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Figure 1: Many robot manipulation tasks (left) are learnt best by observing humans. Human motion can be demonstrated using 

virtual environments (center). Data acquisition with motion-based games makes demonstrating a fun activity (right). 

ABSTRACT 

Autonomous manipulation robots can be valuable aids as 

interactive agents in the home, yet it has proven extremely 

difficult to program their behavior. Imitation learning uses 

data on human demonstrations to build behavioral models 

for robots. In order to cover a wide range of action 

strategies, data from many individuals is needed. Acquiring 

such large amounts of data can be a challenge. Tools for 

data capturing in this domain must thus implement a good 

user experience. We propose to use human computation 

games in order to gather data on human manual behavior. 

We demonstrate the idea with a strategy game that is 

operated via a natural user interface. A comparison between 

using the game for action execution and demonstrating 

actions in a virtual environment shows that people interact 

longer and have a better experience when playing the game. 

Author Keywords 

Programming by demonstration; human computation games 

INTRODUCTION 

HCI has moved from focusing mainly on desktop 

interaction to ubiquitous interaction and in particular to 

embodied computer artifacts. With the advent of robots in 

our homes, computation is moving beyond the classical 

understanding of human-computer interaction. The future 

of household robots envisions active and intelligent 

companions in our everyday lives with many concepts 

exploring anthropomorphic robots like the NAO robot [24]. 

Researching the humanoid form factor is important, since it 

is likely to be accepted by humans when they are to “live” 

in the same environment [13]. Besides the familiar 

appearance of the robot, human-like robot behavior fosters 

human-robot interaction and cooperation, as it requires less 

adjustment and learning effort by the human. Even though 

the degrees of freedom of the robots’ limbs and joints may 

allow for other non- or even super-human movements, it is 

often a better choice to let robots act in a way that 

corresponds to the mental models of their users. However, 

programming robots to master everyday activities in a 

human-like fashion has proven to be a huge challenge [3]. 

Today, robots can only solve tasks in a narrow range of 



conditions. Many seemingly mundane everyday tasks are 

only vaguely described and show a high level of variation. 

The artificial intelligence vision of understanding common 

sense knowledge needed for everyday activities has been 

unsolved for decades [19]. 

In recent years, prototypical solutions for household tasks 

have been built, for instance robots making pancakes [3] or 

baking cookies [5]. The necessary knowledge for solving 

such tasks in various environments has to be fed into the 

systems through knowledge acquisition and machine 

learning in labor- and cost-intensive processes. Since most 

humans are experts at such tasks, there is great potential in 

acquiring this knowledge for robots from human sources. If 

people perform the required movements, such as those for 

making a pancake, they can be tracked, analyzed, and then 

used to build models for the motion of the robot’s arms and 

hands [20,23]. In this imitation learning approach to robot 

programming, the challenge lies in collecting large amounts 

of movement data from humans solving some problem 

while conditions vary systematically. Obviously this is 

tedious work. It is difficult to motivate people to move pans 

on a stove over and over again with all sorts of pan sizes 

and stove heights. 

Using virtual environments in which the user interacts with 

simulated task contexts, human motion data can be 

generated by recording user input [16]. The advantage 

being that a virtual world is fully observable and 

demonstration is unconcerned with real world constraints or 

safety issues. Games can increase the motivation for 

performing menial tasks in such environments, potentially 

increasing the number of demonstrations and thus the 

amount of -and variation in- motion data. They also offer 

further benefits for imitation learning: in games, objectives 

can be introduced to influence players’ behavior, such as 

eliciting their best performance. Moreover, well-balanced 

challenge in games increases the players’ resistance to 

frustration. This ability to design for task failure is highly 

important for robot programming, and games are an easy 

and controlled means of eliciting data on failing behavior. 

In this paper we present a human computation games 

approach to knowledge acquisition tools for imitation 

learning. Engaging people as experts of everyday activities 

to perform actions in an embodied game raises the 

motivation of demonstrators and encourages them to deliver 

high quality data. Freedom in game design allows for 

tailoring player behavior to generate desired outcomes and 

allows obtaining varied human motion data from successful 

or, equally important, unsuccessful actions. 

