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Summary  

Members of the phylum Bacteroidetes play a pivotal role in degrading organic matter 
and appear everywhere in marine and freshwater systems, from coastal to open ocean, from 
polar to equatorial, from surface waters down to the deep sea as well as in association with 
aggregates and with phytoplankton blooms. The studies described in this thesis elaborate on 
the distribution and function of marine Bacteroidetes. Specifically their association with spring 
phytoplankton blooms, substrate association by direct surface attachment and their genetic 
capability of degrading high molecular weight organic matter and in particular 
polysaccharides were examined.  

The Bacteroidetes distribution and community structure were analyzed at a temporal 
scale, by investigating the responses of distinct bacteroidetal clades during and after spring 
phytoplankton blooms of four consecutive years at the coastal station Helgoland Roads. It 
could be shown by automated microscopic cell counting that shortly after the chlorophyll a 
maximum concentration Bacteroidetes increased to more than 50% of the total 
bacterioplankton community during spring seasons. The Bacteroidetes community comprised 
only a few dominant genera, which accounted together for more than half of the Bacteroidetes. 
Each year a distinct succession pattern of the clades Ulvibacter, Formosa A, and Polaribacter was 
observed with relative abundances of single clades with up to 20%. Furthermore, members 
of the Bacteroidetes inhabited not only the free-living fraction, but they were also found 
attached to diatoms. Although a quantification of attached Bacteroidetes was difficult, 
qualitative observations were made. For example members of this phylum attach frequently 
to the diatom Chaetoceros spp., which is commonly blooming in spring at Helgoland Roads. 
The clades Polaribacter and Formosa A were identified as dominating among those Chaetoceros-
associated Bacteroidetes. In contrast, Ulvibacter was not found attached to Chaetoceros, but to 
Asterionella spp., another diatom genus occurring in spring blooms. 

Since members of Bacteroidetes are the first in responding to algal blooms and 
attached even to distinct diatom species, we investigated their genetic potential to degrade 
algal derived organic matter. In particular we searched for the presence of polysaccharide 
utilization loci (PULs) in fosmids retrieved from two contrasting provinces of the North 
Atlantic Ocean. In total 14 PULs were identified, six on fosmids from the northern station 
and eight on fosmids from the southern station. Among those PULs one seems to be 
involved in xylan degradation and four were identified as potential laminarin degradation 
PULs. Interestingly, GHs were identified which had been assumed to be unique among 
terrestrial Flavobacteria, suggesting a higher capability of open ocean Bacteroidetes clades for 
organic matter degradation than previously anticipated. 
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Zusammenfassung  

Bacteroidetes sind dafür bekannt, ubiquitär verbreitet und wesentlich am Abbau von 
organischem Material beteiligt zu sein. Vertreter des Phylums sind sowohl in marinen und 
Süßwassersystemen als auch auch an den Küsten bis hin zum offenen Ozean, von polaren 
bis hin zu äquatorialen Bereichen, vom Oberflächenwasser bis in die Tiefsee sowie in 
Assoziation mit Aggregaten und Phytoplanktonblüten zu finden. 

Die in dieser Arbeit beschriebenen Studien gehen näher auf die Verteilung und 
Funktion von marinen Bacteroidetes ein. Besonders wurden deren Reaktion auf die  
Phytoplanktonblüten im Frühjahr, deren Substratpräferenzen zur direkten Oberflächen-
anhaftung an Algen und deren genetische Fähigkeit, hochmolekulares, organisches Material 
in Form von Polysacchariden abzubauen, untersucht.  

Die Zusammensetzung und Verbreitung der Bacteroidetes-Gemeinschaft wurde über 
einen Zeitraum von vier Jahren am Standort Helgoland „Kabeltonne“ untersucht, wobei 
besonders das Auftreten von bestimmten Untergruppen während und nach der 
Frühjahrsblüte analysiert wurde. Es konnte mittels automatischer Mikroskopie gezeigt 
werden, dass im Frühjahr kurz nach dem Chlorophyll-a-Maximum mehr als 50% des 
Bakterioplanktons aus Bacteroidetes bestehen. Die Bacteroidetes Gemeinschaft wird von wenigen 
einzelnen Untergruppen dominiert, welche zusammen jedoch mehr als die Hälfte der 
Bacteroidetes ausmachen. So konnte überraschenderweise in jedem der untersuchten Jahre eine 
definierte Sukzession von Ulvibacter, Formosa A und Polaribacter nachgewiesen werden. Jede 
dieser Untergruppen besaß eine relative Abundanz von bis zu 20%. Weiterhin konnte gezeigt 
werden, dass Bacteroidetes nicht nur in der freilebenden Fraktion, sondern auch angeheftet an 
Diatomeen zu finden waren. Die Quantifizierung von angehefteten Bacteroidetes erwies sich 
als schwierig und deshalb wurden nur qualitativ Auswertungen durchgeführt. Die Gruppen 
Polaribacter und Formosa A wurden hauptsächlich an Chaetoceros, eine vor Helgoland 
regelmäßig blühende Diatomeengattung, assoziiert gefunden. Im Gegensatz dazu heftete sich 
Ulvibacter präferentiell an eine andere Diatomeengattung an, nämlich Asterionella.  

Da Vertreter der Bacteroidetes offensichtlich stark auf Algensubstrate reagieren, wurde 
deren genetisches Potenzial, Algenpolymere abzubauen, untersucht. Wir fanden unter mehr 
als 200 Fosmiden 14 sogenannte „Polysaccharide Utilization Loci“ (PULs), welche von zwei 
unterschiedlichen Stationen des Nordatlantischen Ozeans stammen, sechs von der 
nördlichen und acht von der südlichen Station. Unter diesen PUL Fosmiden wurde eins 
identifiziert, welches möglicherweise am Xylanabbau beteiligt ist und vier weitere besitzen 
die genetische Fähigkeit, Laminarin abzubauen. Interessanterweise wurden einige 
Glycosylhydrolasen identifiziert, von denen angenommen wird, dass sie nur in 
Flavobakterien terrestrischer Herkunft vorkommen. Dies deutet daraufhin, dass Bacteroidetes-
Gruppen aus dem offenen Ozean eine höhere Fähigkeit besitzen organisches Material 
abzubauen als ursprünglich angenommen. 
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   Chapter 1: Introduction 
 

1.1 Microbial diversity: “everything is everywhere, but the 

environment selects” (BAAS BECKING 1934) 

Following the statement of BAAS BECKING (1934) many scientists studied 

microbial biodiversity and biogeographical patterns (e.g. FUHRMAN ET AL. 1993, 

STALEY & GOSINK 1999, GIOVANNONI & STNGL 2005, POMMIER ET AL. 2005, 

JOHNSON ET AL. 2006, SCHATTENHOFER ET AL. 2009, GÓMEZ-PEREIRA ET AL. 2010). 

Microorganisms, in general, are everywhere on Earth, inhabiting diverse 

environments, e.g. aquatic habitats (freshwater and marine), soils and sediments, 

living in symbiotic relationships or being pathogenic. They are referred to as the 

“unseen majority” and their total number is estimated to range between  

4 – 6 x 1030 cells. Microorganism inhabiting the world’s oceans account for  

1.2 x 1029 cells. They are outnumbered (3.5 x 1030 cells) by those occupying the ocean 

floor and subsurface (WHITMAN ET AL. 1998). In fact, oceans, including their coastal 

realms, harbor a vast diversity of different organisms ranging in size from several 

meters (e.g. whales can exceed 30 m) to micrometers (picoplankton in the range 

of 2 – 0.2 μm). Although, microorganisms have a small cell size, their total biomass 

exceeds the combined mass of fish and zooplankton in the oceans (POMEROY ET AL. 

2007). All these different organisms interact in complex food webs.  
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Although, aquatic microorganisms are everywhere their community 

composition differs greatly. For example, there are clades having a preference for 

marine environments, such as Alphaproteobacteria, Gammaproteobacteria or Bacteroidetes, 

while others like Betaproteobacteria or Actinobacteria are prominent members of the 

freshwater bacterioplankton (GLÖCKNER ET AL. 1999, NEWTON ET AL. 2011). 

1.2 Main marine bacterioplankton groups 

In marine habitats the majority of microbes fall into a few clades of Bacteria 

and Archaea (Figure 1.1; GIOVANNONI & RAPPÉ 2000). Two phyla – Proteobacteria and 

Bacteroidetes – dominate the heterotrophic picoplankton. Among the Proteobacteria – 

Alphaproteobacteria and Gammaproteobacteria are the dominant clades (KIRCHMAN 2002). 

 

  

Figure 1.1: Overview of major marine picoplankton clades. Blue letters
indicate groups which occur in mesopelagic and surface waters in polar 
winter; gold indicates bacteria belonging to the photic zone; green indicates
clades which are associated with coastal ocean ecosystems and black
indicates those groups which are present everywhere in the seawater 
(modified after GIOVANNONI & STINGLE 2005). 
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1.2.1 Alphaproteobacteria  

Members of the Alphaproteobacteria are ubiquitously distributed (NEWTON ET 

AL. 2011), but found in higher abundances in marine than in lacustrine habitats 

(GLÖCKNER ET AL. 1999, ZWART ET AL. 2002). For example, the SAR11 clade 

represents the most abundant clade in the ocean´s surface layers, comprising up to 

50% of all picoplankton cells (MORRIS ET AL. 2002). In freshwater systems they are 

also highly abundant, but consist mainly of the LD12 lineage (BAHR ET AL. 1996, 

ZWART ET AL. 1998, ZWART ET AL. 2002, SALCHER ET AL. 2011, HEINRICH ET AL. 

2013). Another alphaproteobacterial clade, Roseobacter, is less abundant, but widley 

distributed in marine environments (BUCHAN ET AL. 2005). Some Roseobacter linages 

are found everywhere, in many different marine habitats such as the DC5-80-3 cluser 

(BUCHAN ET AL. 2005), others are found in association with eukaryotic marine 

organisms (RUIZ-PONTE ET AL. 1998) and even others like the DG1128 or NAC11-7 

cluster were identified in close relationship to macroalgae and phytoplankton blooms 

(SCHÄFER ET AL. 2002). 

1.2.2 Gammaproteobacteria 

The Gammaproteobacteria are highly abundant in marine systems, often with 

preferences for coastal environments (RAPPÉ ET AL. 1997, EILERS ET AL. 2001). 

Members of this class are considered to degrade rapidly the more easily accessible 

fraction of organic matter (BRETTAR ET AL. 2006). For example, they were identified 

as one of the bacterioplankton clades taking up glucose in late winter and during a 

spring phytoplankton bloom in the German Bight of the North Sea (ALONSO ET AL. 

2006). It was shown by automated ribosomal intergenic spacer analysis (ARISA) and 

denaturing gradient gel electrophoresis (DGGE) that about one fourth of the 

bacterial community in the German Bight was assigned to Gammaproteobacteria. 

Moreover, specific clades were found in strong association with a spring 

phytoplankton bloom (SAPP ET AL. 2007). 



 8 

1.2.3 Bacteroidetes 

The second phylum, which dominates the heterotrophic picoplankton, is 

Bacteroidetes. This phylum is one of the most abundant (especially in coastal areas) 

clades of Bacteria, omnipresent in the world’s oceans and also in freshwater habitats 

(GLÖCKNER ET AL. 1999, SIMON ET AL. 1999, ALONSO ET AL. 2007, ZEDER ET AL. 

2009, GÓMEZ-PEREIRA ET AL. 2010). The importance of Bacteroidetes in heterotrophic 

degradation of organic matter and their presence in algal blooms as well as colonizing 

particles have been shown in many studies (e.g. DELONG ET AL. 1993, SIMON ET AL. 

1999, BARBEYRON ET AL. 2001, PINHASSI ET AL. 2004, WOEBKEN ET AL. 2007, 

SAPP ET AL. 2007, PEDROTTI ET AL. 2009, TADA ET AL. 2011, THOMAS ET AL. 2011) 

and will be further analysed in this thesis.  

1.3 The phylum Bacteroidetes 

The phylum Bacteroidetes is also known as Cytophaga-Flavobacterium-Bacteroides-

cluster (WOESE 1987). The very same phylum has been referred in literature also as 

Bacteroides-Cytophaga-Flexibacter group (HUGENHOLTZ ET AL. 1998) as well as 

Cytophaga-Flavobacteria cluster (KIRCHMAN 2002) and other variations thereof. 

Members of this phylum are heterotrophic, gram-negative bacteria which live mainly 

aerobic in different environments or anaerobic as part of e.g. the gut flora 

(KIRCHMAN 2002). Some of them represent important members of the intestinal 

flora (XU ET AL. 2003) and others may be pathogenic (SMITH ET AL. 2006) or live in 

soils (EILERS ET AL. 2012). However, the majority is present in aquatic habitats e.g. 

freshwater (GLÖCKNER ET AL. 1999, ZEDER ET AL. 2009), coastal (CRUMP ET AL. 

1999, EILERS ET AL. 2001, KIRCHMAN ET AL. 2005, ALONSO ET AL. 2007) and open 

ocean waters (SCHATTENHOFER ET AL. 2009, GÓMEZ-PEREIRA ET AL. 2010, DÍEZ-

VIVES ET AL. 2014), sediments (ISHII ET AL. 2004), hydrothermal vents (SIEVERT ET 

AL. 2000, KORMAS ET AL. 2006), polar regions (BANO & HOLLIBAUGH 2002, ABELL & 

BOWMAN 2005, GRZYMSKI ET AL. 2006, MALMSTROM ET AL. 2007), deep-sea 
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(SCHAUER ET AL. 2010, RUFF ET AL. in rev) and many are associated with marine 

phytoplankton (SIMON ET AL. 1999, RIEMAN ET AL. 2000, PINHASSI ET AL. 2004, 

FANDINO ET AL. 2005).  

The phylum Bacteroidetes consists of four classes (Figure 1.2): the class 

Bacteroidia, Flavobacteria, Sphingobacteria and Cytophagia. The latter was recently ranked 

as independent class based on 16S rRNA sequence identities (LUDWIG ET AL. 2008). 

Most members of the class Flavobacteria represent the marine clade and only some 

from Sphingobacteria and Cytophagia. Members of the class Bacteroidia are mainly gut-

associated. 

 

  

Figure 1.2: Overview of a 16S rRNA gene based phylogenetic tree of the 
Bacteroidetes phylum including classes (color coded) and some families. 
Phylogenetic tree was adapted from the “All-Species Living Tree” (YARZA et al. 
2008), release 111 (February 2013). Tree reconstruction was based on the 
maximum likelihood algorithm RAxML. 
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1.3.1 The marine clade of Flavobacteria 

The class Flavobacteria represents a very broad lineage and contains, e.g., the 

families Flavobacteriaceae, Cryomorphaceae and Blattabacteriaceae (LUDWIG ET AL. 2008). 

The family Blattabacteriaceae consists of non-motile intracellular symbionts of 

cockroach and termite species (CLARK & KAMBHAMPATI 2003, BERNARDET 2010). 

Among the family Cryomorphaceae only a few members have been isolated from 

seawater, but most members of the family Flavobacteriaceae are from marine origin.  

The family Flavobacteriaceae is much large and in the latest version of ‘Bergey’s 

Manual of Systematic Bacteriology’ (editorial deadline June 2006) consists of more 

than 61 genera, some of which contain up to 40 valid species (BERNARDET 2010). 

The latest release of ‘The All-Species Living Tree Project’ (LTP; release February 

2013; YARZA ET AL. 2008, MUNOZ ET AL. 2011) comprised 391 species in 81 genera. 

Members of the Flavobacteriaceae seem to be abundant in marine, mostly polar habitats 

(SIMON ET AL. 1999, KIRCHMAN ET AL. 2003, BANO & HOLLIBAUGH 2002, ABEL & 

BOWMAN 2005, BOWMAN ET AL. 2006, GÓMEZ-PEREIRA ET AL. 2010), playing an 

important role in organic matter degradation (BARBEYRON ET AL. 2001, HUMPHRY ET 

AL. 2001, ELIFANTZ ET AL. 2005, DESCAMPS ET AL. 2006, THOMAS ET AL. 2011). 

Various species, organized in up to 40 genera, have been isolated from marine 

habitats and most genera (26) consist of species with a free-living or saprophytic 

lifestyle. Six out of 40 genera are solely saprophytic and 8 prefer being free-living 

(BERNARDET 2010). Several Flavobacteriaceae members were found in association with 

marine phytoplankton (SIMON ET AL. 1999, FANDINO ET AL. 2001, NICOLAS ET AL. 

2004, PINHASSI ET AL. 2004, FANDINO ET AL. 2005, GÓMEZ-PEREIRA ET AL. 2010) 

and diatoms (GROSSART ET AL. 2005, SAPP ET AL. 2007) or detritus (ABEL & 

BOWMAN 2005, PINHASSI ET AL. 2005). More recently, members of this family were 

isolated from marine macroalgae, such as Formosa algae which was isolated from the 

brown algae Fucus evanescens (IVANOVA ET AL. 2004) or Formosa agariphila from the 

green algae Acrosiphonia sonderi (NEDASHKOVSKAYA ET AL. 2006). Ulvibacter litoralis 
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(NEDASHKOVSKAYA ET AL. 2004) were isolated for example from the green algae 

Ulva fenestrate. This family comprises of species inhabiting diverse ecological niches 

and even within one genera, species can show contrasting characteristics 

(BERNARDET & NAKAGAWA 2006).  

1.4 Biogeography of Bacteroidetes 

Most picoplankton groups, including Bacteroidetes, show seasonal 

(FUHRMAN ET AL. 2006) and latitudinal (FUHRMAN ET AL. 2008) patterns in their 

distribution. For example, DÍEZ-VIVES ET AL. (2014) recently analyzed the 

Bacteroidetes community of the northwestern Mediterranean Sea at temporal and 

spatial scale. They found a marked seasonality of the Bacteroidetes community, 

comprising a winter-spring cluster and a summer-fall cluster. Whereas, members of 

the Polaribacter clade were higher abundant during winter and spring, members of the 

Owenweeksia clade revealed higher numbers in summer and fall. However, the overall 

Bacteroidetes abundance was higher in spring and decreased towards winter. 

Additionally, they analysed the Bacteroidetes distribution along an inshore – offshore 

transect and revealed that the Bacteroidetes abundance was similar in all surface 

samples, but decreased with depth. This was also shown for other sampling sites 

such as the Atlantic Ocean (SCHATTENHOFER ET AL. 2009, GÓMEZ-PEREIRA ET AL. 

2010).  
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1.4.1 Distribution pattern in the North Atlantic Ocean 

GÓMEZ-PEREIRA ET AL. (2010) investigated the Bacteroidetes community of the 

North Atlantic Ocean between the East Greenland current and the North Atlantic 

subtropical gyre crossing four biogeographical provinces. They showed that 

Bacteroidetes have a preference for provinces with high chlorophyll a concentrations 

and nutrient-rich waters, where their highest numbers of about 20% were obtained. 

At the North Atlantic subtropical gyre, which is characterized by low chlorophyll a 

concentrations and nutrient depletion, Bacteriodetes accounted for only 7% of the total 

bacterioplankton community. Additional depth profiles revealed that their 

abundances decreased with depth. However, the Bacteroidetes abundances were still 

higher in the nutrient-rich Boreal Polar Province at 170 m depth than in the surface 

waters of the oligotrophic subtropical gyre region (Figure 1.3A), indicating a strong 

relationship to zones with high nutrients and chlorophyll a concentrations.  

  

Figure 1.3: Biogeographical distribution of Bacteroidetes in the North Atlantic Ocean
adapted from GÓMEZ-PEREIRA ET AL. 2010. A) Latitudinal depth distribution of Bacteroidetes,
Bacteroidetes, detected by probe CF319a. Dots represent sampling depths. B) Relative 
contribution of each Bacteroidetes clade to the total CF319a. Area of the pie charts represent 
the relative abundance of CF319a (percentage given to the left).    
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A distinct distribution pattern of Bacteroidetes clades were obtained across the 

transect. For example, the Polaribacter clade was identified as the most abundant 

group of all analysed clades and was present at all stations, but had its highest 

absolute abundances in the Boreal Polar and Arctic Province. The NS5 clade, 

consisting of two subclades – the DE2 and VIS1 subclade – showed a distinct spatial 

preference. Whereas members of the NS5-DE2 clade accounted for a substantial 

fraction of the Bacteroidetes in the Boreal Polar Province, the NS5-VIS1 clade 

increased significantly in the Arctic Region (Figure 1.3B).  

Two fosmid-based metagenome libraries were constructed from surface 

water samples retrieved from the Boreal Polar and North Atlantic Subtropical Gyre 

region to provide first insights into the genomic potential of yet uncultured 

Bacteroidetes inhabiting these oceanic provinces. The first 76 fosmids revealed a larger 

potential for polysaccharide degradation and cell surface attachment to algal cells in 

the nutrient and phytoplankton-rich Boreal Polar Region, than in the oligotrophic 

Subtropical Region (GÓMEZ-PEREIRA ET AL. 2012). Within the present study 

additional 155 fosmids from both regions will be analysed regarding their genetic 

potential in organic matter degradation.  

1.4.2 Distribution pattern in coastal areas 

In other cold, nutrient-rich and high chlorophyll a systems, such as the 

Antarctic Ocean, members of the Bacteroidetes accounted for up to 72% in the 

marginal ice zone, while a Phaeocystis bloom occurred (SIMON ET AL. 1999). Clearly, 

Phaeocystis, surrounded by a substrate-rich mucus layer, favored the blooming of 

psychrophilic Bacteroidetes clades. Furthermore, members of this phylum were also 

detected in high numbers in lakes during phytoplankton blooms (EILER ET AL. 2007, 

ZEDER ET AL. 2009). EILERS ET AL. (2001) identified more than 50% of Bacteroidetes 

during a spring phytoplankton bloom in the German Bight of the North Sea. 

Members of this phylum were also present during summer and autumn 
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phytoplankton blooms with up to 40% of the total picoplankton (ALONSO ET AL. 

2007). All these findings suggest a close connection of Bacteroidetes to phytoplankton 

blooms. However, bacterial response to phytoplankton blooms were almost 

exclusively studied in microcosm/mesocosm experiments (RIEMANN ET AL. 2000, 

PINHASSI ET AL. 2004, RINTA-KANTO ET AL. 2012). Only a few studies investigated 

phytoplankton blooms in situ (FANDINO ET AL. 2001, LAU ET AL. 2007, TADA ET AL. 

2011), but they had a limited resolution in time and biodiversity.  

In 2009 the MIMAS (Microbial Interactions in Marine Systems) Project was 

established to examine the diversity and function of marine bacterioplankton in 

coastal environments. By coupling the diversity to the metabolic potential, the 

adaptation of marine bacteria to a changing environment was explored. 

Phytoplankton blooms are a good example for a changing environment, since during 

their scenescence different algal primary products become available, thus serving as a 

food source for specific bacterioplankton clades (TEELING ET AL. 2012).  

1.5 Phytoplankton Blooms

Many bacteria show a strong association with phytoplankton, especially with 

diatoms (GROSSART ET AL. 2005, SAPP ET AL. 2007, GÄRDES ET AL. 2011, AMIN ET 

AL. 2012). Consequently, phytoplankton blooms have an impact on the composition 

of the heterotrophic bacterioplankton community and in particular on members of 

the Bacteroidetes. Annually recurring phytoplankton blooms are a phenomenon in 

coastal zones of higher latitudes (GATTUSO ET AL. 1998). There the phytoplankton is 

responsible for around 19% of the net oceanic primary production, albeit these 

zones make up less than 7% of the ocean surfaces (FIELD ET AL. 1998). About half of 

this net primary production is remineralized by heterotrophic bacteria in a process 

called the ‘microbial loop’ (AZAM 1998). 
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Phytoplankton blooms, dominated by diatoms, typically occur in spring in 

well-mixed coastal areas such as the North Sea, when the turbidity (resulted from 

sediment resuspension and river plumes) drops below a certain threshold and 

subsequently light penetrates deeper layers (IRIATE & PURDIE 2004, TIAN ET AL. 

2011). When conditions like light penetration and availability of nutrients and in 

particular silicate in the mixed water layers are favorable, diatoms and other 

phytoplankton members start to bloom (SMETACEK 1999, WILTSHIRE ET AL. 2008, 

LOHMANN & WILTSHIRE ET AL. 2012).    

During their growth, phytoplankton fixes carbon, but also releases a major 

fraction of the photoassimilated carbon in form of dissolved organic matter (DOM), 

which can be taken up by heterotrophic bacteria (AZAM ET AL. 1983). Generally, 

phytoplankton blooms are both bottom-up and top-down controlled, which means 

that the termination of blooms can either be affected by nutrient depletion (bottom-

up) in particular silicate (SMETACEK 1999, WILTSHIRE ET AL. 2008) or by other 

factors (top-down), like grazing or viral lysis (BEARE ET AL. 2002, WILTSHIRE ET AL. 

2010). Then the phytoplankton biomass is partly converted into dissolved and 

colloidal matter through cell lysis, and subsequently converted back to particulate 

organice matter by uptake and cell growth of heterotrophic prokaryotes and thereby, 

not completely lost from transfer to higher trophic levels (AZAM ET AL. 1983).  

1.6 Study areas 

The main part of this thesis investigated the distribution and function of 

marine Bacteroidetes on samples collected during spring phytoplankton blooms at the 

coastal station Helgoland Roads, located in the German Bight, North Sea. The 

second part of this thesis investigated samples retrieved from the North Atlantic 

Ocean and is focused on metagenome samples to unveil the genetic potential of 

Bacteroidetes in two contrasting biogeographical provinces.   
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1.6.1 The North Sea and Helgoland Roads 

The North Sea is a marginal sea and is located between the British Islands, 

The Netherlands, Germany, Scandinavia, Belgium and France. It is characterized as a 

typical semi-enclosed continental shelf sea, mainly influenced by tides, winds and 

circulation effects by the inflowing water masses. The German Bight is the 

southeastern bight of the North Sea and is affected by high saline water masses from 

the north as direct influx from the North Atlantic Ocean and from the southwest as 

indirect inflow via the English Channel, as well as from the east by low saline coastal 

water masses either from the Baltic Sea or from the river discharges (Figure 1.4; 

GREVE ET AL. 1996, VISSER ET AL. 1996, TIAN ET AL. 2011). 

