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A B S T R A C T

Unidirectional and non-unidirectional freeze cast SiOC monoliths were characterized by means of digital image 
processing. For this purpose a novel method of pore segmentation in complex dendritic pore morphologies was 
developed. For the orst time, the proposed method made it possible to perform an extensive geometrical and 
structural pore space characterization and analysis on single pore level. The orientation of the primary dendritic 
channels was obtained from high resolution ¿CT images. Based on the mean directional vector distribution, the 
pore space was segmented. As a result, 95% (unidirectional) and 88% (non-unidirectional) of the original binary 
pore volume could be allocated to individual pores. The pore interconnectivity could be derived from this 
segmented pore space. It has been shown that the degree of interconnectivity between pores of the same 
orientation is higher than between pores of different orientation. This could be the reason for peculiar wicking 
behavior in non-unidirectional samples.   

1. Introduction

Porous monolithic ceramics play an important role in scientioc
research as well as in engineering industry and medical technology. 
Typical applications are waste water treatment and olter applications 
[1], desalination plants [2] or tissue engineering [3]. But porous 
monoliths are also of interest in current research issues such as CO2 
storage [4], gas adsorption [5], catalytic processes [2] and novel high 
energetic accumulators [6, 7]. Beside interesting material properties 
such as chemical and thermal resistance, adjustable surface character-
istics, comparatively low mass density, corrosion resistance and low 
thermal conductivity of porous ceramics, mass transport properties are 
of crucial interest for several applications. Decisive innuencing factors 
for the mass transport in porous materials are the overall porosity, pore 
morphology, pore size distribution and pore interconnectivity. 

Besides classical preparation techniques, the freeze-casting process is 
an important method to manufacture porous ceramic monoliths with a 
unique hierarchical pore structure. It is a segregation-induced templat-
ing process of a dispersed or dissolved second phase by a solidifying 
solvent [8, 9] [10]. The structure of freeze-cast ceramics is, depending 
on the manufacturing method and material composition, much more 
complex than that of a ceramic with spherical pores or ceramic sponges. 

Using cyclohexane as solvent, ceramic monoliths with a dendritic pore 
structure can be obtained [11]: An elongated primary dendritic pore 
space which is interconnected by a multitude of secondary dendrites 
originating perpendicular out of the primary main channels. Variations 
of the freezing conditions, e.g. constant freezing temperature vs. con-
stant freezing front velocity and non-unidirectional freezing vs. direc-
tional freezing lead to an inhomogeneous, non-alligned pore structure or 
to a homogeneous, fully alligned pore structure, respectively [12, 13, 
14]. Moreover, in the case of non-unidirectional freeze cast ceramics, 
clusters of pores pointing in the same direction are formed. In their 
recent investigations, Schumacher and Zimnik [13] conducted capillary 
force-driven mass transport experiments (isothermal wicking) for 
morphologically different types of freeze cast ceramics. These experi-
ments investigate the imbibition of a liquid into a porous structure with 
capillary forces being the driving force. Potential applications are pro-
pellant management devices in aerospace engineering [15, 16]. The 
results of these investigations however, revealed a peculiar wicking 
behavior for samples with non-unidirectional dendritic pore space. In 
contrast to the regular wicking behavior which is characterized by a 
constantly decreasing slope, the non-unidirectional sample showed a 
constant slope after an initial phase. Furthermore, the wicking speed 
was drastically reduced compared to the unidirectional sample. The 
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Fife et al. were the orst who investigated ¿CT data of aligned freeze- 

cast titanium foams, including a 3D rendering of the dendritic pore 
structures [29]. Obmann et al. also investigated dendritic pore struc-
tures using ¿CT data and obtained global characteristics such as porosity 
[30]. They also evaluated the individual strut thickness of the dendritic 
structures. Jeulin and Moreaud developed a gradient based method to 
evaluate the orientation of objects in 2D and 3D images in Fourier space 
[31]. Großberger et al. could use this approach to identify clusters of 
similarly oriented lamellar pores in freeze-cast alumina structures [32]. 
Deville et al. were able to study time-dependent crystal growth in a 
colloidal silica suspension using fast ¿CT. The overall pore morphology 
in these samples resulted in lamellar dendritic structures [33]. Recent 
studies on freeze cast structures in solid solid-state batteries and Li/S 
cells [6, 7] also employed ¿CT scans to obtain overall geometric data on 
pore space and pore morphology. Furthermore, in [6] a two-dimensional 
FFT-based image processing allowed a quantitative analysis of the 
interlayer spacing. To the best of our knowledge, however, in none of the 
presented studies a pore space segmentation on single pore level was 
addressed yet, especially not in non-lamellar dendritic structures 3 

although the allocation of the pore space to individual pores is manda-
tory to evaluate features such as pore interconnectivity sufociently. 

Generally, the reduction of a complex geometry to a few resilient 
parameters and the modeling of the topology based on these parameters 
is the common feature of most of these studies. Typical characteristic 
values are the number and position of pores and pore throats or windows 
and the number of direct connections between several pores. The later is 
a classical measure for the interconnectivity of porous structures [34, 
35]. 

In contrast to these earlier works, however, the geometric 
complexity of the pore space of a dendritic freeze cast structure is 
signiocantly higher. This is in particular true in the case of non- 
unidirectional dendritic ceramics, due to a lack of clear demarcations 
between adjacent pores, a multitude of connections between different 
pores via primary and secondary dendrites and differently aligned pores 
in different clusters. Therefore, the aim of this work is to develop 
methods and strategies that provide a reliable pore segmentation in 
unidirectional and non-unidirectional freeze cast ceramic monoliths. 
Based on the segmented pore space, the evaluation of the main pore 
direction shall be carried out and a measure for the evaluation of pore 
interconnectivity shall be derived. Presenting a method that allows to 
elucidate sophisticated parameters and features in complex pore struc-
tures by image analysis of CT data is therefore the novelty of this work. 

