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ABSTRACT

Cellular proliferation greatly depends on the intake of extracellular material. One very distinct
method of such endocytosis is a process known as macropinocytosis. During this process, large
circular waves of newly polymerized actin form into cup-like, three dimensional structures,
protruding the cellular membrane upwards from the lamellipodium. Such structures are known
as Circular Dorsal Ruffles (CDRs).

These transient and dynamic rings of intense actin polymerization typically last for several
minutes and span over diameters in the micrometer range. Upon finalization of the structure,
recruited motor proteins facilitate a contraction of the upper rim, enclosing material inside of
the structure in a large vesicle of cellular membrane.

Stimulation of cells to express these CDRs is facilitated by exposing cells to so-called growth
factors. These growth factors trigger a signaling cascade within the cell, leading to recruitment
of several key proteins involved in actin polymerization to assemble into the aforementioned
circular shape.

In this thesis, the focus will be laid on how the expression of CDRs depends on the concentration
of added growth factors and how individual cells react to such stimuli. As will be shown, a
primary effect of increased stimulant concentration is a trend towards expression of longer
lasting, less motile CDRs. The effect of stimulation on individual cells actively expressing CDRs
is, counterintuitively, a reduction in CDR activity, while previously inactive cells are stimulated
to begin expressing CDRs as would be expected. Here, the amount of live single cell data
acquired during the study plays an important role in identification of such patterns due to the
large variance of cellular processes inherent to biological systems, as well as the inability to
determine protein concentrations within cells during experiments.

A crucial consideration for performed experiments was generation of large datasets per exper-
iment. This was facilitated by utilizing a microfluidic perfusion system in conjunction with
microcontact printing, forcing cells into predetermined shapes an locations on the provided
substrate. These methods in combination with usage of sophisticated image processing algo-
rithms allowed for extraction of a dataset of significant size. Usage of statistical methods such as
clustering, allowed for deeper insights into behavior of cells and yielded similarities of cellular

behavior to excitable reaction-diffusion systems.
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CHAPTERl

INTRODUCTION

Eucaryotic cells rely on various mechanisms to take up extracellular material. Sophisticated
proteins embedded into the plasma membrane function as a control of what material can enter
the cell and what remains outside (Alberts et al., 2015). Some of these proteins act as a controlled
channel for ions to enter the cell — one prime example of this function are the voltage gated ion
channels in neurons — others trigger vast signaling cascades within the cell, when activated
with the proper ligand (Alberts et al., 2015; Hoon, Wong, and C.-G. Koh, 2012). This list is,
however not complete and many other ways of endocytosis exist.

An example of such a mechanism relying on a complex signaling protein network is the so-
called “Macropinocytosis”, which was first observed by Warren Lewis in 1931 when he inspected
time-lapse film micrographs of an adherent macrophage cell culture (King and Robert R. Kay,
2019). Lewis initially named this process “Pinocytosis”, a word creation from neo-latin involving
the term “pino” meaning “to drink”, however it was later renamed to the aforementioned term
Macropinocytosis. This mechanism facilitates intake of large amounts of extracellular fluid
into the cell. Internalization is hereby performed, by forming a ring-shaped actin structure
which pushes the cellular plasma membrane upwards into a cup (Gerisch et al., 2009). This
cup is then closed at the top by recruiting motor proteins to the rim of the cup and triggering
a contraction of it, which subsequently creates a vesicle of extracellular fluid engulfed by the
plasma membrane (Swanson, 2008). This vesicle is then transported towards the nucleus and
finally broken down in order to utilize the content for cell proliferation.

Crucial proteins involved in the signaling cascade leading to the formation of such actin rings
will be presented in Chapter 2. A large amount of proteins involved in general regulation of
the actin cytoskeleton is involved in macropinocytosis and locally accumulates in a circular
shape. How this circular shape is formed in detail is, however, not yet well understood, as will
be further discussed in Section 1.1 and the following chapters investigating the cytoskeleton
and actin waves.

The underlying phenomenon creating the aforementioned cup are circular actin waves on the
cellular lamellipodium (Buccione, Orth, and M. a. McNiven, 2004; Hoon, Wong, and C.-G. Koh,



Chapter 1 Introduction

2012). These ring-shaped actin waves, which protrude vertically from cells are also known as
CDRs,! and are the main research target of this thesis. These actin rings typically protrude
multiple micrometers upwards from the cell, span many micrometers in diameter and last for
several minutes before they close and create the aforementioned vesicle (King and Robert R. Kay,

2019; Swanson, 2008). Figure 1.1 shows a simplified sketch of the cross section of a CDR. As
(a) (b)
M //U\\
(©) (d) /\

Filamentous Actin Globular Actin Cytoplasm ~™ Substrate

Figure 1.1: Sketch of steps involved in a CDR protruding out of the cell surface and collapsing
into a large vesicle. (a) Initialization process of ruffle formation. (b) Fully protruding
actin structures pushing the membrane upwards from the dorsal side of the cell.
The inside of the CDR surrounded by the actin protrusions displays a significantly
lower concentration of filamentous actin than the surrounding. (c) Collapsing of
the protrusions, bowing towards the inside of the CDR. (d) Formation of a vesicle
by joining the cellular membrane around the enclosed extracellular material.

will be described in Chapter 3, the function of CDRs is not solely the creation of large vesicles.
During the process, the actin cytoskeleton is rearranged and membrane bound receptors are
internalized (Hoon, Wong, and C.-G. Koh, 2012; Lyashenko et al., 2020). This internalization
of receptors is used by the cell in order to reduce sensitivity to external stimulation by, e.g.
growth factors (Lyashenko et al., 2020). Since fibroblasts react to such stimuli with increased
proliferation and motility during wound healing it is desirable by the organism to regulate the
rate of response in order to prevent uncontrolled cellular growth (Pierce et al., 1991).

Figure 1.2 shows a typical time-lapse of a CDR expressed by a cell spread into a pre-determined
shape controlled by a stamped circular Fibronectin (FN) micropattern, which will be briefly
introduced in Section 1.4 and be explained in more detail in Section 6.2. Clearly visible is the
formation of the ring, movement on the cellular lamellipodium, contraction and closure. The
formed vesicle is then visible as a bright spot within the cell. As is visible from the dimensions
of the CDR, the vesicles formed during this process are comparatively large in volume, with
diameters in the micrometer range, rather than nanometers as is typically found in endosomes
(King and Robert R. Kay, 2019).

'Here the term “dorsal” describes that the protrusion is located on non substrate-facing side of the cell.



1.1 State of Research on Circular Dorsal Ruffles

Such circular actin based structures and the process of macropinocytosis is found in a vast
number of organisms and cell types, which will be further discussed in Section 1.2. A brief
introduction into the possibilities of modeling actin rings will be given in Section 1.3. More

insight into the current state of research on CDRs will be presented in Section 1.1.

t=0s t=30s t=60s t=90s t=120s t=150s

Figure 1.2: Typical timeline of a CDR (location indicated with white arrow in second frame)
forming and collapsing over the course of several minutes. The actin ring expands
and is reflected by the leading edge of the lamellipodium, as well as the nucleus.
After this reflection, the ring contracts and collapses into a large vesicle, indicated
by the white arrow in the last frame. Scale bar: 30 um

STATE OF RESEARCH ON CIRCULAR DORSAL RUFFLES

As already mentioned above, the phenomenon of CDRs was first described by Warren Lewis
in 1931 when he discovered it playing a crucial part in a process he coined Pinocytosis which
he discovered by means of time-lapse films of macrophages (ibid.). Mellstrém, Heldin, and
Westermark showed in 1988 that CDRs can be stimulated in human foreskin fibroblast cells by
adding platelet derived growth factor to the cell medium.

For a long time there was very little progress in reasearch on the phenomenon, however since
the early 2000s research has taken up pace. As will be discussed in Section 1.2, CDRs have
been observed in increasing numbers of celltypes and amoeboid organisms. Key proteins in
the cellular actin regulation pathway were shown to be closely involved in CDR formation.
Among those, many actin nucleation factors — will will be further discussed in Section 2.2.1 —
Rho-Gtpases — see Section 2.2.2 — and phosphoinositides — Section 2.2.3 — were found to play
major roles in the process (Egami et al., 2014; Gerisch et al., 2009; Suetsugu et al., 2003).
Extensive research on the growth factor mediated, receptor triggered signaling pathways in-
volved in the formation of CDRs has provided deeper insights into how cells regulate their actin
cytoskeleton in response to external stimuli (Buccione, Orth, and M. a. McNiven, 2004; Hoon,
Wong, and C.-G. Koh, 2012; Robert R Kay, Williams, and Paschke, 2018).

Further work on non-circular actin waves uncovered such waves to be deeply ingrained mecha-
nisms in cell functions. Actin waves were shown to play major roles in cell migration, polar-
ization and growth in many different cell types (Allard and Alex Mogilner, 2013; Inagaki and
Katsuno, 2017; Ruthel and Banker, 1998; Vicker, 2002). Additionally, recent research showed
that cells use this process for regulation of sensitivity to these external stimuli (Lyashenko et al.,
2020).

1.1



1.2

Chapter 1 Introduction

The possibility of modeling actin waves using reaction-diffusion systems was discovered with
early models by Zeng et al. (Zeng et al., 2011). Bernitt et al. showed that many aspects of CDR
dynamics in particular can be simulated using such models (Bernitt and Dobereiner, 2017; Bernitt,
C. G. Koh, et al., 2015). This approach was further refined and resulted in a mass conserving
bistable model, depending on the total amount of actin (Bernitt, Débereiner, et al., 2017). Work
by Julia Lange confirmed various CDR expression behaviors predicted by the model through
reducing the amount of actin available to a cell and comparing results to numerical simulations
(Lange, 2019).

Recently, CDRs have been observed in kidney tissue of glomerular podocytes for the first time,
ensuring that this phenomenon is indeed present in-vivo and not an artifact of cell culture (Hua
et al.,, 2023).

CIRCULAR ACTIN WAVES IN VARIOUS ORGANISMS

Multiple different celltypes have been observed expressing CDRs, among which the macrophages
are most prominent. Other cell types include fibroblasts, differentiated epithelial cells and, as a
recent addition, glomerular podocytes (ibid.). This list is certainly not complete. Essentially,
most mammalian cells are able to express CDRs given the proper stimulus (King and Robert R.
Kay, 2019).

The model organism used in this thesis are murine embryonic fibroblasts of the line NIH3T3,
which is a well established cell line, abundantly available in most biological laboratories and
rather robust in cell culture. Fibroblasts are also proven to respond well to stimulation using
hPDGEF by expressing CDRs, which was initially shown on human foreskin fibroblasts, and later
on the used NIH3T3 cell line (Mellstrém, Heldin, and Westermark, 1988; Zeng et al., 2011).
Extensive research on CDRs is also present in the amoeboid slime mold Dictyostelium discoideum
(Gerhardt et al., 2014; King and Robert R. Kay, 2019; Swanson, 2008). Since slime molds form their
own branch in the phylogenetic tree, separated from mammals, the process of macropinocytosis
is thought to have existed at the point of branching, rendering it a very ancient cellular process
(King and Robert R. Kay, 2019). Another possible explanation, without any data to back it
up and only mentioned here for completeness, would be convergent evolution. However, the
usage of the process is too deeply involved in cellular proliferation making it more likely that
macropinocytosis evolved early in single cellular organisms.

Macropinocytosis also occurs in many more single celled organisms, including pathogenic ones.
Examples for such amoeboid organisms are Acanthamoeba castellanii or Entamoeba histolytica
(Meza and Clarke, 2004; Ostap et al., 2003).

Since cancerous cells, notably Ras-activated tumor cells, were observed to excessively express
CDRs, macropinocytosis is thought to be an ancient amoeboid feeding pattern still present in
most eukaryotic cells (Bloomfield and Robert R. Kay, 2016). It is suspected in literature, that
some cancer cells return to amoeboid feeding patterns in order to proliferate, since this makes

them less dependent on the functions of the host organism.



1.3 Modeling of Actin Rings

MODELING OF ACTIN RINGS

A large quantity of proteins is involved within the cell in order to form such actin rings, however
the complex orchestration of the formation of large ring-shaped actin structures is not yet well
understood. An insight into the involved proteins and signaling cascade will be presented in
Chapter 3.

Many different properties of CDR expression in cells have been observed in simplified mathe-
matical models such as reaction-diffusion systems. Reaction-diffusion systems have been found
to express various characteristics from stable patterns — first shown by Alan Turing (1952) — to
traveling waves. As will be discussed in Chapter 4 and especially Section 4.2, aspects of CDRs
formation can be described using the FitzHugh-Nagumo (FHN) model (FitzHugh, 1961; Nagumo,
Arimoto, and Yoshizawa, 1962), which was shown to be applicable by Bernitt, C. G. Koh, et al.
(2015). The FHN model was originally developed to model action potentials in neurons and is
therefore not ideal to monitor the complex behavior of actin polymerization. Other modeling
approaches exist in literature building on various characteristics of experimental data on CDR
formation.

A very specialized bistable reaction-diffusion model, specifically formulated for CDR building
on experimentally found asymmetries on the inside and outside of CDRs has been proposed by

Bernitt, Dobereiner, et al., 2017, and will be discussed in Section 4.3.

RESEARCH STRATEGY AND AIMS

In order to investigate the stimulation characteristics of CDRs in NIH3T3 fibroblast cells, exten-
sive experiments on stimulation of actin waves using hPDGF have been carried out. In order to
generate data of single cells in controlled morphologies, a technique called microcontact print-
ing (Bernitt, C. G. Koh, et al., 2015; Théry and Piel, 2009) was used, which is more extensively
described in Section 6.2. Figure 1.3 shows how fibroblasts adapt to such circular microcontacts
(b) as compared to how they typically spread on a substrate (a). The most striking difference is
the uniformity of lamellipodial width in subfigure (b), which greatly improves analysis of CDR
motility by providing a quasi one-dimensional path for CDRs to propagate on, since they are
reflected by the cell edge and the nucleus as will be introduced in Section 3.2. Since fibroblast
cells spreading randomly often contract into elongated shapes with minimal lamellipodium area
after the initial spreading phase, this setup allows for longer experiments with greatly increased
data output by having more cells in a desirable morphology.

Despite the fibroblast cells not being in their typical morphology, previous research showed
no significant difference between randomly spread cells and those spread onto microcontacts
and has since been extensively used in the workgroup (Bernitt, C. G. Koh, et al., 2015). The
experimental setup used here was tuned towards being able to precisely reproduce the timing
of adding a stimulus to the cells using a microfluidic perfusion system. This system, which will

be further described in Section 6.3, is able to be programmed for executing multiple consecutive

1.3

1.4



1.5

Chapter 1 Introduction

Figure 1.3: Comparison between NIH3T3 fibroblasts spread (a) randomly and (b) on a printed
circular substrate with an area of 3000 um?. The randomly spread cell in (a) displays
a large variation in lamellipodium area available for CDR formation, which greatly
varies for each individual cell. The controlled circular shape in (b) aims to provide
homogeneous width of the lamellipodium. Scale bars in both subfigures: 30 um

experiments with the same parameters such as stimulation time, flow rate and recovery times.
In contrast to classical stimulation experiments, where the medium is manually replaced using
pipettes, this method enables uninterrupted imaging of cells during the entire course of the
experiment.

Using this setup, a large amount of single cell data was obtained from experiments. Overall,
the number of individual cells analyzed is 2548 with 16 663 CDR events among them. This
unprecedented large number of datapoints for this kind of experiment allows for deeper insights
into how growth factor stimulation with hPDGF affects cells.

By using statistical methods like cluster analysis and principal component analysis, see Sec-
tion 6.6, several patterns in cellular dynamics and CDR dynamics were identified and investigated.
One major result here is that CDR expression patterns are dependent on the concentration of

the external stimulant.

OUTLINE OF THE THESIS

The outline of this thesis is split up into four parts. In the introduction part, general and more
detailed concepts closely related to the investigated CDRs are presented or reiterated. Split
up into their own respective chapters are the actin cytoskeleton in Chapter 2, actin waves in
Chapter 3, reaction-diffusion systems in Chapter 4, microfluidics in Chapter 5, as well as a more
general presentation of used materials and methods found in Chapter 6.

The second part covers the experimental results, split up into three chapters. Chapter 7 covers a
more general approach to how cells react to stimuli, by investigation whether individual cells
express CDRs or not after an added stimulus. In Chapter 8, CDRs themselves are inspected
in more detail, as to how added growth factors affect duration and traveled distance. A more

detailed approach to how individual cells react to hPDGF stimulation is performed in Chapter 9.



1.5 Outline of the Thesis

Here, each cell is characterized by CDR expression patterns for a certain timeframe by deeper
multidimensional statistical analysis. Lastly, Chapter 10 covers a conclusion of the previous
result chapters.

The outlook part provides an outlook into possible future experiments for building upon the
results obtained during this thesis. Additionally, the role and importance of well documented,
open data structures is discussed and why it is deemed important for advancing research on
phenomena requiring vast datasets for increasingly accurate results.

Finally, in the appendix, many of the methods introduced in Chapter 6 are discussed in more
detail concerning their implementation for the performed data analysis. In addition to this,

laboratory protocols, used software and more details on the obtained dataset are presented.






CHAPTERZ

THE CELLULAR CYTOSKELETON

Actin is the most abundant and most well preserved proteins within all cells (Kabsch and Van-
dekerckhove, 1992). Cells utilize actin not only for their internal structure, i.e. the cytoskeleton,
but also for active transport within the cell by attaching motor proteins like myosin to vesicles
in order to be transported along long polymerized actin filaments or microtubules. In the scope
of this thesis, the fact that the investigated CDRs are actin based makes it vital to reiterate the
properties of actin and closely related regulating proteins (Buccione, Orth, and M. a. McNiven,
2004).

As will be described in this chapter, actin is present in it’s monomeric globular form or in poly-
merized form as actin filaments, Section 2.1. Cells are able to orchestrate controlled and directed
polymerization of actin filaments through various actin related proteins and signaling pathways,
a relevant selection of these will be introduced in the corresponding sub sections of Section 2.2.
This controlled polymerization and depolymerization is readily used by cells to reorganize their
shape or, in the case of CDRs or lamellipodia, form motile membrane protrusions at specific
sites.

Facilitation of membrane protrusions is performed by actin filaments exerting forces on the
membrane, described in Section 2.4, hence deforming it. Since single filaments are very thin
structures, they are typically assembled into bundles or mesh networks, see Section 2.3. Forma-
tion of meshes is performed by proteins like the Actin Related Protein (Arp) 2/3 complex, which
can be incorporated into growing filaments, creating branching points for a complimentary
filament starting to grow at their location, branched off by an angle of 70° from the initial
filament (Mullins, Heuser, and Pollard, 1998).

These actin networks gain additional stability by cross linking single filaments using specific
actin binding proteins like filamin or a-actinin which greatly improves stiffness of the actin
network (Blanchoin et al., 2014).
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ACTIN

Actin is the most abundant protein in eukaryotic cells with single cells being estimated to contain
150 uM of globular actin, i.e. monomeric actin, as well as 500 uM of filamentous actin (Koestler
et al., 2009). These two different forms of actin are used by the cell to give itself structure.

The basic subunit of actin, called globular actin, or short g-actin, is a 375 amino acid polypeptide
(Alberts et al., 2015, p. 898). Each g-actin molecule carries an Adenosine triphosphate (ATP)
or Adenosine diphosphate (ADP) molecule, depending on phosphorylation status. The actin
molecule has two distinct ends, the plus (also called barbed) end and the minus (also called
pointed) end. The phosphorylated monomers carrying an ATP molecule are joined upon poly-
merization with different rates on the two different ends, where the plus end is faster growing
than the minus end (ibid.), with the ATP being hydrolyzed in the process. The individual
subunits polymerize in the fashion of joining opposing ends, forming a long polymer which is
known as filamentous actin.

The polymerized form of actin is called actin filaments or filamentous actin — short: f-actin. De
novo polymerization of individual filaments requires stabilized polymerization nuclei, manufac-
tured by nucleation promoting factors which will be further described in Section 2.2.1. After
nucleation, growth of individual filaments happens, as mentioned above, by free actin monomers
attaching to the plus or minus end of the filament. With the rate of growth being higher at the
plus end, filaments will grow faster on the plus end than on the minus end. This process of
constant polymerization on one end and depolymerization on the other end is also referred to
as treadmilling (ibid.). Given an availability of free g-actin, filaments will continue to grow until
capping proteins bind to the barbed end of the filament, terminating the elongation process.
Among these capping proteins, two different classes can be identified. Such proteins either sever
and cap the filament, examples for this type are Gelsolin and Severin, or only cap the filament
without severing, like CapZ (Carlier and Pantaloni, 1997).

Ensuring filament growth by avoiding capping of growing filaments is regulated by so-called

elongation factors, such as formins or Ena/VASP (ibid.).

PROTEINS AND LIPIDS INVOLVED IN ACTIN REGULATION

Since the actin cytoskeleton is an essential part of the cell, a large number of proteins are playing
crucial roles in the regulation of actin filament assembly and cross linking into meshworks
which will be described in Section 2.3. In this section and the following sub sections, a selection
of key proteins closely involved in CDR formation will be presented in order to provide context

on the regulatory network underlying the process.

AcTIN NUCLEATION FACTORS

In order to prevent uncontrolled formation of actin filaments in the cell, the proteins profilin and

S-thymosin bind to actin monomers in order to inactivate them , rendering the g-actin incapable
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of spontaneous polymerization, which in turn enables the cell to utilize actin nucleators to trigger
controlled de novo formation of filaments (Blanchoin et al., 2014; Chesarone and Goode, 2009).
Among these nucleators exist different types, which trigger a variation of filament growth modes.
Linear growth is triggered by, e.g., formins, whereas branched growth is heavily influenced
by the Arp2/3 complex (Rottner et al., 2017). The Arp2/3 complexes enable creation of new
filaments at an angle of 70° to the existing filament which generates an actin meshwork (Mullins,
Heuser, and Pollard, 1998). The meshwork will be described in more detail in Section 2.3.

In order for Arp2/3 to facilitate this branching, it is activated by nucleation promoting factors
from the Wiskott-Aldrich Syndrome Protein (WASP)/WAVE family, such as WASP, N-WASP,
WAVE1, WAVE2 and WAVE3, which link the upstream regulatory signaling cascade to to the
actin cytoskeleton (Higgs and Pollard, 1999; Mullins, Heuser, and Pollard, 1998). A selection of

such upstream signals will be presented in Sections 2.2.2 and 2.2.3.

