
M O D E L L I N G , V E R I F I C AT I O N A N D T E S T O F H I G H - L E V E L
RO B OT I C P L A N S

tim janis meywerk

A Dissertation Submitted to
The Faculty ofMathematics and Computer Science

University of Bremen

In Partial Fulfilment of the Requirements for the Academic Degree of
Doktor der Naturwissenschaften (Dr. rer. nat.)

Supervisor and primary reviewer:
Prof. Dr. Rolf Drechsler

Group of Computer Architecture
University of Bremen

Secondary reviewer:
Prof. Michael Beetz, PhD

12 April 2023

Tim Janis Meywerk: Modelling, Verification and Test of High-Level Robotic
Plans,© 12 April 2023

E I D E S S TAT T L I C H E V E R S I C H E RU N G

Hiermit versichere ich, dass ich

1. die Arbeit ohne unerlaubte fremde Hilfe angefertigt habe,

2. keine anderen als die von mir angegebenen Quellen und Hilfsmittel
benutzt habe und

3. die den benutzten Werken wörtlich oder inhaltlich entnommenen
Stellen als solche kenntlich gemacht habe.

4. Die zu Prüfungszwecken beigelegte elektronische Version ist mit der
abgegebenen gedruckten Version identisch.

Bremen, 12 April 2023

Tim Janis Meywerk

A B S T R AC T

Robots are an integral part of current industrial processes. Typical industrial
robots are used in different factory settings to handle repetitive tasks and thus
ease the workload for human workers. Recent advances in technology and ar-
tificial intelligence opened the door for a generation of more mobile, flexible
and autonomous robots for a wider variety of applications.

The combination of dynamic environments, complex tasks and a need
for explainability call for a structured, high-level approach to autonomous
robotics. One such approach is plan-based robotics, where a high-level plan
is responsible for the orchestration and supervision of lower-level modules
such as a motion planner, knowledge base or computer vision module. The
plan itself is written in a high-level plan language.

With the increasing complexity of robotic plans, programming errors and
oversights only become more likely. There is an undeniable need for a high
level of safety, robustness and correctness in autonomous robots. This re-
quires not only a thorough engineering of the robotic software, but also tech-
niques to assess the correctness, and to uncover hidden bugs.

In this thesis, we aim to extend the state-of-the-art in verification tech-
niques for high-level robotic plans. We present both formal and test-based
methods. In particular, we make contributions to three areas of robotic plan
verification. First, we present several techniques for the symbolic verifica-
tion of high-level robotic plans. Our second contribution is the development
of two approaches that aid in the modelling of robotic environments and
thus facilitate both the planning and verification process. Finally, we present
coverage-guided fuzzing as an automatic, test-based method for bug-finding
in robotic plans. All of our contributions are applied to the CRAM Plan Lan-
guage (CPL). They are described in detail and experimentally evaluated to
demonstrate their effectiveness.

v

K U R Z FA S S U N G

Roboter sind ein integraler Bestandteil aktueller industrieller Prozesse. Typ-
ische industrielle Roboter werden an verschiedenen Stellen in Fabriken
eingesetzt, um repetitive Aufgaben zu bearbeiten und so das Arbeitspen-
sum menschlicher Arbeiter zu verringern. Durch technologische Fortschritte,
vor allem im Bereich künstlicher Intelligenz, wird der Weg für eine neue
Generation mobilerer und flexiblerer autonomer Roboter geebnet, die für
eine größere Menge von Anwendungen eingesetzt werden können.

Die Kombination aus dynamischen Umgebungen, komplexen Aufgaben
und dem Bedürfnis, das Verhalten der Roboter erklären zu können, verlan-
gen nach einem strukturierten, abstrakten Ansatz zur Steuerung autonomer
Roboter. Ein solcher Ansatz ist die planbasierte Robotik, in der ein ab-
strakter Plan für die Koordination und Überwachung kleinerer Module wie
etwa eines Bewegungsplaners, einer Wissensdatenbank oder eines Bilderken-
nungsmoduls verantwortlich ist. Der Plan selbst ist in einer abstrakten
Plansprache geschrieben.

Mit der steigenden Komplexität der robotischen Pläne werden Programmier-
und Flüchtigkeitsfehler immer wahrscheinlicher. Es gibt einen unbestre-
itbaren Bedarf an einem hohen Grad von Sicherheit, Robustheit und Kor-
rektheit der autonomen Roboter. Hierzu ist nicht nur eine sorgfältige En-
twicklung der Software des Roboters nötig, sondern auch Techniken, um die
Korrektheit zu beurteilen und versteckte Fehler aufzudecken.

Diese Dissertation zielt darauf ab, den Stand der Forschung im Bere-
ich der Verifikationstechniken für abstrakte Roboterpläne wesentlich zu er-
weitern. Hierzu werden sowohl formale als auch test-basierte Methoden
vorgestellt. Insbesondere werden Beiträge zu den folgenden drei Themenge-
bieten der robotischen Planverifikation geleistet. Der erste Beitrag umfasst
mehrere Techniken zur symbolischen Verifikation von abstrakten Roboter-
plänen, der zweite ist die Entwicklung von zwei Ansätzen, die bei der Mod-
ellierung von robotischen Umgebungen unterstützen und somit sowohl den
Planungs- als auch den Verifikationsprozess erleichtern und zuletzt wird abde-
ckungsgetriebenes Fuzzing als eine automatische, testbasierte Methode zur
Fehlerfindung in robotischen Plänen vorgestellt. Alle vorgestellten Beiträge
werden auf die CRAM Plan Language (CPL) angewendet. Sie werden in
dieser Dissertation im Detail erläutert und experimentell evaluiert, um ihre
Wirksamkeit zu demonstrieren.

vii

AC K N OW L E D G E M E N T S

This thesis is the result of not only my own work, but also the support of great
people. I would like to use this opportunity to thank them.

I would like to express my deepest gratitude towards my advisor, Prof. Dr.
Rolf Drechsler, for providing me with this opportunity and for his valuable
advise and support.

I am extremely grateful to Prof. Dr. Michael Beetz for his advise and for
initiating the EASE project that this thesis builds upon. I am delighted that
he agreed to take the time to review this thesis.

Many thanks go to Prof. Dr. Daniel Große and Dr. Vladimir Herdt for their
advise and their extensive expertise on formal verification.

I had the great pleasure to work with wonderful colleagues at AGRA and
DFKI. I wish to especially thank Dr. Marcel Walter, my partner during the
first years of EASE, for his decisive role in the development of SEECER and
hundreds of interesting discussions on robot verification, SMT solving and
FCN.

I would also like to thank Gayane Kazhoyan for her introduction to CRAM
and for answering all of my CRAM-related questions. Thanks also go to
Arthur Niedzwiecki for his help.

Teaching has been a passion during my time at AGRA. I am therefore very
happy that I was able to share my interest in plan verification with some of
my students. I am very grateful to Jan Kleinekathöfer, who implemented
substantial parts of SEECER and for his valuable suggestions. I would also
like to acknowledge Daniel Staack, Fenja Kollasch, Arbnor Miftari and Till
Schlechtweg for their code contributions and Jonas Dech for his CRAM sup-
port.

Finally, I would like to thank my wife Jil, not only for her great suggestions,
but most importantly for her continued love, encouragement and support.

The research reported in this thesis has been partially supported by the
German Research Foundation DFG, as part of Collaborative Research Center
(Sonderforschungsbereich) 1320 Project-ID 329551904 “EASE - Everyday
Activity Science and Engineering”, University of Bremen (http://www.ease-
crc.org/). The research was conducted in subproject P04.

ix

C O N T E N T S

1 introduction 1
1.1 Thesis Outline . 3
1.2 Publications . 4

2 preliminaries 7
2.1 Cognitive Robot Abstract Machine 7

2.1.1 CRAM Plan Language 8
2.1.2 CLisp Bytecode . 10
2.1.3 Fast Projection Simulator 12

2.2 Verification Techniques . 13
2.2.1 Satisfiability Modulo Theories 13
2.2.2 Symbolic Execution 14
2.2.3 Fault Injection . 16
2.2.4 Coverage-Guided Fuzzing 16

3 related work 19
3.1 Formal Verification of Robotic Plans 19
3.2 Modelling of Robotic Environments 20
3.3 Fuzzing for Robotics . 21

4 symbolic verification of robotic plans 23
4.1 Symbolic Execution of Robotic Plans 23

4.1.1 Background: Wumpus World 24
4.1.2 Formal Verification of CPL Plans 25
4.1.3 Experimental Evaluation 31

4.2 Verification via Logic-based Environment Modelling 34
4.2.1 Background: Discrete Event Calculus 35
4.2.2 DEC-based Verification of Robotic Plans 39
4.2.3 Experimental Evaluation 45

4.3 Symbolic Fault Injection for Robotic Plans 49
4.3.1 Symbolic Fault Injection for CPL 50
4.3.2 Experimental Evaluation 54

4.4 Conclusion & Future Work 56
5 formal methods for modelling assistance 59

5.1 Clustering-guided SMT(LRA) Learning 59
5.1.1 Background . 60
5.1.2 Hierarchical Clustering for SMT(LRA) Learning . . 65
5.1.3 Improving Scalability through Nested Dendrograms 69
5.1.4 Experimental Evaluation 73

5.2 Simulation-based Debugging of Formal Environment Models 76
5.2.1 Finding Discrepancies 77
5.2.2 Experimental Evaluation 81

5.3 Conclusion & Future Work 85
6 coverage-guided fuzzing of robotic plans 87

6.1 Coverage-guided Fuzzing for CPL Plans 88

xi

xii contents

6.1.1 Overview . 88
6.1.2 Initial Environment Setup 89
6.1.3 Coverage Measurement 90

6.2 A Coverage Metric for Plan-based Robotics 91
6.3 Experimental Evaluation 92

6.3.1 Robotic Plan and Environment 93
6.3.2 Experimental Results 93

6.4 Conclusion & Future Work 97
7 conclusion 99

bibliography 101

L I S T O F F I G U R E S

Figure 1 Overview of the CRAM framework 8
Figure 2 Common Lisp example 8
Figure 3 Designators in CPL 9
Figure 4 CPL failure handling 10
Figure 5 CLisp bytecode 12
Figure 6 A simple C method 15
Figure 7 General coverage-guided fuzzing flow 16
Figure 8 Environment vs. belief state 25
Figure 9 Overview of proposed plan verification approach . 26
Figure 10 Designators in the Wumpus World 27
Figure 11 Function is-neighborhood-safe 32
Figure 12 Visualization of the vacuum world (n 2) 36
Figure 13 Abstract view on the considered verification problem 40
Figure 14 DEC-centric architectural view 42
Figure 15 CPL plan for the vacuum world 43
Figure 16 Execution tree of the symbolic execution 44
Figure 17 Excerpt of the Shopping plan 46
Figure 18 Rewriting scheme for failure handlers 50
Figure 19 Implementation of the worst case assumption for the

grasping action 52
Figure 20 A failure handler without side effects 53
Figure 21 A simple dendrogram 64
Figure 22 Dendrogram with distance thresholds 65
Figure 23 Dendrogram reordering 70
Figure 24 Runtime comparison for different values of h 74
Figure 25 Accuracy comparison for different values of h . . . 75
Figure 26 Simple robotic environment 78
Figure 27 Overview of our debugging approach 78
Figure 28 Overview of our fuzzing approach 88
Figure 29 CLisp bytecode example 91
Figure 30 Exemplary coverage development over time 96

xiii

L I S T O F TA B L E S

Table 1 SEECER plan verification results 33
Table 2 Verification results 48
Table 3 Experimental results on the high-level plans 55
Table 4 Simulation data until a first discrepancy is found . . 83
Table 5 Minimum, maximum and average time to find each

error . 94

xiv

1
I N T RO D U C T I O N

Robots are an integral part of current industrial processes. Typical industrial
robots are used in different factory settings to handle repetitive tasks and thus
ease the workload for human workers. Their main purpose is to make high-
volume production cheaper. These robotic applications require very limited
autonomy and adaptability. However, advances in technology and artificial
intelligence opened the door for a generation of more mobile, flexible and
autonomous robots for a wider variety of applications.

The higher degree of autonomy enables robotic agents to work in environ-
ments that are inaccessible to humans, such as underwater environments [16,
85], urban search and rescue scenarios [27, 61] or space exploration [34, 112].
In these kinds of environments, only a limited amount of human intervention
is possible, so the correctness and robustness of the robots’ control programs
is vital for their success.

Additionally, robots are driven to act in closer interaction and collaboration
with humans in our everyday lives. These applications range from entertain-
ment [1] to household assistance [32, 47, 106, 119], elderly care [111] and
even medical procedures [40, 41, 99]. Advances in the robots’ autonomy
have also had influence on the manufacturing domain. The next generation
of factory robots is expected to perform their tasks more autonomously and
flexibly [33, 82]. In fact, autonomous robots have been identified as one of
the major drivers for the Industry 4.0 [4, 45, 108].

The close contact between humans and robots that is inevitable in these ap-
plications raises concerns about how an effective and safe interaction between
humans and robots can be achieved. Solutions are investigated in the fields of
Human Robot Interaction (HRI) and Human Robot Collaboration (HRC) [20,
113]. The tighter interaction between humans and robots also raises ethical
[3, 110, 118] and legal concerns [13, 24]. These issues generally discourage
the exclusive use of black-box approaches such as machine learning, since
the robots’ actions should ideally be explainable and reproducible.

When autonomous robots and humans act in close proximity, accidents
are bound to happen. Fortunately, publicly known accidents involving au-
tonomous robots are rare. One incident that attracted major attention in 2018
was a collision between a self-driving car and a pedestrian who later died
from her injuries [58]. In another incident, an autonomous security robot ran
into and lightly injured a toddler at a shopping mall [115]. However, not all
robot accidents are reported in the press. A study [5] on robot malfunctions in
the medical field found 144 deaths linked to malfunctioning robot systems. A
recent case study [116] on robot accidents also concludes that "the likelihood
and scope of robot accidents are much greater" when robots act in human
environments and calls for strict regulations regarding accident investigation.
While fatal accidents should of course be avoided by any means, there are

1

2 introduction

also less dramatic malfunctions with severe consequences. For instance, a
stuck autonomous robot in an inaccessible environment may cause a failed
mission and potentially a loss of the robot hardware.

The combination of dynamic environments, complex tasks and a need
for explainability call for a structured, high-level approach to autonomous
robotics. One such approach is plan-based robotics, where a high-level plan
is responsible for the orchestration and supervision of lower-level modules
such as a motion planner, knowledge base or computer vision module. The
plan itself is written in a high-level plan language. There are two main types
of languages used for this purpose. The first are logic-based languages such
as GOLOG [57] and its derivatives [29, 38]. The second type are extensions
of general programming languages, such as TDL [97], which is an extension
of C++, and RPL [69] or CPL [14], which are based on Lisp. Some languages
are also not directly based on a common programming language, but are still
designed in the style of a programming language. Examples include STRIPS
[30], ADL [83] and PDDL [36].

The majority of high-level plans is written by hand or generated from in-
formal descriptions [101, 102]. This obviously leaves room for programming
errors and oversights. With the increasing complexity of robotic plans, these
only become more likely. There is an undeniable need for a high level of
safety, robustness and correctness in autonomous robots. This requires not
only a thorough engineering of the robotic software, but also techniques to
assess the correctness, and to uncover hidden bugs. The current state-of-the-
art in autonomous robot testing is predominantly based on simulation and
some isolated test runs on the real system. Cases to be simulated are usually
picked by hand. This often results in an insufficient coverage of the robot
software due to the high workload involved in a complete test set. Further-
more, important edge cases are often missed by engineers, especially when
the software becomes more complex. In this thesis, we therefore investigate
systematic methods to test and verify high-level plans for autonomous robots.

We aim to extend the state-of-the-art in verification techniques for high-
level robotic plans. We present both formal and test-based methods. Most
current work on robot plan verification focusses on internal properties of the
plan. In this thesis, we want to additionally consider a model of the robot’s
environment. This enables us to also verify the plan with respect to proper-
ties regarding the environment and thus acquire more meaningful verification
results. Also, unlike many other approaches, we do not restrict the plan lan-
guage to simplify the verification problem. Instead, we choose the Turing-
complete CRAM Plan Language (CPL) from the Cognitive Robot Abstract
Machine (CRAM) framework as our plan language under verification.

Since modelling of the robotic system and its environment plays a cru-
cial part in many of our presented approaches, we also work on techniques
to assist in these modelling tasks. The modelling formalisms used here are
well-known, but their application to verification tasks and their automatic gen-
eration and debugging is a novel research direction.

1.1 thesis outline 3

We also present coverage-guided fuzzing as a test-based method for robotic
plan verification. Although some work has already been done on fuzzing in
robotics, existing approaches are usually not based on coverage and do not
incorporate the robots’ environment.

1.1 thesis outline

This thesis considers several approaches to enable the verification of high-
level plans for autonomous robots. These include

• symbolic verification of robotic plans,

• formal methods for modelling assistance, and

• coverage-guided fuzzing of robotic plans.

We outline each of these topics in more detail in the remainder of this
section.

symbolic verification of robotic plans (chapter 4)
Symbolic verification replaces concrete inputs to a computer program with
symbolic variables. Executing a program in this way yields symbolic con-
straints over the program inputs, variables and outputs, which can then be
used by a constraint solver to find execution traces that e. g. violate safety
properties. As a first step, we adapt symbolic execution to the domain of
plan-based robotics and present a first approach to symbolic execution of
CPL plans under a set of assumptions and assertions. To this end, we present
a symbolic execution engine for CPL and a methodology to integrate environ-
ment models written in Common Lisp into the verification process. Secondly,
we expand our approach to environments modelled in a logical formalism,
namely the Discrete Event Calculus (DEC). We present a pure DEC reasoning
approach to verify simple action sequences and then integrate this with our
symbolic execution engine for the verification of complex CPL plans. Thirdly,
we take a closer look at CPLs failure handling capabilities and present a tech-
nique, based on our symbolic execution engine, to find low-level failures that
are not properly handled by the high-level plan. This approach is agnostic of
the concrete environment and instead assumes that any action may fail at any
time, yielding a complete list of all unhandled low-level failures.

formal methods for modelling assistance (chapter 5) Formal
models of a robotic environment are the backbone of decades of work in the
planning domain. In Chapter 4 we also use formal models for the verification
of plans. Models are supposed to be abstract, simple and usually discrete,
while still accurately modelling the complexity and continuity of the real
world. This is a major challenge for model designers. We therefore propose
tools to support model designers during this task. First, we propose a novel
methodology for SMT(LRA) learning, which may be used to automatically
build SMT(LRA) formulae from a given set of examples. These formulae

4 introduction

could then be used to divide the continuous space of the robotic environment
into meaningful discrete regions. Secondly, we present a technique for the
debugging process of formal models. Here, we use our symbolic execution
engine to automatically find executions in which the behaviour of the formal
model differs from that of a simulation engine.

coverage-guided fuzzing of robotic plans (chapter 6) Formal
verification methods are a great way to ensure completeness of the verifica-
tion process. This does however come with the drawback of high runtimes
and poor scalability. Practically speaking, this results in a failure of for-
mal verification for complex plans and environments. Therefore, we also
consider test-based methods for the verification of robotic plans, in particu-
lar coverage-guided fuzzing. We introduce coverage-guided fuzzing to the
domain of plan-based robotics and present a prototypical implementation
for CPL. In addition, we introduce a novel coverage metric tailored for the
domain of plan-based robotics.

1.2 publications

This thesis is based on several peer-reviewed conference publications. They
have been incorporated in this thesis as follows:

• Section 4.1: Symbolic Execution of Robotic Plans – [M1]

• Section 4.2: Verification via Logic-based Environment Modelling –
[M2]

• Section 4.3: Symbolic Fault Injection for Robotic Plans – [M3]

• Section 5.1: Clustering-guided SMT(LRA) Learning – [M4]

• Section 5.2: Simulation-based Debugging of Formal Environment
Models – [M5]

• Chapter 6: coverage-guided fuzzing of robotic plans – [M6]

A list of all of the author’s publications related to the topic of this thesis is
given below:

[M1] Tim Meywerk, Marcel Walter, Vladimir Herdt, Daniel Große, and
Rolf Drechsler. “Towards Formal Verification of Plans for Cognition-
Enabled Autonomous Robotic Agents”. In: Conference on Digital
System Design (DSD). 2019, pp. 129–136.

[M2] Tim Meywerk, Marcel Walter, Vladimir Herdt, Jan Kleinekathöfer,
Daniel Große, and Rolf Drechsler. “Verifying Safety Properties of
Robotic Plans Operating in Real-World Environments via Logic-
Based Environment Modeling”. In: International Symposium on
Leveraging Applications of Formal Methods (ISoLA). 2020, pp. 326–
347.

1.2 publications 5

[M3] Tim Meywerk, Vladimir Herdt, and Rolf Drechsler. “Symbolic Fault
Injection for Plan-based Robotics”. In: International Conference on
Control Automation and Systems (ICCAS). 2022, pp. 1710–1715.

[M4] Tim Meywerk, Marcel Walter, Daniel Große, and Rolf Drechsler.
“Clustering-Guided SMT(LRA) Learning”. In: International Confer-
ence on Integrated Formal Methods (IfM). 2020, pp. 41–59.

[M5] Tim Meywerk, Arthur Niedzwiecki, Vladimir Herdt, and Rolf Drech-
sler. “Simulation-Based Debugging of Formal Environment Models”.
In: Mediterranean Conference on Control and Automation (MED).
2022, pp. 890–895.

[M6] Tim Meywerk, Vladimir Herdt, and Rolf Drechsler. “Coverage-
guided Fuzzing for Plan-based Robotics”. In: International Con-
ference on Agents and Artificial Intelligence (ICAART). accepted for
publication. 2023.

2
P R E L I M I NA R I E S

To keep this thesis self-contained, this chapter reviews important foundations
and concepts necessary for the understanding of the remainder of the thesis.
Section 2.1 introduces the Cognitive Robot Abstract Machine, which is the
main objective of the verification approaches presented in this thesis. Sec-
tion 2.2 reviews several verification techniques that this work extends and
adapts to the domain of high-level robotic plans.

2.1 cognitive robot abstract machine

The Cognitive Robot Abstract Machine (CRAM) [14, 74] is a framework for
the implementation of cognition-enabled robotic plans. The term cognition-
enabled here describes a system that is able to reason about its actions and
provide explanations of that reasoning. CRAM features the CRAM Plan Lan-
guage (CPL) for the description of the robot’s behaviour.

Fig. 1 shows a CRAM-centric view of the architecture of the CRAM
ecosystem and its interaction with the environment. The centrepiece of the
architecture is the CRAM executive, which executes a plan written in CPL.
CPL is the high-level plan language used throughout this thesis and will be
explained in more detail in Section 2.1.1.

To reason about the world, the CRAM executive is able to query the robot’s
belief state and an ontology-based knowledge base. Information about the
world acquired through the robot’s perception module is also fed back into
the belief state.

A main concept of CPL is the use of designators. A designator is an ab-
stract description of an action, object or location. For instance, an action
designator could describe the action of grasping a green object. The corre-
sponding designator would however leave other properties of the object and
action such as the concrete trajectory unspecified. The designator derefer-
encing module is responsible for filling in the remaining parameters and thus
producing an executable action description. The dereferencing is achieved
through a combination of hand-written heuristics, machine learning and sim-
ulations. For the latter, a fast projection simulator is used to try different
parametrizations in a simulated environment. We also use this simulator in
some parts of this thesis and will therefore introduce it in more detail in Sec-
tion 2.1.3.

The dereferenced designators are then used to interact with the environ-
ment. Action designators in particular are used to perform perception, navi-
gation and manipulation actions to perceive objects, move within the environ-
ment and manipulate objects, respectively. Each of the three tasks has its own
module activated by the CRAM executive.

7

8 preliminaries

Figure 1: Overview of the CRAM framework

1 (let* ((a 10) (b 12))

2 (if (> a 0)

3 (* 3 (+ a b))

4 (* 3 b)))

Figure 2: Common Lisp example

2.1.1 CRAM Plan Language

Writing plans for autonomous robots in multiple changing environments for
various tasks requires a general and flexible plan language. In this section,
we introduce the plan language of CRAM, CPL.

CPL is an extension of the Common Lisp programming language. There-
fore, we will shortly review Common Lisp’s structure before proceeding with
CPL.

Definition 1. All of Common Lisp’s build-in symbols, basic units, and num-
bers are called atoms. A list is a sequence of either atoms or other lists
separated by blanks and surrounded by parentheses. With that in mind, we
can define s-expressions (short for symbolic expressions) in a recursive man-
ner: An atom is an s-expression. If s1, . . . , sn are s-expressions, then the list
s1 . . . sn is also an s-expression. If an s-expression is intended to be evaluated,
it is called a form. Such an evaluation takes the s-expression’s first element
s1 as the function name and all the other elements s2, . . . , sn as its arguments.
A Common Lisp program is a sequence of forms.

Example 1. Consider the code snippet depicted in Fig. 2. It consists of 9
non-atomic s-expressions, which are nested and perform simple arithmetic

2.1 cognitive robot abstract machine 9

1 (let*

2 ((object-desig (an object (type cup)))

3 (location-desig (a location (on table)))

4 (action-desig (an action (type placing) (

object object-desig) (target

location-desig))))

5 ...)

Figure 3: Designators in CPL

under a condition. Fixed values are assigned to the variables a and b by the
let* keyword, which is used to define variables in a local scope.

Common Lisp is generally not an object-oriented language. However,
classes and objects can be used through the Common Lisp Object System
(CLOS). CPL also makes extensive use of this functionality, e. g. for desig-
nators.

As CPL is an extension of common Lisp, all of Common Lisps built-in
functions can be used in CPL as well. The most important functions and
macros in the context of robotic planning are however only available in CPL.

Designators play an essential role in the interface between CPL and the
robot’s environment. They allow to specify actions, objects and locations
in an abstract, incomplete way. In CPL, designators are constructed using
the a and an macros. They take the type of designator (action, object or
location) as a first parameter, followed by a number of key-value pairs to
describe the underlying action, object or location.

Example 2. Consider the code snippet in Fig. 3. The CPL code creates three
designators and assigns them to three local variables. The object designator
object-desig describes a cup, without specifying the concrete cup or other
properties such as the cup’s dimensions, colour or position. Similarly, the
location designator location-desig describes a location on top of a table,
but leaves the exact position open. The action designator action-desig
now describes the action of placing the object of type cup on some location
on the table.

To transform a designator into a concrete action, object or location, it has to
be dereferenced using the reference function. This function can be called
explicitly on each designator, but it is also called whenever an action desig-
nator is executed or an object or location designator is used as a parameter to
an executed action. Actions are executed using the perform function.

Example 3. Consider again the designators from the previous example. The
placing action can be executed through (perform action-desig). Only
then the abstract descriptions of the cup, table-top position and placing ac-
tions are dereferenced and replaced with a concrete object, position and arm
trajectory.

In Common Lisp, every function and macro must have a return value. This
is also true for CPL’s perform function. For most action types, this return

10 preliminaries

1 (w i t h− f a i l u r e− h a n d l i n g
2 ((f a i l u r e− t y p e (e)
3 h a n d l e r))
4 body)

Figure 4: CPL failure handling

value is nil and is usually ignored by the plan. Some other actions will
however have meaningful return values. For instance, the perceiving action
returns a designator for the object it has perceived.

Another important feature of CPL is its extensive failure handling capa-
bility to deal with any unforeseen events caused by the highly dynamic en-
vironments of autonomous robots. Failure handling is initiated through the
with-failure-handling macro. Fig. 4 shows the general structure of the
macro. The body of the macro is executed first. Whenever a failure of type
failure-type occurs during execution of the body, the handler is called. This
handler will then try to remove the cause of the failure. Multiple failure han-
dling macros can be used inside each other, creating a hierarchy of failure
handlers. If a handler is not able to remove the failures root cause, it may
choose to ignore it, rethrow it to a higher level or throw a new failure of a
different type instead.

2.1.2 CLisp Bytecode

There are several implementations for the Common Lisp programming lan-
guage. Most of these are full compilers, i. e. they compile the Common Lisp
source directly into machine language. The CLisp compiler [39] follows a
different approach by compiling Common Lisp into its own bytecode repre-
sentation, which is then interpreted. Since the bytecode produced by CLisp
is simpler and easier to analyse than both the original code and machine lan-
guage, we build most of our techniques presented in this thesis on the byte-
code representation. In this section, we introduce the syntax and semantic of
a human-readable version of the CLisp bytecode.

The bytecode is organized in a set of functions. Each function is composed
of a data section and a code section. The data section is a list of constants
to be used inside the function. These can be constant values of any of Com-
mon Lisps built-in data types, lists or names of other functions or variables.
The code section is a sequence of instructions with parameters. Functions are
either top-level functions or callable functions. When the bytecode is inter-
preted, all top-level functions are executed in the order in which they appear
in the code. Callable functions are not executed directly, but may instead be
called inside the code section of another function.

