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On Acceleration of SAT-Based ATPG
for Industrial Designs

Rolf Drechsler, Stephan Eggersglüß, Görschwin Fey,
Andreas Glowatz, Friedrich Hapke,
Juergen Schloeffel, and Daniel Tille

Abstract—Due to the rapidly growing size of integrated circuits, there is
a need for new algorithms for automatic test pattern generation (ATPG).
While classical algorithms reach their limit, there have been recent ad-
vances in algorithms to solve Boolean Satisfiability (SAT). Because Boolean
SAT solvers are working on conjunctive normal forms (CNFs), the problem
has to be transformed. During transformation, relevant information about
the problem might get lost and, therefore, is not available in the solving
process. In this paper, we present a technique that applies structural
knowledge about the circuit during the transformation. As a result, the size
of the problem instances decreases, as well as the run time of the ATPG
process. The technique was implemented, and experimental results are
presented. The approach was combined with the ATPG framework of NXP
Semiconductors. It is shown that the overall performance of an industrial
framework can significantly be improved. Further experiments show the
benefits with regard to the efficiency and robustness of the combined
approach.

Index Terms—Automatic test pattern generation (ATPG), Boolean
satisfiability (SAT), formal methods, testing.

I. INTRODUCTION

Guaranteeing that a manufactured chip correctly functions is an
important task. Therefore, every chip has to pass a postproduction test
during which a set of test patterns is applied to check for functional
correctness. These test patterns are usually generated by algorithms for
automatic test pattern generation (ATPG). Due to the ever-increasing
size of integrated circuits, the size of the problem instances that have
to be handled by ATPG algorithms also increases. This results in
growing run times of classical (structural) ATPG algorithms such as
PODEM [1], FAN [2], SOCRATES [3], and ATOM [4].

As one alternative, ATPG based on Boolean satisfiability (SAT) was
first introduced in [5]. Based on the techniques from [6], the efficiency
of SAT-based algorithms in the field of ATPG has also recently been
shown for large industrial circuits [7], [8]. The efficiency of SAT-
based ATPG is significantly driven by the development of powerful
SAT engines [9]–[12] in the last ten years. While the early approaches
of SAT-based ATPG algorithms could only deal with Boolean logic
(see, e.g., [13]), the more recent techniques handle tristate elements
and unknown values coming from the environment of a circuit based
on four-valued logic (see, e.g., [7]).
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Fig. 1. Extraction of the influenced circuit parts.

SAT-based algorithms are not directly working on the circuit’s struc-
ture but on an equation in a conjunctive normal form (CNF). Therefore,
the problem must be transformed into a CNF. As a disadvantage,
structural knowledge about the original problem, which is used by
classical algorithms to speed up the search process, might get lost.1

On the other hand, due to the homogeneity of the representation as a
formula, powerful algorithms can be applied to solve the problem. As
shown in [6] and [14], the inclusion of structural information leads to
a faster solving process. In [15], a highly robust test generation SAT
algorithm was proposed. However, in contrast to our approach, this
algorithm works on an implication graph and, by this, does not make
use of the recent efficient SAT techniques.

In this paper, we present techniques to improve SAT-based ATPG
for the stuck-at fault model. The main contributions of this paper are
as follows:

1) reduction of the CNF size by modeling the circuit in four-valued
logic only where this is necessary;

2) combination of the ATPG engine with a classical approach,
resulting in a hybrid proof engine.

All techniques have been implemented and integrated as a prototype
in the industrial ATPG framework of NXP Semiconductors. Experi-
mental results on publicly available benchmarks, as well as on several
industrial circuits, show the efficiency and robustness of the approach.

II. PRELIMINARIES

In Section II-A, the application of SAT for ATPG is explained (see
[5]–[7] for more details). Also, the improvements due to problem-
specific knowledge and SAT techniques are briefly reviewed. Then, the
use of multiple-valued logic and its Boolean encoding are described in
Section II-B.

A. SAT-Based ATPG

Modern Boolean SAT solvers work on the problem represented as a
CNF. The classical transformation of a circuit into a CNF representa-
tion has been explained in, e.g., [5]. Based on this transformation, the
creation of a CNF for a given ATPG problem is briefly explained in
the following.