RuO GTPASES

An important family of proteins in the signaling cascade of actin polymerization within cells
are the small Rho GTPases, where Rho is an abbreviation for Ras homologue, which form a
subgroup of the Ras family (Egami et al., 2014). These Rho GTPases regulate a multitude of
processes in eukaryotic cells, with the most relevant ones in the scope of this work being actin
polymerization and actin filament bundling in response to extracellular stimuli (Dam, Bos, and
Snel, 2011). Three of the best studied members of the Rho GTPase family are Rho, Rac and
Cdc42. Rho regulates the formation of focal adhesions and stress fibers which are used by the
cell for attachment to substrates, Rac regulates formation of lamellipodia and membrane ruffles
and Cdc42 regulates very thin actin structures calles filopodia (ibid.). The Rho GTPases are not
only regulated by upstream signaling events, but also regulate each other, where Cdc42 can
activate Rac and Rac can activate Rho (Van Aelst and D’Souza-Schorey, 1997).

Regulation of Rho GTPases closely depends on binding of Guanosine diphosphate (GDP) and
Guanosine triphosphate (GTP), where a GDP bound state can be referred to as an inactive state
and a GTP bound state as an active state. Activation and deactivation of Rho GTPases is closely
controlled by different types of regulatory proteins, such as Guanine Nucleotide Exchange Factors
(GEFs), GTPase-Activating Proteins (GAPs) and Guanine Nucleotide Dissociation Inhibitors
(GDIs) (Boguski and McCormick, 1993; Van Aelst and D’Souza-Schorey, 1997). The function
of GEFs is to activate GTPases by increasing the exchange of bound GDP to GTP, with GAPs
increasing the rate of hydrolization of GTP to GDP. Spontaneous turnover of GTP binding
GTPases by GAP is closely regulated by GDI which inhibits GAP (Van Aelst and D’Souza-
Schorey, 1997).

PHOSPHOINOSITIDES

Phosphoinositides are a family of lipids that play a key role in signal transduction pathways from

activated membrane receptors (Balla, 2013). Overall, seven different forms of phosphoinositides
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can be found with a variation of phosphorylation states, however the ones most closely involved
in the processes to be investigated here are Phosphatidylinositol (4,5)-bisphosphate (PIP,;) and
Phosphatidylinositol (3,4,5)-trisphosphate (PIP3), with PIP, being more abundant than the latter
(Balla, 2013; King and Robert R. Kay, 2019).

Phosphoinositides are accumulated at the cell membrane and are closely involved in actin
regulating signaling cascades (Balla, 2013). PIP, in combination with Cdc42 is used to trigger
actin polymerization by binding N-WASP, which in turn causes an increase in Arp2/3 recruitment
and therefore formation of actin meshworks (Di Paolo and De Camilli, 2006). Upon stimulation
with growth factors and consequent activation of Receptor Tyrosine Kinases (RTKs), PIP, is
increasingly phosphorylated to PIP3;, where turnover of PIP, to PIP5 is regulated by the signaling
protein PI3k, while the inverse turnover from PIP;3 to PIP, is regulated by PTEN (King and
Robert R. Kay, 2019).

Due to their key role in the actin signaling network, phosphoinositides are proven to be closely
involved in CDR formation, where it has been observed that there is an intense patch of PIP;
at the inside of CDRs in both Dictyostelium discoideum, as well as mammalian cells (ibid.).
This asymmetry of local PIP, and PIP; concentrations was part of the basis for the bistable
reaction-diffusion model proposed by Bernitt, Débereiner, et al., 2017, which will be introduced

in Section 4.3.

ACTIN MESHWORK

Within the cell, actin filaments are rarely isolated singular filaments, but are organized into
bundles or a mesh, giving them additional rigidity as compared to a singular filament. This
mesh is generated by multiple cross-linked actin filaments overlaying each other. Proteins such
as the Arp2/3 complex are incorporated into single actin filaments and serve as a branching
point for a newly polymerized actin filament to form at an angle of 70° from the initial filament
(Borisy and Svitkina, 2000). This section will focus on the actin meshwork as it makes up the
walls of macropinocytotic cups or CDRs with increased concentrations of Arp2/3 being present
at those locations (King and Robert R. Kay, 2019).

With newly formed actin meshwork pushing the membrane upwards from the cell surface,
a cup is formed which then encloses extracellular material and is closed by recruitment of
myosin motor proteins at the rim which then facilitate contraction of the cup into a closed
structure (Swanson, 2008). In order to push the membrane upwards, the newly polymerized
actin filaments need to exert forces on the membrane, as will be described in Section 2.4.

By organizing the filaments into a mesh, the cytoskeleton is able to generate a higher forces than
by using single filaments. An actin network like this is additionally supported and strengthened
by cross linking single filaments. Cross linking is done by specific proteins, linking actin
filaments at different lengths by binding to different actin filaments. These ranges span from

fimbrin with a range of 10 nm to filamin with a range of 160 nm (Blanchoin et al., 2014). Large
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crosslinkers like filamin or a-actinin are present in actin bundles, as well as mesh networks

(ibid.).

FORCE GENERATION OF ACTIN FILAMENTS 2.4

Actin filaments are able to exert forces on the cell mem-

brane (A. Mogilner and G. Oster, 1996; Alex Mogilner Cell Membrane

and George Oster, 2003; Peskin, Odell, and G. F. Oster, Depolymerization
1993). The mechanism behind these forces was first D E-Actin ) /
described by Peskin, Odell, and G. F. Oster (1993) as a

“Brownian ratchet”, however more recent work by A. t( Q ATP

Mogilner and G. Oster (1996) found the initial proposal « Phosphorylated G-Actin

to be lacking in it’s ability to deform the membrane. Polymerization

Through modifications to the initially proposed model,
they described the dynamic Brownian ratchet. « 77~ > Thermalfluctuations
The Brownian ratchet,as introduced by Peskin, Odell, Figure 2.1: Sketch of the working
and G. F. Oster (1993), is a system which relies on ther- principle of the elastic

mal fluctuations of the cellular membrane. These fluc- Brownian ratchet for
force generation from

tuations enable globular actin to be attached to the
actin filaments.

pointed end of an actin filament pushing against the

membrane. By polymerizing the filament towards the

membrane, an effective force is generated which pushes the membrane outwards. A. Mogilner
and G. Oster (1996) showed that fluctuations of the membrane alone are not sufficient for
generating the required forces. In their model called “elastic Brownian ratchet”, see sketch
in Figure 2.1, they assume both the membrane and the actin filament to thermally fluctuate.
This combined elastic fluctuation is shown to be able to generate forces sufficiently large for
propagating the membrane outwards. Experimental measurements of the stall force of a kerato-
cyte lamellipodium using a microneedle setup determined this force to be approximately 45 nN
(Oliver, Dembo, and Jacobson, 1995; Oliver, Lee, and Jacobson, 1994).

Membrane bound actin nucleation factors impact polymerization rates of actin filaments at
the leading edge of the lamellipodium or ruffle (Borisy and Svitkina, 2000). In order to achieve
directed growth of membrane protrusions, these membrane attached proteins are needed locally
to increase f-actin polymerization rates into a given direction. For the case of lamellipodia,
this direction can be induced by, e.g. chemotaxis influencing the actin polymerization pathway,
causing the cell to move along a chemical gradient. In the case of CDRs, the activated RTKs
trigger a higher concentration of the required proteins to be present where the CDR will form,
as will be further discussed in Section 3.2.2. Each single filament exerts a small force and can
easily be bent due to opposing forces from, e.g. membrane tension, however, the actin mesh

described in Section 2.3 as a whole is able to sufficiently deform and move the membrane (ibid.).
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CHAPTER3

AcCTIN WAVES

Actin waves are a large scale phenomenon observed in cells during multiple cellular processes,
such as motility or macropinocytosis and can be observed in spreading, migrating or stationary
cells (Allard and Alex Mogilner, 2013). These wave like alterations of the actin cytoskeleton differ
greatly in length-scale from the typically observed actin treadmilling described in Section 2.1.
The general concept of actin waves is presented in Section 3.1. These large actin structures
are employed for various different functions within cells, spanning from endocytosis to cell
polarization and reorganization of the cytoskeleton. Since such waves utilize the actin which is
locally present in the cell in a short timeframe, previously present actin based structures, like
stress-fibers and many other general parts of the cytoskeleton, have to be broken up for waves
to be able to form. This assumes the total amount of actin to be constant during this timeframe,
which is too short for actin synthesis to make any crucial difference (Bernitt, Débereiner, et al.,
2017).

This thesis focuses on a special kind of actin waves, so called Circular Dorsal Ruffle (CDR),
which are circular membrane protrusions forming, as the name suggests, on the dorsal side of
adherent cells and are further introduced in Section 3.2. They play a crucial role in a process
called macropinocytosis, which facilitates large scale internalization of external material into
the cell and is a phenomenon observed in unicellular, as well as multicellular organisms and is
proposed to stem from amoeboid feeding patterns (King and Robert R. Kay, 2019).

The stimulation dynamics underlying the formation of CDRs will be outlined in Sections 3.2.1
and 3.2.2. Here, stimulation of CDRs via growth factors is presented with a simplified form
of the underlying signaling cascade involved after activation of receptors on the cell surface.
Despite the underlying signaling cascade being known, the actual protein kinetics involved in
forming this comparatively large ring of guided actin polymerization remains unknown and
is expected to be related to reaction-diffusion systems, which will be introduced in the next

chapter.
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TRAVELING ACTIN WAVES

Large scale actin waves play a crucial role in cell movement and differ greatly from more passive
cell movement induced by treadmilling of the actin machinery (Allard and Alex Mogilner, 2013).
These actin waves, travel across the cell as alterations of the actin cytoskeleton at larger length
scales (Allard and Alex Mogilner, 2013; Inagaki and Katsuno, 2017). Such wave-like patterns
of the actin machinery are observed in spreading, migrating, as well as stationary cells, which
implies this process to not only being useful for actively migrating cells, but also for already
stationary cells which need to actively reorganize their cytoskeleton (Allard and Alex Mogilner,
2013).

A prime example of very large scale actin waves can be found in cells exhibiting phagocytotic
behavior which is closely related to the CDRs investigated in this thesis (Gerisch et al., 2009; King
and Robert R. Kay, 2019). What differentiates actin waves observed in phagocytotic behavior and
macropinocytosis from their counterpart observable in actively migrating cells is their circular
shape, which raises additional questions as to how the proteins involved in formation of such
vast actin rings are assembled into a controlled circular shape (Allard and Alex Mogilner, 2013).
Additionally, actin waves play a crucial role in polarization of cells by providing a directional
assembly-disassembly mechanism within them (Inagaki and Katsuno, 2017). Another observed
function of actin waves is active long distance transport of actin and closely associated proteins
towards growth cones of axons via a process named axonal actin waves (Ruthel and Banker,
1998).

Due to the large scale of these waves, the typical processes involved in actin regulation do not
suffice to fully explain the underlying protein kinetics resulting in such waves, which lead to
proposition of underlying reaction-diffusion system like behavior (Bernitt and Débereiner, 2017;
Vicker, 2002; Zeng et al., 2011). This similarity to reaction-diffusion systems will be further
described in Chapter 4.

CiRCcULAR DORSAL RUFFLES

Circular Dorsal Ruffle (CDR) are a specific kind of large circular actin waves protruding several
micrometers upwards from the dorsal cell surface, which are closely involved in internalization
of extracellular material through the process of macropinocytosis (Hoon, Wong, and C.-G. Koh,
2012; Kerr and Teasdale, 2009; King and Robert R. Kay, 2019). Since macropinocytosis is a process
found not only in mammalian cells, but also in, e.g. dictyostelium discoideum, it is reasonable to
assume it is a very ancient process of endocytosis for cells, the presence in unicellular organisms,
as well as multicellular organisms does point to the process existing before these organisms
diverged from one another (King and Robert R. Kay, 2019).

Another factor sparking interest in these structures is the fact that some pathogens, like bacteria
and viruses, actively exploit the mechanism in order to enter the cells by stimulation CDR

formation in order to be internalized, elegantly bypassing the cell membrane (Bloomfield and
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Robert R. Kay, 2016). Some examples of such pathogens include bacteria like salmonella, or
viruses like for example HIV-1 (Maréchal et al., 2001; Mercer and Helenius, 2009; Rosales-Reyes
et al, 2012).

Stimulation of CDRs is typically done by exposing the cell to growth factors, see Section 3.2.1,
which triggers a signaling cascade ultimately resulting in formation and closure of the cup like
actin structure. An overview of the stimulation process is given in Section 3.2.2. This signaling
cascade causes molecules involved the regulation of actin polymerization, as introduced in
Section 2.2, to be locally recruited into a circular shape, with an intense patch of Ras and PIP; in
the center of the forming structure. The dense actin perimeter of a CDR additionally functions as
a diffusion barrier, further intensifying the patch by self-amplification (Robert R Kay, Williams,
and Paschke, 2018; Welliver et al., 2011; Yoshida et al., 2018).

After this initiation step, actin is increasingly polymerized around the PIP3 patch, resulting
in the CDR pushing the membrane upwards. Finally, myosin is recruited around the rim of
the CDR in order to pull the structure together to enclose a vesicle of extracellular material
(Swanson, 2008).

GROWTH FACTOR INDUCED STIMULATION

The most common form of CDR stimulation in fibroblasts is done by growth factors, which
are signaling molecules promoting cell proliferation and migration (Hannink and Donoghue,
1989; Tallquist and Kazlauskas, 2004). Many different growth factors exist, some of which are
proven to be involved in stimulation of CDR formation, such as Hepatocyte Growth Factor
(HGF), Epidermal Growth Factor (EGF) and Human Platelet Derived Growth Factor (hPDGF)
(Antoniades, 1981; Legg et al., 2006; Swanson, 2008). Where hPDGF is the best investigated
growth factor in CDR stimulation, hence the focus here will lie on this particular one. The effects
of hPDGF are observed to be heavily involved in wound closure, since they stimulate fibroblasts
and other cells involved in tissue repair to migrate and proliferate, with blood platelets being
the first cells to initiate the repair process at the wound site by secreting hPDGF, hence the
name platelet-derived (Pierce et al., 1991; Tallquist and Kazlauskas, 2004).

These growth factors bind to extracellular receptors on the cell membrane, the Receptor Tyrosine
Kinase (RTK), which triggers a signaling cascade within the cell, which will be further described
in Section 3.2.2. Upon stimulation and CDR formation, the activated RTKs are subsequently
internalized from the surface membrane (Orth and M. A. McNiven, 2006). This removal of
RTKs from the cell membrane additionally reduces the relative cellular sensitivity to successive
stimulation with the same stimulant (Lyashenko et al., 2020). This relative change in sensitivity
to external stimuli by endocytosis of receptors is not only observed for growth factors in the
context of CDRs and activated RTKs, but also for other receptor-based signaling events implying
an importance of such processes in signaling cascades across different biological functions

(ibid.).
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STIMULATION PATHWAY

Since the overall signaling network underlying CDR formation is highly complex and involves
a multitude of positive and negative feedback loops across a series of signaling proteins, a
simplified pathway, as proposed by Hoon, Wong, and C.-G. Koh, 2012, is shown in Figure 3.1.
This simplified pathway shows the qualitative steps from growth factor stimulation, recruitment
of various signaling proteins, over CDR formation and ultimately collapse and redistribution of

actin. This simplified graph shows the key proteins involved in the process which have been

Growth factor stimulation

’ RTK activation ‘

|

« increase in PIP; production

« increase in conversion of PIP,
to PIPs

« Activation of Rac

|

’ BAR/I-BAR protein aggregation ‘

l

SliEs iffhen —+ Actin release H Actin bundling and branching H Activation of N-WASP/WAVE/Arp2/3

disassembly

CDR formation

1. Receptor internalization

2. Macropinocytosis

’ CDR disassembly and actin release 3. Cell migration

l

’ Lamellipodium formation ‘

Figure 3.1: Simplified stimulation pathway of CDR formation upon growth factor stimulation.
Following the activation of RTKs, an increase in PIP; production and higher turnover
of PIP, to PIP3 can be observed, along with activation of Rac, N-WASP, WAVE and
Arp2/3. Disassembly of present actin stress fibers releases previously bound actin
to be available for new actin polymerization. Upon closure and disassembly of the
CDR, the re-released actin is then used again to restructure the cytoskeleton. After
Figure adapted from Hoon, Wong, and C.-G. Koh, 2012.

introduced in Section 2.2, where the BAR and I-BAR proteins serve as means for membrane
deformation.

As is visible from the pathway, an activation of RTKs via growth factors triggers an activation
of Rac, an increase in PIP, production, as well as increased turnover from PIP, to PIP5. This
local increase in PIP5 production is esepcially prevalent in the central region of the CDR to be
formed. Activation of closely actin related proteins, such as N-WASP, WAVE and Arp2/3 in

combination with higher local g-actin availability from increased stress fiber disassembly enables
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increased formation of new branched actin bundles which will then be locally incorporated
into a newly formed CDR. The formed CDR then internalizes activated RTKs and is involved
in macropinocytosis or cell migration. After closure of the CDR into a vesicle, the previously
recruited actin is released again and used to restructure the cytoskeletal components of the

lamellipodium.
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CHAPTER4

REACTION-DIFFUSION SYSTEMS

The phenomenon of traveling actin waves described in the previous chapter can be theoretically
modeled using a variation of different kinds of models. Among these, the usage of reaction-
diffusion systems was the first to be proposed, since they are known to be able to express
traveling pulses.

The remarkable property of such systems is, that they are able to reproduce phenomena ob-
servable in highly complex chemical or biological systems with the model itself being a lot less
complex. In the case of actin wave modeling, these reaction-diffusion models abstract away
most of the underlying actin signaling machinery, as introduced in Section 2.2.

In the following, the focus will lie on two different reaction-diffusion systems. Section 4.1
begins with a brief introduction of the overall concept of such mathematical models. Section 4.2
introduces the FitzHugh-Nagumo model as one possibility to model CDR behavior. This model
was originally formulated in order to model action potentials traveling along the axon of a
neuron and is a simplification of the older Hodgkin-Huxley model. Using this model in a
two-dimensional form allows for generation of expanding traveling wave pulses.

The second model to be introduced in Section 4.3 is a bistable model specifically formulated
for traveling actin waves in CDRs. A specific feature of this model is conservation of the total
amount of actin, while transforming it into three different possible sub-species. This model
closely mimics the asymmetry of molecular components on the interior and exterior side of a
CDR, as described in Section 3.2 and is able to express traveling waves which resemble many

experimentally observed behaviors.

TRAVELING WAVES IN REACTION DIFFUSION SYSTEMS

As presented in Section 3.2.2, the underlying protein signaling pathway for the formation of
CDRs is highly complex. Nonetheless, it is possible to vastly reduce the complexity in order to
formulate model equations approximating actin wave dynamics, a typical approach in physics.

Approaches to model such systems thus far have been successful using reaction-diffusion sys-

23

4.1



4.2

Chapter 4 Reaction-Diffusion Systems

tems which are well known for their pattern formation potentials (Strogatz and Fox, 1995).
Such reaction-diffusion systems combine, as the name suggests, a reaction of some sort, con-
verting one thing into another, with diffusion, causing one or more species to spatially spread
out. Chemical reactions can be modeled using reaction-diffusion systems, such as for example
the Belousov-Zhabotinsky reaction (Vanag and Epstein, 2004). These models can incorporate
many different species reacting with one another.

Modeling of biological phenomena using reaction diffusion systems is a typical approach intro-
duced by Alan Turing (1952). After this fundamental work depicting pattern formation, more
research resulted in more complex models, capable of complex patterns.

Various models exhibit traveling waves or wave fronts. In the following, two different models
are presented. In Section 4.2, the FitzHugh-Nagumo (FHN) model — an excitable system which
exhibits traveling waves — is presented. This model originates from early modeling of action
potentials in neurons as a simplification of the Hodgkin-Huxley model.

The other presented model in Section 4.3 is a bistable system which was specifically formulated
for CDRs by Bernitt, D6bereiner, et al., 2017. One of it’s main features differentiating it from
other such models is conservation of total actin in the system. No new actin can be generated
or removed, it is only converted between different variants. Additionally, the proposed bistable
stimulation characteristic stems from experimental observations of PIP5 concentrations within
or outside a CDR.

A variety of other modeling approaches exist in literature, such as a Rac-Rho antagonism pro-
posed by Zeng et al., 2011, or curved actin polymerization activators inspired by membrane
deforming proteins like BAR and I-BAR formulated by Peleg et al., 2011.

THE FiTzHUuGH-NAGUMO MODEL AS AN EXAMPLE FOR ACTIVE
MEDIA

In the following and as an example of modeling actin waves using reaction-diffusion models as
a type of active, excitable medium, the two-dimensional FHN model will be introduced here
(Bernitt and Dobereiner, 2017; Bernitt, C. G. Koh, et al., 2015). This model was originally created
to describe action potentials in neurons in one dimension and was independently proposed by
FitzHugh in 1961 and Nagumo, Arimoto, and Yoshizawa in 1962. FitzZHugh originally named
the model Bonhoeffer-Van der Pol oscillator, but it was later named after the authors of the two
papers suggesting the model (FitzHugh, 1961; Nagumo, Arimoto, and Yoshizawa, 1962).

The model itself is described by Equations (4.1) and (4.2):

3
ﬂ/=DAV+V—V——R+;7 (4.1)
ot 3
%:CD(V+a—bR) (4.2)
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Figure 4.1: Phase cycle of excitation of the FHN model. (a) Values of fields V and R over
simulated time. Visible is a steep increase in V, quickly followed by the inhibitor field
R. Vis then reduced below the initial fixed point value and slowly recovers towards
it. The shape an propagation of the V field closely resemble an action potential
traveling across an axon. (b) Phase space Vvs. R showing the excursion in phase
space ending at the fixed point. Parameters used: D = 0.1,a = 0.8,b = 0.7, ® = 0.08,
with fixed point (Vy, Ry) = (—1.2276,—0.6109). Dirichlet boundary conditions were
imposed on the simulation domain boundaries.

where Vis an activator field and R is an inhibitor field, which in the context of the model’s
origins were the membrane potential V and a recovery variable R. Further parameters in the
model are the constants D, a, b and ®. Additionally, 5 represents an external perturbation which
can trigger the system.

