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Abstract

Entanglement is an essential part of quantum mechanics and a resource for most

quantum technologies. While entangled two-particle Bell states are well established,

the generation and classification of entanglement in multipartite systems is much more

difficult to achieve. At the same time, multipartite entanglement is the key to unlock

the full advantage provided by the exponentially large Hilbert space of quantum

systems. This thesis explores possibilities of entanglement generation with a specific

focus on applications in quantum technologies. In systems of coupled microcavity

arrays, coherent optical pulses are considered to directly drive the quantum system

into multipartite entangled target states. The building block of such coupled-cavity

arrays consists of a single mode cavity with a two-level emitter, whose interaction is

described by the Jaynes–Cummings model. In order to gain insight into the system, a

novel representation of its eigenspectrum is presented, which shows the eigenenergies

and the composition of the corresponding eigenstates. Based on this, a numerical

scheme, which is the central achievement of this thesis, is developed that allows

to determine precise excitation parameters to generate entanglement. Finally, this

scheme is used to show the generation of multipartite entanglement in the form of

W and phased Dicke states with high fidelity.
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Chapter 1

Introduction

Quantum entanglement is an entirely non-classical correlation phenomenon that
occurs in quantum systems that are composed of at least two particles. If these
particles are entangled, their collective quantum state does not permit a description
in terms of the separate components. Instead, predicting the behavior of one particle
requires the full information about the collective state. One consequence is that
the measurement of the state of one particle instantly sets the state of the others.
Importantly, these correlations are set instantaneously irrespective of the distance
between the particles. This is also the subject of the famous Einstein–Podolsky–
Rosen (EPR) paradox [4]. This makes quantum entanglement indispensable for many
tasks in quantum information theory, quantum communication [5], and quantum
computing [6]. Commonly, entangled photons are used for the distribution of quantum
entanglement in quantum communication networks [5], or for quantum teleportation
[7, 8]. Photons are inherently non-stationary. For the local use of entanglement, e.g.,
for distributed quantum computation, it is more appropriate to use entangled matter
qubits, like two-level atoms, nitrogen-vacancy (NV) centers, or quantum dots (QDs).

In quantum information theory many tasks rely on quantum entanglement as a
resource, from which arises the potential for advantage over their classical counter-
parts. The point where quantum computers surpass classical computers is called
quantum supremacy [9]. The heart of quantum supremacy lies in the use of entangled
qubits instead of classical bits. Each qubit doubles the quantity of information that
can be stored in a quantum system. Therefore, the amount of storable information
increases exponentially. By contrast, the increase in a classical computer is just linear.
Famous examples for specific tasks that theoretically exhibit quantum supremacy
are Groover’s algorithm for database search [10] and Shor’s algorithm for finding the
prime factors of large numbers [11]. To apply these algorithms to a meaningful task,
quantum computers with large numbers of error-corrected qubits are needed, which
are not yet available today. Nevertheless, in the last few years, reports were published
claiming that quantum supremacy has been achieved by quantum processors that
reduced the amount of time needed to solve particular problems by several orders
of magnitude compared to the time classical state-of-the-art supercomputers would
need [12, 13, 14, 15, 16, 17]. With the currently producible quantum processors with
50-100 qubits we have reached the state of quantum computing that is referred to as
the noisy intermediate-scale quantum (NISQ) era [18]. This means, that NISQ quan-

17



tum computers are able to solve specific problems in significantly much shorter time
than most powerful classical supercomputers. Furthermore, they provide new tools
for exploring multipartite entanglement. However, it remains an open question of
whether NISQ technologies will have useful industrial applications in the foreseeable
future [18]. The current work focusses on such NISQ architectures in terms of CCAs
and investigates possibilities to generate and control multipartite entanglement.

The generation of entangled qubits can be performed on a wide range of different
platforms [19], where the most prominent ones include trapped ions [20, 21, 22],
superconducting qubits [23, 24, 25, 26], and semiconductor QDs [27]. Another
platform that has been closely investigated for this thesis is provided by coupled
cavities, which are one of the research objects of cavity quantum electrodynamics
(cQED) [28]. It refers to the regime, where the interaction of light and matter
is modified due to the confinement of the electromagnetic field. The coupling of
cavities is the result of the overlap of the corresponding field modes but can also
be engineered, e.g., by using waveguides. Individual qubits inside each cavity of an
array are spatially separated and do not interact directly. However, the interaction
of the qubits is a necessary condition for entanglement in the system of qubits. This
interaction is indirectly mediated by the light field via the cavity-cavity coupling.

The treatment of the light-matter interaction in this thesis is based on the Jaynes–
Cummings model [29], which describes the interaction of a two-level atom and the
quantized light field of a single cavity mode. Despite its simplicity, it is the foundation
of many established concepts of generating entanglement [30, 31, 32]. Arrays of
coupled cavities offer a scalable platform for the creation of quantum entanglement in
a system with more than two qubits, which is referred to as multipartite entanglement
(MPE).

The present thesis gives a detailed analysis on how to generate MPE in a system
of coupled cavity-qubit systems. For this purpose we analyze the eigenspectrum
and reveal possibilities to identify transitions from the ground state of the system
to entangled target states. We discuss how to drive these transitions with optical
excitation pulses and introduce a numerical approach to determine optimal system
parameters for entanglement generation.

The thesis is as follows: In Chapter 2 we give an overview of current quantum
technologies that harness quantum entanglement and discuss how they are related
to the insights that we obtain in this thesis.

In Chapter 3 we give a formal definition of quantum entanglement and how it can
be quantified in terms of suitable entanglement measures.

The building block of the extended coupled-cavity systems consists of individual
microcavities with a qubit inside, whose interaction is described in terms of the
well-known Jaynes–Cummings model [29]. In Chapter 4 we revisit the JC model
and develop a graphical representation of the system’s energy structure and discuss
prerequisites for the generation of Rabi oscillations with an optical coherent pump.
This is followed by an explanation of how to directly drive target states with a pump
pulse. Bridging the gap to experimental realizations, we discuss how dissipative
processes can be implemented.

Connecting multiple of these building blocks under the consideration of photon
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hopping between the cavities is the topic of Chapter 5. Based on the insights from
the previous chapter, we investigate how to generate Rabi oscillations between the
ground state and different target states. We extend this discussion by harnessing an
optical pulse in order to drive the system directly into entangled states with a high
fidelity.

In Chapter 6 we present the generalization of the previous method using a numerical
scheme for finding suitable parameters that allow us to drive a variety of entangled
multipartite target states. The power of this generalized scheme is exemplarily
demonstrated for arrays with three and four coupled cavities by generating W states
with high fidelity. Furthermore, we discuss the symmetry of the Hamiltonian that
describes the CCAs and opens the door to a wider range of entangled states by
individually addressing the qubits with differently phased coherent pumps. The
discussion is substantiated by demonstrating the generation of an antisymmetric
tripartite W state.

In the last chapter we conclude the insights and methods, both analytic and numeric,
developed in this thesis and discuss how far they can find application in future
quantum technologies.

Some of the results presented in this thesis have been published in Physical Review
A [33].
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Chapter 2

The role of entanglement for new
quantum technologies

Quantum entanglement is an essential resource for new quantum technologies. Bell
states for example have a wide range of applications in quantum information protocols.
Two important examples are the teleportation of quantum states [8] and quantum
key distribution (QKD) using the Ekert protocol [34]. Another application for
entanglement is the realization of a quantum repeater for long-range quantum
communication [35]. The supremacy of quantum computers in solving specific
tasks exponentially faster than classical computers would not be possible without
entanglement [12]. One example of high relevance is the simulation of quantum
systems. Its implementation would constitute a future milestone along the path
to novel ways of studying quantum physics. Another task is to find the two prime
factors of a given number obtained by their multiplication, which can be performed
with Shor’s algorithm. Modern cryptography uses the Rivest–Shamir–Adleman
(RSA) scheme to encode data [36]. According to this scheme, products of prime
numbers are generated in order to obtain large integers that cannot be factorized by
classical computers within a rewarding amount of time. A quantum computer that
breaks the RSA encryption by finding these prime numbers within an efficiently short
period of time would be a change of paradigm in the field of encryption and secure
transmission of information. The entanglement of three or more particles, which
occurs for example in cluster states, is an additional step towards realizing certain
quantum computing architectures, such as measurement-based quantum computing
(QC) [37] and quantum reservoir computing (QRC).

The interaction between photons trapped in an optical cavity and quantum particles,
like atoms, is studied in cavity quantum electrodynamics (cQED). Solid-state systems
that operate in this regime are considered for many opto-electronic applications,
ranging from nanolasers [38] to quantum-light sources [39] and sensors [40]. Using
state-of-the-art fabrication techniques, even networks of solid-state based cQED
systems can be realized, opening the door for photonic QRC [41]. The presence of
a cavity allows to tailor and enhance the spontaneous emission from the particle
it interacts with. This can be harnessed to increase brightness and efficiency in a
wide range of material systems [38, 42, 43]. Quantum dots (QDs) are of particular
interest for applications in quantum technologies due to their properties that are
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precisely tunable to match the embedding resonator structure [44, 45, 46]. This
makes them ideal candidates for entanglement generation [47]: Systems of fully or
partially connected coupled-cavity arrays (CCAs) have already been experimentally
realized [48, 49, 50]. In such experimental setups, the photonic connection between
the cavities can be realized by networks of waveguides [1], as shown in Fig. 2.1, or
external mirrors [51, 2], as shown in Fig. 2.2.

(a) Single-layer waveguide structure. (b) Two-layers waveguide structure.

Figure 2.1: SEM micrograph images of waveguide architectures reprinted from Ref. [1].
(a) Single-layer waveguide structure with 81 inputs on the top. Each input has 9
branches arranged in a square lattice, where the 8 branches that surround the one in
the center are connected to the branches of the neighboring inputs. This leads to
overall 121 outputs on the bottom of the whole structure. (b) Two-layer architecture
with 9 inputs and 121 outputs. The 81 branches of the 9 inputs of the top layer are
not connected with each other. They represent the inputs of the bottom layer.

In CCAs with spatially homogeneously distributed cavities, collective modes can
form that are delocalized over the whole array [52]. In these collective modes,
photons can induce correlations in the electronic degrees of freedom of the quantum
emitters that are located in distant cavities. These perfectly combine an electronic
system that is capable of hosting both classical and quantum correlations [53] with
convenient accessibility of each individual cavity by optical excitation. For this
reason, CCAs are of particular interest for several emerging technologies, such as
the deterministic generation of multipartite entanglement (MPE) [54] and quantum
reservoir computing [55]. A realization of an optical cavity by a micropillar and a
CCA made of multiple micropillars is shown in Fig. 2.3.

In addition, CCAs have previously been considered for the generation of cluster states
[54], Bell states [56], and GHZ states [57]. Another important class of entangled
multipartite states are W states. They stand out due to their robustness against
particle loss and their application in quantum communication protocols [58]. In
general, MPE (as exhibited, e.g., by GHZ and W states) is of great interest due to its
superiority over bipartite entanglement from the state convertibility perspective by
local operations and classical communication (LOCC) [59]. Entangled multipartite
states like W states have been generated by entangling photons [60], superconducting
qubits [61], or trapped ions [62]. Different theoretical schemes for generating W
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(a) VCSEL array. (b) Schematic of diffractive coupling.

Figure 2.2: Diffractively coupled cavities as a reservoir computer reprinted from
Ref. [2]. (a) Chip hosting an 8×8 array of single-mode vertical-cavity surface-emitting
lasers (VCSELs) from Princeton Optronics, arranged in a square lattice with a pitch
of 250 µm [51]. (b) Schematic of the diffractive coupling of an optical array. The
VCSEL array emits light that passes a diffractive optical element (DOE) and is
imaged onto a reflective spatial-light modulator (SLM). The reflection of the SLM is
then again imaged back onto the VCSEL array, where the overlapping orders result
in coupling between neighboring emitters [51].

(a) Single micropillar. (b) Micropillar array.

Figure 2.3: SEM images of micropillars that function as optical cavities reprinted
from Ref. [3]. (a) Single micropillar with a diameter of 4 µm. (b) Array of micropillar
cavities with a pitch of 8.3 µm, which are coupled by diffraction optics.
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states have been developed [58, 63, 64, 65, 66, 67]. Important platforms for the
experimental generation of spatially distributed quantum systems are atomic qubits
[68, 69], superconducting qubits [70], spins in diamonds [71], spins in semiconductor
quantum dots [72], and trapped ions [73].

These examples illustrate some of the technological state of the art and underline
the realizability of the concepts and methods introduced in this work. The hardware
platforms and optical control over qubit and photon degrees of freedom that our
methods rely on already exist in different implementations, both in atoms, supercon-
ducting circuits, and solid-state quantum emitters embedded in dielectric cavities, at
least in small scale. The generation of entangled quantum states is a key ingredient
towards future quantum technologies, such as quantum computers, quantum reservoir
processors, and quantum sensors that rely on using entanglement as a resource to
undertake specific tasks with an advantage over any classical analogue.

23



Chapter 3

Framework for quantifying
entanglement

The main aspect of this thesis is the generation of entanglement. Two or more
subsystems that form a compound quantum system are entangled if the state of one
subsystem cannot be described independently of the other states. A major property
of entangled subsystems is that the outcomes of measurements on each subsystem
are correlated. This correlation is independent of the spatial distance between the
entangled subsystems. It also persists when the measurement takes place in another
basis, as it is shown schematically in Fig. 3.1.

(a) Independence of spatial distance. (b) Independence of measurement basis.

Figure 3.1: Schematic picture of the properties of the entirely non-classical phenomena
of entanglement. From an entanglement source (circle in the middle) two entangled
particles (red dots) are emitted into different directions (indicated by black arrows).
Here, the state of the particles is given by their anti-parallelly orientated spins (red
arrows). The measurement of the spin of one particle immediately sets the spin of
the other particle. Thus, after the spin measurement of the first particle the outcome
of the spin measurement of the second particle is independent of the spatial distance
of the particles (a) and the basis of the measurement (b).

Quantum entanglement is a entirely non-classical correlation. Due to its properties,
entanglement is an essential resource for quantum technologies. Bipartite entangled
states like the Bell states have a wide range of applications in quantum information
protocols, e.g., the teleportation of quantum states [8] and quantum key distribution
(QKD) [34]. Entanglement is also an important factor for creating quantum repeaters
for long-range quantum communication [35]. Other important fields of research are
quantum computing and quantum reservoir computing. The generation of MPE,
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3.1. FORMAL DEFINITION OF ENTANGLEMENT

which occurs for example in cluster states [37], is a step towards to the realization of
quantum computers that may solve specific programmable problems exponentially
faster than classical computers [12].

3.1 Formal definition of entanglement

When talking about quantum states and entanglement of a compound system, one
has to distinguish between pure and mixed states. In this section, we give a definition
of separable pure and mixed states, respectively, for a system compound of two
subsystems. The results can easily transcribed for larger systems [74].

3.1.1 Entanglement of pure states

Let HA and HB be the Hilbert spaces of two subsystems with dimensions dA and
dB, respectively. Then the Hilbert space for the composite system made up of these
two subsystems is the Hilbert tensor product HA ⊗HB. The total state |ψ⟩ of the
compound system is in general a superposition of the basis states |ai⟩A ⊗ |bj⟩B ∈
HA ⊗HB with |ai⟩A ∈ HA and |bj⟩B ∈ HB:

|ψ⟩ =
dA∑
i=1

dB∑
j=1

cij |ai⟩A ⊗ |bj⟩B ∈ HA ⊗HB. (3.1)

If we can find states |φ⟩A ∈ HA and |φ⟩B ∈ HB such that

|ψ⟩ = |φ⟩A ⊗ |φ⟩B , (3.2)

then the pure state |ψ⟩ ∈ H is called separable. This is the case, if cij = cicj such
that |φ⟩A =

∑
i ci |ai⟩A ∈ HA and |φ⟩B =

∑
j cj |bj⟩B ∈ HB. Else, if cij ̸= cicj for at

least one pair (i, j), the state |ψ⟩ is called entangled [75]. A well-known example for
bipartite entanglement are the Bell states

|Φ±⟩ =
1√
2
(|00⟩ ± |11⟩) , (3.3a)

|Ψ±⟩ =
1√
2
(|01⟩ ± |10⟩) , (3.3b)

where we used the shorthand notation |ai⟩A ⊗ |bj⟩B ≡ |aibj⟩. The states |0⟩ and |1⟩
are the ground state and the excited state, respectively, of a two-level system.

