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Abstract

Medical imaging is a cornerstone for medical diagnosis, treatment planning,
and clinical studies. In order to delineate anatomical structures and other
regions of interest in such images, deep neural networks can be employed,
performing image segmentation for the medical expert. Because of the high-
risk setting, these models need to be not only exact and robust, but also
indicate error likelihood via reliable and meaningful uncertainty estimates.
This predictive uncertainty can be subdivided into aleatoric and epistemic
uncertainty, and captured using deep ensembles, Bayesian neural networks,
and additional loss attenuating output neurons. The main contribution of
this work is a comprehensive comparison between the direct decomposition of
uncertainty in Bayesian neural networks via the mutual information metric
and the explicit modelling of epistemic and aleatoric uncertainty in Bayesian
neural networks with an additional heteroscedastic loss-attenuating neuron.
This comparison is performed in the context of medical image segmenta-
tion of the liver from CT scans, employing a 3D au-net as base architecture.
The quality of the uncertainty decomposition in the resulting uncertainty
maps is qualitatively evaluated and quantitative behaviour of aleatoric and
epistemic uncertainty is systematically compared for different experiment
settings with varying training set sizes, label noise, and distribution shifts.
The results show the mutual information decomposition to robustly yield
meaningful aleatoric and epistemic uncertainty estimates, with both largely
conforming to their definitions and consistent with other works. Noisiness
in the activation of the loss-attenuating neuron leads to the conclusion that
the mutual information decomposition remains significantly more suited for
uncertainty decomposition even for Bayesian neural networks combined with
loss-attenuating neurons. This work further found that the addition of a
heteroscedastic neuron does not improve the quality of the uncertainty es-
timates when decomposed via the mutual information metric. An ancillary
contribution is the demonstration of a strong influence of the choice of loss
function on the quality of uncertainty decomposition, with soft Dice loss
heavily deteriorating the quality of the decomposed uncertainties.
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Introduction

1.1 Motivation

Medical imaging is a cornerstone of medical diagnosis, treatment planning,
and clinical studies. In order to delineate anatomical structures and other
regions of interest in such images accurately and on a large scale, deep neural
networks can be employed to perform image segmentation for the medical
expert. Fully convolutional neural networks, for instance, achieve state-of-
the-art results on various medical image segmentation tasks (Iantsen et al.,
2021; Ma, 2021). However, deep networks are traditionally optimised via
point estimates which have been shown to result in overconfident predictions
and have the tendency to fail silently. This is especially problematic in the
medical setting in which wrong model decisions can have severe consequences.

Because medical image segmentation is a high-risk scenario, the models
need to be exact and robust, not only providing accurate predictions, but
also reliable, i.e. well-calibrated, and meaningful uncertainty estimates. For
instance, instead of blindly giving a prediction to practitioners, the model
should indicate via a higher uncertainty estimate when its segmentation qual-
ity is likely to be lower because the input image does not resemble the train-
ing samples or because labels for such an image were noisy. In the setting
of medical diagnosis support, reliable uncertainty estimates not only avoid
potentially dire consequences of model errors, but might more generally help
to increase the clinical staff’s confidence in deep learning models.

Apart from being helpful to the end-application, uncertainty estimates
might also support the training itself, as well as aid the scientific understand-
ing of neural network dynamics in general, by providing additional insights
into the network’s decision process. Active learning is a particularly salient
example, in which uncertainty estimates can be used to select samples to an-
notate and subsequently train on, with training efficiency largely depending
on the quality of the given uncertainty estimates.

1
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From a Bayesian perspective, the overall predictive uncertainty can be
subdivided into two major uncertainty types:

• Aleatoric uncertainty captures the noise or stochasticity inherent to the
underlying process which generates the training data.

• Epistemic uncertainty represents the uncertainty of the model itself.

The former is irreducible, while the latter can be explained away, e.g. by
training a model on more data. This distinction increases the interpretabil-
ity of the resulting uncertainty estimates, which is particularly desirable
for human-in-the-loop scenarios. Moreover, state of the art active learning
strategies employ epistemic uncertainty sampling, and can therefore profit
from high-quality epistemic estimates (Nguyen et al., 2019). Aleatoric un-
certainty, on the other hand, lends itself naturally to use in loss attenuation
during training (Kendall and Gal, 2017), and might further be used to au-
tomatically detect annotation inconsistencies in the training data (Thulasi-
dasan et al., 2019).

1.2 Research Question

To capture predictive uncertainty, deep ensembles and Bayesian Neural Net-
works have been proposed and numerous recent approaches employ additional
output neurons that perform loss attenuation for difficult training samples.
Two major approaches for obtaining decomposed uncertainty estimates are
the direct decomposition of a Bayesian Neural Network’s predictive distri-
bution (Kwon et al., 2020; Mobiny et al., 2021), derived mathematically
from the variability of the predictive distribution, and the combination of a
Bayesian neural network with an additional loss-attenuating output neuron
as proposed by Kendall and Gal (2017), which, by combining two uncertainty
quantification methods, makes the sources of different uncertainty types more
explicit and adds another measure for aleatoric uncertainty.

While the combination of BNNs with an additional output neuron for
uncertainty decomposition has been investigated (Kendall and Gal, 2017),
there exists, to the best of the author’s knowledge, no comprehensive com-
parison of such an augmentation with a direct decomposition metric applied
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on the predictive distribution of a pure Bayesian neural network.1 The goal
of this work is to provide such a comparison, with a focus on the quality of
the resulting decomposed uncertainty values. More succinctly:

How does the quality of uncertainty decomposition compare for a Bayesian
neural network with mutual information metric, and the combination
of a Bayesian neural network with an additional heteroscedastic loss
attenuating neuron?

1.3 Approach

The research question is explored in the context of semantic segmentation on
computed tomography scans of the liver region. To this end, this work in-
vestigates two binary segmentation architectures applied on the Liver Tumor
Segmentation data set (LiTS; Bilic et al., 2019): a classical Bayesian Neural
Network and a Bayesian Neural Network extended with a simplified version
of the heteroscedastic uncertainty neuron, henceforth called heteroscedas-
tic logit smoothing neuron, first introduced for vanilla neural networks by
(Neumann et al., 2018). This variant is assumed to perform comparably to
Kendall and Gal’s heteroscedastic neuron while being simpler, more intuitive,
and computationally cheaper due to a lack of sampling.

Construing the activation of the heteroscedastic logit smoothing neuron as
an aleatoric uncertainty measure, as done for Kendall and Gal’s heteroscedas-
tic uncertainty neuron by (Nair et al., 2020; DeVries and Taylor, 2018b;
Kwon et al., 2020), is compared to the mutual information metric applied on
the predictive distribution for decomposing the predictive uncertainty into
aleatoric and epistemic parts.

In order to evaluate the quality of the decomposed uncertainties, exper-
iments with varying training set sizes, artificial label noise, and inference
on out of distribution (OOD) samples are performed. General segmentation
performance as well as calibration measures are reported and the resulting
uncertainty maps, derived for both uncertainty types, are qualitatively eval-
uated.

1Kwon et al. (2020) conduct a direct comparison between their proposed variance de-
composition and the combination of a Bayesian neural network with heteroscedastic neu-
rons. However, there appears to be a substantial flaw in their reproduction of Kendall and
Gal (2017) which will be addressed in this work.
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Varying the training set size is expected to affect epistemic uncertainty
estimates, adding artificial label noise to the training masks should increase
aleatoric uncertainty estimates, while inference on OOD samples is expected
to result in higher epistemic uncertainty.

1.4 Contribution

The main contribution of this work is an extensive comparison of the quality
of uncertainty decomposition between a vanilla Bayesian neural network and
a Bayesian neural network with an added heteroscedastic logit smoothing
neuron.

The comparison results in advice for practitioners on the decomposition
afforded by the predictive distribution versus the separate activation of the
heteroscedastic neuron.

This work is, to the best of the author’s knowledge, also the first inves-
tigation into the addition of a heteroscedastic logit smoothing neuron to a
Bayesian neural network, and the first work to explore the parallels between
Kendall and Gal (2017) and Neumann et al. (2018).

Over the course of this work, some differences between Kendall and Gal
(2017)’s work and its reproductions (Kwon et al., 2020; DeVries and Taylor,
2018b; Nair et al., 2020) are illuminated, most notably concerning the choice
of aleatoric uncertainty measure.

While the tendency of models overfitting when trained with Dice loss has
been observed in many prior works (Mehrtash et al., 2020; Guo et al., 2017;
Bertels et al., 2021; Sander et al., 2019), the author is not aware of any work
that focuses on the effect of Dice loss on the quality of uncertainty decom-
position. This work evaluates the importance of the choice of loss function
on the decomposed uncertainties derived from both model architectures.

1.5 Outline

The rest of this work is structured as follows. Section 2 provides the context
of this work, it introduces the domain of medical imaging, outlines compu-
tational approaches for image segmentation, with a focus on the state of the
art convolutional neural networks, as well as giving some definitions related
to uncertainty and model calibration, which will be used throughout this
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work. Section 3 aims to give a comprehensive overview of current uncer-
tainty quantification methods with a focus on learnt loss attenuation and
uncertainty decomposition techniques. Section 4 describes in detail the un-
derlying data, the neural network architectures and hyperparameters, as well
as the evaluation setups and measures. Section 5 reports all results obtained
from the conducted experiments. Section 6 uses these results in order to
answer the research question and to gather additional insights into some ob-
servations that were made along the way. Finally, Section 7 summarises this
work, describes its limitations, and provides an outlook for potential future
work.



Background

This section provides an overview of the application domain, basic concepts,
and the foundations of the employed methods. It first introduces the domain
of medical imaging with a focus on computed tomography scans of the liver
region, its characteristics, and challenges. Then, it describes computational
approaches for image segmentation, with a particular focus on deep convo-
lutional neural networks (CNNs) as the state of the art approach. Their
architecture and training are briefly described, along with some popular reg-
ularisation techniques. Lastly, model uncertainty and its two types, aleatoric
and epistemic uncertainty, are defined and model calibration along with some
established metrics are presented.

2.1 Medical Imaging

Medical imaging provides 2D or 3D images of a patient’s internal tissue
structure and is therefore an important tool that enables clinicians to (often
non-invasively) perform diagnosis, intervention planning, and the tracking of
disease progression.

Medical images are commonly described along anatomical planes, which
provide canonical viewing angles of the patient (Betts et al., 2013), as shown
in Figure 2.1, or with region and organ specific coordinate systems, such as
the regions and quadrants describing the abdomen in Figure 2.2.

The three prevalent technologies are sonography, computed tomography
(CT), and magnetic resonance imaging (MRI). Figure 2.3 shows a rough
comparison of the different imaging properties (O’Neill et al., 2015). The
following explanations focus on computed tomography, as it is the method
with which the data underlying this work was acquired.

Artefacts in medical imaging are undesirable visual phenomena appearing
in the image that do not reflect reality, and are caused by physical limita-
tions of the scanning process (Maier et al., 2018). Examples include noise
as random variability in the intensity of voxels, partial volume effects where
multiple structures smaller than the image resolutions produce a measure-
ment of their average density, and motion artefacts caused by the patient or
tissue moving during a scan.

6



2.1. Medical Imaging 7

Figure 2.1: Visualisation of the most common anatomical planes: sagittal, coronal,
and transverse. (Betts et al., 2013); image taken from OpenStax licensed under
Creative Commons Attribution License v4.0.

Figure 2.2: The regions and quadrants used to describe the abdominal cavity
(Betts et al., 2013); image taken from OpenStax licensed under Creative Commons
Attribution License v4.0.
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RepeatabilityAvailability

Speed

Quality Side-effect free

Costs

Sonography

Computed Tomography

Magnetic resonance imaging

Figure 2.3: A simplified overview of the trade-offs between the most common
imaging techniques for liver diagnostics. Ranking is only relative and based on
qualitative descriptions found in literature (O’Neill et al., 2015; Hann et al., 2000).

2.2 Computed Tomography

Computed tomography creates medical 3D images by continuously moving
an X-Ray imaging system around the patient. A computer program is then
used to combine the 2D images taken from multiple angles into a 3D re-
construction (Maier et al., 2018). The resulting image shows the internal
structure of the body, including abnormalities, such as diffuse changes or fo-
cal lesions, based on different tissue radiodensities. Injectable contrast media
can be used to highlight the vascular system, show organ function, bleeding,
and barrier disruptions. CT potentially offers higher spatial resolution than
MRI or sonography, especially for hard tissues, at the cost of higher radiation
exposure. As image noise is increased with reconstructions at higher resolu-
tion, and is reduced by higher X-ray intensities and longer scanning times, a
balance needs to be struck between image quality and radiation dose. In com-
parison, MRI produces 3D images without radiation, allows for more flexible
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temporal-spatial resolution tradeoffs, and has higher soft tissue fidelity (Lin
and Alessio, 2009), which allows for the differentiation between benign and
malignant growths in the liver setting, and shows higher sensitivity for small
growths despite lower spatial resolution (Alabousi et al., 2021). However,
MRI scans are more time intensive, costly, and less widely available (O’Neill
et al., 2015), and are contraindicated for patients that have electronic or
metal implants, such as a pacemakers or orthopedic implants. CT scans are
therefore the standard of care for many diagnostic plans, as they provide ap-
propriate diagnostic insight, speed, price and availability (Eisenhauer et al.,
2009).

2.3 The Liver

The liver is one of the largest organs and the largest gland of the body.
It maintains and supports a variety of important body functions, such as
metabolic processes, the storage of nutrients, the removal of waste products,
toxins, and pathogens, and the synthesis and secretion of important proteins
and hormones. Due to these diverse and important functions, diseases of the
liver often have high morbidity and mortality rates (Sanyal et al., 2018).

The liver is asymmetrically shaped and located in the abdominal cavity.
Most of its volume is in the right upper abdominal quadrant, reaching into
the left upper abdominal quadrant due to its large size. It is comprised of
multiple lobes that are connected to the gastrointestinal tract via the bile
duct and gallbladder. These are also connected to the vascular system via
the hepatic artery from the abdominal aorta, via the hepatic vein leading
to the inferior vena cava, and via the portal vein leading to other organs,
such as the gastrointestinal system, the pancreas, and the spleen (Qin and
Crawford, 2018).

2.4 Deep Learning for Image Segmentation

Automatic segmentation of medical image data is becoming increasingly im-
portant in the context of medical image analysis (Ritter et al., 2011) and as
an important preprocessing step in the field of radiomics (Timmeren et al.,
2020).

This section briefly describes image segmentation in general, followed by
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an outline of the currently most commonly employed image segmentation
technique, convolutional neural networks (CNNs). The loss and performance
metrics applied for neural networks (NNs), as well as a brief overview of
the concept of regularisation and three common regularising techniques, are
presented afterwards.

2.4.1 Image Segmentation

The (automatic) process of dividing an image into partitions based on some
criterion, such as ontological class, is called image segmentation. It is com-
mon to many applications, for instance, autonomous vehicles require seman-
tically segmented street scenes (Chougula et al., 2020), and content-based
image retrieval systems create abstractions of image contents via semanti-
cally segmented images (Manisha et al., 2020).

Another important field of application is the medical domain with a gen-
eral need for cheap and effective preventive healthcare and reliable methods
for tracking disease progression. Image segmentation can be used to locate
or measure the volume of structures in CT or MRT scans, promising high
quality and repeatability at a low cost and little time (Sutton et al., 2020).
For example, tumor volume is superior to tumor diameter as a diagnostic
criteria when tracking disease progression in liver cancer. It is too time
consuming when measured manually, but can be computed with high preci-
sion and relative ease automatically. Incidentally, the liver provides a good
testing ground for these approaches due to its well-defined radiological di-
agnostic criteria (Eisenhauer et al., 2009; Vander Kooi et al., 2018; O’Neill
et al., 2015).

Image segmentation can be divided into two sub-types: semantic seg-
mentation and instance segmentation. Semantic segmentation assigns each
pixel to its respective class, while instance segmentation further differentiates
between different instances of the same class that appear in an image.

Image segmentation has traditionally been solved via computer vision
approaches, such as clustering or region-growing methods. These rely on as-
sumptions about the properties of pixels of the same class, e.g. their spatial
proximity or similarity in colour and brightness. In this context, information
about the potential borders of class instances is provided by edge detectors.
However, with the rise of deep learning, and in particular the invention of
CNNs, AI-based techniques have largely superseded classical computer vi-
sion. With NNs image pre-processing steps and feature extraction are often
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omitted and the raw image is fed into the models, since they are able to learn
salient image features from the training data themselves. In fact, CNNs are
able to extract a hierarchy of features, from low-level edges over patterns
to high-level abstract objects. CNNs have been successfully employed for
various image segmentation tasks. The following section introduces the core
concepts of CNNs and their aptitude for image processing.

2.4.2 Convolutional Neural Networks

From the perspective of machine learning, image segmentation is a classi-
fication problem in which every image pixel is assigned to one of several
categories or classes. State-of-the-art image segmentation approaches em-
ploy convolutional neural networks (CNNs), a variant of deep neural net-
works (NNs) that use convolutional kernels instead of the traditional weight
matrices for linear transformations.

After each such linear transformation, a non-linear activation function is
used to transform the neuron’s output. It is due to these activation functions
that neural networks become highly-effective non-linear function approxima-
tors. A commonly used activation function employed in the hidden layers is
the rectified linear unit (ReLU). ReLU maps all negative inputs to 0 while
positive inputs are unaltered: ReLU(x) = max(0, x). It has largely super-
seded the softplus activation, its differentiable variant, which is defined as:

Softplus(x) = ln(1 + ex) . (2.1)

The differentiability of softplus and the fact that negative values are not
”trapped” by a zero gradient make it attractive from a theoretical standpoint.
However, ReLU is in practice not only computationally cheaper, but the
sparsity induced by it’s activations has been shown to aid the training process
(Glorot et al., 2011).

The model’s output is produced by the activations of the last layer in the
network and common choices include sigmoid and softmax activations. The
sigmoid, or logistic, function

σ(z) =
1

1 + e−z
(2.2)

squashes the incoming value z to a score in [0, 1]. This is a common setup for
binary classification, where the probability of one class is predicted and the
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probability of the other class assumed to be 1− σ(x). The softmax function

Softmax(z)i =
ezi∑︁K
j=1 e

zj
(2.3)

is another very common choice, that can be used in both binary and multi-
class classification. The incoming raw and unscaled values of the vector z that
are associated with a respective class are also called logits. Softmax maps
these logits to scores in the range of [0, 1] which sum up to 1. The output
thus conforms to the characteristics of a discrete probability distribution.