We present a sample application using a tower defense 

game with full-hand motion input. The users were highly 

motivated to play and thus contribute their embodied 

knowledge. With this setup, the data acquisition for 

programming a robot is translated to an HCI problem of 

game interaction and player experience. Our study shows 1) 

that performing tasks in-game provides a better self-

reported experience than demonstrating them in a non-game 

virtual environment and 2) that motion data has the quality 

required for successful use in robot imitation learning 

With this paper we not only contribute a successful design 

of a free-hand motion control serious game but also 

demonstrate a design approach of how to leverage existing 

game design knowledge for increasing the effectiveness of 

motion data acquisition tools. Moreover, this paper is a 

contribution to human-robot interaction for humanoid 

robots in home environments. We propose to use gameful 

interaction [8] as a means for building more realistic and 

acceptable robotic companions. 

RELATED WORK 

Robot Programming 

Imitation is the behavior where an individual observes and 

reproduces another's action. Imitation learning or robot 

Programming by Demonstration (PbD) [4] (also called 

Learning from Demonstration [2]) is a means of learning 

and developing new skills by observing how they are 

performed by others. It is a technique for enabling robots to 

autonomously perform new tasks. When observing either 

success or failure examples one can reduce the complexity 

of search spaces for learning, by either beginning the search 

from the observed successful solution (local optima), or by 

eliminating the failures from the search space. 

The PbD learning problem can be separated into two 

fundamental phases: gathering examples and deriving 

policies [2]. Focusing on the gathering phase there exists a 

large variety of techniques for executing and recording 

demonstrations, ranging from human operators moving 

robots around which then record their own enacted 

movements over recording teleoperation commands to 

observing demonstrators execute behaviors with their own 

body. Furthermore, the control levels may vary from low-

level actions for motion control, over basic high-level 

actions (action primitives) to complex behavioral actions. 

In the work of Haidu et al. [11] the authors learn a failure 

detector model to allow a robot to recognize the point 

where the current action will lead to a failure. The data used 

for learning is collected from a virtual environment by 

running multiple episodes (success and failure cases) of the 

given action. The virtual environment built on a robotic 

simulator with a realistic physics engine, resulting in 

precise, realistic data. Having a virtual scenario gives the 

advantage of a fully observable world; one can completely 

represent the motion and the states of all simulated objects. 

Even if the motion sequences are comparatively simple, 

they can contain valuable information (e.g. for low-level 

motion control). 

Other researchers have also been employing simulation 

environments [25]. While the results in terms of accuracy of 

the gathered data are promising, these simulators have not 

been designed to appeal to the general public, to be 

operated by naïve users, or to support motivation by 
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introducing game mechanics beyond the playful appeal of 

an interactive virtual world. In order to gather large 

amounts of varied data that can be used to build large-scale 

behavior models, such simulations must be able to run on 

consumer hardware and feature motivational structures to 

animate players to perform multiple actions. 

Human Computation Games 

Introducing playful and gameful elements [8] to collective 

intelligence applications has been a hot topic in a new 

emerging field over the last years: Human computation 

(HC) games (HCG) are a form of collective intelligence 

where participants are not paid but voluntarily contribute 

data or chunks of knowledge in game-based interaction. HC 

is similar to crowdsourcing, where traditional human 

workers are replaced with members from the public, but 

differs in that in HC human computers (usually also from 

the public) replace digital computers in domains where 

these struggle [21]. The first prominent examples of such 

games with a purpose [27] were used for image labeling 

tasks. It was shown that very simple casual games 

motivated a large number of users and that it was possible 

to aggregate their individual contributions into concerted 

collective intelligence. In recent years, human computation 

games have been developed for further labeling tasks [14], 

computational biology [6], question answering [1], and for 

many other use-cases [28]. 

Human Computation Games for Robot Programming 

In an effort to structure human computation game design 

approaches, Krause and Smeddinck [14] name four 

categories: Identification (of a task that can be turned into a 

HC application), Motivation (design mechanisms for 

motivating members of the public to contribute time and 

effort), Observation (design methods for enacting solutions 

in the application and for observing the approach taken by 

each member of the crowd) and Evaluation (design 

methods for aggregating, analyzing and interpreting the 

potentially large numbers of crowd contributions); or IMOE 

in short. Notably, this structure is akin to the general steps 

of gathering (IMO) and deriving (E) in PbD. Accordingly, 

we argue that PbD is a special case of human computation 

and thus approaches from human computation games are 

likely applicable to PbD. Both communities can profit from 

research that aims at combining their approaches that have 

so far been discussed in almost entirely separate sub-

communities. While crowdsourcing has established itself 

for PbD, it is rarely embedded in game contexts (see [10] 

for a recent overview). 

