SUPPORTING INFORMATION

2 SENSITIVITY ANALYSIS

Sensitivity analysis is performed to identify the effects of the different input
parameters on the model results, and all of the input parameters are set accordingly
(Table S1).

6

1

Table S1. Tested range, chosen values and results of the sensitivity analysis of input
parameters.

Input Parameters	Tested Range	Chosen Values	Sensitivity Analysis
Specific density (kg/m ³)	2500 to 2880	2690	No significant influence
Dry bed density (kg/m ³)	1800 to 2600	2120	No significant influence
Settling velocity (mm/s)	0.15 to 0.36	0.15	Higher settling velocity can lead to greater sedimentation rate, but weakly impacts the bed shear stress and stability of water level.
Roughness length, z_0 (m)	5×10^{-3} to 2×10 ⁻⁶	5×10 ⁻³	Higher roughness length can lead to higher bed shear stress but less stable water level.
Horizontal eddy viscosity (m ² /s)	1 to 10	1	A lower horizontal eddy viscosity makes the water level more stable and leads to a more fluctuating bed shear stress.
Horizontal eddy diffusivity (m ² /s)	1 to 10	1	Horizontal eddy diffusivity hardly influences the bed shear stress and water level, but creates less warnings in the simulation when it is low.
Critical bed shear stress for erosion (N/m ²)	0.02 to 0.15	0.06	Lower critical bed shear stress for erosion can increase the erosion rate.

9

		~ ~ ~ 4	~
Input Parameters	Tested Range	Chosen Values	Sensitivity Analysis
Critical bed shear stress for sedimentation (N/m ²)	0.025 to 0.05	0.04	Higher critical bed shear stress for sedimentation can increase sedimentation rate.
Erosion parameter (kg/m ² s)	0.0001 to 1	0.0004	Higher erosion parameter increases the erosion rate when bed shear stress is larger than critical value of erosion.
Morphological time-scale factor	1 to 10000	3000	Higher morphological time scale factor magnifies the feedback of seabed (morphological change) under the erosional and depositional processes induced by ocean currents.
Input current velocity (m/s)	0.12 to 0.18	0.156, 0.158 and 0.160	The value of current velocity determines speed of the near-seafloor currents and bed shear stress.

11 **Table S1.** (Continued).

12

13 Sediment density: The input parameters of sediment density include dry bed 14 density and specific density. Dry bed density indicates the density of sediments above 15 the fixed seafloor, and specific density corresponds to sediment fractions in the fluid mixture for sediment transportation (Deltares, 2014). The dry bed density is usually 16 17 defined as "wet bulk density" in many related references. It is equal to sediment mass 18 per unit volume in the raw state and depends on particle density, porosity volume, and 19 pore water composition (Hou et al., 2015). Moreover, the measured sediment bulk 20 density (from wireline logs) in the northern South China Sea is between 1800 and 2100 kg/m³ (Wang et al., 2011). According to the core data in the western South 21 22 China Sea and close to the study area (Bassinot and Chen, 2002), the wet bulk density 23 (at depths of 2 to 10 m below the seafloor) is in the range of 1800 and 2600 kg/m³. 24 According to the test results of different dry bed densities (ranging from 1800 to 2600 kg/m³), the change of dry bed density can hardly influence the simulation results. 25 Therefore, we set the average value of 2120 kg/m^3 as the chosen value of dry bed 26 density for this study. 27 28 Moreover, the specific density of sediment fractions is indicated by the sediment grain density, which is between 2640 and 2810 kg/m³ for fine-grained ($<62 \mu m$) 29 sediment particles (Dagg et al., 1996). From ODP 184, the sediment grain density for 30

31 the South China Sea is in the range between 2500 and 2880 kg/m^3 (Huang et al.,

- 32 2006). According to the testing simulations, the values of specific density in the range
- 33 between 2500 and 2880 kg/m³ can hardly influence the simulation results. Therefore,
- 34 the average value of 2690 kg/m³ is chosen as the specific density for the simulation.
- 35

