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Summary

The molecule serotonin sparks the interest of scientists for over half a century. 

Research of the molecule led to the discovery that this molecule is important 

for a variety of different functions. Among other things, serotonin is released in 

the  brain,  acting  as  a  neurotransmitter  and  neuromodulator.  Interestingly, 

alterations of the brain areas where serotonin is released or synthesized in, 

seem to be associated to different neurological diseases like depression, fear 

related diseases or alzheimers. 

Therefore, the ability to monitor serotonin within these neurological circuits is 

of  great importance to understand  how  the  changes occur, and if  so, what 

could be done to prevent or reverse them.

In this work, a genetically encoded fluorescent biosensor for the detection of 

serotonin was produced. The sensor consists of two proteins, cpGFP and the 

5-HT1A receptor, a GPCR involved in the transmission of extracellular signals 

into  the  intracellular  lumen  across  the  plasma  membrane.  Ultimately,  the 

substitution of a large part of the third intracellular loop of the 5-HT1A receptor 

with cpGFP as well as various mutations in specific linker domains between 

the two proteins, led to the genetically encoded serotonin sensor sDarken. 

The sensor  sDarken is able to detect serotonin by a strong reduction of its 

fluorescence after binding of serotonin. Although not predominantly expressed 

in  the  membrane,  the  fluorescence  was  most  intense  in  the  membrane 

portions of HEK cells where sDarken was expressed. The sensor sDarken is 

able to detect multiple sequential  applications of serotonin and showed no 

changes in its fluorescence response, while the cells were embedded within 

media with different pH values. Furthermore, other chemicals failed to induce 

a similar reduction in fluorescence, with the exception of the 5-HT1A receptor 

agonist 8-OH-DPAT as well as the 5-HT1A receptor antagonist WAY-100635, 

suggesting a specificity of the sensor for serotonin. 

Measurement  of  the  affinity  to  serotonin  show that  sDarken is  capable  to 

measure serotonin within physiological relevant concentrations. Furthermore, 

the introduction of a single point mutation within the 5-HT1A receptor as well as 

the substitution of cpGFP for sfcpGFP showed that it is possible to modify the 
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sensor’s  affinity  to  serotonin  while  measuring  a  comparable  fluorescence 

response. 

While further investigations are needed for a full characterization of sDarken, 

this  sensor  shows to  be  a  promising  tool  for future  efforts  to understand 

serotonin and its involvement in various diseases. 
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Zusammenfassung

Das  Molekül  Serotonin  weckt  seit  über  einem  halben  Jahrhundert  das 

Interesse von Wissenschaftlern.  Forschung im Hinblick auf  dieses Molekül 

führte  zu  den  Entdeckungen,  dass  es  für  eine  Vielzahl  unterschiedlicher 

Funktionen  wichtig  ist.  Unter  anderem  wird  Serotonin  im  Gehirn 

ausgeschüttet,  wo  es  Aufgaben  als  Neurotransmitter  und  Neuromodulator 

erfüllt. Interessanterweise wurde gezeigt, dass Veränderungen in Hirnarealen 

in  die  Serotonin  ausgeschüttet  oder  synthetisiert  wird,  mit  verschiedenen 

neurologischen  Erkrankungen  wie  Depressionen,  Angstörungen  oder 

Alzheimer in Verbindung stehen. 

Daher  ist  die  Fähigkeit,  die  Ausschüttung  von  Serotonin  in  eben  jenen 

neurologischen Schaltkreisen sichtbar zu machen, von großer Bedeutung, um 

die  genauen  Auswirkungen  dieser  Veränderungen  zu  verstehen  sowie  zu 

verstehen,  wie  die  Veränderungen  entstehen  oder  wodurch  man  sie 

gegenbenfalls verhindern oder rückgängig machen könnte. 

In dieser Arbeit wurde ein genetisch codierter fluoreszierender Biosensor zum 

Nachweis von Serotonin hergestellt. Der Sensor besteht aus zwei Proteinen, 

cpGFP und dem 5-HT1A-Rezeptor, einem GPCR, der an der Übertragung von 

extrazellulären Signalen in das intrazelluiläre Lumen durch die Membranen 

beteiligt ist.  Letztlich führte die Substitution eines großen Teiles des dritten 

intrazellulären Loops des 5-HT1A-Rezeptors durch cpGFP, sowie verschiedene 

Mutationen in spezifischen Linkerdomänen zwischen den beiden Proteinen 

zum genetisch encodierten Serotonin Sensor  sDarken. Der Sensor  sDarken 

ist  in der Lage,  Serotonin durch eine starke Reduktion seiner Fluoreszenz 

nach Bindung von Serotonin nachzuweisen. Obwohl nicht überwiegend in der 

Membran exprimiert, zeigte sich die Fluoreszenz in den Membranteilen von 

HEK-Zellen  in  denen  sDarken exprimiert  wurde am stärksten.  Der  Sensor 

sDarken ist in der Lage, mehrfache Applikation von  Serotonin nachzuweisen 

und  zeigte  keine  Veränderungen  in  der  Fluoreszenzreaktion,  während 

unterschiedliche pH-Werte im Medium der Zellen vorlagen. Darüber hinaus 

konnten andere Chemikalien keine ähnliche Fluoreszenzreduktion auslösen, 

mit Ausnahme des 5-HT1A-Rezeptor Agonisten 8-OH-DPAT sowie des 5-HT1A-
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Rezeptor Antagonisten WAY-100635, was für eine Spezifität des Sensors für 

Serotonin spricht.  

Messungen der Affinität von sDarken zu Serotonin zeigt, dass sDarken in der 

Lage ist, Serotonin in physiologisch relevanten Konzentrationen zu messen. 

Darüber  hinaus  zeigte  die  Einführung  einer  einzelnen  Punktmutation 

innerhalb  des  5-HT1A-Rezeptors  sowie  die  Substitution  von  cpGFP  durch 

sfcpGFP,  dass  es  möglich  ist,  die  Affinität  des  Sensors  zu  Serotonin  zu 

modifizieren, während eine vergleichbar hohe Fluoreszenzreaktion gemessen 

werden konnte. Während für eine vollständige Charakterisierung von sDarken 

weitere  Untersuchungen  erforderlich  sind,  erweist  sich  dieser  Sensor  als 

vielversprechendes  Werkzeug  für  zukünftige  Bemühungen,  Seroronin  und 

seine Beteiligung an verschiedenen Krankheiten zu verstehen. 
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Introduction

1 Introduction

1.1 Serotonin

Serotonin (5-HT, 5-Hydroxytryptamine) is a molecule involved in many functions inside the 

organisms. Initially found as a constrictor of smooth muscle cells in the gastrointestinal  

tract  and  as  a  vasoconstrictor  in  blood  it  is  also  known  for  its  role  as  a 

neurotransmitter/neuromodulator.  (Rapport et al.,  1948b; Twarog & Page, 1953; Vialli  & 

Erspamer, 1937).

Intensive  investigations  linked  the  molecule  to  cognition,  mood,  adaptation  to  stress, 

neurogenesis, learning and memory, vasodilation, hemostasis, intestinal mobility, wound 

healing and inflammatory response (Gershon, 2013; Lin et al., 2014; Lucki, 1998; Mann & 

Oakley,  2013;  Mauler  et  al.,  2016).  Additionally  Serotonin  is  associated  with  different 

psychological disorders such as addiction, schizophrenia, depression, anxiety, Alzheimers 

and  Parkinsons  disease  (Amato,  2015;  Geldenhuys  &  Van  der  Schyf,  2011;  Müller  & 

Homberg, 2015; Politis & Niccolini, 2015). 

In the following sections, the discovery, chemistry and the location of serotonin producing 

cells in the CNS (central nervous system) are presented. Afterwards the implications of 

serotonin in  various illnesses is  elucidated.  Then,  specific  types of  proteins,  G-protein 

coupled receptors and their interaction partners are introduced. Later a closer look into the 

5-HT1A  receptor  and  fluorescence  proteins  is  given.  Lastly  an  overview  of  genetically 

encoded biosensors is laid out.

1.1.1 The discovery of Serotonin

The initial discovery of serotonin was achieved 1937 by Vialli and Erspamer, who isolated 

an unknown substance which they called “enteramine” from enterchromaffine cells of the 

rabbit gastric mucosa. In their work, they could show that this substance is able to induce 

the smooth muscle contraction of the gut in rats and mice and also in the rats uterus (Vialli 

& Erspamer, 1937). 
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Eleven years later (1948) a second discovery of serotonin was made by M.M. Rapport with  

the help of A.A. Green, both working in the group of I.H. Page. During their work, they 

isolated a substance from bovine blood which acts as a vasoconstrictor. They named the 

substance “serotonin” (Rapport et al., 1948b, 1948a). The structure of this molecule was 

published one year  afterwards  (Rapport,  1949).  Three years  later,  the  analysis  of  the 

structure of the earlier found molecule “enteramine” showed that this substance had in fact  

the same chemical structure as the later found serotonin (Erspamer & Asero, 1952). 

Next it was found that serotonin, in addition to its effects in the gastrointestinal tract and in 

the blood, acts as a neurotransmitter in invertebrates and vertebrates  (Twarog & Page, 

1953). After identifying serotonin in brain tissue, new research investigating serotonin as a 

neurotransmitter begun. 

Since then, tremendous research had been done unfolding a variety of functions in the 

organism  where  serotonin  is  involved  in.  One  of  the  latest  discovered  is  the 

posttranslational  modification  of  histones  by  serotonin  in  serotonergic  cells,  a  process 

called serotonylation (Farrelly et al., 2019). 

1.1.2 Chemistry of Serotonin

In animals and humans, serotonin is synthesized in a two-step reaction out of tryptophan 

(Fig. 1). These steps are catalyzed by the enzymes tryptophan 5-hydroxylase (TPH) and 

aromatic L-amino acid decarboxylase (AADC) (Azmitia, 2020). 

In the first step of serotonin synthesis, tryptophan is hydroxylated at the C5 position of the 

aromatic  ring  to  5-hydroxytryphtophan  (5-HTP)  (Fig.  1).  The  catalytic  enzyme  TPH 

requires  for  this  reaction  molecular  oxygen  and  the  cofactor  tetrahydrobiopterin.  This 

reaction is the rate limiting step of serotonin biosynthesis (Welford et al., 2016). 

The enzyme TPH is present in two different isoforms: TPH1 which is expressed in the 

periphery and pineal gland and TPH2 which seems to be mostly expressed in the brain 

(Walther et al., 2003). The expression of TPH is specific for cells producing 5-HT (Joh et 

al., 1975).

In the second step of serotonin synthesis, the enzym AADC, decarboxylates 5-HTP with 

the help of the cofactor pyridoxal phosphate to 5-Hydroxytryptamin (5-HT).
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Serotonin  is  metabolized  by  mono  amine  oxidases  A  (MAO-A)  and  aldehyde 

dehydrogenase  (AD)  which  leads  to  H2O2 and  5-hydroxyindole  acetic  acid  (5-HIAA). 

Furthermore, it is used for the synthesis of melatonin in the pineal gland (Ganguly et al., 

2002).

1.1.3 Serotonergic System

In the first extensive mapping study done by Dahlström and Fuxe to find neuronal cells 

which contain and release serotonin, they found cellular locis flanking the midline, mostly 

in the raphe areas of the pons and the midbrain located in 9 groups which are designated 

B1-B9 (Dahlström & Fuxe, 1964).

The loci can be put together into two groups, the rostral group which is situated in the 

mesencephalon and rostal pons and project into the forebrain and the caudal group, which 

is located in the medulla oblongata and project down the spinal cord. Both groups are 

separated by a gap in the pons which contains non serotonergic neurons (Fig. 2).

Single  cell  analyses  of  different  cells  in  the  B1-B9  regions  showed,  that  there  are 

differences  of  serotonergic  neurons  within  and  between  the  nuclei,  exhibiting  a  more 

complex interconnection of the serotonergic system (Calizo et al., 2011; Crawford et al., 

2013; Fernandez et al., 2016; Okaty et al., 2015). Furthermore, cells in the nuclei are not 
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exclusively  serotonergic  neurons  (Baker  et  al.,  1991;  Descarries  et  al.,  1982).  For 

example, in the region B6 and B7, which are both located in the dorsal raphe nucleus 

(DRN), research found dopaminergic, GABAergic, glutamatergic, peptidergic and nitergic 

neurons (Vasudeva et al., 2011). Serotonergic neurons seem to form true synapses in only 

a minority  of  cases and releasing serotonin non synaptically  (Descarries et al.,  2010). 

Therefore the majority of serotonergic signaling is done via volume transmission (Fuxe et 

al., 2010; Umbriaco et al., 1995). The different effects of serotonin are transmitted by the 

14 different 5-HT receptors which show differential expression in specific areas of the brain  

(Mengod et al., 2010). 

To complicate things further, serotonergic neurons were also shown to co release other 

transmitters as well as serotonin upon activation. This is suggested for glutamate (Okaty et 

al.,  2019),  gamma-aminobutyric  acid  (GABA)  (Shikanai  et  al.,  2012) and substance P 

(Hennessy et al., 2017; Okaty et al., 2015).
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While the efferent and afferent connections of the serotonergic systems are well known, 

there  is  still  lacking  knowledge on how the  system is  functioning,  due to  its  complex 

signaling mechanisms. Furthermore, changes in the serotonergic system are implicated in 

a variety of different diseases. One of them is major depressive disorder, a disease where 

after decades of research there is still lacking knowledge preventing an effective treatment 

of this disease. But there are hints, some of which are presented in the next paragraph,  

that the serotonergic system contributes in the pathology of depression. 

1.1.4 Serotonin in depression

Major  depressive disorder  (MDD) is  a  severe illness affecting over  280 million people 

worldwide (World Health Organization 2017), across all races and socioeconomic groups. 

While research was carried out over decades, the cause of depression is still not found 

and an effective treatment working successfully for all people is still not available, while  

most treatments show side effects.

One of the earliest theory regarding the cause of depression is the monoamine hypothesis,  

which  linked  deficits  of  the  monoamines  serotonin,  dopamine  and  noradrenalin  to 

depression (Coppen, 1967; Yohn et al., 2017).

This  theory  was  reinforced  by  different  findings.  For  example  reserpine,  an  anti-

hypertensive  used  in  the  mids  20th century  led  to  depression  in  people  undergoing 

hypertension therapy. Withdrawal of the substance led to a full recovery from symptoms of 

depression (Freis, 1954). Also, investigations showed that acute tryptophan depletion can 

lead to a recurrence of depression symptoms in patients that demonstrated remission with 

5-HT  antidepressants  (Delgado  et  al.,  1999;  Neumeister  et  al.,  2004) and  that  the 

cerebrospinal fluid levels of 5-HIAA, the metabolite of 5-HT, of a subset of patients with 

MDD appear to be lower than the control group (Asberg, 1997; Placidi et al., 2001).

First  drugs which were found to  treat  MDD in  the 1950s are the monoamine oxidase 

inhibitors (MAOIs), which were initially developed for the treatment of tuberculosis, as well  

as the tricyclics antidepressants (TCAs). 

Inhibiting the monoamine oxidase by MAOIs, leads to the inhibition of the metabolization of  

monoamines (e.G. serotonin [5-HT], norepinephrine [NE] and dopamine [DA]) while TCAs 
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assumable work by inhibiting the reuptake of NE and 5-HT. The effects of both compound 

classes therefore are leading to the increase of synaptic levels of monoamines. 

Later  on,  more  specific  drugs,  namely  serotonin  reuptake  inhibitors  (SSRIs)  were 

developed  blocking  the  serotonin  reuptake  by  inhibition  of  the  serotonin  transporter  

(SERT),  increasing the synaptic levels of serotonin. 

While  it  could be shown that  depletion of  monoamines by depletion of  dopamine and  

tryptophan  did  not  cause  depressive  symptoms  (Salomon  et  al.,  1997),  serotonin 

transporter deficient mice show depressive symptoms (Ansorge et al., 2004), indicating a 

role of 5-HT in depression that is much more complex than only a deficit of monoamines.

One major breakthrough in the research of depression was the finding, that administration 

of a single dose of ketamine leads to an antidepressant response (Berman et al., 2000). 

While ketamine and its metabolites mainly interact with the glutamatergic system, changes 

affecting the serotonergic system were identified, which could explain the antidepressant 

response. There is evidence, that the antidepressant response is caused by stimulation of 

projections of the prefrontal cortex to the dorsal raphe nucleus, which stimulates serotonin 

release  (López-Gil  et  al.,  2019).  Another  group proposed,  that  the fast  antidepressant 

effect of ketamine is due to blockage of N-methyl-D-aspartate receptors (NMDAR) and T-

type calcium channels, inhibiting neuronal bursts of the lateral habenula, an inhibitor of the  

dorsal raphe nucleus, which seem to be overactive in depression (Y. Yang et al., 2018). 

Depression  is  just  one  of  many  diseases  which  is  accompanied  with  changes  in  the 

serotonergic signaling. This shows that there is an urgent need for the development of new 

tools  which  are  capable  of  measuring  serotonin  dynamics.  Direct  measurement  of 

serotonin dynamics could lead to new findings in the research of these diseases, which 

could open up new possibilities in terms of treatments or new pharmaceutical approaches. 

Direct  measurement  of  serotonin  is  challenging  but  possible.  There  are  a  variety  of 

techniques established which have been used, that are presented in the next paragraph.

6



Introduction

1.1.5 Detecting serotonin

Different  approaches  have  been  utilized  to  detect  serotonin  in  the  brain.  In  earlier  

experiments, serotonin was measured by a spectromeric method, determining serotonin in 

the  brain  via  a  reaction  of  serotonin  with  o-pthalaldehyde.  This  generates  highly 

fluorescent  products  which  are  measured  for  serotonin  concentration  determination 

(Maickel et al.,  1968). This technique was further improved by the addition of cysteine 

(Curzon & Green, 1970). Other approaches utilized gas chromatography  (Maruyama & 

Takemori, 1971) or high-performance liquid chromatography (Sasa & Blank, 1977) which 

was coupled to  mass spectrometry  (Park  et  al.,  2013),  to  measure  serotonin  in  brain 

tissue.  Additionally,  the  measurement  of  serotonin  is  possible  through  an  enzyme 

immunoassay, which was used to detect serotonin in the cerebrospinal fluid in the time of 

3h (Chauveau et al., 1991). 

To achieve higher spatial resolution to detect serotonin concentration in smaller areas and 

release of serotonin with single cell resolution other approaches were developed. 

One technique measures the uptake of serotonin indirectly. This is done via the use of 

fluorescent  false  neurotransmitters,  which  are  acting  as  substrates  for  serotonin 

transporters and vesicular monoamine transporter 2 (Henke et al., 2018). 

An approach to directly measure serotonin is via the use of three photon microscopy which 

makes use of the autofluorescence of serotonin. With that technique the serotonin content 

and the release kinetics of somatic serotonergic vesicles could be investigated in dorsal 

raphe neurons of rats  (Kaushalya et al.,  2008). Furthermore, it  is possible to measure 

serotonin in vivo by microdialysis, where a microdialysis probe pumps a perfusate into the 

brain and collects a dialysate from which the serotonin contents are measured (X. Sun et 

al., 2002). In a different approach direct serotonin measurement can be carried out in vivo 

by  the  help  of  fast  scan  cyclic  voltammetry.  In  this  technique,  a  microelectrode  is 

positioned inside the brain in the area of interest and the analyte e.g. serotonin is oxidized, 

generating a measurable current. This technique was used to directly measure serotonin 

release  in  the  substentia  nigra  pars  reticulata  in  rats  (Hashemi  et  al.,  2011).  Due  to 

advancements within the field of electrode manufacturing, single synapse measurements 

of neurotransmitters are possible  (Y.-T. Li et al., 2014).  Still this technique has different 

drawbacks. Dependent on the molecules it is hard to distinguish between them, if they do 

not exhibit  redox activity at different potentials for example dopamine, epinephrine and 
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norephinephrine  (Roberts & Sombers, 2018). Furthermore reduction of sensitivity due to 

electrode fouling can occur over time from molecules like serotonin (Jackson et al., 1995). 

And for measuring serotonin release with nanoelectrodes, the limit of detection was 77 µM 

(Colombo et al., 2015). 