Looking into the categories of typical HC tasks as part of 

the considerations on identification, Krause and Smeddinck 

describe four categories, each one taking advantage of a 

specific human ability: aesthetic judgment, making intuitive 

decisions, contextual reasoning, and free interaction with 

the physical world (mentioned as embodiment issues). The 

latter offers a matching category for the application domain 

of the study presented in this paper (harnessing hand 

movements and actions). Embodied human knowledge is 

implicitly at hand for humans but hard to be formalized 

explicitly, making this category a strong candidate for 

human computation. So far, however, most human 

computation games do not consider embodied human 

knowledge that is used in physical interactions with the 

environment. Some approaches exist in mapping 

applications [18,26]. However, they require substantial 

physical effort by all human contributors and capture a 

gross measure of human body location instead of intricate 

details of human embodied interaction.  

Approaches from related areas, such as gamification, have 

investigated matching game mechanics to generalized tasks. 

Flatla et al. [9] tackle gamification for calibration tasks such 

as screen calibration or respiration chest strain sensor 

calibration. They developed a design framework for 

identifying calibration types and the basic tasks behind 

them, and how to match these tasks to basic game 

mechanics. Using this framework they designed three 

calibration games, and were able to show increased user 

motivation. They also discuss differences in the data quality 

between standard and gamified calibration. However, their 

approach has not yet been linked to the related area of PbD 

and they did not focus on embodied interaction. 

DESIGN APPROACH: KITCHEN TOWER DEFENSE  

The primary design goal is to motivate people to 

demonstrate manual tasks by transforming the experience 

of performing mundane manual actions (physical or 

simulated) into a more enjoyable activity. We lay out our 

strategy before discussing how target and source domains 

can be mapped. 

Design Strategy 

Our design strategy to reach this goal is situated toward the 

“Gaming” and “Whole” ends of the two dimensions 

Gaming/Playing and Parts/Whole of the design space [8]. 

Gaming vs. Playing 

Playful tools for motion data acquisition based on simulated 

virtual environments have been explored in the robotics 

community [11,16]. They offer the benefits of a fully 

observable world and safety from real world constraints. 

However, embedding this in a rule-based game system as 

opposed to a mere playful environment has two distinct 

advantages. First, task demonstration can be designed into 

the game mechanics in order to pose tasks more implicitly, 

directed via game rules and level design. Second, the 

addition of game aesthetics [12] such as challenge and 

narrative can improve the experience; while the enjoyment 

of baking virtual pancakes will diminish over time, a well-

designed game can captivate for hours. 

Parts vs. Whole 

Designing for the stated goal can involve either (whole) 

HCG or introducing game design elements (parts) into 

motion data acquisition tools. The latter can be achieved 

either by adding game elements to an existing application 

(gamification) or by adding purposeful elements to an 
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existing game. This decision can be modeled as a third (if 

not fully orthogonal) dimension in the design space. 

Games vs. Serious Applications 

This axis reaches from one extreme, namely adding 

increasingly more game elements to a “serious” application, 

to an opposite extreme, which begins with full-fledged 

games that are augmented by an increasing number of 

“serious” elements (Figure 2). Our approach is situated 

toward the “games” end of this spectrum, in order to 

capture ordinary people and their sense of what constitutes 

a game. While gamification can be successfully used to 

increase motivation to perform otherwise boring or 

laborious tasks [9], we opted for creating a full game 

experience that uses established game mechanics for the 

following reasons: The approach enabled us to use whole 

game concepts to leverage existing design knowledge on 

working game mechanisms. Moreover, it increases the 

likelihood to create long-term motivation rather than short-

lived engagement common in swiftly designed casual 

games. Furthermore, once a reliable game design is found 

for extracting a certain class of human behavior it can be 

used for a whole range of task domains, e.g. all workbench-

based manipulation tasks. 

Task Domain 

Cooking is a good example of an embodied everyday 

activity. It includes complex and diverse manual activities 

that are easy to perform for (many) people but are hard to 

describe in a formal or algorithmic way. In robotics, 

cooking simulators are being investigated for knowledge 

acquisition [3,5,11,16]. We chose cooking as a 

paradigmatic scenario for an activity in the household and 

demonstrate how human computation games that go beyond 

the playfulness of simulator tools can help to gather data 

from ordinary persons who have no experience in robotics. 

