
Matching and Packing Problems
Optimization under Uncertainty

in Theory and Practice

Lukas Nölke

Matching and Packing Problems
Optimization Under Uncertainty in Theory and Practice

vorgelegt von

Lukas Nölke M.Sc.

Vom Fachbereich 3 - Mathematik und Informatik
der Universität Bremen

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Gutachter*innen: Prof. Dr. Nicole Megow
Fachbereich 3 - Mathematik und Informatik
Universität Bremen

Prof. Dr. Sven O. Krumke
Fachbereich Mathematik
RPTU Kaiserslautern-Landau

Tag der wissenschaftlichen Aussprache: 21. Februar 2023

Bremen, 2023

Lukas Nölke M.Sc.

Matching and Packing Problems – Optimization Under Uncertainty in Theory and Practice

Genehmigte Dissertation, Bremen, 2023

Gutachter*innen: Prof. Dr. Nicole Megow und Prof. Dr. Sven O. Krumke

Universität Bremen

Fachbereich 3 - Mathematik und Informatik

Combinatorial Optimization and Logistics Group (CSlog)

Bibliothekstr. 5

28359 Bremen

Acknowledgements

This thesis is the product of many years of research, riddled with ups and
downs, frustration and laughter, insights and dead ends. In all of this, I was
accompanied by a wonderful cast of people that encouraged me, led me by
example, or sometimes were simply there for me. I wish to deeply thank all
of them for their support and contribution; this thesis would not have been
possible without them. The following people had a particularly formative
influence and merit specific mention.

First and foremost, I thank my advisor Nicole Megow for introducing me
into the exciting world of combinatorial optimization and its terrific research
community, and for welcoming me into the Combinatorial Optimization and
Logistics (CSLog) group, which I came to experience as an open, inspiring,
and nurturing environment, both scientifically and socially. I am particularly
grateful for her supportive yet empowering style, the many research conver-
sations that never failed to somehow nudge me in the right direction, and her
encouragement to attend workshops, summer schools, and conferences, and
to collaborate internationally. I also want to thank Sven Krumke for taking
on the second assessment of this thesis.

By far the favorite part of my PhD time were the hours spent in front of
a whiteboard, developing ideas and discussing problems together with my
incredible colleagues, to whom I am immensely grateful. In particular, I
thank the members of the CSLog group for the fantastic working atmosphere
and Antonios Antoniadis, Parinya Chalermsook, Peter Kling, José Verschae,
and Andreas Wiese for inviting me to wonderful workshops and research
visits. I owe special gratitude to Franziska Eberle, with whom I was lucky
enough to share an office during most of our time as PhD students. It was a
joy to bounce around ideas, share in each other’s successes and frustrations,
and “prove” that P = N P; thank you for always having my back.

iii

I also want to thank Martin Böhm, Franziska Eberle, Felix Hommelsheim,
Alexander Lindermayr, Björn Ludwig, Jan Cedric Mertens, Kevin Schewior,
and Jens Schlöter for proofreading different parts of this thesis and for their
help in preparing for my defense.

Moreover, I wish to express my deep gratitude to all my friends, for motivating
me and keeping my spirits up during the last years. To Jan, for cutting me off
from playing games when I was in danger of procrastinating; to Giacomo, for
cutting me off from work and going for a walk in Bürgerpark when I was in
danger of not getting enough sunlight; and to Thai, for making sure I eat and
sleep enough, and for supporting and enduring me even in difficult times.

Finally, I want to thank my family, especially my parents and my brother, for
their unconditional support, encouragement, and unfaltering belief in me. It
means the world.

Bremen, March 2023 Lukas Nölke

iv

Table of Contents

Introduction 1
Outline and Bibliographic Remarks 4

1 Online Minimum-Cost Matching with Recourse on the Line 11
1.1 Preliminaries . 16
1.2 A Constant-Competitive Algorithm with Bounded Recourse . 18

1.2.1 A First Try - Balancing between M∗ and M ′ without
Freezing . 19

1.2.2 Adding a Freezing Scheme to Obtain Constant Recourse 29
1.2.3 A Scalable Algorithm 36

1.3 A Near-Optimal Algorithm on Alternating Instances 38
1.4 Conclusion . 46

2 Fully Dynamic Algorithms for Knapsack Problems with Polyloga-
rithmic Update Time 49
2.1 Preliminaries and Data Structures 56
2.2 A Single Knapsack . 60
2.3 Few Different Knapsacks . 67
2.4 Oblivious Linear Grouping and Multiple Knapsack with Re-

source Augmentation . 74
2.4.1 Oblivious Linear Grouping 74
2.4.2 Multiple Knapsacks with Resource Augmentation . . . 78

2.5 Solving Multiple Knapsack 85
2.6 Conclusion . 93

v

3 On Packing Anchored Rectangles 95
3.1 Preliminaries . 99
3.2 Resource Augmentation . 99
3.3 A PTAS for ARP with Fractional Anchorings 105
3.4 Conclusion . 109

4 Simultaneous Allocation and Maintenance Scheduling under Un-
certainty with Application in Steelmaking 111
4.1 Problem Definition . 119
4.2 Integer Linear Programs and Lower Bounds for SAMS 121

4.2.1 An Integer Linear Programming Formulation for SAMS121
4.2.2 Lower Bounding the Individual Objectives 124
4.2.3 Using ILPs for SAMS with Lookahead k 128

4.3 An Efficient Heuristic . 128
4.4 Experimental Results and Interpretation 133
4.5 Conclusion . 139

References 141

Zusammenfassung (German) 155

vi

Introduction

When considering optimization problems that arise from real-world decision-
making processes, uncertainty is a ubiquitous phenomenon that poses a
significant obstacle. Be it a baker, that needs to decide how much pastry to
produce without knowing what his customers will order; or a data center,
in which computational resources need to be allocated subject to various
uncertainties, ranging from unknown future workload to unforeseen power
fluctuations; when solving optimization problems in the real world it often is
unavoidable to make decisions without knowing what their full effects will be.
This thesis investigates how to algorithmically deal with such uncertainties
when solving matching and packing problems.

Matching problems are well-studied and among the most fundamental prob-
lems in combinatorial optimization. The task here is to compute from a given
set of items a collection of disjoint pairs – a matching – while optimizing
some objective. Moreover, there may be additional constraints, e.g., rules
restricting which of the items can be paired. For instance, in the minimum-
cost bipartite matching problem, which will be of particular interest in this
thesis, an item is said to be either request or server and a pair in the matching
must contain one of each. Further, each pair is associated with some cost,
and the optimization objective is to minimize the sum of costs of all pairs
in the matching. Matching problems arise wherever a rational allocation of
resources is paramount, for instance, in kidney exchange programs, online
ad allocation, or when assigning virtual machines to physical hosts in cloud
computing. Besides the abundance of practical applications, matchings also
play a crucial role as a tool to solve other complex optimization problems,
for instance, as a subroutine in the Christofides Algorithm for the traveling
salesperson problem [Chr22].

Packing problems, the second area of our interest, form an equally fundamen-
tal class of optimization problems. Generally speaking, these are problems in
which items need to be assigned to containers with limited capacities while
optimizing some objective. The goal might be to pack a given set of items
into as few containers as possible, or, as in the multiple knapsack problem, to

1

pack only a subset of items into a limited amount of containers with varying
capacities to maximize the total value of packed items. Such tasks arise natu-
rally in many logistics applications. For instance, when packing items into
freight containers and those then onto cargo ships, or when sensibly packing
your suitcase before embarking on a journey. Other applications of packing
problems include cutting pieces of material into predefined shapes while
wasting as little material as possible, financial modeling, energy management,
software resource management, and yield management for airlines, hotels,
and car rentals.

Most packing problems are N P-hard. This means that with computational
means available today, we cannot expect to obtain optimal solutions for
these problems in reasonable time. Formally, reasonable time means that the
running time of an algorithm is polynomial in the size of the input. Practically
speaking, this means that exact algorithms for N P-hard problems might not
find a solution until long after we actually need it. Nevertheless, since these
problems are so omnipresent and the need to solve them is inescapable, we
may not give up the quest for efficient algorithms. Rather, we compromise
and strive for efficient algorithms that produce solutions that come as close as
possible to being optimal. An algorithm that consistently, for every instance,
produces in polynomial time a solution whose objective value is within an α

factor of that of an optimal solution is called an α-approximation algorithm.
Interestingly, for many N P-hard problems, e.g., for multiple knapsack, it is
possible to design α-approximation algorithms with α arbitrarily close to 1.
Although the running time grows rather fast when approaching this limit,
the solution quality is extremely close to being optimal.

In contrast, minimum-cost bipartite matching and many other matching
problems can be solved to optimality in polynomial time. However, as soon
as uncertainty comes into play, a problem may become exceedingly more
difficult to deal with and it may no longer be possible to obtain optimal
solutions. When speaking of optimal solutions in the context of uncertainty,
we always mean an optimal solution for the same problem while assuming
that no uncertainty is present and all information about the problem is readily
available. We also refer to this as an (optimal) offline solution. If the input
of a problem is revealed only incrementally over time and an algorithm
has to react to incoming information immediately, irrevocably, and without

2 Introduction

knowledge of the future, we speak of an online problem and online algorithm,
respectively. An online algorithm is said to be α-competitive, if it obtains for
every instance a solution whose objective value is within a factor of α of
that of an offline solution. Unlike in the case of approximation algorithms,
we do not require online algorithms to run in polynomial time and focus
instead on the information-theoretical question of how the lack of complete
information impacts the solution quality. It should come as no surprise that
missing information about crucial problem parameters generally prevents
us from reaching the same quality as an optimal offline solution. Consider,
for instance, the minimum-cost bipartite matching problem in the online
setting in which the set of servers is known but the requests appear one by
one and on arrival have to be immediately and irrevocably matched to a free
server. It was shown that there cannot exist an α-competitive algorithm for
any α ∈ N, and even when restricting to the case of metric costs, there is only
a (2n − 1)-competitive algorithm, which is best possible [KP93; KMV94].

Online problems are only one of several ways to model uncertainty. Recogniz-
ing that the irrevocability of an online algorithm’s decision is a rather strong
restriction that might not always reflect reality, the recourse setting allows
for decisions to be revoked but imposes a budget on the number of changes
that an algorithm may perform. Similarly, in the migration setting, there is a
bound not on the number of changes but instead on their total volume, which
quantifies the severity of the undergone changes. The dynamic setting, where
real-time responsiveness is critical, completely removes the irrevocability but
requires the current solution to be recomputed within a limited time frame
whenever information about the problem is revealed or altered. Streaming
problems instead limit the memory that is used to store past inputs, as nec-
essary when, for instance, computing on enormous amounts of data, as in
social networks. Other models of uncertainty include stochastic information,
which describes information that is unknown but follows a known probability
distribution; explorable uncertainty, where one pays to reveal uncertain pa-
rameters and the goal is to minimize the cost necessary to find a satisfactory
solution with certainty; and robust optimization, where the constraints and
the objective function come from a known set of possibilities and the task is
to compute a solution that is feasible for all possible constraints and optimal
for the worst-case objective.

3

For all these settings, theoretical research traditionally evaluates algorithms
using rigorous worst-casemeasures, as described above for approximation and
online algorithms, by requiring an algorithm to satisfy certain bounds for all
instances of a problem. This is the gold standard in theoretical evaluation and
allows for very strong statements. When considering real-world applications,
such hard guarantees are particularly important for safety-critical tasks, for
instance, in flight and space travel, medical applications, or autonomous
vehicles. Moreover, the pursuit of worst-case instances that constitute lower
bounds often reveals insights into the nature of a problem and inspires novel
algorithmic approaches. On the other hand, such worst-case instances may
not (often) occur in practice for some non-safety-critical problems. As a
consequence, seemingly bad algorithms – at least according to the previously
described evaluations – may perform remarkably well here. Indeed, when
solving real-world problems, it is often more sensible to evaluate algorithms
on an average-case basis for a collection of typical instances. Nevertheless, it
is important to use a comparison to optimal solutions or suitable lower bounds
thereon in order to meaningfully assess an algorithm’s performance.

Outline and Bibliographic Remarks

Chapter 1 In the first chapter, we consider the minimum-cost bipartite
matching problem on the line metric. That is, every request or server is
identified with a point on the real line and the cost of matching a request to a
server is equal to their distance on the line. The objective is to minimize the
total cost of the matching. In the online setting, n requests appear one by one
and have to be matched immediately and irrevocably to a free server. Here,
the best known algorithm is due to Raghvendra [Rag18] with a competitive
ratio of Θ(log n). Very recently, Peserico and Scquizzato [PS21] showed that
no online algorithm can achieve a competitive ratio better than Ω(

√
log n)

and solved the long standing open question whether or not there exists a
constant-competitive online algorithm for this problem.

Our contribution in this chapter is a first investigation of online minimum-cost
matching on the line in the recourse setting, where previously matched edges
may be reassigned a limited number of times. In contrast to the pure online
setting, we show that with an amortized recourse budget of O(log n), we

4 Introduction

can indeed obtain a constant-competitive algorithm. This is one of the first
non-trivial results for minimum-cost matching with recourse. We further
refine this result to allow for a trade off between the competitive ratio and
the recourse budget. Specifically, we show that, for any function f : N −→ N
with 1 ≤ f(n) ≤ log n, there is a O(f(n))-competitive algorithm with an
amortized recourse budget of O(log n

f(n)).

For so-called alternating instances, with no more than one request between
two servers, we obtain a near-optimal result. We give a very simple algorithm
that is (1 + ε)-competitive and reassigns any request at most O(1

ε2) times.
This special case is interesting as a lower bound of Ω(log n) [AFT18], which
holds for a quite large class of online algorithms, including all deterministic
algorithms in the literature, is constructed using such instances. As such,
our result raises a cautious hope that it may be possible that also for general
instances one can design algorithms with constant competitive ratio and only
a constant amortized recourse budget.

Bibliographic Remark: Chapter 1 is based on joint work with Nicole Megow.
An extended abstract has been published at APPROX 2020 [MN20]. A full
version has been submitted to Algorithmica.

Chapter 2 The second chapter of this thesis considers knapsack problems. In
multiple knapsack, we are given multiple knapsacks with different capacities
and items with values and sizes. The task is to find a packing of a subset of
the items into the knapsacks without exceeding their capacities such that the
total value of packed items is maximized. We investigate this problem and
special cases thereof in the dynamic setting. That is, our goal is to handle the
arrival and departure of individual items or knapsacks during the execution
of the algorithm with worst-case update time polylogarithmic in the current
number of items. While dynamic algorithms are well-studied in the context of
graph problems, there is hardly any work on packing problems (and generally
much less on non-graph problems).

Motivated by the theoretical interest in knapsack problems and their practical
relevance, we aim to bridge this gap. Specifically, we give a fully dynamic
algorithm for multiple knapsack that maintains (1 − ε)-approximate solu-
tions with an update time of approximately (1

ε
· log n)O(1

ε
) and justify the

Outline and Bibliographic Remarks 5

superpolynomial dependency on ε under the assumption that P ≠ N P. To
facilitate this running time, we maintain solutions implicitly as a data struc-
ture that supports query operations that return the computed solution value
and the packing of any queried item in polylogarithmic time. In order to solve
multiple knapsack, we show how to decompose the problem into two sub-
problems which are of independent interest and for which we provide even
faster running times: multiple knapsack with the number of knapsacks poly-
logarithmic in n, and multiple knapsack with an additional set of (log n

ε
)Θ(1)

knapsacks that the optimal solution we evaluate our algorithm against may
not use; this is also called resource augmentation. Moreover, we present
a particularly efficient algorithm for the knapsack problem with an update
time that is polynomial in n and 1

ε
and query times that are comparable to

those of accessing an explicit solution from memory. Maybe surprisingly, for
all cases considered, we recompute a solution from scratch for every update
and only require the storage of our items and knapsacks in suitably designed
data structures. Importantly, this shows that, to compute a solution for these
knapsack problems, we do not need exact knowledge about the whole input,
but only a small amount of information of polylogarithmic size.

Bibliographic Remark: Chapter 2 is based on joint work with Franziska Eberle,
Nicole Megow, Bertrand Simon, and Andreas Wiese. An extended abstract
has been published at FSTTCS 2021 [EMN+21]. Parts of it, in particular Sec-
tions 2.4 and 2.5, also appear in the PhD thesis by Franziska Eberle [Ebe20].

Chapter 3 This chapter investigates the anchored rectangle packing (ARP)
problem. Here, we are given a set of points P in the unit square [0, 1]2 and
seek a maximum-area set S of axis-aligned interior-disjoint rectangles, each
of which is anchored at a point p ∈ P . That is, p lies at some specific position
on the rectangle. In the most prominent variant, the lower-left-anchored
rectangle packing (LLARP) problem, rectangles are anchored in their lower-
left corner. Freedman [Tut69, Unsolved Problem 11, page 345] conjectured
in 1969 that, if (0, 0) ∈ P , then there is a LLARP that covers an area of at
least 0.5. Somewhat surprisingly, this conjecture remains open to this day,
with the best-known result covering an area of 0.39 [DKK+21].

6 Introduction

For the LLARP problem, we investigate two different settings with resource
augmentation: In the first, we allow an ε-perturbation of the input P , and
develop an algorithm that covers at least as much area as an optimal solution
of the original problem. In the second setting, we permit an ε-overlap between
rectangles and give a (1−ε)-approximation. For the center-anchored rectangle
packing problem, where rectangles are anchored in their center, we provide
a polynomial time approximation scheme. In fact, our PTAS applies to any
ARP problem where the anchor lies in the interior of the rectangles.

Bibliographic Remark: Chapter 3 is based on joint work with Antonios Anto-
niadis, Felix Biermeier, Andrés Cristi, Christoph Damerius, Ruben Hoeksma,
Dominik Kaaser, and Peter Kling. An extended abstract has been published
at ESA 2019 [ABC+19]. The PTAS for center-anchored rectangle packing
will also appear in the PhD thesis by Christoph Damerius.

Chapter 4 In the final chapter, we consider a practical problem motivated
by a project in the hot rolling mill of a multinational steel manufacturer. It
concerns the allocation and maintenance of scarce resources in resource-
constrained production environments. Specifically, we consider the problem
of simultaneous allocation and maintenance scheduling (SAMS) of recyclable,
heterogeneous resources. The task here is threefold: first, to allocate re-
sources to production jobs in order to satisfy their resource demands; second,
to schedule the maintenance of resources – according to the aforementioned
allocation – on heterogeneous maintenance machines with resource-type
dependent setup times; and third, to schedule the resource-constrained pro-
duction jobs. The resource allocation determines a maintenance cost that
depends on the profiles of the resource and the corresponding demand, and
the maintenance scheduling incurs a waiting cost whenever the late mainte-
nance of a resource delays the corresponding production job. A bi-criteria
objective function is considered to simultaneously minimize the maintenance
and waiting costs. An added difficulty lies in the online nature of the produc-
tion sequence since at any time only the next k productions jobs and their
properties are known, we call this lookahead k.

After introducing the SAMS problem, we develop an integer linear program
(ILP) for SAMS in the offline setting and two simpler ILPs that lower bound
the individual optimization objectives. We also discuss how the ILPs can be

Outline and Bibliographic Remarks 7

used in the online setting with lookahead k. However, due to their computa-
tional complexity, the ILPs are mainly useful for production design and the
evaluations of further algorithms for SAMS. To address this issue and pro-
vide a viable algorithmic approach for practitioners, we present an efficient
heuristic that divides the SAMS problem into three stages and uses matching
and scheduling techniques to obtain good-quality solutions for SAMS with
lookahead k. The heuristic is evaluated against real-world datasets and the
developed integer linear programs.

Bibliographic Remark: Chapter 4 is based on work with Alexander Lindermayr
and Nicole Megow. At the time of writing, this work is unpublished.

Publications Underlying the Thesis

[ABC+19] A. Antoniadis, F. Biermeier, A. Cristi, C. Damerius, R. Hoeksma,
D. Kaaser, P. Kling, and L. Nölke. “On the Complexity of An-
chored Rectangle Packing”. In: ESA. Vol. 144. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 8:1–8:14
(cit. on pp. 7, 97, 109).

[EMN+21] F. Eberle, N. Megow, L. Nölke, B. Simon, and A. Wiese. “Fully
Dynamic Algorithms for Knapsack Problems with Polyloga-
rithmic Update Time”. In: FSTTCS. Vol. 213. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 18:1–
18:17 (cit. on p. 6).

[MN20] N. Megow and L. Nölke. “Online Minimum Cost Matching
with Recourse on the Line”. In: APPROX-RANDOM. Vol. 176.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020, 37:1–37:16 (cit. on p. 5).

8 Introduction

Publications by the Author Outside the Scope of this Thesis

[ACC+21] A. Antoniadis, M. Capretto, P. Chalermsook, C. Damerius,
P. Kling, L. Nölke, N. O. Acosta, and J. Spoerhase. “On
Minimum Generalized Manhattan Connections”. In: WADS.
Vol. 12808. Lecture Notes in Computer Science. Springer,
2021, pp. 85–100.

[BHM+22] M. Böhm, R. Hoeksma, N. Megow, L. Nölke, and B. Simon.
“On Hop-Constrained Steiner Trees in Tree-Like Metrics”. In:
SIAM J. Discret. Math. 36.2 (2022), pp. 1249–1273.

[EHM+23] F. Eberle, R. Hoeksma, N. Megow, L. Nölke, K. Schewior,
and B. Simon. “Speed-robust scheduling: sand, bricks, and
rocks”. In: Math. Program. 197.2 (2023), pp. 1009–1048.

[ELM+22] F. Eberle, A. Lindermayr, N. Megow, L. Nölke, and J. Schlöter.
“Robustification of Online Graph Exploration Methods”. In:
AAAI. AAAI Press, 2022, pp. 9732–9740.

Outline and Bibliographic Remarks 9

Online Minimum-Cost Matching
with Recourse on the Line 1
Matching problems are among the most fundamental problems in combina-
torial optimization, with great importance in both, theory and applications.
In the minimum-cost (bipartite) matching problem, we are given a complete
bipartite graph G = (R ∪ S, E) with positive edge costs c(e) = c(s, r),
for e = (s, r) ∈ E. Elements of R and S are called requests and servers,
respectively, with n := |R| ≤ |S|. A matching M ⊆ E is a set of pairwise
non-incident edges. M is called a matching of R if every request in R is
matched to a server in S, i.e., if it is incident to exactly one edge of M . The
minimum-cost matching problem asks to compute a matching of R with min-
imum cost, where the cost of a matching M is given by c(M) :=

∑
e∈M

c(e).
When all information is given in advance, the optimum can be computed
efficiently, e.g., using the Hungarian Method by Kuhn and Yaw [KY55].

In the online setting, however, the set of requests is not known a priori. Re-
quests arrive online, one by one, and have to be matched immediately and
irrevocably to an unmatched server. As we cannot hope to find an optimal
matching under these restrictions, we use standard competitive analysis
to evaluate the performance of algorithms. An online matching algorithm
is said to be α-competitive if it computes for any instance a matching M

with c(M) ≤ α · OPT, where OPT denotes the cost of an optimal matching
when knowing all requests from the start, i.e., for the offline setting. The
competitive ratio of an algorithm is the smallest α for which it is α-competitive.
Independently, Kalyanasundaram and Pruhs [KP93], and Khuller, Mitchell,
and Vazirani [KMV94] showed that for arbitrary edge costs, the competitive
ratio of any algorithm for the online minimum-cost matching problem is
unbounded. They also developed the same deterministic algorithm, Per-
mutation, which is (2n − 1)-competitive for metric costs and showed that
this is optimal for deterministic online algorithms. A remarkable recent

11

result by Nayyar and Raghvendra [NR17] is a fine-grained analysis of an
online algorithm based on t-net cost [Rag16] showing a competitive ratio
of O(µ(G) log2 n), where µ(G) denotes the maximum ratio of the minimum
TSP tour and the weighted diameter of a subset of G. This result is particu-
larly interesting as it relates structural parameters of the metric space to the
performance guarantee of the algorithm.

For a long time, the online minimum-cost matching problem has resisted
all attempts for achieving an O(1)-competitive algorithm even for special
metric spaces such as the line. In online minimum-cost matching on the line,
the edge costs are induced by a line metric; that is, we identify each vertex
of G with a point on the real line and the cost of an edge between a request
and a server equals their distance on the line. The competitive ratio of
the aforementioned algorithm in [NR17] is then O(log2 n), as µ(G) = 2.
Subsequently, Raghvendra [Rag18] improved this to Θ(log n). Only very
recently, Peserico and Scquizzato [PS21] showed that no online algorithm
can achieve a competitive ratio better than Ω(

√
log n). Thus, the quest for

finding an O(1)-competitive algorithm, even a randomized one, is indeed
hopeless, at least when restricted to the strict online setting.

In this chapter, we consider online minimum-cost matching on the line with
recourse. In the recourse model, we allow to change a small number of past
decisions, thereby relaxing the online model. Specifically, at any point, we
may delete a set of edges {(ri, si)}i of the current matching and rematch
the requests ri to different (free) servers. Online optimization with recourse
is an alternative model to standard online optimization which has received
increasing popularity recently. Obviously, if the recourse is not limited then
one can just simulate an optimal offline algorithm, and the online nature of
the problem disappears. We say an algorithm requires amortized recourse
budget β if it rematches requests at most βn times in total. The challenging
question for onlineminimum-cost matching on the line is whether it is possible
to maintain an O(1)-competitive solution with bounded recourse, i.e., with
sublinear recourse budget.

Our Results We answer this question to the affirmative and give non-trivial
results for online minimum-cost matching with recourse. We show that with

12 Chapter 1 Online Minimum-Cost Matching with Recourse on the Line

Online Minimum-Cost Matching with Recourse on the Line

limited recourse, one can indeed maintain a constant competitive solution
on the line.

Theorem 1.1. The online minimum-cost matching problem on the line admits
an O(1)-competitive algorithm with amortized recourse budget O(log n).

Our algorithm builds on the t-net-cost algorithm by Raghvendra [Rag16;
Rag18]; details follow later. It has the nice property that it interpolates
between an O(log n)-competitive online solution (without any recourse)
and an O(1)-approximate offline solution (with possibly large recourse).
Our algorithm can further be adapted to allow for a range of different cost-
recourse trade-offs. We observe that our analysis is asymptotically optimal.

Theorem 1.2. For any function f : N −→ N with 1 ≤ f(n) ≤ log n, there is
an algorithm for online minimum-cost matching on the line that is O(f(n))-
competitive and has an amortized recourse budget of O(log n

f(n)).

Additionally, we investigate a special class of instances, called alternating
instances, where between any two requests on the line there is at least one
server. This class is interesting as the quite strong lower bound of Ω(log n),
given by Antoniadis, Fischer, and Tönnis [AFT18], holds already on such
simple instances. While it does not hold for arbitrary instances, the bound
is true for all known deterministic online algorithms without recourse. For
alternating instances, we present a more direct and near-optimal algorithm
with a scalable performance-recourse trade-off.

Theorem 1.3. For alternating instances of online minimum-cost matching
on the line, there is a (1 + ε)-competitive algorithm that reassigns each re-
quest O(1

ε2) times.

While the algorithm is quite simple, the proof requires a clever charging
scheme that exploits the special structure of optimal solutions on alternating
instances. We observe that a large number of recourse actions for a specific
request implies large edges in the optimal solution elsewhere on the line.

As a byproduct we give a simple analysis of (a variant of) the algorithm
in the traditional online setting without recourse. We show that it has a

13

competitive ratio of O(min{log n, log ∆}) for instances with alternating re-
quests on the line, where ∆ is the ratio between the largest and shortest
request-server distance, also called the aspect ratio of the metric. This result
refines the competitive ratio Θ(log n) of the currently best known online
algorithm [Rag18].

Remark Simultaneously and independently of our work, Gupta, Krish-
naswamy and Sandeep [GKS20] obtained a similar result for onlineminimum-
cost matching with recourse on the line. Their algorithm builds on the O(n)-
competitive Permutation algorithm [KP93; KMV94] and adapts it for the
recourse setting. On the line, this is done by first matching edges according
to Permutation and then asymmetrically applying recourse to arcs (r, s) of
the current matching that overlap in a certain way. Both, their algorithm
and analysis are completely different from ours. They further obtain a more
general O(log n)-competitive algorithm with amortized recourse O(log n) for
arbitrary metrics. Note that Permutation in fact coincides with the t-net-cost
algorithm for t = 1.

Further Related Work Extensive literature is devoted to online bipartite
matching problems. The maximum matching variant is quite well under-
stood. For the unweighted setting, Karp, R. Vazirani, and U. Vazirani [KVV90]
gave optimal deterministic and randomized algorithms with competitive ra-
tio 2 and e/(e − 1), respectively. The weighted maximization setting does
not admit bounded guarantees in general, but intensive research investi-
gates models with additional assumptions; see, for instance, the survey
by Mehta [Meh13].

The online minimum-cost matching problem is much less understood. De-
spite recent advances, there remains a gap between the best known upper
and lower bounds of O(log n) and Ω(

√
log n), respectively. Randomiza-

tion allows an improvement upon the best-possible deterministic competi-
tive ratio of (2n − 1) for metric online bipartite matching [KP93; KMV94];
there is an O(log2 n)-competitive randomized algorithm due to Bansal et
al. [BBG+14]. On the line, no such improvement on the deterministic result
by randomization is known; O(log n) is the best known competitive ratio for
both, deterministic and randomized algorithms [Rag18; GL12].

14 Chapter 1 Online Minimum-Cost Matching with Recourse on the Line

Online Minimum-Cost Matching with Recourse on the Line

Interestingly, Gairing and Klimm [GK19] showed that when assuming ran-
domization in the order of request arrivals (instead of an adversarial arrival
order), the natural Greedy algorithm that matches an arriving request to the
closest free, i.e., unmatched, server is n-competitive for general metric spaces.
Furthermore, the online t-net-cost algorithm is O(log n)-competitive [Rag16]
in this case. Very recently, Gupta et al. [GGP+19] gave an O((log log log n)2)-
competitive algorithm in the model with online known i.i.d. arrivals.

Recourse models received quite some attention in the past decade. In par-
ticular, maintaining an online cardinality-maximal bipartite matching with
recourse was studied extensively; see, e.g., [BHR19; BLS+14; CDK+09;
GKK+95; ADJ18; SKL+20; BD20] and references therein. Bernstein et
al. [BHR19] showed that the 2-competitive greedy algorithm uses amor-
tized O(n log2 n) reassignments, leaving a small gap to the lower bound
of Ω(n log n). In contrast, for the min-cost variant, it remained a challenging
question whether recourse can improve upon the competitive ratio. Even on
the line, it remained open whether and how recourse can improve the bound
of O(log n) [Rag18].

The following two models address other types of matching with recourse. In
a setting motivated by scheduling, several requests can be matched to the
same server and the goal is to minimize the maximum number of requests
assigned to a server. Gupta et al. [GKS14] achieve an O(1)-competitive
ratio with amortized O(n) edge reassignments. A quite different two-stage
robust model has been proposed recently by Matuschke et al. [MSV19].
In a first stage, one must compute a perfect matching on a given graph,
and, in a second stage, a batch of 2k new nodes appears, which must be
incorporated into the first-stage solution to maintain a low-cost matching by
reassigning only few edges. For matching on the line, they give an algorithm
that maintains a 10-approximate matching and reassigns at most 2k edges.

Recourse in online optimization has been investigated also for other min-cost
problems even though less than for maximization problems. Most notably
seems the online minimum Steiner tree problem [GGK16; IW91; MSV+16;
LOP+15]. Here, one edge reassignment per iteration suffices to maintain
an O(1)-competitive algorithm [GGK16], whereas the online setting without
recourse admits a competitive ratio of Ω(log n).

15

The recourse model has some relation to dynamic algorithms. Instead of
minimizing the number of past decisions that are changed (recourse), the
dynamic model focuses on the running time to implement this change (update
time). A full body of research exists on maximum (weighted) bipartite
matching; we refer to the nice survey by Chaudhuri et al. [DP14]. We are
not aware of any results for maintaining a minimum-cost matching.

1.1 Preliminaries

A path P is called alternating with respect to a matching M , if every other
edge of P is contained in M . An alternating path is called augmenting with
respect to M if it starts and ends at vertices not covered by M . A common
method for increasing the cardinality of an existing matching M is to augment
along an augmenting path P , resulting in a larger matching M̃ given by
the symmetric difference1M ⊕ P . There may be a choice between different
augmenting paths; typically, a path of minimum cost (with respect to some
metric) is selected. Recently, Raghvendra [Rag16] introduced the following
metric. For t > 1, the t-net cost of a path P with respect to a matching M is
defined as

ϕM
t (P) := t · c(P \ M) − c(P ∩ M) = t · c(P ∩ M̃) − c(P ∩ M). (1.1)

Our algorithm maintains three different matchings: the recourse matching M ,
which is the actual output of the algorithm, and two auxiliary matchings
based on (online and offline versions of) the t-net-cost algorithm [Rag16],
namely, the offline matching M∗ and the online matching M ′. While M∗

is a near-optimal offline matching that possibly requires a large amount of
recourse, M ′ is an online matching that is O(log n)-competitive [Rag18] but
uses no recourse. We describe how M∗ and M ′ are obtained based on the
above cost function; see also [Rag16; NR17; Rag18]. When speaking of the
matching Mi, M∗

i or M ′
i , we refer to the state of the respective matching

after serving the i-th request.

1For two sets X, Y, their symmetric difference is given by X ⊕ Y := (X ∪ Y) \ (X ∩ Y).
For matchings M1, M2, their symmetric difference M1 ⊕ M2 consists of disjoint paths and
cycles, whose edges are alternating between M1 and M2.

16 Chapter 1 Online Minimum-Cost Matching with Recourse on the Line

Online Minimum-Cost Matching with Recourse on the Line

Upon arrival of the i-th request ri, the offline t-net-cost algorithm constructs
the offline matching M∗

i by augmenting M∗
i−1 along an alternating path Pi

of minimum t-net cost with respect to M∗
i−1. That is, M∗

i := M∗
i−1 ⊕ Pi. By

definition, this path starts at ri and ends at a free server, which we denote
by si. While this procedure may require a large amount of recourse, the
resulting matching has been shown to have bounded cost.

Lemma 1.4 (Raghvendra [Rag16]). For any t > 1, we have c(M∗
i) ≤ t·OPTi

for all i ∈ {1, 2, . . . , n}, where OPTi := c(MOPT
i) denotes the cost of an

optimal offline matching MOPT
i of the first i requests.

For constructing the online matching M ′
i without changing previous match-

ing decisions (no recourse), it may not be possible to augment along a path.
Instead, the online t-net-cost algorithm maintains M∗ as an auxiliary match-
ing and constructs M ′

i by directly connecting the end points ri and si of the
augmenting path Pi. That is, M ′

i := M ′
i−1 ∪ {(ri, si)}, cf. Figure 1.1a. In

particular, M ′
i and M∗

i utilize the same sets of servers.

Intuitively, in putting a higher weight on edges that would be added to M∗

during augmentation, the parameter t in the t-net cost function discourages
the offline t-net-cost algorithm from choosing long paths for augmentation
(with respect to actual costs, not in the t-net-cost metric). This allows for a
trade-off between minimizing the cost of the underlying offline matching and
minimizing the connection costs in M ′ with the latter occurring in a greedy
fashion. Looking at the extremal cases, this becomes even more clear.

When t = 1, the offline t-net-cost algorithm is in fact equivalent to the
Hungarian Method [KY55] which computes an optimal offline solution.
The corresponding online matching, however, is that of the Permutation
algorithm [KP93; KMV94] and has a competitive ratio of Θ(n), see [KP93;
KMV94] and the lower bound instance in Figure 1.1a. In contrast, as t

tends to infinity, the algorithm prefers augmenting via paths of smaller
length and its behavior becomes more similar to that of the greedy online
algorithm matching a request upon arrival to the nearest free server. The
competitive ratio in this case is in Θ(n), see [Rag16] and Figure 1.1b. Inter-
estingly though, when t = 3, the t-net-cost algorithm has a competitive ratio
of O(log n) [Rag18].

1.1 Preliminaries 17

r3 r1 r2

11 1 11

e1

M∗
1

e2

M∗
2

e3

M∗
3

(a) An (alternating) instance where the t-net-cost algorithm, with t = 1, has a competitive ratio
of Ω(n). At time i, the optimal offline matching M∗ increases in cost by 1, while M ′ increases
in cost by 2i − 1 = c(ei). Thus OPT = n and c(M ′) = Ω(n2).

r2 r3 r4 rn
r1

1 + ε 1 1 1

r2 r3 r4 rn
r1

(b) An instance where the t-net-cost algorithm, with t → ∞, has a competitive ratio of Ω(n).
For i with 1 ≤ i < n, the augmenting path from ri to the next free server on the left has a cost
of t · (1 + ε) − (i − 1) and to the next free server on the right cost t. With ε > 1

t (i − 1) → 0,
the t-net-cost algorithm augments to the right resulting in a cost of Ω(n), while OPT = 1+ε.

Fig. 1.1: Lower-bound instances for the t-net-cost algorithm and extremal choices
of t = 1 and t −→∞.

1.2 A Constant-Competitive Algorithm with Bounded
Recourse

In this section, we prove ourmain results, Theorems 1.1 and 1.2, by describing
the corresponding algorithms. We start by giving a high-level overview of
our algorithm for Theorem 1.1. It exploits the properties of the t-net-cost
algorithm by carefully balancing between the offline matching M∗ and the
online matching M ′, simultaneously bounding competitive ratio and recourse
budget. On a high level, this is done as follows. When a request arrives, we
match it as in M ′ and locally group it with other recent requests into blocks
that correspond to intervals on the line. Matching requests as in the online
matching increases the total cost but requires zero recourse. A structural
result, Lemma 1.13, allows us to bound this increase in cost, but only for a
set of blocks whose corresponding intervals are pairwise disjoint. Thus, when
new blocks are created, the requests in old intersecting blocks need to be

18 Chapter 1 Online Minimum-Cost Matching with Recourse on the Line

Online Minimum-Cost Matching with Recourse on the Line

rematched according to M∗ causing a local update, which we call a recourse
step. During such a recourse step, the changes in M∗ caused by the arrivals
of the requests in the respective old blocks are applied simultaneously. This
eliminates any redundant recourse actions that would have occurred when
updating M∗ repeatedly, for each arriving request. Intuitively, blocks can
therefore be seen as input buffers for M∗ that temporarily match requests
as in M ′ and facilitate an efficient update of M∗ in large local batches.
The underlying structure of the blocks guarantees that recourse steps affect
only the corresponding portion of the line. To prevent the recourse steps
from causing too many reassignments, we additionally incorporate an edge
freezing scheme for low-cost edges that keeps the overall cost low.

1.2.1 A First Try - Balancing between M∗ and M ′ without
Freezing

We start our pursuit of a constant competitive algorithm with bounded
recourse by exploring the idea of balancing between M∗ and M ′, and show
that this first strategy does indeed yield a constant competitive algorithm.
While we will see that this strategy uses potentially a lot of recourse, the
algorithm we develop here serves as the basis of our final algorithm satisfying
Theorem 1.1. The latter simply requires an additional freezing scheme
targeting low-cost edges, which we present in the following subsection.

Definitions and Notation

We classify requests according to the structure of intervals that describe where
on the line the t-net-cost algorithm has already searched for free servers,
following the ideas from Raghvendra [Rag18]. There, somewhat different
definitions used, which we discuss in more detail below, but essentially they
serve the same purpose. Throughout the chapter, we visualize the real line as
a horizontal line from −∞ on the left to ∞ on the right and use according
vocabulary, e.g., by saying a server s is left of a request r, or simply s < r. We
also assume, without loss of generality, that at any point on the line, there is
at most one point of R ∪ S.

1.2 A Constant-Competitive Algorithm with Bounded Recourse 19

sR
j

sL
j+1

sR
j+1

sL
j

rj+1

Īj+1

Ij+1

rj

Īj = Ij

Fig. 1.2: Construction of search intervals and aggregate search intervals for the re-
quests rj and rj+1. The points sL

j and sR
j+1 (hatched) are points on the

line that do not lie in S. We think of such points as (virtual) servers for the
purpose of defining Īj and Īj+1, respectively.