The CLisp bytecode is executed on a virtual stack machine. It consists of
a value stack, which stores most of the values computed during execution, a
function stack to trace the currently executed functions and return addresses, a
map of global variables and their values, and the single register last_value

2.1 cognitive robot abstract machine 11

storing the result of the last executed instruction. The following paragraphs
describe the instruction categories that are of particular importance to this
thesis.

Constant instructions load constant values into the last_value register.
These can be either the truth values T and NIL or some constant from the data
section of the function.

Variable instructions load a value from a global variable into last_value
or store last_value in a new or existing global variable.

Stack instructions push the value stored in last_value onto the value
stack or remove the top element from the stack. Most instructions that com-
pute new values are immediately followed by a PUSH instruction to push the
result onto the stack.

Control flow instructions are used to implement conditions, loops and re-
turns. The most important control flow instructions are jump instructions,
which set the next instruction to be executed. Jumps can either be uncon-
ditional such as the JMP instruction, or conditional such as the JMPIFNOT
instruction. The latter will only jump to its target address if last_value
contains the value NIL.

The actual computations are performed using instructions from the call
category. These are function calls to either user-defined or built-in Common
Lisp functions. There are different instructions such as CALL1 or CALL2 de-
pending on the number of arguments. For a function with n arguments, the
top n elements from the value stack are consumed, removing them from the
stack.

Other categories of bytecode instructions are omitted here, since they occur
only rarely and have no special importance in the context of this thesis.

Example 4. Consider the bytecode function in Fig. 5. The first four unnum-
bered lines represent the data section. Here the numeral 2, the strings "ODD"
and "EVEN" as well as the variable name IS-EVEN are provided for the func-
tion to use.

The function expects a single argument to be present on the stack already.
The code section starts at Line 1 by loading the constant at index 0, namely
the numeral 2 and then pushing it onto the stack. The next instruction on
Line 3 calls a function with two arguments. The index of the function is 210,
which corresponds to the built-in modulo function. Consequently, Line 3 will
compute the modulo operation on the top two elements on the stack, which
are the functions argument and 2. Here, the two elements are removed from
the stack. In the next line, the result is pushed onto the stack. Now the stack
contains exactly one element, which is either 0 or 1, depending on whether
the original argument was even or odd. The following ZEROP function in
Line 5 compares that value to zero. If the value is equal to zero (i. e. the orig-
inal argument was even), ZEROP writes T into last_value, otherwise NIL.
The result is then assigned to the global variable IS-EVEN in Line 6. The
following JMPIF instruction also takes the result and uses it as a condition
for a conditional branch. If ZEROP returns T, the execution jumps to Line 11,
where the constant "EVEN" is pushed onto the stack. Otherwise the function

12 preliminaries

(CONST 0) = 2
(CONST 1) = "ODD"
(CONST 2) = "EVEN"
(CONST 3) = IS−EVEN

1 (CONST 0) ; 2

2 (PUSH)
3 (CALLS2 210) ; MOD

4 (PUSH)
5 (CALLS1 172) ; ZEROP

6 (SETVALUE 3) ; IS-EVEN

7 (JMPIF L11)
8 (CONST 1) ; "ODD"

9 (PUSH)
10 (JMP L14)
11 L11
12 (CONST 2) ; "EVEN"

13 (PUSH)
14 L14
15 (SKIP&RET 1)

Figure 5: CLisp bytecode

continues at Line 8 and pushes "ODD" onto the stack. The final Line 15 termi-
nates the function, leaving its result ("ODD" or "EVEN") as the top element of
the value stack.

2.1.3 Fast Projection Simulator

CRAM’s fast projection simulator [75] is based on the Bullet Physics engine
[23]. It can simulate robots, static environment objects such as walls or furni-
ture and manipulatable objects such as cups or bottles based on data provided
in the Unified Robot Description Format (URDF). The goal of the simulator
is a very fast, yet realistic simulation of the effect of action parametrizations.
Due to a faster-than-real-time simulation, multiple different parametrizations
can be simulated before deciding which one to execute on the real robot. This
high execution speed is also a prerequisite for some methods presented in this
thesis.

To achieve a high simulation speed, not all physical properties are simu-
lated with perfect accuracy. For instance, movements of the robot are exe-
cuted in zero time, which results in the robot teleporting to its target pose.
Therefore, obstacles in the way do not necessarily stop the robot’s action.
This requires some additional checks, which we implemented for the scenar-
ios described in this thesis.

The simulation can be executed in GUI mode or direct mode. In direct
mode, no graphical representation of the simulated robot and environment is
shown to achieve a higher simulation speed. GUI mode, on the other hand,

2.2 verification techniques 13

can be used to visualize critical scenarios for the user or for debugging pur-
poses.

2.2 verification techniques

Verification is the task of determining whether a system adheres to a given
specification. The specification is usually given as a set of properties that
have to be fulfilled by the system. When a system violates some property, we
call this an error or bug.

We distinguish between two types of verification. Formal verification uses
mathematical reasoning to identify errors. Formal methods often enable com-
plete reasoning, i. e. they will either find an error or prove that no errors exist
with respect to the given specification. This completeness often comes with
the price of a high runtime of the verification process and depending on the
type of the system or properties, the underlying problems may be undecid-
able altogether. Test-based verification, on the other hand, tries to find errors
by feeding the system with different inputs and comparing the results to ex-
pected values. Unlike formal verification, test-based methods are unable to
prove the absence of errors, but usually offer much better scalability.

This section reviews some verification techniques that are used and ex-
tended within this thesis. These are satisfiability modulo theories in Sec-
tion 2.2.1, symbolic execution in Section 2.2.2, fault injection in Section 2.2.3
and coverage-guided fuzzing in Section 2.2.4.

2.2.1 Satisfiability Modulo Theories

The Boolean satisfiability problem (SAT) is a major building block for many
verification systems. The wide usage of SAT has been facilitated by major
advances in SAT solving techniques [67, 86]. These allow SAT solvers to
formally verify industrial-scale systems.

Satisfiability modulo theories (SMT) is an extension of SAT that allows to
add formulae from other theories such as linear arithmetic or bitvector arith-
metic to the SAT formula. This allows for a wider range of applications, e. g.
software verification, but also increases the difficulty of the solving process.

In this section, we will review the formulation of SAT and SMT instances
and present some theories used in this thesis.

Definition 2. A SAT instance is a Boolean formula in conjunctive normal
form (CNF). A CNF is a conjunction of clauses and each clause is a disjunc-
tion of literals. A literal is either a Boolean variable or its negation. The prob-
lem of SAT is to determine if a given SAT instance is satisfiable. A Boolean
formula is satisfiable iff there is at least one assignment from Boolean vari-
ables to truth values true (>) and false (⊥), such that the whole formula
evaluates to >.

SMT extends upon the SAT problem in two ways. Firstly, SMT instances
do not need to be in CNF, but can instead use Boolean operators in an arbi-

14 preliminaries

trary way. This does not yet increase the difficulty of the problem, since any
Boolean formula can be transformed into an equisatisfiable CNF in polyno-
mial time. Secondly, SMT allows to use constraints from theories other than
Boolean logic in place of Boolean literals. The most important theories in
this thesis are the arithmetic theories of real numbers and integers.

Definition 3. A term in real (integer) arithmetic is defined as follows. Any
real (integer) variable is a term. Any real (integer) constant is a term. If t is a
term, then −t is also a term. If t1 and t2 are terms, then t1 t2, t1 − t2, t1 · t2 and
t1/t2 are also terms. If t1 and t2 are terms, then t1 < t2, t1 ≤ t2, t1 > t2, t1 ≥ t2
and t1 t2 are constraints, which can be used in place of Boolean literals in
the SMT instance. The semantics of terms and constraints follow the usual
meaning of the arithmetic symbols.

Unrestricted arithmetic constraints generally make the resulting SMT prob-
lem undecidable. Still, in many practical cases a satisfying assignment or un-
satisfiability proof can be found. If one wants to guarantee a conclusive result
however, the arithmetic constraints need to be restricted. A common way to
achieve this is the restriction to linear constraints.

Definition 4. A linear real (integer) constraint is of the form a1 · r1 · · · an ·

rn ≤ d, where ri are real (integer) variables and ai and d are real (integer)
constants.

The satisfiability problem for SMT formulae with only linear constraints is
NP-complete, the same as SAT.

Example 5. Consider the Boolean variable b and the real variables r1 and
r2. The formula −0.5 · r1 2 · r2 ≤ 1∧ r1 · r2 4∨¬b is an SMT instance. Here,
−0.5 · r1 2 · r2 ≤ 1 is a linear real constraint and r1 · r2 4 is a non-linear
constraint.

To indicate the type of constraints that are used in a problem, different
abbreviations are added to the SMT acronym. For instance, the subset of
SMT with only the theory of linear real arithmetic is known as SMT(LRA).

The satisfiability of SMT formulae can be determined by specialized SMT
solvers such as the Z3 solver [25].

2.2.2 Symbolic Execution

Symbolic Execution [49] is a technique for formal software verification and
bug finding. It analyses the behaviour of a program pathwise by treating
inputs as symbolic values.

Symbolic execution manages a set of execution states. These contain a
mapping of program variables to symbolic expressions constraining the value
of the variable. Additionally, each execution state has a Boolean path condi-
tion pc describing the constraints that need to be satisfied to reach the current
path of the program. Initially, the path condition is set to >, i. e. there are no
constraints on the execution state.

2.2 verification techniques 15

1 int abs(int num){

2 int result;

3 if (num < 0){

4 result = -num;

5 }else{

6 result = num;

7 }

8 assert(result >= 0);

9 return result;

10 }

Figure 6: A simple C method

Along an execution path s, the program state is updated according to the
execution semantics of each instruction.

An assignment instruction overwrites the value of a variable with the right-
hand-side expression. Whenever variables are used on the right-hand side of
an assignment, their values from the mapping are substituted.

At each branch instruction, the execution path s is split into two indepen-
dent paths s> and s⊥ due to two possible evaluations of the branch condi-
tion c. The pc for each path is updated accordingly as pcs> pcs ∧ c and
pcs⊥ pcs ∧ ¬c, respectively. Only feasible paths will be explored further. A
path is feasible iff its pc is satisfiable.

For verification purposes, two additional instructions can be used. To add
assumptions about inputs and variables, assume(c) adds c to the current pc.
This way, irrelevant paths can be pruned, speeding up the verification pro-
cess and avoiding false positives. The verification properties are expressed
through assert(c) statements. Whenever an assert statement is encountered,
it is checked whether c can be violated under the current path condition,
i. e. pc∧¬c is satisfiable.

All constraints can be expressed as SMT instances, so that an SMT solver
can be used for the satisfiability checks.

Example 6. Consider the simple C method in Fig. 6, which computes the
absolute value of its input. When this method is symbolically executed while
treating num as a symbolic value, the execution state is split at the if state-
ment in Line 3. The two resulting states have a path condition of num < 0

and num ≥ 0. In the first case, the value of result is mapped to −num and
in the second case to num. At the assert statement in Line 8 the assertion is
checked for possible violations. For the first execution state this corresponds
to an SMT instance of num < 0 ∧ ¬−num ≥ 0 and in the second state to
num ≥ 0 ∧ ¬num ≥ 0. Both instances trivially evaluate to ⊥ for all values of
num, therefore proving the correctness of the abs method with respect to the
assertion.

A more comprehensive overview on symbolic execution and possible vari-
ations and optimizations can be found in [11, 19].

16 preliminaries

Figure 7: General coverage-guided fuzzing flow

2.2.3 Fault Injection

In many cases, the correct behaviour of a program under normal circum-
stances can be verified through test cases or formal methods. However, a
challenging problem is determining how a system reacts to faults that are out-
side of its control, e. g. ones that stem from an external library. One way to
analyse a systems robustness to faults is fault injection.

Fault injection has a long tradition in several different application areas to
perform robustness evaluations. As such it has been leveraged at the hardware
level to induce faults into netlists [2], RTL descriptions [103] or even system-
level models [100] as well as at the software level [52].

Symbolic fault injection [56] extends upon the idea of traditional fault in-
jection by using non-deterministic locations for the injection and hence en-
ables to produce complete coverage of the system under verification with
guarantees regarding its robustness. As such symbolic fault injection is a
very powerful technique for finding gaps in the failure handling of complex
systems. Symbolic fault injection has been mostly applied to embedded sys-
tems [56, 81]. To the best of our knowledge, this thesis is the first to use
symbolic fault injection for plan-based robotics.

2.2.4 Coverage-Guided Fuzzing

Fuzzing [71] is a technique for software testing, which originated in the se-
curity domain and has since been applied to several different applications
such as memory safety [31], network protocols [37] or hardware/software
co-verification [18].

Fuzzing can be described as an interplay between the system under test
(SUT), which is usually a program or function with an input, and a fuzzer.
The fuzzer generates (semi-)random inputs to the SUT. The generation may
be either fully random or guided by some policy or metric. When the code
coverage is used to guide the fuzzing process, it is referred to as coverage-
guided fuzzing.

2.2 verification techniques 17

The usual flow is shown in Fig. 7. The fuzzer starts by generating a ran-
dom byte array. This byte array is then transformed into valid inputs to the
SUT. Depending on the complexity of the input, this transformation can range
from a straightforward reinterpretation to an elaborate construction of nested
objects or files.

Once a valid input to the SUT has been formed, the SUT is executed. Dur-
ing execution, the code coverage is measured and fed back to the fuzzer. In
subsequent iterations, the fuzzer will modify its input byte array either by
adding or removing bytes or by mutating existing ones. The coverage can be
used to decide which modifications of the byte array have been particularly
successful and thus use those more often. Usually, the byte array produced
by the fuzzer will start small and grow over time, producing more complex
inputs the longer the fuzzing process runs.

In many implementations, the coverage will be managed using a finite
amount of coverage points. Each coverage point is a point in the SUT which
is of particular importance to the coverage metric. The fuzzer will then store
a counter for each coverage point, indicating how often that point has been
reached.

There are a large number of coverage metrics, each with its own advan-
tages and disadvantages. They can be roughly divided into two categories.
Structural coverage metrics depend purely on the structure of the SUT. They
will analyse which parts of the source code have been executed, but will ig-
nore the underlying semantics of the program. Functional coverage metrics,
on the other hand, do not necessarily analyse the executed source code, but
rather which of the underlying features and objectives of the SUT have been
executed. They are therefore highly domain-specific.

Two examples for structural coverage metrics used in this work are the in-
struction coverage and the branch coverage. Instruction coverage measures
what percentage of singular instructions have been executed. Therefore each
instruction corresponds to a coverage point. Branch coverage on the other
hand looks at the conditional branching instructions and their outcome. To
reach 100% branch coverage, each branching condition must have been eval-
uated to both true and false at least once. In general, this makes branch cover-
age a stricter metric than instruction coverage. 100% branch coverage implies
that 100% instruction coverage has also been reached, while the reverse is not
necessarily true.

For a comprehensive overview of fuzzing, refer to [59].

3
R E L AT E D W O R K

In this chapter, we review publications related to the topics of this thesis.
These include publications concerning formal verification in Section 3.1, en-
vironment modelling in Section 3.2 and fuzzing in Section 3.3.

3.1 formal verification of robotic plans

The need for provable safety of autonomous robots has been recognized in
the literature and different verification approaches have been proposed.

For instance, [22] proposes a framework for the verification of Golog plans.
The methodology is based on model checking and first-order theorem proving.
The safety of the plan is verified with respect to temporal properties.

A similar approach is used in [10], where again safety of Golog programs
is checked. To guarantee decidability of the verification problem, the input
language is restricted.

In [114] the authors manually model the robotic plan in the modelling lan-
guage Brahms, which is then automatically translated to PROMELA and ver-
ified with the SPIN tool. In contrast to the Turing-complete language CPL
that we investigate in this thesis, Brahms is limited to if-then-else rules to
model the robots behaviour.

In [28] model checking is again used for the verification of the robotic
software. Here, the authors check the robots actions against its own belief
state. Instead of trying to verify that the robot performs the correct action,
they verify that the robot always performs an action that it believes to lead to
a safe state.

In [98] the translation of several domain-specific languages into SMV is
presented. The authors also restrict themselves to verify the robotic plan with
respect to internal properties, but remark that modelling the environment and
verifying with respect to environmental properties is "very important, [how-
ever] modeling the environment is very complex, and is not at all well under-
stood at this point".

Another approach to plan verification is probabilistic model checking,
where probabilities for erroneous behaviour is computed. Examples include
[79, 80].

For a broader overview of robot plan verification, see [64].
Overall, most current approaches to robot plan verification consider inter-

nal properties of the plan without a model of the robots environment. We
would however like to argue that a robot’s behaviour can only be properly
judged when its effect and interaction with the environment are taken into
consideration. In this thesis, we therefore decided to combine formal veri-
fication techniques with an explicit model of the environment. We also use

19

20 related work

symbolic execution as our verification technique. In contrast to model check-
ing, symbolic execution can act directly on the plan code and requires no
further modelling step.

Another approach to ensure the safety of autonomous robots is runtime
verification, also referred to as monitoring [42, 43]. In contrast to formal
verification methods, runtime verification is only able to detect errors when
(or just before) they occur and is not able to prove the safety of the robotic
plan.

3.2 modelling of robotic environments

Logic-based models of robotic environments have a long history. One of
the earliest formalisms in this direction is the Situation Calculus [68, 88],
which is based on first-order logic. The situation calculus models the state
and history of the environment as a situation. Fluents are then used to express
that some property holds in a set of situations. Executing an action in some
situation S results in a new situation S ′. The situation calculus allows the
modelling of action preconditions and effects. One also has to model the
non-effect of actions, i. e. that an action does not change certain unrelated
properties of the world. Due to the situations representing the history of the
environment instead of just the current state, a model in the situation calculus
represents a tree-like structure of all possible environment states.

The fluent calculus [104, 105] is a variation on the situation calculus. Here,
the environment state is not described through situations, but rather through
states. Each state is a concatenation of all fluents that hold in that state.

Another formalism is the event calculus [53, 72, 92], which is also based
on first-order logic. In contrast to the situation calculus, the state of the en-
vironment is not expressed through situations, but rather through timepoints.
At each timepoint a subset of the fluents holds, thus describing the state of
the environment at that timepoint. Actions in the event calculus have no ex-
plicit precondition. Instead, the effect of an action may depend on the state,
including actions that have no effect at all under certain preconditions. Due to
the semantics based on timepoints, a model in the event calculus represents a
linear description of the environment states. In [76], a discrete version of the
event calculus has been presented. In Section 4.2 we use this discrete event
calculus (DEC) and will therefore describe it in more detail there.

Other examples of formalisms for the description of actions and environ-
ments are the action languages A [35], ADL [83] and PDDL [36] and their
extensions. In contrast to the calculi described above, these formalisms have
a restricted expressive power which allows for efficient reasoning. In many
cases, properties can be proven even for an unrestricted time period. On the
other hand, this limited expressive power also limits the environments that
can be modelled. For instance, non-determinism, ramification constraints,
gradual change, or multiple agents can all be expressed in the DEC, but are
often problematic for those action languages.

3.3 fuzzing for robotics 21

In this thesis we make use of these formalisms, in particular the DEC, to
enhance our presented verification technique. To the best of our knowledge,
this use of formal environment models and especially the combination with
symbolic execution is a novel research direction.

We also present techniques to automatically build and debug formal envi-
ronment models. The debugging of formal models is still a manual process.
Similarly to the software domain, tools that assist in debugging have been de-
veloped [66]. However, they still require an experienced developer to identify
errors in the formal model. Our approach aims towards a mostly automatic
debugging process, where only the modifications to the formal model have to
be done manually.

3.3 fuzzing for robotics

Fuzzing has been mostly applied in the security domain, where it is used to
generate unexpected inputs that a program is not able to handle properly. The
fuzzing process can be unguided or guided by different policies or metrics.
In coverage-guided fuzzing, the code coverage is used to find the next input.
There are several mature tools for coverage-guided fuzzing such as AFL [120]
or libfuzzer [63]. Since many applications require inputs to be in a certain
format, a major research direction is the selective generation of valid inputs
such as specific file formats [17, 87].

The application of fuzzing to functional safety in the robotics domain is
still a new research direction. Nonetheless, there are already some promising
applications.

In [26] fuzzing is used to generate inputs to an autonomous robot or its
subroutines. The fuzzer is restricted to a certain grammar to provide valid
inputs, but is otherwise not guided.

In [117] the fuzzer is used to generate an environment for a robotic agent.
The generated environment is however only static, unlike the environments
we present in Chapter 6, which also include dynamic, manipulable objects.
In addition, the guidance for the fuzzer is based on machine learning instead
of the code coverage.

The tool PGFuzz [48] is able to generate inputs to the robot’s software. In
contrast to this work, the fuzzing is guided by a logic-based policy and the
SUT is a lower-level control system instead of a high-level plan.

In summary, fuzzing in the robotic domain is still in its infancy. The ex-
isting approaches are not plan-based nor coverage-guided. In addition, most
approaches only generate inputs to the control programs methods instead of
generating a full environment.

Other coverage-guided methods for autonomous robots have also been pro-
posed. In [9] a tool for automatic test pattern generation (ATPG) based on
structural coverage metrics is discussed. In contrast to fuzzing, ATPG will
produce less test cases and may therefore miss certain edge cases even though
the robotic software has been fully covered by some structural metric.

22 related work

In [6] the authors present a novel coverage metric, situation coverage. The
authors argue that structural coverage metrics are not sufficient, since the situ-
ation that the robot finds itself in is far more meaningful than the path through
the source code. In Chapter 6 we use a similar argument for our novel cov-
erage metric. In contrast to the situation coverage, our presented coverage
metric is only dependent on the robot’s actions and needs no manual defini-
tion of relevant situations.

4
S Y M B O L I C V E R I F I C AT I O N O F RO B OT I C P L A N S

The safety and correctness of autonomous robots is vital for their success in-
side human environments. The current state-of-the-art of manual, simulation-
based testing is however insufficient to find some of the more hidden bugs in-
side the robotic plan. We therefore propose to use formal methods, in particu-
lar symbolic execution, to ensure the correctness of robotic plans and uncover
bugs. The approaches presented in this chapter have been implemented for
the plan language CPL in our tool Symbolic Execution Engine for Cognition-
Enabled Robotics (SEECER). We present three major contributions in this
chapter.

First, in Section 4.1 we introduce SEECER and our general approach to
symbolic execution for robotic plans. Here, we also model the robots envi-
ronment in CPL to enable an easier integration with the plan. We evaluate
our approach on an abstract formalized environment.

In Section 4.2 we focus on a better environment modelling. Here, we use
the Discrete Event Calculus (DEC), a logical formalism widely used in the
robotics domain. We integrate modelling and reasoning routines for the DEC
into SEECER and evaluate our approach on a realistic household environ-
ment.

Section 4.3 focusses on the failure handling mechanisms in CPL. We use
symbolic fault injection on top of the symbolic execution to find gaps in the
failure handling of robotic plans. We evaluate this approach on a set of gen-
eralized fetch and deliver plans.

Finally, Section 4.4 concludes this chapter and gives directions for future
work.

4.1 symbolic execution of robotic plans

In this section, we propose the first symbolic approach for verifying plans of
cognition-enabled autonomous robots that perform everyday tasks in human
environments. We use the plan language CPL and the CLisp bytecode as a
basis for our verification. We envision a verification methodology based on
symbolic execution, as it has been shown that symbolic execution is a highly
effective technique for finding deep errors in complex software applications.
We present here the symbolic execution engine SEECER for CPL and the
CLisp bytecode. SEECER allows to check plan correctness with respect to
environment models as well as annotated assumptions and assertions.

We begin with background information on the formalized environment in
Section 4.1.1. Afterwards, Section 4.1.2 presents the main contribution, i. e.
the verification approach for CPL. Finally, we show the applicability of our
approach in a case study in Section 4.1.3.

23

24 symbolic verification of robotic plans

4.1.1 Background: Wumpus World

Autonomous robotic agents find themselves in highly complex environments,
which exceed the limits of exhaustive reasoning. In this section we introduce
the Wumpus World, a formally defined environment that operates on relatively
simple rules, but still poses a challenge due to its incomplete information
available to agents. We will use the Wumpus World as a running example
and environment for our experimental evaluation.

Definition 5. The Wumpus World is defined as a rectangular grid of cells
to which Cartesian non-negative integer coordinates are assigned. We define
0, 0 to be the cell in the southwest corner. Position values increase in northern
and eastern direction respectively.

The Wumpus World is assumed to be a dungeon where every cell represents
a room. An agent can enter and leave the Wumpus World in room 0, 0 only.
In every room, doors to adjacent ones can be found. However, the agent’s
perception is limited to events in its current room.

The agent’s goal is to find a glittery nugget of gold placed in one of the
rooms, pick it up, and leave the dungeon safely. In doing so, the agent might
face obstacles in terms of the Wumpus, a dangerous creature emitting a bad
odour to adjacent rooms, and a number of deep pits, around which in adjacent
rooms a light breeze can be perceived. Facing either the Wumpus or a pit, the
agent will be eaten alive by the Wumpus or fall to death, respectively. Neither
the Wumpus nor the pits change their positions.

For its defence, the agent is equipped with a single arrow, which can be
shot in any orthogonal direction at any time within the dungeon. Arrows cross
rooms until they hit a wall or the Wumpus. The latter leads to the Wumpus’
death and the immediate ending of bad smells in adjacent rooms.

The agent may perceive signals to gain information about the world around
him. These are a stench signal in rooms adjacent to the Wumpus, a breeze in
rooms adjacent to one or more pits, a glitter in the room with the gold or a
bump when the agent tries to walk through the boundaries of the dungeon.

To interact with the world, the agent may perform several actions: turning
by 90 degrees in either direction, walking one room forward, grabbing the
gold, shooting the arrow, climbing out of the dungeon, and perceiving any of
the signals.

Example 7. Consider the 3× 3 Wumpus World in Fig. 8a. An agent equipped
with bow and arrow just entered the dungeon and is located in position 0, 0.
A glittery gold nugget is placed at position 2, 0, whereas there is a Wumpus
in room 1, 1 and one pit at position 2, 2.

Stenches emitted by the Wumpus are depicted as vertical curvy lines while
breezes swirling around pits are horizontal ones. The glittery shine of gold is
represented as twinkling stars.

Due to the incomplete information given to the agent, the agent’s belief
state usually contains only parts of the full environment.

4.1 symbolic execution of robotic plans 25

(a) A 3 × 3 Wumpus World (b) Environment after one walking action

(c) Agent’s belief state

Figure 8: Environment vs. belief state

Example 8. Assume, the agent in the Wumpus World depicted in Fig. 8a
would turn to its right and would walk to room 1, 0. The resulting world is
shown in Fig. 8b. A perceiving action for stenches would tell the agent that a
Wumpus is close. Though, they do not know where it is precisely. Moreover,
they do not even know about the size of the world they found themselves in.

Fig. 8c depicts the agent’s belief state after the first walking and perceiving
action. They know that they walked in eastern direction from their starting po-
sition. Since they detected a stench, a Wumpus might hide in either adjacent
room.

4.1.2 Formal Verification of CPL Plans

In this section, we propose a verification approach for high-level plans for
autonomous robotic agents based on symbolic execution. We start with an
overview and the general idea in Section 4.1.2.1. We then go into detail about
how we deal with the interaction between the plan and its environment via an
interface in Section 4.1.2.2. Afterwards, we describe in detail the symbolic
execution on the resulting CLisp bytecode plans in Section 4.1.2.3.

4.1.2.1 Overview

This section summarizes the approach on CPL verification before we go into
more detail in the following sections.

26 symbolic verification of robotic plans

Figure 9: Overview of proposed plan verification approach

Since symbolic execution is simpler when dealing with a linearised source
code instead of nested expressions as they occur in Common Lisp, we re-
quire a linearised intermediate representation (IR) of the plan, environment
and belief state of the robot. We choose the CLisp bytecode introduced in
Section 2.1.2 as our IR.

Consider Fig. 9 for an overview of our approach. Our goal is to formally
verify that certain safety constraints formulated as assertions hold with re-
spect to a given CPL plan.

We start with compiling the CPL plan into CLisp bytecode. Additionally,
we integrate an environment model as well as the agent’s belief state into the
IR. Integrating the environment model allows reasoning about the agent’s ac-
tions. The IR plan accesses these IR models by means of mocked functions.
Essentially, these mocks are models of the corresponding CPL plan interface
functions. They enable the IR plan to perform perception, navigation, and
manipulation tasks directly on the environment model and query the belief
state model. Note that it is possible to exchange the environment model with-
out modifying the plan and hence, to verify the same plan’s safety in different
environments.

For verification purposes, symbolic expressions in combination with as-
sumptions and assertions (verification annotations) are embedded into the IR
(see lower left green box in Fig. 9). This enables a comprehensive state space
exploration.

Finally, the combined IR description is passed to the verification engine to
check for assertion violations triggered by the plan execution.