The first step in designing a game around a task domain is 

to identify the characteristic of the domain. We can identify 

four characteristics of cooking: 

Characteristic 1: An enclosed, planar workspace 

Characteristic 2: Well-defined manual actions 

Characteristic 3: Actions operate on objects within the 

workspace 

Characteristic 4: Active management of events 

Note that these are valid for a number of worktop-based 

activities, such as crafts (e.g. sewing) or deskwork. The 

next step is to select an existing game archetype that 

matches these characteristics best. 

Game Domain 

The selection of a suitable game genre has to result in a 

good mapping from actions in the game domain to the 

desired actions in the task domain. Turn-based strategy 

(TBS) games reflect the above-mentioned properties very 

well. The player has a “godlike” position of a commander 

with an overview of a confined terrain or map. This relates 

well to characteristic 1, since players are able to see the 

available objects and the according contextual action space. 

TBS players perform various manipulation actions (relating 

to characteristic 2) that change the events enfolding on this 

map. Such actions can be recorded and their execution 

parameters and the contextual variables can be used for 

imitation learning. When enacted and chained to complex 

behaviors such as building up a base or city, or directing 

units, the manual actions operate on available objects 

(relating to characteristic 3). This results in information 

about workspace organization, object alignments and 

positioning. Lastly, in TBS, the player has control over the 

pace of the events unfolding via turn advancement. Relating 

to characteristic 4, the turns help with the challenging 

problem of chunking action sequences, which is needed for 

interpreting the overall user action sequences. Moreover, 

the game genre is suitable for embodied control with real 

hand gestures, which is important since we are interested in 

the actual trajectories of the player’s arms and hands.  

Other popular game genres, such as action or adventure, are 

focused on steering an avatar through expansive game-

worlds (violating characteristic 1), and interaction with the 

game world occurs via the avatar as a mediator (violating 

characteristic 2) rather than the player manually interacting 

with it. Real-time games that are not turn-based lead to 

higher time pressure (violating characteristic 4), which 

could also have a negative influence on the resulting data. 

 

purpose

gamification

games serious games
serious

applications

Figure 2: Serious games: increasingly purposeful games versus 

increasingly gamified applications. 

Figure 3: Schematic view of a typical level of a tower defense 

game with respective game elements. 
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In this light we chose tower defense games (TD) as the 

game domain (Figure 3). In TD, players have to create and 

manage defensive structures against hordes of intruders 

invading their territory (also called creeps). These typically 

arrive in waves, whose arrival can be managed by the 

player to a certain degree. Game mechanics involve a 

simple (typically single-currency) economy in which 

construction costs are balanced against “revenue” earned by 

defeating enemies. 

Mapping Actions 

Having established a game genre that matches task domain 

characteristics, it is necessary to define the exact mapping 

from task actions to game actions. In order to arrive at a 

mapping we must consider the asymmetry in requirements: 

from the game domain we only require strict adherence to 

intentions, while a correct rendition of the task domain 

actions is crucial for gaining the right motion data. We thus 

need to map task domain actions to game domain intentions 

(Table 1). Since cooking is an activity for which a vast 

amount of behavior can be identified, we chose pancake 

making as a well-defined example also used in related 

research [3,11,16]. We assume a simplified procedure that 

uses ready-made pancake batter, reducing the task to few 

simple actions (Table 2). As there is no way of further 

operationalizing the mapping procedure, the last step is 

down to creative design. For the example of pancake 

making, we chose a mapping that relates action intentions 

semantically: building is conceptually related to moving 

things, an upgrade adds functionality, and constructions are 

demolished by turning them over (Table 3). 

Control Interface 

The goal is to tap the embodied knowledge on manual 

behavior that humans are not used to describing explicitly, 

but can better recall implicitly given a task context (e.g. 

describing the procedure of operating clutch, gearstick and 

accelerator versus performing the act of driving). This 

requires interfaces with as little mediation and indirection 

as possible. Task simulators for recording human motion 

thus employ virtual hand manipulation techniques using 

full-hand trackers. Since glove interfaces incur 

obtrusiveness, the best solutions for a broad audience are 

outside-in hand tracking systems, i.e. camera-based 

solutions. High-fidelity full-hand trackers have reached 

consumer level of maturity and support the prospects of 

success of outsourcing embodied manipulation knowledge 

acquisition through full-hand interaction games. 

