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Embedded Multimodal
Interfaces in Robotics:
Applications, Future
Trends, and Societal
Implications
E. A. Kirchner, S. H. Fairclough, F. Kirchner

14.1
Introduction

In the past, robotswere primarily used to performwork thatwas either toohard, too

dangerous or simply too repetitive for humans, e.g., assembly line work, or work

that could be done much faster by a robotic system, such as placement work. In

the future, human-robot interaction will cover a much broader range of scenarios,

fromworking interactively with humans in the context of industrialmanufacturing

to robotic appliances designed to care the elderly; even in applied areas, such

as autonomous robots in space or operating underwater, the demand for robots

to interact or to be intuitively controlled is growing. Hence, interaction will not

only involve direct control of a robot or information exchange but will include

direct cooperation and physical interaction betweenhuman and robot, i.e., human-

robot cooperation. While direct cooperation has tremendous advantages it also

presents a number of significant challenges that should not be underestimated.

Advanced interfaces to enable human-robot cooperation will be required to meet

these challenges and the needs of human-robot interaction in the future.

These interfaces must not only promote accurate and easy explicit interaction

between humans and robots but should also enable implicit interaction. Explicit



interaction requires the intentional production of active states or commands, i.e.,

the production of speech or specific brain signals or gestures. On the other hand,

implicit interaction operates by monitoring passive states, i.e., emotions, mental

workload, fatigue, motivation, which arise spontaneously, or requires the interpre-

tation of spontaneous active states passively without the awareness or intention of

the user to improve interaction. Examples of this mechanic would be the interpre-

tation of the user’s brain signals to prepare a robot for an upcoming movement in

order to enable a greater degree of coordination between human and robot or the

estimation of mental workload of the user to reduce or increase interactions task-

frequency (for examples see Section 14.4). Considering enhancement of awareness

for explicit interaction, it can be stated that the user is responsible to increase the

awareness of the robot with respect to his or her needs and the function of the

interface is to translate the active state of the human into an appropriate com-

mand, which is actioned by the robotic system. In this case, the interface between

user and robot is a communicator. In case of using implicit control pathways the

interface must translate the active or passive state of the human into a robotic re-

sponse that is both timely and intuitive from theperspective of the user. Thehuman

does not intentionally contribute to this process and may not even be aware of the

underlying mechanism. The interface serves as a monitor and translator that in-

terprets the state of the human and possible intention (see Section 14.3 for more

details). Both types of interfaces, which enable implicit or explicit control, can be

combined into a hybrid system. In case of this hybrid, interfaces between human

and robot use multimodal input and generate multimodal output. Such advanced

interfaces are often complex and of the type of embeddedmultimodal-multisensor

interfaces.

While it is obvious that such interfaces serve human needs by enabling explicit

and implicit interaction to optimize cooperation with respect to the needs of the

humanuser, the interfaceprovides two-way communication. For example, there are

interfaces that enable robots to make use of human cognitive resources in those

cases where they have reached the limits of autonomous behavior. Such interfaces

are required forhighly specialized robotic systems,whichcanbe found in industrial

environments. With respect to their specialized domain, these robots can outper-

form a human by contributing specialized solutions to a specific problem, butmay

not be able to copewith small deviations fromadefinedprotocol. Furthermore, this

type of two-way interface is required for the control of semi-autonomous robots,

e.g., for teleoperation. One requirement of such interfaces is to provide feedback

to the human with respect to the state of the robot. Therefore, a robotic system

must either have a perception of itself, which can be transferred to the human, or
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an interface to interpret the state of the robot. In this case, the interface works by

either transferring the robot’s state or inferring the state of the robot.

There are robotic applications thatmust deliver highly demanding and sensitive

modes of interactionwith their humanusers, since they have, to an extent, replaced

capabilities that would usually be performed by human being, as in the care of

elderly people, or robots that extend the body, i.e., provide sensory-motor functions

such as exoskeletons, surgical robots, and assistive robots that aid the human user

by delivering services or information. In this case, the performance demands on

the human-robot interface are even higher and often transfer or interpret states

bi-directionally. In summary, a combination of the aforementioned abilities of the

different types of interfaces is required to develop new and advanced multimodal-

multisensor interfaces that:

. provide the human operator with a greater insight into the robot’s state for

better control;

. provide the robot with improved insight into the intention of the human for

better support or support as needed, or allow the interaction to adapt to the

human’s need,

. enable the robotic device to extend the human body and senses and to be

used as if it were part of the human body;

. enable the robot to learn from a human in order to imitate their behavior or

to learn to understand the human behavior to become a better interaction

partner; and

. inherently assure the automated detection or even avoidance ofmalfunction

and safety of interaction.

This chapter describes somemeasures and approaches that can fulfill the listed

requirements for advanced multimodal-multisensor interfaces. While we try to

give explanations and examples for all the requirements of these systems, we will

focus on approaches that make use of implicit interpretation of the human state.

When using implicit interpretation of the human state, the array of measures that

are required to optimize human-robot interaction depends on the type of user

representation that the robot requires in order to interact or to cooperate with the

person. If the robot must simply avoid hitting a person or colliding with him/her,

all it needs to know is where the person is located in space. No explicit interaction

is required. For this situation, only a simple awareness of the user, e.g., on her or

his location in space and movements, is needed. Robots that work with the elderly

and must exercise soft social skills require a much higher level of awareness of
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the user (and of course that means more sensors and measures). Hence, there is

a relationship between the type and sophistication of the interface, its ability to

interpret the human state, and the level of awareness of the user that is required

for such complex interaction. Therefore, the level of awareness of the user required

by the robot is hierarchical; the robot can have an awareness of the user as: (1) an

object in space, (2) a co-worker or partner (what are they supposed to do, what

tasks are they trying to complete), (3) an individual (gender, age, personality) and

(4) a dynamic entity with respect to intentions and psychological states. Simple

robotsmay need just (1) and (2) in order to interact or to cooperate. Robots that are

designed to personalize interaction to the person would require information about

stable traits of the person (3) and themeans to detect dynamic changes (4). Hence,

interfaces can be scaled according to the level of interaction that is required. The

higher the level, the more likely it is that multimodal-multisensor interfaces are

required.

The good news is that for human-robot interaction, robots are able to directly

make use of a range of measures and data as part of the multimodal-multisensor

interface. We will discuss the usage of Psychophysiological measures and how they

can improve interaction and especially cooperation witin this type of advanced

interface.However, it is very difficult or even impossible to always interpret the state

or intention of the humanwith one 100%accuracy. This fact is the biggest challenge

in any human-machine interaction and has direct implication for the subjective

perception of reliability within this interaction. If a system is deemed unreliable,

it will fail to win the trust of the user. The issue of trust is particularly sensitive for

multimodal-multisensor interfaces. These systems are designed to respond with a

degree of autonomy, hence the user must cede a degree of control to the system.

In addition, these systems monitor a range of measures related to behavior and

the psychological status of the person. These data are personal and sensitive, and

interactionwith this type of advanced robotic systemmay trigger a range of societal

and ethical issues around data privacy and data security (see Section 14.5). Hence,

trust is multifaceted during these interactions; the user must trust in the technical

proficiency of the system and be confident that their personal data is secure while

they interact with the interface.

Interfaces are often not stand-alone systems in robotics. They are embedded

multimodal-multisensor interfaces that are deeply integrated into the system’s con-

trol and into the context of interaction, requiring an automated analysis of interac-

tion context. In the future, they will develop self-adaptive properties, which require

new techniques, hardware, andalgorithmsasdiscussed in this chapter. In addition,

robotics presents a huge challenge for safety, especially when humans physically
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interact with robots that exert high forces and accelerations together with a high

net weight. Since safety of interaction is the fundamental requirement for human-

robot cooperation, wewill beginby discussingnewandupcoming approaches from

robotics to assure safety (Section14.2). This discussionbringsusdirectly to thedefi-

nitionand relevanceof embeddedmultimodal interfaces inhumanrobot interaction

(Section 14.3), which often belong to the group of multimodal-multisensor inter-

faces. In Section14.4wegive someapplication examples for embeddedmultimodal

interfaces and explain how they can enable or improve human-robot interaction.

Finally, in Section 14.5, future trends in embedded multimodal interfaces and so-

cietal implications are discussed.

For a detailed application scenario for an embedded multimodal interface in

robotics, see the Glossary and Focus Questions.

14.2
Inherently Safe Robots—a Prerequisite for Human-Robot Coop-

eration

To assure safety in human-robot interaction, the most intuitive approach is to

make robots inherently safe. Safety during human-robot cooperation is not only

an additional benefit but often an indispensable criterion to enable sharing of

common spaces or ensuring physical collaboration between fragile humans and

powerful robots. Safety can be implemented on different levels during robot design

to enhance reliability. Inherent safety in human-robot cooperation is achieved

through a three-level process. On the lowest level (level 1), safety is ensured directly

by the design of the electro-mechanical hardware. Therefore, this level is also

referred to as the safety by design level: we can distinguish three parallel paths

on this level (see Figure 14.1). First, the most straightforward path is the process

of mechanical design itself, such as those classic lightweight designs that are

standard in robotics. However, in recent years new smart materials can further

enhance the lightweight design ethos. This process is enhanced by recent advances

in 3D-printing technologies, which allowmechanical design to go in directions that

were unthinkable using classic technologies, like embedding electronic circuitry

and signals into the structure of the components. The integration of channels

with complex 3D structure into the components, e.g., internal cabling, represents

another approach. These developments are paralleled by advances in the design

of robotic actuators. Using this approach compliant elements are embedded into

actuators by serializing, e.g., a spring with a motor (and gear), which complicates

the control of such an actuator on the algorithmic level, but enables built-in safety

as external forces that act on the robot are absorbed by the spring - instead of the
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Glossary

An active BCI is a brain-computer interface that derives its outputs based upon a

voluntary act of explicit control from the human, e.g., generates motor imagery

consistent with movement of right hand to move cursor to the right.

