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Figure 1: Time evolution of light horizon rlh(t) as a function of
the time in Planck times tP = 5.391 · 10244 s: Discontinuous
dimensional phase transitions ranging from the highest possible
dimension of the visible space Dhorizon = 301 to D = 3 (+) (see
Carmesin (2017), Carmesin (2018a),Carmesin (2019b)). Con-
tinuous so-called expansion of space in D = 3, ranging until
today, t0 (solid line).

0.1 Introduction

Great concepts:

Physical theories are based on two basic concepts: First, Planck
(1900) discovered the quantization of physical objects, in-
troduced quantum theory, QT, including zero-point os-

cillations, ZPOs, and the corresponding zero-point energy,

ZPE (Planck (1911)). Secondly, Einstein (1905) applied the in-
variance of the velocity of light c in order to derive the special
relativity theory, SRT. Moreover, Einstein (1915a) discov-
ered the curvature of spacetime, leading to his proposal of
the general relativity theory, GRT, including a theory for
gravity.

Great questions:

Einstein et al. (1935) realized that in QT measurable correla-
tions form at much higher velocities than the velocity of light c,
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in this sense QT is nonlocal. However, GRT is based on phys-
ical objects that propagate at velocities up to c. Consequently
Einstein et al. (1935) presumed that GRT would be local and
compared to that, QT would be paradoxical. This argument is
called the EPR paradox.

Another set of questions arises from the expansion of space:
Perlmutter et al. (1998) and Riess et al. (2000) discovered a
density of the vacuum Ãv, the so-called dark energy. What is
its nature?

Based on the GRT, the expansion of space should be charac-
terized by two constants: the Hubble constant H0 and the am-
plitude of matter fluctuations Ã8. However, Riess et al. (2019)
and Tröster et al. (2020) showed that observers using probes
at the early universe obtain a significant discrepancy of H0

and Ã8 values to corresponding values based on probes at the
late universe.

Based on the GRT, the space enclosed in the light horizon
rlh should expand continuously as shown in the right part of
Fig. (1). However, Guth (1981) discovered that there was a
rapid enlargement in the early universe, see left part in Fig.
(1). How does this emerge?

Interesting hypotheses:

Blokhintsev and Galperin (1934) proposed to improve the GRT
by an elementary particle that transfers the gravitational in-
teraction, the so-called hypothetical graviton. However, that
particle has not yet been found.

Nanopoulos et al. (1983) suggested that another elementary
particle or field, the so-called hypothetical ’inflaton’, should
cause a very rapid increase of the volume in the early universe.
This ’inflaton’ has neither been found (Tanabashi et al. (2018)),
nor does it obey the law of energy conservation. This causes
the so-called reheating problem.

Concerning the energy, Tryon (1973) proposed that the uni-
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Figure 2: 216 magnetic balls model local objects or observable
regions at high density and illustrate the relation between the
distance and the dimension D: If the dimension increases from
two (right) to three (left), then the largest distance decreases.
More generally and conversely, a decrease of the dimension D
implies an increase of the largest distance.

verse had zero energy at the beginning, the so-called zero en-

ergy hypothesis.

Novel results derived in this book:

We analyze the time evolution of the volume or vacuum based
on the GRT, and we discover that also GRT is nonlocal.
This provides a first solution to the EPR paradox: Nature

is nonlocal.

We derive fields, waves and quanta of spacetime in a
Lorentz invariant manner. Thereby we analyze quadrupolar
symmetry and spin 2 as well as the full dynamics of propaga-
tion and formation. As a result we explain the dark energy

in four progressively more advanced theories. We ap-
ply these quanta to the measurement of H0 and Ã8 based on
probes at various times of the evolution of the universe. Hereby
we achieve a very precise accordance with observations.
So we explain the significant discrepancy of H0 and Ã8
values.

Using a combination of GRT and QT, we find the sponta-
neous formation of shortcuts in space whenever the density is
above a critical density Ã̃cr.conn.. Using a shortcut, an object
can propagate at velocities up to c, but arrive at a distant point
as if the velocity were above c. This provides a second solution
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to the EPR paradox: Nature can appear nonlocal but use

shortcuts locally.
The spontaneous formation of many shortcuts can be inter-

preted by a dimensional phase transition. Note that such di-
mensions have been found experimentally (Lohse et al. (2018),
Zilberberg et al. (2018)). We analyze such phase transitions by
using a mean field theory and by using a quantum gas. In all
cases we confirm these transitions. These represent a dimen-
sional rearrangement of quanta of vacuum analogously to the
magnet balls in Fig. (2). That Fig shows that there occurs a
rapid enlargement of distances at such a transition. This fully
explains the rapid enlargement occurring in the early universe
(Fig. 1). So we are not surprised that the hypothetical ’inflaton’
has not been found.

We analyze the time evolution of the energy and discover that
visible space can be traced back to the energy of a primordial
quantum of spacetime. Thereby the zero energy hypothesis is
explained and confirmed by the quanta of spacetime. Moreover,
the quanta of spacetime include space, time and gravity in a
coherent manner, so the hypothetical graviton is included in
these quanta and so the corresponding hypothesis is confirmed.

I emphasize that the derived theory of the quanta of space-
time provides a precise accordance to observations. Thereby
the only numerical input are the four universal constants c, G,
kB and h. In particular, I used no fit parameters. This provides
a strong additional evidence for the derived results.

In this book we derive the results in a direct and smooth
manner. In a glossary you can immediately find contextual
information, if desired. We summarize our results concisely
in 15 propositions and 34 theorems. So you can easily apply
our findings according to your individual interests, activities,
questions or purposes.



Chapter 1

Volume and Fields

In this chapter we investigate the dynamics of the volume that
can be derived from the well known general relativity theory,

GRT (Einstein (1905) or Carmesin (1996), Straumann (2013),
Moore (2013)).

1.1 Problems of spacetime

Einstein (1905) introduced the concept of spacetime, including
curved spacetime (Einstein (1915a)). There remain essential
questions: For instance, Planck (1900) introduced the concept
of quantization. Inherent to it is the phenomenon of non-
locality, which was suggested to be apparently paradoxical to
spacetime (Einstein et al. (1935)). In this section we address
the following seven questions. Thereby we apply the concept of
the volume1 outlined in the following section.

1. What is a useful frame for the homogeneous universe?

2. Can we describe the Schwarzschild solution, SSM, with
help of an energy function?

3. Can we describe the curvature of the SSM by a locally

formed volume or vacuum, LFV?

1The vacuum has a volume and a density (Perlmutter et al. (1998), Riess et al. (2000)),
and it propagates with the velocity of light, as it is fully relativistic.

5
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4. Can we describe the expanding universe2 in terms of a
complete formed vacuum, CFV?

5. How large is the difference of the CFV and the LFV, the
nonlocally formed vacuum, NFV?

6. Is the GRT nonlocal?

7. Is the nonlocality of GRT a first solution of the EPR para-

dox (Einstein et al. (1935) or (Ballentine, 1998, p. 585-
609))?

1.2 New concept: dynamics of vacuum

We solve the above problems by the application of a new con-
cept: We analyze the full dynamics of the vacuum3. Thereby we
discover the local and nonlocal formation of vacuum, waves and
quanta of vacuum. For it we analyze and extend the concepts
of spacetime and quantization. In the next section, we analyze
why the concept of the volume is fundamental to concepts such
as fields or GRT.

1.3 Principle of linear superposition

In this section we summarize and analyze essential physical
quantities that can be added linearly.

1.3.1 Volume

Definition 1 The principle of linear superposition of the

volumes: If a volume ∆V consists of two volumes ∆V1 and
∆V2, then ∆V is the sum of ∆V1 and ∆V2.

∆V = ∆V1 +∆V2 (1.1)
2The corresponding geometry is the uniform scaling, and the respective DEQ is the

FLE (Friedmann (1922), Lemaitre (1927)).
3The vacuum has a volume and a density (Perlmutter et al. (1998), Riess et al. (2000)),

and it propagates with the velocity of light, as it is fully relativistic.
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m

G7 field line

Figure 1.1: Mass m with field lines (dotted) and vectors (solid)
of the gravitational field G7.

Proposition 1 Necessity of linear superposition of vol-

umes: The principle of linear superposition of volumes in a
frame is necessary for the following concepts:

(1) The density ÃE of a physical quantity E that can be dis-
tributed to two volumes ∆V1 and ∆V2.

(2) The theory of general relativity.

Proof: (1) We apply the principle of linear superposition of
volumes to a quantity E and its density ÃE:

∆E = ÃE ·∆V = ÃE · (∆V1 +∆V2) (1.2)

We expand:

∆E = ÃE ·∆V1 + ÃE ·∆V2 = ∆E1 +∆E2 (1.3)

If the principle of linear superposition of volumes would not
hold, then the concept of the distribution of the quantity ∆E
to the two volumes4 ∆V1 and ∆V2 would not be applicable.

4For instance, if a room with a volume ∆V = 60m3 is divided into two rooms with
equal volumes, then each of these rooms has the volume ∆V1 = 30m3 and ∆V2 = 30m3.
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(2) The theory of general relativity essentially applies the
concept of the energy density. For instance, that density is an
element of the energy momentum tensor (Landau and Lifschitz
(1981)). Additionally, the cosmological constant Λ character-
izes an energy per volume (Einstein (1917)) and it corresponds
to the dark energy, an energy per volume that was discovered5

by Perlmutter et al. (1998) and Riess et al. (2000).
Altogether, the volume is a deep concept underlying also the

GRT, for instance. In this book we analyze the formation of
volumes that is inherent to the GRT. In particular, we will use
that analysis of volumes in order to discover the time evolution,
the dynamics, the waves, the quantization and the essential
principles of the formation of volumes, vacuum and gravity in
nature.

1.3.2 Fields, tensors, waves and quanta

The concept of fields includes the principle of linear superposi-
tion (Faraday (1852), Maxwell (1865)).

The concept of the tensor includes linear superposition. For
instance strain tensors can be added linearly.

Also the concepts of a wave function in quantum theory and
of a relatively small elongation of a wave fulfill linear superpo-
sition. Moreover, numbers of quanta are added linearly.

In this book we apply these concepts of linear superposition,
as they have been tested empirically many times.

As gravity is essential for spacetime, we analyze properties
of the universal law of gravitation in the next section.

1.4 1/r2 law of fundamental fields

Newton (1686) proposed the universal law of gravitation:
Two masses at a distance r interact by a force F proportional

5During the time between the proposal in 1917 and the discovery in 1998, there have
been various opinions about Λ, see for instance (Zeldovich (1968)).
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r

m1 m2F F

Figure 1.2: Universal law of gravitation.

to 1/r2 (1.2):

|~F | = G ·m1 ·m2

r2
(1.4)

Similarly, Coulomb (1785) discovered the same 1/r2 law for the
case of electric forces. However, it remained unclear, how these
forces can act at a distance.

As an explanation, Faraday (1852) proposed that field lines

of a gravitational field emerge from each mass m and dis-
tribute in the vicinity of that mass as illustrated in Fig. (1.1).
Moreover, vectors G7 of the gravitational field emerge in the
vicinity of that mass, these are parallel to the field lines. The
force acting on a probing mass m is the product of the field G7

and m. So the field of a mass m at a distance r is:

| ~G7| = G ·m
r2

(1.5)

Hereby G denotes the gravitational constant (Sect. 9.1).

Geometric basis of the 1/r2-law: According to the symmetry,
the field lines distribute regularly in space. So they propagate
radially from m with the direction equal to the inward direction
of the force (Fig. 1.1). Hence the number N of lines crossing a
sphere around m and with a radius r is invariant, in particular,
it does not depend on r (Fig. 1.3). As the surface of the sphere
is A = 4Ã · r2, the density N/A exhibits an 1/r2 law:

N

A
=

N

4Ã · r2 (1.6)

Since the lines emerge from the mass m, it is plausible that N
is proportional to m. As the vectors ~G7 are parallel to the field
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m

r1

r2

field line

Figure 1.3: Mass m with field lines (dotted) and concentric
spheres at radii r1 and r2. The number N of field lines crossing
a concentric sphere with radius r is invariant.

lines, it makes sense that these are proportional to N/A:

N

A
? |~G7| ? m

r2
(1.7)

This establishes a geometric basis for the 1/r2 law of gravity
and of other fundamental interactions.

The gravitational forces cannot be screened, and they de-
crease proportional to 1

r2 , while the volume increases propor-
tional to r2. Hence the gravitational forces exhibit a global

range of influence that cannot be screened. As a consequence,
for any local investigation we need a universal frame in which
that global range of influence is not present. Such a frame is
developed in the next section.

1.5 Homogeneous universe frame HUF

While in section (1.4) we investigated the field of a mass with-
out analyzing the surroundings, we consider the surroundings



1.5. HOMOGENEOUS UNIVERSE FRAME HUF 11

Ã

surroundings

empty

Figure 1.4: Empty ball embedded in a homogeneous surrounding:
It establishes the homogeneous universe frame, HUF.

in this section. In particular, we analyze the field in an empty
ball, embedded in surroundings with a homogeneous density, a
homogeneous fluid (Fig. 1.4, Carmesin (2020b)). We em-
phasize that there is not even vacuum in this ball, so it is a
purely mathematical model, as physical space is constituted by
vacuum. So the empty ball is a tool6 used for the analysis of
the vacuum.

Newton (1686) showed that there is no field in such a sphere.
For the case of the GRT, Birkhoff (1921) derived that there is
no field in that sphere.

Even if the gravitational interaction propagates at the finite
velocity of light, then the fields are limited by the light horizon,
and each point of the sphere has its own light horizon. How-
ever, all these horizons are equivalent, as a result of translation
invariance. So each point experiences the same gravitational
field. Since the system is isotropic, that field is zero. Alto-
gether, in the ball of vacuum, the field ~G7 is zero. We introduce
a corresponding frame:

6In GRT, results are often derived by using an appropriate frame (see for instance
Straumann (2013), Stephani (1980), Moore (2013)).
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Definition 2 Homogeneous universe frame, HUF:

(1) If an empty ball is embedded in homogeneous surroundings
ranging from the ball to the light horizon, and if that ball is not
accelerated, then the frame with the origin at the center of the
ball is called homogeneous universe frame (Fig. 1.4).

(2) A vacuum HUF, HUFv is a HUF for which the surround-
ings have the following property: The density parameters of ra-
diation Ωr and of the matter Ωm (table 9.2) tend to zero. So the
surroundings of a HUFv consist of vacuum, up to an infinitesi-
mal amount of radiation and matter, while ΩK j 0 (table 9.2).

The field ~G7 is zero in the HUF. More realistically, the den-
sity of the surroundings exhibit fluctuations. These are ana-
lyzed in quantitative detail in section (8.3). As a result, the
average of the field 〈 ~G7〉 is zero in the HUF, and the variance
(∆ ~G7)2 is nonzero. However, the variance (∆ ~G7)2 is a function
of the radius R of the HUF, and that function decreases accord-
ing to a power law: (∆ ~G7)2 ? R522D for each dimension D g 3.
The field variance (∆ ~G7)2 is particularly small for the case of a
vacuum HUF. We summarize our findings:

Proposition 2 The HUF has the following properties.

The gravitational field is zero in the empty ball of the HUF.

A single object that might be added in the HUF does not expe-
rience any force or acceleration.

If there are fluctuations of the density in the surroundings, then
the average of the field 〈 ~G7〉 is zero in the HUF, and the variance
of the field (∆ ~G7)2 tends to zero as the radius R of the HUF
tends to infinity.

In the vacuum HUF, the variance of the field (∆ ~G7)2 is partic-
ularly small.
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Corollary 1 (1) The gravitational field in the HUF does not
depend on the density of the surroundings. In particular, that
density can be zero, corresponding to empty space.

(2) The potential of the HUF can be nonzero.

In order to prepare the analysis of systems in the HUF, we
summarize essential principles in the next section.

1.6 Equivalence principle and relativity

Above we saw that the field G7 emerges at a mass and spreads
in space regularly. However, the field G7 cannot easily be dis-
tinguished from acceleration, moreover, space and time are con-
nected to a spacetime as a consequence of the invariance of the
velocity of light. We summarize these facts in this section.

Galileo (1638) discovered: If a mass m generates a gravita-
tional field G7 (Eq. 1.5), and if a freely falling probing mass m
experiences the corresponding force F = m·G7, thenm exhibits
an acceleration a that is equal to the field G7:

~G7 = ~a³ Galileo’s EP (1.8)

This is Galileo’s equivalence principle, EP. Einstein confirmed
this principle and added, that an observer in a small box cannot
distinguish the acceleration a from the gravitational field G7 on
the basis of local observations.

~G7 locally indistinguishable from ~a³ Einstein’s EP, EEP

(1.9)
Michelson and Morley (1887) discovered that the velocity of

light c is an invariant. On that basis, Einstein (1905) introduced
the special relativity theory, SRT, in order to describe ob-
jects with high velocity in various inertial frames, these are
frames that are not accelerated. As a particular consequence,
space and time are no longer invariant, instead they form a four
dimensional spacetime.
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For instance, if two events occur within an object resting in
its own inertial frame, then the time interval ∆t beginning at
the first event and ending at the second event depends on the
inertial frame measuring ∆t. The shortest ∆t is measured in
the own frame of the object, while the corresponding intervals
are longer in external frames moving at a velocity v relative to
the object:

∆town f ∆texternal = ∆town · ³ with ³ =
1

12 v2/c2
(1.10)

Thereby ³ is called Lorentz factor, and v is the corresponding
velocity.

Now we are well prepared to investigate the Schwarzschild

metric, SSM by using the concepts of the HUF and the volume
in the next three sections.

1.7 Schwarzschild metric, SSM: curvature

While the SRT describes objects that are not accelerated, Ein-
stein (1915a) developed the general relativity theory, GRT,
in order to describe accelerated objects and gravity. In the
GRT, the spacetime may exhibit a continuous curvature. Us-
ing the GRT, Einstein (1915b) explained the precession of the
perihelion of mercury. Additionally, Dyson et al. (1920) discov-
ered the curvature of spacetime optically.

By applying the GRT, Schwarzschild (1916) derived the cur-
vature of spacetime in the vicinity of a mass. That curvature of
spacetime is usually described by the so-called Schwarzschild

metric, SSM.

1.7.1 Novel results about the SSM

In the next two sections, we do not at all change the SSM, but
we derive essential novel results about the SSM: In section (1.8),
we apply the HUF or the HUFv in order to derive an energy
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function and a position factor. Hereby the position factor is the
analogue of the Lorentz factor of SRT, and so it provides a very
useful structure of the SSM that is an important basis of the
following chapters.

In section (1.9), we derive the formation of additional volume
that is inherent to the SSM. With it we derive in full detail the
essential relation between local phenomena and global phenom-
ena that are described by the GRT (see the following chapters).

1.8 SSM: gravitational field

In this section, we derive the SSM on the basis of the gravita-
tional field G7, the EEP and the SRT.

1.8.1 Field in curved spacetime

In this section, we derive the field7 in the vicinity of a mass M .
There is no gravity in the horizontal direction, by definition.
Therefore there is no spatial elongation in this direction. Thus
a circle with a radius r and with its center at a field-generating
mass M at the radial coordinate r = 0 has the following
circumference U :

U = 2Ã · r (1.11)

Likewise, a sphere with the center at r = 0 and with the radial
coordinate r has the following surface A:

A = 4Ã · r2 (1.12)

With it we derive G7 (Sect. 1.4):

G7(r) = 2G ·M
r2

(1.13)

7Usually, we emphasize a field generating mass by a large letter M . Of course, all
masses are in principle equal in physics. The distinction between a field generating mass
and a probing mass is just a method of the analysis. It can easily be avoided by considering
both masses as field generating masses and probing masses simultaneously. The above
distinction may be appropriate, when one mass is relatively large compared to the other.
Whenever a high accuracy is essential, then this distinction is not appropriate, of course.
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³

r

fixed

measurements:

bdÇ1³2

dÇ2³3

evaluation:

r = b
³

for j = 1 and j = 2:

drj³j+1 = rj+1 2 rj

vj³j+1 =
drj³j+1

dÇj³j+1

dv = v2³3 2 v1³2

dÇ = dÇ1³2

2 + dÇ2³3

2

a = dv
dÇ = G7

M = 2G7·r2
G

M

³

Figure 1.5: A local observer localized at an object at r measures:
Two hand leads provide the angle ³ and the arc length b. A
falling ball yields time intervals in the observer’s frame dÇj³j+1.
Therefrom r, v, a, G7 and M are evaluated.

1.8.2 Local measurements in curved spacetime

In this section, we derive physical quantities that can be mea-
sured locally in the vicinity of a mass M . An object at a co-
ordinate r can be investigated in the object’s own frame: In
particular, a local observer localized at the object can measure
the radius r, the ’object’s own time’ dÇ , the velocity v = dr

dÇ

relative to the mass M , the acceleration a = dv
dÇ and the mass

M as elaborated in Fig. (1.5). We summarize our results:

v =
dr

dÇ
and a =

dv

dÇ
can be measured locally in GRT (1.14)

Definition 3 Field generating mass frame, FMF:

If a mass M (Fig. 1.5) is in a HUF, then there is a frame
with M at its origin and with a radial coordinate r. We call it
the field generating mass frame, FMF.
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r

v

ç

ç

çE(dr, dv)

drderivative "E
"r
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"r · dr

"E
"v · dv

Figure 1.6: Change dE of E(r, v) ( ç): The two slope triangles
result in the changes "E

"v · dv and "E
"r · dr. The total change

dE = E(r+dr, v+dv)2E(r, v) is the sum dE = "E
"v ·dv+ "E

"r ·dr.

Proposition 3 Local observer:

If a mass M and a local observer at a fixed distance r relative
to M (Fig. 1.5) are in a HUF, then the following holds:

(1) The situation can be analyzed in the FMF.

(2) M generates a radial gravitational field with | ~G7| = GM
r2 .

(3) The local observer at r (Fig. 1.5) can locally observe the
body’s radial velocity v(r) = "r

"Ç and its radial coordinate r of
the FMF.

1.8.3 Freely falling mass m

In this section we derive the energy function E(r, v) of a mass
m that is falling in the field of a mass M , and that starts at
r ³ > and v = 0. Thereby, the velocity v and the radius
r are measured relative to the mass M , and the own mass or
rest mass is denoted by m0. Solutions with more general initial
conditions are elaborated in (Carmesin (2020b)).

For it we apply the principle of energy conservation

(Mayer (1842)). In particular, we apply the relativistic en-
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ergy derived in SRT (Einstein (1905) or Carmesin (2020b)):

E(v) = m0 · c2 · ³(v) in SRT and with ³(v) =
1

√

12 v2/c2

(1.15)
As m is falling, the velocity v increases and r decreases.

Hence the energy would increase by the factor ³(v) according
to Eq. (1.15). Correspondingly, the energy decreases by a po-

sition factor ë(r) = 1/³(v), so that the energy is conserved.
So we get:

E = m0 · c2 · ³(v) · ë(r) with ³(v) = 1/ë(r) (1.16)

The functional term of ë(r) must be determined. We consider
the change dE of the energy, which obviously depends on r and
v (Fig. 1.6). Accordingly we get:

dE =
"E

"r
dr +

"E

"v
dv (1.17)

From this equation we obtain a differential equation, DEQ,
for ë(r). According to the principle of energy conservation, dE
is zero. The derivative regarding v is "E

"v = E · ³2 · v/c2, while
the derivative regarding r is "E

"r = E · ë2/ë with ë2 = dë
dr . So we

get:

0 = E · ë
2

ë
· dr + E · ³2 · v

c2
· dv (1.18)

We divide by E and dÇ and use v = dr
dÇ and a = dv

dÇ (Eq. 1.14
and Fig. (1.5). We also resolve for ë2. Therefore we obtain:

ë2 = 2ë · ³
2

c2
· a (1.19)

We use ³(v) = 1/ë(r) (Eq. 1.16). We utilize the equivalence
principle of the GRT a = 2G7 = 2G·M

r2 (Eq. 1.13, here a is
directed downwards, see Fig. 1.5), too. So we derive:

ë2 =
1

ë · c2 ·
G ·M
r2

(1.20)
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We use the well known term RS = 2G·M
c2 for the Schwarzschild

radius. So we get the following DEQ for ë(r):

ë2 =
1

ë
· RS

2r2
(1.21)

Solution of the DEQ for ë: For the case of a constant mass M ,
we solve the DEQ for ë with the following Ansatz:

ë(r) =

√

12 RS

r
(1.22)

The derivative corresponds to the DEQ (1.21). So Eq. (1.22)
is a solution. We use the two factors ë(r) and ³(v) in Eqs.
(1.16, 1.22, 1.15)). So we get a term for the invariant energy
depending on r and v:

E(r, v) = m0 · c2 ·

√

12 RS

r
√

12 v2/c2
(1.23)

This term generally represents the functional dependence of the
energy on r and v. Landau and Lifschitz (1981) obtain the same
result (page 299), this confirms our derivation. We summarize:

Proposition 4 Energy in the FMF: If a field generating

mass M is in a HUF, then an own mass m0 has the following
properties:

(1) The mass m0 can be analyzed in the FMF.

(2) In the FMF, M generates a radial gravitational field with
the value G7 = | ~G7| = GM

r2 .

(3) A local observer at r can locally observe the body’s radial
velocity v(r) = "r

"Ç and its radial coordinate r of the FMF (see
proposition 3 and Fig. 1.5).
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· 1
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h
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T (r)

Figure 1.7: Photon propagating down towards a mass M : Mea-
sured energy Emeasure in the HUFand LUF.

Ã

surroundings

HUF
M
h

Figure 1.8: A field generating mass frame, FMF, is embed-
ded in a HUF. The height h characterizes the field. A photon
is falling down, thereby its wavelength decreases.

(4) If the probing mass falls freely in the field ofM , and if v = 0
at r ³ >, then the energy function E(r, v) of m0 is described
by Eq. (1.23):

E(r, v) = m0 · c2 ·

√

12 RS

r
√

12 v2/c2
(1.24)

(5) In particular, that energy function E(r, v) of m0 represents
an invariant of the motion in the FMF.
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1.8.4 Metric

In this section we derive the Schwarzschild metric on the basis
of the above derived energy function in Eq. (1.23).

Blue shift: For it we consider a photon that is placed in aHUF ,
and that starts at r ³ >, and that has a corresponding periodic
time T> (see left rectangle in Fig. 1.7), and that falls vertically
towards a field-generating mass M at r = 0. Thus the energy
of the photon is:

EHUF (r ³ >) =
h

T>
(1.25)

The field generating massM generates the field G7. The energy
in the field is described by the position factor ë(r).

For instance, if the position r of the photon decreases, then
its energy decreases by that position factor ë(r) and is simulta-
neously multiplied by the inverse factor 1

ë(r) , so that the energy
remains invariant.

If the photon is observed in a local frame at the radius r,
then the observer has the same position factor as the photon,
and so the measurement apparatus only takes care of the inverse
position factor 1

ë(r) by measuring the energy h
T>

· 1
ë(r) of the photon

in the local frame. As a consequence, the photon appears to
have the short periodic time:

T (r) = T> · ë(r) (1.26)

This corresponds to a blue shift (see central rectangle in Fig.
1.7), and the energy of the photon in the local frame is as fol-
lows:

Eblue shift =
h

T (r)
=

h

T> · ë(r) =
EHUF (r ³ >)

ë(r)
(1.27)

Many observations are carried out in such a local frame (see
central rectangle in Fig. 1.7).
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Definition 4 Local universe frame, LUF: A frame that is
accelerated or that experiences a field or a curvature of space-
time or that is falling freely is called local universe frame,

LUF.

For instance, a LUF may be embedded in a HUF, and it may
contain a field generating mass, or it may be falling freely.

In general, the energy in such a local frame is obtained from
the corresponding energy in the HUF by multiplication with
the inverse position factor, 1

ë(r) .

ELUF =
EHUF (r ³ >)

ë(r)
for description via ë(r) (1.28)

Alternatively, the local frame can be described by a potential
energy Epot(r) instead of a position factor ë(r). In that case, the
energy in the LUF is obtained from the corresponding energy
in the HUF by subtracting the potential energy Epot(r):

ELUF = EHUF (r ³ >)2 Epot(r) descr. via Epot (1.29)

Conversely, the energy in the HUF is obtained from the en-
ergy in the LUF by multiplication with the position factor, see
right rectangle in Fig. (1.7) and Eq. (1.28). In the case of a
description with a potential energy, the energy in the HUF is
obtained from the energy in the LUF by subtracting the poten-
tial energy, see Eq. (1.28).

Gravitational time dilation: The periodic time T (r) of photons
is used for time measurement, e.g. in atomic clocks (Bunde-
sanstalt (2007), Lombardi et al. (2007)). Accordingly, the peri-
odic time changes the time interval dt(r) by the same factor:

dt(r) = dt> · ë(r) in the LUF (1.30)

Altogether, the time elapses at a decreased rate near M . This
effect is called gravitational time dilation.
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Gravitational radial elongation: An observer in the HUF at r ³
> measures a radial length LLUF in a LUF at finite r. For it,
the observer sends a light signal to a mirror in a LUF, detects
the reflected signal, and measures the time of flight ttof,HUF

with a clock in the HUF. The observer evaluates the length (as
the light propagates the path twice, there is a factor 1/2):

LHUF = ttof,HUF · c · 1
2

(1.31)

We apply ttof,HUF = ttof,LUF/ë(r):

LHUF = ttof,LUF · c · 1
2
· 1

ë(r)
(1.32)

We identify ttof,LUF · c · 1
2 by LLUF :

LHUF = LLUF · 1

ë(r)
> LLUF (1.33)

Altogether, the radial length increases nearM . We identify this
effect as a gravitational radial elongation.

Metric tensor: For the purpose of possible comparisons with a
tensor formulation of GRT (see for instance Einstein (1915a),
Stephani (1980), Carmesin (1996), Moore (2013)), we express
the above results in terms of the metric tensor. A line element
ds in spacetime is expressed as follows:

ds2 = Σi=3,j=3
i=0,j=0 gij dxi · dxj (1.34)

For the case of a change dxj = c · dt> = dxi, we get:

dt(r)2 = |gtt| · dt2> or |gtt| = ë(r)2 = 12 RS

r
(1.35)

For the case of a change dxj = dr> = dxi, we get:

dR(r)2 = grr · dR2
> or grr =

1

ë(r)2
=

1

12 RS

r

(1.36)
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According to the isotropic field near M , the metric factors for
the angular polar coordinates are zero, as there is no gravity in
the horizontal direction:

g»» = 1 = gÇÇ (1.37)

For the same reason, all non-diagonal elements are zero.

gi,j = 0 for i 6= j (1.38)

According to a convention, the element gtt is supplemented by
a factor 21 (Straumann (2013), Stephani (1980), Carmesin
(1996)). We present the derived tensor elements by the vec-
tor notation in the following Eq. below. We summarize our
derivation:

Theorem 1 Direct derivation of the SSM from the EEP,

the gravitational field and the SRT: The Schwarzschild
metric, SSM, can be derived from the SRT as follows:

(1) The energy function E(r, v) in the field generating mass

frame, FMF is derived from the gravitational field, the EEP
and the SRT8:

E(r, v) = m0 · c2 ·
√

12RS/r
√

12 v2/c2
(1.39)

(2) The elements of the metric tensor gij are derived by analyz-
ing a photon in the local universe frame, LUF:

gi,j =

û

ü

ü

ü

ý

12 RS

r 0 0 0

0 1

12RS
r

0 0

0 0 1 0
0 0 0 1

þ

ÿ

ÿ

ÿ

ø

(1.40)

.

In the case of the SSM, both frames are equal, as the field of the
LUF is generated by the mass of the FMF.

8It will be derived later that physical states fulfill the relation R > RS .
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Figure 1.9: In the Schwarzschild metric, a length dR is elongated
by an additional length ·R, corresponding to an additional vol-
ume ·V .
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1.9 SSM: additional vacuum

The SSM describes the radial elongation of the lengths. As a
consequence, there is an additional volume of radial elon-

gation, ·VSSM see Fig. (1.9). In this section we analyze the
amount of that ·VSSM .

In the vicinity of a mass M , a radial coordinate distance dR
is increased by an additional coordinate distance ·R, see Fig.
(1.9). Here and in the following, we describe an infinitesimal
radius R by dR, and we describe it by ·R, for the case of an
additional or formed volume. Analogously, we name other in-
finitesimal quantities. That additional length corresponds to an
additional vacuum ·VSSM . It is analyzed in this section.

According to the SSM (see Schwarzschild (1916) or Carmesin
(2020b)), the coordinate distance dR at a coordinate R in Fig.
(1.9) is elongated to the following length dL:

dL =
dR

√

12RS/R
with RS =

2GM

c2
(1.41)

Thus the additional coordinate distance in Fig. (1.9) is:

·R = dL2 dR (1.42)

Hence the additional volume in Fig. (1.9) is:

·V = 4Ã ·R2 · ·R (1.43)

Linear approximation: For large distances, RS

R << 1, we expand
Eq. (1.41) linearly in RS

R . So we get:

dL=̇dR + dR · 1
2
· RS

R
or (1.44)

·RSSM=̇dR · 1
2
· RS

R
(1.45)
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Principle of equivalence of curvature and vacuum: In general, the
space in which we live exhibits a curvature and consists of vac-
uum (with a measurable density ÃΛ). Hence a possible increase
of the volume caused by the curvature should be equivalent to
additionally formed vacuum. We express that insight in terms
of a principle:

Definition 5 Principle of the equivalence of curvature

and vacuum:

If the curvature of spacetime at a point (t, ~R) corresponds to an
elongation ·R of a length dR = c · dt that is orthogonal to an
area dA, then the volume ·V = ·R · dA is filled with locally

formed vacuum, LFV that propagates through that volume
·V .

According to the above principle, the additional volume is:

·VSSM=̇2Ã ·R ·RS · dR = dV · 1
2
· RS

R
(1.46)

The additional vacuum is in the vicinity of the mass M . We
specify it in a definition:

Definition 6 Locally formed vacuum: The additional vac-
uum ·V that forms in the vicinity of a local source with a
mass or dynamical mass M is called locally formed vacuum,

LFV.

(1) Hereby the mass M is characterized by its Schwarzschild
radius:

RS =
2GM

c2
(1.47)

(2) If the mass M is a dynamical mass, then it is characterized
by that Schwarzschild radius, to which it would collapse. In
particular, if M is characterized by a radius R, then RS is as
follows:

RS =
2GM(RS)

c2
with M(R) =M(RS) ·

RS

R
(1.48)
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(3) In principle the LFV can flow inward or outward. In the
case of a Big Bang, the direction of the flow of the vacuum is
outwards. In the case of a conceivable Big Crunch (Goodstein
(1997)), the direction of the flow of the vacuum is reversed,
while the required volume and the caused elongations remain
the same. As our universe expands, we elaborate the outflow of
vacuum in this book.

We summarize our novel concept and result:

Theorem 2 Locally formed vacuum of the SSM: As a
consequence of the SSM, a mass M with a Schwarzschild radius
RS at the center of an empty sphere with radius R, generates
the locally formed vacuum, LFV, ·VSSM,LFV , in that sphere
during a time ·t as follows:

(1) The locally formed vacuum, LFV has the following amount:

·VSSM(M,R, dt)=̇2Ã ·R ·RS · dR = dV · 1
2
· RS

R
(1.49)

(2) In a shell with radius R and width dR = c · dt, the LFV
·VSSM,LFV that permanently flows outwards, can fill a shell with
the following radius:

·RSSM,LFV (M,R, dt)=̇dR · 1
2
· RS

R
(1.50)

While we analyzed the additional volume in the SSM in the
previous sections, we apply that concept to the expansion of
space according to the FLE in the next three sections. Thereby
we compare these volumes, of course.

1.10 Expansion of space

Einstein (1917) analyzed a possible expansion of the space.
Slipher (1915) discovered the redshift of distant galaxies, Wirtz
(1922) analyzed empirical evidence for the expansion of space,
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and Hubble (1929) obtained a convincing empirical basis for
that expansion of space.

That expansion of space since the Big Bang is usually de-
scribed by a uniform scaling. In this section we derive the
DEQ for the case of a homogeneous ball embedded in a HUF
(Fig. 1.10).

1.10.1 DEQ of uniform scaling: derivation

The surroundings do not generate a field ~G7 in the embedded
sphere (sect. 1.5). A homogeneous sphere with a mass M gen-
erates a field in its vicinity that is equal to the field generated
by the mass M in the center of the ball (Gauss (1840)). So the
Schwarzschild solution applies (Eq. 1.23), and thus the energy
of a probing mass with the condition (r|v) = (r|ṙ) = (>|0)
at some time is as follows (other conditions are analyzed in
Carmesin (2020b)):

E(r, v) = m0 · c2 · ³(v) · ë(r) = E0 or Eref (1.51)

Thereby the factors are:

³(v) =
1

√

12 v2/c2
; ë(r) =

√

12 RS

r
and m0 · c2 = E0

(1.52)
The Eq. (1.51) represents a DEQ, as it contains v, which in
turn represents a derivative. This DEQ describes the dynamics
of the probing mass. Next we transform this DEQ, in order to
obtain a transformed DEQ, still describing the dynamics of m
and r(t).

1.10.2 Structured energy function

In this section we derive a structured energy function. This
may be interpreted as a result of a mathematical transformation
of the DEQ, or it may be interpreted physically in addition:
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The structured energy function might be interpreted as a
normalized excess energy (Carmesin (2020b)) as follows:

In SRT, the difference of the square E2 of the energy and of
the square of the own energy m2

0 · c4 = E2
0 represents the square

of the kinetic energy p2 · c2. By construction, it represents the
square of the excess energy that the mass m has compared to
its own mass m0.

In GRT, that excess energy contains the kinetic energy and,
additionally, a gravitational energy in the field.

Correspondingly, we derive the excess energy in GRT as fol-
lows: We take the square of Eq. (1.51), and we subtract the
squared own energy m2

0c
4 (so we obtain the square of the gen-

eralized excess energy):

E(r, v)2 2m2
0c

4 = m2
0 · c4 · (ë(r)2 · ³(v)2 2 1) (1.53)

In the model of the uniform scaling, there is no essential
velocity of the objects in space. Correspondingly, we divide by
³2, in order to transform the energy to a frame in which the

velocity is zero (see Eq. 1.51):

E(r, v)2 2m2
0c

4

³2
= m2

0 · c4 · (ë(r)2 2 ³(v)22) (1.54)

In order to simplify, we insert the factors ë(r) and ³(v):

E(r, v)2 2m2
0c

4

³2
= m2

0c
4 ·
(

v2

c2
2 RS

r

)

(1.55)

Conventional form: In this paragraph, we derive a conventional
energy function with a conventional kinetic and potential energy
term. For it we divide by 2m0c

2. So we get:

E(r, v)2 2m2
0c

4

2³2m0c2
= m0 · c2 ·

(

v2

c2
2 RS

r

)

· 1
2

(1.56)
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Figure 1.10: Ball with mass M and radius r embedded in a ho-
mogeneous surrounding and exhibited to a probing mass m.

We denote that energy function with a bar, Ē(r, v). We apply
the Schwarzschild radius RS = 2GM

c2 : So the result is a conven-
tional structured energy function:

E(r, v)2 2 E2
0

2³2E0
=: Ē(r, v) =

m0 · v2
2

2 G ·M ·m0

r
(1.57)

Form with the Hubble parameter: In this part we transform the
DEQ (1.55) further so that we obtain a term for the Hubble

parameter:

H =
ṙ

r
(1.58)

For it, we multiply with 1
m2

0·c4
· c2

r2 , and we use the density Ã =
M

r3·4Ã/3 . So we get:

E(r, ṙ)2 2m2
0c

4

m2
0 · c4³2

· c
2

r2
=
ṙ2

r2
2 8ÃG · Ã

3
(1.59)

We identify the scaled squared energy 2E(r,ṙ)22m2
0c

4

m2
0·c4³2 or the scaled

energy term 22Ē(r,ṙ)
m0·c2 with the so-called curvature parameter

k (Friedmann (1922), Lemaitre (1927), Stephani (1980)), we
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identify ṙ2

r2 by the squared Hubble parameter H2, and we solve
for H2. So we get the Friedmann Lemâıtre equation, FLE

(Friedmann (1922) and Lemaitre (1927)), the DEQ for the ho-
mogeneous system:

H2 =
8ÃG · Ã

3
2 k · c

2

r2
(1.60)

Observations (Collaboration (2020), Bennett et al. (2013)) and
theory (Carmesin (2020b)) show that the curvature parameter
k is zero, which means the space is globally flat. We summarize
our derivation:

Theorem 3 Direct derivation of the FLE from the SSM:

The expansion of the universe has the following properties:

(1) In classical GRT, it is described by a uniform scaling with
a scale factor r(t) Fig. (1.10).

(2) In classical GRT, the time evolution of the scale factor r(t)
is described by the FLE:

H2 =

(

ṙ

r

)2

=
8ÃG · Ã

3
2 k · c

2

r2
(1.61)

(3) The FLE of that uniform scaling can be derived from the
time evolution of a microscopic probing mass m as follows:

(3a) In the HUF with density Ã, there is a homogeneous ball of
the universe with the same density and generating a field ~G7,
and m is at the surface of that ball (Fig. 1.10).

(3b) The time evolution of m is derived from the SSM, see the
DEQ (1.51) as well as the transformed DEQ (1.57).

(4) Thereby, these above two DEQs use a structured energy

function Ē(r, ṙ) with Ē(r, ṙ) = 0 = k = invariant:

2k :=
2Ē(r, ṙ)

m0 · c2
with Ē(r, ṙ) =

m0ṙ
2

2
2 GMm0

r
(1.62)
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(5) That structured energy function is defined as follows
and proportional to E0 and a normalized energy Enorm = Ē

E0
:

E(r, ṙ)2 2 E2
0

2³2E0
=: Ē(r, ṙ) = E0 ·

(

ṙ2

2c2
2 G ·M

r · c2
)

(1.63)

After we analyzed the expansion of space by using the con-
cepts of the uniform scaling, the HUF and the law of energy
conservation, we analyze the additional vacuum in the follow-
ing section.

1.11 Homogeneous metric: new vacuum

The expansion of space is usually described by a mathematical
transformation: the uniform scaling. In this section we analyze,
how that transformation is generated by the permanent and
ubiquitous formation of new vacuum. This novel analysis is
based on the fundamental concept of linear superposition of
volume (see proposition 1).

1.11.1 Rate of formed vacuum

The increase of the radius corresponds to an increase of the
volume. Hence additional vacuum is formed. In this section
we summarize the rate at which the vacuum forms. This rate
is derived from the FLE9. The flat, isotropic and homogeneous
space expands according to the Hubble parameter:

H =
"a

"t · a =
√

8Ã ·G/3 · :Ã (1.64)

The volume of a ball of the universe with radius a is V =
4Ã
3 a

3. With it we derive the rate of increase of the volume V by
applying the chain rule:

"V

"t · V =
1

V
· "V
"t

=
1

V
· "V
"a

· "a
"t

=
3

a
· "a
"t

= 3H (1.65)

9Carmesin (2018c), Carmesin (2018b), Carmesin (2019b)
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So the flat, isotropic and homogeneous space expanding accord-
ing to the Hubble parameter exhibits the following DEQ for the
rate of increase of the volume:

(

"V

"t · V

)2

= 24Ã ·G · Ã (1.66)

Similarly as in the case of the volume generated in the SSM
(see theorem 1), we denote the additional volume by ·V . Cor-
respondingly, we denote the time difference by ·t. Moreover, we
may consider infinitesimal amounts of volume dV rather than
V So we derive the following DEQ:

(

·V

·t · dV

)2

= 24Ã ·G · Ã (1.67)

Furthermore, we denote the relative volume by ·:

·V

dV
= · (1.68)

With it we derive the rate of the formation of relative

volume:
·̇ =

√

24Ã ·G · Ã (1.69)

We summarize our novel concept and our derivation:

Theorem 4 Formed vacuum causes expansion of space:

The uniform scaling that describes the expansion of space is
caused by a rate of additionally formed vacuum with the follow-
ing properties:

(1) The density Ã in a ball causes the permanent formation of
additional vacuum.