3DFEND: FREE-HAND CONTROL TOWER DEFENSE  

As a result of these design considerations we developed 

3DFEND, the first free-hand 3D TD. The story of the game 

is a micro-narrative in a style found in many casual games 

(Figure 4). Players defend earth against hordes of robot 

aliens by constructing a defense system via hand motions. 

While input is 3D, the game follows the typical planar TD 

logic, i.e. creeps move along two-dimensional paths, along 

which towers can be placed. A large platform provides the 

stage on which towers can be constructed. Players operate 

on objects on the stage through tools, not directly via 

cursor. Creeps advance over the stage from left to right. 

Game Controls 

Free-hand control is implemented as a simplified virtual 

hand metaphor [7]. This takes the form of a 3D cursor to 

which palm translation and orientation are mapped directly. 

Fingers are not used, since robust low-latency tracking is 

not solved in the category of hand trackers under 

consideration. Balloon cords, shadows, and a map overlay 

provide depth cues. Tool selection occurs if the cursor 

collides with the tool before a certain timeout, which is 

animated with a blend to white. Figure 5 gives an overview 

of the interface configuration; please refer to the video 

figure for a more immediate illustration of the controls. 

A 3D toolbar at the bottom of the screen offers three 

construction modules for three different tower types, a nano 

bot container, and a relocation/demolition tool. Tools are 

selected by the above procedure. Each of the four basic 

controls involves compound manual actions (Table 3). 

Build Turret 

The player can choose one of the three construction 

modules and place it on the stage: after a construction time 

of one second, the turret is ready. Constructing a turret costs 

different amounts of energy credits, depending on type. 

intention actions 

build pick type + pick site 

upgrade pick tower + pick upgrade 

move pick tower + pick site 

demolish pick tower + pick demolition 

intention actions 

place pick pan + place on stove 

add pick bowl + pour batter 

move pick bowl + place bowl 

turn pick spatula + lift pancake + flip pancake 

intention actions 

build pick construction tool + place on site 

upgrade pick upgrade tool + pour nano-bots 

move Pick demolish tool + place on new site 

demolish pick demolish tool + lift turret + flip turret 

Table 1: General tower defense game intentions and actions. 

Table 2: Task intentions and actions in pancake making. 

Table 3: The basic game controls of 3DFEND. 
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Upgrade Turret 

The player can choose the upgrade tool and pour nano bots 

on constructed turrets. Turrets upgrade continuously, 

depending on the amount of nano bots received. Upgrading 

costs energy credits. 

Move Turret 

The player can use the relocation tool to move a tower by 

using it like a spatula on constructed towers, once on the 

spatula they can be placed elsewhere on the stage. 

Demolish Turret 

In the same manner, lifting it with the demolition tool and 

turning it by more than 90° can demolish a turret. The 

player receives a percentage of the tower construction cost 

as energy credits. 

A heads-up overlay provides data on the game state: current 

wave, lives remaining, credit costs, and resources. A 3D 

button on the top center can be used to call for the next 

wave when the player is ready. 

Gameplay 

Apart from the unique free-hand interaction described 

above, 3DFEND has the typical dramaturgy of a tower 

defense game: creeps move over the stage from left to right 

along a highlighted path. Players must build towers along 

the way that automatically fire at the creeps lest these reach 

the portal on the far right end of the stage, in which case the 

player loses life points. Building towers costs energy credits 

that can be replenished through harvesting destroyed 

enemies or demolishing unused towers. With each wave, 

creep health and number increases. Starting with the fifth 

wave, creeps gain a shield that increases in power with each 

wave. Bullet towers are ineffective against shielded 

enemies, while laser turrets diminish shields quickly but are 

ineffective otherwise. Rocket turrets diminish both enemy 

shield and health, but are slow and expensive. With 

increasing enemy numbers and power, players will need to 

upgrade towers to manage the incoming hordes. They will 

need to figure out the ideal configuration of tower count, 

position and level to defeat the incoming enemies. 

Implementation 

3DFEND was implemented using the Unity3D game 

authoring environment. For a hand tracker we used the 

Leap Motion sensor [17], which was integrated into Unity 

using the SDK plug-in. 

Figure 5: Screenshot of the 3DFEND game. 

