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Abstract

A central topic of modern research is the question of how to unify quantum mechanics

and gravitational theory. Numerous theories introduce additional dimensions or exotic

particles that result in a modification of Newton’s law of gravity at small distances.

Mostly these modifications are parametrized in the form of a Yukawa potential. Also

from the experimental side innumerable tests were accomplished in the past decades in

order to track down deviations to the Newtonian theory. This has covered distances of

over thirty orders of magnitude from experiments in particle accelerators to observations

on astronomical scales. The results so far show no deviations from Newton’s law of

universal gravitation and thus provide clear constraints on the parameters of the Yukawa

potential.

In this thesis, we introduce a novel theoretical concept to test these constraints. Our

model differs from previous tests, which mostly refer to external gravitational fields.

We consider a quantum mechanical many-particle system, a so-called self-gravitating

Bose-Einstein condensate, in which the individual particles interact additionally via a

gravitational potential. To ensure experimental testability, we study collective frequen-

cies of such a condensate, which are known to depend on the intrinsic interaction.

Using a variational method, we analytically determine step by step the contributions to

the collective frequencies due to the contact interaction, a Newtonian and a Yukawa-like

interaction. Furthermore, we also consider spherical and axially symmetric condensates,

where the latter can be realized in cigar-shaped or disk-shaped form. Finally, we discuss

hypothetical rational, logarithmic, and exponential modifications, which exhibit different

types of singularities, thus testing our method presented here.



Zusammenfassung

Ein zentrales Thema moderner Forschung ist die Frage, wie man Quantenmechanik und

Gravitationstheorie vereinheitlichen kann. Zahlreiche Theorien führen zusätzliche Di-

mensionen oder exotische Teilchen ein, die bei geringen Distanzen eine Modifikation des

Newtonschen Gravitationsgesetzes zur Folge haben. Meist werden diese Modifikationen

in Form eines Yukawa-Potentials parametrisiert. Auch von experimenteller Seite wur-

den in den vergangenen Jahrzehnten unzählige Tests durchgeführt, um Abweichungen

zur Newtonschen Theorie aufzuspüren. Dabei wurden von Experimenten in Teilchenbe-

schleuniger bis zu Beobachtungen auf astronomischen Skalen Distanzen von über dreißig

Größenordnungen abgedeckt. Die Ergebnisse zeigen bislang keine Abweichungen von

dem Newtonschen Gravitationsgesetz und liefern damit deutliche Einschränkungen für

die Parameter des Yukawa-Potentials.

In dieser Arbeit stellen wir ein neuartiges theoretisches Konzept vor, um diese Ein-

schränkungen zu testen. Unser Modell unterscheidet sich von bisherigen Tests, die sich

meist auf externe Gravitationsfelder beziehen. Wir betrachten ein quantenmechanisches

Vielteilchensystem, ein sogenanntes selbst gravitierendes Bose-Einstein Kondensat, in

welchem die einzelnen Teilchen zusätzlich über ein Gravitationspotential miteinander

wechselwirken. Um eine experimentelle Überprüfbarkeit zu gewährleisten, untersuchen

wir kollektive Frequenzen eines solchen Kondensates, die bekanntlich von der intrinsi-

schen Wechselwirkung abhängen.

Über eine Variationsmethode bestimmen wir analytisch Schritt für Schritt die Bei-

träge zu den kollektiven Frequenzen aufgrund der Kontaktwechselwirkung, einer New-

tonschen sowie einer Yukawa-Wechselwirkung. Weiterhin betrachten wir auch sphä-

rische und axialsymmetrische Kondensate, wobei letztere in Zigarren- oder Scheiben-

form realisiert werden können. Zum Schluss diskutieren wir noch rationale, logarith-

mische und exponentielle Modifikationen, die unterschiedliche Arten von Singularitäten

aufweisen, und testen damit unsere hier vorgestellte Methode.
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1. Introduction

1.1. Bose-Einstein condensates

In 1924, Bose showed that the thermal distribution of photons follows a Planck dis-

tribution [1]. This idea was carried on by Einstein in 1925 and extended the work to

non-interacting massive bosonic particles [2], marking the prediction of a new state of

matter. This state will then become known as the Bose-Einstein condensate (BEC).

Seven decades later, and with the aid of numerous advancements in cooling and trap-

ping technologies [3, 4, 5], the first condensates were experimentally realized in 1995.

Within a few months three groups reported a success: Cornell and Wieman condensed a

cloud of atomic 87Rb [6], Ketterle realized a condensate of 23Na [7] and Hulet of 7Li [8, 9].

This breakthrough was honored by the Nobel Prize in 1997 for Chu, Cohen-Tannoudji

and Phillips for the trapping methods and the Nobel Prize in 2001 for Cornell, Wieman

and Ketterle for the first realization of Bose-Einstein condensates.

The method used in the laboratories consists of two key techniques: The first one

is a magneto-optical trap in which the atoms are magnetically trapped by the Zeeman

shift. Counter-propagating laser beams in all three spatial directions then provide a

cooling temperature of 10 µK by spontaneous emission. The second technique is called

evaporative cooling. Here, the trap depth is reduced, allowing faster atoms to escape

the condensate cloud. This consequently results in a lower average temperature for the

remaining condensate. With this it is possible to cool 87Rb down to 170 nK [6]. To

verify the condensed state so-called time-of-flight measurements are performed. These

are measurements of the velocity distribution after the trap is switched off and the

condensate cloud has been expanded for a certain period. Fig. 1.1 shows the time-of-

flight measurements of the first realized condensate. The left plot shows the velocity

distribution of an atom cloud above the critical temperature of condensation, which

resembles a Maxwell-Boltzmann distribution as expected for a classical ideal gas. In the

1



1. Introduction

Figure 1.1.: Velocity distribution as a false color image taken from Ref. [6]: before the
condensation (left), right after the moment of condensation (middle), and
after further evaporation (right). The color indicates the number of atoms
at a certain velocity ranging from fewest (red) to greatest (white) number.
The white and blue fraction is a macroscopically occupied state representing
the condensate. The green and yellow portion indicates a thermal cloud.

middle the critical temperature is reached and a small fraction of atoms is in a condensed

state, while in the right plot below the critical temperature a large fraction of the cloud

has zero velocity and occupies the ground state thus forming a BEC.

The experimental success led to the establishment and rapid growth of the field of

ultracold atoms. Nowadays, the process of condensation is a well known routine and

performed by hundreds of research groups around the world. Consequently, both ex-

perimental and theoretical advances are numerous. Besides the already mentioned con-

densates of 87Rb, 23Na and 7Li, the list of created BECs ever expanded now including

H [10], 4He [11], 40Ca [12], 41K [13], 84Sr [14, 15] but also heavier elements like 133Cs [16]

and 174Yb [17], as well as isotopes of the aforementioned ones. Other elements with

significantly different particle interactions, namely the strong dipole-dipole interaction,

also have been successfully condensed, for example 52Cr [18], the lanthanoids 164Dy [19],
168Er [20], 169Tm [21] and quite recently in 2022 151Eu [22]. It is also possible to use

dimers of fermionic atoms [23], molecules like a pair of two fermionic 6Li [24]. Further,

mixtures of two different bosonic atoms [25] as well as bosonic and fermionic atoms [26]

have been studied.

In the last decade, more exotic and non-equilibrium condensates have become of par-

ticular interest, since the process of condensation also applies to photons [27] and quasi-

particles such as phonons [28], magnons [29], excitons and polaritons [30] due to having

2



1.1. Bose-Einstein condensates

integer spins.

Some of the above mentioned condensates can only be achieved by the use of Fesh-

bach resonances [31, 32]. These allow the interatomic interaction strength to be tuned

by an external magnetic field. In combination with a very precise external laser poten-

tial, atomic systems are highly controllable and create a playground for both studies of

fundamental physics and new applications. As a few examples, the creation of BECs

in microgravity is used to improve the precision of atom interferometry, which led to

the first creation of a condensate in space [33] and the world record of the coldest real-

ized temperature of around 38 pK [34]. It is also part of two experiments at the Cold

Atom Laboratory on the International Space Station [35]. Another important applica-

tion is the simulation of quantum mechanical systems which are generally difficult to

access. As an example, BECs in optical lattices [36, 37] mimic the behavior of electron

pairs in solids [38] and supersonic condensates show an event horizon like in black-hole

physics [39].

From a theoretical point of view, a bosonic gas forms a Bose-Einstein condensate when

the temperature of its particles falls below a critical temperature [38, 40]. This critical

point is derived with the thermal de-Broglie wavelength

λdB = ℏ

√

2π

mkBT
. (1.1)

Once the de-Borglie wavelength coincides with the average distance between two particles

the matter waves overlap and the condensation occurs. At a temperature of absolute

zero all bosons occupy the same state and thus the Bose-Einstein condensate forms a

giant matter wave, which makes the theoretical analysis significantly easier. Instead of a

full many-body theory the system is described by one single wave function. Additionally,

the particle interaction is described by a Lennard-Jones potential usually given by

VLJ(r) = 4ϵ

[

(σ

r

)12

−
(σ

r

)6
]

, (1.2)

where ϵ denotes the depth of the potential well and σ is the distance, where the potential

vanishes. The attractive part proportional to r−6 originates from the van der Waals

interaction. In dilute gases, i.e. when the particle distance is greater than the scattering

length, the Lennard-Jones potential is commonly approximated by a pseudopotential

3



1. Introduction

known as the contact interaction

Vcon(r − r′) = g δ(r − r′). (1.3)

The single wave function and the pseudopotential are used in a mean-field approach

leading to the Gross-Pitaevskii equation (GPE)

iℏ ∂tΨ = − ℏ
2

2m
∆Ψ + VextΨ + g|Ψ|2Ψ. (1.4)

This is the central equation of ultracold atoms. It consists of a Schrödinger equation

with an external potential Vext and additionally includes a nonlinear interaction between

the particles. Further, it accurately describes many static and dynamical properties of

BECs such as superfluidity and the formation of vortices [40, 41]. However, the GPE

is only valid for a temperature of 0 K, as the equation does not take into account any

temperature dependence. Since the critical temperature for condensates of photons,

excitons and magnons is of the order of the room temperature [27, 30, 29], the GPE is

not applicable to these cases, because the coupling to the thermal cloud or bath is not

negligible.

As a short remark, in addition to the contact interaction other potentials have also

been considered. Dipolar BECs like 52Cr interact via an anisotropic dipole-dipole in-

teraction proportional to r−3 [18] and in Ref. [42] an experimental setup is proposed

to mimic an effective r−1 Coulomb potential, see also the comment in Ref. [43]. Both

potentials are long-range interactions in contrast to the local contact interaction.

For the purpose of this thesis, we mention here another interesting aspect of BECs.

By modulating the external trapping potential, the bosonic particles in the condensed

state can be excited in collective oscillations [45, 46], where examples are shown in

Fig. 1.2. The theoretical predictions and the experimental results of the frequencies are

in excellent agreement [47], and the frequencies can be measured with a relative precision

of 10−3 [48, 49]. Furthermore, it turns out that some of these frequencies, in particular

those we are interested in, are sensitive to the interatomic interaction. Consequently,

the frequencies are used to study both type and strength of the interaction. A very

important tool for this is the Feshbach resonance, as it allows to change the scattering

length over seven orders of magnitude [50]. Even the sign of the interaction is accessible,

which corresponds to attractive or repulsive interactions.

4



1.2. Gravitational theory and its modifications

Figure 1.2.: Measurements of two collective modes taken from Ref. [44]. (Left) The
dipole oscillation shows a back and forth movement of the entire cloud.
(Right) In the quadrupole mode, the radial and axial widths oscillate out of
phase visible by the color-coded density change.

1.2. Gravitational theory and its modifications

The basis of the gravitational theory is an inverse square law for the gravitational force

between two masses at a certain distance proposed by Newton in the Principia [51]. It

became later known as Newton’s law of universal gravitation

FN = G
Mm

r2
(1.5)

or in form of a potential energy

VN(r) = −G
Mm

r
. (1.6)

Despite being one of the oldest fundamental laws of modern physics it is also one of

the least precisely known due to the relative uncertainty of the gravitational constant of

around 10−5 [52]. However, for most practical uses in daily life the law is sufficient but

fails to explain some observations like the exact perihelion shift or at strong gravitational

fields. These problems were solved by General Relativity (GR), a theory approaching

gravity very differently and opening a new perspective on how to think about space

and time. In its theory, however, Newtonian physics can be derived as a limiting case.

Experimental tests demonstrate precise agreement with the theoretically predicted per-

ihelion shift of Mercury [53] and quite recently the existence of gravitational waves [54]

and black holes [55].

Despite astonishing accuracy, there are still unsolved problems. Gravity does not

5



1. Introduction

Figure 1.3.: Experimental setups to test non-Newtonian gravity: (left) a torsion balance
experiment, picture taken from Ref. [67] and (right) a cantilever experiment
described in Ref. [68].

fit into the Standard Model, which encompasses the other three fundamental forces of

nature, namely electromagnetism, the weak and the strong force. Due to the lack of

a quantum description of gravity and the relative weakness of gravity compared to the

other forces, the so-called hierarchy problem, no grand unification was found so far [56].

As an important topic of current research many theories and experimental claims

emerged in recent decades concerning gravity, especially at short ranges in the sub-

millimeter regime. In 1971, Fujii considered a new dilaton field with a finite range of

interaction, resulting in a slightly different potential than the Newtonian potential [57].

Other ideas include the gravitational constant to depend on the distance [58] or to be a

composition of two different contributions by gravity and a fifth force [59, 60, 61, 62, 63].

Also the existence of extra dimensions were considered by Arkani-Hamed, Dimopoulos

and Dvali in 1998 known as the ADD model [64, 65].

In many cases, the modifications to Newtonian gravity can be parametrized in form

of a Yukawa-type potential [66]

VYuk = −G
Mm

r

(

1 + α exp
{

− r

λ

})

. (1.7)

The effective range of the modification may be the Compton wavelength in case of exotic

particles or the radius of the compactification of extra dimensions.

The amount of publications predicting deviations from Newtonian gravity lead to

many experimental tests of the inverse-square law. Comprehensive collections can be

6



1.3. Selfgravitating BECs

found i.e. in Refs. [66, 69, 70, 71]. The tests range from the subnanometer regime to

astronomical scales. For the smallest length scales, data from proton-proton collisions

have been collected and compared to the predictions of the Standard Model [72, 73, 74],

while the constraints at larger lengths come from astronomical observations such as the

secular motion of the perihelia of planets in the solar system [75]. In the millimeter

regime deviations from the inverse-square law can be tested via torsion balance exper-

iments, where a rotating attractor induces a varying torque due to an inhomogeneous

mass distribution to a detector [76, 67]. Another setup consists of a cantilever holding

a test mass above a moving alternating pattern of silicon and gold stripes to measure

forces at an Attonewton magnitude induced by the different masses of the pattern at

distances of 20 µm [68, 77], see Fig. 1.3. Also the Casimir effect can be used to obtain

bounds to the Yukawa parameters [78, 79, 80].

So far no deviations to Newton’s inverse square law were observed, thus the results

are commonly given as exclusion plots for both Yukawa parameter as shown in Fig. 1.4.

In order to improve the constraints on the Yukawa parameters or observe hints of non-

Newtonian physics, it is still an ongoing topic in current research in both experimental

and theoretical physics. In addition to the improvement of existing experiments, new

ideas are also proposed, including a new interpretation of geodesy data [81], the exis-

tence of quark stars in relation to the gravitational-wave event GW170817 [82], neutron

scattering [83] and neutron interferometry [84] as well as optomechanical quantum sen-

sors [85] and the satellite mission MICROSCOPE [86].

1.3. Selfgravitating BECs

A combination of both research areas BECs and gravity are discussed mainly in an

astrophysical context. Ruffini and Bonazzola introduced the concept of self-gravitating

bosons which satisfy the relativistic Einstein-Klein-Gordon equation [87]. There, the

bosons are trapped in their own gravitational potential, which is suggested to lead to a

formation of hypothetical astrophysical objects known as boson stars [88]. Furthermore,

self-gravitating bosons serve as dark matter candidates [89].

In 1996, Penrose proposed a self-gravitating quantum system described by the Schrö-

dinger-Newton equation [90]. It was shown that this equation can be obtained as the

nonrelativistic limit of the Einstein-Klein-Cordon equation [91, 92]. A many-particle

7



1. Introduction

Figure 1.4.: Exclusion plot for the Yukawa parameters α and λ taken from Ref. [69].
The colored region is excluded with a confidence level of 95%.

equivalent is known as the Gross-Pitaevskii-Poisson or Gross-Pitaevskii-Newton (GPN)

system [93]

iℏ ∂tΨ = − ℏ
2

2m
∆Ψ + VextΨ + g|Ψ|2Ψ + mΦΨ, (1.8a)

∆Φ = 4πG|Ψ|2, (1.8b)

where G denotes the gravitational constant and Φ is an additional interaction potential

which fulfills the Poisson equation (1.8b). It should be noted that the Schrödinger-

Newton equation is not a limiting case of the GPN system, since in the GPN system

the gravitational contribution originates from neighboring particles. The GPN system is

used to model boson stars and was also applied to dipolar Bose-Einstein condensates [94]

and ultracold plasma [95]. In the context of Bose-Einstein condensates it has been shown

that there are stable solutions for such condensates [96], although in the Thomas-Fermi

approximation the solutions become unstable due to a positive total energy [97]. For

dark matter galactic halos in the form of self-gravitating condensates, see e.g. Ref. [89],

numerical programs were developed to solve the GPN system via the Crank-Nicholson

8



1.4. Outline of the thesis

method [98].

1.4. Outline of the thesis

In this thesis we aim to improve the constraints on the Yukawa parameters α and

λ with the model of a non-relativistic self-gravitating Bose-Einstein condensate. The

gravitational interaction is therefore assumed to be described by a Yukawa potential.

We decided to focus on the calculation of the frequencies of low-lying collective modes,

as these quantities are experimentally accessible.

In Chapter 2 we begin with an introduction to the variational method used to derive

the collective frequencies. We follow the instructions given in Refs. [99, 100]. Further

details can be found in Ref. [101]. In this chapter we restrict ourselves to a formulation of

the method for an arbitrary two-particle interaction, which leads to general expressions.

These expressions are then specified in Ch. 3, where we assume a spherically sym-

metric condensate as the simplest case. After reviewing known results for the contact

interaction, we add a Newtonian gravitational potential and determine how this affects

the collective frequencies. Since the Newtonian potential is by its nature a long-range

interaction and divergent at its origin, we have to move the problem from position

space to the Fourier space. In the last part we replace the Newtonian potential with

the Yukawa potential, which leads to a dependence of the collective frequencies on the

Yukawa parameters. This allows us to create contour plots, which we then compare to

the experimentally verified results shown in Fig 1.4.

Afterwards, we generalize our calculations to axial symmetry in Ch. 4. Firstly, this is

closer to experimental setups generally used. Secondly, we hope to amplify the gravita-

tional interaction by a dimensional reduction. Again, we derive the collective frequencies

for condensates interacting via the common contact interaction, the Newtonian gravity

and finally the Yukawa-like potential step by step.

As a further application of the method described in this thesis, we investigate the

influence of other plausible modifications to the Newtonian potential in Chapter 5.

Finally, in Chapter 6 we summarize the results and conclude with an outlook on

further perspectives.

9
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Publications

Parts of this thesis have been published:

S. Gödtel, C. Lämmerzahl (2023). Constraints on short-range gravity with self-gravitating

Bose-Einstein condensates, arXiv.2304.01310
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2. Variational method and collective

modes

In this chapter, we review some fundamental basics of Bose-Einstein condensation. As

shown in the introduction Sec. 1.1, the central equation describing the physics of a Bose-

Einstein condensed state is a partial differential equation called the Gross-Pitaevskii

equation, see Eq. (1.4). We first discuss the limiting case of a non-interacting condensate

and present some simple results. Following Refs. [99, 101], we introduce a variational

approach to approximate solutions to the time-dependent GPE including small but non-

vanishing interactions. This method is widely used to determine the equilibrium width as

well as low-lying collective modes and frequencies of the condensate. For the variational

method, we assume arbitrary two-particle interactions and give formal expressions that

will be used later on. The type of the interaction and the symmetry of the system will

then be specified in the following chapters.

2.1. Gross-Pitaevskii equation

We consider a Bose-Einstein condensate, which is commonly described by the three-

dimensional GPE

iℏ ∂tΨ = − ℏ
2

2m
∆Ψ + VextΨ + g|Ψ|2Ψ, (2.1)

where the wavefunction Ψ := Ψ(x, t) in general depends on spatial and temporal coor-

dinates and is usually normalized with respect to the particle number N

∫

dx3|Ψ|2 = N. (2.2)

The first term of the right-hand side of Eq. (2.1) describes the kinetic energy including

11



2. Variational method and collective modes

the mass m of the atomic species and the second term contains an external trap potential

Vext, which is often chosen to be a harmonic potential

Vext(r) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (2.3)

with the respective trap frequencies ωj in each spatial direction. The last part of Eq. (2.1)

is of nonlinear nature and describes the contact interaction between two particles, where

g = 4πℏ2as/m is the interaction strength with as denoting the s-wave scattering length.

Interactions between three or more particles as well as higher order scattering terms are

neglected in most cases due to the dilute nature of the gas. More details can be found

in the literature, e.g. Refs. [38, 102].

Due to the nonlinear character, the GPE (2.1) is generally not solvable with an exact

analytic term. However, in the following we discuss the case of a non-interacting conden-

sate, which is exactly solvable for a harmonic potential. For this, we simply neglect the

interaction term by setting g = 0. As a consequence, the nonlinearity in the GPE (2.1)

vanishes and the equation thus reduces to an ordinary Schrödinger equation

iℏ ∂tΨ = − ℏ
2

2m
∆Ψ + VextΨ. (2.4)

Assuming the harmonic trap given by Eq. (2.3) the wave function is then simply given

as a Gaussian function

ΨGauss =

√
N

4
√
π3
√

lxlylz
exp

{

−
(

x2

2l2x
+

y2

2l2y
+

z2

2l2z

)}

, (2.5)

where we define the oscillator lengths lj =
√

ℏ/(mωj), respectively. This wave function

fulfills the normalization condition (2.2).

2.2. Variational ansatz

For the purpose of this work, we have to find a way to include weak interactions, as

we expect this to be the case for gravitational interactions at smaller scales. A widely

known method to do so is the variational approach, which is based on the results of

the non-interacting case discussed in the previous section. It is clear that including

a small interaction between the particles will influence the shape of the condensate.

12



2.2. Variational ansatz

Depending on the sign of the interaction strength g or alternatively the sign of the s-wave

scattering length as, the interaction is attractive or repulsive, leading to a contraction

or an extension of the BEC cloud. In order to derive the equilibrium width of the cloud

as well as the frequencies of the low-lying excitations, we follow a publication by Pérez-

Garcia et al. [99]. As mentioned in the beginning of this chapter we assume an arbitrary

two-particle interaction.

We start by defining the action

A[Ψ⋆,Ψ] =

∫

dt

∫

d3x L[Ψ⋆,Ψ,∇Ψ⋆,∇Ψ, ∂tΨ
⋆, ∂tΨ], (2.6)

where the Lagrange density L is given by

L = iℏΨ⋆(x, t)∂tΨ(x, t) − ℏ
2

2m
∇Ψ⋆(x, t)∇Ψ(x, t)

− Vext(x)|Ψ(x, t)|2 − 1

2
|Ψ(x, t)|2

∫

d3x′ Vint(x,x
′)|Ψ(x′, t)|2 (2.7)

and the wave function Ψ = Ψ(x, t) depends on spatial and temporal coordinates. Fol-

lowing Hamilton’s principle δA = 0, we have to extremize the action with respect to

the variational parameters. In our case, these are the wave function Ψ and its complex

conjugate Ψ⋆. This leads to the Euler-Lagrange equations

δA
δΨ(x, t)

=
∂L

∂Ψ(x, t)
−∇ ∂L

∂∇Ψ(x, t)
− ∂

∂t

∂L
∂Ψ̇(x, t)

= 0, (2.8)

δA
δΨ⋆(x, t)

=
∂L

∂Ψ⋆(x, t)
−∇ ∂L

∂∇Ψ⋆(x, t)
− ∂

∂t

∂L
∂Ψ̇⋆(x, t)

= 0, (2.9)

which represent a set of two differential equations for Ψ and Ψ⋆, namely the time-

dependent GPE for both the wave function and its complex conjugate describing the

system.

It is convenient to assume a harmonic oscillator potential as given by Eq. (2.3). For

the wave function, we extend the Gauß solution of the non-interacting case (2.5) to a

generalized Gauß ansatz, see Ref. [99]

Ψ(x, t) = α(t)
3
∏

j=1

exp

{

−(xj − x0j(t))
2

2A2
j(t)

+ ixjvj(t) + ix2
jBj(t)

}

. (2.10)
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2. Variational method and collective modes

Here we introduced as parameters the amplitude α(t), the center x0j(t), and the width

Aj(t) of the wave function. Furthermore, we have vj(t), the velocity at which the center

moves, and Bj(t), describing the expansion or contraction velocity of an oscillation

around the center.

The general ansatz (2.10) is widely used to derive various oscillation modes of the

condensate. In addition to the low-lying collective modes that we are mainly focusing

on in this work, there is also a very special mode called the Kohn mode. This mode

was originally investigated in terms of the cyclotron resonance of an interacting electron

gas [103] but was further extended to a harmonically trapped gas [104, 105]. For conden-

sates this mode is interpreted as the oscillation of the center of mass within the trapping

potential. It turns out that the corresponding frequency is identical to the trap fre-

quency. Additionally, it was shown that the frequency of the Kohn mode is independent

of the particle interaction and unaffected by the temperature [38]. As a consequence,

this mode is of particular interest in the experiment, as one can reliably determine the

trap frequency. However, there are also predictions that the Kohn theorem breaks down

in the vicinity of a Feshbach resonance [106] and for dissipative systems [107].

In this thesis we restrict ourselves to a cloud at the center of the trap, hence xj0(t) = 0.

Furthermore, we set the velocity vj(t) to zero, as we do not want the condensate to move

inside the trap as a whole. With that, we simplify the general expression in Eq. (2.10),

thus we choose in the following the ansatz for the wave function as

Ψansatz(x, t) =

√
N

4
√
π3
√

A1(t)A2(t)A3(t)
exp

{

−
3
∑

j=1

(

1

2Aj(t)2
+ iBj(t)

)

x2
j

}

. (2.11)

This function serves as a test function in the approximation method. The amplitude can

be derived explicitly by the normalization condition (2.2), which leads to the prefactor

given in Eq. (2.11). The parameters Aj(t) describe the widths of the Gaussian, while the

Bj(t) correspond to the expansion or contraction velocities of the wave function. Later

on we will see that the Bj(t) are essential for the correct dynamical behavior. In the

following, both sets of parameters Aj(t) and Bj(t) will be the variational variables.