2. Materials and methods

2.1. Freeze-cast polymer derived ceramics 

Porous ceramic monoliths were fabricated by solution-based freeze 
casting. A commercial methyl-polysiloxane (Silres® MK, Wacker 
Chemie AG, Germany) acted as preceramic polymer and (3-amino-
propyl)triethoxysilane (APTES, abcr GmbH, Germany) served as cross- 
linking agent. Cyclohexane (CH, >99%, Sigma Aldrich Chemie GmbH, 
Germany) was used as solvent. No further treatment or puriocation of 
the raw materials was carried out. 

The preparation of porous monolithic samples by solution-based 
freeze casting is shown in Fig. 1, whereas details of the process are 
described elsewhere [13, 14]. All mixing was carried out above the 
melting point of cycloheane (Tm(CH) = 6.5 çC) at room temperature. 
Subsequent to the addition of MK and homogenization for 30 min under 
vigorous stirring, APTES was added at an amount of 1 mol%. The total 
solid loading mass set to 40 wt%, whereby the solid fraction was 
composed of preceramic polymer and cross-linking agent. After stirring 
for 3 min, degassing at 300 mbar for 30 s removed gas bubbles created 
during stirring. The solution was poured into a mold, which consists of a 
brass bottom and a transparent polycarbonate cylinder with an inner 
diameter of 40 mm and a height of 90 mm. The transparent mold 
allowed the observation of the freezing front and subsequently the 

authors attributed this behavior to a reduced interconnectivity between 
individual pores, but were not able to prove this hypothesis experi-
mentally or by material characterization methods respectively. Against 
this background, the need for deeper analysis of complex pore structures 
through image analysis of CT data arose. 

In general, the precise and reliable characterization of porous ce-
ramics is essential to make these materials suitable for highly specialized 
applications. For this purpose, a number of experimental methods are 
available, which allow the characterization of decisive parameters. 
Features such as porosity, permeability, pore size and pore throat 
diameter are usually determined by mercury intrusion porosimetry 
(MIP) [17]. The specioc surface of micro- and mesoporous materials can 
be measured by adsorption processes using the BET method [18]. Both 
are standard methods for the characterization of porous materials. Their 
major drawback is that they are both indirect methods which do not 
determine the quantities of interest by direct measurement [19]. 
Furthermore, for MIP measurements an assumption about the pore 
shape has to be made, which is not always possible a priori [20]. Another 
method frequently used in materials science is electron microscopy, 
which produces high-resolution images of material surfaces [21]. With 
this method, properties such as shape, position, size and inter-
connectivity of pores and pore networks can be assessed on a random 
basis. However, this form of imaging only provides two-dimensional 
information, the three-dimensional structure of complex samples 
cannot be assessed with these methods. 

Modern imaging modalities such as X-ray computed micro-
tomography (¿CT) allow the non-invasive acquisition of high-resolution 
CT images of almost arbitrary samples. Using suitable methods of digital 
image processing (DIP), it is possible to extract a variety of variables of 
interest from the image data, e. g. overall porosity and pore size and pore 
window size distribution. A special aspect is that these variables can be 
assigned to individual features in the sample. For example, in the case of 
a porous ceramic containing a volume of spherical pores, individual 
pores can be segmented using the watershed algorithm [22]. Reliable 
feature extraction methods such as binarization and segmentation al-
gorithms build the basis for the structural characterization of complex 
porous structures. However, especially in the case of binary images, 
standard image processing methods such as the watershed algorithm 
tend to over-segmentation in the area of concave constrictions [22]. For 
this reason, this method fails when applied to complex dendritic porous 
structures. In order to overcome these deociencies, different approaches 
have been proposed which fundamentally take into account the partic-
ularities of specioc pore geometries. Due to the elongated basic shape of 
dendritic porous structures, the reduction of the pore volume to their 
medial axis is obvious. 

Those reduction approaches have already been successfully applied 
to porous structures. Liebscher et al. evaluated the strut thickness of 
macroscopic open foams by investigation of the foams skeleton lines 
[23]. Besser et al. also used an approach based on the same method to 
characterize their porous structures [24]. Similar analyses is presented 
in [25,26]. However, in these examples the basic pore shape was 
spherical rather than elongated. Lin and Miller investigated oltration 
processes in olter cakes [19]. They derived models for the pore networks 
by skeletonization of the void phase from ¿CT data. Their interest, 
however, lay in the morphology of the now paths through the pore 
space. A segmentation approach to obtain individual pores was not 
pursued. Spanne et al. used morphological thinning to investigate the 
topology of open porous sandstones [27]. Sheppard et al. used a medial- 
axis transform to extract pore network topologies of different rock types 
[28]. The pore network thus formed was used as seeds for a watershed 
algorithm to segment and allocate individual pores. Although the pore 
structure in natural rocks is quite complex, the pore shape itself is often 
convex. A single pore is thus clearly demarcated from its adjacent 
neighbors, a feature which is not given in the case of dendritic porous 
topologies. 



calculation of the freezing front velocity by analyzing video footage of 
the solidiocation process. A silicone coated polyethylenterephthalat 
(PET) olm (Hostaphan RN 30 2SLK, Mitsubishi Polyester Film GmbH, 
Germany) acted as a separation layer between solution and cylinder. The 
separation layer guaranteed easy demolding without damaging the 
frozen sample. 

Basically, two different freezing conditions were applied to prepare 
two different kinds of samples: Non-unidirectional freezing conditions 
were achieved by transferring the mold to a freezer and freeze at an 
ambient temperature of −20 çC [13]. A freezing time of 72 h ensured 
sufocient cross-linking. In contrast, unidirectional freezing conditions 
required the controlled and directional freezing on a cold onger, which 
allows to adjust the temperature of the brass bottom in accordance to 
yield a constant freezing front velocity [14]. For this purpose, one end of 
the copper cold onger is immersed in liquid nitrogen, thus providing a 
sufocient temperature gradient. The other end of the cold onger is 
equipped with a resistance heater, which allows adequate temperature 
control during freezing and thus ensured a constant freezing front ve-
locity. A thermocouple positioned at the center of the brass bottom 
detects the temperature at the interface between the brass bottom and 
sample. The temperature at the bottom of the mold was adapted to 
guarantee a constant freezing front velocity of 4 ¿m/s. After complete 
freezing on the cold onger, the mold was transferred to a freezer at a 
temperature of −20 çC for 72 h to enable sufocient cross-linking. 