Figure 6: Screenshot of the virtual manipulation environment. 

EXPERIMENT 

We conducted a formal experiment to evaluate our claim 

that HCG can be used to increase motivation for 

demonstrating manual actions for robot imitation learning. 

Two hypotheses coin this statement: 

H1. Demonstrating manipulation tasks in a game 

environment provides a better experience than following 

instructions in a playful environment. 

H2. The manipulation data recorded in a game environment 

has at least the level of quality as motion data recorded in a 

playful non-game environment. 

Study Design 

The study design compares following explicit instructions 

to perform virtual manipulation tasks with performing the 

same tasks implicitly while playing a game. It uses a 

within-subjects design with an alternating order of 

treatments. The independent variable is activity evocation 

type with the conditions virtual manipulation environment 

with instructions (VE) and game. 

For the VE condition, a virtual environment was created 

(Figure 6). It features the same basic manipulation controls 

but no game elements, namely: enemies, game overlay, or 

animations. Instructions were administered via text overlay. 

Participants were asked to place a cube, move a cube, pour 

on a cube, and flip a cube, and repeat this twice with 

varying locations. On completing these 12 actions the 

treatment was terminated. Attention was paid not to 

introduce any bias by framing (e.g. by using the words 

“game” or “virtual environment”): both conditions were 

introduced neutrally by declaring them as “prototypes”. 

Far in the future, a wormhole opened in proximity to earth. A 

hostile alien race is sending troops through the wormhole. The 

nations of earth have sent you, the player, to construct a 

defense in space. As the enemy is entirely unknown, you must 

quickly match their strategy with specialized defense systems. 

Fortunately, destroyed aliens set free energy that you can 

harness and use to improve your defenses. 

Figure 4: The game background story of 3DFEND. 
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The game condition consisted of playing a prototype of 

3DFEND for at least 15 minutes. Pre-tests showed that 

twelve actions is a typical number for 15 min gameplay. 

Players were alerted when this time was over, but were 

allowed to terminate gameplay on their own accord. 

Measures 

To measure the subjective player experience we used the 

competence, autonomy, presence/immersion and intuitive 

controls subscales of the Player Experience of Need 

Satisfaction (PENS) questionnaire [22]. Since the scenario 

at hand focuses on single-player experience we dropped the 

relatedness scale. An interview complemented the 

assessment of the participant experience. 

In PbD, data on demonstrating motions is used to build a 

model for robot behavior. It is hard to quantify what makes 

“good” motion data for PbD. Based on the experience 

gained in previous work [5,11,16], three aspects of motion 

data were identified to operationalize data quality for the 

purposes of assessing H2. 

• A large amount of completed actions is a basic

requirement for motion data for use in PbD; The VE

condition as representative of state-of-the-art motion data

acquisition was designed for a high frequency of

demonstration samples.

• Cursor speed, height, and angle can serve as simple

characteristics for comparing manipulations between this

baseline and the proposed alternative.

• Spill in the pour action serves as an indicator for the

precision of operation (accuracy was less consequential

in the place and turn actions).

Participants 

We recruited 16 participants (13 male, 3 female) from the 

academic milieu. Participant ages ranged from 24 to 32 (M 

=26.8, SD=2,32). Out of all participants, 11 considered 

themselves regular gamers (more than 1 hour of playing 

computer games a week) and all but one had experience 

with games and motion input in games. 

Setup and Procedure 

Participants sat at a table with a 24” screen and a Leap 

Motion sensor. First, participants were asked to fill out a 

demographics questionnaire. After introducing participants 

to the experiment procedure, they were trained on the basic 

controls (without instructions or game) until they felt 

competent and comfortable to proceed. Next they were 

exposed to both treatments in turn. After each treatment 

they were asked to fill out the questionnaire. Finally, a short 

interview was conducted. 

Results 

We used two-sided repeated measures Student’s t-test on 

the collected data. Due to logging problems with the move 

action we only report on the three other actions. 

Player Experience 

Figure 7 displays score means and SEM of the four PENS 

scales for player experience. While no significant 

differences in the subjective assessment of competence 

(p=0.27) or intuitive controls (p=0.69) can be made out, 

both autonomy (p<0.01) and presence/immersion scored 

significantly higher for the game condition (p=0.02). 

15 participants voluntarily extended their gameplay, on 

average playing the game for 30 minutes 26 seconds (VE 

instructions took 5 minutes 46 seconds on average). 