In this thesis, a new genetically encoded biosensor (sDarken) for serotonin is developed, 

to  measure  serotonin  with  high  spatial  and  temporal  resolution.  To  understand  the 

mechanism of action of this biosensor, within the next paragraphs, the involved proteins 

are described. This includes mechanism of activation and known interactions, which are 

briefly discussed. 

1.2 G-Protein coupled receptors (GPCRs)

The term G-protein  coupled  receptor  (GPCR)  defines  a  family  of  around 600  integral  

membrane proteins in the human genome, which make up one of  the biggest protein  

superfamily (International Human Genome Sequencing Consortium et al., 2001; Venter et 

al., 2001). 

Proteins  of  the  GPCR  family  are  divided  into  the  different  classes  A-F  based  on 

phylogenetics analysis  (Fredriksson et al., 2003). Of these classes, the biggest and best 

investigated is the class A (rhodopsin like) GPCR family with over 650 known receptors 

(Gloriam et al., 2007), which are further subdivided into four main groups α, β, γ and δ. 

Each class has a distinctive characteristics, for example Class A GPCRs contain mostly  

the NsxxNPxxY motif in the transmembrane VII or the D(E)-R-Y(F) motif in the second 

intracellular loop (Fredriksson et al., 2003).

One feature of all GPCRs is, that they consist of an extracellular N-terminus with seven 

transmembrane  domains  spanning  through  the  membrane,  bound  together  by  three 

extracellular and three intracellular loops, ending in an intracellular C-terminus (Fig. 3). 

There is an extreme variability of ligands of different GPCRs. Ligands for GPCRs can be 

anything  from  single  photons  to  ions,  lipids,  nucleotides,  amines,  peptides,  or  even 

proteins  (Fredriksson  et  al.,  2003).  Ligands  can  either  bind  at  the  binding  site  of  the 

endogenous transmitter of the receptor, which is called the ortosteric site or to other sites  

within the receptor which are called allosteric sites. Ligands of GPCRs which are binding 
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to the ortosteric binding site act either by stimulating a submaximal to maximal activation 

of the receptor (agonists), blocking the activation of the agonist (competitive antagonist) or 

by inhibiting the endogenous activity of the GPCR (inverse agonist). Ligands binding to the  

allosteric binding sites of the receptor have little to no effect on the receptor activity by 

themselves, but they are able to amplify or diminish the effect of ligands binding at the 

ortosteric binding site (Jensen & Spalding, 2004; Wingler & Lefkowitz, 2020).

The activation of GPCRs by their agonists can lead to activation of three different classes 

of proteins, leading to different intracellularly activated signaling cascades. These proteins 

include  Heteromeric  Guanine  nucleotide-binding  proteins,  G-protein-coupled  receptor 

kinases (GRKs) and β-Arrestin (Kahsai et al., 2018). 

Even in the absence of any GPCR ligand, the GPCR is in constant motion. There are fast  

fluctuations occurring,  in the timeframes of  femto- to  nanoseconds,  by changes in the 

lengths of chemical bonds, changes of angles between chemical bonds and changes by 

motions of the amino acid side chains. Also, there are slower movements occurring, within  

nano-  to  milliseconds,  which  involves  motions  in  the  helices,  the  receptor  loops  or 

rearrangements of side chains which are embedded in the interior of the protein. While the 
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conformation is changing fast and constantly, the transition between conformational states 

is slow. But due to the fast small movements within the conformational states, the protein  

can adopt a large number of closely related structures (Henzler-Wildman & Kern, 2007).

The stabilization of specific conformational states can be affected by ligands, binding of 

intracellular proteins, by dimerization occurring with other GPCRs, by post translational 

modifications  and by  changes in  pH or  lipid  composition  in  the  membrane where  the 

GPCR is embedded (Latorraca et al., 2017).

When activated by a ligand and subsequent switching of the conformational state of the 

GPCR to an active conformation, the receptor undergoes specific rearrangements which 

seems to  be particular  important  for  its  functionality.  Ligand binding induces a shift  in 

transmembrane  domain  3  (TMD)  with  a  rearrangement  of  TMD3-5,  which  form  new 

contacts with TMD5-TMD6. This causes a rearrangement of TMD6 resulting in a large 

rotation (Venkatakrishnan et al. 2013). It rotates and swings around, away from the center  

of the helix bundle, with a different extent dependent on the receptor (Deupi & Standfuss, 

2011).  This  can  be  the  magnitude  of  14 Å,  which  is  the  case  for  the  β2-Adrenergic 

Receptor in complex with a G-protein (Rasmussen et al., 2011). 

1.3 Heteromeric G-Proteins

Heteromeric  guanine nucleotide binding proteins (G Proteins)  are major players in the 

intracellular signalling cascades which are activated by the activation of GPCRs by their  

respective agonists. These proteins are composed of three subunits named Gα, Gβ and 

Gγ. 

The Gα proteins are classified on their sequence homology and divided into four major 

groups:  Gs,  Gi/0,  Gq/11,  G12/13.  In  total  there are 21 human Gα isotypes which are  

encoded by 16 genes (Downes & Gautam, 1999; Simon et al., 1991). 

The different families of Gα subunits have been shown to regulate adenylyl cyclases (AC),  

cGMP phosphodiesterases,  phospholipase  C  (PLC)  and  RhoGEFs  (Kristiansen,  2004; 

Milligan & Kostenis, 2006). 

For the Gβ/γ subunit, there are 5 Gβ (Clapham & Neer, 1997) and 12 Gγ (Huang et al., 

1999; Simon et al., 1991) isoforms identified in the human and mouse genome. 
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The different Gβ/γ subunits have been shown to regulate the recruitment of GRKs to the 

membrane (GRK2/3),  they are involved in  the regulation of  different  channels like the 

inward rectifier potassium channel (GIRK) or voltage-dependent Ca2+ channels (VDCC), 

and are able to regulate ACs, PLC, phosphoinosite 3 kinase (PI3K) and mitogen-activated 

protein kinases (Map Kinases) (Khan et al., 2013; Smrcka, 2008)(Fig. 4).

The  subunits  Gα  and  Gγ  are  attached  to  the  plasmamembrane  by  post  translational  

modifications. The Gα subunit is N-myristoylated at the N-terminus, a process which is  

amplified by N-palmitoylation (C. A. Chen & Manning, 2001). The Gγ subunit is anchord to 

the membrane through C-terminal prenylation of a specific CAAX motif. The CAAX motif  

determines the type of prenylation (Wedegaertner et al., 1995).

In the inactive state the GDP is bound to the Gα subunit, which is associated with the Gβ/γ  

subunit,  forming  an  heterotrimer  which  is  inactive.  Ligand  binding  to  GPCR  and 

subsequent  structural  rearrangements  induce  conformational  changes  within  the  G-

protein, bound to the GPCR. This promotes the dissociation of guanosine diphosphate 

(GDP) from the Gα subunit (Toyama et al., 2017). Then Guanosine triphosphate (GTP) is 

bound to the GDP free binding site of the GPCR-G-protein complex, which results in a 

conformational  change of  the G-protein triggering the dissociation of Gα and the Gβ/γ  

dimer. Both subunits are now active, interacting with different proteins, triggering a variety 

of intracellular pathways. 

The Gα subunit possesses an intrinsic GTPase activity which triggers the re-association of  

the Gα subunit with the Gβ/γ dimer through hydrolysation of GTP to GDP, inactivating both 

subunits. Modulating proteins which are able to interact with Gα subunits like GTPase-

activating  proteins  (GAPs)  can  increase  the  intrinsic  GTPase  activity,  terminating  the 

activity of the G-protein subunits faster (Kimple et al., 2011; Ross & Wilkie, 2000).
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1.4 G protein coupled receptor Kinases

G protein coupled receptor kinases (GRKs) phosphorylate intracellular domains of GPCRs 

regulating  their  downstream  signaling  through  G  protein  dependent  and  independent  

pathways. 

This protein family consists of GRK1 (Weller et al., 1975), GRK2 (Benovic et al., 1986), 

GRK3 (Benovic et al., 1991), GRK4 (Ambrose et al., 1992), GRK5 (Kunapuli & Benovic, 

1993), GRK6 (Benovic & Gomez, 1993) and GRK7 (Hisatomi et al., 1998; E. R. Weiss et 

al.,  1998).  The  expression  of  GRKs  1  and  7  is  mostly  limited  to  rod  and  cone 

photoreceptors and pinealocytes (Pugh & Lamb, 2000; Somers & Klein, 1984; X. Zhao et 

al., 1997), while isoforms of the other GRKs are expressed in every mammalian cell (E. V. 

Gurevich et al., 2012).

GRKs are associated to  the membrane differently  between subfamilies.  GRKs can be 

prenylated at their c-terminal end (GRK1 and 7), recruited to the membrane through their 

pleckstrin  homology  (PH)  domain  (GRKs  2  and  3),  or  are  membrane  associated  by 

palmitoylation  of  cysteins  in  their  c-terminal  end  (GRKs  4,  5  and  6)  or  through  an 

amphipathic helix which interacts with membrane phospholipids (GRKs 4, 5 and 6).  

GRKs remain in inactive form and are activated due to their interaction with active GPCRs. 

Once  activated  they  are  able  to  phosphorylate  proteins  in  particular  GPCRs,  using 

adenosine  triphosphate  (ATP),  at  side  chains  of  serine  or  threonine  residues.  The 

occurrence  of  GPCR  phosphorylation  can  lead  to  inactivation  of  G-protein  mediated 

signaling of GPCRs through binding of β arrestins (V. V. Gurevich & Gurevich, 2019).  

1.5 β-Arrestin

The arrestin family is composed of 4 proteins named arrestin 1-4. Two of these proteins,  

arrestin  1  and  4  are  expressed  in  the  retina  while  arrestin  2  and  3  are  universally  

expressed and are generally referred to as “β-arrestin 1” and “β arrestin 2” (Alvarez, 2008; 

Ferguson, 2001). Characteristic for the arrestin family is their capability to interact with 

activated G-protein coupled receptors (Peterson & Luttrell, 2017). 

When GPCRs are active, GRKs are able to phosphorylate intracellular aminoacids of the 

GPCR. This generates a binding site for β-arrestins within the active GPCR. The binding of 
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β-arrestins stabilizes the GPCRs active conformation with high agonist affinity, which is 

similar to the complex of ligand-GPCR-heteromeric G-protein in the absence of GTP (De 

Lean et al., 1980; V. V. Gurevich & Benovic, 1997). This complex leads to an exclusion of 

G-proteins to interact with the GPCR, a process called desensitization (Attramadal et al., 

1992; Lohse et al., 1992). Furthermore, both β-arrestins are directly interacting with the 

clathrin heavy chain and the β2 adaptin subunit  of  the adapter protein-2 (AP-2) which 

leads to clustering of  the receptor in clathrin coated pits ultimately leading to receptor  

endocytosis (Fig. 6)  (Goodman et al., 1996; Krupnick et al., 1997; Laporte et al., 1999,  

2000). Dependent on specific phosphorylated serine residues in the carboxyterminal tail of  

the  receptor,  GPCRs  are  either  slowly  or  fastly  dephosphorylated,  recycled  and 

resensitized (Oakley et al., 1999). 

Interaction  of  β-arrestins  with  different  proteins  were  found,  showing  a  possible 

heteromeric  G-protein  independent  signaling  by  GPCRs.  Proteins  which  exhibit 

interactions with β-arrestin include Src family tyrosine kinases (Barlic et al., 2000; Luttrell 

et al., 1999), extracellular signal-regulated kinase 1 and 2 (ERK1/2), (DeFea et al., 2000), 

Ser/Thr  protein  phosphatase  (PP)2A  (Beaulieu  et  al.,  2005),  E3  ubitiquin  ligases  and 

deubiquitinases  (Shenoy et al., 2001, 2008, 2009), second messenger degrading cAMP 

phosphodiesterases  (cyclic  adenosine  monophosphate,  PDE)  (Perry  et  al., 

2002),diacylglycerol kinase (Nelson et al., 2007), elements of the nuclear factor κB (NfκB) 

signaling  pathway  (Witherow  et  al.,  2004) and  regulators  of  small  GTPase  activity 

(Bhattacharya et al., 2002; Claing et al., 2001).
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1.6 5-HT1A Receptor

The 5-HT1A receptor is one of 14 receptors of the 5-HT receptor family. With the exception 

of the 5-HT3 receptor, which is a cation channel, all 5-HT receptors are found in the amine 

group cluster of class A GPCRs (rhodopsin like) (Fredriksson et al., 2003). 
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The receptors are expressed in the central and peripheral nervous system, in the blood, in 

the intestines, in the endocrine system and in the cardiovascular system. 

In the brain, these receptors are mediating the effects of serotonin that is released in the 

nervous system. Upon activation different 5-HT receptors can activate distinct intracellular 

pathways. Among them are the stimulation of adenylyl cyclase by activation of heteromeric 

Gs proteins  (5-HT4,  5-HT6,  5-HT7),  inhibition  of  adenylyl  cyclase  by  activation  of 

heteromergic Gi/o proteins (5-HT1A-F, 5-HT5A and 5-HT2B) activation of phospholipase C by 

activation of  heteromeric  Gq proteins  (5-HT2A-C)  or  permeabilization  of  the cell  plasma 

membrane for cations (5-HT3) (Fig. 6).

The first  successfully cloned receptor  of  this important family  was the 5-HT1A receptor 

(Kobilka et al., 1987). Intensive research could link this receptor to aggression (Miczek et 

al., 1998), sexual activity  (Maswood et al., 1998), food intake  (Gilbert et al., 1988), the 

regulation of the sleep cycle, memory formation (Edagawa et al., 1998), thermoregulation 

(Seletti et al., 1995) and immune function (Iken et al., 1995).  

The 5-HT1A receptor is a class A receptor of  the GPCR family.  Like the other class A 

GPCRs,  the  5-HT1A receptor  is  composed of  three extracellular  and three intracellular 

loops as well as seven TM domains. In addition, the 5-HT1A receptor is palmitoylated at two 

cysteins found at the end of the C-terminus leading to a membrane association of the C-

terminal end forming a fourth intracellular pseudoloop (Papoucheva et al., 2004) (Fig. 7).

In the nervous system, the 5-HT1A receptor is expressed presynaptically in serotonergic 

neurons, acting as an autoreceptor or post synaptically on dendrites of non serotonergic 

neurons acting as a heteroreceptor (Albert, 2012; Altieri et al., 2013; Riad et al., 2000). As 

autoreceptor,  the  5-HT1A receptor  directly  regulates  serotonin  release  of  serotonergic 

neurons by a negative feedback loop diminishing serotonin release (Blier et al., 1998; Innis 

& Aghajanian, 1987; Liu et al., 2005).

The 5-HT1A receptor couples in neurons mainly to the Gi/o pathway leading to the inhibition 

of adenylyl cyclase and therefore to a reduction of cAMP synthesis via Gα proteins  (De 

Vivo & Maayani, 1986; Fargin et al., 1989; Raymond et al., 1989; S. Weiss et al., 1986) . 

Furthermore, its activation leads to activation of GIRK channels and inhibition of voltage 

dependent calcium channels Ca2+ channels by activity of the Gβ/γ subunits in hippocampal 

neurons and dorsal raphe nucleus neurons (Andrade et al., 1986; Colino & Halliwell, 1987; 

Karschin et al., 1991; Penington & Kelly, 1990; Zgombick et al., 1989) . Furthermore, 5-
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HT1A receptor activation can lead to stimulation of adenylyl cyclase (Markstein et al., 1986; 

Shenker  et  al.,  1985) and to  inhibition  of  Phospholipase C activation  (Claustre  et  al., 

1988). Stimulation of adenylyl cyclase by the 5-HT1A receptor seems to happen, when the 

receptor is co expressed with adenyly cyclase II (Albert et al., 1999). The 5-HT1A receptor 

shows high affinity to serotonin with an Kd of 1,8nM ± 0,3 (Ho et al., 1992), underlying its 

excellent use as a candidate to generate a genetically encoded biosensor.

To study the receptor, different selective substances have been developed, leading to an 

activation, partial activation or inhibition of the 5-HT1A receptor. One of the agonist, which 

activate the 5-HT1A receptor is 8-OH-DPAT (Hoyer et al., 1985), which is a non-selective 

agonist, activating also the 5-HT7 receptor  (Lovenberg et al., 1993; Ruat et al., 1993). A 

selective inhibitor of the 5-HT1A receptor is WAY-100635 which is specific for the 5-HT1A 

receptor, able to inhibit its action (Forster et al., 1995). 
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1.7 Green fluorescence protein (GFP)

The  green  fluorescence  protein  (GFP)  of  Aequorea  victoria was  discovered  by  O. 

Shimomura 1962 (Shimomura et al., 1962). Much later, the cDNA was cloned (Prasher et 

al.,  1992) and it  was successfully  expressed in  living organisms  (Chalfie  et  al.,  1994; 

Inouye & Tsuji, 1994). Soon after that, the X-ray structure was solved (Ormö et al., 1996; F. 

Yang et al., 1996). The N- and C-termini of GFP are flexible and are outside of the GFP 

formed structure. GFP consists of 11 beta-strands forming a barrel like structure. They 

surround an alpha-helix in its core which contains the chromophore in its center (Fig. 8). 

The chromophore of GFP consists of Ser/Thr65 – Tyr66 – Gly67 which maturates due to 

several  autocatalytic steps which involves cyclization and dehydration of Ser/Thr65 and 

Gly67 and dehydrogenation of Tyr66 by molecular  oxygen.  The autocatalytic  steps and 

structural  rearrangements  within  the  protein  maturation  process  are  possible  without 

involvement of external cofactors (Tsien, 1998). 

Native GFP forms weak dimers, which could lead to aggregation of proteins fused to GFP. 

This can be prevented by a single point mutation A206K (Zacharias et al., 2002). Native 

GFP consists of two chemically different populations. One has a neutral chromophore and 

is excitable at 395 nm and one has an anionic chromophore which is excitable at 475 nm. 

Both of them emit light in the green color spectrum at 505 nm (Brejc et al., 1997; Cubitt et 

al., 1995; Heim et al., 1994). 

Mutational studies led to the development of GFP variants containing mostly the anionic  

forms of the chromophore suitable for live cell imaging also because of their high folding 

efficiency at 37°C. These variants were called eGFP and Emerald (Cormack et al., 1996; 

Heim et al., 1995). Additional mutational studies produced new fluorescence proteins with 

different brightness, photostability and shifted absorption and emission spectra (Delagrave 

et al., 1995; Ehrig et al., 1995; Griesbeck et al., 2001; Mena et al., 2006, p. 2; Nagai et al.,  

2002; A. W. Nguyen & Daugherty, 2005; Tsien, 1998; T.-T. Yang et al., 1998). 

The rise of fluorescence proteins able to emit light in the full range of visible light led to the 

development of fluorescence sensors, able to detect changes in proteins or protein-protein 

interactions by a process called förster resonance energy transfer (FRET). In this process  

a FRET donor, which has an overlapping emission spectrum with the excitation spectrum 

of a FRET acceptor,  transfers its energy after excitation radiation less to the acceptor 
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which emits the taken-up energy via light. Since this process is strongly dependent on 

proximity and orientation of the two proteins to each other, a high amount of genetically 

encoded sensors were developed using it. 

The  fluorescence  of  GFP  and  its  derivatives,  as  well  as  the  fluorescence  of  other 

fluorescence proteins,  could remain when there is  a  break at  specific  positions in  the 

aminoacid sequence (Baird et al., 1999). In this case, the native N- and C-terminus of the 

protein  is  fused  together  via  a  linker  sequence  to  generate  a  circular  permuted 

fluorescence protein. This circular permuted fluorescence proteins are more sensitive to 

their physiochemical environment compared to their native counterpart. Changes in pH,  

the  temperature  or  structural  changes  in  proteins  linked  to  this  circular  permuted 

fluroescent proteins, can lead to changes in the fluorescence intensity (Baird et al., 1999). 

This  circular  permutation  gave  rise  to  the  creation  of  biosensors,  capable  to  detect 

structural rearrangements in different proteins. 
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1.8 Genetically encoded Biosensors

Genetically  encoded  biosensors  are  developed  to  convert  a  molecular  event  into  a 

detectable  optical  signal.  Therefore,  genetically  encoded  biosensors  have  incredible 

potential  for  new  breakthroughs  in  basic  understanding  of  cellular  processes  and 

understanding mechanisms behind diseases.