Subsequently, the solvent was sublimated in a freeze dryer for 72 h at 
a shelf temperature of −20 çC and a pressure of 0.1 mbar. Lastly, the 
samples were pyrolyzed at 1000 çC under nowing nitrogen with a 
heating rate of 2 K/min and a dwelling time of 4 h. The samples for the 
CT scan were taken from the center of the monoliths by cutting. 

2.2. X-ray computed microtomography and basic image processing 

2.2.1. X-ray computed microtomography 
A commercial X-ray-microscope CT-scanner (Zeiss Xradia 520 Versa, 

Carl Zeiss Microscopy GmbH, Germany) was utilized to scan one uni-
directional and one non-unidirectional freeze cast monolith of size 5 × 5 
× 5 mm each. Acquisition parameters were set equal for both scans, 
except for the exposure time which had to be adjusted slightly for each 
sample. 3200 radiograms were taken from each sample which results 
into an angular increment of 0.1125ç. Acceleration voltage was set to 80 
kV and a cathode current was set to 88 ¿A. Both scans were performed 
using a tungsten target. Geometrical magniocation due to the cone beam 
was 3.5 and optical magniocation was set to 4.0. Reconstruction was 
based on a FDK-algorithm [36] and the resulting voxel edge length of the 
reconstructed data was 1.92 ¿m due to a camera binning of 2. Due to 
Region-Of-Interest-tomography (ROI) [37] the reconstructed volume 
was 958 × 958 × 994 vx for the unidirectional sample and 968 × 968 ×
1000 vx for the non-unidirectional sample. This results in a cylindrical 
volume of ~1.8 mm in diameter for each dataset. 

2.2.2. Basic image pre-processing 
All image processing was performed using Python and its various 

open source library packages available [38] [39] [40]. From each 
reconstructed sample a representative sub volume of 500 × 500 × 500 
vx was selected and cropped symmetrically around the central axes of 
each dataset (Fig. 2, a) and b)). The according grey level histograms 
reveal a clear bimodal grey level distribution. For this reason, a binary 
segmentation is orst performed subsequently followed by a basic image 
pre-processing. 

The aim of the pre-processing is to extract the medial axes of the 
primary dendrites, since their orientation is an essential feature of den-
dritic structures. The discrimination between primary and secondary 
dendrites can be obtained by thresholding the Euclidean distance 
transform (EDT) of the binary images. The pre-processing included:  

1. median oltering for noise suppression and image smoothing,
2. image binarization by Otsu thresholding,
3. calculation of the EDT,
4. thresholding the EDT by an empirical threshold,
5. skeletonization of the discriminated EDT by a thinning algorithm,

and can be seen as an example in Fig. 3. 
The skeleton line images were generated by morphological thinning. 

According to Maragos and Schafer the skeleton of a binary image con-
veys information about its size, orientation, and connectivity, features 
which are of interest for further analyses [41]. However, if the skel-
etonization is applied directly to the binary data of the pore volume, the 
secondary dendrites are also skeletonized. The result is a highly 
branched and complex network of skeleton lines which does not allow a 
distinction between primary and secondary dendrites. For this reason, 
skeletonization is applied to the previously discriminated distance 
transform, using 
thEDT = 0.5;max(EDT) (1)  

as an empirical threshold value. The thus discriminated EDT already 
shows the cylindrical primary dendritic structure and the subsequent 
skeletonization leads to a reduction to the medial axis of these cylinders 
(see Fig. 3 e). 

2.3. Pore space orientation, segmentation and interconnectivity 

Subsequent to the basic image pre-processing a multistep approach is 
used to extract the desired features pore space orientation, segmented 
pore space and pore space interconnectivity. The pore space orientation 
refers essentially to the orientation of the medial axes of the primary 

Fig. 1. Process scheme of the monolith preparation by solution-based freeze 
casting of polymeric solutions, left: non-unidirectional freezing at an ambient 
temperature of −20 çC, right: unidirectional freezing on a cold onger at a 
constant freezing front velocity. 



dendrites. Once the orientation of the pores is obtained, a clustering of 
pores pointing in the same direction is possible. The orientation of the 
medial pore axes builds the basis for the subsequent pore space seg-
mentation. The segmentation allows to allocate and distinguish between 
single pores. The further data analysis, such as the evaluation of the pore 
interconnectivity, can be carried out in depth on a single pore level. 

2.3.1. Pore space orientation 
The orientation of the pore space is based on the medial axes of the 

pores, obtained by thinning. In general, thinning algorithms are sensi-
tive to boundary irregularities and noise in the image data [42]. This can 
lead to ambiguous skeletal lines, which are overdetermined and so- 
called simple points may remain on the medial axes which have to be 
removed [43] [44] [45]. This is required in order classify the axis points 
into ordinary strut points, endpoints and node points. For the detection 
of simple points, each voxel of the foreground and its 3 × 3 × 3 envi-
ronment is examined. If the test wise removal of the point in question 
does not change the topology within the environment, it is a simple 
point that can be deleted permanently. 

After the removal of simple points, the medial axes appear unam-
biguous but, however, still have branches. In order to calculate the 
directional vectors of the medial axes, it is necessary to dissect these 
branched lines into unbranched segments. For this purpose, the axis 
points are classioed according to the classiocation schemes presented in 
Eq. (2). Within a 3 × 3 × 3 environment the pixel sum of the medial axis 
points is calculated. Since the skeleton lines are binary images, the pixel 

sum renects the number of contained foreground pixels. Accordingly: 
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2, If the axis point is an endpoint,

3, If the axis point is an ordinary strut point,

4 or higher, If the axis point is a node point.