Entanglement can also occur in systems with more than two parties. The most
important form of multipartite entanglement is the genuine multipartite entangle-
ment. A given state is called genuine multipartite entangled if it is not biseparable
(triseparable, etc.), i.e., partially separable. In other words, genuine multipartite
entangled states cannot be separated into groups of entangled parties that are not
entangled with the remaining parties of the state. One important genuine multi-
partite entangled state including at least three subsystems is the GHZ state named
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after Greenberger, Horne, and Zeilinger [76]. For N ≥ 3 qubits the GHZ states are
defined as

|GHZN⟩ =
1√
2

(
|0⟩⊗N + |1⟩⊗N

)
. (3.4)

For three subsystems this expression simplifies to

|GHZ3⟩ =
1√
2
(|000⟩+ |111⟩) . (3.5)

The GHZ state is a superposition of the ground state and the maximally excited
state. According to many entanglement measures it is considered to be a maximally
entangled multipartite state with outstanding quantum mechanical properties. This
makes GHZ states interesting for the realization of quantum communication protocols
such as the secret sharing protocol [77]. Another example for genuine multipartite
entanglement are Dicke states [78]. For N subsystems with overall k excitations, the
Dicke states are defined as

|DN,k⟩ =
(
N

k

)−1
2 ∑

j

Pj

{
|0⟩⊗k ⊗ |1⟩⊗(N−k)

}
, (3.6)

where Pj is the j-th possible permutation. The Dicke state with three subsystems
and two excitations for example is given by

|D3,2⟩ =
1√
3
(|011⟩+ |101⟩+ |110⟩) . (3.7)

In the case of N subsystems with k = 1 excitations, the corresponding Dicke states
are also known as W states:

|WN⟩ =
1√
N

(|0 . . . 01⟩+ |0 . . . 010⟩+ · · ·+ |10 . . . 0⟩) . (3.8)

The tripartite W state for example is given by

|W3⟩ =
1√
3
(|001⟩+ |010⟩+ |100⟩) . (3.9)

In contrast to the GHZ state, the entanglement of W states is very robust against
the loss of qubits, i.e., the state |WN⟩ remains entangled even if any N − 2 qubits
lose the information about their particle, e.g., after a measure [79]. That means that
any two out of N qubits are entangled even if they are not coupled anymore with
the remaining N − 2 qubits. This property makes W states interesting for many
applications of quantum information theory, which is they are the focus of this thesis.

3.1.2 Entanglement of mixed states

Any mixed state is represented by a density matrix. We first give a little reminder
about the definition of a density matrix and discuss under which condition it is a
pure or a mixed state before we return to the definition of entanglement of mixed
states.
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Let B(H) denote the space of bounded linear maps of H to H, which is a Banach
space with respect to the operator norm. An operator ρ ∈ B(H) is a density matrix
if ρ is self-adjoint and positive-semidefinite and tr(ρ) = 1. The expectation value Φ
of an operator A ∈ B(A) is given by Φ(A) = tr(ρA) = tr(Aρ) [80]. The orthogonal
projection |ψ⟩ ⟨ψ| onto the span of the unit vector |ψ⟩ ∈ H is a density matrix with
tr(|ψ⟩ ⟨ψ|A) = ⟨ψ|A|ψ⟩ for all A ∈ B(H) [80]. A density matrix ρ ∈ B(H) is a pure
state if there exists a unit vector |ψ⟩ ∈ H such that

ρ = |ψ⟩ ⟨ψ| . (3.10)

Otherwise, it is called mixed state. Pure states remain pure until they interact with
the environment and evolve into a mixed state. That is why mixed states play such
an important role in the investigation of quantum systems.

A simple way to find out whether a given density matrix is a pure state or not
is to calculate the trace of the square of that matrix, because a density matrix ρ
is a pure state if and only if tr(ρ2) = 1. The density matrix ρ of a pure state is
also idempotent, i.e., ρ2 = ρ. However, there are two further criteria which can be
checked. One way is to calculate the von Neumann entropy of the given density
matrix. The von Neumann entropy of a density matrix ρ is defined as

S(ρ) = −tr(ρ ln ρ), (3.11)

where ρ ln ρ is defined by a functional calculus and, per definition, 0 ln 0 is interpreted
as 0 [74]. For an N -level system, this entropy reaches its highest attainable value
lnN when all probabilities pj ≡ 1/N . A density matrix ρ is a pure state iff S(ρ) = 0
[80].

In general, one has no information on the exact state of a quantum system but, if
any, on the probability pi for the system to be in the pure state |φi⟩ ∈ H. This
situation is described by the density matrix

ρ =
∑
i

pi |φi⟩ ⟨φi| , (3.12)

with pi ≥ 0 and
∑

i pi = 1 [75]. From this definition it is clear that tr(ρ) = 1.
This implies that any self-adjoint and positive semidefinite matrix of trace 1 can be
interpreted as a density matrix. A notable consequence is that the set of density
matrixes is a convex set. This means that the convex combination λρ1 + (1− λ)ρ2
of two states ρ1 and ρ2 with λ ∈ [0, 1] is again a state. The pure states are the
extreme points of the convex set. A graphical representation of the full state space
as a convex set is shown in Fig. 3.2. The set of separable mixed states is thus the
convex hull of the pure separable states. In general, for some given coefficients pi ≥ 0
the convex combination

∑
i piρi of the density matrices ρi is again a density matrix.

Now we have everything in order to define entanglement of mixed states.

Imagine two parties named Alice and Bob with Hilbert spaces HA HB, respectively,
who generate the states ρA ∈ B(HA) and ρB ∈ B(HB) independently from each other
such that they are uncorrelated. We call ρ ∈ B(HA ⊗HB) a product state if there
are two density matrices ρA and ρB, such that

ρ = ρA ⊗ ρB. (3.13)
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full state space

separable states

entangled states

W

Figure 3.2: Graphical representation of the full state space as a convex set and
the separable states as a convex subset (red). The extreme points of this subset
are the pure states. All non-separable states are the entangled states (blue). The
entanglement witness W defines a hyperplane given by tr(Wρ) = 0. It divides the full
state space into two sections, one with detected, i.e., entangled, states (tr(Wρ) < 0)
and one with non-detected states (tr(Wρ) ≥ 0).

The density matrix ρ is called separable if there exist product states ρA
i ⊗ ρB

i ∈
B(HA ⊗HB) such that

ρ =
∑
i

piρ
A
i ⊗ ρB

i . (3.14)

Otherwise, it is called entangled. Separable states are classically correlated. For
the generation of a separable state only LOCC are necessary. Alice and Bob can
share a random-number generator that produces the probabilities pi, which they can
communicate classically. Entangled states, however, cannot be generated classically in
the way described above. Instead, their correlations are purely quantum mechanical
[75].

A relevant example of a bipartite mixed state for real experiments is the Werner
state ρW. Per definition, it is invariant under unitary transformations of the form
U ⊗ U for all unitary operators U [81]:

(U ⊗ U)ρW(U † ⊗ U †) = ρW. (3.15)

The Werner state is modelled by the Bell state |Ψ−⟩ = (|01⟩ − |10⟩)/
√
2 with some

noise determined by p ∈ [0, 1]:

ρW ≡ ρW(p) = p |Ψ−⟩ ⟨Ψ−|+
1− p

4
I. (3.16)

A remarkable property is, that it is separable for p ≤ 1/3 and entangled for p > 1/3,
as we will discuss later.

3.2 Separability criteria

In quantum information theory, the question whether a given state is separable or not
is in general a difficult question to answer and is thus referred to as the separability
problem. Several separability criteria have been found but no general solution for the
separability problem is known, yet [75]. An often used one is the Peres–Horodecki
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criterion or PPT criterion [82, 83]. For composite system of two subsystems A and
B with dimensions dA and dB, the general density matrix describing the state ρ of
the system can be written as

ρ =

dA∑
i,j

dB∑
k,l

ρij,kl |i⟩ ⟨j| ⊗ |k⟩ ⟨l| , (3.17)

with the matrix elements ρij,kl. The partial transposition of ρ with respect to
subsystem A is given by

ρTA =

dA∑
i,j

dB∑
k,l

ρji,kl |i⟩ ⟨j| ⊗ |k⟩ ⟨l| . (3.18)

The definition for the partial transposition of ρ with respect to subsystem B is similar.
Note, that it can be obtained by the transposition of the partial transposition with
respect to A, i.e., ρTB = (ρTA)T. A density matrix has a positive partial transpose
(PPT), if its partial transposition with respect to A or B has no negative eigenvalues,
i.e., it is positive semidefinite. One also says that the matrix is PPT. Else, if it is
not PPT, it is NPT. A necessary condition for a bipartite density matrix ρ to be
separable is that it has to be PPT. This is the PPT criterion. If ρ is the state of
a 2× 2 or a 2× 3 system, then the PPT criterion is sufficient. As an example, the
least eigenvalue of the partial transpose of the Werner state ρW(p) in Eq. (3.16) is
(1− 3p)/4. This eigenvalue is negative for p > 1/3, thus the Werner state is PPT,
i.e., separable. For p ≤ 1/3 the Werner state is entangled.

3.3 Entanglement measures

For a given density matrix of a quantum system, it may be that the underlying
subsystems are not entangled. Instead, the amount of entanglement is continuous.
A quantity that represents this amount of entanglement of a given state ρ is an
entanglement measure E(ρ). There are several properties that an entanglement
measure should have [84]. The most important one is that for a separable state ρs,
an entanglement measure should vanish: E(ρs) = 0. There are several entanglement
measures, which involve the density operator of the given system [74]. In this section,
we give some examples of often used entanglement measures.

3.3.1 Entropy of entanglement

In order to use the von Neumann entropy, which is defined by Eq. (3.11), as an
entanglement measure, we need to introduce the concept of the partial trace and
reduced density matrices.

Let ρ ∈ B(HA ⊗HB) be a density matrix that acts on the Hilbert space HA ⊗HB.
The partial trace trB with respect to subspace HB is a unique operation, which
reduces the density matrix ρ such that one obtains the linear operator ρA ∈ B(HA),
which acts on the subspace HA:

ρA ≡ trB(ρ). (3.19)
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This operator is called the reduced density matrix with respect to the subsystem A.
The partial trace with respect to the subsystem B is defined as

trB(ρ) =
∑
j

(I ⊗ ⟨j|)ρ(I ⊗ |j⟩). (3.20)

For all operators A ∈ B(HA) the reduced density matrix ρA has the property that

tr(ρAA) = tr(ρ(A⊗ I)), (3.21)

that is the expectation value of the operator A in the state ρA of the subsystem A is
equal to the one of the compound operator A⊗ I in the state ρ on HA ⊗HB of the
compound system. Analogously, we find the reduced density matrix with respect to
the subsystem B: ρB = trA(ρ) . Note that ρA and ρB do not need to be pure states
even if the state of the joint system is pure.

For a bipartite system in a pure state |Ψ⟩, the entropy of entanglement is given
by the von Neumann entropy, which we defined in (3.11), of either one of the two
reduced density matrices ρA and ρB of the system’s density matrix ρ = |Ψ⟩ ⟨Ψ| [85]:

E(ρ) = S(ρA) = S(ρB). (3.22)

This entanglement measure reaches from 0 for a separable state to lnN for a
maximally entangled state of a system composed of two N -dimensional subsystems.
There exist four bipartite quantum states that are maximally entangled: the Bell
states. The notable property of the Bell states being maximally entangled can also be
shown by calculating the positive partial transpose (PPT), which has been shown to
be sufficient and necessary for quantum entanglement in bipartite systems, referred
to as the PPT criterion [82, 83]. This criterion is an important example among many
other separability criteria, especially for bipartite systems [75].

3.3.2 Concurrence

The concurrence is an entanglement measure for bipartite system with the density
matrix that consists of two-level subsystems. For a pure state ρ, it is

C(ρ) =
√
2 [1− tr(ρ2A)], (3.23)

where ρA = trB(ρ) is the reduced density matrix of subsystem A. For a mixed state
ρ, the concurrence is defined as

C(ρ) = max(0, λ1 − λ2 − λ3 − λ4), (3.24)

where λ1, . . . , λ4 are the eigenvalues of R =
√√

ρρ̃
√
ρ [74] with

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy), (3.25)

in descending order. Alternatively, λ1, . . . , λ4 are defined as the square roots of the
eigenvalues of ρρ̃, in descending order. For C = 0, the state is separable, i.e., it
shows no entanglement. The maximum value of the concurrence is C = 1 for which
the subsystems are maximally entangled.
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3.3.3 Negativity and logarithmic negativity

The negativity is an entanglement measure for systems that can be regarded as a
quantitative version of the PPT criterion [86]. With respect to the i-th subsystem of
the given system with the density matrix ρ it is defined as

Ni(ρ) =
||ρTi ||1 − 1

2
, (3.26)

where ρTi is the partial transpose of ρ with respect to the i-th subsystem and
||X||1 = Tr|X| = Tr

√
X†X is the trace norm. An equivalent definition is:

Ni(ρ) =

⏐⏐⏐⏐⏐∑
λi<0

λj

⏐⏐⏐⏐⏐ =∑
j

|λj| − λj
2

, (3.27)

where the λj are the eigenvalues of ρTi . A quite similar entanglement measure for
bipartite systems is the logarithmic negativity. It is defined as

ENi
(ρ) = log2 ||ρTi ||1. (3.28)

This entanglement measure has its name from the logarithmic dependency on the
negativity defined above:

ENi
(ρ) = log2(2Ni + 1). (3.29)

The advantage of the negativity and the logarithmic negativity is that they can be
used for multipartite systems. However, these measures depend on the subsystem
they are calculated for. Thus one obtains a value for each subsystem, which de-
scribes how strongly the corresponding subsystem is entangled with the rest of the
system. Furthermore, the negativity and the logarithmic negativity are entanglement
monotones, i.e., they do not increase under LOCC [86].

3.4 Entanglement witnesses

An entanglement witness W (or witness for short) is a measurable observable, which
is used to detect whether a state is entangled or not. It is defined as follows:{

tr(Wρs) ≥ 0, for all separable states ρs,
tr(Wρe) < 0, for at least one entangled state ρe.

(3.30)

A negative expectation value is a clear proof that a given state is entangled. A
positive expectation value is a necessary, but not a sufficient criterion for a given
state to be separable [75]. This means, that the state might be entangled but could
not be detected by the witness. However, it can be proven that for any entangled
state ρe there exists an entanglement witness that can detect it [83]. From the
geometric point of view, a witness W defines a hyperplane given by tr(Wρ) = 0,
dividing the state space into two parts, as it is shown in Fig. 3.2. The part with
tr(Wρ) ≥ 0 contains all separable states, the other one with tr(Wρ) < 0 is the set
of all entangled states that are detected by W. The problem with entanglement
witnesses is the difficulty to construct one that detects all relevant entangled states of
a given system. In the following, we give two examples of constructions of witnesses.
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3.4.1 Witnesses for NPT states

A witness that detects an entangled state ρe that is NPT, i.e., its partial transposition
has a negative eigenvalue λ− < 0 a corresponding eigenstate |λ−⟩, is constructed by

W = (|λ−⟩ ⟨λ−|)TA . (3.31)

For two operators X and Y the relation tr(XY TA) = tr(XTAY ) holds. Thus,
tr(Wρe) = tr[(|λ−⟩ ⟨λ−|)TA ρe] = tr(|λ−⟩ ⟨λ−| ρTA

e ) = λ− < 0 for entangled states
ρe and tr(Wρs) = tr(|λ−⟩ ⟨λ−| ρTA

s ) ≥ 0 for separable states ρs. Now, we consider
the Werner state ρW in Eq. (3.16). Its partial transposition ρTA

W = ρTB
W has the

eigenvalues (1− 3p)/4 and (1 + p)/4 (with an algebraic multiplicity of 3). Therefore,
ρW is entangled (i.e., NPT) if p < 1/3. The minimum eigenvalue λ− = (1− 3p)/4
has the corresponding eigenvector |Φ+⟩ = (|00⟩+ |11⟩)/

√
2. A witness that detects

entangled Werner states can thus be constructed by

W = (|Φ+⟩ ⟨Φ+|)TA =
1

2
I − |Ψ−⟩ ⟨Ψ−| , (3.32)

with |Ψ−⟩ = (|01⟩−|10⟩)/
√
2. Note that it does not depend on p but the expectation

value with the Werner state that indicates whether the state is entangled or not.
With the Pauli matrices

σx = |0⟩ ⟨1|+ |1⟩ ⟨0| , (3.33a)
σy = i(|1⟩ ⟨0| − |0⟩ ⟨1|), (3.33b)
σz = |0⟩ ⟨0| − |1⟩ ⟨1| , (3.33c)

Eq. (3.32) can be rewritten as

W =
1

4
(I + σx ⊗ σx + σy ⊗ σy + σz ⊗ σz). (3.34)

This entanglement witness was the first reported to be experimentally realized [87].

