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Abstract—A relevant issue of neuro-interfacing wearable
robots in rehabilitation is the necessity to have training data, since
the collection of sufficient data from patients within a reasonable
recording time is not always possible. However, the use of historic
data (e.g., session-to-session transfer, subject-to-subject transfer)
can often lead to a reduction in classification performance which
is affected by the selection of the historic data (i.e., which historic
data was chosen for transfer). In this paper, we analyze two
approaches to handle this reduction. First, we used incremental
algorithms that can be adapted to the current session when
trainable components (the spatial filter and the classifier) are
transferred between different sessions. Second, we increased
the number of sessions to learn more generalized models. To
evaluate the approaches, we used electroencephalographic data
that was recorded as training data for demonstrating our neuro-
interfacing wearable robot in the application of upper-body
sensorimotor rehabilitation. The data was collected from the
same healthy subject on 14 different days (14 sessions). Our
results showed that the use of a mixture of training sessions
improved the classification performance. Further, we could show
that the adaptive approaches contributed to less variability in
performance that allows the system to be more robust. Hence,
one can efficiently use both approaches (i.e., adapting and
generalizing the models) depending on how much training data is
available. Finally, the analyzed approaches are very promising to
increase system applicability in upper-body sensorimotor robotic
rehabilitation.

I. INTRODUCTION

For a broad acceptance and dissemination of neuro-

interfacing wearable robots not only several technological

improvements and innovations are still needed on both sides,

i.e., the wearable robot as well as the interface, but also

long term tests of reliability and effectiveness under possibly

natural conditions. Having this said, it must be stressed that

studies under rather uncontrolled natural conditions are very

hard to be conducted successfully since usually not products

and not even prototypes but rather demonstrators of scientific

work with immature technology are available within research

projects. Beside this, it is difficult to obtain reliable results

from studies under uncontrolled conditions. For these reasons

we propose to combine controlled studies and application-

driven demonstrations as much as possible. This helps to

obtain reliable and interpretable results on the one hand and

to infer on the principle operability of a neuro-interfacing

wearable robot, which is a system with a great complexity

that sharply increases the fault potential, on the other hand.

Looking from the application perspective it can be stated

that besides applications in the field of gaming and entertain-

ment (see [1] for review), neuro-interfacing wearable robots

for the assistance and rehabilitation focusing on the human

motor system (see [2] for an overview on orthoses, exoskeleton

systems and control strategies) have become of increasing

interest. Especially the number of stroke cases which can be

treated by neuro-interfacing wearable robots [3] will increase

in many western countries due to the demographic changes [4].

For rehabilitation and assistance, systems should be comfort-

able to wear, behave transparently and intuitively support daily

as well as common work activities [5]–[7]. The neuro-interface

should reestablish the link between brain and motor system

after disruption caused by illness such as stroke [3], [8] or by

accidents [9]. This interface should implicitly identify relevant

brain states to trigger or adapt the supportive function of the

wearable robot to e.g., enable intense training of impaired

limb function [10] for neurological recovery [11]. It may use

multimodal data, e.g., combine brain data with behavioral data

or muscle activity, but it does mainly relay on a stable and

reliable interpretation of brain activity [12].

Current neuro-interfaces based on surface electroen-

cephalography (EEG) usually rely on supervised machine

learning techniques [13] to learn neural correlates of the brain

states [14] that need to be distinguished in an application

[15]. One challenge here is the individuality of the neural

correlates, differing substantially between subjects, but also

between different recording days (sessions) of the same subject

[16]. This means, on each day the neuro-interface is used,

training data has to be acquired to account for the individual

changes of the day. To overcome the problem of training data

acquisition, which impairs the overall usability of the system,

online learning approaches can be used to adapt the trainable

components to the new session. It has been shown in the

past, that this approach is promising (e.g., [17]–[19]). Another

approach to avoid training data acquisition is the use of historic

data. Here, the idea is to generalize the learned models across

subjects or sessions and thus to lower the drop in performance

compared to a model only trained on a single subject or session



Fig. 1. The active upper body exoskeleton CAPIO, developed in-house for
telemanipulation is shown within a demonstration of multimodal signal ana-
lysis for exoskeleton supported rehabilitation. The support by the exoskeleton
of either the right or the left arm is triggered by activity from the EEG and
EMG as well as eye-tracking data. Physiological data analysis was running
on the FPGA-based system ZynqBrain developed in-house.

[20], [21].