Genetically encoded biosensor rely on two main components. One which is capable of  

binding to a molecule or active/inactive state of a protein, and a second one which is able 

to generate a detectable change in a signal. 

The first component of the genetically encoded sensors is often derived from endogenous 

proteins acting in the signaling pathway of interest.  They are sensitive to the targeted 

event and therefore are great candidates for the basis of a genetically encoded biosensor. 

As for the second component, the use of fluorescence proteins, as the readout of cellular  

events  is  extremely  beneficial.  Their  absorption  and  emission  of  light  is  occurring  in 

nanoseconds, thus genetically encoded sensors based on fluorescence proteins are able 

to monitor cellular events which are extremely fast. Furthermore, the use of fluorescence 

proteins enables to detect changes in high spatial resolution, enabling measurements of  

processes in cellular and even subcellular resolution. Moreover, fluorescence proteins do 

not need application of exogenous chemicals for their function and are a rather nontoxic 

technique to be used in cells. They can be expressed randomly in cellular populations or  

their expression can be directed in specific subsets of cellular populations via the use of 

cell  specific  promoters.  With  the  help  of  different  tags,  they are  able  to  label  specific 

compartments  within  the  cells  or  even  specific  microdomains  within  the  same 

compartments of a single cell  (Kim et al., 2019; Tenner et al., 2021). For detection either 

fluorescence  protein  fragments,  a  complete  protein  or  multiple  different  variants  of 

fluorescence proteins are used, which are coupled to the sensing component of genetically 

encoded biosensors, changing their fluorescence behavior by signal induced changes in 

the sensing component.

Today, there are a plethora of different genetically encoded biosensors available, able to  

detect different targets. With them, it is possible to measure different pathways or cellular  

behaviors, ranging from detecting phases of the cell cycle (Bajar et al., 2016; Hahn et al., 

2009; Sakaue-Sawano et al., 2017; Sugiyama et al., 2009), molecular crowding inside the 
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cell (Boersma et al., 2015), changes in pH (Awaji et al., 2001; Mahon, 2011), changes in 

membrane voltage  (Han et al.,  2013; Hochbaum et al.,  2014;  Piatkevich et al.,  2018), 

concentration of molecules like ATP (Saito et al., 2012; Yaginuma et al., 2014; Yoshida et 

al., 2016), cAMP (Mukherjee et al., 2016; Odaka et al., 2014; Ohta et al., 2018), cGMP 

(Bhargava et al., 2013; Niino et al., 2010), carbon monoxide (Wang et al., 2012), glucose 

(Fehr et al., 2003; Veetil et al., 2010), NADH (Y. Zhao, Jin, et al., 2011), O2 (Erapaneedi et 

al., 2016), concentration of ions like Ca2+ (Nakai et al., 2001; Ohkura et al., 2012; Y. Zhao, 

Araki, et al., 2011), Cl- (Kuner & Augustine, 2000), Mg2+ (Lindenburg et al., 2013), Zn2+ 

(Evers et al., 2007), the activity of enzymes like akt (Yoshizaki et al., 2006), ERK (Harvey 

et al., 2008), JNK (Fosbrink et al., 2010), PKA (J. Zhang et al., 2001), caspase 3 (Tyas et 

al., 2000), lipids like DAG (Sato et al., 2006), reduction oxidation events measuring H2O2 

(Belousov et al., 2006), H2S  (S. Chen et al., 2012), post translational modifications like 

βArrestin2 ubiquitation  (Perroy et al., 2004), histone acetylation  (Sasaki et al., 2009) or 

ubitiquination (Ganesan et al., 2006).

For measuring neurotransmitters, different approaches have been successfully employed 

(Fig. 9a-c). 

One  of  the  earliest  approaches  to  detect  neurotransmitters  was  the  utilization  of 

periplasmic binding proteins (PBPs) from bacteria. Started in 2005, the PBPs ybeJ and 

MglB were used with the combination of FRET to generate genetically encoded biosensors 

capable to detect glutamate  (Deuschle et al.,  2005; Hires et al.,  2008; Okumoto et al., 

2005). These sensors were further optimized (Okada et al., 2009) or altered, that instead 

of  FRET,  the  fluorescence  change  of  cpGFP was  utilized  to  generate  a  measurable 

fluorescence  response  upon  binding  of  glutamate  (Marvin  et  al.,  2013).  Further 

improvements  have led  to  the  development  of  sensors  with  faster  kinetics  capable  of 

measuring high frequency burst of glutamate release (Helassa et al., 2018).

Besides the tremendous improvements of glutamatergic genetical encoded sensors based 

on  PBPs,  further  PBP  sensors  were  built  for  glycine  (W.  H.  Zhang  et  al.,  2018), 

acetylcholine (Borden et al., 2020), GABA (Marvin et al., 2019), and serotonin (Unger et 

al., 2020).

Apart  from PBPs,  another  strategy to  measure  the release from neurotransmitters via 

genetical encoded sensors, is the usage of cell-based biosensors, CNiFERs (cell-based 

neurotransmitter fluorescent engineered reporters). In this technique, cells expressing a 
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chosen Gq coupling metabotropic receptor are used in tandem with a genetically encoded 

Ca2+ indicator  as  the  detector  of  neurotransmitter  releasing  events.  These  cells  are 

implanted into the brain areas of interest for investigation of specific neurotransmitters. 

This technique was successfully employed for acetylcholine  (Q.-T. Nguyen et al., 2010), 

norepinephrine and dopamine (Muller et al., 2014). Furthermore, its use was expanded by 

generating  CNiFERs  expressing  ligand-gated  ion  channels  in  tandem with  genetically 

encoded FRET sensor for detection of neurotransmitter release (Yamauchi et al., 2011).

Beside  CNiFERs  and  PBPs,  in  a  different  approach  to  detect  the  release  of 

neurotransmitters, genetically encoded biosensors based on GPCRs are developed. First 

studies investigated GPCR receptor activation mechanism with the use of FRET (Malik et 

al., 2013; Vilardaga et al., 2003). FRET capable fluorescence proteins were either inserted 

into the third intracellular loop and fused to the C-terminus of the receptor (Vilardaga et al., 

2003), or fused in series to the C-terminus of the receptor with the addition of the alpha 

helix forming C-terminus of a G-protein  (Malik et al., 2013). Later the circular permuted 

version of GFP (cpGFP) was used, where substitution of the third intracellular loop by 

cpGFP led to the development of sensors capable of detection of dopamine (Patriarchi et 

al., 2018; F. Sun et al., 2018), acetylcholine (Jing et al., 2018), norepinephine (Feng et al., 

2019) and serotonin (Wan et al., 2021).

To complement the possibilities arising from genetically encoded biosensors, red shifted 

versions  are  developed  (Patriarchi  et  al.,  2020) enabling  dual  color  imaging  or  new 

combinations using simultaneous stimulation via optogenetics.
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1.9 Generation of a serotonin sensor

In  my  thesis,  the  generation  of  a  genetically  encoded  serotonin  sensor  sDarken is 

discussed. In the beginning random substitution of the third intracellular loop o the 5-HT1A 

receptor with cpGFP were carried out. The cpGFP was either directly inserted or flanked 

by linkers. Later, the approach published by Patriachi et al. 2018 was used. The sensor 

was created by substitution of the third intracellular loop of the 5-HT1A receptor with circular 

permuted  GFP (cpGFP)  flanked  by  linker  sequences  which  are  five  aminoacids  long. 

Mutations of specific aminoacid sequences in the linker sequences led to a generation of 

protein  libraries  of  which  some  candidates  showed  changes  in  fluorescence  upon 

application of serotonin.  Of these initial  mutations, one was chosen which exhibit  high 

baseline fluorescence while still showing a great response upon serotonin application. This 

mutant was called sDarken.

sDarken showed high  binding  affinity  to  serotonin  in  the  nanomolar  range.  Repetitive 

stimulation of sDarken with serotonin was able to generate a repetitive response. Further 

investigation  showed,  that  sDarken is  highly  specific  for  serotonin  compared  to  other 

neurotransmitters and the precursor and metabolite of serotonin. Also, because of the 5-

HT1A receptor backbone, the agonist 8-OH-DPAT as well as the 5-HT1A receptor antagonist 

Way-100635 could effectively initiate the sensor response, or inhibit responses elicit by 

serotonin respectively. 

Substitution of cpGFP with a circular permuted form of superfolder GFP, cpsfGFP was able 

to show an even higher affinity for serotonin. This mutant was also able to show repetitive  

responses and was highly specific for serotonin. Furthermore, single point mutations within 

the 5-HT1A receptor backbone of the sensor protein led to a new sensor, with lower affinity 

for serotonin (micromolar range). 
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2 Materials and Methods

2.1 Materials

2.1.1 Chemicals

The 1Kb DNA Ladder plus and Midori Green advanced DNA Stain was purchased from 

Nippon Genetics Europe GmbH. Agarose was purchased from Biozym. 5-Hydroxyindole-3-

acetic acid (5-HIAA), (±)-8-Hydroxy-2-(dipropylamino)-tetralin-hydrobromid (8-OH-DPAT), 

Acetylcholine  chloride,  Dopamine  hydrochloride,  Histamin  dyhydrochloride,  L-Glutamic 

acid,  L-Norepinephrine  hydrochloride,  L-Trypthophan,  WAY-100365  maleate  salt  (WAY-

100635) and Y-Aminobutric acid (GABA) were purchased from Sigma Aldrich. Carbenicilin 

disodium salt,  Chloramphenicol, Ethanol  ≥99,8%, p.a.,  Kanamycinsulfate,  750 I.U./mg, 

LB-Agar (Luria/Miller),  LB-Medium (Luria/Miller),  Penicillin,  Serotonin Hydrochloride and 

Streptomycin were purchased from Carl  Roth. Purple Gel loading dye and fetal  bovine 

serum were purchased from Thermo Fischer Scientific. Isopropanol was purchased from 

VWR chemicals.  Polyethylenimine (PEI, branched, average Mw ~25000) was purchased 

from Aldrich chemistry. 

2.1.2 Kits for Molecular biology

The GeneJET Plasmid Miniprep Kit was purchased from Thermo Fisher Scientific. The In-

Fusion® HD Cloning Kit was purchased from Takara Bio USA. The NucleoSpin® Gel and 

PCR Clean-up, NucleoBond® Xtra Midi,  NucleoBond® Xtra Midi EF and NucleoBond® 

Xtra Maxi EF kits were purchased from Macherey-Nagel. 

2.1.3 Cells

Human Embryonic Kidney Cells SV40 transformed (293tsA1609neo) were purchased from 

Sigma Aldrich. Competent Stellar Cells (E.Coli, HST08 strain, chemically competent) were 

purchased from Takara Bio USA.
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2.1.4 Enzymes

NotI-HF,  HindIII-HF and EcoRI-HF were  purchased  from New England Biolabs GmbH 

(NEB). PrimeSTAR MAX DNA polymerase and In-Fusion Master Mix were included in the 

In-Fusion® HD Cloning Kit purchased from Takara Bio USA.

2.1.5 Programs used

Nippon Genetics CameraStudio (Nippon Genetics) was used for taking pictures in the gel 

documentation system. HoKAWO 3.0 (Hamamatsu Photonics Deutschland GmbH) was 

used  for  camera  control  in  the  measurements  carried  out.  ImageJ  FiJi  (ImageJ 

Community) was used for image processing. Inkscape (Inkscape Community) was used 

for figure creation. LibreOffice (The document foundation) was used for word processing. 

Rstudio (Rstudio PBC) was used for plot generation. SnapGene Viewer (Insightful sience)  

was used to built and visualize DNA plasmids. Zotero (Corporation for Digital Scholarship,  

previously Center for History and New Media at George Mason University) was used for 

managing citations and bibliography.

2.1.6 Buffers

PBS 1x

2,7 mM  KCl

138 mM  NaCl 

0,5 mM  MgCl2

0,9 mM  CaCl2

1,47 mM  KH2PO4

8 mM  Na2HPO4

TAE 1x

40 mM Tris base

1 mM EDTA

20 mM glacial Acetic acid
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2.1.7 Solutions for DNA Isolation (Mini preparation)

Solution I (100     mL)  

50 mM Tris base

10 mM Na2EDTA x H2O

10mg RNAse A

pH 8

Solution II (200     mL)  

200 mM  NaOH

35 mM  SDS

Solution III (200     mL)  

3 M  potassium acetate

glacial acetic acid to pH 5.5
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2.2 Methods

2.2.1 Polymerase chain reaction

DNA fragment amplification was done by polymerase chain reactions (PCR). Primers for 

PCRs were synthesized by Thermofischer scientific. Components needed for the PCRs 

were purchased from Takara Bio USA as the PrimeStar® Max Premix, which contained 

Buffer,  dNTPs,  Ions  and  the  polymerase  (PrimeSTAR  Max  DNA Polymerase).  PCR 

reactions  containing  premix,  template  and  primers  were  incubated  in  a  PCR  cycler 

(FastGene Thermocycler,  Nippon Genetics Europe GmbH). A standard PCR procedure 

was done following the next schemes: 

Table 1: PCR pipetting scheme

PCR Premix (Takara) 2x 5µL

Primer 1 1 µL (1 µmol)

Primer 2 1 µL (1 µmol)

Template 1 µL (1 ng/µL)

Water 2 µL

Total Volume 10 µL

Table 2: PCR program settings

Denaturation 1 min 94°C

30x

Denaturation 20 sec 94°C

Annealing 20 sec 60°C

Elongation 15 sec/kb 72°C

Elongation 5 min 72°C

Incubation Infinite 4°C
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Products generated with PCR were used in downstream cloning applications namely In-

Fusion  cloning.  Therefore  primers  often  contained  overhangs  in  their  5’-end, 

complementary to ends of other PCR products or the ends of the restricted plasmids. 

2.2.2 Plasmid restriction

Plasmids  were  digested  by  restriction  enzymes  (NotI-HF,  HindIII-HF,  EcoRI-HF;  New 

England Biolabs GmbH) using following standard restriction scheme:

Table 3: Restriction pipetting scheme

Restriction Control

Template 5 µL 5 µL

Restriction Enzyme 1 1 µL -

Restriction Enzyme 2 1 µL -

Buffer (CutSmart 10x) 3 µL 3 µL

Water 20 µL 22 µL

Total Volume 30 µL 30 µL

Samples were incubated at 37°C shaking at 300 rpm (New Brunswick TM Innova® 42/42R 

Incubator, Eppendorf).

The two vectors used as a backbone for the generation of the constructs are shown in the 

appendix  (see  6.2).  The  pAAV-vector  was  restricted  using  EcoRI-HF and  HindIII-HF 

opening the multiple cloning site for the insertion of genes of interest downstream of the 

promoter  region  (CMV  promoter).  The  pN1-Vector  was  restricted  using  the  enzymes 

HindIII-HF and NotI-HF, cutting out the mCherry coding sequence, generating an insertion 

site for the DNA of interest downstream of the promoter region (CMV promoter). 

Inserts  generated  via  PCR  as  well  as  restricted  plasmids  were  separated  using  gel 

electrophoresis. 
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2.2.3 Gel electrophoresis

DNA was separated by gel electrophoresis using gels containing 1,5% Agarose (Biozym) 

and visualized by Midori green advanced DNA Stain (Nippon Genetics Europe GmbH), 

which was added according to the manufacturer information. The gels were placed in a 

electrophoresis  chamber  (Horizontal  Gel  Electrophorese  Chamber  EV1450,  LTF 

Labortechnik) containing 1x TAE buffer (40 mM Tris base, 1 mM EDTA, 20 mM acetic acid) 

and a voltage of 120 V was applied for 35 min separating DNA fragments according to 

their length. 

Afterwards gels were transferred to the FAS-Digi PRO Gel Documentation System (Nippon 

Genetics Europe GmbH) and DNA visualized by blue light excitation. Pictures were taken 

using the attached camera (EOS200D, Canon). DNA bands were cut out and transferred 

into a 1,5 mL reaction tube for subsequent DNA extraction.

2.2.4 Gel extraction

Gel slices were purified using the NucleoSpin® Gel  and PCR Clean-up kit  (Macherey 

Nagel) according to the protocol of the manufacturer. 

200 µL Buffer NTI per 100 mg of gel was added to the reaction tube containing the gel with 

the DNA of interest, The reaction tube was incubated at 50°C for ~15 min until the gel was 

completely dissolved. The solution was loaded into a NulceoSpin® Gel and PCR Clean-up 

Column which was placed onto a 1,5 mL reaction tube. The sample was centrifuged for 

30 s at 11000 x g and the flow-through discarded. Afterwards the tube was washed twice 

by adding 600 µL Buffer NT3 with subsequent centrifugation for 30 s at 11000 x g. The 

flow-through  was  discarded.  Next,  the  tube  was  dried  via  centrifugation  for  1 min  at 

11000 g. The column was placed into a new 1,5 mL reaction tube and 30 µL of Buffer NE 

was added to the column. Afterwards the reaction tube was incubated for 1 min at RT 

(room temerature). Following, the tube was centrifuged for 1 min at 11000 x g and the 

eluate stored at - 20°C for further use. 
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2.2.5 Cloning

In-Fusion  cloning  (Takara  Bio  USA)  was  used  to  fuse  the  DNA  fragments  with 

complementary overlapping ends together. In the In-Fusion reaction, DNA Fragments and 

a linearized vector containing complementary ends are hybridizing to each other promoted 

by  the  vaccinia  virus  DNA polymerase.  They  are  ultimately  joined  through  the  repair  

mechanisms available in E.Coli (Irwin et al., 2012) (Fig. 10). 

The In-Fusion reactions were prepared using following standard scheme:

Table 4: In-Fusion pipetting scheme

In Fusion Master Mix (5x) 0,5 µL

DNA Fragments ~10 ng/µL per Fragment

Linearized vector ~5 ng/µL

Water Fill up to 2,5 µL

Total Volume 2,5 µL
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2.2.6 Cloning of plasmids

In an In-Fusion reaction, a linearized vector and multiple DNA fragments were assembled 

into an plasmid. The overhangs needed for this reaction were introduced by the primers 

used  for  the  PCR  reactions  of  the  DNA fragments.  For  the  generation  of  plasmids 

containing the pAAV backbone, the vector pAAV-CMV-MCS was restricted with EcoRI-HF 

and HindIII-HF. For the generation of plasmids containing the pN1 backbone, the plasmid 

pN1-mApple was restricted with the restriction enzymes HindIII-HF and NotI-HF.

As the template for the amplification of the 5-HT1A receptor, the open reading frame (ORF) 

for the Human 5-HT1A receptor (Uniprot: P08908) which was present on a pENTR vector 

(pENTR-5-HT1A.mCerulean) was used. Furthermore other plasmids, used in the cloning 

procedures were purchased from Addgene: sfGFP-N1 was a gift from Michael Davidson & 

GeoffreyWaldo (Addgene plasmid #54737; RRID:Addgene_54737), mApple-N1 was a gift  

from  Michael  Davidson  (Addgene  plasmid  #54567;  RRID:Addgene_54567),  pN1-

GCaMP6m-XC  was  a  gift  from  Xiaodong  Liu  (Addgene  plasmid  #111543;  RRID: 

Addgene_111543), pAAV-Syn-ChrimsonR-tdT was a gift from Edward Boyden (Addgene 

plasmid #59171; RRID: Addgene_59171), pMSCV-IRES-mCherry FP was a gift from Dario 

Vignali (Addgene plasmid # 52114; RRID:Addgene_52114) and the pAAV-CMV plasmid 

was brought from Takara Bio.

The primers sequence of primers used throughout the cloning procedures are present in 

the appendix (see 6.1). 

2.2.6.1 Cloning of pAAV-CMV-1AcpGFPS I

The vector pAAV-CMV-1AcpGFPS I was generated by an In-Fusion reaction carried out 

using three inserts combined with a restricted pAAV-MCS vector.

The  first  insert  was  ampliefied  by  PCR  using  the  primers  “For-pAAV-5-HT1As”  and 

“S1A3LcGIII R” with the plasmid pENTR 5-HT1A.mCerulean as the template.

The second insert was amplified using the primers “cpGFP F” and “cpGFP R” with the 

template pN1-GCaMP6m-XC.

The third insert was amplified using the primers “S1A3LcGIII F” and “5HT1Ae-Rev-pAAV”. 

The vector pENTR 5-HT1A.mCerulean was used as the template.
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2.2.6.2 Cloning of pAAV-CMV-1AcpGFPS II

The vector pAAV-CMV-1AcpGFPS II was built using three PCR products combined with a 

restricted pAAV-MCS vector joined together in an In-Fusion reaction.

