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� Mass transport is delayed by the
conical geometry of tubes re-
presenting pores.

� Delay effect increases with ratio of
inlet to outlet tube radius.

� Development and mathematical
description of a novel steady-state
diffusion cell.

� Comparability to the transient two-
bulb-diffusion-cell.
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a b s t r a c t

Catalyst pores are typically non-uniform along their longitudinal axis, and the transport of gaseous re-
actants and products takes place in a somehow tapered conûnement. In a previous study we observed a
diffusion delay in single tapered pores by means of a transient two-bulb-diffusion-cell (Veltzke et al.,
2015). Processes in heterogeneous catalysis, however, are typically operated under steady state condi-
tions. Hence also the diffusion processes are non-transient and reactant species are permanently con-
sumed while product species steadily emerge. To mimic steady-state multicomponent diffusion in a
cone, we developed a novel two-pipe-diffusion-cell and described the mass transport by an analytical
model.

Here we can show that the delay effect, which is caused by volumetric changes in longitudinal di-
rection, also exists for steady-state binary and multicomponent diffusion. It is experimentally conûrmed
that the diffusion hindrance increases with conicity of the test tube. Also the results are transferable to
those of the transient two-bulb-diffusion-cell. The measurement of steady-state experiments, however,
is much faster.

1. Introduction

The relevance of gaseous diffusion from the macroscale in re-

actors to the microscale in catalyst pores is most substantial for

the overall yield and performance in heterogeneous catalysis. Due

to the unique properties of microscale pores that arise from their

small size and large speciûc surface area, high reaction rates per

unit volume are given (Wang and Coppens, 2008). In terms of

mass transport limitation, the transport mechanisms of reactants

to the catalytically active site and those of the products from the

active site of the catalyst determine the amount of required cata-

lyst. For this reason, it is the objective in research to improve the

mass transport without decreasing the speciûc surface area.
A crucial parameter for the mass transport is the pore geo-

metry. Some studies about the inûuence of the geometry on gas

diffusion are given in literature (Dogu and Dogu, 1980; Loewen-

berg, 1994; Dogu, 1998; Graur et al., 2015). Recently, an experi-

mental and analytical study on transient diffusion of an ideal

ternary mixture was presented by the authors where it was shown

that the mass transport is slower in a conical tube compared to a

uniform one with identical average cross section (Veltzke et al.,

2015). Diffusion processes in heterogeneous catalysis, however, are
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typically non-transient since reactant species are permanently
consumed while product species steadily emerge. Mass transport
studies involving the inûuence of pore geometry obtained on
transient considerations cannot be transferred to the more rea-
listic steady-state conditions arbitrarily. The aim of the present
paper, hence, is to study ideal binary and ternary diffusion through
an idealized single pore under stationary conditions.

To obtain steady-state diffusion we designed an experimental
setup consisting of two pipes perfused steadily by different gases
(gas mixtures) that are orthogonally connected to a test tube (ei-
ther uniform or conical). A mathematical description of this novel
gas diffusion cell is derived in order to predict the steady-state
binary and multicomponent diffusion process. A further aspect of
the model is the consideration of the ûuid velocity by the Reynolds
number which is used as a weighting factor to iteratively de-
termine the concentrations of the outûowing gas mixture streams.
The numerical solution of this model allows us the prediction of
the concentrations of gases leaving the system. Further, the effect
of the conicity of test tubes is investigated experimentally. We can
show that the conicity of the test tubes leads to a delay of the
transport which conûrms the ûndings in Veltzke et al. (2015).

The ûrst part of this paper is focused on the mathematical
description of the considered experiment and the model devel-
opment. Afterwards, the experimental setup and procedure are
described and the experimental results are compared to the the-
oretical ones. The last chapter concludes the ûndings.

2. Model development and analysis

Independently of the diffusion process being transient or
steady-state, the mathematical description is distinguished by the
number of involved gas species. The common approach to describe
binary molecular diffusion is Fick's law (Fick, 1855) which deûnes
that the molar ûux is proportional to its concentration gradient
and directed against it. For a ternary gas mixture, however, mul-
ticomponent effects arise that can be explained by the Maxwell-
Stefan equations while Fick's law fails (Duncan and Toor, 1962).

2.1. Problem statement

To obtain stationary conditions of concentrations on each side
of a long test tube with alongside variable cross section, two pipes

creepingly perfused with different gas mixtures with n species i

are orthogonally connected to each end of the tube. The pipes can
be interpreted as inûnitely large gas reservoirs. The setup is de-
duced from the experimental approaches in literature (Taylor and
Krishna, 1993; Wicke and Kallenbach, 1941; Soukup et al., 2008)
and illustrated in Fig. 1 as an abstraction of an idealized catalyst
pore where the concentrations at each end of the tube are con-
stant. This means the consideration of stationary conditions from
the reactant-rich end (mix 1) to the product-rich end (mix 2) of
the pore.

The ûrst longitudinal coordinate z is deûned as that one within
the tube with its origin in the system of mix 1 at =z 0. According
to Fig. 1, the length of the tube is Ltube and the varying cross section
is ( )A z .tube Correspondingly, the upper system of mix 1 at =z 0 is
indicated by the ûrst superscript ( )0 and the lower system of mix
2 at =z Ltube by the ûrst superscript ( )L . Consequently, the dia-
meter of the tube at the mix 1 system is ( )dtube

0 whereas ( )d L
tube is that

one of the mix 2 system. The second longitudinal coordinate is
deûned as the ûow direction within the pipes with the origin at
the inlet into the system of mix 1 at =y 00 and with that one of mix
2 at =y 0L . Corresponding to the z-direction, the inlet of a mix
system is indicated by the second superscript ( )0 and the outlet by
the second superscript ( )d 0 and ( )d L , respectively. The diameters of
both pipes are identical.

In the following, we derive the species balance in the pipes in
the ûrst part, followed by a species balance in the tube. In the last
section, we bring both parts together to obtain the model solution.