Consider the circuit in Fig. 1. First, the output cone of the fault site
is marked by a depth-first traversal on the circuit. This determines
all outputs that may be influenced by the fault. The transitive fan-
in of these outputs influences the detection of the fault and must be
contained in the SAT instance. This knowledge is used to create the
SAT instance: A faulty version and a fault-free version of the circuit

1In preliminary studies, we also experimented with a circuit SAT solver but
did not consistently observe improvements in run time or memory usage.



TABLE I
ENCODING OF THE FOUR-VALUED DOMAIN

are modeled. Different signal values may only occur in the fault site’s
output cone. Therefore, this cone is duplicated, whereas the remaining
part is shared between both versions; that is, this part is not duplicated.

Finally, to ensure that the fault is propagated to an output, some
constraints that encode the D-algorithm [16] are added. This approach
was suggested in [6]. Three variables are used for each gate G.

1) Gf denotes the output value of G in the faulty circuit.
2) Gg denotes the output value of G in the correct circuit.
3) Gd = 1 iff G is on a D-chain.

A D-chain denotes a path from the fault site to a primary output, where,
at each gate, a difference between the correct circuit and the faulty
circuit occurs. This notation allows one to introduce additional impli-
cations that lead to a fast evaluation of the CNF. These implications
are described in detail in [6].

B. Four-Valued Logic

As described in [5], for each signal in the circuit, one Boolean
variable is needed to encode its Boolean value. However, in industrial
circuits, it is insufficient to model only Boolean values. In these
circuits, the two additional (non-Boolean) values U and Z may occur.
Considering these two possible states of a signal results in the four-
valued logic L4 = {0, 1, U, Z}.

First, U describes an unknown value. This may occur, for instance,
when ATPG is applied to a circuit C that is a subcircuit of a larger one.
Then, it is possible that some of C’s primary inputs (PIs) cannot be
controlled. This is modeled by fixing those PIs to U . The value U
has to explicitly be encoded in the SAT instance because otherwise,
the SAT solver would assign Boolean values to such noncontrollable
inputs. Second, most industrial circuits contain tristate elements, e.g.,
bus drivers. Their output can be at high impedance, which is denoted
by Z. Note that in [17], an approach is introduced where U is encoded
by an ordered pair of Boolean functions, i.e., an interval. However,
Z cannot be represented using this method.

Because SAT is only defined on Boolean formulas, each of the four
values has to be encoded.2 The smallest possible encoding can be done
by two Boolean variables. There exist 24 possible two-bit encodings
of L4. The chosen encoding determines which clauses are needed to
model particular gates. This, in turn, influences the size of the resulting
SAT instance and the efficiency of the SAT search.

Further details about choosing an efficient encoding are given
in [18]. Table I shows the encoding used in the implementation. This
encoding works well on circuits with a large portion of Boolean gates.
The variable c∗x indicates whether a value is Boolean or not.

Finally, to generate the CNF for each single gate type, the flow
is similar to the two-valued approach: First, the CNF of a gate G
is derived from the characteristic function, which can be constructed
using the truth table. Then, it is minimized by ESPRESSO [19]. The
minimization must be done only once for each gate type. The result is
then stored as a template and used for each circuit. In the following, the
function ϕ2(G) describes the CNF representation of G if G is modeled
in Boolean logic, whereas ϕ4(G) is used if G is modeled in L4.

2Alternatively, a multi-valued SAT solver could be applied. However, to
easily incorporate new developments for Boolean SAT solvers, we apply a
Boolean encoding.

TABLE II
CLAUSES FOR THE FOUR-VALUED AND GATE

TABLE III
CNF SIZE FOR A TWO-INPUT AND GATE

As an example, Table II shows the CNF for a four-valued AND gate.
Table III denotes the number of clauses (column Cls), the number of
literals (column Lit), and the average length of the clauses (column
∅len) of a two-input AND gate C with inputs A, B and successors
D, E in the two- and four-valued models, respectively. The overhead
of using L4 is shown in the last row. Consequently, the use of L4

results in a significantly larger CNF size, which typically leads to a
longer run time. Further details about an efficient representation of
gates with more than two inputs can be found in [20].

