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Abstract

Theoretical as well as experimental studies have shown potential applications of two-

dimensional (2D) materials in various fields of science and technology, for example

field-effect transistors (FET), spin- and valleytronics, optoelectronic, topological in-

sulators, and flexible devices. These devices, fabricated from monolayers (MLs) of

one or two elements, are inexpensive, inherently flexible, and amenable to industrial

scale processing because of emergent growth techniques. Among all 2D materials,

transition metal dichalcogenides (TMDs) monolayers are under intense investiga-

tions since they offer unprecedented opportunities in tuning electronic, optical, and

transport properties through strain, dielectric screening, stacking confinement, pho-

toluminescence, and crystal defects.

Monolayers of Group-6 TMDs form two stable structural configurations, namely

a semiconducting phase (H-phase) with a direct bandgap and a semimetallic phase

(T-phase). These monolayers can undergo strong elastic deformations, up to about

10%, without any bond breaking. Although, MLs TMDs are highly robust to ex-

ternal mechanical fields, their electronic structure is sensitive to compressive and

tensile strain. Besides, intrinsic point defects are always present in their synthetic

samples. Hence, it is important to understand both effects on the electronic and op-

tical properties of such monolayers. Moreover, the coexistence of 2H- and 1T-phase

of MLs MoS2 have further pushed their strong potential for applications in the next

generation of electronic devices based on the 2D lateral heterojunctions. Here, the

interfaces of two phases are often imperfect and may contain numerous vacancies,

which also have considerable effects on the their properties.

In this work, we investigate the electronic structure, energetic, and optical prop-

erties of defective MLs TMDs, subject to various strain situations, using density

functional theory (DFT) simulations. Our results indicate that strain leads to strong

modifications of the defect levels inside the bandgap, e.g. splitting their degeneracy

up to an amount of 450 meV. We show that a type of shear strain lowers the forma-

tion energy of all the point defects. According to the outcomes, presence of vacancy

complexes leads to absorption with larger dipole matrix elements in comparison to
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the case of simple transition metal vacancies.

The other objective of this thesis is to explore the charge transport properties of

the 1T/2H-MoS2 heterojunctions in the existence of point defects, by means of non-

equilibrium Green function (NEGF) approach. While vacancies in semiconducting

MoS2 act as scattering centers, their presence at the interface improves the flow of

the charge carriers. The transmission enhancement was explained by changes in the

electronic densities at the T-H interfaces, which open new transport channels for

electron conduction.
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Chapter 1

Introduction

1.1 2D Materials

Two-dimensional (2D) materials are a set of layered materials with weak Van der

Waals interactions between layers, which exhibit novel properties and applications,

different from their bulk counterparts [1–3]. The intrinsic high surface to volume

ratio, due to their heights of a few atoms, endows them to be a potential basis for

surface-related applications including supercapacitors, catalysis, sensors and opto-

electronics [4–7]. Since their electronic structure ranges from semimetallic to semi-

conductors and finally to insulators, they present a promising landscape of mate-

rials as building blocks to manufacture various electronic and optoelectronic de-

vices [1,3,8,9]. Besides, the thickness of these single-layers is in the range of atomic

length and the in-plane covalent bonds are strong, which in turn, leads to optical

transparency, excellent mechanical strength, and flexibility [10, 11]. Since the elec-

trons are restricted to move in such ultrathin region, in particular for single-layers,

this confinement facilitates the compelling electronic properties of these 2D materi-

als [12,13]. As a result, they are ideal for the fundamental study in condensed mat-

ter physics as well as electronic and optoelectronic devices [1, 9, 10, 14, 15]. Besides,

several solution-based techniques, i.e. spin coating, inkjet printing, drop casting,

vacuum filtration, spray-and coating, have been developed to fabricate freestanding

ultrathin 2D materials with high-quality, which make them even more interesting
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for practical applications [15, 16]. The last but not the least, this high exposure of

surface atoms allows for manipulation of the properties by means of element doping,

dielectric screening, photoluminescence, surface functionalization, and above all de-

fect, strain, and phase engineering [2,3,13,17,18]. All in all, more than ten years after

the experimental demonstration of graphene in 2004, studying fundamental physical

phenomena and the development of effective device architectures are now pushing

2D materials rapidly toward novel technological applications in the next-generation

devices [1,2,8,9]. Ever since, many other 2D materials have been synthesized, such

as transition metal-dichalcogenides (TMDs), hexagonal boron-nitride (h-BN), and

black phosphorous or phosphorene [1–3,19].

1.2 Transition Metal Dichalcogenides

In the structure of TMDs, metal atoms (M) mostly comes from group IV, V, and VI,

while chalcogen atoms (X) are namely S, Se, and Te (see Figure 1.1). Following the

Figure 1.1: (Color online) Part of the periodic table with known layered TMDs is
shown [20]. Their structural and electronic phases are also summarized.

synthesis of the molybdenum disulfide (MoS2) monolayer (ML), the first top-gated

field-effect transistor (FET) based on 2D materials was built [21–23]. Thenceforth,

single-layers of Group-6 transition metal dichalcogenides have become the subject of

many investigations as a productive ground for harvesting fundamental science and

emergent applications [3, 4, 7, 17]. Bulk structure contains infinite layers stacking
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on top of each other and held by Van der Waals forces. This family of materials,

with the general chemical formula of MX2, are constructed of a triple X–M–X

layer, where the transition metal, M (i.e. Mo,W,Ta,Nb,Ni), is covalently bonded

to six chalcogen atoms, X (i.e. S,Se,Te). The schematic representation of the bulk

crystal, and monolayer structure as well as their lattice paramters are shown in

Figure 1.2 [20, 24, 25]. In the bulk structure, c is the layer–layer distance. The

Figure 1.2: (Color online) a) Schematic of the atomic structure of MX2 is shown.
Two layers of MX2 per unit cell, each being built up from a trigonal prism co-
ordination unit, make the bulk compound. The unit cell of a MX2 monolayer is
represented with the small green rectangle. Doubling this layer, it is extended (red
rectangle) to the bulk crystal. (b) The trigonal prisms for the two layers in the bulk
compound are shown in details as well as the lattice constants and the definition of
the structural angles [25].

distance between in-plane nearest neighbors, i.e. M–M and X–X, is denoted with

a. b is the distance between M and X in a unitcell and the distance between the M

and X planes is labeled by u. The measured b and u for the MX2 are very close to

the
√

7/12a and a/2, respectively, which are the ideal values for a perfect trigonal

prism structure [25–27].

Consider these four TMDs compounds: MoS2, molybdenum diselenide (MoSe2),

tungsten disulfide (WS2), and tungsten diselenide (WSe2), two of which will be

studied in this thesis. Semiconducting 2D TMDs have direct band gaps of typi-
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cally from 1 to 2 eV [25, 28]. Hybridization of the dxy, dx2−y2 , and dz2 orbitals of

the transition metals M , and all the P orbitals of the chalcogen atoms X form

the orbital characteristics of the valance and the conduction bands. One of the

unique features of the such semiconductors is that their band structure undergoes

an indirect-direct bandgap transition, when the layers are reduced from bulk struc-

ture to a single-layer [3, 21]. This tunable bandgap in 2D TMDs when combined

with a strong photoluminescence (PL) and large exciton binding energy, make them

highly promising for application in a variety of optoelectronic devices, such as pho-

todetectors, photo-transistors, light-emitting diodes, and solar cells [6, 11, 29, 30].

Further features of such monolayers (MLs) are broad range of mobility, high on/off

ratio, and extreme thinness which allows more efficient control over switching and

help to reduce short-channel effects and power dissipations [29,30].

Beside this semiconducting 2H phase with hexagonal symmetry, some members

of the TMDs are observed to form a metastable crystal polytype with semimetalic

properties [18,31–33]. This is called the 1T phase and have octahedral geometry with

the tetragonal symmetry. Figure 1.3 shows the structure of these two phases as well

as a high-resolution transmission electron microscope image of their atomically thin

boundary [34, 35]. Hence, depending on the arrangement of the chalcogen atoms,

monolayer TMDs appear in many distinct phases. For example, 2H phase of MoS2

can be transformed to the metallic structure by gliding one of the S planes to the

center of the hexagonal rings [31,33]. Techniques such as electron-beam irradiation

[36], annealing [37], applying strain [31, 38], or electron doping [39, 40], can trigger

the reversible transition from 2H to 1T phase in MoS2 crystal. The coexistence of

the semiconducting and semimetalic phases of MoS2 has also been observed and

characterized [32–34,41–43]. Such bi-phase homogeneous hybrid systems has paved

the way for the application of the in-plane metal–semiconductor heterostructures in

the new generation 2D electronic devices [34, 41–43]. In fact, sub-10 nm channel-

length transistors were fabricated using semiconducting and metallic phases of MoS2

[43]. Based on the edges between 1T and 1H phases, different interfaces can be

arranged, i.e. armchair and zigzag [33, 44, 45]. It was reported that the armchair
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Figure 1.3: (Color online) a,b) Crystal structure of the 2H and 1T phases of TMDs
monolayers are shown respectively. The trigonal prismatic (a) and octahedral (b)
coordinates are represented in the upper diagram. In the lower panel, the top (c-
axis) view of the corresponding MLs TMDs are displayed. The atom colors are
similar to Fig. 1.2, namely purple for metals and yellow for chalcogens. (c) High-
resolution transmission electron microscope image of their interface (indicated with
arrows) for the case of MoS2 monolayers [34].

interfaces are most stable against buckling [33,45]. Besides, connecting the armchair

edges of 1T and 1H phases are energetically more favorable than zigzag interfaces

[33, 44]. In another study, the conductivity of the armchair edges have been found

to be higher than that of the zigzag interfaces which stems from the presence of the

metallic Mo zigzag chains along the transport direction [45]. Therefore, armchair

interfaces are used in the present study to construct phase-engineered devices of

MoS2 monolayers. Their electronic and transport properties are further studied as

point defects are present in the semiconducting region.

1.3 Synthesis and Defects in TMDs

Developing conventional and novel applications based on the atomically thin 2D

TMDs rely on the quality and scalability of their production as well as the ability

to control the synthesis processes [3,24,46–49]. High quality single crystal samples,

with efficient electronic behavior and suitable for fundamental characterization, can

be produced using the mechanical exfoliation. [3,22,50,51]. Nonetheless, systematic
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control of thickness and size of nanosheets is vety challenging or even unfeasible in

the mechanical exfoliation approach. On the other hand, Solution-based exfoliation

techniques allow synthesizing large quantity of the 2D materials as well as com-

posite and hybrid structures [15, 16, 52]. Moreover, freestanding ultrathin TMDs

can be fabricated via such liquid-phase preparations of the monolayers, i.e. spin

coating, inkjet printing, drop casting, vacuum filtration, spray-and coating, making

them even more interesting for practical applications [15, 16]. In terms of scala-

bility, however, the exfoliation approaches perform inadequately. Direct synthesis

techniques, e.g. epitaxial growth, physical, metalorganic, and in particular chemical

vapor deposition (CVD), can be used for large-scale fabrication of the 2D materi-

als [48,49,53–56]. The crystal quality and uniformity of the samples synthesized via

the CVD method is a drawback of the technique which can be improved through

adjusting its parameters [48,57,58].

As a result of thermal equilibrium and the kinetics of processing, all the synthetic

samples contain structural defects which showed significant effects on their electrical,

optical, vibrational, magnetic, and chemical properties [17,59–67]. Moreover, struc-

tural defects and impurities can be introduced deliberately, e.g., at the post growth

stage, by chemical and plasma treatment [68–71], vacuum annealing [60,72–74], ion

bombardment [47,60,75–77], or electron irradiation [12,61,78–80].

These defects have advantages and disadvantages based on the desired applica-

tion. For example, depending on the concentration of the defects, performance of

MoS2-based FETs may differ by several orders of magnitude [23,55,81]. In another

study, the presence of sulfur vacancy in MLs WS2 induces mid-gap states into their

band structure which, in turn, leads to an absorption in the near infrared wavelength

region [82].

On the other hand, some studies imply that the vacancy creation can extend the

application of MoS2 nanosheets [47, 83–86], e.g., as single-photon emitters, due to

localized states of the isolated defects [47,85]. In a recent study, molybdenum (Mo)

vacancies were generated site-selectively to write optically active defect states in

MLs TMDs [47]. The mid-gap localized levels have also been observed to improve the
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photoresponsivity of MoS2 monolayers by trapping the photo-excited charge carriers,

leading to a growth of the photocurrent in photodetectors [87–89]. Furthermore,

intrinsic defects such as S and Mo vacancies, may improve the contact resistance

and the carrier transport efficiency of devices depending on the electrode’s elements

[65, 90–93]. It has been shown that active sites for hydrogen adsorbtion onto the

MLs MoS2 can be introduced when vacancies are present inside the nanosheets

[94, 95]. This increases the hydrogen evolution reaction on these defective surfaces,

hence, improving their catalytic properties.

1.4 Strain: Importance & Techniques to Induce

Semiconducting 2D materials exhibit high resilience towards mechanical deforma-

tions in comparison to the conventional three-dimensional (3D) semiconductors

[50, 96, 97]. While, for example, silicon tends to crack under 1.5% tensile strain,

MoS2 MLs can withstand about 10% tensile strain [98, 99]. This capability is at-

tributed to the lack of dangling bonds and their high crystallinity, allowing for a

high degree of flexibility [50,97]. However, the electronic structure of the 2D mate-

rials, in particular TMDs monolayers, is very sensitive to the applied strain [100].

In the case of MLs MoS2, about 1.5% uniaxial tensile strain results in the direct-

to-indirect bandgap transition, while at around 10 − 15% of biaxial tensile strain

the structure undergoes a semiconductor-to-metal transition [99, 100]. As a large

biaxial strain is applied to MoS2 monolayer, its bandgap can be reversibly and

continuously tuned up to 500 meV [101]. Integrating onto microelectromechanical

systems (MEMS), strain of more than 1.3% has been applied to MLs MoS2, which

lays the ground for novel applications of 2D TMDs in flexible LEDs and field-effect

transistors (FETs) [102]. Thus, mechanical deformations offer rapid and reversible

tuning of the bandgaps in 2D TMDs of Group-6. This also offers a controllable

way to modify the electronic and optoelectronic properties of semiconducting 2D

materials. These strain-engineered properties lead to new potential applications for

MLs TMDs, such as piezoelectricity in MoS2, broad-spectrum solar energy funnel,

and flexible transparent phototransistors [10, 11, 16, 103, 104]. It was also observed
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that biaxial strain can tune the properties of photodetector devices based on MoS2

monolayers [11].

Different techniques have been proposed in experimental setups to apply me-

chanical deformations to the 2D materials [50, 99, 105–112]. Atomically thin semi-

conductors can be synthesized on top of a substrate which has a different thermal

expansion coefficient. Such thermal expansion mismatch can be used to induce uni-

form biaxial tensile strains by varying the temperature of the sample [105]. With

some modifications to this method, even more complex straining patterns can also be

applied [106]. Homogeneous biaxial and uniaxial strains can be applied by growing

a piezoelectric material underneath the monolayers as substrate [107]. This allows

for a control compressing or stretching the structure via simply changing the ap-

plied voltage to the piezoelectric material. Another approach to apply homogeneous

deformations is to deposite the 2D materials on top of flexible substrates [108,109].

Bending the substrate, the tensile strain is transformed to the monolayers via the

topmost surface of the substrate. The slippage is a drawback in the application of

this technique which can be resolved by the metal strips as clamping points, having

been evaporated onto the monolayers [108]. Elongating an elastic substrate can also

be used to apply uniaxial strains to the samples [110].

To apply the inhomogeneous deformations, the 2D materials can be transferred

onto elastomeric substrates to simulate the phenomena known as buckling-induced

rippling or wrinkling [111, 112]. Besides, researchers have investigated the stiffness

and breaking strength of monolayers via nanoindentation experiments [50, 96]. In

this method, the tip of an atomic force microscope (AFM) is used to apply very

large strains, up to the breaking point, onto the freely suspended monolayers. Such

extreme deformations revealed the particular mechanical properties of the 2D mate-

rials, which is close to those predicted for the ideal brittle materials [50,113]. As the

breaking stress value for 2D MoS2 has been measured, it showed an amount up to

1/8 of the Young’s modulus, getting closer to the ideal value of 1/9 [50,96,113,114].

In an ideal structure, the intrinsic strength of the atomic bonds is presumed to be

mainly responsible for the fracture point, while the presence of defects has negligible
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effects.

1.5 Outline of Thesis

The essential objective of this project is to investigate the strain and defect en-

gineering of the electronic and optical properties of the 2D materials, particularly

MLs TMDs. We also see how the presence of crystalline defects at the interface

of lateral heterojunctions modifies the transport properties of phase-engineered 2D

devices. The exploitation of these phenomena may allow building blocks for novel

applications. This thesis is organized as follows.

Chapter 2 covers an introduction to the Hohenberg and Kohn theorems and

the approximations required to derive the density functional theory (DFT). A brief

overview of the applied approximations as well as the exchange and correlation

functionals used in this thesis is also given. A short description of the SIESTA

method is provided. Then, the quantum theory of the electron transport within

the framework of the non-equilibrium Green’s function (NEGF) is presented along

with the formula to compute the transmissions and I-V curves. The types of strain

studied in this project is also explained. In the last section of this chapter, the

formalism and approach to calculate the formation energies are introduced.

In Chapter 3, the pristine TMDs monolayers is investigated and the results from

the method of choice are validated against the previous studies. Then, the elec-

tronic and energetic properties of the MoS2 monolayers containing point vacancies

are scrutinized. These defects have been observed in experiments and can be intro-

duced via the post-growth techniques in a control process. Furthermore, different

properties of the defective 2D structures are investigated subject to the mechani-

cal deformations. The modifications of the localized defect states under strain are

explained via analyzing the characteristics of the orbitals involved in those states.

Following the method in the last chapter, in chapter 4, we further analyze the

optical properties of MoS2 and WSe2 monolayers, containing metal vacancies and

vacancy complexes, as function of applied strain. Here, absorption spectra are com-

puted within the linear response regime. These findings are of great interest in
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understanding and expanding the potential applications of MLs TMDs in optoelec-

tronic and flexible devices. Besides, they provide a hypothesis that in ion-irradiation

processes, single photons are emitted from vacancy complexes rather than simple

transition metal vacancies. The analyses in this part of the thesis are based on the

orbital characteristics as well as the outcomes of the previous chapter.

In chapter 5, the coexistence of semiconducting (2H phase) and metallic (1T

phase) phases of MoS2 monolayers is studied. This would help with pushing their

strong potential for applications in the next generation of electronic devices based

on the 2D lateral heterojunctions. In particular, the role of interfacial defects on the

electrical properties of such devices are investigated. The first-principles simulations

and NEGF techniques are used to compute the local density of states (LDOS),

transmission curves, and IV characteristics of perfect and defective devices under a

various range of bias.

Finally, chapter 6 brings together a comprehensive overview of the outcomes

of the conducted research and concludes the remarks presented in the last three

chapters. An outlook to further expand the present studies are also provided.





Chapter 2

Theory and Methods

With the objective to explore the physics and chemistry of various materials, e.g.

atoms, molecules, and condensed structures, an effective approach is proposed as

electronic structure calculations. To study the quantum mechanical description of

electrons in such materials, without introducing system-dependent parameters, an

accurate computational scheme is presented via ab-initio methods, namely the mean-

field theory: density functional theory [27, 115]. In this chapter, the fundamental

concepts and theoretical methodology for the electronic structure calculations in

the present study are briefly introduced. We will present the details of the basic

underlying techniques used throughout this thesis in Section 2.1. Then, given the

theory of quantum transport, a brief overview of the non-equilibrium Green function

techniques will be presented in Section 2.2.

2.1 Density Functional Theory

As of the past several decades, the production of ever more complex computer codes

and an enormous increase in the computational resources have equipped the physi-

cists with the DFT codes as a common approach to scrutinize complex systems. A

more detailed introduction to the method, important aspects of the condensed mat-

ter theory, available extensions to the DFT, and exact mathematical formulations

can be found in literature [27, 115–117]. As a parameter free method and predic-
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tive capabilities, the DFT is one the most frequently used methods to describe the

ground states of complex physical systems in a wide variety of environments.

2.1.1 The generic quantum mechanical problem

When using quantum mechanics to study the materials, the general purpose is to

find the solution of the time independent Schrdinger equation

HΨ(r,R) = EΨ(r,R). (2.1.1)

Here Ψ is the time-independent many-electron wave function for interacting elec-

trons, in which r = {r1, r2, ...} and R = {R1, R2, ...} are electron and nuclei posi-

tions, respectively. Omitting relativistic effects, the Hamiltonian H for such system

is written as a sum of terms originating from different levels of interaction,

H = Te + Tn + Vn−n + Ve−e + Ve−n (2.1.2)

where subscript e and n denotes electron and nuclei, respectively. Thus, kinetic

energies of Te and Tn are the contributions from electrons and nuclei, respectively.

The other terms are the pairwise interaction between the particles as nuclei-nuclei in-

teraction Vn−n, electron-electron interaction Ve−e, electron-nuclei interaction Ve−n.