In this work we investigate by means of a case study the

reliability of right and left arm movement prediction based on

single-trial analysis of the EEG. We show prediction results

over 14 recording sessions, investigate the effect of the amount

of training data and test our approach of online adaptation by

feedback generated from the electromyogram (EMG) recorded

from the subjects arm muscles. The data was recorded as

training data for a complex demonstration scenario for ex-

oskeleton supported rehabilitation making use of multimodal,

i.e., EEG, EMG and eye movement data analysis (see Fig.

1). This demo was shown 19 times for different guests of

our institute, open days and under other highly uncontrolled

conditions using 14 times the same subject who’s data was

used for the case study. While we never recorded the data from

the online tests since physiological data analysis runs online on

a field programmable gate array (FPGA)-based system without

enough resources to save the data at this stage of development,

training data was conducted before each demonstration within

a controlled environment enabling systematic analysis of the

data.

The paper is structured as follows: data acquisition, exper-

imental setup, and data analysis are described under Section

II, followed by a section on results and discussions (Section

III) and a concluding section (Section IV).

II. METHODS

A. Data Acquisition

In this study one healthy subject (male, age: 36) participated

in 14 measuring sessions. The EEG was continuously recorded

by using a 64-channel actiCAP system (BrainProducts GmbH,

Munich, Germany) and amplified by two BrainAmp DC

amplifiers (BrainProducts GmbH, Munich, Germany). The

electrodes were placed according to the 10-20 system with

reference at FCz. Impedance was kept below 5 kΩ. Further,

bipolar EMG was recorded from the left and right biceps

using a ExG MR bipolar amplifier (BrainProducts GmbH,

Munich, Germany). All signals were recorded with a sampling

frequency of 5000Hz since this was the output sampling

frequency of the amplifiers. The subject gave written and

informed consent to participate and all experiments were

conducted in accordance with the declaration of Helsinki. Each

session consisted of two sets in which at least 40 movements

of each arm were performed.

B. Experimental Setup

The experiments were conducted in a shielding cabin, which

allows measurements without the influence of electromagnetic

interference. The subject sat in a comfortable chair in front

of a table with a computer screen. The scenario used was

implemented with the software Presentation (Neurobehavioral

Systems, Inc.). Subjects were instructed to focus on a green

circle with a black fixation cross on a gray background to

minimize eye movement artifacts in the EEG data. As input

device a custom-made board with two switches (for the left

and right hand) and a light barrier approximately 40 cm above

the switches were used. In each set the subject had to lift each

hand at least 40 times and return to the switch. Movement

onset and type (left or right) was freely chosen by the subject.

In-between two consecutive movements a minimal resting time

of 3 s had to be fulfilled. Early movements were reported to

the subject by changing the circle’s color to red for 100ms

and were not counted. The resting time ensured that enough

data for the no movement condition could be acquired. All

events from the switches and light barrier were labeled in the

EEG and EMG for later performance analysis.

C. EMG Processing

Raw EMGs were preprocessed with a variance based filter

approach. Within a window of 0.2 s length the variance was

computed and assigned to the last sample in the window. This

was done consecutively for each sample. For onset detection an

adaptive threshold was used. The threshold was also calculated

in a sliding window manner. The mean of the last 1 s plus p

times the standard deviation of the same window length was

used as threshold, where p is a sensitivity factor which was

chosen to be 6. After finding an onset in one of the EMG

channels, the signal had to be lower than the threshold for at

least 1 s before a new onset can be found. This was done since

in the movement phase there is obviously high activity in the

EMGs and this shall not always lead to a new onset detection.

D. EEG Processing

Movement preparation is reflected in the EEG by several

patterns: event related (de)-synchronization (ERD/ERS) [22]

and movement related cortical potentials (MRCPs) [23]. The

aim of our EEG processing was to detect MRCPs, mainly the

late readiness potential, which is an increase in negative activ-

ity at central electrodes contralateral to the side of movement
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Fig. 2. Illustration of the processing of EEG and EMG data after pre-training, i.e., during application. Every 0.05 s the current data was classified. If a
movement was recognized by the EMG processing, e.g., a left movement, the buffered EEG data was labeled accordingly and the aXDAWN and PA-1 classifier
were adapted.

starting approximately 0.5 s before movement onset [23], [24].

To detect the MRCPs and reduce the computational load for

further processing, the data was decimated to 20Hz and low-

pass filtered (cutoff 4Hz) with a finite impulse response filter.

This radical filtering also reduces muscular artifacts in the data

which manifest mainly in higher frequency ranges.

