key issue is updating the weight parameters to minimize
errors between predictions and references. With a defined loss function J :

J =
1

2

N∑︂
j=1

(yj − ŷj)2, (3.12)

where yj is the reference value of sample j and ŷj is the prediction value of of sample j. A
frequently used optimization algorithm is gradient descent, where the weight parameters
wi are updated by moving in the direction opposite to the first-order gradient, resulting
in the steepest ascent:

wi := wi + ∆wi. (3.13)

The gradient descent, or the batch gradient descent, involves calculating and summing
up every sample. The batch in this context refers to using the entire training data set to
compute the gradient during each iteration. The resulting equation is as follows:

∆wi = −η δJ
δwi

= −η δ

δwi

1

2

∑︂
j

(yj − ŷj)2

= η
∑︂
j

(yj − ŷj)xji ,

(3.14)

where xji is the i-th dimension value of the sample j, and η is the learning rate. The batch
gradient descent is simple, but it will be slow for large data sets. Stochastic gradient
descent (SGD), or iterative gradient descent, is an option when optimizing a big data set.
The SGD will update the weight using only one sample in each iteration:

ωi := ωi + η(yj − ŷj)xji (3.15)

On the one hand, SGD is generally easier to converge than gradient descent since it
updates the gradient more frequently. On the other hand, the batch gradient descent
can be smoother than SGD. Between the batch gradient descent and SGD is the mini-
batch gradient descent (select a fixed number of training samples as a mini-batch), often
applied in machine learning. Another popular algorithm, adaptive moment estimation
(Adam) [158] is a combination of two gradient descent methods [159], Momentum, and
root mean squared propagation (RMSP), which is given by

mt = β1mt−1 + (1 − β1)gt

vt = β2vt−1 + (1 − β2)g
2
t ,

(3.16)
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where mt and vt are parameters that consider the past gradients and past squared gradi-
ents at step t, gt is the gradient of SGD at step t, while β1 and β2 are decay rates which
are often close to 1.0. mt and vt are initialized to zero and β1 and β2 are close to 1.
Therefore mt and vt in the initial time steps are biased towards zero. To avoid using the
biased parameters mt and vt, the so-called bias-corrected m̂t and v̂t can be constructed
as:

m̂t =
mt

1 − β1

v̂t =
vt

1 − β2
.

(3.17)

Finally, the parameters w can be updated as:

wt+1 := wt − η
m̂t√
v̂t + ϵ

, (3.18)

where the default value of ϵ is 10−8 and η is the learning rate. The Adam method tunes the
past gradient and past squared gradients, which implies the previous-step gradients have
been considered. Besides, Broyden–Fletcher–Goldfarb–Shanno (BFGS), Limited-memory
BFGS (LBFGS) [160] and root mean square propagation (RMSP) [161] are also some
methods frequently used for machine learning.

Multilayer perceptron model

The MLP model has multilayer linear functions, and each node will be a neuron with
an applied activation function. In MLP, the layers between the input and output layers
are hidden layers. First, we define a multilayer neural network with n layers, as shown in
Figure 3.4.

The forward calculations in MLP can be written as follows:

a1j = f 1(
∑︂
i

w1
ijxi + b1j) = f 1(z1j )

· · ·

akj = fk(
∑︂
i

wk
ija

k−1
i + bkj ) = fk(zkj )

· · ·

an =
∑︂
i

wn
i a

n−1
i + bn = zn,

(3.19)

where xi represent the i-th dimension values of the input. fk represent the activation
functions in the k-th layer, while akj represent the output values of neuron j in the k-th
layer. wk

ij are the weight parameters in neural network in k-th layer, where i and j mean
the neuron i in (k−1)-th layer and neuron j in k-th layer, and bkj are the bias parameters
of neurons j in k-th layer. For the last layer, the MLP will be a linear multiplication
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Figure 3.4: Illustration of the MLP algorithm.

to generate output an and return a loss function J = 1
2
(an − y)2, where y represent the

reference values.

So far, we have obtained the forward output of an MLP model. To minimize the error,
backpropagation is typically applied to update the weights and biases. The algorithm for
backpropagation is outlined in Algorithm 2. Here, we introduce a vectorized format for
Eq. (3.19): ak = fk(zk) = fk(wkak−1 + bk).

Algorithm 2 Backpropagation algorithm in MLP

1: compute forward calculations in Eq. (3.19) to get loss function J
2: compute the last layer gradient: δn = ∂J

∂zn
= (zn − y)

3: for i = n− 1 to 1 do
4: compute

δi =
∂J

∂zi
= ((wi+1)Tδi+1) ⊙ (f i(zi))′

5: compute
∂J

∂wi+1
= δi+1(ai)T

∂J

∂bi+1 = δi+1

6: end for

The ⊙ is Hadamard product. With the backpropagation, the weight and bias for each
layer can be updated. At this point, both the forward pass and the backward gradient
update have been defined for the MLP model.
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4 DFTB Parametrization for Lithium-Ion Batteries

Lithium-ion batteries (LIBs) have become ubiquitous energy storage devices in electronic
cars and cell phones. However, to meet the demands of the industry, there is a pressing
need for LIBs that are safer, have a longer lifetime, are more affordable, and have higher
energy density. Solid-state batteries, Li-S, and Li-O2/air batteries have been considered
as potential candidates for the next generation of LIBs, with solid-state batteries being
particularly promising due to their high energy densities and superior safety compared
to conventional LIBs that rely on flammable liquid electrolytes. Recent studies have
highlighted the challenges of developing solid-state batteries, including optimizing the
interface between the solid electrolyte and electrodes, which is critical for achieving high
performance in LIBs [162, 163].

This chapter details the development of a DFTB parameter set for the modelling of
Li6(PS4)SCl and Li5(PS4)Cl2, both of which hold great potential as solid electrolytes in
solid battery systems. These materials have attracted significant attention in both exper-
imental [164, 165, 166] and theoretical fields [167, 168]. Previous studies have employed
force field methods [167] to simulate the diffusion properties of such systems. DFTB
was selected for its ability to provide a favourable compromise between computational
efficiency and accuracy. This choice allows for calculating large-scale systems while si-
multaneously exploring their electronic properties. Our DFTB parametrization focused
on solid-state batteries containing lithium, phosphorus, sulfur, and chlorine. Using the
DFTB parameters, we can simulate the battery’s geometric and electronic properties.

4.1 Data Sets and Methods

Data sets

The crystal structures of Li6(PS4)SCl and Li5(PS4)Cl2, as shown in Figure 4.1, were
obtained from previous theoretical calculations reported in references [167, 169, 170].
Li6(PS4)SCl has a cubic space group F 4̄3m with a lattice parameter of 9.898 Å, based
on X-ray synchrotron diffraction data [171]. Li5(PS4)Cl2 was modelled by modifying
Li6(PS4)SCl through the removal of one lithium ion and the replacement of one sulfur atom
with a chloride atom, as previously described in references [172, 173]. Unless otherwise
specified, these geometries were used for DFT and DFTB calculations.

The crystal structures of cubic lithium, cubic sulfur, Li3P, Li2S, and LiCl were obtained
from the materials project [116]. High-symmetry points for band structure calculations
were automatically generated using the method introduced by Wahyu and Stefano [174].

DFT calculations

The reference data for the DFTB parametrization was obtained from full-electron
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(a) Geometry of Li6(PS4)SCl (b) Geometry of Li5(PS4)Cl2

Figure 4.1: The green, purple, yellow, and blue balls represent lithium, phosphorus,
sulfur, and chlorine atoms, respectively

DFT calculations using the Fritz Haber Institute ab initio molecular simulations (FHI-
aims) [175]. For cubic Li6(PS4)SCl and Li5(PS4)Cl2, the k-mesh used for band structure
and SCF-DFT calculations was set to 5×5×5, whereas for geometry optimization, it was
set to 3 × 3 × 3. The lattice parameters obtained from DFT calculations using 3 × 3 × 3
and 5 × 5 × 5 grids are identical for geometry optimization. Additionally, the differences
in atomic positions are all less than 1×10−3 Å. In the case of Li6(PS4)SCl, the maximum
difference of band structure values between calculations performed using 3 × 3 × 3 and
5 × 5 × 5 is greater than 1 eV. However, the maximum difference between calculations
performed using 5 × 5 × 5 and 7 × 7 × 7 grids is only at the level of 1 × 10−2 eV. As a
result, a 5×5×5 was selected for the band structure calculations. For geometry optimiza-
tions in this section, the Broyden–Fletcher–Shanno–Goldfarb (BFGS) algorithm [176] was
utilized with a tolerance of 1 × 10−4 eV/Å. The SCF calculations utilized a total energy
convergence of 1×10−4 eV and an eigenvalue convergence of 1×10−3 eV, with the Perdew-
Burke-Ernzerhof (PBE) [89] functional. For FHI-aims, the different tiers [175] represent
different accuracy levels of basis functions. If the tier is not mentioned, tier 2 (tight) was
applied.

DFTB calculations

All SCC-DFTB calculations were performed using the DFTB+ package [177]. The
maximum angular momentum for lithium, phosphorus, sulfur, and chlorine were set to p,
d, d, and d, respectively. The k-mesh used in the DFTB calculations was set to match the
one used in the DFT calculations. The electronic temperature was set to 300 Kelvin for all
DFTB calculations, and the SCC tolerance was set to 1×10−6 electrons. Limited-memory
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BFGS (LBFGS) [178] was used for geometry optimizations.

4.2 Electronic Parametrization

The DFTB parametrization was divided into the electronic parametrization and the cre-
ation of the repulsive potential. The electronic parametrization began with the 3ob-3-1

Slater-Koster files developed in a previous study [50]. For the initial step, we used the
3ob-3-1 parameters for phosphorus, sulfur, and chlorine while the lithium parameters
were optimized. To generate basis parameters for lithium, we used a cubic lithium system
with a primitive cell to determine the compression radii for lithium’s s and p orbitals.
The compression radii grid points for the lithium’s s orbital were set to 2.25, 2.5, 3.0, 3.5,
4.0, and 4.5 Bohr, while those for the lithium’s p orbital were set to 3.0, 3.5, 4.0, 4.5, 5.0,
and 6.0 Bohr. We calculated the MAEs of the band structures for all grid points. The
loss function was calculated as follows:

Loss =
1

Ni

∑︂
i

1

Nv

1

Nk

∑︂
v

∑︂
k

|ϵDFT
i,k,v − ϵDFTB

i,k,v | + |
∂ϵDFT

i,k,v

∂k
−
ϵDFTB
i,k,v

∂k
|, (4.1)

where Ni represents the number of geometries, Nk denotes the number of selected k points
and Nv is the number of selected energy states. To prevent the selection of compression
radii that lead to flattened conduction bands with small MAEs, the first derivative of
band structure values in Eq. (4.1) is employed. Instances of flat conduction bands and
small MAEs might arise during parametrization for particular compression radii. Hence,
solely considering the MAEs of band structure values is insufficient, and by incorporating
the first derivative into the loss function, the occurrence of flat conduction bands and
small MAEs can be effectively avoided.

To minimize errors between DFT band structures and those obtained from DFTB
calculations on the cubic lithium system, compression radii of 3.0 and 4.5 Bohr were used
for the lithium’s s and p orbitals, respectively. Slater-Koster tables were generated based
on the compression radii of phosphorus, sulfur, and chlorine from the 3ob-3-1 set and
the optimized compression radii of lithium. They were then used for the band structure
calculations of Li6(PS4)SCl.

Figure 4.2 presents the band structure of Li6(PS4)SCl obtained from FHI-aims and
DFTB+. The results demonstrate that optimizing only the lithium basis parameters
is insufficient for reproducing band structures from the DFT calculations. The band
structures of the DFTB calculations exhibit three issues: a much larger gap between the
valence bands near the valence band maximum (VBM) than that from DFT calculations
(0.5 eV for DFT and 2.0 eV for DFTB), swapped valence bands (shown in Figure 4.2
by using arrows), and a smaller band gap than the gap from the DFT-PBE calculations,
which is already known to underestimate the band gap.

We analyzed the density of states (DOS) and the projected DOS (PDOS) obtained from
DFT calculations to identify the atomic orbitals responsible for the observed discrepancies.
The analysis indicated that the p orbitals of sulfur and lithium dominate in the energy
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Figure 4.2: Band structure calculations of Li6(PS4)SCl were obtained from DFT and
DFTB calculations and DOS calculations of Li6(PS4)SCl from DFT calculations. DFTB
calculations were carried out using DFTB+ with 3ob-3-1 parameters for phosphorus,
sulfur, and chlorine and optimized compression radii of lithium. In the SCC-DFTB cal-
culations, the wavefunction compression radii of lithium’s s and p orbitals were set to 3.0
and 4.5 Bohr, respectively. Band structures, DOS and PDOS calculations were performed
using FHI-aims with the tight level basis set. The arrows show the swapped valence bands.

range of -1 eV to -3 eV. Based on our findings, we focused on refining the electronic
parametrization of the lithium and sulfur orbitals. We used compression radii grid points
of 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, and 7.0 Bohr for the s and p orbitals of sulfur, and 3.5, 4.0,
4.5, 5.0, 6.0, 7.0, and 9.0 Bohr for the d orbital of sulfur. The compression radii grid
points for lithium’s s orbital were 2.25, 2.5, 3.0, 3.5, 4.0, and 4.5 Bohr, and for lithium’s
p orbital, they were 3.0, 3.5, 4.0, 4.5, 5.0, and 6.0 Bohr. Additionally, we optimized the
on-site energies of sulfur, which systematically improves the band structures.