III. HYBRID LOGIC USAGE

This section presents a fast preprocessing step that achieves a
reduced size of the CNF by partially modeling the circuit in Boolean
logic instead of L4. As described in Section II-B, circuits includ-
ing multiple-valued logic cannot directly be modeled with Boolean
logic. Therefore, a Boolean encoding is needed to apply SAT-based
algorithms. By applying the encoding, the size of the SAT instance
significantly increases.

Table III shows the number of clauses and literals needed to rep-
resent a two-valued AND gate in Boolean logic and L4. Apparently,
transforming circuits containing multiple-valued logic results in larger,
and often more difficult to solve, SAT instances than transforming
circuits containing only Boolean logic.

However, in most industrial circuits, the number of tristate elements
is very small compared to the number of Boolean gates. The state of
high impedance, i.e., the non-Boolean value Z, can only be assumed
in those elements. In the case of propagating the Z-value to a Boolean
gate, Z is interpreted as an unknown state, i.e., the non-Boolean
value U . Additionally, the unknown state can be assumed by inputs
when they are fixed to a non-Boolean value.

For that reason, only those elements that can assume non-Boolean
values should be modeled in L4. An element of the circuit can assume
a non-Boolean value iff it satisfies one of the following conditions:

1) the element can handle Z-values, i.e., a tristate element;
2) the element is an input of the circuit and is fixed to a non-

Boolean value;
3) the element is contained in the output cone of the aforemen-

tioned elements.

All other elements that can only assume Boolean values can be
modeled in Boolean logic. Additionally, according to their function,
tristate elements are usually located near the outputs. This results in a
small output cone of the tristate elements. Furthermore, the percentage
of inputs with unknown states is mostly very small. Therefore, only a
small subset S of elements has to be modeled in L4.

Determining the subset S is done in a preprocessing step by analyz-
ing the structure of the circuit and classifying the circuit’s elements.
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Fig. 2. Pseudocode of the structural classification.

The algorithm to determine the elements of the subset S of gates that
can assume the non-Boolean values U or Z is presented in Fig. 2.
A description of the algorithm follows. For structural classification,
a modified depth-first search is applied to the circuit. First, all non-
Boolean elements of the circuit (i.e., tristate elements and inputs fixed
to U ) are identified and stored in a list (line 3). Each element of the
list is successively added to the set S (line 6). Every gate in the fan-out
cone of those elements must be an element of S because a non-Boolean
value can be propagated via this gate. For that reason, the successors
of gates in S are added to the list (line 9), from which the current gate
is deleted (line 17). When the list is empty, all gates of the fan-out
cone of the non-Boolean elements are contained in S. Consequently,
the subset S is determined.

Additionally, all direct predecessors p of a gate g in S with p �∈ S are
marked as transition (line 14). At those gates, a transition between the
different logics occurs; that is, the output and at least one input of a gate
are modeled in different logics. Those transitions must particularly
be handled to guarantee consistency. To avoid inconsistencies due to
the different encoding, each gate marked as transition gets a second
variable, which is fixed to 0 (see Table I).3

Due to marking of the predecessors, the complexity for the structural
classification would be quadratic in the number of gates in the worst
case. However, in practice, gates only have k predecessors with k � n,
where n is the number of gates. For that reason, the complexity is
given by O(n · k). The structural classification must be done only
once—prior to the ATPG process—and the extracted information can
be used for each target. The following example demonstrates how the
procedure works.

Example 1: Consider the part of a circuit shown in Fig. 3. The gates
k and n are identified to be tristate elements and are therefore added
to the set S. All successors of these gates can assume non-Boolean
values. Therefore, p and q are also added to S.

Additionally, the gates h, i, l, m, and o are marked as transition
because they are not in S but have a successor s ∈ S. In Fig. 3, the
outgoing lines of those gates that are elements of S are marked bold
and have an index of 4, whereas the outgoing lines of those gates that
are marked as transition have an index of t.