3.4.2 Fidelity witnesses

Another example of an entanglement witness can be found if we consider that a
given state that is close to an entangled state can be entangled, too. A witness that
detects the genuine multipartite entangled pure state |ψ⟩ and entangled states close
to that is the fidelity witness

Wψ = αI − |ψ⟩ ⟨ψ| , (3.35)

where
α = max

|φ⟩∈B
| ⟨φ|ψ⟩ |2, (3.36)

and B denotes the set of biseparable states. The value α is the maximum overlap
of the entangled state |ψ⟩ with any biseparable state |φ⟩. It can be shown that α
is given by the square of the maximal Schmidt coefficient of |ψ⟩ [88]. Let d be the
smallest dimension of the Hilbert spaces of the subsystems that form the compound
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Hilbert space in which we find the state |ψ⟩. Then, the smallest value that α can
take is α = 1/d, which is the case if |ψ⟩ is maximally entangled [89]. For example,
in case of a bipartite system, α ≥ 1/2. A possible entanglement witness for the
detection of the N qubit W state |WN⟩ in Eq. (3.8) is given by

WWN
=
N − 1

N
I − |WN⟩ ⟨WN | . (3.37)

The calculation of the expectation value of witnesses given by Eq. (3.35) leads to
the calculation of the quantity

F := tr(ρ |ψ⟩ ⟨ψ|) = ⟨ψ|ρ|ψ⟩ . (3.38)

This quantity is the fidelity F of the pure state |ψ⟩ and the mixed state ρ [90], i.e., the
overlap of these two states. Roughly speaking, it describes how similar one quantum
state is to another. The fidelity is exactly the expectation value of the projection
operator |ψ⟩ ⟨ψ| or, in other words, the probability of measuring the pure state |ψ⟩
in the mixed state ρ. Therefore, it ranges from 0, if the states are orthogonal, to 1,
if the state are equal. If the fidelity in Eq. (3.38) is larger than the critical value α
in Eq. (3.36) the expectation value of the witness in Eq. (3.35) is negative and the
state ρ must be entangled [75]. This makes the fidelity a useful tool for this thesis.
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Chapter 4

Light-matter interaction and the
Jaynes–Cummings model

We begin with the description of the system that is the fundamental building block
for the generation of entangled states we are investigating in this thesis. It consists of
an optical cavity with a two-level system, like an atom, a quantum dot (QD), or any
other implementation of a quantum emitter. In quantum computing, such two-level
systems are called qubits. The interaction between a cavity and a qubit is described
by the Jaynes–Cummings model, which is well-known in quantum optics [91]. We
give the analytic solution of the eigenenergies and -states of the cavity-qubit system
and investigate the effect of pumping the qubits with an external excitation source.

4.1 Light-matter interaction in quantum optics

The branch of classical physics that studies the interaction of light and matter is
optics. The term light is mostly associated with the visible part of the electromagnetic
spectrum described as waves or rays for wavelengths small compared to the matter
it interacts with. The interaction of light with matter includes diffraction, refraction
and reflection. Optical instruments like lattices, lenses and mirrors make use of
these phenomena. When dealing with matter on the atomic scale it is necessary to
think of light as a collection of particles called photons with wave properties. The
light-matter interaction of photons and quantum objects like atoms is the subject
of quantum optics. The interaction of the electric and the magnetic components of
an electromagnetic field is described by the Maxwell equations. It is sufficient to
restrict calculations to the electronic or magnetic field in order to describe light.

We consider an atom, which we describe as a dipole, interacting with light within an
optical cavity, which works as a resonator for the light. In this case, the atom-field
interaction Hamiltonian is given by

Hint = −d ·E(r, t), (4.1)

where d is the dipole moment operator and E(r, t) the electric field operator of a
quantized electromagnetic field at the position r at the time t. A two-level atom
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has the basis states |g⟩ and |e⟩, which are the ground and excited state, respectively.
Thus, the dipole moment operator in second quantization is given by

d = degσ
+ + d∗

egσ
−, (4.2)

where deg = ⟨e|d|g⟩ = d∗
ge are the matrix elements of d, and σ+ = |e⟩ ⟨g| = (σ−)

† [92].
The electric field operator in the interaction picture is given by (ℏ = 1, ε0 = (4π)−1)

E(r, t) =
∑
k

∑
λ∈{1,2}

(
Ek,λak,λe−iωkt+ik·r + h.c.

)
, (4.3)

with Ek,λ = i
√

2πωk/V ek,λ, where ωk = ck is the frequency of the mode of the wave
with the wave vector k, V is the volume of the cavity, ek,λ is the unit polarization
vector with the polarization λ, and ak,λ (a†k,λ) is the photon lowering (raising) operator
[92]. When the wavelength of the light is much smaller than the size of the atom,
i.e., k · r ≪ 1, we can neglect the position-dependency and set r ≡ 0. This is called
the electric dipole approximation. By working in the Schrödinger picture, we can
omit the time-dependency, too, and the atom-field Hamiltonian becomes

Hint = −d ·E(0). (4.4)

By defining the interaction strength gk,λ = −deg ·Ek,λ and ḡk,λ = −deg ·E∗
k,λ, we

can write the interaction Hamiltonian as

Hint =
∑
k,λ

(
gk,λak,λσ

+ + g∗k,λa
†
k,λσ

− + ḡk,λa
†
k,λσ

+ + ḡ∗k,λak,λσ
−
)
. (4.5)

We consider a single-mode cavity with the frequency ωc, such that the atom-field
Hamiltonian simplifies to

Hint =
(
gaσ+ + g∗a†σ− + ḡa†σ+ + ḡ∗aσ−) , (4.6)

where g is the interaction strength of the atom with the single mode cavity and a
(a†) the lowering (raising) operator of the photonic single mode. In the interaction
picture we obtain

Hint(t) =
(
gaσ+ei(ωa−ωc)t + g∗a†σ−e−i(ωa−ωc)t + ḡa†σ+ei(ωa+ωc)t + ḡ∗aσ−e−i(ωa+ωc)t

)
,

(4.7)
where ωa is the frequency describing the energy difference between the two states of
the atom, and ωc is the frequency of the cavity mode. The interaction between the
light field and the atom leads to four terms: The term proportional to a†σ− (aσ+)
lowers (raises) the qubit energy and creates (annihilates) a photon, and oscillates
with the frequency |ωa − ωc|. The term proportional to aσ− (a†σ+) lowers (raises)
the atom energy and annihilates (creates) a photon, and oscillate with the frequency
ωa+ωc. If the atom is close to resonance with the cavity, i.e., ωa ≈ ωc, the frequencies
of the oscillating terms of the light-matter interaction Hamiltonian will fulfill the
relation |ωa −ωc| ≪ ωc +ωc. This means, that while the resonant terms oscillating at
|ωa − ωc| ≈ 0 complete one cycle, the off-resonant terms oscillating at ωa + ωc ≈ 2ωa,
complete significantly more cycles. Thus, the effect of the off-resonant terms can be
neglected. This is called the rotating wave approximation (RWA) [93]. By applying
this approximation, and assuming that g is real, the interaction Hamiltonian in the
Schrödinger picture becomes

Hint = g
(
a†σ− + aσ+

)
. (4.8)
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4.2 Novel graphical eigensystem representation of
the Jaynes–Cummings model

In order to describe a coupled-cavity array (CCA) we discuss the theoretical basics
behind the building blocks of such CCAs, i.e., the single optical cavity with an atom
inside. The quantum optical model that describes the interaction of a two-level
atom with a single-mode cavity is the Jaynes–Cummings (JC) model [29]. It is a
fundamental model in quantum optics and often discussed in the literature [91, 94, 95].
Despite that, the JC model is still an important framework for topics of quantum
optical research [30, 31, 32]. Figure 4.1 shows the schematic setup of the JC model.
In the following sections, we replace the two-level atom with the more theoretical

g

Figure 4.1: Schematic representation of the Jaynes–Cummings model, which describes
an optical cavity interacting with a two-level atom.

concept of the qubit, i.e., a quantum bit represented by any two-level quantum
system.

4.2.1 Jaynes–Cummings Hamiltonian

The Jaynes–Cummings Hamiltonian is given by

HJC = Hc +Hq +Hc,q, (4.9)

where Hc and Hq describe the photons in the optical cavity and the qubit, respectively,
and Hc,q the interaction between them.

The cavity Hamiltonian is given by the Hamiltonian of a quantized electromagnetic
field

Hc = ωc

(
a†a+

1

2

)
, (4.10)

where ωc is the cavity-photon frequency and a (a†) the photon annihilation (creation)
operator with

[
a†, a

]
= 1. In an optical cavity with two mirrors at a distance of L,

the wave function of a photon assumes the form of a standing wave with a wave
length of λ = 2L/n, where n ∈ N. Thus, the corresponding angular frequency is
ωc = cπn/L, where c is the speed of light. The cavity modes are therefore discrete
and their spectral distance rises with increasing distance L between the mirrors. This
allows to realize a single-mode cavity with a sufficiently small value of L. We neglect
the constant term ωc/2, which represents the zero-point energy of the photons.

The qubit Hamiltonian is given by

Hq =
(
W +

ωq

2

)
σ+σ− +

(
W − ωq

2

)
σ−σ+. (4.11)
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Here, ωq is the excitation energy between the two levels of the qubit, and σ− (σ+) is
the corresponding raising (lowering) operator with (σ−)

†
= σ+ ((σ+)

†
= σ−). With

the Pauli matrices σx, σy, and σz, we define σ± = 1
2
(σx ± iσy), with [σ+, σ−] = σz

and [σz, σ±] = ±2σ±. W is the mean energy of the two levels, which can be arbitrarily
chosen. Two common choices are W = ωq/2, such that Hq = ωqσ

+σ− [32], or W = 0,
such that Hq = ωqσ

z/2 [30]. We set W = ωq/2, i.e., we set the ground state energy
of the qubit equal to 0.

In the rotating-wave approximation, the cavity-qubit interaction Hamiltonian is
given by Eq. (4.8).

The orthonormal basis of the qubit is given by the ground state |g⟩ and the excited
state |e⟩, while the photon state is |n⟩, where n = 0, 1, 2, . . . denotes the number of
photons in the cavity. The basis states of the system are the product states of the
qubit and the photon states, i.e., |g⟩ ⊗ |n⟩ ≡ |g, n⟩ and |e, n⟩.

4.2.2 Dynamics of Jaynes–Cummings Hamiltonian

When the qubit is in the ground state and the cavity in the vacuum state, the joint
system is in the zero-excitation state |g, 0⟩ [96]. In a system with n excitations,
the interaction Hamiltonian Hc,q only acts on the subspace {|e, n− 1⟩ , |g, n⟩} with
n ≥ 1. The eigenenergies of the JC Hamiltonian in Eq. (4.9) are

En,± =

(
nωc +

1

2
∆

)
± 1

2
Ωn(∆), (4.12)

where
Ωn(∆) =

√
Ω2
n +∆2 (4.13)

is the generalized Rabi frequency, Ωn = 2
√
ng is the (common) Rabi frequency (with

Ωn = Ωn(0)), and ∆ = ωq − ωc is the qubit-cavity detuning. The generalized Rabi
frequency is defined as the difference between the eigenenergies En,− and En,+, i.e.,
Ωn(∆) := |En,+ − En,−|. This non-linear scaling of the eigenenergies is called the
Jaynes–Cummings ladder, which scales as

√
n. The cavity-qubit coupling causes

avoided crossings (anticrossings) at ∆ = 0, as shown in in Fig. 4.2.

The eigenstates corresponding to the eigenenergies in Eq. (4.12) are

|n,±⟩ = Nn,∓ |g, n⟩ ±Nn,± |e, n− 1⟩ , (4.14)

where

Nn,± =
1√
2

(
1± ∆√

∆2 + Ω2
n

) 1
2

. (4.15)

The basis states |e, n− 1⟩ and |g, n⟩ are called bare states. The eigenstates |n,±⟩ are
called dressed states, because they are a superposition of the uncoupled bare states.
We define the squared overlaps Pg,n;± and Pe,n−1;± as the square of the absolute value
of the scalar product of the bare with the dressed states, i.e., Pg,n;± := | ⟨g, n|n,±⟩ |2
and Pe,n−1;± := | ⟨e, n− 1|n,±⟩ |2. In other words, they represent the respective
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Figure 4.2: Eigenspectrum of a single cavity-qubit system exhibiting the Jaynes–
Cummings ladder (for ωc = 20g). At ∆ = 0, avoided crossings emerge between
the eigenenergies En,− and En,+ of the JC Hamiltonian in the RWA. The energy
difference there scale as

√
n. The zero-excitation state with the eigenenergy E0

(black) is not coupled to any other state.

contribution of the bare to the dressed states. For the JC model, the squared
overlaps are

Pg,n;± = N2
n,∓, (4.16a)

Pe,n−1;± = N2
n,±. (4.16b)

Note that Pg,n;± = Pe,n−1;∓. The squared overlap Pg,0 of the zero-excitation state
with itself is 1. Figure 4.3 depicts the squared overlaps in dependence of the detuning
∆. A joint diagram for the representation of the eigensystem is shown in Fig. 4.4.
For several values of ∆ the squared overlaps of the bare with the dressed states are
visualized as colored disks. Each disk represents the eigenstate that corresponds to
the eigenenergy the disk is located at. The colored segments of each disk represent
the respective bare states. The size of one segment is proportional to the squared
overlap of the bare state it represents with the eigenstate represented by the disk.
That means for example, that a single-colored disk represents a squared overlap of
1. In Fig. 4.4, this is the case for the zero-excitation state |g, 0⟩ since it is the only
contribution to the eigenstate corresponding to the eigenenergy 0 for all ∆. For
∆ = 0, the squared overlaps of the other bare states with the eigenstates are equal to
0.5, such that every bare state contribution is represented by a half-disk. From this
result, we build a bridge to the time-dependent dynamics of the JC model. First, we
express the bare states with the dressed states by rearranging Eq. (4.14):

|g, n⟩ = Nn,− |n,+⟩+Nn,+ |n,−⟩ , (4.17a)
|e, n− 1⟩ = Nn,+ |n,+⟩ −Nn,− |n,−⟩ . (4.17b)

The general initial state of a JC model with n being the number of excitations in
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Figure 4.3: Squared overlaps in dependence of the detuning ∆. In (a), the dashed
(solid) lines represent Pe,n−1;− (Pg,n;−) for n = 1, 2, 3 excitations. They are equal to
the dashed (solid) lines in (b) that represent Pg,n;+ (Pe,n−1;+).
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Figure 4.4: Eigensystem of the JC Hamiltonian as a function of the qubit-cavity
detuning ∆. The black lines represent the eigenenergies. The colored disks represent
the eigenstates to the eigenenergies they are located at. The size of each colored
segment of a disk is proportional to the squared overlap of the bare state it represents
with the eigenstate represented by the disk. Avoided crossings (anticrossings) appear
at ∆ = 0 (qubit-cavity resonance).
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the system reads

|ψ(0)⟩ =
∞∑
n=0

[cg,n(0) |g, n⟩+ ce,n(0) |e, n⟩]

= cg,0(0) |g, 0⟩+
∞∑
n=1

[cg,n(0) |g, n⟩+ ce,n−1(0) |e, n− 1⟩] .
(4.18)

Here, ce,n(0) and cg,n(0) are the initial probability amplitudes. In the Schrödinger
picture, the time-dependence of the state |ψ(t)⟩ is given by

|ψ(t)⟩ = e−iHt |ψ(0)⟩ . (4.19)