Active state is a psychological state associatedwith a volitional act or intention generated

by the person, e.g., to open the door.

Application-specific safety level describes the concept to include information into the

robot’s behavioral control that comes from sensors that are not part of the robot

itself. This concept uses the information from sensors that are placed outside of the

robot to monitor the environment, e.g., a workplace in a production line and which

are used inmore traditional applications to create strict safety boundaries around the

workplace. Inmore advanced approaches this information is used differently; here it

helps to derive contextual information that can be used to adapt the robot’s behavior

instead of overwriting it. For example, in amore traditional scenario a violation of the

safety boundary by a human walking by would result in a full stop of the production

line. The more advanced concepts would predict the humans path and instead of

stopping the production line would only reduce the speed of themoving robots. This

concept thereforemodifies the behavior of the robot as commanded by the high-level

controlmodule instead of overwriting it.

Awareness can refer to perceiving sensory stimuli in the environment including other

actors, which may be machines or peoples.

Biocybernetic control describes a model of closed-loop control (negative or positive con-

trol) wherein measures are derived from psychophysiological or neurophysiological

sources and converted into control input for an adaptive computer system.

Covertmeasure is ameasure of humanbehavior or performance that cannot be detected

based upon human perception, e.g., heart rate, and brain activity.

Closed-loop control is a control system that uses the concept of an open-loop system

as its forward path but has one or more feedback loops (hence its name) or paths

between its output and its input.

Embedded brain reading is an approach for user state detection, which is based on

the online analysis of brain activity. Brain activity is used which is spontaneously

evoked during human-machine interaction. The approach is deeply embedded into

the system’s control, the context of interaction, and makes use of multimodal data.

It is applied for implicit interaction, i.e., to non-intentionally adapt or drive explicit

interaction.

Embeddedmultimodal interface is an interface thatmakes use ofmultimodal data from

multimodal input and is able to generatemultimodal output. Its main characteristic

is that it is deeply incorporated into the control of the robotic system, and may be

subject to complex adaptation mechanisms such as reflexive adaptation. While its

function might be to gain explicit control of a system, it might be subject to implicit

control to be adapted to the human’s or system’s needs.
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Glossary

Explicit control represents a mode of input control where the user intentionally

generates a specific behavior in order to achieve a specified goal, e.g., move a cursor

upward.

Explicit interaction is a mode of human-computer interaction where the human user is

fully cognizant of the issuing of commands and receives explicit feedback from the

computer.

High-level control refers to the specification and feedback control of target positions

in 3D space that must be reached by the end effector of a multi-joint robot based on

information coming from sensors sampling the robot itself and its environment.

Human-robot cooperation is a subfield of human-robot interaction where a human and

robot or teams of humans and robots work or act together to reach a shared goal. It

often requires direct contact between human and robot or a shared workspace.

Human-robot interaction is any interaction between a human and a robot or teams of

humans and robots including communication, control, feedback, direct contact, or

information exchange.

A hybrid BCI describes a brain-computer interface that combines active BCI with either

passive or reactive BCI or other measures such as eye movements or heart rate.

Imitation learning enables a robotic system to learn from demonstrations of nearly

optimal policies executions given by a teacher (e.g., a human mentor). It is often

used to initialize reinforcement learning to avoid time consuming learning from

scratch.

Implicit interaction is a mode of human-robot interaction where the human user is not

aware of the issuing of (control) commands that may be used for the control of a

technical system or adaptation of an interface to the needs of the technical system

or user. The user may or may not receive explicit feedback from the computer.

Internal state of a robot is computed on the basis of all sensor information directly

or indirectly available to the robot. Directly available information is all information

that comes from the robot’s own sensors, while indirectly available information is all

information that comes from sensors that are external to the robot but that the robot

can access through communication pathways. The set of internal states of a robot is

in most cases a finite set of eventually multi-dimensional vectors. Elements of this

set are computed through means of clustering that range from simple thresholds to

complex statistical methods.

Low-level control refers to the direct feedback control of movements of the motors in

the joints of a multi-joint robot using sensor information coming directly from the

individual motors to reach a specified position in 3D space.
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Glossary (continued)

Neurophysiologicalmeasures represents the act ofmeasurementbasedonphysiological

activity from cerebral sites in the human brain. These measures may be based

upon electrical activity (electrocortical, electroencephalographical) or neurovascular

changes (functional magnetic resonance imaging (fMRI), functional near-infrared

spectroscopy (fNIRS)).

Overt measure is a measure of human behavior or performance that can be detected

based upon human perception, e.g., voice commands, gestures. A

passive BCI is a brain-computer interface that derives its outputs from arbitrary brain

activity without the purpose of voluntary control.

Passive state is a spontaneous psychological state that arises during behavior without

an intention on the part of the person, e.g., fatigue, frustration.

Physiological computing refers to a field of research in human-computer interaction

wherein Physiological measures derived from the human user are used as a source of

input control for a computer system or interface.

Physiological measures describes the act of measurement based on processes related

to human physiological functions.

Psychophysiologicalmeasures describes the act ofmeasurement and inferencewherein

psychological processes and concepts are inferred on the basis of physiological

measurements from the autonomic nervous system. A

reactive BCI is a brain-computer interface that derives its outputs from brain activity

arising in reaction to external stimulation, e.g., a visual stimulus or sound.

Reflexive adaptation refers to a second-order process of adaptation whereby the

computer makes an autonomous response and subsequently monitors the response

of the human user to that response in order to inform future responses.

Safety by design refers to the fact that next-generation technical systems for human-

robot cooperation will include, e.g., a compliant element in their actuators that

absorbs energy. Thereby safety is an integral part of the mechanical construction of

the system.

Temporal cascaded approach is an approach of using multimodal data in a timely

sequenced fashion where the usage and outcome of analysis of one data type

influences the analysis or choice of a second- or higher-order data type.
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Figure 14.1 Safety levels for human-robot cooperation.

human body as in classical soft robots. Combining this approachwith a high speed

/ high precision torque control technique on the algorithmic level [Bargsten and

de Gea Fernández 2015] results in a robotic system that can be designed to be

inherently safe (see video referred in Figure 14.2).

Finally, the level of safety by design can be realized by providing the new gen-

eration robots with a sense of touch. Touch or any kind of haptic information for

robots has been largely ignored by robot designers over recent decades because

the requisite technology was not available. Instead, vision was the dominant sen-

sor for robotic perception and the primarymeans of avoiding contact with the user.

Yet robots that directly interact with humans—e.g., while building or installing the

windshield of an automobile on a shop floor of a car manufacturer—cannot com-

pletely avoid physical contact. Furthermore, physical contact may be unavoidable

if a tool is handed over. This aspect of the interaction is where the third line of

safety by design comes into action—sensor systems that sense humans via multi-

ple modalities, not only by visual sensors but also by other sensors such as touch

and distance. For example, artificial skins can be implemented because material

technology and electronic circuitry have achieved a level of miniaturization and

mechanical flexibility that allows us to design surfaces for the new generation of
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stop. As soon as the external forces are gone the robot will continue on its path. In

some more advanced cases the robot would in fact search for an alternative path

or trajectory.

The last level in the hierarchy (level 3), also referred to as high-level control,

is implemented based on sensors, internal of the robot, that are used to describe

the state of the external environment of the robot [Lüth et al. 2015], e.g., cameras,

lasers, or Time-of-Flight cameras. This information provides the basis for planning

of manipulator arm trajectories and robot navigation paths and includes aspects

of safety by avoiding to hit any obstacles (as well as humans) and describes a stan-

dard in robot control. However, these sensors can be combined with sensors that

are external to the robot and that are very specific to the concrete application, e.g.,

a shopfloor production assembly line. There aremany examples like: external over-

head cameras [SafetyEye 2014] or laser range finders that are usually implemented

to create safety boundaries around the robot. In traditional robot applications a vi-

olation of these borders just results in an alarm and a shutdown of the production

line. In more advanced applications this information is used to adapt the behavior

of the robot in case the boundaries mentioned above are violated by an object or a

human [de Gea Fernández et al. 2017].

Safety boundaries arenot static inmodern robotics, but canbe adaptive and vary

with the context of the robot’s task and application [Vogel et al. 2013], e.g. the robot

would not go to a full stop but rather slow to a predefined speed in a human-robot

cooperation scenario [deGeaFernández et al. 2017]. Because thekindof adaptation

of the robot is dependent on the context of the task, applying this adaptive type of

safety level can also be seen as a context or application-specific safety level (see also

Haddadin [2015]).

In summary, there are approaches to enhance safety that are inherent in the

design of a robotic system. These approaches provide the robot with a good percep-

tion of the environment but do not necessarily require a concrete understanding of

the human state or intention, or even recognition of the human apart from other

objects in the environment. However, those internal states of robots that exist to

enhance safety can also be the basis for the creation of more complex forms of

awareness to support the interactionwith the user.Hence, advanced interfaces that

make use of multimodal data to enable explicit and implicit interaction with hu-

mans (see Section 14.3)must not only focus on establishing a representation of the

user state but must also encompass a description of the status of the robot. There

are simple mechanisms to present the state of the robot to a human operator, e.g.,

writtenor colored light feedback [deGeaFernández et al. 2017], videodata feedback

from the point of view of the robot (i.e., its internal cameras), 3D reconstruction of
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the robot in its environment, or force feedback which conveys an impression of the

robot’s tactile perception during its interaction with the environment.