Helgoland is a small island in the North Sea about 60 km off the German 

coast line [54°11.30'N; 07°54.00'E] and is located at the border of the river plumes of 

Elbe, Weser and Eider and the seasonal thermal front within the complex mixing 

regime of the German Bight (GERLACH 1995, BECKER ET AL. 1999, RAABE & 

WILTSHIRE 2009, WILTSHIRE ET AL. 2010). The marine sampling site “Kabeltonne” 

at Helgoland Roads has been established as a long-term ecological research station 

Figure 1.4: Location of Helgoland Island in the North Sea. Arrows indicate influence of 
different water masses. Map was created with an online map creation tool and modified 
manually (http://woodshole.er.usgs.gov/mapit/). 
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since 1962 (FRANKE ET AL. 2004). Since then daily measurements of physicochemical 

parameters such as sea surface temperature, salinity, turbidity via Secci depth, 

chlorophyll a and nutrients, as well as biological parameters like phytoplankton and 

zooplankton composition have been recorded (WILTSHIRE ET AL. 2008).  

During the last 40 years a substantial increase of 1.67 °C in sea surface 

temperature was recorded at Helgoland Roads (WILTSHIRE ET AL. 2010) and the 

temperature can range from winter to summer between -2 °C and 22 °C 

(WHILTSHIRE & MANLY 2004). The salinity varies between 24 and 34 PSU (RAABE & 

WILTSHIRE 2009) and is strongly depending on the prevailing regime, either coastal 

or marine (DIPPNER 1993). High and low salinity events predominate in winter as 

well as in spring. Low salinity events result from an accumulation of riverine water 

near the coast and a subsequent nutrient transport towards Helgoland Roads. Those 

events are characterized by a decrease of 2 PSU within one day and simultaneously 

with an increase in silicate and nitrate concentrations (WILTSHIRE ET AL. 2010). 

1.6.2 The North Atlantic Ocean 

The Atlantic Oceans is the second largest Ocean on Earth and is separated by 

the Equator into the North Atlantic and the South Atlantic and by the Mid-Atlantic-

Ridge into an eastern and western part (GERLACH 1994). It has the largest latitudinal 

extension than any other ocean of about 21,000 km and reaches north from the 

Bering Strait over the North Pole and Arctic ice sheet down south to the Antarctic 

continent (TOMCZAK & GODFREY 1994). Two large gyres, as part of the circular 

current system occur between 10° N/S and 40° N/S and two smaller gyres appear 

between 50° N/S to 60° N/S close to the poles as part of the subpolar current 

system. The subtropical gyre circulates clockwise, while the subpolar gyres moves 

counter-clockwise. The ocean currents are mainly wind-driven and therefore not 

stable at one place over years (SCHMITZ & MCCARTNEY 1993). 
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The subtropical gyre of the North Atlantic Ocean is restricted to the west by 

the Gulf Stream and to the east by the Canary Current, as well as to the north by the 

North Atlantic and Azores Current and to the south it is bounded by the North 

Equatorial Current (LUMBY 1932, SCHMITZ & MCCARTNEY 1993). The subpolar gyre 

is located between the East Greenland and Labrador Current as well as the Irminger 

and North Atlantic Current.  

The North Atlantic Ocean and its circulation system is one of the best 

studied and observed systems of the world’s ocean (SCHMITZ & MCCARTNEY 1993, 

ROSSBY 1996). Three main features make the North Atlantic Ocean unique: 

1) Along the East Greenland coastline the East Greenland Current carries cold 

and low saline but nutrient rich waters southwards (BERSCH 1995). 

2) The Gulf Stream and its extension currents – the North Atlantic Current 

(NAC) as well as the North Atlantic Drift Current – carries more warm water 

masses from the tropics into higher latitudes than any other ocean current 

and is therefore responsible for the moderate and mild climate in Scandinavia 

and Western Europe comparing to areas at the same latitude. If the NAC and 

its extensions decrease in heat and water transport the European climate 

would change dramatically (KRAUSS 1986, ARHAN 1990, ROSSBY 1996). 

3) North of Greenland and Iceland dense and cold water masses sink below the 

surface and take part in the global ocean water circulation system (LUMBY 

1932, SCHMITZ & MCCARTNEY 1993). 

Since the first half of the 18th century the distribution of ice and mainly 

driftwood along the east Greenland coast and throughout the northern part of the 

North Atlantic was known. Since that time oceans were always explored to observe 

the global ocean circulation system. Nowadays scientists have further interest in the 

oceanic communities especially in microbial relationships and their activities in 

biogeochemical cycles as well in degradation of organic matter. 
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On this account the VISION cruise MSM03/01 was undertaken to 

investigate the diversity, structure and function of the microbial community including 

bacterio- and phytoplankton as well as virioplankton in September 2006 (21-

30.09.2006). Samples were taken throughout the North Atlantic Ocean from the 

Arctic Circle, close to the east Greenland coast, alongside the 30° W meridian 

towards the Azore Islands (Figure 1.5). Thereby different biogeographical provinces 

– the Boreal Polar (BPLR), Arctic (ARCT), North Atlantic Drift (NADR) and North 

Atlantic Subtropical Gyre (NAST) Province – were passed. The bacterioplankton 

and especially the Bacteriodetes community, regarding subgroup distribution, was 

analysed by GÓMEZ-PEREIRA ET AL. (2010). Additionally, metagenome libraries from 

two contrasting stations (S3 and S18) were constructed to provide first insights into 

the genomic potential of yet uncultured Bacteroidetes inhabiting these oceanic 

provinces.  

Figure 1.5: Overview of the VISION cruise track in the North Atlantic Ocean from the 
Arctic Circle towards the Azores Islands including their respective biogeographical
provinces defined after LONGHURST (1998): the Boreal Polar Province (BPLR), Arctic 
Province (ARCT), the North Atlantic Drift Province (NADR) and the North Atlantic 
Subtropical Gyre Province (NAST) which are indicated by the dotted lines. (A) The
monthly average of the sea surface temperature in September 2006; (B) The monthly 
average of the chlorophyll a concentration in September 2006 [provided by the AquaModis 
satellite (http://oceancolor.gsfc.nasa.gov; requested 7.05.2010)]. Missing data is shown as
white.
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The station 3 (S3) is located at the border of the Boreal Polar Province 

(BPLR) and is characterized by seas surface temperatures of 0.7 °C and salinity of 33 

PSU at the surface and 34.7 PSU at 150 m depth. The chlorophyll a concentration 

was 0.7 mg m-3 and silicate had a concentration of 2.9 μM. Nitrate, nitrite and 

ammonia accounted together for 3.3 μM and phosphate was 0.4 μM. Station 18 (S18) 

is located in the North Atlantic Subtropical Gyre region and there the sea surface 

temperature was 23.5 °C. The salinity was 36 PSU and the chlorophyll a 

concentration was below 0.1 mg m-3. All inorganic nutrients were below 0.3 μM, 

revealing a nutrient depletion at that station (GÓMEZ-PEREIRA ET AL. 2012).  

1.7 Genes encoding the degradation and transport of 

polysaccharides 

Many studies reported on the role of Bacteroidetes in organic matter 

degradation and cultured strains are known to be capable of degrading, e.g. cellulose, 

chitin and proteins (COTTRELL & KIRCHMAN 2000, COTTRELL ET AL. 2005, TEELING 

ET AL. 2012, FERNÁNDEZ-GÓMEZ ET AL. 2013). Recently, it has been shown, that 

Flavobacteria strains affiliated with the genera Polaribacter and Formosa were able to 

utilize a number of mono-, di-, tri- and polysaccharides, such as cellulose, including 

carboxymethylcellulose (which has been shown only for a few Bacteroidetes species), 

laminarin and xylan (HAHNKE 2013, PP. 197-198), corroborating the findings of 

ARNOSTI ET AL. 2012. They identified Bacteroidetes in the North Atlantic Ocean 

hydrolyzing enzymatically high molecular weight substrates. The hydrolysis of 

different polysaccharides, like laminarin, xylan, fucoidan and chondroitin sulfate, 

were measured and Bacteroidetes likely contributed to this hydrolysis, representing 

between 15 and 26% of the post-incubation community (ARNOSTI ET AL. 2012).
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The degradation of organic material, mainly polysaccharides, is depending on 

the presence and expression of specific hydrolytic enzymes (WARREN 1996, ARNOSTI 

2003). However, the initial breakdown of macromolecules, mainly catalyzed by 

extracellular enzymes, to smaller subunits (< 600 Da) is an important step within the 

degradation process (MCBRIDE ET AL. 2009). In the case of polysaccharides this 

degradation is often linked to the presence of TonB-dependent transporters 

(BRAUN & HERRMANN 1993, KOEBNIK 2005, SCHAUER ET AL. 2008). Such integrated 

systems were firstly described in the gut bacterium Bacteroides thetaiotaomicron. There, a 

set of genes encoding for binding, hydrolysis and transport of starch was named 

starch utilization system (sus) comprising of eight genes – susA, susB, susC, susD, 

susE, susF, susG and susR (ANDERSON & SALYERS 1989, SHIPMAN ET AL. 2000). The 

sus-system in B. thetaiotaomicron represents a prototypic system and derivatives of this 

system (sus-like systems) have been identified in many other Bacteroidetes genomes, not 

only in gut symbionts, but also in terrestrial and marine strains (BAUER ET AL. 2006, 

MARTENS ET AL. 2009, MCBRIDE ET AL. 2009, FERNÁNDEZ-GÓMEZ ET AL. 2013) and 

metagenomes (WILLIAMS ET AL. 2013). Such systems are not restricted to starch, but 

also encode degradation of other polysaccharides (MARTENS ET AL. 2011). The so 

called sus-like systems (Figure 1.6) consist of an outer membrane associated transport 

protein homologue to susC, also known as TonB-dependent receptor (SCHAUER ET 

AL. 2008), and an outer membrane associated lipoprotein homologue to susD 

(REEVES ET AL. 1997, SHIPMAN ET AL. 2000, CHO & SALYERS 2001, BJURSELL ET AL. 

2006, MARTENS ET AL. 2011) which is unique for Bacteroidetes (THOMAS ET AL. 2011). 

TonB-dependent receptors belong to a group of outer membrane-spanning β-barrel 

proteins which are energized via the TonB-ExbBD complex using energy from the 

proton motive force to transport macromolecules into the periplasma, where they 

will be further hydrolyzed and then transported into the cytoplasma (KOEBNIK 2005, 

SCHAUER ET AL. 2008). The susD monomer contains an oligosaccharide-binding 

pocket, which interacts with up to three individual glucose units (KOROPATKIN ET 

AL. 2008). The susC and susD homologs are clustering together with other genes 
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encoding carbohydrate degradation such as glycosyl hydrolases (GH), carbohydrate 

esterases (CE), carbohydrate binding modules (CBM) and polysaccharide lyases (PL) 

and are referred to as polysaccharide utilization loci (PULs, MARTENS ET AL. 2011).  

For the group of carbohydrate active enzymes (CAZymes) there is a 

dedicated CAZy database (CANTAREL ET AL. 2009, LOMBARD ET AL. 2014). Sulfatases 

can additionally be part of PULs as it was shown by GÓMEZ-PEREIRA ET AL. (2012) 

and others (BAUER ET AL. 2006, THOMAS ET AL. 2011, TEELING ET AL. 2012, MANN 

ET AL. 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: The starch utilization system (sus). The susD protein is
responsible for the specific substrate binding and the glycoside 
hydrolases located at the outer membrane decompose the 
polysaccharides into oligosaccharides. The oligosaccharides are 
then transported into the periplasm by an ATP driven TonB-
dependent transporter (susC) and are further hydrolyzed into
monosaccharides by periplasmic glycoside hydrolases (scheme was 
adapted from KOROPATKIN ET AL. 2012). 
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1.8 Aims 

This doctoral thesis contributes to the understanding of the ecological role of 

Bacteroidetes in marine environments and elaborates on their distribution and function 

at different marine sites. Specifically, I am interested in the response of Bacteroidetes to 

phytoplankton spring blooms, their substrate association by direct surface 

attachment and their genetic capability of degrading high molecular weight organic 

matter. Therefore, the full cycle rRNA approach was implemented to study 

bacteriodetal diversity and ecology independent of cultivation-based methods 

(AMANN ET AL. 1995), adressing the fundamental questions in ecology: „Who is out 

there?”; “How many of a kind are there?” and “What is their function?”. 

Consequently, one part of this thesis concentrates on method development and their 

evaluation. A second part concentrates on the analysis of Bacteroidetes diversity and 

abundance during spring blooms at the coastal station Helgoland Roads. The third 

part aims at the understanding of functional traits of Bacteroidetes to gain further 

insights in their ecological niches. 

I. Method Development 

The well-established method CARD-FISH is frequently used to address the 

‘Who?‘ and ‘How many?’, but this results often in tedious manual microscopic 

counting, which is time consuming and quite subjective. Therefore, automated cell 

enumeration becomes more and more important, since it is less time consuming and 

less prone to possible human errors. In chapter 2 we tested a newly developed 

automatic cell enumeration system extensively to apply it as a high-throughput 

enumeration system for chapter 3 and 4, as well as to use it in a pilot study on board 

a research vessel, obtaining site specific cell counts and community composition.  
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In a second study (chapter 5) we used microscopy to visualize, (a) if specific 

Bacteroidetes clades can be assigned in their association with phytoplankton to certain 

ecological niches and (b) if Bacteroidetes cells excrete in situ extracellular polymeric 

substances in form of capsules or slime as a basis for their attachment. A prerequisite 

of this study was to modify the CARD-FISH protocol and to combine it with 

fluorescent lectin binding analysis (FLBA).   

II. Abundance and Diversity 

This section addressed the question whether bacteria, and more specifically 

Bacteroidetes, are benefit from dying algae? Therefore, the main objective in chapter 3 

was the identification and quantification of specific Bacteroidetes clades responding to 

the spring phytoplankton bloom at Helgoland Roads in 2009. We postulated that the 

abundance and distribution pattern of distinct clades is highly bottom-up controlled 

by the availability of a range of algal substrates of different origin. Following up on 

this hypothesis in chapter 4 we therefore investigated the following questions: (a) Is 

each spring phytoplankton bloom causing a distinct bacterial succession similar to 

that of 2009? (b) Can additional blooming Bacteroidetes clades be detected in 2010 – 

2012 which had no maxima in 2009? (c) Are the maxima of specific bacteroidetal 

clades correlated with the bloom or senescence of specific phytoplankton groups? (d) 

Does the presence or absence of distinct phytoplankton groups or species impact 

certain Bacteroidetes clades? And finally, (e) how does the Bacteroidetes community 

evolve during the remaining seasons? 
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III. Function 

The aim of the study presented in chapter 6 was to gain insights into the 

degradation potential of Bacteroidetes from two contrasting oceanic provinces in the 

North Atlantic Ocean. This study is a follow up study of GÓMEZ-PEREIRA ET AL. 

(2012; Appendix B) in which it was postulated that the phytoplankton-rich Boreal 

Polar Region has a larger potential for polysaccharide degradation than the 

oligotrophic North Atlantic Subtropical Region. Specifically, (a) we investigated in 

total 155 fosmids from both regions in their genomic content to see whether this 

hypothesis is supported by the extended metagenome dataset. Furthermore, we (b) 

characterized several novel bacteroidetal PULs. 
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1.9 Methods 

The present study was based on the full cycle rRNA approach used as a 

phylogeny-based toolbox for cultivation-independent studies of microbial diversity 

and ecology (AMANN ET AL. 1995). After comparative sequence analysis of full length 

16S rRNA gene clone libraries, new probes were designed and evaluated (see 

Appendix A). Subsequently, CARD-FISH was used for the quantification of 

bacteroidetal clades and enumerated with the newly developed automatic counting 

system (based on ZEDER & PERNTHALER 2009), which is described in Chapter 2. A 

brief overview of methods used in this study will be given here, while detailed 

information is provided in the manuscript chapters. 

Chapter 2: Evaluation of a high-throughput automatic cell enumeration system. 

The main methods used here were DAPI staining and CARD-FISH 

according to THIELE ET AL. 2011, then cell enumeration was done manually 

and automatically, using the newly developed software ACMEtool, which is 

described in detail within the chapter. 

Chapter 3: Substrate-controlled succession of marine bacterioplankton populations 

induced by a phytoplankton bloom. 

The main methods used here were CARD-FISH according to THIELE ET AL. 

2011 and cell enumeration was done manually and automatically, using the 

newly developed software ACMEtool. Additional methods used by co-

authors are described in detail in the supplementary information of the 

manuscript.  
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Chapter 4: Response patterns of distinct bacteroidetal clades to spring 

phytoplankton blooms. 

The main methods used here were CARD-FISH according to THIELE ET AL. 

2011, modifications are reported in the Material & Method section of the 

manuscript and cell enumeration was done automatically, using the newly 

developed software ACMEtool. A full length 16S rRNA gene clone library 

was constructed in house and sequenced by ABI Sanger sequencing 

technique.  

Chapter 5: Mapping glycoconjugate-mediated interactions of marine Bacteroidetes with 

diatoms. 

Within this study a protocol for combining CARD-FISH and fluorescent lectin 

binding analysis (FLBA) were developed and high resolution microscopy was 

done using the confocal laser scanning microscope Leica TCS SP5X.  

Chapter 6: Characterisation of Polysaccharide Utilization Loci (PULs) in marine 

Bacteroidetes. 

Fosmids were sequenced at Genoscope National Sequencing Center, France, 

using the 454-sequencing plattform. The fosmid annotation was done using 

RAST (AZIZ ET AL. 2008). The detailed carbohydrate-active-enzyme and 

peptidase annotation were done using an in-house annotation pipeline 

according to HUANG 2013, P. 22. Comparison of PULs was done using the 

genome alignment tool MAUVE (DARLING ET AL. 2010). 
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Abstract 

Over the last two decades automated cell enumeration became more and 

more important, since it is less time consuming, less susceptible to possible human 

errors, and it consists of a better documentation, images and counting reports, than 

manual direct microscopic cell enumeration. Within this study we tested a newly 

developed automatic image acquisition and subsequently cell enumeration system. 

Manually, direct microscopic obtained cell counts were consistently equivalent to cell 

counts using the automated enumeration program ACMEtool 2.0. Microscopic 

images were acquired fully automatically and user independent, which is considerably 

faster than taken microscopic images manually. Further on, the analysis time of TCC 

and microbial communities decreases considerable. Manual counting is notably more 

time and labor intensive and in addition the automated method can process a higher 

amount of FOVs and consequently analyzes more cells. The probability of obtaining 

a true picture of the community increases with the number of FOVs analyzed. The 

automation of these processes also eliminates human error within the counting. We 

were further able to test this automatic microscope and cell enumeration system on 

board a research vessel with varying wind and wave conditions. The on-board fully 

automated microscope enabled precise and site specific evaluation of the microbial 

community allowing for targeted sampling efforts, which is both, time and money, 

saving.  

 

 

 

 



 37 

 

Introduction 

The determination of microbial cell numbers is fundamental to microbial 

ecology (PERNTHALER & AMANN 2005, KEPNER & PRATT 1994). It starts with a 

staining of cells with nucleic acid specific fluorescent dyes, e.g. DAPI [4',6-

diamidino-2-phenylindole] (PORTER & FEIG  1980) or acridine orange (HOBBIE ET 

AL. 1977). Subsequently cells are counted by either flow cytometry (ZUBKOV ET AL. 

1998, HAMMES & EGLI 2010) or fluorescence microscopy (BLOEM 1995). Total cell 

counts (TCC) serve also as a basic parameter for calculating the relative abundances 

of specific microbial groups determined by fluorescence in situ hybridization (FISH) 

or catalyzed reporter deposition - fluorescence in situ hybridization (CARD-FISH) 

(AMANN ET AL. 1995, PERNTHALER ET AL. 2002).  

Determination of TCC from water samples by fluorescence microscopy 

generally involves filtration of sample onto polycarbonate membrane filters (HOBBIE 

ET AL. 1977). This has two advantages. First, the defined pore size of the membrane 

filter, which is often 0.2 μm in diameter, allows for a size fractionation. Subsequently 

particles, smaller than bacteria (viruses or debris), which can disturb the fluorescence 

signal will be removed. Second, filtering a defined volume onto a known area 

(membrane filter) allows the calculation of cell abundances per volume (HOBBIE ET 

AL. 1977). The accuracy and precision of cell enumeration is important when 

comparing values, stating significant differences or extrapolation how the bacterial 

community evolved over a certain time frame. Direct manual microscopic counting 

of bacterial cells is time consuming and always relies on the accuracy of the person 

counting. Therefore automated cell enumeration becomes more and more important, 

since it is less time consuming and less prone to possible human errors.  
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Over the last two decades scientists have continuously developed tools or 

add-ons for commercially available programs to enumerate microbial cell numbers 

automatically (BLOEM ET AL. 1995, SINGLETON ET AL. 2001, PERNTHALER ET AL. 

2003, ABRÀMOFF ET AL. 2004, SELINUMMI ET AL. 2005, THIEL & BLAUT 2005, ZHOU 

ET AL. 2007, DAIMS 2009). However, most of them deal only with the post image 

processing and the image acquisition was done manually. 

 The system we are presenting includes automated image acquisition using 

fully motorized microscopes. Although PERNTHALER ET AL. (2003) already used 

autonomous image acquisition the determination of the position where images are 

taken depended on the exact position of the filter section on the object slide and the 

microscope stage position. Therefore, they created a blueprint for the minimum 

required size of the filter section, their exact position on the object slides and the 

position of the microscope stage. This system was adapted, by recognizing shape and 

size of the filter sections independent of their position on the object slide (ZEDER ET 

AL. 2011) and incorporated it as a macro into the AxioVision 4.8.2 software package 

from Zeiss (Carl Zeiss MicroImaging GmbH, Göttingen, Germany). In a next step 

the number of field of views (FOV) per samples are chosen independently of their 

position on the sample ensuring that the image acquisition is independent of user’s 

interference and completely random. We tested this system extensively under stable 

laboratory conditions and subsequently modified the procedure for use on board a 

research vessel. The automated image acquisition and the focusing routine were 

modified so that the microscope system can sustain ship movements. We tested this 

system on-board in an attempt to enhance the scientific capability by allowing for 

continuous enumeration of total cell counts and the bacterial community 

composition.  
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Materials and Methods 

Sampling for initial testing experiments 

From January 1st to May 31st 2011 sea water samples from 1 m below sea 

surface were collected twice a week with the research vessel Ade at station 

“Kabeltonne”, Helgoland Roads, North Sea (54°11'30 N, 7°54'00 E). To the 

seawater samples 37% formaldehyde solution (Sigma-Aldrich, Taufkirchen, 

Germany) were added to a final concentration of 1%. Subsequently, the samples 

were fixed for 1 h at room temperature. Volumes of 10 ml were then filtered onto 

0.2 μm pore-sized polycarbonate membrane filters with a diameter of 47 mm 

(Whatman 7060-4702). Filtration was performed by using a vacuum pump (vacuum 

below 200 mbar). After drying filters were stored at -20 °C until further analysis.  

DAPI-staining 

Filters were cut and subsequently mounted on glass slides using a glycerin-

PBS mounting solution (Citifluor [Citiflour Ltd., London, UK] & VectaShield 

[Vector laboratories Inc., Burlingame, CA, USA]) containing the nucleic acid dye 

DAPI (4’,6-diamidino-2-phenylindole; Sigma-Aldrich, Steinheim, Germany) at a final 

concentration of 1 μg ml-1. This was done to avoid cell loss by washing. Then 

samples were analyzed using the automated microscope ZEISS Axio Imager.Z2 (Carl 

Zeiss MicroImaging GmbH, Göttingen, Germany) including the software package 

AxioVision 4.8.2.  

 Automated focusing and image acquisition 

Images of filter sections were acquired with the fully automated working 

microscope AxioImager.Z2 possessing a cooled CCD camera (AxioCam MRm; Carl 

Zeiss MicroImaging GmbH, Göttingen, Germany) and a Colibri.2 LED light source 

(Carl Zeiss MicroImaging GmbH, Göttingen, Germany) with three light-emitting 

diodes (UV-emitting LED: 365+/-4.5 nm for DAPI, blue-emitting LED: 470+/-14 

nm for the tyramide Alexa488, red-emitting LED: 590+/-17.5 nm for the tyramide 
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Alexa594), combined with the HE-62 multifilter module (Carl Zeiss MicroImaging 

GmbH, Göttingen, Germany). This high efficient multifilter consists of a triple 

emission filter TBP 425(+/-25) 527(+/-27) LP615 including a triple beam splitter of 

TFT 395/495/610.  

Within the AxioVision software two macros (SamLoc and MPISYS) were 

installed. At first with SamLoc (ZEDER ET AL. 2011) an overview image of the 

objects slides containing the filter sections was recorded (Figure 1). The motorized 

microscope stage (Physik Instrumente (PI) GmbH & Co.KG, Karlsruhe, Germany) 

can hold up to eight object slides. During this procedure the object slides were 

scanned in bright-field illumination with the 1x objective (Carl Zeiss MicroImaging 

GmbH, Göttingen, Germany). Subsequently, coordinates for image acquisition were 

chosen and a field of view (FOV) coordinate list was generated within the sample 

localization software (ZEDER ET AL. 2011), which was then imported into the second 

macro MPISYS (ZEDER unpublished). Per sample at least 55 coordinates with an 

interspace of minimum 250 μm were determined, which seems to be adequate for 

planktonic samples. However, this needs to be newly evaluated for samples from 

other habitats. Within the MPISYS macro so called ‘channels’ were defined 

according to the fluorescent dye used (e.g. DAPI, Alexa488 and Alexa594).  