As a consequence, the time-dependent state |ψ(t)⟩ of the JC model with the general
initial state given by Eq. (4.18) can be written as

|ψ(t)⟩ = cg,0 |g, 0⟩+
∞∑
n=1

[cg,n(t) |g, n⟩+ ce,n−1(t) |e, n− 1⟩] , (4.20)

where cg,0(t) ≡ cg,0 = cg,0(0). The probability amplitudes cg,n(t) and ce,n−1(t) are
found by substituting the bare with the dressed states, using the eigenvalue equation
for the dressed states with the eigenenergies En,±, which are given by Eq. (4.12),
and substituting back the dressed with the bare states. The result is

cg,n(t) =

{[
cos
(
Ωn(∆)

2
t

)
+

i∆
Ωn(∆)

sin
(
Ωn(∆)

2
t

)]
cg,n

− iΩn

Ωn(∆)
sin
(
Ωn(∆)

2
t

)
ce,n−1

}
e−i

(
nωc+

∆
2

)
t
,

(4.21a)

ce,n−1(t) =

{[
cos
(
Ωn(∆)

2
t

)
− i∆

Ωn(∆)
sin
(
Ωn(∆)

2
t

)]
ce,n−1

− iΩn

Ωn(∆)
sin
(
Ωn(∆)

2
t

)
cg,n

}
e−i

(
nωc+

∆
2

)
t
,

(4.21b)

with cg,n(0) = cg,n and ce,n−1(0) = ce,n−1. From this, we obtain the probabilities of
measuring the system being in one of the bare states by taking the square of the
absolute value of the probability amplitudes cg,n(t) and ce,n−1(t), respectively:

Pg,n(t) = |cg,n|2 +
Ω2
n

Ω2
n(∆)

(
|ce,n−1|2 − |cg,n|2

)
sin2

(
Ωn(∆)

2
t

)
, (4.22a)

Pe,n−1(t) = |ce,n−1|2 −
Ω2
n

Ω2
n(∆)

(
|ce,n−1|2 − |cg,n|2

)
sin2

(
Ωn(∆)

2
t

)
. (4.22b)

For the zero-excitation state, the probability is Pg,0(t) ≡ |cg,0|2. The other proba-
bilities are Rabi oscillations with a frequency determined by the generalized Rabi
frequency Ωn(∆). Note that Pe,n−1(t) and Pg,n(t) are also equivalent to the fidelity.
By setting n = 1 one gets the vacuum Rabi oscillation, which is shown in Fig. 4.5
for different detunings ∆.
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Figure 4.5: Vacuum Rabi oscillations of the probabilities of the system to be in a
specific state. Here, we plotted the probabilities Pe,0(t) (blue lines) and Pg,1(t) (lime
green lines) with the initial state |ψ(0)⟩ = |e, 0⟩ for the qubit-cavity detunings ∆ = 0
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The visibility Vn of an oscillation is defined as the peak-to-peak amplitude. For the
expression in Eq. (4.22) it is given by

Vn =

⏐⏐⏐⏐Pg,n(mπ)− Pg,n

(
2

Ωn(∆)

[π
2
+mπ

])⏐⏐⏐⏐ ,
=

⏐⏐⏐⏐Pe,n−1(mπ)− Pe,n−1

(
2

Ωn(∆)

[π
2
+mπ

])⏐⏐⏐⏐ , (4.23)

with m ∈ Z. Here, the visibility is equal for Pg,n(t) and Pe,n−1(t):

Vn =
Ω2
n

Ω2
n(∆)

⏐⏐|ce,n−1|2 − |cg,n|2
⏐⏐ . (4.24)

The connection between the visibility given in Eq. (4.24), and the squared overlaps
given in Eq. (4.16) is given by

Vn = 4Pg,n;+Pe,n−1;+

⏐⏐|ce,n−1|2 − |cg,n|2
⏐⏐ ,

= 4Pg,n;−Pe,n−1;−
⏐⏐|ce,n−1|2 − |cg,n|2

⏐⏐ (4.25)

Considering that Pg,n;± + Pe,n−1;± = 1, we can see that the visibility reaches its
maximum for Pe,n−1;± = Pg,n;± = 0.5, i.e., when the squared overlaps of the basis
states |g, n⟩ and |e, n− 1⟩ with the eigenstates |n,±⟩ equals 0.5. This implies for
the graphical representation in Fig. 4.4 that the highest visibility is obtained, when
the basis states |e, n− 1⟩ and |g, n⟩ share the same contribution to the filling of the
disc on the upper branch En,+ and the lower branch En,−. In Fig. 4.4 this is the
case for ∆ = 0. Finally, in order to maximize the visibility, the initial state of the
JC model must be |g, n⟩ or |e, n− 1⟩.

Up to this point, we have seen that Rabi oscillations with a high visibility can be
found for two states with one or more excitations in the system. However, it is
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possible to generate Rabi oscillations for the zero-excitation state and an excited
cavity-qubit state by introducing a coherent pump, which generates excitations in
the system.

4.2.3 Influence of qubit pumping on the Jaynes–Cummings
Hamiltonian

We now investigate the influence of coherently pumping the qubit with and without
cavity-qubit interaction. We extend the JC Hamiltonian in Eq. (4.9) with the driving
Hamiltonian Hd:

H = HJC +Hd. (4.26)

It is given by
Hd = 2εq cos(ωdt)

(
σ+ + σ−) , (4.27)

where εq is the strength and ωd is the frequency of the pump.

The time-dependence of Hd can be eliminated by going into the rotating frame of
the qubit drive. In order to do this, we apply a unitary transformation operator:

U = exp
[
iωdt

(
σ+σ− + a†a

)]
. (4.28)

From the unitary transformation H ↦→ U(H − i∂t)U † (see Appendix A) we obtain

H = ∆qdσ
+σ− +∆cda

†a+Hc,q + εq
[
σ+
(
e2iωdt + 1

)
+ σ− (e−2iωdt + 1

)]
, (4.29)

where ∆qd = ωq − ωd (∆cd = ωc − ωd) is the detuning between the qubit (cavity)
and the pump. We neglect fast rotating terms of the form e2iωdtσ+ and get the
time-independent Hamiltonian

H = ∆qdσ
+σ− +∆cda

†a+ g
(
a†σ− + aσ+

)
+ ϵd

(
σ+ + σ−) . (4.30)

In the JC model, anticrossings occurs only between the eigenstates |En,+⟩ and |En,−⟩
for each n ∈ N0 at ∆ = 0, in other words, when the qubit and the cavity are in
resonance (ωq = ωd). The coherent qubit pump generates anticrossings between all
eigenenergies, including the eigenenergy of the zero-excitation state. Besides the
anticrossings at ∆ = 0, the most dominant are at ∆ = −∆qd, where the qubit and the
pump are in resonance (ωq = ωd). Furthermore, the eigenstates carry contributions
of all basis states, as shown in Fig. 4.6. This implies that it is possible to drive
the cavity-qubit system from the zero-excitation state into any other state with n
excitation. However, the corresponding Rabi frequencies are reduced on the order in
∆/g [32] which significantly reduces the attainable amplitudes.

In order to get a better insight into the effect of the qubit drive, we neglect the cavity
and focus on the qubit. Similarly to the cavity-qubit interaction, the coherent pump
splits the eigenenergies at ∆qd = 0, where the qubit and the pump are in resonance.
This causes Rabi oscillation with the frequency 2ϵq, which is derived equivalently to
the previous discussion for Ωn. Let us now consider a time-dependent pump strength:
εq → εq(t). Such a time dependence occurs for example when the qubits are pulsed.
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Figure 4.6: Eigensystem of the JC Hamiltonian including a coherent qubit pump as
a function of the qubit-cavity detuning ∆. The gray lines represent the eigenenergies.
The colored disks represent the eigenstates to the eigenenergies they are located at.
The size of each colored segment of a disk is proportional to the squared overlap of
the bare state it represents with the eigenstate represented by the disk. Compared
to Fig. 4.4, the additional coherent qubit pump generates anticrossings between
all eigenenergies. The most dominant are at ∆ = 0 (qubit-cavity resonance) and
∆ = −∆cd (qubit-pump resonance).
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The interaction of a single qubit which interacts with a light pulse can be described
by the JC Hamiltonian in RWA with a time-dependent pump strength:

H(t) = ∆qdσ
+σ− + εq(t)

(
σ+ + σ−) . (4.31)

In the interaction picture, the qubit-drive Hamiltonian is given by

Hd,I(t) = εq(t)
(
σ+ei∆qdt + σ−e−i∆qdt

)
. (4.32)

The general form of a qubit state in the interaction picture is

|ψI(t)⟩ = cg(t) |g⟩+ ce(t) |e⟩ . (4.33)

From the equation i d
dt |ψI(t)⟩ = Hd,I(t) |ψI(t)⟩, which describes the time-evolution of

a state in the interaction picture, one finds two coupled differential equations for the
coefficients cg(t) and ce(t):

iċg(t) = εq(t)e−i∆qdtce(t),

iċe(t) = εq(t)ei∆qdtcg(t).
(4.34)

If the qubit and pump are in resonance (∆qd = 0), this differential equation system
can be solved analytically by substituting the time variable t with the pulse area up
to time t given by

θ(t) =

∫ t

t0

dt′Ω(t′), (4.35)

where Ω(t) = 2εq(t) is the Rabi frequency and t0 the initial time of the pulse [97, 98].
Note that the pulse area Θ = limt→∞ θ(t) is twice the area under the curve of the
function εq(t). The general solution of the differential equation system is given by

cg(t) = cos
(
θ(t)

2

)
cg(t0)− i sin

(
θ(t)

2

)
ce(t0),

ce(t) = cos
(
θ(t)

2

)
ce(t0)− i sin

(
θ(t)

2

)
cg(t0),

(4.36)

for ∆qd = 0, where cg(t0) and ce(t0) are the initial conditions [95, 97]. Suppose
a qubit that is initially in the ground state, which is the case if cg(t0) = 1 and
ce(t0) = 0, for example, then cg(t) = cos(θ(t)/2) and ce(t) = −i sin(θ(t)/2). Further,
we want the qubit to be in its excited state after pumping it with a pulse, meaning
we seek limt→∞ cg(t) = 0 and limt→∞ |ce(t)|2 = 1. This is obtained if Θ = π, thus if
the area under the curve of the function εq(t) is π/2. The final state of the qubit
after a pulse does not depend on its shape, but on its pulse area Θ. Let the period
of a given Rabi cycle of a coherently pumped qubit be T = 2π/Ω, with Ω = 2εq,
where εq is the strength of the qubit pump. The time it takes for the probability to
measure the qubit in the excited state to change from 0 to 1 is then ∆t = T/2. We
consider a rectangular pulse, whose strength is εq during the time interval ∆t and
0 else. In order to generate the excited qubit state, the time interval ∆t, in other
words the width of the rectangular pulse, has to be ∆t = T/2. The area under the
curve of the rectangular function of the pulse is then actually εq∆t = π/2, i.e., its
pulse area is Θ = π. We see, that the effect of a given pulse is specified by pulse
area Θ. Figure 4.7 shows the effect of pulses with three different pulse areas. A π/2
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Figure 4.7: Pumping the Bloch vector of a qubit from the ground state |g⟩ with
pulses of different pulse ares. The system is pumped (a) with a π/2 pulse into the
superposition state (|g⟩+ |e⟩)/

√
2, (b) with a π pulse into the excited state |e⟩, and

(c) with a 3π/2 pulse into the superposition state (|g⟩ − |e⟩)/
√
2.

pulse rotates the Bloch vector of the qubit by an angle of π/2, therefore the system
will be in the superposition state (|g⟩+ |e⟩)/

√
2. A π pulse drives the system from

the ground state to the excited state [94]. A 3π/2 pulse generated the superposition
state (|g⟩ − |e⟩)/

√
2.

In this section we have considered the external excitation of the qubits, which is
an appropriate description, e.g., for optical excitation of micropillar laser arrays
[41]. However, the pumping of cavity photons instead is unitarily equivalent up to a
scaling factor, as we show in Appendix B.

4.3 Dissipation processes

In experimental setups, any quantum system is interacting with its environment.
These systems are referred to as open quantum systems. One approach to describe
such open quantum systems theoretically is to work with the Lindblad master equa-
tion. In the following, we provide a general derivation of the system-environment
coupling leading to the commonly used Lindblad form in Born–Markov approxima-
tion.

The Hamiltonian of a total system, where a given system S is coupled to an environ-
ment E , is assumed to be

Htot = HS +HE +Hint, (4.37)

where HS and HE are the free Hamiltonians of the system S and the environment
E , respectively, and Hint describes the interaction between the system and the
environment. The time evolution of the total density operator ρtot is given by the
von Neumann equation (ℏ = 1):

i d
dt
ρtot = [Htot, ρtot] , (4.38)
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where [A,B] = AB − BA defines the commutator of two operators A and B. The
total density operator in the interaction picture is given by

ρ
(I)
tot(t) = eiH0tρtot(t)e−iH0t, (4.39)

where H0 = HS +HE is the free Hamiltonian of the total system. The time-derivative
of the total density operator in the interaction picture is given by

i d
dt
ρ
(I)
tot(t) =

[
Hint(t), ρ

(I)
tot(t)

]
. (4.40)

The time evolution of the total density operator in the interaction picture therefore
only depends on the interaction Hamiltonian Hint(t) in the interaction picture. An
important assumption is that there are no correlations between the system and the
environment at the initial time t = 0, i.e.,

ρ
(I)
tot(0) = ρtot(0) = ρS(0)⊗ ρE(0). (4.41)

Here, ρS and ρE are the reduced density operators of the system S and the environment
E , respectively. Usually, one is not interested in the time evolution of the total system
but on the system S which is described by the reduced density operator ρS(t). It
can be derived by taking the partial trace of the total density operator ρtot(t) over
the degrees of the environment E :

ρS(t) = trE [ρtot(t)] . (4.42)

In order to derive a master equation whose solution yields the reduced density matrix
only of the system one has to make three approximations [99, 100, 101].

1. Born approximation: The coupling between the system and the environment
is assumed to be weak and the environment is assumed to be reasonably large
compared to the system. As a result, the total density operator should only
consist of terms of order Hint. In the Born approximation terms higher than
second order in Hint are neglected due to the weak coupling. Thus, the total
density operator remains a product state and the time evolution of the density
operator of the environment can be neglected:

ρtot(t) = ρS(t)⊗ ρE +O(Hint) ≈ ρS(t)⊗ ρE ∀t ≥ 0. (4.43)

2. Markov approximation: The time-scale τE of the environment is short
compared to time-scale τS of the system: τE ≪ τS . Any memory effects of the
environment are therefore negligible. This makes the master equation local in
time and independent of earlier times.

3. Rotating wave approximation (RWA): Frequency differences occurring
in the given problem are small compared to the time-scale of the system:
|ω′ − ω| ≪ τ−1

S . As a consequence, all terms proportional to the fast rotating
wave exp[i(ω′ − ω)t] for ω′ ̸= ω can be neglected.

The general form of the Lindblad master equation for an N -dimensional system is
given by [100, 101]

d
dt
ρS = i [H ′

S , ρS ] +
1

2

N2−1∑
n=1

γn
(
2LnρSL

†
n − ρSL

†
nLn − L†

nLnρS
)
. (4.44)
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Here, H ′
S is the renormalization due to the coupling of the system and the environment

which is often called Lamb shift [101, 100]. The operators Ln form an orthonormal
basis on the system’s Hilbert space. The eigenvalues γn are called decay rates. By
introducing the collapse operators Cn =

√
γnLn and neglecting the Lamb shift, the

Lindblad master equation takes the form

d
dt
ρS = −i [HS , ρS ] +

1

2

∑
n

[
2CnρSC

†
n −

{
C†
nCn, ρS

}]
, (4.45)

where {A,B} = AB +BA defines the anti-commutator of two operators A and B.

We consider three kinds of dissipation processes, cavity decay, qubit dissipation, and
pure dephasing. Cavity decay is the loss of photons from the cavity. The cause of
this can be for example the imperfect reflectivity of the mirrors the cavity it is made
of. Qubit dissipation is the relaxation of an excited qubit falling into its ground
state by emitting a photon into free space modes. This relaxation process is the
result of spontaneous emission into modes other than the resonant cavity mode. Pure
dephasing is the main mechanism of decay of quantum correlations without changing
the population of the system and originates from the coupling between the quantum
system and its environment [102].

