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Chapter 1

Introduction

1.1 Two great basic concepts of physics

Planck (1900) discovered the quantization of light and the
corresponding Planck constant h (table 7.1). Moreover, he
made clear that quantization is a new and general physical con-
cept. Accordingly, he proposed the Planck units or natural
units, based on three universal constants: the Newton (1686)
constant G of gravitation, the velocity c of light, see Rømer
(1676), and the Planck constant h. Planck’s discovery of the
particle property of light, combined with the wave property of
light, see e. g. Young (1802), demonstrated the wave particle
duality of quantum objects.

Quantization is a key discovery and made possible a series of
further essential results: Einstein (1905) explained the emission
and absorption of photons via quantization. Bohr (1913) ex-
plained the atomic spectra on the basis of quantization. Thom-
son (1927) and Davisson and Germer (1927) discovered matter
waves, see figure (1.2), that de Broglie (1925) had proposed on
the basis of quantization, Heisenberg (1925) developed funda-
mental kinematic equations based on operators representing ob-
servables of quantum objects, see also Dirac (1925). Schrödinger
(1926a) proposed the differential equation describing the time
evolution of quantum objects, the Schrödinger equation. It

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: The upper LED absorbs quanta of light, photons, and
transforms the energy of light into electric energy. The lower
LED transforms that electric energy into emitted photons. The
experiment is an example for the absorption and emission of
photons, whereby the band structure of the LEDs determines
the green color of the emitted light.

is physically equivalent to the dynamics proposed by Heisenberg
(1925). Born (1926) proposed a probabilistic interpretation
of quantum objects that is in precise accordance with observa-
tion.

Fermi (1926) derived the energy distribution in quantum
gases, which is a basis for the understanding of the band struc-
ture used in electronics and computers, see figure (1.1). Heisen-
berg (1927) derived the uncertainty of quantum objects. Dirac
(1927) elaborated wave functions in spacetime and thereby pro-
posed antimatter, which was discovered by Anderson (1933).
These results establish a predictive, successful as well as useful
experimental and theoretical basis of quantum physics, QP, see
e. g. Sakurai and Napolitano (1994), Ballentine (1998), Kumar
(2018).

However, Einstein et al. (1935) pointed out that according to
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Figure 1.2: The two concentric rings indicate electron waves arriv-
ing at a screen: For it, electrons have been accelerated by a volt-
age of 5000 Volts. Then the electron beam has been diffracted
at a slice consisting of many crystals of graphite. Behind that
slice, the electrons propagate either at the original direction and
form the central light at the screen. Or they propagate at one of
two cones around the central beam, whereby these cones cause
the two concentric rings when arriving at the screen.
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the theory of QP outlined above, a measurement of a quantum
object could instantly cause a correlation with a measurement
of another distant quantum object. Moreover, Einstein et al.
(1935) presumed that no correlation could correspond to a ve-
locity larger than the velocity c of light. This presumption
corresponds to the fact that the velocity c is the maximal ve-
locity in special relativity, SR, and (in most frames) in general
relativity, GR.

Indeed, de Sitter (1913) confirmed that light emitted from
binary stars propagates to Earth at the same velocity of light,
irrespective of the velocities of the two stars of the binary, see
figure (1.3). You can confirm that observation on your own by
using a small telescope, see Carmesin (2006). For further tests
of relativity, see e. g. Bailey et al. (1977), Will (2014). More-
over, the invariance of c confirmed via observation by de Sitter
(1913) or Carmesin (2006) can alternatively be obtained via a
thought experiment, see section (7.8).

In fact, Einstein (1905) proposed SR and Einstein (1915) ini-
tiated GR, which includes gravity. Today, quantum physics
and relativity are regarded as the two great and basic concepts
of physics, see e. g. Weinberg (2017), Bricmont and Goldstein
(2019).

According to the above outlined instant correlations of QP,
Einstein et al. (1935) proposed that the above theory of QP
should be incomplete, as a consequence. More generally, a
physical effect corresponding to a velocity v f c is called lo-
cal, whereas other effects are called nonlocal.
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Earth

Figure 1.3: Binary star: two stars rotate around their center of
mass. For instance, when the stars have the same distance to
Earth, they emit one light signal each. These signals arrive at
Earth simultaneously, though the emitting stars move in oppo-
site directions. Such observations confirm that light propagates
at a constant velocity relative to an observer, irrespective of the
velocity of the light emitting source relative to the observer, see
e. g. de Sitter (1913), Carmesin (2006).

Correspondingly, Einstein et al. (1935) pointed out that the
theory of QP outlined above is nonlocal. Additionally, they
presumed that nature should be local, and so they constructed
a paradoxical situation, the so-called EPR paradox.

Bell (1964) proposed experimental tests of such correlations,
and Aspect et al. (1982) confirmed these correlations experi-
mentally. So it is clear that nature is nonlocal, and nonlocal
effects become visible in QP. However, the relation between QP
and the theories of relativity, SR and GR, remains a conun-
drum, even after the experimental results achieved by Aspect
et al. (1982), see e. g. Weinberg (2017), Bricmont and Gold-
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stein (2019).
In this book, we resolve the relation between QP and relativ-

ity: A first hint was provided by Carmesin (2021d) by showing
that even relativity is nonlocal. That finding opened the pos-
sibility that QP could be included in GR. Accordingly, that
finding made conceivable that GR might be used in order to
explain QP. In fact, that is possible.

Indeed, we derive the quantization and the postulates of QP
as a consequence of GR. Hereby, we apply an especially clear
formulation of relativity and gravity as well as relatively simple
mathematical tools. Accordingly, we use the very transparent
understanding of space and time in order to explain QP. Corre-
spondingly, students and interested people can now understand
QP in an especially transparent and elucidating manner on the
basis of space and time.

1.2 Our aim

In this book we derive the quantum physics from gravity and
relativity.

1.3 Our method

We achieve our aim as follows. Firstly, we introduce our gen-
eral model, based on gravity and relativity, see section (2.1).
Secondly, we derive quantum physics from our model.

1.3.1 On the derivation of quantum physics

After the definition of our model, including relativity and grav-
ity, we derive the postulates of quantum physics, as they
have been summarized in Kumar (2018).

For it, we derive the duality of particles and waves by
developing a new duality transformation. Thereby, we dis-
cover the nature of the wave functions in a very precise manner.
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1.3.2 Summary of postulates of quantum physics

In this part, we summarize the postulates of quantum physics,
as they have been summarized in Kumar (2018). Other formu-
lations are essentially equivalent and can be found in Sakurai
and Napolitano (1994) or Ballentine (1998), for instance.

1.3.2.1 Postulates of quantum physics

There are four postulates describing the quantum state, the
dynamical variable or observable, the time evolution and
the probability rule:

(Postulate 1) A quantum state is defined by a wave function
Ë(t, ~r), see e. g. (Kumar, 2018, p. 14).

(Postulate 2) ’To each dynamical variable or observable A
there corresponds a linear operator Â, and the possible values of
the dynamical variable are the eigenvalues of the operator’, see
(Ballentine, 1998, p. 43), see also (Kumar, 2018, p. 18, 36).

(Postulate 3) The time evolution of the wave function is
described by the Schrödinger equation, SEQ, see Schrödinger
(1926a), Schrödinger (1926b), (Kumar, 2018, p. 32) or section
(1.3.2.3). Thereby, the Schrödinger equation sets i~"tË(t, x)
equal to the operator of the energy term, consequently denoted
by Êterm, multiplied by Ë(t, x).

i~"tË(t, x) = ÊtermË(t, x) (1.1)

(Postulate 4) Born (1926) discovered the probability rule. It
states that the probability to find a quantum object in a state
Ë(t, ~r) is proportional to the square of the absolute value of the
wave function |Ë(t, ~r)|2, see e. g. (Ballentine, 1998, p. 46) or
(Kumar, 2018, p. 169).
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1.3.2.2 Conventional operators of dynamical variables

In this section, we introduce and test some conventional opera-
tors typically used in quantum physics.

The momentum operator is as follows:

p̂x = 2i~"x (1.2)

In order to test it, we use the wave function of a freely prop-
agating object, whereby we apply the usual sign convention in
the exponent, see e. g. (Kumar, 2018, Eq. 3.2.11), and we
denote the amplitude or normalization factor by fn:

Ë(t, x) = fn · e2i·Ë·t+i·k·x (1.3)

Next we test whether the eigenvalue is the momentum p = ~ ·k:

p̂xË(t, x) = 2i~"xË(t, x) = 2i~ · i · kË(t, x) (1.4)

We simplify the above equation:

p̂xË(t, x) = ~ · kË(t, x) = p · Ë(t, x) (1.5)

Obviously, the momentum operator in Eq. (1.2) operates in the
physically correct manner.

The following operator provides the energy:

Ê = i~"t (1.6)

Next we test whether the eigenvalue is the energy E = ~ · Ë:

ÊË(t, x) = i~"tË(t, x) = i~"tfn · e2i·Ë·t+i·k·x (1.7)

We evaluate the above equation:

ÊË(t, x) = i~(2i)Ë · Ë(t, x) = ~ · Ë · Ë(t, x) = E · Ë(t, x)(1.8)

Obviously, the operator in Eq. (1.6) operates in the physically
correct manner, as the eigenvalue is the energy.
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In the above tests, we used the wave function of a freely
propagating wave in Eq. (1.3). According to the concept of the
Fourier analysis, we can form a complete class of wave func-
tions by (discrete or continuous) linear combinations of wave
functions of a freely propagating waves. Correspondingly, our
tests of the operators are very general.

1.3.2.3 Schrödinger equation for two typical systems

In this section, we elaborate the Schrödinger equation for two
typical systems.

For instance, the non-relativistic kinetic energy is as follows:

Ekin,non2relativistic =
p2

2m
(1.9)

We insert the momentum operator, see Eq. (1.2):

Êkin,non2relativisticË(t, x) = 2 ~
2

2m
"2xË(t, x) (1.10)

So the corresponding Schrödinger equation is as follows, for the
case of a one dimensional system, for instance:

i~"tË(t, x) = 2 ~
2

2m
"2xË(t, x) (1.11)

For the case of an object with zero rest massm0, for instance,
the relativistic kinetic energy is as follows:

Ekin,relativistic = p · c (1.12)

We insert the momentum operator, see Eq. (1.2):

Êkin,relativisticË(t, x) = 2c · i~"xË(t, x) (1.13)

So the corresponding Schrödinger equation is as follows:

i~"tË(t, x) = 2c · i~"xË(t, x) (1.14)
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1.3.3 On the explanation of quantum physics

Using the derivation of the postulates of quantum physics from
our general model including gravity and relativity, we derive the
explanation of quantum physics. Thereby, it turns out that the
wave function Ë in QP represents the rate of change of vacuum
·̇, see the glossary in section (7.7).

1.3.4 On the formation of space

According to the explanation of the wave function Ë in QP
by the rate of change of vacuum ·̇, we analyze the integrated
rate of change of vacuum ·̇. It turns out that the integral of
the rate of change of vacuum ·̇ ranging from here towards the
Hubble radius RH , see the glossary in section (7.7), represents
the present day vacuum. This result is in precise accordance
with observation, whereby no fit is applied, see chapter (4).

We regard this finding as a great result: The same rate of
change of vacuum ·̇ explains quantum physics as well as the
formation of the vacuum and space in the universe.



Chapter 2

Universal Model

In this chapter, we introduce the basics of a general model for a
physical object. Additionally, we summarize the used physical
concepts.

2.1 Our general model

In this section, we introduce the basics of a general model for a
physical object.

Firstly, the object has an energy E or an equivalent dynamical
mass or mass M .

Secondly, it is possible to analyze or measure the object’s
gravitational and relativistic effects upon its vicinity,
even without considering the object’s internal structure ex-
plicitly.

" Thereby, essential object’s effects upon its vicinity in-
clude the gravitational field G7, the curvature of space
or of spacetime and properties of the vacuum, see e. g.
Carmesin (2021d) or chapter (3).

" Moreover, the object’s internal structure may be the
electrons of a helium atom, or the atoms of a molecule,
or the quarks of a neutron, and so forth. For instance, if

11
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large molecules are diffracted at a grating, then the diffrac-
tion pattern can be derived from the momentum of the
molecules, without considering the atoms of the molecule,
the electrons, neutrons and protons of the atoms or the
quarks inherent to neutrons and protons, see figure (3.14)
or Nairz et al. (2003).

" I emphasize that our model describes the behavior of very
different objects such as photons, electrons, neutrons or
even atoms and molecules, though we only apply gravity,
relativity and the vacuum, see chapter (3).

" The fact that our model describes the behavior of very
different objects means that our model is fundamental, see
chapter (3).

Thirdly, the object may be localized.

" In that case, we might illustrate the object with help of a
center of mass or of dynamical mass, see figure (2.1).

" In that case, we might illustrate the distribution of the
mass or of dynamical mass by an unstructured grey region,
representing the object’s internal structure, see figure (2.1).

" In the case of a localized object, we analyze object’s
effects upon its vicinity with help of a small mass m as a
probe.

Fourthly, several objects may form a homogeneous density,
whereby we do not measure or analyze the internal structure of
the objects, or a possible location of the centers of mass of the
objects.

Fifthly, we generalize the above two cases of a localized ob-
ject and of a homogeneous density of objects with help of
tensors, see chapter (3).
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m

M

Figure 2.1: Our model: In the case of a localized object, mass
or dynamic mass M is distributed around a center of mass.
The object’s effect upon its surroundings is analyzed with help
of a small mass, similar as in a gedankenexperiment. Internal
structures of the object are possible, but they are not shown
here in an explicit manner.

Moreover, the theoretical basis of our model is constituted by
the following quadruple, we call it the spacetime-quadruple,
SQ:

1. Principles of free fall, PFF, see section (2.2.2)

2. Gaussian gravity, GG, see section (2.3)

3. Special relativity, SR, see e. g. Einstein (1905). Here we
apply SR for the case of non-quantized objects, since we
derive quantization therefrom, see chapter (3).

4. Formed vacuum with a corresponding volume, see e. g.
Carmesin (2021d) or e. g. Carmesin (2021a), Carmesin
(2021e) or section (2.6).

spacetime2 quadruple, SQ = {PFF,GG, SR, formed vacuum}
(2.1)
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2.2 Principles of free fall

In this section, we treat principles that hold for a freely falling
object or system.

2.2.1 Galileo’s equivalence principle

Galileo (1638) considered experiments with objects with dif-
ferent masses falling from the tower at Pisa, see figure (2.2).
While Aristotle (C350) thought that bodies with a large mass
would fall faster than bodies with a smaller mass, Galileo real-
ized that both bodies fall equally fast, if the friction of the air
is negligible. Galileo (1638) obtained his result by a gedanken-
experiment: If a body with a large mass m is divided into two
parts with masses m/2 each, then theses parts must fall at the
same velocity as m, as the parts and the body arrive at the
bottom at the same time. Probably, Galileo did not perform
these experiments in reality, see e. g. Schlichting (1999).

In principle, he realized the following: If a massM generates
a gravitational field G7 (Eq. 2.4), and if a freely falling probing
mass m experiences the corresponding force F = m ·G7, then m
exhibits an acceleration a that is equal to the field G7. So the
equality of the inertial mass and the gravitational mass explains
the observation. Accordingly, he regarded that equality as a
principle:

~G7 = ~a³ Galileo’s equivalence principle, GEP (2.2)

Also many modern tests confirmed that, see e. g. Will (2006).

2.2.2 Einstein equivalence principle

Einstein used Galileo’s equivalence principle and extended it
by two statements. So the corresponding Einstein equivalence
principle, EEP, includes three items, see e. g. Will (2014):

1. Galileo’s equivalence principle
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2. The outcome of any local non-gravitational experiment is
independent of the velocity of the freely falling reference
frame in which it is performed.

3. The outcome of any local non-gravitational experiment is
independent of where and when in the universe it is per-
formed.

Also the EEP has been confirmed by many experiments, see
e. g. Will (2014).

Figure 2.2: Galileo analyzed experiments with different falling
objects at the tower in Pisa, see Galileo (1638), Schlichting
(1999). If two bodies with different masses are started at the
top at the same time, then they arrive at the same time in the
middle and near the bottom. This fact holds in the ideal case
of zero friction.

2.2.3 Principle of energy conservation at free fall

Energy conservation is a very general principle of nature. How-
ever, the energy depends on the chosen frame. For instance,
if you ride on your bicycle on a road, then your kinetic energy
in the frame of the bicycle is zero, whereas your kinetic energy
is nonzero in the frame of the road. This example shows that
the principle of conservation of energy makes sense only in a
particular frame.
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In what frame is the energy conserved, if a mass or dynamical
m falls freely towards a mass or dynamical mass M?

An appropriate frame is a HUF, as external fields and exter-
nal accelerations add up to zero in a HUF. Then the center of
mass frame of M and m is an inertial frame. In that frame, the
energy is conserved.

Moreover, the treatment of the free fall becomes especially
simple, if the mass m is very small compared to M . Then the
energy of the mass m is conserved in the frame of M , whereby
M falls freely relative to any external gravitational fields or
effects.

This energy conservation includes the case of an isotropically
distributed mass M interacting with itself, see figure (3.4) and
section (3.5).

2.2.4 Summarized principles of free fall

In the following, we combine Galileo’s equivalence principle,
Einstein’s equivalence principle and the principle of energy con-
servation at free fall to the principles of free fall, PFF:

PFF = {GEP,EEP, energy conservation at free fall} (2.3)

2.3 On Gaussian gravity

The first essential theory of gravity is Newton’s gravity, NG, see
e. g. Newton (1686). We identify four essential parts of NG:
Firstly, according to Newton, (Newton, 1686, p. 78), space
is absolute and at absolute rest Secondly, Newton (Newton
(1686)) used Euclidean geometry, which presumes flat space,
see e. g. Euklid (C325). Thirdly, Newton presumed absolute
time that goes on at a constant rate and in the same manner
everywhere in space, see (Newton, 1686, p. 79). Fourthly, a
mass is the source of gravity, see (Newton, 1686, p. 397) and
Gauss (1809).
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The third part about time has been generalized in special
relativity, SR. The first and second part about space have been
generalized in general relativity, GR. The fourth part has been
generalized only slightly by the fact that mass is equivalent
to energy and both (mass and energy) are sources of gravity.
However, the essential part of gravity did not change: there are
sources of gravity, these are mass as well as energy.

Accordingly, we will use that fourth part of NG, whereby we
include energy as an additional source of gravity. We denote
that fourth part of NG by Gaussian gravity, GG.

The idea of Gaussian gravity is simple and robust: A mass
M generates a gravitational field ~G7, spreading uniformly in
the vicinity. For an illustration see figure (2.3). We apply GG
locally in a freely falling system, so it is applicable without any
loss of generality. Accordingly, the field G7 generated by a mass
M at a distance r is as follows:

| ~G7| = G ·m
r2

(2.4)

Hereby G denotes the gravitational constant (Sect. 7.1).

Gaussian gravity was discovered on the basis of the motions
of the planets as follows: Tycho Brahe observed the motions
of the planets, see Brahe and Kepler (1627). Analyzing these
results, Kepler (1619) discovered the Kepler laws of planetary
motions. Huygens (1673) discovered the law of radial force.
Newton (1686) combined the radial force with Kepler’s laws of
planetary motions and discovered Newton’s law of gravitation.
Note that this combination can be derived at a single page,
see e. g. (Carmesin et al., 2021, p. 108-109). Gauss (1809)
elaborated the essence of the generation of gravity by sources
such as masses.
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M
G7 field line

Figure 2.3: Mass M with field lines (dotted) and vectors (solid)

of the gravitational field ~G7.

2.3.1 Field G7 as a function of the radial coordinate r

In this section, we derive the field1 in the vicinity of a mass
M . Thereby, the field is a function of the radial coordinate r,
whereby M is at the coordinate r = 0. In general, the space
can be elongated in the radial direction. Thereby, a coordinate
difference dr may be elongated to a length dL, as a function
of r. In the following we show that this has no effect on the
function G7(r).

There is no gravity in the horizontal direction, by definition.
Therefore there is no spatial elongation in this direction. Thus
a circle with a radius r and with its center at a field-generating
mass M at the radial coordinate r = 0 has the following

1Usually, we emphasize a field generating mass by a large letter M . Of course, all
masses are in principle equal in physics. The distinction between a field generating mass
and a probing mass is just a method of the analysis. It can easily be avoided by considering
both masses as field generating masses and probing masses simultaneously. The above
distinction may be appropriate, when one mass is relatively large compared to the other.
Whenever a high accuracy is essential, then this distinction is not appropriate, of course.
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circumference U :
U = 2Ã · r (2.5)

Likewise, a sphere with the center at r = 0 and with the radial
coordinate r has the following surface A:

A = 4Ã · r2 (2.6)

With it we derive G7:

G7(r) = 2G ·M
r2

(2.7)

³

r

fixed

measurements:

bdÇ1³2

dÇ2³3

evaluation:

r = b
³

for j = 1 and j = 2:

drj³j+1 = rj+1 2 rj

vj³j+1 =
drj→j+1

dÇj→j+1

dv = v2³3 2 v1³2

dÇ = dÇ1→2

2 + dÇ2→3

2

a = dv
dÇ = G7

M = 2G∗·r2
G

M

³

Figure 2.4: A local observer localized at an object at r measures:
Two hand leads provide the angle ³ and the arc length b. A
falling ball yields time intervals in the observer’s frame dÇj³j+1.
Therefrom r, v, a, G7 and M are evaluated.

2.3.2 Local measurements in curved spacetime

In this section, we derive physical quantities that can be mea-
sured locally in the vicinity of a massM . In particular, the field
can be measured. An object at a coordinate r can be investi-
gated in the object’s own frame: In particular, a local observer
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localized at the object can measure the radius r, the ’object’s
own time’ dÇ , the velocity v = dr

dÇ relative to the mass M , the
acceleration a = dv

dÇ and the massM as elaborated in Fig. (2.4).
We summarize our results:

v =
dr

dÇ
and a =

dv

dÇ
can be measured locally in GR (2.8)

2.4 On special relativity

Einstein (1905) introduced special relativity, SR, in order to
describe non-quantized objects that move at relatively high
velocity v and v f c. (see also Hobson et al. (2006), Carmesin
et al. (2022), Straumann (2013), Moore (2013), or Carmesin
(2020b)).

Einstein (1905) introduced the special relativity theory,
SR, in order to describe objects with high velocity in various
inertial frames, these are frames that are not accelerated.
Thereby, Einstein assumed that the velocity of light c is an
invariant. This has been confirmed, for instance by de Sitter
(1913) or by Will (2014), see Fig. (1.3). As a consequence,
space and time are no longer invariant, instead they form a four
dimensional spacetime, see e. g. Einstein (1905) or Carmesin
(2020c), Carmesin (2020b).