These terms can be written as

Te = −
Ne∑
i

~2

2mi

∇i ; Tn = −
Nn∑
α

~2

2mα

∇α

Vn−n = −1

2

Nn∑
α

Nn∑
β

e2

|Rα −Rβ|
; Ve−n = −1

2

Ne∑
i

Nn∑
α

e2

|ri −Rβ|

Ve−e =− 1

2

Ne∑
i

Ne∑
j

e2

|ri − rj|

(2.1.3)

with i, j denoting electronic indices and α, β nuclei indices. In order to remove

the double counting terms in the potentials expansions, the 1/2 is added. Since the

number of electrons and nuclei, Ne and Nn, in a material is very large, it is common
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practice to use an adiabatic approximation proposed by Born and Oppenheimer

[117]. In this scheme, the electron and nuclei dynamics are considered decoupled due

to their large mass difference so that electrons see the atoms in a static configuration

and move within a translational invariant static nuclei potential. This allows us

to separate the complex wavefunction of the system to two parts, the electronic

wavefunction ψ(r,R) and the lattice wavefunction χ(R), as

Ψ(r,R) = ψ(r,R)χ(R). (2.1.4)

Note that ψ is still a function of the atomic coordinates as a result of the environ-

ment 1. As a result, the Schrdinger equation for electrons can be written as

Heψ(r,R) = Eψ(r,R), (2.1.5)

with the below electronic Hamiltonian

He = Te + Ve−e + Ve−n. (2.1.6)

Several theories have been proposed to solve this multi-variate equations, such as

the Hartree method which describes the many-electron wavefucntions as a product

of one-electron orbitals, while in the Hartree-Fock approach, these wavefunctions

are extended to a Slater determinant of spin orbitals [118, 119]. However, all the

electronic variables, including spatial and spin, are interacting in the system, leading

to drastic raises in the computational complexity with exponential scaling to the

number of atoms.

Addressing the problem from a different perspective, density functional theory

is formulated based on a simpler variable, the electron density rather than the exact

wavefunctions, as the name implies. One benefit of this approach lay on the fact

that the density only depends on three variables.

1In principle, χ also depends on the electronic positions, r, however, this explicit dependency
can be omitted in an adiabatic approximation with an average density of electrons.
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2.1.2 Hohenberg and Kohn Theorems

In 1964, Hohenberg and Kohn proposed the initial theorems of DFT [120], and

formulated them with two statements:

Theorem 1: The external potential is a unique functional of the

electron density, ρ(r), in the ground state, and therefore the total energy

is also a functional of the ground state electron density, E[ρ(r)].

Theorem 2: Given a system with the electronic density, the ground

state energy, E0, corresponds to the global minimum of the total energy

functional, and the density ρ0(r), which minimize E[ρ(r)], is the exact

ground state density.

Accordingly, the wavefunction ψ and thus all the properties of a given system at

its ground state are determined by the electron density, ρ(r). The associated total

energy as a function of this trial density can be written as

E[ρ(r)] = F [ρ(r)] + Vext(r), (2.1.7)

with Vext(r) as the external potential and F [ρ(r)] describing an unknown, but a

universal functional defined via ρ(r). Hence, the external potential and the number

of electrons are sufficient to define the Hamiltonian. In the rest of this thesis, ρ(r)

is replaced by ρ, unless otherwise stated. The universal functional is written as

F [ρ] = T [ρ] + Eee[ρ] (2.1.8)

where T [ρ] is the kinetic energy functional and Eee[ρ] is the electron-electron in-

teraction energy. The Eee[ρ] is usually split up to two terms, EH [ρ] being classical

Coulomb (Hartree) energy and a non-classical part denoted as EQ[ρ]. Finally, to

formulate the second theorem, the total energy evaluated at an arbitrary density ρ

is larger than the the ground state energy obtained at the ground state density ρ0,

more intuitively

E[ρ] > E[ρ0]. (2.1.9)
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2.1.3 Kohn-Sham equations

Although the Hohenberg and Kohn theorems have undoubtedly simplified the prob-

lem at hand, it is not clear what is the proper expression for the functional F [ρ] as

well as how to find the ground state density. In order to overcome such drawbacks,

Kohn and Sham suggested to replace the interacting system with an auxiliary non-

interacting reference system [121]. Thereupon, rewriting the universal functional,

the relation for the Kohn-Sham total energy is reformed as

EKS[ρ] = T0[ρ] + Vext(r) + EH [ρ] + EXC [ρ]. (2.1.10)

Here, T0[ρ] is the kinetic energy of the single-particle system and given by

T0[ρ] = − ~2

2me

Ne∑
i=1

∫
dr|∇ψi|2, (2.1.11)

where ψi is the single-particle wavefunctions of the non-interacting system, known

as Kohn-Sham orbitals. It should be noted that regardless of the throughout usage,

their physical interpretation has been debated [122]. The third term, EH [ρ], is a

classical term describing the Coulomb repulsion, called the Hartree energy

EH [ρ] =
1

2

∫
d3rd3r′

ρρ′

|r− r′|
, (2.1.12)

and the exchange-correlation functional EXC [ρ], containing the many-body effects

contributions to the kinetic and potential energies, thus all exchange and correlation

energies, can be expanded as

EXC [ρ] = T [ρ]− T0[ρ] + Eee[ρ]− EH [ρ]. (2.1.13)

To fulfill the condition in Eq. (2.1.9) and thus find the ground state density, we

rely on the variation principle under the constraint of constant particle number Ne.

Consequently, the Euler-Lagrange formalism is applied to minimize the Kohn-Sham

total energy. This enables us to write down the Kohn-Sham equations which are
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the one-electron Schrdinger equations for an effective potential Veff written as

[
−1

2
∇2 + Veff

]
ψi = εiψi, (2.1.14)

with the effective potential having terms corresponding to the Hartree, external

potential, and the exchange-correlation energies. It is obvious from these set of

equations that the Kohn-Sham equations is a set of closed equations where the

effective potential is a function of density which itself is calculated from ψi. Hence,

an iterative approach is needed to solve them. An extended description of the DFT

methodology can be found in the literature [27, 115,123].

It should be pointed out that all the unknown variables in Eq. (2.1.1) is now

moved to a single unknown in Eq. (2.1.14), the exchange-correlation functional.

Thus, if we had known the exact form of the exchange-correlation functional was

known, the exact many-body ground state energy and density could be found by

solving the independent particle system. There has been on-going attempts to find

the true form of this functional [124]. However, it is still possible to make approxima-

tions, each having their own weaknesses and strengths (see Section 2.1.4) [115,116].

2.1.4 Exchange-Correlation functionals

We have realized that the performance of the DFT method significantly depends on

the choice of the exchange-correlation functional. Over the years several approxi-

mations to the functionals have been suggested. Among them, there are two widely

used approximations, the local density approximation (LDA) and the generalized

gradient approximation (GGA) [121,125,126].

In the LDA a completely local exchange-correlation potential is assumed so that

the electrons of a given system are treated as an homogeneous electron gas

ELDA
XC [ρ] =

∫
d3rεhomXC [ρ], (2.1.15)

where εhomXC is the exchange-correlation energy per electron inside the homogeneous

gas. It can be divided into the exchange part εhomX is known analytically and given
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by the Dirac exchange formula for the homogeneous electron gas [127]

εhomX = −3e2

4π
(3π2ρ)1/3, (2.1.16)

and correlation part εhomC which is not easy to drive. In practice, the interpo-

lated expressions for the εhomC is provided fitting to Quantum Monte-Carlo meth-

ods [125,128,129]. The LDA suffers from a major deficiency, namely self-interaction,

which leads to overestimation of the cohesive properties, thus giving too small lat-

tice constants and bond lengths. As a result, this assumption of a uniform electron

density, not being the case for most atomic and molecular systems, causes underes-

timation of the exchange energy while the correlation energy is overestimated [130].

These shortcomings stimulated efforts to develop the GGA method which is a

considerable improvement upon every aspect of the LDA, but not the self-interaction

error. Here, the electron density as well as its gradient are taken into account

to better describe varying electron densities [129, 131–133]. Hence, this semi-local

exchange-correlation potential has the following general form

EGGA
XC [ρ,∇ρ] =

∫
d3rρεhomXC [ρ,∇ρ]. (2.1.17)

To name a few of the numerous proposed formulations of EGGA
XC , there are PW91

[129], LYP [133], B88 [132] and in particular PBE [126], named after Perdew, Burke

and Ernzerhof, which is commonly used in solid-state physics. The cohesive and

structural properties of solids and molecules have been described with good accuracy,

proving the reliability of the results produced via the PBE functional. Due to the fact

that throughout this thesis, the exchange and correlation interactions are described

by the PBE functional within the GGA approximation, a more detailed explanation

of this functional is presented. Within the GGA approximation, the exchange and

the correlation parts are separated, just as in LDA. On this account, the exchange

part in PBE has the following form

EPBE
X [ρ,∇ρ] =

∫
d3rρεLDAX [ρ]F PBE

X [s], (2.1.18)
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where the PBE exchange enhancement factor F PBE
X [s] can be written as

F PBE
X [s] = 1 + κ− κ

1 + µs2

κ

, (2.1.19)

with s = |∇ρ|/2kFρ being a dimensionless gradient term, Fermi k-point kF , κ = 0.804,

and µ = 0.219. The correlation part reads

EPBE
C [ρ↑, ρ↓] =

∫
d3rρ

[
εhomC (rs, ζ) +H(rs, ζ, t)

]
, (2.1.20)

where ρ↑/↓ is the density of the electrons with up/down spin. The term εhomC is the

correlation of the homogeneous electron gas, rs = (kF/π)(4/9)(1/3) is the local Seitz

radius, ζ = (ρ↑ − ρ↓)/ρ the relative spin polarization, and t = |∇ρ|/(2gksρ) is a

dimensionless gradient term. The analytical expression for H is chosen as

H =
e2

a0

γΦ3ln

[
1 +

β

γ
t2
(

1 + At2

1 + At2 + A2t4

)]
(2.1.21)

with

A(rs, ζ) =
β

γ

1

eε
hom
C /γΦ3 − 1

, Φ(ζ) =
1

2

[
(1 + ζ)2/3 + (1− ζ)2/3

]
, γ =

1− ln(2)

π2
.

2.1.5 SIESTA: Localized basis set

SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms),

being both a method and its computer program implementation, solves the Kohn-

Sham equations 2.1.14 among many other DFT codes [134]. Here, a short intro-

duction of the method is outlined. The underlying methodology are described in

details in the original paper as well as the code’s manual on the development web-

site [134,135].

The core electrons are treated as an effective potential using norm-conserving

pseudopotentials so that the basis set only contains the valence electrons. Replacing

the core electrons by their effective potentials is a common approach in numerous

popular DFT codes [136–140]. As a consequence, the computational and storage

requirements are drastically scaled down. A linear combination of localized atomic
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orbitals (LCAO) is used to construct the basis set

φαlmn(r) = φαln(r− rα)Ylm

(
r− rα
|r− rα|

)
, (2.1.22)

with α being an atomic index. l and m are the angular momentum index. n is the

multiple basis index for orbitals with dissimilar radial dependency while their angu-

lar momentums are the same. These identical orbitals are referred to as multiple-ζ

basis functions2. The corresponding spherical harmonics Ylm is a collection of or-

thogonal polynomials. The free atoms in vacuum demands the choice of the basis

orbitals which are confined on the atom with a decaying tail into the vacuum. Ac-

cordingly, the range of the atomic orbitals are limited via such natural decay and

the overlap between the atomic orbitals. This results in the creation of a sparse

Hamiltonian with non-zero elements only at the overlap sites. The sparse Hamil-

tonian makes it possible to perform a natural partitioning of the elements and also

order-N calculations due to the fast internal data structures of a sparse matrix. In

addition, the use of the LCAO orbitals offers several ways to control the accuracy

by means of enlarging the orbitals radius, adding further ζ orbitals, for the same

angular momentum with differing radial dependence, or include the deformation

induced by bond formation via adding the polarization orbitals to the expansion

of the Kohn-Sham orbitals. Seeing from other way around, the accuracy does not

depend on a simple parameter rather a multitude of parameters making the choice

of the LCAO orbitals for the basis set a complex problem.

Due to the fact that the LCAO orbitals is a non-orthogonal basis set, the overlap

matrix is non-zero

Sµν =< φν |φµ > . (2.1.23)

The complex indices for the φ orbitals have been replaced by single Greek letters

for simplicity. The dual basis of the basis orbitals is defined via such overlap matrix

as |φν >= |φµ > S−1
µν , so that < φν |φµ >= δνµ and the overlap matrix is Hermitian.

2The multiple-ζ basis functions are called as single-ζ, double-ζ, etc.
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Following up, the expansion of the Kohn-Sham orbitals in terms of atomic orbitals

can be written as

ψi(r) =
∑
µ

φµ(r)cµi, (2.1.24)

cµi =< φµ|ψi >= S−1
µν < φµ|ψi > . (2.1.25)

Here the coefficients cνi are the generalized eigenvector of H and S in the non-

orthogonal Kohn-Sham eigenvalue problem

∑
ν

Hµνcνi = εi
∑
ν

Sµνcνi. (2.1.26)

The calculation of the density accordingly changes slightly

ρ = fi
∑
i

|ψi(r)|2 = fi
∑
i

∑
νµ

c?νiφ
?
ν(r)φµ(r)cµi, (2.1.27)∫

drρ = N = fi
∑
i

∑
νµ

c?νiSνµcµi, (2.1.28)

from which the density matrix is defined as

ρνµ ≡ fi
∑
i

c?νicµi, (2.1.29)

leading to the matrix expression of the density integral Eq. 2.1.28 written as

∫
drρ = N = Tr[ρS]. (2.1.30)

In these equations, fi is the distribution normalized factor so that the total den-

sity is equal to N . Seen in the Eq. 2.1.30, the density matrix is also a sparse

matrix for the reason that the only remaining elements in the density matrix are

those corresponding to the non-zero elements in the sparse overlap matrix. From the

indexed density of the atomic orbitals, it is possible to obtain the Mulliken popula-

tions, conveniently dividing the charge amongst atoms, [141]. The fully assignment

of the charges to the explicit atoms is generally challenging. There are many ways
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to divide the atomic charges proposed by various schemes [142,143].

2.2 Quantum Theory of Electron Transport

The need to a complete quantum mechanical description of electronic transport has

been imposed by the new paradigm in the state-of-the-art technology of nanoelec-

tronics. When modeling the atomic scale devices, it is essential to introduce terms

like wave functions and transmission probabilities to the treatment. Figure 2.1 dis-

plays the schematic representation of a typical system, which we call it ”device”,

when studying atomic scale transport problems. It is constructed of a central (ac-

tive) region connected to left and right electrodes. The channel is a material with a

gap in the electronic structure. The metallic electrodes allow for charge carriers to

flow from reservoirs through the device.

Figure 2.1: (Color online) Schematic representation of a typical system when study-
ing atomic scale transport problems.

At this point, three important characteristic lengths have to be introduced to

better follow the discussion of the electronic transport in such materials; 1) the de

Broglie wavelength of an electron at the Fermi energy, called the Fermi wavelength

λF , 2) the average distance pawed by an electron while maintaining its initial phase,

called phase-relaxation length Lφ, and 3) the distance an electron travels until its

initial momentum is destroyed, called mean free path Lm. The electron-electron or

the electron-phonon interactions, inelastic scattering mechanisms, can reduce the

Lφ. Besides, the mean free path is limited by the scattering effects originated from

impurities and disorders in the crystal. All being said, there are two distinguished

regimes of the electronic transport, named Ballistic and Diffusive transport. as
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shown in Fig. 2.2. In the ballistic regime, the mean free path of electrons Lm is

Figure 2.2: Schematic representation of electron transport in left) ballistic and
right) diffusive regimes.

larger than the length of the channel L (see Fig. 2.1), sometimes also called the

active region, meaning the electrons move thorough this region without losing their

energy. The transport is in the second regime when the Lm is much smaller than

the channel length, so that the scattering centers lead to elastic interactions with

the electrons within their path.

In this thesis, the inelastic scattering effects, e.g. electron-phonon interactions

are neglected. We also assume that the length of the active channel is less than

the phase-breaking mean free path (Lφ). Thus, the coherent quantum transport

mechanisms are described via the Landauer-Büttiker formalism [144,145].

2.2.1 Landauer-Büttiker formalism

As of the efforts to include the quantum effects in studying the transport properties

of the mesoscopic electronic devices, Landauer proposed an approach to address

the electrical conductivity through such nanostructure systems [144]. Here, the

conductance of the device is associated with the quantum mechanical probabilities

of the one-electron wavefunction passing through an arbitrary scattering medium.

In this formalism, the temperature is considered low so that the phonons are not the

main source of scattering. Moreover, the electrode are at the thermal equilibrium but

can be at different electrochemical potentials µi, where i is the electrode’s number.

The motion of the electrons injected from reservoirs are only scattered in the channel
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region, while dissipation processes can only take place in the electrodes. A schematic

of such process is shown in Figure 2.3(a). The incoming wavefunctions enter a

Figure 2.3: (Color online) (a) Schematic representation of conductance through
an one-dimensional sample connected to reservoirs. (b) Illustration of the avail-
able transport channels between the left and right electrodes with electrochemical
potentials of µL and µR, respectively.

mesoscopic conductor (scattering channel) from an electrode, called source, and

exits into the other electrode, called drain.

As we presume a steady state, flow of charge carriers from source and drain into

the channel is limited to the electrochemical potentials of electrodes. In addition, the

propagated wavefunctions from one electrode into the device is never backscattered

to itself. We now assume a 1D conductor as the device with two electrodes, in which

the states in the left and right contact have positive and negative wavevectors, k < 0

and k > 0, respectively. The Fermi distribution of fL(E, T ) and fR(E, T ) are used

to represent the available states for electrons in the left (L) and right (R) electrodes

fL/R(E, T ) =
1

eE−µL/R/kBT + 1
, (2.2.1)

with µL and µR being their chemical potentials. The net current in such device with

a channel of length l, can be written as

I = IL − IR =
e

l

∑
n,k

V (k) [fL(E, T )− fR(E, T )] , (2.2.2)

where n is the number of electrons flowing into the channel and T is the temperature.

The group velocity is formulated as V (k) = ∂E/~∂k with ~ being the Planck con-

stant divided by 2π. In a solid with a large number of states, the wave vector space
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is continuum so that
∑

k is transformed into the integral l/2π
∫
dk [26]. Including

the spin degree of freedom (multiply by 2 for spin-up and spin-down channels), the

total current takes the form of

I =
2e

h

∑
n

∫ +∞

−∞

∂E

∂k
[fL(E, T )− fR(E, T )] . (2.2.3)

Due to the electron confinement in the transverse direction (perpendicular to

the transport direction), charge carriers can move inside specific energy levels,

called sub-bands, corresponding to the transport channels which are shown in Fig-

ure 2.3(b). Hence, the contribution to the current only comes from the electrons

with energies within the bias window, meaning

I =
2e

h

∫ µR

µL

dE [fL(E, T )− fR(E, T )]T (E), (2.2.4)

where the electrons flowing through all the transport channels participate in the

total current. Here, T (E) represents the transmission probability of the electrons

with energy E from the source to the drain electrodes through the channel. In the

case of applying very small voltages, the system (device) is presumed to be in the

linear response regime. Hence, the electronic states close to the Fermi level are

mainly involved in the transport and the Fermi function can be replaced with a step

function. Now, Eq. 2.2.4 can be written as

I =
2e

h
[µL − µR]

∫
dE

[
−∂f(E)

∂E

∣∣∣∣∣
EF

]
T (E) ≈ 2e

h
T (EF ) [µL − µR] . (2.2.5)

In the last step, we make use of the fact that the derivative of a step function

is a Dirac delta function. The bias voltage is equal to the difference of the left and

right electrodes’ chemical potentials (µL−µR = eV ). The conductance G is defined

as the derivative of the current with respect to the applied bias as below

G =
∂I

∂V
= G0 T. (2.2.6)

with G0 = 2e2/h which is the fundamental quantum conductance. After a decade,

the Landauer formula was extended to take into account the conductance of a system

with multiple independent transport channels, Büttiker et al. employed a quantity
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called transmission matrix (t). This is the ratio of transmitted wave functions out

of the incident wave functions in the central region. All being said, the Landauer-

Büttiker formula for total conductance can be written as

G = G0 Trace(tt
†). (2.2.7)

Here, it is clear that the total conductance is described in terms of the quantum

conductance and importantly the coefficients of the out-scattered wavefunctions.

The framework known as non-equilibrium Green function formalism provides the

required tools to calculate such transmission coefficients.

2.2.2 NEGF techniques: TranSIESTA

Green’s functions (GFs) present a mathematical framework to obtain various phys-

ical properties of systems in equilibrium [146]. Working with such GFs is relatively

easier, particularly with very efficient recursive methods, to treat many-body quan-

tum systems in comparison to a direct numerical solution of the Schrdinger equation

[146]. As a major breakthrough, the application of GF method in quantum trans-

port theory was formulated in 1992 by Meir and Lake in separate papers [147,148].

Beside being computationally fast and powerful, one of the main advantages of GF

techniques is the possible connection to the modern first-principle theory and calcu-

lations. Thus, there are many implementations of the Landauer-Büttiker formalism

within the NEGF approximation and localized basis functions [149–154]. Here, we

present briefly the main concepts of the NEGF method and drive the formulas used

in this thesis. For a more detailed and comprehensive explanation of this technique,

we refer the curious readers to the book by Datta [151].

In the present study, a linear combination of atomic orbitals are used as basis

sets to calculate different properties of defective TMDs monolayers; therefore, the

Green’s function equation for the whole system can be written as

[(E ∓ iη)S −H]G(E) = I (2.2.8)

with H being an effective single-particle Hamiltonian, S an overlap matrix due to the
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non-orthogonality of the LCAOs, and I an infinitely-dimensional identity matrix.

