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In many technical processes gas, multicomponent diffusion takes place in confinements that are rarely uniform in direc-

tion of their long axis (e.g., catalysts pores). Here, we show that in conical tubes multicomponent diffusion is hindered.

This effect increases with ratio of inlet to outlet cone radius K, indifferent of the orientation of the tube. Based on the 

Maxwell–Stefan equations, predictive analytical solution for ideal multicomponent diffusion in slightly tapered ducts is

developed. In two-bulb diffusion experiments on a uniform tube, the results of Duncan and Toor (1962) were repro-

duced. Comparison of model and experiment shows that the solution presented here provides a reliable quantitative pre-

diction of the temporal change of H2, N2, and CO2-concentration for both tube geometries, uniform and slightly conical. 

In the demonstrated case (K 5 3.16), mass diffusion is 68% delayed. Thus, for gaseous diffusion in “real,” typically 

tapered pores the transport limitation is more serious than considered so far. CV 2014 American Institute of Chemical

Engineers AIChE J, 61: 1404–1412, 2015

Keywords: gas multicomponent diffusion, experiments on conical tubes, classical Maxwell–Stefan equations, analytical

transport model, two-bulb diffusion experiment

Introduction

Multicomponent diffusion is a crucial transport mechanism

that determines the integral behavior and efficiency of many

natural and technical processes such as mixed gas separation

using porous membranes, fuel cells, and heterogeneous catal-

ysis. Being aware of the variety of mechanisms discussed in

literature, only bulk diffusion in gases is considered in this

work. For a more comprehensive overview of transport

mechanisms, reference is made to the books of Bird et al.1

and Taylor and Krishna.2 For the modeling of gaseous diffu-

sion with superimposed pressure-driven flows and under

presence of a liquid phase, we refer to the work of Zhukov-

sky et al.3–6

A common approach to describe molecular diffusion is

Fick’s first law,7,8 which states that the molar flux in a mix-

ture is proportional to its concentration gradient and directed

against it. Hence, no influence of the other components is

considered meaning that multicomponent-effects are ignored.

Actually, such multicomponent-effects can completely divert

the diffusive fluxes, leading to so-called reverse diffusion

(up-hill diffusion in direction of the gradient), osmotic diffu-

sion (diffusion without a concentration gradient of the target-

ing component), and diffusion barrier (no diffusion despite a

gradient).2,9,10 Hence, Fick’s approach is strictly limited to

single gases and binary mixtures which was shown experi-

mentally by Duncan and Toor11 who investigated diffusion

in ideal ternary gas mixtures by means of the two-bulb diffu-

sion experiment. Physically osmotic diffusion, reverse diffu-

sion, and the diffusion barrier can be explained qualitatively

with intermolecular friction forces. As Maxwell12 and Ste-

fan13 already discovered in the 19th century, a more general

approach that accounts for the intermolecular friction is

required to describe diffusion in multicomponent systems.

This approach, often referred as classical Maxwell–Stefan

equations (MSE), has been successfully used by several sci-

entists and engineers like, among others, Bird et al.,1 Krishna

and Wesselingh,9 Lightfoot,14 Krishna and Standart,15 and

Kapteijn et al.16 to predict multicomponent transport such as

in the two-bulb diffusion experiment of Duncan and Toor.11

In current literature, experimental and numerical analysis

on multicomponent diffusion confine solely on uniform ducts

as object of examination. This is wondrous as “real” confine-

ments in which diffusion takes place (e.g., pores, microelec-

tromechanical systems) typically are somehow tapered (see

Figure 1), and diffusive flow can significantly depend on the

gradient of the duct’s cross-sectional area as we could show

for pressure-driven flows by an own earlier work.17 In such

flows, a gas flow diode effect was observed experimen-

tally,17,18 numerically,19 and analytically17,19 meaning that a

tapered duct has a preferred direction of perfusion when the

gas is in a rarefied state.