Thesemodes of feedback are able to communicate information about the inter-

nal state of the robot. For certain tasks, such as teleoperation, continuous and clear

feedback from the robot provides the user with the means to achieve easy control

of the robot. In Section 14.4 we give some more examples for different applica-

tions, and in Section 14.3 we focus on the categorization of different approaches

for utilizing human states for human-robot interaction and its relevance for the

development of advanced embedded multimodal interfaces.

14.3
Definition and Relevance of Embedded Multimodal Interfaces

The basic goal of interfaces is to provide the robotic entity with a quantification

of the state of the human user Schuller [2018] for an overview on multimodal user

state recognition) and to provide the human with feedback regarding the state of

a robotic system. The purpose of the interface is to generate bi-directional aware-

ness and to enable bi-directional interaction and/or the support of the interacting

human or robot. Whereas perceiving the environment via multiple modalities is

very natural for more complex biological systems, the sensory capabilities of many

technical systems are often limited to onemodality. Thismodality is usually used in

oneway, i.e., to intentionally transfer commands or to actively perceive objects that

are relevant for the system’s action. In the past, this restriction of modality limited

the possibilities for generating a representative level of (bi-directional) awareness.

However, as pointed out in the previous section, this situation is now changing

in the field of robotics. Technical systems can be equipped with different sens-

ing modalities, which can be utilized for different purposes, with respect to both

multimodal input and output [Kirchner et al. 2015]. This technical progress has

been created by the increased availability and ease of usage of sensor technology,

enabling robotic systems to receive a variety of data about their environment and

users [Kampmann and Kirchner 2014]. This innovation requires the development

of advanced multimodal-multisensor interfaces.

Let us give some examples with regard to the possible approaches that improve

the interaction between human and robot usingmultimodal interaction. A camera

canmonitor the spatial positionandbodypostureof thepersonandcancaptureany

movement in space. But modern camera technology is also capable of monitoring

information about facial expression and heart rate via a webcam [Monkaresi et al.

2014]. In a similar way, a conventional microphone can record sounds and utter-

ances fromtheuser, but is also capableof capturing those emotional responses that
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are inherently part of vocal expression [Bachorowksi and Owren 2010]. Both can

thus be used to record psychophysiological measures of the human. Psychophysio-

logical techniques grant technology access to signals from the autonomic nervous

system via wearable sensors, which allows the robot to make inferences about the

psychological state of the user. For example, changes in heart rate or galvanic skin

response represent the level of psychological activation experienced by the indi-

vidual; increased levels of frustration or anxiety or excitement are associated with

higher psychological activation. The availability of wearable devices to measure

electrocortical [Nijboer et al. 2015] and neurovascular activity [Piper et al. 2014]

from the cortex would allow a robotic system to draw inferences about high-level

cognitive states experienced by the user, such as intentionality, mental workload

and skill acquisition [Bozinovski and Bozinovski 2015, Canning and Scheutz 2013,

Kirchner et al. 2016a].

When developing a taxonomy for multimodal interfaces, it is convenient to

classify techniques to monitor the status of the user into techniques that use

overt measures and covert measures. The former refers to methods that record

and infer on the basis of what could be seen or heard by a hypothetical (human)

observer. These overtmethods are designed to recordmovements, changes in facial

expression, and vocal utterances, or the same approach can be used to capture

behavioral indices such as performance or task activity. Covert methods represent

those measures from the user that are imperceptible to the hypothetical observer,

such as psychophysiological and neurophysiological measures. Certain data types,

such as electrocortical activity, are invisible to the human eye, others may be

perceived visually (e.g., pupil dilation) but cannot be accurately assessed in real-

time by a human observer. Furthermore, a robotic system can use overt and covert

measures to assess twobroad categories of user state: (a) active states that represent

intentionality, preparation for action andmovement; and (b) passive states, such as

emotions, mental workload, fatigue, andmotivation, which arise spontaneously as

a consequence of human-robot interaction. Table 14.1 provides two examples that

capture the distinctions between overt/covert measures and active/passive state

categories.

On the other hand, when classifying multimodal interfaces from a usage per-

spective, it becomes obvious that there is a substantial overlap between explicit or

implicit interaction (see Figure 14.3). For example, when developing a speech inter-

face for explicit control, both covert and overt measures can be used. The natural

choice is to monitor the overt auditory output, but covert muscle activity, i.e., the

human electromyogram (EMG), recorded by electrode arrays, can be used for such

an interface [Wand et al. 2013]. The same is true for implicit control. Overt changes
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Table 14.1 Examples of active and passive states monitored using overt and covert measures.

Active Passive

OVERT user moves right hand facial expression indicative
of surprise

COVERT increased activity in
somatosensory cortex
during preparation to
move hand

elevation of heart rate and
skin conductance level

in facial expression can be used to adapt an interface with respect to the emotional

state of a user. Covert changes in skin conductance can be used to capture emo-

tional activation. Thus, covert and overt measures are applicable for explicit and

implicit control purposes. The same principle applies to the detection of those ac-

tive states exhibited by the user. An active state can of course be used for explicit

control. However, an active state, such as the preparation of a movement, can also

beused for implicit control, i.e., to adapt a robotic systemfor likely upcomingmove-

ments to reduce interaction forces (see Sections 14.4 and 14.6). These examples

emphasize that it is important to clearly state whether a taxonomy of interfaces is

based on the techniques used to monitor the status of the user or the functional-

ity of the multimodal interface. It is important that there is an awareness of both

possibilities to avoid misunderstandings regarding the purpose of the interface.

If we consider how these techniques can be used to monitor the status of the

user, a question arises concerning how variousmethodologies can be combined to

create a dynamic and complex representation of the user state in order to enable

implicit or explicit control. Brain-computer interfaces (BCI) [Wolpaw et al. 2002,

Brunner et al. 2014] that oftenmakeuseof the electroencephalogram (EEG)provide

an interesting case for consideration. BCI technology is generally understood in its

active form wherein neurophysiological correlates of voluntary control are used as

anexplicit control input to a robotic system (seeactiveBCI in Figure 14.4). For exam-

ple, BCI systems can use signals derived frommotor imagery to intentionally direct

themovementsof ahumanoid robot [Yongwooket al. 2012] or exoskeleton [Barsotti

et al. 2015]. However, there are at least two other types of BCI that can be applied

to robotic systems [Zander and Kothe 2011]. Reactive BCI describes a systemwhere

changes in brain activity in response to an external stimulus drive the output of the

system. This type of BCI is activated by the neurophysiological response to a sen-

sory event, e.g., an evoked-cortical potential (ERP) or steady-state visually evoked
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potential (SSVEP), rather than the intention to act [Zander et al. 2014]. A reactive

non-BCI interface which makes use of overt measures is, for example, a reactive

eye-tracking interface (see Figure 14.4), which activates a specific action whenever

the user is looking at a specific object, part of a robot, or area on a screen. The

passive category of BCI (see passive BCI in Figure 14.4) describes a system where

outputs are derived from changes in brain activity related to spontaneous changes

in psychological states, such as: mental workload, frustration, anxiety, fatigue, etc.

This ‘passive’ type of BCI is identical to the concept of biocybernetic control from

Physiological computing [Fairclough 2009]. It is possible to create hybrid forms of

BCI where active, reactive, and passive forms are used in conjunction to enhance

the speedandfidelity of control [Muller-Putz et al. 2015]. For example, passive states

of fatigue and frustration may affect the ability of the user to produce motor im-

agery, which translates into impaired control of an active BCI [Myrden and Chau

2015]. Cotrina et al. [2014] presented a hybrid BCI wherein passive state measures

of electroencephalographic frontal asymmetry, a measure that is associated with

emotion and motivational disposition, were used to refine the reactive response

from an active BCI based upon SSVEP. Hence, active and passive state measures of

the user are situated within a data space in order to improve fidelity of active con-
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trol over a robotic system. This data space can be further extended by adding overt

measures. For example, Kim et al. [2014] designed a hybrid BCI that combined

covert electroencephalographic data with overt eye movement data to navigate a

quadcopter in 3D space. Hybrid BCIs can therefore be multimodal interfaces and

can be used for explicit control of a technical system. Theymay also have integrated

implicit control designed to optimize the multimodal interfaces and improve the

degree of user control over the technical system. Also, if we consider the earlier

example of the adaptation of an exoskeleton’s control for teleoperation, this can

be seen as a hybrid BCI: The user’s overt arm movements while covert electroen-

cephalographic data is used to non-intentionally and implicitly adapt and improve

the explicit interaction between the human and the exoskeleton.

When considering the use of embedded multimodal interfaces, the meaning

of the word ”embedded” should be explained. The measurement of psychological

concepts associated with the user state is generally enhanced by consideration of

task context, e.g., the type of task being performed, task criticality, difficulty, du-

ration, etc. The monitoring capability of multimodal interfaces encompasses task

models and related variables in order tomonitor the psychological state of the user

within a specific task context. Thus, interfaces that make use of psychological con-

cepts must be embedded into the task context. Therefore, the automated analysis
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based on the context of interaction and inferred intentions. Figure courtesy of Kirchner

et al. [2015].

of the interaction context is of tremendous relevance for embeddedmultimodal in-

terfaces [Kirchner and Drechsler 2013]. On the other hand, interfaces that improve

human-robot interactionmust be embedded into the control of the robotic system

in order to achieve and sustain safe operation [Kirchner and Drechsler 2013]. This

does not necessarily mean that all data processing must be performed “on board”

or that no external sources of information or processing power can be used (such

as cloud-based solutions). It does imply that all processing that can only be done

at the place of generation should be embedded into the system.

