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REVSCA-2.0: SCA-Based Formal Verification of

Nontrivial Multipliers Using Reverse Engineering

and Local Vanishing Removal
Alireza Mahzoon , Graduate Student Member, IEEE, Daniel Große , Senior Member, IEEE,

and Rolf Drechsler , Fellow, IEEE

Abstract—The formal verification of integer multipliers is one
of the important but challenging problems in the verification
community. Recently, the methods based on symbolic computer
algebra (SCA) have shown very good results in comparison to
all other existing proof techniques. However, when it comes to
verification of huge and structurally complex multipliers, they
completely fail as an explosion happens in the number of mono-
mials. The reason for this explosion is the generation of redundant
monomials known as vanishing monomials. This article intro-
duces the SCA-based approach REVSCA-2.0 that combines
reverse engineering and local vanishing removal to verify large
and nontrivial multipliers. For our approach, we first come up
with a theory for the origin of vanishing monomials, i.e., we
prove that the gates/nodes where both outputs of half adders
(HAs) converge are the origins of vanishing monomials. Then,
we propose a dedicated reverse engineering technique to identify
atomic blocks including HAs. The identified HAs are the basis
for detecting converging cones and locally removing vanishing
monomials, which finally results in a vanishing-free global back-
ward rewriting. The efficiency of REVSCA-2.0 is demonstrated
using an extensive set of multipliers with up to several million
gates.

Index Terms—Formal verification, multiplier, reverse engineer-
ing, symbolic computer algebra (SCA), vanishing monomial.

I. INTRODUCTION

M
ULTIPLIERS nowadays play a crucial role in a wide
range of different applications, e.g., signal processing

and cryptography, as well as upcoming AI solutions employing
machine learning and deep learning. Most of these applica-
tions require very large multipliers supporting a wide range
of integer numbers. Furthermore, the multiplier architectures
also vary based on the design goals in different applica-
tions. Several multiplication algorithms have been developed
to satisfy the community demands for fast, area-efficient, and
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low-power designs. Employing these algorithms usually results
in the generation of very complex architectures. Formal ver-
ification of huge and structurally complex multipliers is on
the one hand necessary to ensure the correctness of the final
design. On the other hand, it is a big challenge where most of
the existing formal methods completely fail.

After the famous Pentium bug back in 1994, a lot of effort has
been put into the development of formal verification methods.
Although these methods accomplished big successes in many
domains, they suffer from serious limitations when it comes
to the verification of integer multipliers: 1) decision diagrams
(DDs) (such as BDDs and *BMDs) are facing memory blow
up due to the exponential growth in the size of the graph when
the input width increases1; 2) Boolean satisfiability (SAT) and
satisfiability modulo theories (SMTs) are not scalable and fail
to verify large multipliers; 3) theorem proving is not automated,
and needs considerable manual effort before checking the cor-
rectness; 4) reverse engineering approaches using arithmetic

bit level [1] are exponential in the detection of carry structures
and therefore, cannot support all multiplier architectures; and
finally 5) term rewriting techniques [2] rely on a database of
rewrite rules to support a wide range of architectures, however,
for implementations that are not yet represented in the database
a manual update of the database is required.

Recently, symbolic computer algebra (SCA) verification
methods have shown very good results in proving the correct-
ness of large but structurally simple integer multipliers [3]–[6].
They have been also employed in equivalence checking [7],
debugging of faulty multipliers [8], [9], and verification of
dividers [10], [11]. The general idea of the SCA-based verifi-
cation is to: 1) represent the function of the multiplier based
on its inputs and outputs as a specification polynomial (SP);
2) capture the logical gates [or nodes of an AND-inverter graph
(AIG)] as a set of polynomials PG; and 3) take advantage of
the Gröbner basis theory to prove the membership of SP in the
ideal generated by PG. The just mentioned third step consists of
the stepwise division of SP by PG (or equivalently substitution
of variables in SP with PG) known as backward rewriting, and
eventually, the evaluation of the remainder. If this remainder
is zero, the multiplier is correct. Otherwise, it is buggy.

Despite the success of SCA-based methods in the verifi-
cation of simple integer multipliers, verification of nontrivial
multipliers (i.e., structurally complex multipliers) including

1In contrast to BDDs, *BMDs are able to represent the multiplier function
efficiently, but exponential memory peak sizes have been observed during
the *BMD construction for architecturally complex multipliers.



highly parallel architectures is still a big challenge for these
methods as an explosion happens in the number of mono-
mials during backward rewriting. The dramatic increase in
the number of monomials makes the calculations on the cur-
rent polynomial very expensive and practically impossible in
the case of large bug-free multipliers. A common understand-
ing is that one of the main reasons for this explosion is
the generation of redundant monomials known as vanishing

monomials. These monomials are generated during verifica-
tion of nontrivial multipliers, and reduced to zero after several
steps of division/substitution. However, the huge number of
vanishing monomials before cancelation causes a blow-up in
computations.

In this article, we propose REVSCA-2.0, an approach that

combines reverse engineering and local vanishing removal

to verify large and nontrivial multipliers.2 To understand the
limitations of the SCA-based verification methods, we have
conducted several experiments on different multiplier archi-
tectures. We clearly show how these methods fail due to the
large number of vanishing monomials generated in the back-
ward rewriting steps. After analyzing the intermediate results
of the substitution during backward rewriting, we come up
with an extended theory for the origin of vanishing mono-
mials. The theory is based on basic building blocks heavily
found in every multiplier architecture. We call these building
blocks atomic blocks, and prominent examples include HA,
full-adder (FA), and compressor (CM). Utilizing these atomic
blocks allows us to state and prove a theorem on the origins
of vanishing monomials. Essentially, the vanishing monomials
originate from logical gates of the netlist (or nodes in the AIG
representation) to which the output paths of an HA converge.
A monomial is formed at these gates/nodes during backward
rewriting, which creates many new (vanishing) monomials in
each following substitution step. These monomials remain in
calculations and, even worse, make the current polynomial
larger and larger with each new substitution step until the HA
is reached. After substituting the gate/node polynomials of the
HA, all these vanishing monomials are reduced to zero.

Therefore, to avoid the explosion during backward rewrit-
ing, we divide backward rewriting into a global step and
several local rewriting steps. Based on our theory, in the local
rewriting steps, we can create a vanishing-free polynomial rep-
resentation for different parts of the multiplier. For this, we
have to: 1) identify all atomic blocks including HAs and 2) find
converging cones starting from HAs and remove vanishing
monomials locally. The first step requires reverse engineering
that can be performed very fast on AIGs using cut enumera-
tion. This lays the foundation for our algorithm for removing
the vanishing monomials locally such that a fast global back-
ward rewriting becomes possible. We have implemented all
this in the SCA-verifier REVSCA-2.0 to verify nontrivial
million-gate multipliers, which was not possible before.3

II. RELATED WORK

In the last five years, several SCA-based methods have
been introduced to verify integer multipliers. Yu et al. [4]
and Ciesielski et al. [14] proposed a method to capture the

2Our tool REVSCA-2.0 and all benchmarks are available on GitHub; links
can be found at http://www.sca-verification.org/revsca.

3This journal paper includes and extends published material from the two
previous conference papers [12], [13].

gate-level netlist as a set of polynomials, and then, substituting
these polynomials in the specification polynomial step-by-step
following the reverse topological order of the circuit. The
work of [3] divides the netlist into the fanout-free cones and
extracts the polynomial for each cone. Subsequently, it uses the
cone polynomials instead of the gate polynomials in substitu-
tion steps to reduce the total number of generated monomials
during backward rewriting. The columnwise method of [5]
and [15] cuts the circuit into slices and verifies correctness
incrementally. The just mentioned approaches have two main
disadvantages: 1) they extract the polynomials for the smallest
building blocks of a multiplier, i.e., gates, thus these methods
are unaware of larger building blocks, e.g., HAs and FAs,
having more compact polynomials and 2) they only work for
structurally simple multipliers where no vanishing monomials
appear during backward rewriting.