Our contribution includes (1) the integration of mocked functions and ver-
ification annotations into CPL and their translation into the CLisp bytecode,
and (2) SEECER, which is the symbolic execution engine tailored for the
bytecode.

4.1 symbolic execution of robotic plans 27

1 (perform (an action (type turning) (direction right))

)

2 (perform (an action (type walking)))

3 (perform (an action (type walking)))

4 (perform (an action (type perceive) (signal glitter))

)

Figure 10: Designators in the Wumpus World

4.1.2.2 Plan Interface and Environment Modeling

In this section, we describe how we integrate environments into our verifi-
cation process and model the interaction between environments, agents, and
plans. The main interface between the CPL plan and the Wumpus World envi-
ronment is CPL’s perform function. The following example illustrates how
the perform function can be used to perform actions in the Wumpus World.

Example 9. Reconsider the 3× 3Wumpus World given in Example 7 with the
agent located at the left bottom corner, i. e. position 0, 0, facing in northern
direction. A glittery gold nugget is still placed at position 2, 0. Assume further,
the agent makes the sequence of perform calls depicted in Fig. 10. The first
call would make it turn to its right (i. e. in eastern direction). The second and
third call would make it walk in eastern direction (i. e. the direction they face)
to position 1, 0 and 2, 0. The final call would detect a glittery object at that
location.

Even though perform offers an intuitive interface for programmers, the
underlying complexity of calls like perform in plan languages is non-trivial
in domains of symbolic execution. In particular, we want to abstract from the
concrete implementation of the underlying perception, navigation and manip-
ulation modules. By mocking the perform function, we are able to handle
the agent’s initiated actions in a way that simulates the desired environment
without (1) the agent being actually in it and (2) calling the whole underlying
execution stack. Mocking in this context means creating a function, which
to the plan behaves like perform would do without calling the underlying
stack and thus reducing complexity. For discrete and finite worlds such as the
Wumpus World, we use the intended behaviour for every possible perform
call to dynamically create this mock for perform in Common Lisp, yielding
a complete set of rules for the desired environment.

This is a general concept that applies to any concrete environment and plan
language. For our ongoing explanation, we utilize CPL and the Wumpus
World.

In Algorithm 1, we give a pseudo code description of the perform mock.
An input action designator d is checked for its type in Line 3. Dependent on
that type, actions are performed. In the Wumpus World, these can be of type
turning (Line 4), walking (Line 10), grabbing (Line 15), shooting (Line 19),
climbing (Line 24), and perceiving (Line 27).

28 symbolic verification of robotic plans

Algorithm 1 CPL perform mock
Input: Action designator d

1: if typed , perceiving then
2: bump← false

3: switch typed do
4: case turning
5: dir ← directiond
6: if dir right then
7: turn 90° clockwise
8: else
9: turn 90° counterclockwise

10: case walking
11: if agent faces a wall then
12: bump← true
13: else
14: go one step in viewing direction

15: case grabbing
16: if agentx goldx ∧ agenty goldy then
17: remove the gold nugget from the world
18: has_gold ← true

19: case shooting
20: if has_arrow then
21: has_arrow← false
22: if Wumpus is located in viewing direction then
23: remove Wumpus from world

24: case climbing
25: if agentx 0∧ agenty 0 then
26: leave dungeon

27: case perceiving
28: . . .

A walking action for example makes the agent take one step in its viewing
direction if it is not facing a wall. If they do, a bump signal is triggered instead.
This signal can be perceived by the agent to let them know that they walked
into a wall. Any action besides perceiving makes the bump signal disappear
again (Line 2).

We omit the perceiving implementation in the pseudo code (Line 28) due
to its large size. Implementing perceiving is straightforward as it contains
another switch over the signal to perceive, e. g. glitter or stench, and returns
true iff such a signal is present in the agent’s current room.

Please note that our approach allows for the modelling of both determinis-
tic and non-deterministic environment models through the use of additional
symbolic variables and assumptions inside the environment model.

4.1 symbolic execution of robotic plans 29

4.1.2.3 Symbolic Execution for CPL

In this section, we present our Symbolic Execution Engine SEECER for the
CLisp bytecode that was mentioned over the previous sections. The right
part of Fig. 9 on page 26 shows an overview of SEECER’s architecture. Es-
sentially, SEECER consists of a scheduler and a symbolic interpreter. The
scheduler manages a set of symbolic execution states and orchestrates the
state space exploration by selecting which state to consider next. The selected
state is passed to the interpreter for symbolic execution. CLisp bytecode in-
structions are interpreted one after another while the symbolic execution state
is updated accordingly.

The interpreter returns to the scheduler in one of three cases: (1) the end
of the program is reached, (2) an unsatisfiable assumption is reached, or (3)
a branch instruction with symbolic condition is executed. In the third case
the interpreter will split the symbolic execution state into two independent
states and return these two states to the scheduler for further processing. The
interpreter employs an SMT solver to check for assertion violations and check
feasibility of symbolic branch instructions. Besides user specified assertions,
our interpreter also checks for generic execution assertions, e. g. division by
zero.

SEECER starts with a combined CLisp bytecode description which inte-
grates the environment model, the belief state model, and the actual plan.
The description is transformed into an initial symbolic execution state, which
is then passed to the scheduler. The scheduler performs a Depth First Search
(DFS). DFS is a common state space exploration strategy that focuses on each
path individually and thus is memory efficient. This is important when han-
dling large state spaces. SEECER terminates either after finding a violated
assertion or after exploring the whole state space. In the latter case, the plan is
shown to be correct with respect to the environment model and the specified
assumptions and assertions.

In the following, we present more details on symbolic execution states and
our symbolic interpreter.

symbolic execution state A symbolic execution state can be defined
as the tuple pc, ip, v, g. The path condition pc describes the preconditions
needed to reach the current path. The instruction pointer ip points to the next
bytecode instruction to be executed. The value stack v and the global variable
map g store the current value of all variables. Variables are stored in the form
of cells.

A cell can contain any structure that may be formulated in current CPL
plans. We support integer values, real values, Booleans, strings, Common
Lisp symbols, functions, lists, CLOS classes and CLOS objects, including
classes and objects defined by CPL such as designators. Integers, reals, and
Booleans may be represented as concrete values or possibly symbolic SMT
expressions. Lists, classes and objects are not symbolic, but their contained
values may be.

30 symbolic verification of robotic plans

The engine starts with ip pointing to the first line of the first top-level func-
tion. This corresponds to the entry point of the CPL plan. The path condition
pc is set to > and the stack v and mapping g are empty.

symbolic interpreter The interpreter executes bytecode instructions
one after another and updates the symbolic execution state accordingly. We
extended the symbolic interpreter beyond the built-in bytecode functions by
including assume, assert, sym-int, sym-real and sym-bool functions.
The assume function adds its argument to the current path condition. The
assert function initiates an SMT call to check if its argument can be vio-
lated under the current path condition. If that is the case, an error has been
found and SEECER terminates and returns a counter example. Based on the
counter example, it is possible to retrieve the state of the environment model
and CPL plan as well as the assertion that has been violated. The symbolic
instructions sym-int, sym-real and sym-bool create a new symbolic vari-
able of the respective type, which can now be used. The variable is initially
unrestricted.

Every instruction except for control flow instructions increases the ip by
one. Whenever a new variable is introduced via a Common Lisp instruction
or a symbolic instruction, a new cell is added to either v or g, depending on
the instruction’s semantics.

For branch instructions like JMPIF with condition c and target label l, two
cases are considered:

(1) Only one branch direction is feasible. Then, the interpreter will con-
tinue with the next instruction (pc ∧ ¬c is satisfiable, but pc ∧ c is not) or the
instruction at the target label l (pc ∧ c is satisfiable, but pc ∧ ¬c is not). No
scheduler interaction is involved in this case.

(2) Otherwise (both directions feasible), the current state s is replaced with
two new states s> and s⊥, defined as follows:

pcs> pcs∧ c pcs⊥ pcs∧¬c

ips> l ips⊥ ips 1

vs> vs vs> vs

gs> gs gs> gs

Essentially, s> continues as if c was > and s⊥ as if c was ⊥. Please note that
an SMT solver is only employed if c is symbolic and not trivially simplified
to > or ⊥. Furthermore, only one clone operation is necessary to obtain s>
and s⊥, because the current state s is re-used. The interpreter returns s> and
s⊥ to the scheduler.

Other instructions like arithmetic or logical ones will manipulate the cells
in v and g according to their execution semantics. They are mapped to SMT
expressions in a straightforward way.

4.1 symbolic execution of robotic plans 31

4.1.3 Experimental Evaluation

We conducted a case study by assembling all individual components de-
scribed in the previous sections. These include the approach to combine
environment models and plans enriched with safety annotations as well as
our verification engine SEECER to test those annotations. In this following
section, we give an overview of our results.

We have implemented our verification approach for high-level robotic
plans as the symbolic execution tool SEECER in C++.

As a case study, we consider two CPL plans acting on the Wumpus World.
Our primary verification objective is to ensure the safety of the plan execu-
tion. All experiments are performed on a Linux machine with a 3.5 GHz Intel
processor using the Z3 SMT solver version 4.8.0. We configured Z3 to use
its stack-based incremental solver, since it has been shown to be particularly
effective for symbolic execution [62]. In the following we describe our two
plans (Section 4.1.3.1), the verification annotations (Section 4.1.3.2) and the
results of the experimental evaluation (Section 4.1.3.3) in more detail.

4.1.3.1 CPL Plans on the Wumpus World

We developed two plans with different complexity acting on the Wumpus
World. While certainly not optimal in terms of finding the gold, we expect
both plans to be safe, i. e. the agent will never die due to a pit or Wumpus. To
investigate the bug-finding capabilities of SEECER, we also consider earlier
faulty versions of both plans.

slalom plan This plan explores the dungeon in a slalom pattern, starting
by walking north. Upon perceiving a glitter, the agent will grab the gold
and leave the dungeon by walking back to room 0, 0 on the same path and
eventually climbing out. After perceiving a stench, it will shoot its arrow. If
the agent has no arrow left or perceives a breeze, it will also leave the dungeon
without further exploration. In its faulty version, the plan chooses an incorrect
path when leaving the dungeon, potentially sending the agent through unsafe
territory.

column-wise plan This plan explores more of the environment even af-
ter perceiving a stench or breeze. Similarly to the Slalom Plan, the agent will
avoid taking risks by exploring potentially dangerous rooms. It will instead
try to walk as far north as safely possible, then return to the southern-most
room in its column, move one column in eastern direction and repeat the
same process there. The agent will also pick up the gold if it encounters a
glitter. After all columns have been explored, the agent returns to room 0, 0
and climbs out of the dungeon.

Example 10. The function in Fig. 11 is part of the Column-wise Plan. It is
supposed to determine if a room’s neighbourhood is safe. The result of this
function is used to guide the agent’s exploration.

32 symbolic verification of robotic plans

1 (defun is-neighborhood-safe ()

2 (if (perform (an action (type perceive) (signal

breeze)))

3 nil

4 (if (perform (an action (type perceive) (signal

stench)))

5 (if has-arrow

6 (progn

7 (perform (an action (type shooting)))

8 (setq has-arrow NIL)

9 (not (perform (an action (type perceive

) (signal stench))))))

10 T)))

Figure 11: Function is-neighborhood-safe

The function first checks for a breeze in the current room (Line 2). If it
encounters a breeze, the current neighbourhood is deemed unsafe (Line 3).
Otherwise, it checks for a stench (Line 4). If a stench is perceived, it shoots
an arrow in its current viewing direction (Line 7). After shooting, the neigh-
bourhood is labelled as safe iff the stench has vanished (Line 9).

The faulty version of this plan misses the negation in Line 9 of Fig. 11.
This will cause the agent to sometimes label an unsafe neighbourhood as
safe, which might lead to dangerous exploration.

4.1.3.2 Verification Annotations

We formulate three classes of assertions on the Wumpus World and our CPL
plans. Each class corresponds to a different verification goal:

• Safety assertions: these assertions ensure that the agent never walks
into a pit or Wumpus. These are the most important assertions, as any
plan violating them puts the agent in danger. Consequently, they will
also be the main focus in our evaluation.

• Consistency assertions: the agents belief state is compared to the en-
vironment model to check for any inconsistencies such as differing po-
sitions. Consistency assertions are particularly useful during develop-
ment to avoid safety risks or unwanted behaviour later on.

• Livelock assertions: a maximum number of actions is imposed on the
agent to avoid livelocks, e. g. the agent walking in circles.

Besides the assertions, we also specify some general assumptions about
the environment. More precisely we require a valid initial environment con-
figuration, e. g. no two pits are in the same room.

4.1 symbolic execution of robotic plans 33

Table 1: SEECER plan verification results

Slalom Plan: safe version

pits 3 × 3 4 × 4 5 × 5 6 × 6 7 × 7 8 × 8 9 × 9 10 × 10

0
T 1s 3s 7s 14s 27s 46s 1m 2m

#P 10 22 38 58 82 110 142 178

1
T 2s 5s 14s 32s 1m 2m 3m 6m

#P 13 31 55 85 121 163 211 265

5
T 2s 7s 26s 1m 3m 5m 9m 16m

#P 4 19 43 73 109 151 199 153

Column-wise Plan: safe version

pits 3 × 3 4 × 4 5 × 5 6 × 6 7 × 7 8 × 8 9 × 9 10 × 10

0
T 1s 4s 11s 26s 54s 2m 3m 4m

#P 6 13 22 33 46 61 78 97

1
T 5s 40s 3m 12m 34m 1h33m 3h39m 7h56m

#P 21 102 306 722 1464 2670 4502 7146

5
T 1s 1m 21m 3h49m TO TO TO TO

#P 2 115 1319 10357 — — — —

T: execution time (s=seconds, m=minutes, h=hours)
#P: number of symbolic execution paths, TO: Timeout (8h)

4.1.3.3 Experimental Results

For evaluation, we consider both plans as well as their faulty versions, each
in combination with square Wumpus Worlds of edge lengths 3 to 10 rooms.
Further, we fixed the number of Wumpus’ and gold nuggets to one, but tried
multiple numbers of pits (0, 1, and 5). The agent always starts in room 0, 0,
while the positions of Wumpus, gold and pits are fully symbolic. This en-
ables a comprehensive plan verification for all possible environment configu-
rations within these boundaries. Finally, we use the verification annotations
described in Section 4.1.3.2.

We observed that SEECER has been highly effective in finding the bugs in
both faulty plan versions. For each combination of plan and environment
setup (i. e. size of the Wumpus World and the number of included pits)
SEECER found a counterexample demonstrating the bug in the CPL plan
leading to unsafe behaviour in less than a second. In most domains, finding
bugs is easier than proving their absence. As the following results show, our
approach is no exception to this.

Table 1 shows the results for the safe versions of the Slalom plan (upper
half of Table 1) and Column-wise plan (lower half of Table 1). We report the
execution time T and the number of paths #P for each combination of plan
and environment setup. In order to prove desired behaviour (i. e. none of the
assertion classes specified in Section 4.1.3.2 is violated), SEECER needs to
explore the complete symbolic state space.

34 symbolic verification of robotic plans

It can be observed that the verification time correlates with the environment
complexity. This is to be expected, as the size of the environment model
as well as the number of pits has a direct influence on the state space size.
Furthermore, the verification time also depends on the actual plan. While
SEECER is able to handle the Slalom Plan with increasing environment com-
plexity, it can be observed that the verification runtimes grow exponentially
for the Column-wise Plan. This can be explained with the significantly larger
branching logic in the Column-wise Plan, which in turn leads to a much larger
number of symbolic execution paths (#P) and SMT solver queries.

The slalom plan requires a maximum 265 symbolic paths and at most 16
minutes for SEECER to solve its correctness. The column-wise plan on the
other hand required over 10000 symbolic paths and reached the time limit
of 8 hours four times. Interestingly, the number of pits seemed to have a
higher negative impact here than just the size of the world. We expect further
optimization techniques to decrease the number of symbolic paths and thus
improve the scalability on environments like the Wumpus World.

Nonetheless, despite currently missing state-of-the-art optimizations in the
symbolic execution engine, the evaluation already demonstrates the applica-
bility and effectiveness of our approach in verifying high-level robotic plans
and indicates that the general approach can be a suitable foundation to deal
with larger and more complex environments and plans.

4.2 verification via logic-based environment modelling

Reasoning about the robotic plan in isolation can only offer limited benefits.
In particular, interaction between the robot and its environment needs to be
taken into account to achieve meaningful verification results. In the previ-
ous section, we presented an approach where the environment was modelled
directly in CPL. While this allows for an easier integration in SEECER, the
environment has to be written specifically for the plan under verification. In-
stead, the modelled environments should be reusable not only for the verifi-
cation of other plans, but also for other reasoning tasks such as planning. In
fact, there are several logic formalisms specialized in the modelling of envi-
ronments and actions, such as the Situation Calculus or the Event Calculus.
They are regularly used to model robotic environments and actions. These
formalisms have several advantages over a model in CPL, such as their well-
defined semantics and a plethora of environment descriptions and reasoning
procedures proposed in the literature.

In this section, we propose a safety verification methodology of robotic
plans written in CPL with respect to a logically formalized environment de-
scription. Our formalism of choice is the Discrete Event Calculus (DEC) due
to its high expressiveness and simultaneous decidability. Our contribution in
this section is threefold. We first present a decision procedure for the ver-
ification of simple branching-free action sequences with respect to a DEC
environment model. This procedure serves as a building block for our sec-
ond and major contribution, namely the verification of more complex robotic

4.2 verification via logic-based environment modelling 35

plans through a combination of DEC reasoning and symbolic execution. Our
third contribution is the verification of several CPL plans in a household en-
vironment and the modelling of that very environment in DEC.

We first introduce some background about the DEC in Section 4.2.1. Af-
terwards, we introduce our safety verification methodology in Section 4.2.2,
Finally, Section 4.2.3 presents our experimental evaluation.

4.2.1 Background: Discrete Event Calculus

The event calculus [53, 72, 92] is an established formalism to model and
reason about events and their consequences. It allows for the modelling of
non-determinism, conditional effects of events, state constraints, and gradual
change, among others. A domain description modelled in the event calculus
follows the common-sense law of inertia. Intuitively, this means that the prop-
erties of the world do not change over time unless there is an explicit reason
for the change. The model designer may however choose to release certain
properties from this law. Furthermore, the event calculus allows to state that
a predicate must be false unless explicitly required to be true. This is known
as default reasoning and can be used e. g. to limit the occurrences of events.
Default reasoning is usually realized through circumscription and denoted as
CIRCφ; P. Here, all occurrences of predicate P in φ are false unless specifi-
cally required by φ to be true.

The event calculus has been used to model robotic sensors [93], traffic
accidents [21], diabetic patients [44] and smart contracts [54].

In [76] a discrete version of the original event calculus has been introduced.
This section recaps this Discrete Event Calculus (DEC). For simplicity, a
version without gradual change axioms is presented.

4.2.1.1 Overview

The DEC is based on many-sorted first-order logic with equality, support-
ing the sorts of events, fluents, integers, timepoints and arbitrary user-defined
sorts (e. g. for domain objects). Events are occurrences in the modelling do-
main and can be divided into actions, which are deliberately executed by an
agent, or triggered events, which happen as a result of a change in the world.
In this thesis, we will focus mostly on actions and will therefore use event
and action interchangeably. There exists no notion of preconditions of an ac-
tion, i. e., any action may happen in any state. The effects of an action can,
however, vary depending on the state of the world. Consequently, the same
action could lead to the desired effect, an erroneous effect, or no effect at
all depending on the surrounding environment. Fluents describe the state of
some property of the world through time. At any given point in time, a fluent
may be either true or false. Timepoints in the DEC as opposed to classical
event calculus are bounded to the integer domain. Sorts may be reified, i. e.
taking other sorts as arguments. Examples of this are the action goinglocation
or the fluent isAtobject, location.

36 symbolic verification of robotic plans

Figure 12: Visualization of the vacuum world (n 2)

DEC descriptions are built using a set of predicates to formalize the state
of the world at different timepoints as well as the occurrences and effects of
actions. These predicates include:

• Happensa, t: Action a happens at timepoint t.

• HoldsAtf , t: Fluent f is true at timepoint t.

• ReleasedAtf , t: Fluent f is released from the common-sense law of
inertia at timepoint t.

• Initiatesa, f , t: When action a happens at timepoint t, then fluent f will
be true at timepoint t 1.

• Terminatesa, f , t: When action a happens at timepoint t, then fluent f
will be false at timepoint t 1.

• Releasesa, f , t: When action a happens at timepoint t, then fluent f will
be released from the common-sense law of inertia at timepoint t 1.

• Arbitrary user-defined predicates.

Additionally, the predicates ,,≤,<,≥,> and the functions ,−, ·,÷ are de-
fined over integers with their usual extensions. To illustrate how these pred-
icates may be used to model robotic environments, consider the following
example:

Example 11. Consider the modelling of a simple robotic environment in-
spired by the vacuum world [90]. The environment is composed of a finite
number of rooms r1, . . . , rn, which are each either dirty or clean. The rooms
are arranged in a row, i. e. room ri is left of room ri1 and right of room ri−1.
In the initial state, a vacuum cleaner robot is positioned in one of the rooms.
The robot can move through the rooms and clean the room it is currently in.
A possible state of the vacuum world with n 2 is visualized in Fig. 12. In this
case the robot is located in room r1 and both rooms are dirty.

4.2 verification via logic-based environment modelling 37

Our DEC description for the vacuum world includes the sort room, which
is a sub-sort of the integers, the actions GoLeft, GoRight and CleanRoom and
the fluents RobotInRoomroom and Dirtyroom.

At first, we require that the RobotInRoom fluent is functional, i. e. the robot
is in exactly one room at any given time:

∀t ∃r
(
HoldsAtRobotInRoomr, t

)
∀t, ri, r j

(
HoldsAtRobotInRoomri, t∧

HoldsAtRobotInRoomrj, t ⇒ ri r j
)

After that we describe the effects of the robot’s actions. The GoLeft and
GoRight action will move the robot in the respective adjacent room and re-
move it from its current room, unless it is already in the leftmost (r1) or right-
most (rn) room:

∀t, r
(
HoldsAtRobotInRoomr, t ∧ r , r1 ⇒

InitiatesGoLeft, RobotInRoomr − 1, t ∧

TerminatesGoLeft, RobotInRoomr, t
)

∀t, r
(
HoldsAtRobotInRoomr, t ∧ r , rn ⇒

InitiatesGoRight, RobotInRoomr 1, t ∧

TerminatesGoRight, RobotInRoomr, t
)

The CleanRoom action will result in the robot’s current room being clean (i. e.
not dirty):

∀t, r
(
HoldsAtRobotInRoomr, t ⇒

TerminatesCleanRoom, Dirtyr, t
)

To ensure that these predicates have the intended logical consequences, a
set of axioms is necessary. These axioms are given below.

4.2.1.2 Axioms

Following the notation from [76], all free variables are assumed to be univer-
sally quantified.

Axioms Dec1 through Dec4 deal with gradual change and are therefore
omitted here. The axioms Dec5 through Dec8 enforce the common-sense law
of inertia, i. e. if a fluent is not released and no action happens to change its
value, then the fluent will retain its value from the last timepoint. Additionally,
if no action happens to release the fluent, it will remain unreleased. If a fluent
is released and no action happens to set it to either truth value, it will remain
released.

Axiom Dec5(
HoldsAt f , t ∧¬ReleasedAt f , t 1∧
¬∃a

(
Happensa, t ∧ Terminatesa, f , t

))
⇒

HoldsAt f , t 1

38 symbolic verification of robotic plans

Axiom Dec6(
¬HoldsAt f , t ∧¬ReleasedAt f , t 1∧
¬∃a

(
Happensa, t ∧ Initiatesa, f , t

))
⇒

¬HoldsAt f , t 1

Axiom Dec7(
ReleasedAt f , t ∧
¬∃a

(
Happensa, t ∧

(
Initiatesa, f , t ∨ Terminatesa, f , t

)))
⇒

ReleasedAt f , t 1

Axiom Dec8(
¬ReleasedAt f , t ∧
¬∃a

(
Happensa, t ∧ Releasesa, f , t

))
⇒

¬ReleasedAt f , t 1

The axioms Dec9 through Dec12 ensure the correct consequences of ac-
tions. That is, if some action happens that initiates (terminates) a fluent, that
fluent will be set to true (false) at the next timepoint. The fluent will also no
longer be released from the common-sense law of inertia. If some action hap-
pens that releases a fluent, that fluent will be released at the next timepoint.

Axiom Dec9(
Happensa, t ∧ Initiatesa, f , t

)
⇒ HoldsAt f , t 1

Axiom Dec10(
Happensa, t ∧ Terminatesa, f , t

)
⇒ ¬HoldsAt f , t 1

Axiom Dec11(
Happensa, t ∧ Releasesa, f , t

)
⇒ ReleasedAt f , t 1

Axiom Dec12(
Happensa, t ∧ Initiatesa, f , t ∨ Terminatesa, f , t

)
⇒

¬Released f , t 1

Let the conjunction of axioms Dec5 to Dec12 be AxDec.

4.2.1.3 Reasoning

The following example showcases a possible reasoning problem in the DEC.

Example 12. Consider again the DEC description from Example 11. We will
now use this description to reason about the vacuum world with two rooms
(n 2). We require that the robot starts in the left room:

HoldsAtRobotInRoomr1, 0

We additionally specify an action that is executed by the robot:

HappensRight, 0

When combining this extended description with the AxDec axioms, we can
infer HoldsAtRobotInRoomr2, 1 as a logical consequence. Please note that
this consequence is true and can be deduced even though we did not specify
some aspects of the initial state, namely the dirtiness of the rooms.

4.2 verification via logic-based environment modelling 39

The former is an example of the deduction reasoning task. Deduction asks
whether a certain goal state follows from a (partial) initial state and a set of
actions. Other notable reasoning problems are abduction which asks for a
sequence of actions that lead from a given initial state to a given goal state,
and model finding which asks for complete models of partially specified DEC
descriptions.

Since most interesting reasoning tasks in first-order logic are generally un-
decidable, reasoning in the classical event calculus has to be done either man-
ually [73, 95] or automatically in highly restricted settings [94]. The DEC
on the other hand allows for fully automated reasoning by restricting all do-
mains, including the timepoints, to finite sets. We call these descriptions
bounded DEC descriptions. One way to reason about such bounded DEC de-
scriptions is a translation into Boolean satisfiability (SAT). For this purpose,
universal (existential) quantifiers are replaced by a conjunction (disjunction)
over all objects of the respective sort and the resulting quantifier-free for-
mula is converted into Conjunctive Normal Form (CNF). This together with
efficient computation of circumscription and simplification techniques was
implemented in the Discrete Event Calculus Reasoner (DEC reasoner) [76].
The resulting Boolean formula can then be solved by state-of-the-art SAT
solvers, yielding a set of models, which can be translated back into models
for the original DEC description.

4.2.2 DEC-based Verification of Robotic Plans

In this section, we propose a novel methodology for verification of robotic
plans with respect to environment descriptions formalized in DEC. We give
an overview of the considered topics and the structure of this part in the fol-
lowing Section 4.2.2.1. In Section 4.2.2.2, we first cover the verification of
simple action sequences and in Section 4.2.2.3, we present our verification
approach, which is based on symbolic execution, for complex plans written
in CPL.

4.2.2.1 Overview

Robotic agents operating in complex and changing household environments
can impose a safety risk on both the environment and themselves. To verify
the safety of plans operating in these environments, we present an approach
that combines symbolic execution and DEC reasoning. The problem that we
are tackling is depicted in Fig. 13 and intuitively reads as follows: given a
robotic plan and a DEC description consisting of an environment description,
the DEC axioms and a set of safety properties; is it possible to pick values
for the free (input) variables (e. g. the position of certain objects) such that
any of the safety properties does not hold? The approach that we are propos-
ing implements the verification engine shown in Fig. 13 via a combination
of symbolic execution and DEC reasoning and either returns “Safe”, stating
the plan’s safety under all possible free variable assignments, or an execution
trace and a sequence of environment states as a counterexample leading to

40 symbolic verification of robotic plans

Figure 13: Abstract view on the considered verification problem

the violation of at least one property. An important building block of our
approach is a procedure for the verification of action sequences, i. e. a finite,
branching-free sequence of atomic actions that are executed in order by a
robotic agent. This building block is implemented by means of a reduction to
a pure DEC reasoning problem. Since action sequences are still widely used
e. g. in manufacturing tasks, it is also useful as a stand-alone technique. In
the overall approach for the verification of CPL plans, this procedure is used
repeatedly during symbolic execution. We first introduce the verification ap-
proach for action sequences in the following section and, afterwards, present
our combined approach for complex plans.

4.2.2.2 Verification of Action Sequences

Verification of action sequences can be reduced to a pure DEC deduction
problem, as we will show in the following. Given the DEC axiomatisation
AxDec, an environment description Env, a sequence of actions a1, . . . , ak and
a set of properties P1, . . . , Pl, we want to prove that the conjunction of DEC
axioms, environment description and action occurrences entails the safety
properties, i. e.