(2) 
The classiocation of axis points is necessary to detect and subse-

quently delete the node points from the medial axes. After removal, each 
remaining axis segment (hereinafter referred to as strut) has exactly two 
unique endpoints. From the endpoint coordinates of each strut segment 
the directional vector can be derived by calculation of their Euclidean 
distance. This also yields the magnitude of each vector and allows the 
directional vectors to be expressed as unit vectors. Furthermore, very 
small strut fragments (f 2 px) are sorted out. 

In order to classify the orientation of the struts, a cumulative fre-
quency distribution in the form of a 2D histogram is derived from the set 
of single vectors (see Fig. 4). Here, the representation in spherical no-
tation, i.e. by means of azimuthal and polar angle components is 
appropriate. The azimuthal component is divided into equidistant 
angular increments of 10ç each. The polar component follows an arc 
cosine function to ensure that all area elements of the angular classes are 
of the same size and thus appear with the same probability in the his-
togram. Furthermore, the class entries are weighted with the vector 
magnitude and normalized with the number of entries per class. 

The cumulative frequency distribution shows signiocant points of 
accumulation for the directional vectors belonging to the same cluster. 

Fig. 2. X-ray ¿CT scans of two polymer derived freeze cast ceramics. Two ROIs were chosen with a size of 500 × 500 × 500 px each. (a) Unidirectional sample. (b) 
Non-unidirectional sample. (c) and (d) show the corresponding grey level histograms, which in both cases reveal a clear bimodal distribution. For reasons of 
comparability, REM images of both samples can be found in Fig. S 1 in the supplementary data. 



Representative mean directional vectors can be formed for each cluster 
by averaging, whereby additionally an appropriate thresholding sup-
presses non-signiocant peaks. The assignment of the individual strut 
segments to a cluster is done by evaluating the scalar product between 
the individual direction vector and the mean class direction vector, for 
which a tolerance range of ±15ç has been deoned. This classiocation 
leads on the one hand to a signiocant data reduction. On the other hand, 
now defects in the strut network appear, since struts which cannot be 
assigned to any cluster are sorted out. 

After the data reduction, the strut network is highly fragmented due 
to the removal of node points and non assigned struts. This means in 
particular that medial axes were separated which belong to a common 
continuous main axis of a pore. In the next process step, these fragments 
are reconnected, thus reconstructing the original pore medial axis. Since 
the node points usually do not contain more than three or four pixels, 
fragments belonging together are adjacent to each other. In order to 
detect adjacent struts, the end points of each strut are dilated spheri-
cally, using the value of the local EDT as dilation radius (Fig. S 2 in the 
supplementary data gives an example). In the case of closely adjacent 
segments, the spheres overlap in a certain transition area. Endpoints are 
reconnected with each other  

" whose spheres share a common transition area,
" which belong to the same cluster, and
" which are aligned neighbors, or do not run parallel respectively.

To ensure that no parallel neighbors are reconnected, the directional
vectors between the respective endpoints are calculated and compared 

to the directional strut vectors. This way, continuous medial axes are 
generated whose orientation can be examined. 

2.3.2. Pore space segmentation 
In order to segment the original binary data into single pores, a 

watershed algorithm is utilized. The dendritic structures in the binary 
images show constrictions at the transition between primary and sec-
ondary dendrites. These constrictions would lead to an over- 
segmentation of the pore space. In order to avoid over-segmentation, a 
special proole image is generated from the medial axes which is then 
subjected to the watershed transformation. For this purpose, the medial 
axes are successively dilated. The dilation is carried out simultaneously 
for all struts and is locally terminated either if:  

" a maximum amount of dilations is reached, determined by an
average strut distance based on the Euclidean distance transform, or
if

" two adjacent dilated strut regions begin to merge.

Furthermore, each dilation stage is multiplied by an increasing
counter number. By doing so the value of dilation stages incrementally 
increases by 1 from the inside to the outside. Here the original medial 
axis has the value 1, the orst dilation stage has the value 2 and so on. 
Fig. 5 a) shows the principle sketch for the generation of the dilation 
images and Fig. 5 b) gives an example from the investigated sample. The 
resulting images have an ideal height proole, with the strut segments 
lying at the lowest point and spots where adjacent regions merge form a 
ridge. This hill-valley proole is well suited for a subsequent watershed 

Fig. 3. Basic image processing steps (shown on a sub-sample of 200 × 200 × 200 px3 for better visualization): a) grey level image, b) median oltered grey level 
image, c) thresholded binary image, d) Euclidean distance transform, e) thresholded EDT, f) skeletonized EDT yielding the medial axes of the primary den-
dritic structure. 



transformation. Here, a seeded watershed algorithm is used. Using the 
labeled struts as seeds, the resulting watershed transform is also labeled 
in the same way. The watershed image shows clear demarcations be-
tween adjacent regions. The segmented pore space is achieved by 
multiplication of the watershed transform with the original binary 
image of the pores. 

2.3.3. Interconnectivity 
The classical deonition of the degree of interconnectivity of a pore 

network is given by Jones et al. [34]. Accordingly, the coordination 
number is the number of connections of a pore or node to other pores. A 
similar deonition can be found in [35]. The mean coordination number 
is an important parameter for the description of pore networks and is 

often characteristic for different types of porous materials [35]. 
In the case of dendritic freeze cast ceramics, a clear demarcation 

between neighbored pores is not given. The high degree of intercon-
nection of adjacent pores mainly via secondary dendritic pore space 
makes it considerably more difocult to determine a clear boundary. For 
this reason, the deonition of interconnectivity according to classical 
approaches is not applicable to the present problem. Therefore, the 
following deonition for the characterization of interconnectivity in 
porous structures with dendritic pores is proposed: 

C =
Atrans

Asurf

. (3) 

This deonition is applicable for single pores as well as for clusters of 
pores. Here, C denotes the interconnectivity, Asurf is the total surface 
area of a pore or a pore cluster and Atrans denotes the proportion of the 
surface that represents transition areas into adjacent pores or clusters. 
By -this deonition, C is in between 0 and 1, whereby 0 represents no 
connections to other pores or clusters. However, in order to apply the 
above given deonition of interconnectivity, a pore space segmentation is 
necessary, yielding individual assigned pore volumes. 