The proposed approaches in [6] and [16] take advan-
tage of reverse engineering to identify HAs and FAs in
the AIG representation of a multiplier. Then, they use the
compact polynomials of HAs and FAs during backward rewrit-
ing, which speeds up the verification process significantly.
However, these approaches do not provide any solution to
avoid explosion during the backward rewriting of nontrivial
multipliers, which confines their applicability to structurally
simple designs. Furthermore, they do not support the detection
of larger atomic blocks such as compressors.

The work of [17] aims to attack the vanishing monomi-
als problem and make the verification of nontrivial multipliers
possible. It presents an XOR rewriting technique, which groups
the gates into cones based on the XOR gates. Then, it extracts
the polynomials for each cone and removes vanishing mono-
mials. The method works for some complex architectures.
However, it is not robust since it misses many vanishing mono-
mials. Moreover, the approach does not investigate the origin
of vanishing monomials in nontrivial multipliers.

The proposed method in [18] uses a combination of SAT
and SCA to verify nontrivial multipliers. The authors come
up with an algorithm to detect the final stage adder (FSA)
in a multiplier and verify it using SAT. Then, the adder is
substituted with an architecturally simple adder. Finally, the
SCA-based verification is performed on the new architecture.
The method achieves very good runtimes if the FSA can be
detected, which is not always possible.

III. PRELIMINARIES

In this section, we first introduce the general multiplier
structure. Then, we review the AIG representation of a circuit.
Finally, we explain the SCA-based verification of multipliers
in detail.

A. Multiplier Structure

An integer multiplier consists of three stages: 1) par-
tial product generator (PPG); 2) partial product accumulator
(PPA); and 3) FSA. The PPG stage generates partial products
from the multiplier and the multiplicand inputs. Then, the PPA
stage reduces the partial products by multioperand adders and
computes their sum. Eventually, the sum is converted to the
corresponding binary output at the FSA [19], [20].

Several algorithms have been proposed to implement each
stage of an integer multiplier. The architectures generated by
them have some pros and cons in terms of design parameters,
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Fig. 1. 2 × 2 unsigned multiplier. (a) Gate-level representation. (b) AIG
representation.

e.g., area, delay, power, and the number of wiring tracks. The
designer can choose between different algorithms to achieve
the design goal, e.g., minimizing the chip area. For example,
Booth PPG generates fewer partial products compared to sim-
ple PPG; thus, it reduces the overall area of the multipliers with
long operands. However, it has a higher design and logic com-
plexity. As another example, Wallace tree and balanced delay
tree are two well-known algorithms for implementing the PPA
stage. Wallace tree guarantees the lowest overall delay but it
has the largest number of wiring tracks. On the other hand,
balanced delay tree requires the smallest number of wiring
tracks but suffers from the highest overall delay compared to
other algorithms. In the remainder of this article, we use the
notation [α ◦ β ◦ γ ] to refer to a multiplier consisting of the
stages: PPG α, PPA β, and FSA γ .

B. AND-Inverter Graph

An AIG is a directed acyclic graph with the following
properties.

1) A node has either zero or two incoming edges.
2) A node with no incoming edge is a primary input (PI).
3) A node with two incoming edges is an AND gate.
4) A complemented edge indicates the negation of a signal.

Fig. 1(a) and Fig. 1(b) show the gate-level netlist of a 2 × 2
unsigned multiplier and its AIG representation,4 respectively.
The dashed lines in Fig. 1(b) indicate the complemented edges.

AIGs and particularly, the cut concept are widely used in
logic synthesis since it helps for optimization.

Definition 1: A cut of a node n is a set of nodes C, called
leaves, such that: 1) every path from n to a PI must visit at
least one node in C and 2) every node in C must be included
in at least one of these paths.

Example 1: In Fig. 1(b), C1 = {n5, n6, n8} and C2 = {n7}

are cuts for the nodes n8 and n7, respectively. The nodes n2

and n3 have output edges to both cuts C1 and C2; thus, n2 and
n3 are inputs of C1 and C2.

Cuts on an AIG can be computed using cut enumera-

tion [21], [22], which we use for reverse engineering.

C. SCA-Based Verification

Before explaining the SCA-based verification of multipliers,
we first give the basic definitions.

Definition 2: A monomial is the power product of variables

4Ignore the label annotations, i.e., C1 and C2, for now.

M = x
α1

1 x
α2

2 . . . xαn
n with αi ∈ N0. (1)

A monomial with a coefficient is called a Term.
Definition 3: A polynomial is a finite sum of monomials

with coefficients in k

P = c1M1 + c2M2 + · · · + cjMj with ci ∈ k. (2)

In the remainder of this article, the coefficients are always
integers from Z. Although Z is not a field, it has been proven
in [18] that we can use it when it comes to the verification of
circuits.

The order of monomials in a polynomial can be determined
by Lexicographic order. Assume that the variables are ordered
as x1 > x2 > x3 > · · · The lexicographic order first compares
exponents of x1 in the monomials, and in the case of equality,
it compares exponents of x2, and so forth.

One of the crucial operations in SCA is the division of a
given polynomial p by a set of polynomials F denoted by

p
F
−→ r, where r is the remainder of the division.
Example 2: If p = xy, f1 = x − z, and f2 = yz with the

variable order x > y > z, then xy
f1
−→ yz

f2
−→ 0. To perform the

division of xy by f1, first f1 is multiplied by y to create the
same leading monomial xy as p, so f1y = xy − zy = xy − yz.
Subsequently, the subtraction is performed, i.e., p − (f1y) =

xy − (xy − yz) = yz, which is the result of the first division.
Finally, yz is divided by f2 to get remainder 0.

In SCA-based verification, the goal is to formally prove that
all signal assignments consistent with the AIG or gate-level
netlist evaluate the specification polynomial (SP) to 0. The
SP is a polynomial determining the function of an arithmetic
circuit based on its inputs and outputs. For an N ×N unsigned
integer multiplier with AN−1AN−2 . . . A0 and BN−1BN−2 . . . B0

inputs and Z2N−1Z2N−2 . . . Z0 output, the SP is

SP =

2N−1
∑

i=0

2iZi −

(
N−1
∑

i=0

2iAi

)

×

(
N−1
∑

i=0

2iBi

)

. (3)

For signed multipliers using two’s complement, the SP is
slightly different and equal to

SP = −22N−1Z2N−1 +

2N−2
∑

i=0

2iZi

−

(

−2N−1AN−1 +

N−2
∑

i=0

2iAi

)

×

(

−2N−1BN−1 +

N−2
∑

i=0

2iBi

)

. (4)

Example 3: The SP for the 2 × 2 unsigned multiplier
of Fig. 1 is SP = 8Z3 +4Z2 +2Z1 +Z0 −(2A1 +A0)(2B1 +B0),
where 8Z3 + 4Z2 + 2Z1 + Z0 shows the world-level represen-
tation of the 4-bit output, and (2A1 + A0)(2B1 + B0) indicates
the product of the 2-bit inputs.

The nodes of an AIG (or the gates of a netlist) can be
captured as polynomials describing the relation between inputs
and output. Each AIG node with output z and inputs ni and
nj performs one of the five basic operations

z = ni ⇒ PN := z − ni

z = ni ∧ nj ⇒ PN := z − ninj
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z = ¬ni ⇒ PN := z − 1 + ni

z = ¬ni ∧ nj ⇒ PN := z − nj + ninj

z = ¬ni ∧ ¬nj ⇒ PN := z − 1 + ni + nj − ninj. (5)

The polynomials in (5) are in the form PN = x − tail(PN)

where x is the node output, and tail(PN) is a function based
on the node inputs.

