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Chapter 1

Basic Concepts

1.1 Introduction

1.1.1 Four great concepts

Physical theories are based on four great fundamental concepts:

Firstly, Leukippos (fifth century BC) and his student Dem-
ocritos (460-370 BC) proposed that objects are constituted by
smallest indivisible particles, see e. g. Tsoucalas et al. (2013),
Oldershaw (1998), Wußing and Brentjes (1987). They proposed
an essential argument: These particles constitute the phases
gas, fluid and solid including the corresponding phase tran-
sitions. Dalton (1808) established the modern concept of the
atom. Constituents of atoms are investigated in the current
field of elementary particle physics, see e. g. Tanabashi et al.
(2018). Boltzmann (1877) developed statistical physics, SP in-
cluding the universal constant kB, while van der Waals (1873)
applied that theory in order to model phase transitions.

Secondly, Brahe (1588) and Kepler (1627) developed the ba-
sic observation and analysis of gravity, while Newton (1686) de-
veloped the law of gravity including the universal constant G,
measured by Cavendish (1798), see also Carmesin et al. (2021).

Thirdly, Planck (1900) discovered the quantization of ob-
jects in nature, introduced quantum physics, QP, including the
universal constant h, zero-point oscillations, ZPOs, and the

1



2 CHAPTER 1. BASIC CONCEPTS

corresponding zero-point energy, ZPE (Planck (1911)).

Fourthly, Einstein (1905) applied the invariance of the ve-
locity of light, the universal constant c, in order to derive the
special relativity theory, SRT. Moreover, Einstein (1915) dis-
covered the curvature of spacetime, leading to his proposal
of the general relativity theory, GRT, including a theory for
gravity and SRT.

1.1.2 Interesting problems

Scientific progress is often achieved by identifying and solving
problems, see e. g. Popper (1974). Thereby scientific explana-
tions can be achieved and tested Ruben (1990).

Hierarchy problem: In nature there occur objects at very differ-
ent energy scales. For instance, the neutrinos have rest energies
in the meV-scale, the electron, muon, tauon and quarks have
rest energies ranging from 511 keV (electron) or 2.15 MeV (up-
quark) to 173 GeV (top-quark), see Tanabashi et al. (2018),
while the Planck energy is 1.22 · 1019 GeV . These different
energy-scales cannot be explained by the standard model of
elementary particles Peskin (2015). That problem is called hi-
erarchy problem, see e. g. Shaposhnikov and Shkerin (2018).

Mass problem: Aad et al. (2012) and Chatrchyan et al. (2012)
discovered the Higgs boson. In the standard model of elemen-
tary particles, that particle can basically explain the masses of
the W bosons, W+, W2 and W 0 (also called Z), the quarks, the
electron, the muon and the tauon, see e. g. (Peskin, 2015, 9-
10). However, the mass of the Higgs boson as well as the masses
of the neutrinos are not explained by the standard model.

Fine - tuning problem: The macrocosm is described by the stan-
dard model of cosmology, SMC using 6 parameters, see e. g.
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Collaboration (2020a). The microcosm is described by the stan-
dard model of elementary particles, SMEP, using 62 parame-
ters, see e. g. (Peskin, 2015, p. 12) or Tanabashi et al. (2018).
All these parameters take particular values that should be ex-
plained by basic physical theories. These theories include a
small number of universal constants, namely G, c, kB and h.
The problem of the determination of the above parameters is
an essential part of the fine - tuning problem Landsman (2016).

H0 tension and Ã8 tension: According to the SMC, the cosmo-
logical parameters H0 and Ã8 should be constant. However, the
observed values depend on the probe that is used in a measure-
ment. These problems are called H0 tension and Ã8 tension.

1.1.3 Unification

In this book we combine the above four basic theories: sta-
tistical physics, gravity, quantum physics and relativity. We
name that combination quantum gravity. With it we derive the
time evolution of the light horizon, including dimensional phase
transitions and ranging from the Planck scale to the actual light
horizon, see Fig. (1.1). Additionally, we derive the masses of
elementary particles, see Fig. (1.1). All results are in precise
accordance with observation and have been derived from quan-
tum gravity only. In particular, the only numerical input are
the universal constants G, c, kB and h as well as the Hub-
ble constant H0 as a time reference for the present-day time,
the time after the Big Bang. Altogether, we present the first
unification of quantum physics, gravity and elementary particle
physics based on first principles only.

1.1.4 Aims and organization of the book

In this book we aim to apply quantum gravity in order to ex-
plain all cosmological parameters, except the Hubble constant
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Figure 1.1: Time evolution of the light horizon including dimen-
sional phase transitions (solid line and open ∆). Quanta of
spacetime of early phases (other lines). Elementary particles:
neutrinos ¿ (full ∆) Higgs boson (pentagon), quanta of dark
energy at D = 3 (upper ç), cold dark matter, cdm (æ) and
primordial black holes, pbh (lower ç).
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H0, as H0 is used as a time reference describing the time after
the Big Bang. In order to achieve our aim, we additionally ex-
plain the formation of masses on the basis of quantum gravity.

In order to achieve our advanced and innovative aim in a
scientific and clear manner, we present our method first:

In chapter 1 we elaborate basic concepts in cosmology, in-
cluding the standard model of cosmology, the standard model
of elementary particles as well as cosmological parameters and
the density parameters in particular.

In chapter 2 we combine gravity and quantum physics. With
it we derive the Planck scale, and therefrom we derive the in-
completeness of GRT.

We solve that incompleteness by analyzing gravitational in-
stabilities and resulting phase transitions in the early universe,
see Chapter 3.

Using these transitions, we derive the density parameter of
photons Ω³ in chapter 4.

In order to analyze other quanta in addition to photons, we
derive the quanta of spacetime in chapter 5.

Using these quanta of spacetime, we derive the quanta of
dark energy including their time evolution in chapter 6.

These quanta of the dark energy constitute the present-day
vacuum, including its spectrum of excitation, see chapter 7.

Using that spectrum of excitation, we derive the formation
of the neutrinos, including the corresponding density parameter
Ω¿ in chapter 8.

Similarly, we apply the spectrum of excitation of the vacuum
in order to derive the formation of the Higgs boson in Chap. 9.

Based on chapter 6, we derive the density parameter of dark
energy ΩΛ in chapter 10.

The remaining cosmological parameter, the amplitude of
matter fluctuations Ã8, is derived separately in chapter 11.

In Chap. 12 we combine the developed and tested methods,
and so we are able to derive all density parameters simulta-
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neously. Thus, we derive the cosmological parameters without
using them, except H0 that we use as a time reference.

We provide solutions of the H0 tension and of the Ã8 tension
in chapter 13.

In chapter 14 we present a discussion of our results, includ-
ing the following essential insight: The precise derivation of
the cosmological parameters and masses of elementary parti-
cles provides a clear evidence of our theory.

Altogether, we show that the standard model of cosmology,
including its cosmological parameters, can be explained and
extended by quantum gravity. Furthermore, we show that the
formation of mass in the standard model of elementary particles
can basically be explained by quantum gravity. In particular,
the hierarchy problem is solved by quantum gravity1.

1.2 Physical constants

In this section we elaborate the concept of physical constants
in the context of a laboratory, in which these constants can be
measured. For it we introduce the concept of an ideal labo-
ratory. Of course, many sophisticated laboratories have been
built, and we do not try to improve any of these, we simply
reflect their purpose in principle.

Definition 1 Ideal laboratory

(1) A physical system is an ideal laboratory, if the following
conditions are provided:

(1a) Fields that exist outside the system are either screened or
averaged to zero in the system.

1I derived the present theory progressively. The publication started in 2017 in books,
papers and my book series. See e. g. Carmesin (2017b), Carmesin (2018h), Carmesin
(2018g), Carmesin (2018f), Carmesin (2018a), Carmesin (2019d), Carmesin (2017b),
Carmesin (2019a), Carmesin (2019f), Carmesin (2020b), Carmesin (2020a), Carmesin
(2021c), Carmesin (2021a), Carmesin (2021d).
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(1b) The system contains a clock that measures the own time
town in the system.

(1c) In particular, a homogeneous universe frame, HUF, see
(Carmesin, 2021c, Def. 2), has zero gravitational field.

(2) An example is the homogeneous universe frame, HUF, see
(Carmesin, 2021c, DEF. 2 and PROP. 2).

(3) The statistical variance of fields in a HUF has been analyzed
in (Carmesin, 2021c, THM. 27 and section 8.3).

(4) Experiments that are performed in an ideal laboratory or in
another laboratory provide physical laws and physical quantities
as empirical results.

More realistically, we introduce the concept of equivalent
laboratories:

Definition 2 Equivalent laboratories

Two laboratories are called equivalent, if one of the following
conditions holds:

(1) Either both laboratories provide the same empirical results.

(2) Or both laboratories provide empirical results that can be
transformed by the laws of special relativity theory, SRT, or by
the laws of general relativity theory, GRT, so that the trans-
formed empirical results are equal.

(3) An example is a freely falling system from which other than
gravitational external fields are screened. That system is equiv-
alent to an ideal laboratory.

(4) Another example is a screened system at Earth for which
the gravitational field G7 is known, so that gravitational effects
can be eliminated by transformations according to GRT.

(5) Another example is a pair of ideal laboratories that exhibit
a relative velocity v, so that the relativistic effects can be elimi-
nated by transformations according to the laws of SRT.
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Next we introduce the concept of a physical constant:

Definition 3 Physical constant

A physical quantity Q is a physical constant, if the following
conditions hold:

(1) Q can be measured in an ideal laboratory.

(2) Q takes the same value at each time t shown by the clock in
that ideal laboratory: dQ

dt = 0.

(3) A physical constant that is essential for a basic physical
theory is called universal constant. Examples are:

(3a) the constant of gravitation G, essential for gravity,

(3b) the velocity of light c, essential for relativity,

(3c) the Boltzmann constant kB, essential for thermodynamics
or statistical physics,

(3d) the Planck constant h, essential for quantum physics and

(3e) the electric field constant ·0.

We emphasize the following: The above definitions show that
the concept of a physical constants is well defined. There is a
precise procedure, by which one may test whether a physical
quantity is a constant. That property of constancy has been
tested very precisely, for many physical constants2. And that
testing is still going on, always using the best methods. A list
of universal physical constants is presented in table (15.1).

2In the literature, there are still suggestions that a universal physical constant could
vary with time. The present definitions make clear that such a suggestion represents
a hypothesis only. Moreover, such a suggested variation with time is proposed in spite
of a very clear concept of a physical constant. Additionally, such a suggested variation
with time is proposed in spite of very precise empirical evidence of the constancy of the
universal constants.
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1.3 Essential cosmological parameters

In this section we analyze usual cosmological parameters, and
we identify those cosmological parameters that are essential for
the cosmological dynamics.

Hinshaw et al. (2013) observed the CMB and evaluated the
measurements by using the SMC or ΛCDM model characterized
by six-parameters. So they fitted six cosmological parameters
to their observations. As such parameters may be transformed,
there is some freedom in the choice of the parameters (see also
Collaboration (2020a) or Tanabashi et al. (2018)).

The universe exhibits a time-evolution, whereby states and
objects that form early are the basis for states and objects form-
ing later. Thus the present-day observations are characterized
by the present day time t0 after the Big Bang. That time t0
can be derived from the Hubble constant H0, one of the six
parameters, see for instance Carmesin (2019d). Accordingly,
we use H0 as a time reference. With it we determine exact
values of five additional cosmological parameters: the density
parameters ΩΛ, ΩM , Ωr and ΩK as well as the amplitude
of matter fluctuations Ã8. We determine these exact val-
ues by application of the three basic physical theories, quan-
tum physics, general relativity theory, GRT, including SRT, and
statistical physics. These physical theories include the corre-
sponding universal constants G, c, kB and h. Additionally, we
use the physics of neutrinos and of the Higgs-particle includ-
ing the corresponding elementary particles, see e. g. Tanabashi
et al. (2018).

Altogether, we need only one cosmological parameter, the
time referenceH0, and fromH0 we derive the other cosmological
parameters based on quantum gravity only.

Next we analyze these six parameters and several additional
interesting cosmological parameters in detail.
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1.3.1 Concept of the Hubble constant H0

In this section, we summarize the concept of the Hubble con-
stant. Hubble (1929) discovered the Hubble law: The distances
d of galaxies are proportional to their redshifts z.

Thereby, galaxies should not be too near in order to avoid pe-
culiar motions, and galaxies should not be too far away in order
to avoid motions with clear negative or positive acceleration.

The Hubble law is usually explained by the expansion of
space (see e. g. Friedmann (1922), Lemaitre (1927), Einstein
and de Sitter (1932), Amendola (2021)). That expansion is
often modeled by a uniform scaling. That scaling is often
modeled with a scale factor R, whereby R is a function of the
time t (see e. g. (Tanabashi et al., 2018, p. 352)). In such a
model the ratio of the time derivative Ṙ divided by the radius
R is the expansion rate:

H :=
Ṙ

R
(1.1)

That expansion rate is called Hubble parameter (see e. g.
(Tanabashi et al., 2018, p. 352)).

In general, the Hubble parameter is a function H(t) of the
time t or a function H(z) of the redshift z. In particular, the
Hubble constant H0 is the value of the Hubble parameter at the
present time t0 (see e. g. (Tanabashi et al., 2018, p. 128)).

H0 := H(t0) (1.2)

1.3.2 Dynamics via the Hubble parameter H(t)

As the H(t) includes the time derivative Ṙ, it can be used in
order to express a differential equation, DEQ, for R(t). That
DEQ is called Friedmann Lemâıtre equation, FLE (Friedmann
(1922) and Lemaitre (1927) or (Amendola, 2021, Eq. 3.1.2)):

Ṙ2

R2
H2 =

8ÃG · Ã
3

2K · c
2

R2
(1.3)
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Hereby Ã is the density, and the parameter K is the curvature
parameter (see e. g. (Tanabashi et al., 2018, p. 352)). By
comparison, we see that the curvature parameterK corresponds
to the following additional density ÃK (see (Amendola, 2021, p.
22, 23)):

8ÃG · ÃK
3

= 2K · c
2

R2
or (1.4)

ÃK := 2K · 3c2

8ÃG ·R2
(1.5)

Physical basis of the DEQ: The FLE has been derived from
GRT in a macroscopic framework, see Friedmann (1922) and
Lemaitre (1927) or e. g. Straumann (2013), Carmesin (1996).
Moreover, the FLE has been derived on the basis of the GRT
and of microscopic objects, see (Carmesin, 2021c, THM 24).
Thereby, microscopic objects include matter, radiation and the
quanta of spacetime (including the dark energy), so a possible
pressure of these objects is already included on the microscopic
level (in an implicit manner). In particular, an additional ’dark
energy equation of state parameter’ w, see e. g. (Tanabashi
et al., 2018, p. 129), does not occur here, and it is not necessary,
as it is already inherent to the present theory, see (Carmesin,
2021c, theorems 21, 22, 29, 30).

Critical density Ãcr: By definition, the critical density is the
density Ã at which the curvature parameter K in the above
DEQ vanishes, see e. g. (Amendola, 2021, p. 23) or Eq. 1.3:

Ãcr :=
3H2

8ÃG
(1.6)

1.3.3 On the observation of the Hubble constant H0

Each observation of H0 uses some objects that arrive at Earth.
These objects have formed or have been emitted at some time
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tem and are observed at the present time t0. The ratio of the
corresponding scale factors is one plus the redshift:

1 + z := 1 +
»(t0)2 »(tem)

»(tem)
=

»(t0)

»(tem)
=

R(t0)

R(tem)
(1.7)

The redshift z is a quantity that is typically measured. The
corresponding scale factor R(tem) is usually denoted by R, for
short. Accordingly, we introduce a dimensionless scale factor:

xR :=
R

R(t0)
=

R(tem)

R(t0)
=

1

1 + z
(1.8)

1.3.4 Density Ã in the DEQ corresponding to H(t)

In this section we analyze the densities inherent to the FLE.

Basic types of densities: The density Ã in the above FLE is the
sum of the following particular densities (see e. g. (Tanabashi
et al., 2018, p. 128, 353)): the density of matter Ãm, the density
of relativistic species also called the density of radiation Ãr and
the density of the vacuum ÃΛ:

Ã = ÃΛ + Ãm + Ãr (1.9)

Each present-day density Ãj(t0) is usually normalized by Ãcr(t0),
the corresponding ratio is called density parameter Ωj (see
e. g. (Amendola, 2021, p. 23)):

Ωj :=
Ãj(t0)

Ãcr(t0)
(1.10)

For instance, we get ΩM = Ãm(t0)
Ãcr(t0)

, or ΩK := ÃK(t0)
Ãcr(t0)

, see Eq. (1.5).

Redshift inherent to densities: In SRT, the energy E of an ob-
ject with an own mass or rest mass m0 and a momentum p is
as follows, see e. g. (Moore, 2013, Eq. (3.20)):

E =
√

m2
0 · c4 + p2 · c2 (1.11)
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In quantum physics, the momentum p is equal to the Planck
constant h divided by the wavelength » of the object, see e. g.
Ballentine (1998) or Landau and Lifschitz (1979a) or Carmesin
et al. (2020):

p =
h

»
(1.12)

As a consequence of the above two Eqs., the energy of a quan-
tum object is as follows:

E =

√

m2
0 · c4 +

h2 · c2
»2

(1.13)

In cosmology, objects for which the second summand in the
above root is large compared to the first summand are sum-
marized as relativistic species, see e. g. (Hinshaw et al., 2013,
section 4.3). These are represented by a density Ãr, and the
energy of such an object is described (within an appropriate
approximation) as follows:

Er =
h · c
»

(1.14)

These relativistic species include photons with the density Ã³,
neutrinos with the density Ã¿ and so-called extra radiation
species ÃERS, see e. g. (Hinshaw et al., 2013, section 4.3).

In cosmology, objects are summarized as matter, if the first
summand in Eq. (1.11) is large compared to the second, see
e. g. (Collaboration, 2020a, table 2). These are represented
by a density Ãm, and the energy of such an object is described
(within an appropriate approximation) as follows:

Em = m0 · c2 (1.15)

These matter species include baryons with the density Ãb and
cold dark matter, CDM with the density Ãc, see e. g. (Collab-
oration, 2020a, table 2) or (Hinshaw et al., 2013, table 2).
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Redshift and densities: As the volume V of a ball with the ra-
dius R(tem) is proportional to R(tem)

3, we get:

V (tem) = V (t0) · x3R (1.16)

As the density of matter Ãm(t0) is proportional to the inverse
volume, we get:

Ãm(tem) = Ãm(t0) · x23
R = Ãcr(t0) · ΩM · x23

R (1.17)

The density of radiation has an additional factor 1/xR as a
consequence of the redshift. So we get:

Ãr(tem) = Ãcr(t0) · Ωr · x24
R (1.18)

The density of curvature is proportional to 1/R2 (see Eq. 1.4).
Thus, we get:

ÃK(tem) = Ãcr(t0) · ΩK · x22
R (1.19)

Altogether, we derive:

Ã+ ÃK = Ãcr(t0) · (ΩΛ + ΩKx
22
R + ΩMx23

R + Ωrx
24
R ) (1.20)

With it we derive a version of the FLE that includes ÃK :

H2(xR) =
8ÃG · Ãcr(t0)

3
(ΩΛ+ΩKx

22
R +ΩMx23

R +Ωrx
24
R ) (1.21)

We apply Eq. (1.6). Hence we derive:

H2(xR) = H2
0 · (ΩΛ + ΩKx

22
R + ΩMx23

R + Ωrx
24
R ) (1.22)

We define the dimensionless Hubble parameter E(x) or E(z),
see e. g. (Amendola, 2021, p. 26) or (Riess et al., 2018, p. 3):

E(xR) :=
H(xR)

H0
(1.23)

We apply Eq. (1.22). Thence we derive:

E(xR) =
√

ΩΛ + ΩKx
22
R + ΩMx23

R + Ωrx
24
R (1.24)
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1.3.5 Age of the universe t0

In this section we derive the age of the universe t0. For it we
solve Eq. (1.23) for H(xR):

H(xR) = H0 · E(xR) (1.25)

In order to obtain the DEQ, we apply the definition of the
Hubble parameter H(xR) =

dxR/dt
xR

:

dxR
xR · dt = H0 · E(xR) (1.26)

In order to solve that DEQ, we separate the variables. For it
we multiply by dt/E(xR):

dxR
xR · E(xR)

= H0 · dt (1.27)

Next we apply the integral, and we denote the resulting dimen-
sionless time integral by It:

Ix1,x2
:=

∫ x2

x1

dxR
xR · E(xR)

= H0

∫ t2

t1

dt = H0 · (t2 2 t1) (1.28)

In particular, we get the age of the universe t0 by choosing the
boundary values t2 = t0, t1 = 0, x1 = 0 and x2 = 1:

I0,1 :=

∫ 1

0

dxR
xR · E(xR)

= H0 · t0 (1.29)

We solve for the age of the universe t0:

t0 =
I0,1
H0

(1.30)

For instance, for the case of the observed cosmological parame-
ters in table (15.2), we calculate the following value for the age
of the universe t0:

t0 = 13.8 · 109 years (1.31)
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1.3.6 Comoving distance rco

In this section we derive the distance between a source that
emits a photon at a time tem and Earth at the present time t0.
At an instant of time t and during a time increment dt, that
photon propagates the incremental light travel distance c ·dt.
That increment c · dt is increased by the factor R(t0)/R(t) =
1/xR(t), during the time interval [t, t0]. So the incremental
complete distance is as follows:

drco =
1

xR(t)
c · dt (1.32)

We integrate, in order to derive the complete distance:

rco(tem) :=

∫ Earth

source

drco =

∫ t0

tem

1

xR(t)
c · dt (1.33)

That complete distance rco is also called comoving distance
or present-day proper distance, see e. g. (Tanabashi et al.,
2018, Eq. (22.5)). We substitute the integration variable t by
xR. For it we use Eq. (1.27). So we derive:

rco(xR) =
c

H0

∫ 1

xR

dx

x2 · E(x)
(1.34)

In particular, for the case tem = 0 or xR = 0, we derive the
light horizon:

Rlh =
c

H0

∫ 1

0

dx

x2 · E(x)
(1.35)

For instance, for the case of the observed cosmological parame-
ters in table (15.2), we calculate the following value for the light
horizon Rlh:

Rlh = 4.14 · 1026 m (1.36)

Similarly, we derive the time evolution of the actual light hori-
zon corresponding to a scaled time xt. For it we derive the
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size Rlh(
t
t0
) that the actual light horizon had or has at a time

xt =
t
t0
:

Rlh(xt) =
c

H0

∫ xt

0

dx

x2 · E(x)
(1.37)

1.3.7 Luminosity distance dL

We consider a source at a redshift z emitting N photons with
wavelength » and energy dE = h·c

» and distributed in a shell
at a comoving distance rco and with a thickness ». So these
photons are distributed in the volume dV = 4Ãr2co · ». Thus,
the energy density is as follows:

u(z) =
dE

dV
=

h · c
4Ãr2co · »2

(1.38)

When these photons are absorbed at Earth at the present time
t0, the wavelength is elongated via the redshift by the factor
1 + z. So the energy density is as follows:

u(z = 0) =
h · c

4Ãr2co · »2 · (1 + z)2
= u(z) · 1

(1 + z)2
(1.39)

If L is the luminosity of the above source, then its flux f
at a comoving distance rco in a non-expanding space would be
equal to f = L

4Ãr2co
. As the flux is equal to u · c, the flux in the

expanding space is proportional to 1
(1+z)2 , see (Amendola, 2021,

Eq. 3.9.1)

f =
L

4Ãr2co · (1 + z)2
(1.40)

The above product rco · (1 + z) is called luminosity distance
dL, see e. g. (Amendola, 2021, Eq. (3.9.2)):

dL := rco · (1 + z) (1.41)

In order to relate the comoving distance to observation in-
cluding the redshift z, we substitute x in the integral in Eq.
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(1.34) by 1/(1 + z). For it we derive dx = 2dz · x2. So we get:

rco(z) =
c

H0

∫ z

0

dz2

E(z2)
with (1.42)

E(z) =
√

ΩΛ + ΩK(1 + z)2 + ΩM(1 + z)3 + Ωr(1 + z)4 (1.43)

Accordingly, the luminosity distance as a function of z is as
follows, see also (Riess et al., 2018, Eq. (1)):

dL(z) =
c

H0
· (1 + z) ·

∫ z

0

dz2

E(z2)
(1.44)

The luminosity distance can be measured for each supernova
SNIa, and with it the (inverse) Hubble constant H0 can be ob-
tained, see (Riess et al., 2018, p. 3), whereby the E(z)-function
is reconstructed. Here we derive that reconstruction by the di-
rect derivation of the density parameters inherent to E(z). So
we can solve the above equation for H0:

H0 =
c

dL(z)
· (1 + z) ·

∫ z

0

dz2

E(z2)
(1.45)

1.3.8 Microscopically based cosmological dynamics

As the universe is not divided into a microscopic and a macro-
scopic dynamics, the FLE should be derived from the dynamics
of microscopic particles. This has been achieved in THM. (2),
THM. (3), Carmesin (2020b) and Carmesin (2021c).

Proposition 1 Microscopically based cosmological dy-
namics

Each particle generates gravity, a corresponding curvature of
space as well as a respective rate of formation of vacuum, and
therefrom the FLE has been derived, see Carmesin (2021c):

H2 =
8ÃG · (ÃΛ + Ãk + Ãm + Ãr)

3
(1.46)



1.3. ESSENTIAL COSMOLOGICAL PARAMETERS 19

1.3.9 Dynamically essential types of densities

In this section we summarize the types of densities that are
essential for the microscopically based cosmological dynamics
(Eq. 1.46). These are dynamically essential types of densities:

Definition 4 Dynamically essential types of densities

The types of densities that occur in the microscopically based
cosmological dynamics (see proposition 1), and that represent
different functions of the redshift z, constitute the set of dy-
namically essential types of densities.

As an immediate consequence, we apply the density parameters:

Corollary 1 The microscopically based cosmological dynamics
is constituted by the FLE in terms of the following DEQ and in
terms of the density parameters (see Eq. 1.22):

H2(xR) = H2
0 · (ΩΛ + ΩKx

22
R + ΩMx23

R + Ωrx
24
R ) (1.47)

1.3.10 Dynamically essential cosmological parameters

In this section we identify those cosmological parameters that
are essential for the microscopically based cosmological dynam-
ics. These are dynamically essential cosmological parameters.

We identify five dynamically essential cosmological parame-
ters in Eq. (see Eq. 1.47): H0, ΩΛ, ΩK , ΩM and Ωr. This set
would be complete, if these parameters were constant as a func-
tion of time or as a function of z. However, this is not the case.
Empirical evidence for that fact is provided by the so-called H0

tension, see e. g. Riess et al. (2018) or Scolnic et al. (2018) or
Riess et al. (2019).

In fact, I developed a basic theory of the time evolution of
space3, and with it I discovered that the vacuum is a polychro-
matic mixture of quanta of spacetime, QST. In particular

3See e. g. Carmesin (2017b), Carmesin (2018g), Carmesin (2018f), Carmesin (2018a),
Carmesin (2019d), Carmesin (2019b), Carmesin (2020b), Carmesin (2020a), Carmesin
(2021c).
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these quanta are permanently formed, accumulate and consti-
tute a polychromatic mixture of quanta. That polychromatic
mixture implies that the Hubble constant H0 is a function of z.
For it I derived a correction factor as a function of z, and the
resultingH0(z) turns out to be in precise accordance with obser-
vation, whereby I do not execute any fit. Moreover, I derived
a semiclassical version of the full theory. That semiclassical
theory is fully relativistic, and it is semiclassical with respect
to quantum physics. The correction factor of the semiclassi-
cal theory is in approximate and in relative precise accordance
with the correction factor of the full theory. I derived an ex-
plicit formula for the semiclassical correction factor, and it is
not only a function of z, it is also a function of the amplitude
of matter fluctuations Ã8, see (Carmesin, 2021c, theorem 22).
Correspondingly, Ã8 is a sixth dynamically essential cosmolog-
ical parameter. Moreover, the time evolution of the universe,
including the H0 tension, has been described on the basis of
the SRT, the GRT, quantum physics and statistical physics,
and on the basis of these six cosmological parameters only, see
Carmesin (2021c). Thereby a precise accordance with observa-
tion has been achieved. Accordingly, we summarize:

Corollary 2 Dynamically essential cosmological param-
eters

(1) The dynamically essential cosmological parameters are the
following six usually used cosmological parameters:

(a) the Hubble parameter H0,

(b) the density parameters ΩΛ, ΩK, ΩM and Ωr,

(c) the amplitude of matter fluctuations Ã8.