If the perturbation # is sufficiently large, the system will not return to it’s stable fixed point, but
will perform an excursion through the (V, R) phase space before returning to it, which closely
resembles an action potential traveling along the axon of a neuron, see Figure 4.1. As becomes
visible in Figure 4.1 (a), there is a distinct lag between the excitation in the V and R fields, with
the recovery field R lagging behind the increase in V. After being dampened by the inhibitor
field, the activator field is reduced below the initial starting point and slowly returns to it.
Using the FHN model in it’s two-dimensional form, it is possible to obtain propagating circular
waves by perturbing the system in it’s resting state, using sufficient added noise . An example
of such a traveling wave is shown in Figure 4.2. Here, a circular stimulus in the form of noise
is added into the central region of the domain upon initialization of the system. The system
is then excited and each perturbed point on the grid is then cycling through the phase space
until arriving at the fixed point again. This results in a circular wave traveling outwards from
the initial perturbation. Many different observed patterns of CDRs, like periodic waves, wave
collision or spiral waves have been reproduced and investigated by using this model with the
aforementioned noise-driven excitation (Bernitt, C. G. Koh, et al,, 2015). The noise field  can

here be interpreted as molecules of a stimulant, like e.g. hPDGF, activating the signaling cascade
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(a) (b) (c)
(d) (e) (f)

Figure 4.2: Expanding ring as traveling wave from noisy perturbation. Adding a circular, noisy
perturbation onto the system at rest in it’s fixed point causes formation of a circular
wave migrating outwards from the perturbation’s location. The space within the
previously activated internal region of the ring then returns to the initial fixed point
and it is possible to re-introduce a traveling wave by subsequent perturbations.

in a cell (Bernitt, C. G. Koh, et al., 2015).

Despite this generally good performance in modeling CDRs using the FHN model, it does
not fully capture the process of expansion from a singular point, followed by contraction and
ultimately collapse (Bernitt, Dobereiner, et al., 2017). Therefore, a different model was proposed,
specifically designed around experimentally observed changes in dynamics of CDR involved

proteins and actin, which will be introduced in the following section.

BISTABILITY-BASED MODELING OF ACTIN WAVES

Building on the findings using the FHN model, a more advanced reaction diffusion system was
developed based on bistability and explicitly formulated for molecular patterns during CDR
formation (ibid.). In this model, actin is split into three different species. G being globular,
monomeric actin, B being filamentous actin incorporated in a CDR and F being filamentous
actin in the cellular cytoskeleton. One main characteristic of this model is that the total amount
of actin A = G+ B+ Fis preserved and constant. The individual actin species are then converted
into one-another. Assuming the total amount of actin to be constant is only sensible while
investigating short time spans, such as the lifetime of a CDR. On longer time spans, the cell will
of course generate actin through protein synthesis and remove actin proteins, which would
modify the total amount of actin A.

This model mimics the different densities of filamentous actin on the interior and exterior of
a CDR, which was described in Section 3.2. In addition, an inhibitor of actin polymerization I

is introduced, which combines the experimentally observed activities of Arap1 and PIP5. By
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proposing feedback loops between the suggested actin states, the Equations (4.3) through (4.6)

were obtained and describe the model in it’s dimensionless form (ibid.):

CDR-incorporated actin

autocat. recruitment and polym.  degradation diffusion
—_— r—

2
2B Eak - B +DgV?B (4.3)
ot 1+1
Stress fibers and cell cortex
polymerization ~degradation
oF G
- = — — kpF 4.4
ot e f2 (44)
Actin monomers
conservation diffusion

G BG G )
— = ———+B—ky—— +kppF+ V3G 45
ot 1+1 Ay (45)
Actin inhibitor

I activation  degradation diffusion
% = kyB — kpl + DV (4.6)

The inhibitor I is regulated by activation rate k;; coupled to CDR incorporated actin B and auto-
degradation rate kj;. In addition, k¢, describes the rate of actin polymerization into cytoskeletal
actin, with ky, regulating the degradation thereof. The individual components of the model also
differ in their diffusion rates, with the cortex actin F being stationary.

The system’s fixed points as a function of total actin A read as follows (ibid., supplementary

material):
By=0 (4.7)
A—a A —a)?
Bh=( )i\/( ) -(1+a) (4.8)
2 4
A- BZ)‘ 1+
Fype = a——1— 49
0l = Ty + (1 + aBj 1) (4.9)
Gg,li =A- BS,]:I: - F(;il:l: (4.10)
Iy =aByy. (4.11)
: k
where a = % and a = k—fl are the ratios of kinetic constants regulating the inhibitor and cortex
i f2

incorporated f-actin. Bj is obviously always stable, while By, undergoes bifurcations which

yield the model’s distinctive features.
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The stable point Py := (Bg, Fy, Gy, I ) represents a CDR free state with all actin being incorpo-
rated into the cortex or being available as free g-actin monomers (Bernitt, DSbereiner, et al.,
2017). The model authors showed that a transition from Py to P;, corresponds to CDR for-
mation, with the latter representing the inside of a CDR. Linear stability analysis showed the
aforementioned bifurcation to be a finite wavenumber Hopf bifurcation, i.e. the fixed point Py,
can lose stability to waves.

Some exemplary simulations of the model on domains of different shapes will be shown in the

following section in order to visualize the ability to express traveling waves.

SIMULATED DYNAMICS OF THE BISTABLE MODEL ON DIFFERENT DOMAINS

Numerical solutions of the model have been calculated on two-dimensional domains with two
different shapes in order to visualize the resulting traveling waves. All calculations shown used
Dirichlet boundary conditions and were performed using simple two-dimensional lattices and
finite differences to approximate the laplacian operator.

Figure 4.3 shows a traveling wave expanding from a localized perturbation in the center of a
circular domain. As is visible, the wave initially expands from the center outwards, is then
reflected at the domain boundary and contracts back into the location of the initial perturbation.

The difference to the previously described FHN model in Section 4.2 is that the bistable model

t=18.0 t=28.0 t=39.0 t=49.0 t=60.0 t=70.0

Lo ON OMONNC

Figure 4.3: Expanding ring on a circular simulation domain for the bistable model for a localized
perturbation. The traveling wave expands from the perturbation site, is then
reflected at the outer boundary and then contracts back onto it’s point of origin.
Plotted is the sum of CDR incorporated actin and cortical actin F + B for 6 different
timepoints during the simulation. Parameters: A = 9.67, D, = 0.12, D; = 0,
ki = 2.09, kiy = 053, kgy = 2.05, kpp = 1.19

does not return to it’s original fixed point and can therefore not be directly re-stimulated
(ibid.). Although not directly intended by the model authors, this may be similar to reduced
sensitivity to repeated stimuli due to receptor internalization observed in cells, as was described
in Section 3.2.1, however this is pure speculation, as receptor activation does not play any role
in the model.

Another example using the bistable model is shown in Figure 4.4. Here, the model was simulated
on a ring-shaped domain in order to mimic the lamellipodium of a cell spread onto a circular
microcontact. Since CDRs can only propagate on the lamellipodium and are reflected by the cell

edge and the nucleus, this shape was chosen. The inner white circle here represents the nucleus.
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Figure 4.4: Traveling waves on a ring shaped simulation domain for the bistable model for a
localized perturbation on one side of the track. This domain shape is supposed
to mimic the lamellipodium of a cell on a circular substrate. Here, two individual
waves travel from the perturbation site outwards, meeting again at the opposite
side of the domain, mutually annihilating each other. Plotted is the sum of CDR
incorporated actin and cortical actin F + B for 6 different timepoints during the
simulation. Parameters: A = 9.67, D, = 0.12, D; = 0, k;; = 2.09, kj = 0.53,
kfl = 2.05, ku =1.19

Starting from a localized perturbation on the right side of the ring, two waves propagate along
the ring until they meet at the opposing side, mutually annihilating each other.
This simulation shows, that such waves do not only expand and retract as shown in the previous

figure, but can also travel along a narrow path in a similar fashion as their biological counterparts

do.
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CHAPTERS

MICROFLUIDICS

The term microfluidics describes fluid flows in small spatial regimes governed by low Reynolds
number physics (Whitesides, 2006). Flows in microfluidic channels, i.e. flow channels with cross
sections in the pum? regime exhibit certain characteristics which differentiate them from large
scale flows. In the regime of low Reynolds numbers the flow is laminar as opposed to turbulent
flow.

Microfluidics is not a novel concept, but has distinct advantages over experimenting on cells
in petri dishes, such as the ability to controllably replace the medium surrounding the cells
without interruption of the imaging process. Usage of microfluidics in life sciences spans from
stimulation to so-called lab-on-a-chip concepts (Streets and Huang, 2013), where an entire lab
process is put into a microfluidic device or small-scale automated cell culture (Beebe, Mensing,
and Walker, 2002), greatly reducing the need for laboratory infrastructure and materials.

Due to the experimental setup relying heavily on microfluidic systems to deliver stimulants to
cells during experimentation, this chapter gives a theoretical insight into important concepts
of microfluidic perfusion systems in rectangular flow channels which are used in the used

experimental setup which will be further described in Section 6.3.

MicrorLuUIDIC FLoOws

The most prominent feature of microfluidics is the predictability of fluidic flows within the flow
channel due to the laminarity of the flow. This laminar flow makes fluid transport through a
flow channel predictable, since individual layers of fluid are only passively mixed via diffusion,
as will be further described in Section 5.3. Knowledge of flow velocities to be expected at cell
locations is important for reliable prediction of the experimental setup’s effectiveness. For
precise stimulation of cells adhering to the walls of a flow channel it is of high importance
to be able to determine when the medium surrounding the cells has been replaced with new
medium with added stimulant. In order to calculate the minimum time of enabling fluid flow

required for the replacement, the combined effects of active fluid replacement via fluid flow and
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passive replacement through diffusion must be known. These effects will be investigated in the

following sections.

FrLow VELoOCITY PROFILE

The flow velocity profile of pressure driven flow within a flow

channel is important, since it gives insight into the variation z

of conditions within the flow channel. Determination of the

flow velocity profile in a given environment is is based on the W-H

fundamental Navier-Stokes equation (Bruus, 2008, p. 244): * Yy
X

% ) 2
—+v-V)v=-Vp+pg+ uvev 5.1
p(at PrrETH G Figure 5.1: The coordinate
system used in
the following

calculations.

Where p is the fluid density, p the pressure, g the gravitational
acceleration, p the dynamic viscosity of the fluid and v the flow
velocity field. For low flow velocities, as are present in microflu-
idic systems, the inertia term v- Vv can be neglected due to the domination of viscous forces
at low Reynolds numbers (ibid., pp. 25-26). The Reynolds number will be further described in
Section 5.2. Therefore, Equation (5.1) can be simplified to

ov
P, = ~Vp + pg + uvv. (5.2)

For microfluidic devices with typically simple geometries, this can be further simplified. As-
suming constant flow, 3—‘; = 0, only parallel to the channel walls in x-direction, v = v(y,z) - ex,1
and a linear pressure drop p(x) = py — Gx,G = const. along the same direction and neglecting

gravitational influences we get
G + V2 (x, ) = 0, (5.3)

which describes the flow parallel to the channel walls.

Microfluidic devices typically have rectangular cross sections with 0 < y < Wand 0 < z < H,
with Wbeing the channel width and H being the channel height. In order to obtain the flow
velocity profile for such rectangular cross sections, Equation (5.3) must be solved for this
geometry. Despite the common use of such channel cross sections, no analytical solution to
this problem is known in literature. In the following, a quasi-analytical approach to solving the
equation as demonstrated by Bruus (ibid.) is reproduced for clarification purposes.

In order to solve (5.3), the first assumption is W > H and approximate W = co. This reduces

the problem to flow between plan-parallel plates separated by H in z-direction and allows an

'The notation e, indicates the unit vector along the x-direction.
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analytical solution to the problem.

Having infinite extension in y, Equation (5.3) further reduces to a second order derivative in z:

82vx

072

G+pu—==0 (5.4)
This is easily solved by adding the no-slip boundary condition to the problem, v,(z = 0) = 0
and v,(z = H) = 0. This yields the well known solution

v(2) = %z(H 2, (5.5)

which is a parabolic velocity profile along the z-direction. Hence, the flow velocity is largest at
the channel center. In the scope of cells adhering to the channel bottom, this means the shear
stress of fluid flow will be minimal at those locations.

Since W = oo removes any information about the flow profile at y = 0 and y = W, a non-
analytical approach is needed to further calculate the velocity field in the (y, z) plane.

Solving (5.3) with a sine series of the form (ibid.)

ve (,2) = Z Z Apm SIN (@) - sin (@) (5.6)
n=1m=1 w H

is an elegant way to avoid extensive numerical calculations. Elimination of series expansion

coefficients ay,, provides
V(1,2 = 166 i [nm( n’ + m’ )]_1 sin(nﬂy) sin(mﬂz) (5.7)
X\ 4 w2 g2 w ) H ‘
HT™ odd nm w H w H

Where G is an unknown constant, which can be eliminated by calculating the volumetric flow
rate Q = [[ vdA and inserting it into (5.7):
A

Q— %WH i [anz (n_zm_2>]—1 (5 8)
) uﬂ:ﬁ odd n,m w2 H? ‘
- -1
o o [ )] s () sin (%)
0D = Ty T = o (5.9)
> [n2m2 ("_m_)]
odd n,m w? H?

Equation (5.9) describes the flow velocity profile in the (y, z) plane scaled with the volumetric
flow rate Q, which can be calculated with relatively little computational effort and be verified by
experimental data. A numerical approximation of v, is then achieved by breaking the sums after
a sufficient number of steps. The two dimensional flow velocity profile obtained by calculating
(5.9) with H = 3.8 mm, W = 0.4 mm, Q = 11 uL/s and the sine series stopped after 100 steps is

shown in Figure 5.2. The two dimensional, color-coded velocity field clearly shows a higher
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Figure 5.2: Flow velocity profile of a flow channel with rectangular cross section. Shown
is the result of Equation (5.9) for W = 3.8mm, H = 0.4mm, Q = 0.011mL/s —
see Section 6.3.3 with the sine series calculated for N = M = 100 steps. (a) Two
dimensional heatmap of the flow velocity field, (b) Line profile along the channel
width as indicated by the red-dashed line, (c) line profile along the channel height
as indicated by the blue-dotted line. A significantly higher flow velocity is present
closer to the channel center. The profile shown in (c) displays a parabolic flow
profile, as was expected from the approximated flow profile between plan-parallel
plates in Equation (5.5).

velocity at the channel center than on the edges. Line profiles along the channel width, shown
in subplot (b), and the channel height, shown in subplot (c), clearly display the drop in velocity
at the channel walls. The line profile in subplot (c) resembles an inverted parabola, as would
be expected from the case of plan-parallel plates in Equation (5.5), meaning the approximation

W = oo is sensible at sufficient distances from the channel walls.

SHEAR STRESS AT CHANNEL WALLS

Shear forced exerted by fluid flow can influence cells. It is therefore required to assess the
potential shear forces impacting cells adherent to the channel bottom. Among the undesired
effects on cells are unwanted mechanical loads on the cells or an influence on migratory behavior
and adhesion (Lu et al., 2004). The shear stress 7, at the upper and lower channel walls is the
derivative of the velocity field v, with respect to position z multiplied with dynamic viscosity of
the fluid y (ibid.):

dv,
T, =—j- d—; (5.10)
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With 7, = F,/ A, the force experienced by a structure of surface area A is then

dv,

T (5.11)

F,=—-uA

Recalling the parabolic flow velocity profile, this means shear stress at the channel walls and a
few micrometers into the channel will be minimal due to no flow being present at the channel
walls. With the nucleus and CDR structures protruding some micrometers from the cell surface

into the flow channel, the cells will experience a small force gradient.

REYNOLDS NUMBER

The Reynolds number is a measure used to predict flow patterns in different situations. It
is defined as the ratio between inertial and viscous forces. The size of the Reynolds number
indicates the impact of these two types of forces on the flow situation. Calculation of the
Reynolds number is done using

interial forces _ pvL

Re= ——— =5, (5.12)
viscous forces u

with ¥ being the mean flow velocity and L the characteristic length of the flow system, e.g.

the channel diameter. For rectangular flow channels which are wetted on all perimeters, the

Reynolds number is calculated by (Sharp et al., 2002):

_ QpDy
Ap

Re (5.13)
with Dy = 4 - A/P the hydraulic diameter, where A is the cross section and P is the total wetted
perimeter. P can be calculated as the overall wetted length along the channel cross section. For
a rectangular cross section this is P = 2W + 2H. In (5.13), the mean flow velocity ¥ has been
replaced by the volumetric flow rate Q divided by the channel cross section A. Inserting Dy
into (5.13) yields

20p

Re= ——~
©T W+ H)

(5.14)
With the Reynolds number being expressed in this form, it is possible to estimate it’s value from
experimental measurements, since W, H, ; and p are fixed for the experiment and the volumetric
flow rate Q being measurable for the experimental setup.

The calculated Reynolds number can then be used to assess, whether the flow system is turbulent
or laminar. The range of Reynolds numbers for the onset of turbulent flow in flow channels is

rather large in literature, spanning from 1300 to 2400. Avila et al. (2011) determined a critical
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Figure 5.3: Schematic drawing of a new fluid replacing a present fluid in a tube with laminar
flow at low Reynolds numbers. Due to parabolic flow velocity profile shown
in Section 5.1.1, the new fluid will advance as an elongated parabolic “plug” of
replacement fluid along the tube. The timesteps t; 4 indicate longer pumping times
for higher indices.

transition at around Re = 2300 using numerical calculations, as well as experiments. Hence, for

Re « 2300 laminarity of flow inside of a microchannel can be assumed.

FLuiD REPLACEMENT IN MICROCHANNELS

With the knowledge gained from the velocity profile calculated in Section 5.1.1, some implica-
tions on fluid replacement inside of a microchannel must be assessed. With no flow close to the
channel walls, a fluid being flushed in would require infinite time to get sufficiently close to
the edges. A schematic drawing of fluid replacement in a tube is shown in Figure 5.3, where
for different time steps, a “plug” of new fluid travels along the tube. At the center of the tube,
replacement takes place very rapidly, since maximum velocity is to be expected there. However,
at the channel walls, the replacement fluid will take very long time to sufficiently replace the
fluid previously occupying the channel. This, of course, poses a challenge since the cells being
investigated adhere to the bottom of the flow channel. In the following Sections 5.3.1 and 5.3.2,
diffusion will be taken into account in order to estimate the approximate volume which is
required to sufficiently replace the fluid inside of a flow channel in order to reach the desired

treatment concentration at all locations across the channel’s diameter.

CoMBINING DIFFUSION AND FLOW

For cells adhering to the bottom of a perfusion system channel, this would imply long pumping
times before a stimulus could be delivered to the cells. The alleviating effect, which enables suffi-
ciently fast replacement of a fluid inside of a tube is diffusion of molecules from the replacement

plug into the fluid present at the channel walls.? The underlying principle of particles moving

20r vice versa when a fluid containing a stimulant is to be removed from the flow channel.
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from high concentrations to low concentrations is described using Fick’s first law (Demtroder,
2008, p. 220):

J=-D-Ve (5.15)

where Jis the diffusion flux vector, D is the diffusion constant of the diffusing particle and Vc the
concentration gradient. The minus sign implies a diffusion flux against the concentration gradi-
ent. From the schematic in Figure 5.3 follows a very strong concentration gradient between the
replacement fluid and the fluid present in the channel. Hence, the diffusion flux will, according
to (5.15), be very strong and the fluids will diffuse into each other at the barrier between them.
With fluid replacement therefore not only relying on active pumping, but also passive diffusion,
the effective replacement timescale will be shorter than anticipated from pure pumping replace-
ment.

In conjunction with the concentration gradient, the diffusion constant D of a particle in a certain
medium is the limiting factor for how strong the diffusion flux will be(Einstein, 1905). The

diffusion coefficient is defined as

ke T

= —, 5.16
67T7]R0 ( )

where Ry is the hydrodynamic radius of the diffusing particle, kg the Boltzmann constant, T the
temperature and n the medium’s viscosity. The time 7 required for a particle do diffuse a mean

square distance < x? > is then found to be

< x?>=2Dr. (5.17)
2

_sx 2 (5.18)
2D

Hence, the time required for a particle to diffuse a distance x will increase quadratically. For low
distances however, diffusion is very fast, depending on the diffusion constant. Combining the
effects of active fluid replacement via pumping and passive replacement via diffusion solves
the problem of replacing the fluid at the edges of a flow channel or tube. For longer pumping
times, the fluid profile as outlined in Figure 5.3 causes the layer of remaining old fluid between
the replacement and the channel walls to become sufficiently thin for diffusion to be fast and
reliable for replacing this remaining fluid.

An estimation of the timescale required for this replacement can be done by calculating the
distance x(z) which a particle in a given position z along the cross section of the flow channel
will have traveled over time. Reconsidering Equation (5.9) and Figure 5.2, the parabolic flow
velocity profile can be assumed to be reasonably correct when not being in the close to the left

and right channel walls. The distance traveled by a particle along the length of the flow channel
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with respect to it’s relative vertical position within the channel can be calculated by simply

using the equation of motion without acceleration:

x(y’zrt) = Vx(yrz)'t

(5.19)

Using only the velocity profile at half channel width y = W /2, this returns the parabolic flow

velocity profile shown in Figure 5.2 (c) and removes the dependency on y. An estimation of the

time required to sufficiently replace a fluid inside of the perfusion system used in this work is

shown in Section 6.3.4 starting on page 46.

EsTIMATION OF TREATMENT FLUID VOLUME

For optimal planning of experiments with a perfusion system
it is crucial to estimate the amount of liquid required. This is
especially important due to potential high costs of treatment
drugs. Another important factor is the need to avoid empty fluid
reservoirs which would cause air being pumped through the
tubing and flow channel, instantly killing cells within. Warrick

et al. (ibid.) propose the following equation for this:

Cc,f_cc,i VC
®=100%- [—] =100% - [1 -X- <7>] (5.20)

t— “cii t

Here, ® is the relation between treatment fluid G, the concen-
tration of the fluid initially present inside of the channel C.; and
the final treatment concentration C . V; and V, are the treat-
ment fluid volume and the flow channel volume. For ® = 100 %
the concentration inside of the channel is equal to the desired
treatment concentration. yis a scaling factor depending on the
flow channel aspect ratio. For this scaling factor Warrick et al.
provide numerically calculated values for various aspect ratios,
these values are replicated in Table 5.1.

In order to calculate the volume required to replace the fluid in
the channel up to a certain fraction with treatment fluid (5.20)

can be rearranged to

Table 5.1: Numerical values
for y for differ-
ent channel as-
pect ratios H/W
(Warrick et al,
2007, supplemen-
tary material).

H/W x
0.0 0.17
0.1 0.21
0.2 0.24
0.3 0.26
0.4 0.27
0.5 0.28
0.6 0.29
0.7 0.30
0.8 0.30
0.9 0.31
1.0 0.31

(5.21)

where ¢ = ®/100 %. Hence, calculation of the required volume requires very minimal informa-

tion on the flow system.

Knowledge of the required treatment volume also enables calculation of the time required to

replace the fluid inside of the perfusion system. Combining knowledge of the volumetric flow
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rate Q and the treatment volume V; yields the time t; needed to reach the desired treatment
concentration:

_ Vi _ X Ve

h=—=

1
Q 1-¢ Q

(5.22)

Evidently, ¢, will diverge for ¢ — 1, meaning for highly precise treatment concentrations,
increasingly large volumes of treatment fluid are required. It is worth noting that due to added
effects of diffusion — Equations (5.20) to (5.22) only take active fluid replacement into account —
the calculated value for V; will be larger than the actually required volume.