Example 4: The captured node polynomials for the AIG
representation of the multiplier in Fig. 1(b) are

PZ3
: =Z3 − n11,

PZ2
: =Z2 − 1 + n12,

Pn12
: =n12 − 1 + n9 + n10 − n9n10,

. . .

Pn3
: =n3 − A1B0,

Pn2
: =n2 − A0B1,

Pn1
=n1 − A0B0. (6)

Note that the variables are ordered based on the reverse
topological order of the circuit, i.e., if z is the output of a gate
and {x, y} are inputs, then z > {x, y}.

Theorem 1: Assume that the AIG nodes are ordered based
on the reverse topological order of the circuit. All signal
assignments consistent with the AIG evaluate the SP to 0 iff
the remainder of dividing SP by the node polynomials is equal
to 0.

Theorem 1 is concluded from the Gröbner basis theory.
Refer to [5], [15], and [23] for the proof.

Example 5: The correctness of the 2 × 2 multiplier
in Fig. 1(b) is proven by the stepwise division of SP by the
node polynomials as follows:

SP := 8Z3 + 4Z2 + 2Z1 + Z0 − (2A1 + A0)(2B1 + B0)

SP
PZ3
−−→ SP1 := 8n11 + 4Z2 + 2Z1 + Z0

− (2A1 + A0)(2B1 + B0)

SP1

PZ2
−−→ SP2 := 8n11 + 4 − 4n12 + 2Z1 + Z0

− (2A1 + A0)(2B1 + B0)

...

SP13

Pn3
−−→ SP14 := n2 + n1 − A0B1 − A0B0

SP14

Pn2
−−→ SP15 := n1 − (A0B0)

SP15

Pn1
−−→ r := 0. (7)

The remainder r equals zero, thus the multiplier is bug free.
In the verification of integer multipliers, all variables in

polynomials are Boolean. Thus, xn can be replaced by x.
Furthermore, dividing SPi by a node polynomial PN = x −

tail(PN) is equivalent to substituting x with tail(PN) in SPi.
For example, to obtain the result of the first division step
in Example 5, Z3 can be substituted with n11 in SP to obtain
SP1. The process of dividing the SP by node polynomials
(or equivalently substituting node polynomials in the SP) is
called backward rewriting. We always prefer substitution over
division as the substitution is less expensive in terms of run-
time [24]. We refer to the intermediate polynomial during
backward rewriting as SPi in the rest of this article.

Fig. 2. Number of monomials at each step of backward rewriting. (a) 4 × 4
multipliers. (b) 8 × 8 multipliers. (c) 16 × 16 multipliers.

IV. LIMITATIONS OF SCA-BASED VERIFICATION

In this section, we investigate the efficiency of SCA-based
verification in proving the correctness of different multiplier
architectures and illustrate the limitations. To achieve this
goal, we provide experimental evidence for the verification of
three types of multipliers. These multiplier architectures are
as follows.

1) Simple PPG ◦ array ◦ ripple carry adder (SP◦AR◦RC),
which is a trivial multiplier.

2) Simple PPG ◦ Wallace tree ◦ carry look-ahead (SP ◦

WT◦CL), which is a highly parallel and thus, a nontrivial
multiplier.

3) Simple PPG ◦ balanced delay tree ◦ Kogge-Stone (SP ◦

BD◦KS), which again has a highly parallel and therefore,
a nontrivial architecture.

The results for different multiplier sizes are shown
in Fig. 2(a), Fig. 2(b), and Fig. 2(c), respectively. In the fig-
ures, we plot the number of monomials in the consecutive
substitution steps of backward rewriting. The results point us
to two important observations.

1) For the trivial multipliers, i.e., SP◦AR◦RC (blue lines),
the number of monomials remains almost constant dur-
ing backward rewriting. Then, it starts to decrease at the
final steps until it eventually becomes one.5

2) During the verification of nontrivial multipliers, i.e., SP◦

WT ◦ CL (black lines) and SP ◦ BD ◦ KS (red lines), the
number of monomials grows dramatically after a few
substitution steps. For the SP ◦ WT ◦ CL (SP ◦ BD ◦ KS)
multipliers with 4 × 4 and 8 × 8 input sizes, the

5All multipliers considered here are correct; hence, the final result is the
zero polynomial containing only one monomial, which is 0.
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number of monomials reaches 2.7× (2.7×) and 26 000×

(150 000×) compared to the initial number of mono-
mials, respectively. The situation is even worse for the
16×16 nontrivial multipliers. As can be seen in Fig. 2c,
the number of monomials explodes after about 150 steps
of substitution for both nontrivial multipliers.

In general, the exponential growth in the size of SPi makes
the verification of nontrivial multipliers with input bit width
larger than 8 bit practically impossible.

In the last five years, some methods have been proposed
to overcome the monomial explosion problem. As a com-
mon understanding, so-called vanishing monomials (redundant
monomials that are finally reduced to zero after several steps
of substitution) are the root cause of the explosion [5], [17].
As already discussed in the related work section, the previous
approaches either consider large but trivial architectures where
no vanishing monomial appears, or carry out rewriting of the
polynomials before performing backward rewriting but do not
put insight into the vanishing monomial problem and are, there-
fore, not robust. In this article, we present an extended theory
for the origin of vanishing monomials. Then, we come up with
an approach to locally remove vanishing monomials and thus,
prevent the explosion during global backward rewriting.

V. VANISHING MONOMIALS

In this section, we first present an illustrative example to
show vanishing monomials in SCA-based backward rewriting
of a nontrivial multiplier. Then, we make the general case of
vanishing monomials, i.e., we come up with the basic theory
for the origin of vanishing monomials. Finally, we clarify the
relation between vanishing monomials and different multiplier
architectures.

A. Vanishing Monomials Example

As a circuit example, we consider a 3×3 unsigned multiplier
of type [simple PPG ◦ Wallace tree ◦ carry look-ahead adder]

(SP ◦ WT ◦ CL). The AIG representation of the multiplier is
shown in Fig. 3. We assume the atomic blocks, including
HAs and FAs, are identified before the backward rewriting
process using reverse engineering techniques (more details in
Section VII-B). We use Hi and Fi to show the HA and FA
blocks, respectively. The AIG nodes for H4 (i.e., nk, nl, nm, no),
H5 (i.e., nx, ny, nz, nt), and H6 (i.e., np, nu, nq, nr) are depicted
in Fig. 3. For the rest of the HA and FA blocks, the internal
nodes are not shown to keep the size of the circuit small and
to avoid confusion. As can be seen in the figure, the inputs of
the multiplier are A = A2A1A0 and B = B2B1B0 (to simplify
the graph, we omit the input terminals, but mark the successor
nodes accordingly), while the output is Z = Z5Z4Z3Z2Z1Z0.

An excerpt of the substitution steps when performing back-
ward rewriting for the 3 × 3 nontrivial multiplier is depicted
in Fig. 4.

1) SP is the specification polynomial for the 3×3 multiplier
at hand. Performing backward rewriting in reverse topo-
logical order, i.e., substituting variables in SP with the
node polynomials of Fig. 3, will finally result in the
remainder zero,6 since the considered AIG representa-
tion is correct.

2) In the first step of backward rewriting, Z5, which is one
of the primary outputs (POs) of the circuit, is substituted
with 1−nA [see NOT polynomial in (5)]. The result after

6It is not shown due to space limitations.

Fig. 3. AIG representation of a 3 × 3 nontrivial multiplier.

the substitution is shown as the new polynomial SP1.
Since the coefficient of Z5 is 32, we have to perform
the multiplication 32(1 − nA) = 32 − 32nA.

3) Subsequently, nA is substituted with nC − nCCH5
to

obtain the new polynomial SP2.
4) The next 14 steps of backward rewriting are omitted due

to page limitation.
5) Four intermediate backward rewriting steps, which are

done by substituting no, SH5
, nz, and nt, are presented,

respectively. The intermediate result after the aforemen-
tioned substitutions is SP24 (see bold line).