Once all gates are classified, the additional information can be used
while generating the CNF. A gate gs∈S is modeled in L4, whereas for
each gate h �∈S, Boolean logic is used. More formally, the CNF Φg for
each gate g in the circuit can be determined by the following equation:

Φg =

{
ϕ4(g), if g ∈ S
ϕ2(g), if g �∈ S.

3Due to reconvergent paths, there is the possibility that gates that are
contained in S are also marked as transition. These are ignored when fixing
the second variable to zero.

Fig. 3. Structural classification.

Fig. 4. Flow of the combined approach.

By using L2 instead of L4 where possible, the size of the CNF is
decreased. The larger the portion of gates that only assume Boolean
values, the larger is the reduction in size. In addition, there is nearly no
overhead in run time because the preprocessing step has to be executed
only once.

IV. INTEGRATION IN AN INDUSTRIAL FRAMEWORK

The hybrid approach was integrated as a prototype in the industrial
ATPG framework of NXP Semiconductors. The primary goal of the
integration is to improve the overall performance of the framework,
i.e., decreasing the run time and increasing the number of classified
faults. Therefore, the SAT-based approach was combined with the
highly optimized classical ATPG tool that has been developed and used
at NXP Semiconductors (formerly Philips) during the last 20 years.
The tool relies on an enhanced FAN-like algorithm as the core engine.
For simplicity, we refer to this as a FAN-based engine in contrast to
the SAT-based approach.

In the following, first, a brief description of the ATPG flow is
given. At the beginning, random test generation is started to efficiently
exclude many easy-to-detect faults. Fig. 4(a) outlines the normal flow.
For each fault in the fault list, the test generator is started. If the algo-
rithm classifies the fault as untestable, i.e., no test pattern can be found,
or as aborted, i.e., the time limit is exceeded, the next fault in the list
is targeted. In the case of a testable fault, the generated test pattern
is passed to a fault simulator, which calculates the additional faults
detected by this pattern. These faults are removed from the fault list.

The combination with the SAT-based engine is based on four
observations.

1) There exist faults that can easily be classified by the FAN-based
engine when SAT needs a long run time, and vice versa.

2) The FAN-based engine directly works on the circuit structure,
whereas the SAT-based engine needs additional run time to build
the CNF.

3) The FAN-based engine classifies a large number of faults very
efficiently.

4) The SAT-based engine performs well on untestable faults and
faults that are hard to detect by the FAN-based engine.

Due to these observations, the procedure presented in Fig. 4(b) was
chosen for the combination. In this procedure, the SAT-based engine
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TABLE IV
CIRCUIT STATISTICS

is only started for those faults that cannot be classified by the FAN-
based engine within a short time limit. This reduces the overhead for
building the CNF for faults that are easy to detect by the FAN-based
engine. Then, the SAT-based engine classifies additional faults that, in
turn, might also help remove other faults from the fault list.

In industrial practice, it is crucial to have a minimal number of
nonclassified faults. The integration reduces this number and combines
the advantages of both engines. This leads to a faster and more robust
ATPG system, as shown in Section V.

V. EXPERIMENTAL RESULTS

The techniques presented in the previous sections have been im-
plemented and integrated as a prototype in the ATPG framework of
NXP Semiconductors. In this section, detailed experimental results on
the ITC’99 benchmarks, as well as on industrial circuits, are reported
and discussed. The industrial circuits have been found to be difficult
cases for ATPG.4 All of the following experiments were run on a Dual
Dual-Core 64-bit Xeon (3 GHz, 32-GB RAM, GNU/Linux). MiniSat
v1.14 [12] was used as a SAT solver.5 For each circuit, a time limit of
40 h was set. Details about the decision heuristic used in the presented
approach are given in [7].

Table IV shows some information about the industrial circuits. The
first column reports the name of the circuit. The succeeding column
gives the number of fault targets, i.e., the number of faults that have
to be tested, whereas column Elem provides the total number of
elements of the circuit. Columns Elem 4v and % 4v give the number
of elements that can assume non-Boolean values and the percentage,
respectively.