2.2. Species balance in the pipes

The integral species balance over the mixing zone of pipe A at
=z 0 (indicated by superscript index 0) in Fig. 1b writes
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where dNi/dt is the temporal change of the amount of species i, ni

is the convective ûux in the pipes and Ji is the diffusive ûux of
species i in the tube counted positive in positive z-direction.
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Fig. 1. Abstraction of an idealized catalyst pore to the stationary two-pipe-diffusion experiment. (a) Reactants permanently enter the pore and react to products that steadily
leave the pore (Fick, 1855). (b) The abstracted model leads to the stationary diffusion experiment with a conical tube under constant concentration conditions at its ends.



Indexing ni with superscript ( )( )L d, L , for instance, refers to the
convective ûux in pipe B at position = ( )y dL

L according to Fig. 1b.
Apipe deûnes the constant and identical cross sections of both pipes
and Atube is the cross section of the tube at both particular posi-
tions =z 0 and =z Ltube, respectively. It is assumed that the gas
mixtures in both mixing zones are perfectly mixed and that the
convective as well as the diffusive ûuxes are homogeneously dis-
tributed over the cross sections of the pipes and the tube. Further,
we assume isobaric conditions due to the aperture of both pipes to
an inûnitely large reservoir (i.e., the atmosphere), low Reynolds
numbers Re (creeping ûow), low Mach numbers Ma (subsonic
ûow) and low Knudsen numbers Kn (continuum regime). Those
dimensionless numbers are deûned as

Ç
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with u being the gas velocity, d the pipe/tube diameter, Ç the
kinematic viscosity of the gas, u0 the speed of sound, and » the
mean free path. Assuming the steady-state, isothermal and non-
reacting conditions and a constant cross section of the pipes,
Eqs. (1) and (2) result in
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In the following, we focus on pipe A (Fig. 1b; ûrst index 0) since
the derivation of pipe B (ûrst index L) is analogous and therefore
not stated here explicitly.

The change of the convective ûux of each species i in the
mixing zone of pipe A is described by the linear extrapolation
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Here it is worth to note that this assumption is made for rea-
sons of simpliûcation and follows up the assumption of the dif-
fusive ûuxes being homogeneously distributed over the cross
section of the tube. Applying Eq. (6) to Eq. (4) and dividing by Apipe

lead to
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Integration of Eq. (7) yields
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Because ( )Atube
0 is independent of the y0-direction and Apipe is

constant, ( )Atube
0 and Apipe can be taken as prefactors.

The composition gradient is computed by the Maxwell-Stefan
equation as
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Here ct is the total molar concentration in both pipes and
= ( )c p R T/t 0 follows the ideal gas law with p as the pressure, T as the

temperature and R0 as the universal gas constant. xi and xj are the
molar fractions and ( 2 )u ui j is the relative velocity between both
species i and j, respectively. Ðij are the Maxwell-Stefan binary
diffusivities estimated by the Chapman-Enskog kinetic theory and
possess the physical signiûcance as an inverse drag coefûcient

(Taylor and Krishna, 1993).
In a binary gas mixture, the ûux of only one species is measured

and the molar ûux of the other species is assumed to be equal and
opposite. Hence, the total diffusive molar ûux summed over n

components is zero, given by (Taylor and Krishna, 1993)
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which in the following is referred to as equimolar diffusion. Con-
sequently, the amount of species reduces from n to 2n 1 and the

MSE according to Eq. (9) can be written in an explicit, Fickian form.
The equimolar diffusive ûux of species i, hence, is given by
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when keeping in mind that the sum of all species must be unity
(Veltzke et al., 2015)
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(Eqs. (11) and 12) show that only 2n 1 gradients are in-

dependent from each other. The matrix of multicomponent dif-
fusivities D is related to the Maxwell–Stefan diffusivities Ðij for an
ideal gas by (Taylor and Krishna, 1993)
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Fig. 2. (a) Inûnitesimal part of a conical tube (solid lines) with the identical average cross section Atube as a uniform one (dashed lines). (b) Qualitative concentration proûles
over the tube length as a function of the ratio of 2A

tube
to +A

tube
.
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using equilibrium values for xi and xj. Although Ð g0ij for ideal
gases, the multicomponent diffusivities in Eq. (11) can be negative
due to multicomponent effects and depend on the molar fractions
xi and xj, respectively. Bird et al., (2007), Taylor and Krishna (1993),
Fahien (1983) and Cussler (1997) regard an equimolar counter-
current diffusive transport by the MSE, Eq. (11). The assumption of
equimolar counter-current diffusion is commonly used for che-
mical engineering applications (Farr, 1993).

2.3. Duct species balance

To obtain the concentration gradients at the inlets of the tube,
an inûnitesimal part of a cone is considered in Fig. 2a, follow-
ing Fick (1855).

The derivation of the concentration gradient is presented for
the quasi-stationary case in detail in Veltzke et al. (2015). The
species balance for the inûnitesimal tube section is obtained by
using Taylor series to describe the inûuxes and outûuxes. As-
sumption of stationary conditions and applying the chain rule
yield
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Here, we regard the diffusive ûux Ji. Using diffusion experi-
ments in closed diffusion cells as continuum processes, the molar
diffusion rates of the components are equal for a binary mixture
and equimolar countercurrent transport mostly occurs (Evans
et al., 1961). However, under isobaric conditions in open systems,
different assumptions for the diffusive transport models are pre-
sented in literature as shown in the following.