Thus, the urgent questions that arise here are: how will

multicomponent diffusion be affected by conicity of the tube

that connects the bulbs in the two-bulb diffusion experiment?

And, do effects occur that are analogous to the gas flow

diode effect in pressure-driven rarefied gas flows? These

questions are analytically and experimentally investigated in

this work.

In the following section, we present an analytical model

based on the work of Duncan and Toor11 to describe multi-

component diffusion in slightly tapered geometries.
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Subsequently, in Section Experimental, the experimental

setup is described. Finally, we compare our theoretical and

experimental findings in Section Results, and conclude with

an interpretation of our results regarding future applications

in Section Conclusions.

Model Development and Theoretical Analysis

Let us consider two bulbs containing gas mixtures with n
species i that are connected by a long duct of alongside vari-

able cross section. In Figure 1b that setup is illustrated as an

abstraction of an idealized catalyst pore where the concentra-

tion varies from the educt-rich bulk to the product-rich end

of the pore.

The temperature in both bulbs is identical and the overall

system is isothermal. We define z as the longitudinal coordi-

nate in the flow direction with the origin in the first reservoir

at z5 0. According to Figure 1b, the length of the duct is L
and the (arbitrary) cross section is A(z). Correspondingly, the
left bulb of the experiment is in the following indicated by

superscript (0) whereas the right bulb is indicated by super-

script (L). The volumes V of both reservoirs are identical.

Bulb species balance

Beginning with an integral species balance around each

bulb we write

@
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ð
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c
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where ci and Ji are the concentration of species i and its dif-

fusive flux counted positive in the positive z-direction,

respectively. Here, we assume that the gas mixture in each

bulb is well mixed and thus spatial concentration variations

are negligible. Further, we assume that the diffusive fluxes

are homogeneously distributed over the cross section of the

connecting tube. Consequently, performing the integrals in

(1a) and (1b) yields

V
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The gas mixture is treated as an ideal gas at constant pres-

sure and temperature, and chemical reactions are neglected so

that the total concentration in both bulbs ct5p=ðRTÞ5ci=xi
remains constant over time. Furthermore, as we are dealing

with a closed system, the number of moles of each species in

the whole system has to be constant at any instant in time.

Thus, the overall species balance around both bulbs, neglect-

ing the small volume of the connecting tube, reads

2c
ðeqÞ
i 5c

ð0Þ
i 1c

ðLÞ
i (3)

Equation 3 allows us to treat the bulbs separately because

the composition in one bulb can easily be computed from

the composition in the other bulb and the known equilibrium

composition. The latter is the arithmetic average of the ini-

tial composition in both bulbs. Here, we focus on the left

bulb; the derivation for the right bulb (index L) is analogous

and therefore not stated here explicitly.

Considering the isobaric, isothermal, and nonreacting con-

ditions Eq. 1ba reads
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where x
ð0Þ
i are the mole fractions in the left bulb. To com-

pute the diffusive fluxes, Ji, we use the MSE
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where -Dij are the Maxwell–Stefan diffusivities estimated by

the Chapman–Enskog kinetic theory [Ref. 1, p. 526]. As we

assume the fluxes to be constant over the cross section, we

write the gradients only in the z-direction. An explicit

expression for the diffusive fluxes, J
ð0Þ
i , can be obtained by

inverting Eq. 5 using the relation

X
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i51
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to obtain
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j
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Here, Dii are the Fickian diffusivities, that is, diffusive

transport of species i due to a concentration gradient of

species i, whereas Dij (i 6¼ j) are the cross diffusivities

describing multicomponent effects. The matrix of diffusiv-

ities is defined as

Figure 1. Idealized catalyst pore as an example of a

“real” pore (a). Educts E enter the pore and

react to products P which leave the pore.

Diffusion is the only transport mechanism

because of the absence of a pressure gradi-

ent. In (b), the situation is simplified. The

abstraction results in the schematic of the

two-bulb diffusion cell with a tapered duct.
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It should be noted that the diffusivities in Eq. 7 depend on

the composition of the mixture and may also take negative

values to account for multicomponent effects.