For instance, if two events occur within an object resting in
its own inertial frame, then the time interval ∆t beginning at
the first event and ending at the second event depends on the
inertial frame measuring ∆t. The shortest ∆t is measured in
the own frame of the object, while the corresponding intervals
are longer in external frames moving at a velocity v relative to
the object:

∆town f ∆texternal = ∆town · ³ with ³ =
1

12 v2/c2
(2.9)

Thereby ³ is called Lorentz factor, and v is the corresponding
velocity.
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2.5 On general relativity

Einstein (1915) introduced general relativity, in order to de-
scribe acceleration and gravity, in addition to special relativity
(see also Hobson et al. (2006), Carmesin (1996), Carmesin et al.
(2022), Straumann (2013), Moore (2013)).

2.5.1 General relativity is mesoscopic

The usual theory of GR is based on curvature. In general,
curvature can be measured in terms of radii of curvature, see
figure (2.5). For it, at least three smallest regions are necessary.
In this sense, the usual theory of GR is mesoscopic.

As GR is mesoscopic, while we derive a theory of elementary
objects, we do not use results of GR here. However, we use the
essential concept of GR that spacetime is modified by mass and
energy. If we need results in GR, we derive these results on our
own.

In fact, we derive the mesoscopic curvature of spacetime on
the basis of our microscopic description of the vacuum, see e. g.
Carmesin (2021d) or section (2.6). So we confirm that space-
time is curved at a mesoscopic level.

2.6 Formed vacuum

We realized that the curvature of GR is a mesoscopic concept,
see figure (2.5). Accordingly, we need a really microscopic con-
cept. For it, we realize that vacuum is permanently formed,
according to the expansion of space since the Big Bang. Ac-
cordingly, we use the volume ·V of the formed vacuum at one
microscopic location per time ·t and per existing volume dV .
Carmesin (2021d) proposed and analyzed that concept.

Thereby, formed vacuum with its corresponding volume ·V
can be added and integrated. This fact is very deeply founded:
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regions

become
points Rcurvature

S

Figure 2.5: Three smallest regions are marked by three balls (dot-
ted) and form a triangular construct (loosely dotted). The cir-
cumcircle (dashdotted) with its circumcentre S and the circum-
radiusRcurvature can be constructed. That curvature can be used
as a radius of curvature. In that manner, a radius of curvature
can be measured by using three smallest regions.

Volume can be added. An independent foundation of the addi-
tion of vacua is the addition of energies, in particular of the dark
energy, which is the energy of the vacuum. Correspondingly, the
principle of linear superposition holds for formed vacuum and
for formed volume.

Moreover, the formed vacuum propagates at the velocity of
light c, for the following reason: If the formed vacuum would
propagate at a smaller velocity vvac < c, then it would be pos-
sible to measure a velocity v < c of an object relative to the
vacuum. However, such a velocity v < c relative to the vacuum
cannot be measured, according to SR. According to SR, non-
quantized objects do not exhibit velocities v > c. Note that
interesting consequences of SR are derived in section (5.2.5.9).

2.7 Homogeneous universe frame HUF

In this section, we develop a tool that can be used for an
analysis of gravity in the universe: In the universe, there are
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Ã

surroundings

empty

Figure 2.6: Empty ball embedded in a homogeneous surrounding:
It establishes the homogeneous universe frame, HUF.

many sources of gravitational fields, such as masses or dynam-
ical masses. While in electromagnetism, the fields do usually
cancel or screen each other as there are two signs of the charges,
this is not so in gravity. However, fields emerging at different
parts of the universe can cancel each other, as vectors can have
opposite directions. This mechanism is treated in the present
section.

While in figure (2.3), we investigated the field of a mass with-
out analyzing the surroundings, we consider the surroundings
in this section. In particular, we analyze the field in an empty
ball, embedded in surroundings with a homogeneous density, a
homogeneous fluid (Fig. 2.6, Carmesin (2020b), Carmesin
(2021d)). We emphasize that there is not even vacuum in this
ball, so it is a purely mathematical model, as physical space is
constituted by vacuum. So the empty ball is a tool2 used for
the analysis of the vacuum.

Newton (1686) showed that there is no field in such a sphere.
For the case of the GR, Birkhoff (1921) derived that there is no
field in that sphere. We introduce a corresponding frame:

2In GR, results are often derived by using an appropriate frame (see for instance
Straumann (2013), Stephani (1980), Moore (2013)).
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Definition 1 Homogeneous universe frame, HUF

(1) If an empty ball is embedded in homogeneous surroundings
ranging from the ball to the light horizon3, and if that ball is not
accelerated, then the frame with the origin at the center of the
ball is called homogeneous universe frame (Fig. 2.6).

(2) A vacuum HUF, HUFv is a HUF for which the surround-
ings have the following property: The density parameters of ra-
diation Ωr and of the matter Ωm (table 7.3) tend to zero. So the
surroundings of a HUFv consist of vacuum, up to an infinitesi-
mal amount of radiation and matter, while ΩK j 0 (table 7.3).

The field ~G7 is zero in the HUF. More realistically, the den-
sity of the surroundings exhibit fluctuations. These are ana-
lyzed in quantitative detail in Carmesin (2021d). As a result,
the average of the field 〈 ~G7〉 is zero in the HUF, and the variance
(∆ ~G7)2 is nonzero. However, the variance (∆ ~G7)2 is a function
of the radius R of the HUF, and that function decreases accord-
ing to a power law: (∆ ~G7)2 ? R522D for each dimension D g 3.
The field variance (∆ ~G7)2 is particularly small for the case of a
vacuum HUF. We summarize our findings:

Proposition 1 The HUF has the following properties

The gravitational field is zero in the empty ball of the HUF.

A single object that might be added in the HUF does not expe-
rience any force or acceleration.

If there are fluctuations of the density in the surroundings, then
the average of the field 〈 ~G7〉 is zero in the HUF, and the variance
of the field (∆ ~G7)2 tends to zero as the radius R of the HUF
tends to infinity.

In the vacuum HUF, the variance of the field (∆ ~G7)2 is partic-
ularly small.

3According to the principle of translation invariance, neighboring HUFs include space
beyond the HUF.



Chapter 3

Derivation of Quantum Physics

In this section, we derive quantum physics from the spacetime-
quadruple, SQ.

3.1 Our derivation of the Schwarzschild met-

ric: energy factor

In this section, we derive the energy factor ë(R). That fac-
tor characterizes the Schwarzschild metric, SM, based on the
spacetime-quadruple.

Definition 2 Field generating mass frame, FMF

If a mass M (Fig. 2.4) is in a HUF, then there is a frame
with M at its origin and with a radial coordinate r. We call it
the field generating mass frame, FMF.

According to the PFF, we obtain the following results:

Proposition 2 Local observer in a freely falling frame

If a mass M and a local observer at a fixed distance r relative
to M (Fig. 2.4) are in a HUF, then the following holds:

(1) The situation can be analyzed in the FMF.

(2) The mass M generates a radial gravitational field with the
value | ~G7| = GM

r2 .

25
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E

r

v

ç

ç

çE(dr, dv)

drderivative "E
"r
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"r · dr

"E
"v · dv

Figure 3.1: Change dE of E(r, v) ( ç): The two slope triangles
result in the changes "E

"v · dv and "E
"r · dr. The total change

dE = E(r+dr, v+dv)2E(r, v) is the sum dE = "E
"v ·dv+ "E

"r ·dr.

(3) A the local observer at r falling freely in the radial direction
(Fig. 2.4) can locally observe the body’s radial velocity v(r) =
"r
"Ç and its radial coordinate r of the FMF.

3.1.1 Freely falling mass m

In this section we derive the energy function E(r, v) of a mass
m that is falling in the field of a mass M , and that starts at
r ³ > and v = 0. Thereby, the velocity v and the radius
r are measured relative to the mass M , and the own mass or
rest mass is denoted by m0. Solutions with more general initial
conditions are elaborated in (Carmesin (2020b)).

For it we apply the principle of energy conservation (see
Mayer (1842) or PFF). In particular, we apply the relativistic
energy derived in SRT (Einstein (1905) or Carmesin (2020b)):

E(v) = m0 · c2 · ³(v) in SR and with ³(v) =
1

√

12 v2/c2

(3.1)
As m is falling, the velocity v increases and r decreases.

Hence the energy would increase by the factor ³(v) according to
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Eq. (3.1). Correspondingly, the energy decreases by a position
factor ë(r) = 1/³(v), so that the energy is conserved. So we
get:

E = m0 · c2 · ³(v) · ë(r) with ³(v) = 1/ë(r) (3.2)

The functional term of ë(r) must be determined. We consider
the change dE of the energy, which obviously depends on r and
v (Fig. 3.1). Accordingly we get:

dE =
"E

"r
dr +

"E

"v
dv (3.3)

From this equation we obtain a differential equation, DEQ,
for ë(r). According to the principle of energy conservation, dE
is zero. The derivative regarding v is "E

"v = E · ³2 · v/c2, while
the derivative regarding r is "E

"r = E · ë2/ë with ë2 = dë
dr . So we

get:

0 = E · ë
2

ë
· dr + E · ³2 · v

c2
· dv (3.4)

We divide by E and dÇ and use v = dr
dÇ and a = dv

dÇ (Eq. 2.8 and
Fig. (2.4). We also resolve for ë2. Therefore we obtain:

ë2 = 2ë · ³
2

c2
· a (3.5)

We use ³(v) = 1/ë(r) (Eq. 3.2). We utilize the equivalence
principle of the GR a = 2G7 = 2G·M

r2 (Eq. 2.7, here a is
directed downwards, see Fig. 2.4), too. So we derive:

ë2 =
1

ë · c2 ·
G ·M
r2

(3.6)

We use the well known term RS = 2G·M
c2 for the Schwarzschild

radius. So we get the following DEQ for ë(r):

ë2 =
1

ë
· RS

2r2
(3.7)
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Solution of the DEQ for ë: For the case of a constant mass M ,
we solve the DEQ for ë with the following Ansatz:

ë(r) =

√

12 RS

r
(3.8)

The derivative corresponds to the DEQ (3.7). So Eq. (3.8) is a
solution. We use the two factors ë(r) and ³(v) in Eqs. (3.2, 3.8,
3.1)). So we get a term for the invariant energy depending on
r and v:

E(r, v) = m0 · c2 ·

√

12 RS

r
√

12 v2/c2
(3.9)

This term generally represents the functional dependence of the
energy on r and v. Landau and Lifschitz (1971) obtain the same
result (page 299), this confirms our derivation. We summarize:

Proposition 3 Energy in the FMF

If a field generating mass M is in a HUF, then an own
mass m0 has the following properties:

(1) The mass m0 can be analyzed in the FMF.

(2) In the FMF, M generates a radial gravitational field with
the value G7 = | ~G7| = GM

r2 .

(3) A local observer at r can locally observe the body’s radial
velocity v(r) = "r

"Ç and its radial coordinate r of the FMF (see
proposition 2 and Fig. 2.4).

(4) If the probing mass falls freely in the field ofM , and if v = 0
at r ³ >, then the energy function E(r, v) of m0 is described
by Eq. (3.9):

E(r, v) = m0 · c2 ·

√

12 RS

r
√

12 v2/c2
(3.10)

(5) In particular, that energy function E(r, v) of m0 represents
an invariant of the motion in the FMF.
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3.2 Our derivation of the FLE

In this section, we present our derivation of the Friedmann
Lemâıtre equation, FLE (Friedmann (1922) and Lemaitre
(1927)).

3.2.1 Expansion of space

Einstein (1917) analyzed a possible expansion of the space.
Slipher (1915) discovered the redshift of distant galaxies, Wirtz
(1922) analyzed empirical evidence for the expansion of space,
and Hubble (1929) obtained a convincing empirical basis for
that expansion of space.

That expansion of space since the Big Bang is usually de-
scribed by a uniform scaling. In this section we derive the
DEQ for the case of a homogeneous ball embedded in a HUF
(Fig. 3.2).

3.2.1.1 DEQ of uniform scaling: derivation

The surroundings do not generate a field ~G7 in the embedded
sphere (sect. 2.7). A homogeneous sphere with a mass M gen-
erates a field in its vicinity that is equal to the field generated
by the mass M in the center of the ball (Gauss (1840)). So the
Schwarzschild solution applies (Eq. 3.9), and thus the energy
of a probing mass with the condition (r|v) = (r|ṙ) = (>|0)
at some time is as follows (other conditions are analyzed in
Carmesin (2020b)):

E(r, v) = m0 · c2 · ³(v) · ë(r) = E0 or Eref (3.11)

Thereby the factors are:

³(v) =
1

√

12 v2/c2
; ë(r) =

√

12 RS

r
and m0 · c2 = E0

(3.12)
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The Eq. (3.11) represents a DEQ, as it contains v, which in
turn represents a derivative. This DEQ describes the dynamics
of the probing mass. Next we transform this DEQ, in order to
obtain a transformed DEQ, still describing the dynamics of m
and r(t).

3.2.1.2 Structured energy function

In this section we derive a structured energy function. This
may be interpreted as a result of a mathematical transformation
of the DEQ, or it may be interpreted physically in addition:

The structured energy function might be interpreted as a
normalized excess energy (Carmesin (2020b)) as follows:

In SR, the difference of the square E2 of the energy and of
the square of the own energy m2

0 · c4 = E2
0 represents the square

of the kinetic energy p2 · c2. By construction, it represents the
square of the excess energy that the mass m has compared to
its own mass m0.

In GR, that excess energy contains the kinetic energy and,
additionally, a gravitational energy in the field.

Correspondingly, we derive the excess energy in GR as fol-
lows: We take the square of Eq. (3.11), and we subtract the
squared own energy m2

0c
4 (so we obtain the square of the gen-

eralized excess energy):

E(r, v)2 2m2
0c

4 = m2
0 · c4 · (ë(r)2 · ³(v)2 2 1) (3.13)

As the rest mass is positive, m0 > 0, the velocity v is smaller
than c, so the Lorentz factor ³(v) is nonzero. Thus we can
divide by ³2(v):

E(r, v)2 2m2
0c

4

³2
= m2

0 · c4 · (ë(r)2 2 ³(v)22) (3.14)

In order to simplify, we insert the factors ë(r) and ³(v):

E(r, v)2 2m2
0c

4

³2
= m2

0c
4 ·
(

v2

c2
2 RS

r

)

(3.15)
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Ã r

Figure 3.2: Ball with mass M and radius r embedded in homo-
geneous surroundings and exhibited to a probing mass m.

Conventional form: In this paragraph, we derive a conventional
energy function with a conventional kinetic and potential energy
term. For it we divide by 2m0c

2. So we get:

E(r, v)2 2m2
0c

4

2³2m0c2
= m0 · c2 ·

(

v2

c2
2 RS

r

)

· 1
2

(3.16)

We denote that energy function with a bar, Ē(r, v). We apply
the Schwarzschild radius RS = 2GM

c2 : So the result is a conven-
tional structured energy function:

E(r, v)2 2 E2
0

2³2E0
=: Ē(r, v) =

m0 · v2
2

2 G ·M ·m0

r
(3.17)

Form with the Hubble parameter: In this part we transform the
DEQ (3.15) further so that we obtain a term for the Hubble
parameter:

H =
ṙ

r
(3.18)
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For it, we multiply with 1
m2

0·c4
· c2

r2 , and we use the density Ã =
M

r3·4Ã/3 . So we get:

E(r, ṙ)2 2m2
0c

4

m2
0 · c4³2

· c
2

r2
=
ṙ2

r2
2 8ÃG · Ã

3
(3.19)

We identify the scaled squared energy 2E(r,ṙ)22m2
0c

4

m2
0·c4³2 or the scaled

energy term 22Ē(r,ṙ)
m0·c2 with the so-called curvature parameter

k (Friedmann (1922), Lemaitre (1927), Stephani (1980)), we
identify ṙ2

r2 by the squared Hubble parameter H2, and we solve
for H2. So we get the Friedmann Lemâıtre equation, FLE
(Friedmann (1922) and Lemaitre (1927)), the DEQ for the ho-
mogeneous system:

H2 =
8ÃG · Ã

3
2 k · c

2

r2
(3.20)

Observations and theory, see e. g. Planck-Collaboration (2020),
Bennett et al. (2013), Carmesin (2020b), show that the curva-
ture parameter k is zero, which means the space is globally flat.
We summarize our derivation:

Theorem 1 Direct derivation of the FLE from the SM

The expansion of the universe has the following properties:

(1) In classical GR, it is described by a uniform scaling with
a scale factor r(t) Fig. (3.2).

(2) In classical GR, the time evolution of the scale factor r(t)
is described by the FLE:

H2 =

(

ṙ

r

)2

=
8ÃG · Ã

3
2 k · c

2

r2
(3.21)

(3) The FLE of that uniform scaling can be derived from the
time evolution of a microscopic probing mass m as follows:
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(3a) In the HUF with density Ã, there is a homogeneous ball of
the universe with the same density and generating a field ~G7,
and m is at the surface of that ball (Fig. 3.2).

(3b) The time evolution of m is derived from the SM, see the
DEQ (3.11) as well as the transformed DEQ (3.17).

(4) Thereby, these above two DEQs use a structured energy
function Ē(r, ṙ) with Ē(r, ṙ) = 0 = k = invariant:

2k :=
2Ē(r, ṙ)

m0 · c2
with Ē(r, ṙ) =

m0ṙ
2

2
2 GMm0

r
(3.22)

(5) That structured energy function is defined as follows
and proportional to E0 and a normalized energy Enorm = Ē

E0
:

E(r, ṙ)2 2 E2
0

2³2E0
=: Ē(r, ṙ) = E0 ·

(

ṙ2

2c2
2 G ·M

r · c2
)

(3.23)

After we analyzed the expansion of space by using the con-
cepts of the uniform scaling, the HUF and the law of energy
conservation, we analyze the additional vacuum in the follow-
ing section.

3.2.2 Homogeneous metric: new vacuum

The expansion of space is usually described by a mathematical
transformation: the uniform scaling. In this section we analyze,
how that transformation is generated by the permanent and
ubiquitous formation of new vacuum. This novel analysis is
based on the fundamental concept of linear superposition of
volume, see Carmesin (2021d).

3.2.2.1 Rate of formed vacuum

The increase of the radius corresponds to an increase of the
volume. Hence additional vacuum is formed. In this section
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we summarize the rate at which the vacuum forms. This rate
is derived from the FLE1. The flat, isotropic and homogeneous
space expands according to the Hubble parameter:

H =
"a

"t · a =
√

8Ã ·G/3 · :Ã (3.24)

The volume of a ball of the universe with radius a is V =
4Ã
3 a

3. With it we derive the rate of increase of the volume V by
applying the chain rule:

"V

"t · V =
1

V
· "V
"t

=
1

V
· "V
"a

· "a
"t

=
3

a
· "a
"t

= 3H (3.25)

So the flat, isotropic and homogeneous space expanding accord-
ing to the Hubble parameter exhibits the following DEQ for the
rate of increase of the volume:

(

"V

"t · V

)2

= 24Ã ·G · Ã (3.26)

We denote the formed volume per volume and time by ·V , see
Eq. (3.29). Correspondingly, we denote the time difference by
·t. Moreover, we may consider infinitesimal amounts of volume
dV rather than V So we derive the following DEQ:

(

·V

·t · dV

)2

= 24Ã ·G · Ã (3.27)

Furthermore, we denote the relative volume by ·:

·V

dV
= · (3.28)

If we consider an additional volume or vacuum that forms per
volume dV and per time ·t, we denote it with an underline:
Furthermore, we denote a relative volume by ·:

·V

dV · ·t = ·̇ (3.29)

1Carmesin (2018b), Carmesin (2018a), Carmesin (2019b)
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With it we derive the rate of the formation of relative
volume:

·̇ =
√

24Ã ·G · Ã (3.30)

We summarize our novel concept and our derivation:

Theorem 2 Formed vacuum causes expansion of space

The uniform scaling that describes the expansion of space is
caused by a rate of additionally formed vacuum with the follow-
ing properties:

(1) The density Ã in a ball causes the permanent formation of
additional vacuum.

(2) For a ball with radius R, the volume of the additional vac-
uum ·V per volume dV and per time ·t is described by the
following rate:

·V

·t · dV = ·̇ =
√

24Ã ·G · Ã (3.31)

3.3 Possible unidirectional elongation

In this section we introduce the concept of a possible unidi-
rectional elongation of space. Thereby we describe the elonga-
tion by tensors. As an example, we analyze the case of the
Schwarzschild metric, SM, see e. g. Schwarzschild (1916),
Carmesin (2021d) or Sect (3.9). We emphasize that we do not
presume the SM in our derivation of the SM.

In GR, the spacetime in the vicinity of a massM experiences
a curvature. It can be described by using polar coordinates
dx1 = r, dx2 = » and dx3 = Ç and with the time coordinate
dx0 = t. The curvature can be described with help of an un-
derlying metric tensor gij, so that the square of an infinitesimal
line element ds is as follows:

ds2 = Σ3
i=0Σ

3
j=0 gij · dxi · dxj (3.32)



36 CHAPTER 3. DERIVATION OF QUANTUM PHYSICS

In the vicinity of a mass M , the metric tensor is as follows,
see e. g. Schwarzschild (1916), Landau and Lifschitz (1971),
Straumann (2013), Hobson et al. (2006), whereby we use the
sign convention outlined in equation (3.108):

gij =

û

ü

ü

ü

ý

2(12 RS

r ) · c2 0 0 0

0 1

12RS
r

0 0

0 0 r2 0

0 0 0 r2 · sin2(»)

þ

ÿ

ÿ

ÿ

ø

(3.33)

Hereby, the metric tensor describes the Schwarzschild metric,
SM, and RS is the Schwarzschild radius:

RS =
2GM

c2
(3.34)

Note that there are two different sign conventions in the lit-
erature. Hereby, we use the sign convention described by the
Cartesian metric tensor of flat space as follows:

·ij,Cartesian =

û

ü

ü

ý

21 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

þ

ÿ

ÿ

ø

(3.35)

Note that the opposite signs are used in Landau and Lifschitz
(1971) or in Stephani (1980), for instance. For an overview of
various signs used in the literature, see Hobson et al. (2006).

3.3.1 Change tensor

In this section we analyze possible unidirectional changes that
are caused by the mass M . For it we introduce a change tensor
·̂ij, more generally. As above and as an example, we use the
metric tensor of the SM.