In order to calculate the interconnectivity according to the above 
given deonition, the surface area of the transition regions has to be 
determined. The principle is the same for single pores and pore clusters, 
thus only the procedure for single pores is described below. Due to the 
segmentation algorithm proposed in this work, adjacent pores which 
have transitions into each other touch without void space. This is due to 
the dilation of the strut structure, which terminates when adjacent areas 
merge. The quantitative determination of transition areas in a pore can 
therefore be done by separate dilation of adjacent pores. This requires a 
segmented pore space with individually labeled pores. The pore of in-
terest remains unchanged, only the adjacent pores are dilated. Hereby, 
the dilated regions overlap the area of the not dilated pore. This overlap 
is the sought-after transition area of the non-dilated pore into its 
neighbors. If the pores are sorted by cluster, it is also possible to 
distinguish between cluster-internal transition areas and transitions into 

Fig. 4. Cumulative frequency distribution of the directional vectors (non-unidirectional sample). Signiocant points of accumulation show four peaks, representing 
four differently orientated clusters. 

Fig. 5. (a) Principle sketch for the generation of dilation images. The connected 
and clustered struts are successively dilated. The voxel area of each dilation is 
multiplied by the count of previous dilation steps. Dilation stops whenever 
neighbored regions merge together or after a maximum amount of dilations is 
reached. In this way, images are created that have an ideal hill-valley proole for 
a subsequently following watershed algorithm (see plotted line proole below 
the sketch). 
(b) Slice of the dilation image of the non-unidirectional sample, showing dilated
struts from three different clusters. The color scheme indicates isolines of equal
dilation numbers.



spatial resolution. Very small pore fractions near and below the reso-
lution limit are not detected as well as details in surface roughness. 
These small-sized pore fractions might affect the accessible void space. 
For this reason, the values of the open porosity § obtained by DIP are 
assumed to be rather too low. Further reasons for miscalculations might 
be the size of the selected ROI and the choice of the threshold value for 
the binarization, although it is suspected that this will lead to rather 
minor deviations from the true value. The clear bimodal grey level 
distribution (see Fig. 2 (c)-(d)) enables a good binarizability of the pore 
volume. Nevertheless, due the limited resolution of the ¿CT scans, the 
true value of the porosity might be higher than the one obtained here. 

3.1.2. Directional vector distribution 
As expected, the vector distribution of the unidirectional sample only 

shows one peak, here at a polar angle of approx. 20ç (Fig. 8 (a)). Fig. 8 
(c) shows the strut elements corresponding to the determined direc-
tional vector distribution. The clustered strut image contains 123
distinguishable strut elements of varying length up to approx. 560 px,
resulting in 108 reconstructed main channels. These 108 primary main
axes were oltered from over 2300 strut elements which were originally
contained in the unclustered strut image. The majority of these 2300
strut elements must therefore be assigned to the secondary dendritic
pore space.

In contrast, Fig. 8 (b) shows multiple peaks in the mean directional 
vector distribution of the non-unidirectional sample. In total four peaks 
of four different directional clusters are visible. The different size of the 
clusters, referred to the number of strut segments contained, is due to 
boundary effects of the chosen ROI. The length of the contained strut 
elements varies up to approx. 520 px and is therefore in the same order 
of magnitude as for the unidirectional sample. This is clearly an effect of 
the chosen ROI size, which shows only a section of a larger volume. 

From originally over 4900 strut elements, the clustered strut image 
presented in Fig. 8 (d) still contains 430 distinguishable entities. Thus, 
even in the case of the non-unidirectional sample, a large part of the 
objects contained after thinning and removal of the node points, is 
attributable to the secondary dendritic pore space. The orientation of the 
mean direction vectors covers almost the whole azimuthal angular range 
of the hemisphere but a small polar angular range which is in between 
approx. 15ç and 55ç. Principally, the spatial distribution of the clusters 
does not allow any conclusion about possible directional preferences of 
crystal growth during phase separation and thus, the directional vectors 
are assumed to be randomly distributed. 

Fig. 6. Principle sketch for the detection of transition areas. (a) Four pores of two clusters (blue and green) are adjacent to each other. (b) Dilation of the adjacent 
pores into the light-blue pore. (c) Transition areas of the light-blue pore (crosshatched boxes). It has internal transitions into the dark-blue pores and external 
transition into the green pore. (For interpretation of the references to color in this ogure legend, the reader is referred to the web version of this article.) 

other clusters (see Fig. 6).

3. Results and discussion

3.1. Pore structure and segmented pore space 

3.1.1. General aspects 
Discussion starts with some general aspects on pore size, pore and 

network structure as well as porosity §. The ¿CT images in Fig. 2 show 
that the pore size in the unidirectional sample is larger than in the non- 
unidirectional sample. This is due to a limited freezing speed in the 
experimental setup for the fabrication of the unidirectional sample due 
to technical reasons. Therefore, fewer crystallization seeds are formed, 
which, however, grow longer after formation and form on average larger 
pores. 

The general structure of a single pore is shown in Fig. 7 (a). In 
principle, the medial axis, the dendritic pore space and the transition 
areas can be seen. The main orientation of the pore is along its elongated 
main axis. The secondary dendritic pore space branches off perpendic-
ular to the main longitudinal channel. The pores are mainly connected to 
each other via transitional regions in this secondary dendritic pore 
space. 