Inserting the inverted MSE into Eq. 4 yields
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Equation 10, together with Eqs. 3 and 6, describe the tem-

poral change of the molar fractions in both bulbs including

multicomponent effects.

The solution of Eq. 10, however, requires the knowledge

of the spatial concentration gradients within the connecting

duct that will be analyzed in the following.

Duct species balance

To obtain the spatial gradients of the molar fraction of

each species at the bulb inlets, the spatial composition pro-

files within the duct, xi(z), require closer examination. So

far, the model is identical to the one of Duncan and Toor.11

In their work, they assumed a linear profile of the molar

fractions and thus a constant gradient at both ends of the

duct. This, however, is invalid for the scenario of tapered

geometries considered here.

Following Fick,8 we consider an incremental section of

the tapered duct shown in Figure 2. The species balances for

the incremental duct section read
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Using truncated Taylor series to describe the influxes and

outfluxes
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and substituting Eq. 10 into Eq. 11 yields
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@xi
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Next, we apply the chain rule to the right-hand side of Eq.

13 and divide by Adz to get
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At this point of the derivation, it is useful to have a closer

look at the time scales associated with the bulbs and the

duct. By choosing a characteristic mole fraction xc and diffu-

sive flux Jc, we obtain the following characteristic time for a

composition change to happen at the bulb scale from Eq. 4

tðbÞc 5
p

RT

V

A

xc

Jc
(15)

The constant total concentration ct is expressed by temper-

ature and pressure via the ideal gas relation.

For the duct scale, we apply the same characteristic mole

fraction and diffusive flux, and choose the duct length L as

characteristic length for the coordinate z. Using Eq. 14, then

yields the characteristic time for composition changes to

happen at the duct scale

tðdÞc 5
p

RT
L
xc
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(16)

Comparing both time scales finally yields

t
ðdÞ
c

t
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c

5
AL

V
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This means that, if the volume of a single bulb is much

larger than the volume of the duct, we can safely neglect

transient changes within the duct at the bulb scale. Conse-

quently, we can treat the duct as quasistationary and omit

the left-hand side of Eq. 14 to obtain
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Again, using the MSE (5) to compute the diffusive fluxes

gives

d
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Now, we assume that the diffusivities are constant to get

the steady-state Fick–Jacobs equation8,20

d2xi

dz
1

1

A

dA

dz

dxi

dz
50 (20)

Formally, this is equivalent to multiplying Eq. 19 with the

inverse of the diffusivity matrix. The assumption of constant

diffusivities is generally not true because they change with

composition, however, it allows an analytical solution. Later,

we will revisit this assumption and check its validity.

As stated by Zwanzig21 and Berezhkovskii,22 the Fick–

Jacobs equation is only valid for slightly tapered cross sec-

tions. In the following, we assume the duct as a conical tube

with slightly varying radius r(z). Let the slight inclination

m5ðrðLÞ2rð0ÞÞ=L be constant with boundary values rðz50Þ5
rð0Þ and rðz5LÞ5rðLÞ. Using these definitions, we obtain

Figure 2. Increment of a slightly tapered tube.
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Now, we substitute dxi=dz in Eq. 20 by s and by applying

the expressions stated in Eq. 21, we obtain

ds

dz
5
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s (22)

Integration yields
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Replacing s again by dxi=dz and integrating a second

time, we obtain
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By means of the transient boundary conditions
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From Eq. 26a
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Inserting Eq. 27 in Eq. 26b yields
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with K being the ratio of r(0) to r(L) (i.e., is unity for a uni-

form duct). Hence, C2 writes
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Applying both integration constants to Eq. 24, one

obtains
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Differentiation of Eq. 30 yields
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and we obtain the required gradient in Eq. 10 as

dxi

dz
z50ðtÞ5

1

K

x
ðLÞ
i ðtÞ2x

ð0Þ
i ðtÞ

L

�

�

�

�

�

(32)