Define the search interval of a request ri as the open interval Īi = (sL
i , sR

i),
where sL

i and sR
i denote points on the line farthest to the left and right of ri,

respectively, and reachable from ri with t-net cost at most ϕ
M∗

i−1
t (Pi). We

will show in Lemma 1.10 that one of sL
i , sR

i is the server si (which ri is
matched to in M ′), while the other may not necessarily be a point of R ∪ S.
For the purpose of this definition, we think of it as a (virtual) server. That
is, we ask the question “If point p was a server in S, would we be able to
reach it via an augmenting path of t-net cost at most ϕ

M∗
i−1

t (Pi)?”. In other
words, Īi is the convex hull of all points on the line, reachable from ri via an
augmenting path of t-net cost (strictly) less than ϕ

M∗
i−1

t (Pi).

Define the aggregate search interval of ri as the maximal (open) interval Ii

which contains ri and is a subset of
⋃

j≤i
Īj . Intuitively,

⋃
j≤i

Īj consists of
the (disjoint) portions of the line, which the t-net-cost algorithm has already
considered, up to time i, in its search for free servers; the interval Ii is simply
the connected portion containing ri. See Figure 1.2 for an illustration. By
definition, the portions of the line constituting

⋃
j≤i

Īj grow monotonously
(and possibly merge while doing so). Therefore, the aggregate search intervals
inhibit a laminar structure as is detailed in the following observation.

Observation 1.5. Whenever i < j, then either Ii ∩ Ij = ∅ or Ii ⊆ Ij .

We say an aggregate search interval Ii is of level k if its length satisfies
the inequalities (1 + ε)k−1 ≤ |Ii| < (1 + ε)k; we then write ℓ(Ii) = k.
Throughout the remainder of this section, we set t = 3 and ε = 1

32t
. Further,

two aggregate search intervals are said to belong to the same block, if they

20 Chapter 1 Online Minimum-Cost Matching with Recourse on the Line

Online Minimum-Cost Matching with Recourse on the Line

Ii

Iℓ

Ik

rj

Fig. 1.3: Illustration of a typical block structure. On arrival of ri, its aggregate
search interval Ii creates a new top block (active). Requests in the hatched
area are now all inactive. We observe that on Ii, locally, M∗

i−1 = M∗
h

for ℓ, k ≤ h < i.

intersect with each other and are of same level. If the aggregate search
intervals of a block are not contained in some interval of a higher level, then
this block is said to be a top block. We note that the top blocks partition the
line into portions that are compatible with the structure of M∗. Specifically,
we will see that, at all times, the edges of M∗ (and M ′) are fully contained in
some top block. Intuitively, this holds as the portion of the line corresponding
to a top block is the convex hull of points considered for the searches for
a free server originating from requests inside the block, so no edge of M∗

can possibly lead outside the block. A typical block-structure is depicted
in Figure 1.3.

Based on these structures, we dynamically classify requests as follows. When
the aggregate search interval of a request belongs to a top block then this
request is said to be active. Once this no longer holds, we call it inactive.
Note that due to the definition of aggregate search intervals, any arriving
request is initially active. And once a request becomes inactive, it will remain
inactive indefinitely. When considering the attributes active, inactive, or
membership in a block, (or later on frozen), we identify a request ri, the
edge ei = {ri, si} ∈ M ′ and the interval Ii. For instance, we say ri is of
level k and belongs to a certain block, when this holds for Ii, or, ei is active
when this is the case for ri.

1.2 A Constant-Competitive Algorithm with Bounded Recourse 21

Algorithm 1.1
Upon arrival of the i-th request ri: ▷ ri matched in M ′ via ei = (ri, si)

Matching ri

1: match ri to si as in M ′ ▷ ri active
Recourse Step

2: if there is an active rj ∈ Ii with ℓ(Ij) < ℓ(Ii) then ▷ Ii creates top block
3: for rj ∈ Ii with j ̸= i do
4: reassign rj to the same server as in M∗

i−1 ▷ ri inactive

Algorithm Description

Our algorithm, summarized as Algorithm 1.1 produces the recourse match-
ing M by assigning requests according to their classification as either active
or inactive. Specifically, active requests are matched in M exactly as in the
online matching M ′, and inactive requests are matched as in the offline
matching M∗.

While the online matching M ′ does not change but only gets revealed over
time, the offline matching M∗ may change its structure drastically at any
point causing a lot of recourse. Active requests act as an input buffer for M∗,
it is updated only periodically and locally when a new top block appears and
renders previously active requests inactive. We call this a recourse step.

The algorithm then consists of the following two steps that are executed
whenever a new request ri arrives.

Matching ri Upon arrival of ri, label it active and match it according to
the online matching M ′, that is, via the edge ei = (ri, si).

Recourse Step If there is no j < i such that Ij ⊆ Ii and ℓ(Ij) = ℓ(Ii), the
arrival of ri produces a new top block and may render a number of previously
active requests inactive, see Figure 1.3. Reassign all requests rj ∈ Ii except ri

to the same server to which they are matched in M∗
i−1.

Algorithm Analysis

We start by noting that Algorithm 1.1 indeed produces a matching after each
iteration. In Step 1, ri can be matched to si, since both are not yet matched
by definition of the t-net-cost algorithm. Therefore, the edge (ri, si) also

22 Chapter 1 Online Minimum-Cost Matching with Recourse on the Line

Online Minimum-Cost Matching with Recourse on the Line

does not interfere in a possible recourse step due to the arrival of ri, as it is
not contained in M∗

i−1.

Observation 1.6. At the end of each iteration, the matching Mi computed by
Algorithm 1.1 is feasible.

Bounding the Competitive Ratio We first observe, that the cost of inactive
edges can be easily bounded using Lemma 1.4.

Corollary 1.7. The total cost of inactive edges is at most t · OPT.

To bound the cost of active edges, we build on the analysis of Raghven-
dra [Rag18]. We refine his technical propositions and perform a slightly
more fine-grained analysis. Instead of simultaneously bounding the cost of
all blocks of the same level, we argue more generally on the cost of any set of
pairwise disjoint blocks at possibly different levels, where two blocks are said
to be disjoint if their corresponding maximal aggregate search intervals do not
intersect. In particular, we are interested in bounding the cost contribution
of the disjoint set of top blocks. We show the following result.

Lemma 1.8. For t = 3, the cost of all active edges of M is bounded by O(OPT).

Corollary 1.7 and Lemma 1.8 together imply a constant competitive ratio.

Corollary 1.9. Algorithm 1.1 has a competitive ratio of O(1).

For the sake of completeness, we give a proof of Lemma 1.8, including
a description of our adaptations to [Rag18]. We start by discussing our
definition of search intervals. While this definition was motivated by intuition
and practicality (specifically with the proof of Lemma 1.19 below in mind), it
describes intervals different from the “search intervals” in [Rag18]. However,
we show that our definition of aggregate search intervals coincides with
Raghvendra’s definition of intervals of a cumulative search region, which we
denote by Ci. We may therefore use the corresponding results from [Rag18].

1.2 A Constant-Competitive Algorithm with Bounded Recourse 23

Lemma 1.10. For a request ri, the corresponding aggregate search interval Ii

coincides with the “interval of a cumulative search region” Ci defined in [Rag18].
For the search interval Īi = (sL

i , sR
i), we have si ∈ {sL

i , sR
i }.

Proof. To see that the first claim holds, note that the intervals Ci and Ii for
request ri are constructed in the same way. That is, they are built by first
taking the union of all known search intervals (for the respective definition)
which creates a new set of intervals from which we then choose the one that
contains ri. We describe the definition of search intervals in [Rag18], which,
to avoid confusion, we call dual intervals. The t-net-cost algorithm maintains
dual values yi : S ∪ R → R+ satisfying yi

s + yi
r = c(s, r) if (s, r) ∈ M∗

i

and yi
s + yi

r ≤ t · c(s, r) otherwise. Additionally, duals of free requests or
servers are zero. When a request ri arrives, a shortest t-net-cost path Pi is
found and the duals of all vertices in the search tree, which is partitioned by
sets Ai ⊆ S and Bi ⊆ R, are updated before augmentation so that the dual
constraints on Pi are tight. This is true for both the augmenting paths P L

i

and P R
i that are used to reach sL

i and sR
i , respectively. The dual interval

of a request ri is defined as interior(
⋃

r∈Bi
cspan(r, i)), where cspan(r, i)

denotes the interval [r − yi
max(r)

t
, r + yi

max(r)
t

] on the real line and yi
max(r)

the highest dual weight assigned to r until time i.

Raghvendra [Rag16] shows, that the dual constraints on P L
i and P R

i are
tight before augmentation. Therefore, we obtain our search intervals Īi from
the respective dual interval by replacing yi

max(r) with the dual weight yi
r

of r before augmentation along Pi. Hence, a search interval is contained in
the corresponding dual interval and therefore Ii ⊆ Ci. At the same time,
dual weights of requests can only be increased when the request is contained
in some Bi or reduced right after an augmentation but remain otherwise
unchanged. Thus, the maximal value yi

max(r) is attained right before an
augmentation, in which case the request is part of some P L

h or P R
h . Using

again that the dual weights are tight here, this implies Ci ⊆ Ii. There-
fore, the intervals Ii and Ci coincide and we may use the respective results
from [Rag18].

The second claim follows directly from Lemma 6 in [Rag18], which states
that there are no free servers in the dual interval. Intuitively, this holds
for our definition of search intervals as well, since a free server inside the

24 Chapter 1 Online Minimum-Cost Matching with Recourse on the Line

Online Minimum-Cost Matching with Recourse on the Line

search interval would imply that an augmenting path with strictly lower t-net
cost than Pi exists. Formally, one may prove this via induction or use that
search intervals are contained in dual intervals, as shown above. Lastly, since
clearly si ∈ [sL

i , sR
i], it follows that si ∈ {sL

i , sR
i }.

We continue with a technical result that allows us to bound the cost con-
tribution of edges of M ′ whose length is large when compared to the t-net
cost of the corresponding augmenting path. Formally, we call an edge ei

of the online matching M ′ or the corresponding augmenting path Pi short,
if c(Pi) ≤ 4

t−1 ϕM∗
i−1t (Pi) and long otherwise. Raghvendra bounds the cost of

all long edges by that of all short ones. We give the following more general
statement that allows us to consider a consecutive set of edges instead. Note
that the additional additive term of 2(t + 1) · OPTj−1 when compared to
the original statement in [Rag18] disappears again when considering the
entire matching, as then OPTj−1 = OPT0 = 0.

Lemma 1.11. Let Pj , Pj+1, . . . , Pk be consecutive augmenting paths that are
used in the offline t-net-cost algorithm and ej , ej+1, . . . , ek the corresponding
edges in M ′. Then∑

i: ei long

c(ei) ≤
(
4 + 4

t−1

) ∑
i: ei short

c(ei) + 2(t + 1) · OPTj−1.

Proof. To prove this lemma, we adapt the approach of [Rag18, Lemma 2] for
our more general setting. Consider two consecutive matchings M∗

i−1 and M∗
i ,

and recall from Equation (1.1) that the t-net cost of the corresponding
augmenting path Pi is given by ϕM∗

i−1t (Pi) = t · c(Pi \ M∗
i−1) − c(Pi ∩ M∗

i−1).
The difference in cost of the two matchings can then be expressed as

t+1
2

(
c(M∗

i) − c(M∗
i−1)

)
= t+1

2

(
c(Pi\M∗

i−1) − c(Pi ∩ M∗
i−1)

)
= ϕM∗

i−1
t (Pi) − (t − 1)c(Pi\M∗

i−1) + t−1
2

(
c(Pi\M∗

i−1) − c(Pi ∩ M∗
i−1)

)
= ϕM∗

i−1
t (Pi) − t−1

2

(
c(Pi\M∗

i−1) + c(Pi ∩ M∗
i−1)

)
= ϕM∗

i−1
t (Pi) − t−1

2 c(Pi).

1.2 A Constant-Competitive Algorithm with Bounded Recourse 25

Summing from j to k, and using the fact that OPTj−1 ≤ OPTk ≤ c(M∗
k)

as well as c(M∗
j−1) ≤ t · OPTj−1, we get

k∑
i=j

(
ϕM∗

i−1
t (Pi) − t−1

2 c(Pi)
)

= t+1
2

k∑
i=j

(
c(M∗

i) − c(M∗
i−1)

)
(1.2)

≥ 1−t2

2 · OPTj−1. (1.3)

Denote by L and H the sets of augmenting paths with index between j and k

that are long and short, respectively. Then, Equation (1.2) can be rewritten as∑
Pi∈H

ϕM∗
i−1

t (Pi) (1.4)

(1.2)
≥ t−1

2

∑
Pi∈H

c(Pi) +
∑

Pi∈L

(
t−1

2 c(Pi) − ϕM∗
i−1

t (Pi)
)

+ 1−t2

2 · OPTj−1

≥
∑

Pi∈L

ϕM∗
i−1

t (Pi) + 1−t2

2 · OPTj−1, (1.5)

where the last inequality uses the fact that
∑

Pi∈H
c(Pi) is non-negative

and that for a long path Pi we have c(Pi) ≥ 4
t−1 · ϕM∗

i−1t (Pi). Using again
non-negativity of

∑
Pi∈H

c(Pi), as well as Equations (1.2) and (1.5), we get

2
∑

Pi∈H

ϕM∗
i−1

t (Pi)
(1.5)
≥

∑
Pi∈H∪L

ϕM∗
i−1

t (Pi) + 1−t2

2 · OPTj−1 (1.6)

(1.2)
≥ t−1

2

∑
Pi∈H∪L

c(Pi) + (1 − t2) · OPTj−1 (1.7)

(1.2)
≥ t−1

2

∑
Pi∈L

c(Pi) + (1 − t2) · OPTj−1. (1.8)

By definition of t-net cost and using the triangle equality, we obtain the
inequalities t · c(ei) ≥ ϕM∗

i−1t (Pi) and c(Pi) ≥ c(ei), respectively. After
dividing Equation (1.6) by t−1

2 , this implies the lemma statement

4t
t−1

∑
Pi∈H

c(ei) ≥
∑

Pi∈L

c(ei) − 2(t + 1) · OPTj−1.

26 Chapter 1 Online Minimum-Cost Matching with Recourse on the Line

Online Minimum-Cost Matching with Recourse on the Line

Consider a level-k block B and denote by B the instance that consists of the
requests and servers that are the endpoints of edges in M ′ belonging to B.
Further denote by M ′

B the set of these edges. We aim to bound the cost
of M ′

B for several disjoint blocks simultaneously using the previous lemma.

To be able to do this, we first need to argue that it is okay to assume, for the
sake of cost analysis, that the requests arrive in a certain order. In particular,
we argue that as long as the relative order of requests with overlapping
aggregate search intervals is preserved, the structure and cost of both the
offline and the online matching somewhat remains unchanged. Specifically,
when a request arrives, in any of such arrival orders satisfying the above,
the offline and online matching are identical on the portion of the line
corresponding to the requests aggregate search interval. In particular, when
the n-th request arrives, the final matchings are identical.

Lemma 1.12. Let π ∈ Sn be a permutation that is such that i < j and Ii ⊆ Ij

imply π(i) < π(j). Changing the arrival order of requests to rπ(1), . . . , rπ(n)

does not change the final matchings M ′ and M∗. Specifically, after the change,

(i) if ri and rj belonged to block B, then so do rπ(i) and rπ(j) now, and
(ii) the cost of M ′

B is unchanged compared to the original arrival order.

Proof. By definition of search intervals, only requests and servers inside the
closure of Īi are considered by the t-net-cost algorithm when request ri

arrives, and are thus the only ones possibly affected by augmentation. There-
fore, we can assume by induction, that right before the arrival of ri, the
online and offline matching are identical within Īi for any permutation π

that satisfies the above requirements. The t-net-cost algorithm then uses
the same path Pi for augmentation, irrespective of π, which implies the
lemma statement.

We are now ready to bound the cost of M ′ for a set of disjoint blocks.

Lemma 1.13. For disjoint blocks B1, B2, . . . , Bh, and with t = 3, we have

h∑
i=1

c(M ′
Bi

) ≤ 5600 · OPT.

1.2 A Constant-Competitive Algorithm with Bounded Recourse 27

Proof. Since we consider a set of disjoint blocks, we may use Lemma 1.12
to change the arrival order of requests and assume that those requests that
belong to the blocks B1, B2, . . . , Bh arrive consecutively and that no requests
on other portions of the line have arrived yet. Denote by ML and MH the
set of long and short edges of M ′

B1 ∪ M ′
B2 ∪ . . . ∪ M ′

Bh
, respectively, and

by OPTBi the cost of an optimal matching on Bi. Together, Lemmas 3 and 13
from [Rag18] imply

c(MH) ≤ 99 ·
h∑

i=1

OPTBi + 2
47 · c(ML).

We then use Lemma 12 from [Rag18] to obtain

c(MH) ≤ 594 · OPT + 2
47 · c(ML).

Note that the lemma is only stated for a set of level-k blocks, but the proof
carries over verbatim for the case of arbitrary disjoint blocks. After bound-
ing c(ML) with the use of Lemma 1.11, we get

c(MH) ≤ 594 · OPT + 2
47 (6 · c(MH) + 8 · OPT),

which in turn implies c(MH) ≤ 798.2·OPT. Using one last time Lemma 1.11,
we conclude that

h∑
i=1

c(M ′
Bi

) = c(MH) + c(ML) ≤ 7 · c(MH) + 8 · OPT ≤ 5600 · OPT.

Proof of Lemma 1.8. To bound the cost of all active edges, recall that active
edges are precisely those edges that are contained in a top block, and further,
that at any given time any two top blocks are disjoint. Thus, we may apply
Lemma 1.13 to the top blocks of M . This directly implies the statement of
Lemma 1.8, concluding the competitive analysis of Algorithm 1.2.

And the Recourse Budget? With the majority of requests matched as in the
offline matching M∗, it should come as no surprise that Algorithm 1.1 per-
forms poorly in terms of recourse budget. To see this, consider the example

28 Chapter 1 Online Minimum-Cost Matching with Recourse on the Line

Online Minimum-Cost Matching with Recourse on the Line

r3 r1 r2 r4

12 4 81632 64 128

M1 I1

M2 I2

M3 I3

M4 I4

Fig. 1.4: An alternating instance with exponentially increasing connection costs. Edge
costs are indicated above the corresponding portion of the line (drawing not
to scale). Active edges are drawn solid, inactive edges dashed. Note that
the aggregate search intervals (gray) grow exponentially in size. Therefore,
a (top) block consists of a single aggregate search interval only and every
arrival of a request triggers a recourse step, reassigning all existing inactive
requests. This underlines the need for a freezing scheme.

depicted in Figure 1.4 showing an alternating instance with exponentially
increasing edge costs. At the arrival of a request ri with i > 2, all requests rj

with j < i are reassigned. Thus, the recourse budget is linear and Algo-
rithm 1.1 does not satisfy the requirements of Theorem 1.1. However, our
efforts on Algorithm 1.1 are not in vain, since its shortcomings in terms of
recourse budget can be remedied with a simple extension described in the
following subsection.

1.2.2 Adding a Freezing Scheme to Obtain Constant Recourse

Consider again Figure 1.4. The exponentially increasing edge costs that
thwarted our success with Algorithm 1.1, turn out to also be the key to
salvaging it. Intuitively, if edge costs do not increase too much, then a top
block can holdmore requests, so there will not be as many requests of different
levels. As this translates directly into recourse actions, everything is already
fine with Algorithm 1.1. If on the other hand edge costs do increase a lot,
say exponentially as in Figure 1.4, then at some point, the cost-contribution
of small edges becomes negligible. Spending recourse actions on such edges
would be absurd, so we instead choose to keep them as they are, we freeze

1.2 A Constant-Competitive Algorithm with Bounded Recourse 29

them. We would still like to match other inactive requests that are not frozen
with respect to M∗. However, since a frozen edge may block a server that
in M∗ is assigned to a different request r, we are forced to make a compromise
and match r to a different, farther-away server via a detour taken along the
frozen edge.

The Detour Matching We describe a way of combining two matchings that
initially seem incompatible, e.g., because some request is matched to different
servers in the two matchings. Let M̃, M be matchings such that M̃ ⊕ M

consists of alternating paths that are augmenting with respect to M . Such a
path starts in a request and ends in a server, both of which are unmatched
in M . We call the matching that consists of precisely these request-server
pairs the detour matching of M̃ with respect to M . When clear from context,
we simply refer to this matching as M̃ ⊕ M . For an illustration, see Figure 1.5.
For an example, consider the online t-net-cost algorithm. The symmetric
difference of M∗

i−1 and M∗
i consists of one path that is augmenting with

respect to M∗
i−1, namely Pi. The detour matching of M∗

i with respect to M∗
i−1

then consists of precisely the edge ei ∈ M ′
i , the detour that one takes when not

augmenting along Pi but connecting the ends of the path directly. In metric
spaces, it is easy to see via the triangle inequality, that the cost of the detour
matching is bounded by the sum of costs of the two generating matchings.

Observation 1.14. For matchings M̃, M whose symmetric difference consists of
alternating paths that are augmenting with respect to M , the detour matching
M̃ ⊕ M satisfies c(M̃ ⊕ M) ≤ c(M̃) + c(M).

A Simple Freezing Scheme Denote by F ⊆ M ′ the set of frozen edges and
consider the following simple freezing scheme for which we need to make
the assumption that the precise values of OPT and n are known a priori.
Freeze all edges of M ′ with cost OPT

n
or less and match inactive requests

with respect to the detour matching M∗ ⊕ F . Since there are at most n

edges in F , the cost of frozen edges is bounded by OPT. Therefore, using
Observation 1.14, we conclude that the cost of inactive edges is bounded
by c(F) + c(M∗ ⊕ F) ≤ (t + 2) · OPT. The cost of active edges remains

30 Chapter 1 Online Minimum-Cost Matching with Recourse on the Line

Online Minimum-Cost Matching with Recourse on the Line

in O(OPT) since nothing changed from Section 1.2.1. One can further show,
that due to this freezing scheme, any request participates in only O(log n)
recourse steps. The proof follows the intuition described above: If a request r

would take part in o(log n) recourse steps, then it is contained in o(log n)
intervals of increasing level. However, edge costs are increasing exponentially
and r must in fact already be frozen.

While we would like to follow this general strategy as well, in the online
model, we do not know OPT or n. Therefore, we need a dynamic freezing
scheme, targeting for instance OPTi

i
as a threshold for freezing in round i.

A typical guess-and-double approach may work concerning the costs. Yet,
care has to be taken as OPTi

i
is not monotone. A major obstacle appears to

be bounding the recourse budget. The details of the algorithm and dynamic
freezing scheme as well as their analysis are given in the remainder of
this subsection.

Algorithm Description

Since the difference to Algorithm 1.1 is mainly the added freezing scheme,
we start with its description. At time i, we say an inactive edge ej ∈ M ′ is
frozen if its cost is below OPTi

i2 , and denote by Fi the set of all such edges.
Furthermore, if for a previously frozen ej we have that c(ej) > OPTi

i
, then

we unfreeze the edge and delete it from Fi. Note that we use the edge ej

of the online matching to determine whether rj is frozen, but rj is possibly
matched in Mi via a different edge.

While we generally aim tomatch frozen requests as in the online matching M ′,
this assignment is not implemented until the request takes part in a recourse
step. We show that this prevents unnecessary recourse actions that could
be caused by requests repeatedly alternating between being frozen and
unfrozen. Denote by MF

i ⊆ Fi the subset of frozen edges that is in Mi, i.e.,
the set of edges where the aforementioned assignment according to M ′ was
implemented during a recourse step. When unfreezing a request, however,
there is no delay and the corresponding change must be reflected in the
matching immediately, since the cost contribution of the frozen edge is
now too high.

1.2 A Constant-Competitive Algorithm with Bounded Recourse 31

Algorithm 1.2
Upon arrival of the i-th request ri: ▷ ri matched in M ′ via ei = (ri, si)

Matching ri

1: match ri to si as in M ′ ▷ label ri active
Freezing/Unfreezing

2: determine the set Fi of frozen edges
3: for inactive requests rj that become unfrozen do
4: remove ej from MF

i

5: repair assignments on corresponding path of M∗
h(i,j) ⊕MF

i

Recourse Step
6: if there is an active rj ∈ Ii with ℓ(Ij) < ℓ(Ii) then ▷ Ii creates top block
7: for rj ∈ Ii recently frozen do ▷ label rj ∈ Ii \ {ri} inactive
8: add ej = (rj , sj) to MF

i and reassign rj to sj

9: for unfrozen rj ∈ Ii with j ̸= i do
10: reassign rj according to M∗

i−1 ⊕MF
i

With the addition of the freezing scheme, our algorithm, summarized as
Algorithm 1.2, now partitions the requests into three groups: (i) active
requests matched according to the online matching M ′, (ii) inactive, frozen
requests in MF, also matched according to M ′, and (iii) inactive requests
that are not in MF, matched according to the detour matching M∗ ⊕ MF.
Similarly, the algorithm itself is now divided into three steps, that are all
executed when a new request arrives:

Matching ri Upon arrival of request ri, label it active and match it according
to the online matching M ′, that is, via the edge ei = (ri, si).

Freezing/Unfreezing Update the set Fi of frozen edges according to the
following freezing rules: Freeze an edge ej ∈ M ′ if its cost is below OPTi

i2 ,
and unfreeze a previously frozen edge ej ∈ M ′ if c(ej) > OPTi

i
. Delete

unfrozen edges from Fi and MF
i , and reassign them with respect to the

detour matching M∗
h(i,j) ⊕ MF

i , where h(i, j) is defined as the index of
the highest-level inactive interval at time i which contains rj . That is, we
have h(i, j) = max{k ≤ i | rj ∈ Ik and Ik is not in a top block}. For an
illustration of h(i, j), see Figure 1.3, where h(i, j) = ℓ. Reassignments due
to unfreezing are efficiently implemented as follows.

Consider an edge e = (s, r) right before it is unfrozen. If e is already matched
according to the offline matching, then there is nothing to do. Otherwise, it
must be part of an alternating path or cycle in M∗ ⊕ MF. In the latter case,

32 Chapter 1 Online Minimum-Cost Matching with Recourse on the Line

Online Minimum-Cost Matching with Recourse on the Line

s s′

P

r′ r s s′

P1 P2

r′ r

Fig. 1.5: Illustration of Step 4 in Algorithm 1.2. Edges of M∗ are drawn wiggled,
edges of MF solid and edges of the detour matching M∗ ⊕MF dashed.
After unfreezing r, the removal of (r, s) splits the path P in M∗ ⊕MF in
two augmenting paths P1 and P2.

again, no recourse action needs to be taken as the removal of e from MF

results in a path from r to s. In the detour matching, we want to connect
the ends of this path, which is already accomplished by the edge e = (s, r).
Consider the case that e ∈ P for some alternating path P in M∗ ⊕ MF that
starts in a request r′ and ends in a server s′. Unfreezing e and matching
according to M∗ ⊕ MF decomposes P into the r′-s-path P1 and the r-s′-
path P2. In Algorithm 1, we implement these changes via two recourse
actions: we reassign r to s′ and r′ to s; see Figure 1.5.

Recourse Step If there is no j < i such that Ij ⊆ Ii and ℓ(Ij) = ℓ(Ii), the
arrival of ri produces a new top block and triggers a recourse step. In this case,
we assign requests in Ii that were recently frozen according to M ′ and add the
corresponding edge to MF

i . Next, we reassign all other requests (unfrozen,
inactive) that lie in Ii according to M∗

i−1 ⊕ MF
i , the detour matching.

Algorithm Analysis

We start again by verifying that Algorithm 1.2 produces a matching after
each iteration. As before, ri can be matched to si in Step 1. Similarly,
active edges do not interfere in the unfreezing procedure (Step 4) due to
the definition of h(i, j). It remains to argue that we can indeed construct
the detour matching as described. To this end, we consider the symmetric
difference M∗ ⊕ MF and show that, for an unfrozen request r, there is an
augmenting path P from r to a server s′ not covered by MF. To see this,
note that in M∗ ⊕ MF the unfrozen r is incident only to an edge (r, s) ∈ M∗,
so it cannot be contained in a cycle. Additionally, the path starting with (r, s)
cannot end at a request, since the remaining requests on the path are covered
by an edge of MF and M∗ each. Thus, it must end at a server s′ that is not
matched in MF, as required.

1.2 A Constant-Competitive Algorithm with Bounded Recourse 33

Observation 1.15. At the end of each iteration, the matching Mi produced by
Algorithm 1.2 is feasible.

When bounding the competitive ratio, we may use the results from Sec-
tion 1.2.1. By Lemma 1.8, the cost of active edges is in O(OPT). Using
Observation 1.14 and the definition of the freezing scheme, we cab bound
the cost of inactive edges by c(MF)+c(M∗ ⊕MF) ≤ (t+2) ·OPT. Together,
this implies that the competitive ratio of Algorithm 1.2 is constant.

Corollary 1.16. Algorithm 1.2 has a competitive ratio of O(1).

Bounding the Recourse Due to delaying reassignments until an appropriate
recourse step, freezing a request r does not cause any immediate recourse
actions. Unfreezing r, on the other hand, may cause reassignments (Step 4),
namely of r and possibly one additional request, see Figure 1.5. We charge
these two recourse actions to r, in particular, to the last recourse step r

participated in. However, recourse due to unfreezing r happens at most once
between two consecutive recourse steps of r. Thus, a request is charged at
most three times per recourse step it participates in, once for the recourse
step itself and possible two times more for a subsequent unfreezing.

Observation 1.17. A request is charged at most three times the number of
recourse steps it is involved in.

For a request that was frozen at time i and unfrozen at time j > i, we know
that c(e) ≤ OPTi

i2 and c(e) >
OPTj

j
for the corresponding edge e ∈ M ′.

Since OPTi ≤ OPTj , this implies the following.

Observation 1.18. A request frozen at time i stays frozen at least until time i2.

On the other hand, the number of recourse steps in which a continuously
unfrozen request takes part in can be bounded from above.

Lemma 1.19. If a request r ∈ Ii ⊆ Ij is not frozen from time i to time j, then
it holds that ℓ(Ij) − ℓ(Ii) = O(log j). In particular, between time i and j, there
are O(log j) recourse steps in which r can participate.

34 Chapter 1 Online Minimum-Cost Matching with Recourse on the Line

Online Minimum-Cost Matching with Recourse on the Line

Proof. Consider the search interval Īj = (sL
j , sR

j). By definition of search
intervals, there exist augmenting paths P L

j , P R
j connecting rj to sL

j and sR
j

with the same t-net cost as Pj , the path used by the t-net-cost algorithm. We
bound the length of Pj ∈ {P L

j , P R
j } by

c(Pj) = c(Pj ∩ M∗
j−1) + c(Pj ∩ M∗

j) ≤ 2t · OPTj . (1.9)

Without loss of generality, assume Pj = P L
j . Interpreting the point sR

j

as a virtual server and assuming that it is contained in S, we could aug-
ment M∗

j−1 also along P R
j yielding a different matching M̃∗

j . By definition
of P R

j and Equation (1.1), we have

t · c(Pj ∩ M∗
j) − c(Pj ∩ M∗

j−1) = ϕ
M∗

j−1
t (Pj) = ϕ

M∗
j−1

t (P R
j)

= t · c(P R
j ∩ M̃∗

j) − c(P R
j ∩ M∗

j−1).

Thus,
c(P R

j) = c(P R
j ∩ M∗

j−1) + c(P R
j ∩ M̃∗

j)

≤ c(P R
j ∩ M∗

j−1) + c(Pj ∩ M∗
j) + 1

t
· c(P R

j ∩ M∗
j−1)

≤ 3t · OPTj .

From Equation (1.9), we obtain |̄Ij | ≤ c(P L
j) + c(P R

j) ≤ 5t · OPTj ,. This
implies that |Ij | ≤

∑
k≤j

|̄Ik| ≤ 5t · j · OPTj . On the other hand, the cost
of |Ii| can be bounded from below by c(e), where e is the edge in M ′ incident
to r, as both endpoints of e are contained in the interval. We then obtain

|Ij |
|Ii|

≤ 5t · j · OPTj

c(e) < 5t · j3. (1.10)

The last inequality follows from the assumption that r is not frozen at time j,
which implies c(e) >

OPTj

j2 . Recall that, by the definition of levels, we
have |Ii| < (1 + ε)ℓ(Ii) and (1 + ε)ℓ(Ij)−1 ≤ |Ij |. Thus, Equation (1.10)
allows us to conclude

ℓ(Ij)−ℓ(Ii) ≤ 1+log(1+ε)(5t·j3) = 1+log(1+ε)(5t)+ 3 log j

log(1 + ε) ≤ c·log j ,

(1.11)
for some constant c. Regarding the second claim, recall that a request r

participates in a recourse step whenever an interval containing r opens a
new top block (i.e., a new level) while r is not (freshly) frozen. Between

1.2 A Constant-Competitive Algorithm with Bounded Recourse 35

time i and time j, this can only happen for intervals Ih of distinct levels for
which Ii ⊆ Ih ⊆ Ij . The claim then directly follows Equation (1.11).

We can now use Lemma 1.19 and Observation 1.18 to bound the total number
of recourse actions taken by Algorithm 1.2.

Lemma 1.20. Algorithm 1.2 uses a recourse budget of at most O(log n).

Proof. Consider a request r. By Observation 1.17, it suffices to bound the
number of recourse steps that r is involved in. Let [iU

h , iF
h], for h = 0, 1, . . . , k,

be maximal intervals of consecutive time points during which r is not frozen,
i.e., r is not frozen only at the time points i with i ∈ [iU

h , iF
h] for some h. We

use induction on k to show that r participates in at most 2c · log(iF
k) recourse

steps, where c is the constant from Equation (1.11). The base case, k = 0,
follows directly from Lemma 1.19. For k ≥ 1, we use Observation 1.18
to obtain (iF

k−1)2 ≤ iU
k ≤ iF

k . By induction hypothesis, the number of
reassignments that involve r in the first k − 1 time intervals is at most

2c · log(iF
k−1) ≤ 2c · log

(√
iF
k

)
= c · log(iF

k).

For the last time interval, we have at most c · log(iF
k) such recourse steps by

Lemma 1.19. Since iF
k ≤ n, this concludes the proof.

Proof of Theorem 1.1. Corollary 1.16 and Lemma 1.20 directly imply the
validity of Theorem 1.1. This concludes the analysis of Algorithm 1.2.

1.2.3 A Scalable Algorithm

In the previous subsection, we presented an algorithm, Algorithm 1.2, that
has a constant competitive ratio at the price of a recourse budget that is
bounded by O(log n). While the focus was on the former, i.e., on achieving
a constant competitive ratio, it may be of practical interest to more flexibly
balance the cost performance of the algorithm with its recourse budget
instead, as described in Theorem 1.2. Indeed, all the building blocks needed
for the proof of this theorem have already been established in the previous

36 Chapter 1 Online Minimum-Cost Matching with Recourse on the Line

Online Minimum-Cost Matching with Recourse on the Line

subsections. As we now show, a slight alteration to Algorithm 1.2 already
yields the desired cost-recourse trade-off.

Theorem 1.2. For any function f : N −→ N with 1 ≤ f(n) ≤ log n, there is
an algorithm for online minimum-cost matching on the line that is O(f(n))-
competitive and has an amortized recourse budget of O(log n

f(n)).

Proof. To obtain an algorithm that isO(f(n))-competitive and uses a recourse
budget of O(log n

f(n)), we alter Algorithm 1.2 as follows. Intuitively, and in the
terms of the high-level overview from the beginning of this section, we want
the input buffers (top blocks) to have a higher capacity (more active requests),
leading to a larger cost due to the contribution of edges in M ′ but lower
recourse due to less frequent updates. We achieve this by “vertically” (consider
the visualization in Figure 1.3) enlarging the area of top blocks and allowing
the requests of several non-disjoint blocks to be active. However, intersecting
active blocks may not differ in their level by more than f(n), which specifies
the “height” of the input buffer.

Specifically, all we do is change Step 5 of Algorithm 1.2 as follows.

5: if there is an active rj ∈ Ii such that ℓ(Ij) ≤ ℓ(Ii) − f(n) then

It is easy to see, that the cost of active edges is then in O(f(n) · OPT), since
the set of blocks with active requests can be partitioned into at most f(n) sets
of disjoint blocks to which our original analysis can be applied separately.

Similarly, when considering the recourse budget, note that the first part of
the statement of Lemma 1.19 remains true, but now implies that an unfrozen
request can participate in at most O(log j

f(n)) recourse steps. Lemma 1.20 can
easily be adapted to account for the additional factor of 1

f(n) which concludes
the proof of the theorem.

To see that our analysis is asymptotically optimal, we consider the family of
lower bound instances (for the online setting) described in [AFT18]. Roughly,
they are constructed as follows.

An instance of the family consists of n = 2h −1 requests and n+1 servers that
alternate on the line. That is, requests are placed at points 2i−1 for i ∈ [n] and
servers at points 2i − 2 for i ∈ [n + 1], where [n] denotes the set {1, 2, . . . , n}.

1.2 A Constant-Competitive Algorithm with Bounded Recourse 37

The requests appear in h batches, each of which contains every second request
of those that have not appeared yet: Initially, requests 4i − 3 for i ∈ [2h−2],
then requests 8i − 5 for i ∈ [2h−3], and so on. Restricting the class of
considered algorithms by some assumptions, which are satisfied for all known
deterministic online algorithms to date, one can show the following properties.
Any such algorithm matches a requests of batch i at minimum cost to either
the nearest free server to the left or to the right. When partitioning requests of
a batch into pairs of consecutive requests, the requests of a pair match towards
each other, i.e., to the two free servers between the two requests. Between
those two servers, in turn, always lies a single request which is contained in
the next batch. Thus, the cost of an edge in batch i is precisely 2i−1, which
shows the lower bound. For details, see [AFT18].

Structurally, the exponentially increasing edge costs mean that every arriving
request creates a new top block, similarly as in Figure 1.4. Additionally, the
structure of aggregate search intervals resembles a full binary tree. Specif-
ically, there are log n levels and all n+1

2 requests on the lowest level will
participate in log n

f(n) recourse steps due to the arrival of their higher level
ancestors. At the same time, no request is frozen, as OPTi = i and the
minimum cost of an edge is 1. Therefore, we have a lower bound of Ω(log n

f(n))
for the recourse budget of our algorithm.

1.3 A Near-Optimal Algorithm on Alternating Instances

In this section, we consider alternating instances, i.e., instances on which
requests and servers alternate on the line. We assume without loss of general-
ity that |S| = |R|. For such instances, an optimum (offline) matching assigns
all requests either to the server directly to their left or all requests to the
server on their right. Denote these matchings by ML and MR, respectively,
and call their edges minimal.

We describe a (1 + ε)-competitive algorithm for alternating instances that
reassigns each request at most a constant number of times. In addition to its
output M , it maintains M∗, the matching produced by the offline t-net-cost
algorithm, and a set of frozen edges MF. In contrast to Algorithm 1.2,
we are not only able to disregard M ′, but furthermore we can employ a

38 Chapter 1 Online Minimum-Cost Matching with Recourse on the Line

Online Minimum-Cost Matching with Recourse on the Line

much simpler freezing scheme. Specifically, a request is frozen when it is
reassigned for the k-th time, for some k only depending on ε. The request
remains matched to its current server perpetually and the corresponding edge
is added to MF. Non-frozen requests are matched according to the detour
matching M∗ ⊕ MF as described in Section 1.2. By design, the recourse
budget per request is constant, only the competitive analysis remains. The
algorithm is summarized as Algorithm 1.3.

Observe that when considered as line segments, the augmenting paths Pi

used by the t-net-cost algorithm have a laminar structure on alternating
instances, since after time i, there are no free requests or servers in the
portion of the line corresponding to Pi. This allows us to view augmenting
paths as nodes of a forest, the path forest, where Pi is a child of the minimal
augmenting path that properly contains it, or a root if no such path exists
(see Figure 1.6). The depth of a path Pi denotes its distance to the root of
its tree and determines the number of reassignments of the corresponding
request ri in M∗.

