

Titel/Title:	el/Title: Lifespan effects of mitochondrial mutations								
Autor*innen/Author(s): Misa Hirose, Paul Schilf, Yask Gupta, Marvin N. Wright, Marvin N. Wright, Olaf Jöhren, Anika E. Wagner, Christian Sina, Andreas Ziegler, Michael Ristow & Saleh M. Ibrahim									
Veröffentlichungsversion/Published version:PostprintPublikationsform/Type of publication:Artikel/Aufsatz									

Empfohlene Zitierung/Recommended citation:

Hirose, M., Schilf, P., Gupta, Y. et al. Lifespan effects of mitochondrial mutations. Nature 540, E13–E14 (2016). https://doi.org/10.1038/nature20778

Verfügbar unter/Available at: (wenn vorhanden, bitte den DOI angeben/please provide the DOI if available)

https://doi.org/10.1038/nature20778 URL: https://www.nature.com/articles/nature20778

Zusätzliche Informationen/Additional information:

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1038/nature20778

Lifespan effects of mitochondrial mutations

ARISING FROM A. Latorre-Pellicer et al. Nature 535, 561–565 (2016); doi:10.1038/nature18618

Somatic mitochondrial DNA (mtDNA) mutations accumulate within various tissues with age^{1,2}, however evidence directly showing the influence of mtDNA natural variations on ageing has been limited to date. Recently, Latorre-Pellicer *et al.* demonstrated that polymorphisms within mtDNA affect reactive oxygen species (ROS) levels, body mass, ageing score, tumour incidence and lifespan of conplastic mice³. Here we show that similarly generated conplastic strains, which carry a nuclear *Nnt* mutation, do not show any alterations in these parameters, demonstrating the relevance of specific mitonuclear interactions in determining mammalian healthspan through increased production of ROS.

Latorre-Pellicer *et al.*³ compared a conplastic mouse strain that they developed from a C57BL/6JOlaHsd nuclear genome and NZB/OlaHsd mtDNA (BL/6^{NZB}) mice carrying various mutations in the mitochondrial genome with the original C57BL/6JOlaHsd carrying unaltered mtDNA (BL/6^{C57}). Despite the increased levels of ROS at a young age, BL/6^{NZB} mice showed a delayed ageing phenotype, including reduced tumour incidence culminating in an extended lifespan, which is consistent with previously published findings in invertebrates⁴. In this study⁴, it was shown that metabolic induction of mitochondrial ROS formation promotes longevity in the nematode *Caenorhabditis elegans*, and that quenching this ROS signal by antioxidants abrogates the increase in lifespan.

C57BL/6J mice (Jackson Laboratories, JAX no. 000664) are known to harbour a mutation in a nuclear gene encoding the mitochondrially located nicotinamide nucleotide transhydrogenase (NNT) protein that renders the enzyme undetectable, resulting in reduced cytosolic antioxidant capacity and increased production of hydrogen peroxide⁵ as well as impaired glucose tolerance⁶, independent of any additional mitochondrial variation. We generated conplastic C57BL/6J-mt^{NZB/BnlJ} (mtNZB/BlnJ)⁷ and C57BL/6J (mtC57BL/6J) mice similar to the design used by Latorre-Pellicer et al.³. Notably, we did not observe an extension of the median or maximum lifespan of our conplastic mtNZB/BlnJ mice $(P=0.251, \log-\text{rank test}; P=0.943, \text{Gehan test}; \text{Fig. 1a and Extended})$ Data Table 1a–d) despite our large cohort size (n = 155, mtC57BL/6J; n = 131, mtNZB/BlnJ) resulting in high statistical power (>99% for the Gehan test, which places higher weight on early deaths; and as used by Latorre-Pellicer *et al.*³). Furthermore, we did not observe any differences in body mass, ageing score, tumour incidence (Fig. 1b-d) or spontaneous locomotor activity (Extended Data Fig. 1a, b). In addition, ROS levels, electron transport chain complex activity, and energy expenditure between our two strains showed no significant differences. An independent survival analysis with a log-rank test (which weights all subjects equally) also did not reveal any effect of the introduction of conplastic mtDNA on the lifespan of Nnt-deficient mice. Given that the published BL/6^{NZB} line and our mtNZB/BlnJ mice harbour essentially the same mtDNA mutations (Extended Data Table 2), the simplest interpretation for the different results obtained by Latorre-Pellicer et al.³ and us is that the absence of NNT protein negates the effects of mitochondrial variation on healthspan. Together with the data from Latorre-Pellicer et al.³, our findings indicate that mtDNA mutations that increase ROS levels on a functional NNT background are associated with an increased healthspan³, whereas unaltered ROS levels prevent this effect on the progression of ageing (Fig. 1), both consistent with findings on mitohormesis⁴. As demonstrated in a variety of biological systems including humans⁸, low-dose increases in mitochondrial ROS promote health and longevity, whereas higher doses cause