In general, the number of channels is user-defined. For each channel the 

exposure time (constant or measured), focusing and number of z-stacks, 

compensating filter unevenness, are selected (ZEDER ET AL. 2010). Notably, for each 

channel only one LED source and exposure time, either constant or varying, can be 

selected. If user requests two different exposure times for one LED, two channels 

have to be defined selecting the same LED.   
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Focusing was done in the first acquired channel and then set as fixed focus position 

for the other channels. The focusing routine was adapted from ZEDER & 

PERNTHALER (2009). This was a nested focusing in bright-field and fluorescence 

illumination, as well as the acquisition of z-stacks and application of an “extended 

depth of field” - algorithm, which compensates for FOV unevenness (ZEDER & 

PERNTHALER 2009). A z-stack of seven layers per FOV and exposure time was 

recorded and subsequently an EDF file (extended depth of focus) was created, for 

this the extended depth of field algorithm (ZEDER & PERNTHALER 2009) was used 

for the calculation. Images were acquired using a 63x/1.4 plan oil apochromatic 

objective (Carl Zeiss MicroImaging GmbH, Göttingen, Germany). The EDF file was 

saved in ‘tif’ format and was loaded into the ACMEtool program (Automated Cell 

Measuring and Enumeration tool, www.technobiology.ch; based on ZEDER ET AL. 

2010).  

ACMEtool  

Cell enumeration was done using the newly developed ACMEtool 2.0 (based 

on ZEDER ET AL. 2010). First, images taken with MPISYS were manually checked 

and low quality images were excluded from further analysis. Images with over- or 

underexposed parts, areas out of focus (unevenness) or with too many aggregates, 

phytoplankton cells, debris and particles are defined as low quality images and were 

deselected. In a second step, a so-called metafile was calculated from the remaining 

high quality images for a faster image processing. This metafile contained the 

coordinates of all recognized objects/cells of each high quality image and a dataset 

where parameter values, e.g. object area, circularity, mean grey value and signal-to-

background ratio were described.     

For each channel the aforementioned parameters for object/cell detection 

have to be defined above a certain threshold and applied to the set and subset 

definitions and subsequently manually verified. Generally, DAPI is used as the 

reference channel in detecting the cells. For enumerating specific bacterial clades 
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every hybridized signal needs to possess a FISH and a DAPI signal to count as a 

valid object/cell. The percentage overlap between such two objects in different 

channels can also be defined. Finally, after optimization of the parameters, cells were 

counted automatically by the program and cell numbers were exported in a tab 

delimited report file. Furthermore, ACMEtool provides a summary file, in which per 

sample the number of analyzed FOV and total counted cells were given. For a 

detailed overview, a FOV report is provided, in which the numbers of counted cells 

per FOV are reported. This report gives a detailed overview of the cell distribution 

on the filter.  

Sampling and sample preparation on board

Planktonic sea water samples were taken during the Atlantic Meridional 

Transect (AMT) 22, upon the research vessel RRV James Cook (Southampton, UK, 

to Punta Arenas, Chile, October 10th to November 24th 2012). Samples were taken 

using a Sea Bird CTD (Sea Bird Electronics Inc., USA) which was deployed twice 

daily at predawn and solar noon intervals. A total of 50 stations were sampled at 

20 m water depth. From each sample 100 ml of seawater was fixed with 1% 

formaldehyde for 1 h at RT. Subsequently, triplicate 20 ml subsamples were filtered 

using a vacuum pump (200 mbar) onto 47 mm polycarbonate filters with a 0.2 μm 

pore size. These filters were then stored at -20 °C until further analysis.  

All stations were analyzed using CARD-FISH. The filters were processed 

according to THIELE ET AL. (2011). After the CARD-FISH process the filters were 

counter stained with DAPI and mounted using a Citiflour-VectorShield (4:1) 

mounting solution. Cell enumeration and community analysis were done directly on-

board using a fully motorized Axioplan 2 microscope (Carl Zeiss MicroImaging 

GmbH, Göttingen, Germany) for automatic image acquisition. 
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 Automated image acquisition on-board 

An Axioplan 2 microscope was equipped with a 63x/1.4 oil plan 

apochromatic objective lens, a four slide scanning stage (Märzhäuser, Wetzlar, 

Germany), LED epifluorescence illumination 365 nm, 470 (465-485) nm, and 590/20 

nm (KSL 70, Rapp OptoElectronic, Wedel, Germany), a multi-band optical filter 

with beam splitter HC365+495+610, and emission filter HC425+527+LP615 (F73-

395, and F72-622, AHF Analysentechnik, Tübingen, Germany), and a cooled CCD 

camera (Orca C4742-95-12NR, Hamamatsu Photonics, Hamamatsu City, Japan). 

Acquisition of overview images where done via webcam and SamLoc software 

(ZEDER ET AL. 2011). The original control macro 'MPISYS' has been modified for 

the different hardware requirements, and were extended with new functionality, e.g., 

QEDF and FQEDF, which are explained in the result section. The macro was using 

the AxioVision 4.8.2 software package. 

Results

Fixed vs. measured exposure times 

In the first set of experiments we investigated whether constant or varying 

exposure times will result in images suitable for automated cell detection and 

counting. Therefore, three channels for DAPI imaging were defined, two channels 

acquired images using constant exposure times (DAPI-25ms and DAPI-50ms) and 

one with a varying exposure time (DAPI-auto). The latter was determined by the 

auto-exposure function for every single FOV of the AxioVision software and was in 

the range between 45 and 275 ms. In total 44 samples were analyzed by using the 

three different DAPI channels. From each sample 55 FOVs were recorded and after 

manual image quality control on average 30 ± 10 FOVs per sample were further 

processed, revealing more than 50% high quality images.  

Both fixed exposure time channels resulted in similar cell numbers per FOV 

(t-test: p = 0.685) but differed greatly to the DAPI-auto channel (p = 0.006). The 
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average exposure time of the DAPI-auto channel was 74 ± 22 ms, with a minimum 

and maximum exposure time of 49 ms and 255 ms, respectively (Figure 2). Too high 

exposure times resulted in elevated background fluorescence, resulting in low signal 

to background ratios. Additionally, at higher exposure times two closely located cells 

on the filter appear merged and were consequently counted as one by the algorithm. 

On the other hand if the exposure time was too low (e.g. 25 ms) cell signals dropped 

below the threshold and subsequently they were not counted. Therefore the image 

acquisition for cell counting was done using a fixed exposure time of 50 ms. 

Although, auto-measured exposure times will result in similar numbers of cells per 

volume as fixed exposure times, the conditions of image acquisition differs for each 

FOV. The advantage of using a fixed exposure time is not only time saving, but also 

every single FOV from all samples will be acquired under the same conditions. The 

optimum acquisition method should be reevaluated for samples from different 

habitats. 

 Manually vs. automatic cell counts 

Any automated cell counting routine needs to be evaluated against manual 

counting, therefore a subset of 22 samples was enumerated both manually and 

automatically. Enumeration of TCC and a specific bacteria group (Bacteroidetes) was 

done after CARD-FISH with the oligonucleotide probe CF319a (MANZ ET AL. 1996), 

assumed to detect most marine Bacteroidetes (AMANN & FUCHS 2008). Direct 

microscopic counts yielded in similar cell numbers obtained with the automated 

system. Regression analysis of the obtained manual and automatic counts revealed r² 

higher than 0.97 for all analysis and student`s two tailed test provided p-values 

greater than 0.05 (Figure 3). However, the coefficient of variance (cv) is higher for 

manual counting (19 ± 7%) than for automatic counting (12 ± 3%). For both 

counting methods outliers exist, but they are higher for manual (35%) than for 

automatic counting (24%). The automated cell counting is superior to manually 

enumeration, but requires manual evaluation for new types of environments. 
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Minimum FOV requirement for automatic enumeration  

In literature the number of DAPI stained cells counted varies largely, e.g. 

JONES & SIMON (1975) described that 200 to 400 cells or 10 FOV counted is reliable. 

Others counted 50 FOVs or at least 1000 DAPI stained cells (PORTER & FEIG 1980). 

Recently an image analysis method was introduced, where 12 FOV per sample were 

analyzed (SEO ET AL. 2010). We tested, if analyzing a minimum of 5 FOV, which in 

general corresponds to approximately 300 DAPI stained cells for marine surface 

water samples, will result in a different number of cells per volume than compared 

with analyzing a higher number of FOV.  Although, there existed no statistically 

significant differences (p = 0.726) in counting 5 (300 cells) or 25 FOVs (~1500 

DAPI stained cells), for a better representation of the sample at least 10 FOVs 

should be analyzed, which is in good agreement with SEO ET AL. (2010). Counting 

less than 300 DAPI stained cells could lead to an overestimation of up to 10% in 

total numbers. In general, counting at least 1000 DAPI stained cells (PORTER & FEIG 

1980), as a standardized method for direct fluorescence counting, should also be 

applied to automatic counting. Analyzing 25 FOV automatically is much faster than 

counting 25 FOV manually.  

Modifications in focusing routine for on-board usage 

As shown beforehand, automated image acquisition has been well established 

inside a laboratory environment. In order to use such system on board a research 

ship, we had to face one major problem for microscopy on sea: The ship 

environment is constantly in motion. Mass acceleration of the microscope 

components result in torsion of the instrument, which leads to unstable focus 

conditions. Especially automated microscope systems with their heavy motorized 

components, e.g., multi slide position stage, are affected. 

One way of solving the problem would be to actively eliminate the ships 

movement at the microscope system, but as the amplitude of ship movement can 

reach several meters of height we thought of alternative ways. Thus, our idea for on 
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board automated image acquisition was driven by a simple rule: Be quick! After 

automated focus adjustment all multi-channel, multi-layer images should be acquired 

before the focus is lost.  

In this respect we developed the method quick stack with extended depth of 

focus (QEDF). In comparison to the original stack image acquisition with extended 

depth of focus (EDF), where positioning and image acquisition is done subsequently 

for every single image of the stack (ZEDER ET AL. 2011), QEDF uses a live video 

stream approach. A video stream is recorded, while the microscopic stage moves 

from first to last stack position. The image frames of the live stream, which fit the 

needed stack positions best, were taken for the following EDF calculation. 

Furthermore, the time consuming EDF calculations stayed on hold for post-

processing, after all channels are acquired. Using QEDF it had been possible to 

acquire multi-channel, multi-layer images on board, but the yield for good quality 

images was low. Most often the automated imaging was still too slow. Focus drift 

was already too much at the start of image acquisition. 

The average performance of the classical laboratory stacking and EDF 

method used on board yielded only 10% high quality images per sample, with a range 

from 0% to 25%. In contrast it yielded in more than 50% high quality images when 

applied in the laboratory at stable conditions. For statistical reasons, at least 10 FOV 

per sample should be analyzed. By using the classical stacking and EDF method this 

criteria was fulfilled on board in only 10% of the cases (n =32). 

QEDF applies faster stacking of images than the classical EDF stacking. This 

increased the total number of FOV taken per sample. Although the average QEDF 

performance yielded 13% (4-26%), slightly more than EDF, the absolute number of 

high quality images was higher. In 59% of all cases (n = 21) more than 10 high 

quality images were obtained per sample by using the QEDF algorithm. 
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In order to increase the amount of high quality images we combined the 

QEDF stacking algorithm with in-depth focusing and this was called focused QEDF 

(FQEDF). The live stream image acquisition was done over a distance of 3 times the 

required stack size. The focus position of the live stream is calculated and represents 

the center of the required stack. Around this position image frames are taken and the 

FQEDF file was calculated, similar to QEDF and EDF. 

The FQEDF stacking and imaging algorithm allowed for on-board 

automated multi-channel, multi-layer image acquisition yielding in a suitable amount 

of high quality images. On average the FQEDF stacking and imaging algorithm 

yielded 24% high quality images, ranging from 11% up to 53%. The statistical criteria 

for 10 or more high quality images per sample and channel were achieved in 97% of 

all cases (n = 58).  

On-board evaluation 

Water samples from 50 stations were processed with CARD-FISH using a 

mix of six oligonucleotide probes specific for the SAR11 clade (Table 1) and were 

analyzed with the on-board automatic microscope and cell enumeration system. To 

evaluate the automated on-board image acquisition and cell enumeration system a 

subset was manually counted on-board. The manually obtained TCC and SAR11 

specific counts were in good agreement with the automatic counts. Regression 

analysis revealed r² higher than 0.90 for all analysis and student`s two tailed test 

provided p-values greater than 0.05 (DAPI: 0.679 and SAR11: 0.317), which means 

that there exists no differences between the on-board manual and automatic cell 

enumeration (Figure 4). 
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Discussion 

Within this study we tested a newly developed automatic image acquisition 

and subsequently cell enumeration system under stable laboratory conditions and 

applied it to a field study on board a research vessel.  

Manually, direct microscopic obtained cell counts were consistently 

equivalent to cell counts using the automated enumeration program ACMEtool 2.0. 

Microscopic images were acquired using a fully automated system which is user 

independent and considerably faster than manual image acquisition. For example, 

image acquisition for one sample consisting of 55 FOVs and two fluorescent 

channels (DAPI and FISH) will take approximately 15 min. This allows image 

acquisition of up to 50 samples overnight (approx. 12 h), enabling high-throughput 

image acquisition. The subsequent image analysis, consisting of image quality control, 

metafile creation and cell enumeration is sample number depending, but takes 

approximately 30 min per sample. Compared to manual microscopic counting, which 

is more time and labor intensive, the investigation time using the automated system 

decreased considerably and higher amounts of FOVs are processed. Consequently 

more cells are determined, revealing a better statistically significance and reflection of 

the sample. The automation of these processes also eliminates human error within 

the counting. Although, the program does most steps automatically, manual 

verification and adjustment is still required. 

For using this autonomous counting system on board a research vessel the 

image acquisition routine had to be adjusted to sustain ship movements. The on-

board fully automated microscope enabled precise and site specific evaluation of the 

microbial community allowing for targeted sampling efforts, which is both, time and 

money saving.  
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This system has the potential to become a powerful tool for analyzing 

microbial abundances and community composition shortly after sampling, similar to 

flow cytometry. Until now ship-based flow cytometry is the only method gaining 

real-time results of the microbial community. However, it provides only counts of 

the total microbial community or for a specific microbial group such as Prochloroccocus 

and Synechococcus, since it takes advantages of their natural autofluorescent pigments 

(JAMESON ET AL. 2010). Yet, determining specific non-fluorescent bacterial 

communities other techniques like FISH have to be used. Although WALLNER ET AL. 

(1993) optimized the identification of microorganisms by FISH in combination with 

flow cytometry, standard FISH has its limitations. Most often bacteria from aquatic 

environments are small, slow growing and often possess low numbers of ribosomes 

(AMANN ET AL. 1995, AMANN & FUCHS 2008). Subsequently, CARD-FISH was 

introduced (PERNTHALER ET AL. 2002). Even, the combination of CARD-FISH and 

flow cytometry has been successfully applied by GERDTS & LUEDKE (2006), it still 

has its limitations, e.g.: well dispersed cell suspension, the requirement of liquid 

samples (SHAPIRO 2000), insufficient permeabilization and it requires many 

centrifuge steps, where cell material can get lost (HAMMES & EGLI 2010). Moreover, 

with flow cytometry and CARD-FISH, only a limited amount of samples can be 

handled in parallel, while CARD-FISH on filters has no limitations in the amount of 

samples analyzed (SCHATTENHOFER ET AL. 2009, GÓMEZ-PEREIRA ET AL. 2010). 

Despite these obstacles, CARD-FISH were developed to improve the signal intensity 

of microorganisms for microscopic enumeration (PERNTHALER ET AL. 2002). 

Therefore the ship-based autonomous image acquisition and enumeration system 

represents a good alternative to flow cytometry and besides this, microscopy is way 

more sensitive than flow cytometry, not only in terms of optics, but also in detecting 

the fluorescent signals. For example, the detector of the flow cytomter works in the 

millisecond range, whereas the exposure time for automated microscopy image 

acquisition an range between milliseconds and seconds, if needed.  
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Applying this system to soil and sediment samples is still in development. 

Meanwhile, BIZIC-IONESCU and coworkers applied this autonomous cell 

enumeration system successfully to aggregate samples (BIZIC-IONESCU ET AL. in 

revision). It is an advantage that both systems, the autonomous image acquisition and 

cell enumeration with ACMEtool, can be used separately. Using ACMEtool alone 

high quality confocal laser scanning or even super resolution structured illumination 

micrographs can be analyzed for enumerating e.g. diatom-associated bacteria. 

ACMEtool requires only a grey-scale 8-bit ‘tif’ image and subsequently a metafile 

with object coordinates and other descriptors are created.  
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Figure 1: Flow chart of automatic image acquisition. At first, (1.) the 

position of object slides have to be selected, then (2.) overview image 

will be acquired with the 1 x objective. In a next step (3.) samples have 

to be labeled and number of FOVs is defined. Then (4.) channels are 

defined and (5.) image acquisition can start. When acquisition is done, 

(6.) images are imported into the ACMEtool software. Within 

ACMEtool, at first image quality control is done and with the remaining 

high quality images the metafile is calculated, which is then analyzed for 

cell enumeration.  

Figure 2: Graph depicts the number of cells per FOV obtained with 

different exposure time settings, while image acquisition. Two constant 

exposure times (blue: DAPI-25ms and red: DAPI-50ms) and one 

varying (black: DAPI-auto) were selected. Outliers are red circled.  

Figure 3: Manual versus automatic counts. Cell enumeration was 

done after CARD-FISH with the oligonucleotide probe CF319a. A: 

DAPI obtained counts and B: CF319a obtained counts in cells ml-1. 

Regression coefficient (r²) and formula is depicted at the lower right site 

of each graph. 

Figure 4: Manual versus automatic on board obtained counts. Cell 

enumeration was done after CARD-FISH with the oligonucleotide 

probe SAR11. A: DAPI counts per volume and B: SAR11-specific 

counts per volume. Regression coefficient (r²) and formula is depicted 

at the lower right site of each graph. 
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1 Stat2-S DAPI 55 2 4 
2 FISH 55 5 9 
3 Stat2-D DAPI 55 0 0 
4 FISH 55 6 11 
5 Stat3-S DAPI 55 8 15 
6 FISH 55 14 25 
7 Stat3-D DAPI 55 11 20 
8 FISH 55 8 15 
9 Stat4-S DAPI 55 2 4 

10 FISH 55 4 7 
11 Stat4-DCM DAPI 55 10 18 
12 FISH 55 5 9 
13 Stat4-DCM DAPI 91 11 12 
14 FISH 91 12 13 
15 Stat2-20m DAPI 91 6 7 
16 FISH 91 12 13 
17 Stat2 DAPI 55 3 5 
18 FISH 55 3 5 
19 Stat3 DAPI 55 5 9 
20 FISH 55 4 7 
21 Stat3 DAPI 55 7 13 
22 FISH 55 2 4 
23 Stat5 DAPI 55 4 7 
24 FISH 55 2 4 
25 Stat2 DAPI 55 7 13 
26 FISH 55 3 5 
27 Stat3 DAPI 55 3 5 
28 FISH 55 8 15 
29 Stat3 DAPI 55 3 5 
30 FISH 55 3 5 
31 Stat5 DAPI 55 7 13 
32 FISH 55 3 5 

 
Average: 60 6   
Total: 1904 183   

Performance yield [Percent high quality images of total]: 9.6 
Number tests with >= 10 high quality images: 6 
Percent tests with >= 10 high quality images of n: 18.8 

 
 
 
 
 

Table S1a: On-board performance test for the EDF stack image 
acquisition with extended depth of focus calculation. Performance 
test data sets are randomly selected subsets from the experiments 
done on-board RRS James Cook during AMT 22. 
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1 Stat6-150m DAPI 91 4 4 
2 Stat7-150m DAPI 91 6 7 
3 FISH 91 5 5 
4 Stat8-150m DAPI 91 7 8 
5 FISH 91 7 8 
6 Stat9-150m DAPI 91 8 9 
7 FISH 91 14 15 
8 Stat10-20m DAPI 91 14 15 
9 FISH 91 10 11 

10 Stat10-DCM DAPI 91 9 10 
11 FISH 91 20 22 
12 Stat11-20m DAPI 91 17 19 
13 FISH 91 21 23 
14 Stat11-DCM DAPI 91 13 14 
15 FISH 91 10 11
16 Stat11-150m DAPI 91 16 18 
17 FISH 91 11 12 
18 Stat12-20m DAPI 91 11 12 
19 FISH 91 7 8 
20 Stat4-150m DAPI 91 24 26 
21 FISH 91 16 18 

  
Average: 91 12   
Total: 1911 250   

Performance yield [Percent high quality images of total]: 13.1 
Number tests with >= 10 high quality images: 13 
Percent tests with >= 10 high quality images of n: 61.9 

Table S1b: On-board performance test for the QEDF stack image 
acquisition with extended depth of focus calculation. Performance 
test data sets are randomly selected subsets from the experiments 
done on-board RRS James Cook during AMT 22. 
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1 Stat2-20m DAPI 78 10 13 
2 FISH 78 21 27 
3 Stat2-DCM DAPI 78 31 40 
4 FISH 78 35 45 
5 Stat3-DCM DAPI 78 32 41 
6 FISH 78 41 53 
7 Stat2-150m DAPI 65 18 28 
8 FISH 65 20 31 
9 Stat5-20m DAPI 23 9 39 

10 FISH 23 12 52 
11 Stat3-20m DAPI 91 24 26
12 FISH 91 33 36 
13 Stat3-150m DAPI 91 30 33 
14 FISH 91 22 24 
15 Stat20-D DAPI 91 11 12 
16 FISH 91 11 12 
17 Sta55-D DAPI 91 18 20 
18 FISH 91 15 16 
19 Stat56-20m DAPI 60 10 17 
20 FISH 60 18 30 
21 Stat56-DCM DAPI 91 12 13 
22 FISH 91 16 18 
23 Stat56-D DAPI 70 11 16 
24 FISH 70 15 21 
25 Stat57-20m DAPI 91 10 11 
26 FISH 91 13 14 
27 Stat57-DCM DAPI 91 20 22 
28 FISH 91 22 24 
29 Stat57-D DAPI 59 12 20 
30 FISH 59 13 22 
31 Stat58-20m DAPI 91 22 24 
32 FISH 91 34 37 
33 Stat58-DCM DAPI 73 8 11 
34 FISH 73 18 25 
35 Stat58-DCM DAPI 62 26 42 
36 FISH 62 18 29 
37 St59-20m DAPI 91 11 12 
38 FISH 91 17 19 
39 Stat59-DCM DAPI 91 20 22 
40 FISH 91 34 37 
41 Stat59-D DAPI 78 16 21 
42 FISH 78 14 18 

Table S1c: On-board performance test for the FQEDF stack image 
acquisition with extended depth of focus calculation. Performance 
test data sets are randomly selected subsets from the experiments 
done on-board RRS James Cook during AMT 22. 



 64 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
  

43 Stat60-20m DAPI 91 11 12 
44 FISH 91 19 21 
45 Stat60-DCM DAPI 91 15 16 
46 FISH 91 24 26
47 Stat60-D DAPI 91 16 18 
48 FISH 91 18 20 
49 Stat4-20m DAPI 78 13 17 
50 FISH 78 17 22 
51 Stat4-DCM DAPI 48 18 38 
52 FISH 48 19 40 
53 Stat5-DCM DAPI 50 13 26 
54 FISH 50 12 24 
55 Stat6-D DAPI 91 19 21 
56 FISH 91 37 41 
57 Stat22-150m DAPI 91 16 18 
58 FISH 91 29 32

  
Average: 78 19   
Total: 4530 1099   

Performance yield [Percent high quality images of total]: 24.3 
Number tests with >= 10 high quality images: 56 
Percent tests with >= 10 high quality images of n: 96.6 
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Abstract 

Phytoplankton blooms characterize temperate ocean margin zones in spring. 

We investigated the bacterioplankton response to a diatom bloom in the North Sea 

and observed a dynamic succession of populations at genus-level resolution. 

Taxonomically distinct expressions of carbohydrate-active enzymes (transporters; in 

particular, TonB-dependent transporters) and phosphate acquisition strategies were 

found, indicating that distinct populations of Bacteroidetes, Gammaproteobacteria, and 

Alphaproteobacteria are specialized for successive decomposition of algal-derived 

organic matter. Our results suggest that algal substrate availability provided a series 

of ecological niches in which specialized populations could bloom. This reveals how 

planktonic species, despite their seemingly homogeneous habitat, can evade 

extinction by direct competition. 
 
 
The pdf-document of this publication is not displayed due to copyright reasons.  

The publication can be accessed at: 

http://www.sciencemag.org/content/336/6081/608.full.html;  

DOI: 10.1126/science.1218344 
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Abstract 

Phytoplankton blooms are an annual recurring phenomenon in the German 

Bight, North Sea. In a previous study it was shown, that members of the phylum 

Bacteroidetes responded first to the available substrates during phytoplankton 

senescence. Mainly three bacteroidetal clades, Ulvibacter, Formosa A and Polaribacter 

dominated the bloom, representing abundances as high as 20% each. With the 

present study we were able to show that these clades recurred in the following spring 

seasons 2010-2012, making up almost 50% of the Bacteroidetes community. 