Figure 14.5 provides an example of embedded brain reading, a sub-type of

embedded multimodal interfaces. Embedded brain reading includes the analysis

of brain activity such as the EEG recorded from the surface of the head. To enable

the interpretation of brain activity, embedding the analysis into the context of

interaction and thus task state, human state, or spatial state is highly relevant.

Without this processing module, it would nearly be impossible to interpret the

user’s brain activity to infer his or her intention. While context is a far-reaching

term, it is used here very general. Context refers to the state of interaction in the

broader sense (e.g., space, task, human state, environmental state, system state,

etc.). The required interfaces are often not stand-alone systems, as a mouse or
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a keyboard are, but they are part of the robotic system that make use of input

from internal and external sensor systems as well as sensors that are worn by the

interacting human [Hung et al. 2015] designed to capture physiological measures

from the body and neurophysiological measures from the brain. For example,

today, exoskeletonsare commonly equippedwithgravity compensation [Lewis et al.

2003]. This is an algorithm which allows control of the exoskeleton so that the

user does not feel the weight of the exoskeleton. This feature is most relevant for

the control of distal body parts, i.e., the human arm, since the system’s weight

would otherwise be too high to allow extended usage, such as during teleoperation

[Mallwitz et al. 2015] or for exoskeleton-assisted rehabilitation [Kirchner et al.

2013a, Kirchner et al. 2016c]. Forces can be redirected to, e.g., the hip or in case of

a whole-body exoskeleton also to the ground on which the user is standing on. This

control does not require knowledge about the intention of the user. However, an

additional approach can be applied that enables the exoskeleton to also carry the

weight of the arm. For example, gears can be locked to keep the arm in a certain

position [Folgheraiter et al. 2012]. To release the locked position the system must

knowwhether theuserwants tomove again. This knowledge canbegained fromthe

analysis of the user’s brain activity. However, to infer a movement intention is only

relevant while the exoskeleton is keeping the arm fixed in a certain position. Thus,

the exoskeleton “knows” from its own control state when to consider brain activity

analysis to detect a change in the state of the human (see further explanation in

Sections 14.4 and 14.6).

Whenusing complex data such as covert brain activity to infer intentions itmust

be considered that the outcome of analysis can be incorrect. Therefore, embedded

brain reading only considers approaches that are fault tolerant, i.e., will not lead

to a malfunction of the whole embedded multimodal interface (see Folgheraiter

et al. [2012], Kirchner et al. [2014]. Furthermore, methods are applied that allow

formalization and evaluation of the implementations not only to estimate and

measure quantitative and qualitative improvement [Folgheraiter et al. 2012] but

to also verify correctness [Kirchner and Drechsler 2013].

In general, embedded brain reading describes the use of active and passive

human states for explicit or implicit interaction, i.e., to non-intentionally adapt

a robot or its interface with respect to an active or passive state to usually improve

explicit control. The same approach can also be applied for explicit control pur-

poses only. For example, in rehabilitation robotics, embedded brain reading can

be applied to ”drive” an exoskeleton to support or execute the intended move-

ments of the patient. Spontaneously generated brain activity, which depends on

the recording method (extracranial or intracranial), may not always be sufficient
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to control the exoskeleton in 3D. Other data such as muscle activity or eye move-

ment data may need to be combined for an effective explicit control. Moreover,

in the given example the exoskeleton’s control can further be adapted to improve

interaction. For example, the strength of support by the exoskeleton needed by

the patient can be adapted based on an ”assist-as-needed” approach [Kirchner

et al. 2016b]. Such an adaptation can be achieved by directly measuring the force

the patient can still exert or the strength of electromyographic signals of the sup-

ported limb or body part which can be recorded during interaction. The main goal

is to combinemultimodal data, such that the intended interaction or behavior can

be supported best [Folgheraiter et al. 2012, Kirchner et al. 2013a, Kirchner et al.

2013b, Kirchner et al. 2014]. However, embedded brain reading can also be ap-

plied to infer the user’s passive neurophysiological state, such as their current

workload or task load (see also [Volume 2, Chapter 10), to adapt an interface for

explicit robot control in such a way that the user is neither stressed nor bored

[Kirchner et al. 2010, Kirchner et al. 2013b, Wöhrle and Kirchner 2014, Kirchner

et al. 2016a] which would have negative impact on both the quality and quantity of

interaction.

For embedded brain reading only brain activity is used which is spontaneously

evoked (see Figure 14.6). Further, the approach is designed to interpret brain ac-

tivity dynamically during interaction. Relevant data may also include spontaneous

changes in brain activity in response to an external stimulus as used in reactive

BCIs. To use intentionally evoked brain signals as it is often the case for many ac-

tive BCIs, where, for example, the imagination of right- and left-hand movements

can be used to spell a word [Blankertz et al. 2006], requires the attention of the user.

Such attentional effort would require toomany resources, which is one reason why

classical BCIs are often considered to be inadequate for robot control in complex

applications, such as, for example, in space applications. Figures 14.4 and 14.6

illustrate the interrelationship between different interfaces and embedded brain

reading.

In summary, the basic goal of embedded multimodal interfaces is to provide

the robotic entity with a quantification of the user state that enables easy explicit

control of the robot and allows for implicit control of the robot or its interface.

Such interfaces also enable the system to make use of the cognitive capabilities

of the human or to enable the robot to learn from the human [Kirchner et al.

2015] (see Section 14.4). The availability of overt and covert measures to capture

active and passive states (Table 14.1) allows the multimodal system to construct

a dynamic representation of the user that is both sophisticated and scientifically

valid as discussed in this chapter.
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14.4
Embedded Multimodal Interfaces in Robotic Applications

This section will explain the advantages of embedded multimodal interfaces and

how they would function in the context of robotic applications. First, we give exam-

ples ofmultimodal-multisensor interfaces from two perspectives, i.e., robotics and

physiological computing, and explain where and what the purposes of such inter-

faces usually are in both fields. Later, we give examples that focus on specific appli-

cations in robotics. We explain how both approaches, driven by the robotic control

view and driven from the perspective of human state analysis, can be combined

in a temporally cascaded fashion to: (1) make use of overt and covert measures to

ease explicit control of robotics systems or to enable implicit control that adapts an

interface or robot to improve human-robot cooperation within the same applica-

tion. Further, we provide examples of how embeddedmultimodal interfaceswill (2)

improve bi-lateral awareness using covert human measures and multimodal data

of the robot. Moreover, we will (3) explain how the usage of multimodal overt and

covert measures allows us to increase the level of awareness.
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are collected simultaneously in order to derive a composite score based on the

degree of correlation or coherence between different measures. Therefore, the ca-

pacity ofmultimodal interfaces to encompassdifferentmeasures allows the robotic

system to monitor the user in a way that is scientifically valid. For example, Bekele

and Sarker [Cacioppo et al. 2000] constructed an adaptive mode of human-robot

interaction where task difficulty was dynamically adjusted in order to keep the user

engaged with the task. This system combined physiological measures, i.e., covert

measures, from the cardiovascular system, electromyography, and skin conduc-

tance to capture the level of task engagement exhibited by the user. The same group

applied a similar approach to measuring emotional responses to create robotic in-

terventions for children on the autistic spectrum [Liu et al. 2008] (see also Volume

3, Chapter 13.).

Making use of both covert and overt measures goes beyond classical control ap-

proaches in robotics. With the help of the application shown in the video referred

to in Figure 14.8 we explain how such an approach, based on overt and covert mea-

sures, enables improvement of human-robot interaction, i.e., explicit control by

non-intentionally adapting the robotic system with respect to the active human

state and by applying implicit control within the same application. In this appli-

cation, a user is teleoperating a robotic system by means of an active exoskeleton

[Folgheraiter et al. 2012]. An active exoskeleton is a robotic system that is worn

by the human and thus is in direct physical contact with the human. It is both an

interface as well as a complex robotic actuator. To enhance transparency for the

wearer the interaction between user and exoskeleton in this example is supported

by embedded brain reading [Kirchner and Drechsler 2013, Kirchner et al. 2013b],

an embeddedmultimodal interface that is making use of covert electroencephalo-

graphic data recorded from the scalp. Based on the analysis of the user’s EEG and

his or her behavior, transitions between (tele-)operation modes (see Figure 14.9)

are supported (see Section 14.6 for details).

But why is covert brain signal data not directly used for explicit control, i.e.,

explicit change of operation mode? Even when using advanced signal processing

and machine learning methods to infer movement intention from brain signals,

state detection is inaccurate due to the complexity of the EEG signal and due to

the fact that similar brain signals are generated when a human is only imaging a

movement or does indeed prepare the movement to be executed. Therefore, the

outcome of EEG analysis is in the given example not used to intentionally control

the change between the modes. It is instead used to enhance sensitivity of the

sensors that detect the movement onset, with the result that interaction forces are

reduced and the operator can clearly feel the enhancement in transparency of the

exoskeleton (see Section 14.6 for more details on approach and evaluation).
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Figure 14.9 Exoskeleton states: teleoperationmode, transient mode, full user support mode. Lock-

outmechanism is activatedbyovertmeasures of anactivehumanstate (armmovements

detected by the exoskeleton). The activation of this mechanism is adapted by covert

measures of an inferred active state change (from no movement to movement) by

analysis of the human’s EEG, i.e., detection of activity that correlates with movement

preparation. Figure courtesy of [Folgheraiter et al. 2012].