Figure 1 | Healthspan study in the conplastic strain C57BL/6J-mt $^{\rm NZB/BlnJ}$ (mtNZB/BlnJ) and in C57BL/6J (mtC57BL/6J) control mice. **a**, Survival curves of mtC57BL/6J (n = 155 (68 males and 87 females), median lifespan = 841 days) and mtNZB/BlnJ (n = 131 (63 females and 68 males), median lifespan = 836 days) mice (log-rank test, P = 0.251; Gehan test, P = 0.943). Crosses indicate the censored animals (animals with censored survival time, that is, animals that were still alive at the time of analysis). b, Body mass (normal chow diet) of 26 mtC57BL/6J control mice and 51 mtNZB/BlnJ conplastic mice. c, Ageing score of mice at the moribund stage (mtC57BL/6J: 48 males and 70 females; mtNZB/BlnJ: 39 males and 31 females) (t-test, P = 0.4815). d, Tumour incidence in moribund and spontaneously deceased mice (mtC57BL/6J: 49 males and 72 females; mtNZB/BlnJ: 39 males and 32 females) (Fisher's exact test, P=0.8760). e, Mitochondrial electron transport chain complex activities in isolated hepatic mitochondria (n > 5 per genotype in 3-month-old mice (3m); n = 4 per genotype in 22-month-old mice (22 m)) (two-way ANOVA, *P=0.0197 (mtC57BL/6J 3 m versus mtC57BL/6J 22 m), **P=0.0024 (mtC57BL/6J 3 m versus mtC57BL/6J 22 m) and **P=0.0047 (mtNZB/BlnJ 3 m versus mtNZB/BlnJ 22 m)). f, Mitochondrial ROS levels in the supernatant of isolated liver mitochondria normalized to age-matched mtC57BL/6J mice (n = 8 mtC57BL/6J, 3 months; n = 6 mtNZB/ BlnJ, 3 months; n = 4 per genotype at 22 months) (*t*-test, P = 0.6344 at 3 months and P=0.9330 at 22 months). g, Ratios of mitochondrial DNA (mt-Co1) to nuclear DNA (Actb) copy numbers in genomic DNA of hepatocytes (n = 8 per genotype at 3 months) (*t*-test, P = 0.8641).

the opposite effect by causing cellular and systemic damage, reflecting a nonlinear, that is, hormetic, response to a mitochondrial stressor, namely ROS^{9,10}.

The median and maximum lifespans in Latorre-Pellicer *et al.*³ are reduced compared with those in our study (published median lifespan in BL/6^{C57}, 741 days; our median in mtC57BL/6J, 841 days). The reported lifespan of Jackson Laboratory C57BL/6J mice without *Nnt* is longer than the C57BL/6JNNia mice with the *Nnt* gene. However, other differences that are known to affect lifespan, such as environmental influences (including housing conditions, diet, handling and microbiota), cannot be excluded at present.

In summary, we consider the use of conplastic animals an important approach for the investigation of the putative effect of mtDNA on mammalian physiology. Nevertheless, and besides the potential impact of environmental conditions, we assume that the pronounced differences outlined here can be largely attributed to the *Nnt* mutation in the nuclear genome of the Jackson C57BL/6J sub-strain used here. Accordingly, further experimental studies involving the same and additional strains should be performed to study the impact of mtDNA variations and mitochondrial ROS signalling to increase our knowledge of the related pathways responsible for the control of mammalian healthspan.

Misa Hirose¹, Paul Schilf¹, Yask Gupta¹, Marvin N. Wright², Olaf Jöhren^{3,4}, Anika E. Wagner⁵, Christian Sina⁵, Andreas Ziegler^{2,6,7}, Michael Ristow⁸ & Saleh M. Ibrahim¹

¹Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany.

email: saleh.ibrahim@uksh.de

²Institute of Medical Biometry and Statistics, University of Lübeck,

University Medical Center Schleswig-Holstein, Campus Lübeck, Germany. ³Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.

⁴Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.

⁵Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany.⁶ZKS Lübeck, University of Lübeck, Lübeck, Germany.