We consider these dissipative processes in terms of the Lindblad master equation,

d
dt
ρ = Lρ ≡ −i[H, ρ] +

∑
n

D[Cn]ρ, (4.46)

with the (non-unitary) Liouvillian superoperator L and the Lindblad dissipators

D[Cn]ρ ≡
1

2

(
CnρC

†
n − C†

nCnρ+ h.c.
)
, (4.47)

where Cn =
√
γnAn are the collapse operators with an operator An that couples the

system to an environment at rate γn.

For our model of a CCA we consider three different dissipation processes, which are
firstly the dissipation of the qubit energy, secondly the loss of cavity-photons, and
thirdly the pure dephasing of the qubits. The respective collapse operators are given
by

Cγ,i =
√
γσ−

i , Cκ,i =
√
κai, Cγφ,i =

√
γφσ

z
i , (4.48)

where γ, κ, and γφ are the corresponding dissipation rates.
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Chapter 5

Coupled-cavity arrays and
entanglement generation

In the previous chapter we examined the energy spectrum of the Jaynnes-Cummings
model, which consists of an optical resonator with a two-level atom inside, and
introduced a novel graphical representation of the eigenstates and eigenenergies in a
single diagram. We extended this model by an optical coherent drive and examined
how this helps to drive the given system from the zero-excitation state into an excited
state with an optical pulse. In this chapter we introduce a system of N cavity-qubit
systems, where the cavities are coupled to each other. The photon-hopping within
such a coupled-cavity array (CCA) can experimentally be realized via photonic
waveguides [103]. We focus on CCAs, because systems like homogenous quantum dot
micropillar cavities are a promising platform for realizing optical reservoir computing
[104]. We begin by giving an overview of the formalism on how to drive specific
entangled target states before presenting numerical results and analytic insights.

5.1 Model of a coupled-cavity array

We consider a symmetric system consisting of N coupled cavities, each of them
containing one qubit, as shown in Fig. 5.1 for N = 2. We extend the JC Hamiltonian

g

J

Figure 5.1: Two coupled cavities with the interaction strength J . Each cavity
contains a qubit it interacts with. The interaction between the cavities and the
qubits is described by the Jaynes–Cummings model with the light-matter interaction
strength g.

in Eq. (4.9) with a cavity-cavity coupling term. The physical cause of this extra
coupling is the overlap of the photonic field modes in the adjacent cavities [105].
When the spatial distance between the two cavities is short enough so that the field
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5.1. MODEL OF A COUPLED-CAVITY ARRAY

modes overlap (see Fig. 5.2), photon-hopping from one to the other cavity can occur
[50]. The Hamiltonian of a coupled-cavity array is given by

Figure 5.2: Two spatially separated cavities, which are coupled due to the overlap of
their field modes.

H = Hq +Hc +Hc,q +Hc,c. (5.1)

The first term of Eq. (5.1) is the qubit Hamiltonian

Hq =
N∑
i=1

ωqσ
+
i σ

−
i . (5.2)

The Pauli matrices σxi , σyi , and σzi only act on the i-th qubit. Thus, [σai , σ
b
j ] =

2iδijϵabcσci , where a, b, c ∈ {x, y, z} and i, j ∈ {1, 2}. The same applies to the raising
operators σ+

i = (σxi + iσyi )/2 and the lowering operators σ−
i = (σxi − iσyi )/2, i.e.,

[σ+
i , σ

−
j ] = δijσ

z
i and [σzi , σ

±
j ] = ±2δijσ

±
i . The second term is the cavity Hamiltonian

Hc =
N∑
i=1

ωca
†
iai. (5.3)

The creation operator a†i and the annihilation operator âi only act on the i-th cavity-
photon. They fulfill the relation [a†i , aj] = δij. The third term is the cavity-qubit
coupling Hamiltonian in the RWA:

Hc,q =
N∑
i=1

g
(
a†iσ

−
i + aiσ

+
i

)
. (5.4)

The last term of Eq. (5.1) is the Hamiltonian that describes the photon-hopping
between the cavities:

Hc,c = −J
∑
⟨i,j⟩

(
a†iaj + aia

†
j

)
, (5.5)

where J is the strength of the cavity-cavity coupling, given by the overlap of the
field modes. The sum runs over all cavity-cavity pairs ⟨i, j⟩ with i ̸= j. For the
qubit subsystem we use basis states |q1⟩ ⊗ |q2⟩ ⊗ · · · ≡ |q1q2 . . .⟩, where qi ∈ {g, e}
denotes the state of the i-th qubit. Analogously, we define the cavity-photon basis
states |n1⟩ ⊗ |n2⟩ ⊗ · · · ≡ |n1n2 . . .⟩, where ni = 0, 1, 2, . . . denotes the number of
photons in the i-th cavity. For the whole cavity-qubit system the basis states are
|q1q2 . . .⟩ ⊗ |n1n2 . . .⟩ ≡ |q1q2 . . . , n1n2 . . .⟩.
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5.2. TWO COUPLED CAVITY-QUBIT SYSTEMS

5.2 Two coupled cavity-qubit systems

For a system with two cavity-qubit subsystems, i.e., N = 2, the qubit subspace is
spanned by the orthonormal basis {|ee⟩ , |eg⟩ , |ge⟩ , |gg⟩}. An alternative orthonormal
basis that we will use is {|ee⟩ , |T⟩ , |S⟩ , |gg⟩}, where |T⟩ = (|eg⟩ + |ge⟩)/

√
2 |S⟩ =

(|eg⟩ − |ge⟩)/
√
2 are the antisymmetric singlet and the symmetric triplet state,

respectively. They are two of the four Bell states, which are maximally entangled.
A cavity-photon subsystem with maximally one photon per cavity has the basis
{|11⟩ , |10⟩ , |01⟩ , |00⟩}. Similar to the qubit basis, we choose for the cavity photons
{|11⟩ , |Tp⟩ , |Sp⟩ , |00⟩}, where |Tp⟩ = (|10⟩+ |01⟩)/

√
2 |Sp⟩ = (|10⟩− |01⟩)/

√
2. Due

to the infinitely large matrix representation of the full coupled-cavity array, it is
necessary to restrict the number of photons per cavity. Additionally we divide the
Hilbert space of the full system into subspaces, where each subspace is characterized
by the number of total excitations in the system. For a bipartite system (N = 2), a
subspace with m excitations has a basis with 4m (m = 1, 2, 3, . . . ) basis states (see
Appendix C). Because the Hamiltonian H in Eq. (5.1) does not include any term that
changes the number of excitations, the subspaces are decoupled. The one dimensional
subspace with zero excitations has only one basis state, namely the zero-excitation
state |gg, 00⟩ with the eigenenergy Egg,00 = 0. For the subspace with one excitation
we work with the four dimensional basis {|T, 00⟩ , |gg,Tp⟩ , |S, 00⟩ , |gg, Sp⟩}.

For an easier usage of this basis we rewrite the Hamiltonian H by introducing
operators, which act on symmetric and antisymmetric states, respectively. The
annihilation operator for the symmetric (antisymmetric) mode ω−

c (ω+
c ) with ω±

c =
ωc ± J is defined as A = (a1 + a2)/

√
2 [a = (a1 − a2)/

√
2]. In a similar way the

annihilation operator for the symmetric (antisymmetric) qubit states is defined as
Σ = (σ−

1 + σ−
2 )/

√
2 [σ = (σ−

1 − σ−
2 )/

√
2]. Thus, the qubit Hamiltonian and the

cavity-qubit coupling Hamiltonian can be written as

Hq = ωq
(
Σ†Σ + σ†σ

)
, (5.6)

and
Hc,q = g

(
A†Σ + a†σ + AΣ† + aσ†) , (5.7)

respectively. The sum of the cavity Hamiltonian and the cavity-cavity coupling
Hamiltonian can be written as

Hc +Hc,c = ω−
c A

†A+ ω+
c a

†a. (5.8)

The matrix representation of the Hamiltonian for the subsystem with one excitation
is given by

H(1) =

⎡⎢⎢⎣
ωq g 0 0
g ω−

c 0 0
0 0 ωq g
0 0 g ω+

c

⎤⎥⎥⎦ , (5.9)

As we can see, this block matrix is dived into two 2 × 2 submatrices, one for the
symmetric states (|T, 00⟩ and |gg,Tp⟩) and one for the antisymmetric states (|S, 00⟩
and |gg, Sp⟩). The symmetry refers to the exchange of the single cavity-qubit systems.
The division into two submatrices means that the parity is conserved in our system.
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5.2. TWO COUPLED CAVITY-QUBIT SYSTEMS

Both 2× 2 submatrices of the block matrix H(1) can be treated as singe JC Hamilto-
nians. Thus, the we find for the four eigenenergies of H(1):

ET,± =

[
ω−

c +
1

2
(∆ + J)

]
± 1

2
ΩT(∆), (5.10a)

ES,± =

[
ω+

c +
1

2
(∆− J)

]
± 1

2
ΩS(∆), (5.10b)

where ΩT(∆) =
√

Ω2
1 + (∆ + J)2 [ΩS(∆) =

√
Ω2

1 + (∆− J)2] is the generalized Rabi
frequency of the symmetric (antisymmetric) states and Ω1 = 2g [cf. Eq. (4.13)]. The
four corresponding eigenstates are given by

|ET,±⟩ = NT,∓ |gg,Tp⟩ ±NT,± |T, 00⟩ , (5.11a)
|ES,±⟩ = NS,∓ |gg, Sp⟩ ±NS,± |S, 00⟩ , (5.11b)

where

NT,± =
1√
2

(
1± ∆+ J√

(∆ + J)2 + Ω2
1

) 1
2

, (5.12a)

NS,± =
1√
2

(
1± ∆− J√

(∆− J)2 + Ω2
1

) 1
2

. (5.12b)

The conservation of the parity can also bee seen for the block matrix that represents
the Hamiltonian of the subspace with two excitations in the CCA. First, we introduce
the so-called NOON states, which are defined as

|ΨN,±⟩ =
1√
2
(|N, 0⟩ ± |0, N⟩) . (5.13)

That definition represents an entangled bosonic state with N particles. We will use
these states to combine the states |gg, 20⟩ and |gg, 02⟩ to the symmetric state |Ψ2,+⟩
and the antisymmetric state |Ψ2,−⟩. With these, our the basis for the two excitation
subspace is {|ee, 00⟩ , |gg, 11⟩ , |T,Tp⟩ , |S, Sp⟩ , |gg,Ψ2,+⟩ , |T, Sp⟩ , |S,Tp⟩ , |gg,Ψ2,−⟩}.
The first five basis states are symmetric, the last three are antisymmetric. With this
basis the matrix representation of the Hamiltonian for the two-excitation subspace is
given by

H(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2ωq 0 g −g 0 0 0 0
0 2ωc g −g −2J 0 0 0
g g ω−

c + ωq 0 g 0 0 0
−g −g 0 ω+

c + ωq g 0 0 0
0 −2J g g 2ωc 0 0 0
0 0 0 0 0 ω+

c + ωq 0 g
0 0 0 0 0 0 ω−

c + ωq g
0 0 0 0 0 g g 2ωc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.14)

A joint representation of the eigenenergies and eigenstates of the full Hamiltonian
for zero, one, and two excitations without driving the qubits is shown in Fig. 5.3.
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Figure 5.3: Eigenspectrum representing the eigenenergies and eigenstates of the two
cavity-qubit model in dependence of the cavity-qubit detuning ∆. The insets are
magnifications of the anticrossing regions around ∆ = ±J , at which the splitting is
given by ΩT(−J) = ΩS(J) = 2g.

5.3 Coherently driven system

We extent the Hamiltonian H in Eq. (5.1) by adding a coherent qubit drive Hamilto-
nian Hd, which has the form

Hd =
N∑
i=1

2εq cos(ωdt+ φi)
(
σ+
i + σ−

i

)
, (5.15)

where ωd and εq are the frequency and the strength of the pump, respectively, and φi
the phase of the i-th qubit drive [106]. In order to eliminate the time-dependence we
change into the rotating frame of the qubit drive by applying a unitary transformation
with the unitary operator

U =
N∏
i=1

exp
[
iωdt

(
σ+
i σ

−
i + a†iai

)]
. (5.16)

From the unitary transformation H ↦→ U(H − i∂t)U † (see Appendix A) of the
Hamiltonian H we obtain

H ′ =
N∑
i=1

∆qdσ
+
i σ

−
i +

N∑
i=1

∆cda
†
iai +Hc,q +Hc,c

+
N∑
i=1

εd
[
σ+
i e−iφi

(
e2i(ωdt+φi) + 1

)
+ σ−

i eiφi
(
e−2i(ωdt+φi) + 1

)]
,

(5.17)

where ∆qd ≡ ωq − ωd (∆cd ≡ ωc − ωd) is the detuning between the qubit (cavity)
and the pump. The cavity-qubit coupling Hamiltonian Hc,q and the cavity-cavity
coupling Hamiltonian Hc,c remain unchanged. In the rotating wave approximation,
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5.4. ANALYTIC APPROACH FOR PROVIDING INSIGHT

i.e., in the case of |ωq −ωd| ≪ ωq +ωd, we can neglect fast rotating terms and obtain
a time-independent Hamiltonian:

H ′ =
N∑
i=1

∆qdσ
+
i σ

− +
N∑
i=1

∆cda
†
iai +Hc,q +Hc,c +

N∑
i=1

εq
(
σ+
i e−iφi + σ−

i eiφi
)
. (5.18)

The pump generates direct coupling only between two neighboring block matrices.
Moreover, the parity is still conserved by the coherent pump.

The conservation of parity and the direct pumping between the m-th and the
(m+1)-th block matrix can also be seen in matrix representation of the Hamiltonian
Ĥ in Eq. (5.18) for zero, one, and two excitations:

H ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
√
2εq 0 0 0 0 0 0 0 0 0 0 0√

2εq ∆qd g 0 0
√
2εq 0 0 0 0 0 0 0

0 g ∆−
cd 0 0 0 0

√
2εq 0 0 0 0 0

0 0 0 ∆qd g 0 0 0 0 0 0 0 0

0 0 0 g ∆+
cd 0 0 0 0 0

√
2εq 0 0

0
√
2εq 0 0 0 2∆qd 0 g −g 0 0 0 0

0 0 0 0 0 0 2∆cd g −g −2J 0 0 0

0 0
√
2εq 0 0 g g ∆−

cd +∆qd 0 g 0 0 0
0 0 0 0 0 −g −g 0 ∆+

cd +∆qd g 0 0 0
0 0 0 0 0 0 −2J g g 2∆cd 0 0 0

0 0 0 0
√
2εq 0 0 0 0 0 ∆+

cd +∆qd 0 g
0 0 0 0 0 0 0 0 0 0 0 ∆−

cd +∆qd g
0 0 0 0 0 0 0 0 0 0 g g 2∆cd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5.19)
where ∆±

cd = ∆cd ± (N − 1)J .

Considering that our initial state is the zero-excitation state, and that our main goal
is to achieve an entangled state of two qubits, we first create Rabi oscillation of the
zero-excitation state and our target state with as large amplitudes as possible, i.e.,
oscillations between 0 and 1. According the effects of coherent pumping mentioned
above, a possible target state for our purposes is |T, 00⟩.

5.4 Analytic approach for providing insight

In this section we answer the question which parameters have to be chosen in order to
generate Rabi oscillations with a maximum amplitude of specific states. The initial
state is the zero-excitation state |g⟩⊗N ⊗ |0⟩⊗N . A relevant multipartite entangled
qubit state is the Dicke state [78], which is defined as

|DN,k⟩ =
(
N

k

)−1
2
(N
k
)∑

j=1

Pj(|e⟩⊗k ⊗ |g⟩⊗(N−k)), (5.20)

where Pj is the permutation operator of the j-th possible permutations. A special
case of the Dicke states is the Dicke state with k = 1, which is called W state. For
N qubits, the W state is given by

|WN⟩ =
1√
N

(|egg . . . g⟩+ |geg . . . g⟩+ · · ·+ |ggg . . . e⟩) . (5.21)
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We will chose this state as the target state. Note that |W2⟩ ≡ |T⟩. The Dicke and the
W state are defined equivalently for the cavity modes. The restriction on a system
with maximally one excitation allows to consider just the reduced Hamiltonian
of a three dimensional Hilbert space with the symmetric basis states |g . . . , 0 . . .⟩,
|WN , 0 . . .⟩, and |g . . . ,WN,p⟩:

H ′
0,1 =

⎡⎣ 0
√
Nεq 0√

Nεq ∆qd g
0 g ∆−

cd

⎤⎦ . (5.22)

We will discuss two different ansätze both leading to an effective Hamiltonian of the
relevant two-level system with the zero-excitation state an our target state as its
basis states.