Figure 14.8) the user is not only supported by the exoskeleton for explicit control.

He or she is further virtually immersed into the situation of the robot by using

3D simulation and a head-mounted display while being able to make use of video

material.Moreover, the user receives tactile force feedback from the robotic system

via the exoskeleton. The combination of virtual immersion, mapping between the

human and the robot’s movement, and force feedback allows the user to become

immersed into the situation and virtually feel what the robot feels. By means of the

embedded multimodal interface, the user becomes strongly aware of the robot’s

states and changes in state, which eases explicit control and reduces interaction

errors, such as failures in path following (see Figure 14.10).

Furthermore, the user is monitored whether he or she is indeed aware of the

state of the exoskeleton and the display of important messages that are visually

presented to the user. This facility is achieved by adapting the embedded multi-

modal interfaces based on the predictions that are made about the success of the

user in recognizing these relevant messages. The adaptation of the display of mes-

sages is again based ononline brain-signal analysis. Signals in the EEGare detected
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Figure 14.10 Comparison of accuracy in path following between joystick and exoskeleton control

in the VI-Bot scenario. (A) Example of two subjects steering the robotic arm through a

3D maze. Green line: path corrected in the virtual environment. Red line: theoretical

path without correction. (B) Behavioral analysis of nine subjects. Accumulated position

errors (left), percentage where path contacted the wall of the maze (middle), and

measured time for a complete sweep through the labyrinth (right). Figure courtesy of

Straube et al. [2011].
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Figure 14.11 Video: VI-Bot - virtual immersion for holistic feedback control of semi-autonomous

robots. Shown is the implicit control approach implemented to adapt the embedded

multimodal interface to enhance the awareness of the user for relevant information on

the robotic system based on EEG signals. https://youtu.be/8WEVZz6bpJU.

that allow the system to infer whether the user recognized the presentedmessages.

If those signals are detected, information is not repeated for a longer time, since

it is expected that the user will respond to the message. In case the relevant brain

activity cannot be detected, themessage is repeated instantly and at the same time

highlighted to make the user more aware of the relevant information (see video

referred to in Figure 14.11). The chosen approach is an implicit control of the in-

terface [Kirchner and Drechsler 2013, Wöhrle and Kirchner 2014].

Besides enhancing ease of interaction and reducing errors, many robotic appli-

cations, especially those requiring the simultaneous control of a team of robots,

have to handle the limited cognitive resources of a human that lead to cognitive

overload. Embedded multimodal interfaces represent a good solution to handle

this scenario by adapting the interaction with respect to the cognitive load of the

human, as demonstrated in the field of physiological computing (see Zhou et al.
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Figure 14.14 Multimodal explicit control: operator can chose to interact with interaction icons of the

interface and the robotic systems via the exoskeletonor the eye tracker or a combination

of both.

by embedded brain reading. To reduce runtime from the beginningwould not have

been a good solution, since some individuals would have become stressed, like

participant 5. Thus, implicit control is required to adapt an interface to the overall

needs (dependingonher or his skill level) and the current needs (dependingon task

load) of the human operator while avoiding excessive cognitive load or boredom.

The usage of multimodal and multisensor data in embedded multimodal in-

terfaces have many positive effects on human-robot interaction. Whereas we have

already discussed that a temporal cascaded approach allows a smoother interac-

tion, the combination of multimodal data can further increase the dimension of

insight possible into the intention of the user more than a single modality could.

Some examples should be given next that accord with the Gestalt theory of per-

ception (see Volume 1, Chpter 1), that the whole can be more than the sum of the

individual parts. An example is the combination of different covert physiological

measures and overt measures from the human, like eye movement data, EEG, and

EMG data for the control of a robotic rehabilitation system [Kirchner et al. 2013a]
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Kirchner et al. [2016a].

(formore informationonmultimodal behavioral signal processing systems seeVol-

ume 2, Chapter 10 and Volume 2, Chapter 12).

Using each individual signal not only reduces the reliability but would further

generate less ”meaning”, e.g., to look at an object does not tell us whether interac-

tion is wanted. EMG activity alone does not tell us whether interaction is desired to

begin, e.g., tomove thearmto theobject, orwhether the subjectwas just bumpedby

someone andused the arm tobalance or has experienced a spasm. In addition, EEG

cannot clearly tell uswhether the subject is planning to actually execute the interac-

tion or is only imagining the interaction, since internal visualization and planning

of motor execution result in very similar brain patterns. If these individual signals

are combined, the outcome becomes more reliable, especially if the expected tem-

poral order of signals is consistent, i.e., a temporal cascaded approach is followed.

Moreover, only if at the same time or afterward brain activity related to movement

planning is detected in the EEG, the user is probably not only looking at the object

but at least is thinking about starting an interaction. Finally, by adding the EMG

signal, it becomes quite clear that at the moment when the subject looks at the

object, plans a movement and tries to activate the muscles, that he or she indeed

wants to start a movement. Therefore, the combination of all three signals tells us

more than the individual signals alone and results in very reliable interpretations

of the human’s intention.
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combination might be more suitable. The kind of combination of different sig-

nals has therefore an impact on the behavior of the interface and on the reliability

of intention recognition (see Figure 14.17 Kirchner et al. [2014]). Hence, the tem-

porally cascaded approach that is followed does strongly determine the quality of

awareness of the human’s state that a robotic system can derive.

In summary, embedded multimodal interfaces enable bilateral interaction.

They make use of overt and covert measures to detect active and passive human

states to make the robotic system aware of the state of the human. Furthermore,

they use multimodal- multisensor data to make the human aware of the robot’s

state. This bilateral awareness strongly improves interaction, reducing cognitive

load, interaction forces, and interaction errors. Based on a carefully chosen tem-

porally cascaded approach, they allow thatmultimodal data canbe combined, such

that thewhole canbemore than the sumof the individual parts (see Panagakis et al.

[2018]). The later requires a deep integration or embedding of the multimodal in-

terface into the system control.

14.5
Future Trends: Self-Adapting Embedded Multimodal Interfaces

and Societal Implications

In this chapter, we first introduce three main trends in embedded multimodal

interfaces which will enable future applications in human-robot interaction.

1. The functionality of embeddedmultimodal interfacesmust be highly adapt-

able in an online fashion. They should adapt to changes in the context of

interaction, changes in the state of the robot or the human, or changes in

availability of certain sensors or sensor data.

2. To enable this level of adaptability future interfaces must be deeply embed-

ded into the control of a robot in order to develop specific hardware and

software solutions.

3. There is a trend to embed the interface into applications and systems, in

order to make them smaller and more energy-efficient and to allow both

long-term usage and a high degree of flexibility.

While many developments are new research territory for human-robot interac-

tion, we will show with examples that research from other areas can be used and

solutions can be adapted. Using these approaches, a more direct and efficient in-

teraction between human and robot will be enabled. However, these changes and

future developments will have societal implications.
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Figure 14.17 Effect of different combinations of EEG and EMG data on true and false positive rates

during classification. (A) Prediction results in TP- and FP-rate for EEG (blue) and EMG

(green) analysis. (B) Prediction results in TP- and FP-rate for EEG “AND” EMG (red)

and EMG (green) analysis. (C) Prediction results in TP- and FP-rate for EEG “OR” EMG

(black) and EMG (green) analysis. Figure adapted from Kirchner et al. [2014].

14.5.1 Inherent Self-Adaptation and Deep Integration

Multimodal-multisensor interfaces that are embedded into application proce-

dures, robotic systems, application environments, into the users’ clothes, or that

are implemented aswearable deviceswill beperceived asnormal in the future. Con-
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sidering continuously changing interaction environments and interaction tasks, it

is obvious thatmultimodal-multisensor interfacesmust be able to adapt to changes

by themselves in the future. Today’s robotic systems and their interfaces are al-

ready of such complexity that any hard-coded change will require a high number

of specialists to perform the required software and hardware adaptations. For the

common user, it will become impossible to handle this kind of technical detail.

However, the need for adaptation not only for robotic systems but also for their

interfaces will increase.

14.5.1.1 Closed-Loop Design for Self-Adaptation to the State of the Human

An embeddedmultimodal interface allows the robotic system to adapt to themove-

ment intentions and states of human operators. This system works via closed-loop

control logic whereby multimodal signals from the user are monitored, analyzed,

classified and converted into appropriate outputs or adaptive responses from the

robot. This closed-loop design requires a set of rules whereby a target state triggers

an adaptive response. However, this may not be an exclusive relationship and a

range of potential responses are available once a specific state has been identified.

For example, if the robotic system detects high mental workload during a process

control task, it could slow the pace of operations (see Section 14.4) or suggest a

break. The rules that translate multimodal detection into an adaptive response at

the interface draw from a repertoire of possibilities, all of which are equally likely

to create the desired effect on user behavior. This scenario poses the question: How

does the multimodal interface select the most appropriate response from an exist-

ing repertoire of possible responses?

