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Abstract

We study the lower and upper partition entropy and the lower and upper optimized
coarse multifractal dimension with respect to certain set functions defined on the
set of the dyadic cubes in R𝑑 . For this purpose, we introduce the notion of partition
functions, generalizing the well-known 𝐿𝑞-spectrum. We find a formula for the upper
partition entropy in terms of the zero of the associated partition function. Further,
we establish a connection between the classical works of Solomjak and Birman
[BS66; BS74], Borzov [Bor71], and the partition entropy, improving classical
results. We give regularity conditions guaranteeing that the lower and upper partition
entropy coincide. Based on these general results, we develop a unified framework
to tackle both the computation of the upper spectral dimension of Kreı̆n–Feller
operators with respect to Neumann boundary conditions and the computation of the
upper quantization dimension. Furthermore, this enables us to establish regularity
conditions, ensuring that the lower and upper spectral dimension, as well as the lower
and upper quantization dimension, coincide. The results are illustrated by several
examples; in particular, we prove that the spectral dimension and the quantization
dimension of self-conformal measures, with or without overlap, exist and can be
computed in terms of the 𝐿𝑞-spectrum of the underlying measure. We also determine
various lower and upper bounds for the lower and upper spectral dimensions, as
well as for the lower and upper quantization dimensions in terms of the associated
𝐿𝑞-spectrum, establishing, in particular, sharp bounds that depend only on the upper
Minkowski dimension of the support of the measure. We give first examples in
which the lower and upper spectral dimensions do not coincide.
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Zusammenfassung

Wir untersuchen die untere und obere Partitionsentropie bezüglich bestimmter Men-
genfunktionen, die auf der Menge der 𝑑-dimensionalen dyadischen Würfel definiert
sind. Zu diesem Zweck führen wir den neuen Begriff der Partitionsfunktion ein,
der das bekannte 𝐿𝑞-Spektrum verallgemeinert. Wir finden eine Formel für die
obere Partitionsentropie in Form der Nullstelle der zugehörigen Partitionsfunk-
tion. Außerdem stellen wir eine Verbindung zwischen der Partitionsentropie und
den klassischen Arbeiten von Solomjak und Birman [BS66; BS74] und Borzov
[Bor71] her und verbessern damit klassische Ergebnisse. Darüber hinaus stellen
wir Regularitätsbedingungen auf, die garantieren, dass die untere und obere Par-
titionsentropie übereinstimmen. Aufbauend auf diesen allgemeinen Ergebnissen
sind wir in der Lage, einen einheitlichen Rahmen zur Berechnung der oberen
Spektraldimension von Kreı̆n–Feller-Operatoren unter Berücksichtigung Neumann-
Randbedingungen sowie der oberen Quantisierungsdimension zu entwickeln. Weiter
können wir so Regularitätsbedingungen aufstellen, die sicherstellen, dass die untere
und obere Spektraldimension sowie die untere und obere Quantisierungsdimension
übereinstimmen. Die Ergebnisse werden durch eine Reihe von Beispielen veran-
schaulicht. Insbesondere beweisen wir, dass die Spektraldimension und die Quan-
tisierungsdimension bezüglich selbstkonformer Maße mit und ohne Separierungsbe-
dingungen existieren und mit Hilfe des 𝐿𝑞-Spektrums berechnet werden können. Es
werden mehrere untere und obere Schranken für die untere und obere Spektraldimen-
sion sowie für die untere und obere Quantisierungsdimension in Abhängigkeit des
𝐿𝑞-Spektrums des zugrunde liegenden Maßes bewiesen, insbesondere erhalten wir
scharfe Schranken in Abhängigkeit der oberen Minkowski-Dimension des Trägers
des zugrunde liegenden Maßes. Des Weiteren geben wir erste Beispiele an, in denen
die obere und untere Spektraldimension nicht übereinstimmen.
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Chapter 1

Introduction

In 1911, H. Weyl [Wey11] studied the following Dirichlet eigenvalue problem{︄
Δ𝐷𝑢 = −_𝑢 ,
𝑢 |𝜕Ω = 0 ,

where Ω ⊂ R𝑑 , 𝑑 ∈ N, is a bounded domain and Δ𝐷 denotes the classical Laplace
operator, i.e. Δ𝐷𝑢 =

∑︁𝑑
𝑖=1 𝜕𝑢/𝜕𝑥𝑖 with respect to Dirichlet boundary conditions. As-

suming some regularity conditions on Ω, Weyl proved that the associated eigenvalue
counting function, denoted by 𝑁𝐷 , obeys the following law

𝑁𝐷 (𝑥) = vol𝑑 (Ω)𝜔𝑑
(2𝜋)𝑑

𝑥𝑑/2 +𝑜
(︂
𝑥𝑑/2

)︂
, (1)

where 𝜔𝑑 is the 𝑑-dimensional volume of the unit ball and 𝑜 denotes the Landau
symbol, i.e. 𝑓 = 𝑜 (𝑔) if limsup𝑥→∞ |𝑓 (𝑥) |/|𝑔(𝑥) | = 0. Nowadays, the asymptotic
expansion (1) is known as Weyl’s law. This result has been extended to arbitrary
bounded domains by Métivier [Mét77]. Weyl’s pioneering works have stimulated
wide range of activities on this topic, in which many papers are concerned with
estimating the remainder term of (1) or investigating generalizations of the Laplace
operator in various ways. In the present thesis, we also follow this line of investi-
gation by considering a generalization of the classical Laplacian. The physicist M.
Berry [Ber79] conjectured that the remainder term of (1) is driven by the Hausdorff
dimension of 𝜕Ω, i.e.

𝑁𝐷 (𝑥) = vol𝑑 (Ω)𝜔𝑑
(2𝜋)𝑑

𝑥𝑑/2 +𝑂
(︂
𝑥dim𝐻 (𝜕Ω)/2

)︂
.

Here,𝑂 denotes the Landau symbol, i.e. 𝑔 =𝑂 (𝑓 ) if limsup𝑥→∞ |𝑔(𝑥) |/|𝑓 (𝑥) | <∞.
Nowadays, this is known as the Weyl–Berry conjecture, which turned out to be incor-

1



1.1. Statement of the problems

rect, as shown by Brossard and Carmona [BC86]. Moreover, Brossard and Carmona
[BC86] suggested replacing the Hausdorff dimension with the upper Minkowski
dimension, which is known as the modified Weyl–Berry conjecture. A big step
forward was made by Lapidus [Lap91], who proved that under the assumption that
the upper Minkowski dimension of 𝜕Ω lies in (𝑑 −1,𝑑] and the Minkowski content
of 𝜕Ω is finite, the remainder term 𝑜 (𝑥𝑑/2) in (1) can be replaced by𝑂 (𝑥dim𝑀 (𝜕Ω)/2).
However, in the general case, the modified Weyl–Berry conjecture has been dis-
proved by Lapidus and Pomerance [LP96]. Also in this thesis, in the context of
Kreı̆n–Feller operators, it turns out that the upper Minkowski dimension is also
a more appropriate concept for the description of the eigenvalue growth than the
Hausdorff dimension (see Theorem 4.10 and Theorem 5.15). It should be noted that
in the literature (e.g. see [Fuj87; NX20]) only cases for which the Hausdorff and
the upper Minkowski dimensions coincide have been considered so far, obscuring
the actual connection.

Another interesting problem is the following famous question by M. Kac [Kac66]
“Can one hear the shape of the drum?”, which asks whether it is possible to determine
the geometry of Ω from the eigenvalues of Δ𝐷 . In general, the answer to this question
is “no”. In 1964, a first counterexample for the case 𝑑 = 16 was constructed by
Milnor [Mil64]. In the following decades, further counterexamples were constructed
for 𝑑 ≥ 4 by Urakawa [Ura82] and for 𝑑 = 2 by Gordon, Webb, and Wolpert
[GWW92]. Consequently, in general, we cannot expect to recover the geometry
of Ω. Nevertheless, Weyl’s law tells us that some geometric information such
as the volume of Ω can be inferred from the eigenvalues of Δ𝐷 . Therefore, it is
an interesting and demanding problem to ascertain which information about Ω is
encoded by the eigenvalues of Δ𝐷 . We also address Kac’s question in the setting
of Kreı̆n–Feller operators and give partial answers, which can be found in Section
4.3.3 and Section 5.3.3.

1.1 Statement of the problems

We now introduce the problems we study in this thesis.

1.1.1 Spectral problem of Kreı̆n–Feller operators

We start to outline the theoretical preliminaries which are necessary to define the
Kreı̆n–Feller operator Δ𝐷/𝑁

a for a given finite non-zero Borel measure a on the fixed
𝑑-dimensional left-half open unit cube Q≔ (0,1]𝑑 , 𝑑 ∈N. Let us fix a bounded open
set Ω ⊂ Q with Lipschitz boundary (for the definition we refer to Appendix A.2),
for which we assume without loss of generality that Ω lies in the open unit cube.
The Sobolev space 𝐻 1(Ω) is the completion of C∞

𝑏
(Ω) with respect to the metric

2



1.1. Statement of the problems

given by the inner product

⟨𝑓 ,𝑔⟩𝐻 1 (Ω) ≔

∫
Ω
𝑓 𝑔 dΛ+

∫
Ω
∇𝑓 ∇𝑔 dΛ ,

with ∇𝑓 ≔
(︁
𝜕𝑓 /𝜕𝑥1, . . . , 𝜕𝑓 /𝜕𝑥𝑑

)︁𝑇 (see also Definition A.7 for an equivalent defini-
tion). Further, let 𝐻 1

0 (Ω) be the completion of C∞
𝑐 (Ω) w.r.t. the same metric. Here,

Λ denotes the 𝑑-dimensional Lebesgue measure, C∞
𝑐 (Ω) the vector space of smooth

functions with compact support contained in Ω, and C∞
𝑏
(Ω) the vector space of

functions 𝑓 : Ω → R such that 𝑓 |Ω ∈ C𝑚 (Ω) for all𝑚 ∈ N with 𝐷𝛼 𝑓 |Ω uniformly
continuous on Ω for all 𝛼 ≔ (𝛼1, . . . ,𝛼𝑑 ) ∈ N𝑑0 (and therefore allowing a unique
continuous extension to Ω). We will consider the inner product

⟨𝑓 ,𝑔⟩𝐻 1
0 (Ω)
≔

∫
Ω
∇𝑓 ∇𝑔 dΛ ,

on 𝐻 1
0 (Ω), which gives rise to an equivalent norm as a consequence of the Poincaré

inequality (see (PI)). Further, let 𝐿2
a (Ω) denote the standard Hilbert space (the

quotient space of the set of real-valued square-a-integrable functions with domain
Ω with respect to the almost-sure equivalence relation) with inner product

⟨𝑓 ,𝑔⟩a ≔ ⟨𝑓 ,𝑔⟩𝐿2
a (Ω) ≔

∫
Ω
𝑓 𝑔 da.

Since we mainly focus on the case of Ω being equal to the interior Q̊ = (0,1)𝑑 , we
write in this case 𝐻 1 ≔ 𝐻 1(Q̊), 𝐻 1

0 ≔ 𝐻 1
0 (Q̊) and 𝐿2

` ≔ 𝐿2
` (Q) with ` being a Borel

measure on Q. We will assume that the canonical embedding ] of an appropriate
subspace of 𝐻 1 into 𝐿2

a is continuous and has a dense image. To do so, we first
consider the mapping

] :
(︂
C∞
𝑏

(︂
Q

)︂
, ⟨·, ·⟩𝐻 1

)︂
→ 𝐿2

a , ] (𝑢) ≔ 𝑢 ,

which is continuous if and only if we find a constant 𝐾 > 0 such that

∥𝑢∥𝐿2
a
≤ 𝐾 ∥𝑢∥𝐻 1

in which case we can extend the operator ] to 𝐻 1. Now, suppose that ] is continuous
and note that its image is always dense in 𝐿2

a (cf. Proposition 2.11). If ] is not

injective, that is, if Na ≔ ker (]) =
{︂
𝑓 ∈ 𝐻 1 : ∥] (𝑓 )∥𝐿2

a
= 0

}︂
is not the null space,

then one simply restricts 𝐻 1 to

N⊥
a ≔

{︁
𝑓 ∈ 𝐻 1 : ∀𝑔 ∈ Na : ⟨𝑓 ,𝑔⟩𝐻 1 = 0

}︁
.
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1.1. Statement of the problems

For the non-negative quadratic form (𝑓 ,𝑔) ↦→
⟨︁
]−1 𝑓 , ]−1𝑔

⟩︁
𝐻 1 restricted to Neumann

boundary conditions ]
(︁
N⊥
a

)︁
we write E𝑁 . Replacing 𝐻 1 with 𝐻 1

0 in the definition
of N⊥

a gives rise to the linear subspace N⊥
0,a of 𝐻 1

0 (cf. (2.2.1)) and for the form
(𝑓 ,𝑔) ↦→

⟨︁
]−1 𝑓 , ]−1𝑔

⟩︁
𝐻 1

0
, restricted to the Dirichlet boundary conditions ] (N⊥

0,a ) we

write E𝐷 . This allows us to define two Kreı̆n–Feller operators Δ𝐷a (w.r.t. Dirichlet
boundary conditions) and Δ𝑁a (w.r.t. Neumann boundary conditions) with respect to
the two different forms via the following characterization

𝑓 ∈ dom
(︂
Δ𝐷/𝑁
a

)︂
⇐⇒ ∀𝑔 ∈ dom

(︂
E𝐷/𝑁

)︂
: E𝐷/𝑁 (𝑓 ,𝑔) = ⟨Δ𝐷/𝑁

a 𝑓 ,𝑔⟩
𝐿2
a (Ω) .

For more details on this form approach, we refer to Section 2.2.5. An important
quantity for the investigation of Kreı̆n–Feller operators is the ∞-dimension of a
given by

dim∞(a) ≔ liminf
𝑛→∞

max𝑄 ∈D𝑁
𝑛

log (a (𝑄))
−𝑛 log(2) ,

where D𝑁
𝑛 denotes a partition of Q by cubes of the form 𝑄 ≔

∏︁𝑑
𝑖=1 𝐼𝑖 with

𝐼𝑖 ≔ (𝑘𝑖2−𝑛, (𝑘𝑖 +1)2−𝑛]

for some 𝑘𝑖 ∈ {0, . . . ,2𝑛 −1}. Now, if the Hu–Lau–Ngai condition [HLN06]

dim∞ (a) > 𝑑 −2 (♠)

is fulfilled, then a result of Maz’ya [Maz85] adapted to the dyadic grid (see Lemma
5.3) ensures that the embedding ] is compact and Δ𝐷/𝑁

a admits a countable set of
eigenfunctions spanning 𝐿2

a with a non-negative and non-decreasing sequence of

eigenvalues
(︂
_
𝐷/𝑁
𝑛,a

)︂
𝑛∈N

tending to infinity, which correspond to the orthonormal

system of eigenfunctions
(︂
𝜑
𝐷/𝑁
𝑛,a

)︂
𝑛∈N

. As mentioned above, the Hu–Lau–Ngai
condition already appeared implicitly in [Tri97, Theorem 30.2 (Isotropic fractal
drum)] in the context of Ahlfors–David regular measures, for which we provide
more details in Section 5.4.2. The lower and upper exponent of divergence of the
eigenvalue counting function 𝑁𝐷/𝑁

a (𝑥) ≔ sup
{︂
𝑛 ∈ N : _𝐷/𝑁

𝑛,a ≤ 𝑥
}︂
, 𝑥 ≥ 0, are given

by

𝑠𝐷/𝑁
a
≔ liminf

𝑥→∞

log
(︂
𝑁
𝐷/𝑁
a (𝑥)

)︂
log(𝑥) and 𝑠

𝐷/𝑁
a ≔ limsup

𝑥→∞

log
(︂
𝑁
𝐷/𝑁
a (𝑥)

)︂
log(𝑥) (1.1.1)

and we refer to these numbers as the lower and upper spectral dimension of E𝐷/𝑁

(or of Δ𝐷/𝑁 or just of a), respectively. If the two values coincide, then we denote
the common value by 𝑠𝐷/𝑁

a and call it the Dirichlet (respect. Neumann) spectral
dimension. There exists a constant 𝐶 such that for all 𝑘 ∈ N we have _𝑁

𝑘,a
≤ 𝐶_𝐷

𝑘,a

4



1.1. Statement of the problems

(see Lemma 2.18). This shows that we always have

𝑠𝐷
a
≤ 𝑠𝑁

a
and 𝑠𝐷a ≤ 𝑠𝑁a .

The spectral dimension also provides some essential information on the domains of
the associated quadratic form and the Kreı̆n–Feller operator, namely via the spectral
representation (see for instance [Tri92, Section 4.5.]) given by

• dom
(︁
E𝐷/𝑁 )︁

=

{︂∑︁
𝑛∈N𝑎𝑛𝜑

𝐷/𝑁
𝑛,a :

∑︁
𝑛∈N𝑎

2
𝑛_

𝐷/𝑁
𝑛,a <∞

}︂
,

• dom
(︂
Δ𝐷/𝑁
a

)︂
=

{︃∑︁
𝑛∈N𝑎𝑛𝜑

𝐷/𝑁
𝑛,a :

∑︁
𝑛∈N𝑎

2
𝑛

(︂
_
𝐷/𝑁
𝑛,a

)︂2
<∞

}︃
.

The knowledge of the growth rate of the eigenvalues leads to many further applica-
tions. For instance, it can be used to study heat kernel estimates [GHN20], stochastic
heat/wave equations defined by Kreı̆n–Feller operators [Ehn19; EH21], the approxi-
mation order of Kolmogorov diameters [Eva+09; KN22a], and logarithmic 𝐿2-small
ball asymptotics [Naz06].

The Kreı̆n–Feller operator for the one-dimensional case was introduced in [Kre51;
Fel57] and, since the late 1950’s, has been studied by various authors [KK58;
Kac59; UH59; MR62; BS70; KW82; Fuj87; SV95; Vol05; Nga11; Fag12; Arz15;
DN15; FW17; NTX18; Arz14; FM20; Min20; NX20; PS21; JT22]. For dimensions
𝑑 > 1 however the situation is quite different; in general, it is not even possible to
define the Kreı̆n–Feller operator for a given Borel measure a . This is due to the fact
that, in general, there is no continuous embedding of the Sobolev space of weakly
differentiable functions into the Hilbert space of square-a-integrable functions 𝐿2

a

(for example when a has atoms). For Dirichlet boundary conditions, in [HLN06] a
sufficient condition in terms of the maximal asymptotic direction of the 𝐿𝑞-spectrum
of a (the ∞-dimension of a) has been established, as provided in (♠), which ensures
a compact embedding of the relevant Sobolev space into 𝐿2

a . It is worth pointing out
that Triebel already stated this condition implicitly in 1997 in [Tri97]. In 2003 (see
[Tri03; Tri04]) he also indicated that there should be a subtle connection between
the multifractal concept of the 𝐿𝑞-spectrum and analytic properties of the associated
“fractal” operators, a conjecture that we confirm in this thesis.

In contrast to the one-dimensional case, the spectral dimension of Kreı̆n–Feller
operators is so far known only for very limited number of singular measures.
The spectral dimension of Kreı̆n–Feller operators for higher dimensions was first
computed by Birman and Solomjak [BS70, Theorem 5.1] for absolutely continuous
measures, by Naimark and Solomjak [NS95; Sol94] for self-similar measures under
the open set condition (OSC), by Triebel [Tri97, Theorem 30.2] in the setting of
Ahlfors–David regular measures, and, recently, by Ngai and Xie [NX21] for a class
of graph-directed self-similar measures satisfying the graph open set condition. In
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[NX21, Sec. 5] Ngai and Xie pointed out that it would also be interesting to study
self-similar measures defined by iterated function systems with overlaps on R𝑑 ,
𝑑 ≥ 1. Indeed, as an application of our general results from Section 5.3, we are able
to extend these achievements to self-conformal measures without any restriction on
the separation conditions.

In the remainder of this section, we discuss some important results regarding the
spectral dimension for the case 𝑑 = 1. Note that we always have 𝑠𝐷/𝑁

a ≤ 1/2 (see
[BS66; BS67]). The case for measures with a non-zero absolutely continuous part
was completely solved in an elegant way in [BS70] (see also [MR62]) using a
variational approach. In this case, we have for a finite Borel measure a on (0,1)
with absolutely continuous part 𝜎Λ and singular part [,

lim
𝑥→∞

𝑁
𝐷/𝑁
[+𝜎Λ(𝑥)
𝑥1/2

=
1
𝜋

∫
[0,1]

√
𝜎 dΛ ,

and particularly if 𝜎 is non-vanishing, then the spectral dimension exists and equals
1/2. Besides these estimates, many partial results have been obtained showing that
there is a subtle connection between spectral properties and geometric data of a ,
which is a major line of investigation since the famous result by H. Weyl [Wey11].
Another important example is the case of self-similar measures a under the open
set condition (OSC) with contractions 𝑟1, . . . ,𝑟𝑛 ∈ (0,1) and probability weights
𝑝1, . . . ,𝑝𝑛 ∈ (0,1). It has been shown in [Fuj87; Sol94; UH59] that in this case the
spectral dimension 𝑠𝐷/𝑁

a is given by the unique number 𝑞 > 0 fulfilling

𝑛∑︂
𝑖=1

(𝑝𝑖𝑟𝑖)𝑞 = 1. (1.1.2)

Arzt [Arz14] generalized this result to a class of homogeneous Cantor measures.
In Section 4.4.2, we will use a similar construction to find an example for which
the spectral dimension does not exist (see Example 4.48 and Example 5.29). Re-
cently, building on the ideas of Arzt [Arz14] and Freiberg, Hambly, and Hutchinson
[FHH17], Minorics [Min20; Min17] computed the spectral dimension of random
𝑉 -variable Cantor measures and random recursive Cantor measures. Another way
to generalize the classical self-similar setting under OSC is to drop the assumption
of the OSC. Special classes of self-similar measures with overlap have been investi-
gated by Ngai [Nga11], Ngai, Tang, and Xie [NTX18], and Ngai and Xie [NX20].
We will make use of the following notation. For any two functions 𝑓 ,𝑔 : R≥0 → R
we write 𝑓 ≪ 𝑔 if there exist positive constants 𝑐,𝑥0 such that 𝑐 𝑓 (𝑥) ≤ 𝑔(𝑥) for all
𝑥 ≥ 𝑥0; we write 𝑓 ≍ 𝑔 if both 𝑓 ≪ 𝑔 and 𝑔≪ 𝑓 hold. The asymptotic behavior of
𝑁
𝐷/𝑁
a strongly depends on the measure a and it should be noted that the significant

difference between the Kreı̆n–Feller operator and the classical Laplace operator
is that the leading term of the eigenvalue counting function of the Kreı̆n–Feller
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operator may oscillate, as has been pointed out by Triebel [Tri97]. In general, one
cannot even expect that 𝑁𝐷/𝑁

a obeys a power law with a positive exponent 𝑠 > 0,
i.e. 𝑁𝐷/𝑁

a (𝑥) ≍ 𝑥𝑠 (for counter examples see, e.g. [Arz14], Example 5.29, and
Example 4.51). Therefore, determining the leading term of 𝑁𝐷/𝑁

a is a challenging
problem. However, if we restrict our attention to the spectral dimension, then this
problem becomes easier attackable. Surprisingly, we are able to treat arbitrary Borel
measures on (0,1) and determine the upper spectral dimension solely from the data
provided by the measure-geometric information carried by the 𝐿𝑞-spectrum of a .
Under mild regularity conditions on the measure we can guarantee the existence of
the spectral dimension (see Corollary 4.12). Also, with the help of the 𝐿𝑞-spectrum
of a we are able to construct first examples for which the spectral dimension does
not exist (see Section 4.4.2). In this way we give a partial answer to Kac’s question
in terms of the spectral dimension revealing how the measure theoretic properties
of a and the topological properties of its fractal support determine the spectral
dimension (see Theorem 4.10 and Corollary 4.17). This striking connection is the
subject of this thesis.

1.1.2 Quantization problem

Quantization refers to the operation of converting input from a continuous or
large set of values (e.g. a continuous signal) into a representation space of lower
cardinality than the input (e.g. a discrete signal).

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.5

1

1.5

2

2.5

˜︁𝑓 (𝑞)

𝑞

𝑓 (𝑞)

Figure 1.1.1 Simple quantization of the “signal” 𝑓 by averaging 𝑓 over the intervals
[𝑖/2, (𝑖 +1)/2], 𝑖 = 0, . . . ,9, denoted by ˜︁𝑓 (gray).

The quantization problem for probability measures originates from information
theory, in particular, image compression and data compression. Recently, this theory
has attracted increasing attention in applications such as optimal transport problems
[JP22], numerical integration [ELP22; Pag15], and mathematical finance [PW12;
Hof+14; BFP16; FPS19; BPW10]. From a mathematical point of view, one is
concerned with the asymptotics of the errors in approximating a given random
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1.1. Statement of the problems

variable with a quantized version of that random variable (i.e. taking only finitely
many values), in the sense of 𝑟 -means, 𝑟 > 0.

We start with a stochastic formulation of the quantization problem. Let 𝑋 be
a bounded R𝑑 -valued random variable on a probability space (Ω,A,P) and set
a ≔ P ◦𝑋−1. For a given 𝑛 ∈ N, let F𝑛 denote the set of all Borel measurable
functions 𝑓 : R𝑑 → R𝑑 with card

(︁
𝑓
(︁
R𝑑

)︁ )︁
≤ 𝑛. Our goal is to approximate 𝑋 with a

quantized version of 𝑋 , i.e. 𝑋 will be approximated by elements of the form 𝑓 (𝑋 )
with 𝑓 ∈ F𝑛, with respect to the 𝐿𝑟 -quasinorm for some 𝑟 > 0, that is,

𝔢𝑛,𝑟 (a) ≔ inf
𝑓 ∈F𝑛

(︃∫
Ω
|𝑋 − 𝑓 (𝑋 ) |𝑟 dP

)︃1/𝑟
= inf
𝑓 ∈F𝑛

(︃∫
|𝑥 − 𝑓 (𝑥) |𝑟 da (𝑥)

)︃1/𝑟
.

We call 𝔢𝑛,𝑟 (a) the 𝑛-th quantization error for a of order 𝑟 > 0.

In the following considerations we assume that a is a compactly supported Borel
probability measure. For every 𝑛 ∈ N, we write A𝑛 := {𝛼 ⊂ R𝑑 : 1 ≤ card(𝛼) ≤ 𝑛}.
In [GL00b, Lemma 3.1] an equivalent formulation of the 𝑛-th quantization error for
a of order 𝑟 is given by

𝔢𝑛,𝑟 (a) = inf
𝛼 ∈A𝑛

(︃∫
𝑑 (𝑥,𝛼)𝑟 da (𝑥)

)︃1/𝑟
, 𝑟 > 0 , (1.1.3)

where 𝑑 (𝑥,𝛼) ≔ min𝑦∈𝛼 ∥𝑥 −𝑦∥ and ∥ · ∥ denotes the Euclidean norm on R𝑑 . By
[GL00b, Lemma 6.1], we have 𝔢𝑛,𝑟 (a) → 0 for 𝑛→∞. In fact, it is well known that
𝔢𝑛,𝑟 (a) =𝑂 (𝑛−1/𝑑 ) and 𝔢𝑛,𝑟 (a) = 𝑜 (𝑛−1/𝑑 ) for 𝑛→∞ if a is singular with respect to
the Lebesgue measure (see also Proposition 6.1). Hence, it is natural to ask for the
“optimal exponent” of convergence. The calculation of this exponent will be one of
the main achievement of this thesis. For this purpose we define the lower and upper
quantization dimension for a of order 𝑟 by

𝐷
𝑟
(a) ≔ liminf

𝑛→∞
log(𝑛)

− log𝔢𝑛,𝑟 (a)
and 𝐷𝑟 (a) ≔ limsup

𝑛→∞

log(𝑛)
− log𝔢𝑛,𝑟 (a)

.

If 𝐷𝑟 (a) = 𝐷𝑟 (a), then we call the common value the quantization dimension of
a of order 𝑟 and denote it by 𝐷𝑟 (a). The quantization dimension reflects the
exponential rate of this convergence and has been studied by various authors, for
example [Del+04; Gra02; LM02; Zhu15a; Zhu15b; ZZS16; KZ16; ZZS17; KZ15;
KZ17; Zhu18; Zhu20; ZZ21; Roy13]. A detailed introduction to the mathematical
foundations of the quantization problem can be found in [GL00b]. As pointed out
for instance in [LM02], “the problem of determining the quantization dimension
function for a general probability is open”. In this thesis we close this gap for the
upper quantization dimension and, under additional regularity conditions, also for
the lower quantization dimension. Building on a result of [PS00; Fen07], we confirm
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the existence of the quantization dimension of self-conformal measures with respect
to conformal iterated function systems without any separation conditions.

The following theorem by Zador is a classical result from quantization theory. It
was proposed in [Zad82] and then generalized by Bucklew and Wise [BW82]; we
refer to [GL00b, Theorem 6.2] for a rigorous proof.

Let a be a Borel probability measure with bounded support and let ℎ
denote the density of the absolutely continuous part of a . Then

lim
𝑛→∞

𝑛−𝑟/𝑑𝔢𝑛,𝑟 (a)𝑟 =𝐶 (𝑟,𝑑)
(︃∫

ℎ
𝑑
𝑑+𝑟 (𝑥) d𝑥

)︃ 𝑑+𝑟
𝑑

, 𝑟 > 0,

where 𝐶 (𝑟,𝑑) is a constant independent of a .

Interestingly, there is a similar result for polyharmonic operators (see for instance
[BS70]). While engineers are mainly dealing with absolutely continuous distribu-
tions, from a mathematical point of view, the quantization problem is significant for
all Borel probability measures with bounded support.

Another important example is the case of self-similar measures 𝜌 under OSC with
contractions 𝑟1, . . . ,𝑟𝑛 ∈ (0,1) and probability weights 𝑝1, . . . ,𝑝𝑛 ∈ (0,1). By Graf
and Luschgy [GL00a], the quantization dimension exists and is uniquely determined
by

𝑛∑︂
𝑖=1

(︁
𝑝𝑖𝑟

𝑟
𝑖

)︁𝐷𝑟 (a)/(𝑟+𝐷𝑟 (a)) = 1. (1.1.4)

Graf and Luschgy’s work on the quantization dimension was the starting point of
many further generalizations investigating more general classes of fractal measures
such as self-affine measures on Bedford-McMullen carpets [KZ16], self-conformal
measures [LM02], and inhomogeneous self-similar measures [Zhu08a; Zhu08b]. It
is worth mentioning that in the case 𝑟 = 𝑑 = 1 the formula of the spectral dimension
in the self-similar case under OSC is quite similar to the formula of 𝐷1(a). In
fact, this is no coincidence; we will prove that for general measures a the spectral
dimension and upper quantization dimension are closely related (see Corollary 6.8).

1.1.3 Optimal partition problems and optimized coarse multifractal
dimension

Motivated by the study of upper bounds of the spectral dimension of Kreı̆n–Feller
operators, polyharmonic operators [KN22b; KN22a; KN22c], and quantization
dimension [KNZ22], we are interested in the following general combinatorial
problem which plays a major role for the investigations in this thesis. Let 𝔍 : D →
R≥0 with D ≔⋃︁

𝑛∈ND𝑁
𝑛 satisfying the following natural assumptions:

9
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• 𝔍 is monotone, that is, 𝔍(𝑄 ′) ≤ 𝔍(𝑄) for all 𝑄 ′,𝑄 ∈ D with 𝑄 ′ ⊂ 𝑄 .

• 𝔍 is uniformly vanishing, i.e. lim𝑛→∞ sup𝑄 ∈D𝑚,𝑛≤𝑚𝔍(𝑄) = 0.

• 𝔍 is locally non-vanishing, i.e. if 𝔍(𝑄) > 0 for 𝑄 ∈ D, then there exists
𝑄 ′ ⊊ 𝑄 , 𝑄 ′ ∈ D with 𝔍(𝑄 ′) > 0.

We are particularly interested in the following class of set functions

𝔍a,𝑎,𝑏 (𝑄) ≔

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sup˜︁𝑄 ∈D(𝑄) a

(︂˜︁𝑄)︂𝑏 |︁|︁|︁log
(︂
Λ

(︂˜︁𝑄)︂)︂|︁|︁|︁ , 𝑎 = 0 ,

sup˜︁𝑄 ∈D(𝑄) a
(︂˜︁𝑄)︂𝑏

Λ
(︂˜︁𝑄)︂𝑎

, 𝑎 ≠ 0 ,

where 𝑏 ≥ 0, 𝑎 ∈ R, D(𝑄) ≔
{︂˜︁𝑄 ∈ D : ˜︁𝑄 ⊂ 𝑄

}︂
, and a is a finite Borel measure on

Q, which we call spectral partition function with parameters 𝑎, 𝑏. The spectral
partition function arises naturally in the investigation of Kreı̆n–Feller operators (for
𝑎 = (2−𝑑)/𝑑 , 𝑏 = 1) and the quantization problem (for 𝑎 > 0, 𝑏 = 1). Our goal is to
control the asymptotic behavior of

M𝔍 (𝑥) ≔ inf
{︃
card (𝑃) : 𝑃 ∈ Π𝔍 : max

𝑄 ∈𝑃
𝔍 (𝑄) < 1/𝑥

}︃
, 𝑥 > 1/𝔍(Q),

where Π𝔍 denotes the set of finite collections of dyadic cubes such that for all 𝑃 ∈ Π𝔍

there exists a partition ˜︁𝑃 of Q by dyadic cubes from D with 𝑃 = {𝑄 ∈ ˜︁𝑃 : 𝔍 (𝑄) > 0}.
An important quantity for measuring the growth rate of M𝔍 is the lower, resp. upper
𝔍-partition entropy defined by

ℎ
𝔍
≔ liminf

𝑥→∞

log
(︁
M𝔍 (𝑥)

)︁
log(𝑥) , ℎ𝔍 ≔ limsup

𝑥→∞

log
(︁
M𝔍 (𝑥)

)︁
log(𝑥) . (1.1.5)

Under mild conditions on 𝔍, it is closely related to its dual problem (see Proposition
3.11), which is concerned with the control of the asymptotic behavior of

𝛾𝔍,𝑛 ≔ inf
𝑃 ∈Π𝔍,

card(𝑃 ) ≤𝑛

max
𝑄 ∈𝑃

𝔍 (𝑄) .

For the special choice 𝔍≔ 𝔍a,𝑎,1 with 𝑎 > 0 and a being a finite Borel measure on Q
(or, more generally, a superadditive function, see Section 3.3), the dual problem has
attracted much attention in numerous papers by Birman and Solomjak [BS67; BS70],
Borzov [Bor71], and more recently by Davydov, Kozynenko, and Skorokhodov
[DKS20] and by Hu, Kopotun, and Yu [HKY00]. The study of 𝛾𝔍,𝑛 in [BS67] was
motivated by the study of integral operators (see for instance [Bor71]). The classical
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result by Birman and Solomjak [BS67, Theorem 2.1] states that

𝛾𝔍,𝑛 =𝑂

(︂
𝑛−(1+𝑎)

)︂
,

which under the additional assumption that a is singular with respect to the Lebesgue
measure was improved by Borzov [Bor71] to 𝛾𝔍,𝑛 = 𝑜

(︁
𝑛−(1+𝑎)

)︁
. It should be noted

that in the early 1970s a first attempt was made to find the “right exponent” in the
case 𝑑 = 1; however, the estimate obtained in [Bor71, p. 41] depends only on the
support of a . Consequently, this approach ignores important information about the
involved measure a , resulting in an inaccurate estimate of the exponent. In this
thesis, we close this gap by giving the exact exponent (see Corollary 3.21).

Motivated by the study of lower estimates of the spectral dimension and quantization
dimension (see Section 4.1, Section 5.2 and Section 6.2) we borrow ideas from the
coarse multifractal analysis (see [Nga97; Fal14; Rie95] and [Fal97, Chapter 11]),
which, roughly speaking, is concerned with the study of global (coarse) properties
of compactly supported Borel measures on small dyadic cubes. In contrast to the
coarse multifractal analysis in which only bounded Borel measures are considered,
we generalize this idea to set functions 𝔍 under the assumptions formulated above.
To be more precise, for all 𝑛 ∈ N and 𝛼 > 0 we define

N𝐷/𝑁
𝔍,𝛼

(𝑛) ≔ card
(︂
𝑀
𝐷/𝑁
𝑛 (𝛼)

)︂
, 𝑀

𝐷/𝑁
𝔍,𝑛

(𝛼) ≔
{︂
𝑄 ∈ D𝐷/𝑁

𝑛 : 𝔍 (𝑄) ≥ 2−𝛼𝑛
}︂
,

with D𝐷
𝑛 ≔

{︂
𝑄 ∈ D𝑁

𝑛 : 𝜕Q∩𝑄 = ∅
}︂
, an object motivated by the study of Kreı̆n–

Feller operators with respect to Dirichlet boundary conditions (see also Section 2.1).
We set

𝐹
𝐷/𝑁
𝔍 (𝛼) ≔ limsup

𝑛→∞

log+
(︂
N𝐷/𝑁

𝔍,𝛼
(𝑛)

)︂
log(2𝑛) and 𝐹𝐷/𝑁

𝔍
(𝛼) ≔ liminf

𝑛→∞

log+
(︂
N𝐷/𝑁

𝔍,𝛼
(𝑛)

)︂
log(2𝑛) ,

with 𝑥 ≥ 0 and log+(𝑥) ≔ max{0, log(𝑥)} (where we use the convention that
log(0) ≔ −∞), and refer to the quantities

𝐹
𝐷/𝑁
𝔍 ≔ sup

𝛼>0

𝐹
𝐷/𝑁
𝔍 (𝛼)
𝛼

and 𝐹
𝐷/𝑁
𝔍
≔ sup

𝛼>0

𝐹
𝐷/𝑁
𝔍

(𝛼)
𝛼

as the upper, resp. lower optimized (Dirichlet/Neumann) coarse multifractal dimen-
sion with respect to 𝔍. In Chapter 3, we see that the 𝔍-partition entropy and the
optimized coarse multifractal dimension with respect to 𝔍 are strongly linked by
ideas from the theory of large deviations.
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1.2 Outline and statement of the main results

This thesis is dedicated to the study of general optimal partition problems and
their applications for the determination of the spectral dimension of Kreı̆n–Feller
operators and the quantization dimension. The main achievement of this thesis is
the development of a unified framework to tackle both the computation of the upper
spectral dimension and the upper quantization dimension.

The thesis is divided into five main parts. In Chapter 2, we provide some preliminary
considerations. In Section 2.2, under the Hu–Lau–Ngai condition (♠), we define
Kreı̆n–Feller operators Δ𝐷/𝑁

a via a form approach with respect to Dirichlet/Neumann
boundary conditions. We prove a slight modification of the well-known min-max
principle (Proposition 2.17) for the representation of the eigenvalues. The min-max
principle is a powerful tool which enables us to reduce the eigenvalue counting
problem to the optimal partition problem described in Section 1.1.3. We conclude
Section 2.2 by constructing smooth functions via mollifiers. We will use this
construction to prove that the condition dim∞(a) < 𝑑 − 2 implies that there is no
continuous embedding of 𝐻 1(Q) into 𝐿2

a (Q). As a consequence, if dim∞(a) < 𝑑 −2,
then it is impossible to define the Kreı̆n–Feller operator. Section 2.3 is dedicated to
the introduction of the new concept of partition functions, which, to a certain extent,
is borrowed from the coarse multifractal analysis; for a non-negative, monotone set
function 𝔍 : D → R≥0, the Dirichlet/Neumann partition function of 𝔍 is given by

𝜏
𝐷/𝑁
𝔍

(𝑞) ≔ limsup
𝑛→∞

1
log(2𝑛) log

(︃ ∑︂
𝑄 ∈D𝐷/𝑁

𝑛 ,

𝔍(𝑄)>0

𝔍 (𝑄)𝑞
)︃
, 𝑞 ≥ 0.

The function 𝜏𝑁
𝔍

encodes important information about 𝔍; it provides a quantitative
description of the global fluctuation of 𝔍. Furthermore, under mild conditions on 𝔍

(see Lemma 2.25), we have the following important representation of the zero of
𝜏𝑁
𝔍

as a critical value:

𝑞𝑁
𝔍
≔ inf{𝑞 > 0 : 𝜏𝑁

𝔍
(𝑞) < 0} = inf

⎧⎪⎨⎪⎩𝑞 > 0 :
∑︂
𝑄 ∈D

𝔍(𝑄)𝑞 <∞
⎫⎪⎬⎪⎭ .

This representation will be crucial for establishing upper bounds of the 𝔍-partition
entropy. An important special case is the Neumann partition function of 𝔍 = a which
is known as the 𝐿𝑞-spectrum of a . Throughout this thesis we write 𝛽𝐷/𝑁

a = 𝜏
𝐷/𝑁
a .

The 𝐿𝑞-spectrum of a provides important information about a , for example 𝛽𝑁a (0) is
equal to the upper Minkowski dimension of the support of a and lim𝑞→∞ 𝛽𝑁a (𝑞)/𝑞 =
−dim∞(a). In Section 2.4.2, we discuss conditions which guarantee that the Dirich-
let partition function and Neumann partition function coincide. We conclude that
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chapter by computing the (Dirichlet/Neumann) partition function for the spectral par-
tition function for leading examples; we consider absolutely continuous measures,
product measures, Ahlfors-David regular measures, and self-conformal measures.

Chapter 3 can be seen as the flagship of this thesis. We develop a machinery
which enables us to tackle the problem of the computation of the upper 𝔍-partition
entropy under mild assumptions on 𝔍 (see Section 3.4). Section 3.1 is devoted to
establishing lower and upper bounds of the lower and upper 𝔍-partition entropy
in terms of the zero of 𝜏𝑁

𝔍
and the lower and upper optimized coarse multifractal

dimension with respect to 𝔍, respectively. This will enable us to use an adaptive
approximation algorithm to construct certain partitions of dyadic cubes to estimate
the 𝔍-partition entropy from above. A detailed motivation for this approach is given
in the beginning of Section 3.1. Based on that, in Section 3.2, we show that the
𝔍a,𝑎,𝑏-partition entropy can be bounded from above by

𝑞𝑁
𝔍𝑎,𝑏

= inf{𝑞 > 0 : 𝜏𝑁
𝔍𝑎,𝑏

(𝑞) < 0}

whenever 𝑏 dim∞(a) +𝑎𝑑 > 0. Section 3.3 is devoted to the study of the corre-
sponding dual problem. We begin with a presentation of an adaptive approximation
algorithm by Birman and Solomjak [BS67] to reproduce known results. We then
demonstrate how one can use the results of Section 3.1 to improve known upper
bounds in terms of 𝑞𝑁

𝔍
(Proposition 3.11). Section 3.4 contains the main results of

that chapter. The basic idea of that section is to apply large derivation theory (see
Lemma 3.17) to estimate the upper optimized coarse multifractal dimension with
respect to 𝔍 from below. The first main result is given by Corollary 3.21. It states
that

𝐹
𝐷

𝔍 = 𝑞𝐷
𝔍

and

𝐹
𝑁

𝔍 = ℎ𝔍 = 𝑞𝑁
𝔍
.

The second main result is concerned with the question under which conditions
we can ensure that 𝐹

𝑁

𝔍 and ℎ𝔍 exist as limits (i.e. ℎ𝔍 = ℎ
𝔍

and 𝐹
𝑁

𝔍 = 𝐹𝑁
𝔍

). In
Corollary 3.23, we impose a sufficient condition (see Definition 3.22); if 𝔍 is
Dirichlet/Neumann partition function regular, that is, if 𝜏𝐷/𝑁

𝔍
is differentiable and

exists as a limit in 𝑞𝐷/𝑁
𝔍

, or 𝜏𝐷/𝑁
𝔍

exists as a limit on a left-sided neighborhood of

𝑞
𝐷/𝑁
𝔍

, then

𝐹𝐷
𝔍
= 𝐹

𝐷

𝔍 = 𝑞𝐷
𝔍

and
𝐹𝑁
𝔍
= 𝑞𝑁

𝔍
= ℎ𝔍 = ℎ

𝔍
.
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1.2. Outline and statement of the main results

Chapter 4 is dedicated to studying the spectral dimension of Kreı̆n–Feller operators
for the case 𝑑 = 1 with respect to non-zero Borel measures on (0,1). It turns out that
the spectral partition function with parameters (2−𝑑)/𝑑,1, given by

𝔍a (𝑄) = 𝔍a,1,1(𝑄) = a (𝑄)Λ(𝑄), 𝑄 ∈ D,

is a central object for the calculation of the upper spectral dimension. Its importance
stems from the fact that 𝔍a appears as an embedding constant (which, in fact, is
equivalent to the best constant) for the embedding of 𝐻 1

0 (𝑄) into 𝐿2
a (𝑄). Combined

with the min-max principle, we can reduce the original problem of the computation
of the lower and upper spectral dimension to the combinatorial problems with
respect to 𝔍a considered in Chapter 3. In Section 4.1, we establish lower bounds for
the lower and upper spectral dimension in terms of the lower and upper optimized
coarse multifractal dimension with respect to 𝔍a , respectively. Section 4.2 is devoted
to the study of upper bounds for the lower and upper spectral dimension. We show
that the lower and upper spectral dimension is bounded from above by the lower and
upper 𝔍a-partition entropy, respectively. Further, we obtain upper bounds for the
lower spectral dimension in terms of the lower Minkowski dimension of supp(a),
denoted by dim

𝑀
(a), and the ∞-dimension of a as follows:

𝑠𝐷/𝑁
a

≤ ℎ
𝔍a

≤
dim

𝑀
(a)

1+dim∞(a) .

In Section 4.3, we present the main results of that chapter. By combining the results
of Section 4.1 and Section 4.2 we are able to compute the upper spectral dimension.
The first main result (Theorem 4.10) reads as follows:

𝐹𝑁
𝔍a

≤ 𝑠𝐷/𝑁
a

≤ 𝑠𝐷/𝑁
a = 𝐹

𝑁

𝔍a
= 𝑞𝑁

𝔍a
= ℎ𝔍a .

This reveals an interesting connection between the upper spectral dimension, the
optimized coarse multifractal dimension with respect to 𝔍a , the 𝔍a -partition entropy,
and the spectral partition function. Since the partition function of 𝔍a is equal to
𝑞 ↦→ 𝛽𝑁a (𝑞) −𝑞, we obtain an interesting geometric interpretation of the upper
spectral dimension. If 𝑞𝑁

𝔍a
> 0, then the upper spectral dimension is given by the

fixed point of the 𝐿𝑞-spectrum of the corresponding measure a (see Figure 1.2.1).

Section 4.3.2 is concerned with the determination of the conditions that ensure the
spectral dimension exists. For this purpose we use the regularity results of Section
3.4 applied to 𝔍a . This leads to the following regularity condition, which ensures
the existence of the spectral dimension (see Corollary 4.12):

If 𝔍a is Neumann partition function regular, then the spectral dimen-
sion exists and is given by 𝑠𝐷/𝑁

a = 𝑞𝑁
𝔍a

.

14



1.2. Outline and statement of the main results

1

dim𝑀 (a)

𝛽𝑁a (𝑞)

𝑠
𝐷/𝑁
a

dim𝐻 (a)

𝑞

Figure 1.2.1 The intersection point 𝑞𝑁
𝔍a

of the 𝐿𝑞-Spectrum 𝛽𝑁a with respect to a and
the identity map. Here a is chosen to be the (0.05,0.95)-Salem measure with full sup-
port supp (a) = [0,1]. The intersection of 𝛽𝑁a with the 𝑦-axis yields the Minkowski
dimension of supp (a), namely 1, and the intersection with the (dotted) tangent to
𝛽𝑁a in (0,1) yields the Hausdorff dimension dim𝐻 (a) of the measure a , which equals
(0.05log (0.05) +0.95log (0.95)) /log (2).

Fortunately, this regularity condition is usually easy to verify. For instance, we will
apply this result for weak Gibbs measures without any separation conditions. In
Section 4.3.3, we derive lower and upper bounds for the lower and upper spectral
dimension, respectively. For the lower and upper spectral dimension we have
the following general bounds depending on the topological support of a , namely
dim𝑀 (a), and the right and left derivative 𝜕−𝛽𝑁a , 𝜕+𝛽𝑁a of 𝛽𝑁a at 1:

−𝜕+𝛽𝑁a (1)
1− 𝜕−𝛽𝑁a (1)

≤ 𝑠𝐷/𝑁
a

≤ 𝑠𝐷/𝑁
a ≤ dim𝑀 (a)

1+dim𝑀 (a)
≤ 1

2

and

𝑠
𝐷/𝑁
a =

dim𝑀 (a)
1+dim𝑀 (a)

⇐⇒ −𝜕−𝛽𝑁a (1) = dim𝑀 (a) .

We conclude this chapter with three leading examples in Section 4.4. In the first
example we investigate weak Gibbs measures with respect to a C1-IFS (with or
without overlap). Thereby, we generalize the classical result for the self-similar
setting under OSC (1.1.2) in three ways:

• In Section 4.4.1.1, we provide a first contribution to the nonlinear setting in a
broad sense. More precisely, we consider weak Gibbs measures on fractals
which are generated by non-trivial C1-IFS’s under OSC. It turns out that the
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1.2. Outline and statement of the main results

spectral dimension is given by the zero of the associated pressure function
(see (4.4.3)), which constitutes a natural generalization of (1.1.2).

• As a second novelty in Section 4.4.1.3, we drop the assumption of the OSC
and allow overlaps. In this situation the computation of the spectral dimension
is much more complex compared to (1.1.2). However, by ideas of [Fen07;
PS00], we are able to prove the existence of the 𝐿𝑞-spectrum on (0,1] (see
Proposition 4.45). This implies that 𝔍a is Neumann partition function regular.
Consequently, Corollary 4.12 yields the existence of the spectral dimension
given as the fixed point of the associated 𝐿𝑞-spectrum.

• Our final contribution to the nonlinear setting concerns Gibbs measures on
fractals generated by C1+𝛾 -IFS’s under OSC. For this class, using renewal
theory in a dynamical context (see for instance [Kom18; KK17]), we are able
to prove the spectral asymptotics (see Theorem 4.42)

𝑁𝐷
a (𝑡) ≍ 𝑡𝑧a ,

where 𝑧a is the unique zero of the pressure function as defined in (4.4.3).

In Section 4.4.2, we construct a first example with non-converging 𝐿𝑞-spectrum for
which the spectral dimension does not exist, with the help of homogeneous Cantor
measures (see Example 4.48). We end Chapter 4 with the investigation of purely
atomic measures whose spectral dimension exists and attains values in [0,1/2].

In Chapter 5, we discuss the spectral dimension of Kreı̆n–Feller operators Δ𝐷/𝑁
a

with respect to Dirichlet and Neumann boundary conditions for the case 𝑑 > 1,
where a is a non-zero Borel measure on Q with dim∞(a) > 𝑑 −2. This chapter can
be seen as generalization of some results for the one-dimensional case. However,
in contrast to the one-dimensional case, there are some difficulties. There is no
continuous embedding of the Sobolev space 𝐻 1 (Q) into C𝑏 (Q) and, in general, we
cannot guarantee that the spectral dimensions with respect to Dirichlet and Neu-
mann boundary conditions coincide. Thus, many proofs from the one-dimensional
case cannot be directly adopted. Again, the main strategy is to use the min-max
principle to reduce the problem of the computation of the spectral dimension to the
combinatorial problems investigated in Chapter 3, where 𝔍 is chosen to be equal to

𝔍a (𝑄) ≔ 𝔍a,(2−𝑑)/𝑑,1 (𝑄) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sup˜︁𝑄 ∈D(𝑄) a

(︂˜︁𝑄)︂ |︁|︁|︁log
(︂
Λ

(︂˜︁𝑄)︂)︂|︁|︁|︁ , 𝑑 = 2 ,

sup˜︁𝑄 ∈D(𝑄) a
(︂˜︁𝑄)︂

Λ
(︂˜︁𝑄)︂ (2−𝑑)/𝑑

, 𝑑 > 2 ,

with 𝑄 ∈ D. In Section 5.1, we discuss upper bounds for the lower and upper
spectral dimension. Motivated by the ideas of [NS95] (see also Remark 5.2) and the
proof of Proposition 4.4, we start with an important observation on the embedding
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constants on sub-cubes of Q and the upper spectral dimension in Section 5.1.1. The
main result of that section reads as follows:

Suppose there exists a non-negative, uniformly vanishing, monotone
set function 𝔍 on D such that for all 𝑄 ∈ D and all 𝑢 ∈ C∞

𝑏
(𝑄) with∫

𝑄
𝑢 dΛ = 0, we have

∥𝑢∥2
𝐿2
a (𝑄) ≤ 𝔍(𝑄) ∥∇𝑢∥2

𝐿2
Λ (𝑄) . (1.2.1)

Then we have
𝑠𝐷a ≤ 𝑠𝑁a ≤ ℎ𝔍

and
𝑠𝐷
a
≤ 𝑠𝑁

a
≤ ℎ

𝔍
.

In contrast to the case 𝑑 = 1 (see Lemma 2.2), the best embedding constant on dyadic
sub-cubes of Q from the embedding of 𝐻 1(𝑄) into 𝐿2

a (𝑄) is hard to compute for
general measures. Fortunately, the best embedding constant for the embedding of
𝐿𝑡
a |𝑄

(︁
R𝑑

)︁
with 𝑡 > 2 into 𝐻 1 (︁

R𝑑
)︁

has been computed by Maz’ya and Preobrazenskii
[Maz11, p. 83] for 𝑑 = 2 and by Adam [Ada71; Ada73] (see also [Maz11, p. 67]) for
𝑑 > 2. Using this and the Stein extension established in Lemma 2.8, we show that
(1.2.1) is valid for 𝔍 = 𝔍a,(2−𝑑)/𝑑,2/𝑡 with 2 < 𝑡 < 2dim∞(a)/(𝑑 − 2) (see Lemma
5.5). By combining the results above, the main results of Section 5.1.2 are the
following chains of inequalities:

𝑠𝐷a ≤ 𝑠𝑁a ≤ lim
𝑡↓2

ℎ𝔍a,𝑡 (2/𝑑−1)/2,1 ≤ 𝑞
𝑁
𝔍a

and
𝑠𝐷
a
≤ 𝑠𝑁

a
≤ lim

𝑡↓2
ℎ
𝔍a,𝑡 (2/𝑑−1)/2,1

.

Section 5.2 is devoted to establishing lower bounds for the lower and upper spectral
dimension. Motivated by the proof of Proposition 4.1 for the one-dimensional
setting, the lower estimate of the spectral dimension is based on the following
general principle which connects the optimized coarse multifractal dimension and
the spectral dimension (see Proposition 5.9 for the definition):

Assume there exists a non-negative monotone set function 𝔍 on D with
dim∞(𝔍) > 0 (see Section 2.3.1) such that for every𝑄 ∈ D with 𝔍 (𝑄) >
0 there exists a non-negative and non-zero function𝜓𝑄 ∈ C∞

𝑐

(︁
R𝑑

)︁
with

support contained in
⟨︁
�̊�

⟩︁
3 such that∥︁∥︁𝜓𝑄∥︁∥︁2
𝐿2
a
≥ 𝔍(𝑄)

∥︁∥︁∇𝜓𝑄∥︁∥︁2
𝐿2
Λ(R𝑑) , (1.2.2)
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1.2. Outline and statement of the main results

where
⟨︁
�̊�

⟩︁
3 denotes the cube centered and parallel with respect to �̊�

such that
⟨︁
�̊�

⟩︁
3 =𝑇 (�̊�) + (1−3)𝑥0 with 𝑇 (𝑥) = 3𝑥,𝑥 ∈ R𝑑 and 𝑥0 ∈ R𝑑

is the center of 𝑄 . Then

𝐹𝑁
𝔍
≤ 𝑠𝑁

a
, 𝐹

𝑁

𝔍 ≤ 𝑠𝑁a , 𝐹𝐷
𝔍
≤ 𝑠𝐷

a
and 𝐹

𝐷

𝔍 ≤ 𝑠𝐷a . (1.2.3)

In Section 5.1.2, as an application of the general principle above, we use the results
of Section 2.2.6 to construct appropriate functions from C∞

𝑐 (R𝑑 ) and the min-max
principle to demonstrate that (1.2.3) is valid for 𝔍 = 𝔍a .

By combining the lower and upper bounds of the spectral dimension presented in
Section 5.2 and Section 5.1, we are able to calculate the upper spectral dimension
with respect to Neumann boundary conditions (see Section 5.3). More precisely, we
show equality of the optimized coarse multifractal dimension with respect to 𝔍a ,
the 𝔍a -partition entropy, and the unique zero of 𝜏𝑁

𝔍a
:

ℎ𝔍a = 𝑠
𝑁
a = 𝑞𝑁

𝔍a
= 𝐹

𝑁

𝔍a
.

Surprisingly, it turns out that in the case 𝑑 = 2, the formula above simplifies to
𝑠𝑁a = 1, and under the assumption a (Q̊) > 0, we also have 𝑠𝐷a = 1. Thus, in the case
𝑑 = 2, the upper spectral dimension contains no information about the underlying
measure a . This can be explained by the simple fact that the 𝐿𝑞-spectrum always
has a zero at 1.

Another important question is under which conditions we can ensure that the upper
spectral dimension with respect to Dirichlet and Neumann boundary conditions
coincide. We show that if 𝜏𝑁

𝔍a
(𝑞𝐷

𝔍a
) = 0, or equivalently 𝐹

𝑁

𝔍a
= 𝐹

𝐷

𝔍a
, then the upper

Dirichlet and Neumann spectral dimensions fulfill 𝑠𝐷a = 𝑠𝑁a = 𝑞𝑁
𝔍a

. Motivated by this
observation, we impose conditions on the Minkowski dimension of supp(a) ∩ 𝜕Q
and on the growth rate of the boundary cubes (see (5.3.2)) to guarantee 𝜏𝑁

𝔍a
(𝑞𝐷

𝔍a
) = 0.

Further, we address the question of the existence of the spectral dimension. As
in the one-dimensional case, we make use of the regularity conditions imposed in
Proposition 3.24 to establish the following regularity results.

• If 𝔍a is Neumann partition function regular, then the spectral dimension 𝑠𝑁a
exists.

• If 𝔍a is Dirichlet partition function regular and 𝜏𝑁
𝔍a
(𝑞𝐷

𝔍a
) = 0, then both the

Dirichlet and Neumann spectral dimension exist and coincide, i.e. 𝑠𝐷a = 𝑠𝑁a .

Additionally, using the formula for 𝑠𝑁a , we estimate the upper spectral dimension
with respect to Neumann boundary conditions in terms of the upper Minkowski
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dimension of supp(a) and ∞-dimension of a as follows:

𝑑

2
≤ dim𝑀 (a)

dim𝑀 (a) −𝑑 +2
≤ 𝑠𝑁a ≤ dim∞ (a)

dim∞ (a) −𝑑 +2
. (1.2.4)

We conclude Section 5.3 by discussing Kac’s question in view of (1.2.4). Finally,
we end Chapter 5 with four examples in Section 5.4. Here, we study absolutely
continuous measures, Ahlfors-David regular measures, self-conformal measures
without any separation conditions, and we present an example for which the spectral
dimension does not exist.

Chapter 6 is dedicated to the study of the lower and upper quantization dimension
with respect to a finite Borel measure a on Q. Here, we use the same strategy as in
Chapter 4 and Chapter 5; we reduce the computation of the quantization dimension
to the auxiliary combinatorial problems investigated in Chapter 3 for the special
choice

𝔍a,𝑟/𝑑 (𝑄) ≔ 𝔍a,𝑟/𝑑,1(𝑄) = a (𝑄)Λ(𝑄)𝑟/𝑑 , 𝑄 ∈ D .