Inserting our ansatz (2.11) into the action (2.6), we can rewrite the spatial integral of

the Lagrange density as Lagrange function. The action now depends on the parameters
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2.2. Variational ansatz

Aj(t) and Bj(t) and their temporal derivatives, thus

A =

∫

dt L
(

A(t), ∂tA(t), B(t), ∂tB(t)
)

. (2.12)

According to the Lagrange density (2.7), the Lagrange function consists of four individual

parts

L = Ltime + Lkin + Lpot + Lint, (2.13)

which we calculate separately now. For better readability, we omit the time dependence

in the notation of Ai and Bi.

The first contribution includes the temporal derivative

Ltime = iℏ

∫

d3x Ψ⋆∂tΨ. (2.14)

We insert the Gaussian ansatz and calculate the derivatives

Ltime = iℏ
N√
π

3
∑

j=1

[

1

Aj

∫ ∞

−∞

dxj

(

− Ȧj

2Aj

+
Ȧj

A3
j

x2
j − iḂjx

2
j

)

exp

{

−
x2
j

A2
j

}

]

. (2.15)

With the two Gauss integrals, see Ref. [108]

∫ ∞

−∞

dxj exp

{

−
x2
j

A2
j

}

=
√
πAj, (2.16)

∫ ∞

−∞

dxj x
2
j exp

{

−
x2
j

A2
j

}

=

√
π

2
A3

j , (2.17)

we then obtain an expression, where both terms including the first temporal derivative

with respect to Aj cancel each other. The result is the first contribution of the Lagrangian

in (2.13)

Ltime =
ℏ

2
N

3
∑

j=1

A2
jḂj. (2.18)
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2. Variational method and collective modes

The second term corresponds to the kinetic part of the Lagrange function

Lkin = − ℏ
2

2m

∫

d3x ∇Ψ⋆∇Ψ. (2.19)

It is treated in the same way as the first term. We insert the Gauss ansatz and calculate

the derivatives

Lkin = − ℏ
2

2m

N√
π

3
∑

j=1

1

Aj

(

1

A4
j

+ 4B2
j

)∫ ∞

−∞

dxj x
2
j exp

{

−
x2
j

A2
j

}

. (2.20)

After that we integrate and obtain

Lkin = −ℏ
2

m
N

3
∑

j=1

(

1

4A2
j

+ A2
jB

2
j

)

. (2.21)

The third term is the potential term given by

Lpot = −
∫

d3x Vext(x)|Ψ|2. (2.22)

We can easily calculate this term using the harmonic potential (2.3), thus

Lpot = −m

2

N√
π

3
∑

j=1

1

Aj

ω2
j

∫ ∞

−∞

dxj x
2
j exp

{

−
x2
j

A2
j

}

. (2.23)

Now we integrate to get

Lpot = −m

4
N

3
∑

j=1

ω2
jA

2
j . (2.24)

With the contributions (2.18), (2.21), and (2.24) the Lagrange function now reads

L =
3
∑

j=1

[

ℏ

2
NA2

jḂj −
ℏ
2

m
N

(

1

4A2
j

+ A2
jB

2
j

)

− m

4
Nω2

jA
2
j

]

+ Lint. (2.25)
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2.2. Variational ansatz

Note that the contribution of the two-particle interaction Lint is given in general by

Lint = −1

2

∫

d3x

∫

d3x′ |Ψ(x, t)|2Vint(x− x
′)|Ψ(x′, t)|2. (2.26)

When we insert the Gauss ansatz (2.11), we obtain

Lint = −1

2

N2

π3

1

A2
1A

2
2A

2
3

∫

d3x

∫

d3x′ Vint(x− x
′) exp

{

−
3
∑

j=1

x2
j − x′2

j

A2
j

}

. (2.27)

This expression now depends only on the parameters Aj, but not on the parameters Bj,

because the imaginary argument of the exponential cancels out when calculating the

absolute square, so Lint = Lint(Ax, Ay, Az).

As mentioned above, we extremize now the action A with respect to the variational

parameters Aj(t) and Bj(t), which can be written in form of the Euler-Lagrange equa-

tions

δA
δAj(t)

=
∂L

∂Aj(t)
− d

dt

∂L

∂Ȧj(t)
= 0, (2.28)

δA
δBj(t)

=
∂L

∂Bj(t)
− d

dt

∂L

∂Ḃj(t)
= 0. (2.29)

With the Lagrangian (2.25) the first equation yields

−ℏAjḂj + 2
ℏ
2

m
AjB

2
j +

m

2
ω2
jAj =

ℏ
2

2m

1

A3
j

+
1

N
∂Aj

Lint. (2.30)

Extremizing with respect to Bj(t) leads to the expression

Bj = −m

2ℏ

Ȧj

Aj

. (2.31)

This we insert into (2.30) and use the product rule for Ḃj such that the first order

time derivatives cancel each other. The remaining expression is then simplified to the

following set of ordinary differential equations (ODE) of second order

Äj + ω2
jAj =

ℏ
2

m2

1

A3
j

+
1

N

2

m
∂Aj

Lint(Ax, Ay, Az), (2.32)
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2. Variational method and collective modes

describing the change of the cloud width Aj(t) over the time t. Note that if we choose

Bj(t) = 0 at the beginning of our ansatz (2.11), the resulting equations (2.30) no longer

depend on time. By this, we receive a stationary solution. As a consequence, in order

to analyze the dynamical behavior of a condensate, it is essential to assume B(t) ̸= 0.

Now we want to write down the equations in a more compact way. For this purpose,

we introduce dimensionless variables

νj =
ωj

ω
, τ = ωt , γj =

√

mω

ℏ
Aj, (2.33)

where the parameter ω can be defined by the geometric mean of the frequencies ωj to

fix a frequency scale. This transformation leads to a set of dimensionless differential

equations

γ̈j = −ν2
j γj +

1

γ3
j

+
1

N

2

ℏω
∂γjLint

(
√

ℏ

mω
γx,

√

ℏ

mω
γy,

√

ℏ

mω
γz

)

. (2.34)

The first term on the right-hand side is the contribution of the external trap, while

the second part is derived from the kinetic energy. Due to the sign difference they have

opposite effects: the potential ensures a contraction of the cloud width, while the kinetic

energy provides a widening. The last part represents a contribution by the two-particle

interaction.

2.3. Equilibrium cloud width and collective modes

In the last section we solved the time-dependent GPE with a variational ansatz. As

a result we received a set of time-dependent ODEs (2.34), which describe a harmonic

oscillation of the condensate cloud with a dispersive part due to the kinetic energy of

a single particle and an attractive part because of the trapping potential. Now, in this

section we further investigate the equations. We are mainly interested in two results:

the first being the equilibrium width around which the cloud oscillates and the second

being the modes and the frequencies of these oscillations.

18



2.3. Equilibrium cloud width and collective modes

The equilibrium cloud width γj0 is determined by setting γ̈j = 0 in Eq. (2.34), so

−ν2
j γj0 +

1

γ3
j0

+
1

N

2

ℏω
∂γjLint

(
√

ℏ

mω
γx0,

√

ℏ

mω
γy0,

√

ℏ

mω
γz0

)

= 0. (2.35)

To analyze now the dynamics of the system we rewrite the equation of motion (2.34)

as a motion of a point particle in an effective potential

γ̈j = −∂γjVeff(γx, γy, γz), (2.36)

where the effective potential is given by

Veff(γx, γy, γz) =
∑

j

(

ν2
j

2
γ2
j +

1

2γ2
j

)

− 1

N

2

ℏω
Lint

(
√

ℏ

mω
γx,

√

ℏ

mω
γy,

√

ℏ

mω
γz

)

.

(2.37)

This can easily be verified by evaluating the derivative of that potential to retrieve

Eq. (2.34).

Next, for the oscillation we assume a small perturbation around the equilibrium such

that γj(τ) = γj0(τ) + δγj(τ). For better readability we omit the time dependence in the

following. Inserting the perturbation into the effective potential (2.37) and performing

a Taylor expansion for small perturbations δγj up to second order leads to

Veff(γx0 + δγx,γy0 + δγy, γz0 + δγz) =

Veff(γx0, γy0, γz0) + ∇Veff(γx0, γy0, γz0) · δγ +
1

2
δγTMδγ (2.38)

with the vector δγ = (δγx, δγy, δγz). The gradient of the effective potential at the

equilibrium point ∇Veff(γx0, γy0, γz0) is per construction by Eq. (2.36) and the condition

γ̈j = 0 for the steady state equal to zero. As a consequence, in Eq. (2.38) the linear part

in the perturbation δγ simply vanishes. The matrix M is given by the Hessian matrix

of the effective potential at the equilibrium

M =
(

∂γj∂γkVeff(γx, γy, γz)
∣

∣

γ=γ0

)

j,k
. (2.39)
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2. Variational method and collective modes

It can be written as the sum

M = M1 + Mint, (2.40)

where with the explicit effective potential in Eq. (2.37)

M1 =









ν2
x + 3

γ4
x0

0 0

0 ν2
y + 3

γ4
y0

0

0 0 ν2
z + 3

γ4
z0









(2.41)

represents the single particle contribution including the kinetic as well as potential part

and formally

Mint = − 1

N

2

ℏω

(

∂γj∂γkLint

(
√

ℏ

mω
γx,

√

ℏ

mω
γy,

√

ℏ

mω
γz

)∣

∣

∣

∣

∣

γ=γ0

)

j,k

, (2.42)

which consists of the two-particle interaction and is in general responsible for diagonal

as well as off-diagonal entries in the Hessian M .

The resulting equation

Veff(γx0 + δγx, γy0 + δγy, γz0 + δγz) = Veff(γx0, γy0, γz0) +
1

2
δγTMδγ (2.43)

describes a coupled oscillation around the equilibrium width γj0 with the associated

amplitude δγj. The oscillation modes and their frequencies are determined by the eigen-

vectors and eigenvalues of the Hessian matrix M given in Eq. (2.40). However, for an

explicit evaluation we have to specify the type of the two-particle interaction. This will

be done in the following chapters.
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3. Collective modes in spherical

condensates

After the general introduction to the variational method in the previous chapter, we

specify now the type of the two-particle interaction and investigate the low-lying col-

lective oscillations with the general expressions given in Sec. 2.3. We begin this chap-

ter with the commonly used contact interaction and derive already known results, see

Refs. [99, 101]. In the second part we consider the long-range Newtonian potential as a

new type of interaction between two particles. Since the real gravitational interaction

is expected to be negligible due to the small masses of the atoms, such an interaction

is usually discussed in terms of artificial potentials, see Refs. [42, 43]. As mentioned in

the introduction in Sec. 1.1, an experimental setup to induce an effective r−1 interaction

with a significantly larger interaction strength is proposed in Ref. [42]. Nevertheless, we

present here the detailed calculations and results for a real gravitational interaction as

a preparation to the last part of this chapter. There we look into the most prominent

example of modified Newtonian interaction, i.e. a Yukawa-like interaction, which intro-

duces two additional parameters: the interaction strength α and the effective range λ.

In particular, α can be chosen in such a way that it compensates the relative weakness

of the Newtonian interaction compared to the contact interaction. Consequently, this

would lead to measurable gravitational effects, as we demonstrate in this chapter. For

simplicity, throughout this chapter we will assume a spherically symmetric condensate.

The more complicated case of axial symmetry will be discussed in Ch. 4.

3.1. Contact interaction

First of all, we start with the contact interaction and reproduce already known results,

as given e.g. in Ref. [99, 101]. In the previous chapter we already derived general
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3. Collective modes in spherical condensates

expressions for the differential equations of motion Eq. (2.34), for the equilibrium cloud

width γj0 in Eq. (2.35) and for the Hessian matrix given by Eqs. (2.40), (2.41) and (2.42).

In these equations we have used the Lagrangian for the two-particle interaction Lint,

formally defined in Eq. (2.26) as a placeholder. In the following, we apply the potential

energy for the contact interaction

Vcon(x− x
′) = gδ(x− x

′) (3.1)

to explicitly determine the equilibrium cloud width γj0 and the Hessian matrix M .

3.1.1. Lagrangian of the contact interaction

Due to the δ-function in the contact interaction (3.1) we obtain from the definition of

the Lagrangian (2.26) describing the contribution of the interaction

Lcon = −g

2

∫

d3x |Ψ|4. (3.2)

Note that we have to add a factor 1/2 here to avoid a double counting of the interaction

terms as the particles are identical. For distinguishable particles this factor does not

occur. Now inserting the Gauss ansatz for the wave function (2.11) and solving the

Gaussian integrals results in

Lcon(Ax, Ay, Az) = − gN2

2
√

(2π)3
1

AxAyAz

. (3.3)

With the dimensionless Gauss width defined in (2.33), it reads

Lcon

(
√

ℏ

mω
γx,

√

ℏ

mω
γy,

√

ℏ

mω
γz

)

= − gN2

2
√

(2π)3

(
√

mω

ℏ

)3
1

γxγyγz
. (3.4)

This Lagrangian is valid in any symmetry due to the local nature of the contact inter-

action.
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3.1. Contact interaction

3.1.2. Equilibrium and collective frequencies

With the Lagrangian of the contact interaction (3.4) we now derive the corrections to

both the differential equations and the Hessian matrix due to the contact interaction.

In the ODE (2.34) the interaction term with the Lagrangian (3.4) is

2

Nℏω
∂γjLcon =

P

γxγyγz

1

γj
, (3.5)

with the definition of the dimensionless contact interaction strength

P =
gN

√

(2π)3
m

ℏ2

√

mω

ℏ
=

√

2

π
N
as
l
. (3.6)

In the last step we used the relation g = 4πℏ2as/m and introduce the oscillator length

l =
√

ℏ/(mω) to shorten the expression. This leads us to an ODE for the dimensionless

cloud width γj

γ̈j = −ν2
j γj +

1

γ3
j

+
P

γxγyγz

1

γj
. (3.7)

The contribution of the particle interaction in the last part depends on the sign of the

s-wave scattering length as. In most cases, the scattering length is positive, resulting in

another dispersive part in addition to the kinetic contribution.

The equilibrium width γj0 is again defined by setting γ̈j = 0 in Eq. (3.7), thus

−ν2
j γj0 +

1

γ3
j0

+
P

γx0γy0γz0

1

γj0
= 0. (3.8)

This is a set of algebraic equations where the last term represents a coupling of the three

equations introduced by the two-particle interaction.

For the Hessian matrix M we need to determine the elements M
(jk)
con (2.42), which

are proportional to the second derivative of Lcon (3.4). This leads to the diagonal and
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3. Collective modes in spherical condensates

off-diagonal entries

M (jj)
con =

P

γx0γy0γz0

2

γ2
j0

, (3.9a)

M (jk)
con =

P

γx0γy0γz0

1

γj0γk0
(3.9b)

with j ̸= k.

Finally, the Hessian for the contact interaction in general reads

M =









ν2
x + 3

γ4
x0

+ 2P
γ3
x0γy0γz0

P
γ2
x0γ

2
y0γz0

P
γ2
x0γy0γ

2
z0

P
γ2
x0γ

2
y0γz0

ν2
y + 3

γ4
y0

+ 2P
γx0γ

3
y0γz0

P
γx0γ

2
y0γ

2
z0

P
γ2
x0γy0γ

2
z0

P
γx0γ

2
y0γ

2
z0

ν2
z + 3

γ4
z0

+ 2P
γx0γy0γ

3
z0









. (3.10)

So far we have not assumed any symmetry of our system. Thus, the results are valid in

general for the contact interaction. Nevertheless, we dedicate this chapter to spherically

symmetric condensates, so we briefly mention this special case. The symmetry can be

realized by assuming

νx = νy = νz = ν, γx0 = γy0 = γz0 = γ0. (3.11)

Hence, the important equations simplify, i.e. for the equilibrium width we have to solve

only one equation

−ν2γ0 +
1

γ3
0

+
P

γ4
0

= 0, (3.12)

and for the collective frequencies we have to calculate the eigenvalues of the matrix

M =









ν2 + 3
γ4
0

+ 2P
γ5
0

P
γ5
0

P
γ5
0

P
γ5
0

ν2 + 3
γ4
0

+ 2P
γ5
0

P
γ5
0

P
γ5
0

P
γ5
0

ν2 + 3
γ4
0

+ 2P
γ5
0









. (3.13)

The first eigenvalue leads to the collective frequency

Ω
(con)
br

ω
=

√

ν2 +
3

γ4
0

+
4P

γ5
0

. (3.14)
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3.1. Contact interaction

Its corresponding eigenvector describes a radial oscillation, which is therefore also called

breathing mode.

In addition, we get one degenerate collective frequency

Ω
(con)
qu

ω
=

√

ν2 +
3

γ4
0

+
P

γ5
0

, (3.15)

associated to two quadrupole modes. In the next section we discuss these results in

detail.

3.1.3. Discussion

Here, we show the results for the equilibrium cloud width and the collective frequencies

for the simple case of a spherical condensate with a contact interaction between two

particles.

First, we have to find the equilibrium cloud width. For this we evaluate Eq. (3.12).

Without loss of generality, we set ν = 1 and rewrite the equation as

γ5
0 − γ0 − P = 0 (3.16)

In that form, we now search numerically for the roots of the function on the left hand-

side. From a mathematical point of view since the function being of fifth order, there

exists in total five roots in the complex plane. However, from a physical perspective we

are only interested in real positive solutions, as it should depict a positive width of the

condensate. In fact, using Descartes’ rule of sign [109], we can show that only one such

real positive root exists for the function on the left hand-side in Eq. (3.16). For this rule

we simply have to check the sign changes of the coefficients of a polynomial. For P > 0,

implying a repulsive contact interaction, we have only one change of sign, hence there

exist only one positive root.

Assuming P < 0 leads to two sign changes such that according to Descartes’ sign rule

we can have two positive real solutions or none. In fact, we can interpret Eq. (3.16) as

a function P (γ) with P (γ) = γ5 − γ. Searching for the minimum of this function leads

to Pmin = −0.535. For P < Pmin we have no solution for the equilibrium cloud width,

thus the cloud is instable for large attractive contact interaction. If Pmin < P < 0 there

exists a stable and an unstable solution. More details can be found in [100].

25



3. Collective modes in spherical condensates

Figure 3.1.: Equilibrium cloud width γ0 depending on the contact interaction strength
P for a spherical BEC. The figure on the right hand-side scales double-
logarithmically. The black dashed line represents the Thomas-Fermi limit
given in Eq. (3.17).

In Fig. 3.1 we show the equilibrium width γ0 depending on the interaction strength P .

The width increases with larger interaction strength. As expected, for higher interaction

strengths P , the repulsion between the particles in the condensate is greater, thus the

cloud is expanded. For the purpose of this work, we are only interested in a repulsive

contact interaction, meaning we only allow positive values for P for the rest of this

thesis.

In the second part, we are interested in the collective frequencies given by the equa-

tions (3.14) and (3.15). Again ν = 1 and for each value of P we have to insert the

corresponding cloud width γ0 determined in the previous calculation.

The results are shown in Fig. 3.2. Both frequencies are identical for P = 0 and

for larger interaction strength the frequencies split into two branches. The collective

frequency of the breathing mode is slightly increased, while the frequency corresponding

to the quadrupole modes drastically decreases. Approaching higher values of P , the

curves for both frequencies asymptotically converge towards a corresponding constant.

This regime of strong interaction is known as the Thomas-Fermi limit. According to [38],

if the interaction is strong enough, we can neglect the kinetic part in Eq. (3.16), which

is linear in γ0. As a result, we simply get

γ5
0 = P. (3.17)

We now apply the same approximation of neglecting the kinetic part for the collective

26



3.1. Contact interaction

Figure 3.2.: Collective frequencies Ωbr/ω and Ωqu/ω depending on the contact interaction
strength P for a spherical BEC. The figure on the right hand-side scales
double-logarithmically. The black dashed and black dotted lines represent
the Thomas-Fermi limits for each frequency.

frequencies given by Eqs. (3.14) and (3.15). So in the Thomas-Fermi limit the frequencies

are given by

Ω
(br)
con

ω
=

√

1 +
4P

γ5
0

,
Ω

(qu)
con

ω
=

√

1 +
P

γ5
0

, (3.18)

which simplifies with the equilibrium cloud width of Eq. (3.17) to Ω
(br)
con /ω =

√
5 ≈ 2.236

and Ω
(qu)
con /ω =

√
2 ≈ 1.414. This result coincides with the asymptotic behaviours in

Fig. 3.2 as well as the literature [110].

In the end of this section we give a typical experimental value for the contact interac-

tion strength P . As an example, for the commonly used 87Rb, the atomic mass m and

the s-wave scattering length as are given by

m = 87 · 1.66 · 10−27 kg, (3.19a)

as = 90a0 (3.19b)

with the Bohr radius a0.

The value for the s-wave scattering length as is taken from Ref. [38]. Furthermore, for

a realistic experiment, we assume the external trap frequency ω and the particle number
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3. Collective modes in spherical condensates

N to be

ω = 1 kHz, (3.20a)

N = 105. (3.20b)

Note that we are using the angular frequency ω, which in an experiment is related to

the frequency ν by ω = 2πν. Inserting these values into the definition of the interaction

strength P given in Eq. (3.6) leads to P ≈ 446, which is clearly in the Thomas-Fermi

regime, as shown in Fig. 3.2. With this, we calculate the equilibrium cloud width

γ0 ≈ 3.39 and the collective frequencies Ω
(con)
br /ω ≈ 2.234 and Ω

(con)
qu /ω ≈ 1.420, which

are very close to the Thomas-Fermi limit mentioned previously. In physical units using

Eq. (2.33) we then obtain A0 ≈ 2.89 µm, Ω
(con)
br ≈ 2.234 kHz, and Ω

(con)
qu ≈ 1.420 kHz as

the typical values for our example.

3.2. Newtonian interaction

Now it is time to take a look into a gravitational interaction. In order to analyze the

influence of an attractive Newtonian two-particle interaction, we follow the steps of the

previous section. However, instead of using a contact interaction potential given in (3.1),

we insert the Newtonian potential (1.6) into the Lagrangian of the interaction (2.26).

Therefore, in general we have

LN =
1

2

∫

d3r

∫

d3r′ |Ψ(r, t)|2 u

|r− r′| |Ψ(r′, t)|2, (3.21)

where we use the short notation u = Gm2 with G as the gravitational constant. Fur-

thermore, we assume a condensate of a single atomic species, thus the masses are equal.

Thus u is always positive. Note that we again have to include a factor 1/2 as the particles

are indistinguishable.

The integral in Eq. (3.21) diverges due to the singularity of the Newtonian poten-

tial (1.6) at |r − r
′| → 0. More precisely, it is a UV divergence, since the potential di-

verges at shorter distances. One possibility to handle this problem is using the Schwinger

parametrization from quantum field theory to rewrite all spatial integrals into Gaussian

integrals. This was already done in a diploma thesis [111] and we show the detailed

calculation in the Appendix A.
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3.2. Newtonian interaction

Despite this approach, a mathematically more convenient one will be used here as

well. To do this, we transform the spatial integrals in the Lagrangian (3.21) into the

Fourier space and solve the integrals there. This technique was used by Muruganandam

et al. to reduce the dipolar interaction to lower dimensions in Ref. [112]. Inspired by

this publication, we present in the following the evaluation of the Lagrangian (3.21) with

a Newtonian interaction potential for a spherically symmetric condensate.

3.2.1. Lagrangian in Fourier space

Starting point of the calculation is the energy contribution

LN = −1

2

∫

d3r

∫

d3r′ n(r) VN(r− r
′) n(r′) (3.22)

with the density n(r) = |Ψ(r)|2. A Fourier transformation of each component, e.g.

n(r) =
1

(2π)3

∫

d3k ñ(k)eik·r (3.23)

gives an expression with the integrals over r, r′, k, k′, and k′′. Further details are given

in the Appendix B.1. Rearranging and solving the integrals over both position spaces

leads to two delta distributions in the remaining momentum coordinates. This then

results in

LN = −1

2

1

(2π)3

∫

d3k ñ(k) ṼN(k) ñ(−k). (3.24)

To evaluate this integral we need the Fourier transform of both the density ñ(k) and

the Newtonian potential ṼN(k).

In order to determine the Fourier transform of the density ñ(k), we use the Gauss

ansatz (2.11) of the previous chapter with different widths Ax, Ay, and Az as the wave

function. The density as the absolute square of the wave function is then given by

n(r) = |Ψ|2 =
N√

π3AxAyAz

exp

{

−
(

x2

A2
x

+
y2

A2
y

+
z2

A2
z

)}

. (3.25)

The parameters Bj used in the ansatz (2.11) vanish in the density due to the complex

conjugation. This is true for all density-density interactions. Now we derive the Fourier
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3. Collective modes in spherical condensates

transform of the density. By definition according to (3.23) we have

ñ(k) =

∫

d3r n(r)e−ik·r. (3.26)

Inserting the ansatz and solving each integral separately, results in

ñ(k) = N exp

{

−1

4
(A2

xk
2
x + A2

yk
2
y + A2

zk
2
z)

}

. (3.27)

Next, we derive the Fourier transform of the gravitational potential (1.6). Starting

with the definition of the Fourier transformation

ṼN(k) = −u

∫

d3r
1

r
e−ik·r, (3.28)

we use spherical coordinates and immediately evaluate the integral over the angle φ

ṼN(k) = −2πu

∫ ∞

0

dr

∫ π

0

dϑ r2 sinϑ
1

r
exp{−ikr cosϑ}, (3.29)

where k2 = k2
x + k2

y + k2
z . Next, we use the substitution v = cosϑ, dv = − sinϑdϑ such

that

ṼN(k) = −2πu

∫ ∞

0

dr

∫ 1

−1

dv r2
1

r
exp{−ikrv}. (3.30)

For the integration over r, we have to add a factor e−µr which guarantees the convergence

of the integral accompanied by the limit µ → 0+

ṼN(k) = −2πu lim
µ→0+

∫ ∞

0

dr r
2 sin(kr)

kr
e−µr, (3.31)

which then gives

ṼN(k) = −4πu lim
µ→0+

1

k2 + µ2
. (3.32)

The final result is obtained by taking the limit µ → 0+

ṼN(k) = −u
4π

k2
. (3.33)
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3.2. Newtonian interaction

Finally, we insert the Fourier transforms of the density (3.27) and of the poten-

tial (3.33) into the Lagrangian given by Eq. (3.24), which leads to the expression

LN =
uN2

(2π)2

∫

d3k
1

k2
exp

{

−1

2
(A2

xk
2
x + A2

yk
2
y + A2

zk
2
z)

}

. (3.34)

For convenience, we use the dimensionless units given in (2.33) and additionally we

define a dimensionless momentum by

k =

√

mω

ℏ
κ. (3.35)

With this we obtain the Lagrangian

LN =
uN2

(2π)2

√

mω

ℏ

∫

d3κ
1

κ2
exp

{

−1

2
(γ2

xκ
2
x + γ2

yκ
2
y + γ2

zκ
2
z)

}

, (3.36)

where κ2 = κ2
x + κ2

y + κ2
z. Since we are interested in the ODE (2.34), the equilibrium

cloud width γj0 in Eq. (2.35), and the interaction part of the Hessian matrix given by

Eq. (2.42), it is sufficient to evaluate the first and second derivatives ∂γjLN and ∂γj∂γkLN,

which we address in the following section for the simplest case of spherical symmetry.