The intuition why such an extremely simple freezing scheme as utilized in
Algorithm 1.3 works on alternating instances, relies on the fact that, here,
we can draw a direct connection between the length of a path Pi and its
depth in the path forest. Specifically, we will show in Lemma 1.23, that the
lengths of augmenting paths grow exponentially when moving from a leaf
of the path forest to the corresponding root. Since ancestors of a request
correspond to reassignments in M∗, we can charge the cost of frozen edges
of a certain depth as well as possible detours to higher level ancestors. The
per-request recourse budget is thus directly connected to the competitive

rh rj1 rj2 ri1 rj3 ri2

P L
j1

P R
j1

P L
j2

P R
j2

P L
j3

P R
j3

Pi1= P L
i1

P R
i1

Pi2= P L
i2

P R
i2P L

h

Ph= P R
h

Fig. 1.6: Illustration of a path tree (red) in an alternating instance. Paths not chosen
for augmentation are dashed. Servers are depicted as squares and requests
as filled circles.

1.3 A Near-Optimal Algorithm on Alternating Instances 39

Algorithm 1.3 with per-request recourse budget k ∈ N
initialize recourse counter hr ← 0 for all r ∈ R, MF ← ∅
Upon arrival of the i-th request ri:
1: update M∗

i−1 by augmenting along Pi, and set hr ← hr + 1, for all r ∈ Pi

2: for all r ∈ Pi with hr > k do ▷ r frozen
3: MF ←MF ∪ {(r, s)}, where s is the server currently matched to r

4: for all r ∈ Pi with hr ≤ k do ▷ r not frozen
5: reassign r with respect to M∗

i ⊕MF

ratio since a larger recourse budget means charging to a higher ancestor with
exponentially larger cost.

Notation We use a similar interval structure as before and keep the same
notation. The definition of the intervals is slightly changed: Consider inter-
vals Ii = [sL

i , sR
i], where sL

i , sR
i ∈ S are the closest free servers on the line

to the left and right of ri, respectively, at the time of its arrival. For this to
be well-defined, we possibly need to place an additional server at ∞ or −∞.
Denote by P L

i , P R
i the alternating paths connecting r to sL

i and sR
i , respec-

tively, that have shortest t-net cost. Recall that for the t-net-cost algorithm
there are no free servers inside the search interval. Thus, we have Īi ⊆ Ii

and the following observation holds.

Observation 1.21. We have Pi ∈ {P L
i , P R

i }.

The following lemma establishes some properties of the offline t-net-cost
algorithm on alternating instances.

Lemma 1.22. (i) Paths P L
i , P R

i and matching M∗
i only use minimal edges.

(ii) If Pi = P X
i , for X ∈ {L, R}, on Ii, locally, we have that M∗

i = MX.
Specifically, this implies ϕ

M∗
i−1

t (Pi) = ϕMY

t (Pi) for X ̸= Y ∈ {L, R}.

(iii) If Pj is a child of Pi, then Pi = P L
i if and only if Pj = P R

j .
In particular, we have Ij ⊆ Pi and Ij ∩ M∗

j ∩ M∗
i = ∅.

Proof. Due to symmetry, we assume without loss of generality that Pi = P R
i .

(i): We use induction on i. For the base case, i = 1, Statement (i) is easily seen
to be true. Hence, consider i ≥ 2. Suppose, for sake of contradiction, that Pi

40 Chapter 1 Online Minimum-Cost Matching with Recourse on the Line

Online Minimum-Cost Matching with Recourse on the Line

contains a non-minimal edge. Given a choice, consider the non-minimal
edge e which is closest to si on Pi. Moving from ri to si along Pi, edges
leading from a server to a request are in M∗

i−1 and by induction hypothesis
minimal. Thus, e = (r, s)∈M∗

i leads from r to s.

Consider the server s′ that is directly to the right of r. Since e is not minimal,
we have r < s′ < r′ < s, with r′ being the request right of s′. We first
consider the case that s′ is free. Observation 1.21 implies s′ = si. We show
that altering Pi to go from r directly to s′ yields a path of strictly lower t-net
cost. To this end, first note that the remaining edges on Pi after s are minimal
since e is closest to si. Thus, the t-net cost of the subpath of Pi starting at r

is at least t · c(r, s) − c(s′, s) = t · c(r, s′) + (t − 1) · c(s′, s) > t · c(r, s′), with
the last term being the t-net cost of connecting r directly to s′.

In the case that s′ is matched, on the other hand, it must be matched to r′ due
to the induction hypothesis. Therefore, replacing e by (r, s′), (s′, r′), (r′, s)
reduces the t-net cost by (t + 1) · c(s′, r′), contradicting the minimality of Pi.

(ii): By Statement (i), P L
i and P R

i only consist of minimal edges. Moving
along Pi from left to right, edges from server to request are in M∗

i−1 and
edges from request to server in M∗

i . This is simply due to the fact that Pi is
a path that augments M∗

i−1 to form M∗
i , and it starts at a request and ends

at a server. Therefore, M∗
i−1 ∩ P R

i ⊆ ML. With a symmetrical argument, we
obtain P L

i ∩ M∗
i−1 ⊆ MR. After augmenting M∗

i−1 along Pi, the edges point
in the opposite direction and the claim follows.

(iii): By (ii), we know that M∗
j ∩ Ij = MX, say X = R, so edges are of the

form (r, s) with r < s. Due to Statement (i), only augmenting paths leading
from right to left can augment along such edges. If this happens, all of Ij

is traversed as there is no free server in its interior. As parent of Pj , that
path Pi is the first path to properly contain Pj and thus Pi = P L

i , and in
particular, Ij ⊆ Pi. The equation Ij ∩ M∗

j ∩ M∗
i = ∅ then follows directly

from statement (ii).

Note that due to Lemma 1.22 (i), the sum of edge costs of an augmenting
path is equal to the length of the corresponding line segment. In particular,
we have c(P L

i) + c(P R
i) = |Ii|. For simplicity, we abuse notation and use Ii

to denote both, the interval on the line, and the set of edges P L
i ∪ P R

i .

1.3 A Near-Optimal Algorithm on Alternating Instances 41

Lemma 1.22 can further be used to show that when considering the sum of
lengths of augmenting paths of a certain depth in the path forest, then this
number increases exponentially as the depth decreases, i.e., towards a root.
Fix an augmenting path Ph and consider the induced subtree of augmenting
paths with root Ph. Denote by Hk the set of indices of paths at depth k

with Ph being at depth 0.

Lemma 1.23. Consider a path Ph and its grandchildren, i.e., Pj with j ∈ H2.
Then

c(Ph) ≥
(
2 − 1

t

)
·

∑
j∈H2

c(Pj).

Proof. Denote by Pi, for i ∈ I = H1, the children of Ph in the path for-
est and by Ji ⊆ J = H2 the sets of indices of their respective children.
Without loss of generality, assume that Ph = P R

h . Lemma 1.22 (iii), im-
plies Pi = P L

i , and Pj = P R
j , for i ∈ I, j ∈ J ; see Figure 1.6. With,

again, Lemma 1.22 (iii), and using the fact that ϕM∗
i−1t (P R

i) ≥ ϕM∗
i−1t (P L

i),
by definition of the t-net-cost algorithm, we get

t · c(Ph) ≥ t ·
∑
i∈I

(
c(P L

i) + c(P R
i)

)
≥ t ·

∑
i∈I

c(P L
i) +

∑
i∈I

ϕM∗
i−1

t (P R
i)

≥ t ·
∑
j∈J

c(P R
j) + t ·

∑
i∈I

c(P L
i \ (∪j∈Ji P R

j)) +
∑
i∈I

ϕM∗
i−1

t (P L
i).

(1.12)

Using Lemma 1.22 (ii), we get

ϕM∗
i−1

t (P L
i) (ii)= ϕMR

t (P L
i)

=
∑
j∈Ji

(
ϕMR

t (P L
j) + ϕMR

t (P R
j)

)
+ ϕMR

t (Pi \ (∪j∈Ji Ij))

(ii)
≥

∑
j∈Ji

(
ϕM∗

j−1
t (P L

j) + ϕMR
t (P R

j)
)

− t · c(Pi \ (∪j∈Ji Ij)).

42 Chapter 1 Online Minimum-Cost Matching with Recourse on the Line

Online Minimum-Cost Matching with Recourse on the Line

Since ϕM∗
j−1t (P L

j) ≥ ϕM∗
j−1t (P R

j) = ϕML
t (P R

j), the above together with
Inequality (1.12) implies

t · c(Ph) ≥
∑
j∈J

(
t · c(P R

j) + ϕML
t (P R

j) + ϕMR
t (P R

j)
)

≥ (2t − 1) ·
∑
j∈J

c(P R
j),

where last inequality follows from the observation that, due to Equation (1.1),
it holds that ϕML

t (P) + ϕMR
t (P) = (t − 1) · c(P).

We are now equipped to prove Theorem 1.3.

Theorem 1.3. For alternating instances of online minimum-cost matching
on the line, there is a (1 + ε)-competitive algorithm that reassigns each re-
quest O(1

ε2) times.

Proof. Fix an augmenting path Ph and consider its descendants Pj which are
at depth 2k +2 in the path tree rooted at Ph, i.e., j ∈ H2k+2. The intervals Ij

are contained in paths Pj′ , j′ ∈ H2k+1, by Lemma 1.22 (iii). Lemma 1.23
implies ∑

j∈H2k+2

|Ij | ≤
∑

j′∈H2k+1

c(Pj′) ≤
(
2 − 1

t

)−k ·
∑

i∈H1

c(Pi). (1.13)

Raghvendra [Rag16] shows that the t-net cost of augmenting paths is always
non-negative. In particular, ϕM∗

h−1t (Ph) = t ·c(Ph ∩M∗
h)−c(Ph ∩M∗

h−1) ≥ 0.
Therefore, we obtain∑
i∈H1

c(Pi) ≤ c(Ph) = c(Ph ∩ M∗
h) + c(Ph ∩ M∗

h−1) ≤ (t + 1)·c(Ph ∩ M∗
h).

(1.14)

Similarly, we have∑
i∈H1

c(Pi) ≤ (t + 1) ·
∑

i∈H1

c(Pi ∩ M∗
i) ≤ (t + 1) · c(Ph ∩ M∗

i). (1.15)

1.3 A Near-Optimal Algorithm on Alternating Instances 43

On an interval Ii with i ∈ H1, locally, M∗
h = ML if and only if M∗

i = MR

by Lemma 1.22 (ii). For X = L and X = R, Equation (1.13) together with
Equation (1.14) and (1.15), respectively, implies∑

j∈H2k+2

|Ij | ≤
(
2 − 1

t

)−k · (t + 1) · c
(

Ph ∩ MX
)

.

Rearranging, we obtain[
1

t+1

(
2 − 1

t

)k − 1
]

·
∑

j∈H2k+2

|Ij | ≤ c
(

Ph \ (∪j∈H2k+2 Ij) ∩ MX
)

.

(1.16)

Denote by α(k, t) the term in square brackets. When a (minimal) edge (r, s)
is frozen, the remaining instance on S \ {s} × R \ {r} is again alternating
and at most one request will take a detour due to (r, s) being frozen. The
additionally incurred cost when compared to M∗ is bounded by 2 · |Ir|
and can, via Inequality (1.16), be charged to non-frozen parts of MOPT

(recall that MOPT ∈ {ML, MR}). The set difference Ph \ (∪j∈H2k+2 Ij) in
Inequality (1.16) ensures that the portion Ph ∩ MOPT of MOPT is charged
at most 2k + 2 times before Ph itself is frozen and the cost is charged to
another portion of MOPT. This leads to a competitive ratio of (t + 2k+2

α(k,t)).

We set t = 1 + ε and show that this results in a competitive ratio of 1 + 2ε

for an appropriate choice of k. This is equivalent to showing that

2k + 2 ≤ ε · α(k, t) = ε

2 + ε
·
(

1 + ε

1 + ε

)k

− ε.

Assuming ε < 2 and using
(

1 + ε
1+ε

) 4
ε

≥ e for ε < 2, this can be further
simplified to

k · 10
ε

≤ (e
ε
4)k.

After setting k = 30 · ε−2, this statement is true for all ε < 2. This concludes
the proof of the theorem.

As a byproduct, we show, for this special class of instances, a result in the
online setting without recourse. It relates the competitive ratio to the cost
metric, i.e., the maximum difference in edge cost for connecting a request to

44 Chapter 1 Online Minimum-Cost Matching with Recourse on the Line

Online Minimum-Cost Matching with Recourse on the Line

a server and refines the best known competitive ratio of O(log n) by Raghven-
dra [Rag18]. The proof of the following theorem additionally contains a
proof for an upper bound of O(log n) for alternating instances that is much
simpler than the general proof by Raghvendra [Rag18].

Theorem 1.24. For alternating instances, the online t-net-cost algorithm is
O(min{log n, log ∆})-competitive, where ∆ = maxr,r′∈R,s,s′∈S

c(r,s)
c(r′,s′) .

Proof. Consider an edge ei of M ′ and assume Pi = P R
i . By Lemma 1.22 (ii)

and the definition of the t-net-cost algorithm,

t · c(P L
i ∩ ML) − c(P L

i ∩ MR) = ϕM∗
i−1

t (P L
i)

≥ ϕM∗
i−1

t (P R
i)

= t · c(P R
i ∩ MR) − c(P R

i ∩ ML),

which implies

c(P R
i ∩ MR) ≤ 1

t
· c(P R

i ∩ ML) + c(P L
i ∩ ML).

Therefore,

c(Pi) = c(P R
i ∩ ML) + c(P R

i ∩ MR)

≤
(
1 + 1

t

)
· c(P R

i ∩ ML) + c(P L
i ∩ ML). (1.17)

As in Equation (1.14), we use ϕM∗
i−1t (Pi) = t ·c(Pi ∩M∗

i)−c(Pi ∩M∗
i−1) ≥ 0

to obtain

c(Pi) = c(Pi ∩ M∗
i) + c(Pi ∩ M∗

i−1)

≤ (t + 1) · c(Pi ∩ M∗
i)

= (t + 1) · c(Pi ∩ MR). (1.18)

Together, Inequalities (1.17) and (1.18) imply

c(ei) = c(Pi) ≤ c(Ii ∩ MOPT) · max{t + 1, 1 + 1
t
}.

Since intervals with have the same depth in the path forest are disjoint, we can
bound the lengths of paths with identical depth by max{t+1, 1+ 1

t
}·OPT. As

1.3 A Near-Optimal Algorithm on Alternating Instances 45

there are at most 2 · log(2−1/t)∆ different depths in total due to Lemma 1.23,
this bounds the competitive ratio by O(log ∆).

Further, by using the same approach as above, we can directly obtain the
upper bound of O(log n) from Raghvendra [Rag18]. Specifically, we can
bound the cost of the nodes of depth O(log n) or lower in the path forest
by O(log n) · max{t + 1, 1 + 1

t
} · OPT as above. And for nodes Pj of larger

depth, we denote by Pi the root of the corresponding path tree and apply
Lemma 1.23 repeatedly, O(log n) times, to bound their cost by

c(Pj) ≤ O(1
n

) · c(Pi) ≤ 1
n

· O(OPT).

Noting that there are less than n such edges completes the proof.

r1 r4
r2r3

2ε
1+ε

2ε
1+ε

2ε
1+ε

2ε
1+ε

ε
1+ε11

P1

P2

P3

P4

Fig. 1.7: A non-alternating instance, where the strategy from Section 1.3 fails. Edge
costs are indicated above the corresponding portion of the line. Paths Pi

are the minimum t-net-cost paths chosen by the offline matching M∗ for
augmentation (t = 1 + ε). In each iteration, request r1 is reassigned.
However, the cost of the optimum solution does not increase exponentially.
More precisely, OPTi = 1 +

∑i−1
j=1

j·ε
1+ε

. It is therefore not possible to
freeze request r1 after a constant number of reassignments. Note, however,
that the amortized recourse budget is constant, even without freezing.

1.4 Conclusion

In this chapter, we gave first non-trivial results for the online minimum-
cost bipartite matching problem with recourse. The results were obtained
simultaneously with and independently of Gupta et al. [GKS20] who consider
also more general metrics than the line. We confirmed that an average

46 Chapter 1 Online Minimum-Cost Matching with Recourse on the Line

Online Minimum-Cost Matching with Recourse on the Line

recourse of O(log n) per request is sufficient to obtain an O(1)-competitive
matching on the line. It remains open if such a result can be obtained in a
non-amortized setting, where the recourse is available only per iteration. Our
algorithm is clearly designed for the amortized setting as it buffers online
matching decisions and repairs them in batches.

Further, it remains open whether constant recourse per request is sufficient
for maintaining an O(1)-competitive matching on the line, as for the case
of alternating requests. This may be very well possible as there is, currently,
no lower bound that rules this out. Note, that the strategy proposed in
Section 1.3 fails in the general case, see Figure 1.7 for an example. However,
we hope that the ideas provided in this chapter still prove helpful for solving
this open question.

1.4 Conclusion 47

Fully Dynamic Algorithms for
Knapsack Problems with
Polylogarithmic Update Time 2
Knapsack problems are among the most fundamental optimization problems.
In their most basic form, we are given a knapsack with capacity S ∈ N
and a set of n items, where each item j ∈ [n] := {1, 2, . . . , n} has a
size sj ∈ N and a value vj ∈ N. The knapsack problem asks for a sub-
set of items, P ⊆ [n], with maximum total value v(P) :=

∑
j∈P

vj and such
that the total size s(P) :=

∑
j∈P

sj does not exceed the knapsack capacity S.
In the more general multiple knapsack problem, we are given m knapsacks
with capacities Si for i ∈ [m]. Here, the task is to select m disjoint sub-
sets P1, P2, . . . , Pm ⊆ [n] that satisfy the capacity constraints s(Pi) ≤ Si

and are such that the total value of all subsets
∑

i∈[m] v(Pi) is maximized.

Regarding the computational complexity of knapsack variants, it is known
that multiple knapsack is strongly N P-hard, even for identical knapsack
capacities, as it is a special case of bin packing. The knapsack problem, on the
other hand, is only weakly N P-hard and admits pseudo-polynomial time al-
gorithms, the first one of which was already published in the 1950s [Bel57].

As a consequence of these hardness results, each of the knapsack variants
has been studied extensively through the lens of approximation algorithms.
Of particular interest are approximation schemes, families of polynomial-time
algorithms that contain an algorithm for each ε > 0 that computes a (1 − ε)-
approximate solution, i.e., a feasible solution with total value within a factor
of (1 − ε) of that of an optimal solution OPT, in time polynomial in the
input size. Based on the dependency on ε of the running time, we distinguish
Polynomial Time Approximation Schemes (PTAS) with arbitrary dependency
on ε, i.e., a running time of nf(ε), Efficient PTAS (EPTAS) where arbitrary
functions f(ε) may only appear as a multiplicative factor, i.e., f(ε)nO(1),
and Fully Polynomial Time Approximation Schemes (FPTAS) with polynomial
dependency on 1

ε
, i.e., 1

ε

O(1)
nO(1).

49

The first approximation scheme for knapsack was an FPTAS by Ibarra and
Kim [IK75] and initiated a long sequence of follow-up work, which is still
active [Cha18; Jin19]. multiple knapsack is substantially harder and does not
admit an FPTAS, unless P = N P , even with two identical knapsacks [CK05].
However, approximation schemes with running times of the form nf(ε)

(PTASs) are known [Kel99; CK05] as well as improvements to only f(ε)nO(1)

(EPTASs) [Jan09; Jan12]. All these algorithms are static in the sense that
the full instance is given to an algorithm and is then solved.

Given the ubiquitous dynamics of real-world problems, many of which can
be modeled as knapsack problems, it is natural to ask for dynamic algorithms
that adapt to small changes in the packing instance while spending only little
computation time. More precisely, during the execution of the algorithm,
items and knapsacks arrive and depart and the algorithm needs to maintain
an approximate knapsack solution with an update time polylogarithmic in
the number of items in each step. A dynamic algorithm is then equivalent
to a data structure that implements these updates efficiently and supports
relevant query operations such as asking for the packing of a specific or for
the solution value.

A practical application is the dynamic estimation of the profit for scheduling
jobs in computing clusters in which virtual machines can be moved among
physical machines [BB10]. This allows the service provider to adapt the
provided capacity, i.e., the currently running servers, to the current demand,
see, e.g., [BKB07; LTC14; DKL14]. An efficient framework for multiple knap-
sack can be viewed as a first-stage decision tool: In real-time, it determines
whether the customer in question should be allowed into the system based
on the cost of possibly powering and using additional servers. As the service
provider has to decide immediately which request she wants to accept, she
needs to obtain the information fast, i.e., sublinear in the number of requests
already in the system.

Generally, dynamic algorithms constitute a vibrant research field in the con-
text of graph problems. We refer to surveys [DEG+10; Hen18; BP11] for
an overview on dynamic graph algorithms. Interestingly, dynamic algo-
rithms with polylogarithmic update time are known only for a small number
of graph problems, among them connectivity problems [HK99; HLT01],

50 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

the minimum spanning tree problem [HLT01], and the vertex cover prob-
lem [BHN17; BK19]. Recently, this was complemented by multiple condi-
tional lower bounds that are typically linear in the number of nodes or edges;
see, e.g., [AW14]. Over the last few years, the generalization of dynamic
vertex cover to dynamic set cover gained interest leading to near-optimal ap-
proximation algorithms with polylogarithmic update times [BHN19; BHI15;
GKK+17; AAG+19]. Also recently, algorithms have been developed for
maintaining maximal independent sets, e.g., [BDH+19; CZ19; Mon19], and
approximate maximum independent sets in special graph classes [HNW20;
CMR20; BCI+20].

For packing problems, there are hardly any dynamic algorithms with small
update time known. A notable exception is a result for bin packing that
maintains a 5

4 -approximate solution with O(log n) update time [IL98]. This
lack of efficient dynamic algorithms is in stark contrast to the aforementioned
intensive research on computationally efficient algorithms for packing prob-
lems. Our work bridges this gap initiating the design of data structures and
algorithms that efficiently maintain near-optimal solutions.

Our Contribution In this chapter, we present dynamic algorithms for main-
taining approximate solutions for three problems of increasing complexity:
knapsack, multiple knapsack with only few knapsacks, and general multiple
knapsack without any restrictions. Our algorithms are fully dynamic which
means that in an update operation they can handle the arrival or departure
of an item or a knapsack. Further, we consider the implicit-solution or query
model, in which an algorithm is not required to store the solution explicitly
in memory, which would imply that the solution can be read in linear time
at any given point of the execution. Instead, the algorithm may maintain
the solution implicitly with the guarantee that a query for the packing of an
item – i.e., was the queried item packed in the solution, and if so, into which
knapsack? – or for the value of the computed solution can be answered in
polylogarithmic time.

We give worst-case guarantees for update and item query times that are
polylogarithmic in n, the number of items currently in the input, and bounded
by a function of ε > 0, the desired approximation accuracy. For some special
cases, we can even ensure a polynomial dependency on 1

ε
. In others, we justify

51

the superpolynomial dependency on 1
ε
with suitable lower bounds. We remark

that it is not possible to maintain a solution with a non-trivial approximation
guarantee explicitly with only polylogarithmic update time (even amortized)
since it might be necessary to change Ω(n) items per iteration, e.g., if a
very large and very profitable item is inserted and removed in each iteration.
Further, we remark that in the static setting, our result yields an algorithm
with running time near-linear in n. Note that, in the context of dynamic
algorithms, n and m refer to the number of current items and knapsacks,
respectively.

Denote by v the currently largest item value, by v a known upper bound
on v, and by Smax the currently largest capacity of any knapsack.

(i) For multiple knapsack, we give a fully dynamic algorithm that main-
tains (1 − ε)-approximate solutions with an update time of at most
(log n

ε
)O(1

ε
) · (log v · log Smax)O(1). Single items can be queried in

time O(log(log n
ε

)), the entire solution P in time O(log(log n
ε

)|P |), and
the solution value in time O(1) (Section 2.5).

(ii) The dependency on 1
ε
in the update time for multiple knapsack does

indeed need to be superpolynomial, even for two identical knapsacks.
We show that there is no (1 − ε)-approximate dynamic algorithm with
update time (log n

ε
)O(1), unless P = N P (Section 2.1).

(iii) For multiple knapsack with the number of knapsacks only polylogarith-
mic in n, we give a dynamic algorithm with improved performance that
has an update time of 2O(1

ε
log4(1

ε
)) · (log(nv)

ε
)O(1) + O(1

ε
log n log v).

Item queries are answered in time O(log log n
ε

), solution-value queries
in time O(1), and queries of one knapsack or the entire solution in
time linear in the number of packed items therein (Section 2.3).

(iv) Lastly, we present a particularly efficient algorithm for the knapsack
problem. It maintains (1 − ε)-approximate implicit solutions and has
an update time of (log(nv)

ε
)O(1) + O(1

ε
log n log v). Surprisingly, the

query times of the algorithm are essentially equivalent to the time it
takes to access an explicit solution from memory (Section 2.2).

In each update step, we only compute implicit solutions. Moreover, we
provide query operations to obtain the solution value, the packing of a

52 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

queried item and the complete solution. These queries run efficiently, i.e., in
time polynomial in log n and log v with additional dependencies on 1

ε
and

the output size. Furthermore, the queries are consistent between two update
steps, by which we mean that there exists a single explicit solution which is
consistently revealed via the provided queries. Specifically, while previous
queries can influence whether and into which knapsack an item is packed,
once the item is queried these properties are fixed and do not change during
subsequent queries before the next update step.

Our Techniques Maybe surprisingly, we recompute a (1 − ε)-approximate
solution from scratch in polylogarithmic time after each update. More pre-
cisely, we compute a (1 − ε)-estimate of the value of OPT and additionally
store all information that is needed in order to answer any query in polylog-
arithmic time. Interestingly, this shows that, for such computations, we do
not need exact knowledge about the whole input, but only a small amount
of information of polylogarithmic size. We show that this information can
be extracted efficiently from suitable data structures in which we store the
input items and knapsacks. We also show that we can maintain these data
structures in polylogarithmic time per update.

On a high level, when solving multiple knapsack, we reduce the overall
problem to two subproblems that are solved independently. In the first one,
we deal with only few knapsacks, i.e., m = (log n

ε
)O(1) many, which are the

largest knapsacks in the original input. Here, we observe that, if we select
the m

ε
most valuable items in the optimal solution correctly, we can afford to

fill the remaining space in the knapsacks greedily, i.e., highest density (value
divided by size) first, and charge the resulting loss to the valuable items. We
cannot guess these most valuable items explicitly, but we show that we can se-
lect a small set of candidates for these items and guess a few placeholder items
for the remaining ones. This yields an instance with only (log n

ε
)O(1) items on

which we run a known EPTAS for multiple knapsack due to Jansen [Jan12]
so that the total update time is 2O(1

ε
log4(1

ε
)) · (log(nv)

ε
)O(1). For the special

case of a single knapsack, we show that we can invoke an FPTAS instead of
an EPTAS to further improve the running time.

In the second subproblem, we handle a potentially large set of knapsacks,
and we are allowed to use an additional set of (log n

ε
)Θ(1) knapsacks that

53

the optimal solution does not use (resource augmentation). We introduce a
technique that we call oblivious linear grouping. Linear grouping is a standard
technique used in order to round a set of one-dimensional items that need to
be packed into a given set of containers (e.g., in bin packing), such that they
have at most 1

ε
different sizes after the rounding (at the expense of leaving

an ε-fraction of the items out). However, in our setting we do not know a
priori which input items need to be packed, and therefore we cannot apply
this technique directly. Instead, we show that we can round the input items
to (log n

ε
)O(1) different sizes such that we lose at most a factor of (1 − ε)

independently of what the optimal solution looks like. In fact, our rounding
method is even oblivious to the input knapsacks. Therefore, we believe that
it might be useful also for other dynamic packing problems or for speeding
up static algorithms. After rounding the items to (log n

ε
)O(1) different sizes,

we set up a configuration LP that has a configuration for each possible set
of relatively large items that together fit into a knapsack. Thanks to our
rounding, there are only polylogarithmically many configurations and we can
solve this LP in time (log n

ε
)O(1

ε
). We use the additional knapsacks in order

to compensate for errors that may occur when rounding the LP solution, i.e.,
due to rounding up fractional variables and adding small items greedily into
the remaining space of the knapsacks. Special care is necessary since the
sizes of the knapsacks can differ and hence some item might be relatively
large in some knapsack but relatively small in another knapsack.

Further Related Work Since the first approximation scheme for knapsack
[IK75], running times have been improved steadily [GL79; Law79; GL80;
KP04; Rhe15; Cha18; Jin19] with O(n log 1

ε
+ (1

ε
)9/4) by Jin [Jin19] being

the currently fastest. Recent work on conditional lower bounds [CMW+19;
KPS17] implies that knapsack does not admit a FPTAS with running time
O((n+ 1

ε
)2−δ), for any δ > 0, unless (min, +)-convolution has a subquadratic-

time algorithm [MWW19; Cha18].

A PTAS for multiple knapsack was first presented by Chekuri and Khanna
[CK05], and EPTASs due to Jansen [Jan09; Jan12] are also known. The
fastest of these has a running time of 2O(1

ε
log4(1

ε
)) + nO(1) [Jan12]. The

mentioned algorithms are all static and assume full knowledge about the
instance for which a solution has to be found. In particular, their solutions

54 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

might change completely when a single item is added to the input which
makes a full recomputation necessary. The algorithm in [CK05] involves a
guessing step with nf(1

ε
) options, too many for a polylogarithmic update

time. The EPTASs in [Jan09; Jan12] use a configuration linear program of
size Ω(n), which is also prohibitively large for the dynamic setting.

The dynamic arrival and removal of items exhibits some similarity to knapsack
models with incomplete information. For example, in the online knapsack
problem [MV95] items arrive online one by one. When an item arrives, an
algorithm must irrevocably accept or reject it before the next item arrives.
Various problem variants have been studied, e.g., with resource augmenta-
tion [IZ10], the removable online knapsack problem [IT02; HM10; HKM+14;
HKM13; CJS16], and with advice [BKK+14]. Other models with uncertainty
in the item set or the knapsack capacity include the stochastic knapsack prob-
lem [DGV08; BGK11; Ma18] and robust knapsack problems [Yu96; MM13;
DKM+17; BKK11]. Related to our setting, there are also online models
with a softened irrevocability requirement, e.g., online optimization with
recourse [MSV+16; IW91; GGK16; FFG+18] or migration [SSS09; SV16;
JK19] allows to adapt previously taken decisions in a limited way. We are not
aware of work on knapsack problems in these settings and, again, in all these
settings, the goal is to bound the amount of change needed when updating a
solution regardless of the computational effort.

Structure of the Chapter As a necessary basis for all our algorithms, Sec-
tion 2.1 formally defines the operations the algorithms support when viewed
as a data structure, describes commonly used auxiliary data structures, and
details a rounding procedure for item values that will be used throughout the
chapter. Here, we also discuss the need for the exponential dependency on 1

ε

in the update time for multiple knapsack. Then, in Section 2.2, we describe
a very efficient algorithm for one knapsack and extend it in Section 2.3 to
an algorithm for a polylogarithmic number of knapsacks. In Section 2.4, we
present the oblivious linear grouping technique and an algorithm for multiple
knapsack that relies on resource augmentation in the form of a polyloga-
rithmic number of additional knapsacks. Finally, we present in Section 2.5
an algorithm for multiple knapsack without any restrictions that uses the
algorithms from Sections 2.3 and 2.4 as subroutines.

55

2.1 Preliminaries and Data Structures

From the perspective of a data structure that implicitly maintains near-optimal
solutions for multiple knapsack, our algorithms support several update and
query operations which are listed below. They allow for the output of (parts
of) the current solution and its value, or for the following two specific changes
to the input of multiple knapsack, which cause the computation of a new
solution.

• Insert (Remove) Item: Inserts (removes) item into (from) the input

• Insert (Remove) Knapsack: Inserts (removes) knapsack into (from)
the input

The current solution and its value can be output, entirely or in parts, using
the following query operations.

• Query Item j: Returns whether item j is packed in the current solution
and, if this is the case, additionally returns the knapsack containing it

• Query Solution Value: Returns the value of the current solution

• Query Entire Solution: Returns indices of all items in the current
solution, together with the information in which knapsack each such
item is packed

Auxiliary Data Structures The targeted running times do not allow for com-
pletely reading the instance in every round but rather ask for carefully main-
tained auxiliary data structures that allow us to quickly compute and store
implicit solutions. In these data structures, we store (subsets of) input items
and input knapsacks, sorted according to some specific element property,
e.g., size or capacity. Our requirements on the data structures are to enable
the following operations in logarithmic running time: (i) access to elements,
(ii) computation of the largest prefix of elements such that the prefix sum
according to some property, e.g., the combined size of items in the prefix,
is below a given threshold, and (iii) computation of a prefix sum over with
respect to some element property, e.g., the total value of a prefix. Note that
the prefixes are defined with respect to the fixed ordering of the elements,
while the element properties for the threshold or computing the sum may be

56 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

arbitrary and, in particular, distinct from one another. When computing a
largest prefix, we output the index of its last element.

The above requirements can be fulfilled by employing as auxiliary data
structures a variation of balanced search trees. Specifically, we build on
the work of Bayer and McCreight, who developed such a data structure
in 1972, the so-called B-trees, which was later refined by Bayer to symmetric
binary B-trees. In contrast to this early work, we additionally store for each
node v several pieces of information such as the total size, the total value,
the total number of elements, or the total capacity of the subtree rooted in v.
As observed by Olivié [Oli82] and by Tarjan [Tar83], updating the original
symmetric binary B-trees can be done with a constant number of rotations.
For our dynamic variant of B-trees, this implies that only a constant number
of internal nodes are involved in an update procedure. In particular, if a
subtree is removed or appended to a certain node, only the values of this node
and of his predecessors need to be updated. The number of predecessors
is bounded by the height of the tree, which is logarithmic in the number
of its leaves. Hence, the additional values stored in internal nodes can be
maintained in time logarithmic in the number of stored elements. Storing the
additional values such as total size of a subtree in its root then also allows us
to execute the aforementioned operations in logarithmic time. Additionally,
we assume that we can iterate over the elements sequentially in the given
ordering, which can also easily be implemented.

Lemma 2.1. There is a data structure that maintains a linear order of n′

elements with respect to some element property X and additionally allows for:

(i) Insertion, deletion, or search by value with respect to property X or index
of an element in time O(log n′).

(ii) Computation of prefixes and prefix sums with respect to any element
property in time O(log n′).

Assumptions We provide a list of assumptions that for simplicity’s sake will
be made throughout this chapter.

• Elementary operations (e.g., additions) are computed in constant time.
• Without loss of generality, we have 1

ε
∈ N.

2.1 Preliminaries and Data Structures 57

• We have n ≥ m. Otherwise we may use only the n largest knapsacks.
• We assume access to perfect hash tables that provide O(1) lookup times

for explicitly saved items of our solution.
• When determining which of two items has the larger size (value), we

break ties by choosing, if possible, the item with smaller value (size),
and otherwise, that of higher item index. When comparing density,
break ties by index.

• At the very beginning, we start with only the just mentioned dummy
items and a single knapsack, and initialize all needed auxiliary data
structures accordingly. If one wishes to start with a specific set of items
and/or knapsacks, it is possible to simply insert them – one at a time –
with our insertion routines, using polylogarithmic time per insertion.

Rounding of Values Another crucial ingredient for our algorithms is the
partitioning of items into a small number of value classes Vℓ, where for each ℓ

the class Vℓ consists of all input items j with (1 + ε)ℓ ≤ vj < (1 + ε)ℓ+1.
Upon arrival of some item j, we calculate the index ℓj such that j ∈ Vℓj and
store the tuple (j, vj , sj , ℓj) representing j in the auxiliary data structures
of the respective algorithm. In the remainder of this chapter, we assume,
for each ℓ, that an item j in Vℓ has value (1 + ε)ℓ and refer to this rounded
value by vj . We explicitly state, when we talk about non-rounded values. As
stated in the following lemma, we hereby lose only a factor of 1

1+ε
when

considering the total profit of any solution. Since this technique is rather
standard, we only state the lemma and omit a formal proof.

Lemma 2.2. Recall that v is the currently largest item value and v an upper
bound on v. After rounding item values to value classes as described above, the
following holds.

(i) There are at most O(log v
ε

) non-empty value classes.
(ii) With respect to original values, two optimal solutions OPT and OPT′

for the original and rounded instance, respectively, satisfy the inequality
v(OPT′) ≥ (1 − ε) · v(OPT).

Hardness of Computation To conclude this section, we provide a justification
for the different running times of our algorithms for multiple knapsack

58 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

depending on the number of knapsacks. As Chekuri and Khanna [CK05]
observed, multiple knapsack with m = 2 does not admit an FPTAS unless we
have P = N P.

Theorem 2.3 (Proposition 2.1 in [CK05]). If multiple knapsack with two
identical knapsacks has an FPTAS, then partition can be solved in polynomial
time. Hence there is no FPTAS for multiple knapsack even with m = 2, un-
less P = N P.

For the dynamic setting, this implies that there is no dynamic algorithm with
running time polynomial in log n and 1

ε
unless P = N P. We are able to

extend this result to the case where m ≤ 1
3ε
. Specifically, we show that the

existence of a (1 − ε)-approximate dynamic algorithm for multiple knapsack
with m < 1

3ε
with update time polynomial in log n and 1

ε
would imply

that 3-partition can be decided in polynomial time. The statement focuses on
dynamic algorithms, our main interest here, but the proof does not use the
dynamic nature, only the final complexity. Also note that the result can be
extended to a larger number of knapsacks by adding an appropriate number
of sufficiently small knapsacks, i.e., polynomially many in n.

Theorem 2.4. Unless P = N P, there is no algorithm for multiple knapsack
that computes a (1 − ε)-approximate solution in time polynomial in n and 1

ε
,

for m < 1
3ε
.

Proof. Consider the strongly N P-hard problem 3-partition [GJ79], where
there are 3m items with sizes aj ∈ N such that

∑3m

j=1 aj = mA. We use
the restricted-input variant where sizes belong to (A/2, A/4) so that only
subsets of cardinality 3 may sum to A. The task is to decide whether there
exists a partition cupm

i=1Ji = [3m] such that |Ji| = 3 and
∑

j∈Ji
aj = A

for 1 ≤ i ≤ m.

Consider the following instance for multiple knapsack: There are m knapsacks
with capacity S = A and 3m items. Each item corresponds one-to-one to
an item in the 3-partition instance with sj = aj and vj = 1 for 1 ≤ j ≤ 3m.
Observe that the 3-partition instance is a Yes-instance if and only if the
optimal solution to the knapsack problem contains 3m items. In such a
solution, each knapsack must contain exactly 3 items.

2.1 Preliminaries and Data Structures 59

Assume multiple knapsack admits an algorithm with approximation factor
at least (1 − ε) and running time polynomial in 1

ε
and n where m < 1

3ε
.

Such an algorithm is then able to obtain solutions with an objective func-
tion larger than 3m − 1 for multiple knapsack instances created from 3-
partition instances. As this implies an (optimal) objective value of 3m, such
an algorithm decides 3-partition in polynomial time, which is not possible,
unless P = N P.

2.2 A Single Knapsack

We start the presentation of our results with the first dynamic algorithm for
the most simple knapsack variant considered in this chapter, the knapsack
problem. Beyond serving as a convenient warm-up, this problem is unique
in that we obtain an algorithm with fully polynomial update time as well as
constant item query times. The latter is comparable to having access to an
explicit solution. Recall that v is the currently largest item value and v an
upper bound on v.

Theorem 2.5. For ε > 0, there is a fully dynamic algorithm for knapsack that
maintains (1 − ε)-approximate solutions with update time O(1

ε8 log4(nv)) +
O(1

ε
log n log v). Furthermore, single items and the solution value can be

queried in time O(1), the entire solution P in time O(|P |).

On a high level, the update procedure of our algorithm works as follows.
Consider a partition of the items in some fixed optimal solution OPT into
high-value and low-value items, with the high-value items being the 1

ε
most

valuable items of OPT, denoted by OPT 1
ε
, and the low-value items being the

remaining ones. We compute a small set of candidate items H 1
ε
that contains

all relevant high-value items that could possibly be in OPT 1
ε
. Additionally,

we create a placeholder item as a stand-in for the low-value items in OPT and
guess its size so that it is large enough to be able to fractionally accommodate
low-value items with corresponding total value. An optimal fractional solution
of low-value items can be obtained by iteratively packing the items with the
highest density, i.e., vj

sj
for item j, until one item does not fit, and then pack

this item fractionally. Since this is the only item that is packed fractionally,

60 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

we can discard it and charge the resulting loss in value to the 1
ε
high-value

items. This results in a knapsack instance with only O
(

1
ε3

)
items which we

solve with an FPTAS to obtain the desired guarantees.