(2) The dynamically essential cosmological parameters exhibit
mutual dependencies:
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(a)

ΩΛ + ΩK + ΩM + Ωr = 1, (1.48)

(b) the Hubble constant H0 exhibits a functional dependency on
z and Ã8, see (Carmesin, 2021c, theorem 22)

(c) similarly, ΩΛ exhibits a functional dependency on z and Ã8,
see (Carmesin, 2021c, theorem 22).

(d) moreover, Ã8 exhibits a functional dependency on z, see
(Carmesin, 2021c, theorem 22).

(3) The average of interacting pairs of objects in the universe
shows that ΩK = 0, see (Carmesin, 2021c, theorem 32 number
(6)). This result corresponds to observation, see e. g. Collabo-
ration (2020a) or Hinshaw et al. (2013).

(4) The density parameter Ωr can equivalently be substituted
by the redshift zeq of the radiation-matter equality, see e. g.
(Carmesin, 2019d, Eq. 2.17):

Ωr =
ΩM

zeq + 1
(1.49)

1.4 Constituents of Ωr

The density of radiation consists of three species, see e. g.
Hinshaw et al. (2013): the density of photons Ã³, the density
of neutrinos Ã¿ and the extra radiation species, ÃERS. So the
density of radiation is the following sum:

Ãr = Ã³ + Ã¿ + ÃERS (1.50)

or Ωr = Ω³ + Ω¿ + ΩERS (1.51)

These constituents have the common property that their energy
varies according to the redshift. Moreover, their amount does
not increase according to the FLE. These two properties have
essential implications on the time development. We summarize:
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Corollary 3 Constituents of radiation (table 15.2)

(1) The radiation has the following cosmological constituents:

(a) photons with the density parameter Ω³,

(b) neutrinos with the density parameter Ω¿,

(c) extra radiation species, with the density parameter ΩERS.

(2) So the density parameter of radiation is the following sum:
Ωr = Ω³ + Ω¿ + ΩERS

1.5 Standard model of elementary particles

In this section we present a short description of the standard
model of elementary particles (Tanabashi et al. (2018), Bethge
and Schröder (1991), Kobel et al. (2017)), so that the results
obtained below can be related to that model. The model is
essentially constituted by three generations, see e. g. Kobel
et al. (2017). These are basically understood by the beta decay.

1.5.1 ³-decay

In the beta decay, a neutron, n, decays into a proton, p, an
electron, e2 and an electronic antineutrino, ¿̄e:

n ³ p+ ¿̄e + e2 (1.52)

On the level of quarks, the beta decay can be modeled by the
decay of a down quark, d, into an up quark, u, an electron, e2

and an electronic antineutrino, ¿̄e:

d ³ u+ ¿̄e + e2 (1.53)

1.5.2 Isospin - pairs

In the above reaction Eq. (1.53), we transfer the antineutrino
from the products to the educts by changing it to a neutrino:

d+ ¿e ³ u+ e2 (1.54)
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This is interpreted by a transformation of a down quark into
an up quark combined with a transformation of an electronic
neutrino into an electron. Correspondingly, the down quark
and the up quark are interpreted as two states such as two spin
states. Accordingly, a new isospin has been introduced, and
the down quark has isospin Iz = 21/2, while the up quark has
isospin Iz = 1/2. So these two quarks form a pair:

(

u
d

)

(1.55)

Similarly, and the electronic neutrino has the isospin Iz = 1/2,
while the electron has the isospin Iz = 21/2, see Eq. (1.58).
Thus, these two leptons constitute another isospin pair:

(

¿e
e2

)

(1.56)

As these two isospin pairs are combined in the beta decay,
they are combined to the following quadruple:

û

ü

ü

ý

(

u
d

)

(

¿e
e2

)

þ

ÿ

ÿ

ø

(1.57)

1.5.3 Isospin - symmetry

The usual spin states are related to rotations, and these are rep-
resented by the special (with determinant one) orthogonal group
in three dimensions, the SO(3). Similarly, the isospin states are
related to transformations, and these are again represented by
a group, the special unitary group in two dimensions, SU(2).

1.5.4 Generations

The quadruple in Eq. (1.57) is a first quadruple that had been
developed in several steps: Pauli proposed the existence of the
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neutrino as a part of the beta decay in 1930.That neutrino has
been directly observed since 1953.The quark model has been
proposed around 1960.

Later, two similar quadruples have been discovered. Thereby
the top quark was discovered in 1993 and completed these three
quadruples. The numbers of these three quadruples are called
generations, see Eq. (1.59). The particles of the second and
third generation in Eq. (1.59) are the charm quark, c, strange
quark, s, top quark, t, bottom quark, b, muon, µ, tauon, Ç as
well as corresponding neutrinos ¿µ and ¿Ç .
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In addition to these particles, the standard model contains
bosons that transmit interactions:

The weak interaction is transmitted by W bosons, W+, W2

and W 0 (also called Z-boson, Z represents zero). The electro-
magnetic interaction is transmitted by virtual photons. The
strong interaction is transmitted by gluons. Beyond the stan-
dard model is the hypothetical graviton, see Blokhintsev and
Galperin (1934), Carmesin (2021c). The masses of most parti-
cles of the standard model are based on the Higgs boson, see e.
g. (Peskin, 2015, p. 9-10) or Tanabashi et al. (2018).
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1.5.5 Two additional symmetries

We remind that the isospin states form pairs and are related
to transformations that represent a group, the special unitary
group in two dimensions, the SU(2). Similarly, the quarks u,
d and s form a triplet and are related to transformations that
represent a group, the special unitary group in three dimensions,
the SU(3). That group can explain several elementary particles
that are formed from the quarks u, d and s.

An additional symmetry is related to the electromagnetic
interaction. An effect of that interaction can be modeled by a
change of a phase of a complex number. As numbers represent
one dimension, the corresponding group is the special unitary
group in one dimension, the SU(1). Altogether, symmetries
inherent to elementary particle physics are described by using
the groups SU(1), SU(2) and SU(3) including their combina-
tions. Possible relations to higher dimensional groups are being
investigated since many decades.

1.5.6 Mixing

The system of elementary particles (Eq. 1.59) has been devel-
oped according to reactions such as the beta decay and accord-
ing to symmetries of SU(1), SU(2) and SU(3). However, the
neutrinos of the three generations ¿e, ¿µ and ¿Ç can periodically
transform into each other, that phenomenon is called neutrino
oscillation, see e. g. Tanabashi et al. (2018). Correspondingly,
these neutrinos ¿e, ¿µ and ¿Ç are modeled as linear combinations
of underlying neutrinos ¿1, ¿2 and ¿3. That linear combination
is called neutrino mixing and it is described by a mixing matrix
U , see e. g. (Tanabashi et al., 2018, S. 14).

Similarly, the masses of the six quarks of the three genera-
tions (see Eq. 1.59) are derived on the basis of a mixing matrix,
called VCKM see e. g. (Tanabashi et al., 2018, S. 12).
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1.5.7 Gauge theory

Each symmetry inherent to elementary particle physics can
be described by an operator Ŝ. Each such operator Ŝ can be
expressed in terms of a set of infinitesimal generators Ĝj and
by corresponding generalized angles ³j as follows:

Ŝ = exp[Σn
j=1³j · Ĝj] (1.60)

Each local change of a such a symmetry can thus be expressed
by local changes of these angles:

³j(~x) (1.61)

In each local theory, such a local angle ³j(~x) cannot propa-
gate faster than the velocity of light. Thus, each global theory
must be invariant with respect to such local angles ³j(~x). This
statement constitutes the principle of gauge invariance, it can
be applied to each local theory, and it has been used in or-
der to derive several theories in elementary particle physics. In
the present book series, locality is appropriately generalized to
higher dimension.

1.5.8 Open question: formation of mass

The formation of the masses of particles presented in Eq. (1.59),
except the neutrino masses, are usually based on the mass mH

of the Higgs boson, see (Peskin, 2015, p. 9-10). However, that
mass mH is not predicted by the SMEP, see (Peskin, 2015, p.
12). Moreover, the derivation of many masses of elementary
particles requires additional unexplained parameters, e. g. mix-
ing angles. This shows that the formation of mass is hardly ex-
plained by the SMEP. Even the hierarchy problem is unsolved,
see e. g. (Shaposhnikov and Shkerin, 2018, p. 1) or Tanabashi
et al. (2018), so not even the different scales of the masses of
elementary particles have been explained.



Chapter 2

Quantum Gravity

In this chapter we summarize essential results of quantum grav-
ity. In particular, we derive the length limit and the density
limit in nature. Thereby we introduce the Planck scale, and
we apply it to the time evolution of the actual light horizon Rlh.

2.1 Shortest observable standard deviation

In this section we derive the shortest and observable standard
deviation Ã or the shortest observable uncertainty, SOU
∆x.

2.1.1 Observable objects

In this section we explicate two necessary conditions for an ob-
ject to be observable in nature:

1. gravitational condition

No object inside the event horizon of a black hole can be ob-
served, see Michell (1784b), Schwarzschild (1916), Kerr (1963),
Newman and Janis (1965), Mayo and Bekenstein (1996). Here
we analyze black holes without charge and without angular mo-
mentum, for simplicity. In this case, the Schwarzschild ra-
dius RS is the event horizon. Correspondingly, no length inside
the event horizon can be observed.

27
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2. quantum condition

Each standard deviation takes at least the value according to
the Heisenberg uncertainty principle, see Heisenberg (1927) or e.
g. Ballentine (1998). Correspondingly, no object or length with
a smaller standard deviation or randomness can be observed in
nature. We summarize:

Definition 5 Observable object or quantity

An observable object or quantity fulfills the following two nec-
essary conditions:

(1) The object is outside the event horizons of black holes.

(2) The object or quantity exhibits a sufficient standard devia-
tion alias uncertainty, according to the Heisenberg uncertainty
principle.

Next we specify these two conditions in detail. Secondly we
combine these two conditions, see e. g. Carmesin (2017b),
Carmesin (2018f), Carmesin (2018b), Carmesin (2021a).

2.1.2 Quantum condition

In this section we derive the quantum state1 Ψ with the short-
est standard deviation ∆x.

Heisenberg uncertainty principle: As a matter of fact, quantum
states obey the Heisenberg uncertainty relation, see Heisenberg
(1927) or e. g. (Ballentine, 1998, section 8.4).

The cause of that uncertainty is the quantum state, it is
NOT the technique of observation. It is similar to throwing
the dice: There occurs a large standard deviation of Ã = 1.7 or

Ã =
√

12+22+32+42+52+62

6 2 3.52, but the cause of that standard

1There are also other essential quantum states in the early universe, see e. g. Carmesin
(2021c).
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deviation is NOT the observation, as you see the dice clearly.
The dice themselves cause the standard deviation.

In the case of the standard deviation ∆x, the following un-
certainty relation including the standard deviation ∆px of the
momentum holds:

∆x g ~

2 ·∆px
(2.1)

2.1.3 Gravitational condition

In this S. we analyze the gravitational condition.
The Schwarzschild radius of a mass m or energy E = m/c2

has the following amount:

RS =
2G ·m

c2
=

2G · E
c4

(2.2)

2.1.4 Uncertainty ∆x of a quantum state

In this section we analyze the SOU for an arbitrary quantum
state.

∆px as a function of energy E: As we derive the shortest stan-
dard deviation ∆x, the standard deviation ∆px is very large.
Thus, the quantum state is relativistic. Thence the relativistic
energy - momentum relation holds:

E2/c2 = p2 (2.3)

In a D dimensional space, the momentum can exhibit D com-
ponents pj, with 1 f j f D:

E2/c2 = ΣD
j=1p

2
j (2.4)

Thereby, each squared component p2j is the sum of the squared
averaged value p̄2j and the squared standard deviation (∆pj)

2:

E2/c2 = (∆px)
2 + p̄2x + ΣD

j=2[p̄
2
j + (∆pj)

2] (2.5)
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In the SOU, (∆px)
2 takes the maximal possible value. So the

remaining components are nearly zero2 or zero in the ideal case:

p̄2x + ΣD
j=2[p̄

2
j + (∆pj)

2] = 0 (2.6)

In the following, we name the product c ·∆px equivalent energy
corresponding to direction x:

Ex = c ·∆px (2.7)

We summarize this result:

Proposition 2 Momenta in a quantum state at SOU

In a quantum state Ψ with the shortest observable uncertainty,
the energy of that state corresponds to the standard deviation
∆px only:

E/c = ∆px = Ex/c (2.8)

All other components of the momentum are zero, or they tend
to zero in a possibly existing limit.

In the following, we denote that quantum state as a plane wave
type quantum state with momentum px.

2.1.5 Lower bound of ∆x in terms of Ex

In this section we derive a lower bound of the uncertainty ∆x
of a quantum state of a SOU, whereby that bound is a function
of the equivalent energy Ex.

Naturally, the quantum state obeys the Heisenberg uncer-
tainty relation, Eq. (2.1). We apply PROP. (2) to that equa-
tion. So we derive the following lower bound of the uncertainty:

∆x g ~ · c
2 · Ex

(2.9)

2Correspondingly, the extensions in the dimensions D g 2 tend to infinity.
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2.1.6 Located object in D dimensions

In this section we discover an elementary type of objects located
in D dimensional space.

For it we realize that a plane wave type quantum state is
located in the x-direction, but it is hardly located in the other
directions of space. Such a quantum state is described by a
wave function or Hilbert space vector Ψx = Ψr1.

The product state is an elementary combination of D such
states, one in each direction:

Ψ = Πj=D
j=1 Ψrj (2.10)

For the case of three dimensions, the momentum of the product
state is the following vector:

~p =

û

ý

px
py
pz

þ

ø =

û

ý

p1
p2
p3

þ

ø (2.11)

The corresponding absolute value is as follows:

p2 = p2x + p2y + p2z (2.12)

Here we consider a frame in which the average of the momentum
is zero. Hence we derive:

p2 = (∆px)
2 + (∆py)

2 + (∆pz)
2 (2.13)

Moreover, we analyze isotropic product states. So we derive:

p2 = 3 · (∆px)
2 or p =

:
3 ·∆px (2.14)

As the considered SOUs exhibit relatively large energy, these
states are relativistic. Thus, the relativistic energy momentum
relation holds, p = E

c , in particular ∆px =
Ex

c . So we derive:

E =
:
3 · Ex (2.15)
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2.1.7 RS of a located object

In this section we derive the Schwarzschild radius of a located
object, see Eq. (2.10).

As a located object has a size and an energy, it can become a
black hole. So it can have a Schwarzschild radius, see Eq. (2.2):

RS =
2G ·m

c2
=

2G · E
c4

(2.16)

Next we relate that RS to the uncertainty ∆x.

Shell model of the black hole: In this paragraph we derive an el-
ementary well founded theory for the black hole3. When energy
or matter falls into the black hole by crossing the Schwarzschild
radius, then it cannot emit any radiation. So it cannot reduce
its energy. Thus, it cannot fall deeper. Hence the energy gathers
at a shell with the radius R g RS (see also Carmesin (2021c)).

Uncertainty ∆x of the black hole: For the case of the shell model
of the black hole, we derive the uncertainty ∆x of the location
of the energy. For it we derive the average of 〈x2〉:

x2 + y2 + z2 = R2 (2.17)

We apply the average:

〈x2〉+ 〈y2〉+ 〈z2〉 = 〈R2〉 = R2 (2.18)

As the black hole is isotropic, the three averages over the coor-
dinates are equal. So we derive:

3〈x2〉 = R2 (2.19)

Without loss of generality, we choose the origin of the coordinate
system at the center of the black hole. Thus, we have 〈x2〉 =

3Akiyama et al. (2019) achieved the first direct observation of a black. Accordingly,
there is no detailed and well tested theory of a black hole available at the present-day. In
that situation, we derive a basic theory here.
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(∆x)2. With it we derive:

3(∆x)2 = R2 or ∆x g 1:
3
·R (2.20)

Using R g RS we derive:

∆x g 1:
3
·RS (2.21)

We insert Eq. (2.16). So we derive the uncertainty ∆x that a
black hole with an energy E has:

∆x g 1:
3
· 2G · E

c4
(2.22)

As the uncertainty ∆x corresponds to one direction in space
only, we express the energy E in terms of Ex, see Eq. (2.15):
Thus, we derive:

∆x g 2G · Ex

c4
(2.23)

We summarize our results:

Proposition 3 Located objects

In D dimensions, D plane wave type quantum state with mo-
menta pj, 1 f j f D with wave functions of Hilbert state vectors
Ψj = Ψrj can form a product state:

Ψ = Πj=D
j=1 Ψrj (2.24)

In the following, we denote the object described by that product
state Ψ a located object. A located object has the following
properties, if it is described in a frame at which the momentum
of a located object is zero and in a coordinates system that has
the origin at the center of a located object:

(1) The momentum is
:
D multiplied by ∆px:

p =
:
D ·∆px (2.25)
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Figure 2.1: Shortest observable uncertainty (dot): Observable
states outside the event horizon of a possible black hole (hori-
zontal lines). Sufficient uncertainty according to the Heisenberg
uncertainty relation (vertical lines). Observable and sufficient
uncertainty (intersection).

(2) The energy is
:
D multiplied by Ex:

E =
:
D · Ex (2.26)

(3) Naturally, the located object can form a black hole, resulting
in the following lower bound for the uncertainty:

∆x g 2G · Ex

c4
(2.27)

(4) Naturally, the located object obeys the Heisenberg uncer-
tainty relation, resulting in the following lower bound for the
uncertainty:

∆x g ~ · c
2 · Ex

(2.28)

2.1.8 Combination of the two lower bounds

In this section we combine the two lower bounds of a located
object, see proposition (3). For it we present these two lower
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bounds in a ∆c/E)- diagram. Hereby we apply Planck units,
see table (15.3), see Fig. (2.1).

The states with sufficient uncertainty ∆x according to the
Heisenberg uncertainty relation (proposition (3, part (4)) are
marked by vertical lines. Simultaneously, the states with suffi-
cient uncertainty ∆x according to gravity, see PROP. (3, part
(3)), are marked by horizontal lines.

Hence the states with sufficient uncertainty correspond to the
intersection of the above two sets of states, these are marked by
crossing lines in Fig. (2.1). Obviously there is a state with the
smallest observable uncertainty. It is marked by the dot.

We derive the coordinates of that point as follows: Firstly,
we set equal the terms in Eqs. (2.27) and (2.9)

2G · Ex

c4
=

~ · c
2 · Ex

(2.29)

We solve for Ex:

E2
x =

1

4
· ~ · c5

G
(2.30)

We identify the second fraction with the square of the Planck
energy, E2

P , see table 15.3. Moreover, we take the root. So we
derive the energy Ex:

Ex =
1

2
· EP (2.31)

In order to derive the corresponding uncertainty, we insert
the above energy into Eq. (2.9). As we analyze the shortest
length, we use the equality instead of the inequality. Thence
we derive:

∆x =
~ · c
EP

(2.32)

We identify the above fraction with the Planck length LP , see
table 15.3. So we derive:

∆x = LP (2.33)

We summarize our result:
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Proposition 4 Shortest observable uncertainty, SOU

The shortest observable uncertainty has the following properties:

(1) The shortest observable uncertainty is a length, by definition
of the word ’short’.

(2) The SOU is equal to the Planck length:

∆xSOU = LP =

√

~ ·G
c3

= 1.616 · 10235 m (2.34)

(3) The energy Ex corresponding to ∆xSOU is equal to one half
of the Planck energy:

Ex,SOU =
1

2
· EP with EP =

√

~ · c5
G

= 1.956 · 109 J (2.35)

(3) The dynamical mass m = E
c2 corresponding to Ex,SOU is

equal to one half of the Planck energy divided by c2, it is the
Planck mass:

Mx,SOU =
1

2
·MP with MP =

√

~ · c
G

= 2.176 · 1028 kg

(2.36)

2.1.9 Upper bound for the density

The quantum state with the SOU, provides an upper limit of
the density. It is derived in this section.

At an uncertainty ∆x̃ see dotted line in figure (2.2), the
observable and sufficiently uncertain states are represented by
the area marked by crossing horizontal and vertical lines in that
figure. Among these states at that uncertainty ∆x̃, the state
with the largest density is the state with the largest energy Ẽx at
that dotted line. It is the state at the straight line in that figure.
These states are characterized by Eq. (2.27). In particular, the
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Ẽ

∆
x̃
an

d
R̃

S

Figure 2.2: An upper bound for the density: Observable states
(horizontal lines). Sufficient uncertainty (vertical lines). Ob-
servable and sufficient uncertainty (intersection). Dots show
states at an uncertainty ∆x̃, among these states, the observ-
able state with the largest energy is marked by the triangle.

inequality defines the area marked by horizontal lines, whereas
the straight line is determined by the corresponding equality:

∆x =
2G · Ex

c4
(2.37)

The corresponding density is the energy divided by c2 and by the
volume. By construction, it is an upper bound for the density:

Ã f Ex

c2 · V with V =
4Ã

3
(∆x)3 (2.38)

We solve Eq. (2.37) for Ex, and we insert the resulting term
in the above equation for the density. Moreover, we insert the
above term for the volume. So we derive:

Ã f c4 ·∆x

c2 · 2G · 4Ã
3 (∆x)3

(2.39)
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We simplify the above term. Thus, we derive:

Ã f 1

2
· 3

4Ã
· c2

G · (∆x)2
(2.40)

The above term is proportional to (∆x)22. Hence the largest
upper bound for the density occurs at the smallest possible value
of ∆x. It is the Planck length, see proposition (4). Hence we
derive the following upper bound:

Ã f 1

2
· 3

4Ã
· c2

G · L2
P

(2.41)

We identify the last fraction in the above equation by the Planck
density, see table (15.3):

Ã f 1

2
· 3

4Ã
· ÃP (2.42)

Moreover, we identify 3
4Ã · ÃP by the Planck density of a ball,

Ã̄P , see table (15.3):

Ã f 1

2
· Ã̄P (2.43)

Here we apply the scaled density Ã̃ = Ã/Ã̄P , see table (15.3):

Ã̃ f 1

2
(2.44)

We summarize our result:

Proposition 5 An upper bound of the density

As derived from gravity and quantum physics, the density has a
natural upper limit as follows:

Ã f 1

2
· 3

4Ã
· ÃP =

1

2
· Ã̄P (2.45)
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2.1.10 On the measurement of a standard deviation

In general, the significance of a measurement of an observable
A of a quantum state Ψ is limited by the standard deviation
Ã, naturally. This standard deviation is alternatively named
uncertainty ∆A. In particular, that standard deviation can be
measured by executing a large number of measurements at an
ensemble of quantum objects that are in the considered state
Ψ. So a number N of measurement values Aj can be obtained.
Therefrom the empirical standard deviation can be calculated:

∆empirical = Ãempirical =
√

ΣN
j A

2
j/N 2 (ΣN

j Aj/N)2 (2.46)

In this manner an operational significance of the uncertainty
is achieved, see e. g. (Ballentine, 1998, Fig. 8.2 or section 8.4).

2.2 Incompleteness of GRT

In this section we analyze the time evolution of the actual light
horizon Rlh by using Eq. (1.37). Figure (2.3) shows the result.
In the limit time to zero, the light horizon goes to zero, and as a
consequence, the density diverges. This property of the model
is physically not realistic, and this discrepancy is denoted as the
singularity problem, see e. g. Kiefer (2003).

2.2.1 Singularity problem

Next we analyze, whether that singularity problem is physically
essential: If the light horizon Rlh reaches the Planck length LP

at a physically possible density Ã < ÃP
2 , then the singularity

problem is not physically essential, since all physical possible
lengths are reached at physically possible densities in that case.
In the other case, the singularity problem is physically essential
as not all physically possible lengths are reached.

Accordingly, we evaluate the densities Ã(t) corresponding to
values Rlh(t) that the actual light horizon can take. For it we
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Figure 2.3: Time evolution of the scale factor. The time is pre-
sented in units of the age of the universe t0, while the scale factor
is shown in units of R0. We calculate the graph by application
of Eq. (1.28).

show the densities Ã(t) and the corresponding values Rlh(t) as a
function of the time t, see Fig. (2.4). The figure shows that the
maximally possible density ÃP

2 is reached at values Rlh(t) that
are 30 orders of magnitude larger than the physical limit of the
Planck length LP . So the singularity problem is very essential.
Moreover, the GRT is incomplete, as it does not provide the
full dynamics of the values values Rlh(t) of the light horizon.
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Figure 2.4: Density limit of expansion of space: The time evolu-
tion of Rlh according to the GRT (ç) ranges from the present-
day value 4.14 · 1026 m backwards to 0.003 mm, as at this point
the density (æ) achieves the Planck density ÃP = 5.155 · 1096 kg

m3

(dashdotted), and no higher density is physically possible.
However, the physically possible lengths can be as short as the
Planck length LP (loosely dotted). Hence the time evolution of
the GRT is incomplete.
In contrast, we derive the complete time evolution of Rlh(t),
ranging from the current value 4.14 · 1026 m backwards to LP .
For it we apply GRT (ç) combined with dimensional phase tran-
sitions (·) derived by quantum gravity, see (3). Thereby, the
phase transitions cause the extremely rapid distance en-
largement in the early universe
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Chapter 3

Transitions in the early
universe

In this section we present dimensional transitions that take
place in the early universe. For it we emphasize that physics in
dimensions D > 3 has been observed in experiments with pho-
tons as well as in experiments with electrons, see Lohse et al.
(2018), Zilberberg et al. (2018). The results of this chapter
have been published since Carmesin (2017b) and are presented
recently in Carmesin (2021c).

3.1 Kinetic energy in D dimensions

In this section we make transparent how the kinetic energy of
a mass m is naturally defined in D dimensions:

Ekin =
1

2m
Σj=D

j=1 p
2
j (3.1)

3.2 Gravity in D g 3 dimensions

In this section we show that the gravitational energy is naturally
defined inD g 3 dimensions. For it we remind that GRT can be
derived from Gaussian gravity, see (Carmesin, 2021c, theorem
1). And Gaussian gravity can naturally be defined in D g 3
dimensions, see e. g. Fig. (3.1).

43
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m m
r

G7 A G72 = G∗

2

A2 = 2 · A

r2 =
:
2 · r

G7 · A = G72 · A2

Figure 3.1: Gaussian gravity of a mass m: All balls around m
have the same flux G7(r) · A(r). This means the same product
of the gravitational field G7(r) and area A(r). Consequently,
we derive in D dimensions: G7(r) ? 1

A(r) ? 1
rD−1 .

3.2.1 Gravity term for D g 3

According to Gaussian gravitation, the gravitational field G7(r)
at a distance r from a mass is proportional to 1/rD21 (Fig. 3.1,
and Gauss (1840)):

G7 ? 1

rD21
(3.2)

The same proportionality applies to the gravitational force F
which a massM exerts on a massm at the distance r. Moreover,
the force is proportional to each of the masses:

F ? M ·m
rD21

(3.3)

The proportionality factor is a gravitational constant for dimen-
sion D, GD:

F = 2GD · M ·m
rD21

(3.4)



3.2. GRAVITY IN D g 3 DIMENSIONS 45

The potential energy or gravitational energy is the integral of
the force. By DEF., the energy is zero in the limit r to infinity:

EG = 2GD · M ·m
(D 2 2) · rD22

(3.5)

The gravitational constant can be derived (see e.g. Carmesin
(2017b), Carmesin (2019d)). The following holds:

GD = G · (D 2 2) · LD23
P (3.6)

We summarize:

Proposition 6 Gravitation in D dimensions

(1) Two objects at a distance r, with masses or dynamic masses
M and m, exert the gravitational force F = 2GD · M ·m

rD−1 on each
other in D g 3 dimensions with GD = G · (D 2 2) · LD23

P .

(2) The corresponding energy is: EG = 2GD · M ·m
(D22)·rD−2

(3) As kinetic and gravitational energy are naturally defined in
D g 3 dimensions, the fact that we live in three dimensions
is not the only physically possible case. Instead, it must be ex-
plained why three dimensional space is stable in the present-
day universe, see e. g. Carmesin (2017b), Carmesin (2018a),
Carmesin (2021c).

(4) When the space changes from a dimension D + s to a di-
mension D, then s directions of translation symmetry are lost.
Thus, such a transition is a symmetry breaking phase transi-
tion, see Landau and Lifschitz (1979b), we call it dimensional
phase transition.

