
Fachbereich 3 (Mathematik & Informatik)
Zentrum für Technomathematik

Tikhonov Functionals Incorporating

Tolerances in Discrepancy Term

for Inverse Problems

Dissertation

zum Erlangen des Grades eines Doktors der Naturwissenschaften

-Dr. rer. nat.-

vorgelegt von

Phil Gralla

1. Gutachter: Dr. Iwona Piotrowska-Kurczewski, Universität Bremen

2. Gutachter: Prof. Dr. Peter Maaÿ, Universität Bremen

3. Gutachter: Dr. Oltmann Riemer, Leibnitz-Institut für Werksto�orientierte

Technologie IWT Bremen

Kolloquium: 13. Januar 2023

Abstract

This thesis contributes to the �eld of inverse problems and their regularization
through Tikhonov-type regularization schemes. Tikhonov-type regularization
schemes use a discrepancy term on the operator evaluation and a regulariza-
tion term on the parameter. One can change the penalty term to incorporate
di�erent a-priori information about the true parameter. For example, most
research focuses on the regularization term, such as applying sparsity con-
straints instead of L2-penalty. This work takes a di�erent approach and adds
an ε-insensity to the discrepancy term. This insensitivity does add another
regularization and accounts for con�dence bands. We can obtain these bands
through multiple measurements, for example.
Besides the mathematical framework, this work explores possible numerical

solvers for the altered Tikhonov functional. Depending on the chosen norm
of the discrepancy term and the type of penalty term, the altered Tikhonov
functional may not be di�erentiable. In this case, a non-smooth solver is
necessary. This thesis compares existing non-smooth solvers with a newly
introduced subgradient method with adaptive step size.
Finally, we apply the theory to a parameter identi�cation problem. The

example is from micro-milling and the resulting surface. First, an existing
cutting process model is taken and expanded to account for wear on the
cutting tool during the process. Then we use the model for the parameter
identi�cation.

Acknowledgement

The author acknowledges the �nancial support by Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) for the CRC 747 (Collab-
orative Research Center) Mikrokaltumformen � Prozesse, Charakterisierung,
Optimierung.
This project was supported by the Deutsche Forschungsgemeinschaft (DFG)

within the framework of GRK 2224/1 Pi3: Parameter Identi�cation - Analy-
sis, Algorithms, Applications.

I would like to thank

My supervisors Prof. Dr. Peter Maaÿ and Iwona Piotrowska-Kurczewski for
advising, supporting and encouraging me.
My wife and daughter for their support and understanding.
My family for supporting me and believing in my ability to �nish.
Christine, Delf, Georgia, Simon, Thilo, and Ziwen for the discussions and
helpful inputs.

Contents

1 Introduction 1

1.1 Support Vector Machines . 2
1.2 Machine Learning for Inverse Problems 4
1.3 Numerical Methods . 5
1.4 Micro Cold Forming . 6
1.5 Overview about the Thesis . 7
1.6 Code and Supplementary . 8

2 Preliminaries 9

2.1 Basic Notations and De�nitions 9
2.2 Convex Analysis . 10
2.3 Di�erent Types of Continuities 15
2.4 Ill-Posed Problems and Regularization 15
2.5 Optimization . 20
2.6 Statistical Basics . 21

3 Tolerances in Hilbert Spaces 27

3.1 Classi�cation and Regression with Support Vectors 27
3.2 Nonlinear SVR . 32
3.3 De�nition of Tolerance in Inverse Problems 33
3.4 Mathematical Framework . 36
3.5 Tolerances in Lp-Spaces . 42
3.6 Comparison to Ivanov- and Morozov-Regularization 47
3.7 Choosing ε . 50

4 Numerical Solution for Lp 53

4.1 Solving with SVR-Solver . 54
4.2 Non-Smooth Optimization . 55
4.3 Stochastic Gradient Descent 62
4.4 Subdi�erential and Subgradients 64
4.5 Comparison of methods . 73

V

Phil Gralla Contents

4.6 Applications in Image and Signal Processing 78

5 Application in Micro Milling 85

5.1 Technical Background . 86
5.2 Identifying Acceleration Points from Positional Data 86
5.3 In�uence of the Wear of Cutting Tool on Cutting Process . . . 90
5.4 Results . 102

6 Conclusion 105

Bibliography 114

VI

List of Figures

1.1 Diagram for Tikhonov Methods 3
1.2 Toy Example of SVM Classi�cation 4
1.3 Micro cup next to a grain of rice for size comparison. 7

2.1 Example of an epigraph . 11
2.2 Normal distribution and its properties. 22

3.1 Toy Example of a Separable Data Set 29
3.2 Support Vector Regression . 32
3.3 Example of non-linear SVM 34
3.4 Example in�uence of di�erent tolerances. 36
3.5 Subdi�erential of |z|ε . 44
3.6 Example for di�erent regularization methods. 49
3.7 Example reconstruction . 51

4.1 Example for re�ection, expansion, and contraction of a simplex. 57
4.2 Convergence of subgradient methods 71
4.3 Example composition of non-di�erentiable functions 72
4.4 Surface plot of a non convex function (4.16) with multiple local

minima. 74
4.5 Denoising with exact operator and noised data 79
4.6 Denoising with noised operator and noised data 80
4.7 Example of blurred and noised image. 81
4.8 Example of a depth image . 82
4.9 Edge detection on micro nap 83

5.1 Dry friction in a mold used for micro cold forming. 86
5.2 Reconstruction of acceleration from positional data. 89
5.3 SEM pictures of used cutting tools. 90
5.4 Example cutting path φ(t) of the cutting tool 94
5.5 Cutting Path of Ball Edge Micro Miller 94
5.6 Minimum chip thickness . 96

VII

Phil Gralla List of Figures

5.7 Schematic of an Abbott-Curve 98
5.8 Simulation of wear on a ball-end tool. 100
5.9 Example simulation with wear on tool 100
5.10 Solution of parameter identi�cation considering wear of tool . 104

VIII

List of Tables

2.1 Examples for well- and ill-posed problems 18
2.2 Examples of random variables 22

3.1 Examples of kernels and their inner product. 34

4.1 Summary of di�erent numerical non-smooth solvers 76
4.2 Comparison of di�erent numerical solvers 77
4.3 1D deconvolution for di�erent noise models 80

5.1 Parameters . 92
5.2 Surface deviation according to DIN 4760:1982-06 96
5.3 Applied process parameters 103

IX

List of Algorithms

1 Nelder Mead . 57
2 Genetic Optimization . 59
3 Particle Swarm Optimization 60
4 Simulated Annealing Algorithm 61
5 ADAM Optimizer . 64
6 Classic subgradient method . 66
7 Subgradient with adaptive decreasing step size 67

XI

Nomenclature

Abbreviation

CRC 747 Collaborative Research Center 747
SVM Support Vector Machines
SVR Support Vector Regression
w.c. weakly continuous (operator)

w.l.s.c. weakly lower semicontinuous (function)
w.s.c. weakly sequentially closed (set or operator)

ZeTeM Center for Industrial Mathematics at University of Bremen

Symbols

∇ gradient
L(X, Y) space of linear operators between X and Y

| · | absolute value
∥ · ∥X norm in X
∥ · ∥X,ε ε-insensitive premetric
R(A) image space of operator A
D(A) de�nition space of operator A

N space of positive natural numbers
R space of real numbers

R+ space of positive real numbers (excluding 0)
R+

0 space of positive real numbers including 0
L2(Ω) space of square integrable functions on Ω

A Fréchet-Di�erential of the operator F
⌊·⌋ round down to next integer
⌈·⌉ round up to next integer

Br(x) open ball with center at x and radius r
d(·, ·) metric
⟨·, ·⟩ inner product
⊙ Hadamard product
⊘ Hadamard division

XIII

Phil Gralla LIST OF ALGORITHMS

XIV

1
Introduction

An inverse problem seeks the solution of

Fu = v (1.1)

where F : X → Y and v ∈ Y are known and u ∈ X is unknown. In many
applications, either the true right side of the equation is unknown and instead
a noisy version vδ with ∥v − vδ∥ ≤ δ or the operator F does not have an
inverse or is ill-conditioned. This means that a solution is either not unique
or the reconstruction û with

Fû = vδ

is not close enough to the true u, i.e. ∥u− û∥ ≫ δ. In such a case we speak of
an ill-posed inverse problem. A combination of the above may also be present.
For an inverse problem it is important to �nd the true solution u of (1.1) and
it is not enough to �nd a minimizer of

argmin
u∈X

⃦⃦
Fu− vδ

⃦⃦
.

To solve such problems di�erent techniques of regularization exists that reduce
the in�uence of noise in v and �nd an inverse or pseudo-inverse of F . One
popular approach is Tikhonov regularization where

u† = argmin
u∈X

{︂⃦⃦
Fu− vδ

⃦⃦p
p
+ αRq(u)

}︂
is an approximation of u under the regularization Rq(u). The works of Gras-
mair [28], Kaltenbacher [39] study the di�erent ways of regularization with
various regularizers R(u). While Kazimierski et al. [40], as well as Bangti
and Maass [36] focus on sparsity constraints on the reconstructed u by re-
stricting it to be a linear combination of wavelets, and the regularization is
then applied to the coe�cients of u. These are often sparsity constraints with
q = 1.
In this work the Tikhonov regularization for inverse problems is altered by

adding a tolerance insensitivity to the discrepancy term
⃦⃦
Fu− vδ

⃦⃦p
p
. The

1

Phil Gralla Support Vector Machines

level of tolerance is de�ned by a parameter ε. As a result the problem at hand
in this work is to calculate

u† = argmin Jp,q
δ,α,ε (u)

where

Jp,q
δ,α,ε (u) =

1

p

⃦⃦
F (u)− vδ

⃦⃦p
Lp,ε

+ αRq(u). (1.2)

We use a hinge loss for the ε-insensity, which is also used for training support
vector machines for classi�cation or regression.
The hinge loss is de�ned as

|λ|ε :=

{︄
0 |λ| ≤ ε

|λ| − ε otherwise
(1.3)

and can be extended for functions in Lp(Ω) via point wise evaluation. The
result is a so-called (ε , Lp)-insensitive distance function de�ned as

∥f∥pLp,ε
=

∫︂
Ω

|f(x)|pε dx (1.4)

for all f ∈ Lp.
This change in the discrepancy will yield non-standard discrepancy terms

which do not ful�ll the standard requirements. As such, we prove the exis-
tence of a minimizer, stability for ε and δ and convergence before having a
deeper look into methods to solve the minimization problem numerically. The
advantage of changing the discrepancy term is to better model uncertainties in
measurements and to further stabilize the reconstruction of the true solution
û.
Figure 1.1 depicts the relation of p, q and ε. Each point in the box stands

for a triple of p, q, ε. The base plane is the classical theory for inverse problems
without any tolerance for the discrepancy. The vertices on the top are known
triplets in support vector machines. We focus on completing the cube in
this work, and special attention is given to the transitions between triplets.
Especially, the transitions along the z axis are important to unify the standard
theory with the additional regularization in the discrepancy.

1.1 Support Vector Machines

Support vector machines are a method in machine learning for regression and
classi�cation. Machine learning is a mathematical �eld where models are
derived from training data and applied to unknown data. These methods can
be applied to many di�erent problems as long as enough data is available. As
a result, they o�er a versatile tool to solve various problems.
The support vector method is a linear method that uses a hyperplane as

a decision boundary for classi�cation or prediction function for regression.

2

Phil Gralla Support Vector Machines

p

tol

q

1 2

1

1

2

(2,1,0)
Sparsity

(2,2,0)
Tikhonov

SVR

Figure 1.1: Diagram for Tikhonov Methods. Each point in the diagram repre-
sents a set of p, q combinations for Tikhonov type functionals. In
addition tol = 1 denotes that there is a tolerance in the discrep-
ancy term of the functional.

For complex models, it is either necessary to �nd a large feature space, i.e.,
transform the data into a new space on which the linear support vector method
is trained, or use kernels to introduce non-linearity to the linear model. These
kernels need to be reproducing kernels in Hilbert spaces, and their usage in
support vector machines is known as kernel trick. This technique is not unique
to support vectors and can be applied to many regression techniques. The
properties of reproducing kernels in Hilbert spaces allow to directly compute
the solution without the need to calculate and transform the input vectors
explicitly.
The name, support vector machines, is derived from the fact that a subset

of the training data de�nes the separating hyperplane. This subset is the
support vectors. For a two class classi�cation, the support vector decision
boundary is de�ned by

Lw,β0 := {x ∈ X | x ∈ ⟨w, x⟩+ β0 = 0}, w ∈ X, β0 ∈ R

and the decision function is

f(x) = sgn (⟨w, x⟩+ β0)

where the classes are represent with {−1, 1} respectively. An example for
classi�cation is shown in �gure 1.2. Two core elements of the support vector
method are the loss function and regularization. The loss function is the hinge
loss de�ned as

|x|ε := max{0, |x| − ε}

for x ∈ R. For �nding a unique hyperplane for classi�cation or regression
a regularization is needed. For regression with support vector machines the
regressor f(x) = ⟨w, xi⟩+ β0 is the solution to the minimization problem

argmin
w,β0

n∑︂
i=1

|⟨w, xi⟩+ β0 − yi|2ε + α
(︁
∥w∥2 + |β0|

)︁

3

Phil Gralla Machine Learning for Inverse Problems

0 1 2 3
0

0.5

1

1.5

class A class B

Figure 1.2: A toy example for SVM classi�cation. The two classes are marked
with red triangles and blue stars. The solid line marks the decision
boundary ⟨w, x⟩+ β0 and the dotted lines the margin.

over the training data {(xi, yi)}. Rewriting the above minimization with
f(x) = ⟨w, xi⟩+ β0 yields

argmin
f

n∑︂
i=1

|f(xi)− yi|2ε + α ∥f∥2

and demonstrates the connection between Tikhonov functionals and support
vector regression.

1.2 Machine Learning for Inverse Problems

In recent years, machine learning techniques, especially deep learning types,
have been studied and used to solve applications and tasks that are closely
related or are part of inverse problems.
In inverse problems, we need to �nd a parameter u such that we minimize

∥Fu− v∥

and that, at the same time, we minimize

∥u− û∥

where
Fû = v

and û is the ground truth. As stated before, the second condition is crucial
for inverse problems and separates them from optimization problems.
For machine learning, we want to �nd a function/operator F : X → Y such

that we minimize
∥Fui − vi∥ .

4

Phil Gralla Numerical Methods

Machine learning methods can directly solve an inverse problem if we have
data pairs ui, vi with a known operator Fui = vi. Then the operator

Ĝ = argmin
G

∑︂
i

∥Gvi − ui∥

approximates the pseudo inverse of F and can be used to solve the inverse
problem for a new data v. If enough training data is available, G is a suitable
approximation for the pseudo-inverse of F . This technique is used with vari-
ational autoencoders in [44, 61], for example. Another application is image
generation. Ho et al. train di�usion models to generate an image from noise
and solve an inverse problem in the process [32]. Saharia et al. use the same
di�usion base networks for image super-resolution [64].
The downside of this approach is the necessary number of samples needed

for �nding a stable inversion of F . We can generate or enhance the training
sets {ui, vi} with arti�cial data to ensure the stability of Ĝ on new unseen
data if enough information about the expected noise and forward operator is
known.
A second approach using machine learning to solve inverse problems is re-

stricting the solution space X. For example, Ulyanov et al. [80] and Sitzman
et al. [71] use deep image priors to solve inverse problems in image recon-
struction to restrict the space of possible solutions to images generated by
U-networks, a particular architecture of deep neural networks. This approach
is similar to Morozov regularization [57].
This work does take elements from the support vector machines and in-

tegrates them into the existing Tikhonov-type methods. Therefore, it is an
indirect approach to combine inverse problems with techniques from machine
learning while avoiding the need for training data or to �nd a suitable network
architecture to restrict the solution space.

1.3 Numerical Methods

We extend the classical theory of inverse problems in this paper by proving
mathematical prerequisites such that a solution exists and is obtainable. We
can use existing numerical methods to �nd the desired minimizer numerically
for some cases, such as p = 2 and a convex regularization term. To complete
the theory and allow us to use our regularization in real applications, we
extend existing numerical solvers to solve for a more signi�cant number of
regularization terms and other values for p. We are especially interested in
the case where p = q = 1.
The minimization function is not di�erentiable everywhere for p = q = 1,

and we can not use standard convex solvers to �nd the desired minimum.
If we restrict the forward operator F to linear and the regularization term
Rq(u) = ∥u∥qq, we can apply solvers used for �tting support vector machines
to solve the inverse problem. We need a di�erent numerical solver for more
regularization terms or non-linear forward operators.

5

Phil Gralla Micro Cold Forming

All numerical methods minimize a function f(x). Stochastic gradient de-
scent methods use a statistical approximation of a true (sub-)gradient to min-
imize the function iteratively. They are widely used to train neural networks
and other machine learning algorithms when working with batches or mini-
batches. (Mini-)batches mean that the dataset is not processed in one batch
to calculate the (sub-)gradient but rather a subset. This batching gives a
statistical approximation of the (sub-)gradient. In addition, many modern
methods use momentum and adaptive step size in their update rules. It is im-
portant to note that while stochastic gradient methods for subgradients exist,
not all stochastic methods are subgradient methods. ADAM, for example, is
only proven to converge for gradients [43].
Subgradient methods generalize the gradient to be de�ned on a convex

function that is non-di�erentiable via

f(y) ≥ f(x) + gT (x− y)

where g is not unique. As such, subgradient methods can be used to �nd a
minimizer for the non-di�erentiable Tikhonov functional. They do, however,
rely on an a-priori step-size rule and need many iterations to converge. We
introduce an adaptive step-size rule for the classical subgradient method to
reduce the downside of the subgradient methods.
Gradient-free methods do not need any (sub-)gradient information and do

not need convexity of the minimization function. They can minimize a func-
tion if it has many local minima and is non-smooth. The Nelder-Mead simplex
algorithm and Particle Swarm optimization are two examples of gradient-free
methods. These methods need many iterations to converge and are limited to
small input spaces to be feasible.

1.4 Micro Cold Forming

We originally designed the presented mathematical methods in this work to be
applied to parameter identi�cation for micro-milling as part of the Cooperative
Research Center 747 (CRC 747) at the University of Bremen. In the CRC
747, new methods for cold forming of micro parts in micro dimensions are
studied. Micro dimensions means that the parts are smaller than 2mm in two
dimensions. Figure 1.3 shows one example of a micro-scale component next
to a grain of rice for size comparison.
Insigni�cant e�ects on the macro-scale have a strong in�uence on the micro-

scale. We call these size e�ects and Vollertsen further elaborated on size
e�ects in [86]. Size e�ects hamstring the transition of the manufacturing
process from macro-scale to micro-scale. For example, in milling processes,
small structures on the surface of the �nished workpiece are inevitable. These
structures are crucial for microstructured devices or functional tribological
surfaces [58, 6, 23].
We take the micro-milling process model from [60], and [83] to simulate a

micro-milling cutting process. During the process, stress and pressure on the

6

Phil Gralla Overview about the Thesis

Figure 1.3: Micro cup next to a grain of rice for size comparison. (Picture
provided by CRC 747, photographed by Thorsten Müller)

cutting edge cause wear. This wear changes the shape of the cutting edge and
thus the microstructures of the �nished surface. We add a general model for
the change in geometry caused by wear to the existing process model.
The Abbott-Firestone curve, also called area bearing curve, de�nes surface

characteristics in a one-dimensional graph. This graph captures the local and
global surface structures. We use this graph to de�ne the desired surface based
on necessary properties. In addition, we can directly de�ne a tolerance on this
graph for the surface to still have all desired properties.
The introduced tolerances allow de�ning surfaces with acceptable tolerance

bands, which we use to �nd ideal process parameters considering wear on the
cutting tool over time.

1.5 Overview about the Thesis

The thesis is structured as follows. First, the preliminary chapter gives nec-
essary basic de�nitions and mathematical tools. Then, we focus on essential
topics for proofs and concepts used in this thesis. Necessary fundamentals
include convex analysis, functional analysis, continuities, statistical distribu-
tions, noise models, ill- and well-posed problems, and convex optimization.
For readers familiar with any of the mentioned topics, the chapter should
only establish notations but not introduce new concepts. Later chapters will
provide more advanced de�nitions and theorems in this work when needed or
applied.
Chapter 3 outlines tolerances and support vector machines in Hilbert spaces.

We introduce the classical support vector machines (SVM) and support vec-
tor regression (SVR) and their extension with kernels in reproducing kernel
Hilbert spaces. In addition, we explore their relation to Tikhonov regular-
ization. Furthermore, we will establish a general mathematical framework to
utilize regularization via tolerance in discrepancy terms for Tikhonov regu-
larization. The necessary proofs for existence, stability, and convergence are

7

Phil Gralla Code and Supplementary

derived and explained in detail. For later applications, the Lp spaces need to
be included. An example of these applications is part of chapters 3 and 4.
Chapter 4 addresses numerical solutions and implementation of the altered

Tikhonov functional. We explore existing numerical methods before devel-
oping a novel subgradient method with adaptive step-size. This subgradi-
ent method is similar to the standard methods, but increases converge speed
through online step-size adaptation. The algorithm is then applied and com-
pared to other regularization methods in two signal and image processing
examples.
The �nal chapter presents the application for micro-milling. First, we give

the necessary background and modeling of micro-milling processes and explain
the application task. Afterward, we use our method to solve the task at hand.

1.6 Code and Supplementary

The code, images and examples from this thesis are public and available on
the github repository
https://github.com/PGralla/PhD-Thesis-Supplementary.

8

https://github.com/PGralla/PhD-Thesis-Supplementary

2
Preliminaries

This chapter provides an overview of mathematical concepts and notations
used in this thesis. First, we give basic notations and de�nitions used in
this thesis. Then, in the following two sections, concepts of convex analysis,
and di�erent types of continuity, as well as closeness in a weak sense, are
introduced. Additionally, in section 2.6 a short overview of data analysis
and statistics is given. These concepts will help us understand the origin
of tolerances and where we derive the idea for altering Tikhonov functionals
from in chapter 3. Finally, the last two sections cover inverse problems and
their regularization, primarily focused on Tikhonov Methods and numerical
optimization, which is needed to solve minimization problems numerically.

2.1 Basic Notations and De�nitions

The symbol K is a synonym for the scalar �eld of real numbers R or complex
number C. Furthermore, we will denote by |Ω| the n-dimensional Lebesque
measure of Ω ⊂ Rn. For any measurable subset Ω ⊂ Rn the Lebesque space
Lp with 0 < p ≤ ∞ consists of all measurable function f , i.e.

∥f | Lp∥ = ∥f∥Lp =

(︃∫︂
Ω

|f(x)|p dx

)︃1/p

(2.1)

is �nite. In the limiting case p = ∞, the usual modi�cation with the essential
supremum norm is required. We considerK valued function f ∈ Lp. Operators
F : X → Y between vector spaces are referred to as functionals if Y = R.
If A : X → Y is a linear operator between vector spaces, we refer to it as a
linear functional if Y = R.
The operator equation is

F : U → Lp(Ω) (2.2)

for U Hilbert-space and 1 ≤ p ≤ 2.

9

Phil Gralla Convex Analysis

The Tikhonov-functional

Jδ,α
p,q (u) =

1

p

⃦⃦
F (u)− vδ

⃦⃦p
Lp

+ αRq(u) (2.3)

is under consideration.

2.2 Convex Analysis

This section covers the basics of convex analysis used in this thesis. Further
information can be found in [68]. However, we �rst must de�ne what convex
sets and functions are.

DEFINITION 1 (Convex Set)

Let X be a vector space and M ⊂ X. The set M is convex if

λx+ (1− λ)y ∈ M, ∀x, y ∈ M, λ ∈ (0, 1)

A particular subset of convex sets are radially convex sets. We use these sets
to model the micro-milling process and the wear on the cutting tool.

DEFINITION 2 (Radially Convex Set)

Let X be a vector space and M ⊂ X. The set M is radially convex if there
exists at least one x0 ∈ M s.t.

λx0 + (1− λ)y ∈ M, ∀y ∈ M, and λ ∈ (0, 1)

holds.

Radially convex sets are also called star-shaped sets or star-convex sets. All
convex sets are radially convex, which follows directly from the de�nitions
of convex and radially convex sets. For functionals, convexity is de�ned as
follows.

DEFINITION 3 (Convex Functional)

Let M be a convex subset of a vector space, x, y ∈ M , and λ ∈ [0, 1]. The
functional f : M → R is called

convex if
f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

strictly convex if

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y).

We use epigraphs of functionals to analyze functionals and in several proofs
later in this thesis.

10

Phil Gralla Convex Analysis

0 0.5 1 1.5 2

0

1

2

3

4

Epi(f)

Figure 2.1: Example of an epigraph for a piecewise di�erentiable function on
the domain x ∈ [0, 2]. The epigraph is the grey area including the
graph of the function itself.

DEFINITION 4 (Epigraph)

Let X be a vector space and f : X → R a functional. The epigraph of the
functional f is de�ned as

Epi(f) := {(y, x) ∈ R×X | y ≥ f(x)}

and is the set of all points above the graph including itself.

Figure 2.1 shows an example of an epigraph. Convex sets and convex function-
als are related directly through the epigraph. We use the following proposition
for this relation.

PROPOSITION 5

A functional f is convex if and only if the epigraph of f is convex.

Proof : First we assume that a functional f : X → R is convex. Let (y1, x1) and
(y2, x2) be in the epigraph of f . De�ne the point

(ŷ, x̂) := λ(y1, x1) + (1− λ)(y2, x2)

with λ ∈ [0, 1].

Then by the de�nition of epigraph and convexity

ŷ = λy1 + (1− λ)y2

≥ λf(x1) + (1− λ)(x2)

≥ f(λx1 + (1− λ)(x2))

= f(x̂)

and thus the epigraph is convex.