This information can be used in a programmable perfusion system like the one used in this
thesis to set the active pumping times and ensuring proper treatment of the cells, while keeping
the required fluid volumes in the reservoirs at a minimum. By estimating a tradeoff between
precision of treatment concentration and treatment volume used, proper treatment of cells can

be expected, as well as keeping excess volumes at a minimum, reducing costs per experiment.
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CHAPTER6

MATERIALS AND METHODS

This chapter comprises the used materials and employed methodology for acquiring and evalu-
ating of the data acquired during this study. This includes cell culture (Section 6.1), preparation
of FN microcontacts for the cells to adhere to (Section 6.2) and the perfusion system used to
precisely deliver stimulants to the cells during the experiment (Section 6.3), as well as the used
microscopy techniques (Section 6.4.1).

In addition, key concepts involved in imaging and image evaluation are introduced and discussed
in Section 6.4. This includes approaches to semi-automated data extraction from microscopy
images using the predetermined available locations for cells enforced by microcontact printing.
Special focus here lies on an assessment of the perfusion system and time required to sufficiently
replace the cell surrounding medium in order to deliver a stimulus of predetermined concentra-
tion. Based on the concepts introduced in Chapter 5, the setup is confirmed to be sufficient for
precise stimulus delivery to cells.

Technical details of the computational methodology applied to the data are described and,
where applicable, their technical implementation more extensively discussed in the appendix
Chapter A.

Concluding this chapter is a brief introduction of the statistical methods used in evaluating the
obtained CDR data.

CeLL CULTURE

The cells used in all experiments were murine embryonic fibroblasts of the cell line NTH3T3.
Cells were grown under standard conditions of 37°C and 5% CO, athmosphere to ensure
physiological conditions in Dulbecco’s Modified Eagles Medium (DMEM) containing 3.7 g/L
NaHCOs3, 4.5 g/L D-Glucose (Biochrom, Germany), 100 pg/mL Penicillin/Streptomycin (PAA Cell
Culture Company, Great Britain) and 10 % Fetal Bovine Serum (FBS) (Biochrom, Germany). Cells
were plated at numbers of 3 - 10* and culture was split at 80 % confluency. Cell splitting and
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preparation protocols are summarized in the appendix Section B.1 and Section B.2. Cells were

mycoplasma free.

MICROCONTACT PRINTING

Cells were forced into circular shapes in order to obtain periodic boundary conditions for CDR
movement on the cell surface (Bernitt, 2015). This circularity was achieved by employing so-
called microcontact printing, following the protocol of Théry and Piel (2009). This microcontact
printing is performed by stamping FN shapes onto glass substrate and coating the remaining
space with Poly-L-Lysine graft Poly Ethylene Glycol (PLL-g-PEG).

This combination forces cells to spread onto the circular substrate, due to the PLL-g-PEG
preventing formation of focal adhesions and the FN being a natural part of fibroblast Extracellular
Matrix (ECM), thus promoting formation of adhesion points (ibid.).

This circular shape is fundamentally different from in-vivo fibroblast morphology, however the
investigated CDR have been observed in cells randomly spreading to surfaces, as well as in
tissues (Hua et al., 2023).

The used microprinting protocol is laid out in the appendix, Section B.3.

CELL STIMULATION USING PDGF

A major goal of this thesis was to employ a method viable for precise stimulation of living cells
and also providing the ability to easily reproduce the performed experiments. This section
outlines the chosen methods and the respective reasoning of choosing each method.

An initial overview of the perfusion system will be given in the following sub sections, followed
by a measurement of generated flow rates depending on the applied pressure settings. This
initial description is then followed by an assessment of timescale required to deliver the stimulus,

followed by considerations concerning the chosen hPDGF concentrations used for experiments.

MICROFLUIDIC PERFUSION SYSTEM

Stimulation using varying concentrations of hPDGF, as described in Section 6.3, was performed
using a microfluidic perfusion system. This approach was chosen due to the ability of stimulating
cells for precise amounts of time and the possibility of removing the added stimulant from the
cells. In contrast to classical approaches with cells being imaged in petri dishes, cells were plated
onto prepared microcontacts in fluidic chambers by ibidi®in combination with the Biophysical
Tools GmbH p2cs® air pressure system. The reasoning behind using air pressure generation in

contrast to other possible methods is discussed in Section 6.3.5.
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Pressure Controller

Flow Chamber

@O0

Waste Container U U U H H U
;\J Motorized Valve Fluid Reservoirs

Figure 6.1: Schematic drawing of the used perfusion system. By alternating pressures on the
fluid reservoirs and opening the motorized valve depending on desired medium to
be delivered to the cells, precise exchange of medium can be achieved. The entire
setup is developed so that everything aside from the pressure controller can be

placed inside of the microscope’s incubator.

FLuiD RESERVOIRS

Fluid reservoirs used in the perfusion system setup were specially crafted for this purpose. On the
basis of regular 25 mL Schott Duran®laboratory flasks with screw-lid, through modification of
the lid, the reservoirs as shown in Figure 6.2 were built. Modification of the lids was performed by
drilling two threaded holes for a 10-32 special tapered thread into the lid. As shown in Figure 6.2
one hole was occupied by a male Luer-Lock! to 10-32 special tapered threading adapter for fluid
transition. The remaining hole was occupied using a threaded barbed connector which was
used for attaching the pressure generation system to the reservoir. Both adapters were then
sealed to the modified lid using two-component epoxy glue in order to further suppress air
pressure leaks. The female Luer-Lock to barbed adapters as shown in Figure 6.2 (b) were used
to thread a Polytetrafluoroethylene (PTFE) tube through the adapter, sealing it off with silicone
tubing around the PTFE tube and the barbed end of the adapter.

Thin PTFE tubing was chosen for fluid delivery due to low internal diameter and thus the
ability to keep the fluid dead volume required for the tubing as low as possible. Minimizing the
fluid dead volume additionally reduces the time required to effectively flush the flow chamber
with new medium.

The length of the PTFE tube reaching inside of the fluid reservoir was chosen to reach to the
reservoir bottom. By applying a positive pressure to the pressure connector, fluid flow through

the PTFE tube towards the flow chambers was created.

'The Luer connection system is standardized by ISO 80369 and widely used in scientific, as well as medical
applications.
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(a) (b)

Fluid Connector Pressure Connector Female Luer to Barbed Adapter

—

PTFE Tube

e )
— X\

Silicone Tube

Figure 6.2: Schematic drawing of the used fluid reservoirs (a) and tubing connectors (b). For
the connections, standard Luer connectors were used. Additional pressure sealing
for the fluid reservoir was achieved by usage of rubber O-rings between the flask
and lid (not shown here). A connection from the pressure system to the reservoir
pressure connector was done using soft silicone tubing. PTFE tubing was sealed
using soft silicone tubes due to PTFE tubing being too rigid.

FrLow CHAMBERS

The geometrical properties of flow chambers used during this work are displayed in table 6.1.

The flow channels used here with width in the range of several milli meters are comparatively

Table 6.1: Geometrical dimensions of the used ibidi® flow chambers as stated in the user
manual.

Length Width Height Volume

mm mm mm pL

17 3.8 0.4 25.84

large (Beebe, Mensing, and Walker, 2002)?, however since one of the primary goals of using
microcontact printing and the perfusion system is generation of large amounts of data per
experiment, the large surface area enables a large number of cells per channel. Combined with
a low magnification objective, see Section 6.4, the number of potentially recorded cells per
imaging position is maximized.

An assessment of the perfusion system’s Reynolds number reinsures properties like laminar
flow are given within the flow channel despite the large dimensions. Recalling Section 5.2, the
channel dimensions, fluid density and viscosity, as well as the volumetric flow rate are required.
Of these required values, only the volumetric flow rate Q is dependent on pressure added to the
system, since the other values are fixed by geometry or physiological conditions. For a given

added pressure, Q can easily be measured by weighing the fluid mass Am transported to the

*Typical dimensions of microfluidic flow systems are in the range of 10 pm to 100 um
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Figure 6.3: Volumetric flow rate Q in mL/s vs applied pressure in mbar for the used perfusion
system. The red line indicates a linear fit to the data, showing a linear increase of
the flow rate for higher pressures. Each datapoint is averaged over five individual
measurements. Applied pressure is assumed to be exact as they were reported from
the pressure controller with pressure values fluctuating only at the third decimal.

waste container in a time At, see Figure 6.3. The figure shows the measured volumetric flow rate
Q of the perfusion system for different applied pressure values. Each measured value is averaged
over five individual measurements where fluid mass was pumped through the system for 30 s
and then converted to volume using a density for DMEM of ppyem = 990 kg/m3 (Bacabac et al,,

2005). The fitted linear function is used to interpolate between the measured pressure values:

Q(p) = (1.69 £ 0.07) - 103 mL
mbar s

-p—(25+06)-10"° mTL (6.1)

Using the channel dimensions presented in Table 6.1, the mean flow velocity ¥ can also be
determined, as this may give a more intuitive understanding of the flow inside of the perfusion
system when recalling the parabolic shape of the velocity profile. For a pressure value of 8 mbar
as was typically used in the scripted experiments, using Equation (6.1), a volumetric flow rate
of Q(8 mbar) = (0.0110 £ 0.0006) mL/s can be determined. Dividing this by the channel cross
section yields a mean flow velocity ¥ = Q/A = 7.24 mm/s.

With volumetric flow rate Q and a viscosity for DMEM of npyem = 7.8 - 1074 Pas at 37 °C (ibid.),
a Reynolds number of Re = 6 can be determined. Albeit being larger than 1, this Reynolds
number is well within the regime of laminar flows for fluid flows inside flow channels (Avila
et al., 2011). With this assessment of the Reynolds number, the assumptions on flow presented

in Section 5.1 are justified to be considered true in this experimental setup.
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TIMESCALE OF FLUID REPLACEMENT

With the calculated flow rates, the time for fluid replacement through active flow and diffusion,
as presented in Section 5.3 can be estimated. Calculation of the flow velocity profile in Figure 5.2
at page 34 were performed for flow rate Q and channel dimensions W, H of the used flow
chambers and can therefore be used to assess fluid replacement during the experiment. Firstly,
considering the time required to replace a fluid particle inside of a flow channel only by pressure
driven flow excluding the effects of the diffusion is done by multiplying the flow velocity v, with
time . Considering the shape of the flow velocity profile, calculating this for the center region
along the channel width is sensible, since effects at the outer channel walls only influence the
velocity at close proximity to them. Therefore, an assessment can be performed by utilizing the

velocity profile along half channel width using Equation (5.19):

x(t,z) = v, (y = %V z) -t (6.2)

With this and the length of the channel of 17 mm, see Table 6.1, the time for a particle to reach
a certain distance into the channel is calculated and presented in Figure 6.4. Here the relative
distance into the channel is color coded and it becomes clearly visible, that at the upper and
lower edges of the channel the required time becomes asymptotically larger. Directly at the
channel edges no movement happens due to the no-slip condition. The dashed line indicates a
relative distance into the channel of 1, i.e. a particle traveling through the entire channel.

With the above information it is possible to include diffusion into the process in order to
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Figure 6.4: Relative distance into the flow channel traveled by particles being moved by pres-
sure driven flow. The dashed line indicates a relative distance of 1, i.e. particles
that traveled through the entire flow channel. It is clearly visible, that in the upper
and lower regions of the channel, particles move significantly slower. Values for
calculations using (6.2} are taken from the perfusion system in use.

determine the time required for replacement fluid particles to reach the channel walls, since
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cells are located at those locations. This is also of interest due to potential time differences of
stimulant reaching structures protruding upwards from the cell substrate like the nucleus or
CDRs in contrast to the lamellipodium, which is however not investigated in this study. Due to
the remaining distance to be traveled being very small after seconds of pressure driven flow, e.g.
in the order of magnitude of 10 pm, diffusion becomes very fast.

In order to estimate the time particles need to diffuse inside of the microchannel, their diffusion
constant needs to be known. In this work the molecule of interest is hPDGF, which is a protein
of mass mppgr = 38 kDa (Antoniades, 1981). An equation to estimate the diffusion constant of

molecules from their mass is given by Young, Carroad, and Bell (1980):

D~834- 10*SL

6.3
AT (63)

where T is the absolute temperature, j the dynamic viscosity and M the molecular mass in Da
without the unit. At physiological temperature of 37 °C and inside of DMEM, the diffusion
coefficient for hPDGF is estimated as

2

Dppgr = 1.014 - 10710 m—
S

This value seems plausible when comparing to values for smaller or larger molecular masses

given by the authors of (6.3). The time required for a particle of diffusion constant D is, solving

o
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Figure 6.5: Time 7 required by hPDGF to diffuse a given distance at 37°C in DMEM. Time
axis shown in logarithmic scaling for better visualizing of orders of magnitude
needed to diffuse a certain distance. Maximum distance to be traveled is chosen as
half channel height. In combination with Figure 6.4 it becomes clear that typical
diffusion times from the therein indicated dashed line appear to be in the order of
magnitude of pumping times.
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Equation (5.17) — page 37 — for 7, defined as

<x?>
T= .
2D

(6.4)

The time 7 required for hPDGF to diffuse varying distances at 37 °C is displayed in Figure 6.5.
Here, it becomes visible that the diffusion time at low distances is very efficient at transporting
particles into low concentration areas. A distance in the order of 50 um is traversed in 7 = 12's
by diffusion. This information, together with the findings of Figure 6.4 makes it clear that after
tens of seconds, the fluid inside of the flow channel will be sufficiently replaced with stimulation
fluid.

FLow GENERATION

Generation of pressure driven flow can be achieved via various methods, such as syringe pumps,
peristaltic pumps or air pressure control. In the following, syringe pumps and air pressure
control will be further investigated, as both allow for very compact setups.

In order to decide whether which method is beneficial to the experimental setup, it is important
to define certain wanted characteristics of the flow system itself and the generated fluid flow.
For the experiments conducted here, spanning over multiple hours with repeated exchange of
treatment fluid inside of the perfusion system, a setup with sufficiently large fluid reservoirs was
required. In order to keep shear effects on the cells at a minimum, it is also crucial to perform
any fluid replacement with very low flow velocities. On the basis of these assumptions, the two

aforementioned flow generation methods were investigated.

Syringe Pumps Syringe pumps are widely used in microfluidic setups, however the require-
ments for the experiments render these insufficient. The combination of large fluid reservoirs
and low flow rates is the main weakness of these pumps. Flow is generated by pushing a
syringe’s plunger mechanically, which causes the flow rate to be highly dependent on syringe
volume. According to the manufacturer Harvard Apparatus Inc. flow rates in the order of nL/h to
mL/min are achievable with syringe pumps. However for the lowest flow rates, syringe volumes
of 0.5 uL and for larger flow rates volumes of 60 mL to 140 mL are required. This considerably
reduces the amount of fluid available for low flow rate experiments, shortening the experiments.
Hence, syringe pumps were deemed inappropriate for the experiments planned for the thesis.
However, for experiments on single cells in very small flow channels, syringe pumps would
be ideal with another positive feature of such pumps being easy determination of volumetric
flow rates, since the amount of fluid dispensed by the system is directly correlated to the moved

distance of the syringe plunger.

Air Pressue Control The above mentioned limitations of syringe pumps do not apply to
air pressure control, however this method is affected by other limitations. Since flow systems

using air pressure to control the flow of fluids from a reservoir are not completely isolated from
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outside influences, hydrostatic pressure does have an effect on the generated flow, as will be
further discussed in Section 6.3.6.

A complete stop of fluid flow is, in comparison to syringe pumps, more difficult to achieve. For
syringe pumps simply stopping the pressure on the plunger will stop the flow, however for air
pressure systems, removing the added pressure will not stop the flow when a height difference
between the fluid level inside of the fluid reservoir and the waste container is present. One
method to overcome this would be monitoring of the volumetric flow rate by measuring it and
applying negative pressure onto the fluid reservoir — provided the pressure controller is capable
of this. A more simply solution is shutting of the fluid flow using a valve as will be described in
Section 6.3.6.

Generation of continuous flow using an air pressure controller is easily possible by applying
constant positive pressure on the reservoirs. In addition to this, the ability to incorporate
arbitrarily large fluid reservoirs in the perfusion system enables very long experiments. However,
very large fluid reservoirs also imply very large dead volumes of excess air which will delay the
perfusion system’s response on controlled pressure changes.

Despite the drawback of the added effects of hydrostatic pressure, an air pressure control system

of type p2cs® by Biophysical Tools GmbH was chosen for the conducted experiments.

VALVE CONTROL

As mentioned in the previous section, a drawback of the air pressure driven perfusion system is
the influence of hydrostatic pressure on the quasi-open system. Due to these non-negligible
effects of hydrostatic pressure in the perfusion system, a valve is required to effectively mitigate
any unwanted fluid flow.

The used pressure generator operates in the range of 0 mbar to 20 mbar pressure added onto
the fluid reservoirs. In case the fluid levels inside of the reservoirs differ, the passive hydrostatic
pressure will have an effect in the magnitude of the added pressure, as shown below assuming
1 cm fluid level difference and the density ppyem = (0.99 + 0.05)kg/m> of DMEM at T =
(37.0 £ 0.5)°C.3

kg m
Phydrostatic = PEAR = (0.99 % 0.05) —59815 lem (6.5)

p = (0.98 £ 0.03) mbar

Without means to physically suppress flow, this pressure causes unwanted fluid flow within the
perfusion system, hence the system includes a motor driven valve to prevent unwanted flows,
while being able to enable flow when needed.

Among different approaches, using a manual three way valve of type Dicofix®3-way Stopcock —

*Temperature chosen due to the incubation system being set to physiological conditions and the fluid reservoirs
being preheated to this temperature. Margin of error given in order to account for temperature fluctuations
inside of the incubation system. Density value has been determined by weighing a volume of 10 mL of DMEM.
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Braun Melsungen AG, steered a servo motor RS-D10Y — Modelcraft GmbH was used. In contrast
to clamping the tubing, this method does not induce any unwanted short flow spikes in advance
to stopping the flow, but results in clear transitions between flow and no-flow settings due to the
channel opening being rotated to opened or closed position. Another advantage of using these
three-way valves is the wide supply of sterile units*, without the need to sterilize each unit in

the lab with processes which may impair the valve due to high temperatures in the autoclave.

DETERMINATION OF USED HPDGF CONCENTRATIONS

The used hPDGF concentrations in the experiments performed during this study were chosen
based on findings by Bernitt, 2015, as well as data provided by the manufacturer Cell Signaling
Technology. The chosen values were 10 ng/mL, 21 ng/mL and 30 ng/mL, where 21 ng/mL instead
of 20 ng/mL was chosen due to easier preparation of the used concentration. Expressed in
molarities, these values are 0.4 nM, 0.8 nM and 1.2 nM.

The manufacturer provides a figure of stimulant efficiency measured by NIH3T3 cell proliferation,
displaying a sigmoidal shape depending on concentration. The aforementioned values were
chosen due to these values being located close to the maximum slope of the provided data.
Higher and lower concentrations were investigated, but did not yield sufficient visible results.
Lower concentrations appeared to have no visible effect on CDR expression, while higher
concentrations appeared to stimulate cells too strongly, i.e. cells forming CDR like structures
spanning their entire lamellipodium or heavily changing their morphology upon stimulant
delivery.

The results presented in this study may, however warrant further experiments on a wider range

of concentrations.

IMAGING AND IMAGE PROCESSING

In the following, the process of acquiring microscopic images of live-cells is described along with
the steps taken for feature extraction from digital images. As computer vision is a complex field
and a complete introduction to it is beyond the scope of this work, most methods used in this
section are not extensively explained here. Methods applied to specific data evaluation problems
encountered during this thesis are explained in more detail than general image processing
methods.

MICROSCOPY

Imaging was performed using a Zeiss Microimaging Axio Observer Z1 with an attached incubator

for control of constant physiological conditions of 37 °C and 5 % added CO,.

*The experimental setup incorporates three-way valves which are also used in medical applications like infusions.
Due to this, sterile units of high quality are readily available.
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In order to maximize the number of cells per Field of View (FOV), an objective with low magni-
fication of 10x — Zeiss Achroplan 10x/0.25 Ph1 — was used. This magnification in combination
with Phase Contrast (PC) imaging yielded an optimal trade off between captured fine details
and the number of cells. Additionally, with CDRs protruding several micrometers upwards from
the lamellipodium, higher magnifications impede CDR identification due to too shallow depth
of field and CDR outlines only being visible as faint lines in the image.

Contrast enhancement via PC was chosen due to the low difference in optical density between
cells and their surrounding medium rendering bright-field microscopy unusable. Another
contrast enhancement method for cell microscopy is Differential Interference Contrast (DIC),
however this method heavily relies on unaltered polarization angles of light beams (Allen, David,
and Nomarski, 1969). Since the flow chambers used in the experimental setup are made from
plastics® this requirement is not met and image contrast generated using DIC in this setup is
sub optimal.

Image timeseries were taken using the attached Zeiss AxioCam cameras and Zeiss AxioVision
software. AxioVision was used to navigate a list of locations in the specimen for each recorded

timepoint per FOV in order to maximize the amount of collected data per experiment.

CELL ARRAY REGISTRATION

Due to using microcontact printing, see Sec-

tion 6.2, the cells were not randomly dis-

tributed within the flow channel, but adhered

to an underlying pattern determined by the

used stamp. This underlying pattern is known

W from the mould used in the casting process
of the stamp and can therefore be utilized to
identify locations within the full image where
cells can adhere. Finding such locations was

Figure 6.6: Sketch of the Radon transform prin- performed by fitting an ideal microcontact-

ciple in image processing. The pro-
jection onto the black line at angle fitting process are hereinafter presented.
@is achieved by summing up allim-  Since aligning the Polydimethylsiloxane

age pixels (gray grid) along the in- (PDMS) stamp perfectly with the flow chan-
dicated red-dashed lines. This pro-

cess is repeated for every projection
angle ¢ € [0, ].

grid onto the image. The steps involved in the

nel is virtually impossible due to the process
being manual, the printed FN substrates will
be tilted by an angle ¢;};. Determination of
oyl 1s therefore the initial step to fit the ideal cell locations to the ones present in the recorded
dataset. Finding this angle is performed using the Radon transform (Radon, 1986) which is

widely used in medical applications such as, e.g. computed tomography (Ter-Pogossian, 1977).