The massM changes the metric tensor gij, whereby there are
only diagonal nonzero elements gii. In particular, we consider
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the radial direction in space only, so d» and dÇ are both zero.
So Eq. (3.32) takes the following form:

ds2 = g00 · dt2 + grr · dr2 (3.36)

As the Schwarzschild metric is stationary, we may consider dt =
0. So we derive:

ds2 = grr · dr2 (3.37)

We insert grr = 1

12RS
r

, see Eq. (3.33). So the length dr is

elongated to the length ds or dr2 as a result of the mass M as
follows:

ds =
1

√

12 RS

r

· dr = dr2 (3.38)

So the difference or displacement ·rSM is as shown below:

·rSM = dr2 2 dr =

û

ü

ý

1
√

12 RS

r

2 1

þ

ÿ

ø
· dr (3.39)

That displacement ·rSM is illustrated in figure (3.3).
The derivative of such a displacement ·rSM with respect to

the original length dr can be interpreted as an element of a
change tensor ·̂rr, similarly to the strain tensor in elasticity
theory, see (Landau and Lifschitz, 1975, equations 1.5, 1.8) or
(Sommerfeld, 1978, equation 11):

·rSM
dr

= ·̂rr (3.40)

Hereby, ·rSM and dr are regarded as differentials in the sense
of the Leibniz calculus, see e. g. Bos (1974), Leibniz (1684) or
Fig. (3.3).

For the case of other components, the change tensor takes
the following form:

·ri
drj

= ·̂ij (3.41)
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dr

dA

dV = dA · dr
without mass M

·rSM

·VSM = dA · ·rSM

with mass M at r = 0

Figure 3.3: Unidirectional elongation in the radial direction: A cube with
lower and upper surface dA is elongated by shifting the upper surface by an
increment ·rSM .

Also the full change tensor is analogous to the strain tensor in
elasticity theory, see (Landau and Lifschitz, 1975, equations 1.5,
1.8) or (Sommerfeld, 1978, equation 11).

3.3.2 Change of volume

Since the discovery of the dark energy, see e. g. Perlmutter et al.
(1998), Riess et al. (2000), Smoot (2007), Spergel et al. (2007),
Planck-Collaboration (2020), it is clear that the vacuum has a
density ÃΛ. Accordingly, the volumes dV and ·VSM in figure
(3.3) correspond to respective energies. So it is interesting to
analyze the relative change of the volume:

The change can directly be applied to the volume in figure
(3.3), dV = dA · dr. The change of the volume ·VSM is the
product of the area dA with the change ·rSM :

·VSM
dV

=
dA · ·rSM
dA · dr =

·rSM
dr

= ·̂rr =
1

√

12 RS

r

2 1 (3.42)

In general, the relative change of the volume is the sum of the
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changes for each Cartesian coordinate in aD dimensional space.
So it is the sum of the diagonal elements of the change tensor:

·V

dV
= ΣD

j=1 = ·̂jj (3.43)

This result corresponds to respective terms in elasticity theory,
see (Landau and Lifschitz, 1975, equations 1.5, 1.6) or (Som-
merfeld, 1978, equations 18 - 20). Here we call the relative
change of the volume ·:

dV 2 2 dV

dV
=
·V

dV
= · (3.44)

We summarize our derivation as follows:

Proposition 4 Elongation in the SM

A mass or dynamical mass M causes an elongation ·rSM,elo of
a radial coordinate distance dr. Thereby, ·rSM,elo is a function
of the distance r as follows:

·rSM,elo = dr2 2 dr =

û

ü

ý

1
√

12 RS

r

2 1

þ

ÿ

ø
· dr (3.45)

That elongation can be expressed by the radial element of the
change tensor:

·̂rr =
·rSM,elo

dr
=

1
√

12 RS

r

2 1 (3.46)

As a consequence, the volume dV = 4Ãr2 · dr of the shell with
radius r and thickness dr is increased by the volume ·VSM,elo =
4Ãr2 · ·rSM,elo as follows:

·̂rr =
·VSM,elo

dV
=

1
√

12 RS

r

2 1 (3.47)
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3.4 Isotropic expansion of space

In this section, we analyze an isotropic expansion. Physically,
this describes the expansion of space since the Big Bang, see e.
g. Wirtz (1922), Hubble (1929), Friedmann (1922), Lemaitre
(1927), Einstein and de Sitter (1932), Carmesin (2017).

The increase of a scale factor or radius a can be described by
the Friedmann - Lemâıtre equation, FLE, at the macroscopic
level:

(

ȧ

a

)2

=
8Ã ·G

3
· Ã (3.48)

Hereby, the density Ã includes the density of the matter Ãm,
the density of the vacuum ÃΛ, the density of the curvature ÃK
and the density of radiation Ãr. Based on observation, see e. g.
Spergel et al. (2007), Planck-Collaboration (2020), and based
on theory, see e. g. Carmesin (2021d), ÃK is negligible.

On a possible additional pressure p: The pressure p allows for
an additional component, see e. g. Hobson et al. (2006). Some
authors additionally represent an additional pressure in terms
of an equation of state with an additional exponent w. We do
not introduce any such additional parameters or fit parameters,
as we derive everything directly from gravity, the EEP and SR.
Accordingly, we do not execute any fit parameters, in particular,
we do not use such an exponent w or such a pressure p as a fit
parameter.

As an important example, we derived the FLE by applica-
tion of the spacetime-quadruple, see above or (Carmesin, 2021d,
theorem 3):

SQ implies FLE (3.49)

In the FLE, the fraction ȧ
a is called Hubble parameter H:

ȧ

a
= H (3.50)
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3.4.1 Transformation of the Hubble parameter

In this section, we analyze the Hubble parameter ȧ
a with help

of the volume in figure (3.3). For it we name the scale factor a
by dr:

ḋr

dr
= H (3.51)

As a first step, we analyze an unidirectional expansion in the
direction dr in figure (3.3). For it, we investigate the time evo-
lution of the volume in figure (3.3), starting at t = 0. Thereby
we consider the case of a short time ·t in the sense of the Leibniz
calculus. As an initial condition, the vertical length in figure
(3.3) is dr at t = 0, and the change tensor ·̂rr is zero at t = 0. At
the later time ·t, the length is named dr2. Accordingly, the dif-
ferential fraction represents the time derivative ḋr in the sense
of the Leibniz calculus:

dr2 2 dr

·t
= ḋr (3.52)

We identify the difference dr2 2 dr with ·r in figure (3.3):

·r

·t
= ḋr (3.53)

Here we identify the difference ·r with the product ·̂rr · dr, see
Eq. (3.42):

·̂rr · dr
·t

= ḋr (3.54)

According to the initial condition, we replace ·̂rr by ··̂rr:

··̂rr · dr
·t

= ḋr (3.55)

In the used framework of the Leibniz calculus, we identify ··̂rr
·t

by the time derivative of the tensor:

˙̂·rr · dr = ḋr (3.56)
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We insert this equation into Eq. (3.51):

˙̂·rr = Hunidirectional (3.57)

As a second step, we consider an expansion in all three Carte-
sian directions x, y and z. So the relative change of the volume
is expressed by the sum of the three diagonal elements of the
change tensor, see Eq. (3.43). Thus Eq. (3.57) is transferred to
the case of isotropic expansion, if we replace the unidirectional
change tensor ·̂rr by the sum of the three Cartesian elements of
the change tensor:

Σ3
j=1

˙̂·jj = Hisotropic = H =
"

"t

·V

dV
= ·̇ (3.58)

3.4.2 Rate of formation of vacuum

In this section, we analyze the rate at which the vacuum forms
during the expansion of the universe since the Big Bang. For
it, we express the volume V by the scale factor a:

V =
4Ã

3
a3 (3.59)

Using the chain rule, we obtain the derivative:

V̇ = 3ȧ
V

a
(3.60)

So we derive:
V̇

V
= 3

ȧ

a
= ·̇ (3.61)

We apply the square:

·̇2 = 9

(

ȧ

a

)2

(3.62)

We insert the FLE (equation 3.48):

·̇2 = 24ÃG · Ã (3.63)
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In order to simplify further, we apply Eq. (3.58) to Eq.
(3.63):

(

Σ3
j=1

˙̂·jj

)2

= 24ÃG · Ã (3.64)

We evaluate the square. Hereby the tensor product of unequal
unidirectional tensors vanishes, for instance ·̂xx · ·̂yy = 0:

Σ3
j=1

˙̂·2jj = 24ÃG · Ã (3.65)

As the expansion is isotropic, we derive:

3 · ˙̂·2xx = 24ÃG · Ã (3.66)

We divide by three:
˙̂·2xx = 8ÃG · Ã (3.67)

Moreover, we consider an arbitrary direction j instead of x:

˙̂·2jj = 8ÃG · Ã (3.68)

Note that no sum convention is applied here.

Proposition 5 Expansion of space

If space expands with a Hubble parameter H, then the increase
of the volume is equal to the following terms:

H = "t
·V

dV
=: ·̇ (3.69)

Thereby, the relative change of volume

·V

dV
=: · (3.70)

is equal to the sum of the three Cartesian diagonal tensors

·V

dV
= ·̂xx + ·̂yy + ·̂zz with (3.71)

·x

dx
= ·̂xx;

·y

dy
= ·̂yy

·z

dz
= ·̂zz and (3.72)

·V

dV
= Σ3

j=1·̂jj = Trace ·̂ij (3.73)
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So the rates are as follows:

·̇2 =

(

·V

dV ·t

)2

= 24ÃG · Ã = Σ3
j=1·̂

2
jj or (3.74)

˙̂·2jj = 8ÃG · Ã (3.75)

3.5 Density Ãf of the gravitational field G7

Gravity can be described by several physical quantities. Note
that these descriptions do not exclude each other. Firstly, New-
ton described a gravitational force of interaction of two masses
with some distance r between these masses, hereby no concept
is provided about the physics taking place in the space between
the two masses. Secondly, Faraday introduced the concept of a
field that describes the physics taking place in the space between
two interacting bodies, see Faraday (1852), and Gauss adopted
that concept for the case of gravity, see Gauss (1809). Thirdly,
Einstein described gravity in terms of curvature of spacetime,
see Einstein (1915), Hilbert (1915).

Which of the three theories is most adequate for a critical and
microscopic analysis of gravity? NG is excluded, as it makes re-
strictive presumptions about space and time. Einstein’s gravity
is mesoscopic, but not microscopic. Gaussian gravity describes
the formation of gravity by a mass most microscopically and
in a manner that focuses on the essence most clearly. Accord-
ingly, we use Gaussian gravity. Correspondingly, we apply the
densities of the gravitational field.

3.5.1 Absolute value of Ãf

In this section, we derive the absolute value |Ãf | of the energy
density Ãf of the field G7 located in a HUF. For it we analyze
the energy ∆EM that is necessary in order to lift a mass M in
a shell with a radius R to a shell with a radius R+∆R, see Fig.
(3.4). Thereby, the mass is lifted as follows: Differential parts
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HUF

surroundings G∗

R

Mrest

∆R

Figure 3.4: In a HUF, a massM (dark grey) in a shell at a radius
R is lifted to a radius R+∆R as follows: Differential parts dM
are lifted, while the rest Mrest is still at R. Thereby the field
G7 (medium grey) in the shell with radius R and thickness ∆R
becomes zero, when the whole mass is at R+∆R (see Fig. 3.5).

dM are lifted, while the part Mrest is still at R. Moreover, the
velocity of M remains zero, in an ideal manner. So a part dM
is lifted at the gravitational field of the part Mrest:

| ~G7(Mrest)| =
G ·Mrest

R2
(3.76)

So the field G7 is proportional to the part Mrest (Fig. 3.5). If
a mass dM is lifted, and if the mass Mrest is still at R, then
dM experiences the force2 F = G7(Mrest) · dM , thus the energy
dE = F ·∆R is required:

dE = |G7(Mrest)| · dM ·∆R =
G ·Mrest

R2
· dM ·∆R (3.77)

We derive the full change in gravitational energy ∆EM by inte-
grating the above Eq.:

∆EM =

∫ E

0

dE =

∫ 0

M

G ·Mrest

R2
dM ·∆R (3.78)

2The force can be used instead of the position factor, as ∆R is infinitesimal.
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M

G7(M)

Mrest0

G7

Figure 3.5: The field G7 is shown as a function of the mass Mrest
that is still at the shell with the radius R.

When a mass dM is lifted, then the mass Mrest is decreased by
dM . So dMrest = 2dM . Thus we get:

∆EM = 2
∫ 0

M

G ·Mrest

R2
dMrest ·∆R (3.79)

We evaluate the integral:

∆EM =
G ·M 2 ·∆R

2R2
(3.80)

Location of the energy ∆EM : While the mass M was lifted in
the above process, the energy ∆EM was added to the system.
Where is this energy ∆EM located in the system?

As the mass M is identical to the probing mass m and to
the field-generating mass Mf = M , the mass M is not in an
external field. So the position factor is 1 at the beginning and
at the end of the process. Hence the energy ∆EM is not located
in the mass.

There is a modification in the shell between the radii R
and R + ∆R. It can be characterized by the additional curva-
ture. That additional curvature can be characterized by formed
volume flowing outwards at the velocity c. As we derived the
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E

E =M · c2 + Ef

R

∆EM

E =M · c2
R +∆R

Figure 3.6: The energy of the mass is shown at the initial radius
R and at the final radius R +∆R.

curvature from the EEP to which the field is inherent, that
outflow can also be described by the field G7.

Hence, in the HUF the energy ∆EM is located in the
modifications in the shell between R and R + ∆R, and
it can be characterized by the field.

Absolute value |uf | of the energy density uf of the field: The field
G7 is in the shell with radius R and thickness ∆R (see Fig.
(3.4). The corresponding volume is ∆V = 4Ã · R2 ·∆R. So we
derive the energy density by the dividing the energy ∆EM by
the volume ∆V . So we get:

|uf | =
∆Ef

∆V
=

G ·M 2 ·∆R
2R2 · 4Ã ·R2 ·∆R (3.81)

We simplify the above term, we expand by G, and we apply the
field G7 = G·M

R2 . So we get:

|uf | =
~G72

8Ã ·G = |Ãf | · c2 (3.82)

3.5.2 Sign of uf

In this section, we derive the sign of the energy density uf of
the field.
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For it, we analyze the gravitational energy of the field. The
sign of an energy is determined from the law of energy conser-
vation. Before the above process, the system has the energy of
the massM ·c2, plus the energy Ef of the field in the HUF (Fig.
3.6):

Ebefore =M · c2 + Ef(r g R +∆R) + ∆Ef (3.83)

During the process, the energy ∆EM is added to the system.
So the energy Eafter after the process is as follows:

Eafter = Ebefore +∆EM or (3.84)

Eafter =M · c2 + Ef(r g R +∆R) + ∆Ef +∆EM (3.85)

Moreover, we identify the energy Eafter after the process di-
rectly: it consist of M · c2 and ∆Ef :

Eafter =M · c2 + Ef(r g R +∆R) (3.86)

We subtract Eq. (3.86) from Eq. (3.85). So we derive the
following relation:

0 = ∆Ef +∆EM (3.87)

As the sign of ∆EM is positive, the sign of the energy of
the field ∆Ef is negative. More generally, the energy of the
gravitational field of a mass M is negative. Correspondingly,
the energy density uf of the field is negative.

3.5.3 Inertia inherent to Ãf

In this section, we analyze the inertia that is inherent to the
gravitational field of a mass M . For it, we apply the energy
momentum relation of a physical object, whereby the object
has an energy E or a dynamical mass or mass M = E/c2,
whereby the object has a momentum p, and whereby the object
has a zero or nonzero rest mass m0:

E2 = p2 · c2 +m2
0 · c4 (3.88)
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The right hand side represents the inertial properties of the ob-
ject, as the rest mass m0 represents inertia directly, whereas
the momentum p represents inertia that becomes obvious e. g.
when the object is absorbed by another rest mass m0,2, which
is accelerated as a consequence. The left hand side describes
the energy, which becomes obvious in energetic processes such
as described in section (3.5.2). The above Eq. (3.88) clearly
shows that the inertia of the object depends on the square of the
energy only. A negative energy Eobj < 0 of an object represents
the same inertia as the absolute value of that energy |Eobj| > 0.
Note that these relations hold in a HUF, as the HUF excludes
additional energies that might occur in local frames. Note fur-
ther that most observers measure the inertial properties of an
object, instead of the object’s energy with respect to a HUF,
since most measurements are performed in a laboratory or in a
part of space that is relatively small compared to the volume
within the light horizon.

According to the fact that the inertia of an object corre-
sponds to the absolute value of the energy E of the object in
a HUF, we define an inertial energy density of the field by the
absolute value of the energy density as follows:

Definition 3 Inertial energy density of the field

The inertial energy density uf,In of the field is its absolute value.
Correspondingly, the inertial density Ãf,In of the field is its ab-
solute value as well:

uf,In = |uf | =
~G72

8Ã ·G and (3.89)

Ãf,In = |Ãf | =
~G72

8Ã ·G · c2 (3.90)

We summarize our findings in the following theorem.
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Theorem 3 Energy and inertia of the field

(1) The gravitational energy is inherent to modifications of space
such as curvature or additionally formed volume or a gravita-
tional field.

(2) In a HUF, a gravitational field ~G7 has the energy density
uf as follows:

uf = 2
~G72

8Ã ·G = Ãf · c2 (3.91)

(3) In a HUF, a gravitational field ~G7 has the inertial energy
density uf,In as follows:

uf,In =
~G72

8Ã ·G = Ãf,In · c2 (3.92)

(4) If an observer measures the energy density of an object in a
laboratory, at Earth, in the Solar System, in the Milky Way, in
Laniakea, see e. g. Tully et al. (2014), Carmesin (2021c), or in
a part of space that is relatively small compared to the volume
within the light horizon, then that observer measures uf,In, as
long as the result is not transformed to a homogeneous universe
frame, HUF, or to an equivalent frame.

(5) In a HUF with a field generating mass M , or in a FMF, at
a distance r from a mass M , a gravitational field G7(r) occurs
as follows, see e. g. Carmesin (2021d):

| ~G7| = G ·M
r2

(3.93)

3.5.4 An essential density

The density Ãf,In of the field describes an essential energy, when-
ever there occurs the phenomenon of gravity. Correspondingly,
that energy must be included in the combined DEQ (3.68). Ac-
cordingly, we represent a possible additional density Ãadd and
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the density of the gravitational field Ãf,In in that combined equa-
tion, whereby Ãadd can represent a density of matter or a density
of radiation, for instance:

˙̂·2jj = 8ÃG · (Ãadd + Ãf,In) (3.94)

3.6 Rate gravity scalar RGS & 4-vector RGV

The combined Eq. (3.94) contains a scalar in spacetime. In
order to identify it, we insert equation (3.92) into Eq. (3.94):

˙̂·2jj = 8ÃG · Ãadd +G72/c2 or (3.95)

˙̂·2jj 2G72/c2 = 8ÃG · Ãadd (3.96)

3.6.1 Formation of vacuum in vacuum

In this section, we analyze the formation of vacuum without
any additional density Ãadd, see Eq. (3.96). For that process,
we say vacuum forms in vacuum. In that case, the rate takes
the following form:

˙̂·2jj 2G72/c2 = 0 (3.97)

As vacuum forms in vacuum, the component of the field G7
j

is the same as that of the rate ˙̂·jj:

˙̂·2jj 2G72
j /c

2 = 0 (3.98)

We remind that the corresponding inhomogeneous equation is
as follows:

˙̂·2jj 2 (G7
j/c)

2 = 8ÃG · Ãadd (3.99)

3.6.2 Isotropic formation of vacuum in vacuum

In this section, we derive the isotropic formation of vacuum in
vacuum. For it, we apply the sum Σ3

j=1 to Eq. (3.98):

Σ3
j=1

˙̂·2jj 2 Σ3
j=1G

72
j /c

2 = 0 (3.100)
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We identify the change of volume ˙̂· or ·̇:

·̇2 = ˙̂·2 = Σ3
j=1

˙̂·2jj thus (3.101)

˙̂·2 2 Σ3
j=1G

72
j /c

2 = 0 (3.102)

We remind that the corresponding inhomogeneous equation is
as follows:

Σ3
j=1

˙̂·2jj 2 Σ3
j=1G

72
j /c

2 = Σ3
j=18ÃG · Ãadd thus (3.103)

·̇2 2G72/c2 = 24ÃG · Ãadd (3.104)

We identify the left hand side of Eq. (3.102) by a scalar RGS
in spacetime:

RGS = ˙̂·2 2 ΣiG
72
i /c

2 (3.105)

We call the scalar RGS rate gravity scalar, as ˙̂· is a rate of
formation of volume, while ΣiG

72
i /c

2 represents gravity in terms
of the gravitational field. Moreover, it is a scalar product or a
scalar. Accordingly, we call the corresponding four vector rate
gravity vector RGV . Additionally, the gravitational field can be
expressed by a potential.

G7
j = 2"jÇ (3.106)

RGVi =

û

ü

ü

ý

·̇

G7
1/c

G7
2/c

G7
3/c

þ

ÿ

ÿ

ø

=

û

ü

ü

ý

"t·

2"r1Ç/c
2"r2Ç/c
2"r3Ç/c

þ

ÿ

ÿ

ø

(3.107)

Using the metric tensor of flat spacetime,

·i,k =

û

ü

ü

ý

21 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

þ

ÿ

ÿ

ø

= ·ki (3.108)

we express the RGS in terms of the RGV :

RGS = Σ3
i=0Σ

3
k=0RGVi · ·i,k ·RGVk (3.109)
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Theorem 4 Invariant formation of vacuum

For the case of formation of vacuum without any additional
density Ãadd, the RGS in the DEQ

RGS = ·̇2 2G72/c2 = 0 (3.110)

is an invariant for the following reasons:

(1) The only possible accelerations in a HUF are particular ac-
celerations. A field ~G7 of a particular acceleration can be mea-
sured by a local observer.

(2) A possible absolute velocity cannot be measured. The DEQ
RGS = 0 is invariant with respect to a Lorentz transformation,
as the RGS is a relativistic square of a four vector, the rate
gravity four-vector:

RGVi =

û

ü

ü

ý

·̇

G7
1/c

G7
2/c

G7
3/c

þ

ÿ

ÿ

ø

=

û

ü

ü

ý

"t·
2"r1Ç/c
2"r2Ç/c
2"r3Ç/c

þ

ÿ

ÿ

ø

thus (3.111)

RGS = Σ3
i=0Σ

3
k=0RGVi · ·i,k ·RGVk (3.112)

Accordingly, the RGS is a Lorentz scalar.