Additionally, we were able to identify another blooming, yet uncharacterized 

Bacteroidetes clade, the Owenweeksia clade and together with Ulvibacter and Polaribacter, 

they represent around 60% of the Bacteroidetes community in spring 2010. Taken all 

clades together, they resolved almost the entire Bacteroidetes community during the 

spring seasons. However, the distinct succession pattern seen in spring 2009 was 

unrivalled among all examined spring seasons so far. It was postulated that this 

succession is bottom-up controlled by the availability of different algal primary 

products which can derive from different phytoplankton clades, triggering the 

blooming of specific bacteria. However, half of the Bacteroidetes clades showed a 

random correlation with specific diatom species, but were significantly positive 

correlated with diatoms in general. We could observe coherence between the 

declining abundances of diatoms and some Bacteroidetes clades. For example, in spring 

2012 the diatom numbers were low, only a quarter of the previous year, and the 

clades Ulvibacter as well as Formosa B were barely detected that year, they represented 

at most 0.5% of the bacterioplankton. Although, most of the bacteroidetal clades 

were present during the entire year, their highest abundance was in spring.  

 

Key words: Bacteroidetes, phytoplankton blooms, diatoms, succession, 

recurrence, seasonality 
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Introduction 

Phytoplankton blooms are annually recurring phenomena in coastal zones of 

higher latitudes (GATTUSO ET AL. 1998). There the phytoplankton is responsible for 

around 19% of the net oceanic primary production albeit these zones make up less 

than 7% of the ocean surfaces (FIELD ET AL. 1998). About half of this net primary 

production is remineralized by heterotrophic bacteria in a process called the 

microbial loop (AZAM 1998). SMITH ET AL. (1995) showed that bacterial cell numbers 

and their hydrolytic enzyme activity increased significantly during phytoplankton 

senescence. So far, bacterial responses to phytoplankton blooms were mostly studied 

in mesocosm experiments. In these experiments members of the Bacteroidetes, 

Gammaproteobacteria and Alphaproteobacteria were detected (RIEMANN ET AL. 2000, 

SCHÄFER ET AL. 2001, PINHASSI ET AL. 2004, TADA ET AL. 2011, RINTA-KANTO ET 

AL. 2012). 

In 2009 TEELING and coworkers observed a bacterial succession triggered by 

the spring phytoplankton bloom at Helgoland Roads (German Bight, North Sea; 

TEELING ET AL. 2012). The spring season at Helgoland Roads is characterized by 

increasing temperature and solar radiance (TIAN ET AL. 2011). Furthermore, it is 

influenced by different water masses, consisting either of marine waters from the 

central North Sea or of estuarine waters from river discharges (GREVE ET AL. 1996, 

VISSER ET AL. 1996, TIAN ET AL. 2011). Tidal driven currents as well as changing 

wind regimes are responsible for the steady exchange of water masses between the 

Wadden Sea and the North Sea (STANEVA ET AL. 2009) which determine whether at 

Helgoland marine or coastal characteristics prevail (GREVE ET AL. 1996, WILTSHIRE 

ET AL. 2010). At well-mixed coastal sites such as  Helgoland Roads the spring bloom 

will start when the turbidity (resulting from sediment resuspension and river plumes) 

drops below a certain threshold and subsequently light can penetrate into deeper 

layers (IRIATE & PURDIE 2004, TIAN ET AL. 2011). When light penetration and 

availability of nutrients, especially silicate, in the mixed water layers are favorable 
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diatoms and other phytoplankton start to bloom (SMETACEK 1999, WILTSHIRE ET 

AL. 2008, LOHMANN & WILTSHIRE 2012). For the termination of phytoplankton 

spring blooms both bottom-up controls like nutrient and in particular silicate 

depletion  (SMETACEK 1999, WILTSHIRE ET AL. 2008) as well as top-down controlling 

factors like protozoan grazing or viral lysis need to be considered (BEARE ET AL. 

2002, WILTSHIRE ET AL. 2010). Dissolved and particulate organic matter released 

from the algae serve as substrates for bacterioplankton cells provoking a successional 

bloom of distinct bacterial clades (TEELING ET AL. 2012). 

In spring 2009 the bacterioplankton numbers increased from around 0.5 to 

3.5 x 106 cells ml-1 shortly after the chlorophyll a maximum was reached. Bacteroidetes 

responded first to the available substrates from dying diatoms and increased rapidly 

in cell numbers while SAR11 remained constant. The Gammaproteobacteria increased as 

well but with an offset of about a week to the Bacteroidetes and they did not reach the 

same high cell numbers. Whereas Bacteroidetes made up more than 50% of all cells, 

Gammaproteobacteria contributed a maximum of about 35% to the total community. 

Both groups together accounted for more than three-quarter of the bacterioplankton 

community in spring 2009. The major subgroups of Bacteroidetes were identified as 

Ulvibacter, Polaribacter and the Formosa clade A with peak abundances as high as 20%. 

Minor subgroups as the NS5-DE2 clade, the NS9 clade and a clade belonging to the 

class Cytophagia showed abundances below 5% each (TEELING ET AL. 2012). Taken 

together all clades represented on average more than 62% of the Bacteroidetes 

community during the spring season in 2009.  

TEELING ET AL. (2012) had postulated that the appearance and succession of 

specific Bacteroidetes clades was determined by the substrates released from 

phytoplankton. In this study we therefore investigated the following questions: (I) Is 

each spring phytoplankton bloom causing a distinct bacterial succession similar to 

that of 2009? (II) Are the bacteroidetal clades Polaribacter, Formosa A, Ulvibacter, NS5-

DE2, NS9 and Cytophagia, which had maxima during the spring diatom bloom in 
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2009, also recurring in the spring seasons 2010-2012? If yes, are they as abundant as 

in 2009? (III) Can additional blooming Bacteroidetes clades be detected in 2010-2012 

which had no maxima in 2009? (IV) Are the maxima of specific bacteroidetal clades 

correlated with the bloom or senescence of specific phytoplankton groups? And 

finally, (V) is the presence or absence of distinct phytoplankton groups or species 

correlated with certain Bacteroidetes clades?  

In a side project we also investigated whether the same or other bacteroidetal 

clades also appeared and even dominated during and after summer and autumn 

phytoplankton blooms? To this end, we additionally quantified the cell numbers of 

bacteroidetal clades for the entire years of 2009 and 2010.  

The present study was based on the full cycle rRNA approach. Based on the 

comparative sequence analysis of full length 16S rRNA gene clone libraries new 

probes were designed and evaluated. Subsequently, CARD-FISH was used for the 

quantification of bacteroidetal clades during the spring seasons of 2009 to 2012 as 

well as for the entire years of 2009 and 2010. Cells were enumerated with the newly 

developed automatic counting system (based on ZEDER &PERNTHALER 2009). 

Material and Methods 

Sampling and sample preparation 

Samples were taken 1 m below the sea surface with the research vessel Ade at 

station “Kabeltonne”, Helgoland Roads, North Sea (54°11'30 N, 7°54'00 E) during 

the spring seasons (March 1st  - May 31st) in 2009 to 2012. In 2009 samples were taken 

twice a week and from 2010 on weekdays. Additionally in 2009 and 2010 samples 

were harvested for the remainder of the year once every week. To the seawater 

samples 37% formaldehyde solution (Sigma-Aldrich, Taufkirchen, Germany) was 

added in a final concentration of 1%. Subsequently, the samples were fixed for 1 h at 

room temperature. Volumes of 10 ml (low volume filters) and 100 ml (high volume 
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filters) were then filtered in triplicates onto 0.2 μm pore-sized polycarbonate 

membrane filters with a diameter of 47 mm (Whatman 7060-4702). Filtration was 

performed by using a vacuum pump (pressure below 200 mbar). After drying filters 

were stored at -20 °C until further analysis.  

Physicochemical parameters like temperature, salinity, chlorophyll a, silicate, 

phosphate, nitrate, nitrite and ammonia as well the phytoplankton abundances and 

species composition were determined every working day by the Biologische Anstalt 

Helgoland (BAH), using the methods described in WILTSHIRE ET AL. (2010). Only 

the seven most abundant phytoplankton species in spring were considered for the 

present study.  

Bacterial biomass samples for diversity analysis 

For bacterial biomass extraction 100 l seawater were sampled and pre-filtered 

through 10 μm pore-sized 142 mm polycarbonate membrane filter (type TCTP, 

Millipore, Eschborn, Germany). Subsequently, the collected filtrate was filtered 

through 3 μm pore-sized 142 mm polycarbonate membrane filter (type TSTP, 

Millipore, Eschborn, Germany). This was done to remove most eukaryotes before 

bacteria were collected on 0.2 μm pore-sized 142 mm polycarbonate membrane 

filters (type GPWP, Millipore, Eschborn, Germany). Filters were immediately frozen 

and kept at -80 °C until further processing.  

DNA extraction and 16S rRNA gene libraries 

Total nucleic acids were extracted from a section of the 0.2 μm pore-size 

biomass filter, equivalent to about 25 l surface water, according to ZHOU ET AL. 

(1996). The 16S rRNA genes were amplified by polymerase chain reaction (PCR) 

using the general bacterial primers GM3F 5’-AGA GTT TGA TCM TGG C-3’ and 

GM4R 5’-TAC CTT GTT ACG ACT T-3’ (MUYZER ET AL. 1995). The PCR reaction 

[0.3 mg ml-1 BSA, 250 μM total dNTPs, 0.5 μM each primer, 1 x Taq buffer and 

0.2 U of Master Taq Polymerase (5 PRIME GmbH, Hamburg, Germany), 1 μg μl-1 
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template] was carried out in ten replicates using a Mastercycler (Eppendorf) with an 

initial denaturation step at 95 °C for 5 min, followed by 26 cycles of 1 min 

denaturation at 95 °C, 1 min annealing at 44 °C, and 2 min elongation at 72 °C. 

There was a final extension step of 1 h at 60 °C to promote a better poly-A tailing. 

The PCR products were purified using the QIAquick PCR purification kit 

(QIAGEN, Hilden, Germany). The clean PCR product was ligated using the TOPO 

TA cloning kit (Invitrogen, Karlsruhe, Germany) and cloned into high-efficiency 

chemically competent E. coli top 10 cells (Invitrogen, Karlsruhe, Germany). The 

library was screened for the presence of the inserts using the vector primers M13F 

(5’-GTA AAA CGA CGG CCA G-3’) and M13R (5’-CGA GAA ACA GCT ATG 

AC-3’). The PCR reaction and cycling condition was similar as above, but with 35 

cycles and a final extension step of 10 min at 72 °C. The annealing temperature was 

set to 55 °C. Afterwards the PCR products were purified using the Nucleo Fast 96 

PCR kit (Macherey-Nagel, Dueren, Germany) and directly sequenced using in-house 

pipeline applying Sanger sequencing technology. The 16S rRNA gene sequences of 

this study were deposited in GeneBank under the accession numbers XXX. 

Phylogenetic reconstruction 

Retrieved 16S rRNA sequences were analyzed with the software package 

ARB (LUDWIG ET AL. 2004) using Silva database release 115, August 2013 (PRUESSE 

ET AL. 2007). The phylogenetic reconstruction was done according to PEPLIES ET AL., 

(2008) and operational taxonomic units (OTU) were calculated using ‚mothur’ 

(SCHLOSS ET AL. 2009) based on the distance matrix calculated in ARB. Phylogenetic 

tree reconstruction was done in ARB using the maximum likelihood algorithm 

RaxML and a Bacteroidetes specific filter by base frequency.  
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Probe design 

 Probe design including competitors were done using the ARB probe design 

tool on basis of the SILVA NR 104 database release October 2010 (PRUESSE ET AL. 

2007) in accordance to HUGENHOLTZ ET AL. 2001. Helpers were designed according 

to FUCHS ET AL. 2000. Horseradish peroxidase labeled oligonucleotide probes, 

unlabeled competitors and helpers were provided as lyophilized powder by Biomers 

(Biomers.net GmbH, Ulm, Germany). Oligonucleotides, competitors and helpers 

were dissolved in nuclease free water to a concentration of 8.42 pmol μl-1. Probes, 

competitors and helpers used in this study are listed in Table S1. 

Determination of total cell counts 

Total cell counts were determined on “low volume filters” of a diameter of 

4.7 cm on which 10 ml of surface water were directly filtered with low vacuum. 

Subsequently, filters were cut and subsequently mounted on glass slides using a 

glycerin-PBS mounting solution (Citifluor (Citifluor Ltd., London, UK) & 

VectaShield (Vector Laboratories Inc., Burlingame, CA, USA)) containing the nucleic 

acid specific dye DAPI (4',6-diamidino-2-phenylindole). This was necessary to avoid 

cell loss by washing. Then samples were analyzed using the automated microscope 

ZEISS Axio Imager.Z2 (Carl ZEISS MicroImaging GmbH) including the software 

package AxioVision 4.8.2 (Carl ZEISS MicroImaging GmbH) in conjunction with 

the macros SamLoc (ZEDER ET AL. 2011) and MPISYS (based on ZEDER & 

PERNTHALER 2009). For automated cell enumeration the software package 

ACMEtool 2.0 (based on ZEDER ET AL. 2010) was used (BENNKE ET AL. IN PREP.)  

To test for even distribution of cells on filters one set of triplicates for each 

volume were cut in to equal sized sections and 12 of them from each filter were 

DAPI stained and subsequently counted. Total cell counts (TCC) from both filter 

sets resulted in similar abundances for each volume. The p-values of the variance 

analysis (ANOVA) for low (p = 0.360) and high volume (p = 0.188) filter triplicates 

were higher than 0.05 revealing no significant differences for the filter triplicates. The 
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filter sections from each filter revealed also no significant difference (p = 536, n = 9). 

However, the comparison of TCC revealed that on 100 ml filters the numbers 

determined were only about half of those on 10 ml. 

Determination of absolute abundances of specific bacteroidetal clades 

Absolute abundances of specific groups of bacteria were calculated from the 

proportion of hybridized cells and the total cell numbers (TCC) determined on 10 ml 

filters. The latter were determined from untreated filters which were only stained 

with DAPI. For highly abundant clades low volume (10 ml) filters were used for 

CARD-FISH, and for low abundant clades high volume filters (100 ml) were 

hybridized and quantified. Although, TCC retrieved from low volume filters (10 ml) 

were almost double as high as TCC recovered from high volume filters (100 ml), the 

proportion of CARD-FISH positive cells of both analysis revealed no significant 

difference (p = 0.336). Those differences in TCC might be due to overlapping cells 

on the filter. High volume filters were therefore used only to enumerate the 

frequency of low abundant clades, and their absolute numbers were calculated by 

multiplying this frequency with the TCC determined on 10 ml filters. 

Finally, it was tested whether tides might influence the bacterioplankton 

numbers and community composition, since Helgoland Roads is part of the intertidal 

zone. Therefore, samples were taken twice a day at station Ferry Box always at high 

and low tide additionally to those taken every morning at station Kabeltonne. Both 

stations are roughly 500 m separated from each other. It turned out that the 

difference in cell numbers between the samples were small, and, when random 

sampling variability was excluded, there was no statistically significant difference 

(p=0.963). Although the numbers are not identical between low and high tide or to 

station Kabeltonne they showed the same trend. Only at one time point all three 

samples differed about 22% in absolute numbers (Figure S3). However, this case was 

most likely due to a change in water mass since a drop in salinity (from 31 to 29.7 

PSU) was observed during that day.  
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CARD-FISH  

Catalyzed reporter deposition – fluorescence in situ hybridization (CARD-

FISH) was performed according to THIELE ET AL. (2011) with modifications. 

Hybridization was done in a modified glass humidity chamber and preheated at 

50 °C prior to hybridization to equilibrate the thick glass to the temperature. The 

chamber was lined with a tissue paper soaked with 6 ml of a formamide-water-mix. 

The formamide concentration of the mix was the same as in the hybridization buffer. 

The filters were placed face-up into Petri-dishes and each section was carefully 

covered with 100 μl of the hybridization-probe-mix [0.9 M NaCl, 20 mM Tris-HCl 

pH 8.0, 0.02% SDS, 1% blocking reagent, 15% dextran sulfate (Sigma-Aldrich, 

Steinheim, Germany), 35% formamide, 0.0842 pmol μl-1 probe (Biomers, Ulm, 

Germany)]. The Petri-dishes were placed carefully in the pre-warmed glass humidity 

chamber and incubated in the hybridization oven at 46 °C for 2.5 hours. Washing 

was done in a buffer containing 20 mM Tris-HCl (pH 8.0), 5 mM EDTA (pH 8.0), 

0.07 M NaCl, and 0.01% SDS for 15 min at 48 °C in a water bath and for additional 

10 min in 1xPBS [0.14 M NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4] at 

room temperature. Tyramide signal amplification was performed at 37°C for 30 min 

in a glass humidity chamber containing 6 ml water soaked tissue paper. The custom 

made tyramide Alexa488 (PERNTHALER ET AL. 2001) was added to the amplification 

buffer [2 M NaCl, 15% dextran sulfate (Sigma-Aldrich, Steinheim, Germany), 0.1% 

blocking reagent, 1xPBS, 0.15% H2O2, 1 μg μl-1 tyramide Alexa488]. Filters were 

washed in 1xPBS for 15 min and 2 min in 96% ethanol. After drying filters were 

subsequently mounted with Citifluor (Citifluor Ltd., London, UK) and VectaShield 

(Vector Laboratories Inc., Burlingame, CA, USA) containing 1μg ml-1 DAPI, similar 

as for total cell counts. For cell enumeration the automated approach was used, 

similar as for total cell counts. 
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Statistical analysis 

 Correlations between Bacteroidetes clade abundances and environmental 

variables, like physicochemical parameters (chlorophyll a, temperature, salinity, 

silicate, phosphate, nitrate, nitrite and ammonia) and phytoplankton abundances 

(classes: diatoms, dinoflagellates, coccolithophorids, slicoflagellates, flagellates, 

ciliates, greenalgae; species: Mediophyxis helysia, Thalassiosira nordenskioeldii, Chaetoceros 

debilis and Chaetoceros minimus, Rhizosolenia styliformis, Chattonella and Phaeocystis) were 

done using Spearman rank correlation test (Table S2a-c). Bacteroidetes and 

phytoplankton numbers were transformed to log-scale for better comparison. Linear 

regression (Table S3) were done using stepwise forward regression model by using 

the log transformed Bacteroidetes and phytoplankton abundances (Mediophyxis helysia, 

Thalassiosira nordenskioeldii, Chaetoceros debilis and minimus, Rhizosolenia styliformis, 

Chattonella, Phaeocystis, silicoflagellates, coccolithophorids and greenalgae). All 

statistical analyses were performed using the software Sigma-Plot 12 (SYSTAT, Santa 

Clara, CA, USA).      

Results 

Description of the bacterioplankton and Bacteroidetes community in spring 

In late winter the total cell numbers of the bacterioplankton were between  

5-7 x 105 cells ml-1, except for 2012 when the numbers exceeded 1.2 x 106 cells ml-1 in 

the beginning of March. After the chlorophyll a maximum the bacterioplankton 

numbers increased between three and seven times (Figure 1A). With 0.6 x 106 

cells ml-1 the average annual TCC were lowest in spring 2010 compared to the other 

years  where the average TCC ranged between 1.2 and 1.4 x 106 cells ml-1.  

Every spring season was characterized by a strong decrease in relative 

abundances of SAR11, while Bacteroidetes and Gammaproteobacteria increased (Figure 

1B). The Gammaproteobacteria either increased simultaneously with Bacteroidetes (2011 
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and 2012) or in an offset of approximately three weeks (2010). In 2009 and 2010 they 

contributed up to 34 ± 1%, in 2011 and 2012 only up to 15 ± 3% (Figure 1B). Since 

Bacteroidetes responded always first to the senescence of the phytoplankton bloom 

reaching maxima between 35% (2012) and 63% (2010) of the total community, this 

study was focusing on this phylum.  

For  spring 2009 it had been shown that the bacteroidetal clades Ulvibacter, 

Formosa A, Polaribacter, NS5-DE2, NS9 and Cytophagia accounted on average for 62% 

of the Bacteroidetes community, with Ulvibacter, Formosa A and Polaribacter being the 

dominant clades (TEELING ET AL. 2012). The three clades made up more than half of 

the Bacteroidetes community in spring 2009 and shortly after the chlorophyll a 

maximum, they even accounted for nearly all Bacteroidetes. By  analysis of the 16S 

rRNA clone library of spring 2009 (TEELING ET AL. 2012) an additional abundant 

Bacteroidetes clade could be identified and this represented 6% of the clone library and 

were affiliated with the NS3 clade. All retrieved NS3 sequences were more than 99% 

identical in their 16S rRNA sequence, but showed less than 97% 16S rRNA identity 

to sequences of the remaining NS3 clade, except for clones retrieved from coastal 

Fjord waters at Norway (NEWBOLD ET AL. 2012). The latter were more than 99% 

identical to the Helgoland NS3 clones. The newly designed NS3a-840 

oligonucleotide probe detects besides the Helgoland clones almost the entire clade 

and covers a minimum target group identity of 90%. In spring 2009 NS3 showed a 

pronounced peak approximately three weeks after chlorophyll a maximum making 

up 9% of the bacterioplankton community. Later NS3 decreased rapidly in numbers 

and by the end of spring they represented only 0.2% (3 x 103 cells ml-1).  

The same Bacteroidetes clades present in spring 2009 recurred in spring 2010, 

but accounted on average only for 56% of the Bacteroidetes community, whereof the 

three dominant clades Polaribacter, Formosa A and Ulvibacter made up already 46% 

(figure 2A). In contrast to 2009 where those three clades accounted on some days for 

the total Bacteroidetes community, in 2010 at most three quarters were resolved. To 



 85 

further characterize the missing Bacteroidetes clades a 16S rRNA full length clone 

library was constructed from samples retrieved at April, 8th 2010 (figure 2B). 

Interestingly, about one-third of the clones (33%) were affiliated with a flavobacterial 

clade called Owenweeksia. This clade was named after the type strain Owenweeksia 

hongkongensis (LAU ET AL. 2005). Although, our clones shared only 88% 16S rRNA 

identity with the type strain we will stick with the name Owenweeksia. All retrieved 

sequences were scattered throughout the Owenweeksia cluster consisting of 9 OTUs 

(99% similarity cutoff), whereby one OTU was 99% identical to clones (1.5%) 

retrieved in spring 2009. The oligonucleotide probe VIS6-814 (GÓMEZ-PEREIRA ET 

AL. 2010) targeted all Helgoland clones, but additional helpers had to be designed to 

enhance the probe signal intensity. Hybridization with the probe specific for this 

clade revealed that in spring 2010 Owenweeksia was detected in situ with relative 

abundances of up to 20%, simultaneously with Polaribacter. Both clades together 

made up almost 50% of the entire bacterioplankton community and more than 80% 

of the Bacteroidetes at that time point (figure 2C). Applying the same oligonucleotide 

probe to the samples of spring 2009 we showed that Owenweeksia had also been 

present in spring 2009 in a relative abundance up to 11%.   

High abundant clades 

We found that not all clades being present in high abundances of above 10% 

in spring 2009 reached similar high numbers in the following spring seasons  

2010-2012 (Figure 3A). Ulvibacter, for example, which had reached in spring 2009 

relative abundances of 20% of the total community, corresponding to more than 

50% of the Bacteroidetes community, was less frequent in the following years. In spring 

2010 their maximum was only 14% and appeared together with Polaribacter and 

Owenweeksia (Figure 3A). That year, Ulvibacter reached cell numbers of 

6.4 x 104 cells ml-1 at most, which was almost three times lower than the maximum of 

1.7 x 105 cells ml-1 in spring 2009. In 2011 their absolute numbers were similar as in 

2010 (6.5 x 104 cells ml-1), yet they represented not more than 6%. In spring 2012 
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Ulvibacter was detected by the end of the season with maximum numbers of 1.7 x 104 

cells ml-1 representing 1.6% of the total community and 4.8% of the Bacteroidetes 

(Figure 3A). 

Formosa A represented the second clade in spring 2009 forming a pronounced 

peak of 23% after Ulvibacter, but in spring 2010 they contributed at most with 5% 

towards the end of the spring season. Their total maximum numbers (0.6 x 105 cells 

ml-1) were about six times lower than in spring 2009 (3.5 x 105 cells ml-1). In contrast 

in spring 2011 Formosa A appeared again after Ulvibacter reaching absolute numbers of 

3.2 x 105 cells ml-1, similar to 2009. However, they appeared simultaneously with 

Polaribacter reaching abundances higher than Polaribacter (17% vs. 14%). In spring 

2012 Formosa A appeared again after Polaribacter, similar as in spring 2010, reaching at 

most 8% (1.9 x 105 cells ml-1, Figure 3A).  

As already mentioned above, Polaribacter were identified as the third clade in 

spring 2009, representing up to 27% of the total community. This clade was also 

present with more than 25% in spring 2010 and 2012, whereas in spring 2011 they 

represented only 14%. In spring 2010, they formed a pronounced peak 

simultaneously with Ulvibacter and the newly identified clade Owenweeksia. The relative 

abundances of Polaribacter in spring 2009 and 2010 were similar but their absolute 

numbers (1.3 x 105 cells ml-1) were about a sixth of that in spring 2009 

(7.8 x 105 cells ml-1), similar to what was observed for Formosa A. Although in spring 

2011 the relative abundances was with 14% lower as compared to the other spring 

seasons, the absolute numbers were with 2.4 x 105 cells ml-1 actually twice  as high as 

in the spring maximum of 2010. In spring 2012 Polaribacter reached relative peak 

abundances of 25% and represented 4.6 x 105 cells ml-1, which is almost twice as high 

as the previous spring and 3.5 times higher as in spring 2010 (Figure 3A).     