Effect of on-site energies

Typically, in DFTB, the on-site energies are determined from the eigenvalues of free
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Figure 4.3: Effect of on-site energies of sulfur on the accuracy of band structure calcu-
lations. The heat maps represent the sum of MAEs of band structures and their first
derivatives. The sum of errors for all three materials is shown in the last sub-figure with
the title sum.

atoms, and the on-site energies of occupied orbitals are not adjusted. However, our in-
vestigation revealed that tuning the on-site energies of sulfur can significantly improve
the band structures for all systems containing sulfur. As shown in Figure 4.3, by system-
atically shifting the on-site energies of sulfur p and d orbitals, we were able to enhance
the accuracy of the DFTB band structure calculations for cubic sulfur, Li5(PS4)Cl2, and
Li6(PS4)SCl. We used a loss function defined in Eq. (4.1) to determine the on-site ener-
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gies for the band structure optimization. The geometries used in the loss function include
cubic sulfur, Li5(PS4)Cl2 and Li6(PS4)SCl. The loss function was defined as the difference
between the DFT and DFTB band structures, including both the MAEs of band struc-
tures and the first derivative of the band structures, as shown in Eq. (4.1). To determine
the compression radii and on-site energies for lithium and sulfur, it is necessary to calcu-
late the loss function for all possible combinations of these radii and on-site energies and
select the combination that minimizes the loss function value.

To improve the accuracy of the DFTB band structure calculations, we systematically
shifted the on-site energies of the sulfur p and d orbitals by 0.0, 0.025, 0.05, 0.075, 0.10,
0.125, 0.15, and 0.175 Hartree. Figure 4.3 shows that for cubic sulfur, Li5(PS4)Cl2, and
Li6(PS4)SCl systems, tuning the on-site energies of sulfur p and d orbitals can system-
atically improve the DFTB band structures. For the band structure of Li6(PS4)SCl,
significant errors between DFT and DFTB occur where the p orbital of sulfur dominates
the contributions to the DOS. Tuning the on-site energies of the p orbital significantly
decreases the MAEs of Li6(PS4)SCl. We also found that shifting the on-site energy of the
p orbital is crucial to solve the swapped energy states in the Li6(PS4)SCl band structure.

When selecting the minimum MAEs based on Eq. (4.1), we obtained compression radii
for the s and p orbitals of sulfur of 7.0 Bohr, while that of the d orbital is 4.0. The shifts
in the on-site energies of the p and d orbitals of sulfur are 0.125 and 0.175 Hartree, respec-
tively. However, choosing these basis parameters may pose difficulties in fitting repulsive
potentials, as shown in Figure 4.4. This parameter set using the optimized compression
radii and on-site energies tends to decrease electronic energies as the scaling ratio of cubic
sulfur increases, making it challenging to fit repulsive potentials. The electronic energies
refer to the energies from SCC-DFTB calculations without repulsive energies. The ideal
electronic energies should increase as the scaling ratios increase. Therefore, we added a
constraint condition that ensures that the electronic energy with a scaling ratio of 0.8 is
lower than that with a scaling ratio of 1.2. This constraint condition ensures a general
increasing tendency of electronic energies as the scaling ratio increases when searching for
the compression radii and on-site energies in electronic parametrization.

With the constraint condition, new optimized parameters have been shown in Table 2.
The on-site energies of the p and d orbitals of sulfur were optimized by shifting them by
0.125 and 0.15 Hartree to -0.13 and 0.17 Hartree, respectively. The compression radii for
the s and p orbitals of sulfur are 3.5, and for d orbital is 4.0 Bohr, respectively, while for
lithium, the compression radii for the s and p orbitals are 3.0 and 5.0 Bohr, respectively.
By using the new optimized compression radii and the on-site energies of sulfur listed in
Table 2, we can fix the issue of swapping energy states, as demonstrated in Figure 4.5 at
the Gamma point.

Table 2: Optimized on-site energies (Hartree) and compression radii (Bohr). The sub-
script on-site indicates the value as the on-site energies, while r denotes the value for
compression radii. The superscripts represent atomic orbitals.

sulfurdon-site sulfurpon-site sulfurs,pr sulfurdr lithiums
r lithiump

r

0.17 -0.13 3.5 4.0 3.0 5.0
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Figure 4.4: The effect of compression radii of sulfur on electronic energies was investigated
for various scaled volumes of the cubic sulfur system. The volume scaling ratio refers to
the scaling parameters used to multiply the lattice parameters and atomic positions of
the optimized geometry from DFT.

4.3 Repulsive Parametrization and Geometry Optimization

The DFTB parametrization consists of two parts: electronic structure parametrization
and repulsive potential parametrization. The latter is crucial for geometry optimization or
molecular dynamics since these calculations need total energies and forces. In this section,
our focus is on generating repulsive parameters for atomic pairs containing lithium and
sulfur. To achieve this, we use scaling parameters that range from 0.8 to 1.2 to scale
the lattice parameters and atomic positions on seven different systems, including cubic
lithium, cubic sulfur, Li3P, Li2S, LiCl, Li6(PS4)SCl, and Li5(PS4)Cl2. Each material
contains a total of 21 geometries. The repulsive fitting is performed by scanning the
unit cells of these systems with those scaling ratios. We utilized CCS [45, 46] to fit the
repulsive potentials. Subsequently, we applied the obtained Slater-Koster tables based on
the electronic parametrization and the repulsive parametrization by carrying out geometry
optimizations.
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Figure 4.5: Band structures from DFT (solid line) and DFTB (dash line) calculations of
Li6(PS4)SCl, Li5(PS4)Cl2, lithium and cubic sulfur systems. The parameters used for the
DFTB calculations have been listed in Table 2.

The lattice parameters presented in Table 3 were obtained using DFT and DFTB cal-
culations. The original geometries were taken from previous studies and the materials
project database. We optimized the geometries using the settings described in the Meth-
ods section. To perform SCC-DFTB geometry optimization calculations, we first obtained
optimized geometries using DFT calculations. Then we applied DFTB calculations on
these optimized geometries from DFT to get the final SCC-DFTB optimized geometries.
Our results show that the electronic and repulsive parametrization we used for the SCC-
DFTB calculations effectively and reasonably reproduces the optimized lattice parameters
from DFT calculations. Due to the symmetries inherent in these materials, the atomic
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Table 3: Optimized lattice parameters (Å) from DFTB and DFT

DFT DFTB

a b c a b c
Li 4.33 4.33 4.33 4.14 4.14 4.14
S 2.58 2.58 2.58 2.55 2.55 2.55

Li3P 4.22 4.22 7.55 4.30 4.30 7.54
Li2S 5.67 5.67 5.67 5.46 5.46 5.46
LiCl 5.08 5.08 5.08 5.01 5.01 5.01

Li5(PS4)Cl2 9.90 9.90 9.90 9.07 9.20 9.14
Li6(PS4)SCl 10.28 10.28 10.28 9.90 9.90 9.90

positions obtained from the DFTB calculations exhibit a good agreement with the DFT
results.

4.4 Conclusions

In this chapter, we presented our approach for parametrizing both the electronic and the
repulsive parameters of LIBs. Initially, we used confinement parameters from 3ob-3-1

for phosphorus, sulfur, and chlorine and only optimized the confinement parameters for
lithium. However, the swapped valence bands and small band gap in the Li6(PS4)SCl band
structure indicated that optimizing only the lithium confinement parameters was insuffi-
cient for the electronic parametrization. Therefore, through PDOS and DOS analysis, we
included confinement parameters for lithium and sulfur in the electronic parametrization.
We also adjusted the on-site energies of sulfur to improve the band structure calcula-
tions systematically. However, the optimized compression radii for sulfur and lithium,
which generated the minimum MAEs of band structures, made it challenging to fit repul-
sive potentials. We therefore determined compromised values for the on-site energies and
compression radii that successfully resolved the swapped energy states in Li6(PS4)SCl and
yielded the band structures of cubic sulfur, cubic lithium, Li5(PS4)Cl2, and Li6(PS4)SCl
with reasonable accuracy, and also allowed to fit repulsive potentials.

43



5 TIGHT BINDING MACHINE LEARNING TOOLKIT IMPLEMENTATION

5 Tight Binding Machine Learning Toolkit Imple-

mentation

As previously introduced in the first chapter, data-driven research represents the fourth
research paradigm. Machine learning has emerged as a popular tool for data-driven re-
search, enabling the development of accurate models with minimal computational cost.
Machine learning frameworks [59, 179] have significantly boosted the development of ma-
chine learning applications in various fields. These frameworks are packaged libraries that
incorporate fundamental machine learning algorithms, including various neural network
architectures, and facilitate the training of complex models by offering pre-constructed
modules, simplifying the process for users. Additionally, these frameworks provide func-
tions for data preprocessing, analysis, visualization, and other tasks.

Machine learning-based data-driven research can be implemented as a pure machine
learning model or incorporate physical models developed from the third paradigm. In-
corporating physically motivated models enhances the transferability of data-driven mod-
els [53]. To incorporate machine learning with tight-binding-based methods, we have
developed an open source framework called TBMaLT (tight binding machine learning
toolkit). TBMaLT facilitates machine learning techniques to improve the accuracy of
tight-binding calculations, making it a valuable tool for materials science research and
development. I have to emphasize that TBMaLT is a collaborative project, and the
author’s contributions are detailed in our previous work [180]. In this chapter, I will
highlight the aspects I have contributed. Additionally, I will provide an overview of the
entire project, discussing its motivation, general design, key features, and fundamental
workflow.

This chapter introduces the implementation and performance of the TBMaLT. We begin
by discussing the general structure and design principles of the TBMaLT, which elucidate
the rationale behind reimplementing the DFTB method, the selection of PyTorch as the
machine learning framework, the pivotal inclusion of batch operability designed for train-
ing, and the foundation of the base Calculator as an essential element of the training
workflow. Subsequently, we offer a concise overview of the distinctive features inherent
to TBMaLT. In sequence, we delve into the diverse methods employed to construct di-
atomic integrals and assess the interpolation techniques. Moving forward, we detail the
implementation of the DFTB method and compare single and batch DFTB calculations.
We then elucidate the electronic properties that form the focal point of our training en-
deavors. Finally, we provide a succinct introduction to the implementations intertwined
with the DFTB-ML implementation.

5.1 Structure and Design

The overarching goal of TBMaLT is to enable machine learning-based tight-binding cal-
culations and parametrization. This necessitates calculating gradients that link output
properties to input variables. Such computations can be effectively achieved by har-
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nessing the automatic gradient engine within cutting-edge machine learning frameworks.
Consequently, reimplementing tight binding methods is essential within machine learning
frameworks. PyTorch [59] and TensorFlow [179] are two well-known machine learning
frameworks that were released in 2016 and 2015, respectively. These frameworks are
primarily developed using Python and C++. While there are similarities between these
packages, such as model building and training, visualizations, widespread applications in
academia and industry, and suitability for training on graphics processing units (GPUs),
they also differ. In TensorFlow, the computational graph, which represents the flow of
computations and mathematical expressions, is defined before the program execution.
This is known as a static computational graph. On the other hand, PyTorch uses a dy-
namic computational graph and follows a define-by-run execution approach. The dynamic
computational graph makes PyTorch more Pythonic than TensorFlow and easier to use.
For example, PyTorch allows for more natural control flow statements, such as loops, to be
used in the model, while in TensorFlow, extra functions must be used to realize loops. The
scikit-learn framework is another popular machine learning tool that focuses on traditional
machine learning algorithms, such as support vector machine and random forest, rather
than solely concentrating on neural network-based algorithms. Scikit-learn also integrates
a powerful toolkit for data analysis and processing, making it useful in applied machine
learning. Recent developments in PyTorch have made it possible to perform many linear
algebra operations, making it a viable option for scientific programming. In addition to
PyTorch’s dynamic computational graph, its stability in transitioning between different
releases makes the framework more robust and reliable. Python is a popular choice for
machine learning due to the availability of numerous libraries and frameworks. Therefore,
TBMaLT is implemented using the PyTorch and Python programming languages.