The problem that arises here is that dx
ð0Þ
i =dz is a function of

the molar fractions in the right bulb at z5 L. To eliminate x
ðLÞ
i

from Eq. 32, we make use of the component material balance

around both bulbs, Eq. 3, as also presented in literature.2

Combining now Eqs. 3, 6, and 10 with (32), where index i
is adjusted according to Eq. 10, yields n2 1 first-order ordi-

nary differential equations in time and n1 1 algebraic

equations
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Given the initial conditions x
ð0Þ
i ðt50Þ5x

ð0Þ
i;t� , Eqs. 33a–33c

fully specify the dynamic behavior of the molar fractions in

both bulbs connected by a slightly conical tube. The special

case of a binary mixture (n5 2) is also included in Eqs.

33a–33c.

Model solution and analysis

Equations 33 are coupled by the cross diffusivities. An

analytical solution, however, is possible using linearized

theory based on eigenvalue decomposition2 because of the

assumption of constant diffusivities. The analytical solution

of Eq. 33a reads in the eigenvalue space

x̂
ð0Þ
i 5 x̂

ð0Þ
i;t�2x̂1i
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exp 2
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where D̂i are the eigenvalues of the diffusivity matrix

½D̂�5½P�21½D�½P� (35)

and x̂i are the so-called pseudocompositions in the eigen-

value space

ðx̂Þ5½P�21ðxÞ: (36)

The matrix [P] contains the eigenvectors of the diffusivity

matrix. After computing the pseudocompositions, x̂i, from

Eq. 34 the physical compositions are calculated using

ðxÞ5½P�ðx̂Þ (37)

and Eqs. 33b and 33c. The eigenvalues and eigenvectors of

the diffusivity matrix can easily be computed using standard

linear algebra routines in MATLAB.

By means of Eq. 34, we can expect that diffusion is

delayed in conical tubes and that the time s to reach a cer-

tain molar fraction is minimum in case of a uniform geome-

try, respectively. Using Eq. 34, we equate the molar fraction

in the case of the conical tube with the molar fraction in the

case of the uniform tube
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When the assumption is made that the uniform tube and

the conical tube have identical average cross section A5 �A5
0:5pðr2s1r2l Þ and length, we find for the hindrance factor

a5
rð0Þ
� �2

1 rðLÞ
� �2

2rð0ÞrðLÞ
> 1 for A5 �A; Lcone5Luni (39)

Consequently, diffusion is delayed in tapered ducts by the

hindrance factor a that, for a slightly conical tube, is a con-

stant value depending solely on the disparity of r(0) and r(L).
As if can be seen by Eq. 39, it is indifferent whether r(0) or
r(L) is larger, meaning that the diffusion hindrance does not

depend on the direction of the cone (converging or diverging

along z).
The derived model is used for the prediction of the tempo-

ral change of the molar fractions of a ternary gas mixture in

the two-bulb diffusion experiment. The experimental condi-

tions and details on the setup are given in the following.

Experimental

Test tubes

The two-bulb diffusion experiments were performed with

two different tube geometries. The first one is a uniform

tube as used by Duncan and Toor11 for benchmarking rea-

sons. A sectional drawing of this uniform tube with inte-

grated stopcock is shown in Figure 3a. The two single tubes

with a nominal inner diameter of 3.4 mm and the stopcock

(SS-6P4T-MM) are commercially available from Swagelok

that are assembled between custom-made flanges. All com-

ponents are made of stainless steel and the connections to

the flanges are welded. The second tube has a linearly

changing radius and is produced by stereo-lithography by

tobaTEC GmbH, Germany. According to Figure 3b, the tube

is a conical hole in a block and a rotatable cylinder acts as a

stopcock. Both parts are made of acrylonitrile butadiene

styrene and are sealed with vacuum grease.