For supervised machine learning and later performance

evaluation, the data was segmented into windows and labeled

based on the events of the switches. The data between 2.2 s

before each switch event and the switch event was considered.

For each movement, two windows with a length of 0.2 s ending

at 0 and −0.15 s with respect to the movement onset were cut

and labeled according to the movement type (Left or Right).

For the third class (NoMove), windows of the same length

ending at −1.7, −1.5, −1.3 and −1.1 s were used.

Classification was performed with a passive aggressive

perceptron (PA-1) [25]. A one-vs-one approach was applied to

differentiate between NoMove, Left and Right with this binary

classifier type. That means three binary classification problems

had to be solved: Left vs. Right, NoMove vs. Left, and NoMove

vs. Right. The output scores of the classifiers were combined

by first calculating probability estimates using Platt’s sigmoid

fit [26], [27] and then summing up the probabilities for each

class. Finally, the class with highest probability was returned.

In the demonstration scenario, a movement of the exoskeleton

was triggered, whenever the returned class indicated a move-

ment that was confirmed by EMG analysis within the next

500ms and the subject focused on the bottle (revealed by eye-

tracking, see Figure 1).

The processing within each of the binary classification

problems was similar and is thus described only once: For

dimensionality reduction and increase of the signal-to-noise

ratio, a spatial filter was trained. Here we used a variant of

the xDAWN algorithm [28] that can be trained incrementally

[19]. The number of retained pseudo-channels was set to four.

The values of the pseudo-channels formed a feature vector

of dimension 16 (4 pseudo-channels × 4 time points). Each

feature dimension was normalized to have zero mean and a

standard deviation of one. The normalized feature vectors were

the input of the PA-1 classifier. The cost parameter of the PA-

1 was optimized using a grid search where internally a 5-fold

cross-validation was performed on the training data and the

best value of [10−6, 10−5, ..., 100] was selected. Further, all

training examples of the movement classes were used twice

during training to account for the imbalance in comparison to

the NoMove class.

Figure 2 illustrates the EEG processing (starting from the

segmented windows) and the usage of EMG as trigger of

adaptation during application (details, see Section II-E1).

E. Analyses

For all analyses we used an inter-session evaluation scheme.

That means the EEG processing was evaluated on data of a ses-

sion that was not included in the training data. As performance

measure the balanced accuracy (BA) was computed, that is the

arithmetic mean of the rates of correctly classified instances

of each class. This metric is insensitive to different class ratios

[29], i.e., insensitive to the overrepresented number of NoMove

instances. Since a single detection of Left or Right in the appli-

cation might trigger the exoskeleton to support the movement,

a single detection within the interval [−0.6,−0.05] s counted

as classified movement. The remaining range (−2 to 0.65 s),

i.e., the NoMove class, was evaluated for each sliding window.

For all analyses the software pySPACE was used [30].

1) Adaptation of the Trained Models: During testing, the

sliding windows were classified based on each modality sepa-

rately (see Fig. 2). Before the EEG data was passed to the three

processing chains for binary classification (Left vs. Right, Left

vs. NoMove, Right vs. NoMove), it was stored in a buffer for

getting supervised labels later in time. As soon as a movement
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TABLE I
CLASSIFICATION PERFORMANCE (% BALANCED ACCURACY) FOR ALL TRAIN-TEST-SESSION COMBINATIONS. VALUES REPRESENT AVERAGES OVER

THE TWO RECORDING SETS.