More precisely, we will link the lower and upper quantization dimension to the
dual problem studied in Section 3.3 with respect to 𝔍a,𝑟/𝑑 . Section 6.1 and Section
6.2 are devoted to the study of lower and upper bounds for the lower and upper
quantization dimension. Section 6.3 contains the main results of that chapter. By
combining the estimates obtained in Section 6.1 and Section 6.2, we are able to
compute the upper quantization dimension for the first time. The first main result
(see Theorem 6.5) reads as

𝑟𝐹𝑁
𝔍a,𝑟/𝑑

1− 𝐹𝑁
𝔍a,𝑟/𝑑

≤ 𝐷
𝑟
(a) ≤

𝑟ℎ
𝔍a,𝑟/𝑑

1−ℎ
𝔍a,𝑟/𝑑

≤ 𝐷𝑟 (a) =
𝑟ℎ𝔍a,𝑟/𝑑

1−ℎ𝔍a,𝑟/𝑑
=

𝑟𝑞𝑁
𝔍a,𝑟/𝑑

1−𝑞𝑁
𝔍a,𝑟/𝑑

=
𝑟𝐹

𝑁

𝔍a,𝑟/𝑑

1− 𝐹𝑁𝔍a,𝑟/𝑑
.

(1.2.5)

Interestingly, if sup𝑥 ∈(0,1) 𝛽
𝑁
a (𝑥) > 0, then the upper quantization dimension coin-

cides with the upper Rényi dimension at 𝑞𝑁
𝔍a,𝑟/𝑑

, given by

ℜa (𝑞) ≔
𝛽𝑁a (𝑞)
1−𝑞 , 𝑞 ≠ 1.

This perspective sheds new light on the connection between the quantization prob-
lem and other concepts from fractal geometry in that we obtain a one-to-one corre-
spondence of the upper quantization dimension and the 𝐿𝑞-spectrum restricted to
(0,1). Further, as a consequence of the formula for 𝐷𝑟 (a), we derive an alternative
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representation for 𝐷𝑟 (a) as a critical value:

𝐷𝑟 (a)
𝐷𝑟 (a) +𝑟

= inf
⎧⎪⎨⎪⎩𝑞 > 0 :

∑︂
𝑄 ∈D

(︂
Λ(𝑄)𝑟/𝑑a (𝑄)

)︂𝑞
<∞

⎫⎪⎬⎪⎭ .
This further results in a surprising connection with the upper spectral dimension for
the case 𝑑 = 𝑟 = 1 via

𝐷1 (a)
𝐷1 (a) +1

= 𝑠
𝐷/𝑁
a .

It is worth mentioning that this formula demonstrates a striking connection between
two, at first sight, distinct fields of mathematics (the spectral problem of Kreı̆n–
Feller Operators and the quantization of compactly supported Borel measures). As
a further application we confirm a conjecture of Lindsay [Lin01] which states that

𝑟 ↦→ 𝐷𝑟 (a), is continuous for 𝑟 > 0 .

The second main Theorem 6.5 addresses the existence of the quantization dimension.
Based on the regularity conditions imposed in Proposition 3.24 and (1.2.5), we
prove the following regularity result:

𝜏𝑁
𝔍a,𝑟/𝑑

is Neumann partition regular =⇒ 𝐷
𝑟
(a) = 𝐷𝑟 (a) =

𝑟𝑞𝑁
𝔍a,𝑟/𝑑

1−𝑞𝑁
𝔍a,𝑟/𝑑

.

We conclude Chapter 6 with a corollary affirming the existence of the quantization
dimension for self-conformal measure without any separation conditions.

Certain background information (for instance the relation between self-adjoint
operators and quadratic forms) is provided in the Appendix A and referenced
throughout this thesis. A list of symbols we use in this thesis is appended, including
standard notation (e.g. the set of natural numbers).
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• M. Kesseböhmer and A. Niemann. Approximation order of Kolmogorov
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Chapter 2

Preliminaries

2.1 Dyadic Partitions

Throughout this thesis we will frequently use dyadic cubes contained in Q = (0,1]𝑑 .
Therefore, we list important basic notations from the introduction:

• D𝑁
𝑛 =

{︂∏︁𝑑
𝑖=1(𝑘𝑖2−𝑛, (𝑘𝑖 +1)2−𝑛] : 𝑘𝑖 = 0, . . . ,2𝑛 −1

}︂
,

• D𝐷
𝑛 =

{︂
𝑄 ∈ D𝑁

𝑛 : 𝜕Q∩𝑄 = ∅
}︂
,

• D =
⋃︁
𝑛∈ND𝑁

𝑛 ,

• D(𝑄) =
{︂˜︁𝑄 ∈ D : ˜︁𝑄 ⊂ 𝑄

}︂
with 𝑄 ∈ D.

We remark that D𝑁
𝑛+1 is a refinement of D𝑁

𝑛 for each 𝑛 ∈ N, this means that each
element of D𝑁

𝑛 can be decomposed into 2𝑑 disjoint elements of D𝑁
𝑛+1. Hence,

it is easy to see that D is a semiring. The reason why the definition of D𝐷
𝑛

is appropriate becomes clear in the constructing certain functions with compact
support contained in Q̊ for the proof for the lower bounds in the Dirichlet case (see
proof of Proposition 5.9). For this purpose, a certain distance to the boundary of
the Q is needed. The notation D𝑁

𝑛 is motivated by the proof of the upper estimate
of the spectral dimension of the Kreı̆n–Feller with respect to Neumann boundary
conditions. We end this section with some simple facts about D and D𝐷/𝑁

𝑛 .

Lemma 2.1. Let 𝑄1,𝑄2 ∈ D with 𝑄1 ∩𝑄2 ≠ ∅. Then 𝑄1 ⊂ 𝑄2 or 𝑄2 ⊂ 𝑄1. Further,
for all 𝑛 ∈ N, we have

card
(︂
D𝑁
𝑛 \D𝐷

𝑛

)︂
= 2𝑑𝑛 − (2𝑛 −2)𝑑 .
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2.2. Form approach for Kreı̆n–Feller operators

2.2 Form approach for Kreı̆n–Feller operators

In this section, for fixed 𝑑 ∈ N, we define the Kreı̆n–Feller operator with respect to a
non-zero finite Borel measure a on Q = (0,1]𝑑 . Note that we allow that Q \ Q̊ may
have positive a-measure. It should be noted that this assumption is of a technical
character; in fact, the following considerations are also valid if we allow positive
measure on [0,1]𝑑 \ (0,1)𝑑 . However, this results in some technical difficulties for
the definition of the dyadic cubes of [0,1]𝑑 (for details see [KN22d]). Further, let
Ω ⊂ Q be a bounded Lipschitz domain in R𝑑 . Throughout this chapter, we assume
card(supp(a) ∩Ω) =∞, or equivalently that 𝐿2

a (Ω) is an infinite dimensional vector
space.

2.2.1 Sobolev spaces and embeddings

We start by recalling the form approach following ideas in [HLN06]. The space
𝐻 1(Ω) with the bilinear form ⟨·, ·⟩𝐻 1 (Ω) defines a Hilbert space and 𝐻 1

0 (Ω) is a
closed subspace. For all 𝑢 ∈𝐻 1

0 (Ω), or 𝑢 ∈
{︁
𝑓 ∈ 𝐻 1(Ω) :

∫
Ω
𝑓 dΛ = 0

}︁
, the Poincaré

inequality, respect. Poincaré–Wirtinger inequality (see [Rui12, Lemma 3, p. 500]
and Lemma 2.7), reads, for some constant 𝑐 > 0, as follows

∥𝑢∥𝐿2
Λ (Ω)

≤ 𝑐 ∥∇𝑢∥𝐿2
Λ (Ω)

. (PI)

Since Ω is a bounded Lipschitz domain, the norm induced by the form ⟨·, ·⟩𝐻 1
0 (Ω)

is

therefore equivalent to the norm induced by ⟨·, ·⟩𝐻 1 (Ω) on 𝐻 1
0 (Ω). We will consider

only those finite Borel measures a on the closure of Ω for which the following
a-Poincaré inequality holds for some 𝑐1 > 0:

∥𝑢∥
𝐿2
a (Ω) ≤ 𝑐1 ∥𝑢∥𝐻 1 (Ω) for all 𝑢 ∈𝐶∞

𝑏

(︂
Ω
)︂
. (aPI)

This then guarantees a continuous embedding of the Sobolev spaces 𝐻 1 (Ω) into
𝐿2
a (Ω) and 𝐻 1

0 (Ω) into 𝐿2
a (Ω). In fact, since 𝐶∞

𝑏
(Ω) lies dense in 𝐻 1 (Ω) (this

follows e.g. from Proposition A.1), for every 𝑢 ∈ 𝐻 1 (Ω) there exists a sequence
(𝑢𝑛)𝑛 of elements of 𝐶∞

𝑏
(Ω) such that 𝑢𝑛 → 𝑢 with respect to the norm of 𝐻 1 (Ω).

Now, (a𝑃𝐼 ) implies that (𝑢𝑛)𝑛 is also a Cauchy sequence in 𝐿2
a (Ω), hence there

exists 𝑢 ∈ 𝐿2
a (Ω) such that 𝑢𝑛 → 𝑢 in 𝐿2

a (Ω). It is easy to see that this limit is
independent of the particular choice of (𝑢𝑛)𝑛 and we therefore obtain in this way a
bounded linear operator

] ≔ ]a ≔ ]Ω,a : 𝐻 1 (Ω) → 𝐿2
a

(︂
Ω
)︂
, 𝑓 ↦→ 𝑓 ,
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2.2. Form approach for Kreı̆n–Feller operators

with ] (𝑢) = 𝑢 for all 𝑢 ∈𝐶∞
𝑏
(Ω). If ] is also injective, then we may regard 𝐻 1 (Ω) as

a subspace of 𝐿2
a (Ω). In the case the map is not injective we consider the following

closed subspace of 𝐻 1(Ω)

Na ≔ Na,Ω ≔ ker (]) =
{︂
𝑓 ∈ 𝐻 1 (Ω) : ∥] (𝑓 )∥

𝐿2
a (Ω) = 0

}︂
and have the natural embedding

N⊥
a ≔

{︁
𝑓 ∈ 𝐻 1 (Ω) : ∀𝑔 ∈ Na : ⟨𝑓 ,𝑔⟩𝐻 1 (Ω) = 0

}︁
↩→ 𝐿2

a

(︂
Ω
)︂
,

which is again given by ]. In particular, there exists a sequence (𝑢𝑛)𝑛 ∈𝐶∞
𝑏
(Ω) such

that 𝑢𝑛 → 𝑢 in 𝐻 1 (Ω) and ] (𝑢𝑛) = 𝑢𝑛 → ] (𝑢) in 𝐿2
a (Ω). The extended version of

the Poincaré inequality (a𝑃𝐼 ) reads as

∥] (𝑢)∥
𝐿2
a (Ω) ≤ 𝑐1 ∥𝑢∥𝐻 1 (Ω) for all 𝑢 ∈ 𝐻 1 (Ω) .

Recall that 𝐶∞
𝑐 (Ω) ⊂ 𝐶∞

𝑏
(Ω) lies dense in 𝐻 1

0 (Ω). Hence, for all 𝑢 ∈ 𝐻 1
0 (Ω), it

follows
∥] (𝑢)∥

𝐿2
a (Ω) = ∥] (𝑢)∥𝐿2

a (Ω) .

Consequently,

Na ∩𝐻 1
0 (Ω) =

{︂
𝑓 ∈ 𝐻 1

0 (Ω) : ∥] (𝑓 )∥𝐿2
a (Ω) = 0

}︂
.

Therefore, this embedding carries over to

N⊥
0,a ≔

{︂
𝑓 ∈ 𝐻 1

0 (Ω) : ∀𝑔 ∈ Na ∩𝐻 1
0 (Ω) : ⟨𝑓 ,𝑔⟩𝐻 1

0 (Ω)
= 0

}︂
↩→ 𝐿2

a (Ω) (2.2.1)

and by (PI), we have respectively

∥] (𝑢)∥𝐿2
a (Ω) ≤ 𝑐2 ∥𝑢∥𝐻 1

0 (Ω)
for all 𝑢 ∈ 𝐻 1

0 (Ω) ,

for some 𝑐2 > 0.

2.2.2 Sobolev spaces and embeddings in the case 𝑑 = 1

Here, we consider the case 𝑑 = 1 and Ω = (𝑎,𝑏) with 𝑎,𝑏 ∈ R and 0 ≤ 𝑎 < 𝑏 ≤ 1.
Due to Lemma A.15 and Proposition A.17 the Sobolev space 𝐻 1(𝑎,𝑏) ≔ 𝐻 1((𝑎,𝑏))
is compact embedded into 𝐶 ( [𝑎,𝑏]), where 𝐶 ( [𝑎,𝑏]) denotes the vector space
of continuous functions on [𝑎,𝑏]. Therefore, for elements 𝑓 ∈ 𝐻 1(𝑎,𝑏), we will
always choose the continuous representative of 𝑓 . Moreover, by Lemma A.15,
𝐻 1

0 (𝑎,𝑏) ≔ 𝐻 1
0 ((𝑎,𝑏)) can be identified by {𝑓 ∈ 𝐻 1(𝑎,𝑏) : 𝑓 (𝑎) = 𝑓 (𝑏) = 0}. Since

𝐶 ( [𝑎,𝑏]) ⊂ 𝐿2
a ( [𝑎,𝑏]) for any finite Borel measure a on [𝑎,𝑏], the situation in the
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one-dimensional case becomes much simpler.

Lemma 2.2. For every 𝑓 ∈ 𝐻 1(𝑎,𝑏), we have

∥ 𝑓 ∥∞ ≔ sup
𝑥 ∈[𝑎,𝑏 ]

|𝑓 (𝑥) | ≤
(︂
(𝑏 −𝑎)1/2 + (𝑏 −𝑎)−1/2

)︂ (︂
∥∇𝑓 ∥2

𝐿2
Λ ( (𝑎,𝑏))

+ ∥ 𝑓 ∥2
𝐿2
Λ ( (𝑎,𝑏))

)︂1/2
,

and for all 𝑓 ∈ 𝐻 1
0 (𝑎,𝑏) and for every interval 𝐼 with 𝐼 = (𝑎,𝑏),∫

𝐼

𝑓 2 da ≤ a (𝐼 ) (𝑏 −𝑎)
∫
𝐼

(∇𝑓 )2 dΛ .

Proof. The first inequality was proved in [Kan+09, Lemma 1.4]. Further, for all
𝑓 ∈ 𝐻 1

0 (𝑎,𝑏), an application of the Cauchy-Schwarz inequality yields∫
𝐼

𝑓 (𝑥)2 da (𝑥) =
∫
𝐼

(𝑓 (𝑥) − 𝑓 (𝑎))2 da (𝑥)

=

∫
𝐼

(︄(︃∫
(𝑎,𝑥)

∇𝑓 dΛ
)︃2

)︄
da (𝑥)

≤
∫
𝐼

(︃
(𝑥 −𝑎)

∫
(𝑎,𝑥)

(∇𝑓 )2 dΛ
)︃

da (𝑥)

≤ (𝑏 −𝑎)a (𝐼 )
∫
(𝑎,𝑏)

(∇𝑓 )2 dΛ . □

Corollary 2.3. Let 𝑓 ∈ 𝐻 1(𝑎,𝑏) with
∫
(𝑎,𝑏) 𝑓 dΛ = 0, then we have

| |𝑓 | |𝐿2
a (𝐼 ) ≤ 5 ·a (𝐼 )Λ(𝐼 ) | |∇𝑓 | |𝐻 1

0 (𝑎,𝑏)

with 𝐼 = (𝑎,𝑏).

Proof. By [Arz15, Lemma 2.3.1], for all 𝑔 ∈ 𝐻 1(0,1) with
∫
(0,1) 𝑔 dΛ = 0, we have

| |𝑔| |2
𝐿2
Λ ( (0,1))

≤
||∇𝑔 | |2

𝐿2
Λ ( (0,1))

4

and by Lemma 2.2,

sup
𝑦∈[0,1]

|𝑔(𝑥) |2 ≤ 4| |𝑔| |2
𝐻 1 (0,1) .

Let ℎ ∈ (0,1) and 𝑏 ∈ R be such that 𝑇 ((0,1)) = 𝐼 with 𝑇 (𝑥) ≔ ℎ𝑥 +𝑏, 𝑥 ∈ [0,1].
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Hence, for 𝑓 ∈ 𝐻 1(𝑎,𝑏) with
∫
(𝑎,𝑏) 𝑓 dΛ = 0, we deduce∫

𝐼

𝑓 2 da ≤ a (𝐼 ) sup
𝑥 ∈𝐼

|𝑓 (𝑥) |2

= a (𝐼 ) sup
𝑥 ∈[0,1]

|𝑓 ◦𝑇 (𝑥) |2

≤ 4a (𝐼 ) | |𝑓 ◦𝑇 | |2
𝐻 1 (0,1)

≤ 4a (𝐼 ) | |∇(𝑓 ◦𝑇 ) | |2
𝐿2
Λ (0,1)

(︃
1+ 1

4

)︃
= 5a (𝐼 )Λ(𝐼 ) | |∇(𝑓 ) | |2

𝐿2
Λ (0,1)

.

□

The following lemma shows that (a𝑃𝐼 ) holds for any finite Borel measure a on
[𝑎,𝑏] and ]a,(𝑎,𝑏) (𝑢) coincides (in the 𝐿2

a ( [𝑎,𝑏]) sense) with the natural choice of
the continuous representative of 𝐻 1(𝑎,𝑏).

Lemma 2.4. Let a be a finite Borel measure on [𝑎,𝑏]. Then for all 𝑢 ∈ 𝐻 1(𝑎,𝑏), we
have ∫

[𝑎,𝑏 ]
𝑢2
𝑐 da ≤

(︂
(𝑏 −𝑎)1/2 + (𝑏 −𝑎)−1/2

)︂2
a ( [𝑎,𝑏]) | |𝑢 | |2

𝐻 1 (𝑎,𝑏) ,

and

]a,(𝑎,𝑏) (𝑢) = 𝑢𝑐 a-almost surely,

where 𝑢𝑐 denotes the unique continuous representative of 𝑢 in 𝐻 1(𝑎,𝑏).

Proof. By Lemma 2.2, for all 𝑢 ∈ 𝐻 1(𝑎,𝑏), we obtain

| |𝑢𝑐 | |2∞ ≤ 𝐶2 | |𝑢 | |2
𝐻 1 (𝑎,𝑏) ,

with 𝐶 ≔ (𝑏 −𝑎)1/2 + (𝑏 −𝑎)−1/2. This leads to∫
[𝑎,𝑏 ]

𝑢2
𝑐 da ≤ a ( [𝑎,𝑏]) | |𝑢𝑐 | |2∞ ≤ 𝐶2a ( [𝑎,𝑏]) | |𝑢 | |2

𝐻 1 (𝑎,𝑏) ,

which proves the first claim. Now let 𝑢 ∈ 𝐻 1(𝑎,𝑏) and (𝑢𝑛)𝑛∈N ∈ 𝐶∞
𝑏
( [𝑎,𝑏]) such

that 𝑢𝑛 → 𝑢 in the norm of 𝐻 1(𝑎,𝑏). Clearly, we have 𝑢𝑐 −𝑢𝑛 ∈ 𝐻 1(𝑎,𝑏) ∩𝐶 ( [𝑎,𝑏]),
which implies ∫

[𝑎,𝑏 ]
(𝑢𝑐 −𝑢𝑛)2 da ≤ 𝐶 | |𝑢𝑐 −𝑢𝑛 | |2𝐻 1 (𝑎,𝑏) .
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This gives 𝑢𝑛 → 𝑢𝑐 for 𝑛→∞ in 𝐿2
a ( [𝑎,𝑏]), allowing us to conclude that

]a,(𝑎,𝑏) (𝑢) = 𝑢𝑐 . □

In order to determine N0,a , we introduce the following subset of continuous func-
tions on [𝑎,𝑏]:

𝐶a ( [𝑎,𝑏])≔ {𝑓 ∈𝐶 ( [𝑎,𝑏]) : 𝑓 is affine linear on the components of [𝑎,𝑏] \ supp(a)} .

Further, we define the orthogonal complement of𝐶a ( [𝑎,𝑏]) with respect to 𝐻 1
0 (𝑎,𝑏)

by(︂
𝐶a ( [𝑎,𝑏]) ∩𝐻 1

0 (𝑎,𝑏)
)︂⊥
≔

{︂
𝑓 ∈ 𝐻 1

0 (𝑎,𝑏) : ∀𝑔 ∈𝐶a ( [𝑎,𝑏]) ∩𝐻 1
0 (𝑎,𝑏) : ⟨𝑓 ,𝑔⟩𝐻 1

0 (𝑎,𝑏)
= 0

}︂
.

Proposition 2.5. Let a be a Borel measure on (𝑎,𝑏). Then we have

N0,a =

(︂
𝐶a ( [𝑎,𝑏]) ∩𝐻 1

0 (𝑎,𝑏)
)︂⊥
,

or equivalently N⊥
0,a =𝐶a ( [𝑎,𝑏]) ∩𝐻

1
0 (𝑎,𝑏).

Proof. Pick 𝑓 ∈
(︁
𝐶a ( [𝑎,𝑏]) ∩𝐻 1

0 (𝑎,𝑏)
)︁⊥. Then we define for 𝑥 ∈ supp(a) ∩ (𝑎,𝑏)

𝑔𝑥 (𝑦) ≔ 𝑓 (𝑥) (𝑦−𝑎)
𝑥 −𝑎 1[𝑎,𝑥 ] + 𝑓 (𝑥)

𝑏 −𝑦
𝑏 −𝑥 1(𝑥,𝑏 ] .

Hence, using 𝑓 (𝑎) = 𝑓 (𝑏) = 0, we obtain

0 = ⟨𝑓 ,𝑔𝑥 ⟩𝐻 1
0 (𝑎,𝑏)

=

∫
[𝑎,𝑥 ]

∇𝑓 ∇𝑔𝑥 dΛ+
∫
(𝑥,𝑏 ]

∇𝑓 ∇𝑔𝑥 dΛ

=
𝑓 (𝑥)
𝑥 −𝑎 (𝑓 (𝑥) − 𝑓 (𝑎)) +

−𝑓 (𝑥)
𝑏 −𝑥 (𝑓 (𝑏) − 𝑓 (𝑥)) = 𝑓 (𝑥)2

𝑥 −𝑎 + 𝑓 (𝑥)
2

𝑏 −𝑥 ,

and consequently, for all 𝑥 ∈ supp(a) ∩ (𝑎,𝑏), we have 𝑓 (𝑥) = 0. In particular, we
have ∥ 𝑓 ∥𝐿2

a ( (𝑎,𝑏)) = 0. On the other hand, for 𝑓 ∈
{︂
𝑔 ∈ 𝐻 1

0 (𝑎,𝑏) : ∥𝑔∥𝐿2
a ( (𝑎,𝑏)) = 0

}︂
,

𝑓 vanishes a-a.e. and, using the continuity of 𝑓 , we obtain 𝑓 = 0 on supp (a). To
simplify notation, assume 𝑎,𝑏 ∈ supp(a). Now, with

⨄︁
𝑖∈𝐼 (𝑎𝑖 ,𝑏𝑖) = [𝑎,𝑏] \ supp(a),

one easily verifies that ∇𝑓 = ∑︁
𝑖∈𝐼 1(𝑎𝑖 ,𝑏𝑖 )∇𝑓 ∈ 𝐿2

Λ((𝑎,𝑏)) and we obtain that for all
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𝑔 ∈𝐶a ( [𝑎,𝑏]) ∩𝐻 1
0 (𝑎,𝑏),

⟨𝑓 ,𝑔⟩𝐻 1
0 (𝑎,𝑏)

=

∫
[𝑎,𝑏 ]

∇𝑓 ∇𝑔 dΛ

=
∑︂
𝑖∈𝐼

∫
(𝑎𝑖 ,𝑏𝑖 )

∇𝑓 ∇𝑔 dΛ

=
∑︂
𝑖∈𝐼

𝑔(𝑏𝑖) −𝑔(𝑎𝑖)
𝑏𝑖 −𝑎𝑖

(𝑓 (𝑏𝑖) − 𝑓 (𝑎𝑖)) = 0.

This gives 𝑓 ∈
(︁
𝐶a ( [𝑎,𝑏]) ∩𝐻 1

0 (𝑎,𝑏)
)︁⊥. □

2.2.3 Stein extension

We begin with the definition of a Stein extension.

Definition 2.6. We say a bounded domain 𝐴 ⊂ R𝑑 permits a Stein extension if there
exists a continuous linear operator 𝔈Ω : 𝐻 1 (𝐴) → 𝐻 1 (︁

R𝑑
)︁

such that 𝔈Ω (𝑓 ) |𝐴 = 𝑓

and
𝔈𝐴 :𝐶∞

𝑏

(︂
𝐴

)︂
→𝐶∞

𝑐

(︂
R𝑑

)︂
with 𝔈 (𝑓 ) |𝐴 = 𝑓 .

Necessarily, we then have that 𝐶∞
𝑏

(︂
𝐴

)︂
lies dense in 𝐻 1 (𝐴). The second property

above is not standard in the literature but follows from [Ste70, Sec. 3.2 and 3.3]
(see Appendix A.2 for a more detailed presentation). Note that every bounded
Lipschitz domain permits a Stein extension (see Theorem A.14 in Appendix A.2),
in particular Q̊ as a bounded convex open set, see e.g. [Gri85, Corollary 1.2.2.3] or
[Ste70, Example 2, p. 189] is a bounded Lipschitz domain, thus the Stein extension
𝔈Q with the above properties is well defined. Note that for any cube 𝑄 ∈ D, by the
definition of the weak derivatives, we have 𝐻 1(𝑄) = 𝐻 1(�̊�).

Lemma 2.7. There exists a constant 𝐷Q > 0 such that for all half-open cubes𝑄 ⊂ Q
with edges parallel to the coordinate axes and 𝑢 ∈ 𝐻 1(𝑄),

𝐷Q ∥𝑢∥2
𝐻 1 (𝑄) ≤ ∥∇𝑢∥2

𝐿2
Λ (𝑄) +

1
Λ(𝑄)

|︁|︁|︁|︁∫
𝑄

𝑢 dΛ
|︁|︁|︁|︁2 ≤ ∥𝑢∥2

𝐻 1 (𝑄) .

Proof. Clearly, by the Cauchy-Schwarz inequality, we have for all 𝑢 ∈ 𝐻 1(𝑄)

1
Λ(𝑄)

|︁|︁|︁|︁∫
𝑄

𝑢 dΛ
|︁|︁|︁|︁2 ≤ ∥𝑢∥2

𝐿2
Λ (𝑄) ,

proving the second inequality. From [NS01, Lemma 3, p. 500] we obtain that there
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exists 𝐶Q > 0 such that for all 𝑣 ∈ 𝐻 1(Q)

𝐶Q

(︃∫
Q
𝑣2 dΛ

)︃
≤ ∥∇𝑣 ∥2

𝐿2
Λ (Q) +

|︁|︁|︁|︁∫
Q
𝑣 dΛ

|︁|︁|︁|︁2 .
Let𝑇 :R𝑑 →R𝑑 ,𝑥 ↦→ 𝑥0+ℎ𝑥, with ℎ ∈ (0,1), 𝑥0 ∈ Q, such that𝑄 =𝑇 (Q). Note that
𝑢 ◦𝑇 ∈ 𝐻 1(Q) and ∥∇ (𝑢 ◦𝑇 )∥2

𝐿2
Λ (Q) = ℎ

2−𝑑 ∥∇𝑢∥2
𝐿2
Λ (𝑄) , for all 𝑢 ∈ 𝐻 1(𝑄), leading to

𝐶Q

ℎ𝑑

∫
𝑄

𝑢2 dΛ =𝐶Q

∫
Q
𝑢2 ◦𝑇 dΛ

≤ ∥∇ (𝑢 ◦𝑇 )∥2
𝐿2
Λ (Q) +

|︁|︁|︁|︁∫
Q
𝑢 ◦𝑇 dΛ

|︁|︁|︁|︁2
= ℎ2−𝑑 ∥∇𝑢∥2

𝐿2
Λ (𝑄) +ℎ

−2𝑑
|︁|︁|︁|︁∫
𝑄

𝑢 dΛ
|︁|︁|︁|︁2 .

Hence, using ℎ < 1, we obtain

𝐶Q

(︃∫
𝑄

𝑢2 dΛ+ ∥∇𝑢∥2
𝐿2
Λ (𝑄)

)︃
≤

(︂
ℎ2 +𝐶Q

)︂
∥∇𝑢∥2

𝐿2
Λ (𝑄) +ℎ

−𝑑
|︁|︁|︁|︁∫
𝑄

𝑢 dΛ
|︁|︁|︁|︁2

≤ (1+𝐶Q)
(︄
∥∇𝑢∥2

𝐿2
Λ (𝑄) +

1
Λ (𝑄)

|︁|︁|︁|︁∫
𝑄

𝑢 dΛ
|︁|︁|︁|︁2)︄ . □

Lemma 2.8. Let 𝑑 ≥ 2 and 𝑇 : R𝑑 → R𝑑 ,𝑥 ↦→ 𝑥0 +ℎ𝑥, with ℎ ∈ (0,1), 𝑥0 ∈ Q, such
that the cube 𝑄 ≔ 𝑇 (Q) belongs to D. Then we have:

1. 𝔈𝑄 : 𝐻 1 (𝑄) → 𝐻 1 (︁
R𝑑

)︁
, 𝑢 ↦→𝔈Q(𝑢 ◦𝑇 ) ◦𝑇 −1 defines a Stein extension with∥︁∥︁𝔈𝑄∥︁∥︁ ≤ ∥︁∥︁𝔈Q

∥︁∥︁/ℎ2,

2.
∥︁∥︁𝔈𝑄 |𝑁Λ (𝑄)

∥︁∥︁ ≤ ∥︁∥︁𝔈Q
∥︁∥︁/𝐷Q with 𝑁Λ (𝑄) ≔

{︂
𝑢 ∈ 𝐻 1(𝑄) :

∫
𝑄
𝑢 dΛ = 0

}︂
.

Proof. We only prove the second claim. Fix 𝑇 : 𝑥 ↦→ 𝑥0 +ℎ𝑥 such that 𝑇 (Q) =𝑄
and assume

∫
𝑄
𝑢 dΛ = 0. For a vector space 𝑉 we write 𝑉★ ≔ 𝑉 \ {0}. Hence, we
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obtain∥︁∥︁𝔈𝑄 |𝑁Λ (𝑄)
∥︁∥︁ = sup

𝑢∈𝑁Λ (𝑄)★

∥︁∥︁𝔈𝑄 (𝑢)∥︁∥︁𝐻 1 (R𝑑 )
∥𝑢∥𝐻 1 (𝑄)

= sup
𝑢∈𝑁Λ (𝑄)★

∥︁∥︁𝔈Q(𝑢 ◦𝑇 ) ◦𝑇 −1
∥︁∥︁
𝐻 1 (R𝑑 )

∥𝑢∥𝐻 1 (𝑄)

≤ sup
𝑢∈𝑁Λ (𝑄)★

(︂∫ (︁
∇

(︁
𝔈Q(𝑢 ◦𝑇 ) ◦𝑇 −1)︁ )︁2 dΛ+

∫ (︁
𝔈Q(𝑢 ◦𝑇 ) ◦𝑇 −1)︁2 dΛ

)︂ 1
2

(︃∫
𝑄

(︁
∇

(︁
(𝑢 ◦𝑇 ) ◦𝑇 −1

)︁ )︁2 dΛ+ 1
Λ(𝑄)

|︁|︁|︁∫
𝑄
𝑢 dΛ

|︁|︁|︁2)︃ 1
2

= sup
𝑢∈𝑁Λ (𝑄)★

(︂
ℎ𝑑−2

∫ (︁
∇

(︁
𝔈Q(𝑢 ◦𝑇 )

)︁ )︁2 dΛ+ℎ𝑑
∫
𝔈(𝑢 ◦𝑇 )2 dΛ

)︂ 1
2

(︂
ℎ𝑑−2

∫
Q (∇ (𝑢 ◦𝑇 ))2 dΛ

)︂ 1
2

≤ sup
𝑢∈𝑁Λ (𝑄)★

(︂
ℎ𝑑−2

(︂∫ (︁
∇

(︁
𝔈Q(𝑢 ◦𝑇 )

)︁ )︁2 dΛ+
∫
𝔈(𝑢 ◦𝑇 )2 dΛ

)︂)︂ 1
2

(︂
ℎ𝑑−2

∫
Q (∇ (𝑢 ◦𝑇 ))2 dΛ

)︂ 1
2

≤ sup
𝑢∈𝑁Λ (𝑄)★

∥︁∥︁𝔈Q(𝑢 ◦𝑇 )
∥︁∥︁
𝐻 1 (R𝑑 )

𝐷Q ∥𝑢 ◦𝑇 ∥𝐻 1 (Q)
≤

∥︁∥︁𝔈Q
∥︁∥︁

𝐷Q
,

where in the last inequality we used the fact that
∫

Q𝑢 ◦𝑇 dΛ = 0, ℎ𝑑 < ℎ𝑑−2, and
Lemma 2.7. □

Lemma 2.9. Assuming that the following Poincaré inequality

∥𝑢∥𝐿2
a (R𝑑 ) ≤ 𝑐1 ∥𝑢∥𝐻 1(R𝑑) for all 𝑢 ∈𝐶∞

𝑐

(︂
R𝑑

)︂
holds for some 𝑐1 > 0. Let ]R𝑑 : 𝐻 1 (︁

R𝑑
)︁
→ 𝐿2

a

(︁
R𝑑

)︁
denote the embedding and

ℜΩ : 𝐿2
a

(︂
R𝑑

)︂
→ 𝐿2

a

(︂
Ω
)︂
, 𝑓 ↦→ 𝑓 |Ω

the restriction operator. Then we have ]Ω = ℜΩ ◦ ]R𝑑 ◦𝔈Ω.

Proof. First note that ]R𝑑 restricted to 𝐶∞
𝑐

(︁
R𝑑

)︁
is the identity. Now, using the fact

that 𝔈Ω :𝐶∞
𝑏

(︂
Ω
)︂
→𝐶∞

𝑐

(︁
R𝑑

)︁
combined with the above observation we find for all

𝑢 ∈𝐶∞
𝑏

(︂
Ω
)︂
,

ℜΩ
(︁
]R𝑑 ◦𝔈Ω (𝑢)

)︁
= ℜΩ (𝔈Ω (𝑢)) = 𝑢 |Ω = ]Ω (𝑢) .

Since ]Ω is continuous and 𝐶∞
𝑏
(Ω) lies dense in 𝐻 1(Ω), the claim follows. □
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2.2.4 Form approach

Since ] ≔ ]Ω maps N⊥
a bijectively to dom

(︁
E𝑁

)︁
≔ dom

(︁
E𝑁Ω

)︁
≔ ]

(︁
N⊥
a

)︁
and N⊥

0,a

to dom
(︁
E𝐷

)︁
≔ dom

(︁
E𝐷Ω

)︁
≔ ]

(︂
N⊥

0,a

)︂
, we may define the relevant corresponding

forms by the push forward

E𝑁 (𝑢,𝑣) ≔ E𝑁Ω (𝑢,𝑣) ≔
⟨︁
]−1𝑢,]−1𝑣

⟩︁
𝐻 1 (Ω) , for 𝑢,𝑣 ∈ dom(E𝑁 )

and
E𝐷 (𝑢,𝑣) ≔ E𝐷Ω (𝑢,𝑣) ≔

⟨︁
]−1𝑢,]−1𝑣

⟩︁
𝐻 1

0 (Ω)
, for 𝑢,𝑣 ∈ dom(E𝐷 ).

In the latter case (Dirichlet case), we always assume that

card (Ω∩ supp(a)) =∞.

Lemma 2.10. C∞
𝑐 (Ω) lies dense in 𝐿2

a (Ω) and C∞
𝑏
(Ω) lies dense in 𝐿2

a (Ω).

Proof. We start to show that indicator functions 1𝐴 with 𝐴 ∈ 𝔅(Ω), where 𝔅(Ω)
denotes the Borel 𝜎-algebra of Ω, can be approximated by functions of C∞

𝑐 (Ω).
Since a is a finite Borel measure on Ω, by [Els11, 1.16 Satz von Ulam], for fixed
Y > 0, there exist a compact set 𝐾 and an open set𝑈 ⊂ Ω with 𝐾 ⊂ 𝐴 ⊂ 𝑈 such that

a (𝑈 \𝐾) < Y.

Now, using mollifiers (see e.g. Section 2.2.6), we see that there exists 𝑓 ∈ C∞
𝑐 (𝑈 )

with 𝑓 |𝐾 = 1 and 0 ≤ 𝑓 ≤ 1. Hence,∫
|1𝐴 − 𝑓 | da ≤ a (𝑈 \𝐾) < Y.

Notice, that the simple functions lie dense in 𝐿2(Ω), proving the first claim. To prove
the second claim, consider a bounded open set 𝑂 such that Ω ⊂ 𝑂 . Then repeating
the previous argument, we obtain that C∞

𝑐 (𝑂) lies dense in 𝐿2
a (𝑂). Furthermore,

for each 𝑔 ∈ C∞
𝑐 (𝑂), we have 𝑔 |Ω ∈ C∞

𝑏
(Ω). Using supp(a) ⊂ Ω, we deduce that

C∞
𝑏
(Ω) lies dense in 𝐿2

a (Ω). □

Proposition 2.11. The set dom
(︁
E𝐷

)︁
lies dense in 𝐿2

a (Ω) and dom
(︁
E𝑁

)︁
lies dense

in 𝐿2
a (Ω).

Proof. Here we follow the arguments of [HLN06]. By Lemma 2.10, it follows that
C∞
𝑐 (Ω) lies dense in 𝐿2

a (Ω). This carries over to the orthogonal projection onto

]

(︂
N⊥

0,a

)︂
since ]

(︁
N0,a

)︁
is the zero space in 𝐿2

a (Ω). Similarly, for the Neumann case,

by Lemma 2.10, we obtain that C∞
𝑏
(Ω) lies dense in 𝐿2

a (Ω) which carries over to
]
(︁
N⊥
a

)︁
. □
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Proposition 2.12. Assuming (a𝑃𝐼 ), we have that dom
(︁
E𝐷/𝑁 )︁

equipped with the
inner product ⟨𝑓 ,𝑔⟩a +E𝐷/𝑁 (𝑓 ,𝑔) defines a Hilbert spaces, i.e. E𝐷/𝑁 is a closed
form with respect to 𝐿2

a (Ω) and 𝐿2
a (Ω), respectively.

Proof. Since both cases can be treated completely analogously, we only consider
the first case: We first observe that N⊥

a is a closed linear subspace with respect to
⟨·, ·⟩𝐻 1 (Ω) , which by (a𝑃𝐼 ) induces a norm that is equivalent to the norm induced

by ⟨·, ·⟩𝐻 1 (Ω) + ⟨]·, ]·⟩a . Therefore,
(︂
N⊥
a , ⟨·, ·⟩𝐻 1 (Ω) + ⟨]·, ]·⟩a

)︂
is a Hilbert space and

since E𝑁 + ⟨·, ·⟩a is the push-forward of ⟨·, ·⟩𝐻 1 (Ω) + ⟨]·, ]·⟩a , the claim follows. □

2.2.5 Definition of the Kreı̆n–Feller operator

Recall that the Hu–Lau–Ngai condition (♠) is given by

dim∞(a) = liminf
𝑛→∞

max𝑄 ∈D𝑁
𝑛

log(a (𝑄))
−𝑛 log(2) > 𝑑 −2.

We note that for 𝑄 ∈ D with a (𝑄) > 0 we have dim∞(a) ≤ dim∞
(︁
a |𝑄

)︁
and hence

the condition (♠) carries over to the restricted measure a |𝑄 . We also remark that our
definition of dim∞ (a) is consistent with the usual definition in terms of balls rather
than cubes from a uniform lattice (see e.g. [Str93]). Obviously, we always have
dim∞ (a) ≤ 𝑑 , and the assumption dim∞ (a) > 0 excludes the possibility of a having
atoms in higher dimensional case.

Under the Hu–Lau–Ngai condition (♠), from Proposition 2.11 and Proposition 2.12,
we deduce that

(︁
E𝐷/𝑁 ,dom

(︁
E𝐷/𝑁 )︁ )︁

is a densely defined closed form on 𝐿2
a (Ω) and

𝐿2
a (Ω), respectively. Now we are in the position to define the Kreı̆n–Feller operator

with respect to Dirichlet/Neumann boundary conditions:
For

(︁
E𝐷 ,dom

(︁
E𝐷

)︁ )︁
, by Lemma A.22 and Theorem A.23, there exists a non-negative

self-adjoint operator Δ𝐷a on 𝐿2
a (Ω) such that

𝑓 ∈ dom
(︂
Δ𝐷a

)︂
⊂ dom

(︃(︂
Δ𝐷a

)︂1/2
)︃
= dom

(︂
E𝐷

)︂
if and only if 𝑓 ∈ dom

(︁
E𝐷

)︁
and there exists 𝑢 ∈ 𝐿2

a (Ω) such that

E𝐷 (𝑓 ,𝑔) = ⟨𝑢,𝑔⟩𝐿2
a (Ω) , 𝑔 ∈ dom

(︂
E𝐷

)︂
.

Further, for
(︁
E𝑁 ,dom

(︁
E𝑁

)︁ )︁
, by Theorem A.23 and Lemma A.22, there exists a

non-negative self-adjoint operator Δ𝑁a on 𝐿2
a (Ω) such that

𝑓 ∈ dom
(︂
Δ𝑁a

)︂
⊂ dom

(︃(︂
Δ𝑁a

)︂1/2
)︃
= dom

(︂
E𝑁

)︂
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if and only if 𝑓 ∈ dom
(︁
E𝑁

)︁
and there exists 𝑢 ∈ 𝐿2

a (Ω) such that

E𝑁 (𝑓 ,𝑔) = ⟨𝑢,𝑔⟩
𝐿2
a (Ω) , 𝑔 ∈ dom

(︂
E𝑁

)︂
.

In this case, we have 𝑢 = Δ𝐷/𝑁
a 𝑓 . Furthermore, we call Δ𝐷/𝑁

a Kreı̆n–Feller operator
with respect to Dirichlet/Neumann boundary conditions and 𝑓 ∈ dom

(︁
Δ𝐷a

)︁★ an
(Dirichlet) eigenfunction with eigenvalue _ ∈ R if

E𝐷 (𝑓 ,𝑔) = _
∫
Ω
𝑓 𝑔 da

for all 𝑔 ∈ dom
(︁
E𝐷

)︁
. Further, we call 𝑓 ∈ dom

(︁
Δ𝑁a

)︁★ an (Neumann) eigenfunction
with eigenvalue _ ∈ R if

E𝑁 (𝑓 ,𝑔) = _
∫
Ω
𝑓 𝑔 da

for all 𝑔 ∈ dom
(︁
E𝑁

)︁
. Notice in the case Ω = Q̊, since a is Borel measure on Q, we

have
E𝑁 (𝑓 ,𝑔) = _

∫
Q
𝑓 𝑔 da.

In order to prove that the embeddings(︂
dom

(︂
E𝐷

)︂
,E𝐷

)︂
↩→ 𝐿2

a (Ω) and
(︂
dom

(︂
E𝑁

)︂
,E𝑁

)︂
↩→ 𝐿2

a (Ω)

are compact under the assumption dim∞(a) > 𝑑 −2, we need the following result
due to Maz’ya [Maz85, Theorem 3, p. 386] and [Maz85, Theorem 4, p. 387].

Theorem 2.13. For 𝑑 > 2 and 𝑡 > 2, the set
{︁
𝑢 ∈𝐶∞

𝑐 (R𝑑 ) : ∥𝑢∥𝐻 1 (R𝑑 ) ≤ 1
}︁

is pre-
compact in 𝐿𝑡a (R𝑑 ) if and only if

lim
𝑟 ↓0

sup
𝑥 ∈R𝑑 ,𝜌∈(0,𝑟 )

𝜌 (1−𝑑/2)a
(︁
𝐵𝜌 (𝑥)

)︁1/𝑡
= 0,

and for 𝑑 = 2,
{︁
𝑢 ∈𝐶∞

𝑐 (R𝑑 ) : ∥𝑢∥𝐻 1 (R𝑑 ) ≤ 1
}︁

is precompact in 𝐿𝑡a (R2) if and only if

lim
𝑟 ↓0

sup
𝑥 ∈R2,𝜌∈(0,𝑟 )

|log(𝜌) |1/2a
(︁
𝐵𝜌 (𝑥)

)︁1/𝑡
= 0,

where 𝐵𝜌 (𝑥) denotes the open unit ball with radius 𝜌 > 0 and center 𝑥 in R𝑑 .

Proposition 2.14. The assumption dim∞(a) > 𝑑 −2 implies (a𝑃𝐼 ) and the embed-
dings (︂

dom
(︂
E𝐷

)︂
,E𝐷

)︂
↩→ 𝐿2

a (Ω) and
(︂
dom

(︂
E𝑁

)︂
,E𝑁

)︂
↩→ 𝐿2

a

(︂
Ω
)︂

are compact.
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Proof. For the case 𝑑 = 1, the claim follows from Proposition A.17. For 𝑑 > 2 and
𝑡 ∈ (2,2dim∞(a)/(𝑑 −2)), the assumption (a𝑃𝐼 ) implies

lim
𝑟 ↓0

sup
𝑥 ∈R𝑑 ,𝜌∈(0,𝑟 )

𝜌 (1−𝑑/2)a
(︁
𝐵𝜌 (𝑥)

)︁1/𝑡
= 0,

and for 𝑑 = 2,
lim
𝑟 ↓0

sup
𝑥 ∈R2,𝜌∈(0,𝑟 )

|log(𝜌) |1/2a
(︁
𝐵𝜌 (𝑥)

)︁1/𝑡
= 0

(see [HLN06]). Hence, by [Maz85, Theorem 3 and Theorem 4, p. 583] we know
that

{︁
𝑢 ∈𝐶∞

𝑐

(︁
R𝑑

)︁
: ∥𝑢∥𝐻 1 (R𝑑 ) ≤ 1

}︁
is precompact in 𝐿𝑡a

(︁
R𝑑

)︁
. Thus, there exists

𝑐 > 0 such that for all 𝑢 ∈𝐶∞
𝑐

(︁
R𝑑

)︁
, we have

∥𝑢∥𝐿2
a (R𝑑 ) ≤ ∥𝑢∥𝐿𝑡a (R𝑑 ) ≤ 𝑐 · ∥𝑢∥𝐻 1 (R𝑑 ) ,

which implies that the identity map𝐶∞
𝑐

(︁
R𝑑

)︁
→ 𝐿2

a

(︁
R𝑑

)︁
permits a unique continuous

continuation ]R𝑑 : 𝐻 1 (︁
R𝑑

)︁
→ 𝐿2

a

(︁
R𝑑

)︁
. To see that ]R𝑑 is compact, fix a bounded

sequence (𝑢𝑛)𝑛 in 𝐻 1 (︁
R𝑑

)︁
. We find another sequence (𝑣𝑛)𝑛 in 𝐶∞

𝑐

(︁
R𝑑

)︁
such that

∥𝑣𝑛 −𝑢𝑛 ∥𝐻 1 (R𝑑 ) → 0 for 𝑛→∞ (see for instance [Ada75, Corollary 3.19 ]). The
aforementioned precompactness leads to a subsequence (𝑣𝑛𝑘 )𝑘 converging in 𝐿2

a (R𝑑 )
to an element 𝑣 . Then

(︁
]R𝑑 (𝑢𝑛𝑘 )

)︁
𝑘

also converges to 𝑣 in 𝐿2
a (R𝑑 ), since∥︁∥︁𝑣 − ]R𝑑 (𝑢𝑛𝑘 )∥︁∥︁𝐿2

a (R𝑑 )
=

∥︁∥︁𝑣 −𝑣𝑛𝑘 +𝑣𝑛𝑘 − ]R𝑑 (𝑢𝑛𝑘 )∥︁∥︁𝐿2
a (R𝑑 )

≤
∥︁∥︁𝑣 −𝑣𝑛𝑘 ∥︁∥︁𝐿2

a (R𝑑 )
+
∥︁∥︁]R𝑑 (𝑣𝑛𝑘 −𝑢𝑛𝑘 )∥︁∥︁𝐿2

a (R𝑑 )

≤
∥︁∥︁𝑣 −𝑣𝑛𝑘 ∥︁∥︁𝐿2

a (R𝑑 )
+𝑐 ·

∥︁∥︁𝑣𝑛𝑘 −𝑢𝑛𝑘 ∥︁∥︁𝐻 1 (R𝑑 ) → 0,

for 𝑘 tending to infinity. This shows that ]R𝑑
(︂
{𝑢 ∈ 𝐻 1(R𝑑 ) : ∥𝑢∥𝐻 1 (R𝑑 ) ≤ 𝑘}

)︂
is

precompact for every 𝑘 > 0. Since for the Stein extension 𝔈Ω for all 𝑢 ∈ 𝐻 1(Ω) we
have

∥𝔈Ω (𝑢)∥𝐻 1(R𝑑) ≤ ∥𝔈Ω∥ ∥𝑢∥𝐻 1 (Ω) ,

it follows that ]R𝑑 (𝔈Ω ({𝑢 ∈ 𝐻 1(Ω) :
∥︁∥︁𝑢∥𝐻 1 (Ω) ≤ 1

}︁
)) is precompact as a subset of

]R𝑑

(︂{︂
𝑢 ∈ 𝐻 1

(︂
R𝑑

)︂
: ∥𝑢∥𝐻 1 (R𝑑 ) ≤ ∥𝔈Ω∥

}︂)︂
.

Applying the restriction operator ℜΩ from Lemma 2.9, we find that{︂
𝑢 ∈ dom

(︂
E𝑁

)︂
:
∥︁∥︁]−1𝑢

∥︁∥︁
𝐻 1 (Ω) ≤ 1

}︂
⊂ ]

(︂{︁
𝑢 ∈ 𝐻 1(Ω) : ∥𝑢∥𝐻 1 (Ω) ≤ 1

}︁)︂
= ℜΩ

(︂
]R𝑑 ◦𝔈Ω

(︂{︁
𝑢 ∈ 𝐻 1 : ∥𝑢∥𝐻 1 (Ω) ≤ 1

}︁)︂)︂
.

Therefore, {𝑢 ∈ dom
(︁
E𝑁

)︁
:
∥︁∥︁]−1𝑢

∥︁∥︁
𝐻 1 (Ω) ≤ 1} is relative compact in 𝐿2

a (Ω) as a

34



2.2. Form approach for Kreı̆n–Feller operators

subset of a continuous image of a relatively compact set. In particular, there exists
𝑐1 > 0 such that for all 𝑢 ∈ dom

(︁
E𝑁

)︁
∥𝑢∥

𝐿2
a (Ω) ≤ 𝑐1

∥︁∥︁]−1𝑢
∥︁∥︁
𝐻 1 (Ω) .

The Dirichlet case follows by almost the same means without the use of the extension
operator (see also [HLN06]). □

As a direct consequence of Theorem A.26 and Proposition 2.14, we obtain the
following important corollary.

Corollary 2.15. Assume dim∞(a) > 𝑑 −2. Then the operator Δ𝐷/𝑁 has compact
resolvent and there exists a complete orthonormal basis of eigenvectors

(︂
𝑓
𝐷/𝑁
𝑘

)︂
𝑘∈N

with eigenvalues
(︂
_
𝐷/𝑁
𝑛,a

)︂
𝑛∈N

with _𝐷/𝑁
𝑛,a ≤ _𝐷/𝑁

𝑛+1,a tending to infinity.

By Corollary 2.15 we can refer to the lower and upper spectral dimension with
respect to Dirichlet and Neumann boundary conditions defined in (1.1.1).

Remark 2.16. Let E be a closed form with domain dom (E) densely defined
on H ∈ {𝐿2

a (Ω),𝐿2
a (Ω)}, in particular dom (E) defines a Hilbert space with re-

spect to (𝑓 ,𝑔)E ≔ ⟨𝑓 ,𝑔⟩H + E(𝑓 ,𝑔). Moreover, assume that the inclusion from(︁
dom (E) , ⟨·, ·⟩E

)︁
into H is compact. Then the Poincaré–Courant–Fischer–Weyl

min-max principle is applicable, that is for the 𝑖-th eigenvalue _𝑖 (E) of E, 𝑖 ∈ N, we
have (see also Theorem A.27 or [Dav95; KL93])

_𝑖 (E) = inf
{︁
sup

{︁
𝑅 (𝜓 ) :𝜓 ∈𝐺★

}︁
: 𝐺 <𝑖

(︁
dom (E) , ⟨·, ·⟩E

)︁}︁
,

where we write 𝐺 <𝑖 (𝐻, ⟨·, ·⟩) if 𝐺 is a linear subspace of the Hilbert space 𝐻 with
inner product ⟨·, ·⟩ and the vector space dimension of 𝐺 is equal to 𝑖 ∈ N; for the
Rayleigh–Ritz quotient given by 𝑅 (𝜓 ) ≔ E(𝜓,𝜓 )/⟨𝜓,𝜓 ⟩H .

The following proposition will be crucial for the proof of the upper bound of the
spectral dimension as stated in Corollary 5.6.

Proposition 2.17. We have for all 𝑖 ∈ N,

_𝐷𝑖,a = inf
{︂
sup

{︂
𝑅𝐻 1

0 (Ω)
(𝜓 ) :𝜓 ∈𝐺★

}︂
: 𝐺 <𝑖

(︂
N⊥

0,a , ⟨·, ·⟩𝐻 1
0 (Ω)

)︂}︂
= inf

{︂
sup

{︂
𝑅𝐻 1

0 (Ω)
(𝜓 ) :𝜓 ∈𝐺★

}︂
: 𝐺 <𝑖

(︂
𝐻 1

0 (Ω), ⟨·, ·⟩𝐻 1
0 (Ω)

)︂}︂
,

where the relevant Rayleigh–Ritz quotient is given by

𝑅𝐻 1
0 (Ω)

(𝜓 ) ≔ ⟨𝜓,𝜓 ⟩𝐻 1
0 (Ω)

/⟨]𝜓, ]𝜓 ⟩a .

The same result holds true for E𝑁 with N⊥
0,a replaced by N⊥

a and 𝐻 1
0 (Ω) by 𝐻 1(Ω).
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Proof. The first equality follows by the min-max principle and the fact that

dom
(︂
E𝐷

)︂
≃ N⊥

0,a .

The part ‘≥’ for the second equality follows from the inclusion N⊥
0,a ⊂ 𝐻

1
0 (Ω). For

the reverse inequality we consider an 𝑖-dimensional subspace

𝐺 = span(𝑓1, . . . , 𝑓𝑖) ⊂ 𝐻 1
0 (Ω) .

There exists a unique decomposition 𝑓𝑗 = 𝑓1, 𝑗 + 𝑓2, 𝑗 with 𝑓1, 𝑗 ∈ N⊥
0,a and 𝑓2, 𝑗 ∈ N0,a ,

𝑗 = 1, . . . , 𝑖. Suppose that
(︁
𝑓𝑗,1

)︁
𝑗=1,...,𝑖 are not linearly independent, then there exists

a non-zero element 𝑔 ∈ 𝐺 ∩N0,a . To see this, we fix (_1, . . . ,_𝑛) ≠ (0, . . . ,0) with
_1 𝑓1,1 + · · · +_𝑖 𝑓1,𝑖 = 0. Then

_1
(︁
𝑓1,1 + 𝑓2,1

)︁
+ · · · +_𝑖

(︁
𝑓1,𝑖 + 𝑓2,𝑖

)︁⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
∈𝐺★

= _1 𝑓2,1 + · · · +_𝑖 𝑓2,𝑖⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
∈N0,a

≕ 𝑔.

Using E𝐷 (𝑔,𝑔) > 0, we get in this case

sup
{︂
𝑅𝐻 1

0 (Ω)
(𝜓 ) :𝜓 ∈𝐺★

}︂
=∞.

Otherwise, using the assumption 𝑓1, 𝑗 ∈ N⊥
0,a and 𝑓2, 𝑗 ∈ N0,a and particularly ] (𝑓2, 𝑗 ) =

0, we have for every vector
(︁
𝑎𝑗

)︁
𝑗
∈ R𝑖 \ {0}

𝑅𝐻 1
0 (Ω)

(︄∑︂
𝑗

𝑎𝑗 𝑓1, 𝑗 +
∑︂
𝑗

𝑎𝑗 𝑓2, 𝑗

)︄
=

⟨︁∑︁
𝑗 𝑎𝑗 𝑓1, 𝑗 ,

∑︁
𝑗 𝑎𝑗 𝑓1, 𝑗

⟩︁
𝐻 1

0 (Ω)
+
⟨︁∑︁

𝑗 𝑎𝑗 𝑓2, 𝑗 ,
∑︁
𝑗 𝑎𝑗 𝑓2, 𝑗

⟩︁
𝐻 1

0 (Ω)

⟨]
(︁∑︁

𝑗 𝑎𝑗 𝑓1, 𝑗
)︁
, ]

(︁∑︁
𝑗 𝑎𝑗 𝑓1, 𝑗

)︁
⟩a

≥ 𝑅𝐻 1
0 (Ω)

(︄∑︂
𝑗

𝑎𝑗 𝑓1, 𝑗

)︄
.

Note that span(𝑓1,1, . . . , 𝑓1,𝑖) ⊂ N⊥
0,a is also an 𝑖-dimensional subspace in 𝐻 1

0 (Ω).
Hence, in any case the reverse inequality follows. □

Lemma 2.18. There exists 𝐶 > 0 such that we have for all 𝑖 ∈ N

_𝑁𝑖,a ≤ 𝐶_𝐷𝑖,a .

Proof. Using (PI) and 𝑐 > 0 as defined therein, we obtain for all 𝑢 ∈ 𝐻 1
0 (Ω) that

⟨𝑢,𝑢⟩𝐻 1 (Ω) ≤ (𝑐 +1) ⟨𝑢,𝑢⟩𝐻 1
0 (Ω)

.

Since 𝐻 1
0 (Ω) ⊂ 𝐻

1(Ω), the claim follows from Proposition 2.17 with𝐶 ≔ 𝑐 +1. □
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The leading idea to obtain lower bounds on 𝑁𝐷/𝑁
a is to construct appropriate finite

dimensional subspaces of 𝐻 1
0 (Ω) and 𝐻 1(Ω), respectively. This will be subject of

the following lemma.

Lemma 2.19. Let {𝑓1, . . . , 𝑓𝑛} ⊂ 𝐻 1
0 (Ω)

★ such that {𝑓1, . . . , 𝑓𝑛} is orthogonal in
𝐻 1

0 (Ω) and {] (𝑓1), . . . , ] (𝑓𝑛)} is orthogonal in 𝐿2
a (Ω). Further, assume there exists

𝐶 > 0 such that for all 𝑖 = 1, . . . ,𝑛, we have

⟨𝑓𝑖 , 𝑓𝑖⟩𝐻 1
0 (Ω)

⟨] (𝑓𝑖) , ] (𝑓𝑖)⟩a
≤ 𝐶.

Then, 𝑁𝐷
a (𝐶) ≥ 𝑛. The same result holds if we replace 𝐻 1

0 (Ω) and 𝐿2
a (Ω) by 𝐻 1(Ω)

and 𝐿2
a (Ω).