(3) Corresponding inhomogeneous DEQs are as follows:

˙̂·2jj 2
(

G7
j

c

)2

= 8ÃGÃadd = ("t·̂jj)
2 2

(

"jÇ

c

)2

(3.113)

˙̂·2 2
(

G7

c

)2

= 24ÃGÃadd = ("t·̂)
2 2 Σ3

j=0

(

"jÇ

c

)2

(3.114)

Note that the sign of the rate is physically determined as follows:
If the average of the particular radial accelerations is positive,
then additional vacuum must be formed so that the universe
expands (Carmesin (2020b), Carmesin (2020a)).



54 CHAPTER 3. DERIVATION OF QUANTUM PHYSICS

3.7 Rate gravity waves, RGW

In this section, we analyze solutions of the DEQs in theorem
(4). For simplicity, we abbreviate ·̂jj by ·̂j:

RGS = 8ÃG · Ãadd (3.115)

with RGS = ˙̂·2j 2 ("jÇ)
2/c2 (3.116)

3.7.1 Solutions in the vacuum

Firstly, we analyze the above DEQ for the case of zero addi-
tional density Ãadd. So we analyze solutions in the vacuum.
Accordingly, we set the RGS in Eq. (3.116) equal to zero:

RGS = ˙̂·2j 2
(

"xj
Ç/c
)2

= 0 (3.117)

As the rate ·̇j represents a tensor, in general, we represent it
with a hat, ˙̂·j. Similarly, the amplitudes of the corresponding
waves represent a tensor, in general, and so they are marked
with a hat as well, see e. g. Eq. (3.118). The following waves
are possible solutions of the above DEQ:

·̂j = ·̂j,Ë · exp(2i · Ë · t+ i · kj · rj) + ·̂j,const. (3.118)

Ç̂j = Ç̂j,Ë · exp(2i · Ë · t+ i · kj · rj) + Ç̂j,const. (3.119)

Hereby, we apply the usual sign convention of quantum physics
in the exponent, see e. g. (Kumar, 2018, Eq. 3.2.11), (Ballen-
tine, 1998, Eq. 4.26). We insert these solutions into the DEQ
(3.117):

·̂2j,Ë · Ë2 =
k2j
c2

· Ç̂2j,Ë (3.120)

Thus the velocity of propagation of a wave in direction of the
coordinates rj or kj is as follows:

vprop =
»

T
=
Ë

kj
(3.121)
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surroundings

HUF

M
R

·R

·Velo

dR

dV

dL

Figure 3.7: In the Schwarzschild metric, a length dR is elongated
by an additional length ·R, corresponding to an additional vol-
ume ·Velo.

We apply this result to (Eq. 3.120):

Ç̂j,Ë = ·̂j,Ë · c · vprop (3.122)

So we can express the wave in terms of a single amplitude ·̂j,Ë.
Thus the waves are as follows, see equations (3.118, 3.119).

·̂j(t, rj) = ·̂j,Ë · e2i·Ë·t+i·kj ·rj + ·̂j,const. (3.123)

Ç̂j(t, rj) = ·̂j,Ë · c · vprop · e2i·Ë·t+i·kj ·rj + Ç̂j,const. (3.124)

Ç̂j(t, rj) = ·̂j,Ë(t, rj) · c · vprop + Ç̂j,const. (3.125)

For the case of waves with zero average, we neglect the constant:

·̂j(t, rj) = ·̂j,Ë · exp(2i · Ë · t+ i · kj · rj) (3.126)

Ç̂j(t, rj) = ·j,Ë(t, rj) · c · vprop (3.127)

The DEQ of the RGWs (3.117) has the oscillatory solutions
in equations (3.118, 3.119), and it makes possible exponentially
growing solutions, in addition. Such solutions can exhibit the
so-called reheating problem, Broy (2016). Accordingly, such
solutions are not analyzed in this book.
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3.7.2 DEQ for stationary fields

The DEQ of the RGWs (3.117) describes the relation between a
field G7

j and a rate ˙̂·j. Physically, there are two essential cases:

1. If there is no additional source, then the field and the rate
cause each other, and an oscillatory or an exponential so-
lution occur.

2. If the field is caused by an additional source such as a
mass or dynamic mass Mq, then the field causes the rate
according to the DEQ of the RGWs (3.117).

In the presence of a source, the field G7
j(R) at a distance R from

Mq is determined according to Gaussian gravity as follows, see
section (2.3):

G7
j(R) =

G ·Mq

R2
(3.128)

In order to derive the corresponding rate of unidirectional for-
mation of vacuum, we apply the DEQ of RGWs (3.117):

˙̂·j = G7
j(R)/c =

G ·Mq

R2 · c (3.129)

We summarize our results as follows:

Theorem 5 Properties of RGWs

The RGWs (Eqs. 3.123, 3.124 and 3.125)

·j(t, rj) = ·̂j,Ë · e2i·Ë·t+i·kj ·rj + ·̂j,const. (3.130)

Çj(t, rj) = ·̂j,Ë · c · vprop · e2i·Ë·t+i·kj ·rj + Ç̂j,const. (3.131)

Çj(t, rj) = ·j,Ë(t, rj) · c · vprop + Ç̂j,const. (3.132)

have the following properties:

(1) Some RGWs are plane waves or discrete or continuous
linear combinations of these. These linear combinations in-
clude waves with various symmetries, as the plane waves estab-
lish a complete orthonormal basis of a Fourier transform



3.8. EMERGENCE OF QUANTA 57

including Fourier integrals, see e. g. Sakurai and Napolitano
(1994) or Teschl (2014), (Ballentine, 1998, p. 17-22).

(2) In general, the amplitudes ·̂j,Ë and Ç̂j,Ë are tensors.

(3) The RGWs propagate at a velocity vprop with vprop = c
or vprop < c. If an RGW describes the propagation of vacuum,
then its velocity is vprop = c, as otherwise an object with m0 > 0
could exhibit velocity v < c relative to the vacuum, in contrast
to SR.

(4) In general, the RGWs represent solutions of the inhomoge-
neous DEQ in theorem (4). Accordingly, the rates ˙̂· can also
describe the formation of vacuum with a nonzero time aver-
age.

(4a) The RGWs describe the formation of vacuum in the vicin-
ity of a mass Mq, whereby there occurs a stationary additional
volume as follows:

˙̂·j = G7
j(R)/c =

G ·Mq

R2 · c with Ãf,In =
G72

8ÃGc2
(3.133)

˙̂·2j = 8ÃGÃf,In (3.134)

(4b) The RGWs describe the formation vacuum during the ex-
pansion of space and at a density Ã as follows:

˙̂·2j = 8ÃGÃ and (3.135)

3 ˙̂·2j = 24ÃGÃ = ·̇2 =

(

·V

dV ·t

)2

(3.136)

3.8 Emergence of quanta

In this section, we investigate the structure of the vacuum so-
lutions in section (3.7.1). Based on these solutions, we derive
the quantization in nature.
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In order to derive the velocity vprop of propagation or phase
velocity vphase, we insert Eq. (3.122) into equation (3.120):

·̂j,Ë · Ë =
kj
c
· ·̂j,Ë · c · vprop (3.137)

We solve for the velocity of propagation:

Ë/kj = vprop = vphase (3.138)

3.8.1 Quantization derived

In this section, we analyze RGWs that propagate at the velocity
vprop = c. So Eq. (3.138) implies the following relation:

Ë

kj
= c (3.139)

Each wave that propagates at the velocity of light c, and that
is emitted during a finite interval of time from a finite source,
has the following properties:

(1) The wave forms a wave packet, as it essentially has a finite
extension in space and time.

(2) The wave packet has an energy E and a momentum p, as it
essentially has a finite extension in space and time.

(3) As the wave packet propagates at c, its energy E and its
momentum p obey the the following relation:

E

p
= c (3.140)

(4) As the wave packet propagates at c, its circular frequency
Ë and its wave number k obey the following relation:

Ë

k
= c (3.141)

(5) So the two above fractions are equal:

E

p
=
Ë

k
= c (3.142)



3.8. EMERGENCE OF QUANTA 59

(6) As Ë is nonzero, we can divide by Ë and multiply by p. So
the following fractions are equal:

E

Ë
=
p

k
=
p · c
Ë

6= 0 (3.143)

(7) In particular, the first two fractions do not depend on time,
as E and p are conserved according to the laws of conservation
of energy and momentum, and as Ë and k of the RGW do not
change as a function of time:

p

k
= K(k) (3.144)

E

Ë
= K(k) (3.145)

K(k) = constant(k) (3.146)

Hereby, constant(k) = K(k) is the constant of quantization. It
could be a function of the wave number k, most generally.

(8) The energy E of the wave packet is constant and propor-
tional to Ë, so the energy of the wave packet is quantized. Sim-
ilarly, the momentum p of the wave packet is constant and pro-
portional to k, so the momentum of the wave packet is quan-
tized. Thereby, that quantization are as follows:

E = K(k) · Ë and (3.147)

p = K(k) · k with (3.148)

That constant has been measured. It is the Planck constant
h divided by 2Ã. It is called the reduced Planck constant (see
7.1):

K(k) = ~ (3.149)

However, we should first prove that K(k) does not depend on
k, see section (3.8.2).
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3.8.2 Universality of Planck’s constant derived

In this section, we show that K(k) does not depend on k. For
it, we analyze the standard deviations or uncertainties inherent
to the wave functions.

These standard deviations are characterized by an uncer-
tainty relation as follows:

∆x ·∆p g K(k)

2
=

quantization factor

2
with (3.150)

∆p =
√

〈p2〉 2 〈p〉2 (3.151)

Hereby, ∆x is the standard deviation of x and ∆p is the stan-
dard deviation of p.

However, there is a universal uncertainty relation, which
holds for wave functions (in the corresponding Hilbert space,
see section (3.12)), it is a mathematical fact, see for instance
Carmesin et al. (2020), (Sakurai and Napolitano, 1994, p. 56-
57):

∆x ·∆k g 1

2
with (3.152)

kË = 2i"xË(x, k) and (3.153)

∆k =
√

〈k2〉 2 〈k〉2 (3.154)

Hereby, ∆x is the standard deviation of x and ∆k is the stan-
dard deviation of k.

In particular, the product of the uncertainties ∆x and ∆k
has a minimum, whereby that minimum does not depend on k
(in a usual mathematical normalization, that minimum has the
value 1/2). That mathematical result about the (Hilbert space
of) wave functions does hold for the physical wave functions as

well, as it is a mathematical fact. Thus K(k)
2 in Eq. (3.150)

must be a constant. This shows that K(k) does not depend on
k, q. e. d.
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3.8.3 Schrödinger equation derived

In this section, we show that the DEQ of the RGW (3.117) is
the Schrödinger equation. For it, we solve that equation for ˙̂·j.
Thereby, we choose different signs of the square roots (so we
obtain positive energy):

"t·̂j(t, rj) = 2"jÇ̂(t, rj)/c (3.155)

In order to find the wave equation, we apply the solution in Eq.
(3.127),

Ç̂j(t, rj) = ·̂j,Ë(t, rj) · c2, (3.156)

so we derive:

"t·̂j(t, rj) = 2"j ·̂j(t, rj) · c (3.157)

For comparison, the Schödinger equation is as follows, see
section (1.3.2.3):

i~"tË(t, rj) = 2i · ~ · c · "rjË(t, rj) (3.158)

In fact, the above Eq. (3.157) is already mathematically equiv-
alent to the Schrödinger equation. However, the square of the
wave function should be proportional to the energy density
uf,In, as the energy density uf,In(~R, t) is proportional to the

probability of finding the object at (~R, t), see section (1.3.2.1).
Moreover, the wave function should have the physical dimension
or unit [Ë] = 1. For that purpose, we apply the time derivative
to Eq. (3.157), and we multiply with a normalization factor of
time tn. That factor tn is determined so that the wave function
Ë has an amplitude corresponding to the respective physical
situation under investigation. In particular, the sum or integral
of all probabilities or probability densities is normalized to one:

"t ˙̂·j(t, rj) · tn = 2"rj ˙̂·j(t, rj) · tn · c (3.159)
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In order to show that the DEQ of the RGW is equivalent to the
Schödinger equation, we multiply Eq. (3.159) by i~:

i~"t ˙̂·j(t, rj) · tn = 2i~"rj ˙̂·j(t, rj) · tn · c (3.160)

We conclude that the DEQ of the RGW (3.160) is equivalent
to the Schödinger equation (3.158), whereby we identify the
normalized unidirectional rate ˙̂·j(t, rj) · tn with the normalized
wave function Ë(t, rj) · fn, see figure (3.3), whereby fn denotes
a normalization factor of a wave function Ë:

˙̂·j(t, rj) · tn = Ë(t, rj) · fn (3.161)

In order to make the Schödinger equation (3.160) even more
obvious, we apply the momentum operator p̂j = 2i~"rj , the
operator of kinetic energy Êkin = p̂rj · c = 2i~"rj · c and the

operator of energy Ê = i~"t, see equations (1.2, 1.6):

Ê ˙̂·j(t, rj) · tn = p̂j ˙̂·j(t, rj) · tn · c = Êkin
˙̂·j(t, rj) · tn (3.162)

3.8.4 Objects with vprop < c

An object with a velocity vprop < c has a rest mass m0. Accord-
ing to SR, the energy momentum relation holds:

E2 = p2c2 +m2
0 · c4 (3.163)

In order to obtain the Schödinger equation, we apply the root:

E =
√

p2c2 +m2
0 · c4 (3.164)

In many applications, the non-relativistic approximation of the
above root is applied. Usually, the linear order in p/(m0c) is
used:

E=̂m0 · c2 +
p2

2m0
(3.165)
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It is convenient to use the kinetic energy Ekin,non2relativistic =
E 2m0 · c2:

Ekin,non2relativistic=̂
p2

2m0
(3.166)

In order to obtain the Schödinger equation, we apply the
corresponding operators. In particular, we use Eq. (3.166), we
insert the operator p̂ for the momentum p (Eq. 1.2), we insert
the operator Ê for the energy Ekin,non2relativistic (1.6). Moreover,
we multiply by the wave function:

i~"tË(t, rj) = 2 ~
2

2m0
"2rjË(t, rj) (3.167)

This is the non-relativistic Schödinger equation (1.11), whereby
we identify the normalized unidirectional rate ·̇j(t, rj) · tn with
the normalized wave function Ë · fn:

·̇j(t, rj) · tn = Ë(t, rj) · fn (3.168)

We summarize our results as follows:

Theorem 6 Emergence of quanta

(1) Each wave that propagates at the velocity of light vprop = c,
and that is emitted at a finite interval of time and from a finite
source, has the following properties:

(1.1) The wave forms a wave packet with an energy E, a mo-
mentum p, a circular frequency Ë and a wave number k.

(1.2) The wave packet is quantized as follows:

E = K · Ë and (3.169)

p = K · k with (3.170)

K = universal constant of quantization (3.171)

Hereby, the universal constant of quantization K does not de-
pend on E or Ë, K has been measured, and K is Planck’s
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constant h divided by 2Ã, so K is the reduced Planck constant
~ = h

2Ã = K, see table (7.1).

(1.3) If that wave is a rate gravity wave, RGW, it obeys the
Schödinger equation, SEQ. Hereby, the normalized wave func-
tion is equal to the normalized rate of the unidirectional relative
change of the volume of vacuum, see figure (3.3):

˙̂·j(t, rj) · tn = Ë(t, rj) · fn (3.172)

i~"t ˙̂·j(t, rj) · tn = 2i~"rj ˙̂·j(t, rj) · tn · c (3.173)

(2) Each RGW that propagates at the velocity of light vprop < c,
and that is emitted at a finite interval of time and from a finite
source, has the following properties:

(2.1) The RGWs are quantized. From the above one dimen-
sional SEQ, the three dimensional SEQ is constructed as usual,
see e. g. Sakurai and Napolitano (1994), Ballentine (1998),
Kumar (2018).

(2.2) The RGW obeys the Schödinger equation, SEQ. Hereby,
the normalized wave function is equal to the normalized rate of
the unidirectional relative change of the volume, see figure (3.3).
For v/c << 1, the SEQ is as follows:

·̇j(t, rj) · tn = Ë(t, rj) · fn (3.174)

i~"tË(t, rj) = 2 ~
2

2m0
· "2rjË(t, rj) (3.175)

Hereby, m0 is the rest mass of the described quantum object.

All results derived in this theorem are based on the spacetime-
quadruple.

3.9 Derivation of the SM

Using the spacetime-quadruple, SQ, we derived two essential
results: In section (3.1), we obtained the energy factor ë(R)
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of the Schwarzschild-metric, SM. In the previous section (3.8),
we realized the emergence of the quantization in nature. In
this section, we apply these two findings in order to derive the
Schwarzschild metric gij, SM.

Note that the Schwarzschild metric gij has been derived by
using the energy factor ë(R) and quanta (photons), see e. g.
Carmesin (2021d). Thereby we did not yet derive the quanta
on the basis of the SQ, whereas in this book, we derive ë(R),
quanta and the SM (see gij in Eq. 3.192) from the SQ.

Blue shift: For it we consider a photon that is placed in aHUF ,
and that starts at r ³ >, and that has a corresponding periodic
time T> (see left rectangle in Fig. 3.8), and that falls vertically
towards a field-generating mass M at r = 0. Thus the energy
of the photon is:

EHUF (r ³ >) =
h

T>
(3.176)

The field generating massM generates the field G7. The energy
in the field is described by the position factor ë(r).

For instance, if the position r of the photon decreases, then
its energy decreases by that position factor ë(r) and is simulta-
neously multiplied by the inverse factor 1

ë(r) , so that the energy
remains invariant.

If the photon is observed in a local frame (LUF) at the radius
r, then the observer has the same position factor as the photon,
and so the measurement apparatus only takes care of the inverse
position factor 1

ë(r) by measuring the energy h
T∞

· 1
ë(r) of the photon

in the local frame. As a consequence, the photon appears to
have the short periodic time:

T (r) = T> · ë(r) (3.177)

This corresponds to a blue shift (see central rectangle in Fig.
3.8), and the energy of the photon in the local frame is as fol-
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frames

Emeasure

HUF

h
T∞

· 1
ë(r)

blue shift

LUF

h
T (r) ·ë(r)

position
factor

HUF

h·ë
T (r)

Figure 3.8: Photon propagating down towards a mass M : Mea-
sured energy Emeasure in the HUF and LUF.

Ã

surroundings

HUF
M
h

Figure 3.9: A field generating mass frame, FMF, is embed-
ded in a HUF. The height h characterizes the field. A photon
is falling down, thereby its wavelength decreases.

lows:

Eblue shift =
h

T (r)
=

h

T> · ë(r) =
EHUF (r ³ >)

ë(r)
(3.178)

Many observations are carried out in such a local frame (see
central rectangle in Fig. 3.8).

Definition 4 Local universe frame, LUF

A frame that is accelerated or that experiences a field or a curva-
ture of spacetime or that is falling freely is called local universe
frame, LUF.

For instance, a LUF may be embedded in a HUF, and it may
contain a field generating mass, or it may be falling freely.
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In general, the energy in such a local frame is obtained from
the corresponding energy in the HUF by multiplication with
the inverse position factor, 1

ë(r) .

ELUF =
EHUF (r ³ >)

ë(r)
for description via ë(r) (3.179)

Alternatively, the local frame can be described by a potential
energy Epot(r) instead of a position factor ë(r). In that case, the
energy in the LUF is obtained from the corresponding energy
in the HUF by subtracting the potential energy Epot(r):

ELUF = EHUF (r ³ >)2 Epot(r) descr. via Epot (3.180)

Conversely, the energy in the HUF is obtained from the en-
ergy in the LUF by multiplication with the position factor, see
right rectangle in Fig. (3.8) and Eq. (3.179). In the case of a
description with a potential energy, the energy in the HUF is
obtained from the energy in the LUF by subtracting the poten-
tial energy, see Eq. (3.179).

Gravitational time dilation: The periodic time T (r) of photons
is used for time measurement, e.g. in atomic clocks (Bunde-
sanstalt (2007), Lombardi et al. (2007)). Accordingly, the peri-
odic time changes the time interval dt(r) by the same factor:

dt(r) = dt> · ë(r) in the LUF (3.181)

Altogether, the time elapses at a decreased rate near M . This
effect is called gravitational time dilation.

Gravitational radial elongation: An observer in the HUF at r ³
> measures a radial length LLUF in a LUF at finite r. For it,
the observer sends a light signal to a mirror in a LUF, detects
the reflected signal, and measures the time of flight ttof,HUF
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with a clock in the HUF. The observer evaluates the length (as
the light propagates the path twice, there is a factor 1/2):

LHUF = ttof,HUF · c · 1
2

(3.182)

We apply ttof,HUF = ttof,LUF/ë(r):

LHUF = ttof,LUF · c · 1
2
· 1

ë(r)
(3.183)

We identify ttof,LUF · c · 1
2 by LLUF :

LHUF = LLUF · 1

ë(r)
> LLUF (3.184)

Altogether, the radial length increases nearM . We identify this
effect as a gravitational radial elongation.

Metric tensor: Tensor formulations of GR are very popular (see
for instance Einstein (1915), Stephani (1980), Carmesin (1996),
Moore (2013)). Accordingly, we express the above results in
terms of the metric tensor, additionally. A line element ds in
spacetime is expressed as follows:

ds2 = Σi=3,j=3
i=0,j=0 gij dxi · dxj (3.185)

For the case of a change dxj = c · dt> = dxi, we get:

dt(r)2 = |gtt| · dt2> or |gtt| = ë(r)2 = 12 RS

r
(3.186)

For the case of a change dxj = dr> = dxi, we get:

dR(r)2 = grr · dR2
> or grr =

1

ë(r)2
=

1

12 RS

r

(3.187)

According to the isotropic field near M , the metric factors for
the angular polar coordinates are zero, as there is no gravity
in the horizontal direction. We apply three dimensional polar
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coordinates. So the angular element of the metric tensor g»» is
proportional to r2:

g»» = r2 (3.188)

Similarly, the angular element of the metric tensor gÇÇ is pro-
portional to r2 · sin2 »:

gÇÇ = r2 · sin2 » (3.189)

For the same reason, all non-diagonal elements are zero.

gi,j = 0 for i 6= j (3.190)

According to a convention, the element gtt is supplemented
by a factor 21 (Straumann (2013), Stephani (1980), Carmesin
(1996)). We use this convention, as it maximizes the number
of positive signs in the tensor ·ij or gij in the limit r ³ >,
see Eq. (3.108). Of course, the sign is not determined at all
by physical reasons. We present the derived tensor elements by
the vector notation in the following Eq. below. We summarize
our derivation:

Theorem 7 The spacetime-quadruple implies the SM

The Schwarzschild metric, SM, can be derived from the SR as
follows:

(1) The energy function E(r, v) in the field generating mass
frame, FMF is derived from the gravitational field, the PFF
and the SR3:

E(r, v) = m0 · c2 ·
√

12RS/r
√

12 v2/c2
(3.191)

(2) The elements of the metric tensor gij are derived by analyz-

3It will be derived later that physical states fulfill the relation R > RS .
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ing a photon in the local universe frame, LUF:

gi,j =

û

ü

ü

ü

ý

2
(

12 RS

r

)

0 0 0

0 1

12RS
r

0 0

0 0 r2 0

0 0 0 r2 · sin2 »

þ

ÿ

ÿ

ÿ

ø

(3.192)

.