The convolution operation is able to learn local patterns, that is to say,
patterns found in m×m (or m×m×m in the case of 3D images) windows
of the input. Convolution kernels are slid over the input with some speci-
fied padding, so each kernel processes local image regions, and the resulting
values are stitched together into a (smaller) output image. This process al-
lows the model to learn translation-invariant patterns, because a kernel that
detects a specific pattern can do so regardless of the position of the pattern
in the input image. Thus, CNNs possess an intrinsic generalisation power
as to the location of learnt patterns. Moreover, because convolutions oper-
ate recursively on the output of earlier convolutions, they are able to learn
ever-more abstract features that span ever-larger portions of the original im-
age. In this way, a spatial hierarchy of patterns can be learnt, as is visible,
for instance, in the activation atlas. (Carter et al., 2019) The assumption
that translation-invariance, locality, and hierarchy of patterns are essential
features in the visual domain has already been used in traditional image
segmentation algorithms, as described in Section 2.4.1. They are also ex-
pressed in the inductive biases provided by the convolution operation and
the architecture of CNNs, making them highly suitable for the processing of
images.

CNNs are able to perform both image classification and segmentation.
Image classification requires a flattening layer at the end, in which the spa-
tial information is discarded. This operation is followed by one or more linear
transformations with respective activation functions. An adequate activation
function at the end produces either a class score or a class distribution for
the given input image. Image segmentation, on the other hand, requires
an image-to-image CNN, since each pixel is mapped onto a correspond-
ing value. This computation is frequently achieved via fully-convolutional
encoder-decoder models. An initial contracting encoder, or downsampling,
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path, composed of alternating convolutions, activation functions, and pool-
ing operations, produces a small, i.e. low resolution, feature map. The
following expanding decoder, or upsampling path, which reconstructs the
output image, involves multiple layers comprising convolution and activation
functions as well as upsampling operators. In addition, skip connections are
commonly used to allow the decoder to access high-resolution, fine-grained
features learnt in the encoder.

2.4.3 Losses and Performance Metrics

For training an NN, an objective function, or loss, L(w | D) needs to be
defined. This loss is used to compute the model error, and thus guides the
optimisation process towards a plausible set of model weights.

From a probabilistic perspective on deep learning, an NN is understood as
a model f(x,w) with input X and weight parameters w, where for classifica-
tion the model output p(yi | xi,w) is a categorical distribution over a set of
classes. In the case of binary classification, the output more specifically fol-
lows a Bernoulli distribution. The likelihood function given a training data
set D = {xt,yt}Nt is p(D | w) =

∏︁
i p(yi | xi,w). Maximising this likeli-

hood function gives the maximum likelihood estimate (MLE) of the network
parameters, i. e. a point estimate of the weights w:

w = argmax
w

logP (D | w)

= argmax
w

N∑︂
i=0

logP (yi | xi,w) .
(2.4)

Note that the logarithm is added in order to increase numerical stability.
Since the logarithm is a strictly monotone function, i. e. it is order-preserving,
the maximum to be computed via MLE stays the same. Unfortunately,
no closed-form solution exists for Equation 2.4, instead, MLE is achieved
iteratively via stochastic gradient descent optimisation. Assuming that both
the network as well as the loss are differentiable, the gradient dL

dw
can be

calculated via backpropagation and used in gradient descent.
Maximising the above likelihood is equivalent to minimising the negative

log likelihood (NLL), or the so-called cross-entropy loss. The cross-entropy
loss thus arises naturally from the MLE of a classification task and is a
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Figure 2.4: Binary cross-entropy loss behaviour

popular choice as a loss function for classifiers. In general, the multi-class
cross-entropy loss

H(p, q) = −Ep[log q] = −
∑︂
x∈X

p(x) log q(x) , (2.5)

with Ep the expected value with respect to model output p, is an informa-
tion theoretic measure which is used to compute the difference between two
probability distributions p and q.

CE =
1

N

N∑︂
t=1

− yt log(pt) + (1− yt) log(1− pt) (2.6)

Equation 2.6 constitutes the binary version of the cross-entropy loss for
a one-hot encoded ground truth vector y. It can be used in conjunction
with a single output neuron whose activation function is set to sigmoid, as
defined in Equation 2.2. Cross-entropy loss requires the model predictions to
lie between 0 and 1, and it increases exponentially with increasing divergence
between predicted value and actual class. Figure 2.4 shows the range of the
binary cross-entropy loss function given true and false observations. The
graph demonstrates that predictions far away from the ground truth class,
i. e. confidently wrong predictions, are heavily penalised.
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Another loss function that is often employed in classifiers is the Brier
score. It computes the mean squared error between the model’s predicted
probability distribution and the ground truth labels:

Brier =
1

N

N∑︂
t=1

(pt − yt)
2 . (2.7)

Since both the cross-entropy loss and the Brier score are applied on single
voxels and then averaged, training a model on a data set with unbalanced
classes might be dominated by the most frequent class. This can be coun-
teracted by weighting the loss differently for each class. An alternative loss
formulation which is especially suited for imbalanced data sets is the soft
Dice loss, which works on whole image patches instead of single voxels. It is
derived from the Dice coefficient (Sørensen, 1948; Dice, 1945):

Dice(X, Y ) =
2 | X ∩ Y |
| X | ∪ | Y |

, (2.8)

which measures the similarity between two samples X and Y . Its range is
[0, 1] with 1 indicating a perfect overlap. The Dice coefficient is a widely used
metric for computing the similarity, or more concretely the spatial overlap,
between two images. It is highly similar to the Jaccard similarity coefficient,
also called Intersection over Union (IoU) (Jaccard, 1912):

IoU(X, Y ) =
| X ∩ Y |
| X ∪ Y |

. (2.9)

In fact, there exists a bijection between both coefficients, i. e. Dice =
2 IoU
1+IoU

, with the Dice coefficient always being larger than or equal to the IoU.
The Dice loss lends itself naturally to semantic segmentation tasks in which
the model is optimised for the Dice coefficient as its evaluation metric.

2.4.4 Regularisation

A model that overfits its training data does not generalise well, which means
it heavily depends on training data-specific (noise) patterns and consequently
performs poorer on held-out test data (Szegedy et al., 2014). In general,
using the MLE during training tends to result in models that overfit the
training data D. MLE can also be seen as a special case of maximum a
posteriori estimation (MAP) using a uniform prior over the weights. Since
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overfitting usually correlates with diverging, higher-valued weights, choosing
the weight prior to instead follow a Gaussian or Laplace distribution, has
a regularising effect on the model. Multiplying the likelihood with a prior
distribution p(w) on the weights is, by Bayes theorem, proportional to the
posterior distribution, i. e. p(w | D) ∝ p(D | w)p(w). Maximizing this
posterior corresponds to the MAP estimate of w:

w = argmax
w

log p(w | D)

= argmax
w

log p(D | w) + log p(w) .
(2.10)

This has a regularising effect and can prevent overfitting. Thus, the opti-
misation objective stays the same, there is just an additional regularisation
term from the prior. With a Gaussian prior, this yields weight decay. Given
a Laplace prior, L-2-regularisation is achieved.

Another common regularisation technique is dropout, in which during
training a random subset of neurons per forward pass is dropped out, re-
moving the neuron with all of its incoming and outgoing connections. The
regularising effect is commonly interpreted to stem from dropout’s capacity
to impede training data-specific co-adaptations of units. Also, it introduces
further stochasticity into the training process, which is thought to make the
network more robust, in general.

The problem of overfitting, however, is not as pronounced in the setting of
binary semantic segmentation, where each pixel or voxel can be interpreted
as a training sample for which a corresponding ground truth is available.
Training models on only two CT volumes, for example, already involves a
massive amount of training data and leads to nearly decent segmentation
performance, as can be seen in Section 5.3.

2.5 Calibration and Uncertainty Types

Probabilistic classifiers applied in the real world are expected to deliver ro-
bust predictions that are indicative of the true data distribution, or ground
truth correctness likelihood. This need gave rise to the notion of model relia-
bility or model calibration. This section introduces these notions and presents
some calibration metrics for binary classifiers. It then describes the decom-
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position of general ”predictive model uncertainty” into two types: aleatoric
and epistemic uncertainty.

2.5.1 Model Calibration

A binary probabilistic classifier outputs a single prediction p ∈ [0, 1] repre-
senting the probability assigned to its respective class. For perfectly cali-
brated predictions, the predicted class probability p needs to match its true
proportion. In other words, whenever the model predicts a class with proba-
bility 0.9 a total of 100 times, the prediction should be correct for 90 of those
samples. In general, the notion of calibration follows a frequentist perspec-
tive on uncertainty, whereby class probabilities are expected to match their
respective long-time observed frequencies, which are typically approximated
on a held-out test set. Note that perfect calibration does not imply accurate
predictions, e. g. always predicting the class’ empirical accuracy results in
perfect calibration but uninformative predictions.

Model calibration is the process of turning the output scores of a classi-
fier into reliable probabilistic class probabilities. Some common approaches
relevant to this work are outlined in Section 3.

Calibration Metrics Given a probabilistic classifier, its calibration can
be visualised and measured with a number of diagnostic tools.

A popular method for illustrating a classifier’s calibration are reliability
diagrams (DeGroot and Fienberg, 1983). Reliability diagrams plot the ex-
pected accuracy of samples as a function of the model’s confidence, where
the diagonal represents perfect calibration such that the model’s confidence
aligns with the expected accuracy. However, the posterior distribution repre-
senting the true accuracy is unknown. Hence, one usually approximates the
observed accuracy on a test set, i. e. the fraction of correctly classified test
samples is computed and plotted against the model’s respective confidence.

Note that this formulation of reliability diagrams is constrained for binary
classifiers, but adaptations for multi-class classifiers have been proposed (Guo
et al., 2017; Kock et al., 2022). In particular, this work uses Kock et al.’s
extension which adds boxplots that reveal the otherwise hidden bin-internal
variances. An example reliability diagram with this extension can be seen in
Figure 2.5.



2.5. Calibration and Uncertainty Types 18

Figure 2.5: Example reliability diagram with boxplots

The reliability diagram’s binning induces an estimator for the binary ex-
pected calibration error (ECE) (Naeini et al., 2015), which can be computed
as the average of the bins’ accuracy-confidence differences, weighted by the
number of samples per bin. The maximum calibration error (MCE) analo-
gously represents the highest bin-wise divergence between the ground truth
accuracy and predicted confidence. Other calibration metrics include the
negative log likelihood, as shown in Equation 2.5, and the Brier score, de-
picted in Equation 2.7, since both constitute strictly proper scoring rules.
The notion of proper scoring rules will be described in the following.

Proper Scoring Rules Scoring rules measure the quality of probabilistic
predictions, assigning numerical scores to predictive distributions. They are
functions S(p(x), (y, x)), where p(x) is the model prediction for input x and
(y, x) ∼ q(y | x) with q the true distribution of (y, x)-tuples. Classifiers
are evaluated by applying a scoring rule on multiple samples and comparing
the average scores. Proper scoring rules are defined by S(q, q) ≤ S(p, q) for
all p and q. Scoring rules are strictly proper if this holds with equality iff
p(x) = q(y | x).

Strictly proper scoring rules facilitate calibrated probabilistic predictions
(Mehrtash et al., 2020), since at their minimum and given infinite training
data, they guarantee perfectly calibrated model predictions. In practice,
however, this minimum is not reached and overfitting still frequently occurs,
thus resulting in less calibrated scores. Both cross-entropy loss and Brier
score, introduced in Section 2.4.3, constitute proper scoring rules.
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2.5.2 Aleatoric and Epistemic Uncertainty

Senge et al. (2014) and later Kendall and Gal (2017) propose to decompose
the overall uncertainty of a machine learning model into two subcategories:
aleatoric uncertainty and epistemic uncertainty. Aleatoric, or statistical, un-
certainty represents data-inherent statistical variability or randomness, hence
its derivation from the Latin term alea - dice. In the setting of image seg-
mentation, aleatoric uncertainty thus stems from label noise in the source
distribution, either due to inherent randomness of the data-generating pro-
cess, or constrained observability thereof. Label noise can originate from
visual difficulty to the point of visual ambiguity in the underlying data, be it
sensor noise or occluded objects, and from divergent annotation regimes, e.g.
whether or not to include the vena cava inside the liver mask. Both conditions
lead to inter-annotator disagreement, where semantically similar pixels are
labelled differently, resulting in ground truth samples with intrinsic stochas-
ticity - or uncertainty. Consequently, the data-inherent aleatoric uncertainty
a model reports cannot be reduced with longer training or more training data.
In the case of machine leaning, it can only be reduced to zero if a given sample
provides sufficient information to uniquely determine the correct label with a
probability of 1 (Kull and Flach, 2015). Epistemic or systematic uncertainty,
on the other hand, represents a model’s lack of knowledge about the under-
lying input data-generating process, i. e. the model’s epistemic state. It is
therefore also called model uncertainty, since it describes the lack of knowl-
edge about which model best explains the given data. It can in principle be
explained away by e.g. looking at more data.

Aleatoric uncertainty can be further decomposed into homo- and het-
eroscedastic uncertainty. The former is constant over all samples and de-
picts the overall noise level of the training data, whilst the latter is input-
dependent. This thesis is concerned with heteroscedastic aleatoric uncer-
tainty, since it provides human-interpretable indications for label-noisy re-
gions and it lends itself to use as a loss attenuator, as will be described in
Section 3.5.

Uncertainty estimates are usually visualised in so-called uncertainty maps,
which plot for each pixel the model’s correspondingly predicted uncertainty
value. Qualitative investigations of such maps for the overall prediction un-
certainty, as well as for both subtypes of uncertainty are commonly reported.
Based on the definition of aleatoric and epistemic uncertainty, several ex-
pectations hold: Aleatoric uncertainty should light up in areas where the
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Figure 2.6: Illustration of aleatoric and epistemic uncertainty, image taken from
Abdar et al. (2021).

segmentation is particularly difficult even for humans, thus in regions where
annotations are likely to involve label noise. This happens in particular at
class boundaries and in image parts with visually ambiguous objects, e.g.
due to motion artefacts or blurry regions. Also the use of different anno-
tation regimes whilst creating ground truth images is expected to result in
aleatoric uncertainty. Epistemic uncertainty, on the other hand, is expected
to be present in samples whose patterns were either rare in the training set
or that are completely dissimilar from training samples, i. e. ones that are
likely to be drawn from a different distribution than the training distribu-
tion. Such samples are also called out of distribution (OOD), in contrast to
in distribution (ID) data. Figure 2.6 illustrates this distinction. The training
data covers some range on the x-axis, data out of this range is considered
OOD and would be assigned high epistemic uncertainty while data inside the
training range is closely scattered around the true underlying function, still
exhibiting some noise which constitutes aleatoric uncertainty.



Related Work

Quantifying uncertainty in the context of medical image analysis is a chal-
lenging and important task, as already described in Section 1.1. Numerous
uncertainty quantification approaches have been proposed in recent years,
that calibrate the predictions of deep learning models or devise new ways
to derive an uncertainty estimate from a neural network. This work aims
to evaluate the uncertainty decomposition quality of two approaches for the
task of binary liver segmentation in CT scans. Thus, in the following, the
aim is to provide a systematic overview of some of the most prominent uncer-
tainty quantification approaches, with a focus on Bayesian neural networks
and loss attenuation.

Firstly, a classifier’s inherent uncertainty is introduced as a baseline, fol-
lowed by various calibration methods that aim to improve on the quality of
this baseline predictive uncertainty. While such post-hoc calibration meth-
ods require no change in model architecture or training procedure, they are
restricted insofar as only being able to work with the output of the original
model. Approaches that improve a model’s uncertainty estimate at training-
time, on the other hand, potentially benefit from ”deeper” knowledge of
the problem and are able to directly interact with the optimisation process
itself. Therefore, various other methods for estimating a neural network’s
uncertainty are presented afterwards. Deep ensembles and Bayesian neural
networks constitute approaches that compute a model’s uncertainty over the
predictive distribution’s variability. Afterwards, the concept of loss attenu-
ation is introduced and several approaches that employ a learnt uncertainty
value are outlined. Lastly, some prominent methods for decomposing the
uncertainty of the predictive distribution into aleatoric and epistemic uncer-
tainty are presented.

3.1 Baseline Uncertainty Quantification

Probabilistic classifier NNs output categorical predictive distributions which
inherently contain some form of predictive uncertainty. More specifically,
their probabilistic predictions can be interpreted as capturing learnt aleatoric
uncertainty, while measuring epistemic uncertainty would require an ad-

21
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ditional confidence estimate for the output probabilities (Hüllermeier and
Waegeman, 2021). Despite this theoretical consideration, an NN’s predictive
distribution has been proposed by Hendrycks and Gimpel (2016) as a base-
line for predicting misclassified samples and for detecting OOD samples. The
authors found that a classifier’s maximum softmax score correlates with both
model performance and the probability of the respective sample being OOD.
Moreover, computing the KL divergence between the softmax distribution
and the uniform distribution delivers similar results. Other approaches cal-
culate the entropy of the softmax distribution (Williams and Renals, 1997)
or compute the difference between the highest and second-highest softmax
score (Monteith and Martinez, 2010).

A neural network’s softmax distribution indeed constitutes a strong base-
line as uncertainty estimate whenever the model is trained with a proper scor-
ing rule, such as the cross-entropy loss. The soft Dice loss, on the other hand,
increases segmentation performance at the cost of overconfident predictions
(Mehrtash et al., 2020; Guo et al., 2017; Bertels et al., 2021; Sander et al.,
2019). Not only the choice of loss function impacts a model’s calibration.
Guo et al. (2017) have also shown that deeper models, i. e. models with more
layers, tend to produce overconfident results, as well. Meanwhile, Minderer
et al. (2021) revisited these observations and found that deeper models are
indeed slightly more overconfident on ID data, but when evaluated on OOD
data, this trend is reversed with deeper models providing more calibrated
uncertainty estimates. Moreover, Guo et al. (2017) show that regularisation
has a positive impact on calibration in general.

3.2 Post-hoc Calibration

In order to mitigate overconfident and, more generally, unreliable predictions,
a number of approaches have been devised to calibrate deep learning models,
either at training time or post-hoc. Calibrating a model means rescaling the
model output scores to respectively calibrated probability scores, as intro-
duced in Section 2.5.1.

Two popular calibration approaches are isotonic calibration (Zadrozny
and Elkan, 2002), in which a piecewise-constant non-decreasing function is
fitted as calibration map, and Platt scaling (Platt, 1999), or logistic calibra-
tion, which runs a logistic regression on the classifier scores.

Menawhile, temperature scaling, the simplest special form of logistic cal-
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ibration, has been shown to achieve remarkably good results for neural net-
works applied in various task settings (Guo et al., 2017). It works by opti-
mising a scalar temperature T by which all logits are divided, as shown in
Equation 3.1.

σ̂i(j; zi) =
exp(zi,j/T )∑︁K
k=1 exp(zi,k/T )

T > 0 (3.1)

Temperature scaling is a simple and cheap operation, since minimising
the cross-entropy loss on a test set over T is a one-dimensional convex opti-
misation problem. It has been shown to successfully calibrate medical image
segmentation models (Kock et al., 2022; Ding et al., 2021).