The length L of both tubes is measured 10 times with a

digital caliper and the mean and the uncertainty are calcu-

lated. The small and large cross sections are measured with

digital light microscopy (pictures are provided in Appendix,

Figure A1) and small and large radius were derived as

rs5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

As;measured

p

r

; rl5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Al;measured

p

r

(40)

The determined dimensions are stated in Table 1.

Experimental setup and procedure

According to Figure 4, the experimental setup consists of

two bulbs that are connected by one of the previously

described test channels. The bulbs are made of stainless steel

and the volumes are given in Table 1. Each volume was

determined three times (for calculation of mean and uncer-

tainty) by filling in water and measuring the difference in

weight of the empty and filled bulb. Dividing by the density

of water (994.6 kg m23 at 296.7 K) yields the bulb volume

of approximately 340 cm3. The dimensions of test tubes and

bulbs justify the assumption according to Eq. 17. Using the

values given in Table 1, we find that composition changes

happen approximately 400 times as fast in the duct as in the

bulbs.

Figure 3. Test tubes used in experiments: with uniform cross section (a) and slightly conical (b).

All dimensions of both tubes are stated in Table 1.

Table 1. Experimental Dimensions

Symbol Dimension

Volume Bulb A VA 340.896 0.45 cm3

Volume Bulb B VB 339.116 1.35 cm3

Uniform tube
Length L 91.016 0.02 mm
Cross section A 9.250 mm2

Radius r 1.716 mm
Conical tube
Length L 84.986 0.03 mm
Small cross section As 1.626 mm2

Large cross section Al 16.246 mm2

Average cross section �A50:5 As1Alð Þ 8.936 mm2

Small radius rs 0.719 mm
Large radius rl 2.274 mm
Radius ratio K5rl=rs 3.16



Bulbs and test tube are placed in a water bath

(� 0.04 m3) with controlled temperature (always 308.15 K

in reference to Duncan and Toor11). Concerning the valves

and other periphery the apparatus is strictly symmetric.

The experimental procedure was as follows. The left part

is evacuated with the vacuum pump (valve 7 is closed while

valves 3, 4, 5, and 9 are open) and the mass spectrometer

(GAM200, InProcessInstruments mbH, Germany) was run-

ning for monitoring purpose. Then, valve 9 was closed and

the N2/H2 gas mixture (6.0 quality, Linde AG, Germany)

was filled in via pressure controller 1 until approximately

0.1 MPa(a) was reached. Afterward, valve 9 was opened

again and the procedure was repeated three times to assure

that residues of the previous experiment are negligible. This

was successfully proved by the mass spectrometer showing a

N2 concentration of 0.5012, a H2 concentration of 0.4978,

and the concentration of CO2 as negligible. Those values are

taken as initial concentrations for the calculations (see Table

A3 in Appendix). Finally, the pressure was adjusted to

exactly 0.1 MPa(a) and valve 4 was closed. The very same

procedure was done for the right part where a N2 concentra-

tion of 0.5016, a CO2 concentration of 0.4963, and a negligi-

ble H2 concentration was measured. After waiting 20 min to

assure that the gas mixtures in both bulbs are at constant

temperature, the three-way valves 3 and 6 were closed and

the integrated stopcock of the test tube was opened to start

the experiment.

The stopcock was shut again after a designated time (see

Tables A1–A3 in Appendix) to finish and to analyze the

experiment. Therefore, in case of bulb A, valves 3, 5, and 7

were closed and valves 4 and 9 were opened to evacuate the

tubes. Then, valve 9 was closed and valve 3 was opened

toward the mass spectrometer and the composition was ana-

lyzed. The same was done for bulb B using the correspond-

ing valves. The procedure was repeated for a range of times

up to 40 h to evaluate the temporal behavior of the diffusion

experiments.

The conical tube (Figure 3b) was assembled twofold

between bulb A and B: diverging along the z-coordinate
(Figure 5b) and in converging direction (Figure 5c).