Proof. For every (𝑐1, . . . ,𝑐𝑛) ∈ R𝑛 with
∑︁𝑛
𝑖=1𝑐𝑖 𝑓𝑖 ∈ 𝐻 1

0 (Ω)
★, we have⟨︁∑︁𝑛

𝑖=1𝑐𝑖 𝑓𝑖 ,
∑︁𝑛
𝑖=1𝑐𝑖 𝑓𝑖

⟩︁
𝐻 1

0 (Ω)⟨︁∑︁𝑛
𝑖=1𝑐𝑖] (𝑓𝑖) ,

∑︁𝑛
𝑖=1𝑐𝑖] (𝑓𝑖)

⟩︁
a

=

∑︁𝑛
𝑖=1𝑐

2
𝑖 ⟨𝑓𝑖 , 𝑓𝑖⟩𝐻 1

0 (Ω)∑︁𝑛
𝑖=1𝑐

2
𝑖
⟨] (𝑓𝑖) , ] (𝑓𝑖)⟩a

≤ 𝐶
∑︁𝑛
𝑖=1𝑐

2
𝑖 ⟨] (𝑓𝑖) , ] (𝑓𝑖)⟩a∑︁𝑛

𝑖=1𝑐
2
𝑖
⟨] (𝑓𝑖) , ] (𝑓𝑖)⟩a

=𝐶

Thus, by Proposition 2.17, we have _𝐷/𝑁
𝑛,a ≤ 𝐶. □

2.2.6 Smoothing methods

To obtain lower estimates of the lower and upper spectral dimension, it is crucial to
construct appropriate finitely dimensional subspaces of C∞

𝑐 (R𝑑 ) (see Proposition
5.9). In this section, we address this demand via mollifiers.

In the following, we assume that each cube has edges parallel to the coordinate
axes. For 𝑠 > 0 let ⟨𝑄⟩𝑠 denote the cube centered and parallel with respect to the
cube𝑄 ⊂ R𝑑 such that Λ

(︁
⟨𝑄⟩𝑠

)︁
= Λ(𝑄)𝑠𝑑 , 𝑠 > 0 (i.e. ⟨𝑄⟩𝑠 =𝑇 (𝑄) + (1−𝑠)𝑥0 where

𝑇 (𝑥) = 𝑠𝑥,𝑥 ∈ R𝑑 and 𝑥0 ∈ R𝑑 is the center of 𝑄). Note that we have⟨︁
⟨𝑄⟩1/𝑠

⟩︁
𝑠
=

⟨︁
𝑠−1𝑄 + (1−𝑠−1)𝑥0

⟩︁
𝑠
=𝑄

and if 𝑄 =
∏︁𝑑
𝑖=1(𝑎𝑖 ,𝑏𝑖], then

⟨𝑄⟩𝑠 =
𝑑∏︂
𝑖=1

(︃
−𝑠 𝑏𝑖 −𝑎𝑖

2
+ 𝑎𝑖 +𝑏𝑖

2
,
𝑎𝑖 +𝑏𝑖

2
+𝑠 𝑏𝑖 −𝑎𝑖

2

]︃
.

Lemma 2.20. For𝑚 > 1 and 𝑟 > 0, let 𝑄 ⊂ R𝑑 be a cube with side length𝑚𝑟 and
𝑄 ′ ≔ ⟨𝑄⟩1/𝑚 the centered and parallel sub-cube with side length 𝑟 . Then there
exists 𝜑𝑄,𝑚 ∈𝐶∞

𝑐 (R𝑑 ) which satisfies the following properties:
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1. 0 ≤ 𝜑𝑄,𝑚 (𝑥) ≤ 1 for all 𝑥 ∈ R𝑑 ,

2. supp(𝜑𝑄,𝑚) ⊂ �̊� ,

3. 𝜑𝑄,𝑚 (𝑥) = 1 for all 𝑥 ∈ 𝑄 ′,

4. there exists a constant 𝐶 > 0 (depending on 𝑑) such that|︁|︁(𝜕/𝜕𝑥𝑖)𝜑𝑄,𝑚 (𝑥)
|︁|︁ ≤ 𝐶 (𝑚−1)−1 𝑟−1

for all 𝑖 = 1, . . . ,𝑑 and 𝑥 ∈ 𝑄 .

𝑄 ′

𝑄 ′′

𝑄 ′′+𝐵1 (0)
𝑄

Figure 2.2.1 Illustration of the construction of 𝜑𝑄,𝑚 for the case 𝑑 = 2,𝑚 = 5/2 and 𝑟 = 4.

Proof. Let 𝜓 : 𝑥 ↦→ 1𝐵1 (0) (𝑥)𝑐2 exp(1/(∥𝑥 ∥2 − 1)) be the normalized Friedrichs’
mollifier with 𝑐2 ≔ 1/

∫
𝐵1 (0)

exp(1/(∥𝑥 ∥2 −1)) d𝑥 and 𝜓𝜖 (𝑥) ≔ 𝜓 (𝑥/𝜖) /𝜖𝑑 be the
mollifier with radius of mollification 𝜖 ≔ (𝑚−1) 𝑟/6. For the centered and parallel
sub-cube 𝑄 ′′ ≔ ⟨𝑄⟩ (𝑚+2)/(3𝑚) ⊂ 𝑄 with side length (𝑚 +2) 𝑟/3 we define 𝜑𝑄,𝑚 as
the convolution

𝜑𝑄,𝑚 (𝑥) ≔ 1𝑄′′★𝜓𝜖 (𝑥) ≔
∫
R𝑑
1𝑄′′ (𝑦)𝜓𝜖 (𝑥 −𝑦) dΛ(𝑦), 𝑥 ∈ R𝑑 .

Since we assume that each cube has edges parallel to the coordinate axes, we can
write 𝑄 =

∏︁𝑑
𝑖=1 𝐼𝑖 and 𝑄 ′′ =

∏︁𝑑
𝑖=1 𝐼

′
𝑖 with 𝐼 𝑖 = (𝑎𝑖 ,𝑏𝑖) and 𝐼

′
𝑖 = (𝑐𝑖 ,𝑑𝑖). Thus, we have

𝑄 ′′+𝐵Y (0) ⊂
𝑑∏︂
𝑖=1

[𝑐𝑖 − Y,𝑑𝑖 + Y] .

Moreover, note that by the definition of 𝑄 ′′ (recall 𝑄 ′′ is centered with respect to
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𝑄), we have (𝑎𝑖 +𝑏𝑖)/2 = (𝑐𝑖 +𝑑𝑖)/2. Therefore, we find that

[𝑐𝑖 − Y,𝑑𝑖 + Y] =
[︃
𝑐𝑖 +𝑑𝑖

2
− 𝑑𝑖 −𝑐𝑖

2
− (𝑚−1)𝑟

6
,
𝑐𝑖 +𝑑𝑖

2
+ 𝑑𝑖 −𝑐𝑖

2
+ (𝑚−1)𝑟

6

]︃
=

[︃
𝑎𝑖 +𝑏𝑖

2
− (𝑚 +2)𝑟

6
− (𝑚−1)𝑟

6
,
𝑎𝑖 +𝑏𝑖

2
+ (𝑚 +2)𝑟

6
+ (𝑚−1)𝑟

6

]︃
=

[︃
𝑎𝑖 +𝑏𝑖

2
− (2𝑚 +1)𝑟

6
,
𝑎𝑖 +𝑏𝑖

2
+ (2𝑚 +1)𝑟

6

]︃
⊂

(︃
𝑎𝑖 +𝑏𝑖

2
− 𝑟𝑚

2
,
𝑎𝑖 +𝑏𝑖

2
+ 𝑟𝑚

2

)︃
=

(︃
𝑎𝑖 +𝑏𝑖

2
− 𝑏𝑖 −𝑎𝑖

2
,
𝑎𝑖 +𝑏𝑖

2
+ 𝑏𝑖 −𝑎𝑖

2

)︃
= (𝑎𝑖 ,𝑏𝑖) .

It follows that supp
(︁
𝜑𝑄,𝑚

)︁
⊂ 𝑄 ′′+𝐵Y (0) ⊂ �̊� . Since

𝑟

2
+ Y = 𝑟𝑚 +2

6
,

it follows analogously as above that for each 𝑥 ∈ 𝑄 ′, we have

𝑥 −𝐵Y (0) ⊂ 𝑄 ′+𝐵Y (0) ⊂ 𝑄 ′′.

Hence, for each 𝑥 ∈ 𝑄 ′,

𝜑𝑄,𝑚 (𝑥) =
∫
R𝑑
1𝑄′′ (𝑦)𝜓𝜖 (𝑥 −𝑦) dΛ(𝑦)

=

∫
𝑥−𝐵Y (0)

1𝑄′′ (𝑦)𝜓𝜖 (𝑥 −𝑦) dΛ(𝑦)

=

∫
𝑥−𝐵Y (0)

𝜓𝜖 (𝑥 −𝑦) dΛ(𝑦)

=

∫
𝐵Y (0)

𝜓𝜖 (𝑦) dΛ(𝑦) = 1.
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Further, for 𝑥 ∈ 𝑄 ′′+𝐵Y (0), we have|︁|︁(𝜕/𝜕𝑥𝑖)𝜑𝑄,𝑚 (𝑥)
|︁|︁ = |︁|︁|︁|︁∫

𝑄′′
1𝑄′′ (𝑦) (𝜕/𝜕𝑥𝑖)𝜓𝜖 (𝑥 −𝑦) dΛ(𝑦)

|︁|︁|︁|︁
≤

∫
𝑄′′
1𝑄′′ (𝑦) 2 |𝑥𝑖 −𝑦𝑖 |

Y2
(︂∥︁∥︁𝑥−𝑦

Y

∥︁∥︁2 −1
)︂2𝜓𝜖 (𝑥 −𝑦) dΛ(𝑦)

≤ 1
Y

∫
𝑄′′∩𝐵Y (𝑥)

1𝑄′′ (𝑦) 2(︂∥︁∥︁𝑥−𝑦
Y

∥︁∥︁2 −1
)︂2𝜓𝜖 (𝑥 −𝑦) dΛ(𝑦)

≤ 1
Y

∫
𝐵Y (0)+𝑥

2(︂∥︁∥︁𝑥−𝑦
Y

∥︁∥︁2 −1
)︂2𝜓𝜖 (𝑥 −𝑦) dΛ(𝑦)

=
1
Y

∫
𝐵Y (0)

2(︂∥︁∥︁ 𝑦
Y

∥︁∥︁2 −1
)︂2𝜓𝜖 (𝑦) dΛ(𝑦)

=
1
Y

∫
𝐵1 (0)

2(︂
∥𝑦∥2 −1

)︂2𝜓 (𝑦) dΛ(𝑦).

Observing
∫
𝐵1 (0)

(︂
∥𝑦∥2 −1

)︂−2
𝜓 (𝑦) dΛ(𝑦) <∞, the claim follows. □

Lemma 2.21. Let 𝑄 be a cube with side length𝑚𝑟 > 0,𝑚 > 1. Then there exists a
constant 𝐶 > 0 depending on𝑚 > 1 and 𝑑 such that for 𝜑𝑄,𝑚 as defined in Lemma
2.20 we have ∫ |︁|︁∇𝜑𝑄,𝑚 |︁|︁2 dΛ∫ |︁|︁𝜑𝑄,𝑚 |︁|︁2 da

≤ 𝐶 (𝑚−1)−2𝑚1−2/𝑑
Λ

(︂
⟨𝑄⟩1/𝑚

)︂1−2/𝑑

a

(︂
⟨𝑄⟩1/𝑚

)︂ .

Proof. Using Lemma 2.20, we find∫ |︁|︁∇𝜑𝑄,𝑚 |︁|︁2 dΛ∫
𝜑2
𝑄,𝑚

da
≤ 𝑑𝐶2 Λ (𝑄)

(𝑚−1)2 𝑟2a

(︂
⟨𝑄⟩1/𝑚

)︂ ≤ 𝑑𝐶2

(𝑚−1)2𝑚2

Λ (𝑄)1−2/𝑑

a

(︂
⟨𝑄⟩1/𝑚

)︂
= 𝑑𝐶2(𝑚−1)−2𝑚4−2/𝑑

Λ
(︂
⟨𝑄⟩1/𝑚

)︂1−2/𝑑

a

(︂
⟨𝑄⟩1/𝑚

)︂ . □

The following proposition applies only in the case 𝑑 > 2.

Proposition 2.22. If dim∞ (a) < 𝑑 −2 and 𝑑 > 2, then the identity operator(︂
C∞
𝑏

(︂
Q
)︂
, ⟨·, ·⟩𝐻 1

)︂
→ 𝐿2

a
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is not continuous.

Proof. First note that

dim∞ (a) = liminf
𝑛→∞

max𝑄 ∈D𝑁
𝑛

log(a (𝑄))
−𝑛 log(2) < 𝑑 −2

implies that there exists a sequence of cubes (𝑄𝑛) ∈ DN with strictly decreasing
diameters such that a (𝑄𝑛) ≥ Λ (𝑄𝑛)𝑎/𝑑 , 𝑛 ∈ N, for some 𝑎 ∈ (dim∞ (a) ,𝑑 −2). Now
we have for 𝑢𝑛 ≔ Λ

(︁
⟨𝑄𝑛⟩2

)︁1/𝑑−1/2
𝜑 ⟨𝑄𝑛 ⟩2,2 with 𝐶 > 0 given in Lemma 2.20

∥𝑢𝑛 ∥2
𝐻 1 = Λ

(︁
⟨𝑄𝑛⟩2

)︁2/𝑑−1
(︃∫

Q

|︁|︁∇𝜑 ⟨𝑄𝑛 ⟩2,2
|︁|︁2 dΛ+

∫
Q

|︁|︁𝜑 ⟨𝑄𝑛 ⟩2,2
|︁|︁2 dΛ

)︃
≤ Λ

(︁
⟨𝑄𝑛⟩2

)︁2/𝑑−1
(︃
2𝐶Λ

(︁
⟨𝑄𝑛⟩2

)︁
Λ(𝑄𝑛)2/𝑑 +

∫
Q

|︁|︁𝜑 ⟨𝑄𝑛 ⟩2,2
|︁|︁2 dΛ

)︃
≤ Λ

(︁
⟨𝑄𝑛⟩2

)︁2/𝑑−1
(︂
4𝐶Λ

(︁
⟨𝑄𝑛⟩2

)︁−2/𝑑+1 +Λ
(︁
⟨𝑄𝑛⟩2

)︁ )︂
≤ 4(𝐶 +1) .

On the other hand we have for 𝑛 tending to infinity

∥𝑢𝑛 ∥2
𝐿2
a
≥ Λ

(︁
⟨𝑄𝑛⟩2

)︁2/𝑑−1
a (𝑄𝑛) = 22−𝑑Λ (𝑄𝑛)2/𝑑−1a (𝑄𝑛)

≥ 22−𝑑Λ (𝑄𝑛) (𝑎+2−𝑑)/𝑑 →∞.

This proves the claim. □

41



2.3. Partition functions and 𝐿𝑞-spectra

2.3 Partition functions and 𝐿𝑞-spectra

In this chapter, we investigate the new notion of partition functions with respect to a
non-negative monotone function 𝔍 defined on the set of dyadic cubes D. Further,
we assume 𝔍 is locally non-vanishing, that is, if 𝔍(𝑄) > 0 for 𝑄 ∈ D, then there
exists𝑄 ′ ⊊𝑄 ,𝑄 ′ ∈ D with 𝔍(𝑄 ′) > 0. Note that this assumption is satisfied for each
specific choice for 𝔍 that we consider. Of particular interests is the case when 𝔍 is
chosen to be 𝔍(𝑄) ≔ a (𝑄), 𝑄 ∈ D, where a is a finite Borel measure on Q; in this
case we obtain the well-known 𝐿𝑞-spectrum of a . The 𝐿𝑞-spectrum has been studied
by various authors, for example Ngai [Nga97], Ngai and Lau [LN98], Heurteaux
[Heu07], Hochman [Hoc14], Shmerkin [Shm19], and Ngai and Xie [NX19].

2.3.1 The partition function

We start with recalling the definition of the partition function from the introduction.
The Dirichlet/Neumann partition function of 𝔍 is given by

𝜏
𝐷/𝑁
𝔍

(𝑞) = limsup
𝑛→∞

𝜏
𝐷/𝑁
𝔍,𝑛

(𝑞), 𝜏𝐷/𝑁
𝔍,𝑛

(𝑞) =
log

(︂∑︁
𝐶∈D𝐷/𝑁

𝑛
𝔍(𝐶)𝑞

)︂
log(2𝑛) .

Here, we use the convention that 00 = 0, that is for 𝑞 = 0 we neglect the summands
with 𝔍 (𝑄) = 0. Further, recall from the introduction

𝑞
𝐷/𝑁
𝔍

= inf
{︂
𝑞 ≥ 0 : 𝜏𝐷/𝑁

𝔍
(𝑞) < 0

}︂
and

^𝔍 = inf
⎧⎪⎨⎪⎩𝑞 ≥ 0 :

∑︂
𝑄 ∈D

𝔍(𝑄)𝑞 <∞
⎫⎪⎬⎪⎭ .

Let us begin with some general observations for which we need the following
objects:

supp (𝔍) ≔
⋂︂
𝑘∈N

⋃︂
𝑛≥𝑘

{︂
𝑄 :𝑄 ∈ D𝑁

𝑛 ,𝔍 (𝑄) > 0
}︂

and

dim∞(𝔍) ≔ liminf
𝑛→∞

max𝑄 ∈D𝑁
𝑛

log (𝔍 (𝑄))
− log(2𝑛) .

We call dim∞(𝔍) the ∞-dimension of 𝔍 which generalizes the ∞-dimension for a .
Obviously, the following holds.

Lemma 2.23. If dim∞(𝔍) > 0, then 𝔍 is uniformly vanishing, i.e. we have

lim
𝑛→∞

max
𝐶∈D𝑁

𝑛

𝔍(𝐶) = 0.
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Remark 2.24. Note that due to the monotonicity of 𝔍 the assumption

lim
𝑛→∞

max
𝐶∈D𝑁

𝑛

𝔍(𝐶) = 0

is equivalent to lim𝑛→∞ sup𝐶∈⋃︁𝑘≥𝑛 D𝑁
𝑘
𝔍(𝐶) = 0.

In the following lemma we use the convention −∞·0 = 0.

Lemma 2.25. For 𝑞 ≥ 0, we have

−dim∞(𝔍)𝑞 ≤ 𝜏𝑁
𝔍
(𝑞) ≤ dim𝑀 (supp (𝔍)) −dim∞(𝔍)𝑞. (2.3.1)

In particular,
𝑞𝑁
𝔍
≤ dim𝑀 (supp (𝔍)) /dim∞(𝔍) .

Further, we have
dim∞(𝔍) > 0 ⇐⇒ 𝑞𝑁

𝔍
<∞.

and
𝑞𝑁
𝔍
<∞ =⇒ ^𝔍 = 𝑞𝑁

𝔍
.

Proof. The first claim follows from the following simple inequalities

𝑞 · max
𝑄 ∈D𝑁

𝑛

log
(︃
𝔍 (𝑄)

)︃
≤ log

(︃ ∑︂
𝐶∈D𝑁

𝑛

𝔍(𝐶)𝑞
)︃

≤ log
(︃ ∑︂
𝐶∈D𝑁

𝑛 , 𝔍(𝐶)>0

1
)︃
+𝑞 max

𝑄 ∈D𝑁
𝑛

log (𝔍 (𝑄)) .

Now, assume 𝑞𝑁
𝔍
< ∞. It follows there exists 𝑞 > 0 such that 𝜏𝑁

𝔍
(𝑞) < 0. Conse-

quently, from (2.3.1) we obtain −dim∞(𝔍)𝑞 ≤ 𝜏𝑁
𝔍
(𝑞) < 0, which yields dim∞(𝔍) >

0. Reversely, suppose dim∞(𝔍) > 0. In the case dim∞(𝔍) = ∞, using (2.3.1),
we have 𝑞𝑁

𝔍
= 0 due to 𝜏𝑁

𝔍
(𝑞) = −∞ for 𝑞 > 0. It is left to consider the case

0 < dim∞(𝔍) <∞. Then it follows from (2.3.1) that

𝜏𝑁
𝔍
(𝑞) < 0 for all 𝑞 >

dim𝑀 (supp (𝔍))
dim∞(𝔍) ,

proving the implication. Now, assume 𝑞𝑁
𝔍
< ∞. Thus, we have 𝜏𝑁

𝔍
(𝑞) < 0 for all

𝑞 > 𝑞𝑁
𝔍

, and therefore, for every Y > 0 with 𝜏𝑁
𝔍
(𝑞) < −Y < 0 and 𝑛 large enough, we

obtain ∑︂
𝑄 ∈D𝑁

𝑛

𝔍(𝑄)𝑞 ≤ 2−𝑛Y,

implying
∑︁
𝑄 ∈D 𝔍(𝑄)𝑞 <∞. This shows inf

{︁
𝑞 ≥ 0 :

∑︁
𝑄 ∈D 𝔍(𝑄)𝑞 <∞

}︁
≤ 𝑞𝑁

𝔍
.

For the reversed inequality we note that if 𝑞𝑁
𝔍
= 0, then the claimed equality is clear.
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If, on the other hand, 𝑞𝑁
𝔍
> 0, then we necessarily have dim∞(𝔍) <∞. Therefore,

𝜏𝑁
𝔍

is decreasing, convex (and therefore continuous), and proper (i.e. 𝜏𝑁
𝔍
(𝑞) > −∞

for all 𝑞 ≥ 0). Hence, it follows that 𝑞𝑁
𝔍

is a zero of 𝜏𝑁
𝔍

and for all 0 < 𝑞 < 𝑞𝑁
𝔍

0 < 𝜏𝑁
𝔍
(𝑞) .

This implies that for every 0 < 𝛿 < 𝜏𝑁
𝔍
(𝑞), there is a subsequence (𝑛𝑘 )𝑘 such that

2𝑛𝑘𝛿 ≤
∑︂

𝑄 ∈D𝑁
𝑛𝑘

𝔍(𝑄)𝑞

and therefore,
∞ =

∑︂
𝑘∈N

∑︂
𝑄 ∈D𝑁

𝑛𝑘

𝔍(𝑄)𝑞 ≤
∑︂
𝑄 ∈D

𝔍(𝑄)𝑞

and consequently 𝑞𝑁
𝔍
≤ inf

{︁
𝑞 ≥ 0 :

∑︁
𝑄 ∈D 𝔍(𝑄)𝑞 <∞

}︁
. □

Remark 2.26. Note that in the case dim∞(𝔍) ≤ 0, from Lemma 2.25 we deduce that
𝜏𝑁
𝔍
(𝑞) is non-negative for 𝑞 ≥ 0, hence 𝑞𝑁

𝔍
=∞. However, it is possible that ^𝔍 <∞.

Indeed, consider

𝔍 (𝑄) ≔

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
𝑛
, if 𝑄 =

(︃
0,

1
2𝑛

]︃𝑑
,

0, otherwise.

Then it follows ^𝔍 = 1 < 𝑞𝑁
𝔍
=∞ and dim∞(𝔍) = 0.

Lemma 2.27. If dim∞(𝔍) ∈ (0,∞), then 𝜏𝑁
𝔍

is convex and strictly decreasing on
R≥0. In particular, if 𝑞𝑁

𝔍
> 0, then 𝑞𝑁

𝔍
is the only zero of 𝜏𝑁

𝔍
.

Proof. First, note that Lemma 2.25 implies 𝜏𝑁
𝔍
(𝑞) ∈ R for all 𝑞 ≥ 0 and

lim
𝑞→∞

𝜏𝑁
𝔍
(𝑞) = −∞.

Since dim∞(𝔍) > 0 it follows from Lemma 2.23 that for 𝑛 large we have 𝔍(𝑄) <
1, 𝑄 ∈ D𝑁

𝑛 . Hence, it follows that 𝜏𝑁
𝔍

is decreasing and as pointwise limit superior
of convex functions again convex.
Now, we show that 𝜏𝑁

𝔍
is strictly decreasing. Assume there exist 𝑞1,𝑞2 with 0 < 𝑞1 <

𝑞2 such that 𝜏𝑁
𝔍
(𝑞1) = 𝜏𝑁𝔍 (𝑞2). Since 𝜏𝑁

𝔍
is decreasing, we obtain 𝜏𝑁

𝔍
(𝑞1) = 𝜏𝑁𝔍 (𝑞)

for all 𝑞 ∈ [𝑞1,𝑞2]. Fix 𝑞′′ ∈ (𝑞1,𝑞2). Since 𝜏𝑁
𝔍

is convex, for all 𝑞′ > 𝑞′′ Theorem
A.5 implies

0 =
𝜏𝑁
𝔍
(𝑞′′) −𝜏𝑁

𝔍
(𝑞1)

𝑞′′−𝑞1
≤
𝜏𝑁
𝔍
(𝑞′) −𝜏𝑁

𝔍
(𝑞1)

𝑞′−𝑞1
≤ 0,
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which implies 𝜏𝑁
𝔍
(𝑞) = 𝜏𝑁

𝔍
(𝑞1) for all 𝑞 > 𝑞1 which contradicts lim𝑞→∞𝜏𝑁𝔍 (𝑞) = −∞.

For the second claim note that, since 𝜏𝑁
𝔍

is convex and finite on R> 0, it follows that
𝜏𝑁
𝔍

is continuous on R>0. Hence, we obtain 𝜏𝑁
𝔍
(𝑞𝑁

𝔍
) = 0. Finally, the uniqueness

follows from the fact that 𝜏𝑁
𝔍

is a finite strictly decreasing function. □

We now summarise the above and mention a few more basic characteristics.

Fact 2.28. We make the following elementary observations under the assumption
dim∞(𝔍) ∈ (0,∞):

1. lim𝑞→∞𝜏𝑁𝔍 (𝑞) /𝑞 = −dim∞(𝔍).

2. 𝜏𝑁
𝔍
(𝑞) > −∞ for all 𝑞 ≥ 0.

3. 𝜏𝑁
𝔍
(0) = dim𝑀 (supp (𝔍)) ≤ 𝑑 .

4. If 𝜏𝑁
𝔍
(1) ≥ 0 and 𝑞𝑁

𝔍
> 1 hold, then

𝑞𝑁
𝔍
≤

dim∞(𝔍) +𝜏𝑁
𝔍
(1)

dim∞(𝔍) .

5. If 𝑞𝑁
𝔍
> 1, then

dim𝑀 (supp (𝔍))
dim𝑀 (supp (𝔍)) −𝜏𝑁

𝔍
(1)

≤ 𝑞𝑁
𝔍
.

6. If 𝑞𝑁
𝔍
< 1, then

𝑞𝑁
𝔍
≤ dim𝑀 (supp (𝔍))

dim𝑀 (supp (𝔍)) −𝜏𝑁
𝔍
(1)

.

7. If supp (𝔍) ⊂ Q̊, then we have 𝜏𝐷
𝔍
(𝑞) = 𝜏𝑁

𝔍
(𝑞).

8. The partition function is scale invariant, i.e. for 𝑐 > 0, we have 𝜏𝐷/𝑁
𝑐𝔍

= 𝜏
𝐷/𝑁
𝔍

.

Proof. We only give a proof of the assertion in 3, namely

𝜏𝑁
𝔍
(0) = dim𝑀 (supp (𝔍)) .

First, we observe that if 𝑄 ∈ D𝑁
𝑛 , 𝑄 ∩ supp(𝔍) ≠ ∅, then there exists 𝑄 ′ ∈ D𝑁

𝑛 with
𝑄 ′∩𝑄 ≠ ∅ and 𝔍(𝑄 ′) > 0. This can be seen as follows: For 𝑥 ∈ 𝑄 ∩ supp(𝔍) there
exists a subsequence (𝑛𝑘 )𝑘 such that 𝑥 ∈ 𝑄𝑛𝑘 , 𝑄𝑛𝑘 ∈ D𝑛𝑘 and 𝔍(𝑄𝑛𝑘 ) > 0. For
𝑘 ∈ N such that 𝑛𝑘 ≥ 𝑛 there exists exactly one𝑄 ′ ∈ D𝑁

𝑛 with𝑄𝑛𝑘 ⊂𝑄 ′. Further, we
have 𝑥 ∈𝑄𝑛𝑘 ⊂𝑄 ′ implies𝑄 ′∩𝑄 ≠∅ and since 𝔍 is monotone, we have 𝔍(𝑄 ′) > 0.
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Furthermore, for each 𝑄 ∈ D𝑁
𝑛 , we have card

(︂{︂
𝑄 ′′ ∈ D𝑁

𝑛 :𝑄 ′′∩𝑄 ≠ ∅
}︂)︂

≤ 3𝑑 .
Combining these two observations, we obtain

card
(︂{︁
𝑄 ∈ D𝑁

𝑛 :𝑄 ∩ supp(𝔍) ≠ ∅
}︁)︂

≤ card
(︂{︂
𝑄 ∈ D𝑁

𝑛 : ∃𝑄 ′ ∈ D𝑁
𝑛 , 𝑄

′∩𝑄 ≠ ∅, 𝔍(𝑄 ′) > 0
}︂)︂

≤ 3𝑑 card
(︂{︁
𝑄 ∈ D𝑁

𝑛 : 𝔍(𝑄) > 0
}︁)︂
,

implying 𝜏𝑁
𝔍
(0) ≥ dim𝑀 (supp (𝔍)).

For the reversed inequality, we first show that for 𝑄 ∈ D𝑁
𝑛 with 𝔍(𝑄) > 0, we

have 𝑄 ∩ supp(𝔍) ≠ ∅. Indeed, since 𝔍 is locally non-vanishing there exists a
subsequence (𝑛𝑘 )𝑘 with 𝑄𝑛𝑘 ∈ D𝑁

𝑛𝑘
, 𝔍

(︁
𝑄𝑛𝑘

)︁
> 0 and 𝑄𝑛𝑘 ⊂ 𝑄𝑛𝑘−1 ⊂ 𝑄 . Since(︂

𝑄𝑛𝑘

)︂
𝑘

is a nested sequence of non-empty compact subsets of 𝑄 , we have

∅ ≠
⋂︂
𝑘∈N

𝑄𝑛𝑘 ⊂ supp(𝔍) ∩𝑄.

Therefore, we complete the proof by observing

card
(︂{︁
𝑄 ∈ D𝑁

𝑛 : 𝔍(𝑄) > 0
}︁)︂

≤ card
(︂{︂
𝑄 ∈ D𝑁

𝑛 :𝑄 ∩ supp(𝔍) ≠ ∅
}︂)︂

≤ 3𝑑 card
(︂{︁
𝑄 ∈ D𝑁

𝑛 :𝑄 ∩ supp(𝔍) ≠ ∅
}︁)︂
. □

2.3.2 The (Dirichlet/Neumann) 𝐿𝑞-spectrum

In this section, we collect some important facts about the Dirichlet/Neumann 𝐿𝑞-
spectrum. The Dirichlet/Neumann 𝐿𝑞-spectrum of a is given by

𝛽
𝐷/𝑁
a (𝑞) ≔ 𝜏

𝐷/𝑁
a (𝑞) = limsup

𝑛→∞
𝛽
𝐷/𝑁
𝑛 (𝑞)

with

𝛽
𝐷/𝑁
𝑛 (𝑞) ≔ 𝛽

𝐷/𝑁
a,𝑛 (𝑞) ≔ 1

log(2𝑛) log
⎛⎜⎜⎝

∑︂
𝑄 ∈D𝐷/𝑁

𝑛

a (𝑄)𝑞
⎞⎟⎟⎠ , 𝑞 ∈ R.

The Neumann 𝐿𝑞-spectrum we also simply call the 𝐿𝑞-spectrum of a . In the Dirichlet
case, we will assume a (Q̊) > 0, implying that there exists a sub-cube 𝑄 ∈ D with
𝑄 ⊂ Q̊, a (𝑄) > 0 and hence −∞ < 𝛽𝑁

a |𝑄 ≤ 𝛽𝐷 . In the following, we list some standard
facts about the 𝐿𝑞-spectrum.

Fact 2.29. We make the following elementary observations:
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1. 𝛽𝑁a (0) = dim𝑀 (supp(a)) , where dim𝑀 (𝐴) denotes the upper Minkowski
dimension of 𝐴 ⊂ R𝑑 .

2. dim∞(a) ≤ 𝑑 .

3. 𝛽𝑁a (1) = 0 and if a (Q̊) > 0 , then also 𝛽𝐷a (1) = 0.

4. For the Dirichlet 𝐿𝑞-spectrum we have 𝛽𝐷a = 𝛽𝐷
a |Q̊

.

5. For all 𝑞 ≥ 0, we have −𝑞𝑑 ≤ 𝛽𝑁a (𝑞).

6. If supp(a) ⊂ Q̊, then we have 𝛽𝐷a = 𝛽𝑁a .

7. If a is absolutely continuous with density ℎ ∈ 𝐿𝑡Λ(Q) for some 𝑡 > 𝑑/2, then
𝛽𝐷a (𝑞) = 𝛽𝑁a (𝑞), for all 𝑞 ∈ [0, 𝑡].

8. The condition dim∞(a) > 𝑑 − 2 implies that the upper Minkowski dimen-
sion dim𝑀 (supp(a)) and the Hausdorff dimension dim𝐻 (a) must also lie in
(𝑑 −2,𝑑]. This in particular rules out the possibility of atomic parts of a if
𝑑 ≥ 2.

Fact 2.30. The function 𝛽𝑁a will not alter when we take 𝛿-adic cubes instead of
dyadic ones (see, e.g. [Rie95, Proposition 2 and Remarks, p. 466] or [Rie93,
Proposition 1.6] and note that the definition in [Rie93, Proposition 1.6] coincides
with our definition for 𝑞 ≥ 0). More precisely, for fixed 𝛿 > 0, set

𝐺a,𝛿 ≔ 𝐺𝛿 ≔

{︄
𝑑∏︂
𝑖=1

((𝑘𝑖 −1)𝛿,𝑘𝑖𝛿] : 𝑘𝑖 ∈ Z, a
(︄
𝑑∏︂
𝑖=1

((𝑘𝑖 −1)𝛿,𝑘𝑖𝛿]
)︄
> 0

}︄
and let (𝛿𝑛)𝑛 be an admissible sequence, i.e. 𝛿𝑛 ∈ (0,1)N, 𝛿𝑛 → 0 and there exists a
constant 𝐶 > 0 such that 𝐶𝛿𝑛 ≤ 𝛿𝑛+1 ≤ 𝛿𝑛 for all 𝑛 ∈ N. Then for 𝑞 ≥ 0 we have

limsup
𝛿↓0

1
− log(𝛿) log

(︄ ∑︂
𝐶∈𝐺𝛿

a (𝐶)𝑞
)︄
= limsup

𝑚→∞

1
− log(𝛿𝑚)

log⎛⎜⎝
∑︂

𝐶∈𝐺𝛿𝑚

a (𝐶)𝑞⎞⎟⎠ .
In particular, for 𝛿𝑚 ≔ 2−𝑚, the above expression coincides with the definition of
𝛽𝑁a (𝑞).

Fact 2.31. The function 𝛽𝐷/𝑁
a as a pointwise limit superior of convex functions is

again convex and we have (see also [Rie95, Corollary 11])

𝛽𝑁a (0) = dim𝑀 (supp(a)) ≤ 𝑑 and 𝛽
𝐷/𝑁
a (1) = 0.

The function 𝛽𝑁a is non-increasing and non-negative on R<1 and

liminf
𝑛→∞

𝛽𝑁𝑛 (𝑞) ≥ −𝑑𝑞
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2.4. The spectral partition function

for all 𝑞 ≥ 0.

Fact 2.32. If a has an atomic part, then 𝛽𝑁a (𝑞) = 0, for all 𝑞 ≥ 1. If a |Q̊ has an
atomic part, then also 𝛽𝐷a (𝑞) = 0 for all 𝑞 ≥ 1.

Proof. We consider only the first case. Assume that a has an atom in 𝑥0 ∈ Q and
let 𝑞 > 1. Then, for every 𝑛 ∈ N, we have 0 < a ({𝑥0})𝑞 ≤

∑︁
𝐶∈D𝑁

𝑛
a (𝐶)𝑞 , implying

0 ≤ 𝛽𝑁a (𝑞) ≤ 𝛽𝑁a (1) = 0. □

2.4 The spectral partition function

In this section, we study the spectral partition function which will play an important
role in the study of the spectral dimension as well as for the quantization dimension.

2.4.1 The spectral partition function and connections to the 𝐿𝑞-spectrum

This section is devoted to the special case 𝔍 = 𝔍a,𝑎,𝑏 , where for 𝑏 ≥ 0, 𝑎 ∈ R and
𝑄 ∈ D,

𝔍a,𝑎,𝑏 (𝑄) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sup˜︁𝑄 ∈D(𝑄) a

(︂˜︁𝑄)︂𝑏 |︁|︁|︁log
(︂
Λ

(︂˜︁𝑄)︂)︂|︁|︁|︁ , 𝑎 = 0,

sup˜︁𝑄 ∈D(𝑄) a
(︂˜︁𝑄)︂𝑏 (︂

Λ
(︂˜︁𝑄)︂)︂𝑎

, 𝑎 ≠ 0.

Recall that 𝜏𝐷/𝑁
𝔍a

= 𝜏
𝐷/𝑁
𝔍a,(2/𝑑−1),1

. We call 𝜏𝐷/𝑁
𝔍a,𝑎,𝑏

the (Dirichlet/Neumann) spectral
partition function of a with parameters 𝑎, 𝑏. For the Dirichlet case we always
assume a (Q̊) > 0.

We now elaborate some connections between the 𝐿𝑞-spectrum and the spectral
partition function.

Proposition 2.33. Fix 𝑎 ∈ R, 𝑎 > 0 with 𝑏 dim∞(a) +𝑎𝑑 > 0.

1. If 𝑎 > 0, then 𝛽𝐷/𝑁
a (𝑏𝑞) −𝑎𝑑𝑞 = 𝜏𝐷/𝑁

𝔍a,𝑎,𝑏
(𝑞) for 𝑞 ≥ 0.

2. If 𝑎 < 0, then 𝛽𝐷/𝑁
a (𝑏𝑞) −𝑎𝑑𝑞 ≤ 𝜏𝐷/𝑁

𝔍a,𝑎,𝑏
(𝑞) ≤ 𝛽

𝐷/𝑁
a (𝑞 (𝑏 +𝑎𝑑/dim∞(a))) for

𝑞 ≥ 0, and in particular, 𝜏𝐷/𝑁
𝔍a,𝑎,𝑏

(0) = 𝛽𝐷/𝑁
a (0).

Proof. We only consider the case 𝑎 < 0. We have for every −𝑎𝑑/𝑏 < 𝑠 < dim∞(a)
and 𝑛 large enough

a (𝐶) ≤ 2−𝑠𝑛,

with 𝐶 ∈ D𝑁
𝑛 . This leads to 𝑛 ≤ − log2 (a (𝐶)) /𝑠. Hence, for 𝑞 ≥ 0, we obtain

a (𝐶)𝑏𝑞Λ(𝐶)𝑞𝑎 = a (𝐶)2−𝑎𝑑𝑞𝑛 ≤ a (𝐶)𝑏𝑞2𝑎𝑑𝑞 log2 (a (𝐶))/𝑠 = a (𝐶)𝑞 (𝑏+𝑎𝑑/𝑠) .
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We get a (𝐶)𝑏𝑞Λ(𝐶)𝑞𝑎 ≤ 𝔍a,𝑎,𝑏 (𝐶)𝑞 ≤ a (𝐶)𝑞 (𝑏+𝑎𝑑/𝑠) and

𝜏
𝐷/𝑁
𝔍a,𝑎,𝑏

(𝑞) ≤ 𝛽𝐷/𝑁
a (𝑞(𝑏 +𝑎𝑑/𝑠)) .

Finally, the continuity of 𝛽𝐷/𝑁
a gives

𝜏
𝐷/𝑁
𝔍a,𝑎,𝑏

(𝑞) ≤ 𝛽𝐷/𝑁
a (𝑞 (𝑏 +𝑎𝑑/dim∞(a))) . □

Corollary 2.34. Let 𝑎 ≠ 0. Assume 𝑏 dim∞(a) +𝑎𝑑 > 0 and 𝛽𝑁a is linear on [0,∞).
Then, for all 𝑞 ≥ 0, we have

𝜏𝑁
𝔍a,𝑎,𝑏

(𝑞) = 𝛽𝑁a (𝑏𝑞) −𝑎𝑑𝑞 = dim𝑀 (a) −𝑞(𝑏dim𝑀 (a) +𝑎𝑑).

Proposition 2.35. Assume dim∞(a) > 0. Then for all 𝑏 > 0 and 𝑞 ≥ 0, we have

𝛽
𝐷/𝑁
a (𝑏𝑞) = 𝜏𝐷/𝑁

𝔍a,0,𝑏
(𝑞) .

Furthermore, if 𝛽𝐷/𝑁
a (𝑏𝑞) exists as a limit, then

𝛽
𝐷/𝑁
a (𝑏𝑞) = liminf

𝑛→∞
𝜏
𝐷/𝑁
𝔍a,0,𝑏 ,𝑛

(𝑞) .

Proof. Let 𝑞 > 0. For dim∞(a) > Y > 0, we have

a (𝐶) ≤ 2−Y𝑛

for 𝑛 large enough and all 𝐶 ∈ D𝐷/𝑁
𝑛 . Hence, for every 0 < 𝛿 < 𝑏 and 𝑛 large, we

obtain
|log (Λ(𝐶)) |𝑞 = (𝑑 log(2)𝑛)𝑞 ≤ 2𝑛𝑞𝛿Y ≤ a (𝐶)−𝑞𝛿 .

Recall that we neglect the summands with a (𝐶) = 0. This leads to

log(2)𝑑
∑︂

𝐶∈D𝐷/𝑁
𝑛

a (𝐶)𝑏𝑞 ≤
∑︂

𝐶∈D𝐷/𝑁
𝑛

𝔍a,0,𝑏 (𝐶)𝑞

≤
∑︂

𝐶∈D𝐷/𝑁
𝑛

sup
𝑄 ∈D(𝐶)

a (𝑄)−𝑞𝛿a (𝑄)𝑏𝑞 .

=
∑︂

𝐶∈D𝐷/𝑁
𝑛

a (𝐶)𝑞 (𝑏−𝛿) .

Hence,
𝛽
𝐷/𝑁
a (𝑞𝑏) ≤ 𝜏𝐷/𝑁

𝔍a,0,𝑏
(𝑞) ≤ 𝛽𝐷/𝑁

a (𝑞(𝑏 −𝛿))

and for 𝛿 ↘ 0, the continuity of 𝛽𝐷/𝑁
a gives 𝛽𝐷/𝑁

a (𝑞𝑏) = 𝜏𝐷/𝑁
𝔍a,0,𝑏

(𝑞). Under the
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assumption that 𝛽𝐷/𝑁
a exists as a limit, we infer

𝛽
𝐷/𝑁
a (𝑏𝑞) ≤ liminf

𝑛→∞
𝜏
𝐷/𝑁
𝔍a,0,𝑏 ,𝑛

(𝑞)

≤ liminf
𝑛→∞

𝛽
𝐷/𝑁
𝑛 (𝑞(𝑏 −𝛿)) ≤ 𝛽𝐷/𝑁

a (𝑞(𝑏 −𝛿)) .

Now, for 𝛿 ↘ 0, the continuity of 𝛽𝐷/𝑁
a proves the claim. □

Corollary 2.36. If 𝑑 = 2 and dim∞(a) > 0, then 𝜏𝑁
𝔍a

(1) = 𝛽𝑁a (1) = 0, or equivalently,

𝑞𝑁
𝔍a

= 1. If additionally a (Q̊) > 0, then 𝜏𝐷
𝔍a

(1) = 𝛽𝐷a (1) = 0, or equivalently, 𝑞𝐷
𝔍a

= 1.

By virtue of Proposition 2.33 and Proposition 2.35, we arrive at the following list of
facts.

Fact 2.37. Assuming 𝑏 dim∞(a) +𝑎𝑑 > 0, then the following list of properties of
the spectral partition function applies:

1. supp
(︁
𝔍a,𝑎,𝑏

)︁
= supp (a).

2. dim∞(𝔍a,𝑎,𝑏) = 𝑏 dim∞ (a) +𝑎𝑑 > 0.

3. We have that 𝑞𝑁
𝔍a,𝑎,𝑏

is the unique zero of 𝜏𝑁
𝔍a,𝑎,𝑏

and if 𝑎 < 0, then by Proposi-
tion 2.33, we have

𝑞𝑁
𝔍a,𝑎,𝑏

≤ dim∞ (a)
𝑏 dim∞(a) +𝑎𝑑 .

If 𝑎 > 0, then

𝑞𝑁
𝔍a,𝑎,𝑏

≤ dim𝑀 (a)
𝑏dim𝑀 (a) +𝑎𝑑

.

4. We have dim∞ (a) ≤ dim𝑀 (supp (a)).

5. If 𝑑 > 1, then

𝑑

2
≤ dim𝑀 (supp (a))

dim𝑀 (supp (a)) −𝑑 +2
≤ 𝑞𝑁

aΛ(2/𝑑−1) ≤ 𝑞𝑁𝔍a . (5)

If additionally dim∞ (a) = dim𝑀 (supp (a)), then

𝑞𝑁
aΛ(2/𝑑−1) = 𝑞

𝑁
𝔍a

=
dim𝑀 (supp (a))

dim𝑀 (supp (a)) −𝑑 +2
.

6. If a is absolutely continuous with density ℎ ∈ 𝐿𝑟Λ(Q) for some 𝑟 > 𝑑/2, then
𝜏𝐷
𝔍a

(𝑞) = 𝜏𝑁
𝔍a

(𝑞) = 𝛽𝑁a (𝑞) + (𝑑 −2)𝑞, for all 𝑞 ∈ [0,𝑟 ].

7. For the Dirichlet spectral partition function we have 𝜏𝐷
𝔍a,𝑎,𝑏

= 𝜏𝐷
𝔍a |Q̊,𝑎,𝑏

.
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8. For 𝑐 > 0, we have 𝜏𝐷/𝑁
𝔍𝑐a,𝑎,𝑏

= 𝜏
𝐷/𝑁
𝔍a,𝑎,𝑏

and without loss of generality we can
assume that a is a probability measure.

Proof. We only need to prove assertation (5). The convexity of 𝛽𝑁a implies for all
𝑞 > 1

𝑑 (1−𝑞) + (𝑑 −2)𝑞 ≤ dim𝑀 (a) (1−𝑞) + (𝑑 −2)𝑞 ≤ 𝛽𝑁a (𝑞) + (2−𝑑)𝑞 ≤ 𝜏𝑁
𝔍a
(𝑞),

implying the claim. □

2.4.2 Relations between the Dirichlet and Neumann spectral partition
functions

In this section, we investigate under which conditions we can guarantee that for
given 𝑞 ≥ 0, we have 𝜏𝐷

𝔍a
(𝑞) = 𝜏𝑁

𝔍a
(𝑞). As auxiliary quantities we need

dim𝑁 \𝐷
∞ (a) ≔ liminf

𝑛→∞

log
(︂
max𝑄 ∈D𝑁

𝑛 \D𝐷
𝑛
a (𝑄)

)︂
− log (2𝑛)

and

dim𝐷
∞(a) ≔ liminf

𝑛→∞

log
(︂
max𝑄 ∈D𝐷

𝑛
a (𝑄)

)︂
− log (2𝑛) .

In the following, we assume dim∞(a) > 𝑑 −2.

Lemma 2.38. For any 𝑞 ≥ 0 such that

dim𝑀 (supp (a) ∩ 𝜕Q) −𝑞
(︂
dim𝑁 \𝐷

∞ (a) −𝑑 +2
)︂
< 𝜏𝑁

𝔍a
(𝑞) ,

we have
𝜏𝐷
𝔍a

(𝑞) = 𝜏𝑁
𝔍a

(𝑞) .

In particular, since dim∞ (a) ≤ dim𝑁 \𝐷
∞ (a), if

dim𝑀 (supp (a) ∩ 𝜕Q) −𝑞 (dim∞ (a) −𝑑 +2) < 𝜏𝑁
𝔍a
(𝑞),

then 𝜏𝐷
𝔍a

(𝑞) = 𝜏𝑁
𝔍a

(𝑞).

Remark 2.39. Using dim𝑀 (a) /(dim𝑀 (a) −𝑑 +2) ≤ 𝑞𝑁
𝔍a

, we find that

dim𝑀 (supp (a) ∩ 𝜕Q) < dim𝑀 (a) dim∞ (a) −𝑑 +2

dim𝑀 (a) −𝑑 +2

implying 𝜏𝑁
𝔍a

(︂
𝑞𝑁
𝔍a

)︂
= 𝜏𝐷

𝔍a

(︂
𝑞𝑁
𝔍a

)︂
= 0.
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Proof. First, we consider the case 𝑑 > 2. Notice that∑︂
𝑄 ∈D𝐷

𝑛

𝔍a (𝑄)𝑞 ≤
∑︂

𝑄 ∈D𝑁
𝑛

𝔍a (𝑄)𝑞 =
∑︂

𝑄 ∈D𝐷
𝑛

𝔍a (𝑄)𝑞 +
∑︂

𝑄 ∈D𝑁
𝑛 \D𝐷

𝑛

𝔍a (𝑄)𝑞 .

Set 𝜏𝑁 \𝐷 (𝑞) ≔ limsup𝑛→∞ 1/log(2𝑛) log(∑︁𝑄 ∈D𝑁
𝑛 \D𝐷

𝑛
𝔍a (𝑄)𝑞). Then for 𝑞 ≥ 0

𝜏𝐷
𝔍a

(𝑞) ≤ 𝜏𝑁
𝔍a

(𝑞) = max
{︂
𝜏𝑁 \𝐷 (𝑞) ,𝜏𝐷

𝔍a
(𝑞)

}︂
.

Further, we always have

0 < dim∞(a) −𝑑 +2 ≤ 𝐴 ≔ liminf
𝑛→∞

log
(︂
max𝑄 ∈D𝑁

𝑛 \D𝐷
𝑛
𝔍a (𝑄)

)︂
−𝑛 log(2)

= lim
𝑞→∞

𝜏𝑁 \𝐷 (𝑞)
−𝑞 .

By the definition of 𝔍a we have

dim𝑁 \𝐷
∞ (a) −𝑑 +2 ≥ 𝐴

and dim𝑁 \𝐷
∞ (a) −𝑑 −2 ≥ dim∞(a) −𝑑 +2 > 0. Fix 𝑑 −2 < 𝑠 < dim𝑁 \𝐷

∞ (a), then we
obtain for all 𝑛 large and 𝑄 ∈ D𝑁

𝑛 \D𝐷
𝑛 ,

a (𝑄)Λ (𝑄)2/𝑑−1 ≤ 2𝑛 (𝑑−2−𝑠) .

Therefore, 𝐴 ≥ 𝑠 −𝑑 +2, which yields 𝐴 = dim𝑁 \𝐷
∞ (a) −𝑑 +2. By the definition of

𝜏𝑁 \𝐷 , we have
𝜏𝑁 \𝐷 (𝑞) ≤ dim𝑀 (supp(a) ∩ 𝜕Q) −𝑞𝐴.

Hence, by our assumption dim𝑀 (supp(a) ∩ 𝜕Q) −𝑞𝐴 < 𝜏𝑁
𝔍a
(𝑞), we obtain

𝜏𝑁 \𝐷 (𝑞) < 𝜏𝑁
𝔍a
(𝑞) .

This gives

𝜏𝑁 \𝐷 (𝑞) < 𝜏𝑁
𝔍a

(𝑞) = max
{︂
𝜏𝑁 \𝐷 (𝑞) ,𝜏𝐷

𝔍a
(𝑞)

}︂
= 𝜏𝐷

𝔍a
(𝑞) .

For the case 𝑑 ≤ 2, notice that by Proposition 2.35, we have

𝜏
𝐷/𝑁
𝔍a

(𝑞) = 𝛽𝐷/𝑁
a (𝑞) + (𝑑 −2)𝑞

for 𝑞 ≥ 0. Hence, this case follows in a similar way. □

In the next section we will see that many examples, which have been investigated in
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the literature (see [NS95; Tri97; NX21]), fulfill 𝜏𝑁
𝔍a

= 𝜏𝐷
𝔍a

. It is worth pointing out
that in the one-dimensional case, the situation becomes considerably simpler, which
follows from the fact that the boundary only contains {0,1}. The rest of this section
is devoted to the proof of 𝛽𝐷a = 𝛽𝑁a for the case 𝑑 = 1 whenever a ({0,1}) = 0.

Proposition 2.40. For 𝑑 = 1 and a ({0,1}) = 0,

dim𝑁 \𝐷
∞ (a) ≥ dim∞(a) = dim𝐷

∞(a).

Proof. First we consider the case dim𝐷
∞ (a) > 0. Then, for dim𝐷

∞ (a) > 𝑠 > 0 and 𝑛
large, we obtain

a (𝑄) ≤ 2−𝑠𝑛, 𝑄 ∈ D𝐷
𝑛 .

Hence, using a ({0,1}) = 0, it follows

a ((0,2−𝑛]) =
∞∑︂
𝑘=0

(︂
a

(︂(︂
0,2−(𝑛+𝑘)

]︂ )︂
−a

(︂(︂
0,2−(𝑛+𝑘+1)

]︂ )︂)︂
=

∞∑︂
𝑘=0

a

(︂(︂
2−(𝑛+𝑘+1) ,2−(𝑛+𝑘)

]︂ )︂
≤

∞∑︂
𝑘=0

2−𝑠 (𝑛+𝑘+1) ≤ 2−𝑠𝑛
∞∑︂
𝑘=0

2−𝑠𝑘

and

a

(︃(︃
2𝑛 −1

2𝑛
,1

]︃ )︃
=

∞∑︂
𝑘=0

a

(︃(︃
2𝑛+𝑘 −1

2𝑛+𝑘
,1

]︃ )︃
−a

(︃(︃
2𝑛+𝑘+1 −1

2𝑛+𝑘+1
,1

]︃ )︃
=

∞∑︂
𝑘=0

a

(︃(︃
2𝑛+𝑘 −1

2𝑛+𝑘
,
2𝑛+𝑘+1 −1

2𝑛+𝑘+1

]︃ )︃
≤ 2−𝑠𝑛

∞∑︂
𝑘=0

2−𝑠𝑘 .

Hence, we obtain
dim𝑁 \𝐷

∞ (a) ≥ dim𝐷
∞ (a) .

Now, we observe
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log
(︂
max𝑄 ∈D𝑁

𝑛
a (𝑄)

)︂
− log(2𝑛) =

max𝑘∈{𝐷,𝑁 \𝐷 } log
(︂
max𝑄 ∈D𝑘

𝑛
a (𝑄)

)︂
− log(2𝑛)

= min
𝑘∈{𝐷,𝑁 \𝐷 }

log
(︂
max𝑄 ∈D𝑘

𝑛
a (𝑄)

)︂
− log(2𝑛)

= min
⎧⎪⎪⎨⎪⎪⎩

log
(︂
max

𝑄 ∈D𝑁 \𝐷
𝑛

a (𝑄)
)︂

− log(2𝑛) ,

log
(︂
max𝑄 ∈D𝐷

𝑛
a (𝑄)

)︂
− log(2𝑛)

⎫⎪⎪⎬⎪⎪⎭ .
Thus, we obtain

dim∞(a) ≥ min
{︂
dim𝑁 \𝐷

∞ (a) ,dim𝐷
∞ (a)

}︂
= dim𝐷

∞ (a) ≥ dim∞ (a) .

If dim𝐷
∞(a) = 0, then clearly dim∞(a) = 0. Thus, in any cases, we obtain dim∞(a) =

dim𝐷
∞(a). □

Proposition 2.41. Let 𝑑 = 1 and a ({0,1}) = 0. Then, for all 𝑞 ≥ 0, we have

𝛽𝐷a (𝑞) = 𝛽𝑁a (𝑞) .

Proof. If for some 𝑞 > 0 we have

−𝑞 dim𝑁 \𝐷
∞ (a) ≤ −𝑞 dim∞ (a) < 𝛽𝑁a (𝑞) ,

then 𝛽𝐷a (𝑞) = 𝛽𝑁a (𝑞) by Lemma 2.38. Hence, for all

𝑞 < 𝛼 ≔ inf
{︁
𝑠 > 0 : 𝛽𝑁a (𝑠) > −𝑠 dim∞(a)

}︁
,

we have
𝛽𝐷a (𝑞) = 𝛽𝑁a (𝑞).

Note that we always have 𝛽𝑁a (𝑞) ≥ 0 for all 𝑞 ∈ [0,1], implying 𝛼 > 1. If 𝛼 =∞,
then we are finished. Otherwise, the convexity of 𝛽𝑁a and 𝛽𝑁a (𝑞) ≥ −𝑞 dim∞(a)
force that 𝛽𝑁a (𝑞) = −𝑞 dim∞(a) for all 𝑞 ≥ 𝛼 . Indeed, if 𝛽𝑁a (𝑞) = −𝑞 dim∞(a), then
by Theorem A.5 and (2.3.1), for all 𝑞′ ≥ 𝑞, we have

−𝑞′dim∞(a) ≤ 𝛽𝑁a (𝑞′) = 𝛽𝑁a (𝑞) + (𝑞′−𝑞)
𝛽𝑁a (𝑞′) − 𝛽𝑁a (𝑞)

𝑞′−𝑞
≤ 𝛽𝑁a (𝑞) − (𝑞′−𝑞) dim∞(a) = −𝑞′dim∞(a) .

54



2.4. The spectral partition function

Therefore, Proposition 2.40 yields

−𝑞 dim𝐷
∞(a) = −𝑞 dim∞(a) ≤ 𝛽𝐷a (𝑞) ≤ 𝛽𝑁a (𝑞) = −𝑞 dim∞(a) . □

Corollary 2.42. Let a1, . . . ,a𝑑 be non-zero Borel measures on (0,1) and define
a ≔ a1 ⊗ . . . ⊗ a𝑑 . For 𝑞 ≥ 0, we assume that 𝛽𝐷/𝑁

a𝑖 (𝑞) exists as limit for each
𝑖 = 1, . . . ,𝑑 −1. Then,

𝛽𝐷a (𝑞) = 𝛽𝑁a (𝑞) =
𝑑∑︂
𝑖=1

𝛽
𝐷/𝑁
a𝑖 (𝑞).

Proof. The second equality follows from the simple fact that, for all 𝑞 ≥ 0 and all
𝑛 ∈ N, we have∑︂

𝑄 ∈D𝑁
𝑛

a (𝑄)𝑞 =
∑︂

𝑄 ∈D𝑁
𝑛

𝑑∏︂
𝑖=1

a𝑖 (𝜋𝑖 (𝑄)) 𝑞 =
𝑑∏︂
𝑖=1

∑︂
𝑄 ∈D𝑁

𝑛

a𝑖 (𝜋𝑖 (𝑄)) 𝑞,

where 𝜋𝑖 denotes the projection in the 𝑖-th component. Further, set

D1,𝐷
𝑛 ≔ {(𝑘2−𝑛, (𝑘 +1)2−𝑛] : 𝑘 = 1,2𝑛 −2} ,𝑛 ∈ N.

Then for the 𝑑-folded product D𝐷
𝑛 =D1,𝐷

𝑛 × . . .×D1,𝐷
𝑛 , we have

∑︂
𝑄 ∈D𝐷

𝑛

a (𝑄)𝑞 =
∑︂

(𝑄1,...,𝑄𝑑 ) ∈(D𝐷
𝑛 )𝑑

𝑑∏︂
𝑖=1

a𝑖 (𝑄𝑖)𝑞 =
𝑑∏︂
𝑖=1

∑︂
𝑄𝑖 ∈D𝐷,1

𝑛

a𝑖 (𝑄𝑖) 𝑞 .

Thus, the first equality follows from Proposition 2.41 and our assumption that the
𝛽
𝐷/𝑁
a𝑖 (𝑞)’s exist as limit for each 𝑖 = 1, . . . ,𝑑 −1. □

2.4.3 Examples

In this section, assuming dim∞(a) > 𝑑 −2, we show that for some particular cases
(absolutely continuous measures, product measures, Ahlfors–David regular mea-
sures, and self-conformal measures) the spectral partition function is completely
determined by the 𝐿𝑞-spectrum. Furthermore, for these classes of measures we
investigate under which conditions the Dirichlet and the Neumann 𝐿𝑞-spectra coin-
cide. Later, we will use these results to calculate the spectral dimension for these
classes of measures.
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2.4.3.1 Absolutely continuous measures

Lemma 2.43. Let a be a non-zero absolutely continuous measure with Lebesgue
density 𝑓 ∈ 𝐿𝑟Λ(Q) for some 𝑟 ≥ 1. Then, for all 𝑞 ∈ [0,𝑟 ], we have

liminf
𝑛→∞

𝛽
𝐷/𝑁
a,𝑛 (𝑞) = 𝛽𝐷/𝑁

a (𝑞) = 𝑑 (1−𝑞) .