36 Settling velocity: In this study, the settling velocity in fresh water and salinity 37 concentration have been set equal to disregard the influence of flocculation on the 38 simulation, considering the low concertation of bottom currents. The settling velocity 39 of a spherical sediment grain in a fluid (w_s , from Stokes' law; e.g., Shepard 1963) is 40 defined as:

$$w_s = \frac{(\rho_s - \rho_f)gd^2}{18\mu_f} \tag{1}$$

Where, ρ_s is sediment grain density (~2690 kg/m³ for specific density); ρ_f is 41 42 fluid density (~1026 kg/m³ for seawater at 5°C); g is acceleration of gravity (9.81 m/s²); d is sediment grain size (5 μ m); μ_f is dynamic fluid viscosity (~0.0015 kg 43 m^{-1} s⁻¹ for seawater at 5°C). Therefore, the calculated settling velocity is ~0.15 mm/s. 44 45 Moreover, the observed settling velocity of fine-grained sediments (mean grain size between 7.0 and 9.6 µm) in a coastal salt marsh varies from 0.17 to 0.32 mm/s, 46 47 with a mean value of 0.26 mm/s (Wang et al., 2010). Through 3-D numerical simulations, Yu et al. (2014) investigated the sedimentation of silt with mean grain 48 49 size of 20 µm in saltwater, and obtained a settling velocity of 0.36 mm/s. In order to 50 assess the influence of settling velocity, we have tested settling velocities ranging 51 from 0.15 to 0.36 mm/s. Test results indicate that the lowest settling velocity has a 52 weak influence on bed shear stress and stability of the simulation. Therefore, the 53 settling velocity is set as 0.15 mm/s in this study, and it is combined with a constant sediment input of 0.02 kg/m³ according to the previous study of Chen et al. (2016). 54 55 56 Roughness length: Based on the wide range of studies at the Plymouth Marine Laboratory (PML) about the sediment types concluded by Pope et al. (2006), the 57 58 roughness length (z_0) of a seabed with cohesive sediment has values between 1 and

180 µm. Moreover, the roughness length can be increased by a factor of 2 to 30 due to
the presence of biogenic structures on the seafloor (Peine et al., 2009).

Therefore, the possible range of roughness length (z_0) tested for the simulation is 61 between 2×10^{-6} and 5×10^{-3} m. According to the tests of roughness length, the bed 62 63 shear stress increases with higher roughness lengths. In order to effectively investigate 64 the bottom current erosion on the seafloor, the roughness length of 0.005 m was 65 chosen for this study. The chosen value of roughness length is close to the roughness length of abyssal seafloor (ca. 0.003 m) given by Connolly et al. (2020), and the 66 roughness length of 0.005 m also has been measured on the seafloor with sparse 67 benthic life (Schönke et al., 2019). 68

- 70 Eddy viscosity and diffusivity: Based on the manual of Delft3D-FLOW (Deltares, 2014), the values for both the horizontal eddy viscosity and diffusivity are 71 72 determined by the grid size used in the simulation. For detailed models with grid sizes typically tens of meters or less, the values for the eddy viscosity and the eddy 73 diffusivity are typically in the range of 1 to $10 \text{ m}^2/\text{s}$. 74 75 Corresponding to the grid size of 2 meters for this study, the value of horizontal eddy viscosity and diffusivity have been tested in the range of 1 to $10 \text{ m}^2/\text{s}$. When 76 horizontal eddy viscosity and diffusivity are both set at $1 \text{ m}^2/\text{s}$, the simulation results 77 78 show a steady water level and fluctuations in bed shear stress above the pockmark. 79 80 Critical bed shear stress: The critical bed shear stresses for erosion and 81 sedimentation control the erosional and sedimentary processes. Sedimentation only 82 occurs when bed shear stress is lower than the critical stress of sedimentation, and erosion only happens when bed shear stress is larger than the critical stress of erosion 83 (Deltares, 2014). 84 85 The critical bed shear stress for erosion and sedimentation is controlled by many 86 factors, such as grain size, sediment composition, depositional history, seabed 87 roughness, viscosity of currents and even biological activity (Durrieu de Madron et al., 2017). Previous studies show that the critical bed shear stress of erosion for 88 cohesive sediments ranges from 0.02 to 0.15 N/m², and the mean value of critical bed 89 shear stress of erosion for cohesive sediment is $\sim 0.06 \text{ N/m}^2$ (Table S2). According to 90
- the previous studies, the critical bed shear stress for sedimentation of cohesive 91 sediments ranges from 0.025 to 0.05 N/m² (Table S3), with an average value of \sim 0.04 92 N/m^2 .
- 93