11

Phil Gralla Convex Analysis

Now let us assume that the epigraph is convex. Let x1, x2 ∈ X be arbitrary.
Then

(f(x1), x1) , (f(x2), x2) ∈ Epi(f).

Since the epigraph is convex the point

λ (f(x1), x1) + (1− λ) (f(x2), x2) ∈ Epi(f)

for all λ ∈ [0, 1]. By the de�nition of the epigraph

λf(x1) + (1− λ)f(x2) ≥ λx1 + (1− λ)x2

and thus f is convex, which completes the proof.

The epigraph of a functional also has unique properties for convex and lower
semicontinuous functionals.

PROPOSITION 6

If f is convex and lower semicontinous, the epigraph is convex and strongly
closed.

Proof : From proposition 5 we know that Epi(f) must be convex. Let y < f(x),
then since f is lower semicontinous (y, x) ̸∈ Epi(f).

Convex functionals and convex sets are essential in convex optimization and
variational analysis. One important theorem is the Hahn-Banach separation
theorem. We use the following version of the Hahn-Banach separation theo-
rem.

PROPOSITION 7 (Hahn-Banach Separation Theorem)

Let X be a topological vector space over K, whereK is R or C. If A,B ⊂ X
are both convex, non-empty and disjoint, then

� if A is open, then there exists a continuous linear map φ : X → K
and t ∈ R such that Re(φ(a)) < t ≤ Re(φ(b)), ∀a ∈ A and b ∈ B

� if V is locally convex, A is compact and B is closed, then there exists a
continuous linear map φ : X → K and s, t ∈ R such that Re(φ(a)) <
t < s < Re(φ(b)), ∀a ∈ A and b ∈ B.

In some literature, the theorem is stated in an alternative way, as above, by
using separating hyperplanes instead of using linear mappings. In addition,
there are more versions of the Hahn-Banach theorem for geometry, also known
as Mazur's theorem, and other vector spaces. This thesis uses the Hahn-
Banach separation theorem to refer to the above de�nition.

12

Phil Gralla Convex Analysis

2.2.1 Derivatives and Subgradients

For the numerical minimization of functionals we need derivatives. Deriva-
tives de�ne (local) minima and provide an update direction for iterative nu-
merical minimizers. The introduced types of derivatives are independent of
the convexity of the considered functional. We consider three main types of
derivatives. The directional, Gâteaux and Fréchet derivative. They are all
de�ned as below.

DEFINITION 8 (Directional derivative)

Let X and Y be Banach Spaces and f : X → R∪{−∞,∞}. The directional
derivative of f at x in direction h is de�ned by

f ′(x;h) = lim
t↘0

f(x+ th)− f(x)

t

if the limit exists.

The Gâteaux derivative is de�ned based on the directional derivative.

DEFINITION 9 (Gâteaux derivative)

Let X and Y be Banach Spaces and f : X → R ∪ {−∞,∞}. If a x∗ ∈ X∗

exists such that
f ′(x;h) = ⟨x∗, h⟩ ∀h ∈ X,

then f is called Gateaux di�erentiable at x and f ′(x) = x∗ is called the
Gâteaux derivative of f at x.

DEFINITION 10 (Fréchet derivative)

If a x∗ ∈ X and ε > 0 exists such that an expansion of the form

f(x+ h) = f(x) + ⟨x∗, h⟩+ o(∥h∥)

holds for all h with ∥h∥ < ε, then f is called Frechet di�erentiable at x and
f ′(x) = x∗ is called the Fréchet derivative of f at x.

While the two de�nitions are similar not every Gâteaux di�erentiable is Fréchet
di�erentiable. A generalization of derivatives for convex but non-smooth func-
tions is subgradients.

DEFINITION 11 (Subgradient and Subdi�erential)

Let M be a convex subset of a real Banach space X and f : M → R a
convex functional. An element x∗ ∈ X∗ is a subgradient of f in x0 if

f(x) ≥ f(x0) + ⟨x∗, x− x0⟩ ∀x ∈ M

and f(x0) ̸= ±∞. The subdi�erential of f at x0 is denoted as ∂f(x0) de�ned

13

Phil Gralla Convex Analysis

as
∂f(x0) := {x∗ ∈ X∗ | f(x) ≥ f(x0) + ⟨x∗, x− x0⟩ ∀x ∈ M}

which is the set of all subgradients of f in x0.

For algebraic operators, subgradients are de�ned as stated below.

DEFINITION 12 (Algebraic Subdi�erential)

Let M ⊂ X be a convex subset of a real Banach space and F : M → Y
be a convex Operator between Banach spaces M and Y . A linear Operator
A ∈ L(X, Y) is a algebraic subgradient at x0 ∈ M if

F (x0 − h)− F (x0) ≥ A(h),∀h ∈ X, such that x0 − h ∈ M

holds and F (x0) ̸= ±∞. The algebraic subdi�erential of f at x0 is denoted
as ∂aF (x0) and de�ned as

∂aF (x0) := {A ∈ L(X, Y) |
F (x0 − h)− F (x0) ≥ A(h), ∀h ∈ X, s.t.x0 − h ∈ M}.

Similar to gradients, subgradients provide a way to characterize local minima.
The following lemma states the relation between subgradients and minima.

LEMMA 13 (Minimum)

Let D(f) be convex and a subspace of a real Banach space, f convex and
x ∈ D(f). Then

0 ∈ ∂f(x) ⇔ f(x) is a minimum. (2.4)

Proof : First we show that from 0 ∈ ∂f(x) follows that f(x) is a minimum. Let
0 ∈ ∂f(x) and y ∈ X such that x+ y ∈ D(f), then

f(x+ y) ≥ f(x) + ⟨0, y⟩ = f(x).

Since y is arbitrary and D(f) convex, each point in D(f) can be represented
with x+ y and thus f(x) is a minimum.

To show the reverse direction let f(x) be a minimum. Therefore ∀y ∈ D(f) :

f(x) ≤ f(y).

Since D(f) is convex, there exists z ∈ D(f) such that y = x + z and the
inequality can be rewritten to

f(x+ z) ≥ f(x)

= f(x) + ⟨0, x+ z⟩

which means the 0 element is a subgradient.

14

Phil Gralla Ill-Posed Problems and Regularization

REMARK 14

We only assumed f to be convex and not strictly convex. Therefore the
argmin might not be unique.

2.3 Di�erent Types of Continuities

In this work, continuity in di�erent spaces and settings is considered. Here an
overview of the di�erent considered continuities is provided.

DEFINITION 15 (weakly lower semicontinuous)

A function f : M ⊂ X → R where M is a convex subset of the normed
space (X, ∥ · ∥) is weakly lower semicontinuous if for a weak convergent
sequence (uk)k∈N to a point u ∈ M holds

f(u) ≤ lim inf
uk→u

f(uk).

DEFINITION 16 (weakly continuous operator)

An operator F : U → V is weakly continuous if for a weak convergent
sequence (uk)k∈N to the point u ∈ U , the sequence (F (uk))k∈N converges
weakly towards F (u).

De�nitions that are needed later.

DEFINITION 17 (weakly sequentially closed operator)

An operator F : U → V is weakly sequentially closed if for any weakly
convergent sequence (F (uk))k∈N ⊂ V the limit point lies in the range of F ,
i.e. there exists u ∈ dom(F) such that F (uk) ⇀ F (u).

DEFINITION 18 (weakly sequentially closed set)

A non-empty setM ⊂ X of the normed space (X, ∥·∥) is weakly sequentially
closed if and only if for each weak convergent sequence (xn)n∈N ⊂ M with
limit x, x is an element of M .

PROPOSITION 19

Let X be a real Banach space and f : X → R ∪ {−∞,∞} be a convex
functional. Then the functional f is lower semi-continuous if and only if it
is weakly lower semi-continuous.

2.4 Ill-Posed Problems and Regularization

Inverse problems are based on functional analysis and involve �nding a cause/-
source for a known solution and operator. For �nite spaces and linear models,

15

Phil Gralla Ill-Posed Problems and Regularization

it is equivalent to solving an algebraic system of the form

Ax = b

for a known matrix A ∈ Rn×m and solution vector b ∈ Rn. However, the
solution space may be in�nite, and operators may not be linear. Typical
�elds of application are parameter identi�cation, image processing, and image
reconstruction. One classic example is computer tomography (CT), where
methods of inverse problems are used to reconstruct the images of the inside
of a patient that are non-invasive [63].
This section provides a small overview. For further information, we refer to

[63] and [53]. The format of this section is adapted from [63]. The emphasis
is on basic de�nitions and the Tikhonov-Regularization.
Let F : U → Y be an operator mapping from the parameter space U to the

data space V . The known data vδ ∈ V has a noise level δ ∈ R which describes
the variance of vδ to the true data v. In this case the inverse problem can be
formulated as a minimization problem

usol = argmin∥Fu− vδ∥

where in the absence of noise, usol should be the true solution u, i.e.

∥usol − u∥ = 0.

An essential criterion is to estimate the distance between the computed solu-
tion and the real solution to characterize whether the operator F is ill-posed
or well-posed. There is more than one de�nition for ill-posed problems. In
this thesis, we use Hadamard's de�nition.

DEFINITION 20 (Well posed problem (Hadamard))

Let U, V be Hilbert spaces, F ∈ L(U, V), u ∈ U and v ∈ V . The Problem
F (u) = v is called well posed if

1. ∀v ∈ V exists a solution

2. each solution is unique

3. an inverse operator F−1 : V → U exists and is continuous.

If the problem is not well posed it is said to be ill-posed.

The third requirement is sometimes expressed as slight deviations in data
result in minor deviations in u. Most ill-posed inverse problems will violate
this requirement, thus making them ill-posed.
For linear problems in Hilbert spaces we have a global characterization of ill-

posed problems according to Nashed. For F ∈ L(X, Y) we have the equivalent
relation

Fu = v is ill-posed ⇔ R(F) is not closed in V

⇔ F+ is not continuous.

16

Phil Gralla Ill-Posed Problems and Regularization

If the linear problem has a compact operator, it is ill-posed. To solve an
ill-posed problem, we minimize the discrepancy

∥Fu− v∥ (2.5)

instead. The argmin of (2.5) is not unique in general. To de�ne a unique
solution, we use the minimum norm element, which is called the generalized
solution of

Fu = v.

Calculating the argmin of (2.5) is equivalent to solving the normal equation.
First, we need to de�ne adjoint operators.

DEFINITION 21 (Adjoint Operator)

Let F ∈ L(U, V) be a linear operator between two Hilbert-spaces. The
linear operator F ∗ ∈ L(V, U) for which

⟨Fu, v⟩V = ⟨u, F ∗v⟩U

holds for all u ∈ U and v ∈ V is called the adjoint of F .

The adjoint operator is then used in the normal equation

F ∗Fu = F ∗v.

As stated before, solving the normal equation is equivalent to �nding the
argmin of (2.5). A linear operator that maps directly to the minimum norm
element is called the Moore-Penrose-Inverse or generalized Inverse.

DEFINITION 22 (Moore-Penrose-Inverse)

The linear operator F+ which maps each v to the minimum norm element
of the set

Lv = {u ∈ D(F) | F ∗Fu = F ∗v}

is called the Moore-Penrose-Inverse or generalized inverse.

Instead of �nding the minimum norm element, we can generalize using a
function Rq : D(F) → R+ and use this function to de�ne the Rq-minimizing
solution.

DEFINITION 23 (Rq-minimizing solution)

Let Rq be a functional that is de�ned on D(F) and maps into the R+.
Then, u† is called an Rq-minimizing solution of Fu = v if

u† = argmin
Fu=v

Rq(u).

17

Phil Gralla Ill-Posed Problems and Regularization

well-posed problem ill-posed problem

Multiplication by a small number c ≪ 1 division by a small number
c · x = y x = c−1y
integration di�erentiation
F (x) = F (0) +

∫︁ x

0
f(τ)dτ f(x) = F ′(x)

Table 2.1: Examples for well- and ill-posed problems

An example for Rq is Rq(u) = ∥u0 − u∥2 where u0 ∈ U is a �xed element.
Table 2.1 lists a few examples for well- and ill-posed problems. These ex-

amples of well- and ill-posed problems are taken from [38]. As can be seen in
these examples, a forward problem may be well-posed, but the inverse problem
may not be, i.e., integration as a forward model is well-posed, but its inverse
problem, di�erentiation, is ill-posed. Particular emphasis is on the continu-
ous dependence of the problem since, in reality, not the exact solution g is
known, but rather a noisy version denoted with gε. Possible causes are noise
in the measurement methods (measurement error) and uncaptured physical
phenomena in the mathematical model (model error). In such a case, we need
the so-called regularization of the problem.

2.4.1 Tikhonov Type regularization

Tikhonov and Phillips introduced one of the �rst regularization methods.
They introduced the Tikhonov functional

Jp,q
α,δ(u) =

⃦⃦
F (u)− vδ

⃦⃦p
Y
+ α ∥u− u∗∥qX , α > 0 (2.6)

which is being minimized over the domain of F . This functional takes known
information u∗ about the solution into account via a penalty term. Many
variations of this penalty function exist and maybe more suitable for di�erent
problems.
The regularization of a Tikhonov functional is stated in [31] theorem 20.4.

We state the theorem below for the case p = q = 2 and u∗ = 0 of (2.6).

THEOREM 24

Let uδ
α denote the unique minimizer of (2.6) with p = q = 2, u∗ = 0,

v ∈ Im(F), and ∥u− uδ∥ ≤ δ. If α = α(δ) is chosen such that

lim
δ→0

α = 0 and lim
δ→0

δ2

α
= 0

then
lim
δ→0

∥uδ
α − u†∥ = 0

18

Phil Gralla Ill-Posed Problems and Regularization

Di�erent choice of Rq for Tikhonov type regularizations exists. In this work
we focus on minimum norm, sparsity, and total variation (TV) regularization.
For norm regularization Rq(·) = ∥ · ∥qq. Let {φi}i∈N de�ne a basis of D(F), i.e.
there exists ci ∈ R for each φi such that

u =
∑︂
i

ciφi

for all u ∈ D(F). For sparsity constrains we want to regularize the solution
on the ci. For Rq we now choose

R0 =
∑︂

∥ci∥0

which is the number of non-zero elements in c = {ci}i∈N. For numerical
stability and to be able to use numerical solvers instead of the index norm

R1 =
∑︂

|ci|

is choosen. This is an approximation of the sparsity norm but has better
numerical properties.
The last regularization we consider in this work is the total variation. For

this regularization

Rq(u) = ∥∇u∥qq

with q ≤ 1. Other regularization terms exist, but we only focus on these three
in this work.

2.4.2 Nonlinear Ill-Posed Problems

For non-linear operators, well- and ill-posedness needs to be de�ned locally.
The following de�nition is based on Hadamard and is provided in [63].

DEFINITION 25 ((Locally) Well- and ill-posed Problems)

Let U and V be Hilbert spaces and F : D(F) ⊂ U → V a be a (non-
linear) operator. The operator equation F (u) = v is said to be ill-posed in
u† ∈ D(F) if for every r > there exists a sequence (uk)k∈N ⊂ Br(f

†), such
that

lim
k→∞

⃦⃦
F (uk)− F (u†)

⃦⃦
V
= 0, but uk ↛ u† for k → ∞.

If an operator equation is not ill-posed it is said to be well posed.

We can apply this de�nition to linear operators as well. For example, a linear
operator equation, F (u) = v is well-posed if it is well-posed in every point,
that is, if and only if F is injectiv and the image of F , im(F), is closed in V .

19

Phil Gralla Optimization

2.5 Optimization

In optimization, a given function, f , must be minimized. We will only focus
on minimization since the maximization of a function can be transformed into
a minimization problem by multiplying it with a negative factor of one. For
further information about optimization, we refer to [2, 37]. The basic case for
optimization is the minimization of a convex function with convex conditions.

DEFINITION 26 (Convex Minimization Problem)

Let f, gi, hj : D ⊂ U → R with i ∈ {1, . . . ,m}, j ∈ {1, . . . , p} and U be a
Hilbert space. The minimization problem

minimize
x∈D

f(x)

subject to gi(x) ≤ 0

hj(x) = 0

(2.7)

is called convex if f, gi are convex for all i ∈ {1, . . . ,m} and hi is linear for
all j ∈ {1, . . . , p}.

This de�nition is also referred to as standard form of a convex optimization
problem or primal problem.
Solving the primal problem with constraints can be di�cult. One way

to �nd a solution is to solve an auxiliary problem instead. Under certain
conditions, such an auxiliary problem has the same minimum but is simpler
in its formulation and thus easier to solve. For example, one auxiliary problem
is the Lagrange dual, which is de�ned below.

DEFINITION 27 (Lagrange Dual Problem)

Let f, gi, hj : D ⊂ U → R with i ∈ {1, . . . ,m}, j ∈ {1, . . . , p} and U be a
Hilbert space. Then the minimization

maximize
λ,µ

minimize
x∈D

f(x) +
m∑︂
i=1

λigi(x) +

p∑︂
j=1

µjhj(x)

subject to λ ≥ 0

(2.8)

is called the Lagrange dual problem to the primal problem

minimize
x∈D

f(x)

subject to gi(x) ≤ 0

hj(x) = 0

Karush, Kuhn, and Tucker de�ned conditions for a feasible optimal point x̃
of a given primal minimization problem.

20

Phil Gralla Statistical Basics

DEFINITION 28 (Karush-Kuhn-Tucker conditions)

Let the convex functions (f, g, h) de�ne a primal minimization problem.
Then each optimal point x̃ ful�lls the following conditions.

� 0 ∈ ∂x

(︂
f(x̃) +

∑︁m
i=1 λigi(x̃) +

∑︁p
j=1 µjhj(x̃)

)︂
(stationarity)

� λigi(x̃) = 0 (complementary slackness)

� gi(x̃) ≤ 0, hj(x̃) = 0, ∀i, j (primal feasibility)

� λi > 0∀i (dual feasibility)

These conditions are called Karush-Kuhn-Tucker conditions.

We will go into further detail about numerical optimization in later chap-
ters. Especially the numerical solution and di�erent numerical methods are
discussed when needed.

2.6 Statistical Basics

This work will have some sections focusing on how distributions and random
samples are compared, how noise is modeled, and con�dence bands for mea-
surements. In addition, to ensure that all readers are familiar with the basics,
we need to de�ne di�erent distributions and interval estimates. We refer to
[14] for more information about these topics. All the following de�nitions and
topics in this section are based on random variables.

DEFINITION 29 (Random Variable)

A random variable X : S → R is a measurable function from a sample
space S into the real numbers. The sample space S consists of all possible
outcomes. If the sample space S is countable, then X is said to be a discrete
random variable. Otherwise, X is called a continuous random variable.
The probability that X takes on a value in a measurable set E ⊂ R is

denoted as
P (X ∈ E) = P ({w ∈ S|X(w) ∈ E})

In tabular 2.2 we listed some examples of random variables.

DEFINITION 30 (Cumulative Distribution Functions)

The cumulative distribution function or cdf of a random variableX, denoted
by FX(x), is de�ned by

FX(x) = PX(X ≤ x), ∀x.

21

Phil Gralla Statistical Basics

Experiment random variable

Toss two dice X = sum of the numbers
Toss a coin 25 times X = number of the heads in 25 tosses
Apply di�erent amounts

X = yield per acre
of fertilizer to corn plants

Table 2.2: Examples of random variables

0.683

0.954

µ− 2σ µ− σ µ
x

Figure 2.2: Normal distribution and its properties.

All cumulative distribution functions share the same properties, which are
monoton increasing and bounded between zero and one. Besides the cumu-
lative distribution, we are also interested in the probability of a single event.
The mass function does provide us with this information and is de�ned with
the help of the cumulative distribution function.

DEFINITION 31 (Mass function)

The probability mass function (pmf) of a discrete random variable X is
given by

fX(x) = P (X = x), ∀x.

The probability density function or pdf, fX(x), of a continuous random
variable X is the function that satis�es

FX(x) =

∫︂
−∞,x

fX(t)dt, ∀x.

Note that in the case of a continuous random variable, the measure of X = x
is zero, but fX(x) is not equal to zero.

2.6.1 Distributions

Distributions can be classi�ed using parameterized pdfs. Various families
of distributions exist and are studied. Casella and Berger provide a list of
common distributions, their families, and properties in [14]. In this work we
focus on distributions that are used to model noise in measurements. Of which

22

Phil Gralla Statistical Basics

the most common one is the normal distribution.

DEFINITION 32 (Normal Distribution)

Probability density function:

ϕ(x;µ, σ) =
1

σ
√
2π

exp

(︄
−1

2

(︃
x− µ

σ

)︃2
)︄

Cumulative distribution function

Φ(x̂) =
1√
2π

∫︂ x̂

−∞
exp

(︃
−t2

2

)︃
dt

where x̂ := x−µ
σ
.

A normal distribution is de�ned over the whole R. It is, therefore, possible that
an additive error, modeled using a normal distribution, is arbitrarily large.
This arbitrarily large error contrasts with the standard assumption for inverse
problems that the observed data is within a speci�c range of the actual data.
In addition, many applications have physical boundaries on measurements
which contradicts to an additive normal error model. Therefore, a truncated
normal noise model is a better choice to represent the boundness of the error
while approximating a normal distribution at the same time.
A truncated normal distribution is derived from a normal distribution via

conditioning. It needs two additional parameters, a, b ∈ R ∪ ±∞, a < b, in
addition to the parameter of a normal distribution.

DEFINITION 33 (Truncated Normal Distribution)

Suppose X ∼ N(µ, σ2) has a normal distribution, then X conditional on
a < X < b has a truncated normal distribution with probability density
function

f(x;µ, σ, a, b) =
ϕ
(︁
x−µ
σ

; 0, 1
)︁

σ
(︁
Φ
(︁
b−µ
σ
; 0, 1

)︁
− Φ

(︁
a−µ
σ
; 0, 1

)︁)︁
for a ≤ x ≤ b and f = 0 otherwise. ϕ is the normal distribution probability
density function and Φ is the cumulative distribution function.

We will use this noise model for normal additive error in simulations to ensure
the error is bounded and all methods assuming a bounded error can be applied.
We also apply this model if physical bounds exist, such as the measurement
must be positive.

2.6.2 Point and Interval Estimations

For a distribution a real-value parameter θ is a single point estimate. These
point estimates include the mean and center of a distribution. Instead of only

23

Phil Gralla Statistical Basics

estimating the parameter, a likelihood interval of this estimate can be made.
This interval estimate is de�ned below. We follow the de�nition given in [14].

DEFINITION 34 (Interval Estimate)

An interval estimate of a real-value parameter θ is any pair of functions
L(x1, . . . , xn) and U(x1, . . . , xn), of a sample that satisfy L(x) ≤ θ ≤ U(x)
for all x ∈ X. If X = x is observed, the inference L(x) ≤ θ ≤ U(x) is made.
The random interval [L(X), U(X)] is called an interval estimator.

We can say that an interval estimate provides extra information about the
point estimate. It also includes information about the accuracy of this esti-
mate. In that sense, it contains more information and is more meaningful.
A typical example of a point estimate is an observation's mean and expected

value given a set of random samples. The corresponding interval estimates the
con�dence interval of this estimated mean based on the number of samples and
assumed distribution. We will refer to these interval estimates from multiple
random samples when comparing our method, which includes tolerance in
discrepancy with other methods.

2.6.3 Comparing Distributions

We have various methods to choose from for comparing di�erent distributions
and calculating their similarities. This section will present a few common
methods to calculate the similarities between two distributions. We will com-
pare distributions in the application of micro milling, where we characterize
surfaces of micro parts.
The Earth Movers distance or Wasserstein metric for histograms is de�ned

as the solution to the minimum transportation problem between the two dis-
tributions. The EMD can be calculated using the following iterative method
for two histograms.

EMD0 = 0

EMDk+1 = fX(xi) + EMDk − fY (xi)

d(X, Y) =
∑︂
i

|EMDi|

Based on the Pearson's chi squared test statistic

χ2(x, y) =
∑︂

((xi − yi)
2/xi)

the χ2-distance is de�ned as

d(X, Y) =
1

2

∑︂
i

(fX(xi)− fY (xi))
2

fX(xi) + fY (xi)

24

Phil Gralla Statistical Basics

for histograms and as

d(X, Y) =
1

2

∫︂
Ω

(fX(t)− fY (t))
2

fX(t) + fY (t)
dt

for probability functions. The χ2-distance is a true metric since it is symmetric
with respect to x and y. Contrary to the Earth Movers distance, the χ2-
distance can be computed directly without using any optimization problem.
Another common metric is the Mahalanobis distance de�ned as

d(X, Y) =
√︂

(fX(x)− fy(x))TS−1(fX(x)− fY (x))

with S the non-singular covariance matrix matrix and x ∈ Rn a vector. For
S = I the Mahalanobis distance is equal to the euclidean distance.

25

3
Tolerances in Hilbert Spaces

Using a-priori information and assumptions on the true solutions when solving
inverse problems, we can tackle the ill-posed nature of operators and stabilize
the source reconstruction of observed measurements. Therefore, regulariza-
tion is achieved by exploiting features and structures of the parameter space
or said a-priori information about the true parameter. For example, in classic
Tikhonov functionals, the norm or smoothness of the reconstructed parameter
is used to stabilize the problem [50]. Another example is sparsity, where we as-
sume that the true parameter is sparse in a particular basis [36]. However, not
only assumptions and information about the true parameter are available. In
some cases, additional information about the measurement may be available.
So far, this knowledge is rarely used in Inverse Problems besides choosing an
appropriate norm for the deviation in the data space for Tikhonov methods.
In this chapter, we introduce the idea of exploiting structures within the mea-
surement and data space to stabilize and enhance the reconstruction process
in ill-posed Inverse Problems. This idea originates from statistical methods,
such as Support Vector Machines and noise modeling. We focus on Support
Vector Machines and the idea of using insensitive distance measurements to in-
troduce tolerances in the data discrepancy for Tikhonov functionals in Hilbert
spaces.