The first piece was generated by PCR amplification using the primers “For-pAAV-5-HT1As” 

and “S1A3LcG IV R” with the plasmid pENTR 5-HT1A.mCerulean as the template.

The second PCR product was created using the primers “cpGFP F” and “cpGFP R” with 

the template pN1-GCaMP6m-XC.

The third PCR product was built using the primers “S1A3LcG IV F” and “5HT1Ae-Rev-

pAAV”. The vector pENTR 5-HT1A.mCerulean served as the DNA template in this reaction.

2.2.6.3 Cloning of pAAV-CMV-1AcpGFPS III

The vector pAAV-CMV-1AcpGFPS III was generated by In-Fusion reaction each carried 

out using three inserts combined with a restricted pAAV-MCS vector.

The  first  insert  was  produced  by  PCR  using  the  primers  “For-pAAV-5-HT1As”  and 

“S1A3LcG IV FL R” with the plasmid pENTR 5-HT1A.mCerulean as the template.

The second insert was amplified using the primers “cpGFP F” and “cpGFP R” with the 

template pN1-GCaMP6m-XC.

The third inserts were amplified using the primers “S1A3LcG IV FL F” and “5HT1Ae-Rev-

pAAV”. The vector pENTR 5-HT1A.mCerulean was as the template.

2.2.6.4 Cloning of pAAV-CMV-1AcpGFPS IV

The vector pAAV-CMV-1AcpGFPS IV was generated by In-Fusion reaction each carried 

out using three inserts combined with a restricted pAAV-MCS vector.

The  first  insert  was  produced  by  PCR  using  the  primers  “For-pAAV-5-HT1As”  and 

“S1A3LcG VI FL R” with the plasmid pENTR 5-HT1A.mCerulean as the template.

The second insert was amplified using the primers “cpGFP F” and “cpGFP R” with the 

template pN1-GCaMP6m-XC.

The third inserts were amplified using the primers “S1A3LcG VI FL F” and “5HT1Ae-Rev-

pAAV”. The vector pENTR 5-HT1A.mCerulean was as the template.
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2.2.6.5 Cloning of pAAV-CMV-S1A3LcG splitG I

The  vector  pAAV-CMV-S1A3LcG  splitG  I  was  generated  in  an  In-Fusion  reaction 

containing the restricted pAAV-MCS and four inserts created by PCR reactions.

The  first  insert  was  amplified  by  PCR  using  the  primers  “For-pAAV-5-HT1As”  and 

“S1A3LsplitG II FL R” and the pENTR 5-HT1A.mCerulean as a template.

The second insert was generated via PCR using the primer pair “FP F” and “cpGFP R” 

with the template eGFP in a PCR reaction.

The third insert  was generated via  PCR using the primer pair  “S1A3LcGIII  FL F”  and 

“S1A3LsplitG II dou FL 1AFP 2 R” with the template pENTR 5-HT1A.mCerulean.

The fourth insert was generated via PCR using the primer pair “cpGFP F” and “GFP pAAV 

R” with the template eGFP.

2.2.6.6 Cloning of pAAV-CMV-S1A3LcG splitG II

The generation of vector pAAV-CMV-S1A3LcG splitG II was similar to the generation of the 

vector pAAV-CMV-S1A3LcG splitG.

The vector was created in an In-Fusion reaction containing the restricted pAAV-MCS and 

four inserts created by PCR reactions. 

The  first  insert  was  amplified  by  PCR  using  the  primers  “For-pAAV-5-HT1As”  and 

“S1A3LcGIII FL R” and the plasmid pENTR 5-HT1A.mCerulean as a template.

The second insert was generated via PCR using the primer pair “cpGFP F” and “FP R” 

with the template eGFP in a PCR reaction.

The third insert was generated via PCR using the primer pair “S1A3LsplitcG I FL F” and 

“S1A3LsplitcG IdouFL R” with the template pENTR 5-HT1A.mCerulean.

The fourth insert was generated via PCR using the primer pair “FP F” and “hacpGFP-

pAAV” with the template eGFP.

2.2.6.7 Cloning of pN1-CMV-dLight M#

The vectors pN1-CMV-dlight M# were generated by random mutations. The vector library 

was created in an In-Fusion reaction containing the restricted pN1-mApple vector and 

three inserts, two of which containing radnom mutations in specific linker regions.
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The first insert was generated via PCR with the primers “N1 1A HIII F” and “1A Li cG DL1 

M R”. As a template, the plasmid pENTR 5-HT1A.mCerulean was used.

The second insert was generated with the primer pair “cpGFP F” and “cpGFP R”, using the 

template pN1-GCaMP6m-XC.

The third insert was generated with the primers “1A Li cG DL1 M F” and “1A N1 NI R” also 

using the plasmid pENTR 5-HT1A.mCerulean as a template.

2.2.6.8 Cloning of pN1-CMV-2AS-M#

The vectors pN1-CMV-dlight M# were generated by random mutations. The vector library 

was created in an In-Fusion reaction containing the restricted pN1-mApple vector and 

three inserts with two containing the random mutations.

The first insert was generated via PCR with the primers “N1 1A HIII F” and “S1A Li 2AS M 

R”. As a template, the plasmid pENTR 5-HT1A.mCerulean was used.

The second insert was generated with the primer pair “cpGFP F” and “cpGFP R”, using the 

template pN1-GCaMP6m-XC.

The third insert was generated with the primers “S1A Li 2AS M F” and “1A N1 NI R” also 

using the plasmid pENTR 5-HT1A.mCerulean as a template.

2.2.6.9 Cloning of pN1-CMV-TC

The In-Fusion reaction was used to generate a plasmid library with plasmids named pN1-

CMV-TC M#. These plasmids contained different mutations at specific positions within their 

sequence.

The In-Fusion reaction contained 2 inserts and the restricted vector.

The first insert was amplified using the primer pairs “N1 1A HIII F” and “cpGFP R”. As a 

template, the plasmid pN1-CMV-2AS-M24 was used.

For the second insert the primer pairs “S1A Li 2AS M F” “1A N1 NI R” were used. The 

plasmid pENTR 5-HT1A.mCerulean served as the DNA template.
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2.2.6.10 Cloning of pN1-CMV-RR

The In-Fusion reaction was used to generate a plasmid library with plasmids named pN1-

CMV-RR M#. These plasmids contained different mutations at specific positions within the 

n-terminal linker sequence.

The In-Fusion reaction contained 2 inserts and the restricted vector.

For the first insert the primer pairs “N1 1A HIII F” and “S1A Li 2AS M R” were used in a 

PCR reaction containing the plasmid pENTR 5-HT1A.mCerulean as a template.

For the second insert  the primer pairs “cpGFP F” and “1A N1 NI R” were used. As a 

template, the plasmid pN1-CMV-2AS-M24 was used.

2.2.6.11 Cloning of pN1-CMV-CF

The In-Fusion reaction was used to generate a plasmid library with plasmids named pN1-

CMV-CF M#. These plasmids contained different mutations at specific positions within the 

n-terminal linker region.

The In-Fusion reaction contained three inserts and the restricted vector.

For the first insert the primer pairs “N1 1A HIII F” and “S1A Li 2AS M R” were used in a 

PCR reaction containing the plasmid pENTR 5-HT1A.mCerulean as a template.

The second insert was generated with the primer pair “cpGFP F” and “cpGFP R”, using the 

template pN1-GCaMP6m-XC.

For  the  third  insert  the  primer  pairs  “2AS CF F”  and “1A N1 NI  R”  were  used.  As a 

template, the plasmid pENTR 5-HT1A.mCerulean was used.

2.2.6.12 Cloning of pN1-CMV-CW

The In-Fusion reaction was used to generate a plasmid library with plasmids named pN1-

CMV-CW M#. These plasmids contained different mutations at specific positions within the 

n-terminal linker region.

The In-Fusion reaction contained three inserts and the restricted vector.

For the first insert the primer pairs “N1 1A HIII F” and “S1A Li 2AS M R” were used in a 

PCR reaction containing the plasmid pENTR 5-HT1A.mCerulean as a template.
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The second insert was generated with the primer pair “cpGFP F” and “cpGFP R”, using the 

template pN1-GCaMP6m-XC.

For the third insert  the primer pairs “2AS CW F” and “1A N1 NI R”  were used.  As a  

template, the plasmid pENTR 5-HT1A.mCerulean was used.

2.2.6.13 Cloning of pN1-CMV-L2ASCF

The In-Fusion reaction was used to generate a plasmid library with plasmids named pN1-

CMV-L2ASCF  M#.  These  plasmids  contained  different  mutations  and  a  changed 

substitution site in the n-terminal linker region.

The In-Fusion reaction contained two inserts and the restricted vector.

For the first insert the primer pairs “N1 1A HIII F” and “1A Li cG DL1 M R” were used in a  

PCR reaction containing the plasmid pENTR 5-HT1A.mCerulean as a template.

For the second insert  the primer pairs “cpGFP F” and “1A N1 NI R” were used. As a 

template, the plasmid pN1-CMV-2AS-M34 was used.

2.2.6.14 Cloning of pN1-CMV-NGN

The In-Fusion reaction was used to generate a plasmid library with plasmids named pN1-

CMV-M34-NGN#.  These plasmids contained mutations at aminoacids of  the n-terminal 

linker region, not mutated in earlier mutation rounds. 

The In-Fusion reaction contained two inserts and the restricted vector.

For the first insert the primer pairs “N1 1A HIII F” and “M34 NG Mut R” were used in a PCR 

reaction containing the plasmid pENTR 5-HT1A.mCerulean as a template.

For the second insert  the primer pairs “cpGFP F” and “1A N1 NI R” were used. As a 

template, the plasmid pN1-CMV-2AS-M34 was used.

2.2.6.15 Cloning of pN1-CMV-NGC

The In-Fusion reaction was used to generate a plasmid library with plasmids named pN1-

CMV-M34-NGC#.  These plasmids contained mutations at  aminoacids of  the c-terminal 

linker region, not mutated in earlier mutation rounds. 

The In-Fusion reaction contained two inserts and the restricted vector.
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For the first insert the primer pairs “N1 1A HIII F” and “cpGFP R” were used in a PCR  

reaction containing the plasmid pENTR 5-HT1A.mCerulean as a template.

For the second insert the primer pairs “M34 NG Mut F” and “1A N1 NI R” were used. As a  

template, the plasmid pN1-CMV-2AS-M34 was used.

2.2.6.16 Cloning of pN1-CMV-H-sDarken

The  In-Fusion  reaction  was  used  to  generate pN1-CMV-H-sDarken.  This  plasmid 

contained a circular permuted form of superfolderGFP. In an In-Fusion reaction four inserts 

and the restricted pN1 vector were joined together.

Therefore, for generating the first insert, the primer pairs “N1 1A HIII F” and “M34 sfcpGFP 

R” were used in a PCR reaction containing the plasmid  pENTR 5-HT1A.mCerulean as a 

template.

For the second insert  the primer pair  “sfcpGFP F” and “FP R” was used to amplify  a 

specific DNA fragment of the template plasmid sfGFP-N1.

For the third insert, the primers “sfcpGFP builder F” and “sfcpGFP R” were used in a PCR 

reaction also containing the sfGFP-N1 as a template. 

The fourth piece was generated via PCR with primer “M34 sfcpGFP F” and “1A N1 NI R” 

and the plasmid pENTR 5-HT1A.mCerulean. 

2.2.6.17 Cloning of pN1-CMV-M34-D116N

For the introduction of the single point mutation in the coding sequence of sDarken, PCRs 

and a subsequent In-Fusion reaction were carried out.  In the In-Fusion reaction,  PCR 

products were integrated into a restricted pN1 plasmid. For the reaction two inserts were 

generated via PCR with the plasmid pN1-CMV-2AS-M34 as a template. The first insert 

was amplified using the primer “N1 1A HindIII F” together with the primer “M34KDMut2 R”. 

The second insert  was amplified  using  the primer  “M34KDMut2 F”  combined with  the 

reverse primer “1A N1 NI R”. For both reactions the plasmid pN1-CMV-2AS-M34 served as 

a template. Both inserts were integrated into a restricted pN1 plasmid (HindIII-HF, NotI-HF)  

using In-Fusion cloning. 
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2.2.6.18 Cloning of pN1-CMV-sDarken-mCherry

For attachment of mCherry to the ORF of  sDarken, the  sDarken coding sequence was 

amplified excluding the stop codon, using the plasmid pN1-CMV-2AS-M34 and the primers 

“N1 1A HindIII F” and “1A mCh R”. The DNA sequence coding for mCherry was amplified 

using primers “mCherry F” and “mCh N1 R” with pMSCV-IRES-mCherry FP as a template. 

Both  amplificates  were  incorporated  into  a  restricted  pN1  vector  using  the  In-Fusion 

reaction.

2.2.7 Transformation

2 µL of In-Fusion reaction product was added to 20 µL of chemically competent stellar cells 

(Takara Bio USA). Next, cells were incubated on ice for 20 min, following a 45 sec heat 

shock  at  42°C.  Then,  cells  were  incubated  for  2 min  on  ice.  Afterwards  200 µL SOC 

medium (Takara Bio USA) was added and the cells were incubated for 1 h at 37°C. After 

incubation,  cells  were  plated  on Agar  plates  containing  Kanamycin (Kanamycinsulfate, 

Carl Roth) if the pN1 vector backbone was used, or Carbinicilin (Carbenicilin disodium salt,  

Carl Roth) if the pAAV vector backbone was used. Plates were incubated over night at 

37°C (New Brunswick TM Innova® 42/42R Incubator, Eppendorf).

After incubation, colonies were picked with a sterile pipette tip and transferred into cell  

culture tubes containing LB-Broth media (LB-Medium [Luria/Miller], Carl Roth). Cells were 

incubated over night at 37°C shaking with 300 rpm (New Brunswick TM Innova® 42/42R 

Incubator). 

2.2.8 Mini Preparations

2.2.8.1 Commercial Mini Preparation for mutant screening

Plasmid DNA Purification of E.Coli was carried out using the GeneJET Plasmid Miniprep 

Kit (ThermoFisher Scientific) according to the protocol provided by the manufacturer. 

8 mL of overnight culture was centrifuged with 6000 x g for 5 min and the supernatant 

discarded.  Cells  were  completely  resuspended  in  250 µL Resuspension  Solution  and 
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transferred into a 1,5 mL reaction tube. Next 250 µL Lysis Solution was added and the 

tube inverted five times. Following, 350 µL Neutralization Solution was added and the tube 

was inverted again five times. The tubes were centrifuged for 5 min at 13000 x g and the 

resulting supernatant was transferred onto the GeneJET spin columns. The columns were 

centrifuged for 1 min and the flow through discarded. The columns were washed two times 

by adding 500 µL Wash solution to the tubes with subsequent centrifugation for 60 sec at 

13000 x g. The flow-through was discarded. Next, the column was centrifuged again at 

13000 x g for 1 min and afterwards the GeneJET spin column was transferred onto a new 

1,5 mL reaction tube. Lastly, 50 µL of Eluation buffer was added onto the tube, incubated 

at RT for 2 min and the DNA eluted via centrifugation at 13000 x g for 2 min. The DNA was 

stored at -20 °C for further use.

2.2.8.2 Mini preparation for correct vector assembly screening

Mini preparation to screen colonies for the correct assembly of plasmid DNA were done 

using following protocol.

1,5 mL of overnight colonies were centrifuged at 6000 g for 5min. The supernatant was 

discarded and the remaining pellet resuspended in 100 µL Solution I (50mM Tris base, 

10 mM Na2EDTA x H2O, RNAse A, pH 8). Afterwards the cells were lysed with 100 µL 

Solution II (200 mM NaOH, 35 mM SDS) and the lysis stopped after around 10 sec with 

the  admission  of  solution  III  (3 M  potassium  acetate,  conc.  acetic  acid  to  ph  5.5). 

Afterwards, the samples were centrifuged and the supernatant transferred into reaction 

tubes containing 500 µL 96% EtOH and incubated at -20°C for 15 min. After incubation, 

samples were vortexed briefly and centrifuged at 15000 g for 5 min. The supernatant was 

discarded  and  500 µL  70%  EtOH  was  added  to  the  samples.  The  samples  were 

centrifuged for 3 min at 15000 g, the supernatant was discarded and the remaining pellets 

were dried. Afterwards pellets were resuspended in 30 µL ddH2O. Lastly each sample was 

checked for correct vector assembly by DNA restriction using the resuspended pellet as a 

template and the two restriction enzymes flanking the inserted DNA sequence. 

Overnight colonies of samples identified containing the correct insert were used to prepare 

new overnight colonies by inoculate 100 mL of LB-Broth media with the samples following 

incubation at 37°C and shaking with 300 rpm until the next day.
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2.2.9 Midi Preparation

Larger Scale Plasmid DNA purification was carried out using the NucleoBond® Xtra Midi 

Kit (Macherey Nagel) according to the protocol provided by the manufacturer. 

100 mL of over night cultures were transferred into 2x 50 mL Falcon tubes and centrifuged 

with 6000 x g for 10 min at 4°C (Centrifuge 5804-R, Eppendorf).  The flow-through was 

discarded and the pellets resuspended with a total of 8 mL Buffer RES. Next, cells were 

lysed adding 8 mL Buffer LYS, inverting the tube 5 times and incubating for 5 min. While 

lysis, NucleoBond® Xtra Columns were equilibrated by adding 12 mL Buffer EQU applying 

the buffer onto the rim of the filter. The lysis was stopped using 8 mL Buffer NEU and 

inverting the tube until solution was completely colorless. The homogeneous solution was 

directly loaded onto the Column filter. The flow-through was discarded and the column 

filter washed with 5 mL Buffer EQU. The filter was removed and the column washed with 

8 mL Buffer WASH. The DNA was eluded using 5 mL Buffer ELU and collected in a new 

50 mL Falcon tube. DNA was precipitated by adding 3,5 mL isopropanol to the solution 

with subsequent vortexing of the sample. The solution was centrifuged at 4°C for 30 min at 

15000 x g. The resulting flow-through was discarded and the pellet was washed by adding 

2 mL 70% EtOH and centrifugation at 15000 x g for 5 min at RT. Last, the pellet was dried, 

dissolved in 300 µL ddH2O and stored at -20°C for further use. 

2.2.10 DNA concentration measurement

DNA concentration was measured using a BioPhotometer (D30 Photometer, Eppendorf; 

µCuvette G1.0, Eppendorf). The system was blanked against 1µl of puffer used for DNA 

resuspension.  Afterwards,  DNA sample  were  loaded  onto  the  µCuvette  and  the  DNA 

concentration was measured.

2.2.11 Sequencing

Sequencing was carried out by LGC genomics GmbH using Sanger sequencing. Samples 

were prepared as requested by the company. Specific primers which were flanking the 

DNA regions  of  interest  were  provided  by  the  company.  Results  of  sequencing  were 

aligned with estimated maps of the vectors using the online multiple sequence alignment 
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tool  Clustal  Omega  from EMBL-EBI  (Madeira  et  al.  2022)  and  correct  assembly  and 

sequence information of generated vectors were verified.

2.2.12 Cell Culture

2.2.12.1 Splitting

Human embryonic kidney cells were splitted 2 times a week. Old media was aspirated and 

cells were detached by force, using 5 mL fresh preheated (37°C) media (Roti Cell DMEM 

High Glucose, sterile, with glutamine, without pyruvate, Carl Roth). An appropriate volume 

of the Cell  suspension was transferred to  a new T25 flask (Sarstedt)  containing 5 mL 

medium. Afterwards, cells were incubated at 37°C at 5% CO2 (CellXpert C170i Incubator, 

Eppendorf) until confluence of ~80% was reached for the next splitting cycle.

2.2.12.2 Transfection

Cells were splitted into tissue culture treated 35 mm microscope dishes (µ-Dish 35 mm, 

Ibidi)  or  tissue  culture  treated  60 mm  cell  culture  dishes  (Sarstedt).  After  reaching  a 

confluency of 70%, cells were transfected using Polyethylenimine (PEI, Polyethylenimine, 

branched, average Mw ~25000, Aldrich chemistry). 