Proof. First, we remark that, since a (𝜕Q) = 0, there exists an open set 𝑂 ⊂ Q with
a (𝑂) > 0. Moreover, we have 𝛽𝑁a (1) = 0 and 𝛽𝑁a (0) ≤ 𝑑. Hence, the convexity of
𝛽𝑁a implies

𝛽𝑁a (𝑞) ≤ 𝑑 (1−𝑞) for all 𝑞 ∈ [0,1] .

Furthermore, for 𝑛 large, we have 𝛽𝐷
𝑛,a |𝑂/a (𝑂) (1) = 0 and 𝛽𝐷

𝑛,a |𝑂/a (𝑂) (0) ≤ 𝑑 . Conse-
quently, for all 𝑞 ∈ (1,∞), the convexity of 𝛽𝐷

𝑛,a |𝑂/a (𝑂) and Theorem A.5 give

𝛽𝐷
𝑛,a |𝑂/a (𝑂) (𝑞) − 𝛽

𝐷
𝑛,a |𝑂/a (𝑂) (1)

𝑞−1
≥
𝛽𝐷
𝑛,a |𝑂/a (𝑂) (1) − 𝛽

𝐷
𝑛,a |𝑂/a (𝑂) (0)

1−0
≥ −𝑑.

Hence,

𝛽𝐷
𝑛,a |𝑂/a (𝑂) (𝑞) ≥ 𝑑 (1−𝑞).

This implies

𝑑 (1−𝑞) ≤ liminf
𝑛→∞

𝛽𝐷
𝑛,a |𝑂/a (𝑂) (𝑞) = liminf

𝑛→∞
𝛽𝐷
𝑛,a |𝑂 (𝑞) ≤ liminf

𝑛→∞
𝛽
𝐷/𝑁
𝑛,a (𝑞) .

Moreover, by Jensen’s inequality, for all 𝑞 ∈ [0,1] and 𝑛 large, we have∑︂
𝑄 ∈D𝐷/𝑁

𝑛

a (𝑄)𝑞 =
∑︂

𝑄 ∈D𝐷
𝑛

(︃∫
𝑄

𝑓 dΛ/Λ(𝑄)
)︃𝑞

Λ(𝑄)𝑞

≥
∑︂

𝑄 ∈D𝐷/𝑁
𝑛

Λ(𝑄)𝑞−1
∫
𝑄

𝑓 𝑞 dΛ

≥ Λ(𝑄)𝑞−1
∫
𝑂

𝑓 𝑞 dΛ ,

implying
liminf
𝑛→∞

𝛽
𝐷/𝑁
a,𝑛 (𝑞) ≥ 𝑑 (1−𝑞) .
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Further, Jensen’s inequality, for all 𝑞 ∈ [1,𝑟 ], yields∑︂
𝑄 ∈D𝐷/𝑁

𝑛

a (𝑄)𝑞 =
∑︂

𝑄 ∈D𝐷/𝑁
𝑛

(︃∫
𝑄

𝑓 dΛ/Λ(𝑄)
)︃𝑞

Λ(𝑄)𝑞

≤ Λ(𝑄)𝑞−1
∑︂

𝑄 ∈D𝐷/𝑁
𝑛

∫
𝑄

𝑓 𝑞 dΛ

≤ Λ(𝑄)𝑞−1
∫

Q
𝑓 𝑞 dΛ .

Hence, we obtain
limsup
𝑛→∞

𝛽
𝐷/𝑁
a,𝑛 (𝑞) ≤ 𝑑 (1−𝑞) . □

Proposition 2.44. Let 𝑑 > 2 and a be a non-zero absolutely continuous measure
with Lebesgue density 𝑓 ∈ 𝐿𝑟Λ(Q) for some 𝑟 ≥ 𝑑/2. Then, for all 𝑞 ∈ [0,𝑟 ],

liminf
𝑛→∞

𝜏
𝐷/𝑁
𝔍a ,𝑛

(𝑞) = 𝜏𝐷/𝑁
𝔍a

(𝑞) = 𝛽𝐷/𝑁
a (𝑞) − (2−𝑑)𝑞 = 𝑑 −2𝑞.

Proof. By Jensen’s Inequality, for 𝑑/2 ≤ 𝑞 ≤ 𝑟 and 𝑄 ∈ D𝐷/𝑁 , we have

a (𝑄)𝑞 =
(︃∫
𝑄

𝑓 Λ (𝑄)−1 dΛ
)︃𝑞

Λ (𝑄)𝑞 ≤
(︃∫
𝑄

𝑓 𝑞 dΛ
)︃
Λ (𝑄)𝑞−1 .

This shows that a (𝑄)𝑞Λ (𝑄)2𝑞/𝑑−𝑞 ≤
(︂∫
𝑄
𝑓 𝑞 dΛ

)︂
Λ (𝑄)2𝑞/𝑑−1, and since we have

0 ≤ 2𝑞/𝑑 −1, we observe that the right-hand side is monotonic in 𝑄 . Therefore we
get the following upper bound

∑︂
˜︁𝑄 ∈D𝐷/𝑁

𝑛

⎛⎜⎝ sup
𝑄 ∈D𝑛 (˜︁𝑄)a (𝑄)𝑞Λ (𝑄)2𝑞/𝑑−𝑞⎞⎟⎠ ≤

∑︂
˜︁𝑄 ∈D𝐷/𝑁

𝑛

(︃∫
˜︁𝑄 𝑓 𝑞 dΛ

)︃
Λ

(︂˜︁𝑄)︂2𝑞/𝑑−1

≤ 2−𝑛 (2𝑞−𝑑) ∥ 𝑓 ∥𝑞
𝐿
𝑞

Λ (Q) .

Combining this with Lemma 2.43, we obtain

𝑑 −2𝑞 = liminf
𝑛→∞

𝛽
𝐷/𝑁
a,𝑛 (𝑞) + (2−𝑑)𝑞

≤ liminf
𝑛→∞

𝜏
𝐷/𝑁
𝔍a ,𝑛

(𝑞)

≤ 𝜏𝐷/𝑁
𝔍a

(𝑞) ≤ 𝑑 −2𝑞.

For the remaining case, we use the convexity of 𝜏𝐷/𝑁
𝔍a

, the lower bound obtained
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above, and the fact that 𝜏𝐷/𝑁
𝔍a

(0) ≤ 𝑑 and 𝜏𝐷/𝑁
𝔍a

(𝑟 ) =𝑑−2𝑟 , to obtain for all 𝑞 ∈ [0,𝑟 ],

𝑑 −2𝑞 ≥ 𝜏𝐷/𝑁
𝔍a

(𝑞) ≥ liminf
𝑛→∞

𝜏
𝐷/𝑁
𝔍a ,𝑛

(𝑞) ≥ liminf
𝑛→∞

𝛽
𝐷/𝑁
a,𝑛 (𝑞) + (2−𝑑)𝑞 = 𝑑 −2𝑞. □

2.4.3.2 Product measures

The following example will be used to give an example for the non-existence of
the spectral dimension (see Section 5.4.4). Let 𝑑 ≥ 3 and a𝑑 denotes a non-zero
Borel measure on (0,1) and let Λ1 denote the one-dimensional Lebesgue measure
on (0,1). Here, we consider a ≔ Λ1 � . . .�Λ1⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

(𝑑−1)-times

�a𝑑 . Then, for 𝑄 ∈ D we have

𝔍a (𝑄) = sup
𝑄′∈D(𝑄)

a (𝑄 ′)Λ (𝑄 ′) (2−𝑑)/𝑑 = 2−𝑛a𝑑 (𝜋𝑑 (𝑄)) .

Hence, for all 𝑞 ≥ 0, we have

𝜏𝑁
𝑛,𝔍a

(𝑞) = 2(𝑑−1)𝑛2−𝑛𝑞
∑︂

𝑄 ∈𝜋𝑑D𝑁
𝑛

a𝑑 (𝑄)𝑞

and
𝜏𝐷
𝑛,𝔍a

(𝑞) = (2𝑛 −2)𝑑−12−𝑛𝑞
∑︂

𝑄 ∈𝜋𝑑D𝐷
𝑛

a𝑑 (𝑄)𝑞 .

It follows from Proposition 2.41 that

𝜏𝑁
𝔍a

(𝑞) = 𝑑 −1−𝑞 + 𝛽𝑁a𝑑 (𝑞) = 𝑑 −1−𝑞 + 𝛽𝐷a𝑑 (𝑞) = 𝜏
𝐷
𝔍a

(𝑞) .

2.4.3.3 Ahlfors–David regular measures

In this example we assume that a is an 𝛼-Ahlfors–David regular probability measure
on Q̊ with 𝛼 ∈ (𝑑 −2,𝑑], that is, there exists a constant 𝐾 > 0 such that for every
𝑥 ∈ supp (a) and 𝑟 ∈ (0,diam(supp(a))] we have

𝐾−1𝑟𝛼 ≤ a (𝐵𝑟 (𝑥)) ≤ 𝐾𝑟𝛼 ,

where the diameter of a set 𝐴 ⊂ R𝑑 is defined by

diam(𝐴) ≔ sup{|𝑥 −𝑦 | : 𝑥,𝑦 ∈ 𝐴}.

Then for appropriate 𝐶 > 0 and every 𝑄 ∈ D with a (𝑄) > 0 we have

𝐶−1Λ (𝑄)𝛼/𝑑 ≤ a
(︂⟨︁
�̊�

⟩︁
2

)︂
and a (𝑄) ≤ 𝐶Λ (𝑄)𝛼/𝑑 . (2.4.1)
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This implies

dim𝑀 (a) = lim
𝑛→∞

log
(︁
card

(︁{︁
𝑄 ∈ D𝑁

𝑛 : a (𝑄) > 0
}︁)︁ )︁

log(2𝑛)

= lim
𝑛→∞

log
(︁
card

(︁{︁
𝑄 ∈ D𝐷

𝑛 : a (𝑄) > 0
}︁)︁ )︁

log(2𝑛) = 𝛼 = dim∞ (a) .

Indeed, since a (Q̊) > 0 we find an element 𝐸 ∈ D with 𝐸 ⊂ Q̊ and a (𝐸) = Y > 0.
Then, on the one hand, for 𝑛 large we have

card
(︂{︁
𝑄 ′ ∈ D𝐷

𝑛 : a (𝑄 ′) > 0
}︁)︂
𝐶2−𝑛𝛼 ≥

∑︂
𝑄 ∈D𝐷

𝑛

a (𝑄) ≥ Y,

showing

liminf
𝑛→∞

log
(︁
card

(︁{︁
𝑄 ′ ∈ D𝐷

𝑛 : a (𝑄 ′) > 0
}︁)︁ )︁

log(2𝑛) ≥ 𝛼.

On the other hand,

card
(︂{︁
𝑄 ′ ∈ D𝑁

𝑛 : a (𝑄 ′) > 0
}︁)︂
𝐶−12−𝑛𝛼3−𝑑 ≤ 3−𝑑

∑︂
𝑄 ∈D𝑁

𝑛

a

(︂⟨︁
�̊�

⟩︁
2

)︂
≤

∑︂
𝑄 ∈D𝑁

𝑛

a (𝑄) = 1,

implying

limsup
𝑛→∞

log
(︁
card

(︁{︁
𝑄 ′ ∈ D𝑁

𝑛 : a (𝑄 ′) > 0
}︁)︁ )︁

log(2𝑛) ≤ 𝛼.

Now we prove that for all 𝑞 ≥ 0

𝜏
𝐷/𝑁
𝔍a

(𝑞) = 𝛽𝐷/𝑁
a (𝑞) + (2−𝑑)𝑞 = (𝛼 +2−𝑑)𝑞−𝛼

exists as a limit. Indeed,∑︂
𝑄 ∈D𝑁

𝑛

𝔍a (𝑄)𝑞 ≤ 𝐶
∑︂

𝑄 ∈D𝑁
𝑛

2−𝑛 (𝛼+2−𝑑)𝑞

≤ 𝐶 card
(︂{︁
𝑄 ∈ D𝑁

𝑛 : a (𝑄) > 0
}︁)︂

2−𝑛 (𝛼+2−𝑑)𝑞 .
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Further, we have ∑︂
𝑄 ∈D𝐷

𝑛

a

(︂⟨︁
�̊�

⟩︁
2

)︂𝑞
≤

∑︂
𝑄 ∈D𝐷

𝑛

(︃ ∑︂
𝑄′∈D𝐷

𝑛+1,

𝑄∩𝑄′≠∅

a (𝑄 ′)
)︃𝑞

≤
∑︂

𝑄 ∈D𝐷
𝑛

4𝑑𝑞 max
𝑄′∈D𝐷

𝑛+1,

𝑄∩𝑄′≠∅

a (𝑄 ′)𝑞

≤ 4𝑑𝑞+𝑑
∑︂

𝑄 ∈D𝐷
𝑛+1

a (𝑄)𝑞,

implying∑︂
𝑄 ∈D𝐷

𝑛+1

𝔍a (𝑄)𝑞 ≥
∑︂

𝑄 ∈D𝐷
𝑛+1

a (𝑄)𝑞 2(𝑑−2)𝑛𝑞

≥ 2(𝑑−2)𝑛𝑞4−𝑑𝑞−𝑑
∑︂

𝑄 ∈D𝐷
𝑛 ,a (𝑄)>0

a

(︂⟨︁
�̊�

⟩︁
2

)︂𝑞
≥ 𝐶−14−𝑑𝑞−𝑑 card

(︂{︁
𝑄 ∈ D𝐷

𝑛 : a (𝑄) > 0
}︁)︂

2−𝑛 (𝛼+2−𝑑)𝑞,

proving the claim.

2.4.3.4 Self-conformal measures

We start with some basic definitions.

Definition 2.45. Let𝑈 ⊂ R𝑑 be an open set. We say a𝐶1-map 𝑆 :𝑈 → R𝑑 is confor-
mal if for every 𝑥 ∈𝑈 the matrix 𝑆 ′(𝑥), giving the total derivative of 𝑆 in 𝑥 , satisfies
|𝑆 ′(𝑥) ·𝑦 | = ∥𝑆 ′(𝑥)∥ |𝑦 | ≠ 0 for all 𝑦 ∈ R𝑑 \ {0} with ∥𝑆 ′(𝑥)∥ ≔ sup |𝑧 |=1 |𝑆 (𝑥) ·𝑧 |.

Definition 2.46. A family of conformal mappings {𝑆𝑖 : 𝑋 → 𝑋 }𝑖∈𝐼 on a compact
set 𝑋 ⊂ Q with 𝐼 ≔ {1, . . . , ℓ}, ℓ ≥ 2, is a C1-conformal iterated function system
(C1-cIFS) if

1. Each 𝑆𝑖 extends to an injective conformal map 𝑆𝑖 : 𝑈 → 𝑈 on an open set
𝑋 ⊂ 𝑈 ,

2. We have uniform contraction, i.e. sup
{︁∥︁∥︁𝑆 ′𝑖 (𝑥)∥︁∥︁ : 𝑥 ∈𝑈

}︁
< 1, 𝑖 ∈ 𝐼 .

3. The contractions (𝑆𝑖)𝑖∈𝐼 do not share the same fixed point.

For a conformal iterated function system {𝑆𝑖 : 𝑋 → 𝑋 }𝑖∈𝐼 there exists a unique
compact set K ⊂ 𝑋 such that

K =
⋃︂
𝑖∈𝐼
𝑆𝑖 (K).
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Let (𝑝𝑖)𝑖∈𝐼 be a positive probability vector and define 𝑝𝑢 ≔
∏︁ |𝑢 |
𝑖=1𝑝𝑢𝑖 . Then there is

a unique Borel probability measure a with support K such that

a (𝐴) =
ℓ∑︂
𝑖=1

𝑝𝑖a

(︂
𝑆−1
𝑖 (𝐴)

)︂
(2.4.2)

for all 𝐴 ∈𝔅
(︁
R𝑑

)︁
(see [Hut81]). We refer to a as the self-conformal measure.

In following we provide some standard notations. We call 𝐼 = {1, . . . , ℓ} alphabet and
𝐼𝑚 is the set of words of length𝑚 ∈ N over 𝐼 and by 𝐼 ∗ =

⋃︁
𝑚∈N 𝐼

𝑚 ∪ {∅} we refer
to the set of all words with finite length including the empty word ∅. Furthermore,
the set of words with infinite length will be denoted by 𝐼N equipped with the metric

𝑑 (𝑥,𝑦) ≔
{︄

2−min{𝑖∈N:𝑥𝑖=𝑦𝑖 }, if 𝑥 ≠ 𝑦,

0, x=y.

The length of a finite word 𝜔 ∈ 𝐼 ∗ will be denoted by |𝜔 | and for the concatenation
of 𝜔 ∈ 𝐼 ∗ with 𝑥 ∈ 𝐼 ∗∪ 𝐼N we write 𝜔𝑥 . The shift-map 𝜎 : 𝐼N∪ 𝐼 ∗ → 𝐼N∪ 𝐼 ∗ is defined
by 𝜎 (𝜔) =∅ for 𝜔 ∈ 𝐼 ∪{∅}, 𝜎 (𝜔1 . . .𝜔𝑚) =𝜔2 . . .𝜔𝑚 for 𝜔1 . . .𝜔𝑚 ∈ 𝐼𝑚 with𝑚 > 1
and 𝜎 (𝜔1𝜔2, . . .) = (𝜔2𝜔3 . . .) for (𝜔1𝜔2 . . .) ∈ 𝐼N. The cylinder set generated by
𝜔 ∈ 𝐼 ∗ is defined by [𝜔] ≔

{︁
𝜔𝑥 : 𝑥 ∈ 𝐼N

}︁
⊂ 𝐼N. Further, for 𝑢 =𝑢1 . . .𝑢𝑛 ∈ 𝐼𝑛, 𝑛 ∈ N,

we set 𝑢− = 𝑢1 . . .𝑢𝑛−1. We say 𝑃 ⊂ 𝐼 ∗ is a partition of 𝐼N if⋃︂
𝜔 ∈𝑃

[𝜔] = 𝐼N and [𝜔] ∩ [𝜔 ′] = ∅, for all 𝜔,𝜔 ′ ∈ 𝑃 with 𝜔 ≠ 𝜔 ′.

Now, we are able to give a coding of the self-conformal set in terms of 𝐼N. For𝜔 ∈ 𝐼 ∗
we put 𝑇𝜔 ≔ 𝑇𝜔1 ◦ . . . ◦𝑇𝜔𝑛 and define 𝑇∅ ≔ id[0,1] to be the identity map on [0,1].
For (𝜔1𝜔2 . . .) ∈ 𝐼N and𝑚 ∈ N we define the initial word by 𝜔 |𝑛 ≔ 𝜔1 . . .𝜔𝑛. For
every 𝜔 ∈ 𝐼N the intersection

⋂︁
𝑛∈N𝑇𝜔 |𝑛 ( [0,1]) contains exactly one point 𝑥𝜔 ∈ K

and gives rise to a surjection 𝜋 : 𝐼N→K , 𝜔 ↦→ 𝑥𝜔 , which we call the natural coding
map.

It is worth pointing out that we have the following remarkable bounded distortion
property in the case 𝑑 ≥ 2.

Proposition 2.47 ([MU03][Theorem 4.1.3]). Assume 𝑑 ≥ 2. Then there exists 𝐷 ≥ 1
such that for all 𝑛 ∈ N and 𝑢 ∈ 𝐼𝑛

𝐷−1 ≤
∥︁∥︁𝑆 ′𝑢 (𝑥)∥︁∥︁
∥𝑆 ′𝑢 (𝑦)∥

≤ 𝐷 for all 𝑥,𝑦 ∈𝑈

with 𝑆𝑢 = 𝑆𝑢1 ◦ . . . ◦𝑆𝑢 |𝑢 | .

Proposition 2.48. Any self-conformal measure a is atomless.
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Proof. Fix 𝑥 ∈ 𝑋 such that a ({𝑥}) = max {a ({𝑦}) : 𝑦 ∈ 𝑋 } ≕𝑚. Using

a ({𝑥}) =
∑︂
𝜔 ∈𝐼𝑛

𝑝𝜔a

(︂
𝑆−1
𝜔 {𝑥}

)︂
, 𝑛 ∈ N,

we find a
(︁
𝑆−1
𝜔 ({𝑥})

)︁
=𝑚 for every 𝜔 ∈ 𝐼𝑛 and 𝑛 ∈ N. Hence, if𝑚 > 0, we have 𝑥 ∈

𝑆𝜔 (𝑋 ) for all 𝜔 ∈ 𝐼𝑛 and 𝑛 ∈ N and 𝑥 is the common fixed point of all contractions.
This contradicts our assumption that the contractions do not share the same fixed
point. □

We need the following result from [PS00, Theorem 1.1] and [Fen07, Corollary 4.5]:

Theorem 2.49. For a self-conformal measure a , the 𝐿𝑞-spectrum 𝛽𝑁a exists as a
limit on R>0.

Example 2.50. In this example, we additionally assume that the 𝑆𝑖’s are contractive
similitudes 𝑆1, . . . ,𝑆ℓ with corresponding contraction ratios ℎ𝑖 , i.e.

|𝑆𝑖 (𝑥) −𝑆𝑖 (𝑦) | = ℎ𝑖 |𝑥 −𝑦 |, 𝑥,𝑦 ∈ R𝑑 .

Furthermore, we assume the OSC, i.e. there exists a bounded open set 𝑂 ⊂ R𝑑 such
that

∀𝑖 ≠ 𝑗 : 𝑆𝑖 (𝑂) ∩𝑆𝑗 (𝑂) = ∅ and
ℓ⋃︂
𝑖=1

𝑆𝑖 (𝑂) ⊂ 𝑂.

Then the 𝐿𝑞-spectrum of a is implicitly given by

ℓ∑︂
𝑖=1

𝑝
𝑞

𝑖
ℎ
𝛽𝑁a (𝑞)
𝑖

= 1

(see for instance [Rie95]).

Proposition 2.51. Let a denote a self-conformal measure on Q such that a (𝜕Q) = 0
and dim∞ (a) > 𝑑 −2. Then for all 𝑞 ≥ 0,

𝛽𝑁a (𝑞) + (𝑑 −2)𝑞 = liminf
𝑛→∞

𝛽𝑁a,𝑛 (𝑞) + (𝑑 −2)𝑞 = 𝜏𝑁
𝔍a

(𝑞) = liminf
𝑛→∞

𝜏𝑁
𝔍a ,𝑛

(𝑞) .

Proof. We only have to check the case 𝑑 > 2. Note that 𝑎 ≔ 2−𝑑 > −dim∞ (a)
implies

sup
𝑄 ∈D

a (𝑄)Λ (𝑄)𝑎/𝑑 ≕ 𝐾 <∞.

Let 𝐼 ∗ denote the set of all finite words generated by the alphabet 𝐼 . For 𝑛 ∈ N, as in
[PS00], we let

𝑊𝑛 ≔ {𝜔 ∈ 𝐼 ∗ : diam(𝑆𝜔 (K)) ≤ 2−𝑛 < diam(𝑆𝜔− (K))} ,
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which defines a partition of 𝐼N. Now fix 𝑄 ∈ D𝑁
𝑛 . For any 𝑄 ′ ⊂ D (𝑄) we set

𝐼𝑄
′
≔ {𝑢 ∈𝑊𝑛 : 𝑆𝑢 (K) ∩𝑄 ′ ≠ ∅} .

If 𝑄 ′ ∈ D𝑁
𝑛+𝑚 ∩D (𝑄), 𝑚 ∈ N, and 𝑢 ∈ 𝐼𝑄′

, then we have diam
(︁
𝑆−1
𝑢 (𝑄 ′)

)︁
≤ 𝐿2−𝑚

for some 𝐿 > 0 (see also [PS00, Lemma 2.4]) and hence it is contained in at most 3𝑑

cubes from D𝑁
𝑚−𝑘 with 𝑘 ≔ ⌈log(𝐿)/log(2)⌉ (this gives diam

(︁
𝑆−1
𝑢 (𝑄 ′)

)︁
≤ 2−𝑚+𝑘 ).

Also, by definition of 𝐼𝑄
′

and𝑊𝑛, we have⋃︂
𝑢∈𝐼𝑄′

𝑆𝑢 (K) ⊂
⋃︂

𝑄′′∈D𝑁
𝑛 ,𝑄

′′∩𝑄′≠∅

𝑄 ′′ ⊂
⋃︂

𝑄′′∈D𝑁
𝑛 ,𝑄

′′∩𝑄≠∅

𝑄 ′′ ≕ 𝑄 ′
3.

Then we have

a (𝑄 ′)Λ (𝑄 ′)𝑎/𝑑 = 2−𝑎 (𝑛+𝑚)
∑︂
𝑢∈𝑊𝑛

𝑝𝑢a

(︂
𝑆−1
𝑢 (𝑄 ′)

)︂
= 2−𝑎𝑛

∑︂
𝑢∈𝐼𝑄′

𝑝𝑢2−𝑎𝑚a
(︂
𝑆−1
𝑢 (𝑄 ′)

)︂
≤ 2−𝑎𝑛

∑︂
𝑢∈𝐼𝑄′

𝑝𝑢2−𝑎𝑘
∑︂

𝐶∈D𝑁
𝑚−𝑘 ,

𝑆−1
𝑢 (𝑄′)∩𝐶≠∅

2−𝑎 (𝑚−𝑘)a (𝐶)

≤ 2−𝑎𝑘3𝑑 max
𝐶∈D𝑁

𝑚−𝑘

a (𝐶)Λ (𝐶)𝑎/𝑑 2−𝑎𝑛
∑︂
𝑢∈𝐼𝑄′

𝑝𝑢

≤ 2−𝑎𝑘3𝑑 max
𝐶∈D𝑁

𝑚−𝑘

a (𝐶)Λ (𝐶)𝑎/𝑑 2−𝑎𝑛a

(︄ ⋃︂
𝑢∈𝐼𝑄′

𝑆𝑢 (K)
)︄

≤ 2−𝑎𝑘3𝑑𝐾a
(︁
𝑄 ′

3
)︁
2−𝑎𝑛 .

Since in the above inequality 𝑄 ′ ∈ D (𝑄) was arbitrary, we deduce for 𝑞 > 0,∑︂
𝑄 ∈D𝑁

𝑛

𝔍a (𝑄)𝑞 ≤ 2(𝑑−2)𝑘𝑞3𝑑𝑞𝐾𝑞2−𝑛𝑎𝑞
∑︂

𝑄 ∈D𝑁
𝑛

a
(︁
𝑄 ′

3
)︁𝑞

≤ 2(𝑑−2)𝑘𝑞3𝑑𝑞𝐾𝑞2−𝑛𝑎𝑞
∑︂

𝑄 ∈D𝑁
𝑛

⎛⎜⎝
∑︂

𝑄′∈D𝑁
𝑛 ,𝑄

′∩𝑄≠∅

a (𝑄 ′)⎞⎟⎠
𝑞

≤ 2(𝑑−2)𝑘𝑞3𝑑𝑞𝐾𝑞2−𝑛𝑎𝑞3𝑑𝑞
∑︂

𝑄 ∈D𝑁
𝑛

max
𝑄′∈D𝑁

𝑛 ,𝑄
′∩𝑄≠∅

a (𝑄 ′)𝑞

≤ 2(𝑑−2)𝑘𝑞3𝑑𝑞𝐾𝑞2−𝑛𝑎𝑞3𝑑𝑞+𝑑
∑︂

𝑄 ∈D𝑁
𝑛

a (𝑄)𝑞 .
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This gives 𝛽𝑁a (𝑞) −𝑎𝑞 ≥ 𝜏𝑁
𝔍a

(𝑞). Furthermore, we observe that

𝛽𝑁a (0) = dim𝑀 (a) = 𝜏𝑁
𝔍a
(0) .

To complete the proof, notice that∑︂
𝑄 ∈D𝑁

𝑛

a (𝑄)𝑞Λ (𝑄)𝑎 ≤
∑︂

𝑄 ∈D𝑁
𝑛

𝔍a (𝑄)𝑞 .

Finally, Theorem 2.49 gives 𝛽𝑁a (𝑞) −𝑎𝑞 ≤ liminf𝑛→∞𝜏𝑁𝔍a ,𝑛 (𝑞) for 𝑞 > 0. □

Proposition 2.52. Let a denote a self-conformal measure on Q with a (𝜕Q) = 0 and
dim∞ (a) > 𝑑 −2. Then

𝛽𝑁a (𝑞) = 𝛽𝐷a (𝑞) = liminf
𝑛→∞

𝛽𝐷a,𝑛 (𝑞) = liminf
𝑛→∞

𝛽𝑁a,𝑛 (𝑞)

for all 𝑞 > 0.

Proof. We use the same notation as in the proof of Proposition 2.51. By our
assumption there exists 𝑛 ∈ N such that 𝑆𝑢 (K) ⊂ Q̊ for some 𝑢 ∈𝑊𝑛. Indeed
assume for all 𝑛 ∈ N and 𝑢 ∈𝑊𝑛, we have

𝑆𝑢 (K) ∩ 𝜕Q ≠ ∅.

Further, using sup𝑢∈𝑊𝑛 diam (𝑆𝑢 (K)) ≤ 2−𝑛 → 0 for 𝑛→∞ and K =
⋃︁
𝑢∈𝑊𝑛 𝑆𝑢 (K),

we deduce that K ⊂ 𝜕Q. This gives a (𝜕Q) > 0 contradicting our assumption.

Let us assume that the distance of 𝑆𝑢 (K) to the boundary of Q is at least 2−𝑛−𝑚0+2
√
𝑑

for some𝑚0 ∈ N. Then all cubes 𝑄 ∈ D𝑁
𝑛+𝑚 intersecting 𝑆𝑢 (K) lie in D𝐷

𝑛+𝑚 for all
𝑚 >𝑚0. Therefore, using the self-similarity and [PS00, Lemma 2.2 and Lemma
2.4] (with constant 𝐶1 from there) we have for 𝑞 > 0∑︂

𝑄 ∈D𝐷
𝑛+𝑚

a (𝑄)𝑞 =
∑︂

𝑄 ∈D𝐷
𝑛+𝑚

(︄ ∑︂
𝑣∈𝑊𝑛

𝑝𝑣a

(︂
𝑆−1
𝑣 𝑄

)︂)︄𝑞
≥ 𝑝𝑞𝑢

∑︂
𝑄 ∈D𝑁

𝑛+𝑚

a

(︂
𝑆−1
𝑢 𝑄

)︂𝑞
≥ 𝐶−1

1 𝑝
𝑞
𝑢

∑︂
𝑄 ∈D𝑁

𝑚

a (𝑄)𝑞 .

This gives 𝛽𝑁a (𝑞) ≤ 𝛽𝐷a (𝑞) and liminf𝑛→∞ 𝛽𝑁𝑛 (𝑞) ≤ liminf𝑛→∞ 𝛽𝐷𝑛 (𝑞). The reverse
inequalities are obvious. Hence, the claim follows from Theorem 2.49. □

Corollary 2.53. Let a denote a self-conformal measure on Q with a (𝜕Q) = 0 and
dim∞ (a) > 𝑑 −2. Then, for all 𝑞 > 0, we have

𝛽𝑁a (𝑞) + (𝑑 −2)𝑞 = 𝜏𝑁
𝔍a

(𝑞) = liminf
𝑛→∞

𝜏𝑁
𝔍a ,𝑛

(𝑞) = 𝜏𝐷
𝔍a

(𝑞) = liminf
𝑛→∞

𝜏𝐷
𝔍a ,𝑛

(𝑞) .
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2.4. The spectral partition function

Proof. The cases 𝑑 = 1,2 follow immediately from Proposition 2.35 and Proposition
2.52. For 𝑑 > 2, we obtain from Proposition 2.51 and Proposition 2.52 the following
chain of inequalities

𝛽𝑁a (𝑞) + (𝑑 −2)𝑞 = liminf
𝑛→∞

𝛽𝐷𝑛 (𝑞) + (𝑑 −2)𝑞

≤ liminf
𝑛→∞

𝜏𝐷
𝔍a ,𝑛

(𝑞) ≤ liminf
𝑛→∞

𝜏𝑁
𝔍a ,𝑛

(𝑞)

= 𝜏𝑁
𝔍a

(𝑞) = 𝛽𝑁a (𝑞) + (𝑑 −2)𝑞. □
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Chapter 3

Partition entropy and optimized
coarse multifractal dimension

Throughout this chapter let 𝔍 be a non-negative set function defined on D which
is monotone, locally non-vanishing and uniformly vanishing (for the definitions
we refer to Section 2.3). This chapter is devoted to the study of the lower and
upper optimized coarse multifractal dimension with respect to 𝔍 and the lower and
upper 𝔍-partition entropy. If 𝔍 is equal to the spectral partition function 𝔍a,𝑎,𝑏 for
a certain choice of 𝑎,𝑏, then these quantities will be important in estimating the
lower and upper spectral dimension of Kreı̆n–Feller operators and the lower and
upper quantization dimension. First, we briefly recall the basic definitions from the
introduction. The upper, resp. lower 𝔍-partition entropy is given by

ℎ𝔍 = limsup
𝑥→∞

log
(︁
M𝔍 (𝑥)

)︁
log(𝑥) , ℎ

𝔍
= liminf

𝑥→∞

log
(︁
M𝔍 (𝑥)

)︁
log(𝑥) ,

with

M𝔍 (𝑥) = inf
{︃
card (𝑃) : 𝑃 ∈ Π𝔍 | max

𝐶∈𝑃
𝔍 (𝐶) < 1/𝑥

}︃
, 1/𝔍(Q) < 𝑥 .

Here Π𝔍 denotes the set of finite collections of dyadic cubes such that for all 𝑃 ∈ Π𝔍

there exists a partition ˜︁𝑃 of Q by dyadic cubes from D with 𝑃 =

{︂
𝑄 ∈ ˜︁𝑃 : 𝔍 (𝑄) > 0

}︂
.

The lower and upper optimized (Dirichlet/Neumann) coarse multifractal dimension
with respect to 𝔍 is given by

𝐹
𝐷/𝑁
𝔍

= sup
𝛼>0

𝐹
𝐷/𝑁
𝔍

(𝛼)
𝛼

and 𝐹
𝐷/𝑁
𝔍 = sup

𝛼>0

𝐹
𝐷/𝑁
𝔍 (𝛼)
𝛼
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3.1. Bounds for the partition entropy and optimized coarse multifractal dimension

with

𝐹
𝐷/𝑁
𝔍

(𝛼) = liminf
𝑛→∞

log+
(︂
N𝐷/𝑁

𝔍,𝛼
(𝑛)

)︂
log(2𝑛) and 𝐹

𝐷/𝑁
𝔍 (𝛼) = limsup

𝑛→∞

log+
(︂
N𝐷/𝑁

𝔍,𝛼
(𝑛)

)︂
log(2𝑛)

and

N𝐷/𝑁
𝔍,𝛼

(𝑛) = card
(︂
𝑀
𝐷/𝑁
𝑛 (𝛼)

)︂
, 𝑀

𝐷/𝑁
𝔍,𝑛

(𝛼) =
{︂
𝑄 ∈ D𝐷/𝑁

𝑛 : 𝔍 (𝑄) ≥ 2−𝛼𝑛
}︂
.

This chapter is divided into four sections. In Section 3.1, we present an adaptive
approximation partition algorithm (see Proposition 3.1) which yields an upper
bound for the upper 𝔍-partition entropy in terms of the zero of the 𝔍-partition
function. Further, we show that the lower and upper 𝔍-partition entropy is always
bounded from below by the lower and upper optimized coarse multifractal dimen-
sion. In Section 3.2, we prove that the 𝔍a,𝑎,𝑏-partition entropy, under the assumption
𝑏 dim∞(a) +𝑎𝑑 > 0, is bounded from above by

𝑞𝑁
𝔍a,𝑎,𝑏

= inf{𝑞 ≥ 0 : 𝜏𝑁
𝔍a,𝑎𝑏

(𝑞) < 0}.

In Section 3.3, we establish a connection to the classical works of Solomjak and
Birman [BS66; BS74], Borzov [Bor71], and the partition entropy. This enables us
to partially improve [Bor71, Theorem 1] for a wide class of singular set functions on
D. In the last chapter we study the lower and upper optimized coarse multifractal
dimension under mild conditions on 𝔍. One of the main result of this section is
the identification of the upper optimized coarse multifractal dimension by 𝑞𝐷/𝑁

𝔍
.

Further, we establish regularity conditions (see Definition 3.22) for which we can
guarantee that 𝐹𝐷/𝑁

𝔍
= 𝐹

𝐷/𝑁
𝔍 . Later, we will use this regularity result to give criteria

that allow us to ensure, depending on the setting, the existence of the spectral
dimension or quantization dimension, respectively.

3.1 Bounds for the partition entropy and optimized coarse
multifractal dimension

We begin with a motivation for the upper estimate of ℎ𝔍: For a given threshold
0 < 𝑡 < 𝔍(Q), we will construct partitions by dyadic cubes of D as a function
of 𝑡 via an adaptive approximation algorithm in the sense of [DeV87] (see also
[HKY00]) as follows. We say 𝑄 ∈ D is bad if 𝔍(𝑄) ≥ 𝑡 , otherwise we call 𝑄
good. We generate a partition of Q of elements of D into good intervals which
will be denoted by 𝑃𝑡 . By the choice of 𝑡 , we see that Q is bad. Hence, we put
B ≔ {Q}. Now, we divide each element of B into 2𝑑 cubes of D of equal size and
check whether they are good, in which case we move these cubes to 𝑃𝑡 , or they are
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3.1. Bounds for the partition entropy and optimized coarse multifractal dimension

bad, in which case they are put into B. We repeat this procedure until the set of
bad cubes is empty. The process terminates, which is ensured by the assumption
that 𝔍 decreases uniformly. Using the definition of D and M𝔍, it follows that the
resulting finite partition 𝑃𝑡 is optimal (in the sense of minimizing the cardinality,
i.e. M𝔍 (1/𝑡) = card(𝑃𝑡 )) among all partitions 𝑃 by dyadic cubes of D fulfilling
max𝑄 ∈𝑃 𝔍(𝑄) < 𝑡 . We provide a two-dimensional illustration (Figure 3.1.1) of
these partitions 𝑃𝑡 for three different values of 𝑡 ∈ (0,1) for the particular choice
𝔍(𝑄) = (a�a) (𝑄)Λ(𝑄)2, 𝑄 ∈ D, where a denotes the (𝑝,1−𝑝)-Cantor measure
supported on the triadic Cantor set.

Figure 3.1.1 Illustration of the adaptive approximation algorithm for 𝔍(𝑄) = (a �
a) (𝑄)Λ(𝑄)2, 𝑄 ∈ D, 𝑑 = 2, where a is the (0.1,0.9)-cantor measure. Here, the light
gray cubes belong to 𝑃10−3 , the gray cubes to 𝑃10−4 , and the black cubes to 𝑃10−7 . In this
figure we neglected all cubes with a-measure zero.

Now, the remaining task is to connect the asymptotic behavior of card(𝑃𝑡 ) with
the partition function 𝜏𝑁

𝔍
. Motivated by ideas from large derivation theory and the

thermodynamic formalism [Rue04], we are able to bound ℎ𝔍 from above by 𝑞𝑁
𝔍

,
namely, by comparing the cardinality of 𝑃𝑡 and 𝑄𝑡 ≔ {𝑄 ∈ D : 𝔍(𝑄) ≥ 𝑡}. This
will be the key idea in the proof of Proposition 3.1.
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3.1. Bounds for the partition entropy and optimized coarse multifractal dimension

Proposition 3.1. For 0 < 𝑡 < 𝔍(Q), we have that

𝑃𝑡 ≔
{︂
𝑄 ∈ D : 𝔍(𝑄) < 𝑡&∃𝑄 ′ ∈ D𝑁

|log2 (Λ(𝑄)) |/𝑑−1
:𝑄 ′ ⊃ 𝑄&𝔍(𝑄 ′) ≥ 𝑡

}︂
is a finite partition of dyadic cubes of Q, and the growth rate of card(𝑃𝑡 ) gives rise
to the following inequalities:

𝐹
𝑁

𝔍 ≤ ℎ𝔍 ≤ limsup
𝑡↓0

log (card(𝑃𝑡 ))
− log(𝑡) ≤ ^𝔍 ≤ 𝑞𝑁

𝔍
, (3.1.1)

𝐹
𝐷

𝔍 ≤ 𝑞𝐷
𝔍

, and

𝐹𝑁
𝔍
≤ ℎ

𝔍
≤ liminf

𝑡↓0

log (card(𝑃𝑡 ))
− log(𝑡) .

Remark 3.2. At this stage we would like to point out that in the next section (see
Proposition 3.20) , we will show equality in the above chain of inequalities (3.1.1)
using the coarse multifractal formalism under some mild additional assumptions on
𝔍.

Proof. We only have to consider the case ^𝔍 <∞. The first statement follows from
the monotonicity of 𝔍,

lim
𝑛→∞

sup
𝑖≥𝑛,𝐶∈D𝑁

𝑖

𝔍(𝐶) = 0,

the definition of D and Lemma 2.1. Further, Lemma 2.25 gives ^𝔍 ≤ 𝑞𝑁
𝔍

(where
equality holds if dim∞(𝔍) > 0, otherwise 𝑞𝑁

𝔍
=∞). Let 0 < 𝑡 < 𝔍(Q). Setting

𝑅𝑡 ≔ {𝑄 ∈ D : 𝔍(𝑄) ≥ 𝑡} ,

we note that for 𝑄 ∈ 𝑃𝑡 there is exactly one 𝑄 ′ ∈ 𝑅𝑡 ∩D𝑁

|log2 (Λ(𝑄)) |/𝑑−1
with 𝑄 ⊂ 𝑄 ′

and for each 𝑄 ′ ∈ 𝑅𝑡 ∩D𝑁

|log2 (Λ(𝑄)) |/𝑑−1
there are at most 2𝑑 elements of 𝑃𝑡 ∩

D𝑁

|log2 (Λ(𝑄)) |/𝑑 such that they are subsets of 𝑄 ′. Hence,

card(𝑃𝑡 ) ≤ 2𝑑 card(𝑅𝑡 ) .
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3.1. Bounds for the partition entropy and optimized coarse multifractal dimension

For 𝑞 > ^𝔍 we obtain

𝑡𝑞 card (𝑃𝑡 ) =
∞∑︂
𝑛=1

𝑡𝑞
∑︂

𝑄 ∈𝑃𝑡∩D𝑁
𝑛

1

≤ 2𝑑
∞∑︂
𝑛=0

∑︂
𝑄 ∈𝑅𝑡∩D𝑁

𝑛

𝑡𝑞

≤ 2𝑑
∞∑︂
𝑛=0

∑︂
𝑄 ∈𝑅𝑡∩D𝑁

𝑛

𝔍(𝑄)𝑞

≤ 2𝑑
∞∑︂
𝑛=0

∑︂
𝑄 ∈D𝑁

𝑛

𝔍(𝑄)𝑞 <∞.

This implies

limsup
𝑡↓0

log (card (𝑃𝑡 ))
− log(𝑡) ≤ 𝑞.

Now, 𝑞 tending to ^𝔍 proves the third inequality. The second and sixth inequality
follow immediately from the observation that M𝔍 (𝑥) ≤ card

(︁
𝑃1/𝑥

)︁
. For 𝛼 > 0,

𝑛 ∈ N, and 𝑃 ∈ Π𝔍 such that max𝐶∈𝑃 𝔍 (𝐶) < 2−𝑛𝛼 , we have

N𝑁
𝛼,𝔍

(𝑛) = card
(︂{︁
𝑄 ∈ D𝑁

𝑛 : 𝔍(𝑄) ≥ 2−𝛼𝑛
}︁)︂

≤ card (𝑃) ,

where we used the fact that for each 𝑄 ∈ D𝑁
𝑛 with 𝔍(𝑄) ≥ 2−𝛼𝑛 there exists at least

one 𝑄 ′ ∈ D (𝑄) ∩𝑃 and this assignment is injective. Indeed, since 𝑃 ∈ Π𝔍, 𝔍 is
locally non-vanishing, and 𝔍(𝑄) ≥ 1/𝑥 , it follows 𝑄 ∩𝑃 ≠ ∅. Therefore, using that
𝔍 is monotone, we deduce that there at least one exists 𝑄 ′ ∈ D (𝑄) ∩𝑃 . Thus, we
obtain (for an illustration see Figure 3.1.2)

N𝑁
𝛼,𝔍

(𝑛) ≤ M𝔍 (2𝛼𝑛) .

To prove 𝐹𝑁
𝔍
≤ ℎ

𝔍
, fix 𝛼 > 0, 𝑥 > max{1,𝔍(Q)}, and 𝑃 ∈ Π𝔍 such that M𝔍 (𝑥) =

card(𝑃). Then there exists 𝑛𝑥 ∈ N such that

2−(𝑛𝑥+1)𝛼 <
1
𝑥
≤ 2−𝑛𝑥𝛼 .

It follows
N𝑁
𝛼,𝔍

(𝑛𝑥 ) ≤ M𝔍 (2𝛼𝑛𝑥 ) ≤ M𝔍 (𝑥) .

Therefore, we obtain
N𝑁
𝛼,𝔍

(𝑛𝑥 ) ≤ card(𝑃) .
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3.1. Bounds for the partition entropy and optimized coarse multifractal dimension

Hence,
log

(︂
N𝑁
𝛼,𝔍

(𝑛𝑥 )
)︂

log(2𝑛𝑥𝛼 ) + log(2)𝛼 ≤
log

(︂
N𝑁
𝛼,𝔍

(𝑛𝑥 )
)︂

log(𝑥) ≤
log

(︁
M𝔍 (𝑥)

)︁
log(𝑥) ,

implying

liminf
𝑛→∞

log
(︂
N𝑁
𝛼,𝔍

(𝑛)
)︂

log(2𝑛𝛼 ) ≤ liminf
𝑥→∞

log
(︂
N𝑁
𝛼,𝔍

(𝑛𝑥 )
)︂

log(2𝑛𝑥𝛼 ) ≤ ℎ
𝔍
.

Therefore, taking the supremum over 𝛼 > 0 gives 𝐹𝑁
𝔍
≤ ℎ

𝔍
. The last claim follows

from the fact that for every 𝛼 > 0 and 𝑞 = 𝑞𝐷
𝔍

, we have

N𝐷
𝛼,𝔍

(𝑛) ≤ 2𝛼𝑛𝑞
∑︂

𝑄 ∈D𝐷
𝑛

𝔍(𝑄)𝑞 . □

Figure 3.1.2 Illustration of the cubes of 𝑀𝑁
𝛼,𝔍

(𝑛) (gray) and 𝑃2−𝛼𝑛 (underneath of gray cubes
in black) for 𝑛 = 4 and 𝛼 = 5.734 with 𝔍 as defined in Figure 3.1.1.

In Section 3.4 (see Proposition 3.20), we will show equality in the above chain
of inequalities (3.1.1) using the coarse multifractal formalism under some mild
additional assumptions on 𝔍.
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3.2. Upper bounds for the 𝔍a,𝑎,𝑏-partition entropy

Proposition 3.3. Assume there exists a sequence (𝑛𝑘 )𝑘 ∈ NN and 𝐾 > 0 such that
for all 𝑘 ∈ N,

max
𝑄 ∈D𝑁

𝑛𝑘

𝔍(𝑄)𝑞𝑛𝑘 ≤ 𝐾

2𝑛𝑘𝜏
𝑁
𝔍,𝑛𝑘

(0)

∑︂
𝑄 ∈D𝑁

𝑛𝑘

𝔍(𝑄)𝑞𝑛𝑘 ,

where 𝑞𝑛𝑘 is the unique zero of 𝜏𝑁𝑛𝑘 . Further, suppose liminf𝑘→∞𝑞𝑛𝑘 > 0. Then we
have

ℎ
𝔍
≤ liminf

𝑘→∞
𝑞𝑛𝑘 .

Proof. First of all, note that we have
∑︁
𝑄 ∈D𝑁

𝑛𝑘

𝔍(𝑄)𝑞𝑛𝑘 = 1. Further, since 𝔍 is

uniformly decreasing, we choose 𝑘 large enough such that 𝔍(𝑄) < 1 for all𝑄 ∈ D𝑁
𝑛𝑘

.
Ensuring that 𝜏𝑁𝑛𝑘 has a unique zero. Hence, we obtain

max
𝑄 ∈D𝑁

𝑛𝑘

𝔍(𝑄) ≤ 𝐾1/𝑞𝑛𝑘

2𝑛𝑘𝜏
𝑁
𝔍,𝑛𝑘

(0)/𝑞𝑛𝑘
.

This implies

log
(︃
M𝔍

(︃
2
𝜏𝑁
𝔍,𝑛𝑘

(0)𝑛𝑘 /𝑞𝑛𝑘

2𝐾1/𝑞𝑛𝑘

)︃)︃
log

(︃
2
𝜏𝑁
𝔍,𝑛𝑘

(0)𝑛𝑘 /𝑞𝑛𝑘

2𝐾1/𝑞𝑛𝑘

)︃ ≤
log

(︂
2𝑛𝑘𝜏

𝑁
𝔍,𝑛𝑘

(0) )︂
log

(︃
2
𝜏𝑁
𝔍,𝑛𝑘

(0)𝑛𝑘 /𝑞𝑛𝑘

2𝐾1/𝑞𝑛𝑘

)︃ ,
which proves the claim. □

3.2 Upper bounds for the 𝔍a,𝑎,𝑏-partition entropy

This section is devoted to the study of the 𝔍a,𝑎,𝑏-partition entropy, which is ultimately
associated with the spectral dimension for a certain choice of parameters 𝑎 ∈R, 𝑏 > 0.
Let us introduce the following notation: M𝑎,𝑏 (𝑥) ≔M𝔍a,𝑎,𝑏 (𝑥), 𝑥 > 0, as well as

ℎ𝑎,𝑏 ≔ ℎ𝔍a,𝑎,𝑏 , ℎ𝑎,𝑏 ≔ ℎ
𝔍a,𝑎,𝑏

and ℎ𝑎 ≔ ℎ𝑎,1, ℎ𝑎 ≔ ℎ
𝑎,1.

The following theorem treats an upper estimate of ℎ𝑎,𝑏 for the case 𝑎 = 0.

Proposition 3.4. If dim∞(a) > 0, then

ℎ0,𝑏 ≤ 𝑞𝑁𝔍a,0,𝑏 = inf

{︄
𝑞 ≥ 0 :

∑︂
𝐶∈D

𝔍a,0,𝑏 (𝐶)𝑞 <∞
}︄
=

1
𝑏
.

Proof. First, note that Proposition 2.35 implies dim∞(𝔍a,0,𝑏) = 𝑏 dim∞(a) > 0.
Therefore, we deduce that 𝔍a,0,𝑏 is uniformly vanishing by Lemma 2.23. An
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application of Proposition 3.1 with 𝔍 = 𝔍a,0,𝑏 gives ℎ0,𝑏 ≤ 𝑞𝑁𝔍a,0,𝑏 . Furthermore, we

have by Proposition 2.35 that 𝛽𝑁a (𝑞𝑏) = 𝜏𝑁
𝔍a,0,𝑏

(𝑞). Thus, by Lemma 2.25, we obtain

inf

{︄
𝑞 ≥ 0 :

∑︂
𝐶∈D

𝔍a,0,𝑏 (𝐶)𝑞 <∞
}︄
= 𝑞𝑁

𝔍a,0,𝑏
=

1
𝑏
. □

The rest of this section deals with the case 𝑎 ≠ 0. Recalling the definition of 𝑞𝑁
𝔍

, we
find 𝑞𝑁

aΛ𝑎 ≤ 𝑞𝑁𝔍a,𝑎,1 with equality for the case 𝑎 > 0. We need the following elementary
lemma.

Lemma 3.5. For 𝑐,𝑑 ∈ R with 𝑐 < 𝑑, let (𝑓𝑛 : [𝑐,𝑑] → R)𝑛∈N be a sequence of
decreasing functions converging pointwise to a function 𝑓 . We assume that 𝑓𝑛 has a
unique zero in 𝑥𝑛, 𝑛 ∈ N, and 𝑓 has a unique zero in 𝑥 . Then 𝑥 = lim𝑛→∞𝑥𝑛.

Proof. Assume that (𝑥𝑛)𝑛 does not converge to 𝑥 . Then, because [𝑐,𝑑] is compact,
there exists a subsequence (𝑛𝑘 )𝑘 such that 𝑥𝑛𝑘 → 𝑥∗ ≠ 𝑥 for 𝑘 →∞ and 𝑥∗ ∈ [𝑐,𝑑].
We only consider 𝑥∗ < 𝑥 , the case 𝑥∗ > 𝑥 follows analogously. Then, for 𝑘 large, we
have 𝑥𝑛𝑘 ≤ (𝑥∗ +𝑥)/2. Thus, for each 𝑦 ∈ ((𝑥∗ +𝑥)/2,𝑥), we have

0 = 𝑓𝑛𝑘 (𝑥𝑛𝑘 ) > 𝑓𝑛𝑘 (𝑦) ≥ 𝑓𝑛𝑘 (𝑥) → 𝑓 (𝑥) = 0, for 𝑘 →∞.

Consequently, 𝑓 (𝑦) = 0 for all 𝑦 ∈ ((𝑥∗ +𝑥)/2,𝑥), contradicting the uniqueness of
the zero of 𝑓 . □

Proposition 3.6. Suppose 𝑏 dim∞(a) +𝑎𝑑 > 0. If 𝑎 < 0, then

ℎ𝑎,𝑏 =
ℎ𝑎/𝑏,1
𝑏

≤
𝑞𝑁
𝔍a,𝑎/𝑏,1

𝑏
≤ dim∞ (a)
𝑏 dim∞ (a) +𝑎𝑑 .

If 𝑎 > 0, then

ℎ𝑎,𝑏 ≤ 𝑞𝑁𝔍a,𝑎,𝑏 = inf
{︁
𝑞 > 0 : 𝛽𝑁a (𝑏𝑞) < 𝑎𝑑𝑞

}︁
≤ dim𝑀 (a)
𝑏dim𝑀 (a) +𝑎𝑑

≤ 1
𝑏 +𝑎 .

In particular, if dim∞ (a) > 𝑑 −2 and 𝑑 > 2, then for all 𝑡 ∈ (0,2dim∞ (a) /(𝑑 −2)),
we have

ℎ2/𝑑−1,2/𝑡 =
𝑡

2
ℎ𝑡 (2/𝑑−1)/2,1 ≤

𝑡

2
𝑞𝑁
𝔍a,𝑡 (2/𝑑−1)/2,1

≤ dim∞ (a)
2dim∞ (a) /𝑡 +2−𝑑 .

Moreover, lim𝑡↓2𝑞
𝑁
𝔍a,𝑡 (2/𝑑−1)/2,1

= 𝑞𝑁
𝔍a

.
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3.2. Upper bounds for the 𝔍a,𝑎,𝑏-partition entropy

Proof. Since 𝑏 dim∞(a) +𝑎𝑑 > 0, we obtain from Fact 2.37 that

dim∞(𝔍a,𝑎/𝑏,1) = dim∞(a) +𝑎𝑑/𝑏 > 0.

Using the definition of M𝑎,𝑏 (𝑥) and Proposition 3.1 applied to 𝔍 = 𝔍a,𝑎/𝑏,1, we
obtain

ℎ𝑎,𝑏 = limsup
𝑥→∞

log
(︁
M𝑎,𝑏 (𝑥)

)︁
log(𝑥) = limsup

𝑥→∞

log
(︁
M𝑎/𝑏,1

(︁
𝑥1/𝑏 )︁ )︁

𝑏 log(𝑥1/𝑏)
=

1
𝑏
ℎ𝑎/𝑏,1 ≤

𝑞𝑁
𝔍a,𝑎/𝑏,1

𝑏
,

where for the third equality we used the bijectivity of 𝑥 ↦→ 𝑥1/𝑏 , 𝑥 > 0. The estimate
of 𝑞𝑁

𝔍a,𝑎,𝑏
for the case 𝑎 > 0 follows from

𝛽𝑁a (𝑏𝑞) ≤ dim𝑀 (a) (1−𝑞𝑏)

for all 0 ≤ 𝑞 ≤ 1/𝑏. For the case 𝑎 < 0, Fact 2.37 implies

𝑞𝑁
𝔍a,𝑎/𝑏,1

≤ dim∞ (a) /(dim∞(a) +𝑎𝑑/𝑏) .

Now, let dim∞ (a) > 𝑑 −2, 𝑑 > 2, and 𝑡 ∈ 𝐼 ≔ (0,2dim∞ (a) /(𝑑 −2)). we obtain

dim∞
(︁
𝔍a,𝑡 (2/𝑑−1)/2,1

)︁
= dim∞ (a) +𝑑𝑡 (2/𝑑 −1)/2 > 0.

Hence, the third claim follows from the first part. The rest of the proof is devoted to
the proof of lim𝑡↓2𝑞

𝑁
𝔍a,𝑡 (2/𝑑−1)/2,1

= 𝑞𝑁
𝔍a,(2/𝑑−1),1

. First, observe that, using

0 < 𝑡 (𝑑 −2)/2 < 𝑠 < dim∞ (a) ,

we have for 𝑛 large
a (𝐶) ≤ 2−𝑠𝑛, 𝐶 ∈ D𝑁

𝑛 .

Set 𝑎 ≔ 2/𝑑 −1 and for fixed 𝑞 ≥ 0, consider

𝑡 ↦→ 𝜏𝑁
𝔍a,𝑎𝑡/2,1

(𝑞) = limsup
𝑛→∞

log
(︂∑︁

𝑄 ∈D𝑁
𝑛

max𝑄′∈D(𝑄) a (𝑄 ′)𝑞 (Λ(𝑄 ′)𝑞𝑎)𝑡/2
)︂

log(2𝑛) .

Since 𝑓𝑄 : 𝑡 ↦→ a (𝑄)𝑞 (Λ(𝑄)𝑞𝑎)𝑡/2, 𝑄 ∈ D𝑁
𝑛 with a (𝑄) > 0 and 𝑡 ∈ 𝐼 , is log-convex,

i.e. for all \ ∈ (0,1) and 𝑠,𝑡 ∈ R>0, we have

log
(︁
𝑓𝑄 (\𝑡 + (1−\ )𝑠)

)︁
≤ \ log

(︁
𝑓𝑄 (𝑡)

)︁
+ (1−\ ) log

(︁
𝑓𝑄 (𝑠)

)︁
,

it follows that
𝑡 ↦→ max

𝑄′∈D(𝑄)
a (𝑄 ′)𝑞 (Λ(𝑄 ′)𝑞𝑎)𝑡/2
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is also log-convex (the existence of the maximum is ensured by

𝔍a,𝑎𝑡/2,1(𝐶) ≤ 2𝑛 (−𝑠+(𝑑−2)𝑡/2)

for all𝐶 ∈ D𝑁
𝑛 ). Therefore, we get with the Hölder inequality that 𝑡 ↦→ 𝜏𝑁

𝔍a,𝑎𝑡/2,1,𝑛
(𝑞),

𝑡 ∈ 𝐼 is convex, which carries over to the limit superior 𝑡 ↦→ 𝜏𝑁
𝔍a,𝑎𝑡/2,1

(𝑞), 𝑡 ∈ 𝐼 , of

convex functions. Further, we have 𝜏𝑁
𝔍a,𝑎𝑡/2,1

(𝑞) <∞ for all 𝑡 ∈ 𝐼 . Hence, by Theorem

A.5, it follows that 𝜏𝑁
𝔍a,𝑎𝑡/2,1

is continuous on 𝐼 . In particular, for each 𝑞 ≥ 0, we have

lim
𝑡→2

𝜏𝑁
𝔍a,𝑎𝑡/2,1

(𝑞) = 𝜏𝑁
𝔍a,𝑎,1

(𝑞) .