3.1 Classi�cation and Regression with Support

Vectors

For classi�cation and regression a function f : X → Y , where X ⊂ Rd and
Y ⊂ Rm, is derived from a data set with n data points{︁

(xi, yi) ∈ Rd × Rm
⃓⃓
i = 1, . . . , n

}︁
.

We refer to this set as the training set. The function f approximates the
assumed underlying connection of xi to yi and is used later to predict an
unknown output y of a new input x. If the output of f is discrete and �nite, f

27

Phil Gralla Classi�cation and Regression with Support Vectors

is said to be a classi�cation. If it is continuous, it is a regression. One method
to obtain f from known data (xi, yi) is using support vector machines (SVMs).
Nowadays, they are overshadowed by neural networks and deep learning but
are still applied to specialized classi�cation and regression methods.We refer
to it as support vector regression (SVR) in the latter case.
We will focus on the support vector methods since they are closely related

to discrepancy terms with tolerances for inverse problems. For further in-
formation on classi�cation and regression methods, as well as support vector
methods, we refer the reader to [70] and [77].

3.1.1 SVMs for Classi�cation

Support Vector Machines (SVMs) for classi�cation were �rst introduced by
Vladimir N. Vapnik and Alexey Ya Chervonenkis in 1963. The idea is that a
hyperplane that maximizes the distance between each class can best separate
two classes. Such a hyperplane is unique if a separation by a hyperplane is
possible, and it minimizes the out-of-sample error. This error measures how
well a classi�er works on unlearned data points (see [69] chapter 5,7,12).
To understand how SVMs are used for classi�cation, we need to look at

hyperplanes in general. They are de�ned as follows:

DEFINITION 35 (Hyperplane)

Let x ∈ H and d ∈ R, where H is some Hilbert space. The set

L = {y ∈ H | ⟨x, y⟩+ d = 0}

is a hyperplane in H de�ned by x and d.

First, the output Y is restricted to the set {−1, 1} since only two classes
are assumed to exist. Secondly, we say a hyperplane

Lw,β0 := {x ∈ X | x ∈ ⟨w, x⟩+ β0 = 0}, w ∈ X, β0 ∈ R

is separating the data if

f(x) := sgn(⟨w, xi⟩+ β0) = yi, for i = 1, . . . , n.

In the case that at least one such hyperplane exists we say that the data is
separable. This means all data belonging to one class are at one side of the
hyperplane while all data of the other class are at the other side. An example
of a separable data set is shown in �gure 3.1.
From vector algebra we know that the signed distance of a point to the

hyperplane Lw,β0 is

dist(x, L) =
1

∥w∥
(⟨w, x⟩+ β0).

28

Phil Gralla Classi�cation and Regression with Support Vectors

0 1 2 3
0

0.5

1

1.5

class A class B

Figure 3.1: A toy example of a separable data set. The two classes are marked
with red triangles and blue stars. The three solid lines are di�erent
separating hyperplanes.

Thus the classi�er f based on Lw,β0 can be de�ned as

f(x) = sgn (⟨w, x⟩+ β0) .

By this de�nition we ensure that the classi�er maps correctly onto Y =
{−1, 1}. If Lw,β0 is indeed a separating hyperplane, f classi�es all data in
the training set correctly. In general, separating hyperplanes are not unique
for separable data sets, which leads to the question of which one is the best
separating hyperplane. As mentioned in the beginning of the section, one
logical choice is the hyperplane that maximizes the distance to both classes.
To �nd this hyperplane we consider the optimization problem

maximize M ∈ R+

subject to
yi
∥w∥

(⟨w, xi⟩+ β0) ≥ M, i = 1, . . . , n
(3.1)

whose solution provides the desired hyperplane Lw,β0 where all points have at
least distance M from the hyperplane. The condition

yi
∥w∥

(⟨w, xi⟩+ β0)

ensures that all points are classi�ed correctly to have a positive value. A
missclassi�ed point, xi, will have the opposite sign of yi and thus

yi
∥w∥(⟨w, xi⟩+

β0) ≤ 0.
The set of all points with distance M to the hyperplane Lw,β0 is called

margin. This optimization problem does not have a unique solution but can
be transformed to a convex optimization problem whose solution is unique.

29

Phil Gralla Classi�cation and Regression with Support Vectors

Let α ∈ R+ be arbitrary, then

1

∥αw∥
(⟨αw, x⟩+ αβ0) =

α

α∥w∥
(⟨w, x⟩+ β0)

=
1

∥w∥
(⟨w, x⟩+ β0).

If a pair of w and β0 maximize M , the positively scaled w and β0 maximize
M as well. Let M := 1

∥w∥ we can transform the problem (3.1) to the convex
optimization problem

minimize
1

2
∥w∥2

subject to yi(⟨w, xi⟩+ β0) ≥ 1, i = 1, . . . , n.
(3.2)

This transformation is possible because of the property that continuous convex
transformations do not change the argmin. Moreover, because the optimiza-
tion problem for �nding the desired hyperplane has been converted to a convex
one, the SVM has good properties for numerical implementation. For a non-
separable data set the optimization problem does not have a feasible solution,
i.e. there exist no hyperplane that ful�lls the constrain in (3.2).
One way to �nd a minimizer for (3.2) is to alter the restrictions by allowing

a few points to be on the wrong side of the hyperplane and/or within the
margin. We de�ne the slack variable ε = {ε1, . . . , εn}, and use it to modify
the constrains in (3.1). There are two options, tolerating the actual distance

yi
∥w∥

(⟨w, xi⟩+ β0) ≥ M − εi (3.3)

or the relative distance
yi
∥w∥

(⟨w, xi⟩+ β0) ≥ M(1− εi). (3.4)

In both cases we restrict ε > 0 and
∑︁n

i=1 εi ≤ c with c ∈ R+ constant. The
restrictions (3.3) and (3.4) lead to di�erent solutions. Since (3.3) leads to a
non-convex optimization problem and (3.4) does not, the second choice is the
standard choice for SVMs. Please note that we did not bound εi ≤ 1, which
means that a point can be on the wrong side of the hyperplane. Similarly
to the previous case with separable data we can rephrase (3.1) with the new
restriction (3.2) to

minimize
1

2
∥w∥2

subject to yi(⟨w, xi⟩+ β0) ≥ 1− εi, i = 1, . . . , n

εi ≥ 0,
n∑︂

i=1

εi ≤ c

(3.5)

where c ≥ 0 is a prede�ned constant. Note that for large enough c a minimizer
exists even for non-separable data.

30

Phil Gralla Classi�cation and Regression with Support Vectors

The Lagrangian of (3.5) and its optimality conditions yield

w =
n∑︂

i=1

αiyixi

with αi ∈ R. Since for all αi = 0, xi are not within the margin of the
minimizer, the solution w is a linear combination of training samples within
the margin. The xi within the margin are referred to as support vectors and
give the support vector machine its name.
So far, we only described the primal problem to �nd a separating hyper-

plane. By transforming the minimization into its dual via Lagrangian multi-
pliers, we can calculate the support vector machine by maximizing

W (Λ) =
n∑︂

i=1

αi −
1

2

n∑︂
i=1

n∑︂
j=1

αjαiyiyj⟨xj, xi⟩, (3.6)

where Λ = (α1, . . . , αn). The maximizer for equation (3.6) is also a minimizer
for its primal (3.5). While the primal problem can be solved e�ciently with
numerical methods, the dual problem has nice mathematical properties that
are useful when we look at non-linear SVMs in this chapter.

3.1.2 SVMs for Regression

So far, the introduced SVMs are used to classify data into two groups. We can
extend the approach to multiple classes via assembling methods such as "one
vs. all" approaches. However, in this thesis, we are more interested in adopting
support vectors for regression. In regression, the output of the underlying
connection between xi and yi is continuous. Therefore f can not separate
some data sets. Instead we search for a function f such that f(xi) = yi for all
i = 1, · · · , n. Since such an f may not exist, we solve a minimization problem

min
f

n∑︂
i=1

(f(xi)− yi)
2

instead. Here a minimization in the 2-norm was chosen. Other distance
measure can also be considered. Since it is possible that the same input xi = xj

and i ̸= j have di�erent output yi ̸= yj, a function that perfectly maps xi onto
yi may not exist, which is not an exception but occurs regularly. In addition,
f should have a small out-of-sample error, which means that over�tting the
training data should be avoided. For support vector regression, small data
variations are being tolerated by applying an ε−insensitive loss function

|f(x)− y|ε := max{0, |f(x)− y| − ε},

where ε ≥ 0, as introduced by Vapnik [81]. In �gure 3.2 an illustration of this
function and its application for regression is given.

31

Phil Gralla Nonlinear SVR

0 1 2 3

0.5

1

1.5

2

ε

ε

Regression

−1 1

0.5

1

1.5

2
Loss Function

2ε

Figure 3.2: The left panel shows the regression obtained using SVR and the
least square method. In red and blue are the data points. The
red triangle data points are the support vectors. All points within
the grey area are zero in the loss function for the SVR. The right
panel shows the used loss function.

To �nd a regression function f , a minimization with introduced insensitive
loss function on the training data

f̃ := argmin
f

n∑︂
i=1

|f(xi)− yi|ε (3.7)

is applied. As in the case of SVMs for classi�cation, this minimizer is not
unique and the minimization is numerically unstable. To solve this problem
Vapnik proposes to add a weighted penalty term on the function f . This
added penalty results in

n∑︂
i=1

|f(xi)− yi|ε + α∥f∥22

with α > 0 as the weight. The derived functional is to be very similar to a
Tikhonov functional

Jp,q
δ,α(u) =

1

p

⃦⃦
F (u)− vδ

⃦⃦p
Lp

+ α∥u∥qq

with p = 1 and q = 2. Finding a minimizer of this functional uses a similar
approach to solve 3.1. The support vector regression with ε = 0 is known as
rigid regression, a type of linear regression used to avoid over�tting on the
training set.

3.2 Nonlinear SVR

Support vector machines perform a linear classi�cation or regression. They
are not linear models since the model coe�cients are non-linear, but the �tted

32

Phil Gralla De�nition of Tolerance in Inverse Problems

regression or classi�cation function is linear. Section 2 provides a short in-
troduction to linear models in regression to clarify this statement further. In
order to �nd non-linear decision models, the so-called kernel trick is applied
[69]. All input data xi is transformed through a kernel operation σ into a fea-
ture space. This feature space is often of higher dimension than the original
input space.
Let us start with an example for understanding the principle idea. Figure

3.3 shows an example for a two-dimensional toy data set. The data represents
samples from two classes where the �rst class, labeled Group A, is centered
and dense around the origin (0, 0) with a maximum distance ∥x∥ < 1. The
second class, labeled Group B, is centered around the same origin (0, 0) but
with a minimum distance of ∥x∥ > 1. A single hyperplane cannot separate
these two sets. Instead, the two groups can be separated by an ellipse which
is not a linear decision boundary. To �nd a proper separating hyperplane, we
can transform all data into a new feature space. We transform the data with
the kernel

Σ(x, y) =
(︁
x, y, x2 + y2

)︁
into a new feature space where the hyperplane

⟨n, (x, y, z)T ⟩ − 1 = 0

with n = (1, 0, 0)T and z = x2 + y2 forms a suitable decision boundary in the
feature space.
We derived this solution from knowledge about the underlying distribution

of the classes. The resulting decision boundary might vary if we calculate an
SVM classi�er from random samples.
Instead of transforming all data into the feature space and then solving the

linear problem, the support vectors and corresponding decision function can
be calculated directly by solving the dual problem. This property is bene�cial
if the feature space is much larger than the original space. Remember that
the number of variables for the primal problem is equal to the dimension of
the input space. In contrast, the number of variables for the dual problem
is equivalent to the size of the training set. In addition, we do not need to
actually transform all samples but instead use a kernel function directly in
the dual problem.
Table 3.1 shows the most commonly used kernels and their inner product.

The correct kernel and its parameters must be given a-priori or can be found
with a secondary optimization and cross-validation. Di�erent approaches for
kernel and parameter selection have been introduced over the years. We will
provide an insight on such methods in chapter 4 where we consider the nu-
merical solution of inverse problems.

3.3 De�nition of Tolerance in Inverse Problems

When dealing with tolerances, a proper understanding of tolerances itself is
essential. Di�erent �elds of science and application have varying de�nitions

33

Phil Gralla De�nition of Tolerance in Inverse Problems

Figure 3.3: Example of non-linear SVM. The applied kernel separates the data
in the feature space through a hyperplane. Projecting the sepa-
rating hyperplane back into the feature space yields a non-linear
decision boundary.

Kernel Inner Product Parameters

Linear xT
j xi none

Polynomial (xT
j xi + c)d c ∈ R, d ∈ N

Gaussian exp
(︁

1
2σ2∥xj − xi∥2

)︁
σ ∈ R+

Sigmoid tanh
(︁
s · xT

j xi + c
)︁

s ∈ R, c ∈ R
Rational Quadratic 1− ∥xj−xi∥2

∥xj−xi∥2+c
c ∈ R

Inverse Multiquadratic
(︂√︁

∥xj − xi∥2 + c2
)︂−1

c ∈ R

Table 3.1: Examples of kernels and their inner product.

34

Phil Gralla De�nition of Tolerance in Inverse Problems

for tolerances. It is, therefore, necessary to establish a de�nition of tolerances
in this thesis to achieve a common understanding for the reader. In this thesis,
we focus on tolerances in engineering and mathematics.
For a single value z ≥ 0, the two numbers x, y ∈ R are within a tolerance

of z if

dist(x, y) ≤ z,

where dist : R × R ⇒ R+ is a distance function. This formulation shows
that two things are important for a tolerance: how to de�ne the distance
function of two elements and the value or size of the tolerance. Together they
de�ne a tolerance around a �xed element x0. It is important to note that this
de�nition does not allow negative tolerances. We can extend this de�nition to
more complex elements. So far, x and y are real numbers. In order to de�ne
a tolerance on a more general case, x and y need to be elements of the same
metric space (X, d). Then for a single value z ≥ 0, the two elements x, y ∈ X
are within a tolerance of z if

q(x, y) ≤ z,

where q : X × X → R is a pseudo metric (also known as premetric in some
literature).
We summarize the above ideas into one formal de�nition, which we will use

in the remainder of this thesis.

DEFINITION 36 (Tolerance)

For f ∈ V Hilbert space the area of tolerance Ωf,ε ⊂ V is a closed set in V
and contains at least f . All elements g ∈ Ωf,ε have a maximum distance of
ε to f , i.e.

d(g, f) ≤ ε, ∀g ∈ Ωf,ε.

It is important to note that by our de�nition, two elements can have a
distance of less than ε but still not be within tolerance to each other, i.e.,

d(g, f) ≤ ε ̸⇒ g ∈ Ωf,ε

A simple example illustrating di�erent tolerances and their application can
be found in shape deviations. In micro forming processes, it is oftentimes
needed to compare shapes to sort good parts from defective parts. Since
deviations of manufactured components cannot be avoided, a tolerance for
accepting good parts is necessary. In this example, the opening of a cup is
under consideration. A perfect cup will have a circle-shaped opening with a
radius R = 5mm, forming a perfect circle. In �gure 3.4 the deviation of two
measured cups is shown in red and blue. Two possible ways to describe a
tolerance for this case are the total deviation over the whole circumference,

35

Phil Gralla Mathematical Framework

0

45

90

135

180

225

270

315

0 2 4 6

shape of cups

0 2 4 6
0

0.5

1

1.5

2

angle in radien

dr
in

m
m

deviation from ideal diameter

Figure 3.4: Example of di�erence in point wise and overall tolerance for shape
deviations of micro cups.

q1, or a point-wise tolerance for each angle, q2.

q1(x, y) =

∫︂ 2π

0

(x(φ)− y(φ)) dφ

q2(x, y) =

∫︂ 2π

0

max{0, |x(φ)− y(φ)| − ε} dφ

In the example the red cup has a deviation of q1(x, yblue) = 0.5 which is
less than the blue cup with a deviation of q1(x, yred) = 0.931. The deviation
with tolerance is q2(x, yblue) = 0.281 and q1(x, yred) = 0. For q2, the blue
cup is totally within tolerance and has a lower distance to the ideal shape
than the red cup. q1 measures the overall deviation of the shape regardless
of any tolerance whereas q2 considers a point-wise tolerance. This point-wise
tolerance can be interpreted as a tolerance band around the ideal shape, and
as long as a cup shape is within this tolerance band, it is accepted. Thus the
red cup has a distance of 0 in the measurement q2 since it is completely within
the tolerance band. It is important to note that there exists no threshold on
q1, which accepts only shapes within the tolerance band. The red and blue
cups are an example of this. The blue cup has a lower distance in q1 and
would always be within tolerance to the ideal shape if the red cup is within
the tolerance, considering q1. Therefore, the distance q2 de�nes a di�erent
tolerance.

3.4 Mathematical Framework

This section provides a mathematical framework for Tikhonov functionals with
tolerances in the discrepancy terms. This includes existence of a minimizer,
stability in δ and ε and convergence for δ → 0 and ε → 0.

36

Phil Gralla Mathematical Framework

The following assumptions on the operator and functional are made:

Assumption 1

1. The operator F is weakly sequentially closed with respect to the weak
topologies on Lp(Ω).

2. The functional R : U → R+ is coercive.

3. The intersection of the domains of F and R is non-empty, i.e.

D := D(F) ∩ D(R) ̸= ∅

and the following notations will be applied:

� An element u† ∈ D denotes a Rq-minimizing solution i.e.

R(u†) = min {Rq(u)| F (u) = f} < ∞

� uδ
α,ε denotes a minimizer of the functional Jp,q

δ,α,ε in U :

uδ
α,ε = argmin

{︁
Jp,q
δ,α,ε (u)|u ∈ U

}︁
Before we can show existence and stability, we prove a lemma from [28] for

our setting with tolerances.
First, we de�ne the functionals

Jp,q
α,ε,vk

(u) :=
1

p
∥F (u)− vk∥pLp,ε

+ αRq(u),

which is the same functional as Jp,q
δ,α,ε for vk = vδ, and

Jp,q
α,vk

(u) :=
1

p
∥F (u)− vk∥pLp

+ αRq(u)

for the special case of ε = 0 which is the Tikhonov functional without ε-
insensitive distance.

LEMMA 37

Let (uk)k∈N ⊂ dom(F) and (vk)k∈N ⊂ V . Assume that the sequence
(vk)k∈N is bounded in V and that there exist α > 0 and M > 0 such
that Jp,q

α,ε ,vk
(uk) < M for all k ∈ N. Then there exist u ∈ dom(F) and a

subsequence (ukj)j∈N such that ukj ⇀ u and F (ukj) ⇀ F (u).

Proof : The coercivity of Rq and the estimate Jp,q
α,ε ,vk(uk) ≥ αRq(uk) imply that

the sequence (uk)k∈N is bounded in U . To prove this we assume that the

37

Phil Gralla Mathematical Framework

sequence (uk) is unbounded. Therefore a subsequence (ukl)l∈N exist such that
∥ukl∥U → ∞ for j → ∞. From the inequality

0 ≤ αRq(ukl)

∥ukl∥U
≤ M

∥ukl∥U

follows

lim
l→∞

αRq(ukl)

∥ukl∥U
= 0

and therefore Rq is not coercive. This is a contradiction and thus (uk) must be
bounded.

Since the sequence (vk)k∈N is bounded, also the sequence (F (uk))k∈N is
bounded in V . To see this we apply the second inequality from remark 48
to have

∥F (uk)− vk∥pLp
≤ Jp,g

α,vk
(uk)

≤ Jp,g
α,ε,vk

(uk) + ∥ε∥pLp

≤ M + ∥ε∥pLp

and this is a bound for ∥F (uk)− vk∥pLp
. Thus the sequence (F (uk))k∈N has to

be bounded since (vk)k∈N is bounded.

Therefore there exist a subsequence (ukj)j∈N and u ∈ U , v ∈ V , such that
(ukj)j∈N weakly converges to u and (F (ukj))j∈N weakly converges to y. Since
F is weakly sequentially closed, it follows that u ∈ dom(F) and F (u) = y.

With the help of this Lemma, we can show the existence of a minimizer and
stability.

LEMMA 38 (Existence of minimizer)

Assume that δ > 0 and vδ ∈ V . Let D := D(F) ∩ D(R) ̸= ∅ and let F
satisfy the assumptions made at the beginning of this section in assumption
1. Then Jp,q

δ,α,ε attains a minimizer.

Proof : Let (uk)k∈N ⊂ U be a sequence that satis�es

lim
k→∞

Jp,q
δ,α,ε (uk) = inf

{︂
Jp,q
δ,α,ε (u)

⃓⃓⃓
u ∈ U

}︂
.

For q ≥ 2 the functional Jp,q
δ,α,ε is coercive and hence (uk) is bounded. In

particular (uk)k∈N admits a subsequence, which we again denote by (uk)k∈N,
that weakly converges to some ũ ∈ U such that F (uk) ⇀ F (ũ) (see, [28, Lemma
4]). Since R is lower semi continuous as the sum of non-negative convex and
weakly continuous functionals, we have

R(ũ) ≤ lim inf
k→∞

R(uk). (3.8)

38

Phil Gralla Mathematical Framework

Moreover, since Jp,q
δ,α,ε is weakly lower semi continuous due to the weak sequen-

tial closedness of F and the weak lower semicontinuity of the norm we have

Jp,q
δ,α,ε (ũ) =

⃦⃦⃦
F (ũ)− vδ

⃦⃦⃦p
ε
+ αRq(ũ) (3.9)

≤ lim inf
k→∞

(︂⃦⃦⃦
F (uk)− yδ

⃦⃦⃦p
ε
+ αRq(uk)

)︂
. (3.10)

We also have

inf
{︂
Jp,q
δ,α,ε (u)

⃓⃓⃓
u ∈ U

}︂
≤ Jp,q

δ,α,ε (ũ),

which completes the proof.

LEMMA 39 (Stability for δ)

Let (vk)k∈N ⊂ V converge to vδ and let

uk ∈ argmin
{︁
Jp,q
α,vk,ε

(u)
⃓⃓
u ∈ D

}︁
.

Then there exist a subsequence (ukj)j∈N and a minimizer uδ
α,ε of J

p,q
α,0,ε such

that Rq(u
δ
α,ε − ukj) → 0. If the minimizer uδ

α,ε is unique, then (ukj)j∈N
converges to the minimizer uδ

α,ε with respect to Rq.

Proof : This proof has the same structure as the proof in [28, Proposition 4] and
follows its main idea, which is applying lemma 37. Note that ε and α are �xed
and do not change with k in lemma 39.

We have two sequences (vk)k∈R and (uk)k∈R. Since the sequence (vk)k∈R is a
convergent sequence, it is bounded as well. Each uk ∈ argmin Jp,q

α,vk,ε and thus

Jp,q
α,vk,ε

(uδα,ε) ≥ Jp,q
α,vk,ε

(uk) ≥ 0.

The left side has an upper bound of

Jp,q
α,vk,ε

(uδα,ε) = ∥F (uδα,ε)− vk∥pV,ε + αRq(u
δ
α,ε)

≤ 2p−1∥F (uδα,ε)− vδ∥pV,ε + 2p−1∥vk − vδ∥pV,ε + αRq(u
δ
α,ε) (3.11)

for all k since (vk)k∈R is bounded and therefore Jp,q
α,vk,ε(uk) is bounded. All

requirements for lemma 37 are met and (uk)k∈R has a subsequence (ukj)j∈R
weakly convergent to some u ∈ D(F) such that F (uk) ⇀ F (u). Analog to the
proof of existence we have that

Jp,q
δ,α,ε (u) ≤ lim inf

j
Jp,q
α,vkj ,ε

(ukj)

since vk → vδ.

Additionally, for all w ∈ D(F)

Jp,q
δ,α,ε (w) = lim

k
Jp,q
α,vk,ε

(w)

≥ lim inf
k

Jp,q
α,vk,ε

(uk).

39

Phil Gralla Mathematical Framework

Thus u = uδα,ε is a minimizer of Jp,q
δ,α,ε .

From the inequality (3.11) we also see that Jp,q
δ,α,ε (ukj) → Jp,q

δ,α,ε (u). Both

∥ · ∥pU,ε and Rq are weakly sequentially lower semi-continuous, which implies
that Rq(ukj) → Rq(u). By the assumptions made on Rq, the subsequence
(ukj)j∈N converges with respect to Rq.

In case that the minimizer is uδα,ε is unique, the convergence of the original

sequence (uk)k∈N to uδα,ε follows from a subsequence argument.

LEMMA 40 (Stability for ε)

Let (εk)k ⊂ R converge to 0 and let

uk ∈ argmin
{︂
Jp,q
α,vδ,εk

(u)
⃓⃓⃓
u ∈ D

}︂
.

Then there exists a subsequence (εkj)j∈N and a minimizer uδ
α of Jp,q

δ,α,ε such

that Rq(u
δ
α − ukj) → 0. If the minimizer uδ

α is unique, then (ukj)j∈N con-
verges to the minimizer uδ

α,ε with respect to Rq.

Proof : We only need to show that lemma 37 can be applied. The rest of the
proof is then analog to the proof of lemma 39 shown above.

We need two sequences (uk)k∈N and (vk)k∈N. The �rst sequence (uk)k∈N is
de�ned in the lemma and the second sequence is set to be vk = vδ for all k ∈ N,
which is a bounded sequence. First we note that

Jp,q
δ,α,εk

(uk) ≤ Jp,q
δ,α,εk

(u)

since uk is a minimizer. From the additional inequality

Jp,q
δ,α,εk

(u) ≤ ∥F (u)− vδ∥pV + αRq(u)

it follows that Jp,q
δ,α,εk

(uk) must be bounded.