The exact type of plastics is unknown due to the manufacturer not disclosing the material.
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Figure 6.7: lllustration of tilt angle ¢;; determination using the Radon transform. The lower
figure shows the so-called sinogram obtained by applying the Radon transform to
a version of the source image which was modified using edge detection algorithms.
The visible pattern has peaks at projection angles where the cell patches align
perfectly. Calculating the variance of the sinogram’s brightness values along the
projection length, as indicated in the upper plot, is used to identify the ideal turning
angle a4i¢, which is located at the maximum variance.

The working principle of the Radon transform in the scope of image processing is sketched
in Figure 6.6. For every full pixel step along the projection length from L = 0 to L = Ly,
the image pixels along perpendicular lines (indicated by red-dashed lines in Figure 6.6) are
summed up. This process yields a so-called sinogram, an example is displayed in Figure 6.7.
This is repeated for angles ¢ € [0,7]. In the medical example of computer tomography the
process principle is similar. By rotating the x-Ray source around the patient along with the
opposing detector array, an x-Ray projection for each angle is recorded and then computed into
the tomography image by applying the inverse Radon transform on the data.

The actual determination of the angle ay); is displayed in Figure 6.7, the lower part of the figure
displays the so-called sinogram obtained by applying the Radon transform on the image for
angles ¢ € [0,7]. Only a half rotation is required due to symmetry. Performing the Radon
transform with a full rotation only yields duplicate data along the second half of the rotation.
The stripes in the obtained pattern converge onto each other at projection angles where the cells
are perfectly aligned. Finding a;}; is then performed by calculating the variance of the sinogram
along the projection length, see upper part of Figure 6.7, and identifying the angle with maximum
variance. Multiple local maxima split by Ag = 7 /4 can be identified due to the locations on the

cell grid overlapping for Ag; =i- /4, i € {0, 1,2, ...}. The absolute maximum is located where
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the number of aligned cell locations is maximal.® With the tilt angle ;) determined, the ideal

Displacement Ay (px)
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Figure 6.8: Example for fitting the ideal grid to the recorded cell grid using the two dimensional
convolution method. The color coded image c¢(Ax, Ay) displays periodic maxima
where the two input images overlap maximally. The maximum value denoted by
the annotated red dot displays the minimum shift (Ax, Ay) required for the fit.
No color bar is shown because pixel values apart from the absolute maximum are
insignificant.

grid is calculated and then rotated by o41;. With known geometrical properties and pixel scaling
factors, a binary image with value 1 denoting the positions of potential adhesion spots and 0
denoting the background is generated. Using two dimensional convolution maps of the ideal
grid and the imaging data, the offset (Ax, Ay) required to align the ideal grid with the recorded
cell layout is measured, see Figure 6.8. Convolution is a method widely employed in image
processing for object detection and pattern matching (Bovik, Alan C., 2009). Calculation of the
two dimensional image convolution in it’s continuous form is performed using the following

equation

XY
c(Ax,Ay) = J J I(x + Ax,y + Ay) - G(x, y) dydx, (6.6)
00

where I(x, y) is the input image and G(x, y) is the pre generated ideal grid. Due to image data
being discrete with a fixed number of pixels M in x-direction and Nin y-direction, Equation (6.6)

can be rewritten into it’s discrete variant:

M N
c(Ax,Ay) = Z Z I(m+ Ax,n+ Ay)-G(m,n) (6.7)

m=1n=1

Due to the imaging data being rectangular with a higher number of cells along one axis, a preferential orientation
exists. On square images with a square grid of cells, multiple rotation angles would be viable.
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This process corresponds to a two-dimensional convolution I(x, y) = G(x, y). A property of the
convolution operation is it being a multiplication in Fourier space (Bronstein et al., 2008, p. 794).
Calculating the convolution in Fourier space is performed by applying the Fourier transform

F{ -} on Equation (6.6) and performing the inverse Fourier transform on the result:

Fle(Ax, Ay)} = F{B - F{G} (6.8)
c(Ax,Ay) = FHFL - F{G}'} (6.9)

where F{G}* is the complex conjugate of F{G} and % ~!{ -} the inverse Fourier transform.
Performing the cross correlation in Fourier space greatly reduces computation time by using
efficient Fast Fourier Transform (FFT) (Ukidave et al., 2013). Identification of the shifting offset
required to align both images onto one another is then performed by locating the maximum
of |c(Ax, Ay)|, as indicated in Figure 6.8. The ideal grid is then overlaid onto the imaging data
and used to automatically crop cell Regions of Interest (ROIs) — for further details on the

implementation of the process see Sections A.1.1 and A.1.2 in the appendix.

CirRcuLAR KYMOGRAPHS

In digital imaging analysis, a kymograph is typically a two dimensional image consisting of
image brightness values gathered along a selected line for every frame in an image sequence or
video, meaning the resulting image has a time axis correlating to video frames and a length axis
which denotes distance along the selected line. This method is widely used in life sciences from
medical applications to cell biology and analysis of subcellular structures.

In this case with cells spread onto circular FN substrates and the resulting disk like morphology,
a non-linear approach, the circular kymograph, was introduced into the work group by Bernitt
(2015). This circular kymograph uses the forced circular morphology of the cell and generates
a kymograph along a selected circle between cell edge and nucleus, indicated by the dashed
red line in Figure 6.9. The dark spot overlaid by this line below the nucleus is a CDR, meaning
that any CDRs will be recorded into kymographs as dark traces. Since this space on the
lamellipodium is the only viable location for CDRs to emerge, any occurring CDR and it’s

movement will be tracked in the generated kymograph.
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Figure 6.9: Example of a circle used to obtain a circular kymograph. The dashed red line
indicates the locations being recorded into the resulting kymograph. The dark
structure below the nucleus is a currently expressed CDR, hence CDRs will be
recorded as black traces in the kymograph. Scale bar: 20 pm

This method therefore enables measurement of CDR frequency, lifetimes and distance traveled,
since the cellular layout enforces a quasi one-dimensional path for CDRs to propagate.
Further information on technical details of how the circular kymographs are obtained from

digital images is presented in the appendix, Section A.1.3.

CELL SEGMENTATION

Segmentation of microscopic images for feature extraction such as total area of the cell, area of
the nucleus, roundness of the cell and width of the lamellipodium was performed using means
of Convolutional Neural Networks (CNNs) (Aggarwal, 2018, Chapter 8). Such CNNs are inspired
by the interaction of neurons in the brain and can be statistically “trained” to identify certain
characteristics, depending on the layout of the used model. A more detailed description of how
these models work mathematically is beyond the scope of this thesis.

Here, the U-Net model as proposed by Ronneberger, Fischer, and Brox (2015) was used for
this purpose due to very good results with small training datasets and good performance on
microscopy images of cells. Such deep learning methods require labeled training data to “learn”
identification of image properties (Aggarwal, 2018).” In this case, the goal was to discriminate
between background, cell and nucleus. Hence, each training image needed three labels.
Training data required to achieve good performance of the CNN was obtained by methods of
active contours (Xu and Prince, 1998a). Active contours, also called “snakes” as introduced by
Xu and Prince (1998b), use image characteristics to generate a potential energy field. An initial

contour is then iteratively optimized using Gradient Vector Flow (GVF) (Xu and Prince, 1998a,b).

"In fact, all machine learning and deep learning methods require data to be trained on, so they can adjust parameters
for optimal fitting of the data. In the concept of neural networks this process is often called training and the
model iteratively “learns” how to achieve high accuracy by adjusting fitting parameters of the model.
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This optimization minimizes an energy function, ideally placing each point of the contour closest
to the targeted characteristic. The authors propose the GVF-field v = [u(x, y) , v(x, y)] which

minimizes the energy functional
E:J(y(u,%+u§+v,%+v§)+vf2(«7—v]‘)2) (6.10)

where f(x,y) = —VI(x, y)? is an edge detection of the original image Iand  is a parameter. For
iterative minimization of the energy functional, u and v are treated as functions of time and

solving the following functions:

w(x, 3.0 = pVPu(xy,0) = [ux 3.0 = fe (e )] [ fe G ) + £, (x.9)°] (6.11a)
w6y D) = V(0 = vy = f,600)] - [ fe (e 9)® + £ (6 9] (6.11b)

GVF Snake

DGVF Refined Snake

Figure 6.10: Example of Directional Gradient Vector Flow (DGVF) active contour refinement
on a PC image. The orange line indicates the contour obtained using regular GVF
after manually placing an ellipse around the cell outlines. The green line indicates
the contour after refinement using DGVF. The refined contour follows the visible
cell outlines more accurately.

In this work due to the use of PC, a method adapted to the unique artifacts and image
properties of the generated images was used, the so-called DGVF introduced by Seroussi et al.
(2012). This method utilizes the typical PC artifacts like halation to find cell edges. This method
uses a two-step approach consisting of an initial approximation of the cell contour by using the
original GVF approach as described above, which returns a contour which is already close to
the cell outlines. With this preliminary result, a directional edge map is calculated and then
used to drive the contour closer to the cell outline (ibid.). This directional edge map is obtained

by defining a signed distance map ¢ (x, y), which measures the distance of each point from
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the contour. ¢(x, y) is positive outside of the contour and negative inside of the contour. The

directional edge map is then obtained from

p— . 2 .
(o) = (Vo -VI) for V¢ - VI > 0 (6.12)
0 for V¢ - VI < 0

An example of the refinement achieved by this method is shown in Figure 6.10. A clear
improvement in the reproduction of the cell edge is visible, the classical GVF did not properly
converge to the actual cell boundaries, whereas the refined DGVF contour is more accurate.

The same method can be used to segment the nucleus. By placing the ellipse for the initial
contour inside of the lamellipodium, close to the nucleus, the snake will converge to the outlines
of the nucleus. By inspecting each generated contour, a good training dataset is ensured.
The U-Net model was trained using a dataset of 100 microscopy images of varying focus
accuracy and cell morphology® with each image being labeled for background, cell outline
and nucleus outline. In addition to the variation in the data itself, the data for training was

augmented by rotation of the image itself in order to minimize the effects of overfitting the model.

(a) (b)

Figure 6.11: Example of cell image segmentation using U-Net. (a) Image of a cell not perfectly
adhering to a circular microcontact. The area on the lefthand-side would be espe-
cially challenging for typical segmentation approaches, due to very low contrast
at the cell boundary. (b) Color coded labels assigned to image regions by the
U-Net implementation. Pixels labeled as 1 are identified as background, 2 is the
cell lamellipodium and 3 the cell nucleus. The segmentation is overal very precise
with very clear boundaries between background, cell and nucleus, respectively. In
addition, the debris next to the cell was properly identified as not being a part of
the cell by the neural network.

After training, the U-Net yielded very good results as shown in Figure 6.11. Comparing the
input image (a) to the label output (b) shows very good accuracy of the assigned labels. Despite

8Despite each cell being placed on a circular substrate, see Sections 6.2 and B.3, individual cells often do not perfectly
assume a circular shape due to variations in cell size or imperfect adhesion. Additionally, in some experiments
due to thermal drifting in the microscope, the focus accuracy deteriorated over the time span of the experiment.
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areas of low contrast, e.g. the area of detached lamellipodium on the left-hand side of the cell,
the U-Net accurately identified the cell boundaries. Additionally, the debris present in the image
was properly labeled as background. Such debris imposes difficulties for various classical image
segmentation methods which often require additional processing of the segmented image after
initial processing. Such processing might involve removing smaller objects, opening and closing
contours and a large variation of other issues, which heavily depend on the quality of the input
images. The overall downside of this method is the requirement of considerable computational
power of the training of the network, as well as the inference process’.

Given sufficiently powerful computer hardware, this method makes it applicable to automatically
segment the full stack of all images which are used to generate data. Hence, it is possible to
obtain time series of cell area, nucleus area and other geometrical metrics. Rising availability
of specialized hardware for neural network applications will increase the feasibility of such

approaches in the future.

LAYOUT OF STIMULATION EXPERIMENTS

The experimental setup used consists of a microfluidic perfusion system, further described in
Section 6.3.1. This perfusion system is used to facilitate precise stimulation of cells with hPDGF
added to the cell culture medium DMEM. With the experimental setup being programmable,
each experiment was repeatable with stimulations happening at precise points of time.

The experiments performed in this work generally consisted of five different timespans, which

are hereafter denoted as experiment blocks. The five experiment blocks are defined as follows

1. Only DMEM present in the flowchannel. This is the initial state of the cells after experiment
preparation and setup.

Duration: 15 min

2. The first stimulation phase. Replacement of medium with DMEM containing added
hPDGF. The hPDGF concentration is varied across individual experiments.

Duration: 15 min

3. Removal of stimulation medium and renewal of DMEM. This is referred to as the recovery
phase of the experiment. The duration of this phase is varied for different experiments,
thus providing cells with different recovery!® timespans after the initial stimulus.

Duration: 10 min to 45 min in 5 min steps

4. The second stimulation phase. After the recovery period, the cells are exposed to a second

stimulus. This stimulus again is performed by replacing the present medium with DMEM

Processing all recorded frames for every cell during this thesis took several weeks of processing on the Central
Processing Unit (CPU). This time would have been greatly reduced by employing a high performance Graphics
Processing Unit (GPU), however this was not available.

0Also referred to as “delay” or “delay time”.
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with added hPDGF.

Duration: 15 min

5. For the final phase of the experiment, the stimulus medium is again replaced with standard
DMEM.

Duration: 15 min

Of these five blocks, only the third one varies in length. Replacement of medium using the
perfusion system is performed using identical settings for added pressure and flow times,
meaning the used valve is open for equal amounts of time. This exact repeatable setup allows for
better comparability between individual experiments which are then collected into a complete

dataset for evaluation.

STATISTICAL ANALYSIS

Due to the amount of generated data and the multitude of measured cell properties, statistical
methods were used to reduce the dimensionality of the dataset through Principal Component
Analysis (PCA) - Section 6.6.2 — and to identify underlying structure by k-means clustering -
Section 6.6.3. These methods are extensively used in data science and are ideal for processing of

vast, heterogeneous and complex datasets (Jolliffe and Cadima, 2016).

DATA PREPARATION

Before the mentioned methods could be applied, it is necessary to prepare the data by removing
extreme outliers, which are typically measurement errors, from the dataset. However, removing
only the extreme outliers is in certain cases not sufficient to obtain optimal results. In such
cases, applying the machine learning methods only to a certain percentile of the dataset yields
improved results.

After successful cleaning of the dataset, it is necessary to standardize each measurement charac-
teristic while retaining the overall characteristic of the dataset. This standardization is performed
using the so-called z-score transform as a standard scaler (Bronstein et al., 2008, pp. 799-803).
The z-score for a datapoint x of a statistical population is calculated as follows:

z(x)=x_'u

(6.13)

Where p is the mean of the population and o is the standard deviation. Applying this z-score to
all datapoints x of the population yields a distribution with a mean of 0 and unit variance. These
properties greatly enhance the performance of machine learning and other statistical methods,

some of which will be introduced in the next sections (Jolliffe and Cadima, 2016).
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PrinciPAL COMPONENT ANALYSIS

Due to the high dimensionality of the measured data, the so-called Principal Component Analysis
(PCA) is used (Jolliffe and Cadima, 2016). This method is commonly employed when working
on large datasets with multiple measurements per datapoint. The PCA linearly transforms the
data into a new coordinate system where most of the datasets variation can be described with
fewer dimensions. This greatly improves the ability to interpret and visualize such datasets by
enabling a display of the data in, ideally, two dimensions.

An assessment of whether higher principal components can be safely discarded from further

analysis is typically performed by inspecting the amount of variation per principal component.

K-MEeEANS CLUSTERING

In order to split a large dataset into multiple sub-sets, called clusters, the method of k-means
clustering is applied in this work. The subsets identified by this method can then be further
examined, allowing the identification of similar properties of the data inside the cluster as
compared to other identified clusters.

K-means produces a pre-chosen, fixed number of clusters. This is done by initially placing cen-
troids y; for the number of chosen clusters S; into random locations within the data (MacQueen,

1967). These centroids are then iteratively moved in order to find

k
L = arg min Z Z||x - ml? (6.14)
i=1 x€S;
in order to minimize intra-cluster variance (ibid.). This results in a partition of the data into
the desired number of clusters. This intra-cluster variance is also often referred to as a “cost”
or “loss” for the clustering algorithm and can be used to determine how many clusters are
reasonable to identify within the data.

Details on determination of the amount of clusters to be identified will be shown in Section 6.6.4.

ELBOwW AND SILHOUETTE PLOTS

Selecting the ideal number of clusters to be identified using k-means clustering is performed
using so-called elbow and silhouette plots. These plots display different metrics for determination

of the ideal number of clusters and will be described in the following.

Elbow Plot An elbow plot for the k-means clustering algorithm is generated using the overall
loss metric, see Section 6.6.3, for a chosen number of clusters k. This overall loss is calculated
for various k in order to generate a plot loss function vs. k. This plot typically displays a
non-linear decline in the loss function with increasing k. Determining the ideal value for k is

then performed by identifying the kejpow Which marks the “elbow” of the loss function, i.e. the
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point which marks the inversion of the slope. Examples for this are found in the Appendix C.2,

page 115.

Silhouette Plot Since the elbow plot on itself is not a precise measure — the point kejpow
can be difficult to identify — an additional metric is required. One such metric is called the
silhouette score (Rousseeuw, 1987). By calculating this silhouette score for a given number of
clusters k and generating a plot silhouette score vs k, see Figures in Appendix C.2.

For the calculation of the silhouette value s(i) for a point i in cluster Cj, two measurements are

needed. The first is the mean distance

a(i) = |CI|1_ - > dG. j) (6.15)

between a point i € Cyand all other points in Cf, where d(i, j) is the distance between points
i and j (ibid.). The next required measure is the minimum mean distance b(i) of i to points in

other clusters C T

1
b(i) = min — " d(i, ) (6.16)
J#L|CHl jee,

The silhouette value is then calculated using

b(i) — a(i)

O = 120 b0}

(6.17)

The silhouette score is then referring to the maximum mean value of s(i) over the entire dataset
(ibid.).
The location of the maximum of this function in conjunction with the elbow plot is then used to

identify the ideal number of clusters ke oy for the given data.
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CHAPTER7

CELLULAR RESPONSES TO STIMULI

This chapter of the results part focuses on the cellular activity in response to a stimulus with
hPDGEF. The activity is here measured as the proportion of cells expressing one or more CDRs
at a time measured from the moment of adding the stimulant. This method yields a quick
assessment of how cells are affected by the added growth factors.

In Section 7.1, a complete overview of the first and second stimulus as were introduced in Sec-
tion 6.5, discriminated by added hPDGF concentration is given. As the results show, cells respond
to the stimulus by increasing CDR expression, as was expected from literature. Interestingly, the
rate of increase in cell activity is inverse to the added concentration, with the highest increase
being observed at 10 ng/mL and the lowest at 30 ng/mL. The decrease in activity, however, does
not depend on the concentration. For the control dataset without added hPDGF this, however
does not hold true. For these cells, a reduction in activity after the stimulus is observed.
Inspecting an aggregation of all datapoints for the secondary stimulus shows no clear effect.
This may be linked to the receptor internalization which occurs as part of the CDR process
which was introduced in Section 3.2.2.

Discriminating between the individual datasets for the different delay times in Section 7.2 shows
no dependency on concentration or delay time. This is surprising, but a hint towards the chosen
delay times being too low. As will be discussed in this section, using longer waiting times
imposes major reconsiderations onto the experiments, which will be further discussed in the
outlook.

Further inspection of the previously observed suppression of CDR in the control dataset is done
in Section 7.3. Here, the cell responses are split up by CDRs lasting longer or shorter than the
median measured duration. A clear difference in cellular responses is visible.

In the following chapters of the results part, the focus will lie on a deeper inspection of how
CDR expression is impacted by hPDGF, as well as a more detailed inspection of how individual

cells are affected by the stimulus.
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CeLLS REsPoND TO HPDGF STIMULI BY EXPRESSING MORE
CDRs

Upon stimulation, cells increase expression of CDRs after a delay of about 2 minutes as is
visible in Figure 7.1 for four different concentrations of added hPDGF. The curves for 10 ng/mL,
21 ng/mL and 30 ng/mL display a clear increase in CDR activity, while the control set shows an
initial decline. Interestingly, the maximum value of ruffle expression appears to decrease for
higher concentrations with the peak for 10 ng/mL being highest. The onset of increased activity
appears equal, with the rates of increase differing between the concentrations. Here again, the
increase for 10 ng/mL is highest. Additionally, the location of the peak appears to shift to the
right for higher concentrations.

The rate of decline in CDR activity appears to be equal among the three concentrations with

all of them dropping below the basal activity of the control cells. Activity falling below the

05 r

10 ng/ml

— — - 10 ng/ml - smoothed
21 ng/ml

21 ng/ml - smoothed
30 ng/ml

30 ng/ml - smoothed
0 ng/ml|

— — - 0 ng/ml - smoocthed

Percentage of ruffling cells

0.0 25 5.0 75 10.0
Time after PDGF Flush-in (min)

Figure 7.1: Cellular response to the initial stimulation with hPDGF measured as proportion
of cells actively expressing CDRs. Cells begin to more actively express CDRs after
receiving the stimulus which is applied at T = 0 min. Here, a hPDGF concentration
of 10 ng/mL displays the highest effect with higher concentrations reaching lower
activation levels. For the control set not receiving any stimulant, the cell activity
drops to a minimum after 2 minutes. Ribbons indicate standard error.

control set can be explained by receptor internalization described in Section 3.2.2 rendering the
cells less susceptible to stimuli. Interestingly, this appears to be equal for the three different
concentrations, while the rate of increase was different between them. All three concentrations
appear to be sufficient for internalization of the majority of RTKs.

Doing the same analysis for a secondary stimulus after a delay is shown in Figure 7.2, notably
all different delay times are used in this figure. Individual delay times will be shown in the
upcoming section. Here, all curves appear to be approximately equal, except for the 30 ng/mL

signal remaining below the others. All four datasets display a decrease in CDR activity at around
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Figure 7.2: Cellular response to a delayed secondary stimulation with hPDGF measured as the
proportion of cells actively expressing CDR. In comparison to the data shown in
Figure 7.1 this dataset shows no clear response to the hPDGF stimulus. However,
here the minimum in activity previously observed for the control dataset is present
for data with delivered stimulant. This effect may point to an influence of the
fluid flow on the activity of cells within the flow channel and may show a cellular
adaption to the stimulant rendering them unable to respond again within the
specified time frames. Y-axis is deliberately chosen in this scale to emphasize the
difference when compared to Figure 7.1.

2 minutes, as was previously only observed for the control dataset.

The minimum of activity observed in both plots is most likely to be attributed to the cells
experiencing drag forces due to fluid flow. However, the flow rate determined in Section 6.3.3 is
significantly lower than what has been found to be of physiological relevance in literature, i.e. a
flow rate of 1500 pL/s as compared to the here measured 11 pL/s (see Section 6.3.3) (Park, Joo,
and Chen, 2018). Apparently, despite the very low flow rate, cells appear to still be affected by
the fluid flow around them. Possible further experiments on this behavior will be discussed in

the outlook chapter.