By Lemma 2.27 we deduce that 𝑞𝑁
𝔍a,𝑎𝑡/2,1

is the unique zero of 𝑞 ↦→ 𝜏𝑁
𝔍a,𝑎𝑡/2,1

(𝑞).
Hence, for fixed 𝑡 ∈ 𝐼 , we have that 𝑞 ↦→ 𝜏𝑁

𝔍a,𝑎𝑡/2,1
(𝑞) is decreasing and has a unique

zero given by 𝑞𝑁
𝔍a,𝑎𝑡/2,1

. Further, for all 𝑡 ∈ [2, (2+2dim∞(a)/(𝑑 −2))/2], we have

0 ≤ 𝑞𝑁
𝔍a,𝑎𝑡/2,1

≤ dim∞(a)
dim∞(a) + (2−𝑑)𝑡/2

≤ dim∞(a)
dim∞(a) + (2−𝑑) (1+dim∞(a)/(𝑑 −2))/2

≕ 𝑔.

Now, Lemma 3.5, applied to

𝑞 ↦→ 𝜏𝑁
𝔍a,𝑎𝑡/2,1

| [0,𝑔], 𝑡 ∈ [2, (2+dim∞(a)/(𝑑 −2))/2],

implies
lim
𝑡↓2

𝑞𝑁
𝔍a,𝑎𝑡/2,1

= 𝑞𝑁
𝔍a,𝑎,1

. □

3.3 The dual problem

This section is devoted to study the dual problem of M𝔍. Recall from Section 1.1.3
that the dual problem is concerned with the control of the asymptotic behavior of

𝛾𝔍,𝑛 = inf
𝑃 ∈Π𝔍,

card(𝑃 ) ≤𝑛

max
𝑄 ∈𝑃

𝔍(𝑄) .

In particular, we are interested in the special choice 𝔍𝐽 ,𝑎 (𝑄) ≔ 𝐽 (𝑄)Λ(𝑄)𝑎, 𝑎 > 0,
𝑄 ∈ D, where 𝐽 is a non-negative, finite, locally non-vanishing, and superadditive
function on D, that is, if𝑄 ∈ D is decomposed into a finite number of disjoint cubes(︁
𝑄𝑗

)︁
𝑗=1,...,𝑁 of D, then

∑︁𝑁
𝑗=1 𝐽 (𝑄𝑗 ) ≤ 𝐽 (𝑄). We are now interested in the growth

properties of 𝛾𝔍𝐽 ,𝑎,𝑛. Upper estimates for 𝛾𝔍𝐽 ,𝑎,𝑛 have been first obtained in [BS67;
Bor71]. Here, we proceed as follows: First we present an adaptive approximation
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algorithm going back to Birman/Solomjak [BS67; Bor71] to obtain well-known
upper bounds on 𝛾𝔍𝐽 ,𝑎,𝑛. After that we employ the estimates of Proposition 3.1 to
partially improve and extend the results in [BS67; Bor71].

In the following we use the terminology as in [DKS20]. Let Ξ0 be a finite partition
of Q of dyadic cubes from D. We say a partition Ξ′ of Q is an elementary extension
of Ξ0 if it can be obtained by uniformly splitting some of its cubes into 2𝑑 equal
sized disjoint cubes lying in D with half side length. We call a partition Ξ dyadic
subdivision of an initial partition Ξ0 if it is obtained from the partition Ξ0 with the
help of a finite number of elementary extensions.

Proposition 3.7 ([BS67], [Bor71]). Let Ξ0 be a finite partition of Q with dyadic
cubes from D and suppose there exists Y > 0 and a subset Ξ

′
0 ⊂ Ξ0 such that∑︂

𝑄 ∈Ξ0\Ξ
′
0

Λ(𝑄) ≤ Y and
∑︂
𝑄 ∈Ξ′

0

𝐽 (𝑄) ≤ Y.

Let (𝑃𝑘 )𝑘∈N denote a sequence of dyadic partitions obtained recursively as follows:
We set 𝑃0 ≔ Ξ0 and, for 𝑘 ∈ N, we construct an elementary extension 𝑃𝑘 of 𝑃𝑘−1 by
subdividing all cubes 𝑄 ∈ 𝑃𝑘−1 for which

𝔍𝐽 ,𝑎 (𝑄) ≥ 2−𝑑𝑎𝐺𝑎 (𝑃𝑘−1)

with𝐺𝑎 (𝑃𝑘−1) ≔ max𝑄 ∈𝑃𝑘−1 𝔍𝐽 ,𝑎 (𝑄), into 2𝑑 equal sized cubes. Then, for all 𝑘 ∈ N,
we have

𝐺𝑎 (𝑃𝑘 ) = max
𝑄 ∈𝑃𝑘

𝔍𝐽 ,𝑎 (𝑄) ≤ 𝐶Ymin(1,𝑎) (𝑁𝑘 −𝑁0)−(1+𝑎) 𝐽 (Q)

with 𝑁𝑘 ≔ card(𝑃𝑘 ), 𝑘 ∈ N0, and the constant 𝐶 > 0 depends only on 𝑎 and 𝑑. In
particular, there exists 𝐶 ′ > 0 such that for all 𝑛 > 𝑁0,

𝛾𝔍𝐽 ,𝑎,𝑛 ≤ 𝐶 ′Ymin(1,𝑎)𝑛−(1+𝑎) 𝐽 (Q) .

Proof. Here, we follow closely [DKS20]. Without loss of generality we may
assume 𝐽 (Q) ≤ 1. Fix 𝑘 ∈ N and let 𝑆𝑘 denote the set of all cubes from 𝑃𝑘−1 that
are subdivided to obtain 𝑃𝑘 . Further, let 𝑆1

𝑘
,𝑆2
𝑘
⊂ 𝑆𝑘 with 𝑆𝑘 = 𝑆1

𝑘
∪𝑆2

𝑘
,⋃︂

𝑄 ∈𝑆1
𝑘

𝑄 ⊂
⋃︂

𝑄 ∈Ξ0\Ξ
′
0

𝑄,

and ⋃︂
𝑄 ∈𝑆2

𝑘

𝑄 ⊂
⋃︂
𝑄 ∈Ξ′

0

𝑄.

We define 𝑡𝑘 ≔ card(𝑆𝑘 ), 𝑡1,𝑘 ≔ card(𝑆1
𝑘
), and 𝑡2,𝑘 ≔ card(𝑆2

𝑘
). By the definition of
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𝑃𝑘 , we have min𝑄 ∈𝑆𝑖
𝑘
𝔍𝐽 ,𝑎 (𝑄) ≥ 2−𝑑𝑎𝐺𝑎 (𝑃𝑘−1) and we obtain(︂

2−𝑑𝑎𝐺𝑎 (𝑃𝑘−1)
)︂ 1

1+𝑎 ≤ min
𝑄 ∈𝑆𝑖

𝑘

𝔍𝐽 ,𝑎 (𝑄)
1

1+𝑎 ≤ 1
𝑡𝑖,𝑘

∑︂
𝑄 ∈𝑆𝑖

𝑘

Λ(𝑄) 𝑎
1+𝑎 𝐽 (𝑄) 1

1+𝑎 .

By the Hölder inequality and the superadditivity of 𝐽 , we obtain for 𝑖 = 1,2,

(︂
2−𝑑𝑎𝐺𝑎 (𝑃𝑘−1)

)︂ 1
1+𝑎 ≤ 1

𝑡𝑖,𝑘

⎛⎜⎝
∑︂
𝑄 ∈𝑆𝑖

𝑘

Λ(𝑄)⎞⎟⎠
𝑎

1+𝑎 ⎛⎜⎝
∑︂
𝑄 ∈𝑆𝑖

𝑘

𝐽 (𝑄)⎞⎟⎠
1

1+𝑎

≤ 1
𝑡𝑖,𝑘

Y
min(1,𝑎)

1+𝑎 .

This is equivalent to

𝑡𝑖,𝑘 ≤ 2
𝑎𝑑
1+𝑎 Y

min(1,𝑎)
1+𝑎 (𝐺𝑎 (𝑃𝑘−1))−

1
1+𝑎 .

Since 𝑡𝑘 = 𝑡1,𝑘 + 𝑡2,𝑘 , we have 𝑡𝑘 ≤ 21+ 𝑎𝑑1+𝑎 Y
min(1,𝑎)

1+𝑎 (𝐺𝑎 (𝑃𝑘−1))−
1

1+𝑎 . By the definition
of the dyadic subdivision 𝑃𝑗 , 𝑗 ∈ N,

𝐺𝑎 (𝑃𝑗 ) ≤ max
{︃

max
𝑄 ∈𝑃𝑗∩𝑃𝑗−1

𝔍𝐽 ,𝑎 (𝑄), max
𝑄 ∈𝑃𝑗 \𝑃𝑗−1

𝔍𝐽 ,𝑎 (𝑄)
}︃

≤ max
{︃
2−𝑎𝑑𝐺𝑎 (𝑃𝑗−1),max

𝑄 ∈𝑆𝑗
2−𝑎𝑑𝔍𝐽 ,𝑎 (𝑄)

}︃
≤ 2−𝑎𝑑𝐺𝑎 (𝑃𝑗−1) .

(3.3.1)

Now, applying (3.3.1) recursively, for all integers 𝑗 ≤ 𝑘 , we obtain

𝐺𝑎 (𝑃𝑘−1) ≤ 2−𝑎𝑑 (𝑘−𝑗)𝐺𝑎 (𝑃𝑗−1) .

Since for all 𝑗 ∈ N we have 𝑁𝑗 −𝑁𝑗−1 = (2𝑑 −1)𝑡𝑗 . Hence, for all 𝑘 ∈ N, we deduce

𝑁𝑘 −𝑁0 = (2𝑑 −1)
𝑘∑︂
𝑗=1

𝑡𝑗

≤ 21+ 𝑎𝑑1+𝑎 Y
min(1,𝑎)

1+𝑎 (2𝑑 −1)
𝑘∑︂
𝑗=1

𝐺𝑎 (𝑃𝑗−1)−
1

1+𝑎

≤ 21+ 𝑎𝑑1+𝑎 Y
min(1,𝑎)

1+𝑎 (2𝑑 −1)𝐺𝑎 (𝑃𝑘−1)−
1

1+𝑎

𝑘∑︂
𝑗=1

2−
𝑎𝑑
1+𝑎 (𝑘−𝑗)

≤
(︂
1−2−

𝑎𝑑
1+𝑎

)︂−1
21+ 𝑎𝑑1+𝑎 Y

min(1,𝑎)
1+𝑎 (2𝑑 −1)𝐺𝑎 (𝑃𝑘−1)−

1
1+𝑎

≤
(︂
1−2−

𝑎𝑑
1+𝑎

)︂−1
21+ 𝑎𝑑1+𝑎 Y

min(1,𝑎)
1+𝑎 (2𝑑 −1)2− 𝑎𝑑

1+𝑎𝐺𝑎 (𝑃𝑘 )−
1

1+𝑎 .
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This proves our first claim. For the second claim note that, since lim𝑘→∞𝑁𝑘 =∞,
for each 𝑛 ∈ N there exists 𝑘 ∈ N such that 𝑁𝑘−1 ≤ 𝑛 < 𝑁𝑘 . Furthermore, we always
have 𝑁𝑘−1 ≤ 𝑁𝑘 ≤ 2𝑑𝑁𝑘−1. Thus, by combining both inequalities, we obtain

𝛾𝔍𝐽 ,𝑎,𝑛 ≤ 𝛾𝔍𝐽 ,𝑎,𝑁𝑘−1

≤ 𝐶Ymin(1,𝑎) (𝑁𝑘−1 −𝑁0)−(1+𝑎)

≤ 𝐶Ymin(1,𝑎)
(︂
2−𝑑𝑛−𝑁0

)︂−(1+𝑎)
. □

Definition 3.8. We call 𝐽 a singular function with respect to Λ if for every Y > 0
there exist two partitions Ξ′

0 ⊂ Ξ0 ⊂ D of Q such that∑︂
𝑄 ∈Ξ0\Ξ

′
0

Λ(𝑄) ≤ Y and
∑︂
𝑄 ∈Ξ′

0

𝐽 (𝑄) ≤ Y.

Remark 3.9. Since D is a semiring of sets, it follows that a measure a which is
singular with respect to the Lebesgue measure, is also singular as a function 𝐽 = a
in the sense of Definition 3.8.

As an immediate corollary of Proposition 3.7, we obtain the following statement by
[Bor71].

Corollary 3.10. We always have

𝛾𝔍𝐽 ,𝑎,𝑛 =𝑂

(︂
𝑛−(1+𝑎)

)︂
andM𝔍𝐽 ,𝑎 (𝑥) =𝑂

(︂
𝑥1/(1+𝑎)

)︂
.

If additionally 𝐽 is singular, then

𝛾𝔍𝐽 ,𝑎,𝑛 = 𝑜

(︂
𝑛−(1+𝑎)

)︂
andM𝔍𝐽 ,𝑎 (𝑥) = 𝑜

(︂
𝑥1/(1+𝑎)

)︂
.

Using Proposition 3.1, we are able to extend the class of set functions considered in
[BS67, Theorem 2.1] (i.e. we allow set functions 𝔍 for which 𝔍 is only assumed to
be non-negative, monotone, and dim∞(𝔍) > 0). We obtain the following estimate
for the upper exponent of divergence of 𝛾𝔍,𝑛 given by

𝛼𝔍 ≔ limsup
𝑛→∞

log
(︁
𝛾𝔍,𝑛

)︁
log(𝑛) and 𝛼

𝔍
≔ liminf

𝑛→∞

log
(︁
𝛾𝔍,𝑛

)︁
log(𝑛) .

Proposition 3.11. If dim∞(𝔍) > 0, then

− 1

ℎ𝔍
= 𝛼𝔍 ≤ − 1

𝑞𝑁
𝔍

≤ − dim∞(𝔍)
dim𝑀 (supp (𝔍))

and − 1
ℎ
𝔍

= 𝛼
𝔍
.
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In particular, for 𝔍 = 𝔍𝐽 ,𝑎, we have dim∞(𝔍) = dim∞ 𝐽 +𝑎𝑑 > 0 and

− 1

ℎ𝔍𝐽 ,𝑎

= 𝛼𝔍𝐽 ,𝑎 ≤ − 1
𝑞𝑁
𝔍𝐽 ,𝑎

≤ − dim𝑀 ((𝐽 )) +𝑎𝑑
dim𝑀 (supp (𝐽 ))

≤ −(1+𝑎) .

Remark 3.12. If 𝜏𝑁
𝔍𝐽 ,𝑎

(𝑞) < 𝑑 (1−𝑞(1+𝑎)) for some 𝑞 ∈ (0,1), then this estimate
improves the corresponding results of [Bor71; BS67, Theorem 2.1], where only
𝛼𝔍𝐽 ,𝑎 ≤ −(1+𝑎) has been shown.

Proof. For all Y > 0, we have for 𝑛 large

M𝔍

(︂
𝑛1/(ℎ𝔍+Y)

)︂
≤ 𝑛,

this gives min𝑃 ∈Π𝔍,card(𝑃 ) ≤𝑛max𝑄 ∈𝑃 𝔍(𝑄) ≤ 𝑛−1/(ℎ𝔍+Y) . Thus, in tandem with Lemma
2.25 and Proposition 3.1, we see that

𝛼𝔍 ≤ −1/ℎ𝔍 ≤ −1/𝑞𝑁
𝔍
≤ −dim∞(𝔍)/dim𝑀 (supp (𝔍)) .

In particular, since 𝑞𝑁
𝔍
≥ 0, we have 𝛼𝔍 < 0. To prove the equality, it is left to show

𝛼𝔍 ≥ −1/ℎ𝔍. First, assume 𝛼𝔍 > −∞, then for Y > 0 with 𝛼𝔍 + Y < 0 and 𝑛 large, we
have

inf
𝑃 ∈Π𝔍,

card(𝑃 ) ≤𝑛

max
𝑄 ∈𝑃

𝔍(𝑄) ≤ 𝑛𝛼𝔍+Y .

By the definition of infimum, there exists 𝑃 ′ ∈ Π𝔍 with card(𝑃 ′) ≤ 𝑛 such that

max
𝑄 ∈𝑃 ′

𝔍(𝑄) ≤
(︃
1+ 2

3

)︃
𝑛𝛼𝔍+Y < 2𝑛𝛼𝔍+Y,

implying M𝔍

(︁
𝑛−(𝛼𝔍+Y)/2

)︁
≤ 𝑛. Moreover, for each 𝑥 ≥ 1 there exists𝑚 ∈ N such

that
𝑚−(𝛼𝔍+Y)/2 ≤ 𝑥 < (𝑚 +1)−(𝛼𝔍+Y)/2.

Consequently, for 𝑥 large, we have

log
(︁
M𝔍 (𝑥)

)︁
log(𝑥) ≤

log
(︁
M𝔍

(︁
(𝑚 +1)−(𝛼𝔍+Y)/2

)︁ )︁
log(𝑚−(𝛼𝔍+Y)/2)

≤ log(𝑚 +1)
log(𝑚−(𝛼𝔍+Y)/2)

.

Therefore, we infer that ℎ𝔍 ≤ −1/𝛼𝔍 or equivalently 𝛼𝔍 ≥ −1/ℎ𝔍. In the case
𝛼𝔍 = −∞ it follows in a similar way that ℎ𝔍 = 0. Now, we consider the special case
𝔍 = 𝔍𝐽 ,𝑎. Observe that 𝜏𝑁

𝔍𝐽 ,𝑎
(𝑞) = 𝜏𝑁

𝐽
(𝑞) −𝑎𝑑𝑞 for 𝑞 ≥ 0 and 𝜏𝑁

𝐽
(0) ≤ 𝑑. From the
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fact that 𝐽 is sub-additive, it follows that 𝜏𝑁
𝐽
(1) ≤ 0. We only have to consider the

case 𝜏𝑁
𝐽
(1) > −∞. Since 𝜏𝑁

𝐽
is convex, for every 𝑞 ∈ [0,1], we deduce

𝜏𝑁
𝔍𝐽 ,𝑎

(𝑞) = 𝜏𝑁𝐽 (𝑞) −𝑎𝑑𝑞 ≤ 𝜏𝑁𝐽 (0) (1−𝑞) −𝑎𝑑𝑞 ≤ 𝑑 (1−𝑞) −𝑎𝑑𝑞.

This implies 𝑞𝑁
𝔍𝐽 ,𝑎

≤ 𝜏𝑁
𝐽
(0)/(𝜏𝑁

𝐽
(0) +𝑎𝑑) ≤ 1/(1+𝑎). From Proposition 3.1, we

deduce

− 1

ℎ𝔍
≤ − 1

𝑞𝑁
𝔍𝐽 ,𝑎

≤ −dim𝑀 (supp(𝐽 )) +𝑎𝑑
dim𝑀 (supp (𝐽 ))

≤ −(1+𝑎) . □

The following proposition establishes an upper bound of ℎ
𝔍𝐽 ,𝑎

in terms of the lower
Minkowski dimension of 𝐽 and the lower ∞-dimension of 𝐽 .

Proposition 3.13. If dim∞(𝐽 ) ∈ [0,∞), then we have

ℎ
𝔍𝐽 ,𝑎

≤
dim

𝑀
(supp(𝐽 ))

𝑎𝑑 +dim∞(𝐽 ) .

Proof. We only consider the case dim∞(𝐽 ) > 0. The case dim∞(𝐽 ) = 0 follows
along the same lines. Let 0 < 𝑠 < dim∞(𝐽 ) and set 𝑎 ≔ 𝑟/𝑑. Then, for 𝑛 large, we
have

max
𝑄 ∈D𝑁

𝑛

𝔍(𝑄)Λ(𝑄)𝑎 ≤ 2−(𝑠+𝑎𝑑)𝑛 < 2−(𝑠+𝑎𝑑)𝑛+1.

This implies
M𝔍𝐽 ,𝑎

(︂
2−(𝑠+𝑎𝑑)𝑛+1

)︂
≤ 2𝑛𝜏𝐽 ,𝑛 (0) .

Therefore, we obtain

ℎ
𝔍a,𝑎

≤ liminf
𝑛→∞

log
(︁
M𝔍a,𝑎

(︁
2(𝑠+𝑎𝑑)𝑛−1)︁ )︁

log
(︁
2(𝑠+𝑎𝑑)𝑛−1

)︁
≤ liminf

𝑛→∞

log
(︁
2𝑛𝛽a,𝑛 (0)

)︁
log

(︁
2(𝑠+𝑎𝑑)𝑛−1

)︁
= liminf

𝑛→∞

𝜏𝐽 ,𝑛 (0)
(𝑠 +𝑎𝑑) −1/𝑛 =

dim
𝑀
(supp(𝐽 ))
𝑎𝑑 +𝑠 .

Now, 𝑠 ↑ dim∞(𝐽 ) gives ℎ
𝔍𝐽 ,𝑎

≤ dim
𝑀
(supp(𝐽 ))/(𝑎𝑑 +dim∞(𝐽 )). □

3.4 Coarse multifractal analysis

Throughout this section let 𝔍 be a non-negative, monotone and locally non-vanishing
set function defined on the set of dyadic cubes D. We additionally assume that
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3.4. Coarse multifractal analysis

(A1) there exists 𝑎 > 0 and 𝑏 ∈ R such that 𝜏𝐷/𝑁
𝔍,𝑛

(𝑎) ≥ 𝑏 for all 𝑛 large enough
(excluding trivial cases),

(A2) the maximal asymptotic direction of 𝜏𝑁
𝔍

is negative, i.e. dim∞ (𝔍) > 0 (this
generalizes the assumption dim∞(a) −𝑑 +2 > 0).

Lemma 3.14. Under the assumptions (A1) and (A2) with 𝑎 and 𝑏 as determined
there and 𝐿 ≔ (𝑏 −𝑑)/𝑎 < 0, for all 𝑛 large enough and 𝑞 ≥ 0, we have

𝑏 +𝑞𝐿 ≤ 𝜏𝐷/𝑁
𝔍,𝑛

(𝑞) .

In particular, −∞ < liminf𝑛→∞𝜏
𝐷/𝑁
𝔍,𝑛

(𝑞) and dim∞ (𝔍) ≤ −𝐿.

Proof. By our assumptions, we have dim∞ (𝔍) > 0, therefore, for 𝑛 large, 𝜏𝐷/𝑁
𝔍,𝑛

is

monotone decreasing and also 𝑏 ≤ 𝜏𝐷/𝑁
𝔍,𝑛

(𝑎). By the definition of 𝜏𝐷/𝑁
𝔍,𝑛

we have

𝜏
𝐷/𝑁
𝔍,𝑛

(0) ≤ 𝑑 for all 𝑛 ∈ N and the convexity of 𝜏𝐷/𝑁
𝔍,𝑛

implies for all 𝑞 ∈ [0,𝑎]

𝜏
𝐷/𝑁
𝔍,𝑛

(𝑞) ≤ 𝜏𝐷/𝑁
𝔍,𝑛

(0) +
𝑞

(︂
𝜏
𝐷/𝑁
𝔍,𝑛

(𝑎) −𝜏𝐷/𝑁
𝔍,𝑛

(0)
)︂

𝑎
.

In particular, by Theorem A.5, the convexity of 𝜏𝐷/𝑁
𝔍,𝑛

implies for 𝑞 > 𝑎

𝜏
𝐷/𝑁
𝔍,𝑛

(𝑎) −𝜏𝐷/𝑁
𝔍,𝑛

(0)
𝑎

≤
𝜏
𝐷/𝑁
𝔍,𝑛

(𝑞) −𝜏𝐷/𝑁
𝔍,𝑛

(0)
𝑞

.

Thus, we obtain

𝑏 +𝑞(𝑏 −𝑑)/𝑎 ≤ 𝜏𝐷/𝑁
𝔍,𝑛

(0) +
𝑞

(︂
𝜏
𝐷/𝑁
𝔍,𝑛

(𝑎) −𝜏𝐷/𝑁
𝔍,𝑛

(0)
)︂

𝑎

≤ 𝜏𝐷/𝑁
𝔍,𝑛

(0) +
𝑞

(︂
𝜏
𝐷/𝑁
𝔍,𝑛

(𝑞) −𝜏𝐷/𝑁
𝔍,𝑛

(0)
)︂

𝑞
= 𝜏

𝐷/𝑁
𝔍,𝑛

(𝑞) .

Since 𝜏𝐷/𝑁
𝔍,𝑛

is decreasing with 0 ≤ 𝜏𝐷/𝑁
𝔍,𝑛

(0) ≤ 𝑑 and 𝜏𝐷/𝑁
𝔍,𝑛

(𝑎) ≥ 𝑏, we obtain for all
𝑞 ∈ [0,𝑎]

𝑏 +𝑞(𝑏 −𝑑)/𝑎 ≤ 𝑏 ≤ 𝜏𝐷/𝑁
𝔍,𝑛

(𝑎) ≤ 𝜏𝐷/𝑁
𝔍,𝑛

(𝑞) . □

Remark 3.15. If dim∞(a) > 𝑑 −2 and a (Q̊) > 0, then the assumptions of Lemma
3.14 are satisfied for 𝜏𝐷/𝑁

𝔍a ,𝑛
. This follows from

𝜏
𝐷/𝑁
𝔍a ,𝑛

(1) ≥ 𝑑 −2+ 𝛽𝐷/𝑁
𝑛 (1) ≥ (𝑑 −2) −𝛿
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3.4. Coarse multifractal analysis

for 𝛿 > 0 and 𝑛 sufficiently large, where we used a (Q̊) > 0 for the Dirichlet case.
Consequently, 𝛽𝐷𝑛 (1) → 0, for 𝑛→∞.

Lemma 3.16. For 𝛼 ∈ (0,dim∞ (𝔍)) and 𝑛 large, we have

N𝐷/𝑁
𝛼,𝔍

(𝑛) = 0.

In particular,

𝐹
𝐷/𝑁
𝔍 = sup

𝛼≥dim∞ (𝔍)
limsup
𝑛→∞

log+
(︂
N𝐷/𝑁
𝛼,𝔍

(𝑛)
)︂

𝛼 log(2𝑛)

and

𝐹
𝐷/𝑁
𝔍

= sup
𝛼≥dim∞ (𝔍)

liminf
𝑛→∞

log+
(︂
N𝐷/𝑁
𝛼,𝔍

(𝑛)
)︂

𝛼 log(2𝑛) .

Proof. For fixed 𝛼 > 0 with 𝛼 < dim∞ (𝔍), by the definition of dim∞ (𝔍), for 𝑛 large
we have max

𝑄 ∈D𝐷/𝑁
𝑛

𝔍 (𝑄) ≤ 2−𝛼𝑛. Hence, for all 𝑄 ∈ D𝑁
𝑛 , we have 𝔍 (𝑄) ≤ 2−𝑛𝛼 .

For every 0 < 𝛼 ′ < 𝛼 , it follows that N𝐷/𝑁
𝛼′,𝔍 (𝑛) = 0. This proves the claim. □

We need the following elementary observation from large deviation theory which
seems not to be standard in the relevant literature. For this purpose, we need some
standard facts about convex functions, which are summarized in Appendix A.1.

Lemma 3.17. Suppose (𝑋𝑛)𝑛 are real-valued random variables on some probability
spaces (Ω𝑛,A𝑛, `𝑛)𝑛 such that the rate function 𝔠 (𝑡)≔ limsup𝑛→∞ 𝔠𝑛 (𝑡) is a proper

convex function with 𝔠𝑛 (𝑡) ≔ 𝑎−1
𝑛 log

(︂∫
exp(𝑡𝑋𝑛) d`𝑛

)︂
, 𝑡 ∈ R, 𝑎𝑛 → ∞ and such

that 0 belongs to the interior of the domain of finiteness {𝑡 ∈ R : 𝔠 (𝑡) <∞}. Let
𝐼 = (𝑎,𝑑) be an open interval containing the subdifferential 𝜕𝔠 (0) = [𝑏,𝑐] of 𝔠 in 0.
Then there exists 𝑟 > 0 such that for all 𝑛 sufficiently large,

`𝑛

(︂
𝑎−1
𝑛 𝑋𝑛 ∉ 𝐼

)︂
≤ 2exp (−𝑟𝑎𝑛) .

Proof. We assume that 𝜕𝔠 (0) = [𝑏,𝑐] and 𝐼 = (𝑎,𝑑) with 𝑎 < 𝑏 ≤ 𝑐 < 𝑑. First note
that the assumptions ensure that −∞ < 𝑏 ≤ 𝑐 <∞. By the Chebychev inequality for
all 𝑞 > 0 and 𝑛 ∈ N, we have

`𝑛

(︂
𝑎−1
𝑛 𝑋𝑛 ≥ 𝑑

)︂
= `𝑛 (𝑞𝑋𝑛 ≥ 𝑞𝑎𝑛𝑑) ≤ exp (−𝑞𝑎𝑛𝑑)

∫
exp (𝑞𝑋𝑛) d`𝑛,

implying

limsup
𝑛→∞

𝑎−1
𝑛 log

(︂
`𝑛

(︂
𝑎−1
𝑛 𝑋𝑛 ≥ 𝑑

)︂)︂
≤ inf
𝑞>0

𝔠 (𝑞) −𝑞𝑑 = inf
𝑞∈R

𝔠 (𝑞) −𝑞𝑑 ≤ 0,
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where the equality follows from the assumption 𝑐 < 𝑑 ,

𝔠 (𝑞) −𝑞𝑑 ≥ 𝔠 (0) + (𝑞−0)𝑐 −𝑞𝑑 = (𝑐 −𝑑)𝑞 ≥ 0

for all 𝑞 ≤ 0, 𝔠(0) = 0, and the continuity of 𝔠 at 0. Similarly, we find

limsup
𝑛→∞

𝑎−1
𝑛 log

(︂
`𝑛

(︂
𝑎−1
𝑛 𝑋𝑛 ≤ 𝑎

)︂)︂
≤ inf
𝑞<0

𝔠 (𝑞) −𝑞𝑎 = inf
𝑞∈R

𝔠 (𝑞) −𝑞𝑎.

We are left to show that both upper bounds are negative. We show the first case
by contradiction – the other case follows in exactly the same way. Assuming
inf𝑞∈R 𝔠 (𝑞) −𝑞𝑑 ≥ 0, then for all 𝑞 ∈ R we have 𝔠 (𝑞) −𝑞𝑑 ≥ 0, or after rearranging,
𝔠 (𝑞) − 𝔠 (0) ≥ 𝑑𝑞. This means, according to the definition of the sub-differential,
that 𝑑 ∈ 𝜕𝔠 (0), contradicting our assumptions. □

Proposition 3.18. For a subsequence (𝑛𝑘 )𝑘 define the convex function on R≥0 by
𝐵 ≔ limsup𝑘→∞𝜏

𝐷/𝑁
𝔍,𝑛𝑘

and for some 𝑞 ≥ 0, we assume 𝐵 (𝑞) = lim𝑘→∞𝜏
𝐷/𝑁
𝔍,𝑛𝑘

(𝑞) and
set [𝑎′,𝑏 ′] ≔ −𝜕𝐵 (𝑞). Then we have 𝑎′ ≥ dim∞ (𝔍) and

𝑎′𝑞 +𝐵 (𝑞)
𝑏 ′

≤ sup
𝛼>𝑏′

liminf
𝑘→∞

log
(︂
N𝐷/𝑁
𝛼,𝔍

(𝑛𝑘 )
)︂

𝛼 log(2𝑛𝑘 )

≤ sup
𝛼≥dim∞ (𝔍)

liminf
𝑘→∞

log
(︂
N𝐷/𝑁
𝛼,𝔍

(𝑛𝑘 )
)︂

𝛼 log(2𝑛𝑘 ) = sup
𝛼>0

liminf
𝑘→∞

log
(︂
N𝐷/𝑁
𝛼,𝔍

(𝑛𝑘 )
)︂

𝛼 log(2𝑛𝑘 ) .

Moreover, if 𝐵 (𝑞) = 𝜏𝐷/𝑁
𝔍

(𝑞) , then [𝑎,𝑏] = −𝜕𝜏𝐷/𝑁
𝔍

(𝑞) ⊃ −𝜕𝐵 (𝑞). Further, if addi-

tionally 0 ≤ 𝑞 ≤ 𝑞𝐷/𝑁
𝔍

, then

𝑎𝑞 +𝜏𝐷/𝑁
𝔍

(𝑞)
𝑏

≤ 𝑎′𝑞 +𝐵 (𝑞)
𝑏 ′

.

Proof. Without loss of generality we can assume 𝑏 ′ <∞. Moreover, dim∞(𝔍) > 0
implies 𝑏 ′ ≥ 𝑎′ ≥ dim∞ (𝔍) > 0. Indeed, observe that 𝐵 is again a convex function
on R. Thus, by the definition of the sub-differential, we have for all 𝑥 > 0

𝐵 (𝑞) −𝑎′(𝑥 −𝑞) ≤ 𝐵(𝑥) ≤ 𝜏𝐷/𝑁
𝔍

(𝑥) ≤ 𝜏𝑁
𝔍
(𝑥) ≤ −𝑥 dim∞ (𝔍) +𝑑,

which gives 𝑎′ ≥ dim∞ (𝔍) > 0. Let 𝑞 ≥ 0. Now, for all 𝑘 ∈ N and 𝑠 < 𝑎′ ≤ 𝑏 ′ < 𝑡 ,
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we have

N𝐷/𝑁
𝑡,𝔍

(𝑛𝑘 ) ≥ card(
{︂
𝐶 ∈ D𝐷/𝑁

𝑛𝑘 : 2−𝑠𝑛𝑘 > 𝔍 (𝐶) > 2−𝑡𝑛𝑘
}︂

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
≕𝐿𝑠,𝑡𝑛𝑘

)

≥
∑︂
𝐶∈𝐿𝑠,𝑡𝑛𝑘

𝔍 (𝐶)𝑞 2𝑠𝑛𝑘𝑞

= 2𝑠𝑛𝑘𝑞+𝑛𝑘𝜏
𝐷/𝑁
𝔍,𝑛𝑘

(𝑞) ∑︂
𝐶∈D𝐷/𝑁

𝑛𝑘

1𝐿𝑠,𝑡𝑛𝑘
(𝐶)𝔍 (𝐶)𝑞 2−𝑛𝑘𝜏

𝐷/𝑁
𝔍,𝑛𝑘

(𝑞)

= 2𝑠𝑛𝑘𝑞+𝑛𝑘𝜏
𝐷/𝑁
𝔍,𝑛𝑘

(𝑞) ⎛⎜⎜⎝1−
∑︂

𝐶∈D𝐷/𝑁
𝑛𝑘

1(︂
𝐿
𝑠,𝑡
𝑛𝑘

)︂∁ (𝐶)𝔍 (𝐶)𝑞 2−𝑛𝑘𝜏
𝐷/𝑁
𝔍,𝑛𝑘

(𝑞)⎞⎟⎟⎠ .
We use the lower large deviation principle for the process 𝑋𝑘 (𝐶) ≔ log (𝔍 (𝐶)) with

probability measure on D𝐷/𝑁
𝑛𝑘 given by `𝑘 ({𝐶}) ≔ 𝔍 (𝐶)𝑞 2−𝑛𝑘𝜏

𝐷/𝑁
𝔍,𝑛𝑘

(𝑞) . We find for
the free energy function

𝔠 (𝑥) ≔ limsup
𝑘→∞

1
log(2𝑛𝑘 ) log

(︁
E`𝑘 (exp (𝑥𝑋𝑘 ))

)︁
= limsup

𝑘→∞

1
log(2𝑛𝑘 ) log

⎛⎜⎜⎝
∑︂

𝐶∈D𝐷/𝑁
𝑛𝑘

𝔍 (𝐶)𝑥+𝑞 /2𝑛𝑘𝜏
𝐷/𝑁
𝔍,𝑛𝑘

(𝑞)⎞⎟⎟⎠
= limsup

𝑘→∞
𝜏
𝐷/𝑁
𝔍,𝑛𝑘

(𝑞 +𝑥) −𝐵 (𝑞) = 𝐵(𝑥 +𝑞) −𝐵 (𝑞) ,

with −𝜕𝔠 (0) = [𝑎′,𝑏 ′] ⊂ (𝑠,𝑡) and hence there exists a constant 𝑟 > 0 depending on
𝑠,𝑡 , and 𝑞 such that for 𝑘 large by Lemma 3.17∑︂
𝐶∈D𝐷/𝑁

𝑛𝑘

1(︂
𝐿
𝑠,𝑡
𝑛𝑘

)︂∁ (𝐶)𝔍 (𝐶)𝑞 /2𝑛𝑘𝜏
𝐷/𝑁
𝔍,𝑛𝑘

(𝑞)
= `𝑘

(︃
𝑋𝑘

log (2𝑛𝑘 ) ∉ (−𝑡,−𝑠)
)︃
≤ 2exp (−𝑟𝑛𝑘 ) .

Therefore,

liminf
𝑘→∞

log
(︂
N𝐷/𝑁
𝑡,𝔍

(𝑛𝑘 )
)︂

log(2𝑛𝑘 ) ≥ 𝑠𝑞 +𝐵 (𝑞) ,

for all 𝑠 < 𝑎′ and 𝑡 > 𝑏 ′. Hence, we have

sup
𝑡>𝑏′

liminf
𝑘→∞

log
(︂
N𝐷/𝑁
𝑡,𝔍

(𝑛𝑘 )
)︂

𝑡 log(2𝑛𝑘 ) ≥ sup
𝑡>𝑏′

𝑎′𝑞 +𝐵 (𝑞)
𝑡

=
𝑎′𝑞 +𝐵 (𝑞)

𝑏 ′
.
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3.4. Coarse multifractal analysis

The fact that −𝜕𝜏𝐷/𝑁
𝔍

(𝑞) ⊃ −𝜕𝐵 (𝑞) if 𝜏𝐷/𝑁
𝔍

(𝑞) = 𝐵 (𝑞) follows immediately from

limsup𝑘→∞𝜏
𝐷/𝑁
𝔍,𝑛𝑘

≤ 𝜏𝐷/𝑁
𝔍

. □

Corollary 3.19. Let 𝔍 (𝑄) ≔ a (𝑄)Λ (𝑄)𝛾 with 𝑄 ∈ D and 𝛾 > 0. Then 𝜏𝐷/𝑁
𝔍

(𝑞) =
𝛽
𝐷/𝑁
a (𝑞) −𝛾𝑑𝑞, 𝑞 ≥ 0, and dim∞ (𝔍) = dim∞(a) +𝑑𝛾 > 0. Suppose there exists a

subsequence (𝑛𝑘 )𝑘 and 𝑞 ∈ [0,1] such that 𝜏𝐷/𝑁
𝔍

(𝑞) = lim𝑘→∞𝜏
𝐷/𝑁
𝔍,𝑛𝑘

(𝑞). Then for

𝐵 ≔ limsup𝑘→∞𝜏
𝐷/𝑁
𝔍,𝑛𝑘

, we have −𝜕𝐵 (𝑞) ≔ [𝑎′,𝑏 ′] ⊂ −𝜕𝜏𝐷/𝑁
𝔍

(𝑞) ≔ [𝑎,𝑏] and

𝑎𝑞 +𝜏𝐷/𝑁
𝔍

(𝑞)
𝑏

≤
𝑎′𝑞 +𝜏𝐷/𝑁

𝔍
(𝑞)

𝑏 ′
≤ sup
𝛼≥dim∞ (a)+𝑑𝛾

liminf
𝑘→∞

log
(︂
N𝐷/𝑁
𝛼,𝔍

(𝑛𝑘 )
)︂

𝛼 log(2𝑛𝑘 ) .

Proof. The first claim is obvious since 𝛾 > 0. The second inequality follows im-
mediately from Proposition 3.18 and dim∞ (𝔍) = dim∞(a) +𝑑𝛾 . To prove the first
inequality observe that −𝜕𝜏𝐷/𝑁

𝔍
(𝑞) = [𝑎1 +𝛾𝑑,𝑏1 +𝛾𝑑] with −𝜕𝛽𝐷/𝑁

a (𝑞) = [𝑎1,𝑏1].
Using [𝑎′,𝑏 ′] ⊂ [𝑎1 +𝛾𝑑,𝑏1 +𝛾𝑑], 𝜏𝐷/𝑁

𝔍
(𝑞) = 𝛽𝐷/𝑁

a (𝑞) −𝑑𝛾𝑞, and 𝛽𝐷/𝑁
a (𝑞) ≥ 0, we

obtain

(𝑎1 +𝑑𝛾)𝑞 +𝜏𝐷/𝑁
𝔍

(𝑞)
𝑏1 +𝛾𝑑

=
𝑎1𝑞 + 𝛽𝐷/𝑁

a (𝑞)
𝑏1 +𝛾𝑑

≤ (𝑎1 +𝑑𝛾)𝑞 + 𝛽𝐷/𝑁
a (𝑞) −𝛾𝑑

𝑏 ′

≤
𝑎′𝑞 +𝜏𝐷/𝑁

𝔍
(𝑞)

𝑏 ′

≤ sup
𝛼≥dim∞ (a)+𝑑𝛾

liminf
𝑘→∞

log
(︂
N𝐷/𝑁
𝛼,𝔍

(𝑛𝑘 )
)︂

𝛼 log(2𝑛𝑘 ) . □

Proposition 3.20. We have
𝐹
𝐷/𝑁
𝔍 = 𝑞

𝐷/𝑁
𝔍

.

Proof. First, note that by Proposition 3.1, we always have

𝐹
𝐷/𝑁
𝔍 ≤ 𝑞𝐷/𝑁

𝔍
.

Hence, we can restrict our attention to the case 𝑞𝐷/𝑁
𝔍

> 0. Further, by Lemma 3.14,

we observe that, for 𝑛 large, the family of convex functions
(︂
𝜏
𝐷/𝑁
𝔍,𝑛

)︂
𝑛

restricted to[︂
0,𝑞𝐷/𝑁

𝔍
+1

]︂
only takes values in

[︂(︂
𝑞
𝐷/𝑁
𝔍

+1
)︂
𝐿 +𝑏,𝑑

]︂
and on any compact interval

[𝑐,𝑒] ⊂
(︂
0,𝑞𝐷/𝑁

𝔍
+1

)︂
, by Theorem A.5, for all 𝑐 ≤ 𝑥 ≤ 𝑦 ≤ 𝑒, we have
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3.4. Coarse multifractal analysis

𝜏
𝐷/𝑁
𝔍,𝑛

(𝑥) −𝜏𝐷/𝑁
𝔍,𝑛

(0)
𝑥 −0

≤
𝜏
𝐷/𝑁
𝔍,𝑛

(𝑦) −𝜏𝐷/𝑁
𝔍,𝑛

(𝑥)
𝑦−𝑥 ≤

𝜏
𝐷/𝑁
𝔍,𝑛

(︂
𝑞
𝐷/𝑁
𝔍

+1
)︂
−𝜏𝐷/𝑁

𝔍,𝑛
(𝑦)

𝑞
𝐷/𝑁
𝔍

+1−𝑦
.

By Lemma 3.14 and the fact 𝜏𝐷/𝑁
𝔍,𝑛

(0) ≤ 𝑑 , we obtain(︂
𝑞
𝐷/𝑁
𝔍

+1
)︂
𝐿 +𝑏 −𝑑

𝑐
≤
𝜏
𝐷/𝑁
𝔍,𝑛

(𝑥) −𝜏𝐷/𝑁
𝔍,𝑛

(0)
𝑐

≤
𝜏
𝐷/𝑁
𝔍,𝑛

(𝑥) −𝜏𝐷/𝑁
𝔍,𝑛

(0)
𝑥 −0

and
𝜏
𝐷/𝑁
𝔍,𝑛

(︂
𝑞
𝐷/𝑁
𝔍

+1
)︂
−𝜏𝐷/𝑁

𝔍,𝑛
(𝑦)

𝑞
𝐷/𝑁
𝔍

+1−𝑦
≤
𝑑 −

(︂
𝑞
𝐷/𝑁
𝔍

+1
)︂
𝐿−𝑏

𝑞
𝐷/𝑁
𝔍

+1−𝑒
,

which implies

|︁|︁|︁𝜏𝐷/𝑁
𝔍,𝑛

(𝑦) −𝜏𝐷/𝑁
𝔍,𝑛

(𝑥)
|︁|︁|︁ ≤ max

⎧⎪⎪⎨⎪⎪⎩
|𝑏 | −

(︂
𝑞
𝐷/𝑁
𝔍

+1
)︂
𝐿 +𝑑

𝑐
,

𝑑 −
(︂
𝑞
𝐷/𝑁
𝔍

+1
)︂
𝐿 + |𝑏 |

𝑞
𝐷/𝑁
𝔍

+1−𝑒

⎫⎪⎪⎬⎪⎪⎭ |𝑥 −𝑦 | .

Hence,
(︂
𝜏
𝐷/𝑁
𝔍,𝑛

| [𝑐,𝑒 ]
)︂
𝑛

is uniformly bounded and uniformly Lipschitz. Thus, by
Arzelà–Ascoli relatively compact. Using this fact, we find a subsequence (𝑛𝑘 )𝑘
such that

lim
𝑘→∞

𝜏
𝐷/𝑁
𝔍,𝑛𝑘

(︂
𝑞
𝐷/𝑁
𝔍

)︂
= limsup

𝑛→∞
𝜏
𝐷/𝑁
𝔍,𝑛

(︂
𝑞
𝐷/𝑁
𝔍

)︂
= 0

and 𝜏𝐷/𝑁
𝔍,𝑛𝑘

converges uniformly to the proper convex function 𝐵 on[︂
𝑞
𝐷/𝑁
𝔍

−𝛿,𝑞𝐷/𝑁
𝔍

+𝛿
]︂
⊂

(︂
0,𝑞𝐷/𝑁

𝔍
+1

)︂
,

for 𝛿 sufficiently small. We put [𝑎,𝑏] ≔ −𝜕𝐵
(︂
𝑞
𝐷/𝑁
𝔍

)︂
. Since the points where 𝐵 is

differentiable are dense and since 𝐵 is convex, we find for every 𝛿 > Y > 0 an element
𝑞 ∈

(︂
𝑞
𝐷/𝑁
𝔍

− Y,𝑞𝐷/𝑁
𝔍

)︂
such that 𝐵 is differentiable at 𝑞 with −𝐵′ (𝑞) ∈ [𝑏,𝑏 + Y]. This

follows from the fact that 𝜏𝐷/𝑁
𝔍

is a decreasing function and that the left-hand

derivative of the convex function 𝜏𝐷/𝑁
𝔍

is left-hand continuous and non-decreasing

(see Theorem A.5). Noting 𝐵 ≤ 𝜏𝐷/𝑁
𝔍

, we have −𝐵′ (𝑞) ≥ dim∞ (𝔍). Hence, from
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Proposition 3.18 we deduce

sup
𝛼≥dim∞ (𝔍)

limsup
𝑛→∞

log
(︂
N𝐷/𝑁
𝛼,𝔍

(𝑛)
)︂

𝛼 log(2𝑛) ≥ sup
𝛼>−𝐵′ (𝑞)

limsup
𝑘→∞

log
(︂
N𝐷/𝑁
𝛼,𝔍

(𝑛𝑘 )
)︂

𝛼 log(2𝑛𝑘 )

≥ sup
𝛼>−𝐵′ (𝑞)

liminf
𝑘→∞

log
(︂
N𝐷/𝑁
𝛼,𝔍

(𝑛𝑘 )
)︂

𝛼 log(2𝑛𝑘 )

≥−𝐵′ (𝑞)𝑞 +𝐵 (𝑞)
−𝐵′ (𝑞) ≥

𝑏

(︂
𝑞
𝐷/𝑁
𝔍

− Y
)︂

𝑏 + Y .

Taking the limit Y ↓ 0 gives the assertion. □

Corollary 3.21. We have 𝐹
𝑁

𝔍 = ℎ𝔍 = −1/𝛼𝔍 = 𝑞𝑁
𝔍

. Further, if 𝐹
𝐷

𝔍 = 𝐹
𝑁

𝔍 , then

𝐹
𝐷

𝔍 = ℎ𝔍 = 𝑞𝐷
𝔍
= 𝑞𝑁

𝔍
.

By Proposition 3.20, we always have 𝐹
𝐷/𝑁
𝔍 = 𝑞

𝐷/𝑁
𝔍

. It raises the question under

which conditions 𝐹
𝐷/𝑁
𝔍 exists as a limit. For this purpose, we establish the following

regularity conditions for 𝔍.

Definition 3.22. We define two notions of regularity.

1. We call 𝔍 Neumann multifractal-regular (N-MF-regular) if 𝐹𝑁
𝔍
= 𝐹

𝑁

𝔍 and

Dirichlet multifractal-regular (D-MF-regular) if 𝐹𝐷
𝔍
= 𝐹

𝑁

𝔍 .

2. We call 𝔍 Dirichlet/Neumann partition function regular (D/N-PF-regular) if

• 𝑞𝐷/𝑁
𝔍

> 0 and 𝜏𝐷/𝑁
𝔍

(𝑞) = liminf𝑛→∞𝜏
𝐷/𝑁
𝔍,𝑛

(𝑞) for all𝑞 ∈
(︂
𝑞
𝐷/𝑁
𝔍

− Y,𝑞𝐷/𝑁
𝔍

)︂
for some Y > 0, or

• 𝑞𝐷/𝑁
𝔍

> 0 and 𝜏𝐷/𝑁
𝔍

(︂
𝑞
𝐷/𝑁
𝔍

)︂
= liminf𝑛→∞𝜏

𝐷/𝑁
𝔍,𝑛

(︂
𝑞
𝐷/𝑁
𝔍

)︂
and 𝜏𝐷/𝑁

𝔍
is dif-

ferentiable at 𝑞𝐷/𝑁
𝔍

.

Corollary 3.23. If 𝔍 is Neumann N-MF-regular, then 𝐹
𝑁

𝔍 = 𝐹𝑁
𝔍
= ℎ𝔍 = ℎ

𝔍
= 𝑞𝑁

𝔍
.

Proof. This follows from Proposition 3.1 and Proposition 3.20. □

Proposition 3.24. If 𝔍 is Dirichlet/Neumann PF-regular, then

𝐹
𝐷/𝑁
𝔍

= 𝑞
𝐷/𝑁
𝔍

= 𝐹
𝐷/𝑁
𝔍 .

87



3.4. Coarse multifractal analysis

In particular, we have

𝔍 is N-PF-regular =⇒ 𝔍 is N-MF-regular.

Proof. Due to Proposition 3.1, we can restrict our attention to the case 𝑞𝐷/𝑁
𝔍

> 0.
First, we assume there exists Y > 0 such that

𝜏
𝐷/𝑁
𝔍

(𝑞) = liminf
𝑛→∞

𝜏
𝐷/𝑁
𝔍,𝑛

(𝑞)

for all 𝑞 ∈
(︂
𝑞
𝐷/𝑁
𝔍

− Y,𝑞𝐷/𝑁
𝔍

)︂
and set [𝑎,𝑏] ≔ −𝜕𝜏𝐷/𝑁

𝔍

(︂
𝑞
𝐷/𝑁
𝔍

)︂
. Then by the convexity

of 𝜏𝐷/𝑁
𝔍

we find for every Y ∈
(︂
0,𝑞𝐷/𝑁

𝔍

)︂
an element 𝑞 ∈

(︂
𝑞
𝐷/𝑁
𝔍

− Y,𝑞𝐷/𝑁
𝔍

)︂
such that

𝜏
𝐷/𝑁
𝔍

is differentiable at 𝑞 with −
(︂
𝜏
𝐷/𝑁
𝔍

)︂ ′
(𝑞) ∈ [𝑏,𝑏+Y] since the points where 𝜏𝐷/𝑁

𝔍

is differentiable on (0,∞) lie dense in (0,∞). This follows from the fact that 𝜏𝐷/𝑁
𝔍

is

a decreasing function and that the left-hand derivative of the convex function 𝜏𝐷/𝑁
𝔍

is left-hand continuous and non-decreasing (see Theorem A.5). Then by Proposition
3.18 we have

sup
𝛼≥dim(𝔍)

liminf
𝑛→∞

log+
(︂
N𝐷/𝑁
𝛼,𝔍

(𝑛)
)︂

𝛼 log(2𝑛) ≥ sup
𝛼>−

(︂
𝜏
𝐷/𝑁
𝔍

)︂′
(𝑞)

liminf
𝑛→∞

log
(︂
N𝐷/𝑁
𝛼,𝔍

(𝑛)
)︂

𝛼 log(2𝑛)

≥
−

(︂
𝜏
𝐷/𝑁
𝔍

)︂ ′
(𝑞)𝑞 +𝜏𝐷/𝑁

𝔍
(𝑞)

−
(︂
𝜏
𝐷/𝑁
𝔍

)︂ ′
(𝑞)

≥
𝑏

(︂
𝑞
𝐷/𝑁
𝔍

− Y
)︂

𝑏 + Y .

Taking the limit Y → 0 proves the claim in this situation. The case that 𝜏𝐷/𝑁
𝔍

exists

as a limit in 𝑞𝐷/𝑁
𝔍

and is differentiable at 𝑞𝐷/𝑁
𝔍

is covered by Proposition 3.18. □

Corollary 3.25. If 𝔍 is Neumann PF-regular, then

𝐹𝑁
𝔍
= 𝑞𝑁

𝔍
= ℎ𝔍 = ℎ

𝔍
.

Proof. This follows immediately from Proposition 3.1 and Proposition 3.24. □
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Chapter 4

Spectral dimension and spectral
asymptotic for Kreı̆n–Feller
operators for the one-dimensional
case

Throughout this section, we consider a finite Borel measure a on (0,1). Further, we
assume card(supp(a)) =∞ to exclude trivial cases. This chapter is devoted to study
the spectral dimension and spectral asymptotic of Kreı̆n–Feller operators for the
case 𝑑 = 1 and Ω = (0,1). Since the spectral dimension with respect to Dirichlet
or Neumann boundary conditions is the same (see Remark 4.5), we will restrict
our attention to study Kreı̆n–Feller operators with respect to Dirichlet boundary
conditions. A big advantage of the case 𝑑 = 1 is that by Proposition A.17 the Sobolev
space 𝐻 1((𝑎,𝑏)) is compactly embedded into C([𝑎,𝑏]) with 𝑎 < 𝑏. Thus, in this
chapter for 𝑓 ∈ 𝐻 1 = 𝐻 1(0,1) we will always pick the continuous representative.
Recall that the set of dyadic intervals of (0,1] is given by

D = {(2−𝑛𝑘,2−𝑛 (𝑘 +1)] : 𝑘 = 0, . . . ,2𝑛 −1 with 𝑛 ∈ N} .

Most of the main results of this chapter rely heavily on the theory developed in
Chapter 3 applied to 𝔍a (𝑄) = 𝔍a,1,1(𝑄) = Λ(𝑄)a (𝑄), 𝑄 ∈ D, which naturally arises
as optimal embedding constant of the embedding of 𝐻 1

0 (𝑄) into 𝐿2
a (𝑄):∫

𝑄

𝑓 2 da ≤ 𝔍a (𝑄)
∫
𝑄

(∇𝑓 )2 dΛ with 𝑓 ∈ 𝐻 1
0 (𝑄), 𝑄 ∈ D .

In the following, we collect further simplifications that arise in the case 𝑑 = 1:

1. 𝛽𝐷a (𝑞) = 𝛽𝑁a (𝑞), 𝑞 ≥ 0, by Proposition 2.41.
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4.1. Lower bounds for the spectral dimension

2. 𝜏𝐷/𝑁
𝑛,𝔍a

(𝑞) = 𝛽𝐷/𝑁
𝑛 (𝑞) −𝑞, 𝑞 ≥ 0, 𝑛 ∈ N.

3. 𝜏𝑁
𝔍a
(𝑞) = 𝛽𝐷/𝑁

a (𝑞) −𝑞, 𝑞 ≥ 0. In particular, we have 𝑞𝐷
𝔍a

= 𝑞𝑁
𝔍a

.

4. Since, for all 𝛼 > 0, 𝑛 ∈ N, we have N𝐷
𝔍a ,𝛼

(𝑛) ≤ N𝑁
𝔍a ,𝛼

(𝑛) ≤ N𝐷
𝔍a ,𝛼

(𝑛) +2 and

it follows 𝐹
𝑁

𝔍a
= 𝐹

𝐷

𝔍a
and 𝐹𝑁

𝔍a
= 𝐹𝐷

𝔍a
.

This justifies the following simplified notation:

𝛽a ≔ 𝛽
𝐷/𝑁
a , 𝑞𝔍a ≔ 𝑞

𝐷/𝑁
𝔍a

, 𝐹𝔍a ≔ 𝐹
𝐷/𝑁
𝔍a

and 𝐹
𝔍a
≔ 𝐹

𝐷/𝑁
𝔍a

.

The chapter is structured as follows. In Section 4.1, we establish lower bounds for
the lower and upper spectral dimension in terms of the lower and upper optimized
coarse multifractal dimension with respect to 𝔍a . For this reason, we introduce the
new notion of the lower and upper𝑚-reduced partition a-entropy. In Section 4.2,
we present upper bounds of 𝑠𝐷a and 𝑠𝐷

a
in terms of 𝑞𝔍a and dim

𝑀
(a)/(1+dim∞(a)),

respectively. In Section 4.3, we present our main results – we prove that the upper
spectral dimension is given by 𝑞𝔍a which can be geometrically interpreted as the
unique intersection point of the 𝐿𝑞-spectrum and the identity map, provided 𝑞𝔍a > 0.
Further, we impose regularity conditions to ensure the existence of the spectral
dimension and present general bounds in terms of fractal dimensions. In Section
4.4, we illustrate our general results, developed in Section 4.3, with a number of
examples. More precisely, in Section 4.4.1, we compute the spectral dimension of
weak Gibbs measures with or without overlap and obtain some refinement estimates
under the assumption of the OSC. Moreover, in Section 4.4.2, we discuss an example
for which the spectral dimension does not exist. Finally, we conclude by computing
the spectral dimension for a class of purely atomic measures in Section 4.4.3.

4.1 Lower bounds for the spectral dimension

We start with the definition of an auxiliary target quantity.

Let Π0 denote the set of finite disjoint collections of subintervals 𝐼 of (0,1], and for
𝑚 > 1 and 𝑥 > 0, set

N𝐿
𝑚 (𝑥) ≔ sup

{︃
card (𝑃) : 𝑃 ∈ Π0 | min

𝐼 ∈𝑃
a

(︃⟨︂
𝐼

⟩︂
1/𝑚

)︃
Λ

(︃⟨︂
𝐼

⟩︂
1/𝑚

)︃
≥ 4
𝑥 (𝑚−1)

}︃
.

Recall from Section 2.2.6 that
⟨︂
𝐼

⟩︂
1/𝑚

⊂ 𝐼 denotes the interval of length Λ (𝐼 ) /𝑚

centered in 𝐼 . Then the lower and upper𝑚-reduced a-partition entropy is given by

ℎ𝑚
a
≔ liminf

𝑥→∞

log
(︁
N𝐿
𝑚 (𝑥)

)︁
log(𝑥) and ℎ

𝑚

a ≔ limsup
𝑥→∞

log
(︁
N𝐿
𝑚 (𝑥)

)︁
log(𝑥) .

90



4.1. Lower bounds for the spectral dimension

Proposition 4.1. For all 𝑥 > 0, we have

N𝐿
𝑚 (𝑥) ≤ 𝑁𝐷

a (𝑥) .

Proof. Let 𝑃 ∈ Π0 such that

min
𝐼 ∈𝑃

a

(︃⟨︂
𝐼

⟩︂
1/𝑚

)︃
Λ

(︃⟨︂
𝐼

⟩︂
1/𝑚

)︃
≥ 4/(𝑥 (𝑚−1))

and write

𝑃 ≔
{︁
𝐼1, . . . , 𝐼card(𝑃 )

}︁
, 𝐼𝑖 = [𝑎𝑖 ,𝑏𝑖], and

⟨︂
𝐼𝑖

⟩︂
1/𝑚

= [𝑐𝑖 ,𝑑𝑖], 𝑖 = 1, . . . ,card(𝑃) .