A closed-loop system for either positive or negative control is often characterized

with reference to a single discrete cycle of monitoring and adaptation. In this case,

a single cyclemay describe how the detection of highmental workload is translated

into a reduction of task pacing in order to aid the human operator. This is a first-

order process of adaptation wherein the loop detects and responds to a target state

in the short term.Once this adaptation is activated, it is possible for themultimodal

system to detect whether its own adaptive response had the desired effect on the

humanoperator. If slowing the pace of the task has reduced themental workload of

the operator (assessed via neurophysiological monitoring), this adaptive response

is deemed to be successful. The other possibility is that the adaptive response

failed to reduce the mental workload of the human operator, in which case the

multimodal interface must enter a second cycle of monitoring and adaptation in

order to select another response, e.g., suggest a break. This latter process is called

second-order adaptation or reflexive adaptation [Serbedzija and Fairclough 2012]
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because an adaptive response is based upon the closed-loop monitoring of the

consequences of its own intervention on the state of the user.

A second-order process of reflexive adaptation can facilitate machine learning

over a sustained period of interaction with an individual operator. In order for

the multimodal system to adjust to the individual, it must accumulate a database

that identifies those adaptive responses found to be effective for a particular user.

Second-order adaptation describes a generative process where the repertoire of

adaptive responses is ‘pruned’ or customized on the basis of repeated interaction

with a specific user. This evolving cycle has been described as a process of mu-

tual adaptation with three main phases [Fairclough 2015]. The initial encounter

between the multimodal system and user is characterized by improvisation. The

system responds to the user in a generic fashion using default adaptations with

no prior knowledge of individual preferences. Adaptation may be perceived by the

user to be less than optimal during this early phase. As the user spends more time

interacting with the system, second-order adaptation improves the acceptability of

responses from the perspective of the user. This second phase of reciprocal cou-

pling is characterized by tailoring the adaptive repertoire of the robotic system to

the individual. If we look further ahead in time, in terms of months and years,

it is reasonable to expect that any stable model of preferences acquired during

reciprocal coupling will have limited longevity—as the user acquires greater skill

or habituates to popular adaptive responses or experiences cognitive changes due

to aging. The third phase of co-evolution describes a process of updating a stable

model of user preferences over a longer period of time.

14.5.1.2 Self-Adaptation to the Context of Interaction

Besides adapting an interface to the user, adapting robotic systems and their inter-

faces to the context of interactionwill become an important direction for the future

of robotics. To allow this development, the context of interactionmust be recogniz-

able from the perspective of a robotic entity. In an industrial context where opera-

tional sequences are prescribed and must accurately be fulfilled, it seems that the

recognition of the context of interaction should be relatively straightforward and

may even be predefined. However, flexible support must consider deviations from

the procedure and personal preferences of the human user. For example, personal

preferences can be handled by systems that learn during interaction from phys-

iological data (such as error-related potentials in the human EEG) what the user

means for example by certain individually chosen gestures, i.e., it learns the map-

ping between gesture and action [Kim et al. 2017]. In non-predefined interaction

scenarios, the recognition of context becomes evenmore relevant. To recognize the
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context of interaction, different data sources can be considered if available data

about procedures and preferences of the human can be used. For example, knowl-

edge about preferences of patients might even be more relevant than the analysis

of physiological measures to optimally support them by a robotic system [Novak

et al. 2013]. However, physiological measures as explained in the example in the

video referred to in Figure 14.16 can also be used to detect the context of inter-

action. Moreover, the supporting system itself is also able to detect the context of

interaction, as explained in the example presented in the video referred to in Fig-

ure 14.8. On the other hand, interaction usually requires physical activity of the

human. Thus, complex movement data is a highly relevant source of information

to deduce the context of interaction. While today human movement behavior is

often analyzed to develop approaches that enable robotic systems to learn to im-

itate human behavior [Metzen et al. 2013, Mülling et al. 2013, Pastor et al. 2009],

movement data can also be used to recognize the context of interaction [Senger

and Kirchner 2016], especially body posture can be very informative about the be-

havioral context of interaction. In a simple case, the direction of movement with

respect to a robotic system can tell the robot whether a human wants to interact or

not [de Gea Fernández et al. 2017].

14.5.1.3 Software Frameworks and Hardware Solutions for Deep System Integration

To use the power of embedded approaches, future multimodal interfaces must

potentially make use of any available data, like sensor data of the robotic system or

from environmental supervision, data about procedures, and even (physiological)

data about the interacting human. This brings along some challenges in data

storage, processing, selection, and handling. Thus, new software and hardware

solutions, such as the open source software framework pySPACE [Krell et al. 2013]

or the specialized software framework reSPACE [Wöhrle and Kirchner 2015] which

can run on embedded systems, must be developed that allow for flexible usage

of multimodal data. Optimization during runtime will require reconfiguration of

hardware at runtime to allow optimal, i.e., time, resource, and energy-efficient

interpretation of potentially changing data sets. These approaches have to consider

which data is most relevant to interpret the current situation, to infer the intention

of a human in a certain situation, or to estimate the best possible support of a

human by a robotic system at hand.

Supervised and unsupervised learning methods must be applied on top of so-

phisticated signal processing that reduces data and filters relevant information. All

this must be achieved on embedded hardware that allows fast but also resource-

saving analysis. Different approaches must be combined. For example, the usage
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of processing units based on Field Programmable Gate Array (FPGA) was shown

to support powerful and fast processing with low energy consumption on small-

sized, embeddable devices [Wöhrle et al. 2014]. However, these approaches are still

limited. Thus, a combination of small embedded devices and powerful central pro-

cessing units must be considered and promoted. While the embedded system will

perform data analysis within the interface, the robot or the wearable device, the

central processing unit or units will be able to performmore complex calculations

required to optimize data selection or combination, processing, and, hence, adap-

tation of the current processing flows. Thus, hybrid hardware/software solutions

will enable self-adapting embedded multimodal interfaces.

In summary, future robotic systems must not only behave autonomously but

must deeply understand humans to better support them and to allow flexible in-

teraction and cooperation.While this seems to require extra effort at first glance, on

closer examination two things become obvious. (1) Approaches that are currently

developed to enable robots to behave better and to perform complex task, such

as approaches that enable imitation learning, i.e., learning from human demon-

strations [Schaal 1997, Argall et al. 2009], are also relevant to improve interaction.

(2) The amount of multimodal data from multiple sources will increase. Thus, for

both approaches new software and hardware solutionsmust be developed in order

to profit from each other.

In order for next-generation robotic systems and their embedded multimodal

interfaces to accommodate the requirements dictated by the human-robot cooper-

ation it will be necessary to develop standardized robot control frameworks and

architectures that not only allow easy integration of internal parts of the robot

such as motors, cameras etc., but also adapt the systems control to human in-

teraction. The frameworks must be designed such that they are flexible toward

changes inmultimodal input andmultimodal output during runtime, e.g., changes

in sensor input or changes in interface input. Examples are the Robot Construc-

tion Kit (ROCK) and DROCK [DRock 2015]) software frameworks. These model-

based approaches allow the designer of a robotic system to define the system

from a library of well-defined and mathematically modeled components. This ap-

proach works from the hardware as well as from the software perspective. There-

fore, software-based concepts like adaptation and learning can be integrated with

standard planning and control approaches via machine learning to enable usage

by non-specialists.

It is obvious that both main research directions, i.e., autonomous artificial

intelligent robotic systems and human-machine interaction become inseparable

to develop future robotic systems that are able to optimally support humans and
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to interact with them intuitively. Robotics is a very good example that shows how

different fields of research must not only work together to their mutual advantage.

14.5.2 Current and Arising Societal Implications

As stated before an embedded multimodal interface is capable of enhancing

human-robot cooperation by: (a) increasing machine awareness of the user via

monitoring and (b) personalizing the behavior of the robot to the preferences of

the individual via the closed-loop process of reflexive adaptation. This emergent

approach is designed to evolve the technical sophistication of how people inter-

act with robots. However, these technological advancements are associated with a

number of societal implications.

It is important to understand that closed-loop systems are driven by goal-

directed logic. The closed-loop within the multimodal interface is programmed

with a specific directive, e.g., to prevent mental overload, to improve performance

efficiency, to preserve the safety of the operator. Its repertoire of adaptive responses

are simply the means by which the system achieves its specified goal. Unlike the

inert and passive technology of today, this symmetrical interaction is character-

ized by a degree of agency on the part of the machine and the requirement for a

human operator to cede a degree of control to the system. Given this, it is impor-

tant to define the agenda of the machine to be effective, reliable, and not to lead to

unforeseen circumstances [Kirchner and Drechsler 2013].

14.5.2.1 Establishing Trust

The challenge for multimodal interfaces is how to make the robotic system an

effective “team-player” from the perspective of a human user [Klein et al. 2004]. In

order for a robotic system to work with human users, it is important for embedded

multimodal interfaces to establish a degree of ‘trust’ with their users. Miller Miller

[2005] argued that technology could earn the trust of the user by transparency,

i.e., the laws of cause and effect encapsulated within the closed-loop are clearly

understoodby the user. This transparency canbe enhancedby clear feedback to the

user during interaction and predictable behavior on the part of the robotic system.

The development of trust between robot and user requires time and can only be

achieved through repeated interaction over a long period.

Multimodal interfaces utilize increased data processing capacity to: (1) monitor

the behavior/physiology of the user; (2) make inferences about the psychological

status of the user based on monitoring; and (3) translate those inferences into

timely and intuitive responses at the interface. In order to monitor-infer-adapt

within a working control loop, multimodal interfaces must operate as surveillance
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systems, gathering data on individual users in order to respond proactively in an

intelligent fashion. In addition, the multimodal interface requires a degree of au-

tonomy to adapt to changes in user state without any requirement for explicit

commands. This combination of intensive usermonitoringwith autonomous func-

tion is the price to be paid for the advanced level of functionality characterized by

multimodal interfaces.