Notation and Data Structures Before describing the details of this procedure,
we fix some notation and describe the necessary auxiliary data structures. Fix
an optimal solution OPT and denote by OPT 1

ε
a set of the min{|OPT|, 1

ε
}

most valuable items of OPT. Recall, that we break ties by picking first smaller
items and then by index, producing a uniquely determined ordering. Denote
by Vℓmax and Vℓmin the highest and lowest value class of an element in OPT 1

ε
,

respectively. Further, we define nmin := |OPT 1
ε

∩ Vℓmin | ≤ 1
ε
. Then, items

in Vℓmin+1, . . . , Vℓmax and the first nmin items of Vℓmin can be in OPT 1
ε
but

not in OPT \ OPT 1
ε
, and the remaining items can be in OPT \ OPT 1

ε
but

not in OPT 1
ε
. This allows us to approximate OPT 1

ε
and OPT \ OPT 1

ε
with

separate subroutines. Denote by v∗ the value of the items in OPT \ OPT 1
ε
,

rounded down to the next power of (1 + ε).

In our algorithms, we will make use of the idea of guessing certain properties
of an optimal solution. By that we mean that we enumerate all relevant values
this property might take and run the subsequent operations for each of them.
In the end, we may keep the best solution which will be at least as good as
the one in which all guesses are correct. For instance, in the algorithm for
knapsack, we will guess the value of nmin, so we run the algorithm for all
the possible values, i.e., for all values in {0, . . . , 1

ε
} (and for each of them

possibly multiple times due to other guesses).

To efficiently implement our algorithm, we maintain several instances of the
data structure from Lemma 2.1. We store items of each non-empty value
class Vℓ (at most log1+ε v many) in one instance of the data structure ordered
non-decreasingly by size. Second, for each possible value class Vℓ (at most
log1+ε v many), we maintain a data structure instance that contains each
input item j with j ∈ Vℓ′ for some ℓ′ ≤ ℓ, ordered non-increasingly by item
density (vj

sj
). In particular, we maintain such an instance even if Vℓ itself is

empty (since the data structure might still contain items from classes Vℓ′ with
ℓ′ < ℓ). This leads to the additive term in the update time ofO(log n log1+ε v).
We use additional data structure instances to store the implicit solution and
to support queries, as detailed in the algorithm description below.

2.2 A Single Knapsack 61

Algorithm The exact procedure of computing a new implicit solution in an
update step, summarized as Algorithm 2.1, is then as follows.

Step 0: Update auxiliary data structures to reflect the insertion or re-
moval of items or knapsacks.

Step 1: Compute a set H 1
ε
of high-value candidates. Guess the values

of ℓmax, ℓmin, and nmin. If we have (1 + ε)ℓmin ≥ ε2 · (1 + ε)ℓmax , then
define H 1

ε
to be the set containing the 1

ε
smallest items of each of the

value classes Vℓmin+1, . . . , Vℓmax , plus the nmin smallest items from Vℓmin .
Otherwise, set H 1

ε
to be the set containing the 1

ε
smallest items of each of

the value classes with values in [ε2 · (1 + ε)ℓmax , (1 + ε)ℓmax].

Step 2: Create a placeholder item B. Guess the value of v∗ and consider the
auxiliary data structure containing all items with value at most (1 + ε)ℓmin

sorted non-increasingly by density. Remove the nmin smallest items of Vℓmin

until the end of this iteration/guess. For the remaining items, compute the
minimal size of fractional items necessary to reach a value v∗ using prefix-
sum computation. The placeholder item B is defined to have value vB = v∗

and size sB equal to the size of those low-value items.

Step 3: Use an FPTAS. On the instance I, consisting of all items in H 1
ε
and

the placeholder item B, run an FPTAS for static knapsack parameterized by ε

(we use the one by Jin [Jin19]) to obtain a packing P .

Step 4: Store implicit solution. Among all guesses, keep the solution P with
the highest value. The implicit solution packs the items from H 1

ε
as in P and,

if B ∈ P , it also packs the low-value items which are completely contained
in B (note that at most one item is packed fractionally into B in Step 3
and excluded here). For item queries, store the items in H 1

ε
∩ P explicitly.

For low-value items, save only the correct guesses of ℓmin and nmin, as well
as the least dense item contained entirely in B. Membership in B is then
recomputed on a query. Also store the value of the solution, computed with
the actual, non-rounded item values for possible queries. To do so efficiently,
we retrieve the actual item values from the appropriate data structures. We
then add the actual values of the packed items from H 1

ε
and determining

the actual value of items in B with a prefix computation. On a query, we
simply return the stored value.

62 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

Algorithm 2.1 Dynamic algorithm for a single knapsack
Step 0: Update data structures to reflect insertion or removal of items or knapsacks
Step 1: Compute high-value candidates
1: for all guesses of ℓmax, ℓmin, and nmin do
2: H 1

ε
← items with value at least ε2 · (1 + ε)ℓmax that belong to the 1

ε
smallest

items from Vℓmin+1, . . . , Vℓmax or the nmin smallest from Vℓmin

Step 2: Create placeholder B
3: for all guesses of v∗ do
4: consider density-sorted data structure of items with value ≤ (1 + ε)ℓmin

5: remove nmin smallest items of Vℓmin temporarily
6: determine sB via prefix computation of fractional items such that vB = v∗

Step 3: Use FPTAS on H 1
ε
∪ {B}

Step 4: Store solution of highest value implicitly

Queries With the data stored in Step 4, answering queries is simple:

Single-Item Query: If the queried item is contained in H 1
ε
, its packing was

saved explicitly. Otherwise, if B is packed, we saved the last, i.e., least dense,
item contained entirely in B. By comparing with this item and considering
whether the queried item was removed as one of the nmin smallest items
of Vℓmin , membership in B can be decided in constant time on a query.

Solution-Value Query: Output the solution value as stored during update.

Query Entire Solution: Output the stored packing of candidates. If the
placeholder B was packed, iterate over items in B in the respective density-
sorted data structure and output them.

Analysis On an intuitive level, the proof of Theorem 2.5 can be easily
summarized. To see that Algorithm 2.1 attains an approximation ratio
of (1 − 4ε), consider the following steps, each of which contributes a loss of a
factor of (1−ε). (i) A factor of (1−ε) is lost due to the approximation ratio of
the FPTAS. (ii) To obtain a candidate set H 1

ε
of cardinality at most O(1

ε3), we
restrict the item values to [ε2 · (1 + ε)ℓmax , (1 + ε)ℓmax]. Since |OPT 1

ε
| = 1

ε
,

this excludes items from OPT with a total value of at most 1
ε

·ε2 (1 + ε)ℓmax ≤
ε · OPT. (iii) Due to guessing v∗ up to a power of (1 + ε), we get a value
of vB ≥ 1

1+ε
· v(OPT \ OPT 1

ε
) ≥ (1 − ε) · v(OPT \ OPT 1

ε
). (iv) Finally,

in Step 2, at most one item was packed fractionally. It is charged to the 1
ε

items of OPT 1
ε
, each of which has a larger value. The running time, too,

2.2 A Single Knapsack 63

can be easily verified by multiplying the numbers of respective guesses for
each value as well as the running time of the FTPAS. The latter is O(1

ε4),
since we designed H 1

ε
to contain only a constant number of items, namely,

at most O(1
ε3) many.

For the sake of completeness, we provide a formal proof of Theorem 2.5 below.
Note, however, that this proof is almost identical to that of Theorem 2.11. It
differs only in a few places that correspond to the alterations in Algorithm 2.1
which were made for the setting of multiple but few knapsacks. The reader
may thus wish to skip directly to Section 2.3.

To prove Theorem 2.5, we start by considering the iteration in which all our
guesses, i.e., ℓmax, ℓmin, nmin, and v∗, are correct and show that the obtained
solution has value of at least (1 − 4ε) · v(OPT). Let P1 be the set of solutions
respecting: (i) packed items not in H 1

ε
have a value of at most (1 + ε)ℓmin but

are not part of the nmin smallest items of the value class Vℓmin , and (ii) the
total value of these items lies in [v∗, (1+ε)v∗). Denote by OPT1 the solution
of highest value in P1.

Lemma 2.6. For OPT1 defined as above, v(OPT1) ≥ (1 − ε) · v(OPT).

Proof. Let OPT∗ be the packing obtained from OPT by removing all items
belonging to OPT 1

ε
whose value is strictly smaller than ε2 (1 + ε)ℓmax . By

definition, OPT 1
ε
consists of 1

ε
items. Thus, the total value of removed items

is at most 1
ε

· ε2 (1 + ε)ℓmax ≤ ε · OPT. We show that OPT∗ ∈ P1.

Consider some j ∈ OPT 1
ε
with vj ≥ ε2 · (1 + ε)ℓmax . If ℓj = ℓmin, then

j ∈ H 1
ε
by definition of nmin and OPT 1

ε
, specifically, due to the tie-breaking

rules. Assume now that ℓj > ℓmin and j /∈ H 1
ε
. Recall that H 1

ε
contains

the 1
ε
smallest items of value vj , and |OPT 1

ε
| = 1

ε
. Thus, there exists an

item of value vj , smaller than j, which belongs to H 1
ε
but not to OPT 1

ε
.

Exchanging j for this item contradicts the choice of OPT. Therefore, we
have j ∈ H 1

ε
and Condition (i) is satisfied. Condition (ii) follows directly

from the definition of v∗, and thus OPT∗ ∈ P1, concluding the proof.

Let OPT2 be the optimal solution of instance I on which the FPTAS is run in
Step 3 of Algorithm 2.1.

64 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

Lemma 2.7. We have v(OPT2) ≥ (1 − ε) · v(OPT1).

Proof. Consider the fractional solutionOPT∗
1 for I that is obtained fromOPT1

as follows. Place items from H 1
ε
the same as they are placed in OPT1 and

additionally place the placeholder item B. Denote by JL the set of items
packed by OPT1 that are not in H 1

ε
, that is, the low-value items. By def-

inition of B, we have vB = v∗ ≥ 1
1+ε

· v(JL) ≥ (1 − ε) · v(JL). Further,
since B consists of the densest low-value items and vB ≤ c(JL), it must be
the case that sB ≤ s(JL). Therefore, OPT∗

1 is a feasible solution for I and
we conclude v(OPT2) ≥ v(OPT∗

1) ≥ (1 − ε) · v(OPT1).

Lemma 2.8. For the solution PF of Algorithm 2.1, v(PF) ≥ (1−4ε) ·v(OPT).

Proof. The solution PFPTAS returned by the FPTAS in Step 3 has a value
of at least (1 − ε) · v(OPT2). The solution PF is obtained from PFPTAS

by replacing the placeholder item with the corresponding low-value items,
except possibly one fractionally cut item j. Since there are 1

ε
items in OPT

that are of higher value than j, namely the ones in OPT 1
ε
, this implies

v(PF) ≥ v(PFPTAS) − ε · v(OPT).

Using Lemmas 2.6 and 2.7, we obtain

v(PF) ≥ v(PFPTAS) − ε · v(OPT)

≥ (1 − ε)2 · v(OPT1) − ε · v(OPT)

≥ (1 − ε)3 · v(OPT) − ε · v(OPT)

≥ (1 − 4ε) · v(OPT),

which proves the lemma.

This concludes the proof of the approximation ratio of Algorithm 2.1. It
remains to bound the update and query times.

Lemma 2.9. It takes a time of O(1
ε8 log n log(nv) log2 v + 1

ε
log v log n) to

update the solution with Algorithm 2.1.

2.2 A Single Knapsack 65

Proof. By Lemma 2.2, the first step, i.e., guessing ℓmax and ℓmin and there-
fore enumerating all possible values, leads to O(1

ε2 log2 v) iterations. Guess-
ing nmin adds an additional factor of 1

ε
. In the second step, guessing v∗ adds

a factor of O(1
ε

log(nv)) to the running time, since v(OPT \ OPT 1
ε

) ≤ nv

and v∗ is rounded to a power of (1 + ε).

By Lemma 2.1, temporarily removing the nmin ≤ 1
ε
elements from the

corresponding data structure costs a total of O(1
ε

log n), as does adding back
removed items from a previous iteration/guess. Computing the size of B can
be done by querying the prefix of value just above v∗ in time O(log n) by
Lemma 2.1.

For Step 3, we note that the candidate set H 1
ε
spans value classes ranging

from values ε2 · (1 + ε)ℓmax or higher to (1 + ε)ℓmax . Since all values are
rounded to powers of (1 + ε), we consider at most log1+ε

1
ε2 different values

here. Hence, H 1
ε
is composed of O(1

ε3) items and the FPTAS by Jin [Jin19,
Theorem 2] runs in time O((1

ε9/4
1

ε3/2 + 1
ε2)/2Ω(

√
log(1/ε))) = O(1

ε4).

Recall, that we need to maintain one copy of the data structure from Sec-
tion 2.1 for every existing and one for each possible value class, that is,O(1

ε
log v)

copies in total. Maintenance of these, i.e., insertion or deletion of an item,
takes time O(1

ε
log v log n) in total by Lemma 2.1.

Lemma 2.10. The query times of Algorithm 2.1 are as follows.

(i) Single-item queries are answered in time O(1).
(ii) Solution-value queries are answered in time O(1).
(iii) Queries of the entire solution P are answered in time O(|P |).

The above lemma follows directly from the description of the query operations
since comparisons and iterations over a prefix can be done in constant time
and time linear in the length of the prefix, respectively.

Proof of Theorem 2.5. The theorem follows directly from Lemmas 2.8 to 2.10.

66 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

2.3 Few Different Knapsacks

It is not very difficult to extend the approach from Section 2.2 to the case
of multiple knapsacks by tuning the properties of the candidate set and
placeholder and then, naturally, employing an EPTAS for multiple knapsack
instead of an FPTAS for knapsack. While applicable for arbitrarily many
knapsacks, the running time of this approach is only reasonable when their
number is relatively small, i.e., polylogarithmic in n.

Themain difference to Section 2.2 comes from the fact that, in order to reserve
space for low-value items, a single placeholder is no longer sufficient. Instead,
we utilize several smaller placeholders. Since guessing the size of low-value
items for every knapsack would lead to a running time exponential in m, we
instead employ a sufficiently large number of placeholder items, namely m

ε

many. This leads to additional changes as there are more fractionally packed
items, i.e., one per placeholder. To be able to charge them as before, in
Lemma 2.8, we now consider the m

ε2 most profitable items in OPT. This in
turn leads to a larger candidate set of size m

ε6 . Other than that, the algorithm
remains unchanged.

Theorem 2.11. For every ε > 0, there is a dynamic algorithm for the multiple
knapsack problem that achieves an approximation factor of (1 − ε) with an
update time of 2O(1

ε
·log4(1

ε
)) · (m

ε
log(nv))O(1) + O(1

ε
log n log v). Item queries

run in time O(log m
ε

), solution-value queries in time O(1), and queries of one
knapsack or the entire solution in time linear in the number of output items.

While conceptually an easy extension, there are some technical details to be
taken into account, so we give a full description and detailed analysis.

Notation and Data Structures Let OPT be the set of items used in an optimal
solution and OPT m

ε2 the set containing the m
ε2 most valuable items of OPT.

Further, denote by Vℓmax and Vℓmin the highest and lowest value (class) of
an element in OPT m

ε2 , respectively, and by nmin the number of elements
of OPT m

ε2 with value (1 + ε)ℓmin . Let v∗ be the total value of the items
in OPT \ OPT m

ε2 , rounded down to a power of (1 + ε). The data structures
used are identical to those of Section 2.2, i.e., one copy for each non-empty

2.3 Few Different Knapsacks 67

value class Vℓ with items from Vℓ ordered non-decreasingly by size, and
one for each possible value class Vℓ with items of value at most (1 + ε)ℓ

ordered non-increasingly by item density. Again, this is the reason for the
additive term of O(log n log1+ε v) in the update time. We use additional data
structures to store information about the solution, supporting queries, as
detailed below.

Algorithm The exact procedure of computing a new implicit solution in an
update step, summarized as Algorithm 2.2, is then as follows.

Step 0: Update auxiliary data structures to reflect insertion or removal
of items or knapsacks.

Step 1: Compute high-value candidates H m
ε2 . Guess the values ℓmax, ℓmin,

and nmin. If (1 + ε)ℓmin · m ≥ ε3 · (1 + ε)ℓmax , define H m
ε2 to be the

set that contains the m
ε2 smallest items of each of Vℓmin+1, . . . , Vℓmax , plus

the nmin smallest items from Vℓmin . Otherwise, we set H m
ε2 to be the set

containing the m
ε2 smallest items of each of the value classes with values

in [ε3

m
· (1 + ε)ℓmax , (1 + ε)ℓmax].

Step 2: Create bundles of low-value items as placeholders. Guess the
value v∗ and consider the data structure containing all items of value at
most (1 + ε)ℓmin sorted by decreasing density. Remove temporarily the nmin

smallest items of value (1 + ε)ℓmin . Insert them back into the data structure
right before the next iteration. From the remaining items, compute the
amount of fractional items necessary to reach a value of v∗. That is, sum the
sizes of the densest items until their total value is at least v∗ and, if necessary,
cut the last item fractionally to obtain a set of items with total value v∗. In the
samemanner, cut this set again fractionally to obtain bundlesB1, B2, . . . , B m

ε

of equal value ε
m

· v∗.

Step 3: Use an EPTAS. Consider the instance I consisting of the items in H m
ε2

and the placeholder bundles B1, B2, . . . , B m
ε
. Run the EPTAS designed by

Jansen [Jan09; Jan12], parameterized by ε, to obtain a packing P for this
multiple knapsack instance.

Step 4: Store Implicit Solution. Among all guesses, keep the feasi-
ble solution P with the highest value and remove until the next update

68 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

the nmin smallest items of Vℓmin from the data structure that contains items
of value (1 + ε)ℓmin and lower. Then, for any knapsack, place into the knap-
sack items from H m

ε2 as in P and, if Bk is placed in P into this knapsack,
also place the low-value items that constitute Bk, except possibly items that
were cut fractionally. While used candidates are stored explicitly, the packing
of low-value items is stored implicitly by saving the correct guesses and, for
every packed bundle, its packing and the first and last, i.e., most and least
dense, item that is contained entirely inside the bundle. These items are
stored in a data structure D from Section 2.1 sorted by density first and
item index second, as in the data structure that was used to compute the
bundles. We also store the packing of these pivot items explicitly. Also store
the value of the solution, computed with the actual, non-rounded item values
for possible queries. To do so efficiently, we retrieve the actual item values
from the appropriate data structures. We then add the actual values of the
packed items from H 1

ε
and determining the actual value of items in B with

a prefix computation. On a query, we simply return the stored value.

Queries With the data stored in Step 4, answering queries is simple:

Single-Item Query: If the queried item is contained in H m
ε2 , its packing

was saved explicitly. For low-value items, we decide its membership in the
packing by comparing its density with the pivot elements of packed bundles
saved in D. Using the provided search operation, we determine if the item is
contained in a bundle and, if this is the case, return its packing.

Solution-Value Query: Output the solution value as stored during update.

Query Packing of Single Knapsack: Output saved packing of candidates
in the queried knapsack and iterate in D over the pivot items packed in this
knapsack. For each pair of pivot items constituting a bundle, further iterate
over all items between these pivot items in the appropriate density-sorted
data structure, i.e., that containing items of value (1 + ε)ℓmin and lower
except the nmin smallest items of Vℓmin , which were temporarily removed,
and output their packing.

Query Entire Solution: Apply the above procedure to all knapsacks.

2.3 Few Different Knapsacks 69

Algorithm 2.2 Dynamic algorithm for few knapsacks
Step 0: Update data structures to reflect insertion or removal of items or knapsacks
Step 1: Compute high-value candidates
1: for all guesses of ℓmax, ℓmin, and nmin do
2: H m

ε2 ← items with value at least ε3

m
(1 + ε)ℓmax that belong to the m

ε2 smallest
items from Vℓmin+1, . . . , Vℓmax or the nmin smallest from Vℓmin

Step 2: Create placeholder bundles
3: for all guesses of v∗ do
4: consider density-sorted data structure of items with value ≤ (1 + ε)ℓmin

5: remove nmin smallest items of Vℓmin temporarily
6: determine via prefix computation items needed to reach value v∗

7: fractionally cut prefix into m
ε

bundles B1, B2, . . . , B m
ε

of equal value ε
m

v∗

Step 3: Use EPTAS on H 1
ε
∪ {B1, B2, . . . , B m

ε
}

Step 4: Store solution of highest value implicitly
8: store explicitly the packed candidates and the actual solution value
9: for each packed bundle, store the most and least dense entirely contained item

Analysis The analysis is along the lines of that of Theorem 2.5 with a few
changes made to accommodate the alterations described above.

To prove Theorem 2.11, we, again, start with the analysis of the approxi-
mation guarantee and consider the iteration of Algorithm 2.2 in which all
the guesses, i.e., ℓmax, ℓmin, nmin, and v∗), are correct in order to show
that the obtained solution has a value of at least (1 − 6ε) · v(OPT). To
this end, we consider intermediate results to analyze the impact of each
step. Let P1 be the set of solutions respecting: (i) items not in H m

ε2 have a
value of at most (1 + ε)ℓmin but are not part of the nmin smallest items of the
value class Vℓmin , and (ii) the total value of these items lies in [v∗, (1 + ε)v∗).
Denote by OPT1 the solution of highest value in P1.

Lemma 2.12. For OPT1 defined as above, v(OPT1) ≥ (1 − ε) · v(OPT).

Proof. Let OPT∗ be the packing obtained from OPT by removing all items
belonging to OPT m

ε2 whose value is strictly smaller than ε3

m
· (1 + ε)ℓmax .

Note that since OPT m
ε2 consists of

m
ε2 items, the total value of removed items

is at most m
ε2 · ε3

m
· (1 + ε)ℓmax ≤ ε · OPT. We show that OPT∗ ∈ P1.

Consider an item j in OPT m
ε2 of value vj ≥ ε3

m
· (1 + ε)ℓmax . If ℓj = ℓmin,

then we have j ∈ H m
ε2 due to the definitions of nmin and OPT m

ε2 , specifically,
due to the tie-breaking rules. Assume now that ℓj > ℓmin and j /∈ H m

ε2 . Recall

70 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

thatH m
ε2 contains the m

ε2 smallest items of value vj , and |OPT m
ε2 | = m

ε2 . Thus,
there exists an item of value vj , smaller than j, which belongs to H m

ε2 but
not to OPT m

ε2 . Exchanging j for this item contradicts the definition of OPT.
Therefore, j ∈ H m

ε2 and Condition (i) is satisfied. Condition (ii) follows
directly from the definition of v∗, and therefore OPT∗ ∈ P1, concluding the
proof of the lemma.

Lemma 2.13. Let OPT2 be the optimal solution of the instance I on which
the EPTAS is run in Step 3. Then, v(OPT2) ≥ (1 − 2ε) · v(OPT1).

Proof. Consider the fractional solutionOPT∗
1 for I that is obtained usingOPT1

as follows. First, place items from H m
ε2 as in OPT1. Next, consider the place-

holder bundles B1, B2, . . . , B m
ε
in any order, and place them fractionally into

the remaining space. That is, place remaining bundles in the first non-full
knapsack. If a bundle does not fit, fill the current knapsack with a fraction
of the bundle until it is full, and place the remaining fraction in the next
non-full knapsack using the same process. Finally, discard the fractionally
cut bundles.

Denote by JL the set of items packed by OPT1 that are not in H m
ε2 , i.e., the

low-value items. Since the bundles consist of the densest low-value items
and v∗ ≤ v(JL), it must be the case that

∑ m
ε

k=1 s(Bk) ≤ s(JL). Therefore,
the bundles (fractionally) fit into the remaining space after placing items
from H m

ε2 and OPT∗
1 is a feasible solution for I.

By construction of bundles,
∑m

k=1 v(Bk) = v∗ ≥ 1
1+ε

v(JL) ≥ (1 − ε)v(JL).
Further, since there are m

ε
bundles of equal value and at most m of them are

placed fractionally and discarded, we obtain

v(OPT∗
1) ≥ (1 − 2ε) · v(OPT1),

which concludes the proof.

Lemma 2.14. For the solution PF of Algorithm 2.2, v(PF) ≥ (1−6ε)·v(OPT).

Proof. The solution PEPTAS returned by the EPTAS in Step 3 has a value
of at least (1 − ε) · v(OPT2). The solution PF is obtained from PEPTAS by
replacing the placeholder bundles with the corresponding low-value items

2.3 Few Different Knapsacks 71

with the exception of fractionally cut ones, of which there are at most m
ε
.

Since there are m
ε2 items in OPT that are of higher value than these items,

namely the ones in OPT m
ε2 , this implies

v(PF) ≥ v(PEPTAS) − ε · v(OPT).

Using Lemmas 2.12 and 2.13, we obtain

v(PF) ≥ v(PEPTAS) − ε · v(OPT)

≥ (1 − 2ε)2 · v(OPT1) − ε · v(OPT)

≥ (1 − 2ε)2 · (1 − ε) · v(OPT) − ε · v(OPT)

≥ ((1 − 4ε) · (1 − ε) − ε) · v(OPT)

≥ (1 − 6ε) · v(OPT),

where the second-to-last inequality follows from Bernoulli’s inequality.

This concludes the proof of the approximation guarantee. Next, we prove
the running times, starting with that of an update.

Lemma 2.15. It takes time 2O(1
ε

·log4(1
ε

)) · (m
ε

log(nv))O(1) + O(1
ε

log v log n)
to update the solution with Algorithm 2.2.

Proof. In the first step, guessing ℓmax and ℓmin leads to O(1
ε2 log2 v) itera-

tions. Guessing nmin adds an additional factor of m
ε2 . In the second step,

guessing v∗ leads to O(1
ε

log(nv)) additional iterations, so the total factor
that is attributed to guessing is in O(m

ε5 log2 v log(nv)).

Temporarily removing the nmin ≤ m
ε2 elements from the data structure

containing all items of value at most (1 + ε)ℓmin sorted by decreasing density
costs a total of O(m

ε2 log n), as does adding back removed items from a
previous iteration. Computing the size of the bundles can be done by querying
the prefixes of value just above v∗, so in time O(log n). Computing cut items
of bundles takes time m

ε
log n.

The candidate set H m
ε2 spans value classes with values at least ε3

m
·(1 + ε)ℓmax

to (1 + ε)ℓmax . As the value classes correspond to powers of (1 + ε), this
means we consider at most log1+ε

m
ε3 different value classes. Since H m

ε2

72 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

contains at most m
ε2 items from each of them, the total number of items is

in O(m2

ε6). Thus, in the third step, the EPTAS, used on O(m2

ε6) items, runs in
time 2O(1

ε
·log4(1

ε
)) + (m

ε
)O(1). Together, the above constitutes the first term

of the update time.

Recall that we need to maintain one data structure for every existing and
one for each possible value class, that is, O(1

ε
log v) data structures in total.

Maintaining these takes time O(1
ε

log v log n).

Finally, the following lemma bounds the query times.

Lemma 2.16. The query times of Algorithm 2.2 are as follows.

(i) Single-item queries are answered in time O(log m
ε

).
(ii) Solution-value queries are answered in time O(1).
(iii) Queries of the packing Pi of a single knapsack i take time O(|Pi|).
(iv) Queries of the entire solution P are answered in time O(|P |).

Proof. (i): Since the packing of candidates is stored explicitly, each of the
packed candidates can be output in time O(1). The part of the solution
corresponding to low-value items is stored implicitly with the preparation
done during an update. When a low-value item is queried, use the stored
pivot items to determine whether the item is contained in packed bundles
and, if so, in which bundle it lies and in which knapsack it is packed. Since
there are at most 2 · m

ε
pivot items, this takes time O(log m

ε
).

(ii): The computations for solution-value queries are done during an update
of the instance, with the update clearly dominating the running time. Thus,
on a query, the answer can be given in constant time.

(iii): As in (i), the packing of candidate items in Pi can be output in time O(1)
for each of the items. For low-value items, we iterate over bundles packed
in Pi, using the data structure containing the pivot items and starting with
the most dense one that is contained in Pi, and output all items of the
corresponding bundles. As the groundwork for this was laid in the update
step, specifically, the maintenance of data structures and creation of a data
structure for pivot items including all relevant pointers, this procedure, too,
is linear in the number of output items.

2.3 Few Different Knapsacks 73

(iv): We use the approach from (iii) on all knapsacks.

Proof of Theorem 2.11. Lemmas 2.14 to 2.16 together imply the validity of
Theorem 2.11.

2.4 Oblivious Linear Grouping and Multiple Knapsack with
Resource Augmentation

In this section, we describe a technique we call oblivious linear grouping that is
indispensable for us when computing the packing for an unbounded number
of items and knapsacks, respectively. Additionally, we give an overview of how
this technique may be applied to the multiple knapsack problem when having
the advantage of resource augmentation, specifically, when allowing an
algorithm (but not the optimal solution its performance is measured against)
to use (log n

ε
)O(1

ε
) additional knapsacks whose size is equal to that of the

largest knapsack of the original instance. For technical details and a complete
analysis of these results, we refer the reader to [EMN+20; Ebe20].

2.4.1 Oblivious Linear Grouping

We start with our oblivious linear grouping routine. It specifies a way of
rounding the item sizes in order to obtain a small set T of item types t

together with their respective multiplicity nt. Importantly, it does so in a
way that guarantees an optimal solution of the rounded instance to be of
almost the same value as an optimal solution of the original instance. We say
that two items j, j′ are of the same type if j, j′ ∈ Vℓ for some ℓ and if their
(rounded) sizes are equal. In practice, the rounding of item sizes is done
implicitly by computing a set of threshold items and rounding up the size sj

of each item j to that of the next-larger item in this set. Note that we do not
have to round each item explicitly since we can use prefix computation to
count the number of items between two threshold items. This explains the
sublinear running time in the following theorem.

74 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

Fig. 2.1: Illustration of linear grouping with 9 items and three groups, indicated by
vertical blue lines. Original and rounded items are depicted as gray and
green rectangles, respectively. After discarding items of the third group,
the rounded items from the first two groups (hatched) fit into the space
occupied by original items of the last two groups.

Theorem 2.17. There exists an algorithm with a running time of O(log5 n
ε5)

that computes O(log v
ε

) sets that each contain O(log2 n
ε4) item types t stored

together with their multiplicities nt such that for one of theses sets T , the
inequality v(OPTT) ≥ (1 − 5ε) · v(OPT) holds, where OPTT is an optimal
solution for the instance consisting of the rounded items. We can directly compute
the set T , when given ℓmax = max{ℓ ∈ Z | Vℓ ∩ OPT ̸= ∅}.

As the name suggests, our oblivious linear grouping routine is closely related
to the linear grouping routine developed by de la Vega and Luecker [VL81]
in the context of bin packing. Roughly speaking, their idea is to solve a
bin packing instance with only relatively large items by non-decreasingly
sorting items by size and then dividing this range into O(1

ε2) groups with
equal cardinality, except for the first, possibly smaller group. The group
with the largest-size items is discarded and the size of any remaining item
is then rounded up to the size of the largest item of its group, resulting
in only O(1

ε2) different item sizes overall, so an optimal solution OPT′ for
this new instance can be computed more efficiently by exploiting the small
number of item types.

Indeed, OPT′ uses at most as many bins as an optimal solution OPT to the
original instance since one could replace the non-rounded items of OPT
with a rounded item of the next-smaller group to obtain a solution for the
rounded instance that uses at most as many bins as OPT, see Figure 2.1.
The previously discarded items of the largest group are packed separately,
each in an individual bin. Since the instance consists of relatively large items,

2.4 Oblivious Linear Grouping and Multiple Knapsack with
Resource Augmentation

75

Fig. 2.2: Oblivious linear grouping with two guesses of nℓ and three groups, indi-
cated by shorter red and longer blue vertical lines for nℓ = 6 and nℓ = 9,
respectively. Rounding of item sizes is done for both guesses simultaneously.
The left (right) picture shows the linear grouping of this rounding when the
guess nℓ = 6 (nℓ = 9) is correct.

at most O(1
ε
) items can fit in any single bin, so the packing of the largest

group uses at most ε · OPT additional bins.

Returning to the multiple knapsack problem, consider a value class Vℓ and
define nℓ to be the number of items of Vℓ contained in a fixed optimal so-
lution OPT. This value exactly determines which items of Vℓ are packed
in OPT since we may assume that only the smallest items are packed. Know-
ing the value of nℓ would thus allow us to use the linear grouping approach
on those first items of Vℓ, which we know to be in OPT, to reduce the number
of different items and then compute a solution more easily. However, in the
dynamic setting, guessing the values nℓ for all value classes is too time con-
suming, so we adapt the approach with our oblivious linear grouping routine.
Specifically, we determine several relevant guesses of nℓ and consider all of
them simultaneously while grouping the items. Thereby, the grouping is such
that, for each relevant nℓ, any group created by oblivious linear grouping
must be entirely contained in some group created by the linear grouping of
the first nℓ elements of Vℓ, see Figure 2.2 for an example.

Algorithm We now formally describe the rounding procedure satisfying the
conditions of Theorem 2.17. It is summarized below as Algorithm 2.3.

Step 1: Determine relevant value classes and guesses for nℓ. Guess ℓmax

which denotes the largest integer ℓ such that Vℓ ∩ OPT ̸= ∅. Further, let
ℓmin := ℓmax −

⌈
log1+ε(n

ε
)
⌉
. We denote by Nℓ the set of relevant guesses

76 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

for nℓ, i.e., the set { 1
ε
} ∪ {(1 + ε)k | k ∈ Z and 0 ≤ k ≤ log1+ε n} . Do the

following for each value class Vℓ with ℓmin ≤ ℓ ≤ ℓmax.

Step 2: Apply linear grouping for each relevant guess. For each nℓ ∈ Nℓ,
consider the nℓ smallest elements of Vℓ. Partition this range of items into 1

ε
(al-

most) equal-sized consecutive groupsG1(nℓ), . . . , G 1
ε

(nℓ), consisting of ⌈εnℓ⌉
or ⌊εnℓ⌋ elements each, such that |Gh(nℓ)| ≤ |Gh′ (nℓ)| for h ≤ h′. For every
group, find the largest item belonging to it, i.e., the element with the highest
index in the data structure Dℓ of items in Vℓ sorted non-decreasingly by size.
Collect them in a set Jℓ.

Step 3: Combine linear groupings obliviously. Use the items in Jℓ for
each nℓ ∈ Nℓ to define the borders of the oblivious linear grouping of Vℓ and
apply the corresponding rounding. That is, we discard all but the smallest
max Nℓ items of Vℓ and for each remaining item that is not in Jℓ, we round
up its size to that of next item in Dℓ that is contained in Jℓ, i.e., the next
largest. Add the resulting item types to the set Tℓmax , including those of
items in Jℓ.

Step 4: Output possible type sets. Note that a different set Tℓmax is
computed for each guess of ℓmax. Only if we were given the value of ℓmax, we
could skip the guessing and directly output T as described in Theorem 2.17.
Otherwise, we output all the sets Tℓmax . Then, any algorithms using oblivious
linear grouping needs to be executed on the different sets of item types to
determine the correct choice.

Analysis While our algorithmic approach is new in the respect that it applies
linear grouping simultaneously to many possible values of nℓ, the analysis
builds on standard techniques. The loss in the objective function due to
rounding item values is bounded by a factor of 1

1+ε
by Lemma 2.2. As ℓmin is

chosen such that n items of value less than (1 + ε)ℓmin contribute less than
an ε-fraction of OPT, the loss in the objective function by discarding items
in value classes Vℓ with ℓ < ℓmin is bounded by a factor (1 − ε). By taking
only (1 + ε)⌊log1+ε nℓ⌋ items of V ′

ℓ instead of nℓ, we lose at most a factor 1
1+ε

.
The groups created by oblivious linear grouping are an actual refinement
of the groups created by classical linear grouping. Thus, we pack our items
similarly: not packing the group with the largest items (at the loss of a factor

2.4 Oblivious Linear Grouping and Multiple Knapsack with
Resource Augmentation

77

Algorithm 2.3 Oblivious linear grouping
Step 1: Determine relevant value classes and guesses for nℓ

1: for all guesses of ℓmax = max{ℓ | Vℓ ∩OPT ̸= ∅} do
2: ℓmin ← ℓmax − ⌈log1+ε

n
ε
⌉

3: for all ℓ with ℓmin ≤ ℓ ≤ ℓmax do

Step 2: Apply linear grouping for each relevant guess
4: Jℓ ← ∅
5: for all nℓ ∈ Nℓ := { 1

ε
} ∪ {(1 + ε)k | 0 ≤ k ≤ log1+ε n} do

6: partition smallest nℓ items of Vℓ into 1
ε
equal-size groups

7: add largest item of each group to Jℓ

Step 3: Combine linear groupings obliviously
8: round up size of the max Nℓ smallest items in Vℓ to that of the next

item in Dℓ that is also in Jℓ, and add resulting item types to Tℓmax

Step 4: Output all possible type sets Tℓmax .

of (1 − 2ε)) allows us to “move” all rounded items of group Gk(nℓ) to the
positions of the (not rounded) items in group Gk+1(nℓ). Combining the
above, we obtain v(OPTT) ≥ (1−ε)(1−2ε)

(1+ε)2 v(OPT).

Since T contains at most 1
ε
(⌈ log n

ε
log(1+ε) ⌉ + 1) different value classes, and as

it suffices to use ⌈ log n
log(1+ε) ⌉ + 1 different values for nℓ = |OPT ∩ Vℓ|, we

have |T | ≤ O(log2 n
ε4). Using the access times given in Lemma 2.1 bounds the

running time. For detailed and complete proofs, see [EMN+20; Ebe20].

2.4.2 Multiple Knapsacks with Resource Augmentation

We consider instances for multiple knapsack with arbitrarily many knap-
sacks of different capacities and show how to efficiently maintain a (1 − ε)-
approximation when given, as resource augmentation, A ∈ (log n

ε
)O(1

ε
) ad-

ditional knapsacks that have the same capacity as a largest knapsack in the
input instance. While we may pack items into these additional knapsacks,
the optimal solution used to measure our algorithm’s performance against
is not allowed to do so. Recall that Smax is defined as the currently largest
capacity of any knapsack.

Theorem 2.18. For every ε > 0, there is a dynamic algorithm for multi-
ple knapsack that, given A additional knapsacks as resource augmentation,

78 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

for some A ∈ (log n
ε

)O(1
ε

), maintains (1 − ε)-approximate implicit solu-
tions. It does so with an update time of (log n

ε
)O(1

ε
)(log Smax log v)O(1). Item

queries take time O(log(log n
ε

)), and the entire solution P can be output in
time O(log(log n

ε
)|P |).

The algorithm crucially relies on the oblivious linear grouping routine to
reduce the number of different item types, which then allows the use of
a configuration ILP. A configuration describes a different way of packing
available item types and is specific to the type of knapsack in which it can be
packed. More precisely, knapsacks are partitioned into a minimal number of
groups such that any item type is considered to be either big or small with
respect to every knapsack in the group, meaning that its size is at least ε

times the knapsack capacity or less than that, respectively. A configuration
for a knapsack group is then a multiset containing only item types that are
big with respect to a knapsack in the group. Additionally, at most nt items
of type t ∈ T are contained in any single configuration and the total size of
items in a configuration does not exceed the size of the largest knapsack in
the group. It follows that any configuration contains at most 1

ε
items. Small

items are considered separately by the ILP and space for them is reserved.
After solving the LP relaxation of the configuration ILP, the obtained solution
is rounded to an integral packing and small items are packed fractionally in
the remaining space. Here, the resource augmentation is needed to ensure
sufficient capacity even after rounding the configuration variables. The LP
formulation is similar in spirit to that in [Jan09; Jan12]; however, we only
use configurations of big items and have a polylogarithmic number of item
types, yielding a smaller LP that can be solved faster.