AxDec ∧ Env∧ CIRC
k∧
i1

Happensai, i − 1; Happens |
l∧
j1

P j.

Here, CIRC is the circumscription operator introduced in Section 4.2.1. In
this case, it ensures that no actions other than a1, . . . , ak are occurring.

Since most reasoners for DEC, including the DEC reasoner introduced in
Section 4.2.1, do not directly support deduction, we formulate the deduction
problem given above as a model finding problem instead. To this end, we
perform model finding on the following conjunction

AxDec ∧ Env∧ CIRC
k∧
i1

Happensai, i − 1; Happens ∧

CIRC

l∧
j1

¬P j ⇒ U; U ∧U,

where U (short for unsafe) is a new 0-ary predicate symbol. Intuitively, we
enforce that any violated property sets the predicate U to true and then try to
find models that have at least one violated property.

4.2 verification via logic-based environment modelling 41

Since the final action occurs at timepoint k − 1, it is sufficient to consider
the timepoints 0 to k. This allows to encode the verification problem in a
bounded DEC description and to solve it using the SAT-based DEC reasoner
from [76]. If a model is found, it contains concrete states for all timepoints
together with the failed properties. This can be helpful when debugging the
action sequence. If no model is found, the action sequence is proven to be
safe.

Example 13. Consider again the vacuum world with n 2 from the previous
examples. Consider further the following action sequence: GoLeft, Clean-
Room, GoRight, CleanRoom. Assume that we want to verify that this action
sequence results in all rooms being cleaned after the last action, i. e. at time-
point 4. We express this by the property P1 ∀r

(
¬HoldsAtDirtyr, 4

)
. The

verification is now conducted by model finding on the following conjunction:

AxDec ∧ Vac2 ∧ CIRCHappensLeft, 0∧HappensClean, 1 ∧

HappensRight, 2∧HappensClean, 3; Happens ∧

CIRC
(
∃r HoldsAtDirtyr, 4

)
⇒ U; U ∧U,

where Vac2 is the DEC description of the vacuum world described in Exam-
ple 11 with n 2. When giving this conjunction to the DEC reasoner, no
model will be returned, therefore proving the safety of the action sequence
with respect to P1 for all possible initial states of the vacuum world.

4.2.2.3 Verification of Complex Robotic Plans

In the previous section, we discussed how simple action sequences can be ver-
ified with respect to a set of properties using DEC reasoning. This approach
is however no longer sufficient to solve the verification task for arbitrary plans
written in Turing-complete plan languages. In this section, we therefore com-
bine this procedure with symbolic execution. We present our approach utiliz-
ing CPL as a running example. We would like to point out, however, that our
approach works for any robotic plan language, as long as a suitable symbolic
execution engine is available.

Fig. 14 shows an overview of our architecture. The inputs to the verifica-
tion problem are a CPL plan and the DEC environment description that inter-
acts with the plan through actions and their respective return values. The envi-
ronment description is further extended with the DEC axioms and the safety
properties, forming a single joint DEC description. The core of our approach
is the symbolic execution engine DEC-SEECER, which is an extension of
the CRAM symbolic execution engine SEECER. We extended SEECER by
the capability to handle DEC descriptions and to reason about them in com-
bination with the SMT constraints for the path condition that arise during
symbolic execution. An important part of this extension is the interface to
the DEC reasoner, which receives DEC descriptions and translates them into
Boolean CNF formulae. These formulae can be combined with other SMT
constraints and solved by the SMT solver Z3. Again, a performmock is used
to abstract from low-level effects like motor control. However, this mock is

42 symbolic verification of robotic plans

Figure 14: DEC-centric architectural view

not hand-written for each environment, but can instead handle arbitrary DEC
descriptions, thus supporting a multitude of different environments.

In the remainder of this section, we describe DEC-SEECER and especially
the integration between symbolic execution and DEC reasoning in more de-
tail.

integration between dec and symbolic execution The CLISP byte-
code is executed symbolically by DEC-SEECER. The general symbolic exe-
cution operates similar to the version described in Section 4.1 by managing
several execution states. These execution states are however represented by a
5-tuple pc, ip, v, g, E, where pc, ip, v and g are the path condition, instruction
pointer, value stack and variable map, respectively. The DEC description E is
added to allow combined reasoning about the plan and its environment. This
description is built in a very similar way to the one in Section 4.2.2.2. The
DEC description of the initial state is given as

E0 AxDec ∧ Env∧ CIRC
l∧
j1

¬P j ⇒ U; U

and combines the AxDec axioms, environment description and safety proper-
ties.

During the symbolic execution of the plan, we differentiate between three
types of instructions: the first type are non-control flow Common Lisp instruc-
tions, e. g., arithmetic instructions, or string manipulations. These update the
execution state in the usual way and do not affect E. The second type are
perform instructions, which add an action occurrence to E via a respective
Happens conjunct. Like in Section 4.2.2.2, these Happens conjuncts are sub-
ject to circumscription. Perform instructions also increase the instruction
pointer ip by 1, and push a return value onto v. The third type, branching in-
structions, lead to a feasibility check of both branches. To account for effects

4.2 verification via logic-based environment modelling 43

1 (perform (an action (type go-left)))

2 (let ((dirty (perform (an action (type detect)))))

3 (if dirty

4 (perform (an action (type clean-room)))))

5 (perform (an action (type go-right)))

6 (let ((dirty (perform (an action (type detect)))))

7 (if dirty

8 (perform (an action (type clean-room)))))

Figure 15: CPL plan for the vacuum world

from the environment, the DEC description is incorporated in this feasibility
check as follows.

E is translated into CNF by the DEC reasoner. We denote this transla-
tion by DECRE. Since the SAT variables in this CNF are disjunct from the
plan variables, they need to be related via a mapping. This mapping is im-
plemented by the conjunction of equivalence constraints mE. DEC-SEECER
now evaluates the satisfiability of both C ∧ pc∧DECRE ∧mE and ¬C ∧ pc∧
DECRE∧mE. Here, C and pc are the branching condition and path condition,
as before.

To ensure the plan’s safety concerning the properties, a similar satisfiabil-
ity check is used. After executing any action, the following conjunction is
checked for satisfiability:

pc∧DECRE ∧U ∧mE

Any assignment satisfying this formula corresponds to a counterexample, i. e.
an instance of a safety property being violated by the plan. Consequently,
if all such checks return UNSAT during the symbolic execution, the plan’s
safety is proven. The following example illustrates our approach.

Example 14. Consider once again the vacuum world from the previous exam-
ples. We extend this world by an additional action Detect that is supposed to
detect dirt in the robot’s current room. Since this action returns information
to the plan, we need an additional fluent ReturnVal(). We also add constraints
expressing that Detect will set ReturnVal() to true if the robot’s current room
is dirty, and to false otherwise. We denote this extended environment descrip-
tion by Vac ′.

Assume we want to verify the safety of the CPL plan shown in Fig. 15.
This plan is more complex than the action sequence presented in Example 13
because it considers the state of the environment in Line 3 and 7 before ex-
ecuting certain actions. Namely, the robot only cleans a room if it detects
dirt in that room. Again, we would like to verify the plan’s safety using the
property P1 from Example 13. Additionally, we would like to prove that the
robot will never attempt to clean an already cleaned room. This is expressed
by the safety property

P2 ∀t, r
(
¬HoldsAtDirtyr, t ∧

HoldsAtRobotInRoomr, t ⇒ ¬HappensCleanRoom, t
)
.

44 symbolic verification of robotic plans

Figure 16: Execution tree of the symbolic execution

The initial symbolic execution state can now be written as the 5-tuple
>, 0, ∅, ∅, E0 with

E0 AxDec ∧ Vac ′2 ∧ CIRC
(
∃r HoldsAtDirtyr, tmax

)
⇒ U

∧
(
∃t, r ¬HoldsAtDirtyr, t ∧HoldsAtRobotInRoomr, t

∧HappensCleanRoom, t
)
⇒ U; U.

Fig. 16 shows parts of the execution tree imposed by the symbolic execution.
Each node in the tree represents an execution state composed of the path
condition, the instruction pointer (denoted by the respective line number in
Fig. 15), variable stack, variable mapping, and DEC description. Since each
instruction except for the conditional branch performs an action, the DEC
descriptions and assignments are updated as follows:

E1 E0 ∧ CIRCHappensLeft, 0; Happens

E2 E0 ∧ CIRCHappensLeft, 0∧HappensDetect, 1; Happens

g2 {dirty 7→ DECRHoldsAtReturnVal, 2}

After every action being performed, the plans’ safety is checked via an SMT
solver call. For example, after the Clean action (which is performed in the
node on the bottom left), the following conjunction is checked for satisfiabil-
ity:

g2dirty∧DECRE2 ∧DECRU

DECRHoldsAtReturnVal, 2∧DECRE2 ∧DECRU

This formula is unsatisfiable. In fact, every such formula during the symbolic
execution of this plan is unsatisfiable, thus proving the safety of the plan.

Since verification of Turing-complete programs is undecidable in general,
there are cases in which our approach will not terminate or terminate with an
inconclusive result. In particular, this is caused by non-terminating CRAM

4.2 verification via logic-based environment modelling 45

plans or complex arithmetic conditions in the plan. These results are exclu-
sively due to the symbolic execution part of our approach, since DEC-based
environment descriptions can always be grounded to pure Boolean SAT prob-
lems. Because of the undecidability of program verification, termination
could only be guaranteed by severely restricting the robotic plans under veri-
fication.

In the following section, we show that our approach can nonetheless handle
many practically relevant robotic plans.

4.2.3 Experimental Evaluation

We implemented DEC-SEECER using the DEC reasoner version 1.0 and the
Z3 SMT solver version 4.8.4 as back-end. All experiments have been con-
ducted on a Linux machine with an Intel CPU with 3.5 GHz clock rate. To
evaluate our approach, we used several variations of the Shopping demo plan
taken from the official CRAM repository. The Shopping demo plan involves
a two-armed human-sized robot operating in a supermarket environment con-
sisting of a shelf and a table. The robot is supposed to move several objects
between the two locations. The shelf is wider than the robot’s reach, mak-
ing it necessary for the robot to determine a suitable position in front of the
shelf for grasping certain objects. However, positions directly in front of the
shelf cannot be used for detection, because parts of the shelf may obstruct the
robot’s view. It is, therefore, necessary that the robot first obtains an overview
from a suitable position. We modelled these restrictions in an environment
description in DEC.

To evaluate our approach, we used several variations of the existing Shop-
ping demo plan in combination with the DEC description. In the following
Section 4.2.3.1, we discuss all plans in detail. In Section 4.2.3.2, we present
our DEC environment and the safety properties. Finally, in Section 4.2.3.3,
we show our experimental results and discuss them.

4.2.3.1 Robotic Plans

For the experimental evaluation, a total of six plans have been evaluated. They
are listed below.

shopping The original Shopping demo plan attempts to move a set of pre-
defined objects from the shelf to the table. The robot moves to a predefined
position from where it has an overview of the whole shelf and tries to detect
all objects. Afterwards, it repeats the following operations for each object.
First, the robot moves to a central position in front of the shelf. If the object
is already within reach, it is then grasped with the closest gripper. Otherwise,
the robot needs to move to a different position to its left or right. Once the
object is grasped, it is transported to the table and placed onto the tabletop.
Over the course of the execution, certain positions on the table are filling up.
To avoid collisions, the robot computes a new free position after setting an
object and uses that position for the next object.

46 symbolic verification of robotic plans

1 (when (>= (y ?object-position) 0.8)

2 (setf ?grasping-arm :left)

3 (perform (an action

4 (type going)

5 (target (a location

6 (pose ?grasp-pose-left))))))

7 (when (< (y ?object-position) -0.8)

8 (setf ?grasping-arm :right)

9 (perform (an action

10 (type going)

11 (target (a location

12 (pose ?grasp-pose-right))))))

13 (perform (an action

14 (type picking-up)

15 (arm ?grasping-arm)

16 (object ?newobject)))

Figure 17: Excerpt of the Shopping plan

Fig. 17 shows an excerpt of the Shopping plan. The plan compares an
object’s position with predefined boundaries (Line 1 and Line 7). Depending
on that position, the robot either moves to the left (Lines 2-6), to the right
(Lines 9-12), or stays in its current position. Afterwards, the robot attempts
to grasp the object (Lines 13-16).

shopping 2 This plan is a modified version of the Shopping plan. A small
error was deliberately inserted to test our approach’s bug-finding capabilities.
By replacing the >= in Line 1 of Fig. 17 with a <=, the robot chooses the
wrong grasping position for some objects. We expect this change to result in
an error for some initial environment states.

shopping 3 This plan is another erroneous modification of the original
Shopping plan. Here, the plan does not move the robot to the designated
detection pose at the start of the plan but instead attempts to detect all objects
from the robot’s initial position. We expect this to result in some objects not
being detected, which would mean that some objects remain on the shelf not
fulfilling the plan’s goal.

shelf filling The Shelf Filling plan has the reverse goal of the Shop-
ping demo. A set of objects is located anywhere in the environment and the
robot’s goal is to pick up these objects and put them onto the shelf. This plan
simulates the automatic refilling of supermarket shelves by a robotic agent.
Here, each object has an associated row, onto which it has to be placed on the
shelf. The plan achieves this by grabbing the objects one by one and placing
them in an unoccupied spot in their respective shelf. To this end, it needs to
maintain a belief state of objects that have already been placed onto the shelf.
This procedure is repeated until there are no more objects left. In some cases,

4.2 verification via logic-based environment modelling 47

however, it is necessary to omit certain objects, because some positions on
the shelf are initially occupied. Placing these objects is tried again at the end
of the plan. This plan is deliberately more complex with a higher amount of
branching logic compared to the Shopping plan.

shelf filling 2 We again constructed erroneous versions of the original
plan. In this version, whenever an object is omitted, it is simply removed
from the list of objects and not moved to the end. We expect this error to
result in objects being left in the environment and, therefore, in the wrong
position after the plan’s termination.

shelf filling 3 This modified version of the Shelf Filling plan does not
take certain occupied positions on the shelf into account, resulting in possible
collisions of objects.

4.2.3.2 Environment Description and Safety Properties

All plans presented in the previous section operate in the same environment
consisting of a shelf and a table. We modelled this environment in the DEC.
The shelf consists of three rows (top, middle, bottom) and four sections in
each row (far left, left, right, far right). Objects may be located in any of
the sections in any row, resulting in a total of twelve positions on the shelf
per object. There are three positions for the robot in front of the shelf and
a fourth one a little further away. These positions are suitable for reaching
parts of the shelf or detecting objects on the shelf, respectively. The table
is also partitioned into several sections. This allows us to model the limited
space available. The table can again be reached from a dedicated position in
front of it. Our model uses sorts for the movable objects in the world, the
positions, and other aspects like the robot’s arms or different heights. We
use several fluents modelling the positions of objects and the robot, grasps,
detection status, and others. The whole environment model consists of 56
logical sentences.

To ensure the plan’s safety, a set of safety properties was also formalized
in DEC. These safety properties ensure that (1) the robot never reaches an
internal error state, (2) all actions produce their desired effects1, and (3) no
two objects are ever placed in the same position. This last property detects
possible collisions that, in the real world, would result in the robot damaging
its environment. Additionally, we added properties that require (1) that at the
end of the Shopping plan, all objects are placed on the table, and (2) that at
the end of the Shelf Filling plan, all objects are placed onto their associated
shelf rows.

1 Note that this does not necessarily hold by design of the environment model. E. g. a grasping
action will not result in the desired result if the robot is too far away from the object or the
gripper is already occupied.

48 symbolic verification of robotic plans

Table 2: Verification results

Plan’s name #LOC Verdict #Paths Time (s) Time gen. (s)

Shopping 338 Safe 16 2144 1967

Shopping 2 338 Unsafe 2 343 300

Shopping 3 327 Unsafe 1 176 152

Shelf Filling 914 Safe 123 31370 30708

Shelf Filling 2 823 Unsafe 10 2823 2767

Shelf Filling 3 911 Unsafe 11 3326 3262

4.2.3.3 Experimental Results

We ran our proposed verification approach on all plans presented in Sec-
tion 4.2.3.1. All Shopping plans had two objects in their initial state. The
objects’ positions were not restricted which means that the plan was verified
for any possible initial placement of objects. The initial state for the Shelf
Filling plans includes three objects. Their positions, both on the table and on
the shelf, were again left fully symbolic. In all scenarios, the robot’s initial
position, arm positioning and torso height was left symbolic to account for
all possible starting states.

Table 2 summarizes our experimental results. Here, each row represents a
run of one plan. We report (from left to right) the plan’s name, the number of
lines of the respective CLisp bytecode (#LOC), the verification verdict, the
number of paths in the symbolic execution tree (#Paths), the total runtime,
and the time spent on generating SAT instances by the DEC reasoner. All
times are reported in seconds.

As can be seen, our approach always returned the expected verification
result. All errors in the modified plans were found and both unmodified
plans were proven to be safe with respect to the specified safety properties.
Moreover, the three versions of the Shopping plan were verified with only a
few paths and in less than 40 minutes. This is due to the fact that only the
branching logic in the plan itself affected the number of symbolic execution
paths. Any conditional construct in the environment itself was instead trans-
lated into a conditional CNF representation and solved by the SMT solver.
The Shelf Filling plans, which were designed to involve a lot more branch-
ing, led to more symbolic execution paths and thus to a significantly higher
runtime. Even the unmodified Shelf Filling plan was, however, verified in un-
der 9 hours. Verifying the modified versions of both plans took a fraction of
the runtime of their unmodified counterparts. This is because DEC-SEECER
terminates after the first property violation has been found. The right-most
column reports the runtime that was spent on the generation of the SAT in-
stance by the DEC reasoner. As one can see, this procedure was responsible
for the majority of the overall runtime (86-98%). The solving process was
a lot faster in comparison. This indicates that the generation procedure of

4.3 symbolic fault injection for robotic plans 49

the DEC reasoner is inefficient compared to the solving capabilities of mod-
ern state-of-the-art engines. In fact, a number of more efficient grounding
procedures have been developed since then (c. f. [46] for an overview). Fur-
thermore, the DEC reasoner does not generate CNF instances iteratively.

In summary, our experiments show DEC-SEECER’s capability to verify
the safety of robotic plans such as the Shopping demo. Even a more complex
plan, namely the Shelf Filling plan, was verified correctly and within an ade-
quate time. To further improve our approach’s runtime, a dedicated reasoner
for DEC could be developed with state-of-the-art grounding techniques and
support for the incremental unrolling of environments.

4.3 symbolic fault injection for robotic plans

The dynamic and uncertain environments of autonomous robots pose a sig-
nificant challenge for many low-level actions, such as grasping an object or
navigating to an exact position. While progress is being made in the accuracy
of these low-level actions, avoiding failures altogether seems hardly possible.
In an autonomous setting, the robot has to recover from low-level failures by
itself to be able to still reach its goal. This need for autonomous failure han-
dling has been recognized in the literature and a multitude of failure handling
strategies have been described [47, 60, 78]. In plan languages such as CPL,
failures may be thrown by low-level modules and handled by higher-level
plans. If a failure occurs without an adequate handler, the robotic plan will
usually crash, stopping the robot entirely. Ideally, a robotic plan would be
written in such a way that all possible low-level failures are handled inside
the plan, without any crashes and the need of external interference. With the
increasing complexity of robotic plans however, finding unhandled failures
is a challenging task. The typical method of finding unhandled failures are
simulations. These are, however, inherently incomplete and will often not
find failures that occur only occasionally. To tackle this problem, we instead
propose to use formal methods, in particular symbolic fault injection to find
cases in which failures are not properly handled. Our method is based on
the worst-case assumption that any low-level action may fail at any time with
any of its possible failure types. We then use our symbolic execution engine
SEECER to find all cases in which failures are left unhandled. In this section,
we extend SEECER to reason about CPL’s failure handling mechanism. We
also present a general methodology to implement our worst-case-assumption
directly in CPL and present an optimization technique to increase the scalabil-
ity of our approach. Our method is complete, i. e. it is able to produce either a
complete list of all unhandled failures or guarantee that no such failure exists.
Since we reason directly on the plan code, we are not limited to certain failure
handling strategies.

We present our approach in Section 4.3.1 and an experimental evaluation
in Section 4.3.2.

50 symbolic verification of robotic plans

1 (with-failure-handling

2 ((failure-type (e)

3 handler))

4 body)

(a) Original code

1 (defun (e) handler1

2 (if (typep (type-of e) failure-type)

3 handler

4 (rethrow-failure e)))

5 (start-failure-handling "HANDLER1")
6 body

7 (end-failure-handling)

(b) Rewritten code

Figure 18: Rewriting scheme for failure handlers

4.3.1 Symbolic Fault Injection for CPL

This section describes our approach on fault injection for CPL plans.

Our approach takes a CPL plan and tries to find unhandled failures that can
occur in it. Most failures are thrown inside very low-level modules that are re-
sponsible for the execution of mechanical actions such as grasping. We want
to abstract from the internals of these modules, since they often depend on
the current state of the environment. Instead, we consider all types of failures
that may be thrown by the module and replace the concrete implementation
of the module with the worst-case assumption that any of those failure types
may occur whenever the module is called.

We call the actions for which we apply this assumption atomic actions.
Please note that the notion of atomic actions is flexible, i. e. depending on
the desired accuracy and runtime, a user could choose higher or lower cut-off

points.

The core of our approach is the symbolic execution engine SEECER. We
extend SEECER to support the extensive failure handling capabilities that are
present in CPL. The details of this extension are given in Section 4.3.1.1.

Our fault injection approach is based on the general worst-case assumption
that any action may fail at any time with any of its possible failure types. To
reflect this behaviour, we built a general environment model that implements
this assumption for all atomic actions of CPL. In addition, we implemented
a similar worst-case assumption for all reasoning subroutines. The details
of this environment model and the reasoning subroutines are presented in
Section 4.3.1.2.

Finally, we propose an additional optimization technique to reduce the run-
time of our approach in Section 4.3.1.3.

4.3 symbolic fault injection for robotic plans 51

4.3.1.1 Extending SEECER with Failure Handling

Prior to the implementation of this section’s functionality, SEECER sup-
ported the core of CPL as well as a multitude of Common Lisp functions. To
enable symbolic fault injection, the failure handling functionalities of CPL
were implemented into SEECER.

The nested Common Lisp code is generally problematic for a symbolic
execution engine. Therefore, as a first step, the nested failure handling macro
is rewritten into a more sequential control flow. The applied rewriting is
illustrated in Fig. 18. Fig. 18a shows the code before and Fig. 18b after our
rewriting scheme is applied. As shown, the failure handler is placed inside a
new function and guarded by the condition that the type of the active failure is
equal to or inherited from the failure-type (Line 2 in Fig. 18b). Otherwise, the
handler is not executed, but instead the failure is re-thrown to be handled by a
higher-level handler (Line 4). We call this new function the handler function
to differentiate the whole function from the original handler that is now part
of it.

The body is encapsulated inside two new functions start-failure-handling
(Line 5) and end-failure-handling (Line 7). SEECER uses these functions
to manage failures and handler functions internally. Information about han-
dler functions are organized as a stack, with start-failure-handling pushing a
new handler function onto the stack and end-failure-handling removing the
top function. When a failure occurs, the execution jumps to the newest han-
dler function on the stack. This is done by pushing a new element onto the
function stack similar to a normal function call. The handler function is then
executed. If the same or a new failure is thrown inside the handler function
itself, the next handler from the stack is executed. If no failure is thrown
inside the handler, the failure has been successfully handled and the execu-
tion jumps back to the return address, i. e. the line after which the failure
was initially thrown. If a failure is thrown with an empty handler stack, the
failure reaches the top level of execution. We call these failures top-level fail-
ures. In a normal execution they lead to a crash of the plan. SEECER can be
configured to either terminate the whole execution or just the current context
in this situation. In the first case only the first top-level failure would be re-
ported and in the second case all top-level failures would be collected before
SEECER terminates. The user can decide between the two modes depending
on their needs. If no top-level failure occurs at all, the plan’s failure handling
is proven to be complete.

4.3.1.2 Symbolic Substitution of Atomic Actions

In this section, we want to use the failure handling described in the previous
section to find all possible top-level failures. This is based on the worst case
assumption that any atomic action may fail at any time with any of its possible
failures.

The worst-case assumption is completely implemented into Common Lisp
as follows. For each execution of an action, a new symbolic integer is created.

52 symbolic verification of robotic plans

1 (let* ((sym−ct r (sym− in t symbolic−name)))
2 (i f (= 1 sym−ct r)
3 (c r a m− f a i l u r e (make− i n s t ance
4 ’ g r i p p e r−g o a l−n o t− r e a c h e d))
5 (when (= 2 sym−ct r)
6 (c r a m− f a i l u r e (make− i n s t ance
7 ’ g r i p p e r− c l o s e d− c o m p l e t e l y)))))

Figure 19: Implementation of the worst case assumption for the grasping action

Each of the n possible failures is then assigned a unique integer between 1
and n. A chain of if statements now ensures that each failure is thrown iff
the symbolic integer has that failure’s respective value. For all other values
no failure is thrown.

Example 15. Consider an action of type Grasping that tries to grasp an
object. There are two possible types of failure that may occur. If the
robot’s motion planning module does not find a sequence of motions to
reach the object – usually because it is too far away – a failure of type
gripper-goal-not-reached is thrown. If the robot instead tries to grasp
the object, but detects that its grippers have fully closed (and therefore failed
to grasp the object), a failure of type gripper-closed-completely is
thrown. Fig. 19 shows the implementation for the Grasping action. In Line 1
a new symbolic integer is created. The variable symbolic-name contains a
string for the internal naming of the variable in the SMT solver. The symbol
sym-ctr now contains the variable itself. If the variable is equal to 1, a
gripper-goal-not-reached failure is created and thrown in Line 4. Sim-
ilarly, if it is equal to 2, Line 7 throws a gripper-closed-completely
failure. For all other values, no failure is thrown.

Please note that the assignment of integer values to failures is arbitrary. A
different assignment will still produce the same outcome as long as all failures
are assigned to at least one unique value.

In addition to atomic actions, the environment model also needs to deal
with complex reasoning subroutines that are part of many high-level planning
frameworks like CRAM. These routines are often complex and take into ac-
count the current environment, the robots belief state and dynamically chang-
ing knowledge bases. Following our worst-case assumption, we have to rea-
son about all possible results from the reasoning subroutines. Similarly to the
atomic actions this is realized through a pure Common Lisp implementation.
For each call of a reasoning subroutine, a symbolic variable of the respective
type is created. The value may be restricted through assume statements (e. g.
to a certain numerical range) and is then returned.

4.3.1.3 State Caching

Such a general methodology as presented here will often create a large num-
ber of symbolic values and result in a large number of symbolic paths. This is

4.3 symbolic fault injection for robotic plans 53

1 (defun handler1 (failure)

2 (if (typep (type-of failure)

3 ’gripper-goal-not-reached)

4 (print "WARNING: G r a s p i n g f a i l e d ")
5 (rethrow-failure failure)))

6 (start-failure-handling "HANDLER1")
7 (perform

8 (an action

9 (type grasping)

10 (object obj)))

11 (end-failure-handling)

Figure 20: A failure handler without side effects

due to the branching that takes place whenever an action is executed. There-
fore, this section discusses a technique to reduce the search space through
means of state caching.

In many cases a failure handler will have little to no side effects, i. e. the
state after the handler has finished is identical to the state in which no failure
occurred in the first place.

Example 16. Consider the plan excerpt in Fig. 20. As shown in the previous
example, there are three possible outcomes of the grasping action performed
in Lines 7-10: The action may throw a gripper-goal-not-reached failure,
a gripper-closed-completely failure or no failure at all. In the first case,
the handler would print a warning and then jump back to Line 11 and in the
third case the handler would not be called at all and instead the execution
would continue as normal, also with Line 11. Since the handler has no side
effects at all, both execution states would be identical.

Since both states are identical, they will lead to the same execution traces
upon further symbolic execution. Because of this, it is safely possible to only
continue execution on one of the states without affecting the final result. This
is an instance of state merging [55], an established optimization technique in
symbolic execution. Usually, state merging will compare symbolic states and
if two states are similar by some metric, their path conditions and variable
assignments will be combined. This combination results in less, but more
complex symbolic states, shifting complexity from the search algorithm to the
SMT solver. For an effective use of state merging, a large number of symbolic
states must be active at the same time. As demonstrated above, states during
fault injection for typical CRAM plans are not only similar, but identical. This
enables us to use a simpler version of state merging with less overhead which
we call state caching. State caching only acts on identical states at certain
manually chosen checkpoints in the plan. At the checkpoints the states are
stored inside a cache. Whenever a state s is identical to a previously stored
state s ′, the current execution trace can be terminated, since all results after
state s have already been produced after s ′. This way identical states are only
processed once.