In a binary gas mixture consisting of species with signiûcantly
different molecular masses and a composition gradient, a net
molecular ûux from the side of light molecules to the side of
heavier ones at uniform total pressure and temperature leads to an
accumulation on the side of the “heavier“ gas (Evans et al., 1961).
The interchange in position is inversely proportional to the square
root of the molecular mass of this gas (Graham, 1833). This is
described by Graham’s law for n components and given by (Fahien,
1983; Farr, 1993; Evans et al., 1961)

3 =
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J M 0.
16i
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Therefore, the diffusion based on Graham's law, which includes

the MSE (Eq. (11)) and a correction term, is given by (Farr, 1993)
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with Mi as the molar mass of species i. Eq. (17) is based on the
concept of the Graham-average velocity which takes into account
the drift effects caused by a superimposed viscous ûow. For more
mathematical details reference is made to Farr (1993). While this
approach is mainly used for gaseous applications, the equimass
countercurrent diffusive ûux is mainly used for hydrologic appli-
cations (Farr, 1993) and proposed by Hassanizadeh and Gray
(1979), Pollock (1986) and Falta et al. (1989,, 1992). It ensures that
the total diffusive mass ûux summed over n components is zero
(Evans et al., 1961)
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with ji as the diffusive mass ûux of species i and =j J Mi i i. The
equimass diffusive ûux is taken as the diffusive ûux of the MSE,
Eq. (11), including the correction term as well (Farr, 1993)
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where equilibrium values are used for xi.
Eqs. (11), (17) and (19) require the knowledge of the con-

centration gradient. However, the correction terms of Eqs. (17) and
(19) are assumed to be constant to allow for an analytical model,
although the composition xi in the tube changes.

Hence, the diffusive ûuxes Ji can be replaced by using the MSE,
inserting Eq. (11) into Eq. (15),
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Now, assuming constant diffusivities to get an analytical model,
although they change with the composition, and using Eq. (11), we
obtain the steady-state Fick–Jacobs equation (Fick, 1855)
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The tube is assumed to be a cone with slightly varying radius
( )R ztube and length Ltube and has the slight inclination
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Inserting Eq. (23) into Eq. (21), the solution of the Fick-Jacobs
equation is
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tube, leading to � = 1 for a
uniform tube and the boundary conditions
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Differentiation of Eq. (24) leads to
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Re > 1

Re = 0.5
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→

Fig. 3. Concentration proûles depending on the Reynolds number. High ûowrates
lead to a parabolic concentration proûle (Re41) and an increased weighting of the
inûux concentration compared to the outûux one. The linear proûle (Re¼0.5) yields
the arithmetic mean of inûux and outûux concentrations. For Re-0, the proûle is
horizontal meaning that the gases are ideally mixed.
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Inserting Eqs. (11) and (27) into Eq. (8) leads to
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With the derivation of Eq. (28), we insert an analytical solution
for the diffusive ûux in the tube into the component mass balance.
The required gradient is represented by the boundary conditions
of the tube whereby its geometry is considered by Λ.

The expression according to Eq. (28) already indicates that the
diffusion rate through a cone with identical average cross section
(see Fig. 2a) is lower by the factor of �( )A /tube

0 compared to the
uniform tube. This is due to fact that the linear concentration
proûle for the uniform tube, is the shortest possible proûle
(Fig. 2b). Hence, the integral of the local driving force gets lower
with increasing �. With other words, the larger the disparity of

( )Atube
0 and ( )A L

tube the longer the curve of the concentration proûle
and the lower the diffusion rate.

2.4. Model solution and analysis

When considering the convective inûux with a constant

volumetric ûowrate �( )
Fpipe

0,0
in pipe A given by
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the convective outûux at = ( )y d0
0 can be calculated as
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with known molar fractions ( )xi
0,0 of each species i at the inlet.

Then, the molar fraction of each species i of the outûux, ( )( )
xi

d0, 0
, can

be determined correspondingly to Eq. (29) as
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To get a solution based on Graham’s law, the bracketed diffu-

sion term in Eq. (31) is replaced by the adapted Eq. (17). Hence we

obtain

(a)

(b)
10 mm

Fig. 4. Conical test tube made of PMMA with ratio of tube radii Λ¼2.7. (a) The conical shape is obtained by the use of a tapered reamer. (b) The ends of the tube are
connected to the pipes made of stainless steel. A press ût is created on each end of the tube to center it against the bore holes in the pipes and to stabilize the connection.

Table 1

Dimensions of pipes and test tubes.

Element Symbol Dimension

Cross section pipes A, B Apipe 132.73 mm2

Radius pipes A, B Rpipe 6.5 mm

Uniform tube

Length Ltube 95 mm

Cross section Atube 28.27 mm2

Radius Rtube 3 mm

Conical tube

Length Ltube 51 mm

Large cross section ( )A
tube
0 51.53 mm2

Small cross section ( )A L
tube

7.07 mm2

Average cross section Ātube 29.30 mm2

Large radius ( )R
tube
0 4.05 mm

Small radius ( )R L
tube

1.50 mm

Radius ratio �= ( ) ( )R R/ L
tube
0

tube
2.7

MFC 1

N2/

H2

N2/

CO2

TI

MS

PI

MFC 2

Pipe A

Pipe B

Test duct
Orifices

Fig. 5. Experimental setup used for the diffusion experiments. Different test tubes
are implemented between pipes A and B, contained in an isolated box. The tem-
perature in the box is measured with a resistance thermometer. The absolute
pressure of the outûux is measured with a pressure sensor integrated in the one
pipe while the molar fraction is analyzed online using a mass spectrometer in-
tegrated in the other pipe. Pressure sensor and mass spectrometer are adapted with
SWAGELOK connections and can be changed easily.
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and correspondingly for equimass diffusion with adapted
Eq. (19)
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Based on the results of Veltzke et al. (2015) for instationary
multicomponent diffusion, it is assumed for the upper system of
mix 1 in Fig. 1b that hydrogen leaves the system at =z 0 while
nitrogen as well as carbon dioxide enter the system at the very
same position. In order to calculate the molar fractions of each
outûux species i, we assume the initial boundary molar fractions
of the duct to be the same as the known molar fractions of the
inûuxes, as in Ref. Fahien (1983), with

( = )= = ( = )= = ( )
( ) ( ) ( ) ( )x z x x x z L x x0 , . 34i i i i i

L
i
Linitial 0 0,0 initial ,0

We have to take into account that the gas velocity in the pipes

in the experiment is greater than zero. Therefore we have to note
that the gas velocity in the pipes inûuences the iterative approx-
imation of outûux gas concentrations. The dimensionless Reynolds
number (see Eq. (3)) is estimated to consider this effect and to be
applied as a weighting factor during iteration.

Therefore, the boundary molar fractions are taken as the
weighted mean of the inûux and outûux molar fractions
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Here, exemplary concentration proûles in the pipe subject to
different Reynolds numbers Re are depicted in Fig. 3.