The concepts of batch and epoch are important in machine learning. The batch size
determines the number of samples processed in each iteration for gradient updates during
training, while an epoch signifies a complete traversal through the training data set. To
illustrate, if we divide a data set containing 2000 samples into 4 batches of size 500, then
it necessitates 4 iterations to complete a single epoch. For the application of machine
learning to DFTB, the functionality of TBMaLT must encompass batch operability, en-
abling the execution of DFTB calculations for multiple systems simultaneously, departing
from the traditional single-system approach. Batch operability within TBMaLT entails
a technique known as padding, which involves expanding a set of n rank-k arrays to a
uniform size and concatenating them into a single rank (k + 1) array. Using batch op-
erability leverages vectorized operations [181], effectively sidestepping the performance
bottlenecks associated with Python loops. In the next section, we will conduct a per-
formance comparison between batch DFTB calculations and conventional single DFTB
calculations.

In TBMaLT, a base Calculator is constructed by assembling the necessary Feed ob-
jects, as depicted in Figure 5.1. These Feed objects serve as input suppliers for desired
calculations, as exemplified in the SCC-DFTB calculation shown in Figure 5.1. When
creating the Calculator for an SCC-DFTB calculation, specific feeds are required to
extract parameters from Slater-Koster files. These Feed objects initialize by parsing
Slater-Koster files and storing pertinent data based on element species. The data in-
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cludes diatomic Hamiltonian integrals, overlap matrices, etc. Subsequently, using input
targets like the CH4 molecule in Figure 5.1, the initialized Feed objects facilitate the
provision of necessary inputs to an SCC-DFTB calculation. The Calculator computes
various properties upon request for a conventional SCC-DFTB calculation without ma-
chine learning integration. In this case, the reference and the loss function are not part of
the conventional SCC-DFTB calculation workflow. In an SCC-DFTB calculation merged
with machine learning to optimize requested properties, the loss function is constructed
using Calculator-derived properties and the reference data. The PyTorch autograd en-
gine comes into play, leveraging resulting gradients to update properties within some or
all Feed objects.

Figure 5.1: Illustration outlining the prediction and update process within an SCC-DFTB
style Calculator instance. This process involves leveraging Feed objects and targeting
the CH4 molecule to compute desired properties.

5.2 Implementation and Performance

In this section, we will provide a comprehensive overview of the existing features of TB-
MaLT. Subsequently, we will dissect these features and, guided by the workflow depicted
in Figure 5.1, systematically introduce each component individually. As illustrated in
Figure 5.1, the DFTB-ML framework within TBMaLT can be compartmentalized into
two principal segments: the forward part, accountable for executing DFTB calculations
and generating the requisite target electronic properties, and the backward part, which
leverages the PyTorch autograd engine to iteratively update gradients and optimize these
electronic properties. Initiating the forward DFTB calculations, the foremost stride in-
volves constructing Hamiltonian matrices pivotal for subsequent DFTB computations.
Hence, our initial focus will be on presenting the methodologies employed for DFTB
Hamiltonian matrix construction, notably emphasizing the indispensable role of interpo-
lation techniques since the accuracy of the interpolation implementation determine the
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final accuracy of DFTB calculations. Subsequently, we will delve into the comprehen-
sive implementation of DFTB and introduce the targeted electronic properties. Lastly,
we will provide a succinct synthesis of the existing state of the DFTB-ML framework’s
implementation.

5.2.1 Summary of the TBMaLT features

TBMaLT is a software package that includes various interpolation methods, mixers,
machine learning toolkits, and modules for DFTB and DFTB with machine learning
(DFTB-ML). The package provides a range of functionality, such as generating DFTB
parametrization for specific chemical systems, performing calculations with non-SCC
DFTB and SCC-DFTB, and training and using DFTB-ML models for predicting elec-
tronic properties of materials. Here, we provide a summary to highlight the current
functionality of TBMaLT.

� non-SCC and SCC DFTB calculations for molecules and solids

� support both GPUs and central processing units (CPUs)

� support high throughput DFTB calculations

� support Hamiltonian and overlap integrals optimization for DFTB with various
machine learning approaches

� support real and complex numbers in forward and backward calculations

� well tested and documented

5.2.2 DFTB Hamiltonian

We have developed different ways to generate the two-centre integrals in Eq. (2.32), from
which the Hamiltonian and the overlap matrices can be constructed in a DFTB calcula-
tion. If optimizing two-centre integrals directly, we build the two-centre integrals using
the cubic spline interpolation. When optimizing the targeted physical properties, we
directly optimize the spline parameters and update the two-centre integrals. Besides op-
timizing Hamiltonian and overlap integrals directly, another strategy is to optimize the
parameters of the atomic basis function parameters (the compression radii) and calculate
the diatomic integrals with well-defined basis functions. In order to efficiently calculate
diatomic two-centre integrals for arbitrary basis functions, we have first pre-generated in-
tegral tables for various compression radii pairs on a grid. Then bi-cubic interpolation will
be applied to generate two-centre integrals with chosen compression radii. When training
the targeted physical properties, the compression radii can be updated and optimized. We
can stipulate that the compression radii are the same for each element specie, constitut-
ing global training. Alternatively, we can optimize the compression radii individually for
each atom, constituting local training that considers the chemical environment. Hence,

47



5 TIGHT BINDING MACHINE LEARNING TOOLKIT IMPLEMENTATION 5.2 Implementation and Performance

we will introduce bi-cubic and cubic spline interpolation methods and demonstrate the
performance of the accuracy of the bi-cubic interpolation.

Bi-cubic interpolation

Bi-cubic interpolation is an extension of the cubic interpolation, allowing for inter-
polating two variables simultaneously. We obtain bi-cubic interpolated values with two
variables x and y

p(x, y) =
3∑︂

i=0

3∑︂
j=0

ai,jx
iyj , (5.1)

where ai,j are the coefficients to be determined. In TBMaLT, x and y are usually com-
pression radii of element pairs used in basis function combinations in diatomic two-centre
integral calculations. If we write bi-cubic interpolation in matrix multiplication form, we
obtain

p(x, y) =
[︁

1 x x2 x3
]︁ ⎡⎢⎢⎣

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

⎤⎥⎥⎦
⏞ ⏟⏟ ⏞

ai,j∈R4×4

⎡⎢⎢⎣
1
y
y2

y3

⎤⎥⎥⎦ . (5.2)

The problem is to determine the ai,j matrix elements. Eq. (5.1) yields the derivatives

∂p(x, y)

∂x
= px(x, y) =

3∑︂
i=1

3∑︂
j=0

iai,jx
i−1yj

∂p(x, y)

∂y
= py(x, y) =

3∑︂
i=0

3∑︂
j=1

jai,jx
iyj−1

∂p(x, y)

∂x∂y
= pxy(x, y) =

3∑︂
i=1

3∑︂
j=1

ijai,jx
i−1yj−1

. (5.3)

When x and y in Eq. (5.1) and Eq. (5.3) are equal to 0 or 1, the values of the p function
are already known. We can use this information to construct 16 equations containing ai,j
to determine the 16 coefficients in Eq. (5.1). Then the concise matrix P which contains
ai,j can be written as:
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P =

⎡⎢⎢⎣
p(0, 0) p(0, 1) py(0, 0) py(0, 1)
p(1, 0) p(1, 1) py(1, 0) py(1, 1)
px(0, 0) px(0, 1) pxy(0, 0) pxy(0, 1)
px(1, 0) px(1, 1) pxy(1, 0) pxy(1, 1)

⎤⎥⎥⎦

=

⎡⎢⎢⎣
1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3

⎤⎥⎥⎦
⎡⎢⎢⎣
a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

⎤⎥⎥⎦
⎡⎢⎢⎣

1 1 0 0
0 1 1 1
0 1 0 2
0 1 0 3

⎤⎥⎥⎦
. (5.4)

Solving the above 16 equations, we obtain all 16 coefficients ai,j in Eq. (5.4). We can
calculate the interpolated value with given x and y inputs by applying Eq. (5.2).

Figure 5.2 illustrates the differences in Mulliken charges of all the atoms in the ANI-1
data set [108] obtained from standard DFTB calculations based on two-centre integrals
using bi-cubic interpolation and standard DFTB calculations. Standard DFTB calcula-
tions involve diatomic Hamiltonian integrals directly from traditional Slater-Koster tables.
For DFTB calculations with a bi-cubic interpolation, we have first pre-generated integral
tables for various compression radii pairs on a grid. The compression radii grid points
used are 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 8.0, and 10.0 Bohr. The integrals
were then calculated using bi-cubic interpolation between the pre-calculated integral ta-
bles according to the compression radii of the atomic basis functions. The compression
radii used for the bi-cubic interpolation and standard Slater-Koster tables of H, C, N, and
O are 3.0, 2.7, 2.2, and 2.3 Bohr, respectively. The minor errors in the results indicate
the accuracy of the implemented bi-cubic interpolation.

Cubic spline interpolation

In TBMaLT, we have also implemented cubic spline interpolation, which can be used
to generate diatomic integrals directly. In the DFTB-ML workflow, the cubic spline
parameters, as we will discuss later, can be updated directly to optimize the targeted
electronic properties. A cubic spline function can usually be defined as

fn(x) = an + bn(x− xn) + cn(x− xn)2 + dn(x− xn)3 (5.5)

where an, bn, cn, and dn are the parameters of the cubic spline interpolation method to
be determined. When optimizing targeted physical properties in DFTB-ML workflow,
these parameters can be updated and optimized. In TBMaLT, the xn values represent
the distance grid points in Slater-Koster files. The spline function with N gird points
satisfies the constraints:

fn(xn) = fn+1(xn) n ∈ {1, 2, 3, . . . , N − 1},

f ′
n(xn) = f ′

n+1(xn) n ∈ {1, 2, 3, . . . , N − 1},

f ′′
n(xn) = f ′′

n+1(xn) n ∈ {1, 2, 3, . . . , N − 1},

f ′′(x0) = f ′′(xN) = 0,

(5.6)
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Figure 5.2: Errors in Mulliken charges between standard DFTB calculations and DFTB
calculations with a bi-cubic interpolation. The results are obtained from SCC-DFTB
calculations based on 1000 molecules from the ANI-1 data set [108] with one heavy atom.

where f ′′(x0) = f ′′(xN) = 0 represents so-called natural boundary condition. When
defining bi = xi+1 − xi, we obtain

ai+1 = ai + bihi + cih
2
i + dih

3
i

bi+1 = bi + 2cihi + 3dih
2
i

ci+1 = ci + 3dihi,

(5.7)

and then we can construct bi and di with ci

bi =
1

hi
(ai+1 − ai) −

hi
3

(2ci + ci+1)

di =
ci+1 − ci

3hi
.

(5.8)

When substituting bi in equation bi+1 = bi + 2cihi + 3dih
2
i , we obtain

hi−1ci−1 + 2(hi−1 + hi)ci + hici+1 =
3

hi
(ai+1 − ai) −

3

hi−1

(ai − ai−1) (5.9)

In Eq. (5.9), ai and hi are already known. We can get ci, bi and di by solving this
equation. Then, we can calculate the interpolated values by applying Eq. (5.5) with
input x.

50



5 TIGHT BINDING MACHINE LEARNING TOOLKIT IMPLEMENTATION 5.2 Implementation and Performance

5.2.3 DFTB calculations

Once the Hamiltonian and overlap matrices had been generated, we can solve the gener-
alized eigenvalue problem to obtain the desired eigenvalues and eigenvectors, from which
physical properties can be constructed. In TBMaLT, the generalized eigenvalue problem
is converted to the standard eigenvalue problem since PyTorch can only solve the stan-
dard eigenvalue problem. In TBMaLT, two methods have been implemented to solve this
generalized eigenvalue problem.

Generalized eigenvalue problem

The Cholesky decomposition is one solution to turn the generalized eigenvalue prob-
lem into the standard eigenvalue problem. For a real Hermitian positive matrix A, the
Cholesky decomposition is written as

A = LLT, (5.10)

where L is a lower triangular matrix with real and positive diagonal entries. The general-
ized eigenvalue equation of DFTB is HC = λSC, where H is the Hamiltonian matrix and
S is the overlap matrix. The λ is the eigenvalue, and C is the corresponding eigenvector.
When substituting the overlap with a Cholesky decomposed form, we obtain

HC = λLLTC, (5.11)

which equals to

(L−1HL-T)(LTC) = λ(LTC), (5.12)

where λ is the eigenvalue of L−1HL-T. With Cholesky decomposition, the generalized
eigenvalue problem has been transferred to a the eigenvalue problem PyTorch can solve.
Löwdin orthogonalization is another method used for solving the generalized eigenvalue
problem using PyTorch, and Löwdin orthogonalization has also been implemented in
TBMaLT. For Löwdin orthogonalization, we first construct the matrix S−1/2, which then
allows us to transform the generalized eigenvalue problem into the following equations

(S− 1
2HS− 1

2 )(S
1
2C) = λS

1
2C. (5.13)

Another challenge in solving the generalized eigenvalue problem is symmetric eigen-
decomposition, which arises when implementing Cholesky decomposition for degenerate
eigenstates. This happens for degenerate eigenstates when updating the gradients using
the autograd engine in PyTorch. To address this issue, Lorentzian broadening techniques
have been employed in previous studies [182, 183].
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Batch operability

One of the crucial features of TBMaLT is its batch operability, which enables DFTB
calculations for multiple single systems simultaneously using packed padding. The vec-
torized feature in batch DFTB calculations avoids the slow loops in Python as much as
possible, resulting in significant efficiency improvements compared to loops of the single
system.