The solution to this equation is G(E) = ((E ∓ iη)S −H)−1, which clearly has poles

and is not defined at the eigenvalues of the Hamiltonian if η = 0. In order to resolve

this drawback, η is considered a small positive/negative value (0−/+), resulting in

two solutions;

G(E) = ((E + iη)S −H)−1,

G†(E) = ((E − iη)S −H)−1,
(2.2.9)

where retarded Green’s function G(E) and advanced Green’s function G†(E) rep-

resent, respectively, the outgoing and incoming wavefunctions in the electrodes.

Besides, η is related to the finite life-time of the charge carriers. The real part of

these GFs correspond to a shift in the energy levels and can change the effective

mass. In principle, the GF matrix can be expanded in any basis representation. If

the GFs are expanded in the basis of the Hamiltonian eigenvectors, the poles along

the real axis are the corresponding eigenvalues. In this case, the total density of

states can be written as

N(E) =
1

2π
Trace [A(E)] , (2.2.10)

in which the spectral function A(E), one of the important quantities in the GF

formalism, is equal to i[G(E) − G†(E)]. Consequently highlighting one of the pri-

mary advantages of the GF methodology which is the possibility to calculate all the

properties of a single-particle system without explicitly calculating the eigenstates

of the H.

For the rest of this section, we present the process to solve the equation 2.2.8

for the retarded GF, e.g. ε+ = limη→0+E + iη. Due to the similarity of the Green’s

function equation for the advanced GF, the solution is the same. Using the block-

diagonal structure of the Hamiltonian, the overlap matrix, and the GF matrix, we
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now write the Eq. 2.2.8 in the form of
ε+SL −HL ε+SLC −HLC 0

ε+SCL −HCL ε+SC −HC ε+SCR −HCR

0 ε+SRC −HRC ε+SR −HR

×

GL GLC GLR
GCL GC GCR
GRL GRC GR

 =


I 0 0

0 I 0

0 0 I

 ,

(2.2.11)

where subscripts L, R, and C corresponds to the block quantities for the left elec-

trode, the right electrode, and the central region, respectively. The interaction

between the leads and the central region is labeled via subscripts LC/RC. The GF

block GLR/RL describes the direct scattering between the two electrodes. We now

define the coupling matrices between the channel and the electrodes as

τL = HCL − ε+SCL,

τR = HCR − ε+SCR.
(2.2.12)

Since the quantity that we want to evaluate is GC , a set of equations related

to the central region and leads have to be solved simultaneously. This can be

accomplished via multiplying the rows of the first matrix by the second column of

the second matrix as

(ε+SL −HL)GLC − τLGC = 0,

−τ †LGLC + (ε+SC −HC)GC − τ †RGRC = 0,

−τRGC + (ε+SR −HR)GRC = 0.

(2.2.13)

If we define the Green’s function of the isolated electrodes, gL,R = (ε+SL,R −HL,R)−1,

then the first and last term of the above equation can be rewritten as

GLC = gL τL GC , GRC = gR τR GC . (2.2.14)

Substituting these electrode GFs into the second term of Eq. 2.2.13 and per-

forming simple algebra, the final expression for the total GFs of the system can be
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written

GC =
[
ε+SC −HC − ΣL − ΣR

]−1
, (2.2.15)

which contains all the information about the electronic structure of the whole device.

Here, ΣL,R are the self-energies of the left and right electrodes, including the effect

of the semi-infinite electrodes on the isolated channel. They have the form of

ΣL,R = τL,R gL,R τ †L,R, (2.2.16)

where shows that their dimensionality are defined by the size of the channel. Looking

at the Eq. 2.2.15, it can be seen that the total GF is associated with the effective

Hamiltonian matrix

Heff = HM + ΣL + ΣR, (2.2.17)

where Heff is a complex matrix with a nonzero imaginary part due to the fact that

the self-energies are not Hermitian matrices. As a consequence, there is a possibility

for the central region to exchange electrons with the electrodes, so that the total

number of charge carriers in the channel is not conserved. Knowing this effective

Hamiltonian, we can write the GFs of the whole device; hence, calculating all its

physical properties. We now need to drive the relation for the self-energies of the

semi-infinite leads.

2.2.3 Self-energies of the semi-infinite electrodes

To obtain the self-energies of the electrodes, we need to realize the form of coupling

matrices and the Green’s functions of the semi-infinite leads. The relation for the

gL,R can be driven by means of the iterative procedures [155,156]. Here, it is conve-

nient to divide the electrodes into an infinite series of principal layers (PLs) which

is repeated along the transport direction. A principle layer is considered to be the

smallest cell possible in such a way that only the nearest neighbor layers interact

with each other. Thereupon, the matrix elements corresponding to the interaction

of the atoms of two non-adjacent PLs can be neglected [157,158]. The Hamiltonian

matrix of the left and right electrodes can be represented in block-diagonal structure
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HL =



. . . . . . . . . 0
H†01 H00 H01

H†01 H00 H01

0 H†01 H00



HR =


H00 H01 0
H†01 H00 H01

H†01 H00 H01

0 . . . . . . . . .



(2.2.18)

with H00 corresponding to the interaction between atoms within each PL, while

H01 and H†01 describe the coupling between the two nearest-neighbor PLs. Similarly

constructing the overlap matrices, the equation for the GFs of the right electrode

which is defined as

(ε+SR −HR)gR = I, (2.2.19)

has the following form in the matrix representation:
εS00 −H00 εS01 −H01 0

εS†01 −H
†
01 εS00 −H00

. . .

0
. . . . . .



g0,0 g0,1 · · ·

g1,0 g1,1 · · ·
...

...
. . .

 =


I 0 · · ·

0 I · · ·
...

...
. . .

 (2.2.20)

Using the matrix multiplication for the left-hand side of this equation, the n+ 1

independent equations can be written as

(εS00 −H00)g0,0 + (εS01 −H01)g1,0 = I,

(εS†01 −H
†
01)g0,0 + (εS00 −H00)g1,0 + (εS01 −H01)g2,0 = I,

...

(εS†01 −H
†
01)gn−1,0 + (εS00 −H00)gn,0 + (εS01 −H01)gn+1,0 = I,

(2.2.21)

from which we realize the below general form for n > 1

(εS00 −H00)gn,0 = (εS†01 −H
†
01)gn−1,0 + (εS01 −H01)gn+1,0. (2.2.22)
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From this equation it is clear that the Green’s function of the individual PLs

depends only on the GF of the neighboring layers. Here, we use the concept of

transfer matrices to map the information from the (n− 1)− th PL into the n− th

PL and vice versa as follows:

Pn−1,n gn−1,0 = gn,0,

P n,n gn,0 = gn−1,0.
(2.2.23)

As a consequence, an iterative scheme is needed to compute the transfer matrices

P = p0 + p̃0p1 + p̃0p̃1p2 + · · ·+ p̃0p̃1p̃2 · · · pn,

P = p̃0 + p0p̃1 + p0p1p̃2 + · · ·+ p0p1p2 · · · p̃n,
(2.2.24)

with matrices pi and p̃i being defined via the recursive relations

pi = (I− pi−1p̃i−1 − p̃i−1pi−1)−1p2
i−1,

p̃i = (I− pi−1p̃i−1 − p̃i−1pi−1)−1p̃2
i−1,

(2.2.25)

where the initial terms can be written as

p0 = −(εS00 −H00)−1(εS†01 −H
†
01),

p̃0 = −(εS00 −H00)−1(εS01 −H01).
(2.2.26)

The result of a self-consistent calculation for the transfer matrices with a con-

vergence threshold of δ, would be independent of n, i.e. P . Therefore the surface

GF of the right electrode would also be independent of n as

gR = g0,0 = [(εS00 −H00) + (εS01 −H01)P ]−1 , (2.2.27)

where g1,0 = Pg0,0 is substituted into the first term of Eq. 2.2.21. Following an

analogous derivation, the surface GF of the left electrode has the form of

gL =
[
(εS00 −H00) + (εS†01 −H

†
01)P

]−1

. (2.2.28)

Substituting the last two relations for the GF of the leads into the Eq. 2.2.16,
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the final form of the corresponding self energies can be written as

ΣR = [HCR − εSCR][(εS00 −H00) + (εS01 −H01)P ]−1[HCR − εSCR]†,

ΣL = [HCL − εSCL][(εS00 −H00) + (εS†01 −H
†
01)P ]−1[HCL − εSCL]†.

(2.2.29)

2.2.4 Transmission and conductance

Explained in section 2.2.1, Landauer and Büttiker have proposed a framework to

compute the electrical current passing through a device [144,145]. In this formalism,

the flow of charge carriers from the left electrode into the device is subtracted from

the charges moving out to the right electrode to obtain the total current, i.e. I =

IL − IR, as in Eq. 2.2.4. Here, the chemical potential of the left and right leads are

calculated based on the states around the Fermi energy via µL,R = EF±eV/2, where

V is the applied bias. Therefore, the net current is a function of two terms. One is

the occupation factor, corresponding to the distribution of the charge carriers in the

electrodes, expressed in Eq. 2.2.1. The other component describes the probability

of the electrons transmitting from the left to the right lead which is called the

transmission coefficient. It is a function of energy and can be written via the Fisher–

Lee formula [159] as

T (E) = Trace
[
G†C(E)ΓR(E)GC(E)ΓL(E)

]
. (2.2.30)

The broadening function Γ(E) is related to the imaginary part of the self-energies

and has the following form

ΓL,R = i
[
ΣL,R(E)− Σ†L,R(E)

]
= −2ImΣL,R(E). (2.2.31)

Substituting the relation 2.2.30 into the Eq. 2.2.6, the energy–dependent elec-

trical conductance can be written as

G(E) =
2e2

h
Trace

[
G†C(E)ΓR(E)GC(E)ΓL(E)

]
. (2.2.32)
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2.3 Mechanical Deformations

Strain engineering is the art of tuning various properties of the semiconductors

via applying mechanical deformations [99]. In order to apply homogeneous and

inhomogeneous strains to the 2D materials, experimentalists use various techniques,

such as piezoelectric stretching [107], controlled wrinkling [111, 112], Elongating an

elastic substrate [110], bending of flexible substrates [108, 109], substrate thermal

expansion [105, 106], and nanoindentation via applying external load [50, 96]. Such

methods result in a range of mechanical deformations from 0.2% to more than

4.0% [99]. Using an AFM tip, the breaking effective strains has been measured

to be between 6.0% and 11.0% [50]

In theoretical simulation, we first change the in-plane lattice vectors of the mono-

layer based on the applied strain. Then the position of the atoms is relaxed within

the new lattice to model the effect of strain on the sample. In this project, four dif-

ferent in-plane strain variations are considered to scrutinize the strain engineering of

the 2D TMDs properties. Schematic representation of the strain options are shown

in Figure 4.2. Uniaxial strains in X- and Y-direction as well as isotropic biaxial

Figure 2.4: (Color online) Schematic representation of the strain options used in the
present work: a) X- and b) Y-direction uniaxial strain, c) XY-plane biaxial strain,
and d) a shear type (T1) deformation.

strain in the XY-plane are simulated the effects of simple mechanical deformations.

We also consider an inhomogeneous shear type (T1), under which only the angle

between the in-plane lattice vectors is changed, while keeping their magnitude con-

stant. From 3.0% compressive to 3.0% tensile strains are applied to the unitcell of

MoS2 monolayers, to study their electronic structure transitions and validate our

method, namely SIESTA package. Further investigating the properties of the defec-
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tive 2D TMDs, monolayers are compressed and stretched within the same range as

for unitcells.

2.4 Formation Energy Calculation

In order to understand the change in the thermodynamic stability of defects under

various types of deformations, we calculate their formation energies, Ef , for all

equilibrated and strained structures, as following:

Ef,α = Ed,α − Ep,α + Σiniµi, (2.4.1)

where Ef,α, Ed,α, and Ep,α are the formation energy, the total energy of a defective

structure and the corresponding pristine monolayer at strain α, respectively. If

α = 0, this equation gives the formation energies for unstrained structures. Here, the

chemical potential of the element i is denoted with µi and the number of vacancy of

that atom is given by ni variable. A detailed description of the approach is presented

in Refs. [160–164].

For such analysis, we focus on the defective MoS2 monolayers as a prototype for

the family of the 2D TMDs, hence, i = Mo, S. In this work, the chemical potentials

of Mo and S are presumed to be in a thermal equilibrium with MoS2, meaning:

µMoS2 = µMo + 2µS. (2.4.2)

The limiting factor of the accessible range of the µMo and µS values are the

lowest energy phases of these elements. For the case of sulfur chemical potential, it

is rather complicated to choose the value due to the fact that there are large number

of S allotropes [165]. Sulfur atoms form a solid phase of loosely bound S8 rings at

below 100◦. Heating it up, S is in the liquid phase at above 120◦, and at above

720◦, it is found in the gas phase, containing different sulfur molecules. Further

increasing the temperature above 820◦, sulfurs form diatomic S2 gas. On the other

hand, the crystalline structure of molybdenum remain untouched within the range

of all realistic growth temperatures [164].
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In our calculations, we consider the Mo-rich limit and the body-centered-cubic

structure of metal atoms as a reference. The analysis is not affected via this choice

of potential reference. While it has been reported that intrinsic defects in ML MoS2

may have charge states, it was shown that the neutral defect states are the most

stable over a wide range of Fermi-level positions [164]. Therefore, we focus on the

neutral defects in this paper.





Chapter 3

MoS2 Monolayers Subject to

Mechanical Deformations

The context of this chapter is based on the publication [166].

2D layered materials have gained enormous interest of different fields of sci-

ence and technology in the past decade, because of their unique electronic, me-

chanical, and optical properties [1, 8, 28, 167–169], which are strongly dependent on

the number of layers. In particular, 2H-phase of Group-6 TMDs monolayers are

direct-band gap semiconductors with potential applications in field-effect transis-

tors (FET), spin- and valleytronics, optoelectronics, flexible and piezoelectric de-

vices [1, 10, 16, 24, 103, 169–171]. TMDs monolayers consist of an inner layer of

transition metals sandwiched between two layers of chalcogenide atoms, with all

three layers having hexagonal symmetry, as shown in Figure 1.2 [24, 25]. Previous

studies have revealed unprecedented opportunities to tune their electronic properties

via defects [17], strain [172], and nanostructuring [173].

A well-known member of 2D TMDs family, MoS2 monolayers, was exfoliated for

the first time in 2010 and characterized as a direct-band gap semiconductor [21,22].

Shortly afterwards, its application in nanoelectronics was proposed and the first top-

gated FET using MoS2 was reported [23]. However, the synthetic samples of MoS2

MLs contain some fraction of intrinsic defects, as discussed in Ch. 1.3. There, we

also explain that structural defects and impurities can be introduced deliberately,
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e.g., at the post growth stage. Besides, Ch. 1.4 shows the significant effect of the

mechanical deformations on energetic and electronic properties of Group-6 TMDs

monolayers, offering rapid and reversible tuning of their band gaps and the defect

levels (DLs).

In this chapter, the effect of various strain situations are investigated on forma-

tion energies, orbital characteristics, and DLs of intrinsic point vacancies in MoS2

monolayers. Since we use the periodic boundary conditions (PBC) in the framework

of the first principle DFT, structural properties have to be chosen in a way that the

interactions between defects inside the adjacent images become negligible. Hence, it

is necessary to consider very large systems when studying defective monolayers. In

order to significantly reduce the computational and storage requirements, we have

selected the SIESTA method [134,174], which uses LCAO to expand the Kohn-Sham

wavefunctions as shown in Ch. 2.1.5. First, we go over the parameters used for these

computations. Then, a comparison of the calculated properties of the MoS2 unit-

cell is presented, both for bulk and monolayer, with respect to the previous studies.

Then, the energetic properties of the point defects inside the MLs MoS2 under strain

are scrutinized. Finally, the electronic structure of such defective 2D materials are

analyzed as a function of applied mechanical deformation. Complementary plots

and images are provided in the Appendix A, which help with understanding the

presented analysis.

3.1 Computational Details

In the present study, relativistic, norm-conserving pseudopotentials, including the

correction from core electrons, are used, which were obtained by the Troullier-Martin

method [175, 176]. This set of pseudopotentials are self-generated by means of

”atom” tool, provided along with the SIESTA’s source code. The input parameters

are reported in A.5. The exchange and correlation interactions were described by

the Perdew-Burke-Ernzerhof (PBE) functional in the generalized gradient approxi-

mation (GGA) [126]. In all the geometric optimizations and electronic calculations,

we employed a double-zeta basis set with one polarization function (DZP) and 4p
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diffusive orbitals. The Energy-Shift and the Split-Norm were set to 0.02 Ry and

0.16, respectively. We used an energy cut-off of 450 Ry to calculate hartree, ex-

change, and correlation contribution to the total energy. A vacuum of 40 Å along

the out-of-plane (c) axis was used to make the structures effectively isolated as 2D

layers. The conjugate-gradients (CG) technique was used to optimize the atomic

positions and lattice vectors of equilibrium and strained configurations. The lat-

tice constants along with the atomic positions of the unit cell, both for monolayer

and bulk, were optimized until the Hellman–Feynman forces are below 10 meV/Å.

Keeping the optimized lattice parameters, the same criterion was chosen to find

the equilibrium atomic position of the pristine and defective supercells. Applying

Monkhorst-Pack method, the Brillouin zone (BZ) was sampled with 25 × 25 × 1,

25 × 25 × 15 and 5 × 5 × 1 k-points for the unit cell monolayer, bulk, and super-

cell calculations, respectively. To ensure the results are converging with respect

to the k-points and energy cut-off, the threshold for 4Etot are chosen to be 10−5

eV and 10−4 eV, respectively, with 4Etot being the total energy difference. The

ground state of MoS2 monolayer with defects was shown to be non-magnetic up to

more than +5% strain [177]. Hence, spin-polarization was neglected in our calcula-

tions. Although the spin-orbit coupling (SOC) affects the band structure of TMDs

monolayers, the qualitative picture of the electronic structure of DLs is preserved

according to the previous studies [178–180]. Thus, the SOC was not included in

the present work. The total energies were considered converged when the difference

between two consecutive self-consistent field (SCF) steps was less than 10−4 eV .

3.2 MoS2 unitcell: Bulk & Monolayer

Using our optimized basis-set as well as self-generated pseudopotentials for molyb-

denum and sulfur, lattice parameters and electronic properties of bulk structure and

monolayers of MoS2 are calculated. For the fully optimized unit cell of MLs MoS2,

we obtained the in-plane (xy-plane) lattice constant of 3.176 Å. The Mo–S bond-

lengths and the S–Mo–S angles are equal to 2.427 Å and 81.9◦, respectively. For bulk

MoS2 structures, our calculated c/a ratio is 4.37 Å. It can be seen from Table. 3.1
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Property Monolayer MoS2 Bulk MoS2

Lattice Constant
(in Å)

3.176
3.173a, 3.23b, 3.185c, 3.1827d

3.176
3.23b, 3.1827d, 3.16e

c/a Ratio (in Å)
40Å vacuum
along c axis

4.37
4.001a, 4.01b, 4.3474d, 3.89e

Bond Length (Mo–S)
(in Å)

2.427
2.45b, 2.416c, 2.41d

2.426
2.45b, 2.41e

Bond Angle (S–Mo–S)
(in degree)

81.90
80.88b

81.90
80.84b, 81.30e

Distance (S–S)
(in Å)

3.181
3.18b, 3.133c

3.179
3.18b, 3.19e

Theory (GGA-PBE): a= [184], b= [185], c= [186], d= [183];
Experiment: e= [21,22,181,182]

Table 3.1: Structural parameters are calculated using GGA-PBE functional for
monolayer and bulk MoS2. For the purpose of comparison, experimental values
and theoretical results are also provided.

that structural properties agree well with available crystallographic data and exper-

imental measurements [21,22,181,182]. In this table, comparing our result with the

outcomes of the theoretical studies at the same level of DFT accuracy (GGA-PBE

functionals) also indicates a very good agreement [183–186].

The realization of the band gap in MoS2, generally in TMDs, stems from the

strong hybridization between the metallic-d orbitals, where band edges exhibit a

strong character variation [181, 182]. Due to symmetry reasons, dxz, dyz, and pz

orbitals are decoupled from other orbitals, which construct the other states, in both

cases of monolayer and bulk structure.

In Figure 3.1 the calculated band structure and orbital characteristics, marked

with colors, are shown for the bulk MoS2, using the same pseudopotentials as for

monolayers. The valance band edge at the Γ-point is higher than at the K-point,

therefore; an indirect band gap of 1.37 eV is realized between the Γ-point in the va-

lence band maximum (VBM) and the Q-point (between Γ and K) in the conduction

band minimum (CBM), in agreement with earlier studies [25, 164, 185]. All occu-

pied and unoccupied bands around the Fermi energy consist of dx2−y2 , dxy, and dz2
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Figure 3.1: (Color online) The calculated band structure of the bulk MoS2 in a unit
cell representation. The energies were shifted with respect to the Fermi level, which
was set in zero. Contributions from Mo-4d (S-3p) orbitals to the states around the
Fermi energy are marked with colors and shown in the left (right) panel.

orbitals of Mo hybridized with px and py orbitals of S, as illustrated respectively in

the left and right panel of Figure 3.1, in accordance with previous studies [185–188].

Band structure for MoS2 monolayers is plotted in Figure 3.2 where orbital com-

ponents involved in the bands around the Fermi energy are highlighted with colored

line width. Major contributions to the band edges are originated from mettalic d-

orbitals, dx2−y2 , dxy, and dz2 (see the left panel in this figure ), while px and py orbitals

of sulfur mainly contribute to the CBM around the Γ-point, as in the right panel of

the Figure 3.2. These are in very good agreement with previous studies [25,185,187].

