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Chapter 1

Introduction: Sustainability, Technical Change,

and Macroeconomic Theory

Author: Philip Kerner

Abstract

Organizing the interdependence of the economic system and the natural environment in

a sustainable way is a major challenge for humankind. A key mechanism towards an

environmentally sustainable economy is green technical change. This introductory chap-

ter provides a holistic view on the issues of sustainable development with respect to the

natural environment and the role of technology. Starting from a broad perspective, it first

defines the interdependence between the economic system and the natural environment

and discusses the potential environmental limits for economic growth. Second, it discusses

the political and societal approach to sustainable development, highlighting the core role

of technical progress in these attempts. Third, it reviews the role of technical change

in economic theory and what insights modern macroeconomic theory provides for envi-

ronmentally sustainable growth. These approaches provide the theoretical foundation for

the following empirical chapters. Finally, it provides an overview of the empirical papers,

shows their connection to the concepts discussed previously, highlights their contributions,

and discusses their results.

Keywords: Sustainability; Climate Change; Green Growth; Directed Technical Change;

Green Innovation

JEL Classification: O13; O33; O44; Q01; Q55; Q57

Publication: This is the introductory chapter of this cumulative dissertation.
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1.1 Introduction

In the last century, global economic growth has been accompanied by considerable in-

creases in the use of natural resources (e.g., Krausmann et al., 2009), demonstrating the

dependence of the economic system on the natural environment. Arguably, especially

the dependence on fossil fuels has received increasing attention in the global and na-

tional policy agenda because of its direct relation to CO2 emissions and, hence, climate

change.1 For example, the European Commission recently announced its new European

Union (EU) External Energy Strategy (European Commission, 2022) to reduce the de-

pendence on fossil fuels, establish energy security, and tackle climate change. However,

the interdependence of the economic system and the natural environment is multidimen-

sional and complex (Ekins, 1992) and so is the interdependence between different crucial

Earth system processes (Rockström et al., 2009; Steffen et al., 2015). These processes

are directly affected by economic activity and the extraction and dissemination of nat-

ural resources that comes along with it (e.g., Ekins et al., 2003; Schramski et al., 2015;

Steffen et al., 2015). As a result, current patterns of economic activity appear unsus-

tainable in several other dimensions in addition to climate change (Steffen et al., 2015),

making environmental sustainability a comprehensive challenge for humankind. A central

element to contribute to this challenge might be technical change. The development, im-

provement, and implementation of environmentally-friendly technology is often seen as a

cornerstone to decouple economic activity from environmental impact (Popp et al., 2010;

Hickel and Kallis, 2020), for example, by enabling a net-zero energy system (e.g., Davis

et al., 2018; Probst et al., 2021) and/or by reducing the dependence on (specific) scarce

natural resources in general (e.g., Hassler et al., 2021).2 Hence, a profound understanding

of technical change along several dimensions is crucial for the evaluation of sustainability

of future economic development with direct policy relevance (Popp et al., 2010).

This thesis revolves around the concept of green technological change in four scientific

papers (Chapters 2–5) and this introduction (Chapter 1), which frames the four empirical

papers. Chapter 2 considers the long-term trend in the use of natural resources relative

to economic activity for a large sample of developing and developed countries. Chapter 3

analyzes the dependence of economic growth on overall natural resource use and four

1For the scientific evidence on this relation see, e.g., the Intergovernmental Panel on Climate Change
(IPCC) and its assessment reports (IPCC, 2007, 2021).

2In this introductory chapter, I use the terms “green”, “environmentally-friendly”, “environmental”, and
“clean” technical or technological change (or technology) interchangeably.
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subcategories of resource use: fossil fuels, minerals, metals, and biomass. It is exam-

ined whether this dependence is systematically different between countries with different

institutional settings. Chapter 4 aims to determine the impact of green technology devel-

opment on economic productivity in European regions. Chapter 5 analyzes the impact of

shocks to the global oil market on the development of green energy technologies. Chap-

ter 1 embeds the contributions of the single papers into the broader context, establishes

the theoretical foundation on which they build, shows their connection to the concepts

discussed previously, highlights their contributions, and discusses their results.

Section 1.2 establishes the basic societal framework within the empirical papers oper-

ate in a broad perspective. First, it outlines the basic interdependence of the economic

system and the natural environment and the challenge for sustainable development. Sec-

ond, Section 1.2.1 discusses the state of the critical functions of the natural environment

in a holistic approach drawing on insights from natural science. Third, Section 1.2.2

considers one particular challenge to environmental sustainability – climate change – in

greater detail. Section 1.2.3 considers the concept of “green growth”, which is an attempt

to achieve sustainable development at the institutional level. It highlights that green tech-

nical change is at the core of the green growth approach. Section 1.2.4 discusses deviating

views to the green growth concept. It emphasizes that although other approaches might

be more pessimistic regarding the feasibility of continued economic growth, they typically

require technical change as well.

Given the importance of technical change in the discussion on sustainability, Sec-

tion 1.3 considers the role of technical change in economic theory more formally. It

provides the theoretical groundings to inform the empirical papers of this dissertation.

Section 1.3.1 gives a brief overview of the central role of technological change in modern

growth theory and introduces important concepts and notions. Furthermore, it adds to the

discussion of green growth and opposing views more formally. Section 1.3.2 discusses the

theory of directed technological change in endogenous macroeconomic models in greater

detail, which gives important insights regarding economic incentives to develop clean

technologies and the role of path dependencies in technological progress. Section 1.3.3

connects the discussion of directed technical change with the policy framework of green

growth and provides some key lessons from the theory. Finally, Section 1.3.4 briefly dis-

cusses some limitations of the sketched theory and provides further considerations, which

are important for the empirical chapters.

3



Section 1.4 provides an overview of the four empirical papers of the dissertation and

shows how the papers can be classified and how they link to the theory presented in the

previous sections. Sections 1.4.1–1.4.4 provide a more detailed overview of each paper,

highlighting the scientific contributions and the implications of the results. Section 1.5

concludes the introductory chapter of this dissertation.

1.2 Economy and the Natural Environment: Ground-

ings, Science, and Policy

The modern debate around environmental sustainability is rooted in developments in the

1960s and 1970s (Drews and van den Bergh, 2016; Purvis et al., 2019). A well-known con-

tribution during that time is the report “The Limits to Growth” (Meadows et al., 1972).

This report highlights four essential limits to economic growth: the amount of available

land for agriculture; the productivity of agricultural output; the amount of available ex-

tractable non-renewable resources; the ability of the environment to assimilate wastes

(Perman et al., 2011). In response to these insights and the revolving debate, the World

Commission on Environment and Development (WCED) released the so-called “Brundt-

land report” (WCED, 1987), which was very influential in popularizing the concept of

sustainable development in the political agenda (Perman et al., 2011). In the definition of

the Brundtland report, “Sustainable development seeks to meet the needs and aspirations

of the present without compromising the ability to meet those of the future” (WCED,

1987, p. 43). In general, sustainability can be understood as the ability of something to

perpetuate in the future (Ekins, 1993; Kajikawa, 2008).

Typically, the debate on sustainability and sustainable development evolves around a

three-pillar concept, including social, economic, and environmental sustainability (Purvis

et al., 2019).3 This introductory chapter focuses on environmental sustainability. How-

ever, it is important to emphasize that the three dimensions are not mutually exclusive

(Hansmann et al., 2012).

To discuss environmental sustainability in the following sections, it is necessary to

introduce the basic interdependence between the economic system and the natural en-

3These dimensions are explicitly mentioned in the Sustainable Development Goals (SDGs) of the United
Nations (United Nations, 2015) and the World Bank approach to green growth (World Bank, 2012),
discussed in Section 1.2.3.
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vironment.4 The economic system is embedded in the natural environment and their

interdependence can be categorized along four general functions (e.g., Common, 1995;

Ekins et al., 2003; Perman et al., 2011; Ekins, 2014).5 These functions comprise: 1) the

provision of resources, e.g., the provision of minerals and fossil fuels; 2) the absorption of

wastes from economic activity, e.g., a sink for pollution in form of greenhouse gas (GHG)

emissions; 3) amenity services from the environment to individuals, including recreational

facilities and other sources of pleasure, e.g., hiking in the wilderness; 4) the provision of

basic life-supporting functions for humans. This category includes, e.g., the provision of

appropriate climatic conditions and fresh water supply (Ekins et al., 2003; Perman et al.,

2011; Ekins, 2014).6

In economics, these functions might be abstractedly thought of as being the flows of

goods and services from a stock of natural capital (Ekins et al., 2003; Perman et al.,

2011; Ekins, 2014). In this view, wealth is created by using flows from different kinds of

capital stocks, which might or might not substitute for each other in their contribution

to welfare (Ekins et al., 2003) and which interact in complex ways (Ekins, 1992). For

example, Ekins (1992) differentiates four stocks of capital: 1) natural capital; 2) human

capital (e.g., health, motivation, knowledge); 3) physically produced capital (e.g., ma-

chines, buildings, infrastructure); 4) social/organizational capital (e.g., legal, political,

family). The maintenance of these stocks, i.e., their ability to perpetuate their flows to

wealth creation in the future, indicates sustainability. Hence, each type of stock might

be linked to a specific type of sustainability (Ekins et al., 2003). If overall sustainability

is characterized by the maintenance of human welfare and hence by the maintenance of

the total stock of capital (the entirety of all disaggregated stocks), a crucial question is

how well (or if at all) the stocks or their components can substitute for each other (Ekins

et al., 2003).7 This gives rise to the important distinction between weak and strong sus-

tainability. Weak sustainability rests on the assumption that manufactured capital or

other stocks of capital can generally substitute well for natural capital, such that only the

overall stock of total capital has to be maintained. Strong sustainability presumes that

4In what follows, natural environment and environment are used interchangeably to refer to the system
of the Earth and its atmosphere (Perman et al., 2011).

5Note that the Earth and its atmosphere are by themselves embedded in the environment of outer space
(Perman et al., 2011).

6It should be stressed here that not all wastes cause pollution. They only do when exceeding the capacity
of the environment to absorb or recycle them (Ekins, 1992).

7Of course, targets might also be related to well-being of other species or the entire ecosystem in and
of itself, regardless of whether the functions serve human welfare (e.g., Victor and Sers, 2019). The
preservation of the ecosystem regardless of human purpose might be termed conservation (Kajikawa,
2008).
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the substitution is very limited and each stock itself has to be preserved (van den Bergh,

2001; Ekins et al., 2003).

As discussed by Ekins et al. (2003), a further useful distinction of the basic envi-

ronmental functions, introduced above, are “functions for” humans and “functions of”

natural capital. Latter “functions of” natural capital contain all processes in the inter-

nal functioning of the natural system, which retain its overall integrity. The “functions

for” generate human welfare of different kind directly and are inherently dependent on

the “functions of” natural capital (Ekins et al., 2003). Hence, following latter authors,

environmental sustainability might be defined as maintenance of the critical functions,

whose contribution to welfare cannot be substituted, or which could be irreversibly lost.

Although there is much uncertainty around this given the huge complexity of natural

systems, it can be regarded as likely that many “functions of” natural capital are critical

(Ekins et al., 2003).

The following sections provide the broader framing to environmental sustainability

along three main parts: First, they describe the current state of natural capital along

selected lines of the system functions based on insights from natural science. Second, they

analyze the political approach of green growth, which is designed to achieve sustainable

development.

1.2.1 Planetary Boundaries

As discussed in the previous section, principles of environmental sustainability can be

derived along the critical system functions of the natural environment. These principles

might include to sustain sink functions, i.e., the capacity of the environment to assimilate

wastes without damage or change to the ecosystem; to foster the renewal of renewable

resource; to balance the depletion of non-renewable resources with the development of

substitutes for it; and to maintain the life-support functions of the natural environment

(Ekins et al., 2003). Ekins et al. (2003) identify as the core environmental problem

that extensive use of the “functions for” human activity has a negative impact on the

natural capital and its “functions of”, which are responsible for the stability of the Earth

system. Latter notion is closely connected to what sometimes is referred to the “Great

Acceleration”, describing the huge increase in population and economic activity after

the Second World War (Steffen et al., 2007) and its impacts on the environment. This

section discusses the above themes on a natural science base. First, it states the laws

6



of thermodynamics, which provide the basis for the subsequent discussion. Second, it

exemplifies the potential scarcity of natural resources with respect to energy and metals.

Third, it considers the planetary boundaries approach (Rockström et al., 2009; Steffen

et al., 2015) as an integrated framework to characterize the state of human impacts on

important processes of the Earth system.

The laws of thermodynamics are important to understand the implications of the

following discussion. They relate to energy, which is, in its simplest definition, the po-

tential to perform work (Perman et al., 2011; Schramski et al., 2015). More precisely,

it is the distance of a property from equilibrium, which can be used to perform work

(Schramski et al., 2015). In thermodynamics it is furthermore important to distinguish

between “open”, “closed”, and “isolated systems” (Perman et al., 2011). Open systems

exchange matter and energy with the environment (Perman et al., 2011), whereas closed

systems exchange only energy, and isolated systems exchange neither energy nor matter

(Bianciardi et al., 1993; Glucina and Mayumi, 2010; Perman et al., 2011; Mayumi, 2017).

The Earth and its atmosphere are a closed system (Glucina and Mayumi, 2010; Perman

et al., 2011). The first law states that energy can be transformed (e.g., between work

and heat) but neither created nor destroyed; the total quantity is conserved (Glucina and

Mayumi, 2010; Perman et al., 2011; Schramski et al., 2015; Mayumi, 2017). The second

law essentially states that as energy changes forms, although its quantity is conserved,

its quality eventually degrades into low-quality heat energy (Schneider and Kay, 1994;

Schramski et al., 2015).8

These laws have direct consequences. An often-used approximated concept that de-

rives from the first law of thermodynamics is the so-called materials balance (or mass

balance) principle (van den Bergh, 1999). In essence, it states that matter/materials can-

not be created or destroyed (van den Bergh, 1999; Glucina and Mayumi, 2010; Perman

et al., 2011; Mayumi, 2017). This implies that economic activity cannot create anything

in a material sense, but only transform extracted materials (Perman et al., 2011), and

that stocks can be exhausted as matter-energy cannot be created (Glucina and Mayumi,

2010; Mayumi, 2017). It furthermore implies that there is necessarily waste output, which

goes back to the environment in some form (Glucina and Mayumi, 2010; Perman et al.,

2011; Mayumi, 2017). The waste output can be reduced by recycling, but the extent of

recycling depends on the amount of available energy, which might set limits for recycling

8The second law can also be stated in terms of entropy, which is a measure of irreversibility (Schneider
and Kay, 1994). It essentially implies that the entropy of an isolated system increases with energy
conversion (Costanza et al., 1997; Perman et al., 2011).
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in practice (Bianciardi et al., 1993; Perman et al., 2011). The second law implies fur-

thermore that energy coming from fossil fuel stocks is only available once (it cannot be

recycled), and that there are theoretical limits to energy efficiency (Glucina and Mayumi,

2010; Mayumi, 2017).

Implications of the laws of thermodynamics regarding usable energy are illustrated by

the Earth-space battery paradigm developed by Schramski et al. (2015). According to

this, the Earth can be seen as a battery of stored chemical energy. It has got charged by

sunlight over the course of millions of years, as living biomass has stored solar energy into

high-quality chemical energy by photosynthesis. According to Schramski et al. (2015), the

recoverable energy storage mainly consists of two kinds of organic chemical compounds,

fossil fuels and biomass (in addition to nuclear energy potential). In contrast to the

non-renewable fossil fuel stocks, biomass represents renewable energy deposits, which are

constantly recharged by photosynthesis of incoming solar radiation. However, while using

energy to perform work for economic activity, humankind is depleting the stocks of fossil

fuels rapidly, and is also reducing the amount of energy stored in living biomass. Hence,

the chemical energy battery is currently being discharged (Schramski et al., 2015).

The calculations by Schramski et al. (2015) highlight the depletion of energy storage

in both non-renewable fossil stocks and renewable biomass (i.e., the depletion of biomass

energy exceeds its rate of renewal driven by photosynthesis). While fossil energy sources,

such as oil, are completely consumed upon use, metal resources can be recovered and

reused (Gordon et al., 2006). In essence, metals can be part of three stocks: the ore

reserves in the ground, the stocks of metals in use, and the stock transferred to wastes

(Gordon et al., 2006). Gordon et al. (2006) calculate that with existing technology, the

whole stocks of copper, zinc, and possibly platinum ores in the ground would be required

to lift a large part of the world’s population at the levels of services consumed in the

highly developed countries. Sustaining these (or even lower levels) worldwide is even

more complicated, as losses in the recycling of the metals in use need to be compensated

for by new extraction (Gordon et al., 2006). With regard to limited natural resources, it

appears reasonable to assume that certain renewable resources might substitute for non-

renewable ones. For example, renewable energy might substitute for fossil based energy

(e.g., Gielen et al., 2019) or alternative materials might substitute for the relatively scarce

ones (Gordon et al., 2006).

However, as noted above, a key environmental concern can be linked to the state of

the environmental system itself, which is affected by using its functions for economic ac-
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tivity. The planetary boundaries approach (Rockström et al., 2009; Steffen et al., 2015)

provides a comprehensive scientific framework that relates to these important functions.

It defines a safe operating space for human activity by proposing global boundaries (in

terms of specific control variables) for critical processes of the Earth system. Crossing

these boundaries has the potential to substantially impact the functioning of the Earth

system. In total, nine processes are defined. They are 1) climate change; 2) biosphere

integrity, comprising genetic diversity (extinction rates) and functional diversity (biodi-

versity loss); 3) land-system change; 4) freshwater use; 5) biogeochemical flows; 6) ocean

acidification; 7) atmospheric aerosol loading; 8) stratospheric ozone depletion; 9) the in-

troduction of novel entities (i.e., new substances and new life forms that have potential for

unwanted geophysical and/or biological effects). The first two processes, climate change

and biosphere integrity, are considered to form the core boundaries. This is because both

boundaries are highly integrated, system-level processes that are fundamentally important

for the Earth system (Steffen et al., 2015).

Steffen et al. (2015) document that the two biogeochemical flows, phosphorus and

nitrogen, as well as genetic diversity (biosphere integrity) are beyond the zone of uncer-

tainty, implying a high risk of serious impact. Land-system change and climate change

are in the zone of uncertainty, implying increasing risk. Stratospheric ozone depletion,

ocean acidification, and freshwater use were within the boundary, implying a safe state.

The state of the other boundaries was not quantified by Steffen et al. (2015). However,

current calculations by Persson et al. (2022) document that the boundary related to novel

entities is crossed, as annual production and releases are increasing quickly enough to sur-

pass the global capacity for assessment and monitoring. Additionally, Wang-Erlandsson

et al. (2022) refine the boundary relating to freshwater use by dividing it into green and

blue water (freshwater change), whereby the original boundary included only blue water

(rivers, lakes, reservoirs, and renewable groundwater stores). In contrast to blue water,

the authors document that the green water (terrestrial precipitation, evaporation, and

soil moisture) boundary is crossed, implying increasing risk.

As highlighted above, the extraction and use of resources flows has a direct impact

on the state of the natural capital, represented by the planetary boundaries. First, the

land-use change and deforestation linked to mining activities (e.g., Sonter et al., 2017) and

agricultural use directly relate to land-system change and to the loss of habitats, which

affects species population and biodiversity (Smil, 2011; Schramski et al., 2015). Biodi-

versity might also be directly affected by the extraction of fossil fuels (Butt et al., 2013).
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Biodiversity is crucial for ecosystem resilience and evolutionary potential (Folke et al.,

2004; Perman et al., 2011).9 The loss in biodiversity is especially threatening as ecologi-

cal systems at local and global scale can experience tipping points, i.e., they might shift

abruptly and irreversibly to another state when critical thresholds are crossed (Barnosky

et al., 2012). As the main anthropogenic impact on the nitrogen and phosphorus cycles

arise from fertilizer application (Steffen et al., 2015), agriculture and, thus, biomass use

are directly linked to the biogeochemical flows, which are already at high risk according

to the planetary boundaries calculation.

To summarize, this section highlights the need to consider the environmental sustain-

ability debate in an integrated, holistic framework. The planetary boundaries framework

provides a comprehensive account of the state of critical natural capital and emphasizes

several crucial processes of the Earth system. It is highlighted that economic activity and

the associated extraction and use of natural resources is directly linked to the boundaries

and that current calculations suggest that several boundaries are already at risk. One of

the identified core boundaries is climate change. Given its high relevance from a scientific

point of view and in the public and political debate, the following section is devoted to

climate change in greater detail. However, it shall be emphasized that the other plan-

etary boundaries have to be considered as well in a holistic approach to environmental

sustainability.

1.2.2 Climate Change

To discuss the current state of climate change, this section first briefly introduces basic

notions, drawing extensively and closely on the elaborations by the Intergovernmental

Panel on Climate Change (IPCC) in its Fourth Assessment Report (IPCC, 2007). The

atmosphere, the land surface, oceans and other bodies of water, and living things (bio-

sphere) are major parts of the complex climate system. Climate is, in a broader sense, the

state of the climate system, and can be defined, in a narrower sense, as “average weather”

over a long period (about 30 years). Hence, climate can be described in terms of the mean

9An ecosystem is a set of animal and plant populations that interact and their non-living environment
(Perman et al., 2011). Two crucial concepts in relation to ecosystems are resilience and stability, which
can be defined according to Holling (1973): “Resilience determines the persistence of relationships within
a system and is a measure of the ability of these systems to absorb changes of state variables, driving
variables, and parameters, and still persist. In this definition resilience is the property of the system
and persistence or probability of extinction is the result. Stability, on the other hand, is the ability of
a system to return to an equilibrium state after a temporary disturbance. The more rapidly it returns,
and with the least fluctuation, the more stable it is. In this definition stability is the property of the
system and the degree of fluctuation around specific states the result” (Holling, 1973, p. 17).

10



and variability of temperature, precipitation, and wind over a period of time. Climate

change can be broadly defined as significant changes in these properties of climate that

persist over a longer period (IPCC, 2007).10

As discussed above, the Earth is a thermodynamically closed system (Glucina and

Mayumi, 2010; Perman et al., 2011) – solar radiation brings a constant flow of energy to

the Earth and its climate system. About one third of the sunlight is directly reflected

back, while the non-reflected part is absorbed by the surface and the atmosphere. The

reason the Earth’s surface is at current moderate temperatures is the presence of GHGs

in the atmosphere, which partially prevent the energy to escape. The primary GHGs

are water vapor (H2O), carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), and

ozone (O3) (IPCC, 2007). The climate system depends crucially on the net balance of

energy on Earth’s surface. The distribution of energy thereby plays a major role for the

circulation of the ocean and the atmosphere, which in turn determine the structure and

functioning of ecosystems (Steffen et al., 2015). The radiation balance of the Earth can

be influenced by changing the concentration of GHGs in the atmosphere, which in turn

can influence climate (IPCC, 2007).

The latest report – the Sixth Assessment Report – of the IPCC gives a recent scientific

overview of the consequences of anthropogenic GHG emissions for the climate (IPCC,

2021). A key consequence is global warming.11 The global surface temperature between

2011 and 2020 is estimated to be 1.09◦C higher than 1850–1900, while the best estimate

of the human-caused increase from 1850–1900 to 2010–2019 is 1.07◦C. The major positive

contribution is attributed to GHGs, which likely contributed a warming between 1.0–2.0◦C

(IPCC, 2021).12

Changes in the climate system, including hot extremes such as heatwaves, heavy pre-

cipitation, and droughts are expected to become more frequent and intense in relation to

increasing global warming (IPCC, 2021). Providing a comprehensive assessment, Schleuss-

10Note that this definition includes human-caused climate change as well as climate change due to natural
processes (IPCC, 2007).

11Global warming usually refers to the increase in global surface temperature compared to the pre-
industrial period (1850–1900) (e.g., IPCC, 2021; UNEP, 2021; Meinshausen et al., 2022). Global surface
temperature is used to refer to both global mean surface temperature (GMST) and global surface
air temperature (GSAT) measurements by IPCC (2021). For the ease of exposition, I follow this
simplification.

12The IPCC uses a system of evaluating the findings based on the level of confidence of each statement.
Thereby, the likelihood of an outcome is indicated with the terms: virtually certain (99–100% prob-
ability); extremely likely (95–100%); very likely (90–100%); likely (66–100%); about as likely as not
(33–66%); unlikely (0–33%); very unlikely (0–10%); exceptionally unlikely (0–1%). In the text, I use
these terms as they appear in the original report. For further details, the reader is referred to IPCC
(2021).
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ner et al. (2016a) document that differences in extreme events (e.g., heat waves and heavy

precipitation) might even be substantial between a 1.5◦C and 2◦C global warming. For

example, Dosio et al. (2018) calculate that global warming of 1.5◦C significantly increases

heat wave magnitude over Africa, South America, and Southeast Asia. Compared to that,

2◦C warming would be associated with a doubling of extreme heat wave frequency around

most of the world.13 Kang and Eltahir (2018) report that under a business-as-usual GHG

emissions scenario, the North China Plain is likely to experience strong heatwaves, po-

tentially threatening outdoor working.

An important theme in the discussion of trajectories of the climate system is the

acknowledgment of potential irreversibility and non-linear developments. Steffen et al.

(2018) discuss the existence of a planetary threshold (in terms of global warming), which,

if crossed, would prevent a stabilization of the climate at intermediate temperatures, since

the Earth system would follow an irreversible pathway driven by feedback processes. Of

importance in this regard are tipping points in several climate system components, which

can lead to so-called tipping cascades (Steffen et al., 2018). In a recent contribution,

Armstrong McKay et al. (2022) estimate the risk of crossing several tipping points in

climate subsystems (tipping elements). They define the concept as “Tipping points occur

when change in part of the climate system becomes (i) self-perpetuating beyond (ii) a

warming threshold as a result of asymmetry in the relevant feedbacks, leading to (iii)

substantial and widespread Earth system impacts” (Armstrong McKay et al., 2022, p. 1).

Using this definition, Armstrong McKay et al. (2022) show that there are six Earth-

system components for which tipping points become likely even under the goal of the

Paris Agreement (UNFCCC, 2015) to keep global warming between 1.5◦C and 2◦C. These

include the collapse of the Greenland and West Antarctic ice sheets and abrupt permafrost

thaw. With about 2.6◦C global warming, another tipping point becomes likely and another

three become possible. As highlighted above, crossing the tipping points might lead to

feedback mechanisms, such that crossing other tipping points becomes more likely, leading

to a tipping cascade and a planetary threshold in the worst case (Armstrong McKay et al.,

2022).

13These two values for global warming are important because the Paris Agreement by the parties of the
United Nations Framework Convention on Climate Change (UNFCCC) includes the goal of “Holding
the increase in the global average temperature to well below 2◦C above pre-industrial levels and pursuing
efforts to limit the temperature increase to 1.5◦C above pre-industrial levels . . .” (UNFCCC, 2015,
p. 22).
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Notably, the best point estimate of the global surface temperature increase compared

to pre-industrial times is roughly 1.5◦C for the lowest GHG emission scenario considered

by IPCC (2021) in the long term (2081–2100). While the near-term (2021–2040) best

point estimate is roughly 1.5◦C for all scenarios, it is 2.7◦C in the long run already for

the intermediate emissions scenario. A similar calculation is provided by the United

Nations Environment Programme (UNEP) in its 2021 Emissions Gap Report (UNEP,

2021). Under the unconditional nationally determined contributions (NDCs) made until

30 August 2021 within the Paris Agreement (UNFCCC, 2015), the increase in global

surface temperature compared to the pre-industrial base period is estimated to be around

2.7◦C by the end of the century.14 Even under addition of the announced long-term

net-zero emissions targets, the point estimate would only be reduced to 2.2◦C.15 In a

recent study that uses the NDCs and long-term targets made until after the 2021 United

Nations Climate Change Conference on 11 November 2021, Meinshausen et al. (2022)

estimate similar, yet slightly more optimistic numbers. Considering all NDCs and long-

term targets to be implemented completely (including conditional and unconditional ones)

and timely, the median estimate of peak global mean temperature increase relative to the

pre-industrial base period is just below 2◦C in the projection until 2100 (Meinshausen

et al., 2022).

Increases in cumulative CO2 emissions directly relate to global warming (IPCC, 2021).

From 2010 to 2019, the average growth rate of global GHG emissions was 1.3% per

year, while the COVID-19 pandemic resulted in a sharp drop of CO2 emissions in 2020

(UNEP, 2021). To get an impression where GHG emissions originate from, figure 1.1

shows the share of global GHG emissions by relevant sources in 2019. Roughly three

quarters of global GHG emissions result from the use of energy. This includes, e.g.,

electricity consumption in buildings, the use of fuels in vehicles, and industrial energy

use. Roughly 15% of global GHG emissions originate from agriculture, forestry, and land

use. This includes emissions produced from the animal metabolism and net emissions from

land degradation but not emissions attributable to the first category, e.g., transportation

in the agricultural sector. About 6% of global GHG emission are produced as a byproduct

in industrial processes, e.g., the cement production (see, e.g., Dean et al., 2011). Again,

14The NDCs build the core of the Paris Agreement. They should be updated every five years and become
progressively more stringent (Schleussner et al., 2016b). There are unconditional NDCs and NDCs that
are contingent on specific conditions (UNEP, 2021).

15In 2021, the following Group of Twenty (G20) members had net-zero emission targets by around mid-
century: Argentina, Brazil, Canada, China, the EU, France, Germany, Italy, Japan, Republic of Korea,
UK, USA. These might differ in detail and whether all GHGs or sectors are included (UNEP, 2021).
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this excludes emissions from energy inputs which belong to the first category. Finally,

waste accounts for about 3% of global emissions, mainly coming from organic processes

in wastewater and landfills.16

12%

76%

6%
3% 3%

Agriculture Energy
Industrial Processes Land−Use Change and Forestry
Waste

Figure 1.1. Sources of global GHG emissions in 2019. The shares are rounded to integer values.
Source: Own calculations based on data retrieved from Climate Watch (2022). The data by Climate
Watch (2022) is partly based on data from FAO (2022) and OECD/IEA (2021).

Given that emissions resulting from the use of energy make up roughly three quar-

ters of total global emissions, it appears natural to prioritize a reduction of emissions

that are linked to, e.g., industrial energy use and the combustion of fuels in transport.

However, since the remaining quarter of emissions originates from different sources, any

economy-wide net-zero-emissions endeavor needs to consider all sources. Besides the direct

link between fossil fuels and energy-related emissions, other natural resource categories –

biomass, metal ores, and minerals – relate to figure 1.1 as well.17 Biomass mostly relates

to agriculture, forestry, and land use. Construction minerals are linked to cement pro-

duction and, hence, industrial processes. However, metals, minerals, and biomass are also

to different degrees connected to energy requirements and corresponding GHG emissions

in their respective supply chains (Behrens, 2016). Furthermore, the extraction of each of

16The description of the sectors is closely adapted from Ritchie (2020), who in turn bases the description
on the report by the IPCC (2014) and Baumert et al. (2005). The interested reader is referred to
Ritchie (2020) for more disaggregated statistics on global GHG emission for the year 2016.

17Giljum et al. (2016) show that the largest share of the material footprint in the EU in tonnes, i.e., all
raw materials that are used by domestic final consumption of EU countries along the whole value chain
(Wiedmann et al., 2015), is attributable to industrial and construction minerals, followed by biomass,
fossil fuels, and metal ores.
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the materials potentially comes along with deforestation and land-use change and, thus,

directly contributes to climate change in this regard. For example, Sonter et al. (2017)

document that mining activities caused 9% of the Amazon Forest loss between 2005 and

2015, which acts as a sink for CO2 emissions (Hubau et al., 2020). Given the interplay

between natural material use, energy requirements, and emissions, and considering poten-

tial limits to energy efficiency and substitution towards non-fossil energy sources, reducing

overall material use (e.g., recycling) might be required for a credible emissions reduction

strategy (Behrens, 2016).

Taken together, climate stability is an important dimension of the state of the natural

capital and thus related to all system functions: anthropogenic climate change is mainly

caused by GHG emissions, which are the waste mostly associated with the use of a specific

kind of resources – namely, fossil fuels. Moreover, climate change might as well reduce the

flow of amenity services (e.g., biodiversity loss, desertification). Finally, climate change

might directly threaten the life-supporting services of the natural capital, as it potentially

impacts the whole Earth system functioning. Given the need for action highlighted in

this and the previous sections, it is of immediate interest how the global policy landscape

with respect to endeavors for environmental sustainability is shaped. Hence, the following

section discusses the approach “green growth”, which is a major theme in the political

framework of many countries and organizations globally.

1.2.3 The Policy Framework of Green Growth

According to Hickel and Kallis (2020), the term “green growth” became a central topic

at the Rio+20 Conference on Sustainable Development in 2012. By now, green growth

is a major theme in the political framework of many countries and organizations around

the world. The concept is used by international institutions including the Organisation

for Economic Co-operation and Development (OECD), the World Bank, and the United

Nations (Jacobs, 2013; Victor and Sers, 2019), and, more recently, by the European

Commission in its European Green Deal (European Commission, 2019).

However, despite this increase in popularity, Jacobs (2013) and Bowen and Hepburn

(2014) emphasize that the concept of green growth exists since the time period around

the Brundtland report (WCED, 1987). Indeed, green growth is a political approach

to achieve sustainable development (or at least a subset of sustainable development),
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not a new paradigm (OECD, 2011; World Bank, 2012).18 While the term sustainable

development can be regarded to circumvent the fundamental question of the compatibility

of economic growth and environmental protection by reframing the economic objective to

“development”, green growth directly stands for this compatibility (Jacobs, 2013).

Hence, the core of any green growth strategy is to achieve economic growth while at

the same time protecting the natural environment (Jacobs, 2013; Bowen and Hepburn,

2014). In terms of the concept of natural capital, introduced in Section 1.2, green growth

might be stated as economic growth that maintains (critical) natural capital (Bowen and

Hepburn, 2014). Yet, exact definitions might differ in their actual degree of environmental

protection and are often somewhat imprecise (Jacobs, 2013; Bowen and Hepburn, 2014).

Nevertheless, a central concept to green growth strategies in general is so-called decou-

pling of environmental impacts from economic growth (Parrique et al., 2019; Hickel and

Kallis, 2020). Thereby, decoupling can be either relative or absolute. Relative decoupling

implies that the ratio of environmental impact to economic activity decreases but eco-

nomic growth still leads to increasing impacts. Absolute decoupling means that positive

economic growth goes hand in hand with constant or decreasing environmental pressures

(Wiedmann et al., 2015; Parrique et al., 2019).

To illustrate the ambiguity regarding the “green” part of growth, I follow Bowen and

Hepburn (2014) and state the widely used definitions formulated by the World Bank and

the OECD. First, according to the World Bank, “Green growth can be thought of as

economic growth that is environmentally sustainable. More specifically, it aims to op-

erationalize sustainable development by enabling developing countries to achieve robust

growth without locking themselves into unsustainable patterns. The World Bank’s envi-

ronmental strategy defines green growth as growth that is efficient, clean, and resilient

– efficient in its use of natural resources, clean in that it minimizes pollution and envi-

ronmental impacts, and resilient in that it accounts for natural hazards and the role of

environmental management and natural capital in preventing physical disasters” (World

Bank, 2012, p. 30). Second, the OECD states that “Green growth [. . .] is about fostering

economic growth and development while ensuring that natural assets continue to provide

the resources and environmental services on which our well-being relies. It is also about

18This is especially noticeable in the definition of the World Bank. The basic premise is that economic
goals (economic growth) were largely complementary to social goals and the main conflict of objective
was between economic growth and the environment, hence the need for green growth. In this view,
inclusive green growth is the vehicle to agree the three pillars of sustainable development (World Bank,
2012).
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fostering investment and innovation which will underpin sustained growth and give rise

to new economic opportunities” (OECD, 2011, p. 18).

The two definitions have subtle differences. The World Bank’s definition can be con-

sidered to be weaker (Hickel and Kallis, 2020). First, its notion does not define an exact

degree of environmental protection (Jacobs, 2013). Second, the definition aims to reduce

impacts of future growth, which does not necessarily include the reduction of current lev-

els of impact. Hence, the definition would even be consistent with an increase in impact

overall (Hickel and Kallis, 2020). The OECD definition can be considered slightly stronger

(Jacobs, 2013; Hickel and Kallis, 2020), as it explicitly aims to maintain the system func-

tions of the environment (Hickel and Kallis, 2020). Importantly, however, they are both

more comprehensive than just encompassing climate change (Bowen and Hepburn, 2014).

Additionally, when considering the “growth” part of green growth, an immediate ques-

tion arises as to what economic growth implies. It might be narrowly defined as growth in

gross domestic product (GDP), but it might also more broadly relate to human well-being

in general (Bowen and Hepburn, 2014). According to Bowen and Hepburn (2014), the

narrow understanding of economic growth as GDP growth is common in policy debates

and, therefore, what is often referred to. Hence, I follow the broad consensus in the lit-

erature (e.g., Jacobs, 2013; Bowen and Hepburn, 2014; Smulders et al., 2014; Victor and

Sers, 2019) and focus on the narrow definition relating to GDP growth.

The core premise of green growth is that economic growth is compatible with the

maintenance of (critical) natural capital. With regard to the mechanisms to achieve

green growth, a common ground between the notions is that they rely on substitution

and technical change to achieve decoupling, and environmental policies to direct this

process (Hickel and Kallis, 2020). However, there are different views on how green growth

compares to a business-as-usual growth scenario. Jacobs (2013) differentiates two versions

of green growth arguments, calling them “standard” and “strong” green growth. The

standard green growth argument implies that the adjustments towards green growth will

put a drag on economic growth in the short run, but ensure higher growth in the long

run, because costs of inaction are ultimately higher. The strong argument states that

appropriate green growth policies can enhance economic growth, and thus generate win-

win opportunities even in the short run, and Jacobs (2013) provides three different kinds

of argument for this position. The two more relevant for this introductory chapter are:

First, green policies correct market failures and increase short-run growth by eliminating
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these inefficiencies; second, green policies might lead to innovation and investment which

gives national firms a comparative advantage in the newly emerging industries.19

The central elements can also be found in the European Green Deal (European Com-

mission, 2019). Specifically, “It is a new growth strategy that aims to transform the EU

into a fair and prosperous society, with a modern, resource-efficient and competitive econ-

omy where there are no net emissions of greenhouse gases in 2050 and where economic

growth is decoupled from resource use” (European Commission, 2019, p. 2). Obviously,

the aim of the framework is to achieve economic growth while at the same time reducing

environmental pressures. Furthermore, it is highlighting the prominent role of technology

to achieve the goals, stating that “New technologies, sustainable solutions and disruptive

innovation are critical to achieve the objectives of the European Green Deal” (Euro-

pean Commission, 2019, p. 18). Finally, the European Green Deal puts emphasize on

highlighting potential win-win opportunities, thus having overlaps with the notion that

environmental policies can even generate growth.

Taken together, this section highlights that green growth is a major policy concept in

the pursuit of sustainable development. The basic premise is that economic growth can

be made compatible with the protection of the natural capital. One central mechanism

in this concept is technical change that facilitates to decouple economic growth from

environmental pressures. While green growth appears to be a dominant view (Parrique

et al., 2019), there are opposing views as well. The following section discusses some of

these alternative concepts in greater detail to provide a comprehensive account.

1.2.4 Alternative Policy Concepts

There has been an extensive intellectual debate evolving around economic growth and its

relationship with environmental quality since the discussions around sustainable develop-

ment emerged (Drews and van den Bergh, 2016). In a broader sense, the discussion evolv-

ing around green growth can be embedded into the so-called “growth debate”, which asks

whether economic growth is desirable, feasible, and controllable (van den Bergh, 2001).

As evident from the subsequent section, green growth assumes that economic growth is

desirable and feasible, while the question whether growth is controllable lies outside the

scope of the concept. However, different views exist, which, for example, postulate the

need for negative growth or not to prioritize economic growth as policy goal, labeled as

19An example is the famous Porter hypothesis, which states, in its strong version, that environmental
policies can increase competitiveness through induced innovation (Porter and van der Linde, 1995).
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“degrowth” (e.g., Kallis et al., 2012; Victor, 2012; Hickel, 2021) and “a-growth” (e.g.,

van den Bergh, 2011, 2017), respectively.

The concept of degrowth comes in different notions (van den Bergh, 2011; Hickel,

2021). One particular conceptualization of degrowth is directly aiming for negative GDP

growth (van den Bergh, 2011).20 A-growth can be regarded as having a neutral, indiffer-

ent position to economic growth. The concept aims to accept economic growth when it

is feasible, but also accepts a GDP decline, if this is the inevitable outcome of a policy

that tackles crucial environmental or social problems. Hence, a-growth can be seen as

having the broadest search space for potential environmental policies. Degrowth, con-

ceptualized as negative GDP growth, restricts the search space for policies to the realm

where policies go hand in hand with negative growth, disregarding potential win-win op-

portunities. Green growth, on the other hand, only considers policies that are compatible

with economic growth (van den Bergh, 2011, 2017).

In economics, the different views regarding economic growth broadly correlate to the

scientific fields of environmental and resource economics (ERE) and ecological economics

(EE). It shall be emphasized that these categorizations should be treated with due caution,

as there is naturally a continuum of different, potentially overlapping views within the

fields. In general, according to van den Bergh (2001), it can be concluded that ERE

is more optimistic regarding the feasibility of economic growth than EE. This results

from a more optimistic view on price responses and substitutability between inputs and

technological change in response to resource scarcity in the field of ERE (van den Bergh,

2001).21 It is further argued by van den Bergh (2001) that EE can be considered much

more pessimistic, highlighting the complexity of ecosystems and that substitution and

technical change are limited by the laws of thermodynamics.22

However, it is important to emphasize that the disagreement appears to be in general

not whether technical change might contribute, but rather whether this is enough in itself

(e.g., Hickel and Kallis, 2020). With regard to the specific sustainability dimension of

climate change, Jakob et al. (2020) highlight that technical change is a key ingredient in

20Hickel (2021) assures that the notion of degrowth is not about reducing the rate of GDP growth or
GDP itself, but to reduce material and energy throughput. The reduction of GDP would just be the
likely consequence of this, not the actual target. However, the interpretation of GDP decline appears
to be widespread (van den Bergh, 2017).

21These channels are explored in greater detail in Section 1.3.
22The notions of technical change and substitution are introduced more formally in Section 1.3.1, adding
this formal dimension to the debate.
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all approaches from green growth to degrowth.23 This is since net-zero emissions cannot

be reached without clean energy technologies regardless of the level of energy use, i.e.,

regardless of whether economic activity/energy throughput is reduced.

Taken together, there are different positions regarding the possibility of environmen-

tally sustainable economic growth, which are more or less optimistic regarding the factual

possibilities of technical change and substitution. Nevertheless, technical change can be

considered to be important for most notions in order to achieve environmental sustain-

ability, and specifically net-zero GHG emissions. This importance of technical change is

also reflected in economic theory, which provides important insights regarding effects and

determinants of technical progress. The following sections unfold how technical change is

conceptualized in economic theory.

1.3 Macroeconomic Theory, Technology, and Green

Growth

Technical change has long been recognized as the driving engine of economic growth (e.g.,

Solow, 1956, 1957). Similarly, technical change plays a pivotal role in the sustainability

debate and approaches discussed in the previous sections. However, technical change per

se is likely not contributing to environmental sustainability, as the type of technology

developed and employed is crucial. The rate and direction of technical change are shaped

by economic incentives (e.g., Grubb et al., 2021). Modern economic theory is able to

provide important insights into this direction of technical change and the implications for

economic growth and environmental policy. The following sections consider the role of

technical change in economic theory to provide the theoretical foundation that is necessary

to inform the empirical chapters of this dissertation.

1.3.1 Technology and Economic Theory

In general, and adopting the illustration by Jaffe et al. (2002), the production technology

of an economy can be represented as

Y = f(K,L,E; t), (1.1)

23Jakob et al. (2020) use the term “Neoclassical economics” and not green growth, but the concepts are
mostly congruent.
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where the production function f(.) maps a list of possibly arbitrarily many inputs on the

right-hand side into a measure of achievable aggregate output Y . Inputs may include

capital goods K, labor inputs L, and environmental inputs E. Technological change

means that the functional relationship between those inputs in production and achievable

output levels depends explicitly on time t (Jaffe et al., 2002). In the following section,

an explicit functional form is employed to introduce crucial theoretical concepts that are

important for the upcoming chapters.

1.3.1.1 Aggregate Production

To illustrate some central notions, consider the constant elasticity of substitution (CES)

production function studied by Hassler et al. (2021) as an example of a common functional

form:

Yt =
[︂
(1− γ)(AtK

α
t L

1−α
t )

ε−1
ε + γ(AetEt)

ε−1
ε

]︂ ε
ε−1

, (1.2)

where output Y in period t is produced from a Cobb-Douglas aggregate of labor Lt and

capital Kt in addition to fossil energy Et; γ is a share parameter; ε is the elasticity of

substitution between the capital/labor aggregate and fossil energy; At and Aet represent

capital/labor-augmenting and energy-augmenting technical change, respectively.

In general, the elasticity of substitution between different input factors is of vital

importance for the implications of the model. The CES production function implies that

when ε = ∞, the inputs are perfect substitutes; when ε = 0 the inputs are perfect

complements, implying a Leontief production function; and when ε = 1, the production

function becomes Cobb-Douglas. Besides these extreme cases, it is useful to introduce the

terms gross substitutes and gross complements, which refer to the cases ε > 1 and ε < 1,

respectively (Acemoglu, 2002). The factor-augmenting technical change series provide a

very general way to characterize technological improvements in the aggregate production

process. All else equal, the same level of output can be achieved by less energy when

the level of energy-augmenting technical change is higher.24 It is worth emphasizing that

the elasticity of substitution is often assumed to be a static property of the production

function, remaining constant over time, whereas technical change is explicitly dynamic

and changes over time (Couix, 2019).

24It should be stressed that factor-augmenting technical change does not need to be factor-saving (Ace-
moglu, 2008), e.g., because higher demand for the more productive factor overcompensates the increases
in productivity (e.g., Haas and Kempa, 2018). This effect might depend on the elasticity of substitution
and is taken up again in Section 1.3.2.
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The CES production function (1.2) already highlights the crucial role of technology

for the sustainability debate. The observed energy intensity Et

Yt
might depend directly

on the level of energy-augmenting technical progress and is therefore sometimes used (in

its inverted form Yt

Et
) as an indicator of technical change (André and Smulders, 2014;

Saunders et al., 2021). However, it is important to emphasize that such an aggregate

outcome measure of technical change depends on efficiency improvements within sectors

or shifts between sectors, i.e., structural change (e.g., Haas and Kempa, 2018) and other

potential macroeconomic influences (Saunders et al., 2021).