3.2.2 Special radii at scaled densities Ã̃D

In this section we analyze the radius b of a black hole and the
radius aM of radiation with dynamic mass M as a function of
the density Ã̃D.
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Radius aM depending on the scaled density: We derive how the
radius aM depends on the scaled density ÃD. We use natural
units (see table 15.3).

According to the redshift, the dynamic mass is proportional
to the inverse wavelength Mdyn ? 1

aM
. For example, for aM =

LP is Mdyn = MP

2 (Fig. 2.1). Both relations result in:

1

2ãM
= M̃dyn (3.7)

Here we use the term for the density, where VD denotes the
volume of a hyper ball with radius 1:

ÃD =
Mdyn

VD · aD (3.8)

Hereby the volume of a unit ball is as follows:

VD =
ÃD/2

Γ(1 +D/2)
; Γ(x+ 1) = Γ(x) · x; Γ(1) = 1; Γ

(

1

2

)

=
:
Ã

(3.9)
We use the Planck density related to a ball Ã̄D,P = MP

VD·LD
P
(table

15.3). So we get:

Ã̃D =
ÃD
Ã̄D,P

=
M̃dyn

ãDM
(3.10)

In total we get:

1

2ãM
= M̃dyn = Ã̃D · ãDM (3.11)

Resolved we get:

ãM = (2Ã̃D)
21/(D+1) (3.12)

Schwarzschild radius: We determine the Schwarzschild radius
b depending on the density. We proceed like Michell (Michell
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A

B

Figure 3.2: At high density near the Planck scale, Ã j ÃP , the
space exhibits a grainy structure (dots) at the scale of the
Planck length, L j LP . At such a density, a layer of shortcuts
(dotted) can form spontaneously. The corresponding critical
density is derived in S. (3.3).

(1784a)). We equate the kinetic energy 1
2M · v2 with the poten-

tial energy and choose the velocity of light c. So we get:

1

2
· c2 = GD ·m

(D 2 2) · bD22
(3.13)

We use GD = G · (D 2 2) · LD23
P and we use natural units. So

we get (table 15.3):

b̃ = (2Ã̃D)
21/2 (3.14)

3.3 Critical density Ãcr.sc. for shortcuts

In this section we derive an example of a dimensional phase
transition: At a critical density Ãcr.conn., connections of a length
dL j LP and with the volume dV j L3

P form spontaneously,
for an illustration of several formed connections see Fig. (3.2).
Thereby the dimension is increased and a dimensional phase
transition takes place.

Condition for the transition: If the rate of change of the vacuum
inside the connection ·̇inside = ·V

·t·dV |inside is negative, then the
shortcut permanently looses vacuum, so it vanishes. If the rate
of change of the vacuum inside the connection ·̇inside would be
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larger than zero, then the shortcut would permanently get new
vacuum, so that can happen for a short time only. If the rate
of change of the vacuum inside the connection ·̇inside is equal to
zero, then the shortcut contains a constant amount of vacuum,
correspondingly, the shortcut is stable. This shows that the
shortcut becomes stable at the condition ·̇inside = 0. Hence, at
the critical density Ãcr.conn., the rate of change of the vacuum
inside the connection ·̇inside =

·V
·t·dV |inside is zero.

Contributions to the rate ·̇inside: Some vacuum flows from the
connection to neighboring regions A and B, see Fig. (3.3), at
a rate ·̇out. Similarly, some vacuum flows from neighboring re-
gions A and B to the connection at another rate ·̇in. Thirdly,
some vacuum forms in the connection at a rate ·̇formation. Next
we analyze these rates in detail.

Rate of outward flow: The vacuum dV of the connection can
escape at the velocity of light in two directions, see Fig. (3.3).
For that escape it requires the time dt = LP/c = tP , whereby
tP is the Planck time. Thereby a quantum flows in each of the
two directions with the probability 50 %. Thus, during the time
tP , the volume dV of the connection leaves that volume. So the
rate of outward flow is as follows:

·V

·t
|out = 2dV

tP
(3.15)

We solve for the rate per volume:

·̇out =
·V

·t · dV |out = 2 1

tP
(3.16)

Rate of inward flow: As the cube of length LP at a region A has
six equal surfaces, one of which is directed to the connection, the
sixth part of its rate ·V

·t·dV |from A propagates to the connection:

1

6
· ·̇|from A = 2 1

6 · tP
(3.17)
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·V

·V

dV

A ......

B ......

Figure 3.3: Flow of vacuum ·V from dV : We assume that the
vacuum essentially flows to existing vacuum. In order to get an
estimation we analyze cubes with length L j LP .

So the rate propagating from A to the connection is positive
and has the absolute value of the above term:

·̇in,from A = +
1

6 · tP
(3.18)

The same rate propagates to the connection coming from B. So
we derive:

·̇in =
2

6 · tP
(3.19)

Rate of formation of vacuum: Additionally, the density Ã of the
connection forms vacuum. The exact rate depends on the sym-
metry. We model and analyze the rate for the unidirectional
formation of vacuum, as it may propagate orthogonal to the
surface of the cube. So we get, see Carmesin (2021c):

·̇formation =
√

8Ã ·G · Ã (3.20)

Sum of rates: We add the above three rates. So the total rate
is as follows:

·̇inside = ·̇out + ·̇in + ·̇formation (3.21)

We insert the corresponding terms and set the rate to zero:

·̇inside =
21

tP
+

2

6 · tP
+
√

8Ã ·G · Ã = 0 (3.22)
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We solve for the root in the above Eq.:

√

8Ã ·G · Ã =
2

3 · tP
(3.23)

We solve for the density:

Ã =
1

18Ã
· 1

t2P ·G (3.24)

The second fraction in the above is equal to the Planck den-
sity. So we derive the following for the critical density of
spontaneous connection formation, Ãcr.conn.:

Ãcr.conn. =
1

18Ã
· ÃP = 0.018 · ÃP (3.25)

In terms of the Planck density for a ball Ã̄P = ÃP · 3/(4Ã) (see
appendix), we get:

Ãcr.conn. =
2

27
· Ã̄P = 0.074 · Ã̄P (3.26)

Theorem 1 New vacuum can form new connections.

New connections form spontaneously at densities above the crit-
ical density Ã̃cr.conn. =

2
27.

At higher dimension, there occurs a sequence of critical densities
(Eq. 3.93, Fig. 3.9).

3.4 Dimensional phase transitions in a bi-

nary fluid

In the early universe there was a binary fluid consisting of pho-
tons and very small black holes, whereby it is possible to define
an averaged position of photons in the vicinity of a mass, see
Carmesin (2020b). For the case of a real gas, van der Waals
(1873) derived a phase transition, a condensation, by analyzing
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Ã
mj bj

Mj

aj

rj

HUF

Figure 3.4: Pair j of adjacent objects or particles in a HUF at a
density Ã of the universe.

two prototypical particles that represent the gas including the
particle - particle - interactions.

Similarly and in this section, we derive the dimensional phase
transitions that occurred in the binary fluid of the early universe
by analyzing two objects, see Fig. (3.4).

3.4.1 Quantized FLE for pairs

In this section we generalize the FLE by deriving the quantized
dynamics for the expectation value 〈ṙj〉 of the time derivative
of the radius rj of a pair of objects that is located in a HUF.
Moreover, we form the average over pairs. For it we combine
the energy term of the Gaussian gravity (see Eq. 3.5).

Applications of the HUF: Here we investigate the distance rj
and the potential of the mass mj with respect to the mass Mj.

The gravitational energy of the objects mj and Mj in the
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HUF is as follows:

EG = 2GD · Mj ·mj

(D 2 2) · rD22
j

(3.27)

With the term of the kinetic energy Ekin,j =
∑D

i=1 p
2
j,i

2mj
we get:

∑D
i=1 p

2
j,i

2mj
2GD · Mj ·mj

(D 2 2) · rD22
j

= Ej (3.28)

Accordingly, the following applies to quantum objects:

∑D
i=1 p̂

2
j,i

2mj
2 GD

D 2 2
·mj ·Mj · r̂22D

j = Êj (3.29)

We derive the expectation value 〈Êj〉 of the energy term (Eq.
3.29) and divide by mj · c2:

〈Êj〉
mj · c2

=

∑D
i=1

〈

p̂2j,i
〉

2m2
j · c2

2 GD

(D 2 2) · c2 ·
〈

Mj · r̂22D
j

〉

(3.30)

We separate the fluctuations from the expectation value by ap-
plying the identity:

〈

p̂2
〉

= 〈p̂〉2 + (∆p)2 (3.31)

So we get:

〈Êj〉
mj · c2

=

∑D
i=1 〈p̂j,i〉

2

2m2
j · c2

+

∑D
i=1(∆pj,i)

2

2m2
j · c2

2
GD ·

〈

Mj · r̂22D
j

〉

(D 2 2) · c2
(3.32)

We use the identity 〈p̂〉 /m = 〈ṙ〉. So we get:

〈Êj〉
mj · c2

=

∑D
i=1 〈ṙj,i〉

2

2 · c2 +

∑D
i=1(∆pj,i)

2

2m2
j · c2

2
GD ·

〈

Mj · r̂22D
j

〉

(D 2 2) · c2
(3.33)
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In the first summand, we add the components:
D
∑

i=1

〈ṙj,i〉2 = 〈ṙj〉2 (3.34)

We call the remaining term reduced normalized energy
ED,j:

ED,j =

∑D
i=1(∆pj,i)

2

2m2
j · c2

2 GD

(D 2 2) · c2 ·
〈

Mj · r̂22D
j

〉

(3.35)

So the following holds (Eq. 3.33):

〈Êj〉
mj · c2

=
〈ṙj〉2
2 · c2 + ED,j (3.36)

The left hand side of the above Eq. is identified with one half
of a quantized curvature parameter of a pair, kj/2:

2kj
2

=
〈Êj〉
mj · c2

=
〈ṙj〉2
2 · c2 + ED,j (3.37)

Here we apply the average over the pairs, and we denote it by
rectangular brackets:

2[kj]

2
=

[〈ṙj〉2]
2 · c2 + [ED,j] (3.38)

In order to obtain a generalized FLE, we multiply by 2c2/[〈rj〉2],
and we resolve:

[〈ṙj〉2]
[〈rj〉2]

= 22[ED,j] · c2
[〈rj〉2]

2 [kj] · c2
[〈rj〉2]

(3.39)

This DEQ is the quantized FLE for pairs in D dimensions:

Theorem 2 FLE derived from pairs of quantum objects

The FLE can be derived as an average over pairs of quantum
objects. The resulting quantized FLE for pairs in D dimensions
is as follows:

[〈ṙj〉2]
[〈rj〉2]

= 22[ED,j] · c2
[〈rj〉2]

2 [kj] · c2
[〈rj〉2]

(3.40)
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3.4.2 Quantized FLE

In this section we derive the quantized FLE. In the quantized

FLE for pairs, the fraction
[〈ṙj〉2]
[〈rj〉2] is an averaged Hubble pa-

rameter [Hj]. The Hubble parameter [Hj] describes a uniform
scaling. This is characterized by a scale factor dkt³t+dt:

dkt³t+dt =
a(t) + ȧ(t) · dt

a(t)
= 1 +H(t) · dt (3.41)

Thus, a homogeneous scale factor implies a homogeneous Hub-
ble parameter. So the uniform scaling implies that we can
replace the averaged Hubble parameter by the global Hubble
parameter:

[〈ṙj〉2]
[〈rj〉2]

=
ṙ2

r2
= H2 (3.42)

We apply this relation to the quantized averaged FLE:

ṙ2

r2
= 22[ED,j] · c2

[〈rj〉2]
2 [kj] · c2

[〈rj〉2]
(3.43)

This DEQ is the quantized FLE or extended FLE, EFLE. In
this DEQ the term with the averaged curvature parameter [kj] is
relatively small (see Collaboration (2020b), Carmesin (2020b)).
So we get:

ṙ2

r2
= 22[ED,j] · c2

[〈rj〉2]
(3.44)

Theorem 3 Quantized or extended FLE

(1) The quantized FLE in D dimensions is as follows:

ṙ2

r2
= 22[ED,j] · c2

[〈rj〉2]
2 [kj] · c2

[〈rj〉2]
(3.45)

(2) As the averaged curvature parameter [kj] is nearly zero, the
quantized FLE in D dimensions is nearly as follows:

ṙ2

r2
= 22[ED,j] · c2

[〈rj〉2]
(3.46)
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3.4.3 Condensation: Ground state

Lohse et al. (2018) and Zilberberg et al. (2018) showed exper-
imentally that quantum systems can use higher dimensional
space. Similarly as in the case of the shortcuts (Sect. 3.3),
such a possibility may give rise to a dimensional phase transi-
tion, that is driven by the attractive gravitational interaction.
Thus, such a dimensional phase transition is a condensation.
Hence the corresponding states are low energy states (Sect.
3.3). Thus, the corresponding states can be modeled by ground
states in an adequate approximation.

Correspondingly, we analyze the ground state of the mass
mj of a pair j in this section.

Uncertainty relation at dimension D: In this paragraph we de-
rive the uncertainty relation as a function of the dimension D,
see Eq. (3.53). In general, the components of the position ∆ri
and the momentum ∆pk obey the uncertainty relation:

∆ri ·∆pk g
~

2
for i = k and (3.47)

∆ri ·∆pk g 0 for i 6= k (3.48)

This can be expressed with the Kronecker symbol ·ik = 1 for
i = k and ·ik = 0 for i 6= k:

∆ri ·∆pk g
~

2
· ·ik (3.49)

We square both sides of the relation and sum both sides:

D
∑

i=1

D
∑

k=1

(∆ri)
2 · (∆pk)

2 g ~
2

4
·

D
∑

i=1

D
∑

k=1

·ik (3.50)

Here we identify:

D
∑

i=1

(∆ri)
2 = (∆r)2 and

D
∑

k=1

(∆pk)
2 = (∆p)2 (3.51)
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We apply
∑D

i=1

∑D
k=1 ·ik = D:

(∆r)2 · (∆p)2 g ~
2

4
·D (3.52)

We extract the root and show the relation (qed):

∆r ·∆p g ~

2
·
:
D (3.53)

Minimal uncertainty at the ground state: In this paragraph we
show that the uncertainty takes its minimum at the ground
state: We analyze the ground state of the energy operator ÊD,j.
So the wave function is a Gaussian function at high density
(Carmesin (2019d), Carmesin and Carmesin (2020)). Thus, the
inequality in the uncertainty relation becomes an equality:

∆p ·∆r =
~

2

:
D (3.54)

So the uncertainty takes its minimum at the ground state.

Energy as a function of spatial uncertainties: In this paragraph
we show that the energy ED,j can be expressed as a function of
spatial uncertainties (∆̂rj)

2 = r̃2j 2 〈r̃j〉2 or (∆rj)
2 = 〈(∆̂rj)

2〉.
For it we apply Eq. (3.51) to Eq. (3.35):

ED,j =
(∆pj)

2

2m2
j · c2

2 GD

(D 2 2) · c2 ·
〈

Mj · r̂22D
j

〉

(3.55)

Furthermore, we apply the uncertainty relation in Eq. (3.54).
Moreover, we use natural units and mark the corresponding
quantities with a tilde:

ED,j =
D

8m̃2
j · (∆r̃j)2

2 M̃j ·
〈

r̃22D
j

〉

(3.56)

Here we apply the identity:

〈r̃22D
j 〉 =

〈

(r̃2j )
2−D
2

〉

(3.57)
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Here we introduce the difference of r̃2j and 〈r̃j〉2:

r̃2j 2 〈r̃j〉2 = (∆̂r̃j)
2 (3.58)

The expectation value of (∆̂r̃j)
2 is the square of the standard

deviation or uncertainty:

〈(∆̂r̃j)
2〉 = (∆r̃j)

2 (3.59)

As the expectation value of (∆̂r̃j)
2 is the square of the uncer-

tainty, ∆̂r̃j is the corresponding uncertainty operator. We
apply this uncertainty operator to Eq. (3.57):

〈r̃22D
j 〉 =

〈

(

〈r̃j〉2 + (∆̂r̃j)
2
) 2−D

2

〉

(3.60)

Here we factorize 〈r̃j〉2:

〈r̃22D
j 〉 = 〈r̃j〉22D ·

〈(

1 +
(∆̂r̃j)

2

〈r̃j〉2

) 2−D
2
〉

(3.61)

This Eq. combined with Eq. (3.56) represents the energy ED,j

as a function of the uncertainty operator.

Energy as sum of classical term and quantum term: In this para-
graph we show that the energy ED,j can be expressed as a sum
of a classical term and a quantum term, in linear order in the

fraction
(∆̂r̃j)

2

〈r̃j〉2 . For it we expand Eq. (3.61) in linear order:

〈r̃22D
j 〉 = 〈r̃j〉22D ·

〈

1 +
22D

2
· (∆̂r̃j)

2

〈r̃j〉2

〉

(3.62)

Here we evaluate the expectation values:

〈r̃22D
j 〉 = 〈r̃j〉22D 2 D 2 2

2
· (∆r̃j)

2

〈r̃j〉D
(3.63)
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Figure 3.5: Variation of fluctuations (Eq. 3.65): Example:
D
8m̃2

j
= 10 and

(D22)M̃j

2〈r̃j〉D = 10. The quantum term ED,j,Q (Eq.

3.65) is presented as a function of the square of the uncertainty
(∆r̃j)

2. The minimum can be determined completely robustly.

In the figure: ∆r̃j j 1 and thus ∆p̃j j
:
D
2 .

We apply this result to Eq. (3.56). So we get:

ED,j =
D

8m̃2
j · (∆r̃j)2

2 M̃j

〈r̃j〉D22
+

(D 2 2) · (∆r̃j)
2 · M̃j

2 · 〈r̃j〉D
(3.64)

Terms containing the uncertainty ∆r̃j form the quantum term:

ED,j,Q =
D

8m̃2
j · (∆r̃j)2

+
(D 2 2) · (∆r̃j)

2 · M̃j

2 · 〈r̃j〉D
(3.65)

The rest is the classical gravity term:

ED,j,cl,G = 2 M̃j

〈r̃j〉D22
(3.66)

Hence we get:
ED,j = ED,j,Q + ED,j,cl,G (3.67)

3.4.4 Minimization of reduced energy via ∆r̃j

In this section we show that the energy, minimized with respect
to ∆r̃j, is presented by Eq. (3.71).
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The energy function ED,j,Q([∆r̃j]
2) shows a clear minimum

(Fig. 3.5). The minimum corresponds to the basic state. We
determine the minimum: (∆r̃j)

2 is called x:

ED,j,Q =
D

8m̃2
j · x

+
(D 2 2) · x · M̃j

2 · 〈r̃j〉D
(3.68)

We determine the derivative

ED,j,Q(x)
2 = 2 D

8m̃2
j · x2

+
(D 2 2) · M̃j

2 · 〈r̃j〉D
(3.69)

The minimum is at the slope zero (Fig. 3.5). Therefore we use
ED,j,Q(x)

2 = 0 in the above equation, resolve to x, use (∆r̃j)
2

for x and get:

(∆r̃j)
4 =

D · 〈r̃j〉D
4(D 2 2) · m̃2

j · M̃j

(3.70)

We use this result in ED,j,Q and get:

ED,j,Q =

√

D · (D 2 2) · M̃j

2m̃ · 〈r̃j〉D/2
(3.71)

Proposition 7 Reduced normalized energy ED,j

The energy ED,j of a pair j is as follows:

(1) The expectation value is as follows:

ED,j =

∑D
i=1(∆pj,i)

2

2m2
j · c2

2 GD

(D 2 2) · c2 ·
〈

Mj · r̂22D
j

〉

(3.72)

(2) At the ground state, ED,j is as follows:

ED,j = ED,j,Q + ED,j,cl,G (3.73)

ED,j,cl,G = 2 M̃j

〈r̃j〉D22
(3.74)
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Figure 3.6: Energy [ED,j] for an averaged black hole in the gravi-
tational field of an averaged photon. (Sect. 3.4.5): [E3,j] (solid
line), [E6,j] (dashed), [E12,j] (dashdotted), [E18,j] (dotted).

ED,j,Q =

√

D · (D 2 2) · M̃j

2m̃ · 〈r̃j〉D/2
(3.75)

3.4.5 Minimization of reduced energy via D

In this section we analyze the energy [ED,j] for the case of a
black hole mj and an averaged photon Mj and as a function of
the density.

We apply equation (3.14), and we average:

[b̃j] = (2Ã̃D)
−1
2 (3.76)

Moreover, we use equation (3.12), and we average:

[ãj] = (2Ã̃D)
−1
D+1 (3.77)

With these relations, we plot the graphs of the energy [ED,j](ÃD)
for the dimensions D = 3, D = 7, D = 12 and D = 301 (Fig.
3.6). The figure shows: At low density, the energy is minimal at



3.4. DIMENSIONAL PHASE TRANSITIONS IN A BINARY FLUID 61

5 · 10−2 0.1 0.15

24

22

0

2

·10−2

Ã̃D

[E
D
,j
]

Figure 3.7: Reduced normalized energy [ED,j]: [E3,j] (line), [E4,j]
(dotted), [E5,j] (dashdotted), [E6,j] (loosely dashed), [E7,j] (dot-
ted closely), [E8,j] (dashed). Dotted arrow marks transition
from D = 7 to D = 3 at critical density Ã̃D=3,c = 0.11569.
Dashed arrow marks transition from D = 8 to D = 7 at critical
density Ã̃D=7,c = 0.12835.
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Figure 3.8: Critical densities Ã̃D,c as a function of dimension D.
The dimensional transitions to D = 3 start at D = 7. So the
following dimensions D are established: D * {3, 7, 8, 9, ...}

.

the dimension D = 3, however, at high density, minimal energy
occurs at high dimension D >> 3.

The sequence of these transitions is evaluated for the case of
the adequate approximation r̃j j b̃j so that the quantum part
of the reduced energy takes the following form (Eq. 3.75):

ED,j,Q =

√

D · (D 2 2) · M̃j

2m̃ · 〈b̃j〉D/2
(3.78)

For this case, the reduced energies as a function of the scaled
density are shown in Fig. (3.7). That figure illustrates that
there is an energetically optimal dimension at each density. Ac-
cordingly, the critical densities Ã̃D,c can be determined at which
the dimensional transition takes place from a dimension D + s
to the dimension D. These critical densities Ã̃D,c are shown as
a function of the dimension D in Fig. (3.8).

Only dimensions D g 3 occur, as the vacuum is represented
by corresponding gravitational waves. These can exist in dimen-
sions D g 3 only, as they have one direction of propagation and
at least two transverse directions according to their quadrupo-
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lar structure or according to the fact that the elongations in
Fig (5.3) cannot become negative. For D towards infinity, the
critical densities Ã̃D,c tend to 1/2, see Fig. (3.8). However, only
D < 302 is within the actual light horizon, see below.



64 CHAPTER 3. TRANSITIONS IN THE EARLY UNIVERSE

3.5 Connections: sequence of Ã̃D,cr,conn.

In the previous section, we derived a sequence of dimensional
phase transitions for the case of the binary fluid that existed in
the early universe, see Carmesin (2020b). Additionally, we show
that these transitions do also take place in two very different
systems:

In this section (3.5), we show that the dimensional phase
transitions also take place in a relativistic system with high
density, hereby the system forms connections similar to worm-
holes, according to GRT.

In the next section (3.6), we show that the dimensional phase
transitions take place at high density in a Bose gas as well.

Altogether, these three very different systems provide strong
evidence for the fact that the dimensional phase transitions took
place at high density in the early universe.

In this section in particular, we derive the critical densities
Ã̃D,cr,conn. for the spontaneous formation of shortcuts at dimen-
sions D ranging from D = 3 to D = 301. For it we apply the
dimensional extension of the FLE, the EFLE and THM. (3).

EFLE: We apply the EFLE for the case of negligible curvature
parameter k (Eq. 3.44):

ṙ2

r2
= 22[ED,j] · c2

[〈rj〉2]
(3.79)

Hereby we identify the averages over pairs [〈rj〉2] and [ED,j] by
the corresponding ideal values of cosmology:

ṙ2

r2
= 22ED · c2

r2
(3.80)

We multiply by r2, and we apply natural units:

˙̃r2 = 22ED (3.81)
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The reduced normalized energy contains a quantum correction
that is numerically not essential here. Accordingly we use the
classical part (Eq. 3.66):

ED,j,cl,G = 2 M̃j

〈r̃j〉D22
(3.82)

Again we use the average over the pairs:

ED,cl,G = 2 M̃

r̃D22
(3.83)

Here we apply M̃ = 1
ã (Sect. 3.2.2). As an approximation, we

use ã j b̃ and b̃ = (2Ã̃D)
21/2 (Sect. 3.2.2):

ED,cl,G = 21

2
· (2Ã̃D)

D−1
2 (3.84)

We insert this Eq. into Eq. (3.81):

˙̃r2 = (2Ã̃D)
D−1
2 (3.85)

We apply the root:
˙̃r = (2Ã̃D)

D−1
4 (3.86)

We use the chain rule in order to derive the rate of isotropic
formation of vacuum:

˙̃V = D · (2Ã̃D)
D−1
4 (3.87)

We derive the corresponding rate for the unidirectional forma-
tion of vacuum. For it we divide by

:
D:

˙̃Vuni =
:
D · (2Ã̃D)

D−1
4 (3.88)

Derivation of Ã̃D,cr,conn.: The outward flow in Eq. (3.15) is ex-
pressed in terms of natural units:

˙̃·out = 21 (3.89)
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Figure 3.9: Dimension D as a function of the critical densities
Ã̃D,cr,conn..

.

Similarly, the inward flow in Eq. (3.19) is represented in terms
of natural units:

˙̃·in =
1

D
(3.90)

The rate of vacuum formation ˙̃·formation is equal to the rate for
the unidirectional formation of vacuum in Eq. (3.88) divided by
dṼ . For the present case of a cube with length LP , the volume
is dṼ = 1. So we get:

˙̃·formation =
:
D · (2Ã̃D)

D−1
4 (3.91)

At the critical density, the sum of these three rates is zero (see
Eq. 3.21):

˙̃·inside = ˙̃·out + ˙̃·in + ˙̃·formation = 21 +
1

D
+
:
D · (2Ã̃D)

D−1
4 = 0

(3.92)
We solve for the density:

Ã̃D = Ã̃D,cr,conn. =
1

2
·
(

D 2 1

D3/2

) 4
D−1

(3.93)
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Dhigh Dlow Dlow with shortcut

dimensional transition

Figure 3.10: Points (circles) and dimensional connections (dash-
dotted): Dimensional transition from Dhigh (left cube) to Dlow

(middle cube and lower linear representation). AtDlow, a short-
cut (dotted) is formed (right cube).

We present the stable dimensions D as a function of the critical
densities Ã̃D,cr,conn., at which shortcuts form spontaneously at D

(Fig. 3.9): Ã̃D,cr,conn. =
1
2 ·
(

D21
D3/2

)
4

D−1

3.6 Dimensional transitions in a Bose gas

If the dimension D of space is increased by one, see for instance
Fig. (3.9), then motions along the additional direction of space
become possible. These additional motions are described by an
additional translation symmetry. Such a change of the macro-
scopic symmetries of a physical state constitutes a phase tran-
sition, see e. g. Landau and Lifschitz (1979b). So the change
of a dimension constitutes a dimensional phase transition. We
emphasize here that physics in higher dimension has already
been observed in experiments based on photons as well as in
experiments based on electrons, see e. g. Lohse et al. (2018),
Zilberberg et al. (2018).

The phase transitions that occur at high density near ÃP
2 can

be modeled in very different systems. For instance, these phase
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Figure 3.11: Bose gas: pressure p̃D(Ã̃D) for various dimensions D:
D = 3 (solid line), D = 4 (dotted), D = 5 (dashed), D = 6
(dashdotted). D = 7 (loosely dotted), D = 8 (loosely dashed),
D = 9 (loosely dashdotted). Dimensional phase transitions
occur at the critical densities Ã̃D=3,c j 0.435, Ã̃D=4,c j 0.45,
Ã̃D=5,c j 0.465, Ã̃D=6,c j 0.48, Ã̃D=7,c j 0.487, Ã̃D=8,c j 0.493,
Ã̃D=9,c j 0.497.

transitions have been modeled in a Bose gas, see (Carmesin,
2021c, section 8.4), Sawitzki and Carmesin (2021). That model
shows that the phase transition is a condensation, whereby the
phase with the lowest pressure is taken, and so high dimensional
phases form at high density, see Fig. (3.11).