For example, a detailed description of the orbital characteristics of the bands has

been obtained by means of a 11-band tight-binding model Hamiltonian [187]. Ac-

cording to our calculation on the optimized geometry, MLs MoS2 is a direct-band

gap semiconductor with a gap of 1.73 eV at the K point, which is in accordance

with theoretical results with GGA-PBE functional [25, 164, 184–186]. It should be

emphasized, that the true quasi-particle band gap is about 2.4 to 2.9 eV [12,25,189].

Our results differ due to the well-known underestimation of the band gap in GGA.

It has been reported that the electronic structure of pristine MLs TMD can be
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Figure 3.2: (Color online) The calculated band structure of the MLs MoS2 in a unit
cell representation. The energies were shifted with respect to the Fermi level, which
was set in zero. Contributions from Mo-4d (S-3p) orbitals to the states around the
Fermi energy are marked with colors and shown in the left (right) panel.

tuned in a controlled way via strain [99,100,190]. Further analyzing our method and

the self-generated parameters, the change in the band gap of the pristine MLs MoS2

is studied as function of four strain situations, as shown in Figure 3.3. Direct band

gap is plotted with blue line, while red and green lines show indirect band gaps

from Γ-point in the VBM to K-point in the CBM, and from K-point in the VBM to

Q-point in the CBM, respectively (see Figure 3.2). Even though the applied strains

are considered within a range of 3% compression to 3% tesnile, breaking point of the

MLs MoS2 has not been reached as predicted via experimental measurements [50].

According to our calculations, a direct-indirect transition is realized for the band

gap of pristine MLs MoS2 at 1.5% (less than 2.0% ) uniaxial tensile (compressive)

strain in X- and Y-direction, agreeing very well with previous reports [99, 100]. In

line with these studies, the cases of isotropic biaxial strain cases lead to a direct-

indirect band gap transition at less than 1.0%, for both compressing and streching.

In the right plot of Figure 3.3 can be seen that band gap of MLs MoS2 remains

direct over the whole range of the considered inhomogeneous shear T1 strain.
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Figure 3.3: (Color online) The change in the band gap of pristine MLs MoS2 under
various compressive and tensile strain cases; uniaxial strain in X- and Y-direction,
biaxial strain in XY-direction, and an inhomogeneous shear T1 strain. Direct band
gap is plotted with blue line, while red and green lines show indirect band gaps.

3.3 Monolayer of MoS2 with Vacancies

Our objective is to scrutinize the influence of compressive and tensile strains on

the electronic and energetic properties of the MLs MoS2 with intrinsic vacancies.

Such defects have advantages and disadvantages based on the desired application.

For example, depending on the concentration of the defects, performance of MoS2-

based FETs may differ by several orders of magnitude [23, 55, 81]. On the other

hand, some studies imply that the vacancy creation can extend the application of

MoS2 nanosheets [47, 83–86], e.g. as single-photon emitters, due to localized states

of the isolated defects [47,85]. In a recent study, molybdenum (Mo) vacancies were

generated site-selectively to write optically active defect states in TMDs MLs [47].

The mid-gap localized levels have also observed to improve the photoresponsivity of

MoS2 monolayers by trapping the photo-excited charge carriers, leading to a growth

of the photocurrent in photodetectors [87–89]. Furthermore, intrinsic defects such

as sulfur (S) and Mo vacancies, may promote the contact resistance and the carrier

transport efficiency of devices depending on the electrode’s elements [65,90–93].

We work with the PBCs to simulate the vacancies inside the monolayers. Super-

cells with sizes ranging from 6×6×1 up to 8×8×1 are created to realize the decrease
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in the defect-defect interactions in the computational model. Accordingly, chalco-

gen vacancies were studied in a 7×7×1 supercell representation, while supercells

of 8×8×1 were considered to scrutinize the transition metal vacancies and vacancy

complexes.

Figure 3.4 displays the structures of the MLs MoS2 with various point defects:

VS, V2S−top, V2S−par, VMo, VMo+3S, and VMo+6S. The position of the vacancies inside

Figure 3.4: (Color online) Geometries of MLs MoS2 with vacancies: a) VS, b) V2S−top,
c) V2S−par, d) VMo, e) VMo+3S, f) VMo+6S. Red dashed-circles denote the position of
the defects inside the monolayers. At the vacancy sites, sulfurs from the lower layer
are highlighted with blue solid points.

the monolayers is denoted with the red dashed-circles. The blue solid points are

highlighting the sulfurs from the lower layer at the vacancy sites. These vacancies

were observed in experimental samples by means of atomic-resolution measurements

and analyzed via theoretical techniques [17,61,82,164,191,192]. S and Mo vacancies

could also be produced by processes such as ion-irradiation and plasma exposure [47,

75,82,192]. Most of the defects kept the C3v symmetry of the monolayer, except for

the sulfur-pair vacancy in the top atomic layer, V2S−par, as depicted in Figure 3.4(c).

We also study the local strains induced into the MLs MoS2 by such defects. Here,

the amount of shifts in the position of atoms surrounding the defects are calculated



3.3. Monolayer of MoS2 with Vacancies 45

with respect to their position in the pristine structure. This property is called the

displacement map, in Å, and illustrated in Figure 3.5. It can be seen that VMo

Figure 3.5: (Color online) The displacement map of atoms in the MLs MoS2 sur-
rounding the defects as a) VS, b) V2S−top, c) V2sv−par, d) VMo, e) VMo+3S, f) VMo+6S.
All the numbers in the colorboxes are in Å.

has the smallest impact on the neighboring atoms in the MLs MoS2, up to 0.08 Å

shift. For the case of VS, V2S−top, and VMo+3S vacancies, the neighboring atoms

are moved up to 0.16 Å, 0.20 Å, and 0.25 Å, respectively. These figures also show

that the atomic positions are mostly renormalized by the presence of the defects

V2sv−par (VMo+6S) in the MoS2 monolayers with the amount of 0.35 Å (0.40 Å). Such

displacement maps emphasize the significance of the local rearrangements caused by

the intrinsic vacancies inside the defective monolayers. The electronic structure of

2D materials are very sensitive to strain [50,99,100,193]. Therefore, it was conlcuded

that selecting the largest possible supercell size and performing atomic optimization

are in fact crucial in further studying their properties.

3.3.1 Energy of formation

Equation 2.4.1 is used to obtain the energy required to form such point defects inside

the MoS2 monolayers. Calculated formation energies, as shown in Figure 3.6, are in

line with previous studies [61,164,188,193].
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Figure 3.6: (Color online) Calculated formation energies of different sulfur- and
molybdenum-based vacancies in MLs MoS2.

We found that the most probable defect in MLs MoS2 is a single S vacancy, VS.

Formation energies when removing two sulfur atoms from top and bottum layer at

the same site, V2S−top, is very close to the case of removing two neighboring sulfur

atoms from the same layer, V2S−par. It can be seen in Figure 3.6 that observation of

the vacancy complex VMo+3S in synthesiozed samples is more likely than a single Mo

vacancy, VMo. This is due to the coordination of the metal atoms and the fact that

they are sandwiched between two S-atom layers. Hence, when creating Mo vacancies

for single-photon emitters at selective sites [47], care has to be taken not to generate

vacancy complexes. The energy required to form a molybdenum vacancy with its

six neighboring sulfur atoms, VMo+6S, is the highest among all the suggested types

of defect.

As previous studies have shown, the qualitative picture of occupied and unoc-

cupied DLs in the band structure are unaffected when the SOC is included in the

calculations. Thus, modification of the formation energies due to the spin-orbit ef-

fect are considered to be small and neglected in the present study [178–180]. In our

calculations, we consider the Mo-rich limit and the body-centered-cubic structure

of metal atoms at 0K temperature as a reference. While it has been reported that

intrinsic defects in MLs MoS2 may have charge states, it was shown that the neutral

defect states are the most stable over a wide range of Fermi-level positions [164].

Therefore, the focus of this chapter is on the properties of the neutral defects.
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3.3.2 Defect levels: Position and orbital characteristics

Shown in Figures 3.7 and 3.8, the electronic band structure of MLs MoS2 are plot-

ted, containing sulfur and molybdenum vacancies as well as vacancy complexes; VS,

V2S−top, V2S−par, VMo, VMo+3S, VMo+6S. Here, defect states are highlighted according

to the orbital components involved in their orbitals characteristics. Major contri-

butions to the VBM and CBM mostly come from dxy, dz2 , and dx2+y2 orbitals. The

fact that the DLs are dispersionless, indicates the negligibility of the defect-defect

interactions in 7×7×1 (8×8×1) supercells for S-(Mo-)based vacancies. These out-

comes are in contrast to previous studies in which dispersion can be seen in the

localized states [60,179,194,195].

Figure 3.7: (Color online) The calculated band structure of the MLs MoS2 with
defects: VS, V2S−top, V2S−par, are plotted along the high symmetry lines in the BZ.
The energies were shifted with respect to the Fermi level, which was set in zero.
Orbitals contributions to the DLs are also highlighted with colors. The VBM and
CBM are mostly composed of dxy, dz2 , and dx2+y2 orbitals.

Presence of sulfur vacancy, VS, in MoS2 monolayers leads to a localized state near

the VBM and double degenerate mid-gap states which are unoccupied. Figure 3.7

shows that in the case of a sulfur-pair vacancy on the top atomic layer, V2S−par, five

non-degenerate DLs occur, one occupied and four unoccupied. A sulfur divacancy,

V2S−top, in MLs MoS2 introduces similar localized states as in the case of VS together

with another double-degenerate DLs whitin the CBM. According to our wavefunc-

tion analysis, the orbital characteristics of these DLs are mainly originated from 4d

orbitals of molybdenum atoms, surrounding the vacancies, with a small contribution
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from S-3p orbitals. These results agree well with previous studies [77,188,196].

Shown in Figure 3.8, when MoS2 monolayers contain a single Mo vacancy, VMo,

double-degenerate occupied states can be seen in the band structure which is mainly

constructed of 3p orbitals of sulfur. There are also a non-degenerate and double-

degenerate unoccupied states within the band gap to which dxy, dz2 , and dx2+y2

orbitals mostly contribute. Structure of MLs MoS2 with the vacancy complex of

VMo+3S is shown in Figure 3.4. Analyzing the orbitals characteristics indicates that

all the localized states are composed of hybridization of d and p orbitals of atoms

surrounding the vacancy. For the case of the vacancy complex with one molybdenum

and six sulfurs, VMo+6S, DLs around the Fermi energy are composed of dxz, dyz, and

p orbitals while other unoccupied localized states are mostly constructed from dxy,

dz2 , and dx2+y2 orbitals. Our findings are in accordance with previous reports for

the unstrained MoS2 monolayers [77,188,196].

Figure 3.8: (Color online) The calculated band structure of the MLs MoS2 with
defects: VMo, VMo+3S, VMo+6S, are plotted along the high symmetry lines in the BZ.
The energies were shifted with respect to the Fermi level, which was set in zero.
Orbitals characteristics of the DLs are also highlighted with colors. The VBM and
CBM are mostly composed of dxy, dz2 , and dx2+y2 orbitals.

3.4 Strain Engineering of the Properties

It has been reported that the strain-engineering provides feasible approaches for

tuning the properties of the 2D materials, in particular MLs TMDs. This leads to
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new potential applications, such as piezoelectricity in MoS2, broad-spectrum solar

energy funnel, and flexible transparent phototransistors [10, 11, 16, 103, 104]. It was

also observed that biaxial strain can tune the properties of photodetector devices

based on MoS2 monolayers [11]. Therefore, it is of great importance for the industrial

applications of such structures to investigate the effect of mechanical deformations

on the position of the localized states in the defective monolayers. A wide range of

strain values, from 3.0% compression up to 5% tension, are considered yet they are

below the breaking point of the MLs MoS2 estimated from experiments [50]. We

also investigate the sensitivity of the formation energies to various strain situations.

3.4.1 Energetics

Figure 3.9 shows the formation energies of the six studied vacancies as function of

four different mechanical deformations applied to the defective MoS2 monolayers.

In earlier reports, the case of VS vacancy in MLs MoS2 under uniaxial and biaxial

strain was considered [30, 172], corresponding to pluses, crosses, and triangles in

Figure 3.9(a). While our results agree very well with these works, we study several

other sulfur based defects and vacancy complexes as well as various strain situations

in Figure 3.9(a)–(f). In all the compressive strain situations, formation energies

of the six vacancies are lowered. Moreover, the uniaxial and biaxial tensile strains

increase the formation energy for VS, V2S−top, V2S−par, and VMo+6S defects, while a

reduction is observed for VMo and VMo+3S. This behavior stems from the fact that

the latter two vacancies are surrounded by 3p orbitals of the neighboring S atoms in

comparison with the other defects with 4d orbitals of Mo neighbors. When V2S−par

is present in the MLs MoS2, the strain in X- and Y-direction do not cause identical

energy shifts, due to the broken C3v symmetry. The geometry modifications also lead

to a similar behavior for a Mo vacancy under ±1.5% of uniaxial strains. Applying the

shear T1 tensile deformations, the formation energies of VMo and VMo+3S are reduced

as DLs are constructed of 3p orbitals of the neighboring sulfur atoms. For the case

of other vacancies, since some of the orbitals composing the DLs are mixing under

the shear T1 tensile strain, the formation energies are decreased. All in all, uniaxial
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and isotropic biaxial strains modify their energetic properties more profoundly than

shear T1 strain.

Figure 3.9: (Color online) The evolution of the formation energy as function of four
different deformations applied to a) VS, b) V2S−top, c) V2S−par, d) VMo, e) VMo+3S,
and f) VMo+6S models of defective MoS2. Symbols +, ×, 4, and � correspond to
the strain in X-, Y-, XY-direction, and shear T1, respectively.

3.4.2 Electronics: Sulfur vacancies

To study the effect of strain on the electronic properties of S-based defects within the

MoS2 monolayers, we have investigated the change in the positions of the DLs and

their orbital composition for all studied strain situations. Figure 3.10 and 3.11 show

the results obtained for the V2S−top and V2S−par defects, respectively. In addition,

the corresponding results obtained for a single sulfur vacancy, VS, are shown in

Figures A.1 and A.2 in Appendix A. Green dashed-lines and black lines indicate the

position of the Fermi energy and band edges, respectively. The occupied DLs in all

the defective structures are shifted significantly less than the unoccupied DLs under

any of the applied strain situations.

In the relaxed MoS2 monolayers with V2S−top, based on analysis of the orbital

characteristics, DL2, DL3, DL4, and DL5 levels are mostly composed of dxy, dx2−y2 ,

dxz, and dyz orbitals of the neighboring Mo atoms, respectively. Since the deep

defect levels, DL2 and DL3, exhibit the most pronounced shifts, we show the super-

imposition of the orbital character involved in those bands at integer strains, by the

symbol sizes, in analogy to the fatbands. Such fatbands are projections of orbitals

onto the corresponding band eigenvalues. These are not depicted for the case of bi-

axial strain under which the degeneracy is maintained. Illustrated in Figure 3.10(a)
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Figure 3.10: (Color online) Evolution of the DLs of the MLs MoS2 with V2S−top
defects under strain in a) X-direction, b) Y-direction, c) XY-direction, and d) shear
T1. The Fermi level and band edges (VBM and CBM) are indicated with green
dashed-line and black lines, respectively. The defect states, DL1–DL5, are shown
with orange, red, blue, gray, and magenta lines, respectively. dxy and dx2−y2 or-
bitals are plotted with red squares and blue circles, respectively, only for DL2 and
DL3 bands at integer uniaxial and shear T1 strains. e) The amount of degeneracy
splitting of the deep DLs is plotted in the same interval for all four strains.

Figure 3.11: (Color online) Evolution of the DLs of the MLs MoS2 with V2S−par
defects under strain in a) X-direction, b) Y-direction, c) XY-direction, and d) shear
T1. The Fermi level and band edges are indicated with green dashed-line and black
lines, respectively. Color legend as in Figure 3.10. dx2−y2 and dxy orbitals are
plotted with red squares and blue circles, respectively, only for DL2 and DL3 bands
at integer uniaxial and shear T1 strains. e) The amount of degeneracy splitting of
the deep DLs is plotted in the same interval for all types of strains.

and (b), for strain in X(Y)-direction, the DL2(DL3) level is strongly tuned so that

they are anti-crossing. This opposite shift of degenerate DLs is the consequence of

the relative direction of each uniaxial strain to the nodal planes of the orbitals in-

volved in the bands. Shown in Figure 3.10(c), since biaxial isotropic strain does not
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break the C3v symmetry, the degeneracy remains intact, but the bands are shifted

up(down) by compressive (tensile) strains. The hexagonal symmetry is removed via

uniaxial and shear T1 strains which leads to breaking of the degeneracy of both

the deep levels and the states around the CBM. Although the orbital composition

can be uniquely identified for the relaxed MLs, shear T1 strain increases mixing of

the orbital contributions from Mo neighbors into the DLs resulting in additional

hybridization of the orbitals and a strong shift in the opposite directions, as shown

in Figure 3.10(d). While a composition of dx2−y2 and dxy makes up the states DL2

and DL3, localized level DL4 and DL5 are a mixture of dxz and dyz orbitals. In

Figure A.3, the change in the orbital components of the mid-gap DLs as function of

applied strains is demonstrated. The degeneracy splitting of DL2 and DL3, ∆E, is

shown as function of compressive and tensile strains in Figure 3.10(e). The splitting

reaches to almost 200 meV and 450 meV for 5% of tensile uniaxial and shear T1

strain, respectively. As illustrated in Figure A.1, the DLs for a VS inside MLs MoS2

demonstrate similar behavior under strain. However, compare to Figure 3.10(e), the

splitting of the deep degenerate levels of VS is about half for the same amount of

strain. In some experiments, luminescence peaks are assigned to intrinsic defects

and oxygen passivation techniques are applied to identify their type [60, 197, 198].

The obtained difference in the degeneracy splitting of DLs, can be used as a nonin-

vasive process to distinguish, e.g. V2S−top from VS, even though the position of their

DLs inside the band gap are very similar in the unstrained cases.

Due to the absence of the C3v symmetry in the MoS2 MLs with V2S−par, no degen-

erate levels are present in the band structure of the unstrained defective monolayer,

as shown in Figure A.4(c). These bands are labeled DL1 to DL5 in Figure 3.11(a)–

(d). In Figure A.4, we show the principal orbitals constituting these DLs of relaxed

and strained defective MLs. Two defect states closer to the Fermi level, DL2 and

DL3, mostly consist of dx2−y2 and dxy orbitals of neighboring Mo atoms, respec-

tively. As the change in these DLs are the highest, their orbital characteristics

are highlighted in Figure 3.11 via symbols whose sizes are obtained following fat-

bands analysis at integer uniaxial and shear T1 strains. Moreover, main orbitals
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in DL4 (DL5) are dxy and dz2 (dx2−y2 and dxz). The uniaxial strain in X-direction

(Y-direction) tunes DL3 (DL2) much more than DL2 (DL3) in such a way that

bands anticross each other at around +1% (−1.5%) strain. This tendency is related

to the directional influence of uniaxial strains on the nodal planes of the orbitals

corresponding to these localized states. As it shows in Figure 3.11(c), the isotropic

biaxial compressive and tensile strains move the deep DLs relative to each other

as the overlap between their orbitals varies. Shear T1 strain combines the orbital

components of DLs in a way that a mixture of dxz and dyz (dx2−y2 and dxz) orbitals is

added to dx2−y2 (dxy) orbital to make DL2 (DL3) state, as shown in Figure 3.11(d).

Accordingly, the orbitals are further hybridized and bands are shifted in the oppo-

site direction. The orbital characteristics of other two bands, DL4 and DL5, are

also mixed. Thus, they move away for all strain values. The absolute splitting of

DL2 and DL3 under four types of strain is shown in Figure 3.11(e). For the case

of shear T1 strain, even though the band edges are not modified as much as the

other deformations, the separation of the localized bands is up to 290 meV for 5%

of tensile strain.

Since these defects are optically active, the degeneracy splitting could be a way to

nondestructively identify the type of defects as well as to measure the applied strain.

This should also shift and broaden the optical spectra of defective monolayers at low

temperature. Furthermore, due to high resilience of the MLs MoS2 to the mechanical

deformations, it is possible to use such splittings as a switch in desired devices. As

mid-gap states trap the charge carriers, the shift in the DLs under deformations,

in particular isotropic biaxial strains, results in tuning the photoresponsivity and

other characteristics of photoconductor devices based on MoS2 monolayers.