(2) For a ball with radius R, the volume of the additional vac-
uum ·V per volume dV and per time ·t is described by the
following rate:

·V

·t · dV = ·̇ =
√

24Ã ·G · Ã (1.70)
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surroundings

HUF
Ã

R

·R

dV

·VFLE

Figure 1.11: A ball with a density Ã and a radius R is placed in
a HUF, and it generates a vacuum ·VFLE during a time ·t. It
flows outward, and it requires a shell with a thickness ·R.

After we identified and quantified the additional vacuum that
forms during the expansion of space, we derive a DEQ describ-
ing that formation directly. Moreover we compare the rates of
formation of vacuum inherent to the SSM and to the uniform
scaling.

1.12 Vacuum formed according to FLE

In this section we analyze the vacuum that is formed by a ho-
mogeneous mass M with the radius RM that is larger than its
Schwarzschild radius RS.

We consider a dynamical mass that exhibits a redshift when
it expands from R = RS. So the mass M(R) is a function of its
radius R as follows:

M(R) =M(RS) ·
RS

R
(1.71)
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So the density is:

Ã =
M(R)

R3 · 4Ã/3 =
3

4Ã
M(RS) ·RS ·R24 (1.72)

We apply the Schwarzschild radius RS = 2GM(RS)
c2 :

Ã =
3

8Ã ·G · c2 ·R2
S ·R24 (1.73)

We derive the vacuum ·V that is formed by this constant den-
sity by using the corresponding rate (theorem 4):

·V = dt · dV ·
√

24Ã ·G · Ã (1.74)

We insert the above density, and we apply the volume of the
ball dV = 4Ã

3 R
3 (Fig. 1.11):

·V = dt · 4Ã
3
R3 ·

√

9c2 ·R2
S/R

4 (1.75)

We evaluate the root, and we simplify. So we derive the vacuum
·VFLE that is formed according to the FLE (see theorem 4)
during a time dt in a ball with density a Ã and radius R:

·V = 4Ã ·RS ·R · dt · c = ·VFLE(M,R, dt) (1.76)

The vacuum that is formed according to the FLE describes the
vacuum that additionally arrives in the expanding universe. So
it is the complete formed vacuum, CFV. The difference
of the CFV and the LFV must be formed nonlocally, so it is
nonlocally formed vacuum, NFV.

Definition 7 Complete and nonlocal formed vacuum:

The vacuum formed during the expansion of space is called
complete formed vacuum, CFV.

The CFV minus the LFV is the nonlocally formed vacuum,

NFV.
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1.13 A volume of spacetime

In this section we analyze the following spacetime volume:

System: If there is a HUF with a center at a radial coordinate
r = 0, and if a mass M has its center of mass at r = 0, and if
a shell in the HUF has its center at r = 0, a radius R and a
thickness dR = c ·dt, and if RS = 2GM

c2 , and if dV = 4ÃR2 ·c ·dt
is the volume of the shell, then the spacetime volume dV · dt
can increase as follows: dV can increase by the volume ·V that
forms in the ball with radius R during the time dt, and dt can
increase by ·t as a result of a curvature.

SSM: In the SSM we apply the total differential:

·(dV · dt)SSM = ·VSSM · "(dV · dt)
"dV

+ ·tSSM · "(dV · dt)
"dt

(1.77)

We evaluate the derivatives:

·(dV · dt)SSM = ·VSSM · dt+ ·tSSM · dV (1.78)

Next we apply the above thickness relation dR = c · dt:

·tSSM =
"dt

"dR
·RSSM =

1

c
· ·RSSM (1.79)

We insert that result into Eq. (1.78):

·(dV · dt)SSM = ·VSSM · dt+ 1

c
· ·RSSM · dV (1.80)

We apply10 dL = dR
√

12RS
R

in order to derive a term for ·RSSM :

·RSSM = dL2 dR = dR ·

û

ü

ý

1
√

12 RS

R

2 1

þ

ÿ

ø
(1.81)

10It will be derived later that physical states fulfill the relation R > RS .
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We multiply with 4Ã ·R2 and apply ·VSSM = 4Ã ·R2·RSSM and
dV = 4Ã ·R2dR:

·VSSM = dV ·

û

ü

ý

1
√

12 RS

R

2 1

þ

ÿ

ø
(1.82)

We apply these relations to Eq. (1.80). Moreover we factorize
the bracket in the above Eq.:

·(dV · dt)SSM =

(

dV · dt+ dR

c
· dV

)

·

û

ü

ý

1
√

12 RS

R

2 1

þ

ÿ

ø

(1.83)
We use the thickness relation dR

c = dt. So we get:

·(dV · dt)SSM = 2 · dt · dV ·

û

ü

ý

1
√

12 RS

R

2 1

þ

ÿ

ø
(1.84)

We identify the product of dV and of the bracket in the above
Eq. by ·VSSM :

·(dV · dt)SSM = 2 · dt · ·VSSM (1.85)

FLE: In this part we analyze the same system as above (see
part 1.13) with the additional condition that the mass M is
distributed uniformly in the ball with radius R (see Fig. 1.11),
and we derive the formed vacuum by using the FLE.

First we apply the total differential:

·(dV · dt)FLE = ·V · "(dV · dt)
"dV

+ ·t · "(dV · dt)
"dt

(1.86)

We evaluate the derivatives:

·(dV · dt)FLE = ·VFLE · dt+ ·tFLE · dV (1.87)
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Next we apply the fact that the time increases at a constant
rate in the FLE, so we get ·tFLE = 0. With it we derive:

·(dV · dt)FLE = dt · ·VFLE (1.88)

Equality of spacetimes: For the case of radiation we derived
·VFLE = 2·VSSM (Eqs. 1.49, 1.76). That relation is also derived
(Eq. 1.91) by using the following principle11 proposed here:

Definition 8 Principle of the equality of spacetimes:

If vacuum with a volume ·V forms during a time dt in a compact
isotropic volume V with a surface A, then that vacuum crosses
the surface layer of V with the thickness dR = c ·dt and volume
dV = A ·dR by propagating outwards, and then dR increases by
·R = ·V/A, and if dt increases microscopically by ·t = ·R/c,
then the spacetime dV ·dt of the layer increases by an amount of
spacetime ·(dV ·dt), and then ·(dV ·dt) is the same according to
the microscopic and the macroscopic (cosmological) dynamics:

·(dV · dt)micro = ·(dV · dt)macro (1.89)

Equal amounts of spacetimes cause different amounts of vacuum:

We apply the principle of equality of microscopic and macro-
scopic spacetime (definition 8) to Eqs. (1.85, 1.88):

·(dV ·dt)FLE = dt··VFLE = 2·dt··VSSM = ·(dV ·dt)SSM (1.90)

³ ·VFLE = 2 · ·VSSM (1.91)

As the macroscopic dynamics describes the complete formed
vacuum, CFV, we find ·VFLE = ·VCFV . As the microscopic
dynamics describes the locally formed vacuum, LFV, we find
·VSSM = ·VLFV . So we get:

·VCFV = 2 · ·VLFV (1.92)
11That principle is also confirmed for the cases of black holes including dark matter (C.

3) and possibly for dark energy (S. 6.6). Def. (8) can be applied to annihilating vacuum
with volume ·V analogously.
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Theorem 5 Nonlocality of general relativity:

(1) If there is a HUF with a center at a radial coordinate r = 0,
and if a mass M has its center of mass at r = 0, and if a shell
in the HUF has its center at r = 0, a radius R and a thickness
dR = c · dt, and if RS = 2GM

c2 , and if dV is the volume of
the shell, then in the shell there flows locally formed vacuum
·dVSSM according to the SSM with the following properties:

(1a) The amount of that LFV is as follows:

·VSSM = dV ·
(

√

12RS/R
21 2 1

)

(1.93)

It will be derived later that physical states fulfill R > RS.

(1b) The amount of the spacetime ·(dV · dt)SSM according to
the dynamics of the SSM is as follows:

·(dV · dt)SSM = 2 · dt · ·VSSM (1.94)

(1c) The amount in (1b) is the locally formed vacuum, LFV:

·(dV · dt)LFV = 2 · dt · ·VLFV (1.95)

(2a) If the system in part (1) is analyzed according to the FLE,
then the amount of additional spacetime ·(dV · dt)FLE is as
follows:

·(dV · dt)FLE = dt · ·VFLE (1.96)

(2b) The amount in (2a) is the completely formed vacuum,
CFV:

·(dV · dt)CFV = dt · ·VCFV (1.97)

(2c) The CFV in parts (2a) and (2b) forms in each macroscopic
dynamics of the expansion of space, in which the time evolves
at a constant rate.

(3a) According to the principle of equality of spacetimes, the
LFV is one half of the CFV:

·VCFV = 2 · ·VLFV (1.98)



1.13. A VOLUME OF SPACETIME 41

(3b) The difference of the CFV minus the LFV is the nonlocally
formed vacuum NFV:

·VNFV = ·VLFV = ·VCFV /2 (1.99)

(3c) The nonlocality of the GRT is derived directly from Eqs.
(1.49) and (1.76).

(3d) Since the vacuum and its volume constitute an essential
basis for the concepts of density and of GRT (Prop. 1), and as
one half of the vacuum formed according to GRT is nonlocally
formed vacuum, the GRT is a nonlocal theory.

Corollary 2 General relativity is nonlocal:

(1) The theory of general relativity is nonlocal, though it was
designed on the basis of local rules. In this case, the amount of
nonlocality is 50 %.

(2) This nonlocality of the GRT provides a basic solution of the
EPR paradox, as the locality of the GRT is a premise of the
paradox, However, the above shows that this premise is wrong.

(3) As the SSM and the solutions of the FLE have been empiri-
cally confirmed in a precise manner (Will (2006), Collaboration
(2020)), the nonlocality of the GRT is a property of nature.

(4) The nonlocality of GRT enables that theory to describe local
curvature and universal expansion.

(5) What are the mechanisms of nonlocality? Answers to this
interesting question are derived in the next chapters.

1.13.1 Nonlocality of GRT

The above theorem shows that GRT is nonlocal, though the
theory was based on local physical principles.

Such things can happen in science. For instance, the the-
ory of rational numbers is based on very rational rules of ad-
dition, subtraction, multiplication and division. But a square
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with length 1 has a diagonal with the length
:
2, an irrational

number.
Another example is Maxwell’s theory of electrodynamics.

The theory is based on the concept that the time evolves at a
constant rate. But an electromagnetic wave, an important so-
lution of Maxwell’s theory, exhibits a constant velocity of light,
which in turn is the basis of the SRT, in which time evolves at
various rates, depending of the frame of reference.

An additional example is Columbus. He started his expe-
dition in order to find a route from Europe to India. But he
discovered America.

We will develop explanations for the derived nonlocality in
the following chapters.

1.13.2 First solution of the EPR paradox

Einstein et al. (1935) showed that quantum theory includes the
nonlocal formation of correlations. That means, correlations
form faster than light can propagate. They classify that situa-
tion as paradoxical. This indicates that they presume that the
GRT is local.

Now the GRT and the quantum theory are both nonlocal.
So the basis for the paradox between both theories vanishes. In
this sense, the nonlocality if the GRT presents a first solution
of the EPR paradox.

Later in this book, we will derive two other solutions of the
EPR paradox, and these will provide a deeper insight. For it
we analyze the quadrupolar symmetry inherent to the addition-
ally formed vacuum that is underlying the SSM as well as the
uniform scaling of the expansion of space. This is elaborated in
the next chapter.



Chapter 2

Fields and Quadrupoles

As a result of GRT, gravity is established by a curvature of space
and by the expansion of space. In the first chapter, we realized
that this curvature and expansion of space are constituted by
the formation of vacuum.

In this chapter we analyze the symmetry of that formed vac-
uum, and thereby we derive the symmetry of gravity. Thereby,
we discover the precise quadrupolar and monopolar symmetries
of gravity in general, and in particular phenomena such as grav-
itational waves, curvature near a mass and isotropic expansion
of space. For it we derive corresponding tensors, four-vectors,
Lorentz scalars and DEQs.

2.1 Energy density of the field

In this section we derive the energy density Ãf of the field G7

located in a HUF. For it we analyze the energy ∆EM that is
necessary in order to lift a mass M in a shell with a radius
R to a shell with a radius R + ∆R, see Fig. (2.1). Thereby,
the mass is lifted as follows: Differential parts dM are lifted,
while the part Mrest is still at R. Moreover, the velocity of M
remains zero, in an ideal manner. So a part dM is lifted at the
gravitational field of the part Mrest:

| ~G7(Mrest)| = G7(Mrest) =
G ·Mrest

R2
(2.1)

43
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HUF

surroundings G∗

R

Mrest

∆R

Figure 2.1: In a HUF (light grey), a mass M (dark grey) in a
shell at a radius R is lifted to a radius R + ∆R as follows:
Differential parts dM are lifted, while the rest Mrest is still at
R. Thereby the field G7 (medium grey) in the shell with radius
R and thickness ∆R becomes zero (see Fig. 2.2).

So the field G7 is proportional to the part Mrest (Fig. 2.2). If
a mass dM is lifted, and if the mass Mrest is still at R, then
dM experiences the force1 F = G7(Mrest) · dM , thus the energy
dE = F ·∆R is required:

dE = G7(Mrest) · dM ·∆R =
G ·Mrest

R2
· dM ·∆R (2.2)

We derive the full change in gravitational energy ∆EM by inte-
grating the above Eq.:

∆EM =

∫ E

0

dE =

∫ 0

M

G ·Mrest

R2
dM ·∆R (2.3)

When a mass dM is lifted, then the mass Mrest is decreased by
dM . So dMrest = 2dM . Thus we get:

∆EM = 2
∫ 0

M

G ·Mrest

R2
dMrest ·∆R (2.4)

1The force can be used instead of the position factor, as ∆R is infinitesimal.
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M

G7(M)

Mrest0

G7

Figure 2.2: The field G7 is shown as a function of the mass Mrest
that is still at the shell with the radius R.

We evaluate the integral:

∆EM =
G ·M 2 ·∆R

2R2
(2.5)

Location of the energy ∆EM : While the mass M was lifted in
the above process, the energy ∆EM was added to the system.
Where is this energy ∆EM located in the system?

As the mass M is identical to the probing mass m and to
the field-generating mass Mf = M , the mass M is not in an
external field. So the position factor is 1 at the beginning and
at the end of the process. Hence the energy ∆EM is not located
in the mass.

There is a modification in the shell between the radii R
and R + ∆R. It can be characterized by the additional curva-
ture. That additional curvature can be characterized by addi-
tionally formed volume flowing outwards at the velocity c. As
we derived the curvature from the EEP to which the field is
inherent, that outflow can also be described by the field G7.

Hence, in the HUF the energy ∆EM is located in the

modifications in the shell between R and R + ∆R, and
it can be characterized by the field.
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E

E =M · c2 + Ef

R

∆EM

E =M · c2
R +∆R

Figure 2.3: The energy of the mass is shown at the initial radius
R and at the final radius R +∆R.

Energy density uf of the field: The field G7 is in the shell with
radius R and thickness ∆R (see Fig. (2.1). The corresponding
volume is ∆V = 4Ã · R2 ·∆R. So we derive the energy density
by the dividing the energy ∆EM by the volume ∆V . So we get:

uf =
∆Ef

∆V
=

G ·M 2 ·∆R
2R2 · 4Ã ·R2 ·∆R (2.6)

We simplify the above term, we expand by G, and we apply the
field G7 = G·M

R2 . So we get:

uf =
~G72

8Ã ·G = Ãf · c2 (2.7)

Sign of the field energy Ef : The sign of an energy is determined
from the law of energy conservation. For instance, in quantum
physics, there occur solutions with a negative energy, corre-
sponding to antimatter. However, the mass of such an antipar-
ticle is positive. We know this from the fact that we need energy
in order to generate such an antiparticle. So we know it from
the law of energy conservation. Before the above process, the
system has the energy of the mass M · c2, plus the energy Ef of
the field in the HUF (Fig. 2.3):

Ebefore =M · c2 + Ef (2.8)
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During the process, the energy ∆EM is added to the system.
At the end of the above process, the system has the energy of
the mass Eafter = M · c2 in the HUF. According to the law of
energy conservation, the energy Eafter is equal to Ebefore plus
∆EM :

M · c2 = Eafter = ∆EM + Ebefore =M · c2 + Ef +∆EM (2.9)

We simplify:
0 = Ef +∆EM (2.10)

As the sign of ∆EM is positive, the sign of the energy of

the field Ef is negative.
The energy density of the field is just a possible description

of the modifications of curvature and additional volume in the
shell between R and R + ∆R. So an adequate interpretation
will be presented in later chapters, on the basis of corresponding
results.

Proposition 5 Energy density of the gravitational field:

(1) The gravitational energy is inherent to modifications of space
such as curvature or additionally formed volume or a gravita-
tional field.

(2) In a HUF, a gravitational field ~G7 has the energy density
uf as follows:

|uf | =
~G72

8Ã ·G (2.11)

2.2 Dynamic mass of the field

In this section we derive the dynamic mass Mf of a field G7,
that is generated by a mass M (Fig. 2.4).

For it we derive the field at a radius R:

| ~G7| = G7 =
G ·M
R2

(2.12)
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HUF

R

M

dEf

G7dV

dR

Figure 2.4: A mass M generates a field G7 and a corresponding
energy dEf in a shell with radius R, thickness dR and volume
dV .

The energy density of that field is (Eq. 2.7):

|uf | =
G ·M 2

8Ã ·R4
(2.13)

The shell has the volume:

dV = 4Ã ·R2 · dR (2.14)

So the energy dEf of the field in the shell is:

|dEf | = dV · |uf | =
G ·M 2

2 ·R2
· dR (2.15)

The total energy Ef of the field is obtained by integration from
the smallest possible radius RS to infinity:

|Ef | =
∫ >

0

|dEf | =
GM 2

2
·
∫ >

RS

1

R2
dR (2.16)

We evaluate the integral, and we apply RS = 2GM
c2 :

|Ef | =
G ·M 2

2
· 1

RS
=
M · c2

4
(2.17)
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We divide by c2 and apply the equivalence of the energy to the
dynamical mass Mf = |Ef | · c2:

Mf =
M

4
(2.18)

We summarize our derivations:

Proposition 6 Dynamic mass Mf of the gravitational

field: A mass M in a HUF generates a field G7 with the fol-
lowing properties:

If the radius of the empty ball of the HUF tends to infinity,
then the field G7 has the following properties:

(1) If there is only the mass M in the empty ball of the HUF,
then the only field in that ball is the field G7 of M .

(2) If the radius of the empty ball of the HUF tends to infinity,
then the dynamic mass Mf of the field G7 is one fourth of the
field generating mass M , i. e. Mf =M/4.

After we analyzed the formation of additional vacuum in
the previous chapter and the energy density of a gravitational
field in the HUF, we are well prepared in order to analyze the
symmetry of the process of the formation of that vacuum. This
is elaborated in the next section.

2.3 Quadrupolar symmetry

In this section we analyze and apply the symmetry of the for-
mation of additional volume underlying the curvature of space
and the gravitational interaction as a consequence.

2.3.1 Direction vector of the field

The field ~G7 represents a vector. The field propagates together
with the generated volume (see theorems 1, 2) and according to
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a corresponding momentum ~k. The field ~G7 is parallel or anti
parallel to its momentum ~k. We realize this for the case of a
single mass: The field emerges at the field-generating mass and
propagates in radial direction and parallel to the field vector ~G7.
We characterize that direction by its unit direction vector ~s:

|~s| = 1 and ~s ‖ ~G7 and ~s ‖ ~k (2.19)

2.3.2 Quadrupole of the field

As gravity is always attractive, it essentially has a quadrupo-

lar symmetry. As a dipolar structure would provide two signs
of interaction, corresponding to attractive and repulsive forces.
Correspondingly, the hypothetic quanta of gravity have spin 2

(see for instance Tanabashi et al. (2018)).

In the present case of an isotropic quadrupolar symmetry,
the orientation can be represented by an orientation vector

~q with norm one, see for instance (Carmesin (1987), Carmesin
and Binder (1987)).

|~q| = 1 (2.20)

Plan of investigation: The symmetry of quadrupoles or of ob-
jects with spin 2 should be described in a mathematical manner,
in order to generalize the isotropic formation of vacuum in the
expansion of space (see Eq. 1.66) to the case of unidirectional
formation of vacuum in the SSM, to the case of gravitational
waves and to even more cases2.

As we aim to describe the symmetry of gravity, we plan to
extend the gravitational constant G by a quadrupolar factor.
We achieve this in two steps: First we develop and test that
factor in Sect. (2.3). Secondly, we devise the corresponding
tensors in Sect. (2.4).

2Note for comparison that also in dipolar symmetry there occurs linear polarization
as well as circular polarization.
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2.3.3 Proposed quadrupolar factor

The gravitational interaction is essential in the formation of
vacuum, this is indicated by the constant G and the density Ã
in the rate Eq. (1.66):

(

dV

dt · V

)2

= 24Ã ·G · Ã (2.21)

Accordingly, we propose that the gravitational constant G in
that rate Eq. is multiplied by a quadrupolar factor Q(~q, ~s),
which is a quadrupolar function of ~q and ~s. As the directions
of ~q are randomly distributed, we apply the average according
to a uniform distribution of orientations. So we get:

(

dV

dt · V

)2

= 24Ã ·G · 〈Q(~q, ~s)〉 · Ã (2.22)

Test of the symmetry: If we multiply the vector ~s by 21, then
the direction of propagation of ~G7 is inverted, and this does not
modify the rate dV

dt·V of the production of volume, even if we
apply the density of the field (Eq. (2.7):

uf = Ãf · c2 (2.23)

So the factor Q(~q, ~s) has quadrupolar symmetry.

Method: We derive the above quadrupolar factor Q(~q, ~s) as
follows. Firstly, we realize physical properties. Secondly, we
formulate possible multipolar terms. Thirdly, we derive the
corresponding coefficients.
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2.3.4 Physical properties

In this section we note useful physical conditions of the forma-
tion of vacuum.

Formation of vacuum in the Big Bang: In order to determine
the coefficients, we analyze the case of the expansion of space
according to the FLE and rate Eq. (1.66). Correspondingly,
we use the positive square root of that Eq. Hence the gener-
ated volume has a positive sign, and the quadrupolar factor is
positive:

Q g 0 or Qmin = 0 (2.24)

Additionally, the average 〈Q〉 is one:
〈Q〉 = 1 (2.25)

In the case of the expansion of space, usually modeled by a
uniform scaling, gravity generates vacuum in each of the three
directions x, y, z or r, y, z. Accordingly, the maximum value is
three, or the dimension D, more generally. However, in the case
of a field generating mass, the field has the radial direction, and
the corresponding vacuum can be formed in that direction only,
accordingly, the maximum value is one. So we obtain:

Qmax =

{

3 for expansion of space or uniform scaling
1 for field generating mass or unidir. formation

(2.26)

2.3.5 Multipolar terms

In this section we formulate the multipolar terms that are es-
sential for the cases of vacuum formation studied here: Since
there is no additional anisotropy in the system, the quadrupo-
lar factor can be represented with help of the isotropic part of
the quadrupolar interaction, see for instance (Carmesin (1987),
Carmesin and Binder (1987)):

(~q · ~s)2 2 1/3 (2.27)
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We denote it by Q2,0, as it is proportional to the spherical

harmonic function Yl=2,m=0 =
3
2 ·
√

5
4Ã ·
(

cos2(»)2 1
3

)

:

Q2,0 = (~s · ~q)2 2 1/3 (2.28)

The spherical harmonic functions form an orthonormal system
(Ballentine (1998)). For that purpose they require a subtrahend
such as 1/3 inherent to Yl=2,m=0. That subtrahend might not be
essential in each physical application. In order to take care of
this possibility, we allow for the monopole spherical harmonic

function Yl=0,m=0 =
√

1
4Ã , additionally. Accordingly, we include

a monopolar term:

Q0,0 = 1, (2.29)

So the quadrupolar factor Q is a linear combination with cor-
responding coefficients a2,0 and a0,0:

Q = a2,0 ·Q2,0 + a0,0 ·Q0,0 (2.30)

2.3.6 Determination of coefficients for expansion

In this section we derive the coefficients for the case of the
expansion of space. We apply Eq. (2.24):

Qmin = 0 = a2,0 ·Q2,0 + a0,0 ·Q0,0 (2.31)

We insert Eqs. (2.28) and (2.29):

Qmin = 0 = a2,0 · [(~s · ~q)2 2 1/3] + a0,0 (2.32)

For the present case of minimal Qmin, the vectors are orthogo-
nal, and we insert zero for the scalar product:

Qmin = 0 = a2,0 · [21/3] + a0,0 (2.33)

So we get:

a0,0 = a2,0 · [1/3] (2.34)
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We apply Eq. (2.26). So we get:

〈Qmax〉 = 3 = a2,0 · [(~s · ~q)2 2 1/3] + a0,0 (2.35)

For the present case of maximal Qmax, the vectors are parallel,
and we insert one for the scalar product:

Qmax = 3 = a2,0 · 2/3 + a0,0 (2.36)

So we get:
a0,0 = 32 a2,0 · 2/3 (2.37)

We subtract Eq. (2.37) from Eq. (2.34):

0 = 32 a2,0 or a2,0 = 3 (2.38)

We insert that result into Eq. (2.34). So we get:

a0,0 = 1 (2.39)

Altogether, we derive the quadrupolar factor:

Q = 3 · (~s · ~q)2 for expansion of space (2.40)

Test of the quadrupolar factor: We insert the above quadrupolar
factor into Eq. (2.25), and we test, whether the result is indeed
one.

〈Q〉 = 3 · 〈(~s · ~q)2〉 (2.41)

The above average is equal to the average 〈x2〉 = 1/3. Alterna-
tively, it is equal to the average 〈cos2(»)〉 = 1/3, whereby ~s and
~q enclose the angle ». So we get:

〈Q〉 = 3 · 1/3 = 1 (2.42)

This confirms the derived interaction term and it is the first
positive test of our interaction hypothesis.

Rate equation: We apply this result to the DEQ (2.22)

(

·V

dt · V

)2

= 24Ã ·G · Ã for expansion of space (2.43)
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2.3.7 Determination of coefficients for field generating

mass

In the case of a field generating mass, the coefficients are derived
in the same manner as above. As a result we get:

a0,0 = 1/3, a2,0 = 1 and 〈Q〉 = 1/3 for unidir. formation
(2.44)

Consequently we derive:

Q = (~s · ~q)2 for unidirectional or radial symmetry (2.45)

So we get the rate equation:

(

·V

dt · V

)2

= 8Ã ·G · Ã for unidirectional vacuum formation

(2.46)
We summarize our derivations:

Theorem 6 Quadrupolar symmetry of gravity: There is
a linear quadrupolar symmetry inherent to gravity. That sym-
metry has the following properties:

(1) The direction of ~G7 can be represented by a direction vec-

tor ~s.

(2) As the interaction is attractive, it exhibits quadrupolar sym-
metry, and it can be represented by an orientation vector ~q.

(3) Altogether, the quadrupolar symmetry can be represented by
a quadrupolar factor Q(~q, ~s). It is a function of ~q and ~s, and
it is multiplied by the universal constant G of gravitation in the
rate equation (2.22).

(4) The quadrupolar factor takes the following form:

Q = (~q ·~s)2 ·
{

3 for isotropic expansion of space
1 for field generating mass or dynamical mass
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(5) Q(~q, ~s) represents a linear superposition of monopolar and
quadrupolar symmetry, corresponding to the fact that masses
present monopoles.

(6) A field generating mass or dynamical mass causes a locally
unidirectional (radial) expansion of space.

(7) For the case of isotropic expansion of space, the resulting
rate for the formation of new vacuum is as follows:

(

·V

·t · dV

)2

= 24Ã ·G · Ã for isotropic expansion of space

(2.47)

(8) For the case of locally unidirectional expansion of space,
including the case of radially expanding space, the resulting rate
for the formation of new vacuum is as follows:

(

·V

·t · dV

)2

= 8Ã ·G · Ã for unidirectional vacuum formation

(2.48)

2.3.8 Rate gravity four-vector, RGV

In this section we analyze an essential consequence of the rate
generated by a mass or dynamical mass M .

First we abbreviate that rate by ·̇ = ·V
·t·dV . So Eq. (2.48)

takes the form:

·̇2 = 8Ã ·G · Ã (2.49)

Secondly, we analyze the rate at a location in the vicinity of
the mass at which there is the field G7 of the mass M . At such
a location, the density Ã in the above Eq. is established by
the energy density uf = G72

8Ã·G of the field (see proposition 5),
Ã = uf/c

2. So we get:

·̇2 = 8Ã ·G · G72

8Ã ·G · c2 (2.50)
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We cancel:

·̇2 =
G72

c2
(2.51)

We subtract the term at the right hand side:

·̇2 2 G72

c2
= 0 (2.52)

We identify the left hand side as a relativistic square of the
following rate gravity four-vector, RGV:

RGVi =

û

ü

ü

ý

·̇

G7
x/c

G7
y/c

G7
z/c

þ

ÿ

ÿ

ø

(2.53)

.

Sign convention: The relativistic square is evaluated with the
following sign convention used in four dimensional spacetime.
In the usual index notation, four-vectors are denoted with su-
perscripts (see for instance Moore (2013), Carmesin (1996)),
while column labels are denoted as subscripts. Moreover, a sign
convention is applied as follows: convention of signs:

·i,j =

û

ü

ü

ý

21 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

þ

ÿ

ÿ

ø

= ·ji (2.54)

While this convention is very common (see for instance Moore
(2013), Carmesin (1996)), the opposite signs are used in some
books (see for instance Landau and Lifschitz (1981), Stephani
(1980)).

Rate gravity scalar, RGS: We evaluate the relativistic square of
the RGV:

RGS = RGV i · ·ji ·RGVj = ·̇2 2 (G72
x +G72

y +G72
z )/c2 (2.55)
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We summarize the coordinates to the absolute value:

RGS = ·̇2 2G72/c2 = 0 (2.56)

As the RGS is zero, it is invariant with respect to each lin-

ear transformation, including a Lorentz transformation.
Hence the RGS is invariant with respect to a transformation
from one inertial frame that is embedded in a HUF to another
inertial frame that is embedded in the same HUF. In this sense
the RGS is a Lorentz invariant. Moreover, the RGS is a
Lorentz scalar, as it is a Lorentz invariant scalar. Addition-
ally, there is no acceleration inherent to a HUF, only objects
within a HUF might cause a so-called particular accelera-

tion. Altogether and more generally, a Lorentz scalar in a HUF
that is zero is highly invariant, we call it a HUF zero Lorentz

scalar, HZLS. Furthermore, if that HZLS is the relativistic
square of a four-vector, then we call that four-vector a HUF

zero four-vector, HZFV. We summarize our results:

Definition 9 Invariants in SRT and GRT:

(1) If a scalar is a Lorentz scalar in a HUF, and if that scalar
is zero, then it is called a HUF zero Lorentz scalar, HZLS.

(2) If the relativistic square of a four-vector is a HZLS, then we
call that four-vector a HUF zero four-vector, HZFV.

(3) If objects in a HUF accelerate other objects, then that ac-
celeration is called a particular acceleration. Other acceler-
ations are called non particular accelerations.

Theorem 7 Invariant formation of vacuum:

The DEQ

RGS = ·̇2 2G72/c2 = 0 (2.57)

for the formed vacuum in the HUF is an invariant for the fol-
lowing reasons:
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(1) The only possible accelerations in a HUF are particular ac-
celerations. A field ~G7 of a particular acceleration can be mea-
sured by a local observer.

(2) A possible absolute velocity cannot be measured. The DEQ
RGS = 0 is invariant with respect to a Lorentz transformation
LT , as it is HZLS. It is a relativistic square of a HZFV, the
rate gravity four-vector:

RGVi =

û

ü

ü

ý

·̇
G7

x/c

G7
y/c

G7
z/c

þ

ÿ

ÿ

ø

(2.58)

(3) If the average of the particular radial accelerations is posi-
tive, then additional vacuum must be formed so that the universe
expands (Carmesin (2020b), Carmesin (2020a)).

(4) While the RGS shows that the equality of square of the rate
·̇2 and the square of the field G72/c2 is invariant, the rate and
the field might be different for different frames.

2.3.9 An invariant energy density function in the HUF

In this section we apply the scalar RGS in order to derive an
invariant energy density function in the HUF.

For it we multiply the RGS by c2

8ÃG in Eq. (2.56):

RGS · c2

8ÃG
=
·̇2 · c2
8ÃG

2 G72

8ÃG
(2.59)

We identify the subtrahend in the above Eq. by the energy
density of the field. It is negative, so it is a self attraction

of the gravitational field. Correspondingly, we identify the
addend as an energy density. So the rate ·̇2 of LFV gives rise
to a positive energy density.

As the RGS is a relativistic square of the four-vector RGV ,
it is invariant with respect to a Lorentz transformation, and it
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establishes a physical quantity. We call it the rate gravity

energy density, RGED uRG:

uRG =
·̇2 · c2
8ÃG

2 G72

8ÃG
(2.60)

The RGED is an invariant in the HUF, as it is a HZLS. We
summarize our result:

Proposition 7 Invariant density RGED in a HUF: The
rate gravity energy density, RGED,

uRG =
·̇2 · c2
8ÃG

2 G72

8ÃG
(2.61)

is an invariant with respect to Lorentz transformations, and it
is not influenced by non particular accelerations.

2.4 Quadrupolar model for vacuum

While we derived the quadrupolar symmetry in the previous
section, we represent that symmetry in a more systematic and
more general manner in the present section.

2.4.1 Rate of formed volume analogous to strain

In this section we derive the analogy between the strain and the
formed volume.

The formed volume can be expressed with a tensor, see Fig.
(2.5) as follows:

·̂jj =
·Vj
dV

=
·rj · dAj

drj · dAj
=
·rj
drj

(2.62)

Here we identify an analogy to the elements ·ri
drj

of the strain

tensor ((Sommerfeld, 1978, p. 3,4)):

·̂ij =
·ri
drj

or ·̂ij =

û

ü

ý

·r1
dr1

·r1
dr2

·r1
dr3

·r2
dr1

·r2
dr2

·r2
dr3

·r3
dr1

·r3
dr2

·r3
dr3

þ

ÿ

ø
(2.63)
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d~y

d ~Ay

dV = d ~Ay · d~y

·~y

·Vy = d ~Ay · ·~y

Figure 2.5: Quadrupolar model: A cube with lower and upper
surface d ~Ay is modified by shifting the upper surface by an
increment ·y.

Hence the formed volume is as follows:

·V

dV
=
·Vx
dV

+
·Vy
dV

+
·Vz
dV

= Trace(·̂ij) (2.64)

Consequently, the rate of formed volume is analogous to the
time derivative of the strain tensor as follows:

·V

dV · ·t = Trace( ˙̂·ij) (2.65)

According to that analogy, we identify that tensor as the gen-

eralized rate tensor ˙̂·ij.
The off diagonal elements are analogous to a deformation

without formed volume:

·V = 0 for ·̂ij with i 6= j (2.66)

2.4.2 Generalized field tensor

In this section we use the energy density of the field, in order
to develop a generalized relation describing the volume that is
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formed by gravity. For it we introduce a generalized gravity
tensor as a natural generalization of the gravitational field.

Unidirectional field: A usual field ~G7 constitutes an unidirec-
tional field ~G7, and for the particular case of Cartesian coordi-
nates, we get:

Ĝij = G7
i ·G7

j (2.67)

In particular, in the radial direction we get:

Ĝrr = G7
r ·G7

r = G72
r = 8Ã ·G · c2 · Ãf (2.68)

For the case of polar coordinates, the tensor is as follows:

Ĝunidirectional,ij =

û

ý

G72
r 0 0
0 0 0
0 0 0

þ

ø =

û

ý

1 0 0
0 0 0
0 0 0

þ

ø · 8ÃGc2Ãf

(2.69)
In both cases, polar coordinates and Cartesian coordinates, we
get:

Trace(Ĝij) = 8Ã ·G · c2 · Ãf = G72
r = Ĝrr (2.70)

In order to prepare a generalization, we mark the radial diagonal
tensor element Ĝrr by an additional index uni, and we neglect
the restriction to densities of a field:

8Ã ·G · c2 · Ãf = Ĝuni,rr = Ĝrr for unidirectional formation

(2.71)

Isotropic expansion: While new vacuum ·V is formed in one
direction only in the case of a usual unidirectional field,

·̂jj =

{

·Vr

dV for radial direction j = r

0 for the orthogonal directions j 6= r
(2.72)

it is formed in each direction for the case of isotropic expansion:

·̂jj =

{

·Vr

dV for any radial direction j = r
·Vj

dV = ·Vr

dV for the orthogonal directions j 6= r
(2.73)
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Correspondingly we define the generalized field tensor for
the case of isotropic expansion as follows

Ĝisotropic,ij =

û

ý

1 0 0
0 1 0
0 0 1

þ

ø · 8ÃGc2Ã (2.74)

with:

Ĝuni,rr = 8ÃGc2Ã = Ĝxx = Ĝyy = Ĝzz for isotropic expansion

(2.75)

2.4.3 Generalized field tensor and rate tensor:

Using to the above tensors, we express the DEQ of the formation
of the vacuum in terms of the generalized field tensor and the
rate tensor as follows:

0 = [Trace( ˙̂·ij)]
2 2 Trace(Ĝij)

c2
= RGStensor (2.76)

This DEQ represents the tensor form RGStensor of the Lorentz
invariant RGS. Correspondingly, that DEQ and the RGStensor

are Lorentz invariants.

2.4.4 Particular generalized rate tensors

In this section we derive particular generalized rate tensors.

A gravitational wave that propagates in the z-direction is
polarized in the x-y-plane, and it forms no volume, an illustra-
tion is provided in the chapter (5) about waves, see Fig. (5.1).
So there are two possible generalized rate tensors representing
two directions of polarization,

·̂pol. 1,ij =

û

ý

1 0 0
0 21 0
0 0 0

þ

ø (2.77)
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and:

·̂pol. 2,ij =

û

ý

0 1 0
21 0 0
0 0 0

þ

ø (2.78)

We summarize the results of the section:

Theorem 8 DEQ for generalized rate tensor: The de-
rived quadrupolar symmetry can be applied to densities of fields,
masses, dynamical masses or densities as follows:

(1) The generalized rate tensor is:

·̂ij =
·ri
drj

or ·̂ij =

û

ü

ý

·r1
dr1

·r1
dr2

·r1
dr3

·r2
dr1

·r2
dr2

·r2
dr3

·r3
dr1

·r3
dr2

·r3
dr3

þ

ÿ

ø
(2.79)

(2) The generalized field tensor has to be developed for each
particular density, density of fields or distribution of possibly
dynamical masses.

(2a) For the case of an unidirectional radial expansion of space
by a density Ãf , the generalized field tensor has only one nonzero
element, Ĝrr as follows:

Ĝunidirectional,ij =

û

ý

1 0 0
0 0 0
0 0 0

þ

ø · 8ÃGc2Ãf (2.80)

(2b) For the case of an isotropic expansion by a density Ã, the
generalized field tensor in Cartesian coordinates is as follows:

Ĝunidirectional,ij =

û

ý

1 0 0
0 1 0
0 0 1

þ

ø · 8ÃGc2Ã (2.81)

(3) The formation of vacuum by gravity is described by the fol-
lowing DEQ:

[Trace( ˙̂·ij)]
2 =

Trace(Ĝij)

c2
(2.82)
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HUF
M

dV

r

G7

ÃG7

·V

dr

Figure 2.6: A mass M generates a field G7 in a shell (medium
grey) around M and with volume dV . The density Ãf = uf/c

2

of the field forms vacuum with a volume ·V .

2.5 Vacuum formed by a mass with R = RS

In this section we derive the locally formed vacuum, LFV, on
the basis of the DEQ for the rates ·̇ (see theorems 6, 7, 8).
In particular, we derive the LFV that is formed by a mass M
with the radius RM equal to its Schwarzschild radius RS. We
compare our result with the amount of LFV according to the
SSM (see theorem 2). This analysis establishes an additional
test of our DEQs.

2.5.1 Vacuum formed in a shell

We apply the rate equation (see theorems 6, 7, 8):

·V

·t · V =
√

8Ã ·G · Ã (2.83)
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We apply this Eq. to the volume dV of the shell with a radius
r and thickness dr in Fig. (2.6). So we get:

·V = ·t · dV ·
√

8Ã ·G · Ã (2.84)

We use the density of the gravitational field (2.7):

Ãf =
~G72

8Ã ·G · c2 (2.85)

We insert this term for the density in Eq. (2.84):

·V = ·t · dV · G
7

c
(2.86)

We apply G7 = GM
r2 to the above Eq., and we expand with 2c:

·V = ·t · c · dV · 2G ·M
c2

· dV
2r2

(2.87)

We apply dV = 4Ã · r2 · dr, and we identify the Schwarzschild
radius RS = 2G·M

c2 . So we get the volume ·Vshell formed in the
shell:

·Vshell = 2Ã ·RS · dr · ·t · c (2.88)

Here we realize: In each shell around M and with a thickness
dr, the same volume ·Vshell is generated during a time ·t.

2.5.2 Vacuum formed in a ball:

Next we determine the vacuum ·Vball that is formed during a
time ·t in a ball around M and with a radius R (Fig. 2.6). For
it we integrate the above Eq. from the smallest possible radius
RS to R:

∫ ·Vball

0

·Vshell = 2Ã ·RS ·
∫ R

RS

dr · ·t · c (2.89)

We evaluate the integrals. So we get the vacuum ·Vball or ·Vf
that is formed in the ball as a consequence of the field.

·Vball = 2Ã ·RS · (R2RS) · ·t · c = ·Vf (2.90)
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HUF
M

R

·R

·Vball

dR

dV

Figure 2.7: A mass M generates a vacuum ·Vball in a ball around
M and during a time dt. It flows outward, and it requires a
shell with thickness ·R.

For the case of large R/RS >> 1, and in leading order, we
neglect RS in the above Eq., as an approximation:

·Vball=̇2Ã ·RS ·R · ·t · c = ·Vf (2.91)

This volume ·Vball is formed locally in shells, moreover it propa-
gates through space at the velocity c. So it is the locally formed
vacuum, LFV.

2.5.3 Elongation caused by new vacuum

In this section we derive the elongation ·R of a distance dR
that is caused by the formed vacuum ·Vball.

Thickness: The vacuum formed in a shell generates a net radial
outward flow. Thereby the vacuum of all shells accumulates
and establishes the rate of the vacuum ·Vball formed in the ball
during a time ·t (Fig. 2.7, Eq. 2.91). When that vacuum leaves
the ball, it forms a shell with a thickness ·R and a volume ·Vball
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around the ball, see Fig. (2.7). So we get:

·R =
·Vball
4Ã ·R2

(2.92)

We insert Eq. (2.91):

·R=̇
2Ã ·RS ·R · ·t · c

4Ã ·R2
=
RS · ·t · c
2 ·R (2.93)

Traveled dR: The shell with thickness ·R and a volume ·Vball
causes an elongation of a radial coordinate distance dR. We
derive this dR next. The volume ·Vball is formed in a time
·t. That vacuum propagates at the velocity of light c, as it is
fully relativistic (Carmesin (2018c), Carmesin (2018b)). Hence,
during the time ·t, the vacuum travels the distance dR = c · ·t.
Thus that vacuum moves within a shell with the thickness dR
during that time ·t. Consequently, the volume dV of that shell
of thickness dR is increased by ·Vball, and the thickness dR is
increased by ·R. We apply dR = c · ·t or dR/c = ·t to Eq.
(2.93). So we get the elongation ·Rf that is caused by the
vacuum formed by the field:

·R=̇
RS · dR
2 ·R = ·Rf (2.94)

We derive the corresponding volume ·Vf by multiplication of
·R with 4ÃR2. So we get:

·Vf=̇2Ã ·RS ·R · dR (2.95)

This elongation ·Rf corresponds to the elongation ·RSSM

described by the SSM in Eq. (1.45). We summarize our results
derived here:
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Theorem 9 Equality of LFV ·Vf and ·VSSM,LFV : For the
volume ·Vf(R, dR,M) in Eq. (2.95) generated by the gravita-
tional field of a mass M holds:

(1) It is formed locally in shells with radii r f R, and it propa-
gates at the velocity of light c, so it is a locally formed vac-

uum, LFV.