For each 𝑖 = 1, . . . ,card(𝑃), we define

𝑓𝑖 (𝑦) ≔
𝑦−𝑎𝑖
𝑐𝑖 −𝑎𝑖

1[𝑎𝑖 ,𝑐𝑖 ) (𝑦) +1[𝑐𝑖 ,𝑑𝑖 ] (𝑦) +
𝑏𝑖 −𝑦
𝑏𝑖 −𝑑𝑖

1(𝑑𝑖 ,𝑏𝑖 ] (𝑦), 𝑦 ∈ [𝑎,𝑏],

which is an element of 𝐻 1
0 . Notice, by the definition of ⟨·⟩1/𝑚, we have

𝑐𝑖 −𝑎𝑖 = 𝑏𝑖 −𝑑𝑖 = (𝑏𝑖 −𝑎𝑖) (1−1/𝑚)/2.

Hence, ∫
(0,1) ∇𝑓

2
𝑖 (𝑦) dΛ(𝑦)∫

(0,1) 𝑓
2
𝑖
(𝑦) da (𝑦)

≤

1
𝑐𝑖 −𝑎𝑖

+ 1
𝑏𝑖 −𝑑𝑖

a

(︃⟨︂
𝐼

⟩︂
1/𝑚

)︃
=

4/(𝑚−1)

a

(︃⟨︂
𝐼

⟩︂
1/𝑚

)︃
Λ

(︃⟨︂
𝐼

⟩︂
1/𝑚

)︃
≤ 𝑥 .

Since the intervals (𝐼𝑖)𝑖 are disjoint, the (𝑓𝑖)𝑖 are mutually orthogonal both in 𝐿2
a

and in 𝐻 1
0 , and we obtain that span (𝑓𝑖 : 𝑖 = 1, . . . ,card(𝑃)) is a card(𝑃)-dimensional

subspace of 𝐻 1
0 . Thus, we deduce from Lemma 2.19,

card(𝑃) ≤ 𝑁𝐷
a (𝑥).

Taking the supremum over all 𝑃 ∈ Π0 with

min
𝐼 ∈𝑃

a

(︃⟨︂
𝐼

⟩︂
1/𝑚

)︃
Λ

(︃⟨︂
𝐼

⟩︂
1/𝑚

)︃
≥ 4/(𝑥 (𝑚−1))

proves the claim. □
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Lemma 4.2. Let 𝛼 > 0. For every 𝑥 > 22+𝛼 , we have

𝑁𝐷
a (𝑥) ≥ N𝐿

3 (𝑥) ≥
NN

𝔍a ,𝛼

(︁
𝑛𝛼𝑥

)︁
3

−3

with 𝑛𝛼𝑥 ≔
⌊︁
log

(︁
𝑥
2

)︁
/(log(2)𝛼)

⌋︁
, and with 𝑥𝛼𝑛 ≔ 2𝑛𝛼+1, for every 𝑛 ∈ N, we have

𝑁𝐷
a (𝑥𝛼𝑛 ) ≥

NN
𝔍a ,𝛼

(𝑛)
3

−3.

Proof. For fixed 𝑛 ∈ N, 𝛼 > 0, let (𝑐1,𝑑1] , . . . ,
(︂
𝑐N𝑁

𝔍a ,𝛼
(𝑛) ,𝑑N𝑁

𝔍a ,𝛼
(𝑛)

]︂
denote the inter-

vals of 𝑀𝑁
𝔍a ,𝑛

(𝛼) ordered in the natural way, i.e. 𝑐𝑖 < 𝑑𝑖 ≤ 𝑐𝑖+1 < 𝑑𝑖+1. Further, we
define

𝐷𝑛,𝑖 ≔

(︃
𝑐2+3𝑖 −

1
2𝑛
,𝑐2+3𝑖

]︃
∪ (𝑐2+3𝑖 ,𝑑2+3𝑖] ∪

(︃
𝑑2+3𝑖 ,𝑑2+3𝑖 +

1
2𝑛

)︃
with 𝑖 = 0, . . . ,

⌊︂
N𝑁

𝔍a ,𝛼
(𝑛) /3−2

⌋︂
−1. Clearly, we have 𝐷𝑛,𝑖 ∩𝐷𝑛,𝑗 = ∅ for all 𝑖 ≠ 𝑗

and

a

(︃⟨︂
𝐷𝑛,𝑖

⟩︂
1/3

)︃
Λ

(︃⟨︂
𝐷𝑛,𝑖

⟩︂
1/3

)︃
≥ a ((𝑐2+3𝑖 ,𝑑2+3𝑖])Λ ((𝑐2+3𝑖 ,𝑑2+3𝑖]) ≥ 2−𝑛𝛼 .

Hence, for 𝑛𝛼𝑥 ≔
⌊︁
log

(︁
𝑥
2

)︁
/(log(2)𝛼))

⌋︁
and 𝑥 > 22+𝛼 , we have

a

(︃⟨︂
𝐷𝑛𝛼𝑥 ,𝑖

⟩︂
1/3

)︃
Λ

(︃⟨︂
𝐷𝑛𝛼𝑥 ,𝑖

⟩︂
1/3

)︃
≥ 2
𝑥
.

In tandem with Proposition 4.1, we deduce

𝑁𝐷
a (𝑥) ≥ N𝐿

3,a (𝑥) = sup
{︃
card (𝑃) : 𝑃 ∈ Π0 : min

𝐼 ∈𝑃
a

(︃⟨︂
𝐼

⟩︂
1/3

)︃
Λ

(︃⟨︂
𝐼

⟩︂
1/3

)︃
≥ 2
𝑥

}︃
≥

⌊︄
N𝑁

𝔍a ,𝛼

(︁
𝑛𝛼𝑥

)︁
3

−2

⌋︄
≥
N𝑁

𝔍a ,𝛼

(︁
𝑛𝛼𝑥

)︁
3

−3. □

Now, we can give a lower bound on 𝑠𝐷
a

and 𝑠𝐷a in terms of the lower and upper
optimize coarse multifractal dimension as well as the lower and upper𝑚-reduced
a-partition entropy.

Proposition 4.3. As a general lower (upper) bound for the lower (upper) spectral
dimension for all𝑚 ∈ (1,3], we have

𝐹
𝔍a

≤ ℎ𝑚
a
≤ 𝑠𝐷

a
and 𝐹𝔍a ≤ ℎ

𝑚

a ≤ 𝑠𝐷a .

Proof. First note that Proposition 4.1 gives ℎ𝑚
a
≤ 𝑠𝐷

a
and ℎ

𝑚

a ≤ 𝑠𝐷a for all𝑚 > 1. Let
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𝑛𝛼𝑥 =
⌊︁
log2

(︁
𝑥
2

)︁
/𝛼

⌋︁
and 𝑥 > 22+𝛼 , then by Lemma 4.2 for every 𝛼 > 0, we have

log
(︁
3N𝐿

3 (𝑥) +3
)︁

log(𝑥) ≥
log+

(︂
N𝑁

𝔍a ,𝛼

(︁
𝑛𝛼𝑥

)︁ )︂
log(𝑥) .

Hence, for all 1 <𝑚 ≤ 3

ℎ𝑚
a
≥ ℎ3

a
= liminf

𝑥→∞

log+
(︁
3N𝐿

3 (𝑥) +3
)︁

log(𝑥) ≥ liminf
𝑥→∞

log+
(︂
N𝑁

𝔍a ,𝛼

(︁
𝑛𝛼𝑥

)︁ )︂
log(𝑥)

= liminf
𝑥→∞

log+
(︂
N𝑁

𝔍a ,𝛼

(︁
𝑛𝛼𝑥

)︁ )︂
𝛼 log

(︂
2log2( 𝑥2 )/𝛼

)︂
+ log (2)

≥ liminf
𝑥→∞

log+
(︂
N𝑁

𝔍a ,𝛼

(︁
𝑛𝛼𝑥

)︁ )︂
𝛼 log(2𝑛𝛼𝑥 ) + log (2) (1+𝛼)

= liminf
𝑥→∞

log+
(︂
N𝑁

𝔍a ,𝛼

(︁
𝑛𝛼𝑥

)︁ )︂
𝛼 log(2𝑛𝛼𝑥 )

≥ liminf
𝑛→∞

log+
(︂
N𝑁

𝔍a ,𝛼
(𝑛)

)︂
𝛼 log(2𝑛) ,

which implies ℎ𝑚
a
≥ 𝐹

𝔍a
. We also have for 𝑥[𝑚 ≔ 2𝑚[+1 with𝑚 ∈ N and [ > 0,

ℎ
𝑚

a ≥ ℎ3
a ≥ limsup

𝑚→∞

log
(︁
3N𝐿

3

(︁
𝑥
[
𝑚

)︁
+3

)︁
log(𝑥[𝑚)

≥ limsup
𝑚→∞

log+
(︂
N𝑁

𝔍a ,[

(︂
𝑛
[

𝑥
[
𝑚

)︂)︂
log(𝑥[𝑚)

≥ limsup
𝑚→∞

log+
(︂
N𝑁

𝔍a ,[

(︂
𝑛
[

𝑥
[
𝑚

)︂)︂
[ log

(︃
2
𝑛
[

𝑥
[
𝑚

)︃ = limsup
𝑚→∞

log+
(︂
N𝑁

𝔍a ,[
(𝑚)

)︂
[ log(2𝑚) ,

where we used 𝑛[
𝑥
[
𝑚

=𝑚. Thus, ℎ
𝑚

a ≥ 𝐹𝔍a . □

4.2 Upper bounds for the spectral dimension

We begin with a slight generalization of

M𝔍a (𝑥) = inf
{︃
card (𝑃) : 𝑃 ∈ Πa | max

𝐼 ∈𝑃
a (𝐼 )Λ (𝐼 ) < 1/𝑥

}︃
by allowing left half-open intervals which do not necessarily consist of dyadic
intervals. This will be useful for the computation of the spectral dimension and the
determination of the spectral asymptotic of specific examples (see Section 4.4.1 and
Section 4.4.3).
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Let Γ denote the set of left half-open intervals contained in (0,1]. We call 𝑃 ⊂ Γ a
a-partition of Q of finitely many left half-open intervals if

• card(𝑃) <∞,

• a (⋃︁𝐼 ∈𝑃 𝐼 ) = a (Q),

• 𝐼1 ∩ 𝐼2 = ∅ for all 𝐼1, 𝐼2 ∈ 𝑃 with 𝐼1 ≠ 𝐼2,

• a (𝐼 ) > 0 for all 𝐼 ∈ 𝑃 .

Let Π denote the set of all a-partitions of left half-open intervals of Q and

˜︂M𝔍a (𝑥) ≔ inf
{︃
card (𝑃) : 𝑃 ∈ Π | max

𝐼 ∈𝑃
a (𝐼 )Λ (𝐼 ) < 1/𝑥

}︃
for 𝑥 > 1/a (Q). Before stating our main result of this section, we need some
preparations, where we follow [Nga11]. Let ((𝑎𝑖 ,𝑎𝑖+1])𝑖=0,...,𝑛 be a partition with
𝑎𝑖 < 𝑎𝑖+1 of Q and 𝑛 ∈ N. Consider the following closed subspace of 𝐻 1

0

F ≔
{︁
𝑓 ∈ 𝐻 1

0 : 𝑓 (𝑎𝑖) = 0, 𝑖 = 1, . . . ,𝑛
}︁

and define the following equivalence relation on 𝐻 1
0 , by 𝑥 ∼𝐻 1

0 /F
𝑦 if and only if

𝑥 −𝑦 ∈ F . The associated quotient space is given by

𝐻 1
0/F ≔

{︂
[𝑢]𝐻 1

0 /F
: 𝑢 ∈ 𝐻 1

0

}︂
,

where [𝑢]𝐻 1
0 /F

denotes the equivalence class of 𝑢 ∈ 𝐻 1
0 with respect to ∼. Further,

we define the addition and scalar multiplication on 𝐻 1
0/F in the standard way. For

𝑖 = 1, . . . ,𝑛, we define the following elements of 𝐻 1
0 :

𝑓𝑖 : 𝑥 ↦→ 𝑥 −𝑎𝑖−1

𝑎𝑖 −𝑎𝑖−1
1[𝑎𝑖−1,𝑎𝑖 ) (𝑥) +

𝑎𝑖+1 −𝑥
𝑎𝑖+1 −𝑎𝑖

1[𝑎𝑖 ,𝑎𝑖+1 ] (𝑥) .

Note that for all 𝑖, 𝑗 = 1, . . . ,𝑛 we have 𝑓𝑖 (𝑎𝑗 ) = 𝛿𝑖 𝑗 , where 𝛿𝑖 𝑗 is the Kronecker delta,
i.e.

𝛿𝑖 𝑗 ≔

{︄
1, for 𝑖 = 𝑗,

0, else.

Consequently, for any 𝑢 ∈ 𝐻 1
0 we have

𝑢 −
𝑛∑︂
𝑖=1

𝑢 (𝑎𝑖) 𝑓𝑖 ∈ F .
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This implies

𝐻 1
0/F = span

(︂
[𝑓𝑖]𝐻 1

0 /F
: 𝑖 = 1, . . . ,𝑛

)︂
,

dim
(︂
𝐻 1

0/F
)︂
= 𝑛.

Now we are in the position to establish a link between 𝑁𝐷
a and ˜︂M𝔍a , allowing us to

use the results of Chapter 3.

Proposition 4.4. For all 𝑥 > 0, we have

𝑁𝐷
a (𝑥) ≤ 2 ˜︂M𝔍a (𝑥) +1 ≤ 2M𝔍a (𝑥) +1

and
𝑁𝐷
a (𝑥) ≤ ˜︂M𝔍a (5𝑥) ≤ M𝔍a (5𝑥)

Proof. Here, we follow the proof of [Kig01, Theorem 4.1.7]. Let ((𝑎𝑖 ,𝑎𝑖+1])𝑖=0,...,𝑛
be a partition with 𝑎𝑖 < 𝑎𝑖+1 of Q and define as above

F =
{︁
𝑓 ∈ 𝐻 1

0 : 𝑓 (𝑎𝑖) = 0, 𝑖 = 1, . . . ,𝑛
}︁
.

Then, dim
(︁
𝐻 1

0/F
)︁
= 𝑛 and for any subspace of 𝐿 ⊂ 𝐻 1

0 with dim(𝐿) = 𝑖, there exists
a linear, injective map Φ : 𝐿/(𝐿∩F ) → 𝐻 1

0/
(︁
𝐻 1

0 ∩F
)︁
= 𝐻 1

0/F with

Φ(ℓ +𝐿∩F ) ≔ ℓ +F , ℓ ∈ 𝐿.

Thus, the rank–nullity theorem yields

dim (𝐿∩F ) ≥ dim(𝐿) −𝑁,

implying
𝑖 −𝑁 ≤ dim (𝐿∩F ) ≤ 𝑖 .

Hence, if

L𝑖, 𝑗 ≔
{︁
𝐿 : 𝐿 is a subspace of 𝐻 1

0 , dim(𝐿) = 𝑖, dim(𝐿∩F ) = 𝑗
}︁
,

then we obtain{︁
𝐿 : 𝐿 is a subspace of 𝐻 1

0 , dim(𝐿) = 𝑖 +𝑁
}︁
=

𝑁⋃︂
𝑘=0

L𝑖+𝑁,𝑖+𝑘 .

Now with

˜︁_𝑖 ≔ inf

{︄
sup

{︄ ⟨𝜓,𝜓 ⟩𝐻 1
0

⟨𝜓,𝜓 ⟩a
:𝜓 ∈𝐺 \ {0}

}︄
: 𝐺 <𝑖

(︂
F , ⟨·, ·⟩𝐻 1

0

)︂}︄
,
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for every 𝐿 ∈ L𝑖+𝑁,𝑖+𝑘 with 𝑘 ∈ {0, . . . ,𝑁 }, we find that

sup

{︄ ⟨𝜓,𝜓 ⟩𝐻 1
0

⟨𝜓,𝜓 ⟩a
:𝜓 ∈ 𝐿 \ {0}

}︄
≥ sup

{︄ ⟨𝜓,𝜓 ⟩𝐻 1
0

⟨𝜓,𝜓 ⟩a
:𝜓 ∈ 𝐿∩F \ {0}

}︄
≥ ˜︁_𝑖+𝑘 ≥ ˜︁_𝑖 .

We deduce from the min-max principle stated in Proposition 2.17

_𝐷𝑖+𝑁,a ≥ ˜︁_𝑖 ,
which implies 𝑁𝐷

a (𝑥) ≤ card
(︂
{𝑖 ∈ N : ˜︁_𝑖 ≤ 𝑥})︂ +𝑁 . Furthermore, using Lemma 2.2,

for all 𝑢 ∈ F , we have∫
𝑢2 da =

𝑛∑︂
𝑖=0,

a ( (𝑎𝑖 ,𝑎𝑖+1 ])>0

∫
(𝑎𝑖 ,𝑎𝑖+1 ]

𝑢2 da

≤ max
𝑖=0,...,𝑛

a ((𝑎𝑖 ,𝑎𝑖+1])Λ ((𝑎𝑖 ,𝑎𝑖+1])
∫
(0,1)

(∇𝑢)2 dΛ.

Now, assume max𝑖=0,...,𝑛 a ((𝑎𝑖 ,𝑎𝑖+1])Λ ((𝑎𝑖 ,𝑎𝑖+1]) < 1/𝑥 . Then,

˜︁_1 ≥
(︃

max
𝑖=0,...,𝑛

a ((𝑎𝑖 ,𝑎𝑖+1])Λ ((𝑎𝑖 ,𝑎𝑖+1])
)︃−1

> 𝑥 .

This implies
𝑁𝐷
a (𝑥) ≤ 𝑛.

Taking the infimum over all 𝑃 ∈ Π with max𝐼 ∈𝑃 a (𝐼 )Λ(𝐼 ) < 1/𝑥 yields

𝑁𝐷
a (𝑥) ≤ 2 ˜︂M𝔍a (𝑥) +1.

The second inequality follows from the fact that Π𝔍a ⊂ Π. Similarly, the second
claim follows from Corollary 2.3 by replacing F with

{𝑓 ∈ 𝐻 1
0 (0,1) :

∫
𝐼

𝑓 dΛ = 0, 𝐼 ∈ 𝑃}

and the fact dim(𝐻 1
0/F ) = card(𝑃). □

Remark 4.5. Similarly, one can show that dim
(︁
𝐻 1/𝐻 1

0

)︁
= 2. In tandem with the

Poincaré inequality (PI) it follows in a similar way as in Proposition 4.4 that 𝑠𝐷a = 𝑠𝑁a
and 𝑠𝐷

a
= 𝑠𝑁

a
.
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Corollary 4.6. We have

𝑠𝐷a ≤ ℎ𝔍a = 𝑞𝔍a = inf {𝑞 ≥ 0 : 𝛽a (𝑞) −𝑞 ≤ 0} ≤ dim𝑀 (a)
dim𝑀 (a) +1

and 𝑠𝐷
a
≤ ℎ

𝔍a
.

Proof. The first and second inequality follows from Proposition 3.1 and Proposition
4.4 applied to 𝔍 = 𝔍a . Moreover, notice that the convexity of 𝛽a implies

𝛽a (𝑞) ≤ dim𝑀 (a) (1−𝑞), 𝑞 ∈ [0,1] .

This yields

inf {𝑞 ≥ 0 : 𝛽a (𝑞) −𝑞 ≤ 0} ≤ dim𝑀 (a)
dim𝑀 (a) +1

. □

Remark 4.7. The case dim𝑀 (a) = 0 immediately gives 𝑠𝐷a = 0. If we use more
information on 𝛽a for the case dim𝑀 (a) > 0, we find a better upper bound; namely,
with 𝑞1 ≔ inf {𝑠 : 𝛽a (𝑠) ≤ 0}, we have

𝑠𝐷a ≤ 𝑞𝔍a ≤
𝑞1dim𝑀 (a)
𝑞1 +dim𝑀 (a)

.

The following proposition complements the connection of the Minkowski dimension
by establishing an upper bound of the lower spectral dimension in terms of the lower
Minkowski dimension dim

𝑀
(a) of the support of a and the ∞-dimension of a .

Proposition 4.8. We always have

𝑠𝐷
a
≤ ℎ

𝔍a
≤

dim
𝑀
(a)

1+dim∞(a) .

Proof. This follows from Proposition 3.13 applied to 𝐽 = a and 𝑎 = 1. □

Proposition 4.9. Under the assumption that there exists a subsequence (𝑛𝑘 )𝑘 and a
constant 𝐾 > 0 such that for all 𝑘 ∈ N

max
𝐶∈D𝑛𝑘

a (𝐶)𝑞𝑛𝑘 ≤ 𝐾

2𝛽𝑛𝑘 (0)𝑛𝑘

∑︂
𝐶∈D𝑛𝑘

a (𝐶)𝑞𝑛𝑘

and lim𝑘→∞𝑞𝑛𝑘 = liminf𝑛→∞𝑞𝑛, where 𝑞𝑛 ≥ 0 is the unique solution to 𝛽𝑛 (𝑞𝑛) = 𝑞𝑛,
we have

𝑠𝐷
a
≤ ℎ

𝔍a
≤ liminf

𝑛→∞
𝑞𝑛 ≤ liminf

𝑛→∞
𝛽𝑛 (0)

1+ 𝛽𝑛 (0)
=

dim
𝑀
(a)

1+dim
𝑀
(a) .
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Proof. Due to Proposition 4.8, we only have to consider the case dim
𝑀
(a) > 0

which implies liminf𝑘→∞𝑞𝑛𝑘 > 0. Now, Proposition 3.3 applied to 𝔍 = 𝔍a yields
the claim. □

4.3 Main results

In this section, we connect Proposition 4.3, Corollary 4.6, and the general results of
Chapter 3 to prove the main results of this chapter.

4.3.1 Upper spectral dimension and lower bounds for the lower spec-
tral dimension

In this , we compute the upper spectral dimension and obtain various lower and
upper bounds of the lower and upper spectral dimension.

Theorem 4.10. For all 1 <𝑚 ≤ 3, we have

𝐹
𝔍a

≤ ℎ𝑚
a
≤ 𝑠𝐷

a
≤ ℎ

𝔍a
≤ ℎ𝔍a = ℎ

𝑚

a = 𝑠𝐷a = 𝑞𝔍a = 𝐹𝔍a . (4.3.1)

In particular,

𝑠𝐷a = 𝑞𝔍a ≤
dim𝑀 (a)

dim𝑀 (a) +1
≤ 1/2,

and the following necessary and sufficient conditions ensuring the existence of
spectral dimension:

𝑠𝐷
a
= 𝑠𝐷a =⇒ ℎ

𝔍a
= ℎ𝔍a = 𝑠

𝐷
a and sup

𝑚>1
ℎ𝑚
a
= ℎ𝔍a =⇒ 𝑠𝐷

a
= 𝑠𝐷a = ℎ𝔍a .

Proof. By Proposition 4.3 and Corollary 4.6, we have

𝐹𝔍a ≤ ℎ
𝑚

a ≤ 𝑠𝐷a ≤ ℎ𝔍a ≤ 𝑞𝔍a

and
𝐹
𝔍a

≤ ℎ𝑚
a
≤ 𝑠𝐷

a
≤ ℎ

𝔍a
.

Moreover, Proposition 3.20 applied to 𝔍 = 𝔍a yields 𝐹𝔍a = 𝑞𝔍a , and thus, the
equalities in (4.3.1) are obtained. □

Remark 4.11. Theorem 4.10 shows that if the spectral dimension exists, then it
is given by purely measure-geometric data, which is encoded in the a-partition
entropy ℎ𝔍a = ℎ𝔍a . We call a regular if sup𝑚>1ℎ

𝑚
a
= ℎ𝔍a , in which case the spectral

dimension exists. If 𝔍a is Neumann MF-regular (i.e. 𝐹
𝔍a

= 𝐹𝔍a ), then in the above
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chain of inequalities (4.3.1) we have everywhere equality and especially a is regular.
Moreover, if for some𝑚 > 1 we have ℎ𝑚

𝔍a
≥ 1/2, then 𝑠𝐷a = 1/2 = ℎ𝔍a .

4.3.2 Regularity results

Here, we investigate the question under which conditions the spectral dimension
exists. By combining the results of Section 3.4 and Theorem 4.10, we show that the
regularity conditions imposed in Definition 3.22 leads to the following sufficient
condition for existence of the spectral dimension.

Corollary 4.12. If 𝔍a is Neumann partition function regular, then the spectral
dimension exists and is given by 𝑠𝐷a = 𝑞𝔍a .

Proof. This follows from Corollary 3.23 applied to 𝔍 = 𝔍a and Theorem 4.10. □

Remark 4.13. Observe that due to 𝜏𝑁
𝔍a ,𝑛

(𝑞) = 𝛽𝑛 (𝑞) −𝑞 for all 𝑛 ∈ N, 𝑞 ≥ 0, we infer
that 𝔍a is Dirichlet partition regular if and only if 𝛽a exists as a limit in 𝑞𝔍a and 𝛽a
is differentiable at 𝑞𝔍a , or 𝛽a (𝑞) = liminf𝑛→∞ 𝛽𝑛 (𝑞) for 𝑞 ∈

(︁
𝑞𝔍a − Y,𝑞𝔍a

)︁
for some

Y > 0.

Proposition 4.14. If for 𝑞 ∈ [0,1] we have 𝛽a (𝑞) = lim𝑛→∞ 𝛽𝑛 (𝑞) and −𝜕𝛽a (𝑞) =
[𝑎,𝑏], then

𝑎𝑞 + 𝛽a (𝑞)
1+𝑏 ≤ 𝑠𝐷

a
.

Proof. By Corollary 3.19 and Proposition 4.3 , we have

𝑎𝑞 + 𝛽a (𝑞)
1+𝑏 ≤ sup

𝑡>𝑏

liminf
𝑛→∞

log
(︂
N𝑁

𝔍a ,𝑡
(𝑛)

)︂
(1+ 𝑡) log(2𝑛) ≤ 𝐹

𝔍a
≤ 𝑠𝐷

a
,

where we used the fact that −𝜕𝜏𝔍a (𝑞) = (𝑎 +1,𝑏 +1]. □

Remark 4.15. In the case that 𝛽a (𝑞) = lim𝑛→∞ 𝛽𝑛
(︁
𝑞𝔍a

)︁
and 𝛽a is differentiable at

𝑞𝔍a , we infer 𝑞𝔍a ≤ 𝑠𝐷a and hence obtain a direct proof of the regularity statement,
namely, 𝑞𝔍a = 𝑠

𝐷
a
= 𝑠𝐷a .

Also for measures without an absolutely continuous part we have the following
rigidity result in terms of reaching the maximum possible value 1/2 of the spectral
dimension.

Corollary 4.16. We have the following rigidity results:

1. If 𝑠𝐷a = 1/2, then 𝛽a (𝑞) = 1−𝑞 for all 𝑞 ∈ [0,1].
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2. If 𝛽a (𝑞) = lim𝑛→∞ 𝛽𝑛 (𝑞) = 1−𝑞 for some 𝑞 ∈ (0,1), then 𝛽a (𝑞) = 1−𝑞 for all
𝑞 ∈ [0,1] and 𝑠𝐷a = 1/2.

Proof. If 𝑠𝐷a = 1/2 then it follows from Theorem 4.10 that 1/2 = 𝑠a = 𝑞𝔍a ≤ 1/2.
The convexity of 𝛽a and the fact that 𝛽a (1) = 0 and 𝛽a (0) ≤ 1 forces 𝛽a (𝑞) = 1−𝑞
for all 𝑞 ∈ [0,1]. The second statement is an immediate consequence of Proposition
4.14 by observing that, as in case (1), by convexity we have 𝛽a (𝑞) = 1−𝑞 for all
𝑞 ∈ [0,1]. This implies the differentiability of 𝛽a in the particular point 𝑞 ∈ (0,1),
where by our assumption 𝛽a (𝑞) = lim𝑛→∞ 𝛽𝑛 (𝑞). Now, applying Proposition 4.14
gives

1
2
=
𝑞 +1−𝑞

1+1
≤ 𝑠

a
.

Since we always have 𝑠𝐷a ≤ 1/2, our claim follows. □

4.3.3 General bounds in terms of fractal dimensions

As a consequence of Theorem 4.10 and Proposition 4.14 we improve the known
general upper bound of the spectral dimension of 1/2 as obtained in [BS66] in terms
of the upper Minkowski dimension. Furthermore, we obtain a general lower bound
of 𝑠𝐷

a
in terms of the left and right-hand derivative of 𝛽a .

Corollary 4.17. For the lower and upper spectral dimension, we have the following
general lower and upper bounds depending on the topological support of a , namely
dim𝑀 (a), and left and right derivative of 𝛽a at 1:

−𝜕+𝛽a (1)
1− 𝜕−𝛽a (1)

≤ 𝑠𝐷
a
≤ 𝑠𝐷a ≤ dim𝑀 (a)

1+dim𝑀 (a)
≤ 1

2

and

𝑠𝐷a =
dim𝑀 (a)

1+dim𝑀 (a)
⇐⇒ −𝜕−𝛽a (1) = dim𝑀 (a) .

Proof. The first inequalities follow from Corollary 4.6 and Proposition 4.14, using
the fact that 𝛽a always exists as a limit at 1. The last claim follows from the
fact that 𝛽a is linear on [0,1] if and only if −𝜕−𝛽a (1) = dim𝑀 (a) and in this case
𝑞𝔍a = dim𝑀 (a)/

(︂
1+dim𝑀 (a)

)︂
. □

Remark 4.18. It is worth pointing out that these bounds have been first observed
in the self-similar case under the open set condition in [SV95, p. 245]. In this
case the Minkowski dimension and the Hausdorff dimension of supp(a) coincide as
well as 𝛽a is differentiable at 1 and 𝛽 ′a (1) coincides with the Hausdorff dimension
of a (see for instance [Heu07]). Furthermore, note that in the case that a has an
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atomic part, we always have 𝜕+𝛽a (1) = 0 (see Fact 2.32). Hence, the lower bound
−𝜕+𝛽a (1)/(1− 𝜕−𝛽a (1)) is only meaningful in the case of atomless measures.

Regarding Kac’s question if 𝛽a is differentiable at 1, then the spectral dimension is
determined by fractal-geometric quantities as follows

dim𝐻 (a) = 𝛽 ′a (1) ≤
𝑠𝐷
a

1−𝑠𝐷
a

≤
𝑠𝐷a

1−𝑠𝐷a
≤ dim𝑀 (a) ,

where dim𝐻 (a) ≔ inf{dim𝐻 (𝐴) : a (𝐴∁) = 0}.

4.4 Examples

4.4.1 C1-cIFS and weak Gibbs measures

In this section, we define weak-Gibbs measures with respect to not necessary linear
iterated function systems. We start by pointing out some simplifications of the notion
of C1-cIFS in the one-dimension setting. Let Φ≔ {𝑇𝑖 : [0,1] → [0,1] : 𝑖 = 1, . . . ,𝑛},
𝑛 ∈ N, be a C1-cIFS as defined in Definition 2.46. Observe that for every Y > 0 we
can extend each 𝑇𝑖 to an injective contracting C1-map 𝑇𝑖 : (−Y,1+ Y) → (−Y,1+ Y)
via

˜︁𝑇𝑖 (𝑥) ≔
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑇𝑖 (0) +𝑇 ′

𝑖 (0)𝑥, 𝑥 ∈ [−Y,0),
𝑇𝑖 (𝑥), 𝑥 ∈ [0,1],
𝑇𝑖 (1) +𝑇 ′

𝑖 (1) (𝑥 −1), 𝑥 ∈ (1,1+ Y] .

Moreover, the notion of conformal maps becomes trivial in the one-dimensional
setting. This gives rise to the following equivalent conditions to be a C1-cIFS:

1. for all 𝑗 ∈ 𝐼 we have 𝑇𝑗 ∈ C1 ( [0,1]) and

0 < inf
𝑥 ∈[0,1]

|︁|︁𝑇 ′
𝑗 (𝑥)

|︁|︁ ≤ sup
𝑥 ∈[0,1]

|︁|︁𝑇 ′
𝑗 (𝑥)

|︁|︁ < 1,

2. Φ is non-trivial, i.e. there is more than one contraction and the 𝑇𝑖’s do not
share a common fixed point.

Definition 4.19. Let Φ ≔ {𝑇𝑖 : [0,1] → [0,1] : 𝑖 = 1, . . . ,𝑛}, 𝑛 ∈ N, be a C1-cIFS.
If additionally the 𝑇1, . . . ,𝑇𝑛 are C1+𝛾 -maps with 𝛾 ∈ (0,1), we call the system a
C1+𝛾 -conformal iterated function system (C1+𝛾 -cIFS). Here C1+𝛾 denotes the set of
differentiable maps with 𝛾-Hölder continuous derivative.
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In the remainder of this section we fix a C1-IFS

Φ≔ {𝑇𝑖 : [0,1] → [0,1] : 𝑖 = 1, . . . ,𝑛} .

Recall that the unique non-empty compact invariant set K ⊂ [0,1] of a C1- cIFS Φ

is given by

K =
⋃︂
𝑖∈𝐼
𝑇𝑖 (K)

with 𝐼 = {1, . . . ,𝑛}. Let B
(︁
𝐼N

)︁
denote the Borel 𝜎-algebra of 𝐼N. Note that B

(︁
𝐼N

)︁
is generated by the set of cylinder sets of arbitrary lengths. The set of 𝜎-invariant
probability measures on B

(︁
𝐼N

)︁
is denoted by M𝜎

(︁
𝐼N

)︁
, where the measure ` is

called 𝜎-invariant if ` = ` ◦𝜎−1.

Definition 4.20. Let C
(︁
𝐼N

)︁
denote the space of continuous real valued functions on

𝐼N. For 𝑓 ∈ C
(︁
𝐼N

)︁
, 𝛼 ∈ (0,1), and 𝑛 ∈ N0 define

var𝑛 (𝑓 ) ≔ sup
{︁
|𝑓 (𝜔) − 𝑓 (𝑢) | : 𝜔,𝑢 ∈ 𝐼N and 𝜔𝑖 = 𝑢𝑖 for all 𝑖 ∈ {1, . . . ,𝑛}

}︁
,

|𝑓 |𝛼 ≔ sup
𝑛≥0

var𝑛 (𝑓 )
𝛼𝑛

and F𝛼 ≔
{︂
𝑓 ∈ C

(︂
𝐼N

)︂
: |𝑓 |𝛼 <∞

}︂
.

Elements of F𝛼 are called 𝛼-Hölder continuous functions on 𝐼N. Furthermore,
the Birkhoff sum of 𝑓 is defined by 𝑆𝑛 𝑓 (𝑥) ≔

∑︁𝑛−1
𝑘=0 𝑓 ◦𝜎𝑘 (𝑥), 𝑥 ∈ 𝐼N, 𝑛 ∈ N, and

𝑆0 𝑓 ≔ 0.

Definition 4.21 (Geometric potential function). The geometric potential function
with respect to Φ is given by

𝜑 (𝜔1𝜔2 · · · ) ≔ log
(︁|︁|︁𝑇 ′
𝜔1
(𝜋 (𝜔2𝜔3 · · · ))

|︁|︁)︁ .
Remark 4.22. We will make use of the following relation between 𝜑 and 𝑇 ′

𝜔 with
𝜔 = 𝜔1 · · ·𝜔𝑛 ∈ 𝐼𝑛, 𝑛 ∈ N. For any 𝑥 ∈ K there exists 𝛼𝑥 ∈ 𝐼N such that 𝜋 (𝛼𝑥 ) = 𝑥 .
Hence,|︁|︁𝑇 ′

𝜔 (𝑥)
|︁|︁ = e

∑︁|𝜔 |
𝑖=1 log

(︂|︁|︁|︁𝑇 ′
𝜔𝑖

(︂
𝑇
𝜎𝑖 (𝜔 ) (𝜋 (𝛼𝑥 ))

)︂|︁|︁|︁)︂
= e

∑︁|𝜔 |
𝑖=1 log

(︂|︁|︁|︁𝑇 ′
𝜔𝑖
(𝜎𝑖 (𝜔𝜋 (𝛼𝑥 )))

|︁|︁|︁)︂
= e𝑆𝑛𝜑 (𝜔𝛼𝑥 ) .

Note that 𝜑 is Hölder continuous if the underlying IFS is a C1+𝛾 -cIFS. Moreover, if
all the 𝑇𝑖 are affine, then 𝜑 depends only on the first coordinate.

Definition 4.23 (Perron-Frobenius operator). Let 𝜓 ∈ C(𝐼N) (sometimes called
potential function). The Perron-Frobenius operator (with respect to𝜓 )

𝐿𝜓 : C(𝐼N) → C(𝐼N)
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is defined by
𝐿𝜓 𝑓 (𝑥) ≔

∑︂
𝑦∈𝜎−1𝑥

e𝜓 (𝑦) 𝑓 (𝑦) , 𝑥 ∈ 𝐼N.

Definition 4.24 (Pressure function). For 𝑓 ∈ C
(︁
𝐼N

)︁
the pressure of 𝑓 is defined by

𝑃 (𝑓 ) ≔ lim
𝑛→∞

1
𝑛

log

(︄ ∑︂
𝜔 ∈𝐼𝑛

𝑒𝑆𝜔 𝑓

)︄
, (4.4.1)

with 𝑆𝜔 𝑓 := sup𝑥 ∈[𝜔 ] 𝑆 |𝜔 | 𝑓 (𝑥).

Remark 4.25. The existence of the limit in (4.4.3) follows from the subadditivity of
log(∑︁𝜔 ∈𝐼𝑛 𝑒

𝑆𝜔 𝑓 ) and Fekete’s subadditive lemma.

Lemma 4.26. Let𝜓 ∈ C(𝐼N) with 𝐿𝜓1 = 1, 1≔ 1𝐼N . Then,

𝑃 (𝜓 ) = 0.

Proof. Using 𝐿𝜓1 = 1, for all 𝑛 ∈ N, 𝑥 ∈ 𝐼N, we deduce

1 = 𝐿𝑛
𝜓
1 =

∑︂
𝜔 ∈𝐼𝑛

𝑒𝑆𝑛𝜓 (𝜔𝑥) .

This leads to

−
∑︁𝑛−1
𝑖=0 var𝑖 (𝜓 )

𝑛
+ 1
𝑛

log

(︄ ∑︂
𝜔 ∈𝐼𝑛

𝑒𝑆𝑛𝜓 (𝜔𝑥)

)︄
≤ 1
𝑛

log

(︄ ∑︂
𝜔 ∈𝐼𝑛

𝑒𝑆𝜔𝜓

)︄
≤

∑︁𝑛−1
𝑖=0 var𝑖 (𝜓 )

𝑛
+ 1
𝑛

log

(︄ ∑︂
𝜔 ∈𝐼𝑛

𝑒𝑆𝑛𝜓 (𝜔𝑥)

)︄
.

Since𝜓 is continuous, we have lim𝑚→∞ var𝑚 (𝜓 ) = 0 and thus
∑︁𝑛−1
𝑖=0 var𝑖 (𝜓 )/𝑛 tend-

ing to zero for sending 𝑛 to infinity as a Cesàro limit. This gives 𝑃 (𝜓 ) = 0. □

Now, we are in the position to define weak Gibbs measures, which is subject of the
following proposition.

Proposition 4.27 ([Kes01, Proposition 1]). For any𝜓 ∈ C(𝐼N) with 𝐿𝜓1 = 1 there
exists ` ∈M𝜎

(︁
𝐼N

)︁
such that

𝐿∗
𝜓
` = e𝑃 (𝜓 )` = `,

where 𝐿∗
𝜓

denotes the dual operator of 𝐿𝜓 acting on the set of Borel probability
measures supported on 𝐼N. We call ` a weak 𝜓 -Gibbs measure and a ≔ ` ◦𝜋−1 a
weak𝜓 -Gibbs measure with respect to the cIFS Φ.
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Remark 4.28. The existence of the fixed point in Proposition 4.27 follows from the
Schauder-Tychonov fixed point theorem (see also [Kes01]) and the 𝜎-invariance of
` follows for 𝐸 ∈ B

(︁
𝐼N

)︁
, by

` (𝜎−1(𝐸)) =
∫ ∑︂

𝜏 ∈𝐼
e𝑆𝑛𝜓 (𝜏𝑦)

1𝜎−1 (𝐸) (𝜏𝑦) d` (𝑦)

=

∫ ∑︂
𝜏 ∈𝐼

e𝑆𝑛𝜓 (𝜏𝑦)
1𝐸 (𝑦) d` (𝑦) = ` (𝐸) .

Remark 4.29. The following list of comments proves useful in our context.

1. By [Kes01, Lemma 3], for all 𝑢 ∈ 𝐼N and 𝑛 ∈ N, we have

e−
∑︁𝑛−1
𝑖=0 var𝑖 (𝜓 ) ≤ ` ( [𝑢 |𝑛])

e𝑆𝑛𝜓 (𝑢) ≤ e
∑︁𝑛−1
𝑖=0 var𝑖 (𝜓 ) . (4.4.2)

In particular, the measure ` has no atoms, since
∑︁𝑛
𝑖=0 var𝑖 (𝜓 ) = 𝑜 (𝑛) and

𝑆𝑛𝜓 ≤ 𝑛max𝜓 .

2. The topological support supp(a) of a is equal to K. To see this, note that K
is covered by the set

⋃︁
𝜔 ∈𝐼𝑛𝑇𝜔 ( [0,1]), 𝑛 ∈ N, and by (4.4.2) each 𝑇𝜔 ( [0,1])

has positive a-measure a (𝑇𝜔 ( [0,1])) ≥ exp
(︂
−∑︁𝑛−1

𝑖=0 var𝑖 (𝜓 )
)︂
` ( [𝜔]).

3. If𝜓 is additionally Hölder continuous, then ` is the unique invariant ergodic
𝜓 -Gibbs measure and the bounds in the above inequality (4.4.2) can be chosen
to be positive constants.

4. For an arbitrary Hölder continuous function 𝜓 : 𝐼N→ R (without assuming
𝐿𝜓1 = 1) there always exists a 𝜎-invariant𝜓 -Gibbs measure ` on the symbolic
space as a consequence of the general thermodynamic formalism and the
Perron-Frobenius theorem for Hölder potentials (see e.g. [Bow08]). Let
ℎ denote the only eigenfunction of the Perron-Frobenius operator for the
maximal eigenvalue _ > 0, which is positive and in the same Hölder class.
Then𝜓1 ≔𝜓 − log(_) + log(ℎ) − log(ℎ ◦𝜎) defines another Hölder continuous
function for which 𝐿𝜓11 = 1 and ` is the (unique) 𝜓1-Gibbs measure, as
defined here.

5. If 𝜓 depends only on the first coordinate and is normalized such that we
have 𝑝𝑖 ≔ exp(𝜓 (𝑖 . . .)), 𝑖 ∈ 𝐼 , defines a probability vector, then ` is in fact a
Bernoulli measure and the bounding constants in the above inequalities (4.4.2)
can be chosen to be 1. Further, a coincides with the self-conformal measure
as defined in (2.4.2). This can be seen as follows. For all 𝐸 ∈𝔅( [0,1]), we
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have

a (𝐸) =
∑︂
𝑢∈𝐼

`

(︂
𝜋−1(𝐸) ∩ [𝑢]

)︂
=

∑︂
𝑢∈𝐼

∫
[𝑢 ]
1𝐸 ◦𝜋 d`

=
∑︂
𝑢∈𝐼

∫
𝐿
|𝑢 |
𝜓

(1[𝑢 ] (𝑥)1𝐸 (𝜋 (𝑥))) d` (𝑥)

=
∑︂
𝑢∈𝐼

∫ ∑︂
𝜏 ∈𝐼 |𝑢 |

e𝑆 |𝑢 |𝜓 (𝜏𝑥)
1[𝑢 ] (𝜏𝑥)1𝐸 (𝜋 (𝜏𝑥)) d` (𝑥)

=
∑︂
𝑢∈𝐼

∫
𝑝𝑢1𝐸 (𝜋 (𝑢𝑥)) d` (𝑥)

=
∑︂
𝑢∈𝐼

𝑝𝑢a

(︂
𝑇 −1
𝑢 (𝐸)

)︂
.

In particular, if additionally the (𝑇𝑖)𝑖 are contracting similarities, then a coincides
with the self-similar measure defined in (2.4.2).

For𝑚 ∈ N we will consider the accelerated shift-space (𝐼𝑚)N with natural shift map˜︁𝜎 : (𝐼𝑚)N→ (𝐼𝑚)N. Clearly, (𝐼𝑚)N can be identified with 𝐼N allowing us to define
the accelerated ergodic sum for 𝑓 ∈ C

(︁
𝐼N

)︁
by

˜︁𝑆𝑛 𝑓𝑚 (𝑥) ≔
𝑛−1∑︂
𝑖=0

𝑓𝑚 (˜︁𝜎𝑖 (𝑥)) with 𝑓𝑚 (𝑥) ≔
𝑚−1∑︂
𝑖=0

𝑓
(︁
𝜎𝑖 (𝑥)

)︁
.

For 𝜔 ∈ (𝐼𝑚)∗ we let |𝜔 |𝑚 denote the word length of 𝜔 with respect to the alphabet
𝐼𝑚. With this setup we have ˜︁𝑆𝑛 𝑓𝑚 = 𝑆𝑚 ·𝑛 𝑓 and ˜︁𝑆𝜔 𝑓𝑚 = sup𝑥 ∈[𝜔 ] ˜︁𝑆 |𝜔 |𝑚 𝑓

𝑚 (𝑥) for
𝜔 ∈ (𝐼𝑚)∗.

Lemma 4.30. For every 𝑓 ∈ C
(︁
𝐼N

)︁
and𝑚 ∈ N, we have

𝑚𝑃 (𝑓 ) = 𝑃˜︁𝜎 (𝑓𝑚) ≔ lim
𝑛→∞

1
𝑛

log⎛⎜⎝
∑︂

𝜔 ∈(𝐼𝑚)𝑛
exp

(︂˜︁𝑆𝜔 𝑓𝑚)︂⎞⎟⎠ .
Proof. The assertion follows immediately from the following identity, for all 𝑛 ∈ N,

1
𝑛

log⎛⎜⎝
∑︂

𝜔 ∈(𝐼𝑚)𝑛
exp

(︂˜︁𝑆𝜔 ˜︁𝑓 )︂⎞⎟⎠ = 1
𝑛

log⎛⎜⎝
∑︂

𝜔 ∈(𝐼𝑚)𝑛
exp

(︄
sup
𝑥 ∈[𝜔 ]

˜︁𝑆 |𝜔 |𝑚 𝑓
𝑚 (𝑥)

)︄⎞⎟⎠
=𝑚

1
𝑚𝑛

log

(︄ ∑︂
𝜔 ∈𝐼𝑚𝑛

exp

(︄
sup
𝑥 ∈[𝜔 ]

𝑆 |𝜔 | 𝑓 (𝑥)
)︄)︄
. □
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In the following we show that the weak bounded distortion property (wBDP) holds
true for the IFS Φ = (𝑇1, . . . ,𝑇𝑛).

Lemma 4.31 (Weak Bounded Distortion Property). There exists a sequence of non-
negative numbers (𝑏𝑚)𝑚 with 𝑏𝑚 = 𝑜 (𝑚) such that for all 𝜔 ∈ 𝐼 ∗ and 𝑥,𝑦 ∈ [0,1]

e−𝑏 |𝜔 | ≤
𝑇 ′
𝜔 (𝑥)
𝑇 ′
𝜔 (𝑦)

≤ e𝑏 |𝜔 | .

Proof. Here, we follow the arguments in [KK12, Lemma 3.4]. For all 𝜔 ≔
𝜔1 · · ·𝜔𝑙 ∈ 𝐼 ∗, 𝑥,𝑦 ∈ [0,1], we have

𝑇 ′
𝜔 (𝑥)
𝑇 ′
𝜔 (𝑦)

≤ exp

(︄
𝑙∑︂
𝑘=1

|︁|︁|︁log
(︂|︁|︁𝑇 ′

𝜔𝑘

(︁
𝑇𝜎𝑘𝜔 (𝑥)

)︁ |︁|︁)︂ − log
(︂|︁|︁𝑇 ′

𝜔𝑘

(︁
𝑇𝜎𝑘𝜔 (𝑦)

)︁ |︁|︁)︂|︁|︁|︁)︄
≤ exp

(︃ 𝑙∑︂
𝑘=1

max
𝑥,𝑦∈[0,1]

max
𝑖=1,...,𝑛

|︁|︁log
(︁|︁|︁𝑇 ′
𝑖

(︁
𝑇𝜎𝑘𝜔 (𝑥)

)︁ |︁|︁)︁ − log
(︁|︁|︁𝑇 ′
𝑖

(︁
𝑇𝜎𝑘𝜔 (𝑦)

)︁ |︁|︁)︁ |︁|︁⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
≕𝐴𝑙−𝑘

)︃
.

Let 0 < 𝑅 < 1 be a common bound for the contraction ratios of the maps 𝑇1, . . . ,𝑇𝑛.
Then we have

|︁|︁𝑇𝜎𝑘𝜔 (𝑥) −𝑇𝜎𝑘𝜔 (𝑦)|︁|︁ ≤ 𝑅𝑙−𝑘 |𝑥 −𝑦 | ≤ 𝑅𝑙−𝑘 .
Hence, we conclude

𝐴𝑙−𝑘 ≤ max
𝑎,𝑏∈[0,1],
|𝑎−𝑏 | ≤𝑅𝑙−𝑘

(︃
max
𝑖=1,...,𝑛

|︁|︁log
(︁|︁|︁𝑇 ′
𝑖 (𝑎)

|︁|︁)︁ − log
(︁|︁|︁𝑇 ′
𝑖 (𝑏)

|︁|︁)︁ |︁|︁)︃ ≕ 𝐵𝑙−𝑘 .

Using that each 𝑇 ′
1 , . . . ,𝑇

′
𝑛 is bounded away from zero and continuous, we ob-

tain 𝐵𝑘 → 0 for 𝑘 → ∞. With 𝑏𝑚 ≔
∑︁𝑚−1
𝑘=0 𝐵𝑘 we have lim𝑚→∞𝑏𝑚/𝑚 equals

lim𝑘→∞𝐵𝑘 = 0 as a Cesàro limit and the second inequality holds. The first in-
equality follows by interchanging the roles of 𝑥 and 𝑦. □

4.4.1.1 Spectral dimension for weak Gibbs measures under the OSC

Let ` and a = ` ◦𝜋−1 be weak 𝜓 -Gibbs measures with respect to a C1-cIFS Φ as
defined in Proposition 4.27. In this section we assume the open set condition (OSC)
with feasible open set (0,1), i.e. 𝑇𝑖 ((0,1)) ∩𝑇𝑗 ((0,1)) =∅ and𝑇𝑖 ((0,1)) ⊂ (0,1) for
all 𝑖, 𝑗 ∈ 𝐼 with 𝑖 ≠ 𝑗 . An important quantity is b ≔ 𝜑 +𝜓 where 𝜑 is the geometric
potential with respect to Φ as defined in Definition 4.21. Since

𝑝 : 𝑡 ↦→ 𝑃 (𝑡b) (4.4.3)
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is continuous, strictly monotonically increasing, convex, and

lim
𝑡→±∞

𝑝 (𝑡) = ∓∞,

there exists a unique number 𝑧a ∈ R such that 𝑝 (𝑧a ) = 0. This section is devoted to
identify the spectral dimension of Δ𝐷a with 𝑧a . We start with some basic observa-
tions.

Let Kunique be the set of points which have a unique preimage of the coding map 𝜋 .
The OSC implies that K\Kunique is a countable set. Notice that, due to (4.4.2) ` has
no atoms, hence the OSC ensures that a has also no atoms, implying a

(︁
Kunique)︁ = 1.

Lemma 4.32. For all 𝜔 ∈ 𝐼 ∗ and 𝑓 ∈ 𝐻 1, we have∫
𝐼𝜔

(∇𝑓 )2 dΛ =

∫
[0,1]

(∇ (𝑓 ◦𝑇𝜔 )) 2 |𝑇 ′
𝜔 |−1 dΛ

and ∫
𝐼𝜔

𝑓 2 da =
∫
[0,1]

(𝑓 ◦𝑇𝜔 )2e𝑆 |𝜔 |𝜓◦𝜋−1◦𝑇𝜔 da,

with 𝐼𝜔 ≔ 𝑇𝜔 ( [0,1]). In particular, we have

𝑒𝑠𝜔𝜓 min
𝑥 ∈[0,1]

|𝑇 ′
𝜔 (𝑥) | ≤ a (𝑇𝜔 ( [0,1]))Λ (𝑇𝜔 ( [0,1])) ≤ 𝑒𝑆𝜔𝜓 max

𝑥 ∈[0,1]
|𝑇 ′
𝜔 (𝑥) |. (4.4.4)

Proof. Clearly, by a change of variables∫
𝐼𝜔

(∇𝑓 )2 dΛ =

∫
[0,1]

((∇𝑓 ) ◦𝑇𝜔 ) 2 |𝑇 ′
𝜔 | dΛ

=

∫
[0,1]

(∇ (𝑓 ◦𝑇𝜔 )) 2 |𝑇 ′
𝜔 |−1 dΛ.

Further using the definition of ` and the OSC, we have∫
𝐼𝜔

𝑓 2 da =
∫
[𝜔 ]

𝑓 2 ◦𝜋 d`

=

∫
𝐿
|𝜔 |
𝜓

(1[𝜔 ] (𝑥) 𝑓 2(𝜋 (𝑥))) d` (𝑥)

=

∫ ∑︂
𝜏 ∈𝐼 |𝜔 |

e𝑆 |𝜔 |𝜓 (𝜏𝑥)
1[𝜔 ] (𝜏𝑥) 𝑓 2(𝜋 (𝜏𝑥)) d` (𝑥)

=

∫
e𝑆 |𝜔 |𝜓 (𝜔𝑥) 𝑓 2(𝜋 (𝜔𝑥)) d` (𝑥) =

∫
[0,1]

(𝑓 ◦𝑇𝜔 )2e𝑆 |𝜔 |𝜓◦𝜋−1◦𝑇𝜔 da,

where we used the fact that 𝜋 (𝜔𝑥) =𝑇𝜔 (𝜋 (𝑥)). □
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Lemma 4.33. There exists𝐶 > 0 such that for𝑚 ∈ N large enough, for all 𝑥 > 𝐶
𝑟𝑚,min

,
we have (︂𝑥𝑟𝑚,min

𝐶

)︂𝑢𝑚 ≤ 𝑁𝐷
a (𝑥) ≤ 2

𝑥𝑢𝑚

𝑅
𝑢𝑚
𝑚,min

+1

where, for 𝜔 ∈ 𝐼𝑚, we set 𝑟𝜔 ≔ exp(𝑠𝜔𝜑 −𝑏𝑚 + 𝑠𝜔𝜓 ), 𝑅𝜔 ≔ exp(𝑆𝜔𝜑 +𝑏𝑚 +𝑆𝜔𝜓 ),
𝑟𝑚,min ≔ min𝑖∈𝐼𝑚 𝑟𝑖 , and 𝑅𝑚,min ≔ min𝑖∈𝐼𝑚 𝑅𝑖 . Here (𝑏𝑚)𝑚 is the sequence defined
in Lemma 4.31, and 𝑢

𝑚
,𝑢𝑚 ∈ R>0 denotes the unique solutions of∑︂

𝜔 ∈𝐼𝑚
e𝑢𝑚 (𝑆𝜔𝜑+𝑆𝜔𝜓+𝑏𝑚) =

∑︂
𝜔 ∈𝐼𝑚

e𝑢𝑚 (𝑠𝜔𝜑+𝑠𝜔𝜓−𝑏𝑚) = 1.

Proof. This proof follows the arguments used in [KL01, Lemma 2.7]. First, note
that for𝑚 ∈ N sufficiently large, for all 𝜔 ∈ 𝐼𝑚 we have 𝑆𝜔𝜑 +𝑆𝜔𝜓 +𝑏𝑚 < 0 where
we used 𝑏𝑚 = 𝑜 (𝑚) and 𝑆𝜔𝜓 +𝑆𝜔𝜑 ≤𝑚 (max𝜓 +max𝜑). Therefore, there exists
𝑢𝑚 ∈ R>0 such that ∑︂

𝜔 ∈𝐼𝑚
𝑅𝑢𝑚𝜔 = 1.

For 𝜔 ≔ 𝜔1 · · ·𝜔𝑛 ∈ (𝐼𝑚)𝑛, 𝑛 ∈ N, define 𝑅𝜔 ≔
∏︁ |𝜔 |
𝑖=1𝑅𝜔𝑖 and 𝑟𝜔 ≔

∏︁ |𝜔 |
𝑖=1 𝑟𝜔𝑖 . Let

𝑥 > 1 and define for𝑚 ∈ N the following partition of (𝐼𝑚)N

𝑃𝑚,𝑥 ≔

{︃
𝜔 ∈ (𝐼𝑚)∗ : 𝑅𝜔 <

1
𝑥
≤ 𝑅𝜔−

}︃
with 𝑅𝜔− ≔

∏︁ |𝜔 |−1
𝑖=1 𝑅𝜔𝑖 . Considering the Bernoulli measure on (𝐼𝑚)N given by the

probability vector
(︂
𝑅
𝑢𝑚
𝜔

)︂
𝜔 ∈𝐼𝑚

and using the fact that 𝑃𝑚,𝑥 defines a partition of

(𝐼𝑚)N, we obtain ∑︂
𝜔 ∈𝑃𝑚,𝑥

𝑅𝑢𝑚𝜔 = 1,

which leads to card (𝑃𝑚.𝑥 ) ≤ 𝑥𝑢𝑚/
(︁
𝑅𝑚,min

)︁𝑢𝑚 . Combining Lemma 4.31, (4.4.4), and
the chain rule for differentiation, for all 𝜔 ∈ 𝑃𝑚.𝑥 , we have

Λ (𝑇𝜔 ( [0,1]))a (𝑇𝜔 ( [0,1])) ≤
|𝜔 |∏︂
𝑖=1

𝑒𝑆𝜔𝑖𝜓 max
𝑥 ∈[0,1]

|𝑇 ′
𝜔𝑖
(𝑥) |

≤
|𝜔 |∏︂
𝑖=1

𝑒𝑆𝜔𝑖𝜓+𝑆𝜔𝑖𝜑+𝑏𝑚 = 𝑅𝜔 < 1/𝑥 .
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We conclude from Proposition 4.4 and the OSC

𝑁a (𝑥) ≤2card
(︁
𝑃𝑚,𝑥

)︁
+1 ≤ 2

𝑥𝑢𝑚(︁
𝑅𝑚,min

)︁𝑢𝑚 +1.

For the estimate from below we define for 𝑥 > 1
𝑟𝑚,min

the following partition of (𝐼𝑚)N

𝛯𝑚,𝑥 ≔

{︃
𝜔 ∈ (𝐼𝑚)∗ : 𝑟𝜔 <

1
𝑥𝑟𝑚,min

≤ 𝑟𝜔−

}︃
,

with 𝑟𝜔− ≔
∏︁ |𝜔 |−1
𝑖=1 𝑟𝜔𝑖 . Again, there exists 𝑢𝑚 ∈ R>0 such that

∑︁
𝜔 ∈𝐼𝑚 𝑟

𝑢𝑚
𝜔 = 1 and

we obtain
∑︁
𝜔 ∈𝛯𝑚,𝑥 𝑟

𝑢𝑚
𝜔 = 1. Hence, it follows

1 =
∑︂

𝜔 ∈𝛯𝑚,𝑥
𝑟
𝑢𝑚
𝜔 ≤

(︃
1

𝑥𝑟𝑚,min

)︃𝑢𝑚
card

(︁
𝛯𝑚,𝑥

)︁
. (4.4.5)

Fix 𝑎 ∈ K \ {0,1} and choose 𝑢0 ∈ C∞
𝑐 ((0,1)) such that 𝑢0(𝑎) > 0. For 𝜔 ∈𝛯𝑚,𝑥 , we

define

𝑢𝜔 (𝑥) ≔
{︄
𝑢0

(︁
𝑇 −1
𝜔 (𝑥)

)︁
, 𝑥 ∈𝑇𝜔 ((0,1)),

0, 𝑥 ∈ [0,1] \𝑇𝜔 ((0,1)) .