94 In order to simulate the erosion and sedimentation in the seabed dominated by 95 cohesive sediments objectively, the critical bed shear stresses for erosion and sedimentation are set as 0.06 and 0.04 N/m², respectively, which are average value of 96 97 previous studies (Tables S2 and S3).

99 Table S2. Critical bed shear stress for erosion for fine-grained sediment obtained in previous studies. 100

Previous studies	Grain size (µm)	Critical bed shear stress for erosion (N/m ²)
Krone (1962)	Cohesive sediments	0.06 to 0.078
Houwing and Rijn (1995)	Cohesive sediments	0.06 to 0.12
Otsubo and Muraoka (1988)	10 to 40	0.035 to 0.15
Lau and Droppo (2000)	Cohesive sediments	0.035
Schaaff et al. (2002)	4 to 20	0.022 to 0.038
El Ganaoui et al. (2004)	15 to 55	0.025 to 0.04
Araújo et al. (2008)	32 to 41	0.043 to 0.058
Chen et al. (2016)	60 (D50)	0.06
Durrieu de Madron et al. (2017)	10 (D50)	0.07 to 0.11

n provious studios.		
Previous studies	Grain size (µm)	Critical bed shear stress
		for sedimentation (N/m ²)
Krone (1962)	Cohesive sediments	0.04
Adamsson et al. (2003)	47 (D50)	0.03 to 0.05
Chan et al. (2006)	2.8 (D50)	0.0442
Maa et al. (2008)	4 (D50)	0.04
Shi et al. (2012)	15 to 23 (D50)	0.05
Hung et al. (2014)	35 (D50)	0.025

Table S3. Critical bed shear stress for sedimentation for fine-grained sediment obtained
 in previous studies.

103

Erosion parameter: In Delft3D-FLOW, the erosion parameter is a user-defined
value that affects the erosion rate of sediment (Deltares, 2014):

$$E = M(\frac{\tau_b}{\tau_e} - 1)$$
, when $\tau_b > \tau_e$ (2)

106 Where, E is erosion flux (kg/m²s), M is erosion parameter (kg/m²s), τ_b is bed 107 shear stress and τ_e is critical bed shear stress for erosion. Therefore, an appropriate 108 erosion parameter can decrease simulation time and increase the erosion rate. Through 109 the testing simulations with the erosion parameters ranging from 0.0001 to 1 kg/m²s, 110 the most appropriate erosion parameter is set as 0.0004 kg/m²s in this study.

111

112 Morphological time scale factor: In many previous modelling studies, morphological time-scale factor has been commonly used for accelerating the 113 114 simulation of long-term morphological evolution, while avoiding the disturbance on 115 modeling results (Van Der Wegen and Roelvink, 2008; Zhang et al., 2010). In 116 Delft3D, the implementation of the morphological time-scale factor is achieved by multiplying the erosion and deposition fluxes from the bed to the flow by a constant 117 118 factor (Roelvink, 2006; Briere et al., 2011; Deltares, 2014; Morgan et al., 2020). 119 Therefore, the value of morphological time scale factor determines the rate of 120 morphological change under the erosion and deposition of modeled bottom currents. 121 In this study, through the testing simulation, the morphological time scale factor is set as 3000. With the setting of morphological time scale factor and erosion parameters, 122 123 the modelling for long-term morphological evolution lasting tens of years can be 124 shortened into 72 hours.