(2) The LFV ·Vf(R, dR,M) is generated in the shells that have
the center at M , and that have radii r f R.

(3) The LFV ·Vf(R, dR,M) has the following amount:

·Vf=̇2Ã ·RS ·R · dR (2.96)

(4) Inherent to the Schwarzschild metric, SSM, there is a LFV
·VSSM,LFV (R, dR,M) (see theorem 2) in the shell with the cen-
ter at M , the radius R and the thickness dR. The comparison
shows that this LFV ·VSSM,LFV (R, dR,M) is equal to the LFV
·Vf(R, dR,M) formed according to the DEQs of the rates.

Corollary 3 Explanation of the curvature of spacetime

of the SSM: The LFV ·Vf(R, dR,M) generated by a mass M
explains

(1) the elongation ·R of lengths dR in the vicinity of M ,

(2) the additional volume ·VSSM,LFV (R, dR,M) in the vicinity
of M ,

(3) the SSM in the vicinity of M

(4) the gravitationally reduced rate of time evolution in the
vicinity of M , as the same elongations ·RSSM(R) = ·Rf(R)
cause the same periodic times TSSM(R) = Tf(R), in a time of
flight measurement of these elongations.
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2.6 Calculation of fields

In this section we show how the gravitational field of masses or
dynamical masses mj can be calculated in a HUF.

First we calculate the potential (see for instance (Bronstein
and Semendjajew, 1980, p. 631-633)) the potential

Ç(~r) = Σj
G ·mj

|~r 2 ~rj|
(2.97)

Secondly, we apply the gradient "
"~r :

"

"~r
Ç(~r) = 2Σj

G ·mj

|~r 2 ~rj|2
· ~r 2 ~rj
|~r 2 ~rj|

(2.98)

We identify the term at the left hand side of the above Eq. by
2 ~G7. So we get:

~G7(~r) = Σj
G ·mj

|~r 2 ~rj|2
· ~r 2 ~rj
|~r 2 ~rj|

(2.99)

Moreover, we identify the terms in the sum by the fields ~G7
j of

the masses:
~G7(~r) = Σj

~G7
j(~r) (2.100)

This Eq. represents the linear superposition of the fields.
Alternatively, we can apply the Gaussian theorem (see for in-

stance (Bronstein and Semendjajew, 1980, p. 631-633)). With
it we get:

4Ã ·G ·
∫

ÃdV =

∫

~G7(~r)d ~A (2.101)

Hereby d ~A represents the oriented surface element of the in-
tegration. For the present case of the masses mj, the integral
∫

ÃdV is equal to the sum of the masses Σjmj. So we obtain:

4Ã ·G · Σjmj =

∫

~G7(~r)d ~A (2.102)

We summarize the result:
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Proposition 8 Calculation of fields and rates:

(1) In a HUF, the gravitational field ~G7 of masses or dynamical
masses mj can be calculated by using the gravitational potential
or by application of the Gaussian divergence theorem:

4Ã ·G · Σjmj =

∫

~G7(~r)d ~A (2.103)

(2) The rate of the LFV can be calculated on the basis of the
fields ~G7 by using the DEQ:

RGS = ·̇2 2G72/c2 = 0 (2.104)

(3) In particular, if the field ~G7(~r) cancels at a location ~r, then
the rate ·̇ of the LFV cancels as well, as a consequence of the
Lorentz scalar RGS with the DEQ RGS = 0.

2.7 Spacetime: scalar and tensor

In this section we apply theRGED uRG and derive an invariant
spacetime scalar and a corresponding spacetime tensor.

For it we apply the fact that uRG is equal to zero. Moreover
we multiply the equation uRG = 0 by 8Ã · G · (·t)2 (2.60). So
we derive:

0 = 2G72 · (·t)2 + c2 · (·V )2

(dV )2
(2.105)

As this term is zero, it represents an invariant with respect to
all linear transformations, including Lorentz transformations.
The positive term represents the time and the negative term
represents the space. So that term is the Lorentz scalar of

spacetime, including gravity, the spacetime scalar, STS.
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That STS is represented by a relativistic square of a corre-
sponding spacetime tensor, STT as follows:

STTi,j =

û

ü

ü

ü

ý

|G7| · ·t 0 0 0

0 c · ·Vx

dV 0 0

0 0 c · ·Vy

dV 0

0 0 0 c · ·Vz

dV

þ

ÿ

ÿ

ÿ

ø

(2.106)

Hence the STS is the following square:

STS = Σ3
i,j=0STTi,j · ·ji · STT i,j = 2G72 · (·t)2 + c2 · (·V )2

(dV )2

(2.107)
We summarize our results:

Definition 10 The RGS can be represented in terms of

the Lorentz scalar of spacetime, including gravity, the

spacetime scalar, STS:

The STS is as follows

STS = 2G72 · (·t)2 + c2 · (·V )2

(dV )2
= 0 (2.108)

The STS can be represented in terms of a relativistic square of
the following spacetime tensor, STT:

STTi,j =

û

ü

ü

ü

ý

|G7| · ·t 0 0 0

0 c · ·Vx

dV 0 0

0 0 c · ·Vy

dV 0

0 0 0 c · ·Vz

dV

þ

ÿ

ÿ

ÿ

ø

(2.109)



Chapter 3

Shortcut in spacetime

The GRT allows various solutions. Some particular solutions
describe connections between very distant points in space. Such
connections within the solutions are often called wormholes (see
for instance Wheeler (1962), Misner et al. (1973), Morris et al.
(1988)).

Such wormholes represent special shortcuts in space. In
this chapter we analyze the possible formation of shortcuts in
space, see Fig. (3.2). For it we use the theory of gravitational
fields developed in chapter one as well as the Planck scale, which
additionally applies quantum physics (see for instance Planck
(1899), Carmesin (2019b)). Thus we analyze shortcuts in space
on the basis of quantum gravity. In particular, we ask the fol-
lowing questions.

1. Can the locally formed vacuum LFV form a shortcut in

spacetime?

2. What energy is sufficient for the formation of a shortcut in
spacetime?

3. Can shortcuts in spacetime change the dimension of the

space?

4. What is a dimensional phase transition, what is its
broken symmetry, and what is its critical density?

73
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3.1 Planck scale

In this section we introduce the Planck scale, as we can use it
for the analysis of shortcuts.

There are two limits of observation or visibility: the uncer-
tainty ∆x and the Schwarzschild radius RS (Heisenberg (1927),
Schwarzschild (1916)). In the following, we combine these two
limits.

According to the Schwarzschild radius, the following applies
to visible regions:

∆x g RS =
2G ·m
c2

=
2G · E
c4

(3.1)

According to the Heisenberg uncertainty relation, the following
applies to a quantum object:

∆x g ~

2 ·∆p (3.2)

Thereby we use the standard deviation:

∆p2 = 〈p2〉 2 〈p〉2 (3.3)

We apply Eq. (3.3) to Eq. (3.2):

∆x g ~

2 ·
√

〈p2〉 2 〈p〉2
g ~

2 ·
√

〈p2〉
(3.4)

Accordingly, the square of the momentum 〈p2〉 must be as large
as possible for the smallest possible uncertainty in position ∆x.
This is the case with high energy of the quantum object. So the
object is relativistic and the corresponding energy momentum
relation holds, E2 j 〈p2〉 · c2. So we get:

∆x g ~ · c
2 · E =

~

2 ·∆p (3.5)

The limit ∆x of the visibility of a spatial structure of a quan-
tum object with an energy E is therefore both proportional to
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E (Eq. 3.1) and proportional to the reciprocal energy 1/E (Eq.
3.1). Fig. (3.1) shows this relationship: Visible according to
Eq. (3.1) is the area to the right of the straight line of origin
(light gray), visible according to Eq. (3.5) is the area to the
right of the hyperbola (medium gray), the intersection (dark
gray) is visible according to both inequalities. The intersection
of the border lines represents an absolute limit of visibility. We
determine this by equating the terms of the two boundary lines,
straight line of origin and hyperbola in Fig. (3.1):

∆x =
~ · c
2 · E =

2G · E
c4

(3.6)

Here we factorize the reciprocal of the left fraction from the
right fraction:

∆x =
~ · c
2 · E =

2 · E
~ · c · ~ ·G

c3
=

1

∆x
· ~ ·G
c3

(3.7)

We solve for ∆x:

∆x =

√

~ ·G
c3

= 1.616 · 10235 m = LP (3.8)

This distance is called Planck length LP . Accordingly, we
resolve for the energy of the intersection point:

E =
1

2
EP with EP =

√

~ · c5
G

= 1.956 · 109 J (3.9)

The energy EP is called Planck energy EP . Further quantities
related to that intersection point are shown in table (9.3). These
quantities are combinations of the universal constants G, c as
well as h and of kB and ë0 more generally. It is natural to use
these five universal constants and the combinations thereof as
units, since in that system of units the universal constants have
the value 1. Accordingly, these units are called Planck units

or natural units. Quantities in natural units are marked by
serpentine line, e.g. Fig. (3.1). We now analyze in more detail,
what physical objects correspond to these two local limits of
observation.
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0 1 2 3 4 5

0

1

2 Ã̃D
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1
2EP

r̃ or ∆x

Ẽ

Figure 3.1: Limits of observation: the standard deviation ∆x and
the Schwarzschild radius r̃ limit the range of observation.

3.1.1 Planck density

Corresponding to the Planck energy, the Planck mass MP is
equal to EP/c

2:

MP =
EP

c2
=

√

~ · c
G

= 2.176 · 1028 kg (3.10)

Accordingly, the Planck density is the Planck mass divided by
the third power of the Planck length:

ÃP =
MP

L3
P

=

√

c5

G2 · ~ = 5.155 · 1096 kg

m3
(3.11)

The highest possible density is half the Planck density. This
can be derived as follows: Among the objects with a radius r,
the black hole with radius r has the highest mass or equivalent
energy (see Fig. 3.1), and so it has the highest density among
these objects too. So the object with the highest density is a
black hole.
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A

B

bending

of 3D space

Figure 3.2: Two distant points A and B (black circles) of the three
dimensional space (symbolized by a solid line) are connected by
locally formed vacuum (dotted). With it, a short way from
A to B is formed: a shortcut. A single shortcut might be
considered as part of a topologically complicated 3D space or
as part of a higher dimensional space.

Next we determine the black hole with the highest density:
For it we express the density of a black hole by its radius:

Ã =
M

R3
S

=
RS · c2
R3

S · 2G =
c2

R2
S · 2G (3.12)

This term takes its maximum at RS = LP .

3.2 Energy of a possible shortcut

In this section we derive the energy that is sufficient in order to
obtain a shortcut in space, see Fig. (3.2). Three energies might
become essential: the energy Econn. for a short connection, the
energy Eloop(L) for a long connection, the energy Ebend for the
bending of the space.

3.2.1 Energy for one short connection

For it we analyze the smallest possible additional connection.
Its length, width and height have the smallest length L of an
object that can be observed at all. It is the Planck length (see
Planck (1899), Carmesin (2020b) or appendix):

L = LP =

√

~ ·G
c3

= 1.616 · 10235m (3.13)
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At that length, the highest possible density is achieved. It is
one half of the Planck density ÃP . (see Planck (1899), Carmesin
(2020b) or appendix):

Ã =
1

2
· ÃP with ÃP =

c5

~ ·G2
= 5.155 · 1096 kg

m3
(3.14)

So the sufficient energy of the short connection Econn. is as
follows (cubes, balls or cylinders are not distinguished at the
Planck scale, if details are essential, a harmonic potential is
adequate (Carmesin (2018b), Carmesin and Carmesin (2020)):

Econn. =M · c2 = 1

2
· ÃP · L3

P · c2 = 1

2
· EP (3.15)

Hereby EP is the Planck energy:

EP =

√

~ · c5
G

= 1.956 · 109J (3.16)

3.2.2 Energy for bending

If a short additional connection forms in three dimensional
space, then the bending of space becomes necessary as illus-
trated in Fig. (3.2).

For instance, the additional connection between the points
A and B (dotted line in Fig. 3.2) becomes relatively short, as a
consequence of the bending of space. How can such a bending
be achieved?

We give a rough estimate for a stationary bending of a size L.
As such a bending can reverse the direction of the propagation
of light, the required energy Ebend is of the order of magnitude
of a black hole of that size:

Ebend(L) jM · c2 with M =
RS · c2
2G

(3.17)

We use L = RS and apply natural units. So we derive:

Ebend(L) j
EP

2
· L
LP

(3.18)
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A
B

Figure 3.3: Two distant points A and B (black circles) of the three
dimensional space (symbolized by a solid line) are connected by
loop way. While travel times of objects or ’correlations’ can
decrease, if these use a short shortcut, this is not so in the case
of a long connection.

3.2.3 Energy for a long connection

In this section we analyze a possible loop way without bending
of space, see Fig. (3.3).

A loop way with a length L can connect the points A and
B at a distance dD=3(A,B) f L. The energy that is sufficient
for such a loop way is L/LP times the sufficient energy of the
connection:

Eloop(L) =
L

LP
· Econn. =

EP

2
· L
LP

(3.19)

As the distance dD=3(A,B) is large compared to the distance of
the additional connection dconn.(A,B) j LP , the energy of the
loop way is large compared to the energy of the connection.

Proposition 9 The newly formed vacuum can form new con-
nections in space with the following properties:

(1) The formation of a short connection with the length LP and
the volume L3

P requires the energy EP/2.

(2) If the connected points have a distance L in D = 3, and if
the short connection is enabled by a stationary bending of the
space, then an additional energy proportional to L is required:

Ebend(L) j
EP

2
· L
LP

(3.20)

(3) If the connected points have a distance L in D = 3, and if the
space is not bent, and if there is no dimensional transition, then
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A

B

Figure 3.4: At high density at the Planck scale, Ã j ÃP , the space
exhibits a grainy structure (dots) at the scale of the Planck
length, L j LP . At such a density, a layer of shortcuts (dotted)
can form spontaneously.

the connection requires a length similar to L, then the energy of
such a loop is as follows:

Eloop(L) =
EP

2
· L
LP

(3.21)

(4) If there occurs a dimensional phase transition, then short
connections can form without bending of space.

3.3 Critical density Ãcr.sc. for shortcuts

In this section we derive the critical density Ãcr.conn., at which
connections of length dL j LP and volume dV j L3

P form
spontaneously, for an illustration of several formed connections
see Fig. (3.4). If the the rate of change of the vacuum inside
the connection ·̇inside =

·V
·t·dV |inside is negative, then the shortcut

permanently looses vacuum, so it vanishes. If the the rate of
change of the vacuum inside the connection ·̇inside would be
larger than zero, then the shortcut would permanently get new
vacuum, so that can happen for a short time only. If the the
rate of change of the vacuum inside the connection ·̇inside is
equal to zero, then the shortcut contains a constant amount
of vacuum, correspondingly, the shortcut is stable. This shows
that the shortcut becomes stable at the condition ·̇inside = 0.
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Hence, at the critical density Ãcr.conn., the rate of change of the
vacuum inside the connection ·̇inside =

·V
·t·dV |inside is zero.

Contributions to the rate ·̇inside: Some vacuum flows from the
connection to neighboring regions A and B, see Fig. (3.5), at
a rate ·̇out. Similarly, some vacuum flows from neighboring re-
gions A and B to the connection at another rate ·̇in. Thirdly,
some some vacuum forms in the connection at a rate ·̇formation.
Next we analyze these rates in detail.

Rate of outward flow: The vacuum dV of the connection can
escape at the velocity of light in two directions, see Fig. (3.5).
For that escape it requires the time dt = LP/c = tP , whereby
tP is the Planck time. Thereby a quantum flows in each of the
two directions with the probability 50 %. Thus during the time
tP , the volume dV of the connection leaves that volume. So the
rate of outward flow is as follows:

·V

·t
|out = 2dV

tP
(3.22)

We solve for the rate per volume:

·̇out =
·V

·t · dV |out = 2 1

tP
(3.23)

Rate of inward flow: As the cube of length LP at a region A has
six equal surfaces, one of which is directed to the connection, the
sixth part of its rate ·V

·t·dV |from A propagates to the connection:

1

6
· ·̇|from A = 2 1

6 · tP
(3.24)

So the rate propagating from A to the connection is positive
and has the absolute value of the above term:

·̇in,from A = +
1

6 · tP
(3.25)
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·V

·V

dV

A ......

B ......

Figure 3.5: Flow of vacuum ·V from dV : We assume that the
vacuum essentially flows to existing vacuum. In order to get an
estimation we analyze cubes with length L j LP .

The same rate propagates to the connection coming from B. So
we get:

·̇in =
2

6 · tP
(3.26)

Rate of formation of vacuum: Additionally, the density Ã of the
connection forms vacuum. The exact rate depends on the sym-
metry. We model and analyze the rate for the unidirectional
formation of vacuum, as it may propagate orthogonal to the
surface of the cube. So we get:

·̇formation =
√

8Ã ·G · Ã (3.27)

Sum of rates: We add the above three rates. So the total rate
is as follows:

·̇inside = ·̇out + ·̇in + ·̇formation (3.28)

We insert the corresponding terms and set the rate to zero:

·̇inside =
21

tP
+

2

6 · tP
+
√

8Ã ·G · Ã = 0 (3.29)

We solve for the root in the above Eq.:

√

8Ã ·G · Ã = 2

3 · tP
(3.30)
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We solve for the density:

Ã =
1

18Ã
· 1

t2P ·G (3.31)

The second fraction in the above is equal to the Planck den-
sity. So we derive the following for the critical density of

spontaneous connection formation, Ãcr.conn.:

Ãcr.conn. =
1

18Ã
· ÃP = 0.018 · ÃP (3.32)

In terms of the Planck density for a ball Ã̄P = ÃP · 3/(4Ã) (see
appendix), we get:

Ãcr.conn. =
2

27
· Ã̄P = 0.074 · Ã̄P (3.33)

3.3.1 Sequence of critical densities

In this section we derive the critical densities Ã̃D,cr,conn. for the
spontaneous formation of shortcuts at dimensions D ranging
from D = 3 to D = 301. For it we apply the dimensional
extension of the FLE, the EFLE (chapter 8 and theorem 25).
We emphasize that we do not apply the results of this section
further in this book, so that any cyclic argument is excluded.

EFLE: We apply the EFLE for the case of negligible curvature
parameter k (Eq. 8.32):

ṙ2

r2
= 22[ED,j] · c2

[〈rj〉2]
(3.34)

Hereby we identify the averages over pairs [〈rj〉2] and [ED,j] by
the corresponding ideal values of cosmology:

ṙ2

r2
= 22ED · c2

r2
(3.35)
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Ã̃D,cr,conn.

D

Figure 3.6: Dimension D as a function of the critical densities
Ã̃D,cr,conn..

.

We multiply by r2, and we apply natural units:

˙̃r2 = 22ED (3.36)

The reduced normalized energy contains a quantum correction
that is numerically not essential here. Accordingly we use the
classical part (Eq. 8.54):

ED,j,cl,G = 2 M̃j

〈r̃j〉D22
(3.37)

Again we use the average over the pairs:

ED,cl,G = 2 M̃

r̃D22
(3.38)

Here we apply M̃ = 1
ã (Sect. 8.2.3). As an approximation, we

use ã j b̃ and b̃ = (2Ã̃D)
21/2 (Sect. 8.2.3):

ED,cl,G = 21

2
· (2Ã̃D)

D21
2 (3.39)

We insert this Eq. into Eq. (3.36):

˙̃r2 = (2Ã̃D)
D21
2 (3.40)
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We apply the root:
˙̃r = (2Ã̃D)

D21
4 (3.41)

We use the chain rule in order to derive the rate of isotropic
formation of vacuum:

˙̃V = D · (2Ã̃D)
D21
4 (3.42)

We derive the corresponding rate for the unidirectional forma-
tion of vacuum. For it we divide by

:
D:

˙̃Vuni =
:
D · (2Ã̃D)

D21
4 (3.43)

Derivation of Ã̃D,cr,conn.: The outward flow in Eq. (3.22) is ex-
pressed in terms of natural units:

˙̃·out = 21 (3.44)

Similarly, the inward flow in Eq. (3.26) is represented in terms
of natural units:

˙̃·in =
1

D
(3.45)

The rate of vacuum formation ˙̃·formation is equal to the rate for
the unidirectional formation of vacuum in Eq. (3.43) divided by
dṼ . For the present case of a cube with length LP , the volume
is dṼ = 1. So we get:

˙̃·formation =
:
D · (2Ã̃D)

D21
4 (3.46)

At the critical density, the sum of these three rates is zero (see
Eq. 3.28):

˙̃·inside = ˙̃·out + ˙̃·in + ˙̃·formation = 21 +
1

D
+
:
D · (2Ã̃D)

D21
4 = 0

(3.47)
We solve for the density:

Ã̃D = Ã̃D,cr,conn. =
1

2
·
(

D 2 1

D3/2

) 4
D21

(3.48)
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Dhigh Dlow Dlow with shortcut

dimensional transition

Figure 3.7: Points (circles) and dimensional connections (dash-
dotted): Dimensional transition from Dhigh (left cube) to
Dlow (middle cube and lower linear representation). At Dlow, a
shortcut (dotted) is formed (right cube).

We present the stable dimensions D as a function of the critical
densities Ã̃D,cr,conn., at which shortcuts form spontaneously at D

(Fig. 3.6): Ã̃D,cr,conn. =
1
2 ·
(

D21
D3/2

)
4

D21

Theorem 10 New vacuum can form new connections.

New connections form spontaneously at densities above the crit-
ical density Ã̃cr.conn. =

2
27.

At higher dimension, there occurs a sequence of critical densities
(Eq. 3.48, Fig. 3.6).

3.4 Geometry in the early universe

In the early universe, there was a high density near the Planck
density ÃP , so it was above the critical density Ãsc.conn.. Hence
the microscopic connections formed spontaneously every-
where. Moreover, the smallest observable length was the Planck
length LP , so the space had a grainy structure, for an illus-
tration see Fig. (3.4).
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A

B

Figure 3.8: Dimensional transition caused by formation of short-
cuts in spacetime near the Planck density, Ã j ÃP : At low
density, space appears continuous (Fig. 3.2). While at high
density near ÃP , space appears grainy (Fig. 3.4) and a high
dimensional connectivity may occur, see above. In order to get
a single and short shortcut connecting two distant points A and
B in 3D space, the 3D space must bend. In contrast, if many
shortcuts form and a dimensional transition takes place, these
Points A and B can be connected by the same short shortcut,
without bending of space at D > 3.

As a result of the spontaneously forming connections, each
point had a high connectivity, corresponding to a high dimen-

sion Dhigh > 3 of the space. For an illustration, see the left
cube in Fig. (3.7), or see Fig. 3.8). The space within the
light horizon had a highest dimension, called the dimensional

horizon, Dhorizon (see Carmesin (2018c) or Chap. 8). At that
highest dimension Dhorizon, the distances of the locations were
roughly equal to the Planck length dDhori

(A,B) j LP .

During the evolution of the universe, the density Ã decreased,
so that the critical density Ãsc.conn. was reached, and the corre-
sponding dimensional transition occurred. Note that the
objects in space experienced corresponding dimensional transi-
tions at similar critical densities, see for inst. Carmesin (2017),
Carmesin (2018a), Carmesin (2019a), Carmesin (2019b).

If D decreases at a dimensional transition, then many di-
mensional connections are lost, and the distances increase (Fig.
2).

During the so-called era of the hypothetical ’cosmic infla-
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tion’, the dimension D decreased by phase transitions, corre-
spondingly that era is better called the era of cosmic un-

folding. Thereby the connectivity of the locations decreased,
the remaining connectivity is illustrated by a dashdotted line
in Fig. (3.7). So matter and radiation can no longer use the
disconnected paths.

However, the newly formed vacuum is not restricted to the
vacuum present in three dimensional space. Above the critical
density Ãcr. conn., it can propagate on the disconnected paths.
When the disconnected paths are available additionally, then
the distance of two points is of the order of the Planck length.

Symmetry breaking: Four dimensional space exhibits four mu-
tually orthogonal directions of translation invariance. In con-
trast, three dimensional space exhibits only three mutually or-
thogonal directions of translation invariance. So a transition
for four to three dimensions eliminates one of these symme-
tries. This process is called spontaneous breaking of sym-

metry. Such spontaneous breaking of symmetry characterizes a
phase transition (Landau and Lifschitz (1979)). Correspond-
ingly, such a change of the dimension of space is a dimensional

phase transition.

Theorem 11 New vacuum can form new connections

that can cause dimensional phase transitions.

(1) New connections can utilize short paths that are relatively

orthogonal to 3D space, see Fig. (3.7). If they can use
disconnected paths that had been connected in the early universe,
then the required energy is E j EP

2 .

(2) New connections can use spontaneously forming short paths,
so that a higher dimension is constituted, see Figs. (3.6,
3.7, 3.8). Thereby, the space within the light horizon can form
dimensions up to the dimensional horizon Dhori.
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Figure 3.9: Schematic evolution of the energy in the LUF of a
reference object that experiences a redshift, and that is falling
towards a black hole: At a radius Rcr. conn. > RP > RS, the
energy reaches a critical density Ãcr. conn. so that shortcuts form
spontaneously.

3.5 Energy skin

In order to analyze regions that can provide densities above
Ãsc.conn., we analyze the area in which most energy of a black
hole is located, in this section.

For this purpose, we analyze an object falling towards a black
hole with a Schwarzschild radius RS, see Fig. (3.9). Thereby,
the object can experience a redshift, and it has a periodic time
T> and an energy h/T> at a distance R ³ >. While the object
is falling, it experiences a blue shift, and we derive the radius
RÃP , at which the object reaches the highest possible energy,
EP/2 (see for instance Carmesin (2020c), Carmesin (2020b) or
the appendix). At a distance R, the periodic time is equal to
T> multiplied by the position factor ë(R) =

√

12RS/R. So
we obtain:

EP

2
=

h

T> ·
√

12RS/RÃP

(3.49)

In order to simplify that Eq., we use EP = ~/tP , we solve for
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the root, and we apply T̃> = T>/tP . So we get:
√

12RS/RÃP =
4Ã

T̃>
(3.50)

Next we solve for RÃP :

RÃP = RS · T̃ 2
>

T̃ 2
> 2 16Ã2

> RS (3.51)

Hence the density of the object would tend to the highest pos-
sible density ÃP/2 at RÃP . However, even before that den-
sity is reached, the density Ãcr. conn. is achieved at a radius
Rcr. conn. > RÃP , and shortcuts form spontaneously. We sum-
marize our results:

Theorem 12 Energy skin:

For each object that does not prevent a gravitational collapse,
the following holds:

(1) There is a radius Rcr. conn. > RS at which the critical density
Ãcr. conn. for the spontaneous formation of a shortcut is reached.

(2) When the object forms by an infall of energy or matter, then
the density Ã(R) increases and when it reaches Ãcr. conn., then a
shortcut forms spontaneously.

(3) As a consequence of the shortcut, the LFV is equal to the
NFV and it is equal to one half of the CFV:

LFV = NFV =
1

2
· CFV (3.52)

(4) The shortcut forms by a gravitational instability. Thus the
energy and mass of the black hole are located at a small spherical
skin with radius Rcr. conn. in three dimensional space, and that
skin additionally is part of the shortcut propagating orthogonal
to three dimensional space. That skin is called energy skin.

(5) As the shortcut is constituted by vacuum, its building block
propagates at the velocity of light.
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R = 0 center of energy

RS = LP E = EP

2

R = RÃP

R = Rcr. conn. »model,internal = h · T> · ë(Rcr. conn.)

R E> = h
T>·ë(R) · ë(R)

ELUF,own = h
T>·ë(R)

»LUF,own = h · T> · ë(R)

R ³ > E> = EHUF,own = h
T>

»HUF,own = h · T>

Figure 3.10: A freely falling photon in a HUF , LUF and
model. A freely falling atom is similar: EHUF,own = m0 · c2.
ELUF,own = m0 · c2/ë(R). Model: E is mainly focused at
the nucleus. The scattered atom exhibits »LUF,own, though
»LUF,nucleus < »LUF,own.

3.6 Energy skin of a photon

In this section we apply the fact that the extension R of a
photon reaches the Planck length LP at the energy EP/2, see
Fig. (3.1). That relation enables two interpretations:

This is usually interpreted by a photon that falls freely to a
body, whereby the photon exhibits a blue shift until its energy
is EP/2 and its extension is LP .

Moreover that relation can be interpreted by a model in
which a photon exhibits an internal distribution of energy, and
that distribution experiences a gravitational collapse with a cor-
responding blue shift or contraction. In that case the photon
can form an energy skin. We emphasize that this model is not
used in the rest of this book.

Internal model of a photon: The model essentially is constituted
as follows: A photon might exhibit a gravitational collapse in an



92 CHAPTER 3. SHORTCUT IN SPACETIME

internal model frame, whereby the usual blue shift occurs, and
a short wavelength »model,internal forms, see Fig. (3.10). The
wavelength is approximately equal to the extension R of the
photon, R j ».

Observer: An observer in a LUF measures the wavelength of
the photon »LUF,own. For instance, that wavelength is observed
by a diffraction experiment:

»LUF,own = »observed =
e.g. »diffraction (3.53)

In a scattering experiment for instance, »LUF,own is measured.
With it the own energy of the photon in the LUF can be derived:

ELUF,own =
h · c

»LUF,own
=

h

TLUF,own
(3.54)

At the Planck scale we get:

EP

2
=
h · c
»P

(3.55)

We derive the ratio of the above two Eqs.:

EP

2 · ELUF,own
=
»LUF,own

»P
(3.56)

The ratio of the wavelengths is equal to that of the radii:

EP

2 · ELUF,own
=
»LUF,own

»P
=

R

LP
(3.57)

We solve for R:

R = LP · EP

2 · ELUF,own
(3.58)

The photon becomes a black hole, when its density reaches the
Planck density, and when its radius R reaches LP , see Fig. (3.1).
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So the Schwarzschild radius of the photon is LP , and its position
factor is as follows:

ëphoton(R) =

√

12 LP

R
=

√

12 »P
»LUF,own

=

√

12 »P
»observed

(3.59)
In order to derive a term for »P , we use the following relations
at the Planck scale:

~c

LP
= EP = ~ËP =

h

T (LP )
=
hc

»P
(3.60)

We solve for »P :
»P = 2Ã · LP (3.61)

LP represents the limit of observation (Fig. 3.1), Carmesin
(2017)), and it corresponds to the energy ~ËP

2 of a ZPO. In con-
trast, »P is a reference wavelength corresponding to the energy
~ËP . We apply Eq. (3.61) to Eq. (3.59) and solve for R:

R =
»LUF,own

2Ã
=
»observed

2Ã
(3.62)

HUF: If the universe expands, then the fraction Ãr
ÃΛ

decreases.
In the limit Ãr

ÃΛ
³ 0, a HUF or HUFv is reached. In it the

photon exhibits a wavelength »HUF,own ³ >. So its extension
tends to infinity as well RHUF,own ³ >, see Fig. (3.10).

Energy: The energy of the photon that can be observed in a
LUF is the Planck constant h divided by the periodic time T :

ELUF,own =
h · c

»LUF,own
=

h

TLUF,own
(3.63)

The periodic time TLUF,own in a LUF is equal to the periodic
time T> in a HUF , multiplied by the position factor:

TLUF,own(R) =

√

12 LP

R
· T> (3.64)
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We solve for T>:

T> =
TLUF,own(R)
√

12 LP

R

(3.65)

With it we derive the energy in the HUF :

E> =
h

T>
(3.66)

This energy is an invariant, and the energy function is charac-
terized by the position factor

E> =
h

T> · ë(R) · ë(R) =
h

T (R)
· ë(R) = invariant (3.67)

We summarize our results:

Proposition 10 Energy conservation of a photon:

(1) If a mass or dyn. mass M =MP is at the center of a HUF ,
and if a photon falls freely towards M , then the following holds:

(1a) An observer in a LUF can measure the wavelength »LUF,own

and periodic time TLUF,own of the photon.

(1b) Based on the measured wavelength »LUF,own, the energy
ELUF,own and period TLUF,own of the photon can be evaluated:

ELUF,own =
h · c

»LUF,own
=

h

TLUF,own
(3.68)

(1c) Using the measured wavelength »LUF,own, the extension R
and the position factor ë(R) of the photon can be evaluated:

R =
»LUF,own

2Ã
and ëphoton(R) =

√

12 LP

R
(3.69)

(1d) Applying the measured wavelength »LUF,own, the periodic
time T> and the energy E> of the photon in a HUF or HUFv

can be evaluated:

T> =
TLUF,own(R)
√

12 LP

R

=
T (R)

√

12 LP

R

and E> =
h

T>
(3.70)
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(1e) The energy of the photon in the vacuum HUF is invariant.
The energy function provides a relation between the measured
own energy in a LUF h

T (R) and the position factor ë(R):

E> =
h

T> · ë(R) · ë(R) =
h

T (R)
· ë(R) = invariant (3.71)

(2) If the internal model of the photon is applied, then the pho-
ton contains an internal energy skin. As a consequence, the
photon spontaneously forms a shortcut.

3.7 Explanation of NFV

In this section we develop an explanation of the NFV. For it
we summarize objects that do not prevent a gravitational col-
lapse towards the Schwarzschild radius. Using theorem (12) we
conclude that these objects form as much NFV as LFV:

3.7.1 NFV of visible particles

As visible particles can form electromagnetic radiation in the
process of pair creation (Tanabashi et al. (2018)), such parti-
cles have the ability to enclose light. So they presumably form
shortcuts in a similar manner. This will be elaborated in full
detail in a next volume of the present book series Universe:

Unified from Microcosm to Macrocosm.

Theorem 13 An explanation of nonlocality of GRT:

(1) Objects that do not prevent a gravitational collapse towards
RS form an energy skin (see theorem 12).

(2) The following objects do not prevent a gravitational collapse
towards the Schwarzschild radius: black holes, photons (Prop.
(10), elementary particles of dark matter (Carmesin (2019b)),
microscopic black holes (Carmesin (2020b)), presumably ele-
mentary particles of visible matter (Sect. 3.7.1).



96 CHAPTER 3. SHORTCUT IN SPACETIME

(3) At the energy skin of a black hole, one half of the vacuum
CFV flows outwards, while one half of the CFV flows into the
shortcut and leaves the shortcut at a location that is uncorrelated
to the black hole in three dimensional space. This explains the
result that one half of the CFV is NFV (see theorem 5).

(4) Part (2) shows that most objects and presumably all objects
form an energy skin. This explains at a local frame the fact that
the amounts of LFV and NFV are equal.

(5) Additionally, the vacuum exhibits nonlocality, as it is only
a component of the spacetime (Sect. 2.7).



Chapter 4

EPR Paradox

Based on the shortcuts developed in the previous chapter, we
derive a second solution of the EPR paradox in this chapter.

4.1 Summary of the EPR paradox

Einstein et al. (1935) proposed a thought experiment as follows.

Prepared state: Two particles move along the x-axis as illus-
trated in Fig. (4.1). The difference of the locations ∆x = x22x1
and the sum of the momenta p = p1 + p2 = 0 can be measured
simultaneously, as their commutator vanishes:

[x22x1, p1+p2] = (x22x1) ·(p1+p2)2(p1+p2) ·(x22x1) (4.1)

We expand and identify commutators:

[x2 2 x1, p1 + p2] = [x2, p2] + [x2, p1]2 [x1, p2]2 [x1, p1] (4.2)

The commutators for different particles vanish, while [x2, p2] =
i~ = [x1, p1]. So we get:

[x2 2 x1, p1 + p2] = 0 (4.3)

Proposed concept of physical reality: Einstein et al. (1935) pro-
posed: If we can predict precisely the value of a physical quan-
tity, then there is a corresponding element of physical real-

ity.

97
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∆x = x2 2 x1 can be measured

p = p1 + p2 = 0 can be measured simultaneously

Figure 4.1: Two quantum objects in a particular state: Two quan-
tum objects (balls) are at a large distance and move apart.
Thereby the distance ∆x and the momentum p can be mea-
sured simultaneously.

D1 measures x1
then D2 measures x2

Figure 4.2: Prediction of nonlocally measured value x2: If x1 is
measured by a detector D1, and if a detector D2 measures x2
later, then we can predict the value x2 = x1 +∆x.

Possible measurement of x1: First we measure x1 with a detector
D1 as illustrated in Fig. (4.2). Then we measure x2 with a
detector D2. For it, we can predict precisely the value x2 =
x1 + ∆x. So we conclude: x2 is an element of physical

reality.

Possible measurement of p1: First we measure p1 with a detector
D1 as illustrated in Fig. (4.3). Then we measure p2 with a
detector D2. For it, we can predict precisely the value p2 =
p2p1. So we conclude: p2 is an element of physical reality.

Apparent paradox: Both, x2 and p2 are elements of physical
reality, so they can be predicted precisely. However, these two
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D1 measures p1 then D2 measures p2

Figure 4.3: Prediction of nonlocally measured value p2: If p1 is
measured by a detector D1, and if a detector D2 measures p2
later, then we can predict the value p2 = p2 p1.

physical quantities obey the Heisenberg uncertainty relation:

∆x2 ·∆p2 g
~

2
(4.4)

So these two values cannot both be determined precisely. This
establishes an apparent paradox, the EPR paradox.

About paradoxes: In general, a paradox is an apparent con-
tradictory situation, the solution of which provides a deeper
insight. Accordingly, we should solve that EPR paradox, in
order to achieve that deeper insight.

4.2 Consequences of a measurement

If the detector D1 performs a measurement, then the wave func-
tion Ëstate prepared according to Fig. (4.1) is modified immedi-
ately.

If the detector D1 measures x1, then x2 can be predicted.
However, if the detector D1 measures p1, then p2 can be pre-
dicted. Altogether, the measurements of the detector D1 do not
enable the predictability of the pair (x2|p2).

First insight: As the detector D1 modifies the wave function
Ëstate as a consequence of a measurement, D1 selects which of



100 CHAPTER 4. EPR PARADOX

D1 measures p1

then D2 measures p2

Figure 4.4: Nonlocal change of the wave function: If p1 is mea-
sured by a detector D1, then the wave function (solid line)
changes nonlocally to the new wave function (dashed). This
enables the conservation of momentum, thus we can predict the
value p2 = p2 p1.

the two values x2 and p2 can be predicted. Hence the measure-
ments of D1 do dot generate any contradiction to the uncer-
tainty relation in Eq. (4.4).

4.3 Nonlocality

The measurements of D1 do dot generate any contradiction to
the uncertainty relation in Eq. (4.4), but the detector changes
the wave function Ëstate much faster than a signal propagating
at the velocity of light could modify that wave function Ëstate.

If an event occurs at a pair (x1|t1) and causes an effect at a
pair (x2|t2), and if light is too slow in order to start at (x1|t1)
and arrive at (x2|t2), then the effect is nonlocal.

Second insight: The detector D1 modifies the wave function
Ëstate in a nonlocal manner as illustrated in Fig. (4.4).

4.4 Necessity of nonlocality

If the measurement of p1 by detector D1 would not change the
wave function in a nonlocal manner, then the measurement of p2
by detector D2 could provide a value different from p2 = p2 p1,
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D1 measures p1

then D2 measures p2

Figure 4.5: Nonlocal change of the wave function: If p1 is mea-
sured by a detector D1, then the wave function (solid line)
changes nonlocally to the new wave function (dashed). This
enables the conservation of momentum, thus we can predict the
value p2 = p2 p1.

as in quantum physics there is a stochastic element (Fig. 4.4).
Then the conservation of momentum could be violated. In this
manner the nonlocal change of the wave function provides the
fulfillment of the conservation law of momentum.

Third insight: The nonlocal modification of a wave function
Ëstate causes the fulfillment of the conservation laws in spite of
the stochastic elements in quantum physics (Fig. 4.4).

4.5 Possible solution of the EPR paradox

In this section we develop a possible second solution of the EPR
paradox. The idea is that a particular difference wave function
can use the additional shortcuts.

4.5.1 Additional paths

In this section we summarize the additional paths that might
be available in order to fulfill the conservation laws (Sect. 4.4).
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In the early universe, the locations were connected in a high
dimensional space. For an illustration, eight locations are ar-
ranged in three dimensions, D = 3, as illustrated in Fig. (4.5).
The distances of the locations were roughly equal to the Planck
length r j LP . During the so-called era of the hypothetical ’cos-
mic inflation’, the dimension D decreased by phase transitions,
correspondingly that era is better called the era of cosmic un-

folding. Thereby the connectivity of the locations decreased,
the remaining connectivity is illustrated by a dashdotted line
in Fig. (4.5). So matter and radiation can no longer use the
disconnected paths.

4.5.2 Use of additional paths

However, an uncollapsed wave function Ëstate can react with
some physical object such as a detector, an atom, a molecule
or an elementary particle, for instance. Thereby, changes of the
wave function Ëstate can in principle propagate at or below the
velocity of light by using these disconnected paths. So such
changes can propagate to any other location during roughly
one Planck time. Hereby, the wave function Ëstate fulfills all
laws of relativity as the modifications propagate at velocities at
or below c. Hence the apparent contradiction between quan-
tum physics and relativity is resolved, and the apparent EPR
paradox is solved.

4.5.3 Wave functions and additional paths

The wave function must fulfill the principle of linear superposi-
tion. So a part of Ëstate reaches D1:

Ëstate,1 = Ëstate 2 Ëstate,2 (4.5)

During the measurement, the probability is one for the mea-
sured state:

1 = |Ëstate,1,m|2 (4.6)
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In general, this wave function Ëstate,1,m is not equal to Ëstate,1.
So the measurement leaves a deficit:

Ëstate,1,deficit = 2Ëstate,1,m + Ëstate,1 (4.7)

This deficit immediately propagates via the shortcuts to D2: So
at D2 we have:

Ëstate,2,m = Ëstate,2 + Ëstate,1,deficit (4.8)

Next we test the principle of linear superposition. For it we
insert Ëstate,2 = Ëstate 2 Ëstate,1 and Ëstate,1,deficit = 2Ëstate,1,m +
Ëstate,1:

Ëstate,2,m = Ëstate 2 Ëstate,1 2 Ëstate,1,m + Ëstate,1 (4.9)

We solve for Ëstate:

Ëstate,2,m + Ëstate,1,m = Ëstate (4.10)

So the principle of linear superposition also holds at the moment
of the measurement. For it the deficit wave function uses the
shortcuts.

In particular, in the case of the example with the momenta,
the wave function Ëstate,1,m is representing the measured mo-
mentum, so it has little uncertainty in momentum. That deficit
wave function transfers this little uncertainty of the momen-
tum to the detector D2. So that detector measures the correct
momentum.

Fourth insight: The nonlocal modification of a wave function
Ëstate is provided by the propagation of the deficit wave func-
tion Ëstate,1,deficit along paths of the early universe that are dis-
connected for matter and radiation, but that are available for
Ëstate,1,deficit. (Fig. 4.5).

We summarize our results:
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Theorem 14 Second solution of the EPR paradox:

The NFV and each nonlocal object can use the omnipresent
spontaneously emerging shortcuts in space (see theorem (12).
So these objects can reach any place in the universe at a time
that is of the order of the Planck time.

In particular, the deficit wave function

Ëstate,1,deficit = 2Ëstate,1,m + Ëstate,1 (4.11)

can use these paths. Thereby they can provide the conservation
laws at a microscopic level.

This solution solves the nonlocality as follows: Paths that are
nonlocal in three dimensional space are local in high dimen-

sional space. Moreover such paths have a length of the or-
der of LP , as shortcuts are used. Furthermore, these shortcuts
are short in higher dimensional space. Thereby these short-
cuts are energetically available, as they do not require any bend-
ing of three dimensional space in higher dimensional space. So
the NFV becomes locally formed vacuum using shortcuts,

LFVUS.