Similar insights can be obtained from a simple decomposition exercise. Following

Grossman (1995), I define Yt as aggregate output as above, i.e., the scale of economic

activity, sit as the share of output coming from sector i and ait as the amount of energy

generated per unit of output in sector i. Hence, total energy use in period t is given

by Et =
∑︁

i aitsitYt. This decomposition demonstrates that, ceteris paribus, an increase

in economic output increases energy use proportionally. However, the scale effect can

in principle be offset by changes in the sectoral composition of the economy (sit) or the

energy efficiency of the individual sectors (ait), which might be called technique effect

(Copeland and Taylor, 2004).25 Hence, economic growth can be accompanied by changes

in technology and structural factors, which might partly or fully offset the scale effect

(Stern, 2004, 2017). These factors and the variables that underlie changes in the structural

and technical factors – such as environmental awareness and policy – are at the core of the

so-called Environmental Kuznets Curve (EKC) hypothesis. In this view, the underlying

factors are assumed to change with income growth, such that structural and technical

factors might overcompensate the scale effect with continued economic growth (Stern,

2004, 2017). Hence, economic growth is not only seen as compatible with environmental

sustainability but even as necessary to push income above a certain threshold (van den

Bergh, 2017).26

Taken together, technical change is an important feature of how the production process

is conceptualized in economic theory. It is discussed that measures of production factor

intensity/productivity can be seen as a general way to measure factor-saving technical

25The technique effect might be further disaggregated into a technology effect and into an effect resulting
from a change in the input mix of the sector (Stern, 2004, 2017).

26A further well-known decomposition is the so-called IPAT identity (Ehrlich and Holdren, 1971, 1972).
The IPAT identity decomposes any environmental impact (I) into the factors population (P), affluence
per capita (A) and impact (waste, resource use) per unit of output, i.e., technology (T) (Perman et al.,
2011). Sticking to the example above, energy use might be decomposed into Et ≡ Pt × Yt

Pt
× Et

Yt
, where

Pt is population. Again, this highlights the notion of Et

Yt
as an abstract measure of technology.
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change at the aggregate level. The following section focuses on the process of technical

change in greater detail.

1.3.1.2 Technical Change

With regard to macroeconomic theory, an important distinction arises in how the techno-

logical series are modeled. Technological change might either be considered to be exoge-

nous or endogenous. Employing an exogenous specification of technology implies that the

process of technology is an autonomous function of time (Gillingham et al., 2008; Popp

et al., 2010). For example, the seminal Solow growth model uses an exogenous technology

specification (Solow, 1956). Similarly, the prominent DICE (dynamic integrated climate-

economy) model (Nordhaus, 1992, 1994) is originally based on an exogenous technology

assumption. However, technical change is driven by economic incentives, such as factor

prices (e.g., Hicks, 1932; Popp, 2002; Aghion et al., 2016; Grubb et al., 2021), and a cor-

rect understanding of development processes should take these potentially time-changing

incentives into account. In this spirit, early contributions highlight the importance of

endogenous technological change for macroeconomic growth (e.g., Romer, 1990; Help-

man, 1992; Grossman and Helpman, 1994). Modeling technological change endogenously

amounts to regarding innovation efforts of firms, which in turn react to economic incen-

tives, as important driver of technological change (Coe and Helpman, 1995; Coe et al.,

2009). This implies that these incentives affect the evolution and direction of technological

developments (Gillingham et al., 2008; Naqvi and Stockhammer, 2018).

Furthermore, an important theme for the economic analysis of technical change is the

presence of externalities that might counteract these incentives. First, a central market

failure for technology in general is the presence of knowledge spillovers. These arise from

the public goods nature of knowledge (Arrow, 1962). Individuals might benefit from

technology or knowledge originally developed by others (Griliches, 1992; Keller, 2004).

Because this social benefit is not internalized, R&D investment tends to be below the social

optimum (Popp et al., 2010; Stern and Valero, 2021). In the context of environmental

technology, a second market failure relates to the presence of environmental externalities

(e.g., GHG emissions). If not internalized by markets (e.g., due to efficient carbon prices),

environmental externalities counteract the incentives to invest in clean technologies that

are designed to reduce these externalities (Popp et al., 2010; Popp, 2011; Stern and Valero,

2021).
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The discussion above mainly focuses on an abstract, aggregate notion of technical

change. However, the process of technical change can be further distinguished. Based

on ideas of Schumpeter (1942) as cited in Jaffe et al. (2002), Löschel (2002), and Popp

(2011), three stages can be specified: invention, innovation, and diffusion (adoption). The

first term, invention, describes the emergence of an idea of a new product or process. An

innovation is achieved when the invention becomes commercially feasible and introduced

to the market. Both stages can be subsumed under the term R&D. In the case of green

technical change, the outcome of the innovation process is typically termed environmental

or green innovation. It can be defined broadly as “. . . any innovation that reduces

environmental harm” (Kanerva et al., 2009, p. 7). The third stage, diffusion, describes

the continual spread of an innovation that is increasingly adopted by economic agents.

Although each stage is important on its own, Allan et al. (2014) emphasize that only

through diffusion the (environmental) benefits of the technology spread and are likely

to have an impact. An important aspect in this regard is the international diffusion of

technology (Keller, 2004), as technology development is rather restricted to developed

countries (Keller, 2004; Probst et al., 2021).

The economic and environmental impact of technology depends on all of those stages

(Jaffe et al., 2002) and the decisions at each stage are influenced by market incentives

(Popp, 2011).27 Furthermore, the existence of path dependencies is a central feature of

all stages of the innovation process. According to Aghion et al. (2019), they occur in the

generation of knowledge because of knowledge spillovers, since scientists might select areas

that are well supported and feature excellent peers. Additionally, there is path dependence

in the deployment and adoption of technology. This is because existing infrastructure can

make the willingness-to-pay for certain green technologies much lower. Additionally, the

benefits of using new technology might rise with others using it (network effects), such

that incentives for deviating technology choice are reduced (Aghion et al., 2019; Stern

and Valero, 2021).

To summarize, economic theory highlights several aspects that are crucial to the pro-

cess of technical change, which include the role of economic incentives, the presence of

market imperfections in the research system due to externalities, and related path de-

pendence. These aspects are important parts of the theory of directed technical change

(DTC), which is discussed in detail in Section 1.3.2. The following section adds to the

27It is worth emphasizing that not all research is profit-oriented and spillovers from research conducted
under different motivation and the successful commercialization of the potentially important inventions
should be considered as well (Weyant, 2011).
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discussion on the possible contribution of technical change to environmental sustainability

(see Section 1.2.4) on some of the concepts introduced in the previous sections.

1.3.1.3 The Debate Between EE and ERE

The introduction of the production function framework in the previous sections facilitates

the more formal discussion of the controversy between EE and ERE (see Section 1.2.4).

As extensively discussed by Couix (2019), at the heart of the debate between proponents

of ERE and EE is the notion of unbounded resource productivity, i.e., that the aver-

age product of resources in the production function has no upper bound. According to

Couix (2019), this idea was incorporated in the models by, e.g., Stiglitz (1974) and Solow

(1974), which can be attributed to the school of ERE. Central mechanisms to achieving

unbounded resource productivity are a high degree of substitution between resource inputs

and capital or labor and technical change. For example, if the energy input and the capi-

tal/labor aggregate in equation (1.2) are gross complements, the productivity of energy is

bounded in the absence of technical change (Couix, 2019). Proponents (and intellectual

founders) of EE (e.g., Georgescu-Roegen, 1975) referred to the laws of thermodynamics

(see Section 1.2.1) and argued that these put an upper bound to the processes of technical

change and substitution and hence resource productivity (Couix, 2019).

Couix (2019) argues that the debate is exacerbated by methodological issues. This is

because technical change and substitution in the aggregate production function framework

are mathematical properties, which are not mutually exclusive in real world scenarios

(Couix, 2019). Related to this issue of aggregation and abstraction, van den Bergh (1999)

discusses that the notion of substitution might not be meaningful within an aggregate

context discussed above. Specifically, drawing on the conceptualization by Georgescu-

Roegen (1971), the author argues that such an aggregate notion misses on important

differences between different types of inputs, namely stocks, funds, and flows, which have

different substitution and complementarity relations between them. Additionally, the

level of aggregation might be problematic as clean activities are interrelated with many

other, dirtier goods through intermediate goods and services (van den Bergh, 2017).

While Couix (2019), after discussing the debate, concludes with the claim that both

positions remain unproven because of the methodological difficulties, it is important to

bear these challenges in mind in the discussions in the following sections. In the past

decade, endogenous growth models with directed technical change (DTC) have been ex-
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tensively used to deal with optimal policy in an environmental setting in the presence of

the incentives and externalities central to the research sector.28 Accordingly, these mod-

els provide an important theoretical grounding to inform the empirical chapters of this

dissertation. Given this important function, the following sections consider selected DTC

models related to environmental topics in depth, with specific emphasis on the structure

of the production and research system, the implications, and the intuition behind them.

1.3.2 Directed Technical Change

A useful categorization for the theoretical literature on DTC in an environmental setting

is proposed by Hémous and Olsen (2021): one class of models analyzes technical change

between two substitute inputs in which one is clean and the other dirty; the other class

models the choice between energy-saving and labor/capital-saving technical change. In

this review, I follow this categorization broadly and focus on structural aspects regarding

production and the innovation system as well as implications of the models that inform

the empirical chapters.29

1.3.2.1 Clean and Dirty Inputs

The first class of models analyze the choice between a dirty and a clean input. In their

seminal paper, Acemoglu et al. (2012) study the direction of technical change between

these inputs, the role of path dependency, how policy incentives can change the direction,

and whether economic growth can be sustainable for the environment.

These questions are addressed by Acemoglu et al. (2012) using the following model

structure. In an aggregate CES production function, the final good is produced from two

goods (dirty and clean), which might be either gross substitutes or gross complements

(see Section 1.3.1). Each good is itself produced from a continuum of sector-specific

machines and labor. Both sectors differ insofar that the production of the dirty good

reduces environmental quality proportionally (environmental externality). The machines

for both sectors are supplied by monopolistically competitive firms (Acemoglu et al.,

2012), allowing for profits as incentive to innovate (Hémous and Olsen, 2021). Acemoglu

et al. (2012) model the innovation process the following way. At the beginning of each

period, scientists decide whether to research in dirty or clean technologies – this decision

28The seminal DTC model by Acemoglu (2002) is not explicitly tailored towards an environmental setting.
29This review is not comprehensive, but focuses on selective studies that are considered to be of impor-
tance. An interesting (yet also not comprehensive) review is provided by Hémous and Olsen (2021).
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is based on the relative expected profits across the sectors – and successful innovation

improves the quality of a machine on which the scientists receives patent protection.

Acemoglu et al. (2012) arrive at the following implications in the market equilibrium.

The profits for innovation depend on three components: first, research favors the more

productive sector (direct productivity effect). This is because innovation builds on the

existing quality of machines within each sector, involving a so-called “building-on-the-

shoulders-of-giants” effect (knowledge externality). Second, scientists favor the sector

with higher prices (price effect). Third, research is directed to the sector with higher

employment, i.e., the larger market for machines (market size effect). The overall effect

depends crucially on the elasticity of substitution between the sectors. When the two

goods are gross substitutes, the more productive sector has also larger market share and

the price effect (which favors the less productive sector) is dominated.30 Hence, there

exists a path dependency in the approach by Acemoglu et al. (2012). The economy

innovates only in the initially more advanced dirty technology and the productivity gap

between the two sectors increases. This has severe consequences for the environment.

Environmental quality decreases until a point of no return, which has the basic intuition

of a climate threshold (see Section 1.2.1). In the model by Acemoglu et al. (2012), this

threshold can be avoided with appropriate policy if the goods are gross substitutes, but

the design of the policy depends on the degree of substitution. In general, optimal policy

involves a carbon tax to correct for the environmental externality and a research subsidy

to correct for the knowledge externality. However, whether policy support is required

only temporarily depends on whether the degree of substitution is sufficiently strong. In

contrast, when the sectors are gross complements, the environmental threshold can only

be avoided if economic growth stops in the long run.31 Regarding the potential scarcity of

natural resources (see Section 1.2.1), the model also contains an interesting insight. When

the dirty good is produced with an exhaustible resource, increasing scarcity leads to higher

prices in the dirty sector and incentives to innovate in clean technology, which makes the

environmental disaster less likely in the substitutes case (Acemoglu et al., 2012).

30The assumption of gross substitutes is considered to be more plausible by Acemoglu et al. (2012).
31Whereas innovation occurs only in one sector in the long run in the case of substitutes (Fried, 2018),
an interesting feature is that when sectors are gross complements, the less productive sector is favored
(because the market size effect favors it now). This implies that the initially less advanced sector catches
up, closes the initial gap, and there is technical change in both sectors in the long run (Acemoglu et al.,
2012). This feature is discussed more formally by Hémous and Olsen (2021).
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1.3.2.2 Energy Intensity

The second class of models studies energy-saving or resource-saving innovation. These

models typically do not include an environmental externality but ask how the energy

share of output evolves with long-run growth.

Haas and Kempa (2018) aim to decompose the change in energy intensity into a struc-

tural and a technological effect to analyze the heterogeneity in energy-intensity develop-

ments across countries. The structural effect is the relative share of the sectors in final

output, whereas the technological effect is the efficiency of each sector (see Section 1.3.1).

Therefore, Haas and Kempa (2018) draw on the model by Acemoglu et al. (2012) and

consider an energy-intensive and a non-energy-intensive but labor-intensive intermedi-

ate sector (instead of clean and dirty). The research system is structured similarly to

Acemoglu et al. (2012): When sectors are gross substitutes, research favors the techno-

logically more advanced sector and a higher exogenous energy price makes research in the

labor-intensive sector more profitable. When the sectors are gross complements, research

favors the technologically less advanced sector and a higher exogenous energy price makes

research in the energy-intensive sector more profitable (Haas and Kempa, 2018). Based

on this structure, Haas and Kempa (2018) highlight several scenarios, which again depend

on the degree of substitution between the sectors. Of special interest for the empirical

chapters are the implications for technical change in the energy-intensive sector and for

exogenous energy price shocks. First, innovation in the energy-intensive sector can result

in an overall increasing or decreasing energy intensity growth rate. The structural effect

is positive, the efficiency effect is negative, and the elasticity of substitution between the

sectors determines which effect dominates. In the case of gross complements, the efficiency

effect dominates the structural effect and the growth rate of energy intensity decreases.

However, the substitutes case produces a variant of the rebound effect (e.g., Witajewski-

Baltvilks et al., 2017), because the demand effect overcompensates the efficiency effect.

Second, a growing energy price always leads to a declining energy share, because both

the structural effect and the efficiency effect tend to be negative. In the gross-substitutes

case sufficiently strong energy shocks can change the direction of technical change, similar

to the insights for the price policy instruments by Acemoglu et al. (2012). For example,

when research is initially directed to the energy sector, sufficiently strong energy price

growth can redirect innovation to the labor sector. This is because the output in the

energy-intensive sector decreases in response to the cost shock; since the demand effect
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dominates the price effect, innovation in the energy-intensive sector becomes eventually

less profitable than innovation in the labor sector (Haas and Kempa, 2018).

In a recent paper, Hassler et al. (2021) directly relate to the relevance of exogenous

energy price shocks and deal with the ability of technical change to substitute for scarce

resources. They empirically show that the US energy cost shares and energy prices closely

follow each other, implying strong complementarity between energy and the capital/labor

composite in the production function in equation (1.2). Assuming this very low elasticity

of substitution, Hassler et al. (2021) calculate the implied energy-augmenting technological

change series from the production function with US data to show that energy-augmenting

technical change appears to have been initiated after the oil shocks in the 1970s. Based

on these observations, Hassler et al. (2021) develop an endogenous growth model to study

the choice of a representative firm between energy-saving and capital/labor-saving tech-

nologies.32 The model predicts that the energy share will only respond slightly to resource

scarcity because of the technology response facing higher fuel prices (Hassler et al., 2021).

Hence, it highlights the interplay between the elasticity of substitution and technical

change discussed in Section 1.3.1. Although the static elasticity of substitution is very

low, energy-augmenting technical change can substitute for energy inputs over time, and

hence compensate for resource scarcity.

Fried (2018) develops a more detailed model to quantify the effects of a carbon tax

on endogenous innovation and energy use. The richer model structure is designed to

captured the economy-wide effects of directed technical change, as it explicitly features

an energy and a non-energy sector, in contrast to Acemoglu et al. (2012). Specifically,

output in the model by Fried (2018) is produced from a nested CES production function.

On the highest level, final output is produced from energy and non-energy intermediate

goods, which are hard to substitute.33 The energy input in turn is a CES function of green

and fossil energy. Finally, fossil energy can be produced from domestic fossil energy or

oil imports. Hence, energy used in final production is provided from either green energy

sources, from domestic fossil energy (i.e., a mixture of coal, oil, and natural gas) and

oil imports. It is assumed that the three energy sources (green, fossil, and oil imports)

are gross substitutes.34 Fossil energy, green energy, and non-energy intermediates are

produced with labor and sector-specific machines. The sector-specific machine producers

32Since the structure of the model adds little to the expositions in this section, it is not considered in
greater detail.

33This assumption mirrors Hassler et al. (2021).
34This premise is similar to the preferred assumption of gross substitutes by Acemoglu et al. (2012).
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can hire scientists to improve the quality of their machines (Fried, 2018). Based on this rich

structure, Fried (2018) report the following results. Similar to Acemoglu et al. (2012),

there is a path dependence in innovation, implying that, ceteris paribus, innovation is

directed to the technologically more advanced sectors. However, a noticeable contrast

to Acemoglu et al. (2012) is that Fried (2018) also models cross-sector spillovers. These

catch-up spillovers are rationalized by the idea that if a sector is less advanced, there

is a lot of knowledge already used in other sectors that could be easily implemented to

improve technology. Thus, in contrast to the within-sector spillovers, the between-sector

spillovers direct innovation, ceteris paribus, to the less advanced sectors.35 Furthermore,

an interesting implication is that while oil price shocks increase innovation incentives in

domestic fossil energy and green energy, carbon taxes only increase incentives for green

innovation (Fried, 2018). Finally, Fried (2018) reports that the endogenous innovation

response renders carbon taxes more effective compared to a scenario without endogenous

innovation.

1.3.2.3 The International Dimension

While the models discussed so far focus on technical change in a single country, there are

also approaches that take the international dimension of knowledge diffusion into account.

Acemoglu et al. (2014) build on the approach by Acemoglu et al. (2012) to explicitly

analyze global policy coordination and international knowledge spillovers. Thus, Ace-

moglu et al. (2014) model two regions (North and South), which both produce output

from dirty or clean inputs. A key difference between the regions is that scientists in the

North improve technologies in both sectors, while scientists in the South only imitate

technologies already invented in the North (Acemoglu et al., 2014). This is related to

the empirical observation that innovation activity concentrates in the highly developed

countries (e.g., Keller, 2004; Probst et al., 2021). The two regions are interdependent

directly via trade or indirectly through the environmental and knowledge externalities

(Acemoglu et al., 2014). Based on this structure, Acemoglu et al. (2014) discuss that

incentives to innovate in the North are governed by the same forces as in Acemoglu et al.

(2012), namely a price effect, a market size effect, and a productivity effect. The incen-

tives to imitate in the South involve an international knowledge externality, since it is

more profitable to imitate the more productive technology from the North. Hence, the

35Given appropriate parameter settings, these effects might create a scenario where there is long-run
innovation in both sectors.
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social value of innovation in the North includes the “building-on-the-shoulders-of-giants”

effect – as in Acemoglu et al. (2012) – and an externality because of giving the South

the opportunity to imitate better technology (international knowledge spillover). Similar

to Acemoglu et al. (2012), when the dirty technologies are initially sufficiently more ad-

vanced, the economies end up in an environmental disaster. A key insight by Acemoglu

et al. (2014) is that when there is a sufficient amount of trade, avoiding the disaster re-

quires environmental policy in both world regions. For example, unilateral policy in the

North can create a “pollution haven” effect, in which the dirty good production moves to

the South, resulting in a specialization in the dirty sector.

Hémous (2016) deals with a similar objective, namely to analyze whether unilateral

environmental policies can ensure sustainable growth. This is addressed in a trade frame-

work in which one world region (North) is willing to implement a carbon tax, whereas

the other world region (South) is not. However, in contrast to Acemoglu et al. (2014),

both world regions improve on technology, there is an energy and a non-energy sector,

and pollution from the energy sector depends on the direction of technical change towards

either dirty or clean input goods within the energy sector. The model by Hémous (2016)

is structured the following way. There are two goods that enter final consumption, a

polluting and a non-polluting good. The polluting good is produced from a clean and

a dirty input that are assumed to be gross substitutes (Hémous, 2016). Hence, the ap-

proach considers not only the energy sector, similar to Fried (2018). Innovation efforts are

made by profit-maximizing firms in both world regions that can hire scientists and that

can direct research efforts to the non-polluting sector or at clean and dirty technologies

within the polluting sector. In the baseline setting, Hémous (2016) further deviates from

Acemoglu et al. (2014) and abstracts from cross-country knowledge spillovers. Based on

this structure, Hémous (2016) documents a similar path dependence as discussed in the

previous models. The path dependency leads to comparable results to Acemoglu et al.

(2012) and Acemoglu et al. (2014): if the dirty technology is more advanced in the be-

ginning, long-run growth results in an environmental disaster. Similar to Acemoglu et al.

(2014), a unilateral carbon tax in the North produces a pollution haven effect. Compared

to Acemoglu et al. (2014), the unilateral carbon tax is even more ineffective, potentially

contributing to accelerated pollution. In contrast, a combination of clean research subsi-

dies and a trade tax might be more effective. This is because it can provide an opportunity

for the North to establish a comparative advantage in the polluting sector and to improve

the environmental performance of that sector by innovating in the clean input. Thus,
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optimal unilateral policy combines a carbon tax, clean research subsidies, and a trade tax

on the polluting good (Hémous, 2016).

Taken together, the theory of DTC delivers important insights regarding the incentives

that impact the direction of research and how externalities and related path dependencies

influence these incentives. The following section summarizes the key lessons from the

discussed theory and relates them to the policy agenda of green growth.

1.3.3 Directed Technical Change and Green Growth

The following section discusses what the insights from the models presented in the previous

Section 1.3.2 imply for the prospects of green growth. It is important to emphasize that

the models capture only a small fraction of what is implied by green growth by design.

Thus, “growth” relates to the narrower notion of GDP growth in the following, while

“green” only refers to the decoupling of GDP growth from emissions or from the use of

energy.

In general, the literature on DTC emphasizes the importance to consider the endoge-

nous incentives for clean technical development when analyzing long-run developments

and economic and environmental policies. Depending on the circumstances, these in-

centives can hinder a clean transition (e.g., Acemoglu et al., 2012, 2014), but they can

also contribute to more effective environmental policy (e.g., Acemoglu et al., 2012; Fried,

2018).

Specifically, first, the theory of DTC emphasizes to consider the role of price signals.

Hassler et al. (2021) discuss how the choice of energy-saving technical change responds to

global fuel prices (e.g., oil price shocks). Because of this price-induced technical change,

the scarcity of fossil fuel resources only puts a slight drag on consumption growth in their

model. However, Hassler et al. (2021) do not consider environmental pressures directly,

which might restrict growth before the limits to extraction become binding. Dealing

with pollution explicitly, Acemoglu et al. (2012) discuss that the environmental disaster

becomes less likely if a scarce resource is need for the production of the dirty good because

of similar price responses in the markets. Similarly, in the approach by Haas and Kempa

(2018), energy price shocks always induce a declining energy share. Finally, these insights

also extend to price policies. Induced innovation in response to a carbon tax can make

the tax more effective compared to a scenario without induced innovation (Fried, 2018),
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and hence to a more optimistic policy scenario in some circumstances (Acemoglu et al.,

2012).

Second, path dependencies are important.36 As discussed by Acemoglu et al. (2012)

and Acemoglu et al. (2014), when the dirty sector is sufficiently more advanced in the

initial period, green growth can generally not be achieved without policy intervention.37

There is, hence, the possibility of a lock-in in dirty technologies, which would make green

growth infeasible. Similarly, Haas and Kempa (2018) show that research that is initially

directed to the energy-intensive or labor-intensive sector can only be redirected to the

other sector for sufficiently high or low growth rates of the exogenous energy price. A

direct consequence of path dependence is that policy intervention should be implemented

quickly, as an increasing gap between the dirty and the clean sector makes waiting costly

(Acemoglu et al., 2012; Aghion et al., 2019). Indeed, path dependence implies that in

general, there will be some costs in terms of reduced output growth during the transition.

This is because the clean sector is less productive and needs time to catch up (Aghion

et al., 2019). Although other effects, such as cross-sectional spillovers, could counteract the

path dependence, there might still be transition losses in terms of aggregate growth (Fried,

2018). Hence, the model predictions are rather pessimistic regarding short-run gains and

align more with the “standard” argument of green growth discussed in Section 1.2.3.

Third, the elasticity of substitution between the sectors is in general crucial. This is es-

pecially striking for the approaches by Acemoglu et al. (2012) and Acemoglu et al. (2014).

As Acemoglu et al. (2012) discuss, when the two sectors are sufficiently substitutable, only

a temporary intervention is necessary and the environmental goals can be reached without

any or much of a drag on economic growth. When the sectors are substitutable but not

sufficiently, a permanent policy intervention might be necessary. When the sectors are

gross complements, the environmental disaster can only be avoided by stopping economic

growth, and hence this situation would imply infeasibility of green growth. Additionally,

if sectors, such as an energy-intensive sector and a labor-intensive sector, are sufficiently

substitutable, technical progress in the energy sector can even increase overall energy in-

tensity of the economy because of overcompensating demand (Witajewski-Baltvilks et al.,

2017; Haas and Kempa, 2018). Hence, the appropriate policy response might substantially

depend on whether inputs are easy to substitute (Aghion et al., 2019).

36However, depending on the degree of substitution.
37While path dependence arises from the history in these models, path dependence might also stem from
expectations about the future (van der Meijden and Smulders, 2017).
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Fourth, as highlighted by Acemoglu et al. (2012) and Acemoglu et al. (2014), the

optimal policy response might include a mixture of different measures, involving both

“technology-push” (i.e., green research subsidies) as well as “demand-pull” (i.e., a carbon

tax).38 Indeed, in the context of international trade, even more differentiated policy de-

signs might be necessary, including trade taxes (Hémous, 2016). Additionally, Acemoglu

et al. (2014) highlight the pronounced importance of global policy coordination and the

need to ensure that clean technologies are effectively transferred to less-developed coun-

tries. A similar implication can be drawn from the insights by Hémous (2016), as the

carbon taxes and research subsidies in the North should be accompanied by policies that

facilitate technology transfer and build absorptive capacity in the South (Stern and Valero,

2021). As summarized by Aghion et al. (2019), more developed countries should act as

technology leaders and they should aim to transfer (provide better access to) the technolo-

gies for less developed countries. At the same time, they should consider border carbon

adjustments against countries that aim to take advantage of the environmental policies

by specializing in fossil-fuel-extensive goods.

To conclude, the theory of DTC offers insights relating to incentives for green technical

change, the role of path dependencies, the critical role of the elasticity of substitution

between factors of production, and optimal policy and policy coordination given these

mechanisms. However, the underlying theory is rather stylized and implications rest on

specific assumption regarding the structure of the model and parameter values, such as

the elasticity of substitution. To ensure a comprehensive view and to embed the insights,

the following section briefly discusses some possible limitations of the sketched theory.

1.3.4 Limitations

It is important to emphasize again that all models discussed above and hence their im-

plications for green growth relate to specific flows of goods from the natural capital. The

models consider the use of a non-renewable resource and/or its associated waste product

in form of emissions. They do not consider the state of the natural capital and its “func-

tions of” and the complex interdependence between different functions and feedbacks (see

Section 1.2) directly. Whats more, Pottier et al. (2014) criticize the entire climate module

in Acemoglu et al. (2012) as miss-specified. Additionally, there is generally no explicit

differentiation of different stages of the research process, as discussed in Section 1.3.1.

38See Verdolini and Galeotti (2011) and Kruse and Wetzel (2016) for more details on technology-push
and demand-pull policies.
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For example, in the model by Acemoglu et al. (2012), profit-oriented scientists improve

the quality of machines in the beginning of the period, which are always employed in

production within the same period. This contrasts the high complexity of the actual

processes from development to diffusion of new technology (e.g., Weyant, 2011) and does

not allow to analyze the process of diffusion/adoption of clean technologies (Pottier et al.,

2014). This high complexity of the research process is highlighted by the literature on

innovation systems, which deals with the interplay of heterogeneous actors that form spe-

cific networks of interaction and the underlying institutional framework that shapes these

interactions (e.g., Lundvall, 1992; Binz and Truffer, 2017).

Additionally, as with any model that works with an abstract representation of aggre-

gate production, the reviewed DTC models are not immune to the critique formulated in

Section 1.3.1 regarding the adequate representation of different substitution mechanisms.

The DTC models are not designed to model separately different material-product chains,

recycling, waste management, and dematerialization in the whole economy. It might be

speculated that this observation in combination with the methodological difficulties of the

concept of substitution (Couix, 2019) contributed to a disagreement on appropriate as-

sumptions regarding the elasticity of substitution (e.g., Pottier et al., 2014). Pottier et al.

(2014) discuss several further limitations of the approach by Acemoglu et al. (2012). In

consequence, applying assumptions that they consider more realistic, Pottier et al. (2014)

derive more pessimistic numerical predictions.

To conclude, the discussed theories are important to inform the empirical papers re-

garding the effects and determinants of green technical change. However, their exact

implications can depend on specific assumptions regarding model structure and parame-

ter values. This is complicated by the level of abstraction, the complex nature of technical

change, and the variety of potential impact factors. Furthermore, there are many impor-

tant underlying forces that do not enter the models explicitly, such as institutions, which

might help to break through a path dependence (Aghion et al., 2019), and which are core

parts of innovation systems (Lundvall, 1992). These considerations highlight the role of

empirical research to contribute to the understanding of the effects and determinants of

technical change. The empirical papers in this dissertation relate to and draw on the the-

oretical concepts discussed in the previous sections. They contribute in different ways to

the understanding of questions relating to decoupling of economic growth from resource

use, the potential of win-win opportunities of green technical change, and the price in-

ducement mechanisms of environmental technologies. The following section provides an
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overview of the empirical dissertation papers, how they relate to the concepts discussed in

this introductory chapter, which research gaps they attempt to fill, and what implications

they offer.

1.4 Overview of the Dissertation Papers

The four empirical chapters relate to different notions of technical change. To align the

empirical papers to the concepts discussed in the previous sections, it is instructive to

cluster them along two main categories, which I call “measure” and “objective”.

The first category “measure” contains the specific empirical indicator of technical

change. As discussed in Section 1.3.1, technical change can be conceptualized in an

aggregate notion or it can be further differentiated. Depending on the specific research

question under scrutiny, this allows for a variety of empirical measures of technical change.

Summarized in a conceptual sketch provided by Grubb et al. (2021), innovation activities

might result in technology outcomes (e.g., technology costs reduction), which then might

translate into economy-wide, aggregate outcomes. Each of these steps in the process

of technical change has related empirical measures. The four empirical papers of this

dissertation either measure innovation activity and hence employ activity measures and/or

measure macroeconomic outcomes (outcome measures).

With regard to activity measures, one might traditionally differentiate between input

measures, such as R&D investments, and output measures, such as patents (Griliches,

1990). However, as discussed by Griliches (1990), R&D investments and patents are

closely related and patents may serve as input as well as output indicator, thus measuring

innovation activity in general. Outcome measures provide the most comprehensive view,

as they consider all stages of the process of technical change, including the successful

diffusion of technical innovation (see Section 1.3.1) and whether the diffusion results into

actual outcomes (as discussed in Section 1.3.2, their might also be rebound effects such

that technical change in the energy sector increases overall energy intensity). Typical out-

come measures include energy productivity/intensity or labor productivity (Grubb et al.,

2021), as indicated by the decomposition exercises in Section 1.3.1. However, this com-

prehensive view comes at the cost of higher abstraction. Specifically, employing a measure

of aggregate resource productivity makes it generally complicated to distinguish between

structural change between sectors, substitution between input factors in production or

technical change within the sectors (see Section 1.3.1).
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The second category contains the objective of the empirical study. Directly following

from the first category and the conceptual framework by Grubb et al. (2021), possible

lines of research scrutinize the question whether innovation activities actually lead to ob-

servable technology/macroeconomic outcomes. In the specific case of green innovation

activity, studies can scrutinize whether green innovation activity increases economic out-

put or labor productivity (economic effects). Second, empirical studies might analyze

whether green technologies save resources/pollution, i.e., whether they actually reduce

the environmental impacts of economic activity by using less resources or producing less

pollution (environmental effects). Combining these two objectives implicitly or explicitly,

studies might also ask whether green technical change offers win-win opportunities, i.e.,

whether both economic productivity (competitiveness) as well as environmental produc-

tivity is increased. Third, empirical studies can contribute to the understanding of the

drivers of green technical change, i.e., the economic incentives that determine the level

and the direction of technical change (determinants). Indeed, these three categories are

used for the literature review of empirical studies on green innovation by Barbieri et al.

(2016). Note that while former two categories employ both an activity measure and an

outcome measure, latter category might use an outcome measure or an activity measure.

The first empirical paper of this dissertation (Chapter 2) deals with the question of

whether countries at different stages of economic development show evidence for devel-

oping towards the same long-run levels of resource productivity, i.e., the ratio of GDP

to all natural materials that are used. Based on the identified country groups with sim-

ilar long-run trends, it analyzes whether and which initial, country-specific factors are

associated with group membership. Hence, it can be classified to the category of papers

that analyze determinants of technical change. Moreover, it uses an outcome measure

of resource-saving technical change (resource productivity). Additionally, as the devel-

opment of environmental technologies is highly concentrated in high-developed countries

(Probst et al., 2021), the chapter indirectly relates to the issue of effective intended knowl-

edge transfer or cross-country knowledge spillovers (see Section 1.3.2).

The second paper (Chapter 3) analyzes the dependence of economic growth on differ-

ent types of natural materials and asks whether this dependence is heterogeneous across

countries and whether the level of country-specific institutional quality moderates the

dependence, i.e., whether it is related to the heterogeneity.39 Hence, while Chapter 2

39In this paper, we understand institutions as the basic framework conditions that shape human interac-
tions (North, 1990). In the empirical implementation, we focus on political institutional quality, which
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deals with the long-run development of resource productivity, Chapter 3 asks how de-

pendent additional economic growth of countries is on natural resources given a specific

level of productivity. Again, the chapter can be classified to the objective of analyzing

determinants of green technical change and the use of an outcome measure.

The third article (Chapter 4) relates to win-win opportunities in the context of green

technology development as formulated in, e.g., the European Green Deal (see Section 1.2.3).

Specifically, it deals with the question whether European regions can profit from the de-

velopment of green technologies in terms of labor productivity. According to this research

question, it is classified to the objective economic effects of green technologies. In this

paper, technology development is measured with patent data – an activity measure –

and labor productivity qualifies as an outcome measure. It is worth emphasizing that

the paper is not concerned with win-win opportunities directly in the sense that it does

not quantify both economic effects and environmental effects. Instead it focuses on the

economic dimension.

The final article (Chapter 5) examines the development of green energy technologies

and puts the price inducement mechanism (see Section 1.3.2) under scrutiny. It focuses on

the global oil market and disentangles different underlying structural oil market shocks to

ask whether the impact on green patent applications varies across these different market

disruptions. Hence, the paper can be categorized to the studies analyzing the determinants

of green technical change by employing an activity measure.

Table 1.1. Overview of the dissertation papers

Chapter Title Objective Measure Sample Level
Length of analysis

2 Convergence in Resource
Productivity

Determinants Outcome measure 1970–2012 Countries

3 Institutions and the Nexus of
Economic Growth and Natu-
ral Resource Use

Determinants Outcome measure 1992–2010 Countries

4 Green Technologies and
Growth: Evidence from
European Regions

Economic effects Activity & outcome measure 1980–2015 Regions

5 Oil Shocks and Green Energy
Technical Change

Determinants Activity measure 1990–2015 Countries

Table 1.1 provides an overview of the four empirical chapters. First, it summarizes

the objective and measure category of the paper. Second, since all papers use panel data,

it states the cross-sectional unit of the panel (level of analysis) and the time period for

captures the degree to which a country is democratic, secures a free press and political rights, provides
high levels of accountability and bureaucratic quality, while being free of corruption, conflicts, and
violence (Kunčič, 2014).
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the analysis (sample length).40 The following sections provide a more detailed account

of the individual papers, highlighting the motivation, the contribution, the results, and

their implications.

1.4.1 Convergence in Resource Productivity

This paper is motivated by the need to decouple resource use from economic activity

in the pursuit of sustainable development, against the background of boundaries for the

well-functioning of Earth system processes (see Section 1.2). Indeed, as documented

in Section 1.2.3 and as highlighted by UNEP (2011) and UNEP (2016), improvements

in resource productivity range high on the political agenda. Thus, the country-specific

development paths of resource productivity are central for the outlook of sustainable de-

velopment (e.g., Stern, 2004; Pothen and Welsch, 2019), with immediate policy relevance.

Additionally, in the light of DTC (see Section 1.3.2), it is interesting to observe whether

resource productivity has a strong unique component or whether developments are similar

to other measures of technical change.41 In this paper, we explore the long-run develop-

ment paths of resource productivity across countries at different levels of general economic

development and compare these to development paths of labor productivity.

The main contributions of this paper are threefold. First, we analyze the long-run

development of resource productivity for a large sample of countries at different stages

of economic development over a considerable time period. Second, we explicitly compare

the identified patterns for resource productivity with those for labor productivity. Third,

we analyze the role of initial, country-specific characteristics as determinants of long-run

development paths.

We report three main findings. First, our data does not support that all countries in

the sample converge to the same long-run paths. Instead, we find three different groups

of countries, which converge to the same growth rates, but not the same levels of resource

productivity. To a large extent, the three groups reflect the general economic development

of the countries. Second, this observation is generally confirmed by the analysis of initial

conditions. We find that higher initial GDP per capita, democracy, higher human capital,

40It should be emphasized that the level of analysis also adds an important notion to the categories
sketched above. Since all studies of this dissertation apply to a macroeconomic perspective, the cate-
gories are tailored towards that purpose. However, studies might of course also deal with the question
of whether, for example, innovation activity of a single firm transforms into economic output of that
specific firm.

41In Section 1.3.1 it is shown how resource or labor productivity can be regarded as a measure of technical
change.
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temperate climate, higher population density, lower resource abundance, and lower dis-

tance to the sea are associated with a higher probability for a country to be on a favorable

growth path. Third, despite the fact that the patterns in labor productivity are generally

comparable, there are interesting differences. Democracy, human capital, and a temper-

ate climate are more robustly associated with group membership for labor productivity,

whereas population density is exclusively associated with group membership for resource

productivity.

Our results have important implications. First, given the persistent differences in

resource productivity across countries, the international dimension of the sustainability

problem is highlighted. Specifically, the results are consistent with the argument that

knowledge transfer is currently not sufficient. Second, the analysis of the fundamen-

tal factors suggest that country-specific conditions might favor different production and

technology patterns, which relate to different patterns of path dependence.

1.4.2 Institutions and the Nexus of Economic Growth and Nat-

ural Resource Use

In the previous empirical paper it is highlighted that differences in the long-run devel-

opment of resource productivity across countries are very persistent and that country-

specific factors, such as democracy, relate to different long-run development patterns.

This observation motivates to further analyze the development paths and the dependence

of economic growth on natural resources for different natural resource classes (see Sec-

tion 1.2.2 for an overview of the different resource categories).42 Indeed, our data indicates

that there is substantial heterogeneity in the correlation of GDP growth and resource use

growth across countries. Hence, in this paper, we deal with the question of which underly-

ing sources are able to explain the observed heterogeneity and argue that country-specific

institutional quality might be a promising candidate. This is based on the observation

that institutional quality is linked to relative prices and technology, which are potential

proximate factors that relate to the relative importance of input factors in production, as

highlighted by the theory of DTC (see Section 1.3.2).

Our paper contributes to the literature by examining in detail the heterogeneity of

the procyclicality of resource use for different resource classes, linking it to the role of

42Since Chapter 2 and Chapter 3 employ different measures of resource use and since the sample periods
are very different, it is not straightforward to synthesize their results and attempts to do so are tentative.
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institutional quality.43 This mediating role has been considered in different contexts

relating to emissions and other dimensions of environmental quality (e.g., Dées, 2020),

but not yet to the procyclicality of resource use.

We report several important empirical findings. First, on average, total resource use

growth and resource use growth in the subclasses fossil fuels, biomass, non-metallic miner-

als and metal ores is coupled to economic growth, but coefficients of the procyclicality are

considerably heterogeneous across countries. Second, the procyclicality of total resources,

biomass and non-metallic minerals is positively associated with the institutional quality of

a country, even if we control for confounding factors such as the level of GDP per capita,

the industry share, trade openness or resource rents. The results for metal ores are less

robust, but generally point towards a similar association. However, for fossil fuels, we

find no evidence for a positive association of institutional quality and the procyclicality

of resource use.

These findings have important policy implications. While institutions in general are

often regarded as to contribute to environmental protection (e.g., Dasgupta and De Cian,

2018; Dées, 2020), our results indicate that additional economic growth in countries with

better institutional quality is associated with a relatively strong increase of resource use

growth. Hence, the results are consistent with the claim that additional economic growth

in countries with high institutional quality is relatively more dependent on natural re-

sources in general. However, the results for fossil fuels are broadly consistent with the

theory that institutional quality is the grounding for environmental policy to be credi-

ble and effective, such that well-designed policy might lead to changes in the observed

patterns of economic growth in the spirit of the green growth concept (see Section 1.2.3).

1.4.3 Green Technologies and Growth: Evidence from Euro-

pean Regions

This paper is motivated by the win-win potential of green technology development, as

highlighted by the green growth approach (see Section 1.2.3). On the one hand side, as

discussed in the previous sections, green technical progress is essential to achieve sus-

tainable development as it might contribute to increase environmental productivity (e.g.,

Popp, 2010). On the other hand side, green technologies might as well enhance economic

productivity (e.g., Xepapadeas and de Zeeuw, 1999). If green technology development

43Broadly, we refer to procyclicality as the impact of an increase of GDP growth on resource use growth.
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can be an engine for regional growth, it might serve regional inclusion in the context of

Europe’s regional development strategies. In this paper, we focus on the economic dimen-

sion and estimate the impact of green technology development on labor productivity of

European regions.

The main contribution of this paper is to thoroughly estimate the returns to green

technology development at the regional level, while rigorously controlling for unobserved

spillovers potentially complex in nature. Additionally, we consider various sources of po-

tential heterogeneous effects across technology types, regions, and over time. As discussed

in Section 1.3, spillovers are an integral feature of knowledge generation. In this paper,

we choose a flexible approach to account for unknown spillovers instead of modeling spe-

cific channels of spillovers based on ex ante assumptions. This allows us to focus on the

regional returns to knowledge generation – i.e., whether there is a positive impact of green

technology development on labor productivity within a region.

Our main results comprise the following. First, while general technology development

is mostly associated with positive regional returns, our data is not supportive of positive

regional returns to green technologies in general. Second, despite the absence of regional

returns to green technologies in general, we document evidence that the returns are pos-

itive for specific subclasses of green technologies and for regions with a sufficiently high

level of the regional knowledge base.

These findings have important policy implications. First, our results are generally

consistent with empirical evidence on the strong Porter hypothesis (see Section 1.2.3),

which is rarely supported (Dechezleprêtre and Sato, 2017). Second, our results imply that

comprehensive policies fostering the green transition for all regions alike are potentially

in contrast to regional cohesion goals. As our findings suggest, the returns to green

technology development appear to depend on the regional knowledge base, such that

knowledge intensive regions might especially profit, exacerbating regional inequalities.

Accounting for this underlying heterogeneity and the heterogeneity in specific technology

types appears to be crucial for inclusive green growth.

1.4.4 Oil Shocks and Green Energy Technical Change

This paper is motivated by the importance of continued technical progress in the pursuit

of a net-zero emissions energy system (Davis et al., 2018) and the role that global energy

market disruptions play for price induced technical change. Specifically, an argument
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that is discussed in Section 1.3.2 and that is particularly emphasized by Hassler et al.

(2021) is that oil price shocks can trigger green energy technical change. However, oil

price shocks can have different underlying sources, which might have different effects on

the real economy (e.g., Kilian, 2009; Kim and Vera, 2019). Yet, existing studies on the

country level focus on overall real oil price measures (e.g., Guillouzouic-Le Corff, 2018)

and do not disentangle the contributions of different underlying shocks. In this paper,

I explore the effect of different underlying structural shocks to the global oil market on

green innovation activity at the country level.

The main contribution of this paper is to extend the literature on price induced innova-

tion at the country level (e.g., Popp, 2002; Kruse and Wetzel, 2016; Guillouzouic-Le Corff,

2018) by explicitly considering the role of different structural shocks to the oil market. To

identify the structural shocks, it relies on recent methodological advances in the literature

on structural vector autoregressions for the oil market and utilizes the structural shocks

estimated and provided by Baumeister and Hamilton (2019). This facilitate to estimate

the impact of oil supply shocks, oil consumption demand shocks, and precautionary de-

mand shocks on green innovation in the three technology classes clean technologies in the

energy sector, clean technologies in the buildings sector, and biofuel technologies.

The main results comprise the following. In general, different structural oil market

shocks have different associations to green innovation activity, which also depend on the

technology area under consideration. First, positive oil supply shocks are in general as-

sociated with reduced patenting activity in the following year. This effect is especially

pronounced for biofuels, but only negligible for clean technologies in the buildings sec-

tor. Second, positive oil demand shocks play only a limited role in general, being only

significantly associated with increased patenting activity in the following year for general

clean energy technologies. Third, positive speculative demand shocks have a pronounced

positive association with patenting activity in biofuels only in the following year.

These results have importing implications. First, since oil supply shocks are robustly

associated with green patenting activity, the results are consistent with the hypothesis

that technological disruptions, such as the shale gas boom, can hinder green technological

progress (e.g., Lazkano and Ayasli, 2022). On the other hand, they are also consistent

with the view that supply shortages because of limited oil stocks increase the incentives

for green innovation (e.g., Hassler et al., 2021). Secondly, since green innovation responds

differently to different structural oil market shocks (at least in the short run), not all oil

price movements need to translate into green innovation automatically. Hence, in order to
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build a resilient green innovation system, the paper highlights that a better understanding

of different shocks and their transmission mechanisms is needed.

1.5 Conclusion

This introductory chapter embedded the empirical chapters in the broader societal and

scientific context. To outline the basic challenge of environmental sustainability, the in-

terplay between economic activity and the natural environment as well as the state of the

natural environment were discussed. Subsequently, political approaches to environmental

sustainability were contrasted and the role of green technical change in these approaches

was highlighted. Given the central role of technical progress for environmental sustain-

ability, technical change in economic theory was discussed and some implications for

sustainable economic growth were derived. It was highlighted that technical change is a

complex process and that important areas for empirical research exist, which should be in-

formed by the theoretical contributions. Finally, it was shown how the empirical chapters

relate to the discussed theory and concepts and how this dissertation contributes.