3.10 Particle wave transformation, PWT

So far, we investigated the SQ as follows:

Firstly, we introduced a general object with a mass or dy-
namical mass M , see chapter (2).

Secondly, we described the effect of such an object on the region
outside the object by the Schwarzschild metric, SM, see sections
(3.1 , 3.9). In this manner, we described the object in terms
of a particle. More generally, the object can be described by
the Kerr metric of a spinning black hole, see Kerr (1963). Or
the object can be described by the Kerr-Newman metric of a
charged and spinning black hole, see Newman and Janis (1965)
or (Straumann, 2013, chapter 8). Even more generally, the
object can be described by any mass or dynamical massM , the
surroundings of which can be characterized by a curvature of
space or of spacetime or by a gravitational field.

Thirdly, we described the general object by an unidirectional
rate gravity wave, RGW, see sections (3.2, 3.3, 3.4, 3.5, 3.6,
3.7). In this manner, we described the object in terms of a
wave. Hereby the rate ·̇ of the rate gravity wave corresponds
to the wave function Ë of quantum physics, see section (3.8).

By performing the procedure outlined above, we transformed
a description of the general object in terms of a particle to a
description of the same object in terms of a wave. We call
that transformation particle wave transformation, PWT.



3.10. PARTICLE WAVE TRANSFORMATION, PWT 71

Obviously, that transformation describes the duality of parti-
cles and waves observed in nature. Accordingly, the PWT
should be characterized and analyzed, in order to understand
nature more deeply.

In this section, we elaborate the PWT in precise detail. For
it, we apply results obtained in (Carmesin, 2021d, sections 1.9,
1.13 and 2.5).

3.10.1 Effect of a general object upon its surroundings

In this section, we summarize the effects of a general object with
mass or dynamical mass M upon its surroundings. Hereby, the
object is described as a particle.

Of course, the particle exhibits an effect upon the surround-
ings as a direct consequence of gravity. If the particle has a
charge, for instance an electric charge, a hypercharge or a color-
charge in the sense of the strong interaction, see e. g. Tanabashi
et al. (2018), Griffiths (2008), then the particle exhibits addi-
tional effects upon its surroundings. We do not analyze such
charges here, as they can easily be added later, see e. g. Landau
and Lifschitz (1971), Tanabashi et al. (2018), Griffiths (2008),
Carmesin (2021e).

The direct gravitational effect of the particle upon its sur-
roundings can be described by the SM, see section (3.9).

3.10.2 Elongation ·R corresponding to curvature

In the SM, see e. g. Schwarzschild (1916) or Carmesin (2021d))
or section (3.9), there occurs a curvature, corresponding to an
elongation in the radial direction, see figure (3.7). Accordingly,
the coordinate distance dR at a coordinate R in figure (3.7) is
elongated to the following length dL:

dL =
dR

√

12RS/R
with RS =

2Gm

c2
(3.193)
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Thus the additional distance in figure (3.7) is as follows:

·R = dL2 dR (3.194)

3.10.3 Vacuum ·Velo corresponding to elongation ·R

The additional vacuum with the volume ·V or ·Velo in figure
(3.7) is the volume of a shell with thickness ·R and radius R:

·Velo = 4Ã ·R2 · ·R (3.195)

We insert equations (3.193, 3.194):

·Velo = 4Ã ·R2 · dR ·
(

1
√

12RS/R
2 1

)

(3.196)

We apply the volume 4Ã ·R2 · dR = dV of the shell:

·Velo(R) = dV ·
(

1
√

12RS/R
2 1

)

(3.197)

In particular, in the case of a small ratio RS/R and in linear
order in that ratio, we derive the following linear approximation,
see (Carmesin, 2021d, Eq. 1.46):

·Velo(R)=̇dV · 1
2
· RS

R
(linear approximation) (3.198)

3.10.4 Locally formed vacuum ·VLFV in the SM

In the surroundings of M , the locally formed vacuum can be
described with help of a field G7, see chapter (2). We showed
already, that this field G7 corresponds to a density Ãf,In, which
in turn causes the formation of vacuum, see sections (3.5, 3.7).
As the field G7 and the density Ãf,In are local quantities in the
vicinity of M , we call the formed vacuum a locally formed
vacuum ·VLFV . In this section, we derive the amount of that
locally formed vacuum ·VLFV that is generated at a distance R
of the mass M in figure (3.7).
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The vacuum propagates at the velocity c, see section (2.6).
According to the symmetry, the vacuum exhibits a net propaga-
tion in a radial direction. Thus the volume ·Velo(R) of elonga-
tion is represented by the volume of the net propagation of the
vacuum. If the volume is the same at two radii R and R+ ·R,
then no volume is formed in the difference ·R. Accordingly,
the formed volume ·VLFV is the difference of the volumes of
elongation as follows:

·VLFV = ·Velo(R + ·R)2 ·Velo(R) (3.199)

We apply Eq. (3.197) to the above equation:

·VLFV = dV ·

û

ü

ý

1
√

12 RS

R

2 1
√

12 RS

R+·R

þ

ÿ

ø
(3.200)

In the limit ·R to zero, that term can be expressed by using a
derivative as follows:

lim
·R³0

·VLFV

·R
= 2dV · "

"R

1
√

12 RS

R

(3.201)

We evaluate the derivative:

lim
·R³0

·VLFV

·R
=
dV ·RS

2R2
· 1
√

12 RS

R

3 (3.202)

We apply the notation of the Leibniz calculus, see e. g. Leibniz
(1684). Accordingly, we interpret ·VLFV

·R as a derivative, or we
interpret ·R as an infinitesimal quantity. So the limit in the
above equation is not noted explicitly:

·VLFV

·R
=
dV ·RS

2R2
· 1
√

12 RS

R

3 (3.203)
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We apply the term of the volume dV of the shell with thickness
dR and radius R in figure (3.7), dV = dR · 4Ã ·R2:

·VLFV

·R
= 2Ã ·RS · dR · 1

√

12 RS

R

3 (3.204)

3.10.5 Rate of locally formed vacuum, LFV

The vacuum propagates at the velocity c of light, see section
(2.6). Moreover, the volume ·VLFV of the locally formed vac-
uum, flows radially, see section (3.10.5). Thus the volume ·VLFV

of the LFV propagates the radial distance ·R in the time inter-
val ·t = ·R/c:

·t = ·R/c (3.205)

During that microscopic time interval ·t, the locally formed
vacuum propagates through the volume ·VLFV that it forms, so
that new volume is formed during the time ·t of propagation.

We apply that relation to Eq. (3.204), and we multiply by
c:

·VLFV

·t
=
dV ·RS · c

2R2
· 1
√

12 RS

R

3 (3.206)

3.10.6 Relative rate of LFV

In order to derive the relative rate ·VLFV

·t·dV of the volume ·VLFV

of the LFV, we divide Eq. (3.206) by dV :

·VLFV

·t · dV =
RS · c
2R2

· 1
√

12 RS

R

3 (3.207)

Remind that we denote the formed volume per volume and time
by ·V , see section (3.2.2.1). As the volume ·VLFV of the LFV
forms in the radial direction, we identify the rate by the rate
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·̇j,LFV of the unidirectional vacuum, see figure (3.3) and equa-
tions (3.42,3.43,3.44):

·VLFV

·t · dV = ·̇j,LFV (3.208)

We insert Eq. (3.207) and obtain the rate as follows:

·̇j,LFV =
RS · c
2R2

· 1
√

12 RS

R

3 (3.209)

We apply the Schwarzschild radius RS = 2GM
c2 :

·̇j,LFV =
G ·M
R2 · c · 1

√

12 RS

R

3 (3.210)

We identify the field in the SM, G7 = G·M
R2 :

·̇j,LFV =
G7

c
· 1
√

12 RS

R

3 (3.211)

Here, we express G7 by a potential Ç via G7 = 2"rjÇ(R):

·̇j,LFV =
2"rjÇ(R)

c
· 1
√

12 RS

R

3 (3.212)

Hereby, we may express RS

R by 2
c2 · G·M

R = 2
c2Ç(R) in a similar

manner. Remind that the fields G7 caused from sources outside
a HUF add up to zero in a HUF, so the Eq. (3.212) does also
hold globally in the universe. The above equation represents a
wave equation. We call it a generalized SEQ.

3.10.7 Far distance limit: usual and universal QP

In this section, we analyze an especially simple case of the DEQ
(3.211). It is the limit RS/R towards infinity, we call it the far
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distance limit. Moreover, we apply G7 = 2"xj
Ç:

lim
RS/R³0

·̇j,LFV =
G7

c
= 2"xj

Ç

c
(3.213)

Physically, this limit corresponds to an observer that is at some
distance from our general object. We denote the above limit of
the rate by ·̇j:

·̇j := lim
RS/R³0

·̇j,LFV (3.214)

So we derive the DEQ as follows, see Eq. (3.213):

·̇j = 2"xj
Ç

c
(3.215)

Using that equation, we derived the Schrödinger equation, SEQ,
see section (3.8.3):

"t·j(t, rj) = 2"j·j(t, rj) · c or (3.216)

i~"tË(t, rj) = 2i · ~ · c · "rjË(t, rj) or (3.217)

i~"tË(t, rj) = p̂ · c · Ë(t, rj) = Êkin · Ë(t, rj) (3.218)

Theorem 8 Particle wave transformation, PWT

I. Representations

The general object with mass or dynamical mass M has a par-
ticle description, PD, of M . The PD provides the curvature of
space or of spacetime or the gravitational field in the vicinity of
M . Examples are the SM, the Kerr metric or the Kerr-Newman
metric:

PD(M) is curvature = function(M, ~R) or (3.219)

PD(M) is G7 = function(M, ~R) (3.220)

The general object with mass or dynamical mass M has a wave
description, WD, of M . The WD provides the SEQ, and the
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generalized WD, the WDg, provides the generalized SEQ, the
SEQg describing M :

WD(M) is SEQ(M) or (3.221)

WDg(M) is SEQg(M) (3.222)

II. PWT

Starting from the PD(M), we derive the WD(M) via the fol-
lowing steps.

(1) We derive the rate ·̇ as a function of the particle description,
rate(PD(M)). So we obtain an equation of the following form,
see for instance Eq. (3.210):

·̇j,LFV = term1(M,G7) (3.223)

In terms of the steps of transformation, we denote the above
equation as follows:

transformation1[PD(M)] is rate(PD(M)) (3.224)

(1a) For it, we derive the rate ·̇(PD(M)) from the curvature
as described above, if the curvature is provided by the PD.

(1b) Or we apply ·̇(PD(M)) = ±G7/c, if the field is provided
by the PD.

(2) In term1 in Eq. (3.223), we express M (or M within RS)
by the field G7.

Thereby, the evaluation of the field may be achieved by the ap-
plication of Gaussian gravity, see chapter (2) or e. g. Carmesin
(2021d). Note that GG is applicable most microscopically.

In terms of the steps of transformation, we denote the trans-
formed equation as follows:

transformation2[PD(M)] is field(rate(PD(M))) (3.225)

(3) We express the field in terms of a potential:

G7 = 2"~rÇ(~r) (3.226)
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Thus we obtain a wave equation of the following form:

·̇j,LFV = term2("~rÇ(~r)) (3.227)

That wave equation represents a generalized SEQ, see for
instance Eq. (3.212).

In terms of the steps of transformation, we denote the trans-
formed equation as follows:

transformation3[PD(M)] is potential(field(rate(PD(M))))
(3.228)

(4) We apply the far distance limit to Eq. (3.227):

lim
RS
R

³0

·̇j,LFV = lim
RS
R

³0

term2("~rÇ(~r)) (3.229)

Thus only the leading order term in RS/R remains. So the SEQ
is obtained, see e. g. equations (3.216, 3.217, 3.218).

In terms of the steps of transformation, we denote the trans-
formed equation as follows:

transformation4[PD(M)] is (3.230)

lim
RS
R

³0

potential(field(rate(PD(M)))) (3.231)

Altogether, the steps (1), (2), (3) and (4) constitute the fourth
transformation, transformation4, it is the particle wave trans-
formation, PWT:

WD(M) is PWT (PD(M)) with (3.232)

PWT (PD(M)) is lim
RS
R

³0

potential(field(rate(PD(M))))

(3.233)

Since the resulting equation is the SEQ, we obtain the following
result of the PWT:

SEQ(M) is PWT (PD(M)) (3.234)
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III. Generalized PWT

The generalized SEQ, SEQg, is obtained by the generalized par-
ticle wave transformation, PWTg, as follows:

SEQg(M) is PWTg(PD(M)) and (3.235)

PWTg(PD(M)) is potential(field(rate(PD(M)))) (3.236)

The generalized PWT has an inverse as follows:

PWT21
g (SEQg(M)) (3.237)

is rate21(field21(potential21(SEQg(M)))) or (3.238)

PWT21
g (WDg(M)) (3.239)

is rate21(field21(potential21(WDg(M)))) (3.240)

Thereby, the generalized SEQ represents the generalized wave
description of M , WDg(M).

IV. Particle wave duality

A general object with a mass or dynamical mass M has two
descriptions, the PD(M) and the WDg(M). Both descrip-
tions can be transformed into each other by application of the
PWTg(PD(M)) and by the PWT21

g (WDg(M)). These two
mutually transformable descriptions represent the observed wave
particle duality, whereby these descriptions have been derived
from the SQ. So the observed wave particle duality is a property
of the SQ.

3.11 Probabilistic nature of quantum physics

In this section, we show that the particle wave transformation
implies that a general object described by a mass or dynamical
mass M is observed according to probabilities.

The object can be described as a wave, according to the
PWTg. During the propagation of the object as a wave, the
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screen with camera and memory

Figure 3.10: Double slit: Single photons arrive at a double slit.
Behind the double slit, each photon interferes with itself. Ac-
cordingly, it is described in terms of wave fronts. At the screen,
complete photons are detected by a camera and marked in the
memory. In the memory, a diffraction pattern forms (dotted),
based on many photons, each of which interfered with itself.

amplitude of the object decreases, since the waves distributes
in space, in general.

However, the same object can be transformed to a particle
description at any time according to the PWT21

g . For instance,
a detector with an aperture A may detect the object, whereby
the part of the wave entering the aperture has insufficient energy
in order to constitute the particle, in general. As a consequence,
the detector will detect the object at a probability that is pro-
portional to the fraction of the energy of the wave that enters
the detector.

Altogether, the object is of a probabilistic nature, as a con-
sequence of the PWT. Since we derived the PWT from the SQ,
the probabilistic nature of objects is a consequence of the SQ.

In the following, we use a double slit experiment as an ex-
ample, and we show how the above probability is calculated.
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3.11.1 Probability in a quantum system

In this section, we consider an object in chapter (2) that be-
haves different from a classical particle. So the object is de-
scribed by a typical propagating wave or wave packet. During
its propagation, such a wave packet distributes in space, and it
can be diffracted at a double slit experiment, see e. g. Young
(1802) or (Kumar, 2018, cover) or Fig. (3.10). So the object
can correspond to a diffraction pattern, see figures (3.11, 3.10).
However, though the intensity is distributed at the screen in fig-
ure (3.11), a single object can be observed at only one location
x of the screen. Correspondingly, the pattern forms gradually
in time, see figures (3.10, 3.12).

Thereby, the probability density P (x) to find the object at
a location x is proportional to the energy density uf,In of the
particle or to the density Ãf,In of that particle, see proposition
(3).

So the energy density uf,In is proportional to the square of
the field G72, see proposition (3). Moreover, the field G7 is
proportional to the unidirectional rate ·̇j, see Eq. (3.117) and
figure (3.3). That unidirectional rate is proportional to the
wave function, Ë ? ·̇j. Altogether, the probability density P (x)
is proportional to the square of the wave function, and as we
allow for complex functions, as usual, P (x) is proportional to
the absolute square of the wave function:

P (x) ? |Ë(x)|2 (3.241)

Hereby, the normalization factors tn and fn in equations (3.243,
3.245, 3.248) are chosen so that the integral or sum or integral
and sum of all probabilities are one:

P (x)dx = |Ë(x) · fn|2dx with (3.242)
∫

P (x)dx =

∫

|Ë(x) · fn|2dx = 1 for continuous x (3.243)
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Figure 3.11: Intensity I as a function of the coordinate x at a
screen of a double slit experiment.

P (xj) = |Ë(xj) · fn|2 with (3.244)

ΣjP (xj) = Σj|Ë(xj) · fn|2 = 1 for discrete x (3.245)

P (xj) = |Ë(xj) · fn|2 or (3.246)

P (x)dx = |Ë(x) · fn|2dx with (3.247)

1 = ΣjP (xj) +

∫

P (x)dx in general (3.248)

These results show that the occurrence of objects according to a
probability distribution is already inherent to the SQ. Moreover,
it is clear that the inverse PWT cannot be applied to a typical
object with a spreading wave function.

3.11.2 Particle wave duality

The same very general object can be represented by a particle.
Moreover, the PWT transforms that representation to a wave
representation. So the object is at the same time a particle and
a wave. This is the essence of the particle wave duality, see for
instance (Kumar, 2018, p. 7, 33).
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Figure 3.12: Patterns of the double slit experiment after 1 s, 10 s
and 100 s.

3.11.3 Universality of QP

In this section, we characterize a universal property of QP.

In a double slit experiment, see figure (3.10), there occurs a
diffraction pattern, see figure (3.11) as a function of time, see
figure (3.12), independent of the type of object that propagates
through the double slit. For instance, the double slit experiment
has been performed with photons, with electrons, see Tono-
mura et al. (1988), with neutrons, see Zeilinger et al. (1988),
with helium atoms, see Grisenti et al. (2000), and with large
molecules, see Nairz et al. (2003). In all cases, the diffraction
pattern can be derived from the wave length of the respective
objects as a whole, whereas the constituents of the objects do
not change the positions of the diffraction maxima. These find-
ings show that the diffraction pattern is universal in the sense
that it does not depend on the used objects (photons, neutron,
atoms, molecules).

Similarly, the universal gas law describes the ideal gas,
and that law provides a relation between the pressure p, volume



84 CHAPTER 3. DERIVATION OF QUANTUM PHYSICS

V , absolute temperature T and number of particles N ,

p · V = N · kB · T (3.249)

Hereby kB denotes the Boltzmann constant, see table (7.1).
While the universal gas law becomes exact in the thermody-
namic limit N to infinity, the universality of the usual QP is
achieved in the far distance limit RS/R to zero.

The universality of the usual QP arises as follows: The far
distance limit simplifies the DEQ of the RGWs. Thereby, the
DEQ becomes equivalent to the SEQ, and this SEQ holds for
all objects in the same manner. In this manner, all properties of
QP that arise from the SEQ become universal in the far distance
limit of the DEQ of the RGWs.

3.11.4 Generalized QP

The usual QP is achieved in the far distance limit, see section
(3.11.3). New physics is expected, if we do not apply that limit.
Similarly, the real gas, see van der Waals (1873), differs from
the ideal gas, and the real gas describes new physics, such as
phase transitions.

In this case, the quantum physics beyond the usual and uni-
versal QP is described by the DEQ (3.211):

·̇j,LFV =
G7

c
· 1
√

12 RS

R

3 or (3.250)

·̇j,LFV =
2"jÇ(R)

c
· 1
√

12 RS

R

3 and (3.251)

lim
RS
R

³0

·̇j,LFV =
2"jÇ(R)

c
is the SEQ (3.252)

Accordingly, the above Eq. (3.251) represents the generalized
SEQ. Such general QP is beyond the scope of the present book
and is to be analyzed in the future.
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Such general QP is also achieved, when details of the mi-
croscopic structure are analyzed. For instance, the elementary
charge and the mass of the Higgs boson have been derived by
a microscopic analysis based on quantum gravity and provided
new physics, see Carmesin (2021a), Carmesin (2021e).

Theorem 9 Probabilistic nature

In general, the amplitude of the wave function ·̇ · tn decreases
during the propagation in space. If that amplitude is too small in
order to form a particle, then the corresponding particle occurs
with a probability P that is proportional to the inertial energy
density uf,In, which is proportional to the absolute square of the
wave function, P ? uf,In ? |·̇ · tn|2.

3.12 Derivation of the quantum postulates

In this section, we derive the quantum postulates from the SQ.
Thereby, the postulates have been designed by a guess with
a subsequent elaboration, see figure (3.13) or (Grawert, 1977,
p. 148). Accordingly, the postulates are not determined in a
unique manner. Correspondingly, I use postulates present in
the literature.

3.12.1 P1: Quantum states form a Hilbert space

In this section, we derive the following postulate by (Kumar,
2018, p. 168):

’The state of a quantum mechanical system, at a given instant
of time, is described by a vector |Ψ(t)〉, in the abstract Hilbert
space H of the system.’

3.12.1.1 Derivation

Firstly, we identify the states in the SQ:
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Applications such as
diagnostics, e. g. electron microscope, MRT
band structure, e. g. electronics, computer

atomic orbitals, e. g. chemistry, pharmaceutics
entanglement, e. g. cryptography, computer

coherence, e. g. laser, laser-tools

postulates of QP

guess with elaboration explanation

many experiments such as the double slit experiment

Figure 3.13: On the discovery of QP: Many experiments are sub-
sumed by postulates of QP so that the postulates explain QP.

In the present SQ, a state of a quantum mechanical system
is generated by the particle wave transformation. So it is a state
in the far distance limit.

Moreover, the state is described by the normalized rate as a
function of location and time ·̇(~r, t) · tn, see section (3.7), which
is equal to the normalized wave function in quantum physics
see section (3.8):

·̇(~r, t) · tn = Ë(~r, t) · fn (3.253)

Secondly, we show that these states of the present SQ form
a Hilbert space H:

The states Ë(~r, t) form a linear space, as they are solutions of
the linear DEQ of the RGWs, see section (3.7).