Notation and Data Structures We assume again that item values are rounded
to powers of (1 + ε), which results in value classes Vℓ of items with value
vj = (1 + ε)ℓ. An item j is said to be big with respect to a knapsack i if we
have sj ≥ ε · Si, and small otherwise. We maintain three different balanced
kinds of binary trees as described in Section 2.1. For storing every item j

together with its size sj , its value vj , and the index of its value class ℓj ,
we maintain one data structure instance where the items are sorted non-
decreasingly by time of arrival. For each value class Vℓ, we maintain one data
structure instance for sorting the items with ℓj = ℓ ordered non-decreasingly

2.4 Oblivious Linear Grouping and Multiple Knapsack with
Resource Augmentation

79

in size. We also store the knapsacks sorted non-increasingly by capacity in
an additional instance of the data structure.

Algorithm We assume that m ≥ 16
ε7 log n, as otherwise we may use the

Algorithm 2.2 from Section 2.3. The procedure of computing an implicit
solution in an update step, summarized as Algorithm 2.4, is as follows.

Step 0: Update auxiliary data structures to reflect the insertion or re-
moval of items or knapsacks.

Step 1: Apply oblivious linear grouping. Guess ℓmax, the index of the
highest value class that belongs to OPT and use oblivious linear grouping to
obtain T , the set of item types t with their multiplicities nt.

Step 2: Group knapsacks. Consider the knapsacks sorted non-decreasingly
by their capacity and determine for each item size for which knapsacks a
corresponding item would be considered big or small. This yields a set G
of O(log2 n

ε4) knapsack groups, see Figure 2.3a. Denote by Fg the set of item
types that are small with respect to a group g ∈ G, by Sg the total capacity
of all knapsacks in g, and by Sg,ε the total capacity of the smallest ⌈εmg⌉
knapsacks in g. Further, denote by mg the number of knapsacks in group g

and by G 1
ε
the subset of groups g ∈ G with mg ≥ 1

ε
.

Step 3: Create configurations of big items. For each group g ∈ G, create
all feasible configurations consisting of at most 1

ε
items that are big with

respect to knapsacks in g. This amounts to O((log2 n
ε4) 1

ε) configurations per
group. Order the configurations non-increasingly by total item size and
denote the set of such configurations as Cg = {cg,1, cg,2, . . . , cg,kg }. Note
that, by this definition, we may have duplicates of the same configuration
for different groups (but we view them as distinct items). Let mg,ℓ be the
number of knapsacks in group g that have sufficient capacity to contain
configuration cg,ℓ. Further, denote by nc,t the number of items of type t in
configuration c, and by sc and vc the size and value of c, respectively.

Step 4: Solve configuration ILP fractionally. Solve the following config-
uration ILP (P) with variables yc and zg,t for c ∈ C, g ∈ G, and t ∈ T . The
variables yc count how often c ∈ C is used, i.e., the number of occurrences
of (specific duplicates of) a configuration, and variables zg,t count, for item

80 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

types t that are considered small with respect to g, how many items of type t

are packed in knapsacks of group g.

max
∑
g∈G

∑
c∈Cg

ycvc +
∑
g∈G

∑
t∈Fg

zg,tvt

s.t.
ℓ∑

h=1

ycg,h ≤ mg,ℓ for all g ∈ G, ℓ ∈ [kg]∑
c∈Cg

yc ≤ (1− ε)mg for all g ∈ G 1
ε∑

c∈Cg

ycsc +
∑
t∈Fg

zg,tst ≤ Sg for all g ∈ G \ G 1
ε∑

c∈Cg

ycsc +
∑
t∈Fg

zg,tst ≤ Sg − Sg,ε for all g ∈ G 1
ε∑

g∈G

∑
c∈Cg

ycnc,t +
∑

g∈G:t∈Fg

zg,t ≤ nt for all t ∈ T

zg,t = 0 for all g ∈ G, t ∈ T \ Fg

zg,t ∈ Z≥0 for all g ∈ G, t ∈ T
yc ∈ Z≥0 for all g ∈ G, c ∈ Cg

(P)

The first inequality ensures that the configurations chosen by the ILP actually
fit into the knapsacks of the respective group. In particular, it prevents
configurations that are too large for a knapsack to be packed into it fractionally.
The second inequality ensures that an ε-fraction of knapsacks in G 1

ε
remains

empty for packing small fractionally cut items. The third and fourth inequality
guarantee that the total volume of large and small items together fits within
the designated total capacity of each group. Finally, the fifth inequality
makes sure that only available items are used by the ILP. We relax the ILP by
allowing yc, zg,t ∈ R≥0 and solve the resulting LP to obtain a basic feasible
optimal solution.

Step 5: Round the LP solution. For each non-zero variable of the basic
feasible solution, round down its value to the next integer. Whenever a
variable is rounded in this manner (that is, when its value was not an integer
before the rounding) place one corresponding element, i.e., item of a certain
type or a configuration, into one of the knapsacks which is granted by the
resource augmentation. We place configurations within a group such that

2.4 Oblivious Linear Grouping and Multiple Knapsack with
Resource Augmentation

81

knapsacks containing the same configuration form a contiguous range in the
data structure in which they are stored.

Note that, since we are using item types and implicit solutions, placing an
item merely means that we reserve a spot for an item of this type, which can
be filled on a query. In fact, with this rounding procedure, it might be that we
reserve more item spots than there are items of this type, which needs to be
taken into account when computing the solution value but is not a problem
otherwise as the spot simply is not used. When computing the solution value,
we simply compare the number of reserved spots for a certain type with the
number of items actually available.

Step 6: Pack the small items. Observe that the variables zg,t, even after
rounding, pack the small item types t ∈ Fg fractionally since they are only
assigned to a knapsack group as a whole. We can obtain a final solution by
packing small items, for each group g ∈ G 1

ε
, in a next-fit-like manner in the

remaining space left after packing the big items (except those small items
already placed in a resource-augmentation knapsack during the previous
step). Consider an arbitrary order of small items and knapsacks allocated
for big items (i.e., not the (1 − ε)mG reserved knapsacks), respectively. The
exact order used for the items will be determined by the order in which they
are queried. Start filling small items into the first knapsack in this order
until one does not fit. Pack this item instead into the next empty slot of one
of the εmg additional knapsacks reserved in the second inequality of (P)
(possibly opening a new one) and call such an item cut. Consider the next
knapsack in the order and continue filling small items in this manner. For
groups g ∈ G \ G 1

ε
, we use the same approach, but the cut items are placed

in a knapsack granted by the resource augmentation.

Step 7: Store information for queries and fix guess of ℓmax. Fix the guess
of ℓmax attaining the highest value. To prepare for answering queries, save
which and how many configurations are packed into which knapsacks. Since
within a group instances of the same configuration are stored contiguously we
can do that implicitly by only storing the first and last relevant knapsack. For
each item type t, we maintain an ordered list that stores knapsack groups g

which contain an item of type t together with the information how many
items of type t are to be packed in this group. Further, for each such group
g for which t is considered a big item, we maintain a list of configurations

82 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

1

2

3

4

g = 1 g = 2 g = 3

(a) Knapsack groups from item types.

4 4

3 3

1 1

3 3

3 3

3 3

4

3

3

3

3

1 2

⌈εm2⌉ knapsacks⌊(1 − ε)m2⌋ knapsacks
with configurations for cut items

knapsacks
given by resource augmentation

(b) Possible solution for group 2.

Fig. 2.3: Subfigure (a) shows three knapsack groups. Item types 2, 3, and 4, are
big with respect to knapsacks in groups with index at least 3, 2, and 1,
respectively. Items of type 1 are small with respect to all knapsacks. Subfig-
ure (b) shows a possible solution of Algorithm 2.4 for group 2. Space for
cut small items is reserved (gray) by the linear program so they fit into the
original knapsacks. Resource augmentation is used only for rounding the
fractional solution. Due to their smaller cardinality, groups 1 and 3 instead
use additional knapsacks from resource augmentation to pack cut items.

that contain an item of type t and for each entry store the amount of such
configurations packed in g, as well as a pointer to the first knapsack containing
one of its instances. These lists will determine into which knapsack the next
item of type t will be packed upon its first query by iterating through the lists,
updating pointers, and placing as many items as appropriate while keeping
track of the progress. Lastly, we use prefix computation to determine the set
of packed items and compute and store the not-rounded solution value. For
each value class, we store the largest item that is contained in the solution.

A possible solution from Algorithm 2.4 is shown in Figure 2.3.

2.4 Oblivious Linear Grouping and Multiple Knapsack with
Resource Augmentation

83

Algorithm 2.4 Dynamic algorithm for multiple knapsack with resource aug-
mentation
Step 0: Update data structures to reflect insertion or removal of items or knapsacks
Step 1: Apply oblivious linear grouping and guess ℓmax

Step 2: Group knapsacks

1: G ← set of O(log2 n
ε4) knapsack groups such that a fixed item is either

small or big with respect to all knapsacks of the same group

Step 3: Create configurations of big items
2: for all g ∈ G do
3: Cg ← set of all configurations containing at most 1

ε
items that are big

with respect to g. We have |Cg | = O((log2 n
ε4)

1
ε)

Step 4: Solve the configuration ILP (P) fractionally

Step 5: Round the LP solution
4: round value of every non-zero variable in solution down to the nearest integer
5: place into an individual knapsack from the resource augmentation one element

for each rounded variable

Step 6: Pack small items
6: pack small items next-fit-like in free space of knapsacks with big items
7: place cut items into knapsacks reserved by (P) or from resource-augmentation

Step 7: Store information for queries and fix guess of ℓmax

Queries Using the information stored in Step 7, the query operations work
as follows.

Single-Item Query: If the item was queried already since the last update,
output the packing stored during that query. Compare the item to the stored
element of its value class, i.e., the largest item of the class contained in the
solution, as specified in Step 7, to find out if the queried item was packed.
If not, output this information. Otherwise, determine the item type t (in
time O(log(log n

ε
))) and the group g into which the next item of type t is

packed. If t is considered small with respect to g, pack it into the empty
space not reserved for configurations or, if the item turns out to be a cut item,
into an additional knapsack (reserved by (P) or from resource augmentation)
as detailed in Step 6 of the algorithm. If t is considered big, pack it into the
next knapsack as determined by the lists stored in Step 7.

Store the packing of this item explicitly in case of a repeated query.

Solution-Value Query: Return the solution value as stored in Step 7.

84 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

Query Entire Solution: Iterate over all items stored in the solution, using
the stored largest elements of each value class, and use the single-item query
on each item to determine its knapsack.

Analysis For the full analysis, we again refer to [EMN+20; Ebe20]. We only
briefly hint at why the number A of added knapsacks is sufficient to accom-
modate cut items and the additional items and configurations from rounding
the LP solution. Recall that |G|, |T | ∈ O(log2 n

ε4), and |Cg | ∈ (log n
ε

)O(1
ε

)

for every group g ∈ G. Thus, the ILP (P) has at most (log n
ε

)O(1
ε

) variables,
which is an upper bound on the number of additional knapsacks needed
during rounding. Further, by the definition of small items, all cut items from
a knapsack group g ∈ G \ G 1

ε
fit into a single additional knapsack, adding

another O(log2 n
ε4) term to the necessary number of additional knapsacks. So

clearly, A ∈ (log n
ε

)O(1
ε

) suffices.

2.5 Solving Multiple Knapsack

Finally, after having laid the groundwork in the two previous sections, we
show how to maintain solutions for arbitrary instances of the multiple knap-
sack problem. This is the main result of the chapter, summarized in the
following theorem.

Theorem 2.19. For every ε > 0, there is a dynamic algorithm for the multiple
knapsack problem that maintains (1 − ε)-approximate implicit solutions with
update time (log n

ε
)O(1

ε
)(log v · log Smax)O(1). Item queries are served in time

O(log(log n
ε

)) and the solution P can be output in time O(log(log n
ε

)|P |), its
value in time O(1).

The intuition here is as follows. We would like to use Algorithm 2.4 on the
multiple knapsack instance but without actually using resource augmentation.
To achieve this, we partitioning the knapsacks into three sets of non-increasing
capacities, whose knapsacks we shall call special, extra, and ordinary. We
apply Algorithm 2.4 only to the ordinary knapsacks, with a portion of the extra
knapsacks acting as the additional knapsacks for “resource augmentation”.
The special knapsacks are the (log n)O(1

ε
) largest input knapsacks and we

2.5 Solving Multiple Knapsack 85

virtual ordinary knapsack of size SO

special knapsacks extra knapsacks ordinary knapsacks

special items

bundles of ordinary items

ordinary items

input to the special subproblem input to the ordinary subproblem

Fig. 2.4: Input of the special and the ordinary subproblems: Based on the current
guess for the extra knapsacks, the knapsacks are partitioned into three
groups (special, extra, and ordinary). When an item fits into at least one
ordinary knapsack, it is ordinary and special otherwise. The total size
of ordinary items placed by OPT in special knapsacks gives the size of
the virtual ordinary knapsack. The ordinary items packed into this virtual
knapsack are further assigned to bundles of equal size, which are then part
of the input to the special subproblem.

aim to apply Algorithm 2.2 to them (for a suitably defined set of input items).
Extra knapsacks are (log n)O(1

ε
) knapsacks that are smaller than the special

knapsacks, but larger than the ordinary knapsacks. Crucially, we choose the
partition of knapsacks in a way that ensures that there is a (global) (1 − ε)-
approximate solution in which all extra knapsacks are empty, enabling us to
use them solely for the purpose of mimicking resource augmentation in the
ordinary subproblem. We note that while some similarities to the approach
in [Jan09] exist, there, only two groups of knapsacks suffice.

Definitions and Data Structures Denote by OPTT a fixed optimal solution
of the instance that is obtained after using oblivious linear grouping, i.e.,
Algorithm 2.3, on the input instance. Choose A = (log n

ε
)Θ(1

ε
). We assume

that m > (1
ε
) 4

ε· A, since otherwise we may simply apply Theorem 2.11. Con-
sider 1

ε
groups of knapsacks with sizes A

ε3i , for i = 0, 1, . . . , 1
ε

− 1, such that
the first group, i.e., i = 0, consists of the A largest knapsacks, the second,
i.e., i = 1, of the A

ε3 next largest, and so on. In OPTT , one of these groups
contains items with total value at most ε · OPTT . Let k ∈ {0, 1, . . . , 1

ε
− 1}

be the index of such a group and let AS :=
∑k−1

i=0
A

ε3i . We say that the AS

86 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

largest knapsacks of the input are the special knapsacks. The extra knapsacks
are the A

ε3k > AS
ε2 +A next largest, and the ordinary knapsacks the remaining

ones (including those not in one of the 1
ε
groups).

Call an item ordinary if it fits into the largest ordinary knapsack and special
otherwise. Denote by JO and JS the set of ordinary and special items,
respectively, and by SO the total size of ordinary items that OPTT places in
special knapsacks, rounded down to the next power of (1 + ε); see Figure 2.4.
We use the same data structures as in Algorithm 2.4, which is used as a
subroutine. The data structures for Algorithm 2.2, which is also used as a
subroutine, are built from scratch for every new guess and update using item
types. As we will see, this is not a problem for the running time, since it is
possible to bundle items with the same type when first (re-)creating the data
structure. Because there are only few item types, this does not impact the
overall running time.

Algorithm The detailed steps for updating an implicit solution, summarized
in Algorithm 2.5, are as follows.

Step 0: Update auxiliary data structures to reflect the insertion or re-
moval of items or knapsacks.

Step 1: Apply oblivious linear grouping. Guess ℓmax, the index of the
highest value class that belongs to OPT and use the oblivious linear grouping
technique, as described in Section 2.4.1, to obtain T , the set of O(log2 n

ε4)
different item types t with their multiplicities nt. Guess k and determine
whether items of a certain type are ordinary or special.

Step 2: Pack high-value ordinary items. Place each of the AS
ε2 most valuable

ordinary items in an empty extra knapsack and denote this set of items by JE .
If there are not enough red items, we may solve the entire instance using
Algorithm 2.2.

Step 3: Add a virtual ordinary knapsack. Guess SO and add a virtual
knapsack with capacity SO to the instance in the ordinary subproblem.

Step 4: Solve the ordinary subproblem. Remove temporarily the set JE

from the data structures of the ordinary subproblem. Solve the subproblem
via Algorithm 2.4 and use A extra knapsacks for resource augmentation. In

2.5 Solving Multiple Knapsack 87

the LP, treat every ordinary item as small item with respect to this knapsack
and do not use configurations. When rounding up variables, fill the O(log2 n

ε4)
rounded items from the virtual knapsack into extra knapsacks.

Step 5: Create bundles from virtual knapsack. Consider the items that
remain in the virtual ordinary knapsack after rounding. Sort them by type,
highest value first, and cut them fractionally to form a set BO consisting
of AS

ε
item bundles of equal size. For each bundle, remember how many

items of each type are placed entirely inside it. Place cut items into extra
knapsacks. Consider each B ∈ BO as an item of size and value equal to the
combined size and value, respectively, of items placed entirely in B.

Step 6: Solve the special instance. Create the subinstance for the special
subproblem and set up the required data structures with item types. Specif-
ically, instead of populating the data structures with individual items, we
consider elements that store an item type together with its multiplicity to
group together items of one type, facilitating a faster initialization. In this
manner, we may still use prefix computation and, when needed, e.g., for
cutting bundles, split up such an element into several of these elements with
their multiplicities summing up to that of the original one, or one less due
to fractional cutting. Only for candidate items, when invoking the EPTAS,
this implicit representation is resolved into actual items. Insert the bundles
in BO into the data structures and apply Algorithm 2.2.

Step 7: Store implicit solution. Among all guesses, keep the solution PF

with the highest value. Store items in JE and their placement explicitly.
Revert the removal of JE from the ordinary data structures at the start of
the next update. For the remaining items, the solutions are given as in the
respective subproblem, with the exception of items packed in the virtual
ordinary knapsack. To support the query of such items, we save the first, i.e.,
the smallest least valuable, and last item in a bundle of BO that is packed
in the final solution. Membership in the solution can then be decided on a
query as described below.

Queries To answer queries, we essentially use the same approaches as in
Sections 2.3 and 2.4.2 for the ordinary and special subproblem, respectively,
and generally pack the first n̄t queried items of type t, where n̄t is the number

88 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

Algorithm 2.5 Dynamic algorithm for multiple knapsacks
Step 0: Update data structures to reflect insertion or removal of items or knapsacks
Step 1: Apply oblivious linear grouping
1: for all guesses of ℓmax and k do
2: use Algorithm 2.3 to obtain item types; determine ordinary and special items

3: Step 2: Pack the AS
ε2 most valuable ordinary items (JE) in extra knapsacks

Step 3: Add a virtual ordinary knapsack
4: for all guesses of SO do
5: add a virtual knapsack with capacity SO to the ordinary subproblem,

treat all items as small for this knapsack in LP used by Algorithm 2.4

Step 4: Solve the ordinary subproblem
6: remove JE ; solve ordinary subproblem with Algorithm 2.4, use extra

knapsacks for resource augmentation and rounding virtual knapsack

Step 5: Create bundles from virtual ordinary knapsack
7: cut items in virtual knapsack fractionally into AS

ε
bundles of equal size

8: place cut items into extra knapsacks

Step 6: Solve the special instance
9: insert bundles into the special subproblem and solve it with Algorithm 2.2

Step 7: Store implicit solution
10: among all guesses, choose highest-value solution; save information for queries

of items with type t packed in the implicit solution. However, since the special
subproblem now also works with item types, we integrate its implicit solution
into the lists from Section 2.4.2 that dictate where the “next” item of a certain
type is packed. We do this by including the candidate set H 1

ε
and the bundles

in the list of type t, if an item of type t is packed as a high-value candidate or
is contained in a packed bundle, respectively, and store the number of items
of type t that are packed in the respective location as well. When an item of
type t is queried and the list points to H 1

ε
or a bundle as the place where to

look next, we use the explicitly stored information in the special subproblem
to resolve the query. Since here all bundles have the same value, we may
assume that the smallest bundles are packed, and instead of pivot items, we
simply save the number of items of a certain type packed in a bundle.

Moreover, special care has to be taken with items that were packed in the
virtual knapsack in the ordinary subproblem. Here, we assumed that items
of a certain type which are packed in the virtual knapsack are the first, i.e.,
smallest, of that type. We can therefore decide in constant time whether
or not an item is contained in the virtual knapsack. Further, we assume

2.5 Solving Multiple Knapsack 89

that in the special subproblem the highest-value bundles in BO are packed.
Thus, we can decide in constant time, whether or not an item of the virtual
knapsack is packed in the final solution and then fill it into the free space
in special knapsacks reserved by bundles. We do this simply by using a first
fit algorithm on the knapsacks with reserved space. Since items in extra
knapsacks are stored explicitly, they can be accessed in constant time.

Analysis To prove Theorem 2.19, we consider again the iteration in which
all the guesses are correct, namely, the guesses of ℓmax, k and SO. Recall
that OPTT denotes a fixed optimal solution of the knapsack instance after
rounding via oblivious linear grouping in Step 1 for the correct guess of ℓmax

and consider this rounded instance from here on. LetP1 be the set of solutions
on the ordinary knapsacks (without the additional virtual knapsack) and
the special knapsacks such that the total size of ordinary items placed in
special knapsacks lies in the range [SO, (1 + ε)SO). We make the following
observations about optimal solutions in P1.

Observation 2.20. For a solution OPT1 ∈ P1 that has the highest value, we
have v(OPT1) ≥ (1 − ε) · v(OPTT).

This can be easily seen as follows. Altering OPTT by deleting the extra
knapsacks gives a solution in P1 of value at least (1−ε)·v(OPTT). This holds
since, for the correct guess of k, the extra knapsacks by definition contribute
at most an ε-fraction to the value of OPTT . Further, the correctness of the
guess of SO implies that the altered OPTT is indeed a packing in P1.

Lemma 2.21. Consider an optimal solution OPTO to the ordinary subproblem,
that it, exclude items in JE but include virtual knapsack. Further, define
OPT1,O := (OPT1∩JO)\JE . Then v(OPTO) ≥ v(OPT1,O)−2ε·v(OPTT).

Proof. Consider the ordinary items in OPT1 that are not in JE . Leave items
in ordinary knapsacks in their current position and place ordinary items in
special knapsacks into the virtual ordinary knapsack. The latter is possible
with the exception of possibly an ε-fraction of the items (with respect to size)
due to SO being rounded down. Deleting the least dense items until the
remainder fits into the virtual knapsack causes a loss of at most an ε-fraction

90 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

of the value of OPT1 plus an additional ordinary item jO. This item jO

contributes at most an ε-fraction to OPTT as its value is not larger than that of
the least valuable element in JE , which has a value of at most ε·v(OPTT).

Lemma 2.22. Let PF denote the final rounded solution computed by Algo-
rithm 2.5. Then it holds that v(PF) ≥ (1 − 7ε) · v(OPTT).

Proof. Consider PO, the solution of the ordinary subproblem returned by
Algorithm 2.4(including the virtual knapsack and resource augmentation).
We know that v(PO) ≥ (1 − ε) · v(OPTO) ≥ v(OPT1,O) − 3ε · v(OPTT) by
Theorem 2.18 and Lemma 2.21.

Define OPTS := OPT1 ∩ JS , and P2 := PO ∪ OPTS ∪ JE . Then, from the
observation that OPT1 = OPT1,O ∪ (OPT1 ∩ JE) ∪ (OPT1 ∩ JS), we can
deduce

v(OPT1) = v(OPT1,O) + v(OPT1 ∩ JE) + v(OPT1 ∩ JS)

≤ v(PO) + 3ε · v(OPTT) + v(JE) + v(OPTS)

≤ v(P2) + 3ε · v(OPTT).

With Observation 2.20, we then obtain v(P2) ≥ v(OPTT) − 4ε · v(OPTT).

We now modify P2 to obtain a solution P3 that lacks the virtual ordinary
knapsack and deals with bundles instead. Build AS

ε
equal-sized bundles

from PO as in Step 5. Place these bundles fractionally on the remaining
space of the special knapsacks that is left after OPTS is packed. This space
is sufficient by definition of SO and P1. Arrange the bundles such that the
lowest-value ones are placed fractionally, so removing them from the solution
incurs a loss of at most εv(OPTT). Further, remove the items that were
placed fractionally when cutting bundles. Since there are at most AS

ε
of these

and they are at most as valuable as the AS
ε2 items in JE , this incurs a loss of

at most ε · v(OPTT).

Therefore, v(P3) ≥ v(P2) − 2ε · v(OPTT). Moreover, the portion of P3

on special knapsacks is a valid solution for the request sent to the special
subinstance. Therefore, using Theorem 2.11, the overall solution PF satisfies
hte inequality v(PF) ≥ (1 − 7ε) · v(OPTT), as desired.

2.5 Solving Multiple Knapsack 91

Together with Theorem 2.17, this implies that the final solution output by
Algorithm 2.5 has a value of at least (1 − 12ε) · v(OPT).

Lemma 2.23. Algorithm 2.5 has an update time of at most (log n
ε

)O(1
ε

) ·(log v ·
log Smax)O(1).

Proof. The update time largely results from the combination of update times
from the subproblems, i.e., from Theorems 2.11 and 2.18. Note, however,
that, since we create the data structures in the special subproblem from
scratch with item types, we do not require continuous maintenance of data
structures here. Specifically, no data structures for each possible value class
are needed, so we lose the dependency on v. In fact, since the number of
items in the special subproblem is the sum of the numbers of item types and
bundles, which is at most (log n

ε
)O(1

ε
), the runtime of the special subproblem

is dominated by that of the ordinary one.

We briefly discuss the remaining factors in the running time, and show that
they do not increase the time bound. Guessing k contributes a factor of 1

ε

to the update time, guessing SO a factor of O(log(SmaxAS)
ε

), and placing
the AS

ε2 most valuable ordinary items on extra knapsacks and removing them
from data structures takes time O(AS

ε2 log n), all of which is within the time
bound. Cutting the items placed in the virtual ordinary knapsack into AS

ε

equal-sized bundles can be archived efficiently as follows. Compute the total
size of these items, using the number of items used for each of the O(log2 n

ε4)
item types and deduce the size of a bundle. Sort the item types, e.g., by value
then size, and then iteratively pack items of the same type by computing
how many items of this type fit in the next non-empty bundle. This takes
time O(log2 n

ε4 · AS
ε

), which is sufficient.

Since queries essentially use the approach from the ordinary the subproblem,
the query times are identical to the ones described in Section 2.4.2.

Lemma 2.24. The query times of Algorithm 2.5 are as follows.

(i) Single-item queries are answered in time O(log(log n
ε

)).
(ii) Solution-value queries are answered in time O(1).
(iii) Queries of the entire solution P are answered in time O(log(log n

ε
)|P |).

92 Chapter 2 Fully Dynamic Algorithms for Knapsack Problems

Fully Dynamic Algorithms for Knapsack Problems

Proof of Theorem 2.19. To complete the proof of Theorem 2.19, we merely
need to combine Lemmas 2.22 to 2.24.

2.6 Conclusion

We presented efficient dynamic algorithms for the multiple knapsack problem
and several special cases that save solutions implicitly and facilitate access to
the solution via query operations.

Clearly, it would be interesting to generalize our results beyond multiple
knapsack. A natural generalization is d-dimensional knapsack, where the
items and knapsacks have a size in each of the d dimensions, and a feasible
packing of a subset of items must meet the capacity constraint in each
dimension. A reduction to one dimension by [VL81] immediately yields a
dynamic 1−ε

d
-approximation, but designing a dynamic framework with a

better guarantee than this remains open. Note that, unless W[1] = FPT,
2-dimensional knapsack does not admit a dynamic algorithm maintaining
a (1 − ε)-approximation in worst-case update time f(ε) · nO(1) [KS10].

A recent line of research exploits fast techniques for solving convolution
problems to speed up knapsack algorithms (exact and approximate); see,
e.g., [Cha18; Jin19; AT19; PRW21; KP04]. In fact, it has been shown
that knapsack is computationally equivalent to the (min, +)-convolution
problem [CMW+19]. It seems worth exploring whether such techniques are
useful in the dynamic setting. Here, it is unclear whether the re-computation
of a solution in a new iteration can be done in polylogarithmic time. It is also
open whether such techniques can be applied for solving multiple knapsack,
even in the static setting.

We hope to foster further research for other packing, scheduling and, gener-
ally, non-graph problems in the dynamic setting.

2.6 Conclusion 93

On Packing Anchored
Rectangles 3
The lower-left-anchored rectangle packing (LLARP) problem is an old mathe-
matical toy problem that dates back to 1969 when it was first posed by Allen
Freedman [Tut69] on the 3rd Waterloo Conference on Combinatorics. Given
the unit square U := [0, 1]2 in the plane and a finite set of points P ⊆ U , the
task is to find a maximum-area set of axis-aligned and interior-disjoint rect-
angles S, such that for each p ∈ P , there is exactly one (possibly trivial) rect-
angle R ∈ S that has p in its lower-left corner. Freedman conjectured [Tut69;
Win07] that the area covered is at least 1

2 as long as (0, 0) ∈ P . While recent
results made progressive improvements, with Damerius et al. [DKK+21]
showing that a simple greedy algorithm due to Dumitrescu and Tóth [DT15]
covers at least 39% of U , the conjecture still remains open. See Figure 3.1 for
an example of a lower-left-anchored rectangle packing and an upper bound
matching Freedman’s conjecture.

In this chapter, we consider the problem from the lens of approximation
algorithms. That is, given an instance P of the LLARP problem, we want to

Fig. 3.1: Examples of lower-left-anchored rectangle packings (left and middle), and
a center-anchored rectangle packing (right). Instances as the one on the left
(n→∞ equidistant points on the diagonal) serve as an upper bound for
the lower-left-anchored rectangle packing matching Freedman’s conjecture
since, in the limit, an area of at most 1

2 can be covered.

95

design a polynomial-time algorithm that finds a solution S that maximizes
the size of the covered area, denoted by A(S). To measure the performance
of the algorithm, we compare A(S) to OPTP by which we denote the size
of the area covered by an optimal solution to the instance P . If for every
instance P , we have A(S) ≥ α · OPTP for some α ≤ 1, the algorithm is
said to be an α-approximation algorithm. The largest α ≤ 1 for which this is
true is called the approximation ratio of the algorithm. Particularly desirable
in this context is the design of a Polynomial Time Approximation Scheme
(PTAS), a family of polynomial-time algorithms that compute, for each ε > 0,
a (1 − ε)-approximate solution.

Even though the formulation of the lower-left-anchored rectangle packing
problem and Freedman’s conjecture [Tut69] date back to 1969, it is still not
even known whether the decision variant of LLARP is NP-complete. There-
fore, we consider the complexity of a related packing problem and initiate
the investigation of LLARP under use of resource augmentation. Resource
augmentation describes a setting in which our algorithm is granted some
additional capabilities which are not afforded to the optimal solution used
to measure the algorithm’s performance. We study two different versions
of resource augmentation. In the first, the algorithm is allowed to place
rectangles with lower-left corners not only exactly at a point in P but also
up to an ε distance away from it, which can be thought of as perturbing the
anchor. In the second version, the rectangle set produced by the algorithm
may have some (bounded) overlap. In both cases, the resulting solution
is compared to an optimal solution without these capabilities. For the first
setting, we develop an algorithm that produces an anchored rectangle set of
total area no less than that of an optimal solution of LLARP without resource
augmentation. Our analysis is combinatorial in nature and consists of trans-
forming the optimal solution to a feasible solution for a perturbed instance
by using a specific linear program with totally unimodular incidence matrix.
For the second setting, we provide an algorithm that covers at least (1 − ε)
times the area of an optimal solution. It builds on the algorithm for the first
version of resource augmentation. These results are given in Section 3.2.

We also introduce a natural generalization of the LLARP problem that looks
at anchors different from the lower-left corner. Specifically, we use anchorings
defined by a pair (α, β) ∈ [0, 1]2: The (α, β)-anchored rectangle packing

96 Chapter 3 On Packing Anchored Rectangles

On Packing Anchored Rectangles

(ARP) problem looks for a maximum-area rectangle set as above but with
rectangles anchored in the relative position (α, β), with (0, 0)-ARP being
equal to the LLARP problem, while (1

2 , 1
2)-ARP requires all rectangles to have

a p ∈ P at their center. We refer to the latter as the center-anchored rectangle
packing (CARP) problem, an example of which can be found in Figure 3.1.
We give a detailed definition of the (α, β)-ARP problem in Section 3.1.

When looking at the complexity of CARP, a difference that stands out in
comparison with LLARP is that CARP allows one to simulate “non-expandable”
points: By putting four points at the corners of a tiny ε-sized square, none
of their rectangles’ side lengths can exceed ε. One can think of these four
points as one input point that cannot be used as an anchor but still restricts
the expansion of other rectangles. These non-expandable points turn out to
be a valuable asset, as they can be used to build walls and inject additional
geometry into the problem. This can be exploited to encode maximum
independent set into a CARP instance, proving NP-hardness of CARP. The
construction of non-expandable points seems difficult or even impossible for
LLARP and is the main obstacle in transferring the NP-hardness proof to that
setting. For the NP-hardness proof, we refer the reader to [ABC+19] and the
PhD thesis of Christoph Damerius.

Complementing the NP-hardness of CARP, we develop a PTAS for CARP in
Section 3.3, which also extends to any anchoring (α, β) ∈ (0, 1)2. The PTAS
is based on a carefully constructed input instance for a related problem called
maximum weight independent set of rectangles (MWISR) and the usage of a
known PTAS in a resource augmentation setting of MWISR.

Related Work. After being seemingly forgotten for decades, the lower-left-
anchored rectangle packing problem surfaced again in a puzzle of the IBM
“ponder this” challenge [IBM04] and in a book comprising several mathemati-
cal puzzles by Peter Winkler [Win07]. Since then, there has been a resurgence
of interest in the problem, as well as related variants. The best known poly-
nomial time algorithm for the LLARP problem is a simple greedy algorithm
due to Dumitrescu and Tóth [DT15] that orders the points (x, y) ∈ P de-
creasingly according to the key value x + y and, in this order, chooses legal
rectangles of maximum size anchored in the respective point. They show that
this algorithm covers an area of at least 0.091. Since the optimal solution

97

cannot cover more than an area of 1 (the whole unit square), their analy-
sis also implies a 0.091-approximation. Damerius et al. [DKK+21] improve
the analysis of this algorithm and show that in fact at least 39% of U is
covered. They also show that this greedy algorithm can not be the answer
to the conjecture by giving an instance in which it covers less than 43.3%.
Another interesting question is how large an area can one expect to cover
when the input points are chosen uniformly at random. Maat [HM21] and
Haupt [Hau21] consider this question, and Haupt gives an algorithm that, in
expectation, covers an area of 0.6.

In the setting where we must pack squares instead of arbitrary rectangles,
Balas et al. [BDT17] achieve an approximation ratio of 1

3 . They also con-
sider a setting where the algorithm can choose for each rectangle from
multiple anchors, its four corners, and give a (7

12 − ε)-approximation algo-
rithm with ε = |P |−1 and a Quasi-Polynomial Time Approximation Scheme
(QPTAS) for rectangles, as well as a 9

47 -approximation algorithm and a PTAS
for squares. The QPTAS and PTAS extend to the lower-left anchored variants.
Recently, Akitaya et al. [AJS+18] gave the first NP-hardness result for an ARP
variant where only squares may be packed and each square can be anchored
at any of its four corners. They also show that, for any instance consisting
of finitely many input points inside U , the union of all feasible anchored
square packings covers an area of at least 1

2 . Finally, if rectangles can be
anchored at any of their four corners but input points are restricted to the
boundary of U , Biedl et al. [BBM+17] give an polynomial-time algorithm
(based on maximum independent set for a specific class of graphs) that finds
an optimal solution.

ARP problems fall within the more general setting of packing axis-aligned
and interior-disjoint rectangles in a rectangular container. This setting cap-
tures several important and well studied optimization problems. See, for
example, the (NP-hard) problems 2D-knapsack and strip packing [AW13;
BK14], as well as maximum area independent set of rectangles [AW15;
BDJ10a; BDJ10b]. Similar problems have also been formulated by Radó and
Rado [Rad28; Rad49; Rad51; Rad68]. These problems differ from ARP in
that the size of the packed objects is part of the input and not controllable
and, in some cases, there is no anchoring of the rectangles.

98 Chapter 3 On Packing Anchored Rectangles

On Packing Anchored Rectangles

3.1 Preliminaries

We start with some general notation and the formal definitions of the prob-
lems studied in this chapter. We use U = [0, 1]2 to denote the unit square.
Consider a point p ∈ U , an axis-aligned rectangle R ⊆ U , and its lower-left
corner (x, y) ∈ R. Let w and h denote the width and height of R, respec-
tively. For a pair (α, β) ∈ U , called anchoring, we say R is (α, β)-anchored
in p if p = (x+α ·w, y +β ·h). In this case, we also say a point (α, β)-spans R

and call it the anchor of the rectangle. If the anchoring (α, β) is clear from
context, we may omit it. We use A(R) = w · h to denote the area of R.
Similarly, given a set S of rectangles, we define A(S) =

∑
R∈S A(R). If not

stated otherwise, any rectangle is assumed to be axis-aligned.

The Anchored Rectangle Packing Problem. We now define the anchored
rectangle packing (ARP) problem with respect to an anchoring (α, β) ∈ U .
An instance of the ARP problem consists of a finite set P ⊆ U of n points. A
valid rectangle set (also solution) S for the instance P is a set of n interior-
disjoint rectangles that, for each p ∈ P , contains one possibly zero-size
rectangle Rp such that Rp is (α, β)-anchored in p and does not contain any
point from P \ {p} in its interior. The goal is to find a solution S for P that
covers as much area as possible. We use S∗

ARP(P) to denote a valid rectangle
set of maximum area OPTARP(P) := A(S∗

ARP(P)) and omit ARP and/or P if it
is clear from context.

We mostly consider the two following anchorings: The anchoring (0, 0),
for which we refer to the problem by the name lower-left-anchored rectangle
packing (LLARP), and the anchoring (1

2 , 1
2), for which we refer to the problem

by the name center-anchored rectangle packing (CARP).

3.2 Resource Augmentation

In this section, we investigate the lower-left-anchored rectangle packing
problem with two types of resource augmentation. We start by defining the
two types of resource augmentation and stating the respective results.

3.1 Preliminaries 99

ε

ε δ

δ

δ

Fig. 3.2: Illustrations of the two resource augmentation types perturbation (left) and
overlap (right).

Perturbation Augmentation. In this type of resource augmentation, a so-
lution rectangle does not need to be anchored exactly in the corresponding
point. Instead, its anchor may be up to an ε distance away from that point
(see Figure 3.2, left), for some ε > 0. Formally, denote by dist∞(x, y) the
distance of two points x, y ∈ R2 in the ℓ∞-norm. For X ⊆ R2 and y ∈ R2,
we write dist∞(y, X) = infx∈X dist∞(y, x) and denote by X = R2 \ X

the set’s complement. Denoting by ℓ(Rp) the lower-left corner of a rectan-
gle Rp, we say that a set of interior-disjoint rectangles {Rp}p∈P is ε-valid,
if dist∞

(
p, ℓ(Rp)

)
< ε and dist∞

(
p, Rp

)
< ε for all p ∈ P . Thus, in the

perturbation-augmentation, an algorithm may output an ε-valid solution
while an optimal solution is required to be a valid rectangle set as described
in Section 3.1.

We now define an ε-grid Γ. This is a pair (V, L) that consists of a set of grid
points V = {(x, y) ∈ U | x = ε · kx ∧ y = ε · ky ∧ kx, ky ∈ N}, together
with a set of grid cells L =

{
[x, x + ε] × [y, y + ε] ⊆ U | (x, y) ∈ V

}
. The

perturbation-augmentation allows us to focus on solutions where all vertices
of rectangles are points on an ε-grid Γ, thereby allowing us to enumerate all
possible sets of interior-disjoint, axis-aligned rectangles with vertices in V .
We call such an solution a grid-point solution. We show that (i) there exists a
polynomial-time algorithm that finds an optimal ε-valid grid-point solution,
and (ii) this solution covers at least as much area as an optimal valid rectangle
set without resource augmentation. This implies the following theorem.

100 Chapter 3 On Packing Anchored Rectangles

On Packing Anchored Rectangles

Algorithm 3.1 Algorithm using resource augmentation of perturbation-type
1: Γ← ε-grid in U , H ← ∅
2: for every ε-valid configuration C for P on Γ do
3: for every grid-point solution S := {Rq}q∈C of LLARP(C) do
4: H ← H∪ {S}
5: return S ∈ H maximizing A(S)

Theorem 3.1. For every ε > 0 and given a finite point-set P ⊆ U , there exists
a polynomial time algorithm that computes an ε-valid set of interior-disjoint
rectangles that covers an area of at least OPTLLARP(P).