Specifically, it contributes to the stream of literature on the effects and determinants

of green technical change across different research areas. Chapter 2 and Chapter 3 employ

an outcome measure of resource-saving technical change and deal with determinants in

the form of country-specific characteristics. The results of Chapter 2 indicate that dif-

ferences in the long-run development of resource productivity across countries are very

persistent and that country-specific factors, such as democracy, relate to different long-

run development patterns. Countries that are on a relatively high steady state regarding

long-run resource productivity are typically countries that are highly developed in general,

highlighting the need for more effective knowledge transfer. Chapter 3 shows that coun-

tries with better institutional quality tend to be more dependent on natural resources for

additional economic growth. Thus, the prospects for institutional quality alone to further

improve resource productivity might be limited. This is complemented with the observa-

tion that whether a country is democratic or not is a better predictor for being on a high

steady state growth path for labor productivity than for resource productivity, consistent

with the assumption that democratic countries tend to invest rather in labor-saving tech-

nical change (Chapter 2). Chapter 4 combines an outcome and an activity measure of

technical change to shed light on the economic effects of green technical change at the

regional level. It highlights the need to consider the heterogeneity across technologies and
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across regions, as green technologies only have a positive impact on labor productivity

for specific types of green technology and for regions with a sufficiently high regional

knowledge base. Finally, while Chapters 2 and 3 deal with country-specific determinants

of green technical change, Chapter 5 considers determinants in the form of global oil

price shocks and how these relate to green innovation activity. It highlights that while

energy commodity prices can be an important determinant of green innovation activity,

this channel has to be explored in more depth, as the impact varies by the nature of the

structural shock to the oil market and the specific green technology field.

Despite these important insights, the empirical chapters share a limitation that should

be emphasized. As discussed in Section 1.4, there are different conceptualizations of tech-

nical change at several levels of aggregation. The empirical chapters of this dissertation

deal with technical change on an aggregate, macroeconomic level. While this comprehen-

sive perspective facilitates to derive important insights on large scale developments for a

longer time period, it is difficult to disentangle the complex factors of influence that un-

derlie the observed outcomes. Hence, an interesting avenue for future research is to isolate

specific causes and channels of influence in more disaggregated studies or by employing

suitable econometric instruments.

Nevertheless, the following main conclusions can be drawn. First, given the central role

of green technologies in contributing to environmental sustainability, further improving

environmental technology seems to be inevitable. However, the economic effects of green

innovation activity are probably heterogeneous across regions and technologies, which has

to be taken into account when designing policy instruments towards an environmentally

sustainable economy. Second, as many environmental problems are inherently global, the

international dimension in the development and diffusion of environmental technology is

important. However, differences in how well natural resources are transformed into eco-

nomic output are quite persistent across country groups, highlighting the role of effective

knowledge transfer and the need for technical change that is truly resource saving. Third,

global energy markets might play an important role in the transformation towards a sus-

tainable economy. As global markets can be subject to several disruptions of different

underlying cause, it is important for national policy to understand the contributions of

different shocks and to design policies for a resilient green innovation system.
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Chapter 2

Convergence in Resource Productivity

Authors: Philip Kerner, Tobias Wendler

Abstract

Are countries converging to the same levels of productivity in transforming natural re-

sources into economic output? This question is of high importance as it determines the

need for policy intervention in the pursuit of sustainable economic development. In this

paper, we explore convergence patterns in resource productivity across more than 100

countries between 1970 and 2012. Additionally, we analyze the role of fundamental fac-

tors for convergence patterns and compare these patterns to labor productivity. Instead

of overall convergence, our findings show club convergence in resource productivity, with

convergence clubs closely mirroring levels of economic development. The clubs converge

towards the same growth rates, not the same levels of productivity. We find that initial

levels of GDP per capita, human capital, and population density are strongly associ-

ated with club membership. There are noticeable differences between the convergence

patterns of labor and resource productivity. Democracy, human capital and temperate

climate are particularly strong predictors for club membership in the case of labor pro-

ductivity, whereas population density is exclusively associated with club membership for

resource productivity.
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2.1 Introduction

In the pursuit of sustainable development, improvements in resource productivity range

high on the political agenda in order to confront the daunting environmental crisis (UNEP,

2011, 2016). In light of this, the paths countries take to improve resource productivity have

fundamental implications for the further prospects of sustainable development (Stern,

2004; Pothen and Welsch, 2019), which relates to the necessity of policy intervention.

Therefore, it is an important empirical question, whether countries are on a path towards

similar levels of resource productivity. Correspondingly, whether the patterns of resource

productivity are equivalent to general productivity dynamics or have a strong unique

component directly relates to the necessity of policy to steer the direction of technical

change.44 In this paper, we explore convergence patterns in resource productivity across

countries at all developmental levels, and compare these to convergence dynamics in labor

productivity.

We construct a data set of 118 countries for the time period from 1970 to 2012. To

measure resource productivity, we utilize the ratio of GDP to direct material input (DMI).

For the analysis of the convergence patterns within our sample, we rely on the log t test and

the related clubbing algorithm suggested by Phillips and Sul (2007). After determining

the convergence clubs, we apply an ordered logit model (Bartkowska and Riedl, 2012;

Parker and Liddle, 2017a) to analyze the role of fundamental factors for selection into

clubs. Finally, we assess patterns of labor productivity with the same methodology, and

compare the findings with those for resource productivity.

We report three main findings. First, our data is not supportive of overall convergence

in resource productivity. Rather, our findings suggest that there are three convergence

clubs, which converge to the same growth rates but not the same levels of resource produc-

tivity. The selection of countries into the three clubs resembles different developmental

stages across countries. Second, we find that higher initial GDP per capita, democracy,

higher human capital, temperate climate, higher population density, lower resource abun-

dance, and low distance to the sea predict improved club membership. The predictive

power of initial GDP per capita and population density is particularly robust. Third, al-

though patterns in labor productivity are generally similar, we observe some noteworthy

44We consider resource and labor productivity as displaying technological developments in the sense of
labor-saving or resource-saving technological change in the aggregate production function (André and
Smulders, 2014). Note that in our aggregate framework this encompasses structural change.
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differences. Democracy, human capital, and a temperate climate are relatively stronger

associated with club selection for labor productivity, whereas population density is exclu-

sively associated with club selection for resource productivity.

Convergence analysis is commonly used to explore developmental patterns for a wealth

of settings and topics. For example, Nghiem et al. (2021) use convergence analysis to com-

pare patterns for income, environmental, and health outcomes in OECD countries. Given

our focus on resource productivity, our paper closely relates to the convergence literature

on energy productivity and resource use. This literature emphasizes that there is sub-

stantial evidence for country-specific steady states (Miketa and Mulder, 2005; Mulder and

De Groot, 2007) and club convergence for more homogeneous entities (Parker and Liddle,

2017a,b; Ağazade, 2021), which have similar developmental characteristics (Parker and

Liddle, 2017a,b). For example, Parker and Liddle (2017b) find that more highly developed

economies perform better than less developed economies. There are only few studies that

explicitly analyze convergence patterns of resource use and productivity. Talmon-Gros

(2014) assesses convergence patterns in resource productivity – operationalized as the ra-

tio of GDP to domestic material consumption (DMC) – for OECD and BRICS countries

from 1980 to 2008. For specific subsets of countries, Talmon-Gros (2014) finds evidence

of convergence, while not finding evidence of overall β-convergence. More recent works

by Karakaya et al. (2021) and Alataş et al. (2021) analyze convergence of resource use by

using the procedure of Phillips and Sul (2007). Karakaya et al. (2021) compare the dy-

namics of DMC and a measure of material footprint both overall and as per capita values.

They analyze convergence patterns for 27 EU countries from 2000 to 2018 and perform

a decomposition analysis to identify drivers of resource use within the convergence clubs.

They find evidence of club convergence and that clubs display relative convergence, i.e.,

growth convergence. Only for one subgroup of three countries – namely Italy, Spain, and

the United Kingdom – they find evidence of level convergence for DMC per capita. Alataş

et al. (2021) analyze the relationship of resource productivity – measured as GDP per

DMC – and energy productivity for 28 EU countries from 2000 to 2018. They find five

convergence clubs for resource productivity, each displaying relative convergence only.

With the analysis of fundamental factors for club selection, our paper further relates

to the broader literature on economic development that aims to find the reasons for in-

equality in economic, social, or environmental development paths between countries. The

factors considered in this literature include initial income levels, human capital, institu-

tions and various geographical determinants (e.g., Savvides, 1995; Glaeser et al., 2004).

48



We contribute to the literature by analyzing resource productivity for a comprehensive

sample of countries over a long period and by explicitly considering the role of fundamental

factors for club selection and determination of development paths.

The remainder of this paper is organized as follows. Section 2.2 introduces the data

and empirical methodology. Section 2.3 presents and discusses the results. First, we

provide an overview on σ- and β-convergence dynamics within our data. Second, we

conduct the clubbing algorithm proposed by Phillips and Sul (2007). Third, we analyze

the determinants of club convergence for the full sample of 118 countries with an ordered

logit model (Bartkowska and Riedl, 2012; Parker and Liddle, 2017a). Fourth, we compare

the patterns of resource productivity convergence with labor productivity convergence.

Fifth, we discuss and embed our findings in the related literature. Section 2.4 concludes.

2.2 Methods and Data

2.2.1 Econometric Methodology

To empirically test the hypothesis of convergence in resource productivity, we follow the

approach developed by Phillips and Sul (2007). This approach has several appealing fea-

tures for our empirical setup. First, it allows for heterogeneity in convergence behavior

across countries and over time, helping to comprise the variety of countries in our sample.

As discussed by Phillips and Sul (2009), the traditional notion of β-convergence, which

imposes homogeneity on the transition parameters, can be misleading if transitional be-

havior is indeed heterogeneous. Second, by using a step-wise procedure, it facilitates to

find subsets of convergent countries (club convergence) even when overall convergence for

the full sample is rejected.

The starting point is to decompose our variable of interest, the natural logarithm of

resource productivity (logRP), into two components

logRPit = δitµt, (2.1)

with δit measuring the share of the common trend µt country i experiences in year t

and, thus, displaying the transition path of country i. The asymptotic behavior of δit

characterizes the convergence properties. If δit converges to the same constant δ for all

countries, this implies at least growth convergence. If this convergence occurs at a fast
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enough rate, there might as well be level convergence. To infer these properties, Phillips

and Sul (2007) develop a regression test that is based on the cross-country dispersion

Ht =
1
N

∑︁N
i=1(hit − 1)2 of the so-called relative transition parameter, hit, which is given

by

hit =
logRPit

N−1
∑︁N

i=1 logRPit

=
δit

N−1
∑︁N

i=1 δit
. (2.2)

Under convergence, the relative transition parameter hit converges to unity and the dis-

persion Ht converges to zero. Latter property is used to test the null hypothesis of

convergence against the alternative hypothesis of divergence or club convergence in the

following “log t” regression model:

log
H1

Ht

− 2 log(log t) = a+ γ log t+ υt, (2.3)

where υt is an error term and 2 log(log t) is a penalty function. As discussed by Phillips

and Sul (2007, 2009), a one-sided t-test for γ̂ can be used to discriminate null and alterna-

tive hypothesis. A t-statistic for γ̂ less than −1.65 leads to a rejection of the convergence

hypothesis at the 5% level. The magnitude of the coefficient γ measures the speed of

convergence. If γ ≥ 2 and the common growth component µt follows a random walk

with drift or a trend stationary process,45 it implies convergence in levels of resource

productivity, while 2 > γ ≥ 0 implies growth convergence.

A rejection of the null hypothesis for the full sample rejects overall convergence, but the

alternative hypothesis comprises the possibility of divergence as well as club convergence.

Phillips and Sul (2007, 2009) propose an algorithm to identify the number of convergence

clubs and its members as well as the number of divergent units. The algorithm involves the

following stylized steps based on log t regressions:46 (1) Last observation cross-sectional

ordering. (2) Core group formation. (3) Sieve individuals for club membership, which

involves setting a sieving criterion c∗. (4) Recursion and stopping rule. (5) Club merging.47

The procedure sketched above requires to choose some parameters. First, the log t

regression in equation (2.3) involves discarding of a certain fraction of the time series

data, such that it is performed for t = T0, ..., T and the initial observation is T0 = [rT ].

We set the fraction of discarded data to r = 0.3, which is suggested by Phillips and Sul

45In the following we interpret the coefficient assuming that this condition is met.
46Due to the established nature of the approach, we only name the stylized steps. See Phillips and Sul
(2007, 2009) or Du (2017) for details and developments on the procedure.

47Schnurbus et al. (2017) propose simple adjustments to the original algorithm. We report robustness of
our main results to their adjustment in step 3.
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(2007).48 Second, the sieving criterion c∗ in the third step of the merging algorithm has

to be chosen. We follow Phillips and Sul (2007, 2009) and set the sieving criterion to

zero, which is suggested for small or moderate time series, which applies to our empirical

setting. Finally, as we are interested in the long-run behavior of resource productivity, we

follow Phillips and Sul (2007) and remove the business cycle components from the data.

In our main results, we use the Hodrick-Prescott (HP) filter (Hodrick and Prescott, 1997)

and a smoothing parameter of 6.25, as suggested by Ravn and Uhlig (2002), to extract

the long-run component from logRPit.
49

2.2.2 Data

This section presents the data used in our analysis. We include all countries in our

sample for which we have a full time-series dimension of resource productivity for the

period 1970–2012. This leads to a sample of 118 countries for our main analysis.

Our main data for resource use are drawn from the United Nations International Re-

sources Panel (UN-IRP) Global Material Flows Database (UNEP, 2016; UN-IRP, 2018).

Indicators of material use are given in tons. For the required time series between 1970 and

2012 there are two candidates as indicators of resource use, namely direct material input

(DMI) and domestic material consumption (DMC).50 DMI captures all material inputs an

economy requires for production or consumption. It is constructed as the sum of domes-

tically extracted materials and imported materials. DMC is calculated similar to DMI,

with the difference that exported materials are subtracted. For the purpose of this study,

we decide to focus on DMI as an indicator of material input, in order to take into account

all resources the economy requires in the process of production and consumption. DMC

would have the disadvantage that materials embodied in exported goods are no longer

48In a recent contribution, Kwak (2022) suggests to adapt the procedure by Phillips and Sul (2007,
2009) and to not discard any time series observation. Thus, regression (2.3) is performed for all
available years t. However, the penalty function and the log t regressor are “shifted” and use t =
[r2T ], [r2T ] + 1, ..., T + r2T , where r2 can be chosen as to maximize test properties. The approach
might show better size properties and mitigates concerns that the discarded data are important for the
convergence results. We show robustness of our full sample results to this alternative method.

49We report robustness of our results to various alternative parameter specifications. Given that our
time series dimension is rather moderate than small (T = 43), it might be reasonable to choose a less
conservative c∗ and discard less observations (Phillips and Sul, 2009). We use the following combinations
of r/c∗: 0.3/0; 0.3/−1; 0.3/−1.65; 0.2/−1.65; 0.2/0. Furthermore, we apply different methods to extract
the long-run component and run the log t regression for the full sample. Specifically, we use unfiltered
data, the HP filter with a smoothing parameter of 400, the Butterworth (Butterworth, 1930) and the
Christiano-Fitzgerald (Christiano and Fitzgerald, 2003) filter.

50Both indicators have counterparts that include upstream flows and, therefore, better control for out-
sourcing in the process of trade. However, these raw material indicators are only available from 1990
onward, and thus, they cannot be used for the proposed analysis.

51



counted, although these materials are crucial for the production activities and value gen-

eration in the respective country.51 Further, in this study we focus on total resource use of

economies to capture overall resource productivity.52 We construct resource productivity

as the ratio of GDP to resource use, i.e., the GDP generated per ton of resources.

To generate these measures of resource productivity, we utilize GDP from the Penn

World Table 10.0 (Feenstra et al., 2015). GDP is given in 2017 US $, and we utilize real

output-side GDP in purchasing power parities to ensure comparability across countries

and over time. The output-side measure relates specifically to the production possibilities

of an economy (Feenstra et al., 2015). Given our focus on technical progress we consider

this the preferable GDP measure.53

For the analysis of driving forces of club association we include additional variables

from various data sources. These variables are extracted for the year 1970 to serve for

the analysis of the importance of initial conditions for club selection. We construct initial

GDP per capita from the GDP and population data from the Penn World Table 10.0, and

we utilize their human capital index. As a proxy of institutions, we apply the measure

of democracy proposed by Acemoglu et al. (2019).54 Further, we use four geographic

indicators. Population density and the share of natural resource rents in GDP are taken

from the World Bank’s World Development Indicators. We take the share of people

living in temperate climate zones in the year 1995 as a measure of temperate climate

from the Geography Datasets provided by the Center for International Development at

Harvard University (Gallup et al., 2010). The mean distance to the nearest coast or river,

as a measure of distance to sea, is taken from the same source. Furthermore, for our

comparative analysis of labor productivity, we extract the number of engaged persons

from the Penn World Table 10.0. We define labor productivity as GDP per engaged

person – i.e., US $ per engaged person – analogously to resource productivity. Due to

data availability, the sample reduces to 102 countries in this exercise. A detailed overview

of the data sources can be found in table A1.

51We include a robustness check for our main results with DMC.
52Total resource use is aggregated based on four subclasses, which are biomass, fossil fuels, metals, and
non-metallic minerals. To improve data quality, we set our indicator to missing if DMI for any subclass
was reported as missing.

53The traditional real expenditure-side GDP of the Penn World Table captures standard of living. One
might also be interested specifically in how well countries are able to transform natural resources into
a high standard of living, and consider this as the relevant gains in efficiency. We report robustness of
our main findings to this alternative measure of GDP.

54We also utilize their regional classification of countries that draws upon the World Bank classification.
Both variables are extracted from the supplementary material accompanying Acemoglu et al. (2019).
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2.3 Results and Discussion

2.3.1 Descriptive Results

Prior to our main analysis, in this section we provide descriptive evidence on the basic

dynamics in our data. For this purpose, we first report the evolution in our sample

concerning σ-convergence, before assessing whether there is evidence of unconditional

β-convergence.
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Figure 2.1. Coefficient of variation (CV) of resource productivity. The CV is calculated for the
logarithm of resource productivity with unfiltered data as the cross-sectional standard deviation divided
by the cross-sectional mean of the respective year. It is normalized to 100 in 1970.

Figure 2.1 shows the coefficient of variation (CV) for our sample of 118 countries over

time. σ-convergence provides a basic measure of convergence and refers to a decline in

the cross-sectional dispersion of the variable of interest. It is mostly measured as the CV,

which indicates whether there is a decline in cross-country inequality (Mohammadi and

Ram, 2012). Figure 2.1 shows that the distribution has quite substantial dynamics over

time, with a considerable drop in the decade before 1980. A spike in the early 1980s is

followed quickly by a decline. The early and mid-1990s are characterized by a substantial
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increase in inequality, which reaches its maximum in 1998. The beginning of the 21st

century is again marked by a substantial decline, with the most equal distribution in

2006. The phase of the financial crisis shows a moderate increase, followed by a moderate

decline after 2010. Despite the slight decrease in cross-country inequality from initial

to final period, the CV remains of relatively similar magnitude throughout the whole

time period, ranging between 90 and over 105. To put this into perspective, Parker and

Liddle (2017b) find a relatively stable decrease of the CV for energy productivity from

100 in 1971 to roughly 75 around 2000.55 Two interesting observations are worth noting

here. First, similar to figure 2.1, Parker and Liddle (2017b) report an increase in cross-

country inequality in the wake of the financial crisis. Second, the substantial increase in

inequality we observe in the 1990s is hardly visible in their data, and they do not observe

an overshoot in inequality compared to the initial level, as we do.
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Figure 2.2. β-convergence: Scatter plot of initial resource productivity and its average growth rate.
Initial resource productivity in log-levels in 1970 is plotted against the average annual growth rate of
resource productivity between 1970 and 2012. The negative slope of the fitted line suggests unconditional
β-convergence.

55This more pronounced equality in their data should not be overstated as they have a sample of 33
countries. The comparison refers to their economy-wide data figure 1 of their paper.
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Table 2.1. Estimation of unconditional β-convergence

OLS Robust regression

Initial resource productivity -1.067*** -1.053***
(0.150) (0.197)

Constant 8.351*** 8.313***
(0.957) (1.261)

R2 0.2086 -
F-test 0.0000 0.0000
No. of observations 118 118

Note: Asterisks indicate significance at * 10%, ** 5%, *** 1%. Standard errors in parentheses are of
Huber/White sandwich type for OLS. Regression of the average annual growth rate of resource produc-
tivity on the initial log-level of resource productivity in 1970.

Figure 2.2 and table 2.1 provide some descriptive evidence on the fundamental data

dynamics in terms of unconditional β-convergence. Figure 2.2 maps the average annual

growth rate of resource productivity on resource productivity in log-levels in the initial

period 1970. The negative slope of the fitted line indicates unconditional β-convergence,

because countries with higher initial levels experience a lower average annual growth of

resource productivity on average. Table 2.1 reports the estimated coefficients from a

simple linear regression. The first column uses OLS and the second column controls for

potential outliers by using a robust regression.56 Both results are very similar and support

unconditional β-convergence in the traditional regression setting. However, while giving

interesting insights into the dynamics of the data, the meaningfulness of β-convergence is

severely limited in the presence of transitional heterogeneity. As discussed by Phillips and

Sul (2009), estimates of the slope coefficient in traditional Solow regressions that assume

homogeneous coefficients are potentially biased due to different sources. Additionally,

even a negative coefficient does not necessarily imply convergence and can even occur

under conditions of divergence (Phillips and Sul, 2009).

2.3.2 Club Convergence Results

This section presents the results of our main analysis. First, we use the log t regression

to determine whether there is overall convergence in resource productivity. Second, we

perform the clubbing algorithm briefly described in Section 2.2 to identify convergence

clubs.57

56The robust regression is implemented in Stata using the rreg command.
57The procedure proposed by Phillips and Sul (2007) is performed in Stata using the routines by Du
(2017).
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Table 2.2 contains the results for the main analysis. The top row shows that the log

t test clearly rejects overall convergence in resource productivity.58 However, although

overall convergence is rejected, the clubbing algorithm detects three convergence clubs.59

Table 2.2. Full sample: Convergence in resource productivity

Group Countries Log t test

All All -0.584 (-31.101)

Club 1 Argentina, Austria, Bahrain, Barbados, Dominican Republic,
Egypt, El Salvador, France, Germany, Hungary, Iran, Iraq, Ire-
land, Israel, Italy, Japan, Jordan, Luxembourg, Netherlands,
Panama, Poland, Romania, Singapore, South Korea, Sri Lanka,
Spain, Switzerland, United Kingdom, United States of America

0.544 (5.957)

Club 2 Albania, Algeria, Angola, Australia, Bangladesh, Belgium, Be-
lize, Bhutan, Bolivia, Botswana, Brazil, Brunei Darussalam, Bul-
garia, Cambodia, Cameroon, Canada, Chad, China, Colombia,
Congo, Côte d’Ivoire, Costa Rica, Cyprus, Denmark, Ecuador,
Equatorial Guinea, Eswatini, Finland, Gabon, Ghana, Greece,
Guatemala, Haiti, Honduras, Iceland, India, Indonesia, Jamaica,
Kenya, Laos, Lebanon, Malaysia, Malta, Mauritius, Mexico, Mon-
golia, Morocco, Mozambique, Myanmar, Namibia, Nicaragua,
Nigeria, Nepal, New Zealand, Norway, Oman, Pakistan, Paraguay,
Peru, Philippines, Portugal, Qatar, Rwanda, Saudi Arabia, Sene-
gal, Suriname, Sweden, Syria, Tanzania, Thailand, Trinidad and
Tobago, Tunisia, Turkey, Venezuela, South Africa, United Arab
Emirates, Zambia

0.169 (3.682)

Club 3 Burundi, Benin, Chile, Democratic Republic Congo, Guinea,
Mauritania, Malawi, Niger, Togo, Uruguay, Vietnam, Zimbabwe

-0.042 (-0.126)

Note: For the log t test we report the coefficient and the corresponding t-statistic in brackets. As a
one-sided test with the null hypothesis of convergence, a t-statistic below −1.65 leads to rejection of the
convergence hypothesis.

Regarding the formed convergence clubs in table 2.2 some remarks are in order. First,

for all clubs the estimated coefficient γ̂ is clearly below 2, indicating that there is no

evidence for level convergence in any of these groups. Rather, in all three convergence

clubs we find relative, i.e., growth convergence. However, Club 3 indicates rather weak

convergence given the negative point estimate (Phillips and Sul, 2009). Second, there are

58As noted in Section 2.2, overall convergence is similarly rejected when adjusting the log t test in line
with the suggestions made by Kwak (2022) or when using unfiltered data or differently extracted trends.
Results are available upon request.

59The results are very similar for different combinations of sieving criterion and truncation parameter.
We also conducted the analysis for the alternative indicator DMC with the same specification choices
as for our main results. The results are also very similar to our results for DMI. Spearman’s rank
correlation coefficient between the club associations for DMI and DMC is 0.55 for the full sample and
0.78 for the reduced sample of 102 countries we use in Section 2.3.4. We further conduct the analysis
with the expenditure-side GDP measure. The patterns of emerging convergence clubs are qualitatively
virtually identical. All detailed results are available upon request.
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interesting patterns with respect to country classification. Club 1 contains many high

developed economies, with more than half of the countries being OECD members. Five

countries in Club 1 are classified as emerging market economies.60 In comparison, Club 2

contains relatively less high-developed economies but a larger share of emerging market

economies. While less than half of the OECD economies are in Club 2, more than two-

thirds of the emerging market economies are part of it. Club 3 only contains one current

OECDmember and emerging market economy, namely Chile. Hence, the club convergence

patterns for resource productivity resemble general developmental distributions and show

similarities to the technology clubs found by Castellacci and Archibugi (2008).

There are some noticeable distributions in terms of world regions. In Club 1, roughly

half of the countries are Western European and developed countries, while no Sub-Saharan

African countries are included. Part of this group are further: two countries from East

Asia and the Pacific region, three from Eastern Europe and Central Asia, and one from

South Asia. Five countries each are located in Latin America, and the Middle Eastern

and North African region. In comparison to that, Club 2 contains less than half of the

share of Western European and developed economies as Club 1. Instead, Sub-Saharan

African and Latin American countries comprise almost half of the club. The Middle

Eastern and North African region has a lower share in Club 2 than it has in Club 1. Club

3 is dominated by Sub-Saharan African countries, which make up three-quarters of the

club.

Table 2.3 provides selected descriptive statistics for the three clubs to better under-

stand the club-specific dynamics. In comparison to the other clubs, Club 1 displays the

highest average level of resource productivity in the first and final sample period. The

relative distance to Club 2 increases from a roughly 20% higher level of resource produc-

tivity to a more than twice as high level at the end of the sample. Average productivity

growth is almost twice as high for Club 1 than for Club 2. Club 3 falls behind and expe-

riences a decline in resource productivity of −0.55% annually on average. To put these

findings into perspective, the dynamics of GDP growth are more balanced. Even Club 3

experienced GDP growth of 2.60% on average, while Club 1 and 2 are almost identical in

terms of economic growth, with on average 4.37% and 4.44%, respectively.

60We use the classification of emerging markets by Duttagupta and Pazarbasioglu (2021), who identify
20 emerging market economies. 19 of these are included in our sample.
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Table 2.3. Descriptive statistics for the convergence clubs

RP 1970 RP 1991 RP 2012 RP growth GDP growth

Club 1 802.50 1178.94 2300.47 2.73 4.37

Club 2 676.02 775.26 1127.69 1.41 4.44

Club 3 547.54 565.90 433.56 -0.55 2.60

Note: RP refers to the average level of resource productivity in the three clubs in the years 1970, 1991,
and 2012, respectively. It is measured in constant US $ per ton of DMI. RP and GDP growth refer to
the average annual growth rate of RP and GDP over the full sample period (in percent).

2.3.3 Determinants of Club Convergence

In this section, we investigate initial, country-specific conditions that might predict the

detected club association. A prominent stream of literature on economic development

considers path-dependencies, institutions, as well as geography as potential factors that

shape developmental paths (e.g., Acemoglu et al., 2001; Glaeser et al., 2004). For ex-

ample, Glaeser et al. (2004) analyze the effect of initial GDP per capita, human capital,

institutions, and geographic factors on subsequent GDP growth. We follow this conceptu-

alization as we look at a measure of technical progress that closely relates to development

in general. We assess initial GDP per capita, democracy as a measure of the institutional

framework, human capital, and four geographic indicators for their associations with club

membership.

In order to identify the link between these fundamental factors and club membership,

we employ an ordered logit model (e.g., Bartkowska and Riedl, 2012; Parker and Liddle,

2017a). Club membership qualifies as an ordinal variable, since clubs can be ranked

according to the steady states of countries in the respective club (Bartkowska and Riedl,

2012). To explore the effect of variables on the probability to belong to a specific club, we

follow related literature and report marginal effects calculated at the means of the variable

of interest and all other included explanatory variables. As we are interested in the role

of fundamental factors of economic development, we include the initial observation from

the full sample (t = 1970) as explanatory variable. Although this mitigates endogeneity

concerns due to simultaneity, this exercise is not suited to establish causality. Given that

we only have one observation of club membership for each country, we are not able to

rule out omitted variable bias. Additionally, the causal relation between the fundamental

factors is much debated and rather bidirectional. Nevertheless, the exercise facilitates

to identify factors that predict the selection into specific clubs. Table A2 shows the
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correlation between the initial conditions that we employ in the ordered logit regressions.

There is an expected, pronounced correlation between several initial conditions such as

GDP per capita and human capital across countries. However, the initial conditions are

not necessarily correlated in general, and even GDP and human capital are far from being

perfectly correlated.

In the following, we discuss the variable choices for the ordered logit regression based

on the pertinent literature in greater detail. Initial GDP per capita captures a variety

of factors that could influence improved club membership. It captures potential path-

dependencies in development as well as proximate factors, such as investments (Temple,

1998), that are strongly related with efficiency gains and development (Savvides, 1995).

The measure of democracy is intended to capture political freedom and rights, which are

commonly found to be a source of improved development due to various channels, such as

avoidance of bad policy outcomes as well as fostered inclusion and innovation (Savvides,

1995; Moral-Benito, 2012; Acemoglu et al., 2019). Human capital is intended to capture

levels of education, which directly relate to innovative potential (Glaeser et al., 2004; Baser

and Gokten, 2019). However, the detailed interdependencies between institutions, human

capital, and GDP per capita are rather multifaceted and complex (Bils and Klenow, 2000;

Glaeser et al., 2004; Baser and Gokten, 2019). Hence, the attempt to disentangle their

distinct effects in our setting should be treated with due caution.

Characteristics of the natural environment are commonly considered to shape develop-

mental paths (e.g., Gallup et al., 1999). We consider four distinct geographic characteris-

tics, which we derive from the respective literature. First, we consider the share of people

of a country living in temperate climate zones. Temperate climate has been linked to hu-

man behavior, distinct technological possibilities, and different disease burdens (Gallup

et al., 1999; Acemoglu, 2008). Second, we utilize the share of natural resource rents in

GDP. We treat this initial share as a measure of resource abundance, following Sachs and

Warner (1995). Higher resource abundance provides distinct economic incentives, and is

commonly linked to challenges for development, which is highlighted, for example, in the

debate on the resource curse hypothesis (Sachs and Warner, 2001; Stijns, 2005; Torvik,

2009). Third, we capture the population density of a country. Population density has

been linked to various channels of development, such as higher education (Boucekkine

et al., 2007) or increased knowledge spillovers (Fritsch and Schroeter, 2011).61 Lastly, we

61Similar to the share of natural resource rents in GDP, population density is only partly corresponding
to a geographical factor. However, as Weisz et al. (2006) argue, it can also be interpreted in the
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consider the mean distance to sea. Access to sea is considered beneficial for economic de-

velopment, especially by providing distinct trade possibilities and market access (Bosker

and Garretsen, 2012; Bosker et al., 2013).

The observation that Club 3 mainly consists of Sub-Saharan African countries points

to the potential relevance of spatial dependencies for club selection. Spatial dependencies

that are not captured by our variables, yet correlated to them, might lead to spurious find-

ings. In fact, within the literature on development in Sub-Saharan Africa, neighborhood

spillovers as source of spatial dependencies are considered (Hoeffler, 2002). To mitigate

concerns that our findings are merely driven by spatial dependencies, we report for all

our results a specification that includes a dummy controlling for Sub-Saharan African

countries as a robustness check. However, we emphasize caution in treating a loss of

significance in these specifications as a rejection of a factors importance for two reasons.

First, the Sub-Saharan African dummy removes a substantial amount of variation in club

membership. Second, the role of various factors for development with respect to causality

or correlation remains contested. It remains beyond the scope of our study to make claims

about the nature of these relationships.

Table 2.4 shows the marginal effects at the mean on the probability of belonging to

each of the clubs for all our variables. For each variable, a specification together with

GDP is reported, as GDP might be interpreted as a “catch-all-term” in the empirical

setting. The first column displays the change in probability of belonging to Club 1 for all

variables added individually. The estimated coefficients suggest the expected associations.

Countries with higher initial GDP per capita, democracy, higher human capital, a more

temperate climate, lower resource abundance, higher population density, and better access

to the sea tend to belong to higher clubs. For example, a country with initial human

capital one standard deviation above the mean has a roughly 16.8 percentage points

higher probability to be selected into Club 1 than a country with the average human

capital. In the case of democracy, the coefficient corresponds to the discrete change from

the base level, i.e., the coefficient in column 1 implies that a democratic country has a

17.8 percentage points higher probability to be in Club 1 than a non-democracy.

context of its reverse indicator, namely land availability. Furthermore, the cross-sectional distribution
of population density remains relatively stable over the time period of our sample.
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Table 2.4. Marginal effects on probabilities (ordered logit): Full sample resource productivity

Club 1 Club 2 Club 3

Panel 1: GDP

GDP pc - 0.101*** - -0.055** - -0.047**
(0.035) (0.027) (0.018)

Observations 118 118 118

Panel 2: Democracy

Democracy 0.178** -0.008 -0.101* 0.004 -0.077** 0.004
(0.084) (0.083) (0.059) (0.044) (0.036) (0.039)

GDP pc 0.147*** -0.079** -0.068***
(0.043) (0.036) (0.023)

Observations 108 108 108 108 108 108

Panel 3: Human capital

Human capital 0.168*** 0.153*** -0.101** -0.093** -0.067*** -0.061***
(0.043) (0.050) (0.040) (0.042) (0.021) (0.021)

GDP pc 0.022 -0.013 -0.009
(0.033) (0.020) (0.014)

Observations 111 111 111 111 111 111

Panel 4: Temperate climate

Temperate climate 0.031*** 0.026*** -0.017** -0.014** -0.014*** -0.011***
(0.008) (0.008) (0.008) (0.007) (0.004) (0.004)

GDP pc 0.043* -0.024 -0.019
(0.025) (0.015) (0.013)

Observations 112 112 112 112 112 112

Panel 5: Resource abundance

Resource abundance -0.081** -0.093*** 0.043* 0.052* 0.038** 0.041**
(0.034) (0.034) (0.025) (0.027) (0.017) (0.017)

GDP pc 0.115*** -0.064** -0.051**
(0.035) (0.029) (0.020)

Observations 97 97 97 97 97 97

Panel 6: Population density

Population density 0.089*** 0.087*** -0.052** -0.052** -0.038*** -0.035***
(0.022) (0.021) (0.023) (0.022) (0.010) (0.010)

GDP pc 0.094*** -0.056** -0.038**
(0.027) (0.022) (0.017)

Observations 117 117 117 117 117 117

Panel 7: Distance to sea

Distance to sea -0.104*** -0.084*** 0.057** 0.047* 0.047*** 0.037**
(0.029) (0.031) (0.026) (0.024) (0.016) (0.015)

GDP pc 0.052 -0.029 -0.023
(0.033) (0.021) (0.015)

Observations 112 112 112 112 112 112

Note: Asterisks indicate significance at * 10%, ** 5%, *** 1%. The standard errors in parentheses are of Huber/White
sandwich type. Marginal effects are calculated at the means. All variables are measured as initial conditions. GDP per
capita, population density, and distance to sea are in natural logarithms. Democracy is a dummy variable. Human capital
has been standardized to mean zero and standard deviation of one. People living in temperate zones and the measure of
resource abundance, i.e., the share of natural resources in GDP, are measured in percentage shares. For ease of display and
interpretation, the coefficients for resource abundance and temperate climate are multiplied by 10. That is, the coefficient
represents a 10 percentage point increase, e.g., from 50% of people living in temperate climate to 60%.

The second column adds GDP per capita to each one of the other initial conditions.

Except for democracy, all variables remain significant. In the specifications with human
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capital and distance to sea, initial GDP per capita is insignificant. Table A3 shows the

same specifications including a dummy that controls for Sub-Saharan African countries,

which is always significantly negative associated with Club 1, implying that Sub-Saharan

African countries systematically select into lower clubs.62 In those specifications, distance

to sea and resource abundance hardly maintain explanatory power. As discussed before,

geographical factors, such as being landlocked, are perhaps responsible for the negative

effect of the Sub-Saharan Africa dummy, and thus, their insignificance should not be

overstated. Human capital, temperate climate, and population density remain significant

at 5% and 1% levels, even in specifications together with GDP per capita and the Sub-

Saharan Africa dummy, though the magnitude is reduced.

2.3.4 Comparison to Labor Productivity

In the following section, we compare the convergence patterns of resource productivity

(RP) to convergence patterns for labor productivity (LP), in the spirit of Mulder and

De Groot (2007). For clarity and convenience, we use these abbreviations and label

respective clubs explicitly as LP-Club and RP-Club.63 The results for the log t test and

the clubbing algorithm for LP are displayed in table 2.5. To be able to compare dynamics,

table 2.6 reports the results of the clubbing procedure for RP for the reduced sample of

the same 102 countries.

A first descriptive assessment of these dynamics provides an indication that there are

substantial overlaps in the club association for LP and RP, which are, however, far from

perfect. The rank correlation coefficient for the final club associations is 0.55, indicating

a moderately high level of correlation. For this reduced sample, the largest clubs are

LP-Club 1 with 76 and RP-Club 1 with 73 countries. General findings strongly coincide

with our main results. Sub-Saharan African countries dominate the lowest club. OECD

countries are now almost exclusively located in the highest club. All 32 OECD countries

in our sample are in LP-Club 1, while three rank in RP-Club 2. Also, emerging mar-

ket economies are now almost exclusively found in the highest club. There is only one

emerging market economy in LP-Club 2, while three are in RP-Club 2.

62The coefficient for the Sub-Saharan Africa dummy is not reported for reasons of brevity. Detailed
results are available upon request.

63We use these abbreviations exclusively for this section and all tables related to this section that are
displayed in the appendix.
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Table 2.5. 102 country sample: Convergence in labor productivity

Group Countries Log t test

All All -0.629 (-17.210)

LP-Club 1 Albania, Algeria, Argentina, Australia, Austria, Bahrain, Bar-
bados, Belgium, Botswana, Bulgaria, Brazil, Canada, Chile,
China, Colombia, Costa Rica, Cyprus, Denmark, Dominican
Republic, Egypt, Finland, France, Gabon, Germany, Greece,
Guatemala, Hungary, India, Indonesia, Iran, Iraq, Iceland,
Ireland, Israel, Italy, Japan, Jordan, Lebanon, Luxembourg,
Malaysia, Malta, Mauritius, Mexico, Myanmar, Namibia,
Netherlands, New Zealand, Nigeria, Norway, Oman, Panama,
Paraguay, Peru, Poland, Portugal, Qatar, Romania, Saudi
Arabia, Singapore, South Africa, South Korea, Spain, Sri
Lanka, Sweden, Switzerland, Syria, Thailand, Trinidad and
Tobago, Tunisia, Turkey, United Arab Emirates, United King-
dom, United States of America, Uruguay, Venezuela, Vietnam

-0.073 (-1.632)

LP-Club 2 Angola, Bangladesh, Bolivia, Cambodia, Cameroon, Chad,
Congo, Côte d’Ivoire, Ecuador, Ghana, Honduras, Jamaica,
Morocco, Mozambique, Pakistan, Philippines, Senegal, Tan-
zania, Zambia

-0.025 (-0.350)

LP-Club 3 Democratic Republic Congo, Haiti, Kenya, Malawi, Niger,
Rwanda, Zimbabwe

-0.250 (-1.184)

Note: For the log t test we report the coefficient and the corresponding t-statistic in brackets. As a
one-sided test with the null hypothesis of convergence, a t-statistic below −1.65 leads to rejection of the
convergence hypothesis.

Three countries, namely Uruguay, Haiti, and Vietnam, have an opposite club associ-

ation between RP and LP. Vietnam and Uruguay are in LP-Club 1, but in the lowest

RP-Club 3. Haiti is the opposite by being part of RP-Club 1 and LP-Club 3. For Haiti,

the average growth rate of RP amounts to 2.11%, whereas both Uruguay and Vietnam

experience negative average growth rates of RP. In the case of LP, however, Uruguay and

Vietnam had 1.43% and 3.09% growth per year, respectively, whereas Haiti falls behind

with 0.92%.

Table 2.7 reports the distribution of all countries into LP and RP clubs, displaying

partly deviating dynamics. By tendency, countries performing well in one are also per-

forming well in the other. This is displayed by the fact that 86% of the countries in

LP-Club 1 also belong to RP-Club 1, while only 37% from LP-Club 2 and 14% from

LP-Club 3 are in RP-Club 1. Beyond the directly opposite cases discussed above, 18

additional countries are in a higher respective lower club for one than the other indicator.
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Table 2.6. 102 country sample: Convergence in resource productivity

Group Countries Log t test

All All -0.630 (-28.182)

RP-Club 1 Albania, Algeria, Argentina, Austria, Bahrain, Barbados,
Belgium, Botswana, Brazil, Bulgaria, Cambodia, Canada,
Colombia, Costa Rica, Côte d’Ivoire, Denmark, Domini-
can Republic, Egypt, France, Gabon, Germany, Greece,
Haiti, Hungary, Iceland, India, Iran, Iraq, Ireland, Is-
rael, Italy, Jamaica, Japan, Jordan, Lebanon, Luxembourg,
Malaysia, Malta, Mauritius, Mexico, Myanmar, Namibia,
Nigeria, Netherlands, New Zealand, Norway, Oman, Pakistan,
Panama, Paraguay, Philippines, Poland, Portugal, Qatar, Ro-
mania, Saudi Arabia, Singapore, South Africa, South Korea,
Spain, Sri Lanka, Sweden, Switzerland, Syria, Tanzania, Thai-
land, Tunisia, Turkey, United Arab Emirates, United King-
dom, United States of America, Venezuela, Zambia

-0.028 (-0.492)

RP-Club 2 Angola, Australia, Bangladesh, Bolivia, Cameroon, Chad,
Chile, China, Congo, Cyprus, Ecuador, Finland, Ghana,
Guatemala, Honduras, Indonesia, Kenya, Morocco, Mozam-
bique, Peru, Rwanda, Senegal, Trinidad and Tobago

0.128 (2.613)

RP-Club 3 Democratic Republic Congo, Malawi, Niger, Uruguay, Viet-
nam, Zimbabwe

-0.448 (-1.541)

Note: For the log t test we report the coefficient and the corresponding t-statistic in brackets. As a
one-sided test with the null hypothesis of convergence, a t-statistic below −1.65 leads to rejection of the
convergence hypothesis.

Table 2.8 displays descriptive statistics for the obtained clubs. For the three clubs

constructed for each LP and RP, the countries in Club 1 always perform best also with

respect to the other productivity measure, followed by Club 2 countries, and Club 3

countries performing worst. In both cases, the worst performing club consists of countries

that display negative average growth in the productivity measure for which the clubs were

formed. However, while in general LP tends to grow stronger, with 1.9% on average in

the full sample compared to 1.57% growth of RP, this does not hold for all formed clubs.

For example, while the countries in LP-Club 1 clearly grow stronger in terms of LP than

RP, the growth performance is close to identical in LP-Club 2 and countries in LP-Club 3

perform better in RP. These patterns might hint that despite substantial joint dynamics,

there is some heterogeneity as to whether countries have a balanced improvement in both

LP and RP, or whether technology trends differ. Given that we have generally similar

growth within the whole sample, it seems interesting to take a look at countries where

LP- and RP-growth rates differ substantially. There are 16 countries for which the growth

difference is more than 2 percentage points, namely the United Arab Emirates, Bahrain,
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Table 2.7. Distribution of countries into LP and RP clubs

RP-Club 1 RP-Club 2 RP-Club 3

LP-Club 1 65 9 2
(85.53) (11.84) (2.63)

LP-Club 2 7 12 0
(36.84) (63.16) (0)

LP-Club 3 1 2 4
(14.29) (28.57) (57.14)

Note: Number of countries that correspond to the combined club association. In brackets is the % of
countries from the respective LP-Club that fall into the specified RP-Club.

Table 2.8. Descriptive statistics for the convergence clubs

RP 1970 RP 2012 LP 1970 LP 2012 RP growth LP growth

LP-Club 1 777 1,640 39,122 69,215 1.81 2.28

LP-Club 2 598 879 8,309 13,055 1.10 1.12

LP-Club 3 518 625 4,659 4,374 0.14 -0.13

RP-Club 1 768 1,687 38,228 65,924 1.98 2.14

RP-Club 2 633 869 14,161 28,786 0.86 1.61

RP-Club 3 572 429 7,909 10,744 -0.76 0.02

Note: RP 1970 respective 2012 refers to the level of resource productivity in the first and final period
of the sample. It is measured in constant US $ per ton of DMI. RP growth refers to the average growth
of this ratio over the sample period, in percent. LP 1970 respective 2012 refers to the level of labor
productivity in the first and final period of the sample. It is measured in constant $ per engaged worker.
LP growth refers to the average growth of this ratio over the sample period, in percent.

Barbados, Botswana, China, South Korea, Luxembourg, Norway, Panama, Qatar, Syria,

Thailand, Turkey, Uruguay, Venezuela, and Vietnam.

Nine of those countries have a higher growth rate for LP, while the United Arab Emi-

rates, Bahrain, Barbados, Luxembourg, Panama, Qatar, and Venezuela gained more in

terms of RP. In terms of absolute differences, the United Arab Emirates, Bahrain, China,

and Vietnam display the highest heterogeneity with differences larger than three percent-

age points. The largest differences occur for China and the United Arab Emirates, which

both exceed four percentage points into opposite directions. The United Arab Emirates

experienced a moderate increase in RP with 0.73% growth on average, while labor pro-

ductivity declined by 3.82%. In contrast, China gained 0.15% in resource productivity

but grew in terms of labor productivity with 4.57% annually.64

64Noticeably, China has the fifth highest gains in LP behind Romania, Egypt, South Korea, and
Botswana, which ranks highest with 6.25%. The highest absolute gains for RP are found for Ireland,
Romania, and Panama with 4.05%, 4.38% and 4.59%, respectively.
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Finally, tables 2.9 and 2.10 report the results for the ordered logit model for both

LP and RP in the reduced sample for 102 countries.65 The specifications including a

Sub-Saharan Africa dummy are displayed in tables A5 and A6. Tables 2.9 and 2.10

show that most variables are similarly associated with club membership for LP and RP.