Participant’s comments showed a clear subjective 

preference of the game version. Some comments after the 

game condition were: ''I want to finish the round! What was 

the highest high score yet?”, “Where can I buy the game 

and where can I buy the sensor?”, “Can I play again?”, 

“The game is so much fun”. Comments of the users after 

and during the VE condition were along the lines of: “Do I 

have to do all of this?” and “What, again?”. 

Beside these general comments the participants also 

provided feedback on the graphics, the interface and the 

tracking system: The users would like to see more advanced 

and appealing graphics, more accurate hand tracking and 

grasping. Some of these improvements would certainly 

further improve the experience and usability of the system. 

However, the goal of our study was to establish 3DEFEND 

in an initial version with simple methods and tools. 

action game VE 

place 14,56 6,13 

pour 16,63 4,94 

turn 2,94 3,00 

Figure 7. Player experience (PENS subscales). Error bars 

indicate the standard error of the mean (SEM). 

Table 4. Mean number of completed actions. 

compet. autonom. presence controls 

Player Experience 

game 

VE 
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Motion Data 

Figure 8 shows the action frequency means extrapolated 

from the measured data. Significantly fewer occurrences 

can be measured for all actions under the game condition 

(p<0.01). The small number of turn actions under the game 

condition shows that game mechanics need better balancing 

so that these controls are more frequently used. 

Figure 9 shows movement speed means per action. 

Movement was significantly slower for all actions 

(pplace<0.01, ppour<0.01, pturn=0.01) in the game condition. 

Pour height (p=0.73) and turn height (p=0.15) did not differ 

significantly between the conditions; neither did the 

pouring orientation (px=0.62, py=0.36, pz=0.69). 

There was significantly less content spilled in the pour 

action in the game condition than under instructions in the 

VE (5.4% versus 20.8%, p=0.01).  

ANALYSIS 

Our game provides a better experience regarding autonomy 

and presence. Combined with the observed motivation of 

participants, this supports H1 that demonstrating 

manipulation tasks in a game environment provides a better 

experience than following instructions in a playful 

environment. This has a direct effect on the amount of 

motion data that can be acquired. While games are less 

efficient than instructions (in our example only half as 

many actions per time range), the willingness of players to 

spend more time playing and thus demonstrating more than 

makes up for this: Despite lower frequency our game 

totaled the same amount or more actions (Table 4). The 

motion from both conditions had the same spatial 

characteristics; the same actions can be discerned from the 

data. However, in the game condition, manipulation speed 

was slower and more precise (for the pouring action). A 

likely explanation, corroborated by interview responses, is 

that players care more about the outcome of actions in the 

game. Such effects have been observed in other studies 

comparing user behavior in games with comparable non-

game contexts [9]. The difference in spilling illustrates this 

best. When actions have outcomes that affect players this 

motivates them to act more carefully: Spilling valuable 

nano-bots wastes credits, while the VE did not penalize 

spill. Thus, regarding H2 we can assess that the quality of 

the motion data resulting from the game condition is at least 

the standard of the baseline VE condition. High player 

motivation and thus longer demonstration sessions can 

compensate the lower frequency of actions. Taken together 

with similar observations in related work we can surmise 

that the higher task accuracy is a strong indicator for the 

motivational background increasing task performance and 

thus quality of motion data for PbD. 

DISCUSSION 

We have established a HCG for collecting data on 

embodied knowledge of everyday activities that can be used 

for programming manipulation robots. In the following we 

touch points of discussion regarding controls, game design, 

and experiment design and reflect the chosen approach. 

Free-hand Controls 

As a first exploration of HCG for robot imitation learning 

and for the first 3D TD available, controls were sufficient 

and very usable. As suggested by participants, the free-hand 

controls for virtual action demonstration can be further 

improved. With a more literal virtual hand that includes 

tracked fingers, grab and release gestures could replace 

tool/object activation via timeout, resulting in more fluent 

and efficient interaction that better replicates the real world 

activity. Advances in camera-based low-latency hand 

tracking will also improve the controls. A stereoscopic 

display would provide better depth perception, which was 

an issue for some participants despite depth cues. 