ODIN The Out-of-distribution Detector for Neural Networks (ODIN; Liang
et al., 2017) employs temperature scaling and input perturbation in order to
separate the maximum softmax scores for ID and OOD inputs. During detec-
tion, the input image is firstly preprocessed, and then a calibrated softmax
score is computed whose maximum value is compared to some threshold δ.

Input preprocessing means adding small perturbations of magnitude ϵ to
the input image x that increase the maximum softmax score:

x̃ = x− ϵ sign(−∇x logSŷ(x;T )) , (3.2)

with sign denoting the element-wise indication of the sign of the gradient.
This step can be done unsupervisedly, as the perturbation direction is com-
puted by backpropagating the gradient of the cross-entropy loss w.r.t. the
input. This method can be seen as a variation on the fast gradient sign-
method (Goodfellow et al., 2015) in reversed direction. If one chooses the
perturbation parameter ϵ to be sufficiently small, the model output regarding
to predicted class does not change. This perturbation has a stronger effect
on ID inputs because of a larger gradient of log-softmax scores for those in-
puts, a phenomenon that has also been demonstrated in Huang et al. (2021).
Thus, after preprocessing, images x̃ are more separable into ID and ODD.

ODIN does not require retraining the original model, since temperature
scaling is a post-hoc calibration method and input preprocessing is performed
on the images to be inferred. The authors found a correlation between
difficult-to-classify samples and OOD samples, thus both aleatoric as well
as epistemic uncertainty appears to be captured by this method.
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3.3 Deep Ensembles

Instead of employing a model’s single softmax prediction as an overall uncer-
tainty estimate, deep ensembles provide a frequentist approach to uncertainty
quantification by observing the output variance of multiple trained models
with equal architecture (Lakshminarayanan et al., 2017). Their prediction
variance stems from the randomness of both weight initialisation and train-
ing process. The authors show that the uncertainty estimates derived from
deep ensembles are of high quality, i. e. they reliably identify OOD samples
and indicate inaccurate predictions. This finding is supported by others who
found deep ensembles to lead to even better reliability than post-hoc cali-
bration methods and different variants of Bayesian neural networks (Ovadia
et al., 2019). However, the computational effort for both training and infer-
ence, when no parallelisation is used, increases linearly with the number of
models.

While deep ensembles are often viewed as frequentist approaches to uncer-
tainty quantification (Lakshminarayanan et al., 2017; Ovadia et al., 2019),
recent work interprets deep ensembles as essentially performing Bayesian
model averaging, thereby approximating the posterior predictive distribu-
tion of a Bayesian neural network (Wilson and Izmailov, 2020). According to
the authors, ensembles provide functionally diverse results by each ensemble
member representing a different ”basin of attraction” in the loss landscape.
This multimodal Bayesian average lets deep ensembles perform even better
than single-basin marginalisation approximations. The following section de-
scribes Bayesian neural networks and popular approximation approaches in
more detail.

3.4 Bayesian Neural Networks

Following a Bayesian perspective on uncertainty, Bayesian neural networks
(BNNs) model distributions over the model weights, which in turn result
in a predictive distribution on the output. They thus constitute a non-
deterministic variant of vanilla NNs. Instead of optimising the network
weights directly, BNNs average over all possible weights, a process called
marginalisation. Several metrics can then be employed for estimating the
model’s uncertainty given its predictive distribution.
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Both MLE and MAP estimation yield point estimates of a model’s pa-
rameters, thus the training of a vanilla NN works by optimising a single
setting of weight values w. As introduced in Section 2.5.2, epistemic un-
certainty represents the uncertainty about which model constitutes the true
data-generating function. Therefore, in order to model epistemic uncertainty,
the weights of an NN might be modelled as distributions p(w | D) instead,
explicitly representing the uncertainty about the model’s own parameters.
Bayesian inference, in contrast to MLE and MAP, provides a way to com-
pute this full posterior probability distribution over the weights given a data
set D = (xi, yi)i:

p(w | D) =
p(D | w) · p(w)

p(D)
. (3.3)

During training, the aim is to estimate p(w | D), which captures the set
of plausible model parameters given the training data. In order to do so,
the prior distribution p(w), which stands for the belief about the weights
before observing any training data, is updated over the network weights by
multiplying the likelihood p(D | w) with the prior. The likelihood is exactly
the same as in the frequentist approach for vanilla NNs, it quantifies how
well the observed training data can be explained by a specific setting of w.
In order to arrive at a distribution, one needs to marginalise over all possible
parameter settings, since

p(D) =

∫︂
p(D | w)p(w)dw. (3.4)

The final posterior distribution over the weights then allows to make
predictions by, again, marginalising over the weights:

Ep(w|D)[p(y | x,w)] =
∫︂

p(y | x,w)p(w | D)dw . (3.5)

The above equation shows the Bayesian model averaging employed dur-
ing inference, where given an input sample x each possible configuration of
weights, weighted according to the posterior distribution, makes a prediction
about the unknown label. Note that the posterior assigns high density to
weights that better explain the data D. It is in this way that the result-
ing predictive distribution takes the BNN’s weight uncertainty into account.
Therefore, the model’s uncertainty can in principle be derived from its predic-
tive distribution. As an aside, this inference process is equivalent to averaging



3.4. Bayesian Neural Networks 26

predictions from an infinite ensemble of neural networks. Since marginalising
over all possible weights during inference is intractable, however, the predic-
tive distribution is usually approximately computed via Monte Carlo (MC)
integration:

p(y | x,D) ≈
L∑︂
l=1

p(y | x,w(l)) , where w(l) ∼ p(w | D) . (3.6)

This same practical problem appears in the training phase, when marginal-
ising over all possible weight combinations. Since the probability distri-
butions for weights in neural networks are highly complex and extremely
high-dimensional, no closed-form computations exist. Therefore, numerous
methods have been proposed in the literature for approximating the posterior
p(w | D), of which just some are briefly mentioned in the following.

Markov chain Monte Carlo Estimating the posterior weight distribution
by sampling w ∼ p(w | D) via Markov chain Monte Carlo methods allows
to approximately compute the model prediction (Gamerman, 1997; Papa-
markou et al., 2022).

Variational inference Alternatively, the BNN’s posterior can be approxi-
mated via variational inference. In general, variational inference entails ap-
proximating an intractable probability distribution p by another simpler,
tractable distribution q via optimisation by finding argminθKL(q || p). The
surrogate distribution q is then used instead of p. This method has been
introduced for approximating the posterior weight distribution in BNNs in
Blundell et al. (2015) and termed ”Bayes by Backprop”. Gaussian distri-
butions are commonly used variational distributions in this setting, which
introduce an additional learnable parameter per weight, replacing w with
(µ, σ).

MC dropout variational inference Dropout has originally been introduced
as a regularisation technique during training, but Gal and Ghahramani (2016)
have demonstrated that using dropout at test-time, as well, allows for BNN
uncertainty quantification where the model outputs are MC samples and in-
terpreted as samples of the predictive distribution as in Equation 3.6. Rein-
terpreting dropout in this way, the approximating variational distribution
over the weights is a Bernoulli distribution. This approach does not in-
troduce additional learnable parameters. However, the prediction requires
several forward passes, thereby increasing the computation time linearly in
the number of samples drawn for inference. In practice, the test time can be
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reduced with concurrent forward passes or decoder-only dropout, for which
half of the model’s forward pass can be saved and thus needs not be re-
computed. The latter is a common and well-performing alternative (Kendall
et al., 2017), but lacks the clean mathematical justification given for models
employing dropout after each layer. In general, MC dropout retains the com-
putational efficiency of vanilla neural networks, i. e. training via stochastic
gradient descent and backpropagation. Due to this simplicity and relatively
low computational burden, MC dropout is frequently used for approximating
BNNs (Mobiny et al., 2021). In the domain of medical imaging, MC dropout
has been used successfully as uncertainty quantification method (Leibig et
al., 2017; Yang et al., 2016), with Ng et al. (2020) showing that Bayes by
Backprop and MC Dropout lead to similar segmentation and uncertainty
performance for the semantic segmentation of cardiac MRI scans.

Another advantage of BNNs is their inherent regularisation, whereas MLE
point estimates computed for vanilla NNs can lead to severe overfitting. In
line with this observation, BNNs have been shown to be trainable on small
data sets without overfitting (Depeweg et al., 2018).

Given the predictive distribution of a BNN, various measures for com-
puting the model’s uncertainty have been proposed. Some of these will be
described in the following.

Uncertainty Metrics for Predictive Distributions

The variability of the predictive distribution of a BNN constitutes the model’s
uncertainty, and several methods for computing the predictive uncertainty
have been proposed. This section presents three common metrics for deriv-
ing a model’s uncertainty from a BNN’s predictive distribution: predictive
entropy, predictive variance, and mutual information.

Given a BNN’s predictive distribution P (y | x,D), approximated by T
MC samples, as shown in Equation 3.6, the predictive entropy

H[yi | xi,D] ≈
C∑︂
c=1

(
1

T

T∑︂
t=1

p(yi = c | xi,Wt)) log(
1

T

T∑︂
t=1

p(yi = c | xi,Wt))

(3.7)
and the predictive variance

Var(p(yi | xi,W1), . . . , p(yi | xi,WT )) (3.8)



3.5. Learnt Loss Attenuation 28

are commonly used metrics that straightforwardly derive predictive uncer-
tainty estimates.

An alternative metric is the mutual information (MI) between the model
parameters and the model prediction:

MI[yi,W | xi,D] ≈ H[yi | xi,D]− E[H[yi | xi,W ]] . (3.9)

The MI metric can be approximated by subtracting the expected value
of the entropy of the model predictions across samples from the entropy of
the expected predictive distribution, or the predictive entropy, as shown in
Equation 3.7. Intuitively, the mutual information (MI) metric computes the
information gain about the model parameters when the ground truth label
is known. It can, thus, be interpreted as explicitly measuring the BNN’s
epistemic uncertainty.

Kendall and Gal (2017) report computing the predictive entropy for
measuring the model uncertainty of their BNN, while Bayesian SegNet, a
MC dropout-approximated BNN for semantic segmentation, computes un-
certainty estimates using the predictive variance (Kendall et al., 2017). Nair
et al. (2020) compare the performance of all three presented metrics, as well
as the heteroscedastic uncertainty neuron, described in Section 3.5.4, for the
task of multiple sclerosis lesion segmentation on MRI sequences. The authors
found no differences between the three BNN-based metrics, apart from the
fact that the predictive variance results in values with smaller magnitude.

3.5 Learnt Loss Attenuation

Yet another approach to uncertainty quantification is loss attenuation. In-
stead of modelling epistemic uncertainty via model or weight uncertainty, as
in deep ensembles and BNNs, the model’s aleatoric uncertainty is encour-
aged to be implicitly learnt during training. Without knowing the target
distribution’s underlying aleatoric uncertainty, the uncertainty estimate can
instead be learnt via the loss function. If the model is able to learn the
input-specific amount of aleatoric uncertainty, it benefits from attenuating
the loss for samples with particularly high aleatoric uncertainty. This allows
the model to focus on learnable, i. e. easier, samples with consistent labels for
approximating the underlying input data-generating function without being
distracted by being forced to learn label noise.
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3.5.1 DCA regularisation

Mihail et al. (2019) basically employ loss attenuation without explicitly men-
tioning its use. The authors introduce an additional loss term which con-
stitutes the difference between a batch’s average predicted confidence and
the true accuracy, i. e. its calibration error. This loss attenuating term helps
to calibrate the model, but cannot be returned at inference time, so that
only the softmax distribution is observable for inferred samples. The authors
show that their approach counteracts the overconfidence which is frequently
learnt via the normal cross-entropy loss.

3.5.2 Learnt Confidence Estimate

DeVries and Taylor (2018a) and DeVries and Taylor (2018b) propose to learn
a confidence estimate that can be applied for OOD detection and image-level
quality estimation as well as semantic segmentation quality estimation. The
authors employ a two-headed neural network that outputs a prediction z as
well as a confidence score c ∈ [0, 1] which has been passed through a sigmoid
activation function. During training, the model receives ”hints”, i. e. the
target probability distribution is added to the model prediction, proportional
to its predicted confidence, as shown in Equation 3.10. A log penalty on the
confidence score is included as an additional loss term in order to prevent
the network from solely relying on the ground truth hints.

p = c× Softmax(z) + (1− c)×Onehot(y) (3.10)

The authors found the confidence score to often converge towards uniform
scores for all samples. In order to prevent this, a budget hyperparameter is
introduced which controls the weight of the confidence score penalty, adjust-
ing it during training. If the confidence score penalty exceeds the budget
threshold, the penalty is increased, incentivising the model to ask for hints,
and vice versa. In this way, the confidence penalty tends towards the budget
parameter and confidence scores converge towards their intended meaning.

In DeVries and Taylor (2018b), the authors compare their learnt confi-
dence estimate approach with the maximum softmax probability as baseline,
the output of Kendall and Gal’s heteroscedastic uncertainty neuron, which
is introduced in Section 3.5.4, and MC dropout for BNN, which is described
in Section 3.4, on a skin lesion segmentation task. The resulting uncertainty
maps indicate no difference between the methods for correctly segmented
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regions, with all approaches highlighting class boundaries. However, whilst
most uncertainty estimates also highlight incorrectly segmented parts of the
image, the heteroscedastic uncertainty neuron continues to only output a
thin layer of uncertainty around the (in)correctly segmented object. DeVries
and Taylor (2018a) compare the learnt confidence approach with thresholded
maximum softmax probability as baseline and ODIN, see Section 3.2. For
OOD detection, the authors found the confidence estimate to perform con-
sistently better than the baseline and more reliable than ODIN.

3.5.3 Abstention Networks

Thulasidasan et al. (2019) also incorporate a learnt confidence score along-
side the standard classification prediction and interpret it as an additional
class. In their loss formulation, shown in Equation 3.11, the prediction for
the so-called abstention class is normalised out of the real classes’ predicted
probabilities. This induces the desired loss attenuation behaviour, since pre-
dicting the abstention class decreases the first loss term. The second term
includes an abstention penalty α which regulates the amount of abstention,
thus preventing the model from abstaining on all samples.

p = (1− pk+1)(−
k∑︂

i=1

ti log
pi

1− pk+1

) + α log
1

1− pk+1

(3.11)

The authors also demonstrate how α can be auto-tuned during the train-
ing process in order for the abstention class to robustly learn the model’s
confidence. In their training regime, an abstention-free initial period of train-
ing is followed by excessive abstention, which is then iteratively reduced to
only apply on the most difficult training samples. The abstention scores
were evaluated on an image classification task with artificial structured and
unstructured label noise. The former was constructed by randomising the
labels of images of a certain class or those which include some other consis-
tent pattern, whereas unstructured label noise was introduced by changing
the label of random samples. Abstention scores reliably indicate both types
of label noise and consistently surpass a baseline model without abstention.
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3.5.4 Heteroscedastic Uncertainty Neuron

Analogously to regression uncertainty, which can be represented as the vari-
ance of a Gaussian distribution over the model output, Kendall and Gal
(2017) capture a classifier’s predictive uncertainty via additional heteroscedas-
tic uncertainty neurons, one for each class. The output of these neurons de-
fines the variance of Gaussian noise which is placed over the logits as follows:

p = z+ σ ∗ ϵ , (3.12)

with p the final model prediction, z the logit vector, σ a diagonal covari-
ance matrix defined by the output of the heteroscedastic uncertainty neuron,
and ϵ ∼ N(0, I) a small noise parameter that is introduced via the reparame-
terisation trick (Kingma and Welling, 2014), which allows to backpropagate
over sampled values.

Sampling in this way through the softmax over the logits smoothes the
output scores, i. e. the scores are moved towards a uniform distribution
U(1, classes). Thus, the resulting score distribution has a lower loss than
the original prediction if the model predicted a wrong class. This naturally
leads to the effect of loss attenuation without the need for additional penalty
terms. The model is not incentivised to attenuate on all samples, since push-
ing its output scores towards the uniform distribution increases the loss for
correctly predicted samples.

Kendall and Gal compare their loss-attenuated model for multi-class se-
mantic segmentation tasks against a baseline model without explicit uncer-
tainty quantification capability as well as against a BNN’s predictive distri-
bution. The final segmentation performance of the loss-attenuated model
is slightly higher than that of the baseline and of the BNN (IoU of 67.4,
67.1, and 67.2, respectively). Whether a model’s uncertainty can reliably
predict segmentation quality, i. e. the correlation between uncertainty and
accuracy, can be evaluated by dropping all those samples whose predicted
uncertainty lies below a threshold. Resulting precision-recall curves demon-
strate that when removing pixels at various uncertainty thresholds, for both
the loss-attenuated model’s predictive uncertainty as well as for the predic-
tive entropy of a BNN, uncertainty estimates correlate with accuracy, since
precision increases as the number of uncertain samples decreases. Moreover,
plotting the calibration reveals a slight increase in reliability for the loss-
attenuated model as compared against the baseline, with a mean squared
error of 0.003 and 0.005, respectively.
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3.5.5 Heteroscedastic Logit Smoothing

Similar to Kendall and Gal’s work, Neumann et al. (2018) implement a het-
eroscedastic neuron whose output is interpreted as a confidence score that
directly smoothes the logits before going into the softmax. This approach has
been termed ”relaxed softmax” and can be interpreted as learnt heteroscedas-
tic logit smoothing or learnt temperature scaling, because of its derivation
from the post-hoc calibration method called temperature scaling, which is
described in Section 3.2. Equation 3.13 depicts the smoothing and softmax
calculation for some logit zi,j and a learnt smoothing factor αi for sample i,
where αi can be interpreted as a more numerically-stable equivalent to the
temperature in temperature scaling.

σ̂i(j; zi, αi) =
exp(αizi,j)∑︁K
k=1 exp(αizi,k)

αi :=
1

Ti

(3.13)

The authors compare their approach to a baseline network with and with-
out temperature scaling on the task of pedestrian detection with two data
sets, the results are included in Figure 3.1. They found the proposed het-
eroscedastic logit smoothing model to output significantly more calibrated
scores than the baseline models. More specifically, the overconfidence ex-
hibited by the baseline model can be counteracted by post-hoc temperature
scaling, but the heteroscedastic logit smoothing leads to more effective output
calibration. However, the proposed approach results in a slightly undercon-
fident network on one data set, in which case post-hoc linear scaling further
improves model calibration.