As depicted in Fig. 3, high gas ûowrates with Re41 cause a
parabolic concentration proûle and a reinforced weighting of the
inûux concentration. Hence, the high gas velocity leads to an in-
creased weighting of the inûux concentration, k ( 2 )( ) ( )k k10 0 .
Furthermore, a linear proûle represents the arithmetic mean value
of inûux and outûux concentrations, k ( 2 ) =( ) ( )k k1 0.50 0 . Finally,
a horizontal, constant concentration proûle stands for an ideally
mixed gas and is caused by very low gas velocities and an in-
creased weighting of the outûux concentration, j ( 2 )( ) ( )k k10 0 .

Regarding Eq. (32), we expect that diffusion is delayed in
conical tubes and that the ûowrate �F to reach a certain con-
centration is maximum for the uniform one. For this reason, we
equate Eq. (32) in the case of a cone and in the case of a uniform
tube with diffusion based on Graham's law. We obtain
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with deûning the hindrance factor ³n. Regarding Eq. (37), ³n of the
stationary diffusion process agrees with that one of the insta-

tionary diffusion process in Veltzke et al. (2015) and is in-
dependent of the assumed diffusion process, either Graham’s law
or equimass diffusion. Assuming that the uniform and conical

tubes have an identical length and average cross section

Atube,uni¼ Ã¯ = ( + )( ) ( )A R R/2 L
tube,cone

0 2 2
, the hindrance factor is
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The hindrance factor ³n
4 1 indicates that diffusion is delayed

in conical tubes, since we obtain the highest ûowrate to get a
certain outûux molar fraction with the uniform tube. For each
conical tube, the ûowrate has to be lower for the gases to reach the
same outûux molar fractions. Furthermore, ³nonly depends on the
disparity of ( )R 0 and ( )R L and it is indifferent whether ( )R 0 or ( )R L is
larger, hence the direction of the cone (converging or diverging)
does not affect the hindrance effect.

2.5. Properties of gases and gas mixtures

The predictive calculation of all molar fractions in the outûuxes
requires the calculation of the binary diffusivities ij for species i

and j. As mentioned previously, the binary diffusivities can be
estimated by using the Chapman-Enskog kinetic theory. In this
work, a temperature of 298.15 K and a pressure of 1 atm in the
system are used for the calculations, hence, we obtain H /N2 2

¼

7.5884⋅10�5 m2 s�1, H /CO2 2
¼6.3221⋅10-5 m2 s�1 and N /CO2 2

¼

1.5047⋅10�5 m2 s�1 (Bird et al., 2007).
The calculation of the Reynolds numbers of both inûuxes re-

quires the densities and the viscosities of the inûux gases at
298.15 K and 1 atm. With respect to the binary system, we took the
density of hydrogen as ÃH2

¼ 0.0824 kg m�3 and that of carbon

Fig. 8. Measured molar fractions for the binary diffusion experiments in pipe A (a) and pipe B (b). All experiments are carried out at jp 1 bar and jT 25 °C. The curves are
ûtted to the data using a power-law function for further analysis.
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Fig. 9. Comparison of calculations using the analytical model according to Eq. (32) and experimental results for binary diffusion in the uniform tube.



dioxide as ÃCO2
¼1.808 kg m�3. For the ternary system, the mixture

density of H2/N2 is ÃH /N2 2
¼ 0.6136 kg m-3 and that one of N2/CO2

is ÃN /CO2 2
¼1.4750 kg m�3. The viscosities are ·H2¼ 8.925⋅10-6 Pa s

and ·CO2
¼14.73⋅10-6 Pa s and ·H /N2 2

¼16.26⋅10-6 Pa s and ·N /CO2 2

¼16.55⋅10-6 Pa s, respectively. Furthermore, the molar mass of
hydrogen is MH2¼ 2.016 g mol�1, that one of nitrogen is MN2 ¼

28.01 g mol�1 and that one of carbon dioxide is MCO2
¼

44.01 g mol�1. The molar masses of the mixtures are obtained as
the arithmetic mean (Bronskhorst High-Tech).

3. Experimental

This part deals with the manufacturing process of the used test
tubes, followed by the description of the experimental setup. Also,
the experimental procedure is described in detail.

It is to note that the experimental challenge of this work was to
ensure that convection within the test tubes does not occur since
we want to study pure diffusion. The different gases and gas
mixtures perfusing the pipes, however, possess varying char-
acteristics which may lead to different pressure drops and thus to
a pressure gradient in the tube. Hence, the correct ûow rate ratio
for both pipes has to be determined to avoid a pressure difference
and the resulting convection within the tube. In this context we

developed an experimental procedure to estimate the correct ratio
which is provided in Appendix B.

3.1. Test tubes

The steady-state diffusion experiments are performed with two
different test tubes. The ûrst one applied is a uniform tube, made
of stainless steel with an inner diameter of 6 mm. Further, a con-
ical tube is made of polymethylmethacrylate (PMMA) that has a
linearly changing radius. This cone is produced by the application
of a tapered reamer and the result is depicted in Fig. 4a. All di-
mensions of the test tubes are provided in Table 1.

3.2. Experimental setup

According to Fig. 4b, the test tubes are assembled between two
identical pipes (13 mm inner diameter, made of stainless steel).
The uniform tube is soldered on each pipe, but the conical tube is
connected to the pipes by a press ût, sealed with glue. The con-
struction of the connection between a tube and the pipes shown in
Fig. 4b also works as a centering and stabilization device.

The device according to Fig. 4 is assembled into the experi-
mental setup depicted in Fig. 5. Each of two gas reservoirs (either
pure H2 and CO2 or N2/H2 gas mixture with xH2¼0.5012,
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Fig. 10. Comparison of calculations using the analytical model according to Eq. (32) and experimental results for binary diffusion in the conical tube.