Distance to sea displays no importance for LP and RP, once GDP per capita or the

Sub-Saharan Africa dummy are controlled for.66 Despite these similarities, there are

some noticeable differences. First, democracy maintains explanatory power even in more

demanding specifications for LP, while it is hardly associated with club membership for

RP. Second, the effect of human capital is much more pronounced for LP, where human

capital dominates initial GDP per capita, whereas it loses significance in conjunction

with GDP per capita for RP. Third, temperate climate is a strong predictor for LP club

membership, remaining significant and of relevant magnitude even together with GDP per

capita and the Sub-Saharan Africa dummy, as displayed in table A5. For RP, temperate

climate loses significance both with initial GDP per capita as well as only together with

the Sub-Saharan Africa dummy. Lastly, population density retains a positive association

with club membership for RP, though it turns insignificant when the Sub-Saharan Africa

dummy is included in this sample. For LP, however, we find no association of population

density with improved club membership, not even in the specification with population

density only.

To summarize, while the general findings in terms of club association and club size are

very similar between RP and LP, there are some interesting idiosyncrasies. These relate to

the relative importance of human capital and democracy, as well as for temperate climate

and population density.

65The correlation of the initial conditions for the reduced sample is reported in table A4.
66Similarly, resource abundance is only once slightly significant for LP in conjunction with GDP. Hence,
resource abundance can also be considered less relevant.
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Table 2.9. Marginal effects on probabilities (ordered logit): 102 country sample labor produc-
tivity

LP-Club 1 LP-Club 2 LP-Club 3

Panel 1: GDP

GDP pc - 0.227*** - -0.182*** - -0.045***
(0.051) (0.049) (0.017)

Observations 102 102 102

Panel 2: Democracy

Democracy 0.319*** 0.136* -0.216*** -0.105* -0.104** -0.030
(0.073) (0.074) (0.056) (0.059) (0.041) (0.019)

GDP pc 0.179*** -0.139*** -0.040**
(0.064) (0.054) (0.019)

Observations 95 95 95 95 95 95

Panel 3: Human capital

Human capital 0.232*** 0.144*** -0.185*** -0.119*** -0.048** -0.025**
(0.048) (0.038) (0.044) (0.034) (0.019) (0.011)

GDP pc 0.099** -0.082* -0.017*
(0.049) (0.042) (0.010)

Observations 99 99 99 99 99 99

Panel 4: Temperate climate

Temperate climate 0.050*** 0.031*** -0.041*** -0.027*** -0.009** -0.004**
(0.011) (0.008) (0.009) (0.008) (0.004) (0.002)

GDP pc 0.106 -0.091 -0.015
(0.065) (0.057) (0.011)

Observations 96 96 96 96 96 96

Panel 5: Resource abundance

Resource abundance -0.028 -0.044* 0.017 0.035* 0.011 0.008
(0.040) (0.024) (0.025) (0.019) (0.016) (0.006)

GDP pc 0.262*** -0.211*** -0.051**
(0.060) (0.059) (0.021)

Observations 85 85 85 85 85 85

Panel 6: Population density

Population density 0.040 0.035 -0.027 -0.028 -0.013 -0.007
(0.025) (0.024) (0.018) (0.020) (0.009) (0.005)

GDP pc 0.226*** -0.183*** -0.043**
(0.052) (0.050) (0.017)

Observations 101 101 101 101 101 101

Panel 7: Distance to sea

Distance to sea -0.123*** -0.049 0.092** 0.041 0.032** 0.008
(0.046) (0.042) (0.038) (0.036) (0.015) (0.007)

GDP pc 0.208*** -0.174*** -0.034**
(0.058) (0.054) (0.015)

Observations 96 96 96 96 96 96

Note: Asterisks indicate significance at * 10%, ** 5%, *** 1%. The standard errors in parentheses are of Huber/White
sandwich type. Marginal effects are calculated at the means. All variables are measured as initial conditions. GDP per
capita, population density, and distance to sea are in natural logarithms. Democracy is a dummy variable. Human capital
has been standardized to mean zero and standard deviation of one. People living in temperate zones and the measure of
resource abundance, i.e., the share of natural resources in GDP, are measured in percentage shares. For ease of display and
interpretation, the coefficients for resource abundance and temperate climate are multiplied by 10. That is, the coefficient
represents a 10 percentage point increase, e.g., from 50% of people living in temperate climate to 60%.
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Table 2.10. Marginal effects on probabilities (ordered logit): 102 country sample resource
productivity

RP-Club 1 RP-Club 2 RP-Club 3

Panel 1: GDP

GDP pc - 0.174*** - -0.137*** - -0.037**
(0.047) (0.042) (0.016)

Observations 102 102 102

Panel 2: Democracy

Democracy 0.154* -0.022 -0.110* 0.016 -0.044 0.006
(0.088) (0.118) (0.064) (0.088) (0.029) (0.030)

GDP pc 0.168*** -0.126** -0.042**
(0.063) (0.051) (0.021)

Observations 95 95 95 95 95 95

Panel 3: Human capital

Human capital 0.147*** 0.051 -0.111*** -0.040 -0.036** -0.011
(0.051) (0.062) (0.042) (0.048) (0.017) (0.014)

GDP pc 0.133** -0.103** -0.030*
(0.056) (0.046) (0.016)

Observations 99 99 99 99 99 99

Panel 4: Temperate climate

Temperate climate 0.028** 0.010 -0.022** -0.008 -0.006* -0.002
(0.011) (0.013) (0.010) (0.011) (0.003) (0.002)

GDP pc 0.146*** -0.119** -0.027*
(0.054) (0.046) (0.015)

Observations 96 96 96 96 96 96

Panel 5: Resource abundance

Resource abundance 0.039 0.035 -0.029 -0.028 -0.010 -0.007
(0.039) (0.049) (0.030) (0.039) (0.011) (0.010)

GDP pc 0.182*** -0.144*** -0.038**
(0.053) (0.048) (0.017)

Observations 85 85 85 85 85 85

Panel 6: Population density

Population density 0.055** 0.059** -0.040* -0.047* -0.014* -0.012
(0.027) (0.030) (0.021) (0.025) (0.008) (0.007)

GDP pc 0.174*** -0.139*** -0.035**
(0.050) (0.044) (0.015)

Observations 101 101 101 101 101 101

Panel 7: Distance to sea

Distance to sea -0.092** -0.044 0.072** 0.036 0.020 0.008
(0.045) (0.047) (0.036) (0.038) (0.012) (0.009)

GDP pc 0.152*** -0.124*** -0.028**
(0.052) (0.046) (0.014)

Observations 96 96 96 96 96 96

Note: Asterisks indicate significance at * 10%, ** 5%, *** 1%. The standard errors in parentheses are of Huber/White
sandwich type. Marginal effects are calculated at the means. All variables are measured as initial conditions. GDP per
capita, population density, and distance to sea are in natural logarithms. Democracy is a dummy variable. Human capital
has been standardized to mean zero and standard deviation of one. People living in temperate zones and the measure of
resource abundance, i.e., the share of natural resources in GDP, are measured in percentage shares. For ease of display and
interpretation, the coefficients for resource abundance and temperate climate are multiplied by 10. That is, the coefficient
represents a 10 percentage point increase, e.g., from 50% of people living in temperate climate to 60%.

68



2.3.5 Discussion

Overall, we report three main findings. First, we find evidence for club convergence in

resource productivity. Second, we find initial GDP per capita and population density to be

strong predictors for the convergence club membership in regard to resource productivity.

Third, we find that despite similarities, resource productivity convergence displays some

distinct patterns compared to labor productivity convergence. In the following, we discuss

these three findings in more depth against the background of the literature.

Our main results show that there is no convergence across all countries with respect

to resource productivity. Instead, we detect three convergence clubs. The best perform-

ing club consists to a substantial degree of highly developed economies, with over half of

them being OECD members. Five of the 19 emerging market economies in our sample,

namely Argentina, Egypt, Hungary, Iran, and Poland, are part of this club as well.67

The middle club is by far the largest with 77 countries, containing more than half of

the sample countries. Club 2 contains a substantially larger share of emerging market

economies, while the share of OECD economies is much lower. Club 3 contains only one

OECD member,68 and instead contains mostly Sub-Saharan African countries. In this

sense, the club associations display to quite some degree developmental levels, though

many noticeable exceptions are present. These main findings are consistent with compa-

rable studies on energy and resource productivity. In their study on resource productivity

in EU countries, Alataş et al. (2021) detect club convergence and that more developed

EU-15 countries are in higher clubs than less developed EU countries. Overall, the associ-

ation of countries into the different clubs seems to fit well to the distinctions proposed by

endogenous growth theory (Howitt and Mayer-Foulkes, 2005) and empirically found for

innovation patterns (Castellacci and Archibugi, 2008). Here, a split into clubs based on

technology patterns relating to innovation, imitation, and stagnation seems to resemble

the distribution of countries into clubs. Innovation patterns directly relate to the level of

efficiency with which input factors – like resources – can be transformed into economic

value. All clubs have estimated coefficients clearly below 2, indicating that there is no

evidence for level convergence in any of these groups. Hence, when it comes to decoupling

economic development from natural resource use one cannot focus only on the best per-

forming countries, since less developed countries are not necessarily on a developmental

67Notably, Hungary and Poland are also OECD economies.
68Only Chile, which joined in 2010, and is also classified as emerging market economy (Duttagupta and
Pazarbasioglu, 2021).
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path of catching-up. In sum, our evidence suggests that differences between countries are

not likely to disappear, and inequality across different groups of countries are even set to

become more pronounced.

The analysis of the determinants of convergence club membership yields some inter-

esting findings. First, we find initial GDP per capita to be a good predictor for club

membership, yet with varying interrelations to other fundamental factors such as human

capital. Second, we find that among the geographic variables, population density is the

most powerful predictive factor for club membership. As to our first finding, higher initial

GDP per capita is generally strongly associated with improved club membership. How-

ever, the interplay with the other fundamental factors is not unambiguous. Among the

three socio-economic variables, democracy always appears to be least predictive as it loses

explanatory power when included alongside GDP. This interplay, however, is less clear

with respect to initial GDP per capita and human capital. In the full sample, human

capital carries more explanatory power, whereas initial GDP per capita dominates in the

102 country sample. This ambiguity points towards the difficulties of disentangling the

distinct effects in a cross-sectional setting. The nature of the bidirectional relationship

of GDP per capita and human capital remains contested (e.g., Bils and Klenow, 2000;

Glaeser et al., 2004). However, as both initial GDP per capita and human capital are

good measures of developmental stages in a cross-sectional setting, these findings display

clearly that more developed countries converge to higher steady states than less devel-

oped countries. In this vein, the general positive association of initial GDP per capita

is in line with related literature on development and environmental performance. While

Savvides (1995) links higher wealth to increased means for investment, Tawiah et al.

(2021) recently report that green growth and economic growth are coupled in industrial-

ized countries, while there is no coupling for developing economies. Concerning our second

finding, it should be noted that all geographic variables are generally associated in the

expected way with club membership. Countries with temperate climate, low dependence

on natural resources, a high population density, and access to navigable waterways tend

to select into higher clubs. Across samples and specifications, higher population density

is most robustly associated with higher club membership. This finding corresponds to in-

sights in related papers on the determinants of resource productivity. Weisz et al. (2006)

and Gan et al. (2013) emphasize the high importance of population density for resource

productivity and show evidence for various channels that cause this association. First, a

high population density might enable material-saving high density settlements and trans-
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portation patterns. Second, low land availability restricts domestic resource availability

and, thus, reduces incentives to develop material-intensive sectors.

Finally, there are substantial overlaps with respect to club membership for resource

and labor productivity. However, there are also some noticeable differences between the

patterns shown by the overall club dynamics in table 2.8 and our discussion on individ-

ual countries. While some countries, such as the United Arab Emirates and Bahrain,

experienced substantial increases in resource productivity despite low increases or even

decreases in labor productivity, other countries substantially increased labor productiv-

ity but had lower improvements in resource productivity. This includes countries such

as South Korea, Norway, or China, which increased labor productivity by more than 2

percentage points more compared to resource productivity over the observed time period.

Mulder and De Groot (2007) provide a rationale with respect to the driving forces

of the respective productivities. They find labor and energy productivity to be driven

by wages and energy prices, respectively, with wages showing larger cross-country dis-

crepancies than energy prices. A similar argument has been developed by the theoretical

literature on directed technical change, which highlights the role of energy prices for en-

ergy efficiency improvements. For example, Haas and Kempa (2018) discuss how energy

prices drive the energy intensity of aggregate production through technical improvements

within sectors and structural change between sectors. We consider this explanation to

be highly relevant for our context, because the discrepancy is likely pronounced in the

case of resource prices. To a substantial degree, resource prices are driven by global prices

instead of domestic characteristics (Agnolucci et al., 2017), whereas wages have a stronger

domestic component. Noticeably, as reported by our ordered logit analysis, democracy

and higher levels of human capital appear to be more strongly associated with club mem-

bership for labor productivity than for resource productivity. This finding might be linked

to the determinants of resource prices respective wages in countries. Democracy is found

to cause higher wages (Rodrik, 1999), likely via increased labour standards (Palley, 2005).

Similarly, higher education, i.e., human capital, is related to higher wages (Berman et al.,

1998). Thus, for domestically determined wages both variables likely relate to upward

pressures, fostering improvements in labor productivity. As noted above, resource prices

are rather determined on a global market, which might explain the weaker association of

these factors for club selection in the case of resource productivity.

Furthermore, we report notable differences with respect to geographic factors. Temper-

ate climate is distinctly associated with club membership for labor productivity, whereas
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population density is distinctly associated with club membership for resource produc-

tivity. As discussed before, the effects of climate on productivity might have various

channels. For example, findings on reduced agricultural productivity (Ortiz-Bobea et al.,

2021) might be linked to considerations on distinct technological possibilities. Here, we

focus on the possible relation between human capital and climate conditions. The ef-

fects of a warmer climate on human behavior and knowledge accumulation are central

to the considerations on geographic factors (Acemoglu, 2008). Interestingly, temperate

climate and human capital display the highest pairwise cross-country correlation among

the fundamental factors in the analysis.69 Taking this correlation and the distinct effects

of human capital for labor productivity into account, a plausible link is the effect of tem-

perate climate via human capital accumulation. However, we are obviously not able to

distinguish whether the association is indeed moderated by human capital accumulation

and/or other factors. In fact, Kahn et al. (2021) find general negative effects of increases

in temperature on labor productivity within countries, irrespective of country-specific

characteristics.

2.4 Conclusion

Are countries converging to the same levels of productivity in transforming natural re-

sources into economic output? This question is of high importance as it determines the

need for policy intervention in the pursuit of sustainable economic development. In this

paper, we have analyzed the convergence patterns of resource productivity of 118 coun-

tries between 1970 and 2012. Consistent with findings from the literature on resource

and energy productivity, our data is not supportive of overall convergence in resource

productivity. Instead, we find club convergence and the three convergence clubs resemble

the stages of economic development of the included countries. Additionally, there is no

evidence for level convergence within clubs but only growth convergence. Our second key

finding is that the initial values of human capital, GDP per capita, democracy, temper-

ate climate, resource abundance, population density, and access to the sea predict club

membership. Especially GDP per capita and population density are robust predictors

of club membership, i.e., wealthy countries and those with lower land availability select

into better performing clubs. To put these results into perspective, we have compared

the convergence patterns of resource productivity to those of labor productivity. The

69The correlation coefficient is slightly above 0.7 in both samples.
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convergence patterns of resource productivity show generally similar dynamics to labor

productivity. However, for some countries substantial differences occur. This suggests

that productivity developments with respect to different production inputs do not take

place evenly for all countries. Compared to resource productivity, the selection into good

performing clubs for labor productivity shows some differences. First, the predictive as-

sociations of democracy and human capital are more pronounced for labor productivity.

This might point towards the relevance of domestically determined wages that drive labor

productivity, which are in contrast to resource prices that are strongly determined at a

global level. In terms of geographic factors, we find population density to be distinctly

relevant for resource productivity, whereas a temperate climate is distinctly important for

labor productivity.

The conducted analysis has some limitations that are worth noting. The first limitation

concerns the available indicators for resource productivity. Both our employed indicator

DMI and its alternative DMC count imported and exported materials with the actual

weight of traded materials. In this way, any upstream material requirements of traded

materials, which are not accordingly increasing the weight of imports or exports, are no

longer fully detectable in the utilized data. Particularly for highly developed economies

this might hide resource use to a relevant degree (Wiedmann et al., 2015). Hence, an

analysis with indicators capturing upstream material use could be an important comple-

ment to the proposed analysis. However, since these data are currently available only

from 1990 onward, long-run analyses are currently hardly possible. The second limitation

concerns the level of disaggregation both with respect to the data and the level of analysis.

In this paper, we have analyzed total resource use, which is a necessary and established

choice to capture all resource requirements of an economy. However, countries might still

exert fairly different dynamics with respect to the use of different resource categories. For

example, a country might not reduce resource use overall but substitutes fossil resources

successively for alternative resources for energy generation. Hence, our indicator does not

allow any conclusion about substitution between different natural resources. Similarly,

our analysis is at an aggregate level, which prohibits any differentiation with respect to

patterns within different sectors.

Some relevant notes on policy based on the results of our analysis are in order. We do

not find evidence of overall convergence, but that less developed countries cannot neces-

sarily be expected to catch up. This hints towards an increasing gap between developed

and developing economies. Hence, gains in resource productivity that are realized in
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highly developed economies should not be overrated as lacking increases in less developed

countries might prohibit a global reduction of resource use in further developmental pro-

cesses. Additionally, the less developed countries are consequently more vulnerable when

it comes to potential damages from increasing resource scarcity and prices, emphasizing

the need for developmental policies.

Our analysis highlights several avenues for further research. First, to deepen our un-

derstanding of convergence patterns with respect to resource productivity, further research

could consider different types of natural resources in more detail. This can provide im-

portant insights concerning different developmental patterns across countries and whether

resource types show heterogeneous or homogeneous dynamics. Second, further analyses

could take the sectoral level into account. The resource dependence of different sectors

can be very different, and understanding in more detail which sectors have fairly homo-

geneous global dynamics and which ones are developing locally different could provide

important implications for policies relating to technology and knowledge transfer. Third,

the lacking support of our data for overall convergence points towards the necessity of

improving effective knowledge transfer. Fourth, in this paper we have analyzed the rel-

evance of initial conditions for club association. However, an interesting line for further

research might be to look into convergence clubs and assess the structural characteristics

that determined the idiosyncratic transition paths of countries.
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Appendix A

Table A1. Data description and sources

Variables Description Source

Data for productivity measures
DMI Direct material input of

all resources (tons)
UN-IRP Global Material
Flows Database (2018)

Employment Number of people en-
gaged (persons)

Penn World Table 10.0

GDP Output-side real GDP at
chained PPPs (2017 US $)

Penn World Table 10.0

Ordered logit variables
GDP pc GDP divided by popula-

tion (2017 US $)
Penn World Table 10.0

Democracy Measure of democracy
(binary)

Acemoglu et al. (2019)

Human capital Human capital (index) Penn World Table 10.0
Temperate climate People living in temperate

climate zones in 1995 (%
of population)

Center for International
Development at Harvard
University (kgptemp)

Resource abundance Total natural resources
rents (% of GDP)

World Bank
(NY.GDP.TOTL.RT.ZS)

Population density People per land area (per
sq. km)

World Bank
(EN.POP.DNST)

Distance to sea Mean distance to nearest
coastline or sea-navigable
river (km)

Center for International
Development at Harvard
University (distcr)
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Table A3. Marginal effects on probabilities (ordered logit): Full sample resource productivity
with Sub-Saharan Africa dummy

Club 1 Club 2 Club 3

Panel 1: GDP

GDP pc - 0.049 - -0.034 - -0.015
(0.030) (0.022) (0.011)

Sub-Saharan Africa - Yes - Yes - Yes

Panel 2: Democracy

Democracy 0.079 -0.024 -0.055 0.016 -0.024 0.008
(0.075) (0.078) (0.058) (0.051) (0.021) (0.028)

GDP pc 0.089** -0.060* -0.029
(0.043) (0.032) (0.019)

Sub-Saharan Africa Yes Yes Yes Yes Yes Yes

Panel 3: Human capital

Human capital 0.103*** 0.098** -0.074** -0.070* -0.029* -0.028*
(0.037) (0.042) (0.032) (0.036) (0.015) (0.015)

GDP pc 0.008 -0.006 -0.002
(0.032) (0.023) (0.009)

Sub-Saharan Africa Yes Yes Yes Yes Yes Yes

Panel 4: Temperate climate

Temperate climate 0.018** 0.017** -0.012** -0.011* -0.006** -0.005**
(0.007) (0.007) (0.006) (0.006) (0.003) (0.003)

GDP pc 0.016 -0.011 -0.005
(0.025) (0.017) (0.009)

Sub-Saharan Africa Yes Yes Yes Yes Yes Yes

Panel 5: Resource abundance

Resource abundance -0.052 -0.059* 0.037 0.042 0.015 0.017
(0.032) (0.033) (0.025) (0.027) (0.011) (0.012)

GDP pc 0.048 -0.034 -0.013
(0.031) (0.024) (0.010)

Sub-Saharan Africa Yes Yes Yes Yes Yes Yes

Panel 6: Population density

Population density 0.058*** 0.061*** -0.040** -0.043** -0.018** -0.018**
(0.019) (0.018) (0.017) (0.017) (0.008) (0.008)

GDP pc 0.054** -0.038** -0.016
(0.025) (0.019) (0.011)

Sub-Saharan Africa Yes Yes Yes Yes Yes Yes

Panel 7: Distance to sea

Distance to sea -0.049* -0.040 0.033 0.027 0.016 0.013
(0.026) (0.027) (0.020) (0.020) (0.010) (0.010)

GDP pc 0.029 -0.019 -0.009
(0.029) (0.020) (0.011)

Sub-Saharan Africa Yes Yes Yes Yes Yes Yes

Note: Asterisks indicate significance at * 10%, ** 5%, *** 1%. The standard errors in parentheses are of Huber/White
sandwich type. The Sub-Saharan Africa dummy is included, but not reported. Further, we do not report observations here,
since these remain identical to the corresponding table without the dummy. Marginal effects are calculated at the means of
the explanatory and all other variables. All variables are measured as initial conditions. GDP per capita, population density,
and distance to sea are in natural logarithms. Democracy is a dummy variable. Human capital has been standardized to
mean zero and standard deviation of one. People living in temperate zones and the measure of resource abundance, i.e., the
share of natural resources in GDP, are measured in percentage shares. For ease of display and interpretation, the coefficients
for resource abundance and temperate climate are multiplied by 10. That is, the coefficient represents a 10 percentage point
increase, e.g., from 50% of people living in temperate climate to 60%.
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Table A5. Marginal effects on probabilities (ordered logit): 102 country sample labor produc-
tivity with Sub-Saharan Africa dummy

LP-Club 1 LP-Club 2 LP-Club 3

Panel 1: GDP

GDP pc - 0.179*** - -0.158*** - -0.020**
(0.050) (0.048) (0.010)

Sub-Saharan Africa Yes Yes Yes

Panel 2: Democracy

Democracy 0.261*** 0.138* -0.218*** -0.121 -0.043* -0.017
(0.078) (0.083) (0.070) (0.074) (0.022) (0.013)

GDP pc 0.123* -0.108* -0.015
(0.064) (0.057) (0.010)

Sub-Saharan Africa Yes Yes Yes Yes Yes Yes

Panel 3: Human capital

Human capital 0.184*** 0.082* -0.156*** -0.072* -0.028** -0.010
(0.045) (0.043) (0.042) (0.038) (0.013) (0.007)

GDP pc 0.121** -0.106** -0.015*
(0.055) (0.050) (0.009)

Sub-Saharan Africa Yes Yes Yes Yes Yes Yes

Panel 4: Temperate climate

Temperate climate 0.041*** 0.024** -0.036*** -0.022** -0.005* -0.002
(0.010) (0.011) (0.009) (0.010) (0.003) (0.001)

GDP pc 0.104 -0.094 -0.009
(0.066) (0.061) (0.007)

Sub-Saharan Africa Yes Yes Yes Yes Yes Yes

Panel 5: Resource abundance

Resource abundance 0.011 -0.011 -0.009 0.010 -0.002 0.001
(0.028) (0.027) (0.022) (0.024) (0.006) (0.003)

GDP pc 0.225*** -0.199*** -0.027*
(0.061) (0.060) (0.014)

Sub-Saharan Africa Yes Yes Yes Yes Yes Yes

Panel 6: Population density

Population density -0.029 -0.014 0.024 0.012 0.005 0.002
(0.035) (0.029) (0.029) (0.026) (0.007) (0.004)

GDP pc 0.179*** -0.158*** -0.021**
(0.053) (0.050) (0.010)

Sub-Saharan Africa Yes Yes Yes Yes Yes Yes

Panel 7: Distance to sea

Distance to sea -0.014 0.038 0.012 -0.035 0.002 -0.004
(0.052) (0.050) (0.044) (0.045) (0.008) (0.005)

GDP pc 0.194*** -0.176*** -0.018*
(0.055) (0.053) (0.010)

Sub-Saharan Africa Yes Yes Yes Yes Yes Yes

Note: Asterisks indicate significance at * 10%, ** 5%, *** 1%. The standard errors in parentheses are of Huber/White
sandwich type. The Sub-Saharan Africa dummy is included, but not reported. Further, we do not report observations here,
since these remain identical to the corresponding table without the dummy. Marginal effects are calculated at the means of
the explanatory and all other variables. All variables are measured as initial conditions. GDP per capita, population density,
and distance to sea are in natural logarithms. Democracy is a dummy variable. Human capital has been standardized to
mean zero and standard deviation of one. People living in temperate zones and the measure of resource abundance, i.e., the
share of natural resources in GDP, are measured in percentage shares. For ease of display and interpretation, the coefficients
for resource abundance and temperate climate are multiplied by 10. That is, the coefficient represents a 10 percentage point
increase, e.g., from 50% of people living in temperate climate to 60%.
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Table A6. Marginal effects on probabilities (ordered logit): 102 country sample resource
productivity with Sub-Saharan Africa dummy

RP-Club 1 RP-Club 2 RP-Club 3

Panel 1: GDP

GDP pc - 0.136*** - -0.110** - -0.026**
(0.051) (0.044) (0.013)

Sub-Saharan Africa Yes Yes Yes

Panel 2: Democracy

Democracy 0.093 -0.025 -0.071 0.019 -0.022 0.006
(0.094) (0.128) (0.073) (0.099) (0.023) (0.029)

GDP pc 0.126* -0.098* -0.028
(0.070) (0.056) (0.018)

Sub-Saharan Africa Yes Yes Yes Yes Yes Yes

Panel 3: Human capital

Human capital 0.090* -0.003 -0.070 0.003 -0.020 0.001
(0.053) (0.063) (0.043) (0.050) (0.013) (0.013)

GDP pc 0.134** -0.107** -0.027*
(0.062) (0.051) (0.016)

Sub-Saharan Africa Yes Yes Yes Yes Yes Yes

Panel 4: Temperate climate

Temperate climate 0.016 0.002 -0.013 -0.001 -0.003 -0.000
(0.013) (0.015) (0.011) (0.012) (0.002) (0.002)

GDP pc 0.131** -0.109** -0.022
(0.059) (0.050) (0.013)

Sub-Saharan Africa Yes Yes Yes Yes Yes Yes

Panel 5: Resource abundance

Resource abundance 0.094 0.093 -0.077 -0.078 -0.018 -0.015
(0.061) (0.068) (0.050) (0.058) (0.013) (0.012)

GDP pc 0.130** -0.108** -0.021**
(0.057) (0.052) (0.011)

Sub-Saharan Africa Yes Yes Yes Yes Yes Yes

Panel 6: Population density

Population density 0.024 0.038 -0.019 -0.031 -0.005 -0.007
(0.030) (0.032) (0.023) (0.027) (0.007) (0.006)

GDP pc 0.144*** -0.117** -0.027**
(0.053) (0.047) (0.013)

Sub-Saharan Africa Yes Yes Yes Yes Yes Yes

Panel 7: Distance to sea

Distance to sea -0.031 -0.001 0.025 0.000 0.006 0.000
(0.048) (0.053) (0.039) (0.044) (0.010) (0.009)

GDP pc 0.134** -0.112** -0.022*
(0.056) (0.049) (0.013)

Sub-Saharan Africa Yes Yes Yes Yes Yes Yes

Note: Asterisks indicate significance at * 10%, ** 5%, *** 1%. The standard errors in parentheses are of Huber/White
sandwich type. The Sub-Saharan Africa dummy is included, but not reported. Further, we do not report observations here,
since these remain identical to the corresponding table without the dummy. Marginal effects are calculated at the means of
the explanatory and all other variables. All variables are measured as initial conditions. GDP per capita, population density,
and distance to sea are in natural logarithms. Democracy is a dummy variable. Human capital has been standardized to
mean zero and standard deviation of one. People living in temperate zones and the measure of resource abundance, i.e., the
share of natural resources in GDP, are measured in percentage shares. For ease of display and interpretation, the coefficients
for resource abundance and temperate climate are multiplied by 10. That is, the coefficient represents a 10 percentage point
increase, e.g., from 50% of people living in temperate climate to 60%.
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Chapter 3

Institutions and the Nexus of Economic Growth

and Natural Resource Use

Authors: Philip Kerner, Martin Kalthaus, Tobias Wendler

Abstract

For a panel of 159 countries over the period 1992–2010, we estimate how the long-run

effect of a permanent increase in the growth rate of GDP on the growth rate of resource

use depends on political institutional quality. We study this relationship for total resource

use and for the following subclasses: fossil fuels, biomass, non-metallic minerals, and metal

ores. Our results show that on average total resource use growth is strongly coupled to

economic growth, however, there is pronounced heterogeneity of the procyclicality across

countries. This procyclicality of total resource use growth is positively associated with the

political institutional quality of a country. For the subclasses biomass and non-metallic

minerals we also document this association, while we find no positive association for fossil

fuel resources. We discuss our findings considering the different transmission channels

through which institutions affect relative factor prices and technology.
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3.1 Introduction

Economic activity is inherently connected to the use of natural resources. In the last

century, economic growth and welfare increase in developed and developing countries

went hand in hand with increases in resource use (e.g., Krausmann et al., 2009; Agnolucci

et al., 2017). However, finite resource stocks, limits to the carrying capacity of the Earth

system (e.g., Arrow et al., 1995; Rockström et al., 2009; Hoekstra and Wiedmann, 2014;

Schramski et al., 2015), and respective negative externalities connected to the extraction,

processing, and discarding of natural resources have severe consequences for humankind

and the natural environment. These externalities and consequences become more relevant

over time, since the use of natural resources is strongly coupled with economic growth on

the aggregate level (e.g., Krausmann et al., 2009; Shao et al., 2017). On a disaggregate

level, however, substantial heterogeneity exists across countries. During the period 1992–

2010, the within-country correlation between the growth rate of resource use per capita

and GDP growth per capita is 0.970 in Russia, 0.887 in the United States, 0.678 in China,

and close to zero (0.082) in Nigeria.70 These examples already indicate the potential

differences across countries in the procyclicality of resource use, i.e., the long-run impact

of a permanent increase in GDP growth on the growth of resources use (Dées, 2020).71

In the following, we argue that the differences across countries in the relationship

between economic growth and growth in resource use are linked to political institutions.

According to North (1990), institutions are the “rules of the game”, i.e., the framework

conditions shaping interactions and economic activities. The country examples above al-

ready exemplify countries with different political institutional frameworks, and we provide

*Earlier versions of this paper were presented at the X Conference of the Spanish-Portuguese Association
of Natural and Environmental Resources Economics (AERNA) on 2 September 2022, the Scottish Eco-
nomic Society Annual Conference 2022 on 27 April 2022, the European Association of Environmental
and Resource Economists (EAERE) Annual Conference on 26 June 2021, and the 32nd Annual European
Association for Evolutionary Political Economy (EAEPE) Conference on 3 September 2020. We thank
all organizers and participants as well as Sherief Emam, Thomas Grebel, Johannes Herrmann, and Till
Requate for valuable comments.
70See Section 3.2 for data sources.
71Note that throughout this paper, we use the term procyclicality instead of the more general term cycli-
cality. We do this because resource use is expected to be procyclical and the focus of this paper is the
role of institutional quality in influencing the degree of procyclicality. In this notion, a negative pro-
cyclicality would imply countercyclicality. Additionally, we use the term “long run” in an econometric
sense (controlling for lagged adjustments). In fact, the results are generally driven by the coefficient of
the contemporaneous impact of GDP growth on resource use, such that short-run and long-run effects
generally correspond closely.
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detailed empirical evidence on the influence of political institutions on the procyclicality

of resource use growth.

Our paper relates to three main strands of the empirical and theoretical literature.

First, our paper links to the contributions that estimate the direct connection of economic

activity or income and the use of resources. Shao et al. (2017) estimate the effect of

economic recessions on resource use and find that material use in general but also for

parts of its subclasses is reduced in such periods. Agnolucci et al. (2017) find that there

is a causal impact of economic activity on resource use and that this causal impact differs

between Western European and Eastern European countries. These country differences

give tentative evidence for heterogeneity in the procyclicality of resource use. However, a

detailed and encompassing account of the heterogeneity is missing, although the presence

of heterogeneity is highlighted in the closely related stream of literature estimating the

effects of economic growth on carbon dioxide (CO2) emissions (e.g., Narayan and Narayan,

2010; Jaunky, 2011; Burke et al., 2015). For example, Burke et al. (2015) document that

higher-developed countries (in terms of GDP) tend to have a stronger procyclicality,

although the estimate is not significant across all specifications.

Second, our work closely relates to the empirical literature that explicitly estimates the

role of institutional quality for different dimensions of environmental quality, especially

CO2 emissions. Farzin and Bond (2006) estimate the role of institutional quality in the

emissions-growth nexus for different types of emissions, by controlling for an interaction

between GDP and the level of democracy. They find a mitigating effect of democracy on

emissions. Dées (2020) estimates an income threshold effect in the relationship between

emissions growth and economic growth. The results suggest that both the threshold effect

and the procyclicality of emissions depend on the level of institutional quality. However,

similar analyses on the broader use of resources in general are absent. Especially the role

of institutional quality for the heterogeneity in the procyclicality of resource use is not

considered yet.

Third, the general literature on endogenous growth theory provides a starting point

for why the institutional framework serves as a fundamental factor in the relationship

between resource use growth and economic growth. Endogenous growth theory suggests

two proximate factors – namely, input prices and the rate and direction of technological

change – that determine how much natural resources or energy are used in production (e.g.,

André and Smulders, 2014; Witajewski-Baltvilks et al., 2017). For example, Witajewski-

Baltvilks et al. (2017) use an endogenous growth model to show that the growth of energy
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use depends on economic growth, energy prices, and technology. Such factor price changes

have two relevant effects in endogenous growth models. They cause shifts in relative factor

demand, and, additionally, direct technological change towards saving the relatively more

expensive input (e.g., Hicks, 1932; Newell et al., 1999; Acemoglu, 2002; Popp, 2002).

We pick up on this relationship and argue that political institutions serve as a fun-

damental factor influencing relative prices of production factors and technical change.

For example, Acemoglu et al. (2012) and Acemoglu et al. (2016) show that changing

the price signal and subsidizing research can redirect economic activity. The adoption

and stringency of such regulation has been shown to depend on the political institutional

framework (Dasgupta and De Cian, 2018). Furthermore, political institutions are a cor-

nerstone of a well-functioning innovation system (Lundvall, 1992; Nelson, 2002), thereby

fostering technical progress. Based on these considerations, we argue that institutions are

a fundamental factor mediating the nexus between economic growth and the growth of

resource use.

We test the role of institutions in an empirical approach for a balanced panel of 159

countries for the period 1992–2010. We use data on resource use and GDP from the

United Nations International Resource Panel Global Material Flows Database (GMFD)

(UNEP, 2016; UN-IRP, 2018). The data contain information about the total resource

use of a country in a given year and about four subclasses: fossil fuels, biomass, non-

metallic minerals, and metal ores. To operationalize the formal institutional environment

of a country, we use the Institutional Quality Dataset (IQD) compiled by Kunčič (2014),

which is commonly used in similar applications (e.g., Aller et al., 2015; Damijan et al.,

2015). We focus on the political institutional quality indicator, which captures particularly

those institutional dimensions – namely, democracy, good governance and corruption –

that are most relevant for environmental policies and protection (Dasgupta and De Cian,

2016). We apply fixed-effects estimation in a dynamic panel to account for dynamic

adjustment processes between economic growth and resource use growth. We provide

further robustness tests for omitted variables, weak exogeneity, and asymmetric effects in

periods of positive and negative economic growth.

We report three important empirical findings. First, on average, total resource use

growth and resource use growth in the subclasses – fossil fuels, biomass, non-metallic

minerals, and metal ores – is coupled to economic growth, but coefficients of the procycli-

cality are considerably heterogeneous across countries. Second, the procyclicality of total

resources, biomass, and non-metallic minerals is positively associated with the political

84



institutional quality of a country, even if we control for confounding factors such as the

level of GDP per capita, the industry share, trade openness, or resource rents. The results

for metal ores are less robust, but generally point towards a similar association. However,

for fossil fuels, we find no evidence for a positive association of institutional quality and

the procyclicality of resource use. Third, while this association is based on the variation

of institutional quality between countries, the evidence of a positive association in the

within-country dimension is less pronounced, though still present, especially for total re-

sources. Overall, in both dimensions, the procyclicality of total resource use is more than

1 percentage point higher for a country with a perfect institutional framework compared

to a country with the worst institutional quality.

The remainder of the paper is organized as follows. Section 3.2 presents the data

and descriptive statistics and Section 3.3 the empirical approach. Section 3.4 reports the

results, extensions, and robustness tests. Section 3.5 contains a discussion of the results

and potential transmission channels of the effects. Section 3.6 concludes.

3.2 Data and Descriptive Statistics

We construct a balanced panel of 159 countries for the period 1992–2010 (see appendix

table B1). We use data for resource use and GDP from the United Nations International

Resource Panel Global Material Flows Database (GMFD) (UNEP, 2016; UN-IRP, 2018).

We rely on measures of resource input, i.e., all resources that enter an economy within

a year, either by being extracted domestically or being imported from abroad (Fischer-

Kowalski et al., 2011). We use the raw material input (RMI) indicator, which accounts

for upstream resource use in imports.72 Further, the data are available for both total

resource use and resource use disaggregated into four main resource classes. These four

resource classes encompass: fossil fuels, biomass, non-metallic minerals, and metal ores.73

Since there are substantial differences between resource classes concerning both their

environmental impacts and socioeconomic relevance (Weisz et al., 2006), we analyze all

four different resource classes alongside total resource use. The GMFD provides GDP

72Two measures of resource input are possible: direct material input (DMI) and raw material input
(RMI). While they conceptually measure the same, they differ how they consider imports. Whereas
DMI calculates imported resources and goods by their actual weight when crossing the border, RMI
calculates imports by their raw resource equivalents that include the upstream requirements of imported
commodities (UNEP, 2016). The difference between DMI and RMI is particularly relevant because the
influence of imports can substantially change the picture when accounting for upstream flows of imports
(Schaffartzik et al., 2016), which is why we focus on RMI.

73In the following, we will refer to these as fossils, biomass, minerals, and metals for brevity.
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data in constant 2005 US $. Data on total population to construct per capita series are

obtained from the World Bank World Development Indicators database.

To measure institutional quality, we rely on the well-established Institutional Quality

Dataset (IQD) provided by Kunčič (2014). The IQD contains country-specific and in-

ternationally comparable measures of the formal institutional environment. It provides

composite indicators for the three main dimensions – namely, legal, economic, and political

institutions.74 We utilize a composite measure that captures several overlapping dimen-

sions of the overall effective institutional landscape. The use of such composite measures

to capture institutions holistically is well-acknowledged (Barasa et al., 2017). We focus on

political institutional quality due to our focus on the economy-environment relationship.

Dasgupta and De Cian (2016) find democracy, good governance, and corruption to be

the most relevant institutional components when it comes to environmental policies and

protection. The composite indicator on political institutional quality we employ includes

precisely those dimensions. In its entirety, the indicator measures the degree to which

a country is democratic, secures a free press and political rights, provides high levels of

accountability and bureaucratic quality, while being free of corruption, conflicts, and vi-

olence. In addition to these contextual arguments, its broad availability with respect to

both countries and years makes this indicator our preferred choice.

For robustness tests we utilize further variables. We control for the role of the industrial

sector, trade openness, and resource rents in the GDP of a country. Data for all these

variables are obtained from the World Bank World Development Indicators database. A

detailed description of variables and data sources can be found in appendix table B2.

In the full dimension of the sample, the resource input and GDP data per capita

series display a strong variation in levels. In particular, differences in resource use among

countries and time are most pronounced for the subcategories fossils and metals. The

countries with the highest total resource inputs per capita on average over all sample

years are Qatar, the United Arab Emirates, and Guyana. The lowest overall resource use

per capita can be found in Haiti, Bangladesh, and Burundi. Qatar and the United Arab

Emirates are, in addition to Brunei, as well among the three countries with the highest

fossil resource inputs per capita, while the highest biomass inputs per capita are observed

74Each category is constructed from roughly ten established subindicators. The composite indicators are
calculated by standardizing all subindicators to range between 0 and 1. Afterwards, all subindicators
available within one of the three institutional dimensions are averaged. Hence, the composite indicator
itself ranges between 0 and 1, with 0 referring to the lowest institutional quality possible, whereas 1
would imply that the country scores optimal on each subindicator. See Kunčič (2014) for details of the
construction.
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in Guyana, New Zealand, and Luxembourg. Their counterparts with lowest per capita

inputs in the two subclasses are Somalia, Moldova, and Burundi for fossil resources and

Yemen, Iraq, and Haiti for biomass. In the two remaining categories, Australia, Chile, and

Guyana have highest average per capita inputs of metals, while the highest numbers per

capita for minerals occur in Luxembourg, the United Arab Emirates, and Guyana. The

lowest per capita values for metals are observed in Belarus, Moldova, and Somalia, and

the lowest per capita values for minerals in Somalia, Chad, and Afghanistan. Table 3.1

contains summary statistics for GDP per capita, institutional quality, total resource use

per capita, and resource use in the four resource subcategories per capita for all main

variables as they enter the main approach. Hence, GDP and resource use per capita are

displayed in growth rates and institutional quality in levels.

Table 3.1. Summary statistics

Unit Obs. Mean S.D. Min. Max.

Political institutional quality Index 3,009 0.50 0.20 0.02 0.93
GDP growth % 2,862 2.16 5.83 -61.60 65.02
Total resources growth % 2,862 1.28 8.77 -110.49 73.66
Fossils growth % 2,862 0.90 13.53 -158.82 214.14
Biomass growth % 2,862 0.36 8.77 -68.53 82.23
Minerals growth % 2,862 2.44 18.31 -173.97 137.58
Metals growth % 2,862 1.96 20.43 -233.56 224.86

Note: S.D.: standard deviation. The descriptive statistics refer to the sample period 1992–2010 with all
available observations for each country. GDP and resource use data used to compute the growth rates
are expressed in per capita terms.

The political institutional quality indicator shows a high variability as well, covering

nearly the full range from 0 to 1. The maximum value of 0.93 is observed in Finland

in 2001 and the minimum value of 0.02 in Afghanistan in the same year. With regard

to the average in political institutional quality over all years, the highest realizations are

observed for Finland, Denmark, and the Netherlands, while the lowest average values

appear for Afghanistan, Iraq, and Myanmar.

Table 3.2 presents moments of the between-country distribution of correlation coeffi-

cients between the growth rate of GDP per capita and the growth rate of resource use per

capita for the sample period. Some remarks are in order. First, the median correlation

is relatively high for all resource classes, giving evidence for a pronounced coupling of

resource use to economic growth on average. Second, the correlation with total resource

use is highest at all quartiles, which appears to be plausible as the resource subclasses
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can to some degree be substituted for each other, while total resources can only princi-

pally substitute for other production inputs such as labor. Third, there is a considerable

country variation in correlations, with some countries showing even negative correlations.

In the empirical part, we take this as a starting point and analyze the role of institutions

in shaping the procyclicality.

Table 3.2. Correlations between annual per capita GDP growth and per capita resource use
growth

Total Fossils Biomass Minerals Metals
Resources

Correlation, 1st quartile 0.312 0.132 0.112 0.148 0.075
Correlation, median 0.518 0.416 0.314 0.403 0.270
Correlation, 3rd quartile 0.684 0.591 0.501 0.616 0.454
Correlation, maximum 0.970 0.946 0.885 0.904 0.923
Correlation, minimum -0.527 -0.657 -0.535 -0.434 -0.563
Correlation, standard deviation 0.286 0.310 0.260 0.302 0.305

Note: Country-wise correlation coefficients for the period 1992–2010 for all 159 countries.

With regards to the time-series properties of the data, we apply first generation (Harris

and Tzavalis, 1999; Maddala and Wu, 1999) and second generation (Pesaran, 2007) panel

unit root tests to the variables of our empirical approach. The results are provided in

appendix table B3 and generally suggest that the null hypothesis of the variables being

I(1) is rejected.

3.3 Econometric Framework

3.3.1 Main Specification

For the analysis of the role of institutional quality as mediating factor in the relationship

between natural resource use and economic growth, we start with the following reduced-

form autoregressive distributed lag (ARDL) model of the relationship between economic

growth and growth of resource use:

∆rit = ρ∆ri,t−1 + γi0∆yit + β1∆yi,t−1 + ai + λt + ϵit, (3.1)

where t and i index years and countries, respectively, ∆rit is the log-difference of resource

use per capita, ∆yit is the log-difference of GDP per capita, ai are individual-specific, time-
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fixed effects, λt are time-specific, individual-invariant effects, and ϵit is an error term. We

follow recent studies on the nexus between emissions and economic growth and focus our

empirical analysis on the relationship of (approximate) growth rates (Burke et al., 2015;

Sheldon, 2017; Dées, 2020). The reduced-form nature of the relationship implies that

the coefficients include potential contemporaneous and lagged feedback between ∆rit and

∆yit. Such a reduced-form approach can be derived from a bivariate vector autoregression

(VAR) assuming linear dependence of the residuals (Chudik et al., 2016; Dées, 2020). The

ARDL approach has useful features in our empirical application. First, it can be used

for long-run analyses when variables are stationary (Pesaran, 1997; Chudik et al., 2016).

Second, it can be robust against feedback between regressor and regressand, as long as

the lag order is appropriate (Pesaran, 1997; Pesaran and Shin, 1999).