3.5.6 Learnt Label Smoothing

Instead of smoothing the predicted logits according to the model’s confi-
dence as in heteroscedastic logit smoothing, see Section 3.5.5, the model’s
confidence score might also be used to smooth the ground truth labels, in-
stead. Training with soft targets, also called label smoothing, has originally
been introduced as a regulariser for neural networks (Szegedy et al., 2016),
but McKinley et al. (2019) have shown label smoothing to improve classifier
calibration and to also be directly learnable by the model. Their loss function
for a binary classifier is defined as:
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Figure 3.1: Image taken from Neumann et al. (2018): Reliability diagrams on
two different data sets (rows) and with different output calibration methods: (a)
softmax, (b) softmax with linear scaling, (c) softmax with temperature scaling,
(d) softmax with heteroscedastic logit smoothing, (e) softmax with heteroscedastic
logit smoothing and linear scaling

L(p, (1− y)u+ y(1− u)) + L(u, z) with z =

{︄
1 if p > 0.5 and x ̸= 1;

0 otherwise.

(3.14)
It includes a learnt uncertainty score u ∈ (0, 0.5) that smoothes the

ground truth label, thereby acting as loss attenuator. An additional loss
term applies the same loss, e.g. cross-entropy, on the predicted uncertainty
and the indicator for disagreement between model prediction and label, which
penalises high uncertainty for correctly predicted samples. Standard binary
cross-entropy loss is recovered when zero uncertainty is predicted and the
predicted label agrees with the ground truth.

The authors demonstrate that the confidence score captures label noise,
i. e. aleatoric uncertainty, and leads to effective loss attenuation in the medical
imaging domain.

3.6 Decomposition of Uncertainties

As described in Section 1.1, decomposing a model’s predictive uncertainty
into aleatoric and epistemic uncertainty leads to more interpretable uncer-
tainty estimates and benefits other applications, such as active learning or
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loss attenuation. Therefore, this section outlines two prominent approaches
to uncertainty decomposition.

3.6.1 Kendall and Gal

Kendall and Gal (2017) decompose a model’s prediction uncertainty into
aleatoric and epistemic components by combining a BNN with additional
heteroscedastic uncertainty neurons. The loss-attenuating neurons were al-
ready presented in Section 3.5.4. The authors build on the fact that aleatoric
uncertainty is by definition irreducible, so models need not try to improve
their performance in this regard. As a result, aleatoric uncertainty lends itself
naturally to use in loss attenuation, which should result in the heteroscedas-
tic neurons capturing this type of uncertainty. Meanwhile the remaining, i. e.
epistemic, uncertainty is reflected in the variability of the BNN’s MC sam-
ples. Their setup thus jointly models both uncertainty types by explicitly
using two uncertainty quantification mechanisms inside a single model.

The authors found that modelling epistemic, aleatoric, as well as both un-
certainties together improves segmentation performance over their baseline,
a vanilla DenseNet (Huang et al., 2017). Regarding the quality of the uncer-
tainty decomposition, the authors have shown that for varying training set
sizes and inference on OOD data the decomposed uncertainties quantitatively
behave in line with their definition, i. e. epistemic uncertainty rises for OOD
samples and smaller training sets, while aleatoric uncertainty remains con-
stant. Qualitatively, Kendall and Gal found aleatoric uncertainty to highlight
object borders as well as objects far away from the camera, while epistemic
uncertainty faintly highlights object borders and substantially shows up in
visually challenging pixels as well as instances of rare classes. Their quanti-
tative results regarding the quality of uncertainties are included for reference
in Figure 3.2.

Figure 3.2: Kendall and Gal’s results for semantic segmentation
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3.6.2 Decomposition of a BNN’s Predictive Distribu-
tion

Directly decomposing the predictive distribution of a BNN has the theoretical
advantage that the relationship between aleatoric and epistemic uncertainty
can be modelled. Also, from an implementation standpoint, solely building
a BNN without additional output neurons is straightforward.

Variance Decomposition Kwon et al. (2018) derive both aleatoric and
epistemic uncertainty estimates from the variance of the BNN’s predictive
distribution via:

V arp(y|x)(y) = Ep(y|x){y⊗2} − Ep(y|x){y}⊗2 (3.15)

with y⊗2 = yyT . The derivation makes use of a variant of the law of total
variance. The aleatoric term computes the variance of the Bernoulli random
variable, aka. the individual predictions, for each class. This means that
aleatoric uncertainty is measured as the average variance of the individual
softmax predictions while epistemic uncertainty is reflected in the variability
of the network weights.

The authors directly compare their approach to that of Kendall and Gal,
employing the activation of the heteroscedastic neuron as aleatoric estimate,
in the context of an ischemic stroke lesion segmentation task. The resulting
uncertainty maps show that the heteroscedastic uncertainty neurons produce
next to none aleatoric uncertainty and diffuse epistemic uncertainty only ap-
pearing in the background of the image. Meanwhile, Kwon et al.’s aleatoric
uncertainty estimates highlight class borders and incorrectly segmented re-
gions, which largely conforms to human intuition, and their epistemic un-
certainty estimates partially shade incorrectly segmented regions as well as
the borders of segmented objects. Furthermore, Kwon et al. (2018) con-
ducted a comparison between two different data sets with different training
set sizes and stroke lesion proportions. Both epistemic and aleatoric un-
certainty were significantly higher for the smaller data set, but the authors
concluded that the smaller data set containing a higher percentage of lesion
voxels was inherently ”noisier” and after deconfounding the aleatoric uncer-
tainty, the conditional expectations of epistemic uncertainty were still slightly
higher on the smaller data set. In later work, Kwon et al. (2020) perform
an additional experiment comparing models trained on different numbers of
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training samples coming from the same data set. The authors find increased
epistemic uncertainty for smaller training sets, while aleatoric uncertainty
stays constant.

Mutual Information Decomposition The MI measure of a BNN’s pre-
dictive distribution has already been described in Section 3.4 and is repeated
here for the purpose of readability:

MI[yi,W | xi,D] ≈ H[yi | xi,D]− E[H[yi | xi,W ]] . (3.16)

Since it computes the reduction in uncertainty for the network weights W
given a sample xi and the ground truth class label yi, it can be interpreted as
computing the model’s epistemic uncertainty (Mobiny et al., 2021; Depeweg
et al., 2018; Houlsby et al., 2011). Epistemic uncertainty potentially benefits
from the reveal of the ground truth label, while aleatoric uncertainty, by
definition, does not.

The minuend in Equation 3.16 constitutes the predictive entropy, as pre-
sented already in Section 3.4, which computes the overall predictive uncer-
tainty of a model (Depeweg et al., 2018). The subtrahend eliminates the epis-
temic component, i. e. the weight uncertainty, from the predictive entropy by
computing the expected value of the predictive entropy as conditioned on W .
In practice, this translates to computing the average entropy of the individ-
ual predictions, which corresponds to measuring aleatoric uncertainty. The
epistemic uncertainty estimate is then computed by subtracting the aleatoric
uncertainty from the predictive entropy. Mutual information thus constitutes
a valid decomposition method.

In Mobiny et al. (2021), qualitative observations of the resulting uncer-
tainty maps of a BNN approximated via MC DropConnect for three different
semantic segmentation tasks show clear correlations between epistemic un-
certainty and class boundaries, class label frequency, and visual ambiguity of
objects. To the best of the author’s knowledge, no direct comparison between
this decomposition method and Kendall and Gal’s combined setup has been
reported in the literature.



Material and Methods

This thesis aims to comprehensively compare two prominent uncertainty
quantification approaches for deep learning models, with a focus on the qual-
ity of the decomposition of the predictive uncertainty into aleatoric and epis-
temic components. The comparison is set up in the context of binary liver
segmentation on medical CT scans contained in the LiTS data set (Bilic et
al., 2019).

This chapter first briefly introduces the hard- and software used for all
experiments. Afterwards, the data set and preprocessing steps are described.
The following section motivates the choices made throughout this work by
first exposing the parallels between two loss attenuating methods and then
describing the concrete setup of the models and experiments, including the
choice of model, hyperparameters, and data sets. This also includes a de-
scription of the implementation of the two loss attenuation techniques. Af-
terwards, the choice of uncertainty metrics is explained. The last section
describes the evaluation approaches and metrics that are used to answer this
work’s research question.

4.1 Hard- and Software

The following paragraphs briefly outline the frameworks used in this work,
as well as the computational resources with which all neural network models
are trained and tested.

MeVisLab This work loads, preprocesses, and visualises the data set with
the MeVisLab framework, which provides user interfaces, programming en-
vironments, libraries and modules for medical image processing. MeVisLab
modules are responsible for loading data, applying filters or transformations,
or computing statistics about an incoming image stream. They can be ar-
ranged into a hierarchical data flow network by visual programming via the
object-oriented GUI. MeVisLab supports scripting via Python and custom
modules can be added in Python or C++. Because of its focus on medical
imaging, MeVisLab supports common medical image formats, such as NIfTI
and Dicom. This work uses MeVisLab version 3.5legacy.

37
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RedLeaf For training and testing neural network models, this work em-
ploys the REmote Deep LEArning Framework (RedLeaf). RedLeaf is inter-
nally developed by Fraunhofer MEVIS. It is used in this work because of its
tight integration with MeVisLab. The RedLeaf Python framework enables
the implementation for training and testing neural networks using popular
libraries, such as Keras, Tensorflow, and Pytorch. RedLeaf is also integrated
into MeVisLab modules, which perform data preparation and patch extrac-
tion, before feeding the resulting streams of image data into NN models.
RedLeaf offers predefined model architectures, such as u-net and au-net, the
latter of which is used in this work.

Keras The deep learning framework Keras is an open-source Python li-
brary (Chollet et al., 2015). It provides a high-level programming interface
for the machine learning library Tensorflow (Abadi et al., 2015), which is
based on the concept of data flow graphs describing series of mathematical
operations over multidimensional data arrays, or tensors. Keras aims to pro-
vide a simplistic, intuitive, and modular API for Tensorflow. While a wide
range of commonly used layers, optimisers, activation and loss functions is
already built-in, keras also facilitates the creation of custom variants, e.g.
via layer subclassing.

GPU Cluster Training and inference of all neural networks in this work is
performed on a cluster provided by Fraunhofer MEVIS, making heavy use of
GPU compute accelerators. The cluster consists of eight nodes. Two nodes
are equipped with four NVIDIA Geforce GTX 1080 Ti, Intel Xeon CPU E5-
2620 v4, and 188.79 GiB RAM, each. The other six nodes each feature four
NVIDIA Geforce RTX 2080 Ti, Intel Xeon Silver 4214 CPU, and 187.57 GiB
RAM.

4.2 Data

The following sections describe the data that is used for training, validation,
and testing in the experiments of this work, including the preprocessing steps
used to prepare the data.
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4.2.1 Liver Tumor Segmentation Data Set

All the experiments conducted in this work use the Liver Tumor Segmenta-
tion data set (LiTS; Bilic et al., 2019). The LiTS data was made available
for the Liver Tumor Segmentation benchmark/challenge jointly organised by
the IEEE International Symposium on Biomedical Imaging (ISBI 2017) and
the 20th International Conference on Medical Image Computing and Com-
puter Assisted Intervention (MICCAI 2017). LiTS is a collection of 201 CT
scans of patients’ abdominal regions and includes 131 annotated images and
70 test images. The expert annotations include masks for liver tissue as well
as primary and metastatic liver tumors. The scans were collected from seven
research institutions and hospitals, and thus vary widely in terms of amount
of lesions, tumor contrast levels, and tissue size abnormalities.

Of the 131 CT scans 65 were classified as ”poorly annotated” by an
independent expert. These include more imprecise borders and halfway seg-
mented vena cavas, which are likely due to automatic post-processing steps
that interpolate between two liver positions. Because these cases contain a
variety of poor-quality features, they are omitted from the training and test
sets and only partially included in the validation set. In total 32 CT volumes
are used as the default training set, henceforth called LiTS-full, another 33
cases are used as a test set, called LiTS-test from now on, and an additional
7 cases serve as validation set.

The training, validation, and test sets contain 320.844.582 voxels in total,
with a mean ratio of 29% liver voxels and 0.17% tumor voxels. The mean
image volume is 74.823.829 mm3 with a minimum of 19.699.218 mm3 and a
maximum of 137.333.984mm3.

4.2.2 Data Preprocessing

The diversity of the LiTS data sources is reflected in the CT image data, with
different volume sizes, voxel sizes, and different numbers of slices per case.
In order to standardise the data for further experiments, all CT scans and
liver masks are resampled to a uniform voxel size of 2.5 × 2.5 × 2.5 mm3 via
a Lanczos filter with kernel size 3 for the images and trilinear filtering for the
masks. While this voxel size is relatively coarse, the resolution of the resulting
scans is found to be sufficiently high for the task of uncertainty estimation and
decomposition, simultaneously allowing for a larger receptive field (in terms
of mm) and heavily reducing the training time required to reach convergence.
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Moreover, the ground truth annotations of tumors are cast to liver masks
in order to conform to the binary segmentation task. All CT volumes are
resampled to the transversal view direction. The preprocessing pipeline as
implemented in MeVisLab is shown in Appendix A.

4.3 Approach

The binary segmentation of livers is a well explored problem and existing
results achieve very good segmentation performance. For example, one in-
stance from 2017 (Bilic et al., 2019) reported a Dice score of 0.96 on this task.
Therefore, this work explicitly does not aim to find an even better architec-
ture that increases state of the art performance or even calibration scores.
Instead, this work focuses on the quality of different uncertainty decomposi-
tion methods. The setup described in the following is thus intended to yield
a reasonably performing model that can be easily extended for uncertainty
quantification.

The following section then explores the relationship between heteroscedas-
tic uncertainty neurons (HUNs) and heteroscedastic logit smoothing (HLS)
and provides insights on the choice of the heteroscedastic logit smoothing
neuron (HLSN) as the basis for the comparison of vanilla BNNs with those
augmented with an uncertainty estimating neuron. Afterwards, the architec-
tural choices and hyperparameters of the models, as well as the details of the
implementation of the different uncertainty layers are described.

4.3.1 Parallels between HUN and HLS

This subsection compares the mechanisms underlying the heteroscedastic un-
certainty neuron by Kendall and Gal (2017) with those of the heteroscedastic
logit smoothing approach by Neumann et al. (2018).

Heteroscedastic Uncertainty Neuron

Sampling noise with a learnt variance over the logits results in loss atten-
uation, because the softmax operation squashes logits, that were sampled
with a high variance, more together in the extreme values. In the case of
a wrong prediction, the loss is attenuated by the resulting predictive distri-
bution which more closely follows a uniform distribution. This behaviour
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Figure 4.1: Numerical simulations of sampling logits through the softmax as pro-
posed by Kendall and Gal (2017), σ is set to 0.5 for both classes, incoming logits
are [0, 1], [0.25, 0.75], and [0.5, 0.5], the number of samples is 1000.

can be observed in the numerical simulations shown in Figure 4.1. The teal-
coloured lines indicate the two original logits, the larger violins represent the
distribution of the sampled logits, and the smaller violins show the distribu-
tion of the sampled logits after being passed through the softmax operation.
The red lines indicate the softmax scores of the two original logits and the
blue lines finally indicate the mean of the sampled softmax scores, i. e. the
model’s final output. As can be seen in the graphic, the means of the sampled
softmax scores (blue) lie closer towards 0.5 than the original softmax scores
(red) would have. This phenomenon is explained by the non-linear transfor-
mation of the softmax operation. The previously symmetric Gaussian sam-
pling distribution over the logits becomes an asymmetric distribution over
the softmax scores of those same sampled logits, with higher density towards
the respective extreme values 0 and 1. This asymmetric density illustrates
the squashing behaviour of the softmax operation when applied on normally
distributed logits. The whole process could also be described as ”smoothing”
the softmax scores.

Heteroscedastic Logit Smoothing

This smoothing of the logits can also be explicitly and directly achieved
by multiplying the original logits with a learnt confidence score in [0, 1],
as has been shown by Neumann et al. (2018). Although originally termed
relaxed softmax, this approach is henceforth denoted as heteroscedastic logit
smoothing (HLS), to capture its close relation to the mechanism behind the
heteroscedastic uncertainty neuron (HUN).

While both approaches aim at pushing the predictive distribution towards
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a uniform distribution for difficult samples, Kendall and Gal’s method does so
via one heteroscedastic uncertainty neuron per class, whereas HLS naturally
only works with a single smoothing factor.

Due to the overall similarity of the underlying behaviour of these loss
attenuation mechanism, this work tries to employ HLS inside a BNN, similar
to the setup of Kendall and Gal (2017). This work assumes that the com-
bination achieves comparable uncertainty to the original approach including
the HUN.

4.3.2 Network Architecture and Hyperparameters

Anisotropic U-net All models in this work use as their base architecture
a 5-level 3D anisotropic u-net (au-net; Chlebus et al. (2022)), which consti-
tutes a modification of the u-net (Ronneberger et al., 2015). The u-net was
introduced as a fully-convolutional model architecture for biomedical image
segmentation. It employs an encoder-decoder architecture, which gives the
model a characteristic U-shape and hence its name. The near symmetry of
the architecture is also due to the equal number of feature channels in both
the encoder and decoder paths, allowing the model’s higher resolution layers
to receive more contextual information from lower ones. Instead of more tra-
ditional upsampling techniques, such as nearest neighbour interpolation or
max-unpooling, the u-net makes use of learnable transposed 3D convolutions
in its decoder. The au-net introduces anisotropy to the processing of the x, y,
and z spatial dimensions. Instead of 3D convolutions operating on all three
image axes, the upper two resolution levels of the au-net employ 3D convolu-
tions working along the x and y dimensions only, and the other levels employ
depthwise separable 3D convolutions, which significantly decreases the num-
ber of weights to be learnt. Moreover, the convolution layers consist of two
convolutions and a ReLU activation function followed by a 2×2 max-pooling
operator in the encoder, and a corresponding upsampling convolution in the
decoder. The architecture of the au-net used in the experiments in this work
is shown in Figure 4.2.

Moreover, this work employs MC dropout for the variational approxi-
mation of all BNNs due to its easy implementation and robust results, as
outlined in Section 3.4.

Patch-based Image Processing Training and inference in this work are
done patch-wise, meaning that image sub-portions of a specified size and
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Figure 4.2: Au-net architecture with five resolution levels, image taken from Chle-
bus et al. (2022)
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padding, instead of the whole image, are fed into the model. The use of
patches is popular in medical image segmentation, where 3D images with ex-
tremely high resolution are common, and operations on whole images are pro-
hibitively expensive. The patch size for the experiments is set to 52×52×52
voxels with a padding of 92 × 92 × 20 voxels, reflecting voxels at the patch
border whenever the input image extent is exceeded. This size constitutes a
good trade-off between memory usage and the model’s receptive field. The
receptive field allows the model to still learn global spatial properties from
anatomic structures, such as the general position of the liver, thereby avoid-
ing most false positive predictions. The use of patches also enables patch
stratification, a technique to improve model training on imbalanced data
sets. The LiTS-full training data, for example, is imbalanced in that 39%
of the voxels belong to the foreground class. Such a separation of the train-
ing data into a common majority class and less common minority classes
can easily result in biased models whose predictive accuracy is lacking for
the minority class, i. e. the liver in this case. Patch stratification addresses
this by oversampling the minority class, so that the classes are more evenly
distributed in the training set. Balancing out the foreground-background
voxel ratio of the original/actual distribution allows the model to learn from
more liver voxels per batch than it would otherwise and has been shown
to improve performance, especially on the more infrequent classes (Johnson
and Khoshgoftaar, 2019). For the experiments in this work, a stratifica-
tion ratio of 80% patches containing at least one foreground voxel and 20%
containing only background voxels is chosen. Patches exclusively containing
liver voxels are not available, since no liver mask completely fills a patch.
The data preparation in this work was implemented using MeVisLab, where
patch stratification can be straightforwardly included in the training via the
StratifiedPatchSampler module. An example of this can be seen in the
data-serving MeVisLab network in Appendix A.