As can be seen in Fig. 4, we have marked several mono-
mials in red. The reason is that they are finally reduced to
zero, i.e., after substituting SH5

, CH5
, nx, ny, nz, and nt, they

are canceled out completely in SP24. Hence, we call them
vanishing monomials. Before explaining the origin and prop-
erties of vanishing monomials, we provide some numbers. We
have 3 red monomials (12 variables) in SP17, 6 red monomials
(21 variables) in SP18, and 15 red monomials (72 variables)
in SP21. These numbers show an explosion in the backward
rewriting of the 3 × 3 nontrivial multiplier of Fig. 3. Note
that even more vanishing monomials appear in the complete
backward rewriting steps.

Now, two major questions arise as follows.
1) Why are the red monomials finally reduced to zero in

SP24?
2) What is the origin of the red monomials?
For Answering 1), just take a look on all three red monomi-

als in SP17. They all contain the product CH5
SH5

. In the next

six substitution steps, this product is reduced to zero7

CH5
SH5

= nt(1 − nx) = nt − ntnx

= nt − nt

(

1 − ny − nz + nynz

)

= ntny + nynz − ntnynz

= CH2
n9

(

n9 − CH2
n9

)

+ CH2
n9

(

CH2
− CH2

n9

)

− CH2
n9

(

n9 − CH2
n9

)(

CH2
− CH2

n9

)

=

=✘✘✘CH2
n9 −✘✘✘CH2

n9 +✘✘✘CH2
n9 −✘✘✘CH2

n9

− ✘✘✘CH2
n9 +✘✘✘CH2

n9 +✘✘✘CH2
n9 −✘✘✘CH2

n9 = 0. (8)

7Since all variables are Boolean, xn is replaced by x in calculations.
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Fig. 4. Backward rewriting of 3-bit nontrivial multiplier.

This is in line with the following observation: CH5
and SH5

are the outputs of H5. As it is impossible to have both outputs
of a HA “1” at the same time, the product CH5

SH5
is always

equal to zero. In summary, this is the reason why the red
monomials finally vanish in SP24.

Now, We Give an Answer to 2): As just discussed, all red
monomials in SP14 contain the product CH5

SH5
. Traversing

back all substitution steps (i.e., moving in the direction of the
outputs on the AIG), this product originates from the product
nCCH5

formed via the substitution of nA = 1 − nCCH5
as

can be seen in SP1. Interpreting this observation on the AIG
means that there are two paths8 starting from the two HA
outputs (here, CH5

and SH5
) and these paths finally converge

to a node (here nA, node before output Z5).
Overall, we conclude from this illustrating example that the

origin of vanishing monomials is an AIG node where HA
outputs converge, while the cancelation happens much later
only after substituting the HA node polynomials.

In the next section, we provide the underlying theory of van-
ishing monomials. We also show that the vanishing monomials
can be handled efficiently such that the size of the current
polynomial SPi does not grow dramatically during backward
rewriting.

B. Basic Theory of Vanishing Monomials

We now generalize the observation from the illustrating
example of the previous section. Therefore, we formulate the
following theorem.

Theorem 2: Assume that x and y are two AIG nodes repre-
senting the outputs of an HA. The product of x and y appears
during backward rewriting of a multiplier, if at least one path
from x and one path from y converge to an AIG node nC, and
the product of nC inputs is not canceled out in calculations.

Proof: Fig. 5(a) shows two paths starting from the HA out-
puts x and y and converge to the node nC. The first path starting
from x is a chain of AIG nodes n1, n2, . . . , ni, nC. The second
path starting from y consists of n′

1, n′
2, . . . , n′

j, nC. The edges

connecting these nodes in the chains might be normal or com-
plemented. Based on (5), we know that the polynomial of a
2-input AIG node contains the product of its inputs. Therefore,

8Path 1: CH5
and nA; Path 2: SH5

, nI , nH , nF , nC , and nA.

Fig. 5. Converging cone. (a) General case. (b) Converging to an HA.

the polynomial of nC can be written as

nC = f
(

ni, n′
j

)

+ c nin
′
j

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

nC = ni ∧ n′
j → f

(

ni, n′
j

)

= 0, c = 1

nC = ¬ni ∧ n′
j → f

(

ni, n′
j

)

= n′
j, c = −1

nC = ni ∧ ¬n′
j → f

(

ni, n′
j

)

= ni, c = −1

nC = ¬ni ∧ ¬n′
j → f

(

ni, n′
j

)

= 1 − ni − n′
j, c = 1.

(9)

The functions that describe ni and n′
j based on

x, y, w1, w2, . . . , wi, w′
1, w′

2, . . . , w′
j are obtained after substi-

tuting the polynomials of the nodes located on the paths. We
get after the substitutions

ni = f ′(w1, w2, . . . , wi, x)

n′
j = f ′′

(

w′
1, w′

2, . . . , w′
j, y

)

. (10)

Based on (9) and (10), we conclude

nC = f
(

ni, n′
j

)

+ cf ′(w1, w2, . . . , wi, x)f ′′
(

w′
1, w′

2, . . . , w′
j, y

)

= f
(

ni, n′
j

)

+ cxyT ′
1 + cxyT ′

2 + · · · + cxyT ′
r + cT1 + cT2 + · · · + cTs

︸ ︷︷ ︸

comes from the product nin
′
j

(11)

6



where cxyT ′
h denotes the terms containing the product of x

and y. Note that the xy product is generated as a result of multi-
plying two polynomials: one depending on x and the other one
depending on y. After extracting the polynomial of nC in (11),
we now look on the backward rewriting process, i.e., we inves-
tigate the result of substituting nC in current polynomials SPi.
Assume that the current polynomial SPi before substituting nC

with the node polynomial is

SPi = nCX′
1 + nCX′

2 + · · · + nCX′
l + X1 + X2 + · · · + Xq

(12)

where nCX′
i denotes the terms containing nC. Now, we

distinguish between two cases, which might happen after
substituting nC in (12).

1) Product of nC Inputs, i.e., nin
′
j, Is Canceled Out Early

in Calculations: Since the product nin
′
j is not contained

in SPi anymore, we can conclude that the product xy is
not generated in the next steps of backward rewriting.
For example, assume that nC is a part of another HA
(see Fig. 5(b)). Also, assume that S and 2C are two
terms in SPi while the rest of the terms are denoted by
Xi. After substituting the polynomials of the HA nodes,
the result is

SPi = S + 2C + Xi + · · · + Xq

SPi
S
−→ SPi+1 = 1 − nd + 2C + Xi + · · · + Xq

SPi+1
C
−→ SPi+2 = 1 − nd + 2nc + Xi + · · · + Xq

SPi+2
nd
−→ SPi+3 = na + nb − nanb + 2nc

+ Xi + · · · + Xq

SPi+3
nc
−→ SPi+4 = na + nb − nanb + 2nin

′
j

+ Xi + · · · + Xq

SPi+4
na
−→ SPi+5 = n′

j − nin
′
j + nb − n′

jnb + nin
′
jnb

+ 2nin
′
j + Xi + · · · + Xq

SPi+5
nb
−→ SPi+6 = n′

j +
�
�nin

′
j + ni −

�
�nin

′
j −

�
�nin

′
j +

�
�nin

′
j

+
�
�nin

′
j −

�
�nin

′
j + Xi + · · · + Xq

= ni + n′
j + Xi + · · · + Xq. (13)

As the product nin
′
j does not exist in SPi+5, thus xy is

not generated later during backward rewriting.
2) Product of nC Inputs, i.e., nin

′
j, Remains in Calculations:

The product xy appears in the upcoming steps of back-
ward rewriting as shown in (11).

Based on this theorem, we make the following definitions.
Definition 4: Let nC be an AIG node fulfilling Theorem 2.