The Owenweeksia clade seemed to follow the distribution pattern of 

Polaribacter. During the spring season of 2009 until 2011 both clades appeared 

simultaneously but had different abundances. Whereas in spring 2009 Owenweeksia 
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accounted on average for less than half of the  Polaribacter abundance (0.6 x 105 cells 

ml-1 vs. 1.6 x 105 cells ml-1), in spring 2010 both clades appeared simultaneously with 

similar abundances of 1.0-1.4 x 105 cells ml-1. Together they represented almost 50% 

of the entire bacterioplankton community and more than 80% of the Bacteroidetes in 

early April 2010. That year Owenweeksia reached their highest relative abundances of 

all four spring seasons. However, their absolute numbers were highest in spring 2009 

(1.9 x 105 cells ml-1) and lowest in spring 2011 (0.7 x 105 cells ml-1). In 2011 they also 

made up only 3% of the bacterioplankton community. In spring 2012 the 

simultaneous occurrence of Owenweeksia and Polaribacter stopped and Owenweeksia 

reached abundances of 11% between the second and third Polaribacter peak 

(Figure 2), accounting for 1.2 x 105 cells ml-1 (Figure 3A).  

Low abundant clades 

Clades which were present in abundances below 10% in spring 2009 

remained also low in the following spring seasons 2010-2012 (Figure 3B). Some 

clades also revealed a multimodal distribution, like the NS9 clade. Always, by the end 

of the winter period NS9 showed abundances around 1%, but entering spring they 

decreased to less than 0.1%. With increasing chlorophyll a concentration NS9 

increased as well and formed a pronounced peak with relative abundances of up to 

3% shortly after the chlorophyll a maximum. By the end of the spring season NS9 

formed an additional peak with relative abundances of up to 2.5%. This was 

consistent for the spring seasons 2009 until 2011. In contrast NS9 were detected 

with less than 1% during spring 2012. Also their absolute numbers were lowest in 

spring 2012 with about 2.3 x 104 cells ml-1 and highest in spring 2009 when they 

reached up to 7.7 x 104 cells ml-1 (Figure 3B). 

The NS5-DE2 subclade seemed to have a similar distribution pattern as NS9. 

However, in transition from winter to spring NS5-DE2 represented less than 0.1% 

of the total community in all four spring seasons. Spring 2011 seems to resemble the 

distribution pattern of spring 2009 where this clade increased to its highest 
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abundances of 5% representing about 6 x 104 cells ml-1 shortly after the chlorophyll a 

maximum. In spring 2010 several peaks appeared with maximum abundances of 

2.2% representing absolute numbers between 0.9-1.3 x 104 cells ml-1. Here, the first 

increase in abundances appeared while chlorophyll a increased as well. In contrast, in 

spring 2012 NS5-DE2 showed a peak of 2.2% about a month after the chlorophyll a 

maximum (Figure 3B).  

The NS3 group recurred every spring season and formed pronounced peaks 

(Figure 3). However, they never reached abundances as in spring 2009, when they 

showed absolute numbers of 2.7 x 105 cells ml-1. For this clade it also seems that the 

distribution pattern of spring 2009 is resembled in spring 2011 (Figure 3B) where 

they made up 6% of the total bacterioplankton community representing 1.0 x 105 

cells ml-1. In spring 2011, NS3 formed a peak simultaneously with Polaribacter and 

Formosa A similar as in spring 2009. During the spring seasons of 2010 and 2012 NS3 

were one order of magnitude lower in absolute numbers (2.3-3 x 104 cells ml-1) and 

represented between 2.1% (2012) and 3.4% (2010). In spring 2012 NS3 had the 

lowest cell numbers of all four spring seasons, similar as Ulvibacter and NS9 

(Figure 3).   

This was also found for the second Formosa clade B (Figure 3B). They also 

had their lowest cell numbers (4.5 x 10³ cells ml-1) in spring 2012. Usually, every 

spring except for 2012 the Formosa clade B increased in their abundances within a few 

days after the chlorophyll a maximum (Figure 3). They formed a pronounced peak 

shortly before the Formosa clade A and then went below the detection limit. In spring 

2009 and 2010 this clade represented 4% of the entire bacterioplankton community 

and in 2011 they reached only 2%. However, their absolute numbers were lower in 

2010 (2.2 x 104 cells ml-1) than in 2011 (2.8 x 104 cells ml-1). In spring 2012 this clade 

was barely detected (0.2% at most), similar as Ulvibacter, NS3 and NS9 (Figure 3).  

The Marinoscillum clade of the family Flammeovirgaceae within the class 

Cytophagia formed a pronounced peak in spring 2009, simultaneous with Polaribacter, 
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Formosa A, Owenweeksia and the NS3 clade, reaching a maximum of 9.8 x 104 cells ml-1 

and representing 3% of the entire community (Figure 3). In spring 2010 and 2011 

this clade was detected at most with 1.7 or 1.6 x 104 cells ml-1, respectively < 1%). In 

spring 2012 Marinoscillum reached relative abundances similar to those of 2009, yet 

their absolute numbers were with at most 4.1 x 104 cells ml-1 lower than in 2009 

(Figure 3B).  

Does the phytoplankton community influence the Bacteroidetes community? 

The phytoplankton bloom of the spring seasons 2009 until 2011 were highly 

diatom dominated with maxima of 2.3 x 106, 1.4 x 106 and 1.0 x 106 cells l-1, 

respectively, whereas in spring 2012 the diatom numbers were on average only a 

sixth (2.5 x 105 cells l-1) of the previous spring seasons. Not only had the blooms 

become weaker every year, also the diatom composition changed. In 2009 the diatom 

community consisted on average of 90% Centrales and 10% Pennales, whereas in 

spring 2010 about two-thirds Centrales and one-third Pennales were present. In 

spring 2011 about half of the diatom community was represented by Centrales and in 

2012 only one-third belonged to Centrales. Those changes within the diatom 

community were most likely due to Mediopyxis helysia, a pennate diatom newly 

identified at Helgoland (KRABERG ET AL. 2012).  

In addition to diatoms other phytoplankton members were present, for 

example the raphidophycean flagellate Chattonella,  which was present with peak 

abundances between 4-8 x 105 cells l-1 in the spring seasons 2009, 2011 and 2012. 

This group was below the detection limit in spring 2010 and in spring 2012 they had 

their highest abundances (8.2 x 105 cells l-1) where diatoms were low 2.5 x 105 cells l-1. 

The genus Phaeocystis of the class Coccolithophyceae was present already in the beginning 

of the spring season with numbers exceeding 1 x 105 cells l-1, except for spring 2012 

when Phaeocystis reached those abundances only in April. Although Phaeocystis were 

numerically more abundant than diatoms, their contribution to the biomass is lower 

than that of diatoms.  In order to check whether phytoplankton composition and 
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abundances were correlated with clade abundances of Bacteroidetes we performed 

stepwise forward regression excluding physicochemical parameters.  

Spearman rank correlations (Table S2a-c) revealed only limited dependencies. 

Ulvibacter were significantly positive correlated with diatoms in general (r² = 0.515), 

and showed an even stronger correlation with Centrales (r² = 0.661). Correlating the 

five most abundant diatoms with this clade they showed a positive correlation with 

both Chaetoceros species C. debilis (r² = 0.479), C. minimus (r² = 0.388), T. nordenskioeldii 

(r² = 0.365) and M. helysia (r² = 0.361). NS5-DE2 were also positive correlated with 

M. helysia (r² = 0.404), C. debilis (r² = 0.386) and C. minimus (r² = 0.352). However, 

their correlation with diatoms (r² = 0.353) and subsequently Centrales (r² = 0.498) 

were weaker than those of Ulvibacter. Cytophagia, Polaribacter and NS3 were positive 

correlated with Chattonella (r² = 0.425, 0.380, 0.345, respectively). Most of the 

correlations were supported by linear regression analysis, which was performed by 

using the bacteroidetal clade as the dependent variable and the phytoplankton groups 

as independent variables. Half of the clades were randomly correlated with the 

phytoplankton groups, only the presence of Ulvibacter, both Formosa clades, NS5-DE2 

and NS9 can partly be explained (Table S3).  

Recurrence within the same year? 

Besides the identification of the bacteroidetal clades in subsequent spring 

seasons we were also interested how these clade abundances developed during the 

year. Therefore, the entire years of 2009 and 2010 were examined with the same 

probe set. We were able to identify clades which were present solely in spring, others 

were present until summer and yet others throughout the entire year. Formosa B was 

the only clade exclusively present in spring (Figure 4A). Although, the NS3 and 

Cytophagia clade were detected throughout the entire year of 2009 and 2010, they only 

showed a pronounced peak in spring (Figure 4A). However, the NS3 clade 

reappeared with maximum abundances of 3.9 x 104 cells ml-1 and formed a peak of 
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1.4% in midsummer of 2009 (Figure 4A). For the remaining year both clades were 

present with less than 1.4 x 104 cells ml-1 (<0.5%).  

Ulvibacter was present until midsummer with numbers of up to 4.6 x 104 cells 

ml-1 in both years, equivalent to at most 2.2% in summer 2009, and 3.3% in summer 

2010. Similar as Ulvibacter the NS5-DE2 clade was present until midsummer and 

formed a pronounced peak in early summer 2009 with 3.5 x 104 cells ml-1 which 

represented 3.6% (Figure 4B). In summer 2010 NS5-DE2 were present with less 

than 1.4 x 104 cells ml-1, similar as NS3 and Cytophagia. Ulvibacter and NS5-DE2 were 

below the detection limit for the remaining year.  

In contrast the clades Formosa A, Polaribacter, Owenweeksia and NS9 were 

present throughout the year (Figure 4C). Formosa A reappeared in summer and 

autumn 2009 as well as in summer 2010. In summer 2009 this clade revealed two 

peaks, one in early summer with peak abundances of 2.1 x 105 cells ml-1 representing 

14% and the other during midsummer (1.3 x 105 cells ml-1). During the remaining 

summer Formosa A were present with less than 1%, but reappeared in autumn 2009 

with peak abundances of 1.0 x 105 cells ml-1 representing less than 4%. In 2010 

Formosa A formed a pronounced peak with 2.4 x 105 cells ml-1 representing 10% of 

the total community and almost 50% of the Bacteroidetes community in late summer. 

Then they declined rapidly in numbers and went below the detection limit until the 

end of December 2010 where they suddenly made up 1.5% (1.3 x 104 cells ml-1).  

Members of the Polaribacter clade were present throughout both years with 

absolute numbers greater than 1 x 104 cells ml-1 and formed several peaks during 

summer and autumn. In the beginning of summer 2009 Polaribacter formed a 

pronounced peak representing 15% of the total bacterioplankton community and 

35% of the Bacteroidetes. But their absolute abundances were only one fifth of the 

abundance as in spring. In July 2009 this clade formed again three successive peaks 

with relative abundances up to 10%. Although their relative abundances were similar, 

their absolute numbers decreased from 2.6 to 0.8 x 105 cells ml-1. Polaribacter cell 
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numbers recovered in the beginning of autumn where they formed a pronounced 

peak with abundances of 1.4 x 105 cells ml-1 representing 6% of the bacterioplankton 

community and 31% of the Bacteroidetes community. In the middle of autumn 2009 

Polaribacter revealed another peak with 0.7 x 105 cells ml-1 representing 5% of the total 

bacterioplankton and 17% of Bacteroidetes. In summer 2010 this clade was present 

with peak abundances of 8% and absolute numbers up to 1.3 x 105 cells ml-1. Then 

their numbers decreased and in the beginning of autumn 2010 they formed again a 

peak with 2.3 x 105 cells ml-1 representing 7% of the total bacterioplankton 

community and 26% of the Bacteroidetes slightly higher as in autumn 2009.  

Owenweeksia also formed several peaks of 10% and 6% during summer 2009 

representing between 9.4 to 5.3 x 104 cells ml-1. Then they declined until their cell 

numbers recovered by the beginning of autumn where they formed again a 

pronounced peak of 1.9 x 105 cells ml-1 representing 10% of the total community and 

22% of the Bacteroidetes. During summer 2010 Owenweeksia revealed a peak of 6% 

representing 7.9 x 104 cells ml-1 similar as in summer 2009. Then their cell numbers 

declined and remained below 2% for the remaining year.  

The NS9 was the only low abundant clade which was present throughout the 

year forming several peaks (Figure 4D). In summer 2009 this clade showed two 

successive peaks with similar relative abundances of up to 3% as in spring. However, 

their absolute numbers were about three times lower than in spring (7.7 x 104 

cells ml-1 vs. 2.8 x 104 cells ml-1). After the second peak in summer 2009 their 

numbers decreased below 1%. Then NS9 recovered in mid-autumn and showed a 

peak with absolute abundances of 1.7 x 104 cells ml-1 representing 1.2% of the total 

bacterioplankton community. In summer 2010 NS9 showed peak abundances of 

3.5 x 104 cells ml-1 slightly higher than in summer 2009, but their relative numbers 

were lower (1.8%) in summer 2010. In contrast to 2009, there was no autumn peak 

of NS9 in 2010. 
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In a 16S rRNA gene library, constructed from September 1st, 2009 

bacterioplankton sample, sequences of the VIS1 subclade of NS5 was retrieved with 

3% frequency. This clade made up 3% of the clone library and in situ they 

represented 1.3% of the total bacterioplankton community on the same day as the 

clone library. In mid-autumn they reappeared with 2.1%. This clade was below the 

detection limit in spring 2009 and slightly increased during summer. In contrast in 

2010 NS5-VIS1 was barely detected in spring (<0.5%) then increased in abundances 

in the beginning of summer and formed a pronounced peak with 9.6 x 104 cells ml-1 

representing 5% of the total bacterioplankton in midsummer. Then their numbers 

declined and in transition from summer to autumn 2010 VIS1 recovered and showed 

a pronounced peak with 1.5 x 105 cells ml-1 making up again 5% of the total 

community. During autumn VIS1 remained below 2% and increased in abundances 

again to 5% by the end of December 2010. Here, they accounted for almost 50% of 

the Bacteroidetes community, whereas in summer and autumn that year they 

represented less than 20% of the Bacteroidetes community.   

Discussion 

TEELING and coworkers had hypothesized that the succession of specific 

clades of Bacteroidetes and Gammaproteobacteria after the spring diatom bloom in the 

North Sea is determined by the massive release of algal polysaccharides (TEELING ET 

AL. 2012). In the present study we tested this hypothesis and followed the 

distribution pattern of ten dominant Bacteroidetes clades over two entire years and 

three spring seasons at Helgoland. We in particular investigated the recurrence of 

specific clades and whether the composition and timing of phytoplankton would 

trigger the rise of specific bacteroidetal clades.  

All Bacteroidetes clades, except for the NS5-VIS1 clade, recurred every spring 

albeit not all of them to the extent as they did in 2009. The NS5-VIS1 clade 

represents most likely a winter clade, since it made up almost 50% of the Bacteroidetes 
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community in December 2010. Furthermore, they bloomed (between 5 and 7%) 

when diatoms were mainly absent. Interestingly, both NS5 clades, the NS5-VIS1 and 

NS5-DE2, seem to possess opposing seasonal patterns. This is supported by 

Spearman rank correlations, where NS5-DE2 is negatively correlated to NS5-VIS1 

(r² = -0.400). Whereas DE2 was present in spring, VIS1 was barely detected. This 

suggests different ecological niches for the two clades. Similarly in the North Atlantic 

Ocean (GÓMEZ-PEREIRA ET AL. 2010, 2012) NS5-VIS1 appeared in higher 

abundances in the Arctic Province of the North Atlantic Ocean (GÓMEZ-PEREIRA 

ET AL. 2010), whereas NS5-DE2 was found in the Boreal Polar region only (GÓMEZ-

PEREIRA ET AL. 2012).  

It is notable that the cumulative abundances of the clades monitored agreed 

in general well with the counts obtained with probe CF319a (MANZ ET AL. 1996), 

assumed to detect most marine Bacteroidetes (AMANN & FUCHS 2008). Only for some 

time points mainly in the beginning and end of the spring seasons the fraction of 

uncharacterized Bacteroidetes was between 11 and 25% of the total bacterioplankton. 

In this study we could show that a major gap occurring in spring 2010 was due to the 

clade Owenweeksia. Members of this clade were also identified in surface waters of the 

North Atlantic Ocean and the oligonucleotide probe designed within that study 

(GÓMEZ-PEREIRA ET AL. 2010) also targets the Helgoland clade. Including this clade 

for community analysis, also in spring 2010 more than 90% of the entire Bacteroidetes 

community could be assigned to specific clades.  

Whereas the clade recurrence was pronounced, the clade peak abundances 

and succession patterns were different from year to year. In 2009 three clades were 

dominating with relative abundances well above 20%. Ulvibacter was followed by 

members of the Formosa clade A and subsequently Polaribacter dominated (TEELING 

ET AL. 2012). All three clades were also abundant in the following three spring 

seasons, yet, .in 2010 Ulvibacter appeared simultaneously with Polaribacter and Formosa 

A was the last of the three clades to bloom. In spring 2011, again Ulvibacter and 
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Polaribacter appeared first and after their breakdown the latter recovered and appeared 

for a second time simultaneously with Formosa A. In spring 2012 Ulvibacter was barely 

detected and Polaribacter bloomed before Formosa A. This distribution pattern can 

either be due to the presence of several subclades, detected by the same probe, or 

from the release of different substrates over time from the senescent phytoplankton, 

which triggered different subclades. Alternatively, a competition for substrates 

between different Bacteroidetes clades could also play a role. For example, we were able 

to identify two different Polaribacter OTUs in spring 2009 and 2010. These OTUs 

shared less than 98% 16S rRNA identity to each other indicating that two different 

Polaribacter subclades were present in the two consecutive years. Since both subclades 

are detected by the same Polaribacter-specific oligonucleotide probe POL740 

(MALMSTROM ET AL. 2007) subsequent peaks could be due to different Polaribacter 

populations. Based on published and yet unpublished genome data (GÓMEZ-

CONSARNAU ET AL. 2007, GONZÁLEZ ET AL. 2008, XING ET AL. in prep.) it is 

conceivable that these populations have a quite different potential in degrading 

organic matter. HAHNKE & HARDER (2013) were able to cultivate 375 flavobacterial 

strains from different coastal sites of the German Bight, yielding in seven novel 

genera and 42 novel species as well 37 validated species (HAHNKE & HARDER 2013). 

Among those 42 novel species five were affiliated with Polaribacter (HAHNKE & 

HARDER 2013, HAHNKE ET AL. in rev.). All Polaribacter strains were isolated during 

the phytoplankton bloom in spring 2010, indicating the presence of minimum two 

Polaribacter subclades in spring 2010. Two of these Polaribacter strains were sequenced 

and they have a genome size of 3 Mbp and 3.9 Mbp, suggesting different lifestyles 

and most likely they are adapted towards different niches (XING ET AL. in prep). 

In spring 2010 the Owenweeksia clade peaked simultaneously with Polaribacter 

reaching similar abundances making up almost 50% of the entire bacterioplankton 

community. A spearman rank correlation revealed a positive correlation (r² = 0.580) 

between both clades. According to the niche-exclusion theory (WHITTAKER ET AL. 
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1973) the two clades should have different niches. It has recently been shown that 

Polaribacter is attaching to diatoms (BENNKE ET AL. 2013). In contrast, Owenweeksia 

was mainly found attached to aggregates (BAKENHUS unpublished). The type strain 

Owenweeksia hongkongensis was isolated from Hongkong coastal sea waters (LAU ET AL. 

2005), but since it shares less than 88% of 16S rRNA sequence identity with the 

Owenweeksia sequences retrieved at Helgoland little can be predicted on its metabolic 

function.  

TEELING ET AL. (2012) postulated that the abundance and distribution 

pattern of distinct clades is highly bottom-up controlled by the availability of 

different algal primary products, which can derive from different phytoplankton. In 

spring 2009 the algal biomass was highly diatom dominated and different diatom 

species were present. Thus, we postulated that distinct diatom species trigger the 

blooming of specific bacteria. However, it seems that the extended dataset generated 

in this study for four spring seasons does not support this hypothesis. It looks as if 

the Bacteroidetes clades bloom irrespectable of the diatom composition itself. More 

specifically, we could find no hints of a direct relationship of a specific diatom 

species or genus with the blooming of a specific bacteroidetal clade, but we found 

strong correlations between the diatoms in general and specific bacteroidetal clades. 

For example Ulvibacter revealed only a slight positive correlation with Thalassiosira 

(r² = 0.37) but the correlation was more significant with Centrales (r² = 0.66) 

indicating that Thalassiosira alone might not be responsible for the dominance of the 

Ulvibacter clade. Furthermore, the strong correlation with diatoms might explain why 

the annually decreasing diatom biomass reflected the as well decreasing 

bacterioplankton numbers and especially abundances of Ulvibacter and Formosa B. 

Both clades were barely detected in spring 2012, where the diatom numbers 

collapsed. In other words, diatoms can be seen as “substrate bags”, which are highly 

similar in chemical composition, regardless of their taxonomic affiliation, and thus 

provide similar substrates to the bacteria.  
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Besides diatoms, the raphidophycean flagellate Chattonella also produces a 

glycocalyx consisting of sulfated and non-sulfated complex carbohydrates 

functioning together with a neutral carbohydrate-protein complex consisting of 1,2-

glycol groups and α-D-glucosyl and α-D-mannosyl residues (YOKOTE & HONJO 

1984, ODA ET AL. 1998). This glycocalyx can be stained with the fluorescent labeled 

lectin ConA (Concanavalin A), which has a carbohydrate binding specificity towards 

α-glucose, α-mannose and α-N-acetylglucosamine (OKAMOTO ET AL. 2000). 

Furthermore, certain Chattonella species like Chattonella marina are well known of 

causing noxious red tides and affecting fish highly (OKAMOTO ET AL. 2000). Among 

our four year spring dataset a positive Spearman rank correlation was shown  

between Chattonella and Polaribacter (r² = 0.380). In spring 2010, where Chattonella was 

barely detected, Polaribacter showed its lowest absolute numbers of all four spring 

seasons. During the other spring seasons Polaribacter bloomed always shortly after 

Chattonella. This was also observed during summer and autumn 2009 as well in 

summer 2010.  

This study revealed a high correlation of Bacteroidetes and diatoms throughout 

the year. Diatoms are also blooming in summer and autumn, though often not as 

pronounced as in spring. Hence, during their senescence the same substrates may 

become available. This would result in the occurrence of the same Bacteroidetes clades 

blooming in spring. However, we identified only some clades (Polaribacter, Formosa A, 

Owenweeksia and NS9) blooming in summer and autumn, but their abundances were 

not comparable with the spring ones. Others, like Cytophagia and NS3, were present 

but did not bloom. Most likely, grazing hindered or prevented the blooming of those 

Bacteroidetes clades, as it was shown for the Southern Ocean (THIELE ET AL. 2012). 

In addition, already GERDTS ET AL. (2004) had shown a distinct seasonality of 

the bacterioplankton community at station Kabeltonne. With the present study we 

were able to provide further detail for Bacteroidetes. For example Formosa B was 

identified as “spring clade”, similar as Cytophagia and NS3. Although, both were 
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present above 0.1% during summer and autumn, they bloomed only in spring (Figure 

5C). Ulvibacter and NS5-DE2 were present until mid-summer and showed another 

peak of 2.2 x 104 and 3.5 x 104 cells ml-1, respectively. However, their abundances 

were absolute abundances were much lower than in spring. NS5-DE2 reached only 

half of their spring abundances and Ulvibacter only one fifth. For identification of 

additional blooming, yet uncharacterized Bacteroidetes 16S rRNA clone libraries are 

required. First indications are given by the autumn 16S rRNA clone library from 

September 1st 2009. In this clone library sequences were retrieved which cluster with 

Formosa A and NS9, yet are not detected by established Formosa A and NS9 

oligonucleotide probes.  

Outlook  

Since, the fraction of uncharacterized Bacteroidetes was greater in summer and 

autumn than in spring, further probe design is required for resolving the Bacteroidetes 

community also in the other seasons. This study provides further evidence that the 

occurrence and composition of the Bacteroidetes clades depends on substrates released 

by phytoplankton. Until we understand the specifics of the compounds (fractions of 

the organic matter) within the phytoplankton or derived from phytoplankton, we can 

only describe observations and speculate on dependencies. Thus is affected by 

changing environmental conditions and regime shifts. In addition, the grazing 

community develops during summer and autumn, making this system much more 

complex. Furthermore, analyzing only four spring seasons and two entire years might 

represent a too short time period to reveal real connections between certain 

phytoplankton members and Bacteroidetes or other bacterioplankton clades. Helgoland 

Roads, for example has a history of more than 50 years in recording physicochemical 

parameters and phytoplankton composition, after analyzing about 40 years, an 

increase in sea surface temperature of 1.67 °C was discovered (WILTSHIRE ET AL. 

2008). This does not mean that 40 years have to be analyzed in terms of bacterial 
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community successions. But further analysis are needed, including chemical 

investigations, e.g. carbohydrate composition and incorporating other disciplines like 

metagenomics, metaproteomics and cultivation-dependent methods we might be 

able to detect causal relationships. With this dataset we were able to show a higher 

diversity and dynamic of the succeeding flavobacterial clades after the main 

phytoplankton bloom compared to the pre-blooming situation unveiling rapid shifts 

of the Bacteroidetes community within a few days.    
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Figure 1: Cell abundances of the four spring seasons 2009 to 2012.  