If the same single pore is embedded in its immediate vicinity, the 
neighborhood relationships and the position of the individual pores to 
each other can be traced very well (Fig. 7 (b)). This pore ensemble was 
randomly selected from the unidirectional sample. The central pore is 
completely surrounded by adjacent pores. While this pore is almost 
symmetrical around its median axis, some of its neighbors show partly 
asymmetrical shapes. This is due to the position of the medial axes 
relative to each other, which serve as seeds for the successive dilatation. 
The ogure also shows the current limits of the segmentation algorithm, 
because clear mis-segmentations are visible (e. g. the red pore space 
fragment on top right). These are due to erroneous remaining fragments 
in the strut network, which lead to an over-segmentation. The principle 
pore allocation, however, seems reasonable and comprehensible. 

Open porosity § was determined from the binary image data and is 
deoned as the ratio of volume of the void space to the bulk volume. The 
obtained values for the unidirectional and non-unidirectional sample are 
summarized in Table 1. For the purpose of comparison, open porosity §* 
obtained by MIP measurements was included. MIP is an established 
standard method for the evaluation of open porosity in porous materials 
and therefore serves as reference method here. As can be seen in Table 1, 
the values obtained by digital image processing (DIP) differ from the 
values obtained by MIP. A major drawback of ¿CT scans, is the limited 



3.1.3. Segmented pore space 
The complete segmented pore space of the unidirectional and the 

non-unidirectional sample are presented in Fig. 9. The single pores are 
labeled individually and displayed in different colors. 

In the case of the unidirectional sample, the same spatial orientation 
of the pores is clearly visible. Furthermore, the dendritic shape of the 
individual pores can be easily observed. The volume segmented in this 
way covers about 95% of the original binary volume. However, this does 
not mean that 95% of the binary volume has been correctly segmented. 
The quality of the segmentation depends primarily on the quality of the 
reconstructed struts. If fragmented objects remain in the strut image 
after the reconstruction of the strut lines, i.e. objects that belong to a 
common main channel line but are not connected, the pore volume is 
also fragmented at this point. Nevertheless, the fact that such a high 
percentage was detected in the segmented pore image indicates that 
only few gross defects remained in the strut image. It should be 
mentioned that the choice of the structural element during successive 
dilatation of the struts also has a great innuence on the result of the 
segmentation. Since the orientation of the secondary dendritic pore 
space relative to the main channels is not known a priori and can also 
vary, a cube-shaped structural element was used in this case. If a cross- 
shaped structural element was chosen, only a signiocantly lower per-
centage of the binary volume would be covered by the segmentation 
algorithm. 

In the case of the non-unidirectional sample, pores can be detected 
which are aligned in the same direction and thus belong to the same 
cluster. The dendritic pore structure is also clearly visible here. The 
arrangement of the pores seems rather chaotic at orst, but in comparison 
with the strut image in Fig. 8 (b) it can be well understood, at least for 
the pores in edge regions. In total, about 88% of the original binary 
volume was allocated to the segmented pore space. The lower percent-
age compared to the unidirectional sample indicates more defects in the 
connected strut image. The main reason for these defects is probably the 
more complex structure of the sample itself and the comparatively 
smaller pores at the same spatial resolution of the ¿CT data. Therefore, 
the probability of fragmented main channels is higher, because the 
length of the individual strut elements is shorter on average and the 
scattering of their directional vectors can therefore be higher. As a 

result, the probability of unassignable strut elements is also higher and 
defects in the strut network are more likely. 

Since the discussed segmentation approach is based on the evalua-
tion of the medial axes of elongated objects, the algorithm is not limited 
to dendritic pore spaces. One of the most beneocial aspects is, that it can 
be easily adapted to other complex pore morphologies e. g. prismatic 
pore shapes. 

3.2. Interconnectivity 

The evaluation of the interconnectivity is orst performed compara-
tively for the unidirectional and the non-unidirectional sample. 

Fig. 10 shows the interconnectivity C over the surface-to-volume 
ratio for both samples on a single pore level. The respective frequency 
distributions are additionally plotted. Note that the histograms are not 
based on a normal distribution, which is illustrated by their kernel 
density estimations (KDE). The surface-to-volume ratio is well suited for 
the estimation of the mean pore size. As expected, this ratio is smaller for 
the larger pores of the unidirectional sample. The frequency distribu-
tions or KDEs of the surface-to-volume ratios allow a clear distinction 
between the unidirectional and non-unidirectional sample. In contrast, 
this clear distinction between both samples based on the distributions of 
the interconnectivity is not possible. This shows that the inter-
connectivity is very similar for both samples. Despite a certain scat-
tering, there is a concentration of values in a certain range. Nevertheless, 
the scatter of the values for the non-unidirectional sample is signio-
cantly higher and the KDEs are correspondingly natter and wider. The 
reason for the higher scatter is, as stated in the evaluation of the pore 
segmentation, the higher complexity of the sample itself and the smaller 
pore sizes on average. 

In the case of the non-unidirectional sample, the evaluation of the 
interconnectivity can be differentiated for the different clusters. Prin-
cipally connections between the clusters can occur via primary and 
secondary dendrites, whereas connections of the pores within a cluster 
are only possible via the latter. The proposed algorithm is not yet able to 
distinguish between primary and secondary interconnection, but be-
tween internal and external interconnection, or transitions within a 
cluster and between different clusters, respectively. This is illustrated in 

Fig. 7. (a) General structure of a typical segmented single pore. The 
medial axis (purple), the secondary dendritic pore space (white) and the 
transition area into adjacent pores (blue) are visualized. For reasons of 
visualization the transitional regions and secondary dendrites are 
shown graded and stripped back. (b) The same (central) pore embedded 
in its immediate vicinity. The pore ensemble was taken from the uni-
directional sample. Some of the pores have a strong asymmetrical 
shape, what can be addressed to the relative position of the medial axes 
to each other. Furthermore, pore space mis-segmentations are clearly 
visible (red pore fragment on top right), which are due to erroneous 
remaining strut fragments in the strut network. (For interpretation of 
the references to color in this ogure legend, the reader is referred to the 
web version of this article.)   