Based on our argumentation regarding the fundamental role of political institutions,

we assume that the reduced-form coefficients depend on the formal political institutional

quality of an economy. Specifically, we assume that the procyclicality of resource use in a

given country depends on the average political institutional quality of that country. We

introduce this dependence as γi0 = β0+β2Q̄i in our main approach, where Qit is political

institutional quality in country i and year t and Q̄i = T−1
∑︁T

t=1Qit. Thus, our main

model writes as

∆rit = ρ∆ri,t−1 + β0∆yit + β1∆yi,t−1 + β2∆yitQ̄i + ai + λt + ϵit. (3.2)

The country-specific long-run coefficients for the procyclicality, i.e., the impact of a

permanent increase in GDP growth on the growth of resource use, are given by ψi =

(β0+β1+β2Q̄i)/(1−ρ) = η0+η1+η2Q̄i (e.g., Haque et al., 2000). In our main approach,

we estimate equation (3.2) with two-way fixed effects (FE). As discussed extensively by

Haque et al. (2000), care has to be taken regarding the interpretation of the interaction

term in our main approach. Since we use between variation of political institutional qual-

ity, a statistically significant positive interaction coefficient simply implies that countries

with higher institutional quality tend to have a stronger long-run procyclicality of re-

source growth. It does not say that an individual country’s procyclicality will necessarily

increase with institutional quality over time, i.e., in the within dimension.
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3.3.2 Robustness Tests and Extensions

For additional robustness tests, we extend our analysis in several ways. First, fixed-effects

estimators of dynamic panel data models suffer from the well-known incidental parameter

bias (Nickell, 1981) in small-T samples. As discussed by Chudik et al. (2018), this bias

exists for weakly exogenous regressors in general even when there are no lags of the

dependent variable included. To show that the results are not distorted by this possible

bias, we consider two common ways to approach it. The panel GMM approach (Arellano

and Bond, 1991) circumvents the incidental parameter bias by eliminating the fixed effect

by differencing the model. Then, weakly exogenous regressors are instrumented by own

lags to account for correlation between them and the error term brought in by differencing.

However, the approach can be prone to a weak-/many-instruments problem, especially if

T is not small (Roodman, 2009b; Chudik et al., 2018). An alternative to panel GMM is

to correct for the bias by applying jackknife procedures. Chudik et al. (2018) show for

a linear panel model with time- and individual-specific fixed effects that the incidental

parameter bias is reduced and the resulting half-panel jackknife FE (HPJ-FE) estimator

is appropriate for N much larger than T . In a nutshell, the sample is split in two halves,

and the jackknife-corrected estimate is a combination of the whole sample FE estimate

and both split-sample FE estimates. We conduct both approaches and compare them

with our main estimation.

Second, recent studies highlight the possibility of asymmetric effects in the relation-

ship between emissions and growth (Burke et al., 2015; Sheldon, 2017) as well as in the

relationship between economic growth and resource use (Shao et al., 2017). Hence, we

test whether the cyclicality of resource use growth differs between periods of negative and

positive economic growth and whether there is an asymmetry in the interaction. For this

purpose, we extend equation (3.2) with indicator variables that take on the value 1 if

economic growth is positive and 0 else.

Third, an empirical challenge arises due to possible endogeneity in the presence of

omitted variables. Institutional quality is potentially correlated with economic develop-

ment in general, such that the interpretation of institutional quality as mediating variable

becomes less straightforward. To test the robustness of the interaction with political insti-

tutional quality empirically, we add interactions with several control variables that each

might explain the heterogeneity of coefficients to the main approach. These variables in-

clude the level of GDP per capita, the industry share, trade openness, and resource rents
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of a country. GDP per capita captures income levels and thus economic development in

general. First, by including the level of GDP alongside institutional quality, we can test

whether there is still a positive association between the procyclicality and institutional

quality, once the income level is controlled for. Including both interactions in the model

likely underestimates the role of institutional quality, since it is generally acknowledged

to be a fundamental factor of economic growth itself (e.g., Acemoglu et al., 2019; Co-

lagrossi et al., 2020). Second, the industry share serves as a control variable to check

whether institutional quality remains a predictor of high procyclicality once the economic

structure is controlled for. Highly industrialized countries are expected to have a differ-

ent resource dependence of economic growth than countries with a smaller share of the

industry sector (e.g., Schaffartzik et al., 2014). Third, we also control for an interaction

with trade openness of a country. Accounting for trade openness is of importance, given

our chosen indicator of resource use. In the case of material input indicators, resources

that are traded between countries are counted multiple times. Hence, we want to control

for the possibility that higher levels of resource use are not simply caused by a stronger

embeddedness into global value chains and respective resource throughput (e.g., Bruckner

et al., 2012). Finally, a relevant cause of different procyclicality could be the importance

of resource extraction for a respective country. For example, if a country is fully depen-

dent on resource extraction as its economic activity, the procyclicality might be strongly

determined by this (e.g., Sachs and Warner, 1995). Additionally, one might argue that in

countries where resource rents are important, countries naturally face a lower incentive

to reduce the importance of resources as the respective rents remain in the country. To

secure that our results do not merely capture those dynamics, we include an additional

interaction with resource rents.

Finally, we explore the within-country dimension and country-specific dynamics by

introducing an interaction of the form ∆yitQit instead of ∆yitQ̄i and a direct effect of

institutional quality in equation (3.2). Hence, the model is given by

∆rit = ρ∗∆ri,t−1 + β∗
0∆yit + β∗

1∆yi,t−1 + β∗
2∆yitQit

+ β∗
3∆yit−1Qit−1 + β∗

4Qit + β∗
5Qit−1 + a∗i + λ∗t + ϵ∗it.

(3.3)

This allows the coefficient of the interaction term to be heterogeneous across countries

as well. Fully heterogeneous parameters are implemented with the mean group (MG) es-

timator (Pesaran and Smith, 1995). It estimates N separate country-specific time series
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regressions, and mean parameters are computed as the (weighted) average of the indi-

vidual coefficients. For all mean group approaches, we remove common time effects by

subtracting the cross-sectional means from the variables prior to estimation (e.g., Bond

et al., 2010; Calderón et al., 2015). While the main regression gives insights into whether

the degree of procyclicality systematically depends on political institutional quality across

countries, this exercise allows to gauge whether this association can be observed within a

specific country over time.

3.4 Results

3.4.1 Main Estimation

The results of our main approach are shown in table 3.3. Column 1 uses the growth

rate of total resource use per capita as dependent variable, column 2 uses fossils, column

3 biomass, column 4 minerals, and column 5 metals instead of total resources. In line

with our initial reasoning, column 1 shows that the coefficient of the interaction term

of political institutional quality and GDP growth is highly significant. To interpret the

coefficients, it is worth recalling that the long-run procyclicality of resource use is given

by ψi = η0+ η1+ η2Q̄i. In table 3.3, η0+ η1 refers to the long-run coefficient GDP growth,

whereas η2 refers to the long-run coefficient of the interaction term. Since our measure

of institutional quality ranges between 0 and 1, the coefficient of the interaction term, if

significant, has a straightforward interpretation. Based on the results from column 1, a

(hypothetical) country with average political institutional quality of 0 has an estimated

procyclicality of 0.172. The point estimate implies that a 1 percentage point permanent

increase in GDP growth is accompanied with a 0.172 percentage point increase in the

growth rate of resource use. The coefficient is however not significant. A country with

the best possible average institutional framework of 1 has an estimated procyclicality

of 0.172 + 1.444 = 1.616. Estimated coefficients for countries with average institutional

quality between 0 and 1 range linearly between those two extreme values. If the coefficient

of the interaction term is not significantly different from zero, differences in country-

specific coefficients of the procyclicality are not systematically associated with the average

institutional quality of these countries. It is worth emphasizing that the interpretation

of this interaction term is exclusively across countries; it does not necessarily imply that

the procyclicality of a country depends on its institutional framework over time.
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Columns 3–5 show a similar association for the procyclicality of biomass, minerals,

and metals. In each of these subgroups, higher average institutional quality is associated

with higher coefficients for the procyclicality of resource use. The standard error of the

coefficient of the interaction term for metals is relatively high, however. Additionally,

the within R2 indicates that the main model only explains a small amount of variation

for metals. In contrast to these resource subclasses, column 2 shows that the data is

not supportive of a positive association between the procyclicality of fossils and political

institutional quality. In all models, the speed of adjustment parameter ϕ = ρ − 1 is

estimated to be significantly negative and in absolute value smaller than 2, indicating

stability.

Table 3.3. FE regressions for all material classes based on ARDL(1,1,1)

Total resources Fossils Biomass Minerals Metals
(1) (2) (3) (4) (5)

Long-run coefficients

GDP growth 0.172 0.794** -0.004 0.140 0.234
(0.141) (0.312) (0.051) (0.251) (0.190)

Political institutional quality 1.444*** -0.095 1.037*** 2.405*** 0.993**
× GDP growth (0.273) (0.601) (0.137) (0.356) (0.434)

Short-run coefficients

Speed of adjustment -1.113*** -1.068*** -1.304*** -1.148*** -1.005***
(0.065) (0.082) (0.045) (0.070) (0.042)

Observations 2,703 2,703 2,703 2,703 2,703
Countries 159 159 159 159 159
R2 within 0.235 0.173 0.191 0.142 0.054

Note: Asterisks indicate significance at * 10%; ** 5%; *** 1%. Standard errors in parentheses are of
heteroskedasticity-robust sandwich type. A full set of time dummies is added to each model. Long-run
coefficients are computed from the short-run coefficients and their standard errors are based on the delta
method.

To illustrate the results from a slightly different angle, we perform an exercise in which

the reduced-form model in equation (3.1) is estimated directly for each country. This al-

lows for completely heterogeneous parameters across countries. Common time effects are

removed by subtracting the cross-sectional means from the variables prior to estimation

(e.g., Bond et al., 2010; Calderón et al., 2015). Figure 3.1 plots the individual-country

coefficients against average institutional quality together with a linear trend line and 95%

confidence intervals. The trend lines reflect the positive association estimated from the

main approach for total resources, biomass, minerals, and metals and the inconclusive
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results for the interaction coefficient for fossils. Despite the positive association in gen-

eral, it can be seen that the variation of individual coefficients around the trend line is

pronounced at all levels of average institutional quality.
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(e) Metals

Figure 3.1. Heterogeneity of individual coefficients of the procyclicality. Individual long-run parame-
ters of the procyclicality estimated from the reduced form model in equation (3.1) and plotted against the
average institutional quality of each country for the five resource classes total resources, fossils, biomass,
minerals, and metals. The solid line depicts a linear trend and grey shaded areas 95% confidence intervals.
Extreme outliers are excluded from the figure. They are identified by performing a robust regression of
the individual coefficients on a constant and excluding the coefficients that get assigned a zero weight.
The robust regression is performed with the Stata command rreg.
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Additionally, we use the individual-country coefficients to perform outlier-robust cross-

country regressions of the individual coefficients of the procyclicality on average political

institutional quality to obtain magnitudes of the interaction effect that are comparable

to the main results in table 3.3. Table 3.4 shows that the coefficients of average political

institutional quality are significantly positive for total resources, biomass, minerals, and

metals and they are of similar magnitude as the interaction coefficients from the main

model. Additionally, the insignificant slope coefficient for fossils underlines the ambiguous

results for this resource subgroup. In the regressions of total resources and the subgroups

fossils, biomass, and minerals, two to three countries are extreme outliers that get assigned

an exact zero weight in estimation. For metals, 12 countries are excluded, highlighting

the pronounced idiosyncrasies in this subgroup. Finally, the null hypothesis of joint

insignificance of the coefficients can be rejected for all models except the regression for

the subgroup fossils in column 2.

Table 3.4. Outlier-robust regression of the individual coefficients on institutional quality

Total resources Fossils Biomass Minerals Metals
(1) (2) (3) (4) (5)

Political institutional quality 1.281*** 0.480 1.390*** 1.583*** 1.508***
(0.274) (0.407) (0.229) (0.592) (0.514)

Constant 0.262* 0.543** -0.180 0.658** 0.019
(0.148) (0.220) (0.124) (0.320) (0.278)

Observations 159 159 159 159 159
No. of zero weights 2 3 3 3 12
F-test (p-value) 0.000 0.240 0.000 0.008 0.004

Note: Asterisks indicate significance at * 10%; ** 5%; *** 1%. Standard errors in parentheses. Outlier-
robust OLS estimates are obtained by regressing the individual-country coefficients of the procyclicality
on the country-specific level of average institutional quality with the rreg command in Stata.

Overall, we find a strong positive association between the level of institutional quality

of a country and its sensitivity of resource use growth to economic growth for a country’s

total resource use as well as for the subclasses biomass, minerals, and metals. On the other

hand, the data are not supportive of a positive association between political institutional

quality and the procyclicality of fossils.
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3.4.2 Robustness Tests and Extensions

3.4.2.1 Alternative Specifications

In this section, we present the robustness exercises and extensions discussed in Section

3.3. First, appendix table B4 shows the results of the panel GMM and HPJ-FE estima-

tion to deal with potential incidental parameter bias in the presence of weakly exogenous

variables. It shows that the results from both estimation procedures are very similar to

the results of the main estimation both qualitatively and quantitatively. The negative

coefficient of the interaction between GDP growth and institutional quality for the sub-

group fossils is even somewhat more pronounced in GMM estimation, yet only marginally

significant.

Second, appendix table B5 extends the main model to allow for potential asymmetric

coefficients for negative and positive economic growth. The main results from the main

model are not altered in the asymmetric model. Specifically, the coefficients of the inter-

action term are positively significant for total resources, biomass and minerals, and there

is no robust association between institutional quality and the procyclicality of fossils.

To summarize, we take these results as reassuring that the results from the main

approach are not distorted from the presence of weakly exogenous regressors and are

mostly robust against the use of different estimators. Furthermore, the main results are

broadly robust to the possibility of asymmetric effects for negative and positive growth

rates.

3.4.2.2 Additional Controls

As discussed in Section 3.3, it is possible that the positive association between political

institutional quality and the coefficients of the procyclicality for total resources, biomass,

minerals, and metals merely reflects correlation between institutional quality and different

structural characteristics of countries, which influence the degree of procyclicality. To this

purpose, in this section we add additional controls to the main model that are likely to

be related to the degree of resource dependence of economic growth. These controls

include the level of GDP per capita, the industry share, trade openness, and resource

rents. Table 3.5 uses total resources as dependent variable and presents the results from
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the main model in which one additional interaction term is added at a time.75 Due

to different data availability for the additional covariates, the sample size is reduced by

few countries in the different specifications. The interaction term is always constructed

with respect to the average of the respective variable over time in the same manner as

done with institutional quality in the main estimation. As the only variation in the

within dimension in the interaction terms originates from GDP growth, we only include

one additional interaction at a time to the model, since collinearity can reduce precision

considerably. Column 1 adds an interaction term with the average natural logarithm of

the level of GDP per capita for each country, column 2 adds an interaction with the

average industry share, column 3 adds an interaction with the average trade openness,

and finally, columns 4 adds an interaction with average resource rents.

Table 3.5. Additional control variables added as interaction

Total Total Total Total
resources resources resources resources

(1) (2) (3) (4)

Long-run coefficients

GDP growth -0.394* -0.121 0.269 0.054
(0.213) (0.114) (0.172) (0.115)

Political institutional quality 0.865*** 1.589*** 1.398*** 1.598***
× GDP growth (0.308) (0.215) (0.318) (0.215)
GDP level 0.111***
× GDP growth (0.037)
Industry share 0.008***
× GDP growth (0.002)
Trade openness -0.001
× GDP growth (0.001)
Resource rents 0.004
× GDP growth (0.003)

Short-run coefficients

Speed of adjustment -1.117*** -1.117*** -1.119*** -1.116***
(0.066) (0.069) (0.071) (0.068)

Observations 2,703 2,618 2,584 2,669
Countries 159 154 152 157
R2 within 0.242 0.252 0.249 0.243

Note: Asterisks indicate significance at * 10%; ** 5%; *** 1%. Standard errors in parentheses are of
heteroskedasticity-robust sandwich type. A full set of time dummies is added to each model. Long-run
coefficients are computed from the short-run coefficients and their standard errors are based on the delta
method.

75For the sake of brevity, we do not report the results for the resource subclasses here. In general,
the statements regarding the interaction term with political institutional quality remain robust when
adding additional covariates. These results are available upon request.
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The results in table 3.5 show that political institutional quality remains strongly as-

sociated with the degree of procyclicality when the additional covariates are added. In

columns 2–4 the magnitude of the coefficient of the interaction term is comparable to the

main model. Column 1 shows that the degree of procyclicality is also strongly associated

with per capita income. Although the magnitude roughly halves, the positive associa-

tion with political institutional quality remains significant and pronounced. Column 2

furthermore shows that the industry share of a country is also a significant predictor of

a high degree of procyclicality. As evident from columns 3–4, the association with trade

openness and resource rents is not significant.

To conclude, the positive association between institutional quality and the degree of

procyclicality of resource use across countries is robust against the inclusion of additional

interaction terms, which capture different country-specific structural aspects, such as the

log-level of GDP per capita, the industry share, trade openness, and resource rents. These

findings support the insights from the main estimation.

3.4.2.3 The Within-Country Dimension

In the following, we consider a more general model for the interaction term compared

to the main estimation, including within-country variation as well as exclusively within-

country variation. First, we estimate model (3.3) with a general interaction term that

is not restricted to the cross-sectional variation of institutional quality. Second, we fo-

cus on the within variation and estimate equation (3.3) for each country separately and

obtain mean coefficients by averaging the individual coefficients across countries (MG

estimation). This approach allows each country to have fully heterogeneous parameters,

including heterogeneous coefficients of the interaction term. It facilitates to gauge whether

the degree of procyclicality depends on the level of institutional quality within the country

over time as well.

Table 3.6 presents the results for equation (3.3), in which an interaction term of the

form ∆yitQit alongside a direct effect of political institutional quality is included. The

results are very similar to the main estimation, and the size and significance levels of the

coefficients of the interaction term are similar for total resources, fossils, biomass, and

minerals. Only the interaction coefficient for metals is insignificant, contrary to the main

estimation.
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Table 3.7 presents the results of outlier-robust MG estimation of equation (3.3). The

full ARDL(1,1,1,1) approach is very demanding given the medium time series dimension

of the sample. Hence, table 3.7 uses the nested ARDL(1,0,0,0) model by assuming that

β∗
i1 = β∗

i3 = β∗
i5 = 0. It shows that the results regarding the average coefficients of

the interaction term are very similar to the main estimation and the corresponding FE

estimation in table 3.6, except for the subgroup metals. However, standard errors are

larger and only the coefficients for total resources in column 1 and for biomass in column

3 remain statistically significant. Additionally, it is worth emphasizing that there is

heterogeneity in the coefficients of the interaction term. Table 3.7 reports the number of

countries for which the individual coefficient of the interaction term is estimated positive.

Even for the significant average coefficient for total resources, there are more than 50

countries with negative point estimates of the coefficient of the interaction term. Hence,

while the average effects across countries are in support of our findings from the main

approach even when only the within variation is considered, single country dynamics

might be different.

Table 3.6. Using the full variation in the interaction and including the direct effect

Total resources Fossils Biomass Minerals Metals
(1) (2) (3) (4) (5)

Long-run coefficients

GDP growth 0.264* 0.643** 0.048 0.199 0.406**
(0.136) (0.288) (0.061) (0.292) (0.167)

Political institutional quality -0.032 0.090 -0.030 0.028 0.123
(0.035) (0.057) (0.032) (0.075) (0.154)

Political institutional quality 1.261*** 0.325 0.956*** 2.365*** 0.526
× GDP growth (0.256) (0.632) (0.159) (0.476) (0.404)

Short-run coefficients

Speed of adjustment -1.112*** -1.069*** -1.304*** -1.152*** -1.006***
(0.067) (0.082) (0.045) (0.070) (0.042)

Observations 2,703 2,703 2,703 2,703 2,703
Countries 159 159 159 159 159
R2 within 0.236 0.176 0.192 0.140 0.054

Note: Asterisks indicate significance at * 10%; ** 5%; *** 1%. Standard errors in parentheses are of
heteroskedasticity-robust sandwich type. A full set of time dummies is added to each model. Long-run
coefficients are computed from the short-run coefficients and their standard errors are based on the delta
method.

To conclude, there is considerable evidence for a positive association between insti-

tutional quality and the procyclicality of resource use in the between dimension – that

99



means, countries with higher institutional quality tend to have a higher procyclicality.

This insight holds as well broadly when considering the within dimension with regard to

the average effect across countries. However, single country dynamics might differ from

this average effect.

Table 3.7. Outlier-robust MG estimation for all resource classes

Total resources Fossils Biomass Minerals Metals
(1) (2) (3) (4) (5)

Long-run coefficients

GDP growth 0.339** 0.850*** 0.185 1.244*** 1.307***
(0.164) (0.253) (0.173) (0.382) (0.324)

Political institutional quality -0.039 -0.011 -0.010 0.127 0.010
(0.047) (0.061) (0.041) (0.099) (0.111)

Political institutional quality 1.395*** -0.034 0.908** 0.561 -1.010
× GDP growth (0.350) (0.530) (0.385) (0.793) (0.683)

Short-run coefficients

Speed of adjustment -1.115*** -1.150*** -1.206*** -1.134*** -1.097***
(0.021) (0.024) (0.021) (0.023) (0.023)

No. of pos. interactions 103 80 92 86 68
Observations 2,703 2,703 2,703 2,703 2,703
Countries 159 159 159 159 159

Note: Asterisks indicate significance at * 10%; ** 5%; *** 1%. Standard errors in parentheses. Sig-
nificance and standard errors refer to testing the difference of the weighted average long-run coefficient
from zero. Weighted averages are computed by outlier-robust regression of the individual coefficients on a
constant (Bond et al., 2010) with the rreg command in Stata. All variables enter as deviations from their
cross-sectional mean in each period. The model estimated is an ARDL(1,0,0,0) representation, which is
nested in equation (3.3) (β∗

i1 = β∗
i3 = β∗

i5 = 0).

3.5 Discussion

The core results from our empirical analysis are threefold: first, for total resource use,

we find on average a high degree of procyclicality, which is strongly heterogeneous across

countries. Furthermore, the range of country-level procyclicality varies across the resource

classes. While it is lowest for biomass, the procyclicality across countries varies the most

for minerals. Second, we find that this heterogeneity is linked to differences in levels

of political institutional quality. For total resources and most resource subgroups, the

results suggest that high institutional quality is associated with a higher procyclicality of

respective resource use growth. Third, the mediating role of institutional quality is not

equal across all subgroups of resource use. Particularly for fossil fuel resources, we find

no evidence for a positive association between institutional quality and the procyclicality
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of fossil fuel use. In light of the generally positive association of the procyclicality of most

resource classes with institutional quality, this points to the importance of specific ways in

which institutions affect resource use. Overall, our findings for resources, thus, contrast

findings on the role of institutions with respect to CO2 emissions, where a decrease of

procyclicality is found (Dées, 2020). These findings link to the role of resources as an

input factor to economic activity. Institutions might hereby act as a fundamental factor

that influences the proximate channels of factor prices and technology. We discuss our

findings in light of the fact that institutions can relate to different mechanisms that shape

factor prices and technological change.76

With respect to our first empirical finding, we show that there is substantial hetero-

geneity in the procyclicality of resource use across countries. This empirical fact aligns

well with previous findings on CO2 emissions (e.g., Jaunky, 2011; Burke et al., 2015).

The heterogeneity in procyclicality may stem from different underlying, country-specific

factors. While Burke et al. (2015) focus on the business cycle and country characteristics

such as GDP levels or resource availability, Dées (2020) analyzes the role of institutions

in moderating the procyclicality, finding that higher levels of institutional quality reduce

the average procyclicality of emissions. On the contrary, our results associate countries

with high institutional quality to higher degrees of procyclicality for resource use. This

finding is robust even when controlling for the position in the business cycle or above-

mentioned country characteristics, such as GDP levels, resource rents, industry share, or

trade openness. Agnolucci et al. (2017) find a higher degree of procyclicality in Western

European countries compared to Eastern European countries, which they attribute to

relative low energy prices and relative high labor costs in Western Europe compared to

Eastern Europe. This highlights the importance of relative prices for differentials in the

procyclicality of resource use across countries.

Concerning our second empirical finding, institutional quality can be regarded as a

fundamental factor influencing both levels and types of economic activity, due to its

effects on crucial factors such as technology (Acemoglu et al., 2005). These can take place

through trade liberalization (Fischer, 2010), regulation (Aghion et al., 2016), and other

changes that institutions support. Essentially, factor prices and technology determine the

relative importance of natural resources in production and how it develops over time (e.g.,

Haas and Kempa, 2018; Hassler et al., 2021). A shift in relative prices may directly lead

to a different relative composition of production inputs, if substitution between resources

76It shall be emphasized here that this interpretation does not exhaust all possible explanations.
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and capital/labor is possible. This degree of substitutability might increase in the long

run, as changes in relative prices direct technological change towards saving the expensive

input (Hassler et al., 2021). In this vein, our results might point towards lower relative

prices for resources for countries with high institutional quality, corresponding to a higher

procyclicality of resource use.

Our third empirical finding shows that a higher procyclicality of resource use at higher

levels of institutional quality is not found across all resource types. For total resource use

and the subgroups biomass, non-metallic minerals, and metal ores we find that higher

political institutional quality is associated with higher procyclicality. Generally, many

natural resource prices have a relevant international price component (Agnolucci et al.,

2017). One channel by which institutional quality can drive resource prices down is

trade liberalization, though this effect is not unequivocal (Fischer, 2010). Due to im-

proved access to resources, we expect a reducing effect of institutional quality on resource

prices. Furthermore, for other input factors, such as labor, we expect opposite effects

on prices. Here, higher institutional quality can increase labor costs. This could be due

to institutional quality being associated with more stringent labor market policies and

interventions, which make labor input less flexible (Bertola and Rogerson, 1997; Betcher-

man, 2012; Kahn, 2012). Additionally, Rodrik (1999) finds that democratic countries

pay higher wages in general, even when controlling for levels of labor productivity. Con-

sequently, there is competitive pressure on firms exposed to high political institutional

quality to increase the amount of resources per worker, in order to maintain cost-efficient

input combinations. In essence, these associations are consistent with higher relative

importance of resources in production at higher levels of political institutional quality.

For fossil fuel resources, our results do not support a positive association between

political institutional quality and the degree of procyclicality. Fossil fuels are a natural

resource type for which a significant amount of political actions has been dedicated to

internalize its externalities, e.g., through fuel taxes (Aghion et al., 2016). Internalizing

the negative externalities of fossil fuels increases their relative price, which can lead to

substitution. Furthermore, it can induce the direction of technological change towards

reducing fossil fuel use (e.g., Popp, 2002; Acemoglu et al., 2012, 2016; Aghion et al.,

2016). A positive association between high institutional quality and environmental policy

adoption and its stringency finds broad empirical support (Dasgupta and De Cian, 2018).

For example, Chen et al. (2021) find that in democratic countries, economic growth is

transferred more strongly into renewable energy growth. In light of this argument, the
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specific policies to internalize externalities related to fossil fuels might outweigh the effects

of higher institutional quality we find for other resource types.

Overall, our results show that the growth of resource use is highly procyclical. The

magnitude of this procyclicality is in general and for most resource types positively as-

sociated with political institutional quality. This mediating role might be linked to a

relative reduction in resource prices as well as a relative increase of other input factor

prices, especially labor costs. However, for fossil fuels, policy interventions aiming to in-

ternalize externalities, and thereby increasing relative prices, might outweigh the effect.

This indicates that an “automatic” mechanism by which improved institutional quality

reduces resource dependency of additional economic growth does not exist.77 However,

good institutional quality allows to implement and enforce policies to directly address

negative externalities.

3.6 Conclusion

Institutions are a fundamental factor for economic activity, influencing both the scale and

the structure of the economy (e.g., Acemoglu et al., 2005, 2019; Colagrossi et al., 2020). In

this paper, we show that institutions mediate the relationship between economic growth

and the environment. We analyze the mediating role of political institutional quality for

the nexus between economic and natural resource use growth in a panel of 159 countries

for the period 1992 to 2010. We find a pronounced heterogeneity in the procyclicality

of resource use, i.e., the effect of economic growth on the growth of natural resource

use, across countries. Political institutional quality is robustly associated with a higher

procyclicality for total resources. On a disaggregated level, for the subclasses biomass

and non-metallic minerals, we find similar robust results. The results for metal ores are

less robust, but generally pointing towards a similar association. For fossil fuels, we find

no evidence for a positive association of institutional quality and the procyclicality of

resources.

These results have implications in conjunction with finite resource stocks and limits

to the carrying capacity of the Earth system (e.g., Arrow et al., 1995; Rockström et al.,

2009; Hoekstra and Wiedmann, 2014; Schramski et al., 2015). We argue that institutions

77It is emphasized here that our results are perfectly consistent with countries having high institutional
quality having a high level of resource productivity. However, any additional economic growth in
the considered time period was more dependent on resource use growth for countries with higher
institutional quality.
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as fundamental factor influence the nexus between economic growth and resource use via

changes in relative prices and changes in the (aggregate) production technology. While

institutional quality is generally found as potential factor contributing to environmental

protection (e.g., Dasgupta and De Cian, 2018; Dées, 2020), our results provide no evidence

that institutions are a general panacea for environmental problems. While countries with

better institutional quality might have a higher level of resource productivity, our results

support that additional economic growth was more dependent on resource use growth

for countries with better institutional quality. Therefore, the role of institutions alone

for addressing environmental problems might be overstated. While many studies focus

on (territorial) emissions only, we utilize a comprehensive set of resource use indicators.

These indicators facilitate a more holistic analysis of the growth environment nexus and

to account for global impact via the inclusion of upstream flows.

This finding has relevance for policymakers who aim towards sustainable economic

development. Our results imply that better institutions do not act as an automatic mech-

anism by which environmental problems are resolved. However, the case of fossil fuels can

be seen as a first hint on the importance and potential of price changes. The implemen-

tation of carbon taxes and emission trading systems becomes more frequent and changes

the price signal (Thisted and Thisted, 2020). Changing prices affect input combinations

and innovative activity and, thus, could reduce the utilization of resources. Policy mea-

sures that increase relative resource prices might lift the potential for substantial long-run

substitution (Hassler et al., 2021). Furthermore, as high institutional quality generally

provides an important basis for a well-functioning innovation system (Lundvall, 1992;

Nelson, 2002), our results call for a targeted innovation policy towards saving natural

resources. A prominent example of these approaches are endeavors towards a circular

economy (European Commission, 2015).

Given some limitations of the present study we propose various avenues for further

research. First, our considered time period is only moderate, due to current data re-

strictions and our goal to capture an encompassing sample of countries. Studies utilizing

longer time series information, even if restricted to specific country groups, could provide

additional depth to the dynamics. Second, we focus on formal institutional quality. How-

ever, informal institutions, such as environmental awareness, certainly are of importance

for the nexus between economic and natural resource use growth. For example, merits of

high formal institutional quality could be mediated by underlying informal institutions.

Future studies could disentangle this interplay of underlying societal dynamics. Lastly,
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we propose that institutions shape the economy-environment relationship by affecting

factor prices and technology. Further research can include these channels directly and

disentangle their interplay.
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Table B2. Data description and sources

Variables Description Source

Resource variables
Total RMI Raw material input of all re-

sources (tons)
Global Material Flows Database
(UNEP, 2016; UN-IRP, 2018)

Fossil RMI Raw material input of fossil re-
sources (tons)

Global Material Flows Database
(UNEP, 2016; UN-IRP, 2018)

Biomass RMI Raw material input of biomass
resources (tons)

Global Material Flows Database
(UNEP, 2016; UN-IRP, 2018)

Minerals RMI Raw material input of mineral
resources (tons)

Global Material Flows Database
(UNEP, 2016; UN-IRP, 2018)

Metals RMI Raw material input of metal re-
sources (tons)

Global Material Flows Database
(UNEP, 2016; UN-IRP, 2018)

Economic growth
GDP GDP (constant 2005 US $) Global Material Flows Database

(UNEP, 2016; UN-IRP, 2018)
Institutional quality
Institutions Political institutional quality

(share)
Institutional Quality Dataset
(Kunčič, 2014)

Population
Population Total population (number of res-

idents)
World Bank World Development
Indicators (SP.POP.TOTL)

Control variables
Industry share Value added of industry (% of

GDP)
World Bank World Development
Indicators (NV.IND.TOTL.ZS)

Trade openness Imports plus exports of goods
and services (% of GDP)

World Bank World Development
Indicators (NE.IMP.GNFS.ZS &
NE.EXP.GNFS.ZS)

Resource rents Total natural resources rents (%
of GDP)

World Bank World De-
velopment Indicators
(NY.GDP.TOTL.RT.ZS)
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Table B3. Panel unit root tests

HT HT MW MW CIPS CIPS
constant trend constant trend constant trend

GDP growth 0.000 0.000 0.000 0.000 0.000 0.000
Total resources growth 0.000 0.000 0.000 0.000 0.000 0.000
Fossils growth 0.000 0.000 0.000 0.000 0.000 0.000
Biomass growth 0.000 0.000 0.000 0.000 0.000 0.000
Minerals growth 0.000 0.000 0.000 0.000 0.000 0.000
Metals growth 0.000 0.000 0.000 0.000 0.000 0.000
Political institutional quality 0.000 0.002 0.000 0.000 0.227 0.824

Note: Reported are p-values. HT refers to the Harris-Tzavalis test (Harris and Tzavalis, 1999), MW
to the Maddala-Wu test (Maddala and Wu, 1999), and CIPS to the unit root test proposed by Pesaran
(2007). MW and CIPS are augmented with one lag. MW and CIPS are implemented with the multipurt
routine written by Eberhardt (2011), making use of the pescadf command by Lewandowski (2007) and
the xtfisher routine by Merryman (2005) in Stata. GDP and the resource classes are in per capita terms.
Common time effects are removed by subtracting the cross-sectional means from the variables prior to
testing (Bond et al., 2010; Calderón et al., 2015).
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Table B5. Asymmetric coefficients for positive and negative GDP growth rates

Total resources Fossils Biomass Mineral Metals
(1) (2) (3) (4) (5)

Long-run coefficients

Positive GDP growth 0.010 1.153*** -0.066 -0.262 -0.391
(0.126) (0.441) (0.096) (0.342) (0.524)

Negative GDP growth 0.239 0.430 0.058 0.517 0.849**
(0.223) (0.406) (0.104) (0.363) (0.357)

Political institutional quality 1.436*** -1.188 1.037*** 2.796*** 1.291
× Positive GDP growth (0.265) (0.819) (0.209) (0.607) (0.965)
Political institutional quality 1.480*** 1.209 1.049*** 2.058*** 0.776
× Negative GDP growth (0.486) (1.058) (0.264) (0.791) (0.848)

Short-run coefficients

Speed of adjustment -1.114*** -1.071*** -1.304*** -1.150*** -1.013***
(0.065) (0.079) (0.045) (0.070) (0.043)

Observations 2,703 2,703 2,703 2,703 2,703
Countries 159 159 159 159 159
R2 within 0.236 0.181 0.192 0.146 0.060

Note: Asterisks indicate significance at * 10%; ** 5%; *** 1%. Standard errors in parentheses are of
heteroskedasticity-robust sandwich type. A full set of time dummies is added to each model. Long-run
coefficients are computed from the short-run coefficients and their standard errors are based on the delta
method.
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Chapter 4

Green Technologies and Growth: Evidence

from European Regions

Authors: Philip Kerner, Torben Klarl, Tobias Wendler

Abstract

Green technologies are at the core of endeavors to combine economic and environmental

targets to achieve sustainable growth. In this article, we estimate the impact of green

technology development on labor productivity of European regions. We rigorously control

for unobserved common factors and explore various sources of heterogeneity in the pro-

ductivity effects. Our results, based on a sample of 158 European NUTS-2 regions over

39 years, imply that general technology development is associated with positive economic

returns, but our data is not supportive of positive economic returns to green technologies

in general. However, we find evidence of positive regional returns for different subgroups

of green technologies and for regions that have a sufficiently high regional knowledge base.

Keywords: Regional Growth; Green Technologies; Heterogeneity; Cross-Sectional De-

pendence

JEL Classification: C23; O0; O33

Publication: An earlier version of this paper is published as discussion paper under the

title “Green Technologies, Environmental Policy and Regional Growth” (Kerner et al.,

2021).∗
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4.1 Introduction

The recently announced European Union (EU) External Energy Strategy (European Com-

mission, 2022) highlights the key role of green technologies in tackling climate change (e.g.,

Fried, 2018) and establishing energy security. Green technologies are at the core of en-

deavors to combine economic and environmental targets to achieve sustainable growth,

one of the aims of the European Green Deal (European Commission, 2019). First, green

technical progress might substantially contribute to increase environmental productivity

(e.g., Popp, 2010). At the same time, green technologies might enhance economic produc-

tivity (e.g., Xepapadeas and de Zeeuw, 1999). If green technologies are indeed fostering

economic productivity, they can serve to stimulate regional growth and perhaps be a tool

for regional inclusion. Indeed, technological progress provides the foundation of Europe’s

regional development strategies (e.g., McCann and Ortega-Argilés, 2015). Although green

technologies play a prominent role in recently designed EU policies that focus on strength-

ening economic growth while tackling climate change (e.g., European Commission, 2019),

a thorough empirical investigation of the impact of green technology development on labor

productivity of European regions is still missing. The present paper fills this gap.

Our paper contributes to the literature on technological change and regional growth78

in various ways. First, the focus on the regional level facilitates to estimate general

equilibrium effects on a broad empirical base. Second, we rigorously account for cross-

sectional dependence (CSD) in our empirical approach. Third, we explore various sources

of heterogeneous productivity effects across regions and technologies.

We focus on the economic returns that occur within the same region the technology

is developed (including intraregional knowledge spillovers), which we call the regional

*Earlier versions of this paper were presented at the internal Seminar of the Department of Economics
at Tilburg University on 7 December 2022, the X Conference of the Spanish-Portuguese Association of
Natural and Environmental Resources Economics (AERNA) on 2 September 2022, the European Eco-
nomic Association (EEA) Annual Congress on 24 August 2022, the Institute for New Economic Thinking
(INET) Oxford Researcher Seminars on 19 May 2022, the European Association of Environmental and
Resource Economists (EAERE) Annual Conference on 25 June 2021, the Scottish Economic Society
(SES) Annual Conference on 28 April 2021, the workshop “Regional Inequality in Europe and the United
States – Are there New Empirical Measures and Policy Approaches?” on 29 October 2020, and the HSU
Empirical Research in Economics Seminar at the Helmut Schmidt University in Hamburg on 30 January
2020. We thank all organizers and participants for valuable comments.
78In the following, we use (regional) economic returns, growth effects, and productivity effects or variations
of these terms interchangeably to refer to the ceteris paribus impact of green knowledge capital on labor
productivity, keeping the other production inputs constant, in line with our empirical approach.

113



returns. This contrasts the public returns that include potential positive influences on

neighboring regions that occur, e.g., through interregional knowledge spillovers. The

analysis of the regional returns to green technological knowledge has important policy

dimensions. It gives insights whether policies promoting regional green technology devel-

opment also promote economic development and competitiveness of regions, and hence

whether they contribute to both green and inclusive growth.79

Our empirical analysis builds upon a panel of 158 European NUTS-2 regions in twelve

countries for the period 1980–2018. By relying on the flexible common correlated effects

(CCE) approach (Pesaran, 2006), we are able to effectively control for different forms of

CSD and other challenges in the estimation of production functions. Additionally, we

employ various alternative estimation techniques to get a comprehensive view. Our main

results comprise the following: First, we highlight the importance to account for CSD

between European regions in the variables of the production function. Second, while

general technology development is associated with positive regional returns, our data is

not supportive of positive regional returns to green technologies in general. This insight

is robust for all applied estimation procedures and a battery of econometric extensions.

Third, despite the absence of regional returns to green technologies in general, we docu-

ment evidence that the returns are positive for specific subclasses of green technologies

and for regions with a sufficiently high level of the regional knowledge base.

Related empirical studies have been conducted on the firm or sector-country level.

Firm-level evidence points to lower returns to environmentally-friendly innovation com-

pared to other innovation (Marin and Lotti, 2017) or positive effects only for specific

types of green technologies (resource-saving) (Ghisetti and Rennings, 2014; Rexhäuser

and Rammer, 2014; van Leeuwen and Mohnen, 2017). Evidence on the sector-country

level suggests positive, albeit rather small returns (Stucki and Woerter, 2019) and a pos-

sibly U-shaped relationship between green knowledge and productivity (Soltmann et al.,

2015; Stucki and Woerter, 2019). We contribute to this literature by providing evidence

on general equilibrium effects at the regional level.

Furthermore, our empirical approach directly builds upon the econometric literature

on cross-sectional dependence (CSD) in panel estimation. Appropriately accounting for

CSD is especially important in the empirical setup at hand, as the above-mentioned

knowledge spillovers and unobserved common shocks make it a very likely feature of the

79As we are focusing on technological knowledge manifested in the form of patents, we use knowledge
and technology interchangeably in this article.
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data. In this regard, Ertur and Musolesi (2017) highlight the importance to account for

CSD, even if specific, potential channels of knowledge spillovers are explicitly controlled

for. Furthermore, Eberhardt et al. (2013) and Mitze et al. (2016) detect only limited

returns to general knowledge capital at the industry level when unobserved spillovers and

common factors are accounted for.

The remainder of the paper is organized as follows. Section 4.2 sketches a simple

theoretical framework to motivate our empirical specification. Section 4.3 outlines the

empirical framework, with a focus on estimating the degree of CSD in the variables and

accounting for CSD in the estimation. Section 4.4 contains a detailed description and

discussion of the data. Section 4.5 provides the empirical results of the tests for CSD, the

main estimation, various extensions, and a discussion. Section 4.6 concludes.

4.2 Conceptual Framework

The aim of this section is to develop a simple regional growth model with Arrow-Romer

type knowledge spillovers as well as spatial externalities. This model serves as a starting

point to motivate our empirical framework. We consider a world of R regional interde-

pendent economies, indexed by r with r = {1, ..., R}. In each period t, each region r

produces a single output Yrt with a constant returns-to-scale production function in labor

(Lrt), green (Kg,rt), and non-green (Kn,rt) knowledge stocks, as well as physical capital

(Kk,rt):

Yrt = ArtL
σl
rtK

αg

g,rtK
αn
n,rtK

αk
k,rt, (4.1)

with σl + αg + αn + αk = 1. Art represents total factor productivity of region r.

We assume that region-specific total factor productivity Art is driven by region-specific

individual, time-invariant characteristics (ψr) that are allowed to be correlated with do-

mestic green (kg,rt) and non-green per capita knowledge stocks (kn,rt). Additionally, total

factor productivity is driven by intraregional knowledge spillovers (k
ϕg,r

g,rt k
ϕn,r

n,rt ). Moreover,

we account for the possibility of interregional knowledge spillovers. Therefore, we intro-

duce an error term ert that is potentially spatially affected by foreign stocks of non-green

and green knowledge. These potentially spatially autocorrelated errors lead to weak CSD.

Additionally, we cannot exclude the possibility that at least one strong but unobserved

factor drives the evolution of region-specific labor productivity and also might affect the
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variation in green and non-green knowledge stocks as well (strong CSD) (e.g., Ertur and

Musolesi, 2017).

In formal terms, we can summarize our assumptions as follows:

Art = νrtk
ϕg,r

g,rt k
ϕn,r

n,rt , (4.2)

with

νrt := exp{ψr + ert}. (4.3)

Following Ertur and Koch (2007), the parameters ϕg,r and ϕn,r represent the strength

of region-specific spillovers generated by green and non-green knowledge accumulation,

respectively. This assumption is in line with the ideas of Arrow (1962) or Romer (1986)

that there are within-region knowledge spillovers from investing in green and non-green

knowledge. More specifically, we assume that one unit of green and non-green knowledge

investment does not only increase the stock of green and non-green knowledge capital,

but also contributes to total factor productivity for all operating firms in region r through

intraregional knowledge spillovers.

However, these spillovers are likely not confined within the geographical borders of a

specific region r. From an econometric perspective, these potential interregional spillovers

are captured by the error term. One way to deal with such interregional spillover processes

would be to model them explicitly with a specific spatial weighting scheme. However, as

pointed out by Eberhardt et al. (2013), there is no reason to believe that CSD is appro-

priately represented by one specific weighting scheme, especially since spillover processes

are likely generated by a complex interplay of several unobserved processes (Eberhardt

et al., 2013). A more elaborated discussion of this aspect is delegated to Section 4.3.1 of

this paper.

Inserting (4.2) and (4.3) in the per worker version of (4.1) delivers in log-notation our

baseline estimation equation:

ln yrt = σk ln kk,rt + (αg + ϕg,r) ln kg,rt + (αb + ϕn,r) ln kn,rt + νrt, (4.4)

with

νrt = ψr + ert, (4.5)

where νrt incorporates a region-specific fixed effect ψr as well as an error term, which

is discussed in more detail in Section 4.3.1. Moreover, σn,r ≡ (αn + ϕn,r) and σg,r ≡
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(αg +ϕg,r) represent the regional rate of return to non-green and green knowledge capital

including intraregional spillovers, respectively.80 Note that in this simple framework,

potential heterogeneity of the returns to green technology development is introduced by

the region-specific coefficient of intraregional spillovers. We explore potential sources of

heterogeneity in greater detail in the empirical sections. Further, note that the structure

of equation (4.4) is of Griliches (1979)-form, which is a standard approach in the literature

dealing with the impact of knowledge on economic growth (e.g., Eberhardt et al., 2013;

Mitze et al., 2016; Stucki and Woerter, 2019).

The crucial point is that estimating model (4.4)–(4.5) without controlling for in-

terregional spillovers and unobserved common factors might lead to inconsistent estimates

of the regional rate of return to non-green and green knowledge capital, as the error term

ert will contain these unobserved sources of CSD. Hence, we adopt an approach that

accounts for unobserved spillovers of unknown form and other common factors without

explicitly modeling them (e.g., Eberhardt et al., 2013). The drawback of this procedure is

that we cannot quantify the contribution of different sources of spillovers directly (Mitze

et al., 2016), which is beyond the scope of this paper, as we focus on the regional returns

to knowledge development. Hence, we focus on consistently identifying the parameters of

the aggregate production function with implicit intraregional spillovers.