The upper graphs (A) depict the absolute abundances of the total 

bacterioplankton (TCC) and the lower (B) the three major bacterioplankton groups: 

Bacteroidetes (CF319a, black line), Gammaproteobacteria (Gam42a, black dashed line) and 

SAR11, as proxy for Alphaproteobacteria, (grey dashed line). The represented time 

frame (Julian day 60 to 150) reflects the entire spring season according to the 

meteorological definition of spring. Julian days were selected for a better comparison 

between the years, independently of intercalary years. The grey shaded area in each 

plot represents the chlorophyll a concentration, as a proxy for phytoplankton 

biomass increase. Colored bars below the graphs represent the distribution pattern of 

the most dominant diatoms: Mediopyxis helysia (green), Thalassiosira nordenskioeldii 

(orange), Chaetoceros debilis (dark blue), Rhizosolenia styliformis (yellow) and Chaetoceros 

minimus (light blue) as well as Chattonella (Raphidophyceae, purple). Color gradients 

within the bars reflect the abundance pattern of the according phytoplankton 

members, as brighter the color, as lower the abundance and as darker the color as 

higher the abundance.     

Figure 2: Cumulative Bacteroidetes abundances of the spring season 2009 and 

2010.  

This figure is separated into three parts. Graph A represents the cumulative 

abundances of Bacteroidetes clades (bars) present in spring 2009 (adapted from 

TEELING ET AL. 2012). The black line represents the overall abundance of Bacteroidetes 

(CF319a). The space between the bars and the line represents the uncharacterized 

Bacteroidetes community. Graph B represents the cumulative abundances of the 

Bacteroidetes clades in spring 2010, detected with the same probe set used in 2009. 

However, only half of the Bacteroidetes community was identified and from the sample 

indicated with the yellow star 16S rRNA clone library was constructed revealing 

additional Bacteroidetes clades. The pie chart reflects the Bacteroidetes fraction (80%) of 

the clone library. Graph C shows the cumulative abundances of all analyzed 

Bacteroidetes clades in spring 2010. For most time points the fraction of 

uncharacterized Bacteroidetes were resolved.   
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Figure 3: Relative abundances of the high (A) and low (B) abundant 

Bacteroidetes clades during the spring seasons 2009 to 2012.  

This figure is structured similarly as Figure 1. The upper graphs (A) represent 

the relative abundances of the four high abundant Bacteroidetes clades: Ulvibacter (light 

blue), Formosa A (green), Polaribacter (orange) and Owenweeksia (purple). The lower 

graphs (B) represent the relative abundances of the six low abundant Bacteroidetes 

clades: Formosa B (black), NS3 (red), NS5/DE2 clade (dark blue), NS5/VIS1 clade 

(yellow), NS9 (light purple) and Cytophagia (brown). Chlorophyll a is represented as 

the grey shaded area in each plot and the bars below the graphs represent the 

dominant phytoplankton members, similar as in Figure 1. The triangle on top of the 

2009 and 2010 plots reflect the day from the 16S rRNA clone library construction. 

Attention the left y-axis (abundance [%]) has changed between the high and low 

abundant clades. 

Figure 4: Recurrence of Bacteroidetes clades within the year 2009 and 2010.  

This figure is structured similarly as Figure 1 and 2. Depicted are the relative 

abundances of the ten Bacteroidetes clades during the entire year of 2009 and 2010. 

The grey shaded area within each plot represents the chlorophyll a concentration and 

the gradient bars below the graphs reflect the abundance and distribution pattern of 

selected diatoms and other phytoplankton members. The plots represent the seasonal 

distribution pattern of (A) Formosa B (black), NS3 (red) and Cytophagia (brown); (B) 

Ulvibacter (light blue) and NS5/DE2 (dark blue); (C) Formosa A (green), Polaribacter 

(orange) and Owenweeksia (purple); (D) NS9 (light purple) and NS5/VIS1 (yellow). 

Note different scaling for relative abundances. Triangles on top of the plots reflect 

the days from the 16S rRNA clone library construction. 
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Abstract 

The degradation of diatoms is mainly catalyzed by Bacteroidetes. This process is 

of global relevance for the carbon cycle. We used a combination of catalyzed 

reporter deposition – fluorescence in situ hybridization (CARD-FISH) and 

fluorescent lectin binding analysis (FLBA) to identify and map glycoconjugates 

involved in the specific interactions of Bacteroidetes and diatoms as well as detritus at 

the coastal marine site Helgoland Roads (German Bight, North Sea). This study 

probed both the presence of lectin-specific extracellular polymeric substances (EPS) 

of Bacteroidetes for cell attachment and that of glycoconjugates on diatoms with 

respect to binding sites for Bacteroidetes. Members of the clades Polaribacter and 

Ulvibacter were shown to form microcolonies within aggregates for which FLBA 

indicates the presence of galactose containing slime. Polaribacter spp. was shown to 

bind specifically to the setae of the abundant diatom Chaetoceros spp. These setae were 

stained with fucose-specific lectins. In contrast, Ulvibacter spp. attached to diatoms of 

the genus Asterionella which bound, among others, the mannose-specific lectin PSA. 

The newly developed CARD-FISH/FLBA protocol is limited to those 

glycoconjugates that persist after the initial CARD-FISH procedure. The differential 

attachment of bacteroidetal clades to diatoms and their discrete staining by FLBA 

provide evidence for the essential role that formation and recognition of 

glycoconjugates play in the interaction of bacteria with phytoplankton. 

 

The pdf-document of this publication is not displayed due to copyright reasons.  

The publication can be accessed at: 

http://www.sciencedirect.com/science/article/pii/S0723202013000908 
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Abstract 

In marine systems Bacteroidetes are widespread, appearing everywhere, in 

coastal and open ocean sites, in tropical and polar waters, even in sediments they are 

found. It is known that cultured strains are capable of degrading high molecular 

weight organic matter, such as cellulose, chitin and proteins. In a previous study 

fosmid-based metagenome libraries were constructed, whereof the genomic content 

of 76 fosmids, affiliated with Bacteroidetes, from two contrasting oceanic provinces of 

the North Atlantic Ocean were reported. It was shown that fosmids retrieved from 

the Boreal Polar region of the North Atlantic Ocean had a larger potential for 

polysaccharide degradation and cell surface attachment to algal cells than the 

oligotrophic subtropical region. Within the present study we analyzed additional 155 

fosmids from both regions to gain further insights in the genetic capabilty of 

Bacteroidetes degrading organic matter and in particular polysaccharides. Among those 

fosmids a higher frequency of genes encoding peptidases, proteases and other genes 

related to protein degradation were identified at the southern region, corroborating 

the inital findings. Yet, the frequencies of genes involved in polysaccharide 

degradation was no longer significantly different between both provinces. The 

frequency of genes encoding TBDR, SusD and GHs were comparable, only the 

frequency of sulfatases were higher at the northern region than at the southern. 

Further on we identified 14 fosmids carrying gene islands involved in 

polysaccharide degradation - so called polysaccharide utilization loci (PUL). Among 

those PULs one seems to be involved in xylan degradation and four were identified 

as potential laminarin degradation PULs. Interestingly, within the entire fosmid 

dataset some GHs were identified, which are supposed to be unique among 

terrestrial Flavobacteria, suggesting a higher capability of organic matter degradation by 

open ocean Bacteroidetes clades than previously anticipated from single open ocean 

genomes.  
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Introduction 

The phylum Bacteroidetes encompasses many marine bacteria which are found 

in coastal environments (ALONSO ET AL. 2007, TEELING ET AL. 2012) but also in the 

open ocean (SCHATTENHOFER ET AL. 2009, GÓMEZ-PEREIRA ET AL. 2010). They 

occur both free-living in the water column, but also attached to particles (DELONG 

ET AL. 1993, BENNKE ET AL. 2013). Furthermore, many members of Bacteroidetes are 

known to be involved in degrading high molecular weight dissolved organic matter 

(HMW-DOM) such as polysaccharides, chitin and proteins (COTTRELL & 

KIRCHMAN 2000, COTTRELL ET AL. 2005, TEELING ET AL. 2012, FERNÁNDEZ-

GÓMEZ ET AL. 2013). This was corroborated by the first genome analysis of a marine 

representative of the class Flavobacteria within the phylum Bacteroidetes, ‘Gramella forsetii’ 

which revealed a high glycolytic and proteolytic potential since it encoded by high 

numbers of glycoside hydrolases and peptidases (BAUER ET AL. 2006). Also other so 

far sequenced marine Flavobacteria genomes show adaptations towards organic matter 

degradation (GÓMEZ-PEREIRA ET AL. 2012). High numbers of glycosyl hydrolases 

(GHs), carbohydrate binding modules (CBM) and other genes involved in 

polysaccharide degradation as well as peptidases and proteases have for example 

been detected in the genomes of for example Formosa agariphila (MANN ET AL. 2013), 

Polaribacter dokdonensis MED152 (GONZÁLEZ ET AL. 2008), ‘Gramella forsetii’ (BAUER ET 

AL. 2006) and Robiginitalea biformata (OH ET AL. 2009).   

In a previous study (GÓMEZ-PEREIRA ET AL. 2012) two fosmid based 

metagenome libraries from two contrasting provinces of the North Atlantic Ocean 

were constructed (Table 1, Figure S1) to provide first insights into the genomic 

potential of yet uncultured Bacteroidetes inhabiting these oceanic provinces. One 

library originated from surface water masses retrieved at station 3 (S3) of the 

VISION cruise (GÓMEZ-PEREIRA ET AL. 2010) in the Boreal Polar region (BPLR) 

and contained 35,000 fosmids. The other was constructed from surface water 

collected at station 18 (S18) close to the Azores in the North Atlantic Subtropical 
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region (NAST) and had a size of 50,000 fosmids. Within the study of GÓMEZ-

PEREIRA ET AL. (2012), both libraries were screened with a PCR assay targeting the 

16S rRNA gene with Bacteroidetes specific primers (CF319 and CF967). A total of 13 

(S3) and 15 (S18) fosmids carrying the 16S rRNA gene were identified and fully 

sequenced. Subsequently, end-sequencing was done on 16,938 fosmids from S3 and 

16,255 fosmids from S18. By comparative analysis of end sequences, which 

possessed an average length of 623 bp, a taxonomic affiliation was predicted based 

on cumulative evidence inferred from the gene as well as the sequence level 

(GÓMEZ-PEREIRA ET AL. 2012), an additional set of 183 fosmids of both stations (S3: 

98 and S18: 85) were predicted to be affiliated with Bacteroidetes and fully sequenced 

by Genoscope, France (GÓMEZ-PEREIRA ET AL. 2012). The analysis of the first 76 

Bacteroidetes fosmids (GÓMEZ-PEREIRA ET AL. 2012) revealed that marine Bacteroidetes 

from both regions are specialized in degrading certain polymers. There were also 

indications that Bacteroidetes clades present in the oligotrophic southern region might 

have a hydrolytic potential more adapted to protein and peptidoglycan degradation 

than to that of polysaccharides (GÓMEZ-PEREIRA ET AL. 2012). 

In this study we present the results obtained in the analysis of additional 155 

fosmids selected based on end-sequences (S3: 82 and S18: 73). We also checked the 

end-sequenced fosmids to see whether they would extend existing fosmids, with the 

main goal of completing so called polysaccharide utilization loci (PUL). These loci 

were firstly described in the gut symbiont Bacteroides thetaiotaomicron and consist of 

genes involved in uptake, hydrolysis and transport of carbohydrates. PULs often 

contain genes related to the starch utilization system (SusA-SusG and SusR; 

ANDERSON & SALYERS 1989, SHIPMAN ET AL. 2000). However, they are not restricted 

to starch but encode also degradation other polysaccharides (MARTENS ET AL. 2011). 

The so called Sus-like systems consists of an outer membrane associated transport 

protein homologue to SusC also known as TonB-dependent receptors (SCHAUER ET 

AL. 2008) and an outer membrane associated lipoprotein homologue to SusD 



 131 

(REEVES ET AL. 1997, SHIPMAN ET AL. 2000, CHO & SALYERS 2001, BJURSELL ET AL. 

2006, MARTENS ET AL. 2011) which is unique for Bacteroidetes (THOMAS ET AL. 2011). 

Within PULs susC and susD homologs are clustering together with other genes 

encoding carbohydrate degradation such as glycosyl hydrolases (GH), carbohydrate 

esterases (CE), carbohydrate binding modules (CBM) and polysaccharide lyases (PL). 

For this group of carbohydrate active enzymes (CAZy) there is a dedicated database 

(CANTAREL ET AL. 2009, LOMBARD ET AL. 2014). Sulfatases can additionally be part 

of PULs as it was shown by GÓMEZ-PEREIRA ET AL. (2012) and others (BAUER ET 

AL. 2006, THOMAS ET AL. 2011, TEELING ET AL. 2012, MANN ET AL. 2013). 

The aim of the present study was to analyze this extended fosmid dataset of 

two contrasting oceanic provinces of the North Atlantic Ocean with a special focus 

on testing the hypothesis that differing oceanic provinces select for Bacteroidetes clades 

with different PULs (GÓMEZ-PEREIRA ET AL. 2012).  

Results and Discussion 

We here report two times more high-quality finished fosmid sequences as in 

the study of GÓMEZ-PEREIRA ET AL. (2012). Thereby, we enlarge the dataset from 76 

to 231 fosmids consisting of 131 fosmids retrieved from S3 of a total length of 

4.6 Mbp and 100 fosmids from S18 amounting to 4.0 Mbp.  

Phylogenetic affiliation  

These fosmids were analysed with the newly developed meta-tool 

‘Taxometer’ (WALDMANN ET AL. in prep.) for their taxonomic affiliation. At the 

station S3 and S18 97% and 93%, respectively, of the fosmid sequences were 

assigned to Bacteroidetes. This indicated that the error rate of selecting Bacteroidetes 

fosmids based on the 1.5 kb Sanger read end-sequences (both ends combined) was 

with 5% in the same range as with a PCR-based screening  (GÓMEZ-PEREIRA ET AL. 

2012). The non-Bacteroidetes fosmids were affiliated with the PVC-cluster and 
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Proteobacteria. Within the Bacteroidetes 95% of the fosmids were affiliated with the class 

Flavobacteria at S3 and 94% at S18, all of those predicted originate from members of 

the family Flavobacteriaceae. The meta-tool Taxometer further indicated that at S3 38% 

and 6% of the fosmids were affiliated with the genera Polaribacter and Gramella, 

respectively, whereas at S18 only 7% belonged to Polaribacter and 2% to Gramella. In 

contrast, at S18 26% and 20% of the fosmids were affiliated with the genera 

Dokdonia and Leeuwenhoekiella, respectively, which were much less frequent (<6%) at 

S3. Fosmids associated with the genus Robiginitalea were found in higher numbers at 

S18 (7.5%) than at S3 (2.5%) and fosmids affiliated with the genus Flavobacterium 

showed similar abundances (12%) at both stations (Figure 1). The taxonomic 

distribution of the Bacteroidetes fosmids is nicely in line with community composition 

patterns of Bacteroidetes obtained in the same samples by catalyzed reporter deposition 

fluorescence in situ hybridization (GÓMEZ-PEREIRA ET AL. 2010).  

Genomic content of the Bacteroidetes fosmids 

The S3 and S18 fosmid sets had similar frequencies of glycosyl hydrolases 

(GH; S3: 15.5 ORFs per Mbp, S18: 15.9 ORFs per Mbp), transporters (ABC and 

TBDR (S3: 4.2 ORFs per Mbp, S18: 4.2 ORFs per Mbp) as well as SusD genes (S3: 2 

ORFs per Mbp, S18: 2.2 ORFs per Mbp), but the sulfatase gene frequencies  (Table 

2, Figure 2) was with 7.7 ORFs per Mbp at S3 twice as high as at S18 (3.5 ORFs per 

Mbp). In contrast, the S18 fosmid dataset showed a higher gene frequency of 

peptidases (60 ORFs Mbp-1) than S3 where 50 ORFs Mbp-1 were assigned to 

peptidases. Overall the frequency of genes encoding proteolysis is about 3.5 times 

higher than that glycolytic activities. This is in good agreement with FERNÁNDEZ-

GÓMEZ ET AL. (2013).  

A main goal of this study was to investigate whether the composition of GH 

differed between S3 and S18 (Figure 2). GH family 3 and 16 occurred in similar 

numbers at both stations (on average 2.5 and 1.4 ORFs Mbp-1, respectively). Both 
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GH families are predicted to be involved in laminarin degradation (CANTAREL ET AL. 

2009, KUMAGAI & OJJMA 2010, KABISCH ET AL. 2014). The ß-1,3/ß-1,6-linked 

glucans laminarin as well as chrysolaminarin are abundant storage compounds of 

diatoms (BEATTIE ET AL. 1961). Members of the GH16 were frequently found 

among marine but also in human gut Bacteroidetes (THOMAS ET AL. 2011).  

The family GH92, which includes alpha-mannosidase (CANTAREL ET AL. 

2009, LOMBARD ET AL. 2014), was found more frequently on fosmids retrieved from 

S3 (1.8 ORFs Mbp-1) than on fosmids from S18 (0.3 ORFs Mbp-1). In contrast 

GH74, which is responsible of hydrolyzing ß-1,4-linkages of many different glucans 

and especially xyloglucans (CANTAREL ET AL. 2009, LOMBARD ET AL. 2014), was 

found in higher frequencies at S18 (2 ORFs Mbp-1) than at S3 (0.7 ORFs Mbp-1). 

Nine GHs were exclusively found at S3 (GH2, GH9, GH26, GH29, GH30, GH36, 

GH93, GH99 and GH106) and five at S18 (GH5, GH31, GH37, GH65 and GH72). 

Those GHs found only in the S3 fosmids contain among others ß-galactosidases, ß-

mannosidases (GH2), endo-ß-1,3/ß-1,4-glucanases, lichenase-laminarinases, ß-

glucosidases (GH9), endo-ß-1,4-mannanases, ß-1,3-xylanases (GH26), exo-α-1,3/α-

1,4-fucosidases (GH29), endo-ß-1,4-xylanases (GH30), α-galactosidases (GH36), 

exo-α-L-1,5-arabinase (GH93), endo-α-1,2-mannosidases (GH99) and α-L-

rhamnosidases. The GH families  found only in the  S18 fosmids hydrolyse mainly α-

linkages. This suggests that Bacteroidetes occurring at S3 have a greater potential 

degrading algal derived organic matter than at S18, supporting the initial findings of 

GÓMEZ-PEREIRA ET AL. (2012). 

Polysaccharide utilization loci  

Within the 155 yet unpublished  fosmids we identified in total 14 (S3: 6 and 

S18: 8) containing PULs (Figure 3 and 4). Each PUL contained a predicted TonB 

dependent receptor (TBDR) coupled with a SusD-like gene adjacent to glycosyl 

hydrolase and sulfatase genes.  
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PULs at S3 

At S3 fosmids with PULs were affiliated with the genera Polaribacter, Gramella, 

Flavobacterium, Psychroflexus, Leeuwenhoekiella and Cellulophaga. The Polaribacter fosmid 

(S3-C51_14YA06) contained at least two sulfatase genes within the PUL. This was 

similar to the already published Polaribacter fosmid S3-860 (GÓMEZ-PEREIRA ET AL. 

2012) from the same station. Within the new set of fosmids we identified another 

fosmid (S3-21YE11) which was enriched in sulfatase genes (5), but did not possess 

TBDR and SusD-like genes. This fosmid was affiliated with the clade Flavobacterium. 

The second Flavobacterium fosmid (S3-C45) contained genes predicted as GH3 

and GH16 downstream of the SusD and TBDR genes. This gene arrangement is 

present throughout the Bacteroidetes phylum and seems to be involved in laminarin 

degradation (HAHNKE 2013, KABISCH ET AL. 2014). We identified a second fosmid 

(S3-C33) affiliated with the Gramella clade which showed the same gene arrangement 

as the Flavobacterium fosmid. Both fosmids consisted of the TBDR-SusD tandem 

adjacent to two GH16 genes, which was followed by a GH3 gene and another 

GH16. Comparing both PULs, they seem to be conserved in their gene arrangement. 

However, the first GH16 adjacent to the SusD gene on the Flavobacterium fosmid (S3-

C45) is different to the first GH16 on the Gramella fosmid (S3-C33), whereas both 

GH3 seemed to be more similar (Figure 5D). The GH16 family represents a broad 

family encompassing enzymes cleaving β-1,3 or β-1,4 glycosidic bonds in a variety of 

glucans and galactans. This family possesses enzymes with various substrate 

specificities such as agar, κ-carrageenan, xyloglucan, β-1,3-glucans and  

β-1,3-galactans (LOMBARD ET AL. 2014). Therefore, those GH16 found on the 

Gramella and Flavobacterium fosmid might encode different enzyme activities.   

The remaining fosmids were affiliated with the genera Leeuwenhoekiella (S3-

27YE12_C102), Psychroflexus (S3-C42) and Cellulophaga (S3-C99). Both, Psychroflexus 

and Cellulophaga fosmids contained two GH92 genes, which likely encode exo-acting 
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α-mannosidase. However, the GH92 on the Psychroflexus fosmid (S3-C42) was located 

upstream of the TBDR and SusD genes adjacent to a predicted sodium-dependent 

mannose transporter. In contrast the GH92 on the Cellulophaga fosmid (S3-C99) was 

located downstream of the TBDR-SusD tandem. On the Leeuwenhoekiella fosmid  

(S3-27YE12_C102) the TBDR-SusD tandem was identified at the 5’ end. We were 

able to prolong this fosmid yielding an insert length of 64.5 kb. However, we were 

only able to prolong this fosmid in direction of the 3’ end. There, most of the 

predicted genes were identified as house-keeping genes and hypothetical proteins, 

except for two additional sulfatase genes which were found adjacent to a GH106 

predicted to act as an α-L-rhamnosidase. On the same fosmid another TBDR was 

identified, but not in conjunction with a SusD gene. This TBDR was shorter in their 

amino acid sequence and is most likely not involved in carbohydrate uptake, but may 

function instead as carrier protein for vitamin B12 uptake (KOEBNIK 2005, SCHAUER 

ET AL. 2008).  

PULs at S18 

 At S8 we identified eight fosmids with PULs  (Figure 4). These fosmids were 

affiliated with the family Flavobacteriaceae except of one which was predicted to be 

affiliated with intestinal genus Bacteroides (S18-C59). This fosmid was enriched in 

sulfatases and contained many different GHs as well as a second TBDR gene and a 

predicted maltose transporter. The second TBDR gene was again shorter in their 

amino acid sequence, comparable with the second TBDR on the Leeuwenhoekiella 

fosmid (S3-27YE12_C102) from S3. However, in contrast to the second TBDR on 

the Leeuwenhoekiella fosmid from S3, the second TBDR on the Bacteroides fosmid was 

neighbored by cazymes (GH20, CBM9 and GH5). Most likely this second TBDR is 

still involved in carbohydrate uptake, even in the absence of the SusD gene.  The 

predicted maltose transporter was localized adjacent to two GH65 genes. The GH65 

family contains hydrolases acting on α-glycosidic bonds and possesses mainly 

phosphorylases, like maltose phosphorylases (CANTAREL ET AL. 2009, LOMBARD ET 
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AL. 2014). Both, the maltose transporter and the adjacent GH65 were found 

upstream to the TBDR-SusD tandem. More glycosyl hydrolases from different 

families (GH5, GH20, GH43, GH78 and GH109) were identified downstream to the 

SusD and TBDR system. The GH43 was found adjacent to a sulfatase and this 

glycosyl hydrolase family represents many enzymes involved in xylan degradation 

(DODD & CANN 2009), e.g. α-L-arabinofuranosidases, endo-α-L-arabinases and  

β-D-xylosidases. Another glycosyl hydrolases belonged to the family 109 and was 

localized between two sulfatase genes. This GH was predicted to act as  

α-N-acytylgalactosaminidases. The GH20, GH5 and GH78 were identified towards 

the 5’ end. GH78 is characterized as α-L-rhamnosidase and GH20 as well as GH5 

represent both broader families for which activities are difficult to predict. GH5 was 

formerly characterized as Cellulase family A (HENRISSAT ET AL. 1989) and this family 

incorporates a variety of specific enzymes possessing exo- and endo-activities, e.g. 

endo- and exoglucanases, endo- and exomannases as well as β-glucosidases and  

β-mannosidases. The GH20 contains mainly exo-acting N-acetylglucosaminidases 

and N-acetygalacosaminidases (CANTAREL ET AL. 2009, LOMBARD ET AL. 2014). Most 

of the glycosyl hydrolase families consist of many enzymes with different substrate 

specificities (HENRISSAT 1991, HENRISSAT & BAIROCH 1996, DAVIES ET AL. 2008).  

Two fosmids, one was affiliated with the clade Flavobacterium (S18-C30) and 

the other with Robiginetalea (S18-C31), contained PULs potentially encoding laminarin 

degradation. A second Flavobacterium fosmid (S18-34YL06) possessed many sulfatases 

and GHs and seemed to be involved in xylan degradation. Upstream of the SusD-

TBDR-system four GHs were identified belonging to the families 3, 5 and 10. 

Between two GH3 genes a carbohydrate esterase family 6 was identified as well. This 

is a predicted acetyl-xylan esterase, removing acetyl residues from the xylan backbone 

(MARGOLLES-CLARK ET AL. 1996). The GH3 family consists of many enzymes 

possessing different substrate specificities and often these enzymes are bifunctional, 

for example an enzyme having α-L-arabinofuranosidase and β-D-xylopyranosidase 
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activity (LEE ET AL. 2003). This GH family contains also enzymes with xylan  

1,4-β-xylosidase activity (LOMBARD ET AL. 2014). The GH families 5 or 10 possess 

enzymes hydrolyzing the β-1,4 glycosidic bonds within the xylan backbone 

generating short chain oligomers (CANTAREL ET AL. 2009, LOMBARD ET AL. 2014). 