54 symbolic verification of robotic plans

The comparison between states is based on the states’ function stack, value
stack, variable assignments and path condition. These also include values that
have been used prior to the current point in the execution, but are not relevant
to any decisions after that point. This is especially true for the symbolic
values introduced in the last section as they are used only once immediately
after being created. These values can therefore be ignored when it comes to
comparing two states.

Example 17. Consider again the previous two examples. Since the symbolic
variable sym-ctr is used to differentiate between the type of failure that is
thrown, the two states from the previous example will have differing path con-
ditions. The state which throws the gripper-goal-not-reached failure,
will have symctr 1 in its path condition. The state which did not throw a
failure will instead have a path condition of sym-ctr , 1 ∧ sym-ctr , 2.
Since sym-ctr is not used in any future paths of the program, this difference
may however be ignored, making the two states identical again.

Currently the values to ignore are determined manually, but for future work
we plan to do this automatically based on the plan’s control flow.

We implemented the state cache in a map structure using hash values for
fast comparisons. These hash values are constructed by first hashing the indi-
vidual entries in the function stack, value stack, variable assignment and path
condition and then combining all entries via the XOR function.

4.3.2 Experimental Evaluation

This section presents our experimental evaluation. All experiments were con-
ducted on a Linux machine running an Intel CPU with 2.50 GHz clock rate.
Our main research questions are whether symbolic fault injection is suited
for plan-based robotics and how fast our approach is for typical CRAM plans.
We investigate a system of CRAM plans for generalized fetch and deliver
actions. These plans are described in more detail in Section 4.3.2.1. The fi-
nal results and their interpretation with regard to our research questions are
presented in Section 4.3.2.2.

4.3.2.1 Robotic Plans and Actions

We evaluate our approach on a system of generalized fetch and deliver plans.
The plans implement different subroutines that are used to transport objects
from one place to another, including searching for objects and opening and
closing containers. The plans are very general, i. e. they are independent
of concrete objects or locations. They can be roughly grouped into three
classes: atomic actions (e. g. setting-gripper), low-level plans (e. g.
picking-up) and high-level plans (e. g. fetching). Here the low-level
plans use atomic actions internally and high-level plans use atomic actions
and low-level plans. One high-level plan, Transporting also uses several
other high-level plans, making it the most complex plan of the system.

4.3 symbolic fault injection for robotic plans 55

Table 3: Experimental results on the high-level plans

Plan With state caching Without state caching

#paths time #paths time

Navigating 7 11s 7 11s

Turning 17 12s 24 12s

Searching 55 12s 877 12s

Delivering 373 14s 47185 126s

Accessing 1841 18s 7121 22s

Sealing 1841 18s 7121 22s

Fetching 4105 37s timeout

Transporting 59161 568s timeout

Both the low-level and high-level plans are equipped with several failure
handlers. These are often organized hierarchically, i. e. when one handler is
unable to deal with the underlying problem, it throws a new failure which is
handled by a higher-level handler. The deepest handler hierarchies are found
in the Searching and Fetching plan with 5 nested failure handlers each.

There are a total of 17 atomic actions, 4 low-level and 8 high-level plans.
Each atomic action has between 1 and 3 possible failures with some overlap
between actions, for a total number of 13 distinct failure types. The high-level
plans have a differing number of arguments, ranging from 1 to 6. There are
also 7 reasoning subroutines which decide on certain arguments for some of
the plans. All plans combined amount to 2284 lines of bytecode.

4.3.2.2 Experimental Results

We substituted all low-level actions and reasoning subroutines according to
our approach in Section 4.3.1.2. We then executed our extended version of
SEECER on the resulting code. SEECER was configured to report all top-
level failures and not terminate after the first find. We evaluated each high-
level plan on its own, implicitly also covering all low-level plans and atomic
actions. In addition, the arguments for each high-level plan were kept fully
symbolical, considerably adding to the complexity.

We found unhandled top-level failures in all eight plans. Some of these
would have been easy to find without formal methods as well, e. g. when
handlers for certain failures were simply missing. Other failures would be
a lot harder to spot manually or via simulation-based testing. For instance,
some top-level failures only occurred when an action inside a failure handler
itself also failed. There were also cases where several handlers were unable
to properly handle a failure until it reached the top level. Our first research
question has therefore been answered positively. Our evaluation strongly sug-
gests that symbolic fault injection is a well-suited tool for plan-based robotics.
This leaves only the runtime question to be answered.

56 symbolic verification of robotic plans

Table 3 summarizes the runtime results of our evaluation. We report the
number of symbolic paths and the total runtime for all eight high-level plans.
To show the effect of our proposed state caching technique, we report the
results both with and without state caching enabled. The columns of Table 3
report (from left to right) the plan under verification, the number of symbolic
paths with state caching enabled, the runtime with state caching enabled and
then both metrics when state caching was disabled.

As expected, the runtime for each plan correlates with the number of sym-
bolic paths that are explored. Both metrics depend on the underlying com-
plexity of the plans. Simpler plans, such as Navigating, lead to only few
paths. The majority of its 11s runtime are not even used for symbolic execu-
tion, but rather for the initial setup and compilation of the plan into bytecode.
The Transporting plan, on the other hand, uses all other high- and low-level
plans. Therefore it is the most complex out of all evaluated plans by far.
This becomes apparent in the large number of symbolic paths even with state
caching enabled. Nonetheless, its runtime is still below 10 minutes, which
is perfectly acceptable for a complete analysis with all possible arguments
and a complete list of top-level failures. The analysis for all other plans was
finished in under a minute. The two rightmost columns of the table show the
effect of disabling our state caching technique. The influence of state caching
is clearly visible when looking at the Delivering, Fetching and Transporting
plan. Without the optimization, the number of paths of the Delivering plan in-
creased by a factor of over 100which lead to a runtime increase of 900%. The
Fetching and Transporting plans did not finish within the 1 hour time limit,
which means a runtime increase of at least 9729% for the Fetching plan. For
the other plans, the effects of state caching were less apparent, but nonethe-
less always positive or at least neutral. We did not observe a case were the
slight overhead of state caching actually impacted the runtime negatively.

Overall, our proposed approach was able to completely analyse typical
CRAM plans within a short time, for most plans within less than a minute.
For the more complex plans this is primarily thanks to our proposed state
caching technique.

4.4 conclusion & future work

In this chapter, we presented our approaches for symbolic verification of high-
level robotic plans and their integration in our tool SEECER. Our method-
ology is built on symbolic execution to enable a complete analysis of the
underlying CPL plan and all possible execution traces. We presented an inter-
face to connect the CPL plan directly to the environment model. Apart from
an environment model in CPL we also investigated the usage of the DEC
as a language for environment modelling. Here, we presented a verification
methodology for action sequences in pure DEC as well as an integration be-
tween DEC reasoning and symbolic execution. Finally, we used symbolic
fault injection to explore the failure handling of CPL plans. Our method is
able to find unhandled low-level failures under a general worst-case assump-

4.4 conclusion & future work 57

tion. The experimental evaluations prove the applicability of our approaches.
We were able to find errors in several CPL plans.

While SEECER is able to handle realistic CPL plans, its scalability could
still be improved. Future work could therefore include some existing mod-
ifications for symbolic execution, such as state merging [55] or state sub-
sumption [8]. Especially the integration of those methods with the different
environment models are an open research question. Alternatively, scalability
could be improved through a combination of concrete and symbolic execu-
tion, i. e. concolic execution [91]. This method exchange some completeness
of the verification result for a higher scalability. Again, the main challenge
here is the integration with the environment model. Furthermore, the envi-
ronments considered so far focus on a single actor. An interesting direction
for future work could be the inclusion of other actors in the environment,
such as humans or other robots. While this should already be partially pos-
sible through non-deterministic environment models, a specialised approach
might still be worthwhile.

5
F O R M A L M E T H O D S F O R M O D E L L I N G A S S I S TA N C E

The main challenge of modern autonomous robots is the increasing complex-
ity and uncertainty of their environment. In planning and verification, inter-
actions with the environment play a major role. Therefore, formal models of
the environment are necessary to enable reasoning about the robotic plan and
its actions. These formal environment models should ideally be simple and
abstract. But at the same time they should accurately reflect the behaviour of
the real world to achieve meaningful planning and verification results. Build-
ing simple, yet accurate models is a challenging and error-prone manual task.
In this chapter, we present novel techniques to assist the model designer in
this task and therefore enable them to build better and more accurate models.

One of the major challenges when building abstract models is to capture the
inherently continuous real world in a discrete logical model. In Section 5.1
we introduce a technique to learn SMT(LRA) formulae from example data.
These formulae can then be used to find regions in the continuous environ-
ment space which exhibit a common behaviour.

In Section 5.2 we introduce a technique to aid in the debugging of existing
formal environment models. Our approach compares the formal model to a
simulation engine and tries to find discrepancies in the behaviour of the two.
The results can then be used to improve the formal model or at least make its
limitations explicit.

Finally, Section 5.3 concludes this chapter and presents directions for fu-
ture work.

5.1 clustering-guided smt(LRA) learning

Since most logical formalisms for the modelling of robotic environments are
discrete, it is usually necessary to partition the environment into a finite set
of distinct regions. One way to express regions is the formulation as SMT
constraints. An SMT formula can divide a state space into two regions, one
in which it is satisfied and one where it is not. SMT constraints also fit nicely
into our previously presented approach on symbolic execution, which uses an
SMT solver at its core. Writing SMT models by hand is of course possible,
but time-consuming and error-prone. Nevertheless, in many cases, both sat-
isfying and unsatisfying examples of model configurations can be extracted
from measurements of the modelling domain. In these cases, the actual mod-
elling task can be automated by an approach called concept learning. Con-
cept learning has a long history in artificial intelligence, with Probably Ap-
proximately Correct (PAC) learning [109], inductive logic programming [77],
and constraint programming [15]. These approaches usually focus on pure
Boolean descriptions, i. e. SAT formulae. More recently, [51] introduced

59

60 formal methods for modelling assistance

SMT(LRA) learning, which is the task of learning an SMT(LRA) formula
from a set of satisfying and unsatisfying examples.

Alternatively, SMT(LRA) learning can also be formulated as a variation on
the programming by example problem known from the Syntax-Guided Syn-
thesis (SyGuS) framework. Most solvers in this area (e. g. [7, 12, 89, 107])
are based on enumeration of possible solutions to be able to tackle a wide va-
riety of syntactic constraints. This does, however, lead to overly complicated
and inconvenient reasoning on continuous search spaces such as SMT(LRA).
Apart from that, the problems have further subtle differences, e. g. accuracy
of the solutions has higher significance in the concept learning setting.

On top of defining the SMT(LRA) learning problem, [51] also introduced
an exact algorithm called INCAL. As the first of its kind, INCAL naturally
comes with certain drawbacks in terms of runtime and is therefore not appli-
cable to learn large models, which are required by most real-world concept
learning applications (e. g. [50, 70]).

Our contribution in this work is a novel approach for SMT(LRA) learning
which uses Hierarchical Clustering on the examples to guide the search and
thus speed up the model generation process. We call our general approach
SHREC (SMT(LRA) learner with hierarchical example clustering) and intro-
duce two algorithms SHREC1 and SHREC2 based on this idea. SHREC1
aims at a higher accuracy of the solution and therefore requires more runtime
than SHREC2. SHREC2 instead follows a very fast and scalable method with
minor losses of accuracy. Therefore, we provide the users, i. e. the model de-
signers, with the possibility to choose between maximizing the accuracy of
the learned model or improving runtime of the generation process so that also
larger models can be learned in a reasonable time frame.

This section describes the learning framework SHREC. The application to
the robotics domain is left for future work.

We first introduce the SMT(LRA) learning problem, INCAL and hierarchi-
cal clustering in Section 5.1.1. In Section 5.1.2 we introduce our main idea
and the algorithm of SHREC1. The scalability improvements and the algo-
rithm of SHREC2 follow in Section 5.1.3. Finally, Section 5.1.4 presents our
experimental evaluation.

5.1.1 Background

In this section, we give an overview of relevant related work and introduce
concepts that we utilize in the remainder of this work.

5.1.1.1 SMT(LRA) Learning

The problem of SMT(LRA) learning has first been introduced in [51]. The
goal is to find an SMT(LRA) formula which describes some system in the
real world. However, no formal representation of the system is available.
Instead, a set of measurements is given. In the following, these measurements
are called examples. It is further assumed, that there exists an SMT(LRA)

5.1 clustering-guided smt(LRA) learning 61

formula φ∗ that accurately describes the system. The problem of SMT(LRA)
learning is now defined as follows:

Definition 6. Given a finite set of Boolean variables B B {b1, . . . , bn} and a
finite set of real-valued variables R B {r1, . . . , rm} together with a finite set of
examples E. Each example e ∈ E ae, φ∗ae is a pair of an assignment and
a label. An assignment ae B ∪ R 7→ {>,⊥} ∪� maps Boolean variables to
> or ⊥, and real-valued variables to real-valued numbers. The label φ∗ae is
the truth value obtained by applying ae to φ∗. We call an example positive if
φ∗ae > and negative otherwise. We denote the sets of positive and negative
examples by E> and E⊥, respectively.

The task of SMT(LRA) learning is to find an SMT(LRA) formula φ which
satisfies all elements in E>, but does not satisfy any element in E⊥, which can
be written as ∀e ∈ E φae φ∗ae.

Example 18. Consider the SMT(LRA) formula

φ∗b1, r1 ¬b1 ∨ −0.5 · r1 ≤ −1∧ b1 ∨ 1 · r1 ≤ 0

A possible set of examples would be

E {{b1 7→ >, r1 7→ 0},⊥, {b1 7→ >, r1 7→ 2.5},>,

{b1 7→ ⊥, r1 7→ 2},⊥, {b1 7→ ⊥, r1 7→ −0.6},>}

We call an algorithm that tackles the task of finding an unknown SMT(LRA)
formula to a given set of examples, i. e. finding a solution to an instance of
the aforementioned problem, learner.

Each learner must operate on a given set of possible target formulae, called
the hypothesis space Φ. Similar to [51], we focus on CNF formulae as our
hypothesis space.

Definition 7. We define the cost c of a CNF formula with a given number of
clauses k and (not necessarily unique) linear constraints h as c wk · k wh · h,
where wk and wh are weights associated with clauses and linear constraints,
respectively. The cost is a measure for the size and complexity of a formula
and can be tuned to focus more on clauses or linear constraints.

A learner tries to find an SMT(LRA) formula φ ∈ Φ. We say that an ex-
ample e satisfies a formula φ iff φae > and is consistent with φ iff φae φ∗ae.
Using these definitions, the goal of SMT(LRA) learning is to find a formula φ
that is consistent with all examples, i. e. as mentioned before, one that is sat-
isfied by all positive examples and unsatisfied by all negative ones.

Example 19. Consider the example set E from Example 18 again. A possible
CNF solution to those examples would be

φ b1 ∨ 0.5 · r1 ≤ −0.25∧¬b1 ∨ −1 · r1 ≤ −2.1

Obviously, φ∗ is also a feasible solution, but might not be found by the learner
which only knows about the example set E.

62 formal methods for modelling assistance

Since φ∗ is not known to the learner and the example set E is usually non-
exhaustive, it can not be expected that the learner finds a model equivalent
to φ∗. It should, however, be as close as possible. This leads to the measure
of accuracy.

Definition 8. Given two example sets Etrain and Etest which were indepen-
dently sampled from the (unknown) SMT(LRA) formula φ∗, the accuracy of
a formula φ, which was learned from Etrain, is the ratio of correctly classified
examples in Etest.

Generally, finding any formula for a given example set is not a hard prob-
lem. One could construct a simple CNF that explicitly forbids one negative
example in each clause and allows all other possible assignments. However,
such a formula would have numerous clauses and would not generalize well
to new examples, yielding a low accuracy. To avoid such cases of overfit-
ting, a smaller target formula, i. e. one with lower cost, should generally be
preferred over a larger i. e. more expensive one.

5.1.1.2 INCAL

In addition to introducing the problem of SMT(LRA) learning, [51] also pre-
sented the first algorithm to tackle it, called INCAL. INCAL addresses the
SMT(LRA) learning problem by fixing the number of clauses k and the num-
ber of linear constraints h and then encoding the existence of a feasible CNF
with those parameters in SMT(LRA). If no such formula exists, different val-
ues for k and h need to be used. The order in which to try values for k and h
can be guided by the cost function wk · k wh · h.

INCAL’s SMT encoding uses Boolean variables to encode which clauses
contain which literals, real variables for the coefficients and offset of all linear
constraints, and Boolean auxiliary variables encoding which linear constraint
and clause are satisfied by which example. It consists of the definition of
those auxiliary variables and a constraint enforcing the consistency of exam-
ples with the learned formula. To cope with a high number of examples,
INCAL uses an iterative approach and starts the encoding with only a small
fraction of all variables. After a solution consistent with this subset has been
found, additional conflicting examples are added.

The complexity of the learning problem does however not exclusively stem
from the size of the input. Another, arguably even more influential factor is
the complexity of the learned formula. If an example set requires numerous
clauses or linear constraints, it will be much harder for INCAL to solve.

So far, we have discussed the state-of-the-art related work in SMT(LRA)
learning. In this section, we present a new SMT(LRA) learner which incorpo-
rates a hierarchical clustering technique. To keep this thesis self-contained,
we give some preliminaries about clustering in the following section.

5.1.1.3 Hierarchical Clustering

In machine learning, the problem of clustering is to group a set of objects
into several clusters, such that all objects inside the same cluster are closely

5.1 clustering-guided smt(LRA) learning 63

related, while all objects from different clusters are as diverse as possible
(cf. [65] for an overview). To describe the similarity between objects, a dis-
tance metric is needed.

Often, objects are described by means of a vector v1, . . . , vn of real val-
ues. Typical distance metrics of two vectors v, w are (1) the Manhattan dis-
tance (L1 norm)

distv, w
n∑
i1

|vi −wi|,

(2) the Euclidean distance (L2 norm)

distv, w

√√ n∑
i1

vi −wi
2,

or (3) the L norm

distv, w max|vi −wi|.

A common approach to clustering is hierarchical clustering [96]. The main
idea of hierarchical clustering is to build a hierarchical structure of clusters
called a dendrogram. A dendrogram is a binary tree annotated with distance
information. Each node in the dendrogram represents a cluster. Each inner
node thereby refers to the union of the clusters of its two children; with leaf
nodes representing clusters that contain exactly one vector. This way, the
number of contained vectors per node increases in root direction with the
root node itself containing all vectors given to the clustering algorithm. Each
inner node is also annotated with the distance between its two children. In
graphical representations of dendrograms, this is usually visualized by the
height of these nodes.

Example 20. An example dendrogram can be seen in Fig. 21. The dendro-
gram shows a clustering over six input vectors, labelled A to F. The distance
between nodes can be seen on the y-axis. For instance, the distance between
vectors {B} and {C} is 1, while the distance between their combined cluster
{B, C} and vector {A} is 2.

In this section, we will focus on agglomerative hierarchical clustering [96],
which builds the dendrogram by assigning each vector to its own cluster and
then combines the two closest clusters until a full dendrogram has been built.

To combine the two closest clusters, it is necessary to not only measure the
distance between two vectors but also between larger clusters. To this end,
a linkage criterion is needed. Given two clusters c and d, some established
linkage criteria are (1) the single linkage criterion, which picks the minimum
distance between two vectors from c and d, (2) the complete linkage criterion,
which picks the maximum distance between two vectors from c and d, or
(3) the average linkage criterion, which takes the average of all distances
between vectors from c and d.

64 formal methods for modelling assistance

Figure 21: A simple dendrogram

Most combinations of distance measure and linkage criterion can be ap-
plied to a given hierarchical clustering problem. The results may, however,
vary heavily depending on the application.

To obtain a concrete clustering from a dendrogram, one fixes a distance
threshold. The final clustering is then made up of the nodes whose distances
lie just below the distance threshold and whose parent nodes are already
above it. In graphical representations, the distance threshold can be indicated
by a horizontal line, making the clusters easily visible. Alternatively, the num-
ber of clusters can be fixed and the distance threshold is chosen accordingly.

Example 21. Fig. 22 shows the dendrogram from the previous example with
two distance thresholds. The dashed line represents a distance threshold of
3.5. Following this threshold, the dendrogram would be split into the two
clusters {A, B, C} and {D, E, F}. Using a smaller distance threshold of 2.5,
indicated by the dotted line, would result in the three clusters {A, B, C}, {D},
and {E, F}.

5.1 clustering-guided smt(LRA) learning 65

Figure 22: Dendrogram with distance thresholds

5.1.2 Hierarchical Clustering for SMT(LRA) Learning

In this section, we introduce our novel SMT(LRA) learner. We describe how
the hierarchical clustering is used to guide its search and discuss the result-
ing algorithm which we call SHREC1. We start with the general idea in Sec-
tion 5.1.2.1, followed by the algorithm in Section 5.1.2.2 and finally optimiza-
tions in Section 5.1.2.3. In Section 5.1.3 we present the algorithm SHREC2
to trade-off some accuracy for a further increase of scalability.

5.1.2.1 Main Idea

The main scalability problem of exact approaches for SMT(LRA) learning
lies in the large combined encoding that is needed to describe a full CNF. This
encoding quickly becomes hard to solve for SMT solvers when the number
of clauses and linear constraints is increased. We, therefore, propose to not
learn the target CNF as a whole, but rather to learn single clauses and then
combine them into the target formula.

When looking at the structure of CNF formulae, it becomes apparent that
positive examples need to satisfy all individual clauses, while negative ones
only need to unsatisfy a single one. If one had a perfect prediction, which

66 formal methods for modelling assistance

negative examples belong to which clause, one could simply learn each clause
on its own, using a simpler encoding, and still obtain an exact solution. But
even an imperfect prediction, which needs some additional clauses, would
yield a correct and relatively small solution.

We propose a novel heuristic that produces such a prediction using agglom-
erative hierarchical clustering. The clustering algorithm partitions the nega-
tive examples into groups of closely related examples given their values in
the assignment ae. This is due to the intuition that it is easier to find a single
clause for a set of closely related examples as opposed to an arbitrary one.
The reason to use hierarchical clustering as opposed to other clustering algo-
rithms is the ability to seamlessly adjust the number of clusters and thus the
number of clauses in the target formula.

To obtain a suitable clustering vector, we normalize the examples. For
Boolean variables, the values of > and ⊥ are replaced with 1 and 0, respec-
tively. The values aer of real variables r are translated into the form aer−rmin

rmax−rmin
,

where rmin and rmax are the smallest and highest possible values for variable
r, respectively. If those values are not known beforehand, they can simply be
estimated from the existing data. This normalization ensures that all feature
values lie in the interval 0, 1, which results in each variable having a similar
influence on the clustering outcome.

5.1.2.2 Algorithm SHREC1

The full algorithm SHREC1 is described in Algorithm 2. The algorithm re-
ceives as input a set of examples E and returns a formula φ consistent with E.
The first step of the algorithm is the function build-dendrogram, which uses
agglomerative hierarchical clustering to build a dendrogram from the nega-
tive examples. The function uses the normalization procedure described in
the previous section. Please note that build-dendrogram is agnostic to spe-
cific distance metrics and linkage criteria.

The resulting dendrogram is referred to by its root node N0. Each subse-
quent node Ni has a unique, positive index i. As we do not need to distinguish
between a node and the set of examples covered by it, we use Ni to refer to
both the node Ni and its example set.

The algorithm is composed of several nested loops. The outermost loop
(Lines 4-24) searches for a solution with increasing cost. Similar to INCAL,
the cost is determined using a linear cost function wk · k wh · h. The algorithm
starts with the cost value set to wk in the first iteration, allowing a solution
with exactly one clause and no linear constraints. After each iteration, the
cost is incremented, increasing the search space.

Since for each cost value multiple combinations of k and h are possible,
the next loop (Lines 6-23) starts with k 1 and keeps increasing the number
of clauses k in each iteration. This, in turn, decreases the number of possible
linear constraints. In each iteration, k nodes are selected from the dendrogram
through an appropriate distance threshold and stored in the variable nodes.
The algorithm then tries to find a clause consistent with each node Ni using
as few linear constraints as possible. This is done in the function search-

5.1 clustering-guided smt(LRA) learning 67

Algorithm 2 Algorithm SHREC1
Input: Example set E
Output: SMT(LRA) formula φ

1: function learn-model(E)
2: N0 ← build-dendrogram(E⊥)
3: cost ← wk

4: loop
5: k ← 1

6: while wk · k ≤ cost do
7: φ← >

8: nodes← select-nodes(N0, k)
9: h← 0

10: valid ← >
11: for all Ni ∈ nodes do
12: cost-bound ← cost −wk · k −wh · h
13: h ′,ψ← search-clause(Ni, cost-bound)
14: if ψ ∅ then
15: valid ← ⊥
16: break
17: else
18: φ← φ∧ ψ

19: h← h h ′

20: if valid then
21: return φ
22: else
23: k ← k 1

24: cost ← next-costcost

25: function search-clause(Ni, cost-bound)
26: h← 0

27: while wh · h ≤ cost-bound do
28: ω← encode-clause(E> ∪ Ni, h)
29: ψ← solve(ω)
30: if ψ , ∅ then
31: return h,ψ

32: h← h 1

33: return h, ∅

clause. If clauses for all nodes could be found within the cost bound, they are
combined (Line 18) and the resulting CNF formula is returned. Since each
clause satisfies all positive examples and each negative example is unsatisfied
by at least one clause, this trivial combination yields a consistent CNF.

The function search-clause constitutes the innermost loop of the algorithm.
Given a node Ni and the remaining cost left for linear constraints, the func-
tion tries to find a clause that is consistent with all positive examples and the

68 formal methods for modelling assistance

negative examples in Ni. To keep the cost as low as possible, an incremen-
tal approach is used again, starting the search with 0 linear constraints and
increasing the number of possible linear constraints h with each iteration. To
find a clause for a fixed set of examples and a fixed number of linear con-
straints, an SMT encoding is used in Line 28. This encoding is a simplified
version of the encoding from INCAL and uses the following variables: lb and
Θlb with b ∈ B encode whether the clause contains b or its negation, respec-
tively; a jr and d j with r ∈ R and 1 ≤ j ≤ h describe the coefficients and offset
of the linear constraint j, respectively; se j with e ∈ E and 1 ≤ j ≤ h is an
auxiliary variable encoding whether example e satisfies the linear constraint
j.

The overall encoding for a single example e can now be formulated with
only two parts, i. e., (1) the definition of se j, which is identical to INCAL’s

h∧
j1

se j ⇐⇒
∑
r∈R

a jr · aer ≤ d j,

and (2) the constraint which enforces consistency of e with the learned clause

h∨
j1

se j ∨
∨
b∈B

((
lb ∧ aeb

)
∨

(
Θlb ∧¬aeb

))
, if φ∗ae

h∧
j1

¬se j ∧
∧
b∈B

((
¬lb ∨¬aeb

)
∧

(
¬Θlb ∨ aeb

))
, otherwise.

The full encoding is the conjunction of the encodings for all examples in
E> ∪ Ni. Like INCAL, SHREC1 also uses an incremental approach. First,
we only generate the above encoding for a few examples and then iteratively
add more conflicting examples.

The function solve in Line 29 takes an encoding, passes it to an SMT
solver, and if a solution to the encoding is found, it is translated back into
an SMT(LRA) clause. Otherwise, solve returns ∅.

If a clause could be found within the cost bound (Line 30), it is returned
together with the number of linear constraints used. Otherwise, ∅ is returned
together with the highest attempted number of linear constraints.

This basic algorithm can be further improved in terms of runtime and cost
by two optimizations described in the next section.

5.1.2.3 Result Caching and Dendrogram Reordering

The algorithm SHREC1 as described above suffers from two problems,
namely (A) repeated computations and (B) an inflexible search, which we
will both discuss and fix in this section.

First, we address issue (A), that SHREC1 re-computes certain results multi-
ple times. When a node is passed to the function search-clause together with
some cost-bound, a consistent clause is searched using up to cost-bound

wh
linear

constraints. In later iterations of the algorithm’s main loop, search-clause
is called again with the same node and higher cost-bound. This leads to the

5.1 clustering-guided smt(LRA) learning 69

same SMT encoding being built and solved again. To avoid these repeated
computations, each node caches the results of its computations and uses them
to avoid unnecessary re-computation in the future.

Second, SHREC1 never modifies the initial dendrogram during the search,
making the approach inflexible. We address this issue (B) in the following.
If the initial clustering assigns only a single data point to an unfavourable
cluster, this might lead to a much larger number of clauses needed to find a
consistent formula. This, in turn, leads to a lower accuracy on new examples
as well as a higher runtime. To counteract this problem, we apply a novel
technique, which we call dendrogram reordering: whenever a clause ψ has
been found for a given node Ni and some number of linear constraints h, it
might be that ψ is also consistent with additional examples, which are not part
of Ni, but instead of some other node N j. To find such nodes N j, a breadth-
first search is conducted on the dendrogram. If some node N j has been found
such that ∀e ∈ N j ψae φ∗ae, the dendrogram is reordered to add N j to the
sub-tree under Ni. This does not increase the cost of Ni, because the new
examples are already consistent with ψ, but might reduce the cost of N j’s
(transitive) parent node(s).