4.3 Empirical Framework

4.3.1 Cross-Sectional Dependence

For illustrative purpose, we draw on the depiction by Ertur and Musolesi (2017), which

highlights two potential sources of CSD in the error term of equation (4.5)

ert = ϱ′
rf t + ϵrt, (4.6)

ϵrt = ξ
R∑︂

s=1

ωrsϵst + εrt, (4.7)

where f t = (f1t, f2t, ..., fmt)
′ is am×1 vector of unobserved factors, ϱr = (ϱr1, ϱr2, ..., ϱrm)

′

is a m × 1 vector of factor loadings, ωrs is a spatial distance measure for each pair of

80To avoid explosive or endogenous growth, we shall assume decreasing regional returns for both types
of knowledge stocks, i.e., σn,r < 1 and σg,r < 1.
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individuals, ξ is a spatial autoregressive parameter, and εrt is a purely idiosyncratic error.
81

The upper equation (4.6) is related to factor models and typically to so-called strong CSD,

whereas the lower equation (4.7) is a spatial autoregressive error process satisfying so-

called weak CSD (Chudik et al., 2011; Sarafidis and Wansbeek, 2012; Ertur and Musolesi,

2017).82 Simply put, weak CSD might be thought of as spatial dependence working

through local interactions, whereas common effects that are due to unobserved global

factors are a form of strong CSD (e.g., Bailey et al., 2016a).83 This implies that while

former dependence is restricted to units that are somehow connected to each other, latter is

not (Mitze et al., 2016). The implications for estimation are related to the degree of CSD.

For example, the spatial error process in equation (4.7) does itself not affect consistency

and unbiasedness of conventional panel estimators, whereas strong CSD, represented by

a factor model, does if factors and/or loadings are correlated to the regressors (Sarafidis

and Wansbeek, 2012). As Ertur and Musolesi (2017) argue, there is neither a theoretical

nor an empirical reason in the context of international technology spillovers to assume

the mere prevalence of weak or strong CSD. We argue that this reasoning applies to

regional technology spillovers as well. European regions are likely driven by a complex

structure of interactions of European-wide factors with region-specific responses to them

and spillover effects that occur because of local interdependence. For example, one might

think of a global technology trend from which regions profit depending on their individual

characteristics and/or local clusters through which spillovers operate.

Due to this complex structure of potential sources of CSD, we follow Ertur and Mu-

solesi (2017) and Ciccarelli and Elhorst (2018) and employ diagnostics to gauge the mag-

nitude and the nature of CSD in the data. These include the CD test (Pesaran, 2004,

2015a, 2021) and the estimation of the exponent of CSD (Bailey et al., 2016b). Both

measures are applied as well to the residuals of the main estimation to validate and com-

pare the estimation approaches. As Pesaran (2015a) shows, the CD test has the implicit

null hypothesis of weak CSD. Specifically, the null hypothesis is α < (2 − δ)/4, where α

81The normalized weighting matrix W = [ωrs] satisfies specific boundedness conditions (e.g., Chudik
et al., 2011; Sarafidis and Wansbeek, 2012).

82This depends on the restrictions imposed on the factor loadings (Sarafidis and Wansbeek, 2012). Factor
models can also generate different forms of weak CSD if there is no strong factor (Chudik et al., 2011).
In fact, the spatial error process in (4.7) can also be represented by a factor process with an infinite
number of weak factors (Chudik et al., 2011; Chudik and Pesaran, 2015a). For detailed overviews on
weak and strong CSD, the connection to spatial or factor models, and the connection to weak and strong
factors see, e.g., Chudik et al. (2011); Sarafidis and Wansbeek (2012); Chudik and Pesaran (2015a);
Ertur and Musolesi (2017).

83Local can also relate to forms of proximity other than geographic distance, such as economic proximity
(e.g., Mitze et al., 2016; Ertur and Musolesi, 2017).
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refers to the exponent of CSD (Bailey et al., 2016b), and δ ∈ (0, 1] measures the degree of

the relative expansion of the sample dimensions, defined by T = O(N δ). Hence, with our

sample dimensions, the implicit null can be regarded as roughly α < 1/3. The exponent

is a measure of the convergence rate of the variance of the cross-sectional average of a

specific variable as the cross-sectional dimension increases (Bailey et al., 2016b). α can

be in the range [0, 1] and can only be identified if α > 1/2. Any process with α < 1 fulfills

the definition of weak CSD (the variance converges to zero), whereas α = 1 corresponds

to strong CSD (the variance does not converge to zero). However, different values of

α ∈ [0, 1) indicate different magnitudes of CSD (Chudik and Pesaran, 2015a). Whereas

convergence takes place very fast for values of α ∈ [0, 0.5), for values of α ∈ [0.75, 1)

the variance converges to zero very slowly, still indicating rather pervasive factors (Ci-

ccarelli and Elhorst, 2018). We estimate α as suggested by Bailey et al. (2016b). In

our application, we estimate two different versions of the bias-adjusted estimator given

by equation (13) of Bailey et al. (2016b): The first one (denoted by α̂) is the standard

version assuming no temporal structure in the factors and no weak CSD in the error term.

The second one is the version that is robust against both issues (denoted by α̃).

An estimation approach that is able to consistently estimate a model with multifactor

error structure and spatial error correlations as in equations (4.6) and (4.7) is the Pesaran

(2006) common correlated effects (CCE) approach (Pesaran and Tosetti, 2011), which we

introduce in due brevity in the following section.

4.3.2 Estimation Strategy

Our estimation strategy follows Eberhardt et al. (2013) and Eberhardt and Teal (2013)

in that we contrast several estimators that make different assumptions regarding the

data generating process. We do this to get a comprehensive view and to ensure that

the results are not driven by specific a priori assumptions. As our main approach, we

choose a flexible framework that accounts for several important aspects related to the

estimation of production functions (see Eberhardt and Teal, 2011, for an overview). The

CCE approach explicitly models an unobserved common factor structure in the residuals

(Pesaran, 2006), and is a very convenient way to capture unobserved spillovers that are

potentially complex and non-symmetric (Eberhardt et al., 2013). Drawing on Pesaran
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(2006) and Pesaran (2015b) we specify the logarithmic aggregate production function

(4.4) as follows:

ln yrt = a′
rdt + β′

rxrt + ert, (4.8)

ert = ϱ′
rf t + ϵrt, (4.9)

xrt = A′
rdt + Γ′

rf t + vrt. (4.10)

Where xrt = [ln kg,rt, ln kn,rt, ln kk,rt]
′, dt = 1, a′

r = ψr, and βr = [σg,r, σn,r, σk,r]
′ collects

the coefficients. Strong CSD is introduced as the errors have a multifactor structure,

where f t is a vector of unobserved common effects, ϱr is a vector of factor loadings

and ϵrt are idiosyncratic errors. The explanatory variables are driven by a deterministic

component, the factors, and an idiosyncratic component, where Ar and Γr are factor

loading matrices, and vrt is the idiosyncratic component. Finally, all coefficients are

not ruled out to be heterogeneous across regions. Note that this setup contains the

conventional fixed-effects panel approach as special case (Pesaran, 2006) and that the

error structure nests time-specific, individual-invariant effects by defining ϱr = 1 and

ft = λt (Sarafidis and Wansbeek, 2012).

Pesaran (2006) shows that such a model can be estimated consistently by including

cross-sectional averages of the dependent and independent variables to the regression. Two

estimators of the mean coefficients are possible: first, the mean group version (CCEMG) in

which the coefficients are assumed to be heterogeneous and are hence estimated separately

for each region and then averaged. Second, the pooled version (CCEP), in which the

average coefficient is identified directly under the assumption of slope homogeneity.84

Notably, the idiosyncratic term ϵrt is allowed to contain additional weak CSD (Pesaran and

Tosetti, 2011; Chudik and Pesaran, 2015a), an important feature in our empirical setting,

as discussed in the previous section. Related to this, Chudik et al. (2011) show that the

CCE estimators are consistent in the presence of a fixed number of strong factors (strong

CSD) and a potentially unlimited number of weak factors, which represent different forms

of weak CSD. Taken together, the CCE approach accommodates various settings of CSD

and allows to capture knowledge spillovers, other forms of productivity spillovers as well

as different forms of common shocks (Eberhardt et al., 2013).

84If coefficients are indeed homogeneous across countries, pooling might be more efficient (Pesaran, 2006).
On the other hand, if the deviations of the individual coefficients from the mean coefficient are correlated
to regressors or errors, CCEP will no longer be consistent (Pesaran, 2015b).
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Furthermore, the CCE approach is robust against several additional potential prop-

erties of our data. The first issue is possible non-stationarity of the variables of the

production function. Kapetanios et al. (2011) show that the CCE approach remains valid

if the factors contain unit roots and are possibly cointegrated. More recently, the ex-

aminations by Westerlund (2018) suggest that the requirements on the factors are very

flexible, including factors with an unknown but finite order of integration and structural

break dummies. Furthermore, the approach allows, by definition, for endogeneity of the

input variables, since both xrt and yrt are driven by the unobserved factors.85 Hence, the

approach offers a way to control for endogeneity brought in by unobservables (Ertur and

Musolesi, 2017), as long as the endogeneity can be captured by the unobserved factors.

In our static main estimation, we restrict our attention to pooled estimation tech-

niques. In addition to the CCEP estimator, we employ several alternative estimators,

which impose different assumptions on the underlying framework. These approaches also

vary in the extent to which they control for common factors. They comprise simple pooled

OLS (POLS) with and without time dummies, standard one-way (FE) and two-way fixed

effects (2FE), and first-difference (FD) estimation with time dummies. As noted above,

time-specific, individual-invariant fixed effects are a special case of the general factor

structure, in which the effect on regions is homogeneous. In fact, evidence from Monte

Carlo simulations by Eberhardt and Bond (2009) suggests that including time dummies

can remarkably decrease the bias induced by unobserved common factors. Hence, FD

with time dummies, 2FE, and CCEP are our a-priori preferred approaches.

In addition to the main estimation techniques, we report robustness of the main re-

sults to a variety of potential pitfalls in the appendix. First, we relax the assumption

of common slope parameters and instead assume fully heterogeneous parameters, while

retaining the static structure of the main approach. To this end, we implement the mean

group (MG) estimator (Pesaran and Smith, 1995), and the CCEMG estimator introduced

above. For the former, we subtract the cross-sectional mean from each variable each year.

This procedure removes the impact of common factors entirely if their effect is region-

invariant. If the effect of the factors is heterogeneous across regions, their impact might

still be reduced (e.g., Pesaran et al., 1999; Bond et al., 2010). Furthermore, the assump-

tions of our main approach are strict exogeneity of the regressors and that no relevant

dynamics are missed in the static approach.86 This includes the CCE approach, which

85Endogeneity with respect to the error term ert.
86Exogeneity with respect to the idiosyncratic errors ϵrt.
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does not allow for lagged feedback from yrt onto xrt and for lagged dependent variables

among the regressors (Chudik and Pesaran, 2015b). In case of heterogeneous slopes and

weakly exogenous regressors, CCEMG might be biased for small T , and CCEP even be-

comes inconsistent (Pesaran, 2015b). Omitting relevant dynamics might, furthermore,

lead to a situation where the results do not correspond to long-run responses (Eberhardt

et al., 2013). Hence, we report the results of two different dynamic extensions of the

original static CCE approach. First, we implement the cross-sectionally augmented dis-

tributed lag (CS-DL) approach (Chudik et al., 2016), which allows to directly identify

long-run responses but does not allow for lagged feedback from the dependent variable

onto the regressors. Second, we implement the cross-sectionally augmented autoregressive

distributed lag (CS-ARDL) approach, which allows for lagged endogeneous variables and

weakly exogenous regressors (Chudik and Pesaran, 2015b).87

4.4 Data and Descriptive Statistics

The data set covers a time period of T = 39 years between 1980–2018 for R = 158

European NUTS-2 regions in twelve countries, resulting in a balanced panel of 6,162

observations.88 The main data sources are, first, the ARDECO database, from which

we obtain gross value added (GVA), gross fixed capital formation (GFCF), and employ-

ment.89 Investment and value-added series are deflated to constant 2015 prices and given

in millions of euros, employment is given in thousand persons. We include the flow mea-

sure gross fixed capital formation as physical capital input directly in the estimation

instead of computing physical capital stocks, for example with the perpetual inventory

method (e.g., Caselli, 2005). By including the flow series, we circumvent controversial

decisions on starting values.90 Since we use a per capita specification, all variables are

divided by employment.

87Details on these approaches are provided in the appendix.
88We started from a sample of the EU-15 countries plus Norway, since only for these countries data from
1980 onward are available. The United Kingdom is no longer included in the utilized data revision, due
to having left the European Union (EU). Various regions are dropped due to missing data on gross value
added. This includes all regions from Ireland, Greece, and Luxembourg. The same applies for Eastern
German regions. Finally, we exclude three regions – two from Spain and one from France – because
they have a green patent stock of zero for every single observed year. Hence, we concentrate on regions
which had at least one green technology patent. Therefore, we end up with 158 regions distributed
among the following twelve countries: Austria, Belgium, Germany, Denmark, Spain, Finland, France,
Italy, Netherlands, Norway, Portugal, and Sweden.

89Version 2021b.
90We discuss whether the main approach is robust against the inclusion of a capital stock computed with
the perpetual inventory method in Section 4.5. To compute the capital stock, we assume a depreciation
rate of 6% and follow Caselli (2005).
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Secondly, we use the OECD RegPat database to gather information on patent appli-

cations and to construct regional knowledge stocks by accumulating patent counts into

patent stocks.91 Patents are one of the most commonly used measures of innovation (Bar-

bieri et al., 2016), as they represent an advantageous indicator in some regards (Griliches,

1990), not least due to their wide and detailed data provision (Haščič and Migotto, 2015).

Only few economically significant inventions have not been patented (Dernis and Khan,

2004). Nevertheless, patent data faces some relevant drawbacks that can hardly be cir-

cumvented, such as the accounting of strategic patents or the restriction to technological

innovation (Barbieri et al., 2016) as well as very limited information on diffusion (Kemp,

2010). Further concerns, such as differing patent quality (Johnstone et al., 2010) or

mistakes when searching environmental patents (Lanjouw and Mody, 1996), can be sub-

stantially mitigated by the choices made in the search of patents.

We rely on multinational patent applications filed at the European Patent Office

(EPO) to create robust measures with respect to patent value and comparability, as

only innovations of sufficient expected commercial profitability justify the relatively high

application costs (Johnstone et al., 2010). We follow Costantini et al. (2017) by using

patent applications with their earliest filing year in order to timely capture the innovative

effort. Further, we decide to assign patents based on the residence of the inventor, thus

capturing inventive activity (e.g., Kruse and Wetzel, 2016; Wurlod and Noailly, 2018).

In case of multiple inventors from different regions or countries, the patent is allocated

using fractional counts (e.g., Kruse and Wetzel, 2016; Wurlod and Noailly, 2018). The

accumulation into knowledge stocks follows the method proposed by Popp et al. (2011),

such that

Kj,rt =
∞∑︂
s=0

e−β1(s)(1− e−β2(s+1))PATj,r,t−s, (4.11)

where PATj,r,t−s is the patent count in period t − s for region r for the patent group

j = {g, n}. The rate of knowledge depreciation is set to 0.1 (β1) and the rate of diffusion

to 0.25 (β2), as proposed by Popp et al. (2011). Thus, the relevance of a patent application

peaks after 4 years (Popp et al., 2011), which seems to be a reasonable dynamic for

diffusion patterns of new technology. To mitigate the influence of the initial observation

on the knowledge stocks, we calculate all stocks with presample patent data from 1977

onward.92

91Version 2021a.
92Alternatively, knowledge stocks could be constructed with the perpetual inventory method (e.g., Kruse
and Wetzel, 2016; Wurlod and Noailly, 2018). Results based on this method are discussed as a robust-
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To define the patent groups green (g) and non-green (n), we differentiate green tech-

nologies based on the technology classes a patent belongs to. To define green patent

applications, we utilize the Y02 tagging scheme implemented within the Cooperative

Patent Classification (CPC) by the EPO (Angelucci et al., 2018). Consequently, as soon

as a patent belongs to a technology class of the Y02 scheme, it is considered as a green

patent. Non-green patent counts are constructed by subtracting environmental patents

from the overall patent count. Finally, since we are using logarithmic variables in the

estimation, we use ln kj,rt = ln(1 + kj,rt) for j = {g, n} when the per worker knowledge

stock is zero (kj,rt = 0) and include a dummy indicator variable for when green knowledge

is zero, non-green knowledge is zero, or both are zero (Aghion et al., 2016).

Table 4.1. Summary statistics

Variable (unit) RT Mean S.D. Min. Max.

Labor productivity 6,162 56.56 14.11 10.67 167.87
(Millions value added per 1,000 persons)
Investment 6,162 13.71 4.28 1.24 53.65
(Millions physical capital input per 1,000 persons)
Green knowledge stock 6,162 0.07 0.11 0 1.06
(Accumulated patent count per 1,000 persons)
Non-green knowledge stock 6,162 0.96 1.18 0 7.85
(Accumulated patent count per 1,000 persons)

Note: RT: total number of observations; S.D.: standard deviation. The yearly data spans the period
1980–2019 (T = 39) and comprises 158 European NUTS-2 regions. Physical capital input and value
added are in constant 2015 prices. The 1,000 persons refer to employed persons.

Table 4.1 displays some summary statistics for the main variables we employ in the

empirical analysis. In the appendix (table C1 and table C2), we present the unconditional

correlation matrix of our main variables, including the cross-sectional means that approx-

imate the common factors. As expected, the green and non-green knowledge stocks are

fairly correlated. This holds true for both the two specific stocks as well as the cross-

sectional averages. Furthermore, appendix table C5 reports the results of panel unit root

tests of the second generation (Pesaran, 2007) that allow for one unobserved factor. The

results are somehow mixed but suggest that the presence of unit roots cannot always be

rejected. As noted in Section 4.3, the CCE estimators are robust against non-stationarity

ness check in Section 4.5. The depreciation rate is set to 10% (Verdolini and Galeotti, 2011). We follow
Kruse and Wetzel (2016) by dividing the patent count in the first observed year by 0.25; assuming a
previous 15% growth rate of the knowledge stock and a 10% depreciation rate. Appendix tables C3 and
C4 show that the correlation between the knowledge stocks computed with both approaches is quite
high.
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in the factors and different scenarios of cointegration. Since our approach does not rely

on cointegration but is robust to various scenarios, we do not test for cointegration, as

similarly argued by Eberhardt and Teal (2011). However, to validate the estimation

approaches in the empirical part, we test whether the residuals are integrated of order

one.

4.5 Results

4.5.1 Estimation of Cross-Sectional Dependence

In this section, we discuss the results of the CD test (Pesaran, 2004, 2015a, 2021) and the

exponent of cross-sectional dependence (α) (Bailey et al., 2016b) applied to the variables

of our model. Table 4.2 contains the CD test statistics, the point estimates of the bias-

adjusted version of α and 90% confidence intervals.93

Table 4.2. The degree of cross-sectional dependence

CD statistic α̂∗
0.05 α̂ α̂∗

0.95

Log-levels

Labor productivity 570.89 0.965 1.001 1.038
Investment 400.52 0.956 0.995 1.033
Green knowledge stock 349.83 0.942 0.978 1.015
Non-green knowledge stock 570.02 0.953 0.997 1.041

First log-differences

Labor productivity 130.41 0.868 0.921 0.974
Investment 175.59 0.895 0.955 1.051
Green knowledge stock 217.64 0.855 0.940 1.025
Non-green knowledge stock 466.82 0.910 0.978 1.046

Note: Estimation of the bias-corrected version of α (Bailey et al., 2016b) and the CD statistic (Pesaran,
2004, 2015a, 2021). α̂ refers to the point estimate of the exponent of cross-sectional dependence according
to equation (13) of Bailey et al. (2016b). * 90% level confidence bands. We follow Bailey et al. (2016b)
and Ertur and Musolesi (2017) in preferring Holm’s procedure over Bonferroni’s. The CD statistic tends
to N (0, 1) under the null of weak CSD as N and T → ∞ (Pesaran, 2015a).

As Ertur and Musolesi (2017) note, the exponent of cross-sectional dependence is

originally developed for stationary variables. Hence, we adopt their proposed robustness

93We implement all estimation steps either in Stata or MATLAB. The estimation procedure for the
exponent of CSD (α) is implemented in MATLAB. Codes are based on the GAUSS files obtained from
the supplementary material of Bailey et al. (2016b). Some formulations from the panel packages of
Álvarez et al. (2017) are adopted as well. CD statistics are also implemented in MATLAB. Any errors
in the codes are, of course, our own. The Stata routines we use include multipurt (Eberhardt, 2011),
xtdcce2 (Ditzen, 2018, 2021), and xthreg (Wang, 2015).
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test and estimate both the CD statistic and α for first-differenced variables as well. First,

it is evident that the implicit null of weak CSD of the CD test is strongly rejected for

all variables based on the critical values at the 1% significance level of the standard

normal distribution. This holds true for the variables in log-levels as well as in first log-

differences. Secondly, the point estimate of α (denoted α̂) is above 0.9 and very close

to 1 for all considered variables in log-levels. In first differences, the point estimates are

somewhat lower, but still well above 0.9.94 These observations imply that it is likely

that strong CSD is present in our data and that we have to take this into account to

consistently estimate the parameters of the aggregate production function. Hence, the

results indicate that the common factor approach outlined in Section 4.3.2 is well suited

in the empirical context at hand.

4.5.2 Main Estimation Results

In this section, we present the main estimation results for the aggregate production func-

tion. Table 4.3 contains the estimation results for the static baseline regression estimated

with our preferred estimation approaches – two-way fixed effects (2FE), first-difference

OLS (FD), and CCEP – alongside simple pooled OLS (POLS) with and without time

dummies and one-way fixed effects (FE). All approaches pool the data under the assump-

tion of common slope coefficients.

We also report various diagnostics for the residuals. First, we apply the cross-sectionally

augmented Im-Pesaran-Shin (CIPS) test (Pesaran, 2007) to the residuals to gauge whether

they are stationary. Second, we report the CD statistic and both estimates of α, intro-

duced in Section 4.3.1, in order to get an impression of the degree of CSD that is left in

the errors. However, as noted by Sarafidis and Wansbeek (2012), the CD statistic might

lose power if time dummies are included in the estimation or, equivalently, the data is

expressed as deviations from a time-specific mean, since the positive and negative correla-

tions in the residuals might cancel each other out. As Millo (2019) notes, the same effect

applies in the CCEP case because of the augmentation with cross-sectional averages. This

might lead to a situation where the average (pairwise) correlation coefficient is near zero,

and so will be the CD statistic. To detect such a situation, we also report, as suggested by

94Estimates of the version of α that is robust against weak CSD in the error term and autocorrelation
in the factors provide very similar point estimates to the ones shown here. Results are available upon
request.
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Millo (2019), the average (pairwise) cross-correlation coefficient (ρ̂) as well as the average

absolute (pairwise) cross-correlation coefficient (|ρ̂|).

Table 4.3. Benchmark estimation of regional returns

POLS FE POLS 2FE FD CCEP
(1) (2) (3) (4) (5) (6)

Investment 0.471*** 0.292*** 0.476*** 0.277*** 0.110*** 0.085***
(0.009) (0.026) (0.010) (0.027) (0.012) (0.018)

Green stock 0.014*** 0.022*** 0.000 -0.001 0.004* -0.001
(0.003) (0.006) (0.003) (0.007) (0.002) (0.005)

Non-green stock 0.039*** 0.060*** 0.047*** 0.037*** 0.026*** 0.046***
(0.003) (0.008) (0.003) (0.013) (0.005) (0.016)

Year dummies No No Yes Yes Yes No
Order of integration I(1)/I(0) I(1) I(0) I(1)/I(0) I(0) I(0)
CD statistic 74.72 58.01 4.18 0.53 0.53 2.16
ρ̂ 0.11 0.08 0.01 0.00 0.00 0.00
|ρ̂| 0.42 0.45 0.44 0.45 0.17 0.27
α̂ 0.85 0.82 0.85 0.59 0.48 0.60
α̃ 0.85 0.83 0.89 0.65 0.55 0.61

Observations 6,162 6,162 6,162 6,162 6,004 6,162
Regions 158 158 158 158 158 158

Note: Asterisks indicate significance at * 10%; ** 5%; *** 1%. Standard errors in parentheses are of
heteroskedasticity-robust sandwich type for POLS, (2)FE and FD. Standard errors for CCEP are based
on the non-parametric variance estimator given in Pesaran (2006). Order of integration refers to the
Pesaran (2007) test for unit roots. I(0) refers to the case where the null of a unit root is rejected at 10%
level for all lag augmentations until two lags. I(0)/I(1) indicates mixed results, i.e. if null is rejected in
some, but not all cases. I(1) refers to the case where the null is never rejected at 10% level. α̂ is the
bias-corrected version of α given by equation (13) of Bailey et al. (2016b). α̃ refers to the version robust
against weak CSD in the errors and autocorrelation of the factors. We use four principal components to
construct the estimate robust against weak CSD in the error term. ρ̂ is the average pairwise correlation
coefficient, and |ρ̂| the average pairwise absolute correlation coefficient.

As evident from table 4.3, the estimated elasticity of labor productivity with respect

to physical capital input is significantly positive in all employed approaches. The magni-

tude ranges from 0.085–0.277 in our preferred estimation techniques, being very similar

to comparable studies based on the country-industry level (Mitze et al., 2016; Stucki and

Woerter, 2019). With respect to the estimated returns to the two differentiated technol-

ogy classes, the following pattern emerges. The coefficient for non-green technologies is

estimated to be significantly positive in all cases. The range of magnitudes is 0.026–0.046

for our preferred estimators. When multiplying such an elasticity of roughly 0.04 with the

average changes in the non-green knowledge stock, our estimates imply that non-green

knowledge growth accounts for an approximate 0.49% increase in labor productivity in

an average year. Given that labor productivity increases with 1.17% on average, growth
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in non-green technology accounts for a relevant share. On the other hand, the param-

eter estimates for the green technology stock are rather insignificant in our preferred

approaches. Overall, non-green technology has a positive association with labor produc-

tivity in European regions, whereas the parameter estimates for green technology are

rather insignificant, once CSD is controlled for.

Turning to the residual diagnostics, the CIPS test strongly rejects the null hypothesis

of a unit root for our preferred estimators for FD and CCEP only. The CD statistic is

below the critical values at the 1% significance level of the standard normal distribution

for 2FE, FD, and CCEP only, indicating that α should be well above 1/3 in all other cases.

The estimates of the exponent of cross-sectional dependence indicate that POLS and FE

without time dummies and POLS with time dummies are not able to take into account

the CSD in the data effectively. For both versions of α, the point estimate is relatively

high and well above 0.75, indicating that rather pervasive factors are left in the errors.

The point estimates for 2FE, FD, and CCEP are all similarly small, well below 0.75, and

rather close to 0.5. This tendency is also confirmed by the average absolute (pairwise)

cross-correlation coefficients, which are lowest for FD and CCEP. Taken together, the

residual diagnostics suggest that in our preferred approaches strong CSD in the form of

pervasive common factors is effectively controlled for. Based on the diagnostics, 2FE, FD,

and CCEP are confirmed as preferred estimators, which we employ for the extensions in

the following sections.95

Our main finding is robust to a variety of robustness exercises. As documented in

appendix table C7, it is not sensitive to the inclusion of a capital stock, calculated with

the perpetual inventory method, instead of the flow measure of investment. Similarly, the

findings are not altered when computing knowledge stocks based on the perpetual inven-

tory method. If patents are assigned to a region based on the address of the applicant

instead of the address of the inventor, the effects are slightly less pronounced. Addition-

ally, appendix table C8 reports the robustness of the main results to the assumption of

heterogeneous slopes, dynamic specifications, and a relaxation of the strict exogeneity

assumption.

Due to our specific interest in the economic effects of green technologies, a potential

concern is price induced innovation (Popp, 2002). Energy price shocks potentially decrease

output directly and simultaneously increase green innovation. Such a negative correlation

95These diagnostics have to be interpreted cautiously, as estimation is performed on the residuals (Bailey
et al., 2016b). Nevertheless, our conclusion is additionally supported by the fact that the estimate of
α tends to be biased upward in particular for smaller values of α < 0.75 (Bailey et al., 2016b).
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between productivity and green innovation due to an omitted variable (energy prices)

could lead to a downward bias in the estimated coefficient. Because of data availability, it

is not possible to directly control for energy prices at the NUTS-2 level. Nevertheless, we

are confident in our findings for the following reason. Our empirical framework accounts

for unobserved common shocks that are allowed to load heterogeneously on different

regions and that drive regressors as well as dependent variable. Hence, global energy

commodity price shocks that affect regions differently by their exposure, e.g., because

of different sector or energy-use patterns, as well as common European-wide policies are

controlled for.96

To summarize, while our results point to a robust positive effect of non-green tech-

nologies of considerable magnitude, the data is not supportive of regional returns to green

technologies in general. While these results line up well with firm-level evidence (Marin

and Lotti, 2017), industry-level evidence by Stucki and Woerter (2019) points to rather

similar effects between green and traditional knowledge. Our results are more pessimistic

with regard to the economic returns to green technologies on the regional level in general.

4.5.3 Sources of Heterogeneity

While our main estimates identify the average effect of green and non-green technologies

at the regional level, the regional returns to technology development might vary across

regions and over time, as well as across different subclasses of green technologies. This

heterogeneity might stem from distinct sectoral effects, the technological content of tech-

nologies, the specific technology subclass of green technologies, as well as critical mass

phenomena with respect to an available knowledge base. In the following, we assess these

sources in greater detail.

4.5.3.1 Sectoral Heterogeneity

A potential source of heterogeneous effects could be distinct partial equilibrium effects

within sectors, i.e., sectors experience different productivity gains from the regionally

available technologies. In fact, studies at the industry level often focus on a subset of sec-

tors (e.g., Eberhardt et al., 2013; Stucki and Woerter, 2019). To assess this, we perform

two separate sets of regressions for the industry and the service sector. Table 4.4 dis-

plays our baseline specification. The findings provide practically no evidence for distinct

96As Norway does not belong to the EU-15 countries, we test the exclusion of Norway with the results
remaining unchanged.
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technology effects within the sectoral classifications. The positive effects of non-green

technologies are similar in magnitude and significance for both sectors. The magnitudes

are also comparable to our findings for the general equilibrium effects, though the results

are less significant. For green technologies, we consistently find little evidence for posi-

tive returns in both sectors, providing no robust evidence for the consideration that the

returns within the industry sector are distinct. It should be noted, however, that due to

data availability the sectoral granularity is limited, such that heterogeneous effects within

specific industrial sectors are beyond the scope of this exercise.

Table 4.4. Returns in the industry and service sector

Industry Services

2FE FD CCEP 2FE FD CCEP
(1) (2) (3) (4) (5) (6)

Investment 0.125*** 0.082*** 0.101*** 0.295*** 0.081*** 0.073***
(0.027) (0.009) (0.027) (0.026) (0.012) (0.019)

Green stock 0.002 0.009* -0.004 0.001 0.003 0.009
(0.014) (0.005) (0.010) (0.011) (0.004) (0.009)

Non-green stock 0.052* 0.031*** 0.036* 0.031 0.032*** 0.054**
(0.029) (0.007) (0.021) (0.019) (0.007) (0.027)

Year dummies Yes Yes No Yes Yes No
Observations 5,925 5,770 5,881 5,958 5,800 5,881
Regions 155 155 151 158 158 151

Note: Asterisks indicate significance at * 10%; ** 5%; *** 1%. Standard errors in parentheses are
of heteroskedasticity-robust sandwich type for 2FE and FD. Standard errors for CCEP are based on
the non-parametric variance estimator given in Pesaran (2006). Labor productivity and Investment are
explicitly measured at the respective sectoral level. The knowledge stocks correspond to those in the
total sample, but are here normalized with the sectoral employment numbers. Industry corresponds to
the NACE Rev.2 sectors B to E. Services corresponds to G to N, as non-market services (O-U) were
excluded for calculation here. Differing numbers of observations are due to some missing data at the
detailed sectoral level.

4.5.3.2 Technological Content

Beyond the effects within different sectors, the gains from technology could differ depend-

ing on the quality of the technologies generated (Squicciarini et al., 2013). We utilize

two measures of patent quality from the RegPat database to generate knowledge stocks

that account for heterogeneity in the content of generated technologies. In all previous

estimations, all patents enter the knowledge stocks with the same weight. With our

focus on patent applications to the EPO we already control to a relevant degree for dif-

ferent values of patents (Johnstone et al., 2010). However, differences in patent value

remain that are potentially relevant to our study. Mewes and Broekel (2022) analyze
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the effect of technological complexity on regional growth and find evidence for a positive

effect. Dechezleprêtre et al. (2014) find that green technology generates more knowledge

spillovers, which they find to be based on the higher level of radicalness of green compared

to dirty technology. This might be coupled to the digital content of technologies, as they

find information technologies (IT) that are clean to provide distinctly large knowledge

spillovers. This seems to be in line with findings by Stucki and Woerter (2019), who find

information and communication technology (ICT) to provide distinctly large economic ef-

fects. Given our interest in regional returns, it is important to consider these possibilities

in greater detail, since intraregional spillovers are included in our estimates.

To assess whether the quality of patents affects the gains from respective technolo-

gies, we use two indicators by which patents are weighted before entering the knowledge

stock. It should be noted that both measures are backward looking, meaning that they

are constructed based on the technological content of a patent instead of being based

on the subsequent impact. We consider this to be advantageous for our purpose. First,

all patents are weighted by a patent scope measure (following Lerner, 1994) that proxies

the technological breadth of a patent by counting the number of distinct 4-digit Inter-

national Patent Classification (IPC) subclasses the patent is allocated to (Squicciarini

et al., 2013). Second, patents are weighted by a radicalness index (following Shane, 2001)

that captures the degree to which a patent cites IPC classes to which it does not belong

itself (Squicciarini et al., 2013). These quality measures capture important dimensions of

potential heterogeneity in the effects of technology. While many innovations qualify as

incremental innovation and reinforce current activities, radical innovations can trigger en-

tirely new technology trends and undermine current activities (Shane, 2001; Shkolnykova

and Kudic, 2022). In a similar vein, the scope of a patent is associated with patterns

of commercialization and the degree of market coverage via protected property rights

(Shane, 2001).

Table 4.5 shows the results in our baseline setting when utilizing knowledge stocks

that account for the heterogeneity in the quality of generated technologies. Our main

findings as to the significant productivity effects of non-green and insignificant effects

of green technologies are supported when accounting for this potential source of tech-

nology heterogeneity. Nevertheless, an interesting pattern emerges with respect to the

magnitude of the coefficient of the non-green stock. In columns 4–6 it can be observed

that the magnitude is close to identical to our main results when the patent scope is

taken into account. Contextually, this implies that the technological breadth of the gen-
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erated technologies is not associated with larger productivity gains. However, although

the scope-weighting leads to relevant differences in level values, the within correlation of

both knowledge stocks is 0.996, such that there is little deviating information gained for

estimation.97 When turning to the findings for radicalness, however, the effect of non-

green technology is less pronounced both in magnitude and significance.98 Two remarks

on the interpretation of this finding are in order. First, radical technologies could be

less productive because emerging technologies and markets require time, such that mar-

ket benefits cannot be reaped immediately. Second, this finding could be related to the

potentially competence-destroying nature of new technologies (Shane, 2001; Stucki and

Woerter, 2019). Nevertheless, the fact that the coefficient remains clearly positive implies

that any undermining of current activities does not exceed the productivity gains induced

by the development of new technology.

Table 4.5. Quality-weighted knowledge stocks

Radicalness Scope

2FE FD CCEP 2FE FD CCEP
(1) (2) (3) (4) (5) (6)

Investment 0.287*** 0.109*** 0.094*** 0.277*** 0.110*** 0.082***
(0.030) (0.012) (0.017) (0.027) (0.012) (0.016)

Green stock -0.002 0.003 -0.006 -0.000 0.003 -0.001
(0.007) (0.003) (0.004) (0.007) (0.002) (0.004)

Non-green stock 0.024** 0.020*** 0.014** 0.034*** 0.024*** 0.041***
(0.011) (0.006) (0.007) (0.012) (0.006) (0.015)

Year dummies Yes Yes No Yes Yes No
Observations 6,162 6,004 6,162 6,162 6,004 6,162
Regions 158 158 158 158 158 158

Note: Asterisks indicate significance at * 10%; ** 5%; *** 1%. Standard errors in parentheses are
of heteroskedasticity-robust sandwich type for 2FE and FD. Standard errors for CCEP are based on
the non-parametric variance estimator given in Pesaran (2006). Patents were weighted with the scope
and radicalness indicators to arrive at patent counts that are accumulated into knowledge stocks. Both
indicators are derived from the RegPat 2021a database as introduced by Squicciarini et al. (2013). The
patent scope measure follows Lerner (1994) and the radicalness measure follows Shane (2001).

Finally, as emphasized by Dechezleprêtre et al. (2014) and implicitly shown by the

findings of Stucki and Woerter (2019), the interconnection of green and digital technolo-

gies might be of importance. To capture this interconnection, we conduct our preferred

estimations for a green knowledge stock defined as clean patents in ICT.99 While the 2FE

97The mean value of the scope-weighted non-green knowledge stock is almost twice as large as the non-
weighted one (1.75 compared to 0.96).

98The within correlation of the radical-weighted non-green stock with the regular one is 0.898.
99This corresponds to the Y02 class “Y02D”.
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estimate displays a significant effect of green ICT,100 the estimated coefficients for FD

and CCEP are virtually zero.101 Hence, we conclude that there is no strong evidence for

positive regional returns to ICT-based green technologies.

In sum, these results emphasize that accounting for the underlying heterogeneity in

technological content does not affect our main findings. Two remarks on these findings are

in order. First, as we focus on the regional returns, it is not ruled out that interregional

spillovers are larger for these technologies. Second, it is beyond the scope of our study to

explore the dynamics of the twin green and digital transition in more detail. In this vein,

potential effects that unfold only over a larger time horizon are outside of our scope.

4.5.3.3 Technology Type

As highlighted by firm-level studies, there is evidence for distinct returns for specific

types of green technologies (resource-saving) (Ghisetti and Rennings, 2014; Rexhäuser

and Rammer, 2014; van Leeuwen and Mohnen, 2017). Hence, we assess the importance

of the technology field by defining subclasses of green technologies based on contextual

considerations. We define four green subclasses based on the Y02 scheme that have dif-

ferent characteristics and implications regarding their economic effects. We distinguish

energy generation from renewable energy sources (Renewable energy), climate-change-

mitigation technologies in the production or processing of goods (Production or pro-

cessing), climate-change-mitigation technologies in the buildings sector (Buildings), and

climate-change-mitigation technologies aiming at energy efficiency (Energy efficiency).102

The economic gains from Renewable energy are strongly dependent on the market size

of renewable energy generation, which is in turn dependent on the costs of emissions and,

thus, potentially small for most of our analyzed time period. Production or processing

contains a broader set of technologies, yet aiming strongly at the reduction of greenhouse

gas emissions as well. Buildings strongly consists of applications that relate to energy

efficiency. Energy efficiency includes only specific classes from various sections in the

Y02 scheme, explicitly relating to energy efficiency. Hence, we focus on two subtypes

(Renewable energy and Production or processing) that primarily relate to the reduction

100Still being only one-third of the magnitude from non-green, i.e. 0.015 compared to 0.043.
101Detailed results available upon request.
102Renewable energy corresponds to the CPC class “Y02E 10”. Production or processing is the Y02 section

“Y02P”, while Buildings corresponds to “Y02B”. Energy efficiency is a selection of CPC classes from
various sections in the Y02 scheme, based on the classification by Wendler (2019). Some adjustments
were made due to changes in the Y02 classification scheme and to secure a narrow definition of energy-
efficiency technologies. The full list of utilized CPC classes is provided in appendix table C6.
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of emissions, which are not a cost factor per se (in the absence of emission pricing). Thus,

these technologies might have been associated with few proximate economic advantages.

The other two subtypes (Buildings and Energy efficiency) relate to energy efficiency.

Energy is a relevant cost factor and energy efficiency should thus be of economic interest,

even in the absence of policy measures.

Table 4.6 displays the findings for our baseline specification for all green subtypes.

For both green subtypes related to emissions reduction, we find no evidence for regional

returns, in line with our findings for green technologies overall. For the two subtypes

relating to energy efficiency, there is evidence for positive regional returns. For Buildings,

the estimated coefficient is (slightly) significant for all approaches. These tendencies are

even more pronounced when focusing on energy-efficient green technologies more specifi-

cally. Columns 4–6 report a significantly positive regional return to energy-efficient green

technologies for all estimators. The magnitude is especially pronounced for the 2FE esti-

mation in column 4.

These findings provide some evidence towards the importance of the green technology

profile, in line with the firm-level evidence highlighted above. Related to this, Wendler

(2019) finds evidence that energy-efficiency technologies are associated with reduced re-

source use, whereas technologies corresponding to the Production or processing section

or alternative energy production are not.103 Taken together, our results indicate that the

regional returns to green technologies depend on the specific type of technology and that

technologies that are related to energy efficiency are more likely to be related to positive

returns.

103Resource use has similar characteristics to (and encompasses) energy as an input factor.
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4.5.3.4 Critical Mass Phenomena

Finally, we explore critical mass phenomena with respect to the regional knowledge base,

and, thus, allow for potential non-linearities in the relationship between knowledge stocks

and labor productivity. For example, as highlighted in our theoretical motivation, the

strength of intraregional spillovers might be heterogeneous across regions, and the level of

accumulated knowledge might be a source of this heterogeneity. Critical mass phenomena

have been found in various contexts, such as broadband infrastructure (Czernich et al.,

2011). Indeed, in their related study, Stucki and Woerter (2019) document that the

impact of green technology increases as the level of green knowledge increases. Also,

they report a corresponding complementarity between green and non-green knowledge.

To assess whether the knowledge base of a region determines the regional returns to

knowledge, we include interaction terms of both knowledge stocks with themselves and an

interaction of green and non-green technology to our baseline specifications. A drawback

of an interaction term is that it assumes that the regional return is a linear function of

the knowledge stock. Hence, we additionally estimate corresponding threshold regressions,

allowing for a kinked technology effect and the explicit identification of the level at which

the threshold occurs. Further, the threshold regression exercise allows us to inspect the

direction of changes in more detail.104

Our baseline specifications with interaction terms are displayed in table 4.7. We report

all preferred estimators for each interaction. The first three columns report the findings for

a complementarity relationship. The results provide some evidence towards a technology

complementarity that is significant in the 2FE and CCEP estimation. The baseline effect

for both technologies is similar to our main findings. In terms of interpretation, the

different scales of the stocks have to be taken into account. The estimated effect of

green technologies at the mean of the non-green stock is equal to −0.054 + (0.005 ∗

10.36) = −0.0022.105 The corresponding effect of non-green technology equals 0.025 +

(0.005 ∗ 7.59) = 0.063. Columns 4–6 report an interaction term for the green technology

stock with itself, assessing whether a critical mass of green technology is needed for

104For both the interaction and threshold specifications, we utilize knowledge stocks multiplied by 100,000
(i.e., per 100 million employed persons), compared to the baseline specification. This is done to provide
a straightforward interpretation of interaction and threshold effects. The multiplication secures that
any non-zero values are clearly above 1, so to avoid that non-zero knowledge stocks take on a negative
or zero value in logs. This would have caused some limitation for the interpretation of the interactions
and thresholds, as a log value of zero would have covered both a case of a relatively high knowledge
base as well as the complete absence of it, and negative log-values would imply larger knowledge stocks
than some log-zero values.

105Based on the CCEP results.
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positive regional returns to be realized. Both the 2FE and FD estimation indicate that

the productivity effects of green knowledge slightly increase as the green knowledge base

increases. However, the effect remains very small and hardly surpasses 0 at the highest

values of green knowledge stocks. The last three columns add a square term of non-green

knowledge. The coefficient of the interaction term is most pronounced both in terms

of magnitude and significance across all estimators. The regional return is estimated to

be even slightly negative for low values up to 8.8, which corresponds to almost 19% of

observations. However, at the 90% percentile, the return is estimated to be 0.033.106

To assess these findings in more detail, we consider static fixed-effects panel thresh-

old regressions (Hansen, 1999). We allow for one threshold and test all combinations of

threshold and regime-dependent variables. The results are reported in table 4.8. The

findings provide some very important nuances to the results reported above. In all cases,

we find a significant threshold that is usually located above the median observation of

the sample, while still including a substantial part of the observations surpassing the

threshold. Important insights can be obtained from columns 3 and 4, where the coeffi-

cients of both knowledge stocks are allowed to be regime dependent. In both cases, the

coefficient of the non-green knowledge stock decreases above the threshold, whereas the

coefficient of the green knowledge stock increases above the threshold. In columns 5 and

6, the threshold is estimated to occur at the exact same level as in column 4. Neverthe-

less, when only including one of the knowledge stocks as regime dependent, the results

differ. For green technologies, there is no significant effect above the threshold, and for

non-green knowledge the coefficient increases after reaching the threshold. These findings

are qualitatively identical, irrespective of whether the threshold is computed based on the

level of the green or non-green knowledge stock. In our data, the two technology stocks

are highly correlated, so that these phenomena should be related cautiously to the total

knowledge base, as regions with high stocks of green knowledge tend to have high stocks

of non-green knowledge, and vice versa.107 As stated above, when the coefficients of both

stocks are allowed to be regime dependent, they change in opposite direction and the re-

gional returns to green technologies are even estimated to be significantly positive above

the threshold. A possible interpretation might be that the increase of the coefficient of the

non-green stock in column 2 and 6 is due to an omission of the kinked productivity effect

for green knowledge. The opposite seems to apply for the coefficient of the green knowl-

106Based on the CCEP results.
107The Pearson correlation coefficient is above 0.85, and the Spearman rank correlation coefficient is

roughly 0.95 in the overall dimension.
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edge stock in columns 1 and 5, where the effect above the threshold is potentially biased

downward because of the omission of the kinked regional return to non-green knowledge.

This intuition also sheds light on the findings in table 4.7. While the generally positive

interactions hint towards the fact that the total knowledge base increases economic re-

turns, the relative quantitative findings of the individual interactions should be treated

with due caution.

When assessing the distribution of regions above the threshold, it seems that the

increasing returns to green knowledge and decreasing returns to non-green knowledge

are a mixed phenomenon of the time and the regional dimension. 117 regions cross

the green threshold at least at the end of the sample, whereas this number of regions

increases over time successively, starting from one region in 1985. Thus, our results

might be interpreted in a way that regions profit only from non-green technologies in

the beginning, whereas at a certain level of the regional knowledge base, the returns to

green technologies increase, whereas the returns to non-green technologies decrease. This

might support the interpretation of the regional knowledge base in the sense of absorptive

capacity (Stucki and Woerter, 2019), especially since green technologies tend to be more

complex (Dechezleprêtre et al., 2014). However, despite this indicated tendency, according

to our results, the returns to non-green knowledge remain substantially higher than the

regional returns to green knowledge above the threshold. Additionally, we emphasize that

we cannot completely rule out that regulatory changes are behind the developments over

time.