⁷School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa.

⁸Energy Metabolism Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland.

Received 28 July; accepted 4 November 2016.

- Trifunovic, A. *et al.* Premature ageing in mice expressing defective mitochondrial DNA polymerase. *Nature* **429**, 417–423 (2004).
- 2. Kujoth, G. C. *et al.* Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. *Science* **309**, 481–484 (2005).
- 3. Latorre-Pellicer, A. *et al.* Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. *Nature* **535**, 561–565 (2016).
- Schulz, T. J. et al. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 6, 280–293 (2007).
- Ronchi, J. A. et al. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities. Free Radic. Biol. Med. 63, 446–456 (2013).
- Freeman, H., Shimomura, K., Horner, E., Cox, R. D. & Ashcroft, F. M. Nicotinamide nucleotide transhydrogenase: a key role in insulin secretion. *Cell Metab.* 3, 35–45 (2006).
- Yu, X. et al. Dissecting the effects of mtDNA variations on complex traits using mouse conplastic strains. Genome Res. 19, 159–165 (2009).
- Ristow, M. et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl Acad. Sci. USA 106, 8665–8670 (2009).
- 9. Yun, J. & Finkel, T. Mitohormesis. Cell Metab. 19, 757-766 (2014).
- Ristow, M. Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. *Nat. Med.* 20, 709–711 (2014).

Author Contributions M.H. and S.M.I. designed the study. M.H., P.S. and C.S. performed the experiments and analysed the data. M.W. and A.Z. conducted the statistical analysis of the survival data. Y.G. analysed the sequencing data. O.J. performed the indirect calorimetric cage experiment and analysed the data. M.H., A.E.W., M.R. and S.M.I. wrote the manuscript with contributions from all other authors. S.M.I. directed the study.

Competing Financial Interests Declared none.

doi:10.1038/nature20778

h	
IJ	

Area under activity curves

Gender		Period				
	Strain	D	ay	Night		
		Value	р	Value	р	
Fomalo	mtC57BL/6J	223.6	0 7746	2311	0 4770	
remale	mtNZB/BInJ	202.2	0.7740	1864	0.4779	

C.

Respiratory parameter

Gender	Strain	RER	EE
Fomalo	mtC57BL/6J	20.26±0.22	278.1±11.40
remale	mtNZB/BInJ	20.20±0.07	288.3±7.98

Extended Data Figure 1 | **Indirect calorimetric cage analysis of mtC57BL/6J and mtNZB/BlnJ mice. a**, Spontaneous locomotor activities. **b**, Area under the curve analysis of the activities shown in **a**. **c**, Area under the curve of respiratory exchange ratio (RER) and energy expenditure (EE). Data were obtained from 5 female mtC57BL/6J mice and 6 female mtNZB/BlnJ mice.

Extended Data Table 1 | Statistical analysis for the lifespan of mtC57BL/6J and mtNZB/BlnJ mice

a. Statistical analysis for survival curves; mtC57BL/6J versus mtNZB/BlnJ.

	Log-rank	Gehan
Total	0.251	0.946
Female	0.188	0.819
Male	1.000	0.304

b. Median survival times by sex.

	Ν	Events	nts Median 95% confidence		
Female	150	125	822	789 - 844	
Male	136	121	864	838 - 887	

c. Median survival times by strain.

	Ν	Events	Median	95% confidence interval
mtC57BL/6J	155	151	841	823 - 864
mtNZB/BInJ	131	95	836	818 - 875

d. Median survival times by strain and sex.

		Ν	Events	Median	95% confidence interval
mtC57BL/6J	Female	87	84	817	781 - 848
	Male	68	67	871	842 - 904
mtNZB/BInJ	Female	63	41	836	775 - 932
	Male	68	54	851	812 - 888