Overlap Augmentation. This type of resource augmentation relaxes the
condition that the rectangles need to be disjoint. Specifically, each pair of
rectangles is allowed to overlap by a thin strip of width at most δ. Note that
this implies that a rectangle may also contain multiple input points as long as
they are no more than a δ-distance away from its boundary (see Figure 3.2,
right). Formally, we shall call a set of rectangles {Rp}p∈P a δ-LLARP, if
the rectangle Rp is lower-left-anchored in p and supx∈Rp′ dist∞

(
x, Rp

)
< δ,

for all p′ ∈ P \ {p}. We show that we can transform an ε-valid grid-point
solution into a δ-LLARP while only losing a small fraction of the covered area.
Naturally, any area that is covered by multiple rectangles is counted only once.

Theorem 3.2. For any ε > 0, there exists a polynomial time algorithm, that,
given a finite point-set P ⊆ U , outputs an ε

11 -LLARP covering an area of at
least (1−ε) · OPTLLARP(P).

We proceed to prove these results, starting with Theorem 3.1.

Proof of Theorem 3.1. Let Γ = (V, L) be an ε-grid in U and denote by k the
number of grid cells. Without loss of generality, assume that all points of P

lie in the interior of one of the O(ε−2) grid cells. A grid configuration on Γ
is a subset of the grid points C ⊆ V . We say that a grid configuration C

on Γ is ε-valid for P if there is a surjective mapping φ : P → C, such
that dist∞

(
p, φ(p)

)
≤ ε. In other words, ε-valid grid configurations are

precisely those grid-point sets that can be obtained from P via perturbation

3.2 Resource Augmentation 101

resource augmentation. Note that any LLARP for an ε-valid configuration C

for P can be extended to an ε-valid solution for P by adding degenerate
rectangles anchored at points in C.

Our algorithm, summarized as Algorithm 3.1, enumerates all grid config-
urations on Γ that are ε-valid for P . Then, for each such configuration C,
it computes all grid-point solutions {Rq}q∈C of LLARP(C). Among all enu-
merated solutions, the one that maximizes the covered area is kept as the
final solution.

First, we show that the running time of this algorithm is polynomial. Note
that any grid cell has four grid points as its vertices. Since any point p ∈ P

lies in the interior of some grid cell L ∈ L, an ε-valid grid configuration for P

must contain at least one of the four vertices of L. Thus, we can construct
any ε-valid grid configuration by choosing for each grid cell L ∈ L and each
input point p ∈ P ∩ L, a vertex of L as its image in the mapping φ. However,
whenever multiple rectangles are anchored in the same point at most one
can be non-degenerate. Thus, in each L ∈ L, it suffices to decide on one of
at most 15 cell configurations using either 0, 1, 2, 3, or 4 of the grid cell’s
vertices, where 0 vertices are used if and only if L ∩ P = ∅. In particular,
any number of contained input points larger than 3, yields the same set
of 15 = 44 − 1 possible cell configurations. Thus, by counting the number of
input points contained in each grid cell (in time O(n)) and then enumerating
at most 15k grid configurations, we obtain all ε-valid grid configurations. For
each such configuration C, we obtain all corresponding ε-valid grid-point
solutions by picking for each q ∈ C one of the O(ε−2) grid points above
and to the right of q as the upper-right corner of the rectangle and checking
interior disjointness. This amounts to at most O(ε−2ε−2

) solutions per grid
configuration. We conclude that the running time of Algorithm 3.1 is linear
in n and doubly exponential in 1

ε
.

It remains to show that the computed grid-point solution covers at least
as much area as an optimal lower-left-anchored rectangle packing with-
out resource augmentation S∗

LLARP(P) = {R1, R2, . . . , Rn}. To this end, we
transform S∗

LLARP(P) to a grid-point solution by “snapping” the corners of its
rectangles to Γ in a manner that at least preserves the covered area. We do
this by first snapping the lower-left and upper-right corners of each rectangle
to either of the horizontal grid-lines directly above and below the corner in

102 Chapter 3 On Packing Anchored Rectangles

On Packing Anchored Rectangles

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

ε

X(Ri)={x8, x9, x10}

Fig. 3.3: A row B of the ε-grid Γ and the corresponding rectangles of S∗
B .

question. Afterwards, the same is done analogously for the vertical grid-lines,
which we omit in our discussion.

Consider a row of the grid, say B = [0, 1] × (y, y + ε), with (x, y) ∈ V

for some x, see Figure 3.3 for an illustration. We describe how the lower-
left and upper-right corners within this row can be snapped up or down
without reducing the total area. Partition the row horizontally into seg-
ments x1, x2, . . . , xr in-between the x-coordinates of corners of those rect-
angles of S∗

B := {Ri}m
i=1 ⊆ S∗

LLARP(P) which have a corner in the row. We
associate a variable hi ∈ [0, 1] with each rectangle Ri denoting the height
of Ri ∩ B relative to the height of B. Snapping the rectangles in this row can
be seen as rounding each such variable hi either up to 1 or down to 0 (i.e.,
expanding the rectangle to span the full row height or collapsing it such that
it does not appear in the row anymore). We aim to do this in a manner, which
neither introduces overlaps nor decreases the covered area. This snapping
problem is represented by the following integer linear program.

max
∑

i=1,...,m

hi · w(Ri) (3.1)

s.t.
∑

i : xj ∈X(Ri)

hi ≤ 1 for j = 1, . . . , r, (3.2)

hi ∈ {0, 1} for i = 1, . . . , m. (3.3)

Here, w(Ri) denotes the width of rectangle Ri, and the set X(Ri) consists of
all segments xi intersecting Ri. The objective function (3.1) maximizes the
covered area while constraints in (3.2) ensure that, in an integer solution,
rectangles do not overlap. The binary constraints in (3.3) force the rectangles

3.2 Resource Augmentation 103

Algorithm 3.2 Algorithm using resource augmentation of the overlap-type
1: Compute S1 ← Algorithm 3.1(P, ε

22)
2: for all Rp ∈ S1 do
3: R′

p ← the rectangle spanned by p and u(Rp) + (ε
22 , ε

22)
4: if u(R′

p) /∈ U then
5: u(R′

p)← arg minx∈U ||x− u(R′
p)||

6: return SII = {R′
p}p∈P

to either span the entire height of the row or none of it. We note that the
linear program is inspired by a similar one which is used for the demand
flow problem [CMS07].

It is easy to verify that S∗
B corresponds to a feasible solution for the linear

programming relaxation of (3.1)–(3.3) and thus lower bounds the optimal
value of the LP-relaxation. Since the sets X(Ri) contain consecutive line
segments, the LP satisfies the consecutive ones property [Sch99]. There-
fore, constraints (3.2) yield a totally unimodular matrix and the LP is in-
tegral [Sch99]. It follows, that there is an integral solution that solves the
relaxed linear program optimally and induces a partial snapping of area at
least OPTLLARP(B). Repeating this argument for all rows and columns of Γ
yields a grid-point solution with an area of at least OPTLLARP(P).

We now proceed to prove Theorem 3.2 for the resource augmentation of the
overlap type.

Proof of Theorem 3.2. We describe an algorithm, which is summarized as
Algorithm 3.2, that satisfies the conditions of Theorem 3.2. That is, the
algorithm runs in polynomial time and outputs an ε

11 -LLARP that covers
an area of at least (1 − ε) · OPTLLARP(P). Recall that, as opposed to the
perturbation-augmentation, input points cannot be moved, but the rectangles
may somewhat overlap.

Consider the ε
22 -valid solution S1 = {Rp}p∈P of Algorithm 3.1 obtained by

using as input the instance P and the approximation parameter ε1 = ε
22 .

When constructing S1 via Algorithm 3.1, we move each input-point p ∈ P

to some grid point qp of an ε1-grid to span the rectangle Rp, the upper-
right corner of which we denote by u(Rp). We transform the solution of
Algorithm 3.1 to obtain an ε

11 -LLARP.

104 Chapter 3 On Packing Anchored Rectangles

On Packing Anchored Rectangles

OPTLLARP Algorithm 3.1 Algorithm 3.2

Fig. 3.4: Solutions of Algorithms 3.1 and 3.2 with ε = 1
n

for a simple instance
illustrate the potential of the two kinds of resource augmentation.

Shift each u(Rp) up and to the right by ε
22 to obtain u(Rp)′. The transformed

solution S ′
1 consists of the rectangles defined by the lower-left corners p ∈ P

and the corresponding upper-right corners u(Rp)′. Since dist∞(p, qp) < ε
22 ,

moving u(Rp) by (ε
22 , ε

22) ensured that transforming the solution did not
decrease its size. The overlap of rectangles is bounded by 2 · ε

22 = ε
11 .

However, moving the solution may cause some rectangles to protrude from
the unit square. We prune this excess area, by moving the respective upper-
right corners back into the square to obtain our final solution SII. Due to
this pruning, we lose an area of size at most 2· ε

22 = ε
11 ≤ ε · OPTLLARP(P).

The inequality follows from the lower bound of 1
11 on OPTLLARP(P) [DT15].

This implies, that A(SII) ≥ (1 − ε) · OPTLLARP(P), concluding the proof
of Theorem 3.1.

3.3 A PTAS for ARP with Fractional Anchorings

In this section, we give a PTAS for the anchored rectangle packing problem
for any anchoring (α, β) ∈ (0, 1)2. It is based on a result for maximum
weight independent set of rectangles (MWISR) that uses resource augmenta-
tion similar to that in Theorem 3.2. We note that a similar connection to
MWISR has recently been used to obtain a PTAS for packing squares and
a QPTAS for packing rectangles when the anchors are allowed to lie in any
of the four corners (and may be different for each rectangle) [BDT17]. An
instance of MWISR consists of a set of n axis-aligned, weighted rectangles.

3.3 A PTAS for ARP with Fractional Anchorings 105

Rmax

R′
max

h
(1

−
δ)

j
·h

(1
−
δ)

j
+
1
·h

w
(1− δ)i · w

(1− δ)i+1 · w

Ri,j
max

p

p′

Fig. 3.5: Maximal rectangles Rmax and R′
max (left) and candidate rectangles Ri,j

max
derived from Rmax for the anchoring (1

2 , 1
2) (right).

The goal is to compute a maximum-weight subset of pairwise interior-disjoint
rectangles. In δ-MWISR, a variant of MWISR using resource augmentation,
rectangles must be non-overlapping only after shrinking them by a factor
of 1 − δ, where δ > 0 is a fixed parameter. Here, Adamaszek et al. [ACW15]
give an algorithm that, in time n(δε)−O(1/ε) , computes a solution which is
within a (1 − ε)-factor of the optimum MWISR solution. While the origi-
nal algorithm considers shrinking only around the rectangles’ centers, we
can make some adjustments and then use it to obtain a PTAS for arbitrary
anchorings (α, β) ∈ (0, 1)2. However, this approach cannot be adapted for
anchorings on the boundary of U , in particular, not for LLARP as we see in
the proof of the following theorem.

Theorem 3.3. For any fixed anchoring (α, β) ∈ (0, 1)2, the anchored rectangle
packing problem admits a polynomial-time approximation scheme.

Proof. Consider an instance P ⊆ U of (α, β)-ARP with n input-points and
fix some ε > 0. Assume, without loss of generality, that α ≤ β ≤ 1

2 , and
define N := ⌈log1−ε(ε/n)⌉ + 1 and δ := 2αε.

Observe that, for each pair p, p′ ∈ P of input points, there are at most two
inclusion-wise maximal rectangles that are anchored in p and have p′ on
their boundary, one where p′ is on the left or right side of the rectangle and
one where p′ is on its bottom or top side, see Figure 3.5 (left). Thus, there
are at most 2n inclusion-wise maximal rectangles anchored in a point p ∈ P

and at most 2n2 such rectangles overall. We call them maximal rectangles.

106 Chapter 3 On Packing Anchored Rectangles

On Packing Anchored Rectangles

Algorithm 3.3 PTAS for (α, β)-ARP with ε < 0
1: N ← ⌈log1−ε(ε/n)⌉+ 1, δ ← 2αε

2: C ← {Ri,j
max | Rmax maximal rectangle, i, j = 0, . . . , N − 1}

3: S ← solution to δ-MWISR instance (C,A) using the algorithm from [ACW15]
4: return S′ = {Ri+1,j+1

max | Ri,j
max ∈ S}

In order to obtain a PTAS, construct for each maximal rectangle Rmax addi-
tional N2 candidate rectangles (Ri,j

max)N−1
i,j=0 by scaling Rmax, with respect to

the anchoring (α, β) by a factor of (1 − ε)i along the horizontal and (1 − ε)j

along the vertical axis, respectively. See Figure 3.5 (right) for an illustration
of this. Denote the set of all such candidate rectangles by C.

Apply the PTAS for δ-MWISR from [ACW15], with approximation parameter ε

and shrinking parameter δ, to the MWISR instance (C, A) consisting of all
candidate rectangles weighted by their area. We obtain a solution S for δ-
MWISR that consists of one rectangle Rp for each anchor p (after possibly
adding some empty rectangles). By definition of δ-MWISR, shrinking these
rectangles by a factor of 1 − δ around their center yields a set of independent
rectangles. Due to this shrinking around the center, however, they may not
be (α, β)-anchored in their corresponding anchor anymore. Our algorithm
outputs, for each Rp = Ri,j

max ∈ S, the rectangle Ri+1,j+1
max , or an empty

rectangle if Rp is empty. For a summary of the algorithm, see Algorithm 3.3.

To show that this output is indeed a valid solution for our (α, β)-ARP instance,
first note that the rectangles are (α, β)-anchored in input points, since they
are candidate rectangles. Further, we show that, for appropriately chosen δ,
a rectangle Ri+1,j+1

max is contained in the rectangle Ri,j
max even after the latter

was shrunk by a factor of 1−δ around its center. With our assumption in mind
that α ≤ β ≤ 1

2 , it is easy to see that this holds if and only if αε ≥ 1
2 δ, which

is equivalent to δ ≤ 2αε. Therefore, by definition of δ-MWISR, the output
rectangles form an independent set and thus a valid (α, β)-ARP solution.
Observe that the requirement δ ≤ 2αε clearly shows that this approach cannot
work for anchorings on the boundary of U , as in the lower-left-anchored
rectangle packing problem.

It remains to analyze the approximation ratio of Algorithm 3.3. The rect-
angle set S that is obtained by the algorithm for δ-MWISR covers an area

3.3 A PTAS for ARP with Fractional Anchorings 107

of size A(S) ≥ (1 − ε) · OPTMWISR, where OPTMWISR denotes the area cov-
ered by an optimal solution for the instance (C, A) of MWISR. Scaling each
rectangle in S by 1 − ε with respect to the anchoring (α, β), we obtain the
rectangle set S ′ which is the output of our algorithm. The area covered by S ′

is then lower bounded by

A(S ′) ≥ (1 − ε)3 · OPTMWISR. (3.4)

We now bound the area OPTARP of an optimal (α, β)-ARP solution S∗
ARP in

terms of OPTMWISR. To this end, we fix a rectangle R∗
p ∈ S∗

ARP anchored
in p ∈ P . This rectangle is contained in at least one maximal candidate
rectangle Rmax ∈ C. Let i, j ∈ {0, 1, . . . , N − 1} be maximal such that
R∗

p ⊆ Ri,j
max. Note that we have A(R∗

p) ≤ A(Rmax) · (1 − ε)i+j . We say
that R∗

p is negligible if i = N − 1 or j = N − 1. For each non-negligible
R∗

p ∈ S∗
ARP, define Rp := Ri+1,j+1

max and denote by S ′′ the set of all such
rectangles. We consider the contribution of non-negligible and negligible
rectangles to OPTARP separately.

By construction, the non-negligible rectangles cover a total area of at most
(1 − ε)−2 · A(S ′′). Furthermore, since S ′′ ⊆ C and as the rectangles in S ′′

are pairwise non-overlapping (as a shrunken subset of an ARP solution), S ′′

is a solution to the MWISR instance C. This implies that A(S ′′) ≤ OPTMWISR,
which bounds the contribution of non-negligible rectangles to OPTARP by
(1 − ε)−2 · OPTMWISR.

To bound the contribution of negligible rectangles, fix a negligible R∗
p ∈ S∗

ARP

and a maximal rectangle Rmax containing R∗
p. Note that

A(R∗
p) ≤ A(Rmax)·(1 − ε)N−1 ≤ OPTMWISR·(1 − ε)N−1 ≤ OPTMWISR·ε/n,

where the penultimate inequality holds since {Rmax} is a valid MWISR.
As there are at most n negligible rectangles in S∗

ARP, they contribute at
most ε · OPTMWISR.

Combining the contribution of negligible and non-negligible rectangles, we
get OPTARP ≤ (ε + (1 − ε)−2) · OPTMWISR. With Equation (3.4), this implies

A(S) ≥ (1 − ε)3 · (ε + (1 − ε)−2)−1 · OPTARP ≥ (1 − ε)6 · OPTARP,

108 Chapter 3 On Packing Anchored Rectangles

On Packing Anchored Rectangles

where the last inequality holds for ε < 1.

Concerning the running time, note that for fixed ε, the total time spent to
obtain S is polynomial in n. The bottleneck is the computation of S ′ from
the |C| ≤ 2n2 · N2 candidate rectangles. By [ACW15, Theorem 1], this can
be done in time n(δε)−O(1/ε)

.

3.4 Conclusion

In this chapter, we gave two algorithms for the lower-left-anchored rectangle
packing problem that use different kinds of resource augmentation to solve
the problem optimally and near-optimally, respectively. To our knowledge,
this is the first result for this problem that uses resource augmentation. For
the still open question regarding the hardness of LLARP, our contribution is
the design of more general, related problem, the anchored rectangle packing
problem. Here, we give a PTAS for all anchors in (0, 1)2, that is complemented
by the NP-hardness proof for the CARP problem in [ABC+19]. As a final
observation, we note that when considering the perturbation-augmentation
setting for LLARP with resource augmentation, we may obtain a (1 − ε)-
approximation using Algorithm 3.3. This is done by considering for each
maximal rectangle not its lower-left corner as an anchor but instead a point
slightly closer to the center of the rectangle, i.e., the anchor (ε, ε), and
then scaling the candidate rectangles accordingly and proceeding with the
algorithm as usual. The drawback is that, unlike with Theorem 3.1, we only
obtain a (1 − ε) approximation. Also, the running time may depend on the
input points, as the existence of a small maximal rectangle upper bounds
the shrinking parameter δ which influences the running time. It remains
an intriguing problem to design a good approximation algorithm or lower
bounds for the LLARP problem and of course to determine whether indeed
half of the unit square can always be covered.

3.4 Conclusion 109

Simultaneous Allocation and
Maintenance Scheduling of
Recyclable Resources under
Uncertainty with Application in
Steelmaking

4

Timely allocation and maintenance of scarce resources is a challenging but
essential task that arises in many production environments. In this chapter,
we consider an application in steelmaking, an industrial sector, where rising
economic pressure, due to fierce global competition, increasing energy prices,
and climate-change-related regulation, has recently led companies to em-
brace digitalization and concurrent optimization of production processes to
boost sustainability and profitability [BFC+20a]. Specifically, we simultane-
ously consider the maintenance scheduling of working rolls in a hot rolling
mill, the allocation of working rolls to production jobs, and the scheduling
of these production jobs on a single production processor. We optimize a
bi-criteria objective in order to minimize both, the idle time of the production
processor and the cost associated with the working-roll-to-production-job
allocation. Moreover, we investigate how to deal with the uncertainty that
arises from knowing only the next k production jobs in advance.

Given the undeniable importance of maintaining machines and other re-
sources in industrial production, there is a large and still growing body of
research devoted to maintenance strategies, with the first operation research
models for optimizing maintenance dating back to the sixties [Dek95; BP96;
BH60]. Generally, these are difficult problems, especially when combining
production scheduling and maintenance. Even the comparatively simple
setting of scheduling jobs and preventative machine maintenance tasks on a
single machine is strongly N P-hard [QCT99]. However, integrating mainte-
nance planning with production scheduling increases the overall effectiveness
of production [NML+03], while failure to consider maintenance may lead to

111

serious and costly interruptions in the production process [CCC+06]. The
recent survey by Geurtsen et al. [GDA+22] considers the topic of integrating
production scheduling with resource constraints, and maintenance consid-
erations. It concludes that the combinations of production scheduling with
maintenance considerations and with resource constraints, respectively, are
widely investigated, while research on the combination of all three is com-
paratively scarce. However, there is ample evidence that, by combining those
different aspects of production in the decision-making process, improvements
can be made when compared to production scheduling without taking into
account maintenance and/or resources. Thus, investigating the combina-
tion of production, resources, and maintenance is an important task that is
interesting for both theoreticians and practitioners.

Most scientific publications that study the integration of maintenance and
production scheduling only consider themaintenance of machines but not that
of resources. A notable exception is the study of injection mould maintenance
in plastic production. Here, often all three aspects, production, resources
and maintenance, are considered simultaneously, as well as the maintenance
of both, machines and resources (i.e., moulds), see, e.g., [WCC12; WCC14;
FCN+19]. We are only aware of one work by Wang and Ming [WL15] that
also considers the allocation of resources to production jobs. There, however,
the allocation influences the job processing times and does not, as in our case,
lead to an additional optimization objective. Another difference is found in
the type of maintenance that is considered. While the aforementioned articles
mostly consider preventative maintenance, i.e., deciding on when to maintain
resources in order to prevent complete breakdowns while maximizing the
availability of the resource, in our setting, a resource needs to be maintained
after each use in a production job.

When considering the combination of production scheduling and resource
constraints, the Resource Constrained Project Scheduling Problem (RCPSP)
is a prominent example. It is a classical NP-hard [BLK83] optimization prob-
lem in which a set of jobs with precedent constraints needs to be scheduled
subject to resource constraints in order to minimize an objective, e.g., the
makespan. As a long-established challenging problem and with its wide prac-
tical applicability it has gathered a large research interest. The classical types
of resources considered in RCPSP are renewable, non-renewable or doubly

112 Chapter 4 Simultaneous Allocation and Maintenance Scheduling

Simultaneous Allocation and Maintenance Scheduling

constrained resources. Over the years, different additional resource types
have been proposed, some of which come close to our setting. Somewhat
related are changeover resources [NSZ06], allocatable resources [ST03],
auxiliary resources [MWW06], complementary resources [AR01], and delay
renewable resources [AB97]. The closest model to ours is that of recyclable
resources by Shewchuk and Chang [SC95], explaining our choice in naming.
Here, too, resources need to be actively recycled on dedicated machines,
but the setting does not reach the complexity of our maintenance model.
Generally, the focus in RCPSP mostly lies in scheduling the production jobs
while we are more focused on resource maintenance and allocation. For a
broad introduction to RCPSP, see, e.g., the book [ADN13].

Classical research in production scheduling – and in optimization in general –
assumes that an algorithm has full knowledge of the problem input and may
use it to compute a solution. This is called an offline problem. In practice,
however, uncertainties abound. More often than not only part of the input
is known a priori. There are different models that incorporate uncertainties
in the input. For example, in stochastic optimization, unknown parts of the
input are modeled as random variables following some known probability
distribution. This model is often used in preventative maintenance, where
the time it takes until a machine or resource breaks down is modeled with an
exponential probability distribution, see, e.g., [BAY+09], but also in produc-
tion scheduling when considering unexpected machine failures, c.f. [FAP96;
FAP98]. As production facilities become increasingly interconnected and dig-
italized, more and more data are being collected allowing for the estimation
of underlying probability distributions. See [PFA+20; BHS+22] for a discus-
sion of management and types of uncertainties in production scheduling in
the context of Industry 4.0 and Industry 5.0.

Another type of uncertainty is online information, where elements of the
input appear sequentially, either one by one or over time, and as an element is
revealed, an online algorithm has to make irreversible decisions about how to
handle it without knowledge of the future. This kind of information arises in a
variety of settings as many events in the real world are unforeseen and require
immediate action, for instance, unexpected customer orders. The online
setting is well-researched for many classical optimization problems and has
recently also been considered in the context of production scheduling [GM19;

113

GM20; HBW+21], although rarely when resource constraints or maintenance
considerations are present. For a thorough introduction to the topic of online
algorithms, we refer the reader to [BE98].

In the hot rolling mill, both types of uncertainties arise: online information
in the shape of unforeseen production jobs, and stochastic information in
the shape of uncertain processing times and possible machine or resource
failures. This combined setting is far less investigated than stochastic and
online problems individually, but some research exists, for instance, on how
to solve scheduling problems where jobs appear online and have stochastic
processing times [MUV06]. However, research has shown that when the
level of uncertainty is relatively low, a predictive schedule that is based on
offline methods and is recomputed as stochastic information is revealed can
outperform online methods [ALM+05]. This is the case for the uncertain
processing times in the hot rolling mill as rather good estimates are avail-
able in practice, so we ignore these uncertainties and use the approach of
frequent replanning. As machine or resource failures are relatively rare, we
do not consider them explicitly in our algorithm design and handle them
by executing a complete reinitialization. We refer the reader to the review
article by Iglesias et al. [EBO+19] for an overview over the different kinds
of uncertainties arising in steel manufacturing and existing techniques for
dealing with them.

In summary, our work differs from previous research by investigating how
to simultaneously find a solution for four aspects of the production process,
namely production scheduling, maintenance scheduling, resource constraints,
and job-resource allocation, all while handling uncertainties in the production
sequence. The bi-criteria objective and a maintenance machine environment
in which setup times are incurred when changing the resource type further
add to the complexity of our problem. While we are not aware of hardness
results for our particular machine environment, Monma and Potts [MP89]
showed that such setup times imply N P-hardness when scheduling on two
identical parallel machines.

Problem Overview We now turn our attention to the concrete application of
this work which comes from the hot rollingmill, a part of a steel plant that is of
major importance. Here, slabs of heated steel are rolled between consecutive

114 Chapter 4 Simultaneous Allocation and Maintenance Scheduling

Simultaneous Allocation and Maintenance Scheduling

Resting
 hour

Storage

Hot Rolling Station

Pair of
Working Rolls

Maintenance Machines

Universal Machine Type 1 Type 2

 hour

 hour set-up time

Fig. 4.1: Schematic diagram of the maintenance workflow for working rolls. Starting
at the bottom left, at the hot rolling station, pairs of working rolls are used
to roll steel slabs into thin sheets. The pair then rests for one hour, before
it can be maintained by one of three maintenance machines. There is one
type-specific machine for each type plus one universal machine that requires
an hour-long setup when switching types. After maintenance the working
roll pair can be stored or directly used again at the hot rolling station.

pairs of working rolls to obtain thin steel sheets that are then wound up
into coils, with different types and profiles of working rolls determining the
properties of the final product. Naturally, such a production process evokes
a considerable amount of mechanical stress, that wears down the working
rolls and causes a recurring need for their maintenance. After cooling down
during a resting period, worn down working rolls can be maintained at a
few dedicated machines in order to be used again in future production jobs.
Additionally, it is possible to change the profile of a working roll during
maintenance. However, depending on the type of a working roll, it can only
be maintained by a subset of the machines. A schematic overview of the hot
rolling mill maintenance workflow is depicted in Figure 4.1.

The majority of scientific articles regarding the hot rolling mill considers
the question of scheduling the processing of slabs and assigning slabs to
working roll profiles to match a list of customer orders while satisfying
various technical constraints, but does not explicitly take into account the
maintenance of working rolls, c.f. [ÖUH21; CWT14; NRJ+05; CYW08;
ZSW19] and references therein. However, as the total number of working
rolls is limited, their timely maintenance is of utmost importance to the
production process as a whole. Failure to produce maintained working
rolls with the correct profile when needed at the rolling station can cause

115

costly delays of the whole milling operation, with the cost of a delay of
just one minute ranging in the thousands of euros. At a time when steel
manufacturers have to cope with fierce global competition, rising energy
prices, a reorientation towards carbon-neutral production, and a decline in
demand from the automotive and mechanical industries such delays are an
issue of both economical and environmental sustainability to be avoided at
all costs, c.f. [VGG+20; Are19; Ryn08; BFC+20b; SEW20; VGG+20].

A second issue with the maintenance of working rolls lies in the assignment
of a new profile, which is dictated by the allocation of a worn working roll
to an upcoming resource demand with that profile. Since the new profile
is ground into the working roll by the maintenance machine, the more a
newly chosen profile differs from the previous profile of the working roll,
and this leads to a larger loss of working roll mass during maintenance and
thus a shorter lifetime. Ideally, one wishes to minimize the overall loss of
material among all working rolls and, at the same time, to minimize the
idle time of the production schedule, i.e., to cause as little delay from late
maintenance as possible. These two goals are usually opposing, and a trade-
off that considers the total incurred cost is sought. In practice, however,
the cost of delays usually significantly outweighs or even strictly dominates
the maintenance cost incurred due to material loss which is reflected in our
algorithm design.

In this chapter, we introduce the simultaneous allocation and maintenance
scheduling (SAMS) problem. Here, we are given a list of n production jobs
with associated processing times and resource demands, by which we refer to
the amount of resources, i.e., working roll pairs, of a certain type and profile
that a job requires for processing. Further, we are given a set of heterogeneous
resources with different types and initial profiles and a set of maintenance
machines. The task is to compute feasible schedules for the production jobs
on a single processor and for maintenance of resources on the maintenance
machines as well as an allocation of resources to resource demands. The
objective is to minimizes a cost function that combines the maintenance cost
and idle time of the production processor. In SAMS with lookahead k ∈ N, we
assume that the list of production jobs is only revealed over time. That is, at
any point in time, in addition to the information on production jobs that are
being or have already been processed, only the next k upcoming production

116 Chapter 4 Simultaneous Allocation and Maintenance Scheduling

Simultaneous Allocation and Maintenance Scheduling

Running
Time

Solution
Qual-
ity Description

Algorithm 4.1 +++ + 3-stage heuristic using matching and scheduling methods

ILP 1 – – – +++ general ILP for SAMS

ILP 2 – – +++ ILP minimizing the idle time

ILP 3 – – +++ ILP minimizing maintenance cost given production schedule

ILP rolling – ++ rolling application of an above ILP to handle lookahead k

Tab. 4.1: Overview of the solution methods for SAMS presented in this chapter and
their performance with respect to running time and solution quality.

jobs are known. Besides the online nature of the problem, another difficulty
lies in the specific machine environment considered for resource maintenance
with two kinds of machines. The first kind can only maintain resources of a
single type, while the second, the universal machines, can maintain resources
of any type, but incurs a fixed setup time when switching between types. The
complete, formal definition of the SAMS problem is given in Section 4.1.

Our Results Motivated by a project with a large multinational steel man-
ufacturer, the main result in this work is the development of an efficient
heuristic for SAMS with lookahead k that produces solutions of good quality
while dealing with the various uncertainties that arise in the complex pro-
duction environment of a hot rolling mill. A fast running time is of particular
importance to be able to react to unforeseen changes and (re-)compute a
production schedule at a moments notice. We meet this goal by presenting a
tunable, event-driven heuristic, Algorithm 4.1, that achieves extremely fast
running times and still produces solutions of good quality, particularly with
respect to the idle time of the production processor. To rigorously evaluate
this heuristic, we also develop several integer linear programs (ILP) for the
Offline-SAMS-Problem, ILPs 1-3, that serve as lower bounds to an optimal
(offline) solution and compare them to the heuristic on several randomly
generated instances that mimic real-world scenarios. Additional experiments
show a large improvement when comparing the idle time of the heuristic
to that of current real-world schedules created without computational assis-
tance. Table 4.1 gives a summary of the different approaches presented here.
The structure of this chapter is as follows.

117

In Section 4.1, we give a formal definition of the SAMS problem.

After that, in Section 4.2, we present a time-indexed integer linear program,
ILP 1, to solve the offline version of SAMS. Additionally, we provide two sim-
pler ILPs that serve as lower bounds to the individual optimization objectives,
i.e., waiting cost and maintenance cost. As a consequence, they have consid-
erably faster running times and can be used on some of the instances where
the previous, complete ILP is intractable. The first, ILP 2, computes a produc-
tion schedule with minimum makespan and completely disregards the costs
associated with maintenance. The second, ILP 3, given a feasible schedule of
production jobs as input, computes an optimal allocation of working rolls to
resource demands as well as a feasible maintenance schedule. Since the cost
of maintenance is crucially dependent on the underlying production schedule,
ILP 3 is particularly useful to evaluate the performance of an algorithm in
terms of maintenance cost, by using the schedule computed by the algorithm
as input for ILP 3 and then comparing the respective maintenance costs. A
comparison with the maintenance cost of an optimal (offline) solution would
be misleading since it might have a schedule with shorter makespan, which
can constrict maintenance and lead to a larger maintenance cost despite
being the better solution overall. We also discuss extensions of the above
ILPs to obtain ILP-based solution methods for SAMS with lookahead k.

In Section 4.3, we present Algorithm 4.1, our heuristic for SAMS with looka-
head k, which combines fast running times with a good solution quality. It
does so by dividing the SAMS problem, with all its complicated and interde-
pendent parts, into three phases, namely resource allocation, maintenance
scheduling and production scheduling. These phases are carried out succes-
sively and during the execution of each phase, special care is taken that the
subsequent phases are not adversely affected. Notably, the resource allocation
phase consists of solving a minimum-cost bipartite matching problem, that is
cleverly setup in a way that considers the urgency of a resource demand as
well as an estimate of the available maintenance capacity. Further, it exploits
the observation, that right after a production job j ends and the subsequent
resting period finishes, we know that worn working rolls that correspond
to the resource demands of j become available for processing. Such virtual
resources are also incorporated in the minimum-cost matching in an effort to
cope with the online nature of the problem.

118 Chapter 4 Simultaneous Allocation and Maintenance Scheduling

Simultaneous Allocation and Maintenance Scheduling

Section 4.4 presents the results of our experimental evaluation. Here, we
compare the aforementioned approaches on randomly generated instances
resembling real world-data, to evaluate their performance and highlight the
trade-off between running time and solution quality. We further show that
the heuristic compares favorably against schedules that are currently used
in practice and demonstrate the influence of the tunable parameters within
the heuristic.

4.1 Problem Definition

We give a formal definition of the simultaneous allocation and maintenance
scheduling (SAMS) problem. In the following, when talking about an event
that happens at time t and takes x time units, we mean that this event takes
place in the time interval [t, t + x). Moreover, for a positive integer n, we
denote by [n] the set {1, 2, . . . , n}.

In the SAMS problem, we are given a set J = [n] of n production jobs with
processing times pj ∈ Q. The jobs need to be executed consecutively, in
ascending order, on a single machine, the production processor. Moreover, we
are given a set R of recyclable resources r, each of which has a type αr ∈ [2],
an initial profile β̄r ∈ B, where B ⊆ Q denotes the set of all possible profiles,
and an initial state γ ∈ Γ = {worn, maintained}. For each job j ∈ J there
are associated resource demands Dj,α,β ∈ N, for all α ∈ [2], β ∈ B, meaning
that to execute job j, we need to expend Dj,α,β maintained resources with
type α and profile β. After processing j, the expended resources change their
state to worn. Additionally, there is a resting time of ∆D ∈ Q additional time
units before the resources are available for maintenance. Denote by Cw the
total idle time of the processor, to which we also refer to as waiting cost.

After resting, a worn resource becomes available for maintenance. The main-
tenance can by carried out by one of three maintenance machines, we call
this a maintenance job. Maintenance jobs have a processing time of ∆M ∈ Q
time units and at their completion, the state of the corresponding resource is
set to maintained. Optionally, the resource may also change its profile, incur-
ring a maintenance cost of |β − β′| when changing the profile from β to β′.
Already maintained resources may also change their profile this way. Denote

4.1 Problem Definition 119

by Cm the total maintenance cost, i.e., the sum of costs over all maintenance
jobs. Of the three machines, machine 1 may maintain only resources of
type 1 and machine 2 only those of type 2. The remaining so-called universal
machine, machine 3, may maintain resources of both types but incurs a setup
time of ∆S ∈ Q time units between maintaining resources of different types
during which it cannot process any maintenance jobs. Initially, the universal
machine may maintain jobs of type 1 without incurring a setup time.

The task is to obtain valid schedules for the maintenance machines and the
production processor together with an allocation of resources to production
jobs in order to minimize the combined cost Cw + µ · Cm for some non-
negative parameter µ. Usually, the waiting cost dominates the maintenance
cost, i.e., Cw ≫ µ · Cm. Note that the assignment of resources to production
jobs dictates the profile assignment during the maintenance jobs.

In practice, the production sequence is often not known a priori but is only
revealed over time. In the online SAMS problem with lookahead k, a production
job j, its processing time, and its resource demands are revealed when
job j − k starts to be processed; that is, they are known from the beginning
if j − k ≤ 0. Previous decisions, i.e., start of a production or maintenance
job and allocation of the corresponding resources, can not be changed after
receiving the new information. When k ≥ n, we have complete information
about the instance from the very beginning and are in the offline setting.

When dealing with such uncertainties, we cannot expect to obtain solutions as
good as an offline solution (also offline optimum), an optimal solution for the
corresponding offline problem. To evaluate the performance of algorithms
under uncertainties, we compare their solutions to an offline solution (k = n)
for the same instances. Ideally, one would like to bound the ratio of the two
for all instances.

We note that, theoretically, it is possible to consider more general versions of
the SAMS problem, e.g., with more than two types of resources, arbitrary
types and numbers of maintenance machines or different, possibly type-
dependent, setup and maintenance times. Motivated by the application in
steel production, we consider the specific variant described above. However,
the ideas and methods described in this chapter should also be applicable for
other variants.

120 Chapter 4 Simultaneous Allocation and Maintenance Scheduling

Simultaneous Allocation and Maintenance Scheduling

4.2 Integer Linear Programs and Lower Bounds for SAMS

In this section, we present an integer linear program (ILP) for the offline
SAMS problem, as well as two additional ILPs that serve as lower bounds
for the individual objectives. To this end, we assume that the processing,
resting, maintenance, and setup times are all integers. We index time with
integer time points t and assume that we are given an upper bound tmax on
the makespan of an optimal solution. The time horizon considered by the
ILPs is then T = {1, . . . , tmax} with values t ≤ 0 corresponding to the initial
state of the problem.

4.2.1 An Integer Linear Programming Formulation for SAMS

We start with the general ILP formulation of SAMS to which we refer from
here on as ILP 1. ILP 1 uses binary decision variables sj,t that indicate
whether production job j ∈ J starts being processed at time t ∈ T and
variables yα,t that indicate whether the universal machine can serve resources
of type α ∈ [2] at time t ∈ T . Additionally, we use two types of non-
negative integer decision variables: variables nγ,α,β,t that count the number
of resources that have state γ ∈ Γ, type α ∈ [2], profile β ∈ B and are
available at time t ∈ T , where being available means that the resource is not
being used in a maintenance or production job at time t, nor is it resting;
and variables xα,β,β′,γ,t that count the number of maintenance jobs that are
started at time t and change a resource with state γ and type α from profile β

to β′. Denote by n̄γ,α,β the initial number of (available) resources with
state γ ∈ Γ, type α ∈ [2], and profile β ∈ B. For the sake of readability, we
will refer with a state γ = 0 to worn resources and with γ = 1 to maintained
ones. A summary of the indices, sets, parameters and decision variables used
in ILP 1 can be found in Table 4.2.

The linear program ILP 1 is formulated as follows.

4.2 Integer Linear Programs and Lower Bounds for SAMS 121

Indices
j production jobs
α resource types

β, β′ resource profiles
γ state of resource

t, t′ time points
Sets and Parameters

J set [n] of production jobs
B set of resource profiles
T set [tmax] of time points
Γ set of states {0, 1}; 0 for worn, 1 for maintained

pj processing time of job j
n̄γ,α,β initial number of resources with type α, profile β, and state γ
Dj,α,β number of resources with type α and profile β needed for job j

∆M maintenance time
∆D resting time
∆S setup time

µ waiting and maintenance cost trade-off
Decision Variables

sj,t 1, if starting time of job j equals t, 0 otherwise
yα,t 1, if univ. machine can serve resources of type α at time t, 0 otherwise

nγ,α,β,t number of avail. resources of state γ, type α, and profile β at time t
xα,β,β′,γ,t number of maintenance jobs starting at time t that change a resource

with type α and state γ from profile β to β′

Tab. 4.2: Overview of indices, sets, parameters and decision variables used in ILP 1.