Chapter 5

Waves of Spacetime

In this section we derive DEQs for the formation of spacetime
that have waves as solutions.

5.1 Problems of spacetime: waves

Einstein (1905) introduced the concept of spacetime, including
curved spacetime (Einstein (1915a)). There remain essential
questions: For instance, Planck (1900) introduced the concept
of quantization, inherent to which is the phenomenon of non-
locality, which is apparently paradoxical to spacetime (Ein-
stein et al. (1935)). We solved some of the problems by using
fields (Sect. 1.1). Some of the problems can be addressed by
using waves:

1. What is the DEQ for waves of spacetime?

2. Is that DEQ a HUF zero Lorentz scalar, HZLS?

3. Why are the waves described by that DEQ rate gravity

waves, RGWs?

4. Do the RGWs describe the physically correct amount

of LVF?

5. What is the energy of RGWs in the HUF?

105
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6. How does gravity propagate through space?

7. What are the modes of RGWs?

5.2 DEQs for waves in vacuum

In this section we derive the DEQ that describes the formation
of vacuum at a mass or at a dynamical mass and the propagation
of waves.

For it we analyze the DEQ (2.76):

[Trace( ˙̂·ij)]
2 =

Trace(Gij)

c2
(5.1)

For the case of vacuum, the gravitational tensor is established
by a gravitational field in a direction j, corresponding to an
unidirectional symmetry.

Trace(Gij)

c2
=
G72

j

c2
(5.2)

In that case the rate has unidirectional symmetry as well:

Trace( ˙̂·ij) = ˙̂·j (5.3)

With it we get the DEQ:

˙̂·2j 2
G72

j

c2
= 0 (5.4)

Hence we find a homogeneous DEQ for the case of vac-

uum. Later we analyze the case with additional objects in the
space by analyzing corresponding inhomogeneous DEQs and
their solutions additionally. Moreover, we form linear combina-
tions of the unidirectional solutions, these include other symme-
tries such as the isotropic symmetry of the expansion of space.
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Potential: We analyze fields without a rotational part. So we
can express the field in terms of a potential:

G7
j = 2 "

"j
Ç = 2"jÇ (5.5)

Thereby we denote the derivative by the operator "j. So we get
the following homogeneous DEQ:

·̇2j 2
("jÇ)

2

c2
= 0 (5.6)

Alternative derivation: This DEQ can also be obtained from
the DEQ (2.57)

RGS = ·̇2 2G72/c2 = 0 (5.7)

by application of Eq. (5.5).

5.2.1 DEQ in 4D spacetime

The above DEQ represents a DEQ in four dimensional space-
time. In this section we elaborate that formulation. For it we
apply Eq. (5.5) to the rate gravity four-vector in theorem (7)

RGVi =

û

ü

ü

ý

·̇

G7
x/c

G7
y/c

G7
z/c

þ

ÿ

ÿ

ø

(5.8)

and derive a slope four-vector as follows:

Γ̄i =

û

ü

ü

ý

c · "t·
"xÇ

"yÇ
"zÇ

þ

ÿ

ÿ

ø

(5.9)

With it we represent the DEQ (5.6) in terms of the slope

four-vector, Γ̄.

Γ̄i ·
i
j Γ̄

j = c2 · ("t·r)2 2 ("~rÇ)
2 = 0 (5.10)
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Hereby, "~r denotes the derivative in the direction of propagation
~r, and "t·r represents the unidirectional rate of formation of
vacuum. It appears quite obvious that this DEQ has solutions
that are periodic in time and space, these are waves. So the
DEQs (5.10) and (5.6) are DEQs of waves. We summarize:

Theorem 15 Four-vector and DEQ of vacuum.

(1) Formation of vacuum is described by the slope four-vector:

Γ̄i =

û

ü

ü

ý

c · "t·
"xÇ
"yÇ
"zÇ

þ

ÿ

ÿ

ø

(5.11)

(2) The relativistic square of Γ̄i represents a Lorentz scalar and
a DEQ for the formation of vacuum:

Γ̄i ·
i
j Γ̄

j = c2 · ("t·r)2 2 ("~rÇ)
2 = 0 (5.12)

(3) So that DEQ for waves is a HUF zero Lorentz scalar,

HZLS. So it is highly invariant.

5.3 Wave in vacuum

In this section we derive solutions of the above homogeneous

DEQ (5.6). For it we make an Ansatz for plane waves propa-
gating in the direction j

·j = ·̂j,Ë · exp(i · Ë · t2 i · kj · rj) + ·̂j,const. and (5.13)

Çj = Ç̂j,Ë · exp(i · Ë · t2 i · kj · rj) + Ç̂j,const. (5.14)

Hereby, ·̂j,const. and Ç̂j,const. are constants of integration. More-
over, the amplitudes ·̂j,Ë include the polarization, this is elab-
orated in section (5.3.2). Furthermore, the amplitudes Ç̂j,Ë are
derived in Eq. (5.18).
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We insert into the DEQ (5.6):

·̂2j,Ë · Ë2 =
k2j
c2

· Ç̂2j,Ë (5.15)

The velocity of propagation is:

vprop =
»

T
=
Ë

kj
(5.16)

As no velocity relative to the vacuum can be measured (see
Michelson and Morley (1887)), the vacuum is fully relativistic.
Hence it propagates at the velocity of light in the vacuum c.
So we get:

vprop = c =
Ë

kj
(5.17)

We apply this result to (Eq. 5.15):

Ç̂j,Ë = ·̂j,Ë · c2 (5.18)

5.3.1 Elongations of these waves

According to the DEQ (5.4), the elongations of the waves rep-
resent the rates of the formation of vacuum and gravitational
fields. Accordingly, we call such a wave a rate gravity wave,

RGW. As these waves include the formation of vacuum (Eq.
5.13) and the formation of a potential (Eq. 5.14), they include
the usual gravitational waves as special cases.

5.3.2 Polarization of waves

The wave oscillates in particular directions. These are described
by the tensors ·̂³³.

In order to provide relatively short formulas, we include these
tensors in the amplitude. Accordingly, our index j, Ë that sum-
marizes the index Ë of the circular frequency, the index j of the
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z

Figure 5.1: Single mode with periodic time T of a gravitational
wave propagating to the z direction: Locations in space are
indicated by small dots visually combined by dotted lines. The
deviations from the metric tensor gij of flat space are as follows:
gyy 2 1 = hyy = cos

(

2Ã
T · t

)

= 2hxx = 2(gxx 2 1).

direction of propagation, the indices of the tensor elements ³
and ³³, and a possible index q denoting the tensor. So we get:

·̂j,Ë=̂·̂j,Ë,q,³³ (5.19)

In general, these tensors can provide the formation of vac-
uum, This case will be worked out in the following sections (5.4)
and (5.5).

In a particular case, these tensors provide no formation of
vacuum. In this case, the waves represent the usual gravita-
tional waves, and the corresponding tensors are presented in
Eqs. (2.77) and (2.78).

5.3.3 Gravitational waves

On the basis of the GRT, Einstein (1916) derived fully relativis-
tic waves of spacetime, the so-called gravitational waves (Fig.
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5.1). Abbott (2016) discovered these waves by using Michelson
interferometers. These waves can be described as plane waves
with transverse polarization.

So the waves described here in Eq. (5.13) include the ob-
served gravitational waves mathematically. However, the ob-
served gravitational waves have been generated by a binary
star, whereas we consider RGWs in general. So the physical
circumstances at which the RGWs form may be quite different.

5.3.4 Linear combinations

As the principle of linear superposition is applicable to the rate
gravity waves, RGWs, all discrete and continuous linear combi-
nations of the above plane waves are solutions of the homoge-
neous DEQ as well. This includes waves with other symmetries
such as rotational symmetry, for instance. Moreover this in-
cludes aperiodic elongations.

5.3.5 Real RGWs

In this section we derive real RGWs. For it we form linear
combinations of the RGWs in Eq. (5.13):

·j,Ë = ·̂j,Ë · exp(i · Ë · t2 i · kj · rj) + ·̂j,const. (5.20)

The first linear combination uses the functions with circular
frequencies Ë and 2Ë and with the same amplitude ·̂j,Ë:

·j,Ë,c =
·j,Ë + ·j,2Ë

2
=
·̂j,Ë
2

·
(

ei(Ët2kjrj) + e2i(Ët2kjrj)
)

+ ·̂j,const.

(5.21)
In the above Eq. we identify the cosine:

·j,Ë,c = ·̂j,Ë · cos(Ët2 kjrj) + ·̂j,const. (5.22)
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The second linear combination analogously provides a sine func-
tion:

·j,Ë,s =
·j,Ë 2 i·j,2Ë

2i
=
·̂j,Ë
2i

·
(

ei(Ët2kjrj) 2 ie2i(Ët2kjrj)
)

+ ·̂j,const.

(5.23)
Here we identify the sine:

·j,Ë,s = ·̂j,Ë · sin(Ët2 kjrj) + ·̂j,const. (5.24)

We summarize our results as follows:

Theorem 16 Properties of RGWs:

The RGWs (Eqs. 5.13 and 5.14)

·j = ·̂j,Ë · exp(i · Ë · t2 i · kj · rj) + ·̂j,const. and (5.25)

Çj = Ç̂j,Ë · exp(i · Ë · t2 i · kj · rj) + Ç̂j,const. (5.26)

have the following properties:

(1) Some RGWs are plane waves or discrete or continuous
linear combinations of these. These include real waves and
waves with various symmetries, as the plane waves establish a
complete orthonormal basis ((Ballentine, 1998, p. 17-22)).

(2) RGWs propagate at the velocity of light c.

(3) RGWs represent the rates ·̇ of the formation of vacuum.

(4) RGWs can have transverse tensors with trace zero, corre-
sponding to constant volume and to gravitational waves.

(5) RGWs include a relative formed vacuum · = ·V
dV as a time

integral of the rates ·̇. So · represents some accumulated

new vacuum. As all vacuum was new vacuum at some time,
the vacuum is part of the RGWs. In this manner, the vacuum
propagates at the velocity of light.

(6) In particular, that accumulated formed vacuum represented
by · is essential for the SSM. In particular, it explains the grav-
itational time dilation, including the formation of spacetime
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HUF
M

dV

r

G∗

ÃG7

·Vshell

dr

Figure 5.2: A mass M generates a field G7 in a shell (medium
grey) around M and with volume dV . The density ÃG7 of the
field forms vacuum with a volume ·Vshell.

(Eqs. 5.13 and 5.14) for the following reason: The LFV ·V

gives rise to the elongation ·R of the SSM. In a time of flight
measurement using light, the elongation ·R corresponds to an
additional time ·t = ·R/c. Altogether, the time dilation of

the SSM is a consequence of the LFV.

(7) RGWs represent the gravitational fields ~G7 = 2"~xÇ. So
the fields and the gravitational interaction propagate

with the velocity of light.

(8) RGWs include a gravitational potential Ç as an inte-
gral of the fields. So the potential represents some accumu-

lated fields. As all potential was accumulated at some time
(see Carmesin (2020b)), the potential is part of the RGWs.
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5.4 Inhomogeneous DEQ

In this section we derive the DEQ for the case in which there
are additional objects in the vacuum.

For it we start with the homogeneous solutions. These are
the RGWs ·̇j, see Eqs. (5.13) and (5.14). In order to emphasize
the homogeneity of the DEQ, we add the index hom: ·̇j,hom.

Each additional object in the vacuum can be described by a
mass or a dynamical mass or by a density. In all these cases,
an additional rate ·̇inhom of formation of vacuum is caused (see
chapter 1).

As the principle of linear superposition can be applied to the
vacuum (see section 1.3), this rate can be added to the rate of
the homogeneous solution:

·̇j = ·̇j,hom + ·̇j,inhom (5.27)

For instance, for the case of an unidirectional inhomogeneity,
the DEQ is as follows:

·̇j,inhom =
√

8ÃG · Ã (5.28)

For that case, we add the above DEQ to the homogeneous DEQ.
So we get the DEQ describing the formation and propagation
of RGWs:

·̇j,hom + ·̇j,inhom 2G7/c =
√

8ÃG · Ã (5.29)

5.5 Inhomogeneous solution at a mass

In this section we derive the propagating rate generated by a
mass M . In a shell with radius r and thickness dr, the mass
generates the volume ·Vshell during a time ·t as follows (see Eq.
2.88 and Fig. 5.2):

·Vshell = 2Ã ·RS · dr · ·t · c (5.30)
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We use the elongation generated in the shell d·(r) = ·Vshell

dV , and
we utilize dV = 4Ã · r2 · dr:

d·(r) =
RS · ·t · c

2r2
(5.31)

Next we divide by ·t, and we use RS = 2GM/c2. Moreover we

use the notation ··(r)
·t = ·̇(r). Hence a mass M generates the

following stationary rate of formation of vacuum:

·̇(r) =
1

c
· G ·M

r2
(5.32)

Next we identify the absolute value G7(r) = G·M
r2 of the grav-

itational field in the above Eq.:

G7(r)

c
= ·̇(r) at a distance r from a mass (5.33)

As both signs are possible (in a Big Crunch for instance), we
apply the square:

G72(r)

c2
= ·̇2(r) at a distance r from a mass (5.34)

In order to derive a DEQ of a wave, we express ~G7 by the
derivative of a potential "~rÇ(~r). So we get:

("~rÇ(~r))
2

c2
= ·̇2(r) (5.35)

This DEQ is a DEQ of a wave. It shows that the inhomogeneous
solution obeys a DEQ of a wave. As the energy of a RGW is zero
in the HUF or HUFv, the field and rate of the inhomogeneous
solution can always propagate by a wave that forms in addition
to the stationary rate in Eq. (5.32).

In order to derive the density of the solution Ãstationary, we
multiply Eq. (5.34) with 1

8Ã·G . So we get:

G72

8Ã ·G · c2 =
·̇2(r)

8Ã ·G at a distance r from a mass (5.36)
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At the left hand side of that Eq., we identify the density of the
field Ãf,stationary. It represents the whole density of that solution
Ãstationary, as that solution is stationary:

Ãstationary =
G72

8Ã ·G · c2 (5.37)

It is equal to the right hand side of Eq. (5.36). So we can
express that density by the rate ·(r):

Ãstationary(·̇) =
·̇2

8Ã ·G (5.38)

This relation shows the density as a function of the rate ·̇ of
the formation of vacuum, irrespective of the mass or the field.
We summarize our results:

Theorem 17 The LVF formed according to the DEQ of

the RGW is equal to the LFV according to the SSM.

The rate ·̇(r) of the local formation of vacuum, LFV, has the
following properties:

(1) According to the DEQ of the wave, a mass M generates the
volume

·Vshell = 2Ã ·RS · dr · ·t · c (5.39)

It is equal to the volume generated according to the SSM (see
theorem 2).

(2) The corresponding stationary rate can be expressed as a
function of the mass or dynamic mass, irrespective of the field:

·̇(r) =
1

c
· G ·M

r2
(5.40)

(3) The stationary field G7 and the stationary rate ·̇ obey the
DEQ of the wave, and the RGW does not require energy in the
HUF . Correspondingly, the field propagates at the velocity of
light in the form of a RGW.
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form
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self gravity
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Figure 5.3: Energy density of a RGW in the HUF. The signs are
essentially different from those of an electromagnetic wave, so
that the usual representation by harmonic oscillators (Ballen-
tine (1998)) is excluded here.

(4) So RGWs can permanently form vacuum.

(5) As another consequence, the constant relative volume · = ·V
dV

of a RGW is a time integral mathematically, and accordingly it
represents the accumulated formed vacuum, physically.

(6) The energy density of that RGW can be expressed as a func-
tion of the field or as a function of the rate ·̇, see Eq. (5.38):

Ãstationary(·̇) =
·̇2

8Ã ·G (5.41)

5.6 Energy of RGWs

In this section we analyze the energy of the waves (Eq. 5.13).
They are solutions of the DEQ (5.6). In order to obtain the
energy density, we replace the potential by the field in that
DEQ, and we multiply by c2

8Ã·G . So we get:

c2

8Ã ·G · ·̇2j 2
G72

j

8Ã ·G = 0 (5.42)
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Alternative derivation: This Eq. can also by derived by multi-
plying the RGS and its Eq. RGS = 0 by c2

8Ã·G .

Here we realize that the subtrahend in the above Eq. is
similar to the energy density of the field. Accordingly, the above
term represents the energy density of the wave. We derived the
above energy term of the wave on the basis of the HUF. We
denote that density by uRGW,HUF :

uRGW,HUF (·j, G
7
j) =

c2

8Ã ·G · ·̇2j 2
G72

j

8Ã ·G = 0 (5.43)

We summarize our first derived result:

Proposition 11 Energy of RGWs:

In the HUF, the energy density of the RGW uRGW,HUF is a
function of the rate and of the field with the following properties,
see Eq. (5.43) and Fig. (5.3):

c2

8Ã ·G · ·̇2j 2
G72

j

8Ã ·G = 0 (5.44)

(1) That energy density is proportional to the RGS. So it is a
HZLS, thus it is highly invariant. Moreover that energy density
of a wave is a rate gravity energy density, RGED.

(2) That energy density is zero. So in the HUF, the formation
of RGWs without any input of energy or mass fulfills the law

of conservation of energy.

In order to understand the properties of the RGW in more
detail, we analyze the above energy density term in the following
subsections.
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5.6.1 Field energy of the RGW

By comparison with the energy density of the gravitational field,
we identify the energy density of the field of the RGW:

|uRGW,field(G
7
j)| =

G72
j

8Ã ·G (5.45)

5.6.2 Self gravity energy density SGE of the RGW

In the HUF, the energy density contains a subtrahend. It de-
scribes the energy density of the gravitation of the RGW with
itself, we denote by the self gravity energy density, SGE.
Its absolute value is equal to |uRGW,field(G

7
j)|. In the HUF,

the RGW interacts with itself only, and the interaction is at-
tractive, correspondingly the sign of that energy is negative.
Accordingly, we denote that energy density by uRGW,SGE(G

7
j):

uRGW,SGE(G
7
j) = 2

G72
j

8Ã ·G (5.46)

In the HUF, this is equal to the potential energy density. Ac-
cordingly, we denote it by uRGW,HUF,pot(G

7
j):

uRGW,HUF,pot(G
7
j) = uRGW,SGE(G

7
j) = 2

G72
j

8Ã ·G (5.47)

We summarize our third derived result:

Proposition 12 Self gravitation:

The RGW exhibits a gravitational self interaction with the
following properties:

(1) The self interaction is attractive, so its energy is negative.

(2) The self interaction is constituted by the gravitational

field, so its energy density uRGW,SGE is equal to 2|uRGW,field|,
see Eq. (5.46).
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(3) In a HUF , the RGW interacts with itself only, hence the
density of its potential energy is equal to its energy density
of self interaction (Eq. 5.47).

5.6.3 Kinetic energy of the RGW

As the energy of the RGW is zero in the HUF, and as the
energy of the RGW is the sum of its kinetic and its potential
energy, and its kinetic energy density uRGW,HUF,kin is equal to
2uRGW,HUF,pot. Moreover, the kinetic energy is a function of a
time derivative. Hence, by comparison with Eq. (5.43) we get:

uRGW,HUF,kin(·j) =
c2

8Ã ·G · ·̇2j (5.48)

We summarize our result:

Proposition 13 Kinetic energy of the RGW:

The RGW includes a permanent periodic variation of the rate
·̇j. The corresponding kinetic energy density uRGW,HUF,kin is
presented in Eq. (5.48).

Corollary 4 Transport of energies by the RGWs:

A propagating wave describes the transport of its energy density.
Hence the propagation of the RGWs explains the propagation

(1) of the energy density of the gravitational field |uRGW,field|,
(2) of the gravitational field (as a consequence),

(3) of the rate ·̇j of formed vacuum,

(4) of the formed vacuum,

(5) of the energy density of the formed vacuum, which is the
dark energy.
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5.6.4 Polychromatic RGWs

The wave functions in Eqs. (5.13, 5.18) represent monochro-
matic waves. More generally, a RGW is a linear superposition
of such waves with circular frequencies Ëµ and wave number kµ.

Orthonormal basis: It is convenient to apply a normalization
factors ¿. With these we use functions, representing plane waves
propagating in the direction ~k

bµ = ¿b · exp(i · Ëµ · t) and (5.49)

fµ = ¿f · exp(2i · ~kµ · ~x) (5.50)

So we obtain a set of orthonormal basis functions. Hereby we
denote the complex conjugate by a star (for instance, f 7µ is the
complex conjugate of fµ):

∫

fµ · f 7µ2 d3x = ·µ,µ2 (5.51)

Representation by orthonormal basis: In that basis, an RGW
has amplitudes ·̂µ of the monochromatic waves. So we get:

·(~x, t) = Σµ·̂µ · bµ(t) · fµ(~x) + ·µ,const. (5.52)

Similarly, the potentials can be expressed with amplitudes Ç̂µ:

Ç(~x, t) = ΣµÇ̂µ · bµ(t) · fµ(~x) + Çµ,const. (5.53)

We apply this representation to the energy density in the HUF
in Eq. (5.43). Thereby the squares represent absolute values:

uRGW,HUF (·, Ç) =
c2

8Ã ·G · |·̇2| 2 |("~xÇ)2|
8Ã ·G (5.54)

Polarization: The RGW can oscillate in various directions rep-
resented by the tensors developed in section (2.4) In order to
provide relatively short formulas, we include these tensors in



122 CHAPTER 5. WAVES OF SPACETIME

the amplitude. So the index µ summarizes the indices of the
basis function fµ, of the polarization q, and of the tensor i and
j. So we get:

·̂µ = ·̂µ,amplitude of fµ · ·̂q,ij (5.55)

Correspondingly, the indices inherent to µ must be explicated,
whenever they become essential.

Separation of modes µ: Next we separate the modes µ inherent
to |·̇2|. For it we evaluate |·̇2| by using Eq. (5.52). Moreover, we
replace the absolute values of a square z2 of a complex number
z by the product z · z7:

|·̇2| = Σµ,µ2 ·̂µ·̂µ2 · "tbµ"tb7µ2 · fµf 7µ2 = Σµ,µ2ËµËµ2 ·̂µ·̂µ2 · bµb7µ2 · fµf 7µ2

(5.56)
Analogously we evaluate |("~xÇ)2|:

|("~xÇ)2| = Σµ,µ2Ç̂µÇ̂µ2 · bµb7µ2 · "~xfµ"~xf 7µ2 (5.57)

We evaluate the derivative, and we apply Ç̂µ = ·̂µ ·c2 (Eq. 5.18):

|("~xÇ)2| = Σµ,µ2
~kµ~kµ2 ·̂µ·̂µ2 · c4 · bµb7µ2 · fµf 7µ2 (5.58)

Next we insert Eqs. (5.57) and (5.58) into Eq. (5.54):

uRGW,HUF (·, Ç) = Σµ,µ2 ·̂µ·̂µ2 · bµb7µ2 · fµf 7µ2 ·
(

c2ËµËµ2

8ÃG
2 c4~kµ~kµ2

8ÃG

)

(5.59)
In order to derive the energy, we integrate over the space:

ERGW,HUF =

∫

uRGW,HUF d
3x (5.60)

5.6.5 Modes ranging up to Rlh

In this part we integrate the modes ranging from zero up to the
light horizon. We call the corresponding energy ERGW,HUF,LH .



5.6. ENERGY OF RGWS 123

Thereby the light horizon is a function of time during the expan-
sion since the Big Bang, and the essential light horizon has been
elaborated in (Carmesin (2018c), Carmesin (2018b), Carmesin
(2019b), Carmesin (2019a)). We apply that range to Eq. (5.60):

ERGW,HUF,LH = 4Ã ·
∫ Rlh

0

r2 · uRGW,HUF dr (5.61)

We insert Eq. (5.59), and we evaluate the integral (see Eq.
5.51) as well as the ·µ,µ2. So we get:

ERGW,HUF,LH =
1

2
· Σµ·̂µ·̂µ · bµb7µ ·

c2

G
·
(

Ë2
µ 2 c2~k2µ

)

(5.62)

Generalized coordinates of RGWs Qµ(t): We introduce a coor-

dinate Qµ and its momentum Pµ with:

Qµ = ·̂µ · bµ ·
c:
G

and Pµ = i
dQµ

dt
and P 7

µ = i
dQ7

µ

dt
(5.63)

We determine derivatives as follows:

PµP
7
µ = 2dQµ

dt

dQ7
µ

dt
= 2Ë2

µQµQ
7
µ (5.64)

Moreover we utilize ~k2µ · c2 = Ë2
µ:

PµP
7
µ = 2~k2µ · c2QµQ

7
µ (5.65)

We apply Eqs. (5.64) and (5.65) to Eq. (5.62):

ERGW,HUF,LH =
1

2
· Σµ

(

QµQ
7
µ · Ë2

µ 2 PµP
7
µ

)

(5.66)

This energy density is expressed in terms of a momentum four-
vector with PµP

7
µ = Σ3

j=1Pµ,jP
7
µ,j:

piµ =

û

ü

ü

ý

Qµ · Ëµ

Pµ,1

Pµ,2

Pµ,3

þ

ÿ

ÿ

ø

With it we get: (5.67)
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ERGW,HUF,LH =
1

2
· Σi=3

µ,i=0

(

p7µ,i·
i
jp

j
µ

)

(5.68)

Theorem 18 Four-momentum and modes of RGWs:

In a HUF, the energy of RGWs ERGW,HUF,LH is as follows:

(1) The ERGW,HUF,LH is a sum of energies of modes:

ERGW,HUF,LH =
1

2
· Σµ·̂µ·̂µ · bµb7µ ·

c2

G
·
(

Ë2
µ 2 c2~k2µ

)

(5.69)

That energy function is a HZLS, so it is highly invariant. It
is a relativistic square of the following four-vector:

û

ü

ü

ý

Ëµ

kµ,1 · c
kµ,2 · c
kµ,3 · c

þ

ÿ

ÿ

ø

(5.70)

(2) The ERGW,HUF,LH is a sum of energies of generalized coor-
dinates and momenta, see Eqs. (5.63) to (5.66):

Qµ = ·̂µ · bµ ·
c:
G

and Pµ = i
dQµ

dt
and P 7

µ = i
dQ7

µ

dt
(5.71)

ERGW,HUF,LH =
1

2
· Σµ

(

QµQ
7
µ · Ë2

µ 2 PµP
7
µ

)

(5.72)

That energy function is a HZLS, so it is highly invariant.

(3) That energy function is a sum of squares of a HZFV, the
four-momentum pjµ, see Eqs. (5.67) and (5.68):

piµ =

û

ü

ü

ý

Qµ · Ëµ

Pµ,1

Pµ,2

Pµ,3

þ

ÿ

ÿ

ø

(5.73)

ERGW,HUF,LH =
1

2
· Σi=3

µ,i=0

(

p7µ,i·
i
jp

j
µ

)

(5.74)

(4) An RGW can also be expressed in terms of a spacetime
scalar, STS or as a spacetime tensor, STT (see definition 10).



Chapter 6

Quantization of Spacetime

In this chapter we quantize the RGWs in the form of the modes
that are expressed by the four-momentum of modes:

piµ =

û

ü

ü

ý

Qµ · Ëµ

Pµ,1

Pµ,2

Pµ,3

þ

ÿ

ÿ

ø

(6.1)

6.1 Problems of spacetime: quanta

1. How are the RGWs quantized in an invariant manner?

2. What are the quanta of the RGWs?

3. Is the GRT complete with respect to the expansion

of space?

4. How can we derive the density of dark energy in a

precise manner?

5. What universal constants are inherent to the density

of the dark energy?

6.2 Quantization

In this section we elaborate the quantization of the RGWs. For
it we start with the Hamiltonian as a function of the generalized
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coordinates and momenta (Eq. 5.66):

ERGW,HUF,LH =
1

2
· ΣµQµQ

7
µ · Ë2

µ 2 P 7
µPµ (6.2)

For it we introduce operators for the coordinate Q̂µ and mo-
mentum P̂µ. So we get:

Ĥµ =
1

2
· Q̂µQ̂7

µ · Ë2
µ 2 P̂µP̂ 7

µ (6.3)

Hereby the quantization is given by the commutator (Heisen-
berg (1927) or (Ballentine, 1998, p.151) or (Grawert, 1977, p.
37)):

[Q̂µ, P̂µ2] = i · ~ · ·µ,µ2 (6.4)

Linear transformation: In order to derive the so-called ladder
operators (for instance (Ballentine, 1998, p. 152)), we apply a
linear transformation to operators â+µ and âµ as follows:

Q̂µ · Ëµ = ³µ

(

â+µ + âµ
)

(6.5)

P̂µ = i · ³µ

(

â+µ 2 âµ
)

(6.6)

Hereby the parameter ³µ will be determined by the commuta-
tion relation in Eq. (6.4). Thereby the ladder operators should
obey the following commutation relation:

[âµ2, â+µ ] = ·µ,µ2 (6.7)

In order to test the Ansatz and to determine ³µ, we insert Eqs.
(6.5, 6.6) into Eq. (6.4):

[Q̂µ, P̂µ2] =
2i³2

µ

Ëµ
· [âµ, â+µ2] =

2i³2
µ

Ëµ
· ·µ,µ2 (6.8)

We compare this term with Eq. (6.4). So we get:

2i³2
µ

Ëµ
= i · ~ or ³µ =

√

~Ëµ/2 (6.9)
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Altogether, the transformation is as follows:

Q̂µ · Ëµ =
√

~Ëµ/2
(

â+µ + âµ
)

(6.10)

2iP̂µ =
√

~Ëµ/2
(

â+µ 2 âµ
)

(6.11)

Inverse transformation: From the above Eqs., the inverse trans-
formation is derived by solving for âµ and â+µ . As a result we
get:

â+µ = (Q̂µ · Ëµ 2 iP̂µ)/
√

2~Ëµ (6.12)

âµ = (Q̂µ · Ëµ + iP̂µ)/
√

2~Ëµ (6.13)

Energy operator: We insert the coordinate Q̂µ and momentum
P̂µ operators (Eqs. 6.10, 6.11) into Eq. (6.3). For it we derive
the products

Q̂µQ̂7
µ · Ë2

µ =
~Ëµ

2
·
(

â+µ â
+
µ + âµâ

+
µ + â+µ âµ + âµâµ

)

(6.14)

and:

P̂µP̂ 7
µ =

~Ëµ

2
·
(

â+µ â
+
µ 2 âµâ

+
µ 2 â+µ âµ + âµâµ

)

(6.15)

The energy operator is the difference of these products:

Ĥµ =
1

2
· ~Ëµ ·

(

âµ · â+µ + â+µ · âµ
)

(6.16)

We apply the commutator. So we get:

Ĥµ = ~Ëµ ·
(

â+µ · âµ + 1/2
)

(6.17)

6.3 RGW number states

In this section we analyze the spectrum of the Hamiltonian Ĥµ.
For it we name the operator â+µ âµ by number operator:

N̂µ = â+µ âµ (6.18)
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Moreover we call its normalized Eigenstates |nµ〉 and the Eigen-
values |nµ〉:

N̂µ · |nµ〉 = nµ · |nµ〉 (6.19)

Eigenstates of the number operator: We apply N̂µ to âµ · |nµ〉,
and we use the commutator. So we get:

N̂µ · âµ · |nµ〉 = âµ · (nµ 2 1) · |nµ〉 = (nµ 2 1) · âµ · |nµ〉 (6.20)

This Eq. shows that âµ · |nµ〉 is an Eigenstate to the Eigenvalue
nµ 2 1, this confirms the name lowering operator.

Similarly we apply N̂µ to â+µ · |nµ〉, and we utilize the com-
mutator. So we obtain:

N̂µ · â+µ · |nµ〉 = â+µ · (nµ + 1) · |nµ〉 = (nµ + 1) · â+µ · |nµ〉 (6.21)

This Eq. shows that â+µ · |nµ〉 is an Eigenstate to the Eigenvalue
nµ + 1, this confirms the name raising operator.

Matrix elements of the ladder operators: In order to derive the
matrix elements of â+µ , we analyze the square of â+µ · |nµ〉:

(â+µ |nµ〉)2 = 〈nµ|âµâ+µ |nµ〉 (6.22)

Here we identify the number operator:

(â+µ |nµ〉)2 = 〈nµ|N̂µ +1|nµ〉 = (nµ +1)〈nµ|nµ〉 = nµ +1 (6.23)

So the corresponding matrix element is
√

nµ + 1.

Similarly the matrix element
:
nµ of âµ can be derived. We

summarize the matrix elements of â+µ as follows:

〈n2µ|â+µ |nµ〉 =
√

nµ + 1 · ·n2
µ,nµ+1 (6.24)

Accordingly, the matrix elements of âµ are presented as follows:

〈n2µ|âµ|nµ〉 =
:
nµ · ·n2

µ,nµ21 for nµ > 0 (6.25)
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Spectrum: In order to derive the full spectrum of the number
operator, we show that the lowering of states ends at the state
|nµ〉 = 0:

âµ|1〉 =
:
1|0〉 and âµ|0〉 =

:
0| 2 1〉 = 0 (6.26)

Starting at this state, the raising operator can successively cre-
ate the states with all positive natural numbers:

nµ * {0, 1, 2, 3, ...} (6.27)

ZPE of a mode µ: The spectrum of the number operator has the
smallest value zero at the state |0〉. However, the eigenvalue of
the energy of the state |0〉 is ~Ëµ/2, it can be derived as follows:

〈0|Ĥµ|0〉 = ~Ëµ · (〈0|N̂µ|0〉+ 〈0|1/2|0〉) = ~Ëµ · (0+1/2) (6.28)

This energy ~Ëµ/2 is the zero - point energy, ZPE of the
RGW at the mode µ:

ZPEµ = ~Ëµ · 1/2 (6.29)

Theorem 19 Quantization of RGWs:

The RGWs are quantized in terms of the modes in theorem (18)
as follows:

(1) The generalized coordinates are quantized by application of
the usual commutation rule:

[Q̂µ, P̂µ2] = i · ~ · ·µ,µ2 (6.30)

This establishes a quantization of a HUF zero four-vector
HZFV , so the corresponding HUF zero Lorentz scalar HZLS
represents a Lorentz invariant quantization of the RGWs.

(2) The generalized coordinates are transformed to ladder oper-
ators as follows:

â+µ = (Q̂µ · Ëµ 2 iP̂µ)/
√

2~Ëµ (6.31)
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âµ = (Q̂µ · Ëµ + iP̂µ)/
√

2~Ëµ (6.32)

(3) As a consequence, the ladder operators obey the following
commutation rule of bosons:

[âµ2, â+µ ] = ·µ,µ2 (6.33)

(4) Hence there is the following number operator

N̂µ = â+µ âµ (6.34)

and its eigenstates are the number states |nµ〉 with the following
eigenvalues:

nµ * {0, 1, 2, 3, ...} (6.35)

(5) So the energy operator is expressed by the number operator:

Ĥµ = ~Ëµ ·
(

â+µ · âµ + 1/2
)

= ~Ëµ ·
(

N̂µ + 1/2
)

(6.36)

(6) Thus the ladder operators raise or lower the numbers:

〈n2µ|â+µ |nµ〉 =
√

nµ + 1 · ·n2
µ,nµ+1 (6.37)

Accordingly, the matrix elements of âµ are presented as follows:

〈n2µ|âµ|nµ〉 =
:
nµ · ·n2

µ,nµ21 for nµ > 0 (6.38)

(7) As a particularly interesting consequence, the zero-point en-
ergy, ZPE, is as follows:

ZPEµ = ~Ëµ · 1/2 (6.39)

(8) Inherent to the quantized RGWs, there is only one restric-
tion of the wavelengths: the light horizon inherent to the modes
of the RGWs. So the quantized RGWs can exhibit a continuous
spectrum.

(9) A quantized RGW can also be expressed in terms of a quan-

tized spacetime scalar, STS or as a quantized spacetime

tensor, STT (Def. 10). This may be denoted as a quantum

of spacetime or as a quantum of vacuum.
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Figure 6.1: Scaled radius x(t) (Eq. 6.41).

6.4 Density limit Ãlimit of expansion of space

In physics, there is an upper limit of the density Ãlimit. It is
one half of the Planck density Ãlimit = Ã̄P/2 (Sect. 3.1). As
a consequence, the expansion of space discovered by Hubble
(Hubble (1929)) and described by the FLE (Friedmann (1922),
Lemaitre (1927)) has a limitation in the early universe. In this
section we derive that limitation.

6.4.1 Light horizon Rlh(t) according to FLE

Our current light horizon Rlh describes a ball enclosing a vol-
ume. The corresponding radius Rlh(t) at former times can be
calculated according to the GRT. For it we may apply the FLE:

H2 =
Ṙ2

lh(t)

R2
lh(t)

=
8ÃG

3
· Ã (6.40)
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Using the Hubble time tH0
= 1/H0, we derive the solution of

the above DEQ (see Carmesin (2019b) or Gott et al. (2005)):

∫ x2

x1

x · dx:
Ωr + Ωm · x+ ΩΛ · x4

=
t2 2 t1
tH0

with x =
Rlh

c · tH0

(6.41)
The density parameters in the above Eq. are shown in Sect
(9.2). The resulting time evolution is shown in Fig. (6.1).

6.4.2 Density of radiation Ãr(t)

In this section we derive the time evolution of the density of ra-
diation Ãr(t). For it we express that density as a function of the
light horizon Rlh(t): The volume of the ball enclosed by Rlh(t)
is proportional to R3

lh(t). The dynamic mass of the radiation is
proportional to 1/Rlh(t). The density of radiation in the ball
limited by Rlh(t) is equal to the dynamic mass of radiation di-
vided by the volume, hence it is proportional to 1/R4

lh(t). We
use the actual values Rlh(t0) and Ãr(t0) as a particular reference.
So we derive:

Ãr(t)

Ãr(t0)
=
R4

lh(t0)

R4
lh(t)

(6.42)

We solve for Ãr(t):

Ãr(t) = Ãr(t0) ·
R4

lh(t0)

R4
lh(t)

(6.43)

6.4.3 Radius Rlh,limit corresponding to Ãlimit

In this section we derive the radius Rlh,limit at which the density
of radiation Ãr(t) would take the upper limit Ãlimit. For it we
apply the following fact: In the early universe, the density was
essentially equal to the density of radiation. Hence the density
of radiation is equal to Ãlimit at the density Ãlimit. Thus we
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insert the pair (Rlh,limit, Ãlimit) into Eq. (6.43). So we get:

Ã̄P/2 = Ãlimit = Ãr(t0) ·
R4

lh(t0)

R4
lh,limit

(6.44)

We solve for Rlh,limit:

Rlh,limit = Rlh(t0) ·
(

Ãr(t0)

Ã̄P/2

)1/4

(6.45)

We insert the observed values (Sect. 9.2):

Rlh,limit = 4.14 · 1026 m ·
(

8.023 · 10231 kg
m3

6.1535 · 1095 kg
m3

)1/4

(6.46)

We evaluate the above term:

Rlh,limit = 0.014 mm (6.47)

6.4.4 Physically observable lengths

The physically observable lengths range from the Planck length
towards the light horizon:

Robservable * [LP , Rlh(t0)] = Iobservable (6.48)

The physically observable lengths are elements of the above
interval Iobservable. That interval Iobservable corresponds to a single
measurement of a length, whereas a multiple measurement of
the same length might provide a more precise result than LP as a
consequence of averaging, if the objects constituting that length
do not exhibit a time evolution. However, if a length exhibits
a time evolution, then multiple measurements combined with
averaging does not improve the precision of the result, in general
(Carmesin (2021)). Correspondingly, the lengths in the interval
Iobservable are physically well defined lengths, as they can be
observed even in a single measurement. We insert the observed
values (Sect. 9.2):

Robservable * [1.616 · 10235 m, 4.14 · 1026 m] = Iobservable (6.49)
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Thus the expansion of space described by the FLE or by the
GRT is very incomplete, as it describes the time evolution of the
light horizon ranging from Rlh(t0) towards Rlh,limit only. Hence
the enlargement of the light horizon by a factor ZLP³Rlh,limit

is
neither described by the FLE nor by the GRT. That factor is
equal to the fraction of Rlh,limit and LP :

ZLP³Rlh,limit
=
Rlh,limit

LP
=

1.4 · 1025 m

1.616 · 10235 m
= 8.66 · 1029 (6.50)

We summarize our results:

Definition 11 Physically defined lengths:

A length L is physically well defined, if it can be measured by
a single measurement, whereby the length L is larger than its
standard deviation ∆L of that measurement.

Theorem 20 Incompleteness of the GRT:

The GRT is incomplete with respect of the expansion of the
universe since the Big Bang for the following reasons:

(1) The physically defined lengths range from LP = 1.616 ·
10235 m towards Rlh(t0).

(2) The lengths described by the expansion of space according
to the FLE or to the GRT range from Rlh,limit = 1.4 · 1025 m
towards Rlh(t0).

(3) So the expansion of space according to the FLE or to the
GRT does not describe the range from Rlh,limit = 1.4 · 1025 m
towards LP = 1.616 · 10235 m, corresponding to the enlargement
factor ZLP³Rlh,limit

= 8.66 · 1029. As this factor is essential, the
GRT is essentially incomplete with respect to the description of
the expansion of the universe since the Big Bang.
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6.5 Dark energy: observed values

In this section we summarize results of observations of the dark
energy. Einstein (1917) introduced the concept of a constant
entity in space and named it cosmological constant Λ. Zel-
dovich (1968) related that constant to a density inherent to the
vacuum ÃΛ. Perlmutter et al. (1998) and Riess et al. (2000)
discovered such a density, it is called the dark energy.

6.5.1 Density ÃΛ,CMB

The density ÃΛ is the product of the density parameter of the
dark energy, ΩΛ, and the critical density at the actual time t0,
Ãcr,t0 (see for instance Tanabashi et al. (2018)):

ÃΛ = Ãcr,t0 · ΩΛ (6.51)

The actual critical density can be derived from the Hubble con-
stant H0:

Ãcr,t0 =
3 ·H2

0

8Ã ·G (6.52)

The CMB has been observed very accurately by the Planck
satellite, and the raw data have been evaluated by an elabo-
rated procedure. In particular, results have been presented for
various modes of the measured radiation and for averages in-
cluding data obtained by using gravitational lensing (or BAO
spectra) additionally (Collaboration (2020)). Here we use two
such evaluations: The most direct evaluation utilizes only the
temperature power spectra, TT. Collaboration (2020) em-
phasized a so-called baseline evaluation including TT-, TE-,
and EE-spectra of the CMB as well as gravitational lensing.
The observations of the Hubble constant are as follows:

H0,CMB =

{

66.88± 0.92 km
Mpc·s TT

67.39± 0.54 km
Mpc·s baseline

(6.53)
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The density parameter observations are as follows:

ΩΛ,CMB =

{

0.679± 0.013 TT
0.6858± 0.0074 baseline

(6.54)

Using these values and the observed gravitational constant G
(Newell et al. (2018)),

G = 6.67430(15) · 10211 m3

kg · s2 (6.55)

we calculate the observed value of the density of the dark energy
by using Eqs. (6.52) and (6.51):

ÃΛ,CMB =

{

(5.690± 0.284) · 10227 kg
m3 (±5%) TT

(5.834± 0.156) · 10227 kg
m3 (±2.7%) baseline

(6.56)

6.5.2 Density ÃΛ,local probes

Riess et al. (2019) observed distant galaxies that are relatively
local, compared with the emission of the CMB. Utilizing these
probes, they obtained a significantly higher value of the Hubble
constant H0, compared with the results obtained by using the
CMB:

H0,local probes = 74.03± 1.42
km

Mpc · s = 2.399± 0.046
1

s
(6.57)

Using this valueH0,local probes and the observed gravitational con-
stant G (6.55), we calculate the observed value of the density
of the dark energy by using Eqs. (6.52) and (6.51):

ÃΛ,local probes =

{

(7.047± 0.351) · 10227 kg
m3 (5%) TT

(6.988± 0.410) · 10227 kg
m3 (5.9%) baseline

(6.58)
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6.5.3 Time evolution of density ÃΛ

The density ÃΛ has been measured by using many different
probes such as the CMB (Collaboration (2020)), relatively near
galaxies (Riess et al. (2019)), baryonic acoustic oscillations,
BAO (Zhao et al. (2019), Yeche et al. (2019)), weak gravita-
tional lensing (Lu and Haiman (2020)) and gravitational lensing
(Wong et al. (2019)).