Downstream of the SusD and TBDR system again GH10 were identified as well as 

GH43 possessing α-L-arabinofuranosidase activity and cleaving of arabinofuranose 

side chains (DODD & CANN 2009). Adjacent to the GH43 and GH10 a xyloside 

transporter (xynT) was identified, which could be involved in transporting xyloside 

into the cytoplasma, where it then is further transformed into xylose and further into 

xylulose and xylulose-5-phosphate. Further downstream we identified the genes xylA 

and xylB. Both are involved in converting xylose in xylulose (xylA - xylose-

isomerase) and further phosphorylating xylulose (xylB - xylulose-kinase) which than 

enters as xylulose-5-phosphate the pentose-phosphate-pathway and will further 

metabolized. Our findings are in good agreement with the results of ARNOSTI ET AL. 

(2012), who showed with fluorescein-labeled polysaccharides not only the potential 

for xylan hydrolysis at S18 , but also potential for laminarin degradation at S3 and 

S18 (ARNOSTI ET AL. 2012). We also identified two potentially laminarin PULs at 

both stations.  

On the Flavobacterium fosmid S18-C63 two TBDR-SusD tandem systems were 

identified. The one at the 5’ end is most likely involved in carbohydrate uptake, since 

the adjacent genes were predicted as GH13 and GH3. The GH13 family contains 

enzymes acting on α-glucoside linkages, like α-amylases and pullulanases (LOMBARD 

ET AL. 2014). The other TBDR-SusD unit at the 3’ end seemed to be involved in 

protein uptake, since the neighboring gene was identified as a peptidase.  

Of three more fosmids containing TBDR-SusD units  two were affiliated 

with the genus Dokdonia (S18-C68 & S18-5a4YN02_C90) and the third one (S18-

C52) to Capnocytophaga. All three fosmids have in common that the genes neighboring 

TDBR-SusD were only identified as hypothetical proteins. We can only speculate 
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that the respective gene products are also involved in carbohydrate degradation 

potentially indicating the presence of yet unknown enzymes involved in organic 

matter degradation. 

Comparative analysis of PULs 

 To see whether the genes of the PUL-carrying fosmids were unique or if 

homology can be identified we compared them among the stations by using the 

alignment program MAUVE (DARLING ET AL. 2010). The PUL fosmids revealed 

several locally collinear blocks (LCB), not only within the fosmids of S3 or S18, but 

also between both stations. For example a region between 12.89-15.82 kbp of the 

Flavobacterium fosmid S3-21YE11 was highly similar to a region between 51.28-54.32 

kbp of the Leeuwenhoekiella fosmid S3-27YE12_C102 (Figure 5A). Within this region 

two ORFs were identified and annotated as L-arabinose isomerase and sulfatase. The 

similarity profile of the LCB indicates a high level of conservation between both 

fosmids. The same Flavobacterium fosmid contained another region between 23.54-

33.45 kbp which seemed to be homologue to another region between 12.00-22.81 

kbp of the Leeuwenhoekiella fosmid. However, the Leeuwenhoekiella fosmid has an 

insertion between 19.54 and 20.10 kbp. The homologue region consisted of seven 

ORFs and were annotated as L-rhamnose permease, L-lactate dehydrogenase, 

rhamnulokinase, hypothetical protein, rhamnulose-1-phosphate aldolase, fructose-

1,6-bisphosphatase and as transcriptional regulator of rhamnose utilization.  

The Psychroflexus fosmid S3-C42 included a region between 26.60-28.87 kbp 

which was highly similar to a region between 13.11-15.36 kbp of the Cellulophaga 

fosmid (S3-C99). This region was annotated as a GH92 and from the similarity 

profile of the LCB a high level of conservation between both fosmids can be 

assumed (Figure 5B). 
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Comparing the PUL fosmids among the provinces it was shown that also conserved 

regions on the fosmids between the stations existed. For example the GH3 on the 

Polaribacter fosmids S3-C51_15YA06 were highly similar to the GH3 on the 

Flavobacterium fosmids S18-34YL06. Interestingly, this GH3 was neighbored by three 

sulfatase genes on both fosmids, but MAUVE identified no homology between the 

sulfatase genes, only with the GH3 (Figure 5C).  

Four fosmids related to laminarin degradation, two from each station, 

showed a higher level of conservation for the PUL region (Figure 5D). However, on 

the Robiginitalea fosmid S18-C31 another GH16 was inserted after the SusD gene, 

which was highly similar to the GH16 adjacent to the SusD of the Flavobacterium 

fosmid S3-C45. These findings are in good agreement with HAHNKE (2013, p. 229) 

who showed that PULs potentially involved in laminarin degradation are conserved 

among Bacteroidetes.  

Gliding ability 

Besides the identification of PULs, the combined fosmid dataset was 

screened for gliding ability, since Bacteroidetes are known to move by gliding (HALL-

STOODLEY ET AL. 2004, MCBRIDE & ZHU 2012). We identified four fosmids at each 

station which carried gliding genes predicted as gldB, gldC, gldF, gldG and gldH. 

GldB has been predicted being membrane associated and involved in production of 

glycoproteins. The gldC is not directly required for gliding motility but enhances 

colony spreading (HUNNICUTT & MCBRIDE 2000). The gldF and gldG are required 

for cell movement (HUNNICUTT ET AL. 2002). The gldH represents a lipoprotein 

which is also involved in cell movement (MCBRIDE ET AL. 2003).   

For S3 two fosmids were affiliated with the genus Flavobacterium and genes 

annotated as gldH and gldG were identified at the 5’ end of the fosmid sequence. 

Two other gldH genes were identified on fosmids affiliated with Gramella and 
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Polaribacter. The closest relatives of theses fosmids comprise all of the full set of 14 

gliding genes (MCBRIDE 2004, BAUER ET AL. 2006, GONZÁLEZ ET AL. 2008). 

Also at S18 one fosmid, affiliated with Flavobacterium, was carrying the gldH 

gene. Besides the gldH gene other gliding genes (gldB, gldC and gldF) were identified 

on several fosmids from that station. Two fosmids were affiliated with Dokdonia and 

one of them carried the genes gldB and gldC located adjacent to each other. The 

gldC gene was also identified on another Dokdonia fosmid. On the genomes of 

Dokdonia donghaensis MED134 (GÓMEZ-CONSARNAU ET AL. 2007), Polaribacter 

MED152 (GONZÁLEZ ET AL. 2008) and ‘Gramella forsetii’ (BAUER ET AL. 2006) all 

genes involved in gliding were identified supporting our findings. Furthermore, on 

three fosmids at S18 and one at S3 genes annotated as putative adhesion lipoproteins 

were identified. Those adhesion lipoproteins were postulated to be involved in cell-

surface contact (SATO ET AL. 2010; NAKANE ET AL. 2013). 

Interestingly, KOLTON ET AL. (2013) reported that GH78 and GH106, 

responsible for rhamnogalacturonan utilization, were only found in terrestrial 

genomes, which suggests an adaption of terrestrial Bacteroidetes strains to plant-related 

carbohydrate metabolism. Rhamnogalacturonan is exclusively found as part of the 

terrestrial plant hemicelluloses. Within the entire fosmid set we identified gene 

frequencies of GH78 for both stations around 0.25 ORFs per Mbp and GH106 was 

solely identified at the northern region (S3) possessing a frequency of 0.7 ORFs per 

Mbp. Additionally, KOLTON ET AL. (2013) found even more CAZy domains which 

are supposed to be unique for terrestrial Bacteroidetes strains such as GH10, GH43 or 

CBM6. Although the gene frequencies were not remarkably high, we identified other 

CAZymes which are unique among terrestrial Bacteroidetes clades. For example, GH43 

was found at both stations with a gene frequency of 1.1 ORFs per Mbp for S3 and 

1.2 ORFs per Mbp for S18. The GH43 is predicted to be involved in xylan 

degradation. Xylan is not only found in terrestrial plants as part of hemicelluloses, 

but also in marine algae in form of cell covering (OKUDA 2002) and in some diatoms 
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as cell wall component (WUSTMAN ET AL. 1998. MURRAY ET AL. 2007). Our findings 

of enzymes involved in xylan degradation corroborates the results of ARNOSTI ET AL. 

(2012), where they found enzymatic activity for xylan degradation in both provinces. 

The identification of GHs classified as unique for terrestrial plant degradation, such 

as GH43, GH78, and GH106, in our fosmid dataset is in contrast to KOLTON ET AL. 

(2013) findings. However, it is believed that the early land plants evolved from green 

algae (SØRENSEN ET AL. 2011). Most likely, the input on such material is higher at the 

northern region than at the southern, since S3 is located at the lower border of the 

East Greenland Current which transports cold, low saline, but nutrient- and 

phytoplankton-rich waters southwards (BERSCH 1995). 

Conclusion 

 The present study is extending the study of GÓMEZ-PEREIRA ET AL. (2012) 

and communicates the sequence-based analysis of 155 fosmids from two different 

oceanic provinces. Fosmid-based metagenomics was chosen since it provides 

contiguous DNA fragments of an average length of 35-40 kb revealing not only 

about 1% of the genome of a marine Bacteroidetes, but also offering a good chance to 

find operons or larger genomic loci in comparison to high-throughput sequencing 

technologies, where only short genomic fragments, e.g. in a size of a single gene, are 

generated, fosmids allow for in-depth analysis of longer DNA fragments including 

PULs. 

Based on the analysis of 76 fosmids, GÓMEZ-PEREIRA ET AL. (2012) had 

found a trend that bacteroidetal fosmids from the boreal station S3 were enriched in 

genes encoding polysaccharide degradation whereas in those from the subtropical 

gyre station S18 proteinases were more frequent. Our analysis of the extended 

fosmid dataset of now 231 fosmids does not fully support these earlier findings. 

There is still a higher frequency of genes encoding peptidases, proteases and other 
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genes related to protein degradation at station 18, yet the frequencies of genes 

involved in polysaccharide degradation was no longer significantly different between 

S3 and S18. The frequency of genes encoding TBDR, SusD and GHs were 

comparable, only the frequency of sulfatases was higher at S3 than at S18. This is in 

good agreement with the findings of ARNOSTI ET AL. (2012) who measured at the 

same stations the potential of microbes inhabiting the large-particle fraction (>10 μm 

fraction) to enzymatically hydrolyze high molecular weight substrates. This study had 

indicated higher potential rates of degradation for the sulfated polysaccharides 

chondroitin and fucoidan at S3 than S18. As it stands now, 4 of 131 fosmids from S3 

have colocalizations of GHs and sulfatases. This includes fosmids S3-860 and 

S3_DL_C5 already identified by GÓMEZ-PEREIRA ET AL. 2012 and fosmids  

S3-C51_15YA06 and S3-21YE11 first reported here. Among the 100 bacteroidetal 

fosmids analyzed from S18 only S18-C59 and S18-34YL06 showed this  

co-localization. Even with this numerical extension of the study of GOMEZ-PEREIRA 

ET AL. 2012 these low numbers do still not provide good statistical support. 

Our data indicate that, although the overall number of GHs was similar for 

both stations, their composition differed slightly. S18 contained additional GHs 

hydrolyzing carbohydrates characterized mainly by α-linkages. Alpha-linked 

carbohydrates such as α-1,4-glucans are often produced by bacteria as a storage 

compound during their stationary growth phase (PREISS 1984, FIELD ET AL. 1998). 

This suggests a potential lifestyle for Bacteroidetes occurring at S18 in feeding not only 

on algal derived organic matter but also on bacterial derived α-glucans. 

  The alignment tool MAUVE revealed a moderate conserved sequential gene 

arrangement of TBDR-SusD systems adjacent to GH16, GH3, GH16 between the 

provinces. This typical gene sequence was identified in numerous members of the 

Bacteroidetes independent of their origin (KABISCH ET AL. 2014). It will be interesting 

in future studies, how ubiquitously distributed such a characteristic PUL is and it 
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needs to be explored in metatranscriptomics or metaproteomics studies to test, under 

which circumstances these PULs are expressed.  

 This fosmid-based metagenome dataset adds to our increasing knowledge on 

the importance of PULs for polysaccharide utilization generated by genome (BAUER 

ET AL. 2006, GÓMEZ-CONSARNAU ET AL. 2007, GONZÁLEZ ET AL. 2008) as well as 

metagenome analysis (TEELING ET AL. 2012, WILLIAMS ET AL. 2013, GEORGES ET 

AL. 2014). So far, we only reached the tip of the iceberg and further work has to be 

done unveiling the enzymology and transport mechanisms involved in marine 

organic matter degradation. 

Material and Methods 

Study site 

Samples were taken in the North Atlantic Ocean during the VISION cruise 

MSM03/01 on board of the research vessel Maria S. Merian in September 2006 

(Figure S1, Table 1). Fosmid-based metagenomic libraries were constructed from 

samples of two contrasting oceanic provinces. Samples from S3 were collected in the 

Boreal Polar (BPLR) Province (65°52.64’ N, 29°56.54’ W) and samples from S18 in 

the North Atlantic Subtropical Province (34°04.43’ N, 30°00.09’ W), according to 

LONGHURST (1998). The accompanying environmental parameters are summarized 

in Table 1 and have been described in GÓMEZ-PEREIRA ET AL. (2010). Fosmid 

library construction and selection procedure were described in details in GÓMEZ-

PEREIRA ET AL. (2012). 

Selection for fosmid prolongation  

In a next step the entire dataset of the fully sequenced fosmids were mapped 

onto the remaining end-sequenced fosmids to see whether they can be prolonged. 

This mapping yielded in additional 83 fosmids for S3 and 47 fosmids for S18. 
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Considering only those end-sequenced fosmids for full sequencing which yielded a 

mapping similarity of more than 94.5% the number of fosmids were reduced to 43 

fosmids for S3 and 27 for S18. Since we were only interested in prolonging fosmids 

containing PULs, we selected 11 fosmids for S3 and 9 for S18. Sequencing of this 

additional fosmid set was conducted at LGC Genomics (LGC Genomics GmbH, 

Berlin, Germany) using 454-pyrosequencing technique.   

Assembly

Expecting that the second new fosmid dataset will prolong existing fosmids 

all sequences were pooled within each station and assembled again with SeqMan 

(Lasergene 8). Default setting was used, except single sequence contigs were added. 

The assembly quality was checked via the strategy view option within the program. 

Sequences were exported as FASTA files for annotation. 

Gene prediction and annotation 

For the published fosmid dataset the in-house pipeline for gene prediction 

and annotation was used. When retrieving the remaining fosmids we uploaded the 

entire dataset to RAST and used their gene prediction and annotation pipeline (AZIZ 

ET AL. 2008). To compare the published dataset with the new one, at first we re-

evaluated the gene prediction and annotation from the in-house pipeline with the 

RAST prediction and annotation. Small scale differences occurred in the gene 

prediction, but the annotations were as good as the annotations yielded with RAST. 

Annotation files were downloaded in a ‘Genbank’ file format and incorporated in the 

in-house pipeline for taxonomic classification and detailed CAZyme as well as 

peptidase annotation. The protein fosmid sequences were searched against the CAZy 

database (CANTAREL ET AL. 2009) and against the MEROPS 9.8 database 

(RAWLINGS ET AL. 2012). For every protein, the best hit with an e-value below E-15 

was kept.  
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PUL identification and visualization 

The PULs were identified and analyzed with a customized Python script 

(Huang 2013, pp. 22-23). In short, annotations from various tools (BLAST, Pfam 

and CAZy) were summarized for each ORF in a contig. The whole contig was 

selected for detailed analysis, if genes involved in polysaccharide degradation were 

present. Functions considered to be polysaccharide degradation related are 

CAZymes, membrane transporters, such as the TonB components and ABC 

transporters, numerous substrate-binding modules. Fosmids containing PULs were 

visualized using CorelDRAW® X4 (CorelDRAW Graphic Suits X4, Corel GmbH, 

Munich, Germany).

PUL comparison 

The fosmids caring PULs from both stations were compared by using the 

MAUVE alignment tool (DARLING ET AL. 2010). This comparison was done to 

identify conserved regions between the fosmids independent of their origin. When 

an alignment has been computed with the Progressive Mauve algorithm, regions 

conserved between the fosmids were identified as locally collinear blocks (LCB). 

Conserved LCBs are recognized by similar coloring of the LCB outline. Each of 

these block outlines surrounds a region of the fosmid sequence which aligned to a 

part of another fosmid sequence, and is most likely homologous and internally free 

from genomic rearrangement (DARLING ET AL. 2010). Regions outside the LCBs lack 

detectable homology among fosmids input. Within each LCB a similarity profile is 

drawn. The height of the similarity profile corresponds to the average level of 

conservation in the distinct region. Areas that are completely white within the LCB 

were not aligned and probably contain sequence elements specific to the particular 

fosmid.  
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Table 1: Depicted are the oceanic provinces including their coordinates, date and 
time (UTC) samples were taken, the physicochemical parameters and Bacteroidetes 
relative abundance (GÓMEZ-PEREIRA ET AL. 2010) of the stations from which the 
metagenomic libraries were constructed. Filtered volumes, library size and number of 
screened and sequenced clones taken from GÓMEZ-PEREIRA ET AL. (2012). 

 S3 S18 
Oceanic Province BPLR NAST 

Latitude 65°52.64'N 34°04.43'N 
Longitude 29°56.54'W 30°00.09'W 

Date 22.09.2006 30.09.2006 
Time [UTC] 7 pm 8 am 

Temperature [°C] 0.7 23.5 
Salinity [PSU] 33 36.4 

Dissolved oxygen [ml l-1] 7.7 4.7 
Phosphate [μM] 0.4 0.01 

Nitrate [μM] 2.9 0.03 
Nitrite [μM] 0.13 0.03 

Ammonia [μM] 0.29 0.26 
Silicate [μM] 2.9 0.28 

Chlorophyll a [mg m-3] 0.7 <0.1 
Bacteroidetes [%] 19 7 

Volume filtered [l] 90 87 
Fosmid library size [no. of clones] 35000 50000 

Fosmids screened for rrna 
(CF319/CF967) 

15500 27600 

rrna-fosmids sequenced 13 15 
Fosmids end-sequenced 16938 16255 

Predicted bacteroidetal fosmids 240 148 
Sequenced predicted bacteroidetal 

fosmids 
131 100 
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Table 2: Depicted are the gene frequencies [number of ORFs per Mbp] of genes 
involved in organic matter degradation. ABC: ABC-transporter, TBDR: TonB-
dependent receptor, SusD: starch utilization system, CAZymes: carbohydrate active 
enzymes, GH: glycosyl hydrolases, CBM: carbohydrate binding module, CE: 
carbohydrate esterase, PL: polysaccharide lyase and GT: glycosyl transferase. Sum of 
GH, CBM, CE, PL and GT equals number of CAZymes.   

S3 S18 
ABC 4.4 4.2 
TBDR 4.2 4.2 
SusD 2.0 2.2 
CAZymes 41.8 41.8 

GH 15.5 15.9 
CBM 2.9 4.7 

CE 7.4 6.2 
PL 0.2 0.5 
GT 15.8 14.4 

Sulfatases 7.7 3.5 
Peptidases 50.3 59.7 
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Figure 1: Site specific overview of the taxonomic affiliation on genus level of the 

fosmid-based metagenome libraries. Results obtained with ‘taxometer‘ (WALDMANN 

ET AL. in prep.). 

Figure 2: Site specific comparison of Bacteroidetes metagenomes regarding the gene 

frequency of specific functional group of genes (number of genes per Mbp). (A) 

comparison of ABC-transporters, TonB-dependent receptors (TBDR), SusD genes 

and sulfatases; (B) comparison of cazymes: glycosyl hydrolases (GH), carbohydrate 

binding modules (CBM), carbohydrate esterases (CE), polysaccharide lyases (PL) and 

glycosyl transferases (GT); (C) detailed comparison of GH families and (D) of 

peptidases. 

Figure 3: Genomic content of fosmids containing PULs from station 3. Name of 

fosmid and ist taxonomic affiliation are given and number in brackets represents 

fosmid length. PUL genes or associated PUL genes are coloured according to legend.  

Figure 4: Genomic content of fosmids containing PULs from station 18. Name of 

fosmid and ist taxonomic affiliation are given and number in brackets represents 

fosmid length. PUL genes or associated PUL genes are coloured according to legend.  

Figure 5: Comparison with the genomic alignment tool MAUVE (DARLING ET AL. 

2013) of fosmids containing PULs from station 3 and 18. When an alignment has 

been computed with Progressive Mauve algorithm, regions conserved among the 

fosmids were identified as locally collinear blocks (LCB) and consist of similar block 

outline colors and homologous regions within the LCBs are colored the same. Each 

of these block outlines surrounds a region of the fosmid sequence which aligned to a 

part of another fosmid sequence. Regions outside the LCBs lack detectable 

homology among fosmid input. Within each LCB a similarity profile is drawn and 

the height of the profile corresponds to the average level of conservation in the 

distinct region. Areas that are completely white within the LCB were not aligned and 

probably contain sequence elements specific to the particular fosmid. Fosmid 
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annotations are shown below the LCBs. Graphs A-D show conserved regions 

between (A) Flavobacterium fosmid S3-21YE11 and Leeuwenhoekiella fosmid S3-

27YE12_C102 from station 3; (B) Psychroflexus fosmid S3-C42 and Cellulophaga fosmid 

S3-C99 also from station 3; (C) Polaribacter fosmid S3-C51_15YA06 from station 3 

and the Flavobacterium fosmid S18-34YL06 from station 18 and (D) between four 

fosmids, two from each station, the Flavobacterium fosmid S18-C30 and the 

Robiginitalea fosmid S18-C31 as well th Flavobacterium fosmid S3-C45 and Gramella 

fosmid S3-C33. Homologous regions are conected by lines consisting of the same 

color as the region.  
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Figure S1: Overview of the VISION cruise track (MSM03/01) in the North 

Atlantic Ocean from 21. - 30. September 2006. Map displays the investigation area 

from the Artic Circle towards the Azores Islands including their respective 

biogeographical provinces defined after Longhurst (1998): the Boreal Polar Province 

(BPLR), Arctic Province (ARCT), The North Atlantic Drift Province (NADR) and 

the North Atlantic Subtropical Province (NAST) which are indicated by the dotted 

lines.  

A: monthly average of the sea surface temperature 

B: monthly average of the chlorophyll a concentration [provided by the quaModis 

satellite (http://oceancolor.gsfc.nasa.gov; requested May 7th 2010)]. Missing data 

shown as white. 
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   Chapter 7: Discussion and Outlook 
 

7.1 General Discussion  

This doctoral thesis aims at improving the understanding of the ecology of 

Bacteroidetes in marine environments. Therefore, I investigated their diversity, 

abundance and composition at the coastal site Helgoland Roads and their genetic 

capability for organic matter degradation at two contrasting sites in the North 

Atlantic Ocean.  

The fundamental questions of ecology “who?”, “how many?” and “what are 

they doing?” mark essential steps in the characterization of ecosystems. This is not 

only valid in macrobiology, such as botany or zoology, but also applies to 

microbiology. Initially, total organismal abundance is determined which is usually 

done in microbiology by staining cells with nucleic acid specific fluorescent dyes like 

DAPI [4',6-diamidino-2-phenylindole] (PORTER & FEIG  1980) or acridine orange 

(HOBBIE ET AL. 1977) and subsequent counting by flow cytometry (ZUBKOV ET AL. 

1998) or fluorescence microscopy (BLOEM 1995). This seems to be a trivial task since 

it is routinely done in many laboratories. However, manual microscopic 

quantification is very time consuming and always relies on the accuracy of the person 

counting. In literature there are many suggestions of how many cells have to be 

counted in order to obtain reliable results. For example, in the 1970s scientists 

counted only 200 to 400 cells (e.g. JONES & SIMON 1975), which changed in the 
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1980s, where PORTER & FEIG (1980) reported that at least 1000 DAPI stained cells 

have to be counted to gain statistically sound results. This rule is still valid. Today 

computer-based cell enumeration becomes more and more important, since it is well 

documented, less time consuming and independent of human errors. Accurate, 

precise and reproducible determination of bacterial cell numbers in aquatic samples is 

of high importance to understand the ecological role of bacteria in their environment 

(PERNTHALER & AMANN 2005, KEPNER & PRATT 1994).  

7.1.1 High-throughput cell enumeration 

The first aim of this study was, therefore, to test a newly developed automatic 

cell counting system (based on ZEDER & PERNTHALER 2009), and apply it to the 

enumeration of total, bacterial and specifically Bacteroidetes abundances during four 

spring blooms and over two entire years. In the evaluation of counting routines 

changes had to be implemented which also resulted in an update of the software. 

The compatibility of these updates was tested to ensure that the results obtained with 

the different software versions are reliable (Figure 7.1). The current version contains 

functions to easier and more precisely defined detection parameters, additional 

marker tools for manual inspection and alternative segmentation modes, which were 

implemented to obtain cell numbers of e.g. nanoflagellates (THIELE 2013) and 

bacteria colonizing aggregates (BIŽIĆ –IONESCU ET AL. 2014, in rev.).  

Initially it was thought that the quality check of images taken by the 

automated microscope stage could be done automatically as well, but most of the 

samples retrieved from Helgoland contained aggregates, debris and phytoplankton 

cells. This made it difficult for the image quality algorithm to select images of good 

quality. Most of the images containing uneven or out-of-focus parts were correctly 

discarded, but images containing over- or underexposed areas, due to aggregates or 

phytoplankton cells still remained and manual de-selection of cells marked for 

counting was needed. Therefore, manual inspection was done directly after the image 
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acquisition, which gave a better reflection of the sample, e.g. where cells are located, 

if many not probe-specific signals, like particles or picoeukaryotes were present. As a 

standard procedure for automatic counting, two fluorescent channels for image 

acquisition were used, one for DAPI and one for FISH to obtain community specific 

counts. However, images are taken in grey-scale and cells or objects possessing 

autofluorescences are possibly captured by the illumination and filter used for the 

FISH channel. Consequently, signals derived from autofluorescence e.g. 

cyanobacteria, particles, debris or picoeukaryotes, cannot be distinguished from the 

FISH positive probe signal. Therefore, a third channel, detecting autofluorescence 

was defined and subsequently probe-specific and autofluorescent signals could be 

reliably discriminated, resulting in more reliable counts.   
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Figure 7.1: Regression analysis of the dataset analyzed with 
both available ACMEtool versions. Student´s two tailed test 
revealed a p-value of 0.827 excluding the possibility that false 
detection parameters were chosen. 
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7.1.2 Why studying coastal spring blooms? 