Fig. 23 illustrates the reordering procedure, which consists of the following
steps: (1) Generate a new node Nk and insert it between Ni and its parent.
Consequently, Nk’s first child node is Ni and its parent node is Ni’s former
parent node. Set Nk’s cached clause to ψ. (2) Remove N j and its whole sub-
tree from its original place in the dendrogram and move it under Nk as Nk’s
second child node. (3) To preserve the binary structure of the dendrogram,
N j’s former parent node must now be removed. The former sibling node of
N j takes its place in the dendrogram.

This way, additional examples can be assigned to an already computed
clause, inherently reducing the complexity in other parts of the dendrogram.
Consequently, the reordering can only decrease the overall cost of the den-
drogram and never increase it. Therefore, dendrogram reordering can handle
imperfect initial clusterings by dynamically improving them.

5.1.3 Improving Scalability through Nested Dendrograms

In the previous section, we introduced a novel SMT(LRA) learner with im-
proved runtime compared to INCAL (as we will demonstrate by an experi-
mental evaluation in Section 5.1.4) without a significant impact on the qual-
ity, i. e. the accuracy of the resulting formulae. In real-world applications,
however, an even faster and more scalable algorithm might be preferred, even
with minor losses of accuracy. In this section, we propose a technique for
nested hierarchical clustering to realize this trade-off. We call this algorithm
SHREC2.

5.1.3.1 Main Idea

While SHREC1 is already expected to reduce the runtime of the SMT(LRA)
learner, it still has to solve relatively complex SMT constraints to find a con-

70 formal methods for modelling assistance

(a) Original dendrogram (b) After step 1

(c) After step 2 (d) Final result

Figure 23: Dendrogram reordering

sistent clause. To further improve runtime, we again reduce the complexity
of these SMT solver calls. The algorithm SHREC2 starts just like SHREC1
by clustering the negative examples and then searching for clauses consis-
tent with the different clusters. However, instead of searching for consistent
clauses through an SMT encoding, SHREC2 also clusters the positive exam-
ples, ultimately leaving only the learning of single linear constraints to the
solver. This is realized through a simpler encoding, shifting the algorithm’s
overall complexity from exponential to polynomial runtime.

When searching for a single clause, negative examples must not satisfy
any literal of the clause, while positive examples only have to satisfy a single
literal each. This fact can now be used to learn literals one by one. To this
end, nested dendrograms are introduced.

We, therefore, extend our definition of dendrograms from the previous sec-
tions. A dendrogram that clusters negative examples like the one used in
SHREC1 is called a negative dendrogram from now on. Its nodes are called
negative nodes denoted as N⊥i . In SHREC2, we also use positive dendro-

5.1 clustering-guided smt(LRA) learning 71

grams, which analogously cluster the positive examples. Each node N⊥i of
the negative dendrogram is assigned a new positive dendrogram N>i,0. Each
positive node N>i, j holds a set of positive examples from E> which again are
being clustered just like their negative counterparts.

Given a negative node N⊥i and some number h of linear constraints,
SHREC2 first finds all Boolean literals that are consistent with the exam-
ples in N⊥i . Because the cost function is only dependent on the number of
clauses and linear constraints, these Boolean literals can be part of the clause
without increasing the cost. Then, all positive examples that are inconsistent
with any of the Boolean literals are determined. These examples constitute
N>i,0. The positive dendrogram under N>i,0 is built in the same manner as
the negative dendrogram, using the same normalization scheme. Values of
Boolean variables are however left out of the clustering.

To find a set of linear constraints that are consistent with the remaining
positive examples as well as the negative examples in N⊥i , an encoding is
generated for each of the top h nodes from N>i,0 matching them with individual
linear constraints.

5.1.3.2 Algorithm SHREC2

Algorithm 3 describes the algorithm SHREC2. The main function learn-
model is identical to the one in Algorithm 2. The difference here can be
found in the function search-clause, which tries to learn a clause given a set
of negative examples and a cost bound.

The function starts by computing the set L of all Boolean literals that
are consistent with all negative examples in N⊥i (Line 4). It then computes
the subset E ′ of all positive examples not consistent with any literal in L
(Line 7). These remaining examples need further literals to be consistent with
the clause. Consequently, if E ′ is already empty at this point, the disjunction
of the literals in L is already a consistent clause and can be returned.

Otherwise, additional literals are needed. Because any further Boolean lit-
erals would be inconsistent with the negative examples, linear constraints are
needed. To find a reasonable assignment of examples in E ′ to linear con-
straints, hierarchical clustering is used again. Instead of clustering the nega-
tive examples, the algorithm clusters the positive ones in E ′. Since Boolean
values have no influence on the linear constraints, they are not used in this
clustering.

The remainder of the algorithm is now very similar to the process in the
main function. The algorithm increases the number of halfspaces in each
iteration, starting at 1, until a solution has been found or the cost bound has
been reached. In each iteration, the top h nodes from the positive dendrogram
are selected. For each node N>i, j, the algorithm tries to find a linear constraint
for the examples in N⊥i and N>i, j via an encoding. If no such linear constraint
exists, the algorithm retries with an increased h. If linear constraints could be
found for all nodes, a disjunction of those linear constraints and the literals in
L is returned as a consistent clause.

72 formal methods for modelling assistance

Algorithm 3 Algorithm SHREC2
Input: Example set E
Output: SMT(LRA) formula φ

1: function learn-model(E)
2: identical to SHREC1

3: function search-clause(N⊥i , cost-bound)
4: L← {b ∈ B | ∀e ∈ N⊥i aeb ⊥} ∪

{¬b | b ∈ B,∀e ∈ N⊥i aeb >}
5: ψ←

∨
l∈L l

6: ψ ′ ← ψ

7: E ′ ← {e ∈ E> | ψae ⊥}

8: if E ′ ∅ then
9: return 0,ψ

10: N>i,0 ← build-dendrogramE ′

11: h← 1

12: while wh · h ≤ cost-bound do
13: ψ← ψ ′

14: nodes← select-nodesN>i,0, h
15: valid ← true
16: for all N>i, j ∈ nodes do
17: ω← encode-lcN⊥i ∪ N>i, j
18: θ ← solveω

19: if θ ∅ then
20: valid ← false
21: break
22: else
23: ψ← ψ∨ θ

24: if valid then
25: return h,ψ
26: else
27: h← h 1

28: return h, ∅

The encoding for a single example e ∈ E is a simplified version of the
one used in SHREC1, which uses variables ar and d, describing the coeffi-
cients and offset of the linear constraint, respectively. The encoding now only
consists of a single constraint per example:∑

r∈R

ar · aer ./ d

where ./ is ≤ if φ∗ae > and > otherwise. The full encoding is again the
conjunction of the encodings for all examples. Like in INCAL and SHREC1,
examples are also added iteratively. Please note that the encoding of SHREC2

5.1 clustering-guided smt(LRA) learning 73

is only a linear program instead of a more complex SMT(LRA) encoding,
making it solvable in polynomial time.

SHREC2 also uses result caching and dendrogram reordering in both levels
of dendrograms. Additionally, the positive dendrograms are computed only
once for each negative node N⊥i and are immediately cached for faster access.

5.1.4 Experimental Evaluation

In this section, we evaluate the capabilities and applicability of the proposed
algorithms SHREC1 and SHREC2. We have implemented them in Python us-
ing the SMT solver Z3 version 4.8.6 and the scikit-learn package [84] version
1.3.1 for the hierarchical clustering. To this end, we conducted experiments
and compared the results in terms of accuracy and runtime to INCAL. We
ran all evaluations on a Linux machine with an Intel CPU with 3.40 GHz (up
to 3.80 GHz boost). In the following, we give detailed insight into the experi-
mental setup in Section 5.1.4.1. We present the comparison of our approaches
to INCAL in Section 5.1.4.2.

5.1.4.1 Experimental Setup

Due to the poor scalability of current approaches, no suitable real-world
benchmarks for SMT(LRA) learning exist yet. In addition, benchmarks for
SMT solving like the SMT-LIB collection are usually either unsatisfiable or
only satisfied by few assignments, meaning they do not produce adequately
balanced example sets. Therefore, experiments have to be conducted on ran-
domly generated benchmarks. To this end, we use an approach similar to [51]:
Given a set of parameters consisting of the number of clauses (k) and linear
constraints per clause (h), we generate a CNF formula fitting these parame-
ters. The generation procedure is also given a set of 1000 randomly generated
assignments from variables to their respective values. The formula is then
generated in such a way, that at least 30% and at most 70% of those assign-
ments satisfy it. To ensure that the formula does not become trivial, it is also
required that each clause is satisfied by at least 30

k % of assignments that did
not satisfy any previous clause. This ensures that each clause has a significant
influence on the formula and cannot be trivially simplified.

Since the main focus of SHREC is the improved scalability on larger for-
mulae, we (similar to [51]) generated benchmarks with increasing k and h and
fixed all other parameters to constant values. All generated formulae have 4
Boolean variables, 4 real variables, and 3 literals per clause. The benchmarks
have between 1 and 25 clauses and between 1 and 3 linear constraints per
clause, resulting in 75 different parameter configurations. We expect a higher
number of clauses or linear constraints per clause to generally result in a
harder benchmark. Since we cannot precisely control the difficulty, however,
some smaller formulae might turn out to be more difficult than other larger
ones. To mitigate these random fluctuations, we generated 10 formulae for
each configuration, resulting in a total of 750 benchmarks.

74 formal methods for modelling assistance

(a) h 1 (b) h 2

(c) h 3

Figure 24: Runtime comparison for different values of h

For each benchmark, 1000 examples were randomly drawn. Boolean vari-
ables had an equal probability to be assigned to > or ⊥. Real values were
uniformly distributed in the interval 0, 1.1

We used INCAL, SHREC1, and SHREC2 to find a CNF formula consis-
tent with all examples. All three algorithms used a cost function with equal
weights for clauses and linear constraints (wk wh 1). For each run, we
measured the runtime and the accuracy on another independent set of 1000
examples. We set a timeout of 30 minutes for each run. This timeout is sub-
stantially longer than the one used in [51] and allows us to adequately observe
the effect of the different configurations.

In the following section, the results are presented and discussed.

5.1.4.2 Comparison to INCAL

As mentioned in Section 5.1.2, SHREC1 and SHREC2 are able to use vari-
ous distance metrics and linkage criteria in their clustering routine. To deter-
mine the most effective combination, we ran some preliminary experiments
on a subset of the generated benchmarks. We evaluated the Manhattan dis-
tance, Euclidean distance, and the L norm as possible distance metrics and
the single, complete and average linkage criteria. Out of the nine possible
combinations, the Manhattan distance together with the average linkage cri-

1 Please note that the choice of the interval does not influence the hardness of the learning
problem because smaller values do not make the SMT solving process easier.

5.1 clustering-guided smt(LRA) learning 75

(a) h 1 (b) h 2

(c) h 3

Figure 25: Accuracy comparison for different values of h

terion performed best. Therefore, this combination is used in the following
comparison with INCAL.

Fig. 24 shows the runtime for 1, 2 and 3 linear constraints per clause, re-
spectively. On the x-axis, the number of clauses from k 1 to k 25 is shown.
The y-axis shows the runtime in seconds. Each data point covers the runs
on the 10 different benchmarks for the respective configuration. The squares,
circles, and triangles mark the mean of all 10 runtimes, while the vertical er-
ror bars show the standard deviation. Runs that timed out were included in
the calculation of mean and standard deviation as if they needed exactly 1800
seconds. If all runs of one configuration timed out, no data point is shown.

As expected, the number of clauses and linear constraints increases the
runtime of all three algorithms. However, we can observe that the increase in
runtime becomes smaller at a higher number of clauses. INCAL already times
out at k ≥ 5 for benchmarks with a single linear constraint per clause and even
at k ≥ 3 for benchmarks with 2 or 3 linear constraints per clause. SHREC1
is able to handle larger benchmarks better, but still times out at k ≥ 8, k ≥ 6
and k ≥ 4 for h 1, h 2, and h 3, respectively. On instances where neither
INCAL nor SHREC1 time out, SHREC1 is consistently considerably faster.
SHREC2 is a lot more robust for increasing k and h and does not time out
on any of the instances. SHREC2’s runtime stays far below that of INCAL
and SHREC1 for almost all of the benchmarks. This indicates SHREC2’s

76 formal methods for modelling assistance

superior scalability in terms of runtime, outperforming INCAL and SHREC1
by a large margin.

Naturally, we expect this success to come with a trade-off in the form of
lower accuracy. Fig. 25 shows the accuracy for 1, 2 and 3 linear constraints
per clause, respectively. As before, each data point shows the mean and stan-
dard deviation of 10 benchmarks. Timeouts were not considered in the cal-
culation this time. Configurations with 10 timeouts again have no data point
displayed. As expected, the accuracy of all three algorithms is lower for
larger problems. This is because a more complicated CNF needs to be found
with the same number of examples. One can also observe that SHREC1 and
especially SHREC2 suffer more from this decrease in accuracy than INCAL.
However, as Fig. 25a shows, SHREC1’s accuracy still stays above 95% even
for benchmarks with up to 7 clauses.

The decrease of accuracy is only crucial for larger values of k and h, which
were not solved by INCAL at all. If given enough time, we can also expect
INCAL to show a lower accuracy for these harder benchmarks. For the bench-
marks which were solved by INCAL, SHREC1 and SHREC2 stay very close
to 100% accuracy, as well. If one wants to compensate for the lower accuracy
in other ways, the improved scalability of SHREC1 and SHREC2 could also
be utilized to simply incorporate more training examples that can be handled
due to the better scalability.

Overall, the experimental results clearly show that SHREC is superior to
the state-of-the-art exact approach INCAL in terms of scalability. SHREC1
needs considerably less runtime to learn formulae with only a slight loss of
accuracy, while SHREC2 was several magnitudes faster and still kept the
accuracy at a reasonable level.

5.2 simulation-based debugging of formal environment models

Generalized robotic plans are often built making use of formal environment
models. In Section 4.2 we also use formal models for the verification of
robotic plans.

Formal models allow for exhaustive reasoning, but the rigid framework of
these formalisms often means that formal models are simplified and rather
abstract compared to the real world that the robot acts in.

There are two main reasons for the higher abstraction in formal models.
One is the complexity of real-life physics that can often not be adequately
modelled in terms of formal logic. Another reason is the discretisation that
often takes place, i. e. the environment is partitioned into a finite set of dis-
crete positions instead of using real-valued coordinates. Depending on the
level of abstraction, this can lead to considerable discrepancies between the
behaviour of the formal model and that of physics-based simulation engines.
However, when used in planning and verification, formal models are usually
assumed to be correct. Discrepancies in the model can have severe conse-
quences. A plan derived or verified from a faulty model is often also faulty
and can result in considerable damages to the robot and its environment. Un-

5.2 simulation-based debugging of formal environment models 77

fortunately, discrepancies of formal models are not always apparent to the
designer and to the best of our knowledge, there is no systematic approach to
find them.

In this section, we aim to make these discrepancies explicit by combining
formal verification techniques with robotic simulation. The main idea is to
use our formal verification engine SEECER presented in Chapter 4 to find
particularly interesting execution traces in the formal model and then run the
same execution in the simulator. The resulting states of both executions are
then compared. Our approach is able to focus on specific robotic plans and
specific interesting final states. This way we need to perform only very few
simulation runs compared to a naive brute force approach.

In Section 5.2.1 we present our approach to simulation-based debugging
and follow with an experimental evaluation in Section 5.2.2.

5.2.1 Finding Discrepancies

In this section we present our approach to detect discrepancies between a for-
mal model written in the DEC and a simulated environment. We begin with
some definitions and a general overview of the approach in Section 5.2.1.1.
Afterwards, we describe the sampling and confidence calculation in greater
detail in Sections 5.2.1.2 and 5.2.1.3.

5.2.1.1 Overview

To find discrepancies, we need an initial state of the robot and its environment,
such that the same chain of action executions results in different final states
in the formal model and the simulation.

Here, a state is a mapping from parameters such as positions or angles to
their values. However, states in the formal model are usually different from
states in the simulation, since the simulation uses real numbers to describe
the parameters, while the formal model has to be discrete. This discretisation
is usually implemented by modelling a finite set of discrete values for each
parameter, which correspond to regions and intervals in the continuous space.
In the following, we will denote a state over continuous, i. e. real numbers as
a continuous state and a state over discrete positions and angles as a discrete
state. To semantically connect continuous and discrete states, we introduce
a mapping m S c 7→ S d, where S c and S d are the sets of continuous and
discrete states, respectively. Consequently, each continuous state maps to
a single discrete state, while each discrete state is mapped to by an infinite
amount of continuous states. Additionally, we define an execution trace as a
sequence s0, a0, . . . , an−1, sn of states si and actions ai. Action ai is executed
in state si and results in a new state si1. We call s0 the initial state and sn

the final state. Whenever it is not clear from context, we will use the terms
continuous execution trace and discrete execution trace to denote whether the
si are continuous or discrete states.

78 formal methods for modelling assistance

Figure 26: Simple robotic environment

Figure 27: Overview of our debugging approach

Example 22. Consider the simple environment depicted in Fig. 26. It consists
of a rectangular area, which is divided into two regions r1 and r2. The regions
are defined through their x-coordinates with r1 spanning from x 0 to x 1 and
r2 spanning from x 1 to x 2. The environment contains a robot (currently in
r1) and a box that the robot can pick up and move (currently in r2). A plan
might now instruct the robot to move to x 1.5, pick up the box, move back to
x 0.5 and place it there. This would produce a discrete final state with both
the robot and the box inside r1. The continuous state would be more accurate
and contain the exact positions of robot and box.

Fig. 27 shows the high-level flow of our approach. The input to the pro-
cedure consists of three components (green boxes in Fig. 27): a plan written
in CPL, a world model and a set of state constraints. The world model and
state constraints are formalized as a DEC description. The state constraints
describe a set of discrete states which should trigger a simulation using the
same fluents and predicates as the world model. These three inputs are fed
into our symbolic verification engine SEECER (top left in Fig. 27), which
will then try to find a discrete execution trace which leads to one of the de-
sired states. We modified SEECER in such a way that it does not terminate

5.2 simulation-based debugging of formal environment models 79

after the first finding, but instead reports the execution trace and waits for
the rest of the procedure to finish before the symbolic execution is continued.
Whenever SEECER returns an execution trace, the initial discrete state sd,0

and the action sequence are extracted.

To set the initial state in the simulator, it has to be converted into a con-
tinuous state. This is done through sampling (bottom left), i.e. selecting a
state sc,0 with msc,0 sd,0 at random. Afterwards, the initial state sc,0 and the
actions are given to the simulator (bottom right), which sets the initial state,
executes the actions and then compares the resulting final state against the
one found by SEECER. If the final continuous state from the simulation does
not map to SEECER’s final discrete state, a discrepancy between the model
and simulation has been found. This discrepancy is then reported and the pro-
cedure terminates. If the simulator and the DEC model reach matching final
states, there is no discrepancy for the sampled initial state. However, there
may be another initial continuous state mapping to the initial discrete state
which causes a discrepancy. Due to the infinite amount of continuous states,
exhaustive sampling is not possible. Instead we use a stochastic approach
and calculate the confidence in the hypothesis that there is no problematic
continuous state mapping to sd,0 (top right). If this confidence reaches a pre-
defined threshold, the execution trace is assumed to not cause any discrepancy
and SEECER continues to search for the next execution trace. Otherwise, a
new initial state is sampled and simulated. The following subsections provide
more information on the sampling process and the confidence calculation.

5.2.1.2 Sampling-Based Simulation of Counterexamples

Due to the difference between discrete and continuous states, there is no
unique continuous state for each discrete state returned by SEECER. Instead,
a continuous state has to be sampled. The sampling process and the subse-
quent confidence calculation is easiest, if all parameters are sampled inde-
pendently of each other. This means that the discrete world model describes
rectangular or cuboid regions. We will focus on this case in the following dis-
cussion. Once all parameters have been sampled, the initial state is set in the
simulation. Afterwards the action sequence is executed. The resulting final
state can now be compared with the final discrete state returned by SEECER.

Example 23. Consider again the environment and plan from Example 22.
Sampling an initial concrete state might result in the robot at x 0.8 and the
box at x 1.4. After setting this state in the simulation and executing the
actions, both the robot and box would be at x 0.8. This final continuous state
maps to the final discrete state with both the robot and the box in r1.

The sampling and simulation is repeated until either a discrepancy has been
found or a pre-defined confidence is reached. We describe the confidence
calculation in the following section.

80 formal methods for modelling assistance

5.2.1.3 Calculating the Confidence

In this section, we describe the calculation of the confidence that occurs after
each simulation run. To do that, we consider the action sequence as a function,
which maps every initial continuous state to the respective final continuous
state. We assume that this function follows the multivariate normal distri-
bution, i. e. each parameter of the final state is a linear combination of the
parameters of the initial state plus a normally distributed error ε. Each pa-
rameter y of the final state is given as y

∑n
i1xiβi ε, where n is the number

of parameters, xi is the i-th parameter value of the initial state and βi is its
coefficient. This equation can also be written in matrix notation as y Xβ ε,
where X is the row vector

(
x1 . . . xn

)
and β is the column vector

β1

. . .

βn

 .

As usual, we also assume that all parameters of the final state are independent
of each other given a fixed initial state.

Since the coefficients β are unknown, they have to be estimated from the
sampled initial states and their respective final states. We call these estimated
coefficients b. Using the sampling data, the equation can now be rewritten as
y Xb ε, where y is now a column vector of the sampled parameter from the
final state. X is a matrix, where each row corresponds to a sample and each
column corresponds to a parameter from the initial state. ε is now a column
vector as well, containing the error for each sample.

Example 24. Consider again the simple environment from the previous exam-
ples. The state can be fully described through the x-coordinate of the robot
and the box. Let’s assume, we are interested in the final position of the box
and we have two samples: In the first sample the robot and box start at x 0.5
and x 1.3, respectively, and the box ends up at x 0.6 in the final state. In the
second sample the robot and box start at x 0.9 and x 1.7 and the box ends
up at x 0.8. The equation would now be written as0.6

0.8


0.5 1.3

0.9 1.7

 b ε

Following the standard least squares procedure, we want to minimize the
sum of the squares of those errors, i. e. the term

∑n
i1 εi

2 ε ′ε. The respec-
tive values of b can be estimated by b X ′X−1X ′y and the least squared
error by σ minε ′ε y − Xb ′y − Xb. Once all coefficients and errors for
all parameters of the final state have been estimated, we can calculate a
confidence interval for each of them. This confidence interval is given by∑n

i1xi,min · bi −
Z

n√
Cσ
√

s ,
∑n

i1xi,max · bi
Z

n√
Cσ
√

s , where xi,min is the smallest possible
value of xi if bi > 0 and the highest possible value of xi otherwise. Similarly,
xi,max is the highest possible value if bi > 0 and the smallest possible value
otherwise. Z is the Z-distribution, C the desired confidence, n the number of

5.2 simulation-based debugging of formal environment models 81

parameters and s the number of samples. Using
n√
C makes sure, that the con-

fidence of the combination of all n confidence intervals is
n√
C

n
C. This joint

confidence region now describes the possible final states that we expect to
reach from any initial continuous state mapping to sd,0. If now all final states
in the confidence region map to the same discrete state, we can terminate the
sampling loop and continue with the next execution trace.

Example 25. Consider the environment from the previous examples once
again. Assume, that the coefficients

b

 0.9

−0.1


and the least squared error σ 0.3 have been found after sampling 4 initial
states. Further assume, that the initial discrete state has the robot in region
r1 and the box in r2. Since r1 is bound by 0 ≤ x ≤ 1 and the coefficient b1 0.5
is positive, we use x1,min 0 and x1,max 1. On the other hand, b2 −0.4 is
negative, so we use x2,min 2 and x2,max 1. Using a 95% confidence, we get
Z
√
0.95 ≈ 2.24. Plugging these values into the above equation, results in a

lower interval boundary of

0 · 0.9 2 · −0.1 −
2.24 · 0.3

2
−0.536

and an upper boundary of

1 · 0.9 1 · −0.1
2.24 · 0.3

2
1.136

Since both interval boundaries are outside of the region r1, the desired confi-
dence is not yet reached and more simulations need to be performed.

5.2.2 Experimental Evaluation

In this section, we evaluate our proposed approach on three robotic plans set
in a household kitchen environment.

The underlying formal model, written as a DEC description, is identical
for all three plans except for the types of items that are present in the kitchen.
The formal model uses the DEC axioms and consists of an additional 7 sorts,
2 predicates, 16 fluents, 10 events and 59 logical sentences. For the most part,
it describes pre-conditions and effects of the actions used in the plans, such
as navigation, pick-up or drawer access. On the simulation side, we use the
fast plan projection simulator, that is tightly integrated with CRAM. For the
formal verification we use our extension of SEECER. All experiments were
conducted on a Linux machine running an Intel CPU with 2.50 GHz clock
rate.

In the following Section 5.2.2.1 we present the three robotic plans used
in the evaluation. Section 5.2.2.2 contains the experimental results and the
discrepancies that have been found. We close with a discussion in Sec-
tion 5.2.2.3.

82 formal methods for modelling assistance

5.2.2.1 Robotic Plans

All three of our plans operate in the same kitchen and therefore share the same
formal model and simulation environment. All plans are concerned with pick-
and-place tasks, i. e. transporting items from one part of the kitchen to another.
They have been selected, since they are well-suited to showcase the types of
discrepancies that can be found with our approach. Below, we describe all
plans in further detail.

plan 1: setting the table The first plan is tasked with setting a table
for breakfast, i. e. transporting a bowl, a cereal box, a milk carton and a spoon
from the kitchen workspace to a nearby table. The spoon is located in one of
the three available drawers, all other items are on top of the workspace.

The plan loops through the items and has the robot transport each one
individually. In case of the bowl, cereal and milk, the robot attempts to detect
the item on top of the workspace. For the spoon, the robot searches through
the drawers by opening them, trying to detect the spoon and then closing them
again. Once an object has been detected, it is picked up, the robot navigates
to a pre-defined position in front of the table, and the object is placed in its
target position.

plan 2: bowl and spoon This plan is a modified version of the first one.
This time only the bowl and the spoon are transported to the table, the spoon
is transported first and the drawers are only closed as long as the spoon has
not been detected.

plan 3: looking into drawers This plan uses the spoon inside one of
the drawers again and no other items. The goal again is to find the spoon
inside the drawers and then transport it to the table. However, the spoon is
now allowed to be not only in the center of the drawers, but also towards the
side or very far in the front or back. Therefore, the robot has to try to detect
the spoon from multiple poses per drawer. These poses are all close together
and are therefore inside the same region described by the formal model.

5.2.2.2 Experimental Results

We executed the proposed approach on the three robotic plans using a con-
fidence threshold of 99%. We were able to find three major discrepancies
between the formal model and the simulator.

The first discrepancy was found during execution of Plans 1 and 2. The
state constraints were chosen to trigger a simulation after a successful navi-
gation action, i. e. whenever the robot executed a navigation action to some
position p at timepoint t and actually reached position p at timepoint t 1.
Both in simulation and when executing on a real robot, it may happen that
the robot loses an object from its gripper, either due to a bad grasp or sudden
movement. This object will then usually fall to the floor or a surface, often
outside of the robots vision or reach. In the formal model this case was not

5.2 simulation-based debugging of formal environment models 83

Table 4: Simulation data until a first discrepancy is found

plan iterations simulations time

Plan 1 1 12 273s

Plan 2 2 11 197s

Plan 3 1 1 22s

Plan 2 (modified) 3 20 289s

considered. The main effect of a navigation action, namely the new position
of the robot, was formalized, but no changes to other fluents such as gripper
attachment or objects’ positions were made.

The second discrepancy also occurred after a successful navigation action
during Plan 2. Part of the plan is a loop that opens a drawer, searches for the
spoon inside and then closes the drawer. However, when the spoon was actu-
ally found, the closing was omitted, i.e. one drawer would always stay open.
Depending on the robots position, this drawer would sometimes block the
path that the robot was supposed to take. Thus, the success of the navigation
action would sometimes depend on the state of the drawer. This was cor-
rectly reflected inside the simulation, since collision checks are done before
each navigation action. If there is no free path between the origin and goal
positions, the action would fail. The formal model did not contain any such
constraint, though. This is a typical oversight by the model engineer, which
can be easily fixed. In addition to the error in the formal model, this discrep-
ancy also uncovered a flaw in the robotic plan, which can now be modified to
always close the drawer, even if the spoon was found.

The final discrepancy occurred in Plan 3. This time, a successful grasping
action was used as the state constraint. Plan 3 uses several positions to search
for the spoon inside a drawer. Since all of those positions are relatively close
together compared to the total size of the kitchen, they fall into the same
region. The formal model assumes that all perception and grasping actions
from this region succeed if the object is inside one of the drawers and that
drawer is currently open and unobstructed. In practice however, the small
differences in positions were crucial in the visibility and reachability of the
spoon. The discretisation used in the formal model was simply too coarse
to accurately reflect the true conditions for visibility and reachability of the
spoon. A finer discretisation would be able to mitigate this problem, but this
would of course also increase the size of the model and the complexity of
reasoning.