The starting point for DFTB calculations in TBMaLT is to read the Slater-Koster ta-
bles for DFTB calculations. TBMaLT supports traditional DFTB Slater-Koster tables
as input and supports Slater-Koster tables with various compression radii grid points for
different element pairs. In machine learning or high-throughput DFTB calculations, we
perform DFTB calculations of multiple geometries simultaneously instead of the single
DFTB calculation in traditional packages. Incorporating the batch DFTB calculation
effectively circumvents redundant input/output (IO) operations, which can otherwise be
prevalent in conventional software packages. The batch operability also effectively elim-
inates the need for inefficient Python loops. However, to establish a fair comparison
between batch DFTB calculations and iterations of single DFTB calculations, it is crucial
to concentrate exclusively on the DFTB computations. This entails excluding the time
associated with IO operations and the initialization of various Feed objects. As depicted
in Figure 5.3, the CPU time exclusively encapsulates the interval starting from Slater-
Koster transformations [26] to the convergence of SCC-DFTB calculations. Figure 5.3
shows that the batch calculation can speed up SCC-DFTB calculations by at least one
order of magnitude for a large data set.

Figure 5.3 shows that the Slater-Koster transformation, the generalized eigenvalue prob-
lem and other operations should be implemented using vectorized and batch processing
code to improve computational efficiency. This approach allows calculating all corre-
sponding SKT operations simultaneously, resulting in significant time savings.

5.2.4 Electronic properties

In this section, we will introduce the electronic properties which can be calculated using
TBMaLT. These electronic properties are the machine learning targets in this thesis.

Charge population analysis

Charge population analysis (CPA) [184] can be used to derive effective atomic C6 co-
efficients in DFTB, which is based on the method developed by Tkatchenko and co-
authors [185, 186]. The method developed by Tkatchenko et al. [185] uses effective atomic
C6 coefficients in van der Waals interactions depending on the bonding environment. The
C6 coefficients can be obtained by exploiting the linear relationship that exists between
atomic polarizabilities and the Hirshfeld volume [187]. With the Hirshfeld volume VA and
polarizability αA in the environment of atom A, Hirshfeld volume V free

A and polarizabil-

52



5 TIGHT BINDING MACHINE LEARNING TOOLKIT IMPLEMENTATION 5.2 Implementation and Performance

Figure 5.3: Performance of single and batch DFTB calculations using ANI-1 data set [108]
with one (ANI-11) and three heavy atoms (ANI-13). All molecules were calculated se-
quentially in the single calculations, while in the batch calculations they were calculated
together. All the times exclude the IO time and only consider the DFTB calculations
starting from Slater-Koster transformations. The data set contains 60, 120, 300, 600, and
1200 molecules. The tests were run on a machine with an Apple M1 Pro processor using
one thread.

ity αfree
A of the free atom A, and taking advantage of the direct relation [187] between

polarizability and Hirshfeld volume, we have

CAA
6

CAA,free
6

≈ (
αA

αfree
A

)2 ≈ (
VA
V free
A

)2. (5.14)

where CAA
6 is the homonuclear coefficient and the superscript free means the corresponding

property of a free atom. An extension of this applicability exists in DFTB, known as
CPA [184]. In this electron density partitioning scheme, a similar relationship is utilized
between polarizabilities and the ratio of on-site contribution to Mulliken populations and
atomic charge ZA of atom A. For an atomic basis set |Φi⟩ =

∑︁
µCiµ|φµ⟩, the atom-

projected trace hA of the density matrix is defined as

hA =
∑︂
i

fi
∑︂
µ∈A

|Ciµ|2, (5.15)

where occupation of state i is fi and Ciµ are the associated coefficients. hA measures the
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hybridization-induced charge transfer due to the interactions with other atoms, similar to
the atom-in-molecule Hirshfeld volume. Therefore the approximation of the polarizability
of an atom-in-molecule can be expressed as follows:

CAA
6

CAA,free
6

≈ (
αA

αfree
A

)2 ≈ (
hA
ZA

)2. (5.16)

The so-called CPA ratios are hA

ZA
and Hirshfeld volume ratios are VA

V free
A

. Within a machine

learning process, the workflow involves learning CPA ratios in DFTB using reference data
on Hirshfeld volume ratios from DFT calculations.

Density of states

Density of states (DOS), as well as projected DOS (PDOS) have been implemented in
TBMaLT as

DOS(ϵ) =
∑︂
i

δσ(ϵ− ϵi) (5.17)

PDOS(ϵ, ν) =
∑︂
i

∑︂
µ

c∗µicνiSµνδ
σ(ϵ− ϵi), (5.18)

where ϵi are the calculated eigenvalues of state i, ϵ are energy values, δ can be either the
Dirac delta-function or the Gaussian function with broadening parameter σ, cµi is the
coefficient of state i and orbital µ, and Sµν is the overlap between orbitals µ and ν.

Band structures

The theory behind band structure is discussed in the section on periodic boundary
conditions in chapter 2. Band structures can be computed by solving generalized eigen-
value problems using defined high-symmetry k-points. The SCC cycles should be set to
1 for band structure calculations, and Mulliken charges are obtained from well-converged
SCC-DFTB calculations.

Periodic boundary conditions and band structure calculations have been implemented
in TBMaLT. In order to test our implementation, we compared the band structures of
TiO2 obtained from TBMaLT and DFTB+ using the same parameter set. Figure 5.4
illustrates the band structure of TiO2 using our implementation and DFTB+. The SCC-
DFTB calculations were performed with a tolerance of 1 × 10−6 electrons, and a k-mesh
of 5×5×5 was used. The maximum angular momentum used for oxygen was p, while
titanium was d. The compression radii for titanium were all set to 4.3 Bohr, while for
oxygen they were set to 3.5 Bohr. The results demonstrate that the band structure
calculations in DFTB+ and TBMaLT yield identical results.
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Figure 5.4: Band structure of anatase TiO2 using TBMaLT and DFTB+.

5.2.5 DFTB-ML framework

We have outlined the workflow of a Calculator in Figure 5.1. In this section, we will
delve into the implementation details of DFTB-ML within TBMaLT. We will begin by
presenting the feature implementation in TBMaLT, and then by introducing the various
approaches used for constructing Hamiltonian matrices and the workflow of DFTB-ML.

Feature engineering plays a pivotal role in the field of applied machine learning. We
introduced a diverse set of machine learning features in chapter 3. In TBMaLT, we have
integrated and extensively validated the usage of ACSFs for molecular and solid-state
systems. This enables us to accurately depict the chemical environment of molecules and
solids. To optimize the computational efficiency of machine learning calculations, we have
employed Cython in the implementation.

The conventional DFTB calculations are based on the Slater-Koster tables that contain
distance-dependent diatomic integrals and on-site energies. These basis parameters used
for diatomic integral generations are identical for all atoms of a given element. With the
DFTB-ML framework, it is possible to optimize the diatomic integrals and on-site energies
globally, which is similar to the conventional approach. Additionally, the DFTB-ML
approach can also be employed in the local method, which adapts the atomic parameters
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and on-site energies of each atom individually depending on the chemical environment,
providing greater flexibility in DFTB calculations. In the following two chapters, these
approaches and the DFTB-ML frameworks will be introduced in detail.

5.3 Conclusions

In this chapter, we introduced the general design of the TBMaLT, methods used in the
implementation of the TBMaLT, including various interpolations, electronic properties,
and batch-designed DFTB calculations. Our interpolation methods showed reasonable
accuracy, ensuring the accuracy of DFTB calculations. Moreover, the efficiency of training
large batch systems was enhanced by utilizing batch-designed DFTB calculations, which
outperformed the use of single calculations.
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6 Machine Learning of Molecular Electronic Proper-

ties

Based on the implementation of TBMaLT, we introduce a DFTB-ML model for optimiz-
ing DFTB molecular electronic properties (such as dipole moments). The application is
based on a data set of molecules, enabling the optimization of DFTB basis parameters
or diatomic Hamiltonian and overlap integrals directly. Our results demonstrate that
the DFTB-ML model improves both single DFTB electronic property calculations and
calculations of multiple electronic properties, and exhibits good transferability. Addi-
tionally, we demonstrate the importance of incorporating basis functions to ensure that
the trained and predicted Hamiltonian and overlap integrals remain within physically
reasonable ranges.

6.1 Data Sets and Methods

Data collection

This work performed all training and testing using molecular geometries from the
ANAKIN-ME data set, also known as ANI-1 [108]. ANI-1 consists of four element species:
hydrogen, carbon, nitrogen, and oxygen, with the latter three referred to as heavy atoms.
Separate models were trained using molecules of different sizes to investigate the impact
of molecule size. In our notation, the subscript after the data set name ANI-1 indicates
the number of heavy atoms in the molecules. For example, ANI-11 represents a data set
comprising methane, ammonia, and water molecules, each containing one heavy atom. On
the other hand, ANI-13 represents a data set where each molecule contains three heavy
atoms.

DFT calculations

The geometries used in this study were taken from the ANI-1 data set, and all-electron
DFT calculations were performed using the FHI-aims code [175]. The basis set employed
was at tier 2, or tight level, and the PBE functional [89] was used. The electronic
properties calculated from DFT included dipole moments, Mulliken charges, and Hirshfeld
partitioning, allowing for the calculation of effective atomic polarizabilities. [185].

DFTB calculations

All DFTB calculations in this work were performed based on SCC-DFTB calcula-
tions using TBMaLT. The difference between standard DFTB calculations and DFTB-
ML models lies in the way of generating the two-centre Hamiltonian and overlap integrals.
The electronic properties investigated in this section included dipole moments, Mulliken
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charges, and charge population analysis (CPA) ratios [184], which is directly related to
the atomic polarizabilities.

Representations of atomic geometries

In this chapter, we utilized the ACSFs [128] as machine learning features, specifically
employing the cutoff function G1, the radial symmetry function G2, and the angular
function G4 introduced in Eq. (3.5). The ACSFs implementation in this study utilized
a cutoff parameter Rc of 6.0 Angstrom for G1, as well as η and Rs values of 1.0 and 1.0
Angstrom for G2, and η, ζ, and λ values of 0.02, 1.0, and -1.0 for G4.

Machine learning methods

This work employed machine learning algorithms to predict compression radii and on-
site energies using the scikit-learn package. The algorithms used were neural networks
(NNs) and the random forest (RF). The neural networks used for training and testing were
multilayer perceptrons with five layers and the ReLU activation function. The random
forest regression utilized 100 estimators.

During the training process, the learning rate for two-centre integrals was set to 0.02
and 0.001 when training the basis function parameters and the diatomic integrals directly
without basis functions, respectively. The Adam optimizer [158] was used to optimize
the parameters through backward propagated gradients. The learning rates for on-site
energies were set to 5×10−4 for basis function training and 2×10−6 for the model without
basis functions. Mean squared errors (MSEs) were chosen as the default loss function if
not otherwise specified.

6.2 DFTB-ML Workflow

The workflow for molecular electronic training consists of two parts: forward calculations
and backward gradient calculations. The entire workflow of the DFTB-ML model for
electronic properties training in molecule systems is illustrated in Figure 6.1. To perform
the forward calculations, the first step is to construct the Hamiltonian and overlap ma-
trices for SCC-DFTB calculations, and various methods were employed in this work to
construct these matrices, as will be described below. SCC-DFTB calculations are then
carried out to obtain the electronic properties. Loss functions are then constructed using
the reference electronic properties from FHI-aims calculations and electronic properties
from SCC-DFTB calculations. The parameters are updated through backward gradient
calculations using an autograd engine in PyTorch.

Three approaches to construct Hamiltonian and overlap
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Figure 6.1: Illustration of the DFTB-ML workflow.

In this chapter, we will provide a detailed explanation of the different approaches we
used to construct Hamiltonian integrals. These approaches are global and local methods
with well-defined basis functions and the direct diatomic fit using cubic spline interpo-
lation. In SCC-DFTB calculations, distance dependent two-centre integrals and on-site
energies are needed to construct Hamilton and overlap matrices. The confining poten-
tial used in calculating the two-centre Hamiltonian and overlap integrals is shown in
Eq. (2.54).

The first approach is to globally tune the compression radii r0 and on-site energies for
each element species. The first global approach involves assigning the same parameters
to atoms of the same element species in different chemical environments. This global
approach is similar to the traditional DFTB parametrization methods [36, 40, 44, 105],
and the only difference is that we use a machine learning based framework to optimize
the parameters of the confinement term and the on-site energies.