The first ansatz is the elimination of the dynamics of the third state from the three-
level system. The general time-dependent state of the Hamiltonian above is given by

|Ψ(t)⟩ = cα(t) |α⟩+ cβ(t) |β⟩+ cγ(t) |γ⟩ , (5.23)
where |α⟩ ≡ |g . . . , 0 . . .⟩, |β⟩ ≡ |WN , 0 . . .⟩, and |γ⟩ ≡ |g . . . ,WN,p⟩. The Schrödinger
equation i |Ψ̇(t)⟩ = H ′

0,1 |Ψ(t)⟩ leads to a system of ODE for the probability ampli-
tudes cα(t), cβ(t), and cγ(t).

iċα(t) =
√
Nεqcβ(t), (5.24a)

iċβ(t) =
√
Nεqcα(t) + ∆qdcβ(t) + gcγ(t), (5.24b)

iċγ(t) = gcβ(t) + ∆−
cdcγ(t). (5.24c)

In the regime |∆−
cd| ≫ |∆qd|, εq, g the energy level of |γ⟩ is much higher than the two

of |α⟩ and |β⟩. Thus, these two states are decoupled from the third state and we can
set ċγ = 0 with the result that

cγ(t) = − g

∆−
cd
cβ(t). (5.25)

Eliminating cγ(t) leads to the effective Hamiltonian

Heff =

[
0 1

2
Ωeff

1
2
Ωeff ∆eff

]
, (5.26)

with the effective Rabi frequency

Ωeff = 2
√
Nεq (5.27)

and the effective detuning

∆eff = ∆qd −
g2

∆−
cd

(5.28)

of the two levels of the effective two-level system. From the case of resonance, i.e.,
for 0 = ∆eff, we obtain the theoretical driving frequency for entanglement generation
with a fidelity close to 1:

ω±
d =

1

2

(
2ωq −∆+ ±

√
∆2

+ + 4g2
)
, (5.29)
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where ∆+ = ∆+ (N − 1)J . This formula is a fundamental result of this thesis and
will be used to verify the systematic approach to adjust the parameters of the system
for optimal results. The asymptotes of thr formula, which ine obtains for g → 0,
are ω+

d = ωq and ω−
d = ωq −∆+. As we can see in Fig. 5.4, a raising cavity number

N causes the theoretically predicted driving frequency ω±
d to shift by (N − 1)J to

the left along the ∆ axis. Of course, it is also possible to derive a formula for other
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Figure 5.4: Theoretically predicted driving frequencies ω±
d in dependence of the

qubit-cavity detuning ∆, which is given by Eq. (5.29), for different numbers of
cavities N . The remaining parameters in the formula are J = g, ωq = 70g.

parameters, e.g., the cavity-cavity coupling:

J0 =
∆qd −∆− g2

∆qd

N − 1
(5.30)

We will investigate this formula in the next chapter.

Let |g . . . , 0 . . .⟩ be the initial state of the two-level system described by the effective
Hamiltonian Heff in Eq. (5.26). The time evolution of the squared overlap of the
current state of the system with the target state |WN , 0 . . .⟩ exhibits Rabi oscillation
and is comparable with the result in Eq. (4.22b). The maximum squared overlap
Fmax is the peak-to-peak amplitude:

Fmax =
Ω2

eff
Ω2

eff +∆2
eff
, (5.31)

We will come back to this important result later in this theses in order to compare
the theoretical approaches with our numerical scheme for entanglement generation.

We show now that the assumption |∆−
cd| ≫ |∆qd|, εq, g is valid by deriving the exact

solution of the Schrödinger equation. Beginning by writing the Hamiltonian as

H ′
0,1

∆−
cd

=

⎡⎣ 0 λϵ 0
λϵ λqϵ λc,qϵ
0 λc,qϵ 1

⎤⎦ , (5.32)
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with 0 < ϵ ≪ 1, where λϵ =
√
Nϵd/∆

−
cd, λgϵ = g/∆−

cd, λqϵ = ∆qd/∆
−
cd, λ, λc,q, λq =

O(1). The exact solution of the Schrödinger equation is given by the unitary
time-evolution operator U(t) = exp(−iH ′

0,1t) applied to the initial state |ψ(0)⟩ =∑
k ck(0) |uk⟩:

|Ψ(t)⟩ =
3∑

k=1

ck(0)e−i∆−
cdxkt |uk⟩ , (5.33)

where the initial coefficients ck(0) are determined by the boundary conditions, the
vectors |uk⟩ are the basis vectors, and xk are the eigenvalues of H ′

0,1/∆
−
cd, which are

the solutions of the equation

x3 − (1 + λqϵ)x
2 + (λq − λ2ϵ− λ2c,qϵ)ϵx+ λ2ϵ2 = 0, (5.34)

These eigenvalues are given by

x1 =
1

2

(
λq −

√
λ2q + 4λ2

)
ϵ+O(ϵ2) (5.35a)

x2 =
1

2

(
λq +

√
λ2q + 4λ2

)
ϵ+O(ϵ2) (5.35b)

x3 = 1 +O(ϵ2). (5.35c)

Regarding the eigenstates |uk⟩ as linear combinations of the basis states allows to
write the time-dependent probability amplitudes of |Ψ(t)⟩ as

cα(t) =
3∑

k=1

Ake−i∆−
cdxkt, (5.36a)

cβ(t) =
3∑

k=1

Bke−i∆−
cdxkt, (5.36b)

cγ(t) =
3∑

k=1

Cke−i∆−
cdxkt. (5.36c)

The coefficients Ak, Bk, and Ck are determined by the boundary conditions. With
cα(0) = α0, cβ(0) = β0, and cγ(0) = 0, these coefficients emerge to be

A1 = −
2β0λ− α0

(
λq +

√
λ2q + 4λ2

)
2
√
λ2q + 4λ2

−
λλ2c,q(2α0λ+ β0λq)(

λ2q + 4λ2
)3/2 ϵ+O(ϵ2), (5.37a)

A2 =
2β0λ− α0

(
λq −

√
λ2q + 4λ2

)
2
√
λ2q + 4λ2

+
λλ2c,q(2α0λ+ β0λq)(

λ2q + 4λ2
)3/2 ϵ+O(ϵ2), (5.37b)

A3 = O(ϵ2), (5.37c)

B1 = −
2α0λ+ β0

(
λq −

√
λ2q + 4λ2

)
2
√

4λ2 + λ2q
+
λλ2c,q(2β0λ− α0λq)(

λ2q + 4λ2
)3/2 ϵ+O(ϵ2), (5.38a)

B2 =
2α0λ+ β0

(
λq +

√
λ2q + 4λ2

)
2
√
λ2q + 4λ2

−
λλ2c,q(2β0λ− α0λq)(

λ2q + 4λ2
)3/2 ϵ+O(ϵ2), (5.38b)

B3 = O(ϵ2), (5.38c)
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C1 = λc,q
2α0λ+ β0

(
λq −

√
λ2q + 4λ2

)
2
√
λ2q + 4λ2

ϵ+O(ϵ2), (5.39a)

C2 = −λc,q
2α0λ+ β0

(
λq +

√
λ2q + 4λ2

)
2
√
λ2q + 4λ2

ϵ+O(ϵ2), (5.39b)

C3 = β0λc,qϵ+O(ϵ2). (5.39c)

In the regime |∆−
cd| ≫ |∆qd|, εq, g, the angular frequencies of the exact solution in

Eq. (5.36) can be approximated as

∆−
cdx1 ≈

1

2

(
∆qd −

√
∆2

qd + 8εq

)
≪ ∆−

cd, (5.40a)

∆−
cdx2 ≈

1

2

(
∆qd +

√
∆2

qd + 8εq

)
≪ ∆−

cd, (5.40b)

∆−
cdx3 ≈ ∆−

cd, (5.40c)

in the order O(ϵ). This allows to write cγ(t) as the sum of the relevant part

crel
γ (t) =

2∑
k=1

Cke−i∆−
cdxkt (5.41)

and the rapidly oscillating part C3 exp(−i∆−
cdx3t):

cγ(t) = crel
γ (t) + C3e−i∆−

cdx3t. (5.42)

Inserting Eq. (5.24) into the time derivative of the above equation reveals a relation
of crel

γ (t) with cβ(t) and cγ(t):

i
ċrel
γ (t)

∆−
cd

+ (x3 − 1)
[
cγ(t)− crel

γ (t)
]
=

g

∆−
cd
cβ + crel

γ (t). (5.43)

Since x1, x2 = O(ϵ) and C1, C2 = O(ϵ), it can be seen from Eq. (5.41) that
iċrel
γ (t)/∆−

cd = O(ϵ2). Further, x3 − 1 = O(ϵ2), cγ, crel
γ = O(ϵ), and cα, cβ = O(1).

Hence, we can write the relation in Eq. (5.43) as

crel
γ (t) = − g

∆−
cd
cβ(t) +O(ϵ2). (5.44)

This expression matches Eq. (5.25), implying the assumption |∆−
cd| ≫ |∆qd|, εq, g to

be correct to the order O(ϵ) [107].

The second ansatz is the decoupling of the relevant two-level system from the three-
level system via Schrieffer-Wolff transformation (SWT). In general, the SWT is
motivated by treating the coupling part of the relevant part of the given Hamiltonian
as a sufficiently small perturbation. It is a second order perturbation theory from
which a Hamiltonian is obtained, which is diagonal to first order in the perturbation.
Let the Hamiltonian of an arbitrary system be

H = H0 + V, (5.45)
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where H0 and V are the diagonal and the off-diagonal part, respectively. The SWT
is a unitary transformation of the form

H ↦→ H ′ = eSHeS†
, (5.46)

where S is an anti-Hermitian operator, i.e., S† = −S, which is called generator.
Using the relation (see Appendix D)

eXY e−X = Y + [X,Y ] +
1

2!
[X, [X,Y ]] + . . . , (5.47)

the transformation becomes

H ′ = H0 + V + [S,H0] + [S, V ] +
1

2
[S, [S,H0]] +

1

2
[S, [S, V ]] + . . . (5.48)

In order to make the transformed Hamiltonian diagonal to the first order in V , the
condition

V + [S,H0] = 0 (5.49)
has to be satisfied. Thus, the SWT of the Hamiltonian H becomes

H ′ = H0 +
1

2
[S, V ] +O(V 3). (5.50)

This transformation can be easily performed. However, an expression for the generator
S has to be found first. Now, we write the Hamiltonian H ′

0,1 in terms of an effective
two-level system weakly coupled to a perturbing third level, i.e., H = H0+V , where

H0 =

⎡⎣ 0
√
Nεq 0√

Nεq ∆qd 0
0 0 ∆−

cd

⎤⎦ , (5.51)

and

V =

⎡⎣0 0 0
0 0 g
0 g 0

⎤⎦ (5.52)

are the uncoupled (H0) and the coupling Hamiltonian (V ) connecting the subspace
of the zero-excitation state and the target state to the perturbing third level. We
apply the SWT to this effective Hamiltonian, using

S =

⎡⎣ 0 0 S13

0 0 S23

−S13 −S23 0

⎤⎦ , (5.53)

with

S13 =

√
Nεqg

Nε2q −∆−
cd(∆

−
cd −∆qd)

, (5.54a)

S23 =
∆−

cdg

Nε2q −∆−
cd(∆

−
cd −∆qd)

, (5.54b)

obtained by solving [H0, S] = V . This leads to an expansion of the transformed
Hamiltonian such that the first two levels become decoupled from the third one up
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to first order in V , i.e., H ′ = H0 +
1
2
[S, V ] + O(V 3). This results in an effective

two-level system with the Hamiltonian

H̃ =

[
0 1

2
Ω̃eff

1
2
Ω̃eff ∆̃eff

]
, (5.55)

in which the detuning and coupling strength are renormalized by the presence of the
third level according to

Ω̃eff = 2
√
Nεq +

√
Nεqg

2

Nε2q −∆−
cd(∆

−
cd −∆qd)

, (5.56a)

∆̃eff = ∆qd +
∆−

cdg
2

Nε2q −∆−
cd(∆

−
cd −∆qd)

. (5.56b)

From the resonance case ∆̃eff = 0 we find a formula, which connects the driving
frequency ωd with the other parameters:

ω̃±
d =

1

2∆

[
g2 +Nε2q −∆(∆− 2ωq)±

√
(g2 −∆2 +Nε2q)

2 + 4g2∆2
]
. (5.57)

Figure 5.5 shows the plot of this formula in comparison with that in Eq. (5.4). A
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Figure 5.5: Theoretically predicted driving frequencies ω̃±
d given by Eq. (5.57) (yellow)

and ωd given by Eq. (5.29) (blue) in dependence of the qubit-cavity detuning ∆
for different numbers of cavities N . The remaining parameters in the formulas are
J = g, ωq = 70g, and εq = 0.01.

similar derivation to the one above for the driving frequency can also be performed
for other parameters, e.g., the cavity-cavity coupling strength:

J̃ =
∆2

qd − 2∆∆qd − g2 ±
√
(∆2

qd + g2)2 + 4∆2
qdNε

2
q

2∆qd(N − 1)
(5.58)
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A detailed discussion of this formula can be found in the next chapter.

The effective Hamiltonian H̃ in Eq. (5.55) describes the N -partite system as a two-
level system. Let |g . . . , 0 . . .⟩ be the initial state of the system. Then, the calculation
of the time evolution of that two-level system yields Rabi oscillation of the squared
overlap of the state of the system with the target state |WN , 0 . . .⟩ that is comparable
with that in Eq. (4.22b). The maximum squared overlap F̃max is the peak-to-peak
amplitude:

F̃max =
ε2q(

∆qd
2

)2
+ ε2q

, (5.59)

Later in this theses we will compare this theoretical result with with Eq. (5.31) and
our numerical scheme for entanglement generation.

5.5 Generating Rabi oscillation

Controlled generation of entanglement requires a detailed understanding of the
spectrum of the interacting system and its dependence on the parameters. Figure 5.6
shows the eigenenergies and the components of the eigenstates in dependence of
the detuning ∆. We infer from Fig. 5.6 that we can expect Rabi oscillations with

ΩR/g ≈ 3 · 10−2
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Figure 5.6: Eigenspectrum for a system with two cavity-qubit systems as a function
of their detuning ∆. The parameters used here are J = g, ωq = 70g, εq = 0.01g.
At ∆ = 4.527g (i.e., ωc = 65.473g) and ωd = 70.174g we expect Rabi oscillation of
frequency Ω = 0.03g with a maximum amplitude.

relatively large amplitudes for ∆ = 4.527g. That is because the contributions to the
eigenstate of the system from the ground state and the symmetric state |T, 00⟩ are
both near 50 % (orange and green parts of the pie chart) while contributions from
other states are relatively small.
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Figure 5.7 shows the fidelities obtained from the Hamiltonian H ′ in Eq. (5.18) with
the detuning ∆ = 4.527g and the driving frequency ωd = 70.174g. The ground
state reaches a fidelity value almost 1 while the entangled state |T, 00⟩ has a fidelity
value of about 0.95. The anti-symmetric states |S, 00⟩ and |gg, Sp⟩ are not affected
by the pump. This also pertains to anti-symmetric states with more than one
excitation. The shown Rabi oscillations have a frequency ΩR, i.e., the splitting of the
corresponding energy levels, of about 0.03g, which is equivalent to a period of about
200g−1. In order to use entangled states for quantum information protocols and
quantum computers, their fidelity needs to be above a specific value for a certain time.
Thus, an oscillating fidelity value generated by a coherent pump is not desirable.
By using a pulse instead of a coherent pump it is possible to achieve a value of the
fidelity that is constant when there are no dissipation processes.
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Figure 5.7: Rabi oscillation of the ground state |gg, 00⟩ and the symmetric state
|T, 00⟩. The fidelity of |T, 00⟩ reaches values about 0.95. There are also smaller
oscillations of |gg,Tp⟩ and other symmetric states with more than one excitation.
The fidelity of the anti-symmetric states stays zero.