The second part of my thesis concentrated on the “who is out there?” 

question. My task was to analyze a pleothora of surface water samples collected 

during spring phytoplankton blooms at the long term ecological research station 

Helgoland Roads specifically for the diversity and abundance of Bacteroidetes clades.  

 There are mainly three reasons, why spring phytoplankton blooms are a good 

example to study the bacterial response to phytoplankton blooms. First of all, the 

onset of the spring bloom is triggered by increasing temperature and solar radiance, 

and availability of nutrients (Wiltshire et al. 2008, TIAN ET AL. 2011). Due to winter 

mineralization and water mixing events, organic and inorganic nutrients are not 

limiting (MAHADEVAN ET AL. 2012). Secondly, the grazer community is not 

developed yet and consequently the mortality among phytoplankton is low, resulting 

in a mainly bottom-up regulated ecosystem (WILTSHIRE ET AL. 2009). The 

zooplankton predators can only proliferate when the phytoplankton is already 

abundant (e.g. STORM ET AL. 2001, CALBET & LANDRY 2004). Usually, the 

phytoplankton bloom is terminated not only by grazing, but more often by nutrient 

depletion in silicate, iron or phosphorus, and viral lysis (SMETACK 1999, BEARE ET 

AL. 2002, WILTSHIRE ET AL. 2008). This leads to a collapse of the algal population 

and as a result a massive amount of algal organic matter, mainly in form of 

polysaccharides, is released and mineralized by heterotrophic bacteria (ALDERKAMP 

ET AL. 2007). These less complex conditions are special for spring blooms, which 

make them easier to study than summer and autumn blooms. In these later blooms, 

grazer communities might already have developed, ready to attack growing phyto- 

and bacterioplankton (e.g. PERNTHALER 2005, ANDERSON ET AL. 2012). An example 

for the complexity of summer phytoplankton blooms was revealed by the monitoring 

of the LOHAFEX iron fertilization experiment. Iron is a limiting factor for 

phytoplankton growth in high nutrient-low chlorophyll waters typical of southern 

oceans (Martin 1990) and its effect was studied in many iron fertilization experiments 



 171 

(e.g. HALL & SAFI 2001, OLIVER ET AL. 2004, THIELE ET AL. 2012). During the 

LOHAFEX experiment both the phytoplankton and the bacterioplankton 

community showed only a slight response to the fertilization which was most likely 

due the presence of a well-established grazer community, mainly consisting of 

nanoflagellates (Thiele et al. 2012). In other studies it was shown that fast growing 

bacteria like Bacteroidetes, Roseobacter or Gammaproteobacteria are strongly affected by 

grazing (e.g. PERNTHALER 2005).  

7.1.3 From PULs to blooms 

The third part of this thesis addressed the ecological question: “What is their 

function?”. Here I analyzed fosmid-based metagenomes regarding their genetic 

capability for polysaccharide binding, hydrolysis and uptake. From previous studies it 

is known that cultured Bacteroidetes are capable of degrading high molecular weight 

organic matter, such as cellulose, chitin and proteins (see review by KIRCHMAN 

2002). Recently, it has been shown that Bacteroidetes are involved in degradation of 

polysaccharide such as laminarin and xylan at different sites of the North Atlantic 

Ocean (ARNOSTI ET AL. 2012).  

The genes found in marine Bacteroidetes are homologous to those used by the 

gut symbiont B. thetaiotaomicron for polysaccharide degradation (SHIPMAN ET AL. 

(2000) which are organized in operon-like structures and named polysaccharide 

utilization loci (PUL; BIJURSEL ET AL. 2006). Those loci were identified as being 

present in many other Bacteroidetes strains (BAUER ET AL. 2006, MCBRIDE ET AL. 2009, 

THOMAS ET AL. 2011, MANN ET AL. 2013) and metagenomes (GÓMEZ-PEREIRA ET 

AL. 2012, WILLIAMS ET AL. 2013). For example the well-studied coastal Bacteroidetes 

strain ‘Gramella forsetii’ KT0803 (BAUER ET AL. 2006) possesses a high gene frequency 

of glycosid hydrolases (GH) and other carbohydrate-active enzymes (CAZymes) as 

well as high numbers of peptidases and other protein degradation genes (BAUER ET 

AL. 2006), resulting in a peptidase/GH ratio of 2.2. This ratio points out, which 
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degradation type, either protein degradation (high ratio) or polysaccharide 

decomposition (low ratio), is preferred (KOLTON ET AL. 2013). For example, the 

peptidase/GH ratio of B. thetaiotaomicron is 0.5, mirroring that this gut symbiont 

encodes only half of the numbers of peptidases than of GHs, thus revealing a 

lifestyle, which is tailored to polysaccharide decomposition. In contrast many open 

ocean strains, e.g. Croceibacter atlanticus has a high peptidase/GH ratio of 6.8 and 

possesses more than 30 ORFs per Mbp peptidases and other genes related to protein 

degradation. Croceibacter atlanticus was isolated from the Sargasso Sea (Cho & 

Giovannoni) which comprised very oligotrophic conditions, reflecting that 

C. atlanticus is very adapted to this type of environment. There is no need in 

possessing many GHs or other genes related to polysaccharide degradation when 

there are barely some around. In contrast to B. thetaiotaomicron, who lives in an 

environment surrounded by polysaccharides, has a higher need in encoding GH and 

other polysaccharide degradation genes like SusD and TBDRs. Comparing the 

peptidase/GH ratio of the North Atlantic Ocean fosmids with other open ocean, 

coastal and soil flavobacterial strains (Figure 7.2), it became evident that the fosmids 

fell between the coastal and open ocean strains. This indicates a higher capability of 

polysaccharide degradation by open ocean Bacteroidetes clades than previously 

anticipated from single open ocean genomes, such as Polaribacter irgensii with a ratio of 

5.2, Croceibacter atlanticus with 6.8 or Robiginitalea biformata with 4.3 (Figure 7.2). Those 

strains are more tailored to protein degradation.  
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Figure 7.2: Number of glycosyl hydrolases (GH), peptidases and sulfatases per Mbp in Bacteroidetes 
genomes from different habitats. Based on Pfam profiles searches and CAZy family members (modified 
after GÓMEZ-PEREIRA ET AL. 2012). Numbers on top of the bars represent peptidase/GH ratio 
according to (FERNÁNDEZ-GÓMEZ ET AL. 2013, KOLTON ET AL. 2013).
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Knowing that Bacteroidetes – independent of their origin (coastal, open ocean 

or soil) – possess those genetic islands – the so called PULs – explains why they 

respond first to phytoplankton spring blooms, profiting from the decaying 

phytoplankton. They are equipped with specific sets of genes, involved in 

carbohydrate binding, hydrolysis and uptake, as well as involved in protein 

degradation and cell attachment, allowing them to directly access the available 

substrates during phytoplankton senescence. Most of the Bacteroidetes clades are able 

to degrade more than one polysaccharide, since they possess not only one PUL with 

single substrate specificity, but several (e.g. BAUER ET AL 2006, WOYKE ET AL. 2009, 

MANN ET AL. 2013). This is also supported by culture studies, where the growth 

media of distinct flavobacterial strains were supplied with different carbon sources. 

Most of the tested strains were able to utilize several polysaccharides, such as 

laminarin, cellulose, xylan and carrageenan (HAHNKE 2013, P. 197-198). The potential 

of specific strains degrading biopolymers is most often reflected in their genome size, 

encoding for different lifestyles (marine vs. terrestrial, planktonic or sedimental, free-

living or attached). For example, the genomes of terrestrial strains are mostly larger 

than those from aquatic origins. The soil inhabiting Flavobacterium johnsoniae has a 

genome size of 6.1 Mbp and encodes for 138 GHs, 9 polysaccharide lyases and 17 

carbohydrate esterases, suggesting a metabolism related to carbohydrate degradation 

(MCBRIDE ET AL. 2009). This was also shown for other terrestrial flavobacterial 

strains (KOLTON ET AL. 2013), and was recently identified for marine Flavobacteria, 

such as Formosa agariphila (MANN ET AL. 2013) or some Polaribacter species (TEELING 

unpublished).  

Although, the genome size of coastal Bacteroidetes are generally smaller than 

those of terrestrial origin, coastal Bacteroidetes possess also a high number of GHs, 

TonB-dependent receptors, SusD domains and other genes involved in 

polysaccharide degradation enabling them to access directly the phytoplankton 

derived substrates (see chapter 3). This explains their massive increase during 
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phytoplankton blooms, but their abundances declined almost immediately after the 

algal derived substrates were utilized by specific bacteroidetal clades, such as 

Ulvibacter, Formosa A and B, Polaribacter, as well as Owenweekisia. It was observed that 

some clades like Polaribacter and Formosa A reoccurred not only later in spring, but 

also during the summer and autumn phytoplankton blooms (see chapter 4). Either 

the respective substrates were re-appearing since these blooms also comprised of 

diatoms or these bacteroidetal clades possess broader substrate specificity, utilizing 

alternative polysaccharides. However, the presence of subclades might also explain 

their multimodal distribution.  

We identified, for example, two different Polaribacter OTUs in spring 2009 

and 2010, sharing less than 98% 16S rRNA identity. This indicated the presence of 

two different Polaribacter subclades in the two consecutive years. Since both subclades 

were detected by the same Polaribacter-specific oligonucleotide probe POL740 

(MALMSTROM ET AL. 2007) subsequent peaks could be due to different Polaribacter 

populations. Consequently, the presence of two different Polaribacter subclades in 

both spring seasons could possibly explain why this clade appeared as one of the last 

clades in spring 2009 and one of the first clades in spring 2010. Most likely both 

species possess a different genetic potential in assessing and degrading organic 

matter. For example, the metagenome of April 7th 2009 (TEELING ET AL. 2009) 

revealed a low sulfatase gene level of 0.2% for Polaribacter taxobins (HUANG 2013). It 

could be speculated that the Polaribacter clade present in spring 2009 was barely able 

to degrade sulfated extracellular polymers from the diatom cells. In contrast, the 

sulfatase gene level was high in Formosa taxobins (1%), which would explain why 

Formosa A appears before Polaribacter in spring 2009, since they were responsible for 

the initial breakdown of the diatom cells in removing the sulfated extracellular 

polymers. For spring 2010 and subsequently 2011 and 2012, it could be possible that 

the present Polaribacter species might be enriched in sulfatases accessing directly the 

sulfated extracellular polymers, bypassing Formosa A. This could explain why 
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Polaribacter bloomed ahead of Formosa A. This, of course, is highly speculative and 

awaits further metagenome and metaproteom investigations.  

Despite the fact, that Bacteroidetes possess many PULs with different substrate 

specificities and gene arrangements, the coupling of the SusD protein to the TonB-

dependent receptor (TBDR) at the outer membrane is conserved and seems to be a 

unique feature of Bacteroidetes PULs (THOMAS ET AL. 2011). Other bacterial groups 

like the gammaproteobacterial clade SAR92 possess also PULs which lack, however, 

the SusD gene (KAPPELMANN 2013). Either, SusD is involved in substrate binding 

unique for Bacteroidetes, making them highly competitive against others, or SusD is 

replaced in SAR92 members by a yet unknown protein.  

7.1.4 How microscopy can help visualizing ecological niches 

Microscopic observations of the large 10 μm fraction revealed the attachment 

of Bacteroidetes to the diatom Chaetoceros spp. at the maximum of the phytoplankton 

bloom in spring 2011 (Figure 7.3). A protocol was developed in which cell 

identification by CARD-FISH was combined with glycoconjugate recognition by 

fluorescent lectin binding analysis (FLBA), in order to study Bacteroidetes-diatom 

associations. The combination of CARD-FISH and FLBA provided new insights 

into the molecular basis of the attachment of specific Bacteroidetes clades to planktonic 

diatoms. It has great potential in understanding habitats in situ and possible substrate 

preferences of attached living bacteria. Therefore, this technique was used to follow 

the Bacteroidetes attachment to Chaetoceros spp. in the time frame of three weeks during 

the spring phytoplankton bloom 2011 (BAKENHUS 2014).  
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Figure 7.3: SR-SIM micrograph shows the attachment of Bacteroidetes
(green), detected with probe CF319a (MANZ ET AL. 1996), known to target 
most marine Bacteroidetes (AMANN & FUCHS 2008) to the diatom 
Chaetoceros spp. and especially to the setae (arrows). Scale bar is 10 μm. 
green: CF319a-Alexa488; red: AAL-Alexa568, blue: DAPI. 

 
 
 

Members of the Bacteroidetes phylum were found attached to some Chaetoceros 

spp. right from the beginning of the analysis, which was one week ahead of the 

phytoplankton bloom. After the phytoplankton maximum a gradual attachment of 

SAR92 cells to Chaetoceros spp. populated by Bacteroidetes was observed (Figure 7.4) 

(BAKENHUS 2014). These observations would support the hypothesis that the SusD 

domain is unique among Bacteroidetes facilitating the access to complex polymers, 

leaving them unrivalled and highly competitive. In contrast, SAR92 might not be able 

to access those complex polymers from the beginning, since they are lacking the 

SusD domain (KAPPELMANN 2013). Notably, in all four analyzed spring seasons 

SAR92 (CHEN 2012) always peaked after the first bloom of Bacteroidetes, which mainly 

consisted of Ulvibacter, Formosa A and Polaribacter. 
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Figure 7.4: SR-SIM micrograph shows the attachment of Bacteroidetes
(green) and SAR92 (red) to the diatom Chaetoceros spp. and especially to 
the setae. Arrows indicate were close CF319a and SAR92 cells. Scale bar 
is 10 μm. green: CF319a-Alexa488; red: SAR92-Alexa594, orange: AAL-
Alexa561; blue: DAPI. 

From our findings it appears that the initial breakdown of those substrates is 

catalyzed by Bacteroidetes and then smaller fractions might be taken up by SAR92. This 

conclusion is still fairly speculative and requires further investigations. It is further 

supported by a scanning electron micrograph, where Bacteroidetes (gold-labeled) seems 

to attach to another, yet unknown bacterium (Figure 7.5). In addition, those scanning 

electron micrographs gave further insights into the specific attachment of Bacteroidetes 

to diatoms and aggregates containing phytoplankton remains (Figure 7.6).  

  

Figure 7.5: SEM micrographs show association of gold labeled Bacteroidetes to phytoplankton remains 
(setae). A: second electron image (SE, reveals topography), B: backscatter image (BSE, detection of gold 
label), C: mix of SE and BSE image. Scanning electron microscopy was done with FEI Quanta 250 FEG.
Scale bar is 2 μm.  
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Figure 7.6: SEM micrographs show association of gold labeled Bacteroidetes to aggregates (A-C),
phytoplankton cells (D-F) and phytoplankton remains (setae, G-I). Images to the left: second electron
image (SE, reveals topography), images in the middle: backscatter image (BSE, detection of gold label),
images to the right: mix of SE and BSE image. Scanning electron microscopy was done with FEI Quanta
250 FEG. Scale bar is 10 μm.  
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7.2 Conclusion and Outlook 

Bacteroidetes are a very good example for BAAS BECKING’S (1934) statement 

“everything is everywhere, but the environment selects”. In the marine realm they are found 

everywhere: from coastal to open ocean, from polar to equatorial latitudes, from 

surface to abyssal waters as well as in association with aggregates and phytoplankton 

blooms. It seems that their occurrence is independent of the habitat being sampled, 

as long as certain food sources such as polysaccharides and proteins are available. 

Bacteroidetes can reach high densities, as shown for the North Sea where they made up 

more than 50% of the bacterioplankton community (chapter 3 & 4) in four 

subsequent years in the aftermath of phytoplankton blooms. A research institute 

studying the involvement of microorganisms in global element cycling should also in 

the future not neglect such an important group of marine bacteria.   

After analyzing the bacteroidetal response to coastal spring diatom blooms in 

detail, it would be the logical next step to investigate similar open ocean blooms 

which occur in the higher latitudes. It would be interesting to know, if some of the 

clades dominating coastal spring diatom blooms at Helgoland would also dominate 

in oceanic settings. More generally, can such a dynamic succession pattern as found 

at Helgoland also be demonstrated for open ocean settings? First results of the 

Atlantic Meridional Transect 21 (AMT21) showed that Bacteroidetes made up more 

than 10% in areas with high chlorophyll a concentrations and represented more than 

20% in the southern most stations, while a phytoplankton bloom occurred (Figure 

7.7). AMT is a multidisciplinary program which undertakes biological, chemical and 

physical oceanographic research during an annual research cruise between the UK 

and destinations in the South Atlantic. This program was established in 1995. The 

AMT21 started on September 29th 2011 in Bristol, UK and ended on October 14th 

2011 in Punta Arenas, Chile, passing several biogeographical provinces of the 

Atlantic Ocean. During this cruise 53 stations were sampled to determine the 

bacterial community. Additionally, a phytoplankton net consisting of four individual 



 181 

plankton nets with different mash sizes (<180 μm, < 100 μm, <40 μm and < 20 μm) 

were applied at 31 stations. This was done to identify bacteria which attach to the 

phytoplankton.  

 

First analysis of the attached fraction revealed similar results as for the coastal 

station Helgoland Roads. Bacteroidetes were mainly found attached to diatoms, 

dinoflagellates, aggregates and even to larvae of copepods (Figure 7.8). In future 

experiments, it would be interesting to know which Bacteroidetes clades are involved in 

this specific attachment. Are they the same members which are commonly found at 

Helgoland Roads, or do the Bacteroidetes community of the South Atlantic Ocean 

differ from those of the North Sea?  

  

Figure 7.7: Overview of the AMT21 cruise tracke. Pie charts show 
relative contribution of Bacteroidetes (yellow) to the total 
bacterioplankton community (grey). Map shows maonthly average of 
chlorophyll a concentration in September 2011 [provided by AquaModis 
satelitte (http://oceancolor.gsfc.nasa.gov; requested 18.07.2012). 
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In this thesis I could show that members of the Polaribacter clade, one of the 

dominating Bacteroidetes clades in spring at Helgoland, were found attached to the 

diatom Chaetoceros spp. Since diatoms of the same diatom genus are also present in 

the Southern Atlantic Ocean the hypothesis should be tested that Polaribacter also 

attaches to those Chaetoceros species of the South Atlantic Ocean. BACKENHUS (2014) 

analyzed the attached fraction of the Helgoland phytoplankton bloom in spring 2011 

and identified different Chaetoceros species, of which some were markedly colonized 

by Bacteroidetes and others were almost sterile. This further supports the perception 

that the interaction of these bacterial clades with diatom-derived polysaccharides is 

highly specific. MYKLESTAD ET AL. (1972) analyzed the cell wall and EPS 

composition of different Chaetoceros species and showed that the cell wall 

composition depended on the species, but consisted mainly of the monomers 

rhamnose, fucose, galactose and mannose (MYKLESTAD ET AL. 1972, HAUG & 

MYKLESTAD 1976). Further studies on the chemical composition of diatoms would 

be a prerequisite for a more detailed investigation of the interaction of their 

polysaccharides with Bacteroidetes.    

 

 

Figure 7.8: SR-SIM micrographs show the attachment of Bacteroidetes (red), detected with 
probe CF319a (MANZ ET AL. 1996), to phyto- and zooplankton in the South Atlantic Ocean. 
A: Station 76 fraction 20 to 40 μm. B: Station 70 fraction 20 to 40 μm. C: Station 76 fraction 
20 to 40 μm. green: lectin AAL-488 used to stain phytoplankton and zooplankton surfaces; 
red: CF319a-Alexa495, blue: DAPI. Scale bar is 10 μm. 
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 Appendix A: Probe Evaluation 

 
 

Within this study new oligonucleotide probes targeting specific Bacteroidetes 

clades were designed. Probe design including competitors were done using the ARB 

probe design tool on basis of the SILVA NR 104 database release October 2010 

(PRUESSE ET AL. 2007) in accordance to HUGENHOLTZ ET AL. 2001. Helpers were 

designed according to FUCHS ET AL. 2000. Horseradish peroxidase labeled 

oligonucleotide probes, unlabeled competitors and helpers were provided as 

lyophilized powder by Biomers (Biomers.net GmbH, Ulm, Germany). 

Oligonucleotides, competitors and helpers were dissolved in nuclease free water to a 

concentration of 8.42 pmol μl-1.  

The oligonucleotide probes targeting the Formosa clade A and B were tested on pure 

cultures, which were obtained during the PhD of R. L. Hahnke. A formamide 

concentration series from 10–60% was performed and the optimal probe formamide 

concentration was determined by using the program daime 2.0 (DAIMS ET AL. 2006, 

Environmental Microbiology 8, 200-213).  
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Picture gallery of epifluorescence micrographs showing the signal intensity obtained by 
probe FORM181A at different formamide concentrations when tested on a pure culture of 
Formosa spp. Hel3_A1_48 (provided by R. Hahnke). 
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Picture gallery of epifluorescence micrographs showing the signal intensity obtained by 
probe FORM181B at different formamide concentrations when tested on a pure culture of 
Formosa spp. Hel1_33_131 (provided by R. Hahnke). 
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Genomic content of uncultured Bacteroidetes from contrasting 

oceanic provinces in the North Atlantic Ocean 

 

Gómez-Pereira, P.R., Schüler, M., Fuchs, B.M., Bennke, C., Teeling, H.,Waldmann, 
J., Richter, M., Barbe, V., Bataille, E., Glöckner, F.O. & Amann, R. 

 

 

Published 2012 in Environmental Microbiology 14, 52-66 

 

Contribution to the manuscript: C. M. B. performed CARD-FISH and obtained in-
situ abundance, preparation of figure 2 
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Abstract 

Bacteroidetes are widespread in marine systems where they play a crucial role in 

organic matter degradation. Whole genome analysis of several strains has revealed a 

broad glycolytic and proteolytic potential. In this study, we used a targeted 

metagenomic approach to investigate the degradation capabilities of distinct 

Bacteroidetes clades from two contrasting regions of the North Atlantic Ocean, the 

Polar Biome (BPLR) and the North Atlantic Subtropical (NAST). We present here 

the analysis of 76 Bacteroidetes fosmids, of which 28 encode the 16S rRNA gene as 

phylogenetic marker, and their comparison to complete Bacteroidetes genomes. Almost 

all of the 16S rRNA harbouring fosmids belonged to clades that we previously 

identified in BPLR and NAST. The majority of sequenced fosmids could be assigned 

to Bacteroidetes affiliated with the class Flavobacteria. We also present novel genomic 

information on the classes Cytophagia and Sphingobacteria, suggesting a capability of the 

latter for attachment to algal surfaces. In our fosmid set we identified a larger 

potential for polysaccharide degradation and cell surface attachment in the phytoplan 

ton-rich BPLR. Particularly, 

two flavobacterial fosmids, one affiliated with the genus Polaribacter, showed a whole 

armoury of enzymes that likely function in degradation of sulfated polysaccharides 

known to be major constituents of phytoplankton cell walls. Genes involved in 

protein and peptidoglycan degradation, although present in both fosmid sets, seemed 

to have a slight preponderance in NAST. This study provides support for the 

hypothesis of a distinct specialization among marine Bacteroidetes for the degradation 

of certain types of polymers. 

 
The pdf-document of this publication is not displayed due to copyright reasons.  

The publication can be accessed at: 

http://onlinelibrary.wiley.com/doi/10.1111/j.1462-2920.2011.02555.x/abstract 
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Dilution cultivation of marine heterotrophic bacteria abundant 

after a spring phytoplankton bloom in the North Sea 

Richard L. Hahnke, Christin M. Bennke, Bernhard M. Fuchs, Alexander J. Mann, 

Erhard Rhiel, Hanno Teeling, Rudolf Amann & Jens Harder 

 

 

Manuscript in revision Environmental Microbiology 

 

Contribution to the manuscript: C. M. B. probe design and testing, CARD-FISH and 
obtaining in-situ abundance, preparation of figure and assitance in manuscript 
writing
 

 

  



 216 

  



 217 

Abstract 

The roles of individual bacterioplankton species in the remineralization of 

algal biomass are poorly understood. Evidence from molecular data had indicated 

that a spring diatom bloom in the German Bight of the North Sea in 2009 was 

followed by a rapid succession of uncultivated bacterioplankton species, including 

members of the genera Ulvibacter, Formosa, Polaribacter (class Flavobacteria) and Reinekea 

(class Gammaproteobacteria). We isolated strains from the same site during the diatom 

bloom in spring 2010 using dilution cultivation in an artificial seawater medium with 

micromolar substrate and nutrient concentrations. Flow cytometry demonstrated 

growth from single cells to densities of 104–106 cells mL–1 and a culturability of 35%. 

Novel Formosa, Polaribacter, and Reinekea strains were isolated and had 16S rRNA gene 

sequence identities of >99.8% with bacterioplankton in spring or summer 2009. 

Selected isolates were draft sequenced and used for read recruitment of 

metagenomes from bacterioplankton in 2009. Metagenome reads covered 93% of a 

Formosa clade B, 91% of a Reinekea, and 74% of a Formosa clade A genome, applying a 

≥94.5% nucleotide identity threshold. These novel strains represent abundant 

bacterioplankton species thriving on coastal phytoplankton blooms in the North Sea.   
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