138



T
a
b
le

4
.7
.
K
n
ow

le
d
ge

st
o
ck

in
te
ra
ct
io
n
s
in
cl
u
d
ed

C
om

p
le
m
en
ta
ri
ty

G
re
en

N
o
n
-g
re
en

2F
E

F
D

C
C
E
P

2F
E

F
D

C
C
E
P

2
F
E

F
D

C
C
E
P

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

In
v
es
tm

en
t

0.
27
6*
**

0.
11
0*
**

0.
12
1*
**

0.
26
6*
**

0.
11
0*
**

0
.1
2
0
*
*
*

0
.2
8
1
*
*
*

0
.1
1
1
*
*
*

0
.1
2
8
*
*
*

(0
.0
27
)

(0
.0
12
)

(0
.0
39
)

(0
.0
27
)

(0
.0
12
)

(0
.0
3
9
)

(0
.0
2
8
)

(0
.0
1
2
)

(0
.0
4
9
)

G
re
en

st
o
ck

-0
.0
45
**

-0
.0
03

-0
.0
54
**

-0
.0
60
**
*

-0
.0
10

0
.0
0
0

-0
.0
1
5
*

0
.0
0
1

-0
.0
1
0

(0
.0
18
)

(0
.0
07
)

(0
.0
27
)

(0
.0
20
)

(0
.0
07
)

(0
.0
3
7
)

(0
.0
0
8
)

(0
.0
0
2
)

(0
.0
1
2
)

N
on

-g
re
en

st
o
ck

0.
03
3*
*

0.
02
4*
**

0.
02
5

0.
05
0*
**

0.
02
5*
**

0
.0
4
8

-0
.0
2
0

-0
.0
0
7

-0
.0
7
9
*

(0
.0
14
)

(0
.0
06
)

(0
.0
26
)

(0
.0
14
)

(0
.0
05
)

(0
.0
4
2
)

(0
.0
2
2
)

(0
.0
1
8
)

(0
.0
4
7
)

N
on

-g
re
en

×
G
re
en

0.
00
4*
*

0.
00
1

0.
00
5*
*

(0
.0
02
)

(0
.0
01
)

(0
.0
03
)

G
re
en

×
G
re
en

0.
00
4*
**

0.
00
1*
*

-0
.0
0
0

(0
.0
02
)

(0
.0
01
)

(0
.0
0
3
)

N
on

-g
re
en

×
N
on

-g
re
en

0
.0
0
5
*
*
*

0
.0
0
2
*
*

0
.0
0
9
*
*
*

(0
.0
0
2
)

(0
.0
0
1
)

(0
.0
0
3
)

Y
ea
r
d
u
m
m
ie
s

Y
es

Y
es

N
o

Y
es

Y
es

N
o

Y
es

Y
es

N
o

O
b
se
rv
at
io
n
s

6,
16
2

6,
00
4

6,
16
2

6,
16
2

6,
00
4

6
,1
6
2

6
,1
6
2

6
,0
0
4

6
,1
6
2

R
eg
io
n
s

15
8

15
8

15
8

15
8

15
8

1
5
8

1
5
8

1
5
8

1
5
8

N
o
te
:
A
st
er
is
k
s
in
d
ic
a
te

si
gn

ifi
ca
n
ce

at
*
10

%
;
*
*
5%

;
*
**

1%
.
S
ta
n
d
ar
d
er
ro
rs

in
p
ar
en
th
es
es

ar
e
of

h
et
er
os
ke
d
as
ti
ci
ty
-r
ob

u
st

sa
n
d
w
ic
h
ty
p
e
fo
r
2F

E
an

d
F
D
.
S
ta
n
d
a
rd

er
ro
rs

fo
r
C
C
E
P
ar
e
b
as
ed

on
th
e
n
on

-p
ar
am

et
ri
c
va
ri
an

ce
es
ti
m
at
or

gi
ve
n
in

P
es
ar
an

(2
00

6)
.
In
te
ra
ct
io
n
s
ar
e
b
as
ed

on
th
e
w
h
ol
e
va
ri
at
io
n
.
T
o
al
lo
w

fo
r
n
o
n
-l
in
ea
ri
ti
es

in
C
C
E
P
,
th
e
p
ro
ce
d
u
re

d
es
cr
ib
ed

b
y
D
e
V
os

an
d
W
es
te
rl
u
n
d
(2
01

9)
is
u
se
d
.
S
p
ec
ifi
ca
ll
y,

w
e
au

gm
en
t
th
e
re
gr
es
si
on

b
y
cr
os
s-
se
ct
io
n
al

av
er
ag

es
of

th
e
li
n
ea
r
re
g
re
ss
o
rs

on
ly
,
ex
cl
u
d
in
g
cr
os
s-
se
ct
io
n
a
l
av
er
ag

es
of

th
e
d
ep

en
d
en
t
va
ri
ab

le
an

d
th
e
sq
u
ar
ed

te
rm

.

139



T
a
b
le

4
.8
.
A
ll
ow

in
g
fo
r
th
re
sh
ol
d
s
in

th
e
co
effi

ci
en
ts

of
th
e
k
n
ow

le
d
g
e
st
o
ck
s

T
h
re
sh
ol
d
va
ri
ab

le
:

T
h
re
sh
o
ld

va
ri
a
b
le
:

G
re
en

N
o
n
-g
re
en

R
eg
im

e
d
ep

en
d
en
t:

R
eg
im

e
d
ep

en
d
en
t:

G
re
en

N
on

-g
re
en

B
ot
h

B
o
th

G
re
en

N
o
n
-g
re
en

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

In
v
es
tm

en
t

0.
26
8*
**

0.
26
9*
**

0.
26
6*
**

0
.2
6
7
*
*
*

0
.2
7
1
*
*
*

0
.2
7
2
*
*
*

(0
.0
06
)

(0
.0
06
)

(0
.0
06
)

(0
.0
0
6
)

(0
.0
0
6
)

(0
.0
0
6
)

G
re
en

st
o
ck

-0
.0
04
*

-0
.0
0
3

(0
.0
02
)

(0
.0
0
2
)

G
re
en

st
o
ck
:

-0
.0
04
**

-0
.0
06
**
*

-0
.0
0
4
*

-0
.0
0
3

b
el
ow

th
re
sh
ol
d

(0
.0
02
)

(0
.0
02
)

(0
.0
0
2
)

(0
.0
0
2
)

G
re
en

st
o
ck
:

-0
.0
00

0.
01
6*
**

0
.0
1
8
*
*
*

0
.0
0
1

ab
ov
e
th
re
sh
ol
d

(0
.0
02
)

(0
.0
06
)

(0
.0
0
5
)

(0
.0
0
2
)

N
on

-g
re
en

st
o
ck

0.
04
5*
**

0
.0
4
4
*
*
*

(0
.0
03
)

(0
.0
0
3
)

N
on

-g
re
en

st
o
ck
:

0.
04
5*
**

0.
04
7*
**

0
.0
4
5
*
*
*

0
.0
4
3
*
*
*

b
el
ow

th
re
sh
ol
d

(0
.0
03
)

(0
.0
03
)

(0
.0
0
3
)

(0
.0
0
3
)

N
on

-g
re
en

st
o
ck
:

0.
04
8*
**

0.
03
2*
**

0
.0
3
2
*
*
*

0
.0
4
7
*
*
*

ab
ov
e
th
re
sh
ol
d

(0
.0
03
)

(0
.0
05
)

(0
.0
0
5
)

(0
.0
0
3
)

T
h
re
sh
ol
d
va
lu
e

9.
06
8

9
.0
68

8.
87
0

1
1
.6
0
9

1
1
.6
0
9

1
1
.6
0
9

T
h
re
sh
ol
d
p
-v
al
u
e

0.
00
0

0
.0
00

0.
02
3

0
.0
1
3

0
.0
0
3

0
.0
1
3

T
h
re
sh
ol
d
p
er
ce
n
ti
le

75
%

7
5%

75
%

7
5
%

7
5
%

7
5
%

Y
ea
r
d
u
m
m
ie
s

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

O
b
se
rv
at
io
n
s

6,
16
2

6
,1
62

6,
16
2

6
,1
6
2

6
,1
6
2

6
,1
6
2

R
eg
io
n
s

15
8

15
8

15
8

1
5
8

1
5
8

1
5
8

N
o
te
:
A
st
er
is
k
s
in
d
ic
at
e
si
gn

ifi
ca
n
ce

at
*
10

%
;
**

5
%
;
**

*
1%

.
S
ta
n
d
ar
d
er
ro
rs

in
p
ar
en
th
es
es
.
T
h
re
sh
ol
d
re
gr
es
si
on

s
ar
e
im

p
le
m
en
te
d
w
it
h
th
e
S
ta
ta

p
a
ck
a
g
e
xt
h
re
g

(W
an

g,
20
15
).

W
e
sp
ec
if
y
o
n
e
th
re
sh
ol
d
,
a
tr
im

m
in
g
p
ar
am

et
er

of
0.
05

,
an

d
30

0
b
o
ot
st
ra
p
re
p
li
ca
ti
on

s.
T
h
e
p
er
ce
n
ti
le
s
u
se
d
fo
r
re
p
or
ti
n
g
ar
e
1,

5,
10

,
2
5
,
5
0
,
7
5
,
9
0
,

95
,
an

d
99
%
.
H
en
ce
,
a
re
p
or
te
d
th
re
sh
ol
d
p
er
ce
n
ti
le

of
75

%
im

p
li
es

th
at

b
et
w
ee
n
50

an
d
75

%
of

ob
se
rv
at
io
n
s
ar
e
b
el
ow

th
e
va
lu
e,

w
h
il
e
at

le
as
t
25

%
a
re

a
b
ov
e.

140



4.5.4 Discussion

Our main findings show that green technology development does not increase regional

productivity in general, whereas non-green technology development does. This finding

at the regional level complements evidence of comparatively lower returns of green inno-

vation at the firm level (Marin and Lotti, 2017) and rather small returns at the sector

level (Soltmann et al., 2015; Stucki and Woerter, 2019). However, our findings extend

analyses at the firm and sector level, as our regional-level analysis accounts for any in-

traregional spillovers and captures the general equilibrium effects of green technology

development. Dechezleprêtre et al. (2014) report that green technology generally pro-

vides larger spillovers. As our estimates show, however, green technology development

is not associated with regional returns despite the inclusion of intraregional knowledge

spillovers. On the other hand, our results do not preclude that there are substantial

interregional productivity spillovers of green technologies.

When considering the general absence of productivity effects within the regions in

more detail, it is supportive to consider the fact that our regional level analysis allows for

two broad channels of productivity effects. First, an individual firm/sector becomes more

productive and/or, second, green technology enables a shift to (new) more productive

firms/sectors. While the former is mainly concerned with factor-augmenting technical

change that increases the efficiency of cost factors, the second channel presents general

equilibrium dynamics that could be especially relevant at the regional level. Despite

capturing both of these potential shifts in our empirical setup, we observe no general

effects from green technology.108 This could be related to the fact that within a broad

definition of green technology, a substantial share of these technologies is targeted at the

reduction of emissions, which are of public good nature for most of the sample period

under scrutiny.

However, beyond such direct effects on productivity by reducing cost factors, at the re-

gional level, green technology could also be considered important because of its reduction

of environmental externalities. In an earlier version of this paper (Kerner et al., 2021),

we suggested a model in which green technology can exert an indirect productivity effect

via the reduction of local environmental externalities that negatively affect production.

Hence, the absence of positive regional returns implies that either there is no impact

108It is important to emphasize that our empirical setting does not consider these structural changes in
the longer run, which are beyond the scope of this paper but represent an important area of research.
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of green technology development on local environmental quality or local environmental

quality does not pose any restriction on economic activity (yet). In sum, the absence of

regional returns to green technology development in general points towards the absence

(or the reciprocal suspension) stemming from factor-augmenting technical change for cost

factors, enabling a shift to more productive firms/sectors, and the reduction of local envi-

ronmental externalities and/or any impairment of production due to local environmental

quality.

The particular importance of the cost-factor-augmenting nature of green technology

is emphasized by our findings on the heterogeneity of green technology types. For green

technology that increases energy efficiency, we find a robust positive effect on productivity.

This finding aligns with previous studies at the firm level, which assess the difference be-

tween green innovation in general and resource- or energy-efficiency innovations (Ghisetti

and Rennings, 2014; Rexhäuser and Rammer, 2014; van Leeuwen and Mohnen, 2017).

While firms are found to profit from resource- or energy-efficiency innovation, for other

types of green technologies there are even potential negative effects. Our findings are

supportive of positive regional returns for specific green technology classes.

As another source of heterogeneity, we find a moderating effect of the regional knowl-

edge base. Higher levels of technology, regardless of the type, positively affect productivity

gains from green technology. In this sense, the knowledge base can be interpreted as re-

gional absorptive capacity that increases intraregional spillovers. These “building-on-the-

shoulders-of-giants” externalities are prominently highlighted in the theoretical literature

on directed technical change (DTC). The seminal model by Acemoglu et al. (2012) as-

sumes that the productivity of clean and dirty technologies profits from past innovation

within the respective technology class, creating a pronounced tendency for path depen-

dencies. Fried (2018) also includes spillovers across the sectors, i.e., past innovation efforts

in one sector increase the productivity of innovation in other sectors. This inclusion might

mitigate the emergence of a strong path dependency. Our results tentatively suggest that

the productivity of green technology appears to increase with a high regional knowledge

base, whereas the productivity of non-green technology even slightly decreases. While it

is beyond the scope of our paper to disentangle the results regarding whether there are

spillovers predominantly across or within knowledge types, our findings highlight that a

regional knowledge base appears to be especially important for green technologies, which

might be linked to the general high complexity of green technologies (Dechezleprêtre et al.,

2014).
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Based on our findings, several remarks with respect to policy implications of our study

are in order. Given our analysis on the effects of green technology on productivity, our

findings can be related to the discussion revolving around the strong version of the Porter

hypothesis (Porter and van der Linde, 1995). The strong version of the Porter hypothesis

(PH) postulates that stricter environmental regulation will positively affect competitive-

ness, due to the inducement of innovation by the regulation.109 Our results imply an

ambiguous picture with regard to these statements. First, in general, we do not find posi-

tive effects to green technology development. However, there is evidence for heterogeneity

of the productivity effect with respect to different types of green technology. Addition-

ally, our data is supportive of thresholds in the productivity effect of green technology,

implying that the effect is positive in region-years in which a sufficient knowledge base

had been accumulated. However, the elasticity with respect to non-green technology is

still higher, such that a crowding out of non-green technology in response to regulation in

the favor of green technology might still reduce productivity. When there is no crowding

out, our results do not completely rule out the potential presence of the strong PH.110 In

general, these implications align with previous literature on the PH that tends to find lit-

tle effects of regulation on competitiveness, with a tendency towards slight and sectorally

heterogeneous negative effects (Dechezleprêtre and Sato, 2017).

The absence of general productivity effects of green technology merits a further con-

sideration as to how the elasticities might change over time. Conceptually, we introduced

the regional returns to green technologies to consist of both a direct and an indirect effect,

e.g., due to the reduction of local environmental production externalities. The direct pro-

ductivity effect could turn significantly positive if environmental benefits, such as lower

emissions, turn into a properly priced input to production. During the period under in-

vestigation, such environmental input factors mostly have not been relevant cost factors.

This is rationalized by the findings on the effectiveness of the EU Emissions Trading Sys-

tem (ETS), which has been considered rather ineffective during most of our observation

period (Ellerman et al., 2016).

109Though being slightly different concepts, productivity is strongly related to competitiveness. For
example, van Leeuwen and Mohnen (2017) empirically analyze effects on productivity and consider
this an indirect examination of the strong PH.

110This interpretation is of course very limited by design of our empirical application. First, we consider
all green technologies that are developed, not only the ones directly triggered as response to climate
policy, as we do not control for policy directly. Second, we have in general no information regarding
crowding-out effects available.
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Finally, our findings have implications with respect to the cohesion policy of the EU.

Especially, regional cohesion policy of the EU is explicitly coupled with the green transi-

tion. Our findings imply that the potential from fostering the green transition in regions

as an effort to create a win-win situation of regional cohesion and climate goals is limited.

This is due to the currently small gains from green technology development in general.

On the other hand, comprehensive policies fostering the green transition for all regions

alike are potentially in contrast to regional cohesion goals. As our findings suggest, the

returns to green technology development appear to depend on the regional knowledge

base, such that knowledge intensive regions might especially profit, exacerbating regional

inequalities. Accounting for this underlying heterogeneity, the heterogeneity in specific

technology types, and the lacking economic rewards to green technology development in

general appear crucial for inclusive green growth.

4.6 Conclusion

In this paper, we estimate the impact of green technology development on labor produc-

tivity for 158 European NUTS-2 regions from 1980 to 2018. To inform our empirical

approach, we present a simple theoretical motivation, which highlights the role of intrare-

gional and interregional knowledge spillovers and other unobserved common factors. We

estimate the aggregate production function by employing a flexible empirical framework

controlling for spillovers between regions and unobserved common factors as well as sev-

eral important econometric challenges that arise in the estimation of macro panels in

general and in the estimation of production functions in particular.

First, we estimate the degree of cross-sectional dependence between European regions

in the variables of the production function and our results give strong indication of the

presence of an unobserved common factor structure with strong CSD. Hence, we put

special emphasis on appropriately controlling for this feature of the data. Furthermore,

we contrast several estimators to get a comprehensive view. The results suggest that there

are no positive productivity effects of green technologies in general. In contrast, our data

is robustly indicating significant positive returns to non-green technologies. The results of

the main approach are generally robust to a battery of robustness checks. These include

dynamic specifications and estimation approaches robust against weak exogeneity of the

production inputs, as well as allowing for fully heterogeneous coefficients across regions.
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We provide evidence for several potential sources of heterogeneous returns to green

technology. We find no evidence for heterogeneity caused by the technological content of

developed technologies, such as the radicalness of innovation. However, we do find that

the green-technology profile is of importance, as green technology that increases energy

efficiency is found to exert positive regional returns. Furthermore, we find an important

role of the regional knowledge base. Our findings provide evidence that the regional

returns to green technology increase with a growing knowledge base.

Our results highlight several avenues for future research. First, the heterogeneity of

different green technology types merits further consideration. Especially the coupling of

green and digital technologies demands closer inspection, as this joint transition relates to

long-run developments and possible complex interactions between input factors, which are

by design beyond the scope of this study. Second, our findings on the regional knowledge

base should be assessed in further detail by future studies. For example, disentangling

whether shifts in the productivity effects from green knowledge and non-green knowledge

are driven by either (fixed) regional characteristics or a common trend can provide im-

portant insights for policy makers and contribute to our understanding of technological

change.
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Appendix C

Part I: Data, Descriptive Statistics and Time-Series Properties

Table C1. Pairwise correlation matrix, total variation

yit kk,it kg,it kn,it ȳt k̄k,t k̄g,t k̄n,t

yit 1

kk,it 0.797 1

kg,it 0.375 0.330 1

kn,it 0.692 0.610 0.571 1

ȳt 0.501 0.430 0.379 0.5227 1

k̄k,t 0.476 0.452 0.331 0.493 0.952 1

k̄g,t 0.465 0.367 0.407 0.487 0.930 0.813 1

k̄n,t 0.496 0.421 0.376 0.528 0.990 0.933 0.922 1

Note: Pairwise unconditional correlation coefficients. Cross-sectional averages
are included.

Table C2. Pairwise correlation matrix, within variation

yit kk,it kg,it kn,it ȳt k̄k,t k̄g,t k̄n,t

yit 1

kk,it 0.757 1

kg,it 0.400 0.276 1

kn,it 0.745 0.612 0.502 1

ȳt 0.835 0.631 0.460 0.807 1

k̄k,t 0.795 0.663 0.403 0.761 0.952 1

k̄g,t 0.776 0.539 0.495 0.752 0.930 0.813 1

k̄n,t 0.826 0.618 0.457 0.816 0.990 0.933 0.922 1

Note: Pairwise unconditional correlation coefficients for the within dimen-
sion. Cross-sectional averages are included.
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Table C3. Correlation between dif-
ferent knowledge stocks, total varia-
tion

kag,it kan,it kbg,it kbn,it

kag,it 1

kan,it 0.571 1

kbg,it 0.991 0.593 1

kbn,it 0.555 0.994 0.584 1

Note: Pairwise unconditional correlation
coefficients. Compared are knowledge
stocks based on our main approach (ka

g,it)
with those computed with the perpetual
inventory method with a depreciation rate
of 10% (kbg,it).

Table C4. Correlation between dif-
ferent knowledge stocks, within di-
mension

kag,it kan,it kbg,it kbn,it

kag,it 1

kan,it 0.502 1

kbg,it 0.990 0.488 1

kbn,it 0.488 0.994 0.480 1

Note: Pairwise unconditional correla-
tion coefficients for the within dimension.
Compared are knowledge stocks based
on our main approach (kag,it) with those
computed with the perpetual inventory
method with a depreciation rate of 10%
(kbg,it).
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Table C5. Panel unit root tests

lags yit kk,it kg,it kn,it

0 -5.092 (0.000) -3.135 (0.001) -36.685 (0.000) -30.546 (0.000)

1 -2.647 (0.004) 0.559 (0.712) -7.355 (0.000) -6.108 (0.000)

2 -1.254 (0.105) 2.233 (0.987) -5.316 (0.000) -5.640 (0.000)

3 -2.240 (0.013) 2.115 (0.983) -1.140 (0.127) -2.137 (0.016)

Note: Panel unit root test of the second generation by Pesaran (2007). Constant
added, no trend. Reported are Z-statistics and p-values in parentheses. All individual
groups are integrated of order one under the null hypothesis. Implemented in Stata
with the multipurt routine written by Eberhardt (2011), making use of the xtfisher
routine by Merryman (2005) and the pescadf command by Lewandowski (2007).

Table C6. CPC classes of Energy Efficiency

Y02B 20/ Y02B 30/ Y02B 40/ Y02B 50/ Y02B 60/

Y02B 70/ Y02B 80/ Y02D Y02E 20/30 Y02E 40/

Y02P 10/25 Y02P 20/10 Y02P 20/124 Y02P 20/125 Y02P 20/129

Y02P 40/121 Y02P 60/14 Y02P 80/1

Part II: Further Robustness Results

This section reports the robustness of the main estimation results to various different

variable choices and estimation techniques. The results for different variable choices are

reported in table C7.

The results for alternative estimation techniques, which we introduce briefly in the

following, are displayed in table C8. First, we relax the assumption of common slope

parameters and assume fully heterogeneous parameters instead, while retaining the static

formulation and the strict exogeneity assumption. This includes the basic MG and the

CCEMG approach. For both approaches, we pool the dummy indicator variables for when

the green knowledge stock is zero, the non-green knowledge stock is zero, or both are zero,

as there are many regions that have no within variation in the indicator variable.

Second, we consider dynamic panel models and relax the assumption of strict exo-

geneity of the regressors. The starting point is the CS-DL approach. In a nutshell, it is

a reformulation of a dynamic panel approach with common factors, in which the long-

run coefficients can be estimated directly without estimating the coefficient of the lagged

dependent variable explicitly. This requires to augment the regression with contempo-

raneous and lagged differences of the regressors. Purging the cross-sectional dependence
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requires the addition of cross-sectional averages of regressors and the dependent variable,

as well as lags of the cross-sectional averages of the regressors (Chudik et al., 2016).

Formally, we estimate the model

yrt = cyr + θ′
rxrt +

p−1∑︂
l=0

δ′
rl∆xr,t−l +

pȳ∑︂
l=0

ωy,rlȳt−l +

px̄∑︂
l=0

ω′
x,rlx̄t−l + ert, (C1)

where x̄t is the vector of cross-sectional averages of the regressors in year t, ȳt is the

cross-sectional average of the dependent variable in year t, xrt = [kg,rt, kn,rt, kk,rt]
′ is the

vector of regressors as in the main approach, and ∆xr,t−l are the contemporaneous and

lagged values of the first differenced regressors (Chudik et al., 2016). We follow Chudik

et al. (2016) and set px̄ = [T 1/3] = 3, where [T 1/3] denotes the integer part of T 1/3,

p = px̄ = 3 and pȳ = 0. It is a quite flexible approach as it allows for heterogeneous slopes

and offers a mean group (CS-DLMG) and a pooled variant (CS-DLP), which we consider

both. However, the CS-DL estimation procedure does not allow for lagged feedback from

the dependent variable onto the regressors.

To allow for lagged feedback effects, we additionally consider the CS-ARDL estimator.

It is based on a dynamic panel model augmented with cross-sectional averages of the

dependent variable and the regressors as well as their lags. The coefficient of the lagged

dependent variable is explicitly estimated. Formally, it is based on the following regression

yrt = c∗yr +

py∑︂
l=1

φrlyr,t−l +

px∑︂
l=0

β′
rlxr,t−l +

pz̄∑︂
l=0

ϑ′
rlz̄t−l + e∗rt, (C2)

where z̄t = (ȳt, x̄
′
t)

′ is the vector of cross-sectional averages of both dependent variable

and regressors, and pz̄ = [T 1/3] = 3 (Chudik and Pesaran, 2015b; Chudik et al., 2016). We

consider both an ARDL(1,0,0,0) specification (py = 1 and px = 0) and an ARDL(1,1,1,1)

specification (py = 1 and px = 1). The CS-ARDL estimator is developed as a MG

estimator only. The individual long-run coefficients are constructed from the individual

short-run coefficients according to

θ̂i =

∑︁px
l=0 β̂il

1−
∑︁py

l=1 φ̂rl

, (C3)

and the average long-run effect is calculated from these individual long-run effects. In both

approaches, we include the indicator dummy for when contemporaneous green knowledge

is zero, contemporaneous non-green knowledge is zero, and both are zero, which are
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excluded from the set of regressors whose cross-sectional averages are added. In the mean

group approaches, we again pool these dummies.

The main advantage of the CS-DL approach compared to the CS-ARDL is its good

performance for moderate values of T between 30 and 50 and its robustness to dynamic

misspecification. However, as noted above, it does not allow for lagged feedback from the

dependent variable onto the regressors (Chudik et al., 2016). Thus, Chudik et al. (2016)

argue that they should be seen as complementing each other.

Table C7. Alternative variable calculations

Capital stock Perpetual inventory Applicant

FD CCEP FD CCEP FD CCEP
(1) (2) (3) (4) (5) (6)

Investment 0.424*** 0.209*** 0.109*** 0.089*** 0.111*** 0.088***
(0.029) (0.068) (0.012) (0.015) (0.012) (0.016)

Green stock -0.000 -0.004 0.001 -0.004 0.002 -0.005
(0.003) (0.005) (0.002) (0.004) (0.003) (0.005)

Non-green stock 0.009* 0.044*** 0.021*** 0.035*** 0.020*** 0.014
(0.005) (0.016) (0.005) (0.012) (0.004) (0.012)

Year dummies Yes No Yes No Yes No
Observations 6,004 6,162 6,004 6,162 6,004 6,162
Regions 158 158 158 158 158 158

Note: Asterisks indicate significance at * 10%; ** 5%; *** 1%. Standard errors in parentheses are of
heteroskedasticity-robust sandwich type for FD and based on the non-parametric variance estimators
given in Pesaran (2006) for CCEP. For brevity, in all cases only FD and CCEP results are reported.
Capital stock displays the results when including a capital stock, calculated with the perpetual inventory
method, instead of investment flows. Columns 3 and 4 use knowledge stocks calculated with the perpetual
inventory method. Columns 5 and 6 assign patents based on the address of the applicant, instead of the
address of the inventor.
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Table C8. Alternative econometric techniques

Static Dynamic

MG CCE-MG CS-DLP CS-DLMG CS-ARDL CS-ARDL
(1) (2) (3) (4) (5) (6)

Investment 0.169*** 0.109*** 0.045 0.114*** 0.120*** 0.063**
(0.018) (0.013) (0.040) (0.031) (0.020) (0.027)

Green stock -0.018** 0.002 0.003 0.009 0.015 0.026
(0.007) (0.008) (0.009) (0.026) (0.020) (0.026)

Non-green stock 0.035** 0.046*** 0.074 0.071 0.153*** 0.123***
(0.016) (0.015) (0.046) (0.046) (0.031) (0.039)

Year dummies No No No No No No
Observations 6,162 6,162 5,688 5,688 5,688 5,688
Regions 158 158 158 158 158 158

Note: Asterisks indicate significance at * 10%; ** 5%; *** 1%. In all approaches, the respective non-
parametric estimators of the covariance matrix are used. For MG, variables enter cross-sectionally de-
meaned. CCE-MG implements the mean group version of CCE. CS-DLP and CS-DLMG refer to the
pooled and mean group version of the CS-DL estimator (Chudik et al., 2016), respectively. CS-ARDL
refers to the dynamic CCE approach (Chudik and Pesaran, 2015b). For all dynamic specifications, long-
run coefficients are reported. For CS-ARDL and CS-DL, the suggested lag lengths of the cross-sectional
averages (for both) and the augmented first-differenced regressors (for CS-DL only) are used, as described
in the text. Column 5 implements an ARDL(1,0,0,0) specification and column 6 an ARDL(1,1,1,1) spec-
ification.
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Chapter 5

Oil Shocks and Green Energy Technical Change

Authors: Philip Kerner

Abstract

How is green technical change reacting to different structural shocks in the oil market?

To approach this question, I use structural oil market shocks identified from an oil market

vector autoregression and country-level patent data in different green technology areas for

the period 1990–2015. The results imply that different shocks are associated differently

with patenting activity in the following year, and that the response differs by technol-

ogy area. Positive oil supply shocks are associated with reduced patenting activity for

clean energy technologies in general, with a particularly strong association observed for

biofuel patents. Oil consumption demand shocks are associated most strongly with clean

energy technologies in general, whereas speculative demand shocks are particularly strong

associated with biofuel patenting activity.

Keywords: Structural Oil Shocks; Green Technologies; Green Innovation

JEL Classification: O31; Q55; Q41; Q31

Publication This is an unpublished manuscript. It is intended for submission in a peer-
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5.1 Introduction

How to control climate change and at the same time establish energy security is an increas-

ingly important topic on the national and international policy agenda. For example, this

is evident in the recently announced new European Union (EU) External Energy Strategy

(European Commission, 2022). There is general scientific agreement that one mechanism

by which dependence on fossil energy sources is reduced is green technical change induced

by higher energy prices (e.g., Grubb et al., 2021). The basic intuition is that higher prices

for energy inputs in production lead to technological development being shaped to save

the more expensive factor of production (Popp, 2002). For example, Hassler et al. (2021)

argue that energy-saving technical change in the United States (US) took off after the

oil price shocks in the 1970s. Developed countries have been strongly dependent on fos-

sil fuels in the past decades (André and Smulders, 2014), and despite relevant shifts in

electricity production and structural changes in the economy, oil remains one of the most

important global commodities (Lang and Auer, 2020). The last fifteen years have been

characterized by a substantial volatility of global crude oil prices. Coming from historical

heights, the nominal price of Brent crude oil dropped from 133.87 US $ per barrel in July

2008 to 41.58 US $ per barrel in December 2008. Similar, huge price movements occurred

at the end of the year 2014 and during the Corona pandemic.111 Oil is determined in

global markets, and these pronounced changes in the price of oil are driven by different

underlying sources (e.g., EIA, 2017; Lang and Auer, 2020), which can have very different

effects on the economy (e.g., Kilian, 2008, 2009; Kim and Vera, 2019). To understand the

impact of oil price shocks on green technical change thoroughly, it is therefore important

to get an understanding of the contribution of these different sources. In this paper, I

contribute to this understanding and estimate the impact of different structural shocks to

the global oil market on green innovation activity for a panel of Organisation for Economic

Co-operation and Development (OECD) countries.

The present paper links to several strands in the literature. First, it is closely con-

nected to the extensive literature estimating the elasticity of green innovation activity to

energy prices in general and oil prices more specifically.112 Some studies focus on broader

measures of energy prices and consider different technology classes. Popp (2002) finds a

positive effect of energy prices on energy-efficient innovation for several energy demand

111These statements are based on monthly data from the World Bank Commodity Prices.
112For recent, extensive literature reviews see Popp (2019) and Grubb et al. (2021).
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and supply technologies. Kruse and Wetzel (2016) distinguish specific renewable-energy

and energy-efficiency technologies and document that energy prices induce innovation in

some but not all technology areas. Noailly and Smeets (2015) focus on clean and dirty

innovation in electricity production and account for the heterogeneity of firm size and

specialization. They find that an increase in fuel prices (oil, coal, and gas) increases both

renewable energy innovation and fossil fuel innovation, while increasing the gap between

both technology classes. Some studies use more specific energy price data. Focusing on

the automobile industry, Crabb and Johnson (2010) document that energy-efficient au-

tomobile innovation in the US is impacted by higher oil prices. Similarly, Aghion et al.

(2016) show that fuel prices (average of gasoline and diesel) drive clean innovation and

reduce dirty innovation in the automobile sector. Palage et al. (2019) and Nunes and

Catalão-Lopes (2020) document that oil prices drive innovation in solar technology and

alternative energy technologies in general, respectively. Guillouzouic-Le Corff (2018) fo-

cuses on the biofuel sector and reports that oil prices were a major driver of the boom in

biofuel innovation in the 2000s. I contribute to this literature by disentangling the impact

of oil price changes on innovation in different environmental technology areas regarding

the underlying structural shocks to the oil market.

Second, it is connected to the literature disentangling the effect of energy prices onto

different measures of technical change regarding their underlying structural causes. Hoang

et al. (2019) use the decomposition by Kilian (2009) to analyze the role of different

structural oil market shocks for renewable and non-renewable energy consumption in the

US. Balcilar et al. (2019) draw on this decomposition and estimate the impact of energy

market shocks on the transition to renewable energy, measured by the renewable energy

share. They report that oil price uncertainty shocks have a positive effect on the transition

to renewable energy. Drawing on a similar decomposition, van de Ven and Fouquet (2017)

adopt an historical perspective to estimate how structural shocks to the oil market since

1700 have impacted energy prices and other macroeconomic aggregates in the United

Kingdom (UK). Arguably closest to the present paper is the recent working paper by Hu

et al. (2022). Using a recent structural decomposition of the global oil market (Baumeister

and Hamilton, 2019), their preliminary results indicate that different structural shocks

have different effects on green innovation of US firms. Specifically, oil supply shocks

always decrease green innovation, while oil-specific demand shocks increase innovation

incentives for non-oil firms, but decrease innovation incentives for oil firms. I deviate

from their analysis in important ways. First, I employ a sample of OECD countries and
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focus on aggregate innovation, thus considering general equilibrium effects. Second, I

consider more fine-grained classifications of green technologies.

To estimate the impact of different shocks to the oil market on green energy technical

change, I construct a panel data set for 27 OECD countries in the period 1990–2015.

I follow the empirical literature on induced technical change and use patent data to

measure green innovation activity. Specifically, I use patents filed at the European Patent

Office (EPO). These are classified into the three technology classes according to the “Y02”

tagging scheme within the Cooperative Patent Classification (CPC) developed by the EPO

(Angelucci et al., 2018): clean technologies in the energy sector, clean technologies in the

buildings sector, and biofuel technologies. In this paper, I am interested in the effects of

global price shocks rather than in the effect of country-specific, tax-inclusive energy prices,

which also depend on domestic taxation and the energy mix (Sato et al., 2019). Hence,

I follow common practice and rely on the price of crude oil (e.g., Cheon and Urpelainen,

2012; Palage et al., 2019; Nunes and Catalão-Lopes, 2020). To decompose changes in

the crude oil price into different sources, I draw on the literature on structural global oil

market vector autoregressions (VARs) initiated by Kilian (2009). This framework has

recently been extended in several ways (e.g., Kilian and Murphy, 2014; Baumeister and

Hamilton, 2019). To account for these recent advances, I employ the demand- and supply-

driven oil shock estimates reported by Baumeister and Hamilton (2019), which are based

on a flexible structural Bayesian VAR framework.

I report several important empirical findings. In general, different structural oil mar-

ket shocks have different associations to green innovation activity, which also depend on

the technology area under consideration. First, positive oil supply shocks are in general

associated with reduced patenting activity in the following year. This effect is especially

pronounced for biofuels, but negligible for clean technologies in the buildings sector. Sec-

ond, positive oil demand shocks play only a limited role in general, being only significantly

associated with increased patenting activity in the following year for general clean energy

technologies. Third, positive speculative demand shocks have a pronounced positive as-

sociation with patenting activity only for biofuels in the following year. However, there

is tentative evidence that they are also associated with innovative activity in the other

patent categories after more years.

The remainder of this paper is organized as follows. Section 5.2 discusses the con-

ceptual groundings to inform the empirical approach. Section 5.3 outlines the empirical

methodology with special emphasis on how to obtain the structural shocks in the global
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oil market. Section 5.4 presents the data. Section 5.5 discusses the main results and

various robustness exercises. Section 5.6 concludes.

5.2 Conceptual Background

Early contributions by Hicks (1932) and Binswanger (1974) highlight that innovation ac-

tivity is profit-driven and that the direction of innovation efforts likely depends on relative

factor prices. In their seminal paper, Acemoglu et al. (2012) incorporate this mechanism

in a model of directed technical change (DTC) that incorporates also environmental con-

straints. Specifically, they model a clean and a dirty energy sector, in each of which

factor-augmenting technical change can take place. Research is a profit-oriented activity

and the direction of research into one or the other sector depends on a price effect, a

market size effect and a productivity effect. Ceteris paribus, research is directed to the

intermediate sector with relatively higher prices, with larger market share and higher

productivity. Recently, Fried (2018) provides a richer model that is explicitly designed in

a general-equilibrium setting by also including a non-energy sector. Aggregate produc-

tion is modeled by a nested constant elasticity of substitution (CES) production function.

On the highest level, final output is produced from energy and non-energy intermediate

goods with a near-Leontief degree of substitutability. The energy input in turn is a CES

function of green or fossil energy. Finally, fossil energy can be produced from domestic

fossil energy or oil imports. Hence, energy used in final production is provided from either

green energy sources, from domestic fossil energy (i.e., a mixture of coal, oil, and natural

gas) and oil imports. It is assumed that the three energy sources (green, fossil, and oil

imports) are gross substitutes. The marginal return to green energy innovation for the

machine producer depends on the value of green energy production, which is green energy

price times green energy demand. Positive oil price shocks increase demand for fossil and

green energy, increasing both innovation incentives, while carbon taxes only increase the

demand for green energy. Hence, according to this theoretical grounding, higher global

crude oil prices should increase incentives for green energy innovation. Similarly, Hassler

et al. (2021) argue that energy-saving technical change in the US was triggered by oil

shocks in the 1970s. However, not all countries in the sample of the present paper are

importing oil. Nevertheless, oil price shocks can be expected to have an impact on green

innovation for those countries as well, as the price of oil directly relates to the price of

domestic fossil energy. The intuition that oil price shocks induce both green and fossil
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energy innovation can also be rationalized from a different angle. As argued by Grubb

et al. (2021), oil price increases enrich oil companies, which partly invest these revenues

into research activities related to both oil exploration and alternative energy sources, such

as biofuels.

However, there is increasing evidence that the impact of oil price shocks differs fun-

damentally by their underlying source (e.g., Kilian, 2008, 2009; van de Ven and Fouquet,

2017; Kim and Vera, 2019). The global price of crude oil depends on several underlying

factors. Drawing on the framework of the U.S. Energy Information Administration (EIA)

(EIA, 2017), which constitutes the basis of the discussion by Lang and Auer (2020), four

essential drivers can be differentiated. The price is determined by oil demand and sup-

ply, but also depends on oil inventories and financial markets. Supply can be affected

by strategic choices of the Organization of the Petroleum Exporting Countries (OPEC)

countries or by new extraction technologies, such as shale oil production (Lang and Auer,

2020). Demand for oil might increase because of economic growth and high demand in

general, but might also be affected by structural changes, such as the development of

alternative fuels in transportation. A specific role is played by oil inventories. Inventories

are above ground storage of oil, which can be used to smooth out oil demand (Lang and

Auer, 2020). Hence, oil demand does not have to be consumed right away, but can be

stored in above-ground inventories (Kilian and Murphy, 2014; Kallis and Sager, 2017;

Lang and Auer, 2020). Inventory demand is typically linked to the uncertainty of future

oil supply shortfalls, and sometimes termed precautionary demand (Kilian and Murphy,

2014). Finally, oil is a commodity that is traded in the financial markets, which can be a

factor of price fluctuations (Lang and Auer, 2020).

In a seminal paper, Kilian (2009) models the global market of crude oil similar to

the framework introduced above. Specifically, the author differentiates three shocks: oil

supply shocks, i.e., unanticipated shocks to global crude oil supply; aggregate demand

shocks, i.e., unanticipated shocks to the global demand of all industrial commodities; and

oil-specific demand shocks, i.e., unanticipated residual shocks to the real price of oil that

are not captured by the other shocks. In this setting, oil-specific demand shocks comprise

changes in oil inventories and financial shocks from the framework above, as long as they

are not captured by the other shocks. Kilian (2009) documents that aggregate demand

shocks lead to a pronounced increase in the price of crude oil, albeit with some delay.

Oil-specific demand shocks increase the price of oil immediately, but the effect declines

rather quickly. Contrary to both demand shocks, oil supply shocks have only very little
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effect on the real price of oil. This translates to how shocks contributed to the historical

evolution of the real price of oil. Kilian (2009) documents that aggregate demand shocks

caused persistent swings and oil-specific demand shocks are attributed to rather quick

increases and decreases in the real price of oil. Supply shocks had only small contributions.

Specifically, the huge price increase before 2008 is mostly attributed to global demand

shocks in this calculation. Finally, Kilian (2009) demonstrates that the different shocks

have very distinctive effects on US GDP growth and the US consumer price index (CPI).

It is important to emphasize that oil shocks in this framework are unexpected shifts in one

of the three variables oil production, aggregate demand, and the real price of oil, whereby

expectations are understood in an econometric way, based on past observations of all

three variables (Kilian and Murphy, 2014). Kilian and Murphy (2014) extend the model

by Kilian (2009) to include oil inventories directly. They argue that shifts in expectations

about future supply and demand conditions as well as uncertainty over future supply and

demand conditions are directly reflected by inventory demand. Finally, they argue that

financial speculation that drives up the price in the oil futures market leads to increased

demand for inventories due to arbitrage. Hence, oil inventory shocks are interpreted

as speculative shocks, or precautionary shocks. Using this extended framework, Kilian

and Murphy (2014) report that speculative demand shocks play a prominent role in the

historical development of the real price of oil.

These considerations have arguably direct implications for the effect of oil price changes

on green technical change. First, the relative importance of different structural shocks in

driving the real oil price directly relates to whether the shocks are linked to incentives to

invest in green innovation. Second, even if the structural shocks do not drive the real oil

price directly, they might relate to specific expectations about economic conditions that

are not reflected by the oil price. Third, similar to the argument by Hu et al. (2022),

one important aspect might be whether oil price shocks are related to uncertain eco-

nomic conditions.113 In general, the body of theoretical literature put forward different

approaches of how uncertainty is related to economic activity. One important channel is

the so-called real options channel (Bloom, 2014). The basic premise is that if economic

agents face uncertain conditions, they might delay investment decisions to observe how the

future unfolds until uncertainties dissipate (“wait-and-see” behavior). This mechanism

requires decisions that are costly to reverse or irreversible due to adjustment frictions. In

113In this paper, I follow Bloom (2014) and Meinen and Röhe (2017) and refer to uncertainty as a broad
concept potentially comprising both risk and uncertainty in the classical notion by Knight (1921).
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this environment, investment cycles can arise because waiting for information yields tem-

porarily higher returns than early commitment (Bernanke, 1983; Pindyck, 1991; Bloom,

2009). The same argumentation applies to R&D investments, which are considered to

be highly irreversible (Goel and Ram, 2001; Czarnitzki and Toole, 2011). However, a

difference might be the degree of adjustment costs. Bloom (2007) analyzes uncertainty

and the dynamics of R&D investments. Assuming flow adjustment costs for R&D invest-

ments instead of stock adjustment costs for physical investment, the author highlights

that higher uncertainty reduces the responsiveness of R&D spending to changes in de-

mand conditions (caution effect). Furthermore, uncertainty has a direct negative effect

on investment (delay effect).

The present paper uses patent data as activity measure of technical change, which has

important implications. First, the option value of waiting disappears when the goal is to

be the first to bring a patent to the market Bloom (2014). Second, the distribution of

possible returns might be limited at the lower bound. Past R&D costs are already sunk

and bringing the product to the market has higher expected returns when the distribution

has a higher variance (Bloom, 2014). Goel and Nelson (2021) argue that while there

should be an adverse effect of uncertainty on R&D investment, the effects on innovation

are ambiguous, and generally depend on the potential role of new innovation to hedge

against the sources of uncertainty.

Taken together, I argue that it is important to consider the underlying source of oil

price shocks when estimating the impact of green technical change. However, different

shocks might be related to different economic states and provide different implicit infor-

mation to economic agents. Given the complex interplay of potential underlying channels

of influence, I argue that identifying the sign and magnitude of the impact of different oil

shocks on green technical change is ultimately an empirical challenge.

5.3 Empirical Methodology

5.3.1 Benchmark Estimation

First, I consider a benchmark model in which the real price of crude oil is related to

patents as a measure of technical change to embed the results into the literature. In the

second step, I use the preferred specifications and include the structural shocks to the

global oil market.
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The dependent variable is the count of new patent applications in a given year. Hence,

I follow the related literature and adopt a Poisson specification (e.g., Noailly and Smeets,

2015; Aghion et al., 2016; Kruse and Wetzel, 2016; Guillouzouic-Le Corff, 2018; Sterlac-

chini, 2020) for the determination of green energy innovations in a given country and a

specific green technology class. The following specification is broadly based on the model

considered by Kruse and Wetzel (2016) and shall include the most important determinants

while being parsimonious:

PATG,it =exp
{︁
βG,1 lnOILt−1 + βG,2 lnKG,it−1

+βG,3 lnTPATit−1 + bGxit−1 + λGt
}︁
ηG,i + uG,it,

(5.1)

where PATG,it is the number of green patents applied for by country i in year t for one of

the three considered technology classifications G; KG,it−1 is the stock of green technology

knowledge at the beginning of the period t for technology class G; OILt−1 is the global

real oil price; TPATit−1 is the amount of total patent applications; xit−1 is a vector of

further controls; t is a liner time trend to capture common time effects (e.g., Kruse and

Wetzel, 2016; Guillouzouic-Le Corff, 2018); uG,it is an error term; and ηG,i is a country-

fixed effect. All explanatory variables enter the model lagged by one period to mitigate

contemporaneous feedback problems and to account for the time lag in patenting behavior

(Aghion et al., 2016; Kruse and Wetzel, 2016). With respect to oil price increases, a rather

short lag of one year appears to be appropriate. As Probst et al. (2021) summarize their

reading of the literature, patenting responds rather quickly to price changes. One reason

why this is plausible is that some inventions might have already been developed and only

get patented as soon as market factors render them profitable (Probst et al., 2021). In the

main estimation, the vector of controls contains an additional dummy for the period after

1997 to control for higher propensity of green innovation after the Kyoto Protocol was

signed (e.g., Nesta et al., 2014) and total environmental policy stringency (EPS) lagged by

one year. As lagged knowledge stocks and total patent counts are zero for some countries

in some years, I follow Aghion et al. (2016) and include two dummy variables for when

lagged green knowledge is zero and lagged total patents are zero.