LEMMA 41 (convergence)

Assume that a there exists a u ∈ D(F) such that F (u) = v. Let (δk)k∈N ⊂ R
be a convergent sequence to 0 and let vk ∈ V satisfy ∥vk − v∥V

Proof : We follow the proof of Proposition 7 in [28]. Let u ∈ D(Rq) be a Rq-
minimum solution. By the de�nition of uk we have

Jαk,εk,vk(uk) ≤ ∥F (u)− vk∥pp,ε + αkRq(u)

≤ 2p−1(δpk + ∥εk∥pp) + αkRq(u).

This yields lim supRq(uk) ≤ Rq(u). The coercivity of Rq, once more, gives the
boundedness of (uk). A weakly convergent subsequence uk ⇀ ū then satis�es
∥F (uk)−vk∥pp,εk → 0. εk → 0 as well as δk → 0 imply vk → v, ∥F (uk)−v∥pp → 0
and F (ū) = v as well asRq(ū) ≤ lim infk Rq(uk). Hence ū is also aRq-minimum
solution and assumption 1 yields Rq(uk − ū) = 0.

40

Phil Gralla Mathematical Framework

DEFINITION 42 (Generalized source condition)

Let F (u) = v obtain an Rq-minimum solution u† and assume that there
exist β1, β2, r, σ > 0 and ρ > Rq(u

†) such that

Rq(u)−Rq(u
†) ≥ β1∥u− u†∥rp − β2∥F (u)− F (u†)∥p (3.12)

for all u ∈ D(F) satisfying Rq(u) < ρ and ∥F (u)− F (u†)∥p < σ.

REMARK 43

In [28], Grasmair et al. show that 42 is indeed a generalization of conver-
gence conditions in Banach spaces as described in [33, 12] and that it is
equivalent to the standard source condition for linear and bounded forward
operators.

If the generalized source conditions hold we can show convergence rates
similar to the standard results in Banach spaces for linear and non linear
operators. The source conditions do not include a tolerance and are un-
changed from [28]. Using Proposition 48 we know that ∥F (u) − F (u†)∥p ≤
2p−1

(︁
∥F (u)− F (u†)∥pp,ε + ∥ε∥pp

)︁
. Hence, we assume ε ≤ 21−pσ and replace

the condition ∥F (u)− F (u†)∥p < σ by the stronger condition

∥F (u)− F (u†)∥p,ε < (21−pσ − ∥ε∥pp)1/p.

This assumption also gives us an upper limit for ε to ensure that we can apply
the source conditions.

LEMMA 44

Let ∥vδ − v∥p ≤ δ, uδ ∈ argmin Jδ
α,ε (u) and let Assumption 2 hold. For

α ≤ (2p−1β2)
−1

we obtain the following estimates. For p = 1:

∥uδ − u†∥rp ≤
(1 + αβ2)δ + ∥ε∥p

αβ1

∥F (uδ)− vδ∥p ≤
(1 + αβ2)δ + ∥ε∥p

1− αβ2

For p > 1:

∥uδ − u†∥rp ≤
δp + αβ2δ + (αβ2)

p̃/p̃+ c∥ε∥pp
αβ1

∥F (uδ)− vδ∥pp ≤
δp + αβ2δ + (αβ2)

p̃/p̃+ c∥ε∥pp
1− 1/p

with 1
p
+ 1

p̃
= 1.

41

Phil Gralla Tolerances in Lp-Spaces

Proof : We note that uδ is a minimizer of Jδ
α,ε and hence with c = pmax(1, ∥F (uδ)−

vδ∥p−1
p,ε , ∥ε∥p−1

p)

∥F (uδ)− vδ∥pp + αRq(u
δ) ≤ ∥F (uδ)− vδ∥pp,ε + αRq(u

δ) + c∥ε∥pp
≤ ∥F (u†)− vδ∥pp,ε + αRq(u

†) + c∥ε∥pp
≤ ∥F (u†)− vδ∥pp + αRq(u

†) + c∥ε∥pp
≤ δp + αRq(u

†) + c∥ε∥pp .

Rearranging and inserting the source condition (Assumption 2) we obtain

∥F (uδ)− vδ∥pp + αβ1∥uδ − u†∥r − αβ2∥F (uδ)− F (u†)∥p

≤ ∥F (uδ)− vδ∥pp + α
(︂
Rq(u

δ)−Rq(u
†)
)︂

≤ δp + c∥ε∥pp.

Inserting vδ and using the triangle inequality yields

∥F (uδ)− vδ∥pp + αβ1∥uδ − u†∥r

≤δp + c∥ε∥pp + αβ2∥F (uδ)− vδ∥p + αβ2δ (3.13)

For p = 1 we have c = 1 and there holds

αβ1∥uδ − u†∥rp ≤ δ(1 + αβ2) + (αβ2 − 1)∥F (uδ)− vδ∥p + ∥ε∥p

which directly shows the assertion.

For p > 1 we apply Young's inequality for the terms β2α and ∥F (uδ)− vδ∥p
to (3.13) resulting into

(︃
1− 1

p

)︃
∥F (uδ)− vδ∥pp + β1α∥uδ − u†∥r ≤ δp + c∥ε∥pp + β2αδ +

1

p̃
(β2α)

p̃

which completes the proof for p > 1.

3.5 Tolerances in Lp-Spaces

This section focuses on a particular case of Banach Spaces, the Lp-Spaces with
1 ≤ p ≤ 2. These spaces are of particular interest in application since many
applications are Lp-Spaces. Additionally, as used in SVR, tolerances can be
directly adapted for these spaces. Therefore, it links the existing theory of
support vector regression with the approach we propose for inverse problems
in Hilbert spaces.

42

Phil Gralla Tolerances in Lp-Spaces

3.5.1 De�nition and Properties

We recall the de�nition of ε -insensitive loss function (see, Vapniak, [72]) as
used in SVR.

DEFINITION 45 (ε-insensitive loss function)

Let 1 ≤ p < ∞ and let ε ∈ R+
0 . The ε -insensitive function is de�ned as

|λ|ε :=

{︄
0, |λ| ≤ ε

|λ| − ε , otherwise
(3.14)

for all λ ∈ R.

Subdi�erentials The subdi�erential for |z|ε can be calculated using the
standard de�nition and looking at the three cases z0 = ε, z0 = −ε, z0 ̸= |ε|
For z0 ̸= |ε| the function |z|ε is di�erential and we have

∂|z|ε =

⎧⎪⎨⎪⎩
−1, z < −ε

0, −ε < z < ε

1, z > ε

. (3.15)

For the case z0 = ε all g that satisfy

|z|ε − |z0|ε ≥ g · (z − z0) (3.16)

which is equivalent to

max{z − ε, 0} − 0 ≥ g · (z − ε) (3.17)

by the de�nition of | · |ε and z0 = ε. For z < ε the inequality reduces to

0 ≥ g · (z − ε)⏞ ⏟⏟ ⏞
<0

(3.18)

which is true for all g ≥ 0. For z ≥ ε the inequality reduces to

z − ε ≥ g · (z − ε)⏞ ⏟⏟ ⏞
>0

(3.19)

which holds true for g ≤ 1. Therefore g ∈ [0, 1] is the subdi�erential at z0 = ε.
The case z0 = −ε is calculated analogously with the result g ∈ [−1, 0] and
therefore the subdi�erential for | · |ε is

∂|z|ε =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1, z < −ε

[−1, 0], z = −ε

0, −ε < z < ε

[0, 1], z = ε

1, z > ε

. (3.20)

43

Phil Gralla Tolerances in Lp-Spaces

λ

f(λ)

−ε ε

|λ|
|λ|ε

λ

f(λ)

−ε

ε

1

−1

Figure 3.5: Subdi�erential of |z|ε

The �gure 3.5 shows the ε -insensitive function for ε = 0.4 and the subdif-
ferential. The ε -insensitive function can be extended for functions in Lp(Ω)
via point-wise evaluation. The result is a so called (ε, Lp)-insensitive distance
function.

DEFINITION 46 ((ε, Lp)-insensitive distance function)

Let Ω ⊂ Rn and 1 ≤ p < ∞. For ε ∈ R+
0 the (ε, Lp)-insensitive distance

function (∥ · ∥pp,ε) is de�ned as

∥f∥pLp,ε
=

∫︂
Ω

|f(x)|pε dx (3.21)

for all f ∈ Lp.

REMARK 47 (Properties)

The ε-insensitive function ful�lls all properties of a pre-distance metric. It
is continuous, convex for ε > 0 and strict convex for ε = 0.
If ε = 0, it equals the traditional Lp-norm and ful�lls the triangle in-

equality. For ε > 0, it does not ful�ll the triangle inequality, and it cannot
be a full metric.

Proof : Let ε > 0 and U a closed subset of Ω with non-zero �nite measurements,
i.e.

0 <

∫︂
Ω
IU (x)dx < ∞,

with IU the index function

IU (x) =

{︄
1, x ∈ U

0, o.w.
.

Then for f(x) := 2
3εIU (x) we have

∥f∥pLp,ε
= 0

44

Phil Gralla Tolerances in Lp-Spaces

and

∥f + f∥pLp,ε
=

∫︂
Ω

⃓⃓⃓⃓
4

3
IU (x)

⃓⃓⃓⃓p
ε

dx

=

∫︂
Ω

⃓⃓⃓ε
3
IU (x)

⃓⃓⃓p
dx

≥ 0

and thus
∥f + f∥pLp,ε

≥ ∥f∥pLp,ε
+ ∥f∥pLp,ε

which violates the triangle inequality.

REMARK 48

The ε-insensitive function ful�lls the following inequalities which will be
needed later for di�erent proofs.

1. ∥f∥Lp,ε ≤ ∥f∥LP
, ∀f ∈ Ω

2. ∥f∥Lp ≤ ∥f∥Lp,ε + ∥ε∥Lp

The �rst inequality follows directly from the point-wise de�nition of the ε-
insensitive function for functions in Lp(Ω) and the second inequality is derived
by using the Minkowski inequality. The set Ω is divided into two disjunctive
parts

Ωf,ε := {x ∈ Ω| |f(x)| > ε}
Ωf,0 := {x ∈ Ω| |f(x)| ≤ ε}

where the ε-insensitive norm is zero on Ωf,0 and not zero on Ωf,ε. We assume
without loss of generalization that none of the two sets is empty. If one of the
sets is empty, the following proof reduces to one of the two cases depending
on which set is empty.
For the set Ωf,ε we have that

∥f∥Lp(Ωf,ε) = ∥|f |∥Lp(Ωf,ε)

= ∥|f | − ε+ ε∥Lp(Ωf,ε)

≤ ∥|f | − ε∥Lp(Ωf,ε) + ∥ε∥Lp(Ωf,ε)

= ∥f∥Lp(Ωf,ε),ε + ∥ε∥Lp(Ωf,ε),

by using the Minkowski inequality and the fact that ∥|f | − ε∥Lp = ∥f∥Lp,ε on
Ωf,ε. For the set Ωf,0 we can not use the Minkowski inequality, instead we
utilize the fact that

∥f∥Lp(Ωf,0),ε = 0 (3.22)

and
∥f∥Lp(Ωf,0) ≤ ∥ε∥Lp(Ωf,0) (3.23)

45

Phil Gralla Tolerances in Lp-Spaces

on the set Ωf,0. Combining 3.22 and 3.23 results into

∥f∥Lp(Ωf,0) ≤ ∥ε∥Lp(Ωf,0)

= 0 + ∥ε∥Lp(Ωf,0)

= ∥f∥Lp(Ωf,0),ε + ∥ε∥Lp(Ωf,0).

Since the sets Ωf,0 and Ωf,ε are disjunctive and Ω = Ωf,0 ∪ Ωf,ε, we have the
second bound in remark 48.
In addition, the ε-insensitive function is weakly sequentially closed.

REMARK 49

The ε-insensitive function is w.l.s.c..

This statement follows directly from the two following lemmas as stated.
The �rst lemma is about convex sets, and is needed when proving the second
lemma.

LEMMA 50

Let (X, ∥ · ∥) be a normed space with M ⊂ X convex. Then M is weakly
closed if and only if M is strongly closed.

Proof : ⇒ Let M be weakly closed. Since X is a normed space, weakly closed
and strongly closed are equivalent to weakly sequentially closed and strongly
sequentially closed. Let (xk)k∈N ⊂ M be a strongly convergent sequence in X
with limit point x ∈ X. Since every strongly convergent sequence is weakly
convergent and M is weakly closed, i.e., the weak limit point of each weakly
convergent sequence is an element of M , x is an element M as well. Thus M
is strongly closed.

⇐ Let M be strongly closed. Assume that M is weakly open, then there
exists a weakly convergent sequence (yn)n∈R ⊂ M with weak limit point y ̸∈ M .
De�ne A = {y}, which is a compact and convex set with A ∩M = {∅}. Thus
the Hahn-Banach separation theorem can be applied.

From the Hahn-Banach separation theorem we have that ∃φ ∈ X∗ and t ∈ R
such that φ(a) < t < φ(b), for all a ∈ M, b ∈ A. Therefore limn→∞ φ(yn) ̸=
φ(y), which is a contradiction to the weak convergence of yn to y.

By contradiction, M has to be weakly closed as well.

LEMMA 51

Let V be a convex and compact set. Each convex and lower semicontinuous
functional f : V → R is weak lower semicontinuous.

Proof : We consider the epigraph which is de�ned as the set

Epi(f) := {(λ, u) ∈ R× Ω|λ ≥ f(u)}.

46

Phil Gralla Comparison to Ivanov- and Morozov-Regularization

Since f is convex and lower semicontinuous the epigraph is convex and strongly
closed. To show the convexivity of Epi(f) we take (λi, vi) ∈ Epi(f) for i = 1, 2,
then from the convexity of f follows

tλ1 + (1− t)λ2 ≥ tf(v1) + (1− t)f(v2)

≥ f(tv1 + (1− t)v2)

and thus (tλ1 + (1− t)λ2, tv1 + (1− t)v2) ∈ Epi(f). Therefore Epi(f) is convex
by the de�nition of a convex set.

Let (λk, vk)k∈N ⊂ be an arbitrary convergent sequence to the point (λ̃, ṽ).
This means that λk → λ̃ and vk → ṽ for k → ∞.

λ̃ = lim
k→0

λk

= lim inf
k→0

λk

≥ lim inf
k→0

f(vk)

≥ f(ṽ),

which means that the limit point (λk, vk) ∈ Epi(f). Since the sequence was
arbitrary the epigraph is closed.

From lemma 50 we have that the Epi(f) is convex and weakly closed. Let's
assume now that f is not weakly semi-continuous, thus there exist a sequence
(uk)k∈N weakly convergent to u and lim infk→∞ f(uk) < f(u). Then there exists
a subsequence (ukn)kn∈N for which limkn→∞ f(ukn) = y ∈ R and y < f(u) hold.
Since Epi(f) is weakly closed, the sequence (f(ukn), ukn) ⊂ Epi(f) converges
weakly to (y, u) ∈ Epi(f) and y ≤ f(u), which is a contradiction. As a result f
has to be weakly semi-continuous as well.

Altering the Tikhonov functional by utilizing the ε-insensitive function leads
to the functional

Jp,q
δ,α,ε (u) =

1

p

⃦⃦
F (u)− vδ

⃦⃦p
Lp,ε

+ αRq(u). (3.24)

3.6 Comparison to Ivanov- and

Morozov-Regularization

Since it was introduced by Tikhonov, minimizing a cost functional, which
consists of a discrepancy term and a regularization term, has been altered
by many others. Morozov and Ivanov each introduced a minimization with
non-linear constrains. Morozov's approach is to minimize the regularization
penalty under constrain

1

p

⃦⃦
Fu− vδ

⃦⃦p
V
≤ τδ.

47

Phil Gralla Comparison to Ivanov- and Morozov-Regularization

Ivanov's approach is to minimize the discrepancy term under constrain

Rq(u) ≤ ρ.

Both approaches minimize a functional and are summarized as

uδ
τ = argmin

u∈D(F)

Rq(u), s.t.
1

p

⃦⃦
Fu− vδ

⃦⃦p
V
≤ τδ

with τ ≥ 1 �xed constant independent of δ for Morozov regularization and

uδ
ρ = argmin

u∈D(F)

1

p

⃦⃦
Fu− vδ

⃦⃦p
V
, s.t.Rq(u) ≤ ρ

for Ivanov regularization.
These approaches seem similar, and in some cases, the reconstructions are

the same for the best parameter choices. However, it can be shown that this
statement is not valid in general. To demonstrate this, we will provide an
example introduced to us by Kaltenbacher in 2015 at a summer school at
the University of Bremen. It is based on an example given in [52]. While
this example shows the di�erence between Morozov, Ivanov, and Tikhonov
regularization, we will extend it to a more complex setting to illustrate the
di�erence in our approach to incorporating tolerances.
For the example the operator F is de�ned as

F :R → R
u ↦−→ (u− 1)3

and the true solution u† = 1. Thus the unnoised data is v = 0. We set
the noised data as vδ = 0.25 and choose Rq(u) = |u|, which means q = 1.
Additionally, p = 2 and ε = 0.1 are set. For Morozov and Ivanov exist
parameters such that the solution of the regularization problem is at the true
solution. For the classic Tikhonov method the Tikhonov functional has two
local minima. The local mimima at the position less than 1.5 converges to
the true solution at 1. However, for α = 0 the Tikhonov functional does have
only one minima that is not at the true solution. The global minimum does
not converge to 1 bit 1.71 instead. At the true solution u = 1 the functional
has a saddle point instead. For the Tikhonov regularization with discrepancy
the global minimum of the the Tikhonov functional converges to the desired
solution for α → 0.

48

Phil Gralla Comparison to Ivanov- and Morozov-Regularization

0.5 1 1.5
0

5 · 10−2

0.1

u

Ivanov

0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

u

Morozov

0.5 1 1.5

5 · 10−2

0.1

0.15

0.2

u

Classic-TR

α =.02
α = .03
α =.04
α =.05

0.5 1 1.5

5 · 10−2

0.1

0.15

u

TR with Tolerance

α =.02
α = .03
α =.04
α =.05

Figure 3.6: Example for di�erent regularization methods.

49

Phil Gralla Choosing ε

3.7 Choosing ε

So far, we have introduced the concept of tolerances and their application for
Tikhonov functionals and provided a mathematical framework. The following
section will brie�y outline how we can choose a tolerance threshold. We have
two main ways to select a tolerance that we separate into two main groups:
data-based a-priori information and an additional regularization parameter.
If available, the �rst group includes methods based on statistical observations
and multiple measurements. The second group integrates the tolerance to the
regularization scheme.
We explained the di�erence between point estimations and interval esti-

mates in the preliminaries. If we make a point estimation, such as the expected
value when having multiple measurements, we ignore the additional available
information from the observations. Instead, we can use the multiple measures
to have an interval estimate of the measurement. One example is using the
expected value and a con�dence band. The ε-insensitive discrepancy term can
model such an interval estimate by setting the expected value as the observed
measurement v and the con�dence band as ε(t). The ε(t) then depends on
the method to calculate the con�dence band as well as the con�dence level.
The ε-insensitive distance regularizes the inversion problem by denoising the

discrepancy term. This denoising is in the amplitude of the noise rather than
the frequency. Low-, band- and high-pass �lter denoise signals based on their
frequency and therefore work di�erently than the with denoising ε-insensitive
measures. We can use the parameter ε as an additional regularization param-
eter in the Tikhonov functional and choose it analogously to α.
We have shown that the introduced tolerance does, in fact, not reproduce

the same result as the classical Tikhonov, Morozov, or Ivanov regularization.
We consider a linear inverse problem to understand further, how the tolerance
in discrepancy changes the reconstruction and thus yields better stability. The
forward operator A maps from R500 to R500 and is a standard integral operator
for the signal u ∈ R500. The ground truth signal is a composition of di�erent
cosine waves. For the noise model, we add two di�erent noises. First, we add
noise to the measurement using a Gaussian additive noise. Secondly, instead
of applying the actual forward operator, we add a slight normal distributed
noise on all non-zero coe�cients of A. This noise on the operator is around
10−4 in magnitude.
We apply the adapted SVR-Solver for the numerical solution, which we

will introduce in detail in the next chapter. For the parameters we choose
p = 1, q = 2, α = 10−2, ε = {0, 10−2}. The solution for classical Tikhonov
and altered Tikhonov with tolerance in discrepancy is shown in �gure 3.7.
The reconstruction in norm is 0.0525 for classical Tikhonov and 0.0202 when
ε = 10−2. From a visual inspection of the solution, we can see how the
tolerance in discrepancy results in a step-wise approximation of the original
signal.
The most signi�cant error of the reconstruction is in the last points. This

50

Phil Gralla Choosing ε

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

Reconstruction Source

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

Reconstruction Data

α = 10−2 α = ε = 10−2 true

Figure 3.7: Example reconstruction .

behavior is expected when using an integral operator as the forward operator.
For completion, we also compared the reconstruction error in the �rst 450
points, which is 0.0381 for Tikhonov and improves to 0.0042 when ε = 10−2.
With this example ends chapter 3. In the next chapter we will have look at

the numerical methods to �nd a minimizer of the altered Tikhonov functional.

51

4
Numerical Solution for Lp

This chapter gives a short overview of existing methods to numerically �nd a
minimizer for the Tikhonov functional with tolerance in the discrepancy

Jp,q
δ,α,ε (u) =

1

p

⃦⃦
F (u)− vδ

⃦⃦p
Lp,ε

+ αRq(u) (4.1)

with 1 ≤ p ≤ 2 and 1 ≤ q ≤ 2, and compares them with a new modi�ed
subgradient method derived in this thesis.
Due to the rising popularity of machine learning in recent decades, many

numerical methods for training support vector machines have emerged [18].
These methods either work on the primal problem with linear kernels or the
dual problem for di�erent types of kernels. Additionally, methods for choosing
kernels and hyperparameters have been developed [87].
Two aspects are important to consider when using numerical methods from

machine learning. First, while the general idea is to minimize an error on a
training set S = {xi, yi} where often for support vector machines xi ∈ Rn and
yi ∈ Rm or yi ∈ {0, 1}m, the main goal is to have a stable solution that will
make accurate predictions for new xj ̸∈ S. As a result, early stopping criteria
are used to �nd approximate solutions which may not minimize the functional
(4.1) but �nd a solution close to the desired minimization. This has the ad-
vantage that methods which with slow convergence to the exact minimum are
still feasible if they converge fast to an approximation. Since over�tting on the
training set S may lead to poor predictions on new data, these approximations
are more stable with the right regularization, such as the error rate on a vali-
dation set. Secondly, one major challenge in machine learning, especially for
image applications, is to process large amounts of sample data in the training
set. In order to reduce training times and handle more training data, batch
and mini-batch methods were developed, which are equivalent to coordinate
or group coordinate descent in the dual for support vector machines.
For �nding a minimizer of an ill-posed inverse problem it is crucial to

overcome the problem's ill-posed nature and reconstruct the true underlying
source. However, some machine learning-related methods, such as splitting
training data into di�erent sets for cross-validation, may not be feasible for

53

Phil Gralla Solving with SVR-Solver

inverse problems if insu�cient data is present. As a result, we are develop-
ing a new technique for solving the previously stated inverse problem with
tolerances in discrepancy.
Of special interest are cases where p ∈ {1, 2} as well as q ∈ {1, 2}. We

present existing methods to solve inverse problems applicable to certain cases
and other existing ones to solve missing cases such as for p = q = 1.

4.1 Solving with SVR-Solver

In the previous chapters we introduced support vector machines/regression
and their solution. For support vector regression the functional

F (xi) = ∥f(xi)− yi∥pε,p + α∥f∥22

has to be minimized for f , where p = 1, 2. For linear SVR f(xi) = ⟨w, xi⟩+d,
or equally f(xi) = wTxi + d if xi ∈ Rd and yi ∈ R. While this looks like a
Tikhonov type minimizer, the di�erence is in the minimization parameter. For
SVM / SVR, pairs of (xi, yi) are known, while in a inverse problem f : X :→ Y ,
yδ is known. For linear discrete inverse problems, we can show that both
formulations are in fact equal. Thus we can use algorithms for linear support
vector regression to solve the inverse problem numerically.
In the linear discrete1 inverse problem we have the forward model f(x) = Ax

with A ∈ Rn×d. By the de�nition of ∥ · ∥pε,p we have

⃦⃦
Ax− yδ

⃦⃦p
ε,p

=
d∑︂

i=1

⃦⃦
xTAT

i − yδi
⃦⃦p
ε,p

(4.2)

where Ai denotes the i-th row of A. Using this equality we can minimize for x
as if x is the hyperplane w for the SVR. Now the regularization is also applied
on x instead of w. The new minimization functional is

Freg(x) =
d∑︂

i=1

⃦⃦
xTAT

i − yδi
⃦⃦
p
ε,p + α

⃦⃦
x
⃦⃦2

(4.3)

and the training data for the SVR is the set of tuples (AT
i , y

δ
i). This allows

to directly apply existing methods of linear support vector regression to solve
the inverse problem. This technique works for p = 1, 2, L2-penalty, and linear
forward operator.
In this thesis, the implementation uses python bindings of libsvm [16] and

liblinear [24] as provided in the python module SCIPY [85].
While this method can be directly used for linear operators and L2 regular-

ization, we can not use it for other regularization terms.

1The discretization is in x, not y.

54

Phil Gralla Non-Smooth Optimization

4.2 Non-Smooth Optimization

Solving a non-smooth optimization problem requires di�erent numerical al-
gorithms than the classical convex optimization problem. We can solve the
SVM minimization problem by solving the dual problem as outlined in section
3.1.1. However, this approach is not feasible for p = q = 1 in (4.1) or other
regularization terms such as TV regularization, as it does not yield a convex
optimization problem.
The following section provides a short introduction to existing non-smooth

solvers and their applications. Then, we use each algorithm to solve a numer-
ical example of an ill-posed inverse problem to illustrate their capability for
inverse problems.