Results

Preceding calculations

For the predictive calculation of the temporal change of

the molar fraction of each three species in the bulbs, the dif-

fusivities (see Eq. 33a) are required. As mentioned in Sec-

tion Model Development and Theoretical Analysis, the

binary diffusivities can be estimated according the Chap-

man–Enskog kinetic theory [Ref. 1, p. 526]. For 308.15 K

and 0.1 MPa(a), one obtains DN2=CO2
51:617731025 m2 s21,

DH2=N2
58:155031025 m2 s21, and DH2=CO2

56:802331025

m2 s21.

The analytical model derived in Section Model Develop-

ment and Theoretical Analysis allows us to calculate the hin-

drance factor a to predict how the solution for the uniform

tube deviates from the solution for the conical tube. By

means of Eq. 38 and the experimental dimensions stated in

Table 1, we obtain a hindrance factor of a5 1.679 saying

that diffusion is approximately 68% slower in the conical

tube. Here, it has to be noted that the average cross sections

of the manufactured tubes are not identical (see Table 1).

The comparability of the tubes, however, is given by the def-

inition of a according to Eq. 38.

Comparison of model and experiment

In Figure 6, the predictively calculated temporal change of

the molar fraction of each gas species in both bulbs is com-

pared to the experimental results that are additionally pro-

vided in Tables A1–A3 in Appendix of this work. The molar

fractions xi are plotted vs. time t that is normalized with a

factor regarding the geometric properties of the two-bulb dif-

fusion cell. The analytical solution, Eq. 34, was evaluated in

the eigenvalue space using the diffusivities at the equilibrium

condition. Afterward, the physical compositions were com-

puted using Eq. 37. Generally, it can be observed that the

Figure 4. Apparatus used for the two-bulb diffusion

experiments.

The different tubes (Figure 3, Table 1) with integrated
stopcock can be implemented between bulbs A and B
made of stainless steel. The apparatus is shown embed-
ded in the process flow diagram.

Figure 5. Different settings considered.



diffusion of hydrogen and carbon dioxide follows Fick’s

law, that is, diffusion occurs from a high molar fraction to a

lower molar fraction until equilibrium is reached. More inter-

esting although, is the behavior for the diffusion of nitrogen

that has the same molar fraction in both bulbs when the

experiment starts. From t5 0, nitrogen diffuses from bulb B

to bulb A although the gradient of molar fraction driving the

diffusion is zero. Until the extremum is reached nitrogen dif-

fusion occurs in direction of the increasing gradient which is

contradictory to Fick’s law. Finally, diffusion stops despite a

large driving force. In literature, these effects are often

referred to as osmotic diffusion, reverse diffusion, and diffu-

sion barrier.2,9

Now, we focus the uniform tube that allows us to com-

pare our analytical and experimental results to the data of

Duncan and Toor.11 As it can be seen in Figure 6, the solid

curves are in excellent agreement to the filled circles that

represent the experimental data of Duncan and Toor.11 The

experimental results obtained in this work are in very good

agreement to the predictive calculations and to those of

Duncan and Toor.11 Here, it is worth noting that in their

experiment the tube had a length of 85.9 mm, a diameter of

2.08 mm, and each bulb had a volume of 78 cm3. Thus, we

can show that the scaling factor 2A(LV)21 allows to com-

pare two-bulb diffusion cells with different geometrical

properties. This is an important finding for future work in

this field.

The dashed curves in Figure 6 are the predicted results for

the slightly tapered tube with dimensions given in Table 1.

As stated earlier, the average cross section of the cone is not

identical to the cross section of the uniform tube. Hence, 2 �A
ðLVÞ21

is used for scaling t. The experimental results are

given by the triangles whereby the 17 h and the 21 h experi-

ments were performed for the diverging case (D, Figure 5b)

and for the converging case (r, Figure 5c). For the condi-

tions considered here, the comparison indicates that the

direction of the tapered tube does not affect the results as it

is also analytically found in Section Model solution and

analysis. All experimental results obtained on the conical

tube are in excellent agreement to the developed model. This

also demonstrates that the assumption of constant diffusiv-

ities is valid for the considered case. Consequently, the ana-

lytical solution of the presented model provides a valuable

tool for most engineering purposes.