The essential differences can be elaborated by analyzing two
probes: the CMB (Collaboration (2020)) and relatively near
galaxies (Riess et al. (2019)). These two probes exhibit a signif-
icant difference between the densities ÃΛ,local probes and ÃΛ,CMB.
The difference is at least 6.98820.41025.83420.156

6.98820.410 = 9%, while the
average of the baseline difference is

∆ÃΛ =
ÃΛ,local probes 2 ÃΛ,CMB

ÃΛ,local probes
=

6.9882 5.834

6.988
= 16.5%

(6.59)

That difference is interpreted as follows: In all probes the
measured quantity is electromagnetic radiation. It travels at
the velocity of light. So the relatively local probes have been
emitted in the relatively late universe (compared to the Big
Bang), whereas the relatively distant probes of the CMB have
been emitted in the relatively early universe. Hence ∆ÃΛ repre-
sents a difference between observations of ÃΛ(t) at two different
times tearly and tlate. Thus ∆ÃΛ represents two points of the
time evolution of the density ÃΛ(t).

In the following we elaborate two theories for the dark en-
ergy: First we develop the theory of the dark energy that is
based on the RGWs, and that uses the approximation of a con-
stant density ÃΛ,const. Secondly, we derive the theory of the dark
energy that is based on the RGWs, including the time devel-
opment ÃΛ(t). Thereby we emphasize: In both theories, we do
not use any fit parameter.
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ÃΛ
R

dMj

R0

d·̇j

d·̇j

d·̇j

Figure 6.2: The density ÃΛ in an area at a distance R from R0
has a dynamic mass Mj. It generates rates d·̇j propagating to
all directions.

6.6 Dark energy: theory I

In this section we derive a semiclassical theory of the dark
energy based on the field theory including the rates ·̇ of formed
vacuum and on the result that the LFV is one half of the CFV.

Additional approximation: This semiclassical theory can also be
applied to derive the time evolution of the dark energy (Sect.
7.5). In this section, we analyze the simple case of a constant
vacuum, the approximation of a constant density ÃΛ = ÃΛ,const..
Thereby we use the fact that the vacuum is present in the form
of quantized RGWs that emit additional quantized RGWs with
unidirectional quadrupolar symmetry.

6.6.1 Universe with vacuum only

At a first step, we develop the semiclassical theory for the case
of negligible densities of matter and radiation, Ãm

Ã ³ 0 and
Ãr
Ã ³ 0.
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R = c · t
dMj

(t0, R0)

d·̇j

d·̇j

d·̇j

(t, R)

ÃΛ(t, R)

dR

dV

Figure 6.3: More details included to Fig. (6.2): In a shell with a
radius R, a thickness dR and a center R0, there is a density The
density ÃΛ(t). That mass generates the rates d·̇j propagating
in space towards R0. These rates are integrated.

6.6.2 RGWs originating at vacuum

A quantized RGW of vacuum with a dynamical mass Mj emits
LFV (6.2). This process is not disturbed, as the space is
filled with vacuum only. That vacuum arrives at an observer at
a place R0. We describe that process in terms of the stationary
rate ·̇LFV, from j (see theorem 17).

As our universe exhibits a Big Bang (not a Big Crunch), the
sign of that rate is always positive, and so these rates do not
cancel. In the following, we analyze the presence of these rates
at a location R0, see Fig. (6.3).

6.6.3 Plan of the derivation

We derive the density as follows: We integrate the rates coming
from all dynamical masses Mj in the light horizon and propa-
gating to R0, ·̇LFV, to R0

(sections 6.6.4, 6.6.5, 6.6.6, 6.6.7) We
derive the rate emitted by the vacuum at R0, ·̇LFV, from R0

Fig.
6.4) (section 6.6.8). In a stationary state, these rates are equal,
and from that equality we derive ÃΛ,const. (section 6.6.9).
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HUF
·̇LFV, from R0

·̇LFV, to R0

M0

R0

Figure 6.4: RGWs propagating to and from R0 with dynamical
mass M0.

6.6.4 Propagation of RGWs

The vacuum propagates with the velocity c, as it is fully rela-
tivistic. Thereby it propagates in the form of the RGWs (see
Sect. 5). Thus the vacuum propagates by the rates ·̇.

First we analyze the rate ·̇LFV, to R0
of RGWs propagating to

R0. That rate ·̇LFV, to R0
can only originate from other places

Rj with a dynamic mass dMj, hereby Mj generates a rate d·̇j
at R0, see Fig. (6.2).

Hereby these places Rj are within the light horizon Rj f Rlh

of R0. Hence the rate ·̇LFV, to R0
arriving at R0 and t0 is the sum

of all partial rates d·̇j that originate from a shell with R0 at the
center, see Fig. (6.3):

·̇LFV, to R0
= Σjd·̇j with Rj f Rlh (6.60)
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6.6.5 Rate d·̇j originating at Mj

A mass dMj at a distance R from R0 generates the following
rate d·̇j of unidirectional LFV, see theorem (17) and Fig. (6.2):

d·̇j =
1

c
· G · dMj

R2
(6.61)

6.6.6 Integration of d·̇j originating in a shell

In this section we integrate the rates d·̇j that arrive at R0, and
that originate in a shell that has its center at R0, and that has
a radius R and a thickness dR, see Fig. (6.3).

Each mass dMj in that shell generates a rate d·̇j that is
proportional to that mass, and these rates are scalars. Hence
the sum of the rates d·̇(R) = Σj, Rj*shell d·̇j is equal to the rate
of the sum of the masses dM(R) = Σj, Rj*shell dMj. So we get:

d·̇(R) =
1

c
· G · dM(R)

R2
(6.62)

That mass dM(R) is equal to the product of the density ÃΛ(t, R)
and the volume dV = 4Ã ·R2 · dR of the shell:

dM(R) = ÃΛ(t, R) · 4Ã ·R2 · dR (6.63)

According to the homogeneity of space, the densities ÃΛ(t, R)
are the same at the same time t. Note that the notion same time
may be complicated in the context of a local frame in spacetime
(see for instance Einstein (1905), Carmesin (2020b), Carmesin
et al. (2022)), but it is well defined at a global frame (Carmesin
(2018b), Carmesin (2020b)). We call it the time dependent

density of the vacuum ÃΛ(t):

ÃΛ(t, R) = ÃΛ(t, R0) = ÃΛ(t) (6.64)

We insert the mass in Eq. (6.63) into Eq. (6.62):

d·̇(R) =
1

c
· G · ÃΛ(t) · 4Ã ·R2 · dR

R2
(6.65)
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We cancel R2. So we get:

d·̇(R) =
G · ÃΛ(t) · 4Ã · dR

c
(6.66)

6.6.7 Integration of rates d·̇(R)

In this section we integrate the rates of the shells.
The rates d·̇(R) arriving at R0 originate at times of emission

tem. after the Hubble time tH . Thereby the Hubble time is the
inverse Hubble constant:

tem. f tH =
1

H0
(6.67)

The corresponding light travel distance is the Hubble radius:

RH = c · tH =
c

H0
(6.68)

This propagation of vacuum by the RGWs is well defined since
the density became smaller than the highest value possible value
at Rlh,limit (Sect. 6.4 or theorem 20). Accordingly we integrate
Eq. (6.66) with these boundaries. So we derive:

∫ ·̇LFV, to R0

0

d·̇ =
4Ã ·G
c

·
∫ RH

Rlh,limit

ÃΛ(t)dR (6.69)

We evaluate the left integral:

·̇LFV, to R0
=

4Ã ·G
c

·
∫ RH

Rlh,limit

ÃΛ(t)dR (6.70)

We apply the approximation of a constant density:

approximation: ÃΛ(t) = ÃΛ,const. = ÃΛ(t0, R0) (6.71)

Furthermore we apply the approximation
Rlh,limit

Rlh(t0)
j 0. With it

we get the rates propagating to R0:

·̇LFV, to R0
=

4Ã ·G ·RH

c
· ÃΛ,const. (6.72)
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6.6.8 Density of RGWs propagating from R0

In this section we analyze the RGWs that propagate from a
small region at R0 that is placed in a small HUF, and that has
a dynamical mass M0 constituted by the density of vacuum ÃΛ
(see Fig. 6.4).

The density of the field generated by M0 is related to the
rate according to theorem (17):

Ãf =
·̇2LFV, from R0

8Ã ·G (6.73)

That density must be equal to the density of the LFV of the
vacuum, Ãf = ÃΛ,LFV . That density of the LFV is one half of
the density of the CFV, ÃΛ,LFV = ÃΛ,CFV /2 (see theorems 5, 9,
17, 12, 13).

Altogether we obtain:

Ãf = ÃΛ,LFV =
1

2
· ÃΛ,CFV =

·̇2LFV, from R0

8Ã ·G (6.74)

6.6.9 Equality of rates

As we model a completely homogeneous system (Sect. 6.6.1),
the RGWs propagating to M0 have the same rate as the RGWs
propagating from M0:

·̇LFV, from R0
= ·̇LFV, to R0

(6.75)

We apply that equality to our result in Eq. (6.74):

1

2
· ÃΛ,CFV =

·̇2LFV, to R0

8Ã ·G (6.76)

We insert Eq. (6.72):

1

2
· ÃΛ,CFV =

8ÃG · 2ÃG ·R2
H

8ÃG · c2 · Ã2Λ,const. (6.77)
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We cancel, and we apply the approximation of a constant den-
sity of the vacuum (Eq. 6.71), ÃΛ,CFV = ÃΛ,const.. So we derive:

1

2
· ÃΛ,const. =

2ÃG ·R2
H

c2
· Ã2Λ,const. (6.78)

We solve for ÃΛ,const.:

ÃΛ,const. =
c2

4Ã ·G ·R2
H

(6.79)

Evaluation: We calculate RH by using Eqs. (6.53, 6.68):

RH = 1.374± 0.01 · 1026 m (6.80)

With it we calculate the density ÃΛ,const by using Eq. (6.79):

ÃΛ,const. = 5.681± 0.091 · 10227 kg

m3
(±1.6%) (6.81)

The difference ∆ÃΛ = ÃΛ,CMB 2 ÃΛ,const. of the result and the
observed value ÃΛ,CMB (Eq. 6.56) is as follows:

∆ÃΛ =

{

0.009 · 10227 kg
m3 (0.16%) TT

0.153 · 10227 kg
m3 (2.6%) baseline

(6.82)

So our derived value in Eq. (6.81) is compatible with the ob-
served values of ÃΛ,CMB in Eq. (6.56), as the error of measure-
ment is at least 2.7%, while the difference between observation
and theory amounts to 0.16 % for the case of the temperature
power spectra, TT, and 2.6% for the case of the baseline.

According to the applied approximation of constant density
of the vacuum, the obtained result is not compatible to the
density of the vacuum of the late universe.
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Density parameter ΩΛ: We derive the density parameter ΩΛ, for
the case of the approximation of constant ÃΛ,const.. For it we use

Eq. (6.79), Ãcr,t0 =
3H2

0

8ÃG and H0 = c/RH . So we get:

ΩΛ =
ÃΛ,const.
Ãcr,t0

=
2

3
(6.83)

6.6.10 Amount of formed vacuum

In this section we analyze the amount of vacuum ·VCFV that
forms in a volume ∆V around a location R0.

Propagating volume: Hereby we realize that at each instant of
time, the amount of vacuum propagating to ∆V is equal to the
amount of vacuum propagating from ∆V (Fig. 6.5). Thus the
additional vacuum in ∆V is formed vacuum. So we analyze the
rates ·̇.

Propagating rates of LFV: In order to analyze the rates of the
LFV, we apply the rate of the RGWs that propagate to R0 (Eq.
6.72):

·̇LFV, to R0
=

4Ã ·G ·RH

c
· ÃΛ,const. (6.84)

Here we use the constant density of the vacuum ÃΛ,const. derived
in Eq. (6.79):

·̇LFV, to R0
=

4Ã ·G ·RH

c
· c2

4Ã ·G ·R2
H

=
c

RH
=

1

tH
(6.85)

We identify that rate ·̇LFV, to R0
by the new vacuum ·VLFV

that is generated per volume of the already present vacuum
dV and per time ·t. Hereby the time ·t is the time tH of the
formation of that new vacuum, as we integrated from RH to R0.
So we obtain:

·VLFV
dV · ·t =

·VLFV
dV · tH

= ·̇LFV, to R0
=

1

tH
(6.86)
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HUF

3D space filled with ÃΛ

M0

R0
∆V Mj

·̇LFV, from R0

·̇LFV, to R0

·Vfrom R0

·Vto R0

·̇NFV, from R0
·̇NFV, to R0

·̇NFV, from Mj
·̇NFV, to Mj

shortcuts

Figure 6.5: Overview of propagation of rates in 3D space and in
shortcuts corresponding to space in other dimensions. Thereby
quanta of vacuum such asMj emit quantized RGWs of vacuum
with unidirectional quadrupolar symmetry.
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We solve for ·VLFV that is ·VLFV, via ·̇ to R0
:

·VLFV=̂·VLFV, via ·̇ to R0
= dV at each instant of time (6.87)

We divide the above Eq. by ·VCFV, and we abbreviate ratios:

qLFV :=
·VLFV
dVCFV

=
dV

dVCFV
=: q (6.88)

That ratio is determined by integration (Fig. 6.6) qLFV = 1/2.
We solve Eq. (6.88) for ·VLFV, and we insert the above Eq.:

2·VLFV=̂2·VLFV, via ·̇ to R0
= dVCFV (6.89)

Thus, one half of dVCFV is constituted by ·VLFV, via ·̇ to R0
.

6.6.10.1 Interpretation

The formed vacuum dVCFV consists of two equal parts, the vac-
uum formed by the rate ·̇LFV, to R0

plus the vacuum formed by
the rate ·̇LFV, from R0

, see Fig. (6.5). Moreover, the formed time
dt is derived, ·tLFV dV = ·VLFV dt (Eqs. 1.78, 1.85), using
dV = ·VCFV we get:

·tLFV =
dt

2
and ·tLFV, via ·̇ to R0

+ ·tLFV, via ·̇ from R0
= dt

(6.90)
So the symmetry of these two parts provides a constant and

homogeneous rate of formed time. An additional interpre-
tation in terms of NFV is possible, see Fig. (6.5).

Theorem 21 Derivation of ÃΛ,const.:

If the semiclassical theory is applied without the densities of ra-
diation and matter, and if the approximation of constant ÃΛ,const.
is used, then the dark energy shows the following properties:

(1) Its density ÃΛ,const. is formed by rates of RGWs coming from
the whole space within the Hubble radius RH and coming from
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1

1

dV
dVCFV

= q0

·VLFV

dVCFV
= qLFV ³ ·VLFV = qLFV · ·VCFV = 1

2 · ·VCFV

qLFV =
∫ 1

0 qdq =
1
2

Figure 6.6: Ratio qLFV of LFV as a function of the ratio q of
already formed vacuum: The graph as well as the integration
show that the LFV is one half of the CFV.

all times since the Big Bang: ·VLFV, via ·̇ to R0
. Additionally,

there forms ·VLFV, via ·̇ from R0
.

(2a) That density is (Eq. 6.79):

ÃΛ,const. =
c2

4Ã ·G ·R2
H

That density is in precise accordance with the density observed

on the basis of the temperature power spectra, TT, of the CMB
(Collaboration (2020)), showing a discrepancy of 0.16 %, clearly
below the errors of measurement.

(2b) Inherent to the above equation of the density are only two

universal constants: G and c.

(3) The density parameter ΩΛ is equal to 2/3. It is in precise
accordance with the density observed on the basis of the temper-
ature power spectra, TT, of the CMB (Collaboration (2020)).

(4) The complete formation of the vacuum in a volume dVCFV
at a location R0 is explained (Eq. 6.89). The constant and

homogeneous rate of the formed time is explained (Eq.
6.90). This confirms that the present theory describes the for-
mation of spacetime.

(5) An interpretation using NFV is possible (Sect. 6.6.10.1).



Chapter 7

Structure Formation

Kant (1755), Press and Schechter (1974), Abell et al. (1989), Er-
rani and Penarrubia (2019) and many others investigated the
formation of structures with high density in the universe, in-
cluding their time evolution.

7.1 Description of matter fluctuations

In this section we introduce the concept of overdensities.

Overdensity at a place ~x and at a time t: At an average density
or at a homogeneous part of the density Ãh(t) and at a local
density Ã(~x, t), the fluctuation is

Ã1(~x, t) = Ã(~x, t)2 Ãh(t) (7.1)

and the relative density

·(~x, t) =
Ã(~x, t)2 Ãh(t)

Ãh(t)
(7.2)

is called overdensity (Kravtsov and Borgani (2012)). As there
is an overdensity at each ~x, the overdensity establishes a field.

Window function: It is convenient to analyze a signal or physi-
cal data according to a window function that is non-zero in a
particular area in which the data should be analyzed (Kravtsov

149
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and Borgani (2012)). In particular, in this context the spherical
top-hat window function is used (Norman (2010) or Stoica and
Moses (2005)):

WR(~x) =

{

3
4ÃR3 if |~x| < R

0 otherwise
(7.3)

Overdensity in a sphere with radius R: We analyze an over-

density in a sphere with radius R by using the following
integral (Kravtsov and Borgani (2012)):

·R(~x, t) =

∫

·(~x2 ~r, t) ·WR(~r)d
3r (7.4)

Variance of matter fluctuations in a sphere with radius R: We
analyze the matter fluctuations in a sphere with radius

R by using the variance. It is the empirical averaged value or
the corresponding theoretical expectation value of the square
of the overdensity in that sphere. We mark that average or
expectation value by angle brackets:

〈·2R(~x, t)〉 = 〈·2R(t)〉 (7.5)

According to the homogeneity of space that variance is the same
at all points, usually marked by ~x in this context. As the vari-
ance is the square of the standard deviation, the variance 〈·2R(t)〉
of matter fluctuations is also called Ã2R(t) (Kravtsov and Bor-
gani (2012)):

〈·2R(t)〉 = Ã2R(t) (7.6)

Dimensionless Hubble parameter: The continuous expansion of
space can be described by a scale radius a (Gott et al. (2005),
Carmesin (2019b)). The relative time derivative is called Hub-

ble parameter (Eq. 1.58). Its value at the present time t0
is called Hubble constant H0, with H0 = 67.36 km

s·Mpc (Tab.
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9.2). Sometimes, a corresponding dimensionless parameter is
used (Collaboration (2020)):

h0 =
H0/100

km
s·Mpc

= 0.6736 (7.7)

Amplitude of matter fluctuations: Usually the variance Ã2R(t) is
analyzed for the case of a sphere with the radius R = 8Mpc/h0:

R8 = 8Mpc/h0 (7.8)

Thereby that variance Ã2R(t) is investigated for the case of the
actual time t0, and it is denoted by Ã28:

Ã2R8
(t = t0) = Ã28 (7.9)

That standard deviation Ã8 is also called amplitude of mass

fluctuations (Fan et al. (1997)) or amplitude of matter

fluctuations (see (Lu and Haiman, 2020, p. 1)). Any ob-
servation of Ã8 probes fluctuations that existed at times t 6= t0,
and the corresponding fluctuations at t = t0 are evaluated in

linear theory (see for instance (Collaboration, 2014, p. 8)).

7.2 Fourier transformation of overdensities

The observations are often evaluated in terms of a spectrum
of the overdensities. For it the Fourier transform is applied
(Fourier (1822) or Stoica and Moses (2005)):

f̃(k) =

∫ >

2>
f(x) exp(2ikx)dx = (Ff)(k) (7.10)

The corresponding inverse transform is:

f(x) =
1

2Ã

∫ >

2>
f̃(k) exp(ikx)dk = (F f̃)(x) (7.11)
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Of course, this transformation can be applied in a space at any
integer dimension D g 1:

f̃(~k) =

∫ >

2>
f(~x) exp(2i~x · ~k)dxD = (Ff)(~k) (7.12)

The corresponding inverse transform is:

f(~x) =
1

(2Ã)D

∫ >

2>
f̃(~k) exp(i~k · ~x)dkD = (F f̃)(~x) (7.13)

7.2.1 Spectral power density

In quantum physics, the probability density of a photon with
a wave number k is proportional to the square |Ψ̃(k)|2 of the
corresponding wave function Ψ̃(k). The energy E = p · c of
the photon is proportional to ~k · c. So the energy density is
proportional to |Ψ̃(k)·

:
k|2. Moreover, the energy density times

c is the power density, and so the power density is proportional
to |Ψ̃(k) ·

:
k|2. This motivates to denote the square f̃(k) of

the Fourier transform by power density (Hansen (2002)) or
energy density ((Stoica and Moses, 2005, p. 3)) or power

spectrum ((Collaboration, 2014, p. 8)):

|f̃(k)|2 = P (k) (7.14)

The integral I of that density is the same as a function of k or
x,

I =
1

2Ã

∫ >

2>
|f̃(k)|2dk (7.15)

We confirm this:

I =
1

2Ã

∫ >

2>
dk

∫ >

2>
dx

∫ >

2>
dyf(x)f 7(y)e2ik(x2y) (7.16)

Here the star denotes the complex conjugate.

I =

∫ >

2>
dx

∫ >

2>
dyf(x)f 7(y)

(

1

2Ã

∫ >

2>
dke2ik(x2y)

)

(7.17)
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The bracket in the above Eq. is equal to the delta-distribution
of x 2 y. With it we evaluate the integral over dy, so we get
(qed):

I =

∫ >

2>
dx|f(x)|2 (7.18)

7.2.2 Window function

The average of the matter fluctuation ·(x, t) over an interval
[x2R, x+R] can be expressed with a rectangular window func-
tion (see (Stoica and Moses, 2005, p. 54)), the one dimensional,
1D, analogue of the top-hat window:

·R(x, t) =

∫ >

2>
dy·(y, t) ·WR(x2 y) (7.19)

Thereby the normalized window function is:

WR(x) =

{

1
2R if |x| < R

0 otherwise
(7.20)

The integral in Eq. (7.19) is a convolution. So its Fourier
transform is the following product of Fourier transforms:

(F·R)(k) = (F·)(k) · (FWR)(k) (7.21)

We prove this relation: For it we apply the Fourier transform
to Eq. (7.19):

·R(x) =

∫ >

2>
dy·(y) · 1

2Ã

∫ >

2>
dkeik(x2y)(FWR)(k) (7.22)

We factorize the exponential function:

·R(x) =
1

2Ã

∫ >

2>
dkeikx(FWR)(k) ·

∫ >

2>
dy·(y)e2iky (7.23)

We identify the second integral with the Fourier transform of
·(y):

·R(x) =
1

2Ã

∫ >

2>
dkeikx(FWR)(k) · (F·)(k) (7.24)
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We identify the integrand with the Fourier transform of ·R(x).
So we derive Eq. (7.21) (qed).

7.2.3 Autocorrelation function

In this section we introduce the autocorrelation function ¿(~r),
and we show how ¿(~r) can be used in order to obtain the stan-
dard deviation of fluctuations ÃR.

Autocorrelation function: We analyze the correlation of over-
densites at different places ~x and ~x + ~r by using the autocorre-
lation function (Broersen (2006), Hansen (2002)):

¿(~r) = 〈·(~x) · ·(~x2 ~r)〉 (7.25)

Average: Hereby the average can be expressed as an average
taken according to the window function:

¿(~r) =

∫ >

2>
d3x·R(~x) · ·R(~x2 ~r) (7.26)

This is a convolution. So the Fourier transform is the product
of Fourier transforms:

(F¿)(~k) = [(F·R)(~k)]
2 (7.27)

We apply Eq. (7.21):

(F¿)(~k) = [(F·)(~k)]2 · [(FWR)(~k)]
2 (7.28)

We identify the first factor with the power density (Eq. 7.14):

(F¿)(~k) = P (~k) · [(FWR)(~k)]
2 (7.29)

We apply the Fourier transform:

¿(~r) =
1

(2Ã)3

∫ >

2>
d3kei

~k~rP (~k) · [(FWR)(~k)]
2 (7.30)

According to the isotropy, we apply polar coordinates:

¿(r) =
1

2Ã2

∫ >

0

dkk2eikrP (k) · [(FWR)(k)]
2 (7.31)
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Standard deviation: We analyze the autocorrelation function
¿(~r) in Eq. (7.26) at ~r = 0:

¿(~r = 0) =

∫ >

2>
d3x·R(~x)

2 (7.32)

Since the window function is normalized, the above integral is
equal to the corresponding average:

¿(~r = 0) =

∫ >

2>
d3x·R(~x)

2 = 〈·R(~x)2〉 = Ã2R (7.33)

We evaluate the same average by using Eq. (7.31):

¿(~r = 0) =
1

2Ã2

∫ >

0

dkk2P (k) · [(FWR)(k)]
2 = Ã2R (7.34)

This result is commonly used in the analysis of matter fluctu-
ations (see for instance (Kravtsov and Borgani, 2012, p. 11),
(Hansen, 2002, p. 27), Fan et al. (1997)). In the above deriva-
tions, we did not use any restriction for the time t, thus this
relation holds for each time t:

¿(~r = 0, t) =
1

2Ã2

∫ >

0

dkk2P (k, t) · [(FWR)(k)]
2 = Ã2R(t) (7.35)

7.3 Time evolution of small overdensities

In this section we develop the linear theory of the overden-

sities.

Euler’s equations of motion in space: Based on Newton’s laws
of motion, Euler (1757) derived the equations of motion for
a classical fluid. In particular, he derived the dynamics of the
density field Ã = Ã(~r, t), that exhibits a velocity field ~v = ~v(~r, t),
and that has a pressure field P = P (~r, t), and that evolves in a
potential field Φ = Ç(~r):

"tÃ+ "~r(Ã~v) = 0 (7.36)



156 CHAPTER 7. STRUCTURE FORMATION

"t~v + (~v · "~r)~v +
1

Ã
"~rP + "~rΦ = 0 (7.37)

"2~rΦ = 4ÃG · Ã (7.38)

The fields Ã, ~v, P , and Φ are described by the homogeneous
part marked by an index h plus a fluctuating part marked by
the index 1. In the particular case of the velocity, we use a local
description with ~vh = 0:

Ã = Ãh + Ã1, P = Ph + P1, Φ = Φh + Φ1, ~v = ~v1 (7.39)

As a consequence we obtain Euler’s equations in linear order
of the fluctuations:

"tÃ1 + Ãh"~r~v1 = 0 (7.40)

In order to derive the linear version of Eq. (7.37), we multi-
ply with Ã, and we neglect all terms that are quadratic in the
overdensities, including (~v1 · "~r)~v1:

Ãh"t~v1 + "~rP + Ãh"~rΦ1 + Ã1"~rΦh = 0 (7.41)

As the derivative "~r applied to Φh is zero, we get:

Ãh"t~v1 + "~rP + Ãh"~rΦ1 = 0 (7.42)

We apply the chain rule to the pressure term:

"~rP =
"P

"~r
=
"P

"Ã
· "Ã
"~r

(7.43)

Next we apply "Ã
"~r =

"Ãh
"~r + "Ã1

"~r , whereby
"Ãh
"~r = 0. So we get:

"~rP =
"P

"~r
=
"P

"Ã
· "Ã1
"~r

(7.44)

The first factor is equal to the square of the isentropic velocity of
sound v2s (see for instance (Piatella et al., 2014, p. 2), (Hansen,
2002, p. 22)). So we get:

Ãh"t~v1 + v2s · "~rÃ1 + Ãh"~rΦ1 = 0 (7.45)
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Euler’s equations of motion in expanding space: We add a ho-
mogeneous potential that describes the formation of vacuum
according to the expansion of space, we mark that potential by
the subindex H: ΦH . So we get:

"2~rΦH = 4ÃG · Ãh (7.46)

In this description, the potential is the sum of ΦH and the
potential of the overdensities Φ = ΦH + Φ1. Hereby we have:

"2~rΦ1 = 4ÃG · Ã1 (7.47)

Wave equation: We apply the derivative "~r to Eq. (7.45):

"t(Ãh"~r~v1) + v2s · "2~rÃ1 + Ãh"
2
~rΦ1 = 0 (7.48)

We apply Eqs. (7.40) and (7.47):

02 "2t Ã1 + v2s · "2~rÃ1 + 4ÃG · Ãh · Ã1 = 0 (7.49)

We solve for the inhomogeneity of the above DEQ:

"2t Ã1 2 v2s · "2~rÃ1 = 4ÃG · Ãh · Ã1 (7.50)

Harmonic solution: The solution of the above wave equation is
a linear combination of harmonic solutions:

Ã1(~r, t) = ei
~k·~r+iËt (7.51)

We insert into Eq. (7.50):

Ë2 = v2s · k2 2 4ÃG · Ãh (7.52)

For the case of negative Ë2, we obtain imaginary values of Ë.
These correspond to exponentially growing or decaying modes.
Here we analyze the growing modes. These occur, if the wave
number k is smaller then the so-called Jeans wave number

kJ :

growth for k < kJ =

√

4ÃGÃh
v2s

(7.53)
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In the following, we consider wave numbers that grow fast:

fast growth for k << kJ (7.54)

So the term proportional to the pressure or proportional to v2s
can be neglected.

Application of the Hubble parameter: The density is propor-
tional to the scaling radius to the power 23:

Ãh(t) = Ãh(t0) · (a(t0)/a(t))3 (7.55)

In the uniform scaling, each observer can measure an increase
of a location vector ~r of an object according to the Hubble
parameter H:

~̇r(t) = H · ~r (7.56)

The homogeneous part of the potential is determined so that
Eq. (7.46) is obeyed. So we get:

"~rΦH =
4ÃG

3
Ãh~r (7.57)

We confirm the latter Eq. by applying the derivative "~r, thereby
we use the relation "~r~r = "x · x + "y · y + "z · z = 3, and so
we recover Eq. (7.46). Next we derive Euler’s equation for the
case of an expanding space.

Euler’s equation for a particle: For a particle of mass m, we
apply Newton’s second law of motion:

m · d~v
dt

= 2"~rΦ ·m (7.58)

We consider a moving object of mass m, volume V and density
Ã. We derive the DEQ, for it we divide Eq. (7.58) by V :

Ã · d~v
dt

= 2"~rΦ · Ã (7.59)
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Next we introduce a velocity field v(~r, t) = v1(~r, t) + ~̇r(t). For
it we apply the chain rule to the above Eq., and we divide by
Ã:

d~v

dt
=
"~v

"t
+
"~v

"~r
· "~r
"t

= 2"~rΦ (7.60)

DEQ for overdensities: We insert the velocity (see Eq. 7.56)

~v = ~v1 +H · ~r (7.61)

into Eq. (7.60). Thereby we use that the term "~v
"~r is dominated

by the expansion "H~r
"~r :

"~v1
"t

+
"H~r

"t
+
"H~r

"~r
· "~r
"t

= 2"~rΦ (7.62)

The Hubble parameter varies very slowly as a function of time,
compared to other changes in the system. So we get:

"H~r

"t
= H · "~r

"t
= H · ~v (7.63)

Moreover the Hubble parameter is homogeneous, so we obtain:

"H~r

"~r
= H · "~r

"~r
(7.64)

We separate the vector in the homogeneous part describing the
expansion of space ~rH and the part describing the location of
an observed overdensity ~r1. So we get:

"H~r

"~r
= H · "(~rH + ~r1)

"~r
(7.65)

Hereby the part ~r1 is negligible compared to the homogeneous
part ~rH . Moreover, the homogeneous part is constituted by a
radial component only, ~rH = ~rH,radial. The derivative

"~rH,radial

"~r

is equal to one, as the component orthogonal to the radial di-
rection ~r§ is zero, and so we derive

"~rH,radial

"~r = "r · r + "§~r§ =
1 + 0 = 1. Hence we get:

"H~r

"~r
= H · "~rH

"~r
= H (7.66)
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We insert the particular results in Eqs. (7.63, 7.66) into Eq.
(7.62):

"~v1
"t

+H · ~v +H · "~r
"t

= 2"~rΦ (7.67)

Additionally we utilize "~r
"t = ~v. So we get:

"~v1
"t

+ 2H~v = 2"~rΦ (7.68)

Here we apply the derivative "
"~r :

"

"t

"~v1
"~r

+ 2H
"~v1
"~r

= 2"2~rΦ (7.69)

Here we apply the linear version of Euler’s first Eq. (7.40):

"

"t

2Ã̇1
Ãh

+ 2H
2Ã̇1
Ãh

= 2"2~rΦ (7.70)

Next we apply Ã̇1
Ãh

= ·̇:

·̈ + 2H·̇ = "2~rΦ (7.71)

As we describe the formation of structure in space, we apply
the fluctuating part of the potential only:

·̈ + 2H·̇ = "2~rΦ1 (7.72)

Here we apply Eq. (7.47) as well as Ã1 = Ãh · ·. So we get:

·̈ + 2H·̇ = 4ÃG · Ãh · · (7.73)

Linear growth factor D(t) or Dz(z): In general, the overdensity
·(~x, t) is a function of the position vector ~x and the time t. In
the linear theory, that twofold dependence is factorized into a
linear growth factor D(t) and a spatial factor ∆(~x) (see for
instance (Reblinsky, 2000, p. 15), Fan et al. (1997), Kravtsov
and Borgani (2012)). Accordingly an overdensity at a time
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t is the overdensity at the actual time t0 multiplied by

the linear growth factor D(t):

·(~x, t) =
D(t) · ·(~x, t0)

D(t0)
with D(t0) = 1 (7.74)

Hereby we normalize the actual linear growth factor to one. We
insert the above Eq. into Eq. (7.73):

D̈ + 2HḊ = 4ÃG · Ãh ·D(t) (7.75)

7.3.1 Dynamics of D(t)

In this section we derive a general solution for the linear growth
factor: The square of the Hubble parameter is the following
function of the density:

H2(a) =
8ÃG

3
· Ã (7.76)

We apply the FLE

H2 =
8ÃG

3
· Ã0 ·

(

Ωr

(a0
a

)4

+ Ωm

(a0
a

)3

+ ΩK

(a0
a

)2

+ Ωv

)

(7.77)
Hereby the density parameter ΩK represents the curvature pa-
rameter k, observation shows ΩK = 0.0027 ± 0.0039 ((Ben-
nett et al., 2013, p. 1)), and we derive 〈ΩK〉 = 0 (Carmesin
(2020b)). Without loss of generality, we choose a0 = 1, we
apply H2

0 = 8ÃG
3 · Ã0, and we calculate the derivative of H2:

2HḢ = H2
0 ·
ȧ

a
·
(

24
Ωr

a4
2 3

Ωm

a3
2 2

ΩK

a2

)

(7.78)

We divide by 2H = 2 ȧ
a :

Ḣ = H2
0/2 ·

(

24
Ωr

a4
2 3

Ωm

a3
2 2

ΩK

a2

)

(7.79)
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We take the derivative:

Ḧ = H2
0H ·

(

8
Ωr

a4
+

9

2

Ωm

a3
+ 2

ΩK

a2

)

(7.80)

We add Eqs. (7.78) and (7.80):

Ḧ + 2HḢ = H2
0H ·

(

4
Ωr

a4
+

3

2

Ωm

a3

)

(7.81)

We analyze the time after the formation of the CMB at z j
1090. This is much later than the time of matter radiation
equality at z = zeq j 3400. Accordingly, we may neglect the
density of radiation:

Ḧ + 2HḢ = H2
0H · 3

2

Ωm

a3
(7.82)

We apply H2
0 = 8ÃG

3 · Ã0 and Ωm·Ã0
a3 = Ãm:

Ḧ + 2HḢ = 4ÃG ·HÃm (7.83)

In the matter era considered here, we apply Ãh = Ãm to Eq.
(7.75). Moreover, we multiply by H:

HD̈ + 2H2Ḋ = 4ÃG · Ãm ·DH (7.84)

We subtract the above Eq. from D times Eq. (7.83):

DḦ 2HD̈ + 2H(ḢD 2HḊ) = 0 (7.85)

We multiply a2:

a2
d

dt
(DḢ 2HḊ) +

da2

dt
(ḢD 2HḊ) = 0 (7.86)

The above DEQ is equivalent to:

d

dt

(

a2H2 d

dt

D

H

)

= 0 (7.87)

This can be verified by evaluating the derivatives. The solution
is:

D(t) = H(t) ·
∫

dt

a2H2
(7.88)

This can be verified by inserting into the DEQ and by evaluating
the derivatives.
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Alternative D(a): We express the above quantities as a function
of the scaling radius a. For it we solve H = da

dt
1
a for dt, dt =

da · 1
H·a , and we apply this term to the above Eq.:

D(a) = H(a) ·
∫

da

a3H3
(7.89)

Alternative D(z): Next we express the above quantities as a
function of the redshift z.

1

x
=
a0
a

=
»0
»

=
»0 2 »

»
+ 1 = z + 1, (7.90)

With it we analyze:

H(x) · x =
d

dt
x =

dz

dt

d

dz
a =

dz

dt

d

dz

1

z + 1
=
dz

dt

21

(z + 1)2
(7.91)

Here we apply H(x) · x = H(z)/(z + 1), and we solve for dt:

dt = dz · 21

(1 + z) ·H(z)
(7.92)

We apply this Eq. to Eq. (7.88):

D(z) = 2H(z) ·
∫

d·
1 + ·

H3(·)
(7.93)

Here the integral starts at z(a) and ends at z(a0) = 0. We
exchange these boundaries and multiply by 21:

D(z) = H(z)

∫ z

0

d·
1 + ·

H3(·)
(7.94)

7.3.2 Linear dynamics of ÃR

In this section we apply the linear growth factor (Eq. 7.94) to
the standard deviation of matter fluctuations Ã2R(t) (Eqs. 7.5,
7.6) and to the amplitude of matter fluctuations Ã8.
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For it, we apply Eq. (7.94) to Eq. (7.74):

·(~x, z) = D(z) · ·(~x, z = 0) (7.95)

We divide by D(z):

·(~x, z)/D(z) = ·(~x, z = 0) (7.96)

Next we apply the window function Eq. (7.4):

·R(~x, z)/D(z) =

∫

·(~x2 ~r, z = 0) ·WR(~r)d
3r = ·R(~x, z = 0)

(7.97)
Using this Eq., we derive the variance (Eq. 7.5) by squaring
and averaging:

〈·2R(~x, z = 0)〉 = 〈·2R(z = 0)〉 = 〈·2R(z)〉/D(z)2 (7.98)

We identify the above term with the squared standard deviation
of matter fluctuations (Eq. 7.6):

〈·2R(z)〉/D(z)2 = Ã2R(z = 0) (7.99)

We apply this result to R = R8. So we obtain the square of the
amplitude of matter fluctuations:

〈·2R8
(z)〉/D(z)2 = Ã28 (7.100)

Thus the amplitude of matter fluctuations is proportional to the
inverse of the linear growth factor (see for instance Fan et al.
(1997), Reblinsky (2000)):

1

D(z)
·
√

〈·2R8
(z)〉 = Ã8 (7.101)

7.3.3 Fluctuations at the CMB

Smoot et al. (1992) estimated the temperature fluctuation of
the CMB:

∆T

T
= 11 · 1026 (7.102)
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According to the Planck distribution, the density Ã is propor-
tional to T 4, so we derive:

∆Ã =
"Ã

"T
∆T = 4 · ∆T

T
· Ã (7.103)

Thus we get the overdensity:

·(z = 1090) =
∆Ã

Ã
= 4 · ∆T

T
= 0.44 · 1024 (7.104)

7.3.4 Estimates for a linear growth factor

In this section we derive an estimate for the linear growth factor
D(z = 1090) describing the growth of the overdensity ·(Z =
1090) of the CMB (Eq. 7.104) until its actual value Ã8.

Nonlinear effects: The linear growth factor that we introduced
to small overdensities has been generalized to small and large
overdensities (see for instance Navarro et al. (1997)). Thereby
a local collapse occurs at overdensities ·(~x) = ·c j 1.688 (for
instance (Reblinsky, 2000, p. 19)).

In order to obtain a realistic value, we apply the measure-
ment of Ã8 = 0.8111 obtained by Collaboration (2020). We
derive an estimate by using Eq. (7.101):

1

D(z)
·
√

〈·2R8
(z)〉 = Ã8 (7.105)

We solve for 1
D(z) :

1

D(z)
=

Ã8
·R8

(z)
(7.106)

Hereby we use ·R8
(z = 1090) = 0.44 · 1024 (Eq. 7.104). So we

get:
1

D(z = 1090)
=

0.8111

0.44 · 1024
= 18434 (7.107)

We summarize:
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Based on the observations Ã8 = 0.8111 (Collaboration
(2020)) and ·R8

(z = 1090) = 0.44 · 1024 (Eq. 7.104 and
Smoot et al. (1992)), we derive an increase of the overdensi-
ties of the CMB until today by the factor 18434.

7.3.5 Relation of H0 and D(z)

In this section we derive a relation between H0 and D(z). Later
we will use that relation in the following context: Firstly, we
improve our model of the dark energy by deriving an equation
for vacuum density ÃΛ(z) as a function of the redshift. Secondly,
we apply that density ÃΛ(z) in order to derive an equation for
Hubble constant H0(z) as a function of the redshift. Thirdly,
we apply that function H0(z) in order to derive a correction
factor Dcorr(z) for the linear growth factor. Fourthly, with it
we derive a term for the amplitude of matter fluctuations Ã8(z)
as a function of the redshift.

Relation: In order to derive a term for the Hubble parameter,
we apply Eq. (2.28 in Carmesin (2019b)), thereby we use the
convention a0 = 1 and x = a/a0 = 1/(z + 1):

H(z) = H0 · (z + 1)2 ·
√

Ωr +
Ωm

z + 1
+

Ωv

(z + 1)4
(7.108)

We apply this Eq. to the DEQ (7.94):

D(z) =
(z + 1)2 ·

√

Ωr +
Ωm

z+1 +
Ωv

(z+1)4

H2
0

· I(z) (7.109)

Hereby I(z) represents the following integral:

I(z) =

∫ z

0

d·

(· + 1)5 ·
√

Ωr +
Ωm

·+1 +
Ωv

(·+1)4

3 (7.110)
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Correction factor Dcorr(z): If the Hubble constant H0 is replaced
by a function H0(z), whereas all other factors in the term for
D(z) in Eq. (7.109) remain unchanged, then D(z) is multiplied
by the following correction factor:

Dcorr(z) =
H2

0

H2
0(z)

(7.111)

7.3.6 Linear dynamics for small fluctuations

As the CMB formed in the matter era, we analyze the case
Ωm = 1, the ideal matter era: In that case the scale radius a
exhibits the following power law:

x = a/a0 = (t/t0)
2
3 (7.112)

With it we derive:

ẋ =
2

3
(t/t0)

2 1
3 =

2

3
x2

1
2 , H =

2

3
(t/t0)

21 =
2

3
x2

3
2 =

2

3
(1 + z)

3
2

(7.113)
We apply this term to the DEQ (7.94):

D(z) =
9

4
(1 + z)

3
2 ·
∫ z

0

d· (1 + ·)2
7
2 =

9

10
(1 + z)21 (7.114)

7.4 Probes

In this part we present essential probes at corresponding red-
shifts z that can be used in order to measure H0 and Ã8. These
measurement probes have been taken by various groups or huge
collaborations of astronomers all over the world. With an enor-
mous effort, they achieved very accurate recordings at very dif-
ferent redshifts. We describe typical results of such measure-
ments.
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7.4.1 Probes providing values of H0

In this section we summarize probes that form at a redshift
zprobe and that are particularly appropriate in order to measure
a corresponding value of the Hubble constant H0(zprobe).

Distance ladder and observed galaxies: Riess et al. (2019) mea-
sured H0 from the redshift z and distance of observed galaxies.
Thereby the distance has been obtained by using the so-called
distance ladder (Howard (2011)). The used sample of galaxies
has redshifts in the range z * [0.023, 0.15] (Riess et al. (2016),
(Riess et al., 2019, p. 16)).