Table 1 
Summary of the main results of the material characterization derived from ¿CT-measurements.   

Unidirectional sample Non-unidirectional sample 
Porosity Ç [ ] 0.478 0.522 
Porosity Ç* [ ] 0.61 0.58 
Cluster number 3 1 2 3 4 Total 
Number of pores N [ ] 108 144 123 81 82 430 
Mean surface to volume ratio [¿m−1] 0.192 0.241 0.241 0.247 0.250 0.246 
Total interconnectivity Ctotal [ ] 0.165 0.199 0.212 0.226 0.185 0,205 
Intern interconnectivity Cintern [ ] 3 0.169 0.177 0.166 0.120 3 

Extern interconnectivity Cextern [ ] 3 0,030 0.035 0.059 0.066 3  

* Obtained by MIP.



Fig. 8. Mean direction vector distribution, plotted as unit vectors on a hemisphere. (a) Vector distribution of the unidirectional sample. The main direction is aligned 
with the x-axis. (b) Vector distribution of the non-unidirectional sample. Each cluster point indicates the main direction of aligned primary dendrite structures. In 
total, four different clusters are visible. (c) and (d) Clustered strut images of the unidirectional and the non-unidirectional sample, respectively. 

Fig. 9. Segmented and labeled pore space. Each segmented pore has its own identioer (label), which is represented by an individual color. (a) Segmented pore space 
of the unidirectional sample. All pores point in the same direction, as expected from the directional vector distribution. (b) Segmented pore space of the non- 
unidirectional sample. The pore orientation shows several clusters of pores, pointing in the same direction. 



Fig. 11, which shows the mean values of total (Ctot), internal (Cintern) and 
external (Cextern) interconnectivity for the different clusters. In the case 
of a single pore, Ctot is equal to the sum of Cintern and Cextern. However, 

due to the representation as a mean value over an ensemble of pores, this 
relationship is no longer valid for the shown diagram. Furthermore, 
since the data is not normally distributed, the mean values and standard 

Fig. 10. Interconnectivity C over Surface-to-Volume ratio on a single pore level for the unidirectional and the non-unidirectional sample, including the respective 
frequency distributions and KDEs. 

Fig. 11. Mean values of the total, internal and external interconnectivity for the four clusters.  



1) The external interconnectivity for clusters 3 and 4 is about twice as
high as for clusters 1 and 2, and

2) the internal interconnectivity for each cluster is signiocantly higher
than the external.

The reason for 1) is primarily the size and the shape of the clusters,
which are mainly determined by the size and position of the ROI. 
Clusters 1 and 2 consist of signiocantly more pores than clusters 3 and 4, 
which is why there are more pores in the orst two clusters that only have 
cluster-internal connections to other pores. Furthermore, clusters 3 and 
4 have a more contorted or angled shape overall, while clusters 1 and 2 
are more cuboid. This leads to more transition areas into adjacent 
clusters. It can be expected that the shown differences in Cextern would 
disappear with increasing ROI size. 

Although 2) was expectable this observation allows to draw some 
interesting conclusions on the ondings of recent studies on isothermal 
wicking of Schumacher and Zimnik [13]. As described in section 1 the 
observed wicking behavior of samples with non-unidirectional dendritic 
pore morphology could not be mapped with the existing model (8pecu-
liar wicking9). It was suspected that the real pore topology and the 
presence of a primary and a secondary dendritic pore space led to the 
reported unpredictable behavior. Both are parameters that are not found 
in the model used to describe wicking. In fact, the basic assumption of 
the model, a bundle of straight, not connected capillaries, is not even 
roughly fulolled for the non-unidirectional sample, while it is valid for 
the unidirectional sample in good approximation. The signiocantly 
reduced external interconnectivity compared to the internal inter-
connectivity supports the statement that the peculiar wicking behavior 
is caused by a lack of connections between pores of different clusters. 
The further expressed assumption that the differences in wicking be-
tween unidirectional and non-unidirectional dendritic ceramics could be 
due to the fact, that the mass now is mainly through the primary den-
dritic pores can neither be proved nor disproved by the present study. As 
already mentioned, this would require the distinction between primary 
and secondary transition. 

4. Conclusions

The segmentation of complex porous structures is a non-trivial
problem of general interest in material science. In this work, we pre-
sented an algorithm for the segmentation and characterization of com-
plex dendritic porous structures, based on high resolution ¿CT images. 
For this purpose, porous polymer-derived ceramic monoliths (SiOC) 
were prepared by solution based-freeze casting. Samples with isotropic 
unidirectional and anisotropic non-unidirectional pore structure were 
prepared and scanned by an X-ray-microscope CT-scanner. The medial 
axes of the pre-processed image data were obtained by thinning and 
strut segments with unique start and end points were extracted. From 
this information a directional distribution of the strut segments could be 
obtained and a clusterwise assignment of individual segments by di-
rection was performed. From the clustered strut segments, continuous 
main channel axes were reconstructed, which after a successive dilation 
formed the basis for a seeded watershed algorithm. This made it possible 
to separate individual pores from each other and thus segment the pore 
space. From the surface of the individual pores, the proportion that 
forms transition areas into other pores was determined. A measure for 
the interconnectivity of each individual pore could be calculated from 
these transition areas. The general approach of the proposed segmen-
tation method is based on the evaluation of the medial axes of elongated 
objects. Therefore, the algorithm is not limited to dendritic pore spaces, 
but can be applied to other complex pore morphologies e. g. prismatic 
pore shapes. 

The directional vectors of the struts showed the expected distribution 
for both samples. A single signiocant peak for the primary dendritic pore 
space in the unidirectional sample and four signiocant clusters in the 
non-unidirectional sample. The spatial distribution of the clusters does 
not allow any conclusion about the directional preferences of crystal 
growth during phase separation, so that it can be assumed that the 
directional distribution is randomly distributed. 