train 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Min Avg Max
test

1 77.86 60.16 86.41 83.39 87.18 83.74 81.99 83.13 84.33 83.33 85.91 86.49 86.78 60.16 82.36 87.18
2 67.28 81.13 81.72 59.44 68.28 77.95 83.83 81.88 84.51 80.15 72.02 85.39 86.26 59.44 77.68 86.26
3 50.21 75.69 64.09 42.07 57.25 61.79 61.31 54.48 61.50 51.48 51.16 61.12 64.11 42.07 58.18 75.69
4 74.29 79.50 68.42 69.83 78.09 75.21 76.45 75.48 75.83 75.23 77.35 77.90 79.65 68.42 75.63 79.65
5 87.90 83.91 61.64 88.98 88.03 81.13 84.96 86.17 87.54 88.93 83.49 88.88 91.16 61.64 84.83 91.16
6 86.74 72.17 57.69 79.88 81.41 73.06 76.18 78.12 74.92 78.58 80.33 80.74 77.05 57.69 76.68 86.74
7 80.60 84.80 71.06 79.52 76.77 78.77 79.19 90.03 79.29 87.66 80.29 85.78 85.66 71.06 81.49 90.03
8 83.07 87.64 77.14 86.16 84.21 84.34 84.61 87.70 91.19 87.13 82.18 87.97 90.70 77.14 85.70 91.19
9 81.81 88.18 72.78 85.03 82.98 83.75 83.16 90.16 86.60 87.23 84.75 89.06 89.55 72.78 85.00 90.16
10 80.86 89.14 81.96 82.26 65.99 79.42 78.32 83.37 85.91 83.72 79.06 85.21 84.49 65.99 81.52 89.14
11 86.32 82.86 66.52 86.25 84.21 87.95 87.53 84.63 91.45 84.15 86.91 89.18 88.29 66.52 85.10 91.45
12 78.94 70.61 65.65 84.80 78.27 72.77 77.82 78.75 78.78 79.57 77.43 81.23 88.67 65.65 77.95 88.67
13 85.24 95.21 81.08 92.93 76.93 86.17 86.99 91.07 88.68 90.49 87.76 89.65 91.46 76.93 87.97 95.21
14 90.86 88.21 78.92 84.83 89.89 82.47 87.58 91.43 74.24 83.05 85.05 93.02 89.67 74.24 86.09 93.02

Avg 79.55 82.75 71.09 83.30 75.03 79.57 79.91 81.79 81.24 81.77 81.05 80.47 83.74 84.91

was detected based on EMG, labels were sent to the buffer.

The idea was to label the windows similar as during training

(see Section II-D): Due to the electromechanical delay [31],

we expect the EMG onset before the switch release. Previous

analyses in a similar experimental setup revealed a mean

difference of 0.08 s between EMG onset and switch release.

Hence EEG windows ending at −0.05 s and 0.1 s with respect

to the EMG onset were labeled as movement (corresponding

on average to time points −0.15 s and 0.0 s with respect to the

switch release). Further EEG windows ending at −1.6, −1.4,

−1.2 and −1 s with respect to the EMG onset were labeled as

NoMove. When all data and labels for one movement cycle

were present in the buffer, they were processed again and

updates of all aXDAWN and PA-1 were performed.

Our adaptivity approach relies on supervised labels that

were obtained based on a different signal source. The cor-

rectness of these labels is crucial to perform the model

adaptation. Hence, we also computed the performance of EMG

classification. For that, evaluation settings were the same as

those for EEG classification, except that for EMG a detected

movement in the interval [−0.25, 0] s with respect to the switch

release was counted as correctly classified movement.

2) Number of Sessions for Generalized Models: To inves-

tigate how the models generalize across different sessions we

increased the number of training sessions successively. We

computed results for one, two, three, four and five training

sessions, since from the application perspective the number

of used sessions should be small. We even reduced the

training size to one set of a session since it is not easy

to obtain enough training data from patients in real-world

applications. However, it can be expected that more sessions

increase generalization performance. For this reason, we also

computed results for 13 training sessions to serve as a baseline.

Note that for 0.5, 1, 2 and 13 training sessions, all possible

combinations were computed and results were averaged. For

the remaining numbers of training sessions we limited the

computed combinations to 100 randomly chosen combinations

to obtain a feasible amount of computation time.

3) Statistics: For statistical evaluation, the data was ana-

lyzed by a two-way repeated measures ANOVA with training

size and method as within-subjects factors. The factor training

size contains 7 levels: 0.5, 1, 2, 3, 4, 5, 13 sessions and

the factor method contains 4 levels: aSF-CL, SF-aCL, aSF-

aCL, and SF-CL (baseline) where aSF stands for adapted

spatial filter and aCL stands for adapted classifier. When

necessary, the Greenhouse-Geisser correction was applied and

the corrected p-value is reported. For multiple comparisons,

the Bonferroni correction was applied. 28 data pairs (sample

size of 28: 2 evaluations × 14 test sessions) were used for the

statistical analysis.

III. RESULTS AND DISCUSSION

As mentioned earlier, we evaluated the classification perfor-

mance based on EMG, which was used to obtain supervised

labels for model adaptation. We obtained a high BA of on

average 97.35% (± 3.14 %) across all sessions.

Table I shows the classification performance (balanced accu-

racy, BA) based on EEG for all train-test-session combinations

as well as minimum, maximum and average performance

across training sessions. There was a huge variance in clas-

sification performance of up to 30% BA for several testing

sessions. This variance resulted from the used training session

and could be reduced by the two approaches: a) adaptation of

the pre-trained models to the testing session and b) increase

of the number of training sessions.