125

126Input current velocity: According to the Acoustic Doppler Current Profiler127(ADCP) data collected by Yang et al. (2019), the annual average velocity of ocean128current (in the water depth between 750 and 1000 m) in the NW South China Sea129(2009-2013) ranges between 0.12 and 0.18 m/s (Fig. 3). Therefore, in order to reveal130the actual oceanographic settings, the input velocities of currents ranging from 0.12 to1310.18 m/s were tested (Table S4). The test results reveal that bottom layer velocity and132bed shear stress are positively related to the input current velocity. Through the test of

133 current velocity, three input current velocities were chosen for the simulations to

- 134 reveal three different morphodynamical situations for the bottom current erosion on
- 135 pockmarks, which are 0.120, 0.158 and 0.170 m/s.
- 136

137 Table S4. Bottom layer velocity and bed shear stress obtained for different initial138 current velocities.

Current	Bottom layer	velocity (m/s)	Bed shear s	tress (N/m ²)
velocity (m/s)	Max.	Min.	Max.	Min.
0.12	0.066	0.056	0.038	0.026
0.13	0.072	0.062	0.045	0.031
0.14	0.078	0.065	0.052	0.036
0.15	0.084	0.070	0.060	0.041
0.16	0.090	0.075	0.069	0.047
0.17	0.095	0.079	0.078	0.053
0.18	0.100	0.084	0.090	0.060

Doolymauly	Water Depth	Diamatan (m)	Depth (m)	Diameter/Depth
Pockmark	(m)	Diameter (m)		Ratio
1	850	850	80	10.63
1	810	1000	120	8.33
2	910	700	65	10.77
2	890	670	80	8.38
2	860	800	85	9.41
3	860	1000	90	11.11
4	850	850	80	10.63
4	810	1000	120	8.33
5	935	720	77	9.35
3	925	770	90	8.56
6	975	1125	55	20.45
0	950	820	77	10.65
7	780	1200	135	8.89
/	795	1100	120	9.17
Q	776	830	64	12.97
0	787	700	52	13.46
0	900	680	50	13.60
9	900	640	50	12.80
10	850	1100	102	10.78
10	832	1200	121	9.92
11	825	880	88	10.00
11	817	1260	95	13.26
10	860	1200	100	12.00
12	850	1000	110	9.09
10	903	810	75	10.80
15	908	800	70	11.43
14	894	856	92	9.30
14	905	1110	84	13.21
15	832	905	110	8.23
15	850	1080	93	11.61
16	768	894	46	19.43
10	770	900	47	19.15
17	777	940	79	11.90
	780	1150	75	15.33
19	878	1090	80	13.63
18	892	695	67	10.37
10	872	740	71	10.42
19	877	780	65	12.00

Table S5. Geometrical parameters of 25 observed pockmarks.

Poolymark	Water Depth	Diameter (m)	Depth (m)	Diameter/Depth
I UCKIIIAI K	(m)	Diameter (m)		Ratio
20	800	989	71	13.93
20	810	963	62	15.53
21	783	937	40	23.43
21	784	1220	40	30.50
22	1016	838	48	17.46
	1016	1065	47	22.66
22	827	890	66	13.48
23	838	910	53	17.17
24	863	880	62	14.19
	860	853	70	12.19
25	925	500	45	11.11
	910	666	60	11.10
Mean	050 7	011 12	76 19	12.04
value	636./ 911.1	911.12	/0.48	12.04

Table S5. (Continued)

144 ADDITIONAL FIGURE

146 Figure S1. Streamwise horizontal velocity (u) and vertical velocity (w) at the final stages of the morphological evolution of pockmark trains, which are oblique to current 147 direction (A and C) and not in a straight line (B and D), with a lateral deviation of 20 148 149 m. The blue dashed lines indicate the axis of domain, and the coalesced pockmarks are 150 marked by the dark dashed contours. The blue arrow indicates a leftward direction (parallel to the domains axis) of input currents. Consequently, the channel inception 151 induced by bottom current erosion also can occur, even though the pockmarks are not 152 153 aligned in a straight line parallel to the current direction.