The detected discrepancies clearly show that our approach can effectively
find discrepancies in formal models. In addition, our experimental results in-
dicate that our approach can work very effectively in keeping the number of
required simulation runs low for finding these discrepancies. To show this
aspect, we recorded experimental data during the execution. They are sum-
marized in Table 4. The first column Plan states the plan that was executed.

84 formal methods for modelling assistance

The next column shows the number of iterations, i. e. how many execution
traces were returned by SEECER and then used for sampling. The third col-
umn reports the number of simulation runs and the final column contains the
total time spent in the simulation.

Here, we have the three plans described above, as well as a modified ver-
sion of Plan 2, where both the plan and the formal model now consider the
discrepancies found previously. Consequently, no discrepancy was found for
this modified version. For Plan 1 and Plan 3 the first execution trace led di-
rectly to a discrepancy, while Plan 2 first produced an execution trace where
no discrepancy was found. Instead, after 7 samples the confidence threshold
of 99% was reached. The discrepancy later found in the second execution
trace could in fact not occur in this first execution. The modified Plan 2
needed 3 iterations until all execution traces were explored. In all cases, only
very few runs were necessary to find the discrepancies. This also led to a
small amount of time spent in the simulation. In all cases, less then 5 minutes
of simulation time were used.

This is evidence that our approach is able to effectively find relevant dis-
crepancies, while only requiring a small number of simulations.

5.2.2.3 Discussion

The evaluation showed the practical applicability of our approach. This sec-
tion discusses how its results should be interpreted and how the approach can
be tuned to fit the user’s needs.

The approach is correct, since every discrepancy reported by the algorithm
necessarily has to be observed to actually produce two different final states. It
is however not complete. This is due to the infinite number of concrete states
for any discretisation. While the absence of a discrepancy can not be formally
proven, our approach can give a probabilistic guarantee by employing the
measure of confidence. The confidence threshold can be freely chosen by the
user. They can easily increase the chance to find even very rare or hidden
discrepancies by increasing the threshold. This will of course also increase
the number of simulation runs and therefore the runtime.

The results of our approach can be used in multiple ways. The obvious
choice is to refine the formal model in such a way that the discrepancy no
longer occurs. However, such a refinement may sometimes make the model
vastly more complicated and thus make reasoning harder. Alternatively, the
discrepancies could be collected and any result derived from the formal model
could be reviewed with regard to the discrepancies. This could be done either
manually or (semi-)automatically through simulation.

So far, it was always assumed that a discrepancy means that the formal
model is faulty. There may of course also be the case where the formal model
is accurate, but the simulation engine is not. While we expect this case to
occur rarely in practice, the discrepancy could as well be used to modify the
simulation engine.

One could also use our proposed approach to build a formal model from
scratch. A developer would start with some kind of minimal model, e. g. a

5.3 conclusion & future work 85

model where all actions have no effect. Afterwards our approach is used to
detect any discrepancies between the model and a simulator. These discrep-
ancies are then used to manually refine the model. This process is repeated
until no further discrepancies are found. We expect a model produced in this
way to be very well adapted to the plan(s) and state constraints used. On the
other hand, it should be minimal in a sense, i. e. contain no sentences that are
irrelevant to the plan(s). This in turn should lead to high realism of the model
while keeping the reasoning effort low.

5.3 conclusion & future work

In this chapter, we presented techniques to assist a model designer in the
complex task of devising a logic-based model of a robotic environment. Our
first approach takes a set of satisfying and unsatisfying examples to learn
an SMT(LRA) formula. Compared to the state of the art, we are able to
achieve a considerably better scalability with only minor losses in accuracy,
as evidenced by our experimental evaluation. We also presented two different
algorithms, so the model designer is able to choose between higher scalability
or higher accuracy.

The second approach uses our symbolic execution engine SEECER to find
execution traces in which a formal model’s behaviour differs from that of
a simulation engine. Our approach combines formal verification and simula-
tion and can be targeted towards specific robotic plans and environment states.
The main loop first uses the formal verification tool SEECER to find interest-
ing execution traces and extract the initial state and the action sequence. From
the initial discrete state a continuous state is sampled. This is then fed into
the simulation engine. If the resulting final state of both executions do not
match, a discrepancy has been found. Otherwise the sampling is repeated
until a sufficient confidence is reached.

We envision the two approaches presented here as part of a comprehensive
design flow for formal models. There are still several pieces missing to this
flow, however. The application of our SMT(LRA) learner to actual robotic
data is still open work. Likewise, other classes of SMT formulae should be
considered as well. The selection of useful input examples is an open research
question, as well.

Right now, our debugging approach regards the simulator as a pure black
box. In future work, we also want to leverage some knowledge about the
simulator’s internal functionality. This could allow to get a higher degree of
certainty in the case that no discrepancy could be found, maybe even up to a
full formal proof of the equivalence of model and simulation. We also want
to investigate the case where the state’s parameters are not fully independent.
This way, not only rectangular and cuboid regions could be considered, but
also other shapes.

For a complete design flow, several other building blocks are still missing,
as well. These are the generation of formal descriptions from the identified

86 formal methods for modelling assistance

regions, an adequate selection of the right abstraction level and an integration
in planning and verification tools.

6
C OV E R AG E - G U I D E D F U Z Z I N G O F RO B OT I C P L A N S

In Chapter 4 we presented different formal methods for the verification of
high-level robotic plans. Formal verification is a great way to cover the
robotic plan completely including hidden edge and corner cases. However,
this completeness comes with the downside of a high runtime and no guar-
anteed termination. Depending on the complexity of the plan, formal verifi-
cation methods may not terminate at all or only after an unreasonably long
time.

In many other domains, coverage-guided fuzzing has proven to be an ef-
fective compromise between hand-written tests and formal verification. In
coverage-guided fuzzing, inputs to a program are generated semi-randomly
and the correctness of the output is checked automatically. This way, a large
number of test cases can be run without manual interaction. During execu-
tion, the coverage on the code is measured and used to guide the generation
of subsequent inputs. The goal is to maximize the coverage of the generated
test cases.

This way, coverage-guided fuzzing is able to test relevant edge cases that
a human test engineer may have missed. At the same time, coverage-guided
fuzzing can be terminated at any time and has no significant runtime overhead
over manual tests.

In this chapter, we present our approach to coverage-guided fuzzing for
plan-based robotics. Our contributions are threefold: First, we introduce
coverage-guided fuzzing to the domain of plan-based robotics. Secondly, we
present a prototypical implementation for the robotic plan language CPL. Fi-
nally, we introduce a novel coverage metric for the domain of plan-based
robotics that may be used in combination with coverage-guided fuzzing or
independently of it.

Our approach builds upon SEECER, except here, we only use SEECER for
the discrete execution of CPL plans. No symbolic values and no SMT solver
is used. A fuzzer is instrumented to provide SEECER with different initial
states of the simulation as input to the plan. During execution the resulting
code coverage is measured and fed back to the fuzzer.

Our novel coverage metric measures the percentage of possible actions that
have been executed by the plan and thus follows the effect of the plan on its
environment more closely than general structural coverage metrics.

In Section 6.1 we introduce our approach to coverage-guided fuzzing for
CPL. Section 6.2 presents our novel action coverage. Section 6.3 discusses
the experimental evaluation of our approach and Section 6.4 concludes this
chapter.

87

88 coverage-guided fuzzing of robotic plans

Figure 28: Overview of our fuzzing approach

6.1 coverage-guided fuzzing for cpl plans

In this section, we introduce our approach to coverage-guided fuzzing of CPL
plans. We start with an overview of our methodology in Section 6.1.1. After-
wards, we explain two aspects of our approach in more detail. These are the
translation of the fuzzer output to an initial environment state in Section 6.1.2
and the coverage measurement in Section 6.1.3.

6.1.1 Overview

In most applications, the fuzzer will provide inputs to a program or function.
In the context of plan-based robotics however, the plan will receive inputs
from its environment. We therefore propose to use the fuzzer output to gener-
ate an environment for the robot. We divide a robots environment into a static
and a dynamic part. The static part of the environment is the same for all exe-
cutions and may e. g. contain walls or larger pieces of furniture. The dynamic
part should be different between executions and contains smaller items that
are supposed to be manipulated by the robot.

We use an adapted version of SEECER in combination with CLisp and the
fast projection simulator for the plan execution and libfuzzer for the input
generation. The flow of our program is shown in Fig. 28. It is divided into an
initialization phase indicated by dashed arrows and a main loop indicated by
continuous arrows. The steps are numbered according to their order.

During initialization, the CPL plan (1) is first parsed and compiled into
CLisp bytecode (2). This bytecode is then analysed to find all coverage points.
A memory segment is reserved for the respective counters and given to the
fuzzer (3). Finally, the simulation is initialized and the static part of the envi-
ronment is loaded (4).

6.1 coverage-guided fuzzing for cpl plans 89

After the initialization steps are complete, the procedure enters a main loop
that repeats the following steps. At first, the fuzzer provides a byte array as
input to the plan (5). This byte array is then translated into a set of objects,
which are added to the simulation (6). Afterwards, the robotic plan is exe-
cuted in the simulation environment (7). During execution, the counters of
the chosen coverage metric are updated after every instruction. After the exe-
cution has finished, the final state of the simulation is checked for erroneous
behaviour such as objects in the wrong location. Any errors found are re-
ported to the user (8). Additionally, the coverage is updated in the fuzzer (9)
and also reported to the user. Finally, the simulation environment is reset to
prepare for the next iteration.

The main loop can run as long as desired by the user. Possible stopping
criteria include the number of found errors, a time limit or a coverage limit.

6.1.2 Initial Environment Setup

Unlike most applications, plan-based robotics require the fuzzer to provide an
initial environment setup instead of an input to a function. In this section, we
will cover the translation from generated bytes to this environment setup in
more detail. At first, the environment needs to be separated into a static and
a dynamic part. Only the dynamic part will change between iterations. The
static part remains constant throughout the whole procedure and is therefore
independent of the fuzzer output.

For the dynamic part, objects need to be generated with several properties
such as their type, position and orientation. Since not all positions within
the environment may be eligible to create an object at, we further propose to
define regions and reserve part of the generated bytes to first decide the region
and then the coordinates within that region.

Depending on the number of regions and types as well as the desired gran-
ularity on positions and orientations more than one byte may be necessary
to represent an object. With t possible types, r possible regions, p possible
positions per region and o possible orientations, the number of bytes b should
be chosen such that 256b−1 < trpo ≤ 256b, i. e. the smallest number that will
be able to represent all combinations of type, region, position and orientation.

If the fuzzer produces a total number of bytes that is not divisible by b, the
remaining incomplete object is discarded.

Example 26. Consider a simple environment with three tables, which are
90cm by 90cm. In the initial state, a number of bottles and cups are placed
on any of the tables. The test designer chooses a grid with a width of 20cm,
which results in 4 · 4 16 possible positions per table. The objects will always
stand upright, but may by turned by multiples of 90 degrees, resulting in 4
possible orientations. With 2 types, 3 regions, 16 positions and 4 orientations,
there are a total of 384 possible configurations per object and two bytes will
be necessary to represent an object. When the fuzzer produces 5 bytes, only
two objects will be instantiated and the last byte is discarded.

90 coverage-guided fuzzing of robotic plans

Of course, other properties like dimensions, colour, fill level of containers,
etc. may be represented in the same way, when applicable.

6.1.3 Coverage Measurement

Our approach needs to measure the code coverage to guide the fuzzer and
report it to the user. In this section, we will describe the instrumentalization
of SEECER and the coverage measurement in detail.

Since SEECER operates on CLisp bytecode, we will also define our cov-
erage metrics on that bytecode instead of the higher-level CPL plan. We will
mainly describe the instruction and branch coverage, but other structural cov-
erage metrics can be added in a similar manner.

Since libfuzzer requires a counter for each coverage point, we will also use
this representation internally. During the initialization phase of our approach,
the bytecode will be analysed to find the total number of coverage points. For
the instruction coverage this simply corresponds to the number of executable
instructions. For the branch coverage, the conditional jumps are counted and
multiplied by two, since there are exactly two outcomes for each conditional
jump. An array of these counters is created and initialized with zeros.

During execution the counter array is updated using an observer pattern.
Coverage metrics will register at the interpreter and in turn the interpreter will
notify them after each instruction execution. The instruction coverage metric
reacts to all instruction executions and increments the respective counter. The
branch coverage metric only reacts to conditional jump instructions and incre-
ments one of the two respective counters depending on whether the branching
condition is true or false.

To measure the total coverage, the number of non-zero entries in the array
is divided by the total number of entries.

Example 27. Consider the bytecode in Fig. 29, which was previously used in
Chapter 2. The bytecode is divided into a data section (the unnumbered lines
at the top) and a code section (the numbered lines). The code accesses the
data through the CONST instructions in Lines 1, 8 and 12.

The program requires one integer to be present on the stack. It will then
load the first constant, the numeric value 2 and apply the built-in function
210, which is the modulo operation (Line 3). The result is compared to zero
(Line 5) and depending on the outcome the execution will jump to Line 11 or
proceed with Line 8. Ultimately, the program will return either "EVEN" or
"ODD", depending on the value of the input.

For this program, SEECER will initialize a counter array with 15 entries
for the instruction coverage, since there are 15 instructions. The counter
array for the branch coverage will have only 2 entries, one for each possible
result of the JMPIF instruction in Line 7. The JMP instruction in Line 10 does
not require any coverage points, since it is unconditional.

Assume that the program is called with an even input. This will execute
Lines 1 to 7 and Lines 11 to 15. This results in a total of 12 executed instruc-
tions and a instruction coverage of 12

15 80%. Of the coverage points for the

6.2 a coverage metric for plan-based robotics 91

(CONST 0) = 2
(CONST 1) = "ODD"
(CONST 2) = "EVEN"
(CONST 3) = IS−EVEN

1 (CONST 0) ; 2

2 (PUSH)
3 (CALLS2 210) ; MOD

4 (PUSH)
5 (CALLS1 172) ; ZEROP

6 (SETVALUE 3) ; IS-EVEN

7 (JMPIF L11)
8 (CONST 1) ; "ODD"

9 (PUSH)
10 (JMP L14)
11 L11
12 (CONST 2) ; "EVEN"

13 (PUSH)
14 L14
15 (SKIP&RET 1)

Figure 29: CLisp bytecode example

branch coverage, only the one corresponding to the value > is incremented,
resulting in a branch coverage of 50%.

6.2 a coverage metric for plan-based robotics

While general structural coverage metrics like instruction or branch coverage
have proven their usefulness, domain-specific functional metrics are often
able to follow the intended behaviour of the program more closely. Therefore,
in this chapter, we introduce action coverage as a natural functional coverage
metric for plan-based robotics. The metric is independent of the concrete plan
language, but will be presented and evaluated in the context of CPL in this
section.

The general idea is to measure which percentage of the possible actions
have been executed by the plan. Here, not only the type of the action, but all
parameters are considered. This makes the metric neither strictly stronger or
strictly weaker than the presented structural coverage metrics. For instance,
the same line of code may execute an action with different parameters depend-
ing on the value of some variable. The second execution of that line would
then increase the action coverage, but not the instruction or branch coverage.

If all parameters of the executable actions are discrete and have sufficiently
few values, each possible action parametrization can correspond to a coverage
point. The coverage calculation and implementation are straight-forward in
this case.

92 coverage-guided fuzzing of robotic plans

Example 28. Consider again the simple environment from Example 26 with
three tables and two object types. Also consider a two-armed robot acting
in this environment. The robot may pick an object from any of the tables or
place an object on a table. The action abstracts from the exact position on
the table. It is parameterised by its type (pick or place), the table, the object
type and the arm that is used. This allows for a total of 2 · 3 · 2 · 2 24 distinct
actions to be performed, resulting in 24 coverage points.

However, in many cases there will be continuous parameters or ones with
a lot of possible values. In these cases a straight-forward approach will still
work to some extend, but due to the extremely high or even infinite amount of
possible actions, the overall coverage will be either very close to zero or un-
defined. To avoid this problem, we suggest to form buckets of similar actions
and create one coverage point per bucket.

A bucket is a set of actions that are sufficiently similar in their parameters.
The space of all possible actions should be divided into a finite set of buckets
such that each action belongs to exactly one bucket. After an action is exe-
cuted, the respective bucket is marked as executed. In our implementation
of coverage-guided fuzzing, each bucket would have its own counter that is
incremented whenever an action from that bucket is executed.

The choice of buckets is highly domain-specific and may depend on the
plan and environment under observation. This obviously makes it harder to
compare the quality of different plans acting in different environments. Still,
the comparability of different test sets for the same plan is preserved and the
metric is well suited to guide a fuzzer.

Example 29. Consider again the environment and actions from the previous
example. Now, assume an additional navigation action that will navigate the
robot to a continuous coordinate within the room. This results in an infinite
number of distinct actions. To reduce the number of coverage points to a man-
ageable amount, the navigation action is divided into 4 buckets depending on
its target position. There is one buckets for each table and its surrounding
area and one bucket for all positions not adjacent to a table. This increases
the total number of coverage points to 28.

Action coverage can be used in combination with coverage-guided fuzzing
as presented in the previous section, but also independently. Like other cov-
erage metrics it may be used to judge the quality of hand-written or (semi-
)automatically generated test cases.

We believe that action coverage measures the diversity of plan executions
more closely than structural coverage metrics, since the focus is on the actual
behaviour of the robot in its environment rather than the control flow of the
underlying program.

6.3 experimental evaluation

This section describes our experimental evaluation. We evaluate both our
approach to coverage-guided fuzzing for plan-based robotics in general and

6.3 experimental evaluation 93

the combination with action coverage in particular. All experiments were
conducted on a Linux machine running an Intel CPU with 2.50 GHz clock
rate. In Section 6.3.1 we present the plan and environment that were used for
the evaluation. Afterwards, we discuss our results in Section 6.3.2.

6.3.1 Robotic Plan and Environment

We evaluate our approach on a CPL plan that is set in a warehouse-inspired
environment. The static part consist of a table and a shelf with three boards in
a rectangular room. The dynamic part contains a variable number of objects
with three types (milk, cereal and bowl). Initially, the objects may be on any
of the shelf boards or on the table. The plan is supposed to sort the objects
onto the shelf boards. Each object type has a corresponding board on the
shelf. It does so by first moving all objects to the table, clearing the shelf in
the process, and then moving them to their respective shelf boards. To save
trips between the shelf and table, the robot will always transport two objects
at once if possible. Due to the width of the shelf, the robot is not able to
reach all positions on it from the same point. A series of case distinctions is
responsible for picking the right position for the robot to pick or place both
of its objects.

In total, the plan involves 1785 bytecode instructions, 52 branching in-
structions and 6 different action types. These are the move-torso, park-arms,
detect-objects, navigate, pickup and place action.

For the action coverage, we decided on a total of 87 buckets. One bucket
belongs to each of the move-torso, park-arms and detect-objects actions. The
navigate action has 6 buckets, which are distinguished by their target position.
The pickup action also has 6 buckets, depending on the arm and the type of
the object. Finally, the place action is divided into the remaining 72 buck-
ets, which are distinguished by the arm, the type of the object and the target
position.

The initial state of the environment is built using two bytes per object. The
first byte decides the type of the object and one of four regions: the top of
the table and the top of each of the shelf boards. The second byte is split in
half, with the first four bits corresponding to the relative x position and the
last four bits to the relative y position of the object within the region. The z
position and the orientation are fixed for each region.

6.3.2 Experimental Results

In this section we present the results of our experimental evaluation. Dur-
ing execution, we measured the instruction, branch and action coverage. The
fuzzer is however only able to consider one coverage metric at once. There-
fore, we executed three versions, with each metric being the guiding metric
to the fuzzer in one version. To achieve a higher consistency of the results,
we executed ten runs per version, for a total of 30 runs. Each run had a time
limit of 5 hours.

94 coverage-guided fuzzing of robotic plans

Table 5: Minimum, maximum and average time to find each error

Error min max avg

Primary table 11s 89s 45s

One too high 10s 122s 57s

Two too high 13s 315s 102s

Secondary table 8s 528s 109s

Shelf edge 8s 511s 169s

One too low 125s 3348s 714s

Two too low 411s 9517s 2336s

We evaluated the following research questions:

• Is coverage-guided fuzzing able to find relevant errors in robotic plans
in a reasonable time?

• How well do the investigated coverage metrics reflect a thorough test-
ing of the robotic plan?

• Which effect does the guiding coverage metric have on the fuzzing
process?

• How consistent are the results between runs?

The runs unveiled a total of 7 errors in the plan, which we categorized by
their effect on the final environment state.

The shelf edge error occurred when an object in the initial state was very
close to the back edge of the shelf. This caused it to be occluded by the shelf
board. The robot could therefore not detect the object and would not move
it. This of course caused an invalid final state, if the object was not initially
on its correct shelf board. Additional positions for the detection of objects
would be necessary to mitigate this error.

In some cases, objects were left on the table, because they were occluded
by other objects and thus not detected in the second part of the plan. We call
these errors primary table error if the object was on the table in the initial
environment state and secondary table error if it was moved there. To avoid
this error, the detection and moving objects from the table should be repeated
until the table is empty.

The final four error categories describe objects that were sorted onto the
wrong shelf board. These errors stem from either an internal logic error in
the plan or from an inaccurate placing action. Depending on the difference
between the expected and actual shelf board, we call these errors one too high
error, two too high error, one too low error or two too low error.

All seven errors were found in all 30 runs, but the time it took to find each
error differed. The minimum, maximum and average times it took to find
each error are shown in Table 5. The first column contains the error name,

6.3 experimental evaluation 95

followed by the minimum, maximum and average time in seconds that it took
to find the respective error. The earliest found errors were the shelf edge error
and the secondary table error, which were each found after 8 seconds in two
different runs. The error that took the most time to be found was the two too
low error after 9517 seconds (just over 2h and 38min). This strong difference
between error types is also visible in the average times. The two too low error
took over 50 times as much time to be found on average than the primary table
error. But also the time for each error type differed greatly. This is best seen
with the secondary table error, where the maximum time is 66 times as high
as the minimum time. The guiding coverage metric had no clear effect on the
time it took to find errors.

The coverage metrics increased in different ways during runs, but con-
verged to the same values after 5 hours for all 30 runs. These values were
97.1% branch coverage, 95.0% instruction coverage and 59.3% action cov-
erage. Upon further inspection of the CPL plan, these values were found
to be the theoretical maximum due to a small section of unreachable code
and several action buckets that could not be executed by the plan. This also
showcases that finding suitable buckets is not a trivial problem, since many
parameters of the actions are only decided at runtime. And while it was no
particular priority for this evaluation, it shows that finding a diverse set of
buckets that still allows 100% action coverage is not an easy task.

The amount of time it took to reach those maximum values differed greatly
between runs. The branch coverage and instruction coverage always reached
their maximum at the same time, even though the increases during the runs
were not necessarily synchronous. The fastest time for those two metrics to
reach the maximum was 20 seconds and the slowest time 283 seconds. The
average time was 98 seconds. The highest action coverage was reached much
slower, with a minimum of 2353 seconds, a maximum of 13079 seconds and
an average of 6802 seconds. Again, there was no clear effect of the guiding
coverage metric.

The vastly slower convergence of the action coverage suggests that it is
harder to fulfil than the other two metrics. This also suggests that judging
a set of test cases by their action coverage holds them to a higher standard
than the branch or instruction coverage. To undermine this statement, we
also looked at the number of errors that were found only after the branch,
instruction or action coverage had reached their maximum. The reasoning
here is that a maximum value of some coverage metric should usually indicate
that the test cases cover a high amount of all possible outcomes and additional
errors after that are unlikely. So if a lot of errors were found after a coverage
metric’s maximum was reached, the metric is likely not thorough enough.

Of the 30 total runs, several errors occurred only after the branch and in-
struction coverage had reached their maximum. These were 5 occurrences
of the primary table error, 6 occurrences each of the secondary table error
and the two too high error, 10 occurrences of the one too high error, 12 oc-
currences of the shelf edge error, 25 occurrences of the one too low error
and all 30 occurrences of the two too low error. Only 2 occurrences of the

96 coverage-guided fuzzing of robotic plans

Figure 30: Exemplary coverage development over time

two too low error occurred after the maximum of the action coverage was
reached. This clearly shows that the branch and instruction coverage are in-
sufficient for a thorough testing of the robotic plan, while the action coverage
had much better outcomes.

Example 30. To visualize the difference between the metrics, consider Fig. 30
that shows the results of the first run (guided by the instruction coverage).
The y-axis shows the coverage for each metric and the x-axis shows the time
in seconds. To achieve a better visibility of the results, only the first 1000
seconds of the run are shown. The blue, orange and green line show the
development of the action, branch and instruction coverage, respectively. The
red vertical lines show points at which an error of each category was found
for the first time. The figure shows that the first four errors were found quickly
and before the branch and instruction coverage had reached their maximum.
The later three errors however were only found afterwards. All seven errors
were found before the action coverage reached its maximum, which happened
outside of the scope of the graphic.

With respect to our research questions we can say that coverage-guided
fuzzing was able to find relevant errors in the tested robotic plan. In each run
7 errors were found. This is consistent in terms of the final result, but not
necessarily in terms of the time needed. The time necessary to find certain
errors varied greatly between runs, as can be expected from a semi-random
algorithm. We found that the action coverage is a good indicator of the com-
pleteness of a test suite, since in most cases, all errors were found when it
reached its maximum. The instruction and branch coverage on the other hand
did not work well as an indicator, as almost half of all errors were found after

6.4 conclusion & future work 97

both metrics reached their maximum. This quality of the action coverage met-
ric did however not carry over to its use as a guiding coverage metric. There
were no clear differences in the behaviour when a different metric was cho-
sen. Since the action coverage performed well otherwise, this might suggest
that the chosen fuzzer is simply not very sensitive to the guiding coverage
metric. Overall, both the fuzzing approach and the action coverage have been
successful in our evaluation.

6.4 conclusion & future work

In this chapter, we introduced coverage guided fuzzing to the domain of plan-
based robotics. We presented our implementation for CPL.

Our approach starts with an initialization phase, which handles the initial-
ization of the fuzzer and the simulation as well as the compilation and anal-
ysis of the CPL plan. In the subsequent main loop, the byte array provided
by the fuzzer is translated into an initial environment setup and the plan is
executed in that environment. During execution, the coverage is measured
and fed back to the fuzzer.

In addition to the fuzzing approach, we presented a novel coverage metric
for the domain of coverage-guided fuzzing, which measures the percentage
of possible actions that have been performed by the plan.

Our experimental evaluation shows that coverage-guided fuzzing is able
to find relevant bugs in high-level robotic plans. The novel coverage metric
proved useful in judging the quality of a test suite.

For future work, additional coverage metrics should be incorporated. A
custom fuzzer backend, e. g. domain specific mutation patterns would also be
an interesting research direction.

7
C O N C L U S I O N

Current advances in technology and artificial intelligence pave the way for
a new generation of autonomous robots that are far more integrated into hu-
man environments than their predecessors. Possible application areas include
search and rescue scenarios, household assistance, elderly care or medical
procedures.

One promising approach to handle the high complexity of the robots’ tasks
and environments is plan-based robotics. Here, a high-level plan is respon-
sible for the orchestration and supervision of lower-level modules such as a
motion planner, knowledge base or computer vision module. The approaches
in this thesis have been implemented for the high-level, Turing-complete plan
language CPL.

When robots act in human environments such as households, the safety and
correctness of the robotic plan is highly important. Therefore, in this thesis,
we investigated several techniques to uncover hidden bugs, prove the correct-
ness of the robotic plan and assist in the planning and verification process.

We presented a framework for the symbolic verification of robotic plans
under different environment models. In particular, we enabled an integration
between our symbolic execution framework SEECER and the Discrete Event
Calculus. We also introduced a technique to find unhandled low-level failures
through symbolic fault injection.

Since most planning approaches as well as our symbolic execution rely on
an accurate formal model, we also devised two approaches to aid in the design
of formal models. Our first approach learns SMT(LRA) formulae from a set
of examples and is able to scale significantly better than the state-of-the-art.
The second approach uses our symbolic execution engine SEECER to find
discrepancies between a formal model and a simulation engine.

The major disadvantage of formal approaches is their poor scalability.
Therefore, we also used coverage-guided fuzzing, a test-based method, to un-
cover errors in the robotic plan. Additionally, we presented a novel coverage
metric for the domain of plan-based robotics.

All of our presented approaches were experimentally evaluated. The re-
sults support their applicability and utility.

This thesis includes major advances in the area of modelling, verification
and test for cognition-enabled robotic plans. Nonetheless, there are still sev-
eral open research questions to further advance the field, some of which were
also discussed in this thesis.