Figure 6. Comparison of analytical and experimental results for a uniform tube (solid lines, circles) and a conical

tube (dashed lines, triangles) at 308.15 K and 0.1 MPa(a).

The molar fraction of nitrogen, hydrogen, and carbon dioxide is plotted vs. time that is normalized by the duct geometries and
bulb volumes allowing also for a comparison with the results of Duncan and Toor.11 Experiments on the conical tube were per-
formed in both directions (see Figures 5b, c). The predictions were obtained using the model Eq. 34 and transformation from the
eigenvalue space to the real space. Initial conditions for the calculations are given in Table A3 in Appendix. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 7. Delayed diffusion due to conicity. The curve

is calculated according Eq. 39 with values

given in Table 1.

The symbols, calculated according to Eq. 38, correspond
to the hindrance factor a scaling between the actual
tube geometries.



Most interesting although is the comparison between the

uniform and the tapered tube; the codiffusion and counterdif-

fusion of all species is significantly delayed by the conicity

of the tapered tube (Figure 6). This becomes more obvious

when using expression (39) to compute the relative delay

a5scone=suni as a function of K, shown in Figure 7. The two

points represent both test tubes that were used for the experi-

ments whereby � indicates the uniform tube with K5 1 and

r indicates the conical tube with K5 3.16. In case of this

comparison, the diffusion in the conical tube is delayed by

68% that is experimentally confirmed by the data shown in

Figure 6.

Consequently, the flux in a tapered duct is always lower

compared to the one in a uniform duct with identical average

cross section �A. Furthermore, this effect increases with

increasing K whereby it seems to be indifferent whether r(0)

or r(L) is larger.

Conclusions

The classical MSE are adapted for the prediction of ideal

ternary diffusion in a two-bulb diffusion cell with a slightly

conical tube. It is found that the temporal change of the

molar fraction of each gaseous species is scaled by a simple

factor 2Að0Þ=ðKLVÞ (Eq. 34) that includes all geometrical

properties of the two-bulb diffusion cell. By means of that

factor it is analytically shown that the direction in which the

tube is assembled between the bulbs does not affect the

result (Eq. 39).

To validate the derived model, a two-bulb diffusion cell is

set up and the experiment of Duncan and Toor11 is success-

fully reproduced using a tube with uniform cross section. In

a next step, two-bulb diffusion experiments using a slightly

conical tube are performed. The experimental results

obtained on both geometries, uniform and slightly conical,

are in excellent agreement to the analytical model. For the

actual conditions, it is experimentally confirmed that the ori-

entation of the conical tube (converging or diverging along

z) does not affect the molar fraction of species at a certain

instant of time.

Comparison between the uniform and the tapered tube

shows that codiffusion and counterdiffusion of all species is

significantly (68%) delayed by the conical geometry consid-

ered in this work. It is analytically found that this geometri-

cal diffusion hindrance increases with the ratio of inlet to

outlet cone radius. Consequently, for gaseous diffusion in

“real” pores, that typically are somehow tapered, the trans-

port limitation is even more serious than considered so far.

Further investigation on process intensification, for example,

gas separation and heterogeneous catalysis requires more

accurate models and the taperedness of pores should be

taken into account. Here, we want to emphasize the impor-

tance for the modeling of transport in fuel cells where the

use of effective diffusion coefficients is state of the art.
3–6

Finally, we emphasize that the strong diffusion hindrance

for gas mixtures by nonuniform tubes is even present under

standard pressure in macroscopic tubes and hence under neg-

ligible rarefaction. This is in contrast to the “diode effect” in

pressure-driven flows that only occurs under rarefied condi-

tions.17–19 Further the “geometrical hindrance effect” for

multicomponent gas diffusion described here is found to be

independent of gradient orientation, whereas the “diode

effect” is direction depended.