Clearly, we then have 𝑢𝜔 ∈ C∞
𝑐 (𝑇𝜔 ((0,1))) ⊂ 𝐻 1

0 . Using Lemma 4.31, Lemma 4.32,
and the chain rule for differentiation, we obtain∫

[0,1] (∇𝑢𝜔 )
2 dΛ∫

[0,1]𝑢
2
𝜔 d`

=

∫
[0,1] (∇𝑢0)2 |𝑇 ′

𝜔 |−1 dΛ∫
[0,1]𝑢

2
0e𝑆 |𝜔 |𝜓◦𝜋−1◦𝑇𝜔 da

≤

∫
[0,1] (∇𝑢0)2 dΛ∫

[0,1]𝑢
2
0 da⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

≕𝐶

|𝜔 |∏︂
𝑖=1

1
min𝑥 ∈[0,1] |𝑇 ′

𝜔𝑖 (𝑥) |
𝑒−𝑠𝜔𝑖𝜓

≤ 𝐶
|𝜔 |∏︂
𝑖=1

𝑒−𝑠𝜔𝑖𝜑−𝑠𝜔𝑖𝜓+𝑏𝑚 =
𝐶

𝑟𝜔
≤ 𝐶

(𝑟𝜔−)𝑟𝑚,min
≤ 𝐶 ·𝑥 .

Since the supports of (𝑢𝜔 )𝜔 ∈𝛯𝑚,𝑥 are disjoint, it follows that the (𝑢𝜔 )𝜔 ∈𝛯𝑚,𝑥 are
mutually orthogonal both in 𝐿2

a and in 𝐻 1
0 . Consequently, span(𝑢𝜔 : 𝜔 ∈ 𝐸𝑡 ) is a

card
(︁
𝛯𝑚,𝑥

)︁
-dimensional subspace of 𝐻 1

0 . Therefore, for 𝑥 ≥ 𝐶/𝑟𝑚,min, Lemma 2.19
and (4.4.5) give

𝑁𝐷
a (𝐶 ·𝑥) ≥ card

(︁
𝛯𝑚,𝑥

)︁
≥

(︁
𝑥𝑟𝑚,min

)︁𝑢𝑚 . □

In the case of self-similar measures, we obtain the following classical result of
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[Fuj87].

Corollary 4.34. Assume 𝑇 ′
𝑖 ≡ 𝜎𝑖 > 0 and𝜓 (𝜔) = log(𝑝𝜔1), for 𝜔 ≔ (𝜔1𝜔2 . . .) ∈ 𝐼N,

where (𝑝𝑖)𝑖 ∈ (0,1)𝑛 is a given probability vector. Then, for all 𝑥 >𝐶 (min𝑖∈𝐼 𝑝𝑖𝜎𝑖)−1,
we have

𝑥𝑢
(︃
min𝑖∈𝐼 𝑝𝑖𝜎𝑖

𝐶

)︃𝑢
≤ 𝑁𝐷

a (𝑥) ≤ 𝑥𝑢

(min𝑖∈𝐼 𝑝𝑖𝜎𝑖)𝑢
,

where 𝑢 is the unique solution of
∑︁
𝑛
𝑖=1(𝜎𝑖𝑝𝑖)

𝑢 = 1.

Lemma 4.35. For fixed𝑚 ∈ N large enough and 𝑢
𝑚
,𝑢𝑚 ∈ R>0 denoting the unique

solutions of ∑︂
𝜔 ∈𝐼𝑚

e𝑢𝑚 (𝑆𝜔𝜑+𝑏 |𝜔 |+𝑆𝜔𝜓 ) =
∑︂
𝜔 ∈𝐼𝑚

e𝑢𝑚 (𝑠𝜔𝜑−𝑏 |𝜔 |+𝑠𝜔𝜓 ) = 1,

we have lim𝑚→∞𝑢𝑚 = lim𝑚→∞𝑢𝑚 = 𝑧a .

Proof. Define for𝑚 ∈ N and 𝑡 ≥ 0

𝑃
𝑚
(𝑡) ≔ 1

𝑚
log

(︄ ∑︂
𝜔 ∈𝐼𝑚

exp(𝑡 (𝑠𝜔𝜑 −𝑏𝑚 +𝑠𝜔𝜓 ))
)︄
,

𝑃𝑚 (𝑡) ≔ 1
𝑚

log

(︄ ∑︂
𝜔 ∈𝐼𝑚

exp(𝑡 (𝑆𝜔𝜑 +𝑏𝑚 +𝑆𝜔𝜓 ))
)︄
,

𝑃𝑚 (𝑡) ≔ 1
𝑚

log

(︄ ∑︂
𝜔 ∈𝐼𝑚

exp(𝑡𝑆𝜔b)
)︄
.

We obtain

𝑃
𝑚
(𝑡) ≤ 𝑃𝑚 (𝑡)

≤ 𝑃𝑚 (𝑡) − 𝑡 𝑏𝑚
𝑚

=
1
𝑚

log

(︄ ∑︂
𝜔 ∈𝐼𝑚

exp(𝑡 (𝑠𝜔𝜑 +𝑠𝜔𝜓 +𝑆𝜔𝜑 −𝑠𝜔𝜑 +𝑆𝜔𝜓 −𝑠𝜔𝜓 ))
)︄
− 𝑡 𝑏𝑚

𝑚

≤ 1
𝑚

log

(︄ ∑︂
𝜔 ∈𝐼𝑚

exp

(︄
𝑡 (𝑠𝜔𝜑 +𝑠𝜔𝜓 ) + 𝑡

(︄
𝑚−1∑︂
𝑗=0

var𝑗𝜓 +
𝑚−1∑︂
𝑗=0

var𝑗 𝜑

)︄)︄)︄
− 𝑡 𝑏𝑚

𝑚

≤ 𝑃
𝑚
(𝑡) + 𝑡

𝑚

(︄
𝑚−1∑︂
𝑗=0

var𝑗 𝜑 +
𝑚−1∑︂
𝑗=0

var𝑗𝜓 −𝑏𝑚

)︄
.

Using the continuity of 𝜑, 𝜓 and lim𝑚→∞𝑏𝑚/𝑚 = 0, we deduce

lim
𝑚→∞

𝑃𝑚 (𝑡) = lim
𝑚→∞

𝑃
𝑚
(𝑡) = 𝑃 (𝑡b).
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Furthermore, for all 𝑡 ≥ 0, we have

𝑃
𝑚
(𝑡) ≤ 𝑃𝑚 (𝑡) ≤ 𝑡 𝑏𝑚

𝑚
+ 1
𝑚

log

(︄ ∑︂
𝜔 ∈𝐼𝑚

exp (𝑡𝑚 (max𝜓 +max𝜑))
)︄

= log(𝑛) + 𝑡
(︃
𝑏𝑚

𝑚
+ (max𝜓 +max𝜑)

)︃
.

Observe that for 𝑚 large we have 𝑏𝑚/𝑚 ≤ −max𝜓/2 and each of the maps 𝑡 ↦→
𝑃𝑚 (𝑡), 𝑡 ↦→ 𝑃

𝑚
(𝑡) and 𝑡 ↦→ 𝑃 (𝑡) is decreasing and has a unique zero lying in the

interval [0,− log(𝑛)/(max𝜓/2+max𝜑)]. Hence the statement follows from Lemma
3.5. □

We are now in the position to state our main result of this section which is an
immediate consequence of Lemma 4.33 and Lemma 4.35.

Theorem 4.36. The spectral dimension of Δ𝐷a exists and is equal to the unique zero
𝑧a of the pressure function as defined in (4.4.3). In particular 𝑧a = 𝑞𝔍a .

Example 4.37. The natural choice of the potential𝜓 is given by 𝑠𝜑 , where 𝑠 ≥ 0 is
to be chosen such that 𝑃 (𝑠𝜑) = 0. We then have b = (1+𝑠)𝜑 and 𝑃 ((𝑠/(𝑠 +1))b) = 0.
Thus, in this case, the spectral dimension can be expressed by the simple formula

𝑠𝐷a =
𝑠

𝑠 +1
.

4.4.1.2 Spectral asymptotics for Gibbs measures for C1+𝛾 -cIFS under the
OSC

Let ` and a be as defined in Section 4.4.1. This section is devoted to improve
Theorem 4.36 to 𝑁𝐷

a (𝑥) ≍ 𝑥𝑧a under the additional assumption that 𝜓 is Hölder
continuous and the underlying IFS {𝑇1, . . . ,𝑇𝑚} is C1+𝛾 , which implies that the asso-
ciated geometric potential 𝜑 is Hölder continuous. In this situation, the following
refined bounded distortion property holds (see [KK12, Lemma 3.4]).

Lemma 4.38 (Strong Bounded Distortion Property). Assume𝑇1, . . . ,𝑇𝑛 are C1+𝛾 -IFS
then we have the following strong bounded distortion property (sBDP). There exists
𝑎0 > 0 such that for all 𝜔 ∈ 𝐼 ∗ and 𝑥,𝑦 ∈ [0,1] we have

𝑎−1
0 ≤

𝑇 ′
𝜔 (𝑥)
𝑇 ′
𝜔 (𝑦)

≤ 𝑎0.

Using the sBDP, we can improve Lemma 4.32 in the following way.
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Lemma 4.39. For all 𝑖 ∈ N, 𝜔 ∈ 𝐼 ∗, and 𝑥,𝑦 ∈ 𝐼N, we have

e𝑆 |𝜔 |𝜑 (𝜔𝑦)−log(𝑎0) ≤ Λ (𝑇𝜔 ( [0,1])) ≤ e𝑆 |𝜔 |𝜑 (𝜔𝑦)+log(𝑎0) ,

and

e𝑆 |𝜔 |𝜓 (𝜔𝑥)−∑︁∞
𝑛=0 var𝑛 (𝜓 ) ≤ a (𝑇𝜔 ( [0,1])) ≤ e𝑆 |𝜔 |𝜓 (𝜔𝑥)+∑︁∞

𝑛=0 var𝑛 (𝜓 ) ,

where 𝑎0 is defined as in Lemma 4.38. In particular, we have

e𝑆𝜔b−𝑑0 ≤ a (𝑇𝜔 ( [0,1]))Λ (𝑇𝜔 ( [0,1])) ≤ e𝑆𝜔b+𝑑0,

with 𝑑0 ≔ log(𝑎0) +
∑︁∞
𝑛=0 var𝑛 (𝜓 ) and b ≔ 𝜑 +𝜓 .

Proof. Note, that we have for all 𝜔 ∈ 𝐼 ∗ and 𝑥,𝑧 ∈ 𝐼N|︁|︁𝑆 |𝜔 |𝜓 (𝜔𝑥) −𝑆 |𝜔 |𝜓 (𝜔𝑧)
|︁|︁ ≤ ∞∑︂

𝑘=0

var𝑘 (𝜓 )

and by Lemma 4.38, for all 𝑦,𝑣 ∈ [0,1], we obtain|︁|︁log
(︁|︁|︁𝑇 ′
𝜔 (𝑦)

|︁|︁)︁ − log
(︁|︁|︁𝑇 ′
𝜔 (𝑣)

|︁|︁)︁ |︁|︁ ≤ log (𝑎0) .

Further, note that there exists a𝑦 ∈K such that 𝜋 (𝑥) =𝑦 thus we obtain log
(︁|︁|︁𝑇 ′
𝜔 (𝑦)

|︁|︁)︁ =
𝑆 |𝜔 |𝜑 (𝜔𝑥). Hence, the statement follows from Lemma 4.32. □

Lemma 4.40. For every 𝑡 > 𝑐 > 0, we have that

Γ𝑡 ≔ {𝜔 ∈ 𝐼 ∗ : 𝑆𝜔b < log(𝑐/𝑡) ≤ 𝑆𝜔−b}

is a partition of 𝐼N. In particular, for every 𝜔 ∈ Γ𝑡,𝑐 and 𝑥 ∈ 𝐼N, we have

log(𝑀e𝑑0𝑡/𝑐) ≥ −𝑆 |𝜔 |b (𝜔𝑥)

with 𝑀 ≔ exp (max (−b)) and 𝑑0 ≔ log(𝑎0) +
∑︁∞
𝑘=0 var𝑘 (𝜓 ) with 𝑎0 defined as in

Lemma 4.38.

Proof. First note, that two cylinder sets are either disjoint or one is contained in the
other. From 𝜔 ∈ Γ𝑡,𝑐 and all [ ∈ 𝐼 ∗, we have

𝑆𝜔[b ≤ sup
𝑥 ∈𝐼N

𝑆 |𝜔 |b (𝜔[𝑥) ≤ sup
𝑥 ∈𝐼N

𝑆 |𝜔 |b (𝜔𝑥) = 𝑆𝜔b < log(𝑐/𝑡),

where we used maxb < 0, which shows for [ ≠ ∅ that 𝜔[ ∉ Γ𝑡,𝑐 . Moreover, since
minb < 0, it follows that 𝑆𝜔b converge to −∞ for |𝜔 | → ∞. Consequently, the set
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Γ𝑡,𝑐 is finite. In particular, for every 𝜔 ∈ 𝐼N, we have 𝑆𝜔 |𝑛b → −∞ as 𝑛 tends to
infinity. Therefore, there exists 𝑁 ∈ N such that

𝑆𝜔 |𝑁 b < log(𝑐/𝑡) ≤ 𝑆𝜔 |𝑁−1b

and the first statement follows. For the second claim fix 𝜔 ∈ Γ𝑡,𝑐 , then

log(𝑡/𝑐) ≥ −(𝑆𝜔−b) = −𝑆 |𝜔−1 |b (𝜔𝑥) −
(︁
𝑆𝜔−b −𝑆 |𝜔−1 |b (𝜔𝑥)

)︁
≥ −𝑆 |𝜔−1 |b (𝜔𝑥) −𝑑0

= −𝑆 |𝜔−1 |b (𝜔𝑥) − b
(︂
𝜎 |𝜔 |−1 (𝜔)𝑥

)︂
+ b

(︂
𝜎 |𝜔 |−1 (𝜔)𝑥

)︂
−𝑑0

≥ −𝑆 |𝜔 |b (𝜔𝑥) − log(𝑀) −𝑑0,

and hence we obtain log
(︁
𝑀e𝑑0𝑡/𝑐

)︁
≥ −𝑆 |𝜔 |b (𝜔𝑥). □

Recall for𝑚 ∈ N and 𝑥 ∈ (𝐼𝑚)N

b𝑚 (𝑥) =
𝑚−1∑︂
𝑖=0

b
(︁
𝜎𝑖 (𝑥)

)︁
.

Lemma 4.41. Set 𝑑0 ≔ log (𝑎0) +
∑︁∞
𝑘=0 var𝑘𝜓 where 𝑎0 is defined as in Lemma 4.38.

Then for 𝑡 > 𝑐 > 0 and𝑚 ∈ N such that −𝑚maxb −𝑑0 > 0, and 𝑥 ∈ (𝐼𝑚)N , we have
that

Γ𝐿𝑡,𝑚 ≔

{︃
𝜔 ∈ (𝐼𝑚)∗ : −˜︁𝑆 |𝜔 |𝑚b

𝑚 (𝜔𝑥) ≤ log(𝑡/𝑐) < min
𝑣∈𝐼𝑚

−˜︁𝑆 |𝜔𝑣 |𝑚b𝑚 (𝜔𝑣𝑥)
}︃

defines a disjoint family, meaning 𝜔 ≠ 𝜔 ′ implies [𝜔] ∩ [𝜔 ′] = ∅. With 𝑘𝑚 ≔
exp(−𝑚maxb) for every 𝜔 ∈ (𝐼𝑚)∗

log
(︂
𝑡e𝑑0/(𝑘𝑚𝑐)

)︂
< −˜︁𝑆 |𝜔 |𝑚b

𝑚 (𝜔𝑥) ≤ log(𝑡/𝑐),

we have 𝜔 ∈ Γ𝐿𝑡,𝑚.

Proof. For every 𝜔 ∈ Γ𝐿𝑡,𝑚 and every 𝑣 ∈ 𝐼𝑚 we have log(𝑡/𝑐) < −˜︁𝑆 |𝜔𝑣 |𝑚b𝑚 (𝜔𝑣𝑥),
implying 𝜔𝑣 ∉ Γ𝐿𝑡,𝑚. Further, using −𝑚maxb −𝑑0 > 0 and the BDP, for every
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[ ∈ (𝐼𝑚)∗ \ {∅}, we have

log(𝑐/𝑡) > ˜︁𝑆 |𝜔𝑣 |𝑚b𝑚 (𝜔𝑣𝑥)
≥ ˜︁𝑆 |𝜔𝑣 |𝑚b𝑚 (𝜔𝑣[𝑥) −𝑑0

= ˜︁𝑆 |𝜔𝑣 |𝑚b𝑚 (𝜔𝑣[𝑥) +
|[ |𝑚−1∑︂
𝑖=0

(︁
b𝑚

(︁˜︁𝜎𝑖 ([)𝑥 )︁ − b𝑚 (︁˜︁𝜎𝑖 ([)𝑥 )︁ )︁ −𝑑0

≥ ˜︁𝑆 |𝜔𝑣[ |𝑚b𝑚 (𝜔𝑣[𝑥) −𝑚 · |[ |𝑚maxb −𝑑0

≥ ˜︁𝑆 |𝜔𝑣[ |𝑚b𝑚 (𝜔𝑣[𝑥) −𝑚 ·maxb −𝑑0

> ˜︁𝑆 |𝜔𝑣[ |𝑚b𝑚 (𝜔𝑣[𝑥) .

Thus, for every 𝜔 ∈ Γ𝐿𝑡,𝑚 and [ ′ ∈ (𝐼𝑚)∗ \ {∅} it follows 𝜔[ ′ ∉ Γ𝐿𝑡,𝑚.

For the second assertion fix 𝑥 ∈ (𝐼𝑚)N, 𝜔 ∈ (𝐼𝑚)∗ and assume

log
(︂
𝑡e𝑑0/(𝑘𝑚𝑐)

)︂
< −˜︁𝑆 |𝜔 |𝑚b

𝑚 (𝜔𝑥) ≤ log(𝑡/𝑐) .

Using the BDP, for all 𝑣 ∈ 𝐼𝑚, 𝜔 ∈ (𝐼𝑚)∗, we obtain|︁|︁|︁˜︁𝑆 |𝜔 |𝑚b
𝑚 (𝜔𝑥) −˜︁𝑆 |𝜔 |𝑚b

𝑚 (𝜔𝑣𝑥)
|︁|︁|︁ ≤ 𝑑0,

and consequently,

log(𝑡/𝑐) < log(𝑘𝑚) −𝑑0 −˜︁𝑆 |𝜔 |𝑚b
𝑚 (𝜔𝑥)

≤ log(𝑘𝑚) + b𝑚 (𝑣𝑥) − b𝑚 (𝑣𝑥) −˜︁𝑆 |𝜔 |𝑚b
𝑚 (𝜔𝑣𝑥)

≤ −˜︁𝑆 |𝜔𝑣 |𝑚b𝑚 (𝜔𝑣𝑥).

Since −˜︁𝑆 |𝜔 |𝑚b
𝑚 (𝜔𝑥) ≤ log(𝑡/𝑐), we conclude 𝜔 ∈ Γ𝐿𝑡,𝑚. □

Now we are in the position to prove the main theorem of this section.

Theorem 4.42. We have

𝑁𝐷
a (𝑡) ≍ 𝑡𝑧a ,

where 𝑧a is the unique zero of the pressure function as defined in (4.4.3).

Proof. Let 𝑡 > 𝑒−𝑑0 and 𝜔 ∈ Γ𝑡,𝑒−𝑑0 . Then, by Lemma 4.39 and the definition of
𝜔 ∈ Γ𝑡,𝑒−𝑑0 , it follows

a (𝑇𝜔 ( [0,1]))Λ (𝑇𝜔 ( [0,1])) ≤ e𝑆𝜔b+𝑑0 < 1/𝑡 .
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Then from Lemma 4.40 and Proposition 4.4 we infer

𝑁𝐷
a (𝑡) ≤ 2card

(︂
Γ𝑡,𝑒−𝑑0

)︂
+1.

Hence, for the upper bound, we are left to show that card
(︁
Γ𝑡,𝑐

)︁
≪ 𝑡𝑧a . For this we

use [Kom18, Theorem 3.2] adapted to our situation, i.e.

𝑍 (𝑥,𝑡) ≔
∞∑︂
𝑛=0

∑︂
𝜎𝑛𝑦=𝑥

1{−𝑆𝑛b (𝑦) ≤log(𝑡 ) } ∼𝐺 (𝑥, log(𝑡))𝑡𝑧a ,

where (𝑥,𝑠) ↦→𝐺 (𝑥,𝑠), defined on 𝐼N×R>0, is bounded from above by inspecting the
corresponding function 𝐺 in [Kom18, Theorem 3.2], and 𝑠 ↦→𝐺 (𝑥,𝑠) is a constant
function in the aperiodic case and a periodic function in the periodic case. Therefore,
for fixed𝑦 ∈ 𝐼N, with𝑀 ≔ exp (max−b), we have by the second assertion of Lemma
4.40

card
(︂
Γ𝑅𝑡

)︂
≤ 𝑍

(︂
𝑦,𝑀e𝑑0𝑡/_

)︂
≪ 𝑡𝑧a .

For the lower estimate we use an approximation argument involving the strong
bounded distortion property. Let 𝑎 ∈ K \ {0,1}. Fix 𝑢0 ∈ C∞

𝑐 ((0,1)) such that
𝑢0(𝑎) > 0 and define

𝑐0 ≔ 𝑒𝑑0

∫
[0,1] (∇𝑢0)2 dΛ∫

[0,1]𝑢
2
0 da

,

where 𝑑0 is defined as in Lemma 4.40. Applying Lemma 4.41 with 𝑥 ∈ (𝐼𝑚)N and
𝑚 ∈ N such that log(𝑘𝑚) −𝑑0 > 0 with 𝑘𝑚 = exp(−maxb𝑚) yields{︂

𝜔 ∈ (𝐼𝑚)∗ : log(𝑡e𝑑0/(𝑘𝑚𝑐0)) < −˜︁𝑆 |𝜔 |𝑚b
𝑚 (𝜔𝑥) ≤ log(𝑡/𝑐0)

}︂
⊂ Γ𝐿𝑡,𝑚

with

Γ𝐿𝑡,𝑚 =

{︃
𝜔 ∈ (𝐼𝑚)∗ : −˜︁𝑆 |𝜔 |𝑚b

𝑚 (𝜔𝑥) ≤ log(𝑡/𝑐0) < min
𝑣∈𝐼𝑚

−˜︁𝑆 |𝜔𝑣 |𝑚b𝑚 (𝜔𝑣𝑥)
}︃
.

For any 𝜔 ∈ Γ𝐿𝑡,𝑚, we define

𝑢𝜔 (𝑥) ≔
{︄
𝑢0 ◦𝑇 −1

𝜔 (𝑥), 𝑥 ∈𝑇𝜔 ((0,1)) ,
0, 𝑥 ∈ [0,1] \𝑇𝜔 ((0,1)) ,
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which is an element of 𝐶∞
𝑐 (𝑇𝜔 (0,1)). Then, by Lemma 4.32, we have∫

𝐼𝜔
(∇𝑢𝜔 )2 dΛ∫
𝐼𝜔
𝑢2
𝜔 da

=

∫
[0,1] (∇ (𝑢𝜔 ◦𝑇𝜔 )) 2

|︁|︁𝑇 ′
𝜔

|︁|︁−1 dΛ∫
[0,1] (𝑢𝜔 ◦𝑇𝜔 )2e𝑆 |𝜔 |𝜓◦𝜋−1◦𝑇𝜔 da

=

∫
[0,1] (∇ (𝑢0)) 2

|︁|︁𝑇 ′
𝜔

|︁|︁−1 dΛ∫
[0,1]𝑢

2
0e𝑆 |𝜔 |𝜓◦𝜋−1◦𝑇𝜔 da

≤ 𝑐0𝑒
−˜︁𝑆 |𝜔 |𝑚 b

𝑚 (𝜔𝑥) ≤ 𝑡 .

Since the supports of (𝑢𝜔 )𝜔 ∈Γ𝐿𝑡,𝑚 are disjoint, it follows that the (𝑢𝜔 )𝜔 ∈Γ𝐿𝑡,𝑚 are mu-

tually orthogonal both in 𝐿2
a and in 𝐻 1

0 . Hence, span
(︂
𝑢𝜔 : 𝜔 ∈ Γ𝐿𝑡,𝑚

)︂
is a card

(︂
Γ𝐿𝑡,𝑚

)︂
-

dimensional subspace of 𝐻 1
0 . Hence, Lemma 2.19 yields

𝑁𝐷
a (𝑡) ≥ card

(︂
Γ𝐿𝑡,𝑚

)︂
≥ card

(︂{︂
𝜔 ∈ (𝐼𝑚)∗ : log(𝑡e𝑑0/(𝑘𝑚𝑐)) < −˜︁𝑆 |𝜔 |𝑚b

𝑚 (𝜔𝑥) ≤ log(𝑡/𝑐)
}︂)︂
.

We conclude

𝑁𝐷
a (𝑡)

≥
∞∑︂
𝑛=0

∑︂
𝜔 ∈(𝐼𝑚)𝑛

1{−˜︁𝑆 |𝜔 |𝑚 b
𝑚 (𝜔𝑥) ≤log(𝑡/𝑐)} −

∞∑︂
𝑛=0

∑︂
𝜔 ∈(𝐼𝑚)𝑛

1{−˜︁𝑆 |𝜔 |𝑚 b
𝑚 (𝜔𝑥) ≤log(𝑡e𝑑0/(𝑘𝑚𝑐))}.

Moreover, by Lemma 4.30 we have 0 = 𝑃 (𝑧ab) = 𝑃˜︁𝜎 (𝑧ab𝑚) as defined in Lemma
4.30. Again, [Kom18, Theorem 3.2] applied to b𝑚 gives that there exists a function
(𝑥,𝑠) ↦→ ˜︁𝐺 (𝑥,𝑠) defined on (𝐼𝑚)N ×R>0, which is bounded away from zero by
inspecting the corresponding function 𝐺 in [Kom18, Theorem 3.2], such that

˜︁𝑍 (𝑥,𝑡) ≔ ∞∑︂
𝑛=0

∑︂
𝜔 ∈(𝐼𝑚)𝑛

1{−˜︁𝑆 |𝜔 |𝑚 b
𝑚 (𝜔𝑥) ≤log(𝑡 )} ∼ ˜︁𝐺 (𝑥, log(𝑡))𝑡𝑧a .

In the aperiodic case 𝑠 ↦→ ˜︁𝐺 (𝑥,𝑠) is a constant function and hence in this case
we immediately get 𝑡𝑧a ≪ 𝑁a,Λ(𝑡). In the periodic case, 𝑠 ↦→ ˜︁𝐺 (𝑥,𝑠) is periodic
with minimal period 𝑎 > 0. To end this, we choose 𝑚 large enough such that
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⌈𝑎/(log(𝑘𝑚) −𝑑0)⌉ = 1 and exp(𝑑0)/𝑘𝑚 < 1. We finally then have

𝑁𝐷
a (𝑡) ≥ ˜︁𝑍 (𝑥,𝑡/𝑐) − ˜︁𝑍 (︂

𝑥,

(︂
e𝑑0/𝑘𝑚

)︂
(𝑡/𝑐)

)︂
≥ ˜︁𝑍 (𝑥,𝑡/𝑐) − ˜︁𝑍 (︃

𝑥,

(︂
e𝑑0/𝑘𝑚

)︂𝑎/(log(𝑘𝑚)−𝑑0)
(𝑡/𝑐)

)︃
∼ ˜︁𝐺 (𝑥, log (𝑡/𝑐))

(︂ 𝑡
𝑐

)︂𝑧a
− ˜︁𝐺 (𝑥, log (𝑡/𝑐))

(︂ 𝑡
𝑐

)︂𝑧a (︃(︂
e𝑑0/𝑘𝑚

)︂𝑎/(log(𝑘𝑚)−𝑑0)
)︃𝑧a

= 𝑡𝑧a
˜︁𝐺 (𝑥, log (𝑡/𝑐))

𝑐𝑧a

(︃
1−

(︂
e𝑑0/𝑘𝑚

)︂𝑧a𝑎/(log(𝑘𝑚)−𝑑0)
)︃

≫ 𝑡𝑧a ,

where we used log(𝑡/𝑐) − log
(︂ (︁

e𝑑0/𝑘𝑚
)︁𝑎/(log(𝑘𝑚)−𝑑0)

𝑡/𝑐
)︂
= 𝑎. □

4.4.1.3 Spectral dimension of weak Gibbs measures with overlap

This section relies on results from [PS00; Fen07; BF20] on the 𝐿𝑞-spectrum together
with the regularity result stated in Section 4.3.2. Let a and ` be defined as in Section
4.4.1 such that a ({0,1}) = 0. Here we do not assume any separation conditions for
the C1-cIFS Φ.

Recall that Φ is non-trivial, i.e. there is more than one contraction and the𝑇𝑖’s do not
share a common fixed point. Hence, by Proposition 2.48, it follows that self-similar
measures with or without OSC are atomless as long as Φ is non-trivial. However, it
is an open question under which condition the same applies to weak Gibbs measures
without OSC.

First, we will prove that the 𝐿𝑞-spectrum of a exists as a limit on (0,1]. Combining
this with Corollary 4.12 we conclude that the spectral dimension exists and is given
by 𝑞𝔍a . To this end we need the following lemmas.

Lemma 4.43. We have for any 𝐺 ⊂ 𝐼 ∗ with
⨄︁
𝑢∈𝐺 [𝑢] = 𝐼N and 𝐸 ∈𝔅( [0,1]) that

a (𝐸) ≥
∑︂
𝑢∈𝐺

𝑐 |𝑢 |` ( [𝑢])a
(︂
𝑇 −1
𝑢 (𝐸)

)︂
with 𝑐𝑛 ≔ e−

∑︁𝑛−1
𝑖=0 var𝑖 (𝜓 ) (and therefore log (𝑐𝑛) = 𝑜 (𝑛)).
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Proof. For all 𝐸 ∈𝔅( [0,1]) and 𝑢 ∈ 𝐼 ∗, we have

`

(︂
𝜋−1(𝐸) ∩ [𝑢]

)︂
=

∫
[𝑢 ]
1𝐸 ◦𝜋 d` =

∫
𝐿
|𝑢 |
𝜓

(1[𝑢 ] (𝑥)1𝐸 (𝜋 (𝑥))) d` (𝑥)

=

∫ ∑︂
𝜏 ∈𝐼 |𝑢 |

e𝑆 |𝑢 |𝜓 (𝜏𝑥)
1[𝑢 ] (𝜏𝑥)1𝐸 (𝜋 (𝜏𝑥)) d` (𝑥)

=

∫
e𝑆 |𝑢 |𝜓 (𝑢𝑥)

1𝐸 (𝜋 (𝑢𝑥)) d` (𝑥)

≥ e−
∑︁|𝑢 |−1
𝑖=0 var𝑖 (𝜓 )a

(︂
𝑇 −1
𝑢 (𝐸)

)︂
` ( [𝑢]) .

Setting 𝑐𝑛 ≔ e−
∑︁𝑛−1
𝑖=0 var𝑖 (𝜓 ) and summing over 𝑢 ∈𝐺 , we obtain

a (𝐸) =
∑︂
𝑢∈𝐺

`

(︂
𝜋−1(𝐸) ∩ [𝑢]

)︂
≥

∑︂
𝑢∈𝐺

𝑐 |𝑢 |` ( [𝑢])a
(︂
𝑇 −1
𝑢 (𝐸)

)︂
.

Also, the continuity of the potential𝜓 implies log (𝑐𝑛) = 𝑜 (𝑛). □

For 𝑢 ∈ 𝐼 ∗ let us define K𝑢 ≔ 𝑇𝑢 (K). Then, for 𝑛 ≥ 2, the set

𝑊𝑛 ≔ {𝑢 ∈ 𝐼 ∗ : diam (K𝑢) ≤ 2−𝑛 < diam (K𝑢−)}

defines a partition of 𝐼N.

Lemma 4.44. For any 0 < 𝑞 < 1 there exists a sequence (𝑠𝑛)𝑛 ∈ RN
>0 such that

log(𝑠𝑛) = 𝑜 (𝑛) and for every 𝑛,𝑚 ∈ N and ˜︁𝑄 ∈ D𝑁
𝑛 , we have∑︂

𝐵∈D𝑁
𝑛

𝐵∼˜︁𝑄
∑︂

𝑄 ∈D𝑁
𝑚+𝑛,

𝑄⊂𝐵

a (𝑄)𝑞 ≥ 𝑠𝑛a (˜︁𝑄)𝑞 min
𝑢∈𝑊𝑛

∑︂
𝑄 ∈D𝑁

𝑚+𝑛

a

(︂
𝑇 −1
𝑢 (𝑄)

)︂𝑞

where 𝐵 ∼ ˜︁𝑄 means that the closures of 𝐵 and ˜︁𝑄 intersect.

Proof. As in [PS00] for 𝑛,𝑚 ∈ N, 𝑢 ∈𝑊𝑛, and 𝐴 ∈ D𝑁
𝑛 , let us define

𝑤 (𝑢,𝐴) ≔
∑︂

𝑄 ∈D𝑁
𝑛+𝑚 :𝑄⊂𝐴

a

(︂
𝑇 −1
𝑢 (𝑄)

)︂𝑞
.

The interval 𝐴 ∈ D𝑁
𝑛 on which𝑤 (𝑢,𝐴) attains its maximum will be called 𝑞-heavy

for 𝑢 ∈𝑊𝑛. We will denote the 𝑞-heavy box by 𝐻 (𝑢) (if there are more than one
interval which maximizes 𝑤 (𝑢, ·), we choose one of them arbitrarily). Note that
every K𝑢 with 𝑢 ∈𝑊𝑛 intersects at most 3 intervals in D𝑁

𝑛 . Hence, we obtain for all
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𝑢 ∈𝑊𝑛 ∑︂
𝑄 ∈D𝑁

𝑛+𝑚

a

(︂
𝑇 −1
𝑢 (𝑄)

)︂𝑞
=

∑︂
𝐵∈D𝑁

𝑛

∑︂
𝑄 ∈D𝑁

𝑛+𝑚 :𝑄⊂𝐵

a

(︂
𝑇 −1
𝑢 (𝑄)

)︂𝑞
≤ 3

∑︂
𝑄 ∈D𝑁

𝑛+𝑚 :𝑄⊂𝐻 (𝑢)

a

(︂
𝑇 −1
𝑢 (𝑄)

)︂𝑞
.

This leads to∑︂
𝑄 ∈D𝑁

𝑛+𝑚 :
𝑄⊂𝐻 (𝑢)

a

(︂
𝑇 −1
𝑢 (𝑄)

)︂𝑞
≥

∑︂
𝑄 ∈D𝑁

𝑛+𝑚

a
(︁
𝑇 −1
𝑢 (𝑄)

)︁𝑞
3

≥ min
𝑣∈𝑊𝑛

∑︂
𝑄 ∈D𝑁

𝑛+𝑚

a
(︁
𝑇 −1
𝑣 (𝑄)

)︁𝑞
3

. (4.4.6)

Further, for every 𝑄 ∈ D𝑁
𝑛+𝑚 and 𝐵 ∈ D𝑁

𝑛 , by Lemma 4.43, we have

a (𝑄) ≥
∑︂
𝑢∈𝑊𝑛

𝑐 |𝑢 |` ( [𝑢])a
(︂
𝑇 −1
𝑢 (𝑄)

)︂
≥

∑︂
𝑢∈𝑊𝑛 :𝐵=𝐻 (𝑢)

𝑐 |𝑢 |` ( [𝑢])a
(︂
𝑇 −1
𝑢 (𝑄)

)︂
≥

(︃
min
𝑢∈𝑊𝑛

𝑐 |𝑢 |

)︃ ∑︂
𝑢∈𝑊𝑛 :𝐵=𝐻 (𝑢)

` ( [𝑢])a
(︂
𝑇 −1
𝑢 (𝑄)

)︂
.

Setting
𝑝− (𝐵) ≔

∑︂
𝑢∈𝑊𝑛 :𝐵=𝐻 (𝑢)

` ( [𝑢]) ,

and if 𝑝− (𝐵) > 0, using the concavity of the function 𝑥 ↦→ 𝑥𝑞 for 0 < 𝑞 < 1, we
obtain

a (𝑄)𝑞 ≥ 𝑝− (𝐵)𝑞
(︃

min
𝑢∈𝑊𝑛

𝑐 |𝑢 |

)︃𝑞 ⎛⎜⎝
∑︂

𝑢∈𝑊𝑛 :𝐵=𝐻 (𝑢)

` ( [𝑢])a
(︁
𝑇 −1
𝑢 (𝑄)

)︁
𝑝− (𝐵)

⎞⎟⎠
𝑞

≥ 𝑝− (𝐵)𝑞−1
(︃

min
𝑢∈𝑊𝑛

𝑐 |𝑢 |

)︃𝑞 ∑︂
𝑢∈𝑊𝑛 :𝐵=𝐻 (𝑢)

` ( [𝑢])a
(︂
𝑇 −1
𝑢 (𝑄)

)︂𝑞
.

Summing over 𝑄 ∈ D𝑁
𝑛+𝑚 with 𝑄 ⊂ 𝐵, and using (4.4.6), we infer∑︂

𝑄⊂𝐵,
𝑄 ∈D𝑁

𝑛+𝑚

a (𝑄)𝑞 ≥ 𝑝− (𝐵)𝑞−1
(︃

min
𝑢∈𝑊𝑛

𝑐 |𝑢 |

)︃𝑞 ∑︂
𝑢∈𝑊𝑛 :𝐵=𝐻 (𝑢)

` ( [𝑢])
∑︂
𝑄⊂𝐵,

𝑄 ∈D𝑁
𝑛+𝑚

a

(︂
𝑇 −1
𝑢 (𝑄)

)︂𝑞
≥ 𝑝− (𝐵)𝑞

3

(︃
min
𝑢∈𝑊𝑛

𝑐 |𝑢 |

)︃𝑞
min
𝑣∈𝑊𝑛

∑︂
𝑄 ∈D𝑁

𝑛+𝑚

a

(︂
𝑇 −1
𝑣 (𝑄)

)︂𝑞
,

which is also valid in the case 𝑝− (𝐵) = 0. For ˜︁𝑄 ∈ D𝑁
𝑛 and 𝑢 ∈𝑊𝑛 with K𝑢 ∩ ˜︁𝑄 ≠∅,

we have K𝑢 ⊂ ⋃︁
𝐵∼˜︁𝑄,𝐵∈D𝑁

𝑛
𝐵, as a consequence of diam (K𝑢) ≤ 2−𝑛. In particular,
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every K𝑢 that intersects ˜︁𝑄 must have an interval 𝐵 ∈ D𝑁
𝑛 with 𝐵 ∼ ˜︁𝑄 which is

𝑞-heavy for 𝑢. Hence, we obtain

a

(︂˜︁𝑄)︂
≤

∑︂
𝑢∈𝑊𝑛 :K𝑢∩˜︁𝑄≠∅

` ( [𝑢]) ≤
∑︂

𝐵∼˜︁𝑄:𝐵∈D𝑁
𝑛

∑︂
𝑢∈𝑊𝑛 :𝐵=𝐻 (𝑢)

` ( [𝑢]) =
∑︂

𝐵∼˜︁𝑄:𝐵∈D𝑁
𝑛

𝑝− (𝐵) .

Using 0 < 𝑞 < 1, we conclude

a

(︂˜︁𝑄)︂𝑞
≤ ⎛⎜⎝

∑︂
𝐵∼˜︁𝑄:𝐵∈D𝑁

𝑛

𝑝− (𝐵)
⎞⎟⎠
𝑞

≤
∑︂

𝐵∼˜︁𝑄:𝐵∈D𝑁
𝑛

𝑝− (𝐵)𝑞 .

Summing over all 𝐵 ∈ D𝑁
𝑛 with 𝐵 ∼ ˜︁𝑄 gives∑︂

𝐵∼˜︁𝑄:
𝐵∈D𝑁

𝑛

∑︂
𝑄⊂𝐵:

𝑄 ∈D𝑁
𝑛+𝑚

a (𝑄)𝑞 ≥
∑︂

𝐵∼˜︁𝑄:𝐵∈D𝑁
𝑛

𝑝− (𝐵)𝑞

3

(︃
min
𝑢∈𝑊𝑛

𝑐 |𝑢 |

)︃𝑞
min
𝑣∈𝑊𝑛

∑︂
𝑄 ∈D𝑁

𝑛+𝑚

a

(︂
𝑇 −1
𝑣 (𝑄)

)︂𝑞

≥
a

(︂˜︁𝑄)︂𝑞
3

(︃
min
𝑢∈𝑊𝑛

𝑐 |𝑢 |

)︃𝑞
min
𝑣∈𝑊𝑛

∑︂
𝑄 ∈D𝑁

𝑛+𝑚

a

(︂
𝑇 −1
𝑣 (𝑄)

)︂𝑞
.

Note that for every 𝑢 ∈𝑊𝑛, by the definition of𝑊𝑛, we have

|𝑢 | < 𝑛 log(2) − log (𝛼max)
− log (𝛼max)

with 𝛼max ≔ max𝑖=1,...,𝑛max𝑥 ∈[0,1]
|︁|︁𝑇 ′
𝑖 (𝑥)

|︁|︁. Thus, setting 𝑠𝑛 ≔ 3−1 min𝑢∈𝑊𝑛 𝑐
𝑞

|𝑢 |, we
find that lim𝑛→∞𝑛−1 log(𝑠𝑛) = 0, where we used the elementary fact that for any
two sequences (𝑥𝑛)𝑛 ∈ RN

>0 and (𝑦𝑛)𝑛 ∈ NN with 𝑥𝑛 = o (𝑛), 𝑦𝑛 ≪ 𝑛, we have
𝑥𝑦𝑛 = o (𝑛). □

Proposition 4.45. The 𝐿𝑞-spectrum 𝛽a of a exists on (0,1] as limit.

Proof. Let 0 < 𝑞 < 1. From [Fen07, Proposition 3.3] (which holds true for all
Borel probability measures with support K, see remark after Proposition 3.3 in
[Fen07]) it follows that there exists a sequence

(︁
𝑏𝑞,𝑛

)︁
𝑛

of positive numbers with
log(𝑏𝑞,𝑛) = 𝑜 (𝑛), such that for all𝑚,𝑛 ∈ N and 𝑢 ∈𝑊𝑛

𝑏𝑞,𝑛

∑︂
𝑄 ∈D𝑁

𝑚

a (𝑄)𝑞 ≤
∑︂

𝐶∈D𝑁
𝑚+𝑛

a

(︂
𝑇 −1
𝑢 (𝑄)

)︂𝑞
.
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In tandem with Lemma 4.44, for every ˜︁𝑄 ∈ D𝑁
𝑛 , we obtain∑︂

𝐵∈D𝑁
𝑛 ,𝐵∼˜︁𝑄

∑︂
𝑄 ∈D𝑁

𝑚+𝑛 :𝑄⊂𝐵

a (𝑄)𝑞 ≥ 𝑠𝑛a (˜︁𝑄)𝑞 min
𝑢∈𝑊𝑛

∑︂
𝑄 ∈D𝑁

𝑚+𝑛

a

(︂
𝑇 −1
𝑢 (𝑄)

)︂𝑞
≥

(︁
𝑏𝑞,𝑛𝑠𝑛

)︁
a (˜︁𝑄)𝑞 ∑︂

𝑄 ∈D𝑁
𝑚

a (𝑄)𝑞 .

Clearly, log
(︁
𝑏𝑞,𝑛𝑠𝑛

)︁
= 𝑜 (𝑛). Hence, we can apply [Fen07, Proposition 4.4], which

shows that 𝛽a exists as a limit on (0,1]. □

With this knowledge, we obtain the following theorem.

Theorem 4.46. The spectral dimension of Δ𝐷a exists and equals 𝑞𝔍a .

Proof. The proof follows from Corollary 4.12 and Proposition 4.45. □

Corollary 4.47. Let a be a self-conformal measure on [0,1]. Then the spectral
dimension of Δ𝐷a exists and equals 𝑞𝔍a .

4.4.2 Homogeneous Cantor measures

Let us recall the construction of general homogeneous Cantor measures as in [Arz14;
Min20; BH97], allowing us to construct examples for which the spectral dimension
does not exist. Let 𝐽 be finite or countably infinite subset of N. For every 𝑗 ∈ 𝐽
we define an iterated function system S ( 𝑗) . For 𝑖 = 1,2 let 𝑆 ( 𝑗)

𝑖
: [𝑎,𝑏] → [𝑎,𝑏] be

defined by
𝑆
( 𝑗)
𝑖

(𝑥) = 𝑟 ( 𝑗)
𝑖
𝑥 +𝑐 ( 𝑗)

𝑖

with 𝑟 ( 𝑗)
𝑖

∈ (0,1) and 𝑐 ( 𝑗)
𝑖

∈ R are chosen such that

𝑎 = 𝑆
( 𝑗)
1 (𝑎) < 𝑆 ( 𝑗)1 (𝑏) ≤ 𝑆 ( 𝑗)2 (𝑎) < 𝑆 ( 𝑗)2 (𝑏) = 𝑏.

This ensures the open set condition. We define S ( 𝑗) =
(︂
𝑆
( 𝑗)
1 ,𝑆

( 𝑗)
2

)︂
. Moreover let

us define an environment sequence b ≔
(︁
b𝑖

)︁
𝑖
∈ 𝐽N. Each b𝑖 represents an iterated

function system S (b𝑖 ) . To give a suitable coding, we define the following word
space𝑊𝑛 ≔ {1,2}𝑛 of words with length 𝑛. For 𝑛 ∈ N and 𝜔 ≔ (𝜔1 . . .𝜔𝑛) ∈𝑊𝑛,
we set

𝑆
(b)
𝜔 ≔ 𝑆

(b1)
𝜔1 ◦𝑆 (b2)

𝜔2 ◦ · · · ◦𝑆 (b𝑛)𝜔𝑛 .

Now, for any environment sequence b , we construct a probability measure a (b) on
[𝑎,𝑏] with support 𝐾 (b) defined by

𝐾 (b) ≔
∞⋂︂
𝑛=1

⋃︂
𝜔 ∈𝑊𝑛

(︂
𝑆
(b1)
𝜔1 ◦𝑆 (b2)

𝜔2 ◦ · · · ◦𝑆 (b𝑛)𝜔𝑛

)︂
( [𝑎,𝑏]) .
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For any 𝑗 ∈ 𝐽 , let
(︂
𝑝
𝑗

1,𝑝
𝑗

2

)︂
∈ (0,1)2 with

∑︁2
𝑖=1𝑝

𝑗

𝑖
= 1. Moreover, for 𝑛 ∈ N and

𝜔 ≔ (𝜔1 . . .𝜔𝑛) ∈𝑊𝑛, we define 𝑝 (b)
𝜔 ≔

∏︁𝑛
𝑖=1𝑝

(b𝑖 )
𝜔𝑖 . Then define the following

sequence of probability measures: a0 ≔
1
𝑏−𝑎Λ| [𝑎,𝑏 ] and for 𝑛 ∈ N and 𝐴 ∈𝔅 ( [𝑎,𝑏])

a𝑛 (𝐴) ≔
∑︂
𝜔 ∈𝑊𝑛

𝑝
(b)
𝜔 a0

(︃(︂
𝑆
(b)
𝜔

)︂−1
(𝐴)

)︃
.

Then we define a (b) by
a (b) (𝐴) = lim

𝑛→∞
a𝑛 (𝐴) .

The theorem of Vitali-Hahn-Saks ensures that a (b) is a probability measure on
𝔅 ( [𝑎,𝑏]) (see [Arz14, Lemma 3.1.2]) and for every 𝑛 ∈ N and 𝜔 ∈𝑊𝑛, we have

a (b)
(︂
𝑆
(b)
𝜔 ( [𝑎,𝑏])

)︂
= 𝑝

(b)
𝜔 .

Example 4.48 (Homogeneous Cantor measure with non-converging 𝐿𝑞-spectrum).
Now, let us consider the following environment

b𝑖 ≔

{︄
1 , ∃ℓ ∈ N0 : 22ℓ < 𝑖 ≤ 22ℓ+1,

2 , ∃ℓ ∈ N0 : 22ℓ+1 < 𝑖 ≤ 22ℓ+2,

𝑆
(1)
1 (𝑥) ≔ 𝑥

4 , 𝑆
(1)
2 (𝑥) ≔ 𝑥

4 +
3
4 , 𝑆 (2)1 (𝑥) ≔ 𝑥

16 , and 𝑆 (2)2 (𝑥) ≔ 𝑥
16 +

15
16 for 𝑥 ∈ [0,1].

Furthermore, let 𝑝1,𝑝2 ∈ (0,1) be with 𝑝1 + 𝑝2 = 1. Then we define for every
𝑗 ∈ {1,2} : 𝑝 𝑗1 ≔ 𝑝1 and 𝑝 𝑗2 ≔ 𝑝2. First, observe that for 𝑛 ∈ N and 𝜔 ∈𝑊𝑛,

Λ
(︂
𝑆
(b)
𝜔 ( [0,1])

)︂
=

{︄
2−(8/3) ·22𝑙+1+10/3−4(𝑛−22𝑙+1), 22𝑙+1 < 𝑛 ≤ 22𝑙+2,

2−10/3·22𝑙+2+10/3−2(𝑛−22𝑙+2), 22𝑙+2 < 𝑛 ≤ 22𝑙+3.

Define for 𝑛 ∈ N

𝑅(𝑛) ≔
{︄
−(8/3) ·22ℓ+1 +10/3−4

(︁
𝑛−22ℓ+1)︁ , 22ℓ+1 < 𝑛 ≤ 22ℓ+2,

−(10/3) ·22ℓ+2 +10/3−2
(︁
𝑛−22ℓ+2)︁ , 22ℓ+2 < 𝑛 ≤ 22ℓ+3.
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Hence, for all 𝑛 ∈ N with 22𝑙+1 < 𝑛 ≤ 22𝑙+2, 𝑞 ≥ 0, and 𝜔 ∈𝑊𝑛, we obtain

1

− log
(︂
Λ

(︂
𝑆
(b)
𝜔 ( [0,1])

)︂)︂ log
⎛⎜⎜⎜⎜⎝

2−𝑅 (𝑛)−1∑︂
𝑙=0,

a ((𝑙2𝑅 (𝑛) ,(𝑙+1)2𝑅 (𝑛) ])>0

a (b)
(︂
(𝑙2𝑅 (𝑛) , (𝑙 +1)2𝑅 (𝑛) ]

)︂𝑞⎞⎟⎟⎟⎟⎠
=

1

− log
(︂
Λ

(︂
𝑆
(b)
𝜔 ( [0,1])

)︂)︂ log

(︄ ∑︂
𝑙 ∈𝑊𝑛

a (b)
(︂
𝑆
(b)
𝑙

( [𝑎,𝑏])
)︂𝑞)︄

=
log2

(︁
𝑝
𝑞

1 +𝑝
𝑞

2

)︁
−4 · 22𝑙+1

3𝑛
+4−10/(3𝑛)

and, for 22𝑙+2 < 𝑛 ≤ 22𝑙+3,

1

− log
(︂
Λ

(︂
𝑆
(b)
𝜔 ( [0,1])

)︂)︂ log

(︄ ∑︂
𝑙 ∈𝑊𝑛

a (b)
(︂
𝑆
(b)
𝑙

( [𝑎,𝑏])
)︂𝑞)︄

=
log

(︁
𝑝
𝑞

1 +𝑝
𝑞

2

)︁
− log

(︂
Λ

(︂
𝑆
(b)
𝜔 ( [0,1])

)︂)︂
=

log2
(︁
𝑝
𝑞

1 +𝑝
𝑞

2

)︁
4 22𝑙+2

3𝑛 +2−10/(3𝑛)
.

Therefore, by Fact 2.30,

𝛽a (b ) (𝑞) =
{︄

3
8 log2

(︁
𝑝
𝑞

1 +𝑝
𝑞

2

)︁
for 0≤𝑞 ≤ 1,

3
10 log2

(︁
𝑝
𝑞

1 +𝑝
𝑞

2

)︁
for 𝑞 > 1

and

𝛽
a (b )

(𝑞) ≔ liminf
𝑛→∞

𝛽𝑛 (𝑞) =
{︄

3
10 log2

(︁
𝑝
𝑞

1 +𝑝
𝑞

2

)︁
for 0 ≤ 𝑞 ≤ 1

3
8 log2

(︁
𝑝
𝑞

1 +𝑝
𝑞

2

)︁
for 𝑞 > 1.

Hence, by Theorem 4.10, the upper spectral dimension of Δ𝐷
a (b )

is given by the
unique solution of

𝑝
𝑞𝔍
a (b )

1 +𝑝
𝑞𝔍
a (b )

2 = 2
(︂
8·𝑞𝔍

a (b )

)︂
/3
.

Furthermore, the unique fixed point of 𝛽
a (b )

, denoted by 𝑞
𝔍
a (b )

, is the unique solution

of (︂
2−

10
3 𝑝1

)︂𝑞
𝔍
a (b ) +

(︂
2−

10
3 𝑝2

)︂𝑞
𝔍
a (b ) = 1.

See Figure 4.4.1 for the two graphs.
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1

𝑞

𝛽a (b ) (𝑞)dim𝑀

(︂
a (b)

)︂
dim

𝑀

(︂
a (b)

)︂

Figure 4.4.1 Illustration of 𝛽a (b ) and liminf𝑛→∞ 𝛽a
(b )

𝑛 with 𝑝1 = 0.25.

For the special case 𝑝1 = 1/2, we obtain

𝛽a (b ) (𝑞) =
{︄

3
8 (1−𝑞) for 0≤𝑞 ≤ 1,
3
10 (1−𝑞) for 𝑞 > 1.

and

𝛽
a (b )

(𝑞) ≔ liminf
𝑛→∞

𝛽a
(b )

𝑛 (𝑞) =
{︄

3
10 (1−𝑞) for 0 ≤ 𝑞 ≤ 1,
3
8 (1−𝑞) for 𝑞 > 1.

In this special case, we have, dim
𝑀
(a) = 3/10 and dim𝑀 (a) = 3/8. Now, applying

Proposition 4.9 in tandem with Theorem 4.10, we conclude

𝑠𝐷
a (b )

≤
dim

𝑀
(a)

1+dim
𝑀
(a) =

3
13

<
3
11

=
dim𝑀 (a)

1+dim𝑀 (a)
= 𝑠𝐷

a (b )
.

Now, let us prove that 𝑠𝐷
a (b )

= 3
13 . Note that for 𝑚 = 1+ 1

27 and all 𝜔 ∈𝑊𝑛, there
exists [ ∈𝑊2 such that

𝑆
(b)
𝜔[ ( [0,1]) ⊂

⟨︂
𝑆
(b)
𝜔 ( [0,1])

⟩︂
1/𝑚

.

Hence, we obtain

a

(︃⟨︂
𝑆
(b)
𝜔 ( [0,1])

⟩︂
1/𝑚

)︃
Λ

(︃⟨︂
𝑆
(b)
𝜔 ( [0,1])

⟩︂
1/𝑚

)︃
≥ 2−𝑛+𝑅 (𝑛)−2

𝑚
. (4.4.7)
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Recall that by Proposition 4.1, for 𝑥 > 0,

N𝐿
𝑚 (𝑥) = sup

{︃
card (𝑃) : 𝑃 ∈ Π0 : min

𝐶∈𝑃
a

(︂
⟨𝐼 ⟩1/𝑚

)︂
Λ

(︂
⟨𝐼 ⟩1/𝑚

)︂
≥ 4
𝑥 (𝑚−1)

}︃
≤ 𝑁a (𝑥).

Now, with 𝑥𝑛 =𝑚 2𝑛−𝑅 (𝑛)+4

𝑚−1 , by (4.4.7), we have that N𝐿
𝑚 (𝑥𝑛) ≥ 2𝑛, implying

log
(︁
𝑁𝐷
a (𝑥𝑛)

)︁
log(𝑥𝑛)

≥
(︃
1− 𝑅(𝑛)

𝑛
+ 4
𝑛
+ log (𝑚/(𝑚−1))

𝑛 log(2)

)︃−1

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︂
1+ (8/3) · 22𝑙+1−10/3+4(𝑛−22𝑙+1)+4

𝑛
− log(𝑚/(𝑚−1))

𝑛 log(2)

)︂−1
, 22𝑙+1 < 𝑛 ≤ 22𝑙+2,(︂

1+ (10/3) ·22𝑙+2−10/3+2(𝑛−22𝑙+2)+4
𝑛

− log(𝑚/(𝑚−1))
𝑛 log(2)

)︂−1
, 22𝑙+2 < 𝑛 ≤ 22𝑙+3,

≥
⎧⎪⎪⎨⎪⎪⎩
(︂
1+ 8

3 + (4−10/3) /𝑛− log(𝑚/(𝑚−1))
𝑛 log(2)

)︂−1
, 22𝑙+1 < 𝑛 ≤ 22𝑙+2,(︂

1+ 10
3 + (4−10/3) /𝑛− log(𝑚/(𝑚−1))

𝑛 log(2)

)︂−1
, 22𝑙+2 < 𝑛 ≤ 22𝑙+3.

This shows

liminf
𝑛→∞

log
(︁
𝑁𝐷
a (𝑥𝑛)

)︁
log(𝑥𝑛)

≥ 1
1+10/3

.

Since 𝑥𝑛 ≤ 𝑥𝑛+1 ≤ 24𝑥𝑛, we infer

liminf
𝑥→∞

log
(︁
𝑁𝐷
a (𝑥)

)︁
log(𝑥) ≥ liminf

𝑛→∞

log
(︁
𝑁𝐷
a (𝑥𝑛)

)︁
log(𝑥𝑛)

≥ 1
1+10/3

.

Indeed, for 𝑥 > 0, choose 𝑛 ∈ N such that 𝑥𝑛 < 𝑥 ≤ 𝑥𝑛+1 and therefore

liminf
𝑥→∞

log
(︁
𝑁𝐷
a (𝑥)

)︁
log(𝑥) ≥ liminf

𝑛→∞

log
(︁
𝑁𝐷
a (𝑥𝑛)

)︁
log(𝑥𝑛) + log(𝑥𝑛+1/𝑥𝑛)

≥ 1
1+10/3

.

4.4.3 Purely atomic case

In this section we give examples of singular measures [ on (0,1) of pure point
type such that the spectral dimension attains any value in [0,1/2]. To fix notation,
throughout this section, we write [ ≔

∑︁
𝑘 𝑝𝑘𝛿𝑥𝑘 with (𝑝𝑘 )𝑘 ∈ (R>0)N,

∑︁
𝑘 𝑝𝑘 < ∞,

and (𝑥𝑘 )𝑘 ∈ (0,1)N.

The first example shows that it is possible for the spectral dimension to be 0 even
though the Minkowski dimension is 1.

Example 4.49. In this example we consider purely atomic measures [ with (𝑥𝑛) 𝑛 ∈
(Q∩ (0,1))N such that 𝑥𝑛 ≠ 𝑥𝑚 for 𝑚 ≠ 𝑛, and there exists 𝐶1 > 0 such that 𝑝𝑛 ≤
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𝐶1e−𝑛 for all 𝑛 ∈ N. We will show that the spectral dimension exists and equals
𝑠𝐷[ = 0. We define 𝐼𝑛

𝑘
≔

(︂
𝑥𝑘 − 𝑏𝑛

e𝑛 ,𝑥𝑘 +
𝑏𝑛
e𝑛

]︂
∩ [0,1] with

𝑏𝑛 ≔ min
{︁|︁|︁𝑥𝑙1 −𝑥𝑙2 |︁|︁ : 𝑙1 ≠ 𝑙2, 𝑙1, 𝑙2 ≤ 𝑛

}︁
for all 𝑘 = 1, . . . ,𝑛. Then,

max
𝑘=1,...,𝑛

Λ
(︁
𝐼𝑛
𝑘

)︁
a
(︁
𝐼𝑛
𝑘

)︁
≤

∞∑︂
𝑙=1

𝑝𝑙 max
𝑘=1,...,𝑛

Λ(𝐼𝑛
𝑘
) ≤ 𝐶1

e−1
2
e𝑛
.