Position	C57BL/6J	NZB/BInJ	Gene	Type of mutation	Position	C57BL/6J	NZB/BInJ	Gene	Type of mutation
55	G	А	mt-Tf	non-coding	8858	Т	С	mt-Co3	synonymous
1353	А	G	mt-Rnr2	non-coding	8864	С	Т	mt-Co3	synonymous
1519	G	А	mt-Rnr2	non-coding	9137	А	G	mt-Co3	synonymous
1590	G	А	mt-Rnr2	non-coding	9152	Т	С	mt-Co3	synonymous
1822	Т	С	mt-Rnr2	non-coding	9391	А	G	mt-Tg	non-coding
2201	Т	С	mt-Rnr2	non-coding	9461	Т	С	mt-Nd3	synonymous
2340	G	А	mt-Rnr2	non-coding	9530	С	Т	mt-Nd3	synonymous
2525	С	Т	mt-Rnr2	non-coding	9581	С	Т	mt-Nd3	synonymous
2766	А	G	mt-Nd1	non-synonymous	9599	А	G	mt-Nd3	synonymous
2767	Т	С	mt-Nd1	non-synonymous	9820	8A	10A	mt-Tr	non-coding
2798	С	Т	mt-Nd1	synonymous	9985	G	А	mt-Nd4l	non-synonymous
2814	Т	С	mt-Nd1	synonymous	10547	С	Т	mt-Nd4	synonymous
2840	С	Т	mt-Nd1	synonymous	10583	А	G	mt-Nd4	synonymous
2934	С	Т	mt-Nd1	non-synonymous	10952	С	А	mt-Nd4	synonymous
3194	Т	С	mt-Nd1	synonymous	11843	G	А	mt-Nd5	synonymous
3260	А	G	mt-Nd1	synonymous	11846	С	Т	mt-Nd5	synonymous
3422	Т	С	mt-Nd1	synonymous	11933	А	С	mt-Nd5	synonymous
3467	Т	С	mt-Nd1	synonymous	12353	С	Т	mt-Nd5	synonymous
3599	Т	С	mt-Nd1	synonymous	12575	Т	А	mt-Nd5	synonymous
3692	А	G	mt-Nd1	synonymous	12695	А	G	mt-Nd5	synonymous
3932	G	А	mt-Nd2	non-synonymous	12835	Т	С	mt-Nd5	non-synonymous
4123	С	Т	mt-Nd2	synonymous	12890	А	G	mt-Nd5	synonymous
4276	G	А	mt-Nd2	synonymous	13004	G	А	mt-Nd5	synonymous
4324	Т	С	mt-Nd2	synonymous	13444	С	Т	mt-Nd5	non-synonymous
4408	G	А	mt-Nd2	synonymous	13612	Т	С	mt-Nd6	synonymous
4706	А	G	mt-Nd2	non-synonymous	13689	С	Т	mt-Nd6	non-synonymous
4732	С	Т	mt-Nd2	synonymous	13781	А	G	mt-Nd6	non-synonymous
4771	Т	С	mt-Nd2	synonymous	13782	Т	С	mt-Nd6	non-synonymous
4885	А	С	mt-Nd2	synonymous	13837	А	G	mt-Nd6	synonymous
4903	Т	G	mt-Nd2	synonymous	13983	А	G	mt-Nd6	synonymous
5204	А	AG	mt-Tc	non-coding	14186	Т	С	mt-Cytb	synonymous
5463	G	А	mt-Co1	non-synonymous	14211	G	А	mt-Cytb	non-synonymous
5552	Т	С	mt-Co1	synonymous	14363	А	G	mt-Cytb	synonymous
5930	G	А	mt-Co1	synonymous	14642	G	А	mt-Cytb	synonymous
6041	Т	С	mt-Co1	synonymous	14738	С	Т	mt-Cytb	synonymous
6407	С	Т	mt-Co1	synonymous	15499	Т	А	D-loop	intergenic
6470	А	G	mt-Co1	synonymous	15549	С	Т	D-loop	intergenic
6575	С	Т	mt-Co1	synonymous	15578	А	Т	D-loop	intergenic
6620	G	А	mt-Co1	synonymous	15588	С	Т	D-loop	intergenic
6785	G	А	mt-Co1	synonymous	15603	С	Т	D-loop	intergenic
7411	А	G	mt-Co2	synonymous	15657	Т	С	D-loop	intergenic
7546	А	G	mt-Co2	synonymous	15917	С	Т	D-loop	intergenic
7870	G	А	mt-Atp8	synonymous	16017	А	С	D-loop	intergenic
8439	А	G	mt-Atp6	synonymous	16268	А	G	D-loop	intergenic
8467	Т	С	mt-Atp6	synonymous	16272	Т	С	D-loop	intergenic
8568	С	Т	mt-Atp6	synonymous					

Extended Data Table 2 | Sequence difference between mtDNA of mtNZB/BlnJ and mtC57BL/6J mice

Heteroplasmy at nt7546 (50–80%, synonymous, *mt-Co2*) and non-synonymous mutation at nt9985 (*mt-Nd4I*) were not observed in the study by Latorre-Pellicer *et al.*³ In addition, the A > G mutation at nt716 (*mt-Rnr2*) was not found in our study.