4.2.1 Nelder-Mead Simplex Method

The Nelder-Mead simplex algorithm is an iterative algorithm to estimate a
local extremum of a function by moving a simplex along the function surface.
The simplex is changed by a heuristics on how to update the simplex vertices
in each iteration. While being relatively stable and working on non-smooth
functions, in practice, it is only feasible for dimensions up to 12 [30]. Gau
et al. [25] show that adaptive parameters can improve the convergence and
allow for larger input dimensions up to 40. In addition, theoretical results
on convergence only exist for special cases and under strong assumptions [56].
This algorithm is one example of a group of algorithms known as direct search
methods without gradient information [46]. Since they behave similarly in
practice, we focus on this one method.
The basis for this algorithm is a simplex, de�ned as follows.

DEFINITION 52 (Simplex)

Given n linear independent vectors x0, x1, . . . , xn ∈ Rn, then the convex
hull

S :=

{︄
n∑︂

i=0

λixi

⃓⃓⃓⃓
⃓ λi ∈ R und λi > 0,

n∑︂
i=0

λi = 1

}︄
is called a n-dimensional simplex. The vectors x0, x1, . . . , xn are referred to
as simplex vertices.

In each iteration, the given simplex S is evaluated on the vertices, and the
vertex with the highest value is moved along the line through itself and the
center of the other simplex vertices in the input space. Three di�erent cases
are possible, and the best one is selected in each step. In the �rst case the new
vertex lies on the same side as before and behind the original vertex. This
case is called expansion. In the second case, the new vertex lies opposite of the
original vertex. This case is called re�ection. For case three, the new vertex
lies within the simplex. This case is called contraction. Figure 4.1 illustrated
the di�erent cases on a simplex in a two-dimensional space.

55

Phil Gralla Non-Smooth Optimization

Two stopping criteria are commonly used. Either the standard deviation of
the function values along the simplex

(︄
1

n+ 1

n∑︂
i=0

(︁
f
(︁
x(k,i)

)︁
−f̄k

)︁2)︄1/2

< τf ,

falls below a given threshold τf > 0. In the formula above

f̄k :=
1

n+ 1

n∑︂
j=0

f
(︁
x(k,j)

)︁
(4.4)

is the mean of the function values along the simplex vertices. The second
criteria is the standard deviation of the simplex vertices in the input space

(︄
1

n+ 1

n∑︂
i=0

⃦⃦
x(k,i) − x̄k

⃦⃦2)︄1/2

< τx,

falls below a given threshold τx > 0. In the formula above

x̄k :=
1

n+ 1

n∑︂
j=0

x(k,j) (4.5)

is the geometric mean of the simplex vertices. Both criteria can be used in
combination as well. We summarize the full algorithm below.

56

Phil Gralla Non-Smooth Optimization

Vertex

old Vertex Vertex

Center of Gravity

Re�ection
Expansion

Vertex

old Vertex Vertex

Center of Gravity

Contraction

Figure 4.1: Example for re�ection, expansion, and contraction of a simplex.

Algorithm 1: Nelder Mead

Data: f , 0 < α < 1, β > 1, 0 < γ ≤ 1 and x(0,0) ∈ Rn

Result: x minimum of f
k = 0 and generate S0;

for k ≤ kmax and
(︂

1
n+1

∑︁n
i=0

(︁
f(x(k,i))− f̄k

)︁2)︂1/2
< τf do

f(x(k,m)) = max{f(x(k,i))| i = 0, . . . , n} ;
f(x(k,l)) = min{f(x(k,i))| i = 0, . . . , n} ;
s(k,m) = 1

n

∑︁n
i=0,i ̸=m x(k,i);

re�ect to �nd xr = s(k,m) + γ(s(k,m) − x(k,m));
if f(xr) < f(x(k,l)) then

perform expansion xe = s(k,m) + β
(︁
xr − s(k,m)

)︁
;

set x(k+1,m) = min{f(xr), f(xe)}
end

if f(x(k,l)) ≤ f(xr) ≤ max{f(x(k,i))| i = 0, . . . , n, i ̸= m} then
set x(k+1,m) = xr

end

if f(xr) > f
(︁
x(k,m)

)︁
then

perform partial contraction xc = s(k,m) + α
(︁
x(k,m) − s(k,m)

)︁
;

if f(xc) < f
(︁
x(k,m)

)︁
then

x(k+1,m) = xc

end

else if f(xc) ≥ f
(︁
x(k,m)

)︁
then

perform total contraction x(k+1,i) = 1
2
(x(k,i) + x(k,l)), i ̸= l

end
else

xr = x(k+1,m)

end

end

end

57

Phil Gralla Non-Smooth Optimization

4.2.2 Genetic Algorithms

Genetic algorithms (GAs) are a class of optimization techniques used to solve
NP-hard problems, such as the traveling salesman problem. They were �rst
introduced by John H. Holland and are often applied in discrete optimization
problems and can be used for continuous problems as well. Genetic algorithms
are used to train topologies of neural networks. Example algorithms are the
NEAT [75], and HYPER-NEAT [74] algorithms.
Genetic algorithms do not rely on continuity or convexity of the mini-

mization functions. Therefore they can be used to solve non-smooth, non-
continuous, and discrete functions. They are well suited for optimization
problems with many local but few global optima. Furthermore, genetic algo-
rithms can be used for problems with large input dimensions (see, for example,
[26]). Their convergence, however, is slow, and the algorithm needs a large
number of function evaluations. Studies on the convergence of genetic algo-
rithms include [22], where a general framework based on Markov chains is
introduced and global convergence shown.
We must decode the input x in a so-called genome to minimize a function

f(x) with a genetic algorithm. As an example, this genome can be a per-
mutation of the stops for the traveling salesman problem. For a continuous
problem, the gene equals to the input x ∈ Rn. The algorithm starts with a
set of inputs x, called a population. In each iteration, we sort this popula-
tion by their �tness. For minimization, we sort the values in ascending order
by function value. The best ones are used to generate a new population via
mating and mutation. The main parameters for this algorithm are the size
of population sp, number of iterations kmax, mutation rate mr and mutation
range ms. We can apply di�erent strategies for crossover and mutation and
optional parameters as well. For this work, we focus on continuous problems
and use the following strategy for selection, crossover, and mutation.

Crossover Each gene has the same length n ∈ N+. For crossover between
the pair (xi, xj) a random vector r sampled from U([0, 1]n) is generated and
the new gene is calculated through

xnew,1 = xi + r(xj − xi)
T .

Mutation Genes are mutated randomly based on the mutation rate and
mutation range. For a gene x ∈ R the mutation chance is given by α sampled
from U([0, 1]n). The mutation is then applied on the subset of genes S =
{xk | αk >= mr} that has a mutation chance higher than the given threshold
mr. The mutated gene is calculated via

xk̂ = xk +
ms

2
β, β ∼ U([0, 1]), for all xk ∈ S.

58

Phil Gralla Non-Smooth Optimization

Algorithm 2: Genetic Optimization
Data: f , mr, sp, kmax

Result: x minimum of f
initialize population random;
store current best fbest = f(x0);
k = 0;
for k ≤ kmax do

sort population by �tness;
keep only best n-genes;
cross genes for new population;
mutate genes;

end

4.2.3 Particle Swarm Optimization

Based on the behavior of a bird �ock, the original particle swarm optimization
(PSO) uses a swarm of particles that share information among themselves to
�nd a (local) minimum iteratively. Many adaptations [8, 59, 88] have been
done over the years, but the core principle stayed the same. Each particle has
a position xp,k ∈ Rn a velocity vp,k ∈ Rn and best visited point xp,best ∈ Rn.
The minimize function f (also often referred to as energy function) evaluates
current positions. A swarm consists of a �xed number m ∈ N+ of these
particles and a memory of the best-found solution of the whole swarm xbest ∈
Rn. Based on a weighted sum of velocity, distance to best own position, best
swarm position and swarm center, a new velocity for the particle is calculated
in each iteration. Using this velocity all positions and the best known positions
are updated. In each iteration the particles move according to

gp,k = xp,best − xp,k

qp,k = xbest − xp,k

rp,k =

(︃
1

m

∑︂
xp

)︃
− xp,k

vp,k+1 = s1vp,k + s2gp,k + s3qp,k + s4rp,k

xp,k+1 = xp,k + svp,k+1

and the best solution found for the swarm will be updated. This method was
designed to train neural networks originally [41], as it is less e�ected by local
saddle points and local minima compared to classical gradient methods. PSO
algorithms are used for graph optimization and power grid network layouts
until today [15, 92].
Yang et al. [89] use an accelerated PSO algorithm to solve nonlinear SVMs

for business problems. A two-step iteration scheme is applied where PSO es-
timates optimal kernel parameters, and then the SVM is calculated using the

59

Phil Gralla Non-Smooth Optimization

PSO algorithm again. These two iterations steps are repeated until conver-
gence. In [48], a survey about PSO algorithms for feature selection, including
feature selection for SVMs, is performed.

Algorithm 3: Particle Swarm Optimization
Data: f , number particles, number of maximal iterations imax

Result: x minimum of f
initialize swarm {pi} with random position and velocity;
store current best fbest = min{f(pi)};
i = 0;
for i < imax do

distance to personal best;
gp,i = xp,best − xp,i;
distance to swarm best;
qp,i = xbest − xp,i;
distance to swarm centroid;
rp,i =

(︁
1
m

∑︁
xp

)︁
− xp,i;

calculate velocity for each particle;
vp,i+1 = s1vp,i + s2gp,i + s3qp,i + s4rp,i;
move particles;
xp,i+1 = xp,i + svp,i+1;
fbest = min{fbest, f(p0), · · · , f(pi)};
i++;

end

4.2.4 Simulated Annealing

Simulated annealing is a method for approximating a global solution to an
optimization problem. It is used to solve problems with many local extrema
and is an iterative method. The method was described independently by
Kirkpatrick et al. (1983) and by Cerny (1985) [66] and can be interpreted as
an improved hill-climbing method. Simulated annealing allows steps with less
optimal solutions to avoid local extrema. In the beginning, such a decrease in
the optimality condition can be large, but the acceptance rate will drop over
each iteration, and the method converges. A decrease in optimality will be an
increase in the function value at the next iteration if the optimality criteria is
�nding a minimum, i.e. f(xk+1) > f(x) when a minimum of f(x) is desired.
Since we consider minimization problems in our work, we will only consider
this case as an optimality condition.
In each iteration, k, a random neighbor kc ∈ B(xxk

) is selected and accepted
if f(xc) ≤ f(xk) and xk+1 = xc updated. If f(xc) > f(xk), the new point is
accepted with a probability of

exp

(︃
−f(xc)− f(xk)

Tt

)︃

60

Phil Gralla Non-Smooth Optimization

where Tt ∈ R+. The value Tt ∈ R+ is referred to as the temperature of
the system and reduced in each iteration until it converges to zero. At this
point the algorithm terminates and the best found solution is returned as an
approximation of the global minimum.
The name simulated annealing is based on the decrease of acceptance rate

for less optimal solutions, it is often described as cooling down a system to
reduce jumpy behavior. The method is frequently used with other optimiza-
tion approaches such as random walk and Markov chains to compute random
neighbors in each iteration.
Simulated annealing is used for SVM algorithms to identify good kernel

functions and parameters [91, 51, 67]. In [66], simulated annealing is directly
used to solve a least squares twin support vector machine (LSTSVM).
In order to improve convergence speed and reduce the number of needed

function evaluations, we altered the classical formulation by shrinking the
neighborhood area in each iteration. This alteration reduces the number of
tries needed to �nd an acceptable solution and forces the algorithm to converge
faster to a local minimum.

Algorithm 4: Simulated Annealing Algorithm
Data: f , x0, T0, c
Result: x minimum of f
set temperature T = T0;
store current best fbest = f(x0);
k = 0;
while T > 0 do

xc = random neighbor of xk;
if f(xk) > f(xc) then

xk+1 = xc;
else

set xk+1 = xc with probability exp
(︂
−f(xc)−f(xk)

Tt

)︂
;

end
T = T ∗ c;
fbest = min{fbest, f(xk+1)};
k ++

end

4.2.5 Summary

We brie�y introduced a range of non-linear and non-smooth numerical solvers.
While many of them have been applied to solve SVMs directly or support other
methods to �nd a suitable solution, none of the above methods are feasible
for solving large-scale inverse problems. This is due to their slow convergence
for large-scale problems and the absence of suitable convergence criteria that
de�ne the termination of the iterations.We provide example applications on

61

Phil Gralla Stochastic Gradient Descent

toy examples at the end of this chapter, where we compare the di�erent nu-
merical methods to each other. As a result, in theory, the above methods are
able to solve the inverse problem but are too slow or inaccurate in practice to
be feasible.
For large scale machine learning problems, other methods based on stochas-

tic gradients are used. We will have a look at this type of optimization problem
in the following section.

4.3 Stochastic Gradient Descent

Stochastic gradient methods are an essential tool in training weights of neural
networks. Neural networks are trained with backpropagation, a chain rule-
based (sub-)gradient calculation method. Sutskever et al. showed in [76] that
using stochastic gradients and momentum do improve the learning rates of
neural networks.
Well known stochastic gradient descent methods are Adaptive Gradient Al-

gorithm (AdaGrad) [20], Root Mean Square Propagation (RMSProp) [62] and
Nesterov Accelerated Momentum [9]. All these methods are �rst-order meth-
ods, meaning they only use the �rst-order derivative in each iteration step.
They do, however, include second-order information indirectly via momen-
tum. We take the ADAM optimizer to represent stochastic gradient methods
with adaptive step size and momentum for a closer look and comparison.
Stochastic gradients are de�ned on functions f that are a sum of other

functions fm. The de�nition is given below.

DEFINITION 53 (Stochastic Gradient)

If the function f(x) can be written as

f(x) =
M∑︂
m

fm(x)

for all x ∈ D(f) and i > 1, then the stochastic gradient is a random sample
of the set {∇f1(x), . . . , ∇fM(x)}. A subset Θ of unique stochastic gradients
is called a mini batch. The (batched) stochastic gradient of f at x is denoted
with ∇Θf(x).

We can use stochastic gradients for minimization by applying an iterative
scheme

xk+1 = xk −
η

M
∇Θk

fmk
(x)

where η > 0 and fmk
∈ {f1, . . . , fM} is a random sample uniformly drawn. In

practice the set {f1, . . . , fM} is shu�ed and then each fm is selected in order.
The set is reshu�ed when the end is reached. This iterative method is called
stochastic gradient descent. We can use this method with mini-batches as

62

Phil Gralla Stochastic Gradient Descent

well. Stochastic gradient descent has been proven to converge almost surely
in [45, 78].
Stochastic gradient descent methods are not descending in general, and

they are an unbiased estimate of the entire gradient. They are often used in
machine learning where large quantities of training data have to be processed.
The stochastic gradient is calculated on a subset of the given training data for
machine learning. This way, large datasets can be processed in parallel and
without memory issues.
While stochastic gradient descent is faster to calculate for one iteration,

they have slower convergence than complete gradient methods and need a-
priori step-size choice for η. Additionally, if a stochastic gradient ∇Θfm(x) is
zero, this does not indicate that the entire gradient is zero and x is a (local)
extrema.
Di�erent adaptions to the standard stochastic gradient method have been

proposed that speed up convergence. Kingma and Ba introduce one stochastic
gradient method called ADAM in their paper [43]. We will look at ADAM
since it incorporates two ideas for faster convergence and is commonly used to
train deep neural networks. Firstly, ADAM uses momentum in the (stochastic)
gradients. For the momentum the iterative step is taken into a weighted sum
of current gradient and former gradients. The iteration step becomes

xk+1 = xk − ηmk

where

mk = β1mk−1 + (1− β1)∇Θk
f(x)

Kingma and Ba refer to this as the �rst momentum. Secondly, the ADAM
uses an exponential moving average on the gradients, similar to RMSProp2.
For the exponential moving average the update rule is

xk+1 = xk −
η√

vk + ε
⊙∇Θk

f(x)

with

vk = β2vk−1 + (1− β2)∇Θk
f(x)⊙∇Θk

f(x),

where ε > 0 is a �xed constant to avoid division by zero. In the above
expressions, ⊙ and ⊘ denote the Hadamard product and Hadamard division,
respectively. ADAM combines the �rst and second momentum vector in an
unbiased way. First m0, s0 are initialized with zeros elements. Then the

2RMSProp is an adaptive learning rate optimizer proposed by Geo� Hinton in his lecture
Neural Networks for Machine Learning. It is unpublished but used for training neural
networks and used in papers such as [42, 65]. Further analysis of RMSProp can be found
in [17].

63

Phil Gralla Subdi�erential and Subgradients

iteration update is

β1,k = β1λ
k

mk+1 = β1,kmk − (1− β1,k)∇Θk
f(xk)

sk+1 = β2sk + (1− β2)∇Θk
f(xk)⊙∇Θk

f(xk)

m̂ =
mk+1

1− βt
1

ŝ =
sk+1

1− βt
2

xk+1 = xk + ηm̂⊘
√
ŝ+ ε.

This method works on stochastic gradients as well as complete gradients.
Kingma and Ba suggest η = 0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8

as good default settings. It is important to note that the default settings
are for machine learning with deep neural nets where inputs are scaled, and
normalization layers are used and may not be a good choice for non-normalized
objective functions.
Stochastic gradient methods are more suited for large-scale inverse problems

since they are less a�ected by input dimensions. However, they depend on an
appropriate parameter choice and lack a reliable convergence criterion, except
the complete gradient is calculated in each iteration. The following section will
examine subgradients which are a generalization of gradients. The stochastic
gradient method can be applied to subgradients and can then be used to
minimize non-smooth objective functions.

Algorithm 5: ADAM Optimizer
Data: f , β1, β2, η, kmax

Result: x argmin of f
initialize m0 = 0 and s0 = 0;
k = 0;
while k < kmax do

calculate stochastic gradient ∇Θk
f(xk) β1,k = β1λ

k;
mk+1 = β1,kmk − (1− β1,k)∇Θk

f(xk);
sk+1 = β2sk + (1− β2)∇Θk

f(xk)⊙∇Θk
f(xk);

m̂ = mk+1

1−βt
1
;

ŝ = sk+1

1−βt
2
;

xk+1 = xk + ηm̂⊘
√
ŝ+ ε;

end

4.4 Subdi�erential and Subgradients

Subgradients generalize gradients for convex functions. We de�ned them in the
preliminaries and provided some additional information. For a short summary,
they are de�ned as stated below.

64

Phil Gralla Subdi�erential and Subgradients

DEFINITION 54 (Subgradient and Subdi�erential)

Let M be a convex subset of a real Banach space X and f : M → R a
convex functional. An element x∗ ∈ X∗ is a subgradient of f in x0 if

f(x) ≥ f(x0) + ⟨x∗, x− x0⟩ ∀x ∈ M

and f(x0) ̸= ±∞. The subdi�erential of f at x0 is denoted as ∂f(x0) de�ned
as

∂f(x0) := {x∗ ∈ X∗| f(x) ≥ f(x0) + ⟨x∗, x− x0⟩ ∀x ∈ M}

which is the set of all subgradients of f in x0.

In contrast to gradient methods, subgradient methods are not descent meth-
ods. Consider the iterative update

xk+1 = xk + skd

with sk as the step size and d as the step direction. For a descent method there
exists c > 0 such that the inequality f(xk) < f(xx+1) holds for all sk < c. For
subgradient methods we choose d ∈ ∂f(xk). However if d is a subgradient of
f at xk we cannot ensure that there exists sk > 0 such that f(xk+1) < f(xk)
and thus the sequence f(xk)k∈N is not monotone decreasing. We summarize
this in a proposition and prove our statement.

PROPOSITION 55

Subgradients are not a descent direction and thus the following is not true.
For each x ∈ D(f) in ∃ε > 0 s.t. ∀0 < s < ε :

f(x) ≥ f(x+ h · g), g ∈ ∂f(x).

Proof : We use the de�nition of subgradients to show this claim. Let g ∈ ∂f(x)
and s > 0 then from the de�nition of subgradients we have

f(x− s · g) ≥ f(x) + ⟨g,−s · g⟩

and it follows that f(x− s · g) is only bounded below not above. To show that
we can not �nd an upper bound we take a counter example.

This is best shown by contradiction using an example. The example can be
found with di�erent values in [10]. Let x = (y, z) ∈ R2 and f(x) = f(y, z) =
|y|+ 3|z|, then at x0 = (1, 0), g = (1, 3) ∈ ∂f(x0). Since s > 0 we have

f(x0 − sg) = |1− s|+ 3|s| = |1− s|+ 3s

≥ |1− s+ 3s| = |1 + 2s| = 1 + 2s

> 1 = f(x0)

and thus −g is not a descending direction.

65

Phil Gralla Subdi�erential and Subgradients

In contrast to gradients we can not derive an upper bound to ensure a
descent in function value for small enough step sizes. This is an important
di�erence when applying subgradients in numerical minimization.
Similar to gradients, subgradients can be used in an iterative scheme to

minimize a convex function. To minimze a convex function f , starting from
an initial guess x0 ∈ D(f), the iterations steps are

xk+1 = xk − sk · gk, (4.6)

where gk ∈ ∂f(xk) and sk > 0 is the step size. The iteration stops if one of
the following three criteria is ful�lled. First, 0 ∈ ∂f(xk). Second, the function
value f(xk) is less then a de�ned tolerance. Third, a maximum number of
iterations is exceeded. Contrary to gradient descent, the subgradient method
is not a descent method. Therefore the step size needs to be de�ned a-priori
and we keep track of the best solution in each iteration

f
(k+1)
best = min{f (k)

best, f(xk+1)}.

Four classical choices are most commonly used for step size rules. These are

1. Constant step size: sk = c is constant for all k

2. Constant step length: sk = c/∥gk∥2

3. Square summable but not summable:
∞∑︂
k=0

s2k < ∞, and
∞∑︂
k=0

sk = ∞.

One common choice for this step size rule is sk = a/(b+k), where a > 0
and b ≥ 0.

4. Nonsummable diminishing:

lim
k→∞

sk = 0, and
∞∑︂
k=0

sk = ∞.

This rule is also called diminishing step-size rule and a typical example
is sn = a/

√
k, where a > 0.

Algorithm 6: Classic subgradient method
Data: ∂f, x0, (sn)n∈N
Result: u minimum of f
k = 0;
fbest = f(x0);
while 0 ̸∈ ∂f(x) do

xk+1 = xk − sk · gk, gk ∈ ∂f(xk);
fbest = min{fbest, f(xk+1)};
k ++

end

66

Phil Gralla Subdi�erential and Subgradients

4.4.1 Adaptive Stepsize

To overcome the restrictions of a �xed a-priori step size we determine sk+1 via

sk+1 =
s0
αk

(4.7)

and for αk+1

αk+1 :=

{︄
αk f(xk+1) < f(xk)

αk + 1 otherwise
. (4.8)

The iteration is terminated based on three criteria:

� the subgradient is zero

� the decrease in function value, f(xk)−f(x), falls below a given threshold

� the step size, ∥skgk∥, diminishes, i.e. ∥skgk∥ < tol, where tol > 0

Only the �rst condition ensures a local minimum is found while the second and
third condition ensure numerical stability and determination of the algorithm.

Algorithm 7: Subgradient with adaptive decreasing step size
Data: f, ∂f, x0, s0, kmax

Result: x minimum of f
k = 0;
fmin = f(x0);
xmin = x0;
while 0 ̸∈ ∂f(x) and k < kmax do

xtemp = xk − s0
αk
∂f(xk);

if f(xtemp) > f(xk) then
αk+1 = αk + 1;
xk+1 = xk − s0

αk+1
∂f(xk);

else
αk+1 = αk;
xk+1 = xtemp

end
if f(xk+1) < f(xmin) then

xmin = xk+1;
fmin = f(xmin);

end
k ++

end

We changed the step-size rule from an a-priori choice to an adaptive method
during the minimization iterations. Therefore, the convergence is not covered
by existing convergence proofs, which analyze the four di�erent step-size rules
separately. In the following proposition, we summarize our convergence cri-
terium and prove it.

67

Phil Gralla Subdi�erential and Subgradients

PROPOSITION 56

Let f : Rn → R be convex, and has a minimizer x̃. Assume that the
subgradients are bounded in norm, ∥gk∥2 < c, c > 0, for all k.

i) For a bounded step size sk there exists an index β ∈ N such that the
iteration scheme in (4.6), (4.7), and (4.8) converges at least to the

minimizer within c2β
2

with β ≤ s0.

ii) Let the step size sk satisfy limk→∞ sk = 0. Then the iteration scheme
in (4.6), (4.7), and (4.8) converges.

Proof : For the proof we follow [90] and add alterations for the adaptive step-
size rule when necessary. Let x̃ be an arbitrary optimal point, then from the
de�nition of subgradients we have

∥xk+1 − x̃∥22 = ∥xk − skgk − x̃∥22
= ∥xk − x̃∥22 − 2sk < gk, xk − x̃ > +s2k∥gk∥22
≤ ∥xk − x̃∥22 − 2sk(f(xk)− f(x̃)) + s2k∥gk∥22

which leads to the following inequality by recursion

∥xk+1 − x̃∥22 ≤ ∥x1 − x̃∥22 − 2
k∑︂

i=1

si(f(xi)− f(x̃)) +
k∑︂

i=1

s2i ∥gi∥22.