Figure 4 summarizes our results and Figure 3 depicts a

detailed comparison of the adaptive approaches when one

session was used for training. The statistical evaluation reveals

that the classification performance was influenced by both

factors (training size and method). First, the classification per-

formance was increased with the amount of training instances

[main effect of training size: F (6, 162) = 125.76, p < 0.001].

Here, we observed no significant increases after four training

sessions over all methods [comparisons of all session pairs:

p < 0.02, except for 4 vs. 13 and 5 vs. 13 sessions: p = n.s.].

In other words, a saturation of performance increase was
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Fig. 3. Mean classification performance (% balanced accuracy) and standard error of the mean (SEM) across all training combinations of one session for
each test session. Baseline – static algorithms, aSF – adaptive spatial filter, aCL – adaptive classifier, aSF+aCL – adaptive spatial filter and classifier.
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Fig. 4. Mean classification performance (% balanced accuracy) for different
amounts of training data and methods: Baseline – static algorithms, aSF –
adaptive spatial filter, aCL – adaptive classifier, aSF+aCL – adaptive spatial
filter and classifier. The marker size is proportional to the variance of the mean,
i.e., standard error of mean (SEM). For example, a large marker corresponds
to a large SEM.

achieved after three sessions, which in total contained 240
left and 240 right movements.

Second, the methods (adapted or not adapted spatial fil-

ter and classifier) had also an impact on the classification

performance [F (3, 81) = 7.59, p < 0.001]. The combined

approach (aSF+aCL) and the adaptive spatial filter (aSF)

achieved significantly better performance compared to the case

of using only the adaptive classifier (aCL) or no use of any

adaptive approach (baseline) over all sessions [p < 0.001].

Third, both factors interacted with each other [F (18, 486) =
30.19, p < 0.001]. The effect of training size was greater when

using the adaptive classifier compared to all other methods

[combinations of all sessions pairs: p < 0.001 for aCL; 4 vs.

5, 4 vs. 13, and 5 vs. 13 sessions: p = n.s. for aSF+aCL; 2 vs.

3, 4 vs. 5, 4 vs. 13, and 5 vs. 13 sessions: p = n.s. for aSF; 4
vs. 5, 4 vs. 13, and 5 vs. 13 sessions: p = n.s. for baseline]. A

possible reason is that the variance of the performance mean

obtained by aCL is very small compared to aSF or baseline.

Hence, the large variance of aSF was substantially reduced

when aSF has been applied together with aCL (aSF+aCL).

In particular, when only few training data was available (see

Fig. 4: 0.5 session, i.e., 40 left and right movements), the

combined approach (aSF+aCL) was superior compared to the

cases of adapting only one of both (aSF or aCL) [aSF+aCL

vs. aCL: p < 0.001, aSF+aCL vs. aSF: p < 0.001, aSF+aCL

vs. baseline: p < 0.001].

However, this effect was attenuated when the training size

was increased (see Fig. 4: 1 session, i.e., 80 left and right

movements). Both the adaptive spatial filter (aSF) and the

combined approach (aSF+aCL) achieved better performance

compared to the case of adapting only the classifier or no

adaptive approach [baseline vs. aSF or aSF+aCL: p < 0.001,

aCL vs. aSF or aSF+aCL: p < 0.001].

For one session of training data, Figure 3 shows a session-

based comparison of the adaptive methods. Especially, we

observed a substantial performance increase by the combined

approach for the sessions which had a low performance

baseline (e.g., session 3, 4 and 6). Further, the variance was

reduced for most sessions in comparison to the baseline. Not

surprisingly, the baseline did not significantly differ from

the adaptive approaches, when the training size was further

increased [combinations of all method pairs: p = n.s., see

Fig. 4: 13 session].

In summary, the combined approach (aSF+aCL) achieved

significantly better performance than the other approaches

including the baseline, when few training data was available.
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IV. CONCLUSION

In this study, we could show that the analyzed approaches

(adapting and generalizing models) can increase the systems

performance and make the system more robust in the setting

of session-to-session transfer. Further, our results indicate that

one can choose between the two approaches depending on how

much training data is available. When only a small amount

of historic data is available, the adaptive algorithms can be

applied to increase the classification performance. In contrast,

when already sufficient amount of training data has been

collected, the whole amount of data can be used to generalize

the models. In this case, not surprisingly, the adaptation of

the models has no further impact on the systems performance.

Hence, historic data can be efficiently used depending on real-

world daily rehabilitation situations.
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