For  35 mm microscope  dishes,  1 µg  DNA were  added to  100 µL of  DMEM (Roti  Cell 

DMEM High Glucose, Carl Roth). To this solution, 4 µL PEI was added and thoroughly 

mixed. For 60 mm cell culture dishes, 3 µg DNA and 12 µL PEI was used. 

In both cases the solution was incubated for 15 min at RT. Afterwards the solutions were 

added drop wise to the cell  dishes and the dishes were carefully shaken for an equal 

distribution  of  the  mixture.  Transfected  cells  were  transferred  to  the  incubator  and 

incubated at 37°C at 5% CO2 for 12-36h until they were measured.

2.2.13 Preparation of Chemicals

Stock solutions of chemicals used for the investigation of the sensor were prepared fresh 

on the day of the measurements. 
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Therefore  a small  amount  of  the  chemicals  were  weight  in  using  a  precision  balance 

(Practum® Analytical  and  Precision  Balances  Scale,  Sartorius).  Volume  needed  for 

preparation  of  stock  solutions  were  calculated,  and  afterwards  the  chemicals  were 

dissolved in the calculated volumes of PBS (2,7 mM KCl, 138 mM NaCl, 0,5 mM MgCl2, 

0,9 mM CaCl2, 1,47 mM KH2PO4, 8 mM Na2HPO4). Needed volumes of PBS for preparing 

specific concentrations of stock solutions were calculated using the following formula:

( m
M

)∗( 1
c
)=V

m = weight of chemical

M = Molecular mass of chemical

c = wanted concentration of chemical 

V = Volume of puffer needed

Different concentrations used in the experiments were prepared by dilution of the stock 

solutions using PBS. 

2.2.14 Measurements

2.2.14.1 Mutant screening

The media  on  the  cells  was  aspirated  and  the  cells  washed  with  PBS  (2,7 mM KCl, 

138 mM NaCl,  0,5 mM MgCl2,  0,9 mM CaCl2,  1,47 mM KH2PO4,  8 mM Na2HPO4) three 

times. 3 mL PBS was added to the cells and the cells were placed under the microscope 

setup (BX51 Fluorescent microscope, LUMPlanFL N 40x Objective, Olympus). 

For  screening  of  serotonin  sensor  mutants,  serotonin  was  applied  using  a  syringe 

containing serotonin (Serotonin Hydrochloride, Carl Roth) in high concentration (100 µM). 

The syringe was connected to a cannula via a polypropylen tube. The cannula was placed 

on  a  manipulator  unit  (Mini  25-ZL,  Luigs  &  Neumann  Feinmechanik  +  Elektrotechnik 

GmbH) connected to a micromanipulator (SM-10-V2.0, Luigs & Neumann Feinmechanik + 

Elektrotechnik GmbH). The cannula was positioned right above the surface level of the 
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PBS solution in the culture dish. A series of pictures were acquired over 2 min for each 

mutant  which  showed promising  fluorescence  (camera  used:  Orca-Spark,  Hamamatsu 

Photonics;  light  source:  pE-300,  CoolLED;  Excitation  filter:  ET470/40  X,  Chroma 

Technology Corporation; Emission filter: ET525/50 M, Chroma Technology Corporation), 

controlled  by  the  program HoKAWO (Verison  3.0,  Hamamatsu  Photonics  Deutschland 

GmbH). While recording,  after  around the 30 s mark,  ~3 mL of  serotonin solution was 

added to the bath solution.

2.2.14.2 Measurements of specificity and affinity

The media on the cells was aspirated and the cells washed with PBS three times. 3 mL 

PBS (2,7 mM KCl, 138 mM NaCl, 0,5 mM MgCl2, 0,9 mM CaCl2, 1,47 mM KH2PO4, 8 mM 

Na2HPO4) was added to the cells and the cells were placed under the microscope setup 

(BX51 Fluorescent microscope, LUMPlanFL N 40x Objective, Olympus). 

To measure the affinity or specificity of possible serotonin sensors, chemicals were applied 

using  a  selfmade  gravity  driven  perfusion  system,  which  contained  two  reservoirs  for 

solutions. In one of the reservoirs, PBS was filled, while the other reservoir contained the  

solution with the chemical of interest. The output of the reservoirs was a fine cannula,  

which was placed via a micromanipulator ((Mini 25-ZL + SM-10-V2.0, Luigs & Neumann 

Feinmechanik + Elektrotechnik GmbH) directly beside the cells, with the opening of the 

cannula facing the cells.

Cells were continuously perfused with PBS of the first reservoir. A series of pictures were  

acquired  over  2  min  for  each  measurement  (Orca-Spark,  Hamamatsu  Photonics; 

Excitation filter: ET470/40 X, Chroma Technology Corporation; Emission filter: ET525/50 

M, Chroma Technology Corporation), controlled by the program HoKAWO (Verison 3.0, 

Hamamatsu Photonics Deutschland GmbH). While recording, chemicals were applied by 

switching the perfusion system output to the reservoir, containing PBS with the chemical of  

interest. Each measurement was repeated three times. 

2.2.14.3 Confocal imaging

35 mm microscope dishes (Ibidi) containing transfected cells were washed using 3x 1 mL 

PBS (2,7 mM KCl, 138 mM NaCl, 0,5 mM MgCl2, 0,9 mM CaCl2, 1,47 mM KH2PO4, 8 mM 
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Na2HPO4). Afterwards 2 mL of PBS was added and the dishes transferred to a confocal 

microscope  (LSM  880,  Zeiss).  Fluorescence  was  measured  using  laser  excitation  at 

488 nm. Photons were detected in the range between 493 nm-574 nm. 

2.2.14.4 Determination of pH influence

Possible influence of different pH values to the fluorescence change of a fluorescence 

sensor was determined by measuring maximal fluorescence responses of the sensor at 

various pH values of the buffer used in the experiment. Measurements were carried out  

using  the  procedure  described  under  2.2.14.1 Mutant  screening,  with  PBS buffers  of 

different pH values (6.2, 6.6, 7.0, 7.4, 7.8). Each pH values was measured with replicates 

of three.

Measurements were compared using a one way analysis of variance (one-way anova).  

Normal distribution was tested using the Shapiro-Wilk test.

2.2.14.5 Determination of binding affinity

Measurements of binding affinity of different versions of a genetically encoded serotonin 

sensor were fitted using a four parameter sigmoidal fit (SigmaPlot):

y= y0+( a

(1+e
−(

( x−x0)
b

)
)

)

With y0 = minimal response value, a = minimal response value – maximal response value, 

x0 = infliction point (IC50/EC50), b = Hill slope of the curve.

Kd for each of the sensor variants was calculated using the fit.
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2.2.14.6 Determination of binding specificity

Normally distribution of acquired data was tested using the Shapiro-Wilk test. Significance 

of  normally  distributed  measurements  were  determined  using  a  two-tailed  t-test.  Non 

normally  distributed  measurements  were  analyzed  using  the  Mann-Whitney  U  test. 

Measurements were compared to control  measurements, where only the buffer without 

additional chemicals were applied. 
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3 Results

For the development of a genetically encoded serotonin sensor, the 5-HT1A receptor was 

chosen as the sensing domain for 5-HT because of its high specificity for  5-HT (Kd = 

1,8nM ± 0,3, (Ho et al., 1992). To detect the binding of 5-HT we decided to substitute the 

third intracellular loop (ICL3) with the circular permuted form of GFP (cpGFP). The idea to  

substitute the third intracellular loop with a fluorescence protein to generate a genetically  

encoded biosensor was already shown to be successful for example for dopamine and the 

sensor dLight (Patriarchi et al., 2018).

One advantage of this approach is, that the substitution of the third intracellular loop of the  

GPCR, in our case the 5-HT1A receptor, could lead to an inhibition of intracellular signaling 

cascades triggered by the receptor upon activation. Because the sensor should be used 

as an in vivo tool for visualizing serotonin dynamics of different neuronal populations later 

on, expression of a protein which is able to trigger signaling cascades would be unusable  

as a genetically encoded sensor.

In the following, the generation of a genetically encoded serotonin sensor is presented.

The first results are showing the insertion of cpGFP inside the third intracellular loop of the 

5-HT1A receptor. In these approaches, randomly chosen insertion sites were used and the 

cpGFP was either directly inserted, or flanked at the N- and C-terminus by two flexible 

(Gly)5 linkers. In an approach later on, only one part of the cpGFP was inserted into the 

third intracellular loop of the 5-HT1A receptor, while the rest was fused to the C-terminus of 

the receptor. 

After these approaches did not yield a protein sensitive to serotonin, an approach based 

on  the  dopamine  sensor  dLight  (Patriarchi  et  al.,  2018) was  chosen.  This  led  to  a 

successful  generation  of  different  proteins  which  showed  a  measurable  fluorescence 

change after application of serotonin.

Later on, the characterization and enhancement of one of these proteins, which seemed to  

be best suitable as a serotonin sensor, is shown.
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3.1 Random Insertion

In first  experiments done in this work, the circular permuted form of GFP, cpGFP was 

inserted into the third intracellular loop of the 5-HT1A receptor (Fig. 11). In theory, binding of 

5-HT to the receptor and the conformational change involving the movement of the sixth 

transmembrane domain within  the GPCRs could potentially  be relayed to  the inserted 

cpGFP, leading to a changes of its fluorescence (Fig. 9b).

All sensor protein candidates for this first approach were cloned into an pAAV-Vector under 

the control of the CMV promoter (see 6.2). The insertion of cpGFP was done at specific 

positions  using  either  highly  flexible  (Gly)5 linkers,  or  no  linkers  at  all  (Fig.  11).  The 

resulting  proteins  were  called  S1A3lcG  I-IV.  They  were  expressed  in  HEK  cells  and 

measured  with  confocal  microscopy.  Serotonin  was  applied  to  the  bath  solution  by 

switching  the  input  of  a  peristaltic  pump  to  a  solution  containing  PBS and  serotonin 

(100µM). 

Overall, fluorescence was visible in all four constructs when expressed by HEK cells. Still  

there was no visible elevated fluorescence signal in the membrane of the HEK cells and 

the fluorescence signal of the proteins was seemingly located in the cytoplasm of the cells,  

sparing the cell nucleus (Fig. 12a, 13a, 14a). 

Measurement of all four constructs led to no direct change in fluorescence intensity upon 

application of 5-HT to the bath solution (Fig.  12c,  13c,  14c). The fluorescence changes 

were happening gradually over time, within the magnitudes of - 10,89% ± 6,52% (SEM, n = 

5) for 1AcpGFPS I, 10,69% ± 4,87% (SEM, n = 5) for 1AcpGFPS II, 0,08% ± 1,28% (SEM, 

n  =  5)  for  1AcpGFPS III  and - 4,82%  ± 2,08% (SEM,  n  =  5)  for  1AcpGFPS IV  after 

serotonin application at  the 100s mark compared to  the fluorescence before serotonin 

application.
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a) b)

+5-HT

c)

Figure 12: Measurement of S1A3LcG construct I 

HEK cells expressing S1A3LcG I a) before application of serotonin and b) after application of serotonin; c)  

fluorescence  intensity  of  cells  over  time with  application  of  5-HT (100 µM),  black  bar  represents  5-HT  

application, green ribbon = SEM.
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a) b)

+5-HT

c)

Figure 13: Measurement of S1A3LcG construct II

HEK cells expressing S1A3LcG II a) before application of serotonin and b) after application of serotonin; c)  

fluorescence  intensity  of  cells  over  time with  application  of  5-HT (100 µM),  black  bar  represents  5-HT  

application, green ribbon = SEM.
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a) b)

+5-HT

c)

Figure 14: Measurement of S1A3LcG construct III

HEK cells expressing S1A3LcG III a) before application of serotonin and b) after application of serotonin; c)  

fluorescence  intensity  of  cells  over  time with  application  of  5-HT (100 µM),  black  bar  represents  5-HT  

application, green ribbon = SEM.
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a) b)

+5-HT

c)

Figure 15: Measurement of S1A3LcG construct IV

HEK cells expressing S1A3LcG IV a) before application of serotonin and b) after application of serotonin; c)  

fluorescence  intensity  of  cells  over  time with  application  of  5-HT (100 µM),  black  bar  represents  5-HT  

application, green ribbon = SEM.
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3.2 Split GFP Approach

Additionally,  a  GFP  complementation  approach  was  used  to  generate  a  functioning 

serotonin sensor. 

In this, only a fraction of cpGFP was inserted into the third intracellular loop of the 5-HT1A 

receptor, while the rest of the protein was fused to the c-terminus of the 5-HT1A receptor. 

Through complementation of the cpGFP after expression of the full aminoacid chain, a full  

functioning fluorescence protein was thought to develop, linking the third intracellular loop 

to the c-terminus. This approach was thought to have a higher chance to create a protein 

which upon binding of 5-HT shows a visible fluorescence intensity change due to the fact,  

that the stability of the GFP could be larger effected by conformational changes within the  

5-HT1A receptor backbone.

Two proteins were built containing a part of cpGFP without the “GGTGGS” linker, which 

was  used  in  the  initial  circular  permutation  of  GFP.  Either  Aminoacids  Asn 1-Lys90 or 

Aminoacids Met97-Asn241 of cpGFP were inserted in the third intracellular loop of the 5-HT1A 

receptor, while the remaining part was fused to the C-terminus of the receptor (Fig. 16).  

A  fluorescence  signal  was  visible  in  both  construct  (Fig  17a,  18a)  but  it  was  not 

pronounced in the cell membrane and mostly visible in the cytosolic portions of the cell. 

Measurements of both constructs did not show any fluorescence change upon application 

of 5-HT to the expressing HEK cells (Fig. 17c, 18c). The fluorescence change before and 

after serotonin application was - 17,73% ± 3,38% (SEM, n = 5) for the construct “splitG” 

and - 13,71% ± 5,48% (SEM, n = 5) for the construct “splitcG”.
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a) b)

+5-HT

c)

Figure 17: Measurement of S1A3LcG splitG I

HEK cells expressing S1A3LcG splitG a) before application of serotonin and b) after application of serotonin;  

c) fluorescence intensity of cells over time with application of 5-HT (100 µM), black bar represents 5-HT 

application, green ribbon = SEM.
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a) b)

+5-HT

c)

Figure 18: Measurement of S1A3LcG splitcG II

HEK  cells  expressing  S1A3LcG  splitcG  a)  before  application  of  serotonin  and  b)  after  application  of  

serotonin; c) fluorescence intensity of cells over time with application of 5-HT (100 µM), black bar represents  

5-HT application, green ribbon = SEM.
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3.3 After dLight

After random insertion of the circular permuted GFP into the third intracellular loop of the 

5-HT1A receptor, substitutions based on alignments with the dopamine sensor dLight1 were 

carried out (Patriarchi et al., 2018). 

Two  substitution  sites  were  chosen,  based  on  alignments  to  the  DRD1  receptor 

substitution and the 5-HT2A receptor substitution (Patriarchi et al., 2018) (Fig. 19, 20). The 

substitution of the third intracellular loop of the DRD1 receptor is corresponding to the 

substitution used to generate the dopamine sensor dLight1. The substitution of the 5HT2A 

receptor  corresponds  to  the  substitution  used  to  show  the  general  feasibility  of  the 

approach.  The specific sites identified for substitution of the third intracellular loop of the 

5HT1A receptor  were  located  between  aminoacids  Arg223 and  Ala338,  based  on  the 

substitution in  dLight1 and between the 5-HT1A receptor aminoacids Phe224 and Arg337, 

which  were  based  on  the  5-HT2A receptor  substitution.  Mutants  of  the  dLight1  based 

insertion site were named “light” and mutants based on the 5-HT2A receptor insertion site 

were were called “2AS”. 

As the cpGFP flanking Linkers, cpGFP flanking sequences of the calcium sensor GCamp6 

were  used  and  randomly  mutated  (T.-W.  Chen  et  al.,  2013).  In  the  initial  step,  four 

aminoacids were randomly mutated to generate a library of mutants which were screened 

for fluorescence change after application of serotonin. The mutated aminoacids were the 

two closest aminoacids to the cpGFP in both linkers. 

The generation of random mutation was carried out using triplets of NNK bases in the 

primer synthesis.
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Screening of the mutants with a fluorescence microscope showed differences between 

each mutant.  The fluorescence signal  was either located within  the cell  membrane,  in 

different intracellular locations within the cells or there was no fluorescence signal visible 

at all  (examples under  6.3 Example fluorescence profiles).  Ruling out mutants with no 

visible or low fluorescence signals, the fluorescence change of different mutants (“light”  

and “2AS”) were measured by application of serotonin (100 µM) to the bath solution, via a 

gravity flow driven perfusion system (Fig. 21). 

From the screening of mutants of the mutant library “light” (n = 12), corresponding to the 

insertion  site  of  the  genetically  encoded  dopamine  sensor  dLight1  within  the  DRD1 

receptor, no candidate showed a visible change in fluorescence intensity after application 

of serotonin (Fig. 21, “light”).

Screening of the mutant library of mutants “2AS” (n = 58), corresponding to the insertion 

site  of  the  5HT2A receptor,  multiple  mutants  showed  changes  in  fluorescence  upon 

application of serotonin. Of these mutants, one mutant, “2AS M24”, showed an increase in  

fluorescence of 19,56% ± 0,03%, (SEM, n = 5) while another mutant, “2AS M34”, showed 

a strong decrease of - 74,33% ± 0,05%, (SEM, n = 5) (Fig. 21, “2AS”). 

For further mutations, the DNA sequences of eight mutants from the mutant library “2AS” 

were determined by sanger sequencing (Tab. 5). Out of these eight sequenced mutants, 

five showed a fluorescence change in the magnitude over |10%| after 5-HT application, 

with one mutant reacting with an increase in fluorescence (Tab.  5, “2AS M24”). The two 

other mutants showed a small fluorescence change under |10%| and or no fluorescence 

change at all (Tab. 5, “2AS M20” and “2AS M44”). 
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Figure 21: Fluorescence change of mutants from mutant libraries “light” and “2AS”.
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Table 5: Linker sequences of various 2AS Mutants

Sample Linker1 Linker2 dF/F (%)

Position 1 Position 2 Position 3 Position 4

2AS M4 T M C V -33,9% 

±2,01 

(SEM)

2AS M8 L D C F -22,58% 

±2,69% 

(SEM)

2AS M20 R N F C -8,82% 

±1,41% 

(SEM)

2AS M24 T C R R 18,4% 

±5,81% 

(SEM)

2AS M34 Y K C F -74,33% 

±0,05%

(SEM)

2AS M40 H R V Y -24,7% 

±3,5% 

(SEM)

2AS M44 S N D S 0,64% 

±1,17% 

(SEM)

2AS M45 H C C W -42,39% 

±6,52% 

(SEM)
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Identification of the aminoacid composition in the randomly mutated linkers showed, that 

the negative reacting mutants have a prevalence of specific aminoacids in the second c-

terminally located linker (Tab.  5).  In position three, cysteine was prevalent in samples, 

reacting  with  a  decrease  in  fluorescence  upon  application  of  serotonin.  In  the  fourth 

position, aromatic aminoacids (Phe, Trp, Tyr) seemed to be more prevalent (Tab. 5).

Based on this finding, more mutant libraries were generated containing the aminoacid Cys 

in the third linker position and the aminoacids Phe orTrp in fourth position. Generated 

mutant libraries were named “CF” and  “CW”. 

For generating more mutants reacting with an increase in fluorescence upon application of 

serotonin, additional mutational libraries were cloned, containing either the aminoacids Thr 

and Cys named “TC” at position 1 and 2 of linker 1 or Arg and Arg at position 3 and 4 of 

linker 2 named “RR” based on the only mutant reacting with an increase in fluorescence 

“2AS M24”. 

Furthermore to check if a shift in the insertion site could lead to stronger reacting mutants,  

mutant libraries were generated containing the second linker with the aminoacids Cys and 

Phe of the “2AS” insertion site,  which seemed beneficial  to produce reacting mutants,  

while changing the insertion site of the first linker n-terminally in the 5-HT1A receptor to the 

insertion  site  of  the  “light”  mutants.  The  first  linker  did  undergo  random mutations  at  

position 1+2 while Cys and Phe in position three and four in the second linker were fixed.  

The generated mutants of this variant were called “L2”.

In addition, mutant libraries were generated containing mutants in which the other three 

positions  in  both  linker  sequences were  randomly mutated.  Aminoacids  located in  the 

linker sequences which were not mutated, were based on the strongest reacting mutant 

“2AS M34”. These libraries were either called “NGN”, for mutants where the other three 

aminoacids in the first linker were mutated (XXXYK) or “NGC” where three aminoacids in 

the second linker were mutated (-CFXXX-).