Then, nC is called a converging node.
Definition 5: Let nC be a converging node. Then, the mono-

mials containing the product of HA’s outputs originating from
nC are vanishing monomials as they are reduced to zero after
the HA’s nodes substitution.

For managing the size of the current polynomial SPi during
backward rewriting, it is essential to prevent the inclusion of
vanishing monomials since for nontrivial multipliers explosion
occurs. Hence, the goal is to determine a vanishing-free poly-
nomial representation for each converging node. In order to
do this, we first look for the cones starting from a converging
node and ending in the related HA outputs. Such a cone is
called converging node cone (CNC) in the rest of this article

Fig. 6. Partial AIG representation of a 4-bit CLA.

[see also the red area in Fig. 5(a)]. Then, we locally extract
the converging node polynomial based on the CNC inputs and
remove all vanishing monomials. As a result, global back-
ward rewriting becomes vanishing free and large nontrivial
multipliers can be verified. Note that local vanishing removal
is independent of the circuit’s function; thus, it is applicable
to both correct and buggy multipliers.

Before explaining the algorithm to remove vanishing mono-
mials, we illustrate the relation between vanishing monomials
and different multiplier architectures in the next section. In
particular, we explain which stage of the multiplier is respon-
sible for generating vanishing monomials. This helps us to
narrow down the search space for finding CNCs and remove
vanishing monomials efficiently.

C. Vanishing Monomials and Multiplier Architecture

Conducting several experiments on different multiplier
architectures shows that vanishing monomials cause an explo-
sion in multipliers using complex carry propagation hardware.
This hardware is widely used in the third stage of the multiplier
(i.e., FSA) to reduce the propagation delay of trivial ripple
carry adders [20]. As a result, at the cost of some growth
in the area, the multiplier becomes faster. Carry look-ahead
adder (CLA) and parallel prefix adders (e.g., Kogge-Stone,
Ladner-Fischer, and Han-Carlson) are among the architectures
using complex carry propagation hardware. We now investi-
gate a 4-bit CLA and show why many vanishing monomials
are generated when it is used in the third stage of a multiplier.

Example 6: The Boolean formulation of a 4-bit CLA is

Gi = xi ∧ yi

Pi = xi ⊕ yi

c1 = G0 ∨ (c0 ∧ P0)

c2 = G1 ∨ (G0 ∧ P1) ∨ (c0 ∧ P0 ∧ P1)

c3 = G2 ∨ (G1 ∧ P2) ∨ (G0 ∧ P1 ∧ P2)

∨(c0 ∧ P0 ∧ P1 ∧ P2)

c4 = G3 ∨ (G2 ∧ P3) ∨ (G1 ∧ P2 ∧ P3)

∨(G0 ∧ P1 ∧ P2 ∧ P3)

∨(c0 ∧ P0 ∧ P1 ∧ P2 ∧ P3) (14)

where xi and yi are ith bits of the first and second inputs,
and ci is the final carry. The AIG nodes dedicated to com-
pute c4 in the 4-bit CLA are shown in Fig. 6. If the Boolean
formulation is transformed to the polynomial form, it consists
of 31 monomials. However, 26 monomials contain the prod-
uct of Pi and Gi. As Pi and Gi are outputs of an HA, based
on (8), this product equals zero (i.e., PiGi = 0). Therefore,
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all 26 monomials are reduced to zero and vanish from the
calculation after substituting the HA nodes polynomials.

The generation of vanishing monomials during the sub-
stitution of node polynomials in the CLA can be justified
by Theorem 2: Pi and Gi, which are outputs of an HA, con-
verge to ci, and the product of ci inputs is not canceled out
in the calculations. For example, in Fig. 6, the signal pairs
(G3, P3), (G2, P2), and (G1, P1) converge to the node c4.
Thus, the product of Pi and Gi appears during backward
rewriting.

The paths from HA outputs to converging nodes are usually
long in multipliers using complex carry propagation hardware.
Therefore, it takes several steps of substitution to reach the HA
outputs during global backward rewriting. The generated van-
ishing monomials remain in the calculations in all these steps
and cause an explosion in the number of monomials. As a
result, finding CNCs and determining vanishing-free polyno-
mials for each converging node is essential to avoid explosion
during global backward rewriting. However, detecting CNCs is
not possible without identifying HAs as all converging paths
start from HA outputs. In the next section, we explain how
reverse engineering helps us to efficiently identify HAs as well
as other atomic blocks.

VI. ATOMIC BLOCKS IN SCA

In this section, we introduce atomic blocks and showcase
the advantages of identifying them for SCA-based verification.

A. Definitions

Definition 6: An atomic block is a basic building block for
a multiplier, which gets n one-bit binary inputs with the same
bit positions,9 and computes their sum as m one-bit binary
outputs. The typical atomic blocks with 2, 3, and 5 inputs are
HA, FA, and compressor (CM). The corresponding word-level
relations are

HA(in : X, Y out : C, S) ⇒ 2C + S = X + Y

FA(in : X, Y, Z out : C, S) ⇒ 2C + S = X + Y + Z

CM(in : X, Y, Z, W, Cin out : Co, C, S)

⇒ 2Co + 2C + S = X + Y + Z + W + Cin. (15)

Note that this definition does not require a specific real-
ization of an atomic block. In fact, only the respective
mathematical relation is defined (HA, FA, and CM).

Definition 7: A specific multiplier architecture consisting of
the stages [α ◦ β ◦ γ ] is implemented by using atomic blocks
and/or extra logic per stage. For trivial multipliers, the PPA
stage β and the FSA stage γ are only made of HA and FA
atomic blocks. For nontrivial multipliers, all kinds of atomic
blocks plus highly parallel extra logic combining these blocks
are allowed for all stages [20].

In the next section, we show how knowing the atomic blocks
of multipliers helps for SCA-based verification.

B. Advantages of Atomic Blocks for SCA

Knowing atomic blocks in SCA-based verification of
multipliers brings three major benefits.

9Assuming AN−1AN−2 . . . A0 and BM−1BM−2 . . . B0 as two binary num-
bers, Ai and Bi have the same bit positions.

Fig. 7. Atomic blocks ratio in 64×64 multipliers. (a) Multiplier types.
(b) Stage architectures.

Detect CNCs: As discussed in Section V, detecting CNCs
and removing vanishing monomials are crucial to avoid explo-
sion during backward rewriting. An important step before the
CNC detection is the identification of all HAs in the design as
a CNC always starts from the HA outputs. The AIG represen-
tation of an HA is not unique. Using different atomic block
libraries or applying optimization techniques results in HAs
with different node numbers. However, the function of an HA
(i.e., the relation between outputs and inputs) never changes.
Thus, a reverse engineering technique to identify all atomic
blocks (including HAs) independent of their implementation
is necessary to guarantee the detection of CNCs.

Limit the Search Space for Vanishing Removal:

In Section V-C, we explained that the explosion during
backward rewriting occurs in multipliers using complex carry
propagation hardware in the third stage. A part of the logic
dedicated to this hardware always remains as the extra logic
after reverse engineering. On the other hand, the second stage
of the multiplier, which contains the largest number of AIG
nodes, is fully made of atomic blocks. As a result, only a
small part of the circuit, which cannot be identified as atomic
blocks, i.e., the extra logic, is responsible for generating
vanishing monomials.

Fig. 7(a) shows the ratio of atomic blocks logic to the entire
logic in the different multiplier architectures after reverse engi-
neering. Despite the fact that this ratio changes with respect to
the design architecture, on average, atomic blocks constitute
70% of a multiplier. In addition, Fig. 7(b) depicts the atomic
blocks ratio for the different PPA and FSA architectures. The
results confirm that the PPA stage of many multipliers is com-
pletely made of atomic blocks. In contrast, the FSA stage
of the multipliers using complex carry propagation hardware
(e.g., BK, LF, and CL) is a mixture of atomic blocks and extra
logic and their ratio varies based on the architecture.