We can drop the left side since it is positive and conclude

0 ≤ ∥x1 − x̃∥22 − 2
k∑︂

i=1

si(f(xi)− f(x̃)) +
k∑︂

i=1

s2i ∥gi∥22. (4.9)

Considering that the minimum of the set {f(xi)− f(x̃)} is in fact

min
i=0,··· ,k

f(xi)− f(x̃) =

(︃
min

i=0,··· ,k
f(xi)

)︃
− f(x̃)

and rearranging equation (4.9) we obtain the following bound

min
i=0,··· ,k

{f(xi)} − f(x̃) ≤
∥x0 − x̃∥22 +

∑︁k
i=0 s

2
i ∥gi∥22

2
∑︁k

i=0 si
(4.10)

The classical proof uses a prede�ned step size rule such as constant step size
or diminishing step size to show convergence. For our approach, we need to
consider two cases. Either the sequence (sk)k∈N does not converge to zero or
or it does. In both cases, the sequence (sk)k∈N is monotonically decreasing and
strictly positive.

For the �rst case, we assume that the sequence (sk)k∈N does not converge
to zero. We know that the sequence is monotonically decreasing, and strictly
positive. Thus it is bounded below by a positive number ϕ > 0. Since the

68

Phil Gralla Subdi�erential and Subgradients

sequence is constructed from a �xed ruleset, there exists an index β for which
sk = sβ with k ≥ β. Thus the step size rule becomes a �xed step size and

converges to an optimal solution within
c2sβ
2 , i.e.(︃

min
i=0,··· ,k

f(xi)

)︃
− f(x̃) ≤

c2sβ
2

, (4.11)

which proves the (i) in proposition 56.

For proving (ii), namely, that (sk)k∈N converges to zero, we can �nd a mono-
tone subsequence (sj)j∈N such that sj+1 < sj . By the construction rule of the
sequence we know that it is nonsummable diminishing. Since (sk)k∈N converges
to zero and sk ≥ sj the original sequence is nonsummable diminishing as well.
Thus a classical criteria to ensure that (4.10) converges to zero is ensured. It
follows that mini=0,··· ,k f(xi) → f(x̃) for k → ∞.

From the proof, we see that by adding theconstraint

∥skgk∥22 < c1, c1 > 0

to (4.6) leads to a maximum change in x in each iteration even if ∥gk∥22 is un-
bounded. We will discuss the e�ect of such an additional bound on converge
and numerical stability in future publications. We restrict the proof to convex
functions to ensure the existence of a subgradient in each iteration. However,
a more general approach combining subgradients and regular gradients is pos-
sible for nonconvex functions. The necessary subgradients for our method are
either calculated analytically or can be approximated numerically.

4.4.2 Numerical Investigation

We developed the adaptive step-size method to reduce the importance of the
initial step-size and step-size rule as well as to improve convergence speed of
the subgradient iterative minimizer. This section investigates if the adaptive
step-size has an advantage over the regular subgradient method and ADAM.
We choose the function

f(x) =

{︄
|x| |x| ≤ 1

2|x| − 1 otherwise
(4.12)

since it is convex, continuous everywhere but not di�erential at x ∈ {−1, 0, 1}.
The global minimum is at x = 0 and this point is also the only local minimum.
The subdi�erential is given as

∂f(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 · sgn(x) |x| > 1

[2, 1] x = 1

[−1,−2] x = −1

sgn(x) otherwise

. (4.13)

69

Phil Gralla Subdi�erential and Subgradients

We take two example cases. The �rst case has a small initial step size relative
to the distance of the starting point to the minimum. The second case has
a large initial step size and a close starting point to the minimum relative
to the step size. For the �rst case we take x0 = 10.001 as starting point
and a learning rate of η = 0.1. All numerical minimizers have a maximum
of 400 iterations. For ADAM, we choose the recommended hyperparameters
from [43]. We did run all tests with di�erent hyperparameters to check if the
conclusions in this section are hyperparameter dependent. We could not �nd
any parameter set for ADAM that invalided our �ndings. For the second case
we choose x0 = 1.001 and the initial step-size as η = 1.5. Figure 4.2 shows
our results. We only display the �rst 60 iterations for clarity in the plot for
the second case.
In both cases, our method converges as one of the fastest. The traditional

subgradient method converges depending on the chosen a-priori step size rule.
While the algorithm with constant step size converges in the �rst case, the
step size is too large in the second case. The opposite is true for a diminishing
step-size rule, which decreases too fast in case one while it does converge in
case 2. The last method, ADAM, behaves similarly to the constant step-
size rule as it minimizes the function until it reaches a stable state iterating
between two values. Repeating the numerical minimization for cases 1 and 2
with random starting points, we still observe the same behavior
This numerical excursion shows that the adaptive step size makes the sub-

gradient method faster to converge while reducing the in�uence of the initial
step size.

70

Phil Gralla Subdi�erential and Subgradients

0 100 200 300 400
0

2

4

6

8

10

iteration

f
(x
)

Convergence

310 315 320 325
0

5 · 10−2

0.1

0.15

iteration

f
(x
)

Zoomed in

100 110 120
0

0.2

0.4

iteration

f
(x
)

ADAM constant step-size decreasing step-size ours

0 20 40 60
0

0.2

0.4

0.6

0.8

1

iteration

f
(x
)

Convergence

10 20 30
0

0.1

0.2

0.3

iteration

f
(x
)

Zoomed in

Figure 4.2: Comparison of convergence of di�erent subgradient methods in
two example cases. Top: Case one with small initial step size and
x0 far away from minimum. Bottom: Case two with large step
size and x0 close to minimum.

71

Phil Gralla Subdi�erential and Subgradients

−4 −2 0 2 4
0

2

4

6

x

y
f(x)
g(x)

−4 −2 0 2 4
0

2

4

6

x

y

h(x)

Figure 4.3: Example of the composition of two non-di�erentiable convex func-
tions. Two convex functions (left) and their (non-convex and non-
di�erentiable) composion (right).

4.4.3 Calculation of Subgradients

To calculate the subdi�erential of di�erent, forward models and penalty terms
for the Tikhonov functional, some calculation rules can be used. The addition
of subdi�erentials is anologus to the addition of gradients.

PROPOSITION 57 (Addition of Subdi�erentials)

Let M be a convex subset of a real Banach space X and f, g : M → R be
proper convex functionals. Assume that there is a point x0 ∈ D(f) ∩ D(g)
where f is continuous, then

∂(f + g)(x) = ∂f(x) + ∂g(x)

holds for all x ∈ M .

For a proof see [90], Theorem 47.B. While addition and scalar multiplication
follow the same rules as for derivatives, a general chain rule does not exist.
A small example illustrates the challenges and limits of deriving a chain rule.
We examine the two functions

f(x) = |x|
g(x) = |x− 1|

de�ned for x ∈ R, each of which is nondi�erentiable and convex on the whole
domain. The composition h(x) := g(f(x)) is non-di�erentiable as well but
not convex on any subset in R that includes 0, e.g. [−1, 1]. Therefore, the
subdi�erential of h does not exist at 0. Both functions, f and g, have subdif-
ferential on the whole domain D = R. A general chain rule for subgradients,
equivalent to the one for gradients, can not be derived, as illustrated by this
example. In �gure 4.3 the described situation is shown.
We can, however, derive a chain rule for linear operators. This is stated in

the following proposition.

72

Phil Gralla Comparison of methods

PROPOSITION 58 (Chain rule linear operator)

Let X and Y be real Banach spaces, A : X → Y be a bounded linear
operator and f : Y → R ∪ {∞} be convex and lower semi-continuous. If
there is a point Ax, where f is continuous and �nite, then for all x ∈ X it
holds that

∂(f ◦ A)(x) = A∗∂f(Ax).

This proposition directly follows from corollary 16.72 in [7], which is proven
in the same book.
Many examples have a linear forward operator in this work and use a TV

norm as regularization. As a result, the subgradient can be directly calculated
by using a chain rule for subgradients as well as additive and max rule. For
p = 1

∂
⃦⃦
Au− vδ

⃦⃦
1,ε

= A∗sign
(︁
max

{︁⃓⃓
Au− vδ

⃓⃓
−ε, 0

}︁)︁
(4.14)

where A∗ is the adjoint operator of A. Since the TV-norm is a special case
with A being the derivative operator and ε = 0, the same results can be
directly applied for the regularization R.

4.5 Comparison of methods

This chapter introduced di�erent numerical methods, and we developed an
adaptive step size for the classic subgradient method. The following section
compares these numerical methods by minimizing various types of objective
functions. Finally, we use these comparisons to look at performance and why
we developed a new subgradient method for our applications.
In [5, 21, 55] various functions with di�erent properties for testing numeri-

cal minimization methods are presented. We choose a convex function with a
unique global minimum, a smooth but non-convex function with one unique
global minimum but a multitude of local minima, a non-smooth convex func-
tion, and a linear inverse problem for numerical testing.
Smooth convex functions are di�erentiable and have a unique global opti-

mum which is also the only local optimum. The test function for the smooth
convex case is

f(x1, x2) = 5x2
1 + 6x1x2 + 5x2

2. (4.15)

Smooth but non-convex functions can have more than one local minima
and these minima do not need to be a global minimum. We use the following
function

f (x1, x2) = 0.2 +
2∑︂

i=1

(︁(︁
xi − 2

)︁
2 − 0.1 cos

(︁
6π
(︁
xi − 2

)︁)︁)︁
(4.16)

as an example of a non-convex smooth function with multiple local minima
but one unique global minimum. Figure 4.4 shows this function on the input
space [−1, 1]2.

73

Phil Gralla Comparison of methods

Figure 4.4: Surface plot of a non convex function (4.16) with multiple local
minima.

74

Phil Gralla Comparison of methods

Non-smooth convex function are not di�erentiable and can not be minimized
by using a standard gradient descent method. We choose a non-smooth variant
of the Rosenbock function. The function is de�ned as

f (x1, x2) = 2 |x2−|x1||+|1− x1| , (4.17)

which has a unique minimum at x = (1, 1).
We use the following parameters for the convex and non-convex examples.

The CGO has the starting area [−4,−4]×[4, 4] with a population size of 25 and
800 iterations. The permutation chance is set to 0.2. For the PSO algorithm,
we set the starting area to [−4, −4]× [4, 4], the population size to 25, and 800
iterations. For the internal weights we choose {0.5, 0.2, 0.3}. For ADAM we
set the starting point randomly as x ∼ U([−4, −4], [4, 4]), β1 = 0.1, β2 = 0.9,
and the maximum number of iterations to 2000. For the early stopping criteria
on the gradient, we choose 10−9. We provide the analytic (sub-)gradient for
the algorithm to use. Each minimization is repeated 100 times to ensure that
the comparison is independent of random starting points.
We take the linear inverse problem

Au = v

with u, v ∈ R100, and A ∈ R100×100 an upper triangle matrix. The coe�cients
of the matrix A are zero if in the lower triangle or 0.01 if on the main diagonal
or in the upper triangle. The numerical solvers minimize the functional

J =
⃦⃦
Au− vδ

⃦⃦
+ α∥u∥2

with δ = 0.001, α = 0.001 to solve the inverse problem. The noise on the
measured data follows a normal distribution N(0, δ).
We summarize all numerical results in table 4.2. All methods are imple-

mented in python 3.6 and only use Numpy as an additional module and means
of optimization. The three non-gradient-based methods perform well on the
low-dimensional problems. The Genetic Algorithm performs the best but is
the slowest algorithm. As seen in the table, the linear inverse problem test
case, all three non-gradient-based methods are slow for large-scale problems.
ADAM is faster than the other three methods, but it does not �nd a global
minimizer reliable in the non-convex and non-smooth test cases. The results
for the non-convex test case are as expected for ADAM since it does rely on
local (sub-)gradients and can therefore get stuck at local minima. We did not
expect that ADAM would have these issues solving the non-smooth function.
This function has a unique global minimum and no other local minima. We
run several experiments with di�erent parameters for ADAM but did not �nd
any better hyper-parameter set for it. For an overview of the various numeri-
cal methods discussed, we list the algorithms in table 4.1 with their properties
for solving optimization problems.

75

Phil Gralla Comparison of methods

Solver p q F Global Large input space

Nelder Mead ≥ 1 ≥ 1 non-linear × ×
Genetic Algorithm ≥ 1 ≥ 1 non-linear ✓ ×
Particle Swarm ≥ 1 ≥ 1 non-linear ✓ ×
Simulated Annealing ≥ 1 ≥ 1 non-linear ✓ ×
ADAM ≥ 1 ≥ 1 non-linear × ✓
SVM Solver 1, 2 1, 2 linear × ✓
Proposed Method ≥ 1 ≥ 1 non-linear × ✓

Table 4.1: Summary of di�erent numerical non-smooth solvers and their prop-
erties.

76

P
h
il
G
ralla

C
om

p
arison

of
m
eth

o
d
s

Function dim Solver min f max f mean f min ∥x− x∗∥ max ∥x− x∗∥ mean ∥x− x∗∥

Convex 2 GA 0.0 8.697e-07 2.000e-08 1.476e-10 2.153e-4 7.509e-06
PSO 0.0 0.0 0.0 1.302e-11 7.064e-10 4.032e-10
SA 1.344e-5 3.759e-2 7.880e-3 8.465e-4 4.557e-2 1.826e-2
ADAM 1.773e-10 8.875e-07 1.814e-07 9.417e-06 6.661e-4 2.446e-4

Non-Convex 2 GA 0.0 0.0 0.0 0.0 0.0 0.0
PSO 6.713e-132 7.063e-112 1.412e-113 1.279e-66 1.876e-56 3.753e-58
SA 7.637e-06 1.500e-3 4.464e-4 1.002e-3 2.647e-2 1.046e-2
ADAM 0.227 10.716 6.211 0.164 3.240 2.203

Non-Smooth 2 GA 0.0 1.687e-05 3.445e-07 0.0 2.385e-05 4.828e-07
PSO 0.0 1.158e-1 3.714e-3 0.0 1.638e-1 5.253e-3
SA 3.976e-3 8.110e-2 3.321e-2 3.381e-3 9.235e-2 2.978e-2
ADAM 2.027e-1 4.591 1.453 1.754e-1 5.112 1.711

Linear I.P. 100 GA 5.0e-2
PSO 3.038e-1 4.883e-1 4.007e-1 1.932e-1 2.766e-1 2.414e-1
SA 2.877e-1 3.478 1.549 1.424 15.081 5.202
ADAM 4.5983e-2 4.703e-2 4.654e-2 1.852e-2 2.325e-2 2.055e-2

Table 4.2: Comparison of di�erent numerical non-smooth solvers for di�erent test functions. Each solver was tested with 50
di�erent initial values.

77

Phil Gralla Applications in Image and Signal Processing

4.6 Applications in Image and Signal

Processing

The following section presents examples for reconstructing blurred and noised
data. We do not only consider noised data but noised or partly known forward
operators. Our method with tolerance in the discrepancy term is compared
to other methods that are used to solve the same problems. The �rst example
is a toy example in 1D, which we use to compare our method with another
approach introduced in [47]. The toy example is taken from the same publi-
cation and focuses on linear inverse problems with imperfect forward models.
The second example is motivated from a real application. This allows for a
good impression of how the method can be applied but since real data is used,
a qualitative statement is more di�cult to achieve. In this example, we recon-
struct height images from noisy and blurred height images. Height images,
also referred to as depth images are similar to regular images, but they have
distance information in each pixel instead of color information. They are used
for 3D measurements and obstacle detection.

4.6.1 Deblurring and Denoising with Imperfect Forward

Operators in 1D

Let u be a piecewise-constant signal that is deblurred through convolution
with a Gaussian blurring kernel

Φ(t;σ) =
1

σ
√
2π

e−
t2

2σ2 .

with σ ∈ R+ and t ∈ Rn. The true signal is piece-wise constant, hence R(u) =
TV (u), with anisotropic TV-norm for q = 1 and isotropic TV-norm for q = 2,
is chosen as a regularizer. We consider two cases of noise: additive noise
in the measurement v and noise on the linear forward operator A. We use
three methods to reconstruct the true signal. These methods are minimizing a
classical Tikhonov functional with TV-regularization, minimizing a Tikhonov
functional with additional point-wise tolerance in the discrepancy term, and
the methods from [47], where Korolev and Lellmann introduce a method based
on partial ordered Banach spaces to solve inverse problems with noisy or
unknown forward operators.
The method from Korolev and Lellmann solves the minimization problem

minimize R(u)

subject to f l ≤ Auu, Alu ≤ fu
(4.18)

where Au and Al are bounds between which the true forward operator exists
as well as f l and fu are bounds on the data.
The noise on the measurement is assumed to be bounded by ∥v − vδ∥ ≤ δ

with δ > 0. We use uniform distributed noise in the following examples.

78

Phil Gralla Applications in Image and Signal Processing

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Reconstruction

0 0.2 0.4 0.6 0.8 1

−0.1

−5 · 10−2

0

5 · 10−2

Di�erence

true classic Kororlev ε

Figure 4.5: Denoising with exact operator and noised data. Left side: recon-
struction of the original signal. Right side: Error in reconstruction.

Figure 4.5 shows an example reconstruction for a noise-free operator but noisy
data with uniform additive noise of a noise level of 5%. All three methods
can reconstruct the signal almost perfectly. The starting value u0 was set to
u0 = vδ for all algorithms. We �nd the same results using random starting
points.
To add noise to the forward operator A while keeping its properties as an

convolution with an appropriated kernel, the additive noise is added on the
Gaussian kernel

Φδ(t) =
1

∥max{Φ(t) + ε(t), 0}∥
max{Φ(t) + ε(t), 0},

where ε ∼ U
(︂

−δ
σ
√
2π
, δ

σ
√
2π

)︂
. The normalization of the operator is necessary for

the convolution properties. For the operator in matrix forms, this approach
translates to only non-zero elements being a�ected by the noise. Due to the
normalization of the kernel the noised matrix is a convolution matrix again.
In Figure 4.6 an example reconstruction for 10% noise on the operator and

5% additive uniform noise on the data is shown. The reconstruction is less
accurate than before, as the overall noise level increased depending on u.
For a more detailed comparison, the above example was repeated with ran-

domized starting values u0. Each starting value is repeated ten times with
random noise using the same noise level. The solutions are shown in table
4.3 and illustrate that the above example is not an unique case, but similar
observations can be done for di�erent sampled noise as well. It is important
to note that for additive truncated normal noise, both Tikhonov functionals
yield signi�cantly better results than the method from [47]. Yuri et al. as-
sume worst-case errors. They do not take the error distribution into account.
Therefore the higher density of the error around zero is not exploited.

79

Phil Gralla Applications in Image and Signal Processing

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Reconstruction

0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

Di�erence

true classic Kororlev ε

Figure 4.6: Denoising with noised operator and noised data. Left side: re-
construction of the original signal. Right side: Error in reconstruc-
tion.

noise δv δF Classic Korolev ε

uniform 0% 5% 0.3353 ±0.027 0.1301±0.022 0.2466±0.027
10% 5 % 0.2909± 0.029 0.7420 ±.0034 0.2167 ±0.026

normal 0% 5% 0.1053 ±0.024 0.1321±0.023 0.0699 ±0.031
10% 5% 0.2174 ±0.034 0.7124 ±.0031 0.1780 ±0.018

Table 4.3: 1D deconvolution for di�erent noise models and noise on the data
and the convolution operator. The di�erence to the true signal is
measured by ∥u − uδ∥210−2 with p = 2 and Rq = TV1. All values
show the mean of 100 repetitions with the standard deviation in
the set.

80

Phil Gralla Applications in Image and Signal Processing

original blurred image

addtive noise

+

combination

Figure 4.7: Example of blurred and noised image as a result of convolution
with Gauss kernel and additive noise error on each pixel.

4.6.2 Deblurring Depth Images

We use real-world data to apply the proposed method to depth images. The
experimental data set is the same as used in [34]. It is provided by the Co-
operate Research Center 747 (CRR 747) of the University of Bremen. Micro
parts in the shape of a cup are cold formed and measured directly on the
cold forming machine. A confocal microscope Keyence VK-9700 is used for
the measurement. The used materials are copper and aluminum. The images
produced by the microscope are depth images. Instead of color information,
each pixel holds depth/height information. These images may also hold non-
valid values in a pixel and need additional normalization. A short overview of
the di�erent techniques and sensors can be found in [35] between pages 256-
258. Figure 4.8 illustrates the di�erence between depth images and regular
color images of a 3D scene.
Shape deviation of manufactured micro cups from ideal shape shall be de-

tected with only information from the depth images. Since the images are
prone to signi�cant errors, post-processing is necessary. This post-processing
aims to eliminate noise while extracting the actual shape. To illustrate the
in�uence of noise on the image, we apply four existing algorithms and outline
possible enhancements with our algorithm. We apply all four algorithms to
the same image and show the results in �gure 4.9. We choose the best meta
parameters for each algorithm via optimizing meta parameters if necessary.
For this optimization on the hyperparameters, we use a two-step solution.
First, Bayes optimization [73] is performed and then locally re�ned with a
convex solver such as the Broyden�Fletcher�Goldfarb�Shanno algorithm [37].
We only apply the second step for hyperparameters in a continuous space.

81

Phil Gralla Applications in Image and Signal Processing

Figure 4.8: Example of a depth image. Left: Rendered image of the scene
with point lightsource and shadows. Right: The depth image of
the same scene. Blue areas are closer to the camera and red areas
are further away. Both images were simulated and rendered using
Blender 2.9. The images are best viewed in color.

This method allows for a vast search space while still �nding local optimal
points.
A convolution with smoothing kernel followed by additive noise models the

overall noise in the image.

vδ = (Θ(σ, µ)∗u) (x) + e(x).

Observations on collected data and other experiments in the CRC 747 frame-
work support this model. We can interpret the convolution as the unknown
forward operator in our method. We use TV-regularization with q = 1 to min-
imize the assumed error. Since we have an additive error, we choose p = 2.
Overall the inverse problem is

F : Lp(Ω) → Lp(Ω)

u → Θ(σ, µ) · u

for the forward model where Ω is a Gaussian kernel

Θ(x;σ, µ) =
1(︁

σ
√
2π
)︁2 e− ∥x−µ∥22

2σ .

We choose the necessary α and ε by using a generalized L-curve (see [54]),
also known as L-shaped hypersurface. Figure 4.9 shows the result. Our
method can remove almost all noise on the border of the depth image while
keeping and re�ning the contour of the cup. Since we applied an automatic se-
lection of the meta parameters ε and α, we can automate this method without
user input. As a result of real-world data, the images can only be compared
subjectively as we are unable to compare the results with some known true
values. Nevertheless, the results coupled with the knowledge from the toy
experiment in one dimension show the potential of our method.
The standard gradient detection with a Sobolev �lter shows the degree

of noise in the area around the cup. The image was taken while the cup
was on a plane surface. Thus, we can assume that the observed gradients

82

Phil Gralla Applications in Image and Signal Processing

Figure 4.9: Edge detection on 2D images using di�erent techniques. (a) Orig-
inal noisy image. (b) Sobolev �lter on Perona Malik denoised
image. (c) Gradients with Sobolev �lter. (d) Sobolev �lter on
Biorthogonal wavelet denoising with Bayes shrinkage denoised im-
age. (e) Canny Edge algorithm. (f) Sobolev �lter on our algorithm
denoised image.

around the structure must be noise. Applying the Canny Edge Detection
Algorithm [13] reduces the noise around the cup but is not able to extract the
entire contour of the cup. Biorthogonal-wavelet image denoising with Bayes
shrinkage method, as described in [29, 19], produces blurred contours. Of
the four algorithms, the Perona-Malik smoothing, as introduced in [34], yields
the best results. However, it is not easy to automate this method with the
appropriate stopping criteria for the Perona-Malik smoothing. Moreover, we
noticed that this method can lead to contour blurring, which is an undesired
property for the application at hand. The method proposed in our work
extracts the contour and reduces noise outside the cup. Furthermore, it allows
the extraction and analysis of the shape for defects.

83

5
Application in Micro Milling

We originally designed the presented mathematical methods in this work to be
applied to parameter identi�cation for micro-milling as part of the cooperative
research center 747 (CRC 747) at the University of Bremen. In the CRC 747,
new methods for cold forming micro parts in micro dimensions, i.e., parts
smaller than 2 mm in two dimensions, are studied.

The need to manufacture smaller and smaller components to keep highly
sophisticated systems at an acceptable size bears new challenges for manufac-
turing processes. These challenges are mainly due to size e�ects [86] which
hamstring the transition of methods developed in macro-scale to micro-scale.
Milling processes are an example where size e�ects need to be considered.
Figure 5.1 shows an example of dry friction in a mold used for micro cold
forming. The surface structure of the material in�uences the friction of the
blank.

In a milling process, small structures on the surface of the �nished workpiece
are inevitable. They can be ignored for the macro-scale but highly in�uence
the characteristics of a component in the micro-scale. These characteristics
are crucial for microstructured devices, or functional tribological surfaces [58,
6, 23]. Understanding the cutting process and in�uential process parameters
in detail allows for identifying parameter sets that produce surfaces structured
in the desired way.

Various applications for the mathematical method described in this work
exist for micro cold forming processes. They can be divided into two main
categories. First, understanding forming process and identifying underlying
correlations or causes (innovation speed), and second, enhancing process sta-
bility and productivity through parameter identi�cation (process design and
control).

We give a few selected examples which focus on micro-milling processes of
each �eld in the following sections.

85

Phil Gralla Identifying Acceleration Points from Positional Data

source: Spur et al. (1985)

punch

die

blankholder

blank

textured surface, Sa = 380 nm

Figure 5.1: Dry friction in a mold used for micro cold forming.

5.1 Technical Background

Milling is a versatile technique from the early 19th century and is used to pro-
duce parts that range from tiny to huge. It is applied to various materials and
has been steadily improved over time. This work focuses on the application
of metal on a micro-scale. We follow [86] in their de�nition for micro parts.
Thus all workpieces are less than 2mm in the sum of all their dimensions, i.e.,
the sum of height, length, and depth of the smallest bounding box is less than
2mm.
In forming processes, the forming tool is subject to forces and the workpiece.