3.2.2. Equilibrium and collective frequencies

As a short-hand notation, we define the integral in (3.36) as

IN =

∫

d3κ
1

κ2
exp

{

−1

2
(γ2

xκ
2
x + γ2

yκ
2
y + γ2

zκ
2
z)

}

. (3.37)

According to the ODE (2.34) we have to determine the first derivative of the integral IN

with respect to the dimensionless Gauss width γj. Here, we interchange the order of the

integral over κj and the derivative with respect to γj as both are independent of each

other. Now we perform the derivative of the exponential function first, thus

∂γjIN = −γj

∫

d3κ
κ2
j

κ2
exp

{

−1

2
(γ2

xκ
2
x + γ2

yκ
2
y + γ2

zκ
2
z)

}

. (3.38)

We follow the same procedure for the second derivatives of IN, which will later on be

used to determine the Hessian matrix via Eq. (2.42). This yields for the diagonal and
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3. Collective modes in spherical condensates

off-diagonal elements

∂2
γj
IN =

∫

d3κ
γ2
jκ

4
j − κ2

j

κ2
exp

{

−1

2
(γ2

xκ
2
x + γ2

yκ
2
y + γ2

zκ
2
z)

}

, (3.39a)

∂γj∂γkIN = γjγk

∫

d3κ
κ2
jκ

2
k

κ2
exp

{

−1

2
(γ2

xκ
2
x + γ2

yκ
2
y + γ2

zκ
2
z)

}

(3.39b)

for j ̸= k. According to the Taylor expansion (2.38), the second derivatives have to be

evaluated at the equilibrium width γ0.

So far, these expressions are generally valid, but to explicitly solve the integrals we

have to specify the symmetry of the system. As mentioned at the beginning in this

chapter, we focus on spherically symmetric condensates. We assume the Gauss widths

γj to be equal, analogue to Eq. (3.11), and insert this into (3.38). Using spherical

coordinates for the integration, we define the right-hand side of (3.38) as the function

JN = −γ

∫ ∞

0

dκ

∫ 2π

0

dφ

∫ π

0

dϑ κ2 sinϑ
1

κ2
κ2
j exp

{

−1

2
γ2κ2

}

. (3.40)

According to spherical coordinates, the κj are given by

κx = κ cosφ sinϑ, κy = κ sinφ sinϑ, κz = κ cosϑ. (3.41)

The integrals are derived in detail in the Appendix B.2. For the angular parts, this

results in

∫ 2π

0

dφ

∫ π

0

dϑ sinϑ κ2
j =

4π

3
κ2 (3.42)

for all j. The remaining radial integral

JN = −γ
4π

3

∫ ∞

0

dκ κ2 exp

{

−1

2
γ2κ2

}

(3.43)

is then solved by

JN = −4π

3

√

π

2

1

γ2
. (3.44)
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3.2. Newtonian interaction

Finally, with the prefactors in (3.36) the additional term in the ODE (2.34) becomes

1

N

2

ℏω
∂γjLN = −Q

γ2
(3.45)

where we define the gravitational interaction strength analogue to the contact interaction

strength in (3.6) as

Q =
1

3

√

2

π

uN

ℏω

√

mω

ℏ
=

1

3

√

2

π
N
ag
l
. (3.46)

Here we introduce a gravitational scattering length ag = u/(ℏω) similar to the s-wave

scattering length as. As a reminder, we note that u was defined as u = Gm2, meaning it

is always positive. This corresponds then to the strength of the gravitational interaction,

therefore Q > 0.

The differential equation (2.34) including the contact and Newtonian two-particle

interaction is consequently

γ̈ = −ν2γ +
1

γ3
+

P

γ4
− Q

γ2
. (3.47)

Note that the additional gravitational part is always attractive like the trapping potential

due to the sign of the interaction strength Q. Moreover, the additional gravitational

contribution is proportional to γ−2 instead of γ−4 in case of the contact interaction.

We obtain the steady state again by setting γ̈ = 0, hence

−ν2γ0 +
1

γ3
0

+
P

γ4
0

− Q

γ2
0

= 0. (3.48)

Next, we determine the entries in the Hessian matrix (2.42) for Newtonian interaction.

To do this, we look again at the integrals in (3.39) with the assumption of spherical

symmetry, i.e. the Gauss widths γj are equal. For the diagonal elements in spherical

coordinates we define the right-hand side of (3.39a) as

J
(jj)
N =

∫ ∞

0

dκ

∫ 2π

0

dφ

∫ π

0

dϑ κ2 sinϑ
1

κ2
(γ2κ4

j − κ2
j) exp

{

−1

2
γ2κ2

}

. (3.49)
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3. Collective modes in spherical condensates

With the κj given in Eq. (3.41) the angular parts result in

∫ 2π

0

dφ

∫ π

0

dϑ sinϑ (γ2κ4
j − κ2

j) = 4π

(

γ2

5
κ4 − 1

3
κ2

)

(3.50)

for all j. Inserting (3.50) into (3.49) eventually leads to

J
(jj)
N =

16π

15

√

π

2

1

γ3
. (3.51)

See Appendix B.2 for further details. Evaluating J
(jj)
N at the equilibrium point γ = γ0

results therefore in the diagonal elements

M
(jj)
N = −4

5

Q

γ3
0

(3.52)

with the definition of Q in (3.46).

The off-diagonal elements (3.39b) are treated analogously. In spherical symmetry, we

define

J
(jk)
N = γ2

∫ ∞

0

dκ

∫ 2π

0

dφ

∫ π

0

dϑ κ2 sinϑ
1

κ2
κ2
jκ

2
k exp

{

−1

2
γ2κ2

}

. (3.53)

The angular integration shown in the Appendix B.2 is

∫ 2π

0

dφ

∫ π

0

dϑ sinϑ κ2
jκ

2
k =

4π

15
κ4 (3.54)

for all j and k. This and the radial integral in Eq. (3.53) then gives

J
(jk)
N =

12π

15

√

π

2

1

γ3
. (3.55)

Once more, evaluating at the equilibrium point γ0 leads to the off-diagonal elements

M
(jk)
N = −3

5

Q

γ3
0

. (3.56)

Finally, the Hessian matrix including contact and Newtonian interaction in spherical
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3.2. Newtonian interaction

symmetry is

M =









ν2 + 3
γ4
0

+ 2P
γ5
0

− 4
5
Q

γ3
0

P
γ5
0

− 3
5
Q

γ3
0

P
γ5
0

− 3
5
Q

γ3
0

P
γ5
0

− 3
5
Q

γ3
0

ν2 + 3
γ4
0

+ 2P
γ5
0

− 4
5
Q

γ3
0

P
γ5
0

− 3
5
Q

γ3
0

P
γ5
0

− 3
5
Q

γ3
0

P
γ5
0

− 3
5
Q

γ3
0

ν2 + 3
γ4
0

+ 2P
γ5
0

− 4
5
Q

γ3
0









. (3.57)

Similar to Sec. 3.1, we find the breathing mode with the frequency

Ω
(N)
br

ω
=

√

ν2 +
3

γ4
0

+
4P

γ5
0

− 2Q

γ3
0

(3.58)

and two quadrupole modes each with the frequency

Ω
(N)
qu

ω
=

√

ν2 +
3

γ4
0

+
P

γ5
0

− Q

5γ3
0

. (3.59)

In the next section we discuss these results.

3.2.3. Discussion

Analogous to Section 3.1.3, we investigate the behavior of the equilibrium cloud width

and the collective frequencies now depending on the gravitational interaction strength

Q. Setting ν = 1, we rewrite the equation for the cloud width from Eq. (3.48) as

γ5
0 − γ0 − P + Qγ2

0 = 0. (3.60)

To apply Descartes’ rule of sign, we rearrange the coefficients such that

γ5
0 + Qγ2

0 − γ0 − P = 0. (3.61)

Here we clearly see that we have only one sign change if P > 0, so once again we have

exactly one guaranteed positive root.

In the case P < 0 we have two sign changes again, but in contrast to the previous

section we now have two attractive components as well as the contact interaction and

the gravitational interaction. The latter results in an instability of the condensate even

for |P | < |Pmin| = 0.535 if the gravitational strength Q is large enough.
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3. Collective modes in spherical condensates

Figure 3.3.: Equilibrium cloud width γ0 and collective frequencies Ωbr/ω and Ωqu/ω de-
pending on the gravitational interaction strength Q for a spherical BEC. In
this example we choose P = 446. The black dashed and black dotted lines
show the corresponding case without gravitational contribution, so Q = 0.

For a numerical evaluation we set the contact interaction strength to the realistic

value for 87Rb P = 446 as shown in the end of Section 3.1.3. We search again for the

roots of the functions on the left hand-side of Eq. (3.60). This time, although, variable

gravitational interaction strengths Q are considered. This leads to the equilibrium cloud

width γ0, which is then used to determine the collective frequencies given by Eqs. (3.58)

and (3.59) with the fixed value for P and variable Q.

Fig. 3.3 shows the behavior of the equilibrium cloud width and the collective fre-

quencies as a function of the gravitational interaction strength Q. For small values of

Q, neither the cloud width nor the collective frequencies show any visible dependency.

Eventually at Q ∼ 10 the attractive interaction is strong enough to compete with the

repulsive contact interaction, leading to a significant shrinkage of the cloud width. On

the other side, the collective frequencies are increased for these large values of Q.

As a short remark, we mention here an analytical limit. For high values of Q, we are

allowed to neglect the kinetic contribution as part of a Thomas-Fermi limit. If we now

additionally set P = 0, Eq. (3.60) becomes

γ3
0 + Q = 0, (3.62)

which does not have a positive solution for the Gauss width γ. Here, we see in a very

simplified case that a BEC with only an attractive interaction is not stable. Either a

repulsive force, usually given by the contact interaction, is required to at least compen-
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3.2. Newtonian interaction

Table 3.1.: Comparison of s-wave scattering length as, contact interaction strength P ,
and gravitational interaction strength Q for some condensed atomic species.
The values for the as are taken from Refs. [38, 113], the interactions strengths
are calculated with Eqs. (3.6) and (3.46). We assume N = 105 particles and
a trap frequency of ω = 1 kHz.

as [nm] P Q [10−20]

7Li 1.7 46 0.08
23Na 1.0 49 1.5
41Ka 4.5 289 6.3
87Rb 4.7 446 41
133Cs 14.8 1714 119
174Yb 5.5 728 234

sate the attractive force, or there is no interaction, which corresponds to an ideal Bose

gas.

In the end of this section, we give a realistic value for the gravitational interaction

strength Q. It can be determined by inserting the typical experimental values from

Eq. (3.19) and Eq. (3.20) into the definition (3.46), which leads to Q = 4.1 · 10−19.

Compared to the contact interaction strength P = 446 derived in the previous section,

the gravitational interaction strength is more than twenty orders of magnitude smaller.

For the equilibrium cloud width and the collective frequencies including a Newtonian

interaction we obtain

A0 ≈ 2.89 µm, Ω
(N)
br ≈ 2.234 kHz, Ω(N)

qu ≈ 1.420 kHz (3.63)

in physical units, which are thus identical to the values in case of the contact interaction

within the given accuracy, as seen in the previous section. This suggests that any changes

in the equilibrium width and the collective frequency due to Newtonian gravity are far

too small to be realistically measured in present laboratory.

In Tab. 3.1 we give a brief overview of the interaction strengths P and Q for some

condensed atomic species. In comparison with Fig. 3.1 every listed value of P can be

considered in the Thomas-Fermi regime. In regards of the gravitational interaction, Q

is greater for heavier elements as expected.
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3. Collective modes in spherical condensates

3.3. Yukawa interaction

In the last part of the chapter we explore the effects of a Yukawa-like gravitational

interaction potential on a condensate. As mentioned in the introduction of this thesis in

Section 1.2, the Yukawa potential is a simple yet interesting model and nowadays still

part of active research in the field of short-range gravity. Although the experiments so

far have mainly dealt with the case of a test mass interacting with a classical external

gravitation field, we will now focus on a purely intrinsic interaction within a quantum

system. Analogue to the previous sections, we derive expressions for the equilibrium

cloud width and the collective frequencies in the special case of a spherically symmetric

BEC.

3.3.1. Lagrangian of the Yukawa interaction

To investigate the model for short-range gravity, we change the self-gravitating inter-

action potential by adding a Yukawa-like interaction given by (1.7) in addition to the

prior used Newton potential. For simplicity we split the gravitational interaction into

the sum of Newtonian and Yukawa-like gravity

VYuk(r) = −u

r
− α

u

r
exp

{

− r

λ

}

. (3.64)

The advantages of this potential are the following: First, we introduced two additional

variables, the interaction strength α and the effective range λ. As shown in Fig. 3.4, the

effective range guarantees us that for larger scales only the Newtonian part remains. On

the other side, the parameter α can be used to significantly increase the gravitational

effects on smaller length scales, despite the small interaction strength Q, as seen in

Sec. 3.2.3.

For our method developed in this thesis, we are now interested in the Fourier transform

of the Yukawa potential (3.64). The calculations are straightforward since we have

already solved the integrals with the pure Newtonian potential in the previous section.

The Fourier transformation of the potential (3.64) can also be split into two parts and

the integrals are solved analogously to Eq. (3.33)

ṼYuk(k) = −u
4π

k2
− αu

4π

k2 + 1
λ2

, (3.65)
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3.3. Yukawa interaction

Figure 3.4.: Schematic sketch of the Yukawa potential VYuk(r) for different values of α
and λ. In the left plot we set λ = 1, while on the right plot we use α = 100.
The black dashed line indicates the Newtonian potential.

where the limit in the second integral is not required due to the finite effective range λ.

Therefore, the second part of the expression still depends on both Yukawa parameters.

With the dimensionless units in (2.33) and (3.35) we formulate the Lagrangian in

Fourier space analogous to (3.36) as

LYuk =
uN2

(2π)2

√

mω

ℏ

∫

d3κ

(

1

κ2
+

α

κ2 + λ̄−2

)

exp

{

−1

2
(γ2

xκ
2
x + γ2

yκ
2
y + γ2

zκ
2
z)

}

, (3.66)

where we introduced the dimensionless effective range

λ̄ =

√

mω

ℏ
λ. (3.67)

3.3.2. Equilibrium and the Hessian matrix

We follow the steps of the investigations in the previous section for the Newtonian

interaction. It is convenient to define

I =

∫

d3κ

(

1

κ2
+

α

κ2 + λ̄−2

)

exp

{

−1

2
(γ2

xκ
2
x + γ2

yκ
2
y + γ2

zκ
2
z)

}

, (3.68)

which we split into the two parts I = IN + IYuk. The first is the Newtonian interaction

treated in Sec. 3.2, while the second describes the correction due to the Yukawa-like
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interaction

IYuk =

∫

d3κ
α

κ2 + λ̄−2
exp

{

−1

2
(γ2

xκ
2
x + γ2

yκ
2
y + γ2

zκ
2
z)

}

. (3.69)

The first derivatives regarding the dimensionless Gauss width γj are

∂γjIYuk = −γj

∫

d3κ
α

κ2 + λ̄−2
κ2
j exp

{

−1

2
(γ2

xκ
2
x + γ2

yκ
2
y + γ2

zκ
2
z)

}

(3.70)

and second derivatives leads to the diagonal and off-diagonal elements

∂2
γj
IYuk =

∫

d3κ
α

κ2 + λ̄−2
(γ2

jκ
4
j − κ2

j) exp

{

−1

2
(γ2

xκ
2
x + γ2

yκ
2
y + γ2

zκ
2
z)

}

, (3.71a)

∂γj∂γkIYuk = γjγk

∫

d3κ
α

κ2 + λ̄−2
κ2
jκ

2
k exp

{

−1

2
(γ2

xκ
2
x + γ2

yκ
2
y + γ2

zκ
2
z)

}

. (3.71b)

From this point on, we apply the spherical symmetry (3.11) and solve the inte-

grals (3.70) and (3.71) under these conditions. Because of the symmetry, we use spherical

coordinates given in (3.41). Since the Fourier transformed potential does only depend

on the radial coordinate κ, the angular parts are the same as in the Newtonian case, see

Eqs. (3.42), (3.50) and (3.54).

Consequently, the radial integral remains in the right-hand side of Eq. (3.70), which

we denote as

JYuk = −γ
4π

3

∫

dκ
ακ4

κ2 + λ̄−2
exp

{

−1

2
γ2κ2

}

. (3.72)

As shown in the Appendix B.3, this expression is solved by

JYuk = −4π

3
α

√

π

2

(

1

γ2
− 1

λ̄2
+

√

π

2

γ

λ̄3
exp

{

γ2

2λ̄2

}

erfc

[
√

γ2

2λ̄2

])

. (3.73)

With this result we obtain an additional term in the ODE (2.34). The differential

equation including contact, Newtonian, and Yukawa-like interaction then reads

γ̈ = −ν2γ +
1

γ3
+

P

γ4
− Q

γ2
− αQ

(

1

γ2
− 1

λ̄2
+

√

π

2

γ

λ̄3
exp

{

γ2

2λ̄2

}

erfc

[
√

γ2

2λ̄2

])

.

(3.74)
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For both gravitational interactions we have the identical interaction strength Q as defined

in (3.46). The equilibrium cloud width is then determined by

−ν2γ0 +
1

γ3
0

+
P

γ4
0

− Q

γ2
0

− αQ

(

1

γ2
0

− 1

λ̄2
+

√

π

2

γ0
λ̄3

exp

{

γ2
0

2λ̄2

}

erfc

[
√

γ2

2λ̄2

])

= 0.

(3.75)

Next, we derive the Hessian matrix. To do this, we evaluate the right-hand side of

Eq. (3.71) with spherical symmetry (3.11) and spherical coordinates (3.41). As already

mentioned, the angular integration is identical to the Newtonian case (3.50) and (3.54),

since the potential depends only on the radial coordinate κ. Thus, we only have to

perform the radial integral for both the diagonal and the off-diagonal elements.

For the diagonal elements we have the radial integral

J
(jj)
Yuk = 4π

∫ ∞

0

dκ κ2

(

γ2

5
κ4 − 1

3
κ2

)

α

κ2 + λ̄−2
exp

{

−1

2
γ2κ2

}

. (3.76)

The detailed calculation can be found in the Appendix B.3. Here, we only mention the

result

J
(jj)
Yuk = 4π

√

π

2

[

4

15

1

γ3
+

2

15

1

γλ̄2
+

1

5

γ

λ̄4

−
√

π

2

(

1

3

1

λ̄3
+

1

5

γ2

λ̄5

)

exp

{

γ2

2λ̄2

}

erfc

[
√

γ2

2λ̄2

]]

. (3.77)

Evaluating at the equilibrium point γ0 and including the prefactors of the Lagrangian (3.66)

and the Hessian (2.42), the contribution of the Yukawa-like interaction to the diagonal

elements in the Hessian matrix is

M
(jj)
Yuk = −αQ

(

4

5

1

γ3
0

+
2

5

1

γ0λ̄2
+

3

5

γ0
λ̄4

−
√

π

2

(

1

λ̄3
+

3

5

γ2
0

λ̄5

)

exp

{

γ2
0

2λ̄2

}

erfc

[
√

γ2
0

2λ̄2

])

,

(3.78)

where we used the definition of the gravitational interaction strength Q from (3.46).
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The off-diagonal elements result in

J
(jk)
Yuk =

4π

15
γ2

∫ ∞

0

dκ κ6 α

κ2 + λ̄−2
exp

{

−1

2
γ2κ2

}

, (3.79)

which gives

J
(jk)
Yuk = α 4π

√

π

2

(

1

5

1

γ3
− 1

15

1

γλ̄2
+

1

15

γ

λ̄4
−
√

π

2

1

15

γ2

λ̄5
exp

{

γ2

2λ̄2

}

erfc

[
√

γ2

2λ̄2

])

.

(3.80)

Thus, analogously the off-diagonal elements of the Hessian matrix are given by

M
(jk)
Yuk = −αQ

(

3

5

1

γ3
0

− 1

5

1

γ0λ̄2
+

1

5

γ0
λ̄4

−
√

π

2

1

5

γ2
0

λ̄5
exp

{

γ2
0

2λ̄2

}

erfc

[
√

γ2
0

2λ̄2

])

, (3.81)

due to the Yukawa-like interaction

With the Yukawa corrections to the diagonal and off-diagonal elements given by (3.78)

and (3.81), the full Hessian matrix M containing the contact interaction as well as both

Newtonian and Yukawa corrections, consists of the entries

M (jj) = ν2 +
3

γ4
0

+
2P

γ5
0

− 4

5

Q

γ3
0

− αQ

(

4

5

1

γ3
0

+
2

5

1

γ0λ̄2
+

3

5

γ0
λ̄4

−
√

π

2

(

1

λ̄3
+

3

5

γ2
0

λ̄5

)

exp

{

γ2
0

2λ̄2

}

erfc

[
√

γ2
0

2λ̄2

])

, (3.82a)

M (jk) =
P

γ5
0

− 3

5

Q

γ3
0

− αQ

(

3

5

1

γ3
0

− 1

5

1

γ0λ̄2
+

1

5

γ0
λ̄4

−
√

π

2

1

5

γ2
0

λ̄5
exp

{

γ2
0

2λ̄2

}

erfc

[
√

γ2
0

2λ̄2

])

(3.82b)

for j ̸= k. Its eigenvalues and thus the collective frequencies are calculated numerically

in the next section.

As a short remark at the end of this part, we investigate here a limiting case of the

Yukawa corrections. In the case of infinite interaction range λ → ∞ both the exponential

and the complementary error function tend to the value one, leaving only the first part of

the Yukawa correction. The differential equation (3.74) and the elements of the Hessian
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matrix (3.82) simplify in this limit to

γ̈ → −ν2γ +
1

γ3
+

P

γ4
− Q

γ2
− α

Q

γ2
, (3.83a)

M (jj) → ν2 +
3

γ4
0

+
2P

γ5
0

− 4

5

Q

γ3
0

− α
4

5

Q

γ3
0

, (3.83b)

M (jk) → P

γ5
0

− 3

5

Q

γ3
0

− α
3

5

Q

γ3
0

. (3.83c)

Reducing the strength α to zero leads to the results (3.47) and (3.57) from the previous

section.

3.3.3. Discussion

In this section we numerically evaluate the collective frequencies of a spherical condensate

interacting via a Yukawa-like potential. For this, we have to solve the equation for

the equilibrium cloud width (3.75), insert the results into the Hessian matrix given by

Eq. (3.82) and calculate its eigenvalues. We set the values for the contact interaction

strength P and the gravitational interaction strength Q fixed, while keeping the Yukawa

parameters α and λ as variables. This allows us to create contour plots, which we then

compare to experimental results shown in the introduction of Sec. 1.2.

First of all, we choose P = 446 and Q = 4.1 · 10−19 according to the typical values

shown previously in Sec. 3.1.3 and Sec. 3.2.3. Furthermore, the typical length scale of a

condensate can be roughly characterized by the oscillator length l =
√

ℏ/(mω), which is

commonly in the µm regime. As a consequence, the interesting values for λ are around

this length scale, i.e. it varies from 1 nm to 1 mm. For λ > 1mm, the interaction already

includes the whole condensate, thus it is uniform. On the other side, for λ < 1nm there

is effectively no interaction at all due of the dilute nature of condensates. Considering

values of α, we need to check whether the GPE theory, namely the assumption of a

mean-field, is valid. For this, we compare the energy contributions of the two-particles

interactions in the Lagrangian. The Lagrangian for the contact interaction was already

derived as in Eq. (3.3). An estimate for the Lagrangian of the Newtonian interaction is

obtained by a rough but simple approximation. If we focus just on the breathing mode,

we allow only a radial oscillation, i.e. the Gauss widths and their variations are identical,

namely Ax = Ay = Az = A and δAx = δAy = δAz = δA. Under these conditions, we

evaluate the Lagrangian in Eq. (3.34) in spherical coordinates. The integrals are easily
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solved and the result is

LN =
uN2

√
2π

1

A
. (3.84)

Strictly speaking, this is only valid for the breathing mode. However, as we have seen

in previous chapters, the quadrupole modes are of the same order of magnitude.

Assuming the particle number N = 105 and the Gaussian width A given by the

oscillator length as a length scale, we roughly estimate for a 87Rb condensate with the

typical values in Eqs. (3.19) and (3.20)

Lcon = − gN2

2
√

(2π)3
1

A3
= −4πℏ2

m
as

N2

2
√

(2π)3
1

A3
∼ −10−24J, (3.85a)

LN =
uN2

√
2π

1

A
=

Gm2

√
2π

N2 1

A
∼ 10−45J. (3.85b)

Since the Newtonian is roughly twenty orders of magnitude smaller than the contribution

of the contact interaction, the gravitational contribution can be neglected.