99

B I B L I O G R A P H Y

[1] Iina Aaltonen, Anne Arvola, Päivi Heikkilä, and Hanna Lammi.
“Hello Pepper, May I Tickle You? Children’s and Adults’ Responses
to an Entertainment Robot at a Shopping Mall”. In: International
Conference on Human-Robot Interaction (HRI). 2017, pp. 53–54.

[2] Seyed Aftabjahani and Zainalabedin Navabi. “Functional fault simu-
lation of VHDL gate level models”. In: VHDL International Users
Forum Fall Conference (VIUF). 1997, pp. 18–23.

[3] Fahad Alaieri and André Vellino. “Ethical Decision Making in
Robots: Autonomy, Trust and Responsibility”. In: International Jour-
nal of Social Robotics. 2016, pp. 159–168.

[4] Vítor Alcácer and Virgilio Cruz-Machado. “Scanning the Industry
4.0: A Literature Review on Technologies for Manufacturing Sys-
tems”. In: Engineering Science and Technology, an International
Journal (2019), pp. 899–919.

[5] Homa Alemzadeh, Ravishankar Iyer, Zbigniew Kalbarczyk, Nancy
Leveson, and Jaishankar Raman. “Adverse Events in Robotic
Surgery: A Retrospective Study of 14 Years of FDA Data”. In: PLOS
ONE (2015), pp. 1–20.

[6] Rob Alexander, Heather Rebecca Hawkins, and Andrew John Rae.
Situation coverage–a coverage criterion for testing autonomous
robots. Tech. rep. 2015.

[7] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. “Scal-
ing Enumerative Program Synthesis via Divide and Conquer”. In:
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). 2017, pp. 319–336.

[8] Saswat Anand, Corina Păsăreanu, and Willem Visser. “Symbolic Ex-
ecution with Abstract Subsumption Checking”. In: Model Checking
Software. 2006, pp. 163–181.

[9] Dejanira Araiza-Illan, David Western, Anthony Pipe, and Kerstin
Eder. “Coverage-Driven Verification — An Approach to Verify Code
for Robots that Directly Interact with Humans.” In: Haifa Verification
Conference (HVC). 2015, pp. 69–84.

[10] Franz Baader and Benjamin Zarrieß. “Verification of Golog programs
over description logic actions”. In: International Symposium on Fron-
tiers of Combining Systems (FroCoS). 2013, pp. 181–196.

[11] Roberto Baldoni, Emilio Coppa, Daniele D’elia, Camil Demetrescu,
and Irene Finocchi. “A survey of symbolic execution techniques”. In:
ACM Computing Surveys (CSUR) (2018), pp. 1–39.

101

102 bibliography

[12] Haniel Barbosa, Andrew Reynolds, Daniel Larraz, and Cesare Tinelli.
“Extending enumerative function synthesis via SMT-driven classifi-
cation”. In: Formal Methods in Computer Aided Design (FMCAD).
2019, pp. 212–220.

[13] Woodrow Barfield. “Liability for Autonomous and Artificially Intel-
ligent Robots”. In: Paladyn, Journal of Behavioral Robotics (2018),
pp. 193–203.

[14] Michael Beetz, Lorenz Mösenlechner, and Moritz Tenorth. “CRAM
— A Cognitive Robot Abstract Machine for everyday manipulation
in human environments”. In: International Conference on Intelligent
Robots and Systems (IROS). 2010, pp. 1012–1017.

[15] Christian Bessiere, Remi Coletta, Frédéric Koriche, and Barry
O’Sullivan. “A SAT-Based Version Space Algorithm for Acquiring
Constraint Satisfaction Problems”. In: European Conference on Ma-
chine Learning (ECML). 2005, pp. 23–34.

[16] Robert Bogue. “Underwater robots: a review of technologies and ap-
plications”. In: Industrial Robot (2015), pp. 186–191.

[17] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik
Roychoudhury. “Directed Greybox Fuzzing”. In: Conference on Com-
puter and Communications Security (CCS). 2017, pp. 2329–2344.

[18] Niklas Bruns, Vladimir Herdt, and Rolf Drechsler. “Unified HW/SW
Coverage: A Novel Metric to Boost Coverage-guided Fuzzing for Vir-
tual Prototype based HW/SW Co-Verification”. In: Forum on Specifi-
cation & Design Languages (FDL). 2022, pp. 1–8.

[19] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina Păsăre-
anu, Koushik Sen, Nikolai Tillmann, and Willem Visser. “Symbolic
Execution for Software Testing in Practice: Preliminary Assessment”.
In: International Conference on Software Engineering (ICSE). 2011,
pp. 1066–1071.

[20] Balasubramaniyan Chandrasekaran and James Conrad. “Human-
robot collaboration: A survey”. In: SoutheastCon. 2015, pp. 1–8.

[21] Ioan Chisalita, Nahid Shahmehri, and Patrick Lambrix. “Traffic ac-
cidents modeling and analysis using temporal reasoning”. In: Con-
ference on Intelligent Transportation Systems (ITSC). 2004, pp. 378–
383.

[22] Jens Claßen and Gerhard Lakemeyer. “On the Verification of Very Ex-
pressive Temporal Properties of Non-terminating Golog Programs”.
In: European Conference on Artificial Intelligence (ECAI). 2010,
pp. 887–892.

[23] Erwin Coumans. Bullet 2.83 Physics SDK Manual. 2015. url:
https : / / raw . githubusercontent . com / bulletphysics /

bullet3/master/docs/Bullet_User_Manual.pdf (visited on
12/06/2022).

https://raw.githubusercontent.com/bulletphysics/bullet3/master/docs/Bullet_User_Manual.pdf
https://raw.githubusercontent.com/bulletphysics/bullet3/master/docs/Bullet_User_Manual.pdf

bibliography 103

[24] John Danaher. “Robots, law and the retribution gap”. In: Ethics and
Information Technology (2016), pp. 299–309.

[25] Leonardo De Moura and Nikolaj Bjørner. “Z3: An Efficient SMT
Solver”. In: Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS). Available at https : / / github . com /
Z3Prover/z3. 2008, pp. 337–340.

[26] Rodrigo Delgado, Miguel Campusano, and Alexandre Bergel. “Fuzz
Testing in Behavior-Based Robotics”. In: International Conference
on Robotics and Automation (ICRA). 2021, pp. 9375–9381.

[27] Jeffrey Delmerico et al. “The current state and future outlook of res-
cue robotics”. In: Journal of Field Robotics (2019), pp. 1171–1191.

[28] Louise Dennis, Michael Fisher, Nicholas Lincoln, Alexei Lisitsa, and
Sandor Veres. “Practical Verification of Decision-Making in Agent-
Based Autonomous Systems”. In: International Conference on Auto-
mated Software Engineering (ASE) (2013), pp. 305–359.

[29] Alexander Ferrein and Gerhard Lakemeyer. “Logic-based robot con-
trol in highly dynamic domains”. In: Robotics and Autonomous Sys-
tems (2008), pp. 980–991.

[30] Richard Fikes and Nils Nilsson. “Strips: A new approach to the ap-
plication of theorem proving to problem solving”. In: Artificial Intel-
ligence (1971), pp. 189–208.

[31] Andrea Fioraldi, Daniele D’Elia, and Leonardo Querzoni. “Fuzzing
Binaries for Memory Safety Errors with QASan”. In: Secure Devel-
opment (SecDev). 2020, pp. 23–30.

[32] David Fischinger et al. “Hobbit, a care robot supporting independent
living at home: First prototype and lessons learned”. In: Robotics and
Autonomous Systems (2016), pp. 60–78.

[33] Giuseppe Fragapane, René de Koster, Fabio Sgarbossa, and Jan
Strandhagen. “Planning and control of autonomous mobile robots for
intralogistics: Literature review and research agenda”. In: European
Journal of Operational Research (2021), pp. 405–426.

[34] Yang Gao and Steve Chien. “Review on space robotics: Toward top-
level science through space exploration”. In: Science Robotics (2017),
pp. 1–11.

[35] Michael Gelfond and Vladimir Lifschitz. “Representing action and
change by logic programs”. In: The Journal of Logic Programming
(1993), pp. 301–321.

[36] Malik Ghallab et al. PDDL - The Planning Domain Definition Lan-
guage. Tech. rep. 1998.

[37] Serge Gorbunov and Arnold Rosenbloom. “AutoFuzz: Automated
Network Protocol Fuzzing Framework”. In: International Journal of
Computer Science and Network Security (IJCSNS). 2012, pp. 239–
245.

https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3

104 bibliography

[38] Henrik Grosskreutz and Gerhard Lakemeyer. “cc-Golog – An Action
Language with Continuous Change”. In: Logic Journal of the IGPL
(2003), pp. 179–221.

[39] Bruno Haible, Michael Stoll, and Sam Steingold. Implementation
Notes for GNU CLISP. 2010. url: https://clisp.sourceforge.
io/impnotes.html (visited on 12/01/2022).

[40] Tamás Haidegger. “Autonomy for Surgical Robots: Concepts and
Paradigms”. In: Transactions on Medical Robotics and Bionics
(2019), pp. 65–76.

[41] Pavel Hamet and Johanne Tremblay. “Artificial intelligence in
medicine”. In: Metabolism (2017), S36–S40.

[42] Jeff Huang, Cansu Erdogan, Yi Zhang, Brandon Moore, Qingzhou
Luo, Aravind Sundaresan, and Grigore Roşu. “ROSRV: Runtime Ver-
ification for Robots”. In: International Conference on Runtime Verifi-
cation (RV). 2014, pp. 247–254.

[43] François Ingrand and Malik Ghallab. “Deliberation for autonomous
robots: A survey”. In: Artificial Intelligence (2014), pp. 10–44.

[44] Özgür Kafali, Alfonso Romero, and Kostas Stathis. “Agent-oriented
activity recognition in the event calculus: An application for diabetic
patients”. In: Computational Intelligence (2017), pp. 899–925.

[45] Mohd Kamarul Bahrin, Fauzi Othman, Nor Hayati Nor Azli, and
Muhamad Talib. “Industry 4.0: a Review on Industrial Automation
and Robotic”. In: Jurnal Teknologi (2016), pp. 137–143.

[46] Benjamin Kaufmann, Nicola Leone, Simona Perri, and Torsten
Schaub. “Grounding and solving in answer set programming”. In: AI
Magazine (2016), pp. 25–32.

[47] Gayane Kazhoyan, Simon Stelter, Franklin Kenfack, Sebastian Ko-
ralewski, and Michael Beetz. “The Robot Household Marathon Ex-
periment”. In: International Conference on Robotics and Automation
(ICRA). 2021, pp. 9382–9388.

[48] Hyungsub Kim, Muslum Ozmen, Antonio Bianchi, Z. Berkay Ce-
lik, and Dongyan Xu. “PGFUZZ: Policy-Guided Fuzzing for Robotic
Vehicles”. In: Network and Distributed System Security Symposium
(NDSS). 2021.

[49] James King. “Symbolic Execution and Program Testing”. In: Com-
munications of the ACM (CACM) (1976), pp. 385–394.

[50] Samuel Kolb, Sergey Paramonov, Tias Guns, and Luc De Raedt.
“Learning constraints in spreadsheets and tabular data”. In: Machine
Learning (2017), pp. 1441–1468.

[51] Samuel Kolb, Stefano Teso, Andrea Passerini, and Luc De Raedt.
“Learning SMT(LRA) Constraints Using SMT Solvers”. In: Inter-
national Joint Conference on Artificial Intelligence (IJCAI). 2018,
pp. 2333–2340.

https://clisp.sourceforge.io/impnotes.html
https://clisp.sourceforge.io/impnotes.html

bibliography 105

[52] Maha Kooli, Alberto Bosio, Pascal Benoit, and Lionel Torres. “Soft-
ware testing and software fault injection”. In: International Confer-
ence on Design and Technology of Integrated Systems in Nanoscale
Era (DTIS). 2015, pp. 1–6.

[53] Robert Kowalski and Marek Sergot. “A logic-based calculus of
events”. In: New Generation Computing. 1986, pp. 67–95.

[54] Joost de Kruijff and Hans Weigand. “Formalising Commitments Us-
ing the Event Calculus”. In: International Workshop on Value Mod-
elling and Business Ontologies (VMBO). 2020, pp. 179–190.

[55] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George
Candea. “Efficient State Merging in Symbolic Execution”. In: Confer-
ence on Programming Language Design and Implementation (PLDI).
2012, pp. 193–204.

[56] Daniel Larsson and Reiner Hähnle. “Symbolic fault injection”. In:
International Verification Workshop (VERIFY). 2007, pp. 85–103.

[57] Hector Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin,
and Richard Scherl. “GOLOG: A logic programming language for
dynamic domains”. In: The Journal of Logic Programming (1997),
pp. 59–83.

[58] Sam Levin and Julie Wong. “Self-driving Uber kills Arizona woman
in first fatal crash involving pedestrian”. In: The Guardian (2018).
url: https://www.theguardian.com/technology/2018/mar/
19/uber-self-driving-car-kills-woman-arizona-tempe

(visited on 11/15/2022).

[59] Jun Li, Bodong Zhao, and Chao Zhang. “Fuzzing: a survey”. In: Cy-
bersecurity (2018), pp. 1–13.

[60] Thomas Lienert, Ludwig Stigler, and Johannes Fottner. “Failure-
Handling Strategies For Mobile Robots In Automated Warehouses”.
In: European Conference on Modelling and Simulation (ECMS).
2019.

[61] Jinguo Liu, Yuechao Wang, Bin Li, and Shugen Ma. “Current Re-
search, Key Performances and Future Development of Search and
Rescue Robot”. In: Chinese Journal of Mechanical Engineering
(CJME) (2006), pp. 404–416.

[62] Tianhai Liu, Mateus Araújo, Marcelo d’Amorim, and Mana Taghdiri.
“A Comparative Study of Incremental Constraint Solving Approaches
in Symbolic Execution”. In: Haifa Verification Conference (HVC).
2014, pp. 284–299.

[63] llvm. libFuzzer – a library for coverage-guided fuzz testing. 2022.
url: https://llvm.org/docs/LibFuzzer.html (visited on
10/06/2022).

https://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-arizona-tempe
https://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-arizona-tempe
https://llvm.org/docs/LibFuzzer.html

106 bibliography

[64] Matt Luckcuck, Marie Farrell, Louise Dennis, Clare Dixon, and
Michael Fisher. “Formal Specification and Verification of Au-
tonomous Robotic Systems: A Survey”. In: ACM Computing Surveys
(CSUR) (2019), pp. 1–41.

[65] Oded Maimon and Lior Rokach. Data Mining and Knowledge Dis-
covery Handbook, 2nd ed. Springer, 2010.

[66] Raphael Mannadiar and Hans Vangheluwe. “Debugging in Domain-
Specific Modelling”. In: International Conference on Software Lan-
guage Engineering (SLE). 2011, pp. 276–285.

[67] Joao Marques-Silva, Inês Lynce, and Sharad Malik. “Conflict-driven
clause learning SAT solvers”. In: Handbook of Satisfiability. 2021,
pp. 133–182.

[68] John McCarthy and Patrick Hayes. “Some Philosophical Problems
from the Standpoint of Artificial Intelligence”. In: Machine Intelli-
gence. 1969, pp. 463–502.

[69] Drew Mcdermott. “A Reactive Plan Language”. PhD thesis. 1993.

[70] Martin Michalowski, Craig Knoblock, Ken Bayer, and Berthe
Choueiry. “Exploiting Automatically Inferred Constraint-Models for
Building Identification in Satellite Imagery”. In: International Sympo-
sium on Advances in Geographic Information Systems (GIS). 2007.

[71] Barton Miller, Lars Fredriksen, and Bryan So. “An Empirical Study
of the Reliability of UNIX Utilities”. In: Communications of the ACM
(CACM) (1990), pp. 32–44.

[72] Rob Miller and Murray Shanahan. “Some Alternative Formulations
of the Event Calculus”. In: Computational Logic: Logic Program-
ming and Beyond. 2002, pp. 452–490.

[73] Leora Morgenstern. “Mid-Sized Axiomatizations of Commonsense
Problems: A Case Study in Egg Cracking”. In: Studia Logica (2001),
pp. 333–384.

[74] Lorenz Mösenlechner. “The Cognitive Robot Abstract Machine”.
PhD thesis. Technische Universität München, 2016.

[75] Lorenz Mösenlechner and Michael Beetz. “Fast temporal projection
using accurate physics-based geometric reasoning”. In: International
Conference on Robotics and Automation (ICRA). 2013, pp. 1821–
1827.

[76] Erik Mueller. “Event Calculus Reasoning Through Satisfiability”. In:
Journal of Logic and Computation (2004), pp. 703–730.

[77] Stephen Muggleton and Luc de Raedt. “Inductive Logic Program-
ming: Theory and Methods”. In: The Journal of Logic Programming
(1994), pp. 629–679.

[78] Robin Murphy and Dave Hershberger. “Handling Sensing Failures
in Autonomous Mobile Robots”. In: The International Journal of
Robotics Research (1999), pp. 382–400.

bibliography 107

[79] Matthew O’Brien, Ronald Arkin, Dagan Harrington, Damian Lyons,
and Shu Jiang. “Automatic Verification of Autonomous Robot Mis-
sions”. In: International Conference on Simulation, Modeling, and
Programming for Autonomous Robots (SIMPAR). 2014, pp. 462–473.

[80] Shashank Pathak, Luca Pulina, Giorgio Metta, and Armando Tac-
chella. “Ensuring safety of policies learned by reinforcement: Reach-
ing objects in the presence of obstacles with the iCub”. In: Interna-
tional Conference on Intelligent Robots and Systems (IROS). 2013,
pp. 170–175.

[81] Karthik Pattabiraman, Nithin Nakka, Zbigniew Kalbarczyk, and Rav-
ishankar Iyer. “SymPLFIED: Symbolic program-level fault injection
and error detection framework”. In: International Conference on De-
pendable Systems and Networks (DSN). 2008, pp. 472–481.

[82] Mikkel Pedersen, Lazaros Nalpantidis, Rasmus Andersen, Casper
Schou, Simon Bøgh, Volker Krüger, and Ole Madsen. “Robot skills
for manufacturing: From concept to industrial deployment”. In:
Robotics and Computer-Integrated Manufacturing (2016), pp. 282–
291.

[83] Edwin Pednault. “ADL: Exploring the Middle Ground between
STRIPS and the Situation Calculus”. In: International Conference on
Principles of Knowledge Representation and Reasoning (KR). 1989,
pp. 324–332.

[84] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”.
In: Journal of Machine Learning Research (2011), pp. 2825–2830.

[85] Yvan Petillot, Gianluca Antonelli, Giuseppe Casalino, and Fausto
Ferreira. “Underwater Robots: From Remotely Operated Vehicles to
Intervention-Autonomous Underwater Vehicles”. In: IEEE Robotics
& Automation Magazine (2019), pp. 94–101.

[86] Mukul Prasad, Armin Biere, and Aarti Gupta. “A survey of recent
advances in SAT-based formal verification”. In: International Journal
on Software Tools for Technology Transfer (STTT) (2005), pp. 156–
173.

[87] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. “VUzzer: Application-aware Evolution-
ary Fuzzing”. In: Network and Distributed System Security Sympo-
sium (NDSS). 2017, pp. 1–14.

[88] Raymond Reiter. “The Frame Problem in the Situation Calculus: A
Simple Solution (Sometimes) and a Completeness Result for Goal
Regression.” In: Artificial and Mathematical Theory of Computation.
1991, pp. 359–380.

[89] Andrew Reynolds, Haniel Barbosa, Andres Nötzli, Clark Barrett,
and Cesare Tinelli. “cvc4sy: Smart and Fast Term Enumeration for
Syntax-Guided Synthesis”. In: International Conference on Com-
puter Aided Verification (CAV). 2019, pp. 74–83.

108 bibliography

[90] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Pearson Education Limited, 2009.

[91] Koushik Sen. “Concolic testing”. In: International Conference on Au-
tomated Software Engineering (ASE). 2007, pp. 571–572.

[92] Murray Shanahan. “A circumscriptive calculus of events”. In: Artifi-
cial Intelligence (1995), pp. 249–284.

[93] Murray Shanahan. “Robotics and the Common Sense Informatic Sit-
uation”. In: European Conference on Artificial Intelligence (ECAI).
1996, pp. 684–688.

[94] Murray Shanahan. “An abductive event calculus planner”. In: The
Journal of Logic Programming (2000), pp. 207–240.

[95] Murray Shanahan. “An attempt to formalise a non-trivial bench-
mark problem in common sense reasoning”. In: Artificial Intelligence
(2004), pp. 141–165.

[96] Robin Sibson. “SLINK: An Optimally Efficient Algorithm for the
Single-Link Cluster Method”. In: The Computer Journal (1973),
pp. 30–34.

[97] Reid Simmons and David Apfelbaum. “A task description language
for robot control”. In: International Conference on Intelligent Robots
and Systems (IROS). 1998, pp. 1931–1937.

[98] Reid Simmons, Charles Pecheur, and Grama Srinivasan. “Towards au-
tomatic verification of autonomous systems”. In: International Con-
ference on Intelligent Robots and Systems (IROS). 2000, pp. 1410–
1415.

[99] Fernando Soto, Jie Wang, Rajib Ahmed, and Utkan Demirci. “Medi-
cal Micro/Nanorobots in Precision Medicine”. In: Advanced Science
(2020).

[100] Bogdan-Andrei Tabacaru, Moomen Chaari, Wolfgang Ecker, Thomas
Kruse, and Cristiano Novello. “Fault-effect analysis on system-level
hardware modeling using virtual prototypes”. In: Forum on Specifica-
tion and Design Languages (FDL). 2016, pp. 1–7.

[101] Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew Walter,
Ashis Banerjee, Seth Teller, and Nicholas Roy. “Understanding Nat-
ural Language Commands for Robotic Navigation and Mobile Ma-
nipulation”. In: AAAI Conference on Artificial Intelligence. 2011,
pp. 1507–1514.

[102] Moritz Tenorth, Daniel Nyga, and Michael Beetz. “Understanding
and executing instructions for everyday manipulation tasks from the
World Wide Web”. In: IEEE International Conference on Robotics
and Automation. 2010, pp. 1486–1491.

[103] Pradib Thaker, Vishwani Agrawal, and Mona Zaghloul. “Register-
transfer level fault modeling and test evaluation techniques for VLSI
circuits”. In: International Test Conference (ITC). 2000, pp. 940–949.

bibliography 109

[104] Michael Thielscher. “Ramification and causality”. In: Artificial Intel-
ligence (1997), pp. 317–364.

[105] Michael Thielscher. The fluent calculus. Tech. rep. 2000.

[106] Madhura Thosar, Sebastian Zug, Alpha Skaria, and Akshay Jain. “A
Review of Knowledge Bases for Service Robots in Household Envi-
ronments”. In: International Workshop on Artificial Intelligence and
Cognition (AIC). 2018, pp. 940–949.

[107] Abhishek Udupa, Arun Raghavan, Jyotirmoy Deshmukh, Sela Mador-
Haim, Milo Martin, and Rajeev Alur. “TRANSIT: specifying pro-
tocols with concolic snippets”. In: ACM SIGPLAN Notices (2013),
pp. 287–296.

[108] Saurabh Vaidya, Prashant Ambad, and Santosh Bhosle. “Industry 4.0
– A Glimpse”. In: Procedia Manufacturing (2018), pp. 233–238.

[109] Leslie Valiant. “A Theory of the Learnable”. In: Communications of
the ACM (CACM) (1984), pp. 1134–1142.

[110] Tijs Vandemeulebroucke, Bernadette Dierckx de Casterlé, and Chris
Gastmans. “The use of care robots in aged care: A systematic review
of argument-based ethics literature”. In: Archives of Gerontology and
Geriatrics (2018), pp. 15–25.

[111] Alessandro Vercelli, Innocenzo Rainero, Ludovico Ciferri, Marina
Boido, and Fabrizio Pirri. “Robots in Elderly Care”. In: Scientific
Journal on Digital Cultures (DigitCult) (2018), pp. 37–50.

[112] Vandi Verma et al. “First 210 solar days of Mars 2020 Perseverance
Robotic Operations - Mobility, Robotic Arm, Sampling, and Heli-
copter”. In: Aerospace Conference (AeroConf). 2022, pp. 1–20.

[113] Lihui Wang, Sichao Liu, Hongyi Liu, and Xi Wang. “Overview
of Human-Robot Collaboration in Manufacturing”. In: International
Conference on the Industry 4.0 Model for Advanced Manufacturing
(AMP). 2020, pp. 15–58.

[114] Matt Webster, Clare Dixon, Michael Fisher, Maha Salem, Joe Saun-
ders, Kheng Koay, Kerstin Dautenhahn, and Joan Saez-Pons. “To-
ward Reliable Autonomous Robotic Assistants Through Formal Ver-
ification: A Case Study”. In: Transactions on Human-Machine Sys-
tems (2016), pp. 186–196.

[115] Georgia Wells. “Security Robot Suspended After Colliding With
a Toddler”. In: The Wall Street Journal (2016). url: https : / /
www . wsj . com / articles / security - robot - suspended -

after-colliding-with-a-toddler-1468446311 (visited on
11/15/2022).

[116] Alan Winfield, Katie Winkle, Helena Webb, Ulrik Lyngs, Ma-
rina Jirotka, and Carl Macrae. “Robot Accident Investigation: A
Case Study in Responsible Robotics”. In: Software Engineering for
Robotics. 2021, pp. 165–187.

https://www.wsj.com/articles/security-robot-suspended-after-colliding-with-a-toddler-1468446311
https://www.wsj.com/articles/security-robot-suspended-after-colliding-with-a-toddler-1468446311
https://www.wsj.com/articles/security-robot-suspended-after-colliding-with-a-toddler-1468446311

110 bibliography

[117] Trey Woodlief, Sebastian Elbaum, and Kevin Sullivan. “Fuzzing Mo-
bile Robot Environments for Fast Automated Crash Detection”. In:
International Conference on Robotics and Automation (ICRA). 2021,
pp. 5417–5423.

[118] Aimee van Wynsberghe. “Designing Robots for Care: Care Centered
Value-Sensitive Design”. In: Science and Engineering Ethics (2013),
pp. 407–433.

[119] Georgios Zachiotis, George Andrikopoulos, Randy Gornez, Keisuke
Nakamura, and George Nikolakopoulos. “A Survey on the Applica-
tion Trends of Home Service Robotics”. In: International Conference
on Robotics and Biomimetics (ROBIO). 2018, pp. 1999–2006.

[120] Michal Zalewski. Technical "whitepaper" for afl-fuzz. 2017. url:
https://lcamtuf.coredump.cx/afl/technical_details.

txt (visited on 10/06/2022).

https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt

bibliography 111

,

	Eidesstattliche Versicherung
	Abstract
	Kurzfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis Outline
	1.2 Publications

	2 Preliminaries
	2.1 Cognitive Robot Abstract Machine
	2.1.1 CRAM Plan Language
	2.1.2 CLisp Bytecode
	2.1.3 Fast Projection Simulator

	2.2 Verification Techniques
	2.2.1 Satisfiability Modulo Theories
	2.2.2 Symbolic Execution
	2.2.3 Fault Injection
	2.2.4 Coverage-Guided Fuzzing

	3 Related Work
	3.1 Formal Verification of Robotic Plans
	3.2 Modelling of Robotic Environments
	3.3 Fuzzing for Robotics

	4 Symbolic Verification of Robotic Plans
	4.1 Symbolic Execution of Robotic Plans
	4.1.1 Background: Wumpus World
	4.1.2 Formal Verification of CPL Plans
	4.1.3 Experimental Evaluation

	4.2 Verification via Logic-based Environment Modelling
	4.2.1 Background: Discrete Event Calculus
	4.2.2 DEC-based Verification of Robotic Plans
	4.2.3 Experimental Evaluation

	4.3 Symbolic Fault Injection for Robotic Plans
	4.3.1 Symbolic Fault Injection for CPL
	4.3.2 Experimental Evaluation

	4.4 Conclusion & Future Work

	5 Formal Methods for Modelling Assistance
	5.1 Clustering-guided SMT(LRA) Learning
	5.1.1 Background
	5.1.2 Hierarchical Clustering for SMT(LRA) Learning
	5.1.3 Improving Scalability through Nested Dendrograms
	5.1.4 Experimental Evaluation

	5.2 Simulation-based Debugging of Formal Environment Models
	5.2.1 Finding Discrepancies
	5.2.2 Experimental Evaluation

	5.3 Conclusion & Future Work

	6 Coverage-guided Fuzzing of Robotic Plans
	6.1 Coverage-guided Fuzzing for CPL Plans
	6.1.1 Overview
	6.1.2 Initial Environment Setup
	6.1.3 Coverage Measurement

	6.2 A Coverage Metric for Plan-based Robotics
	6.3 Experimental Evaluation
	6.3.1 Robotic Plan and Environment
	6.3.2 Experimental Results

	6.4 Conclusion & Future Work

	7 Conclusion
	Bibliography