Forces during the process alter the characteristics of the forming tools. These
characteristics include geometry and hardness and represent wear on the tool.
In addition, the wear of tools alters and a�ects the characteristics of produced
workpieces, especially the surfaces in our application. For example, the shape
of the cutter and cutting edge in�uence the surface quality in micro-milling
processes. As wear on the cutter increases, the cutter itself has to be replaced
to ensure that the desired properties on the manufactured surfaces are met.

5.2 Identifying Acceleration Points from

Positional Data

The �rst application of the introduced method is modeling and �nding the
points of acceleration of the cutter from positional data. Milling machines use
target positions and speed, and interpolation type (linear, cubic) to control
the milling process. These data points are generated beforehand and pro-
vided to the machine in a standard binary format. During the process, the
machine records feedback of the force on the tool and its current position.

86

Phil Gralla Identifying Acceleration Points from Positional Data

This information is then used to control the whole process, identify failure
in advance, and improve the input parameters. In contrast to classical regu-
larization, which still takes place, our goal was to adjust process parameters
and adapt the underlying model to re�ect the actual process better and �nd
a source for observed anomalies. For this task, it is essential to reproduce
the acceleration of the milling drill from its positional data provided by the
machine. In micro milling processes, the force on the cutter has a signi�cant
in�uence on the produced workpiece. See [79] for further information on this
topic. One possible source is the acceleration of the cutting tool, which can
not be measured directly. Instead, an indirect method is used, which is based
on the known positional data of the cutting tool.
The �rst derivative of the traveled distance s(t) is the velocity v(t). The

second derivativeof the traveled distance is the acceleration a(t), i.e.

d

dt
s(t) = v(t)

dd

dtdt
s(t) =

d

dt
v(t) = a(t)

Finding the acceleration from a given distance measurement is a very ill-
posed problem due to the compactness of the operator F : s(t) → a(t). This
means that taking the second derivative from s(t) with respect to t is highly
inaccurate when accounting for noisy data. Small deviations in the measured
distance can lead to unbounded errors in the reconstructed acceleration by
taking derivatives. We use the proposed Tikhonov functionals to compensate
for the ill-posed nature of the problem.
We need to know the true acceleration to test the reconstruction accuracy.

The CNC code does include this information, but we want to reconstruct the
true acceleration if it deviates from the time points given in the CNC code. In
addition, this example is more of a case study than meant to be applied later.
We, therefore, will use arti�cial data based on real-world observation. This
arti�cial data allows us to know the otherwise known true acceleration and
allows for a comparison of accuracy. It was �rst published in [27] to show the
additional regularization properties due to tolerances in discrepancy terms.
We will add additional information on the implementation and mathematical
structure of the example in this work.
The acceleration a(t) : D ⊂ R → {−1, 0, 1} can only be in one of three

states at any time, forward, no acceleration and backward. The number of
switches between the three states is not restricted. For the regularization the
amount of switches is considered, i.e., sparsity in the time points of changed
states is desired. The TV-norm on the signal a(t) will be used as Rq to match
the desired properties. The true solution starts at 0 and switches at t = 0.3 to
1 and t = 0.6 back to 0. A uniform additive noise with δ = 15 is used on the
positional data d(t). To solve the minimization problem a greedy approach
is selected. For each number of possible switches i ∈ N+ the minimization
problem

min
p∈[0,1]i

D(f(x; p)− y) +R(f(x, p))

87

Phil Gralla Identifying Acceleration Points from Positional Data

is considered, where

f(x; p) =

∫︂
D
ap(t) dt (5.1)

ap(t) =

{︄
1, if i is odd, de�ned by pi < t < pi+1,

0, otherwise
. (5.2)

We consider the switch points pi to be shorted in ascending order.
We increase the complexity of the function f step-wise and take the �rst

local minima in i as the best solution overall. Thus, if we �nd a solution at
i = c, we computed c+ 1 minimizers. An early stopping criteria is ful�lled if
f(x; p) = 1 almost everywhere.
The classical solution with no tolerance is {0.2888, 0.5801} and has an error

of 5.5678 · 10−2 in the L2-norm. This reconstruction could not be improved
with a di�erent value of α. Minimizing J2,1

δ,.1,5, where

Jp,q
δ,α,ε (u) =

1

p

⃦⃦
F (u)− vδ

⃦⃦p
Lp,ε

+ α∥u∥qq, (5.3)

�nds {0.2421, 0.2424, 0.2991, 0.6001} as switch points and has an error of
1.4142·10−2 in the L2-norm. The regularization parameter was set to the same
value as for the Tikhonov regularization without tolerance in discrepancy. The
reconstruction and data is given in �g. 5.2.
While the classical approach �nds the right amount of switches, it has a

more signi�cant error than the Tikhonov functional incorporating tolerances.
The simulation at hand was repeated 100 times with random noise, and the
additional switch did not always appear. However, the overall error of our
method was always smaller than the reconstruction based on the standard
Tikhonov regularization. Thus the already good reconstruction by the clas-
sical regularization can be further improved by incorporating a tolerance in
the discrepancy term. It is important to note that the restriction in the solu-
tion space through the construction of f(x; p) to be discrete in the number of
switches is another way of regularization.

88

Phil Gralla Identifying Acceleration Points from Positional Data

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

ac
ce
le
ra
ti
on

true
classic
ours

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

t

sp
ee
d

true
classic
ours

0 0.2 0.4 0.6 0.8 1

0

50

100

150

t

di
st
an
ce

data
true
classic
ours

Figure 5.2: Reconstruction of acceleration from positional data. Using clas-
sical Tikhonov functional with TV-regularization and Tikhonov
functional with tolerance in the discrepancy term in addition to
TV-regularization.

89

Phil Gralla In�uence of the Wear of Cutting Tool on Cutting Process

5.3 In�uence of the Wear of Cutting Tool on

Cutting Process

In this section, we outline a process-model for micro-milling and model the
wear on the tool. We further provide detail on parameter selection with respect
to the wear and how to integrate the theory of inverse problems.

Figure 5.3: SEM pictures of used cutting tools. The left column shows an
even wear on the cutting tool. The right column shows an uneven
wear on the cutting tool. The white areas on the bottom row are
wear.

5.3.1 Process model

We model the process in three steps. In the �rst step of modeling, we consider
the kinematic of the process. We describe the kinematic of a milling cutter by
using a composition of the rotational and translational motion of the tool. This
composition describes how the tool rotates around itself and moves along a
given path. A dynamical force model is used to account for dynamical changes
occurring during the process. We utilize a system of ordinary di�erential
equations to represent this dynamical force model. The model is presented in
details in [60] and [83]. Moreover, we assume that the reader is familiar with

90

Phil Gralla In�uence of the Wear of Cutting Tool on Cutting Process

the kinematics of the micro-milling process. If otherwise, we refer the reader
to [3] and [79].
To model the �nal surface, additional information like the shape of the

cutting tool, material and size of the workpiece, and used material are needed.
Additionally, we included the material removal mechanism. The minimum
chip thickness has to be considered for ball end micro-scale machined surfaces.
The minimum chip thickness results from the chip formation, which is divided
into three parts see [83]. Below a certain minimum cutting depth, the material
is elastically deformed, and thus no material is removed, i.e., no chip is formed.
Above a certain cutting depth, the tool completely removes the material, and
the chip thickness equals to the cutting depth. The third stage describes
the transition between the former two stages. Since the cutting depth is
di�erent at all points of the milling tool and only cutting depths smaller
than the tool radius are used for the last milling step, all three stages are
constantly present. The material removal process results in microstructures
on the produced surface, depending on the process parameters.
The forward model generates a detailed map of the produced surface. Thus

it can be used to compare the characteristics of surfaces from di�erent input
parameters. However, the comparison of two-dimensional surfaces is rather
complicated and not always practical because the desired properties might
not be available in the form of a two-dimensional surface. For these speci�c
reasons, di�erent ways to compare surfaces are needed.

5.3.2 Kinematic Process Model

This work focuses on the kinematics within the process and neglects the forces
and deformations on the cutting tool during the milling process. This results
in a less exact simulation, but the error is small compared to the in�uence
of the wear on the tool [82]. For more complex geometries, the in�uence of
de�ection and force on the cutting tool is more severe, and the full model
should be applied in this case. The simpli�ed model focuses on the wear
and geometry of the cutting tool and its in�uence on the surface generation
process. It is therefore ideal to focus on speci�c properties of the milling
process. In addition, the workpiece and cutting path in this work is on one
plane. The implementation of the forward model is based on [83] done by Dr.
Vehmeyer in MATLAB. We expand the model implementation with a wear
model for the cutting piece. All parameter identi�cation and inverse problem
solutions have been implemented for this work but use the extended model as
the forward operator.
In the following, the modeling process is separated into �ve di�erent sec-

tions, which are explained in more detail before summarizing the whole model
in one. The �rst section lists and explains all process parameters. The sec-
ond section discusses the tool path and the tool geometry. The third section
focuses on material removal and chip formation. The fourth section examines
wear on the cutting tool and it is modeled. Finally, the last section covers the

91

Phil Gralla In�uence of the Wear of Cutting Tool on Cutting Process

symbol description

ae ∈ R+ o�set
vf ∈ R+ feed speed
f0(ϕ) ∈ C(R) tool geometry without wear
θ(x, y) ∈ L2 surface before cutting process
r ∈ R+ radius of the tool
l ∈ R+ length of the tool
Ω ∈ R2 area of the tool that has been a�ected by the cutting process
ρ(ϕ) ∈ C2(R) function for describing curvature of the beval edge

Table 5.1: Parameters

classi�cation of the generated surfaces and strategies for comparing surfaces.
Each of the listed topics is further explained before the whole model is

summarized and presented as one.

Model Parameters The model in this work has two parameters for the tool
path. The o�set ae and the feed speed vf . These are the only two changeable
parameters for the tool path in this work. In general, the tool path can be
modeled with a broader description, see for example [83], where the parameters
are time-dependent.
Besides parameters for the tool path, the model has parameters for the tool

geometry, surface before the cutting process, tool radius, tool length, and tool
geometry. All parameters are listed in the table 5.1. These parameters are
not time-dependent and are �xed for one simulation. The space of all �xed
parameters during a simulation is

P = C(R)× L2 × R+ × R+ × R2 × C2(R).

Cutting tool The geometry of the cutting tool is described by f0 ∈ C[0, π
2
].

This work uses a ball-end cutting tool in the simulations. For a ball-end
cutting tool, f0 forms a half-circle around the point p = (px, py, pz) ∈ R3.
We model the cutting edge as a one-dimensional curve in a three-dimensional
space, even if the cutting tool itself is three-dimensional. We account for the
thickness and two-dimensional shape of the cutting edge when calculating the
material removal. The ideal cutting edge of a ball-end cutting tool is

f0(ϕ) := Rz(ϕ)(r cosϕ, 0, r sinϕ− l + r)T , ϕ ∈
[︂
0,

π

2

]︂
where l is the tool length and r is the ball radius. The function

Rz(ϕ) : R → R3×3

produces a rotation matrix around the z-axis depending on the value ϕ. For
small cutting depth (e.g. 15µm), the cutting edge beval ρ(ϕ) is small and can
be approximated with a constant value according to [83] page 2.

92

Phil Gralla In�uence of the Wear of Cutting Tool on Cutting Process

Tool path The tool path describes the extrinsic tool movement relative to
the workpiece. It is a continuous curve φ : R → R3 which is almost every-
where di�erentiable. A set of control points usually de�nes this curve. The
�nal curve is then generated through interpolation between the control points.
If feed speed, rotation, and parameters are provided in the tool path, the di-
mension of the tool path does increase accordingly, φ : R → Rn, where n ∈ N+

is the number of parameters.
The machine physically limits the tool path. These boundaries can be added

as constrains to the model. For more information about the constrains of the
machines in this thesis, we refer the reader to [1].
In the example applications in our work, we apply parallel cutting path with

distance ae ∈ R+. If the cutting tool passes over the whole workpiece along
one cutting path, it switches to the next path. These paths can be traversed
in changing directions, e.g., up and down, or in uniform direction, e.g. up and
up.
In addition the feed forward speed pf > 0 of the cutting tool along the tool

path is de�ned via vf ∈ R+. The formula of the parameterized model for
t ∈ [0, 2c l+ae

vf
]

φ(t; ae, vf) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(φx, φy + vf t) : t ∈
[︂
0, l

vf

]︂
(φx + vf (t− l

vf
), φy + l) : t ∈

(︂
l
vf
, l+ae

vf

]︂
(φx + ae, φy + l − vf (t− l+ae

vf
)) : t ∈

(︂
l+ae
vf

, 2l+ae
vf

]︂
(φx + ae + vf (t− 2l+ae

vf
), φy) : t ∈

(︂
2l+ae
vf

, 2 l+ae
vf

]︂
where φ(0) = (φx, φy) de�nes the starting point for t = 0 and l ∈ R+ is a
�xed length de�ned by the length of the workpiece. For t > 2 l+ae

vf

φ(t; ae, vf) = φ

(︃
t− 2c

l + ae
vf

)︃
+ (2c · ae, 0)

with c = ⌊t vf
2(l+ae)

⌋. An illustration of the described model is given in �gure
5.4.
The operator

T : (R2)+ → C(R,R3)

(ae, vf) ↦→ φ(t)

describes the movement of the cutting tool center φ(t) based on the given
parameters ae, vf . With the translation on the curve φ(t), the cutting tool
simultaneously rotates around its own center. This rotation is modeled with
R(t, p) around the point p ∈ R3. The angle of rotation h depends on the time
t. The cutting tool rotates around its center while simultaneous translating
along the tool path φ(t). This self-centered rotation is modeled with a rotation
R(t, p) along the center axis of the tool.The rotation angle depends on t. The

93

Phil Gralla In�uence of the Wear of Cutting Tool on Cutting Process

work piece

ae

vf

l

Figure 5.4: Example cutting path φ(t) of cutting tool on a rectangular
workpiece, displayed in top view.

cutting edge ft of the cutting tool at the time t is calculated through the
following model

ft(ϕ) = R(t, (T (vf , ae)(t))f0(ϕ)

= R(t, φ(t))f0(ϕ)

where f0(ϕ) is the cutting edge at the time t = 0. Figure 5.5 illustrates the
rotation of the cutting edge.

s1
s2

Cutting Tool

s1

s2

Translation

Figure 5.5: Cutting Path of ball edge micro miller. On the left is the 2D
pro�le of a ball edge micro miller. On the right the trajectory of
two points in the cutting edge.

Surface generation The contact area between the workpiece and cutting
tool material is deformed and removed from the workpiece. This process
alters the surface of the workpiece as well as the cutting tool. Changing the
surface of the workpiece is desired, while the change of the cutting tool is
undesired and considered wear.
The moving cutting tool removes material in contact with the workpiece and

alters its surface. Only areas that are swept by the cutting tool are a�ected.

94

Phil Gralla In�uence of the Wear of Cutting Tool on Cutting Process

We de�ne the sweep-volume, that is, the trace of the cutting edge as

ϱ(S) =

∫︂
S

ft(x, y, z)dt.

We de�ne the image of ϱ(S) by the set of points (x, y) ∈ R2 that are covered
by ft(x, y, z) for any t ∈ S. We can write this set as

Im(ϱ(S)) :=
{︂
(x, y)

⃓⃓⃓
(x, y, z) = ft(ϕ) ∀t ∈ S and ∀ϕ ∈

[︂
0,

π

2

]︂}︂
.

The material removal and the generated surface is described by the di�erence
between the workpiece surface and the sweep volume Θ(x, y) calculated as

Θ(x, y) = min
t∈S

{ϱ(S), θ(x, y, z)0},

for all (x, y) ∈ D(ϱ(S)). The surface of the workpiece is the union of the
una�ected surface area and Θ(x, y).
So far we did not consider the chip formation and removal in the model.

If the cutting depth is too small, some workpiece material is only deformed
and not entirely removed by the cutting edge. Since we look at the process in
micro-scaled, the cutting depth cannot be ignored. We also have a ball edge
cutter and can't assume an even cutting depth at every point of the tool edge.
We model the material removal by dividing the chip formation into three

parts, as done by Amacheron and Mativenga in [4]. These three parts are
divided by the two constants h1, h2 ∈ R0 with h1 < h2. If the cutting depth h
is below the threshold h1, no material is removed, and only elastic deformation
takes place. The transition phase between full chip formation and elastic
deformation is h1 ≤ h ≤ h2. In this transition phase, elastic deformation and
partly chip formation are present. The whole material is removed without any
elastic deformation for h > h2. Figure 5.6 shows the three phases.
We extend the surface generation with the minimal chip thickness function

ρ(δz) and calculate the surface on (x, y) ∈ D(ϱ(S)) via

Θ(x, y) = θ(x, y, z)0 − ρ(Θ(x, y)−min
t∈S

{ϱ(S), θ(x, y, z)0}).

Since the minimum chip thickness needs the current height of the surface
at the moment of cutting process, we need to calculate the material removal
dependent on t. It is important to note that θ(x, y, z)0 is the surface before
the tool changes it at the time t. During the process, the cutting tool can
pass the same surface area multiple times, the removed material is di�erent
each time depending on the chip thickness in each instance.

5.3.3 Surface Characterization

A measurement or characterization of surfaces is needed to classify and eval-
uate the outcome of a milling process. The German Institute for norms

95

Phil Gralla In�uence of the Wear of Cutting Tool on Cutting Process

cutting depth

a�
ec
te
d
m
at
er
ia
l

h1 h2

h < h1 h1 ≤ h ≤ h2 h2 < h

removed material
elastic deformation
ideal chip thickness

Figure 5.6: Concept of the minimum chip thickness with three phases of chip
formation and the continuous truncation function of the surface
generation model (Source[84]).

Order Description Schematic

1. Shape deviation

2. Corrugation

3. Roughness

4. Roughness

Table 5.2: First four levels of surface deviation according to DIN
4760:1982-06.

(Deutsches Institut für Normierung [DIN]) de�nes six types of surface de-
viations from a prede�ned ideal surface. These deviations are categorized into
six levels. Roughness parameters further specify the deviations in levels three
and four. In principle, each level de�nes a more nuanced, more local devia-
tion. Therefore, if multiple levels of deviation are present, each level should be
�ltered out via convolution before calculating the characteristics value of the
following level. As a result, each level is more complex, and the support of the
convolution kernel smaller. The �rst four types of deviations as de�ned in DIN
4760:1982-06 are listed in the table 5.3.3. This work focuses on deviations of
levels three and four, and we assume that no level one or two deviations exist
as these deviation are to coarse to be detected in our application examples.

The roughness of a surface is de�ned by the following 1D-Parameters in
DIN EN ISO 4287 :

96

Phil Gralla In�uence of the Wear of Cutting Tool on Cutting Process

� arithmetic mean roughness Ra

Ra :=
1

lr

∫︂ lr

0

|z(x)|dx

� quadratic mean roughness Rq

Rq :=

√︄
1

lr

∫︂ lr

0

z2(x)dx

� averaged roughness depth Rz

Rz :=
1

5

5∑︂
i=1

Rz(i)

where Rz(i) is de�ned as

Ii =

[︃
(i− 1)

lr
5
, i

lr
5

]︃
Rz(i) := max {z(x) | x ∈ Ii} −min {z(x) | x ∈ Ii}

� maximum roughness depth Rmax

Rmax := max{Rz(i)}

� roughness depth Rt

Rt := max {z(x) | x ∈ [0, lr]} −min {z(x) | x ∈ [0, lr]}

For surfaces without any level 1 or 2 deviation, Rt is identical to the Peak-
to-Valley value of the surface. The parameters Ra and Rq depend on a zero
height level. All other parameters are independent of any reference height.
In practice, the above characteristics may not be su�cient. They fail to

account for the local distribution of peaks, lack information about the height
distribution vertically, and do not account for material distribution between
peaks and valleys. The Abbott-Firestone curve provides more information
about the vertical height distribution. This curve is also referred to as the
bearing area curve. In �gure 5.7 a visualization for clari�cation is provided.
The Abbott-Firestone curve f : [0, 1] → R is de�ned as

f(p) = (P [O(Ω) ≥ c])−1

where Ω ⊂ R2 and O : R2 → R describes the surface. The Abbott-Firestone
curve is the quantile density function of the surface pro�le's height from its
mathematical properties. This function is not unique and needs a reference
height level. The DIN-Norm de�nes the zero height as f(1) = 0. Through this

97

Phil Gralla In�uence of the Wear of Cutting Tool on Cutting Process

Figure 5.7: Schematic of a Abbott-Curve and its calculation (Source [?]).

de�nition, each surface has a single Abbott-Firestone curve. The converse does
not hold, which means multiple surfaces can have the same Abbott-Firestone
curve.

We use the Abbott-Firestone curve to characterize a surface and de�ne a
desired ideal surface. It includes all necessary information from the DIN-
Norm and its parameters, and includes more information about the height
distribution. Furthermore, for large enough surfaces and surface patches, the
curve is translation invariant, i.e., we can compare two surface patches, and
small translations in the surface window patch do not alter the curve signi�-
cantly. This invariance is a desired property for our usecase in micro-milling.
In addition, it is more feasible to de�ne an ideal surface through its desired
properties, which can be used to calculate a matching Abbott-Firestone curve.

5.3.4 Comparison of Surfaces

One way to compare surfaces is to divide deviations into six categories as de-
�ned by DIN: 760:1982-06 from the Deutsche Institut für Normierung (DIN
Standards). Of special interest are deviations of the third and fourth categories
describing the roughness of a surface. This is further speci�ed in DIN EN ISO
4287, where so-called one-dimensional characteristics are de�ned. These in-
clude peak-to-valley value, median roughness, average roughness, and more.
All of these values describe a surface vertically but hold no information about
the number of peaks, distribution of peaks, and more, which is too little for
the application in micro-manufacturing. The Abbott-Firestone curve, also
referred to as the bearing area curve may be used for a more precise classi�-
cation.

To compare two surfaces, they are expressed in their corresponding Abbott-
Firestone curves, g, f . Since this type of curve represents a cumulative density
function, we may use the Pearson coe�cient to describe the similarity between
the two surfaces, as done by [83]. In our work, we use the ideas and methods
derived in [83] but compare the two curves using the Lp-norm instead.

98

Phil Gralla In�uence of the Wear of Cutting Tool on Cutting Process

5.3.5 Wear of Cutting Tool

During the manufacturing process, the cutting tool itself is worn down. This
wear results in a change of the cutting tool shape, as can be seen in �gure
5.3. The �gure shows a ball-end cutting tool after using it at a speci�c time.
Without wear, the front view would show a circle segment. The white spots
mark the wear in the top view (bottom two pictures). Due to the forces acting
on the cutting tool during the manufacturing process, the cutting tool starts
�atting out. A simple way to model this behavior is to �atten the tool shape
over time. Let the cutting edge be described via

ft̃ = max{ft, c(T)},

with c(T) > 0 a positive value that depends on the time T ∈ R+, which
describes the intensity of the wear at the time T . A more accurate way would
be to consider the actual forces in each point and then model material removal
and deformation of the cutting tool. However, this is very costly in the sense of
computational e�ort. In order to keep the model at an a�ordable complexity
and enough accuracy, we use the simpler model in this work. First, we describe
the degree of wear in percentage, i.e., the reduction of the minimal radius of
the ball shape. Figure 5.9 provides an example. In application, wear of more
than 8% is highly unlikely since the cutting tool will not function anymore.
Nevertheless, for demonstration reasons, it is still plotted in �gure 2 to provide
an impression of the in�uence of wear on the tool.

Since the wear in�uences the cutting properties and thus the resulting sur-
face, the cutting tool is replaced after a certain distance. The maximum
cutting distance depends on the maximum wear, used workpiece material,
and cutting tool material. Thus c(T) is bounded above by a cmax > 0. In
addition, there is no negative wear. As a result, c(T) must be monotone in T .

The overall cutting distance is much larger than the cutting distance needed
for one workpiece. Therefore, as a simpli�cation, it can be assumed that the
wear of the cutting tool is constant on small enough workpieces. While this
simpli�cation is not necessary, it reduces the computation times, and the error
is negligible in practice. In this work, we will therefore assume that the wear
of the tool at f0 := f0̃ is constant for the rest of the workpiece. Note that
this is only applied to a single workpiece. We apply this simpli�cation to each
workpiece for multiple workpieces, i.e., the wear is only constant for a work-
piece but not between two workpieces. Figure 5.9 is an example simulation
with and without wear of the cutting tool. For this example ae = 1900 and
vf = 0.0238 are chosen.

The mathematical operator is extended with the wear model on the cutting
tool and takes an additional input t. This additional input de�nes how long
the cutting tool has been used prior and thus provides the wear on the tool
at the beginning of the simulated process.

99

Phil Gralla In�uence of the Wear of Cutting Tool on Cutting Process

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0%

4%

8%

12%

16%

20%

Figure 5.8: Simulation of wear on a ball-end tool.

Figure 5.9: Example simulation with wear on tool with vf = 1900 and
ae = 0.0238 and a wear of c(T) = 0.01, using the maximum height
wear model.

100

Phil Gralla In�uence of the Wear of Cutting Tool on Cutting Process

5.3.6 Minimize deviation over �xed time interval

For a �xed time-interval, t ∈ [0, c], we calculate the overall deviation from the
desired tolerance via ∫︂ c

0

⃦⃦
F (p, t)− gδ

⃦⃦
L2(Ω),ε

dt .