Societal issues of trust and systemautonomy are both significant and inherently

interconnected for the introductionofmultimodal interfaces, particularly thosede-

signed to capture non-intentional responses as part of passive or reactive systems.

The first concern is the degree of confidence that the user has in the technical

prowess of the system. In other words, can the system collect data with sufficient

fidelity? Is it capable to make a sensitive and accurate discrimination between dif-

ferentpsychological states?Can the systemsuccessfully translate thesemultimodal

data into sensitive and intelligent adaptation at the interface? If the user can an-

swer those questions in the positive, he is likely to trust the system and will be

comfortable ceding control to autonomous functions. If not, the user will either

desire a return to manual control (if that is possible) or work unhappily and suspi-

ciously with a technology that he views as erratic and unpredictable; in either case,

the proposed advantages of multimodal interfaces will be lost.

A second issue concerns the ‘values’ that are inherent in the control directives of

a ‘machinewith anagenda’ [Fairclough2015]. In order for themultimodal interface

to respond to the detection of specific psychological states, it must translate the

detectionof a target state into anappropriate responseat the interface. Thisprocess

of translation can be straightforward. If the user is working on a safety-critical

task, the adaptive logic of the multimodal interface should promote sustained

engagement with the task in order to achieve error-free performance andmaximize

safety. If the user becomes bored or complacent, the multimodal interface will

evokea strategy to restore taskengagement, e.g., to transfer tasks fromautonomous

to manual control in order to re-engage the user with task requirements. This

enhanced autonomy, which is characteristic of multimodal interfaces, permits

the system to adapt in order to operate upon the user—to effectively manage the

psychological state of the person. Naturally it is important for the user to trust the

system if he is to be completely comfortable with this type of advanced interaction.

It is also possible that the goals and desires of the human user may diverge from

the control directives of themultimodal interface: the usermay desire to take a rest

break, may feel unwell, or may resent working with a system that seems to expect

him to do all the work. There is potential for an interaction with the multimodal

interface to descend into a battle of “wills” where the human is forced to subjugate
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his wishes or desires in the face of a technical entity, which is both implacable

and incapable of behaving with sufficient flexibility. This example demonstrates

how implicit control based on monitoring combined with autonomous function

can ‘snowball’ into a subversion of human goals and desires. This is why trust is

such an important societal factor for acceptance ofmultimodal interfaces, humans

must: (1) have faith in the technical proficiencyof the system inorder to comfortably

relinquish some control over the interaction; and (2) interact with the system in the

knowledge that autonomous decision-making will not subvert their autonomy and

rights as human beings.

14.5.2.2 The Relevance of Consent and Data Privacy

Consent is a second important societal factor to be considered when the behavior

and physiology of the person is monitored by technology. The data that streams

from the user to the multimodal interface must be considered to be personal data.

Issues surrounding data privacy and data ownership may be crucial influences on

the extent to which users will accept the introduction of multimodal interfaces. It

hasbeenargued that opennesswith respect todata acquisition, storage andsharing

is fundamental to the relationship between the user and the system, i.e., reciprocal

accountability [Brin 1999]. In this case, the user allows personal data to be collected

in full knowledge on how it will be used, stored ,and protected by the system. There

is evidence that users would prefer to have a contractual arrangement whereby data

is only obtained, stored and shared with full written consent [Reynolds and Picard

2005]. At the time of writing, research governance when performing experiments

with human participants often requires written consent and compliance with data

protection laws before personal data canbe collected. But the degree of control that

users can legally exercise over the ways in which personal data is stored and used

is fundamentally determined by the extent to which users are deemed to own their

own data [Fairclough 2014]. If the user is granted full ownership, they can control

what is stored and who can access these data. Full ownership would allow a user

to remove data from the system if they wished to do so, the user could even charge

for access to their data.

Personal ownership of data and informed consent are important steps to protect

the individual equipped with multimodal sensors. However, it is equally impor-

tant that personal data is stored andmanaged in a way that continues to safeguard

the rights of the individual. The management of personal data by external agen-

cies sits at the heart of the General Data Protection Regulation (GDPR) that came

into force throughout Europe inMay 2018. This legislation grant greater protection

and rights to the individual whose personal data are held by ‘controllers’ or ‘pro-
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cessors’, whether they be individuals, companies, or organizations. The issue of

consent is central to GDPR and entities that hold personal data are subject to fines

if a breach of confidentiality is detrimental to the individual. While GDPR is a pos-

itive development with respect to accountability, the primary risk to privacy from

multimodal monitoring is a process of inference fueled by data aggregation from

multiple sources [Friedland and Tschantz 2018]. The process of data aggregation is

an important technique for accurate assessment of the operator state, for example,

the detection of high mental workload is improved by cross-referencing task mon-

itoring (e.g., activity or phase of operation) with neurophysiological data, such as

EEG. The former provides a meaningful context for the latter. Similarly, emotional

responses can be characterized by a combination of facial expression, autonomic

psychophysiology, body posture, and vocal expression. It is important for users of

multimodal sensor systems to understand which data sources are active and how

they aggregate in order to deliver an inference about operator state, especially if ag-

gregation occurs across databases that are controlled by different ‘controllers’ or

‘processors.’ In the previous example, these types of data can also serve secondary

purposes, such as identifying individuals via unique features such as facial expres-

sion or voice, which leads to a scenario where individuals can effectively ‘profiled’

and compared with respect to specific operator states, e.g., John displayed high

mental workload twelve times during the task compared to Jane who only entered

a state of high workload twice.

The issue of data ownership points to another dimension of trust inmultimodal

interfaces—the issue of data privacy. Certain types ofmultimodal interfaces rely on

themonitoring andmeasurement of psychological states, such asmental workload

or frustration or fatigue (see also Volume 3, Chapter 13), but which other parties

are allowed to access these data? Andperhapsmore importantly, can the individual

user be identified on the basis of these data? A company may wish to record data

from all user sessions, particularly during safety-critical activities, for purposes of

accident investigation. In this case, part of the conditions of employment would

require a user to share personal data and to be identified with that data. The soci-

etal issues associated with system use are more profound when a company wishes

to access data from multimodal interfaces for purposes of performance manage-

ment. For example, to assess the level of concentration exhibited by an employee

during their duties or to capture episodes of frustration or to gauge alertness at the

beginning of the work session. In this case, personal data is collected and inter-

preted from the individual in a way that could actively disadvantage that person.

It is unlikely that the user would trust the system in this scenario, not because of

what the technology is designed to do, but because of the way data is harvested
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and used by the system administration. It is also possible to imagine a more posi-

tive scenario where employeemonitoring is performed to identify instances of high

occupational stress in order to bring about changes to working conditions that ulti-

mately benefit the employee. If we extend this scenario to service industries, such as

multimodal interfaces in the context of internet search, a company can argue that

harvesting data tied to an individual can be used to improve the quality of service

offered to that user. The key issue in this case is whether the user must surrender

their ownership of personal data in order to use that service, especially a service as

pervasive and indispensable as internet search. A secondary problem that relates

to the recent GDPR legislation concerns the sharing of personal data by a service

provider with other entities, i.e., if the user surrenders ownership to use a service,

do they also surrender the right to control the distribution of their personal data?

The issue of data privacy, anonymization, and sharing is particularly perti-

nent for systems that collect data from the brain and body as part of the human-

computer interaction (see Friedland and Tschantz [2018] for further discussion).

It is possible to extract information about the health of the person based on these

data. As two examples, the presence of epilepsy can be detected fromanEEG record

collected on a long-term basis and it would also be possible to identify markers of

cardiovascular disease from the regular acquisition of electrocardiographic data. It

would be controversial for an employer to collect data from a specific individual for

the purposes of mental workload monitoring, for example, and use the same data

set as part of a health assessment. The sharing of sensitive, personal data of this

type with other legal entities, such as health insurance companies, is also problem-

atic from the perspective of the user. If the individual cannot own their data, they

cannot control how it will be stored, shared, and analyzed, hence, some kind of

informed consent possibly in the form of a contractual agreement along the lines

of GDPR is likely to be a prerequisite for users of multimodal interfaces.

The ethical issues around data ownership have a number of practical implica-

tions for the design of multimodal interfaces. An individual could log on to the

system anonymously and wipe the data record after use. This level of data protec-

tion is not possible when the systemmust store data that is linked to an individual

user, for example, when the multimodal interface is designed to personalize adap-

tation to that person during sustained and repeated system use (see above). In this

case, data must be stored and storage should be secure, e.g., password protected

and encrypted. One solution is local storage, using a physical media such as a USB

pen drive, that is owned by the user and used as a repository for all data collection

during the interaction. However, due to the size of the data file over a period of

time and the need for a back-up, it is unlikely that a physical device would serve as
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a practical solution in isolation and remote storage elsewhere would require pro-

tection and anonymization. There are a number of studies (e.g., Barra et al. [2016])

where data from the brain and body has been used to identify the individual and

the use of a biometric key to unlock data from the same source offers an intriguing

solution for the future.

Embedded multimodal interfaces offer the possibility of enormous technical

advances but progress in this directiondoes introducenovel problemsof user trust,

system autonomy, and data ownership.