155 **REFERENCES CITED**

156	Adamsson, Å., Stovin, V. & Bergdahl, L. (2003) Bed shear stress boundary condition for storage tank
157	sedimentation. Journal of Environmental Engineering, v. 129, no. 7, p. 651-658. Avaliable
158	from: https://doi.org/10.1061/(ASCE)0733-9372(2003)129:7(651).
159	Araújo, M.A.V.C., Teixeira, J.C.F. & Teixeira, S.F.C.F. (2008) Application of laser anemometry for

- measuring critical bed shear stress of sediment core samples. *Continental Shelf Research*, v.
 28, no. 20, p. 2718-2724. Available from: https://doi.org/10.1016/j.csr.2008.09.011.
- Bassinot, F.C. & Chen, M-T. (2002) Physical properties of sediment, core MD01-2395. *PANGAEA*,
 Avaliable from: https://doi.org/10.1594/PANGAEA.68577.
- Betzler, C., Lindhorst, S., Hübscher, C., Lüdmann, T., Fürstenau, J. & Reijmer, J. (2011) Giant
 pockmarks in a carbonate platform (Maldives, Indian Ocean). *Marine Geology*, 289(1-4), p. 1Avaliable from: https://doi.org/10.1016/j.margeo.2011.09.004.
- Briere, C., Giardino, A. & van der Werf, J. (2011) Morphological modeling of bar dynamics with
 DELFT3d: the quest for optimal free parameter settings using an automatic calibration
 technique. *Coastal Engineering Proceedings: sediment*, 1(32), 1-12. Avaliable from:
 https://doi.org/10.9753/icce.v32.sediment.60.
- 171 Chan, W.Y., Wai, O.W.H. & Li, Y.S. (2006) Critical Shear Stress for Deposition of Cohesive
 172 Sediments in Mai Po. *Journal of Hydrodynamics*, Ser. B, v. 18, no. 3, p. 300-305. Available
 173 from: https://doi.org/10.1016/S1001-6058(06)60070-X.
- Chen, H., Xie, X., Zhang, W., Shu, Y., Wang, D., Vandorpe, T. & Van Rooij, D. (2016) Deep-water
 sedimentary systems and their relationship with bottom currents at the intersection of Xisha
 Trough and Northwest Sub-Basin, South China Sea. *Marine Geology*, 378, 101-113.
 Avaliable from: https://doi.org/10.1016/j.margeo.2015.11.002.
- 178 Connolly, T. P., McGill, P. R., Henthorn, R. G., Burrier, D. A. & Michaud, C. (2020) Near-bottom
 179 currents at Station M in the abyssal Northeast Pacific. *Deep Sea Research Part II: Topical*180 *Studies in Oceanography*, 173, 104743. Available from:
- 181 https://doi.org/10.1016/j.dsr2.2020.104743.
- 182 Dagg, M.J., Green, E., McKee, B. & Ortner, P. (1996) Biological removal of fine-grained lithogenic
 183 particles from a large river plume. *Journal of Marine Research*, v. 54, no. 1, p. 149-160.
 184 Avaliable from: https://doi.org/10.1357/0022240963213466.
- 185 Deltares. (2014) User manual Delft3D-FLOW. Delft, The Netherlands: Deltares, p. 329-331. Available
 186 from: https://content.oss.deltares.nl/delft3d/manuals/Delft3D-FLOW_User_Manual.pdf.
- 187 Durrieu De MaSon, X., Ramondenc, S., Berline, L., Houpert, L., Bosse, A., Martini, S., Guidi, L.,
 188 Conan, P., Curtil, C., Delsaut, N., Kunesch, S., Ghiglione, J. F., Marsaleix, P., Pujo-Pay, M.,
- 189 Séverin, T., Testor, P., Tamburini. C. & ANTARES collaboration. (2017) Deep sediment
- 190 resuspension and thick nepheloid layer generation by open-ocean convection. *Journal of*
- 191 *Geophysical Research: Oceans*, 122(3), 2291-2318. Available from:
- 192 https://doi.org/10.1002/2016JC012062.
- El Ganaoui, O., Schaaff, E., Boyer, P., Amielh, M., Anselmet, F. & Grenz, C. (2004) The deposition
 and erosion of cohesive sediments determined by a multi-class model. *Estuarine, Coastal and Shelf Science*, 60(3), 457-475. Available from: https://doi.org/10.1016/j.ecss.2004.02.006.