Training Configuration All models in this work are trained using the
adam optimiser and a max patience-stopping criterion of 40 epochs, mean-
ing that the training is finished once the Jaccard performance measure of
the model on the validation set has not improved for 40 epochs. The batch
size is set to 2, in order to allow for rapid training convergence without ex-
hausting the available memory. Training-time data augmentation, in which
additional training data is generated from the existing training data, is com-
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monly employed to improve a model’s accuracy and might even help decrease
its epistemic uncertainty. However, as this work does not aim to produce the
most well-calibrated liver segmentation model, but rather to evaluate the
uncertainty quantification and decomposition techniques as such, no data
augmentation was employed.

Model Hyperparameters For all BNNs trained in this work the dropout
rate is set to 0.2 as in Kendall and Gal (2017). In preliminary experiments
this value appeared to be a good compromise, the visibility of patch borders
in the inferred images is minimal, while the model still converges robustly
towards learning reasonable uncertainty in the BNN-HLS models. It is impor-
tant to note, however, that many works employ 0.25 or 0.5, instead (DeVries
and Taylor, 2018b; Gal and Ghahramani, 2016; Mobiny et al., 2021; Kwon
et al., 2020).

The number of MC dropout samples is set to 20. In general, the number
of stochastic forward passes used in the literature is diverse, ranging from
5 samples (Kwon et al., 2020) over 10 (Nair et al., 2020) and 20 (Chlebus
et al., 2022) to 50 (Kendall and Gal, 2017). Mobiny et al. (2021) reported
a prediction error one standard deviation from the best performance at 54
samples, but showed significant test error improvement after around 15 to
20 samples. Chlebus et al. (2022) also found 20 samples to be a ”reasonable
tradeoff between uncertainty resolution and computation speed”.

Different dropout positions have been used in the literature. Kendall and
Gal (2017) employ dropout throughout the whole net and Gal and Ghahra-
mani (2016) showed the mathematical equivalence between a neural network
with dropout in every layer and an approximation of a deep Gaussian process.
However, Kendall et al. (2017) tested different dropout layer positions with
regard to model performance and found that dropout throughout the whole
model results in too strong regularisation, therefore leading to longer training
times and decreased test performance. Moreover, their results demonstrate
that performance is not improved when dropping out the first layers of a net-
work, which is where basic image features are extracted (Zeiler and Fergus,
2014). In preliminary experiments dropout throughout the whole model, at
the set rate of 0.2, resulted in highly visible patch borders of inferred im-
ages, drastically impairing their qualitative evaluation, while decoder-only
dropout produced interpretable uncertainty estimates and much less visible
patch borders. Dropout is therefore only applied in the decoder of the au-net.
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Losses The choice of loss function is an important hyperparameter that has
been shown to strongly influence a classifier’s calibration. Cross-entropy loss,
being a proper scoring rule, promotes calibrated predictions, whereas the soft
Dice loss improves segmentation performance at the expense of model cali-
bration (Guo et al., 2017). Mehrtash et al. (2020) also have shown that Dice
loss leads to less well-calibrated BNNs than the cross-entropy loss. Bertels
et al. (2021) demonstrated via numerical simulation that for true foreground
probabilities with inherent aleatoric uncertainty, the local minimum of the
expected value of the Dice loss lies at either 0 or 1, instead of the true fore-
ground probability. Thus, the Dice loss cannot be interpreted as a proper
scoring rule, and tends to promote under- and overconfident predictions.

Due to this both Kwon et al. (2018), Kendall and Gal (2017), Neumann
et al. (2018), and Mobiny et al. (2021) employ cross-entropy loss in their
experiments, since their research focus lies on producing calibrated uncer-
tainty estimates. Keeping close to the original approaches, this work also
uses the cross-entropy loss as the main objective function. Despite the men-
tioned problems, Dice loss is a popular choice for improving a model’s overall
segmentation quality in practical image segmentation settings. This work,
therefore, also briefly examines whether the miscalibration induced by train-
ing with soft Dice loss similarly affects models that employ additional het-
eroscedastic neurons for calibration. Further, the quality of the uncertainty
decomposition for models that are trained with the soft Dice loss is exam-
ined. This work puts forward the hypothesis that the aleatoric uncertainty
estimates are heavily decreased, since the mutual information computation
of aleatoric uncertainty uses the individual softmax prediction distributions,
which have been shown to be overconfident when Dice loss is employed.

4.3.3 Employed Model Architectures

Altogether the following CNN architectures are trained and evaluated:

• A pure-NN model is trained with the au-net architecture, without
dropout or additional heteroscedastic units.

• The pure-NN model is extended with two heteroscedastic uncertainty
neurons (HUNs), no dropout is applied.

• The pure-NN model is extended with a heteroscedastic logit smoothing
neuron (HLSN), no dropout is applied.
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• A BNN is approximated via MC dropout, henceforth called BNN-MI.

• A BNN is approximated via MC dropout and extended with an HLSN,
henceforth called BNN-HLS.

4.3.4 Heteroscedastic Uncertainty Neuron

σ activation As the heteroscedastic uncertainty neuron defines the vari-
ance (σ) of the Gaussian noise used to sample and by extension smooth the
logits, the range of its output needs to match the domain of the variance
in the Gaussian noise function. To achieve this, the HUNs’ behaviour was
investigated for implementations with a sigmoid activation function and a
softplus activation function. Activations in the softplus case lie in the range
of [0,+∞], while activations in the sigmoid case normalise to the range of
[0, 1], which seems appealing for subsequent activation map analyses of the
uncertainty output. The convergence with a sigmoid towards an uncertainty-
capturing unit turned out to be more difficult, since the constrained variance
only provides the desired smoothing effect for smaller-valued logits. The
range of the logit outputs, however, varies between training runs due to ran-
dom weight initialisations and random mini-batches. Uncertainty estimates
that passed through the softplus activation function are clearer and converge
more robustly towards their intended meaning, i. e. capturing label noise. In
a sense the softplus’ σ should automatically correspond to the magnitude of
their respective logits, since both are derived from the same layer, i.e. have
the same data source.

Sampling Procedure Different procedures for sampling the noise also af-
fect the performance of the HUN and were, therefore, also investigated. The
original method employed by Kendall and Gal (2017) samples a fixed num-
ber of times, then computes the softmax over all sampled logits, and finally
averages the resulting scores. The number of samples constitutes a trade-off
between the computing time on the one hand and the sampling error on the
other hand, with less samples leading to less robust loss attenuation. Kendall
and Gal (2017) do not report the number of samples drawn for their Gaussian
noise, the reproduction in DeVries and Taylor (2018b) uses 100 samples. In
preliminary experiments 25 samples were found to be sufficient for inducing
the loss attenuating behaviour, and more samples did not have a positive im-
pact on the HUNs’ convergence. In contrast, the strategy employed by Kwon
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et al. (2020) is to sample only once, i. e. p ∼ N (z, σ). This work reproduced
the same convergence problems encountered in their original study, where
next to no uncertainty is captured by the HUN.

All subsequent experiments use the original method used by Kendall and
Gal (2017), which yields good uncertainty estimates when combined with a
vanilla NN.

Convergence To achieve robust capture of uncertainty in the HUN activa-
tion, the training of a HUN-model needs some guidance, similar to the learnt
confidence estimate or abstention networks, presented in Section 3.5.2 and
3.5.3, respectively. Initialising the σ weights following a Gaussian distribu-
tion, i. e. w ∼ (−1, 0.5), was found to enable reasonable convergence towards
uncertainty in preliminary experiments. In combination with the previous
ReLU activation, this weight initialisation translates to the network having
very low uncertainty at the beginning of training, with uncertainty increasing
as it encounters more samples that it has difficulties to learn. Without this
soft training guidance, the HUN activations were found to frequently con-
verge towards mimicking the logit values, which renders the HUN activation
useless as an uncertainty estimate and slightly decreases model performance.
Adding a HUN to a BNN, despite different weight initialisations and dropout
rates, resulted in even more difficult convergence, with the HUN-activation
frequently converging towards uniform zero.

4.3.5 Heteroscedastic Logit Smoothing

While its straightforward implementation is one of the attractive properties
of HLS, not requiring any custom layers or changes to the loss function,
there are still some practical considerations to be made to achieve reliable
uncertainty estimates.

α activation The heteroscedastic logit smoothing model employs a sig-
moid activation for α, so that the logits are scaled with a value in [0, 1] prior
to the application of the softmax. Although not explicitly specified by the
original authors, constraining α to not take on values above 1 seems a natu-
ral choice. While temperature scaling is theoretically able to scale the logits
both down and up, this form of learnt temperature scaling is expected to per-
form loss attenuation. Attenuating the loss of difficult samples by smoothing
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their predictive distribution whilst predicting a smoothing factor of 1 for the
rest corresponds exactly to this behaviour. Furthermore, constraining the
confidence values in this way also constrains the resulting uncertainty maps,
thereby simplifying subsequent analyses.

Convergence In preliminary experiments the model’s convergence towards
the desired loss attenuation property was evaluated by qualitatively inspect-
ing the activation of its HLSN. This convergence is not expected to be heavily
reflected in the final segmentation performance or reliability, as the models’
underlying architecture is quite complex, the input scans are resampled to a
relatively large voxel size, and this work considers the binary segmentation
problem of relatively large structures.

When trained naively, the models employing additional HLSNs were found
to frequently converge towards very noisy HLSN-activations, in which not
only the class boundaries, but also other structures as well as parts of the
background are highlighted. An example of such an activation map is shown
in Figure 4.3. As expected, the noisily applied smoothing factor does not
strongly harm the final predictions (preliminary experiments revealed a seg-
mentation decrease of around -0.015 for Dice and an increase in NLL of
around 0.2% for unconverged models). However, the extent of the uncertain
regions which do not correspond to human intuition about aleatoric uncer-
tainty vary from model to model, which impedes subsequent comparisons
between different training and inference setups.

Therefore, this work implements the HLSN with weights initialised follow-
ing a Gaussian distribution, i. e. w ∼ (1, 0.6). In combination with the previ-
ous ReLU activation, which leads to incoming values in the range of [0,+∞],
this weight initialisation lets the model enter its training with higher confi-
dence than when using keras’ default Glorot initialiser, which samples from
a uniform distribution [−limit, limit] where limit =

√︁
6/(fan in + fan out).

Over training, the model might then lower the confidence upon encounter-
ing difficult samples. This setup was found to more robustly lead to the
aleatoric neuron capturing uncertainty. In particular, the amount of noise in
the HLSN-activation is notably decreased, as shown on the right of Figure 4.3.
This dynamic is reminiscent of the need for custom training regimes employed
for several other loss attenuating models, as described in Sections 3.5.3 and
3.5.2.
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Figure 4.3: Activation maps for the HLSN in two different BNN-HLS models,
illustrating convergence behaviour

4.3.6 Uncertainty Metrics

Interpretation of Uncertainty Metrics If one wants to separate aleatoric
from epistemic uncertainty given a BNN’s predictive distribution, it is help-
ful to consider how these uncertainty types are reflected in the model’s out-
put. To ease understanding, let us take a step back and make the following
observations; If epistemic uncertainty is interpreted as model or weight un-
certainty, then different MC forward passes, which sample from the model’s
posterior weight distribution, should result in diverse predictions. According
to this interpretation, a model predicting [[0, 1], [1, 0]] with two MC forward
passes for one sample exhibits maximal epistemic uncertainty. Aleatoric un-
certainty, on the other hand, is not model-specific but rather depends on the
randomness of the underlying input data-generating process. Therefore, it
should not be influenced by weight uncertainty. In order to reliably cope
with label noise, a model should produce predictions whose class probabili-
ties represent the ground truth distribution’s stochasticity. Thus, the above
model would exhibit zero aleatoric uncertainty, while a model predicting
[[0.5, 0.5], [0.5, 0.5]] would assign the maximum aleatoric uncertainty to the
given sample.

With these observations in mind, the capability of predictive entropy,
predictive variance, and MI for computing specific uncertainty types should
be briefly reconsidered. More specifically, predictive entropy computes the
entropy of the averaged predictions, thereby capturing both epistemic and
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aleatoric uncertainty, as interpreted above. Predictive variance, on the other
hand, computes the variance between the samples, thus would assign zero un-
certainty to the maximally aleatoric uncertain example above and maximal
uncertainty to the epistemic example. MI essentially subtracts the aleatoric
uncertainty, as computed by the averaged entropy of single samples, from the
overall uncertainty, as measured by predictive entropy. Thus, MI computes
epistemic uncertainty as well. This aligns well with its probabilistic interpre-
tation of the question ”how much can we learn about the model weights if
we knew the target of a given sample?”.

Aleatoric Uncertainty Metric for Loss-attenuating Neurons Intu-
itively, the activation of loss-attenuating neurons constitutes an (aleatoric)
uncertainty estimate, since the model learns to produce high activation values
when a difficult sample is encountered during training in order to decrease,
i. e. attenuate, the loss. This general mechanism behind loss attenuation is
presented in Section 3.5. Notably, all works that reproduce Kendall and
Gal’s HUN employ this straightforward metric (Nair et al., 2020; DeVries
and Taylor, 2018b; Kwon et al., 2020).

However, the raw neuron activation does not correspond to any well-
defined metric, and it does not constitute a probability since its values lie in
the range of [0,+∞]. This makes it harder to interpret the resulting aleatoric
uncertainty estimates and complicates usage in subsequent downstream ap-
plications. Moreover, the degree of loss attenuation that is induced by the
activation of the HUN and HLSNs depends both on the activation itself as
well as the logits’ magnitudes. In fact, the logits themselves inherently con-
tain aleatoric uncertainty, which can be computed via the argmax, variance,
or entropy of the final softmax distribution. This dependency and the sep-
arate amount of uncertainty are ignored when the uncertainty neuron’s ac-
tivation is interpreted as aleatoric uncertainty directly. In general, the HUN
and HLS neurons constitute an additional calibration technique offering the
model another ”lever” to calibrate its predictions. Their activation directly
modifies the softmax output distribution by smoothing the incoming logit
values at both training and test time, as shown in Section 4.3.1. Therefore,
a comprehensive aleatoric uncertainty measure can and should make use of
one of the several well-defined metrics on the output distribution, such as
variance or entropy. In fact, Kendall and Gal themselves employ ”aleatoric
entropy” in their work.
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Interestingly, this observation produces a strong argument in favour of
the approaches by Kendall and Gal (2017) and Neumann et al. (2018). It
also motivates their combination with a BNN, because direct decomposition
metrics applied to a BNN’s predictive distribution, such as MI or variance de-
composition, described in Sections 3.6.2 and 3.6.2, lend themselves naturally
to this setup. Other approaches that employ some form of loss-attenuation,
which are listed in Section 3.5, lack this straightforward aleatoric uncertainty
measure, because their uncertainty values do not directly influence, i. e. cal-
ibrate, the model’s predictive distribution at test time. They, instead, count
only towards the loss function itself, as does a separate term involving the
model’s softmax scores. So, while the output of other uncertainty neurons
does capture uncertainty, the softmax distribution remains an independent
indicator for potentially remaining predictive uncertainty. A comprehensive
aleatoric uncertainty measure would have to take into account the uncertainty
encoded in both quantities, but evaluating the overall uncertainty over these
two sources is not as simple as in the case of HUN and HLS.

Having made these observations, let us now revisit a critique voiced by
Kwon et al. (2018) about the aleatoric uncertainty estimate in Kendall and
Gal (2017). Kwon et al. found the aleatoric uncertainty estimate not to
be a true random variable, because the predictive distribution’s variance (as
captured by the HUN’s output) is not modelled as a function of its mean
(the model output vector). This critique, however, rests on the assumption
that the authors proposed to use the HUN’s output as aleatoric uncertainty
estimate, while Kendall and Gal actually used the entropy of the softmax
distributions averaged over the MC samples. The aleatoric uncertainty in
Kendall and Gal’s approach can thus be calculated in a similar fashion as
Kwon et al.’s aleatoric estimate.

Due to these considerations, this work reports both the output of the
HLSN and the aleatoric component of the mutual information metric applied
on the BNN’s predictive distribution. Theoretically, both variance decompo-
sition and mutual information metric, as described in Section 3.6.2, are valid
choices for the direct uncertainty decomposition of the predictive distribution
of BNN-HLS models. Because the two metrics are very similar and since the
latter has already been successfully used by numerous authors (Mobiny et
al., 2021; Depeweg et al., 2018; Nair et al., 2020), this work uses the mutual
information decomposition, henceforth called MI, for all experiments. This
also streamlines the main comparison in this work, minimising the num-
ber of differing variables between the decomposed uncertainties derived from
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BNN-MI and BNN-HLS. Reporting both HLSN-activation and the aleatoric
term of the MI decomposition enables a direct comparison between these two
estimates. This work will compare the resulting uncertainty maps, as well
as investigate how their behaviour for different training and inference data
corresponds to the human intuition for aleatoric uncertainty. The specific
experimental setups are described in detail in the following Section 4.4. The
local MeVisLab macro for computing the MI decomposition from the pre-
dictive distribution of a BNN with and without additional heteroscedastic
neuron is included in Appendix B.

4.4 Evaluation

This section describes the evaluation procedures and metrics that are to an-
swer the research question. After outlining the overall segmentation and
calibration metrics, some brief considerations about the expected separa-
bility into aleatoric and epistemic uncertainty are provided, followed by an
explication of the experiments used to evaluate the quality of decomposed
uncertainties. Lastly, the usage of statistical significance tests is described.

Performance and Calibration Employing a held-out test set, the seg-
mentation performance is measured via Dice index and IoU for all experi-
ment settings. Moreover, calibration is illustrated in reliability diagrams and
quantitatively assessed via NLL, ECE, and MCE.

Qualitative Evaluation In order to qualitatively evaluate the decom-
posed uncertainties, the resulting uncertainty maps and their correspondence
to the intuitive interpretation of aleatoric and epistemic uncertainty are in-
vestigated, as described in Section 2.5.2. Since LiTS-full has high-quality an-
notations, aleatoric uncertainty is expected to appear mainly at class bound-
aries. Moreover, due to the absence of instances of rare classes, given the
binary liver segmentation task, epistemic uncertainty estimates are expected
to have low magnitude.