For the main estimation, I follow the standard approach in the literature and control

for the country-fixed effect ηG,i as suggested by Hausman et al. (1984). With regard to this

specification, two potential problems need to be addressed. First, as I use the fractional

count of patent applications as dependent variable, patent counts in some country-years
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might not be integers. However, as Kruse andWetzel (2016) argue drawing on the evidence

by Silva and Tenreyro (2006), Poisson specifications are still preferable in the near-integer

case present. In fact, Wooldridge (2010) emphasizes that the Poisson model works even

for a non-negative continuous dependent variable. Second, the method to control the

fixed effects requires strict exogeneity of the regressors. While the global real oil price

might be strictly exogenous to the country-specific errors, the lagged knowledge stock is a

function of lagged dependent variables by construction. To provide robustness against the

assumption of strict exogeneity in the main model, I implement the approach to control

for the fixed effect developed by Blundell et al. (1995, 1999, 2002), which approximates

the unobserved fixed effects by presample means of the dependent variable. This ap-

proach allows for weak exogeneity of regressors, but requires the presample mean to be

informative for patenting behavior over the whole sample period.114 Finally, I estimate

equation (5.1) with a negative binomial model to account for potential overdispersion of

the dependent variable (Hausman et al., 1984), as done by Johnstone et al. (2010) and

Palage et al. (2019).

5.3.2 Structural Oil Shocks

Many empirical studies document that the effect of oil price shocks on different measures of

economic activity differs by the nature of these shocks (e.g., Kilian, 2008, 2009; van de Ven

and Fouquet, 2017; Kim and Vera, 2019, 2022). A prominent way to disentangle different

shocks in the global market of crude oil are structural vector autoregressions (SVARs)

that build upon the seminal work by Kilian (2009) (e.g., van de Ven and Fouquet, 2017;

Ahmadi et al., 2019; Balcilar et al., 2019; Maghyereh and Abdoh, 2020).

In general, SVARs of the global oil market can be represented by a system of equations

of the following form (e.g., Baumeister and Hamilton, 2019; Kim and Vera, 2022):

A0zs = α+

p∑︂
i=1

A1zs−i + εs, (5.2)

where zt is a vector of structural oil market variables at month s, A0 is a matrix of

coefficients for the contemporaneous relation between the variables, zs−i is a vector of

lagged values of zs with p periods of lagged influence, A1 contains the coefficients of the

lagged variables, and εs is a vector of structural oil market shocks. These shocks to the

114See the discussion in the appendix to Aghion et al. (2016). Similar to Aghion et al. (2016), I include
a dummy indicator variable for when the presample mean is zero.
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oil market are unexpected in an econometric sense, i.e., shocks that are not predicted by

lagged values of the endogenous variables. Furthermore, the shocks are structural in the

sense that they are mutually uncorrelated (Kilian, 2009; Kilian and Murphy, 2014).

In a seminal paper, Kilian (2009) specifies a three-variable model with zs = (qs, ys, ps)
′,

where qs is the growth rate of global oil production, ys is an index of global real economic

activity, and ps is the real oil price. Furthermore, the author allows for p = 24 months of

lagged feedback. Hence, there are three structural oil shocks: First, shocks to the physical

global supply of crude oil (oil supply shocks). Second, shocks to the demand for crude oil

that are driven by the demand for all commodities (aggregate demand shocks). Third,

shocks to oil-specific demand (oil-specific demand shocks).

The structural innovations are identified from the reduced-form VAR by imposing

timing restrictions, such that A−1
0 has a recursive structure. In consequence, the reduced

form errors can be represented as es = A−1
0 εs:

es ≡

⎛⎜⎜⎜⎝
e∆lnPROD
s

eREA
s

elnOIL
s

⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎣
a11 0 0

a21 a22 0

a31 a32 a33

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝

εoil supply shock
s

εaggregate demand shock
s

εoil-specific demand shock
s

⎞⎟⎟⎟⎠ (5.3)

The decomposition implies that all variables in the model potentially react contemporane-

ously to oil supply shocks, i.e., unexpected shifts in global oil production. Real economic

activity and the real oil price potentially react contemporaneously to aggregate demand

shocks, i.e., unexpected shifts in real economic activity, whereas oil supply only reacts

with one month delay. Finally, unexpected shifts in the real oil price only affect the real

oil price contemporaneously and both other variables with one period delay.

The three-variable VAR has been extended by Kilian and Murphy (2014) to contain

above-ground oil inventories as a fourth variable in order to capture shocks to the pre-

cautionary demand for crude oil. Instead of identifying the structural shocks with timing

restrictions, Kilian and Murphy (2014) rely on a combination of sign restrictions and

upper bounds for specific parameter values.

Recently, Baumeister and Hamilton (2019) argue that both identification schemes are

rather restrictive and are based on strong prior beliefs. Additionally, they highlight the

potential problem of measurement error in the measure of global crude oil inventories.

They suggest a Bayesian approach which allows to incorporate prior information and to

model potential measurement error in a convenient way. Baumeister and Hamilton (2019)
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consider a variant of model (5.2) with four variables such that zs = (qs, ys, ps,∆is)
′,

and εs = (ε∗1s, ε
∗
2s, ε

∗
3s − χ−1es, χε

∗
4s + es)

′ containing the structural residuals and the

introduced measurement error. The variables of the system for the main estimation are

measured as: the growth rate of crude oil production (qs); the growth rate of OECD+6

industrial production (ys); the growth rate of US refiner’s acquisition costs of crude oil

(ps); and the change in estimated OECD inventories as a percent of the previous month’s

oil production (∆is). Baumeister and Hamilton (2019) demonstrate how to recover the

structural residuals from this system using Bayesian techniques.115

Given the challenges arising due to correct variable choice and specification, I draw in

the present paper on the recent advances by Baumeister and Hamilton (2019) to recover

the structural residuals. Specifically, I am interested in the structural shocks that are

oil market specific, and hence the estimated structural residuals û∗1s (oil supply shocks),

û∗3s (oil-specific demand shocks), and û∗4s (precautionary demand shocks).116 Structural

oil shocks based on above method are also used by recent studies (e.g., Adekoya and

Oliyide, 2020; Salisu and Adediran, 2020; Huang et al., 2021; Hu et al., 2022; Kim and

Vera, 2022). In the empirical application, I follow related literature on lower (annual)

frequency (e.g., Chen and Hsu, 2012; Jibril et al., 2020; Hu et al., 2022; Kim and Vera,

2022) and average the monthly structural residuals to yearly frequency in order to include

them in the regression. Hence, I estimate the following panel count model

PATG,it =exp
{︁
γG,1ũ

∗
1t + γG,3ũ

∗
3t + γG,4ũ

∗
4t + β∗

G,2 lnKG,it−1 + β∗
G,3 lnTPATit−1

+G, b∗xit−1 + λ∗Gt
}︁
η∗G,1 + u∗G,it,

(5.4)

where ũ∗jt =
1
12

∑︁12
s=1 û

∗
jst for j = 1, 3, 4 is the average of the monthly structural residuals

for year t. In the following, I refer to these yearly averages as structural oil market shocks

if not otherwise stated.

115Besides the challenges related to the identifying assumptions and the role of measurement error in the
oil inventories data, a highly debated decision relates to an appropriate measure of global economic
activity (ys). Kilian (2009) and Kilian and Murphy (2014) use a measure based on the real costs of
bulk dry cargo shipping. Recently, Hamilton (2021) argue that this measure has several drawbacks
and a measure of world industrial production is preferable, while Kilian (2019) defends the measure
based on the real costs of shipping. Baumeister and Hamilton (2019) rely on a measure of global
industrial production (OECD+6 industrial production).

116As Baumeister and Hamilton (2019) use Bayesian techniques, the “point estimate” of the structural
residuals is understood here as the median draw from the posterior distribution.
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5.4 Data and Descriptive Statistics

5.4.1 Data

This section presents the data used in the empirical approach. The main data set cov-

ers the period 1990–2015 for 27 OECD countries. Appendix table D1 contains the full

list of countries included in the sample.117 The country coverage contains both net oil-

importing and net oil-exporting countries.118 An overview of all data sources can be found

in appendix table D3.

5.4.1.1 Dependent Variable

The main data to capture green technical change are patent data drawn from the World

Patent Statistical Database (PATSTAT)119 maintained by the European Patent Office

(EPO). To classify patents to green technologies, I rely on the “Y02” tagging scheme,

which has been implemented within the CPC by the EPO (Angelucci et al., 2018), and

which is also used by the OECD (Haščič and Migotto, 2015).

Specifically, in the main estimation, I consider three technology categories that are

linked to oil prices. The first category are climate change mitigation technologies (CCMT)

in energy generation, transmission and distribution (clean energy technologies). It is im-

portant to emphasize here that oil is not directly relevant for electricity generation for

most countries included in this sample (e.g., Cheon and Urpelainen, 2012). However, oil

prices are still frequently considered to be an important determinant of innovation in re-

newable energy technologies (e.g., Palage et al., 2019; Nunes and Catalão-Lopes, 2020). A

potential reason for this importance is the high integration of oil and natural gas markets.

Jadidzadeh and Serletis (2017) show that close to 50% of the variation of the real price

of natural gas in the US can be attributed to structural shocks in the global oil market.

Hence, oil shocks are relevant as they signal changes in the markets of other fossil fu-

els. However, to get a comprehensive view, I consider two further technology categories

117The time period is determined by the availability of the EPS indicators (Botta and Koźluk, 2014) at
the time of data collection. The estimation sample starts in the year 1991 since there is no lagged
value of the EPS indicator for that year. Additionally, since the EPS indicator was not available post
2012 for some countries, the estimation sample is unbalanced.

118Drawing on Chen and Hsu (2012), I define net oil exporters as those countries which had an oil export
surplus on average during the whole sample period. Data on oil imports and exports are obtained
from the U.S. Energy Information Administration. The oil exporting countries are Denmark, Canada,
Mexico, Norway, and UK. I implement robustness exercises for when the oil exporting countries are
excluded from the sample.

119The PATSTAT autumn 2021 version is used.
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that are more directly related to oil prices. Lee and Ni (2002) document for the US

economy that historically oil demand has been especially important for transportation,

specific industrial sectors, and residential and commercial use. Hence, I consider climate

change mitigation technologies (CCMT) in the building sector (clean building technolo-

gies) as second technology. Finally, I consider biofuel technologies as they provide a

direct substitute for oil-based fuel products (Guillouzouic-Le Corff, 2018). Specifically,

Guillouzouic-Le Corff (2018) documents that the boom in biofuel innovation in the 2000s

was spurred by increasing oil prices. Biofuels are a subcategory of the first category, clean

energy technologies. A detailed classification of the three technology fields can be found

in appendix table D2.

Additionally, general propensity to patent is captured by total patents counts, which

refer to all patent applications regardless of CPC class. Based on the identified patent

applications, I count the technology-specific green technologies between 1980–2015 at the

country level, to have 10 years of presample information for the construction of knowledge

stocks and presample means, which is explained in detail later. To distribute patent

applications to countries, I use the inventor’s country of residence. In case of inventors

from multiple countries, patents are distributed according to the fractional counts (e.g.,

Kruse and Wetzel, 2016; Wurlod and Noailly, 2018).

There are several advantages of using patents as a measure of technical progress in

green energy technologies.120 First, patents have a wide and detailed data provision

(Haščič and Migotto, 2015). Second, this especially extends to detailed information re-

garding specific technology classes, which is generally not available for R&D investment

data and of high importance in the empirical study at hand. Third, most economically

significant inventions seem to have been patented (Dernis and Khan, 2004).

However, there are potential limitations in the use of patent data. First, the specific

value of patents is very heterogeneous and many patents have considerably low value

(Aghion et al., 2016). To mitigate this problem, I follow the common approach to rely on

patent applications at the EPO (Johnstone et al., 2010; Kruse and Wetzel, 2016), rather

than patent applications at national authorities. Because of the relatively high application

costs, patent applications at the EPO are often of high value (Johnstone et al., 2010).

Additionally, I only count the first patent of the DOCDB patent family. This patent family

is a collection of single patents that cover the same single invention. Focusing on the first

120Extensive discussions on advantages and limitations of the use of patent data are provided by Griliches
(1990) and OECD (2009).
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patent of the patent family further ensures that only high value patents are selected (e.g.,

Probst et al., 2021). Second, to capture research effort as timely as possible, I collect

patent applications filed at the EPO based on the priority date, which corresponds to

the first date of the invention worldwide (OECD, 2009). This date is generally strongly

related to actual inventive activity (OECD, 2009).121

Knowledge stocks are constructed from the patent counts with the perpetual inventory

method (e.g., Cockburn and Griliches, 1988; Peri, 2005; Aghion et al., 2016; Kruse and

Wetzel, 2016). Specifically, the end-of-period t knowledge stock in country i and green

technology G is calculated as

KG,it = PATG,it + (1− δ)KG,it−1, (5.5)

where δ is the depreciation rate of existing knowledge and PATG,it is the amount of new

green patent applications in year t. In line with the literature, the depreciation rate is as-

sumed to be 10% (Verdolini and Galeotti, 2011; Kruse and Wetzel, 2016). Following Kruse

and Wetzel (2016), the initial knowledge stock is calculated as KG,it0 = PATG,it0/(δ+ γ),

where PATG,it0 is the initial patent count. To mitigate the influence of the initial obser-

vation, I construct the knowledge stocks from 1980 onward, using 10 years of presample

observations. The parameter g is the pre-1980 growth rate in knowledge stocks and δ

the depreciation rate from above, which are set to 0.15 and 0.1, respectively (Kruse and

Wetzel, 2016).

5.4.1.2 Oil Market Variables

This paper focuses on the price component that emerges from the global commodity

markets, such that the focus is on the real price of crude oil. The advantage on relying

on oil prices is that the oil market is globally determined and the oil price consequently

mostly exogenous to single country actions (Cheon and Urpelainen, 2012). Furthermore,

as discussed by Sato et al. (2019), a potential problem with the use of energy price

indicators is that they depend on the sectoral (or national) fuel mix. The fuel mix

is, however, potentially endogenous to commodity prices or technological change within

sectors.

121Note that by focusing on EPO applications and only counting the priority filing, excluding patents
that are not the first patent in the patent family does not change patent counts much.
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Oil price data on yearly frequency are obtained from the World Bank Commodity

Prices. I use a simple average of West Texas Intermediate (WTI) and Brent crude oil

spot prices. Real oil price series are obtained by deflating the crude oil price series with the

OECD-wide CPI, drawn from the OECD Consumer price indices database.122 To capture

the structural shocks to the global oil market, I use the monthly structural residuals

estimated and provided by Baumeister and Hamilton (2019).

5.4.1.3 Further Controls

To capture environmental policy support, I use the OECD Environmental Policy Strin-

gency (EPS) Indicator (Botta and Koźluk, 2014). The indicator can be regarded as dis-

playing the overall policy mix, comprising the stringency of different market based policies

and command-and-control regulations. Unfortunately, the indicator is only available un-

til 2012 for several OECD countries, while being available until 2015 only for Australia,

Canada, France, Germany, Italy, Japan, Korea, Türkiye, the UK and the US.123 Hence,

the sample reduces to the period dictated by the availability of the EPS indicator in

specifications where it is employed.

Finally, in the robustness sections, I use several further control variables. First, data

on real GDP is obtained from the World Bank World Development Indicators. It is

given in constant 2015 US $, converted using 2015 exchange rates. Second, data on total

final energy consumption (in Terajoule) is obtained from the Sustainable Energy For All

database provided by the World Bank. Third, the share of renewable energy consumption

in total final energy consumption is obtained from the same data base. Population data

to construct per capita series are obtained from the World Bank World Development

Indicators. Finally, I use the index of global economic conditions calculated and provided

by Baumeister et al. (2022).

5.4.2 Descriptive Statistics

This section contains several descriptive statistics for the main variables used in the

empirical analysis. Table 5.1 presents some basic summary statistics. Some remarks are

in order. First, the three considered patent classes are considerably different in terms

of mean application, with biofuels displaying the smallest numbers given that it is a

122Given that short-run fluctuations in CPI inflation are generally negligible (Alquist et al., 2013), the
exact deflation method can be considered as not decisive for the calculations.

123At the time of data collection.
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subclass of clean energy patents. Second, the different structural oil shocks averaged

to yearly frequency have different standard deviations, which is important to take into

account when interpreting the estimated coefficients in the results sections.

Table 5.1. Descriptive statistics

Variable Obs. Mean S.D. Min. Max.

Clean energy patents 702 114.61 257.08 0 1,775.45
Biofuels patents 702 5.40 16.82 0 175.55
Clean building patents 702 30.39 58.80 0 351.37
Total patents 702 3,592.03 6,729.53 0 36,567.35
Log real oil price 702 4.63 0.49 3.70 5.39
EPS 652 1.76 0.94 0.21 4.13
Log clean energy stock 702 4.08 2.18 -1.39 8.85
Log biofuel stock 702 1.92 1.69 -2.17 6.55
Log buildings stock 702 3.48 2.15 -1.61 7.66
Oil supply shocks 702 -0.06 0.39 -1.04 0.64
Oil demand shocks 702 -0.07 1.03 -1.80 2.82
Precautionary demand shocks 702 -0.05 0.18 -0.47 0.31

Note: Descriptive statistics for the main variables used in the empirical analysis for the period 1990–
2015.

Figure 5.1 provides an overview of the development of patent applications for total

patents, clean building patents, clean energy patents, and biofuels. It plots the cross-

sectional mean of each class in all sample years. For better comparability, patent aver-

ages are normalized to 1 in the year 2005. Comparing the evolution of all three classes, a

pronounced burst in green patents starting at around 2003 is evident. This development

peaks at around 2010 and is followed by a remarkable decline in renewable energy patents,

which appears to stop at the current margin of the sample. This decline is extensively

discussed by Popp (2019), Sterlacchini (2020), and Probst et al. (2021). Potential expla-

nations include a drop in energy prices, which is illustrated later in this section. Finally,

this development appears to be an exclusive phenomenon for environmental technologies,

as total patents display a steady development, remaining on similar levels after roughly

2000.
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Figure 5.1. Green patents over time. Cross-sectional average of the main categories of green patent
applications for the whole sample. For better comparability, patent averages are normalized to 1 in the
year 2005. Mexico and Hungary are excluded, since their RE patent counts contain too many zeros to
allow for normalization. Source: Own calculations based on the PATSTAT database.

Figures 5.2 and 5.3 plot the two explanatory variables of main interest, the global real

price of oil and the yearly structural oil shocks, respectively. As noted above, a possible

explanation for the boom and decline in green patents is that these technologies closely

follow energy price developments. Indeed, the global real oil price appears to closely

mirror the development especially in clean energy technologies. Finally, figure 5.3 shows

that the three shock series are characterized by pronounced variation around zero. Any

value below zero implies that the average of the original monthly structural shocks in

that year is negative. Hence, the focus of this paper is not the volatility of the monthly

structural shocks per se, as negative and positive realizations might cancel. As discussed

by Baumeister and Hamilton (2019), negative oil supply shocks lead to a persistent in-

crease in the real price of oil, such that the price is higher even 15 months after the shock.

Indeed, as shown in appendix table D4, positive structural shocks to oil supply (unex-

pectedly high oil production growth) reduce the contemporaneous growth rate of the real

price of oil. Using this simple regression, oil supply shocks explain roughly one third of

the contemporaneous growth rate of the real oil price.
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Figure 5.2. Real oil price. The real oil price (blue solid line) is expressed as an index (2015=100).
Simple average of Brent and WTI spot prices deflated by the OECD-wide CPI. Source: On calculations
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Figure 5.3. Structural shocks at yearly frequency. Structural residuals identified from the global oil
market VAR obtained from Baumeister and Hamilton (2019) annualized to yearly frequency. Source:
Own calculation based on data by Baumeister and Hamilton (2019).

As discussed by Baumeister and Hamilton (2019), oil supply shocks contribute strongly

to the evolution of the real oil price in their estimation. For example, they attribute parts
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of the run-up in the oil price until 2008 (see figure 5.2) to unexpectedly low oil supply.

This is also reflected in the structural shock series: from 2003 onward, the structural

shock series is declining, with on average negative structural shocks for the years 2004,

2005, and 2006. Finally, appendix table D4 also shows that the shock series estimated

by Baumeister and Hamilton (2019) attribute a more important role to oil supply shocks

than the shocks estimated from the original decomposition proposed by Kilian (2009).

Details are provided in the appendix.

5.5 Results

5.5.1 Benchmark Estimation

The benchmark results for the real oil price are shown in table 5.2. All columns use the

method to control the country-specific fixed effect proposed by Hausman et al. (1984).

Column 1 uses clean energy patents, column 2 uses clean building patents, and column

3 uses biofuel patents. The results are generally in line with previous empirical litera-

ture. First, the lagged knowledge stock has a pronounced effect on patent applications

for the three considered technology classes, in line with the technology-push hypothesis

(e.g., Kruse and Wetzel, 2016). The estimated elasticities imply that a 10% increase in

the knowledge stock is associated with a roughly 3.1–5.7% increase in patent activity, de-

pending on the technology class, which is broadly comparable to previous research (e.g.,

Aghion et al., 2016; Kruse and Wetzel, 2016). Second, the country-specific policy support,

measured by the EPS index, is only significantly associated with patent activity in the

case of biofuels. This is comparable to the findings by Kruse and Wetzel (2016), who

document that public R&D support is only positively associated with green patent activ-

ity for specific technology classes, including biofuels. Third, the coefficient for the Kyoto

dummy is significantly positive for all technology classes, indicating that the expected

patent count is higher in the periods after the Kyoto protocol was signed.

The coefficient for the variable of main interest, the real oil price, is significantly pos-

itive for all green patent classes. The estimated elasticities imply that a 10% increase in

the global price of real oil is associated with a roughly 3.3–11.5% increase in expected

patent counts, depending on the technology class. The estimated elasticity is most pro-

nounced for biofuels, in line with the argument that biofuels are close substitutes to

conventional fuels. In terms of magnitude, the estimate is similar to the one reported by
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Guillouzouic-Le Corff (2018), who documents that biofuel patents are elastic to oil price

changes. Overall, the results imply that expected green patent counts in the different

classes are strongly associated with changes in the level of the real oil price.

Table 5.2. Regression of green patents on the real oil price

Dependent variable: Dependent variable: Dependent variable:
CE patents Building patents Biofuel patents

HHG HHG HHG
(1) (2) (3)

Knowledge stock 0.566*** 0.310** 0.450***
(0.106) (0.126) (0.159)

Real oil price 0.345*** 0.325*** 1.149***
(0.085) (0.049) (0.137)

Total patents 0.251 0.337** 0.200
(0.198) (0.166) (0.346)

EPS 0.047 0.125 0.177**
(0.085) (0.087) (0.070)

Kyoto dummy 0.571*** 0.262*** 2.073***
(0.153) (0.092) (0.474)

Observations 641 641 641
Countries 27 27 27

Note: Asterisks indicate significance at * 10%; ** 5%; *** 1%. Standard errors in parentheses are of
robust sandwich type. All models include two unreported dummies for no lagged knowledge stock and no
lagged total patents. Common time effects are controlled for through an unreported linear time trend.
HHG denotes the method to control for the fixed effect by Hausman et al. (1984).

Appendix table D5 presents the results for the benchmark model when different panel

count techniques are applied. First, columns 1, 3, and 5 account for potential overdisper-

sion of the dependent variable and use a negative binomial (NegBin) specification (Haus-

man et al., 1984). Second, columns 2, 4, and 6 account for potential weak exogeneity of

the explanatory variables by using the method by Blundell et al. (1995, 1999), henceforth

BGVR. The results are very similar to these alternative estimation approaches. This in-

cludes the coefficient of the real oil price, which is comparable in terms of magnitude and

estimation precision across all approaches for each technology class. An interesting differ-

ence can be observed for the coefficient of the knowledge stock, which is generally smaller

in magnitude and significance for the NegBin approach, but much more pronounced for

the BGVR method. A similar observation is made by Aghion et al. (2016) when applying

the BGVR approach. They argue that a potential reason for this observation is that

the presample mean is not able to fully capture the country-specific fixed effects (Aghion

et al., 2016).
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In summary, table 5.2 offers evidence that oil price developments are positively related

to the expected value of patents in the three considered technology classes. This result

motivates further to consider the origin of real oil price changes and, thus, the structural

shocks that lie behind them in the following sections.

5.5.2 Structural Oil Shocks

The main results for the structural oil shocks are shown in table 5.3. All columns use the

method to control the country-specific fixed effect proposed by Hausman et al. (1984).

Column 1 uses clean energy patents, column 2 uses clean building patents and column

3 uses biofuel patents.124 The coefficient of the lagged knowledge stock is somewhat

more pronounced in this estimation, which is likely a result of the absence of the real oil

price level in this specification. Apart from this difference, the coefficients of the control

variables are broadly consistent with the benchmark approach.

Turning to the structural oil market shocks, table 5.3 reports that positive oil sup-

ply shocks, i.e., unanticipated increases in oil supply, reduce the expected value of green

patents for each considered technology. This effect is most pronounced for biofuel patents,

and not very pronounced and imprecisely estimated for building patents. To put the es-

timated coefficient into perspective, the effect of a one standard deviation increase in

the continuous oil supply shock series is associated with an approximate 8.8% decrease in

patent applications in the following year for biofuels and an approximate 2.1% decrease in

patent applications for clean energy technologies.125 Positive oil demand shocks increase

expected patent applications mostly in the case of general clean energy technologies. A

one standard deviation increase in the oil demand shock series is associated with an ap-

proximate 4.4% increase in expected patent applications in the following year.126 Finally,

precautionary demand shocks are only precisely related to green patent activity in the

case of biofuels, and the effect is particularly pronounced: a one standard deviation in-

124It is important to emphasize that the standard errors for the structural shocks should be treated
with due caution. Since the shocks are estimates themselves, estimation uncertainty should include
uncertainty from the structural shock estimation. Yet, controlling for this fact is very difficult due to
the different time structure of the data (Kilian, 2009) and because of the use of Bayesian estimation
techniques by Baumeister and Hamilton (2019). Hence, I follow the bulk of empirical literature and
report standard errors that do not control for the generated regressors problem (e.g., Kilian, 2009;
Chen and Hsu, 2012; Ahmadi et al., 2019; Phan et al., 2019; Jibril et al., 2020; Maghyereh and Abdoh,
2020). Although I do not strongly rely on the significance, it gives at least a good indication of the
relative precision of estimation comparing the different generated shocks.

125Calculated as γG,1 × 100× 0.39.
126Calculated as γG,3 × 100× 1.03.
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crease in the precautionary demand shock series is associated with an approximate 15.5%

increase in biofuel patent applications in the following year.127

Table 5.3. Regression of green patents on oil shocks

Dependent variable: Dependent variable: Dependent variable:
CE patents Building patents Biofuel patents

HHG HHG HHG
(1) (2) (3)

Knowledge stock 0.608*** 0.316*** 0.741***
(0.139) (0.118) (0.196)

Oil supply shocks -0.054** -0.039 -0.225***
(0.024) (0.029) (0.049)

Oil demand shocks 0.043*** 0.021 0.014
(0.013) (0.017) (0.024)

Precautionary demand shocks -0.002 0.007 0.861***
(0.148) (0.086) (0.237)

Total patents 0.179 0.326* 0.014
(0.252) (0.172) (0.423)

EPS 0.050 0.140 0.211**
(0.100) (0.100) (0.084)

Kyoto dummy 0.377*** 0.065 1.330***
(0.135) (0.097) (0.432)

Observations 641 641 641
Countries 27 27 27

Note: Asterisks indicate significance at * 10%; ** 5%; *** 1%. Standard errors in parentheses are of
robust sandwich type. All models include two unreported dummies for no lagged knowledge stock and no
lagged total patents. Common time effects are controlled for through an unreported linear time trend.
HHG denotes the method to control for the fixed effect by Hausman et al. (1984).

These results are well in line with the conceptual considerations. As estimated by

Baumeister and Hamilton (2019), the real oil price is mostly driven by oil supply and

oil-specific demand shocks. A positive structural oil supply shock reduces the real oil

price, thus reducing green innovation incentives. On the other hand, a positive shock

to oil-specific demand increases the real oil price and hence increases green innovation

incentives. These results are also in line with preliminary evidence reported by Hu et al.

(2022), who estimate a similar empirical setup at the firm level in the US. Interestingly,

the effect of oil demand shocks is not very pronounced for biofuel patents. A possible

explanation is contained in the preliminary results by Hu et al. (2022). They find that the

effect of oil demand shocks is even negative for green innovation incentives of oil-producing

firms. Thus, the effects might cancel in the case of biofuel patents if a sufficient share

is issued by oil-producing firms. Precautionary demand shocks are highly relevant in the

baseline estimation for biofuel patents. This is interesting against the background that

127Calculated as γG,4 × 100× 0.18.
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precautionary demand shocks, as discussed by Baumeister and Hamilton (2019), play only

a minor role in explaining real oil price movements in their estimation. This can also been

seen in the effect on contemporaneous real oil price growth reported by appendix table D4.

As discussed by Kilian and Murphy (2014), precautionary demand shocks are designed

to capture expected future oil supply shortfalls, speculation, or other shocks related to

the expectations of oil market participants. Hence, precautionary demand shocks might

contain information regarding future oil uncertainties, which encourage patenting activity

for technologies that are close substitutes for conventional fuels, such as biofuels. Finally,

all shock series display only limited relevance for patent applications in the building sector.

This observation might be related to the relatively broad classification of clean building

patents.

In summary, the results of the structural shock analysis imply the following. First,

positive structural oil supply shocks are associated with a reduction in patent applications

for all considered technology classes, while the effect is most pronounced for biofuels and

smallest in terms of magnitude and precision for clean building patents. Second, oil-

specific demand shocks are mostly relevant for overall clean energy technologies. Third,

precautionary demand shocks are relevant only for biofuel patents.

5.5.3 Robustness and Extensions

This section contains several robustness tests and extensions. First, appendix table D6

presents the results for the benchmark model when different panel count techniques are

applied. The results for the structural shocks are very similar to these alternative estima-

tion approaches in terms of magnitude and precision of the estimates. Second, appendix

table D7 drops the net oil-exporting countries from the sample. Again, the results are

very similar compared to the main estimation and support the main insights.

5.5.3.1 Additional Controls

The main estimation approach broadly follows Kruse and Wetzel (2016) and includes im-

portant explanatory variables while being as parsimonious as possible. However, since the

structural oil shocks are global and, thus, the same for each country each year, a relevant

concern might be the omission of important variables. This section considers several dif-

ferent specifications including different sets of control variables. This includes additional

country-specific controls as well as additional common factors. The country-specific con-
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trols include the following. First, GDP per capita is added as an additional control for

changing economic conditions over time (e.g., Aghion et al., 2016; Guillouzouic-Le Corff,

2018). Second, since energy patent activity might be influenced by the country-specific

trend in energy demand (Sterlacchini, 2020), energy use per capita is added. Third, the

technological innovation capacity of a country might not be fully captured by the lagged

knowledge stocks. Cheon and Urpelainen (2012) use the renewable energy share in elec-

tricity generation as an alternative measure. Hence, I control for the share of renewable

energy use in total energy use as a measure of the importance of renewable energy tech-

nologies. The additional common factors control for the state of the global business cycle,

as patenting behavior might be different in periods of global crisis. First, the remaining

structural shocks from the decomposition by Baumeister and Hamilton (2019), aggregate

demand shocks, are added. These contain unexpected shifts in global industrial produc-

tion growth and, hence, unexpected economic downturns. Second, following Hu et al.

(2022), the index of global economic conditions developed by Baumeister et al. (2022) is

added. This index is a combination of 16 subindicators, designed to capture economic

conditions that are well suited to forecast energy prices.

Table 5.4 adds the different country-specific controls to the benchmark estimation.

Columns 1, 4, and 7 add GDP per capita, columns 2, 5, and 8 add energy use per capita,

and columns 3, 6, and 9 add the renewable energy share. The main results are generally

robust when adding these country-specific controls.

Table 5.5 adds the two additional global factors at a time. Columns 1, 3, and 5 add the

remaining structural shocks from the decomposition by Baumeister and Hamilton (2019),

aggregate demand shocks. Columns 2, 4, and 6 add the indicator of global economic con-

ditions. Interestingly, both global economic variables are related negatively with patent

applications for all three technology areas. A possible explanation is the severe downturn

of economic conditions during the financial crisis 2007–2009, during which patent activity

has not dropped (see figure 5.1). Importantly, however, the results for the main results

remain robust against the inclusion of the measures of global economic conditions, and

are even somewhat more pronounced in general. In summary, tables 5.4 and 5.5 docu-

ment that the main results are robust against adding different further country-specific

and aggregate controls.
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5.5.3.2 Lag Structure

This section considers the possibility that the association between the structural shocks

and the patent count changes with more time lag. Specifically, table 5.6 adds a second

lag for each structural shock series to the main regression.

Table 5.6. Additional lag included

Dependent variable: Dependent variable: Dependent variable:
CE patents Building patents Biofuel patents

HHG HHG HHG
(1) (2) (3)

Knowledge stock 0.642*** 0.348*** 0.820***
(0.171) (0.130) (0.169)

Oil supply shocks (1. lag) -0.059* -0.040 -0.305***
(0.032) (0.031) (0.053)

Oil supply shocks (2. lag) -0.080*** -0.052* -0.261**
(0.029) (0.027) (0.107)

Oil demand shocks (1. lag) 0.070*** 0.046** 0.038
(0.014) (0.019) (0.036)

Oil demand shocks (2. lag) 0.037*** 0.040*** -0.014
(0.010) (0.012) (0.015)

Precautionary -0.066 -0.058 1.075***
demand shocks (1. lag) (0.177) (0.098) (0.295)
Precautionary 0.150 0.126* 1.262***
demand shocks (2. lag) (0.131) (0.074) (0.216)
Total patents 0.074 0.258 -0.453

(0.304) (0.191) (0.502)
EPS 0.043 0.132 0.232**

(0.095) (0.095) (0.095)
Kyoto dummy 0.395*** 0.080 1.187***

(0.128) (0.103) (0.369)

Observations 615 615 615
Countries 27 27 27

Note: Asterisks indicate significance at * 10%; ** 5%; *** 1%. Standard errors in parentheses are of
robust sandwich type. All models include two unreported dummies for no lagged knowledge stock and no
lagged total patents. Common time effects are controlled for through an unreported linear time trend.
HHG denotes the method to control for the fixed effect by Hausman et al. (1984).

In general, the main insights remain robust to adding a second lag. Some remarks

are in order. First, for both clean energy technologies in general and clean building

technologies, the second lag of oil supply shocks is more significantly related to patenting

activity. This might indicate that the response is somewhat slower for these technology

areas. Second, when allowing for the second lag, the positive association of clean building

patents to oil demand shocks is more precisely estimated than in the main approach.
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Third, both clean energy and clean building patents are related positively to the second

lag of precautionary demand shocks, although the precision of the estimate is quite low.

Again, this might indicate that the response in these two technology areas is slower.

However, in general the results reported in table 5.6 support the insights from the main

estimation.

5.6 Conclusions

In this paper I have estimated the impact of different structural shocks in the global

oil market on country-specific green innovation. Based on the observation that oil price

shocks are frequently related to incentives to develop green innovation, I argue that it

is important to consider the structural nature of the shocks. In a benchmark estimation

it is confirmed that the technology classes under consideration are strongly associated

with changing levels of the real oil price, which further motivates to consider the origin

of oil price shifts. To identify the global oil shocks, I draw on the estimated shock series

provided by Baumeister and Hamilton (2019). I use patent data in three technology areas

that might be related to oil prices and hence to structural oil market shocks, namely

general clean energy technology, clean building technologies, and biofuel technology. The

key insight is that the type of oil market shocks matters for patent activity in green

technologies. First, positive oil supply shocks, i.e., unanticipated increases in global oil

supply growth, are associated with negative patent applications in the following year for

all three technology areas, yet with different magnitude and significance. The effect is

most pronounced for biofuels, which provide a direct substitute for oil-derived fuels (e.g.,

Guillouzouic-Le Corff, 2018). Second, oil demand shocks play a much more limited role,

being only associated with higher patent applications for clean energy technologies in

general. Third, precautionary demand shocks, which are related to expectations and un-

certainty of oil market participants, are strongly associated with higher patenting activity

for biofuels.

These results have importing implications for policy. First, since oil supply shocks

are robustly associated with green patenting activity, the results are consistent with the

hypothesis that technological disruptions in global energy markets, such as the shale gas

boom, can hinder green technological progress (e.g., Lazkano and Ayasli, 2022). On the

other hand, they are also consistent with the view that supply shortages because of scarce

oil stocks increase the incentives for green innovation (e.g., Hassler et al., 2021). Second,
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since green innovation responds differently to different structural oil market shocks (at

least in the short run), a better knowledge of the effects of underlying structural shocks

appears to be important to design a resilient green innovation system. Third, the partic-

ularly strong effect of precautionary demand shocks for biofuel patents points to the need

to consider uncertainty in the energy market as relevant incentive for green innovation.

However, the aggregate nature of the analysis comes with some limitations. First,

because the oil market shocks are the same for all countries in the sample, it is not possible

to focus on country-specific variation in order to mitigate the potential for omitted variable

bias. Second, the oil market shocks depend naturally on the specific method to extract

them. Although I relied on recent advances in the literature on oil market modeling,

different decompositions might lead to somewhat different results.

These limitations directly indicate avenues for further research. First, more fine-

grained micro level studies might add to the causal interpretation of the structural oil

market shocks and to country-, sector-, or firm-specific transmission channels which are

beyond the scope of this paper. Secondly, additional studies might use different methods

to identify the oil market shocks to get comprehensive view.
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Appendix D

Part I: Data and Descriptive Statistics

Table D1. List of the sample countries

Australia Hungary Slovak Republic
Austria Ireland Spain
Belgium Italy Sweden
Canada* Japan Switzerland

Czech Republic Korea Türkiye
Denmark* Mexico* United Kingdom*
Finland Netherlands United States
France Norway*

Germany Poland
Greece Portugal

Note: The OECD countries included in the sample. Asterisks indicate net oil-exporting
countries. Calculated based on data from the U.S. Energy Information Administration.

Table D2. Green patent classifications

Technology field Description CPC class

Renewable energy Reduction of greenhouse gas
[GHG] emissions, related to en-
ergy generation, transmission or
distribution

Y02E

Buildings Climate change mitigation tech-
nologies related to buildings,
e.g., housing, house appliances
or related end-user applications

Y02B

Biofuels Technologies for the produc-
tion of fuel of non-fossil origin;
specifically biofuels

Y02E50/10
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Table D3. Data sources

Data series Source

Yearly frequency

Patent data EPO PATSTAT 2021 autumn
Crude oil spot price Brent and WTI World Bank, Commodity Prices database

“pink sheet”, https://www.worldbank.org/
en/research/commodity-markets

CPI total OECD OECD, Consumer price indices (CPIs) - Com-
plete database

Environmental Policy Stringency OECD, Botta and Koźluk (2014)
Total final energy consumption (TFEC) in TJ World Bank, Sustainable

Energy For All database
(1.1 TOTAL.FINAL.ENERGY.CONSUM)

Renewable energy share of TFEC (%) World Bank, Sustainable
Energy For All database
(2.1 SHARE.TOTAL.RE.IN.TFEC)

GDP in constant 2015 US $ World Bank World Development Indicators
(NY.GDP.MKTP.KD)

Population World Bank World Development Indicators
(SP.POP.TOTL)

Crude oil including lease condensate imports
and exports

U.S. Energy Information Administration
(EIA)

Monthly frequency

Crude oil spot price Brent and WTI World Bank, Commodity Prices database
“pink sheet”, https://www.worldbank.org/
en/research/commodity-markets

CPI total OECD OECD, Consumer price indices (CPIs) - Com-
plete database

Index of global real economic activity Federal Reserve Bank of Dallas, available
at https://www.dallasfed.org/research/

igrea.aspx. Originally developed by Kilian
(2009)

Global crude oil including lease condensate
production

U.S. Energy Information Administration
(EIA)

Global economic conditions indicator Baumeister et al. (2022) available at
https://sites.google.com/site/

cjsbaumeister/datasets?authuser=0

Structural oil shocks Baumeister and Hamilton (2019) avail-
able at https://sites.google.com/site/

cjsbaumeister/datasets?authuser=0
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Part II: Structural Shocks

Table D4. Contemporaneous effect of structural shocks on real oil price growth

Dependent variable: Real oil price growth
Shocks Baumeister and Hamilton (2019) Shocks Kilian (2009)

(1) (2) (3) (4) (5)

Supply shock -4.452*** -0.767
(0.371) (0.551)

Demand shock 1.813*** 7.830***
(0.090) (0.327)

Precautionary demand shock 0.799*
(0.450)

Observations 311 311 311 311 311
R2 0.318 0.566 0.010 0.006 0.650

Note: Asterisks indicate significance at * 10%; ** 5%; *** 1%. Standard errors in parentheses.

Table D4 presents a comparison between the structural shocks provided by Baumeister

and Hamilton (2019) and the shocks obtained from the original approach by Kilian (2009).

To estimate the shocks with latter approach, I use the code files provided in the supple-

mentary material to Kilian (2009). Following Kilian (2009), I use p = 24 lags. In order

to have residual observations from the first month in 1990 onward, the structural VAR is

estimated for the period 1988-2015 on a monthly base. The three variables of the model

are: first, the growth rate of global oil production (including lease condensate). Second,

the index of global economic activity based on shipping costs developed by Kilian (2009).

Third, real crude oil prices constructed as the average of Brent and WTI deflated by the

OECD CPI. Details on the data sources are provided in table D3.

Interestingly, despite fundamental differences in model specification, econometric tech-

nique/identification, and data choices, the correlation between the structural shocks is

decent. In particular, the correlation coefficient of structural supply shocks at monthly

frequency is 0.631 and the correlation coefficient between the oil-specific demand shocks

at monthly frequency is 0.699. However, in line with the discussions by Kilian (2009)

and Baumeister and Hamilton (2019), structural supply shocks play a greater role in ex-

plaining contemporaneous real oil price growth rates in the estimation by Baumeister and

Hamilton (2019).
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Part III: Additional Estimation Results

Table D5. Regression of green patents on the real oil price, alternative estimators

Dependent variable: Dependent variable: Dependent variable:
CE patents Building patents Biofuel patents

Negbin BGVR Negbin BGVR Negbin BGVR
(1) (2) (3) (4) (5) (6)

Knowledge stock 0.461*** 0.948*** 0.199*** 0.754*** 0.041 0.964***
(0.055) (0.099) (0.071) (0.097) (0.097) (0.064)

Real oil price 0.385*** 0.321*** 0.346*** 0.330*** 1.057*** 0.987***
(0.057) (0.083) (0.064) (0.054) (0.140) (0.167)

Total patents -0.004 0.093 0.234*** 0.266*** 0.122 0.109*
(0.064) (0.116) (0.076) (0.075) (0.100) (0.057)

EPS 0.045 0.054 0.168*** 0.069 0.167** 0.058
(0.031) (0.072) (0.037) (0.062) (0.074) (0.056)

Kyoto dummy 0.611*** 0.725*** 0.279*** 0.350*** 1.461*** 2.358***
(0.078) (0.133) (0.084) (0.066) (0.193) (0.319)

Observations 641 641 641 641 641 641
Countries 27 27 27 27 27 27

Note: Asterisks indicate significance at * 10%; ** 5%; *** 1%. Standard errors in parentheses are
clustered at the country level for BGVR. The Negbin models include two unreported dummies for no
lagged knowledge stock and no lagged total patents. The dummies are dropped for BGVR to ensure
convergence of the likelihood function. Common time effects are controlled for through an unreported
linear time trend. Negbin accounts for overdispersion of the patent count variable. BGVR is the method
by Blundell et al. (1999).
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Table D6. Regression of green patents on oil shocks, alternative estimators

Dependent variable: Dependent variable: Dependent variable:
CE patents Building patents Biofuel patents

Negbin BGVR Negbin BGVR Negbin BGVR
(1) (2) (3) (4) (5) (6)

Knowledge stock 0.517*** 0.967*** 0.199*** 0.756*** 0.205** 1.051***
(0.057) (0.095) (0.074) (0.093) (0.100) (0.086)

Oil supply shocks -0.087** -0.051** -0.059 -0.038 -0.278*** -0.207***
(0.036) (0.025) (0.041) (0.031) (0.085) (0.050)

Oil demand shocks 0.043*** 0.042*** 0.021 0.023 -0.013 0.017
(0.013) (0.013) (0.015) (0.016) (0.033) (0.022)

Precautionary demand shocks 0.087 0.060 0.009 0.053 0.662*** 0.897***
(0.081) (0.133) (0.091) (0.094) (0.195) (0.159)

Total patents -0.078 0.070 0.224*** 0.265*** -0.025 0.079
(0.066) (0.112) (0.079) (0.073) (0.099) (0.056)

EPS 0.053* 0.057 0.189*** 0.079 0.220*** 0.100
(0.032) (0.081) (0.038) (0.071) (0.077) (0.066)

Kyoto dummy 0.358*** 0.502*** 0.057 0.131* 0.692*** 1.469***
(0.072) (0.080) (0.076) (0.068) (0.178) (0.234)

Observations 641 641 641 641 641 641
Countries 27 27 27 27 27 27

Note: Asterisks indicate significance at * 10%; ** 5%; *** 1%. Standard errors in parentheses are
clustered at the country level for BGVR. The Negbin models include two unreported dummies for no
lagged knowledge stock and no lagged total patents. The dummies are dropped for BGVR to ensure
convergence of the likelihood function. Common time effects are controlled for through an unreported
linear time trend. Negbin accounts for overdispersion of the patent count variable. BGVR is the method
by Blundell et al. (1999).
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Table D7. Regression of green patents on oil shocks, net oil-importing countries

Dependent variable: Dependent variable: Dependent variable:
CE patents Building patents Biofuel patents

HHG HHG HHG
(1) (2) (3)

Knowledge stock 0.534*** 0.330*** 0.682***
(0.152) (0.125) (0.215)

Oil supply shocks -0.049* -0.041 -0.242***
(0.027) (0.031) (0.046)

Oil demand shocks 0.042*** 0.024 0.011
(0.014) (0.018) (0.028)

Precautionary demand shocks -0.032 -0.021 0.843***
(0.161) (0.093) (0.285)

Total patents 0.301 0.324* 0.063
(0.282) (0.177) (0.504)

EPS 0.050 0.131 0.310***
(0.118) (0.110) (0.101)

Kyoto dummy 0.313** 0.056 1.284***
(0.149) (0.101) (0.495)

Observations 522 522 522
Countries 22 22 22

Note: Asterisks indicate significance at * 10%; ** 5%; *** 1%. Standard errors in parentheses are of
robust sandwich type. All models include two unreported dummies for no lagged knowledge stock and no
lagged total patents. Common time effects are controlled for through an unreported linear time trend.
HHG denotes the method to control for the fixed effect by Hausman et al. (1984).
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