196	Hou, Z., Guo, C., Wang, J., Chen, W., Fu, Y. & Li, T. (2015) Seafloor sediment study from South
197	China Sea: Acoustic & physical property relationship. Remote sensing, 7(9), 11570-11585.
198	Avaliable from: https://doi.org/10.3390/rs70911570.
199	Houwing, E-J. & Rijn, L.C.V. (1995) In-situ determination of the critical bed-shear stress for erosion of
200	cohesive sediments. Coastal Engineering Proceedings, (24). Avaliable from:
201	https://doi.org/10.1061/9780784400890.150.
202	Huang, W. & Wang, P. (2006) Sediment mass and distribution in the South China Sea since the
203	Oligocene. Science in China Series D: Earth Sciences, 49(11), 1147-1155. Available from:
204	https://doi.org/10.1007/s11430-006-2019-4.
205	Hung, N.N., Delgado, J.M., Güntner, A., Merz, B., BárdosDRY, A. & Apel, H. (2014) Sedimentation
206	in the floodplains of the Mekong Delta, Vietnam Part II: deposition and erosion. HySological
207	Processes, v. 28, no. 7, p. 3145-3160. Avaliable from: https://doi.org/10.1002/hyp.9855.
208	Krone, R. (1962) Flume studies of the transport of sediment in estuarial processes: HySaulic
209	Engineering Laboratory and Sanitary Engineering Research Laboratory, University of
210	California, Berkeley, California.
211	Lau, Y.L. & Soppo, I.G. (2000) Influence of antecedent conditions on critical shear stress of bed
212	sediments. Water Research, v. 34, no. 2, p. 663-667. Avaliable from:
213	https://doi.org/10.1016/S0043-1354(99)00164-5.
214	Maa, J.P-Y., Kwon, J-I., Hwang, K-N. & Ha, H-K. (2008) Critical Bed-Shear Stress for Cohesive
215	Sediment Deposition under Steady Flows. Journal of HySaulic Engineering, v. 134, no. 12, p.
216	1767-1771. Avaliable from: https://doi.org/10.1061/(ASCE)0733-9429(2008)134:12(1767).
217	Morgan, J. A., Kumar, N., Horner-Devine, A. R., Ahrendt, S., Istanbullouglu, E. & Bandaragoda, C.
218	(2020) The use of a morphological acceleration factor in the simulation of large-scale fluvial
219	morphodynamics. Geomorphology, 356, 107088. Available from:
220	https://doi.org/10.1016/j.geomorph.2020.107088.
221	Otsubo, K. & Muraoka, K. (1988) Critical shear stress of cohesive bottom sediments. Journal of
222	HySaulic Engineering, v. 114, no. 10, p. 1241-1256. Avaliable from:
223	https://doi.org/10.1061/(ASCE)0733-9429(1988)114:10(1241).
224	Peine, F., FrieSichs, M. & Graf, G. (2009) Potential influence of tubicolous worms on the bottom
225	roughness length z0 in the south-western Baltic Sea. Journal of Experimental Marine Biology
226	and Ecology, v. 374, no. 1, p. 1-11. Avaliable from:
227	https://doi.org/10.1016/j.jembe.2009.03.016.
228	Pope, N.D., Widdows, J. & Brinsley, M.D. (2006) Estimation of bed shear stress using the turbulent
229	kinetic energy approach—A comparison of annular flume and field data. Continental Shelf
230	Research, v. 26, no. 8, p. 959-970. Avaliable from: https://doi.org/10.1016/j.csr.2006.02.010.
231	Roelvink, J. A. (2006) Coastal morphodynamic evolution techniques. Coastal engineering, 53(2-3),
232	277-287. Avaliable from: https://doi.org/10.1016/j.coastaleng.2005.10.015.
233	Schaaff, E., Grenz, C. & Pinazo, C. (2002) Erosion of particulate inorganic and organic matter in the
234	Gulf of Lion. Comptes Rendus Geoscience, 334(15), p. 1071-1077. Available from:
235	https://doi.org/10.1016/S1631-0713(02)01853-9.