The states Ë(~r, t) form a complete space, as they include all
linear combinations of states Ë(~r, t), including Fourier integrals.
These form a complete Hilbert space H, see e. g. (Teschl, 2014,
p. 47) or (Sakurai and Napolitano, 1994, p. 57).
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Thereby, two wave functions, Ë1(~r, t) and Ë2(~r, t), form a scalar
product as follows:

〈Ë1|Ë2〉 =
∫

d3rË7
1(~r, t) · Ë2(~r, t) (3.254)

Altogether, the states of the SQ in the far distance limit form
a Hilbert space H, q. e. d.

Remark about physical completeness: Note that the physical
system is usually NOT defined in a physically complete man-
ner by its wave function Ë(~r, t) or state |Ψ(t)〉. We consider
a counter example: In a double slit experiment with helium
atoms, the wave function Ë(~r, t) of the atoms describes the
pattern completely, but that wave function Ë(~r, t) does NOT
describe the electrons within the atoms at all. Note that essen-
tially more complete descriptions are obtained by the SQ, see
e. g. Carmesin (2021d), Carmesin (2021a), Carmesin (2021e).

Remark about complex-valued wave functions: Note that Fourier
sums and Fourier integrals can alternatively be achieved in
terms of real valued sine- and cosine-functions, see for instance
Carmesin (2021d). So it would be possible to describe the mea-
surable quantities based on real valued wave functions. How-
ever, that would not be useful: Similarly, it would be possible
to describe the universe in a Cartesian coordinate system with-
out negative numbers, if the origin is placed far outside the
observable universe so that all points of the observable universe
exhibit positive coordinates - but it is more useful to place the
origin of the coordinate system into the center of the observable
universe, of course.

We summarize, that the description by complex valued func-
tions is a matter of convenience, not a matter of physical neces-
sity.
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3.12.2 P2: Observables correspond to operators

In this section, we derive the following postulate by (Kumar,
2018, p. 169):

’A measurable physical quantity A (called an observable or dy-
namical physical quantity), is represented by a linear and her-
mitian operator Â acting in the Hilbert space of state vectors.’

3.12.2.1 Derivation

We showed in S. (3.12.1) that the SQ in the far distance limit
provides wave functions or states that form a Hilbert space H.

Here we derive the correspondence of observables A and her-
mitian operator Â acting in H.

An observable, A, such as the energy, represents the corre-
sponding possible values of a measurement of a quantum state.
Most generally, the values of a measurement form a partially dis-
crete and partially continuous set of values MA discrete continuous.

Similarly, a hermitian operator Â acting in H has, most gen-
erally, a set of partially discrete and partially continuous eigen-
values MÂ discrete continuous, see e. g. (Teschl, 2014, THM 3.6 or
spectral theorem).

So the SQ in the far distance limit provides a Hilbert space H.

For hermitian operator Â acting on that Hilbert space H
provides a set MÂ discrete continuous of eigenvalues.

That set of eigenvalues MÂ discrete continuous corresponds to a
set MA discrete continuous of possible values of a measurement at
the RGWs of the SQ in the far distance limit.

Altogether, the SQ in the far distance limit provides the corre-
spondence of observables A and operators Â described by the
postulate, q. e. d.
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3.12.3 P3: Possible outcomes of a measurement are
eigenvalues

In this section, we derive the following postulate by (Kumar,
2018, p. 169):

’The measurement of an observable A in a given state may be
represented formally by the action of an operator Â on the state
vector |Ψ(t)〉. The only possible outcome of such a measurement
is one of the eigenvalues, {aj}, j = 1, 2, 3, . . . , ofÂ.’

3.12.3.1 Derivation

For each observable A of the SQ in the far distance limit, there is
a set MA discrete continuous of possible outcomes of a measurement
at the corresponding states, see section (3.12.2).

That setMA discrete continuous of possible outcomes corresponds
to a setMÂ discrete continuous of the eigenvalues of the correspond-

ing operator Â acting in H that represents the RGWs, see sec-
tion (3.12.2).

Thus each possible outcome of the measurement corresponds
to an eigenvalue, q. e. d.

3.12.4 P4: Probabilistic outcomes of a measurement

In this section, we derive the following postulate by (Kumar,
2018, p. 169, 170):

If a measurement of an observable A is made in a state |Ψ(t)〉
of the quantum mechanical system, then the following holds:

(1) The probability of obtaining one of the non-degenerate dis-
crete eigenvalues aj of the corresponding operator Â is given
by

P (aj) =
|〈Çj|Ψ〉|2
〈Ψ|Ψ〉 , (3.255)
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where |Çj〉 is the eigenfunction of Â with the eigenvalue aj. If
the state vector is normalized to unity, P (aj) = |〈Çj|Ψ〉|2.

(2) If the eigenvalue aj is m-fold degenerate, this probability
is given by

P (aj) =
Σm

i=1|〈Çij|Ψ〉|2
〈Ψ|Ψ〉 , (3.256)

(3) If the operator Â possesses a continuous eigenspectrum
{a}, the probability that the result of a measurement will yield
a value between a and a+ da is given by

P (a) =
|〈Ç(a)|Ψ〉|2

〈Ψ|Ψ〉 da =
|〈Ç(a)|Ψ〉|2

∫>
2> |Ψ(a2)|2da2da (3.257)

3.12.4.1 Derivation

Firstly, we note that this postulate considers only operators Â
that have either a discrete spectrum of eigenvectors or a con-
tinuous spectrum of eigenvectors. However, most generally, an
operator Â has a mixed spectrum MÂ discrete continuous. In the

following, we consider operators Â that have either a discrete
or a continuous spectrum of eigenvectors, as the generalization
is straight forward.

Secondly, the SQ in the far distance limit provides results of
measurements in a probabilistic manner, see section (3.11.1).

Thirdly, in all three cases (1), (2) and (3), the probability P (aj)
or P (a)da of the outcome aj or [a; a+da] is proportional to the
inertial energy density uf,In of the RGW, according to the law
of energy conservation:

P (aj) ? uf,In(aj) (3.258)

P (a) ? uf,In(a) (3.259)

Fourthly, we derive the probabilities for the three cases, (1), (2)
and (3), one at a time.
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Derivation for case (1):
As a first step, we decompose the considered state |Ψ〉 into

components |Çj〉, whereby these components are the eigenvec-
tors of the operator Â:

|Ψ〉 = |Ψ〉 | · 1 = Σk|Çk〉〈Çk| (3.260)

|Ψ〉 = Σk|Çk〉〈Çk|Ψ〉 (3.261)

For a k-th component |Ψk〉 of |Ψ〉, we identify the amplitude
〈Çk|Ψ〉 and the normalized eigenvector |Çk〉:

|Ψk〉 = |Çk〉〈Çk|Ψ〉 (3.262)

The corresponding inertial energy density of the field uf,In,k is
proportional to the square of the corresponding field G7

k:

G7
k = |Çk〉 · 〈Çk|G7(r)〉 = |Çk〉 ·

∫

dr3Çcck (~r) ·G7(~r) and

(3.263)

uf,In,k ? |G7
k|2 = G7,cc

k ·G7
k (3.264)

Hereby, we denote the conjugate complex by a superscript cc.
For instance, we mark the conjugate complex of Çk(~r) by Ç

cc
k (~r).

Moreover, G7
k can be expressed by the corresponding rate as

follows:

G7
k = c · ·̇k (3.265)

Furthermore, that rate ·̇k is proportional to the correspond-
ing wave function:

·̇k ? |Ψk〉 and (3.266)

·̇cck ? 〈Ψk| (3.267)

Consequently, the inertial energy density uf,In,k is propor-
tional to the absolute square of the corresponding wave func-
tions:

uf,In,k ? ·̇cck · ·̇k ? 〈Ψk|Ψk〉 (3.268)
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Corresponding to Eq. (3.258), the probability P (ak) is pro-
portional to the inertial energy density uf,In,k:

P (ak) ? uf,In,k ? 〈Ψk|Ψk〉 (3.269)

In order to analyze the dependence on Çk, we apply Eq. (3.262):

P (ak) ? 〈Ψk|Ψk〉 = 〈Çk|〈Ψ|Çk〉 · |Çk〉〈Çk|Ψ〉 (3.270)

We use the normalization 〈Çk|Çk〉 = 1 and the relation 〈Ψ|Çk〉 =
(〈Çk|Ψ〉)7 as well as the equality 〈Ψ|Çk〉 · 〈Çk|Ψ〉 = |〈Çk|Ψ〉|2:

P (ak) ? |〈Çk|Ψ〉|2 or (3.271)

P (ak) = ·|〈Çk|fnΨ〉|2 (3.272)

Hereby, we used the normalization factor fn. It is determined
next:

1 = ΣkP (ak) = f 2n · Σk|〈Çk|Ψ〉|2 or (3.273)

1 = f 2n · Σk〈Ψ|Çk〉 · 〈Çk|Ψ〉 |Id = Σk|Çk〉〈Çk| (3.274)

1 = f 2n · 〈Ψ|Ψ〉 we solve (3.275)

f 2n = 1/〈Ψ|Ψ〉 (3.276)

Hereby, we used the identity operator Id = Σk|Çk〉〈Çk|. We
apply the term for f 2n to Eq. (3.272):

P (ak) =
|〈Çk|Ψ〉|2
〈Ψ|Ψ〉 (3.277)

As this probability holds for each eigenvalue ak, it holds also
for aj, and so it proves the first case, (1), of the postulate, see
Eq. (3.255), q. e. d.

The other two cases (2) and (3) can be worked out in a
similar manner. Accordingly, we do not elaborate these cases
in the present book.
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Figure 3.14: Large molecules fall in a potential Φ and are
diffracted at a grating.

3.12.5 P5: Time evolution

In this section, we derive the following postulate by (Kumar,
2018, p. 170):

’The time evolution of the state vector is governed by the time-
dependent Schrödinger equation:

i~"t|Ë〉 = Ĥ|Ë〉, (3.278)

where Ĥ is the Hamilton operator corresponding to the total
energy of the system.’

3.12.5.1 Derivation

Using the SQ and the far distance limit, we derived the time
dependent Schrödinger equation for the relativistic and for the
classical system and for the case without a potential energy
term, see sections (3.8.3, 3.8.4).

Next we add an additional energy. For it, we consider an ex-
ample: Brand et al. (2019) performed a diffraction experiment
with large molecules with the mass m = 514u = 8.53 · 10225 kg.
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Thereby, the molecules had velocities v ranging from 150 m/s
to 350 m/s. So the molecules were falling significantly in the
gravitational potential Φ, see figure (3.14). Accordingly, each
molecule has an additional gravitational energy at a height h
as follows:

Eadd(h) = Φ(h) · h with (3.279)

Φ(h) = 2m · g with g = 9.81
m

s2
(3.280)

In the framework of the present SQ, that energy should be
added to the energy of the RGW of a molecule. In order to
describe an energy, we have to choose a frame or a representa-
tion first. Here we choose the SEQ as a representation of the
RGW, see equation (3.278). So the energy is added to Ĥ. Ac-
cording to the small velocity, the kinetic energy of a molecule
is non-relativistic as follows:

Ekin = 1
2m · v2 = p2

2m so (3.281)

Êkin = p̂2

2m = 2 ~
2

2m∆ with the Laplace operator∆(3.282)

The operator Ĥ of the energy of a molecule is the sum of the
kinetic energy and the gravitational energy:

Ĥ = 2 ~
2

2m∆+Φ(h) · h (3.283)

The examples illustrate how an additional energy can be added
to a RGW.

According to the principle of conservation of energy, the energy
of a RGW can be supplemented by an additional energy. So
the SQ provides the SEQ with the respective kinetic energy, as
derived in section (3.8), and with a possible additional energy,
q. e. d.

Theorem 10 Derivation of postulates of QP

The postulates of quantum physics, QP, can be derived on the
basis of the spacetime-quadruple, SQ.
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As the SQ represents gravity combined with relativity, QP is a
consequence thereof.

Thus QP is inherent to gravity combined with relativity.

Hence the postulates of QP are derived rules of QP now.

3.13 Quantization based on GR

In this section we show how quantum systems can be derived
on the basis of GR.

For it, we start with the Einstein field equation, EFE, see e.
g. Einstein (1915), Stephani (1980), Carmesin (1996), Hobson
et al. (2006):

Gij = 28ÃG
c4 · Tij with the Einstein2 tensor (3.284)

Gij = Rij 2 1
2GijR with the Ricci2 tensor (3.285)

Rij = Rk
ijk and the Ricci2 scalar (3.286)

R = gijRij (3.287)

Hereby, the curvature tensor acts upon a vector va like a com-
mutator ['c,'b] = 'c'b 2 'b'c of covariant derivatives, see
e. g. (Hobson et al., 2006, Eq. 7.12, section 3.12):

Rd
abc · vd = ['c,'b] · va with covariant derivatives (3.288)

"b~v = ('bv
a)~ea (3.289)

Using the EFE, quantum systems can be derived as follows.

3.13.1 Identification of an object

In this section, we summarize conditions for the application
of the PWT, see section (3.10): It is necessary to describe an
object representing a mass or dynamical mass M .

In the case of a localized object, see section (2.1), the sur-
roundings of that object should be described by a curvature
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or a gravitational field. Examples are the SM, the Kerr met-
ric or the Newman-Kerr metric, see Schwarzschild (1916), Kerr
(1963), Newman and Janis (1965).

In the case of a homogeneous density of objects, see
section (2.1), the surroundings of these objects can be char-
acterized in terms of a diagonal change tensor ·̂ij,diagonal, see
proposition (5).

In general, the surroundings of an object can be characterized
in terms of a change tensor, ·̂ij, and in terms of the direction
of propagation of the corresponding rate gravity wave.

Hereby, the change tensor describes the vacuum in the terms
of one microscopic location only, whereas the curvature used in
the EFE requires at least three locations, see figure (2.5). In
this sense, the EFE is mesoscopic. Moreover, the curvature of
the EFE is explained by the formed vacuum. In spite of the
mesoscopic nature of the EFE, the EFE may be supplemented
by microscopic objects, and then the PWT can be applied to
such microscopic objects. In this manner, the PWT can be
applied to mesoscopic theories, if microscopic objects can be
defined in addition to the mesoscopic theory.

3.13.2 Application of the PWT

If an object can be defined for the case of the EFE, see section
(3.13.1), then the PWT can be applied. As a result, the object
is described by the SEQ, and the postulates of quantum physics
apply, see section (3.12).

Moreover, we can apply the PWTg, in order to derive the
generalized Schrödinger equation, SEQg, in order to obtain a
description beyond the usual QP.



Chapter 4

Formation of Vacuum

In this chapter, we analyze the formation of the vacuum that
forms the present day space. In particular, we derive the density
ÃΛ of the vacuum, also called dark energy. For it, we apply the
RGWs. Thereby, we could apply a second quantization of the
RGWs, see (Carmesin, 2021d, chapter 6), or we could apply a
quantization derived at the Planck scale, see Carmesin (2018b),
Carmesin (2018a), (Carmesin, 2021d, sections 8.5, 8.6). How-
ever, we will show here that the density ÃΛ can be derived more
directly by using a semiclassical description of the RGWs.
In the following, we denote the RGWs of the vacuum by RGWΛ.

A quantum description of the formation of the vacuum has
been elaborated earlier, see for instance Carmesin (2018b) or
Carmesin (2018a), Carmesin (2019b), Carmesin (2019a) or also
Carmesin (2020b), Carmesin (2021a), Carmesin (2021c), for re-
lation to geometry see Carmesin (2021b).

4.1 Basics of the derivation

4.1.1 Vacuum only

In this book, we analyze the vacuum in an especially pure and
ideal case: we derive the density ÃΛ of the dark energy in a
universe that consists of dark energy only, without any content
such as matter or radiation.

97
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We showed elsewhere, this ideal case can be generalized di-
rectly to a realistic universe that is filled with vacuum, ra-
diation and matter, see e. g. Carmesin (2018b), Carmesin
(2018a), Carmesin (2021a). Hereby, we achieve precise accor-
dance with observation, whereby we do not apply any fit, see
e. g. Carmesin (2021a), Carmesin (2021c). Thereby, the mech-
anism of the formation of vacuum presented here is used and
confirmed by observation, Planck-Collaboration (2020).

4.1.2 Homogeneous and constant vacuum

As there is no radiation or matter in the vacuum modeled here,
the system is homogeneous. In particular, there is no increase
of structure in the present model of the vacuum. Accordingly,
we derive the constant and homogeneous density ÃΛ,c.,h. of the
vacuum.

4.1.3 Separation of space and time

In the constant and homogeneous density ÃΛ,c.,h. of the vac-
uum modeled here, the time increases at a homogeneous and
constant rate. Accordingly, we can investigate space and time
separately1.

4.2 Dark energy in a homogeneous universe

In this section, we derive the constant and homogeneous
density ÃΛ,c.,h. of the dark energy.

4.2.1 Source by present vacuum

The RGWΛ constitute the vacuum and space. These RGWΛ

present sources that form additional vacuum. Such a source

1Note that the use of a single parameter of time t is especially realistic in the present
case of a universal length scale such as the Hubble radius RH . Remind that the corre-
sponding dynamics of the scale factor is described by a single DEQ with a single time
parameter t, see Eq. (3.48) and Balbi (2013).
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ÃΛ
R

dMj

R0

d ˙̂·j
RGW

d ˙̂·j
RGW

d ˙̂·j

RGW

Figure 4.1: The density ÃΛ in an area at a distance R from R0 has a j2 th
dynamic mass dMj. It generates rates d ˙̂·j propagating to all directions in
an isotropic manner.

can be described by a j 2 th dynamical mass dMj, see figure
(4.1). Accordingly, the rate of unidirectional formed vacuum is
as follows, see Eq. (3.129):

d ˙̂·j = dG7(R)/c =
G · dMj

R2 · c (4.1)

4.2.2 RGWs propagating towards R0

A j2 th mass causes RGWs that propagate to all directions. In
this section, we integrate that part of the RGWs that propagate
to an observer at a location R0, see figure (4.1).

4.2.2.1 Rates d·̇j(R) of formed volume

In order to derive the density ÃΛ,c.,h. at an observer at a place
R0, we integrate all RGWΛ that propagate to that observer, see
figure (4.1). The dynamic mass dMj of RGWΛ in figure (4.1)
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forms vacuum according to Eq. (4.1):

d ˙̂·j(R) =
1

c
· G · dMj

R2
(4.2)

Each mass dMj in that shell generates a rate d ˙̂·j that is pro-
portional to that mass, and these rates are scalars. Hence the
sum of the rates d·̇(R) = Σj, Rj*shell d ˙̂·j is equal to the rate of
the sum of the masses dM(R) = Σj, Rj*shell dMj. So we get:

d·̇(R) =
1

c
· G · dM(R)

R2
(4.3)

That mass dM(R) is equal to the product of the density ÃΛ,c.,h.
and the volume dV = 4Ã ·R2 · dR of the shell:

dM(R) = ÃΛ,c.,h. · 4Ã ·R2 · dR (4.4)

We insert the mass in Eq. (4.4) into Eq. (4.3):

d·̇(R) =
1

c
· G · ÃΛ,c.,h. · 4Ã ·R2 · dR

R2
(4.5)

We cancel R2. So we get:

d·̇(R) =
G · ÃΛ,c.,h. · 4Ã

c
· dR (4.6)

4.2.2.2 Invariance of additional rates d·̇(R)

The above Eq. (4.6) shows that each shell around R0 with
thickness dR causes the same additional rate d·̇(R), irrespective
of the radius R of the shell.

4.2.2.3 Integration of d·̇(R)

In order to integrate d·̇(R), we analyze the properties of the
RGWΛ:

1. We model the constant density ÃΛ,c.,h. corresponding to the
present day universe.
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2. So ÃΛ,c.,h. is characterized by the Hubble constant H0.

3. The RGWΛ do not propagate ’inside’ the vacuum, instead
the RGWΛ constitute vacuum propagating at c isotropi-
cally.

4. So the RGWΛ do not experience a redshift or the expansion
of the space. Instead they cause the expansion.

5. Thus the duration of the propagation is the Hubble time
tH = 1/H0.

6. The RGWΛ propagate at the velocity c, see section (2.6).

7. Hence the RGWΛ propagate the distance c · tH = RH , the
Hubble radius.

8. So the upper limit of the integration is RH .

9. The lower limit of integration is a length near the Planck
length, that length is negligible at a very good approxima-
tion.

So we derive:
∫ ·̇

0

d·̇(R) =
4Ã ·G
c

·
∫ RH

0

ÃΛ,c.,h.dR (4.7)

We evaluate the integrals. So we derive the rate ·̇to R0
caused

at R0 during the Hubble time tH by the RGWs arriving at R0:

·̇to R0
=

4Ã ·G ·RH

c
· ÃΛ,c.,h. = 4Ã ·G · tH · ÃΛ,c.,h. (4.8)

4.2.3 Derivation of the formed vacuum with dV

In this section, we analyze how a present day volume dV at the
location R0 in figure (4.1) was physically formed by vacuum
arriving at R0 during the time tH according to the rate of the
arriving vacuum ·̇to R0

.
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For it, we express the rate ·̇to R0
in Eq. (4.8) in terms of its

definition:

·̇to R0
=

·V

·t · dV (4.9)

As the rate is constant, see Eq. (4.8), we can derive the volume
·V of the vacuum arriving at R0 during a time ·t. For it, we
solve for ·V :

·V (·t) = ·̇to R0
· ·t · dV (4.10)

In particular, during the time ·t = tH , the following volume
arrived at R0:

·V (tH) = ·̇to R0
· tH · dV (4.11)

Physically, the volume ·V (tH) of the vacuum that arrived at R0

per volume dV at R0 is exactly the volume dV :

·V (tH) = dV (4.12)

We insert the amount of arrived vacuum ·V (tH) in Eq. (4.11)
in the above equality (4.12):

·̇to R0
· tH · dV = dV (4.13)

We insert the rate ·̇to R0
, see Eq. (4.8), and we divide by dV :

4Ã ·G · tH · ÃΛ,c.,h. · tH = 1 (4.14)

We solve for ÃΛ,c.,h.:

ÃΛ,c.,h. =
1

4Ã ·G · t2H
(4.15)

4.2.4 Density parameter ΩΛ

We derive the density parameter ΩΛ, for the case of the approx-
imation of constant ÃΛ,c.,h.. Hereby, ΩΛ is defined as the ratio
of ÃΛ,c.,h. and the critical density Ãcr,t0:

ΩΛ,c.,h. =
ÃΛ,c.,h.
Ãcr,t0

(4.16)
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Thereby, the critical density Ãcr,t0 is defined as the present day
density, at which the curvature parameter k in the FLE is zero,
whereby k = 0 is the realistic value, see Planck-Collaboration
(2020), (Carmesin, 2021d, theorem 32(6)) and Eq. (3.20):

H2
0 =

8ÃG · Ãcr,t0
3

2 k · c
2

r2
with k = 0, so (4.17)

Ãcr,t0 =
3H2

0

8ÃG
(4.18)

For it we use the Hubble constant H0 =
c

RH
= 1

tH
. So we get:

ΩΛ,c.,h. =
ÃΛ,c.,h.
Ãcr,t0

=
1

4Ã ·G · t2H
· 8ÃG
3H2

0

=
2

3
(4.19)

4.2.5 Comparison with observation

In this section, we compare with an observation ΩΛ,obs. Hereby,
each observation of ΩΛ,obs uses a physical object that was emit-
ted at some time tem. As a matter of fact, the observation
depends slightly on that time tem, see e. g. Carmesin (2018a),
Carmesin (2021a), Carmesin (2021c). Accordingly, we choose
a time tem that represents a relatively homogeneous universe.
Such a time corresponds to the early universe2.