3.7 Dimensional horizon Dhorizon

In the time evolution of the universe, the density was high ini-
tially, and it decreased as a function of the time. So the dimen-
sion D was high originally near or at the Planck scale. Then
the density decreased according to the EFLE, and whenever a
critical density was reached, dimensional phase transition re-
duced the dimension of space. So D decreased until D = 3
was achieved. That process is called dimensional unfolding
or cosmic unfolding, see e. g. Carmesin (2021c), Carmesin
(2017b).
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Figure 3.12: 216 magnetic balls model local objects or observable
regions at high density and illustrate the relation between the
distance and the dimension D: If the dimension increases from
two (right) to three (left), then the largest distance decreases.
More generally and conversely, a decrease of the dimension D
implies an increase of the largest distance.

During the process of dimensional unfolding, the dimension
D decreased, and thereby the distances were enlarged, see Fig.
(3.12). At a transition from a dimensionD+s to a dimensionD,
the distances enlarge by a so-called dimensional distance en-
largement factor ZD+s³D, see e. g. (Carmesin, 2021c, 8.2.9).
The space that is enclosed in the actual light horizon achieved a
largest dimension, the so-called dimensional horizon, Dhorizon

or shortly Dhori, see e. g. (Carmesin, 2021c, 8.2.10). Thereby
the following relation holds:

ZDhori³D=3 = 2(Dhori23)/3 (3.94)

In order to determine the dimensional horizon, we use the com-
plete scale factor kDhori³t0 ranging from the dimensional hori-
zon until today, and we apply the complete enlargement factor
qDhori³t0 ranging from the dimensional horizon until today, and
we form the fraction:

ZDhori³D=3 =
qDhori³t0

kDhori³t0

(3.95)

The exact value of the dimensional horizon depends on the de-
tails of the dimensional phase transitions, and these depend on
the details of the fluid in the early universe. However, all realis-
tic cases show that the actual value of the dimensional horizon
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Figure 3.13: Dimensional distance enlargement factor ZDhori³D=3
as a function of the dimensional horizon Dhori.

is as follows, see e. g. (Carmesin, 2021c, 8.2.10):

Dhori * [301, 302] (3.96)

The dimensional distance enlargement factor is shown as a func-
tion of the dimension in Fig. (3.13).

For the case of the Bose gas, the critical density at the di-
mensional horizon is practically equal to the maximal possible
value 0.5:

Ã̃Dhori,c j 0.5 (3.97)

For the more realistic case of the binary fluid in the early
universe, the dimensional horizon is as follows, see (Carmesin,
2021c, 8.2.10):

Dhori = 301.23 (3.98)

3.8 Coexistence of phases

In general, different phases of a substance can coexist, see e.
g. Landau and Lifschitz (1979b). For instance, in the case of
water, at a lake there can be liquid water in the lake, while
some fraction of the water of the lake can swim in the form of
solid ice at the surface of the like, and simultaneously, another
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fraction of the water at the lake is present in the form of vapor
above the surface of the lake. Altogether, all phases of water
can exist simultaneously in nature.

An analogous situation can in principle and in general oc-
cur for the case of quanta of space time during cosmic unfold-
ing: When a dimension D is reached at a dimensional phase
transition, then there may remain some quanta of spacetime in
higher dimensions D + s g D. That possibility can be realized
at especially low restrictions, as the classical rate gravity waves,
RGWs, corresponding to the quanta of spacetime exhibit zero
energy in a homogeneous universe frame, HUF. We summarize
our findings:

Proposition 8 Coexistence of phases

(1) In general, different phases of an object can coexist in na-
ture.

(2) If part (1) is applied to the quanta of spacetime, then the
following holds: Then phases of the quanta of spacetime that
occur during the process of cosmic unfolding can coexist. In
particular, when a dimensional phase transition to a dimension
D takes place during the cosmic unfolding, then the quanta of
spacetime QSTD in that dimension D become stable, whereby
the quanta of spacetime of higher dimension QSTD+s can still
exist in general and possibly in metastable states:

QSTD can coexist withQSTD+s (3.99)

(3) When a dimension D is reached during cosmic unfolding,
then the QST at D + s > D are outside the D-dimensional
space.

QSTD+s are outsideD 2 dimensional2 space (3.100)
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Figure 3.14: Coexistence of phases: Water: liquid and gas can co-
exist. Quanta of spacetime: QSTD=3 and QSTD=5 can coexist,
for instance.
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3.9 Expansion and Enlargement via FLE in

D dimensions

Using the EFLE, we can derive the full time evolution of the
space included in the present-day light horizon, see for instance
Carmesin (2017b), Carmesin (2019d), Carmesin (2021c). The
result is presented in Fig. (1.1). With it the horizon problem
has been solved, see e. g. Carmesin (2018h), Schöneberg and
Carmesin (2021). The solution shown in Fig. (1.1) includes the
time evolution of the dimension.

Using that solution, the time evolution of the energy has
been derived, see e. g. Carmesin (2020b). As a result, we
find that the energy started from zero-point energies, ZPE, of
zero-point oscillations, ZPO. This corresponds to the fact that
the energy at the Planck scale is equal to EP/2, see Fig. (2.1),
corresponding to E = 1

2 ·~·ËP , whereby ËP is the Planck circular
frequency.

3.10 Transition of a ZPO

In this section we analyze possible transitions from one ZPO to
another ZPO.

Example: As an example, we consider the molecule n-butane.
It occurs in one of two conformations, trans and cis or gauche
(Figs. 3.15, 3.16 or Falvo et al. (2018), Balabin (2009), Rodrigo
and Freitas (2009)).

Hereby the conformation trans has a lower energy than the
conformation cis or gauche, see e. g. Balabin (2009).

In each of these conformations, the molecule can exhibit a
ZPO, e. g. in the form of a vibration. So there can exist a low
ZPE, ZPElow, in the conformation trans as well as a low ZPE,
ZPEhigh, in the conformation cis or gauche.

Moreover, the molecule can exhibit transitions among these



74 CHAPTER 3. TRANSITIONS IN THE EARLY UNIVERSE

Figure 3.15: n-butane, C4H10, in the trans-conformation, see Bal-
abin (2009), Rodrigo and Freitas (2009).

Figure 3.16: n-butane, C4H10, in the cis or gauche-conformation,
see Falvo et al. (2018), Balabin (2009), Rodrigo and Freitas
(2009).

conformations, see e. g. Ramirez and Laso (2001). So the
molecule can in principle exhibit a transition from the ZPO
with the low energy ZPElow to the ZPO with the high energy
ZPEhigh. That transition constitutes an excitation from a low
ZPE, ZPElow to a high ZPE, ZPEhigh.

Excitation among ZPOs: The above example shows that a tran-
sition from a ZPO with low energy ZPElow to a ZPO with a
high energy, ZPEhigh is possible in nature.



Chapter 4

Derivation of Ω³

In this chapter we derive the value of the density parameter Ω³

of the primordial photons. As outlined in the introduction,
in this chapter we determine Ω³ by using Ω¿, whereas in chapter
(12) we determine all density parameters simultaneously.

4.1 Time reference: Hubble time

The universe evolves since the Big Bang. So the present state
depends on the time t0 ranging from the Big Bang until today.
An indicator for that time is the Hubble time:

tHubble = 1/H0 (4.1)

It is an indicator for the present time t0. So we use it without
derivation. Thereby H0 is not a parameter that should be de-
termined by theory. In contrast, H0 is a parameter that defines
the time after the Big Bang. At this time all observed val-
ues xobserved(t0) have been measured, and hence corresponding
values xtheoretical(t0) should be derived.

Moreover, observed values of H0 depend on the redshift zprobe
at which the radiation of the probe was emitted.

H0 = H0(zprobe) (4.2)

Here we use that value of H0 that is observed by using probes
emitted at the redshift zCMB j 1090 of the CMB. Here we use

75



76 CHAPTER 4. DERIVATION OF Ωγ

the time reference value measured by Collaboration (2020a):

time reference = H0(zCMB) = 67.36(54)
km

s ·Mpc
(4.3)

with zCMB = 1089.92(25) (4.4)

4.2 Is heterogeneity essential for Ωr?

In this section we analyze dynamical consequences that the het-
erogeneity in the universe has upon relativistic species and the
corresponding density parameters Ω³, Ω¿ and ΩERS.

Observation: More than 95 % of the present-day photon energy
is part of the CMB, see Penzias and Wilson (1965), Bennett
et al. (2013), Collaboration (2014), Collaboration (2020a). The
CMB is very homogeneous. It is characterized by an overdensity

·(~r) :=
Ã(~r)2 Ãh

Ãh
<< 1 (4.5)

of 0.0044 %, see e. g. (Carmesin, 2021c, p. 165), Collaboration
(2020a):

·(CMB) = ·(z = 1090) = 4.4 · 1025 (4.6)

In contrast, the present-day overdensity is more than 18000
times larger, see e. g. (Carmesin, 2021c, p. 165).

Dynamic separation: These observational findings show that
the heterogeneity in the universe essentially formed after the
CMB had been emitted. Moreover, that overdensity did hardly
influence the CMB or most of the photon energy in the universe.
So the dynamics of the density of the photons is essentially sep-
arated from the dynamics of the overdensity in the universe.

Furthermore, most of the present-day neutrinos have been
emitted thermally at approximately the same time at which
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the CMB was emitted, see e. g. Tanabashi et al. (2018). Cor-
respondingly, the dynamics of the density of the neutrinos is
essentially separated from the dynamics of the overdensity in
the universe.

As the photons and the neutrinos form the radiation in the
universe described by Ωr, the dynamics of the density of the
radiation is essentially separated from the dynamics of the over-
density in the universe.

Theoretic argument for that dynamic separation: At the redshift
z j 3400, the densities of radiation and matter have been equal,
see e. g. Tanabashi et al. (2018) or Collaboration (2020a).
Hence the era of the dominance of the radiation was long before
the time of the emission of the CMB, whereas the era of large
heterogeneity started long after the time of the emission of the
CMB. Thus, these two eras are dynamically separated in a very
good approximation. We summarize our result:

Proposition 9 Separation of the dynamics of radiation
and heterogeneity

(1) The era of radiation was long before the emission of the
CMB at z = 1090.

(2) The era of large heterogeneity started long after the emission
of the CMB at z = 1090.

(3) As a consequence, the dynamics of the density of radiation
is separated from the heterogeneity in the universe in a very
good approximation.

(4) Thence the precise values of Ω³ and Ωr can be derived in-
dependently of the time evolution of the heterogeneity or over-
density in the universe.

(5) In particular, the precise values of Ω³ and Ωr can be derived
for the case of a homogeneous universe.
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(6) Hence the precise value of Ω³ and Ωr can be derived for the
case of the density parameter ΩΛ = 2/3, see (Carmesin, 2021c,
theorem 21 number (3)):

ΩΛ = 2/3 for modeling Ωr (4.7)

On the basis of this PROP., we develop a concept:

4.3 Concept of the calculation of Ω³

In this S. we develop a concept for the calculation of Ω³.
In a first subsection, we present quantities that can be de-

rived explicitly. In a second subsection, we prepare the implicit
derivation of Ω³ by using a fixed point of a corresponding test
function Ω³,test(Ω³,hypo). In a third subsection, we determine
the fixed point.

4.3.1 Explicitly determined quantities

First we derive the present-day value ÃΛ,t0 of density of the
vacuum from ΩΛ = 2/3, whereby we determine Ãcr,t0 from H0:

ÃΛ,t0 = ΩΛ · Ãcr,t0 with Ãcr,t0 =
3H2

0

8Ã ·G (4.8)

Secondly, we determine the corresponding value of that
density ÃΛ,Dhori for the case of the Big Bang or the dimensional
horizon Dhori. It is equal to the corresponding density Ã³,Dhori,
since the densities Ã³ and ÃΛ are maximal at the Planck scale,
and since that scale is achieved here (see section 4.5.1):

ÃΛ,Dhori = Ã̃³,Dhori · Ã̄P (4.9)

Thirdly, we derive the dimensional distance enlargement
factor ZDhori,D3 from these two densities, see (Carmesin, 2021c,
Eq. 8.138):

ZDhori,D3 =

(

ÃΛ,Dhori

300ÃΛ,t0

)1/4

(4.10)



4.3. CONCEPT OF THE CALCULATION OF Ωγ 79

4.3.2 Implicit determination with a function

In order to determine Ω³, we apply the following idea:

Complete determination: If we would know Ω³, then we could
determine all density parameters as follows: We know ΩK = 0,
ΩΛ = 2/3. Additionally, we know ΩERS = 0.114 · 1025 (see
section (4.3.7)) Furthermore, we know Ω¿ = 3.7802 · 1025 (see
section (4.3.6 )). Thus, we can determine ΩM as follows:

ΩM = 12 ΩΛ 2 Ω³ 2 Ω¿ 2 ΩERS 2 ΩK (4.11)

Note that we need ΩM in order to determine the light horizon
Rlh, see Eqs. (1.35) and (1.24).

Test function: In order to use that idea, we introduce a test
function Ω³,test(Ω³,hypo) that determines a test value Ω³,test

from a hypothetical value Ω³,hypo. Thereby the test functions
applies the laws of physics, and so it tests the hypothetical
value.

If the test value Ω³,test is equal to the hypothetical value
Ω³,hypo, then that value Ω³,hypo is confirmed and obeys the laws
of physics. In that case the test function has a fixed point:

Ω³,test = Ω³,test(Ω³,hypo) (4.12)

Evaluation of the test function: Firstly, we use the hypothetical
value Ω³,hypo, then all density parameters are known, and we can
derive the light horizon, see Eq. (1.35).

Secondly, based on the factor ZDhori,D3 and the light horizon
Rlh, we derive the scale factor, see (Carmesin, 2021c, Eq. 8.72)
or see Eq. (3.95):

kDhori,t0 =
R̃lh

ZDhori,D3
(4.13)
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Thirdly, we derive the value of the density of the photons
at the Big Bang by using the Planck scale, see section (4.5.1)
or see Eq. (3.97):

Ã̃³,Dhori = 1/2 (4.14)

Fourthly, we derive the present-day value Ã³,t0 of the den-
sity of the photons by using Ã³,Dhori and the scale factor, see
(Carmesin, 2021c, Eq. 8.74):

Ã̃³,t0 = Ã̃³,Dhori · k24
Dhori,t0

(4.15)

Fifthly, we derive the new value of the density parameter
Ω³,test:

Ω³,test = Ã̃³,t0/Ã̃cr,t0 (4.16)

With it we derive the new value of Ωr, see corollary (3):

Ωr = Ω³ + Ω¿ + ΩERS (4.17)

4.3.3 Fixed point of Ω³,test(Ω³,hypo)

Using the test function, we solve the fixed point equation:

Ω³,test(Ω³,hypo) = Ω³,hypo (4.18)

Its solution is a fixed point and obeys the laws of physics:

Ω³,test(Ω³,hypo) = Ω³,hypo = Ω³,fixed point (4.19)

In the following subsections we present details concerning the
above calculations.

4.3.4 Density of curvature parameter

The density parameter of the curvature is zero, see (Carmesin,
2021c, theorem 32 number (6)):

ΩK = 0 (4.20)
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4.3.5 Used result of the Planck scale

Sometimes we use the Planck units or natural units. These
are listed in table (15.3). For instance, the Planck density ÃP
is expressed in terms of the Planck mass MP and the Planck
length LP :

ÃP =
MP

L3
P

(4.21)

Moreover, we use the symmetry of a ball:

Ã̄P =
MP

L3
P · 4Ã/3 (4.22)

We mark quantities in Planck units by a tilde.

4.3.6 Used result of neutrino physics

The density of the primordially formed neutrinos is as follows,
see e. g. (Hinshaw et al., 2013, p. 12) or (Tanabashi et al.,
2018, Eq. 25.1):

Ã¿ =
7

8
·
(

4

11

)4/3

·Neff · Ã³ (4.23)

Hereby, the density Ã³ of photons is the same as the density
ÃCMB of the CMB, in a very good approximation. Moreover, the
effective number of neutrino species is as follows, see (Tanabashi
et al., 2018, Tab. 2.1):

Neff = 3.13± 0.32 or ∆obsNeff =
∆Neff

Neff
=

0.32

3.13
= 9.7%

(4.24)
That error of measurement ∆obsNeff causes an additional
error of measurement in Ω¿:

∆obs,addΩ¿ = 9.7% (4.25)

Moreover, that error of measurement ∆obsNeff describes an er-
ror in the distribution of relativistic species among Ω³ and Ω¿,
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whereby Ω³ + Ω¿ = Ωr. Thus ∆obsNeff causes an additional
error of measurement in Ω³ that is in proportion to Ω³ and Ω¿

as follows:

∆obs,addΩ³ = 9.7% · Ωr 2 Ω¿

Ωr
(4.26)

As we apply this result only for comparisons with observation,
we use the observations in Tab. (15.2):

∆obs,addΩ³ = 9.7% · 9.2652 3.874

9.265
= 5.6% (4.27)

Furthermore, we apply ÃCMB in Eq. (4.23). So we derive:

Ã¿ =
7

8
·
(

4

11

)4/3

·Neff · ÃCMB (4.28)

The present fixed point algorithm for Ω³,test(Ω³,hypo) re-
quires a value for Ã¿ or Ω¿. In chapter (12), we run this al-
gorithm for Ω³,test(Ω³,hypo) by using the value Ω¿,theo that we
derive in chapter (8). In the present chapter, we run the algo-
rithm for Ω³,test(Ω³,hypo) with a value Ω¿,lit. based on a method
suggested in the literature, see e. g. (Hinshaw et al., 2013, p.
12) or (Tanabashi et al., 2018, Eq. 25.1), whereby the value
Ω¿,lit. is determined according to Eq. (4.28). In both cases we
achieve very precise results, and in chapter (12) we additionally
prove that we can derive all cosmological constants by using the
universal constants and H0 as the only numerical input.

Accordingly, in this chapter, we determine Ω¿,lit. by using the
temperature of the CMB, see e. g. (Collaboration, 2020a, S.
3.1),

TCMB = 2.7255(±0.0006) K (4.29)

and by application of the Planck distribution, see (Carmesin,
2020b, Eq. 4.68):

ÃCMB =
8Ã5 · (kB · TCMB)

4

15(h · c)3 · c2 = ΩCMB · Ãcr,t0 (4.30)

Ω¿,lit. =
7

8
·
(

4

11

)4/3

·Neff · ΩCMB (4.31)
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Figure 4.1: Fixed point Ω³ (Eq. 4.18). The intersection with the
diagonal is the fixed point: Ω³ = 5.349 ·1025. As a consequence
we get Ωr = 9.223 · 1025, deviating from the observed value
by 0.45 % only, see Collaboration (2020a). We obtained these
values without executing any fit.

4.3.7 Used result ERS

In this S. we summarize the amount of extra radiation species,
ERS, see Overbye (2018) or Cooray (2016):

ÃERS = qERS · ÃCMB with qERS = 0.0214 (4.32)

The corresponding density parameter is very small:

ΩERS = 1.166 · 1026 (4.33)

Moreover, the extra radiation species are customarily included
in the density of neutrinos, see (Hinshaw et al., 2013, S. 4.3).
Thus the extra radiation species do not occur explicitly in our
fixed point algorithm.

4.4 Fixed point Ω³,fixed point

In this section we present the calculation of the fixed point,
we compare our theoretical results with observation, and we
critically discuss our method.
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Primordial photons: The density parameter of the primordial
photons at the fixed point is as follows:

Ω³, fixed point = 5.349 · 1025 = Ω³,theo (4.34)

4.5 Comparison with observation: Ω³

We compare this result with the observed temperature of the
CMB as follows: Before the emission of the CMB, the primor-
dial photons scatter, and so they are thermalized. For that ideal
case, we derive the corresponding temperature according to the
Planck law, see e. g. Carmesin (2020b):

Ã³ =
8Ã5 · (kB · T³)

4

15(h · c)3 · c2 (4.35)

With it we derive Ω³,obs corresponding to TCMB, see Eq. (4.35):

Ω³,obs =
Ã³,obs
Ãcr,t0

=
1

Ãcr,t0
· 8Ã

5 · (kB · TCMB)
4

15(h · c)3 · c2 = 5.335 ·1025 (4.36)

The relative difference between that observed value and the
theoretical value in Eq. (4.34) is as follows:

∆theo2obsΩ³ =
Ω³,theo 2 Ω³,obs

Ω³,obs
= ±0.26% (4.37)

The corresponding error of measurement is caused by the
error of T amounting to 0.08% (four times the error of T of
0.02%, according to T 4 in Eq. (4.36)) and the additional error
of 5.6%, see Eq. (4.27).

∆obsΩ³ = 0.08% + 5.6% = 5.68% (4.38)

So the observed differences between theory and observation are
smaller than the errors of observation. Hence our theory is in
precise accordance with observation. The same holds for Ωr:

∆theo2obsΩr =
Ωr,theo 2 Ωr,obs

Ωr,obs
= 0.45% < 3.1% = ∆obsΩr

(4.39)
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Theorem 4 Explanation of Ω³

(1) The density parameter Ω³,theo is precisely derived on the
basis of the time evolution of the light horizon ranging from the
Planck scale to the present-day light horizon and ranging from
the Big Bang until today. The result is as follows:

Ω³,theo = 5.349 · 1025 (4.40)

(2) The sum of Ω³,theo = 5.349 · 1025 and Ω¿ = 3.874 · 1025 pro-
vides Ωr = 9.223 · 1025. Both results Ω³,theo and Ωr,theo are in
precise accordance with observation, as the differences between
theory and observation are smaller than the corresponding er-
rors of measurement.

4.5.1 Time evolution of the photons Ã³

In this section we analyze the origin and time evolution of the
density of the photons Ã³.

Many photons originate from the Big Bang. The space that is
within the present-day light horizon Rlh was within the dimen-
sional horizon Dhori at that time. At that dimensional horizon,
there has been a binary fluid, consisting of photons and pri-
mordial black holes, see Carmesin (2020b). The energy of these
black holes transformed to photons via Hawking radiation later.
Here we describe the sum of both components by photons only.
This is adequate, as the law of conservation of energy holds.

These photons are described by using the Bose gas model,
see e. g. (Carmesin, 2021c, chapter 8). Their density at the
dimensional horizon was as follows:

Ã̃³,Dhori = 0.5 (4.41)

That density is reduced by redshift to its present-day value:

Ã̃³,t0 (4.42)



86 CHAPTER 4. DERIVATION OF Ωγ

The corresponding scale factor is denoted as follows:

kDhori,t0 (4.43)

So the present-day density is derived as follows:

Ã̃³,t0 = Ã̃³,Dhori · k24
Dhori,t0

(4.44)

With it we derive the density parameter:

Ω³ = Ã̃³,t0/Ã̃cr,t0 (4.45)

The above photons are scattered and thermalized before the
emission of the CMB at the redshift zCMB. These thermalized
photons constitute the CMB. So the density Ã̃³,t0 of the above
photons that originate from the dimensional horizon should be
equal to the density of the photons observed today, described
by the density Ã̃CMB. This equality is indeed confirmed:

Proposition 10 Photon - photon equality

(1) The density parameter Ω³,theo of the primordial photons
originating from the dimensional horizon is as follows:

Ω³,theo = 5.349 · 1025 (4.46)

(2) The density parameter Ω³,obs of the observed present-day
photons is equal to the difference of the density parameter
Ωr,obs = 9.265 · 1025 of all radiation species minus the density
parameter Ω¿,obs = 3.874 · 1025 of neutrinos:

Ω³,obs = Ωr,obs 2 Ω¿,obs = 5.291 · 1025 = Ω³,theo ± 1.7% (4.47)

(3) As the difference amounts to 1.7 % only, while the error of
measurement is equal to 5.68 %, the amount of the present-
day photons is equal to the amount of primordial photons,
within the errors of measurement.



Chapter 5

Quanta of Spacetime

In this chapter we summarize essential results about the quanta
of spacetime, QST, see Carmesin (2021c). Moreover, we an-
alyze the QST systematically.

5.1 On tensors in spacetime

In this section we provide useful mathematical facts about ten-
sors that are applied to spacetime.

5.1.1 Deformations

In this section we describe deformations by tensors. For it we
describe deformations of an infinitesimal cube with a constant
cross sections dAy orthogonal to the y-direction and with a
height dy, see Fig. (5.1).

Non diagonal deformation: First we describe a shift of each cross
section dAy: At each height ·y, the cross section is shifted ac-
cording to a factor ·x,y by ·x = ·x,y · ·y, see Fig. (5.1). Hereby
the factor ·x,y is an element of the deformation tensor, see e.
g. (Sommerfeld, 1978, p. 3). The volume is invariant in a non
diagonal deformation.
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dy

dAy

dV = dAy · dy ·Vy = 0 = ·V

·x

Figure 5.1: Deformation: A cube with a cross section dAy. At
each height ·y, the cross section is shifted according to a factor
·x,y by ·x = ·x,y · ·y.

Diagonal deformation or elongation: Next we describe a shift of
the cross section dAy in the direction orthogonal to dAy: At each
height ·y, the cross section is shifted according to a factor ·y,y by
·y = ·y,y · ·y, see Fig. (5.2). Hereby the factor ·y,y is a diagonal
element of the deformation tensor, see e. g. (Sommerfeld, 1978,
p. 3). In a diagonal deformation, the volume changes as follows:

·Vy = dAy · ·y (5.1)

Linear deformation: The above two deformations are linear. We
obtain a general linear deformation from the above two partic-
ular cases by allowing all coordinate directions. Thus, a general
linear deformation is described by the following tensor:

·̂i,j =
"ri
"rj

(5.2)

So the following shift of a cross section dAj is achieved:

·ri = ·̂i,j · ·rj =
"ri
"rj

· ·rj (5.3)
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dy

dAy

dV = dAy · dy

·y

·Vy = dAy · ·y

Figure 5.2: Elongation: A cube with a cross section dAy is elon-
gated by an increment ·y.

5.1.2 Linear change of the volume

Similar to Eq. (5.1), the increase of volume is as follows:

·Vj = dAj · ·rj (5.4)

We divide by the volume of the infinitesimal cube, dV = dAj ·
drj. So we derive the following relative change of volume:

·Vj

dV
=

·rj
drj

(5.5)

Thus, a linear deformation with the tensor ·̂i,j causes the
following change of the volume:

·V

dV
= Σj=D

j=1

·Vj

dV
= Σj=D

j=1

·rj
drj

= Trace(·̂ij) (5.6)

Consequently, the rate of formed volume is analogous to the
time derivative of the deformation tensor as follows:

·V

dV · ·t =
˙̂· = Trace( ˙̂·ij) (5.7)

We name the above tensor ˙̂·ij as the generalized rate tensor.
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5.2 On fields of spacetime

In this section we summarize basic properties of waves of space-
time, see (Carmesin, 2021c, chapters 1, 2, 5). In the homoge-
neous universe frame, HUF, the rate gravity scalar RGS is a
Lorentz invariant, and it describes a relation between the field
~G7 and the rate ˙̂· as follows:

RGS = ·̇2 2G72/c2 = ·̇2 2 Σj=D
j=1 G

72
j (5.8)

This equation has been derived for the particular case of three
dimensional space. That equation is obviously generalized to
the case of D dimensional space by expressing the square of
the field G72 in terms of its Cartesian components, Σj=D

j=1 G
72
j .

Hereby all components are added for all dimensions of space,
naturally.

Moreover, that scalar is zero, see (Carmesin, 2021c, THM.
7):

RGS = ·̇2 2G72/c2 = ·̇2 2 Σj=D
j=1 G

72
j = 0 (5.9)

This Eq. describes an isotropic system. More generally, the
rate ·̇ and the field G72 can represent traces of tensors, see
(Carmesin, 2021c, Eq. 5.1). An especially interesting case is an
unidirectional system, see (Carmesin, 2021c, Eq. 5.4):

·̇2j 2G72
j /c2 = 0 (5.10)

As this Eq. describes one direction only, this equation can di-
rectly be generalized to D dimensions by linear superposition.

5.3 Propagation of waves of spacetime

In this section we determine the propagation of waves in space-
time for waves with tensors in spatial dimensions D g 3.
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x2 4 6 8

y

0

2

4

6

8

t = T
2

t = 0 and t = T

t = T
4
and t = 3T

4

z

Figure 5.3: Single mode with periodic time T of a gravitational
wave propagating to the z direction: Locations in space are
indicated by small dots visually combined by dotted lines.