However, as we mentioned before, a fifth force, e.g. a Yukawa interaction, introduces

an additional interaction strength α, which in principle can compensate the difference

between Newtonian and contact interaction. Analogous to the Lagrangian for the New-

ton interaction, we derive the Lagrangian for the Yukawa-like interaction by focusing

only on the breathing mode. Thus, under the same conditions as before, we have to

solve the integrals in the Lagrangian (3.66) in spherical coordinates. As shown in detail

in the Appendix B.4, this results in

LYuk =
uN2

√
2π

1

A
+ α

uN2

√
2π

(

1

A
−
√

π

2

1

λ
exp

{

A2

2λ2

}

Erfc

[
√

A

2λ

])

. (3.86)

To simplify the discussion, we introduce x =
√

A/(2λ) as a short-hand notation, such

that

LYuk =
uN2

√
2π

1

A
+ α

uN2

√
2π

(

1

A
−

√
π

A
x exp

{

x2
}

Erfc [x]

)

. (3.87)
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In the limit x → 0, corresponding to an infinite interaction range λ → ∞, we get

LYuk →
uN2

√
2π

1

A
+ α

uN2

√
2π

1

A
. (3.88)

For infinite interaction length λ, the Lagrangian is therefore identical to the Newtonian

case multiplied by a constant α, as seen in Fig. 3.4 at the level of the potential. In this

case, an estimation with the same particle number N and Gauss width A as above leads

to

LYuk → α
Gm2

√
2π

N2 1

A
∼ 10−45J · α (3.89)

in the limit of infinite interaction range. For α < 1021, the contribution of the Yukawa

interaction is equal to or less than the contact contribution. This suggests that the

mean-field description is valid for these values of the interaction strength α.

On the other hand, for small effective ranges λ → 0 or x → ∞ respectively, we have

LYuk →
uN2

√
2π

1

A
+ α

uN2

√
2π

(

1

A
−

√
π

A

1√
π

)

= LN. (3.90)

This is intuitively clear, as according to the definition of the Yukawa potential (3.64) the

additional term vanishes in the case λ = 0. Thus, it coincides with the Newton potential

and is therefore independent of α. This phenomenon can also be seen in Fig. 3.4, as

we decrease the effective range. A better approximation for small but finite interaction

ranges is achieved by the series expansion up to second order. To do this, we approximate

in the Lagrangian (3.87)

x exp
{

x2
}

Erfc [x] ≈ 1√
π
− 1

2
√
π

1

x2
. (3.91)

Now the first term cancels, but the second remains, so

LYuk → +α
uN2

√
2π

1

A
· 1

2
√
π

1

x2
, (3.92)

45



3. Collective modes in spherical condensates

Table 3.2.: Upper boundaries for the interaction strength α depending on the effective
range λ, such that the Yukawa interaction is smaller or comparable to the
contact interaction. Therefore the mean-field description is still valid. The
values are calculated with Eq. (3.94). In the limit λ → ∞ Eq. (3.89) holds.

λ [m] 10−10 10−9 10−8 10−7 10−6 ∞
α 1028 1026 1024 1022 1020 1021

which in terms of the effective interaction range λ leads to the estimation

LYuk → α
uN2

√
2π

1

A3
λ2 ∼ 10−32 J

m2
· αλ2. (3.93)

Following the same arguments as above, we derive a simple relation between the Yukawa

parameter

α = 108 m2 1

λ2
. (3.94)

A few exemplary values for pairs of the Yukawa parameter are shown in Tab. 3.2. There

we see that e.g. for λ = 1 nm we have α < 1026. The last value shows the limit for

infinite effective range shown in Eq. (3.89). This suggests that even for λ = 1 µm we

can safely assume α < 1021.

With these possible values for the Yukawa parameters α and λ, we can now go further

into detail of the numerical calculation. First of all, we rewrite the equation for the

steady state containing the Yukawa correction (3.75)

γ5
0 − γ0 − P + Qγ2

0 + αQ

(

γ2
0 −

γ4
0

λ̄2
+

√

π

2

γ5
0

λ̄3
exp

{

γ2
0

2λ̄2

}

erfc

[

γ0√
2λ̄

])

= 0 (3.95)

and numerically search for the roots of the function on the left hand-side for a given set of

α and λ̄. Unfortunately, we cannot take advantage of Descartes’ rule of sign to Eq. (3.95)

due to the transcendental functions. A series expansion of both the exponential and the

complementary error function leads to a polynomial of infinite order with alternating

signs. According to Descartes’ rule, there can be an infinite number of roots. In this

case we have to check that these are the only physical plausible roots.

Using the dimensionless transformation (2.33) backwards, we can now express the
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3.3. Yukawa interaction

Figure 3.5.: Contour plot for the equilibrium cloud width A0(λ, α) for P = 446 and
Q = 4.1 · 10−19. The black lines indicate a difference of 0.01 µm to 0.05 µm
compared to the Newtonian case given in Eq. (3.63). For better visibility,
the curves alternate between solid and dashed lines.

values of the equilibrium cloud width γ0 in physical units, which is the Gauss width A0

depending on α and λ. For the typical example of 87Rb we insert the parameters given

in (3.19) and (3.20) as in the previous section.

The results are shown in Fig. 3.5. We plot the physical value of the Gauss width A0

as a color coded contour plot. The black curves correspond to a difference of 0.01 µm up

to 0.05 µm compared to the Newtonian case given in Eq. (3.63) in the previous section.

To distinguish each curve we choose to show the lines as solid or dashed alternating.

Significant changes occur for higher values of α > 1018. A larger interaction strength

leads to a smaller equilibrium width, as expected from an attractive gravitational inter-

action. On the other hand, for an effective interaction range of λ > 10−5m, the curves

become flat because the whole mass is already concentrated within this length.

We plug the values for the dimensionless equilibrium width γ0 now into the Hessian

matrix given by (3.82) to calculate the eigenvalues representing the collective frequencies.

As already seen in the analytical results (3.59), it turns out that the two quadrupole

modes are degenerated, hence they occur with the same frequency. Both frequencies of

the breathing mode Ωbr and the quadrupole modes Ωqu are shown in Fig. 3.6. Again, we

show the physical values in colors and differences ranging from 1 Hz to 5 Hz compared

to the Newtonian case given in Eq. (3.63) as black curves. Qualitatively, the plots show

the same behavior as for the equilibrium width, except that the frequencies increase
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3. Collective modes in spherical condensates

Figure 3.6.: Contour plot for the breathing frequency Ωbr(λ, α) and the quadrupole fre-
quency Ωqu(λ, α) for P = 446 and Q = 4.1 · 10−19. The black lines indi-
cate a difference of 1 Hz to 5 Hz compared to the Newtonian case given
in Eq. (3.63). For better visibility, the curves alternate between solid and
dashed lines.

for stronger interactions, similar to the Newtonian case. Comparing the physical values

of both frequencies, the breathing frequency is higher than the quadrupole frequency,

similar to the results of the previous sections. This is why the lines indicating a difference

of a fixed value like 1 Hz is slightly lower for the breathing frequency.

In the following, we investigate the influence of certain physical parameters such as the

particle number and the s-wave scattering length onto the contour plots shown in Fig. 3.6.

In the experiment, it is possible to produce condensates with higher particle numbers

N or tune the s-wave scattering length as via Feshbach resonances mentioned in the

introduction. As such, we show the breathing frequency in Fig. 3.7 and the quadrupole

frequency in Fig. 3.8 for 105 to 109 particles with scattering lengths between 10−9 m

and 10−11 m. Increasing each parameter leads to higher collective frequencies, which

finally results in frequencies of several MHz. If we hypothetically reach a precision of

1 Hz, represented by the lowest black line in each plot, we clearly see that higher particle

numbers and lower scattering lengths are favorable to set the best constraints for the

Yukawa parameters α and λ. In these examples, we find α ∼ 1014 as the lowest bound

for at effective range of λ ∼ 10 µm. Again, if we look closely, the frequency of the

breathing mode Ωbr gives slightly better results than those of the quadrupole mode Ωqu,
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3.3. Yukawa interaction

Figure 3.7.: Frequency Ωbr(λ, α) in units of 1 kHz for varying particle number N and
scattering length as. Each row shows N = 105, N = 107 and N = 109 and
each column as = 10−9 m, as = 10−10 m and as = 10−11 m. The black lines
indicate a difference of 1 Hz to 5 Hz compared to the Newtonian case given
in Eq. (3.63). For better visibility, the curves alternate between solid and
dashed lines.

as Ωbr is in general larger.

Next, we also show how the trap frequency affects the collective frequencies. In the

experiment, this is controlled by the frequency of the laser beams used for the magneto-

optical trap. For the calculations we assume trap frequencies of 103 Hz to 105 Hz. The

results are shown in Fig. 3.9 for both the breathing frequency and the quadrupole fre-

quency. Increasing the trap frequency leads to higher values of the collective frequencies

and also to better constraints for α. Note that we also shift the black lines indicating

a difference to the Newtonian case towards lower effective ranges λ, because the con-
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Figure 3.8.: Frequency Ωqu(λ, α) in units of 1 kHz for varying particle number N and
scattering length as. Each row shows N = 105, N = 107 and N = 109 and
each column as = 10−9 m, as = 10−10 m and as = 10−11 m. The black lines
indicate a difference of 1 Hz to 5 Hz compared to the Newtonian case given
in Eq. (3.63). For better visibility, the curves alternate between solid and
dashed lines.

version factor between dimensionless values and those in physical units depends on the

trap frequency ω, see Eq. (3.67). As a consequence, we hypothetically improve the con-

straints of effective range by one order of magnitude by increasing the trap frequency to

ω = 105 Hz.

Instead of increasing the trap frequency, which is only possible for one or two orders

of magnitude in the experiment and therefore only marginally realistic for further im-

provement, we can increase the precision of the frequency measurement. In Fig. 3.10

we assume that we measure the collective frequency with a precision of 10 Hz (left),
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3.3. Yukawa interaction

Figure 3.9.: Breathing and quadrupole frequency Ωbr(λ, α) and Ωqu(λ, α) for a varying
trap frequency ω = 103 Hz, ω = 104 Hz and ω = 105 Hz. The black lines
indicate a difference of 1 Hz to 5 Hz compared to the Newtonian case given
in Eq. (3.63). For better visibility, the curves alternate between solid and
dashed lines. Note that the range of λ differs for each column.

1 Hz (middle) and 0.1 Hz (right). The color coded contour plot in all three pictures is

the same for each frequency Ωbr and Ωqu, respectively. The measurements precision only

affects the black lines, indicating the difference compared to the Newtonian results. Sim-

ilar to the results in Fig. 3.9, we reach constraints for the interactions strength α ≈ 1016

by increasing the precision to 0.1 Hz. On the other hand, we only slightly improve the

constraints for the effective range λ in contrast to Fig. 3.9, since the range depends

directly on the trap frequency ω, but not on the precision of the measurement. As a

consequence, increasing the trap frequency instead of the precision of the measurement

turns out to be more valuable in considerations for future experiments.

Lastly, and in regards of gravity, the most obvious choice is a variation of the mass.

We consider 7Li as a very light atom species, 87Rb as the typical condensate and 174Yb as

the heaviest element, which were successfully condensed, see Ref. [17]. Since the s-wave

scattering length as depends on the chosen species we now have two possibilities: First,

we use the corresponding natural scattering length for each mass, which are aLis = 33a0,

aRb
s = 90a0 [38] and aYb

s = 104a0 [113] in units of the Bohr radius a0 = 5.29·10−11 m. The
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3. Collective modes in spherical condensates

Figure 3.10.: Breathing and quadrupole frequency Ωbr(λ, α) and Ωqu(λ, α) for a the trap
frequency ω = 103 Hz. The black lines indicate a difference of 10 Hz, 1 Hz
and 0.1 Hz to the Newtonian results in Eq. (3.63), respectively. For better
visibility, the curves alternate between solid and dashed lines.

results are shown in Fig. 3.11. Secondly, for a better comparison and with the argument

of Feshbach resonances, we set a fixed value for the scattering length as as = 1 nm to

particularly observe the mass dependency of the collective frequencies. These results are

shown in Fig. 3.12. In both cases the figures look quite similar. Larger masses result

in higher frequencies and again the quadrupole frequency in absolute units is smaller

than the breathing frequency. For 7Li, the black lines advocate very rough constraints

on the Yukawa parameters and are barely visible in the region shown. This is expected

because the gravitational interaction should be small for small masses. Increasing the

mass improves these constraints such that for 174Yb the lowest black line is of the order

α ∼ 1016. We also notice a very small shift to smaller effective ranges λ, as the conversion

factor between the dimensionless value and its corresponding physical value depends on

the mass. This is the same pattern we have seen earlier with the trap frequency, but

with a much smaller effect because we are only changing the mass by two orders of

magnitude.

To summarize, with our model of a self-gravitating spherical condensate interacting
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3.3. Yukawa interaction

Figure 3.11.: Breathing and quadrupole frequency Ωbr(λ, α) and Ωqu(λ, α) for different
atomic species with their respective scattering length: 7Li (as = 33a0)
(left), 87Rb (as = 90a0) (mid) and 174Yb (as = 104a0) (right). The black
lines indicate a difference of 1 Hz to 5 Hz compared to the Newtonian case
given in Eq. (3.63). For better visibility, the curves alternate between solid
and dashed lines. For 7Li the black lines are not visible, since the difference
to the Newtonian case is smaller than 1 Hz in the shown area.

via a Yukawa-like potential, we find constraints on the interaction strength α and the

effective range λ. These constraints can be improved by higher particle numbers N ,

lower scattering lengths as, larger trapping frequencies ω and of course heavier atom

species. It turns out that the collective frequency of the breathing mode is better suited

than that of the quadrupole mode.

Finally, in the end of this chapter, we compare our theoretical results to the experi-

mentally verified constraints shown in the Introduction 1.2 in Fig. 1.4. We will use three

examples, the first of which is the typical realizable condensate of 87Rb with N = 105,

as = 90a0 and ω = 1 kHz. As the second example we choose 174Yb with N = 108,

as = 10−10 m and ω = 10 kHz, which is more or less the limit of realizable condensates.

And as a third condensate we assume hypothetically 174Yb with N = 1011, as = 10−11 m

and ω = 103 kHz in order to obtain better constraints. In Fig. 3.13 we show the re-

sults of each model embedded into Fig. 1.4 with the current experimental data. The

colored curves each imply the difference of 1 Hz compared to the Newtonian case given
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3. Collective modes in spherical condensates

Figure 3.12.: Breathing and quadrupole frequency Ωbr(λ, α) and Ωqu(λ, α) for different
atomic species 7Li (left), 87Rb (mid) and 174Yb (right) with fixed scattering
length as = 10−9m. The black lines indicate a difference of 1 Hz to 5 Hz
compared to the Newtonian case given in Eq. (3.63). For better visibility,
the curves alternate between solid and dashed lines.

in Eq. (3.63). For the first case of a realistic 87Rb condensate, the results are completely

within the experimentally excluded area. The second example comes very close to the

experimental boundary and even leads to slightly better constraints for λ < 10−8 m,

as seen at the blue shaded area. The largest improvements are achieved in theory for

the third example of a Yb condensate. We can again see the effect of varying the trap

frequency. As a consequence, it is essential to increase the trap frequency and as such

the confinement of the condensate in order to reach significantly lower boundaries for

the Yukawa parameters α and λ.
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3.3. Yukawa interaction

Figure 3.13.: Comparison between the experimental data shown in Ref. [69] and our
results under the assumption of measuring a difference to the Newtonian
case in Eq. (3.63) of 1 Hz. The magenta line is the result for a typical 87Rb
condensate (N = 105, as = 90a0, ω = 103 Hz), the blue line for a close
to realistic 174Yb condensate (N = 108, as = 10−10 m, ω = 104 Hz) and
the red line for a hypothetical 174Yb condensate (N = 1011, as = 10−11 m,
ω = 106 Hz). The blue and the red shaded area indicate improvements of
the constraints for α and λ.
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4. Collective modes in axially

symmetric condensates

The variational approach is a powerful tool, as we have seen in the previous chapters

by analyzing the dynamics of a spherical three dimensional condensate and determining

the collective frequencies for three different types of particle interactions.

Another important application of this method is the derivation of effective equations

describing a condensate in lower dimensions [114]. In the experiment, such condensates

are realized in cylindrical external trap potentials, leading to cigar-shaped or disk-shaped

condensates representing an effective one-dimensional or two-dimensional system, re-

spectively. An interesting consequence of reducing the dimension of the system is a

potentially higher interaction strength [115, 116]. The main question of this chapter will

therefore be whether we can enhance the gravitational effects by changing the symmetry

of the condensate.

To answer this, we generalize our model to axially symmetric condensates. Similar to

the previous chapters, we will first review known results by only including the contact

interaction. After that, we will include Newtonian and Yukawa-like gravitational inter-

action step-by-step. We also discuss the numerical results of all three cases depending

on the interaction strengths as well as the aspect ratio of the trap, and compare them

with the spherical equivalents.

4.1. Contact interaction

Analogous to the previous chapter for spherical condensates, we first consider only the

contact interaction and reproduce already known results for the equilibrium cloud widths

and the collective frequencies, as a reference see e.g. Ref. [99].
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4. Collective modes in axially symmetric condensates

4.1.1. Collective modes

As we have mentioned in the beginning of this chapter, reducing the dimension of the

condensate leads to higher effective contact interactions. We investigate now the effect

of reducing the dimension on the collective frequencies. In Sec. 3.1 we already derived

a general expression of the differential equation for the cloud width γj, see Eq. (3.7),

especially for the equilibrium width γj0 in (3.8), and for the Hessian matrix M given in

Eq. (3.10). These equations are of course still valid in the case of axial symmetry, which

is realized by setting two of the three spatial degrees of freedom identical, thus e.g.

νx = νy = νt , γx0 = γy0 = γt0. (4.1)

Additionally, we introduce the aspect ratio

ζ =
νz
νt
, (4.2)

which describes the ratio between both trap frequencies in the longitudinal and in the

transversal direction. Following Eq. (3.8), we now set νt = 1 without loss of generality

and replace νz by the aspect ratio ζ. This leads to the set of equations

i) − γt0 +
1

γ3
t0

+
P

γ3
t0γz0

= 0, (4.3a)

ii) − ζ2γz0 +
1

γ3
z0

+
P

γ2
t0γ

2
z0

= 0 (4.3b)

for both equilibrium widths γt0 in the transversal direction and γz0 in the longitudinal

direction. The contact interaction here in form of the dimensionless interaction strength

P introduces a coupling between both equations. Thus, for the determination of the

equilibrium cloud widths γt0 and γz0, we have to solve both equations simultaneously.

More on this topic can be found in Sec. 4.1.2, where we discuss the numerical evaluation.

Furthermore, we are able to describe different shapes of the condensate depending

on the aspect ratio ζ. For ζ < 1 or νt > νz, respectively, the trap frequency in the

transversal direction is larger resulting in a smaller transversal length, such that the

condensate is elongated in the longitudinal direction. This resembles a cigar-shaped

form. On the other hand, for ζ > 1, i.e. νt < νz, the condensate has a disk-shaped form.

With the equilibrium cloud widths γt0 and γz0 determined by Eqs. (4.3), we write
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4.1. Contact interaction

Figure 4.1.: Schematic plot of different collective modes for an axially symmetric BEC
by [102]. (a) represents the radial quadrupole mode, (b) the out-of-phase
quadrupole mode and (c) is the breathing mode.

down the Hessian matrix M given in general by Eq. (3.10). With the simplification of

axial symmetry (4.1), this results in

M =









1 + 3
γ4
t0

+ 2P
γ4
t0γz0

P
γ4
t0γz0

P
γ3
t0γ

2
z0

P
γ4
t0γz0

1 + 3
γ4
t0

+ 2P
γ4
t0γz0

P
γ3
t0γ

2
z0

P
γ3
t0γ

2
z0

P
γ3
t0γ

2
z0

ζ2 + 3
γ4
z0

+ 2P
γ2
t0γ

3
z0









. (4.4)

As mentioned previously, the eigenvalues of this matrix lead to the collective frequen-

cies, while the eigenvectors give insides of the collective modes. In Fig. 4.1 we show

schematically the three possibilities for the low-lying collective modes: (a) the radial

quadrupole mode in the axial plane, (b) the out-of-phase quadrupole mode and (c) the

breathing mode.

4.1.2. Discussion

Here we discuss the numerical results for the equations (4.3) and the eigenvalues of the

matrix in Eq. (4.4).

We start with the equilibrium cloud widths γt0 and γz0 in Eqs. (4.3), which we rewrite
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4. Collective modes in axially symmetric condensates

as

γ5
t0 − γt0 − P

γt0
γz0

= 0, (4.5a)

ζ2γ5
z0 − γz0 − P

γ2
z0

γ2
t0

= 0. (4.5b)

Note that in Eq. (4.5) we have now as two additional parameter the trap-aspect ratio

ζ and the contact interaction strength P , whose influence are examined separately. Due

to the coupling between both cloud widths γt0 and γz0, the two equations have to be

solved simultaneously.

First, we vary the aspect ratio ζ. For this, we set the interaction strength P fixed to

three examplary values P = 0.2, P = 10 and P = 446. The root-finding of Eqs. (4.5)

is then performed simultaneously. This leads to the equilibrium cloud widths γt0 in the

transversal and γz0 in the longitudinal direction. Both results as well as the fixed value for

P are then used in the Hessian matrix M given in (4.4) and its eigenvalues are calculated.

Similar to the previous chapter, the ratio Ω/ω between the collective frequencies and

the trap frequency scale is then simply the square root of the eigenvalues. With the help

of the corresponding eigenvectors, we finally assign the respective modes schematically

shown in Fig. 4.1.

We present the results of the numerical evaluation in Fig. 4.2. As expected, the

equilibrium cloud width γz0 is larger than γt0 in the cigar-shaped configuration with

ζ < 1, while in the disk-shaped case ζ > 1 it is the opposite. Both widths cross each

other at ζ = 1, which corresponds to the spherical case treated in Sec. 3.1.3. The values

for the equilibrium cloud width for each P at ζ = 1 match the ones calculated for a

spherical condensate. The further away from ζ = 1, the greater the difference in the

equilibrium widths becomes, as both the elongation and the confinement increase in the

corresponding direction. The double logarithmic scale of Fig. 4.2 shows that both curves

depend on an exponential law to the base ζ. In the following, we analytically verify this

for two special cases. First, we investigate the Thomas-Fermi limit similar to Sec. 3.1.3.

To do this, we neglect the kinetic contributions −γj0 in Eqs. (4.5). The set of equations
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4.1. Contact interaction

Figure 4.2.: Equilibrium widths γt0 and γz0 (left column), and collective frequencies Ωbr,
Ωqu, and Ωrq (right column) depending on the aspect ratio ζ for an axially
symmetric condensate with contact interaction. In the top row we set P =
0.2, in the middle P = 10, and at the bottom we have P = 446. The red
shaded area ζ < 1 represents cigar-shaped configurations, while the blue
shaded area ζ > 1 includes disk-shaped condensates. At ζ = 1 we have a
spherical condensate.

then reads

γ5
t0 − P

γt0
γz0

= 0, (4.6a)

ζ2γ5
z0 − P

γ2
z0

γ2
t0

= 0. (4.6b)
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4. Collective modes in axially symmetric condensates

Figure 4.3.: Comparison between numerical (colored) and analytic results (black dashed)
depending on the aspect ratio ζ: (left) numerical results for P = 446 and
the Thomas-Fermi limit in Eq. (4.7), (right) numerical results for P = 0
and the non-interacting limit in Eq. (4.9).

According to Descartes’ rule of sign, only one pair of solutions exists where both Gaussian

widths γt0 and γz0 are positive. These are given by

γ5
t0 = Pζ, γ5

z0 =
P

ζ4
, (4.7)

which is proven by simply putting the solutions into (4.6). The second limit describes

a non-interacting axially symmetric condensate. Here, we set P = 0 in the Eqs. (4.5).

This time the equations read

γ5
t0 − γt0 = 0, (4.8a)

ζ2γ5
z0 − γ0z = 0 (4.8b)

with the only physically possible solution

γt0 = 1, γz0 =
1√
ζ
. (4.9)

In both cases we find that the dimensionless Gauss widths depend on a root of the aspect

ratio. The corresponding exponent of ζ then determines the slope of the straight line

in the double logarithmic plot. The comparison between the numerical results seen in

Fig. 4.3 and the analytical formulas in Eqs. (4.7) and (4.9) show a highly convincing

agreement. It seems likely that the slope transitions from one limiting case to the other

as the interaction strength is increased.
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4.1. Contact interaction

Returning to Fig. 4.2, we furthermore see the collective frequencies depending on the

aspect ratio on the right side of the figure. Again, at ζ = 1 we have the spherical

case, which is identical to the results in Fig. 3.2 for the corresponding value of P . Both

frequencies Ωqu and Ωrq of the quadrupole modes, the out-of-phase and the radial mode

respectively, are degenerated in this case, while the frequency of the breathing mode

Ωbr is greater. This degeneracy is split up for ζ ̸= 1. Interestingly, the frequency of

the radial quadrupole mode seems to be independent of the aspect ratio. As shown in

the schematic overview of the possible modes in Fig. 4.1, the radial quadrupole mode is

the only one oscillating in just two directions. This could be a possible explanation of

this observation. For cigar-shaped condensates, Ωqu is always the smallest frequency out

of the three and decreasing furthermore for smaller aspect ratios. On the other hand,

in disk-shaped condensates it becomes slightly greater than the frequency of the radial

quadrupole mode, but converges asymptotically to a constant value. We also see that

the collective frequency Ωbr of the breathing mode is always greater than the other two,

but behaves like a mirrored version of the out-of-phase quadrupole mode: converging to

a constant slightly above Ωrq for ζ < 1 and increasing for ζ > 1.

In the second part, we take a closer look at the influence of the contact interaction

strength P on the equilibrium widths and collective frequencies in both configurations

ζ < 1 and ζ > 1. In order to achieve this, we choose the aspect ratios ζ = 3 and ζ = 7 for

disk-shaped condensates and their reciprocal values for the cigar-shaped configurations,

respectively. The interaction strength P is treated as a variable. The method itself is

identical to the one described previously for a variable aspect ratio. We simultaneously

solve the Eqs. (4.5) with fixed ζ and with the obtained equilibrium cloud widths γt0

and γz0 depending on the interaction strength we derive the collective frequencies as

eigenvalues of the Hessian matrix M in (4.4).

We present the results of this calculation in Fig. 4.4 for cigar-shaped condensates and

in Fig. 4.5 for disk-shaped BECs. The upper row of Fig. 4.4 shows the equilibrium cloud

widths γt0 and γz0 and the collective frequencies Ωbr, Ωqu and Ωrq depending on the

contact interaction strength P for an aspect ratio ζ = 1/3, while the lower row shows

the results for ζ = 1/7. In Fig. 4.5 we have the disk-shaped counterparts with ζ = 3

and ζ = 7, respectively. For a better comparison, all figures are plotted within the same

range of values.