Accordingly, we compare with an observation at high redshift
z. Correspondingly, we compare with an observation based on
the CMB. In particular, the observations of the CMB by the
Planck satellite provide temperature power spectra and a cor-
responding value ΩΛ,obs of the density parameter as follows, see
(Planck-Collaboration, 2020, table 2)

ΩΛ,obs = 0.679± 0.013 (4.20)

So the theoretical value is within the error of measurement, so
it is in precise accordance with observation.

2Note that a homogeneous density of radiation does hardly affect the observation, see
e. g. (Carmesin, 2021d, section 7.5), Carmesin (2021a), Carmesin (2021c)
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Theorem 11 Formation and density of the vacuum

(1) The formation of the present day vacuum is explained by the
formation of vacuum since the Big Bang until today according
to the rate ˙̂·.

(2) In the ideal case of a universe filled of vacuum only, the
formation of the vacuum in (1) provides the density ÃΛ,c.,h. =

1
4Ã·G·t2H

and the density parameter ΩΛ,c.,h. =
2
3, whereby no fit is

applied. This result is in precise accordance with observation.

(3) In a realistic universe filled with vacuum, radiation and mat-
ter, the formation of vacuum is explained by the same process
as in (1), whereby the heterogeneity of matter and radiation
causes a slight modification. The resulting density ÃΛ is in pre-
cise accordance with observation, whereby no fit is applied, see
(Carmesin, 2021d, section 7.5), Carmesin (2021a), Carmesin
(2021c).



Chapter 5

Explanation of Quantum
Physics

Weinberg (2017) wrote about quantum mechanics or quantum
physics: ’Today, despite of the great successes of quantum me-
chanics, arguments continue about its meaning, and its future.’

Indeed, the meaning of quantum physics should be clarified.
And in fact, our derivation of the postulates of quantum physics
on the basis of the SQ presents a rich source for the derivation of
explanations of quantum physics. In this chapter, we elaborate
such explanations of QP.

5.1 Direct understanding based motions

So far, QP has been derived and understood by the indirect
method of an experimentally based guess with a subsequent
elaboration, see figure (3.13) or Sakurai and Napolitano (1994),
Ballentine (1998), Kumar (2018).

In contrast, we start with a direct understanding of mo-
tions here, see chapter (2) or Brahe and Kepler (1627), Ke-
pler (1619), Galileo (1638), Newton (1686), Einstein (1905),
de Sitter (1913), Einstein (1915). For it, we start with the SQ.
It is based on motions, see chapter (2). In this manner, the
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spacetime-quadruple, SQ, can be directly understood.

motions ³ SQ (5.1)

Based on the SQ, the rate of formation of the vacuum ·̇ can
be derived and understood directly, see chapter (3):

SQ ³ dynamics of ·̇ (5.2)

Based on the rate of formation of the vacuum ·̇, the quan-
tization, the wave function, the Schrödinger equation and the
postulates of quantum physics, QP, can be derived and under-
stood directly, see chapter (3):

dynamics of ·̇³ quantization and (5.3)

dynamics of ·̇³ postulates of QP (5.4)

In this manner, the spacetime-quadruple, SQ, implies the quan-
tization in nature and the postulates of QP. As the SQ is based
on motions, the nature of quantization can be understood di-
rectly.

5.2 Clarifications of QP

Feynman (1967) wrote ’I think I can safely say that no one
understands quantum mechanics’. Accordingly, a clarification
is necessary. In this section, we apply our derivations in chapters
(3, 4), in order to clarify the postulates and traditional concepts
of QP.

5.2.1 Quantization

The ubiquitous formation of vacuum according to a rate ·̇ gives
rise to rate gravity waves, RGWs, described by a linear differ-
ential equation, see theorem (4). Wave packets of such waves
form quanta with a universal constant of quantization, see the-
orem (6). Thus the fact of quantization is derived from the SQ
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as follows:

motions ³ SQ ³ dynamics of ·̇³ quantization (5.5)

5.2.2 Quantization of a general object

A general object with a mass or dynamical massM modifies its
surroundings. At a mesoscopic level, that modification is de-
scribed by curvature, on a microscopic level, that modification
is described by the formation of vacuum according to a rate
·̇. Additionally, many observations measure the surroundings
of an object instead of the internal structure of an object. A
typical example is the observation of phenomena at a double
slit experiment, see figures (3.10, 3.12, 3.14). Accordingly, such
behavior of a general object is described by the formation of
vacuum according to a rate ·̇.

Moreover, essential elements of the internal structure of a
general object are also described by the formation of vacuum
according to a rate ·̇. Examples are the formation of mass, see
Carmesin (2021a), and the formation of the elementary charge
and electromagnetism, see Carmesin (2021e).

Altogether, a general object is described by the formation
of vacuum according to a rate ·̇ at larger length scales and at
small length scales. So the quantization of general objects is
explained by the space-time quadruple:

general object ³ dynamics of ·̇(SQ) ³ quantization (5.6)

5.2.3 Wave function

A quantum state of an object is described by a wave function,
see e. g. Kumar (2018). According to Weinberg (2017) (section
1), a wave function is essentially a list of numbers. We clarify
that a wave function of a general object is the normalized rate
·̇ · tn of vacuum formed by that object. Thereby all possible
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linear combinations are included, as the differential equation of
the rate ·̇ · tn is linear1, see theorems (4, 5).

5.2.4 Time evolution of the wave function

In QP, the time evolution of the wave function is described by
the Schrödinger equation, SEQ, in a deterministic manner, see
e. g. Schrödinger (1926a), Kumar (2018), Weinberg (2017)2.
However, the traditional theory of quantum physics does not
explain, why the wave function is described by the Schrödinger
equation, see e. g. Schrödinger (1926a), Sakurai and Napoli-
tano (1994), Ballentine (1998), Kumar (2018), Weinberg (2017).

We clarify that the Schrödinger equation is the differential
equation of the formation of vacuum according to the rate ·̇ · tn,
which indeed describes the time evolution of the wave function
·̇ · tn, see theorem (10) or section (3.12):

general object ³ dynamics of ·̇(SQ) ³ SEQ (5.7)

In particular, based on the spacetime-quadruple, it is clear that
the time derivative in the SEQ is based on Galileo’s equivalence
principle, which is the ultimate basis of all dynamical equations
in this book. So the dynamics can be rooted back to free fall
and to the Galileo’s gedankenexperiments or experiments at the
tower at Pisa, see figure (2.2).

5.2.5 Probabilistic nature of quantum physics

The dynamics of quantum physics is described by two elements:
the time evolution of the deterministic Schrödinger equation
and the probabilistic behavior, as it is observed in measured
quantities, for instance. That probabilistic behavior should be
explained: E. g. Weinberg (2017) described two approaches, an

1Hereby, we investigate some inner degrees of freedom or quantum numbers for some
essential quantities, see Carmesin (2020c), Carmesin (2020c).

2Of course, a representation may be changed to the Heisenberg picture, for instance,
however, such a transformation cannot explain the source of the time evolution.
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instrumentalist’s approach and a realist’s approach, he made
clear that he is not convinced of these approaches and concluded
’O time, thou must untangle this, not I’.

5.2.5.1 Particle wave transformation

We explain the combined dynamics of a general object by the
following fact: Based on the spacetime-quadruple, SQ, we can
transform a particle description, PD, to a generalized wave de-
scription, WDg, and vice versa, see theorem (8):

SQ ³(PD µ WDg) (5.8)

In this manner, the SQ clarifies the two types of dynamics in
QP.

Thereby, the traditional quantum mechanics applies an addi-
tional far distance limit upon the WDg and thus arrives at the
usual or traditional wave description WD. As a consequence,
the transformation cannot be inverted:

SQ ³(PD ³ lim
RS/R³0

WDg = WD) (5.9)

Moreover, the particle wave transformation, PWT, in Eq.
(5.8) represents the particle wave duality observed in nature
and quantum physics, see e. g. (Kumar, 2018, p. 33). So the
PWT clarifies the particle wave duality.

5.2.5.2 Clarification of results of measurements

In this section, we elaborate the basis of the fact that the only
possible results of a measurement of a quantity A are the eigen-
values of the corresponding operator Â.

As the DEQ of the rate ·̇ · tn = Ë · fn is linear, the SEQ, the
wave functions form a linear vector space of functions. Since the
absolute square of these functions is proportional to the energy
density and to the probability of a location, the above space of
functions is a Hilbert space H.
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In a Hilbert space H, possible values that an operator gener-
ates are the eigenvalues, corresponding to the respective eigen-
functions. So the linear DEQ of the rates ·̇ · tn, or of the wave
functions, is the basis of the Hilbert space in QP, which is the
basis of the eigenvalues of operators Â as possible results of
measurements:

linear SEQ ³Ë · fn * H ³ measurement(A) = eigenvalue(Â)
(5.10)

5.2.5.3 Clarification of uncertainty principles

In this section, we elaborate the basis of the Heisenberg uncer-
tainty principle.

The linear DEQ of the wave functions, the SEQ, implies the
Hilbert space H of wave functions. An analysis of standard de-
viations ∆A = 〈(Â 2 〈Â〉)2〉 and ∆B = 〈(B̂ 2 〈B̂〉)2〉 as well as
commutators [Â, B̂] provides the corresponding uncertainty re-
lations ∆2

A·∆2
B g 1

2 ·|〈[Â, B̂]〉|, see (Ballentine, 1998, section 8.4).
Altogether, we clarify that the Heisenberg uncertainty principle
is a consequence of the linear DEQ of the wave functions, the
SEQ, and the probabilistic dynamics described by expectation
values:

SQ ³ deterministic and probabilistic dynamics of QP (5.11)

³ uncertainty relations (5.12)

5.2.5.4 Universal behavior of QP

Moreover, the far distance limit clarifies, why electrons, atoms
and molecules exhibit the same diffraction patterns at a double
slit experiment, see figures (3.10, 3.14). More generally, the far
distance limit clarifies the typical universal behavior of different
objects in quantum physics.

Even more generally, it is clear that a limit generates a uni-
versal behavior, since many functions have the same limit. An-
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other very important physical example is the thermodynamic
limit. In that limit, the particle number N of a set or ensemble
tends to infinity. In that limit, the theory of thermodynam-
ics can be explained by the more general theory of statistical
physics, see e. g. Landau and Lifschitz (1980). For instance, an
ideal gas can be described by the thermodynamic limit, and in
that limit, the corresponding law holds for all gases, irrespec-
tive of the contained atoms or molecules, Landau and Lifschitz
(1980).

Even the real gas can be described in the thermodynamic
limit, see van der Waals (1873). Hereby, droplets or clusters
are not analyzed in the thermodynamic limit.

5.2.5.5 Clarification of constant of quantization h

In this section, we clarify the constant of quantization, the
Planck constant. Of course, it is always possible to change
a system of units.

However, we analyze the units in a manner that is indepen-
dent from a possible change of the system of units:

We call a constant fundamental, if that constant consti-
tutes a physical structure that can not yet be explained by
an underlying more microscopic structure. Hereby, we pre-
fer microscopic structures rather than macroscopic structures,
since macroscopic structures are usually formed from micro-
scopic structures, but not vice versa.

Firstly, we derived that there is only one constant of quanti-
zation, see section (3.8).

Secondly, the value of that constant in SI-units must be mea-
sured, it is the Planck constant, see table (7.1).

Thirdly, the constant is based on a particular analysis of the
SQ: the particle wave transformation, including the far distance
limit. So the constant h describes a structure that is inherent
to the SQ. Thus the constant h is not fundamental, as it does
not describe fundamentally new physics in addition to the SQ.
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Fourthly, the constant h is universal, as it describes an ubiq-
uitous property of the SQ: the quantization.

Fifthly, the SQ has the following fundamental constants: the
gravitational constant G and the velocity of light c. These con-
stants are fundamental, as they characterize the physics of the
SQ at a microscopic level.

Similarly, the Boltzmann constant kB is not fundamental, as
it describes the energy that corresponds to an entropy, which is
a statistical quantity of a physical system. In the correspond-
ing statistical analysis, an existing physics is analyzed, but no
fundamentally new physics is added.

For comparison, the elementary charge e is a dependent con-
stant of nature, as it can be derive from the SQ completely. A
measurement is only necessary as a test, see Carmesin (2021e).

5.2.5.6 Generalized Schrödinger equation, SEQg

We clarify that the generalized wave description represents a
generalized Schrödinger equation, SEQg, see section (3.10). So
the SEQg corresponds to the case without the far distance limit
and without the universal behavior of traditional QP:

SQ ³(PD µ WDg µ SEQg) (5.13)

5.2.5.7 Spacetime-quadruple, SQ, provides probabilities

The SQ provides the correct probabilities of quantum physics,
see theorem (10) or section (3.12).

SQ ³ probabilities (5.14)

Hereby, we clarify that the probabilities of QP are proportional
to the energy densities of the formed vacuum. Thereby the pro-
portionality factor is obtained by the fact that the sum or inte-
gral of all probabilities is one. Altogether, the SQ provides the
deterministic dynamics represented by the Schrödinger equa-
tion, as well as the probabilistic dynamics, represented by the
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probabilities based on the energy density of the formed vacuum:

SQ ³ deterministic and probobilistic dynamics of QP (5.15)

5.2.5.8 General object provides probability

One might wonder how even slight amounts of the formed vac-
uum of a general object can describe the quantization, the prop-
agation of the wave function according to the Schrödinger equa-
tion, the full Hilbert spaceH as well as the correct probabilities.
The answer is very simple: The amplitude of the wave function
is provided by the normalization of the probability to one, so
the amount of the formed vacuum is not essential. Accordingly,
the fact that the Schrödinger equation is linear gives rise to the
full Hilbert space H, irrespective of the amount of the formed
vacuum. Note that the amount has been derived in (Carmesin,
2021d, Eq. 2.18).

5.2.5.9 Tunneling

The SQ implies the postulates of quantum physics. So it implies
tunneling, see e. g. (Kumar, 2018, section 3.8). Thus it implies
the propagation of evanescent modes, Nimtz (2003), Hoffmann
et al. (2021). An evanescent mode occurs according to the prob-
abilities inherent to quantum physics, and such a mode may ex-
hibit a corresponding velocity larger than c, Nimtz (2003). Such
evanescent modes exhibit a nonlocal effect of quantum physics,
thus it is a consequence of the SQ, of course. We emphasize that
there is no contradiction to the used velocities v f c of classical
objects in the SQ, since evanescent modes are implications of
the SQ.

5.2.5.10 Positive inertia at negative energy

In quantum physics, the positron has been described by a neg-
ative total energy, see e. g. Dirac (1928). Accordingly, matter
could hardly be stable, as the ground state would tend to an
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energy at minus infinity, see e. g. (Kumar, 2018, p. 408). Here,
the mass m0 corresponds to the inertial energy E = m0 · c2,
which is positive for electrons and for positrons, see section
(3.5.3).

5.2.5.11 Angular momentum

The quantization of the angular momentum provides an ex-
ample for an especially counterintuitive property of quantum
physics. The angular momentum is an observable J , so it cor-
responds to an operator Ĵ , according to the SQ. Thus, Ĵ has
a spectrum. The algebraic analysis shows that the eigenvalues
are J = 0, J = ~/2, J = ~, J = 3~/2, and so forth, see e. g.
(Ballentine, 1998, Eq. 7.16).

For any rigid body, the rotation by an angle 2Ã around the
z-axis reproduces the original state or orientation. However, if
we apply that rotation by an angle 2Ã around the z-axis to a
state |³〉 with J = ~/2, the resulting state is 2|³〉, see e. g.
(Sakurai and Napolitano, 1994, Eq. 3.2.15).

This example shows that counter-intuitive phenomena can
occur as a result of the algebraic structure of the Hilbert space,
which is caused by the spacetime-quadruple, SQ.

5.2.6 Postulates of QP

The SQ provides RGWs as solutions. Using these RGWs, the
postulates of QP have been derived.

In this manner, the nature of QP is clarified: QP is a conse-
quence of the SQ. Moreover, the wave function and its determin-
istic and probabilistic dynamics is explained by the dynamics
of the vacuum.

SQ ³ dynamics of vacuum (5.16)

³ deterministic and probabilistic dynamics of QP (5.17)

³ postulates of QP (5.18)
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5.2.7 Dynamics of vacuum

In this section, we elaborate the relation of the dynamics of the
vacuum to other fields of physics.

As shown above, the dynamics of the vacuum is based on the
SQ. Moreover, the dynamics of the vacuum implies QP.

5.2.7.1 Relation to GR

The curvature described in GR is explained by the dynamics
of the vacuum, see sections (3.9, 3.10) or Carmesin (2021d),
Carmesin (2021a), Carmesin (2021e):

dynamics of vacuum ³curvature inGR (5.19)

5.2.7.2 Relation to quantum gravity

As the dynamics of the vacuum implies QP as well as the curva-
ture in GR, the dynamics of the vacuum also implies quantum
gravity:

dynamics of vacuum ³QP so (5.20)

dynamics of vacuum ³quantum gravity (5.21)

In particular, the Planck length and the Planck scale emerge,
see section (7.5). So the singularity problem of GR is solved,
see e. g. Kiefer (2003), Carmesin (2017), Carmesin (2018a),
Carmesin (2019b).

5.2.7.3 Formation and density of vacuum

As shown in chapter (4), the dynamics of the vacuum alias
dark energy explains the process of formation of the present
day vacuum by the formation of vacuum since the Big Bang.
Moreover, that dynamics of the vacuum explains the density
of the vacuum ÃΛ,c.,h., in precise accordance with observation,
derived without use of a fit:

dynamics of vacuum ³formation of vacuum& ÃΛ,c.,h. (5.22)
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Consequently, also the Planck length LP and the Planck scale
are inherent to the spacetime - quadruple and to the dynamics
of the vacuum, see section (7.5). As the Planck length presents
the smallest length LP that can be observed by a single obser-
vation, the spacetime - quadruple implies already that smallest
observable length LP , though the concept of the spacetime -
quadruple is completely continuous at its definition or intro-
duction. Moreover, that smallest observable length makes clear
that the mesoscopic structure of at least three LP of GR is
inherent to the combination of gravity and relativity.

5.2.7.4 Formation of space by vacuum

In this section, clarify how vacuum forms space, even though
the dynamics of the vacuum is described with help of space.

For it, we make clear the categories: Space is a mathematical
concept. Vacuum is a physical entity that can be observed in
nature. For instance, the density ÃΛ of the vacuum has been
measured, see for instance Perlmutter et al. (1998), Riess et al.
(2000), Spergel et al. (2007), Planck-Collaboration (2020), Riess
et al. (2021), Blakeslee et al. (2021).

The answer is that the mathematical description of space
does not at all restrict the formation of vacuum in nature. In
particular, it is not necessary that you first solve a problem in
the field of GR, before you are allowed to use a mathematical
tool describing space.

Similarly, we can describe the propagation of RGWs with
the help of mathematical tools that describe space, even be-
fore we present a solution for the formation of the present-day
vacuum. This is possible, even though the present-day vacuum
constitutes what we call space in everyday life3

3Moreover, the space we experience in everyday life appears static, whereas the vacuum
is dynamic. This fact underlines the difference between the dynamic vacuum and the static
space experienced in everyday life that is conceptualized by static mathematical models
such maps or globes.
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5.2.7.5 Graviton

Accordingly, the SQ also provides the graviton, the hypothetic
particle of the gravitational interaction, see Blokhintsev and
Galperin (1934). In fact, the essential properties of the graviton
have indeed been explained by the SQ, see Carmesin (2021d).

5.2.8 Nonlocality

In this section, we elaborate the role of nonlocality in nature,
GR, QP and the SQ.

5.2.8.1 A property of nature

So far, nonlocality was a mystery of nature. Einstein et al.
(1935) and possibly Weinberg (2017) even presumed that GR
would not be nonlocal.

However, we see that QP is inherent to the spacetime -
quadruple. Moreover, QP is inherent to an object described
by GR. Furthermore, QP is nonlocal. So the SQ and GR are
not local.

Such presumptions do sometimes happen in science. For
instance, more than 2000 years ago, mathematicians presumed
that all numbers are rational. Later it turned out that the
numbers

:
2 and Ã are not rational. Mathematicians made a

difference between rational and irrational or real numbers, even
though limits of rational numbers provide real numbers quite
naturally.

Analogously, nonlocal phenomena can be derived quite nat-
urally within GR. However, it is also possible to define GR in
such a manner that all nonlocal phenomena are artificially ex-
cluded from GR. That would redefine the set of phenomena
belonging to GR.

Of course, the SQ is more general than GR, as it has less
presumptions such as continuity. As a consequence, the SQ can
also describe discontinuities and phase transitions in space that
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can hardly be described by GR, see e. g. Carmesin (2021d).
Additionally, the SQ can explain the curvature of GR in terms
of the formed vacuum.

5.2.8.2 An explanation

Using the representation of wave functions by RGWs derived
here, and using the formation of mass and charge from RGWs,
see Carmesin (2021a), Carmesin (2021e), nonlocality can be
explained as follows:

We consider a mass or dynamical mass m or a property of it
that is observed at a location ~robs in a nonlocal manner4.

The observedm is formed at ~robs from vacuum (see Carmesin
(2021a), Carmesin (2021e)), which is already at ~robs, in particu-
lar, the vacuum forming m at ~robs does not need any transport
or propagation through the three dimensional space from ~rem
to ~robs.