In three dimensional space, the tensor equation is as follows,
see Eq. (5.10) or (Carmesin, 2021c, chapter 5):

˙̂·2j 2
G72

j

c2
= 0 (5.11)

with G7
j = 2 "

"j
Ç = 2"jÇ we derive the wave Eq. (5.12)

·̇2j 2
("jÇ)

2

c2
= 0 (5.13)

The solutions of the above DEQ are called rate gravity waves,
RGW, see Carmesin (2021c).

5.4 An example: gravitational waves

Abbott (2016) discovered the gravitational wave that has been
predicted by Einstein (1916) hundred years earlier.
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5.4.1 Geometric description

A gravitational wave that propagates in a direction z elongates
the space in an orthogonal direction, for instance x, and simul-
taneously contracts the space the other orthogonal direction, it
is y in the example. That elongation and contraction take place
periodically. An illustration of that dynamics is shown in Fig.
(5.3). In order to derive an algebraic description of gravitational
waves, we analyze tensors next.

5.4.2 Elementary deformations

A deformation in a direction ∆x and by an amount ∆x is de-
scribed by a tensor as follows:

·i,j =

û

ý

1 0 0
0 0 0
0 0 0

þ

ø (5.14)

Similarly, a deformation in a direction ∆y and by an amount
∆y is described by the following tensor:

·i,j =

û

ý

0 0 0
0 1 0
0 0 0

þ

ø (5.15)

In the same manner, a deformation in a direction ∆x with
an amount proportional to ∆y is illustrated in Fig. (5.4), and
it is described by the tensor below:

·i,j =

û

ý

0 1 0
0 0 0
0 0 0

þ

ø (5.16)

We summarize and generalize these examples in the following
definition:
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y
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2
4
6
8

Figure 5.4: Single mode with periodic time T of a gravitational
wave propagating to the z direction: Locations in space are
indicated by small dots visually combined by dotted lines.

Definition 6 Elementary deformations

(1) A deformation in a direction ∆ri with an amount propor-
tional to ∆rj (see Fig. 5.4), is described by the tensor with a 1
in row i and column j and with zeros at all other indices of the
tensor:

·i,j = ·i,j (5.17)

(2) These deformations cannot be expressed as a linear combi-
nation of tensors with more zeros. Correspondingly, these de-
formations are elementary deformations.

(3) As the definition of elementary deformations does not con-
tain a restriction of the dimension D, elementary deformations
are defined in each dimension D g 1.

(4) A normalized elementary deformation is an elemen-
tary deformation, the tensor of which has nonzero elements with
value 1 only.

(5) A normalized elementary deformation parallel to the direc-
tion of propagation is a longitudinal polarization, and we mark
it by an index LONG.
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5.4.3 Linear combinations of deformations

Elementary deformations are described by tensors. Tensors can
be combined linearly. As a consequence, a linear combination
of tensors of elementary deformations describes a linear com-
bination of deformations. We summarize and generalize that
description in the following definition:

Definition 7 Combined deformation

If two deformations A and B are described by two tensors ·A,i,j
and ·B,i,j in a dimension D, then a linear combination of these
tensors describes a combined deformation ·C,i,j:

a · ·A,i,j + b · ·B,i,j = ·C,i,j (5.18)

The gravitational wave in Fig. (5.3) is constituted by a de-
formation described by the tensor ·x,x and by a deformation
described by the tensor 2·y,y, whereby the elongations and con-
tractions take place locally only. So that gravitational wave is
characterized by the following combination of two elementary
deformations:

·i,j =

û

ý

1 0 0
0 21 0
0 0 0

þ

ø (5.19)

If a gravitational wave propagates in the z direction, then
there are two orthogonal dimensions. Accordingly, there are
two modes: The mode illustrated in Fig. (5.3) and the mode
illustrated in Fig. (5.5). That mode can be obtained from the
first mode by a rotation around the z-direction by 45ç. That
mode is described by the tensor in Eq. (5.20).

·i,j =

û

ý

0 1 0
21 0 0
0 0 0

þ

ø (5.20)
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Figure 5.5: Single mode with periodic time T of a gravitational
wave propagating to the z direction: Locations in space are
indicated by small dots visually combined by dotted lines.

5.4.4 Elementary zero-trace deformations

In this section we characterize the elementary zero-trace de-
formations. For instance, each gravitational wave is consti-
tuted by an elementary anti symmetric zero-trace deformation,
see e. g. Eqs. (5.19) or (5.20).

Definition 8 Elementary zero-trace anti symmetric de-
formations

(1) A elementary zero-trace anti symmetric deformation
is characterized by a tensor with the following conditions:

(1a) The tensor is anti symmetric.

(1b) The trace of the tensor is zero.

(1c) The tensor has as many zero tensor elements as possible.

(2) A normalized elementary zero-trace anti symmetric
deformation is an elementary zero-trace anti symmetric defor-
mation, the tensor of which has nonzero elements with absolute
value 1 only.

Proposition 11 Normalized elementary zero-trace anti
symmetric deformations

(1) The tensor of a normalized elementary zero-trace anti sym-
metric deformation has two nonzero elements 1 and 21.
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(1a) Either these two elements are in the diagonal, see e. g.
Eq. (5.19): ·i,i = 1 and ·j,j = 21

(1b) Or these two elements are not in the diagonal, see e. g.
Eq. (5.20). ·i,j = 1 and ·j,i = 21

(2) The definition is applicable to each spatial dimension D g 2.

5.4.5 Unidirectional gravitational waves

In this section we analyze the polarization modes of unidirec-
tional gravitational waves in D dimensions. An unidirectional
quadrupole is characterized by a single direction vector ~s, see
e. g. (Carmesin, 2021c, Eq. 2.19). In D dimensions, a gravita-
tional wave has one wave vector ~k representing the direction of
propagation plus D21 linear independent orthogonal direction
vectors representing D2 1 polarization modes: We summarize:

Proposition 12 Unidirectional gravitational waves

In a space with D dimensions, an unidirectional gravitational
wave has D 2 1 polarization modes.



Chapter 6

Time Evolution of Dark Energy

In this chapter we model the dark energy. So we model the
QST that form space1.

6.1 Polarization modes of these QST

We analyze the modes of polarization of these QST of dark
energy. Each quantum of dark energy should be indivisible, as
there is no combination of states observed in the dark energy or
in space. So each quantum of dark energy should be represented
by a quantized gravitational wave. As shown in chapters
(3) and (5), it is basically formed during cosmic unfolding.

Moreover, space basically exhibits directions without any
more complicated geometric structure. Correspondingly, the
quantized gravitational waves of space are represented by uni-
directional gravitational waves, see proposition (12).

In addition, the modes exhibit unidirectional quadrupolar
symmetry, see (Carmesin, 2021c, chapter 2). So each mode is
represented by one wave vector ~k of propagation and by one out
of D 2 1 direction vectors in the plane orthogonal to ~k. Thus,
the number N of polarization modes is equal to D 2 1:

NQST,dark energy = D 2 1 (6.1)
1I developed such models e. g. in Carmesin (2018g), Carmesin (2018f), Carmesin

(2019d), Carmesin (2019c), Carmesin (2019f), Carmesin (2021c), Carmesin (2021a).
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6.2 Time evolution of these QST

In this S. we derive the energy of a QST of dark energy, and
therefrom we derive the volume and the density of dark energy.

Energy: The energy of these QST is derived from the energy
at the dimensional horizon:

EDhori
j 1

2
· EP (6.2)

During cosmic unfolding, this energy decreases according to the
redshift by the dimensional distance enlargement factor:

ZDhori³3 = 2(Dhori23)/3 (6.3)

With Dhori = 301.35 we derive:

ZDhori³3 = 8.66 · 1029 (6.4)

During cosmic unfolding, the number of polarization modes de-
creases from N = 30121 to N = 321. So the energy decreases
according to the vanishing polarization modes by the additional
factor 300/2. So we derive:

EΛ(D = 3) = EDhori
· 1

ZDhori³3 · 150
(6.5)

We insert EDhori
= 1/2 and use Eq. (6.4). So we derive the

energy of a present-day QST of dark energy:

EΛ(D = 3) = 1.5 · 10223 J = 5.4 · 1025 eV (6.6)

Volume: At the dimensional horizon, the three dimensional vol-
ume of a QST is characterized by the radius LP . During cosmic
unfolding, the wavelength of the QST increases by the factor
ZDhori³3. Thus, the volume at three dimensions is as follows:

V (D = 3) = VD=3 · (LP · ZDhori³3)
3 with VD=3 =

4Ã

3
(6.7)
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Density: Hence the energy density of a QST is the ratio of the
above energy and volume:

EΛ

V
=

EΛ(D = 3)

V (D = 3)
=

EDhori

VD=3 · 150 · L3
P · Z4

Dhori³3

(6.8)

The corresponding density is as follows:

ÃΛ,theo =
EΛ

V · c2 j EP/2

VD=3150c2L3
PZ

4
Dhori³3

= 7.29 · 10227 kg

m3

(6.9)
For comparison, the observed density of dark energy is as fol-
lows, see table (15.2):

ÃΛ,obs = 8.66 · 10227 kg

m3
· 0.6847 = 5.93 · 10227 kg

m3
(6.10)

6.3 Comparison with observation: ÃΛ

The relative difference is:

∆theo2obsÃΛ =
ÃΛ,theo 2 ÃΛ,obs

ÃΛ,obs
= ±23% (6.11)

Discussion: This result is already quite precise, as the density
varies by a factor of 10122 during cosmic unfolding.

Furthermore, we used one energy or one wavelength only.
That is, we applied a monochromatic analysis. But the dimen-
sional horizon varies slightly as a function of time. Thus, the
energy and the corresponding wavelength vary as a function of
time as well. Hence a polychromatic vacuum occurs.

Indeed, the difference between theory and observation is be-
low one percent, when we consider the full polychromatic vac-
uum, see below.

Theorem 5 Present-day formation of dark energy

The dark energy that forms at the present-day t0 has the follow-
ing properties:
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(1) The energy of a quantum of spacetime of that dark energy
depends on the present-day dimensional horizon Dhori(t0) as fol-
lows:

EΛ(D = 3, t0) =
2 · EDhori(t0)

ZDhori(t0)³3 · (Dhori(t0)2 1)
(6.12)

with ZDhori(t0)³3 = 2(Dhori(t0)23)/3 (6.13)

(2) The density of that dark energy that forms today depends
on the present-day dimensional horizon Dhori(t0) as follows:

ÃΛ(tform = t0) =
2EDhori(t0)

VD=3 · (Dhori(t0)2 1) · c2 · L3
P · Z4

Dhori(t0)³3

(6.14)

(3) The corresponding values are as follows:

EΛ(D = 3, t0) = 1.5 · 10223 J = 5.4 · 1025 eV (6.15)

and ÃΛ(tform = t0) = 7.29 · 10227 kg

m3
(6.16)

(4) The quanta of the dark energy travel at the velocity of light,
as there is no physical space at rest in any frame, see e. g.
Michelson and Morley (1887) or Einstein (1905).

(5) At the present time t0, the same dark energy forms in the
whole universe, according to translation invariance of space.



Chapter 7

Excitation of the Vacuum

In this C. we analyze vacuum and its spectrum of excitation.

7.1 Components of the present-day vacuum

In this S. we summarize the QST forming present-day vacuum.
The main component of present-day vacuum is the stable

phase, the three dimensional vacuum, see chapter 6. Addi-
tionally, there are coexisting phases, see proposition (8). These
coexisting phases are the earlier phases that can in principle co-
exist with the 3D vacuum, since there can always remain QST
from earlier times.

Corresponding energies: The corresponding zero-point energies
ZPEΛ,D are derived as follows: The energy of these QST is
derived from the energy at the dimensional horizon:

EDhori
j 1

2
· EP (7.1)

During cosmic unfolding, this energy decreases according to the
redshift by the dimensional distance enlargement factor:

ZDhori³D = 2(Dhori2D)/D (7.2)

During cosmic unfolding, the number of polarization modes de-
creases from N = 30121 to N = D21. So the energy decreases
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Figure 7.1: Zero-point energy ZPEΛ,D of the dark energy as a
function of the dimension of the space D, see proposition (13).

according to the vanishing polarization modes by the additional
factor 300/(D 2 1). So we derive:

ZPEΛ,D = EDhori
· D 2 1

ZDhori³D · 300 (7.3)

These zero-point energies ZPEΛ,D are shown as a function of
the dimension of space D in Fig. (7.1). We summarize:

Proposition 13 Present-day vacuum

The present-day vacuum consists of the following gravitational
wave QST:

(1) The main component is constituted by the stable three di-
mensional gravitational waves, based on two modes of polariza-
tion, ZPOgw,D=3 or ZPOΛ,D=3.

(2) The coexisting component is constituted by the unstable or
metastable gravitational waves at dimensions D g 4, each based
on D 2 1 modes of polarization, ZPOΛ,Dg4.
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Figure 7.2: Excitation of a QST ZPEΛ,D=3 of the present-day 3D

vacuum by a transition ÛD=3³D=4 to a QST ZPEΛ,D=4. That

transition ÛD=3³D=4 is a cosmic folding.

(3) The coexisting component at D = 4 is especially unstable,
see Fig. (3.7).

(4) The corresponding zero-point energies ZPEΛ,D are as fol-
lows, see e. g. Fig. (7.2):

ZPEΛ,D = EDhori
· D 2 1

ZDhori³D · 300 (7.4)

7.2 Basic solution of the hierarchy problem

The zero-point oscillations ZPOΛ,Dg3 of the dark energy repre-
sent the components of the present-day vacuum. The excitation
modes of that present-day vacuum basically represent the ele-
mentary particles, see Tanabashi et al. (2018).

In our theory, the zero-point oscillations ZPOΛ,Dg3 have
very different energies ZPEΛ,Dg3 ranging from the zero-point
energy of the three dimensional vacuum to the Planck energy
(see proposition 13 and Fig. 7.1). So within our theory, the
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Figure 7.3: Excitation of a QST ZPEΛ,D=3 of the present-day 3D

vacuum by a transition ÛD=3³D=5 to a QST ZPEΛ,D=5. That

transition ÛD=3³D=5 is a cosmic folding.

elementary particles have very different energies ranging from
the zero-point energy of the three dimensional vacuum to the
Planck energy. Hence our theory basically solves the hierarchy
problem. We summarize that result:

Theorem 6 Basic solution of the hierarchy problem

(1) In the process of cosmic unfolding, the components of the
vacuum form, namely the zero-point oscillations ZPOΛ,Dhori≥D≥3

ranging from the dimensional horizon Dhori to the present-day
dimension D = 3, see e. g. Fig. (7.2).

(2) In the process of cosmic unfolding, the corresponding zero-
point energies ZPEΛ,Dhori≥D≥3

range from the Planck scale to
the energy of a QST of the present-day dark energy:

ZPEΛ,D = EDhori
· D 2 1

ZDhori³D · 300 (7.5)

with EDhori
j EP

2
(7.6)
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(3) The energy of an elementary particle basically is the energy
of an excitation (or combined excitation) of a QST of the vac-
uum, see e. g. Tanabashi et al. (2018). The excitation modes
of the vacuum are as follows:

(3a) An excitation of a QST of the vacuum can be a transi-
tion, that is a cosmic folding (or an inverse cosmic unfolding)
with a transition operator ÛD³D+s, from a zero-point oscilla-
tion ZPOΛ,D to another zero-point oscillation ZPOΛ,D+s, see
section (3.10) and see e. g. Figs. (7.2) and (7.3):

ZPOΛ,D+s = ÛD³D+s · ZPOΛ,D (7.7)

(3b) An excitation of a QST can be a transition Ûq1³q2 from one
zero-point oscillation ZPOq1,D with a polarization q1 to another
zero-point oscillation ZPOq2,D with a polarization q2, see section
(3.10) and see e. g. Fig. (7.4). Thus, the energy is as follows:

ZPEq2,D = E(Ûq1³q2 · ZPOq1,D) (7.8)

(3c) An excitation can correspond to a ladder operator (a+» ).
That excitation transforms a zero-point oscillation ZPOq,D with
eigenvalue n = 0 of the number operator to a quantum of space-
time QSTq,D,n=1 with the eigenvalue n = 1 of the number op-
erator, see (Carmesin, 2021c, theorem 19) and see Fig. (7.5).
Correspondingly, the energy is as follows:

Eq,D,n=1 = ZPEq,D · (2n+ 1) = ZPEq,D · 3 (7.9)

In general, (a+» ) transforms a quantum of spacetime QSTq,D,n

with eigenvalue n of the number operator to a quantum of space-
time QSTq,D,n+1 with the eigenvalue n + 1 of the number oper-
ator. Thereby the energy is as follows:

Eq,D,n = ZPEq,D · (2n+ 1) (7.10)

(3d) Additionally, two or more quanta of spacetime QSTq,D,n

can react and set free an energy of interaction Eint (including a
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ZPEΛ,D=3: 3D vacuum
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Figure 7.4: Excitation of a QST ZPEΛ,D=3 of the present-day

3D vacuum by a transition ÛΛ³LONG. to a QST ZPELONG.,D=3.

That transition ÛΛ³LONG. is a change of polarization.

possible binding energy):

Σj=jmax

j=1 QSTqj ,D,nj
= QSTq,D,combined + Eint (7.11)

That energy of interaction can contribute to the energy of an
elementary particle. Examples for energies of interacting ele-
mentary particles can be found in Tanabashi et al. (2018).

(3e) Especially interesting are the most simple combinations
that can establish a three dimensional object: Three longitudinal
QST can exhibit superposition, so they can extend in three lin-
ear independent directions, and thus they can bind to an object.
We mark such QST by an index LONG.

(4) As a cosmic folding ÛD³D+s can correspond to a relatively
huge excitation energy (see proposition 13 and Fig. 7.1), the
range of energies of the process of cosmic unfolding is basically
equal to the range of energies of the elementary particles corre-
sponding to the hierarchy problem.
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ZPEΛ,D=3: 3D vacuum

ZPELONG.,D=3

ELONG.,n=1,D=3

ELONG.,n=2,D=3
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Figure 7.5: Excitation of a ZPO with ZPELONG.,D=3 by the ladder
operator â+» to the QST with ELONG.,n=1,D=3. Further excitation
of that QST with ELONG.,n=1,D=3 by the same ladder operator
â+» to the QST with ELONG.,n=2,D=3. The ladder operator causes
an increase of the eigenvalue En of the energy by the summand
~ · Ë.

7.3 Spectrum of excitation of the vacuum

The spectrum of excitation modes of the vacuum is described
shortly in theorem (6). In this part we present a detailed anal-
ysis of that spectrum of excitation modes that can arise from
the present-day vacuum.

7.3.1 Cosmic folding of ZPOs

The present-day D = 3 vacuum is presented by QST of grav-
itational waves, ZPOΛ,D=3. These QST formed by transitions
UD³D=3 from a zero-point oscillation ZPOΛ,D to a zero-point
oscillation ZPOΛ,D=3 during the process of cosmic unfolding:

ZPOΛ,D=3 = ÛD³D=3 · ZPOΛ,D (7.12)

That transitions UD³D=3 can be inverted:

ZPOΛ,D = ÛD=3³D · ZPOΛ,D=3 (7.13)
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That cosmic folding increases the energy of the zero-point os-
cillation ZPOΛ,D=3, see Eq. 7.5,

ZPEΛ,D=3 = EDhori
· 2

ZDhori³D=3 · 300
(7.14)

to:

ZPEΛ,D = EDhori
· D 2 1

ZDhori³D · 300 (7.15)

Hence that cosmic folding is an excitation in the form of a tran-
sition from one ZPO to another ZPO see section (3.10). We
summarize our result:

Proposition 14 Cosmic folding of a ZPO

(1) At each dimension D g 3, there can occur a transition
from one ZPO to another ZPO in the form of a cosmic folding
UD³D+s:

ZPOΛ,D+s = ÛD³D+s · ZPOΛ,D (7.16)

(2) In particular, a zero-point oscillation ZPOΛ,D=3 of the three
dimensional vacuum can be excited by a cosmic folding to a zero-
point oscillation ZPOΛ,D of the D > 3 dimensional vacuum:

ZPOΛ,D = ÛD=3³D · ZPOΛ,D=3 (7.17)

(3) In nature, such a zero-point oscillation ZPOΛ,D can coexist
with the zero-point oscillations ZPOΛ,D=3 of the three dimen-
sional vacuum, see proposition (8).

7.3.2 On composed excitations

If an excitation of an object is composed of several single excita-
tion modes with different excitation energies, then those excita-
tion modes with a relatively large excitation energy take place
in a relatively small time, usually, according to the Heisenberg
uncertainty principle and according to Fermi’s golden rule.
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In the cases analyzed here, the transitions of dimensions have
relatively high excitation energy. Accordingly, the ZPOs of var-
ious dimensions form relatively rapid.

Similarly, the transitions of polarization modes have rela-
tively medium excitation energy. Accordingly, the ZPOs of var-
ious polarization modes form in a medium time interval.

Both ZPOs, those of dimension and those of polarization,
determine the kind of the object, its state of dimensional folding
and its polarization.

Finally, the excitation modes corresponding to ladder op-
erators typically exhibit relatively low excitation energy, and
correspondingly their formation requires a relatively long time
interval. These modes do not change the kind of the object, but
the energy En = ~Ë(n+1/2) of the object. Of course, this may
change the wave function and related properties of the object.

7.3.3 Transitions of ZPOs

The present-day vacuum is presented by QST of gravitational
waves, ZPOgw,Dg3. Their modes of polarization are presented
by tensors ·q, see section (5.4.5). Moreover, these QST of grav-
itational waves represent ZPOs, see chapter (6).

In general, there can occur QST with other polarization, see
chapter (5). Moreover, transitions from one ZPO to another
ZPO can take place in nature, see section (3.10). So in each
dimension D g 3, there can happen transitions from a QST of
gravitational waves already present in the vacuum, see propo-
sition 13, to a QST with another mode of polarization. Since
the QST of gravitational waves have a relatively low energy in
each dimension, as a result of the process of cosmic unfolding,
such a transitions is an excitation, typically. We summarize our
result:
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Proposition 15 Transitions among ZPOs at D g 3

At each dimension D g 3, there can occur a transition Uq1³q2

from a QST with one mode of polarization, ZPOq1,D to a QST
with another mode of polarization, ZPOq2,D:

ZPOq2,D = Ûq1³q2 · ZPOq1,D (7.18)

7.3.4 Excitation by ladder operators

In this section we summarize the excitation modes of a ZPO of
a QST that can be generated by a ladder operator â+» .

In general, a QST ZPOq,»,D has its specific circular frequency
Ë», see (Carmesin, 2021c, theorem 19) as well as a mode q of
polarization. A respective ZPO corresponds to the eigenvalue
n = 0 of the number operator, see (Carmesin, 2021c, theorem
19). Its energy is the ZPE with:

ZPEq,»,D =
1

2
· ~Ë» (7.19)

An excitation by a ladder operator increases the energy of a
QST by ∆E» = ~Ë». Thus, such a QST (â+» )

n ·ZPOq,»,D has an
eigenvalue n of the number operator and the following energy:

Eq,»,D(n) =

(

n+
1

2

)

· ~Ë» (7.20)

7.3.5 Combined excitation

In this section we combine the above processes of excitation:

Proposition 16 Excitation of a ZPOq,D

(1) At each dimension D g 3, a ZPOq,D with a polarization q

can be excited by a cosmic folding, UD³D+s, by transition Uq³q2

and by ladder operators â+» , so that the following state occurs:

(â+» )
n · Ûq³q2 · ÛD³D+s · ZPOq,D (7.21)
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(2) In particular, in the present-day vacuum, a zero-point os-
cillation ZPOΛ,D=3 of the three dimensional vacuum can be ex-
cited by a cosmic folding, UD=3³D, by transition UΛ³q2 and by
a ladder operator â+» , so that the following state occurs:

(â+» )
n · ÛΛ³q2 · ÛD=3³D · ZPOΛ,D=3 (7.22)

7.4 Formation of mass

In this section we analyze conditions for the formation of a
nonzero rest mass or own mass mown.

Necessary energy: Naturally, there must be energy that can
transform into a mass mown.

Velocity below c: According to SRT (e. g. Moore (2013)), an
object with an energy E and a velocity v has the following rest
mass or own mass:

mown =
E

c2
·
√

12 v2

c2
(7.23)

Thus, an object propagating at the velocity of light c has zero
own mass mown. Hence an object must propagate at a velocity
smaller c in order to form a nonzero own mass mown.

Velocity at and below c: If an object should transform from
energy with zero own mass mown = 0 to nonzero own mass
mown > 0, then it must be able to exhibit the velocity c and
a velocity v < c. Next we show that the quanta of spacetime
have this property.

Velocity of propagation of QST: The dynamics of a quantum of
spacetime, QST, is characterized by the rate gravity scalar, see
(Carmesin, 2021c, theorem 7):

RGS = ·̇2 2 G72

c2
= 0 with ·̇ =

·V

dV · ·t (7.24)
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Hereby the gravitational field is expressed by the potential:

RGS = ·̇2 2
ΣD

j ("xj
Φ)2

c2
= 0 with G7

j = 2"xj
Φ (7.25)

In the especially simple case of unidirectional propagation, the
DEQ is as follows:

0 = ·̇2 2 ("xΦ)
2

c2
(7.26)

A typical solution is a plane wave:

· = ·̂ · exp(iË · t2 i · k · x) (7.27)

Φ = Φ̂ · exp(iË · t2 i · k · x) (7.28)

So the DEQ of the QST exhibits a velocity of propagation vprop
corresponding to its wavelength » and periodic time T or ac-
cording to its circular frequency Ë and its wave number k as
follows, see (Carmesin, 2021c, Eq. 5.16):

vprop =
»

T
=

Ë

k
=

Φ̂

·̂

1

c
(7.29)

Hereby, the amplitude of the potential Φ̂ has the dimension of
a square of a velocity, and its absolute value determines the ve-
locity of propagation vprop. Thereby the potential Φ̂ can change
at each transition or excitation or combination with other QST.
In this manner the velocity of propagation vprop of the QST can
change from v = c to v < c, and so the formation of mass can
be described by the above DEQ and their solutions.

Proposition 17 Formation of mass by QST

(1) The dynamics of the QST is characterized by the DEQ, a
wave Eq.:

RGS = ·̇2 2
ΣD

j ("xj
Φ)2

c2
= 0 with G7

j = 2"xj
Φ (7.30)
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(2) The above DEQ provides solutions with various velocities,
including vprop = c and vprop < c.

(3) The solutions of the above DEQ with vprop < c represent
objects with a nonzero rest mass or own mass as follows:

mown =
E

c2
·
√

12 v2

c2
(7.31)

7.5 Superposition of QST

Two QST with the same velocity ~vprop that is smaller than
the velocity of light c travel together. Moreover, they inter-
act via gravity, and so they exhibit a nonzero binding energy
Ebinding 6= 0. Hence they are bound without forming a black
hole. In particular, their mass can be smaller than the Planck
mass. Of course, two or more QST with the same velocity
~vprop < c can propagate together, exhibit a nonzero binding en-
ergy and thus constitute an object. Hereby, each of these QST
usually is an excitation of the vacuum, and so the superposition
is an excitation of the vacuum.

Proposition 18 Binding of QST

Two or more QST with a nonzero own mass (see proposition 17)
can combine by linear superposition. Thereby they can exhibit
a binding energy, and hereby they can form a new object.

7.6 Formation of objects in D g 3 dimensions

An object can extend in D g 3 dimensions by various mecha-
nisms. Two of these mechanisms are as follows:

(1) The object exhibits a polarization that extends in D2 1
dimensions orthogonal to the direction of propagation. So an
extension in D directions is achieved.
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For instance, a gravitational wave in D dimensions exhibits
one direction of propagation plus a D 2 1 dimensional polar-
ization orthogonal to the propagation (see Figs. 5.3 or 5.5 and
Eqs. 5.20 or 5.19). This is an example for case (1).

(2) The object is a linear superposition of D longitudinal
QST and with different elementary modes of polarization, so
that these modes extend in D g 3 dimensions altogether, see
definition (6). When these QST combine, then they take a
common velocity ~vprop < c, whereby a longitudinal oscillation
remains simultaneously (see section 7.5). Hereby, each of these
QST usually is an excitation of the vacuum, and so the object is
an excitation of the vacuum. Such a formed object is especially
simple, as it is based on elementary modes of polarization, and
such objects with minimal energy are analyzed below.