3.4.3 Electronics: VMo and vacancy complexes

Now, we turn our attention to the case of molybdenum vacancies. The change in

the localized defect states of the MLs MoS2 with VMo as function of various types of

compressive and tensile strain are shown in Figure 3.12(a)–(d). The defect states in-

side the band gap are labeled as DL1–DL6. The DL1 state is composed of a mixture
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Figure 3.12: (Color online) Evolution of the DLs of the MLs MoS2 with VMo un-
der strain in a) X-direction, b) Y-direction, c) XY-direction, d) shear T1. The
Fermi level and band edges are indicated with green dashed-line and black lines,
respectively. The defect states, DL1–DL6, are shown with orange, red, blue, gray,
magenta, and brown line, respectively. At zero strain, the DL6 is in resonance with
CB. Some of the strain situations shift it down into the band gap. At integer strains.
orbital contributions of the deep degenerate DLs are superimposed onto the bands
using dark cyan (dark pink) circles for py (px), and black diamonds for a summation
of d orbitals. e) The amount of degeneracy splitting of the occupied DL1 and DL2
(solid-line) and unoccupied DL3 and DL4 (dashed-line) levels is plotted in the same
interval for all types of strain.

of px and py, while DL2 level is mostly made of px orbitals of the six neighboring

sulfurs. For the case of DL3 and DL4, dz2 orbital of Mo is mixed with sulfur py and

px, respectively, to construct the states. Both DLs also containing a small part from

dx2−y2 and dxy orbitals of the neighboring molybdenums. Nevertheless, summation

of the d orbitals (dz2+dxy+dx2−y2) contribution to the bands are comparable to p

orbitals as deduced from fatbands calculations. These are plotted for p orbitals and

for the sum of d orbitals with colored circles and black diamonds, respectively, for

degenerate DL2–DL5 bands at integer strains. The non-degenerate DL5 state is

mostly composed of dxy, dx2−y2 , px, and py orbitals of atoms surrounding the va-

cancy. The orbital characteristics of the DL2–DL5 bands in defective structures,

as well as geometry modifications under strains are also presented in Figures A.5

and A.6 of the supporting information. As shown in Figure 3.12(a),(b),(d), uniaxial

and shear T1 strains break the C3v symmetry and remove the degeneracy of the

DLs. The hybridization of the orbitals are modified due to changes in the atomic

bond lengths around the vacancy position which, in turn, leads to an abrupt shift in
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the localized states of DL1–DL5. This will be discussed in detail below. Moreover,

except for DL3 and DL4 bands under tensile strain in X-direction, the degeneracy

of DLs is removed by applying uniaxial and shear T1 compressions and tensions.

Shown in Figure 3.12(c), isotropic biaxial strains shift the degenerate bands, but

not separate them. At zero strain, the DL6 band, mainly composed of dx2−y2 and

dxy orbitals, is in resonance with the CB. As the charge density profile around the

defect site changes in some strain cases, the DL6 is shifted down into the band

gap. The amount of degeneracy splitting of occupied DL1 and DL2 (unoccupied

DL3 and DL4) degenerate levels are displayed with solid(dashed)-lines as function

of four types of strain in Figure 3.12(e). Of significance, tensile shear T1 breaks

the degeneracy of the occupied levels the most and up to 330 meV. The effect of

various strains on the DLs of vacancy complexes, VMo+3S, and VMo+6S, are depicted

in Figures A.7 and A.8. Shown in this section, as localized states are shifted due to

applied strains, we expect a drastic change in the position and height of the peaks

in the optical spectra of defective MLs. Accordingly, mechanical deformations can

impact the performance of flexible optoelectronic devices based on MoS2 MLs, e.g.,

single-photon emitters.

The change in the charge density of the MLs MoS2 with VMo under strain in Y-

direction is shown in Figure 3.13. These are plotted at 0.25 e/Å3. Here, the strain

cases of −2.0% and +2.5% are presented as an example in Figure 3.13(a) and (c),

respectively. At zero strain, the hexagonal symmetry is visible in the density profile

of the defective monolayer, displayed in Figure 3.13(b). As compressive or tensile

strains applied, the symmetry is broken resulting in two sets of neighboring sulfurs

reducing their distance by up to 27.39% (29.34%) for +2.5% (−2.0%) strain and

forming a charge density overlap. The remaining set is simultaneously pushed away

from its equilibrium position. As a consequence, stepwise shifts of localized bands

are observed in the electronic structure of the MoS2 monolayers with VMo, as shown

in Figure 3.12. In case of a single VS, the S atoms in the lower layer prevent a

dramatic changes of the geometry and consequently in the charge density, so that

no stepwise shifts are observed in the band structure.
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Figure 3.13: (Color online) The change in the charge density of the MLs MoS2 with
VMo under strain in Y-direction for an amount of a) −2.0% b) 0.0%, c) +2.5%. The
charge densities are plotted at 0.25 e/Å3.

3.5 Conclusions

We have scrutinized the influence of four different compressive and tensile strains

on the electronic and energetic properties of the MoS2 MLs with point defects: VS,

V2S−top, V2S−par, VMo, VMo+3S, and VMo+6S. It was shown that applying strain is a

simple yet powerful tool to tune defect properties in MLs MoS2. For example, strain

reduced the energy of formation for VMo and VMo+3S vacancies. In addition, shear

T1 strains lowered the formation of all the point defects. Breaking the symmetry of

the monolayers lead to considerable degeneracy splitting of the DLs, ranging from

a few meV to more than 400 meV, depending on the vacancy and type of strain.

These could be used as a noninvasive method to identify the type of defect. It also

allows for a measurement of strain via optical means. The observed stepwise shifts

in the localized energy levels of the MoS2 MLs with Mo vacancies under strain are

originated from the transition of the charge overlaps between neighboring atoms.

The tunability of the photodetector devices properties via strain could stem from

the shift in the localized DLs under the applied deformation. Therefore, for flexible

optoelectronic devices, the effect of strain on the localized DLs position needs to

be considered. Due to the analogy of the properties and geometries of various

compounds in the TMD family, we expect a similar response to strain from the

intrinsic defects inside their MLs.





Chapter 4

Optical Response from Defective

TMDs under Strain

The context of this chapter is based on the publication [199].

Monolayers of semiconducting molybdenum (Mo) and tungsten (W ) dichalco-

genide, with direct bandgap, high carrier mobility, and unique optical and mechan-

ical properties, are widely investigated due to their promising applications in elec-

tronics and optoelectronics [3, 21, 24, 83]. Experimental measurements have shown

that MLs TMDs are highly stable under external mechanical fields compared to

conventional bulk semiconductors [50, 96, 97, 101]. At the same time, the electronic

and optical properties of such 2D materials are proven to be sensitive to compres-

sive and tensile strain [99–101, 200, 201]. Thus, They have great advantages over

conventional semiconductors for applications in transparent and flexible electronic

and optoelectronic devices [3, 24,202,203].

As discussed in Ch. 1.3, crystalline defects, in particular point vacancies, are al-

ways present in the synthetic samples of MLs TMDs. Hence, the defect engineering

has been proposed to tune their electronic and optical properties [62,99,100,167,204].

Among these defects, vacancies induce localized defect states deep inside the band

gap and close to the VBM as well as the CBM, as presented in Ch. 3 [61, 164,

166, 194, 205]. These midgap states lead to new optical transitions in the spectra,

making the defective TMDs monolayers even more interesting for electronic and
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optoelectronic devices [17, 47, 83, 171]. Particularly, defect luminescence centers are

promising candidates for light-emitting diodes (LEDs) and lasers [47, 203,206,207].

In addition, single-photon emission from defect levels (DLs) inside the bandgap of

MoS2 and WSe2 monolayers were observed [47, 85, 208, 209]. It has been measured

that photo-excited charge carriers can be trapped at the midgap localized levels,

which, in turn, leads to a growth of the photocurrent in photodetectors based on

MLs MoS2 [88, 89, 210]. We established in Ch. 3, that it is possible to engineer

the degenerate DLs of sulfur and molybdenum vacancies inside MLs MoS2 via var-

ious mechanical deformations [166]. Hence, scrutinizing the optical properties of

crystalline point defects inside MLs TMDs is of great importance both from the

application and the fundamental point of view [3,17,83,211].

In this chapter, we will present the effect of three different compressive and tensile

strain on the optical properties of MoS2 and WSe2 monolayers, containing transition

metal vacancies and vacancy complexes. Using DFT, we analyze the change in

absorption spectra of such defective monolayers within the linear response regime.

At zero strain, the optical response from defects inside MLs MoS2 are different

than vacancies inside MLs WSe2. Applying various mechanical deformations to

MLs TMDs modifies the absorption strength, depending on the type of vacancy.

Several defect-defect transitions (DDTs) become visible if strain is applied to the

defective monolayers.

4.1 Computational Details

Semiconducting TMDs monolayers, with hexagonal symmetry, are constructed of

a triple X-M-X layer, where the transition metal M is covalently bonded to two

chalcogen atoms X, as shown in 1.2 [17, 24, 99]. The focus of this chapter is on

two polytypes: MoS2 and WSe2, which are also the experimentally most investi-

gated ones. First-principles calculations are performed using the DFT formalism

as implemented in the SIESTA code [134, 174]. The wavefunction for the valance

electrons are expanded by a linear combination of double-zeta basis sets with po-

larization function (DZP). The 4p diffusive orbitals are also included to improve
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the characterization of sulfur atoms. The exchange and correlation interactions

are described using the generalized gradient approximation (GGA) via the semilo-

cal XC-functional of Perdew-Burke-Ernzerhof (PBE) [126]. The GGA-PBE func-

tional underestimates the bandgap, in particular for the case of TMDs monolay-

ers. However, previous studies have shown that using more sophisticated methods

would only lead to similar relative shifts in the band edges and DLs, but do not

change the qualitative picture of the defect states within the bandgap [178–180].

Within the Troullier-Martin approach, we have generated a norm-conserving and

relativistic pseudopotentials, including core electrons, to describe the valance elec-

trons [175,176]. Values for the Energy-Shift and the SplitNorm are equal to 0.02Ry

and 0.16, respectively. Lattice vectors and atomic positions of the equilibrium and

strained configurations are optimized using the conjugate-gradient (CG) method.

The lower limit for the Hellmann-Feynman forces on each atom is set to 0.01 eV/Å.

In order to minimize spurious defect-defect interactions between the defect images

in adjacent supercells as much as possible, we calculate the properties of defective

MoS2 (WSe2) monolayers for supercell sizes of 6×6×1 to 9×9×1. Our intention is

to investigate the properties of isolated defects, rather than the influence of defect

concentration. Accordingly, we found that for practical calculations, monolayers of

8×8×1 are found to be a good compromise between accuracy and numerical efforts,

for transition metal vacancies as well as for vacancy complexes. On the other hand,

this supercell sizes are too small to observe ripple structures due to compressive

strain. Normal to the layers, a vacuum of 40 Å is considered to avoid interactions

between adjacent monolayers. The convergency of the total energy is ensured as

the difference between two consecutive self-consistent field steps is set to less than

10−4 eV . The Brillouin zone of supercells is sampled by a 5×5×1 k-points in the

Monkhorst-Pack scheme to obtain both geometries and electronic properties. The

Hartree, exchange, and correlation contribution to the total energy in the real space

are calculated using a mesh cut-off of 450 Ry. The energy cut-off and k-points are

considered converged when total energy differences were below 10−4 eV and 10−5 eV ,

respectively. According to previous theoretical studies, the ground state of defective
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MLs TMDs is non-magnetic up to more than 5% strain [177, 212–214]. Since we

only applied 2% of mechanical deformations to the monolayers, spin-polarization is

not considered here. The qualitative picture of the electronic structure of TMDs

monolayers containing point defects is preserved in the presence of the spin-orbit

coupling (SOC) interactions, even though SOC splits the VBM [178–180]. Due to

the fact that inclusion of the SOC has minor influence on the provided analysis and

the final conclusions, SOC was neglected in the present work.

Figure 4.1: (Color online) Left) A monolayer of MoS2 (WSe2) containing the point
defects: VM and VM+3X . In every calculation, we only focus on one of these vacancies
inside the monolayers. Red dashed-circles denote the position of the missing metal
or chalcogens inside the monolayers. Right) side-view of MLs TMDs. Here, M =
Mo,W , and X = S, Se.

Fig. 4.1 shows the position of the point vacancies and their neighboring atoms

inside MLs MoS2 (MLs WSe2). In this work, we study MoS2 and WSe2 monolayers

with a transition metal vacancy VM and vacancy complexes VM+3X , where M is

Mo,W , and X is S, Se. There are computational studies in addition to experimental

observation of such vacancies in MLs TMDs samples [17, 61, 82, 164, 192]. It is as

well possible to introduce these vacancies by plasma exposure and ion-irradiation

[47, 75, 192]. For both defect cases, the C3v symmetry of hexagonal structures are

preserved, as shown in Fig. 4.1. The atomic geometries are depicted via the VMD

tool [215].

We examine the effect of three different compressive and tensile strain on the

optical properties of defective MoS2 (WSe2) monolayers, which are shown in Fig. 4.2.

For the purpose of resembling simple deformations, we considered uniaxial strain in

X- and Y-direction. There is also an inhomogeneous shear type strain (shear T1)



62 Chapter 4. Optical Response from Defective TMDs under Strain

which maintains the magnitude of in-plane lattice vectors but changes the angle

between them. These types of strain are calculated at 2% of compression and 2%

of stretching, yet they are below the breaking point of the monolayers [50].

Figure 4.2: (Color online) Schematic view of the uniaxial strain in a) X-direction,
and b) Y-direction, c) sheer T1 strain.

Optical properties are calculated using the SIESTA code, in which, the linear

response function is used to compute the imaginary part of the dielectric function

Im[ε(ω)] [216]:

Im[ε(ω)] =
1

4πε0

(
2πe

mω

)2∑
k

|pc,v|2

× δ(Ec(k)− Ev(k)− ~ω)

× [f(Ev(k))− f(Ec(k))] .

(4.1.1)

Here, c and v subscripts are denoting conduction and valance bands properties,

respectively. Ec,v(k) are the energy bands with k -vector k. Parameter m is the

electron mass, ~ω is the photon energy, and pc,v is the momentum operator. An

optical mesh size and broadening of 25×25×1 and 0.02 eV are chosen, respectively.

We focus here on the dipole transition strength of various inter DL transitions

under the influence of different types of strain. Although including the many-body

effects modify the electronic and optical properties of TMDs monolayers, there are

strong experimental evidence, as in Refs. [47,77,217,218], of peaks at energies below

the bandgap. These peaks were identified to be corresponding to DDTs. Considering

such effects into the calculations does not change the characteristics of optically

active and inactive states. Besides, in order to avoid defect-defect interactions, we

study a very large system size, for which it is prohibitive to include a description
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of the level of many-body perturbation theory (like a GW0+BSE approach). Thus,

we neglect the electron-hole Coulomb interactions in this work. As we consider only

linear optical absorption and hence probing the states which would be available

for excitation, geometry relaxation via the excitation process does not play a role

here, in contrast to studies based on photoluminescence, where actual electrons are

excited.

We investigate the effect of various strain situations on the optical properties

of MoS2 and WSe2 monolayers containing transition metal vacancies, VM , as well

as vacancy complexes, VM+3X . The presence of such vacancies in the synthesized

samples have been observed in atomic-resolution measurements and studied via the-

oretical methods [61,82,164,192]. Moreover, these defects can also be introduced to

the TMDs monolayers by post processing techniques, such as plasma exposure and

ion-irradiation [47,75,192].

4.2 Electronic Structure

A schematic of the electronic structure of these defective monolayers is displayed in

Fig. 4.3. Here, we show the VBM, the CBM, and the Fermi energy (EF ) as well as

the DLs. The occupied DLs are named with letters A to C, while the unoccupied DLs

are labeled with numbers 1 to 6. Based on first-principles DFT analysis, there are

five DLs in the band structure of MoS2 (WSe2) monolayers with a single transition

metal vacancy, VMo (VW ), as shown in Fig. 4.3a. Two occupied double-degenerate

levels are labeled A&B, while 1&2 are the double-degenerate unoccupied DLs and 3

is a non-degenerate state. Structures with vacancy complexes of VMo+3S and VW+3Se

are shown in Fig. 4.1. Figure 4.3b shows a schematic of their electronic structure;

B&C are double-degenerate occupied DLs. There are also six unoccupied localized

states, a triple-degenerate 1&2&3, a double-degenerate 4&5, and a non-degenerate

level 6. These results are in accordance with previous reports [61,164,166,194,205].

Accordingly, DDTs are indicated corresponding to the levels involved in the

transitions: A1,A2,. . . ,B1,. . . ,C6. The orbital characteristics of the localized states

and VBM are scrutinized to identify the DDTs in the absorption spectra of such
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Figure 4.3: (Color online) Schematic of the electronic structure of the defective
MLs MoS2 (MLs WSe2) with a) VMo (VW ), b) VMo+3S (VW+3Se). Valance and con-
duction band edges, VBM and CBM, are shown along with the Fermi energy (EF ).
Occupied (unoccupied) DLs in the bandgap are labeled with letters (numbers).
A&B, B&C, 1&2, 4&5 are double-degenerate states. 1&2&3 are triple-degenerate
DLs.

monolayers. Major contributions are originated from the d orbitals of transition

metals (Mo,W ) and p orbitals of chalcogens (S, Se). In the case of simple metal

vacancy in MLs MoS2, VBM is built from 4dxy,4dx2−y2 (4dXY ) and 3px,3py orbitals,

while a mixture of 4dz2 ,4dXY and 3pz orbitals are mainly involved in the VBM of

system with VMo+3S. For VW in MLs WSe2, 5dz2 and 5dxy,5dx2−y2 (5dXY ) orbitals

are hybridized with 4px,4py,4pz (4p) orbitals to construct the VBM; however, only

5dz2 ,5dXY orbitals contribute to the VBM when VW+3Se is present in monolayers.

These findings are in line with previous studies [187,188,194]. Orbital characteristics

of the DLs for each vacancy are presented in corresponding sections.

4.3 Optical Properties

We investigate the effect of various types of strain on the absorption spectra of these

defective monolayers within the linear response regime. Peaks at energies below the
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bandgap indicate the presence of optically active DLs within the electronic structure

of defective monolayers.

Simple transition metal vacancy

The optical properties of MLs MoS2 with VMo vacancy are shown in Fig. 4.4. We

study the in-plane imaginary part of the dielectric function (Im[ε‖(ω)]) for the un-

strained case (black lines) and under various types of compressive (blue lines) and

tensile (red lines) strain. Orbitals 4dxz,4dyz and 3px,3py,3pz (3p) are main compo-

Figure 4.4: (Color online) The absorption spectra for MLs MoS2 with VMo at zero
strain (black lines) and under 2% compressive (blue lines) and 2% tensile (red lines)
strain. The inset is the out-of-plane response of the defective monolayer. From
left to right, the plots represent the effect of strain in X-direction, Y-direction, and
shear T1 strain. For each strain case, DDTs are labeled and highlighted with shaded
colors.

nents of two occupied states A and B, while unoccupied DLs are constructed from a

mixture of 4dz2 ,4dXY and 3p orbitals. Hence, corresponding elements of the dipole

matrix have zero value, leading to optically inactive DDTs in the in-plane spectra

(See black curves in Fig. 4.4). Two peaks with the lowest energy arise due to the

transition between the VBM and unoccupied double-degenerate DLs. In the inset

of Fig. 4.4, the out-of-plane absorption spectra (Im[ε⊥(ω)]) is plotted for unstrained
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defective monolayers. In contrast to the case of in-plane spectra, DDTs A1&2 and

B1&2 are visible here. These states are mainly composed of surrounding atomic

orbitals with components outside of the XY-plane. Fig. 4.4 also shows the effect of

various strain situations on the spectra of VMo in MLs MoS2, where DDTs are indi-

cated with shaded colors. In the case of 2% stretching in X-direction, three peaks

can be observed corresponding to DDTs B1&2, A1&2, and B3. Orbital characteris-

tics of occupied level A (B) is modified and now containing a mixture of 4dxy and 3p

(4dx2−y2 ,4dz2 and 3p) orbitals. The first two unoccupied DLs remain intact under

this strain, however, the third unoccupied localized state is now mainly constructed

of 4dz2 ,4dXY and 3p orbitals. Modifications of the electronic structure under 2% of

compressive strain leads to observation of B1 transition, where both states are origi-

nated from a combination of 4dz2 ,4dXY and 3p orbitals. When uniaxial compressive

or tensile strain in Y-direction is applied, B3 transition becomes visible in the in-

plane response of the dielectric function, where mostly 4dz2 ,4dXY and 3p orbitals are

contributing to both DLs. In general, the absorption strength of DDTs is larger for

uniaxial tensile than compressive strain. The influence of compressive and tensile

shear T1 strain on the optical response of MoS2 monolayers with VMo are similar

and lead to a peak stemming from B1 transition. Here, 4dz2 ,4dXY and 3p orbitals

are mainly contributing to these states. When changes in orbital composition are

not mentioned, this means orbitals contributing to other states remain unchanged

under strain.

Looking at Fig. 4.4, as uniaxial and inhomogeneous shear T1 strain are applied,

transitions between occupied and unoccupied DLs become optically active. This is

due to the change in the hybridization of orbitals surrounding the vacancy. This

also stems from breaking the hexagonal symmetry of the defective MLs MoS2 via

strain, thus removing the degeneracy of the localized states [166, 172, 193]. It can

also be explained via the modification of the geometrical and electronic properties

as function of applied strain, which is highlighted in Fig. 4.5. In this figure, the

charge density of the MoS2 monolayers with VMo are shown for (a) 0.0% and b)

+2.0% strain in X-direction at isovalue of 0.095 e/Å3. Atoms around the vacancy
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are labeled with A, B, and C. At zero strain, symmetric structure of the monolayer is

untouched and the distance between the neighboring atoms is 3.238Å for MLs MoS2

with VMo and 3.176Å for pristine geometry. When 2.0% of tensile strain in X-

direction is applied, the AC and BC distances are 3.262Å and 3.192Å for defective

monolayer and pristine structure, respectively. However, since atoms at A and B

positions are along the strain direction, the AB distance for the case of Mo vacancy

in MLs MoS2 has been increased by 5.8% to 3.426Å, which is much larger than

for pristine structure with the expected 2.0% increase to 3.240Å. This geometry

modification is responsible for the changes in optical properties for such defective

monolayers, shown in Fig. 4.4.

Figure 4.5: (Color online) The change in the charge density of the MoS2 monolayers
containing VMo under strain in X-direction for an amount of a) 0.0% and b) +2.0%.
These are plotted at 0.095 e/Å3. Atoms around the vacancy are labeled with A, B,
and C.