Overall, reverse engineering allows limiting the search space
for finding the converging gates to the extra logic in the FSA.
This drastically reduces the search time in the local vanishing
removal phase.

Speed Up Global Backward Rewriting: As (15) indicates,
there is always a compact algebraic relation between inputs
and outputs of an atomic block independent of their realization
at the gate level. This algebraic relation can be shown as

f (outputs) = g(inputs) (16)
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Algorithm 1 REVSCA-2.0
Input: Multiplier AIG G

Output: TRUE if the circuit is correct, and FALSE otherwise

1: SP ← CreateSP(G)

2: AB, N ← ReverseEngineering(G) ⊲ AB is set of atomic blocks, N is set of extra

nodes

3: CN ← FindCNCs(N, filter_HAs(AB)) ⊲ CN is set of CNCs

4: CF ← FindFFCs(G, N, CN, AB) ⊲ CF is set of fanout-free cones

5: C ← CN ∪ CF

6: F ← ExtractVanishingFreePolys(C) ⊲ F is set of cone polynomials

7: r ← GlobalBackwardRewriting(SP, F, AB) ⊲ r is the remainder

8: if r == 0 then

9: return TRUE

10: else

11: return FALSE

where f (outputs) and g(inputs) are functions based on the out-
put and input signals, respectively. Therefore, if f (outputs)
appears in SPi during backward rewriting, it can be substi-
tuted with g(inputs) instantly. With respect to the fact that
a large part of a design is constructed with atomic blocks
(see Fig. 7(a)), detecting atomic blocks will speed up the
global backward rewriting considerably.

Example 7: Assume C and S are the outputs, and X, Y , and
Z are the inputs of an FA. If 2C +S appears in SPi during the
backward rewriting, it can be substituted by X + Y + Z. As
a result, we skip the substitution of the FA node polynomials
and speed up the whole backward rewriting process.

VII. REVSCA-2.0

In this section, we first give a top-level overview of our
SCA-verifier REVSCA-2.0. Then, we explain reverse engi-
neering and CNC detection techniques used in REVSCA-2.0.

A. Top-Level Overview

To alleviate the vanishing monomials explosion problem
during backward rewriting, we propose our new SCA-based
verification method REVSCA-2.0.

In our proposed method, first SP is generated. Then,
all atomic blocks are identified using reverse engineering.
Subsequently, all CNCs starting from the HAs’ outputs are
detected and the polynomial for each CNC is extracted by
the substitution of the node polynomials in the cone. The
CNC polynomial determines the output of the cone (i.e., out-
put of the converging node) based on its inputs. We know
that a vanishing monomial contains the product of HA’s out-
puts, and these outputs are the inputs of CNCs. Therefore,
the vanishing monomials appear in the extracted CNC poly-
nomials. Local removal of vanishing monomials from these
polynomials leads to a set of vanishing-free polynomials. Now,
global backward rewriting can be performed by substituting
vanishing-free polynomials in SPi without the appearance of
any new vanishing monomial.

Algorithm 1 shows the pseudocode of REVSCA-2.0. In
the first step, SP is created based on the input and output
bit width of the multiplier (Line 1). Then, the atomic blocks
are identified using a dedicated reverse engineering technique
(Line 2). The CNCs are extracted based on the identified HAs
[filter_HAs(AB)] and the set of extra nodes from the reverse
engineering phase (Line 3). The rest of the nodes, which are
not part of any atomic blocks or CNCs, is grouped based on
the fanout-free regions as it increases the chance of mono-
mial cancelation during global backward rewriting (Line 4).
These cones are called fanout-free cones [3], [17]. In the next

step, the polynomial for each cone is extracted by substitution,
and the vanishing monomials are locally removed (Line 6).
Finally, global backward rewriting is performed by substituting
extracted polynomials in SPi (Line 7). If the resulting remain-
der equals zero, the circuit is correct, otherwise, it is buggy
(Line 8–Line 11).

In the next three sections, we explain reverse engineer-
ing, CNC detection, and local vanishing monomial removal
in detail.

B. Reverse Engineering

In this section, we propose our dedicated reverse engineer-
ing method to identify atomic blocks in multipliers. First, we
collect the truth tables of atomic blocks in a library,10 which
has to be done only once. Then, we extract cuts in the AIG
representation of a multiplier and check whether the output
vector of each cut matches one of the output vectors in a
truth table in our library. If we find a set of cuts with com-
mon inputs, whose output vectors match the truth table of an
atomic block, we have identified an atomic block. Truth tables
can be computed efficiently during cut enumeration for cuts
with up to 16 inputs.11 Moreover, they require an acceptable
amount of memory. Thus, they are preferred to other symbolic
representations such as BDDs. In the following, we explain the
two steps of atomic block identification in detail.

Atomic Blocks Specification Library: First, we have to spec-
ify the mathematical functions of the atomic blocks and collect
them in a library.

Assume that fi(x1, x2, . . . , xn) is the Boolean function for
the ith output of an atomic block, and x1, x2, . . . , xn are
the atomic block inputs. The library for the atomic block
should contain all the functions in NPN class [25] of fi,
i.e., all the functions generated by swapping and complement-
ing x1, x2, . . . , xn. Thus, the first step to create the library is
the extraction of the NPN class for each atomic block output.
The atomic block inputs are symmetric and have the same
bit positions, so swapping does not create new functions. As
a result, the only transformation that leads to the generation
of new functions for the NPN class is complementing. After
extracting the NPN class, the truth table for each function
in the class is stored in the library. By following this princi-
ple, the complete set of truth tables for HAs and FAs can be
obtained. We use notation Tx to refer to the vector in column
x of a truth table.

Example 8: The Boolean functions and the NPN classes for
the two outputs of an HA are as follows:

Sum = X ⊕ Y
NPN class
−−−−−−→ X ⊕ Y

¬X ⊕ Y, X ⊕ ¬Y, ¬X ⊕ ¬Y

Carry = X ∧ Y
NPN class
−−−−−−→ X ∧ Y

¬X ∧ Y, X ∧ ¬Y, ¬X ∧ ¬Y. (17)

If the first input of the HA is complemented [see Fig. 8(a)],
the Boolean functions for the Sum and Carry are ¬X ⊕ Y and
¬X ∧Y , respectively. Thus, the truth table contains two output
vectors TSum = 1001 and TCarry = 0010 based on Fig. 8(b).

10A truth table has several output vectors showing the value of the outputs
for different input combinations, e.g., the truth table of an HA consists of two
output vectors: one for Sum and another one for Carry.

11Cuts have a maximum of five inputs in our atomic block identification
phase.
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Fig. 8. HA with one input complement. (a) Structure. (b) Truth table.

Fig. 9. CM truth table.

The story for CM is different. The challenge originates from
the fact that there are outputs with the same bit position. For
example, this holds for the CM with outputs S, C, and Co,
where C and Co have the same bit position (see CM word-level
description in (15) where C and Co has the same coefficient).
As a result, the value of these two outputs can be swapped for
a certain input combination without changing the function of
CM. This would lead to the generation of a large number of
truth tables.

Example 9: Fig. 9 shows the basic truth table (without com-
plementing inputs) of a CM. Some rows have been omitted in
the middle of the table. As C and Co have the same bit posi-
tion, they can always be swapped. If the Boolean values of
C and Co are not equal (red cells in Fig. 9), swapping them
results in a completely new truth table. As in total there are
20 nonequal values of C and Co in the truth table of Fig. 9,
220 = 1048576 new truth tables are generated by swapping
these values. To avoid dealing with millions of truth tables,
we use the arbitrary values Xi in TC, and its complement Xi

in TCo, where the ith value of TC and TCo is different. For
example, in Fig. 9, TC and TCo can be encoded as

TC = 111X31X5X6X7 . . . X24X25X260X28000

TCo = 111X31X5X6X7 . . . X24X25X260X28000. (18)

The encoded values of TC and TCo in (18) cover all 220

possible truth tables.
Finally, all the obtained truth tables of atomic blocks are

stored in the atomic blocks library (ABLib).