Fig. 11. Measured molar fractions for the ternary diffusion experiments in pipe A (a) and pipe B (b). All experiments are carried out at jp 1 bar and jT 25 °C. The curves are
ûtted to the data using a power-law function for further analysis.



xN2¼0.4978 and N2/CO2 gas mixture with xN2¼0.5016,
xCO2

¼0.4963 (Veltzke et al., 2015), Linde AG) is connected to one
of the two pipes and the gas mixture ûowrates are controlled by
mass ûow controllers, MFC 1 and MFC 2 (both F 201CV-ABD-11-Z,
Bronkhorst).

According to Fig. 5, an oriûce and a long hose after each pipe
prevent back diffusion of ambient air into the pipes.

Temperature variations in the pipes and the test tube are
damped by a box ûlled with isolation material and the tempera-
ture in the box is measured by a Pt 1000 resistance thermometer
(TF35, Wika SE & Co. KG, Germany). A pressure sensor (PMP 5076,
GE, USA) is connected subsequent to one of the pipes and a mass
spectrometer (GAM200, InProcessInstruments GmbH, Germany)
subsequent to the other one, which is used to measure the species
composition of the outûux in one pipe permanently. Pressure
sensor and mass spectrometer are connected with SWAGELOK
adapters and can be changed easily.

3.3. Experimental procedure

During the diffusion experiments, the standard mass ûow rate
of MFC 1 is decreased from 8.5 ml N min�1 to 1.5 ml N min�1 in
consideration of the required waiting times until steady state is
reached. In preliminary tests we observed that steady state con-
ditions of the species composition is reached after 60 min for a

mass ûowrate under standard conditions (0 °C, 1 atm) �M Z

6 ml N min�1, after 90 min for 6 ml N min�1
4

�MZ 4 ml N min�1

and after 120 min for �Mo4 ml N min�1. Hence, a cycle with eight
different ûowrates requires approximately 12 h (Fig. 6).

For each experiment, always three cycles, each with eight dif-
ferent ûowrates, are recorded and the outûux molar fractions are
plotted against the time. Each step in the graphs in ûgure

corresponds to one ûowrate. In this ûgure, (a) exemplarily shows
an experiment with the binary system (H2/CO2) while (b) shows
an experiment with the ternary system (H2/N2/CO2).

Finally, the arithmetic mean of the molar fraction is calculated
for each step which results in eight data points for each experi-
mental setting.

We want to emphasize that during a second run, the positions
of pressure sensor and mass spectrometer are exchanged while
the ûow conditions remained identical. This allows us to obtain
the molar fractions in both pipes.
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Fig. 12. Comparison of calculations using the analytical model according to Eq. (33) and experimental results for ternary diffusion in the uniform tube.
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Fig. 13. Comparison of calculations using the analytical model according to Eq. (33) and experimental results for ternary diffusion in the conical tube.
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After doing the experiments with the uniform tube (Fig. 7a),
the conical tube is assembled twofold between pipes A and B: in
diverging (Fig. 7b) and converging direction (Fig. 7c) along the z-
coordinate.

All experiments are carried out for the case of the binary
mixture (H2/CO2) and the case of the ternary mixture (H2/N2/CO2).
Pressure and temperature always were almost identical ( jp 1bar;

jT 25 °C) with slight variations subject to changings of ambient
conditions.

As ûgured out earlier, one of the basic assumptions of this work
is the isobaric condition between the pipes (inûnite gas reservoirs)
meaning the absence of a pressure gradient from the one end of
the test tube to the other. Therefore, an experimental determina-
tion of the optimal mass ûow rate ratio of both streams was car-
ried out. This is explained in detail in Appendix B.

4. Results and discussion

In this section, we present the experimental as well as the si-
mulation results of both the binary and the ternary system. The
experimental procedure in Section 3.3 is applied to the binary
system with the inûux of H2 at z¼0 and that one of CO2 at z¼ Lduct
in the following section and to the ternary system with the inûux
of H2/N2 at z¼0 and that one of N2/CO2 at z ¼ Ltube in Section 4.2.

4.1. Binary counter diffusion

The molar fractions of both species measured with the mass
spectrometer in pipe A (z ¼ 0) are plotted versus the inversed sum
of the inûux volumetric ûowrates (Fig. 8a). In order to make dif-
ferent conical and uniform tubes comparable, we scaled this value
with the dimensions of the test tubes (length and mean cross
section) provided in Table 1. Hence, the value of the abscissa has
the dimension of time devided by m2. The circles indicate the
results obtained on the uniform tube while the triangles represent
the results of the conical tube. The data points are ûtted with a
power-law function of the form = +y ax cb for further analysis. On
the right-hand side, in Fig. 8b, the molar fractions measured in
pipe B (z ¼ Ltube) are depicted in the same way.

In general it can be observed that the concentration of H2 in
pipe A decreases with increasing abscissa value while the hydro-
gen concentration in pipe B increases. This means that with in-
creasing ûow velocity in the pipes the concentration of hydrogen
in the carbon dioxide stream is decreased. This is reasonable since
more pure carbon dioxide dilutes the mixture in the pipe and
hence reduces the hydrogen concentration. The same but inverse
effect applies for carbon dioxide. In all cases the molar fractions
tend to converge to 0.5 which approximately is the average molar
fraction of the volumetric inûuxes. The shape of the curves strik-
ingly remind to the results of the instationary two-bulb-diffusion-
experiment (Veltzke et al., 2015; Duncan and Toor, 1962) where
the abscissa value has the identical unit. Hence, the inversed sum
of the inûux volumetric ûowrates of the current stationary diffu-
sion experiment can be interpreted as the duration of the insta-
tionary two-bulb-diffusion-experiment.

Most interesting although is the comparison between the
uniform and the conical tube. The counter-diffusion of H2 and CO2

is signiûcantly delayed by the conicity of the concial tube. This
means that the diffusive transport in the conical tube is slower
than in the uniform one. This ûnding qualitatively conûrms the
analysis of our model in Section 2.4. In order to obtain a quanti-
tative measure of this delay effect, we deûne the delay as the
horizontal distance between the ûtted curves. In Section 4.3 we
will provide further analysis on the theoretically developed hin-
drance factor ³n (Eq. (37)) and the experimentally observed delay.