14.6
Supplementary Digital Materials: Exoskeleton’s Mode Change

Supported by Embedded Brain Reading—

Approach and Evaluation

The VI-Bot exoskeleton (see the video referred to in Figure 14.8) has three operation

modes: full user support mode, teleoperation mode, and transient mode (see Fig-

ure 14.9). During teleoperation mode, the movements of the human are mapped

to the robotic system and the user receives force feedback from the robotic system.

During full user support mode, the exoskeleton keeps the user’s arm in a fixed po-

sition. During transient mode, the user can move freely without controlling the

robotic system.

Changes between full user support mode and transient mode are intentionally

controlled by overt arm movements, i.e., an active human state is detected by

the exoskeleton. Changes between transient mode and teleoperation mode and

back are intentionally commanded by overt hand gestures. Again, an active human

state is detected by the interface. Being in the transient mode, there is a mode

change possible back to full user support mode. This change is non-intentionally

controlled whenever the user is notmoving his or her arm for a certain time period.

The user is usually not pausing to intentionally control the mode change but is

stopping during robot control for different reason, e.g., to change position to get a

better view of the robot’s arm or to think about a solution for a difficult situation or

to handle additional requests like communication with a second person, while the

exoskeleton is supporting the user by keeping the arm in a fixed position such that

the operator does not have to hold his arm by himself. The latter becomes relevant

in case of very fine manipulations that are interrupted by longer breaks. In such

situations, the user wants to avoid any big movements and wants to keep his arm

in a specific position.

Thus, whilemode changes between transientmode and teleoperationmode are

intentionally controlled by the human,mode changes between transientmode and

43



full user support mode are non-intentionally elicited (see above). Further, changes

between full user support mode back to transient mode which are intentionally

elicited by the human are additionally non-intentionally adapted by the interface

itself by detecting specific active states of the human from covert measures, i.e.,

brain signals recorded from the surface of the human’s head Figure 14.18. As

mentioned above, when the system is in the full user support mode, the human

can intentionally control the interface to change back to transient mode simply by

starting tomove his arm again. This overt behavior is measured by the exoskeleton

to detect the active state of the human, i.e., arm movement.

To intentionally activate amode change from full user supportmode to the tran-

sientmode theusermust press against force sensors of the exoskeleton for a certain

time that is long enough to avoid false commandsby, e.g.,muscle twitches ormove-

ment of the upper body.However, even if the strength of the forces and the duration

of pressure application to the exoskeleton are individually optimized for each user

to copewithdifferent bodymeasures andmuscle strength, theuserwill feel that the

exoskeleton will not directly respond to her or his movements. Therefore, the ex-

plicit control from the full user supportmodeback to the transientmode is adapted

by another implicit control loop that makes use of covert measures, i.e., brain ac-

tivity, that enable the interface to detect another active state of the human, i.e.,

preparation of an arm movement. This cascaded approach of combining explicit

control and implicit control for adaptation enhances transparency, since themove-

ment planning phase can be detected from EEG before the movement is executed.

This information can be used to prepare the exoskeleton for the explicit control by

a later arm movement by enhancing the sensitivity of the sensors that detect the

movement onset. As for the implicit control example, the adaptation requires the

system to infer a human state or upcoming human state. No explicit command is

required from the human.

To optimize the general sensitivity of the exoskeleton for each subject, a time

threshold was defined individually, i.e., a minimum time he or she had to press

against the exoskeleton with a minimum force to release it from full user sup-

port mode. Both minimum time threshold and force threshold were chosen by

performing a calibration procedure in which the subjects had to keep their fore-

arm completely extended and the shoulder flexed forward in order to bring the

third joint of the exoskeleton in an angular range between 15− 20◦. The user was

then asked to repeat an oscillatory movement of about 90◦ with a regular speed

(see Figure 14.19A). The requested type of movement and speed was shown to the

user beforehand in amovie that showed the exactmovement sequence and timing.

At the beginning of each session, the force threshold was set to a maximum value
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was predicted based on EEG analysis. This adaptation of the exoskeleton required

less force over time from the human for explicit control of the exoskeleton, i.e., to

make the exoskeleton change from full user support mode to transient mode (see

Figure 14.19). To calculate the effort required to pass from full user support mode

to transient mode, we integrated the force according to Equation 14.1:

I =

∫ TLout

T0

Fint(t)dt . (14.1)

To analyze how much the required minimum interaction force I could be re-

duced by the approach, an experiment was performed in which a prediction score

equivalent to 75% correct movement planning detection and a prediction score

equivalent to 100% correct movement planning detection was randomly chosen to

simulate the adaptation by embedded brain reading. Both conditions were inter-

leavedwith a no adaptation condition (T Max
th ; see T max in Figure 14.19b) chosen to

adapt the exoskeleton control. In case of 100% correctmovement planning the indi-

vidually estimated time threshold T Max
th was reduced to T Min

th , i.e., 10 ms (see T min

in Figure 14.19b) which is theminimum time that the exoskeleton needs to react to

a signal. This minimum response time is caused by the exoskeleton’s 100Hz con-

trol cycle. In case of 75% correct movement planning, the individually estimated

time threshold T Max
th was reduced to a time value between T Max

th and T Min
th , i.e., T Mid

th

(see T mid in Figure 14.19b). Thus, T Min
th was equivalent with maximal adaptation

by embedded brain reading, T Max
th with no adaptation by embedded brain reading,

and T Mid
th with amediumadaptation by embeddedbrain reading. Interaction forces

under all three conditions (T Max
th , T Mid

th , and T Min
th ) were measured by the force sen-

sors which were embedded into the exoskeleton. Mean values were calculated for

each prediction score value for ten measured movements across five subjects. It

could clearly be shown that the interaction force applied over time was reduced

(see value for force integral under all three condition), i.e., for more than one third

under maximum adaptation compared to no adaptation. Subjects reported that

they could clearly feel the differences in transparency of the exoskeleton even in

case of medium adaptation, i.e. in case of T Mid
th (T mid in Figure 14.19b).

Focus questions

14.1. What is the difference between explicit and implicit control approaches?

14.2. Which three safety levels can be defined for robots?

14.3. How can Moore’s Law be related to robotics?
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Figure 14.19 Reduction of interaction force between exoskeleton and human by adapting the

exoskeleton’s control by means of embedded brain reading. (A) positioning of forearm

and movements of the upper body during the calibration session are depicted.

(B) Mean values for applied force over time (force integral) calculated for ten measured

movements across five subjects under each time threshold condition are depicted.

T: time threshold, i.e., time to press against the sensors that must be exceeded to

unlock the exoskeleton from full user support mode. T max: individually estimated

for each subjects based on calibration measurements with no support by embedded

brain reading (no supp.); T min = 10ms at Smax: maximum adaptation (prediction

score equivalent with 100% correct movement planning detection); T mid: medium

time threshold value (between T max and T min) at medium adaptation Smed by

embedded brain reading (prediction score equivalent with 75% correct movement

planning detection). Figure modified after Folgheraiter et al. [2012].

14.4. When classifying interfaces which two types of behaviors and two types of

methodologies can be used?

14.5. What is the difference between overt and covert measures of the user?

14.6. How does a passive BCI differ from an active BCI?

14.7. What is a hybrid BCI?

14.8. What is used in physiological computing and to what can it be compared?

14.9. Howcan a speech interface be implemented from thepoint of viewof human

measures?

14.10. What does “embedded” in “embedded multimodal interface” mean?

14.11. What is embedded brain reading?
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14.12. How is the VI-Bot application non-intentionally adapted based on covert

measures? Explain both approaches.

14.13. Why can the whole be more than the sum of the individual parts when

combining different measures in embedded multimodal interfaces?

14.14. What are the twomain trends for future embeddedmultimodal interfaces?

14.15. What is the relevance of the closed-loop design for personalization and

machine intelligence?

14.16. How can we design an embedded multimodal interface while preserving

the privacy of the individual?
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M. Trampler, S. Stiene, E. A. Kirchner, V. Bargsten, T. Bänziger, J. Teiwes, T. Krüger,
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H.Wöhrle, J. Teiwes,M. Tabie, A. Seeland, E. A. Kirchner, andF. Kirchner. 2014. Prediction of

Movements by Online Analysis of Electroencephalogramwith Dataflow Accelerators.

In Proceedings of the International Congress on Neurotechnology, Electronics and

Informatics (NEUROTECHNIX 2014), pp. 31–37, Rome, Italy. ScitePress. 253

J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan. 2002.

Brain-computer interfaces for communication and control. Clinical Neurophysiology,

113(6): 767–791. 230

C. Yongwook, J. Jaeseung, and J. Sungho. 2012. Toward brain-actuated humanoid robots:

Asynchronous direct control using an EEG-based BCI. IEEE Transactions on Robotics,

28: 1131–1144. 230

T. O. Zander and C. Kothe. 2011. Towards passive brain-computer interfaces: applying

brain- computer interface technology to human-machine systems in general. Journal

of Neural Engineering, 8:1–5. 230

T. O. Zander, J. Bronstruo, R. Lorenz, and L. R. Krol. 2014. Towards BCI-based implicit

control in human-computer interaction. In S. H. Fairclough and K. Gilleade, editors,

Advances in Physiological Computing, pp. 67–90. Springer-Verlag. 231

J. Zhou, K. Yu, F. Chen, Y. Wang, and S. Z. Arshad. 2018. Multimodal behavioural and

physiological signals as indicators of cognitive load. In S. Oviatt, B. Schuller,

P. R. Cohen, D. Sonntag, G. Potamianos, and A. Krüger, editors, The Handbook
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