5.6 Generating bipartite entanglement via optical
pulses

Up to this point we have a set of system parameters, which allows to generate Rabi
oscillation of the zero-excitation state and the qubit triplet state with a high amplitude
by coherently driving the system, as it is shown in Fig. 5.7. We discussed earlier
the different behavior of a single cavity-qubit system when it is driven coherently
or with an optical pulse. The latter offers the possibility to drive the fidelity of a
target state with the value 0 to a value close to 1. This mechanism can be adopted
for the multipartite system with N cavities, except that the Rabi frequency Ω(t),
which determines the pulse area Θ, is now equal to 2

√
Nεq (cf. Sec. 5.4). In case
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of a rectangular pulse, its duration should be half the period T = 2π/Ω of a Rabi
cycle with the frequency Ω and the pulse strength of the pulse should be εq, i.e., the
strength of the coherent drive that generates Rabi oscillation. Thus, the area under
the rectangular pulse function is εqT/2 = π/(2

√
N), where we used Ω = 2

√
Nεq.

With the analogue time-dependent Rabi frequency Ω(t) = 2
√
Nεq(t) we find for the

pulse area, which is defined as Θ =
∫∞
−∞Ω(t)dt: Θ = π. This means, that we drive

the N cavity-qubit system with a π pulse as we discussed before for the case of a
single cavity-qubit system. Note that the pulse area Θ is 2

√
N times the actual area

under the function εq(t). For a more realistic setup we use a Gaussian function as
the pulse shape. We define the Gaussian pulse by

εq(t) =
A

σ
√
2π

e−
1
2

(
t−µ
σ

)2

, (5.60)

where A is the area under the function εq(t), i.e., A = 2
√
NΘ, σ is the standard

deviation, and µ the mean value. The mean value µ just determines the time at
which the pulse reaches its peak with the value of A/(σ

√
2π), so that it can be chosen

freely. The standard deviation σ determines the pulse duration τ , which is defined
as the full width at half maximum (FWHM) of the pulse shape:

τ = 2
√
2 ln 2σ. (5.61)

We consider now the bipartite system with the eigenspectrum shown in Fig. 5.6,
where εq = 0.01g and Ω = 0.03g ≈ 2

√
2εq. For the rectangular pulse its measures,

i.e., its width and height, are clear. However, for the Gaussian pulse we now that A
depends on the pulse area Θ, which is given, but we have no rule for the FWHM,
yet. In Fig. 5.8 we plot the fidelity of the target state after the interaction of the
bipartite system without dissipation with a Gaussian pulse with a fixed pulse area of
π versus the FWHM (τ) of this very pulse. From the plot we find that the highest
fidelity is reached for τ = T/2, as it is the case for the rectangular pulse. Thus, we
drive our CCA with a Gaussian pulse with a FWHM of T/2. The result we obtain
for the bipartite system with dissipation effects is depicted in Fig. 5.9. The highest
fidelity, which the entangled target state reaches, is about 0.95. The deviation from
the optimum value of 1 is caused by the admixture of residual states. In our bipartite
system, it is mainly the state |gg,Tp⟩, whose contribution (yellow) to the eigenstate
can be recognized in Fig. 5.6.
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Figure 5.8: Fidelity of the qubit triplet state |T, 00⟩ versus the FWHM of the
Gaussian pulse. Initially, the system is in the zero-excitation state |gg, 00⟩. With
the Gaussian pulse with the FWHM τ = T/2, the fidelity of the qubit triplet state
reaches the highest fidelity as it is the case for a rectangular pulse. Dissipation effects
are not included here.
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Figure 5.9: Fidelities of the zero-excitation state |gg, 00⟩, the qubit triplet state
|T, 00⟩, the sum of the fidelities of all other states, and the normalized Gaussian
pulse. Initially, the system is in the zero-excitation state. After driving the system
with the Gaussian pulse, the fidelity of the qubit triplet state reaches a value of about
0.95. Here, the parameters are J = g, ωq = 70g, ωc = 65.473g, εq = 0.01g, and
ωd = 70.174g. The included dissipation effects have the rates κ = 10−3g, γ = 10−4g,
γϕ = 10−5g.
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Chapter 6

Targeted generation of
multipartite entanglement

In general, entanglement generation in a system of coupled-cavity-qubit systems
is possible. In the previous chapter we drove the system from its zero-excitation
state directly into the targeted entangled state by using an optical pulse. We have
seen that the question, whether this can be performed with a given system can be
answered by having a look at the systems’ energy eigenspectrum. To make this easier,
we introduced a new graphical representation of the eigenstates. This revealed that
a given target state can be achieve if the initial state and the target state equally
contribute to the same eigenstate of the system. In this chapter we introduce a
systematic approach to generate entangled target states within a CCA using coherent
optical excitation. For this we make use of the knowledge we acquired in the previous
chapter. This means, that we calculate eigenspectra, evaluate a newly defined figure
of merit, which represents the maximum overlap quality of the basis states, and
tailor an optical pulse with the Rabi frequency that we gain from the eigenspectrum.
It is an efficient scheme that can be applied to systems with two or more cavities.
We begin to present results for generating a bipartite entangled Bell state and finish
with tri- and quadripartite entangled Dicke states.

6.1 Generalization by schematically finding sys-
tem parameters

We observed that it is possible to drive a system of coupled cavity-qubit systems
from its zero-excitation state into an entangled target state by means of an optical
pulse. This pulse was tailored by making use of the eigenspectrum of the system
for a specific set of parameters. The systematic approach for finding these specific
parameters can be broken down into the following steps: First, we calculate the
eigenstates |ψi⟩ of the system for a given set of parameters. Next, we calculate the
squared overlaps of these eigenstates with the initial state |α⟩ and the target state
|β⟩, respectively, i.e., we obtain the fidelities Fα,i = | ⟨ψi|α⟩ |2 and Fβ,i = | ⟨ψi|β⟩ |2.
Our goal is to find an eigenstate with equal contribution of the initial state and the
target state only, therefore, the optimum value of their squared overlap with this
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eigenstate is 0.5. The absolute deviation of the fidelities Fα,i and Fβ,i from the value
0.5 is used to introduce the overlap quality Qi of the eigenstate |ψi⟩ as

Qi ≡ 1− |0.5− Fα,i| − |0.5− Fβ,i|, (6.1)

which is a value between 0 and 1 with 1 being the optimal case. For the present
example, Qi = 1 means that the eigenstate is of the form

|ψi⟩ = (|α⟩+ eiϕ |β⟩)/
√
2, (6.2)

where ϕ is an undetermined phase. We compute the Qi for each |ψi⟩ and select the
one, which gives the highest value:

Qmax ≡ max
i

(Qi). (6.3)

This is the figure of merit of our numerical scheme. In our bipartite system, the
initial state is the zero-excitation state and the target state is the entangled qubit
triplet state, i.e., |α⟩ = |gg, 00⟩ and |β⟩ = |T, 00⟩. In Fig. 6.1 we determine Qmax in
dependence of the cavity-qubit detuning ∆ and the driving frequency ωd while the
other parameters are kept fixed. The resulting parameter map reveals for which of
the two varied parameters the maximum overlap quality Qmax becomes optimal. The
white areas belong to Qmax = 0.5 and indicate parameters, for which one eigenstate
of the system is composed of either 50 % of the zero-excitation state, the target state,
or the mixture of both, while the other 50 % of the eigenstate consist of contributions
of other basis states with one or more excitations. Optimal parameters for driving
the target state can be found in the green regions, where Qmax is close or equal to 1.
In addition to the numerical results, the analytic expressions ω±

d in Eq. (5.29) and ω̃±
d

in Eq. (5.57), which give the ideal driving frequency to a given cavity-qubit detuning,
are shown as the blue line in the left panel and as the yellow line in the right panel
in Figure 6.1, respectively. Fig. 6.1 reveals two areas, which are correctly predicted
by the analytic expression ω±

d . As we can see in Fig. 6.1, both approximations, ω±
d
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Figure 6.1: Maximum overlap quality Qmax for generating the target state |T, 00⟩ as
a function of cavity-qubit detuning ∆ and the driving frequency ωd. The blue and
the yellow lines represent the analytic result ω+

d (solid) and ω−
d (dashed) in Eq. (5.29)

and ω̃+
d (solid) and ω̃−

d (dashed) in Eq. (5.57), respectively, for N = 2.

and ω̃±
d , indicate the positions of the green areas with optimal parameters with a

high accuracy.
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Similar conclusions can be drawn for the variation of other parameters. From the
first ansatz in the previous chapter and the condition that the effective detuning in
Eq. (5.28) equals zero, we find the expression for the cavity-cavity coupling J0 that
is given by Eq. (5.30). The same can be done for the second ansatz, which utilizes
the SWT, and the effective detuning in Eq. (5.56b). The resulting expression for J̃±

is given by Eq. (5.58). In both approximations, the cavity-cavity coupling strength is
linear to the qubit-cavity detuning ∆. The left panel of Fig. 6.2 reveals that J0 (blue
line) and J̃+ (solid yellow line) are almost identical. However, the approximation J0,
which we obtained from the first ansatz with the optimized time-dependence, lies a bit
better within the green area that indicates optimal parameters. The approximation
J̃− (dashed yellow line) lies within a white area, which is not interesting for our
entanglement generation scheme. From the expression in Eq. (5.29) we expect that
the driving frequency is independent of the driving strength. However, the right panel
in Fig. 6.2 reveals that this independence is only valid for large driving strengths
around the optimum driving frequency of ωd = 70.174g. From the expression in
Eq. (5.57) we find a function of the driving frequency in dependence of the driving
strength. As shown in the right panel in Fig. 6.2, the function ω̃+

d (solid line) is
almost constant, whereby the constant value equals the theoretically found optimal
driving frequency. The driving frequency ω̃−

d (dashed line) only indicates an white
area with parameters that are not suitable for our purposes.
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Figure 6.2: Maximum overlap quality Qmax for generating the target state |T, 00⟩
as a function of two variables. These are (a) the cavity-qubit detuning ∆ and the
cavity-cavity coupling strength J , and (b) the qubit driving strength εq and the qubit
driving frequency ωd. In (a), the blue and the yellow lines represent the analytic
result for J0 in Eq. (5.30), and J̃+ (solid) and J̃− (dashed) in Eq. (5.58), respectively.
In (b), the yellow lines represent the analytic result for ω̃+

d (solid) and ω̃−
d (dashed)

in Eq. (5.57), respectively. The expression for ω±
d in Eq. (5.29) is not included since

it does simply not depend εq.

The suitable parameters for the generation of entanglement with a high fidelity are
found in quite narrow domains. Many of these are hard to resolve properly. This
implies a small fault tolerance of the system parameters in experimental setups.
However, the usage of our systematic approach is an efficient way in order to find
the best parameter settings.
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6.2. INFLUENCE OF DISSIPATION

6.2 Influence of dissipation

In addition to the coherent dynamics we have addressed so far, irreversible dissipation
due to cavity decay, qubit dissipation, or pure dephasing arises from the nonunitary
Liouvillian superoperator in Eq. (4.46). The dephasing that is associated with
dissipative processes is a limitation for entanglement in quantum systems. We
evaluate the impact of pure dephasing, radiative, and cavity losses on the attainable
target-state fidelity. In Fig. 6.3 the maximum fidelity of the target state |T, 00⟩ is
shown as a function of the dissipation rate for three different dissipation mechanisms.
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Figure 6.3: Maximum fidelity with the state |T, 00⟩ reached after excitation with
Gaussian pulse as a function of different dissipation rates κ, γ, and γφ. Qubit
dissipation (γ) and pure dephasing (γφ) act directly on the qubit state and thus have
a stronger deteriorating effect than cavity decay (κ).

It can be seen that the physical dissipation mechanism described by the collapse
operator Cn significantly impacts the possible fidelity. In particular, cavity losses,
which can be the predominant loss mechanism in coupled micropillar cavities, have a
much weaker impact on the target fidelity than qubit dephasing or radiative losses
that directly act on the emitter degrees of freedom. In Fig. 6.4 we augment the
parameter map of Fig. 6.1 by directly showing the maximum fidelity for the target
state |T, 00⟩ for the cases without (left) and with small cavity dissipation rate (right).
It can be seen that for values of experimentally realizable dissipation rates, the size
of the areas of suitable parameters for entanglement generation are only slightly
reduced.
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6.3. TARGETED GENERATION OF TRI- AND QUADRIPARTITE
ENTANGLEMENT
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Figure 6.4: Maximum fidelities for the target state |T, 00⟩ without (a) and with (b)
cavity dissipation (κ = 10−1g) as a function of the cavity-qubit detuning ∆ and the
driving frequency ωd. The red areas indicate parameters for which the fidelity is
close to the maximum value of 1. The presence of dissipation slightly decreases the
size of the red areas and thus the parameter space for entanglement generation.

6.3 Targeted generation of tri- and quadripartite
entanglement

So far, we restricted our study of entanglement generation to bipartite entanglement
in a system with two coupled cavities. We now explore the potential of the systematic
approach, which we have introduced, for the generation of MPE in systems with
more than two cavities. In general, our scheme allows to find parameters for driving
direct transitions between states that form an orthogonal basis. In this thesis,
we drive transitions between the zero-excitation state and entangled states that
together belong to the same orthogonal basis. One has to keep in mind that not any
arbitrary entangled state can be considered in our systematic approach. Such relevant
multipartite entangled qubit states are for instance the Dicke states in Eq. (5.20)
and their lowest excited states, the W states given by Eq. (5.21). In the following,
we target the qubit W state with N = 3 and N = 4 qubits with the cavities in the
vacuum state. Therefore, the joint target state will be |W3, 000⟩ and |W4, 0000⟩.
With the previously discussed systematic approach we generate the parameter maps
in Fig. 6.5 to reveal the parameter space in which the target states |W3, 000⟩ (left
panel) and |W4, 0000⟩ (right panel) can be driven directly from the corresponding
zero-excitation states |ggg, 000⟩ and |gggg, 0000⟩.
As before in Fig. 6.1, the blue lines represent the analytic result from Eq. (5.29). With
the fixed parameters J = g, ωq = 70g, and εq = 0.01g, we obtain the eigenspectrum
of the tripartite system, which is shown in Fig. 6.6, and the quadripartite system.
From these eigenspectra we find the Rabi frequencies Ω ≈ 0.03g for N = 3 and
Ω ≈ 0.04g for N = 4. This is in a good agreement with the analytical prediction in
Eq. (5.27).

From the left panel in Fig. 6.5 we extract the detuning ∆ = 3.04g and the qubit
driving frequency ωd = 70.19g as an example of good parameters for generating the
tripartite qubit W state. By using a Gaussian pulse with a duration of π/2 (half the
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Figure 6.5: Parameter maps as a function of the cavity-qubit detuning ∆ and the
driving frequency ωd for generating the multipartite target states. (a) For the
tripartite target state |W3, 000⟩ (N = 3) we determine ∆ = 3.04g (i.e., ωc = 66.96g)
and ωd = 70.19g to be optimal parameters. (b) For the multipartite target state
|W4, 0000⟩ with four parts (N = 4), we determine ∆ = 2.61g (i.e., ωc = 67.39g) and
ωd = 70.17g to be optimal parameters. In both cases, the blue lines represent the
analytic result from Eq. (5.29).
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Figure 6.6: Eigenspectrum of the Hamiltonian with colored charts representing the
eigenstates and their squared overlap with the vacuum state |ggg, 000⟩, and the
target state |W3, 000⟩. At ∆ = 3.04g contributions of the vacuum state (orange) and
the target state (blue) are maximal at almost 50 %, respectively. Gray contributions
represent the sum of fidelities of other states. The energy gap between the two
eigenenergies at the chosen detuning determines the Rabi frequency ΩR ≈ 0.03g.
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Figure 6.7: Time-dependence of the squared overlaps of the basis states of the
tripartite system. Each qubit is driven by a Gaussian π pulse (dotted black line,
normalized) with a FWHM of π/Ω = 104.7g−1. The fidelity of the target state
|W3, 000⟩ reaches a value of approximately 95 %. The included dissipation effects
have the rates κ = 10−3g, γ = 10−4g, γφ = 10−5g.

period of one Rabi cycle) and a pulse area that we tailor with the corresponding Rabi
frequency, we obtain the time dependency of the fidelity of the zero-excitation state,
the target state and the sum of the other states. Figure 6.7 reveals for N = 3 cavities
that the fidelity of the targeted W state reaches a value of about 95 %. From the right
panel in Fig. 6.5 we extract the detuning ∆ = 2.61g and the qubit driving frequency
ωd = 70.17g as an example of good parameters for generating the quadripartite qubit
W state. The time-evolution of the squared overlaps of the quadripartite states is
shown in Fig. 6.8. It reveals that the fidelity of the targeted W state reaches a value
of about 95 % for N = 4. The results demonstrate the feasibility of the developed
systematic approach.