Furthermore, the model developed in Section 2 is used for
predictive calculations of the molar fractions for different inûux
volumetric ûowrates. In Fig. 9 the experimental values for the
uniform tube are compared to those calculated with Eq. (32)
(using Graham's law).

In case of the calculations for the molar fractions in pipe A
(tube position z¼0, Fig. 9a) the calculated hydrogen concentra-
tions are in quite good agreement to those obtained from the
experiment. The deviation increases with decreasing volumetric
inûux. At the minimum volumetric ûow rate the maximum de-
viation is approximately 5 % which indicates very good agreement
between theory and experiment. The molar fractions calculated for
CO2 at the z¼0 position are signiûcantly lower than those of the
experiment. Here the deviation decreases with the inûux volu-
metric ûow rate and the maximum deviation is approximately
30 % (see Table C1 in Appendix C).

Considering pipe B (tube position z¼ Ltube, Fig. 9b) we notice
that calculations and experiment are in very good agreement for
both species. The maximum deviation in case of hydrogen is 6.7 %
while the deviation for the carbon dioxide data is always lower
than 3.2 %. Here no dependency of deviation and inûux volumetric
ûow rate can be observed (see Table C1 in Appendix C).

The observations for the comparison of model and experiment
on the conical tube are slightly different. At the tube position z¼0
(Fig. 10a) the deviation for hydrogen increases with decreasing
volumetric ûow rate which is the same behavior as for the uniform
tube. No such dependency, however, can be observed for carbon
dioxide, where the calculated values are signiûcantly lower (which
is converse to the discrepancy in the uniform tube).

At the tube position z¼ Ltube (Fig. 10b) the deviation of the
hydrogen values decreases with inûux volumetric ûow rate and
the deviation is signiûcantly higher than observed for the uniform
tube. The values calculated for carbon dioxide, however, are in
quite good agreement to the experimental ones. All results for the
case of binary diffusion in the conical tube are additionally pro-
vided in Table C2 in Appendix C.

4.2. Ternary co- and counter-diffusion

Fig. 11 shows the results of the ternary mixture experiments.
Again, on the left-hand side (Fig. 11a) the molar fractions mea-
sured in pipe A are plotted versus the abscissa values as deûned in
Section 4.1. The right-hand side (Fig. 11b) shows the measure-
ments in pipe B at tube position z¼ Ltube.

In both plots the molar fractions of hydrogen and carbon di-
oxide tend to converge to 0.25 which approximately is the average
concentration of the volumetric inûuxes. The curves show the
same behavior as for the binary diffusion experiments shown in
Fig. 8. The nitrogen concentration in pipe A increases with the
abscissa value while it slightly increases in pipe B. This effect is due
to co-diffusion (Duncan and Toor, 1962; Taylor and Krishna, 1993;
Evans et al., 1961) meaning that nitrogen molecules are dragged by
the diffusing carbon dioxide towards the hydrogen stream. Logi-
cally, this effect increases with decreasing ûow velocity in the
pipes (see Section 4.1).

Focusing now on the comparison between the uniform tube
and the conical one we can observe the same delay effect as for the
binary diffusion. The co-diffusion of nitrogen as well as the
counter-diffusion of carbon dioxide and hydrogen is signiûcantly
slower in the conical tube. From this we can conclude that the
diffusion delay does not depend on composition. Also we can
show that direction of the cone (diverging/converging, see Fig. 7)
does not have any effect on the results as it was theoretically found
in Section 2.4.

Again, the model developed in Section 2 is used for predictive
calculations of the molar fractions for different inûux volumetric



ûowrates. In Fig. 12 the experimental values for the uniform tube
are compared to those calculated with Eq. (33) (using equimass
diffusion).

For the uniform tube the agreement between model and ex-
periment is strikingly good. The deviation is mostly at the order of
magnitude of 5 %. Only for very low absolute molar fractions (for
instance carbon dioxide in pipe A) the deviation increases to 20 %.
All results for the case of ternary diffusion in the uniform tube are
provided in Table C3 in Appendix C.

The same occurs for the conical tube with the results shown in
Fig. 13. While the model matches the experiment extremely good
for medium molar fractions, signiûcant deviations are observed for
very low absolute concentrations. However, if we correlate the
deviation with the absolute value of the molar fraction, we obtain
the relative deviation as being always lower than 7%. Again, all
results for the case of ternary diffusion in the conical tube are
provided in Table C4 in Appendix C.

One possible explanation for the partly signiûcant dis-
crepancies is the simplifying assumption according to Eq. (6). In
reality, the changing of the species concentration does change the
diffusion rate which again changes the convection in the pipe due
to the dependency of the convective ûow rate on, e.g., density and
viscosity. This might explain why high discrepancies occur sys-
tematically for particular "combinations" of gas species and pipes
while for other species/pipes the discrepancy is negligible.

Nevertheless, we can conclude that the developed model sub-
ject to equimass diffusion describes the experimental results for
the ternary diffusion very good.

4.3. Diffusion delay

As mentioned in Section 4.1 we used the parameters of the
ûtted power-law function for a quantitative analysis of the delay
effect which is the distance between the curve of the uniform tube
and that one of the conical one. For subtraction of both curves we
inverted the power-law function to
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which is the relative offset of both curves. According to Eq. (40) we
calculated ³ n

exp for all four curve pairs of the binary case and all the
six curve pairs of the ternary case. Those ten values are averaged and
the standard deviation is calculated. We obtained
³ = ±n 1.3962 0.0119exp meaning that the diffusion in the conical tube
is delayed by approximately 40 % compared to the uniform one.

In Fig. 14 this experimentally derived hindrance factor is com-
pared to the hindrance factor predicatively calculated according to

Eq. (38). The calculations show, that the hindrance factor increases
with the ratio of inlet radius to outlet radius �. This means, that the
delay related to the uniform case increases with conicity of the tube.
Furthermore, the hindrance factor experimentally obtained for a
conical tube with � = 3. 16 in Veltzke et al. (2015) is shown here. As
can be seen by this plot, the theoretical prediction and the experi-
mental results on two test tubes used in two totally different ex-
perimental setups are in good agreement.