The configuration is directly identified by the equilibrium cloud widths. For cigar

shapes, the longitudinal direction γz0 is always greater than the transversal direction
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4. Collective modes in axially symmetric condensates

Figure 4.4.: Equilibrium widths γt0 and γz0 (left), and collective frequencies Ωbr, Ωqu,
and Ωrq (right) depending on the contact interaction strength P for a cigar-
shaped condensate. The upper two figures show a condensate with ζ = 1/3
and the lower plots one with ζ = 1/7. For a better comparison the scales
match with Fig. 4.5.

γt0, while for the disk-shape condensates it is the other way around. In both cases, the

equilibrium widths increase for higher contact interactions as the repulsion between two

particles is greater, similar to the spherical case discussed in Sec. 3.1.3. The coupling

term in Eqs. (4.5) vanishes in the limit P → 0 and the first equation leads to the

result γt0 = 1, which matches the corresponding value in Fig. 4.4 and Fig. 4.5. Due

to the aspect ratio ζ, the second equation in this example yields γz0 =
√

1/3 ≈ 0.58

or γz0 =
√

3 ≈ 1.73 as well as γz0 =
√

1/7 ≈ 0.38 or γz0 =
√

7 ≈ 2.65 for the two

configurations, respectively. Comparison of these results coincides also with the ones

shown in both figures. On the right column of Fig. 4.4 and 4.5 each plot shows the three

collective frequencies. Again, the frequency of the breathing mode is the greatest and

the frequency of the radial quadrupole mode is identical in all pictures, as mentioned

in the description of Fig. 4.2. In accordance to Fig. 4.2, Ωqu is significantly smaller in

the cigar-shaped case and slightly greater than Ωrq for disk-shaped condensates. The

presented results here coincide with similar calculations in Ref. [99], where the collective
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4.2. Newtonian interaction

Figure 4.5.: Equilibrium widths γt0 and γz0 (left), and collective frequencies Ωbr, Ωqu,
and Ωrq (right) depending on the contact interaction strength P for a disk-
shaped condensate. For the upper two row we choose ζ = 3 and for the
lower figures ζ = 7. For a better comparison the scales match with Fig. 4.4.

frequencies in an axially symmetric condensate are discussed.

4.2. Newtonian interaction

In this section we now consider the Newtonian interaction in an axially symmetric con-

densate. The method follows the steps of Sec. 3.2, but we have to evaluate the functions

∂γjIN in Eqs. (3.38) for the equilibrium cloud widths and ∂2
γj
IN in (3.39a) as well as

∂γj∂γkIN, see (3.39b) for the Hessian matrix now in axial symmetry (4.1). After this,

we present the numerical calculations and the dependencies of the equilibrium widths

and the collective frequencies on the gravitational interaction strength as well as the

trap-aspect ratio.
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4. Collective modes in axially symmetric condensates

4.2.1. Collective modes

In Ch. 2 we already discussed the general form of both the differential equation, see

Eq. (2.34) and the Hessian matrix (2.42) depending on the Lagrangian of an arbitrary

two-particle interaction. Furthermore, we treated the Fourier transformation of the

Newtonian potential (1.6) and the Lagrangian with Newtonian interaction in detail

in Sec. 3.2.1. In this context, we defined the integral IN in Eq. (3.37) and its first

derivative (3.38) and the second derivatives (3.39a) and (3.39b) independent of the

symmetry of the system. Based on these equations, we now assume axial symmetry given

in (4.1) and solve the appearing integrals. After that, we take a look at the spherical

limit to verify our results. Finally, at the end of this section the numerical calculations

are discussed. As the calculations are quite lengthy, although straightforward, we only

present the most important steps here. A detailed solution especially for the integrals

can be found in Appendix C.1.

Due to the axial symmetry, we now have to deal with two separate Gauss widths, γt

and γz, as seen in the previous section. The problem is approached as usual by derivation

of the differential equations for both Gauss widths. As already mentioned, we need to

solve the first derivative of the integral IN, which is generally given by (3.38). In axial

symmetry (4.1) we choose cylindrical coordinates

κx = κρ cosφ, κy = κρ sinφ, κz = κz, (4.10)

thus the right-hand side of the general form (3.38) gives

J
(j)
N = −γj

∫ ∞

−∞

dκz

(∫ ∞

0

dκρ

∫ 2π

0

dφ κρ

κ2
j

κ2
ρ + κ2

z

exp

{

−1

2
γ2
t κ

2
ρ

})

exp

{

−1

2
γ2
zκ

2
z

}

.

(4.11)

As described in App. C.1 for all j, we simplify the integrals over κρ in the brackets to

∫ ∞

0

dκρ

κρ

κ2
ρ + κ2

z

exp

{

−1

2
γ2
t κ

2
ρ

}

=
1

2
Γ
(

0, ξ2
)

eξ
2

, (4.12)

where we introduce the incomplete gamma function Γ(0, x) and define as a short-hand
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notation

ξ2 =
1

2
γ2
t κ

2
z. (4.13)

The integration over κz then leads to the definition

KN =
1

2

∫ ∞

−∞

dκz Γ
(

0, ξ2
)

eξ
2

exp

{

−1

2
γ2
zκ

2
z

}

. (4.14)

An integration yields

KN =
√

2π
1

γt

arcsinh
√

γ2
z

γ2
t
− 1

√

γ2
z

γ2
t
− 1

. (4.15)

For the sake of readability, the explicit but lengthy expressions for the derivations of KN

are omitted. Instead, we write the functions J
(j)
N down as formally depending on, for

example, ∂γtKN.

Having derived all the necessary components by now, we now write down the differ-

ential equations (2.34) in axial symmetry. Similar to the previous section, we get a set

of two equations

i) γ̈t = −γt +
1

γ3
t

+
P

γ3
t γz

+
3Q

2
√

2π
∂γtKN, (4.16a)

ii) γ̈z = −ζ2γz +
1

γ3
z

+
P

γ2
t γ

2
z

+
3Q√
2π

∂γzKN. (4.16b)

Note that the derivatives in the last part differ: in the first equation we differentiate

with respect to the axial Gaussian width γt while for the second equation it is γz.

The steady state is determined according to the usual procedure so that

i) γ5
t0 − γt0 − P

γt0
γz0

− γ4
t0

3Q

2
√

2π
∂γtKN| γt=γt0

γz=γz0

= 0, (4.17a)

ii) ζ2γ5
z0 − γz0 − P

γ2
z0

γ2
t0

− γ4
z0

3Q√
2π

∂γzKN| γt=γt0
γz=γz0

= 0. (4.17b)

Solving both equations simultaneously leads to the equilibrium cloud widths in both

directions.

In order to determine the collective frequencies in axially symmetric condensates, we
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4. Collective modes in axially symmetric condensates

have to derive an expression for the Hessian matrix M . We already know from Sec. 3.2

that the corrections to the elements of M due to the Newtonian interaction depend on

the second derivatives of the integral IN given by Eq. (3.39a) for the diagonal elements

and Eq. (3.39b) for the off-diagonal elements. In axial symmetry, the right-hand side

of (3.39a) then reads

J
(jj)
N =

∫ ∞

−∞

dκz

∫ ∞

0

dκρ

∫ 2π

0

dφ κρ

(

γ2
jκ

4
j − κ2

j

)

κ2
ρ + κ2

z

exp

{

−1

2
γ2
t κ

2
ρ

}

exp

{

−1

2
γ2
zκ

2
z

}

(4.18)

and the right-hand side of (3.39b) becomes

J
(jk)
N = γjγk

∫ ∞

−∞

dκz

∫ ∞

0

dκρ

∫ 2π

0

dφ κρ

κ2
jκ

2
k

κ2
ρ + κ2

z

exp

{

−1

2
γ2
t κ

2
ρ

}

exp

{

−1

2
γ2
zκ

2
z

}

.

(4.19)

Once more, we express the integrals in terms of the function KN given by (4.15) and

insert this into the general form of the Hessian matrix M in (2.42). This then leads

according to Appendix C.1 to the diagonal elements due to the Newtonian interaction

M
(xx)
N = M

(yy)
N = − 3Q

2
√

2π

[

3

4
γt ∂γt

(

1

γt
∂γtKN

)

+
1

γt
∂γtKN

]∣

∣

∣

∣

∣

γt=γt0
γz=γz0

, (4.20a)

M
(zz)
N = − 3Q√

2π

[

γz ∂γz

(

1

γz
∂γzKN

)

+
1

γz
∂γzKN

]∣

∣

∣

∣

∣

γt=γt0
γz=γz0

(4.20b)

as well as the corrections for the off-diagonal elements

M
(xy)
N = − 3Q

8
√

2π

[

γt ∂γt

(

1

γt
∂γtKN

)

]∣

∣

∣

∣

∣

γt=γt0
γz=γz0

, (4.21a)

M
(xz)
N = M

(yz)
N = − 3Q

2
√

2π

[

∂γt∂γzKN

]∣

∣

∣

∣

∣

γt=γt0
γz=γz0

. (4.21b)

These corrections due to the Newtonian interaction must be added to the corresponding

elements given in the Hessian matrix (4.4), which only includes the contact interaction

in axial symmetry.

At the end of this section, as usual, we briefly mention the spherical limit of our
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obtained results here. It is noteworthy that both the differential equations (4.16) and

the elements of the Hessian matrix (4.20) and (4.21) depend on the function KN. The

spherical limit γt → γz of KN in the explicit form of Eq. (4.15) is quite similar to the

well known sinc(x) function
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A graphic of the function x−1arcsinh(x) is provided in the Appendix C.1 in Fig. C.1.

The value at x = 0 represents the limit above.

As a consequence, we obtain

lim
γt→γz

KN =

√
2π

γz
, (4.23)

which coincides with the result in the spherical case, see also Eq. (B.9) in Appendix B.2.

Note that the additional factor 2 emerges from different lower integral limit for κz. In

the spherical case it is simply zero, while in the axially symmetric case we start the

integration at −∞.

For the limits of the differential equations, we first have to calculate the derivative of

KN with respect to γt. This leads to the three terms
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Taking the limit γt → γz results in the correct differential equation for spherically

symmetric condensates as in Eq. (3.47). In case of the second ODE it should be noted

that ζ = 1. Similar, although lengthy, we can calculate the second derivatives of KN

and verify the correct limits of the elements of the Hessian matrix M .

4.2.2. Discussion

After deriving the analytical expressions for the equilibrium cloud widths γt0 and γz0

given in Eq. (4.17), as well as for the Hessian matrix with the elements (4.20) and (4.21),

it is now time to evaluate them numerically. As in Sec. 4.1.2, we can change various
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4. Collective modes in axially symmetric condensates

parameters, so we split the discussion in two parts. First, we investigate the influence of

the aspect ratio ζ while holding the gravitational interaction strength Q constant. After

that we focus on the dependency of Q for specific values of ζ. For both calculations

we fix P = 446 according to Sec. 3.1.3. Then we start searching for the equilibrium

cloud widths by evaluating both equations in (4.17) simultaneously. Again, the results

are used in the Hessian matrix of which we calculate the eigenvalues. Analogue to the

previous section the ratio of the collective frequencies and the trap frequency scale Ω/ω

is determined by the square root of the eigenvalues and the corresponding eigenvectors

yields the collective modes.

In Fig. 4.6 the equilibrium widths γt0 and γz0 and the collective frequencies Ωbr, Ωrq

and Ωqu depending on the aspect ratio ζ behave in a similar way as in Fig. 4.2. Again

both configurations cigar-shaped and disk-shaped are represented in a compact form.

For the gravitational interaction strength Q we chose a realistic value Q = 4.1 · 10−19 as

derived in Sec. 3.2.3 as well as Q = 10 and Q = 50 for strong gravitational interaction.

The black dashed lines in Fig. 4.6 are the results of the previous section for P = 446

and serve as a reference.

As expected for a realistic value of Q no changes are visible as the gravitational in-

teraction is just too small. Similar results were already found in 3.2.3 for the spherical

case. Changing the form of the condensate by the aspect ratio does not help in that

case either. For Q = 10 slight differences occur and noticeably in case of the equilib-

rium widths the effect of gravity seems to be amplified for more elongated condensates

compared to the spherical case ζ = 1. Overall the widths become smaller due to the

increasing attractive gravitational interaction while the collective frequencies become

larger. As the interaction strength Q gets larger the exponential law discussed in the

end of Sec. 4.1.2 breaks up and the curves are no more straight lines in the double log-

arithmic plot. In analogy, the graphs of the collective frequencies gets more curvy, too,

such that even the frequency of the radial quadrupole mode decreases in the disk-shaped

configuration with ζ = 10. In all pictures the results of Sec. 3.2.3 like the degeneracy of

both quadrupole frequencies are successfully recovered for ζ = 1.

In the second part we show the dependency of the clouds widths and collective fre-

quencies on the gravitational interaction strength Q itself. For this we choose a fixed

values for ζ, in our examples again ζ = 3 and ζ = 7 for disk-shaped condensates and

their reciprocal values for the cigar-shaped configuration.

The results are shown in Fig. 4.7 for cigar-shaped condensates with ζ < 1 and in
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4.2. Newtonian interaction

Figure 4.6.: Equilibrium widths γt0 and γz0 (left), and collective frequencies Ωbr, Ωqu,
and Ωrq (right) depending on the aspect ratio ζ for an axially symmetric
condensate with Newtonian interaction Q. The upper two figures show the
results for Q = 4.1 · 10−19, in the middle we have Q = 10, and at the
bottom Q = 50. The black dashed lines indicate the results for pure contact
interaction with P = 446, see Fig. 4.2.

Fig. 4.8 for disk-shaped condensates with ζ > 1. As in Sec. 4.1.2 the configuration can

be directly identified via the relation between both equilibrium widths. In principle, the

trends are analogue to the results of the spherical case in Sec. 3.2.3. For small Q the

equilibrium cloud widths and the collective frequencies are constant meaning the gravi-

tational influence is not visible. On the other side, for Q > 10 the increased attractive

interaction leads to a rapid decrease of the widths and an increase of all frequencies. It
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4. Collective modes in axially symmetric condensates

Figure 4.7.: Equilibrium widths γt0 and γz0 (left) and collective frequencies Ωbr, Ωqu,
and Ωrq (right) depending on the gravitational interaction strength Q for a
cigar-shaped condensate. For the upper two plots we choose ζ = 1/3 and
for the lower figures ζ = 1/7. The black dashed, dotted, and dash-dotted
lines show the corresponding quantity for Q = 0

is remarkable that for even higher values Q > 100 both widths and both quadrupole

frequencies coincide indicating that the condensate transitions to a spherical form. The

reason for this is the property of Newtonian gravity being a conservative force which at

some point surpasses the repulsive contact interaction. Furthermore, for larger elonga-

tions ζ = 1/7 and ζ = 7 in particular one notices a global maximum at Q ≈ 100 for

the lower equilibrium cloud width γt0 or γz0, respectively. We assume that the cause of

this is a density difference in the longitudinal and transversal direction. In the example

of the cigar-shaped condensate there are on average more particles in the longitudinal

direction than in the stronger confined transversal direction. The gravitational selfinter-

action of each individual particle then results in a larger attractive interaction along the

z-direction. As a consequence gravity is pulling the condensate together more in said

direction. The higher density is then compensated by increasing the size in the transver-

sal direction prior to converging to the spherical limit. This would also explain why the

maximum in case of a disk-shaped BEC is larger as the z-direction has to compensate
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4.2. Newtonian interaction

Figure 4.8.: Equilibrium widths γt0 and γz0 (left) and collective frequencies Ωbr, Ωqu,
and Ωrq (right) depending on the gravitational interaction strength Q for a
disk-shaped condensate. For the upper two plots we choose ζ = 3 and for
the lower figures ζ = 7. The black dashed, dotted, and dash-dotted lines
show the corresponding quantity for Q = 0

the density in two dimensions instead of just one.

Additionally, comparing both figures Fig. 4.7 and Fig. 4.8 we see that the equilibrium

widths and the collective frequencies of both quadrupole modes are switched. This is

in accordance to previous results of this chapter. For small values of Q also the gaps

between the widths and between the frequencies are increased for larger elongations

which is clearly visible in Fig. 4.6. Furthermore, the individual values of the plateaus for

the widths and frequencies for small Q are identical to the values at P = 446 in Fig. 4.4

and Fig. 4.5, respectively.

In particular, the widths can be analytically verified via the Thomas-Fermi approxima-

tion shown in Eq. (4.7). In the cigar-shaped case with ζ = 1/3 we get γt0 = 5
√

446 · 1/3 ≈
2.72 and γz0 = 5

√

446 · (1/3)−4 ≈ 8.16 or γt0 ≈ 2.30 and γz0 ≈ 16.07 for ζ = 1/7.

Analogously, in the disk-shaped configuration with ζ = 3 the equilibrium widths yield

γt0 ≈ 4.22 and γz0 ≈ 1.41 while γt0 ≈ 5.00 and γz0 ≈ 0.71 for ζ = 7. These results also

reflect that for small Q the gap between the width increases with the elongation of the
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4. Collective modes in axially symmetric condensates

condensate. Unfortunately, this calculation is not possible for the collective frequencies

as we do not have any analytic expression.

4.3. Yukawa interaction

This section is dedicated to the Yukawa-like interaction within axially symmetric con-

densates. In Sec. 3.3 where we already mentioned the general expressions for the first and

second derivatives of IYuk, see Eqs. (3.70), (3.71a) and (3.71b) without any assumption

on the symmetry of the condensate. Based on these expressions we follow the steps of

the previous section. In the end we show contourplots for the equilibrium cloud widths

as well as the collective frequencies.

4.3.1. Collective modes

We begin with Eq. (3.70) and apply axial symmetry given by (4.1). Using the cylindrical

coordinates in (4.10) we define analogue to the Newtonian case

J
(j)
Yuk = −γj

∫ ∞

−∞

dκz

∫ ∞

0

dκρ

∫ 2π

0

dφ
ακρκ

2
j

κ2
ρ + κ2

z + λ̄−2
exp

{

−1

2
γ2
t κ

2
ρ

}

exp

{

−1

2
γ2
zκ

2
z

}

.

(4.25)

Here we immediately notice a fundamental difference caused by the finite dimensionless

effective range λ̄. In Appendix C.2 we explicitly show that we can still formally follow

the same calculations by using the slightly modified definition

ξ′2 =
1

2
γ2
t

(

κ2
z + λ̄−2

)

(4.26)

instead of (4.13) in the Newtonian case. Analogously, we introduce

KYuk =
1

2
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(4.27)

now depending on ξ′. Unfortunately, due to the finite range we are not able to get an

analytic solution for the integral, thus we will simply stick to the formal definition in

Eq. (4.27).

The set of differential equations including the contact, the Newtonian and the Yukawa
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4.3. Yukawa interaction

interaction are

i) γ̈t = −γt +
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With the help of the functions KN from Eq. (4.15) and KYuk from (4.27) we can write

down both differential equations with a very similar structure although we have no

analytic expression for the Yukawa corrections.

Again, the steady state is thus given by
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which determines the equilibrium cloud widths γt0 and γz0.

Next, we determine the Hessian matrix M . For the Yukawa corrections to the diagonal

elements the general formula is Eq. (3.71a) which becomes in axial symmetry
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while the right-hand side of (3.71b) yields
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(4.31)

With the function KYuk given by (4.27) the correction to the Hessian matrix then reads
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M
(xx)
Yuk = M

(yy)
Yuk = −α

3Q

2
√

2π

[

3

4
γt ∂γt

(

1

γt
∂γtKYuk

)

+
1

γt
∂γtKYuk

]∣

∣

∣

∣

∣

γt=γt0
γz=γz0

, (4.32a)

M
(zz)
Yuk = −α

3Q√
2π

[

γz ∂γz

(

1

γz
∂γzKYuk

)

+
1

γz
∂γzKYuk

]∣

∣

∣

∣

∣

γt=γt0
γz=γz0

(4.32b)

and the corrections to the off-diagonal elements are
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Finally, we write down the complete Hessian matrix consisting the contact, Newtonian

and Yukawa interaction in a axially symmetric condensate as
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The elements are then given by
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where KN is defined in Eq. (4.15) and KYuk by the integral form in Eq. (4.27). In

particular, the dependency on the finite effective range λ̄ is hidden in KYuk.

4.3.2. Discussion

In the end of this chapter we take a look into the numerical results for both cigar-

shaped and disk-shaped condensates interacting via a Yukawa-like potential. Analogue

to the previous section we choose for the aspect ratio of the trap frequency the values

ζ = 1/3 and ζ = 1/7 for a cigar-shaped configuration as well as ζ = 3 and ζ = 7 in the

disk-shaped case. For the contact interaction strength and the gravitational interaction

strength we set P = 446 and Q = 4.1 · 10−19.

Following the same procedure, we first calculate the solutions of Eq. (4.29) which lead

to the equilibrium cloud widths γt0 and γz0. We insert the result into the Hessian matrix

given by Eqs. (4.34)-(4.38) and derive the collective frequencies as eigenvalues of that

matrix. Again, we get the Gauss widths At0 and Az0 as well as the frequencies Ωbr, Ωqu

and Ωrq in physical units with the help of a backwards transformation with the dimen-

sionless variables (2.33) and (3.67). The final results are then shown as contourplots

depending on the Yukawa parameters α and λ analogue to Sec. 3.3.3.

We present the results in Figs. 4.9, 4.10, 4.11 and 4.12 for ζ = 1/3, ζ = 1/7, ζ = 3
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Figure 4.9.: Equilibrium cloud widths At0 and Az0 and collective frequencies Ωbr, Ωrq,
and Ωqu for a cigar-shaped condensate with Yukawa-like interaction and
ζ = 1/3. The black and black dashed lines indicate a difference of 0.01 µm
to 0.05 µm or 1 Hz to 5 Hz, respectively, to the Newtonian case.
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4.3. Yukawa interaction

Figure 4.10.: Equilibrium cloud widths At0 and Az0 and the collective frequencies Ωbr,
Ωrq, and Ωqu for a cigar-shaped condensate with Yukawa-like interaction
and ζ = 1/7. In the first picture the black solid and dashed lines indicate
a decrease of 0.01 µm to 0.05 µm and black dashed dotted and dotted lines
represent an increase of 0.01 µm to 0.05 µm compared to the Newtonian
case. In case of the frequencies, the differences are 1 Hz to 5 Hz.
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Figure 4.11.: Equilibrium cloud widths At0 and Az0 and the collective frequencies Ωbr,
Ωrq, and Ωqu for a disk-shaped condensate with Yukawa-like interaction
and ζ = 3. For Az0 the black solid and dashed lines indicate a decrease of
0.01 µm to 0.05 µm and black dashed dotted and dotted lines represent an
increase of 0.01 µm to 0.05 µm compared to the Newtonian case. In case
of the frequencies, the differences are 1 Hz to 5 Hz.
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Figure 4.12.: Equilibrium cloud widths At0 and Az0 and the collective frequencies Ωbr,
Ωrq, and Ωqu for a disk-shaped condensate with Yukawa-like interaction
and ζ = 7. For Az0 the black solid and dashed lines indicate a decrease of
0.01 µm to 0.05 µm and black dashed dotted and dotted lines represent an
increase of 0.01 µm to 0.05 µm compared to the Newtonian case. In case
of the frequencies, the differences are 1 Hz to 5 Hz.
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and ζ = 7, respectively. First of all, the results look very similar to the spherical case

discussed in Sec. 3.3.3. Both Gauss widths decrease for higher interaction strengths and

larger effective ranges while the collective frequencies increase. Again, it turns out that

the frequency belonging to the breathing mode is the largest frequency and the most

sensitive in regard to the difference between the Newtonian and Yukawa-like interaction.

As a short remark, taking a closer look at the transversal Gauss width At0 reveals an

interesting feature. The black and black dashed lines indicating the difference of 0.01 µm

to 0.05 µm towards the Newtonian interaction have a local minimum and increase very

slightly again at λ ∼ 10−5 m. This effect is more visible for higher confinements with

ζ = 1/7 shown in Fig. 4.10. In principle, it is the same observation as in Sec. 4.2.2, where

the lower Gauss width increases for high interaction strengths right before the spherical

case occurs. According to this, in the cigar-shaped configuration At0 as the lower Gauss

width reaches higher values within a certain area of the strength α before approaching the

spherical limit where both Gauss widths coincide. The increase of 0.01 µm to 0.05 µm

of the Gaussian width compared to the Newtonian case is indicated by the black dashed

dotted and dotted lines. In contrast to the black and black dotted lines they differ by the

sign: the solid and dashed lines depict a decrease while the dotted and dashed dotted

are showing an increase. In the following two figures Figs. 4.11 and 4.12 for disk-shaped

condensates this effect occurs in the Gauss width Az0, as it is lower than At0 here.

Finally, we compare these results with the spherical case discussed in Sec. 3.3.3. As

the collective frequency of the breathing mode is the most sensitive we restrict the

comparison to Ωbr for each case considered. We show the results in Fig. 4.13. On

the left side we compare both cigar-shaped condensates ζ = 1/3 and ζ = 1/7 to the

spherically symmetric condensate and on the right side analogously for the disk shapes.

In contrast to our first expectations, for quasi one dimensional systems in form of

cigar-shaped condensates the lines are very close to each other and do not change much

for larger confinement. On the other side though, we see some significant differences in

the disk-shaped configuration. There, we improve the boundaries for smaller effective

ranges although the lowest boundaries for the interaction strength gets even slightly

worse. In accordance to our findings in Figs. 4.7 and 4.8 in particular in regards of the

Gaussian widths γt0 and γz0 the effects of a long-range gravitational interaction are more

distinct for quasi two dimensional systems. In that sense the same tendency is visible

for cigar-shaped condensates although very small.