Objective The objective in the SAMS problem is to minimize Cw + µ · Cm,
which we express as

min
∑
t∈T

t · sn,t −
n−1∑
j=1

pj + µ ·
∑
α∈[2]

∑
β,β′∈B

∑
γ∈Γ

∑
t∈T

xα,β,β′,γ,t · |β − β′|.

Constraints We ensure that every production job is started exactly once
and only after the preceding job has been completed:∑

t∈T

sj,t = 1, for all j ∈ J,

sj,t ≤
t−pj−1∑

t′=1

sj−1,t′ , for all j ∈ J \ {1}, t ∈ T.

122 Chapter 4 Simultaneous Allocation and Maintenance Scheduling

Simultaneous Allocation and Maintenance Scheduling

The universal machine can maintain only resources of one type at a time and
we enforce a setup time of ∆S between the maintenance of resources with
different types, during which yα,t = 0:

yα,t + 1
1+∆S

t∑
t′=t−∆S

y(3−α),t′ ≤ 1, for all α ∈ [2], t ∈ T.

For all t ∈ T , the number of maintenance jobs being processed per type is at
most the current capacity, which is 1 for the type-specific machine plus yα,t

for the universal machine:

t∑
t′=t−∆M+1

∑
β,β′∈B

∑
γ∈Γ

xα,β,β′,γ,t ≤ 1 + yα,t, for all α ∈ [2], t ∈ T.

To track the number of available resources, note that the number of main-
tained resources of type α and profile β increases only when an appropriate
maintenance job with target profile β is completed. It decreases by one
whenever a maintenance job of a maintained resource with source profile β

is started or when a production job j starts its processing, in which case it
decreases by precisely Dj,α,β . Similarly, the number of worn resources of a
certain type and profile decreases when a maintenance job with that type
and source profile is started, and it increases after a production job is finished
and the subsequent resting time is elapsed:

n1,α,β,t−n1,α,β,t−1 =
∑

β′∈B

(∑
γ∈Γ

xα,β′,β,γ,t−∆M −xα,β,β′,1,t

)
−

∑
j∈J

Dj,α,β ·sj,t,

for all α ∈ [2], β ∈ B, t ∈ T,

n0,α,β,t − n0,α,β,t−1 = −
∑

β′∈B

xα,β,β′,0,t +
∑
j∈J

Dj,α,β · sj,t−pj −∆D ,

for all α ∈ [2], β ∈ B, t ∈ T.

Note that, since the variables nγ,α,β,t are non-negative, the above equations
also ensure that when a production or maintenance job is started the required
amount and variety of resources is available.

4.2 Integer Linear Programs and Lower Bounds for SAMS 123

Finally, we set the initial values as

y1,t = 1, nγ,α,β,t = n̄γ,α,β , sj,t = 0, xα,β,β′,γ,t = 0,

for all α ∈ [2], β, β′ ∈ B, γ ∈ Γ, t ≤ 0,

and require the decision variables to be non-negative integers

sj,t, yα,t, nγ,α,β,t, xα,β,β′,γ,t ∈N0, for all α∈ [2], β, β′ ∈B, γ ∈Γ, j ∈J, t∈T.

While ILP 1 is guaranteed to output an optimal solution, its running time,
even for moderate step sizes of the time indexing, is prohibitively large or
even intractable. Hence, the main use case of ILP 1 lies in the evaluation
of more practical algorithms or in dealing with longer-term questions like
considerations regarding the production environment. For instance, we can
utilize ILP 1 to answer questions such as “what improvements can I possibly
expect to see when adding an additional maintenance machine?”, where the
time it takes to compute the solution is of minor importance.

4.2.2 Lower Bounding the Individual Objectives

To evaluate the performance of algorithms for SAMS, we would like to com-
pare their objective value with that of an optimal offline solution OPT.
However, solving ILP 1 is not tractable even for problems of moderate size.
We present two simpler ILPs to evaluate the performance of an algorithm
solely with respect to waiting and maintenance cost, respectively. The first,
ILP 2, computes a schedule with minimum idle time while ensuring that all
resources are in fact maintained when they are expended by a processing job
but without taking into account the actual maintenance costs. The second,
ILP 3, takes as input a feasible schedule of production jobs, and computes
the assignment of resources to type-profile demands, as well as a feasible
maintenance machine schedule that minimizes the maintenance cost while
respecting the given production schedule. To judge the quality of an algo-
rithm with respect to maintenance cost, we use its production schedule as
input for ILP 3 to obtain the minimum waiting cost that is achievable when
given this fixed schedule.

124 Chapter 4 Simultaneous Allocation and Maintenance Scheduling

Simultaneous Allocation and Maintenance Scheduling

Recalling that in practice the waiting cost usually dominates the maintenance
cost, one may think that under such an assumption, it is possible to exactly
compute OPT by first executing ILP 1 and subsequently ILP 2, with the
previously computed optimal production schedule as input. Unfortunately,
this is not the case as there may exist several different schedules of minimum
waiting cost. With the temporal constraints imposed by these schedules on
the maintenance of resources, the minimum maintenance costs for these
schedules may vary greatly. To find OPT we would thus need to compute all
such schedules and apply ILP 2 to each of them.

ILP 2 - Lower Bounding the Idle Time We describe a simplification of ILP 1,
which we call ILP 2, that computes (offline) solutions with minimum idle
time, but disregards maintenance costs. As in ILP 1, we use binary decision
variables sj,t that indicate whether production job j ∈ J starts being pro-
cessed at time t ∈ T and variables yα,t that indicate whether the universal
machine can maintain resources of type α ∈ [2] at time t ∈ T . Additionally,
we use two types of non-negative integer decision variables: variables nγ,α,t

that count the number of resources that have state γ ∈ Γ, type α ∈ [2], and
are available at time t ∈ T , where being available means that the resource is
not being used in a maintenance or production job at time t, nor is it resting;
and variables xα,γ,t that count the number of maintenance jobs that are
started at time t on worn resources of type α. Denote by n̄γ,α the initial
number of (available) resources with state γ ∈ Γ and type α ∈ [2]. Again,
we refer with a state γ = 0 to worn resources and with γ = 1 to maintained
ones and summarize the indices, sets, parameters and decision variables, see
Table 4.3.

The linear program ILP 2 is formulated as follows.

Objective The objective of ILP 2 is to minimize the idle time only, that is,

min
∑
t∈T

t · sn,t −
n−1∑
j=1

pj .

4.2 Integer Linear Programs and Lower Bounds for SAMS 125

Indices
j production jobs
α resource types
γ state of resource

t, t′ time points
Sets and Parameters

J set [n] of production jobs
T set [tmax] of time points
Γ set of states {0, 1}; 0 for worn, 1 for maintained

pj processing time of job j
n̄γ,α initial number of resources with type α and state γ
Dj,α number of maintained resources with type α needed for job j

∆M maintenance time
∆D resting time
∆S setup time

Decision Variables
sj,t 1, if starting time of job j equals t, 0 otherwise
yα,t 1, if universal machine can serve resources of type α at time t, 0 otherwise

nγ,α,t number of available resources with state γ and type α at time t

Tab. 4.3: Overview of indices, sets, parameters and decision variables used in ILP 2.

Constraints We ensure that every production job is started exactly once
and only after the preceding job has been completed:∑

t∈T

sj,t = 1, for all j ∈ J,

sj,t ≤
t−pj−1∑

t′=1

sj−1,t′ , for all j ∈ J \ {1}, t ∈ T.

The universal machine can maintain only resources of one type at a time and
we enforce a setup time of ∆S between the maintenance of resources with
different types, during which yα,t = 0:

yα,t + 1
1+∆S

t∑
t′=t−∆S

y(3−α),t′ ≤ 1, for all α ∈ [2], t ∈ T.

126 Chapter 4 Simultaneous Allocation and Maintenance Scheduling

Simultaneous Allocation and Maintenance Scheduling

For all t ∈ T , the number of maintenance jobs being processed per type is at
most the current capacity, which is 1 for the type specific machine plus yα,t

for the universal machine:

t∑
t′=t−∆M+1

∑
γ∈Γ

xα,γ,t ≤ 1 + yα,t, for all α ∈ [2], t ∈ T.

To track the number of available resources, note that the number of main-
tained resources of type α increases by one whenever a maintenance job
with that type is completed and decreases when a production job j starts
its processing, in which case it decreases by precisely Dj,α. Similarly, the
number of worn resources of a certain type decreases when a maintenance
job with that type is started, and it increases after a production job is finished
and the subsequent resting time is elapsed:

n1,α,t − n1,α,t−1 = xα,1,t −
∑
j∈J

Dj,α · sj,t, for all α ∈ [2], t ∈ T,

n0,α,t − n0,α,t−1 = −xα,0,t +
∑
j∈J

Dj,α · sj,t−pj −∆D ,

for all α ∈ [2], β ∈ B, t ∈ T.

Note that, since the variables nγ,α,t are non-negative, the above equations
also ensure that when a production or maintenance job is started the required
amount of maintained resources with correct type is available.

Finally, we set the initial values as

y1,t = 1, nγ,α,t = n̄γ,α, sj,t = 0, xα,γ,t = 0, for all α ∈ [2], γ ∈ Γ, t ≤ 0,

and require the decision variables to be non-negative integers

sj,t, yα,t, nγ,α,t, xα,γ,t ∈ N0, for all α ∈ [2], γ ∈ Γ, j ∈ J, t ∈ T.

ILP 3 - Lower Bounding the Allocation Cost of a Feasible Schedule To com-
plement ILP 2, we need another integer linear program for SAMS that com-
putes an optimal allocation of resources to resource demands when given a
feasible schedule for the production processor as an input. For this, we may

4.2 Integer Linear Programs and Lower Bounds for SAMS 127

simply use ILP 1 and fix the starting times of production jobs according to
that schedule. We refer to this linear program as ILP 3.

4.2.3 Using ILPs for SAMS with Lookahead k

All three ILPs described in this section compute optimal offline solutions. As
such, they provide lower bounds that we cannot expect to reached when
considering SAMS with lookahead k. However, it is actually possible to utilize
such an ILP in the setting of constant lookahead k. We do this by repeatedly
applying the ILP, in a rolling manner. That is, whenever a new production
job is revealed, recompute an updated schedule and allocation for the next k

production jobs using ILP 1, with previous, irrevocable decisions fixed as
initial values. We refer to this method as ILP rolling, e.g., ILP 1 rolling for
the rolling application of ILP 1. While the obtained solutions are no longer
optimal, they are still of good quality. However, despite the resulting small
instances with only k production jobs, the time-indexing of the ILPs causes
running times to be too high still for step sizes that suit practical needs.

4.3 An Efficient Heuristic

Since we are able to compute optimal (offline) solutions using ILP 1, a natural
approach to solving SAMS with lookahead k would be to repeatedly apply
ILP 1 in a rolling manner, as described in the previous section. Unfortunately,
the assumption of having integer time points and duration parameters, i.e.,
processing times, maintenance duration, etc., presents a problem. Choosing
a sufficiently small stepsize to properly reflect real-world behavior, dramat-
ically increases the complexity of the ILP, rendering the computation of a
solution excessively slow or even completely intractable, as we show in our
experimental evaluations in Section 4.4. One could also round up the various
duration parameters to a multiple of a chosen, possibly larger, stepsize, but
this in turn could greatly increases the obtained makespan. These downsides
are not tolerable as even small production delays are extremely costly and
schedules are often required to be (re)computed at a moments notice to
react to unforeseen changes due to the manifold uncertainties associated

128 Chapter 4 Simultaneous Allocation and Maintenance Scheduling

Simultaneous Allocation and Maintenance Scheduling

with real-world production processes. Although ILP 2 and ILP 3 are much
simpler than ILP 1, they cause the same problems as described above and
are not tractable when dealing with small stepsizes.

In this section, we present a heuristic for SAMS that efficiently computes
solutions of good quality while handling the various uncertainties associ-
ated with real-world production processes. Besides unknown production
sequence with a bounded lookahead, we differentiate between two types of
uncertainty. First, minor, expected uncertainties that frequently occur and
manifest as stochastic duration parameters; these are handled during the
normal execution of the heuristic by frequently recomputing the maintenance
schedule whenever new information becomes available. And second, large
unexpected changes such as the removal or addition of production jobs or
resources which require a complete reinitialization of the heuristic.

For a job j, we denote by sj the planned starting time of the job, i.e., the
earliest possible starting time assuming that all resource demands of the job
and its predecessors are met. Note that this value may change dynamically
over time whenever delays occur due to unmet resource demands. Moreover,
we consider the resource demands of job j as several individual type-profile
demands, namely Dj,α,β demands τ with type α = ατ and profile β = βτ ,
and denote by Dj the set of all type-profile demands associated with job j.
An important observation we use is the fact that if job j is processed at
time t, then |Dj | worn resources r will become available for maintenance
at time ar := t + pj + ∆D, each of them is associated, one to one, with a
demand τ = τ(r) ∈ Dj and has the corresponding type and profile. We
call these virtual resources and denote by rτ the virtual resource associated
with τ . Our heuristic takes such resources into account when computing an
assignment of (virtual) resources to type-profile demands in order to cope
with the limited lookahead when minimizing the maintenance cost.

On a high level, the heuristic consists of three phases that are executed
consecutively, whenever new information becomes available. Each of the
phases is designed in a way that benefits the subsequent phases. In the
first phase, the allocation phase, we express the assignment of (virtual)
resources to type-profile demands as a minimum-cost matching problem. Its
cost function not only reflects the goal to minimize the maintenance cost,
but also tries to ensure that resources are assigned primarily to production

4.3 An Efficient Heuristic 129

jobs with a sooner starting time and that there is still sufficient time for
their maintenance. For the initial assignment, we use the same approach but
separately consider maintained available resources and resources that are
being maintained and assign them to the most imminent production jobs. The
second phase, the maintenance scheduling phase, schedules maintenance
jobs that are induced by the allocation from resources to demands from the
first phase on the three maintenance machines. The planned starting time of
a production job acts as a due date for the associated maintenance jobs and
we schedule according to the earliest due date (EDD) rule, which is known
to be optimal if the amount of setup actions and their precise times are
known [MP89, Theorem 1]. For the universal machine, we try various set-up
times and pick the best option. Finally, in the third phase, we simply schedule
the next production job as soon as the required resources become available.

Algorithm Description After the initial resource allocation, which we de-
scribe further below, the normal execution of the heuristic consists of three
phases that are executed repeatedly whenever new information is revealed.
Specifically, whenever a process finishes, or a resources become available for
maintenance, or new information is revealed, execute the following steps,
summarized as Algorithm 4.1.

Phase I: Allocation We consider the weighted bipartite graph
G = (U ∪ W, E, c) that is defined as follows. The set U consists of all
resources that are currently available for maintenance and all known virtual
resources that will become available for maintenance in the future. The
set W contains all type-profile demands that are not satisfied, i.e., there is
no resource of the correct type and profile that is maintained or currently
in maintenance allocated to this demand yet. Specifically, resources and
type-profile demands allocated in previous iterations for which the associ-
ated maintenance job has not been started yet are considered anew and
their former allocation is discarded. A (virtual) resource r is connected to
a type-profile demand τ with an edge of E, if we have αr = ατ and if the
inequality µc · vτ ≤ sτ − ar holds, where µc ∈ Q is a tunable parameter and
vτ = ∆M · |{τ ′ ∈ D | τ ′ not satisfied and tnow ≤ sτ ′ ≤ sτ }| is the volume of
maintenance jobs that we aim to finish before time sτ , with tnow denoting
the current time. Intuitively, fulfilling this inequality means, that we are

130 Chapter 4 Simultaneous Allocation and Maintenance Scheduling

Simultaneous Allocation and Maintenance Scheduling

Algorithm 4.1 Regular Operation at Time tnow

Phase I: Allocation
1: consider the weighted bipartite graph G = (U ∪W, E, c) with
2: U = {r available for maintenance} ∪ {r virtual resource with ar > tnow}
3: W = {τ | τ not satisfied}
4: E = {(r, τ) | types match and µc · vτ ≤ sτ − ar}
5: c(r, τ) = |βr − βτ |+ mmax ·Dmax · j(τ)
6: M ← minimum-cost maximum matching on G

Phase II: Maintenance Scheduling
7: compute due dates sj (starting time for job j assuming no idle time)
8: S0 ← schedule M according to EDF without setup
9: for j = 1, . . . , |M | do
10: Sj ← schedule M w.r.t. EDF with setup before j-th job on machine 3
11: j∗ ← arg minj=1,...,|M| Lmax(Sj)
12: if Lmax(S0) = 0 or Lmax(S0) ≤ Lmax(Sj∗) + µp then
13: S ← S0
14: else
15: S ← Sj∗

16: start all possible maintenance jobs according to S and M

Phase III: Production
17: if possible, start next production job according to M and previous allocations

confident that the maintenance of r can be accomplished before time sτ ,
and this confidence can be adjusted using the parameter µc. Lastly, the edge
weights of the graph are given by c(r, τ) = |βr − βτ | + mmax · Dmax · j(τ),
where Dmax is an upper bound on the number of demands per production
job, mmax is an upper bound on the maintenance cost of any job, and j(τ)
is the index of the production job associated with τ . A minimum-cost max-
imum matching on G with respect to this cost function attains the lowest
maintenance cost possible under the constraints that only pairs in E are
matched and that more urgent production jobs, i.e., those with an earlier
planned starting time, are prioritized over less urgent ones. The latter is
achieved by the additive term of mmax · Dmax · j(τ) in the cost function,
which ensures that the cost of satisfying less urgent type-profile demands
dominates that of more urgent ones. The computation of a minimum-cost
maximum matching M on G concludes Phase I.

Phase II: Maintenance Scheduling The second phase consists of scheduling
the maintenance jobs obtained from the matching M computed in Phase I. A
maintenance job (r, τ) ∈ M can start its processing at the earliest at time ar,
when the corresponding resource becomes available for maintenance, and is

4.3 An Efficient Heuristic 131

ideally finished by time sj(τ). Thus, the problem of scheduling the resource
maintenance presents itself as a scheduling problem with release times ar

and due dates sj(τ) in a machine environment with setup times in which we
want to minimize the maximum lateness Lmax, i.e., the maximum difference
between a job’s completion time and its due date. For the two type-specific
machines, machines 1 and 2, we always schedule available maintenance
jobs according to EDD and prioritize scheduling on these machines over
scheduling on the universal machine, since EDD is known to be optimal when
no setups occur. To determine whether and when to use a setup on the
universal machine, we compute schedules using EDD for the cases that no
setup is used and with a single setup for every possible time point in the
maintenance horizon, which we define to be just large enough to guarantee
the completion of all jobs. From the computed schedules, we pick the one with
the best objective value. However, since setups consume valuable machine
and personnel time and a practitioner might want to avoid them as much as
possible, we add a tunable penalty of µp ∈ Q to the objective value of the
schedules that use a setup when choosing the maintenance schedule above.
We note that while it would be possible to consider more than a single setup,
the maintenance horizon is relatively small, and, as the maintenance schedule
is recomputed frequently, this gives plenty of opportunity to schedule more
setups if needed. For all idle maintenance machines, start a job or setup
according to the chosen maintenance schedule.

Phase III: Production If the production processor is idle and all resource
demands for the next job are met, i.e., there are maintained resources of the
required type and profile, start the next production job.

The above implicitly assumes that maintained resources are either awaiting
the start of their allocated production job, are being used therein, or are
resting thereafter, and that worn resources are either available for mainte-
nance or allocated to a production job with their maintenance underway or
already completed. While this is true under continuous operation, it is not so
during initialization or when problem parameters suddenly and unforesee-
ably change and force a reinitialization. In this case, we need to additionally
consider maintained resources or resources currently being maintained that
are not allocated to a production job yet. Such resources are assigned with
priority in an initial allocation described below as Phase 0.

132 Chapter 4 Simultaneous Allocation and Maintenance Scheduling

Simultaneous Allocation and Maintenance Scheduling

Phase 0: Initial Allocation To allocate (almost) maintained resources
during initialization, we use the same approach as in Phase I. That is, we
compute a minimum-cost maximum matching on a weighted bipartite graph
G = (U ∪ W, E, c). The set U now contains all maintained resources and all
worn resources that are in the process of being maintained and the set W

consists of the 2 · |U | most urgent type-profile demands and those of equal
urgency. A resource in U is connected to a demand in W via E, if and
only if both, type and profile, already match. For resources that are being
maintained, we already know which profile they will have after completing
maintenance and this is the profile considered when computing E. The edge
weights are given by c(r, τ) = br + bmax · Dmax · j(τ), where br denotes the
time when r completes maintenance, i.e., br = 0 for maintained resources,
and bmax is an upper bound on br. This way, preference is given to more
urgent production jobs, and also to earlier maintained resources. After this
initial allocation, the three other phases are executed. Maintained resources
that were not allocated in Phase 0, are considered in Phase I, for all future
iterations, until allocated, together with the remaining resources in the set V .
Additionally, all edges to demands τ with the same type and profile have a
cost of c(r, τ) = mmax · Dmax · (j(τ) − n) to encourage their use without
renewed maintenance.

4.4 Experimental Results and Interpretation

We present the results of our experimental evaluation of Algorithm 4.1 for
SAMS with lookahead k. To reflect the setting in the hot rolling mill, we
use the following problem parameters: the lookahead is k = 4; the numbers
of resources of type 1 and 2 are 15 and 17, respectively; maintenance and
setup times equal 1 hour each; and the resting time equals 2 hours. For
Algorithm 4.1, we set the tunable parameters to µc = 1 and µp = 1.33.

Figure 4.2 compares the idle times of Algorithm 4.1 with those of manually
created schedules currently used in practice. It does so on twenty instances
containing 50 production jobs each that were extracted from real-world data.
Clearly, Algorithm 4.1 has a lower idle time on every instance. In fact, in the
majority of instances, it beats the real-world schedules by a large margin. This
would imply a considerable potential for cost reduction in practice. However,

4.4 Experimental Results and Interpretation 133

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

instance

0

10

20

30

40

50

60

70

80

id
le
ti
m
e
(h
ou
rs
)

Algorithm 4.1

Dataset

Fig. 4.2: Idle times of Algorithm 4.1 and a dataset for 20 real-world instances. The
sorting is according to the idle time for Algorithm 4.1.

such results have to be taken with a grain of salt. Although great care was
taken to clean up the raw data, some of the idle time in the real-world
schedules may not be due to a worse quality of the schedule computation
itself, but due to other factors, for instance machine breakdowns or longer
maintenance times, that are unknown to us and not taken into account when
running Algorithm 4.1.

For this reason, and to be able to rigorously evaluate the performance of
Algorithm 4.1 with respect to maintenance cost and idle time against strict
lower bounds, we run further evaluations on artificially generated instances.
These were created to resemble real-world datasets while restricting process-
ing times of production jobs to multiples of one hour. Specifically, processing
times, in hours, were chosen uniformly at random from the set {1, 2, 3}. The
other parameters, i.e., number of resources and duration parameters are
as above. Since all durations are multiples of one hour, we can use integer
linear programs from Section 4.2 with 1 hour time steps, rendering ILPs 1-3
tractable for these instances. In the following, we use ILP 1 rolling to refer to
the rolling application of ILP 1 as discussed in Section 4.2.3. Further, when
considering ILP 3, we specifically mean that we use ILP 3 with the schedule
obtained by Algorithm 4.1 as input.

134 Chapter 4 Simultaneous Allocation and Maintenance Scheduling

Simultaneous Allocation and Maintenance Scheduling

0 20 40 60 80 100 120 140

instance

10−1

100

101

102

103

104

105

ru
n
n
in
g
ti
m
e
(s
ec
on
d
s)

Algorithm 4.1

ILP 3

ILP 2

ILP 1

ILP 1 rolling

(a) Running times of all algorithms on 150 instances.

15153060

stepsize (minutes)

10−1

100

101

102

103

104

105

ru
n
n
in
g
ti
m
e
(s
ec
on
d
s)

Algorithm 4.1

ILP 3

ILP 2

ILP 1

(b) Running times for small stepsizes on instances with 4 programs.

Fig. 4.3: Evaluation of the running time (in seconds) of the different algorithms. The
thin gray lines indicate – starting from below – 1 second, 1 minute, and
every hour until 10 hours for the topmost line. The shaded, wider lines
indicate the 95% confidence intervals.

We ran experiments on 150 randomly generated instances as described above,
with three groups of 50 instances containing 5, 10, and 20 production jobs
each. Figure 4.3a compares the running times of Algorithm 4.1, ILPs 1-3
and ILP 1 rolling. Algorithm 4.1 is clearly the fastest approach, followed by
ILP 3, then ILP 2, then ILP 1 rolling, and lastly ILP 1, each time differing

4.4 Experimental Results and Interpretation 135

by at least an order of magnitude. To emphasize the influence of the ILP
stepsize on the running time, we ran additional experiments on 5 instances
with only 4 production jobs for stepsizes 1, 5, 15, 30, and 60 minutes. We
stopped the computation on an instance when the running time reached 120
hours. The results are shown in Figure 4.3b. While the running time of the
heuristic does not depend on the stepsize, the running times of the different
ILPs increase rapidly when the stepsize decreases. ILP 1 reaches the time cap
of 120 hours for the 1 minute stepsize on all instances. Since the instances
consist of only 4 production jobs, ILP 1 is equivalent to ILP 1 rolling here.
This means that a rolling application of ILP 1 is not feasible in practice. Even
ILP 2, the fastest of the integer linear programs, has an average running
time of 35 seconds and 75 minutes for stepsizes 5 minutes and 1 minute,
respectively, while Algorithm 4.1 has an average running time of just 72
milliseconds for arbitrary stepsizes/precision. The solutions of the ILPs were
computed with CPLEX in Ubuntu 18.04.5 on a machine with two AMD EPYC
ROME 7542 CPUs (64 cores in total, 1 core per CPLEX execution) and 1.96
TB RAM using Python and CPLEX, while Algorithm 4.1 ran on a laptop with
a AMD Ryzen 7 PRO 5850U CPU.

We used the same 150 instances as before to further evaluate the perfor-
mance of Algorithm 4.1. Figure 4.4a shows a comparison of the idle times of
Algorithm 4.1, the (offline) optimum OPT (as computed by ILP 1 or ILP 2),
and ILP 1 rolling. The values are normalized through division by OPT. On
average, the idle times of Algorithm 4.1 and ILP 1 rolling are 23.7% and 8.9%
higher than that of OPT, and at most 66.7% and 75% higher, respectively.
Given the online nature of the problem, this seems to be a good performance.
Turning to the maintenance cost, however, Algorithm 4.1 performs not quite
as good when comparing it with the integer linear programs, see Figure 4.4b.
Specifically, the maintenance cost of Algorithm 4.1 is by 161% larger than
that of ILP 3. We suspect that this is so because our algorithm design focuses
primarily on minimizing the idle time, which also is the more important
objective in practice. Algorithmic decisions taken in order to lower the idle
time may have adversely impacted the maintenance cost. This is nicely
illustrated by the maintenance cost of ILP 1 rolling and ILP 3, which for
some instances are lower than those of the optimal solution (optimal for the
bi-criteria objective!). This seemingly odd behavior is due to the fact that
schedules which are worse with respect to idle time leave more room for

136 Chapter 4 Simultaneous Allocation and Maintenance Scheduling

Simultaneous Allocation and Maintenance Scheduling

0 20 40 60 80 100 120 140

instance

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

id
le
ti
m
e
/
id
le
ti
m
e
of

IL
P
1 Algorithm 4.1

ILP 1 rolling

ILP 1

(a) Idle time normalized by OPT for Algorithm 4.1 and ILP 1 rolling.

0 20 40 60 80 100 120 140

instance

2

4

6

8

10

12

m
ai
nt
en
an
ce

co
st

Algorithm 4.1

ILP 3

ILP 1

ILP 1 rolling

(b) Maintenance cost for Algorithm 4.1, ILP 1, ILP 1 rolling, and ILP 3.

Fig. 4.4: Results of the evaluation for waiting and maintenance cost on 150 instances.

maintenance and thus more flexibility to reduce the maintenance cost. Since
ILP 3 works with the starting times of Algorithm 4.1, we know that a better
solution is possible, at least in the offline setting. Further, as ILP 1 rolling
uses lookahead as well, it seems that in the online setting, too, there is room
for improvement.

Figure 4.5 illustrates the influence of the tunable parameters on the perfor-
mance of Algorithm 4.1. Figure 4.5a shows that the idle time increases with

4.4 Experimental Results and Interpretation 137

0.0 0.5 1.0 1.5 2.0 2.5 3.0

setup penalty µp from Phase II

4.5

5.0

5.5

6.0

6.5

7.0

7.5

id
le
ti
m
e
(h
ou
rs
)

idle time number of setups

0

5

10

15

20

25

30

nu
m
b
er

of
se
tu
p
s

(a) Influence of the parameter µp on idle time and number of setups.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

scheduling confidence parameter µc

2

4

6

8

10

12

14

16

18

id
le
ti
m
e
(h
ou
rs
)

idle time maintenance cost

8

10

12

14

16

18

20

22

m
ai
nt
en
an
ce

co
st

(b) Influence of the parameter µc on idle time and maintenance cost.

Fig. 4.5: Influence of the parameters µp (setup penalty) and µc (scheduling con-
fidence) on the performance of Algorithm 4.1. The shaded, wider lines
indicate the 95% confidence intervals.

a larger value of µp (setup penalty in Phase II), but only slightly, while the
number of setups decreases significantly, especially on multiples of 1 hour.
This motivates our choice of µp = 1.33. In Figure 4.5b, we see that depending
on the choice of µc (scheduling confidence parameter in Phase I) there is

138 Chapter 4 Simultaneous Allocation and Maintenance Scheduling

Simultaneous Allocation and Maintenance Scheduling

a trade-off between idle time and maintenance cost. For small values of µc

allocations that are beneficial with respect to maintenance cost are chosen
even if timely maintenance is unlikely, while large values prioritize alloca-
tions where timely maintenance can be guaranteed. This trade-off seems
unavoidably but the parameter µc offers an opportunity for practitioners to
fine-tune it according to their needs.

4.5 Conclusion

In this chapter, motivated by the application of maintaining working rolls in
the hot rolling mill of a large international steel manufacturer, we introduced
the simultaneous allocation and maintenance scheduling (SAMS) problem.
We gave an integer linear programming formulation for SAMS as well as
two simpler linear programs that lower bound the individual optimization
objectives. They are mostly useful for production design and the evalua-
tion of heuristics. For operational use, we presented a heuristic for SAMS
that uses matching and scheduling techniques to obtain solutions for SAMS
with lookahead k. Finally, the heuristic was evaluated against real-world
data sets and the developed integer linear programs which showed its vastly
superior running time and ability to compute good-quality solutions, par-
ticularly with respect to the idle time. We hope that this work furthers the
investigation of how to deal with different aspects of the production process
in an integrated manner.

4.5 Conclusion 139

References

[AAG+19] A. Abboud, R. Addanki, F. Grandoni, D. Panigrahi, and B. Saha.
“Dynamic set cover: improved algorithms and lower bounds”. In:
STOC. ACM, 2019, pp. 114–125 (cit. on p. 51).

[AW14] A. Abboud and V. V. Williams. “Popular Conjectures Imply Strong
Lower Bounds for Dynamic Problems”. In: FOCS. IEEE Computer
Society, 2014, pp. 434–443 (cit. on p. 51).

[ACW15] A. Adamaszek, P. Chalermsook, and A. Wiese. “How to Tame Rect-
angles: Solving Independent Set and Coloring of Rectangles via
Shrinking”. In: APPROX. Vol. 40. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015, pp. 43–60 (cit. on pp. 106, 107,
109).

[AW15] A. Adamaszek and A. Wiese. “A quasi-PTAS for the Two-Dimensional
Geometric Knapsack Problem”. In: SODA. SIAM, 2015, pp. 1491–
1505 (cit. on p. 98).

[AW13] A. Adamaszek and A. Wiese. “Approximation Schemes for Maximum
Weight Independent Set of Rectangles”. In: FOCS. IEEE Computer
Society, 2013, pp. 400–409 (cit. on p. 98).

[AJS+18] H. A. Akitaya, M. D. Jones, D. Stalfa, and C. D. Tóth. “Maximum
Area Axis-Aligned Square Packings”. In: MFCS. Vol. 117. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, 77:1–
77:15 (cit. on p. 98).

[AB97] A. Alfieri and P. Brandimarte. “Job shop scheduling with delay-
renewable resources: A comparison of decomposition strategies”. In:
International Journal of Production Research 35.7 (1997), pp. 1807–
1824. eprint: https://doi.org/10.1080/002075497194921 (cit.
on p. 113).

[ADJ18] S. Angelopoulos, C. Dürr, and S. Jin. “Online Maximum Matching
with Recourse”. In: MFCS. Vol. 117. LIPIcs. 2018, 8:1–8:15 (cit. on
p. 15).

[AFT18] A. Antoniadis, C. Fischer, and A. Tönnis. “A Collection of Lower
Bounds for Online Matching on the Line”. In: LATIN. Vol. 10807.
Lecture Notes in Computer Science. 2018, pp. 52–65 (cit. on pp. 5,
13, 37, 38).

141

https://doi.org/10.1080/002075497194921

[ABC+19] A. Antoniadis, F. Biermeier, A. Cristi, C. Damerius, R. Hoeksma,
D. Kaaser, P. Kling, and L. Nölke. “On the Complexity of Anchored
Rectangle Packing”. In: ESA. Vol. 144. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019, 8:1–8:14 (cit. on pp. 7, 97,
109).

[Are19] M. Arens. “Policy support for and R&D activities on digitising the
European steel industry”. In: Resources, Conservation and Recycling
143 (2019), pp. 244–250 (cit. on p. 116).

[ADN13] C. Artigues, S. Demassey, and E. Néron. Resource-Constrained Project
Scheduling: Models, Algorithms, Extensions and Applications. ISTE.
Wiley, 2013 (cit. on p. 113).

[AR01] C. Artigues and F. Roubellat. “A Petri net model and a general
method for on and off-line multi-resource shop floor scheduling with
setup times”. In: International Journal of Production Economics 74.1
(2001). Poductive Systems: Strategy, Control, and Management,
pp. 63–75 (cit. on p. 113).

[AT19] K. Axiotis and C. Tzamos. “Capacitated Dynamic Programming:
Faster Knapsack and Graph Algorithms”. In: ICALP. Vol. 132. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 19:1–
19:13 (cit. on p. 93).

[ALM+05] H. Aytug, M. A. Lawley, K. McKay, S. Mohan, and R. Uzsoy. “Exe-
cuting production schedules in the face of uncertainties: A review
and some future directions”. In: European Journal of Operational
Research 161.1 (2005), pp. 86–110 (cit. on p. 114).

[BHS+22] K. Bakon, T. Holczinger, Z. Süle, S. Jaskó, and J. Abonyi. “Scheduling
Under Uncertainty for Industry 4.0 and 5.0”. In: IEEE Access 10
(2022), pp. 74977–75017 (cit. on p. 113).

[BDT17] K. Balas, A. Dumitrescu, and C. D. Tóth. “Anchored rectangle and
square packings”. In: Discrete Optimization 26 (2017), pp. 131–162
(cit. on pp. 98, 105).

[BBG+14] N. Bansal, N. Buchbinder, A. Gupta, and J. Naor. “A Randomized
O(log2 k)-Competitive Algorithm for Metric Bipartite Matching”.
In: Algorithmica 68.2 (2014), pp. 390–403 (cit. on p. 14).

[BK14] N. Bansal and A. Khan. “Improved Approximation Algorithm for
Two-Dimensional Bin Packing”. In: SODA. SIAM, 2014, pp. 13–25
(cit. on p. 98).

[BH60] R. Barlow and L. Hunter. “Optimum Preventive Maintenance Poli-
cies”. In:Operations Research 8.1 (1960), pp. 90–100. eprint: https:
//doi.org/10.1287/opre.8.1.90 (cit. on p. 111).

[BP96] R. E. Barlow and F. Proschan. Mathematical theory of reliability.
SIAM, 1996 (cit. on p. 111).

142 References

https://doi.org/10.1287/opre.8.1.90
https://doi.org/10.1287/opre.8.1.90

[BDH+19] S. Behnezhad, M. Derakhshan, M. Hajiaghayi, C. Stein, and M. Su-
dan. “Fully dynamic maximal independent set with polylogarithmic
update time”. In: FOCS. IEEE. 2019, pp. 382–405 (cit. on p. 51).

[Bel57] R. Bellman. Dynamic Programming. Princeton, NJ, USA: Princeton
University Press, 1957 (cit. on p. 49).

[BB10] A. Beloglazov and R. Buyya. “Energy Efficient Allocation of Virtual
Machines in Cloud Data Centers”. In: CCGRID. IEEE Computer
Society, 2010, pp. 577–578 (cit. on p. 50).

[BDJ10a] S. Bereg, A. Dumitrescu, andM. Jiang. “MaximumArea Independent
Sets in Disk Intersection Graphs”. In: Int. J. Comput. Geometry Appl.
20.2 (2010), pp. 105–118 (cit. on p. 98).

[BDJ10b] S. Bereg, A. Dumitrescu, and M. Jiang. “On Covering Problems of
Rado”. In: Algorithmica 57.3 (2010), pp. 538–561 (cit. on p. 98).

[BHR19] A. Bernstein, J. Holm, and E. Rotenberg. “Online Bipartite Matching
with Amortized O(log2 n) Replacements”. In: J. ACM 66.5 (2019),
37:1–37:23 (cit. on p. 15).

[BD20] A. Bernstein and A. Dudeja. “Online Matching with Recourse: Ran-
dom Edge Arrivals”. In: FSTTCS. Vol. 182. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020, 11:1–11:16 (cit. on p. 15).

[BAY+09] A. Berrichi, L. Amodeo, F. Yalaoui, E. Châtelet, and M. Mezghiche.
“Bi-objective optimization algorithms for joint production and main-
tenance scheduling: application to the parallel machine problem”.
In: Journal of Intelligent Manufacturing 20.4 (2009), pp. 389–400
(cit. on p. 113).

[BGK11] A. Bhalgat, A. Goel, and S. Khanna. “Improved Approximation Re-
sults for Stochastic Knapsack Problems”. In: SODA. SIAM, 2011,
pp. 1647–1665 (cit. on p. 55).

[BHI15] S. Bhattacharya, M. Henzinger, and G. F. Italiano. “Design of Dy-
namic Algorithms via Primal-Dual Method”. In: ICALP. Vol. 9134.
Lecture Notes in Computer Science. Springer, 2015, pp. 206–218
(cit. on p. 51).

[BHN19] S. Bhattacharya, M. Henzinger, and D. Nanongkai. “A NewDetermin-
istic Algorithm for Dynamic Set Cover”. In: FOCS. IEEE Computer
Society, 2019, pp. 406–423 (cit. on p. 51).

[BHN17] S. Bhattacharya, M. Henzinger, and D. Nanongkai. “Fully Dynamic
Approximate Maximum Matching and Minimum Vertex Cover in
O(log3 n)Worst Case Update Time”. In: SODA. SIAM, 2017, pp. 470–
489 (cit. on p. 51).

[BK19] S. Bhattacharya and J. Kulkarni. “Deterministically Maintaining a
(2 + ε)-Approximate Minimum Vertex Cover in O(1/ε2) Amortized
Update Time”. In: SODA. SIAM, 2019, pp. 1872–1885 (cit. on p. 51).

References 143

[BCI+20] S. Bhore, J. Cardinal, J. Iacono, and G. Koumoutsos. “Dynamic
Geometric Independent Set”. In: CoRR abs/2007.08643 (2020) (cit.
on p. 51).

[BBM+17] T. C. Biedl, A. Biniaz, A. Maheshwari, and S. Mehrabi. “Packing
Boundary-Anchored Rectangles”. In: CCCG. 2017, pp. 138–143 (cit.
on p. 98).

[BLK83] J. Blazewicz, J. Lenstra, and A. Kan. “Scheduling subject to resource
constraints: classification and complexity”. In: Discrete Applied Math-
ematics 5.1 (1983), pp. 11–24 (cit. on p. 112).