Consequently, the diffusive ûux in a tapered tube is always
lower compared to that one in a uniform one with identical
average cross section Atube. Furthermore, this effect increases with
� whereby it is indifferent whether ( )R L

tube or ( )Rtube
0 is larger.

5. Conclusion

Steady-state binary and multicomponent gas diffusion is stu-
died in tubes of different geometries, namely uniform and conical.
For this purpose, a novel diffusion experiment is developed and
described theoretically by a mathematical model. Compared to the
transient two-bulb-diffusion-experiment, the presented stationary
approach allows for much faster measurements. The results,
however, are transferable since the volumetric ûow rate in the
stationary case is inversely proportional to the experimental
duration in the transient case.

A comparison of diffusing gases in different tube geometries
shows a delayed diffusion process for conical tubes compared to
uniform ones with constant cross section, independent of the or-
ientation of the tube (converging or diverging). Delayed diffusion
is proven during the experiments and the simulation results. By
means of model calculations, we conûrm that the hindrance in-
creases with the ratio of inlet and outlet radius, Λ. Due to the low
rarefaction of the gas this effect cannot be associated to gas in-
teractions with the wall but rather to changes in local volumes
along the longitudinal axis. In fact it was shown that the phe-
nomenon of delayed diffusion can be explained by means of the
integral of the local driving force which reduces with increasing Λ.
Additionally, it is worth noting that delayed steady-state diffusion
under non-rareûed conditions is independent of the diffusion
mechanism, either Fickian diffusion in the binary system or mul-
ticomponent Maxwell–Stefan diffusion in the ternary system. In
fact this delay effect is rather caused by volumetric changes in
longitudinal direction of the tapered pore.

Consequently, for gaseous diffusion in “real” pores, that typi-
cally are somehow tapered, the transport limitation is even more
serious than considered so far.
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Appendix A

Symbol Description Unit

Apipe Pipe cross section m2

Ātube,cone
Average cross section of cone m2

( )Atube
0 , ( )A L

tube
Tube cross at z¼0 and z¼L m2



³n, ³ n
exp Theoretical and experimental hindrance factor dimensionles

ct Total molar concentration mol m-3

( )dtube
0 , ( )d L

tube
Tube diameter at z¼0 and z¼L m

ij Binary diffusivity of species i in j m2 s-1

Ðij Maxwell-Stefan binary diffusivities m2 s-1

Dij Multicomponent diffusivity m2 s-1

�( )
Fpipe

0,0 Inûux volumetric ûowrate in the pipe m s-1

ji Diffusive mass ûux kg s-1

( )Ji
eqmol, 0 Equimolar diffusion rate mol s-1

Ji
Graham Graham diffusion rate mol s-1

( )Ji
0 , ( )Ji

L Diffusion rate at z¼0 and z¼L mol s-1

Ltube Tube length m
» Mean free path m

� = ( ) ( )R R/ L
tube
0

tube
Ratio of tube radii dimensionless

m Inclination a.u.
M Molar mass g mol-1

�M Mass ûowrate under standard conditions ml N min-1

� nM Mass ûow rate ratio dimensionless

· Dynamic viscosity Pa s
( )Ni
0 , ( )Ni

L Amount of species at z¼0 and z¼L mol

( )( )

ni

d0, 0

, ( )( )

ni

L d, L Convective outûux at z¼0 and z¼L mol s-1

Ç Kinematic viscosity m2 s-1

p Pressure Pa

R0 Universal gas constant J mol-1 K-1

( )Rtube
0 , ( )R L

tube
Tube radius at z¼0 and z¼L m

R2 Coefûcient of determination dimensionless
Ã Density kg m-3

t Time s, min, h
T Temperature K
u Velocity m s-1

u0 Speed of sound m s-1

x Molar fraction dimensionless
y0, yL Pipe coordiante at z¼0 and z¼L dimensionless

z Tube coordinate dimensionless

Appendix B

See Fig. B1.

Fig. B1. (a) Determination of the optimal ûow rate ratio for the binary system. The optimal ûow rate ratio is taken as � *M ¼1.189, since third order polynominal regressions of
H2 and CO2 molar fractions intersect and it counts: xH2

¼ xCO2
E 50 %, see Eq. (A2). (b) Determination of the optimal ûow rate ratio for the ternary system. Third order

polynomial regressions of H2 and CO2 molar fractions are applied. The optimal ûow rate ratio is taken as � *M ¼ 1.092, since the regression curve of H2 molar fraction, not
inûuenced by multicomponent effects, reaches its equilibrium state at xH2

E 0.25, see Eq. (A2). It is found graphically as the intersection of the horizontal line at xH2
( � ( )
M

L,0

¼ 0) ¼ 0.25 with the H2 regression curve.



Initially, the standard mass ûowrate of MFC 1 at =z 0 ( � ( )
M

0,0
) is held constant for eight different values between 1.5 and 9 mlN min-1

during each experiment. The standard mass ûowrate of MFC 2 at =z Ltube ( � ( )
M

L,0
) is ûxed as the product of a prefactor and the stan-

dardmass ûowrate of MFC 1, to the effect that we obtain the mass ûow rate ratio � nM

� =
�

� ( )

n
( )

( )
M

M

M
.

A1

L,0

0,0

According to Fig. 5 the composition of the gas is analyzed with the mass spectrometer and the concentrations of the species are plotted

against the standard mass ûowrate of MFC 1 for the mass spectrometer at position =z 0 (pipe A) and against that one of MFC 2 for the case

of the mass spectrometer assembled at position =z Ltube (pipe B).
Since very low ûowrates are not possible due to the lower limits of the MFCs, an extrapolating curve ûtting is applied to the ex-

perimental data for each � nM . The ûtting model is based on the logistic function, a S-shape curve, and the molar fraction xi versus the

standard mass ûowrate �M is deûned as

( )
=

+ (2 � ) 2 ( )( � = )

x G
Gk

1

1 exp M 1
.