In the last part of this chapter, we present a method to determine the Yukawa pa-
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4.3. Yukawa interaction

Figure 4.13.: Comparison between the frequencies of the breathing mode. (Left) For
cigar-shaped configurations with ζ = 1/3 (blue) and ζ = 1/7 (red) and
(Right) for disk-shaped condensate with ζ = 3 (blue) and ζ = 7 (red). In
both pictures the black dashed lines correspond to the spherical case taken
from Fig. 3.6. All curves indicate a difference of 1 Hz to their respective
Newtonian case.

rameters α and λ based on a precise measurement of the collective frequencies. As an

example, we consider a condensate of 87Rb atoms with N = 105 particles, and a trap

frequency scale ω = 1 kHz. Furthermore, we assume a disk-shaped configuration with

ζ = 7, since this case leads to the best constraints of all our examples so far. If we

assume for a moment that the Yukawa parameters are known, we can then calculate the

equilibrium cloud widths with Eq. (4.29) and the collective frequencies as eigenvalues

of the Hessian matrix with the elements given in Eqs. (4.35)-(4.38). As an example we

choose the interaction strength α = 1020 and the dimensionless effective range λ̄ = 10,

which corresponds to λ = 8.53 µm in case of the described 87 Rb condensate. A numer-

ical calculation then leads to the frequencies Ωbr = 12.752 kHz, Ωqu = 2.023 kHz, and

Ωrq = 1.616 kHz. The next step is then to look for the corresponding contour lines for

each frequency, i.e. in Fig. 4.12. We then combine the contour lines in one figure and

by construction all three lines intersect at the initially chosen values of α and λ. This

is shown in Fig. 4.14 for the breathing frequency Ωbr and the out-of-phase quadrupole

frequency Ωqu. We omit the radial quadrupole frequency, since the curve almost com-

pletely overlaps with Ωqu. In principle, it is thus possible to determine both Yukawa
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Figure 4.14.: Exemplary determination of the Yukawa parameter α and λ with the
collective frequencies of the breathing mode (blue) and the out-of-phase
quadrupole mode (red). The blue and red shaded area indicates an as-
sumed error of 20 Hz.

parameters independently by a measurement of at least two collective frequencies. Ad-

ditionally, we can also include a measurement error of the frequencies, as indicated with

the shaded area in Fig. 4.14. Assuming an error of 20 Hz, we can then estimate the errors

∆λ ≈ 3 µm and ∆α ≈ 0.1 · 1020 for both Yukawa parameters in our example. Note that

the chosen example of α and λ are already excluded by experimental data, see Fig. 1.4.

However, the experimental challenge is a highly precise frequency measurement, since

the contour lines of the collective frequencies are very close together, in particular in the

non-excluded area. If the error bars are too large, they easily overlap over a huge area,

which can be imagined based on Fig. 4.14 for λ > 10−5 m.
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So far in this work, we have studied two-particle interactions via Newton and Yukawa

potentials within both a spherical and an axially symmetric condensate. However, since

it is mostly unknown how gravity acts at such small scales, it is possible that gravity does

not behave like those two potentials. All theories we have so far available, propose some

sort of divergence or singularity at the origin of the gravitational field, more specifically

at the origin r = 0. So the remaining question is how we approach said singularity. In

mathematics, one can classify singularities and define isolated and non-isolated singu-

larities as well as essential or removeable singularities or even poles. Furthermore, direct

and indirect transcendental singularities are discussed [117, 118].

In this chapter, however, we propose three additional potentials that might be inter-

esting from a physical point of view. The first one is motivated by [119], which is a

modification in form a rational function. The other two potentials are hypothetical and

we formulate them as an exponential and a logarithmic function. The modifications

here are introduced on the level of the potential energy and serve as toy models for our

method. We do not present here any fundamental theories claiming that these poten-

tials emerge from certain differential equations, as it is the case for the Newtonian and

Yukawa potential. The potential describing Newtonian gravity arises as a solution to

the Poisson equation, while for the Yukawa potential we modify the Poisson equation to

the so-called screened Poisson equation.

Nevertheless, in the next section we start with an overview of our proposed modifica-

tions and compare them to both the Newtonian and the Yukawa potential. After that

we investigate the rational potential. In order to apply the method developed in this

work, we need to find the Fourier transform of that potential, which is mathematically

challenging and requires a new technique. With the Fourier transformed potential, we

then follow the steps in Ch. 3 to determine the equilibrium cloud width and the Hes-

sian matrix. For simplicity, we only consider spherically symmetric condensates in this

chapter. The collective frequencies are then again plotted as a contour plot depending
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5. Interactions via modified potentials

on the parameters α and λ. At the end of this chapter, we make a few remarks on the

exponential and logarithmic potentials based on the results of the rational potential.

5.1. Modifications

Here we give a short overview of the modified potentials we assume in this chapter. The

three examples are the following

Vrat(r) = −u

r

(

1 + α

(

λ

r

)ϵ)

, (5.1a)

Vexp(r) = −u

r

(

1 + α

[

exp

{(

λ

r

)ϵ}

− 1

])

, (5.1b)

Vlog(r) = −u

r

(

1 − α log
[ r

λ

]

exp
{

−µ
r

λ

})

. (5.1c)

The first one is a generalization of the Newtonian potential where we allow an arbitrary

real value for the exponent ϵ. The interaction strength α is dimensionless analogue to

the Yukawa potential in (3.64), while the parameter λ has the dimension of a length. In

the form of Eq. (5.1) the Newtonian limit is recovered by setting ϵ = 0 and taking the

limit α → 0. This potential was indeed discussed in Ref. [119]. In this work we call the

first expression in Eq. (5.1) the rational potential.

The other two alternatives demonstrate a hypothetical exponential or logarithmic

divergence although we have to add some correction to guarantee the Newtonian limit

for larger scales. For the exponential potential we simply have to subtract 1 of the

exponential, since

lim
r→∞

exp

{(

λ

r

)ϵ}

= 1 (5.2)

for ϵ > 0 and real λ, such that the second summand vanishes for large r. To obtain

the correct Newtonian limit for the logarithmic potential at large distances we choose

to add a decreasing exponential term exp
{

−µ r
λ

}

with a dimensionless parameter µ

to guarantee that the correction vanishes for large r and to obtain a dimensionless

argument. Furthermore, since the function log r/λ has a root at r = λ and is positive

for r > λ, we have to choose µ such that the positive part becomes negligible. It can

be verified numerically that for µ > 5, this part is of the order 10−4 and lower. Note
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5.1. Modifications

Figure 5.1.: Schematic representation of the modified potentials given in Eq. (5.1): the
rational (green), the exponential (red) and the logarithmic potential (or-
ange) compared to the Newton (blue) and Yukawa potential (blue). We
choose the parameters α = 100, λ = 1, ϵ = 1, µ = 10 and u = 1 as exam-
ples.

that an additional exponent ϵ in the argument of the logarithm analogue to the other

two examples is irrelevant, since ϵ can then be written as a prefactor in front of the

logarithm and thus merged with the interaction strength α.

For illustration purposes we show all three modifications in Fig. 5.1 besides the New-

tonian and Yukawa-like potential. By construction all potentials are stronger than the

Newtonian potential although this can be easily adjusted by flipping the sign of the

strength α if needed. For the chosen parameters in this figure, the rational and ex-

ponential potential differ from the Newtonian potential already at larger distances r

compared to the Yukawa potential, while for the logarithmic modification this difference

occurs at even smaller values. Nonetheless, all three modifications diverge faster than

the Newtonian and Yukawa potential and in this example for r < 0.1 all five potentials

are clearly distinguishable.

In Fig. 5.2 we present the dependency of the potentials in Eq. (5.1) on each parameter

individually. In case of the rational and exponential potential, λ cannot be interpreted

as an effective range of the potential although it is a length. In fact a variation of λ, as

seen in the middle column, shows similar effects as the interaction strength α on the left

side for both potentials. The slope of these modifications are adjusted by the parameter

ϵ as shown in the right column. In case of the logarithmic potential the curves look

quite similar to the Yukawa potential presented in Fig. 3.4. While α can be seen as a

strength, both λ and µ determine the effective range of the potential.
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5. Interactions via modified potentials

Figure 5.2.: Schematic sketch of the modified potentials given in Eq. (5.1) depending on
the parameters α, λ, ϵ or µ, respectively. If a parameter is not varied we set
it to the fixed value α = 100, λ = 1, ϵ = 1, µ = 10 and u = 1.

All presented potentials have the divergence at the origin in common but each diver-

gence behaves differently. In the following sections we test our theory developed in this

thesis to derive once again the collective frequencies of a spherical condensate.

5.2. Rational potential

In this part we investigate the rational potential given in the first expression of Eq. (5.1).

Analogue to Sec. 3.2 and Sec. 3.3 we start by deriving the Fourier transformation of the

potential. After that we define the integral appearing in the Lagrangian and solve the

first and second derivatives of that expression in spherical symmetry. This leads us to an

equation for the equilibrium cloud width γ0 and the elements of the Hessian matrix M .
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5.2. Rational potential

Again, the collective frequencies of the breathing and quadrupole modes are calculated

by the eigenvalues of M depending on the equilibrium cloud width γ0.

5.2.1. Rational potential in Fourier space

The first step is to find the Fourier transformation of the rational potential

Vrat(r) = −u

r
− αu

λϵ

r1+ϵ
. (5.3)

The mathematically necessary condition for a function to be Fourier transformable is

that this function is an element of the L1 space, see also Refs. [120, 121] for more

details. This denotes the space of Lebesque-integrable functions whose absolute value

has a finite integral. This, however, restricts the number of functions which are Fourier

transformable. As an example, the already discussed Newtonian or Coulomb potential

is in fact not an element of the L1 space as the integral does not converge. We have

already seen in Sec. 3.2 that we can solve this problem by introducing a convergent

factor in form of a decreasing exponential. With this the product of both is in L1 and

we can perform the Fourier transformation. In the end we simply take a limit to get rid

of the additional parameter. Here we perform the calculations for the rational potential

in a similar way, so we apply the replacement

Vrat(r) → Vrat(r)e−µr. (5.4)

We then need to show that the integral over the absolute value leads to a finite expression,

i.e.

∫

dr r2 |Vrat(r)e−µr| < ∞, (5.5)

where the factor r2 originates from the volume element. The angular part can be ne-

glected in this calculation as it is only a fixed factor of 4π. We insert the rational

potential (5.3) and apply the triangle inequality for the absolute value

∫ ∞

0

dr r2
∣

∣

∣

∣

−u

r
e−µr − αu

λϵ

r1+ϵ
e−µr

∣

∣

∣

∣

≤
∫ ∞

0

dr r2
(

∣

∣

∣

u

r
e−µr

∣

∣

∣
+

∣

∣

∣

∣

αu
λϵ

r1+ϵ
e−µr

∣

∣

∣

∣

)

(5.6)
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5. Interactions via modified potentials

This leads to two integrals which are solved by Ref. [108], Eqs. (3.351) and (3.381)

u

∫ ∞

0

dr r e−µr + αuλϵ

∫ ∞

0

dr r1−ϵ e−µr = u
1

µ2
+ αuλϵΓ(2 − ϵ)

1

µ2−ϵ
. (5.7)

The restriction mentioned in the literature leads to the condition ϵ < 2 in our case.

Otherwise, for ϵ ≥ 2 the integrand in (5.7) is singular at r = 0. The last expression is

smaller than infinity, thus we can derive now the Fourier transformation of a product of

the rational potential and a decreasing exponential for ϵ < 2.

The Fourier transformation itself is performed analogue to Sec. 3.2.1. In particular,

the calculation of the angular part is identical to Eqs. (3.28) to (3.31), which leads to

the expression

Ṽrat(k) = −2πu

∫ ∞

0

dr r2
(

1

r
+ αλϵ 1

r1+ϵ

)

2 sin kr

kr
e−µr. (5.8)

The first summand is the contribution of the Newtonian part derived in Sec. 3.2.1.

However, the second part is the correction due to the modification we assumed. It is

simplified and evaluated with Ref. [108], Eq. (3.944)

−4π αuλϵ 1

k

∫ ∞

0

dr
1

rϵ
sin kr e−µr

= −αuλϵ4π

k

(

µ2 + k2
)−

1−ϵ
2 Γ(1 − ϵ) sin

[

(1 − ϵ) arctan
k

µ

]

. (5.9)

Once again, the integration is only valid for ϵ < 2. Now we take the limit µ → 0

and simplify the sine function, such that we get the Fourier transform of the rational

potential (5.3)

Ṽrat(k) = −4πu

k2
− α

4πu

k2−ϵ
λϵ cos

(π

2
ϵ
)

Γ(1 − ϵ) (5.10)

with the restriction ϵ < 2.

The limiting case ϵ → 0 is quickly determined, since cos(ϵπ/2) → cos(0) = 1 and

Γ(1 − ϵ) → Γ(1) = 1 so the limit is given by

Ṽrat(k) → −4πu

k2
− α

4πu

k2
, (5.11)
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5.2. Rational potential

which reduces to the Newtonian potential if the strength α of the correction is set to

zero.

In the end of this section, we mention that it is indeed possible to generalize the

expression in (5.10) to ϵ > 2. However, this requires to interpret the function r−1−ϵ as

a generalized function or a distribution. In that sense, this functional is analytically

continued and sometimes also called Riesz potential [122]. A detailed mathematical de-

scription would go beyond the scope of this thesis, thus we refer to the book given in

Ref. [120]. There, the Fourier transformation of the distribution r−1−ϵ in three dimen-

sions with r =
√

x2 + y2 + z2 is given as

F
[

r−1−ϵ
]

= 22−ϵ
√
π3

Γ
(

2−ϵ
2

)

Γ
(

1+ϵ
2

)

1

k2−ϵ
, (5.12)

see p. 363 in Ref. [120]. In the Appendix D we show explicitly that this expression can

be simplified to

F
[

r−1−ϵ
]

= 4π cos
(π

2
ϵ
)

Γ(1 − ϵ)
1

k2−ϵ
. (5.13)

With the prefactor −αu this is formally identical to the correction term in Eq. (5.10)

but now also valid for ϵ > 2.

To visualize the Fourier transformation given in (5.10) we show in Fig. 5.3 the function

depending on ϵ. We notice the typical behavior of the Gamma function Γ(x), which has

simple poles at non-positive integers. In our case the argument of the Gamma function

is 1 − ϵ thus these pole occur for positive integers of ϵ. In combination with the cosine

function the poles at odd integers vanish. As a result the Fourier transform of the

rational potential is undefined at positive and even values of ϵ. This coincides with the

conditions given in Ref. [120] and is a fact which we have to take into consideration later

on.

5.2.2. Equilibrium width and Hessian matrix

With the Fourier transformed rational potential (5.10) we now write down the La-

grangian for that modification analogue to (3.36) for the Newton interaction and (3.66)
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5. Interactions via modified potentials

Figure 5.3.: Schematic plot of the Fourier transform of the rational potential given in
Eq. (5.10). We choose α = 1, λ = 2, κ = 1 and u = 1 as examples.

for the Yukawa interaction as

Lrat =
uN2

(2π)2

√

mω

ℏ

∫

d3κ

[

1

κ2
+ αλ̄ϵ 1

κ2−ϵ
cos
(π

2
ϵ
)

Γ(1 − ϵ)

]

× exp

{

−1

2
(γ2

xκ
2
x + γ2

yκ
2
y + γ2

zκ
2
z)

}

(5.14)

with the dimensionless momentum κ defined in Eq. (3.35) and the dimensionless length

λ̄ introduced in (3.67).

Again, we split the integral in a Newtonian part and a correction due to the rational

modification and define

Irat = αλ̄ϵ cos
(π

2
ϵ
)

Γ(1 − ϵ)

∫

d3κ
1

κ2−ϵ
exp

{

−1

2
(γ2

xκ
2
x + γ2

yκ
2
y + γ2

zκ
2
z)

}

. (5.15)

Since the cosine and the gamma function are independent of κ, they can be written in

front of the integral as a prefactor.

The first derivative of Irat is needed for an expression for the cloud width γ. In

spherical symmetry (3.11) and with the angular parts derived in App. B.2 only the

radial integral remains which we label as J
(j)
rat in accordance to the previous chapters

J
(j)
rat = −α

4π

3
γλ̄ϵ cos

(π

2
ϵ
)

Γ(1 − ϵ)

∫

dκ κ2+ϵ exp

{

−1

2
γ2κ2

}

. (5.16)
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5.2. Rational potential

In Appendix D we derive the solution

J
(j)
rat = −α

4π

3
λ̄ϵ
√

2ϵ+1 cos
(π

2
ϵ
)

Γ(1 − ϵ) Γ

(

ϵ + 3

2

)

1

γ2+ϵ
, (5.17)

which is only valid for ϵ > −3.

The full ODE determining the cloud width γ then reads

γ̈ = −ν2γ +
1

γ3
+

P

γ4
− Q

γ2
− α

2Q√
π
λ̄ϵ
√

2ϵ cos
(π

2
ϵ
)

Γ(1 − ϵ) Γ

(

3 + ϵ

2

)

1

γ2+ϵ
(5.18)

with the same gravitational interaction strength Q defined in Eq. (3.46). Thus, we

determine the equilibrium cloud width γ0 by

−ν2γ0 +
1

γ3
0

+
P

γ4
0

− Q

γ2
0

− α
2Q√
π
λ̄ϵ
√

2ϵ cos
(π

2
ϵ
)

Γ(1 − ϵ) Γ

(

3 + ϵ

2

)

1

γ2+ϵ
0

= 0. (5.19)

Next, the second derivatives of Irat again in spherical symmetry results in the following

radial integrals

J
(jj)
rat = α 4πλ̄ϵ cos

(π

2
ϵ
)

Γ(1 − ϵ)

∫

dκ

(

γ2

5
κ4 − 1

3
κ2

)

κϵ exp

{

−1

2
γ2κ2

}

(5.20)

and

J
(jk)
rat = α

4π

15
γ2λ̄ϵ cos

(π

2
ϵ
)

Γ(1 − ϵ)

∫

dκ κ4+ϵ exp

{

−1

2
γ2κ2

}

(5.21)

for the diagonal and off-diagonal elements. The solution of both integrals is explained

in Appendix D. We give here the results

J
(jj)
rat = α

4π

15
λ̄ϵ
√

2ϵ+1(4 + 3ϵ) cos
(π

2
ϵ
)

Γ(1 − ϵ) Γ

(

ϵ + 3

2

)

1

γ3+ϵ
(5.22)

and

J
(jk)
rat = α

4π

15
λ̄ϵ
√

2ϵ+3 cos
(π

2
ϵ
)

Γ(1 − ϵ) Γ

(

ϵ + 5

2

)

1

γ3+ϵ
(5.23)

if ϵ > −1.

The elements of the complete Hessian matrix M including the contact and Newtonian
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interaction as well as the rational modification are then given by

M (jj) = ν2 +
3

γ4
0

+
2P

γ5
0

− 4

5

Q

γ3
0

− α
2Q

5
√
π

(4 + 3ϵ)λ̄ϵ
√

2ϵ cos
(π

2
ϵ
)

Γ(1 − ϵ) Γ

(

ϵ + 3

2

)

1

γ3+ϵ
0

, (5.24a)

M (jk) =
P

γ5
0

− 3

5

Q

γ3
0

− α
4Q

5
√
π
λ̄ϵ
√

2ϵ cos
(π

2
ϵ
)

Γ(1 − ϵ) Γ

(

ϵ + 5

2

)

1

γ3+ϵ
0

. (5.24b)

Now, we verify quickly the correct Newtonian limit of the Eq. (5.19) and Eqs. (5.24).

As mentioned earlier, for this we simply take the limit ϵ → 0. With the limiting cases

of the cosine and the gamma function already mentioned for Eq. (5.11), and in addition

with the values Γ(3/2) =
√
π/2 and Γ(5/2) = 3

√
π/4, this immediately leads to

γ̈ = −ν2γ +
1

γ3
+

P

γ4
− Q

γ2
− α

Q

γ2
, (5.25a)

M (jj) = ν2 +
3

γ4
0

+
2P

γ5
0

− 4

5

Q

γ3
0

− α
4

5

Q

γ3
0

, (5.25b)

M (jk) =
P

γ5
0

− 3

5

Q

γ3
0

− α
3

5

Q

γ3
0

. (5.25c)

Decreasing the interaction strength α then successfully results in the correct limit given

in Eq. (3.47) and Eq. (3.57).

5.2.3. Discussion

In this section we present the numerical results for a condensate with a hypothetical

interaction caused by a rational potential. Analogue to previous discussions we first

evaluate Eq. (5.19) in the alternative form

γ5
0 − γ0 − P + Qγ2

0 + αQ
2√
π
λ̄ϵ
√

2ϵ cos
(π

2
ϵ
)

Γ(1 − ϵ) Γ

(

3 + ϵ

2

)

γ2−ϵ
0 = 0, (5.26)

where we set ν = 1 without loss of generality. We then put the results for γ0 into the

Hessian matrix given in Eq. (5.24) and calculate the eigenvalues. Again, the collective

frequencies are given by the square root of these eigenvalues.

According to Sec. 3.1.3 and Sec. 3.2.3 we set the interactions strengths to P = 446 and

Q = 4.1 · 10−19 throughout all calculations in this section. Furthermore, we first present
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5.2. Rational potential

Figure 5.4.: Contour plots for the equilibrium cloud width A0 and the collective frequen-
cies Ωbr and Ωqu for a spherical BEC with an interaction via the rational
potential with ϵ = 0.2. The black lines indicate a difference of 0.01 µm to
0.05 µm or 1 Hz to 5 Hz, respectively, compared to the Newtonian case
treated in Sec. 4.2.

the contour plots of the equilibrium cloud width A0 and the collective frequencies Ωbr

and Ωqu for some values of ϵ. To compare the results with the contour plots for the

Yukawa-like interaction discussed in Sec 3.3.3, we choose for α and λ roughly the same

range of values. Additionally, it turns out that the quadrupole modes are degenerate as

we have seen before for spherical condensates.

Figure 5.4 shows the results for ϵ = 0.2. In the first picture we see the equilibrium

width A0, which, in absolute values, is of the same order than the results of the Yukawa-

like interaction shown in Fig. 3.5 as indicated by the color code. However, on the upper

side for large interaction strengths we reach lower cloud widths. It is remarkable that

even for λ ≈ 10−7 m the black curves indicating a difference of 0.01 µm to 0.05 µm
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5. Interactions via modified potentials

Figure 5.5.: Contour plots for the equilibrium cloud width A0 and the collective frequen-
cies Ωbr and Ωqu for a spherical BEC with an interaction via the rational
potential with ϵ = 0.5. The black lines indicate a difference of 0.01 µm to
0.05 µm or 1 Hz to 5 Hz, respectively, compared to the Newtonian case
treated in Sec. 4.2.

to the Newtonian case are at values of α of the order 1018, which is a clear distinction

between both interactions. The same behavior is found for the collective frequencies in

the bottom row of Fig. 5.4. Compared to the frequencies for the Yukawa-like interaction

in Fig. 3.6 the frequencies for the rational interaction are almost ten times larger. Thus

it is not surprising that the black lines are lower as their Yukawa counterparts.

In Fig. 5.5 we show the results for ϵ = 0.5. We clearly see that increasing the parameter

ϵ leads to a larger slope of the curves. This agrees with our previous findings in Sec. 5.1.

However, note that the collective frequencies are drastically increased. This gets even

worse as we approach the singular point ϵ = 2. As an example, we present the collective
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5.2. Rational potential

Figure 5.6.: Collective frequencies Ωbr and Ωqu for ϵ = 1 (top row), ϵ = 2.1 (mid row)
and ϵ = 3 (bottom row). The black lines indicate a difference of 1 Hz to
5 Hz, respectively, compared to the Newtonian case treated in Sec. 4.2.
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5. Interactions via modified potentials

Figure 5.7.: Equilibrium cloud width A0 depending on ϵ. On the left side we set λ̄ = 10
and on the right side α = 1019.

Figure 5.8.: Collective frequencies Ωbr and Ωqu depending on ϵ. In the left column we
set λ̄ = 2 and in the right column α = 1017.
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frequencies in case of ϵ = 1 in Fig. 5.6 at the top. Surprisingly, beyond the singularity

we get again some plausible frequencies as also shown in Fig. 5.6 for ϵ = 2.1 and ϵ = 3.

To investigate this behavior we now present the equilibrium width and the collective

frequencies in dependence of ϵ for fixed values of α and λ. The numerical procedure is

basically identical to the previous one and the results are given in Figs. 5.7 and 5.8. The

explicit values for α and λ are given in the captions of each figure. On first sight we

clearly see the singularities for even integers of ϵ in accordance to Fig. 5.3. For ϵ < 2 the

equilibrium cloud width A0 is decreasing for each larger ϵ, α and λ as we expect for larger

attractive interactions. As a reminder, in this area of ϵ we have shown in Sec. 5.2.1 that

the traditional Fourier transformation is valid and the Fourier transformed potential

can be calculated in a straightforward manner. However, for ϵ > 2 we have to rely on a

generalized formalism allowing us to calculate Fourier transformations of distributions.

In our case of a spherical condensate the numerical calculations for ϵ > 2 indicate a

drastic increase of the size of the condensate represented by a large equilibrium width

A0. In between each singularity we also see a local minimum.

The collective frequencies shown in Fig. 5.8 are also not defined for even integers of

ϵ. In between it shows a similar behavior than the equilibrium cloud width with the

addition that the sign of the correction seems to alternate.

Although these results seem incorrect from a physical point of view, in the appendix E

we verify at least the behavior of the equilibrium cloud width with an alternative method.

This method is based of the effective potential introduced in Eq. (2.36).

5.3. Logarithmic potential

In this section we give a few short remarks on the logarithmic potential defined in

Eq. (5.1)

Vlog = −u

r
+ αu

1

r
ln
[ r

λ

]

exp
{

−µ
r

λ

}

. (5.27)

First of all, we could not find a proper Fourier transformation of this potential. However,

instead we consider the following series expansion

ln (1 + x) =
∞
∑

k=1

(−1)k+1x
k

k
= x− x2

2
+

x3

3
− x4

4
+ · · · . (5.28)
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With the simple substitution

1 + x =
r

λ
→ x =

r

λ
− 1, (5.29)

we express the logarithm in (5.27) as

ln
[ r

λ

]

=
( r

λ
− 1
)

− 1

2

( r

λ
− 1
)2

+
1

3

( r

λ
− 1
)3

− · · · . (5.30)

Together with the expansion

exp
{

−µ
r

λ

}

= 1 − µ
r

λ
+

1

2!

(

µ
r

λ

)2

− 1

3!

(

µ
r

λ

)3

+ · · · (5.31)

and the prefactor 1/r we write the potential (5.27) as

Vlog = −u

r
+ αu

[

−1

r
+ σ0(λ, µ) + σ1(λ, µ)r + σ2(λ, µ)r2 + · · ·

]

, (5.32)

where σp(λ, µ) are some constants. This is a series in rp with p ∈ Z≥−1. In terms

analogue to the rational potential r−(1+ϵ) we set p = −1 − ϵ ≥ −1. As a consequence,

we have the condition ϵ ≤ 0. So in general the Fourier transform of the logarithmic

potential exists as the sum over all Fourier transformations of the rational potential

with ϵ ∈ Z≤0. However, for the differential equation and the elements of the Hessian

matrix we have to evaluate J (j), J (jj) and J (jk), which are only solvable for ϵ > −3 and

ϵ > −1, respectively. Apart from finitely many terms this is a contradiction such that

we cannot analytically evaluate the logarithmic potential with the method discussed in

this thesis.