DELAYED SECONDARY STIMULUS AFTER UP TO 40 MINUTES HAS
No CLEAR EFFECT

Splitting up the data for the secondary stimulus by delay time after the first hPDGF stimulus
yields no clear results. An effect into reduction of activity, as was observed for the combined
data in the previous section is slightly visible, which is still present when splitting the data
up by delay time. However, no clear trend depending on delay time is visible, for an example
see the data for 10 ng/mL in Figure 7.3. The figure here differs from the previously displayed
ones in that the displayed values are relative to the value at t = 0 min in order to emphasize the

effects. The remaining figures for other concentrations are found in the appendix, Section C.1 —

67

7.2



7.3

Chapter 7 Cellular Responses to Stimuli

10 min
— ——=- 10 min - smoothed
15 min
15 min - smoothed
20 min
20 min - smoothed
25 min
— ——- 25 min - smoothed
30 min
— ——- 30 min - smoothed
35 min
— ——- 35 min - smoothed
40 min
40 min - smoothed

Relative Change in Cell Acitivity

0.0 25 5.0 75 10.0
Time after PDGF Flush-in (min)

Figure 7.3: Change in cell activity relative to the value at t = 0 min for the second stimulus
with 10 ng/mL added hPDGF, discriminated by delay time. The distinct minimum
previously observed mainly for the control set is visible in all datasets. The brown
line for 35 min initially increases at a higher rate than the remaining lines, but also
displays a decrease in activity around 2 minutes.

page 113.

The reduction in activity up to around 2 minutes is clearly visible, with the brown line indicating
a delay of 35 min differing by showing an initial increase in relative activity, but still showing
a decrease in conjunction with the remaining data. The remaining figures in the appendix
show similar behavior. After the initial decrease, activities appear to either remain stagnant or
increase slightly, again with no evident dependency on delay time.

This could indicate usage of too low delay times, since reduction in sensitivity to repeated
stimuli (Section 3.2.1) appears to hold on for longer than what has been tested (Lyashenko et al.,
2020). This, however, would require a modification of the experimental sequence, since the cells
would require a replacement of culture medium in order to provide optimal conditions for a
longer period of time, reducing comparability to previously obtained data. A more detailed

discussion of these modifications and requirements will be done in the outlook in Chapter 11.

SUPPRESSION OF CDRs AFTER FLUID REPLACEMENT PRIMARILY
AFFECTS SHORT CDRs

Further inspection of the observed suppression of CDRs in the control cells to a minimum at
around 2 minutes after the initial stimulus has been done by separating the dataset into CDRs
lasting longer or shorter than the median duration of 1.51 min. A clear difference between
responses to hPDGF stimuli can be observed for these two different types of CDR. Observing
Figure 7.4 shows the difference in response to the initial stimulus for each concentration discrim-

inated by CDRs with a duration longer (solid lines) or shorter (dashed lines) than the median
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value.

It is clearly visible, that hPDGF stimulates cells to create longer lasting CDRs, while it appears
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Figure 7.4: Cellular response to the initial stimulation with hPDGF measured as the proportion
of cells actively expressing CDRs - split up by CDRs longer or shorter (dashed
lines) than the median duration of 1.51 min. A very clear difference in cell activity
depending on duration of the length of expressed CDRs is visible. While longer
CDRs are clearly increased by adding hPDGF, shorter ones track the behavior of
the control set up to around 4 minutes, with a decrease thereafter. This decrease
coincides with the decrease in long ruffle activity. Ribbons indicate standard error.

to have almost no effect on creation of shorter lasting ruffles. All dashed lines appear to decrease
to the observed minimum at about 2 minutes after replacing the surrounding cell medium,
however for the control set (red lines) the activity increases again thereafter. Data for short
CDRs with added hPDGF show a decline in activity in concordance with the decline in longer
lasting CDR activity. The onset of decline in short CDR activity coincides with the onset of
decline in long CDRs. An explanation for this can be receptor internalization as was described
in Section 3.2.2.

Figure 7.5 shows the same analysis for the second stimulation. Here, there appears to be no
significant difference between short and long lasting CDRs since all cellular responses follow a
similar pattern. However, notably the activity for short CDRs appear to be lower for the higher
hPDGF concentrations, with the 30 ng/mL being lowest.

This difference in response to growth factor stimulation will be further inspected in Chapter 8 on
a per CDR basis and in further detail concerning individual behavior of cells in Chapter 9. Due
to the low to non existing cellular response to the secondary stimulus, the following chapters

will focus on the initial stimulus.
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Figure 7.5:
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Cellular response to the secondary stimulus with hPDGF measured as the propor-
tion of cells actively expressing CDRs - split up by CDRs longer ot shorter than the
median duration of 1.51 min. Data for all delay datasets combined. No clear differ-
ence between the concentrations is visible. Y-axis scaled for better comparability
with Figure 7.4.



CHAPTER8

CIirRcULAR DoORsSAL RUFFLE DYNAMICS

This chapter focuses on analyzing how hPDGF stimulation affects CDR motility. In Section 8.1,
a deeper insight into CDR expression patterns depending on different hPDGF concentrations is
obtained by firstly investigating how CDR duration and distance traveled are influenced by the
growth factor, followed by a more narrow investigation of the findings through cluster analysis.
The primary finding here is, that with increasing stimulant concentration, cells express more
longer lasting, but mostly stationary CDRs. Section 8.1.1 shows a general increase in median
CDR durations with added stimulant. With more refined inspection of the dataset, not only a
trend towards longer durations and less motility is discovered, but also a less frequent induction
of highly motile CDRs with very long durations and very large traveled distances.

Section 8.2 presents findings on the influence of lamellipodium width on CDR motility. Interest-

ingly, there appears to be an optimal width for CDR propagation.

THE INFLUENCE OF PLATELET DERIVED GROWTH FACTOR ON
CDR MoTILITY

As described in Section 3.2.1, cells are stimulated to form CDRs by adding hPDGF to the medium.
In order to achieve repeatable and precise stimulation, the microfluidic perfusion system was
used to deliver the stimulant to the cells. The following subsections investigate the impact of
different concentrations of hPDGEF as a stimulant on the motility of CDRs.

Initially, in 8.1.1, a general trend in CDR durations and traveled distances will be investigated.
As becomes clear from the data, adding growth factors to the medium increases mean CDR
lifetime and duration with effects becoming more pronounced for higher concentrations. A
more finely adjusted approach is then presented in Section 8.1.2. Here, the previously presented
CDR data will be further analyzed by employing clustering methods described in Section 6.6.3,
which are used to discriminate between different motility types of CDRs.

This two dimensional approach to investigating the effect differs from the method of focusing
on CDR velocities used by other members of the work group (Bernitt, 2015; Lange, 2019).

Investigating both dimensions allows for more fine grained insights into the influence on CDR
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motility. Combining duration and distance into a velocity measurement would only show a shift

to slower velocities, but would mask the trend towards longer durations for less motile CDRs.

8.1.1 HicHER HPDGF CoONCENTRATIONS INCREASE CDR DURATION AND
REDUCE DISTANCE TRAVELED
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Figure 8.1: Kernel Density Estimation of CDR Duration versus Distance traveled for different
concentrations of added stimulant during the first stimulus. For all added hPDGF
concentrations a distinct difference from the control data at 0 ng/mL is visible in
the shape of more quasi-stationary CDRs with higher durations. Note: The lowest
contour level in this plot is not shown in order to enhance the visibility of the data
shape.

Stimulating cells with different concentrations of hPDGF using the perfusion system results in
a significant difference in CDR motility depending on concentration. Figure 8.1 displays the
kernel density estimation of distance traveled and CDR lifetime for the initial stimulation of the
experiment. The most striking difference is that the results with added hPDGF clearly deviate
from the control set by an increased number of CDRs having longer lifetimes while traveling
only very small distances. This shift is indicated by the extended “foot” of the displayed kernel
density estimations. In addition to this extension at the bottom, the control dataset shows a more
intense maximum for very short CDRs. The intensity at this location is reduced for increasing

hPDGEF concentrations. Figure 8.2 shows a comparison between typical CDR morphologies (a)

72



8.1 The Influence of Platelet Derived Growth Factor on CDR Motility

(b)

Figure 8.2: Example picture of the difference in CDRs expressed (a) with added hPDGF or (b)
without. A clear difference in the size of the rings is visible, with the stimulated
CDRs being significantly larger in diameter.

with and (b) without added hPDGF. The actin rings with added hPDGF are significantly larger in
diameter than the passively occurring CDR. This larger size appears to correlate with decreased

motility as is visible in the presented data. Isolating only the CDR lifetimes and inspecting the
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Figure 8.3: CDR lifetimes for different concentrations of hPDGF during the first stimulus. A
clear trend towards longer durations is visible with distributions becoming wider
for higher concentrations. This visible trend is backed up by increased median
durations as shown in Table 8.1.

distribution for the different hPDGF concentrations, displayed in Figure 8.3, displays a distinct
shift towards longer lifetimes with higher stimulant concentrations and the corresponding
histograms get visibly wider. Table 8.1 reinforces the visible shift by displaying a significant
increase in the median CDR lifetime with higher stimulant concentrations.

This trend will be further analyzed in the next section.
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Table 8.1: Median CDR lifetime for varying added hPDGF concentrations during the initial
stimulus. A clear shift towards longer lifetimes with higher stimulant concentration
is visible. The hPDGF concentration of 0 ng/mL indicates control experiments.

hPDGF Concentration Median CDR Lifetime CDR Lifetime Variance

ng/mL min min
0 1.1 2.1
10 2.22 3.12
21 3.1 1.1
30 4.4 0.1

8.1.2 CLUSTER ANALYSIS OF CDR MoTIiLiTY REINFORCES FINDINGS ABOUT
INCREASING CDR DURATIONS

50 o o o v e

° ° 4 °
L] ]
° LI CDR Cluster 1
e * e ." e o o CDR Cluster 2
° o ©g®o CDR Cluster 3
= a0 | R % 0, .:"[.\ °° 6 o " CDR Cluster 4
° e o .. °
3 " TSttt e, oW T .
?, ‘o ° )
K o0 g .-'.ﬁ o pyes °.":' ° :
- o
o) 30 °© ° o° ° & ‘o &0:.0’ '.o‘. e ° .
‘% o ° o “‘ '.:. ®
£ seoes - R
° d’. g0 ° o %
8 20 R 60 .'.‘...0.'0 .. ° ° e
% 08 8 o . 8 o. °
| % Fagg, TS, oo e
L]
o 10 | % .0 ‘o : o“. ° °
o % © i °0® o o
) ° e ° .:
% 3 & o3 ‘; o © .
L]
. XY 8 SR R W
0 2 4 6 8 10 12

Duration (min)

Figure 8.4: Overview of CDR clusters determined via k-means clustering. Clusters 2,3 and 4
clearly show an increase of distance traveled with higher CDR lifetimes. Cluster
1 is best suited to identify quasi-stationary CDRs traveling low distances despite
long lifetimes. However, the outliers with the longest durations are assigned to
cluster 4. ldentification of clusters was performed on the full set of all CDRs.

The distribution densities of CDRs displayed in the previous section indicate a clear trend
towards CDRs with longer lifetimes and low distance traveled with added hPDGF stimulus.
In order to discriminate between different CDR behavior patterns the statistical method of
k-means clustering, introduced in Section 6.6.3, is applied to the distribution. This methodology
allows for identification of different patterns within a dataset. Despite the distribution of CDRs
not displaying a visibly clear cut between different clusters, it is possible to identify multiple
different clusters of similar properties within the dataset.

Figure 8.4 indicates the clusters determined from the full dataset of all measured CDRs. De-
termination of the number of clusters to identify was performed using a combination of an

elbow and silhouette plot, displayed in the appendix C, Figure C.4 — see Section 6.6.4 for details.
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This analysis yielded a number of four clusters to be discriminated within the dataset. By
identifying these four clusters within the dataset, it is possible to determine differences in CDR
behavior within these clusters by comparing the distributions of the underlying characteristics,
i.e. duration and distance traveled. Comparing Figures 8.1 and 8.4, it becomes clear that cluster
1 is indicative of the largest effect of added hPDGEF, since it comprises the long duration but low
distance CDRs.

Comparing the relative CDR population of each cluster for the varying concentrations of hPDGF,
as shown in Figure 8.5, makes the difference between no added stimulant and added stimulant
apparent. By adding hPDGF as a stimulant, a larger proportion of the CDR population is shifted
towards cluster 1. Interestingly, the relative population of cluster 4 is also increased for all
nonzero concentrations of hPDGF, however to a significantly lesser extent than the effect on
cluster 1. This shows that not only long lasting stationary CDRs are amplified by adding a
growth factor stimulus, but also long lasting very motile CDRs. Only the data for 10 ng/mL
shows a significant impact on cluster 2, comprising CDRs of medium motility. For all nonzero
growth factor concentrations, the population of cluster 3, being short lasting quasi-stationary
CDRs, is reduced when compared to the control data.

Further inspection of the distributions of CDR duration and distance traveled for each CDR
cluster, see Figure 8.6, does indeed support the aforementioned classifications. Clusters 2 and 4
both contain motile CDRs, inspecting their respective velocity distributions shows an increase
in median velocity and a wider distribution of velocities for CDRs contained in cluster 4 as

compared to cluster 2. This result is surprising, since the initial result was that added hPDGF

0.8+ —
[}
(a4
o
w 06 ] —
o —
[
3 1
£ 04r 12
=} 3
> [ 4
[
> 02
d
o
2 j I: I:
o« 00 = - _- _-

0 ng/mi 10 ng/ml 21 ng/ml 30 ng/ml
PDGF Concentration

Figure 8.5: Relative population of CDR clusters after initial stimulation with hPDGF. With
the majority of CDRs occupying cluster 3, the difference between the control set
and the sets with hPDGF being present is most visible in the higher occupation of
cluster 1. This clearly shows the trend towards CDRs with longer durations and
less distance traveled when cells are being stimulated with hPDGF.

reduces CDR motility while increasing duration. The aforementioned increase of cluster 4 pop-
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ulation does hint towards another possible, albeit less likely, effect of growth factor stimulation

is induction of highly motile CDRs with, on average, marginally higher propagation velocities.
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Figure 8.6: Boxplots with overlaid violin plots of (a) CDR duration, (b) distance traveled and (c)
velocity for the four CDR clusters during the initial stimulation. A clear difference
for each cluster is visible, with cluster 1 comprising the long lasting stationary
CDRs, cluster 2 the CDRs of medium motility, cluster 3 showing only very short
and stationary ruffles and finally cluster 4 containing very motile, very long lasting
circular actin waves.

OrPTIMAL WIDTH OF LAMELLIPODIUM FOR CDR MoTILITY

Since the lamellipodium of adherent cells is the area where CDR formation takes place, the
influence of the lamellipodial width on CDR motility has been investigated. Despite the cells
being forced into controlled circular shapes by means of microcontact printing, individual
cells vary in size. Some cells extend past the microcontact, whereas other cells are imperfectly
attached to it. For many cells, the nucleus is not perfectly centered, causing an imbalance in
lamellipodium width along their circumference.

By not only evaluating cells with ideal geometric properties, i.e. perfect circular shape and the
nucleus being localized in the center, the collected dataset includes cells displaying variable
lamellipodium widths along the arc length of their circumference. Due to the CDR data being
collected as circular kymographs around the cell nucleus, CDRs traveling around the nucleus
are subject to a variation in lamellipodial width along their path.

Measurement of lamellipodial width was performed by segmenting microscopy images into
background and cell with the cell nucleus being identified, too. The most robust process for this
was found to be an approach based on neural networks using the U-net model as described in
Section 6.4.4.

The mean lamellipodial width along the arc length appears to have an optimal width for CDR
motility at the mean lamellipodium width of (13.82 + 0.03) um, as shown in Figure 8.7. The data
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Figure 8.7: Effect of lamellipodium width on (a) CDR duration, (b) distance traveled and (c)
velocity. The primary visible effect is that both the most frequent and maximum
values for each measurement are bunched around the mean lamellipodium width
of (13.82 £ 0.03) um.

in Figure 8.7 shows that variance in path width does not impact the CDR characteristics distance
traveled and lifetime and in combination of the previous two the propagation velocity, aside
from providing apparently optimal width at the aforementioned mean value. Wider or narrower
lamellipodia appear to greatly reduce motility of CDRs.

The area for the used microcontacts of 3000 pm was chosen due to cell area distribution mea-
surements performed by Erik Bernitt (Bernitt, 2015). Since this was the most frequent value for
the area of randomly spread cells, it was chosen for the circular microcontacts. The novel data
here shows, that for CDR motility this area provides an optimal width except for some outliers.
Seemingly, a more narrow lamellipodium does not provide sufficient area for a CDR to migrate,

while a more wide lamellipodium hinders propagation by allowing for a more stationary ruffle.
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CHAPTER9

MoRrrPHOLOGICAL CELL STATES

The NIH3T3 murine embryonic fibroblasts used for the experiments in this work display a high
variability of possible dynamic states classified by their morphology and CDR expression. Since
the internal state in the cell cycle of each cell cannot be determined during live microscopy, due
to it being governed by protein concentrations within the cell (Alberts et al., 2015, Chapter 17).
Such morphological states were chosen as a hint towards internal processes of the cell, despite
being arbitrary. Gathering such states from a sufficiently large dataset, however, does allow for
deeper insight into cellular reaction patterns when compared to findings in Chapter 7.
Attempts to synchronize the cell cycle phase through the wide spread method of serum depri-
vation, also called starvation, of cells (Pirkmajer and Chibalin, 2011) was unsuccessful due to
the cells being isolated from other cells on the FN microcontacts. Starvation in this context is
replacing culture medium with medium containing little to no nutrients such as FBS. Prolonged
isolation in combination with starvation causes individual cells to go into apoptosis, rendering
this method unsuitable for the used experimental setup (Kulkarni and McCulloch, 1994; Pad-
denberg et al., 2001). This effect of the method greatly reduced the number of viable cells per
experiment and was therefore discarded as an approach to synchronize individual cell cycles
across the plated cells.

Synchronizing all cells into the same cell cycle phase would be beneficial due to the protein
configuration within individual cells within the same experiment being equal, however with
current protein concentrations within cells unknown upon initiation of experiments, another
classification approach was needed. Data acquisition and evaluation was mainly done using
an optical microscope, therefore morphological properties and CDR expression patterns were
used to identify different cell behavior classes as will be layed out it Section 9.1. The given mea-
surements are then analyzed using methods of PCA for dimensionality reduction and k-means
clustering as introduced in Section 6.6.

Evaluation of these identified behaviors which are classified as clusters or cell states, yields
information on how likely cells are to react to an external stimulus by hPDGF added to their

culture medium. This cell state investigation is described in Section 9.2, where an analysis of the
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probability for cells changing their cluster upon a stimulus is done. As will become evident from
the data, cells which are actively expressing CDRs are more likely to stop expressing ruffles
or reduce ruffling activity, while cells which are not actively ruffling are stimulated to do so.
This behavior could hint towards the underlying molecular machinery being pushed towards
other fixed points in the scope of viewing them as a dynamic reaction-diffusion system, as was
described in Chapter 4.

IDENTIFICATION OF CELL STATES

Cluster 0
6 Cluster 1
Cluster 2

Cluster 3

PC 2

Figure 9.1: Principal component analysis of cells based on mean lamellipodial width, mean
CDR duration and mean CDR distance. Using k-means clustering, 4 clusters were
identified in order to discriminate between different ruffling activity patterns of
the cells. Axis labels indicate their respective principal component abbreviated as
“PC”. By investigating the PCA loadings, see Figure 9.2, it is obvious that PC 1 is
most influenced by mean CDR width and duration, whereas PC2 scales with mean
lamellipodial width.

In order to split up the timeline of each cell into multiple time frames, the data of each cell
was separated by experiment block, as introduced in Section 6.5. Using this approach enables
detection of changes in cell behavior upon modification of the chemical surroundings of the
cell, since during each experimental block the chemical conditions in the flow channel remain
equal. The metrics used for identification of cell states were extracted from microscopy data for
each cell. The selected metrics for this were the mean lamellipodial width, mean CDR duration,
mean CDR distance traveled, as well as the frequency of CDR expression for each cell.

These measurements were chosen due to them being a good indication of changes in cellular
responses to external stimuli. Observations in Chapter 8, especially in Section 8.1.1, of cells
expressing larger, more immobile and longer lasting CDRs with increased hPDGF concentrations
made duration and distance traveled prime candidates for this analysis in order to hint at

systematic changes in the cell. For both values the mean value for all CDRs expressed by the cell
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during the given time span was calculated. The frequency of newly formed CDRs additionally
indicates cell activity in this context. The mean lamellipodium width of the cell was chosen due
to some cells expressing a contraction or expansion of the lamellipodium in response to hPDGF
stimuli, hence measuring changes in width indicates cellular reaction (Pierce et al., 1991).