Proposition 19 QST extending in D dimensions

QST can extend in D g 3 dimensions by one of the following
mechanisms:

(1) A QST can extend in D g 3 dimensions by extending into
the direction of propagation via its propagation and by extending
into the orthogonal directions via a D21 dimensional polariza-
tion.

(2) A QST can extend in D g 3 dimensions by binding suffi-
ciently many QST with lower dimension, see proposition (18).

7.7 Formation of a fermion at D = 3

A fermion in D = 3 dimensions can form as a superposition
of D longitudinal QST with the same velocity ~vprop < c (see
sections 7.5 and 7.6) and with different elementary modes of
polarization, so that these modes extend in D = 3 dimensions
altogether.

These D quanta can in principle rotate and form the same
state, distinguished by a phase of the rotation only. These
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Figure 7.6: As the two quanta at the left have the same wave-
length, they can easily form a Bose condensate and loose a di-
mension thereby, see at the right. Quanta with different wave-
length or energy En cannot form a Bose condensate, and so an
object formed by two quanta with different energy extends in
two dimensional directions in a more stable manner.

quanta must be different, according to the Pauli exclusion prin-
ciple, see e. g. Ballentine (1998). Thus, these D quanta must
have different eigenvalues n of the number operator. Hereby,
each of these QST usually is an excitation of the vacuum, and
so the fermion is an excitation of the vacuum.

Proposition 20 QST forming a fermion

QST can form a fermion in D = 3 dimensions by the following
mechanism:

(1) The QST can extend in D = 3 dimensions by binding suffi-
ciently many QST with lower dimension, see proposition (18).

(2) Thereby the QST that bind should have different eigenvalues
n of the number operator, according to the Pauli principle.

(3) Hereby the QST that bind can be excitation modes of the
vacuum, see proposition (7.3.5).

7.8 Formation of a boson at D = 3

A boson in D = 3 dimensions can form as a superposition of D
QST with the same velocity ~vprop < c (see sections 7.5 and 7.6)
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and with different elementary modes of polarization, so that
these modes extend in D = 3 dimensions altogether.

These D quanta can in principle form a Bose condensate,
see e. g. Klaers et al. (2010). In order to have a stable object
extending in three dimensions, a Bose condensate should be
avoided. This can be achieved by different QST. Accordingly,
these D longitudinal QST should have different eigenvalues n

of the number operator. Hereby, each of these QST usually is
an excitation of the vacuum, and so the boson is an excitation
of the vacuum.

Proposition 21 QST forming a relatively stable boson

QST can form a relatively stable boson in D = 3 dimensions by
the following mechanism:

(1) The QST can extend in D = 3 dimensions by binding suffi-
ciently many QST with lower dimension, see proposition (18).

(2) Thereby the QST that bind should have different eigenvalues
n of the number operator, so that a destabilization of the boson
by a Bose condensation is avoided.

(3) Hereby the QST that bind can be excitation modes of the
vacuum, see proposition (7.3.5).



Chapter 8

Formation of Neutrinos and Ω¿

In this section we analyze the formation of neutrinos by the
excitation of the vacuum with the following properties:

(1) The excitation modes are simple longitudinal modes.

(2) The excitation modes extend in three dimensions by com-
bining three modes.

(3) The excitation modes possibly include an operator ÛD=3³D.

(4) Otherwise the excitation modes are at minimal energy.

8.1 Derivation of neutrinos from QST

In this part we construct the formation of neutrinos by QST
that are obtained as excitation modes of the vacuum with min-
imal possible energy or mass.

8.1.1 Dimension of QST of neutrinos

First we determine the operator ÛD=3³D. For it we apply the
basic solution of the hierarchy problem, see theorem (6) and
Fig. (7.1).

Typical masses of neutrinos are m1 = 0.0086 eV
c2 = 1.5 ·

10238 kg and m3 = 0.0506 eV
c2 = 9 · 10238 kg, see (Tanabashi

et al., 2018, Eq. 14.13). The corresponding energies are E1 =
0.0086 eV = 1.4 · 10221 J and E3 = 0.0506eV = 8.1 · 10221 J.

117



118 CHAPTER 8. FORMATION OF NEUTRINOS AND Ων

These correspond to the dimension three of the energies of the
ZPO of the vacuum, see theorem (6) and Fig. (7.1). Thus, the
basic zero-point energy is as follows, see Eq. (7.15):

ZPEΛ,D=3 = EDhori
· 32 1

ZDhori³D · 300 =
EP

2
· 2

2(30123)/3 · 300 (8.1)

or ZPEΛ,D=3 = 8.1651 · 10224 J = 5.0968 · 1025 eV (8.2)

Hereby we applied the following dimensional horizon:

Dhori = 301 (8.3)

8.1.2 Polarization of the QST of neutrinos

The neutrinos are formed by three quanta of spacetime, QST,
each with 1D-polarization, see proposition (20). So the factor
321
300 that reduced the ZPEΛ,D=3, see Eq. (8.1), is eliminated:

ZPE¿,D=3 = ZPEΛ,D=3·
300

32 1
= 1.2248·10221 J = 0.0076452 eV

(8.4)

8.1.3 Eigenvalues n of the number operator

In the present-day three dimensional space, the zero-point en-
ergy of the three dimensional space can exist. So the lowest
possible eigenvalue is zero, n = 0. The corresponding energy of
the QST is the above ZPE:

E¿,D=3,n=0 = ZPE¿,D=3 = 1.2248 · 10221 J (8.5)

Hence the other two lowest possible eigenvalues are one and
two, n = 1 and n = 2. The corresponding energies of the QST
are as follows:

E¿,D=3,n = ZPE¿,D=3 · (2n+ 1) in particular, (8.6)

E¿,D=3,n=1 = ZPE¿,D=3 · 3 = 3.6743 · 10221 J = 0.022936 eV
(8.7)

E¿,D=3,n=2 = ZPE¿,D=3 · 5 = 6.1238 · 10221 J = 0.038226 eV
(8.8)
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8.2 Derivation of Ω¿

In this section we derive the density parameter of the neutrinos,
Ω¿. As we do not model the mixing here, we choose a very
simple mixing: In principle, the eigenvalues n = 0, n = 1 and
n = 2 can mix in various proportions. In principle, these can be
in such a manner that one neutrino consists mostly of QST with
n = 0, another neutrino consists mainly of QST with n = 1,
while the third neutrino is predominantly constituted by QST
with n = 2. In an idealized manner, we model three neutrinos:

¿n=0 formed by three QST with the eigenvalue n = 0,

¿n=1 formed by three QST with the eigenvalue n = 1 and

¿n=2 formed by three QST with the eigenvalue n = 2.

Accordingly, we derive the corresponding density parameters
Ω¿,n=0, Ω¿,n=1 and Ω¿,n=2 for the above neutrinos.

8.2.1 Derivation of Ω¿,n=0

Thermal formation of RGWs: The neutrinos are formed from
RGWs with 1D polarization. Accordingly, we derive the tem-
perature at which these RGWs formed thermally, TRGW,n=0,form.
When these RGWs formed, then the neutrinos formed as well,
so we obtain the same temperature for the formation of the
neutrinos, TRGW,n=0,form = T¿,n=0,form. As the RGW has one
direction of polarization only, there is one degree of freedom
only, and so the thermal energy E¿,n=0 or ED=3,n=0 is as follows:

E¿,n=0 =
1

2
· kB · T¿,n=0,form (8.9)

We solve for the temperature:

T¿,n=0,form =
2E¿,n=0

kB
= 532.25 K (8.10)
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Comparison with CMB: For comparison, we derive the tem-
perature at which the photons of the CMB formed thermally,
TCMB,form. It is equal to the current temperature of the CMB,
TCMB,t0 = 2.7255 K, multiplied by the factor zCMB + 1 = 1091:

TCMB,form = (zCMB + 1) · TCMB,t0 = 2973.5 K (8.11)

According to the Stefan-Boltzmann law, the ratio of the den-
sities is proportional to the ratio of the temperatures to the
power four:

Ã¿,n=0,form

ÃCMB,form
=

(

T¿,n=0,form

TCMB,form

)4

(8.12)

As a consequence of the definition of the density parameters,
the ratio of the densities is equal to the ratio of the density
parameters. So we derive:

Ω¿,n=0

ΩCMB
=

(

T¿,n=0,form

TCMB,form

)4

(8.13)

Consequently, the density parameter is as follows:

Ω¿,n=0 = ΩCMB ·
(

T¿,n=0,form

TCMB,form

)4

(8.14)

Density parameter: We apply the above Eq. and use the den-
sity parameter of the CMB:

ΩCMB = 5.4501 · 1025 so we get : (8.15)

Ω¿,n=0 = 5.5949 · 1028 (8.16)

8.2.2 Derivation of Ω¿,n=1, Ω¿,n=1 and Ω¿

Similarly as above we derive Ω¿,n=1:

Ω¿,n=1 = 4.5319 · 1026 (8.17)

In the same manner as above we derive Ω¿,n=2:

Ω¿,n=2 = 3.4968 · 1025 (8.18)
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The density parameter of the three types of neutrinos is the
sum of the above parameters:

Ω¿ = Σn=2
n=0Ω¿,n = 3.9556 · 1025 = Ω¿,theo (8.19)

8.3 Comparison with observation: Ω¿

The density of the extra radiation species ÃERS is customarily
included in the observed density parameter Ã¿,obs, see (Hinshaw
et al., 2013, S. 4.3). For that purpose, an effective number Neff

of neutrino species is introduced, whereby the observed value is
as follows, see (Tanabashi et al., 2018, Tab. 2.1):

Neff = 3.13± 0.32(±9.7%) (8.20)

With it the following relation holds (see (Hinshaw et al., 2013,
Eq. 14) or (Tanabashi et al., 2018, 25.1)):

Ãr,obs = Ã³,obs+ Ã³,obs ·
7

8
·
(

4

11

)4/3

·Neff = Ã³,obs+ Ã¿,obs (8.21)

Hereby, the observed density of photons Ã³,obs is described by
the density of the CMB ÃCMB, in a very good approximation.
In order to derive Ω¿,obs, we divide the above Eq. (8.21) by the
critical density Ãcr,t0, and we solve for Ω¿,obs. So we derive:

Ω¿,obs = ΩCMB · 7
8
·
(

4

11

)4/3

·Neff (8.22)

Using Eqs. (8.15) and (8.20), we derive:

Ω¿,obs = 3.8742 · 1025(±9.7%) (8.23)

So the relative difference between theory and observation is:

∆theo2obsΩ¿ =
Ω¿,theo 2 Ω¿,obs

Ω¿,obs
= ±2.1% (8.24)
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Theorem 7 Explanation of Ω¿

(1) The density parameter Ω¿ of the primordial neutrinos is
derived on the basis of the time evolution of the light horizon
ranging from the Planck scale to the present-day light horizon
and ranging from the Big Bang until today. The result is:

Ω¿,theo = 3.9556 · 1025 (8.25)

So the relative difference between observation and theory is:

∆theo2obsΩ¿ =
Ω¿,theo 2 Ω¿,obs

Ω¿,obs
= ±2.1% (8.26)

So our theoretical result is within the error of measurement of
9.7 % of the observation. Hence our result is in precise accor-
dance with observation.

(2) Thereby the neutrinos are formed by a linear combination
of three quanta of spacetime, QST.

These QST are excitation modes of the vacuum with the
following properties:

(2.1) The excitation modes are simple longitudinal modes.

(2.2) The excitation modes extend in three dimensions by com-
bining three modes.

(2.3) The excitation do not include an operator ÛD=3³D.

(2.4) The excitation modes obey the conditions (2.1), (2.2) and
(2.3), and with the remaining possibilities, the excitation modes
minimize the energy.



Chapter 9

Formation of the Higgs Boson

In this section we analyze the formation of the Higgs boson by
the excitation of the vacuum with the following properties:

(1) The excitation modes are simple longitudinal modes.

(2) The excitation modes extend in three dimensions by com-
bining three modes.

(3) The excitation modes possibly include an operator ÛD=3³D.

(4) A ZPO in D > 3 dimensions cannot exist in three dimen-
sional space. Remind that the ZPO is the mode of lowest energy.

(5) Otherwise the excitation modes are at minimal energy.

Moreover, we describe how that model explains the formation
of the quarks and of the electron, muon and tauon, including
the corresponding antiparticles.

9.1 Derivation of the Higgs boson from QST

In this part we construct the formation of the Higgs boson by
QST that are obtained as excitation modes of the vacuum with
minimal possible energy or mass.

123
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9.1.1 Dimension of QST of the Higgs boson

First we determine a possible operator ÛD=3³D or the dimension
of the QST forming the Higgs boson. For it we apply the basic
solution of the hierarchy problem, see theorem (6) and Fig.
(7.1).

The observed energy of the Higgs boson is as follows, see e.
g. Tanabashi et al. (2018):

EH = 125.18 GeV = 2.0054 · 1028 J (9.1)

In order to apply property (3), see above, we realize the follow-
ing: The zero-point energy ZPEΛ,D, that is directly below that
energy EH = 125.18 GeV, is ZPEΛ,D=5, see theorem (6) and
Fig. (7.1).

So the three QST of the Higgs boson have dimension five.
The ZPO at dimension four with ZPEΛ,D=4 are hardly stable,
see Fig. (3.7), and correspondingly they are not essential in the
most stable elementary particles. Accordingly, the ZPEΛ,D=3

are essential for elementary particles, namely for neutrinos, and
the ZPEΛ,D=5 are essential for elementary particles, namely for
the Higgs boson.

Corresponding to the identified dimension five, we also apply
the polarization factor 521

Dhori21 or
4
300 . Thus, the basic zero-point

energy is as follows, see Eq. (7.15):

ZPEΛ,D=5 = EDhori
· 52 1

ZDhori³D=5 · 300
=

EP

2
· 4

2(30125)/5 · 300
(9.2)

Hence the ZPEΛ,D underlying the Higgs boson is as follows (see
Fig. 9.1):

ZPEΛ,D=5 = 1.9693 · 10211 J (9.3)

Hereby we applied the following dimensional horizon:

Dhori = 301 (9.4)
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Figure 9.1: Excitation of a QST ZPEΛ,D=3 of the present-day

3D vacuum by a transition ÛD=3³D=5 to a QST ZPEΛ,D=5,

followed by a polarizing excitation ÛΛ³1D.

9.1.2 Polarization of the QST of the Higgs boson

The Higgs boson is formed by three quanta of spacetime, QST,
each with longitudinal polarization, see proposition (21) and
Fig. (9.1). So the factor 521

300 that reduced the ZPEΛ,D=5, see
Eq. (9.2), is eliminated:

ZPEH,D=5 = ZPEΛ,D=5 ·
300

52 1
= 1.477 · 1029 J (9.5)

9.1.3 Eigenvalues n of QST of the Higgs boson

In the present-day three dimensional space, the zero-point en-
ergy of the five dimensional space cannot exist, see property
(4). So the lowest possible eigenvalue is one, n = 1. Hence
the lowest three possible eigenvalues are one, two and three,
n = 1, n = 2 and n = 3, see property (5) and Fig. (9.2). The
corresponding energies of the QST are as follows:

EH,D=5,n = ZPEH,D=5 · (2n+ 1) (9.6)
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Figure 9.2: Excitation of a QST ZPEΛ,D=3 of the present-day

3D vacuum by a transition ÛD=3³D=5 to a QST ZPEΛ,D=5,

followed by a polarizing excitation ÛΛ³LONG. and by excitation
by â+.

In particular we derive the energies of the QST that form the
Higgs boson, see Fig. :

EH,D=5,n=1 = ZPEH,D=5 · 3 = 4.431 · 1029 J = 27.66 GeV (9.7)

EH,D=5,n=2 = ZPEH,D=5·5 = 7.385·1029 J = 46.099 GeV (9.8)

EH,D=5,n=3 = ZPEH,D=5 · 7 = 10.339 · 1029 J = 64.539 GeV
(9.9)

The energy of the combined particle is the sum:

EH,D=5,n=1,2,3 = ZPEH,D=5 · 15 = 138.298 GeV = EH,theo

(9.10)



9.2. COMPARISON WITH OBSERVATION: MHIGGS 127

9.2 Comparison with observation: mHiggs

The observed energy EHiggs = mHiggs · c2 of the Higgs boson is
as follows, see e. g. Tanabashi et al. (2018):

EH,obs = 125.18 GeV (9.11)

So the relative difference between theory and observation is as
follows, see Fig. (9.3):

∆theo2obsΩH =
EH,theo 2 EH,obs

EH,obs
= ±10.5% (9.12)

Discussion of the binding energy: In general, there is a binding
energy that binds the three QST forming the Higgs boson. So
the theoretical energy value EH,D=5,theo = 138.3 GeV = mH,theo ·
c2 of the Higgs boson is expected to decrease.

So far, we modeled the gravitational interaction only. The
corresponding gravitational binding energy is negligible. How-
ever, modeling electromagnetic, weak and strong interactions
might decrease the above value appropriately.

9.3 Masses caused by mH,theo

In the above section, we derived the mass and energy of the
Higgs boson:

mH,theo =
EH,D=5,theo

c2
= 138.3

GeV

c2
(9.13)

That mass causes the masses of theW+,0,2 boson, of the quarks,
and of the electron, muon and tauon, see e. g. (Tanabashi et al.,
2018, p. 181, 182). In this section we elaborate, how the mass
mH,D=5,theo causes the above masses. For it we derive the Higgs
field that is caused by mH,D=5,theo, see e. g. (Tanabashi et al.,
2018, p. 181, 182).
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Figure 9.3: Higgs boson: formation by excitation of the vac-
uum, theoretical energy EH,D=5,theo, observed energy EH,D=5,obs

(dashed). The remaining small energy difference is interpreted
as interaction energy that is set free during the process of bind-
ing the three quanta of spacetime, QST, that form the Higgs
boson.



9.3. MASSES CAUSED BY MH,THEO 129

22 21 0 1 2

20.2

0

0.2

0.4

0.6

0.8

voptvopt

Φ in arbitrary units, a. u.

V
in

a.
u
.

Figure 9.4: Standard model potential V of the Higgs field Φ: At
low energy, the optimal expectation value vopt is achieved.

9.3.1 Higgs field

The Higgs boson constitutes the Higgs field Φ, a two dimen-
sional complex field, see (Tanabashi et al., 2018, p. 181):

Φ =
1:
2
·
( :

2Φ+

Φ0 + i · a0
)

(9.14)

In particular, the vacuum expectation value

〈Φ〉 = 1:
2
·
(

0
v

)

(9.15)

is characterized by the so-called expectation value v.

Self-interaction: The Higgs field interacts with itself, and this
is modeled by a usual Φ2-Φ4 potential, see e. g. Landau and
Lifschitz (1979b). That potential is called standard model
potential, see e. g. (Tanabashi et al., 2018, p. 181):

V (Φ) = m2 · Φ2 + » · Φ4 (9.16)

Hereby m is named mass parameter, and » is a limiting
interaction parameter of the Higgs field.
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Phase transition: If square m2 is negative, then there can oc-
cur a symmetry breaking phase transition at low energy. In
particular, at minimal potential, we derive the following Higgs
field:

Φopt =
1:
2
·
√

|m2|
»

(9.17)

In the limit of very low energy, that optimal field Φopt is equal
to the expectation value in Eq. (9.15), and so we derive the
optimal expectation value, see Fig. (9.4):

vopt =

√

|m2|
»

(9.18)

Parameters: Hereby the interaction parameter » is not deter-
mined in the standard model of elementary particles. Whereas
the optimal expectation value vopt can be obtained from muon
decay measurements:

vopt,obs = 246.221 GeV (9.19)

Mass mH : In the standard model of elementary particles, the
mass mH of the Higgs boson is determined as follows, see e. g.
(Tanabashi et al., 2018, p. 182):

mH =
:
2» · vopt/c2 (9.20)

So the mass mH determines the field limiting interaction pa-
rameter » of the Higgs field:

» =
m2

H · c4
2 · v2opt

=
E2

H

2 · v2opt
(9.21)

For the case of our theoretical value mH,theo we derive:

»theo =
m2

H,theo · c4
2 · v2opt

=
E2

H

2 · v2opt
= 0.1577 (9.22)
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And with that parameter »theo, the mass mH,theo determines the
optimal field:

vopt = mH,theo · c2/
√

2»theo (9.23)

The Higgs field causes several masses of essential elementary
particles via specific interaction parameters. Examples are the
W+,0,2 bosons, , see e. g. Tanabashi et al. (2018).

9.3.2 Boson masses caused by mH,theo

In this section, we derive the boson masses caused by mH,theo.

Masses mW : The mass mW of the W+,2 boson is related to the
gauge coupling of the weak interaction gw as follows, see e. g.
(Tanabashi et al., 2018, p. 182), (Kobel et al., 2017, p. 69):

mW · c2 = gw · vopt
2

(9.24)

We insert vopt, see Eq. (9.23):

mW = mH,theo ·
gw:
8»theo

(9.25)

So the measurement of mW · c2 = 80.38 GeV provides the cou-
pling:

gw =
mW

mH,theo
·
√

8»theo = 0.6528 (9.26)

Mass mZ: Similarly, the mass mZ = 91.1876 GeV
c2 , see (Tan-

abashi et al., 2018, p. 33), of the Z or W 0 boson is related to
the gauge coupling of the weak interaction g2w as follows, see e.
g. (Tanabashi et al., 2018, p. 182), (Kobel et al., 2017, p. 69):

m2
W

m2
Z

=
g2w

g2w + g22w
(9.27)

We solve for the coupling g2w:

g2w = gw ·
√

12 m2
Z

m2
W

= 0.3083 (9.28)
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9.3.3 Fermion masses caused by mH,theo

In this section, we derive the fermion masses caused by mH,theo.

The mass of a fermion mfi is related to the Higgs field vopt
via the specific Higgs-fermion interaction hfi as follows, see
e. g. (Tanabashi et al., 2018, p. 182):

mfi · c2 =
hfi · vopt:

2
(9.29)

We insert vopt, see Eq. (9.23):

mfi,theo = mH,theo ·
hfi

2
:
»theo

(9.30)

In this manner the mass mH,theo causes the masses of the elec-
tron, muon and tauon as well as of the quarks. The additional
parameters hfi have been introduced by the standard model of
elementary particles, however, these parameters have not yet
been explained by that standard model, see e. g. (Tanabashi
et al., 2018, p. 182).

Theorem 8 Formation of the Higgs boson

(1) The mass mH,theo of the Higgs boson is precisely derived on
the basis of the time evolution of the light horizon ranging from
the Planck scale to the present-day light horizon and ranging
from the Big Bang until today. The result is:

mH,theo =
EH,D=5,theo

c2
= 138.3

GeV

c2
(9.31)

(2) Thereby the Higgs boson is formed by a linear combination
of three quanta of spacetime, QST.

These QST are excitation modes of the vacuum with the
following properties:

(2a) The excitation modes are simple longitudinal modes.
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(2b) The excitation modes extend in three dimensions by com-
bining three modes.

(2c) The excitation modes include the operator ÛD=3³D=5. So
a ZPO in D = 5 is formed.

(2d) That ZPO in D = 5 cannot exist in three dimensional
space, so the excitation modes with n = 1, n = 2 and n = 3 are
formed at minimal energy.

(3) The Higgs boson represents the Higgs field, and this field
causes the masses of the W+,0,2 bosons and of the quarks, elec-
trons, muons and tauons, including the corresponding antipar-
ticles.

Corollary 4 Formation of all non-gluon light particles

The QST explain the formation of all non-gluon light particles
as follows:

(1) According to the basic solution of the hierarchy problem, the
lightest particles have ZPOs in 3D.

(1a) Especially light particles are the particles of the dark en-
ergy, as these reduced their energy during the era of cosmic
unfolding by the redshift and by polarization.

(1b) The neutrinos are slightly heavier according to their polar-
ization.

(2) According to the basic solution of the hierarchy problem,
the second lightest and stable particles have ZPOs in 5D. They
form the Higgs boson.

(2a) The Higgs boson causes the masses of the W+,0,2 bosons.

(2b) The Higgs boson causes the masses of the remaining lep-
tons, the electron, muon and tauon.

(2c) The Higgs boson causes the masses of the quarks.

(3) Altogether, all elementary non-gluon particles of the stan-
dard model of elementary particles are formed by the QST.
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QSTH QSTH

Figure 9.5: If two interacting QSTH are sources of QSTeff , then
these QSTeff flow outwards and thus cause a repulsive interac-
tion.

(4) Additionally, the particles of the dark energy are relatively
light and formed by the QST.

(5) The mass of a particle that is based on a black hole amounts
to one half of a Planck mass or more.

(5a) Candidates are primordial black holes, see e. g. Carmesin
(2020b).

(5b) Candidates are also the particles of cold dark matter, see
Carmesin (2018h), Carmesin (2018f) or Carmesin (2019d).

However, these have not yet been observed in a very detailed
manner, see e. g. Tanabashi et al. (2018).

9.4 Effective interaction

We propose a model of an effective energy of interaction Eeff

of the three QST of the Higgs boson, QSTH .

Formation of quanta: The three QSTH emit new quanta of
spacetime, according to the DEQ of the QST, see (Carmesin,
2021c, Eq. 2.52):

·̇2 =
G72

c2
(9.32)

These new QST form an energy of effective interaction, and so
we name them QSTeff .



9.4. EFFECTIVE INTERACTION 135

QSTH QSTH

Figure 9.6: If two interacting QSTH are one source and one drain
of QSTeff , then these QSTeff flow from one QSTH to the other
QSTH in a dipole manner. So quanta QSTeff approach QSTH .
Hence an attractive interaction is caused.

Source and drain of quanta: As the rate ·̇ is squared in the
above Eq., the quanta can form or vanish, so a QSTH can be a
source of QSTeff , or a QSTH can be a drain of QSTeff . There
are three essential cases:

(1) If two interacting QSTH are both sources, then the gener-
ated QSTeff flow to the sides as shown in Fig. (9.5). Thus,
there occurs a repulsive momentum transfer upon the two par-
tial flow systems including the sources.

(2) If two interacting QSTH are drains, then the QSTeff flow-
ing inwards can be described by anti-QST, ¯QST eff flowing out-
wards, hence there occurs a repulsive interaction as in case (1).

(3) If one interacting QSTH is a drain, while the other is a
source, then the QSTeff and the drain approach each other, see
Fig. (9.6). Similarly the ¯QST eff and the source approach each
other. So an attractive interaction is generated.

Low energy case: As the energy is minimized here, the third
case takes place. Additionally, as the Higgs boson exhibits no
net interaction except gravity, the energies of QSTeff flowing
inward and of QSTeff flowing outward add up to zero.

ZPE: The energy of the QSTeff generated by a QSTH with
energy EH is equal to one forth of the energy EH , see (Carmesin,
2021c, PROP. 6). In particular, the zero-point energy ZPEeff



136 CHAPTER 9. FORMATION OF THE HIGGS BOSON

of a QSTeff is one fourth of the zero-point energy ZPEH,D=5

of the QSTH (Eq. 9.5):

ZPEeff =
1

4
· ZPEH,D=5 = 9.2197 GeV =

1

4
· ~ËH (9.33)

Effective energies: In this paragraph we formulate an effective
energy term. For it we proceed in two steps:

(A) We use the excitation energies of the QSTH , see Eq. (9.6):

∆EH,D=5,n = EH,D=5,n 2 ZPEH,D=5 = ZPEH,D=5 · 2n (9.34)

These generate QSTeff that have one fourth of that energy:

Eeff,n = ZPEeff · 2n (9.35)

(B) The QSTeff of two QSTH cause the respective interaction
energy, we model a corresponding effective interaction energy
by using the geometric average:

Eeff,ni,nj
=
√

2ni · 2nj · ZPEeff (9.36)

The minimal energy of interaction is achieved, when the QSTH

with n = 3 is a drain and the other two are sources or vice
versa. So we derive the following effective interaction energies:

Eeff,1,2 =
:
2 · 4 · ZPEeff = 6.5194 GeV (9.37)

Eeff,1,3 = 2
:
2 · 6 · ZPEeff = 27.9847 GeV (9.38)

Eeff,2,3 = 2
:
4 · 6 · ZPEeff = 211.292 GeV (9.39)

Altogether, the effective energy of interaction is the sum:

Eeff = Eeff,1,2 + Eeff,1,3 + Eeff,2,3 = 212.757 GeV (9.40)

The full theoretical energy EH,full,theo is the sum of the energy
EH,without = 138.296 GeV of the Higgs boson without interaction
and the above effective energy of interaction:

EH,full,theo = EH,without + Eeff = 125.541 GeV (9.41)



9.4. EFFECTIVE INTERACTION 137

Comparison with observation: The Higgs boson has been ob-
served by various methods and the results are in the following
interval IH,obs, see (Tanabashi et al., 2018, Fig. 11.4):

EH,obs * [124.51±0.52 GeV; 126.02±0.51 GeV] = IH,obs (9.42)

Moreover, an average has been obtained for observed values as
follows, see (Tanabashi et al., 2018, p. 34):

EH,obs = 125.18 GeV ± 0.16 GeV (0.13%) (9.43)

The full theoretical value is within the observed interval. Using
Eqs. (9.43) and (9.42), we express the observed mass as follows:

EH,obs = 125.18 GeV ± 1.35 GeV (1.1%) (9.44)

So our result is in precise accordance with observation.