The second approach involves tuning the compression radius and on-site energies de-
pending on the local chemical environment. This local approach also applies confining
potentials as in Eq. (2.54) to generate distance dependent Hamiltonian and overlap inte-
grals, but unlike the first global method, the compression radii in the basis functions are
locally determined for each atom separately based on the chemical environment. Addi-
tionally, the on-site energies are also local in this approach. By adjusting the compression
radii and on-site energies, the Hamiltonian and overlap matrices can be built for the
SCC-DFTB calculations. The initial values of compression radii in the global and local
approaches were chosen as in the mio-1-1 parameter set.
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The global approach and the local approach involve tuning compression radii to build
the two-centre integrals based on basis functions. Conversely, the third approach involves
skipping the basis functions and directly generating the two-centre integrals using cubic
spline interpolation. The Hamiltonian and overlap two-centre integrals and on-site ener-
gies are treated globally for each element specie as in this approach. A similar approach
was introduced in a previous work [66]. In this third diatomic approach, the spline pa-
rameters and on-site energies will be updated. To have a good initial guess, these spline
parameters are initialized using the mio-1-1 parameter set [27]. The way to generate the
spline parameters has been introduced in chapter 5.

To implement the global and local approaches, diatomic integrals have been pre-calculated
for all element specie pairs with defined compression radii grid points and then interpo-
lated using the given compression radii. Hence, an efficient and accurate interpolation
is crucial. For this purpose, a bi-cubic interpolation was employed to obtain integrals
from the pre-calculated diatomic integrals, which was introduced and tested in chapter
5 and was found to be sufficiently accurate for the global and local approaches. ACSFs
and machine learning algorithms have been applied to train and predict the chemical
environment dependent compression radii and on-site energies in the local approach. The
optimized parameters in the global and diatomic approaches can be directly applied to
new geometries.

Forward DFTB calculations

The distance-dependent diatomic integrals and on-site energies obtained from the three
approaches are used to generate Hamiltonian and overlap matrices through the Slater-
Koster transformations (SKT) [26]. Solving the generalized eigenvalue problems in Eq. (2.34)
yields eigenvalues and eigenvectors, which can be used to compute the desired electronic
properties. All SKT and SCC-DFTB calculations are performed using batch calculations
to ensure reasonable efficiency. The batch operability has been described in chapter 5 and
has been proven to be reasonably efficient.

Backward gradients updates and machine learning methods

Electronic properties can be obtained from SCC-DFTB calculations using one of three
approaches to construct Hamiltonian and overlap matrices. The reference electronic prop-
erties have been pre-calculated using FHI-aims. The loss functions for optimizing spline
parameters, compression radii, and on-site energies have been defined as:

Loss =
1

N

m∑︂
j=1

N∑︂
i=1

ωj(P
DFT
ij − PDFTB

ij )2, (6.1)

where N describes the number of systems in the training data set, and m is the number of
physical properties taken into account. PDFT and PDFTB are the target physical property
values from the reference DFT and the DFTB calculations, respectively, and ωj is the
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Figure 6.2: MAEs of dipole moments from traditional SCC-DFTB calculations based on
the mio-1-1 parameter set using testing set, ML training results using training set, and
ML testing results with different ML algorithms using testing set. MAEs are the average
MAEs of three dependent training or testing runs. The unit of dipole moments is the
atomic unit. ANI-11, ANI-13 are the data set[108] with one and three heavy atoms. The
data set size for training is 1000 and the testing data set size is 400.

weight associated with a given physical property. The default value for ω is 1, unless
otherwise specified.

For the local approach, we tested different machine learning algorithms and compared
their performance for dipole moment calculations based on predicted compression radii
and on-site energies. Figure 6.2 illustrates the performance of two different machine
learning algorithms and traditional SCC-DFTB calculations with the mio-1-1 parameter
set. The geometries were represented using was ACSFs, which generated the machine
learning input. The machine learning output consists of the optimized compression radii
and the on-site energies. The neural networks achieve MAEs of 0.05 and 0.21 per molecule
with one (ANI-11) and three (ANI-13) heavy atoms, respectively. On the other hand, the
ensemble method random forest with 100 estimators achieves MAEs of 0.01 and 0.10 for
molecules with one and three heavy atoms, respectively. These results indicate that the
random forest method outperforms neural networks for all molecules with different sizes
in our applications. Therefore, we have chosen the random forest as the machine learning
algorithm.
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6.3 Results and Discussions

Training and testing set size

The size of the data set used in machine learning significantly impacts the chemical
environment patterns that the applied algorithm can learn. Generally, a larger data set
provides more patterns for the algorithm to learn. Therefore, we tested different training
set sizes to investigate their effect using data sets with one and three heavy atoms with all
three approaches. Figure 6.3 shows the MAEs when training sets with different molecule
sizes and optimization methods. When examining the effect of the molecule sizes on
convergence, the ANI-13 data set exhibits higher fluctuations, likely resulting from the
more complex chemical environment. The advantage of the local approach is that it
has the smallest error bar, suggesting the robustness of this approach. From Figure 6.3,
we can conclude that all three approaches with different molecule sizes reach reasonable
convergence when the data set size is 1000. Therefore, for subsequent training, 1000
molecules have been used.

6.3.1 Single Electronic Property Training

The training was tested on single and multiple electronic properties, starting with single
properties, using data sets with one and three heavy atoms. Figure 6.4 illustrates the
training loss and predictions of dipole moments, Mulliken charges, and CPA ratios sepa-
rately using molecules with one heavy atom, while Figure 6.5 illustrates the training loss
and predictions of dipole moments, Mulliken charges, and CPA ratios separately using
molecules with three heavy atoms. The loss functions of all three properties decrease
remarkably. Considering the starting point of the Slater-Koster files being mio-1-1, the
decreases of loss functions suggest that the DFTB-ML framework can optimize electronic
properties and decrease the errors between DFT and DFTB.

Figures 6.4 and 6.5 only depict the performance based on the local approach, whereas
Figure 6.6 compares the mean absolute errors (MAEs) of the predictions for dipole mo-
ments, Mulliken charges, and CPA ratios to evaluate the performance of all three ap-
proaches. The performance of Mulliken charges and dipole moments is better for the
data set with one heavy atom than that of CPA ratios. However, for the data set with
three heavy atoms, the errors of dipole moments increase considerably. This implies that
the complexity of the chemical environment weakens the performance of dipole moment
predictions. The MAEs for dipole moments, charges, and CPA ratios for the ANI-11 data
set based on the local approach are 0.01, 0.02, and 0.07, respectively, compared to values
of 0.18, 0.15, and 0.29 obtained using the mio-1-1 parameter set. For the ANI-13 data
set based on the local approach, the MAEs are 0.10, 0.08, and 0.10 for dipole moments,
charges, and CPA ratios, respectively, compared to values of 0.29, 0.41, and 0.34 ob-
tained using the mio-1-1 set. The local basis function optimization method significantly
improves all electronic properties, indicating its potential for predicting electronic prop-
erties in complex chemical environments. Although the diatomic model and the global
basis function optimization methods also show improvements for the ANI-11 data set,
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Figure 6.3: Effect of the training set size on dipole moment prediction. The dashed lines
represent the ANI-13 data set with three heavy atoms, while the solid lines represent the
ANI-11 set with one heavy atom. The line colors of the diatomic method, the global
method and the local method are red, cyan and blue, respectively. All MAEs are given
in atomic units per molecule. The MAEs are the average of seven independent runs of
training and prediction for the diatomic method and the global method with ANI-13 data
set because of the fluctuations. The other MAEs are the average over three independent
runs. All testing data sets consist of 400 molecules.

these two approaches only slightly improve for the ANI-13 data set. The slight improve-
ment suggests that the mio-1-1 set was already globally optimized to a reasonable range.

6.3.2 Multiple Physical Properties Training

Machine learning on multiple targets is a challenging task. We evaluated the predictivity
of our approach by training on two properties simultaneously. Figure 6.7 displays the
predictions for combinations of two electronic properties, and only the local approach was
selected since it gives the best performance in all cases. All predictions show improvements
compared to the results from the mio-1-1 set. In single property predictions as discussed
before, Mulliken charges and dipole moments perform better than CPA ratios, especially
for data sets with one heavy atom. In multiple property predictions, Mulliken charges and
dipole moments also outperform CPA ratios in charge-CPA and dipole-CPA predictions.
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Figure 6.4: (a) Training loss functions, (b) predictions of dipole moments, (c) predictions
of Mulliken charges, and (d) predictions of CPA ratios. The training and prediction are
based on ANI-11 data set. Each of the electronic properties has been trained and predicted
separately. The blue points are based on the mio-1-1 parameter set, while the red points
are based on the local approach. The training and the testing data set sizes were 1000
and 400, respectively.

This indicates that properties that perform well in single property predictions will also
perform well in multiple property predictions.

In the dipole-charge and CPA-charge training, the MAEs of Mulliken charges over the
ANI1 data set are 0.11 and 0.05, respectively. The MAEs of Mulliken charges are sig-
nificantly higher than that obtained during the single property training. This difference
can be attributed to different optimized distributions of on-site energies and compression
radii for the Mulliken charge training and dipole-charge training, as depicted in Fig-
ure 6.8, which takes Mulliken charges of oxygen atoms as an example. It is important
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Figure 6.5: (a) Training loss functions, (b) predictions of dipole moments, (c) predictions
of Mulliken charges, and (d) predictions of CPA ratios. The training and prediction are
based on ANI-13 data set. Each of the electronic properties has been trained separately.
The blue points are based on the mio-1-1 parameter set, while the red points are based
on the local approach. The training and the testing data set sizes were 1000 and 400,
respectively.

to note that the data set used in Figure 6.8 remains fixed, while the data sets are se-
lected randomly for other purposes. The fixed data set is helpful in checking the effects of
on-site energy distributions or compression radii distributions on the single property and
multiple properties training. Figure 6.8 illustrates that the on-site energy distributions
of oxygen atoms play an important role in optimizing Mulliken charges of oxygen atoms.
Notably, when incorporating on-site energies derived from the Mulliken charge training
and using the compression radii from dipole-charge training, the performance of Mulliken
charges demonstrates a significant enhancement compared with the Mulliken charges in
dipole-charge training. The outcomes depicted in Figure 6.8 elucidate the rise in Mul-

65



6 MACHINE LEARNING OF MOLECULAR ELECTRONIC PROPERTIES 6.3 Results and Discussions

Figure 6.6: MAEs of dipole moments, Mulliken charges and CPA ratios using data
sets with one and three heavy atoms. The average MAEs were obtained from three
independent training and testing runs. The training and the testing data sets contained
1000 and 400 molecules, respectively. All values of MAEs are average of three training
runs except global basis functions and diatomic model for the ANI-13 data set, which
were generated from seven training runs.

liken charges during dipole-charge training, which can be attributed to the variations in
the distributions of on-site energies. The different distributions of on-site energies and
compression radii can also explain the results of the dipole-CPA training. These findings
indicate that multiple property training is a compromise optimization. We can introduce
weight parameters in multiple property training to achieve a balance in performance.
We tested weight parameters ω between 0.5 and 3.0 using Eq. (6.1), and the results are
presented in Table 4.

The MAEs presented in Table 4 were calculated in atomic units and based on the
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Figure 6.7: Average MAEs of electronic properties from standard SCC-DFTB calcula-
tions using the mio-1-1 parametrization and predictions based on the local approach on
two electronic properties (dipole-charge, dipole-CPA, and charge-CPA). The MAEs were
obtained from three training and testing runs. The training and predictions data set
sizes were 1000 and 400, respectively. All weights of the electronic properties in the loss
functions were chosen to be 1.

Table 4: Effect of weights in loss functions on the predictions of multiple properties

weights in CPA loss functions 0.5 1.0 2.0 3.0
weights in dipole loss functions 1.0 1.0 1.0 1.0
MAEs of dipole moments 0.02 0.03 0.03 0.04
MAEs of CPA ratios 0.11 0.10 0.09 0.09

ANI-11 data set. The results demonstrate that tuning the weight parameters can be
beneficial in achieving global optimization in multiple properties training. By adjusting
the weights, it is possible to balance the relative importance of each physical property in
the loss function and improve the predictivity of the model for all properties. This finding
is particularly relevant in the context of machine learning, where multiple task learning
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Figure 6.8: On-site energies distributions of (a) oxygen s orbital, (b) oxygen p orbital
from single Mulliken charge training and charge-dipole training. (c) Mulliken charges
of oxygen atoms were obtained from three scenarios: directly from training Mulliken
charges, from training dipole-charge, and employing on-site energies from training Mul-
liken charges combined with compression radii from training dipole-charge. The training
data set contains 1000 samples, and the data set is the ANI-11 data set.

is a challenging task due to the complexity of the data and the need to optimize multiple
properties simultaneously. To conclude, these results highlight the importance of careful
parameter tuning in achieving accurate and reliable predictions in multiple task machine
learning.
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6.4 Transferability

The transferability of a machine learning model is a crucial aspect that determines its
usability in real-world systems. This chapter focuses on two types of transferability: scal-
ing transferability and transferability between physical properties. Scaling transferability
measures whether a learning model can be applied to more complex chemical environ-
ments, while the latter evaluates whether the training model is limited to predicting
specific physical properties used during training.