In Fig. 6.9 we evaluate our two analytical approaches of the maximum fidelity for the
bipartite system as a function of qubit-cavity detuning ∆ in the region of optimal
parameters for driving the system into the target state |T, 00⟩. The approximation
Fmax in Eq. (5.31) (violet line), which we obtained from modelling the time-dynamics
of the system, and the approximation F̃max in Eq. (5.59) (green line), which we
obtained from the SWT, behave the same way as the numerical results (crosses).
Additionally, Fig. 6.9 shows the maximum overlap quality Qmax defined in Eq. (6.3)
(black). The analytical approaches that we made are less accurate for detunings
larger than the optimum value of ∆ = 4.527g as seen in Fig. 5.6. That is because of
the influence of non-target states that increases for larger detunings. For detunings
below the optimum value, the graph that represents Fmax lies much closer to the
numerical results than the one representing F̃max.
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Figure 6.8: Time-dependence of the squared overlaps of the basis states of the
multipartite system with four parts. Each qubit is driven by a Gaussian π pulse
(dotted black line, normalized) with a FWHM of π/Ω = 78.5g−1. The fidelity of
the target state |W4, 0000⟩ reaches a value of approximately 95 %. The included
dissipation effects have the rates κ = 10−3g, γ = 10−4g, γφ = 10−5g.
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Figure 6.9: Maximum fidelity for the target state |T, 00⟩, as a function of qubit-cavity
detuning. The approximations of the maximum fidelity Fmax given by Eq. (5.31)
(green line), and Fmax given by Eq. (5.59) show the same behavior as the numerical
results (crosses). The maximum overlap quality Qmax from Eq. (6.3) follows is also
shown (dotted) and behaves similar to the approximations maximum fidelity and
the numerical values.
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6.4. SYMMETRY STEERING VIA LOCAL EXCITATION

6.4 Symmetry steering via local excitation

Here we analyze the possibility of applying local phase factors to access entangled
multipartite states that could not be generated from a homogeneous excitation scheme
for the whole CCA. A simple example is the generation of the singlet qubit state |S⟩.
This is not directly possible with the previously used excitation scheme because the
antisymmetric states (like |S, 00⟩) are not interacting with the homogeneous coherent
pump. However, the generation of an antisymmetric target state from the symmetric
zero-excitation state |gg, 00⟩ can be realized by modifying the single qubit drives
with a local phase factor, i.e., by creating a phase difference between the excitations
of the qubits. In case of the state |S, 00⟩, the phase difference has to be π and the
matrix of the bipartite Hamiltonian in Eq. (5.1) for zero and one excitation becomes

H(0,1) =

⎡⎢⎢⎢⎢⎣
0 0 0

√
2εq 0

0 ∆qd g 0 0
0 g ∆−

cd 0 0√
2εq 0 0 ∆qd g
0 0 0 g ∆+

cd

⎤⎥⎥⎥⎥⎦ . (6.4)

In contrast to the corresponding submatrix of the Hamiltonian H ′ in Eq. (5.19), the
zero-excitation state |gg, 00⟩ is coupled to the antisymmetric states including the
target state |S, 00⟩. Based on this insight, we can apply our systematic entanglement
generation scheme to a more general class of entangled multipartite states of the
form

|Wph
N ⟩ = 1√

N

(
eiφ1 |eg . . . g⟩+ · · ·+ eiφN |g . . . ge⟩

)
. (6.5)

Arbitrary phases φi that are not 0 or π lead to additional couplings between the
basis states. This makes the theoretical prediction of suitable parameters for the
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Figure 6.10: Parameter map as a function of the cavity-qubit detuning ∆ and the
driving frequency ωd for generating the phased W state |Wph

3 , 000⟩ given by Eq. (6.6).
We determine as optimal parameters ∆ = −4.71g and ωd = 69.83g.

generation of targeted phased entangled states more sophisticated. The fact that
this is possible at all is a unique feature of the CCA platform with individually
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6.4. SYMMETRY STEERING VIA LOCAL EXCITATION

addressable sites. By allowing for different phases of the individual external qubit
excitations, phased entangled states can actually be generated, opening the door for
accessing larger parts of the Hilbert space and to go beyond the more conventional
entangled states. We demonstrate this by generating a phased W state for three
coupled cavities (φ1 = φ2 = 0, φ3 = π):

|Wph
3 , 000⟩ =

1√
3
(|egg⟩+ |geg⟩ − |gge⟩)⊗ |000⟩ , (6.6)

The order of the three phases is reflected in phases of the individual qubit drives,
where only the relative phase determines the excited state. Figure. 6.10 shows the
maximum overlap quality Qmax in dependence of the parameters ∆ and ωd. Choosing
optimal parameters for the targeted generation yields a value of about 83% for the
fidelity of the targeted phased entangled state.

In this chapter we have restricted the discussion of our systematic entanglement
generation scheme to multipartite entangled qubit states with at most one excitation.
In principle also multi-excitation states can be targeted. However, the corresponding
Rabi frequencies are reduced on the order in ∆/g [32] which significantly reduces
the attainable fidelity values due to the competition with the discussed dephasing
mechanisms.
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Chapter 7

Conclusion

The insights and methods, both analytic and numeric, developed in this thesis
provide an important building block for future quantum technologies. We have
shown, that entangled multipartite target states can be driven directly from the
zero-excitation state by means of detuned optical excitation pulses. As building
blocks, we have considered coupled-cavity arrays, whose Hamiltonian is based on the
Jaynes–Cummings model extended by photon exchange between distant cavities and
a coherent optical qubit drive. Introducing a novel graphical representation of the
eigenenergies and eigenstates of a given Hamiltonian allows us to use it for further
investigations of a single cavity-qubit system that is externally excited by a coherent
pump or a laser pulse. Based on these insights, we are able to make predictions
about the behavior of multiple symmetric coupled cavities and demonstrate the
generation of bipartite entanglement. The graphical representation of the system’s
eigenenergy structure lays the foundation for a numerical scheme that we have
developed, and which enables us to predict suitable driving parameters for different
classes of entangled target states. We also implemented that numerical scheme on
multipartite systems. For systems with a few cavity-qubit subsystems, we have shown
that entangled states, such as W and Bell states, can be generated with fidelities
above 90 %. The additional tunability of the phases of the individual qubit pumps
allow us to enlarge the set of entangled target states by phased W states.

The generalized numerical scheme for the generation of different entangled multipar-
tite target states in coupled-cavity arrays will be of direct relevance for using the
solid-state cavity quantum electrodynamics platform in future quantum photonic
applications, such as quantum reservoir computing. Even in the context of quan-
tum information transfer, i.e., via optical fibres, entangled multipartite states offer
advantages in robustness over bipartite Bell states.

This thesis constitutes a first step towards more complex network topologies based on
coupled-cavity arrays with individually tailored inter-cavity couplings. The developed
scheme lays open how to generate entanglement in a controllable way, which is a
key resource for quantum reservoir computing. Conventional, gate-based quantum
computers rely on fault tolerant qubit and gate operations. The underlying idea
behind quantum reservoir computing is to connect quantum systems and classical
machine learning to enable a mid-term quantum technology that is able to play out its
advantages over classical systems even on noisy intermediate-scale quantum (NISQ)
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hardware. Multipartite entanglement in coupled-cavity arrays is a key resource for
the advantage of quantum reservoir computers over classical reservoir computers.
Therefore, the coherent driving of entangled states could be an important component
of the future development of quantum reservoir computers.
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Appendix A

Unitary transformation

A unitary transformation is performed with a unitary operator U , which has to fulfill
the condition UU † = U †U = 1. We begin with the von Neumann equation,

ρ̇ = − i
ℏ
[H, ρ] , (A.1)

insert U †U = 1 and premultiply with U and postmultiply with U †:

Uρ̇U † = − i
ℏ
UHU †UρU † +

i
ℏ
UρU †UHU †

= − i
ℏ
[
UHU †, UρU †] . (A.2)

By the product rule,
d
dt
(
UρU †) = U̇ρU † + Uρ̇U † + UρU̇ †. (A.3)

Note, that d
dt

(
U †) = (U̇)† ≡ U̇ †. After rearranging and inserting U †U = 1, we get

Uρ̇U † =
d
dt
(
UρU †)− U̇U †UρU † − UρU †UU̇ †

=
d
dt
(
UρU †)− [U̇U †, UρU †

]
.

(A.4)

Here, we have used the fact that d
dt

(
UU †) = U̇U † + UU̇ † = 0. By combining (A.2)

and (A.4), we finally get

d
dt
(
UρU †) = − i

ℏ

[
UHU † + iℏU̇U †, UρU †

]
. (A.5)

Since the von Neumann equation should be valid for the transformed density operator
ρ′ := UρU † and the transformed Hamiltonian H ′, we find

d
dt

(ρ′) = − i
ℏ
[H ′, ρ′] , (A.6)

with H ′ = UHU † + iℏU̇U †. For a unitary operator of the form U = exp (iXt/ℏ),
we can also write

H ′ = U (H − iℏ∂t)U †. (A.7)
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Appendix B

Driving qubits versus driving
cavities

We begin with a unitary transformation of the Hamiltonian performed by applying
the displacement operator

D(µi) = exp
(
µia

†
i − µ∗

i ai

)
, (B.1)

where µi = µ exp(−iφi) with µ = εq/g. The effect is that the bosonic annihilation
and creation operators are shifted by µi and µ∗

i , respectively:

D(µi)aiD
†(µi) = ai − µi, (B.2a)

D(µi)a
†
iD

†(µi) = a†i − µ∗
i . (B.2b)

This seems to be be a seemingly minor intervention, however, the effect on the full
Hamiltonian given by Eq. (5.1) is much more extensive. On the one hand, the terms
that pump the qubits are eliminated. On the other hand, new terms proportional
to a†i and ai and some negligible constant terms are generated. Since dissipation
processes are part of the whole system, we also have to transform the cavity decay
described by the Lindblad dissipator D[

√
κai]ρ. Its transformation reads

D(µi)D[
√
κai]ρD

†(µi) = D[
√
κai]ρ+

κ

2

[
µia

†
i − µ∗

i ai, ρ
]
. (B.3)

The last term can be seen as a new contribution to the von Neumann part of the
Lindblad master equation, which describes direct cavity pumping with the imaginary
strength iκµi/2. Considering this, the transformed full Hamiltonian can be divided
into three parts that assume the form

H ′
q =

∑
i

∆qdσ
†
iσi, (B.4)

H ′
c =

∑
i

∆cdb
†
ibi −

∑
i,j

Jijb
†
ibj +

∑
i

(
εc,ib

†
i + ε∗c,ibi

)
, (B.5)

H ′
c,q =

∑
i

g
(
a†iσ

−
i + aiσ

+
i

)
, (B.6)
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where we used Jij = Jji. The new non-constant term describes direct pumping of
photons into the cavity with the complex strength

εc,i = µi

(∑
j

Jijei(φi−φj) −∆cd + iκ
2

)
. (B.7)

By a unitary transformation of the form ai ↦→ ai exp(iϕ), σi ↦→ σi exp(iϕ) one finds
that the complex value λ gets a phase factor, i.e., λ ↦→ λ exp(−iϕ), which can be
chosen such that the strength becomes real. This number is the strength of the drive
which acts on the photons in the cavity.

As we can see, driving the qubits and driving the cavities are mathematically
equivalent up to a constant factor in the strength of the respective drive. Finally, we
have seen that the dynamics of Eq. (5.18) remains unchanged regardless of whether
one drives the qubits or cavities.
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Appendix C

Number of states of the excitation
basis

When we work with systems with different numbers of cavities, we will have corre-
spondingly different numbers of basis states for each excitation basis. A system of N
cavities with one qubit each has

nq(N,m) =
N !

m! · (N −m)!
≡
(
N

m

)
(C.1)

qubit states with m ≤ N excitations. By summing up nq(N,m) for all excitations
m, one finds that the system consists of overall 2N qubit states. Since photons are
bosons, the total number of photon states is infinite. However, the number of photon
states with m excitations (photons) is given by

np(N,m) =
1

(N − 1)!

N−1∏
k=1

(m+ k). (C.2)

The excitation basis of the whole system with m > 0 excitations will have

n(N,m) =
N∑
l=0

nq(N, l)np(N,m− l)

=
1

(N − 1)!

N∑
l=0

(
N

l

)N−1∏
k=1

(m− l + k).

(C.3)

basis states, i.e., product states of qubit and photon states. For m = 0, there is only
one product state namely the ground state |g⟩⊗N ⊗ |0⟩⊗N .

Table C.1 shows examples for different values of N and m. As we can see, the number
of photon states with m excitations grows with the power of N − 1. Therefore, the
number of basis states with m excitations grows with the power of N − 1 as well.
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Table C.1: Number of basis states for a system with N cavities with m excitations.

m nq(1,m) np(1,m) n(1,m) nq(2,m) np(2,m) n(2,m) nq(3,m) np(3,m) n(3,m)
0 1 1 1 1 1 1 1 1 1
1 1 1 2 2 2 4 3 3 6
2 - 1 2 1 3 8 3 6 18
3 - 1 2 - 4 12 1 10 38
4 - 1 2 - 5 16 - 15 66
5 - 1 2 - 6 20 - 21 102
... ... ... ... ... ... ... ... ... ...
m

(
1
m

)
1 2

(
2
m

)
m+ 1 4m

(
3
m

)
m2+3m+2

2
4m2 + 2

... ... ... ... ... ... ... ... ... ...
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Appendix D

Baker–Campbell–Hausdorff
formula

The Baker–Campbell–Hausdorff formula (BCH formula) is the solution for Z to the
equation

eZ = eXeY , (D.1)

where X and Y are linear operators. With eA (or expA), we define the exponential
map of a linear operator A by

eA :=
∞∑
k=0

1

k!
Ak, (D.2)

where A0 = I (the identity operator). In order to simplify the following equations,
we introduce the two linear maps

AdAX := AXA−1 (D.3)

and
adX Y := [X,Y ], (D.4)

where [X,Y ] := XY −Y X defines the commutator of X and Y [108]. The definition
of adX allows to write iterative commutators in a short way [109]:

(adX)mY = [X, . . . [X, [X  
m times

, Y ]] . . . ], (D.5)

with (adX)0Y = Y . The BCH formula for Z = log(eXeY ) can be expressed in the
integral form

log(eXeY ) = X +

∫ 1

0

g(eadXet adY )Y dt, (D.6)

where g(z) = z log z/(z − 1) [108, 109]. From the series expansion of the logarithmic
and the exponential function of Z we get the sum of iterated commutators of X and
Y , which is given by

log(eXeY ) = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]] +

1

12
[Y, [Y,X]] + . . . , (D.7)

82



where " . . . " indicate higher order terms [110]. For proving the BCH formula, the
following proposition is used [108, 109, 110]:

AdeX = eadX , (D.8)

or written out explicitly

eXY e−X =
∞∑
k=0

1

k!
(adX)kY

= Y + [X,Y ] +
1

2
[X, [X,Y ]] + . . .

(D.9)

This proposition can be proved as follows [110]: Let f(t) = AdetX for t ∈ R. Calculate
its derivative:

f ′(t)Y =
d
dt
f(t)Y

=
d
dt

etXY e−tX

= XetXY e−tX − etXY e−tXX
= X(AdetX Y )− (AdetX Y )X

= adX AdetX Y.

Thus,
f ′(t) = adX f(t), and f(0) = 1.

The only solution of these equations is f(t) = exp(t adX). Finally, f(1) gives
the desired result, q.e.d. Equation (D.9) is widely used in physics for unitary
transformations of the form

A ↦→ eiXAe−iX . (D.10)

That is why the explicit form in Eq. (D.9) of the above proposition is often erroneously
called BCH formula.
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