A detailed overview of the different mutant libraries created is visualized in Fig. 22. Of all 

these mutant libraries the fluorescence change upon application of serotonin (100 µM) was 

measured for different mutants expressed in HEK cells. 
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Measurements of the different mutants led to multiple candidates with different magnitudes 

in their fluorescence change after application of 5-HT (Fig. 23).

The screening of the mutant libraries “2AS CF” (n = 60) and “2AS CW” (n = 10) showed  

more candidates reacting with a stronger decrease in fluorescence after  application of 

serotonin  than  the  initial  “2AS”  mutants.  The  strongest  decrease  in  fluorescence  was 

shown by the mutant 2AS CF M1 which showed a decrease in fluorescence of -  78,73% ± 

0,03% (SEM, n = 5) in comparison to the mutant 2AS M34 which showed a decrease of  

- 74,33% ± 0,05%, (SEM, n = 5) (Fig. 24). 

Screening of  the  mutant  library  called  “RR”  (n  =  24)  showed small  to  no  changes in 

different mutants. The mutant showing the highest reaction to serotonin “RR M8”, reacted 

with a decrease of - 7,55% ± 0,02% (SEM, N = 5). The screening of mutant library “TC” (n 

=  20)  yielded  mutants,  reacting  with  a  decrease  of  fluorescence,  with  the  strongest  

decrease of - 47,48% ± 0,04% (SEM, n = 5) measured in “TC M5”. Still both libraries failed 
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to  yield  more  mutants  reacting  with  an  increase  in  fluorescence  upon  application  of  

serotonin (Fig. 24).

Screening of the mutant library “L2” (n = 20), did not yield a protein showing a greater  

fluorescence change than the initial mutant “2AS M34” which the library was based upon. 

The highest reacting mutant “L2 M11” showed a change of - 52,35% ± 0,03% (SEM, n = 

5), in comparison to the mutant 2AS M34 which showed a decrease of - 74,33% ± 0,05%, 

(SEM, n = 5) (Fig. 24).

On top of that, mutants where other aminoacids of the linker regions of “2AS M34” were  

mutated, did not show fluorescence changes greater in magnitude than the initial mutant  

“2AS M34” upon serotonin application. The highest fluorescence change measured of the 

screened mutants of  library “NGN” (n = 10) was shown by mutant “NGN M10” with a 

decrease of fluorescence of - 45,19%  ± 0,02% (SEM, n = 5). The highest fluorescence 

change measured for mutants of mutant library “NGC” was - 50,7% ± 0,02% (SEM, n = 5) 

of the mutant “NGC M4”. In comparison the inital mutant “2AS M34” showed a decrease of 

fluorescence by - 74,33% ± 0,05%, (SEM, n = 5) (Fig. 24).
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To look for the viability of the mutants with the highest change (2AS M34 and CF M1) for 

their usage as a serotonin sensor, both mutants were expressed in HEK cells and their 

fluorescence evaluated. While the fluorescence change of “CF M1” upon application is 

higher compared to “2AS M34”, (“CF M1” with - 78,73% ± 0,03% [SEM, n = 5] vs.“2AS 

M34” with  - 74,33%  ± 0,05%, [SEM, n =  5]),  the baseline fluorescence of  “2AS M34” 

seemed to be much higher under the same conditions (Fig. 25). Therefore “2AS M34” was 

chosen as a candidate for a new serotonin sensor, with better baseline fluorescence and a 

comparable strong decrease in fluorescence upon binding of 5-HT in comparison to “CF 

M1”.  The  mutant  “2AS  M34”  was  named  “sDarken”  because  of  its  darkening  of 

fluorescence after application of serotonin and is called  sDarken (serotonin darkening 5-

HT1A receptor-based sensor) from here onwards. 
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a)

“CF M1”

b)

“2AS M34”

Figure 25: Fluorescence picture of HEK cells expressing most promising mutants.

a) “CF M1” and b) “2AS M34”

sDarken showed a high fluorescence change of - 74,33% ± 0,05%% upon application of 

serotonin to HEK cells expressing it (Fig  26c). Furthermore the fluorescence signal was 

barely visible inside the cell and strongly located at the cell membrane when no serotonin 

was applied (Fig. 26a). 

To check, that the decrease of the fluorescence signal triggered by 5-HT application is 

reversible,  multiple applications of  5-HT (30µL 10µM 5-HT per application) to  sDarken 

expressing HEK cells were performed. After each application, cells were washed with PBS 

for  around three minutes to  wash out  the applied serotonin.  Each time serotonin was 

applied to the cells via a short puff, a strong fluorescence decrease was observable (Fig. 

27).  The first  application showed a decrease of  fluorescence of - 65,1%  ± 0,01%, the 

second  serotonin  application  a  decrease  of  - 65,6%  ± 0,01%,  the  third  serotonin 

application  a  decrease  of  - 65,99%  ± 0,01%  and  the  fourth  serotonin  application  a 

decrease of - 64,12% ± 0,01% (SEM, n = 5). The fluorescence signal regained nearly base 

level, when serotonin was washed out in between the puffs (Fig. 27). 
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Different pH values within cells could have an effect on  sDarken. To check if  sDarkens 

fluorescence  change  is  affected  by  different  pH  values,  measurements  were  done 

incubating cells in different pH values (pH = 6,2, 6,6, 7,0, 7,4, 7,8) while serotonin was 

applied (Fig. 28). The fluorescence change triggered by 5-HT application was - 75,12% ± 

1,57% (SEM, n = 14) for a pH of 6,2, - 75,72% ± 2,34% (SEM, n = 14) for a pH of 6,6, 

- 72,03% ± 2,21% (SEM, n = 13) for a pH value of 7,0, - 74,17% ± 2,20% (SEM, n =12) for 

a pH value of 7,4 and - 75,08% ± 1,67% (SEM, n = 14) for a pH value of 7,8. Using a one-

way ANOVA, no significant difference between the measurements (P = 0,724) could be 

found.

Since sDarken was built on the basis of the 5-HT1A receptor, an antagonist (WAY-100635) 

of the 5-HT1A receptor was applied after triggering the fluorescence decrease by 5-HT 

application of sDarken to investigate if WAY-100635 is able to reverse the effect of 5-HT. 

Application of WAY-100635 after serotonin application led to a fluorescence increase back 

to the baseline fluorescence with a magnitude of 159%  ± 11,9% (SEM, n = 5) after an 

initial fluorescence decrease triggered by serotonin application of - 55% ± 0,01% (SEM n = 

5) (Fig. 29a-d). Interestingly, analyzing the intracellular portions of the fluorescence signal 

showed a small decrease of the fluorescence signal after serotonin application and a two 

fold strong increase in fluorescence after application of WAY-100635 (Fig. 29e). 

While  sDarken showed  a  strong  fluorescence  signal  within  the  cell  membrane,  the 

expression of  sDarken was evaluated further. To investigate the expression of  sDarken, 

the  red  fluorescence  protein  mCherry  was  fused  to  the  c-Terminus  of  sDarken. 

Measurements  of  sDarken with  application  of  serotonin  were  carried  out  and pictures 

taken  in  two  channels  (Range  of  GFP channel  500-550nm,  Range  of  RFP channel: 

592,5 nm-667,5 nm). The  fluorescence  signal  of  mCherry  was  not  congruent  with  the 

fluorescence signal measured in the GFP channel of  sDarken  (Fig.  30a, c, e) when no 

serotonin is applied. When serotonin is present, both fluorescence channels show similar 

fluorescence patterns (Fig. 30b, d, f) 

 

To  measure  the  5-HT  affinity  of  sDarken,  the  fluorescence  change  of  sDarken was 

measured in dependence of the concentrations of applied 5-HT (Fig.  31). Measurements 

were carried out with fourteen different concentrations and the data was fitted using a four 
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parameter sigmoidal fit. Using the function of the calculated fit, the Kd value of 5-HT for  

sDarken determined to be in the magnitude of 126 nM. 

To investigate if sDarken is specific for 5-HT, different chemicals were applied to HEK cells 

expressing sDarken and their contribution to possible fluorescence change was monitored 

over time (Fig 32a, b). The chemicals used were the 5-HT1A receptor agonist 8-OH-DPAT 

(7-[Dipropylamino]-5,6,7,8-tetrahydronaphthalen-1-ol), the precursor in serotonin synthesis 

tryptophan,  the  metabolite  5-HIAA  (5-hydroxyindoleacetic  acid),  the  monoaminergic 

neruotransmitters  dopamine,  histamine  and  norepinephrine  and  the  neurotransmitters 

GABA (γ-aminobutric acid), glutamate and acetylcholine. 

For application of different chemicals (10µM), fluorescence changes in the magnitude of 

- 39,7% ± 1,97% (SEM, n = 15) for 8-OH-DPAT, 1% ± 0,75% (SEM, n = 15) for tryptophan, 

4,08% ± 0,8% (SEM, n = 15) for 5-HIAA, - 2,25% ± 0,5% (SEM, n = 15) for dopamine, 

0,11%  ±  0,8%  (SEM,  n  =  15)  for  histamine,  - 3,13%  ±  0,95%  (SEM,  n  =  15)  for 

norepinephrine, - 1,77% ± 1,03% (SEM, n = 15) for GABA, - 1,53% ± 0,67% (SEM, n = 15) 

for glutamate, 2,42% ± 0,72% (SEM, n = 15) for acetylcholine, - 78,74% ± 1,3% (SEM, n = 

15) for 5-HT were measured and - 0,5% ± 0,5% for the control (PBS) (SEM, n = 15) (Fig. 

32b). Comparing the control to each chemical using a two-tailed t-test, revealed significant 

differences in fluorescence response for the chemicals 5-HIAA (P = 0,006),  5-HT (P = 

<0,001), 8-OH-DPAT (P = <0,001), Acetylcholine (P = 0,001) and Dopamine (P = 0,018).

Since the dynamic range of sDarken seem to be limited to a range of approximatly 10 nM 

and 1 µM (Fig.  31), different approaches were followed to generate a variety of sensors 

which showed different dynamic ranges, to cover a wider range of concentrations which 

could be detected using specific forms of sDarken. 

In an attempt to increase the affinity of sDarken for serotonin, the circular permuted GFP 

was substituted for the circular permuted form of superfolder GFP or sfGFP. 

The protein generated in this approach was called high affinity sDarken or H-sDarken. H-

sDarken showed a comparable change in fluorescence upon application of serotonin with 

a fluorescence decrease of sDarken in the magnitude of - 78,74% ± 1,3% (SEM, n = 15) 

and H-sDarken with a decrease of - 66,83% ± 1,28% (SEM, n = 15) (Fig. 33a-c).
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To  measure  the  affinity  of  H-sDarken,  the  fluorescence  change  was  measured  in 

dependence of different applied 5-HT concentrations (Fig. 34). The data was fitted using a 

four parameter sigmoidal fit. The Kd of H-sDarken was calculated using the function of the 

graph and resulted in a concentration of 70 nM.

To elucidate, if  H-sDarken shows specificity for serotonin the fluorescence signals with 

application  of  different  chemicals  (10µM)  were  measured.  The  fluorescence  changes 

measured for different chemicals were - 26,32% ± 2,03% (SEM, n = 15) for 8-OHDPAT, 

- 5,6% ± 0,94% (SEM, n = 15) for 5-HIAA, - 5,95% ± 0,62% (SEM, n = 15) for tryptophan, 

- 5,51%  ± 0,61%  (SEM,  n  =  15)  for  dopamine,  - 6,9%  ± 0,74%  (SEM,  n  =  15)  for 

Norepinephrine, - 5,19% ± 0,51% (SEM, n = 15) for histamin, - 5,42% ± 0,69% (SEM, n = 

15) for glutamate, - 7,62% ± 0,68% (SEM, n = 15) for GABA, - 6,43% ± 0,67% (SEM, n = 

15) for acetylcholine, - 66,83% ± 1,28% (SEM, n = 15) for 5-HT and - 4,09% ± 0,66% for 

the control (PBS) (SEM, n =15) (Fig.  35a, b). Comparing the control to each chemical 

using a two-tailed t-test, showed significant differences in fluorescence response for the 

chemicals 5-HT (P = <0,001), 8-OH-DPAT (P = <0,001), Acetylcholine (P = 0,001), GABA 

(P = <0,001), tryptophan (P = 0,049) and Norepinephrine (P = 0,009).

In another attempt, specific mutations within the sequence of the 5-HT1A receptor were 

carried out, to generate sDarken variants with lower affinity to 5-HT. The mutations were 

based on mutational experiments done with the 5-HT1A receptor (Ho et al., 1992). 

One mutation,  D116N proved to  be a promising candidate and was called low affinity  

sDarken or L-sDarken. 

L-sDarken showed  a  comparable  fluorescence  decrease  upon  application  of  5-HT as 

sDarken, with a decrease of - 67,77% ± 1,82% (SEM, n = 15) of L-sDarken in comparison 

to a decrease of - 78,74% ± 1,3% (SEM, n = 15) of sDarken (Fig. 36a-c). 

Measurements  of  fluorescence change  in  dependence  of  applied  5-HT concentrations 

were carried out. The acquired data was fitted using a four parameter sigmoidal fit. The Kd  

was determined using the calculated function of the fit.The Kd of L-sDarken is 37 µM (Fig. 

37).
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As done with  sDarken and  H-sDarken,  the  specificity  of  L-sDarken was measured by 

application of  different  chemicals  (3mM) while  monitoring  the fluorescence signal  over 

time. Fluorescence changes for the chemicals were in the magnitude of - 61,4% ± 1,05% 

(SEM, n = 15) for 8-OH-DPAT, - 12,59%  ± 1,20% (SEM, n = 15) for 5-HIAA, - 7,8%  ± 

1,05% (SEM, n = 15) for tryptophan, - 6,05% ± 0,74% (SEM, n = 15) for Norepinephrine, 

- 6,54% ± 0,89% (SEM, n = 15) for dopamine, - 6,28% ± 0,9% (SEM, n = 15) for histamin, 

- 5,64% ± 1% (SEM, n = 15) for GABA, - 8,94%  ± 1,38% (SEM, n = 15) for glutamate, 

- 7,77% ± 1% (SEM, n = 15) for acetylcholine, - 67,77% ± 1,82% (SEM, n = 15) for 5-HT 

and - 3,05% ± 0,46% (SEM, n = 15) for the control (PBS) (Fig.  38a, b). Comparing the 

control  to  each  chemical  using  a  two-tailed  t-test,  showed  significant  differences  in 

fluorescence response for the chemicals 5HIAA (P = <0,001), 5-HT (P = <0,001), 8-OH-

DPAT (P = <0,001), Acetylcholine (P = 0,038), Dopamine (P = 0,009), tryptophan (P = 

0,004) and Norepinephrine (P = 0,004).
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a) b)

+5-HT

c)

Figure 26: Fluorescence change of M34 

Fluorescence pictures of cells expressing sDarken a) without and b) with 100 µM 5-HT present, c) Mean 

Fluorescence change of Darken after application of 100 µM 5-HT, black bar  indicates  application of 5-HT,  

Ribbon shows SEM.
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Figure 27: Repetitive stimulation of sDarken

Mean fluorescence signal of sDarken with repetitive application of 5-HT; arrows indicating time  

points of applications, ribbon shows SEM.
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Figure 28: Influence of different pH values to sDarkens fluorescence change

Measurement of the fluorescence change after serotonin application of sDarken expressing  

HEK cells when incubated in PBS buffer with different pH values, error bars depict SEM, n =  

12-14.
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a) b)

+5-HT

c)

+5-HT

+WAY-100635

d)
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e)

Figure 29: Inhibition of sDarken;

HEK cells expressing sDarken a) before application of chemicals, b) after application of 5-HT and c) after  

application of 5-HT and WAY-100635; d) Mean Fluorescence intensity of membrane portion of the cells over  

time,  black  bars  indicating  times  of  chemical  application,  Ribbon  depicts  SEM,  e)  Mean  Fluorescence  

intensity of membrane portion (green) and inner cell fluorescence (red) over time, black bars indicating times  

of chemical application, Ribbon depicts SEM.
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a) b)

+5-HT

c) d)

+5-HT

e) f)

Figure 30: sDarken-mCherry Expression in HEK Cells;

Fluorescence of sDarken-mCherry expressing HEK cells a), c) without and b), d) with 5-HT (100 µM), Plot  

profiles  of  Green  channel  and  Red  channel  from line  scans  (white  lines)  before  d)  and  after  e)  5-HT  

application; Green channel emission: 500 nm - 550 nm, Red channel emission: 592,5 nm - 667,5 nm.
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Figure 31: Affinity measurement of sDarken;

Absolute values of  ΔF/F0 from multiple measurements of sDarkens fluorescence change in  

relation to the concentration of 5-HT applied; Data was fitted using a sigmoid four parameter 

fit, Kd was calculated from the fit, error bars show SEM, n = 10-20 cells per measurement.



Results

a)

b)

Figure 32: Specificity of sDarken to Serotonin; 

a) Mean fluorescence signals of sDarken expressed in HEK cells  with application of different chemicals,  

black bar indicates point of chemical application (100 µM), n = 15.

b) Comparison of  the fluorescence change of  sDarken triggered by different  chemicals  (100 µM) to the 

control application of PBS, n = 15, error bars indicating SEM.
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a) b)

+5-HT

c)

Figure 33: The higher sensitive Darken: H-sDarken;

Fluorescence of HEK cells expressing H-sDarken a) before and b) after application of 100 µM 5-HT; c)  

Fluorescence intensity over time of cells expressing H-sDarken with application of 5-HT, black bar indicates  

time of 5-HT application, Ribbon shows SEM, n = 5.
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Figure 34: Affinity measurement of H-sDarken;

Absolute values of ΔF/F0 from multiple measurements of H-sDarkens fluorescence change in  

relation to the concentration of 5-HT applied; Data was fitted using a sigmoid four parameter  

fit, Kd was calculated from the fit, error bars show SEM, n = 5-20 cells per measurement.



Results

a)

b)

Figure 35: Specificity of H-sDarken to Serotonin; 

a) Mean fluorescence signals of H-sDarken expressed in HEK cells with application of different chemicals,  

black bar indicates point of chemical application (100 µM), n = 15.

b) Comparison of the fluorescence change of H-sDarken triggered by different chemicals (100µM) to the  

control application of PBS, n = 15, error bars indicating SEM.
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a) b)

+5-HT

c)

Figure 36: The lower sensitive L-sDarken;

a) Fluorescence picture of HEK cells expressing L-sDarken before and b) after application of 100 µM 5-HT;  

c) Fluorescence intensity of L-sDarken expressing HEK cells over time with application of 5-HT, black bar  

indicates time of 5-HT application, ribbon shows SEM, n = 5.
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Figure 37: Affinity measurement of L-sDarken;

Absolute values of ΔF/F0 from multiple measurements of L-sDarkens fluorescence change in  

relation to the concentration of 5-HT applied; Data was fitted using a sigmoid four parameter  

fit, Kd was calculated from the fit, error bars show SEM, n = 5-20 cells per measurement.



Results

a)

b)

Figure 38: Specificity of L-sDarken to Serotonin; 

a) Mean fluorescence signals of L-sDarken expressed in HEK cells  with application of different chemicals,  

black bar indicates point of chemical application (100 µM), n = 15.

b) Comparison of the fluorescence change of L-sDarken triggered by different chemicals (100µM) to the  

control application of PBS, n = 15, error bars indicating SEM.
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4 Discussion

The serotonergic system is a complex neuromodulatory system controlling a variety of 

physiological and behavioral functions. Disruptions in this system are linked to different 

mental illnesses, making it  crucial to have different tools at hand to study serotonergic 

signaling and changes occurring within this system in the course of these illnesses.

In  this  regard,  genetically  encoded  biosensors  capable  of  measuring  neurotransmitter 

dynamics are extremely promising tools, enabling measurements of molecular events in 

high  spacial  and  temporal  resolution.  In  this  thesis  sDarken,  a  genetically  encoded 

biosensor capable of detecting serotonin was developed. SDarken is based on the 5-HT1A 

receptor and the circular permuted form of the green fluorescent protein cpGFP.