Observed baryonic acoustic oscillations: Alam et al. (2017) and
Blomquist et al. (2019) as well as Gil-Marin et al. (2016) and
many others observed baryonic acoustic oscillations and derived
a value of H0 therefrom. Alam et al. (2017) used probes in an
interval z * [0.2, 0.75] of small redshifts, and they obtained
H0 = 67.6 km

s·Mpc ± 0.5. Blomquist et al. (2019) used probes in

the interval z * [1.77, 3.5], and they measured H0 = 68.7 km
s·Mpc±

1.45. Similarly, Gil-Marin et al. (2016) probed an interval with
high redshifts, z * [0.8, 2.2]. They obtained H0 = 63.3 km

s·Mpc ±
2.8. We combine the last two observations, and so we get z *
[0.8, 3.5] and H0 = 66 km

s·Mpc ± 2.1.

7.4.2 Probes providing values of Ã8

In this section we summarize probes that form at a redshift
zprobe and that are particularly appropriate in order to measure
a corresponding value of the amplitude of matter fluctuations
Ã8(zprobe).

CMB: The CMB represents a probe emitted z = 1090 and
provides very precise information about the fluctuations in the
early universe ((Collaboration, 2020, p. 16)).
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Weak gravitational lenses: The weak gravitational lenses rep-
resent a probe that corresponds to quite typical masses ((Lu
and Haiman, 2020, p. 1, 2)), in contrast to strong gravitational
lenses. Thereby, (Lu and Haiman, 2020, p. 1, 2) achieved low
statistical errors by observing and using approximately 4.2 mil-
lion galaxies.

Galaxy clustering: The clustering of galaxies has been evalu-
ated by applying three different correlation functions to 26 mil-
lion galaxies ((Abbott et al., 2019, p. 6, 15)). So the combined
result provides a Ã8 value based on relatively extensive obser-
vations.

Baryon acoustic oscillations: (Tröster et al., 2020, p. 1, 2) ana-
lyzed 1.2 million galaxies of the data release 12 of the ’baryon os-
cillation spectroscopic survey’ (Alam et al. (2017)) in the frame-
work of the power spectrum P (k). So an estimation of Ã8 at a
relatively low redshift z = zprobe = 0.475 has been obtained.

7.4.3 Further probes

In this section we summarize further probes.

Observed strong gravitational lenses: Wong et al. (2019) sum-
marized measurements of H0 that are based on six quasars,
each observed through a corresponding gravitational lens (Fig.
7.1). These probes have an exceptionally high mass, as they are
gravitational lenses. So the local vacuum exhibits an unusually
high density. The data are systematically above the theoret-
ical dotted curve in Fig. (7.1). Moreover, the data show the
typical increase of H0 for the case of decreasing z, see dashdot-
ted curve in Fig. (7.1), showing a regression that is linear at
the logarithmic scale, and that has a correlation coefficient of
0.925. Altogether, these data provide additional evidence for
the theoretical curve (dotted, representing the average over the
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Figure 7.1: H0 as a function of the redshift z of the probe. Probes:
Six strong gravitational lenses (exceptionally high mass, local
vacuum and H0) (·, Wong et al. (2019)). Regression for lenses
(dashdotted). As strong gravitational lenses exhibit untypical
overdensities, they are not included in the present analysis of
typical overdensities.

typical vacuum) as well as for the increase of the late and local
H0 value for probes with exceptionally high mass.

7.5 Dark energy: theory II: time evolution

In this section we start with the semiclassical theory I of dark
energy in Sect. (6.6). In that theory the space is filled with the
densities ÃΛ of the vacuum. As a result of that theory I, the
density of the vacuum does not vary with the time.

In this section, we supplement that theory I with the homo-
geneous densities of matter Ãm,h and of radiation Ãr,h, as well
as with the overdensities of matter, Ãm,h · ·(~r), see Fig. (7.2).
We do not model the overdensities of radiation, as these are too
small in order to show an essential effect.

As results we will derive the time evolution of the density
Ã»(t) or Ã»(z). As a consequence, we will derive the time evolu-
tion of the Hubble constant H0(t) or H0(z), as well as the time
evolution of the amplitude of matter fluctuations Ã8(t) or Ã8(z).
With it we will find a precise accordance with observations.



7.5. DARK ENERGY: THEORY II: TIME EVOLUTION 171

HUF

3D space containing ÃΛ, Ãm,h, Ãr,h, Ãm,h · ·(~r)

M0

R0∆V
quanta ÃΛ

Mj
quanta ÃΛ

or Ãm,h · ·(~r)·̇LFV, from R0

·̇LFV, to R0

·Vfrom R0

·Vto R0

·̇NFV, from R0
·̇NFV, to R0

·̇NFV, from Mj
·̇NFV, to Mj

shortcuts

Figure 7.2: Overview of propagation of semiclassical rates in 3D
space and in shortcuts corresponding to space in other dimen-
sions. Thereby overdensities Ãm,h · ·(~r) or quanta of vacuum
such as Mj emit quantized RGWs of vacuum with unidirec-
tional quadrupolar symmetry. In contrast, the homogeneous
vacuum of matter Ãm,h and radiation Ãm,h is characterized by

an isotropic formation of vacuum with zero localized field ~G7

and rate ·̇.
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7.5.1 Rates of RGWs in the heterogeneous universe

In this section we derive the rates ·̇propagating to R0
of the vacuum

ÃΛ for the case of a heterogeneous universe.
For it we analyze the RGWs that propagate to a location R0,

see Eq. (6.70). Hereby we analyze the density Ã as a function
of the distance R to R0. So we obtain:

·̇propagating to R0
=

4Ã ·G
c

·
∫ RH

Rlh,limit

Ã(R)dR (7.115)

The heterogeneity became essential in the matter era. So we
need not analyze the density of radiation. Hence the densities
of the vacuum and of matter are essential. For the case of the
heterogeneous universe we get:

Ã(R) = ÃΛ,const. + Ãm(R) (7.116)

Overdensity: We express the density of matter by using the
homogeneous part of the density Ãm,h, the overdensity Ãm,1(R)
and the relative overdensity ·Ãm(R) as follows (see Eqs. 7.1,
7.2):

Hereby, the overdensity of matter ·Ãm(R) is presumably large
compared to a possible overdensity of ÃΛ. Thus the density is
characterized as follows:

Ãm(R) = Ãm,h+Ãm,h ·
Ãm(R)2 Ãm,h

Ãm,h
= Ãm,h+Ãm,h ··(R) (7.117)

Window function and standard deviation: We apply the usual
statistical tools: a window function with the radius R8 and the
standard deviation (see Sect. 7.1). So we obtain:

[·(R)]2=̂〈·2R8
〉 = Ã2R8

(7.118)

The corresponding value at the actual time t = t0 or at the
redshift z = 0 is the amplitude of matter fluctuations Ã8 (see
Sect. 7.1):

Ã8 = ÃR8,t=t0 = ÃR8,z=0 (7.119)
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Evolution of ÃR8,z: In the linear theory, the evolution of ÃR8,z as
a function of the redshift is expressed with help of the linear
growth factor D(z) as follows: (Eq. 7.101):

√

〈·2R8
(z)〉 = Ã8 ·D(z) (7.120)

With it the density of matter corresponds to the following sta-
tistical term (Eq. 7.117):

Ãm(R)=̂Ãm,h + Ãm,h · Ã8 ·D(z) (7.121)

Evolution of D(z) or D(x): We use the evolution of the linear

growth factor as a function of the redshift z (Eq. 7.114):

D(z) =
9

10
· (1 + z)21 (7.122)

Moreover we use the linear growth factor as a function of the
scaled radius:

D(x) =
9

10
· x with x =

R

RH
=

1

1 + z
(7.123)

Two separate rates: We apply the above density (Eq. 7.121)
and the linear growth factor (Eq. 7.123) to Eq. (7.116):

Ã(R) = ÃΛ,const. + Ãm,h + Ãm,h · Ã8 ·D(x) (7.124)

The homogeneous density of matter exhibits an isotropic for-
mation of vacuum, a corresponding isotropic quadrupolar factor
and fields as well as rates of the RGWs that are zero. So the
propagating rates of the RGWs are as follows:

·̇LFV, to R0 from ÃΛ =
4Ã ·G
c

·
∫ RH

Rlh,limit

ÃΛ,const.dR (7.125)

The rate originating from the homogeneous part vanishes. The
rate originating from the heterogeneous part is formed similarly:

·̇LFV, to R0 from ·R8

=
4Ã ·G
c

·
∫ RH

Rlh,limit

Ãm,h · Ã8 ·D(x)dR (7.126)
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ÃΛ
R

dMj = dV · (Ãr,h + Ãm,h

+Ãm,h · ·(R) + ÃΛ

R0

d·̇j

d·̇j

d·̇j

Figure 7.3: The density Ã in an area at a distance R from R0 has
a dynamic mass Mj. It generates rates d·̇j propagating to all
directions.

Averages of rates: We derive the average of the rates originating
from the matter fluctuations. For it we substitute x = R/RH .
Moreover we analyze the integral of the rates from x = 0 to a
maximum x:

·̇q,LFV, to R0 from ·R8

(x) =
4ÃGÃm,hÃ8RH

c
·
∫ x

0

D(¿)d¿ (7.127)

We insert D = 9/10 · ¿:

·̇q,LFV, to R0 from ·R8

(x) =
4ÃGÃm,hÃ8RH

c
· 9

20
x2 (7.128)

We apply Ãm,h = ÃΛ,const.
Ωm

ΩΛ
. So we get:

·̇q,LFV, to R0 from ·R8

(x) =
4ÃGÃΛ,const.RH

c
· Ωm

ΩΛ
Ã8

9

20
x2 (7.129)

We identify the first fraction with the rate originating from the
vacuum, see Eq. (7.125):

·̇q,LVF, to R0 from ÃΛ =
4ÃG ·RH · ÃΛ,const.

c
(7.130)
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local

HUF
·̇from R0

·̇to R0

M0

(t0, R0)

ÃΛ

Figure 7.4: RGWs propagating to and from R0 with dynamical
mass M0 constituted by ÃΛ.

We abbreviate the remaining factor by » and express it as a
function of x or z + 1 = 1/x:

» =
Ωm

ΩΛ
· Ã8 ·

9

20
· x2 = Ωm

ΩΛ
· Ã8 ·

9

20
· 1

(1 + z)2
(7.131)

So we get:

·̇q,LFV, to R0 from ·R8

(x) = ·̇q,LFV, to R0 from ÃΛ · » (7.132)

Altogether we derive the sum of both RGWs:

·̇q,LFV, to R0
= ·̇q,LFV, to R0 from ÃΛ · (1 + ») (7.133)

7.5.2 Density of RGWs propagating from R0

In this section we analyze the RGWs that propagate from a
small region at R0 that is placed in a small HUF, and that has
a dynamical mass M0 constituted by the density of vacuum ÃΛ
(see Fig. 7.4).
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The density of the field generated by M0 is related to the
rate according to theorem (17):

Ãf =
·̇2LFV, from R0

8Ã ·G (7.134)

That density must be equal to the density of the LFV of the
vacuum, Ãf = ÃΛ,LFV . That density of the LFV is one half
of the density of the CFV, ÃΛ,LFV = ÃΛ,CFV /2. Altogether we
obtain:

Ãf = ÃΛ,LFV =
1

2
· ÃΛ,CFV =

·̇2LFV, from R0

8Ã ·G (7.135)

7.5.3 Equality of rates

In a stationary state, the rate of the RGWs propagating to M0

is equal to the rate of the RGWs propagating from M0:

·̇LFV, from R0
= ·̇LFV, to R0

(7.136)

We apply that equality to our result in Eq. (7.135):

1

2
· ÃΛ,CFV =

·̇2LFV, to R0

8Ã ·G (7.137)

We insert Eqs. (7.133 and 6.72):

1

2
· ÃΛ,CFV =

8ÃG · 2ÃG ·R2
H

8ÃG · c2 · Ã2Λ,const. · (1 + »)2 (7.138)

We cancel, and we apply the approximation of a homogeneous
density ÃΛ,h of the vacuum, ÃΛ,CFV = ÃΛ,h. So we derive:

1

2
· ÃΛ,h =

2ÃG ·R2
H

c2
· Ã2Λ,h · (1 + »)2 (7.139)

We solve for ÃΛ,h:

ÃΛ,h =
c2

4Ã ·G ·R2
H

· (1 + »)2 (7.140)
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Figure 7.5: ÃΛ(z) as a function of the redshift of the probe.

We identify the fraction in the above Eq. by ÃΛ,const. (Eq. 6.79).
So we obtain:

ÃΛ,h = ÃΛ,const. · (1 + »)2 (7.141)

That density is shown as a function of the redshift in Fig. (7.5).

7.5.4 Time evolution of H0(t)

In this section we derive the Hubble constant H0(t) that is ob-
served on the basis of probes of radiation emitted at a scaled
radius x or at a corresponding redshift z = 1/x 2 1. Thereby
the density of radiation can be neglected in the matter era,
Ãr/(Ãm + ÃΛ) << 1. The Hubble constant is a function of the
density:

H2
0(t0, R0) =

8ÃG

3
· (Ãm + ÃΛ(t0, R0)) (7.142)

We insert the density of the vacuum (Eq. 7.141):

H2
0(t0, R0, x) =

8ÃG

3
· [Ãm + ÃΛ,const. · (1 + »(x))2] (7.143)
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As »(x) is proportional to x2, a measurement based on probes
emitted at x j 0 yield the following Hubble constant:

H2
0(t0, R0, x = 0) =

8ÃG

3
· [Ãm + ÃΛ,const.] (7.144)

Fraction of measured H0 values: In order to obtain a comparison,
we derive the fraction of the squares of observed H0 values.

H2
0(t0, R0, x)

H2
0(t0, R0, x = 0)

=
Ãm + ÃΛ,const. · (1 + »(x))2

Ãm + ÃΛ,const.
(7.145)

Here we use the density parameters Ωm = Ãm
Ãm+ÃΛ,const.

and ΩΛ =
ÃΛ,const.

Ãm+ÃΛ,const.
:

H2
0(t0, R0, x)

H2
0(t0, R0, x = 0)

= Ωm + ΩΛ · (1 + »(z))2 (7.146)

We use the following approximation that is very close to exact-
ness:

H2
0(t0, R0, x = 0)=̂H2

0(t0, R0, z = 1090) (7.147)

So we derive:

H2
0(t0, R0, z)

H2
0(t0, R0, z = 1090)

= Ωm + ΩΛ · (1 + »(z))2 (7.148)

We solve for H0(t0, R0, z):

H0(t0, R0, z) = H0(t0, R0, z = 1090) ·
√

Ωm + ΩΛ · (1 + »)2

(7.149)
The resulting evolution is shown in Fig. (7.6).

7.5.5 Explanation of discrepancy between H0-values

In this section, we compare the H0-value based on the distance
ladder and probing at z = 0.0865 with theH0-value based on the
CMB and probing at z = 1090. These values exhibit a highly
significant difference, and we show that our theory explains that
difference.
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Probe at z = 0.0865: The value at z = 0.0865 is as follows (Riess
et al. (2019)): H0, distance ladder = 74.03± 1.42 km

Mpc·s

Probe at z = 1090: At z = 1090 the following values have been
obtained (Collaboration (2020)): The most direct evaluation
utilizes only the temperature power spectra, TT. Collab-
oration (2020) emphasized a so-called baseline evaluation in-
cluding TT-, TE-, and EE-spectra of the CMB as well as grav-
itational lensing. The observations of the Hubble constant are
as follows:

H0,CMB(z = 1090) =

{

66.88± 0.92 km
Mpc·s TT

67.39± 0.54 km
Mpc·s baseline

(7.150)

The density parameter observations are as follows:

ΩΛ,CMB(z = 1090) =

{

0.679± 0.013 TT
0.6858± 0.0074 baseline

(7.151)

The amplitudes of matter fluctuations Ã8 are as follows:

Ã8,CMB(z = 1090) =

{

0.811± 0.0089 TT
0.8091± 0.006 baseline

(7.152)

Results of the dark energy theory II: Using the results of one probe
at one redshift z, our theory can predict the value of H0(z) that
should be measured by another probe at another redshift z.
Using the above results measured at z = 1090 (that redshift
corresponds to the CMB probe), the theory predicts the values
at all redshifts z, see the densely dotted line in Fig. (7.6).

Using the above errors of measurement at z = 1090, the
theory predicts the corresponding values at all redshifts z, see
the loosely dotted line in Fig. (7.6). That Fig. (7.6) shows
a precise accordance between the measurements at very differ-
ent redshifts and the dark energy theory II. Hence the theory
explains the highly significant difference:

∆H0 = H0,CMB(z = 1090)2H0, distance ladder(z = 0.0865)
(7.153)
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∆H0 =

{

27.15± 2.34 km
Mpc·s TT

26.64± 1.96 km
Mpc·s baseline

(7.154)

Moreover, we realize an especially accurate accordance at z =
0.0865. That interesting accordance is investigated numerically:
Using our dark energy theory II, one derives the following value
for z = 0.0865:

H0, theory(t0, R0, z = 0.0865) =

{

73.77± 1.39 km
Mpc·s TT

74.053± 1.09 km
Mpc·s baseline

(7.155)
Obviously these results of the dark energy theory II are very
close to the observed value 74.03 km

Mpc·s . That is made explicit in
terms of the percentage:

H0, theory(t0, R0, z)2H0, distance ladder

H0, distance ladder

{

20.353% TT
0.03% baseline

(7.156)
Indeed, the dark energy theory II provides a very precise accor-
dance with measurements, achieving even 0.03% in one case.
Altogether, the dark energy theory II explains the highly sig-
nificant difference (Eq. 7.154) between H0-values taken at the
early universe and at the late universe. This explanation and
the precise accordance provide a clear evidence for the dark
energy theory II.

7.5.6 Evolution of Ã8(t)

In this section we derive the evolution of the matter fluctuations
Ã8 as a function of the redshift z or of the time t. We express
it by Ã8,corrected(z).

For it we apply the linear growth factor (see Eq. (7.106):

Ã8 =
·R8

(z)

D(z)
(7.157)
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Figure 7.6: H0 as a function of the redshift z of the probe: dis-
tance ladder (æ, Riess et al. (2019)), BAO (o, Blomquist et al.
(2019)), weak gravitational lensing (∆, Lu and Haiman (2020)),
CMB (×, Collaboration (2020)). Theory of the vacuum (dot-
ted) and by using the parameters ΩΛ, Ã8 and H0 plus or minus
the 68 % limits (Collaboration (2020)) (loosely dotted).

We improve that term by the correction factor in Eq. (7.111):

Ã8,corrected(z) =
·R8

(z)

D(z) ·Dcorr(z)
=

Ã8
Dcorr(z)

(7.158)

Here we insert the correction factor in Eq. (7.111):

Ã8,corrected(z) = Ã8 ·
(

H0

H0(z)

)2

(7.159)

We use the reference values of the CMB at z = 1090, and we
insert Eq. (7.148). So we get:

Ã8,corrected(z) =
Ã8(z = 1090)

Ωm + ΩΛ · (1 + »(z))2
(7.160)

The resulting function Ã8,corrected(z) is shown in Fig. (7.7).
In summary, the dark energy theory II explains the highly

significant difference between Ã8-values taken at the early uni-
verse and at the late universe, see Fig. (7.7). Moreover the
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Figure 7.7: Matter fluctuation amplitude Ã8 as a function of the
redshift z of the probe. Probes: weak gravitational lenses (∆
(Joachimi et al., 2020, p. 26)), baryonic acoustic oscillations (ç
(Tröster et al., 2020, p. 1, 2)), CMB (×, (Collaboration, 2020,
p. 16)). Theory without fit parameter (dotted).

dark energy theory II provides an accurate accordance with the
measured values of Ã8(z) that are based on very different red-
shifts z. That explanation and the precise accordance provide
another clear evidence for the dark energy theory II, as shown
in Fig. (7.7).

Theorem 22 Time evolution of the density of the vac-

uum ÃΛ,h(z):

According to the approximation of a homogeneous density ÃΛ,h,
the dark energy has the following properties:

(1) Its density ÃΛ,h is formed by the following RGWs:

(1a) The first part of ÃΛ,h is represented by the RGWs that are
emitted by vacuum (with the density ÃΛ,h). These RGWs prop-
agate from the whole space within the Hubble radius RH , and
these RGWs are emitted at all times since the Big Bang, and
these RGWs represent LFV.
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(1b) The second part of ÃΛ,h is represented by the NFV1 corre-
sponding to the RGWs described in (1a).

(1c) The third part of ÃΛ,h is represented by the RGWs that are

emitted by overdensities Ãm,h · ·(~R). These RGWs propagate
from the whole space within the Hubble radius RH , and these
RGWs are emitted at all times since the Big Bang, and these
RGWs represent LFV.

(1d) The fourth part of ÃΛ,h is represented by the NFV corre-
sponding to the RGWs described in (1c).

(2a) The sum of the parts described in (1c) and (1d) is charac-
terized by a correction factor as a function of the redshift z or
of the scaled radius x:

» =
Ωm

ΩΛ
· Ã8 ·

9

20
· x2 = Ωm

ΩΛ
· Ã8 ·

9

20
· 1

(1 + z)2

(2b) The sum of the four parts described in (1a), (1b), (1c) and
(1d) is as follows:

ÃΛ,h =
c2

4Ã ·G ·R2
H

· (1 + »)2

That sum is alternatively described as follows:

ÃΛ,h = ÃΛ,const. · (1 + »)2

(3) For the case of the CMB, z j 1090, the following holds:

(3a) ÃΛ,h is in precise accordance with the density observed on
the basis of the temperature power spectra, TT, of the CMB
(Collaboration (2020)), showing a discrepancy of 0.16 %, clearly
below the errors of measurement.

(3b) The density parameter ΩΛ is equal to 2/3.

(3c) The vacuum dV at a location R0 that is filled with vacuum
only is equal to the vacuum ·V that is formed within the Hubble
radius RH of R0, and that propagates to R0 (Sect. 6.6.10).

1The interpretation used in theorem (21) can be applied here alternatively.
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(4) The density ÃΛ,h is increased in the late universe or at small
redshift z as shown in Fig. (7.5).

(5) The Hubble constant H0 is a function of the redshift as fol-
lows:

H0(t0, R0, z) = H0(t0, R0, z = 1090) ·
√

Ωm + ΩΛ · (1 + »(z))2

That function H0(z) is shown in Fig. (7.6). Our result is in
precise accordance with observations, and so the model solves
the discrepancy of observed Hubble constants H0.

(6) The amplitude of matter fluctuations Ã8 is a function of the
redshift as follows:

Ã8,corr(z) =
Ã8(z = 1090)

Ωm + ΩΛ · (1 + »(z))2

That function Ã8,corr(z) is shown in Fig. (7.7). Our result is in
precise accordance with observations, and so the model solves
the discrepancy of observed amplitudes of matter fluc-

tuations Ã8.



Chapter 8

Dimensional Transitions

The GRT is incomplete with respect to the enlargement of the
universe (see theorem 20). In this chapter we show how the uni-
verse generated the full enlargement ranging from the Planck
length to the light horizon by undergoing a sequence of dimen-
sional transitions.

In particular, we analyze the dimensional phase transitions
with help of various models, in order to derive essential proper-
ties of these transitions (see sections 8.1, 8.2, 8.4).

8.1 Shortcuts in space

In this section we summarize and analyze how the connectiv-

ity in space changed by the spontaneous formation of short-
cuts.

If the density Ã is larger than the critical density Ãcr. conn. of
the spontaneous formation of shortcuts, then many connections
form among measurable regions of space.

For it there are two possibilities in principle:

(1) Either there occurs a formation of regular connections

so that the connections together with the observable regions
form a higher dimensional space. In that case, a relatively low

curvature of the higher dimensional space is possible. As a
consequence, a relatively low energy is possible.

185
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(2) Or there occurs a formation of irregular connections.
In that case, a relatively high curvature occurs. As a conse-
quence, a relatively high energy is required.

In the following, we analyze the energetically favorable first
case.

Theorem 23 Shortcuts can enable a dimensional tran-

sition:

If the density in the universe is larger than the critical den-
sity for the formation of shortcuts, Ãcr. conn., then a dimensional
phase transition is enabled in the typical case of relatively low
energy.

8.2 Mean field theory

In this section we develop a mean field theory of objects in

space during dimensional phase transitions.

For it we apply a well established method: van der Waals
(1873) analyzed pairs of objects, in order to derive the phase
transition of condensation. Analogously, we apply the analysis
of pairs of objects, in order to derive the dimensional phase
transitions. Additionally, that method has been successfully
applied in many other types of phase transitions (see for in-
stance Carmesin et al. (1986), Carmesin et al. (1989), Carmesin
(1993)). More generally, that method is an example for a mean
field theory.

Analyzed pairs: In the early universe, the density was very
high. As a consequence, there existed a binary fluid constituted
by photons and microscopically small black holes (Carmesin
(2020b)). So four types of pairs are possible: two photons, a
photon in the vicinity of a black hole, a black hole the vicin-
ity of a photon, two black holes. All four possibilities exhibit
dimensional phase transitions (Carmesin (2020b)).
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Figure 8.1: Gaussian gravity of a mass m: All balls around m
have the same flux G7(r) · A(r). This means the same product
of the gravitational field G7(r) and area A(r). Consequently,
we derive in D dimensions: G7(r) ? 1

A(r) ? 1
rD−1 .

In the following, we analyze a black hole as a probing mass
in the vicinity of an averaged photon density, as an example1.

8.2.1 Momentum term for D g 3

In this section we derive the kinetic energy in higher dimen-
sion. The momentum p2 is the sum p2x + p2y + p2z for D = 3.
Accordingly, we derive in D dimensions:

p2 = ΣD
j=ip

2
i (8.1)

8.2.2 Gravity term for D g 3

According to Gaussian gravitation, the gravitational field G7(r)
at a distance r from a mass is proportional to 1/rD21 (Fig. 8.1,
and Gauss (1840)):

G7 ? 1

rD21
(8.2)

1That example has been intensively analyzed (see for instance Carmesin (2017),
Carmesin (2018a), Carmesin (2019b)).
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The same proportionality applies to the gravitational force F
which a massM exerts on a massm at the distance r. Moreover
the force is proportional to each of the masses:

F ? M ·m
rD21

(8.3)

The proportionality factor is a gravitational constant for dimen-
sion D, GD:

F = 2GD · M ·m
rD21

(8.4)

The potential energy or gravitational energy is the integral of
the force. It is usual, that the energy is zero in the limit r to
infinity:

EG = 2GD · M ·m
(D 2 2) · rD22

(8.5)

The gravitational constant can be derived (see e.g. Carmesin
(2017), Carmesin (2019b)). The following holds:

GD = G · (D 2 2) · LD23
P (8.6)

We summarize:

Proposition 14 Gravitation in D dimensions:

(1) Two objects at a distance r, with masses or dynamic masses
M and m, exert the gravitational force F = 2GD · M ·m

rD−1 on each
other in D g 3 dimensions with GD = G · (D 2 2) · LD23

P .

(2) The corresponding energy is: EG = 2GD · M ·m
(D22)·rD−2

8.2.3 Special radii at scaled densities Ã̃D

In this section we analyze the radius b of a black hole and the
radius aM of radiation with dynamic mass M as a function of
the density Ã̃D.
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Radius aM depending on the scaled density: We derive how the
radius aM depends on the scaled density ÃD. We use natural
units (see table 9.3).

According to the redshift, the dynamic mass is proportional
to the inverse wavelength Mdyn ? 1

aM
. For example, for aM =

LP is Mdyn = MP

2 (Fig. 3.1). Both relations result in:

1

2ãM
= M̃dyn (8.7)

Here we use the term for the density, where VD denotes the
volume of a hyper ball with radius 1:

ÃD =
Mdyn

VD · aD (8.8)

Here is:

VD =
ÃD/2

Γ(1 +D/2)
; Γ(x+ 1) = Γ(x) · x; Γ(1) = 1; Γ

(

1

2

)

=
:
Ã

(8.9)
We use the Planck density related to a ball Ã̄D,P = MP

VD·LD
P
(table

9.3). So we get:

Ã̃D =
ÃD
Ã̄D,P

=
M̃dyn

ãDM
(8.10)

In total we get:

1

2ãM
= M̃dyn = Ã̃D · ãDM (8.11)

Resolved we get:

ãM = (2Ã̃D)
21/(D+1) (8.12)

Schwarzschild radius: We determine the Schwarzschild radius
b depending on the density. We proceed like Michell (Michell
(1784)). We equate the kinetic energy 1

2M ·v2 with the potential
energy and choose the velocity of light c. So we get:

1

2
· c2 = GD ·m

(D 2 2) · bD22
(8.13)
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Ã
mj bj

Mj

aj

rj

HUF

Figure 8.2: Pair j of adjacent objects or particles in a HUF at a
density Ã of the universe.

We use GD = G · (D 2 2) · LD23
P and we use natural units. So

we get (table 9.3):

b̃ = (2Ã̃D)
21/2 (8.14)

8.2.4 Quantized FLE for pairs

In this section we generalize the FLE by deriving the quantized
dynamics for the expectation value 〈ṙj〉 of the time derivative
of the radius rj of a pair of objects that is located in a HUF.
Moreover we form the average over pairs. For it we combine
the energy term of the Gaussian gravity (see Eq. 8.5).

Applications of the HUF: Here we investigate the distance rj
and the potential of the mass mj with respect to the mass Mj.

The gravitational energy of the objects mj and Mj in the
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HUF is as follows:

EG = 2GD · Mj ·mj

(D 2 2) · rD22
j

(8.15)

With the term of the kinetic energy Ekin =
∑D

i=1 p
2
i

2m we get:
∑D

i=1 p
2
j,i

2mj
2GD · Mj ·mj

(D 2 2) · rD22
j

= Ej (8.16)

The following applies accordingly to quantum objects:
∑D

i=1 p̂
2
j,i

2mj
2 GD

D 2 2
·mj ·Mj · r̂22D

j = Êj (8.17)

We derive the expectation value of the energy term (Eq.
8.17) and divide by mj · c2:

〈Êj〉
mj · c2

=

∑D
i=1

〈

p̂2j,i
〉

2m2
j · c2

2 GD

(D 2 2) · c2 ·
〈

Mj · r̂22D
j

〉

(8.18)

We separate the fluctuations from the expectation value by ap-
plying the identity

〈

p̂2
〉

= 〈p̂〉2 + (∆p)2 (8.19)

So we get:

〈Êj〉
mj · c2

=

∑D
i=1 〈p̂j,i〉

2

2m2
j · c2

+

∑D
i=1(∆pj,i)

2

2m2
j · c2

2
GD ·

〈

Mj · r̂22D
j

〉

(D 2 2) · c2
(8.20)

We use the identity 〈p̂〉 /m = 〈ṙ〉. So we get:

〈Êj〉
mj · c2

=

∑D
i=1 〈ṙj,i〉

2

2 · c2 +

∑D
i=1(∆pj,i)

2

2m2
j · c2

2
GD ·

〈

Mj · r̂22D
j

〉

(D 2 2) · c2
(8.21)

In the first summand, we add the components:

D
∑

i=1

〈ṙj,i〉2 = 〈ṙj〉2 (8.22)
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We call the remaining term reduced normalized energy

ED,j:

ED,j =

∑D
i=1(∆pj,i)

2

2m2
j · c2

2 GD

(D 2 2) · c2 ·
〈

Mj · r̂22D
j

〉

(8.23)

So the following holds (Eq. 8.21):

〈Êj〉
mj · c2

=
〈ṙj〉2
2 · c2 + ED,j (8.24)

The left hand side of the above Eq. is identified with half a
quantized curvature parameter of a pair, kj/2:

2kj
2

=
〈Êj〉
mj · c2

=
〈ṙj〉2
2 · c2 + ED,j (8.25)

Here we apply the average over the pairs, and we denote it by
rectangular brackets:

2[kj]

2
=

[〈ṙj〉2]
2 · c2 + [ED,j] (8.26)

In order to obtain a generalized FLE, we multiply by 2c2/[〈rj〉2],
and we resolve:

[〈ṙj〉2]
[〈rj〉2]

= 22[ED,j] · c2
[〈rj〉2]

2 [kj] · c2
[〈rj〉2]

(8.27)

This DEQ is the quantized FLE for pairs in D dimensions.
We summarize:

Theorem 24 FLE derived from pairs of quantum ob-

jects:

The FLE can be derived as an average over pairs of quantum
objects. The resulting quantized FLE for pairs in D dimensions
is as follows:

[〈ṙj〉2]
[〈rj〉2]

= 22[ED,j] · c2
[〈rj〉2]

2 [kj] · c2
[〈rj〉2]

(8.28)
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8.2.5 Quantized FLE

In this section we derive the quantized FLE. In the quantized

FLE for pairs, the fraction
[〈ṙj〉2]
[〈rj〉2] is an averaged Hubble pa-

rameter [Hj]. The Hubble parameter [Hj] describes a uniform
scaling. This is characterized by a scale factor dkt³t+dt:

dkt³t+dt =
a(t) + ȧ(t) · dt

a(t)
= 1 +H(t) · dt (8.29)

Thus a homogeneous scale factor implies a homogeneous Hubble
parameter. So the uniform scaling implies that we can replace
the averaged Hubble parameter by the global Hubble parame-
ter:

[〈ṙj〉2]
[〈rj〉2]

=
ṙ2

r2
= H2 (8.30)

We apply this relation to the quantized averaged FLE:

ṙ2

r2
= 22[ED,j] · c2

[〈rj〉2]
2 [kj] · c2

[〈rj〉2]
(8.31)

This DEQ is the quantized FLE or extended FLE, EFLE. In
this DEQ the term with the averaged curvature parameter [kj]
is relatively small (see Collaboration (2020), Carmesin (2020b)).
So we get:

ṙ2

r2
= 22[ED,j] · c2

[〈rj〉2]
(8.32)

Theorem 25 Quantized or extended FLE:

(1) The quantized FLE in D dimensions is as follows:

ṙ2

r2
= 22[ED,j] · c2

[〈rj〉2]
2 [kj] · c2

[〈rj〉2]
(8.33)

(2) As the averaged curvature parameter [kj] is nearly zero, the
quantized FLE in D dimensions is nearly as follows:

ṙ2

r2
= 22[ED,j] · c2

[〈rj〉2]
(8.34)
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8.2.6 Condensation: Ground state

Lohse et al. (2018) and Zilberberg et al. (2018) showed exper-
imentally that quantum systems can use higher dimensional
space. Similarly as in the case of the shortcuts (Sect. 8.1),
such a possibility may give rise to a dimensional phase transi-
tion, that is driven by the attractive gravitational interaction.
Thus such a dimensional phase transition is a condensation.
Hence the corresponding states are low energy states (Sect.
8.1). Thus the corresponding states can be modeled by ground

states in an adequate approximation.
Correspondingly, we analyze the ground state of the mass

mj of a pair j in this section.

Uncertainty relation at dimension D: In this paragraph we show
that the uncertainty relation as a function of the dimension
D is expressed by Eq. (8.41). In general, the components of
the position ∆ri and the momentum ∆pk obey the uncertainty
relation:

∆ri ·∆pk g
~

2
for i = k (8.35)

and
∆ri ·∆pk g 0 for i 6= k (8.36)

This can be expressed with the Kronecker symbol ·ik = 1 for
i = k and ·ik = 0 for i 6= k:

∆ri ·∆pk g
~

2
· ·ik (8.37)

We square both sides of the relation and sum both sides:

D
∑

i=1

D
∑

k=1

(∆ri)
2 · (∆pk)2 g

~
2

4
·

D
∑

i=1

D
∑

k=1

·ik (8.38)

Here we identify:

D
∑

i=1

(∆ri)
2 = (∆r)2 and

D
∑

k=1

(∆pk)
2 = (∆p)2 (8.39)
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We apply
∑D

i=1

∑D
k=1 ·ik = D:

(∆r)2 · (∆p)2 g ~
2

4
·D (8.40)

We extract the root and show the relation (qed):

∆r ·∆p g ~

2
·
:
D (8.41)

Minimal uncertainty at the ground state: In this paragraph we
show that the uncertainty takes its minimum at the ground
state: We analyze the ground state of the energy operator ÊD,j.
So the wave function is a Gaussian function at high density
(Carmesin (2019b), Carmesin and Carmesin (2020)). Thus the
inequality in the uncertainty relation becomes an equality:

∆p ·∆r = ~

2

:
D (8.42)

So the uncertainty takes its minimum at the ground state.

Energy as a function of spatial uncertainties: In this paragraph
we show that the energy ED,j can be expressed as a function of
spatial uncertainties (∆̂rj)

2 = r̃2j 2 〈r̃j〉2 or (∆rj)2 = 〈(∆̂rj)2〉.
For it we apply Eq. (8.39) to Eq. (8.23):

ED,j =
(∆pj)

2

2m2
j · c2

2 GD

(D 2 2) · c2 ·
〈

Mj · r̂22D
j

〉

(8.43)

Furthermore, we apply the uncertainty relation in Eq. (8.42).
Moreover, we use natural units and mark the corresponding
quantities with a tilde:

ED,j =
D

8m̃2
j · (∆r̃j)2

2 M̃j ·
〈

r̃22D
j

〉

(8.44)

Here we apply the identity

〈r̃22D
j 〉 =

〈

(r̃2j )
2−D
2

〉

(8.45)
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Here we introduce the difference of r̃2j and 〈r̃j〉2:

r̃2j 2 〈r̃j〉2 = (∆̂r̃j)
2 (8.46)

The expectation value of (∆̂r̃j)
2 is the square of the standard

deviation or uncertainty:

〈(∆̂r̃j)2〉 = (∆r̃j)
2 (8.47)

As the expectation value of (∆̂r̃j)
2 is the square of the uncer-

tainty, ∆̂r̃j is the corresponding uncertainty operator. We
apply this uncertainty operator to Eq. (8.45):

〈r̃22D
j 〉 =

〈

(

〈r̃j〉2 + (∆̂r̃j)
2
) 2−D

2

〉

(8.48)

Here we factorize 〈r̃j〉2:

〈r̃22D
j 〉 = 〈r̃j〉22D ·

〈(

1 +
(∆̂r̃j)

2

〈r̃j〉2

) 2−D
2
〉

(8.49)

This Eq. combined with Eq. (8.44) represents the energy ED,j

as a function of the uncertainty operator.

Energy as sum of classical term and quantum term: In this para-
graph we show that the energy ED,j can be expressed as a sum
of classical term and quantum term, in linear order in the frac-

tion
(∆̂r̃j)

2

〈r̃j〉2 .

For it we expand Eq. (8.49) in linear order:

〈r̃22D
j 〉 = 〈r̃j〉22D ·

〈

1 +
22D

2
· (∆̂r̃j)

2

〈r̃j〉2

〉

(8.50)

Here we evaluate the expectation values:

〈r̃22D
j 〉 = 〈r̃j〉22D 2 D 2 2

2
· (∆r̃j)

2

〈r̃j〉D
(8.51)
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Figure 8.3: Variation of fluctuations (Eq. 8.53): Example:
D
8m̃2

j
= 10 and

(D22)M̃j

2〈r̃j〉D = 10. The quantum term ED,j,Q (Eq.

8.53) is presented as a function of the square of the uncertainty
(∆r̃j)

2. The minimum can be determined completely robustly.

In the figure: ∆r̃j j 1 and thus ∆p̃j j
:
D
2 .

We insert this result in the energy term in Eq. (8.44). So we
get:

ED,j =
D

8m̃2
j · (∆r̃j)2

2 M̃j

〈r̃j〉D22
+

(D 2 2) · (∆r̃j)2 · M̃j

2 · 〈r̃j〉D
(8.52)

The terms containing the uncertainty ∆r̃j form the quantum
term:

ED,j,Q =
D

8m̃2
j · (∆r̃j)2

+
(D 2 2) · (∆r̃j)2 · M̃j

2 · 〈r̃j〉D
(8.53)

The rest is the classical gravity term:

ED,j,cl,G = 2 M̃j

〈r̃j〉D22
(8.54)

Hence we get (Fig. 8.3):

ED,j = ED,j,Q + ED,j,cl,G (8.55)
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8.2.7 Minimization of reduced energy via ∆r̃j

In this section we show that the energy, minimized with respect
to ∆r̃j, is presented by Eq. (8.59).

The energy function ED,j,Q([∆r̃j]
2) shows a clear minimum

(Fig. 8.3). The minimum corresponds to the basic state. We
determine the minimum: (∆r̃j)

2 is called x:

ED,j,Q =
D

8m̃2
j · x

+
(D 2 2) · x · M̃j

2 · 〈r̃j〉D
(8.56)

We determine the derivative

ED,j,Q(x)
2 = 2 D

8m̃2
j · x2

+
(D 2 2) · M̃j

2 · 〈r̃j〉D
(8.57)

The minimum is at the slope zero (Fig. 8.3). Therefore we use
ED,j,Q(x)

2 = 0 in the above equation, resolve to x, use (∆r̃j)
2

for x and get:

(∆r̃j)
4 =

D · 〈r̃j〉D
4(D 2 2) · m̃2

j · M̃j

(8.58)

We use this result in ED,j,Q and get:

ED,j,Q =

√

D · (D 2 2) · M̃j

2m̃ · 〈r̃j〉D/2
(8.59)

Proposition 15 Reduced normalized energy ED,j of a

pair j: The energy ED,j is as follows:

(1) The expectation value is as follows:

ED,j =

∑D
i=1(∆pj,i)

2

2m2
j · c2

2 GD

(D 2 2) · c2 ·
〈

Mj · r̂22D
j

〉

(8.60)

(2) At the ground state, ED,j is as follows:

ED,j = ED,j,Q + ED,j,cl,G (8.61)
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ED,j,cl,G = 2 M̃j

〈r̃j〉D22
(8.62)

ED,j,Q =

√

D · (D 2 2) · M̃j

2m̃ · 〈r̃j〉D/2
(8.63)

8.2.8 Minimization of reduced energy via D

In this section we analyze the energy [ED,j] for the case of a
black hole mj and an averaged photon Mj and as a function of
the density.

We apply equation (8.14), and we average:

[b̃j] = (2Ã̃D)
−1
2 (8.64)

Moreover we use equation (8.12), and we average:

[ãj] = (2Ã̃D)
−1
D+1 (8.65)

With these relations, we plot the graphs of the energy [ED,j](ÃD)
for the dimensions D = 3, D = 7, D = 12 and D = 301 (Fig.
8.4). The figure shows: At low density, the energy is minimal at
the dimension D = 3, however, at high density, minimal energy
occurs at high dimension D >> 3.

The sequence of the dimensional phase transitions is evalu-
ated for the case of the adequate approximation r̃j j b̃j so that
the quantum part of the reduced energy takes the following form
(Eq. 8.63):

ED,j,Q =

√

D · (D 2 2) · M̃j

2m̃ · 〈b̃j〉D/2
(8.66)

For this case, the reduced energies as a function of the scaled
density are shown in Fig. (8.5). That figure illustrates that
there is an energetically optimal dimension at each density. Ac-
cordingly, the critical densities Ã̃D,c at which the dimensional
transition to a dimension D and from a higher dimension can
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Figure 8.4: Energy [ED,j] for an averaged black hole in the gravi-
tational field of an averaged photon. (Sect. 8.2.8): [E3,j] (solid
line), [E6,j] (dashed), [E12,j] (dashdotted), [E18,j] (dotted).

be determined. These critical densities Ã̃D,c are shown as a
function of the dimension D in Fig. (8.6).

A dimension below D = 3 does not occur, as the vacuum
is represented by corresponding gravitational waves. These can
exist in dimensions D g 3 only, as they have one direction of
propagation and at least two transverse directions according to
their quadrupolar structure or according to the fact that the
elongations in Fig (5.1) cannot become negative.

For D towards infinity, the critical densities Ã̃D,c tend to 1/2,
see Fig. (8.6).

8.2.9 Distance enlargement factor

In this section we derive a term for the distance enlargement

factor ZD+s³D, that occurs when the transition from a dimen-
sion D + s to D occurs.