Figure 6.9: Predictions of the Mulliken charges using a data set containing molecules
with five heavy atoms after training on a data set containing molecules with three heavy
atoms only. The local basis function training scheme was applied; the sizes of the training
and prediction sets were 1000 and 400, respectively.

6.4.1 Scaling Transferability

The scaling transferability of a machine learning model is evaluated based on whether
the model can be trained on small systems but applied to predict the properties of larger
systems. In this work, we investigate the scaling transferability of our model by training
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Figure 6.10: CPA predictions for hydrogen atoms in molecules of the ANI-11 data set.
The models were trained on dipole moments. The black line represents the DFT reference.
The data set sizes for the training and predictions were 1000 and 400, respectively.

it on the ANI-13 data set and testing it on the ANI-15 data set. The two-centre integrals
and on-site energies used for scaling transferability evaluation are based on the local
approach, which involves local compression radii and on-site energies training, and the
electronic property considered is Mulliken charges. Figure 6.9 demonstrates that the
predictions obtained using the local DFTB-ML model are about 55% lower than those
obtained from the mio-1-1 Slater-Koster files, indicating that the DFTB-ML model is
scalable and can be used to predict more complex chemical environments of the testing
set than the training set.

6.4.2 Transferability of Physical Properties

Incorporating physical models into machine learning models can enhance their transfer-
ability across different physical properties. In this section, we compared three approaches
for constructing the DFTB Hamiltonian’s two-centre integrals: direct prediction with di-
atomic fit, global basis functions, and local basis functions. We trained these models on
dipole moments using the ANI-11 data set and evaluated them by predicting CPA ratios.
The results shown in Figure 6.10 indicate that the diatomic model, which directly predicts
the two-centre integrals, produced some physically implausible predictions. In contrast,
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the global and local approaches, which employ well-defined basis functions, consistently
produced physically plausible predictions. This suggests that training on parameters
in basis functions better preserves physicality and yields values of untrained properties
within a reasonable range.

6.5 Conclusions and Outlook

In this section, we combined the DFTB method with machine learning to predict the
electronic properties of molecules. Our workflow achieved a cheap, accurate, and trans-
ferable scheme for predicting electronic structures by optimizing the two-centre integrals
and on-site energies in the DFTB method using machine learning.

We compared three different approaches for building the DFTB Hamiltonian’s two-
centre integrals: direct prediction and explicit calculation using globally or locally op-
timized atomic basis functions. All of these approaches showed improvement compared
to traditional SCC-DFTB calculations using mio-1-1 parameter set, with local compres-
sion radii optimization giving the best overall predictions. The local compression radii
approach allows for tuning the confinement term parameters in a chemically dependent
manner, providing greater flexibility to the model. We emphasize the importance of well-
defined basis functions. The diatomic approach, which directly predicts the diatomic
integrals with low errors, showed poor transferability between physical properties, lead-
ing to physically unreasonable predictions of electronic properties not considered during
training.

The next step for the DFTB-ML framework is to extend it to include solid systems,
which will be discussed in the following chapter. Another ongoing work is to incorporate
the repulsive potential into the model to predict total energies and forces.
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7 Machine Learning of Band Structures

The band structure is a fundamental physical property of solid-state materials, and ac-
curately predicting it is crucial in materials science. However, DFT with GGA has
been found to underestimate band gaps, which limits its accuracy [188]. To overcome
this limitation, more computationally expensive methods such as the HSE hybrid func-
tional [94, 95] and GW method [68] have been developed. Although HSE can provide
accurate results that match experimental data, its computational expense makes it suit-
able only for systems of limited size.

Recently, machine learning has emerged as a promising approach to predict band struc-
tures [68, 189, 190, 191, 192]. Machine learning models achieve a good balance between
accuracy and computational expense, making them suitable for larger systems. These
models use various techniques to predict the materials’ electronic structures and learn
the relationship between the input features and the band structure outputs. By training
on an extensive data set of known band structures, these models can accurately predict
band structures of new materials, making them a valuable tool for materials design and
discovery.

This chapter presents a novel approach combining machine learning and the DFTB
method to reproduce hybrid functional results. Our DFTB-ML method can accurately
predict band structures in bulk systems and various more complex chemical environments,
such as slab models and defect systems. Our framework enables high-accuracy predictions
of band structures at a low computational cost. The DFTB-ML approach is built upon
a machine learning model that has been trained using DFT results with a hybrid func-
tional. By learning the two-centre Hamiltonian integrals and on-site energies to minimize
the errors between DFTB band structure calculations and hybrid functional band struc-
tures, our machine learning model achieves high accuracy in predicting band structures
compared to hybrid functional calculations. Moreover, this approach can be applied to
systems that are more accessible to hybrid functional calculations. The DFTB-ML frame-
work has the potential to significantly reduce the computational cost of accurate band
structure predictions and open up new possibilities for materials design and discovery.

7.1 Methods and Data Collection

Data set generation

In order to increase the diversity of our machine learning data set, we constructed
models for different systems. Specifically, we included bulk silicon, carbon, and silicon
carbide systems with several different lattice structures. We used a three-layer system
with a 15.0 Angstrom vacuum for slab models. The supercell system used for the bulk
systems had 64 atoms based on the diamond lattice structure. Additionally, we included
defect systems by removing one atom from the supercell system, resulting in a system
with 63 atoms. Specifically, one silicon atom has been removed in silicon carbide systems
with one point defect.
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To capture a variety of chemical environments, we performed MD simulations using the
DFTB+ package [177] and the pbc-0-3 Slater-Koster files [193]. Geometry optimizations
were performed before MD simulations. We used the NVT ensemble at 1273 K with a
Nosé-Hoover thermostat [194, 195, 196]. A time step of 1 fs with 1000 steps was used, and
every 20 steps, the geometries were recorded as the structures for learning. In the case of
slab models, only the surface layer was allowed to move during MD simulations, while for
defect systems, the first and second neighbouring atoms of the vacancy were allowed to
move. All geometries for band structure calculations in the following sections have been
based on the MD simulations.

Table 5: Data collection for machine learning band structure calculations.

lattice size number slab defect K-mesh
hexagonal 2 50 No No 9 × 9 × 5
tetragonal 2 50 No No 9 × 9 × 9
tetragonal 4 50 No No 5 × 5 × 9
diamond 2 50 No No 9 × 9 × 9
diamond 8 50 No No 7 × 7 × 7
diamond 64 50 No No 5 × 5 × 5

Si diamond 24 50 100 No 7 × 7 × 5
diamond 24 50 110 No 7 × 7 × 5
diamond 24 50 111 No 7 × 7 × 5
diamond 63 50 No Yes 5 × 5 × 5

hexagonal 2 50 No No 9 × 9 × 5
hexagonal1 4 50 No No 9 × 9 × 5
hexagonal2 4 50 No No 9 × 9 × 5
diamond 2 50 No No 9 × 9 × 9
diamond 8 50 No No 7 × 7 × 7

C diamond 24 50 100 No 7 × 7 × 5
diamond 24 50 110 No 7 × 7 × 5
diamond 24 50 111 No 7 × 7 × 5
diamond 64 50 No No 5 × 5 × 5
diamond 63 49 No Yes 5 × 5 × 5

cubic 2 50 No No 9 × 9 × 9
cubic1 8 50 No No 7 × 7 × 7

diamond2 2 50 No No 9 × 9 × 9
diamond 8 50 No No 7 × 7 × 7

SiC diamond 24 50 100 No 7 × 7 × 5
diamond 24 50 110 No 7 × 7 × 5
diamond 24 50 111 No 7 × 7 × 5
diamond 64 50 No No 5 × 5 × 5
diamond 63 50 No Yes 5 × 5 × 5

Table 5 shows the geometries used for machine learning training. The data set includes
a range of bulk systems with different lattice structures, providing a representative sample
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of the diversity of materials in nature. Hexagonal1 and hexagonal2 structures of carbon
correspond to AA- and AB-stacked bilayer graphene, respectively, while hexagonal struc-
tures with two atoms represent a lattice cell containing a single layer of graphene. Both
cubic1 and diamond2 in Table 5 are cubic crystals. In cubic1, one silicon atom is bonded
to six equivalent carbon atoms to form a mixture of corner and edge-sharing SiC6 octa-
hedra, while in diamond2, one silicon atom is bonded to four equivalent carbon atoms to
form corner-sharing SiC4 tetrahedra. Additionally, we included slab and defect models,
allowing for the prediction of band structures in these systems. The k-mesh in Table 5
was used for DFT band structure calculations. We obtained 50 geometries for the carbon
vacancy system; however, only 49 were used in a carbon diamond system with one point
defect. One of the geometries failed to converge in the DFT calculations with the hybrid
functional and thus was not included in our study. The k-mesh shown in Table 5 has been
applied to each geometry for DFT and DFTB band structure calculations and DFTB MD
simulations. MD simulations allowed us to capture the effects of thermal fluctuations and
environmental interactions on the electronic structure of the materials, making our data
set more realistic and applicable to real-world scenarios.

DFT calculations

The geometries used in DFT calculations were obtained from molecular dynamics calcu-
lations conducted previously. With a light-level basis set, the band structure calculations
were performed using the FHI-aims package [175]. To generate more precise reference
band structures for our machine learning models, we employed the HSE functional (in-
troduced in chapter 2) and adopted the parameters from the HSE06 method [95]. To
assess the accuracy of the light level basis set, we compared hybrid band structures based
on both tight and light levels, as shown in Figure 7.1. Our results demonstrate that
the light level basis set is sufficient for accurately predicting band structures, with good
agreement between the tight and light level calculations. The bandgap obtained using the
light and tight basis sets were 5.42 eV and 5.51 eV, respectively, comparable to the ex-
perimental value of 5.47 eV [197]. Additionally, the high-symmetry points were generated
automatically using the method introduced by Wahyu and Stefano [174].

Representations of atomic geometries

In this chapter, we employed ACSFs [128] as machine learning features. Specifically,
we utilized the cutoff function G1, the radial symmetry function G2, and the angular
function G4, introduced in chapter 3. The implementation of ACSFs utilized a cutoff
parameter Rc of 10 Angstrom, along with η and Rs values of 1.0 and 1.0 Angstrom for
G2, and η, ζ, and λ values of 0.02, 1.0, and -1.0 for G4. The ACSFs utilized for on-site
energies are conventional atomic symmetry functions, while those for scaling parameters
are diatomic features based on conventional ACSFs. The diatomic scaling parameters will
be discussed in the DFTB-ML workflow section. The G4 function in Eq (3.5) can both
be used to represent atomic and diatomic chemical environments. G4 can represent the
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Figure 7.1: Band structures of carbon diamond using the HSE hybrid functional method
in the FHI-aims software. We compare the results obtained using two different basis sets:
light and tight.

interactions of atom i with two other atoms j and k while also representing the atomic
pair i and j interacting with atom k. On the other hand, the G1 and G2 functions can only
represent atomic chemical environments. To represent the diatomic chemical environment
between atom i and atom j, we add the G2 function of atom i and G2 function of atom
j with a decay function fc. The revised G2 function is as follows:

G2
ij = fc(Rij)

[︄
all∑︂
k ̸=i

e−η(Rik−Rs)2fc(Rik) +
all∑︂
k ̸=j

e−η(Rjk−Rs)2fc(Rjk)

]︄
. (7.1)

Here, the notation employed is consistent with that utilized in Equation (3.5). The G1

function has also been revised in a similar manner. Additionally, the feature represen-
tations in this chapter incorporate periodic boundary conditions, and thus the periodic
ACSFs were utilized for diatomic scaling parameters and on-site energies.

DFTB-ML parameters
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All DFTB calculations in the DFTB-ML process were performed using TBMaLT [180].
The initial DFTB Hamiltonian and overlap integrals were obtained from a traditional
DFTB parametrization. The learned parameters consisted of scaling factors for the two-
body Hamiltonian integrals and on-site energies. During the training process, the learning
rate for scaling factors of the Hamiltonian integrals in carbon systems was set to 3×10−3,
and on-site energies were set to 1 × 10−3. The learning rate for scaling factors of the
Hamiltonian integrals in silicon carbide systems was set to 3 × 10−3, and for on-site
energies was set to 2 × 10−3. The learning rate for scaling factors of the Hamiltonian
integrals in silicon systems was set to 5 × 10−4, and for on-site energies was set to 4 ×
10−4. The Adam optimizer [158] was employed to optimize the parameters via backward
propagated gradients. The default loss functions were MAEs unless otherwise specified.
The convergence tolerance for all training was set at 1 × 10−4 eV. We have used the
random forest algorithm to predict the on-site energies and scaling parameters based on
the geometric features, and 100 estimators were applied in random forest.