5.4. Exponential potential

The last potential we originally wanted to discuss is the exponential potential given

in (5.1)

Vexp = −u

r
− αu

1

r

(

exp

{(

λ

r

)ϵ}

− 1

)

. (5.33)
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5.4. Exponential potential

Analogous to the previous section we were not able to find a Fourier transform, thus we

apply the series expansion

exp

{(

λ

r

)ϵ}

= 1 +

(

λ

r

)ϵ

+
1

2!

(

λ

r

)2ϵ

+
1

3!

(

λ

r

)3ϵ

+ · · · (5.34)

which results a series in r−1−ϵp with p ∈ Z≥0 for the potential in Eq. (5.33). The case

p = 1 corresponds to the rational potential and p = 0 to the Newtonian potential.

If we now substitute ϵ̃ = ϵp, each term of the series is mathematically identical to

the rational potential. As also discussed for the logarithmic potential, we need to fulfill

two conditions in order for our method to work: i) the Fourier transform exists at every

point except when ϵ̃ is an even integer and ii) for the calculation of J (j), J (jj) and J (jk)

for each term individually we need ϵ̃ > −3 or ϵ̃ > −1.

In the series in r−1−ϵp we now distinguish two cases. For ϵ < 0 it turns out that we

violate the second condition (ii). How ever small ϵ is at some value of p the product will

eventually be ϵp < −3. As a consequence, we are then not able to derive J (j), J (jj) and

J (jk) needed for the differential equation and the Hessian matrix. On the other side if

ϵ > 0 we know from the first condition (i) that the product ϵp must be different from

even integers. The only possibility to guarantee this in the infinite sum over p is that ϵ

is an irrational number. However, we were not able to find a Fourier transform for these

cases.
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6. Conclusions

6.1. Summary

According to current knowledge, it is still unclear if Newton’s theory of gravity is valid

for arbitrary short distances. Many theories even predict deviations from Newtonian

gravity due to the existence of exotic particles or extra dimensions. As a consequence,

numerous experimental tests have been carried out in the search for evidences to these

claims. A wide variety of systems and effects were studied like the torsion balance

pendulum [76, 67], collider experiments [72, 73, 74] and the Casimir effect [78, 79, 80].

So far, all experiments have verified Newton’s law of gravity up to a certain range for

different parameters as shown for example in Fig. 1.4.

The main goal of this thesis was to improve the theoretical constraints by using self-

gravitating Bose-Einstein condensate. In this model we assumed that each particle in

the condensate interacts via a gravitational potential in addition to the commonly used

contact interaction. In order to encourage experimental tests, we decided to study the

low-lying collective frequencies of the condensate. On the one hand, they are exper-

imentally accessible via time-of-flight measurements or even in-situ by using photonic

systems as platform, and can be measured with a relative precision of 10−3 [46]. On

the other hand, it is known that these frequencies are sensitive to the character of the

interaction, see e.g. Refs. [99, 112]. Hence, we predict in the following the changes in

the collective frequencies caused by a hypothetical gravitational interaction.

Inspired by Refs. [99] and [100], we began this work in Ch. 2 by presenting the varia-

tional method. This is an approach to find approximate solutions to the time-dependent

Gross-Pitaevskii equation with small interactions. The solutions are given in form of

differential equations for the cloud widths in each spatial direction. The linearisation

of the differential equations around the steady state then led to a matrix, of which its

eigenvalues corresponded to the frequencies of the oscillations.
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6. Conclusions

The general expressions for arbitrary interactions and without any assumptions of

symmetry derived in Ch. 2 are then specified in Ch. 3 to spherically symmetric con-

densates. To verify our calculations so far, we assumed the contact interaction and

reproduced then known results from the literature. This included the dependence of

the equilibrium cloud width as well as the collective frequencies on the contact inter-

action strength. Next, we considered a Newtonian two-particle interaction. Due to the

divergence at the origin, however, we performed the calculation in the Fourier space.

This method is also discussed in the context of dipolar interaction, see Ref. [112]. From

this, we analytically derived corrections to the collective frequencies, which, as expected,

turned out to be too small to be measured experimentally, in particular twenty orders

of magnitude smaller than the contact interaction. Since we are interested in modifica-

tions to Newton’s law, we performed the calculations for the most prominent modified

potential, namely the Yukawa potential, which includes two additional parameter the

interaction strength α and the effective range λ. Especially α is of interest, as it can eas-

ily compensate the difference between contact and Newtonian interaction. We derived

the equilibrium cloud width and the collective frequencies as a function of both param-

eters and therefore present the results as contour plots showing the constraints for both

Yukawa parameters. Furthermore, we studied the influence of the particle number, the

s-wave scattering length, the trap frequency, and the mass given by the atomic species.

Assuming accurate frequency measurements of 1 Hz, we have shown that under certain

experimentally feasible conditions, the constraints are slightly improved in the region of

λ ≈ 10−8 m and α ≈ 1024.

In Ch. 4 we generalized our calculations to axially symmetric condensates. Although

more realistic experimentally, we also wanted to further improve the constraints with

condensates in lower dimensions. It is known from the literature that the contact in-

teraction strength increases when the condensate is strongly confined to quasi two or

one dimensions [115, 116]. The strength of the confinement is quantified by the trap-

aspect ratio ζ, the ratio between the trap frequencies in the transversal and longitudinal

directions. The aspect ratio determines the geometry of the condensate and one can

distinguish between cigar-shaped, spherical, and disk-shaped condensates. Again, we

studied the contact interaction, the Newtonian interaction and the Yukawa-like interac-

tion, now including a dependence on the aspect ratio. In case of a disk-shaped condensate

with ζ = 7, we achieved an improvement of the constraints for the effective range λ ad-

ditionally by half an order of magnitude compared to the spherical case. Additionally,
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6.2. Outlook

by measuring at least two collective frequencies, we have shown that it is in principle

possible to determine both Yukawa parameters α and λ independently.

In the last chapter we intended to test our model with more exotic gravitational po-

tentials, where each represents a different class of divergence at the origin. As examples

we chose a rational potential, followed by a logarithmic and an exponential modification

to the Newtonian potential. The first one is inspired by Ref. [119], while the second and

third examples are proposed by us. Nevertheless, we had to guarantee that the poten-

tials all converge to the Newtonian potential for larger distances. In case of the rational

potential, its Fourier transform is restricted in the common sense to ϵ < 1, where 1 + ϵ

is the exponent of the modification. However, by generalizing the concept of the Fourier

transformation to distributions, we found an expression also valid for ϵ > 2 at the cost

of poles for positive even integers of ϵ. With this, we derived for a spherically symmetric

condensate an equation for the equilibrium cloud width as well as the elements of the

Hessian matrix and verified the correct Newtonian limit by ϵ → 0. In the end, however,

it turns out that the numerical calculations show very large values of the equilibrium

cloud width, in particular for ϵ > 2. Therefore, we interpret the results as unphysical.

For the logarithmic and the exponential modification we could neither find a Fourier

transform nor a series expansion in terms of the rational potential due to the poles at

positive even integers as mentioned before. Consequently, we were not able to derive the

differential equations.

6.2. Outlook

The purpose of any theory is its validation by experimental measurements. We explicitly

stated all requirements for the particle number, the scattering length, the mass, and the

trapping frequency as well as the measurement precision in physical units, for which

we predict visible deviations. Although it may be difficult to meet the requirements,

we hope that in the future there will be some experimental efforts in this direction in

the future, since the basic idea of measuring the collective frequencies by time-of-flight

measurements is common knowledge.

Furthermore, a full numerical calculation by solving the Gross-Pitaevskii-Newton sys-

tem, consisting of the Gross-Pitaevskii equation and the Poisson equation, would further

verify the results of this thesis. In case of the Yukawa potential, one has to replace the
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6. Conclusions

Poisson equation by the screened Poisson equation, which takes into account the effective

range.

From a theoretical point of view, it would be interesting to see a rigorous deriva-

tion of the studied system from first principles. In addition, one could also investigate

the Bogoliubov spectrum, which leads to a dispersion relation between energy and mo-

mentum [38]. In this context, a gravitational interaction might also affect the sound

wave velocity at which excitations are moving. Furthermore, one could include e.g.

three-particle interactions [123, 124] due to the long-range nature of the gravitational

potential. The Gaussian ansatz used throughout the thesis could also be expanded by

an explicit phase dependency. With this, one could study the formation of vortices as

phase singularities [125] and gravitational effects on them.

A very exciting topic is the investigation of other modes than the ones discussed here.

In particular, the so-called scissors modes could be of interest. It was shown that these

modes are purely two-dimensional density variations [38, 126] and that they can be

induced by a sudden rotation of the trap potential [127]. As we have seen in this thesis,

the effects of a gravitational self-interaction are largest for a disk-shaped condensate,

which is a quasi two dimensional system. Thus, exciting a scissors mode could lead to

some interesting results.

Besides a Yukawa-like modification, one could also consider other approaches to mod-

ified gravity, e.g. so-called screening mechanisms [128]. These models are designed to

have a significant impact at shorter ranges, but not to cause deviations at larger scales.

One example are the chameleon fields, which consist of a mass-density dependent scalar

field coupled to gravity [129, 85]. Due to an antiproportional relation, the effects are

increased for small densities. An experiment using a cesium matter-wave interferometer

was already performed, see Ref. [130]. In context of a dilute condensate, the effects of a

chameleon field may be greater than the Yukawa potential discussed in this thesis.
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A. Lagrangian of the Newtonian

interaction in position space for

spherical symmetry

In this appendix we present a method to evaluate the Lagrangian of the Newtonian

interaction given by (3.21) in the position space. As mentioned in Sec. 3.2 this was

already done in a diploma thesis, see Ref. [111], so further details can be found there.

The first step is to rewrite the denominator in (3.21) as |r− r
′| =

√

(r− r′)2. In this

form we apply the Schwinger formula, see also Ref. [131]

1

az
=

1

Γ(z)

∫ ∞

0

dy yz−1e−ay (A.1)

for a > 0, such that

1
√

(r− r′)2
=

1

Γ(1/2)

∫ ∞

0

dy
1√
y

exp
{

−(r− r
′)2y
}

. (A.2)

With Γ(1/2) =
√
π we insert the equation above as well as the Gaussian ansatz (2.11)

into the Lagrangian (3.21), which leads to

LN =
1

2

u√
π

N2

π3A2
1A

2
2A

2
3

·

·
∫

d3r

∫

d3r′
∫ ∞

0

dy
1√
y

exp
{

−(r− r
′)2y
}

exp

{

−
3
∑

j=1

1

A2
j

(r2j + r′2j )

}

. (A.3)
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A. Lagrangian of the Newtonian interaction in position space for spherical symmetry

Rearranging the integrals gives

LN =
1

2

u√
π

N2

π3A2
1A

2
2A

2
3

·

·
∫ ∞

0

dy
1√
y

3
∏

j=1

∫

dxj

∫

dx′
j exp

{

−(xj − x′
j)

2y − 1

A2
j

(x2
j + x′2

j )

}

. (A.4)

The integrals over the spatial coordinates xj are Gaussian integrals and thus solvable

LN =
1

2

u√
π

N2

π3A2
1A

2
2A

2
3

∫ ∞

0

dy
1√
y

3
∏

j=1

πA2
j

√

1 + 2A2
jy

. (A.5)

This integral is more difficult. In fact we found that it is analytically solvable only if

all three Gauss widths coincide, meaning we restrict ourselves to the special case of a

spherically symmetric condensate in an analytic way. So if the Gauss widths are identical

A1 = A2 = A3 = A we get

LN =
uN2

√
2π

1

A
, (A.6)

which coincides with the expression in Eq. (3.84). Keep in mind that with this expression

we can only investigate radial oscillations as the breathing mode.
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B. Detailed calculations for spherical

condensates

B.1. Fourier transform of the interaction Lagrangian

In this appendix we briefly show the explicit derivation of the Fourier transformed La-

grangian used in Ch. 3. We start with the Lagrangian in position space, which is given

by Eq. (3.22). As mentioned there, n(r) = |Ψ(r)|2 denotes the density. Inserting a

Fourier transformation of the form in Eq. (3.23) for each component we obtain

LN = −1

2

∫

d3r

∫

d3r′
1

(2π)3

∫

d3k′ ñ(k′)eik
′·r

× 1

(2π)3

∫

d3k ṼN(k)eik·(r−r
′) 1

(2π)3

∫

d3k′′ ñ(k′′)eik
′′·r′ . (B.1)

The integrals are rearranged, thus

LN = −1

2

1

(2π)9

∫

d3k

∫

d3k′

∫

d3k′′ ñ(k′) ṼN(k) ñ(k′′)

×
∫

d3r exp{i(k′ + k) · r}
∫

d3r′ exp{i(k′′ − k) · r′}. (B.2)

We evaluate the spatial integrals over r and r′, which results in two δ-functions

LN = −1

2

1

(2π)9

∫

d3k

∫

d3k′

∫

d3k′′ ñ(k′) ṼN(k) ñ(k′′)

× (2π)3 δ(k′ + k) · (2π)3 δ(k′′ − k). (B.3)

This then simplifies to Eq. (3.24).
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B. Detailed calculations for spherical condensates

B.2. Newtonian interaction

Here we present the step-by-step calculations of the integrals appearing in in Sec. 3.2. We

start with the calculations concerning the equilibrium cloud width, namely the function

JN defined in Eq. (3.40). There, we first present the solutions of the angular integrals,

see (3.42) and show how to derive the following radial integral (3.43) resulting in (3.44).

After that, we take a look into the calculations of the diagonal and off-diagonal elements

of the Hessian matrix. Again, we give a step-by-step solution for both the angular and

radial integrals in Eqs. (3.49) and (3.53). Since we assume throughout Sec. 3.2 spherical

symmetry we apply the spherical coordinates given in Eq. (3.41).

Equilibrium cloud width

We have to evaluate the angular part of JN given by

∫ 2π

0

dφ

∫ π

0

dϑ sinϑ κ2
j (B.4)

for each κj. By inserting them separately, we get for each component x, y and z a

combination of trigonometric functions of varying order

for κx : κ2

∫ 2π

0

dφ cos2 φ

∫ π

0

dϑ sin3 ϑ = κ2 π
4

3
, (B.5a)

for κy : κ2

∫ 2π

0

dφ sin2 φ

∫ π

0

dϑ sin3 ϑ = κ2 π
4

3
, (B.5b)

for κz : κ2

∫ 2π

0

dφ

∫ π

0

dϑ sinϑ cosϑ = κ2 2π
2

3
. (B.5c)

The corresponding solutions are also found in the literature, i.e. Ref. [108]. We see

that all three integrals lead to the same result given in Eq. (3.42). This is expected as

Newtonian gravity is a prominent example of a conservative force acting only in a radial

direction.

With the angular part determined we now solve the remaining radial integral given

in (3.43). Throughout the whole thesis we assume a Gaussian function as the wave

function, so it is worth mentioning a special property of these functions. In particular,
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B.2. Newtonian interaction

the integrand can be rewritten in the following form

κ2 exp

{

−1

2
γ2κ2

}

= −1

γ
∂γ exp

{

−1

2
γ2κ2

}

, (B.6)

as the derivative of an exponential function reproduces itself. Inserting this expression

into the radial integral (3.43), allows us to switch the order of the integration over κ and

the derivative with respect to γ, as they are independent variables. This leads us to

JN =
4π

3
∂γ

∫ ∞

0

dκ exp

{

−1

2
γ2κ2

}

. (B.7)

At this point, it is convenient to define a new function

KN =

∫ ∞

0

dκ exp

{

−1

2
γ2κ2

}

(B.8)

as the remaining radial integral. Although in this case it is a simple Gaussian integral,

where the solution is well known as

KN =

√

π

2

1

γ
, (B.9)

the structure of the definition of KN becomes very useful in later calculations. As a

preparation we then write Eq. (B.7) in a more compact form as

JN =
4π

3
∂γKN, (B.10)

which is easier to read. Inserting the solution of the Gaussian integral then immediately

leads to the result given in Eq. (3.44).

Diagonal elements of the Hessian

Next, we solve the integrals in J
(jj)
N given in Eq. (3.49). This is necessary to determine

the diagonal elements of the Hessian matrix. We start again with the angular integrals

∫ 2π

0

dφ

∫ π

0

dϑ sinϑ
(

γ2κ4
j − κ2

j

)

. (B.11)
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B. Detailed calculations for spherical condensates

Using the linearity of the integral and inserting the spherical coordinates (3.41) we get

for j = x : γ2κ4

∫ 2π

0

dφ cos4 φ

∫ π

0

dϑ sin5 ϑ− κ2

∫ 2π

0

dφ cos2 φ

∫ π

0

dϑ sin3 ϑ

= γ2κ4 3π

4
· 16

15
− κ2 π · 4

3
, (B.12a)

for j = y : γ2κ4

∫ 2π

0

dφ sin4 φ

∫ π

0

dϑ sin5 ϑ− κ2

∫ 2π

0

dφ sin2 φ

∫ π

0

dϑ sin3 ϑ

= γ2κ4 3π

4
· 16

15
− κ2 π · 4

3
, (B.12b)

for j = z : γ2κ4

∫ 2π

0

dφ

∫ π

0

dϑ sinϑ cos4 ϑ− κ2

∫ 2π

0

dφ

∫ π

0

dϑ sinϑ cos2 ϑ

= γ2κ4 2π · 2

5
− κ2 2π · 2

3
. (B.12c)

Once more, all angular parts of the diagonal elements are equal as written in Eq. (3.50).

Analogue to the previous part we have to solve the radial integral

J
(jj)
N = 4π

∫ ∞

0

dκ

(

γ2

5
κ4 − 1

3
κ2

)

exp

{

−1

2
γ2κ2

}

. (B.13)

We start by splitting the integrals into the sum of two parts. With the expression in (B.6)

applied once for the first summand and twice for the second term we get

J
(jj)
N = 4π

{

− γ

5
∂γ

[

−1

γ
∂γ

(∫ ∞

0

dκ exp

{

−1

2
γ2κ2

})]

+
1

3γ
∂γ

(∫ ∞

0

dκ exp

{

−1

2
γ2κ2

})

}

. (B.14)

For a more compact and clear expression, we use the function KN introduced in Eq. (B.8)

which results in

J
(jj)
N = 4π

[

−γ

5
∂γ

(

−1

γ
∂γKN

)

+
1

3γ
∂γKN

]

. (B.15)

With the result of the Gaussian integral (B.9) we then get Eq. (3.51).
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B.2. Newtonian interaction

Off-diagonal elements of the Hessian

Lastly, we determine the integrals in J
(jk)
N for the off-diagonal elements of the Hessian

matrix. The angular parts are

∫ 2π

0

dφ

∫ π

0

dϑ sinϑ κ2
jκ

2
k (B.16)

for j ̸= k. With the spherical coordinates (3.41) we get

for j = x, k = y : κ4

∫ 2π

0

dφ cos2 φ sin2 φ

∫ π

0

dϑ sin5 ϑ = κ4 π

4

16

15
, (B.17a)

for j = x, k = z : κ4

∫ 2π

0

dφ cos2 φ

∫ π

0

dϑ sin3 ϑ cos2 ϑ = κ4 π
4

15
, (B.17b)

for j = y, k = z : κ4

∫ 2π

0

dφ sin2 φ

∫ π

0

dϑ sin2 ϑ cos2 ϑ = κ4 π
4

15
. (B.17c)

The remaining elements give the same results, respectively, as the product in (B.16)

commutes. With this Eq. (3.54) is proven. Furthermore, this then leads to the radial

integral

J
(jk)
N =

4π

15
γ2

∫ ∞

0

dκ κ4 exp

{

−1

2
γ2κ2

}

(B.18)

and after applying (B.6) twice

J
(jk)
N = −4π

15
γ∂γ

[

−1

γ
∂γ

(∫ ∞

0

dκ exp

{

−1

2
γ2κ2

})]

, (B.19)

respectively. For completeness, we show here the expression for J
(jk)
N depending on KN

J
(jk)
N = −4π

15
γ∂γ

(

−1

γ
∂γKN

)

. (B.20)

Using the solution of the Gaussian integral (B.9) and performing both derivatives with

respect to γ leads to the expression given in Eq. (3.55).
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B.3. Yukawa-like interaction

In this part we solve the radial integrals for the Yukawa-like potential treated in Sec. 3.3.

As mentioned there, the angular parts are identical to the results derived in the Ap-

pendix B.2 for the Newtonian case, since the gravitational potentials do not depend on

the angles. Analogous to the previous section we calculate the integrals (3.72) for the

equilibrium cloud width and (3.76) and (3.79) for the diagonal and off-diagonal elements

of the Hessian matrix.

Starting with Eq. (3.72), we rewrite the integral using (B.6) twice as follows

JYuk =
4π

3
∂γ

[

−1

γ
∂γ

(∫ ∞

0

dκ
α

κ2 + λ̄−2
exp

{

−1

2
γ2κ2

})]

. (B.21)

Again, we define the integral as a function KYuk, which reads this time

KYuk =

∫ ∞

0

dκ
α

κ2 + λ̄−2
exp

{

−1

2
γ2κ2

}

. (B.22)

According to Ref. [108], Eq. (3.466) this integral is solved by

KYuk = α
π

2
λ̄ exp

{

γ2

2λ̄2

}

erfc

[
√

γ2

2λ̄2

]

. (B.23)

The function erfc(x) is called the complementary error function. It is commonly

defined by erfc(x) = 1 − erf(x), where the error function itself is defined by a Gaussian

integral as follows

erf(x) =
2√
π

∫ x

0

dt e−t2 , (B.24)

see for example Ref. [132]. As a consequence, it is possible to express the complementary

error function as

erfc(x) =
2√
π

∫ ∞

x

dt e−t2 . (B.25)
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B.3. Yukawa-like interaction

Figure B.1.: Error function and complementary error function (left) as well as their
derivatives (right) depending on their argument.

Hence, the derivatives are simply given by Gaussian function

∂x erf(x) =
2√
π

e−x2

, (B.26a)

∂x erfc(x) = − 2√
π

e−x2

. (B.26b)

In Fig. B.1 we show both the error functions and their derivatives. Here, we are

especially interested in the complementary error function erfc(x). As seen in the pictures,

the image of the function is restricted between the values 0 and 2. The derivative

shows a Gaussian with negative sign around the center in accordance to the analytic

expression (B.26b).

Back to our calculations of the equilibrium cloud width we mention the expression for

JYuk (B.21), which depends on the function KYuk

JYuk =
4π

3
∂γ

(

−1

γ
∂γKYuk

)

, (B.27)

although it is in principle not needed here as we know the analytic solution (B.23).

Nevertheless, this formal structure will become very useful and easier to read in later

calculations. Inserting (B.23) into the equation above and calculating the first derivative

leads to an expression with both exponential and complementary error function as well

as a constant −
√

2
π
1
λ̄
. We multiply the result by γ−1 and calculate the next derivative

analogously. This finally results in Eq. (3.73).

The next integral is given in Eq. (3.76) for the diagonal elements of the Hessian matrix.
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B. Detailed calculations for spherical condensates

Here, we have to use (B.6) three times for the first part and twice for the second part

to reduce the integral to that in Eq. (B.23). Thus with the function KYuk we have

J
(jj)
Yuk = α 4π

[

− γ

5
∂γ

[

−1

γ
∂γ

(

−1

γ
∂γKYuk

)]

+
1

3γ
∂γ

(

−1

γ
∂γKYuk

)

]

. (B.28)

Using Eq. (B.23), leads to the result in Eq. (3.77).

And finally we derive the radial integral in Eq. (3.79) for the off-diagonal elements of

the Hessian matrix. Again we apply (B.6) three times and use the short-notation with

the function KYuk

J
(jk)
Yuk = −α

4π

15
γ∂γ

[

−1

γ
∂γ

(

−1

γ
∂γKYuk

)]

. (B.29)

With (B.23) the calculation is quite similar to the previous one and results in Eq. (3.80).

B.4. Analytic expression for the frequency of the

breathing mode for Yukawa interaction

Since the analytic expressions for the eigenvalues of the Hessian matrix in Eq. (3.82)

are too complicated and too long to write down, we show in this section a simplified

calculation to derive a compact expression at least for the collective frequency of the

breathing mode.

We start with the Lagrangian for the Yukawa-like interaction given in Eq. (3.66). The

breathing mode of a spherical condensate describes a radial oscillation around the center

of the condensate, which means that in all three spatial dimensions the variation of the

respective Gauss width are identical and oscillate in phase to the others. In this special

case we can safely assume the dimensionless Gauss widths themselves to be equal, thus

γx = γy = γz = γ. The Lagrangian then reads in spherical coordinates as follows

LYuk =
uN2

(2π)2

√

mω

ℏ

·
∫ ∞

0

dκ

∫ 2π

0

dφ

∫ π

0

dϑ κ2 sinϑ

(

1

κ2
+

α

κ2 + λ̄−2

)

exp

{

−1

2
γ2κ2

}

. (B.30)

The angular part is trivial and the radial integration consists of a simple Gauss inte-
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B.4. Analytic expression for the frequency of the breathing mode for Yukawa interaction

gral and a part, which is solved with (B.6) and (B.23). Consequently, we get for the

Lagrangian

LYuk =
1√
2π

uN2

√

mω

ℏ

(

1

γ
+ α

1

γ
− α

√

π

2

1

λ̄
exp

{

γ2

2λ̄2

}

erfc

[
√

γ2

2λ̄2

])

. (B.31)

With this expression we define an effective potential with Eq. (2.37), including the

contact interaction, the Newtonian, and the Yukawa-like interaction

Veff = 3

(

ν2

2
γ2 +

1

2γ2

)

+
P

γ3
− 3Q

γ
− 3αQ

(

1

γ
−
√

π

2

1

λ̄
exp

{

γ2

2λ̄2

}

erfc

[
√

γ2

2λ̄2

])

,

(B.32)

where νx = νy = νz = ν due to spherical symmetry. As mentioned in Ch. 2 in the Taylor

expansion of the effective potential the first derivative is set to zero and thus defines

an equation for the equilibrium cloud width γ0, which is identical to Eq. (3.75). The

second derivative of the effective potential (B.32) leads to the collective frequency of the

breathing mode

(

Ωbr

ω

)2

= ν2 +
3

γ4
0

+
4P

γ5
0

− 2Q

γ3
0

− 2αQ

[

1

γ3
0

+
γ0

2λ̄4
−
√

π

2

(

1

2λ̄3
+

γ2
0

2λ̄5

)

exp

{

γ2
0

2λ̄2

}

erfc

[

γ0√
2λ̄

]]

.