The presence of a simple metal vacancy, VW , in MLs WSe2 results in local-

ized states inside the bandgap. In Fig. 4.6, the optical spectra are shown (black

lines) for the unstrained defective structure. Two peaks corresponding to transi-

tions A1&2,B1&2 and A3,B3 are highlighted. The fact that DDTs are visible in

the spectra is in explicit contrast to the case of Mo vacancy in MLs MoS2 at zero

strain. This translates into differences in orbital characteristics of the DLs in two

materials. For the case of VW in MLs WSe2, two occupied localized states A and B

are constructed of 5d orbitals mixing with 4p orbitals, and three unoccupied DLs
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Figure 4.6: (Color online) The absorption spectra for MLs WSe2 with VW at zero
strain (black lines) and under 2% compressive (blue lines) and 2% tensile (red lines)
strain. From left to right, the plots represent the effect of strain in X-direction,
Y-direction, and shear T1 strain. For each strain case, DDTs are labeled and high-
lighted with shaded colors.

have major contributions from 5dz2 ,5dXY and 4p orbitals. On the other hand, local-

ized states in unstrained MLs MoS2 with VMo are mainly constructed from 4dxz,4dyz

and 3p orbitals. Comparing Figs. 4.4 and 4.6, it can be seen that dipole matrix ele-

ments are larger for VW than VMo. In Fig. 4.6, the effect of various strain situations

on the absorption spectra of these defective WSe2 monolayers are displayed where

DDTs are labeled and shown with shaded colors. In the case of 2% uniaxial tensile

strain in X-direction, although the orbital characteristics of the unoccupied states

remain unchanged, states A and B are now dominated with 5dxz,5dxy,5dyz,5dz2 ,4p

and 5dz2 ,5dXY ,4p orbitals, respectively. Peaks corresponding to DDTs A1&2 and

B3 are visible. Applying 2% of compressive strain in X-direction, three transitions

B1, A1, and B3 can be observed. Here, there are modifications only in the major

orbitals contributing to the states A and B as well as the first unoccupied level.

When uniaxial strain in Y-direction are applied, hybridization of the occupied DLs

A and B are changed, while the main orbital components of the unoccupied states

stay unaffected. Thus, the degeneracy breaking leads to the observation of A1–3
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and B1–3 transitions in the spectra. When 2% compressive or tensile shear T1

strain is applied to MLs WSe2 with VW , orbitals 5dz2 ,5dXY and 4p have the largest

coefficients in wavefunction expansion of states A and B. The first unoccupied DL is

now constructed of 5d and 4p orbitals. Peaks corresponding to DDTs B1, B2, and

B3 are shown in Fig. 4.6.

Vacancy complexes

In synthesized samples as well as during post processing mechanisms, vacancy com-

plexes, i.e. VMo+3S and VW+3Se, are more likely to be present than single transition

metal vacancies, according to previous studies [164,166,172,188,193]. This is partic-

ularly important when generating vacancies for single-photon emitters at selective

sites [47, 75]. We investigate the optical properties of MoS2 and WSe2 monolayers

containing vacancy complexes at zero strain and under various mechanical deforma-

tions. Such studies are also of interest for the production of flexible optoelectronic

devices. In comparison to the case of VMo (VW ) vacancies in MLs MoS2 (MLs WSe2),

out-of-plane optical responses are negligible for monolayers with the complex vacan-

cies, VMo+3S (VW+3Se).

Shown in Fig. 4.7, the in-plane imaginary part of the dielectric function is plot-

ted for MoS2 monolayers with VMo+3S. In this figure, optically active DDTs are

highlighted. Their dipole matrix elements are noticeably much larger than peaks

in the absorption spectra of MLs MoS2 with VMo (See Fig. 4.4). This could be an

evidence that in ion-irradiation processes, single photons are emitted from vacancy

complexes rather than simple transition metal vacancies. The peak with the highest

absorption comes from DDTs B1&2&3, and C1&2&3, i.e. transitions from double-

degenerate DLs B&C to triple-degenerate unoccupied localized states 1&2&3. The

other peak is originated from transitions A1&2&3, B4&5, and C4&5. Unoccupied

DLs 4&5 are double-degenerate. At zero strain, all the DLs are mainly composed of

4d and 3p orbitals. Even though the degeneracy of DLs is broken via applying uni-

axial and inhomogeneous strain, orbital contributions to the localized states remain

untouched. Except for the case of tensile strain in X- and Y-direction, where the
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Figure 4.7: (Color online) The absorption spectra for MLs MoS2 with VMo+3S at
zero strain (black lines) and under 2% compressive (blue lines) and 2% tensile (red
lines) strain. From left to right, the plots represent the effect of strain in X-direction,
Y-direction, and shear T1 strain. For each strain case, DDTs are highlighted with
shaded colors and their labels.

occupied state A is mostly constructed from a mixture of 4d and 3py,3pz orbitals.

As monolayers are stretched or compressed by 2% of uniaxial strain, four optically

active DDTs can be seen in the spectra. These are indicated in Fig. 4.7 with their

corresponding labels. Applying 2% of either compressive or tensile shear T1 strain

leads to identical modifications in the optical spectra, i.e. four peaks corresponding

to transitions C1, B1,C2&3, C4, and A2&3,B4,C5 can be observed. All being said,

the absorption strength of DDTs, consequently their brightness, is reduced by a

factor of almost two (three) via uniaxial (inhomogeneous shear T1) strain.

The absorption spectra of unstrained MLs WSe2 with the vacancy complex

VW+3Se is shown with black curves in Fig. 4.8. Two sets of optically active DDTs

can be seen, i.e. B1&2&3,C1&2&3 and A1&2&3. It should be noted that B&C

are double-degenerate occupied states, and 1&2&3 are triple-degenerate unoccupied

levels. Interestingly, the dipole matrix elements of the first peak is about five times

larger than the intensity of the peaks in the optical response of MLs WSe2 with

VW (See Fig. 4.6). This outcome emphasizes our hypothesis that in ion-irradiated
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Figure 4.8: (Color online) The absorption spectra for MLs WSe2 with VW+3Se at
zero strain (black lines) and under 2% compressive (blue lines) and 2% tensile (red
lines) strain. From left to right, the plots represent the effect of strain in X-direction,
Y-direction, and shear T1 strain. For each strain case, DDTs are highlighted with
shaded colors and their labels.

samples, the main source of single-photon emissions could be vacancy complexes

rather than single transition metal vacancies. At zero strain, 5d orbitals of W have

the largest coefficients in wavefunction expansion of state A, which stays untouched

as all strain situations are applied. Orbital characteristics of the occupied DLs B

and C are mainly a combination of 5d and 4p orbitals. In the case of the unstrained

defective monolayers, major contributions to all unoccupied DLs come from 5d and

4p orbitals which remain the same under any types of strain. In Fig. 4.8, blue (red)

lines show the impact of various compressive (tensile) strain on the optical spectra

of the defective monolayers, where DDTs are indicated with shaded colors and cor-

responding labels. When 2% of compression or tensile uniaxial strain is applied to

the defective MLs WSe2, degeneracy of the occupied DLs B and C is removed due

to changes in their orbital characteristics. This leads to the observation of several

optically active DDTs in the spectra, as indicated in Fig. 4.8. Shear T1 compres-

sive and tensile strain result in analogous modifications to the absorption spectra of

MLs WSe2 with VW+3Se. Three peaks corresponding to DDTs C1, B1 and A1,C3
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can be seen in the spectra. Here, only the orbital components of the occupied state

B is changed to a mixture of 5d and 4px,4py orbitals. It can be observed in Fig. 4.8

that the absorption strength are decreased by a factor of almost three as uniaxial

or inhomogeneous strain are applied, for both compressing and stretching.

4.4 Conclusions

In this chapter, we have investigated the optical properties of MLs MoS2 and

MLs WSe2 containing point vacancies; VM and VM+3X . At zero strain, it is shown

that DDTs are visible in the in-plane spectra for VW in MLs WSe2 in contrast to

MLs MoS2 with VMo. According to our study, dipole matrix elements of peaks origi-

nated from DDTs are significantly larger for the case of the vacancy complexes than

the simple vacancies.

The effect of two uniaxial and an inhomogeneous shear T1 strain on the op-

tical properties of defective TMDs monolayers is studied. Interestingly, DDTs in

MLs MoS2 with VMo become visible in the in-plane spectra as mechanical deforma-

tions are applied. We have traced this behavior back to the change in the hybridiza-

tion of atomic orbitals surrounding the vacancy at the defect site. Depending on the

type of strain, the absorption strength of MLs TMDs with vacancy complexes has

been reduced by a factor of two to three. Thus, the brightness of the spectra from

samples with point vacancies could be reduced via strain. Applying strain allows

to tune the optical properties of monolayers in a controllable way. Our findings

will be beneficial to the application of MLs MoS2 in optoelectronic, flexible, and

piezoelectric devices as well as heterostructure setups.





Chapter 5

Devices Based on 2D Lateral

Heterojunctions

The context of this chapter is based on the publication [219].

Among the developing family of two-dimensional (2D) materials, transition metal

dichalcogenides (TMDs) provide one of the most diverse electronic properties in-

cluding topological insulators, semiconductors, (semi)metals and superconductors

[220–222]. Noticeably, such a difference in the electronic structure of TMDs corre-

lates with their structural configurations, called phases [223]. Monolayers of MoS2

in H-phase, with trigonal prismatic coordination of metal atoms is a semiconduct-

ing material [43, 224], while T-phase with octahedral coordination shows metallic

character. The H-phase monolayer is reported to be a promising material for field-

effect transistors (FETs) with small-scale channel lengths and negligible current

leakage [43,224]. The atomically thin nature of MLs MoS2 maximizes the gate tun-

ability in ultrashort-channel transistors. Besides, the direct source-drain tunneling

in MoS2-based devices are minimized because of the high effective mass and large

bandgap [43,224]. The contact resistance and high Schottky barrier between metal-

lic electrode and semiconducting region limit the performance and potential of these

devices [225–228].

Recent experiments have already shown controlled transitions from one phase

to another via external stimuli such as electron beam [36], ion intercalation [34],
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or laser irradiation [229]. The coexistence of 1T-phase and 2H-phase of MoS2 has

also been observed in high resolution scanning transmission electron microscope

(STEM) imaging [41]. These phase-engineered 2D materials with minimum varia-

tions in atomic structure and uniform stoichiometry not only demonstrate rich phys-

ical behavior but also open up new avenues for the design of electronic devices. The

fabrication of lateral metallic/semiconducting heterostructures has been suggested

as a practical method to minimize the contact resistance at the interface between 2D

semiconductors and metal electrodes. In particular, the formation of covalent bonds

between the two phases can introduce paths for carriers to travel across the inter-

faces, thus, the Schottky barrier and contact resistance are reduced [45,225,230,231].

It has also been demonstrated that 1T-phase engineered electrodes in MoS2 based

electronic devices would generate ohmic contacts and, as a result, improve electrical

characteristics [230,232].

So far, several theoretical studies have reported the transport properties of phase-

engineered devices based on TMDs monolayers including MoS2 based lateral junc-

tions [33, 35, 44, 45, 230, 233, 234]. In most of these studies, it is assumed that two

phases have a perfect crystalline structure and connected via an atomically sharp

and defect-free interface. However, structural defects are always present in the syn-

thetic samples due to the thermal equilibrium and the kinetics of processing which

impose significant effects on their properties [17,60,61,91,194,235]

Apart from intrinsic defects, the local phase transitions induced by electron

beam irradiation may give rise to the formation of point defects, in particular at

the interface of the two phases. [47, 75, 79, 82, 170, 217, 218, 236]. Defects can also

be intentionally introduced during the post-growth stage via ion bombardment,

plasma treatment, vacuum annealing, or chemical etching. [47, 75, 79, 82, 170, 217,

218,236]. Indeed, the theoretical and experimental results showed that the presence

of sulfur vacancies can decrease the energy difference between the H and T phases

and eventually stabilize the 1T phase in MoS2 monolayer [237, 238]. The presence

of point defects in semiconducting MoS2 monolayers leads to the observation of the

localized states in their electronic structure, which act as short-ranged scattering
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centers for charge carriers [17,166,194,235]. Hence, defects were found to deteriorate

the mobility of the fabricated devices [23, 55,81]. It was also shown that sulfur line

vacancies in MoS2 can behave like pseudo-ballistic wire for electron transport [239].

Here, transport properties of devices based on MLs MoS2, containing various

point vacancies and antisites at the interface between metallic and semiconducting

phases, are the subject of the present study. Our systematic investigations show

significant improvements in the current, as molybdenum vacancy and vacancy com-

plexes are created at the interfaces of two phases. These findings render defect

engineering as an efficient route to further improve the performance of the devices

based on the lateral heterojunctions formed from TMDs.

5.1 Computational Details

Density-functional theory calculations were performed using numerical atomic or-

bitals (NAOs) basis sets as implemented in SIESTA code [134, 174]. The norm-

conserving pseudopotentials, including the effect of core electrons, are employed,

which were obtained using the Troullier-Martin method [175, 176]. The GGA-PBE

functional is used to describe the exchange and correlation interactions [126].

In the optimization calculations, the Brillouin zone (BZ) of supercells was sam-

pled using a 9×1×3 Monkhorst-Pack grid. In the electronic and transport calcula-

tions, 5 and 29 k-points were used, respectively, along the transverse direction. The

conjugate-gradients method was applied to optimize the lattice vectors and atomic

positions of all the structures and interfaces. The geometries were considered relaxed

when the Hellman-Feynman forces on each atom became smaller than 10 meV/Å.

The energy cut-off of 450 Ry is used in the framework of the real-space grid tech-

niques to obtain Hartree, exchange, and correlation energies. The Split-Norm was

set to 0.16 and the Energy-Shift of 0.02 Ry was chosen to determine the confinement

radii. The total energy convergency criteria (4Etot) is chosen to be 10−5eV for k-

points and 10−4eV for energy cut-off. When the difference between two consecutive

steps was less than 10−4eV, the total energies in self-consistent field (SCF) cycles

are considered converging.
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The electron transport calculations were performed using NEGF techniques, ex-

plained in details in Ch. 2.2, as implemented in TranSIESTA and TBtrans [153,154].

The same basis sets as for the electronic calculations, namely SZP, are employed for

the transport calculations. The current through the heterophase junction under a

finite bias voltage is calculated within the Landauer formula, which its derivation is

presented in Ch. 2.2.1, [144]

I =
2e

h

∫
Trace

[
G†C(E)ΓR(E)GC(E)ΓL(E)

]
(fL(E)− fR(E)) dE. (5.1.1)

Where G†C(E) and GC(E) are the retarded and advanced Green’s functions of the

channel region. The effect of left (L) and right (R) electrodes are projected onto the

scattering region via their corresponding self-energies, ΓL(E) and ΓR(E). The Fermi

distribution of fL(E) and fR(E) represent the available states for electrons in the left

and right electrodes. In order to calculate the self-energies of the electrodes, we have

used 65 k-points along the transport direction (Z-axis) and 5 k-points transverse to

the transport direction (X-axis) to simulate a semi-infinite metallic electrode. The

transport calculations are performed at 300 K.

5.2 1T-2H Interface

Previous theoretical studies have shown no difference or a difference of 0.63% be-

tween the lattice constant of the T- and H- phase of MoS2 monolayers [25,164,224,

240,241]. Therefore, the same lattice parameters, namely 3.176Å, are used for both

phases. Such a phase transition can be seen as the collective displacement of sul-

fur atoms while the stoichiometry of the materials is preserved. Band structures

for 2H- and 1T-phase of MoS2 are plotted in Fig.5.1. It can be clearly observed

that 2H-MoS2 is a semiconductor with a bandgap of 1.73 eV, while 1T-MoS2 has a

metallic character. We have compared our calculated band gap for perfect 2H-MoS2

monolayer with the values reported at different levels of theories, as listed in Table

B.1 [25, 164, 242]. These shows an agreement with previous theoretical reports at
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Figure 5.1: Band structures are plotted for left) Semiconductor (2H) and right)
metallic (1T) phases of MoS2 monolayers. Energies are shifted according to the
Fermi energy. There is a bandgap of 1.73 eV for the case of the semiconducting
monolayers while 1T-MoS2 has a clear metallic character.

the same level of theory [25, 164, 224, 240, 241]. In the case of defective systems, it

has been known that more advanced methods like GW approximation would only

lead to shifts in the band edges and defect levels in the same direction, but do not

change the qualitative picture of the defect states within the bandgap and their rel-

ative position to the VBM and CBM (see Refs. [178–180]). Therefore, it is expected

that these methods would only affect the range of the applied voltage in transport

calculations and the provided analysis remain intact.

Depending on the edge orientation of MLs-MoS2, armchair and zigzag interfaces

can be realized. The armchair interfaces have been shown to be most stable against

buckling [33, 45]. They are also energetically more favorable than connecting the

zigzag terminated edges in the sulfur-rich limit [33,44]. The recent theoretical study

on 1T/2H-MoS2 devices showed that the conductivity of the armchair edges is higher

than the zigzag interfaces due to the presence of metallic Mo zigzag chains along
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the transport direction [45]. Accordingly, we consider the armchair interface in the

present study. The constructed lateral heterostructures with armchair edges are

optimized. It should be noted that the optimization could not transform 1T into

the 2H phase but induce some distortions, indicating the activation barrier for the

phase transformation is higher than the relaxation of the boundary.

In order to create Schottky contacts at the interfaces, 2H-MoS2 is sandwiched

between two metal electrodes of 1T-MoS2, as shown in Fig. 5.2. The whole set up

consists of 21 layers of semiconducting MoS2 and 8 layers of metallic MoS2 at both

sides.

Figure 5.2: Schematic of a device based on metallic (1T) and Semiconductor (2H)
phases of MoS2 monolayers. Left and right interfaces are shown with green dashed-
lines. Electrodes in this work are the part of the 1T-MoS2 that are highlighted under
the shaded red box.

Having perfect electrodes is a key concept within the NEGF framework in order

to obtain physically reliable results. Our electrode calculations have revealed that

3 layers of 1T-phase of MoS2 (highlighted with red boxes in Fig. 5.2) are sufficient

to simulate the bulk-like behaviour of the contacts. Another five layers of 1T-MoS2

are added to 2H-MoS2 to construct the channel region (highlighted with a gray box

in Fig. 5.2) which minimizes the effect of geometry relaxations at the interfaces on

the perfect electrodes.

5.3 Schematic of 1T/2H-MoS2 Devices

The 1T/2H heterojunction device in the present study has a length of 117.50 Å along

the transport direction (Z axis) and width of 22.00 Å in the transverse direction (X

axis). The size of the channel part is 98.46 Å corresponding to 31 unit cells of MoS2.

The channel length is long enough to avoid artificial interactions between the two
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Figure 5.3: Upper: Schematic of the T-H heterophase junction of MoS2 monolayer.
Electrodes (only 1T-MoS2) and channel region (a combination of 1T- and 2H-MoS2)
are highlighted with shaded red and black, respectively. The interfaces are indicated
with green dashed-lines. All the structures are considered periodic along the axis
transverse to the transport direction. Lower: Optimized structures of the point
defects at the left interface of the devices are shown. Only defects at the left electrode
are shown here. The complete defective devices are shown in Fig. B.1 in the
supplementary information.

electrodes. Also, it includes small adjacent portions of the 1T phase as buffer layers

to provide a computationally convenient configuration for calculating self-energies

at the boundaries [243]. The periodic boundary conditions were applied along the

axis transverse to the transport direction. A vacuum layer of 50 Å normal to the

monolayers was considered, which prevents interactions between adjacent supercells.

Several junctions composed of 1T and 2H of MLs MoS2 are considered without

defects (perfect) and when containing point defects in the phase boundaries, as

shown in Fig. 5.3. Here, we considered only the high-symmetry cases where similar

defects are created at both interfaces. In Fig. B.1 of the supplementary information,

the structure of the whole device is shown. We consider 10 types of point defects,
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most of which were observed in experiments [47,61,79,82,170,192] and their stability

were analyzed by DFT calculations [17, 164, 166, 236]. Our main objective is to

present the difference between the effect of such defects in transport prop- erties of

1H pristine phases and 1T-2H heterostructures. Hence, complex defects containing

antisite aggregated with another type of defect, as mentioned in Ref. [244], are

neglected in this study. We look at a sulfur and a molybdenum vacancy, VS and

VMo, a double sulfur vacancy from upper and bottom layers V2S−top, and the case

of removing two atoms from the upper sulfur layer and parallel to the interface,

V2S−par. Besides, vacancy complexes of molybdenum and three sulfurs (VMo+3S)

and six sulfurs (VMo+6S) are also studied. Four antisites are also considered: MoS,

Mo2S−top, SMo, and 2S − topMo. We consider only the high-symmetry cases where

similar defects are created at both interfaces, hence, rectifying effect will not appear.

In this study, all defects are assumed to be in their charge-neutral states. The

previous report on the charged defects in semiconducting 2H-MoS2 revealed that

when the Fermi level is close to the conduction band (n-type doping), both VS

and VMo are likely to assume negative charge states [164]. However, because of

Figure 5.4: Displacement map of the defective structures. Sum of displacements in
the three axis are calculated.

the metallic character of 1T-MoS2, defects in the 1T-2H heterophase junction are
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considered only in their neutral state as the extra charge migrates to the 1T phase.

As a result of defects in the phase boundary, the atomic network can be subjected

to strain. Fig. 5.4 shows the strain map, which is specified as the total displacements

in all three axes as compared to the perfect interface. It shows the effect of induced

local strain on the device properties. It can be seen that the largest change in the

atomic positions are for the case of VMo+3S at the interfaces while removing two

Sulfurs, from top and bottom layers, V2S−top, induce the smallest displacements into

the phase boundary.