7.2 DFTB-ML Workflow

In order to obtain a good initial starting point for machine learning-based DFTB band
structure optimization, we applied two-step optimization procedures. Firstly, we globally
optimized the basis parameters and on-site energies to minimize the band structure errors
between DFT and DFTB. Based on the two-centre Hamiltonian integrals and on-site
energies obtained in the first step, we further optimized the Hamiltonian integrals and
on-site energies using machine learning.

Global optimization

For silicon systems, the siband-1-1 parameter set [41, 42] have been fitted based
on experimental results and perform state-of-the-art DFTB band structure predictions.
The siband-1-1 parameter set was used as the basis set parameters for generating the
initial Slater-Koster parameter set. For carbon systems, the existing parameters do not
satisfactorily predict the band structures. Therefore, we initially screened the basis set
parameters to optimize the Slater-Koster tables for carbon and silicon carbide systems
globally. We then utilized these optimized parameters as the starting point for subsequent
training.

The compression radii of the carbon s and p orbitals are the same, with grid points
at 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.5, 4.0, and 4.5 Bohr. Meanwhile, the grid points
of compression radii for the d orbital are 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.5, 4.0, and
4.5 Bohr. We determined the final compression radii by calculating the MAEs between
hybrid functional DFT and DFTB calculations to obtain the optimized compression radii.
Additionally, the on-site energy of the d orbital was adjusted, and the grid points of on-
site energy are 0.0, 0.05, 0.1, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, and 0.5 Hartree. The
errors were computed as follows:
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Loss =
1

Ni

∑︂
i

1

Nv

1

Nk

∑︂
v

∑︂
k

|ϵDFT
i,k,v − ϵDFTB

i,k,v |, (7.2)

where Ni represents the number of geometries, including carbon and silicon carbide with
various lattice types, and Nk denotes the number of selected k points, and Nv is the
number of selected energy states. Unlike Eq. (4.1), the first derivative is not applied
since there is no flat band issue in this system shown in Table 5. As a result, we chose a
compression radius of 4.0 Bohr for the s and p orbitals and 2.75 Bohr for the d orbital.
We also shifted the on-site energy of the carbon d orbital from 0.02 to 0.45 Hartree.
The Hamiltonian and overlap integrals based on these parameters were used as initial
Slater-Koster tables for machine learning.

DFTB-ML optimization

The diatomic integrals and on-site energies obtained from the global optimization were
used as the initial parameters for the DFTB-ML optimization. To incorporate a scaling
parameter αlAlB

AB for the two-center Hamiltonian integral H lAlB
AB of atomic pair A and B

and azimuthal quantum number pair lA and lB, we set the initial value of αlAlB
AB to 1.0 and

then used αlAlB
AB H lAlB

AB instead of H lAlB
AB for the subsequent DFTB calculations. Here, two

different integrals of the same atomic pair and the same azimuthal quantum number pair
share the same scaling parameter. For instance, the scaling parameters of Hppσ

AB and Hppπ

AB

are the same. The scaling parameters of all atomic pairs were then optimized to minimize
the band structure errors between DFTB and DFT. The on-site energies of each atom
were optimized directly. The overlap integrals remain the same as the overlap in global
optimization. For the DFTB-ML model, the machine learning targets were the scaling
parameters and on-site energies.

When building DFTB-ML models, one of the most important tasks is to define the loss
functions. The chosen loss functions are MAEs for band structure learning, which is

Loss =
1

Ni

1

Nv

1

Nk

∑︂
i

∑︂
v

∑︂
k

|ϵDFT
i,k,v − ϵDFTB

i,k,v |. (7.3)

The notations used in this section are the same as those mentioned in the previous section.
The slight difference between Eq. (7.3) and Eq. (7.2) is that the loss function in Eq. (7.3) is
directly the average of all selected eigenvalues. We use different loss functions in Eq. (7.3)
and Eq. 7.2. We use Eq. 7.2 due to the differences in eigenvalue summations among various
geometries. This variance is attributed to differences in geometric size and element species.
Consequently, calculating the average eigenvalue error for each geometry is reasonable.
However, for DFTB-ML optimization, we train systems with different element species and
sizes separately. As elucidated in Chapter 5, we employ padding for batch operability.
Padding diverse geometric sizes generates sparse tensors with numerous zeros. To ensure
efficient training, we train geometries of varying sizes and element species separately. In
this scenario, the total eigenvalue errors for each geometry are similar, enabling direct
summation of all eigenvalues in the loss function using Eq. (7.3). We have chosen all the

77



7 MACHINE LEARNING OF BAND STRUCTURES 7.3 Training on Bulk Systems

eigenvalues of high symmetric k points for use in the loss function. The k path between
two high symmetric points consists of ten grid points, and the grid point located at the
midpoint of the path is also included in the loss function. During our machine learning
training, all valence bands were taken into consideration. Additionally, the number of
conduction bands included in the loss function was determined based on the number of
atoms. Specifically, in the case of a diamond with two atoms, two conduction bands were
used in the loss function.

7.3 Training on Bulk Systems

Effect of training size

We began with optimized global parameters in our machine learning training of DFTB
parameters for band structures. Then the on-site energies and the scaling parameters
of the Hamiltonian integrals were optimized based on Slater-Koster tables from global
optimization. Each sub-training set, as shown in Table 5, comprised 50 geometries, except
for the carbon diamond defect system. To determine the optimal size of the training sets,
we used data set ratios of 0.1, 0.2, 0.3, 0.4, and 0.5, as illustrated in Figure 7.2. The testing
data set ratio was 0.2, and we tested the performance of our training model using the
random forest algorithm for predicting on-site energies and scaling parameters and ACSFs
for atomic geometry representations. Our results indicate that a ratio of 0.4 provides the
best trade-off between the training set’s size and the predicted results’ accuracy. Therefore
this ratio was used for the subsequent training.

Training on bulk systems

Using the data set outlined in Table 5, we initiated the machine learning training pro-
cess on bulk materials with varying lattice types and geometric sizes. Geometries sharing
the same lattice-type but differing sizes were trained independently and evaluated collec-
tively. This segregated training approach helps circumvent the issue of padding zeros, as
discussed in chapter 5. Figure 7.3 illustrates the average MAEs of carbon diamond sys-
tems, encompassing those with 2, 8, and 64 atoms. The parametrization of the previous
pbc-0-3 parameter set [193] was primarily focused on the periodic system, specifically
targeting carbon and silicon elements. It is important to note that the pbc-0-3 param-
eter set represents a minimal basis set. The comparison between pbc-0-3 parameter set
and the globally optimized parameter set highlights that optimizing the basis parameters
and on-site energies can improve the performance of the band structures. Additionally,
including d orbitals in the basis function can enhance the band structure’s performance.
We compared band structure calculations based on the DFTB-ML model with band struc-
tures based on the previous pbc-0-3 parameter set and our globally optimized parameter
set. The results in Figure 7.3 indicate that, compared with pbc-0-3, all band structure
calculations based on the globally optimized parameter set have remarkably improved. By
applying the DFTB-ML model, which uses the globally optimized Slater-Koster tables as
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Figure 7.2: Effect of training size on the testing errors.

the initial parameters for training, band structure calculations based on Mulliken charges
from well-converged SCC-DFTB calculations can be further improved. The results sug-
gest that the chemical environment adaptive machine learning model can enhance band
structure calculations with various lattice types and geometric sizes.

To demonstrate the accuracy of machine learning-based band structure predictions, we
present Figure 7.4 to visualize the band structure performance. The geometry used for
this calculation was taken from MD step 120, and the MAE value is 0.26 eV, close to the
average value of carbon diamond shown in Figure 7.3. The DFTB-ML model accurately
reproduces the valence band maximum (VBM) and conduction band minimum (CBM)
of the DFT-HSE band structures and the band gap. However, for energy states approxi-
mately 10 eV below the VBM, the prediction error remains around 1 eV, contributing to
a significant portion of the overall error.

Similar results were obtained for band structure predictions of other materials with
different geometries. The DFTB-ML model can perfectly reproduce the VBM and CBM
of these materials and the main contribution to the prediction errors is from energy states
that are far away from the VBM.
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Figure 7.3: Band structure MAEs of bulk carbon, silicon, and silicon carbide geometries
using pbc-0-3 set, the global optimized Slater-Koster tables, and the DFTB-ML model.
The testing ratio was 0.2, and the MAEs are reported in eV. The reference values are
from DFT-HSE calculations.

7.4 Training on Defect and Slab Systems

The results show that the predictions of band structures based on the training model
on various bulk systems can improve the band structure performance. This section fur-
ther investigates more complex environments, including slab models and defect systems.
Figure 7.5 shows the predictions of band structures by using previous training models,
including bulk, slab, and defect systems. The slab models include (100), (110), and (111)
surfaces of silicon, carbon, and silicon carbide diamond structured geometries, which are
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Figure 7.4: The band structure calculations of the carbon diamond system were performed
using the DFTB-ML model, with the geometry taken from a snapshot of MD (step 120).
The resulting band structure predictions were compared to DFT-HSE calculations.

generated from MD calculations. The defect systems considered in this study include sil-
icon, carbon, and silicon carbide diamond structures, each with a point vacancy resulting
from removing one atom. In the case of silicon carbide, one silicon atom has been removed.
As shown in Figure 7.5, the global optimization of Slater-Koster tables has improved the
band structures of all systems. Further improvements have been achieved by using the
DFTB-ML model. This result indicates that DFTB-ML is capable of performing better
in complex chemical environments.

To visualize the performance of the DFTB-ML model, we chose the carbon diamond
system with a point defect in Figure 7.6. The value of MAEs of this testing geometry is
0.24 eV, slightly higher than the average MAE of 0.18 eV in the carbon diamond systems
with point defects. Figure 7.6 shows that the DFTB-ML model can accurately reproduce
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the band structures near VBM and CBM.

Figure 7.5: Band structure MAEs of slab and defect carbon, silicon, and silicon carbide
geometries from pbc-0-3 set with minimal basis functions, global optimized Slater-Koster
tables with d orbitals, and DFTB-ML predictions based on global optimized parameter
set. The testing ratio was 0.2, and the MAEs are reported in eV. The reference values
are from DFT-HSE calculations.

In this section, we have trained and tested slab models and defect models. In all
geometries, DFTB-ML gives the most accurate band structure predictions. The DFTB-
ML model performs incredibly well near VBM and CBM, similar to the bulk systems.
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Figure 7.6: The band structure calculations of the carbon diamond defect system with
63 atoms were performed using the DFTB-ML model, with the geometry taken from a
snapshot of MD (step 360). The resulting band structure predictions were compared to
DFT-HSE calculations.

7.5 Transferability

In this chapter, we have investigated the transferability of our method by training our
models using small carbon diamond geometries with 2 and 8 atoms and applying the
training models to predict the band structures of carbon diamond systems with 64 atoms
and 63 atoms with one point defect. The results, as shown in Figure 7.7, indicate that both
the global optimized method and DFTB-ML model significantly improve the accuracy of
band structures from DFTB calculations for larger systems. The MAEs for all testing
geometries between DFTB calculations and DFT-HSE results decrease from 3.7 eV using
pbc-0-3 parameter set to 1.0 eV using global optimized parameter set and 0.3 eV from
DFTB-ML models, respectively. Similarly, using small geometries for training for carbon
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defect systems decreases the error from 3.6 eV using pbc-0-3 parameter set to 1.1 eV
using global optimized parameter set and 0.6 eV from DFTB-ML models, respectively.
Both the global optimized Slater-Koster parameter set and DFTB-ML model accurately
reproduce the band gap and VBM, with the latter providing better predictions for the
CBM. These results demonstrate the potential of DFTB-ML for accurately predicting the
electronic structure of larger and more complex systems.

Figure 7.7: Testing transferability of DFTB-ML models in predicting band structures of
carbon diamond with 64 atoms based on training small carbon diamond systems (2 and
8 atoms). The testing ratio was 0.2. The geometries were carbon diamond crystals.

In summary, our results demonstrate that the DFTB-ML model based on small ge-
ometries can significantly improve the accuracy of band structure calculations for larger
systems, even for systems with defects not included in training sets. This highlights the
excellent transferability of our DFTB-ML models.
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7.6 Conclusions and Outlook

In this section, we propose a two-step machine learning workflow to improve the accuracy
of band structure predictions for carbon, silicon, and silicon carbide systems. The first step
is global optimization of the basis parameters of the carbon element. As the siband-1-1

Slater-Koster tables have shown exemplary performance in band structure calculations for
silicon and silica systems, we adopt the same basis parameters for our study. We optimize
the basis parameters of carbon by tuning the compression radii and on-site energies to
minimize the band structure errors between DFT-HSE and DFTB calculations for bulk
carbon and silicon carbide systems. Using the globally optimized parameter set can
significantly decrease the MAEs compared to the previously used pbc-0-3 parameter
set. This improvement demonstrates that incorporating optimized basis parameters, on-
site energies, and d orbitals in carbon and silicon elements can enhance band structure
calculations. In the second step, we utilize the DFTB-ML model to further optimize
the DFTB band structure calculations. This optimization is performed using the globally
optimized Slater-Koster tables as the initial parameter set, resulting in a further reduction
in the MAEs in all cases.