To determine the distance enlargement factor ZD+s³D, we
model the space with a cube or hypercube from smallest ob-
servable regions. A figurative model is shown in the figure (2).
Here 216 magnetic balls are arranged in a regular rectangular
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Figure 8.5: Reduced normalized energy [ED,j]: [E3,j] (line), [E4,j]
(dotted), [E5,j] (dashdotted), [E6,j] (loosely dashed), [E7,j] (dot-
ted closely), [E8,j] (dashed). Dotted arrow marks transition
from D = 7 to D = 3 at critical density Ã̃D=3,c = 0.11569.
Dashed arrow marks transition from D = 8 to D = 7 at critical
density Ã̃D=7,c = 0.12835.
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Figure 8.6: Critical densities Ã̃D,c as a function of dimension D.
The dimensional transitions to D = 3 start at D = 7. So the
following dimensions D are established: D * {3, 7, 8, 9, ...}

.
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grid in three spatial directions (left, D = 3) and in two spatial
directions (right, D = 2). The transition from D = 3 to D = 2
increases the edge length. In the following we determine the fac-
tor by which the edge length is increased by a transition from.
D + s to D. We call the number of smallest observable regions
on an edge in D dimensions nD. Hence (Fig. 2):

ZD+s³D =
nD
nD+s

(8.67)

With a dimensional transition, the number of memberless re-
gions remains the same. So we get:

nDD = nD+s
D+s (8.68)

We resolve Eq. (8.68):

nD = n
(D+s)/D
D+s (8.69)

We use Eq. (8.69) in Eq. (8.67) and simplify the term. A term
for increasing the edge length is obtained:

ZD+s³D = n
s/D
D+s (8.70)

On average, distances in the cube increase in every spatial di-
rection by this factor.

8.2.10 Calculation of the dimensional horizon

In this section we derive the dimensional horizon Dhorizon or
Dhori.

For it we start with the distance enlargement factor for all
transitions from Dhorizon to D = 3 in Eq. (8.70). Here the edge
length nD+s at Dhorizon = D + s is equal to two. We use this
and get:

ZD+s³D = n
s/D
D+s = ZDhorizon³D=3 = 2

Dhorizon−3

3 (8.71)
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Dhorizon = 2

Dhorizon = 4

Figure 8.7: Examples for the dimensional horizon Dmax or
Dhorizon: A row of more than two balls can be put together
in two dimensions. In general, the dimension can be increased
until the edge length is two balls. With N balls the following
applies N = 2Dhorizon.

This distance enlargement factor is the quotient of the factor
qDhorizon³t0, by which the light horizon is enlarged, and the cor-
responding scale factor kDhorizon³t0:

ZDhorizon³D=3 =
qDhorizon³t0

kDhorizon³t0

(8.72)

Here qDhorizon³t0 increases the edge length on the light horizon
from approximately LP (Fig. 2, 8.7) to the light horizon rlh(t0)
(Sect. 9.3.1, table 9.3):

qDhorizon³t0 j
rlh(t0)

LP
= 2.56 · 1061 (8.73)

The scale factor leads to a reduction in the radiation density
on the dimensional horizon Ã̃r,Dhorizon

to today’s radiation den-
sity Ã̃r,t0. This reduction mainly takes place in space dimen-
sion three. Thus the density is proportional to the scale fac-
tor to the power minus four. Furthermore Ã̃r,Dhorizon

is about
half the Planck density (Fig. 8.6), thus Ã̃r,Dhorizon

j 1
2 , and

Ã̃r,t0 = 6.52 · 102127 (s. Tab. 9.2). Hence:

kDhorizon³t0 j
(

Ã̃r,Dhorizon

Ã̃r,t0

)1/4

= 2.96 · 1031 (8.74)
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We use Eq. (8.73 and Eq. (8.74) in Eq. (8.72)and get:

ZDhorizon³D=3 = 8.65 · 1029 (8.75)

To determine the dimensional horizon, we solve Eq. (8.71) after
Dhorizon and use Eq. (8.75):

Dhorizon =
3

ln 2
· ln(ZDhorizon³D=3) + 3 = 301.3 j 301 (8.76)

Definition 12 Dimensional unfolding:

The vacuum that is enclosed by the actual light horizon

Rlh was smaller at earlier times according to the expansion of

space.

That vacuum changed its dimension at dimensional phase

transitions, whereby the amount of vacuum does not change
at the transition, and whereby each transition from a dimension
D+ s to a dimension D takes place at a critical density Ã̃D,c,
and whereby the lowest dimension is D = 3.

The largest dimension that the vacuum enclosed by the actual
light horizon can take is called dimensional horizon Dhorizon.

The process of the dimensional phase transitions starting at the
dimensional horizon Dhorizon and ending at D = 3 is called
dimensional unfolding.

Theorem 26 Completed time evolution of the universe:

(1a) The Planck length LP represents the smallest possible stan-
dard deviation of a single observation of space. Correspond-
ingly, space can be modeled in terms of balls or hyperballs.

(1b) If a cube or hypercube in D dimensional space consists of a
fixed number of balls or hyperballs, and if the length of an edge is
established by nD balls or hyperballs, and if a dimensional phase
transition from a dimension D+s to a dimension D occurs, then
the edge is enlarged by the following distance enlargement

factor:
ZD+s³D = n

s/D
D+s (8.77)
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(2) The hypercube in (1) can take a highest possible dimension,
the dimensional horizon Dhorizon.

(3) At Dhorizon, an edge is constituted by two balls.

(4) At a dimensional phase transition from Dhorizon to a dimen-
sion D, the distance enlargement factor is as follows:

ZDhorizon³D = 2
Dhorizon−D

D (8.78)

(5) The expansion of space ranges from the time of Dhorizon until
the actual time t0, and is characterized by the scale factor:

kDhorizon³t0 j
(

Ã̃r,Dhorizon

Ã̃r,t0

)1/4

= 2.96 · 1031 (8.79)

(6) The enlargement of space ranges from the time of Dhorizon

until the actual time t0, and it ranges from the Planck length
LP towards the light horizon Rlh, and it is characterized by a
complete distance enlargement factor

qDhorizon³t0 j
rlh(t0)

LP
= 2.56 · 1061 (8.80)

(7) The distance enlargement factor of dimensional phase
transitions is the following ratio:

ZDhorizon³D=3 =
qDhorizon³t0

kDhorizon³t0

= 8.65 · 1029 (8.81)

(8) The dimensional horizon is as follows:

Dhorizon =
3

ln 2
· ln(ZDhorizon³D=3) + 3 = 301.3 j 301 (8.82)

(9) The distance enlargement factor obtained by dimensional
phase transitions repairs the incompleteness of the GRT

derived in theorem (20).
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(10) The dimensional phase transitions are caused by the fact
that the attractive gravitational interaction can decrease the en-
ergy per particle in a HUF. Accordingly, that transition can be
interpreted as a condensation. In particular, that condensa-
tion can be interpreted as a gravitational instability of the

space under the load of its content.

(11) The dimensional phase transitions can be modeled for the
connections among regions of space in terms of the shortcuts.

(12) The dimensional phase transitions can be modeled for the
objects in space by the mean field theory.

8.3 Field variance in a HUF

If there are overdensities in the surroundings of a HUF, then
these cause a field variance ∆G72 in that HUF. In this section
we analyze that variance ∆G72 for the case of a HUF with a
radius R̃HUF .

Objects: We consider objects with a mass M̃ , a radius ã and
a volume VD · ãD. As a result of the Heisenberg uncertainty
relation and possibly additional stochastic effects, there is a
standard deviation of the mass ∆M̃ .

Force: We analyze the force that is exerted upon one particle
M̃ in the center of the HUF by all other particles M̃j in the
surrounding. For it we remind, that the homogeneous part of
the masses M̃j in the surrounding does not exert any force upon
M̃ . However, the uncertainties or overdensities or standard
deviations ∆M̃j exert a force upon M̃ .
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Force caused by ∆M̃j: An overdensity ∆M̃j at a distance R̃j

exerts the following force upon M̃ :

F̃j =
M̃ ·∆M̃j

R̃D21
j

· (D 2 2) · ~ej (8.83)

Hereby ~ej is the direction vector of the force.

Force caused by the ∆M̃j in a shell: In order to derive the force
exerted upon M̃ , we apply shells with radii 2ã, 3ã, 4ã etc. The
number N(R̃j) of objects in a shell is equal to the volume of
that shell with its thickness ã divided by the volume of one
object:

N(R̃j) = VD ·DR̃2
j · ã ·

1

VDãD
=
DR̃2

j

ãD21
(8.84)

The direction vectors ~ej and the forces F̃j of the ∆M̃j in the
shell are practically random.

Accordingly we derive the expectation value of the force:

〈F̃j(R̃j)〉 = Σ
N(R̃j)
j F̃j (8.85)

We apply that the expectation value of Eq. (8.83):

〈F̃j(R̃j)〉 =
M̃ ·∆M̃j

R̃D21
j

· (D 2 2) · 〈~ej〉 (8.86)

Hereby the expectation value of the direction vectors is zero:

〈~ej〉 = 0 (8.87)

So we get:
〈F̃j(R̃j)〉 = 0 (8.88)

Thus the homogeneous surroundings do not exert any dipolar
force 〈F̃j(R̃j)〉 upon the mass M̃ .

However, the overdensities may exert a force variance upon
M̃ . For it we derive the mean of the square:

〈F̃ 2
j (R̃j)〉 = Σ

N(R̃j)
i F̃i · ΣN(R̃j)

k F̃k (8.89)
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We insert the force (Eq. 8.83):

〈F̃ 2
j (R̃j)〉 =

(

M̃ · (D 2 2)

R̃D21
j

)2

· ΣN(R̃j)
i Σ

N(R̃j)
k ∆M̃i∆M̃k~ei~ek

(8.90)
As there are no essential correlations between the overdensities
and the direction vectors, we factorize these. Similarly, there are
no essential correlations among the overdensities, so we factorize
these, and we apply the expectation value ΣN

i ∆M̃i = N ·∆M̃ .
Here and in the following, we write N = N(R̃j) for short. So
we get:

〈F̃ 2
j (R̃j)〉 =

(

M̃ · (D 2 2)

R̃D21
j

)2

·N 2 ·∆M̃ 2 · 〈~ei~ek〉 (8.91)

We apply the fact that the average of two random unit vectors
is 1/D:

〈F̃ 2
j (R̃j)〉 =

(

M̃ · (D 2 2)

R̃D21
j

)2

·N 2 ·∆M̃ 2 · 1

D
(8.92)

If we reverse the direction of a force vector, then the force
variance does not change, hence this force variance exhibits
quadrupolar symmetry. As the force variance is isotropic, it
is characterized by an isotropic quadrupolar tensor.

Integration of the force variance: Next we add up the force vari-
ances of all shells. So we get the complete gravitational

variance:

〈F̃ 2〉 = Σ>
R̃j
〈F̃ 2

j (R̃j)〉 (8.93)

We insert Eq. (8.92):

〈F̃ 2〉 = Σ>
R̃j

(

M̃ ·∆M̃(D 2 2)

R̃D21
j

)2

·N 2(R̃j) ·
1

D
(8.94)



8.3. FIELD VARIANCE IN A HUF 209

We insert Eq. (8.84):

〈F̃ 2〉 = Σ>
R̃j

(

M̃ ·∆M̃(D 2 2)

R̃D21
j

)2

·
D2R̃4

j

ã2D22
· 1

D
(8.95)

We simplify that Eq. and we replace the sum by an integral,
ranging from a radius RHUF to infinity:

〈F̃ 2〉 =
∫ >

R̃HUF

(

M̃ ·∆M̃(D 2 2)

ãD21

)2

·D · R̃422D
j dR̃ (8.96)

We integrate:

〈F̃ 2〉 =
(

M̃ ·∆M̃(D 2 2)

ãD21

)2

· D

2D 2 5
· R̃522D

HUF (8.97)

Field variance: We derive the corresponding field variance:

(∆ ~G7)2 =
〈F̃ 2〉
M̃ 2

=

(

∆M̃(D 2 2)

ãD21

)2

· D

2D 2 5
· R̃522D

HUF (8.98)

Here we identify the square of the above bracket with field vari-
ance of the overdensity M̃ of a single object with radius ã at
the surface of that object:

(∆ ~G7
1)

2 =

(

∆M̃(D 2 2)

ãD21

)2

(8.99)

With it we get:

(∆ ~G7)2 = (∆ ~G7
1)

2 · D

2D 2 5
· R̃522D

HUF (8.100)

Energy density of the field variance: In order to derive the en-

ergy density of the field variance, we divide by 8Ã ·G · c2:

uf,var =
(∆ ~G7)2

8Ã ·G · c2 =
(∆ ~G7

1)
2

8Ã ·G · c2 ·
D

2D 2 5
· R̃522D

HUF (8.101)
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Here we identify the fraction containing ∆G7
1 by the energy

density of the field variance of a single object at its surface:

uf,var,1 =
(∆ ~G7

1)
2

8Ã ·G · c2 (8.102)

With it we get:

uf,var = uf,var,1 ·
D

2D 2 5
· R̃522D

HUF (8.103)

Theorem 27 Variance of the field in a HUF:

(1) In the surroundings of a HUF there are always fluctuations.
These can be characterized by the standard deviation or uncer-
tainty ∆M̃ .

(2) If a HUF has a radius R̃HUF , and if the objects in the sur-
roundings have a radius ã, and fluctuations with standard de-
viation ∆M̃ , then there occurs the following field variance in
the center of the HUF:

(∆ ~G7)2 = (∆ ~G7
1)

2 · D

2D 2 5
· R̃522D

HUF (8.104)

Hereby the single particle field variance is as follows:

(∆ ~G7
1)

2 =

(

∆M̃(D 2 2)

ãD21

)2

(8.105)

(3) The field variance (∆ ~G7)2 is invariant with respect to a
reversal a the field ~G7

1 of a single particle. Correspondingly it
has a quadrupolar symmetry.

(4) In the center of the HUF in part (2), there occurs the fol-
lowing energy density of the field variance:

uf,var = uf,var,1 ·
D

2D 2 5
· R̃522D

HUF (8.106)
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Hereby the single particle energy density is as follows:

uf,var,1 =
(∆ ~G7

1)
2

8Ã ·G · c2 (8.107)

(5) In the center of a HUF, the field variance and its energy
density tend to zero as the radius R̃HUF tends to infinity.

(6) In a homogeneous system with fluctuations with a standard
deviation ∆M̃ , the dipolar component of the forces ~Fj averages
to zero and only a small quadrupolar component remains and
tends to zero proportional to the following power law as a func-
tion of the distance R̃522D

HUF . Analogous relations hold for the
fields. We call this effect the self averaging of gravity in

homogeneous systems.

8.4 Bose gas at high density Ã̃

In this section we model and analyze a Bose gas (Bose (1924))
at dimensions D g 3 and at high density Ã̃ > 1/4 in a HUF
(Fig. 8.8). As an example, we model photons.

Energy density or pressure: We analyze the gas in terms of the
energy density u, which can be interpreted as a pressure of the
gas pgas. With it we can analyze two essential phenomena: a
possible condensation and the energy density uf,v.

Temperature T at a density ÃD: At a fixed density ÃD, the tem-
perature T is determined according to the Stefan-Boltzmann
law (Carmesin (2020b)):

uD = āD · TD+1 (8.108)

Hereby the constant aD is determined in (Carmesin (2020b)).
We apply uD · c2 = ÃD and solve for T :

T = D+1

√

Ã

āD · c2 (8.109)
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HUF D × EZPE
1× E1

Figure 8.8: Bose gas at high density Ã̃D > 1/4: local harmonic
oscillators (dashed) (Carmesin (2018b),Carmesin and Carmesin
(2020)) , D ZPOs (one maximum), one E1 state (maximum
and minimum of Ψ), no other excitation, due to density limit
Ã̃D < 1/2.
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This shows that we may analyze the pressure as a function of
the density.

8.4.1 Photons at high density

In this section we analyze the physics of a photon at high den-
sity.

At high density Ã̃D, the photon states are represented by
the hyperbola in Fig. (3.1), by construction of that hyperbola.
Based on the density, the extension or radius or standard devi-
ation of a photon is as follows:

ã = Ã̃
−1
D+1

D (8.110)

Moreover, the energy of that single photon state is as follows:

Ẽ1 =
1

2ã
(8.111)

We apply these relations to the Bose gas, and we interpret that
application as a mean field approximation.

Kinetic energy: The kinetic energy Ekin of a single photon is
equal to h/T . By definition, h/T it is equal to its dynamic mass
M :

Ekin =M =
h

T
= h · f = ~ · Ë (8.112)

By comparison with Eq. (8.110) we get:

Ẽ1 = Ẽkin = M̃ =
1

2ã
(8.113)

Overlapping photons: In principle, photons can overlap. How-
ever, at densities Ã̃ > 1/4 and in the framework of the mean
field approximation, it is impossible that two photons are at the
same state for the following reason: If two photons, each at a
density Ã̃, were in the same state, then the density would be
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larger that one half, Ã̃hypothetical > 1/2, but all real densities are
smaller than one half, Ã̃real < 1/2. So there is only one excited
state at each local harmonic potential (Fig. (8.8).

8.4.2 Harmonic oscillators

In this section we analyze oscillator states that describe the
photons.

Oscillations: Photons can be described as states of harmonic os-
cillators ((Ballentine, 1998, p. 541-554)). At high density, the
states of quantum objects are characterized by a very local har-
monic potential (Carmesin (2018b),Carmesin (2019b),Carmesin
and Carmesin (2020)).

Zero-point energy, ZPE: Harmonic oscillators exhibit zero-point
oscillations (Born et al. (1926), Mehra and Rechenberg (1999)),
and the corresponding zero-point energy. The ZPE of a har-
monic oscillator is as follows:

EZPE,mode = ~Ë/2 (8.114)

According to the usual theory of photons that propagate
freely in space ((Ballentine, 1998, p. 526-534)), each oscillator
is characterized by D 2 1 directions of polarization.

In our case of high density, the harmonic oscillator is similar
to the potential of a particle in a crystal. For that case of
crystals, (Fornasini and Grisenti, 2015, p. 1252) show that the
empirical results fit to the Einstein model (Einstein (1907)) and
there is one mode for each dimension in that model. So there
are D modes of the ZPE:

EZPE = D · ~Ë/2 (8.115)

As the single photon states exhibits the energy ~ · Ë, and as
the ZPE of a single mode is ~ · Ë/2, the ZPE of a single mode



8.4. BOSE GAS AT HIGH DENSITY Ã̃ 215

is one half of Ẽ1. So we get:

ẼZPE =
D

4ã
(8.116)

8.4.3 Potential energy term

In this section we analyze the potential energy term.

Radius of the HUF: We choose a HUF the radius r̃ of which is
an integer multiple of ã:

r̃ = »̄ · ã (8.117)

Thus the volume of the HUF is »̄D times the volume of one
object. As the density is constant, the number of objects in the
HUF is:

N = »̄D (8.118)

Potential energy: If a pair of objects with mass M is at a dis-
tance R, then their energy of interaction is:

Epot,pair(R) = 2 GD ·M 2

(D 2 2) ·RD22
(8.119)

We transform to Planck units:

Ẽpot,pair(R̃) = 2 M̃ 2

R̃D22
(8.120)

We analyze one of the N objects as a reference object at the
center of the HUF with radius r. As we model a Bose gas, the
other objects are placed at random positions in the HUF. Thus
the averaged potential energy of the reference object with one
of the other objects is as follows:

¯̃Epot,pair =

∫ r̃

0 Ẽpot(R̃)R̃
D21dR̃

∫ r̃

0 R̃
D21dR̃

(8.121)
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We insert Eq. (8.120):

¯̃Epot,pair = 2M̃ 2 ·
∫ r̃

0 R̃dR̃
∫ r̃

0 R̃
D21dR̃

(8.122)

We evaluate the integrals:

¯̃Epot,pair = 2M̃ 2 · D
2
· r̃

2

r̃D
= 2M̃ 2 · D

2 · r̃D22
(8.123)

We attribute one half of the potential energy of the pairs to the
considered reference object:

¯̃Epot = 2M̃ 2 · D

4 · r̃D22
(8.124)

8.4.4 Energy of one object

In this section we analyze the energy, volume, energy density
and pressure corresponding to one object. Thereby the inter-
action with other objects is included. Altogether that object is
representative for the gas.

The averaged energy ¯̃E of the reference object consists of the
kinetic energy in Eq. (8.113) plus the ZPE in Eq. (8.116) plus
N 2 1 times the potential energy in Eq. (8.124). Additionally
we apply Eqs. (8.117, 8.118). So we get:

¯̃E =
1

2ã
·
(

1 +
D

2

)

2
(

»̄D 2 1
)

· M̃ 2 ·D
4 · (»̄ · ã)D22

(8.125)

Pressure of the gas: The pressure is the above energy divided
by the volume ãD:

p̃gas =

(

1

2ã
·
(

1 +
D

2

)

2
(

»̄D 2 1
)

· M̃ 2 ·D
4 · (»̄ · ã)D22

)

· 1

ãD
(8.126)
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0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

Ã̃D

p̃ D

Figure 8.9: p̃D(Ã̃D):D = 3 (solid line), D = 4 (dotted), D = 5
(dashed), D = 6 (dashdotted). D = 7 (loosely dotted), D = 8
(loosely dashed), D = 9 (loosely dashdotted). Dimensional
phase transitions occur at the critical densities Ã̃D=3,c j 0.435,
Ã̃D=4,c j 0.45, Ã̃D=5,c j 0.465, Ã̃D=6,c j 0.48, Ã̃D=7,c j 0.487,
Ã̃D=8,c j 0.493, Ã̃D=9,c j 0.497.

Appropriate radius of the HUF: We formulated our Bose gas
model for various factors »̄ or radii of the HUF r̃ = »̄ · ã. So
that Bose gas model can be varied easily. However, if we choose
a very large radius r̃, the effect of self averaging occurs (see
theorem 27), but it is not automatically compensated in our
model. An appropriate values of »̄ that causes little self aver-
aging is »̄ = 2. Larger values of »̄ systematically overestimate
gravity and give rise to lower bounds for the critical densities
Ã̃D,c.

Numerical investigation: For the case of »̄ = 2, the pressure p̃
of the Bose gas is shown as a function of the density Ã̃D for
various dimensions D (Fig. 8.9). At low density, the pressure
or energy density of the D = 3 is minimal and stable. At the
density Ã̃D=3,c j 0.433, the transition between dimensions three
and four takes place. So there occurs a sequence of transitions
with critical densities Ã̃D,c
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Dimensional transitions at critical densities: At low density, the
dimension D = 3 minimizes the energy. At the critical density
Ã̃D=3,c j 0.433, the gas has the same energy for D = 3 and
D = 4, while D = 3 does not minimize the energy for higher
densities Ã̃ > Ã̃D=3,c. If the density decreases, then there occurs
a dimensional transition from D = 4 to D = 3 at Ã̃D=3,c (Fig.
8.9). For more numerical results see (Sawitzki and Carmesin
(2021)).

Analogously, at the next critical density Ã̃D=4,c j 0.453, the
energies are equal for D = 4 and D = 5. Similarly, the critical
densities Ã̃D,c increase monotonously with the dimension D. For
instance, the next critical densities are Ã̃D=5,c j 0.47, Ã̃D=6,c j
0.48, Ã̃D=7,c j 0.487, Ã̃D=8,c j 0.493, For the transition at D =
301 we find the critical density Ã̃301,c j 0.5.

Theorem 28 Dimensional phase transitions in the Bose

gas:

(1) The present model of a Bose gas with interacting particles
is valid for dimensions D g 3 and for a density Ã̃D, and it
includes the following relations (Fig. 8.8):

(1a) The extension or radius or standard deviation of photon is
as follows:

ã = Ã̃
−1
D+1

D (8.127)

(1b) The gas is in a HUF with the following radius r̃, charac-
terized by a parameter »̄ that can be chosen freely:

r̃ = »̄ · ã (8.128)

Hereby »̄ should be chosen so that the self averaging in theorem
(27) is appropriate.

(1c) A photon has the following dynamic mass:

M̃ =
1

2 · ã (8.129)
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(2) As a result, the gas has the following properties:

(2a) The gas is characterized by the following energy function
of a single boson:

¯̃E =
1

2ã
·
(

1 +
D

2

)

2
(

»̄D 2 1
)

· M̃ 2 ·D
4 · (»̄ · ã)D22

(8.130)

(2b) The gas exhibits the following pressure:

p̃gas =

(

1

2ã
·
(

1 +
D

2

)

2
(

»̄D 2 1
)

· M̃ 2 ·D
4 · (»̄ · ã)D22

)

· 1

ãD
(8.131)

(3) There occur dimensional phase transitions (Fig. 8.9).
that are completely analogous to those in the mean field model
(theorem 26):

(3a) The dimension with the lowest pressure is stable.

(3b) The transition is driven by the attractive force of gravita-
tion, so it is interpreted as a condensation and as a gravitational
instability.

(3c) At a critical density Ã̃D,c the system undergoes a dimen-
sional phase transition from a dimension D + s to D.

(3d) The larger the density Ã̃D is, the larger is D.

(3e) The dimension Dhorizon = 301 is achieved at a critical
density that is near 0.5.

8.5 Dark energy: theory III: D g 3

The dark energy theory I as well as the dark energy theory

II provide a description of the dark energy in three dimensional
space. In this section we develop and analyze the dark energy
in all dimensions ranging from the dimensional horizon Dhorizon

until D = 3, from the Big Bang until today2. Moreover, in this
2That theory has been published since 2018 (Carmesin (2018c), Carmesin (2018b),

Carmesin (2019b), Carmesin (2019a))
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section we derive the density of the dark energy directly from
the universal constants G, c and ~.

We derive the density of the vacuum Ã̃v or the dark en-
ergy from the knowledge of the dimensional horizon Dhorizon =
301.35 j 301. The dark energy consists of gravitational waves
of the space. At the dimensional horizon Dhorizon, a quan-
tum object that is causally effective here exhibits an exten-
sion or standard deviation ∆x = LP and the corresponding en-
ergy E(Dhorizon) = EP/2 and the dynamic mass M(Dhorizon) =
MP/2 and D = 301.

During dimensional unfolding, the wavelength » of these
quantized waves increases by the distance enlargement fac-

tor ZDhorizon³D=3, as these waves constitute the space. Corre-
spondingly, the energy of a quantized wave decreases by the
inverse factor 1

ZDhorizon→D=3
. The gravitational wave has D 2 1

directions of polarization. So 300 directions at Dhorizon are re-
duced to two directions at D = 3. Hence the energy decreases
by another factor 150. So we derive:

E(D = 3) =
E(Dhorizon)

150 · ZDhorizon³D=3
or (8.132)

M(D = 3) =
M(Dhorizon)

150 · ZDhorizon³D=3
(8.133)

Moreover, during the dimensional unfolding, the distances in-
creased by the distance enlargement factor ZDhorizon³D=3. Thus
the three dimensional volume corresponding to that quantum
object is as follows:

V = VD=3 · (LP · ZDhorizon³D=3)
3 (8.134)

Hereby VD is the volume of the unit hyperball in D dimensions
(see appendix). In particular, at D = 3 one derives VD=3 =

4Ã
3 .

In the process of the expansion of the space, the quanta
of the space analyzed in this section do not enlarge or increase
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their wavelength, instead the number of these quanta increases.
The density of these quanta is the dynamical mass divided by
the volume:

Ãv =
M(Dhorizon)

VD=3 · L3
P · 150 · Z4

Dhorizon³D=3

(8.135)

Here we apply the fact that the dynamical mass at Dhorizon is
approximately equal to its maximum MP/2:

M(Dhorizon) j
MP

2
(8.136)

Moreover we apply the Planck density related to balls (see ap-
pendix):

Ã̄P,v =
MP

VD=3 · L3
P

= 1.2307 · 1096 kg

m3
(8.137)

We insert Eqs. (8.136) and 8.137) into Eq. (8.135) and derive:

Ãv =
Ã̄P,v

300 · Z4
Dhorizon³D=3

(8.138)

We insert the distance enlargement factor (Eq. 8.75), including
Dhorizon = 301.35,

ZDhorizon³D=3 = 2
Dhorizon−3

3 = 8.65 · 1029 (8.139)

into the Eq. (8.135) and derive:

Ãv = 5.954 · 102123 · Ã̄P,v or Ã̃v = 5.954 · 102123 (8.140)

Based on the CMB probe (Collaboration (2020)), the following
density can be derived (Sect. 9.2):

Ã̃v,CMB = 4.8181 · 102123 (8.141)

The difference amounts to 24 %. That difference is relatively
small compared to the factor

150 · Z4
Dhorizon³D=3 = 8.4 · 10121 (8.142)
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by which the density changed from its value at Dhorizon to its
value at D = 3, and Ãv is derived directly from the universal
constants G, c and ~. Hence that relatively small difference and
the correct physics provide a clear evidence for the dark energy
theory III.

Theorem 29 Dark energy theory III, ranging from the

dimensional horizon Dhorizon to D = 3:

(1) The dark energy theory III provides a quantum theory of
dark energy.

(2) The dark energy theory III provides a description of the dark
energy ranging from the dimensional Dhorizon to the actual and
lowest possible dimension D = 3.

(3) The dark energy theory III provides a description of the
time evolution of the dark energy ranging from its highest three
dimensional projected density at Dhorizon

1

2
· Ã̄P,v =

1

2
· MP

VD=3 · L3
P

=
1

2
· 1.2307 · 1096 kg

m3
(8.143)

to the actual density:

Ãv = 5.954 · 102123 · Ã̄P,v or Ã̃v = 5.954 · 102123 (8.144)

(4) The dark energy theory III provides a clear formula for the
density:

Ãv =
M(Dhorizon)

VD=3 · L3
P · 150 · Z4

Dhorizon³D=3

=
Ã̄P,v

300 · Z4
Dhorizon³D=3

(8.145)

(5) The difference between the dark energy theory III and the ob-
servation amounts to difference of 24 %. That difference is rel-
atively small compared to the factor by which the density varies:
8.4 · 10121.
(6) That relatively small difference provides a clear evidence for
the dark energy theory III.
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Figure 8.10: Light horizon at Ã̃D=3,c as a function of the redshift.
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Figure 8.11: Distance enlargement factor ZDhorizon³D=3 as a func-
tion of the redshift.

8.6 Dark energy: theory IV: polychromatic

vacuum

The dark energy theory III describes a monochromatic vacuum,
whereby the wavelength depends on the light horizon at the crit-
ical density ÃD=3,c. In this section we describe the time evolution
of that horizon, and we analyze the resulting polychromatic

vacuum.

Light horizon: The calculation of the time evolution of the light
horizon has been elaborated in (Carmesin (2018c)) as well as
in (Carmesin (2018b)) and in (Carmesin (2019b)). Thereby the
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Figure 8.12: Dimensional horizon as a function of the redshift.

density parameter ΩΛ has been calculated on the basis of the
universal constants G, c and h and by application of the dark
energy theory IV directly ((Carmesin, 2019b, p. 189)):

ΩΛ = 0.6840 (8.146)

Hereby the amount of the completely formed vacuum, CFV, is
derived on the basis of the FLE. In particular, the LFV and the
NFV are not distinguished.

Moreover, the light horizon Rlh that could be observed by an
observer at a redshift z is derived((Carmesin, 2019b, p. 189)),
and it is represented as a function of z in Fig. (8.10).

Distance enlargement factor: Using the light horizon in Fig.
(8.10), the distance enlargement factor ZDhorizon³D=3 is derived
((Carmesin, 2019b, p. 189)). It is shown in Fig. (8.11).

Dimensional horizon Dhorizon: Using the distance enlargement
factor ZDhorizon³D=3, we derive the corresponding dimensional
horizon:

Dhorizon =
3 · lnZDhorizon³D=3

ln 2
+ 3 (8.147)

The dimensional horizon as a function of the redshift is shown
in Fig. (8.12).
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Figure 8.13: Scaled circular frequency Ë̃ of a quantum of dark
energy at D = 3 as a function of the redshift.

8.6.1 Spectrum

In this section we analyze the spectrum of the quanta of the
dark energy. For it we use the distance enlargement factor
ZDhorizon³D=3 and the primordial energy ẼDhorizon

j 1
2 in order

to derive the scaled energy or the scaled circular frequency of a
quantum of dark energy:

Ẽ = Ë̃ =
1

2 · 150 · ZDhorizon³D=3
(8.148)

The scaled circular frequency of a quantum of dark energy as a
function of the redshift is shown in Fig. (8.13).

8.6.2 Density

In this section we derive the density Ã̃Λ or Ã̃v of the dark energy
that forms at a redshift z. For it we divide the scaled energy
(Eq. 8.147 and Fig. 8.13) by the scaled volume Z3

Dhorizon³D=3.
Hence we derive:

Ã̃v =
1

Z4
Dmax³D=3 · 2 · 150

(8.149)

Note that in ((Carmesin, 2019b, p. 97)), we additionally use
the fact that Ã̃Dmax,c deviates slightly from 1

2 , accordingly we
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Figure 8.14: Scaled density Ã̃Λ of dark energy at D = 3 as a
function of the redshift z at which the quanta formed.

apply the more precise relation:

Ã̃v,tf = (2Ã̃Dmax,c)
4

Dmax+1 · 1

Z4
Dmax³D=3 · (Dmax 2 1)

(8.150)

That scaled density of dark energy as a function of the redshift
is shown in Fig. (8.14).

8.6.3 Density of the actual polychromatic vacuum

During the evolution of the universe, there formed vacuum con-
sisting of quanta at various circular frequencies (Fig. 8.13). The
vacuum that constitutes the present space is the linear combi-
nation of these quanta of vacuum. Hence the actual vacuum is
a polychromatic vacuum, constituted by a linear combination
of various monochromatic quanta of vacuum. In this section we
derive the density of that polychromatic vacuum.

For it we integrate along all redshifts ranging from the red-
shift zD=3,c of the first formation of three dimensional space at
the time of the dimensional phase transition at Ã̃D=3,c until to-
day at z = 0. At each redshift z we derive the additional volume
∆V (z) formed according to the FLE, and we use the density
Ã̃Λ(z) of the monochromatic vacuum forming at that redshift z.
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Figure 8.15: Averaged scaled density ¯̃ÃΛ of the polychromatic dark
energy or the the polychromatic vacuum at D = 3 as a function
of the redshift.

Thus we derive the following averaged density:

¯̃ÃΛ(· = zD=3,c, · = z) =

∫ z

zD=3,c
∆V (·) · Ã̃Λ(·)d·

∫ z

zD=3,c
∆V (·)d·

(8.151)

8.6.4 Density ¯̃ÃΛ(· = z, · = 0) formed during · * [z, 0]

If a measurement is based on a probe based on radiation emit-
ted at the redshift z, then that radiation experiences redshifts ·
according to the formation of vacuum in the interval · * [0, z].
Thus the density of vacuum generating that redshift is as fol-
lows:

¯̃ÃΛ(· = z, · = 0) =

∫ 0

z ∆V (·) · Ã̃Λ(·)d·
∫ 0

z ∆V (·)d·
(8.152)

That scaled averaged density of the formed polychromatic dark
energy or of the formed polychromatic vacuum as a function of
the redshift is shown in Fig. (8.15).

8.6.5 Time evolution of H0

In this section we derive the time evolution of the Hubble con-
stantH0. In particular we deriveH0 as a function of the redshift
z.
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For it we apply the fraction of H0 values derived above (Eq.
7.148):

H2
0(t0, R0, z)

H2
0(t0, R0, z = 1090)

= Ωm + ΩΛ · (1 + »(z))2 (8.153)

In order to apply that Eq., we identify the factor (1+»(z))2 by
a correction factor ΩΛ,corr(z) of the density parameter ΩΛ:

ΩΛ,corr(z) =
¯̃ÃΛ(· = z, · = 0)

¯̃ÃΛ(· = zD=3,c, · = 0)
(8.154)

We use the following approximation that is very close to exact-
ness:

¯̃ÃΛ(z = zD=3,c)=̂¯̃ÃΛ(z = 1090) (8.155)

With it we derive:

H2
0(t0, R0, z)

H2
0(t0, R0, z = 1090)

= Ωm + ΩΛ · ΩΛ,corr(z) (8.156)

We solve for H0(t0, R0, z):

H0(t0, R0, z) = H0(t0, R0, z = 1090) ·
√

Ωm + ΩΛ · ΩΛ,corr(z)

(8.157)
The resulting evolution is shown in Fig. (8.16). That Fig.
clearly shows that the dark energy theory IV exhibits a precise
accordance with observations ranging from the early (z = 1090)
to the late (z = 0.0865) universe. In particular, the deviation
between observation and measurement is very small for three
observations: Firstly, there is an accurate accordance for the
case of z = 0.0865 using observations based on the distance
ladder:

∆H0 =
∆H0, theory IV 2∆H0, observation

H0, observation
(8.158)

∆H0, theory IV - distance ladder =
73.7962 74.03

74.03
= 20.32%

(8.159)
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Secondly, there is a high accordance for the case of z = 0.75
utilizing observations based on weak gravitational lensing:

∆H0, theory IV - gravitational lens =
68.0982 68.25

68.25
= 20.22%

(8.160)
Thirdly, there is a high accordance for the case of z = 1090
applying observations based on the CMB probe:

∆H0, theory IV - CMB =
68.3482 68.36

68.36
= 0.018% (8.161)

Furthermore, the dark energy theory IV exhibits an even more
precise accordance to the observations than the dark energy
theory II. Moreover, dark energy theory IV provides a derivation
of the density at z = 1090, so that an additional prediction
and comparison with observations is enabled. Indeed, the dark
energy theory IV explains the discrepancy between H0 probes
taken in the early universe and H0 probes based on the late
universe. In fact, this explanation is also provided by the dark
energy theory II.

8.6.6 Time evolution of Ã8

In this section we derive the time evolution of the amplitude of
matter fluctuations Ã8. In particular we derive Ã8 as a function
of the redshift z.

We derive the correction factor in Eq. (7.159):

Ã8,corrected(z) = Ã8 ·
(

H0

H0(z)

)2

(8.162)

We use the reference values of the CMB at z = 1090, and we
insert Eq. (8.157). So we get:

Ã8,corrected(z) =
Ã8(z = 1090)

Ωm + ΩΛ · ΩΛ,corr(z)
(8.163)
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Figure 8.16: H0 as a function of the redshift z of the probe:
distance ladder (æ, Riess et al. (2019)), baryonic acoustic os-
cillations (o, Zaldarriaga et al. (2020), Weiland et al. (2018),
Blomquist et al. (2019)), weak gravitational lensing (∆, Lu and
Haiman (2020)), CMB (×, Collaboration (2020)). Dark energy
theory II (dotted). Dark energy theory IV (dashed).

The resulting function Ã8,corrected(z) is evaluated by using the
value Ã8(z = 1090) = 0.8111 (see Sect. 9.2 or Collaboration
(2020)). The function Ã8,corrected(z) is shown in Fig. (8.17).

The Fig. (8.17) illustrates very clearly that the dark energy
theory IV exhibits a precise accordance with observations. We
emphasize that the theoretical values are all within the errors
of measurement. We investigate the small differences between
theory and measurement in detail: Firstly, there is an accurate
accordance for the case of z = 0.75 using observations of the
dark energy survey, DES and based on galaxy clustering
and weak lensing:

∆Ã8, theory IV - DES =
0.79232 0.817

0.817
= 23% (8.164)

Secondly, there is a high accordance for the case of z = 0.75,
whereby the observations are based on weak gravitational lens-
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Figure 8.17: Ã8 as a function of the redshift z of the probe: galaxy
clustering and lensing (æ, (Abbott et al., 2019, p. 6, 15)), weak
gravitational lenses ((Lu and Haiman, 2020, p. 1, 2)), baryonic
acoustic oscillations (o, (Tröster et al., 2020, p. 1, 2)), CMB (×,
(Collaboration, 2020, p. 16)). Dark energy theory II (dotted).
Dark energy theory IV (dashed).

ing:

∆Ã8, theory IV - gravitational lensing =
0.79232 0.79

0.79
= 20.29%

(8.165)
Thirdly, there is a precise accordance for the redshift z = 0.475
and for observations based on the baryon acoustic oscillations,
BAO:

∆Ã8, theory IV - BAO =
0.76512 0.71

0.71
= 7.8% (8.166)

Furthermore, the dark energy theory IV clearly exhibits an
even more precise accordance with the observations than the
dark energy theory II does. Moreover, the dark energy theory
IV explains the discrepancy between Ã8 probes taken in the
early universe and Ã8 probes based on the late universe, see
Fig. (8.17). Indeed, this explanation is also provided by the
classical dark energy theory II3.

3This is enabled by the fact that the time evolution of the Hubble flow is underlying
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Theorem 30 Dark energy theory IV provides very pre-

cise accordance with observations:

The dark energy theory IV provides a quantum theory of dark
energy, including the following properties:

(1) The amount of the produced vacuum is derived on the basis
of the FLE, so the distinction between LFV and NFV is not
needed.

(2) The polychromatic spectrum of the vacuum is derived, see
Fig. (8.13).

(3) The time evolution of the density of vacuum Ã̃v(z) formed
at a redshift z is derived, see Fig. (8.14).

(4) The time evolution of the light horizon (Fig. 8.10), of the
distance enlargement factor (Fig. 8.11) and of the dimensional
horizon (Fig. 8.12) are derived.

(5) The density of the vacuum formed in an interval of redshifts
· * [z1, z2] is averaged as follows:

¯̃ÃΛ(· = z1, · = z2) =

∫ z2
z1

∆V (·) · Ã̃Λ(·)d·
∫ z2
z1

∆V (·)d·
(8.167)

That average ¯̃ÃΛ(z) is shown as a function of z, see Fig. (8.15).

(6) If a measurement is based on a probe constituted by radiation
emitted at a redshift z, then this radiation experiences a redshift
according to the formation of vacuum in the interval · * [0, z].
Hence the density of vacuum generating that redshift is equal to
the averaged density ¯̃ÃΛ(· = z, · = 0).

(6a) In particular, the time evolution of H0(z) is characterized
by the following correction factor:

ΩΛ,corr(z) =
¯̃ÃΛ(· = z, · = 0)

¯̃ÃΛ(· = zD=3,c, · = 0)
(8.168)

the evolution of structure and the evolution of the light horizon.
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And a probe at a redshift z causes the following value of H0(z):

H0(t0, R0, z) = H0(t0, R0, z = 1090) ·
√

Ωm + ΩΛ · ΩΛ,corr(z)

(8.169)

(6b) The resulting H0(z) values are in very precise accordance
with the observations, see Fig (8.16).

(6c) The resulting H0(z) values explain the discrepancy between
H0(z) values measured by probes of the early universe and H0(z)
values measured by probes of the late universe.

(6d) In particular, the time evolution of Ã8(z) is characterized
as follows:

Ã8,corrected(z) =
Ã8(z = 1090)

Ωm + ΩΛ · ΩΛ,corr(z)
(8.170)

(6e) The resulting Ã8(z) values are in very accurate accordance
with the observations, see Fig (8.17).

(6f) The resulting Ã8(z) values explain the discrepancy between
Ã8(z) values measured by probes of the early universe and Ã8(z)
values measured by probes of the late universe.

(6g) The resulting H0(z) values as well as the derived Ã8(z)
values of the dark energy theory IV are even more precisely in
accordance with the observations then the corresponding H0(z)
values and Ã8(z) values of the dark energy theory II.

(6h) The very good accordance of the dark energy theory IV
with measurements and its explanatory power provide a clear
evidence for that theory.

(6i) It does not present any conflict that the classical dark energy
theory II exhibits small differences to the dark energy theory IV
that applies quantum physics additionally.
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8.7 Time evolution of forms of energy

In this section we analyze the time evolution of those con-
stituents that amount to at least 5 % to the own energy of
all objects in the universe at the present time or at some earlier
instant of time.

8.7.1 Own energy

In this section we analyze the own energies, as that energy is
observed in many experiments or observations.