Theorem 9 Effective interaction

(1) The QST provide an effective interaction that can be attrac-
tive as well as repulsive.

(2) That effective interaction provides an appropriate energy
so that the theoretical energy of the Higgs boson is within the
observed interval:

EH,full,theo = 125.541 GeV * [124.51; 126.02] GeV = IH,obs

(9.45)

(3) The relative difference between theory and observation is
below 0.29 %.

Interpretation: This effective interaction shows that the QST
are capable of forming interactions with different signs such as
electromagnetic, weak and strong interactions. Moreover, that
effective interaction is in accordance with the Gaussian theo-
rem. That effective might be generalized to interactions with
more kinds of charges or different symmetry, such as weak and
strong interactions. However, this is beyond the scope of this
book. That theory is expected to be presented in a forthcoming
volume of this book series.
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Chapter 10

Derivation of ΩΛ

So far we used models of an ideal universe: Firstly, for the case
of a homogeneous universe, we derived ΩΛ = 2

3 , see (Carmesin,
2021c, THM. 21(3)). Secondly, we analyzed the case of a mono-
chromatic vacuum in chapter (6).

In this chapter, we apply quantum physics and GRT in order
to derive the formation of the polychromatic vacuum, and to
determine ΩΛ, in particular.

First we show that the present-day vacuum is polychromatic.
Then we analyze that polychromatic vacuum. In particular,
we derive an algorithm for the calculation of ΩΛ. Using that
algorithm we calculate ΩΛ. Thereby we do not execute any fit,
of course. Moreover, we critically discuss the used physics and
the applied algorithm.

10.1 Polychromatic vacuum: derivation

In this section we derive the fact that the dark energy consists
of quanta with different energies.

A quantum of the dark energy that forms at the present time
t0 has an energy that depends on the dimensional horizon of the
present time t0, see theorem (5):

EΛ(D = 3, t0) = function(Dhori(t0)) (10.1)

139
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As the present time is not special in physics, the same holds
for any time tform at which a quantum of dark energy forms:

EΛ(D = 3, tform) = function(Dhori(tform)) (10.2)

In order to derive that function from Eqs. (6.12) and (6.13), we
substitute t0 by tform:

EΛ(D = 3, tform) =
2 · EDhori(tform)

ZDhori(tform)³3 · (Dhori(tform)2 1)
(10.3)

with ZDhori(tform)³3 = 2(Dhori(tform)23)/3 (10.4)

As a consequence, the density ÃΛ that forms at a time tform is
a function of the dimensional horizon Dhori(tform) of that time
tform:

ÃΛ(tform) = function2(Dhori(tform)) (10.5)

In order to derive that function from Eq. (6.14), we substitute
t0 by tform:

ÃΛ(tform) =
2EDhori(tform)

VD=3 · (Dhori(tform)2 1) · c2 · L3
P · Z4

Dhori(tform)³3

(10.6)
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Figure 10.1: Scale factor x = R
R0

as a function of t
t0
, calculated

backwards from t0 as usual (solid line).
tform: considered time of formation of an amount of vacuum.
x(tform): scale factor corresponding to tform, it is the light hori-
zon present at tform.
x1: scaled light horizon corresponding to tform,
x2 = x1 · ktform³t0: evolved value of x1,
for details see Eqs. (10.7) until (10.12),
arrows: steps of the calculation.

10.2 Polychromatic vacuum: analysis

In this section we present the method and results of the analysis
of the polychromatic vacuum.

10.2.1 Derivation of Dhori(tform)

A key quantity is the dimensional horizon corresponding to a
time of the formation of a quantum of dark energy Dhori(tform),
see Eqs. (10.4), (10.3) and (10.6). In this section, we derive
that key quantity.
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Dimensional distance enlargement factor: First we derive the di-
mensional distance enlargement factor, from which Dhori(tform)
can be directly derived, see Eq. (10.4). That factor is deter-
mined by the following Eq., see (Carmesin, 2019d, Eq. 2.217):

ZDhori(tform)³D=3 =
Rlh(tform) · ktform³t0

Rlh(t0)
· ZDhori(t0)³D=3

(10.7)
Hereby, the present-day light horizon Rlh(t0) and the present-
day dimensional distance enlargement factor ZDhori(t0)³D=3 have
been derived in chapter (3).

Scaled version of Eq. (10.7): In order to focus on the key struc-
ture of Eq. (10.7), we scale that Eq. For it we expand by
R0 = c · t0. Moreover we abbreviate, see Fig. (10.1):

x0 =
Rlh(t0)

R0
(10.8)

x1 =
Rlh(tform)

R0
(10.9)

x2 = x1 · ktform³t0 (10.10)

So we get:

ZDhori(tform)³D=3 =
x1 · ktform³t0

x0
· ZDhori(t0)³D=3 or (10.11)

ZDhori(tform)³D=3 =
x2
x0

· ZDhori(t0)³D=3 (10.12)

Derivation of x1: First we derive the light horizon Rlh(tform)
corresponding to the time tform, see e. g. Carmesin (2019d):

Rlh(tform) = c · tform · ·(tform) with

·(tform) =

∫ xtform

0

dx:
Ωr + ΩM · x+ ΩΛ · x4

(10.13)
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Thereby xtform can be calculated from the time tform, see e. g.
Carmesin (2019d):

I(xtform) =

∫ xtform

0

x · dx:
Ωr + ΩM · x+ ΩΛ · x4

=
tform
tH0

(10.14)

Hereby the inverse function I21 of the above integral is used:

xtform = I21

(

tform
tH0

)

(10.15)

Derivation of x2: The time evolution according to the FLE is
as follows, see e. g. Carmesin (2019d):

J(x2) =

∫ x2

x1

x · dx:
Ωr + ΩM · x+ ΩΛ · x4

=
t0 2 tform

tH0

(10.16)

Hereby the inverse function J21 of the above integral is used:

x2 = J21

(

t0 2 tform
tH0

)

(10.17)

10.3 Fixed point procedure

Similarly as for the case of Ω³, we apply a fixed point algorithm.
For it we introduce a fixed point function that maps a

hypothetical value of the density parameter ΩΛ,hypo to a test
value ΩΛ,test, according to the laws of quantum gravity:

ΩΛ,test = ΩΛ,test(ΩΛ,hypo) (10.18)

That value ΩΛ,test is determined as follows: We use ΩΛ,hypo

together with the other density parameters (these are provided
in this chapter, see the introduction), in order to solve the
above integrals in this chapter. Using these, we derive for each
time of formation tform the corresponding dimensional horizon
Dhori(tform). With it we derive the respective density ÃΛ(tform),
see Eq. (10.6).
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For each time of formation tform ranging from the first for-
mation of three dimensional space at a time tD=3 to the present-
day time, we derive the amount of vacuum ∆V (tform) formed
according to the FLE, and we evaluate the average of the den-
sities ÃΛ(tform) each weighted by ∆V (tform). So we obtain the
averaged density:

〈ÃΛ〉 =
∫ t0
tD=3

∆V (tform)ÃΛ(tform)dtform
∫ t0
tD=3

∆V (tform)dtform
(10.19)

With it we obtain the density parameter:

ΩΛ,test =
〈ÃΛ〉
Ãcr.,t0

(10.20)

10.4 Fixed point ΩΛ,f ixed point

By using the above fixed point function, we determine the fixed
point as a solution of the following fixed point equation:

ΩΛ,test = ΩΛ,test(ΩΛ,hypo) = ΩΛ,hypo = ΩΛ,fixed point (10.21)

The fixed point provides the density parameter according to the
laws of quantum gravity:

ΩΛ,test = ΩΛ,test(ΩΛ,hypo) = ΩΛ,hypo = ΩΛ,fixed point (10.22)

The graph of the fixed point function is illustrated in Fig.
(10.2). Moreover, that Fig. shows the graph of the function
that represents the identity. So the intersection of both graphs
represents the solution of the fixed point equation:

ΩΛ,fixed point = 0.6834 (10.23)

So the relative difference of theoretical and observed value,
ΩΛ,obs = 0.6847, see table (15.2), is as follows:

∆theo2obsΩΛ =
ΩΛ,fixed point 2 ΩΛ,obs

ΩΛ,obs
= ±0.19% (10.24)



10.4. FIXED POINT ΩΛ,F IXED POINT 145

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ΩΛ,hypo

Ω
Λ
,t
es
t

Figure 10.2: Fixed point ΩΛ (Eq. 4.18). The intersection with
the diagonal is the fixed point: ΩΛ = 0.6834, deviating from
the observed value by 0.19 % only, see Collaboration (2020a).
We obtained that value without executing any fit.

For the case of the fixed point, we illustrate the dimensional
distance enlargement factor as a function of the redshift or time,
see Fig. (10.3). Since that function varies as a function of z,
the energy of the quanta of the dark energy varies as well, see
above. So the present-day vacuum is polychromatic.

Theorem 10 Polychromatic vacuum

(1) The present-day vacuum is polychromatic.

(2) The present-day polychromatic vacuum has the following
density parameter:

ΩΛ = 0.6834 (10.25)

The relative difference between theoretical and observed values
is as follows:

∆theo2obsΩΛ =
ΩΛ,fixed point 2 ΩΛ,obs

ΩΛ,obs
= ±0.19% (10.26)

The error of observation amounts to 1.1 %, see Tab. 15.2. So
our theoretical result is in precise accordance with the observed
value, as its deviation from observation is smaller than the error
of observation.
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Figure 10.3: Distance enlargement factor ZDhorizon³D=3 as a func-
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Chapter 11

Derivation of Ã8

In this section we derive the amplitude of matter fluctuations Ã8
from the time evolution of the dark energy derived in the chap-
ter (10). That parameter is an essential cosmological parameter,
accordingly we derive it in this section. We introduced and an-
alyzed that parameter in detail in (Carmesin, 2021c, chapter 7).
Here we derive Ã8 on the basis of results obtained in (Carmesin,
2021c, chapter 7) and in chapter (10).

Results obtained by quantum gravity: In order to derive Ã8, we
use the ratio (1+»)2 of the density ÃΛ,het of the present-day dark
energy in our heterogeneous universe and the density ÃΛ,const.
of the dark energy in a homogeneous universe, see (Carmesin,
2021c, Eq. 7.141):

(1 + »)2 =
ÃΛ,het(z = 0)

ÃΛ,const.
(11.1)

Hereby, » has been introduced as a parameter that describes
the difference between the real heterogeneous universe and a
homogeneous universe as a reference. We solve the above Eq.
for »:

» =

√

ÃΛ,het(z = 0)

ÃΛ,const.
2 1 (11.2)

147



148 CHAPTER 11. DERIVATION OF Ã8

At a redshift z, that parameter » obeys the following relation
derived by quantum gravity, see (Carmesin, 2021c, Eq. 7.131):

» =
ΩM

ΩΛ
· 9

20
· 1

(1 + z)2
· Ã8 (11.3)

We solve the above Eq. for Ã8. Moreover, we apply the above
Eq. for », as that Eq. holds at zero redshift, we insert z = 0:

Ã8 =
ΩΛ

ΩM
· 20
9

·
(

ÃΛ,het(z = 0)

ÃΛ,const.
2 1

)

(11.4)

In order to determine Ã8, we use the following results:

Results obtained by the polychromatic vacuum: The time evo-
lution of the dark energy provides the present-day value of the
density of the dark energy, see chapter (10):

Ã̃Λ,het(z = 0) = 6.5993 · 102123 (11.5)

The corresponding value averaged from z = 1090 until z = 0 is
as follows:

Ã̃Λ,aver.(z = 0) = 4.7301 · 102123 (11.6)

Results obtained for the homogeneous universe: In the homoge-
neous universe, the density parameter of the dark energy is as
follows, see (Carmesin, 2021c, theorem 21(3)):

ΩΛ,const. = 2/3 (11.7)

Consequently, the scaled density of the dark energy is as follows:

Ã̃Λ,const. = ΩΛ,const. · Ã̃Λ,t0 (11.8)

Hereby, Ã̃Λ,t0 is obtained from the Hubble constant, see table
(15.2):

Ã̃cr.,t0 = 7.037 · 102123 (11.9)

With it we derive:

Ã̃Λ,const. = 2/3 · 7.037 · 102123 = 4.6913 · 102123 (11.10)
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Calculation of Ã8: We apply Eq. (11.4), and we insert the ideal
values ΩΛ j ΩΛ,const. = 2/3, ΩM j 1 2 ΩΛ,const. = 1/3. More-
over, we use Eqs. (11.10) and (11.5). So we derive:

Ã8,theo,ideal = 2·20
9
·
(
√

6.5993 · 102123

4.6913 · 102123
2 1

)

= 0.82688 (11.11)

In order to compare with the value of Ã8 observed by ob-
servation of the CMB emitted at z = 1090, see Collaboration
(2020a), we replace Ã̃Λ,const. = 4.6913 · 102123 by Ã̃Λ,aver.(z =
0) = 4.7301 · 102123, obtained with the polychromatic vacuum.
Correspondingly, we derive:

Ã8,theo = 2 · 20
9

·
(
√

6.5993 · 102123

4.7301 · 102123
2 1

)

= 0.806 (11.12)

11.1 Comparison with observation: Ã8

The observation of the CMB provides values for Ã8 ranging from
0.793 to 0.812, see (Collaboration, 2020a, Tab. 8). We calculate
the average of these observed values:

Ã8,obs = 0.8057 (11.13)

Moreover, we determine the corresponding empirical standard
deviation:

∆Ã8,obs = 0.008 (11.14)

Accordingly, we derive the relative error of measurement:

∆obsÃ8 =
∆Ã8,obs
Ã8,obs

= ±1% (11.15)

So the relative difference between Ã8,theo and Ã8,obs is as follows:

∆theo2obsÃ8 =
Ã8,theo 2 Ã8,obs

Ã8,obs
= ±0.04% (11.16)

That relative difference ∆theo2obsÃ8 is within the error of mea-
surement ∆obsÃ8.
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Theorem 11 Amplitude of matter fluctuations Ã8

(1) We derived the present-day amplitude of matter fluctuations
Ã8 by using quantum gravity.

(2) Thereby, we used the following numerical input only: We
used the Hubble constant H0, see table (15.2) as a time refer-
ence, and we used the universal constants G, c, kB and h, see
table (15.1).

(3) In this manner we obtained the following result

Ã8,theo = 0.806 (11.17)

(4) Our obtained result is in precise accordance with observa-
tion, since the difference ∆theo2obsÃ8 between theory and obser-
vation is smaller than the error of measurement ∆obsÃ8.

∆theo2obsÃ8 = 0.04% < 1% = ∆obsÃ8 (11.18)



Chapter 12

Simultaneous Derivation of Ωj

In this section we develop a simultaneous derivation of the den-
sity parameters. There are the following four essential density
parameters, see COR. (2):

~Ωess. =

û

ü

ü

ý

ΩK

Ωr

ΩΛ

ΩM

þ

ÿ

ÿ

ø

=

û

ü

ü

ý

0
?
?

ΩM = 12 ΩΛ 2 Ωr

þ

ÿ

ÿ

ø

(12.1)

Thereby, ΩK = 0 is known, at least as an average. Moreover,
ΩM = 1 2 ΩΛ 2 Ωr depends on two other density parameters.
Furthermore, the density parameter of radiation Ωr is a sum of
three density parameters:

Ωr = Ω¿ + Ω³ + ΩERS (12.2)

Hereby ΩERS is customarily included in Ω¿, see (Hinshaw et al.,
2013, S. 4.3). very small and roughly known from observation.
This it does not occur explicitly in our calculation. Hence there
remain the following three essential and independent density
parameters:

~Ωess. indep. =

û

ý

Ω³

Ω¿

ΩΛ

þ

ø (12.3)

So far we developed one procedure of calculation for each of
these three density parameters Ω³, Ω¿ and ΩΛ. Hence we de-
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velop a procedure for a simultaneous derivation of these three
density parameters.

As a matter of fact, these three density parameters establish
a triple with mutual dependence. However, that mutual depen-
dence might be very small and negligible, indeed an appropriate
separation is possible here. In fact, we derive such a separation
that holds as a very good approximation. For it we show that
the dimensional horizon is equal to 301 for all physical systems,
for which the dimensional transitions have been analyzed.

12.1 Dimensional horizon

In order to derive the dimensional horizon Dhori, we express the
density of radiation by a first function of Dhori as follows

1, see
(Carmesin, 2019d, Eq. 2.163):

Ã̃r,D,1(Dhori) = 2
4·(Dhori−3)

3 · 1

4 · r̃4lh · Ã̃r,t0
(12.4)

In order to derive the dimensional horizon Dhori, we express
the density of radiation by a second function of that dimensional
horizon, Ã̃r,D,2(Dhori):

The critical density Ã̃c,D represents the density of radiation,
since the energy has the form of radiation at all critical densities,
in an extremely good approximation.

Moreover, at each high dimension2, the density is almost
precisely determined by the dimension, as the density is almost
constant in each high dimension, and that density is determined
by the critical density, see Figs. (3.8), (3.9) and (3.11):

Ã̃c,D = Ã̃r,D,2(D) (12.5)

1That function has been derived by using the following idea: The dimensional horizon
Dhori can be determined from the dimensional distance enlargement factor ZDhori→D=3.
That factor is equal to the ratio qDhori→t0 / kDhori→t0 . The denominator kDhori→t0

depends on the density Ã̃r,t0 , while the numerator depends on the light horizon r̃lh. So
the density Ã̃r,t0 can be expressed as a function of the dimensional horizon Dhori and of
the light horizon r̃lh.

2Such dimensions occur for a short time after the Big Bang, see chapter (3).
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Figure 12.1: First function Ã̃r,D,1(Dhori) as a function of Dhori.

In particular, that function can be applied to Dhori:

Ã̃c,Dhori
= Ã̃r,D,2(Dhori) (12.6)

The critical densities have been evaluated for three very dif-
ferent physical systems, and thereby the following intervals oc-
cur at all dimensions above 100:

0.5 > Ã̃c,Dhori
>

ù

ü

ú

ü

û

0.4 for binary fluid andDhori > 100

0.44 for bose gas andDhori > 100

0.4 for connections andDhori > 100

(12.7)
At Dhori, the two functions in Eq. (12.6) are equal:

Ã̃r,D,1(Dhori) = Ã̃r,D,2(Dhori) (12.8)

We solve that equation graphically. For it we represent the func-
tion Ã̃r,D,1(Dhori) in Fig. (12.1). The possible critical densities
Ã̃c,D are between 0.4 and 0.5 (Eq. 12.7). So the dimensional
horizon rounded to a natural number is equal to 301:

Dhori = 301, if rounded to a natural number (12.9)

12.2 Derivation of Ω¿

The derivation of the density parameter of neutrinos Ω¿ in chap-
ter (8) applies the dimensional horizon Dhori, whereas it does
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neither use ΩΛ nor Ω³. Thus, the derivations and calculations
in that C. are separated from those in C. (4) and (10). As a
result we obtained in C. (8), see Eq. (8.25):

Ω¿,theo = 3.9556 · 1025 and ∆theo2obsΩ¿ = ±2.1% (12.10)

12.3 Derivation of Ωr

The derivation of the density parameter of photons Ω³ in C. (4)
applies the dimensional horizon Dhori, the density parameter of
neutrinos Ω¿ and the idealized constant density parameter of
dark energy ΩΛ,const. =

2
3 . We showed in C. (4) that a constant

density parameter ΩΛ,const. = 2
3 is adequate, this fact corre-

sponds to the observational finding that more than 95 % of the
present-day photon energy is found in the CMB, and that CMB
is almost homogeneous even today, though the present-day uni-
verse exhibits a large heterogeneity characterized by Ã8 = 0.806.
As a consequence, it is not necessary to use the general density
parameter ΩΛ for a heterogeneous universe, if the aim is to de-
rive Ω³.

Thus, the derivations and calculations in C. (4) can be used
here as well. The only difference is that we now apply the result
Ω¿,theo = 3.9556 · 1025 in Eq. (12.10). In that manner we derive
the following density parameter:

Ωr,theo = 9.306 · 1025 (12.11)

Thus the relative difference to the observed value Ωr,obs = 9.265·
1025 is:

∆theo2obsΩr =
Ωr,theo 2 Ωr,obs

Ωr,obs
= ±0.44% (12.12)

12.4 Derivation of ΩΛ

Since the density parameter of neutrinos Ω¿,theo and the den-
sity parameter of radiation Ωr,theo have been calculated indepen-
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dently of the density parameter of dark energy ΩΛ, the latter
density parameter ΩΛ can be derived and calculated by using
the results of the chapters (8) and (4). In addition to that algo-
rithmic reason, we note a corresponding physical reason: The
density parameter of neutrinos Ω¿ does not depend on the dark
energy at all, and the density parameter of photons Ω³ can be
determined for the particular case of a homogeneous universe,
and the result can be transferred to the realistic case of the
present-day heterogeneous universe.

In that manner we derive the following density parameter:

ΩΛ,theo = 0.68265 (12.13)

Thus the relative difference to the observed value ΩΛ,obs =
0.6847 is:

∆theo2obsΩΛ =
ΩΛ,theo 2 ΩΛ,obs

Ωr,obs
= ±0.3% (12.14)

With it, Ã8 takes the following value:

Ã8,theo = 0.8044 (12.15)

Thus the relative difference to the observed value Ã8,obs = 0.8057
is, see C. (11):

∆theo2obsÃ8 =
Ã8,theo 2 Ã8,obs

Ã8,obs
= ±0.16% (12.16)

Theorem 12 Derived cosmological constants

(1) Using quantum gravity, the corresponding universal con-
stants G, c, kB as well as h and H0 as a time reference, we
derived all other essential cosmological constants.

(2) In particular, these cosmological constants are ΩK, Ωr, ΩΛ,
ΩM and Ã8

(3) Moreover, we derived the density parameters of neutrinos
Ω¿ and radiation Ω³, also based on part (1).



156 CHAPTER 12. SIMULTANEOUS DERIVATION OF ΩJ

(4) Additionally, we derived the mass mH of the Higgs boson,
also based on part (1).

(5) For all derived constants and quantities in parts (2) to (4),
the difference between theory and observation is smaller than
the error of observation. So all these derived constants and
quantities are in precise accordance with observation.

(6) Hence all derived constants and quantities in parts (2) to
(4), are results of the physics of quantum gravity including the
constants G, c, kB, h and H0. In particular, they are not inde-
pendent constants of nature.

(6a) As all masses of elementary particles are represented or
caused by the neutrinos and mH , also these masses do not rep-
resent independent constants of nature.



Chapter 13

Solution of H0 and Ã8 tensions

In this C. we solve the H0 and Ã8 tensions by using our theory.

13.1 Explanation of the H0 tension

In this section we model observations of the Hubble constant
H0, that is the present-day value of the Hubble parameter H(z).
Each observation of H0 uses radiation that is emitted at a dis-
tance with a corresponding redshift z.

In the standard model of cosmology, the Hubble constant
H0 is a fixed parameter. However, observation shows that the
observed values of H0 depend on that redshift of the emission
of the used radiation, see Fig. (13.1).

13.1.1 H0 in the standard model

According to the observation in Fig. (13.1), the standard model
of cosmology, SMC, must be generalized. For it we start with
the definition of H0 in the SMC:

H2
0 =

8Ã ·G
3

· Ãcr.,t0 with Ãcr.,t0 = Ãr,t0 + Ãm,t0 + ÃΛ (13.1)

13.1.2 H0 described as an average

In order to generalize H0 in the SMC, we describe it in terms of
a time averaged density 〈ÃΛ〉, as ÃΛ is a function of the redshift
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Figure 13.1: H0 as a function of the redshift z of the probe.
Probes:
×, megamaser, Pesce et al. (2020).
æ, distance ladder, Riess et al. (2019) (left), Suzuki et al. (2011).
o, baryonic acoustic oscillations, BAO , Zaldarriaga et al.
(2020). Weiland et al. (2018)),
", weak gravitational lensing, Lu and Haiman (2020)).
∆, strong gravitational lensing, Birrer et al. (2020).
æ, gravitational wave, Escamilla-Rivera and Najera (2021),
Fishbach et al. (2019).
�, surface brightness, Blakeslee et al. (2021),
pentagon, CMB, Collaboration (2020b).
Theories:
both without any fit
· · · · · · · · · Semiclassical dark energy theory, Carmesin (2021c).
22222 quantum theory of dark energy,
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z or the time t, see Fig. (13.1). Thereby the average ranges
from a time te at which the radiation of a probe is emitted until
the present-day time t0.

Naturally, the density is weighted by the volume ·V (tform)
that is formed according to the FLE at a time t:

〈ÃΛ〉(te) =
∫ t0
te
·V (t)ÃΛ(t)dt
∫ t0
te
·V (t)dt

(13.2)

The density ÃΛ in Eq. (13.1) is naturally replaced by its average:

H2
0(te) =

8Ã ·G
3

· Ãcr.,t0 with Ãcr.,t0 = Ãr,t0 + Ãm,t0 + 〈ÃΛ〉(te)
(13.3)

So this Eq. holds in the SMC. Moreover, this Eq. describes
an appropriate value of H0(te) for a probe based on radiation
emitted at a time te.

13.1.3 Reference value for H0

In this section we introduce a reference value for H0. That value
should combine two advantages: It should present a relatively
long period of averaging, and there should be an observation
with a relatively small error of measurement, so that a possible
comparison is relatively meaningful. Accordingly, we choose
the value for H0 of the CMB, H0(z = 1090) = H0,CMB, see Fig.
(13.1):

H2
0(tCMB) =

8ÃG

3
·Ãcr.,t0 with Ãcr.,t0 = Ãr,t0+Ãm,t0+〈ÃΛ〉(tCMB)

(13.4)

We apply that reference value. For it we derive the ratio
with H2

0(te) for another time of emission te:

H2
0(te)

H2
0(tCMB)

=
Ãr,t0 + Ãm,t0 + 〈ÃΛ〉(te)

Ãcr.,t0
(13.5)
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Here we identify the density parameters:

H2
0(te)

H2
0(tCMB)

= Ωr + ΩM +
〈ÃΛ〉(te)
Ãcr.,t0

(13.6)

Next we analyze the last summand.

13.1.4 Reference value for ΩΛ

In order to apply the density parameter ΩΛ of the reference
value, we expand the last summand in the above Eq.:

H2
0(te)

H2
0(tCMB)

= Ωr + ΩM +
〈ÃΛ〉(te)

〈ÃΛ〉(tCMB)
· 〈ÃΛ〉(tCMB)

Ãcr.,t0
(13.7)

The last fraction is the density parameter of the reference value:

ΩΛ,CMB =
〈ÃΛ〉(tCMB)

Ãcr.,t0
(13.8)

So we derive:

H2
0(te)

H2
0(tCMB)

= Ωr + ΩM +
〈ÃΛ〉(te)

〈ÃΛ〉(tCMB)
· ΩΛ,CMB (13.9)

Similarly as in chapter (11), we describe the ratio in the
above Eq. by a factor (1 + »(te))

2:

〈ÃΛ〉(te)
〈ÃΛ〉(tCMB)

= (1 + »(te))
2 (13.10)

Thus, we derive:

H2
0(te)

H2
0(tCMB)

= Ωr + ΩM + ΩΛ,CMB · (1 + »(te))
2 (13.11)

We solve the above Eq. for H0(te):

H0(te) = H0(tCMB) ·
√

Ωr + ΩM + ΩΛ,CMB · (1 + »(te))2

(13.12)
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Figure 13.2: Ã8 as a function of the redshift z of the probe: galaxy
clustering and lensing (æ, (Abbott et al., 2019, p. 6, 15)), weak
gravitational lenses ((Lu and Haiman, 2020, p. 1, 2)), baryonic
acoustic oscillations (o, (Tröster et al., 2020, p. 1, 2)), CMB (×,
(Collaboration, 2020b, p. 16)). Dark energy theory II (dotted).
Dark energy theory IV (dashed).