While this explanation makes clear how a transport of energy
or mass can be minimized in principle, it does not provide a
model of the observed instantaneous transport of correlations.
A more advanced model including phase transitions provides
possible answers to the question of the transport of correlations,
see Carmesin (2021d).

5.2.8.3 A solution of the EPR paradox

Einstein et al. (1935) presumed that GR would not be nonlocal,
while they pointed out that QP is nonlocal. The corresponding
difference is the essence of the EPR paradox.

Here we derived QP by considering an object described by
GR. So GR is not free of QP, thus nonlocality is inherent to GR.
Hence the presumption is wrong. Thence there is no paradox5.

4That is, the mass m or a corresponding wave or quantum was emitted at a location
~rem at a time tem, whereby a light signal emitted at (tem, ~rem) arrives at ~robs after the
arrival of m.

5As noted in section (5.2.8.1), GR could be made free of nonlocality and of QP, if one
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5.2.9 Summary of clarifications

Feynman (1967) wrote ’I think I can safely say that no one
understands quantum mechanics’. I think I can safely say that
you can explain the essential features and postulates of quantum
mechanics on the basis of gravity and relativity, after reading
this book.

5.3 Extensions

The theory of QP can be extended directly into many estab-
lished fields. So these fields can now be explained on the basis
of motions in space and time as well. We consider some exam-
ples next.

5.3.1 Many particles

If the QP of a j-th particle is described by a corresponding
Hilbert space Hj, then N particles are described by the product
space:

H = ΠN
j Hj (5.23)

5.3.2 Internal states and transitions

In general, particles have internal states. Examples are orbitals
in atoms, see Einstein (1905), Bohr (1913), Schrödinger (1926a),
Schrödinger (1926b), or the isospin states of a neutron, see e.
g. Fermi (1933), Weinberg (1967), Weinberg (1996), Tanabashi
et al. (2018). Such states can be modeled in the framework of
the SEQ.

5.3.3 Reactions among elementary particles

The reactions from one elementary particle to another is usually
modeled via transitions. For instance, an up quark changes to a

would artificially restrict a future version of GR to local phenomena.
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downquark by changing its isospin, see e. g. Weinberg (1967),
Weinberg (1996), Tanabashi et al. (2018).

As transitions can be modeled in terms of QP, also the trans-
formations and reactions of elementary particles can be modeled
by QP. So they are based on the SQ as well, and they can be
described by the PWT.

Moreover, the spacetime quadruple is naturally generalized
to dimensions D g 3. Thereby, there occur phase transitions
in a natural manner. With help of these phase transitions,
the formation of mass and of the elementary charge have been
modeled, in precise accordance with observation, whereby no fit
has been applied, see Carmesin (2021a), Carmesin (2021e).

5.3.4 Transformations within quantum physics

Transformations within QP have always been helpful in the QP,
see e. g. Jordan (1935), Holstein and Primakoff (1940), Bogoli-
ubov (1958). In this context, the present PWT is especially
interesting, as it provides a transformation from the spacetime-
quadruple to QP.
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Discussion

Problem: Ballentine (1998) wrote: ’Einsteins’s locality postu-
late, which is the key to Bell’s theorem, is strongly motivated
by special relativity. Thus the conflict between quantum me-
chanics and locality suggests a deep incompatibility between
quantum mechanics and relativity.’

Accordingly, many researchers have been asking for a clar-
ification of the relation of relativity and quantum mechanics.
For instance, in a letter to Born, Einstein wrote in 1926, see
Weinberg (2017), Pais (1982): ’Quantum mechanics is very im-
pressive. But an inner voice tells me that it is not the real thing.
The theory produces a good deal but hardly brings us closer to
the secret of the Old One. I am at all events convinced the He
does not play dice.’ Similarly, Feynman (1967) wrote: ’I think
I can safely say that no one understands quantum mechanics’.
Even recently, Weinberg (2017) wrote about the apparent con-
flict between quantum mechanics and relativity: ’O time, thou
must untangle this, not I’.

Solution: Indeed, in this book we clarify that apparent ’deep in-
compatibility between quantum mechanics and relativity’: We
show that quantum mechanics is a natural structure that is in-
herent to relativity combined with gravity. Consequently, we re-
solve the proposed apparent ’incompatibility’. For it, we inves-
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tigate the combination of relativity and gravity at a microscopic
level by analyzing the dynamics of the formation and propaga-
tion of vacuum. We emphasize that the vacuum is a very real
physical quantity, the density of which has been measured by
very different methods, see e. g. Perlmutter et al. (1998), Riess
et al. (2000), Spergel et al. (2007), Planck-Collaboration (2020)
or by various methods mentioned in Carmesin (2021c). More-
over, the energy of the vacuum amounts to more than 65 % of
the total energy of the universe, see e. g. Carmesin (2021c).

We derive the dynamics of the vacuum. With it, we discover
that the Schrödinger equation is equivalent to the dynamics of
the vacuum that each physical object generates as its contribu-
tion to the expansion of space since the Big Bang. Moreover, we
derive the postulates of quantum physics from that dynamics
of the vacuum.

Basis of the solution: Of course, our derived dynamics of the
vacuum must have a very clear and deeply founded basis, in
order to be considered as a basis for the solution of the above
mentioned ’a deep incompatibility between quantum mechan-
ics and relativity’. For this purpose, we derived that dynamics
of the vacuum on the basis of widely accepted principles, sum-
marized in the spacetime-quadruple, SQ. We emphasize that
these principles are based on observed motions of planets and
stars, see figures (1.3, 2.2, 2.3, 3.8) or Brahe and Kepler (1627),
Kepler (1619), Galileo (1638) Rømer (1676), Newton (1686),
Einstein (1905), Einstein (1915), so you can easily comprehend
these principles.

Tests of the dynamics of the vacuum: Of course, our derived
dynamics of the vacuum must be tested by observations that
are independent from quantum physics.

For this purpose, we applied our dynamics of the vacuum in
order to derive the density of the vacuum, for the ideal case of a
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universe consisting of vacuum only, see in chapter (4). Hereby,
we achieved precise accordance with observation, whereby we
do not apply any fit.

Moreover, we used our dynamics of the vacuum in order
to derive the density ÃΛ of the vacuum, for the realistic case
of a universe filled with vacuum, radiation and matter, see
(Carmesin, 2021d, sections 6.6 and 7.5). Hereby, we achieved
precise accordance with observation, whereby we do not apply
any fit, see e. g. (Carmesin, 2021d, section 7.5), Carmesin
(2021a), Carmesin (2021c).

Furthermore, we utilized our dynamics of the vacuum in or-
der to derive the density of the vacuum, for the realistic case
of a universe filled with vacuum, radiation as well as matter,
including the case of the very early universe. Thereby, the case
of the very early universe can no longer be described in the
framework of general relativity, which marks an essential in-
completeness of general relativity, see e. g. (Carmesin, 2020c,
figure 5.10), (Carmesin, 2020b, figure 5.7). The solutions of that
case provide a spectrum of the states of the vacuum consisting
of a mixture of several energies, it is called a polychromatic vac-
uum, see e. g. Carmesin (2018b), Carmesin (2018a), Carmesin
(2019b), Carmesin (2021d). Of course, such a mixture is analo-
gous to the white sunlight in the atmosphere. And indeed, the
spectrum of the vacuum varies as a function of time, similarly
as the spectrum of the sunlight, which contains a relatively
large amount of red light at sunrise and at sunset. Hereby,
we achieved precise accordance with observation, including a
whole function ÃΛ(t), whereby we do not apply any fit, see e.
g. (Carmesin, 2021d, section 7.5), Carmesin (2021a), Carmesin
(2021c).

Moreover, the spectrum of the vacuum provided in the very
early universe is relevant also today as it is restricted by the
causal horizon that is set by the light horizon. Furthermore,
that spectrum forms the basis of the possible states of the
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vacuum, and these states explain the formation of mass, see
Carmesin (2021a), and of the elementary charge, see Carmesin
(2021e). Hereby, we achieved precise accordance with observa-
tion, whereby we do not apply any fit.

Altogether, our dynamics has already been tested by many
and various observations, including the density of the vacuum,
including a whole function ÃΛ(t), the sum of the mass of the
neutrinos as well as the mass of the Higgs boson, see Carmesin
(2021a), and the elementary charge, see Carmesin (2021e). In
all cases, we achieved precise accordance with observation, of
course, we do not apply any fit thereby.

Clarifications of quantum physics: Based in our theory of the
vacuum, we clarified the basis of the quantization in nature, of
the wave function, of the Schrödinger equation, of the Hilbert
space in quantum physics, of the Heisenberg uncertainty rela-
tion, of the probabilistic properties of nature, of the postulates
of quantum physics and of nonlocality in nature, see chapter
(5).

Clarifications of general relativity: Based in our theory of the
vacuum, we clarified the basis of the curvature of spacetime or
of space and time.

Clarification of the relation of quanta, vacuum and relativity: We
showed that the dynamics of the vacuum implies both, quanti-
zation including the corresponding theory of quantum physics
as well as the curvature used in general relativity. In partic-
ular, in the framework of the theory of the vacuum, there is
no natural ’incompatibility’ between quantum physics and the
curvature of general relativity.

Instead, the quantization emerges in the theory of the vac-
uum quite naturally. Correspondingly, quantum physics and its
postulates can be derived from the dynamics of the vacuum.
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Similarly, the curvature of spacetime emerges in the theory
of the vacuum quite naturally. Correspondingly, the curvature
of spacetime can be derived from the dynamics of the vacuum.

However, on the level of the present-day version of the theo-
ries of general relativity and of quantum physics, the above men-
tioned scientists articulate an ’incompatibility’ between these
theories. Thereby Weinberg (2017) clearly expects a clarifica-
tion or a step in which the problem is ’untangled’. The dynam-
ics of the vacuum does ’untangle’ that problem of ’incompatibil-
ity’ felt by several scientists, by explaining both, quantization
and curvature of spacetime.

Altogether, there are two great theories, quantum physics
and general relativity. The present-day versions of these two
theories exhibit an ’incompatibility’. On the level of our theory
of the vacuum, quantization and curvature of spacetime are
both explained, so the essential properties of both theories are
explained, and so the ’incompatibility’ between both theories
vanishes.
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Appendix

7.1 Constants of nature

In this section we present useful constants of nature.

quantity observed value

G 6.674 30(15) m3

kg·s2

c 299 792 458 m
s , exact

h 6.626 070 150(69) · 10234 Js

kB 1.380 649 03(51) · 10223 J
K

ë0 8.854 187 817 · 10212 F
m , exact

Table 7.1: Constants of nature (Newell et al. (2018), Tanabashi
et al. (2018)).
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7.2 Abbreviations

In this section we present used abbreviations.

abbreviation full text reference

DEQ differential equation S. (3.1.1)

"rj or "j partial derivative with respect to rj

EEP Einstein equivalence principle S. (2.2.2)

GG Gaussian gravity S. (2.3)

GR general relativity S. (2.5)

LFV locally formed vacuum S. (3.10.5)

PFF principles of free fall S. (2.2)

PWT particle wave transformation S. (3.10)

QP quantum physics S. (1.1)

RGS rate gravity scalar S. (3.6)

RGV rate gravity vector S. (3.6)

RGW rate gravity wave S. (3.7)

SM Schwarzschild metric S. (3.9)

SR special relativity S. (2.4)

SEQ Schrödinger equation S. (1.3.2.1)

SQ spacetime-quadruple Eq. (2.1)

Table 7.2: Abbreviations
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7.3 Observed values

In this section we present useful results of observations.

quantity observed value

H0 in
km

s·Mpc 67.36± 0.54 (0.8 %)

ΩΛ 0.6847± 0.0073 (1.1 %)

ΩK 20.011+0.0013
20.0012

zeq 3402± 26

Ωm 0.3153± 0.0073

Ωr 9.265+0.288
20.283 · 1025 (3.1 %)

Ã8 0.8111± 0.006(7.4%)

Ãcr,t0 in
kg
m3 8.660+0.137

20.137 · 10227 (1.6 %)

Ã̃cr,t0 7.037 · 102123

Ã̃v,t0 4.8181 · 102123

Ωb 0.0493± 0.00032

Ωc 0.2645± 0.0048

Rlh 4.1412 · 1026 m (Carmesin (2019b))

Table 7.3: Data obtained on the basis of the CMB by the Planck
satellite ((Planck-Collaboration, 2020, p. 15 and 38)) by us-
ing the modes TT, TE, EE, the low energy and the lens-
ing results. Quantities with a tilde are presented in natural
units alias Planck units (see subsection 7.4). Hereby 1 Mpc =
3.0856776 · 1019 km.

7.4 Natural units

Planck units or natural units have been introduced by Planck
(1899). We mark quantities in natural units by a tilde (s. Tab.
7.4, Carmesin (2019b)).
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physical entity Symbol Term in SI-Units

Planck length LP

√

~G
c3 1.616 · 10235 m

Planck time tP
LP

c 5.391 · 10244 s

Planck energy EP

√

~·c5
G 1.956 · 109 J

Planck mass MP

√

~·c
G 2.176 · 1028 kg

Planck volume VD,P LD
P

Planck volume, ball V̄D,P VD · LD
P

Planck density ÃP
c5

G2~
5.155 · 1096 kg

m3

Planck density, ball Ã̄P
3c5

4ÃG2~
1.2307 · 1096 kg

m3

Planck density, ball Ã̄D,P
MP

V̄D,P

Planck temperature TP TP = EP

kB

scaled volume ṼD
VD

V̄D,P

scaled density Ã̃D
M̃
r̃D=

Ẽ
r̃D ÃD = Ã̃D · Ã̄D,P

scaled length x̃ LP x = x̃ · LP

Planck charge qP MP

:
G4Ã·0 11,71 e

Table 7.4: Planck - units.

In the following sections, we analyze the smallest possible
physical objects in space and time. We call these objects the
elements of spacetime, EST.

7.5 Definition of Planck scale quantities

Planck Planck (1899) introduced the Planck units. These can
be based on three universal constants of nature. These basic
universal constants, the gravitational constant G, the velocity
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of light c and the Planck constant h, can be defined as follows
Tanabashi et al. (2018):

G = 6.674 08(31) · 10211 m3

kg · s2 (7.1)

c = 299 792 458
m

s
(7.2)

h = 6.626 070 15 · 10234 Js (7.3)

Based on the Planck constant h, the reduced Planck constant ~
is defined as shown next:

~ =
h

2Ã
(7.4)

Two basic Planck units are the Planck length and the Planck
mass Tanabashi et al. (2018):

The Planck length is defined as follows:

LP =

√

~G

c3
(7.5)

The Planck mass is defined as shown below:

MP =

√

~c

G
(7.6)

Using the two basic Planck units, further Planck units are
derived according to the corresponding definitions of the respec-
tive physical quantities, see below.

The Planck volume is defined as shown next:

VP = L3
P (7.7)

The Planck energy is defined as presented here:

EP =MP · c2 (7.8)

The Planck density is defined via the next formula:

ÃP =
MP

L3
P

(7.9)
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The Planck time is defined as follows:

tP = LP/c (7.10)

As a notation, we mark scaled physical quantities by a tilde,
see table (7.4).

7.6 Horizons of observation

In this section, we analyze the limits of observation.

We define a physical object as an object that can be observed.
We regard an event as something that can be observed and that
takes place at an observable spacetime.

As a proposition, Newtonian gravity Newton (1686) implies that
a physical object with a mass m has a smallest observable ra-
dius. That radius is called Schwarzschild radius, whereby the
following relation holds:

RS =
2G ·m
c2

(7.11)

This result has been discovered by Michell Michell (1784) and
Laplace Laplace (1796).

The Schwarzschild radius RS can be interpreted as the event
horizon of a black hole with a mass m.

As a proposition, quantum physics implies that a physical ob-
ject with a momentum px that exhibits an uncertainty ∆px has
a smallest observable uncertainty ∆x. Hereby the Heisenberg
uncertainty relation holds:

∆px ·∆x g ~

2
(7.12)

Heisenberg Heisenberg (1927) was essentially involved in the
discovery of this result, see e. g. Ballentine (1998).

A physical object obeys both above limits of observation that
are represented in equations (7.11) and (7.12). The combination
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of these two limits has been visualized in a diagram showing the
uncertainty ∆x as a function of the energy E, see figure (7.1).
The objects that can be observed according to the Schwarzschild
radius (equation 7.11) are above the straight line and marked by
a horizontally hatched area. The objects that can be observed
according to the uncertainty relation (equation 7.12) are above
the hyperbola and marked by a vertically hatched area. The
objects that can be observed correspond to the intersection of
the horizontally hatched area and the vertically hatched area
and are marked by the cross hatch area. That cross hatched area
exhibits a point with smallest length (marked by a filled circle).
That point is the intersection of the straight line (equation 7.11)
and the hyperbola (equation 7.12). The corresponding length
can be derived, and the result is as follows: As a proposition, see
e. g. (Carmesin, 2021a, proposition 4), the smallest observable
uncertainty of a physical object is the Planck length LP , and
the corresponding energy is one half of the Planck energy EP/2.

∆x g LP (7.13)

E(LP ) = EP/2 =: ĒP (7.14)

M(LP ) =MP/2 =: M̄P (7.15)

Hereby, we defined the corrected Planck energy ĒP by EP/2 as
well as the corrected Planck mass M̄P by MP/2.

As a further proposition, see e. g. (Carmesin, 2021a, propo-
sition 5), the largest possible density is equal to the corrected
Planck mass divided by the volume of a ball with the radius
LP :

Ã f 1

2
· 3

4Ã
· ÃP =: ¯̄ÃP (7.16)

Hereby, we defined the corrected Planck density ¯̄ÃP by 3ÃP/(8Ã).

As an additional proposition, there is a minimal observable
length x̃min as a function of the energy E = px · c corresponding
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0 0.5 1 1.5 2

0
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3
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L̃P
1
2ẼP

Ẽ

∆
x̃

Figure 7.1: Shortest observable uncertainty (dot): Observable states out-
side the event horizon of a possible black hole (horizontally hatched area).
Sufficient uncertainty according to the Heisenberg uncertainty relation (ver-
tically hatched area). Observable objects (including sufficient uncertainty)
are marked by the cross hatched area.

to the momentum px as follows:

x̃min(Ẽ) =

{

1
2Ẽ

for Ẽ f 1/2

2 · Ẽ otherwise
(7.17)

For an illustration see figure (7.1).

7.7 Glossary

Abbreviation: S. (section), C. (chapter), DEF. (def-
inition), PROP. (proposition), THM. (theorem),
Eq. (equation).

Big Bang: Start of time evolution of visible space

CMB, Cosmic Microwave Background: Radia-
tion emitted at z j 1090. (Tab. 7.3)

cosmological constant: Λ corresponds to the dark
energy with its density ÃΛ (Tab. 7.3).
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curvature parameter: the curvature parameter k
describes the global curvature of space, see e. g.
Carmesin (2021d)

dark energy: Energy of the cosmological density of
the vacuum ÃΛ (Tab. 7.3).

density, critical: Ãcr,t0 or Ãcr (Tab. 7.3 or e. g.
Carmesin (2021d))

density parameter: Ωj = Ãj/Ãcr,t0 (Tab. 7.3)

density, vacuum: ÃΛ = ΩΛ · Ãcr,t0 (Tab. 7.3)
dynamical mass: M = E

c2

frame: Each observation apparatus is localized in
spacetime. That localization establishes a frame.

gravitational field: G7 (C. 3)

horizon: Global limit of visibility (C. 4)

Hubble - parameter: H = ȧ
a (C. 3)

Hubble - constant: H0 = H(t0) Hubble parameter
at t0 (C. 3)

light horizon: Rlh = 4.142 · 1026 m (Tab. 7.3)

rate gravity four-vector, RGV: C. (3)

rate gravity scalar, RGS: C. (3)

RGW, rate gravity wave: Carmesin (2021d) or C.
(3)

rate of the formation of vacuum: (S. 3)

Schwarzschild radius RS: At this radius the escape
velocity is equal to c

spacetime: Combination of space and time (C. 3

vacuum: The vacuum has a volume, a density and
the velocity c. (C. 4 or Carmesin (2021d))
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7.8 SR fully based on a thought experiment

To each star in Fig. (1.3), we add an orbiting satellite with a
radio transmitter emitting radio waves. The corresponding fre-
quency is f1, for the 1

st transmitter, and f2, for the 2
nd transmit-

ter. In the region Rbinary2Earth between the binary and Earth,
the frequencies are modified according to the Doppler effect, so
that f1 becomes f 21, and f2 becomes f 22.

These transmitters are controlled so that in Rbinary2Earth, the
waves have the same frequencies f 21 = f 22, phases and directions
(of polarization and of propagation). That is possible, as f1 and
f2 can be chosen small compared to the frequencies of electronics
and since radio waves can be described by classical waves.

Altogether, in Rbinary2Earth, the two waves have the same
frequencies, phases and directions. Hence the two waves form
common fields ~E and ~B in Rbinary2Earth. Thence the two waves
or the common wave have the same velocity of propagation in
Rbinary2Earth. We call this fact the principle of free propa-
gation, PFP: If two waves propagate in a homogeneous
region and have the same physical quantity constitut-
ing the amplitude, the same frequencies, phases and di-
rections (of polarization and propagation), then these
waves exhibit the same velocity of propagation. So the
velocity of the radio waves is invariant, irrespective of the mo-
tion of the radio transmitters. Thus c is invariant. This implies
SR, see e. g. Carmesin (2020b). Indeed, thought experiments
provide the PFF, PFP and GG.
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Berlin.

Carmesin, H.-O. (2019a). A Novel Equivalence Principle for
Quantum Gravity. PhyDid B - Didaktik der Physik - Beiträge
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Carmesin, H.-O. (2021b). Lernende erkunden die Raumzeit.
Der Mathematik Unterricht, 2.:47–56.

Carmesin, H.-O. (2021c). Physical Explanation of the H0-
Tension. International Journal of Engineering and Science
Invention, 10(8,II):34–38.

Carmesin, H.-O. (2021d). Quanta of Spacetime Explain Obser-
vations, Dark Energy, Graviton and Nonlocality. In Carmesin,
H.-O., editor, Universe: Unified from Microcosm to Macro-
cosm - Volume 4. Verlag Dr. Köster, Berlin.
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W., and Witte, L. (2020). Universum Physik Sekundarstufe II
Niedersachsen Qualifikationsphase. Cornelsen Verlag, Berlin.

Carmesin, H.-O., Emse, A., Piehler, M., Pröhl, I. K., Salzmann,
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