This term measures how much the output will deviate over the whole time
interval but does not hold any information at which time the output will not
lie within the given tolerance. It, therefore, provides a soft boundary in the
sense that a local minimum unequal to zero might have no point in time where⃦⃦

F (p, t)− gδ
⃦⃦
L2(Ω), ε

= 0

holds.
The bene�t of minimizing the deviation over a �xed time interval is that

we can directly apply the deviation as a discrepancy term in the Tikhonov
functional

Jp,q
δ,α,ε (u) =

1

p

⃦⃦
F (u)− vδ

⃦⃦p
Lp,ε

+ αRq(u). (5.4)

In addition, we can approximate the integral via known rules such as the
Simpson rule.

5.3.7 Maximize time within tolerance

To maximize the period in which we can use a tool before we need to replaced
it or new process parameters need to be determined, the ending time of the
time-interval has to be �exible. The ending time c is then calculated through

c = argmax

{︃
c

⃓⃓⃓⃓ ∫︂ c

0

⃦⃦
F (p, t)− gδ

⃦⃦
L2(Ω),ε

dt = 0

}︃
.

If there is no c ≥ 0 that ful�lls the condition, we set c = 0. This choice
provides the maximum time before the simulated output is outside the desired
tolerance for the �rst time. If the discrepancy term for a parameter is greater
than zero in the ideal case, the maximum for c is 0. Thus we can use argmax
to replace the discrepancy term in (5.4) as was the case for �xed time-interval
because parameter sets that minimize only the penalty term might be favored
over terms that minimize discrepancy and penalty term.
This approach results in a min-max problem where we minimize the discrep-

ancy and penalty while maximizing the time interval. While more accurate
for the application, this approach also yields higher computational e�ort due
to �nding the argmax for each functional evaluation.

5.3.8 Numerical solution

Numerical methods are often used for parameter identi�cation, especially for
complex models. Various methods exist and can be used depending on the

101

Phil Gralla Results

properties of the mathematical operator representing the model. Boyle et al.
provide an overview of existing methods in [11].
In our work the operator F is non-linear, and thus, iterative methods have to

be applied. The Tikhonov functional and the maximum time-interval length
have to be evaluated in each iteration. In addition, the evaluation of the
operator F is computationally expensive.
One solution for these problems is to apply a two-term strategy to solve

the min-max problem. First, we minimize the Tikhonov functional with in-
corporated tolerances to �nd a starting point for the min-max problem within
the given tolerance. Then, the min-max problem is solved using this starting
point by maximizing the time interval and minimizing the penalty term to keep
regularization. We use the former discrepancy term as a non-linear boundary
condition on the feasible set. This approach ensures that we ful�ll all require-
ments of the inverse problem while optimizing the process parameter further.
It also reduces the number of evaluations of the maximum time-interval length
and reduces the computational e�ort.
For each of the two steps, we apply a di�erent solver. For example, to solve

the initial inverse problem, we use the REGINN algorithm with a conjugate
gradient method [49]. This algorithm linearizes the operator and uses the
conjugate gradient algorithm to solve the linear problem. We then start a new
iteration with the found solution at the point where the operator is linearized.
Suppose the algorithm can �nd a parameter set that produces a simulated

surface with the given tolerance to the provided data. In that case, we can
perform the non-linear optimization for maximizing the end-time as described
in section C. However, this step cannot be solved by using the REGINN
algorithm as the full min-max problem does not ful�ll all requirements, and
a gradient method is used instead. This method is slower but has fewer
conditions on the mathematical operator, which allows its application.
Overall, the two-step approach reduces the amount of performed operator

evaluation by utilizing a fast converging algorithm to solve the non-linear
inverse problems without wear on the tool, providing a good start estimation
for the more complex min-max problem at hand.

5.4 Results

In this section, we numerically perform a parameter identi�cation with tol-
erances and wear on a cutting tool for a micro-milling process. The process
parameters to be identi�ed are feed velocity vf and radial cutting depth ae.
In addition, we �x the other process parameters to a given value.
The desired outcome is a horizontal surface with an Abbott curve gδ, with

the noise level δ. For the numerical experiment, this data is created arti�cially
from a simulation with added noise to control the noise level directly. We
choose the noise additive and normal distributed with a cuto� at δ, which we
set as three times the standard deviation in the noise. The true solution is

102

Phil Gralla Results

Description Value Unit

Tool radius 1 mm
Tool length 45 mm
Rotation of tool 40000 rpm
Cutting depth 0.015 mm

Table 5.3: Applied process parameters

set as (vf , ae) = (1744mm
min

, 0.044mm) and the tolerance ε = 25−6mm. Further
process parameters that we do not need to identify are in table 5.3.
Before starting the parameter identi�cation, we de�ne the type of reg-

ularization and a starting point for the numerical algorithm. We choose
p0 = (2000, 0.02) for the starting point. This starting point is the suggested
parameter set found for the process by computer-aided design (CAD) without
considering surface structures. The starting point for the numerical algorithm
is set to p0 = (2000, 0.01) which produces a surface with an Abbott curve
outside the given tolerance.
To compare the solution of the min-max problem, we perform a classic

parameter identi�cation without considering tolerances and wear. In this case
the parameter p = (174448, 0.0442) is found. Figure 5.10 top shows the
simulated surface of the found solution. While it is a good approximation
for the true solution, it will be outside the accepted area with wear of about
0.75%. The solution resides only in the lower half of the accepted area when
wear occurs in the �gure.
The solution of the entire min-max problem is p = (1784, 0.04518) which

is further away from the true solution but is still inside the given tolerance.
Figure 5.10 bottom visualizes the solution and shows that the output stays
within the accepted area for a longer time if wear occurs. In this case, wear
of 0.8% is still within the accepted area. Compared to the former, the new
solution uses the whole given range of tolerance.

103

Phil Gralla Results

Figure 5.10: Solution of parameter identi�cation considering wear of tool.
Top: Solution for Tikhonov functional without tolerance and
no optimization considering wear of cutting tool.
Bottom: Solution for Tikhonov functional with tolerance and
additional optimization considering wear of cutting tool.

104

6
Conclusion

This work introduces inverse problems with regularization by incorporating a
tolerances in the discrepancy term of Tikhonov type functionals. We use the
hinge loss, that is commonly used for support vector regression and is de�ned
as

|λ|ε :=

{︄
0 |λ| ≤ ε

|λ| − ε o.w.
(6.1)

to model the tolerance. This loss function is extended for functions f ∈ Lp(Ω)
via

∥f∥pLp,ε (x)
=

∫︂
Ω

|f(x)|pε (x) dx, (6.2)

where ε (x) : Ω → R+
0 and ε (x) < c < ∞ for all x ∈ Ω. This point-wise

ε −insensitive loss function accurately models con�dence bands and o�ers an
extra regularization. We provide examples which illustrate that the tolerances
in the discrepancy term leads to a more stable reconstruction compared to the
classical Tikhonov-type functionals.
This thesis established the mathematical foundation for Tikhonov-type func-

tions with an ε-insensitive discrepancy term. This foundation includes proof
of the existence of a minimizer, stability, and convergence. We compare our
approach to existing methods and show how it di�ers from them.
In order to apply the theory in practice, we need a method to minimize the

given functional. We explored existing numerical methods to �nd a minimizer
of the altered Tikhonov-type functional and compared them to our new intro-
duced subgradient method with adaptive step-size. The focus are numerical
methods that can minimize non-smooth functionals. Numerical solvers for
non-smooth functions can minimize

Jp,q
δ,α,ε (u) =

1

p

⃦⃦
F (u)− vδ

⃦⃦p
Lp,ε

+ αRq(u) (6.3)

for p, q ≤ 1 and regularization terms. In addition, we derive how exist-
ing solvers for support vector machines can be applied on discretized inverse
problems with linear forward operators, p = {1, 2}, and Rq(u) = ∥u∥q with
q = 2.

105

Phil Gralla 6 Conclusion

The altered Tikhonov-type functionals can be used in various applications
such as image denoising, one-dimensional signal denoising, and better capture
tolerance or multi-measurements. We provide multiple examples for each of
these application �elds. The primary real-world application is micro-milling.
We explain the micro-milling process model and extend an existing method to
capture wear on the cutting tool. This extended method is used for parameter
identi�cation with tolerances by solving a min-max problem.
Overall we provide the full picture of our proposed method, starting from

the mathematical foundation, continuing to numerical solutions, and ending
with example applications.
For future research on this topic, we would focus on further generalizing

the presented theory and exploring the connection between ε-insensitive loss
and sparsity in the reconstruction. In addition, the evaluation of di�erent
non-smooth solvers that led to the development of our own step-size adaptive
subgradient method revealed that further improvements in this area are pos-
sible. We will investigate adaptive momentum for subgradients methods in
the future.

106

Bibliography

[1] CNC-Handbuch 2009/2010: CNC, DNC, CAD, CAM, FFS, SPS,
RPD, LAN, CNC-Maschinen, CNC-Roboter, Antriebe, Simulation, Fach-
wortverzeichnis. Hanser, München, 2009. 551 S. : Ill., graph. Darst.

[2] Werner Alt. Nichtlineare Optimierung - Eine Einführung in Theorie, Ver-
fahren und Anwendungen. Vieweg+Teubner / Vieweg+Teubner Verlag,
2011.

[3] Yusuf Altintas. Manufacturing Automation - Metal CUtting Mechanics,
Machine Tool Variations, and CNC Design. Cambridge University Press,
2006.

[4] A. Amacheron and P.T. Mativenga. Size e�ect and tool geoemetry in
micromilling of tool steel. Precision Engineering, 2009.

[5] Thomas Bäck. Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford Univer-
sity Press, Inc., 1996.

[6] W.Y. Bao and I.N. Tansel. Modeling micro-end-milling operations. part
i: analytical cutting force model. International Journal of Machine Tools
and Manufacture, 40(15):2155�2173, 2000.

[7] Heinz H. Bauschke and Patrick L. Combettes. Convex analysis and mono-
tone operator theory in hilbert spaces. In CMS Books in Mathematics,
2011.

[8] Antonio Bolufé-Röhler and Stephen Chen. Multi-swarm hybrid for multi-
modal optimization. pages 1759�1766, 07 2012.

[9] Aleksandar Botev, Guy Lever, and David Barber. Nesterov's acceler-
ated gradient and momentum as approximations to regularised update
descent. In 2017 International Joint Conference on Neural Networks
(IJCNN), pages 1899�1903, 2017.

107

Phil Gralla Bibliography

[10] S. Boyd, J. Duchi, and L. Vandenberghe. Subgradients - lecturenote.
Stanfdord University, online, 2018.

[11] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004.

[12] M. Burger and S. Osher. Convergence rates of convex variational regu-
larization. Inverse Problems, 2004.

[13] J. Canny. A computational approach to edge detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence. 8(6):679�698, 1986.

[14] George Casella and Roger L. Berger. Statistical Inference. China Machine
Press, 2nd edition, 2012.

[15] K. Chaitanya, D. Somayajulu, and P. R. Krishna. A pso based community
detection in social networks with node attributes. In 2018 IEEE Congress
on Evolutionary Computation (CEC), 2018.

[16] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems and Tech-
nology, 2:27:1�27:27, 2011. Software available at http://www.csie.ntu.
edu.tw/~cjlin/libsvm.

[17] Changyou Chen, David Carlson, Zhe Gan, Chunyuan Li, and Lawrence
Carin. Bridging the gap between stochastic gradient mcmc and stochastic
optimization. 12 2015.

[18] Chih-Jen Lin Chia-Hua Ho. Large-scale linear support vector regression.
Journal of Machine Learning Research, 2012.

[19] R. D. da Silva, R. Minetto, W. R. Schwart, and H. Pedrini. Adaptive edge-
preserving image denoising using wavelet transforms. Springer Journal,,
pages 567�580, 2013.

[20] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient meth-
ods for online learning and stochastic optimization. Journal of Machine
Learning Research, 12(61):2121�2159, 2011.

[21] U. P. Diliman E. P. Adorio. Mvf - multivariant test func-
tions library in c for unconstrained global optimization.
http://http://www.geocities.ws/eadorio/mvf.pdf, 2005.

[22] A. E. Eiben, E. H. L. Aarts, and K. M. Van Hee. Global convergence of
genetic algorithms: A markov chain analysis. In Hans-Paul Schwefel and
Reinhard Männer, editors, Parallel Problem Solving from Nature, pages
3�12, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.

108

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Phil Gralla Bibliography

[23] O. Riemer F. Böhmermann, W. Preuÿ. Manufacture and functional test-
ing of micro forming tools with well-de�ned tribological properties. Pro-
ceedings of the 29th ASPE Annual Meeting, page 486�491, 2015.

[24] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin. Liblinear: A library for large linear classi�cation. Journal
of machine learning research, 9(Aug):1871�1874, 2008.

[25] Fuchang Gao and Lixing Han. Implementing the nelder-mead simplex
algorithm with adaptive parameters. Computational Optimization and
Applications, 51:259�277, 2012.

[26] Juan Manuel Górriz, Carlos G. Puntonet, Moisés Salmerón, and Fer-
nando Rojas Ruiz. Hybridizing genetic algorithms with ica in higher
dimension. In Carlos G. Puntonet and Alberto Prieto, editors, Indepen-
dent Component Analysis and Blind Signal Separation, pages 414�421,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[27] Phil Gralla, Iwona Piotrowska-Kurczewski, and Peter Maaÿ. Tikhonov
functionals incorporating tolerances. PAMM, 17(1):703�704, 2017.

[28] Markus Grasmair, Markus Haltmeier, and Otmar Scherzer. Sparse reg-
ularization with lq penalty term. Inverse Problems, 24:055020 (13pp),
2008.

[29] P. Gupta and A. Garg. Image denoising using bayesshrink method based
on wavelet transform. International Journal of Electronic and Electrical
Engineering, 8(1):33�40, 2015.

[30] Lixing Han and Michael M. Neumann. E�ect of dimensionality on the
nelder�mead simplex method. Optimization Methods and Software, 21:1
� 16, 2006.

[31] A. Neubauer Heinz Werner Engl, Martin Hanke. Regularization of Inverse
Problems. Springer Dordrecht, 2000.

[32] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Moham-
mad Norouzi, and Tim Salimans. Cascaded di�usion models for high
�delity image generation. arXiv preprint arXiv:2106.15282, 2021.

[33] B Hofmann, B Kaltenbacher, C Pöschl, and O Scherzer. A convergence
rates result for tikhonov regularization in banach spaces with non-smooth
operators. Inverse Problems, 23(3):987�1010, apr 2007.

[34] I. Piotrowska-Kurczewski, J. Schlasche, D. Weimer, B. Scholz-Reiter, and
P. Maass. Image denoising and quality inspection of micro components
using perona-malik di�usion. Procedia CIRP,, 8:432�437, 2013.

[35] Stemmer Imaging. Das Handbuch der Bildverarbeitung. Stemmer Imag-
ing, 2016.

109

Phil Gralla Bibliography

[36] Bangti Jin and Peter Maass. Sparsity regularization for parameter iden-
ti�cation problems. Inverse Problems, 28(12):123001, 2012.

[37] Stephen Wright Jorge Nocedal. Numerical Optimization. Springer, New
York, NY, 1999.

[38] S. Kabanikhin, N Tikhonov, V Ivanov, and M Lavrentiev. De�nitions
and examples of inverse and ill-posed problems. Journal of Inverse and
Ill-posed Problems - J INVERSE ILL-POSED PROBL, 16:317�357, 01
2008.

[39] Barbara Kaltenbacher, Frank Schöpfer, and Thomas Schuster. Iterative
methods for nonlinear ill-posed problems in banach spaces: convergence
and applications to parameter identi�cation problems. Inverse Problems,
25(6):065003, apr 2009.

[40] K S Kazimierski, P Maass, and R Strehlow. Norm sensitivity of sparsity
regularization with respect to to p. Inverse Problems, 28(10):104009, oct
2012.

[41] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings
of ICNN'95 - International Conference on Neural Networks, 1995.

[42] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong
Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. Su-
pervised contrastive learning. CoRR, abs/2004.11362, 2020.

[43] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic op-
timization. International Conference on Learning Representations, 12
2014.

[44] Diederik P. Kingma and M. Welling. Auto-encoding variational bayes.
CoRR, abs/1312.6114, 2014.

[45] Krzysztof C. Kiwiel. Convergence and e�ciency of subgradient methods
for quasiconvex minimization. Mathematical Programming, 2001.

[46] T. Kolda, R. Lewis, and V. Torczon. Optimization by direct search:
New perspectives on some classical and modern methods. SIAM Rev.,
45:385�482, 2003.

[47] Yury Korolev and Jan Lellmann. Image reconstruction with imperfect for-
ward models and applications in deblurring. arXiv:1708.01244v3 [cs.NA]
23 Oct 2017, 2017.

[48] Vipul Kothari, J. Anuradha, Shreyak Shah, and Prerit Mittal. A Survey
on Particle Swarm Optimization in Feature Selection, volume 270, pages
192�201. 01 2012.

110

Phil Gralla Bibliography

[49] Armin Lechleiter and Andreas Rieder. Towards a general convergence
theory for inexact newton regularizations. Numerische Mathematik, 114,
01 2010.

[50] Prof. Armin Lechleiter. Inverse Probleme 1. Fachbereich 3, Universität
Bremen, 2012. Skript zur Vorlesung.

[51] Shih-Wei Lin, Zne-Jung Lee, Shih-Chieh Chen, and Tsung-Yuan Tseng.
Parameter determination of support vector machine and feature selection
using simulated annealing approach. Applied Soft Computing, 8(4):1505
� 1512, 2008. Soft Computing for Dynamic Data Mining.

[52] Dirk Lorenz and Nadja Worliczek. Necessary conditions for variational
regularization schemes. Inverse Problems, 2013.

[53] Alfred K. Louis. Inverse und schlecht gestellte Probleme. Teubner,
Stuttgard, 2001.

[54] Kilmer M. Belge, M. E. and E. Miller. E�cient determination of mul-
tiple regularization parameters in a general l-curve framework. Inverse
Problems 18, 1999.

[55] C. Smutnicki M. Molga. Test functions for optimization needs.
http://www.zsd.ict.pwr.wroc.pl/�les/docs/functions.pdf, 2005.

[56] K. I. M. McKinnon. Convergence of the nelder�mead simplex method
to a nonstationary point. SIAM Journal on Optimization, 9(1):148�158,
1998.

[57] Vladimir Alekseevich Morozov. Methods for solving incorrectly posed
problems. Springer Science & Business Media, 2012.

[58] K. Cheng N. F. M. Aris. Characterization of the surface functionality
on precision machined engineering surfaces. The International Journal of
Advanced Manufacturing Technology, 2008.

[59] Mathew M. Noel. A new gradient based particle swarm optimization
algorithm for accurate computation of global minimum. Applied Soft
Computing, 12(1):353�359, 2012.

[60] Iwona Piotrowska Kurczewski and Jost Vehmeyer. Simulation model for
micro-milling operations and surface generation. In Modelling of Ma-
chining Operations, volume 223 of Advanced Materials Research, pages
849�858. Trans Tech Publications Ltd, 6 2011.

[61] Mangal Prakash, Alexander Krull, and Florian Jug. Fully unsupervised
diversity denoising with convolutional variational autoencoders. In In-
ternational Conference on Learning Representations, 2021.

111

Phil Gralla Bibliography

[62] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence
of adam and beyond. In International Conference on Learning Represen-
tations, 2018.

[63] Andreas Rieder. Keine Probleme mit Inversen Problemen. Eine Ein-
führung in ihre stabile Lösung. Vieweg & Sohn Verlag, 2003.

[64] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J
Fleet, and Mohammad Norouzi. Image super-resolution via iterative re-
�nement. arXiv:2104.07636, 2021.

[65] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottle-
necks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4510�4520, 2018.

[66] Javad Salimi Sartakhti, Homayun Afrabandpey, and Mohamad Saraee.
Simulated annealing least squares twin support vector machine (sa-
lstsvm) for pattern classi�cation. Soft Computing, 21(15):4361�4373, Aug
2017.

[67] Javad Salimi Sartakhti, Mohammad Hossein Zangooei, and Kourosh
Mozafari. Hepatitis disease diagnosis using a novel hybrid method based
on support vector machine and simulated annealing (svm-sa). Computer
Methods and Programs in Biomedicine, 108(2):570 � 579, 2012.

[68] Otmar Scherzer, Markus Grasmair, Harald Grossauer, Markus Haltmeier,
and Frank Lenzen. Variational Methods in Imaging. Springer, 2009.

[69] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels
- Support Vector Machines, Regularization, Optimization, and Beyond.
The MIT Press, 2002.

[70] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learn-
ing - From Theory to Algorithms. Cambridge University Press, 5th edi-
tion, 2015.

[71] Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B.
Lindell, and Gordon Wetzstein. Implicit neural representations with pe-
riodic activation functions, 2020.

[72] Alex J. Smola and Bernhard Schölkopf. A tutorial on support vector
regression. Statistics and Computing, pages 199�222, 2014.

[73] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian
optimization of machine learning algorithms. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 25, pages 2951�2959. Curran
Associates, Inc., 2012.

112

Phil Gralla Bibliography

[74] Kenneth O. Stanley and Jason Gauci. A hypercube-based indirect encod-
ing for evolving large-scale neural networks. Arti�cial Life, page 2009,
2009.

[75] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks
through augmenting topologies. Evolutionary Computation, 10(2):99�
127, 2002.

[76] Ilya Sutskever, James Martens, George Dahl, and Geo�rey Hinton. On
the importance of initialization and momentum in deep learning. In
Sanjoy Dasgupta and David McAllester, editors, Proceedings of the 30th
International Conference on Machine Learning, volume 28 of Proceedings
of Machine Learning Research, pages 1139�1147, Atlanta, Georgia, USA,
17�19 Jun 2013. PMLR.

[77] Robert Tibshirani Trevor Hastie and Jerome Firedman. The Elements of
Statisrical Leraning - Datamining, INference, and Predicition. Springer,
2016.

[78] Gabriel Turinici. The convergence of the stochastic gradient descent (sgd)
: a self-contained proof. Technical report, 2021.

[79] H. K. Tönsho� and B. Denkena. Spanen - Grundlagen. Springer, 2004.

[80] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Deep image
prior. CoRR, abs/1711.10925, 2017.

[81] V. Vapnik. The Nature of Statistical Learning Theory. Springer, NY,
1995.

[82] Jost Vehmeyer. Geometrische Modellierung und funktionsbezogene Op-
timierung der inhärenten Textur von Mikrofräsprozessen. PhD thesis,
University Bremen, 2016.

[83] Jost Vehmeyer, Iwona Piotrowska-Kurczewski, Florian Böhmermann,
and Peter Maaÿ. Leas-square based parameter identi�cation for a
function-related surface optimisation in micro ball-end milliing. In 15th
CIRP Conference on Modelling of Mchining Operations, 2015.

[84] Jost Vehmeyer, Iwona Piotrowska-Kurczewski, and Sven Twardy. A sur-
face generation model for micro cutting processes with geometrically
de�nied cutting edges. In 37th Matador Conference. 2013.

[85] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, War-
ren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J.
Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, �lhan Po-
lat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef

113

Phil Gralla Bibliography

Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R.
Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algo-
rithms for Scienti�c Computing in Python. Nature Methods, 17:261�272,
2020.

[86] F. Vollertsen. Categories of size e�ects. Production Engineering, 4(2):377�
383, 2008.

[87] Jacques Wainer and Pablo Fonseca. How to tune the rbf svm hyperpa-
rameters: An empirical evaluation of 18 search algorithms, 2020.

[88] Xin-She Yang. Chapter 8 - particle swarm optimization. In Xin-She
Yang, editor, Nature-Inspired Optimization Algorithms (Second Edition),
pages 111�121. Academic Press, second edition edition, 2021.

[89] Xin-She Yang, Suash Deb, and Simon Fong. Accelerated particle swarm
optimization and support vector machine for business optimization and
applications. In Simon Fong, editor, Networked Digital Technologies,
pages 53�66, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[90] E. Zeidler. Nonlinear functional analysis and its application III: Varia-
tional Methods and Optimization. Springer, New York, NY [u.a.], 1985.

[91] Q. Zhang, G. Shan, X. Duan, and Z. Zhang. Parameters optimiza-
tion of support vector machine based on simulated annealing and ge-
netic algorithm. In 2009 IEEE International Conference on Robotics and
Biomimetics (ROBIO), pages 1302�1306, Dec 2009.

[92] Y. Zhou, Z. Li, H. Zhou, and R. Li. The application of pso in the power
grid: A review. In 2016 35th Chinese Control Conference (CCC), 2016.

114

Phil Gralla Bibliography

Eidesstattliche Erklärung

Ich versichere die vorliegende Dissertation ohne fremde Hilfe angefertigt zu
haben. Ich habe keine andere als die angegebenen Quellen und Hilfsmittel
benutzt. Alle Stellen, die wörtlich oder sinngemäÿ aus Verö�entlichungen
entnommen sind, sind als solche kenntlich gemacht.

115

	Introduction
	Support Vector Machines
	Machine Learning for Inverse Problems
	Numerical Methods
	Micro Cold Forming
	Overview about the Thesis
	Code and Supplementary

	Preliminaries
	Basic Notations and Definitions
	Convex Analysis
	Different Types of Continuities
	Ill-Posed Problems and Regularization
	Optimization
	Statistical Basics

	Tolerances in Hilbert Spaces
	Classification and Regression with Support Vectors
	Nonlinear SVR
	Definition of Tolerance in Inverse Problems
	Mathematical Framework
	Tolerances in Lp-Spaces
	Comparison to Ivanov- and Morozov-Regularization
	Choosing epsilon

	Numerical Solution for Lp
	Solving with SVR-Solver
	Non-Smooth Optimization
	Stochastic Gradient Descent
	Subdifferential and Subgradients
	Comparison of methods
	Applications in Image and Signal Processing

	Application in Micro Milling
	Technical Background
	Identifying Acceleration Points from Positional Data
	Influence of the Wear of Cutting Tool on Cutting Process
	Results

	Conclusion
	Bibliography