13.1.5 Calculation of H0(te)

The theory provides the time evolution of the density ÃΛ, see
Fig. (10.4). With it the time averages and the factor (1+»(te))

2

are determined, see Eq. (13.10). Therefrom the time evolution
of the Hubble parameter H0(te) is calculated and presented as
a function of the redshift z by the dashed line in Fig. (13.1).

That Fig. shows that the theory is in precise accordance with
observation. Hence the theory solves the H0 tension. Thus, the
H0 tension is explained by the fact that the density ÃΛ varies
as a function of time, see Fig. (10.4).

13.2 Explanation of the Ã8 tension

The observed values of the Hubble constant H0 present a func-
tion of the redshift of the respective probes, see Fig. (13.1).
Similarly the observed values of the amplitude of matter fluc-
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tuations Ã8 is function of the redshift of the respective probes,
see Fig. (13.2).

Again this can be explained by the present theory. For it we
apply the theory derived in (Carmesin, 2021c, C. 7): We use
the linear growth factor, see (Carmesin, 2021c, Eq. 7.94)):

D(z) = H(z)

∫ z

0

d·
1 + ·

H3(·)
(13.13)

If the probe has been emitted at tCMB, then we derive:

DCMB(z) = H0,CMBE(z)

∫ z

0

d·
1 + ·

H3
0,CMBE

3(·)
(13.14)

Hereby E(z) denotes the dimensionless Hubble parameter, see
Eq. (1.23). If the probe has been emitted at te, then we obtain:

Dte(z) = H0,teE(z)

∫ z

0

d·
1 + ·

H3
0,te

E3(·)
(13.15)

We derive the ratio:

Dte(z)

DCMB(z)
=

H2
0,te

H2
0,CMB

(13.16)

The value of Ã8 can be derived from the overdensity ·R8
(·R8

is the overdensity ·(~r) = Ã(~r)2〈Ã〉
〈Ã〉 at a scale of 8 Mega parsec) as

follows, (Carmesin, 2021c, Eq. 7.157)):

Ã8 =
·R8

D(z)
(13.17)

Thus, the observed value based on a probe emitted at tCMB is
as follows:

Ã8,CMB =
·R8

DCMB(z)
(13.18)

Similarly, the observed value based on a probe emitted at te is
as follows:

Ã8,te =
·R8

Dte(z)
(13.19)
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We derive the ratio:

Ã8,te
Ã8,CMB

=
DCMB(z)

Dte(z)
=

H2
0,CMB

H2
0,te

(13.20)

We solve for Ã8,te:

Ã8,te = Ã8,CMB ·
H2

0,CMB

H2
0,te

(13.21)

Therefrom the time evolution of the amplitude of matter
fluctuations Ã8 is calculated and presented as a function of the
redshift z by the dashed line in Fig. (13.2).

That Fig. shows that the theory is in precise accordance with
observation. Hence the theory solves the Ã8 tension. Thus, the
Ã8 tension is explained by the fact that the density ÃΛ varies as
a function of time, see Fig. (10.4).
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Chapter 14

Discussion

In this C. we systematically discuss our theory and results.
For it we apply the five categories of explanatory power,
(Ylikoski and Kourikoski, 2010, S. 4.1 - 4.5).

(1) Non-sensitivity: The theory should not be very sensitive to
changes in the background condition, (Ylikoski and Kourikoski,
2010, section 4.1). We achieve this by exactly explicating the
conditions we use and by restricting these conditions to a small
and very intensively tested set, see section (14.1.1). In other
words, the present theory is robust.

(2) Precision: Our results are in precise accordance with obser-
vation, as the difference to observation is smaller than the error
of observation, see sections (14.1.2) and (14.1.3).

(3) Factual accuracy: The theory at a given level of abstrac-
tion should exhibit a relatively small number of idealizations or
falsehoods, (Ylikoski and Kourikoski, 2010, section 4.3). In our
theory we overcome several idealizations that are still common
today:

(3a) Instead of presuming three dimensional space, we derive
gravitational instabilities that cause higher dimensional space,
see e. g. chapter 3 or Carmesin (2017b).
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(3b) Instead of presuming that the increase of the universe is
based on an increase of volume only, we derive the dimensional
phase transitions and their contribution to the increase of space,
see e. g. chapter 3 or Carmesin (2017b).

(3c) Instead of presuming that general relativity theory, GRT,
could be a local theory, we derived the nonlocality of GRT and
the solution of the EPR paradox as a consequence, see e. g.
(Carmesin, 2021c, THM. 5 and COR. 2).

(4) Integration: In our theory we basically integrate various
fields of physics:

(4a) We integrate GRT and quantum physics.

(4b) We integrate the microscopic dynamics described by the
Schwarzschild metric and the global dynamics of space, see e.
g. (Carmesin, 2021c, CHAP. 1).

(4c) We integrate the standard model of cosmology, SMC, and
the standard model of elementary particles, SMEP, by using the
dimensional phase transitions.

(4d) Using these basic integrations, we solve a variety of funda-
mental problems of physics, see section (14.3).

(4e) Using the above basic integrations, we derive several pre-
dictions, see section (14.3).

(5) Cognitive salience: It should be relatively easy to under-
stand a theory, and in particular a theory should apply concepts
that are already known, see (Ylikoski and Kourikoski, 2010, sec-
tion 4.5). Accordingly, the cognitive salience of our theory is
especially large for the following reasons:

(5a) Our theory essentially applies the well known concepts of
GRT, quantum physics, elementary particles and dimension of
space.
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(5b) Moreover, our theory reveals how to unify these concepts,
and so our theory makes aware connections among these con-
cepts. Thus, the understanding of these concepts becomes eas-
ier, without using any simplification and with providing novel
results.

14.1 Comparison with observation

In this section we present theoretical values xtheo, corresponding
observed values xobs and respective relative errors

∆theo2obsx =
xtheo 2 xobs

xobs
· 100% (14.1)

Hereby, we analyze absolute values only.

14.1.1 Condition of derivation

Thereby we derived all theoretical values by using quantum
gravity, the corresponding universal constants G, c, kB and h,
as well as the Hubble parameter H0 at z = 1090 as a reference
for the present-day time after the Big Bang. In particular, we
do not apply any other numerical input, such as fit parameters
or boundary values, for instance.

14.1.2 Cosmological and density parameters

We derived all essential cosmological parameters, see corollary
(2). Here we compare the values that have been derived simul-
taneously in C. (12).
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quantity xtheo xobs |∆theo2obsx| reference

ΩΛ 0.68265 0.6847± 1.1% 0.3% THM. (10)

ΩK,av. 0 0.0007± 171% 100% COR. (2(3))

ΩM 0.31726 0.3153± 1.1% 0.6% THM. (10)

105 · Ω³ 5.35 5.335± 5.68% 0.26% THM. (4)

105 · Ω¿ 3.9556 3.8742± 9.7% 2.1% THM. (7)

105 · Ωr 9.306 9.265± 3.1% 0.44% THM. (4)

Ã8 0.8044 0.8057± 1% 0.16% THM. (11)

Table 14.1: Using H0, we derived all cosmological parameters.
Here we applied ΩΛ + ΩM + Ωr = 1.

Our comparison in Table (14.1) shows: The relative differ-
ence of our theoretical values and the corresponding observed
values is smaller than the error of measurement. So our results
are in precise accordance with observation.

14.1.3 Masses

The masses of the elementary particles of the SMEP can be
divided into two groups:

(1) masses of neutrinos

(2) masses of the Higgs boson and masses caused by the Higgs
boson, including masses of quarks, W+,0,2 bosons, electrons,
muons and tauons.

(3) the remaining elementary particles of the SMEP are the
photons and gluons, these have zero mass.

Accordingly, we derived the masses of neutrinos in terms of
the density parameter Ω¿ and the mass of the Higgs boson,
mH,full,theo = EH,full,theo/c

2.
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quantity xtheo xobs ∆theo2obsx reference

105 · Ω¿ 3.9556 3.8742± 9.7% ±2.1% THM. (7)

mH in GeV
c2 125.541 125.18± 1.1% ±0.29% PROP. (9)

Table 14.2: Using H0, we derived the masses that represent or
cause all masses of the SMEP.

Our comparison in Table (14.2) shows: The relative differ-
ence of our theoretical values and the respective observed values
is smaller than the error of measurement. Thus our theory is in
precise accordance with observation. This holds for all masses
that represent or cause all masses of the SMEP.

14.2 Predictions

In this section we apply the basic solution of the hierarchy prob-
lem in order to predict novel elementary particles. In a dimen-
sion D the ZPE of the longitudinal mode is as follows:

ZPELONG,D =
EP

2
/2

Dhori−D

D = 6.1049 · 1018 GeV/2
Dhori−D

D

(14.2)
Here we used Dhori = 301. The corresponding object consists of
the three lowest excitation modes with n = 1, n = 2 and n = 3:

Eobject,D = Σn=3
n=1(2n+1)ZPELONG,D = 15 ·ZPELONG,D (14.3)

Four dimensional QST: In D = 4 the predicted object has the
energy Eobject,D=4 = 4.077MeV and is very unstable, see Fig.
(3.7).

14.2.1 Observation of dimensional phase transition?

A stochastic gravitational wave background, GWB, has been
observed, and it is interpreted as a relic of phase transitions in
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the early universe. Thereby a transition temperature with the
corresponding energy in the following interval has been found,
see e. g. (Ratzinger and Schwaller, 2021, p. 5) or (Arzoumanian
et al., 2021, Fig. 1):

EGWB,obs * [1; 10] MeV (14.4)

This observation can be interpreted as follows: At the last
dimensional phase transition of the cosmic unfolding, the above
four dimensional elementary particles or QST with Eobject,D=4 =
4.077MeV unfolded to an object with energies below one eV,
see theorem (6), and thereby the object emitted its energy in
the form of gravitational waves.

Six dimensional QST: In D = 6 the predicted object has the
energy Eobject,D=6 = 145 TeV. Using Pb-Pb collisions, the LHC
could in principle achieve collision energies of 1150 TeV, see
(Naumann, 2009, p. 21) or Tanabashi et al. (2018). So that
predicted particle could possibly be observed with the current
LHC in appropriate experiments.

Seven dimensional QST: In D = 7 the predicted object has the
energy Eobject,D=7 = 20 821 TeV. So that predicted particle can-
not be observed by using the current LHC and Pb-Pb collisions.
Possibly, that particle could be formed by novel experimental
setups or by an accelerator built in the future.

Eight dimensional QST: In D = 8 the predicted object has
the energy Eobject,D=8 = 864 060 TeV. Similarly as for D =
7, that predicted particle could possibly be formed by novel
experimental setups or by an accelerator built in the future.

Higher dimensional QST: Moreover, objects or elementary par-
ticles are predicted for all dimensions ranging from D g 9 to-
wards D = Dhori j 301. The corresponding energies are de-
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termined by Eq. (14.3). Thereby the Planck scale is reached
at D = Dhori. These elementary particles can presumably be
observed directly by novel or innovative experiments Addition-
ally, these can be observed indirectly, similarly the particles of
the dark energy have been ’observe indirectly’ by measuring the
dark energy, H0, the H0 tension and the Ã8 tension, for instance.

14.3 Solved problems

We summarize solved problems in order to make transparent
how our theory integrates various fields and can be used to
solve problems:

problem of rapid enlargement of distances (Guth (1981), solved
since 2017, see e. g. Carmesin (2017b), Carmesin (2021a))

horizon problem (Guth (1981), solved since 2017, see e. g.
Carmesin (2017b), Schöneberg and Carmesin (2021))

’inflaton’ hypothesis and reheating problem (see Guth (1981)
and Nanopoulos et al. (1983), Broy (2016), solved since 2017,
see e. g. Carmesin (2017b), Carmesin (2020a))

dark matter problem (Zwicky (1933), Sanders (2010), see e. g.
solved since 2018, Carmesin (2018h), Carmesin (2019d))

dark energy problem (Josset et al. (2017), solved since 2018, see
e. g. Carmesin (2018g), Carmesin (2021c))

H0 tension (Riess et al. (2019), solved since 2018, Carmesin
(2018g), Carmesin (2021c))

fine-tuning problem (Landsman (2016), solved since 2019, see
Carmesin (2019d), and for the case of all cosmological constants,
see section (14.1.2).

flatness problem (Guth (1981), solved since 2020, Carmesin
(2020b), Carmesin (2021c))

zero energy hypothesis (Tryon (1973), solved 2020, Carmesin
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(2020b))

graviton hypothesis (Blokhintsev and Galperin (1934), solved
in Carmesin (2021c))

EPR paradox and nonlocality (Einstein et al. (1935), solved in
Carmesin (2021c))

Ã8 tension (Tröster et al. (2020), solved in Carmesin (2021c))

hierarchy problem of particle physics, (Shaposhnikov and Shk-
erin (2018), solved here)

mass problem of the Higgs boson and the neutrinos (Aad et al.
(2012), Chatrchyan et al. (2012) Peskin (2015), Tanabashi et al.
(2018), solved here)

interaction problem of the nature of an interaction that can be
repulsive as well as attractive, solved here in the framework of
an effective interaction energy, see section PROP. 9)

14.4 Discussion

Here we apply a theory1 that is based on quantum gravity and
that explains many phenomena in a robust, precise, factually
accurate, integrative and cognitive salient manner. These five
properties are the elements of a systematic analysis of our the-
ory, see Ylikoski and Kourikoski (2010), and they provide a clear
evidence of our theory. We emphasize that we do not use any fit
parameter, instead we use quantum gravity and the universal
constants G, c, kB and h only.

Several fundamental problems are solved for the first time
here. For it we use our theory. These problems include the hi-
erarchy problem of elementary particle physics and the problem

1I derived the present theory progressively. The publication started in 2017 in books,
papers and my book series. See e. g. Carmesin (2017b), Carmesin (2018h), Carmesin
(2018g), Carmesin (2018f), Carmesin (2018a), Carmesin (2019d), Carmesin (2017b),
Carmesin (2019a), Carmesin (2019f), Carmesin (2020b), Carmesin (2020a), Carmesin
(2021c), Carmesin (2021a), Carmesin (2021d).
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of explaining the masses in elementary particle physics, see e.
g. Peskin (2015). These problems are solved by a completely
novel unification of cosmology and elementary particle physics:
Here we show that the dimensional phase transitions that took
place in the early universe additionally provide the states that
can be excited in order to form elementary particles such as the
neutrinos, the Higgs boson and the particles caused by it such
as quarks, electrons or W bosons.

14.5 Outlook

There are many interesting questions that could be analyzed on
the basis of that theory in the future, examples are as follows: Is
it possible to derive the interactions and symmetries in elemen-
tary particle physics, see e. g. Tanabashi et al. (2018), on the
basis on quantum gravity? Is it possible to explain open ques-
tions of structure formation by using quantum gravity? How
can the dimensional phase transitions in the early universe be
observed directly and used technically, see Sect. (14.2.1)? How
can the elementary particles predicted here be observed directly
and applied technologically, see Sect. (14.2.1)?

For instance, a device could use the stimulated emission of
QST and provide QST - particles at high precision and lumi-
nosity. Hereby radiation and particles could be combined such
as in the XFEL. Such a device could be applied in order to
provide communication and transport process using higher di-
mension. Such a process would be at a velocity v f c at the
higher dimension and appear to be at higher velocity than c in
three dimensions, see Carmesin (2021a). Moreover, such pro-
cesses could treat an encapsulated area without destruction. E.
g., caries in a tooth could be treated without drilling a hole. In
particular, this could be achieved at energies that are already
very common in medical devices, since a four dimensional par-
ticle is available at an energy of few MeV, see 14.2.1.
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Figure 14.1: Paths from basic theories to derivations, explana-
tions and calculations: These derivations reflect the structure
of physics and have been published since Carmesin (2017b).
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14.6 Unification of SMC and SMEP

The standard models of cosmology, SMC, and of elementary
particles, SMEP, have been unified as follows, see Fig. (14.1):
Based on the three basic concepts, GRT, SP and QP, QG has
been developed. Therefrom, QST and dimensional phase tran-
sitions including cosmic unfolding have been derived, see e. g.
Carmesin (2017b), Carmesin (2019d), Carmesin (2021c).

Using these results, we derived the basic solution of the hi-
erarchy problem of elementary particles. Thereby, cosmic un-
folding provides the QST that solve the hierarchy problem.

Based on that solution of the hierarchy problem, we derived
the basic masses. Using these, we derived all essential cosmo-
logical parameters. Altogether, we derived our results from the
basic theories only, and we used corresponding universal con-
stants including the time reference H0 only, and we achieved
precise accordance with observation.

14.6.1 Public documentation and discussion

The theory in Fig. (14.1) has been published since Carmesin
(2017b), and it has been discussed at many conferences. This
process is described as follows:

Reviewed papers: Several results have been published in peer
reviewed papers, see2.

Conferences: Many results have been presented at conferences,
see3.

2Peer reviewed papers: Carmesin (2016), Carmesin (2018a), Carmesin
(2018d),Carmesin (2018e),Carmesin (2018c), Helmcke et al. (2018), Sprenger and
Carmesin (2018), Carmesin (2019b), Carmesin (2020a), Carmesin and Carmesin (2020),
Heeren et al. (2020), Schöneberg and Carmesin (2020), Carmesin (2021b), Carmesin
(2021d), Schöneberg and Carmesin (2021), Lieber and Carmesin (2021), Sawitzki and
Carmesin (2021)

3Presentations at conferences: Carmesin (2017a), Carmesin and Carmesin
(2018a),Carmesin and Carmesin (2018b), Helmcke et al. (2018), Sprenger and Carmesin
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Books: Four books have been published, see4. Additionally,
a book series has been started, and therein, four books have
already been published, see5.

Internet: Many results are available at my page at Research
gate:
http://www.researchgate.net/profile/ Hans Otto Carmesin
Some results are available at my homepage:
hans-otto.carmesin.org

14.6.2 An essential insight by quantum gravity

Quantum gravity reveals that there occurred an enormous se-
quence of phase transitions in the early universe: a cosmic un-
folding of space, ranging from the Planck scale to the millimeter
scale. The corresponding quantum states cause all masses of el-
ementary particles, and they form neutrinos, Higgs bosons, the
quanta of dark energy as well as many novel elementary parti-
cles, ranging from the Planck mass to the neutrino mass scale.

(2018), Carmesin and Brüning (2018), Carmesin (2019e), Carmesin (2019a), Brüning
et al. (2019), Rademacker et al. (2019), Carmesin (2019g), Brüning and Carmesin (2019),
Carmesin (2020a), Carmesin and Carmesin (2020), Heeren et al. (2020), Schöneberg and
Carmesin (2020), Carmesin (2021b), Carmesin (2021d), Schöneberg and Carmesin (2021),
Lieber and Carmesin (2021), Sawitzki and Carmesin (2021)

4Books: Carmesin (2017b), Carmesin (2018h), Carmesin (2018g), Carmesin (2018f)
5Book series: Carmesin (2019d), Carmesin (2020c), Carmesin (2020b), Carmesin

(2021c)
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Appendix

15.1 Universal constants

In this section we present universal constant.

quantity observed value reference

G 6.674 08(31) · 10211 m3

kg·s2 Tanabashi et al. (2018)

c 299 792 458 m
s , exact Tanabashi et al. (2018)

h 6.626 070 15 · 10234 Js, exact Newell et al. (2018)

kB 1.380 649 · 10223 J
K , exact Newell et al. (2018)

ë0 8.854 187 817 · 10212 F
m Tanabashi et al. (2018)

Table 15.1: Universal constants ((Newell et al., 2018, table 3),
(Tanabashi et al., 2018, table 1.1)).
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15.2 Observed values

quantity observed value reference

H0 in
km

s·Mpc 67.36± 0.54 (0.8 %) [PC]

ΩΛ 0.6847± 0.0073 (1.1 %) [PC]

ΩK 0.0007± 0.0019 [PC]

zeq 3402± 26(0.76%) [PC]

ΩM 0.3153± 0.0073(2.3%) [PC]

Ωr 9.265+0.288
20.283 · 1025 (3.1 %) [PC]

Ã8 0.8057± 0.008(1%) [PC]

Ãcr,t0 in
kg
m3 8.660+0.137

20.137 · 10227 (1.6 %) [PC]

Ã̃cr,t0 7.037 · 102123 [PC]

Ã̃v,t0 4.8181 · 102123 [PC]

Ωb 0.0493± 0.00032 [PC]

Ωc 0.2645± 0.0048 [PC]

Rlh 4.1412 · 1026 m [C2019]

TCMB 2.7255(6)(0.02%) K [T2018]

ΩCMB 5.4501 Eqs. (4.30, 4.31)

Ω¿ 3.8742 · 1025(9.7%) S. (8.3)

Table 15.2: Observations: [PC] marks data based on the CMB
((Collaboration, 2020a, table 2)), in particular based on the
modes TT, TE, EE, the low energy and lensing. Quantities
with a tilde are presented in natural units alias Planck units
(see subsection 15.3). Hereby 1 Mpc = 3.0856776 · 1019 km.
[C2019] is based on an evaluation in Carmesin (2019d). [T2018]
is based on (Tanabashi et al., 2018, section 28.3.1).
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15.3 Natural units

Planck (1899) introduced Planck units. We mark quantities in
natural units by a tilde, see Tab. 15.3 or Carmesin (2019d).

physical entity Symbol Term in SI-Units

Planck length LP

√

~G
c3 1.616 · 10235 m

Planck time tP
LP

c 5.391 · 10244 s

Planck energy EP

√

~·c5
G 1.956 · 109 J

Planck mass MP

√

~·c
G 2.176 · 1028 kg

Planck volume VD,P LD
P

Planck volume, ball V̄D,P VD · LD
P

Planck density ÃP
c5

G2~
5.155 · 1096 kg

m3

Planck density, ball Ã̄P
3c5

4ÃG2~
1.2307 · 1096 kg

m3

Planck density, ball Ã̄D,P
MP

V̄D,P

Planck temperature TP TP = EP

kB

scaled volume ṼD
VD

V̄D,P

scaled energy Ẽ EP E = Ẽ · EP

scaled density Ã̃D
M̃
r̃D=

Ẽ
r̃D ÃD = Ã̃D · Ã̄D,P

scaled length x̃ LP x = x̃ · LP

Planck charge qP MP

:
G4Ã·0 11,71 e

Table 15.3: Planck - units.
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15.4 Glossary

Words marked bold face can usually be found in the glossary.

Abbreviation: S. (section), C. (chapter), DEF. (def-
inition), PROP. (proposition), THM. (theorem).

amplitude of matter fluctuations, Ã8: (C. 1)

Bose gas: Quantum gas consisting of quanta with
integer spin (S. 3.6)

Big Bang: Start of time evolution of visible space

cdm, cold dark matter: See Fig. (1.1), Carmesin
(2018f) or Carmesin (2019d).

CMB, Cosmic Microwave Background: Radia-
tion emitted at z j 1090. (Tab. 15.2)

complete time evolution of spacetime: Evolution
of the light horizon Rlh(t) ranging from the Planck
- length LP to the actual light horizon Rlh(t0) (Fig.
2.4)

cosmic unfolding: It causes the extremely rapid
distance enlargement in the early universe
(S. 3.7).

cosmological constant: Λ corresponds to the dark
energy with its density ÃΛ (Tab. 15.2).

curvature parameter: k = 22Ē
m0·c2 (S. 1.3.2)

dark energy: Energy of the cosmological density of
the vacuum ÃΛ (Tab. 15.2).

density, critical: Ãcr,t0 or Ãcr (Tab. 15.2)

density, critical, at a dimensional transition:
Ã̃D,c (S. 1.3.2)

density, critical, shortcuts: Ãcr.conn. (T. 1)

density, overdensity: ·(~x, t) = Ã1(~x, t)/Ãh (S. 4.2)
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density parameter: Ωj = Ãj/Ãcr,t0 (Tab. 15.2)

density, vacuum: ÃΛ = ΩΛ · Ãcr,t0 (Tab. 15.2)
dimensional distance enlargement factor: A fac-

tor ZD+s³D occurs at a dimensional phase transi-
tion from a dimension D+s to a dimension D and
describes the corresponding increase of distances
(C. 3).

dimension of the space: (C. 3)

dimensional horizon Dmax or Dhorizon: It is the
maximal dimension that the space within the ac-
tual light horizon can have achieved in the past.
Thereby the following transformations of space are
essential: the isotropic scale and the enlargement
of distance caused by a ³ dimensional transition.
(C. 3).

dimensional phase transition: Change of spatial
dimension D (C. 3).

dimensional unfolding: Change of spatial dimen-
sion D (C. 3).

dimensionless Hubble parameter E = H/H0:
(C. 1)

distance measures: The basic measure is the light
travel distance c · dt. The complete distance
or comoving distance or present-day proper
distance includes the enlargement of space, while
the luminosity distance also includes the lumi-
nosity of a source and the redshift (S. 1.3.6).

dynamical mass: M = E
c2 (PROP. 4)

expansion of space: Expansion since the Big Bang
at constant dimension D
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extended FLE, EFLE: FLE extended by quantum
effects (S. 3.4.1)

extra radiation species, ERS: (C. 1)

extremely rapid distance enlargement in the
early universe: Guth (1981) conjectured that
factor, the factor has been explained by dimen-
sional transitions in this book and by Carmesin
(2017b), Carmesin (2019d)

event horizon: (S. 2.1)

flat, flatness, flatness problem: Space without
curvature is flat (S. 14.3).

frame: Each observation apparatus is localized in
spacetime. That localization establishes a frame.
An examples is the HUF (C. 1).

Friedmann - Lemâıtre equation, FLE: (C. 1)

gravitational field: G7 (C. 1)

GRT: General relativity theory (C. 1)

horizon: Global limit of visibility (C. 1)

Hubble - parameter: H = ȧ
a (C. 1)

Hubble - constant: H0 = H(t0) Hubble parameter
at t0

incomplete: A theory that does not describe the
physically known objects or properties is incom-
plete (S. 2.2)

light horizon, actual: Rlh = 4.142 · 1026 m (Tab.
15.2)

light horizon, at a time t: Rlh,t (Carmesin (2019d))

light-travel distance: dlight2travel = tlight2travel · c
linear growth factor: D(t) (C. 13)
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natural units: Planck - units (Tab. 15.3)

pbh, primordial black holes: See Fig. (1.1) and
Carmesin (2020b).

Planck scale: At that scale there occurs the length
limit and the density limit in nature. Accord-
ingly, natural units or Planck units have been in-
troduced (Tab. 15.3).

polychromatic vacuum: It includes several wave-
lengths of the quanta of space (C. 10)

QG, quantum gravity: Combination of gravitation
and quantum physics (C. 2 or Carmesin (2019d))

QP, quantum physics: Quantum physics, see C. 1

QST, quantum of spacetime, or quantum of
vacuum: Representations are quantized RGWs,
quantized spacetime scalar, quantized spacetime
tensor (C. 5)

rapid enlargement of distances: (Fig. 2.4)

RGW, rate gravity wave: Carmesin (2021c) or S.
(5.3)

rate of the formation of vacuum: (C. 3)

redshift: Relative increase of the wavelength z = ∆»
»

(C. 1)

reduced normalized energy ED: (C. 3)

scale factor: kt1³t2 (C. 3), it is sometimes described
by a scale radius a, a(t) = ktref³ta(tref (C. 1).

shortcut: (C. 3)

SP, statistical physics: (C. 1)

SOU, shortest observable uncertainty: (C. 2)

Schwarzschild radius RS: At this radius the escape
velocity is equal to c (S. 2.1)
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SMC, Standard Model of Cosmology: (C. 1)

SMEP, Standard Model of Elementary Particles: (C.
1)

spacetime: Combination of space and time (C. 1 or
5).

SRT, special relativity theory: (C. 1)

standard deviation at a sphere with radius R:
ÃR (C. 13)

standard deviation at a sphere with radius R8:
Ã8 = ÃR8

It is also called amplitude of matter fluc-
tuations or amplitude of matter fluctuations (C.
13).

unfolding, dimensional: Space unfolds when the
dimension decreases (C. 3)

universal constants: (Tab. 15.1)

vacuum: The vacuum has a volume, a density and
the velocity c. (C. 1, 3, 10 or Carmesin (2021c))

ZPE: Zero-point energy of omnipresent zero-point os-
cillations (C. 1, 2, 3)

ZPO: Zero-point oscillations are omnipresent quan-
tum states corresponding to a ground state (C. 1,
2, 3)
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