[BKB07] N. Bobroff, A. Kochut, and K. A. Beaty. “Dynamic Placement of Vir-
tual Machines for Managing SLA Violations”. In: Integrated Network
Management. IEEE, 2007, pp. 119–128 (cit. on p. 50).

[BKK+14] H. Böckenhauer, D. Komm, R. Královic, and P. Rossmanith. “The
online knapsack problem: Advice and randomization”. In: Theor.
Comput. Sci. 527 (2014), pp. 61–72 (cit. on p. 55).

[BP11] N. Boria and V. T. Paschos. “A survey on combinatorial optimization
in dynamic environments”. In: RAIRO - Operations Research 45.3
(2011), pp. 241–294 (cit. on p. 50).

[BE98] A. Borodin and R. El-Yaniv. Online computation and competitive
analysis. Cambridge University Press, 1998, pp. I–XVIII, 1–414 (cit.
on p. 114).

[BLS+14] B. Bosek, D. Leniowski, P. Sankowski, and A. Zych. “Online Bipartite
Matching in Offline Time”. In: FOCS. 2014, pp. 384–393 (cit. on
p. 15).

[BFC+20a] T. A. Branca, B. Fornai, V. Colla, M. M. Murri, E. Streppa, and A. J.
Schröder. “The Challenge of Digitalization in the Steel Sector”. In:
Metals 10.2 (2020) (cit. on p. 111).

[BFC+20b] T. A. Branca, B. Fornai, V. Colla, M. M. Murri, E. Streppa, and A. J.
Schröder. “The challenge of digitalization in the steel sector”. In:
Metals 10.2 (2020), p. 288 (cit. on p. 116).

[BKK11] C. Büsing, A. M. C. A. Koster, and M. Kutschka. “Recoverable robust
knapsacks: the discrete scenario case”. In: Optim. Lett. 5.3 (2011),
pp. 379–392 (cit. on p. 55).

[CCC+06] F. T. Chan, S. H. Chung, L. Chan, G. Finke, and M. Tiwari. “Solving
distributed FMS scheduling problems subject to maintenance: Ge-
netic algorithms approach”. In: Robotics and Computer-Integrated
Manufacturing 22.5-6 (2006), pp. 493–504 (cit. on p. 112).

[Cha18] T. M. Chan. “Approximation Schemes for 0-1 Knapsack”. In: SOSA.
Vol. 61. OASICS. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018, 5:1–5:12 (cit. on pp. 50, 54, 93).

144 References

[CDK+09] K. Chaudhuri, C. Daskalakis, R. Kleinberg, and H. Lin. “Online
Bipartite Perfect Matching With Augmentations”. In: INFOCOM.
2009, pp. 1044–1052 (cit. on p. 15).

[CZ19] S. Chechik and T. Zhang. “Fully dynamic maximal independent set
in expected poly-log update time”. In: FOCS. IEEE. 2019, pp. 370–
381 (cit. on p. 51).

[CK05] C. Chekuri and S. Khanna. “A Polynomial Time Approximation
Scheme for the Multiple Knapsack Problem”. In: SIAM J. Comput.
35.3 (2005), pp. 713–728 (cit. on pp. 50, 54, 55, 59).

[CMS07] C. Chekuri, M. Mydlarz, and F. B. Shepherd. “Multicommodity
demand flow in a tree and packing integer programs”. In: ACM
Trans. Algorithms 3.3 (2007), p. 27 (cit. on p. 104).

[CYW08] A. l. Chen, G. Yang, and Z. Wu. “Production scheduling optimization
algorithm for the hot rolling processes”. In: International Journal of
Production Research 46.7 (2008), pp. 1955–1973 (cit. on p. 115).

[CWT14] L. Chen, X. Wang, and L. Tang. “Operation optimization in the hot-
rolling production process”. In: Industrial & Engineering Chemistry
Research 53.28 (2014), pp. 11393–11410 (cit. on p. 115).

[Chr22] N. Christofides. “Worst-Case Analysis of a New Heuristic for the
Travelling Salesman Problem”. In: Oper. Res. Forum 3.1 (2022) (cit.
on p. 1).

[CMR20] S. Compton, S. Mitrović, and R. Rubinfeld. “New Partitioning Tech-
niques and Faster Algorithms for Approximate Interval Scheduling”.
In: CoRR abs/2012.15002 (2020) (cit. on p. 51).

[CJS16] M. Cygan, Ł. Jeż, and J. Sgall. “Online Knapsack Revisited”. In:
Theory Comput. Syst. 58.1 (2016), pp. 153–190 (cit. on p. 55).

[CMW+19] M. Cygan, M. Mucha, K. Wegrzycki, and M. Wlodarczyk. “On Prob-
lems Equivalent to (min, +)-Convolution”. In: ACM Trans. Algo-
rithms 15.1 (2019), 14:1–14:25 (cit. on pp. 54, 93).

[DKK+21] C. Damerius, D. Kaaser, P. Kling, and F. Schneider. “On Greedily
Packing Anchored Rectangles”. In: CoRR abs/2102.08181 (2021)
(cit. on pp. 6, 95, 98).

[DKL14] K. Daudjee, S. Kamali, and A. López-Ortiz. “On the online fault-
tolerant server consolidation problem”. In: SPAA. ACM, 2014, pp. 12–
21 (cit. on p. 50).

[DGV08] B. C. Dean, M. X. Goemans, and J. Vondrák. “Approximating the
Stochastic Knapsack Problem: The Benefit of Adaptivity”. In: Math.
Oper. Res. 33.4 (2008), pp. 945–964 (cit. on p. 55).

References 145

[Dek95] R. Dekker. “On the use of operations research models for mainte-
nance decision making”. In: Microelectronics Reliability 35.9 (1995).
Reliability: A Competitive Edge, pp. 1321–1331 (cit. on p. 111).

[DEG+10] C. Demetrescu, D. Eppstein, Z. Galil, and G. F. Italiano. “Dynamic
Graph Algorithms”. In: Algorithms and Theory of Computation Hand-
book: General Concepts and Techniques. 2nd ed. Chapman & Hal-
l/CRC, 2010, p. 9 (cit. on p. 50).

[DKM+17] Y. Disser, M. Klimm, N. Megow, and S. Stiller. “Packing a Knapsack
of Unknown Capacity”. In: SIAM J. Discret. Math. 31.3 (2017),
pp. 1477–1497 (cit. on p. 55).

[DP14] R. Duan and S. Pettie. “Linear-Time Approximation for Maximum
Weight Matching”. In: J. ACM 61.1 (2014), 1:1–1:23 (cit. on p. 16).

[DT15] A. Dumitrescu and C. D. Tóth. “Packing anchored rectangles”. In:
Combinatorica 35.1 (2015), pp. 39–61 (cit. on pp. 95, 97, 105).

[Ebe20] F. Eberle. “Scheduling and Packing Under Uncertainty”. PhD thesis.
University of Bremen, 2020 (cit. on pp. 6, 74, 78, 85).

[EMN+20] F. Eberle, N. Megow, L. Nölke, B. Simon, and A. Wiese. “Fully
Dynamic Algorithms for Knapsack Problems with Polylogarithmic
Update Time”. In: CoRR abs/2007.08415 (2020) (cit. on pp. 74,
78, 85).

[EMN+21] F. Eberle, N. Megow, L. Nölke, B. Simon, and A. Wiese. “Fully
Dynamic Algorithms for Knapsack Problems with Polylogarithmic
Update Time”. In: FSTTCS. Vol. 213. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021, 18:1–18:17 (cit. on p. 6).

[EBO+19] M. Escudero, J. Balsera, F. Ortega-Fernández, and V. Montequín.
“Planning and scheduling with uncertainty in the steel sector: A
review”. In: Applied Sciences 9.13 (2019), p. 2692 (cit. on p. 114).

[FFG+18] B. Feldkord, M. Feldotto, A. Gupta, G. Guruganesh, A. Kumar, S.
Riechers, and D. Wajc. “Fully-Dynamic Bin Packing with Little
Repacking”. In: ICALP. Vol. 107. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018, 51:1–51:24 (cit. on p. 55).

[FAP98] A. A. Fernandez, R. L. Armacost, and J. J. Pet-Edwards. “Understand-
ing simulation solutions to resource constrained project scheduling
problems with stochastic task durations”. In: Engineering Manage-
ment Journal 10.4 (1998), pp. 5–13 (cit. on p. 113).

[FAP96] A. A. Fernandez, R. L. Armacost, and J. J. Pet-Edwards. “The role of
the nonanticipativity constraint in commercial software for stochas-
tic project scheduling”. In: Computers & Industrial Engineering 31.1-2
(1996), pp. 233–236 (cit. on p. 113).

146 References

[FCN+19] X. Fu, F. T. Chan, B. Niu, N. S. Chung, and T. Qu. “A three-level
particle swarm optimization with variable neighbourhood search
algorithm for the production scheduling problem with mould main-
tenance”. In: Swarm and Evolutionary Computation 50 (2019),
p. 100572 (cit. on p. 112).

[GK19] M. Gairing and M. Klimm. “Greedy metric minimum online match-
ings with random arrivals”. In: Oper. Res. Lett. 47.2 (2019), pp. 88–
91 (cit. on p. 15).

[GJ79] M. R. Garey and D. S. Johnson. Computers and intractability. Vol. 174.
freeman San Francisco, 1979 (cit. on p. 59).

[GL79] G. Gens and E. Levner. “Computational Complexity of Approxima-
tion Algorithms for Combinatorial Problems”. In: MFCS. Vol. 74.
Lecture Notes in Computer Science. Springer, 1979, pp. 292–300
(cit. on p. 54).

[GL80] G. Gens and E. Levner. “Fast approximation algorithms for knap-
sack type problems”. In: Optimization Techniques. Springer, 1980,
pp. 185–194 (cit. on p. 54).

[GDA+22] M. Geurtsen, J. B. Didden, J. Adan, Z. Atan, and I. Adan. “Production,
maintenance and resource scheduling: A review”. In: European
Journal of Operational Research (2022) (cit. on p. 112).

[GKK+95] E. Grove, M. Kao, P. Krishnan, and J. Vitter. “Online Perfect Matching
and Mobile Computing”. In: WADS. Vol. 955. Lecture Notes in
Computer Science. 1995, pp. 194–205 (cit. on p. 15).

[GGK16] A. Gu, A. Gupta, and A. Kumar. “The Power of Deferral: Maintaining
a Constant-Competitive Steiner Tree Online”. In: SIAM J. Comput.
45.1 (2016), pp. 1–28 (cit. on pp. 15, 55).

[GGP+19] A. Gupta, G. Guruganesh, B. Peng, and D. Wajc. “Stochastic Online
Metric Matching”. In: ICALP. Vol. 132. LIPIcs. 2019, 67:1–67:14
(cit. on p. 15).

[GKS14] A. Gupta, A. Kumar, and C. Stein. “Maintaining Assignments Online:
Matching, Scheduling, and Flows”. In: SODA. 2014, pp. 468–479
(cit. on p. 15).

[GL12] A. Gupta and K. Lewi. “The Online Metric Matching Problem for
Doubling Metrics”. In: ICALP. Vol. 7391. Lecture Notes in Computer
Science. 2012, pp. 424–435 (cit. on p. 14).

[GKK+17] A. Gupta, R. Krishnaswamy, A. Kumar, and D. Panigrahi. “Online and
dynamic algorithms for set cover”. In: STOC. ACM, 2017, pp. 537–
550 (cit. on p. 51).

[GM20] D. Gupta and C. T. Maravelias. “Framework for studying online
production scheduling under endogenous uncertainty”. In: Comput.
Chem. Eng. 135 (2020), p. 106670 (cit. on p. 114).

References 147

[GM19] D. Gupta and C. T. Maravelias. “On the design of online production
scheduling algorithms”. In: Comput. Chem. Eng. 129 (2019) (cit. on
p. 113).

[GKS20] V. Gupta, R. Krishnaswamy, and S. Sandeep. Permutation Strikes
Back: The Power of Recourse in Online Metric Matching. 2020 (cit. on
pp. 14, 46).

[HKM13] X. Han, Y. Kawase, and K. Makino. “Randomized Algorithms for
Removable Online Knapsack Problems”. In: FAW-AAIM. Vol. 7924.
Lecture Notes in Computer Science. Springer, 2013, pp. 60–71 (cit.
on p. 55).

[HKM+14] X. Han, Y. Kawase, K. Makino, and H. Guo. “Online removable
knapsack problem under convex function”. In: Theor. Comput. Sci.
540 (2014), pp. 62–69 (cit. on p. 55).

[HM10] X. Han and K. Makino. “Online removable knapsack with limited
cuts”. In: Theor. Comput. Sci. 411.44-46 (2010), pp. 3956–3964
(cit. on p. 55).

[HBW+21] V. A. Hauder, A. Beham, S.Wagner, K. F. Doerner, andM. Affenzeller.
“Dynamic online optimization in the context of smart manufacturing:
an overview”. In: Procedia Computer Science 180 (2021), pp. 988–
995 (cit. on p. 114).

[Hau21] A. Haupt. “New combinatorial proofs for enumeration problems
and random anchored structures”. Doctoral Thesis. Technische Uni-
versität Hamburg, 2021 (cit. on p. 98).

[Hen18] M. Henzinger. “The State of the Art in Dynamic Graph Algorithms”.
In: SOFSEM. Vol. 10706. Lecture Notes in Computer Science. Springer,
2018, pp. 40–44 (cit. on p. 50).

[HNW20] M. Henzinger, S. Neumann, and A. Wiese. “Dynamic Approximate
Maximum Independent Set of Intervals, Hypercubes and Hyper-
rectangles”. In: SoCG. Ed. by S. Cabello and D. Z. Chen. Vol. 164.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020,
51:1–51:14 (cit. on p. 51).

[HK99] M. R. Henzinger and V. King. “Randomized Fully Dynamic Graph
Algorithms with Polylogarithmic Time per Operation”. In: J. ACM
46.4 (1999), pp. 502–516 (cit. on p. 50).

[HM21] R. Hoeksma and M. Maat. “A better lower bound for Lower-Left
Anchored Rectangle Packing”. In: CoRR abs/2102.05747 (2021).
arXiv: 2102.05747 (cit. on p. 98).

148 References

https://arxiv.org/abs/2102.05747

[HLT01] J. Holm, K. de Lichtenberg, and M. Thorup. “Poly-logarithmic de-
terministic fully-dynamic algorithms for connectivity, minimum
spanning tree, 2-edge, and biconnectivity”. In: J. ACM 48.4 (2001),
pp. 723–760 (cit. on pp. 50, 51).

[IK75] O. H. Ibarra and C. E. Kim. “Fast Approximation Algorithms for the
Knapsack and Sum of Subset Problems”. In: J. ACM 22.4 (1975),
pp. 463–468 (cit. on pp. 50, 54).

[IBM04] IBMResearch. Ponder This | June 2004 Challenge. https://research.
ibm . com / haifa / ponderthis / challenges / June2004 . html.
2004 (cit. on p. 97).

[IW91] M. Imase and B. Waxman. “Dynamic Steiner Tree Problem”. In:
SIAM J. Discrete Math. 4.3 (1991), pp. 369–384 (cit. on pp. 15, 55).

[IL98] Z. Ivkovic and E. L. Lloyd. “Fully Dynamic Algorithms for Bin Pack-
ing: Being (Mostly) Myopic Helps”. In: SIAM J. Comput. 28.2 (1998),
pp. 574–611 (cit. on p. 51).

[IT02] K. Iwama and S. Taketomi. “Removable Online Knapsack Problems”.
In: ICALP. Vol. 2380. Lecture Notes in Computer Science. Springer,
2002, pp. 293–305 (cit. on p. 55).

[IZ10] K. Iwama and G. Zhang. “Online knapsack with resource augmen-
tation”. In: Inf. Process. Lett. 110.22 (2010), pp. 1016–1020 (cit. on
p. 55).

[Jan12] K. Jansen. “A Fast Approximation Scheme for the Multiple Knap-
sack Problem”. In: SOFSEM. Vol. 7147. Lecture Notes in Computer
Science. Springer, 2012, pp. 313–324 (cit. on pp. 50, 53–55, 68,
79).

[Jan09] K. Jansen. “Parameterized Approximation Scheme for the Multiple
Knapsack Problem”. In: SIAM J. Comput. 39.4 (2009), pp. 1392–
1412 (cit. on pp. 50, 54, 55, 68, 79, 86).

[JK19] K. Jansen and K. Klein. “A Robust AFPTAS for Online Bin Packing
with Polynomial Migration”. In: SIAM J. Discret. Math. 33.4 (2019),
pp. 2062–2091 (cit. on p. 55).

[Jin19] C. Jin. “An Improved FPTAS for 0-1 Knapsack”. In: ICALP. Vol. 132.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019,
76:1–76:14 (cit. on pp. 50, 54, 62, 66, 93).

[KP93] B. Kalyanasundaram and K. Pruhs. “Online Weighted Matching”.
In: J. Algorithms 14.3 (1993), pp. 478–488 (cit. on pp. 3, 11, 14,
17).

[KVV90] R. Karp, U. Vazirani, and V. Vazirani. “An Optimal Algorithm for
On-line Bipartite Matching”. In: STOC. 1990, pp. 352–358 (cit. on
p. 14).

References 149

https://research.ibm.com/haifa/ponderthis/challenges/June2004.html
https://research.ibm.com/haifa/ponderthis/challenges/June2004.html

[Kel99] H. Kellerer. “A Polynomial Time Approximation Scheme for the
Multiple Knapsack Problem”. In: RANDOM-APPROX. Vol. 1671. Lec-
ture Notes in Computer Science. Springer, 1999, pp. 51–62 (cit. on
p. 50).

[KP04] H. Kellerer and U. Pferschy. “Improved Dynamic Programming in
Connection with an FPTAS for the Knapsack Problem”. In: J. Comb.
Optim. 8.1 (2004), pp. 5–11 (cit. on pp. 54, 93).

[KMV94] S. Khuller, S. Mitchell, and V. Vazirani. “On-Line Algorithms for
Weighted Bipartite Matching and Stable Marriages”. In: Theor. Com-
put. Sci. 127.2 (1994), pp. 255–267 (cit. on pp. 3, 11, 14, 17).

[KY55] H. W. Kuhn and B. Yaw. “The Hungarian method for the assignment
problem”. In: Naval Res. Logist. Quart (1955), pp. 83–97 (cit. on
pp. 11, 17).

[KS10] A. Kulik and H. Shachnai. “There is no EPTAS for two-dimensional
knapsack”. In: Inf. Process. Lett. 110.16 (2010), pp. 707–710 (cit. on
p. 93).

[KPS17] M. Künnemann, R. Paturi, and S. Schneider. “On the Fine-Grained
Complexity of One-Dimensional Dynamic Programming”. In: ICALP.
Vol. 80. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017, 21:1–21:15 (cit. on p. 54).

[LOP+15] J. Lacki, J. Oćwieja, M. Pilipczuk, P. Sankowski, and A. Zych. “The
Power of Dynamic Distance Oracles: Efficient Dynamic Algorithms
for the Steiner Tree”. In: STOC. 2015, pp. 11–20 (cit. on p. 15).

[Law79] E. L. Lawler. “Fast Approximation Algorithms for Knapsack Prob-
lems”. In: Math. Oper. Res. 4.4 (1979), pp. 339–356 (cit. on p. 54).

[LTC14] Y. Li, X. Tang, and W. Cai. “On dynamic bin packing for resource
allocation in the cloud”. In: SPAA. ACM, 2014, pp. 2–11 (cit. on
p. 50).

[Ma18] W. Ma. “Improvements and Generalizations of Stochastic Knapsack
and Markovian Bandits Approximation Algorithms”. In: Math. Oper.
Res. 43.3 (2018), pp. 789–812 (cit. on p. 55).

[MV95] A. Marchetti-Spaccamela and C. Vercellis. “Stochastic on-line knap-
sack problems”. In: Math. Program. 68 (1995), pp. 73–104 (cit. on
p. 55).

[MSV19] J. Matuschke, U. Schmidt-Kraepelin, and J. Verschae. “Maintaining
Perfect Matchings at Low Cost”. In: ICALP. Vol. 132. LIPIcs. 2019,
82:1–82:14 (cit. on p. 15).

[MSV+16] N. Megow, M. Skutella, J. Verschae, and A. Wiese. “The Power
of Recourse for Online MST and TSP”. In: SIAM J. Comput. 45.3
(2016), pp. 859–880 (cit. on pp. 15, 55).

150 References

[MM13] N. Megow and J. Mestre. “Instance-sensitive robustness guarantees
for sequencing with unknown packing and covering constraints”.
In: ITCS. ACM, 2013, pp. 495–504 (cit. on p. 55).

[MN20] N. Megow and L. Nölke. “Online Minimum Cost Matching with Re-
course on the Line”. In: APPROX-RANDOM. Vol. 176. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 37:1–37:16 (cit.
on p. 5).

[MUV06] N. Megow, M. Uetz, and T. Vredeveld. “Models and algorithms
for stochastic online scheduling”. In: Mathematics of Operations
Research 31.3 (2006), pp. 513–525 (cit. on p. 114).

[Meh13] A. Mehta. “Online Matching and Ad Allocation”. In: Found. Trends
Theor. Comput. Sci. 8.4 (2013), pp. 265–368 (cit. on p. 14).

[MWW06] M. Mika, G. Waligóra, and J. Weglarz. “Modelling Setup Times in
Project Scheduling”. In: Springer, 2006. Chap. 6, pp. 131–163 (cit.
on p. 113).

[Mon19] M. Monemizadeh. “Dynamic maximal independent set”. In: CoRR
abs/1906. 09595 (2019) (cit. on p. 51).

[MP89] C. L. Monma and C. N. Potts. “On the Complexity of Scheduling
with Batch Setup Times”. In: Oper. Res. 37.5 (1989), pp. 798–804
(cit. on pp. 114, 130).

[MWW19] M. Mucha, K. Wegrzycki, and M. Wlodarczyk. “A Subquadratic
Approximation Scheme for Partition”. In: SODA. SIAM, 2019, pp. 70–
88 (cit. on p. 54).

[NRJ+05] R. Nandan, R. Rai, R. Jayakanth, S. Moitra, N. Chakraborti, and A.
Mukhopadhyay. “Regulating crown and flatness during hot rolling:
A multiobjective optimization study using genetic algorithms”. In:
Materials and Manufacturing Processes 20.3 (2005), pp. 459–478
(cit. on p. 115).

[NR17] K. Nayyar and S. Raghvendra. “An Input Sensitive Online Algorithm
for theMetric Bipartite Matching Problem”. In: FOCS. 2017, pp. 505–
515 (cit. on pp. 12, 16).

[NSZ06] K. Neumann, C. Schwindt, and J. Zimmermann. “Resource-Constrained
Project Scheduling with Time Windows”. In: Perspectives in Modern
Project Scheduling. Ed. by J. Józefowska and J.Weglarz. International
Series in Operations Research & Management Science. Springer,
2006. Chap. 15, pp. 375–407 (cit. on p. 113).

[NML+03] K. Nikolopoulos, K. Metaxiotis, N. Lekatis, and V. Assimakopoulos.
“Integrating industrial maintenance strategy into ERP”. In: Industrial
Management & Data Systems (2003) (cit. on p. 111).

References 151

[Oli82] H. J. Olivié. “A NewClass of Balanced Search Trees: Half Balanced Bi-
nary Search Trees”. In: RAIRO Theor. Informatics Appl. 16.1 (1982),
pp. 51–71 (cit. on p. 57).

[ÖUH21] A. Özgür, Y. Uygun, and M. Hütt. “A review of planning and schedul-
ing methods for hot rolling mills in steel production”. In: Comput.
Ind. Eng. 151 (2021), p. 106606 (cit. on p. 115).

[PFA+20] M. Parente, G. Figueira, P. Amorim, and A. Marques. “Production
scheduling in the context of Industry 4.0: review and trends”. In:
International Journal of Production Research 58.17 (2020), pp. 5401–
5431 (cit. on p. 113).

[PS21] E. Peserico and M. Scquizzato. “Matching on the Line Admits
No o(

√
log n)-Competitive Algorithm”. In: ICALP. Vol. 198. LIPIcs.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 103:1–
103:3 (cit. on pp. 4, 12).

[PRW21] A. Polak, L. Rohwedder, and K. Wegrzycki. “Knapsack and Subset
Sumwith Small Items”. In: ICALP. Vol. 198. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021, 106:1–106:19 (cit. on p. 93).

[QCT99] X. Qi, T. Chen, and F. Tu. “Scheduling the maintenance on a single
machine”. In: Journal of the operational Research Society 50.10
(1999), pp. 1071–1078 (cit. on p. 111).

[Rad49] R. Rado. “Some covering theorems (I)”. In: Proc. London Math. Soc.
51 (1949), pp. 232–264 (cit. on p. 98).

[Rad51] R. Rado. “Some covering theorems (II)”. In: Proc. London Math. Soc.
53 (1951), pp. 243–267 (cit. on p. 98).

[Rad68] R. Rado. “Some covering theorems (III)”. In: Proc. London Math.
Soc. 42 (1968), pp. 127–130 (cit. on p. 98).

[Rad28] T. Radó. “Sur un problème relatif à un théorème de Vitali”. In: Fund.
Math. 11 (1928), pp. 228–229 (cit. on p. 98).

[Rag16] S. Raghvendra. “A Robust and Optimal Online Algorithm for Min-
imum Metric Bipartite Matching”. In: APPROX-RANDOM. Vol. 60.
LIPIcs. 2016, 18:1–18:16 (cit. on pp. 12, 13, 15–17, 24, 43).

[Rag18] S. Raghvendra. “Optimal Analysis of an Online Algorithm for the
Bipartite Matching Problem on a Line”. In: SoCG. Vol. 99. LIPIcs.
2018, 67:1–67:14 (cit. on pp. 4, 12–17, 19, 23–25, 28, 45, 46).

[Rhe15] D. Rhee. “Faster fully polynomial approximation schemes for knap-
sack problems”. Master’s thesis, Massachusetts Institute of Technol-
ogy. 2015 (cit. on p. 54).

[Ryn08] C. Rynikiewicz. “The climate change challenge and transitions for
radical changes in the European steel industry”. In: Journal of
Cleaner Production 16.7 (2008), pp. 781–789 (cit. on p. 116).

152 References

[SSS09] P. Sanders, N. Sivadasan, and M. Skutella. “Online Scheduling with
Bounded Migration”. In: Math. Oper. Res. 34.2 (2009), pp. 481–498
(cit. on p. 55).

[Sch99] A. Schrijver. Theory of linear and integer programming. Wiley-Interscience
series in discrete mathematics and optimization. Wiley, 1999 (cit.
on p. 104).

[ST03] C. Schwindt and N. Trautmann. “Scheduling the production of
rolling ingots: industrial context, model, and solution method”.
In: International Transactions in Operational Research 10.6 (2003),
pp. 547–563. eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1111/1475-3995.00427 (cit. on p. 113).

[SC95] J. P. Shewchuk and T. Chang. “Resource-constrained job scheduling
with recyclable resources”. In: European Journal of Operational
Research 81.2 (1995), pp. 364–375 (cit. on p. 113).

[SKL+20] Y. Shin, K. Kim, S. Lee, and H. An. “Online GraphMatching Problems
with aWorst-Case Reassignment Budget”. In: CoRR abs/2003.05175
(2020) (cit. on p. 15).

[SV16] M. Skutella and J. Verschae. “Robust Polynomial-Time Approxima-
tion Schemes for Parallel Machine Scheduling with Job Arrivals
and Departures”. In: Math. Oper. Res. 41.3 (2016), pp. 991–1021
(cit. on p. 55).

[SEW20] D. Stroud, C. Evans, and M. Weinel. “Innovating for energy effi-
ciency: Digital gamification in the European steel industry”. In:
European Journal of Industrial Relations 26.4 (2020), pp. 419–437
(cit. on p. 116).

[Tar83] R. E. Tarjan. “Updating a Balanced Search Tree in O(1) Rotations”.
In: Inf. Process. Lett. 16.5 (1983), pp. 253–257 (cit. on p. 57).

[Tut69] W. T. Tutte, ed. Recent Progress in Combinatorics: Proceedings of
the 3rd Waterloo Conference on Combinatorics. New York: Academic
Press, 1969 (cit. on pp. 6, 95, 96).

[VL81] W. F. de la Vega and G. S. Lueker. “Bin packing can be solved within
1+ε in linear time”. In: Combinatorica 1.4 (1981), pp. 349–355
(cit. on pp. 75, 93).

[VGG+20] S. Vögele, M. Grajewski, K. Govorukha, and D. Rübbelke. “Chal-
lenges for the European steel industry: Analysis, possible conse-
quences and impacts on sustainable development”. In: Applied en-
ergy 264 (2020), p. 114633 (cit. on p. 116).

[WL15] S. Wang and M. Liu. “Multi-objective optimization of parallel ma-
chine scheduling integrated with multi-resources preventive main-
tenance planning”. In: Journal of Manufacturing Systems 37 (2015),
pp. 182–192 (cit. on p. 112).

References 153

https://onlinelibrary.wiley.com/doi/pdf/10.1111/1475-3995.00427
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1475-3995.00427

[Win07] P. Winkler. “Packing Rectangles”. In: Mathematical Mind-Benders
(2007), pp. 133–134 (cit. on pp. 95, 97).

[WCC12] C. Wong, F. Chan, and S. Chung. “A genetic algorithm approach for
production scheduling with mould maintenance consideration”. In:
International Journal of Production Research 50.20 (2012), pp. 5683–
5697. eprint: https : / / doi . org / 10 . 1080 / 00207543 . 2011 .
613868 (cit. on p. 112).

[WCC14] C. Wong, F. T. Chan, and S. H. Chung. “Decision-making on multi-
mould maintenance in production scheduling”. In: International
Journal of Production Research 52.19 (2014), pp. 5640–5655 (cit. on
p. 112).

[Yu96] G. Yu. “On the Max-Min 0-1 Knapsack Problem with Robust Op-
timization Applications”. In: Oper. Res. 44.2 (1996), pp. 407–415
(cit. on p. 55).

[ZSW19] R. Zhang, S. Song, and C. Wu. “Robust scheduling of hot rolling
production by local search enhanced ant colony optimization algo-
rithm”. In: IEEE Transactions on Industrial Informatics 16.4 (2019),
pp. 2809–2819 (cit. on p. 115).

154 References

https://doi.org/10.1080/00207543.2011.613868
https://doi.org/10.1080/00207543.2011.613868

Zusammenfassung

Beim Lösen von Optimierungsproblemen, die sich aus Entscheidungs-
prozessen in der realen Welt ergeben, ist Unsicherheit ein allgegen-
wärtiges Phänomen, welches ein enormes Hindernis darstellt. Sei es
ein Bäcker, der entscheiden muss, wie viele Backwaren er produziert,
ohne zu wissen, was seine Kunden bestellen werden, oder ein Rechen-
zentrum, in dem die Zuteilung von Rechenressourcen zahlreichen
Unsicherheiten unterliegt, von unbekannter zukünftiger Arbeitslast
bis hin zu unvorhergesehenen Stromschwankungen; wenn man Opti-
mierungsprobleme in der realen Welt löst, ist es oft unvermeidlich,
Entscheidungen zu treffen, ohne ihre vollen Auswirkungen absehen
zu können. Die vorliegende Arbeit untersucht, wie mit solchen Un-
sicherheiten bei der Lösung von Matching- und Packungsproblemen
algorithmisch umgegangen werden kann.

Matchingprobleme sind Zuordnungsprobleme, die sich damit be-
fassen, aus einer Menge von Objekten eine Sammlung disjunkter
Paare zu berechnen – ein Matching –, welche bezüglich einer bes-
timmten Zielfunktion optimal ist. Von Packungsproblemen spricht
man, wenn Objekte Behältern mit begrenzter Kapazität zugeord-
net werden müssen und dabei eine Zielfunktion optimiert werden
soll. Beide Problemarten gehören zu den fundamentalen Proble-
men der kombinatorischen Optimierung und treten in einer Vielzahl
von Anwendungen auf, zum Beispiel beim effizienten Packen von
Schiffscontainern oder bei der fairen Zuteilung von Spendernieren.

Wir benutzen verschiedene mathematische Modelle, um in der Praxis
auftauchende Unsicherheiten abzubilden. Von stochastischen Infor-
mationen sprechen wir wenn Problemparameter unbekannt sind aber
einer bekannten Wahrscheinlichkeitsverteilung folgen. In Online-
Problemen werden Teile der Eingabe nur schrittweise bekannt, wäh-

155

rend ein (Online-)Algorithmus auf eingehende Informationen sofort,
unwiderruflich und ohne Kenntnis der Zukunft reagieren muss. Das
Recourse-Setting schwächt diese Unwiderrufbarkeit ab, indem es
erlaubt, vergangene Entscheidungen zu ändern, dabei aber die An-
zahl der so geänderten Entscheidungen begrenzt. Bei dynamischen
Problemen darf die Lösung im Laufe der Zeit sogar beliebig verändert
werden, muss jedoch in jedem Update-Schritt schnell neu berech-
net werden, das heißt, die Laufzeit sollte polylogarithmisch in der
Eingabegröße sein.

Für viele Matching- und Packungsprobleme ist selbst dann, wenn
sämtliche Problemparameter bekannt sind, im sogenannten Offline-
Setting, das Finden einer optimalen (Offline-)Lösung eine Heraus-
forderung oder sogar unmöglich, zumindest mit derzeit bekannten
Methoden. Werden Entscheidungen jedoch unter Unsicherheit getrof-
fen, ohne wichtige Problemparameter zu kennen, so vergrößert sich
der Abstand zwischen der Qualität einer auf diese Art (online) erziel-
baren Lösung und der einer optimalen Offline-Lösung. Die infor-
mationstheoretische Frage, wie genau sich das Fehlen vollständiger
Informationen auf die Lösungsqualität auswirkt und wie wir dennoch
Algorithmen mit möglichst starken Gütegarantien entwerfen können,
ist von zentraler Bedeutung in dieser Arbeit.

Konkret betrachten wir die Berechnung kostenminimaler bipartiter
Matchings auf der reellen Linie im Recourse-Setting und liefern
hier erste nicht-triviale Resultate. Wir zeigen, dass ein konstant-
kompetitiver Algorithmus mit einem logarithmischen amortisierten
Recoursebudget existiert. Dieser kann angepasst werden, um den
Trade-off zwischen kompetitivem Faktor und Recoursebudget zu
steuern. Die kompetitive Analyse diese Algorithmus ist bestmöglich.
Darüber hinaus entwickeln wir einen einfachen, nahezu optimalen
Algorithmus für einen interessanten Spezialfall.

Wir befassen uns auch mit mehreren Versionen des Rucksackprob-
lems im dynamischen Setting. Während dynamische Algorithmen

156 Zusammenfassung

für Graphenprobleme gut untersucht sind, gibt es kaum Arbeiten
zu Packungsproblemen oder zu Problemen, die keine Graphen betr-
effen, im Allgemeinen. Motiviert durch das theoretische Interesse
an Rucksackproblemen und deren praktischer Relevanz wollen wir
diese Lücke schließen. Unser Hauptresultat hier ist ein dynamischer
Algorithmus für eine beliebige Anzahl von Rucksäcken, welcher (1−ε)-
approximative Lösungenmit einer Update-Zeit von etwa (1

ε ·log n)O(1
ε)

berechnet, wobei n die derzeitige Anzahl zu packender Objekte ist.
Wir begründen die superpolynomielle Abhängigkeit von ε unter der
Annahme P ≠ N P und beschreiben weitere, noch effizientere Algo-
rithmen für relevante Spezialfälle.

Als weiteres Packungsproblem betrachten wir das Packen verankerter
Rechtecke. Gegeben ist hier eine Menge von Punkten P im Ein-
heitsquadrat [0, 1]2, und wir suchen eine Menge S von achsenpar-
allelen, innendisjunkten Rechtecken, die im Einheitsquadrat liegen
und jeweils an einem Punkt p ∈ P verankert sind. Dabei wollen
wir die von S überdeckte Fläche maximieren. Bei der prominen-
testen Variante muss der Anker p in der linken unteren Ecke des
Rechtecks liegen. Hier entwickeln wir Algorithmen für zwei For-
men von Ressourcenerhöhung, welche jeweils die Bedingung des
Verankerns und der Disjunktheit aufweichen, und zeigen, dass die Al-
gorithmen eine optimale Lösung ohne Ressourcenerhöhung mit dem
Faktor 1 beziehungsweise (1 − ε) approximieren. Für das Problem,
in dem Rechtecke in ihrer Mitte verankert sind, präsentieren wir ein
Polynomialzeit-Approximationsschema.

Zuletzt behandeln wir ein praktisches Problem, das durch ein Projekt
im Warmwalzwerk eines multinationalen Stahlherstellers motiviert
ist und die Allokation und Wartung wiederverwendbarer Ressourcen
in ressourcenbeschränkten Produktionsumgebungen betrifft. Die Auf-
gabe ist dreigeteilt: Ressourcen müssen Produktionsjobs zugeordnet
werden, um deren Ressourcenbedarf zu decken; die Wartung der
Ressourcen – gemäß der obigen Zuordnung – muss auf heterogenen

157

Wartungsmaschinen mit ressourcentypabhängigen Rüstzeiten geplant
werden; und die Durchführung der ressourcenbeschränkten Produk-
tionsjobs muss geplant werden. Dabei sollen sowohl Wartezeiten, die
von der Ressourcen-zuweisung abhängen, als auch Wartekosten, die
durch langsame Wartung verursacht werden können, minimiert wer-
den. Wir nennen dies das SAMS-Problem (Simultaneous Allocation
and Maintenance Scheduling). Eine zusätzliche Schwierigkeit liegt
in der Online-Natur des Produktionsablaufs, in dem immer nur die
nächsten k Produktionsjobs bekannt sind; wir nennen dies Looka-
head k.

Wir stellen mehrere ganzzahlige lineare Programme (ILP) für das
SAMS-Problem vor, die im Offline-Setting optimale Lösungen berech-
nen, und zeigen, wie diese ILPs im Online-Setting mit Lookahead k

genutzt werden können. Darüber hinaus entwickeln wir eine ef-
fiziente Heuristik, die das SAMS-Problem in drei Phasen unterteilt und
Matching- und Scheduling-Techniken verwendet, um Lösungen für
SAMS mit Lookahead k zu erhalten. Die Heuristik wird anhand von
Datensätzen aus der Praxis und den entwickelten ganzzahligen lin-
earen Programmen bewertet und erzielt gute Resultate, insbesondere
im Bezug auf die Minimierung der Wartezeit, welche das wichtigere
der beiden Optimierungsziele darstellt.

158 Zusammenfassung

	Titlepage
	Acknowledgements
	Table of Contents
	Introduction
	Outline and Bibliographic Remarks

	1 Online Minimum-Cost Matching with Recourse on the Line
	1.1 Preliminaries
	1.2 A Constant-Competitive Algorithm with Bounded Recourse
	1.2.1 A First Try - Balancing between M* and M' without Freezing
	1.2.2 Adding a Freezing Scheme to Obtain Constant Recourse
	1.2.3 A Scalable Algorithm

	1.3 A Near-Optimal Algorithm on Alternating Instances
	1.4 Conclusion

	2 Fully Dynamic Algorithms for Knapsack Problems with Polylogarithmic Update Time
	2.1 Preliminaries and Data Structures
	2.2 A Single Knapsack
	2.3 Few Different Knapsacks
	2.4 Oblivious Linear Grouping and Multiple Knapsack with Resource Augmentation
	2.4.1 Oblivious Linear Grouping
	2.4.2 Multiple Knapsacks with Resource Augmentation

	2.5 Solving Multiple Knapsack
	2.6 Conclusion

	3 On Packing Anchored Rectangles
	3.1 Preliminaries
	3.2 Resource Augmentation
	3.3 A PTAS for ARP with Fractional Anchorings
	3.4 Conclusion

	4 Simultaneous Allocation and Maintenance Scheduling under Uncertainty with Application in Steelmaking
	4.1 Problem Definition
	4.2 Integer Linear Programs and Lower Bounds for SAMS
	4.2.1 An Integer Linear Programming Formulation for SAMS
	4.2.2 Lower Bounding the Individual Objectives
	4.2.3 Using ILPs for SAMS with Lookahead k

	4.3 An Efficient Heuristic
	4.4 Experimental Results and Interpretation
	4.5 Conclusion

	References
	Zusammenfassung (German)