The geometries considered in our study encompass bulk structures with various lattice
types, slab models, and defect systems, representing a diverse range of chemical envi-
ronments. The application of DFTB-ML improves the band structure calculations for
all these geometries, showcasing the advantages of machine learning in handling complex
systems. Additionally, our model demonstrates good scaling transferability for carbon di-
amond structured geometries, indicating that the DFTB-ML approach can efficiently and
accurately calculate the band structures of large systems using the cost-effective DFTB
method.

In the previous chapter, we implemented our DFTB-ML model in TBMaLT for molecule
data sets. In this section, we extend our approach to periodic boundary conditions, en-
abling the prediction of band structures. As a next step, we plan to apply the DFTB-ML
model to real systems, such as lithium batteries. Furthermore, our objective encompasses
expanding the DFTB-ML model to encompass repulsive potentials, facilitating the com-
putation of total energies and forces. This expansion enables us to conduct molecular
dynamics simulations and geometry optimizations.
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8 Conclusions

This thesis starts by presenting the traditional parametrization of DFTB for LIBs, fol-
lowed by a focus on implementing the DFTB-ML framework TBMaLT and its applications
in both molecular and solid-state systems. The incorporation of machine learning shows
promising potential for enhancing the DFTB parametrization with machine learning based
techniques.

DFTB parametrization for Lithium-ion batteries

In this study, we investigated the DFTB parametrization of Li6(PS4)SCl and Li5(PS4)Cl2,
which are promising solid-state electrolytes for next-generation LIBs due to their high ionic
conductivity and stability.

For the initial step, we used the 3ob-3-1 Slater-Koster tables for phosphorus, sulfur,
and chlorine and tuned the compression radii of lithium only. However, this approach
alone led to the underestimation of the band gap and swapped certain valence bands of
Li6(PS4)SCl. Through PDOS analysis, we found that the valence bands near the VBM
were influenced by the p orbitals of lithium and sulfur. The compression radii parameters
of the lithium and sulfur elements were adjusted, while the parameters of phosphorus and
chlorine were kept the same as in the 3ob-3-1 Slater-Koster files since they had minimal
impact on the band structures. We applied cubic lithium, cubic sulfur, Li6(PS4)SCl, and
Li5(PS4)Cl2 systems for electronic parameterization by minimizing the band structure
errors between DFT and DFTB calculations of these systems. We found that increasing
the compression radii of the sulfur p orbital improved the band structure performance.
However, the values of compression radii that minimized the band structure errors made it
challenging to fit the repulsive parameters of the sulfur system. Therefore, we determined
compromised compression radii for lithium and sulfur, enabling reasonable DFTB band
structure calculations and subsequent repulsive fitting. We also found that tuning the
on-site energies for sulfur p and d orbitals can systematically improve the DFTB band
structure performance.

Finally, we determined the repulsive energies of cubic lithium, cubic sulfur, Li3P, Li2S,
LiCl, Li6(PS4)SCl, and Li5(PS4)Cl2 systems using the CCS method, which reproduced the
geometry optimization results obtained from DFT calculations with reasonable accuracy.

Tight binding machine learning toolkit implementation

This work introduced the implementation of TBMaLT that enables standard DFTB cal-
culations and machine learning-based automatic parametrization. TBMaLT is compatible
with both molecular and solid systems using standard Slater-Koster files and offers a range
of electronic property calculations. It supports high-throughput DFTB calculations, and
the batch implementation feature allows for reasonably efficient high-throughput calcula-
tions. TBMaLT also offers flexibility by allowing the incorporation of different machine
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learning-based Hamiltonian and overlap matrices. Several machine learning methods have
been developed for constructing Hamiltonian and overlap matrices.

Machine Learning of Molecular Electronic Properties

Based on the current TBMaLT implementation, we have integrated machine learning
into the DFTB method to predict the electronic properties of molecules. Our workflow has
resulted in a cheap, accurate, and transferable scheme for predicting electronic structures.
This workflow optimized the two-centre integrals and on-site energies using machine learn-
ing, which enhanced the accuracy of predictions for both single and multiple electronic
properties.

We compared three approaches for constructing two-centre integrals and on-site en-
ergies for SCC-DFTB calculations. The first approach adjusted the compression radii
and on-site energies in the confinement term for each element species, while the second
approach modified them in a chemically-dependent manner for each atom. The third
approach predicted and calculated the diatomic integrals globally and directly using a
cubic spline method with global on-site energies. All approaches exhibit improvements
over traditional SCC-DFTB calculations with the mio-1-1 parameter set, with the sec-
ond approach (local optimization of compression radii and on-site energies) yielding the
best predictions. The second approach allows for chemically-dependent tuning of the
confinement term parameters, enhancing model flexibility.

We found the importance of well-defined basis functions for accurate predictions of
electronic properties. The third approach, which directly predicts the diatomic integrals
with low errors, showed poor transferability between physical properties and resulted in
physically unreasonable predictions of electronic properties. This highlights the need for
caution when using machine learning-based approaches for predicting electronic proper-
ties.

Machine Learning of Band Structures

In this work, we presented a two-step machine learning workflow to enhance the ac-
curacy of band structure predictions for carbon, silicon, and silicon carbide systems,
including bulk, slab, and defect geometries.

In the first step, we optimized the basis parameters of the carbon element by tuning the
compression radii and on-site energy of the carbon d orbital. This was achieved by mini-
mizing the band structure errors between DFT-HSE and DFTB calculations for selected
bulk carbon and silicon carbide systems. We used the siband-1-1 basis parameters for
silicon, demonstrating exemplary performance in band structure calculations for silicon
and silica systems. Using these globally optimized parameter set resulted in a notable
improvement compared to the previously employed minimal basis pbc-0-3 parameters,
emphasizing the effectiveness of incorporating optimized basis parameters, on-site ener-
gies, and the significance of d orbitals in carbon and silicon elements for improving band
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structure calculations.

In the second step, we applied the DFTB-ML model to optimize the DFTB band struc-
ture calculations using the globally optimized Slater-Koster tables as the initial parame-
ters. The DFTB-ML model trained and predicted the scaling parameters for the diatomic
Hamiltonian integrals for each atomic pair and local on-site energies for each atom. The
DFTB-ML-based parameters significantly improved the band structure calculations in
all bulk, slab, and defect systems, resulting in chemically environment-adaptive machine
learning-based predictions. This DFTB-ML model also demonstrated excellent scaling
transferability, allowing for training on small systems and prediction on larger ones. This
showcases the potential applications of this approach in modelling large systems that are
not accessible to hybrid functional calculations.

88



List of Publications

� Adam McSloy, Guozheng Fan, Wenbo Sun, Christian Hölzer, Marvin Friede, Se-
bastian Ehlert, Nils-Erik Schütte, Stefan Grimme, Thomas Frauenheim, and Bálint
Aradi. Tbmalt, a flexible toolkit for combining tight-binding and machine learning.
The Journal of Chemical Physics, 158(3):034801, 2023 (Chapter 5)

� Guozheng Fan, Adam McSloy, Bálint Aradi, Chi-Yung Yam, and Thomas Frauen-
heim. Obtaining electronic properties of molecules through combining density func-
tional tight binding with machine learning. The Journal of Physical Chemistry
Letters, 13(43):10132–10139, 2022 (Chapter 6)

� Machine learning-based parameterization of density functional tight-binding for
band structures in bulk, slab, and defect systems. 2023. In preparation (Chapter
7)

� Wenbo Sun, Guozheng Fan, Tammo van der Heide, Adam McSloy, Thomas Frauen-
heim, and Bálint Aradi. Machine learning enhanced dftb method for periodic sys-
tems: learning from electronic density of states. Journal of Chemical Theory and
Computation, 19(13):3877–3888, 2023

� Hongwei Fu, Guozheng Fan, Jiang Zhou, Xinzhi Yu, Xuesong Xie, Jue Wang,
Bingan Lu, and Shuquan Liang. Facilitating phase evolution for a high-energy-
efficiency, low-cost O3-type NaxCu0.18Fe0.3Mn0.52O2 sodium ion battery cathode.
Inorganic Chemistry, 59(18):13792–13800, 2020

� Yong Chen, Yuanming Zhang, Guozheng Fan, Lizhu Song, Gan Jia, Huiting
Huang, Shuxin Ouyang, Jinhua Ye, Zhaosheng Li, and Zhigang Zou. Coopera-
tive catalysis coupling photo-/photothermal effect to drive sabatier reaction with
unprecedented conversion and selectivity. Joule, 5(12):3235–3251, 2021

89



Acknowledgements

After four years of studies in Germany, my mind is flooded with memories, and I am filled
with gratitude towards the many people who have helped and encouraged me along the
way. Foremost, I would like to express my appreciation to Prof. Dr. Thomas Frauenheim,
who provided me with the opportunity to study in Bremen. I am also grateful to Prof.
Dr. Jianping Xiao and Prof. Dr. Xie Zhang for their invaluable assistance during my
application process. Furthermore, I would like to thank Prof. Dr. Chi-Yung Yam, who
provided excellent guidance during my stay in CSRC.

Throughout my four years of study, Dr. Bálint Aradi provided outstanding supervision
for my projects. I would also like to express my gratitude to Dr. Adam McSloy, who
offered me much-needed support in code development. I hope you find your ideal position
soon. I would like to thank WenBo Sun and Tammo van der Heide for the numerous
insightful discussions we had. I would also like to express my appreciation to Prof. Dr.
Guanhua Chen for providing me with the opportunity to visit HK for three months. I
would like to extend my thanks to all members of BCCMS. It was a pleasant time to stay
in BCCMS with all of you, and I am grateful for the numerous memories we have shared.

I would like to express my gratitude to the committee members, including Dr. Bálint
Aradi and Prof. Dr. Thomas Niehaus, for their valuable contributions as reviewers. I am
also grateful to Priv. Doz. Dr. Christopher Gies, Prof. Dr. Gordon Callsen, Dr. Carlos
Raul Medrano, and Mr. Jonas Müller for their roles as committee members.

Finally, I want to extend my heartfelt thanks to my parents, beloved girlfriend, all my
families, and all my friends, who have provided me with unwavering support, especially
during the challenging times of the COVID pandemic. Your love and encouragement have
been a constant source of motivation and strength for me throughout my studies.

Guozheng Fan

March 2023, Bremen, Germany

90



References

[1] Gabriel R Schleder, Antonio CM Padilha, Carlos Mera Acosta, Marcio Costa, and
Adalberto Fazzio. From dft to machine learning: recent approaches to materials
science–a review. Journal of Physics: Materials, 2(3):032001, 2019.

[2] Paul Adrien Maurice Dirac. Quantum mechanics of many-electron systems. Proceed-
ings of the Royal Society of London. Series A, Containing Papers of a Mathematical
and Physical Character, 123(792):714–733, 1929.

[3] Gordon Bell, Tony Hey, and Alex Szalay. Beyond the data deluge. Science,
323(5919):1297–1298, 2009.
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Irle, Frauke Gŕ’ater, Tomas Kubar, and Marcus Elstner. Accurate free energies
for complex condensed-phase reactions using an artificial neural network corrected
dftb/mm methodology. Journal of Chemical Theory and Computation, 18(2):1213–
1226, 2022.
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software package for efficient approximate density functional theory based atomistic
simulations. The Journal of chemical physics, 152(12):124101, 2020.

[178] Jorge Nocedal and Stephen J Wright. Numerical optimization 2nd edition, 2006.

[179] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In 12th {USENIX} Sympo-
sium on Operating Systems Design and Implementation ({OSDI} 16), pages 265–
283, 2016.

[180] Adam McSloy, Guozheng Fan, Wenbo Sun, Christian Hölzer, Marvin Friede, Se-
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[195] Shuichi Nosé. A unified formulation of the constant temperature molecular dynamics
methods. The Journal of chemical physics, 81(1):511–519, 1984.

[196] William G Hoover. Canonical dynamics: Equilibrium phase-space distributions.
Physical review A, 31(3):1695, 1985.

[197] Hongchao Yang, Yandong Ma, and Ying Dai. Progress of structural and electronic
properties of diamond: a mini review. Functional Diamond, 1(1):150–159, 2022.

[198] Adam McSloy, Guozheng Fan, Wenbo Sun, Christian Hölzer, Marvin Friede, Se-
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