The pore space segmentation shows good results for both samples in 
general. The evaluated image data enables to comprehend the dendritic 
pore structure and their position relative to each other. However, the 
percentage of allocated pore volume to the original binary volume is 
higher for the unidirectional sample. The reason could be the more 
complex structure of the non-unidirectional sample in general, and its 
smaller pore size in particular. Unallocated pore volume is mainly 
attributed to remaining fragmentation of the struts, which is also the 
main reason for misallocations. 

The evaluation of the interconnectivity showed similar results for 
both samples. On average, the total interconnectivity for the pores of 
both samples was about 0.2. As both samples have the same pore 
morphology, this onding is plausible. In the case of the non- 
unidirectional sample, it was possible to distinguish between internal 
interconnectivity, i.e. transition regions within a cluster, and external 
interconnectivity, i.e. transition regions between pores of different 
clusters. For external interconnectivity, differences were found between 
the pores from the larger clusters 1 and 2 and those from the smaller 
clusters 3 and 4. The main reason for this is probably the different 
number of pores and especially the contorted shape of the smaller 
clusters, so that Cextern was twice as large as in the other clusters. This 
effect is attributed to the size and position of the chosen ROI. Common to 
all four clusters was that their internal interconnectivity was signio-
cantly higher than their external interconnectivity. Although this 
onding is not surprising, it supports corresponding hypotheses con-
cerning peculiar wicking behavior from previous work. 
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R. Gläser, S. Kroll, K. Rezwan, Hierarchical porous zeolite structures for pressure 
swing adsorption applications, ACS Appl. Mater. Interfaces 8 (5) (10 02 2016) 
327733286. 

[25] K. Schelm, T. Fey, K. Dammler, U. Betke, M. Schefner, Hierarchical-porous ceramic 
foams by a combination of replica and freeze technique, Adv. Eng. Mater. 21 (6) 
(2019) 1801362. 

[26] T. Fey, B. Zierath, P. Greil, M. Ptoczek, Microstructural, mechanical and thermal 
characterization of alumina gel-cast foams manufactured with the use of agarose as 
gelling agent, J. Porous. Mater. 5 (22) (01 10 2015) 130531312. 

[27] P. Spanne, J.F. Thovert, C.J. Jacquin, W.B. Lindquist, K.W. Jones, P.M. Adler, 
Synchrotron computed microtomography of porous media: topology and 
transports, Phys. Rev. Lett. 73 (14) (03 10 1994) 200132004. 

[28] A.P. Sheppard, R.M. Sok, H. Averdunk, Improved pore network extraction 
methods, in: International Symposium of the Society of Core Analysts, Toronto, 2005. 

[29] J. Fife, J. Li, D. Dunand, P. Voorhees, Morphological analysis of pores in 
directionally freeze-cast titanium foams, J. Mater. Res. 24 (01) (2009) 1173124. 

[30] R. Obmann, S. Schörpf, C. Gorsche, R. Liska, T. Fey, T. Konegger, Porous 
polysilazane-derived ceramic structures generated through photopolymerization- 
assisted solidiocation templating, J. Eur. Ceram. Soc. 39 (4) (01 04 2019) 8383845. 

[31] D. Jeulin, M. Moreaud, Segmentation of 2D and 3D textures from estimates of the 
local orientation, Image Anal. Stereol. 27 (3) (03 05 2011) 1833192. 

[32] S. Großberger, T. Fey, G. Lee, Vacuum-induced surface freezing to produce 
monoliths of aligned porous alumina, Materials 9 (12) (05 12 2016). 

[33] S. Deville, J. Adrien, E. Maire, M. Scheel, M.D. Michiel, Time-lapse, three- 
dimensional in situ imaging of ice crystal growthin a colloidal silica suspension, 
Acta Mater. 61 (6) (2013) 207732086. 

[34] A. Jones, C. Arns, D. Hutmacher, B.K. Milthorpe, A.P. Sheppard, M.A. Knackste, 
The correlation of pore morphology, interconnectivity and physical properties of 
3D ceramic scaffolds with bone ingrowth, Biomaterials 30 (7) (01 03 2009) 
144031451. 

[35] K.C. Khilar, H.S. Fogler, Migrations of Fines in Porous Media Bd. 12, Kluwer 
Academic Publishers, Dordrecht, Boston, London, 1998. 

[36] I.A. Feldkamp, I.C. Davis, J.W. Kress, Practical cone-beam algorithm, J. Opt. Soc. 
Am. A 1 (6) (01 06 1984) 612. 

[37] S. Azevedo, P. Rizo, P. Grangeat, Region-of-interest cone-beam computed 
tomography, Lawrence Livermore National Laboratory, Livermore, CA, USA, 1995. 

[38] G. van Rossum, F.L. Drake, Python 3 Reference Manual: (Python Documentation 
Manual Part 2), CreateSpace, Scotts Valley, CA, USA, 2009. 

[39] P. Virtanen, R. Gommers, et al., SciPy 1.03fundamental algorithms for scientioc 
computing in python, Nat. Methods 17 (3) (03 2020) 2613272. 

[40] S.V.D. Walt, J.L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J.D. Warner, 
N. Yager, E. Gouillart, T. Yu, scikit-image: image processing in Python, PeerJ 2 (19 
06 2014) e453. 

[41] P. Maragos, R. Schafer, Morphological skeleton representation and coding of 
binary images, in: IEEE Transactions on Acoustics, Speech, and Signal Processing, 
1986, pp. 122831244, 34 (5). 

[42] E.R. Dougherty, R.A. Lotufo, Hands-on Morphological Image Processing, 
Bellingham, Wash, SPIE, 2003. 

[43] T.Y. Zhang, C.Y. Suen, A fast parallel algorithm for thinning digital patterns, Assoc. 
Comput. Mach. 27 (3) (01 03 1984) 2363239. 

[44] W. Deng, S. S. Iyengar N. E. Brener, A fast parallel thinning algorithm for the 
binary image skeletonization, Int. J. High Perform. Comput. Appl. 14 (1), pp. 65381, 
01 02 2000. 
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