(B.33)

In Fig. B.2 we show a comparison between the analytic formula given by Eq. (B.33)

and the results presented in Sec. 3.3.3. We compare the difference to the Newtonian case

from 1 Hz to 5 Hz of the collective frequency of the breathing mode. As expected the

curves completely overlap, so (B.33) is indeed an analytic expression for the frequency

of the breathing mode.

Note that the Lagrangian (B.31) treated in this section does not allow a variation of

the three Gauss widths independently and thus cannot be used to derive for example

quadrupole frequencies. This is why we chose a more general calculation in Ch. 3.

However, with this simplified version we found an analytic expression for the collective

frequency of the breathing mode and furthermore, we are able to roughly estimate the

order of magnitude of the interaction energy of a Yukawa-like potential, which is used
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B. Detailed calculations for spherical condensates

Figure B.2.: Contourplot for the collective frequency of the breathing mode: compari-
son between the results of Sec 3.3.3 (black) and the analytic expression in
Eq. (B.33) (red dashed). The lines indicate a difference of 1 Hz to 5 Hz
compared to the Newtonian case given in Eq. (3.63) analogue to Fig. 3.6.

in Sec. 3.3.3 to determine viable values for the interaction strength α.
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C. Detailed calculations for axially

symmetric condensates

In this part of the appendix we focus on solving the appearing integrals in Ch. 4 treating

the axially symmetric condensates. In contrast to the previous part, App. B we apply

cylindrical coordinates given in Eq. (4.10).

C.1. Newtonian interaction

In the first part we give a detailed calculation for the integrals including Newtonian

interaction as described in Sec. 4.2. As usual we start with the function J
(j)
N now,

however, in axial symmetry defined in Eq. (4.11) and explain all necessary steps to

derive the ordinary differential equations for γt and γz, shown in Eqs. (4.16). After that,

we solve the integrals in J
(jj)
N and J

(jk)
N , see Eqs. (4.18) and (4.19), respectively, to get

the expressions for the diagonal and off-diagonal elements of the Hessian matrix.

Equilibrium cloud width

The expression J
(j)
N in Eq. (4.11) includes the cylindrical coordinate κj given in Eq. (4.10).

In order to explicitly solve the integrals we treat the different cases for j separately.

Hence, let us start with j = x. The integral over the angular part φ is very easy and

gives a factor π, as we have already seen in App. B.2. The integral over κρ needs a bit

more attention. First, we apply the identity (B.6)

∫ ∞

0

dκρ

κ3
ρ

κ2
ρ + κ2

z

exp

{

−1

2
γ2
t κ

2
ρ

}

= −1

2
∂γt

∫ ∞

0

dκρ

κρ

κ2
ρ + κ2

z

exp

{

−1

2
γ2
t κ

2
ρ

}

. (C.1)

119



C. Detailed calculations for axially symmetric condensates

Figure C.1.: Incomplete gamma function Γ(0, x) (left) and x−1arcsinh(x) (right) depend-
ing on its argument.

Here, we substitute

v =
1

2
γ2
t κ

2
ρ ⇒ dv = γ2

t κρdκρ, (C.2)

which leads to

− 1

γt
∂γt

∫ ∞

0

dv
1

γ2
t

1
2v
γ2
t

+ κ2
z

e−v = − 1

γt
∂γt

(

1

2

∫ ∞

0

dv
1

v + 1
2
γ2
t κ

2
z

e−v

)

. (C.3)

We label the second summand in the denominator as ξ2 as defined in Eq. (4.13). Note

that ξ2 is always positive. Next, we use another substitution

w = v + ξ2 ⇒ dw = dv (C.4)

to get

− 1

γt
∂γt

(

1

2

∫ ∞

ξ2
dw

1

w
e−w

)

e+ξ2 = − 1

γt
∂γt

[

1

2
Γ(0, ξ2)eξ

2

]

. (C.5)

Here, we introduced the incomplete gamma function Γ(0, x) with its definition given in

the expression above inside the brackets. We present this function also in Fig. C.1 on

the left side. It is a monotonically decreasing function with a singularity at x = 0 while

approaching zero in the limit x → ∞. Thus the function itself has no roots and is always

positive.
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C.1. Newtonian interaction

So far, with Eq. (C.5) the function J
(x)
N reads

J
(x)
N = π

∫ ∞

−∞

dκz exp

{

−1

2
γ2
zκ

2
z

}

∂γt

[

1

2
Γ(0, ξ2)eξ

2

]

. (C.6)

Note that ξ2 also depends on κz according to its definition (4.13). Now, we define the

integral as a function KN as given in Eq. (4.14). With that JN gets a compact form

J
(x)
N = π ∂γtKN. (C.7)

For better readability we use this expression, although the integral in KN in Eq. (4.14)

can be solved. The program Mathematica returns as a result

KN =

√
2π

√

γ2
z − γ2

t

arcsinh

√

γ2
z − γ2

t

γ2
t

, (C.8)

which can easily be formulated as Eq. (4.15). The function of the type x−1arcsinh(x)

occurring there is shown schematically in Fig. C.1 on the right side. As we can see, it

is finite and positive everywhere. In particular, the center at x = 0 is of interest as it

corresponds in our model to the spherical limit. There, the function takes the value 1 as

discussed in Sec. 4.2. Otherwise, it is decreasing and slowly approaching zero for both

limits x → ±∞.

The calculation for j = y is identical, since the angular integration gives again a factor

π.

In case of j = z the integrals slightly differ. The function J
(z)
N specifically reads

J
(z)
N = −γz

∫ ∞

−∞

dκz

(∫ ∞

0

dκρ

∫ 2π

0

dφ
κρκ

2
z

κ2
ρ + κ2

z

exp

{

−1

2
γ2
t κ

2
ρ

})

exp

{

−1

2
γ2
zκ

2
z

}

.

(C.9)

The angular integral gives a factor 2π and the integral over κρ is formulated in terms

of the incomplete Gamma function analogue to (C.5) but without any derivatives. This

leads to

J
(z)
N = −2πγz

∫ ∞

−∞

dκz κ
2
z

1

2
Γ
(

0, ξ2
)

eξ
2

exp

{

−1

2
γ2
zκ

2
z

}

. (C.10)
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C. Detailed calculations for axially symmetric condensates

In order to get rid of κ2
z in the integrand, we apply (B.6) and write JN depending on the

function KN as

J
(z)
N = 2π ∂γzKN. (C.11)

Note that Eq. (C.11) has an additional factor 2 in comparison with (C.7).

As all three components of J
(j)
N are determined, we now take a look at the additional

term in the ODEs. With the prefactors in the general equations for the ODE (2.34) and

the Lagrangian (3.36) we have

1

N

2

ℏω
∂γjLYuk =

2

(2π)2
uN

ℏω

√

mω

ℏ
J
(j)
N . (C.12)

Inserting (C.7) and (C.11) and using the definition of the gravitational interaction

strength Q in (3.46) we finally get the ODEs in Eqs. (4.16).

Hessian matrix

To derive the collective frequencies of the condensate, it is necessary to know the Hessian

matrix M . By construction the matrix depends on the integral function J
(jj)
N and J

(jk)
N

shown for axial symmetry in Eqs. (4.18) and (4.19). In the following we solve the

integrals for all needed cases. With the knowledge of the previous part, the procedure

itself is straightforward and all important steps like introducing the incomplete gamma

function were already mentioned. It is also similar to the spherical case discussed in

App. B.2.

The first contribution is J
(xx)
N , for which we insert κx from Eq. (4.10) into (4.18). The

angular integral over φ

∫ 2π

0

dφ
(

γ2
t κ

4
ρ cos4 φ− κ2

ρ cos2 φ
)

=
3

4
πγ2

t κ
4
ρ − πκ2

ρ (C.13)

can be looked up in the literature. For the following κρ integral we have to apply (B.6)

twice for the first summand due to the factor κ4
ρ and once for the second summand
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C.1. Newtonian interaction

because of κ2
ρ. Including the third integral, we thus get

J
(xx)
N =

3

4
πγt ∂γt

(

1

γt
∂γtKN

)

+
π

γt
∂γt KN. (C.14)

As expected for cylindrical symmetry it turns out that J
(yy)
N leads to the same result.

The third diagonal element J
(zz)
N gives a factor 2π from the integration over φ and

because of κ4
z and κ2

z in the integrand we have to use (B.6) up to two times now with

respect to γz. The result is

J
(zz)
N = 2πγz ∂γz

(

1

γz
∂γzKN

)

+
2π

γz
∂γz KN. (C.15)

Now for the off diagonal elements we start with Eq. (4.19). Again the angular integral

is fairly easy

∫ 2π

0

dφ κ4
ρ cos2 φ sin2 φ =

π

4
κ4
ρ, (C.16)

such that we have to apply (B.6) twice with respect to γt. This immediately leads to

J
(xy)
N =

π

4
γt ∂γt

(

1

γt
∂γtKN

)

. (C.17)

The last part is J
(xz)
N . The integration over φ gives a factor π and the remaining

integrals read

J
(xz)
N = πγtγz

∫ ∞

−∞

dκz

∫ ∞

0

dκρ

κ3
ρκ

2
z

κ2
ρ + κ2

z

exp

{

−1

2
γ2
t κ

2
ρ

}

exp

{

−1

2
γ2
zκ

2
z

}

. (C.18)

Here we use (B.6) once with respect to γt and once with respect to γz, which results in

the mixed second derivative

J
(xz)
N = π ∂γt∂γzKN. (C.19)

Again due to the symmetry J
(yz)
N yields the same result. With all contributions J

(jj)
N and

J
(jk)
N given in Eqs. (C.14), (C.15), (C.17), and (C.18) we then determine the elements

of the Hessian matrix M according to the general form of M in Eq. (2.42). This then
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C. Detailed calculations for axially symmetric condensates

leads to Eqs. (4.20) and (4.21).

C.2. Yukawa-like interaction

Here, we will quickly go through the calculations dedicated to the Yukawa-like interaction

in axially symmetric condensates described in Sec. 4.3. We explicitly show the difference

in the formulas compared to the Newtonian results from the previous part.

Starting with the integral function J
(j)
Yuk given in Eq. (4.25), we immediately notice

the change in the denominator caused the finite size of the effective range λ, see also the

Fourier transform of the Yukawa potential (3.65). With the cylindrical coordinates κj

of Eq. (4.10) the appearing integrals over φ is identical to the Newtonian case for each

j. However, the κρ integrals slightly differs, as shown here for j = x

J
(x)
Yuk = −πγt

∫ ∞

−∞

dκz

(

∫ ∞

0

dκρ

ακ3
ρ

κ2
ρ + κ2

z + λ̄−2
exp

{

−1

2
γ2
t κ

2
ρ

}

)

exp

{

−1

2
γ2
zκ

2
z

}

.

(C.20)

With the identity (B.6) and the same substitution (C.2) for the argument of the expo-

nential function the integral in the brackets is written as

∫ ∞

0

dκρ

ακ3
ρ

κ2
ρ + κ2

z + λ̄−2
exp

{

−1

2
γ2
t κ

2
ρ

}

=

− α
1

γt
∂γt

(

1

2

∫ ∞

0

dv
1

v + 1
2
γ2
t

(

κ2
z + λ̄−2

)e−v

)

. (C.21)

The denominator still contains the effective range of the Yukawa interaction. We now

define the second summand in the denominator as ξ′2 shown in Eq. (4.26). The next

substitution analogue to (C.4) then includes ξ′ instead of ξ, such that

−α
1

γt
∂γt

(

1

2

∫ ∞

0

dv
1

v + 1
2
γ2
t

(

κ2
z + λ̄−2

)e−v

)

= −α
1

γt
∂γt

[

1

2
Γ(0, ξ′2)eξ

′2

]

. (C.22)

Including the integral over κz of Eq. (C.20), we define the function KYuk as in Eq. (4.27),
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C.2. Yukawa-like interaction

such that we finally get the compact form

J
(x)
Yuk = π α ∂γtKYuk. (C.23)

Unfortunately, as mentioned in Sec. 4.3, we cannot analytically solve KYuk in contrast

to KN.

From this point on, the calculations of the remaining integrals of J
(j)
Yuk as well as J

(jj)
Yuk

and J
(jk)
Yuk are formally identical to App. C.1. In fact, as Eq. (C.23) already suggests,

we simply need to replace KN by the product αKYuk in all expressions. The ODE in

Eqs. (4.28) and the elements of the Hessian matrix in Eqs. (4.32) and (4.33) in case of

the Yukawa interaction thus immediately follows.
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D. Detailed calculations for the

rational potential

In this part of the appendix we show the detailed calculations of Ch. 5. In particular,

we first prove that the expression (5.12) given in Ref. [120] for the Fourier transform of

the distribution r−1−ϵ can be simplified into Eq. (5.10). We then follow the procedure of

App. B.3 and present the solutions of the integrals occurring in Eq. (5.16) to determine

an expression for the equilibrium cloud width γ0 and in Eqs. (5.20) and (5.21) for the

Hessian matrix M . Furthermore, we explicitly break down the calculations to reach the

results in Eqs. (5.18) and (5.24).

The first part treats the Fourier transform of r−1−ϵ, which as mentioned is given

by (5.12) in general. We rewrite this result with the following identities of the gamma

function:

recurrence : Γ(z + 1) = zΓ(z), (D.1a)

reflection : Γ(z)Γ(1 − z) =
π

sin(πz)
, (D.1b)

duplication : Γ(2z) =
1√
2π

22z− 1

2 Γ(z)Γ

(

z +
1

2

)

, (D.1c)

see Ref. [133], p. 256. With the duplication formula (D.1c) we show that

Γ(1 − ϵ) =
1√
2π

2
1

2
−ϵΓ

(

1 − ϵ

2

)

Γ

(

2 − ϵ

2

)

. (D.2)

Solving this for Γ((2− ϵ)/2) and inserting into Eq. (5.12) leads to the Fourier transform

F
[

r−1−ϵ
]

= 4π2 1

Γ
(

1+ϵ
2

)

Γ
(

1−ϵ
2

) Γ(1 − ϵ)
1

k2−ϵ
. (D.3)
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D. Detailed calculations for the rational potential

We rewrite the denominator as

Γ

(

1 − ϵ

2

)

Γ

(

1 + ϵ

2

)

= Γ

(

1 − ϵ

2

)

Γ

(

1 − 1 − ϵ

2

)

(D.4)

and apply the reflection formula (D.1b) as well as replace the sine function by the cosine

function. This then leads to Eq. (5.13) and the statement is proven.

Next, we solve the integral in (5.16). With Eq. (B.6) it follows

∫ ∞

0

dκ κ2+ϵ exp

{

−1

2
γ2κ2

}

= −1

γ
∂γ

∫ ∞

0

dκ κϵ exp

{

−1

2
γ2κ2

}

. (D.5)

This integral is found in the literature, i.e. in Ref. [108], p. 347,

∫ ∞

0

dκ κϵ exp

{

−1

2
γ2κ2

}

=
1

2

√
2ϵ−1 Γ

(

ϵ + 1

2

)

1

γ1+ϵ
(D.6)

if Re(ϵ) > −3. Calculating the derivative with respect to γ is straightforward and we

simplify the result with the recurrence formula (D.1a), such that Eq. (5.17) immediately

follows, as well as the ODE (5.18) for the cloud width.

Finally, we calculate the integrals in (5.20) and (5.21) to determine the Hessian matrix.

In both expressions the same integral occurs, where we apply (B.6) twice. This yields

∫ ∞

0

dκ κ4+ϵ exp

{

−1

2
γ2κ2

}

=
√

2ϵ+3Γ

(

ϵ + 5

2

)

1

γ5+ϵ
. (D.7)

Eq. (5.23) for the off-diagonal elements is thus already proven. For the expression of the

diagonal elements (5.22) we get the intermediate result

J
(jj)
rat =αλ̄ϵ cos

(π

2
ϵ
)

Γ(1 − ϵ)

× 4π

[

γ2

5

√
2ϵ+3 Γ

(

ϵ + 5

2

)

1

γ5+ϵ
− 1

3

√
2ϵ+1 Γ

(

ϵ + 3

2

)

1

γ3+ϵ

]

. (D.8)

Using the recurrence formula (D.1a) for the first summand backwards leads to Eq. (5.22).

The matrix elements M (jj) and M (jk) in Eq. (5.24) follow analogue to the Yukawa case.
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E. Effective potentials

In this appendix we investigate the effective potentials of the interactions discussed in

this thesis. We have defined the effective potentials in Eq. (2.36) in Sec. 2.3, such that

the acceleration terms of the differential equations are equal to the negative derivative

with respect to the Gaussian width of said potential. It is often used to find bound states

or to investigate the stability of a system. In particular, searching for the minimum of

this potential is an alternative way to find the equilibrium cloud width.

The general form of the effective potential is mentioned in Eq. (2.37) depending on

the Lagrangian of the two-particle interaction. In the following we explicitly derive the

effective potential for each considered interaction in spherically symmetric condensates.

We begin with the contact interaction followed by the Newtonian interaction and discuss

the influence of both contact interaction strength and gravitational interaction strength.

After that, we take a look into the Yukawa-like interaction with both parameters and

finish this section with an interaction caused by a rational potential.

According to Eq. (2.37) we need an expression for the Lagrangian Lint. In case of the

contact interaction we already know the general form, which is given in Eq. (3.4). When

we assume spherical symmetry this simplifies to

Lcon

(
√

ℏ

mω
γ

)

= − gN2

2
√

(2π)3

(
√

mω

ℏ

)3
1

γ3
. (E.1)

Inserting this into the general form of the effective potential (2.37) leads to

V
(con)
eff =

3

2

(

γ2 +
1

γ2

)

+
P

γ3
(E.2)

for spherical condensates with ν = 1. Here we used the contact interaction strength P

defined in Eq. (3.6). The minimum of this function can be calculated numerically.

In Fig. E.1 on the left side we present the effective potential for the contact interaction
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E. Effective potentials

Figure E.1.: Effective potential for the contact interaction (left) and the Newtonian in-
teraction (right) depending on the corresponding interaction strengths P
and Q. For the Newtonian interaction we choose P = 446. The red dots
indicate the minimum of each curve.

depending on the dimensionless Gauss width γ for different contact interaction strengths

P . Additionally, we also include the minimum of each curve depicted by a red dot as well

as an interpolation indicated by the red dashed line. We clearly see that the minimum

shifts to larger values of γ, as we increase the interaction strength P . These results

coincide with those given in Ref. [100] and lead to the identical values of γ0 shown in

Fig. 3.1. From here on, we again set P = 446 for all later calculations.

Now we include the interaction caused by Newtonian gravity. Again, we already

calculated the Lagrangian in spherical symmetry, see Eq. (3.84). When we replace the

Gauss width A with the dimensionless Gauss width γ via the transformation Eq. (2.33)

we get for the effective potential

V
(N)
eff =

3

2

(

γ2 +
1

γ2

)

+
P

γ3
− 3Q

γ
, (E.3)

which we also show in Fig. E.1 on the right side depending on the gravitational interac-

tion strength Q defined in Eq. (3.46). Once more, this confirms the results of Sec. 3.2.3

as the minimal Gauss width γ0 decreases with stronger attractive interaction. We also

see that visible changes occur at around Q ∼ 10 as mentioned in Sec. 3.2.3. Nevertheless,

we stick with a realistic value of Q = 4.1 · 10−19 for the following calculations.

The next interaction is the Yukawa-like interaction discussed in Sec. 3.3. In spherical

symmetry the Lagrangian was derived in Eq. (3.86). Replacing A by the dimensionless
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Figure E.2.: Effective potential for the Yukawa-like interaction depending on the
strength α (left) and the dimensionless effective range λ̄ (right). We set
P = 446 and Q = 4.1 · 10−19. In the picture on the left side we choose
λ̄ = 10 and on the right side α = 1020. The red dots indicate the minimum
of each curve.

Gauss width γ yields the effective potential

V
(Yuk)
eff =

3

2

(

γ2 +
1

γ2

)

+
P

γ3
− 3Q

1

γ
− α 3Q

(

1
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π

2

1
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exp
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γ2

2λ̄2
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γ2
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(E.4)

We now have two parameters, namely the interaction strength α and the dimensionless

effective range λ̄. Therefore, we vary one, while setting the other fixed. For the fixed

values we choose α = 1020 and λ̄ = 10, which corresponds for a 87Rb condensate to a

length λ ≈ 8.5 µm according to (2.33).

The results are shown in Fig. E.2. In the left picture we present the effective potential

for different values of α. We see a similar behavior as in Fig. E.1 on the right side as

both Q and α appear as a simple prefactor in the effective potential. If we increase

α the attractive interaction is larger, thus the cloud width decreases as indicated by

the colored curves. Furthermore, the minimum of each curve marked by the red dots

moves to lower values of γ. On the right side of Fig. E.2 the dependency of λ̄ is more

interesting because the minimum of the potential seems to converge to a constant value

for γ. This occurs at an effective range of roughly λ ≈ 10 µm, which coincides with the

observation in the contour plot in Fig. 3.5. There the curves flatten for ranges larger

than λ ≈ 10 µm.
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Figure E.3.: Effective potential for an interaction via the rational potential given in
Eq. (5.3) depending on the interaction strength α (top left), the dimension-
less parameter λ̄ (top right) and the exponent ϵ (bottom). We set P = 446
and Q = 4.1 ·10−19 and if a parameter is not varied we set α = 1020, λ̄ = 10
and ϵ = 0.5. The red dots indicate the minimum of each curve.

Finally, we discuss the effective potential for an interaction given by the rational

potential. Up to now we have not calculated the Lagrangian in spherical symmetry,

so we explain that here. The general form of the Lagrangian is given in Eq. (5.14).

Furthermore, we defined the integral Irat in Eq. (5.15). In spherical coordinates the

integrals were already solved in Appendix D for ϵ > −1. With the prefactors of Irat and

the Lagrangian in (5.14) we easily determine the effective potential

V
(rat)
eff =

3

2

(

γ2 +
1

γ2

)

+
P

γ3
− 3Q

γ

− α
3Q√
π
λ̄ϵ
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2ϵ cos
(π

2
ϵ
)

Γ(1 − ϵ) Γ

(

1 + ϵ

2

)

1

γ1+ϵ
. (E.5)

The effective potential for an interaction described by a rational potential is shown

in Fig. E.3 depending on the interaction strength α, the dimensionless parameter λ̄ and
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Figure E.4.: Effective potential for an interaction via the rational potential given in
Eq. (5.3) depending on the exponent ϵ with P = 446, Q = 4.1 · 10−19,

α = 1020 and λ̄ = 10. We show V
(rat)
eff near the divergences ϵ = 2 (top left)

and ϵ = 4 (top right) as well as approaching the turning point ϵ = 3 from
below (bottom left) and from above (bottom right). The red dots indicate
the minimum of each curve.
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the parameter ϵ. The influence of α is exactly as expected as it fulfills the same role for

the Yukawa-like interaction as seen in Fig. E.2. The dependency on λ̄, however, differs.

Here, the minimum of the curve does not converge for smaller values of λ̄. Note that we

mentioned in Sec. 5.1 that λ̄ in case of the modified potential is not an effective range, so

it does not correspond to the effective range in the Yukawa potential. If we look closer

into the formulas, for example (E.5), λ̄ϵ is just a prefactor similar to α and Q. So it is

not surprising that all three have basically the same effect.

The more interesting parameter is of course the exponent ϵ. For small values of ϵ the

minimum of the effective potential moves to smaller values of γ as seen in Fig. E.3. But

as we know from Fig. 5.3, there are singular points at even integers of ϵ. The vicinity

of two of them are shown in Fig. E.4, namely ϵ = 2 and ϵ = 4. Approaching ϵ = 2

from below the potential decreases. On the other side, approaching the same value of ϵ

from above the potential increases as well as the minima. Consequently, both limits do

not coincide. For ϵ = 4 this effect is inverted. Both observations, however, look similar

to the schematic plot of the Fourier transformed rational potential in Fig. 5.3 at the

corresponding values of ϵ.

The other pictures in Fig. E.4 show the effective potential at the vicinity of ϵ = 3

and ϵ = 5. Based on the colors of each curve we see that the potential decreases while

approaching ϵ = 3 and increases for ϵ > 3. In the other case the potential becomes

narrower while approaching ϵ = 5 and wider for ϵ > 5. Furthermore, for both figures

showing ϵ ≈ 3 we added the minima, which usually correspond to the equilibrium cloud

width and therefore the rough size of the condensate. This implies that the size of a

condensate is locally the smallest for ϵ = 3, but larger for example in both cases ϵ = 2.6

and ϵ = 3.4. Additionally, the absolute values of the minima γ0 in these cases are roughly

one order of magnitude larger than in Fig E.3 for ϵ = 0 to ϵ = 0.7. This would suggest

that a condensate in that case is ten times larger for ϵ ≈ 3 than for ϵ < 0.7.

Although these observations are quite unusual from a physical point of view, it matches

Fig. 5.3 and at least partially explain the results found in Fig. 5.7.
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of the Eötvös experiment. Physical Review Letters, 56, 1427, 1986.

[61] H. H. Thodberg. Comment on the Sign in the Reanalysis of the Eötvös Experiment.
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	Introduction
	Bose-Einstein condensates
	Gravitational theory and its modifications
	Selfgravitating BECs
	Outline of the thesis

	Variational method and collective modes
	Gross-Pitaevskii equation
	Variational ansatz
	Equilibrium cloud width and collective modes

	Collective modes in spherical condensates
	Contact interaction
	Lagrangian of the contact interaction
	Equilibrium and collective frequencies
	Discussion

	Newtonian interaction
	Lagrangian in Fourier space
	Equilibrium and collective frequencies
	Discussion

	Yukawa interaction
	Lagrangian of the Yukawa interaction
	Equilibrium and the Hessian matrix
	Discussion


	Collective modes in axially symmetric condensates
	Contact interaction
	Collective modes
	Discussion

	Newtonian interaction
	Collective modes
	Discussion

	Yukawa interaction
	Collective modes
	Discussion


	Interactions via modified potentials
	Modifications
	Rational potential
	Rational potential in Fourier space
	Equilibrium width and Hessian matrix
	Discussion

	Logarithmic potential
	Exponential potential

	Conclusions
	Summary
	Outlook

	Lagrangian of the Newtonian interaction in position space for spherical symmetry
	Detailed calculations for spherical condensates
	Fourier transform of the interaction Lagrangian
	Newtonian interaction
	Yukawa-like interaction
	Analytic expression for the frequency of the breathing mode for Yukawa interaction

	Detailed calculations for axially symmetric condensates
	Newtonian interaction
	Yukawa-like interaction

	Detailed calculations for the rational potential
	Effective potentials
	List of figures
	List of tables
	Bibliography
	Acknowledgement