5.4 Transport Through Lateral Heterojunctions

In this section, we analyze the effect of interfacial defects on the transport properties

of MoS2 lateral heterojunctions, based on transmission, current and LDOS.

5.4.1 Sulfur vacancies

First, we present the electronic and transport properties of T-H heterophase junction

containing interfacial sulfur vacancies; VS, V2S−top, and V2S−par. In Fig. 5.5, local

density of states (LDOS) on the atoms at the left interface of such devices are plotted

at Bias = 0.00V and Bias = 1.40V . In the following, the term ”interface” is used

for a part of the device, which consists of atoms from one layer of 1T-MoS2 and one

layer of 2H-MoS2. Due to the electronic states from T phase, the band gap in LDOS

is narrower than that for pristine 2H phase of MoS2. Comparing the two figures,

there is a shift in the energy, corresponding to half of the applied voltage.

The presence of defects introduces new states close to the Fermi level and in-

creases electron density at the interface, which is mainly contributed by metal d

orbitals. It is evident that defect-associated states are more pronounced in the case

of V2s−par where the electron density is enhanced in the vicinity of the Fermi level,

including a peak at -0.2 eV. The results showed that other types of sulfur vacancies

have a negligible impact on the electronic structure around the Fermi energy. It

should be noted that the sulfur vacancies in 2H-MoS2 monolayers act as scattering
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Figure 5.5: (Color online) LDOS at the left interface for devices without defects
(Perfect) and with sulfur vacancies, VS, V2S−top, and V2S−par, are plotted at Bias
equal to 0.00V and 1.40V . Energies are shifted with respect to their corresponding
Fermi energy. In the case where two sulfurs from the top layer and parallel to the
interface, V2S−par, are removed, midgap states can be observed in LDOS. Other
defects have a negligible impact on the LDOS around the Fermi energy.

centers and consequently diminish the transport properties [17,166,194,235].

In order to elaborate the electron conduction dependency on the geometry of

contact between the T and the H phases, transmission spectra for the junction

without and with interfacial defects at two Bias, 0.00 and 1.40V , are shown in Fig.

5.6a and 5.6b, respectively. Corresponding to the band gap of 2H-MoS2, there is no

transmission at zero bias within an energy range of 1.7 eV around the Fermi level.

A comparison between perfect interface and those containing sulfur vacancies shows

a growth in transmission probability, suggesting the contribution of defect states in

electrical transport. Specifically, the transmission coefficients close to the valance

band edge can be increased to almost two times for the case of V2S−par vacancy. The

IV characteristics of the studied T-H heterophase junction are shown in Fig. 5.6c.

The junction displays a non-linear current-voltage similar to the characteristics of

a resonant tunneling diode. The energy mismatch between the Fermi energy of the

metallic 1T electrodes and the lowest unoccupied levels of the 2H phase causes the

presence of zero current and the need for threshold voltage to produce finite current
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Figure 5.6: (Color online) Transmission spectra for T-H heterophase junction of
MoS2 monolayer containing various sulfur vacancies at both interfaces at a) Bias =
0.00V and b) Bias = 1.40V . Energies are shifted with respect to their corresponding
Fermi energy. The insets show how the electronic transmission channels change at
the top of the valance band. c) I-V characteristics for the same devices. The inset
shows the current around the threshold voltage.

flow through the junction. The value of threshold voltage was reduced from 1.0 V

for the perfect interface to 0.75V for the interface with divacancy. The appearance

of defect-associated resonant states in the transmission spectra within the voltage

window changes the current through the system, leading to an increase by an order

of magnitude, when V2S−par vacancy is present at the interfaces, as shown in Fig.

5.6c.
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5.4.2 Molybdenum vacancies and vacancy complexes

We then turn to the calculation of the electronic and transport properties of the

T-H heterophase junction when molybdenum vacancy, VMo, and vacancy complexes

VMo+3S and VMo+6S are present at the interface. The LDOS of the interface is shown

in Fig. 5.7 at Bias = 0.00V and Bias = 1.40V . Here, the applied bias has shifted

the energies. The electronic structure of the interfaces with a single Mo vacancy

varies more than that of a single sulfur vacancy. In the case of larger point de-

fects, i.e. VMo+6S, the electronic structure shows several resonant states around the

Fermi level which are mainly formed by Mo 4d states. The defect-induced changes

in the electronic structure affect the carrier injection through the junction. The

transmission function (Fig. 5.8b&c) at the top of the valance band shows a signif-

icant enhancement when vacancies are introduced into the interfaces. Accordingly,

the current is increased by up to three orders of magnitude in comparison to the

perfect interface. This is due to an enhancement of carrier occupations near the

Fermi level, which leads to an increase in the transmission spectrum. The projected

local density of states (shown in Fig. B.4 of supplementary information) also indi-

cates more electronic states at the interface with Mo vacancy, generating a strong

electron transmission at energies around -0.5 eV. This leads to an increase in the

electron conduction within the corresponding bias window (Fig. 5.8b&c). A similar

effect was recently reported on the dependence of transmission on the geometry of

interface in MoS2 based heterojunctions [245]. The interfaces with VMo+6S vacancy

demonstrate a threshold voltage of ≈ 0.5 V, half of that for a perfect interface.

To further investigate the transport behaviour at the interface, we also plot the

vector current for perfect systems and devices with VMo at both interfaces (Fig. B.2).

Vector current displays the direction and the amount of current, coming from the left

or right electrode, projected on each atom and at a specific energy channel. While

the perfect interface shows dominant current scattering at the T-H boundary for

low bias voltages, e.g. V=-0.5 V, the currents are delocalized in the channel region

with VMo at the interface, suggesting that electrons have been well transmitted from

electrodes to the channel region.
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Figure 5.7: (Color online) LDOS at the left interface for devices without defects
(Perfect) and with molybdenum vacancy, VMo, and vacancy complexes as VMo+3S,
VMo+6S, are plotted at Bias equal to 0.00V and 1.40V . Energies are shifted with
respect to their corresponding Fermi energy. These defects strongly modify the
LDOS around the Fermi energy, leading to a significant improvement in the IV
characteristics.

We have also studied the influence of defect concentrations on the transport

properties through the interfaces. Here, , we fixed the length of the channel but

varied its width, including the interfaces with a single VMo. Fig. 5.9 shows the

difference in the conductance through devices (∆G = Gdefect−Gperfect) as a function

of the devices’ areas. It is evident that the conductance reduces with decreasing

the defect concentration approaching the value of the perfect interface for zero-

defect density. Variation of channel widths has two different effects on the transport

properties: On one hand, the number of transport channels increases with the width

of the channel. On the other hand, for a constant number of defect sites, increasing

the channel width leads to a decrease in the carrier densities around the Fermi Level.

The former effect is canceled out by subtracting the conductivity of the system from

the corresponding one with the pristine interface. As a result, for wider channels

(lower concentrations), the increase in electrical conductivity is linearly reduced.
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Figure 5.8: (Color online) Transmission spectra for T-H heterophase junction of
MoS2 monolayer containing molybdenum vacancy, VMo, and vacancy complexes as
VMo+3S and VMo+6S at both interfaces at a) Bias = 0.00V and b) Bias = 1.40V .
Energies are shifted with respect to their corresponding Fermi energy. The insets
show how the electronic transmission channels change at the top of the valance band.
c) I-V characteristics for the same devices. The inset shows the current around the
threshold voltage. When such point defects are present at the devices interfaces, the
current has been enhanced by up to three orders of magnitude.

5.4.3 Antisites

Because vacancy and antisite are both high electron-scattering centers, their pres-

ence in TMDs can impair sample mobility [195]. We further investigate the influence

of antisites defects, such as MoS, Mo2S−top, SMo, and 2S − topMo, at the interfaces

of T-H heterophase junctions. Among all the considered antisites, the situation

where molybdenum vacancy is substituted with two sulfurs (2S − topMo) provides

the most pronounced defect associated states at the valence band edge (Fig. 5.10).
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Figure 5.9: (Color online) Difference
in the conductance through perfect
systems and device with VMo (∆G =
Gdefect − Gperfect) as function of the
device’s area at different bias voltages.
Since number of vacancies is the same
for all cases, it is also a function of
the defect density. It is true that more
transport channels are added to wider
devices, however, at the same time
defect density is reduced, hence, de-
creasing the current through defective
devices. Thus, conductance difference
is approaching to zero, as the system
gets wider.

When compared with the Mo vacancy, the defect states are more localized and orig-

inated mainly from hybridization between the Mod-Sp orbitals. The contributing

orbitals to the LDOS at the left interface are shown in Fig. B.3 in the supplementary

information.

In Fig. 5.11a,b, transmission spectra for phase-engineered devices based on

MLs MoS2, containing various substitutions, are displayed at Bias = 0.00 & 1.40V .

Fig. 5.11c shows the corresponding IV characteristics as a function of bias voltages

up to 1.50V . When vacancies are substituted with sulfur or molybdenum atoms,

the current stays in the same order as for the device with perfect interfaces. Only

for the case of 2S − topMo, current has been slightly increased due to the presence

of midgap defect states observed in LDOS and the enhancement in the transmission

probabilities. It’s also worth noting that, in contrast to the case of perfect inter-

faces, the presence of antisite defects inevitably results in more phonon scattering

channels, which may be beneficial in lowering lattice thermal conductivity.
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Figure 5.10: (Color online) LDOS at the left interface for devices without defects
(Perfect) and with substitutions; MoS, Mo2S−top, SMo, 2S − topMo, are plotted at
Bias equal to 0.00V and 1.40V . Energies are shifted with respect to their corre-
sponding Fermi energy. These defects, except the case of 2S − topMo, have slightly
affected the LDOS around the Fermi energy.

5.5 Conclusions

We have investigated the transport properties of charge carriers through devices

based on metallic (1T) and Semiconductor (2H) phases of MoS2 monolayers. Various

point defects are present at both interfaces: VS, V2S−top, V2S−par, VMo, VMo+3S,

VMo+6S, MoS, Mo2S−top, SMo, and 2S − topMo. The first-principles simulations

and NEGF technique are used to compute the LDOS, transmission curves, and IV

characteristics of perfect and defective devices under bias in the range of 0.00V

till 1.50V . Our systematic study shows that defects at the interfaces provide the

opportunity for further improvement of the transport properties of such devices.

More notably, we found that transport properties are enhanced in the presence of

energetically favorable intrinsic point defects. In contrast to the scattering character

of defects in 2H-phase MoS2, at the interface, they lead to emergence of resonant

states close to the Fermi level, thereby giving rise to the enhanced current flow.

In particular, creating a molybdenum vacancy induces defect midgap states in the

LDOS and improves the transport characteristics, which, in turn, leads to an increase
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Figure 5.11: (Color online) Transmission spectra for T-H heterophase junction of
MoS2 monolayer containing various substitutions; MoS, Mo2S−top, SMo, 2S − topMo,
at both interfaces at a) Bias = 0.00V and b) Bias = 1.40V . Energies are shifted
with respect to their corresponding Fermi energy. The insets show the change in the
electronic transmission channels at the top of the valance band. c) I-V characteristics
for the same devices. The inset shows the current around the threshold voltage. In
defective systems, currents are in the same range as or even smaller than the current
in the device with perfect interfaces.

in the current up to two orders of magnitude. The knowledge developed in this

study could pave the way for the promising applications of lateral heterojunctions

of 1T/2H MoS2 monolayers in field effect devices.





Chapter 6

Concluding Remarks

6.1 Summary

The objective of the work presented in this thesis was on the one side to scrutinize

the effect of mechanical deformations on the electronic and optical properties of the

defective TMDs monolayers. On the other hand, we studied the transport properties

of charge carriers through the 1T/2H-MoS2 heterojunctions in the existence of point

vacancies and antisite vacancies.

In chapter 3, using first-principles calculations, we have scrutinized the influ-

ence of four different compressive and tensile strains on the electronic and energetic

properties of MLs MoS2 with point defects: VS, V2S−top, V2S−par, VMo, VMo+3S, and

VMo+6S. We have shown that applying strain is a simple yet powerful tool to tune

defect properties in such monolayers, e.g. changing significantly the formation en-

ergies. As an example, strain reduced the energy of formation for VMo and VMo+3S

vacancies. In addition, shear T1 strains lowered the formation of all the point de-

fects. Breaking the symmetry of the monolayers lead to considerable degeneracy

splitting of the DLs, ranging from a few meV to more than 400 meV, depending on

the vacancy and type of strain. These could be used as a noninvasive method to

identify the type of defect. Since MLs MoS2 are robust to mechanical deformations,

such splittings could be used as switches in devices. It also allows for a measurement

of strain via optical means. We observed stepwise shifts in the localized energy lev-
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els of MoS2 monolayers with Mo vacancies under strain. These shifts are shown to

originate from the transition of the charge overlaps between neighboring atoms. The

localized DLs, acting as trapping sites for photo-excited charge carriers. Hence, we

concluded that the observed tunability of the properties of the photodetector devices

via strain could stem from the shift in these DLs under the applied deformation.

Therefore, for flexible optoelectronic devices, the effect of strain on the localized

DLs position needs to be considered.

Chapter 4 discussed the investigation of the optical properties of MLs MoS2 and

MLs WSe2 containing point vacancies; VM and VM+3X . The optical spectra were

calculated using DFT and within the linear response regime. At zero strain, we show

that DDTs are visible in the in-plane spectra for VW in MLs WSe2 in contrast to the

case of MLs MoS2 with VMo. According to our study, dipole matrix elements of peaks

originated from DDTs are significantly larger for the vacancy complexes than the

simple vacancies. In this chapter, the effect of two uniaxial and an inhomogeneous

shear T1 strain on the optical properties of defective TMDs monolayers was also

studied. Interestingly, DDTs in MLs MoS2 with VMo become visible in the in-plane

spectra as mechanical deformations are applied. We have traced this behavior back

to the change in the hybridization of atomic orbitals surrounding the vacancy at the

defect site. Depending on the type of strain, the absorption strength of MLs TMDs

with vacancy complexes has been reduced by a factor of two to three. Thus, the

brightness of the spectra from samples with point vacancies could be reduced via

strain.

In chapter 5, we studied the charge transport properties of devices based on

metallic and Semiconductor phases of MoS2 monlayers. Systems with various point

defects at both interfaces of the 1T/2H-MoS2 heterojunctions were investigated: VS,

V2S−top, V2S−par, VMo, VMo+3S, VMo+6S, MoS, Mo2S−top, SMo, and 2S − topMo. The

first-principles simulations and NEGF technique were used to compute the LDOS,

transmission curves, and IV characteristics of perfect and defective devices under

bias in the range of 0.00V till 1.50V . Our systematic study showed that defects at

the interfaces improve the transport properties of such devices. More notably, we
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have found that transport properties are enhanced in the presence of energetically

favorable intrinsic point defects. In contrast to the scattering character of defects

in 2H-phase MoS2, at the interface, they led to emergence of resonant states close

to the Fermi level, thereby giving rise to the enhancement of the current flow. In

particular, creating a molybdenum vacancy induced defect midgap states in the

LDOS and improved the transport characteristics, which, in turn, led to an increase

in the current up to two orders of magnitude.

6.2 Outlook

Applying strain allows to tune the electronic, energetic, and optical properties of

monolayers in a controllable way. Besides, due to the analogy of the properties and

geometries of various compounds in the TMD family, we expect a similar response

to strain from the intrinsic defects inside their monolayers. As the properties of the

TMDs monolayers containing defects are very much affected by the applied defor-

mations, a possible approach is to take a closer look at the change in their exitonic

effects under different strain situations. The knowledge developed in this study

could also pave the way for the promising applications of lateral heterojunctions

of 1T-2H MoS2 monlayers in field effect devices. The next step would be applying

strain to such lateral heterojunctions-based devices. Hence, developing our method

and analysis towards the better understanding of the response from defects within

photodetectors under the mechanical deformations. Moreover, transport properties

of these two dimensional defective devices could be investigated when gate voltage

is applied or coulomb engineering techniques are used to manipulate the electronic

states.

These findings should stimulate further experimental investigations on strain

and defect engineering of TMDs monolayers and will be beneficial to their potential

application in self-powered nanosystems, electromechanical sensors, photovoltaic,

piezoelectric, and flexible devices. The exploitation of these phenomena may also

allow to build blocks for new electronic and optoelectronic devices with minimal

sizes and performances surpassing present technologies. Thus, it is our belief that
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the knowledge we obtained from this thesis can provide new perspectives for the

future applications of nanoelectronic devices based on TMDs monolayers.
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Çakir. In pursuit of barrierless transition metal dichalcogenides lateral het-

erojunctions. Nanotechnology, 29(29), may 2018. (cit. on pp. 4, 5, 75, and 78)

[46] Andrew J. Mannix, Brian Kiraly, Mark C. Hersam, and Nathan P. Guisinger.

Synthesis and chemistry of elemental 2D materials, jan 2017. (cit. on p. 5)

[47] J. Klein, M. Lorke, M. Florian, F. Sigger, L. Sigl, S. Rey, J. Wierzbowski,

J. Cerne, K. Müller, E. Mitterreiter, P. Zimmermann, T. Taniguchi, K. Watan-

abe, U. Wurstbauer, M. Kaniber, M. Knap, R. Schmidt, J. J. Finley, and A. W.



Bibliography 103

Holleitner. Site-selectively generated photon emitters in monolayer MoS2 via

local helium ion irradiation. Nature Communications, 10(1):2755, dec 2019.

(cit. on pp. 5, 6, 43, 44, 46, 59, 61, 62, 63, 69, 75, and 80)

[48] Ali Zavabeti, Azmira Jannat, Li Zhong, Azhar Ali Haidry, Zhengjun Yao,

and Jian Zhen Ou. Two-Dimensional Materials in Large-Areas: Synthesis,

Properties and Applications, feb 2020. (cit. on pp. 5 and 6)

[49] Claudia Backes, Amr M Abdelkader, Concepción Alonso, Amandine Andrieux-

Ledier, Raul Arenal, Jon Azpeitia, Nilanthy Balakrishnan, Luca Banszerus,

Julien Barjon, Ruben Bartali, Sebastiano Bellani, Claire Berger, Reinhard

Berger, M. M.Bernal Ortega, Carlo Bernard, Peter H Beton, André Beyer,
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Danda, and Marija Drndić. Centimeter-Scale Nanoporous 2D Membranes

and Ion Transport: Porous MoS 2 Monolayers in a Few-Layer Matrix. Nano

Letters, 19(1):392–399, jan 2019. (cit. on p. 6)

[59] S. Mathew, K. Gopinadhan, T. K. Chan, X. J. Yu, D. Zhan, L. Cao, A. Rusydi,

M. B.H. Breese, S. Dhar, Z. X. Shen, T. Venkatesan, and John T.L. Thong.

Magnetism in MoS 2 induced by proton irradiation. Applied Physics Letters,

101(10):102103, sep 2012. (cit. on p. 6)

[60] Sefaattin Tongay, Joonki Suh, Can Ataca, Wen Fan, Alexander Luce,

Jeong Seuk Kang, Jonathan Liu, Changhyun Ko, Rajamani Raghunathanan,

Jian Zhou, Frank Ogletree, Jingbo Li, Jeffrey C. Grossman, and Junqiao

Wu. Defects activated photoluminescence in two-dimensional semiconduc-

tors: interplay between bound, charged and free excitons. Scientific Reports,

3(1):2657, dec 2013. (cit. on pp. 6, 47, 52, and 75)

[61] Wu Zhou, Xiaolong Zou, Sina Najmaei, Zheng Liu, Yumeng Shi, Jing Kong,

Jun Lou, Pulickel M Ajayan, Boris I Yakobson, and Juan Carlos Idrobo. In-



106 Bibliography

trinsic structural defects in monolayer molybdenum disulfide. Nano Letters,

13(6):2615–2622, 2013. (cit. on pp. 6, 44, 45, 58, 61, 63, 75, and 80)

[62] Arend M. Van Der Zande, Pinshane Y. Huang, Daniel A. Chenet, Timothy C.

Berkelbach, Yumeng You, Gwan Hyoung Lee, Tony F. Heinz, David R. Re-

ichman, David A. Muller, and James C. Hone. Grains and grain boundaries

in highly crystalline monolayer molybdenum disulphide. Nature Materials,

12(6):554–561, jun 2013. (cit. on pp. 6 and 58)

[63] Zhuangzhi Wu, Baizeng Fang, Zhiping Wang, Changlong Wang, Zhihong Liu,

Fangyang Liu, Wei Wang, Akram Alfantazi, Dezhi Wang, and David P. Wilkin-

son. MoS2 nanosheets: A designed structure with high active site density for

the hydrogen evolution reaction. ACS Catalysis, 3(9):2101–2107, sep 2013.

(cit. on p. 6)

[64] Joonki Suh, Tae Eon Park, Der Yuh Lin, Deyi Fu, Joonsuk Park, Hee Joon

Jung, Yabin Chen, Changhyun Ko, Chaun Jang, Yinghui Sun, Robert Sinclair,

Joonyeon Chang, Sefaattin Tongay, and Junqiao Wu. Doping against the

native propensity of MoS2: Degenerate hole doping by cation substitution.

Nano Letters, 14(12):6976–6982, dec 2014. (cit. on p. 6)

[65] Stephen McDonnell, Rafik Addou, Creighton Buie, Robert M. Wallace, and

Christopher L. Hinkle. Defect-Dominated Doping and Contact Resistance in

MoS2. ACS Nano, 8(3):2880–2888, mar 2014. (cit. on pp. 6, 7, and 43)

[66] Marcos A. Pimenta, Elena Del Corro, Bruno R. Carvalho, Cristiano Fan-

tini, and Leandro M. Malard. Comparative study of raman spectroscopy in

graphene and MoS2-type transition metal dichalcogenides. Accounts of Chem-

ical Research, 48(1):41–47, jan 2015. (cit. on p. 6)

[67] Amber McCreary, Ayse Berkdemir, Junjie Wang, Minh An Nguyen,
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[98] J. Mungúıa, G. Bremond, J. M. Bluet, J. M. Hartmann, and M. Mermoux.