Future work includes the theoretical and experimental

investigation of gaseous transport in tapered ducts under

moderate rarefaction, as well as steady-state conditions.
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Appendix

Appendix provides the pictures from which the tube inlet

cross sections were obtained. Further, all raw data of the two-

bulb diffusion experiments are tabulated.

Manuscript received July 22, 2014, and revision received Dec. 2, 2014.

Figure A1. Inlet cross-sectional areas of investigated tubes measured with a digital light microscope.

In case of the steel tube with uniform cross section (a) a circle was approximated to the contour. The areas of the large entrance
(b) and the small entrance (c) of the conical tube manufactured by stereo-lithography were contoured by means of a polygon.
Results are stated in Table 1.

Table A1. Experimental Results Obtained on the Uniform

Tube (Figure 5a) at 308.15 K and 0.1 MPa(a)

Time Bulb A Bulb B

t (h) xCO2
xN2

xH2
xCO2

xN2
xH2

0.1 0.0020 0.5047 0.4931 0.4948 0.4999 0.0043
0.2 0.0042 0.5046 0.4910 0.4911 0.4998 0.0079
0.3 0.0060 0.5067 0.4871 0.4898 0.4976 0.0115
0.5 0.0097 0.5102 0.4800 0.4874 0.4933 0.0185
1 0.0191 0.5180 0.4627 0.4792 0.4847 0.0351
2 0.0455 0.5408 0.4121 0.4677 0.4653 0.0665
3 0.0517 0.5398 0.4082 0.4434 0.4628 0.0927
5 0.0793 0.5593 0.3610 0.4269 0.4405 0.1320
7 0.0992 0.5658 0.3346 0.3973 0.4364 0.1654
15 0.1575 0.5738 0.2678 0.3498 0.4300 0.2193
16 0.1584 0.5689 0.2723 0.3378 0.4328 0.2286
20 0.1735 0.5622 0.2635 0.3214 0.4390 0.2382

Table A2. Experimental Results Obtained on the Conical

Tube According to Figure 5b at 308.15 K and 0.1 MPa(a)

Time Bulb A Bulb B

t (h) xCO2
xN2

xH2
xCO2

xN2
xH2

17 0.3592 0.4287 0.2115 0.1274 0.5671 0.3052
21 0.3499 0.4261 0.2272 0.1437 0.5706 0.2892

Table A3. Experimental Results Obtained on the Conical

Tube According to Figure 5c at 308.15 K and 0.1

MPa(a)

Time Bulb A Bulb B

t (h) xCO2
xN2

xH2
xCO2

xN2
xH2

0 0.0003† 0.4978† 0.5012† 0.4963† 0.5016† 0.0006†
0.2 0.0043 0.4990 0.4964 0.4942 0.4969 0.0085
0.3 0.0054 0.4982 0.4961 0.4941 0.4967 0.0089
0.5 0.0099 0.5012 0.4887 0.4935 0.4924 0.0139
1 0.0155 0.5092 0.4749 0.4902 0.4861 0.0237
2 0.0242 0.5214 0.4539 0.4761 0.4786 0.0448
3 0.0373 0.5245 0.4377 0.4654 0.4690 0.0654
5 0.0555 0.5388 0.4053 0.4416 0.4571 0.1009
8 0.0792 0.5499 0.3706 0.4124 0.4451 0.1418
14 0.1185 0.5672 0.3137 0.3804 0.4284 0.1907
17 0.1322 0.5693 0.2982 0.3656 0.4277 0.2062
21 0.1483 0.5691 0.2822 0.3524 0.4262 0.2209
30 0.1718 0.5617 0.2661 0.3212 0.4370 0.2412
40 0.1891 0.5492 0.2611 0.2993 0.4482 0.2518

Results indicated with † are the initial values used for calculations.
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