A2

i
G

x M 0i

Here, G is the barrier, k is a conversion factor and ( � = )x M 0i is the intersection with the ordinate axis. After the analysis of preliminary

tests, the preferred parameter is ( � = )( )
x M 0i

L,0
during the experiments and it is varied from f ( � = ) f( )

x M0.3 0 0.7i
L,0

. For each ( � = )( )
x M 0i

L,0
,

Eq. (A2) is ûtted to the experimental data of � nM and the coefûcient of determination is calculated. The ( � = )( )
x M 0i

L,0
with the highest

coefûcient of determination (R2- 1) is assumed to be the best ût to the experimental data of � nM .
To ûnd the optimal mass ûow rate ratio, two limiting cases are assumed. First, if the ûowrate is zero on each side, only diffusion will

occur and the composition in the duct will be the same on each side. For this reason, the outûux molar fraction will be determined as

=
( )� ³

( )

� ³

( )
( )

( )

( )

( )
x xlim lim .

A3
i

d
i
L d

M 0

0,

M 0

,

L

L

0,0

0

,0

Second, if the ûowrate is inûnite in each pipe, the contribution of diffusion is negligible and the composition of the outûuxes will be the

same as the inûuxes on each side

= =
( )� ³>

( ) ( )

� ³>

( ) ( )
( )

( )

( )

( )
x x x xlim , lim .

A4
i

d
i i

L d
i
L

M

0, 0,0

M

, ,0L

0,0

0

0,0

Consequently, � nM with the best ût for Eq. (A2) will be the optimal, experimentally determined ûow rate ratio. For this reason, the

intersections with the ordinate axis ( � = )( )
x M 0i

L,0
for the best ûts are plotted against the mass ûow rate ratio in the range f � f

n
0.9 M 1.3 as

shown in Fig. B1a for the binary system. Here we obtain � nM ¼ 1.189 for the optimal ûow rate ratio.
For the ternary systemwe observed that regarding the ûttings and their intersections with the ordinate axis, the molar fractions of CO2

decrease delayedly with reducing ûow rates compared to the increase of H2molar fractions. Hence, the curves do not intersect on the

ordinate axis at ( )( )
xH

L,d
2

L
¼

( )( )
xCO

L,d
2

L
¼25%, but at higher molar fractions, ( )( )

xH
L,d
2

L
¼

( )( )
xCO

L,d
2

L
425%. The delayed decrease of CO2 is assumed to be

caused by multicomponent effects of N2 (Veltzke et al., 2015; Duncan and Toor, 1962). Hence, only H2 is used to determine the mass ûow

rate ratio. Again, the intersections of the H2 and CO2 ûts with the ordinate axis xi( � ( )
M

L,0
¼0) are plotted against the mass ûow ratio � nM in

Fig. B1b.

In Fig. 8, the intersections of the CO2 molar fraction with the axis of ordinate, xCO2
( � ( )
M

L,0
¼0), increase and those of H2, xH2(

� ( )
M

L,0
¼ 0),

decrease with rising inûux mass ûow ratio � nM . Here, the optimal mass ûow ratio is � nM ¼ 1.092 and given as the intersection of the

horizontal line at xH2(
� ( )

M
L,0

¼ 0) ¼ 25 % with the regression curve of H2. In this case, the ûowrate � ( )
M

L,0
is zero and H2 gas diffuses to the

opposite side of the test tube until an equilibrium is reached. Since no convection and multicomponent effects occur, H2 equilibrates to

obtain a ûnal composition of xH2E25 % (Eq. (A2)).

Appendix C

See Tables C1–C4.

Table C1

Comparison of calculations using the analytical model according to Eq. (34) and experimental results for binary diffusion in the uniform tube.

Inûux Outûux molar fraction at position z¼0 Outûux molar fraction at position z¼L

F(0,0)ml min�1 F(L,0)ml min�1 Model (dimensionless) Experimental
(dimensionless)

Deviation (%) Model (dimensionless) Experimental
(dimensionless)

Deviation (%)

x_H2 x_CO2 x_H2 x_CO2 H2 CO2 x_H2 x_CO2 x_H2 x_CO2 H2 CO2

8.23 8.29 0.936 0.064 0.915 0.084 2.2 30.2 0.203 0.797 0.211 0.788 3.8 1.1
7.29 7.13 0.929 0.071 0.909 0.090 2.2 27.2 0.222 0.778 0.234 0.765 5.1 1.5
6.32 6.04 0.920 0.080 0.900 0.100 2.3 25.0 0.244 0.756 0.258 0.740 6.0 2.0
5.31 4.98 0.908 0.092 0.885 0.114 2.5 24.2 0.269 0.731 0.285 0.713 6.0 2.3
4.29 3.96 0.891 0.109 0.865 0.134 2.9 23.4 0.300 0.700 0.321 0.678 6.7 3.1
3.24 2.95 0.866 0.134 0.834 0.165 3.6 22.5 0.339 0.661 0.359 0.640 5.9 3.2
2.18 1.96 0.821 0.179 0.784 0.214 4.5 19.6 0.390 0.610 0.403 0.596 3.3 2.3
1.64 1.46 0.785 0.215 0.743 0.254 5.3 18.3 0.420 0.580 0.429 0.569 2.2 1.8
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F(0,0)ml min�1 F(L,0)ml min�1 Model (dimensionless) Experimental
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F(0,0) F(L,0) Model xi (dimensionless) Experiment xi
(dimensionless)

Deviation (%) Model xi (dimensionless) Experiment xi
(dimensionless)

Deviation (%)
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Comparison of calculations using the analytical model according to Eq. (34) and experimental results for ternary diffusion in the conical tube.

Inûux (ml min�1) Outûux molar fraction at position z¼0 Outûux molar fraction at position z¼L

F(0,0) F(L,0) Model xi (dimensionless) Experiment xi
(dimensionless)

Deviation (%) Model xi (dimensionless) Experiment xi
(dimensionless)

Deviation (%)

H2 N2 CO2 H2 N2 CO2 H2 N2 CO2 H2 N2 CO2 H2 N2 CO2 H2 N2 CO2

8.77 8.92 0.433 0.550 0.017 0.435 0.558 0.007 0.4 1.5 61.1 0.107 0.462 0.431 0.090 0.479 0.430 16.3 3.8 0.2
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