Expected Separability of Uncertainties Let us briefly consider the de-
gree of separability into aleatoric and epistemic uncertainty that is expected
to be achievable in the experiments of this work.
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Empirically, several authors have shown decomposed uncertainty values
to be slightly ”mixed” or ”intertwined”. The epistemic uncertainty estimates
obtained via MI decomposition in Mobiny et al. (2021) occur in class bound-
aries, instances of infrequent classes, and visually difficult or ambiguous ob-
jects. Nair et al. (2020) find predictive entropy as well as MI to highlight class
boundaries. While predictive entropy is expected to constitute the model’s
overall uncertainty, mutual information, as argued in Section 3.6.2, reflects
epistemic uncertainty. Finally, both aleatoric and epistemic uncertainty es-
timates derived via variance decomposition highlight incorrectly segmented
regions as well as class boundaries, the difference between the two being the
overall magnitude and continuity exhibited in uncertainty maps (Kwon et al.,
2020).

All in all, the investigated approaches frequently produce decomposed un-
certainty estimates that do not perfectly correspond to the intuition about
pure uncertainty types. This observation will be considered for the qualita-
tive analyses in Section 6.

Varying Training Set Size Epistemic uncertainty indicates ”what the
model does not know”, i. e. which patterns it has not encountered during
training. Reducing the training data, thus, naturally constrains a model’s
knowledge and should therefore increase its epistemic uncertainty. Aleatoric
uncertainty, on the other hand, is expected to not change much with varying
training set sizes, since the underlying data distribution’s label noise does not
increase nor decrease, given that the training data is stratified accordingly.
As the 32 LiTS cases that constitute the training data are already pre-filtered
according to annotation quality, each case is assumed to have roughly the
same amount of label noise and cases can be simply dropped to decrease the
effective sample size during this experiment.

In this work, the different training sets for each experimental setup are
the original training set LiTS-full, subsets of six cases (LiTS-6) , and subsets
of two cases (LiTS-2), where LiTS-2i ⊂ LiTS-6i ⊂ LiTS-full for i ∈ 1, 2, 3.
Different subsets for LiTS-6 and LiTS-2 are employed, for each of the three
experiment runs, in order to minimise the possibility of any resulting uncer-
tainty changes being caused by a subset-specific pattern in the data. The
binary segmentation task is well learnable for the models in this work, even
splitting the training data in half does not have much effect on either uncer-
tainty estimates or segmentation performance, as preliminary experiments
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have shown. The ratio between the training case counts is therefore set to
roughly 1

5
.

Both Kendall and Gal (2017) and Kwon et al. (2018) vary the effective
training sample size to assess the quality of their uncertainties, as described in
Sections 3.6.1 and 3.6.2, respectively. Akin to their results, this work reports
the uncertainty as mean uncertainty over all voxels in the test set. Since this
is a rather coarse metric, per-case uncertainty estimate distributions are also
plotted and the results are validated by qualitatively analyzing the resulting
uncertainty maps.

Artificial Label Noise Aleatoric uncertainty stems from label noise and
is thus irreducible since it pertains to the underlying data distribution rather
than the model itself, as already described in Section 2.5.2. This work there-
fore evaluates the quality of the uncertainty decomposition methods by com-
paring the uncertainties of two models which are trained on the same data
set but with different amounts of label noise. More specifically, one model
is trained on the standard training set of 32 LiTS cases (LiTS-full), whereas
the other model is trained on the same set, but artificial label noise is added
to one half of the label masks. This artificial noise is created by dilating the
liver masks with a max-kernel of size 7x7x1. This altered training set will be
henceforth called LiTS-noisy. Figure 4.4 illustrates an example liver mask
that is dilated, with the dilated region visible as a pronounced border in a
dark green colour. Thus, one half of the training cases in LiTS-noisy have an
enlarged liver annotation as ground truth, the other half remains as-is. This
setting does not reflect natural label noise as stemming from visual ambiguity
at the border of objects, since the voxels added for dilation are highly corre-
lated, occurring either all together or not at all. Instead, the setting mimics
training on annotations that were produced with two different annotation
regimes and/or labelling post-processing steps. In practice such situations
are common in medical data sets that were labelled in different hospitals
and where re-labelling by experts would be costly. The model trained on
LiTS-noisy is expected to produce higher aleatoric uncertainty around the
border of the liver during inference, while the epistemic uncertainty reported
by both models should be similar. Furthermore, the same dilation is applied
to one half of LiTS-test liver masks in order to compute segmentation perfor-
mance and calibration. Inferring on vanilla LiTS-test would mean discarding
label noise, which is assumed to be inherent in the data itself. Also, the test
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Figure 4.4: Original and dilated liver mask shown in light and dark green, respec-
tively

set is commonly selected to accurately represent the training data.
Thulasidasan et al. (2019) have also added artificial label noise in order to

assess the capabilities of predictive uncertainty, as described in Section 3.5.3.
However, their evaluation approach differs in that they make a distinction
between structured and unstructured noise, where noise is the randomisation
of image labels. The authors also did not decompose their predictive uncer-
tainty into uncertainty types. In this work, the artificial label noise-setup is
used specifically to evaluate the quality of uncertainty decomposition meth-
ods. As with the varying training size experiments described above, the mean
uncertainty over all voxels in the noisy test set is reported and the quality of
the resulting uncertainty maps will be assessed.

Inference on OOD Medical image segmentation models should indicate
at test time via their epistemic uncertainty whether a given CT scan is in dis-
tribution (ID) or out of distribution (OOD), i. e. the likeliness of being derived
from the same underlying distribution as the model’s training data. There
are numerous variants of OOD samples that might occur in a practical clin-
ical setting, for example CT scans whose anatomical plane, use of contrast,
or imaging technique/protocol diverges from what was seen during training.
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Even a simple 2D rotation of a CT volume represents an OOD sample, given
that the model was not trained with a corresponding data augmentation
regime. Identifying such samples is important, since the model learnt the
typical form, angle, and approximate position of certain objects, so that in-
ferring on a rotated image might result in wildly different segmentations than
inference on the same image with proper rotation. Epistemic uncertainty is
expected to filter out such cases, as this type of uncertainty indicates the
model’s degree of familiarity with patterns in the image. Aleatoric uncer-
tainty, conversely, represents label noise and is, thus, expected to stay the
same. Since expert annotators are generally able to recognise e. g. rotated
OOD CT scans, they can adapt and robustly label these cases regardless, as
such they typically contain the same amount of label noise as ID cases.

For this experimental setting all models trained on LiTS-full are evaluated
on 33 test cases that were rotated 180 degrees, henceforth called LiTS-rot.
This situation is not too far-fetched for the clinical setting, since this rotation
can be achieved by simply leaving out the resampling step which normally
transforms the CT scans to a specific anatomical plane. In addition to this
experimental setting, the models trained on LiTS-full are also used to infer
on one CT scan taken from a Fraunhofer-MEVIS-internal data set which is
employed for therapy planning of selective internal radiation therapy (SIRT).
The case displays a severe form of ascites, which is not encountered to this
extent in the LiTS data set. As such, it constitutes another type of OOD
sample by reflecting yet another shift in distribution.

If the predictive uncertainty is properly decomposed, inferring on an OOD
sample should naturally result in higher epistemic uncertainty, while aleatoric
uncertainty remains largely constant. Note that aleatoric uncertainty is not
expected to be perfectly stable, since the proportion of predicted class bound-
aries might be higher for certain OOD images, in which case an increase in
aleatoric uncertainty might occur.

4.4.1 Statistical Significance

In order to reduce the impact of the stochasticity of the training due to ran-
domly initialised weights and random ordering of mini-batches, three models
are trained for each network architecture and experimental setting. The three
resulting per-case uncertainty outcomes are then averaged across the three
trained models for plotting the distributions of uncertainty estimates per ar-
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chitecture and experimental setting as well as for computing the statistical
significance of their differences.

In order to compute the statistical significance of performance and cal-
ibration differences as well as increases or decreases in a model’s predicted
uncertainty, the Wilcoxon signed-rank test and the paired student’s t-test
are employed. Pairwise comparisons are performed for the per-case mean
model results as averaged across the three models per architecture. Thus,
both mean results are for the same individual, i. e. same test case, which
is a good fit for paired difference tests. The Wilcoxon signed-rank test is
performed for most uncertainty comparisons, since the uncertainty output
distributions of estimates derived via MI decomposition are not normally
distributed. The assumption of non-normality is validated via the Shapiro-
Wilk test, the results of which are depicted in Tables 1 and 2. Within this
work, the null hypothesis of normality for all distributions is rejected at the
0.05 significance level. Most mean activations of the HLSN follow a normal
distribution. The statistical significance of differences between those values
is thus computed via the student’s t-test.

The Wilcoxon signed-rank test statistics reveal whether a sample from
one population is greater than one from the other population with a chance
of more than 50%. Within this work, the null hypothesis of the median of
the differences between the distributions being zero is rejected, if the p value
is smaller than 0.05. The student’s t-test computes the difference between
two population means for pairs of random population samples following a
normal distribution. Within this work, if the p value is smaller than 0.05 the
null hypothesis of the population means being equal is rejected.



Results

5.1 Segmentation Performance

Table 5.1 shows the segmentation performance computed over the 33 cases
of the held-out test set LiTS-test for the pure-NN models, HUN- and HLS
models, BNN-MI, and BNN-HLS models trained on LiTS-full employing the
cross-entropy loss. Segmentation performance is computed via the mean
Dice coefficient and IoU across three models per architecture, all individual
segmentation results are listed in the Appendix 4. The reported differences
in segmentation performance are relatively small and the ranges of the seg-
mentation performances of three models which are trained per architecture
overlap considerably, thus no statistically significant performance differences
are found, as shown in Table 5.2.

Table 5.3 shows the segmentation performance as computed on LiTS-test
for the BNN-MI and BNN-HLS models trained on LiTS-full employing the
soft Dice loss. Segmentation performance is slightly lower than for models
trained with cross-entropy loss. The difference in segmentation performance
between BNN-MI and BNN-HLS models is negligible. Note, that in this case
only one model per architecture was trained, thus, no statistical significance
was computed for the mean segmentation performance in this case.

Table 5.1: Mean Dice coefficient and IoU as measured on the test set with the
pure-NN model, HUN- and HLS models, BNN-MI, and BNN-HLS models trained
with cross-entropy loss on LiTS-full

Dice IoU

pure-NN 0.941 0.89
HUN 0.946 0.90
HLS 0.945 0.90
BNN-MI 0.939 0.89
BNN-HLS 0.947 0.90

59
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Table 5.2: Wilcoxon signed-rank test results for the difference in segmentation
performance between the BNN-MI and BNN-HLS models computed for several
experiment settings. The respective training/test sets are indicated in the first
column.

t p

LiTS 2.0 0.75
LiTS-6 3.0 1.0
LiTS-2 0.0 0.25
LiTS-noisy 2.0 0.75
LiTS-rot 1.0 0.5

Table 5.3: Mean Dice coefficient and IoU as measured on the test set with BNN-MI
and BNN-HLS models trained with soft Dice loss

Dice IoU

BNN-MI 0.922 0.855
BNN-HLS 0.939 0.885

Table 5.4 shows the segmentation performance for the BNN-MI and BNN-
HLS models trained with cross-entropy loss for all other experimental set-
tings, namely with varying training set sizes (LiTS-6 and LiTS-2), added
artificial label noise in the training and test data (LiTS-noisy), and trained
on LiTS-full but inferring on the test set LiTS-rot.

Segmentation performance for BNN-MI and BNN-HLS models:

• is extremely poor when inferring on OOD samples from LiTS-rot , even
worse than naively predicting the background class for all voxels.

• positively correlates with the size of the training set, with highest per-
formance when trained on LiTS-full.

• is lower when trained on LiTS-noisy than for models trained on LiTS-
full.

Across experiment settings, BNN-MI and BNN-HLS models perform largely
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Table 5.4: Mean Dice coefficient and IoU for the performance of the BNN-MI and
BNN-HLS models trained with cross-entropy loss on different training sets and
inferring on different test sets, as indicated in the first row.

LiTS-rot LiTS-6 LiTS-2 LiTS-noisy

Dice IoU Dice IoU Dice IoU Dice IoU

BNN-MI 0.041 0.02 0.853 0.74 0.78 0.64 0.744 0.59
BNN-HLS 0.071 0.04 0.864 0.76 0.75 0.6 0.835 0.72

similarly with only marginal differences between their mean performances.
There are no statistically significant differences, as reported in Table 5.2.

5.2 Calibration

Table 5.5 shows the mean calibration computed over the 33 cases of the
held-out test set LiTS-test for the pure-NN model, HUN- and HLS models,
BNN-MI, and BNN-HLS trained on LiTS-full employing the cross-entropy
loss. Calibration is computed via the mean NLL, ECE, and MCE across three
models per architecture. Overall, calibration for models trained with cross-
entropy loss is extremely high. The differences in calibration between model
architectures are marginal, with a slightly better calibration for BNN-MI and
BNN-HLS. The ranges in calibration of the three models which are trained
per architecture overlap considerably, thus no statistically significant perfor-
mance differences are found, see also Table 5.6. The reliability diagrams of
the ”representative median models”, i. e. the model with the median NLL
across the three trained models, for BNN-MI and BNN-HLS are plotted in
Figure 5.1. The reliability diagrams of all models trained on LiTS-full can
be found in Appendix E.

The calibration of the BNN-MI and BNN-HLS models trained with soft
Dice loss is noticeably worse, as can be seen in Table 5.7. Meanwhile, both
BNN-MI and BNN-HLS are markedly better calibrated than the pure-NN
model, as can be seen in the reliability diagrams in Figure 5.2. There are no
statistically significant differences between the calibration of BNN-MI and
BNN-HLS, as reported in Table 5.6.
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Table 5.5: Mean calibration metrics as measured on the test set for the pure-
NN model, HUN- and HLS models, BNN-MI, and BNN-HLS models trained with
cross-entropy loss on LiTS-full. All measures are given in percent.

NLL ECE MCE

pure-NN 0.7 0.1 6.6
HUN 0.7 0.7 4.8
HLS 0.7 0.07 6.0
BNN-MI 0.67 0.07 3.8
BNN-HLS 0.6 0.00 2.7

Table 5.6: Wilcoxon signed-rank test results for the difference in calibration be-
tween the BNN-MI and BNN-HLS models as measured via NLL. The different
training and test sets are indicated in the first column.

t p

LiTS-full 1.0 0.5
LiTS-6 2.0 0.75
LiTS-2 1.0 0.65
LiTS-noisy 2.0 0.75
LiTS-rot 2.0 0.75

Tables 5.8 and 5.9 show the mean calibration for BNN-MI and BNN-HLS
models employing cross-entropy loss for the remaining experiments, namely
with varying training set sizes (LiTS-6 and LiTS-2), added artificial label
noise in the training and test data (LiTS-noisy), and trained on LiTS-full
but inferring on the test set LiTS-rot.

The calibration of BNN-MI and BNN-HLS models:

• is poor when inferring on OOD samples from LiTS-rot.

• negatively correlates with the size of the training set, with best cali-
bration when trained on LiTS-full.

• worse for models trained on LiTS-noisy than when training and infer-
ring on LiTS-full and LiTS-test.
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Figure 5.1: Reliability diagrams for a BNN-MI (L) and a BNN-HLS (R) model,
trained with cross-entropy loss on LiTS-full

Table 5.7: Mean calibration metrics as measured on the test set for BNN-MI and
BNN-HLS models trained with soft Dice loss on LiTS-full. All measures are given
in percent.

NLL ECE MCE

BNN-MI 1.8 0.1 38
BNN-HLS 1.6 0.2 18.1

Across experiment settings, the calibration of BNN-MI and BNN-HLS are
largely similar with only marginal differences between their mean calibration.
There are no statistically significant differences, as reported in Table 5.6.

In Appendix F, several example predictive uncertainty maps are shown for
all model architectures, i. e. pure-NN, HUN- and HLS models, BNN-MI, and
BNN-HLS. For the HUN- and HLS models, uncertainty maps are provided
for both the entropy of the softmax scores as well as the activation of the
HLSN and the HUN. For BNN-MI and BNN-HLS the predictive entropy
is used as overall predictive uncertainty measure. Overall, all uncertainty
measures for all model architectures highlight segmentation class boundaries
and show up slightly in tumor regions for which the model is also unsure in
its general prediction.
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Figure 5.2: Reliability diagrams for a pure-NN (L), a BNN-MI (M), and a BNN-
HLS (R) model, trained with soft Dice loss on LiTS-full

Table 5.8: Mean calibration metrics as measured on the test set for BNN-MI
and BNN-HLS models trained with cross-entropy loss on LiTS-6 and LiTS-2. All
measures are given in percent.

LiTS-6 LiTS-2

NLL ECE MCE NLL ECE MCE

BNN-MI 2.2 0.2 8.7 3.2 0.4 10.3
BNN-HLS 2.0 0.1 8.4 3.8 0.5 15.0

5.3 Decomposed Uncertainties

In the following, the resulting aleatoric and epistemic estimates derived via
uncertainty decomposition performed on the BNN-MI and BNN-HLS models
are reported for all experiment settings.

Please note that the HLSN-derived aleatoric uncertainty is plotted as
1−HLSN-activation, in order to streamline the discussion of the uncertainty
maps by consistently using the term ”uncertainty” instead of ”confidence”.
Also, the liver masks used for training were thresholded so that liver tumors
were assigned the same class as liver. The original unthresholded ground
truth maps are shown here in order to be able to investigate the interaction
between liver tumors and corresponding segmentation and uncertainty esti-
mates. All reported uncertainty maps are produced by the representative,
median models, as chosen according to the NLL calibration metric. Due to
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Table 5.9: Mean calibration metrics as measured on the LiTS-rot test set for
BNN-MI and BNN-HLS models trained with cross-entropy loss on LiTS-full. All
measures are given in percent.

LiTS-rot LiTS-noisy

NLL ECE MCE NLL ECE MCE

BNN-MI 18.7 2.3 16.9 2.1 0.6 16.4
BNN-HLS 19.2 2.3 22.6 1.4 0.5 14.7

MC dropout, patch borders might appear inside an activation or segmenta-
tion map. This is a consequence of using different dropout probabilities for
each patch, and the mean of those forward passes producing slightly differ-
ent results. The default VOI LUT (used to transform voxel values prior into
more human-readable ranges prior to rendering) of 0.5/1 is changed when-
ever the highlighted structures would otherwise not be visible. LUT values
are annotated at the bottom right of each image.

5.3.1 Overall Qualitative Results

Figure 5.3 shows example uncertainty maps derived from the BNN-MI and
the BNN-HLS models alongside the corresponding original image and ground
truth liver mask. Further examples are included in Appendix G.