236	Schönke, M., Wiesenberg, L., Schulze, I., Wilken, D., Darr, A., Papenmeier, S. & Feldens, P. (2019)
237	Impact of Sparse Benthic Life on Seafloor Roughness and High-Frequency Acoustic Scatter.
238	Geosciences, 9(10), p. 454. Avaliable from: https://doi.org/10.3390/geosciences9100454.
239	Shepard, F.P., (1963) Submarine geology: New York, Harper and Row, p. 517. Avaliable from:
240	https://library.wur.nl/link/link_router/index/20563597.
241	Shi, B.W., Yang, S.L., Wang, Y.P., Bouma, T.J. & Zhu, Q. (2012) Relating accretion and erosion at an
242	exposed tidal wetland to the bottom shear stress of combined current-wave action.
243	Geomorphology, v. 138, no. 1, p. 380-389. Avaliable from:
244	https://doi.org/10.1016/j.geomorph.2011.10.004.
245	Van Der Wegen, M. & Roelvink, J.A. (2008) Long-term morphodynamic evolution of a tidal
246	embayment using a two-dimensional, process-based model. Journal of Geophysical Research,
247	113(C3). Avaliable from: https://doi.org/10.1029/2006JC003983.
248	Wang, A., Ye, X. & Chen, J. (2010) Observations and analyses of floc size and floc settling velocity in
249	coastal salt marsh of Luoyuan Bay, Fujian Province, China. Acta Oceanologica Sinica, v. 29,
250	no. 3, p. 116-126. Avaliable from: https://doi.org/10.1007/s13131-010-0043-x.
251	Wang, X., Hutchinson, D.R., Wu, S., Yang, S. & Guo, Y. (2011) Elevated gas hySate saturation within
252	silt and silty clay sediments in the Shenhu area, South China Sea. Journal of Geophysical
253	Research, v. 116, no. B5. Avaliable from: https://doi.org/10.1029/2010JB007944.
254	Yang, Y., Xu, C., Li, S. & He, Y. (2019) Ship-mounted ADCP data for ocean currents in the South
255	China Sea (2009 – 2012). Science Data Bank, (March 8, 2019). Avaliable from:
256	http://www.doi.org/10.11922/sciencedb.740.
257	Yu, X., Hsu, TJ. & Balachandar, S. (2014) Convective instability in sedimentation: 3-D numerical
258	study. Journal of Geophysical Research: Oceans, v. 119, no. 11, p. 8141-8161. Avaliable
259	from: https://doi.org/10.1002/2014JC010123.
260	Zhang, W., Harff, J., Schneider, R. & Wu, C. (2010) Development of a modelling methodology for
261	simulation of long-term morphological evolution of the southern Baltic coast. Ocean
262	Dynamics, 60(5), 1085-1114. Avaliable from: https://doi.org/10.1007/s10236-010-0311-5.
263	