The method of PCA, as introduced in Section 6.6.2, was used for reducing the dimensionality of
the used four dimensional dataset. By reducing the high dimensional dataset to a two dimensional
plane, discrimination between certain cellular states is simplified. Figure 9.1 displays this plane
and the clusters identified using k-means clustering, to be noted here is that inactive cells
were automatically assigned to cluster 0. The number of clusters to be identified via the k-
means algorithm was determined with elbow and silhouette plots which were introduced in
Section 6.6.4. These plots are displayed in appendix C — Section C.2.2. Furthermore, in order to
view which input scales the returned principal component values the most, the calculated PCA
eigenvalues can be displayed like in Figure 9.2.1. Prinicpal component 1 is primarily influenced
by mean CDR duration and distance, whereas principal component 2 is mostly determined by

mean lamellipodium width and CDR frequency. By investigating the distributions of the input
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Figure 9.2: PCA loadings for the analysis shown in Figure 9.1. These loadings can be used
to asses which input measurements have the greatest influence on each principal
component. PC 1 is clearly mostly influenced by mean CDR duration and distance
of each cell, while lamellipodium width and CDR frequency have a larger impact
on PC 2.

characteristics within each cluster it is possible to assign each cluster a meaning.
These distributions are displayed in Figure 9.3 as boxplots with overlaid “violin” plots in order
to show properties such as median value, 25th and 75th percentile and to visualize the shape of

each distribution. Cluster 0 is, as expected, most easily identified as inactive cells, meaning cells

In the context of PCA analysis the values shown in such plots are often referred to as “loadings”
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currently not expressing any CDRs. Higher number clusters range from cells showing what is

hereafter referred to as “typical” or “normal” CDR activity which are identified via clusters 1 and

3, with the main difference between 1 and 3 being the lamellipodial width. Cells in cluster 2 are

denoted as highly active due to the main differentiation to all other clusters being determined

to be longer CDR durations and distances, however at a lower frequency than cluster 3. The
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Figure 9.3: Distribution of the four input metrics for each assigned cell cluster. (a) Mean

CDR duration. Clusters 1 and 3 appear to have equal distributions with cluster 2
expressing significantly longer lasting CDRs. (b) Mean CDR traveled distance. This
metric appears to divide the set of all cells into cells expressing more stationary
CDRs in cluster 1, very motile CDRs in cluster 2 and low motility in cluster 3. (c)
Frequency of CDRs. A trend towards higher frequencies from clusters 1 to 3 is
visible, however the difference between cluster 1 and 2 is mostly a wider distribution
with median values being very similar. (d) Mean lamellipodium width of cells again
shows an increase from cluster 1 to 3, with median values increasing. Boxplots are
overlaid with violin plots to indicate the shape of each distribution.

following sections will focus on the changes of which cluster individual cells occupy before and

after stimulation with hPDGF and the effects of different concentrations thereof.
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CELL STATE TRANSITION PROBABILITIES

Quantification of cell state dynamics was performed by analyzing the probabilities of cells
transitioning from one activity cluster to another after an external stimulus. Evaluation was
performed for each cell individually. The dataset used for clustering was split into the different
experiment blocks, as described in Section 6.5. Therefore a set of 4 transitions is available to be

investigated:
1. DMEM — DMEM + hPDGF
2. DMEM + hPDGF — DMEM
3. DMEM — DMEM + hPDGF
4. DMEM + hPDGF — DMEM

Stimulation of cells happens at transitions 1 and 3, also referred to as experiment blocks 2 and
4, since this is where cells are exposed to culture medium with added growth factors. The
experiments are set with a delay, i.e. varying duration of the experiment block with only DMEM
after the first stimulus. However, due to findings in Section 7.2, the focus here lies entirely on the
first stimulus, since the effects after delayed stimulation were unclear and require modifications

to the experimental setup for further research, which will be discussed in Section 11.2.

CELLS ACTIVELY EXPRESSING CDRS PRIOR TO STIMULATION ARE
INHIBITED BY STRONGER HPDGF STIMULI

Due to the initial stimulus being the first section of the experiments where cells are exposed
to the hPDGF stimulus, the most substantial cellular reaction is expected to happen at this

experiment transition. In order to visualize the effect on cells, the state of each cell before and

after the transition was determined. With this, 16 possible state transitions could be identified.

A heatmap of probabilities for each transition in dependence of hPDGF concentration is shown
in Figure 9.4.
The most distinct difference between the control data (0 ng/mL) and the stimulation data is a
higher probability of cells to remain in their initial activity cluster. With increasing stimulant
concentrations, the probability to remain in the cluster before the stimulus decreases, indicated
by the diagonal of each heatmap. Another striking difference between the control data and the
nonzero hPDGF concentrations is the strong reduction of cells remaining in cluster 3. Recalling
Figure 9.3, this cluster contains cells expressing normal motility CDRs at a higher frequency.
An alternative presentation of these cluster transitions is shown in Figure 9.5. Here, the
percentages of cells switching into higher or lower activity clusters and not switching cluster is
classified by assigning a qualitative activity to each cluster and shown for all concentrations
at the initial experiment block transition. Activities were ranked by observed CDR expression
frequency. The majority of cells in all concentrations remain in their corresponding qualitative

activity before the stimulation event. This value changes with added hPDGF, depending on the
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Figure 9.4: Transition probabilities from source cluster to destination cluster for cells on the
first hPDGF stimulus. Stimulant concentration is indicated above each subplot.
The source cluster indicates the assigned cell cluster before the stimulus, whereas
the destination cluster is the assigned cell cluster after the stimulus. For the control
set and the lowest concentration of 10 ng/mL a tendency for cells in cluster 1 to
remain in that cluster is visible. Another striking difference between control data
and all stimulated cells, is that for the control set, cells were significantly more
likely to remain in cluster 3 than to transition to other clusters. This probability
is reduced for higher concentrations, where more cells tend to get inactive upon
stimulation. The color coding for all four sub-figures is equal in order to enhance
inter comparability.

concentration. All displayed classifications show concentration dependent trends. A switch to
lower activities is more likely with higher hPDGF concentration. Consistently, it is less likely
for cells to not change their activity with increasing stimulant concentrations. A transition to
higher activities appears to not be significantly impacted by added stimulant. There appears to
be a trend, but no definitive conclusion can be drawn since variations between concentrations
remain within the standard error.

Recalling the interpretation of the CDR machinery as a dynamic reaction diffusion system as
described in Chapter 4 — Section 4.1, this behavior of cells becoming inactive or less active
can be interpreted as the active cell being pushed away from a fixed point by the external
stimulus. Likewise, cells increasing their activity may be pushed towards a fixed point allowing

for increased activity.
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Figure 9.5: Classification of cell migration between clusters in terms of CDR activity on exper-
iment transition 1. Shown is the percentage of cells migrating into a cluster with
higher activity, lower activity, or remaining in their initial cluster (no change). Color
coded is each concentration of hPDGF. With added stimulant, a lower percentage
of cells remains in their initial cluster. Compared to the control data, a higher
percentage of cells switches into a higher activity cluster, where the percentage is
similar for all added hPDGF concentrations. Higher percentages of migration to
lower activity clusters is observed with added stimulant. Errorbars show standard
error.

CELLS REMAINING IN INITIAL CLUSTER

In contrast to cell transitioning between the determined clusters, a subset of cells remained
in their initial cluster after stimulation. These cells are apparently unaffected by the stimulus
and in a relatively stable state. Figure 9.6 displays the relative amount of cells remaining in
their initial cluster for four different concentrations of hPDGF. With the highest amount of cells
not changing the cluster being observed for 0 ng/mL, a distinct decline is shown with non-zero
hPDGF concentration. Yet, there appears to be no clear dependency on concentration for this
behavior, since within standard error, differences for each hPDGF concentration are negligible.
Further inspection of this behavior warrants for more hPDGF concentrations to be included,
especially lower than 10 ng/mL. This additional data may uncover a saturation curve like decline
in unaffected cells. Further discussion on possible extended experiments will be done in the
outlook.

In the scope of understanding the CDR machinery as a reaction diffusion system, this behavior
may imply actively ruffling cells to stay close to the fixed point where CDRs are possible. With
higher concentrations, the chemical conditions are more likely to push the system away from
that point, therefore reducing the number of cells staying in their initial cluster. As mentioned

above, some cells are however able to return to their active fixed point.
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Figure 9.6: Relative number of actively ruffling cells remaining in their initial activity cluster.
With added hPDGF, significantly fewer cells remain in their initial cluster. Around
2% to 3% of cells seem to be very stable in their initial state and appear to not be
affected by the external stimulus. Error bars show standard error.
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CONCLUSION

The data obtained from single cells on printed FN microcontacts inside a perfusion system
allowed for collection of a large amount of data. Forcing cells into pre-determined shapes and
locations allowed for considerable automation in the extraction of data from microscopy images.
The forced circular shape of cells, first introduced into the workgroup by Erik Bernitt based
on the protocol by Théry and Piel, 2009, greatly improves evaluation of individual CDRs by
creating a circular lamellipodium of, ideally, equal width along the circumference of the cell.
This provided CDRs with a one dimensional propagation path, reducing the complexity of
extracting CDR duration or distance traveled.

In addition, the ability to use a programmable perfusion system enabled repeating experiments
with exact repetition of stimulation times without interrupting image acquisition. Image meta-
data in combination with perfusion system log files allowed for very precise alignment of
stimulation events with the recorded images. This greatly improved accuracy of evaluation
steps following certain events during the experiment.

The total number of single cells imaged and evaluated in this study amounts to 2548, while the
total amount of individual recorded CDRs is 16 663. This very large dataset enables more precise
insight into behavior of individual cells, as well as CDR expression patterns in general. For each
cell, the individual morphology has been extracted from images using a convolutional neural
network, introduced in Section 6.4.4, which greatly reduced the effort required in image segmen-
tation. Especially with phase contrast microscopy rendering artifacts imposing challenges for
conventional computer vision methods, such as simple threshold based attempts. In addition,
the system also handled slight defocus due to thermal drifting of the microscope gracefully and
more robust than approaches using active contours. Without the efficiency of this method and
especially the employed U-net by Ronneberger, Fischer, and Brox, 2015, which yielded very
good results with minimal required training data, evaluating each imaging frame for each cell
would have required substantial amounts of time.

The results obtained using these approaches will be recapitulated in the following sections.
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Chapter 10 Conclusion

CELLULAR RESPONSE TO GROWTH FACTOR STIMULATION

Investigation of how cells generally react to hPDGF stimulation was performed by assessing
which proportion of cells was actively expressing CDRs after adding the stimulus using the
perfusion system.

For the first stimulation, the overall data showed a clear increase in activity for all non-zero
stimulant concentrations, see Section 7.1. Interestingly, the time and magnitude of peak activity
differed between concentrations with 10 ng/mL causing the earliest and highest peak, with
21ng/mL and 30 ng/mL following. All three datasets showed similar rates of decline in activity
after the peak was reached. In contrast to this, the control dataset for 0 ng/mL showed an initial
decline in activity to a minimum at 2 min with a subsequent increase in activity to slightly
higher levels.

Applying the same analysis to the secondary stimulation, initially including all different delay
times into the same data, showed no increase in activity for all used concentrations. This lack of
a reaction may be a hint towards cells having adapted to the external stimulus by RTK internal-
ization (Lyashenko et al., 2020) or the selected recovery times being too low. For this secondary
stimulus, all datasets showed a decline in activity after the fluid replacement in concordance
with the previously observed minimal activity after 2 min. This reduction in activity is therefore
suspected to be caused by the fluid flow involved in replacing the culture medium with stimulant
carrying medium, which will be further discussed in the outlook.

Discriminating the second stimulation event by delay times from 10 min to 40 min in steps of
5min in Section 7.2 showed no clear dependency on concentration, strengthening the afore-
mentioned assumption of too low recovery times and effective adaption to the stimulant.
Further inspection of the initial drop in activity observed in the control data and the secondary
stimulus in Section 7.3 was done by splitting the data up by CDRs lasting longer or shorter than
the median duration of the dataset. This analysis showed that mostly the expression of short

lasting CDRs is reduced after the stimulus, while the activity for longer lasting CDRs increases.

CDR Dynamics DEPENDING ON HPDGF CONCENTRATION

The observation that added hPDGF causes cells to express more longer lasting CDRs lead to
further inspection of CDR dynamics. In Section 8.1, the influence of different growth factor
concentrations on the dynamics of expressed CDRs was analyzed. By measuring individual
durations and traveled distances, it became clear that a primary effect of growth factor stimu-
lation is the expression of longer lasting, less motile CDRs. This effect increases with hPDGF
concentration, which is confirmed by increasing median CDR durations.

Deeper inspection of CDR dynamics was performed using cluster analysis in Section 8.1.2.
Here, the total dataset of CDRs was split up into four clusters using the k-means algorithm.
This arbitrary partition of the duration-distance dataspace was then used to investigate the

population of different clusters of CDR motility depending on hPDGF concentration.

88



10.3 Influence of Lamellipodium Width on CDR Motility

This analysis confirms the tendency towards longer lasting, less motile CDRs with added growth
factor. Another result of the cluster analysis is that added hPDGF also marginally increases the
amount of very motile CDRs, which express the longest durations and largest traveled distances.
Further inspection of the underlying distributions of CDR duration, traveled distance and in
combination propagation velocity showed these CDRs to also propagate at marginally higher
velocities. This result, however very rare, strongly contrasts the general trend towards less

motile ruffles with increased growth factor stimulation.

INFLUENCE OF LAMELLIPODIUM WIDTH ON CDR MOTILITY

With cell morphology measured for every cell, it was also possible to assess the influence of
lamellipodium width on CDR motility in Section 8.2. This was done by evaluating the previ-
ously used measurements of CDR duration, distance and velocity in dependency of the mean
lamellipodium width along the propagation path of each individual CDR.

Interestingly, there appears to be no clear functional relation between lamellipodium width and
CDR motility. The main finding here, is that the mean lamellipodium width of (13.82 + 0.03) um
provides ideal conditions for CDRs to propagate. The most motile ruffles in the dataset accumu-
late around this value, with only few outliers at wider lamellipodia. Apparently, a more narrow

lamellipodium impairs movement, while a wider one facilitates local expansion of the actin ring.

CELL STATES IMPLIED BY MORPHOLOGY AND CDR DyNnAMICS

Further insight into cellular behavior depending on growth factor concentrations has been
obtained by performing statistical analysis of individual cells over the course of their respective
experiments. This was done by using key measurements for cellular ruffling activity, i.e. mean
CDR duration, mean distance traveled, frequency of CDR expression, as well as their mean
lamellipodium widths. In order to reduce the dimensionality of this dataset, a principal compo-
nent analysis, see Section 6.6.2, was performed reducing the four dimensions into two.
Subsequent k-means cluster analysis yielded different clusters of cellular activity. Classification
of the found clusters by their respective CDR activity properties was done by investigating
the underlying distributions of input measurements for each cluster. This, of course, yielded
no activity for the cluster containing inactive cells. The other clusters were then identified to
consist of cells with what was deemed regular activity, or high activity, depending on the mean
values for duration, distance and CDR frequency.

Changes in cellular behavior upon addition of an external growth factor stimulus was then
performed by investigating the cluster a cell was occupying before and after the stimulus was
added. By calculating the probabilities of cells transitioning from one cluster to another, de-
pending on added hPDGF concentration, yielded the insight that a primary effect of growth

factor stimulation is pushing actively ruffling cells into lower activity clusters.
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Chapter 10 Conclusion

This result is counter intuitive, since the expectation for adding a stimulant would be increased
activity of cells. In agreement with previous findings of cells expressing more long lasting,
stationary ruffles with added growth factor, however, it becomes clear that one impact of the
stimulus is a reduction in CDR frequency. The frequency is a key measurement for the quali-
tative cluster classification, hence lower frequencies in this case coincide with lower activity.
On the other hand, observations in the raw data do show many cells actively expressing CDRs
before a stimulus ceasing to do so after the stimulus is added.

Again, interpreting the cellular CDR signaling machinery as a reaction-diffusion system in a
fixed point promoting CDR formation means that the stimulus may perturb the cellular system
sufficiently for it to not be able to return to said fixed point.

Another investigated point is cells not changing their activity cluster upon stimulation, which
shows a stark difference between the control data and the non-zero added concentrations. As
was expected from the previous findings, cells are more likely to change their cluster upon

stimulation. Future experiments on this behavior will be further discussed in the outlook.

RELEVANCE OF DATASET SI1ZE

A key factor during this study was maximizing the amount of collected data. As was laid out
in Chapter 6, most of the considerations that went into designing the experimental setup and
analysis tools were aiming to increase the amount of data per experiment and increase efficiency
of data extraction from experimental results.

This attention to large datasets resulted in overall 2548 cells and among them 16663 CDRs being
recorded and evaluated. This very large amount of data yielded results which would have gone
unnoticed with smaller datasets due to them disappearing in the large variance inherent to
biological systems. Additionally, documenting the origin of each cell and CDR datapoint allowed
for a more fine grained analysis of cellular behavior. During this study, each cell, as well as every
CDR extracted from that cell, was given a unique identifier which enabled the aforementioned
tracing of every data point.

Further improvements to this system will, of course, keep on improving experimental throughput
and data output of the experimental setup, as will be discussed in Section 11.3. In addition, further
improvements in availability of well documented, open datasets may facilitate incorporation of
datasets obtained by other work groups into work. A possibility of how this may come to pass

will be discussed in Chapter 12.
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CHAPTERl 1

OuTLOOK AND FUTURE EXPERIMENTS

Some findings in this study hinted at cellular mechanisms for which the here used experimental
setup was insufficient. In the following, a discussion of improved and altered experiments will
be presented. Further improvements to the setup will play a key role in future findings.

As was shown in Chapter 7, cells appear to be influenced by the fluid flow itself. Since the
control data showed a clear decline in ruffling activity after exchanging the fluid, there appears
to be an effect on the cell. How this may be assessed will be discussed in Section 11.1.

Section 11.2 focuses on how experiments may need to be modified in order to extend their
duration without impacting cells by aging culture medium. Since findings in Section 7.2 showed
the used delay times to be too short, longer experiments are required.

Possible improvements to the extraction and analysis of experimental data are presented in
Section 11.3.

ImPACT OF MEDIUM REPLACEMENT ON CELLULAR CDR 11.1
ACTIVITY

Results in Section 7.1 indicated that cells are, in fact, influenced by the fluid flow upon replace-
ment of the surrounding medium. During planning and testing of the setup, no influence on the
cells was observed, which may hint at this effect being primarily visible due to the large amount
of collected data. Without this many analyzed cells this behavior would have probably been left
unnoticed.

In order to further investigate this, an approach would be collection of data for many cells
without added growth factor for varying pressure settings of the perfusion system. A possible
link between reduction in cell activity and flow rate could improve information on how the

perfusion system affects cell behavior.
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Chapter 11 Outlook and Future Experiments

FURTHER EXTENSION OF DELAYED REPEATED STIMULUS
EXPERIMENTS

Since the investigated delay times for a second stimulation of 10 min to 40 min were proven to
be insufficient in Section 7.2, further experiments with longer delay times are required.

One challenge for longer experiments is, since cells are enclosed in the flow chamber, that over
longer periods of time the chemical conditions in the low volume of DMEM may deteriorate.
Since DMEM uses a carbonate buffer to sustain a constant pH value, a lack of CO, within the
channel, despite atmosphere in the incubator attached to the microscope being set to 5% CO,,
may cause the pH value to shift.

A solution to this would be usage of different buffer solutions, such as HEPES. Experiments
using HEPES buffer were performed, however cells appeared to be impaired by it. A negative
effect of HEPES on cell culture is confirmed in literature by Bowman et al., 1985.

Another approach would be a more frequent replacement of the medium within the channel
during the delay time. This however, as was already discussed in the previous section, does
impact cells, too. A solution to this issue may be finding a low flow rate at which cells are not
impacted and apply this frequently during the waiting period in order to replace the culture
medium.

A change to the experimental setup and the timing of experimental steps would, however,
require a re-run of the already obtained delay times in order to be able to properly analyze and

compare the data.

IMPROVED AUTOMATION OF DATA EXTRACTION

The data extraction pipeline developed here automates many steps in the process, though some
key steps still require manual intervention. Increasing the throughput of this pipeline may
be a key to obtain more data, especially considering possible adaptations of the experimental
protocol as discussed in Section 11.2.

Image segmentation using CNNs showed promising results and can be adapted to more steps
in the pipeline. One example would be identification of occupied spots on the microcontact
array, see Section 6.4.2. This step is currently performed manually, meaning an automation
of this step reduces the total time needed to extract the data. Another example for beneficial
use of modern machine learning approaches would be extraction of CDR data from circular
kymographs, which is another key point requiring manual work for each cell.

Improvements to the already present segmentation of cells may be adding the ability to also
label currently active CDRs on the cell, allowing for extraction of a timeline of geometrical
dimensions for each CDR. This may, however be limited due to the used magnification of the
microscope. A switch from a 10x magnification objective to 20x may be sufficient to properly
analyze the morphology of CDR over time. This switch, however, would reduce the number of

cells imaged per experiment due to the FOV being smaller.
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11.3 Improved Automation of Data Extraction

Improving extraction of CDR data from kymographs may also be useful in more finegrained
analysis of ruffle behavior during the process. Results obtained by Julia Lange, 2019, showed
a dependency of CDR propagation velocity on membrane tension by analyzing data of simul-
taneously express CDRs on the same cell. These results showed a reduction in velocity upon
formation of a second ruffle while another was already motile on the cell.

All these approaches involving neural networks would require improved computational hard-
ware not currently available in the laboratory. Without, e.g. a sufficiently powerful GPU or
other specialized hardware, the time required to train and test a neural network would heavily

outweigh the gained benefits.
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CHAPTERl 2

THE RELEVANCE OF DOCUMENTED AND

OPEN DATA STRUCTURES

A big challenge in science is availability of open datasets and well documented methodolo-
gies. The amount of data generated in order to produce publications greatly outweighs the
data available with said publications. Open access to such data with ideally well documented
accompanying metadata would greatly improve a very important aspect of science, namely the
ability to reproduce published findings. Access to the original source data, not only the data
extracted from it, would greatly improve this.

Another important aspect is the generally lacking availability of algorithm implementations
for the analysis performed on data. In recent years, a push towards open source software
improved the situation here, however heavily specialized or customized programs are typically
not published in a way which enables verification of a proper implementation.

Ideally, data should be identifiable by a unique identification string and be immutable. A very
promising proposed open standard for this are FAIR Digital Objects (FDOs). Where FAIR stands
for Findability, Accessibility, Interoperability, and Reuse of digital assets. The concept of digital
objects is not new, virtually anyone involved in science has at some point used a Digital Object
Identifier (DOI) link to reach the location of a searched publication. In fact, the bibliography
of this thesis provides DOIs for the majority of cited sources. FDOs extend this approach by
providing a framework for datasets with well documented metadata, see Section 12.1, datatype,
schema and profile, as well as a permanent identifier similar to a DOL Storage of such FDOs in
openly accessible repositories greatly increases findability and reusability of existing data.
The approach of a well documented structure for all generated datasets as presented in Sec-
tion A.2.1 of the appendix, aims at simplifying future use of the data generated during this study.
Generally, usage of non-proprietary formats should be encouraged since such formats offer full
access to all specifications, making reverse engineering unnecessary while also not depending
on the mercy of a select few corporations or nation-states to keep supporting the format and

ensure backwards compatibility in the case of intransparent updates to the format.
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Chapter 12 The Relevance of Documented and Open Data Structures

In addition to this, access to scientific data and publications generated thereof should not depend
on the origin and financial means of any scientist or other individual.
The quote by Louis Pasteur from 1876 in the front matter of this thesis, repeated here, should

always hold true — especially in times of again rising nationalism.

Science knows no country, because knowledge belongs to humanity, and is the torch

which illuminates the world.

METADATA

Data should always be accompanied by corresponding metadata. This metadata gives insight
into how the data was collected, how the data format is laid out and a multitude of other possible
information required to properly assess it’s contents and relevance. Especially the layout of the
data format used, which could be Comma Separated Values (CSV) for tabular data or binary
formats for imaging data like in this work adds the ability for other researchers to investigate
already present data without reverse engineering the data format and wasting precious resources

like time and money in the process.

EvALUATION SCRIPT SOURCE CODES

With the ever increasing popularity of open source programs and programming languages in
the sciences, publishing of the scripts used in evaluating the data comes at greatly reduced
complexity.