Algorithm 2 Atomic Blocks Identification
Input: Multiplier AIG G, Set of output vectors ST1, . . . , STm from ABLib,

Number of atomic block inputs n

Output: List of identified atomic blocks AB

1: C ← FindCuts (G, n) ⊲ Finding all n-input cuts

2: for ci ∈ C do

3: for STj ∈ ST do

4: if TruthTable(ci) ∈ STj then

5: PCj = PCj ∪ ci

6: SC ← Find the cuts with common inputs in PC0, PC1, . . . , PCm

7: AB ← Merge the cuts with common inputs in SC

8: return AB

Identifying Atomic Blocks: After creating ABLib, the next
step is the identification of atomic blocks in the multiplier.
Algorithm 2 presents the general algorithm for identifying
atomic blocks with n inputs and m outputs using ABLib. The
algorithm finds all cuts whose output vectors match one of
the output vectors in a truth table in ABLib. If a set of cuts
with common inputs has exactly the same output vectors as an
atomic block truth table in ABLib, this set can be considered
as an atomic block. The input of the algorithm is the AIG
G of a multiplier, the set of possible vectors for each output
ST0, . . . , STm from one concrete atomic block of ABLib, and
the respective number of input bits n. The algorithm returns
the list of found atomic blocks AB as output. First, all n-input
cuts (see Definition 1) are computed on the AIG and stored
in C (see Line 1). Then, the output vectors of the cuts are
checked to see whether there is a cut ci whose output vector
is the member of one of the output vector sets STj. If yes,
i.e., the function of ci is the same as the jth output of the
atomic block, it is added to the list of possible candidates PCj

(Line 2– Line 5). Subsequently, the possible candidates are
scanned to find the set of cuts with common inputs (Line 6).
Finally, the cuts with common inputs are merged since we
have found an atomic block (Line 7).

Example 10: Consider the 2 × 2 multiplier of Fig. 1(b):
C1 = {n5, n6, n8} and C2 = {n7} are among the extracted 2-
input cuts. By computing the output vectors of these two cuts,
it is realized that TC1

and TC2
are members of STS and STC,

which are the set of possible vectors for Sum and Carry in
ABLib, receptively. Moreover, C1 and C2 have the common
inputs n2 and n3. Thus, merging them results in identifying
the atomic block B = {n5, n6, n8, n7} which is an HA.

The runtime for computing cuts depends on the number of
cut inputs, here n. In order to extract all atomic blocks effi-
ciently, we first run Algorithm 2 for 2-input and 3-input cuts
to detect all HAs and FAs. If the number of FAs is less than
20% of the entire atomic blocks,12 then it can be concluded
that the multiplier architecture has been implemented using
larger atomic blocks, i.e., CM. Hence, we run the algorithm
for 5-input cuts to detect CMs.

C. Detecting Converging Node Cones

Algorithm 3 shows the proposed algorithm for detecting
CNCs after reverse engineering. The algorithm receives the
HAs H and the extra logic N as inputs, and returns the set
of CNCs as output. As discussed in Sections V-C and VI-B,
the CNCs are the subsets of the extra nodes. Therefore, we
limit the search space for finding CNCs to these extra nodes.
First, for each HA in H, all paths in N starting from the

12We justified this number by several experiments.
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Algorithm 3 Detecting CNCs

Input: Set of HAs H, Set of extra nodes N

Output: Set of converging node cones CN

1: CN ← ∅

2: for each h ∈ H do

3: PS ← Find all paths starting from hSum in N

4: PC ← Find all paths starting from hCarry in N

5: for each pS ∈ PS do

6: for each pC ∈ PC do

7: if pS ∩ pC �= ∅ then

8: g = First common member of pS and pC
9: CNC ← [(pS ∪ pC) − (pS ∩ pC)] ∪ {g}

10: CN ← CN ∪ {CNC}

11: CN ← Merge all CNCs in CN with the same or included converging node

12: return CN

Sum and Carry outputs are extracted (see Line 3–Line 4
in Algorithm 3). The end of a path is where the POs or inputs
of an atomic block are reached. In fact, PS and PC contain
all the possible node chains connecting the Sum and Carry

outputs of HAs to POs or inputs of atomic blocks. Then, the
paths in PS and PC are checked to find out if there are paths
which intersect (Line 5–Line 7). If that is the case, the first
common member (i.e., g) is a converging node as it is the first
place where two paths from HA’s outputs meet (Line 8). In
order to determine the CNC for the corresponding converg-
ing node g, the union of two paths (pS ∪ pC) is subtracted
by their intersection (pS ∩ pC) and g is added to the result
to obtain all the nodes from HA’s outputs to the converg-
ing node (Line 9–Line 10). This process is repeated for all
HAs to obtain the complete set of CNCs. Finally, all the
cones with the same converging nodes (and thus, the same
outputs) and the cones whose converging nodes are included
in other CNCs are merged as there should be only one cone
with a specific output signal (Line 11). In other words, cones
C1 and C2 should be merged if: 1) they have the same con-
verging node or 2) converging node of C1 (C2) is a member
of C2 (C1).

Example 11: Consider again the 3 × 3 nontrivial multiplier
of Fig. 3. The two HAs H4 and H5 are responsible for
generating CNCs as there are paths from the outputs of these
HAs converging to a node. Based on Algorithm 3 , first the
paths from the H4 outputs are extracted: p1 = {nI, nF, nC, nA}

and p2 = {nH, nC, nA} are the paths starting from SH4
and

CH4
, respectively. After calculating the intersection of these

paths, we observe p1 ∩ p2 �= ∅. Thus, the first common
member, i.e., nC, is a converging node. Using the equation
in Line 9 of Algorithm 3 results in the detection of the
CNC C1 = {nC, nH, nF, nI}. The members of a CNC are
sorted based on the reverse topological order of the circuit.
Hence, the first member of a CNC (nC in C1) is always
the converging node. Additionally, p3 = {nr, nG, nE, nB} and
p4 = {nG, nE, nB} are two other paths starting from SH4

and
CH4

. These paths converge to nG; thus, after using Algorithm 3
, we get C2 = {nG, nr}. The complete list of detected CNCs
after applying Algorithm 3 are C1 = {nC, nH, nF, nI},
C2 = {nG, nr}, C3 = {nA, nC, nF, nI}, and C4 = {nA, nC, nH}

where C1 and C2 are related to H4, and C3 and C4 are related
to H5. The cones C3 and C4 have the same converging node
nA, moreover, the converging node of C1, i.e., nC, is a member
of C3 and C4. Consequently, we can merge these three cones
to obtain C = C1 ∪ C3 ∪ C4 = {nA, nC, nH, nF, nI}.
The cones C and C2 are the final outputs of
Algorithm 3.

The rest of the extra nodes, which are not part of any atomic
blocks or CNCs, is grouped as fanout-free cones. In Fig. 3,
CF1 = {nB, nE, nD} is a fanout-free cone.

D. Local Removal of Vanishing Monomials

After detecting CNCs, the polynomial for each cone is
extracted by a local backward rewriting. If a monomial con-
taining the product of HAs’ outputs (i.e., vanishing monomial)
appears during local backward rewriting, we remove the
monomial instantly to avoid the generation of more vanish-
ing monomials in the next steps. Finally, we have a set of
polynomials, which are completely vanishing free.