All aleatoric estimates, i.e. aleatoric uncertainty as computed via MI
decomposition on BNN-MI and BNN-HLS, as well as the activation of the
HLSN consistently highlight the segmentation class boundaries, as can be
seen in the provided uncertainty maps. Epistemic uncertainty is frequently
similar to the aleatoric estimates, though less focal and appearing only par-
tially around segmented object borders, and having vastly lower magnitude
overall. Moreover, the aleatoric uncertainty maps from BNN-MI and BNN-
HLS as derived via MI decomposition are ”cleaner” in contrast to those
estimates derived from the HLSN-activation. The former mostly constitute
a thin, high-valued border around the segmented objects, whereas the lat-
ter sometimes dimly highlights the borders of other structures, as well. The
magnitude of aleatoric uncertainty values derived via MI decomposition is
generally higher than that of the HLSN-activation.

For several tumor regions, segmentation accuracy drops slightly, as can
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Figure 5.3: Example uncertainty maps derived from BNN-MI and BNN-HLS mod-
els trained on LiTS-full

be seen in the top two rows for both BNN-MI and BNN-HLS. In those cases,
both aleatoric and epistemic uncertainty estimates indicate an increase in
uncertainty.

5.3.2 Experiment Results

Varying Training Set Size

Varying the training set size visibly alters the resulting uncertainty maps.
Some examples are shown in Figures 5.9 and 5.10. Aleatoric uncertainty
as derived via MI decomposition becomes less delineated with less training
data. The activation of the HLSN becomes more spread out, as well, project-
ing notably into the segmented liver region. Epistemic uncertainty becomes
significantly larger, mostly around the class boundaries (of which there are
more for models trained on LiTS-6 and LiTS-2 because the upper liver lesions
are segmented as non-liver). Additionally, the epistemic uncertainty of both
model architectures tends to highlight the spleen or kidneys when trained on
LiTS-2, an example of which is shown in Figure 5.10.

Quantitatively, the different training set sizes have a significant impact
on the epistemic uncertainties of models from both architectures, as shown
in Tables 5 and 6. Smaller training sets correlate with higher epistemic
uncertainty, as is reflected in the overall test set voxel means, as seen in
Table 5.10, as well as in the violin plots of the per-case uncertainty estimates
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Table 5.10: Mean aleatoric and epistemic uncertainty estimates averaged over all
voxels in the test set and across the three respectively trained models for BNN-
MI and BNN-HLS. The first column denotes the respective experiment setting,
indicating the training/test sets used.

BNN-MI BNN-HLS

aleatoric epistemic HLSN aleatoric epistemic

LiTS-full 0.0080 8.40e-4 0.0203 0.0055 6.62e-4
ascites (1 case) 0.0181 2.82e-3 0.0273 0.0195 3.39e-3
LiTS-noisy 0.0276 1.70e-3 0.0153 0.0301 1.54e-3
LiTS-6 0.0092 1.84e-3 0.0258 0.0119 1.99e-3
LiTS-2 0.0129 2.52e-3 0.0305 0.0073 2.35e-3
LiTS-rot 0.0069 1.15e-3 0.0161 0.0051 1.49e-3

in Figures 5.4 and 5.6. While the aleatoric uncertainty estimates as computed
via MI decomposition increase for LiTS-2 as well, the uncertainty derived
from the HLSN emits significantly larger values for models trained on both
LiTS-6 and LiTS-2.

Artificial Label Noise

Dilating the liver mask of one half of the training samples, as described
in Section 4.4, visibly alters the resulting aleatoric uncertainty maps. Two
examples are shown in Figure 5.11 for the aleatoric uncertainty as derived
via MI decomposition for both BNN-MI and BNN-HLS. The aleatoric uncer-
tainty estimates are slightly higher and considerably more spread out around
the boundary of the liver class, visibly projecting into the liver in some parts,
for both models when trained on LiTS-noisy. Moreover, the models trained
on LiTS-noisy are visibly more uncertain about smaller liver parts that are
sticking out of the main structure, blurrying most into a more homogeneous
liver mass. On the other hand, the aleatoric uncertainty computed via the
activation of the HLSN, as shown in Figure 5.12, exhibits no clear tendencies
towards more or less aleatoric uncertainty. The training-inherent stochas-
ticity due to random initialisation of weights produces considerably different
HLSN-activation patterns. Across randomly initialised models, the resulting
HLSN-activation ranges from less pronounced than when trained on LiTS-
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Figure 5.4: Mean per-case epistemic uncertainty estimates of BNN-MI models
trained on different training set sizes and artificial label noise levels, evaluated on
the test set.

full, over showing a definitive region of uncertainty around the segmented
liver, to not only producing a wide border of uncertainty, but the aleatoric
uncertainty also projecting into the liver itself. Epistemic uncertainty for
both BNN-MI and BNN-HLS shows no strong difference when training on
LiTS-full and LiTS-noisy. The epistemic estimates, which line the border of
the segmented liver, appear more blurred overall for models trained on LiTS-
noisy. Additionally, a tiny amount of epistemic uncertainty encompasses the
broadened segmentation and aleatoric uncertainty.

Quantitatively evaluating all predicted uncertainties on the test set con-
firms the qualitatively observed rise in aleatoric uncertainty as computed
via MI decomposition. The mean uncertainty values across all voxels in the
test set are shown in Table 5.10. They show notably increased aleatoric un-
certainty and a slightly raised mean of the epistemic uncertainty, for both
models when trained on LiTS-noisy. The uncertainty derived from the ac-
tivation of the HLSN, on the other hand, significantly decreases for models
trained on LiTS-noisy. Figures 5.4 to 5.7 provide a more fine-grained view
on the resulting decomposed uncertainty estimates when averaged per-case
over the three respectively trained models for both architectures BNN-MI
and BNN-HLS. Both BNN-MI and BNN-HLS produce not only higher mean
aleatoric uncertainties, but also more spread-out aleatoric estimates with a
considerable number of cases in the upper quartile when trained with LiTS-
noisy as compared to training in the normal setting. This increase in aleatoric
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Figure 5.5: Mean per-case aleatoric uncertainty estimates of BNN-MI models
trained on different training set sizes and artificial label noise levels, evaluated
on the test set.

uncertainty is statistically significant for both models, as shown in Tables 5
and 6. While the mean of the per-case epistemic uncertainty estimates is
also higher for LiTS-noisy, the distribution of epistemic estimates is a lot less
variable, as can be seen in the respective violin plots in Figures 5.4 and 5.6.

Inference on OOD

Inferring on rotated CT scans in LiTS-rot with models from both architec-
tures, BNN-MI and BNN-HLS, results in extremely poor performance, as
already seen in Table 5.3. The models predict several regions, most notably
the spleen, as liver, which can be seen in Figure 5.13. Most segmented re-
gions are located on the left-hand side of the patient, which corresponds to
the liver’s original location in the unrotated training CT scans. The reliabil-
ity of all models is accordingly bad, as seen in Table 5.9.

Quantitatively, epistemic uncertainty estimates are slightly elevated in
comparison to models which both train on LiTS-full and infer on the normal
LiTS-test set, while all aleatoric uncertainty estimates remain largely the
same, as seen in Table 5.10.

This rise in epistemic uncertainty is reflected in the uncertainty maps, as
shown in Figure 5.13. Aleatoric and epistemic uncertainty for BNN-MI and
BNN-HLS both highlight regions of the original liver, with only aleatoric
uncertainty still strongly appearing around the border of the confidently
segmented spleen, as well. As opposed to the preceding uncertainty maps
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Figure 5.6: Mean per-case epistemic uncertainty estimates of BNN-HLS models
trained on different training set sizes and artificial label noise levels, evaluated on
the test set

for inference on ID data, the increased epistemic uncertainty estimates are
overall higher in magnitude.

The inference of both BNN-MI and BNN-HLS models on the CT scan
of a patient with severe ascites, which was not included in the training set,
results in strong overestimation of the liver region, with all models predicting
large parts of fluid in the abdomen as well as a separate part of the lower
abdomen, as belonging to the liver. The segmentations also demonstrate
noticeably less delineated borders, when compared to segmented livers on
the ID test set, as can be seen in the 3D visualisation in Figure 5.14 for two
segmentations of an ID and the OOD ascites-case, respectively.

Figure 5.15 shows that aleatoric and epistemic uncertainty estimates high-
light the boundary of the segmented liver region, as well as shading the part
of the fluid that is incorrectly predicted as liver by both models.

Quantitatively, inferring on this OOD case slightly raises all aleatoric
uncertainty estimates, and drastically increases the epistemic uncertainty
estimates of both BNN-MI and BNN-HLS, as shown in Table 5.10.
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Figure 5.7: Mean per-case aleatoric uncertainty estimates of BNN-HLS models
trained on different training set sizes and artificial label noise levels, evaluated on
the test set.

Figure 5.8: Mean per-case aleatoric uncertainty estimates derived from the HLSN-
activation of BNN-HLS models trained on different training set sizes and artificial
label noise levels, evaluated on the test set.
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Figure 5.9: Example uncertainty maps for BNN-MI trained on LiTS-full, LiTS-6,
and LiTS-2 (L to R). Original image and ground truth liver mask are shown in
the top row, then, from top to bottom: segmentation, epistemic, and aleatoric
uncertainty maps as computed via MI decomposition.
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Figure 5.10: Example uncertainty maps for BNN-HLS trained on LiTS-full, LiTS-
6, and LiTS-2 (L to R). Original image and ground truth liver mask are shown
in the top row, then, from top to bottom: segmentation, epistemic and aleatoric
uncertainty as computed via MI decomposition, and HLSN-derived aleatoric acti-
vation maps.
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Figure 5.11: Example uncertainty maps for BNN-MI and BNN-HLS models when
trained on LiTS-full vs. LiTS-noisy

Figure 5.12: Example activation map of the HLSN in BNN-HLS models when
trained on LiTS-full (left) vs. 3 different variants when trained on LiTS-noisy



5.3. Decomposed Uncertainties 75

BNN-MI BNN-HLS

P
re
d
ic
ti
on

G
T

E
p
is
te
m
ic

A
le
at
or
ic

H
L
S
N

Figure 5.13: Aleatoric and epistemic uncertainty maps derived from BNN-MI and
BNN-HLS when trained on LiTS-full and inferring on LiTS-rot.
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Figure 5.14: Example segmentations for BNN-MI and BNN-HLS on an ID and
two OOD test cases
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Figure 5.15: Aleatoric and epistemic uncertainty maps derived from BNN-MI and
BNN-HLS models when trained on LiTS-full and inferring on an OOD case with
severe ascites.



Discussion

This chapter analyses the results of the experiments detailed in the previous
chapter, relates them to existing literature, and uses them to answer this
work’s research question. As per the latter, the main focus lies on the quality
of the decomposition of the overall predictive uncertainty into aleatoric and
epistemic components given two different architectures:

• BNN-MI, which uses the MI decomposition on a regular BNN’s predic-
tive distribution, and

• BNN-HLS, whose predictive distribution can be decomposed in the
same way, but whose HLSN provides an additional indicator for aleatoric
uncertainty, independent of the epistemic MC sample variance.

The main portion of this chapter is a thorough analysis of the decomposed
uncertainties and their behaviour for different experiment settings, with some
further remarks about the use of the HLSN-activation as an aleatoric un-
certainty estimate. Observations concerning the behaviour of uncertainty
decomposition for models that were trained with soft Dice loss instead of
cross-entropy loss are also included at the end.

6.1 Overall Performance and Calibration

Overall, the segmentation performance and calibration of all models trained
on LiTS-full is very high. This result is not surprising given the relatively
simple binary segmentation task, and is consistent with the results of pre-
vious works (Bilic et al., 2019). As expected, both reliability and segmen-
tation performance degrade for all models with decreasing training set size
and increasing artificial label noise. In contrast to Kendall and Gal (2017),
this work found no statistically significant performance difference for either
BNN-MI nor BNN-HLS compared to the pure-NN model. However, Kendall
and Gal found larger performance improvements for their more challenging
data set. Thus, the missing segmentation performance improvement in this
work might be explained by the given problem setup, with much less objects
to segment, two instead of 11 or 40 classes, and larger segmented objects
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in general. These factors simplify the segmentation task, leading to very
high baseline performance, which in turn renders performance improvements
harder to achieve.

The total uncertainty of pure-NN, HUN- and HLS models occurring
mostly at class boundaries conforms to the expectation of it mainly reflect-
ing aleatoric uncertainty. The probabilistic predictions of vanilla NNs encode
learnt label noise but lack a model confidence estimate, which could act as
epistemic uncertainty, as explained in Section 3.1. The predictive entropy
maps for BNN-MI and BNN-HLS are also heavily dominated by the aleatoric
uncertainty values, being both more focal and larger in magnitude.

6.2 Decomposed Uncertainties

Overall, the expected differences in uncertainty are reflected in the mean
uncertainties when averaged over all voxels in the test set, as shown in Ta-
ble 5.10. While the uncertainty estimates derived via MI decomposition
largely correspond to the intuitive behaviour of the respective uncertainty
types, the activation of the heteroscedastic logit smoothing neuron (HLSN)
does not do so consistently. Furthermore, the variance of the per-case esti-
mates over the test set for MI-decomposed uncertainty types, as reported in
Figures 5.4 to 5.7, provides another, even clearer distinction that matches
the intuition about the behaviour of aleatoric and epistemic uncertainty es-
timates.

Epistemic uncertainty estimates are generally low which can be explained
by the binary classification setting. The multi-class road and indoor scene
segmentation tasks in Kendall and Gal (2017) illustratively provide epistemic
uncertainty estimates for instances of rare classes and visually difficult pixels,
of which there are next to none in the binary liver segmentation setting.
Moreover, epistemic uncertainty highlights segmented class boundaries across
experiment settings. While not fully conforming to the definition of epistemic
uncertainty, since one would expect this region to be difficult due to label
noise, i .e. data-inherent aleatoric uncertainty, these findings are consistent
with other works and have been anticipated, as described in Section 4.4. Both
Mobiny et al. (2021) and Kendall and Gal (2017) derive epistemic estimates
that also outline the borders of segmented objects.
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6.2.1 Varying Training Set Size

Decreasing the number of cases in the training set is expected to raise
epistemic uncertainty with little impact on aleatoric uncertainty. However,
slightly raised aleatoric uncertainty on smaller training sets does not necessar-
ily signify the employed uncertainty decomposition is inaccurate. Aleatoric
uncertainty might occur around the borders of incorrectly or over-segmented
regions, whose number increases with decreasing training set sizes. Con-
versely, slightly lowered aleatoric uncertainty might occur, since smaller data
sets contain in fact less label noise, as there are simply less instances over
which annotators might disagree.

In the experiments performed in this work, decreasing the number of cases
in the training set significantly raises epistemic uncertainty while having little
impact on aleatoric uncertainty for both BNN-MI and BNN-HLS models, as
shown in Figures 5.4, 5.5 and 5.6, 5.7, respectively. The experiments also
show that aleatoric uncertainty is significantly increased for the BNN-MI
models trained on smaller training data, as are the aleatoric uncertainty
estimates of BNN-HLS models trained on LiTS-2, while BNN-HLS on LiTS-
6 exhibits slightly decreased aleatoric uncertainty. This observation fits in
with the situation described previously. Training on smaller data sets results
in models that are less accurate e .g. segmenting liver lesions as non-liver,
as shown in Figures 5.9 and 5.10. The irregular shape in turn increases the
amount of segmented class boundaries, which raises aleatoric uncertainty.

Interestingly, for both model architectures trained on LiTS-2, epistemic
uncertainty sometimes highlights the spleen or kidney while the aleatoric
uncertainty estimates are clearly located solely in the liver region. This
finding demonstrates that the model has not yet accurately learnt the concept
and features of the liver differentiating it from other organs with similar
radiodensity. Thus, it mistakes the similar-looking spleen for a liver instead in
some forward passes. This observation conforms to the definition of epistemic
uncertainty as indicating model uncertainty and is in line with the results by
Kendall and Gal (2017) who found epistemic uncertainty to identify ”visually
challenging” pixels.

6.2.2 Artificial Label Noise

Both BNN-MI and BNN-HLS predict significantly higher aleatoric uncer-
tainty when trained on LiTS-noisy, a data set in which one half of the liver
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masks is artificially dilated, than when trained on the original LiTS-full, as
shown in Table 5.10. Qualitatively, the resulting aleatoric uncertainty maps
confirm these results, with broader bands of uncertainty at class boundaries
for aleatoric uncertainty estimates derived via MI decomposition. The mod-
els’ behaviour, thus, conforms to the intuition of aleatoric uncertainty as
capturing label noise. The activation of the HLSN, on the other hand, does
not consistently lead to increased aleatoric uncertainty at class boundaries,
and in fact its mean over the LiTS-test voxels is significantly decreased.
Epistemic uncertainty, while quantitatively slightly increased, appears more
blurred and outlines both the original, undilated liver and the broadened out-
line of aleatoric uncertainty. The latter finding is unexpected, since it does
not directly translate to the intuition about epistemic uncertainty, since no
visually challenging or rare patterns were introduced. However, considering
that epistemic uncertainty does occur lightly around objects in other works as
well (Mobiny et al., 2021; Kendall and Gal, 2017), and given that the models
were trained with essentially two kinds of liver outlines, observing epistemic
uncertainty around both learnt contours appears reasonable. Meanwhile, the
epistemic estimates largely leaving out regions, where artificial label noise was
introduced during training, does reflect a clean separation between the two
uncertainty types.

In sum, the aleatoric uncertainty as derived via MI decomposition reliably
indicates the artificially introduced inter-annotator disagreement. This find-
ing agrees with the work conducted by Thulasidasan et al. (2019), in which
the loss-attenuating abstention networks, as described in Section 3.5.3, act as
effective data cleaners for artificially introduced label noise. In a real-world
setting, increased aleatoric uncertainty might thus be seen as a warning sign
and warrant a manual investigation of the annotations in order to evaluate
their suitability for the given task.

6.2.3 Inference on OOD

When inferring on LiTS-rot, the test set of 180 degree rotated CT scans, all
models fail to perform proper segmentation. The reliability of the predic-
tions from all models is equally poor, which is to be expected, as calibration
is negatively affected by incorrect segmentations. The models confidently
segment the spleen and other regions in the patient’s left upper abdominal
quadrant. This indicates that the models rely on the location of the liver



6.2. Decomposed Uncertainties 81

as a reliable source of information, which could consistently be used during
training to differentiate it from other organs.