Strain dependence of indirect band gap for strained silicon on insulator wafers.

Applied Physics Letters, 93(10):102101, sep 2008. (cit. on p. 7)

[99] Rafael Roldán, Andrés Castellanos-Gomez, Emmanuele Cappelluti, and Fran-

cisco Guinea. Strain engineering in semiconducting two-dimensional crystals,

aug 2015. (cit. on pp. 7, 8, 33, 42, 45, 58, and 59)

[100] M. Ghorbani-Asl, S. Borini, A. Kuc, and T. Heine. Strain-dependent modula-

tion of conductivity in single-layer transition-metal dichalcogenides. Physical

Review B, 87(23):235434, jun 2013. (cit. on pp. 7, 42, 45, and 58)

[101] David Lloyd, Xinghui Liu, Jason W Christopher, Lauren Cantley, Anubhav

Wadehra, Brian L Kim, Bennett B Goldberg, Anna K Swan, and J Scott

Bunch. Band Gap Engineering with Ultralarge Biaxial Strains in Suspended

Monolayer MoS2. Nano Letters, 16(9):5836–5841, 2016. (cit. on pp. 7 and 58)

[102] Jason W. Christopher, Mounika Vutukuru, David Lloyd, J. Scott Bunch, Ben-

nett B. Goldberg, David J. Bishop, and Anna K. Swan. Monolayer MoS2

Strained to 1.3% with a Microelectromechanical System. Journal of Micro-

electromechanical Systems, pages 1–10, 2019. (cit. on p. 7)



112 Bibliography

[103] Li Gao. Flexible Device Applications of 2D Semiconductors. Small,

13(35):1603994, sep 2017. (cit. on pp. 7, 37, and 49)

[104] Ji Feng, Xiaofeng Qian, Cheng Wei Huang, and Ju Li. Strain-engineered

artificial atom as a broad-spectrum solar energy funnel. Nature Photonics,

6(12):866–872, 2012. (cit. on pp. 7 and 49)

[105] G. Plechinger, F.-X. Schrettenbrunner, J. Eroms, D. Weiss, C. Schüller, and

T. Korn. Low-temperature photoluminescence of oxide-covered single-layer

MoS2. physica status solidi (RRL) - Rapid Research Letters, 6(3):126–128,

mar 2012. (cit. on pp. 8 and 33)

[106] Gerd Plechinger, Andres Castellanos-Gomez, Michele Buscema, Herre S.J. Van

Der Zant, Gary A Steele, Agnieszka Kuc, Thomas Heine, Christian Schüller,

and Tobias Korn. Control of biaxial strain in single-layer molybdenite using

local thermal expansion of the substrate. 2D Materials, 2(1):015006, mar 2015.

(cit. on pp. 8 and 33)

[107] Yeung Yu Hui, Xiaofei Liu, Wenjing Jie, Ngai Yui Chan, Jianhua Hao, Yu Te

Hsu, Lain Jong Li, Wanlin Guo, and Shu Ping Lau. Exceptional tunability

of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano,

7(8):7126–7131, aug 2013. (cit. on pp. 8 and 33)

[108] Mingyuan Huang, Hugen Yan, Tony F. Heinz, and James Hone. Prob-

ing strain-induced electronic structure change in graphene by Raman spec-

troscopy. Nano Letters, 10(10):4074–4079, oct 2010. (cit. on pp. 8 and 33)

[109] Hiram J. Conley, Bin Wang, Jed I. Ziegler, Richard F. Haglund, Sokrates T.

Pantelides, and Kirill I. Bolotin. Bandgap engineering of strained monolayer

and bilayer MoS2. Nano Letters, 13(8):3626–3630, aug 2013. (cit. on pp. 8

and 33)

[110] Yanlong Wang, Chunxiao Cong, Weihuang Yang, Jingzhi Shang, Namphung

Peimyoo, Yu Chen, Junyong Kang, Jianpu Wang, Wei Huang, and Ting Yu.



Bibliography 113

Strain-induced directindirect bandgap transition and phonon modulation in

monolayer WS2. Nano Research, 8(8):2562–2572, aug 2015. (cit. on pp. 8

and 33)

[111] Shengxue Yang, Cong Wang, Hasan Sahin, Hui Chen, Yan Li, Shu Shen Li,

Aslihan Suslu, Francois M. Peeters, Qian Liu, Jingbo Li, and Sefaattin Tongay.

Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale

strain engineering. Nano Letters, 15(3):1660–1666, mar 2015. (cit. on pp. 8

and 33)

[112] Andres Castellanos-Gomez, Rafael Roldán, Emmanuele Cappelluti, Michele

Buscema, Francisco Guinea, Herre S.J. Van Der Zant, and Gary A. Steele.

Local strain engineering in atomically thin MoS2. Nano Letters, 13(11):5361–

5366, nov 2013. (cit. on pp. 8 and 33)

[113] A. A. Griffits. VI. The phenomena of rupture and flow in solids. Philosophical

Transactions of the Royal Society of London. Series A, Containing Papers of

a Mathematical or Physical Character, 221(582-593):163–198, jan 1921. (cit.

on p. 8)

[114] Ryan C. Cooper, Changgu Lee, Chris A. Marianetti, Xiaoding Wei, James

Hone, and Jeffrey W. Kysar. Nonlinear elastic behavior of two-dimensional

molybdenum disulfide. Physical Review B - Condensed Matter and Materials

Physics, 87(3):035423, jan 2013. (cit. on p. 8)

[115] Richard M. Martin. Electronic Structure Basic Theory and Practical Methods.

apr 2004. (cit. on pp. 12 and 17)

[116] Robert G. Parr and Weitao. Yang. Density-functional theory of atoms and

molecules. Oxford University Press, 1989. (cit. on pp. 12 and 17)

[117] M. Born and R. Oppenheimer. Zur Quantentheorie der Molekeln. Annalen

der Physik, 389(20):457–484, jan 1927. (cit. on pp. 12 and 14)



114 Bibliography

[118] D. R. Hartree. The Wave Mechanics of an Atom with a Non-Coulomb Central

Field Part I Theory and Methods. Mathematical Proceedings of the Cambridge

Philosophical Society, 24(1):89–110, 1928. (cit. on p. 14)
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[175] N. Troullier and José Luriaas Martins. Efficient pseudopotentials for plane-

wave calculations. Physical Review B, 43(3):1993–2006, jan 1991. (cit. on

pp. 38, 60, and 76)
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Ana Laura Eĺıas, Amber McCreary, Jun Lou, Pulickel M Ajayan, Humberto



126 Bibliography

Terrones, Luis Balicas, and Mauricio Terrones. CVD-grown monolayered

MoS2 as an effective photosensor operating at low-voltage. 2D Materials,

1(1):011004, apr 2014. (cit. on p. 59)

[211] Ursula Wurstbauer, Bastian Miller, Eric Parzinger, and Alexander W. Holleit-

ner. Light-matter interaction in transition metal dichalcogenides and their

heterostructures, 2017. (cit. on p. 59)

[212] Peng Tao, Huaihong Guo, Teng Yang, and Zhidong Zhang. Strain-induced

magnetism in MoS2 monolayer with defects. Journal of Applied Physics,

1151(10):44311–173105, feb 2014. (cit. on p. 60)

[213] Huiling Zheng, Baishun Yang, Dingdi Wang, Ruilin Han, Xiaobo Du, and

Yu Yan. Tuning magnetism of monolayer MoS 2 by doping vacancy and

applying strain Strain-induced magnetism in MoS 2 monolayer with defects

Tuning magnetism of monolayer MoS 2 by doping vacancy and applying strain.

Applied Physics Letters, 1041(10):132403–44311, mar 2014. (cit. on p. 60)

[214] Aolin Li, Jiangling Pan, Zhixiong Yang, Lin Zhou, Xiang Xiong, and Fangping

Ouyang. Charge and strain induced magnetism in monolayer MoS2 with S

vacancy. Journal of Magnetism and Magnetic Materials, 451:520–525, apr

2018. (cit. on p. 60)

[215] William Humphrey, Andrew Dalke, and Klaus Schulten. VMD – Visual Molec-

ular Dynamics. Journal of Molecular Graphics, 14:33–38, 1996. (cit. on p. 61)

[216] Peter Y. Yu, Manuel Cardona, Peter Y. Yu, and Manuel Cardona. Intro-

duction. In Fundamentals of Semiconductors, pages 1–11. Springer, Berlin,

Heidelberg, 2013. (cit. on p. 62)

[217] K. Barthelmi, J. Klein, A. Hötger, L. Sigl, F. Sigger, E. Mitterreiter, S. Rey,

S. Gyger, M. Lorke, M. Florian, F. Jahnke, T. Taniguchi, K. Watanabe,
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Appendix A

Defective MoS2 Monolayers under

strain

A.1 VS vacancy

In Figs. A.1(a)–(d), studying the ML MoS2 with VS, we display the evolution of

the band edges and DLs of a sulfur vacancy, VS, under four types of strain. The

black lines are band edges and the green dashed-line displays the Fermi level’s po-

sition. The colored lines indicate the states DL1, DL2, and DL3. Here, we are only

interested in the double-degenerate empty states close to the Fermi level. In the

unstrained monolayer, DL2 and DL3 are mostly composed of dxy and dx2−y2 orbitals

of the neighboring molybdenums, respectively, as shown in Fig. A.2. Their degen-

eracy is lifted under uniaxial and shear T1 strains since the hexagonal symmetry is

removed. Besides, isotropic biaxial strain does not split the degenerate levels and

just move them closer to the CBM. The uniaxial strain in X-direction tunes DL2

more than DL3, but strain in Y-direction shifts DL3 more than DL2. In addition,

shear T1 strain makes a mixture of contributions dxy and dx2−y2 orbitals to DL2

and DL3. As shown in Figs. A.1(d),(e), shear T1 does not influence much the band

edges though degeneracy splitting is noticeable. However, in all the cases, the po-

sition of the occupied shallow level stays almost unchanged. Fig. A.1(e) illustrates

the amount of degenerate levels’ separation in the same interval of strain for four
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types of strains. Even a small quantity, around ±2%, of uniaxial or shear T1 strain

enhances the level separation to around 60 or 110 meV, respectively. Further in-

creasing the tensile shear T1 strain splits the levels up to almost 260 meV at +5%.

Figure A.1: (Color online) Evolution of the band edges along with the DLs of the
MoS2 ML with VS under strain in a) X-direction, b) Y-direction, c) XY-direction,
and d) shear T1. The Fermi level and band edges are indicated with green dashed-
line and black lines, respectively. The defect states, DL1–DL5, are shown with
orange, red, blue, gray, and magenta line, respectively. e) The amount of degeneracy
splitting of the deep DLs is plotted in the same interval for all four strains.

A.2 Orbital Characteristics

VS vacancy

Fig. A.2 displays the orbital characteristics of vacancy states for VS in ML MoS2 as a

function of strain along X-direction, Y-direction, and shear T1. In these images, blue

and red orbitals, plotted at isosurface of 0.2 Å−3, corresponds to the lower and higher

energy DLs at the zero strain, respectively. The orbitals’ color of each band stay the

same for all the strain cases except shear T1 which mixes the orbital components.

Under uniaxial strain, the localized defect states are displayed with similar coloring.

However, the defect levels are shown with cyan and magenta orbitals for compression

and tensile shear T1 strains due to their orbital mixing.
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Figure A.2: (Color online) Orbital characteristics of unoccupied deep DLs of VS in
ML MoS2 at a) -3.0%, b) 0.0%, and c) +3.0% strain in X-direction, and d) -3.0%,
e) 0.0%, and f) +3.0% strain in Y-direction, and g) -1.5%, h) 0.0%, and i) +1.0%
shear T1 strain. The red and blue orbitals, plotted at isosurface of 0.2 Å−3, are
indicating the DLs at zero strain, respectively, which also label the localized states
of the monolayers under strain in X- and Y-direction. In the case of shear T1 strain,
DLs are displayed with cyan and magenta orbitals due to their orbital mixing.

V2S−top vacancy

In Fig. A.3, we show the orbital characteristics of deep DLs close to the Fermi energy

for V2S−top in ML MoS2 as a function of strain along X-direction, Y-direction, and

shear T1 strain. In these images, blue and red orbitals, plotted at isosurface of 0.2

Å−3, corresponds to the lower and higher energy DLs at the zero strain, respectively.

The orbitals’ color of each band stay the same for all the strain cases except shear

T1 which mixes the orbital components. Under uniaxial strain, the localized defect

states are displayed with similar coloring. However, under compression and tensile

shear T1 strains, the DLs are shown with cyan and magenta orbitals due to their

orbital mixing.
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Figure A.3: (Color online) Orbital characteristics of unoccupied deep DLs of V2S−top
in Ml MoS2 at a) -3.0%, b) 0.0%, and c) +5.0% strain in X-direction, and d) -3.0%,
e) 0.0%, and f) +3.0% strain in Y-direction, and g) -1.0%, h) 0.0%, and i) +1.0%
shear T1 strain. The red and blue orbitals, plotted at isosurface of 0.2 Å−3, are
indicating the DLs at zero strain, respectively, which also label the localized states
of the monolayers under strain in X- and Y-direction. In the case of shear T1 strain,
DLs are displayed with cyan and magenta orbitals.

V2S−par vacancy

We display the orbital characteristics of V2S−par in ML MoS2 for strain along X-

direction, Y-direction, and shear T1 strain, as depicted in Fig. A.4. In these images,

blue and red orbitals, plotted at isosurface of 0.2 Å−3, corresponds to the lower

and higher energy DLs at the zero strain, respectively. The orbitals’ color of each

band stay the same for all the strain cases except shear T1 which mixes the orbital

components. Under uniaxial strain, the localized defect states are displayed with

similar coloring. However, under compression and tensile shear T1 strains, the DLs

are shown with cyan and magenta orbitals due to their orbital mixing. strains.
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Figure A.4: (Color online) Orbital characteristics of unoccupied deep DLs of V2S−par
in ML MoS2 at a) +1.0%, b) 0.0%, and c) +3.0% strain in X-direction, and d) -1.5%,
e) 0.0%, and f) +3.0% strain in Y-direction, and g) -1.0%, h) 0.0%, and i) +1.0%
shear T1 strain. The red and blue orbitals, plotted at isosurface of 0.2 Å−3, are
indicating the DLs at zero strain, respectively, which also label the localized states
of the monolayers under strain in X- and Y-direction. In the case of shear T1 strain,
DLs are displayed with cyan and magenta orbitals.

VMo vacancy

In Fig. A.5, we illustrate the orbital characteristics of deep DLs close to the Fermi

energy for ML MoS2 with VMo as a function of strain along X-direction, Y-direction,

and shear T1 strain. The orbitals are plotted at isosurface of 0.2 Å−3 and colored

based on their energies, from the lowest to the highest, their color is blue, red, gray,

orange, cyan, and magenta, respectively. These strains change the CBM, below

which introduce an empty shallow DL. This band is constituted of dx2−y2 and dxy

in case of compression in X-direction and dx2−y2 , dxy, and a small portion of px for

compression and tensile in Y-direction.
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Figure A.5: (Color online) Orbital characteristics of unoccupied deep DLs of VMo in
ML MoS2 at a) -1.0%, b) 0.0%, and c) +1.0% strain in X-direction, and d) -1.5%, e)
0.0%, and f) +2.0% strain in Y-direction, and g) -1.0%, h) 0.0%, and i) +1.0% shear
T1 strain. The orbitals are plotted at isosurface of 0.2 Å−3 and colored based on
their energies, from the lowest to the highest, their color is blue, red, gray, orange,
cyan, and magenta, respectively.

A.3 Geometry modifications for MLs MoS2 with

VMo

In Fig. A.6, we show the change in the position of the neighboring atoms around a

Mo vacancy inside ML MoS2, under different strains. The dramatic modification of

the monolayers is depicted which leads to the breaking of the ”C3v” symmetry.
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Figure A.6: (Color online) The change in the position of the atoms surrounding
VMo in ML MoS2 at first row) -1.0%, 0.0%, +2.0% strain in X-direction, and second
row) -1.5%, 0.0%, and +2.0% strain in Y-direction, and third row) -1.0%, 0.0%, and
+1.0% shear T1 strain. The position of the vacancy and its neighboring sulfurs are
highlighted with a cyan circle.

A.4 VMo+3S and VMo+6S vacancies

The evolution of the band edges and localized DLs of VMo+3S and VMo+6S are demon-

strated in Figs. A.7 and A.8, respectively. The black lines are band edges and the

green dashed-line displays the Fermi levels position. The colored lines indicate the

states DL1–DL8. As it can be seen, the change in geometry and hybridization of

the orbital components result in the modification and mixing of the defect bands.

However, it can still be observed that compressive and tensile uniaxial and biaxial

strains shift the CBM but not the VBM. In both cases, shear T1 strain does not

modify the band edges.
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Figure A.7: (Color online) Evolution of the band edges along with the DLs of ML
MoS2 with VMo+3S under strain in a) X-direction, b) Y-direction, c) XY-direction,
and d) shear T1. In all the plots, Fermi level and band edges are indicated with
green dashed-line and black lines, respectively. Other colored lines represent DLs.

Figure A.8: (Color online) Evolution of the band edges along with the DLs of ML
MoS2 with VMo+6S under strain in a) X-direction, b) Y-direction, c) XY-direction,
and d) shear T1. In all the plots, Fermi level and band edges are indicated with
green dashed-line and black lines, respectively. Other colored lines represent DLs.

A.5 Input parameters for the self-generated

pseudopotentials

The set of pseudopotentials used in these studies are self-generated by means of

”atom” tool which is provided by SIESTA’s developers along with the source code.

The tool and an instruction of how to generate the pseudopotentials can be found

under the ”/Util/Gen-basis/” directory. Here are the input parameters which we

used to produce:

Pseudopotential for Mo:

%define NEW_CC

pe Molybdenum

tm2
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Mo pbr

0.000 0.000 0.000 0.000 0.000 0.000

8 4

5 0 1.000 0.000 #5s

5 1 0.000 0.000 #5p

4 2 5.000 0.000 #4d

4 3 0.000 0.000 #4f

2.50000 3.00000 1.40000 2.20000 0.00000 2.55000 Core corrs

#23456789012345678901234567890123456789012345678901234567890 Ruler

Pseudopotential for S:

%define NEW_CC

pe Sulphur

tm2 2.08

S pbr

0.00 0.00 0.00 0.00 0.00 0.00

3 4

3 0 2.00 0.00

3 1 4.00 0.00

3 2 0.00 0.00

4 3 0.00 0.00

1.78 1.94 2.29 2.29 0.00 1.51

#2345678901234567890123456789012345678901234567890 Ruler
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B.1 Structure of the devices containing point

defects

Figure B.1: Top) Schematic of the device based on metallic (1T) and Semiconductor
(2H) phases of MoS2 monolayers is shown. Electrodes (only 1T-MoS2) and channel
region (a combination of 1T- and 2H-MoS2) are highlighted with shaded red and
black, respectively. The interfaces are indicated with green dashed-lines. All the
structures are considered periodic along the axis transverse to the transport direc-
tion. Down) Optimized defective structures with point defects at both interfaces
of the devices.
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B.2 Vector Current - VMo

Shown in Fig. B.2, vector currents are plotted for perfect systems and devices with

VMo at both interfaces. Vector current displays the direction and the amount of

current (size of the arrows) projected on each atom and at specific energy channel

(Ech), that comes from left (blue) or right (red) electrode. It can be clearly seen

that the presence of the vacancy at the interfaces opens up further energy channels

for the charge carriers to move.

Figure B.2: (Color online) Vector currents are shown for devices with per-
fect interfaces and where molybdenum vacancy, VMo, are present at both in-
terfaces. They are plotted at zero bias and specific energy channels, namely
E= −1.5, −1.0, −0.5, 1.0, 1.5eV . Blue and red arrows display the current at
each atom that comes from left and right electrode, respectively. The length of the
arrow indicates the current magnitude. It can be clearly seen that the presence of
the vacancy at the interfaces opens up further energy channels for the charge carriers
to move.
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B.3 Local Density of States (LDOS) projected

on atoms and orbitals

Figure B.3: (Color online) Density of states of the Molybdenum and Sulfur atoms
at the left interface projected (LDOS) onto the orbitals contributing to the total
DOS for devices containing a) V2S−par, b) VMo, c) 2S − topMo, at both interfaces.
It clearly shows that the most contributions come from the Mod and Sp orbitals.
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B.4 Calculated BandGap vs. other methods

Method This paper PBE-GGAa HSEb GWb

BandGap (eV) 1.76 1.715 2.21 2.78

Table B.1: Band gaps of 2H-MoS2 monolayer calculated at different levels of theory.
a) Rafael Roldn, et. al Annalen der Physik 526(9-10), 347357 (2014), b. H.-P.
Komsa and A. V. Krasheninnikov, Physical Review B,2015, 91, c. C. Ataca and S.
Ciraci, The Journal of Physical Chemistry C, 2011, 115, 1330313311
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B.5 Projected Local Density of States (PLDOS)

Figure B.4: (Color online) Projected local density of states (PLDOS) of devices
based on T-H heterophase junction of MoS2 monolayer under the biases with a)
perfect interface and b) containing molybdenum vacancy. The white dotted lines
indicate the bias window.
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