Example 12: Consider C = {nA, nC, nH, nF, nI}, which is
the CNC of Fig. 3. The steps of local backward rewriting and
the vanishing monomials removal are as follows:

nA = nC − nCCH5

= 1 − nF − nH + nFnH − CH5
+ nFCH5

+ nHCH5
− nFnHCH5

= 1 − nF − CH4
SH5

+ nFCH4
SH5

− CH5

+ nFCH5
+✘✘✘✘✘

CH4
SH5

CH5
−✭✭✭✭✭✭

nFCH4
SH5

CH5

= 1 − nICH3
− CH4

SH5
+ nICH3

CH4
SH5

− CH5
+ nICH3

CH5

= 1 − SH4
SH5

CH3
− CH4

SH5
+✭✭✭✭✭✭✭

SH4
CH3

CH4
SH5

− CH5

+ ✭✭✭✭✭✭✭
SH4

SH5
CH3

CH5

= 1 − SH4
SH5

CH3
− CH4

SH5
− CH5

. (19)

The red monomials contain SH4
CH4

or SH5
CH5

, which are the
product of H4 and H5 outputs in Fig. 3, respectively. Therefore,
they are canceled out immediately when they appear during
local backward rewriting.

VIII. EXPERIMENTAL RESULTS

We have implemented REVSCA-2.0 in C++. In order to
extract cuts in the reverse engineering phase, we used the
mockturtle library [26]. All experiments are performed on an
Intel Xeon E3-1270 v3 with 3.50 GHz and 32 GByte of main
memory. In order to evaluate the efficiency of REVSCA-2.0
in verification of different signed and unsigned multipliers,
we consider a variety of architectures. Table I shows the used
architectures and also their abbreviations in the three stages
of a multiplier. To generate the multipliers up to 64 × 64
input sizes, we use the arithmetic module generator [27]
known as AOKI, which supports a wide range of architec-
tures. However, AOKI cannot generate multipliers bigger than
64 × 64. Therefore, we also employ our multiplier genera-
tor GenMul13 [28] to create large multipliers with 128 × 128,
256 × 256, and 512 × 512 input sizes. We have also balanced
or refactored the AIG of some multipliers (balance and refac-

tor commands in abc [29]) to evaluate the effects of design
alteration/optimization on the verification methods.

Table II reports the verification times for the different
multipliers. The time out (T.O.) has been set to 48 h. Not sup-

ported (N.S.) indicates that the method does not support the
verification of the benchmark. The first column of Table II
Benchmark presents the type of the multiplier based on the
stage architectures. The second column size denotes the size

13Available at http://www.sca-verification.org/genmul.
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TABLE I
MULTIPLIER ARCHITECTURES AND ABBREVIATIONS

TABLE II
RUNTIMES OF VERIFYING MULTIPLIERS (SECONDS)

of the multiplier based on the two inputs’ bit width. The
third column type shows whether the multiplier is signed or
unsigned. The runtime (in seconds) of our proposed method
is reported in detail in the forth column REVSCA-2.0 con-
sisting of five subcolumns: 1) Reverse Engineering reports
the required time for extracting cuts in the AIG represen-
tation of a multiplier and then identifying atomic blocks;
2) Cone Detection refers to the time needed for detecting
CNCs and fanout-free cones; 3) Local Van. Removal presents
the consumed time for extracting the polynomial for each
CNC and fanout-free cone and removing vanishing mono-
mials; 4) Global Backw. Rewriting reports the time for the
global backward rewriting phase. Finally, the overall runtime

of our proposed method is presented in Overall; and 5) the
fifth column State-of-the-art methods of Table II reports the
runtimes of the state-of-the-art verification methods. This col-
umn consists of six subcolumns: Comm. refers to the runtime
of the commercial formal verification tool OneSpin 360 DV.
The remaining columns show the runtimes of the most recent
SCA-based verification approaches.

It is evident in Table II that our proposed approach can
verify all benchmarks including both unsigned and signed
multipliers. The reverse engineering time in most of the
cases is small compared to the overall verification time
as the algorithm to extract cuts and our proposed algo-
rithm to identify atomic blocks are very fast. The only

12



TABLE III
VERIFICATION DATA OF MULTIPLIERS

exceptions are SP◦CT◦BK and BP◦CT◦BK, which require
the extraction of cuts with five inputs as they contain com-
pressors. Therefore, the reverse engineering time increases
for these benchmarks. The most time-consuming verifica-
tion phase is the global backward rewriting as it requires
many calculations (e.g., polynomial substitution) on large
polynomials.

On the other hand, the commercial tool only verifies
multipliers up to 16×16, and it times out for the bigger bench-
marks. The proposed SCA-based verification methods of [3],
[5], [6], and [16] either cannot verify any benchmarks or only
work on trivial multiplier architectures, i.e., SP◦AR◦RC and
BP◦AR◦RC. The main reason is that these methods do not
provide any solution to remove vanishing monomials early in
the calculations to avoid explosion during global backward
rewriting. The proposed method in [17] can verify some of
the nontrivial multipliers as the authors presented a heuristic
to detect and remove vanishing monomials. However, it is not
robust as can be seen in column [17] and fails for most of
the benchmarks. Moreover, it is drastically slower than our
method.

The proposed method in [18] reports very good results
in verification of nontrivial multipliers if the FSA can be
detected. However, it fails to verify two AOKI benchmarks
(i.e., SP◦AR◦BL and BP◦AR◦BL), as well as 18 (balanced or
refactored) multipliers. Hence, the method is not robust against
design alterations/optimizations as they usually destroy the
clean boundaries between the multiplier stages. Nevertheless,
it is promising to integrate the FSA detection principle in
REVSCA-2.0 to speed up our approach.

Table III presents the verification data reported by
REVSCA-2.0 for multipliers. The first, second, and third
columns of the table show the architecture, size, and the
type of the multiplier, respectively. The forth column #node

reports the number of nodes in the AIG representation of
the multiplier. The number of identified atomic blocks is
presented in the fifth column #Atomic. The sixth column

#Van. gives the total number of canceled vanishing monomi-
als in the local vanishing removal phase. Finally, the seventh
column #MaxPoly reports the maximum size of SPi dur-
ing global backward rewriting by counting the number of
monomials.

The results in Table III confirm that REVSCA-2.0 can
verify nontrivial multipliers with more than 3M AIG nodes,
e.g., the signed 512 × 512 SP◦WT◦BK multiplier contains
3 161 854 nodes. The number of detected atomic blocks varies
base on the size of the multiplier and its architecture. For
example, the multipliers with radix-4 Booth encoding in the
PPG stage have less atomic blocks compared to those which
use the simple PPG. The reason is that the number of generated
partial products is smaller in case of Booth encoding; thus, less
atomic blocks are required to reduce these partial products.
The total number of canceled vanishing monomials also varies
based on the architecture. No vanishing monomial is gener-
ated during verification of trivial multipliers, e.g., SP◦AR◦RC

and BP◦AR◦RC; therefore, the number of canceled vanishing
monomials is zero. On the other hand, during the verification
of 64 × 64 BP◦WT◦CL and BP◦BD◦KS, which are non-
trivial multipliers, approximately 280K and 616K vanishing
monomials are canceled, respectively.

IX. CONCLUSION AND FUTURE WORK

In this article, we presented the SCA-verifier REVSCA-
2.0, which combines reverse engineering and local vanishing
removal to prove the correctness of nontrivial million-gate
multipliers. REVSCA-2.0 first identifies all atomic blocks
including HAs. Then, based on an extended theory for the ori-
gin of vanishing monomials, it detects converging cone nodes
starting from HAs and locally removes vanishing monomials.
As a consequence, global backward rewriting becomes vanish-
ing free and no explosion happens in the number of monomials
during verification. The experiments using an extensive set
of nontrivial million-gate multipliers demonstrated the effi-
ciency of REVSCA-2.0 in comparison to the state-of-the-art
techniques.

In our future research, we will focus on the verification of
optimized multipliers. To achieve this goal, we plan to extend
the dynamic backward rewriting approach of [30] to support
highly optimized architectures.
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