The own energy of a relativistic object such as a photon or a
quantum of vacuum is equal to the Planck constant h divided
by its periodic time T :

Eown, relativistic =
h

T
(8.171)

The own energy of an object that has a mass in its own
system is a characteristic property of that object. For instance,
the electron or the elementary particles of dark matter exhibit
a specific mass mown (see for instance Tanabashi et al. (2018),
Carmesin (2018d), Carmesin (2019b)). The own energy of such
an object is determined according to the equivalence of mass
and energy:

Eown, mass = mown · c2 (8.172)

8.7.2 Constituents

In this section we analyze the constituents that represent a suf-
ficient amount of the own energy of all objects in the universe.

The constituents of the universe can be sorted in three cat-
egories: vacuum, radiation and matter.

Thereby the matter consists of dark matter and visible mat-
ter. Hereby the visible matter represents less than 5 % of the
all forms of energy, as its density parameter is Ωb = 0.0493 (see
Sect. 9.2). So it is not analyzed in the following. The dark
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Figure 8.18: Time evolution of own energies: Energy of vacuum
(squares, æ, dashed). Energy of radiation (ç, dotted). Energy
of dark matter (×, dashdotted). In a HUF or HUFv, the same
amounts of gravitational energy and negative sign occur, so that
the corresponding energies are zero: EHUF = Eown + Egravity =
0.

energy represents 26.45 % of the complete energy, as its density
parameter is Ωc = 0.2645 (see Sect. 9.2).

The radiation represents less that 5 % of energy today, but in
the early universe, the radiation represented most of the energy
at that time, so we analyze that energy as well.

The vacuum represents 68.47 % of the complete energy, as
its density parameter is ΩΛ = 0.6847 (see Sect. 9.2).

8.7.3 Dark energy in the HUF

In this section we analyze the dark energy in a HUF. For it
we apply the critical density at which three dimensional space
forms for the first time Ã̃D=3,c = 0.435 (Fig. 8.9). We derive
the state at that density in two ways: backward starting at
the actual time t0 and forward starting at Dhorizon. Then we
verify that both states are equal.
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8.7.3.1 Energy conservation of dark energy

The dark energy is constituted by the energy of the RGWs.
In the HUF, that energy is zero. In particular, that energy is
conserved.

8.7.3.2 Own energy at t0

First we derive the energy density at t0:

uv(t0) = Ãcr,t0 · ΩΛ · c2 (8.173)

We insert (Sect. 9.2):

uv(t0) = 8.66 · 10227 kg

m3
· 0.6847 · c2 = 5.329 · 10210 J

m3
(8.174)

We multiply it by the volume Vlh(t0) = 4Ã
3 R

3
lh(t0). Hereby we

use Rlh = 4.142 · 1026m. So we get Vlh(t0) = 2.977 · 1080m3

(Carmesin (2019b), Gott et al. (2005)):

Ev(t0) = uv(t0) · Vlh(t0) = 1.586 · 1071J (8.175)

That state is represented by the diamond in Fig. (8.18).

8.7.3.3 Own energy during expansion

During the process of expansion the number of the quanta of
dark energy increases proportional to the volume, while the
energy per quantum remains invariant. So the energy is pro-
portional to the volume. Hence the energy is proportional to
R3

lh:
Ev(Rlh) ? R3

lh (8.176)

In particular, for the case Rlh = Rlh(t0) we get:

Ev(t0) ? R3
lh(t0) (8.177)

We form the ratio of both proportional relations:

Ev(Rlh)

Ev(t0)
=

R3
lh

R3
lh(t0)

(8.178)
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We solve for Ev(Rlh):

Ev(Rlh) = Ev(t0) ·
R3

lh

R3
lh(t0)

(8.179)

We present that function by the dashed line in Fig. (8.18).

8.7.3.4 Own energy at Ã̃D=3,c

At the dimensional phase transition to three dimensional space
the density is Ã̃D=3,c = 0.435 or ÃD=3,c = 5.353 · 1095 kg

m3 . With it
we derive the scale factor from the radius Rlh,D=3,c at ÃD=3,c to
the radius Rlh(t0). As the density ÃD=3,c represents radiation,
we relate it to the density of radiation Ãr(t0) = Ãcr,t0 · Ωr =
8.335 · 10231 kg

m3 as follows:

kÃD=3,c³t0 =

(

ÃD=3,c

Ãr(t0)

)1/4

(8.180)

We insert (Sect. 9.2):

kÃD=3,c³t0 =

(

5.353 · 1095
8.335 · 10231

)1/4

= 2.831 · 1031 (8.181)

With it we derive the radius Rlh,D=3,c:

Rlh,D=3,c =
Rlh(t0)

kÃD=3,c³t0

= 1.463 · 1025m (8.182)

We apply that radius to Eq. (8.179) in order to derive the
energy of the vacuum at Rlh,D=3,c:

Ev(Rlh,D=3,c, backward) = Ev(t0) ·
R3

lh,D=3,c

R3
lh(t0)

= 6.992 · 10224J

(8.183)
That state is presented by the triangle in Fig. (8.18).
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Figure 8.19: Two dimensional sketch at state at Dhorizon: A single
quantum of spacetime (dotted, light grey) provides space that
is immediately filled by quanta of radiation (dashed, dark grey,
in the sketch ’below’ the quantum of spacetime). All quanta
propagate at the velocity c, so that the sketch represents an av-
eraged scenario that lasts for a short time, as the space expands
and exhibits dimensional transitions. Edges of the hypercube
(dashdotted).

8.7.3.5 Own energy at the Planck scale

At the dimensional horizonDhorizon, the states are at the Planck
scale. So the quanta that have a causal effect upon us are within
the light horizon. So their standard deviation or extension or
radius is LP . Thus their density is Ã̃D,v = 1

2 . Accordingly, the

energy of a quantum of dark energy is Ẽv, Dhorizon
= 1

2 or:

Ev, Dhorizon
= 9.781 · 108J (8.184)

One quantum of spacetime at Dhorizon: At the dimensional hori-
zon, there are 2Dhorizon quanta of radiation that can in principle
be arranged in a hypercube. The quanta of vacuum connect
these quanta of radiation. One quantum of the vacuum in the
center of the hypercube is sufficient in order to connect the
quanta of radiation. Moreover, at least one quantum of the
vacuum is necessary in order to connect the quanta of radia-
tion.

Correspondingly, we model exactly one quantum of the vac-
uum (Fig. 8.19). Below we will confirm this number of one
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quantum of the vacuum by the fact that the resulting state at
Ã̃D=3,c = 0.435 is equal to the state derived starting from t0 (see
Eqs. 8.182, 8.183 and the triangle in Fig. (8.18).

Radius at Dhorizon: The radius of a quantum is equal to LP . As
there are two objects at an edge at Dhorizon, the diameter at
the light horizon corresponds to two LP , and the light horizon
corresponds to one LP :

Rlh, Dhorizon
= LP = 1.616 · 10235m (8.185)

8.7.3.6 Own energy during dimensional unfolding

During the process of dimensional unfolding, there occurs a
sequence of dimensional phase transitions at critical den-
sities Ã̃D,c. Thereby energy Ev decreases according to the di-
mensional redshift and to projections of polarization directions,
until D = 3 is reached at the density Ã̃D=3,c = 0.435. So we get:

Eown, vac, D =
Eown, vac, Dhorizon

(Dhorizon 2D)/2 · ZDhorizon³D
(8.186)

We derive the distance enlargement factor:

ZDhorizon³D = 2
Dhorizon−D

D (8.187)

For instance we get:

qDhorizon³t0 =
Rlh

LP
= 2.563 · 1061 (8.188)

kLP³t0 =

(

Ã̄P
Ãr(t0)

)1/4

= 3.486 · 1031 (8.189)

ZDhorizon³3 =
qDhorizon³t0

kLP³t0

= 7.352 · 1029 (8.190)

Dhorizon = 3 + 3 · ln(ZDhorizon³3)

ln(2)
= 300.64 (8.191)
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Eown, vac, D=3, cr., forward =
Eown, vac, Dhorizon

(Dhorizon 2 3)/2 · ZDhorizon³D=3

(8.192)

Eown, vac, D=3, cr., forward = 8.869 · 10224J (8.193)

The corresponding value of the actual light horizon is evalu-
ated by using the scale factor:

Rlh(Ã̃D,c) = LP · ZDhorizon³D (8.194)

These states at the sequence of the dimensional phase transi-
tions are presented by the squares in Fig. (8.18).

At the critical density Ã̃D=3,c we obtain:

Rlh(Ã̃D=3,c,forward) = LP · ZDhorizon³3 = 1.188 · 1025m (8.195)

That state is presented by the large diamond in Fig. (8.18).
It coincides with the large triangle in that figure. Numerically,
the radii of the backward and forward modeling exhibit the
following difference (see Eqs. 8.182, 8.195):

∆Rlh(Ã̃D=3,c) =
1.4632 1.188

1.463
= 18.8% (8.196)

Similarly, the energies of the backward and forward modeling
exhibit the following difference (see Eqs. 8.183, 8.193):

∆Eown, vac, 3 =
8.8692 6.992

8.869
= 21.2% (8.197)

These differences are only relatively small compared to one.
That confirms the modeling of only one quantum of vacuum at
Dhorizon, the necessary and sufficient quantum.

8.7.4 Energy of radiation in the HUF

In this section we analyze the time evolution of the own energy
of the radiation.
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Planck scale: At the Planck scale, a quantum of radiation ex-
hibits the same extension and energy density as the quanta of
dark energy. So the results of section (8.7.3.5) are applied. As
there are 2Dhorizon quanta of radiation (Fig. 8.19), we derive:

Eown, rad, Dhorizon
= 3.985 · 1099J (8.198)

That state is presented by the large circle in Fig. (8.18).

8.7.4.1 Own energy at critical densities Ã̃D,c

During the process of dimensional unfolding, there occurs a
sequence of dimensional phase transitions at critical den-
sities Ã̃D,c.

Thereby the redshift of the quanta of radiation is propor-
tional to the scale factor. As an appropriate approximation, we
apply the exponent 1

4 :

kDhorizon³Ã̃D =

(

Ã̃P
Ã̃D

)1/4

(8.199)

For the case of the transition to three dimensional space we
derive:

kDhorizon³Ã̃D=3,c
=

(

Ã̃P
Ã̃D=3,c

)1/4

= 1.231 (8.200)

Correspondingly, the energy decreases by that factor:

Eown, rad, Ã̃D =
Eown, rad, Dhorizon

kDhorizon³Ã̃D

(8.201)

For the case of the transition to three dimensional space we
derive by forward calculation:

Eown, rad, Ã̃D=3,c, forward =
Eown, rad, Dhorizon

kDhorizon³Ã̃D=3,c

= 2.525 ·1099J (8.202)



242 CHAPTER 8. DIMENSIONAL TRANSITIONS

Transformation of arrangement: At Dhorizon, the volume is ar-
ranged by balls at the corners of a hypercube (Fig. 8.19). Ac-
cordingly, we present that energy Eown, rad, Ã̃D=3,c, forward at the
eight edges of the cube in D = 3. So the energy flows from out-
side towards the central ball. Thus the power density times the
area ÃR2

lh enters the central ball. There is sufficient scattering
that that radiation leaves the ball at the whole surface 4ÃR2

lh.
So at a dynamical equilibrium, only one fourth of that radiation
is in the central ball. Correspondingly we derive the energy that
is within the ball with the radius of the light horizon as follows:

Eown, rad, Ã̃D=3,c, forward, ball =
Eown, rad, Ã̃D=3,c, forward

4
(8.203)

Eown, rad, Ã̃D=3,c, forward, ball = 0.63126 · 1099J (8.204)

That state is presented by the medium sized circle in Fig. (8.18).

8.7.4.2 Own energy at t = 0

We derive the own energy at t0 by forward calculation. For it
we divide the energy Eown, rad, Ã̃D=3,c, forward, ball by the redshift:

kÃ̃D=3,c³t0 =

(

Ã̃D=3,c

Ã̃t0

)1/4

= 2.8309 · 1031 (8.205)

So we get:

Er(t0) =
Eown, rad, Ã̃D=3,c, forward, ball

kÃ̃D=3,c³t0

=
0.63126 · 1099J
2.8309 · 1031 (8.206)

Er(t0) = 2.2299 · 1067 (8.207)

As a test we derive that energy directly

ur(t0) = Ãcr,t0 · Ωr · c2 (8.208)

We insert (Sect. 9.2):

ur(t0) = 8.66·10227 kg

m3
·9.265·1025·c2 = 7.491·10214 J

m3
(8.209)
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We multiply it by the volume Vlh(t0) = 2.977 · 1080m3:

Er(t0) = ur(t0) · Vlh(t0) = 2.2299 · 1067J (8.210)

This coincides with the result in Eq. (8.207) and confirms the
derived energies. That state is represented by the small circle
in Fig. (8.18).

8.7.5 Energy of dark matter in the HUF

In this section we summarize the energy of the dark matter in a
HUF. According to the dimensional phase transitions, elemen-
tary particles of dark matter form spontaneously at a small time
slot (Carmesin (2018d), Carmesin (2019b)). The corresponding
states are represented by two crosses and a dashdotted line in
Fig. (8.18).

8.7.6 Energy conservation in the HUF

In this section we summarize and analyze the conservation of
energy in a HUF. First we summarize and extend results about
the energy conservation in a HUF and described by three fac-
tors.

Theorem 31 Law of energy conservation in a HUF :

(1) If a body with own mass m0 and m = m0 at r ³ > falls
freely in a HUF , and if there is a field generating mass M with
RS = 2GM

c2 at a radial coordinate r = 0, then the following holds:

(1a) The energy E(r, v) of m as a function of the velocity v and
of r is the product of m0 · c2, the Lorentz factor ³(v) = 1:

12v2/c2

and the position factor ë(r) =
√

12RS/r (T. 1).

(1b) The product of the Lorentz factor and the position factor
is one.

(1c) So the energy of that object is conserved.
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(2) If a photon or a dynamical mass with a periodic time T> at
r ³ > falls freely in a HUF , and if there is a field generating
mass M with RS = 2GM

c2 at a radial coordinate r = 0, then the
following holds:

(2a) The energy E(r, v) of that object as a function of the pe-
riodic time T and of r is the product of h

T∞

, a kinetic fac-

tor ³̄(T ) = T∞

T and the position factor ë(r) =
√

12 RS

r (Sect.

1.8.4).

(2b) The product of the kinetic factor and the position factor is
one.

(2c) So the energy of that mass is conserved.

(3) In particular the position factors of a mass m and of a
photon at the same coordinate r are equal. So the position factor
of a mass can be determined from the redshift of a photon at the
same r (See derivation of gij T. 1).

Secondly, we summarize and extend results about the con-
servation of an energy per mass or per dynamic mass or of a
curvature parameter kj of a pair j in a HUF and described
by three summands.

Theorem 32 Law of curvature conservation in a HUF :

(1) If an object has a rest mass m0 and a reference energy
Eref = m0 · c2, and with Eref ³ 0 at r ³ >, and if that
object falls freely in a HUF , and if there is a field generating
mass M with RS = 2GM

c2 at a radial coordinate r = 0, then the
following holds:

(1a) The pair (m;M) named by j is described by the following
structured energy function Ē (T. 3):

2kj =
2Ē(r, ṙ)

m0 · c2
with Ē(r, ṙ) =

m0ṙ
2

2
2 GMm0

r
(8.211)

Thereby kj is the curvature parameter of the pair.
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(1b) The structured energy function is zero.

(1c) More generally, the structured energy function can be de-
fined for general cases of Eref (Carmesin (2020b)).

(1d) For all choices of Eref , the structured energy function is
an invariant.

(2) If a photon or a dynamical mass m = E/c2 has a reference
energy Eref = mref · c2, and if Eref ³ 0 at r ³ >, and if that
object falls freely in a HUF , and if there is a field generating
mass M with RS = 2GM

c2 at a radial coordinate r = 0, and
if many such objects propagating isotropically in all directions
have an averaged position r(t) = [rj(t)] (Carmesin (2020b)),
then the following holds:

(2a) The pair (mref ;M) named by j is described by the following
structured energy function Ē (Eq. 1.62):

2kj =
2Ē(r, ṙ)

Eref
with Ē(r, ṙ) =

mref ṙ
2

2
2 GMmref

r
(8.212)

Thereby kj is the curvature parameter of the pair.

(2b) The structured energy function is zero.

(2c) More generally, the structured energy function can be de-
fined for general cases of Eref (Carmesin (2020b)).

(2d) For all choices of Eref , the curvature parameter kj of the
pair is an invariant.

(3) The masses and dynamic masses can be described in a co-
herent manner by the structured energy function.

(4) The macroscopic FLE has been derived as an average over
pairs of the microscopic structured energy function (see Sect.
1.10.2). So averages over pairs occurring microscopically rep-
resent results about the macroscopic evolution of the universe,
including the FLE.

(5) If an object starts at the Big Bang, then it starts at the
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Planck scale and at the Schwarzschild radius of M =MP , so it
is at the escape velocity, hence Eref ³ 0 at r ³ >, thus kj = 0.

(6) After the Big Bang, there may occur an exchange of energy
among such objects, thereby the average [kj] over pairs remains
zero, according to the principle of energy conservation at all lo-
cal reactions among objects, hence the global curvature parame-
ter k is zero, as k = [kj]. This solves the flatness problem (Guth
(1981)). Similarly theorem (3) solves that problem.

(7) The above shows that in a HUF , the energy of matter, the
energy of radiation, and the energy of the vacuum are zero. This
holds on the microscopic level of pairs, for instance, as well as
on the macroscopic level, described by the FLE, for instance.

We summarize our results as follows:

Theorem 33 Time evolution of energy:

The three essential forms of energy, the dark energy, the energy
of radiation and the energy of dark matter, exhibit the following
properties:

(1) The law of conservation of energy applies in a HUF .

(2) The complete energy is zero in a HUF . This solves the

flatness problem.

(3) There is only one quantum of vacuum necessary and
sufficient at the dimensional horizon within the light horizon
(Fig. 8.19).

(4) There existed only the one necessary and sufficient quantum
of vacuum at the dimensional horizon within the light horizon.
This can be derived as a consequence of the evolution of the
energy.

(5) The evolution of the three essential forms of energy, ranging
from the dimensional horizon until today and beyond, can be
derived completely on the basis of quantum gravity,
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see Fig. (8.18). This shows again how the present theory of
quantum gravity including dimensional phase transitions makes
complete the incomplete dynamics of the GRT.

(6) The time evolution of energies shows that the space enclosed
by the actual light horizon can be traced back to a single quantum
of spacetime that was immediately filled by 2Dhorizon ZPOs of
radiation.

8.8 Relation to the hypothesis of a graviton

In this section we investigate the relation between the quanta

of spacetime derived, analyzed and successfully applied to ob-
servations in this book with the hypothesis of the graviton

(Blokhintsev and Galperin (1934), Tanabashi et al. (2018)).
The hypothetical graviton should exhibit the following three

basic properties:

1. It should be a boson that transfers the gravitational inter-
action.

2. It should be a quantum object.

3. It should have the spin 2.

The quanta of spacetime or quanta of vacuum do show
these three basic properties of the hypothetical graviton:

1. The quanta of spacetime are bosons that transfers the
gravitational interaction.

2. The quanta of vacuum are quantum objects.

3. The quanta of spacetime have the spin 2. For it we
present three mutually independent reasons: The quanta
of vacuum exhibit qadrupolar symmetry, they are repre-
sented by spherical harmonic functions Yl=2,m, and they
are represented by tensors of rank two.
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Moreover, the quanta of spacetime exhibit six essential

additional properties:

1. The quanta of vacuum explain the dark energy and
achieve a very precise accordance with observations, based
on first principles only and without using any fit parameter.

2. The quanta of spacetime provide a detailed mechanism

of interaction: The quanta form additional vacuum, that
vacuum generates the curvature of spacetime, that curva-
ture causes the modified propagation of physical objects,
and that modified propagation corresponds to the interac-
tion.

3. The quanta of vacuum make complete the time evolu-

tion of the spacetime of the universe, that was described
incompletely by the GRT.

4. The quanta of spacetime include the time evolution of

the dimension of space ranging from the dimensional
horizon until three dimensional space.

5. The energy of the quanta of vacuum forming the space in-
cluded in the light horizon is traced back to the energy

of a single quantum of the vacuum at the dimensional
horizon.

6. The quanta of vacuum are represented by a Lorentz invari-
ant four-vector including the formed space ·V , the present
space dV , the time required for the formation of that ad-
ditional vacuum ·t and the gravitational field G7. So it
combines spacetime and gravity in one fully relativistic
quantum object.

As the hypothetical graviton has been proposed as a quan-
tum of the gravitational interaction, and as the quanta of vac-
uum are the derived representations of that interaction, the
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graviton is included in the derived quanta of the vac-

uum.

As the hypothetical graviton has not been proposed as a
quantum of the expansion of space or as a quantum of the dark
energy or as a quantum that can be traced back to a single
quantum at the origin of the space included in the actual light
horizon, the derived quanta of the vacuum extend the

concept of the graviton.

Accordingly we propose that the graviton is included in the
quanta of spacetime. In any case, the quanta of spacetime

explain the hypothetical graviton, as its properties are de-
rived on the basis of quantum physics and GRT.

So far, the hypothesis of the graviton was an interesting prob-
lem of physics: While the other bosons of interaction, the pho-
ton, the gluon and the W - and Z-bosons have been well un-
derstood already (Tanabashi et al. (2018)), the graviton was a
hypothetical object. With this book, that situation is reversed:
The graviton now is the best understood boson of in-

teraction.

Since the fields, waves and quanta are derived as for the
other bosons of interaction. But additionally, the quanta of
spacetime explain the following: the mechanism of the interac-
tion by the formation of spacetime, the formation of spacetime
in the universe, the energy of the single first quantum of vac-
uum corresponding to the vacuum enclosed by the actual light
horizon.

Theorem 34 Explanation of the hypothetical graviton:

(1) The three basic properties of the hypothetical graviton
are explained by the quanta of the vacuum.

(2) The quanta of spacetime provide six essential additional

results:

(2a) the explanation of dark energy,
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(2b) the detailed mechanism of the gravitational interaction,

(2c) the complete time evolution of spacetime,

(2d) the complete time evolution of the dimension of space,

(2e) the identification of a single primordial quantum of vacuum
in the visible universe,

(2f) the structure of the combination of gravity, space and time
in terms of a single Lorentz invariant four-vector.

(3) As a result, the quanta of spacetime elaborated here explain
the graviton, include the graviton as the boson of the gravita-
tional interaction, explain the microdynamics of gravitational
interaction and the macrodynamics of the time evolution of
spacetime in a coherent manner, solve the EPR paradox that
existed between GRT and quantum physics, and thus essentially
extend the concept of the graviton.

8.9 Summary

In this section we summarize our findings.

Questions: In this book we solved essential questions of na-
ture: Is nature nonlocal on a microscopic and macroscopic
level? What is the quantum of interaction of gravity, the

graviton? What is the curious dark energy, that amounts to
ca. 68 % of all energy and matter in the universe? How are
the discrepancies of H0 and Ã8 values explained? How did
space generate the extremely rapid distance enlargement

in the early universe? What are the quanta of spacetime?

Novel principles: In order to discover the structures underlying
the above questions, we introduced two basic principles:

The principle of equivalence of curvature and vacuum

is based on the following insight: In general, the space in which
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we live exhibits a curvature and consists of vacuum. Hence
a possible increase of the volume caused by the curvature is
equivalent to additionally formed vacuum.

Using the above principle, we discovered that the amount of
vacuum formed according to the microscopic dynamics differs
from the vacuum formed according to the macroscopic dynam-
ics. But in contrast, the amounts of formed spacetimes are
equal in all investigated cases. Accordingly we introduced the
principle of the equality of spacetimes.

Nonlocality: Using that principle we derived that the nonlo-
cally formed vacuum is as large as the locally formed vacuum.
In particular, the cosmological models derived in GRT describe
the increase of the scale radius as a function of the time, and
with it they derive the increase of the volume and the decrease
of the densities as a function of the time (Einstein (1917), Fried-
mann (1922), Lemaitre (1927), Straumann (2013)). So the the-
ory of general relativity, GRT, is nonlocal. This finding is indeed
surprising, as GRT is based on local assumptions only, but es-
sential resulting structures are nonlocal. In fact Einstein et al.
(1935) presumed the locality of GRT, emphasized the nonlocal-
ity of quantum theory and posed that situation as a paradox,
the EPR paradox. However, that paradox is solved here by the
finding that the presumed locality of GRT does not exist. More-
over, our theory describes the formation of space and time in
terms of local four-vectors. Our theory includes spontaneously
formed shortcuts, these might provide locality in space.

Quanta of spacetime: In order to discover the dynamics of local
and nonlocal formation of vacuum, we derived the full symme-

try of quadrupoles or spin 2 of the rates of that formation
of vacuum. Combining these with gravitational fields we ob-
tained the Lorentz invariant rate gravity four-vector RGVi,
and a corresponding scalar RGS. Thus we realized that rela-
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tivity provides the combined structure of gravity and vacuum
formation. Indeed, from that structure we derived the Lorentz
invariant spacetime four-tensor STTij and the correspond-
ing spacetime scalar (Chap. 2).

Using these Lorentz invariant quantities, we derived the wave
theory, including the DEQs as well as solutions of the homoge-
neous and inhomogeneous DEQ. So we described the propa-
gation of gravity, vacuum and vacuum formation in spacetime
(Chap. 5). We analyzed the modes of these waves, identified
generalized coordinates establishing four-vectors, and we quan-
tized these. Hence we derived and analyzed the quanta of

spacetime.

Dark energy I: Using the quanta of spacetime, we derived the
density ÃΛ of the dark energy in terms of a basic formula of

dark energy. We obtained very precise accordance to obser-
vations: The difference amounts to 0.16 % only.

We discovered that ÃΛ is constituted by all quanta of space-
time that propagated to Earth, originating from the light hori-
zon to Earth, and including the nonlocally formed vacuum as
well (Chap. 6).

Structure formation and dark energy II: We summarized the dy-
namics of the formation of structures in the universe and derived
the essential equations. We combined these with the basic for-
mula of dark energy. Thereby we derived advanced formulas

of dark energy. These describe the Hubble constant H0 and
the amplitude of matter fluctuations Ã8 as functions of the red-
shift of the probe that underlies a measurement of these quan-
tities. In fact we obtain precise accordance with observations
(Chap. 7).

Dimensional phase transitions: While the above shortcuts pro-
vide a dimensional phase transition of the connections of space
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at high density, we derived two additional theories for these di-
mensional phase transitions: a mean field theory and a Bose
gas theory.

Moreover we analyzed the geometric structure of the transla-
tion invariant space at each dimension. With it we derived the
largest possible dimension of the visible universe, the dimen-
sional horizon Dhorizon. With it we obtained the extremely

rapid enlargement of distances in the early universe. Again
we find a precise accordance with observations (Chap. 8).

Dark energy III: Using the dimensional horizon, we derive the
time evolution of the quanta of spacetime ranging from the di-
mensional horizon until today. Thereby we obtain a quantized

dark energy formula and achieve a good accordance with ob-
servation.

Dark energy IV: While the quantized dark energy formula

describes a monochromatic vacuum, a polychromatic vacuum
is realistic. We derived the precise spectrum based on the time
evolution according to the FLE. So we obtained the CFV at
once, and it is not necessary to add the NFV separately. With
it we obtained the the Hubble constant H0 and the amplitude of
matter fluctuations Ã8 as a function of the redshift of the probe
that underlies a measurement of these quantities. With it we
find a very precise accordance with observations (Chap. 8).

Time evolution of the forms of energy: Based on the full theory
of the quanta of spacetime, we showed that energy is con-

served in the HUF , a frame with an empty ball surrounded
by of a homogeneous universe. Moreover we derived the devia-
tions from that HUF and found that these converge to zero, if
the radius of the HUF tends to infinity.

Additionally we showed that the energy is zero in the HUF ,
with it we confirmed the zero energy hypothesis proposed by
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(Tryon (1973)). Furthermore we traced back the energy of all
quanta of spacetime. We discovered that the energy of a single
quantum of spacetime existed at the dimensional horizon, the
deviation amounts to 21.1 % only, so that the assumption of
two quanta would yield a deviation of 79.9 %, for instance.
That primordial quantum of spacetime provided a volume that
immediately filled with quanta of radiation. The time evolution
of these quanta is in exact accordance with observation.

Graviton: If the quantum of spacetime is transformed to the
rate gravity four-vector, RGVi, then the gravitational field is a
component. So the gravitational interaction is presented by a
part of that four-vector. In this manner the graviton is included
in the quantum of spacetime. So the spin 2 structure, the prop-
agation and the quantization of the graviton are described by
the quantum of spacetime.

Moreover, the quantum of spacetime describes precisely the
mechanism by which gravity is constituted: At gravitational
fields as well as at each density, quanta of spacetime are emit-
ted, these quanta form additional vacuum LFV propagating at
the velocity c of light, the heterogeneity of that LFV generates
a curvature of spacetime, this curvature influences the propaga-
tion of objects through space, and that influence corresponds to
the gravitational interaction. As the other bosons of interaction
(photon, gluon, W- and Z-boson) do not provide such a detailed
insight into the mechanisms of the interaction, the graviton is
now the best understood boson of interaction, in this sense.

Evidence based on observations: The present theory provides a
precise accordance with observation. This has been achieved
without any fit parameter (Carmesin (2020b)). The numerical
input is constituted by the universal constants of nature only:
the gravitational constant G, the velocity of light c, the Planck
constant h and the Boltzmann constant kB.
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Evidence based on solved problems: The present theory provides
a coherent solution of many problems or hypotheses in physics:

problem of rapid enlargement of distances (Guth (1981), solved
since 2017, Carmesin (2017), Carmesin (2021))

horizon problem (Guth (1981), solved since 2017, Carmesin
(2017), Schöneberg and Carmesin (2021))

’inflaton’ hypothesis and reheating problem (see Guth (1981)
and Nanopoulos et al. (1983), Broy (2016), solved since 2017,
Carmesin (2017), Carmesin (2020a))

dark matter problem (Zwicky (1933), Sanders (2010), solved
since 2018, Carmesin (2018d))

dark energy problem (Josset et al. (2017), solved since 2018,
Carmesin (2018c))

Hubble constant discrepancy (Riess et al. (2019), solved since
2018, Carmesin (2018c))

fine-tuning problem (Landsman (2016), solved for the case of
most density parameters since 2019, Carmesin (2019b))

flatness problem (Guth (1981), solved since 2020, Carmesin
(2020b))

zero energy hypothesis (Tryon (1973), solved 2020, Carmesin
(2020b))

graviton hypothesis (Blokhintsev and Galperin (1934), solved
here)

EPR paradox and nonlocality (Einstein et al. (1935), solved
here)

Ã8 discrepancy (Tröster et al. (2020), solved here)

Evidence based on invariance: The quanta of spacetime are in-
variant with respect to Lorentz transformations. Moreover, in
the HUF , they are additionally invariant to each linear trans-
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formation. The same invariance holds for the quanta and the
DEQ of rate gravity waves.

Evidence based on clear foundation: The quanta of spacetime
are based on general relativity, quantum physics, the principle
of energy conservation in the frame HUF , the principle of the
equivalence of curvature and vacuum and the principle of the
equality of spacetimes. Based on these principles, the results
are derived by usual mathematical operations.

Evidence based on predictions: Here and in the previous books,
we derived many results and formulas that enable various pre-
dictions: In this book, many very clear and predictive formulas
are provided and especially essential results are concisely sum-
marized in 15 propositions and 34 theorems. These can easily
be applied according to individual interests, activities, questions
or purposes.

Software: Sawitzki and Carmesin (2021), Lieber and Carmesin
(2021) and Schöneberg and Carmesin (2021) provide software
that can be used in order to generate solutions of DEQs or Eqs.
derived here.

Necessity of fundamental theory: In 2020, the Planck Collabo-
ration4 wrote ’it is important to bear in mind that ... inflation,
dark energy and dark matter are not understood at any fun-
damental level’. Here we derived a fundamental theory. It ex-
plains inflation, dark energy, dark matter (Carmesin (2019b))
the graviton, nonlocality and the discrepancy of observed H0

and Ã8 values. So we provide the requested theory. We invite
interested people and experts to discuss our theory5.

4See (Collaboration, 2020, p. 62).
5https://www.researchgate.net/profile/Hans Otto Carmesin. hans-otto.carmesin.org.

Hans-Otto.Carmesin@athenetz.de. h-o.carmesin@studienseminar-stade.net.
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9.1 Constants of nature

In this section we present useful constants of nature.

quantity observed value

G 6.674 30(15) m3

kg·s2

c 299 792 458 m
s , exact

h 6.626 070 150(69) · 10234 Js

kB 1.380 649 03(51) · 10223 J
K

ë0 8.854 187 817 · 10212 F
m , exact

Table 9.1: Constants of nature (Newell et al. (2018), Tanabashi
et al. (2018)).
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9.2 Observed values

In this section we present useful results of observations.

quantity observed value

H0 in
km

s·Mpc 67.36± 0.54 (0.8 %)

ΩΛ 0.6847± 0.0073 (1.1 %)

ΩK 20.011+0.0013
20.0012

zeq 3402± 26

Ωm 0.3153± 0.0073

Ωr 9.265+0.288
20.283 · 1025 (3.1 %)

Ã8 0.8111± 0.006(7.4%)

Ãcr,t0 in
kg
m3 8.660+0.137

20.137 · 10227 (1.6 %)

Ã̃cr,t0 7.037 · 102123

Ã̃v,t0 4.8181 · 102123

Ωb 0.0493± 0.00032

Ωc 0.2645± 0.0048

Rlh 4.1412 · 1026 m (Carmesin (2019b))

Table 9.2: Data obtained on the basis of the CMB by the
Planck satellite ((Collaboration, 2020, p. 15 and 38)) by us-
ing the modes TT, TE, EE, the low energy and the lens-
ing results. Quantities with a tilde are presented in natural
units alias Planck units (see subsection 9.3). Hereby 1 Mpc =
3.0856776 · 1019 km.

9.3 Natural units

Planck units or natural units have been introduced by Planck
(1899). We mark quantities in natural units by a tilde (s. Tab.
9.3, Carmesin (2019b)).
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physical entity Symbol Term in SI-Units

Planck length LP

√

~G
c3 1.616 · 10235 m

Planck time tP
LP

c 5.391 · 10244 s

Planck energy EP

√

~·c5
G 1.956 · 109 J

Planck mass MP

√

~·c
G 2.176 · 1028 kg

Planck volume VD,P LD
P

Planck volume, ball V̄D,P VD · LD
P

Planck density ÃP
c5

G2~
5.155 · 1096 kg

m3

Planck density, ball Ã̄P
3c5

4ÃG2~
1.2307 · 1096 kg

m3

Planck density, ball Ã̄D,P
MP

V̄D,P

Planck temperature TP TP = EP

kB

scaled volume ṼD
VD

V̄D,P

scaled density Ã̃D
M̃
r̃D=

Ẽ
r̃D ÃD = Ã̃D · Ã̄D,P

scaled length x̃ LP x = x̃ · LP

Planck charge qP MP

:
G4Ã·0 11,71 e

Table 9.3: Planck - units.

9.3.1 Glossary

Words marked bold face can usually be found in the glossary.

Abbreviation: S. (section), C. (chapter), D. (definition), P.
(proposition), T. (theorem).

autocorrelation function: ¿(~x) (S. 7.2.3)

Bose gas: quantum gas consisting of quanta with integer spin
(S. 8.4)

Big Bang: Start of time evolution of visible space
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Big Crunch: The global gravitational instability could cause a
global contraction, a Big Crunch.

complex conjugate: We denote a complex conjugate of a num-
ber z = a+ i · b by a star z7 = a2 i · b.

CMB, Cosmic Microwave Background Radiation emitted
at z j 1090. (Tab. 9.2)

complete time evolution of spacetime: evolution of the light
horizon Rlh(t) ranging from the Planck - length LP to the
actual light horizon Rlh(t0) (Fig. 1)

cosmic unfolding: It causes the extremely rapid increase of
distance in the early universe (D. 12).

cosmological constant: Λ corresponds to the dark energy with
its density ÃΛ (Tab. 9.2).

curvature parameter: k = 22Ē
m0·c2

(Def. 2)

curvature parameter kj of a pair j: (T. 31)

dark energy: energy of the cosmological density of the vacuum
ÃΛ (Tab. 9.2).

deficit wave function: (T. 14)

density, averaged or homogeneous part: Ãh (C. 7)

density, critical: Ãcr,t0 or Ãcr (Tab. 9.2)

density, critical, at a dimensional transition: Ã̃D,c (S. 8.2)

density, critical, shortcuts: Ãcr.conn. (T. 10)

density, fluctuation: Ã1(~x, t) = Ã(~x, t)2 Ãh (C. 7)

density, overdensity: ·(~x, t) = Ã1(~x, t)/Ãh (C. 7)

density, overdensity at a sphere with radius R: ·R(~x, t)
(C. 7)

density, overdensity, standard deviation at a sphere with

radius R: ÃR (C. 7)

density, overdensity, standard deviation at a sphere with

radius R8: Ã8 = ÃR8
It is also called amplitude of matter

fluctuations or amplitude of matter fluctuations (C. 7).

density parameter: Ωj = Ãj/Ãcr,t0 9.2)

density, vacuum: ÃΛ = ΩΛ · Ãcr,t0 9.2)

distance enlargement factor: If the dimension decreases, then
distances increase by factor Z (T. 26, S. 8.2.9).
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dimension of the space: (C. 8)

dimensional horizon Dmax or Dhorizon: It is the maximal di-
mension that the space within the actual light horizon can
have achieved in the past. Thereby the following transfor-
mations of space are essential: the isotropic scale and the
enlargement of distance caused by a ³ dimensional transi-
tion. (D. 12, T. 26).

dimensional transition or dimensional phase transition:
change of spatial dimension D (T. 26).

dimensional unfolding: change of spatial dimension D (D. 12,
T. 26).

distance factor: Zt1³t2 = ZD+s³D, occurring at a ³ dimen-
sional transition towards a dimension D (T. 26).

dynamical mass: M = E
c2

Energy density of the gravitational field: (P. 5)

Energy skin: (T. 12)

EPR paradox: (C. 4)

excess energy: structured energy function (C. 1)

expansion of space: expansion since the Big Bang at constant
dimension D

extended FLE, EFLE: FLE extended by quantum effects (T.
24)

extremely rapid increase of distance in the early uni-

verse: conjectured by Alan Guth in 1981 (Guth (1981)),
explained by dimensional transitions in this book and since
2017 (Carmesin (2017), Carmesin (2019b)) (Fig. 1)

field variance: Variance of the field in a HUF, characterizing
the quality of a HUF (S. 8.3, T. 27)

flat, flatness, flatness problem: Space without curvature is
flat (C. 8).

frame: Each observation apparatus is localized in spacetime.
That localization establishes a frame. Examples are the HUF
and the vacuum HUF, HUFv (D. 2), LUF (D. 4, FMF (D.
3).

Friedmann - Lemâıtre equation, FLE: (T. 4)

Fourier transform: f̃(k) (C. (7)
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gravitational field: G7 (C. 1)

gravitational instability: (C. 8)

graviton: (T. 34)

GRT: general relativity theory (C. 1)

horizon: global limit of visibility (C. 1)

Hubble - parameter: H = ȧ
a
(T. 4)

Hubble - constant: H0 = H(t0) Hubble parameter at t0

Hubble - constant, dimensionless: h = H0/100 · s·Mpc

km
(Tab.

9.2)

incomplete: A theory that does not describe the physically
known objects or properties is incomplete (T. 20, 26)

inertial frame: frame that is not accelerated

invariant: quantity that remains constant with respect to a
transformation. Examples are a Lorentz invariant (D. 9), a
HUF zero Lorentz scalar HZLS with corresponding a HUF
zero Lorentz four-vector HZFV (D. 9), a spacetime scalar

STS (D. 10), a rate gravity scalar RGS (T. 7), a rate gravity
energy density RGED (P. 7), a rate gravity four-vector

RGVi (T. 7), a spacetime tensor STTij (C. 1), a four-

momentum of spacetime (T. 18).

isentropic: States at constant entropy (C. (7)

isotropic formation of vacuum: (C. 2)

Jeans wave number kJ : (Eq. 7.53)

kinetic factor: generalized Lorentz factor, for instance ³̄(T ) =
T∞

T
(T. 31)

light horizon, actual: Rlh = 4.142 · 1026 m (Tab. 9.2)

light horizon, actual: At a time t, the volume enclosed by light
horizon at the actual time t0 is or was enclosed by another
value Rlh(t).

light horizon, at a time t: Rlh,t (Carmesin (2019b))

light-travel distance: dlicht2travel = tlight2travel · c
linear growth factor: D(t) (C. 7)

Local observer: (P. 3)

Lorentz factor: energy factor caused by velocity ³ = 1:
12v2/c2

(T. 1)
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natural units: Planck - units (Tab. 9.3)

nonlocality: (T. 5)

object’s own frame: here the object is at rest (C. 1)

operator: observable physical quantities can be represented by
operators in QT. Examples are the energy operator, the num-
ber operator. Additionally, transformations can be repre-
sented by operators, examples are the ladder operators (T.
19, C. 6)

own mass: mass in the object’s own frame, also called rest mass
(C. 1)

own time: time in the object’s own frame, also called proper
time (C. 1)

observable physical length: (D. 11, S. 6.4.4)

Planck unit, Planck scale: natural unit (Tab. 9.3)

polychromatic vacuum: it includes several wavelengths of the
quanta of space (S. 8.6)

position factor: energy factor caused by position (T. 1)

power density: P (k) = |f̃(k)|2 (C. 7)

principle in physics: essential and broadly useful concept in
physics. Here we utilize the Einstein equivalence principle,
principle of energy conservation in a HUF , the principle of
linear superposition of the volumes (D. 1), the principle of
the equivalence of curvature and vacuum (D. 5) the principle
of the equality of spacetimes (D. 8)

probing mass: (T. 3)

quadrupolar symmetry: corresponding to spin 2, tensors of
rank 2 and spherical harmonic functions (T. 6, 8)

quantum gravity: combination of gravitation and quantum
physics (Carmesin (2019b))

quantum of spacetime or quantum of vacuum: (D. 10),
representations are quantized RGWs, quantized spacetime
scalar, quantized spacetime tensor (T. 19)

q-classical limit: limit h to zero (Carmesin (2019b))

rapid enlargement of distances: (Fig. 1)

rate gravity wave, RGW: (T. 16)

rate of the formation of relative volume: (T. 7)
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redshift: relative increase of the wavelength z = ∆λ
λ

(C. 1)

reduced normalized energy ED: (S. 8.2)

scale factor: kt1³t2 (C. 1, 8)

scale radius a: a(t) = ktref³ta(tref (T. 4)

semiclassical theory: theory that uses quantum objects in
terms of a classical representation (S. 6.6, 7.5)

self interaction: (P. 12)

shortcut: (C. 3, T. 23)

slope four-vector: (S. 5.2.1)

structured energy term or function: (T. 1)

Schwarzschild radius RS: at this radius the escape velocity is
equal to c (C. 1)

Schwarzschild metric, SSM: (T. 1)

spacetime: combination of space and time (D. 8).

temperature power spectra, TT: (Tab. 9.2)

uncertainty: a standard deviation in QT (C. 1, 6)

unfolding, dimensional: space unfolds when the dimension
decreases (D. 12)

uniform scaling: In a uniform scaling enlarges or shrinks a
vector ~v by a scale factor k1³2, ~v

2 = k1³2~v (C. 1)

universal constants: (Tab. 9.1)

vacuum: The vacuum has a volume, a density and the veloc-
ity c. Essential are locally formed vacuum, LFV, nonlocally
formed vacuum, NFV, complete formed vacuum, CFV, lo-
cally formed vacuum using shortcuts, LFVUS (C. 1, D. 7, T.
5, D. 10, T. 14)

window function: W (~x) (C. 7)

ZPE: zero-point energy of omnipresent zero-point oscillations
(C. 6, 8)

ZPO: zero-point oscillations are omnipresent quantum states
corresponding to a ground state (C. 6, 8)
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