First, the use of hybrid logic is empirically evaluated. Information
about the average CNF sizes of the experiments is given in Table V.
The column named SAT_4v contains information about the four-
valued approach (i.e., each signal is modeled using four-valued logic),
whereas the column named SAT gives the results for the hybrid
approach using two- and four-valued logic. Note that for the sake
of comparison, the average sizes of the ITC’99 benchmarks are also
given, although they could completely be modeled in Boolean logic.

Due to the typically very small number of gates that can assume
non-Boolean values, the average sizes of the instances are significantly
reduced. This applies to the number of clauses, as well as to the number
of variables. Note that the size of the circuit does not correlate to the
average size of the SAT instances. The largest SAT instances do not
result from p1330k but from p49k. The results in terms of run time
and number of aborted faults are shown in Table VI. Column SAT_4v
gives the number of aborted faults (ab.) and the run time (time) of the
four-valued approach. The number of aborted faults and the run time
of the hybrid approach can be found in column SAT . The results show
that the number of aborted faults of the hybrid approach is—in compar-
ison to the SAT_4v approach—drastically reduced in almost all cases.

4This has also been confirmed for other commercial tools.
5Due to an observed performance loss in experiments with the newer version

MiniSat 2, the older version was kept as the core engine.

TABLE V
AVERAGE INSTANCE SIZES—HYBRID LOGIC USAGE

Due to the heuristic nature of SAT solvers, it can also happen that
the run times are longer, although the SAT instance is more compact
(see p1330k). However, the experiments show that this rarely happens.
Typically smaller instances also directly result in run time savings.
In our experiments, improvements of up to a factor of 7 could be
observed. Moreover, circuit p49k can be solved, whereas the previ-
ous SAT-based approach failed within the given run time limit. The
experimental results clearly show that using hybrid logic significantly
improves the performance of SAT-based ATPG with respect to run time
and number of aborted faults.

The experimental results of the prototypical integration in the indus-
trial ATPG framework are also given in Table VI. The results for the
FAN-based engine exist in two different configurations: FAN(de) de-
scribes the engine with the default parameters, whereas FAN(long)
uses increased backtrack and time limit.

Columns FAN(de) and FAN(long) present the results for the
different configurations of the FAN-based engine, whereas columns
FAN(de) + SAT and FAN(long) + SAT show the results of the
combined approach with the corresponding configuration of the FAN-
based engine. First, consider the stand-alone FAN-based engines and
the hybrid SAT engine. With regard to the ITC’99 benchmarks,
FAN(de) has the smallest run time but the largest number of
aborts, whereas SAT has no aborts and a slightly increased run time
compared to FAN(de). FAN(long), however, has a significantly
increased run time compared to FAN(de) and SAT . Additionally, a
large number of faults are aborted by FAN(long). For the industrial
circuits, the run times of the FAN-based engines and the hybrid SAT-
based engine are rather balanced, with a slight advantage for the
FAN-based engines. However, the hybrid SAT-based engine again
aborts clearly less faults than the FAN-based engine. No circuit was
completely classified by FAN(de), whereas FAN(long) could only
completely classify p44k. In contrast, except for p49k, the hybrid SAT-
based engine has zero or almost zero aborted faults.

The combined approach FAN(de) + SAT has a drastically re-
duced number of aborted faults compared to FAN(de). Compared to
SAT , the run times are balanced, but FAN(de) + SAT could also
completely classify p462k and p1330k. Due to the increased resource
limits, the run times of FAN(long) + SAT are longer; in addition,
circuit p49k was almost completed. Therefore, FAN(de) + SAT
would be the first choice if a good performance is desirable, whereas
FAN(long) + SAT is preferable when the number of aborts should
primarily be decreased.

In summary, the combination of the SAT-based approach with a
classical technique yields the best overall results. The combination
of both engines results in significantly improved performance and
robustness of the overall ATPG system.
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TABLE VI
EXPERIMENTAL RESULTS

VI. CONCLUSION

Using structural information while transforming large industrial cir-
cuits into a CNF significantly reduces the size of the SAT instances for
ATPG. As a consequence, the SAT solver needs less resources, which
boosts the performance of the SAT-based ATPG approach. Further-
more, the integration of the SAT-based engine into the industrial ATPG
framework of NXP Semiconductors improves the overall performance
of the framework and leads to a fast and robust ATPG system.
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