Furthermore, mean aleatoric uncertainty of BNN-MI and BNN-HLS is
slightly decreased while epistemic uncertainty is considerably increased. The
small decrease in aleatoric uncertainty cannot indicate less label noise in the
images, since label noise in LiTS-rot is by construction equal to that in LiTS-
test. Instead, it is a sign of the model’s failed segmentation, as qualitative
investigation reveals that the segmented regions are noticeably smaller and
more numerous than the liver itself, leading to more object borders lined with
aleatoric uncertainty. In this case, the shift in distribution causes the models’
reliability to decrease considerably, rendering the decomposed uncertainty es-
timates less meaningful. Meanwhile, the general rise in epistemic uncertainty
as compared to the uncertainty estimates reported for the normal LiTS-test
is statistically significant for all models. The difference between the distribu-
tions for the per-case epistemic uncertainty estimates is also clearly visible
in Figures 5.4 and 5.6. While these results demonstrate a strong correlation
between OOD samples and epistemic uncertainty, the uncertainty estimates
are not generally reliable OOD detectors, since a considerable number of
LiTS-rot cases are actually assigned epistemic uncertainty estimates that lie
in the distribution of the normal LiTS-test, as shown in Figures 5.4 and 5.6.

These findings are in line with work conducted by Ovadia et al. (2019),
who showed that segmentation performance as well as calibration signifi-
cantly degrade with distribution shifts. The reader is also referred to Graham
et al. (2022), who emphasise the difference between uncertainty quantification
and OOD detection, and instead propose to explicitly estimate the training
data-likelihood of a given sample.

The strong ascites case arguably presents a less extreme shift in distri-
bution, while still significantly deviating from the LiTS-full training data.
The BNN-MI and BNN-HLS models perform more meaningful segmenta-
tion of the liver, while producing visibly fuzzy segmentation borders as well
as mistaking large parts of the intraperitoneal fluid as liver. The decom-
posed uncertainties conform to expectations. Mean aleatoric uncertainty is
slightly increased and mean epistemic uncertainty is considerably increased,
exceeding that of models trained on only two training cases (LiTS-2). The
slightly raised aleatoric estimates account for the increase in segmented class
boundaries, while epistemic uncertainty successfully indicates the shift in
distribution.
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Figure 6.1: Aleatoric uncertainty as estimated via HLSN (L) and mean entropy
(R) for a BNN-HLS model

6.3 Aleatoric Uncertainty Metric for Loss-

attenuating Neurons

Two approaches to aleatoric uncertainty estimation afforded by a model
equipped with heteroscedastic loss-attenuating neurons are introduced in Sec-
tion 4.3.6: using the output of the heteroscedastic neuron and deriving an
estimate from the model’s predictive distribution. Recall that the same sec-
tion also reported that all reproductions of Kendall and Gal (2017) differed
from the original work by construing the HUN’s output as aleatoric uncer-
tainty estimate. It was decided to derive both aleatoric uncertainty estimates
in order to be able to compare the resulting uncertainties in this work.

Let us briefly compare visually how the output of the heteroscedastic
neuron varies from the entropy of the softmax distribution in terms of en-
coding aleatoric uncertainty in the setting of this work. Figure 6.1 depicts
two uncertainty maps from the HLS model derived via the output of the
HLSN and the entropy of the predictive distribution. The maps show a qual-
itative difference between the two aleatoric uncertainty estimates, with the
entropy-based uncertainty being more pronounced around class boundaries
and containing less noise around structures other than the segmented object,
i. e. the entropy-based uncertainty is more robust towards noise. Similar qual-
itative differences are found for the HUN model, as shown in Appendix F.
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Figure 6.2: Ground truth liver mask (L), variance of logits for the pure-NN model
(M) and the HLS model (R)

This observation is in line with the results by Nair et al. (2020), in which
the authors found the HUN activation to highlight the borders of not only
the segmented objects but also of other structures in the image. In addi-
tion to this qualitative observation, the quantitative evaluation of the be-
haviour of both aleatoric uncertainty metrics, as described in Sections 5.3.2
and 5.3.2, showed that the mean entropy of the softmax output distributions
corresponds precisely to the intuition about aleatoric uncertainty while the
activation of the HLSN is less cleanly interpretable.

Furthermore, the models’ logits were found to inherently contain a sig-
nificant amount of uncertainty which can only be captured when deriving
aleatoric uncertainty from the predictive distribution, as explained in Sec-
tion 4.3.6. Figure 6.2 depicts the variance of the logits of an HLS model along-
side its corresponding ground-truth liver mask. The images demonstrate the
informativeness of the logits’ inherent uncertainty, since they clearly and
consistently indicate less confidence in a thin border around the class bound-
ary, which corresponds exactly to the intuition about aleatoric uncertainty.
Thus, the logits clearly still encode some amount of aleatoric uncertainty,
despite the added heteroscedastic loss-attenuating neuron. In fact, the logits
output by the pure-NN model look similar in form and magnitude to the
logits of models that employ HLS. This suggests that the calibration lever
introduced by the HLSN is used in addition to and not as a replacement for
the logit-inherent uncertainty. When interpreting the output of the HLSN as
aleatoric uncertainty, this considerable amount of logit-inherent uncertainty
is discarded. This finding, thus, corroborates the theoretical discussion in
Section 4.3.6, and motivates the use of comprehensive aleatoric uncertainty
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metrics.

This also reinforces the argument in favour of the approaches by Kendall
and Gal (2017) and Neumann et al. (2018), which afford straightforward
uncertainty decomposition methods applied on the predictive distribution,
because the loss-attenuating terms directly translate into a smoother output
distribution at both training and test time.

6.4 Loss Interactions

Models of each uncertainty-decomposing architecture, BNN-MI and BNN-
HLS, were also trained employing the soft Dice loss as objective function,
as motivated in Section 4.3.2. The following investigation of the resulting
uncertainty maps aims to briefly answer two questions. The first question
pertains to the quality of decomposed uncertainty estimates of models trained
with Dice loss, with the hypothesis being that aleatoric uncertainty will be
reduced, because the individual softmax score distributions are promoted
to be overconfident. The other question is, whether the HLSN is generally
capable of capturing meaningful uncertainty, leading to a better-calibrated
model than without loss attenuation, when trained with Dice loss.

Example uncertainty maps in Figure 6.3 juxtapose the aleatoric uncer-
tainty estimates computed for both BNN-MI and BNN-HLS models when
trained with cross-entropy and with soft Dice loss. For both architectures,
the choice of loss function leads to a stark qualitative difference in the re-
sulting uncertainty maps. Models trained with cross-entropy exhibit the
expected aleatoric uncertainty at class boundaries, and show very faint epis-
temic uncertainty overall. For the models trained with soft Dice loss, on the
other hand, it appears as though the roles of aleatoric and epistemic uncer-
tainty were reversed. The epistemic uncertainty now prominently appears at
class boundaries while aleatoric uncertainty is reduced to a partial and faint
border around the segmentation.

The already observed miscalibration of the models trained with soft Dice
loss, shown in Table 5.7, aligns with the well-known fact that soft Dice loss
promotes overconfident models. The changes observed for the individual
uncertainty type estimates, on the other hand, have to the best of the au-
thors knowledge not have been studied before. The apparent role-reversal
of epistemic and aleatoric uncertainty can be explained by understanding
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aleatoric uncertainty as the mean entropy of the single MC predictions while
epistemic uncertainty is represented by the variance over multiple MC predic-
tions, as described in Section 4.3.6. The mutual information decomposition
corresponds precisely to this interpretation. Soft Dice loss, simultaneously,
pushes the network to be confident in its individual predictions, thereby
suppressing aleatoric uncertainty estimates. These results confirm the ini-
tial hypothesis regarding the quality of uncertainty decomposition. The soft
Dice loss not only leads to worse reliability, but it also drastically reduces
the amount of aleatoric uncertainty obtained via the mean entropy of the
predictive distribution.

The miscalibration exhibited in the reliability diagrams in Figure 5.2
also answers the other question, demonstrating that models trained with
loss-attenuating neurons also suffer from overconfidence when trained with
the soft Dice loss. Figure 6.3 includes an activation map of the HLSN, in
order to more closely investigate the role of the heteroscedastic neuron. The
map reveals that effectively no uncertainty is captured by the additional
heteroscedastic neuron. With the logit-smoothing neuron rendered unusable
by the soft Dice loss, the BNN-HLS model therefore calibrates its output
scores solely via the logit values.
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Figure 6.3: Uncertainty maps for BNN-HLS models: one is trained with cross-
entropy loss and one is trained with soft Dice loss.



Conclusion

This work provides a comprehensive comparison between the direct decompo-
sition of the predictive uncertainty of a BNN via the MI metric and the explic-
itly separate modelling of epistemic and aleatoric uncertainty in a BNN with
an additional heteroscedastic loss-attenuating neuron. BNNs in this work are
implemented via MC dropout variational inference and use a heteroscedastic
logit smoothing neuron as loss attenuator. The underlying mechanism of
logit smoothing is shown to be similar to that of the heteroscedastic uncer-
tainty neuron which was originally introduced for use in the joint architecture
by Kendall and Gal.

The comparison performed in the context of medical image segmentation
of the liver from CT scans, employing a 3D au-net as base architecture.

In order to evaluate the quality of the uncertainty decomposition, the
resulting uncertainty maps were evaluated qualitatively and the mean uncer-
tainty values per test case were systematically compared quantitatively for
different experiment settings with varying training set sizes, label noise, and
distribution shifts.

The comparison revealed that the output of the added heteroscedastic
neuron, while correctly indicating aleatoric uncertainty at the class bound-
aries, contains a lot of noise around other structures and is generally less
robust in converging towards capturing uncertainty during training than
aleatoric uncertainty estimates derived via the MI decomposition. Mean-
while, deriving aleatoric uncertainty via the mutual information decompo-
sition for both models produces the desired label noise-capturing estimates
and cleaner uncertainty maps. Adding artificial noise by dilating half of the
ground truth masks in the training data leads to significantly higher mean
aleatoric uncertainty per case and visibly broader aleatoric uncertainty esti-
mates at class boundaries for both model architectures. This demonstrates
the robust ability of the mutual information metric to derive meaningful
aleatoric uncertainty from predictive distributions.

Epistemic uncertainty as computed via the mutual information metric is
overall lower in magnitude than aleatoric uncertainty for the employed data
set, which reflects the high number of training samples and the absence of
rare classes in the binary liver segmentation task. The epistemic estimates
frequently occur around the outline of segmented objects, which corresponds
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to expected label noise. Smaller training sets significantly increase epistemic
uncertainty and diffusely highlight structures that are visually similar to
the liver, such as the spleen. The overall behaviour is consistent with the
definition of epistemic uncertainty and the results of previous works deriving
epistemic uncertainty in image segmentation.

Segmentation performance and reliability of the models is very high for
ID data and extremely poor for OOD data. This work found no statistically
significant difference in the performance, reliability, or quality of uncertainty
decomposition between the BNN and the joint architecture combining a BNN
with heteroscedastic logit smoothing.

Adding a heteroscedastic logit smoothing neuron (HLSN) to a BNN does
indeed result in the neuron learning uncertainty, as seen in its activation, how-
ever this work found it to not statistically significantly improve the quality
of the uncertainty estimates when decomposed via the MI metric. Noisiness
in the activation of the loss-attenuating neuron in both the uncertainty maps
as well as in its quantitative properties across different settings leads to the
conclusion that the MI decomposition remains significantly more suited for
uncertainty decomposition of BNNs even with loss-attenuating neurons.

This work also demonstrates a strong influence of the choice of loss func-
tion on the quality of uncertainty decomposition. The soft Dice loss essen-
tially disables loss-attenuating neurons and heavily deteriorates the quality
of the decomposed uncertainties. In particular, the roles of aleatoric and
epistemic uncertainty show reversed behaviour, a finding which might help
future practitioners choose an adequate loss function when aiming to decom-
pose their models’ uncertainty.

Limitations and Future Work

A strong limitation of this work is the task setting itself. Binary tasks inher-
ently do not induce much epistemic uncertainty and the overall performance
and reliability were extremely high even for the vanilla neural network mod-
els. The very high baseline performance renders performance improvements
harder to achieve and quantify. Conducting this comparison exhaustively
on more diverse and challenging multi-class data sets would therefore yield
a more comprehensive understanding of the differences between the uncer-
tainty decomposition in BNNs with and without loss-attenuating neurons.
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Models with additional loss-attenuating neurons, such as heteroscedas-
tic uncertainty neurons (HUNs) and heteroscedastic logit smoothing neurons
(HLSNs), were found to have non-trivial convergence properties regarding
the neurons’ tendency to capture uncertainty. Successful loss attenuation
required carefully tuning the initialisation of their incoming weights. Find-
ing a stable and more generally applicable training regime reliably inducing
convergence would be a crucial prerequisite for widespread adoption of het-
eroscedastic loss-attenuating neurons.

Though MC Dropout provides a cheap and straightforward approxima-
tion to BNNs, one could compare the quality of decomposed uncertainty
estimates for additional approximation approaches. Especially interesting
are methods supporting more complex posteriors and their interaction with
estimates derived from the predictive distribution. Different approximation
approaches might also have less influence on the convergence of the HUN.

The evaluation of hyper-parameters, such as dropout rate and the po-
sition of the dropout layers, were not in the scope of this work, with their
values set to sane defaults adopted from prior work or determined by pre-
liminary experiments. Future works should investigate the influence of these
parameters on the quality of uncertainty estimates derived from a BNN’s
predictive distribution and their interaction with loss-attenuating neurons.

It would be interesting to investigate if one can fine-tune the calibration
of an already trained (B)NN by adding a heteroscedastic output neuron.
This could essentially constitute a novel post-hoc calibration method with
straightforward implementation and no requirements to otherwise alter the
network architecture or loss function.

Another interesting question regards the differences between uncertainty
estimates yielded by 2D and 3D models. Given that the uncertainty esti-
mates are comparable one could envision a setup, where active learning is
performed with cheap 2D models, producing a training set for a much more
computationally expensive high performance model on 3D data.

Bleeding-edge models in image processing make increasing use of transformer-
based architectures operating via attention mechanisms (Vaswani et al., 2017).
Investigating the calibration properties of attention-based models and how to
best estimate their uncertainty would be an interesting next step. Fan et al.
(2020) propose a first approach for quantifying uncertainty of attention-based
models from a Bayesian viewpoint.
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A Data Preprocessing

Figure 1: Data preprocessing MeVisLab network
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B Mutual Information Computation

Figure 2: MeVisLab Macro Module for computing decomposed uncertainty esti-
mates via the mutual information metric given a predictive distribution as input.
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C Shapiro-Wilk Tests

Table 1: Shapiro-Wilk test results for the mean epistemic uncertainty per case as
computed by BNN-MI and BNN-HLS on the test set.

BNN-MI BNN-HLS

W p W p

LiTS 0.84 2.2e-4 0.78 1.5e-5
LiTS-noisy 0.86 7.0e-4 0.87 9.0e-4
LiTS-6 0.92 2.2e-2 0.87 1.4e-3
LiTS-2 0.85 4.1e-4 0.83 1.4e-4
LiTS-rot 0.67 2.3e-7 0.77 7.7e-6

Table 2: Shapiro-Wilk test results for the mean aleatoric uncertainty per case as
computed by BNN-MI and BNN-HLS via MI decomposition and activation of the
HLSN on LiTS-test.

BNN-MI (MI) BNN-HLS (MI) BNN-HLS (HLSN)

W p W p W p

LiTS 0.85 3.8e-4 0.83 1.2e-4 0.95 0.16
LiTS-noisy 0.85 2.8e-4 0.84 1.7e-4 0.83 1.1e-4
LiTS-6 0.84 2.6e-4 0.90 4.9e-3 0.94 0.16
LiTS-2 0.86 7.0e-4 0.87 1.0e-3 0.98 0.64
LiTS-rot 0.78 1.2e-5 0.79 1.7e-5 0.95 0.18
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D Test Performance

Table 3: Dice coefficients for all three pure-NN, HUN- and HLS-models trained
with cross-entropy loss on LiTS-full and inferring on LiTS-test.

Pure-NN HUN-model HLS-model

I II III I II III I II III

LiTS-full 0.944 0.932 0.949 0.958 0.938 0.953 0.946 0.936 0.995

Table 4: Dice coefficients for all three BNN-MI and BNN-HLS models trained with
cross-entropy loss for different training and test sets, as indicated in the first row.

LiTS-full LiTS-rot LiTS6 LiTS2 LiTS-noisy

BNN-MI
I 0.919 0.013 0.894 0.736 0.532

II 0.945 0.054 0.893 0.826 0.869

III 0.952 0.056 0.802 0.785 0.831

BNN-HLS
I 0.946 0.066 0.876 0.716 0.828

II 0.947 0.027 0.891 0.784 0.818

III 0.947 0.119 0.826 0.744 0.858
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E Reliability Diagrams

Figure 3: Reliability diagrams for all three pure-NN models trained with cross-
entropy loss on LiTS-full

Figure 4: Reliability diagrams for all three HUN models trained with cross-entropy
loss on LiTS-full
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Figure 5: Reliability diagrams for all three HLS models trained with cross-entropy
loss on LiTS-full

Figure 6: Reliability diagrams for all three BNN-MI models trained with cross-
entropy loss on LiTS-full

Figure 7: Reliability diagrams for all three BNN-HLS models trained with cross-
entropy loss on LiTS-full
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H Statistical Significance Tests for Decom-

posed Uncertainties

Table 5: Wilcoxon signed-rank test results for difference in epistemic and aleatoric
uncertainty derived from the BNN-MI models when trained on LiTS-full and in-
ferring on LiTS-test vs. other training and test set settings, as denoted in the first
column.

Epistemic Aleatoric

t p t p

LiTS-6 1.0 5.9e-7 97.0 0.001
LiTS-2 1.0 5.9e-7 0.0 5.4e-7
LiTS-noisy 0.0 5.3e-7 0.0 5.4e-7
LiTS-rot 153.0 0.02 148.0 0.02

Table 6: Wilcoxon signed-rank test results for the difference in epistemic and
aleatoric uncertainty as derived via MI decomposition of the BNN-HLS models
when trained on LiTS-full and inferring on LiTS-test vs. other training and test
set settings, as denoted in the first column.

Epistemic Aleatoric

t p t p

LiTS-6 0.0 5.4e-7 0.0 5.4e-7
LiTS-2 0.0 5.4e-7 51.0 4.1e-5
LiTS-noisy 0.0 5.4e-7 0.0 5.4e-7
LiTS-rot 14.0 1.9e-6 231.0 0.38
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Table 7: Wilcoxon signed-rank test results for the difference in HLSN-derived
aleatoric uncertainty of the BNN-HLS models when trained on LiTS-full vs. when
trained on LiTS-noisy.

HLSN activation

t p

LiTS-noisy 61.0 8.8e-5

Table 8: Paired student’s t-test results for the difference in HLSN-derived aleatoric
uncertainty of the BNN-HLS models when trained on LiTS-full and inferring on
LiTS-test vs. other training and test set settings, as denoted in the first column.

HLSN activation

t p

LiTS-6 -5.2 1.2e-5
LiTS-2 -32.9 3.2e-26
LiTS-rot 11.6 5.4e-13
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