Physics Simulation 

Game engine physics are not optimized for fully realistic 

simulation of physical processes. For practical use, game-

based knowledge acquisition tools such as 3DFEND require 

more realistic simulation engines. Related research 

problems such as enabling interactive simulation at real-

time frame rates are complementary to the problems under 

investigation in this work and are being researched in the 

robotics and computer graphics communities. Actual PbD 

tools will thus integrate insights on HCG for imitation 

learning with state-of-the-art physics simulation. 

place pour turn

Action Frequency 

game 

VE 

place pour turn 

Movement Speed 

game 

VE 

Figure 9. Movement speed in the main control actions (game 

units per second). Error bars indicate SEM. 
Figure 8. Action frequency of the main control actions 

(completed actions per hour). Error bars indicate SEM. 
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Game Design 

3DFEND is the first free-hand control 3D tower defense 

game and still in prototype stage. Game design was 

minimalist, and game mechanics, assets and story should be 

improved in further iterations. Also, proper balancing is 

essential in order to make sure that no “game-breaking” 

strategies emerge and frequency distribution of the various 

actions is even. However, player feedback confirmed that 

the prototype was sufficient for exploring a HCG approach 

to acquiring motion data for PbD. 

Experiment 

The control condition of our experiment presented 

participants with instructions for basic manipulation 

without motivation or context. We abstracted from the task 

domain cooking in order to provide a generalizable, neutral 

counterpart to the game scenario. This includes two design 

choices that might have affected the aspects of experienced 

presence and autonomy, respectively. The first is that a 

context can give such scenarios intentions: baking virtual 

pancakes is likely more motivating and likely increases 

presence over moving cubes. The second is that purely 

following instructions subdues the creative potential and 

experienced autonomy of playful virtual task exploration—

different players might develop different action strategies to 

reach the same goal. However, without the guiding effect of 

game mechanics and narrative, it is very difficult to control 

action frequency in such free designs. We leave exploring 

the effects of these design nuances for future work. 

Scalability and Extendibility 

We have illustrated that the chosen game design approach 

works for the cooking subtask of making a pancake. This 

can be easily scaled and extended to other task domains 

with similar characteristics. Strategy is a game genre with 

huge variation. For TD, more tower types, different levels, 

varied enemy resistances and tactics are only a few 

examples of how game design can model more diverse and 

complex actions. 

Embodied Human Computation Games 

HCG can incorporate embodied knowledge by capturing 

intricate details of motion behaviors through modern 

natural user interfaces. The mapping of game intentions to 

task domain actions is a flexible design decision. However, 

with embodiment issues, the mapping of user input to 

actions, also discussed for PbD [2], can be very direct, 

requiring less complex methods in the deriving step. Thus 

marrying HGC for embodied task knowledge and imitation 

learning is an especially promising approach. 

Toward a Framework for Manual Behavior HCG 

In order to bring insights gathered in our design process 

into a tentative framework for choosing game archetypes 

for manual action demonstration human computation 

games, we formulate questions for designers to consider. 

Can every part of the game world be reached within a short 

time space? Large-scale locomotion is distinct to strategies 

of manual behavior. To capture the latter, the former should 

be avoided. In most tower defense games, the game world 

can easily fit into 1-4 screens. 

Do game controls require many degrees of freedom 

(DOF)? High-DOF game controls might be more difficult 

to match than low-DOF controls. In the tower defense 

example, the simple click-and-select controls gave us more 

freedom in matching manual actions. 

Can game time constraints be managed (e.g. turns, waves)? 

Full real-time game world simulation can be limiting, as 

manual actions often have a different time scale than the 

game world. Managed time constraints such as in turn-

based gameplay gives more leeway in matching task and 

game domain time scales. 

CONCLUSION 

HCI paradigms will change dramatically in the future when 

the hardware moves from current display-dominated 

interfaces to active agents such as household robots. 

Programming such companions for everyday activities 

requires new methods for acquiring knowledge about 

highly variable environments and the tasks they have to 

perform in them. With 3DFEND we established a human 

computation games approach for harvesting embodied 

knowledge on “workbench” manipulation tasks. Our study 

shows that this embodied human computation game 

motivates users to voluntarily contribute data for imitation 

learning. We mapped a set of typical manual actions to a 

tower defense game that could easily be extended to other 

task domains. Our work shows that gameful human 

computation approaches with consumer hardware motion-

based input can generate motion data for understanding 

human manual behavior. It provides a basis for future work 

on mappings from the task domain to the game domain. 
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