4.1 Random Insertion

First  experiments  where  the  insertion  sites  within  the  5-HT1A receptor  were  chosen 

randomly,  while  the  inserted  circular  permuted  cpGFP was  flanked  with  or  without  a 

flexible  “GGGGS”  linker,  did  not  yield  proteins  capable  of  detecting  serotonin.  The 

expression of the sensors did not seem to be enriched within the plasmamembrane and 

when expressed in HEK cells, application of serotonin did not yield a measurable response 

within the different constructs (Fig. 11-Fig. 15). Furthermore, using only part of the cpGFP, 

so the protein is not directly synthesized and has to be build after full protein synthesis via 

complementation,  did  yield  mutants  which  showed  fluorescence,  but  no  apparent 

fluorescence change was visible upon serotonin application (Fig. 16-Fig. 18).  

4.2 Mutant generation

Generation  of  mutant  libraries  with  different  insertion  sites  homologous  to  dLight,  a 

dopamine genetically encoded sensor  (Patriarchi  et  al.,  2018),  led to  different mutants 

reacting to serotonin application when expressed in HEK cells (Fig. 21). The insertion site 
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showing responsive mutants was derived of a sequence alignment of the 5-HT2A receptor 

insertion site  (Patriarchi et al.,  2018) (“2AS”, Fig.  20). The insertion site derived of the 

sequence alignment with dLight1 (Fig. 19) did not yield reacting mutants when used with 

the 5-HT1A receptor base (“light” n = 12, Fig. 21). Still, since there are four mutations, two 

in each linker, the possible combinations of different linker combinations are 420, therefore 

there is still a chance that reacting mutants can be generated using this insertion site. But 

because  already  a  small  number  of  reacting  mutants  were  generated  with  the  other 

insertion site “2AS”, this insertion site was used for further mutations.

Sequencing of nine mutants with or without a response to serotonin showed a prevalence 

for cystein in position three of the second linker (Table  5, “M4”, “M8”, “M34”, “M45”) for 

negatively  reacting  mutants.  Furthermore,  aromatic  aminoacids  (C,  F  and  W)  were 

dominating in the fourth position of the second linker (Table 5, M8, M34, M40, M45). The 

only mutant showing an increase in fluorescence with serotonin application contained two 

arginine in position three and four of the second linker (Tab. 5, “2AS M24”). 

For  the  N-terminal  linker  1,  within  the positions 1 and 2,  there was not  a  prevalence  

identifiable,  therefore  the  aminoacids  in  linker  2  containing  cystein 

phenylalanine/trypthophan were fixed in that position for further rounds of mutations to 

generate a sensor reacting with a fluorescence decrease upon serotonin binding.

To generate more mutants reacting positive to serotonin, the n- or c-terminal linker of the 

only mutant reacting with a fluorescence increase were further separately mutated while 

the other linker was conserved. But  measuring mutants with the conserved N-terminal 

linker (“TC”) as well as measuring mutants with the conserved c-terminal linker (“RR”) did 

not yield additional positive reacting mutants (Fig. 24). 

For the generation of mutants reacting with a stronger decrease further mutations were 

carried out, which contained a change in the insertion site of cpGFP within the n-terminal 

region of the 5-HT1A receptor  (“L2”).  But  out  of  these mutants,  only two out of  twenty 

mutants measured reacted to serotonin with a fluorescence decrease (Fig. 24). Compared 

to “2AS M34” the fluorescence change of the mutants was smaller and while there are 2 20 

possible aminoacid combinations, further mutations were not carried out.

For  the  generation  of  more  promising  mutants,  further  mutation  were  carried  out, 

conserving the aminoacids in the second c-terminal  linker (“CF/W”) while mutating the 
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aminoacids of the n-terminal  linker.  Out  of  these two,  the aminoacid composition “CF” 

yielded multiple mutants reacting with a strong fluorescence decrease (Fig. 24). 

The  two strongest  reacting  mutants  until  then,  “2AS  M34”  and  “CF  M1”  were  both 

expressed  in  HEK cells  and  their  fluorescence  measured  under  the  same conditions. 

While “CF M1” showed a greater response to serotonin (“CF M1” with - 78,73% vs.“2AS 

M34” with - 74,33%), “2AS M34” seemed to show  a higher baseline fluorescence  (Fig. 

25a, b). While HEK cells were both transfected with the same amount of DNA it has to be 

noted, that this effect could be caused by different expression levels of the two proteins.

Still, as 2AS M34 showed a robust fluorescence change upon serotonin application and 

additionally also showing a high baseline fluorescence it was chosen for two last rounds of 

mutations. In them, the other three aminoacids in each linker were mutated. Screening of 

both mutant libraries “NGN” and “NGC” did not yield mutants reacting stronger to serotonin  

application (Fig. 24, “NGC”, “NGN”) than the initial mutant “2AS M34”. Still the n number of 

the mutants measured is too low (n = 10 per mutant library) to reach a valid conclusion if  

further mutations could lead to stronger reacting mutants, it could be one path for future 

approaches to generate stronger reacting mutants. Going further, “2AS M34” was named 

sDarken (serotonin  darkening  5-HT1A receptor-based  sensor)  and  was  investigated  in 

terms of different properties to determine its use as a serotonin sensor.  

4.3 sDarken

4.3.1 Fluorescence response and reversibility

When sDarken is expressed in HEK cells, it shows a strong decrease in fluorescence upon 

application  of  serotonin  in  the  magnitude  of  - 74,33% (Fig.  26a-c).  This  reaction  is 

reversible as shown by washing out serotonin in between applications, although it seems 

that the washing steps were not carried out long enough to regain baseline fluorescence. 

Still it is observable, that sequential activations of sDarken are possible (Fig. 27). 
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4.3.2 pH-Sensivity

The circular permutation of GFP leads to a stronger sensitivity to acidic pH values. An 

effect which could drastically change the fluorescence emission (Baird et al., 1999). While 

the overall fluorescence was not evaluated within this thesis, the fluorescence decrease of 

sDarken triggered by serotonin was measured within different pH-values to check if the 

sensor  behaves  differently  in  terms  of  maximal  fluorescence  response  between 

measurements. The measurements showed, that the fluorescence decrease triggered by 

5-HT does not seem to be influenced by different pH values (Fig.  28).  Still  the overall 

brightness within different pH values has to be evaluated in further experiments. But in in 

vivo experiments the pH sensitivity of sDarken should not strongly be influencing sDarkens 

fluorescence,  since  the  cytosolic  pH,  where  the  cpGFP of  sDarken  resides  is  strictly 

regulated between pH 7-7,4 (Madshus, 1988). 

4.3.3 Way-100635 application

The fluorescence decrease of  sDarken triggered by the application of 5-HT is reversible 

using the 5-HT1A receptor antagonist  WAY-100635 (Fig.  29d). Way-100635 which is an 

antagonist of the 5-HT1A receptor seems to be able to bind to sDarken and subsequently 

inhibiting  the  binding  of  5-HT to  sDarken. Inhibition  of  the  5-HT  binding  leads  to  an 

increase of fluorescence if serotonin is bound to  sDarken  before. Interestingly,  sDarken 

also shows a fluorescence decrease and increase within the intracellular portions of the 

cells when exposed to 5-HT and the 5-HT1A receptor antagonist WAY-100635 (Fig. 29a-c, 

e).  The initial intracellular fluorescence decrease triggered by 5-HT seems to be smaller  

(- 33,87%) compared to the decrease shown by the membrane portions of the cell (-  55%). 

The subsequent fluorescence increase after WAY-100635 application is higher (252,62%) 

compared to the observed increase of fluorescence in the membrane portions (159%). The 

decrease and subsequent increase in the membrane portions of the cells do elevate the 

fluorescence  signal  back  to  the  fluorescence  baseline  which  was  observable  before 

application of both chemicals (Fig. 29d). This is not visible within the intracellular regions. 

Here,  application  of  both  chemicals,  led  to  a  smaller  decrease,  and  around  two  fold 

increase of fluorescence, compared to the initial baseline fluorescence (Fig.  29e). There 

are different possibilities as to why this behavior is occurring. On the premise, that the cell  
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membrane  is  impermeable  for  5-HT  and  WAY-100635,  the  measured  fluorescence 

changes could be signals from out of focus cellular parts, since the measurement was 

done without using a confocal microscope. On the other hand, the observation, that the 

fluorescence reaches above baseline levels, an effect which was not visible within the 

membrane portions,  does speak against  the  idea  that  this  is  caused  by  out  of  focus 

changes because they should react equally in that instance. 

Another possible explanation could be, that the fluorescence changes within the cells are 

triggered by the activation of intracellular pathways, which are triggered through sDarken. 

This  could  lead  to  subsequently  activity  changes  of  sDarken proteins  residing  in 

intracellular portions of the cells. In other measurements made, the activation of G-protein  

pathways by sDarken were examined and no activation was observed (Kubitschke et al., 

2022).  Therefore,  in  light  of  these  findings,  the  activation  of  G-protein  independent 

pathways have to be investigated to rule out possible intracellular interactions of sDarken 

which could have led to the observed intracellualr changes. 

A third possible explanation is, that the cell membranes are, to some extent, permeable for  

5-HT  and  WAY-100635.  For  5-HT  the  possibility  is  given  by  endogenous  expressed 

receptors. With experiments which looked for the expression of endogenous transporting 

proteins in different cell lines it was found out, that the transporter OCT1 is in low levels 

expressed in HEK cells (Ahlin et al., 2009). The OCTs (Organic Cation Transporter) OCT1 

and  OCT2  have  been  shown  to  be  able  to  transport  serotonin  (Busch  et  al.,  1996; 

Gebauer et al., 2021). Therefore it is possible for serotonin to activate sDarken inside the 

cell lumen leading to the detected decrease of fluorescence after serotonin application. 

For WAY-100635, it has been reported that it is possible to be transported through the 

blood brain  barrier  by  measuring  its  permeability  within  a  MDR-MDCK cell  monolayer 

(Zheng et al., 2015). But evidence for the permeability or impermeability of WAY-100635 

for the plasma membrane of HEK cells specifically was not found in a literature search. 

Still it is a possible explanation for the intracellular increase of fluorescence after WAY-

100635  application.  It  could  bind  to  sDarken located  on  intracellular  organelles  and 

stabilizing  its  “inactive”  highly  fluorescent  conformation.  This  idea  is  strengthened  by 

findings which are discussed in the next paragraph, discussing the expression of sDarken. 

To note, the idea that 5-HT and WAY-100635 are leading to internalization and recycling 

processes of  sDarken from and to the membrane, which trigger the observed decrease 
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and  increase  of  fluorescence,  does  not  seem  to  fit  to  the  data.  The  decrease  of 

fluorescence in the membrane is not accompanied with an increase of fluorescence in the 

intracellular parts of the cells as well as there is no increase in membrane fluorescence 

while there is a decrease in intracellular fluorescence.

4.3.4 Expression

While the first  images of  sDarken showed predominantly expression within the plasma 

membrane (Fig. 26a), linking the fluorescence protein mCherry to sDarkens c-terminus did 

reveal a different expression pattern. Fusing mCherry to the c-terminus of  sDarken did 

seemingly not impair or change the functionality or the fluorescence signal distribution, as  

there was no visible change in the expression pattern (Fig. 26a, Fig. 30a) and there was 

still  a  reaction  to  serotonin  application  (Fig.  30a,  b).  However  the  fluorescence signal 

distribution  of  mCherry  is  different  to  sDarkens expression  pattern  in  the  serotonin 

unbound  state  and  does  not  show  the  high  fluorescence  signal  within  the  plasma 

membrane which is visible in sDarken (Fig. 30a, c). Interestingly, the expression patterns 

of sDarken and the linked mCherry seems to be more in line, when mCherry is compared 

to the 5-HT bound form of sDarken (Fig. 30b, d). The fluorescence protein mCherry shows 

high pH stability and as a monomer it should not influence the expression of  sDarken. 

Furthermore, its fluorescence does not seem to be influenced by the application of 5-HT to  

sDarken, compared to the fluorescence of cpGFP in the third intracellular loop. In case of 

the cpGFP, the fluorescence signal is strongly influenced by the conformation of the 5-HT1A 

receptor base it is incorporated in. Therefore the high fluorescence signal visible in the 

plasma membrane of HEK cells expressing  sDarken could be explained by an inactive 

GPCR  conformation  which  influences  the  fluorescence  signal  of  cpGFP  to  reach  a 

maximum.  Within  the  cell  intracellular  organelles,  sDarken could  show  other 

conformational states, which differ from the conformation of the receptors located in the 

plasma membrane.  This  could lead to the lower fluorescence signals of  cpGFP within 

intracellular organelles.

The different conformations, leading to the different measured fluorescent signals, may be 

explained by the heterogeneity of cellular membranes in terms of their lipid composition. 
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The catalyzed oligonucleotide exchange of the 5-HT1A receptor was shown to be effected 

by lipid bilayer compositions when using varying compositions of POPC (1-palmitoyl-2-

oleoyl-sn-glycero-3-phosphocholine), BSM (brain sphingomyelin) and CHOL (Cholesterol) 

(Gutierrez  et  al.,  2016).  CHOL depletion  was also  shown to  enhance 5-HT1A receptor 

ligand binding in isolated membranes of cholesterol-depleted cells  (Prasad et al., 2009). 

An effect which was also shown for 5-HT1A receptors expressed in CHO (chinese hamster 

ovary)  cells  treated  with  an  enzyme  catalyzing  the  hydrolysis  of  the  phospholipid 

sphingomyelin (Jafurulla et al., 2008). 

Interestingly, the compositions of cell membranes differ in terms of their lipid contents. The 

ratio of CHOL to phospholipids is highest in the plasma membrane while being 2 to 10-fold  

lower in intracellular  organelles like the late  endosome, endoplasmatic  reticulum, golgi  

apparatus and mitochondria (van Meer et al., 2008).

The functionality of the 5-HT1A receptor is influenced by different lipid compositions within 

the membrane its expressed in, so it is plausible that the function of sDarken could also be 

affected. Therefore it is possible, that the different fluorescent intensities within the cell  

observed for sDarken could be a direct result of different lipid contents within the different 

membranes. Interestingly, the earlier discussed results of the application of WAY-100635 

seem to be in line with that  idea. Application of  5-HT and of WAY-100635 did lead to 

fluorescence  changes  within  the  intracellular  portions  in  the  cell.  While  the  changes 

triggered by 5-HT are smaller compared to the changes in the cellular membranes, this  

behavior could be explained if  there were less receptors in the “inactive conformation” 

residing in intracellular organelles due to different lipid compositions of these organelles.  

Stabilization of  the  inactive,  highly  fluorescent  state by the  5-HT1A receptor  antagonist 

WAY-100635 would effect the receptors which were not present to a great extend in this 

state  before.  Therefore  the  high  fluorescence  increase  which  showed  a  fluorescence 

signal exceeding the baseline fluorescence by two fold might be explained. 

For future experiments, controls could be done showing in which organelles  sDarken is 

enriched inside the expressing cells. Furthermore, the depletion of CHOL or sphingomyelin 

could be used to monitor possible effects of theses lipids on sDarkens fluorescence. The 

fluorescence  intensity  effect  within  the  cell  was  not  reported  for  other  GPCR  based 

sensors so far. Therefore it could be interesting if this effect is specific for  sDarken, or if 

this is observable when using other GPCR based genetically encoded sensors and their 
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antagonists or agonists. Also different antagonists of the 5-HT1A receptor could be applied 

to sDarken expressing HEK cells, to investigate if the effect of WAY-100635 is specific for 

this antagonists. 

4.3.5 5-HT affinity

Compared to the native 5-HT1A receptor, which has a Kd for Serotonin of 1,8 nM ± 0,3 (Ho 

et al., 1992),  sDarken shows a nearly 70-fold decrease in serotonin affinity with a Kd for 

serotonin of 126 nM (Fig.  31). Concentrations of synaptic transmission of serotonin are 

estimated  by  extrapolation  of  voltammetrical  measurements  of  serotonin  in  the  Snr 

(substentia nigra) to reach concentrations in the magnitude of 6 mM (Bunin & Wightman, 

1999). This should trigger the full response of sDarken, which shows full activation above 

1 µM serotonin (Fig. 31). In terms of sertonin affinity, sDarken should therefore be suitable 

for the use as a serotonin sensor to visualize synaptic transmission in vivo. Nevertheless it 

has to be kept in mind that these are just estimations and synaptical release might differ in 

different  regions,  making  a  direct  measurement  and  analysis  of  sDarken  in in  vivo 

experiments necessary.

The concentrations which are reached by volume transmission are reported within different 

ranges. They reach a low to mid nM range for the dorsal raphe (between 1,3 nM to 5,4 nM, 

calculated from different studies (Adell et al., 2002) up to 100 ± 20 nM (Bunin & Wightman, 

1998). The detectable concentration of sDarken seems to be in the range between 10 nM 

and 1 µM. The fluorescence decrease of sDarken in the upper limit of the reported volume 

transmission  concentration  of  100 nM  is  - 35,7%.  Therefore,  sDarkens  viability  in 

measuring  serotonergic  volume  transmission  is  probably  limited,  since  the  triggered 

fluorescence change within even the highest reported concentrations is less than half of 

the full response. 

In  comparison  the  affinity  of  serotonin  to  the  other  two  versions  of  sDarken was 

determined to be 70 nM for H-sDarken (Fig. 34) and 34 µM for L-sDarken (Fig. 37).

Interestingly,  the substitution of  cpGFP for  sfcpGFP in  H-sDarken led to  an increased 

affinity  for  serotonin  (70 nM vs  126 nM;  Fig.  34,  Fig.  31)  as  well  as  a  change  in  its 

detectable concentration range. While there is no direct explanation for this behavior, there  

are different cases where the same behavior occurred. For example, introducing some of  
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the  superfolder  GFP  mutations  into  GCamp2  led  to  an  increased  affinity  to  Ca2+ in 

comparison  to  the  initial  Gcamp2  variant  (Muto  et  al.,  2011).  Also,  using  a  circular 

permuted variant of superfolder GFP instead of cpGFP led to an improved brightness and 

dynamic range in the generation of the voltage sensor ASAP1  (St-Pierre et al.,  2014). 

Lastly,  using a specific mutant of superfolder GFP K99V, led to an increased dynamic 

range in the development of a genetically encoded Zn2+ sensor, still to note here, that this 

may be caused by a decrease of the baseline fluorescence (Qin et al., 2016). 

While the affinity of H-sDarken is lower compared to sDarken it does not seem to be very 

much of an improvement in terms of its range of concentrations it is able to detect. Still the 

chance to measure the volume transmission of serotonin effectively would be higher using 

the sensor H-sDarken. 

For L-sDarken, the difference of its dynamic range which spans around 100 nM and 3 µM 

does unfold new possibility’s for  the monitoring of serotonin.  Its usage would be more 

interesting within synaptic transmission, as it seems to be unaffected by the concentrations 

which theoretically are reached due to volume transmission. This could be interesting in 

scientific questions where only the synaptic release of serotonin is of interest and a sensor 

is needed, that is unaffected by volume transmission.

4.3.6 Specificity

To evaluate the specificity of  sDarken to 5-HT, different chemicals were applied to HEK 

cells expressing sDarken and their effect on the fluorescence signal was measured (Fig. 

32a,  b).  In  comparison  to  the  control,  5-HT,  8-OH-DPAT,  5-HIAA,  acetylcholine  and 

dopamine had a significant effect on the fluorescence signal of sDarken. Still the highest 

measured fluorescence change of  the chemicals  5-HIAA,  Acetylcholine  and Dopamine 

was 4,08% (5-HIAA). This effect could be explained by the binding of the chemicals to 

sDarken when applied in high concentrations. It was already shown in the first successful 

cloning of the 5-HT1A receptor, that the receptor has an affinity for dopamine and histamine 

in the range of >1000 nM for dopamine and >5000 nM for histamine respectively (Kobilka 

et al., 1987). While for the other compounds, affinity values were not found, it is possible 

that with high concentrations non specific receptor binding is occurring. These effects are 

also visible in the other two sDarken versions H-sDarken and L-sDarken (Fig. 35 Fig. 38). 
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In both of these construct, significant differences were observable compared to the control  

in terms of their effect on the fluorescence. The strongest effect was triggered by 5-HIAA 

with a fluorescence change of - 12,59%. The control showed a fluorescence change of 

- 3,05%, which could be due to bleaching or cellular movement. The effect of 5-HIAA was 

much  stronger,  but  this  could  be  due  to  the  fact  that  in  the  case  of  L-sDarken,  the 

chemicals  applied  were  used in  much higher  concentrations to  trigger  L-sDarkens full 

response, since L-sDarken showed lower affinitys for 5-HT (3 mM for L-sDarken with the 

exception  of  300 µM  for  8-OH-DPAT  vs.  10 µM  for  H-sDarken and  sDarken in  all 

measurements).  If  binding  of  other  chemicals  occurs  to  some  extend,  the  high 

concentrations used in this experiments would favor these effects. 