With code versioning programs such as GIT and projects like GitLab or GitTea, it is possible
to easily set up a server for publishing of source codes and providing the ability to quickly
reproduce the code on local computers or other servers mirroring the code repositories.
Publication aspect aside, the ability to keep a proper version history of the code is immensely
helpful in identification of introduced programming errors which may be uncovered. Trying
different approaches at solving a given problem can be done without impacting the main working
code by performing modifications easily in isolated branches. It is not without reason, that GIT

became the most used versioning system in the programming world.
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APPENDIXA

USED SOFTWARE AND TECHNOLOGY

This chapter of the appendix contains information about the general workflow using the software
tools developed during this work. Since all of these programs are specialized tools, developed
for certain tasks in the evaluation workflow, a short explanation of the underlying principles of
each tool is given. Additionally, in A.2.1, page 105, an overview and short documentation of the
internal structure used for data storage is given to facilitate possible future use of the generated
data.

IMAGE PROCESSING UTILITIES

A number of specialized Command Line Interface (CLI) and Graphical User Interface (GUI)
software tools was developed during this project. All of these programs are specialized for
certain tasks, based on the data generated with the used experimental setup. The sections

hereafter give a short overview of the respective functions.

IMAGING FILE CONVERSION AND MICROCONTACT GRID FITTING

In order to facilitate faster processing of the data, files from the microscope’s control software
AxioVision in Zeiss Vision Image (ZVI) format needed to be converted to a more widely readable
file format. Since the recorded images are a monochromatic time series of two dimensional pixel
images, the simplest way of storage was three dimensional arrays (x, y,t). The variables x and
y correspond to image dimensions in pixels and the time dimension ¢ iterates over all frames
recorded in the time series.

One possible file storage method would be saving the images as TIFF image stacks, however
here the Hierarchical Data Format 5 (HDF5) image format was chosen. Due to the possibility of
storing metadata information along with the data, as well as being able to store each processing
step’s results in the same file this file format was deemed appropriate for the intended use case.
A significant advantage of the approach followed here is the ability to store all data belonging

to a single experiment in the same file.
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A.1.3

Appendix A Used Software and Technology

Conversion from ZVI files to a format compatible with software tools used for processing the
images and data was performed with a specialized CLI tool written in the Julia programming
language. After conversion of the images to HDF5 format, the process of fitting the microcontact
grid as described in 6.4.2 is performed and results are thereafter saved into the same file.

In order to maximize the signal obtained by the Radon transform and the two dimensional
convolution, several preparatory steps were required. Reduction of overall variance in pixel
brightness values was achieved by background subtraction and execution of the Canny edge
detection algorithm on the image (Canny, 1986; Xuan and Hong, 2017). The output binary
image was then further process by filtering small objects using morphological operations. This
reduced the influence of debris and unoccupied FN substrates in the image, hence augmenting
the following processing steps.

For improved results of the image registration algorithm, the filtered image was augmented by
an additional step of calculating the convolution as described in Equation (6.9) of the filtered
image with a generated image of a disk with the size of a FN substrate. This step resulted in a

more stable output function and more accurate identification of the shifting offset.

CeLL CROPPING

Cell cropping was performed using a GUI tool written in Python programming language. This
tool loads images from HDF5 files and overlays the registered microcontact grid annotated with
cell indexes. A selection box can then be used to select the adhesion spots occupied with circular
cells for automatic cropping and storing of cells. Since each experiment comprises multiple
FOVs, it is possible to process each FOV individually with few mouse clicks.

After selecting the desired cells and clicking the Crop button, the center point of each marked
cell is taken and a square containing it, the RO, is cropped out and saved as a new image stack
with a consecutive index, annotated with metadata to enable tracing of it’s origin.

In the case of a misaligned automatic microcontact grid fit!, an additional manual cropping
function was included. Using this method, a square selection around the position of the mouse

cursor when clicked is cropped.

CIRCULAR KYMOGRAPH GENERATION

Generation of circular kymographs is performed using a GUI tool which cycles through available
cropped cells in the dataset. Upon opening a file, the tool shows the first cell within the dataset
and assumes the cell center to be at the image center. Since cells are not always centered in the
RO, it is possible to manually shift the center point C by clicking onto the cell center.

With the desired kymograph center point C selected it is then possible to set the kymograph’s

radius and a width for averaging, both in radius r and angle ¢, modifying them to r £ Arand

'Misalignment of the fit is often the case when only few microcontacts are populated by cells or when cells detach
from the microcontact and subsequently drift across the flow channel before being flushed out in a queued
medium exchange. A manual crop is in these cases more efficient than reprocessing the full image stack with
modified settings.
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A.1 Image Processing Utilities

¢ + Agp. The width setting allows multiple pixels perpendicular to the kymograph circle over a
larger angle to be averaged, see Figure A.1. By reading the mean gray intensity value of pixels
within the area, the overall influence of sensor read noise within the picture is reduced. The
algorithm used here is inspired by the work of Erik Bernitt, who introduced the method and
concept of circular kymographs into the work group.

The general process of extracting the circular kymograph is hereafter described. All operations
are done in polar coordinates, with the center of the circle set as selected in the GUL For a point
A at angle ¢ € [0, 27) and radius r, set via the GUI, all pixels touched or overlaid by the area
spanned by (r + Ar, ¢ + Ag) indicated in Figure A.1 are being averaged. This process is repeated

@£ Ap

Figure A.1: Indication of point A = (r,¢) as part of the circular kymograph with the area
(r + Ar, ¢ + Ap) shaded in red indicating the area which is being averaged in order
to reduce the influence of camera sensor noise. The thick black line indicates the
circle used for generating the kymograph. Light gray squares indicate image pixels.
Pixels overlaid or touched by the light-red area are used in the averaging process.

for all frames of the digital image stack, thus yielding a brightness value b,, for all timesteps
resulting in a vector with ng.,mes entries. Since this process is repeated for all values of ¢, the
results can be represented as a two dimensional image, the so-called kymograph with time ¢

on the abscissa and angle ¢ on the ordinate. An example for a full kymograph as displayed in

Figure A.2, section A.1.4. CDRs are then clearly visible as dark structures, such as lines or dots.

The visible structure depends on propagation velocity and lifetime, of course.

CDR DATA EXTRACTION FROM KYMOGRAPHS

Identification of CDRs within the kymographs was performed by marking CDR traces in the
kymograph manually. The GUI used for this task shows the image of cell along with it’s

kymograph for better assessment of whether the visible trace is a CDR or an imaging artifact.

Attempts to automate this process were made, however no method able to robustly identify the
CDRs was found. With more computational power and well trained deep learning models an
automated extraction of data may be viable, however due restrictions of available hardware?

this path was not followed.

2Deep learning CNNs are very demanding in terms of computational hardware. Especially a general purpose
graphical processing unit in the computer can, if available, greatly enhance performance. Since such hardware
was not available for this work, manual data extraction was deemed more efficient than CNN calculations
potentially lasting full weeks per training process.
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A.2

Appendix A Used Software and Technology

The manual marking process then involves identifying start- and endpoints of CDR traces, like

350

300

Angle around the Nucleus (degrees)

Frame number

Figure A.2: Example plot of a circular kymograph obtained with the process layed out in
Section A.1.3. CDRs are visible as dark traces with varying lengths and slopes
in the kymograph. Part of the kymograph darkening after frame 270 indicates
changes in cell morphology, in this case a shift of nucleus location on the printed
microcontact. This example of an imperfect kymograph was deliberately chosen
here to also emphasize on issues with automating analysis thereof.

those visible in Figure A.2 and clicking on them, leaving a visual dashed line in the GUI and an
entry with the collected data in a table view. Upon finishing marking CDRs in all previously
cropped cells, data can be saved and be read out of the storage file for further processing and
analysis.

This data enables measurement of CDR lifetime, propagation velocity and distance traveled.
Additionally from the collected dataset per cell, the cell’s activity can be measured, as well as

potential locations of high CDR activity on the lamellipodium.

FURTHER PROCESSING

Processing of extracted CDR data is then performed via a collection of data analytics scripts
written in Julia or Python programming language.

The paradigm of being able to identify which cell and experiment each CDR originated from
was upheld during all statistical processing. In order to achieve this identification, each CDR
and cell were given a unique identification number and a database was upheld for looking up

which CDR belongs to which cell, as well as their respective source experiment files.

DATA STORAGE FILE DOCUMENTATION

Experimental data obtained from microscopy is converted from proprietary ZVI files to HDF5

format. This file format provides an internal structure similar to a file directory and enables easy
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A.3 Additional Software Used

loss less compression of the embedded data®. Additionally, the HDF5 format has bindings for all
programming languages used in this work, making it possible to seamlessly switch between
programming languages depending on the context and the language’s respective strengths. The
HDF5 format is widely used in science, most prominently in numerical simulations, but also in
various other scientific fields accumulating large amounts of data (Folk et al., 2011).

This conversion enables storage of the entire experiment with image stacks from multiple
positions, along with image processing results in the same file. Additionally, it allows for
seamless processing of the data using tools written in different programming languages. Another
valuable property of the HDF5 format is the possibility to add so-called attributes to stored

datasets, which is here used to add metadata to every stored dataset.

DATA STORAGE LAaYOUuT

Storing data in HDF5 files enables, among many other options, a file-directory like internal
structure, which simplifies retrieval of only desired datasets from a large file. Datasets are stored

in files using filenames of the pattern
YYYY_MM_DD_N_drug_concentration_contactsize_flow.h5

where N is the index of the experiment for the given day and flow (or noflow) being an
indication if the perfusion system was in use. The internal file layout is hereafter summarized
in a tree view in Figure A.3, page 106.

Each cropped cell can be backtraced to the corresponding origin coordinates in the full image
stack via information stored as metadata attributes. Attributes also contain information about
pixel and time scaling factors. Processing of CDR data is then done by collecting necessary
information from the HDFS5 files.

For every CDR in the final processing dataset it is thus possible to look up the originating cell
and uncropped image whenever necessary. This approach to storing the data has been chosen
in order to enable reuse of the data for future projects. Having all necessary informations stored

alongside the actual data in the same files enables easier interpretation of the dataset.

ADDITIONAL SOFTWARE USED

Various different software applications aside from the aforementioned self-developed solutions
were used. The most important ones are listed in this section for transparency reasons.
Spreadsheets were managed using the open-source LibreOffice Calc application.

Writing of this thesis was performed using the neovim text editor and EIXtypesetting engine

using the open source Libertinus fonts family.

*Due to the imaging data generated consisting of large amounts of background, i.e. non-cell parts of the image,
the compression algorithms significantly reduce file sizes. This results in faster file transfers and overall faster
processing, when computer hard drives are throttling the computation.
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YYYY_MM_DD_N_drug_concentration_contactsize_flow.h5
I Jposition{i} Stack for imaging position {i} = 1 to Nyos

L(i|original Storage of uncropped image stack and log files

grid Underlying grid fitted to microcontact print

——grid_displacement measured displacement of fitted grid

omexml Full ZVI Image Metadata

" pyControlLogs Perfusion system log-files

" Jpressure Pressure for each channel with timestamp

——Channel1l
——Channel2
——Channel3
——Channel4

timestamp

LT Jvalve Valve state with timestamp

——valve

timestamp
——stack Full image stack obtained from ZVI file

——tiltangles Tilt angles of the fitted grid

time Time vector from image timestamps

L_[]cells Storage of cropped cells

" In Index of cropped cell from n = 0 to N g|is

images Cropped image stack showing only the cell

kymograph Corresponding circular kymograph

ruffles CDRs marked in the kymograph
|:start
end

L ]labels Segmentation labels obtained via CNN

background

cell

nucleus

Figure A.3: Tree view of used internal HDF5 file structure. Directory icons denote HDF5 groups,
entries without icon are datasets which can be read into processing software as
array structure.
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Version controlling of self developed software and thesis text-files was performed using the
program git.

Bibliography management was done using Zotero.

Sketches and figures have been generated using the Inkscape vector-graphics editor, the TikZ
package for IKIEX. In the case of data plots, figures were generated using plotting libraries

Plots.jlfor Julia programming language and matplotlib for Python programming language.

Programming languages used for the different plots were chosen based on the individual
requirements and ease of use, as well as maturity of the underlying libraries for the desired
figures. Since all data is stored in formats which can easily be used by both languages this was
easily achieved and streamlined processing of data.

The majority of programs used was free and open source software, in order to rely as little as
possible on closed source software and to ensure the possibility of inspecting the implementations

of algorithms for data evaluation.

DATA PROCESSING AND EVALUATION

Evaluation of data and generation of plots was performed using Python and Julia programming

languages.

Notable Julia Packages

A set of notable Julia packages used here is displayed in the following with credit to their

authors where possible. Versions have been consistently kept up to date.
« DataFrames
« Plots

StatsPlots

DrWatson

Statistics

« MultivariateStats

« hdf5

Notable Python Modules

A set of notable Python packages used here is displayed in the following with credit to their

authors where possible. All package versions have been consistently kept up to date.

« Numpy (Harris et al., 2020)
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Appendix A Used Software and Technology

« Matplotlib (Hunter, 2007)

* pyqt

« sklean
« tensorflow
« keras

« pandas

A.3.2 MicroscoryY IMAGE AcCQUISITION, IMAGE REVIEwW AND EXPERIMENT
CoNTROL

Microscopy was performed using Zeiss Axiovision Software by Carl Zeiss Microscopy.
Quick review and quality assessment of the obtained data before further processing was done
in AxioVision and ImageJ software. After this initial review, data may be deemed to be of
low quality due to, e.g. cells drifting out of the focal plane or too many cells detaching from
microcontacts.

Control of the perfusion system consisting of the p2cs by biophysical tools and a motorized
valve was performed using a custom written Python program called pyControl. A database of

performed experiments with annotations and details was kept using LibreOffice Calc software.
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LABORATORY PROTOCOLS

CeLL SpLITTING B.1

The general process of sustaining cell culture by splitting the cells at 70 % confluency can be

summarized as follows:
1. Warm up all required media to 37 °C in a heatbath
2. removal of culture medium and washing with Phosphate Buffered Saline (PBS)

3. Remove PBS, add trypsin and place in incubator for 2 minutes, check if cells are detached

under the microscope. If cells remain adherent, increase incubation time
4. add 2 mL of DMEM to inactivate the trypsin
5. Transfer fluid containing the cells into a 10 mL falcon tube
6. Centrifuge at 3600 rpm for 3 minutes
7. Aspirate off the fluid, while avoiding the cell pellet at the bottom of the tube

8. Add 2mL of DMEM and gently resuspend the cells by slowly pumping the fluid up and

down in a 1 mL pipette

9. Transfer a drop of the cell suspension onto a hemocytometer in order to determine cell

concentration
10. Prepare new culture flask by adding 5 mL of DMEM

11. Add the required amount of suspended cells to obtain desired confluency
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B.3

Appendix B Laboratory Protocols

CELL PREPARATION FOR EXPERIMENTS

In advance to planned experiments, cells from the surplus after spltting were plated into [5 cm

PETRI DISHES!?] at varying confluencies, depending on the designated day of use.
« Cells to be used 1 day after splitting the cells: 9 - 10%
« Cells to be used 2 days after splitting the cells: 6 - 104

General handling of the cells for experiments is highly similar to the process of cell splitting
shown in Section B.1. The main deviation from this process is that after resuspending the cell
pellet at step 10, cells are not plated into a culture flask, but into the flow channels of the flow
chamber prepared with microcontact printing, see Section B.3.

Cells within the flow channel are then returned to the incubator for 30 min in order to let the cells
spread onto the FN microcontacts. After the incubation period, proper cell spreading is assessed
under the microscope and if deemed viable, unattached cells are removed by flushing the flow
channel with DMEM twice. This flushing is performed by steadily adding 1 mL of DMEM to one
channel connector while simultaneously aspirating the old medium off the opposite channel
connector. The flow generated by this method is sufficient to remove unattached cells from the
channel without detaching the cells occupying microcontacts.

The cells are then ready for use and the flow chamber is connected to the perfusion system
within the microscopes incubator. During the process of connecting the tubing it is paramount

to not incorporate any air bubbles into the flow system.!

MICROCONTACT PRINTING

Microcontact printing was performed following the protocol by Théry and Piel (2009) with minor
modifications. These modifications were partially required to enable the use of microcontacts
within flow channels. Additionally, some adsorption times were reduced after ensuring equal

quality of the produced microcontacts.

Required Materials
« FN
« PLL-g-PEG
+ Tweezers
» PBS

« PDMS stamp

!Such air bubbles greatly impair the performance of the perfusion system due to greatly increased flow resistance.
Additionally, flushing air over the cells will in most cases damage them.

110



B.3 Microcontact Printing

reservoir with MilliQ water
glass slide

Argon-Plasma Pen

ibidi Sticky Slide

Ultrasonic cleaning bath heated to 60 °C

Microcontact Printing Process

9.

. Resuspend the FN solution by pipetting it up and down 5 times, let it rest for 2 minutes

. Spread 20 pL of the FN solution on the PDMS stamp, gently spreading the drop across

the surface using the pipette tip without touching the stamp’s surface, let it adsorb for 15

minutes

. During the 15 minutes waiting time, prepare the glass slide by marking the location of

ibidi sticky slide’s flow channels using a pen

5 Minutes before the end of the 15 minute time span: activate the glass sides unmarked
surface using the Argon-Plasma pen, by slowly moving the plasma-jet across the glass

surface

Aspirate the unadsorbed FN solution off the stamp and leave the stamp in the clean cabinet

for 2 minutes to dry off any remaining liquid.

Grasp the PDMS stamp with tweezers, invert it so that the FN coated surface faces
downwards and carefully place the stamp onto the activated glass surface at the center of
a marked flow channel, lateral movement on the glass surface must be avoided. Leave for

2 minutes.

Carefully grasp the stamp again with tweezers and remove it from the glass surface in a
straight upwards movement? — a light adhesion to the glass surface is typically a sign of
well printed microcontacts. In order to clean the stamp, transfer it into a reservoir filled
with MilliQ water.

. Combine the glass slide and the sticky slide, so that the printed microcontacts are placed

inside of the individual flow channels.

Add 40 pL PLL-g-PEG to the flow channel, leave for adsorption for 15 minutes.

*Moving the stamp laterally on the glass substrate during this process results in imperfect FN patches. In case
this happens, it is typically advisable to restart the process. Some FN patches may have the desired shape and
dimensions, but the vast majority will be smeared out into different shapes.
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10.

11.

12.

13.

Remove the PLL-g-PEG solution by aspiration it off and replace it with 100 uL. PBS for

removal of unadsorbed PLL-g-PEG. Leave for 10 minutes
Repeat the washing process again leaving the PBS for 2 minutes.
Repeat the washing process and leave the PBS inside of the flow channel.

The microcontacts are ready to be used and can be stored sealed with parafilm at 4 °C for

up to 2 days.

Cleaning of Used Stamps for Next Usage

1.

Place the container holding the stamps in MilliQ water into the ultrasonic cleaning bath

and wash the stamps for 15 minutes at 60 °C.

Remove the MilliQ water, add an equal amount of 98 % Ethanol and repeat the ultrasonic

cleaning for 15 minutes at 60 °C.

. Remove the stamps from the Ethanol, and carefully place them into their storage containers

with the stamp-surface showing upwards, let the stamps dry in a heating cabinet at 50 °C

for at least 5 hours.

Remove the dried stamps from the heating cabinet and store them at room temperature.

The stamps are now ready to be reused.

B.4 PREPARATION OF HPDGF STOCK SOLUTION

hPDGF-BB stock solutions were prepared from lyophilized form following the protocol provided

by manufacturer Cell Signaling Technology.
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APPENDIXC

SUPPLEMENTARY FIGURES

Supplementary figures for some sections in the results part are displayed in the following
sections. This includes measured cell activity after stimulation for varying delay times in
Section C.1.

Elbow and Silhouette plots used for determination of the number of clusters in Chapters 8 and 9

are presented in Section C.2.

CELL ACTIVITY AFTER THE SECONDARY StimuLus C.1

This section contains the remaining figures of Section 7.2 in the results part in order to reduce
visual clutter in the results part.

Figure C.1 shows the data for the control set without added hPDGF. The Figure for 10 ng/mL
was already visible in Section 7.2. Data for 21 ng/mL is presented in Figure C.2, followed by
Figure C.3 for the 30 ng/mL dataset.

As mentioned in the results part, there appears to be no clear dependency of activity on delay

time pointing towards delay times being chosen too short.
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Figure C.1:

Figure C.2:
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Change in cell activity relative to the value at t = 0 min for the second stimulus
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2min is clearly visible. Interestingly, the brown line for 35 min initially increases
at a higher rate than the remaining lines and shows an earlier decline in activity.
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Change in cell activity relative to the value at t = 0 min for the second stimulus
with 21 ng/mL added hPDGF, discriminated by delay time. The decline here is
again visible, however shifted to a later time. This shift, however, does not appear
to have any dependency on the delay time before the stimulus. The blue line
indicating a delay of 10 min here appears to be an outlier.



C.2 Elbow and Silhouette Plots
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Figure C.3: Change in cell activity relative to the value at t = 0 min for the second stimulus with
30 ng/mL added hPDGF, discriminated by delay time. Here, again the minimum
appears to be shifted to later times without a clear dependency on delay times. In
comparison to Figure C.2, the 10 min delay drops to a minimum, while the green

line representing 20 min increases.

ELBOW AND SILHOUETTE PLOTS

Here, the elbow and silhouette plots, see Section 6.6.4, used for determination of the number of

clusters to be discriminated by the k-means algorithm are presented. As was described when

these scores were introduced, these measurements remove arbitrariness from selection of the

number of clusters.

DETERMINATION OF CDR CLUSTERS

For data presented in Section 8.1.2, the numer of clusters to be identified using k-means clustering

was determined to be 4. Figure C.4 shows the plotted elbow plot for k-means cost and silhouette

score. The local maximum of silhouette score at k = 4 indicates the chosen amount of clusters.
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Figure C.4: Elbow plot of k-means cost function and silhouette scores used for determining the
number of clusters to be identified within the CDR dataset. The local maximum in
silhouette score at k = 4 indicates the number used in the analysis.

C.2.2 DETERMINATION OF CELL CLUSTERS

The number of clusters used in the analysis of cell states in Chapter 9 was determined using
Figure C.5. Here, the maximum of the silhouette score at k = 3 indicates the number of clusters
to be identified. Note that a fourth cluster, cluster 0, was automatically added in order to contain

inactive cells.
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Figure C.5: Plot of k-means cost and silhouette score for determination of the number of
cell clusters to be identified within the dataset presented in Chapter 9. The local
maximum at k = 3 for the silhouette score and the corresponding “elbow” in the
k-means cost indicates the used number of clusters for the k-means algorithm.
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