The fluorescence decrease triggered by 8-OH-DPAT did not seem to show a comparable 

response to 5-HT in the constructs sDarken (8-OH-DPAT - 39,7% vs. 5-HT - 78,74% for 5-

HT) and  H-sDarken (- 26,32% for 8-OH-DPAT vs. - 66,83% for 5-HT). In  L-sDarken  the 

response  to  8-OH-DPAT (- 61,4%)  is  close  to  the  response  to  5-HT (- 67,77%).  It  is 

possible, that the concentrations used in the measurements of  sDarken and  H-sDarken 

are too low to trigger the full response of the sensor by 8-OH-DPAT. The Kd of sDarken for 

serotonin was decreased 70-fold compared to the Kd of the endogenous 5-HT1A receptor. 

The published Kd of the 5-HT1A receptor for 8-OH-DPAT is 1,3 ± 0,07 nM (SE) (Watson et 

al.,  2000).  It  is  possible,  that  due to  the substitution of  the third  intracellular  loop,  the 

affinity  to  8-OH-DPAT  is  stronger  effected  than  for  5-HT  leading  to  the  observed 

differences. This effect could be investigated measuring the affinity of 8-OH-DPAT for all  

three of the sensor versions. 

4.4 Comparison to other genetical encoded 5-HT sensors

Three other serotonin sensors were developed simultaneously by different groups, which 

include  the  PBP  based  iSeroSNFR  (Unger  et  al.,  2020),  the  GPCR  based  sensors 

GRAB5-HT1.0 (Wan et al., 2021) and the GPCR based sensor Psychlight (C. Dong et al., 

2021) which are based on the 5-HT2C receptor and the 5-HT2A receptor respectively.

These published serotonin sensors expressed in HEK cells showed fluorescence increase 

of 1700% with a Kd of 390 µM for iSeroSNFR, a 250% increase in fluorescence with an 

EC50 of  22 nM for  GRAB5-HT1.0  and 79,6% fluorescence  increase  with  an  EC50 of 
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26,3 nM for Psychlight. While iSeroSNFR shows the highest fluorescence increase, the Kd 

is in a high µM range, which may be problematic for the detection of serotonin events with  

a lower serotonin concentration. Apart from their Kd and their measurable fluorescence 

change,  the  sensors  will  each  differ  in  brightness,  expression,  photostability,  folding 

efficiency and cellular toxicity. Now, that there are a bundle of serotonin sensors described, 

a comparison between each should clarify which performs best in different scenarios and 

is suited best in specific measurements. 

4.5 Potential drawbacks

4.5.1 Overexpression

For imaging of genetically encoded biosensors a sufficient signal is necessary. For dLight,  

at  least  a 10-fold  overexpression compared to the endogenous GPCR is  estimated to  

reach the sufficient signal to noise ratio needed for imaging (Sabatini & Tian, 2020). 

To  reach  a  sufficient  signal  to  noise  ratio,  overexpression  of  sDarken is  probably 

mandatory. But overexpression of sDarken could lead to changes within the expression of 

the  endogenous  5-HT1A receptor  in  neuronal  populations.  For  the  somato-dendritic 

targeting of the 5-HT1A receptor the c-terminal part of the receptor is important.  It  was 

found  that  mutation  of  I414 and  I415 to  alanine  led  to  low  expression  in  the  plasma 

membrane and co-localization of the receptor with regions marked for the endoplasmatic 

reticulum  (Carrel  et  al.,  2006).  Furthermore the 5-HT1A receptor seems to interact with 

Yif1B,  which  is  involved  in  the  somatodendric  targeting  (Carrel  et  al.,  2008).  For  the 

interaction  with  Yif1B,  the  5-HT1A receptor  contains  a  tribasic  motif  in  the  c-terminus 

(K405/R421/R422), which, when mutated to alanine, leads to an abolishment of the binding 

between the two proteins. In the case of sDarken, the involved motifs are still present in 

the protein. Therefore expression of sDarken, which may interact with the same proteins 

as  the  5-HT1A receptor,  could  lead  to  less  available  protein  transport  complexes  for 

endogenous proteins like the 5-HT1A receptor in neurons.

Furthermore, overexpression of a genetically encoded biosensor able to bind serotonin 

could specifically affect serotonergic signaling of the different 5-HT receptors by buffering 
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serotonin.  Since  sDarken shows  a  high  affinity  for  serotonin,  sDarken could  diminish 

released  serotonin  concentrations  within  a  synapse  or  lower  serotonin  concentrations 

released extrasynaptically intended for endogenous 5-HT receptors.

Therefore  the  expression  of  sDarken could  effect  neuronal  populations  and  ultimately 

behavioral outcomes of sDarken expressing animals and for this reason each behavioral 

test has to be controlled.

4.5.2 Dimerisation

Another obstacle that has to be addressed in the future is the dimerisation of GPCRs, with  

themselves (homo-oligomeres) or with other proteins (hetero-oligomeres). This effect can 

regulate the binding of ligands  (George et al., 2000; Hilairet et al., 2003; Levoye et al., 

2006), coupling to G-proteins (George et al., 2000; Lee et al., 2004; Levoye et al., 2006; 

Łukasiewicz et al., 2016) or receptor trafficking (Zhou et al., 2006).

Receptor dimerisatizon  could essentially effect  sDarken as well  as other GPCR based 

sensors. For the backbone of  sDarken, the 5-HT1A receptor, different GPCR oligomeres 

are already identified. The 5-HT1A receptor was shown to form homo-oligomeres (Kobe et 

al.,  2008).  Additionally,  the 5-HT1A receptor can form hetero-oligomeres with the 5-HT7 

receptor  (Renner et  al.,  2012),  FGFR1 receptor  (Borroto-Escuela et al.,  2012),  GalR1-

Gal2-5-HT1A receptor  (Millón  et  al.,  2016),  the  5-HT2A (Borroto-Escuela  et  al.,  2017), 

dopaminergic D2 receptors  (Kolasa et al., 2018; Szlachta et al., 2018), opioid receptors 

(Cussac et al., 2012) and GPR39 receptors (Tena-Campos et al., 2015). 

In the case of rhodopsin, W175 and Y206 are potentially involved aminoacids to form the 

dimer  interface  (Kota  et  al.,  2006).  Evidence  suggests,  that  the  motifs  regulating  the 

dimerisation  of  the  5-HT1A receptor  are  within  TMD4/TMD5  (Gorinski  et  al.,  2012). 

Aminoacids involved in the dimerisation were Trp175, Tyr198, Arg151 and Arg152. All of which 

are present in sDarken and were not in the substituted region. Therefore dimeristation of 

sDarken with endogenous GPCR might be possible due to the fact, that the dimerisation 

motif may not be disrupted and fully functional. This could effect  sDarkens fluorescence 

responses upon 5-HT application or  might  lead to  fluorescence changes without  5-HT 

present  if  sDarken conformation  is  effected  by  interacting  GPCRs.  Therefore,  it  is 
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necessary  to  carry  out  experiments  checking  dimerisation  effects  of  known  5-HT1A 

dimerisation partners to exclude their effects on sDarken.

The activation of intracellular pathways by sDarken, G-protein activation and beta arrestin 

signaling, were not measured within this thesis. But using sDarken in vivo, possible effects 

onto expressing cells by activation of intracellular pathways would be highly unbeneficial.

Dependent on the substitution of the third intracellular loop, GPCR based sensors “may 

not completely suppress downstream signaling as evidenced by weak activation of the Gq 

dependent calcium signaling pathway observed in GRABACh”  (Sabatini  & Tian, 2020). 

The  GPCR  based  sensor  GACH2.0  showed  a  seven-fold  smaller  coupling  efficiency 

compared to the wild type receptor for the Gq pathway, while there was no detectable  

coupling to  the Gs pathway.  (Jing et  al.,  2018).  The insertion of  cpGFP into the third 

intracellular loop of M3R in GACh2.0 was within a modified third intracellular loop of the 

beta-2 adrenergic receptor (β2AR), that was used as a substitute for the native M3R third 

intracellular loop. In comparison to GACh2.0, the substitution carried out in sDarken based 

on the sensor  dLight1 used less aminoacids of  the n- and c-terminal  part  of  the third 

intracellular loop which introduced the third intracellular loop of β2AR into the sensor (Fig. 

39). 
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G-proteins interacting to intracellular parts of GPCRs, that consists of the “bottom halves 

of  TMD3,  TMD5,  TMD6,  ICL2  along  with  ICL3”  (Glukhova  et  al.,  2018).  Therefore, 

dependent on the substitution carried out it is probably possible to disrupt binding of G-

proteins, when interaction sites of G-proteins within the GPCR are removed. 

However, the G-protein dependent as well as the G-protein independent pathways have to 

be  fully  examined.  While  there  was  already  a  full  screening  of  G-protein  dependent  

activation  (Kubitschke et al.,  2022),  the G-protein  independent  pathway still  has to  be 

investigated.  There  might  be  a  disruption  of  β-arrestin  signaling,  as  the  binding  of  β-

arrestin  was examined in  the  similar  sensor  GRAB5-HT1.0  where  no signaling  of  the 

sensor could be detected (Wan et al., 2021).

4.6 Outlook

The genetically encoded serotonin sensor  sDarken seems to be a useful tool for future 

experiments.  Still  more  optimization,  for  example  enhancing  the  brightness,  the 

measurable fluorescence change and the dynamic range, should be accomplished. 

A better brightness as well as an increased fluorescence change would be benefical to 

sDarken as an in vivo tool, as it would decrease the need of high overexpression. These 

would mitigate some of the addressed effects like serotonin buffering or the effects on 

endogenous serotonin  receptors  or  other  proteins  which  are  transported  by  the  same 

protein complexes.

Therefore more mutants have to be generated. There are different approaches which can 

be followed to obtain improved mutants. 

First, more mutational experiments within the linker domains of  sDarken can be carried 

out,  generating more mutants containing the cysteine and phenylalanine in the second 

linker. This specific linker combination yielded more mutants showing greater fluorescence 

responses and is more likely to generate mutants with a higher fluorescence change.

In another approach, random mutations by error prone PCR within the cpGFP sequence 

could lead to new viable mutants. This was already successfully used in the generation of 

the serotonin sensor GRAB5-HT1.0 (Wan et al., 2021).
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Further, mutations in other parts of the 5-HT1A receptor backbone could lead to sensors 

with a better dynamic range or better brightness. Mutations in the second intracellular loop 

were  used  in  the  development  of  genetically  encoded  fluorescent  sensors  of  orexin 

neuropeptides, which did improve the dynamic range of the receptor (Duffet et al., 2022).

In a different approach, using other variations of GFP or other fluorescence proteins could 

be utilized  to  generate a new genetically  encoded biosensor.  An interesting candidate 

would be Staygold, which shows great photostability and brightness (Hirano et al., 2022) 

Still, this approach is risky since there is no monomeric version of the protein available yet  

as well as there is no circular permuted form of the protein described. Besides possible 

beneficial increases of the parameters of sDarken, using other fluorescence proteins could 

potentially widen the field of use of  sDarken.  Using red shifted versions of the sensor, 

utilizing red or even far red fluorescence proteins would allow measurement of serotonin 

dynamics  while  simultaneously  activate  or  inactivate  neuronal  populations  with 

optogenetics. In case of far red shifted sensors serotonin measurements could be done 

while  applying optogenetics and additionally  measuring calcium signals simultaneously 

within cells. 

In terms of the sensors dynamic range, there are great possibilities to generate different  

sDarken versions  capable  of  detecting  a  wide  variety  of  concentrations.  To  measure 

serotonin within higher concentrations, some possibilities are already shown within this  

thesis based on the mutants D82N, D116N and S198A (Ho et al., 1992). Still there are 

other possible mutations described in the literature which can be used to achieve different 

binding  affinities  of  sDarken for  serotonin.  For  example  the  pharmacology  of  different 

polymorphic  variants  of  the  5-HT1A receptor  were  described showing multiple  possible 

mutation sites which could increase or decrease the affinity of sDarken for serotonin (Del 

Tredici et al., 2004). These could be used as a great starting point for future experiments 

tuning the affinity of  sDarken to the needs of specific experiments,  since the levels of 

endogenous  serotonin  concentrations  are  varying  among  synaptic  transmission  or 

extrasynaptical release within different regions in the brain.

As for future applications, GPCR based fluorescence biosensors could be used in a variety 

of different tasks. They could be used as a powerful tool to monitor dynamics of various 

neurotransmitters  in vivo, which was already done by monitoring dopamine levels in the 
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dorsal striatum of mice during the spontanous sleep-wake cycle and different stimuli  (H. 

Dong et  al.,  2019),  serotonin release in  the anterior  cingulate cortex of  mice to  study 

consolation behavior  (L. Li  et  al.,  2021) or the acetylcholine release in the basolateral 

amygdala of mice during the cue reward learning task (Crouse et al., 2020).

Furthermore,  genetically  encoded  biosensors,  specifically  based  on  G-Protein  coupled 

receptors, could be used to screen for ligands of the specific GPCR it  is based upon, 

therefore  being  used  to  find  new  receptor  specific  drugs.  For  example  Psychlight  a 

genetically encoded 5-HT sensor based on the 5-HT2A receptor that was used to identify a 

non-hallucinogenic psychedelic analog, which showed antidepressant action (C. Dong et 

al., 2021). For  sDarken it  is shown here that the 5-HT1A receptor agonist 8-OH-DPAT as 

well as the 5-HT1A receptor inhibitor WAY-100635 both are able to effect the fluorescence 

of the sensor (Fig. 29, Fig. 32).  

With GPCR based genetically biosensors it is probably not possible to study the effects of  

ligands of the receptors in terms of specific pathways triggered, but it could be possible to 

detect different ligands of the used receptor. In the case of  sDarken, it would be really 

interesting to investigate if there is a difference in the fluorescence change triggered in  

biased ligands of the 5-HT1A receptor. For the 5-HT1A receptor some biased agonists are 

identified,  for  example F15599 or  F13714  (Maurel  et  al.,  2007).  A comparison of  their 

possible triggered fluorescence change to the change triggered by the agonists 5-HT or 8-

OH-DPAT would indicate if there is a potential of using sDarken to screen for ligands of the 

5-HT1A receptor while already indicating if the agonists are biased or non biased.
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6 Supplements

6.1 Primer Sequences

Primer name Primer sequence (5’ → 3’)
N1 1A HIII F CAGATCTCGAGCTCAAGCTTATGGATGTGCTCAGCCCTGG

1A N1 NI R ATGATCTAGAGTCGCGGCCGCTCACTGGCGGCAGAACTTACAC

cpGFP F AACGTCTATATCAAGGCCGACAAG

cpGFP R GTTGTACTCCAGCTTGTGCCC

S1A Li 2AS M R TCGGCCTTGATATAGACGTTMNNMNNTGAGCTCAGGAAGCGCGCAGCTCGG

S1A Li 2AS M F GGCACAAGCTGGAGTACAACNNKNNKGACCAACTGCGAGAGAGGAAGACAGTGAAGACG

C

1A Li cG DL1 M R TCGGCCTTGATATAGACGTTMNNMNNTGAGCTCAGGCGGAAGCGCGCAGC

1A Li cG DL1 M F GGCACAAGCTGGAGTACAACNNKNNKGACCAACTGGCCCGAGAGAGGAAGACAGT

2AS CF F GGCACAAGCTGGAGTACAACTGTTTTGACCAACTGCGAGAGAGGAAGACAGTGAAGACG

C

2AS CW F GGCACAAGCTGGAGTACAACTGTTGGGACCAACTGCGAGAGAGGAAGACAGTGAAGACG

C

M34 NG Mut R CTTGATATAGACGTTCTTATAMNNMNNMNNGAAGCGCGCAGCTCG

M34 NG Mut F AAGCTGGAGTACAACTGTTTTNNKNNKNNKCGAGAGAGGAAGACAGTGAAGAC

M34 sfGFP R TCCTCGCCCTTGCTCACCATCTTATATGAGCTCAGGAAGCGCG

M34 sfGFP F GCATGGACGAGCTGTACAAGTGTTTTGACCAACTGCGAGAGA

FP F ATGGTGAGCAAGGGCGAG

FP R CTTGTACAGCTCGTCCATGCC

sfcpGFP F AACGTCTATATCACCGCCGAC

sfcpGFP R GTTGTACTCCAGCTTGTGCCC

M34KDMut1 F CTCATGGTGTCGGTGTTGGT

M34KDMut1 R ACCAACACCGACACCATGAGGTTGGTGACCGCCAAAGAGCC

M34KDMut2 F GTGCTGTGCTGCACCTCA

M34KDMut2 R GATGAGGTGCAGCACAGCACGTTGAGGGCGATGAACAGGTCG

M34KDMut3 F ACCTTTGGAGCTTTCTACATCCC

M34KDMut3 R ATGTAGAAAGCTCCAAAGGTGGCATAGATAGTGTAGCCATGATCCTTGC

For-pAAV-5-HT1As CGAACATCGATTGAATTCATGGATGTGCTCAGCCCTGG

S1A3LcG VI FL R TCGGCCTTGATATAGACGTTGCCGCCGCCGCCGCCGCCCTTGGGCTGCGGGGC

S1A3LcG VI FL F GGCACAAGCTGGAGTACAACGGCGGCGGCGGCGGCGGCGGTCCTACCCCTTGTGCCC

5HT1Ae-Rev-pAAV TGCTCGAGGCAAGCTTTCACTGGCGGCAGAACTT

S1A3LcG IV R TCGGCCTTGATATAGACGTTCCTGCTCCCCGACTCTCC

S1A3LcG IV F GGCACAAGCTGGAGTACAACAAAGAGCACTTGCCTCTGCC

S1A3LcG IV FL R TCGGCCTTGATATAGACGTTGCCGCCGCCGCCGCCGCCAGCCTTGCTCTCCACGCC

S1A3LcG IV FL F GGCACAAGCTGGAGTACAACGGCGGCGGCGGCGGCGGCGTGATCGAGGTGCACCGAGT

S1A3LcGIII R TCGGCCTTGATATAGACGTTAGCCTTGCTCTCCACGCC
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S1A3LcGIII F GGCACAAGCTGGAGTACAACGTGATCGAGGTGCACCGAG

S1A3LsplitG II dou FL 1AFP 2 R TCGGCCTTGATATAGACGTTGCCGCCGCCGCCGCCGCCCTGGCGGCAGAACTTACACT

S1A3LcGIII FL R TCGGCCTTGATATAGACGTTGCCGCCGCCGCCGCCGCCAGCCTTGCTCTCCACGCC

S1A3LsplitcG I FL F GCATGGACGAGCTGTACAAGGGCGGCGGCGGCGGCGGCGTGATCGAGGTGCACCGAG

S1A3LsplitcG IdouFL R TCCTCGCCCTTGCTCACCATGCCGCCGCCGCCGCCGCCCTGGCGGCAGAACTTACACT

hacpGFP-pAAV CTGCTCGAGGCAAGCTTTCAGTTGTACTCCAGCTTGTGCCC

S1A3LsplitG II FL R TCCTCGCCCTTGCTCACCATGCCGCCGCCGCCGCCGCCAGCCTTGCTCTCCACGCC

S1A3LcGIII FL F GGCACAAGCTGGAGTACAACGGCGGCGGCGGCGGCGGCGTGATCGAGGTGCACCGAG

GFP paaV R CTGCTCGAGGCAAGCTTTCACTTGTACAGCTCGTCCATGCC

sfcpGFP builder F GGCATGGACGAGCTGTACAAGGGCGGTACCGGAGGGAGCATGGTGAGCAAGGGCGAG
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6.2 Vectormaps of plasmid backbones
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6.3 Example fluorescence profiles

2AS M14 2AS M15 2AS M20

2AS M24 2AS M26 2AS M34

2AS M44 2AS M46 2AS M56

Figure 42: Example fluorescence profiles of different mutants within the 2AS mutant family
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