Let 𝐴𝑛
𝑘

denote the disjoint half open intervals such that (0,1] \⋃︁𝑛
𝑘=1 𝐼

𝑛
𝑘
=

⋃︁𝑚 (𝑛)
𝑘=1 𝐴𝑛

𝑘

with𝑚(𝑛) ≤ 𝑛 +1. Then we conclude

max
𝑘=1,...,𝑚 (𝑛)

Λ(𝐴𝑛
𝑘
)a (𝐴𝑛

𝑘
) ≤

∞∑︂
𝑙=𝑛+1

𝑝𝑙 ≤ 𝐶1
e−𝑛

e−1
.

Now, Proposition 4.4 yields

𝑁𝐷
a

(︃
𝑒𝑛 (𝑒 −1)

2𝐶1

)︃
≤ 2 ˜︂M𝔍a

(︃
𝑒𝑛 (𝑒 −1)

2𝐶1

)︃
≤ 2𝑛 +1.

Hence, for all 𝑥 ≥ 𝑒 (𝑒 −1)/(2𝐶1), we have

𝑁𝐷
a (𝑥) ≤ 4𝐶1

𝑒 −1
log (𝑥) +1.

Thus, we obtain 𝑠𝐷a = 0.

If (𝑥𝑘 )𝑘 ∈ (0,1)N is strictly decreasing, then in [FW17] Δ𝐷[ is called Kreı̆n–Feller
operator of Stieltjes type. We start with a general observation which is a consequence
of Proposition 4.4.

Lemma 4.50. Assume that (𝑥𝑘 )𝑘 ∈ (0,1)N is strictly decreasing such that for an
increasing function 𝑓 : N>1 → R+ and all 𝑘 ∈ N>1,

𝑥𝑘 +𝑥𝑘−1

2

∞∑︂
𝑙=𝑘

𝑝𝑙 ≤ 1/𝑓 (𝑘) .

Then, for all 𝑥 ≥ 0, we have 𝑁𝐷
[ (𝑥) ≤ min{2𝑓

−1 (2𝑥) +1, 𝑓
−1 (6𝑥)} with 𝑓

−1 (𝑥) ≔
inf {𝑛 ∈ N>1 : 𝑓 (𝑛) ≥ 𝑥}.

Proof. By our assumption, for all 𝑘 ∈ N, we have

a

(︂ [︂
0,
𝑥𝑘 +𝑥𝑘−1

2

]︂ )︂
Λ

(︂ [︂
0,
𝑥𝑘 +𝑥𝑘−1

2

]︂ )︂
=
𝑥𝑘 +𝑥𝑘−1

2

∞∑︂
𝑙=𝑘

𝑝𝑙 .
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Observe that for 𝑥 > 0

1
𝑥𝑘+𝑥𝑘−1

2
∑︁∞
𝑙=𝑘
𝑝𝑙

≥ 𝑓 (𝑘) ≥ 2𝑥 =⇒ 𝑘 ≥ 𝑓
−1 (2𝑥) .

For fixed 𝑘 ∈ N define the following a-partition

𝐼1 ≔

(︃
𝑥1 −

min{𝑥1 −𝑥2,1/𝑥}
4

,𝑥1 +
min{1−𝑥1,1/𝑥})

4

]︃
and

𝐼𝑗 ≔

(︄
𝑥𝑗 −

min
{︁
𝑥𝑗 −𝑥𝑗+1,1/𝑥

}︁
4

,𝑥𝑗 +
min

{︁
𝑥𝑗 −𝑥𝑗−1,1/𝑥

}︁
4

]︄
for 𝑗 = 2, . . . ,𝑘 −1 and 𝐼𝑘 ≔ (0, (𝑥𝑘 +𝑥𝑘−1)/2]. Hence, for 𝑘 = 𝑓

−1 (2𝑥), we see that

max
𝑖=1,...,𝑘

a (𝐼𝑖)Λ (𝐼𝑖) < 1/𝑥 .

Now, Proposition 4.4 yields

𝑁𝐷
[ (𝑥) ≤ 2 ˜︂M𝔍a (𝑥) +1 ≤ 2𝑓

−1 (2𝑥) +1.

Analogously, we obtain

𝑁𝐷
[ (𝑥) ≤ ˜︂M𝔍a (5𝑥) ≤ 𝑓

−1 (6𝑥) . □

Example 4.51 (Dirac comb with exponential decay). Observe that if (𝑥𝑛)𝑛 ∈ (0,1)N
or

(︁∑︁
𝑘≥𝑚 𝑝𝑘

)︁
𝑚

decays exponentially, then by Lemma 4.50, we have 𝑁𝐷
[ (𝑥) ≪

log(𝑥), hence the spectral dimension 𝑠𝐷[ equals 0. In particular, by Theorem 4.10,
we have 𝑞𝔍a = 0. Consequently, the (Neumann) 𝐿𝑞-spectrum is given by

𝛽[ (𝑞) =
{︄

dim𝑀 ([) , 𝑞 = 0,

0 , 𝑞 > 0.

Example 4.52 (Dirac comb with at most power law decay). Assume that (𝑥𝑘 )𝑘 ∈
(0,1)N is strictly decreasing and

𝑝𝑛 ≫ 𝑛−𝑢1 𝑓1(𝑛), (𝑥𝑛 −𝑥𝑛+1) ≫ 𝑛−𝑢2 𝑓2(𝑛),

with 𝑢1,𝑢2 ≥ 1 and lim𝑛→∞ log(𝑓𝑖 (𝑛))/log(𝑛) = 0 for 𝑖 = 1,2. Then we have

1
𝑢1 +𝑢2

≤ 𝑠𝐷
[
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and, in particular if 𝑢1 +𝑢2 = 2, we have 𝑠𝐷[ = 1/2. To see this, define

𝐼𝑘 ≔

[︃
𝑥𝑘 −

min {𝑥𝑘 −𝑥𝑘+1,𝑥𝑘−1 −𝑥𝑘 }
2

,𝑥𝑘 +
min {𝑥𝑘 −𝑥𝑘+1,𝑥𝑘−1 −𝑥𝑘 }

2

]︃
for 𝑘 = 1, . . . ,𝑛. We then have a (⟨𝐼𝑘⟩1/2) = a (𝐼𝑘 ) and for fixed Y > 0, we have for 𝑛
large enough

𝐶𝑛−(𝑢1+𝑢2)−Y ≤ 𝐶𝑛−(𝑢1+𝑢2) 𝑓1(𝑛) 𝑓2(𝑛) ≤ min
𝑘=1,...,𝑛

a

(︂
⟨𝐼𝑘⟩1/2

)︂
Λ

(︂
⟨𝐼𝑘⟩1/2

)︂
with 𝐶 > 0 suitable, which implies for every Y > 0

N𝐿
2 (𝑥) ≫ 𝑥

1
𝑢1+𝑢2+Y .

This proves the claim. Since, in the case 𝑢1 +𝑢2 = 2, we always have 𝑠𝐷[ ≤ 1/2. It
readily follows that 𝑠𝐷[ = 1/2.

Example 4.53 (Dirac comb with at most geometric decay and full dimension).
Assume that (𝑥𝑘 )𝑘 ∈ (0,1)N is strictly decreasing and

𝑓1 (𝑛)
𝑛

≪ 𝑝𝑛,
𝑓2 (𝑛)
𝑛

≪ (𝑥𝑛−1 −𝑥𝑛)

with lim𝑛→∞ log(𝑓𝑖 (𝑛))/log(𝑛) = 0 for 𝑖 = 1,2. Then the spectral dimension exists
and equals

𝑠𝐷[ = 1/2

and, for 𝑞 ∈ [0,1],

𝛽[ (𝑞) =
{︄

1−𝑞 , 𝑞 ∈ [0,1] ,
0 , 𝑞 > 1.

Indeed, observe that Example 4.52 implies 1/2 ≤ 𝑠𝐷
[

and by and Corollary 4.17
Theorem 4.10 we also have 𝑠𝐷

[
≤ 𝑠𝐷[ =𝑞𝔍[ ≤ 1/2, which shows 𝑠𝐷[ = 1/2. The second

statement is then a direct consequence of the first part of Corollary 4.16.

The following example shows that the spectral dimension attains every value in
(0,1/2).
Example 4.54 (Dirac comb with power law decay). If

lim
𝑛→∞

− log(𝑝𝑛)/log(𝑛) = 𝑢1 > 1 and 𝑥𝑘 ≔ (𝑘 +1)−𝑢2, 𝑘 ∈ N, 𝑢2 > 0,

then the Neumann 𝐿𝑞-spectrum exists as a limit on the positive half-line and we
have

𝛽[ (𝑞) =
{︄

1
𝑢2+1 −𝑞

𝑢1
𝑢2+1 for 𝑞 ∈ [0,1/𝑢1] ,

0 for 𝑞 > 1/𝑢1.
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Consequently, [ is Neumann 𝔍[-regular and the spectral dimension exists and equals

𝑠𝐷[ =
1

𝑢1 +𝑢2 +1
.

In particular, for 𝑢1 = 𝑢2 +1, we have

𝑠𝐷[ =
dim𝑀 ([)

2
.

This can be seen as follows. For every Y > 0, we have uniformly in 𝑛 ∈ N

𝑛−(𝑢1+Y) ≪ 𝑝𝑛 ≪ 𝑛−𝑢1+Y .

For suitable 𝐶 > 0,

𝑥𝑚 −𝑥𝑚+1 =
(𝑚 +1)𝑢2 −𝑚𝑢2

𝑚𝑢2 (𝑚 +1)𝑢2
=

1
(𝑚 +1)𝑢2𝑚

(︂
𝑚+1
𝑚

)︂𝑢2
−1

1/𝑚 ≥ 𝐶

𝑚𝑢2+1 .

If 2−𝑛 < 𝐶 (𝑚 +1)−(𝑢2+1) , then𝑚 < (2𝑛𝐶)
1

𝑢2+1 . Combining these observations, we
obtain ∑︂

𝐶∈D𝑁
𝑛

[ (𝐶)𝑞 ≥
𝐶1/(𝑢2+1)2𝑛/(𝑢2+1)∑︂

𝑘=1

𝑝
𝑞

𝑘

≫
𝐶1/(𝑢2+1)2𝑛/(𝑢2+1)∑︂

𝑘=1

𝑘−(𝑢1+𝜖)𝑞

≍ 2𝑛 (−(𝑢1+𝜖)𝑞+1)/(𝑢2+1) .

For 𝑞 ∈ [0,1/(𝑢1 + Y)), this gives

𝛽[ (𝑞) ≥ liminf
𝑛→∞

𝛽
[
𝑛 (𝑞) ≥

1
𝑢2 +1

−𝑞𝑢1 + Y
𝑢2 +1

.

Letting Y → 0, showing for 𝑞 ∈ [0,1/𝑢1]

𝛽[ (𝑞) ≥ liminf
𝑛→∞

𝛽
[
𝑛 (𝑞) ≥

{︄
1

𝑢2+1 −𝑞
𝑢1
𝑢2+1 , for 𝑞 ∈ [0,1/𝑢1] ,

0, for 𝑞 > 1/𝑢1.

Moreover, for𝑚 ≥ (2𝑛𝐶)
1

𝑢2+1 and 𝑘2−𝑛 < 𝑥𝑚, we have 𝑘 < 2𝑛 (2𝑛𝐶)−
𝑢2
𝑢2+1 . From this
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inequality, using the integral test for convergence, we obtain for 𝑞 > 1/(𝑢1 − Y),

∑︂
𝑄 ∈D𝑁

𝑛

[ (𝑄)𝑞 =
2𝑛−1∑︂
𝑘=0

⎛⎜⎜⎜⎝
∑︂
𝑚∈N:

𝑘2−𝑛<𝑥𝑚≤(𝑘+1)2−𝑛

𝑝𝑚

⎞⎟⎟⎟⎠
𝑞

≪
∑︂

𝑚<𝐶1/𝑢2 2𝑛/𝑢2

𝑚𝑞 (−𝑢1+Y) +
𝐶
− 𝑢2
𝑢2+1 2

𝑛
𝑢2+1∑︂

𝑘=0

⎛⎜⎜⎜⎝
∑︂
𝑚∈N:

𝑘2−𝑛<𝑥𝑚≤(𝑘+1)2−𝑛

𝑝𝑚

⎞⎟⎟⎟⎠
𝑞

≪ 1+2𝑛
(︂

1
𝑢2+1+𝑞

(︂
− (𝑢1−Y−1)

𝑢2
+ (𝑢1−Y−1)−𝑢2

𝑢2 (𝑢2+1)

)︂)︂
= 1+2𝑛

(︂
1

𝑢2+1−𝑞
𝑢1−Y
𝑢2+1

)︂
≪ 1.

Hence, 𝛽[ (𝑞) = 0 for 𝑞 ≥ 1/𝑢1. Since 𝛽[ (0) = 1/(𝑢2 +1), by the convexity of 𝛽[ , it
follows that for all 𝑞 ∈ [0,1/𝑢1],

1
𝑢2 +1

−𝑞 𝑢1

𝑢2 +1
≤ liminf

𝑛→∞
𝛽
[
𝑛 (𝑞) ≤ 𝛽[ (𝑞) ≤

1
𝑢2 +1

−𝑞 𝑢1

𝑢2 +1
.

Corollary 4.12 then gives 𝑠𝐷[ = 𝑞𝔍[ = 1/(𝑢1 +𝑢2 +1).

The last example demonstrates how one can improve Example 4.51 if one knows
the exact exponential asymptotics of 𝑝𝑛 and 𝑥𝑛, which in turn forces an logarithmic
asymptotic for the eigenvalue counting function. The following simple lemma is
provided for preparation.

Lemma 4.55. Let a ≔ 𝑝𝛿𝑧 be with 𝑧 ∈ (0,1), 𝑝 > 0, 0 < 𝑎 < 𝑧, and 0 < 𝑏 < 1−𝑧.
Then, ⟨︁

𝑓𝑎,𝑏,𝑧, 𝑓𝑎,𝑏,𝑧
⟩︁
𝐻 1

0⟨︁
𝑓𝑎,𝑏,𝑧, 𝑓𝑎,𝑏,𝑧

⟩︁
a

=
𝑎 +𝑏
𝑝𝑎𝑏

with 𝑓𝑎,𝑏,𝑧 (𝑥) ≔ (𝑥−(𝑧−𝑎))
𝑎

1[𝑧−𝑎,𝑧 ] + (𝑧+𝑏−𝑥)
𝑏

1(𝑧,𝑧+𝑏 ] .

Example 4.56 (Dirac comb with exponential decay – precise asymptotics). Let us
consider the case

∑︁𝑛
𝑘=1𝑝𝑘 = 1− e−𝛼𝑛 and 𝑥𝑘 ≔ e−𝛾𝑘 for some 𝛼,𝛾 > 0. Then

lim
𝑥→∞

𝑁𝐷
[ (𝑥)

log(𝑥) =
1

𝛼 +𝛾 .

To see this, we consider the intervals 𝐴𝑛 ≔ [𝑥𝑛 − (𝑥𝑛 −𝑥𝑛+1) /2,𝑥𝑛 + (𝑥𝑛−1 −𝑥𝑛) /2]
for 𝑛 > 1 and set

𝑓𝑛 (𝑦) ≔ 𝑓(𝑥𝑛−𝑥𝑛+1)/2,(𝑥𝑛−1−𝑥𝑛)/2,𝑥𝑛 (𝑦) for 𝑦 ∈ [0,1] .
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Then, 𝑓𝑛 ∈ 𝐻 1
0 and by Lemma 4.55,

⟨𝑓𝑛, 𝑓𝑛⟩𝐻 1
0

⟨𝑓𝑛, 𝑓𝑛⟩[
=

e(𝛼+𝛾 )𝑛2 (e𝛾 − e−𝛾 )
(1− e−𝛾 ) (e𝛼 −1) (e𝛾 −1) .

Notice that for 𝑥 > 0, we have that

e(𝛼+𝛾 )𝑛2 (e𝛾 − e−𝛾 )
(1− e−𝛾 ) (e𝛼 −1) (e𝛾 −1) ≤ 𝑥

implies

𝑛 ≤
⌊︃

1
(𝛼 +𝛾) log

(︃
𝑥
(1− e−𝛾 ) (e𝛼 −1) (e𝛾 −1)

2 (e𝛾 − e−𝛾 )

)︃⌋︃
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

≕𝑛𝑥

.

Now, observe that span (𝑓𝑖 : 𝑖 = 1, . . . ,𝑛𝑥 ) is a 𝑛𝑥 -dimensional subspace of 𝐻 1
0 and

the (𝑓𝑖)𝑖 are mutually orthogonal both in 𝐿2
a and in 𝐻 1

0 . Hence, by Lemma 2.19, we
obtain

𝑁𝐷
[ (𝑥) ≥

⌊︃
1

(𝛼 +𝛾) log
(︃
𝑥
(1− e−𝛾 ) (e𝛼 −1) (e𝛾 −1)

2 (e𝛾 − e−𝛾 )

)︃⌋︃
.

For the upper bound, we observe that for 𝑘 > 1,

𝑓 (𝑘) ≔ 1
𝑥𝑘+𝑥𝑘−1

2
∑︁∞
ℓ=𝑘

𝑝ℓ
=

2
e−𝛾𝑘+(𝑘−1)𝛼 (1+ e−𝛾 )

= 2
e(𝑘−1)𝛼+𝑘𝛾

1+ e−𝛾
.

Then,

𝑓 (𝑘) ≥ 𝑥 =⇒ 𝑘 ≥𝑚𝑥 ≔

⌈︃
1

(𝛼 +𝛾) log
(︃
(1+ e−𝛾 ) e𝛼𝑥

2

)︃⌉︃
.

Therefore, Lemma 4.50 applied to 𝑓 yields for 𝑥 large,

𝑁𝐷
[ (𝑥) ≤ 𝑓

−1(6𝑥) =𝑚6𝑥 ≤
1

(𝛼 +𝛾) log ((1+ e−𝛾 ) e𝛼6𝑥) +1

and the claim follows.
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Chapter 5

Spectral dimension for
Kreı̆n–Feller operators in higher
dimensions

Throughout this chapter let a denote a finite Borel measure on Q with a (Q) > 0,
𝑑 > 1, and dim∞(a) > 𝑑 −2. In Chapter 4, we studied the spectral dimension for
Kreı̆n–Feller operators for the case 𝑑 = 1. This chapter is dedicated to study the
spectral dimension of Kreı̆n–Feller operators with respect to a and Ω = (0,1)𝑑 by
extending the ideas for the case 𝑑 = 1 presented in Chapter 4. Similar to the one-
dimensional case, we use the results developed in Chapter 3 applied to the spectral
partition function 𝔍a,2/𝑑−1,2/𝑡 with 𝑡 > 2, which is crucial in our analysis of the
spectral dimension. The reason for the importance of 𝔍a,2/𝑑−1,2/𝑡 becomes apparent
in Section 5.1.2 and Section 5.2.2.

This chapter is organized as follows. In Section 5.1, we establish a connection
between the scaling behavior on the embedding constants for the embedding𝐶∞

𝑐 (𝑄)
into 𝐿2

a (𝑄), 𝑄 ∈ D and the lower and upper spectral dimension (see Proposition
5.1). As an application of this general principle, we obtain upper bounds of the
lower and upper spectral dimension by using results of Adams (see [Maz11, p. 67]
and the references given there) and Maz’ya and Preobrazenskii [MP84]. Section
5.2 is devoted to obtain lower bounds of the lower and upper spectral dimension.
Similar to Section 5.1, we first establish a relation to lower bounds on the embedding
constants for the embedding 𝐶∞

𝑐 (𝑄) into 𝐿2
a (𝑄), 𝑄 ∈ D and lower bounds of the

lower and upper spectral dimension (see Proposition 5.9). In Section 5.2.2, based
on this general observation, we obtain lower bounds of the lower and upper spectral
dimension by 𝐹𝐷/𝑁

𝔍a
and 𝐹

𝐷/𝑁
𝔍a

, respectively. In Section 5.3, based on the results of
Section 5.1 and Section 5.2.2, we present our main results of this chapter. We first
prove that the upper Neumann spectral dimension equals 𝑞𝑁

𝔍a
. Further, we present
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conditions under which we can ensure that 𝑠𝐷a = 𝑠𝑁a . Moreover, in the case 𝑑 = 2
and a (Q̊) > 0, we show that 𝑠𝐷a = 𝑠𝑁a = 1. In Section 5.3.2, we impose regularity
conditions on 𝔍a that guarantee the existence of the spectral dimension. We end
this chapter with a sequence of examples as an application of our general results
of Section 5.3. As a highlight, we confirm the existence of the spectral dimen-
sion of self-conformal measures without any separation conditions (see Theorem
5.27). Finally, using Example 4.48, we construct an example for which the spectral
dimension does not exist for the case 𝑑 = 3.

5.1 Upper bounds

In this section, we obtain upper bounds for the spectral dimension.

5.1.1 Embedding constants and upper bounds for the spectral dimen-
sion

This section establishes a relation between embedding constants on sub-cubes and
the lower and upper spectral dimension.

Proposition 5.1. Suppose there exists a non-negative, uniformly vanishing, mono-
tone set function 𝔍 on D such that for all𝑄 ∈ D and all𝑢 ∈ C∞

𝑏
(𝑄) with

∫
𝑄
𝑢 dΛ = 0,

we have
∥𝑢∥2

𝐿2
a (𝑄) ≤ 𝔍(𝑄) ∥∇𝑢∥2

𝐿2
Λ (𝑄) .

Then we have
𝑠𝐷a ≤ 𝑠𝑁a ≤ ℎ𝔍 and 𝑠𝐷

a
≤ 𝑠𝑁

a
≤ ℎ

𝔍
.

Proof. For a partition𝛯 ∈ Π𝔍 of Q, let us define the following closed linear subspace
of 𝐻 1

F𝛯 ≔
{︃
𝑢 ∈ 𝐻 1 :

∫
𝑄

𝑢 dΛ = 0, 𝑄 ∈ 𝛯
}︃
.

We define an equivalence relation ∼ on 𝐻 1 induced by F𝛯 as follows: 𝑢 ∼ 𝑣 if and
only if 𝑢 − 𝑣 ∈ F𝛯 . Note that we have dim

(︁
𝐻 1/F𝛯

)︁
= card(𝛯). Further, by our

assumption, for all 𝑢 ∈𝐶∞
𝑏
(Q) ∩F𝛯 we obtain∫

𝑢2 da =
∑︂
𝑄 ∈𝛯

∫
𝑄

𝑢2 da ≤
∑︂
𝑄 ∈𝛯

𝔍 (𝑄) ∥∇𝑢∥2
𝐿2
Λ (𝑄)

≤ max
𝑄 ∈𝛯

𝔍 (𝑄)
∑︂
𝑄 ∈𝛯

∥∇𝑢∥2
𝐿2
Λ (𝑄) ≤ max

𝑄 ∈𝛯
𝔍 (𝑄) ∥∇𝑢∥2

𝐿2
Λ (Q) .
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Next, we show that 𝐶∞
𝑏
(Q) ∩F𝛯 lies dense in F𝛯 with respect to 𝐻 1. Recall that

𝐶∞
𝑏
(Q) lies dense in 𝐻 1. Hence, for every 𝑢 ∈ F𝛯 , there exists a sequence 𝑢𝑛 in

𝐶∞
𝑏
(Q) such that 𝑢𝑛 →𝑢 in 𝐻 1. The Cauchy-Schwarz inequality for all 𝑄 ∈𝛯 gives|︁|︁|︁|︁∫

𝑄

𝑢𝑛 dΛ
|︁|︁|︁|︁ = |︁|︁|︁|︁∫

𝑄

𝑢𝑛 −𝑢 dΛ
|︁|︁|︁|︁ ≤ ∫

(𝑢𝑛 −𝑢)2 dΛ→ 0.

It follows that
∫
𝑄
𝑢𝑛 dΛ→ 0. Furthermore, for every𝑄 ∈𝛯 there exists 𝑢𝑄 ∈𝐶∞

𝑐 (Q)
such that 𝑢𝑄 |𝑄∁ = 0 and

∫
𝑄
𝑢𝑄 dΛ = 1. Then for

𝑢 ′𝑛 ≔ 𝑢𝑛 −
∑︂
𝑄 ∈𝛯

1𝑄Y𝑄,𝑛𝑢𝑄 ∈𝐶∞
𝑏
(Q) ∩F𝛯

with Y𝑄,𝑛 ≔
∫
𝑄
𝑢𝑛 dΛ we have 𝑢 ′𝑛 → 𝑢 in 𝐻 1. Thus, for 𝑢 ∈ F𝛯 , we obtain∫

] (𝑢)2 da ≤ max
𝑄 ∈𝛯

𝔍(𝑄) ∥∇𝑢∥2
𝐿2
Λ (Q) .

For 𝑖 ∈ N define

_𝑖
a,F𝛯 ≔ inf

{︁
sup

{︁
𝑅𝐻 1 (𝜓 ) :𝜓 ∈𝐺★

}︁
: 𝐺 <𝑖 (F𝛯 , ⟨·, ·⟩𝐻 1)

}︁
with 𝑅𝐻 1 (𝜓 )≔ ⟨𝜓,𝜓 ⟩𝐻 1 /⟨]𝜓, ]𝜓 ⟩a and𝑁𝑁

a (𝑦,F𝛯 )≔ card
(︂{︂
𝑖 ∈ N : _𝑖

a,F𝛯 ≤ 𝑦
}︂)︂

with
𝑦 > 0. Thus, max𝑄 ∈𝛯 𝔍(𝑄) < 1/𝑥 , implies

_1
a,F𝛯 > 𝑥 .

In view of the min-max principle as stated in Proposition 2.17, we deduce analo-
gously as in the proof of Proposition 4.4

𝑁𝑁
a (𝑥) ≤ 𝑁𝑁

a (𝑥,F𝛯 ) + card(𝛯) = card(𝛯),

implying 𝑁𝑁
a (𝑥) ≤ M𝔍 (𝑥), and hence 𝑠𝑁a ≤ ℎ𝔍 and 𝑠𝑁

a
≤ ℎ

𝔍
. □

Remark 5.2. The ideas underlying in Proposition 5.1 correspond to some extent to
those developed in [NS95; Sol94], [NS01, Chapter 5], that is, reducing the problem
of estimating the spectral dimension to an auxiliary counting problem. To illustrate
the parallel, we present an alternative proof of the upper estimate of the eigenvalue
counting function for self-similar measures under OSC (see [Sol94, Theorem 1]).
As in the setting in [Sol94], we let a denote a self-similar measure under OSC with
contractive similitudes 𝑆1, . . . ,𝑆𝑚 and corresponding contraction ratios ℎ𝑖 ∈ (0,1)
and probability weights 𝑝𝑖 ∈ (0,1) with 𝑖 = 1, . . . ,𝑚. We assume a (𝜕Q) = 0 and
dim∞(a) > 𝑑 −2, which is in this case equivalent to max𝑖 𝑝𝑖ℎ2−𝑑

𝑖 < 1. For simplicity
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we assume that the feasible set is given by Q̊, i.e. 𝑆𝑗 (Q̊) ⊂ Q̊. Instead of D, we
will consider a symbolic partition by the cylinder sets ˜︁D ≔ {𝑆𝜔 (Q̊) : 𝜔 ∈ 𝐼 ∗} with
𝐼 ≔ {1, . . . ,𝑚}. Then 𝔍 will be replaced by ˜︁𝔍 : ˜︁D →R≥0 with ˜︁𝔍(𝑆𝜔 (Q̊)) ≔ 𝑝𝜔ℎ

2−𝑑
𝜔 ,

𝜔 ∈ 𝐼 ∗. Now, observe that for 0 < 𝑡 < min𝑖=1,...,𝑚 𝑝𝑖ℎ
2−𝑑
𝑖 , we have

˜︁𝑃𝑡 ≔ {︂
𝜔 ∈ 𝐼 ∗ : 𝑝𝜔ℎ2−𝑑

𝜔 < 𝑡 ≤ 𝑝𝜔−ℎ2−𝑑
𝜔−

}︂
is a partition of 𝐼N. Further, let 𝛿 denote the unique solution of

∑︁𝑚
𝑖=1

(︂
𝑝𝑖ℎ

(2−𝑑)
𝑖

)︂𝛿
= 1.

Thus, it follows that ∑︂
𝜔 ∈˜︁𝑃𝑡

(︂
𝑝𝜔ℎ

(2−𝑑)
𝜔

)︂𝛿
= 1.

Furthermore, there exists 𝐾 > 0 such that for all 𝑢 ∈ 𝐻 1 with
∫
𝑆𝜔 (Q̊)𝑢 dΛ = 0, 𝜔 ∈ ˜︁𝑃𝑡 ,

we have ∫
] (𝑢)2 da ≤ 𝐾max

𝜔 ∈˜︁𝑃𝑡 ˜︁𝔍 (︂
𝑆𝜔

(︂
Q̊

)︂)︂ ∫
Q
|∇𝑢 |2 dΛ < 𝑡𝐾

∫
Q
|∇𝑢 |2 dΛ

(see [NS01, p. 502]). A similar computation as in the proof of Lemma 4.33 yields
the two-sided estimate

𝑡−𝛿 ≤ card
(︂˜︁𝑃𝑡 )︂ ≤ 𝑡−𝛿

min𝑖=1,...,𝑚 𝑝𝑖ℎ
2−𝑑
𝑖

.

The min-max principle gives

𝑁𝑁
a

(︂
(𝑡𝐾)−1

)︂
≤ card

(︂˜︁𝑃𝑡 )︂ ≤ 𝑡−𝛿

min𝑖=1,...,𝑚 𝑝𝑖ℎ
2−𝑑
𝑖

,

hence the results of [NS01; NS95, Theorem 1] follow from this simple counting
argument without any use of renewal theory. The drawback of the ideas [NS95;
Sol94; NS01, Chapter 5] is that they rely heavily on the specific structure of the
self-similar measures, whereas our approach via dyadic cubes avoids the use of
specific properties of the underlying measure.

5.1.2 Upper bounds on the embedding constants and upper bounds
for the spectral dimension

In this section, up to multiplicative uniform constants, we make use of best em-
bedding constants for the embedding 𝐶∞

𝑐

(︁
R𝑑

)︁
into 𝐿𝑡a

(︁
R𝑑

)︁
, 𝑡 > 2, to estimate the
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5.1. Upper bounds

spectral dimension from above. More precisely, for 𝑑 > 2, the best constant 𝐶 in

| |𝑢 | |𝐿𝑡
a |𝑄

(R𝑑 ) ≤ 𝐶 | |𝑢 | |𝐻 1 (R𝑑 ) , 𝑢 ∈𝐶∞
𝑐

(︂
R𝑑

)︂
, 𝑄 ∈ D, (5.1.1)

is equivalent to sup𝑥 ∈R𝑑 ,𝜌>0 𝜌
(2−𝑑)/2a

(︁
𝑄 ∩𝐵𝜌 (𝑥)

)︁1/𝑡 in the sense that there exist
𝑐1,𝑐2 > 0 only depending on 𝑑 and 𝑡 such that

𝑐1𝐶 ≤ sup
𝑥 ∈R𝑑 ,𝜌>0

𝜌 (2−𝑑)/2a
(︁
𝑄 ∩𝐵𝜌 (𝑥)

)︁1/𝑡 ≤ 𝑐2𝐶.

For 𝑑 = 2, the best constant 𝐶 in (5.1.1) is equivalent to

sup
𝑥 ∈R𝑑 ,0<𝜌<1/2

|log(𝜌) |1/2a
(︁
𝑄 ∩𝐵𝜌 (𝑥)

)︁1/𝑡
.

The result for the case 𝑑 > 2 is a corollary of Adams’ Theorem on Riesz potentials
(see e.g. [Maz11, p. 67]) and the case 𝑑 = 2 is due to Maz’ya and Preobrazenskii
and can be found in [Maz11, p. 83] or [MP84]. The following lemma establishes an
alternative representation of the best equivalent constant in terms of dyadic cubes.

Lemma 5.3. Let 𝑄 ∈ D. Then, for 𝑎 < 0, 𝑏 > 0, 𝐶1 ≔
(︂
2
√
𝑑

)︂𝑎
, and 𝐶2 ≔(︂

3
√
𝑑

)︂𝑑𝑏
2−𝑎,

𝐶1𝔍a,𝑎/𝑑,𝑏 (𝑄) ≤ sup
𝑥 ∈R𝑑 ,𝜌>0

𝜌𝑎a
(︁
𝑄 ∩𝐵𝜌 (𝑥)

)︁𝑏 ≤ 𝐶2𝔍a,𝑎/𝑑,𝑏 (𝑄) .

For 𝑎 = 0, 𝐶3 ≔ 𝑑−1, and 𝐶4 ≔ 3𝑏𝑑 ,

𝐶3𝔍a,0,𝑏 (𝑄) ≤ sup
𝑥 ∈R𝑑 ,0<𝜌<1/2

|log(𝜌) |a (𝑄 ∩𝐵𝜌 (𝑥))𝑏 ≤ 𝐶4𝔍a,0,𝑏 (𝑄) .

Proof. Let 𝑄 ∈ D𝑁
𝑛 . Since 𝑎 < 0, we have

sup
𝑥 ∈R𝑑 ,𝜌>0

𝜌𝑎a
(︁
𝑄 ∩𝐵𝜌 (𝑥)

)︁𝑏
= sup
𝑥 ∈R𝑑 ,𝜌≤

√
𝑑2−𝑛+1

𝜌𝑎a
(︁
𝑄 ∩𝐵𝜌 (𝑥)

)︁𝑏
.

Thus, we assume without loss of generality, that 0 < 𝜌 ≤
√
𝑑2−𝑛+1. Then for

136
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𝑚 ≥ 𝑛−1 with
√
𝑑2−(𝑚+1) < 𝜌 ≤

√
𝑑2−𝑚, and 𝑥 ∈ R𝑑 , we obtain

𝜌𝑎a
(︁
𝑄 ∩𝐵𝜌 (𝑥)

)︁𝑏 ≤ 2−𝑎
⎛⎜⎜⎜⎜⎝

∑︂
𝑄′∈D𝑁

𝑚 ,

𝑄′∩𝑄∩𝐵𝜌 (𝑥)≠∅

a (𝑄 ∩𝑄 ′)
⎞⎟⎟⎟⎟⎠
𝑏

2−𝑚𝑎

≤
(︂
3
√
𝑑

)︂𝑑𝑏
2−𝑎 max

𝑄′∈D𝑁
𝑚

a (𝑄 ∩𝑄 ′)𝑏Λ(𝑄 ′)𝑎/𝑑

≤ 𝐶2 sup
𝑄′∈D(𝑄)

a (𝑄 ′)𝑏Λ(𝑄 ′)𝑎/𝑑 =𝐶2𝔍a,𝑎/𝑑,𝑏 (𝑄) ,

where we used the facts that 𝐵𝜌 (𝑥) can be covered by at most
(︂
3
√
𝑑

)︂𝑑
elements of

D𝑁
𝑚 and if 𝑄 ′∩𝑄 ≠ ∅, then 𝑄 ′ ⊂ 𝑄 for𝑚 ≥ 𝑛, as well as

max
𝑄′∈D𝑁

𝑛−1

a (𝑄 ∩𝑄 ′)𝑏Λ(𝑄 ′)𝑎/𝑑 ≤ a (𝑄)𝑏Λ(𝑄)𝑎/𝑑 = max
𝑄′∈D𝑁

𝑛

a (𝑄 ∩𝑄 ′)𝑏Λ(𝑄 ′)𝑎/𝑑 .

Since 𝑥 ∈ R𝑑 and 𝜌 > 0 were arbitrary, the second inequality follows.

On the other hand, for 𝑄 ′ ∈ D𝑁
𝑚 with 𝑄 ′ ⊂ 𝑄 and 𝜌 ≔

√
𝑑2−𝑚+1 we find 𝑥 ∈ R𝑑

such that 𝑄 ′ ⊂ 𝐵𝜌 (𝑥). Then

a (𝑄 ′)𝑏Λ(𝑄 ′)𝑎/𝑑 ≤ a
(︁
𝑄 ∩𝐵𝜌 (𝑥)

)︁𝑏 2−𝑚𝑎

≤
(︂√
𝑑2

)︂−𝑎
a
(︁
𝑄 ∩𝐵𝜌 (𝑥)

)︁𝑏
𝜌𝑎

≤ 𝐶−1
1 sup

𝑥 ∈R𝑑 ,𝜌>0
𝜌𝑎a

(︁
𝑄 ∩𝐵𝜌 (𝑥)

)︁𝑏
.

For the case 𝑎 = 0, for any 2−(𝑚+1) ≤ 𝜌 < 2−𝑚,𝑚 ∈ N, and 𝑥 ∈ R𝑑 , we have

|log(𝜌) |a (𝑄 ∩𝐵𝜌 (𝑥))𝑏 ≤ |log (2) (𝑚 +1) |a (𝑄 ∩𝐵2−𝑚 (𝑥))𝑏

≤
|︁|︁|︁log

(︂
2−𝑑𝑚

)︂|︁|︁|︁ ⎛⎜⎝
∑︂

𝑄′∈D𝑁
𝑚 ,𝑄

′∩𝑄∩𝐵2−𝑚 (𝑥)≠∅

a (𝑄 ∩𝑄 ′)⎞⎟⎠
𝑏

≤ 3𝑑𝑏 max
𝑄′∈D𝑁

𝑚

a (𝑄 ∩𝑄 ′)𝑏 |log (Λ(𝑄 ′)) |

≤ 3𝑑𝑏 max
𝑄′∈D(𝑄)

a (𝑄 ∩𝑄 ′)𝑏 |log (Λ(𝑄 ′)) | ,

where we used that

max
𝑄′∈D𝑁

𝑚

a (𝑄∩𝑄 ′)𝑏 |log (Λ(𝑄 ′)) | ≤ a (𝑄)𝑏 log(2)𝑑𝑚 ≤ max
𝑄′∈D𝑁

𝑛

a (𝑄∩𝑄 ′)𝑏 |log (Λ(𝑄 ′)) |
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for𝑚 ≤ 𝑛. On the other hand, for 𝑄 ′ ∈ D𝑁
𝑚 with 𝑄 ′ ⊂ 𝑄 and 𝜌 ≔

√
𝑑2−𝑚+1 we find

𝑥 ∈ R𝑑 such that 𝑄 ′ ⊂ 𝐵𝜌 (𝑥). Then

a (𝑄 ′)𝑏 |log (Λ(𝑄 ′)) | ≤ a
(︁
𝑄 ∩𝐵𝜌 (𝑥)

)︁𝑏
𝑑𝑚 log(2)

≤ 𝑑a
(︁
𝑄 ∩𝐵𝜌 (𝑥)

)︁𝑏 (︂
(𝑚 +1) log(2) + log

(︂√
𝑑

)︂)︂
= 𝑑a

(︁
𝑄 ∩𝐵𝜌 (𝑥)

)︁𝑏 |log(𝜌) |

≤ 𝑑 sup
𝑥 ∈R𝑑 ,𝜌>0

|log(𝜌) |a
(︁
𝑄 ∩𝐵𝜌 (𝑥)

)︁𝑏
. □

Corollary 5.4. For 𝑡 > 2 there exists a constant𝐶𝑡,𝑑 > 0 such that for all𝑢 ∈ C∞
𝑐

(︁
R𝑑

)︁
and 𝑄 ∈ D, we have

∥𝑢∥𝐿2
a |𝑄

(R𝑑) ≤ 𝐶𝑡,𝑑𝔍
1/2
a,2/𝑑−1,2/𝑡 (𝑄) ∥𝑢∥𝐻 1(R𝑑) .

Proof. Using [Maz85, Corollary, p. 54] or [Maz85, Theorem, p. 381–382] for
𝑑 > 2 and [Maz85, Corollary 1, p. 382] for 𝑑 = 2, for fixed 𝑡 > 2, we find constants
𝑐1,𝑐2 > 0 independent of 𝑄 ∈ D and a such that for all 𝑢 ∈𝐶∞

𝑐

(︁
R𝑑

)︁
∥𝑢∥𝐿2

a |𝑄
(R𝑑) ≤ ∥𝑢∥𝐿𝑡

a |𝑄
(R𝑑)

≤ 𝑐1

(︄
sup

𝑥 ∈R𝑑 ,0<𝑟<1/2
|log(𝑟 ) |a (𝑄 ∩𝐵𝑟 (𝑥))2/𝑡

)︄1/2

∥𝑢∥𝐻 1(R𝑑) ,

for 𝑑 = 2 (note there is a typo, the constant 𝐶5 has to be replaced by 𝐶1/𝑝
5 , see also

for the correct version in [Maz11, p. 83]) and

∥𝑢∥𝐿2
a |𝑄

(R𝑑) ≤ ∥𝑢∥𝐿𝑡
a |𝑄

(R𝑑)

≤ 𝑐2

(︄
sup

𝑥 ∈R𝑑 ,𝜌>0
𝜌 (2−𝑑)a

(︁
𝑄 ∩𝐵𝜌 (𝑥)

)︁2/𝑡
)︄1/2

∥𝑢∥𝐻 1(R𝑑) ,

for 𝑑 > 2. Therefore, Lemma 5.3 (with 𝑎 = 2−𝑑 and 𝑏 = 2/𝑡) proves the claim. □

Lemma 5.5. Then for every 𝑡 > 2 there exists 𝑇𝑑,𝑡 > 0 such that for all 𝑄 ∈ D and

𝑢 ∈𝐶∞
𝑏

(︂
𝑄

)︂
with

∫
𝑄
𝑢 dΛ = 0, we have

∥𝑢∥𝐿2
a |𝑄

(𝑄) ≤ 𝑇𝑑,𝑡𝔍a,2/𝑑−1,2/𝑡 (𝑄)1/2 ∥∇𝑢∥𝐿2
Λ (𝑄) .
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Proof. Combining Lemma 2.7 and Corollary 5.4, we have for all 𝑢 ∈𝐶∞
𝑏
(𝑄)

∥𝑢∥𝐿2
a |𝑄

(𝑄) =
∥︁∥︁𝔈𝑄 (𝑢)∥︁∥︁𝐿2

a |𝑄 (R𝑑)
≤ 𝐶𝑡,𝑑𝔍a,2/𝑑−1,2/𝑡 (𝑄)1/2

∥︁∥︁𝔈𝑄 (𝑢)∥︁∥︁𝐻 1 (R𝑑 )

≤
𝐶𝑡,𝑑

∥︁∥︁𝔈Q
∥︁∥︁

𝐷Q⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞
≕𝑇𝑑,𝑡

𝔍a,2/𝑑−1,2/𝑡 (𝑄)1/2

(︄
∥∇𝑢∥2

𝐿2
Λ (𝑄) +

1
Λ(𝑄)

|︁|︁|︁|︁∫
𝑄

𝑢 dΛ
|︁|︁|︁|︁2)︄1/2

=𝑇𝑑,𝑡𝔍a,2/𝑑−1,2/𝑡 (𝑄)1/2 ∥∇𝑢∥2
𝐿2
Λ (𝑄) . □

Corollary 5.6. If dim∞(a) > 𝑑 −2, then

𝑠𝐷a ≤ 𝑠𝑁a ≤ lim
𝑡↓2

ℎ𝔍a,𝑡 (2/𝑑−1)/2,1 ≤ 𝑞
𝑁
𝔍a

and 𝑠𝐷
a
≤ 𝑠𝑁

a
≤ lim

𝑡↓2
ℎ
𝔍a,𝑡 (2/𝑑−1)/2,1

.

In particular, in the case 𝑑 = 2, we have 𝑠𝑁a ≤ 1.

Proof. Note that dim∞(a) > 𝑑 − 2 implies that for all 𝑡 ∈ (2,2dim∞ (a) /(𝑑 −2)),
𝔍a,2/𝑑−1,2/𝑡 is non-negative, monotone and uniformly vanishing on D. Combining
Proposition 3.6, Proposition 5.1, and Lemma 5.5, we obtain

𝑠𝑁a ≤ ℎ𝔍a,(2/𝑑−1),2/𝑡 = (𝑡/2)ℎ𝔍a,𝑡 (2/𝑑−1)/2,1 ≤ (𝑡/2)𝑞𝑁
𝔍a,𝑡 (2/𝑑−1)/2,1

and 𝑠𝑁
a
≤ ℎ

𝔍a,𝑡 (2/𝑑−1)/2,1
for all 𝑡 ∈ (2,dim∞ (a) /(𝑑 −2)). The claim follows by letting

𝑡 ↘ 2 and Proposition 3.6. □

5.2 Lower bounds

5.2.1 Lower bound on the spectral dimension

Recall from Section 1.1.3, for 𝑛 ∈ N and 𝛼 > 0,

N𝐷/𝑁
𝛼,𝔍

(𝑛) = card
(︂
𝑀
𝐷/𝑁
𝛼,𝔍

(𝑛)
)︂

with 𝑀𝐷/𝑁
𝛼,𝔍

(𝑛) =
{︂
𝐶 ∈ D𝐷/𝑁

𝑛 : 𝔍(𝐶) ≥ 2−𝛼𝑛
}︂
.

As before, for 𝑠 > 0, we let ⟨𝑄⟩𝑠 denote the cube centered and parallel with respect
to𝑄 such that Λ(𝑄) = 𝑠−𝑑Λ

(︁
⟨𝑄⟩𝑠

)︁
, 𝑠 > 0. Recall that we always assume dim∞(a) >

𝑑 −2. We start with the following simple geometric lemma.

Lemma 5.7. Let 𝑄,𝑄 ′ ∈ D𝑁
𝑛 , 𝑛 ∈ N, then

(1)
⟨︁
�̊�

⟩︁
5 ∩𝑄

′˚ = ∅ implies
⟨︁
�̊�

⟩︁
3 ∩

⟨︂
𝑄 ′˚

⟩︂
3
= ∅,
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(2)
⟨︁
�̊�

⟩︁
5 ∩𝑄

′˚ = ∅ implies
⟨︂
𝑄 ′˚

⟩︂
5
∩�̊� = ∅ .

Proof. Let us write

�̊� =

𝑑∏︂
𝑖=1

(𝑎𝑖 ,𝑏𝑖) and 𝑄 ′˚ =

𝑑∏︂
𝑖=1

(𝑐𝑖 ,𝑑𝑖)

and note that

⟨�̊�⟩5 =

𝑑∏︂
𝑖=1

(3𝑎𝑖 −2𝑏𝑖 ,3𝑏𝑖 −2𝑎𝑖) and ⟨�̊�⟩3 =

𝑑∏︂
𝑖=1

(2𝑎𝑖 −𝑏𝑖 ,2𝑏𝑖 −𝑎𝑖) .

Now, if �̊� ∩
⟨︂
𝑄 ′˚

⟩︂
5
= ∅, then there exists 𝑗 ∈ {1, . . . ,𝑑} such that

(𝑐𝑗 ,𝑑𝑗 ) ∩ (3𝑎𝑗 −2𝑏𝑗 ,3𝑏𝑗 −2𝑎𝑗 ) = ∅.

We only consider the case 𝑑𝑗 < 3𝑎𝑗 −2𝑏𝑗 , the case 𝑐𝑗 > 3𝑏𝑗 −2𝑎𝑗 follows similarly.
Using 𝑑𝑗 −𝑐𝑗 = 𝑏𝑗 −𝑎𝑗 = 2−𝑛 yields

2𝑑𝑗 −𝑐𝑗 = 𝑑𝑗 +𝑏𝑗 −𝑎𝑗 < 3𝑎𝑗 −2𝑏𝑗 +𝑏𝑗 −𝑎𝑗 = 2𝑎𝑗 −𝑏𝑗 ,

implying

⟨�̊�⟩3 ∩ ⟨𝑄 ′˚ ⟩3 =

𝑑∏︂
𝑖=1

(2𝑎𝑖 −𝑏𝑖 ,2𝑏𝑖 −𝑎𝑖) ∩
𝑑∏︂
𝑖=1

(2𝑐𝑖 −𝑑𝑖 ,2𝑑𝑖 −𝑐𝑖) = ∅.

Further, we have

3𝑑𝑗 −2𝑐𝑗 = 𝑑𝑗 +2(𝑏𝑗 −𝑎𝑗 ) < 3𝑎𝑗 −2𝑏𝑗 = 𝑎𝑗 ,

allowing us to infer that

⟨𝑄 ′˚ ⟩5 ∩�̊� =

𝑑∏︂
𝑖=1

(3𝑐𝑖 −2𝑑𝑖 ,3𝑑𝑖 −2𝑐𝑖) ∩
𝑑∏︂
𝑖=1

(𝑎𝑖 ,𝑏𝑖) = ∅. □

We need also the following simple combinatorial lemma.

Lemma 5.8. For fixed 𝛼 > 0 there exists a sequence
(︁
𝐸𝛼,𝑛

)︁
𝑛

with 𝐸𝛼,𝑛 ⊂ 𝑀𝐷/𝑁
𝛼,𝔍

(𝑛),

𝑒𝛼,𝑛 ≔ card
(︁
𝐸𝛼,𝑛

)︁
≥

⌊︂
N𝐷/𝑁
𝛼,𝔍

(𝑛) /5𝑑
⌋︂

and for all cubes 𝑄,𝑄 ′ ∈ 𝐸𝛼,𝑛 with 𝑄 ≠𝑄 ′ we have
⟨︁
�̊�

⟩︁
3 ∩

⟨︂
𝑄 ′˚

⟩︂
3
= ∅.
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Proof. We assume 𝑀
𝐷/𝑁
𝛼,𝔍

(𝑛) ≠ ∅. We construct inductively a subset 𝐸𝛼,𝑛 of

𝑀
𝐷/𝑁
𝛼,𝔍

(𝑛) of cardinality card
(︁
𝐸𝛼,𝑛

)︁
≥

⌊︂
N𝐷/𝑁
𝛼,𝔍

(𝑛) /5𝑑
⌋︂

such that for all cubes𝑄,𝑄 ′ ∈

𝐸𝛼,𝑛 with 𝑄 ≠𝑄 ′, we have
⟨︁
�̊�

⟩︁
3 ∩

⟨︂
𝑄 ′˚

⟩︂
3
= ∅. At the beginning of the induction we

set 𝐷 (0) ≔ 𝑀
𝐷/𝑁
𝛼,𝔍

(𝑛). Assume we have constructed

𝐷 (0) ⊃ 𝐷 (1) ⊃ . . . ⊃ 𝐷 ( 𝑗−1)

such that the following condition holds
⟨︁
𝑄𝑗˚

⟩︁
5 ∩�̊� ≠ ∅ for some 𝑄,𝑄𝑗 ∈ 𝐷 ( 𝑗−1) with

𝑄 ≠𝑄𝑗 . Then we set

𝐷 ( 𝑗) ≔
{︂
𝐶 ∈ 𝐷 ( 𝑗−1) : �̊� ∩

⟨︁
𝑄𝑗˚

⟩︁
5 = ∅

}︂
∪

{︁
𝑄𝑗

}︁
.

By this construction, we have card
(︁
𝐷 ( 𝑗) )︁ < card

(︁
𝐷 ( 𝑗−1) )︁ , since �̊� ∩

⟨︁
𝑄𝑗˚

⟩︁
5 ≠ ∅.

Further, by Lemma 5.7, for all 𝑄 ∈ 𝐷 ( 𝑗) \ {𝑄𝑗 }, we have �̊�𝑗 ∩
⟨︁
�̊�

⟩︁
5 = ∅, showing

𝑄𝑗 ∈𝐷 (𝑘) for all 𝑘 ≥ 𝑗 . If otherwise
⟨︁
�̊�

⟩︁
5∩�̊�

′
=∅ for all𝑄,𝑄 ′ ∈𝐷 ( 𝑗−1) with𝑄 ≠𝑄 ′,

then we set 𝐸𝛼,𝑛 =𝐷 ( 𝑗−1) . In each inductive step, we remove at most 5𝑑 −1 elements
of 𝐷 ( 𝑗−1) , while one element, namely 𝑄𝑗 , is kept. Moreover, by the construction of
𝐸𝛼,𝑛, for each 𝑄 ′ ∈ 𝑀𝐷/𝑁

𝛼,𝔍
(𝑛) there exists 𝑄 ∈ 𝐸𝛼,𝑛 such that

⟨︁
�̊�

⟩︁
5 ∩𝑄

′˚ ≠ ∅. This
implies

card
(︁
𝐸𝛼,𝑛

)︁
=

∑︂
𝑄 ∈𝐸𝛼,𝑛

card
(︂
{𝑄 ′ ∈𝑀𝐷/𝑁

𝛼,𝔍
(𝑛) :

⟨︁
�̊�

⟩︁
5 ∩𝑄

′˚ ≠ ∅}
)︂

card
(︂
{𝑄 ′ ∈𝑀𝐷/𝑁

𝛼,𝔍
(𝑛) :

⟨︁
�̊�

⟩︁
5 ∩𝑄 ′˚ ≠ ∅}

)︂
≥

∑︂
𝑄 ∈𝐸𝛼,𝑛

1
5𝑑

card
(︂
{𝑄 ′ ∈𝑀𝐷/𝑁

𝛼,𝔍
(𝑛) :

⟨︁
�̊�

⟩︁
5 ∩𝑄

′˚ ≠ ∅}
)︂

≥
N𝐷/𝑁
𝛼,𝔍

(𝑛)
5𝑑

.

Finally, by Lemma 5.7, we obtain that if �̊� ∩
⟨︂
𝑄 ′˚

⟩︂
5
= ∅ for 𝑄,𝑄 ′ ∈ 𝐸𝛼,𝑛, then⟨︁

�̊�
⟩︁

3 ∩
⟨︂
𝑄 ′˚

⟩︂
3
= ∅. □

The lower estimate of the spectral dimension is based on the following abstract
observation, connecting the optimized coarse multifractal dimension and the spectral
dimension.

Proposition 5.9. Assume there exists a non-negative monotone set function 𝔍 on
D with dim∞(𝔍) > 0 such that for every 𝑄 ∈ D with 𝔍 (𝑄) > 0 there exists a non-
negative and non-zero function𝜓𝑄 ∈ C∞

𝑐

(︁
R𝑑

)︁
with support contained in

⟨︁
�̊�

⟩︁
3 such

that ∥︁∥︁𝜓𝑄∥︁∥︁2
𝐿2
a
≥ 𝔍(𝑄)

∥︁∥︁∇𝜓𝑄∥︁∥︁2
𝐿2
Λ(R𝑑) .
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Then for fixed 𝛼 > 0 and for 𝑥 > 0 large, we have

N𝐷
𝛼,𝔍

(︁
𝑛𝛼,𝑥

)︁
5𝑑

−1 ≤ 𝑁𝐷
a (𝑥) and

N𝑁
𝛼,𝔍

(︁
𝑛𝛼,𝑥

)︁
2 ·5𝑑

−1 ≤ 𝑁𝑁
a

(︃
𝑥

𝐷Q

)︃
,

with 𝑛𝛼,𝑥 ≔
⌊︁
log2 (𝑥) /𝛼

⌋︁
. In particular, we have

𝐹𝑁
𝔍
≤ 𝑠𝑁

a
and 𝐹

𝑁

𝔍 ≤ 𝑠𝑁a , 𝐹𝐷
𝔍
≤ 𝑠𝐷

a
and 𝐹

𝐷

𝔍 ≤ 𝑠𝐷a .

Proof. Fix 𝛼 > 0 and let 𝐸𝛼,𝑛, 𝑛 ∈ N, be given as in Lemma 5.8. Let us first
consider the Dirichlet case. Since for each 𝑄 ∈ D𝐷

𝑛 , we have 𝜕Q ∩𝑄 = ∅, it
follows that

⟨︁
�̊�

⟩︁
3 ⊂ Q and therefore 𝜓𝑄 ∈ 𝐶∞

𝑐 (Q̊). Now, for 𝑥 > 2𝛼 we define
𝑛𝛼,𝑥 ≔

⌊︁
log2 (𝑥) /𝛼

⌋︁
. Then, for each 𝑄 ∈ 𝐸𝑛𝛼,𝑥 , we have∫

Q

|︁|︁∇𝜓𝑄 |︁|︁2 dΛ∫
𝜓 2
𝑄

da
≤ 1
𝔍 (𝑄) ≤ 2𝛼𝑛𝛼,𝑥 ≤ 𝑥 .

Hence, the
(︁
𝜓𝑄 :𝑄 ∈ 𝐸𝑛𝛼,𝑥

)︁
≕

(︁
𝑓𝑖 : 𝑖 = 1, . . . ,𝑒𝑛𝛼,𝑥

)︁
are mutually orthogonal both in

𝐿2
a and in 𝐻 1

0 - Thus, we obtain that span
(︁
𝑓𝑖 : 𝑖 = 1, . . . ,𝑒𝛼,𝑥

)︁
is an 𝑒𝑛𝛼,𝑥 -dimensional

subspace of 𝐻 1
0 . Hence, we deduce from Lemma 2.19

N𝐷
𝛼,𝔍

(︁
𝑛𝛼,𝑥

)︁
/5𝑑 −1 ≤ 𝑒𝑛𝛼,𝑥 ≤ 𝑁𝐷

a (𝑥) .

In the Neumann case, we proceed similarly. For fixed 𝛼 > 0 again set 𝑛𝛼,𝑥 =⌊︁
log2 (𝑥) /𝛼

⌋︁
and write 𝐸𝑛𝛼,𝑥 =

{︂
𝑄1, . . . ,𝑄card(𝐸𝑛𝛼,𝑥 )

}︂
. For each 𝑖 = 1, . . . ,

⌊︁
𝑒𝑛𝛼,𝑥 /2

⌋︁
≕

𝑁𝛼,𝑥 we define
𝑓𝑖 ≔

(︁
𝑎2𝑖−1𝜓𝑄2𝑖−1 +𝑎2𝑖𝜓𝑄2𝑖

)︁
|Q ∈ C∞

𝑏

(︂
Q

)︂
,

where we choose (𝑎2𝑖−1,𝑎2𝑖) ∈ R2 \ {(0,0)} such that
∫

Q 𝑓𝑖 dΛ = 0. Then, by Lemma
2.7, we have

⟨𝑓𝑖 , 𝑓𝑖⟩𝐻 1 ≤

∫
Q |∇𝑓𝑖 |2 dΛ

𝐷Q
.

Since we have
⟨︁
𝑄𝑗˚

⟩︁
3 ∩

⟨︁
𝑄�̊�

⟩︁
3 = ∅ for 𝑗 ≠ 𝑘 , combined with the properties of medi-

ants, i.e.

𝑎 +𝑏
𝑐 +𝑑 =

𝑎

𝑐

𝑐

𝑐 +𝑑 + 𝑏
𝑑

𝑑

𝑐 +𝑑 ≤ max
{︃
𝑎

𝑐
,
𝑏

𝑑

}︃
for all 𝑎,𝑏,𝑐,𝑑 > 0,
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we obtain

⟨𝑓𝑖 , 𝑓𝑖⟩𝐻 1∫
𝑓 2
𝑖

da
≤

∫
Q |∇𝑓𝑖 |2 dΛ

𝐷Q
∫
𝑓 2
𝑖

da
≤

∫
|∇𝑓𝑖 |2 dΛ

𝐷Q
∫
𝑓 2
𝑖

da

≤ 1
𝐷Q

𝑎2
1

∫ (︁
∇𝜓𝑄2𝑖−1

)︁2 dΛ+𝑎2
2

∫ (︁
∇𝜓𝑄2𝑖

)︁2 dΛ

𝑎2
1

∫
𝜓 2
𝑄2𝑖−1

da +𝑎2
2

∫
𝜓 2
𝑄2𝑖

da

≤ 1
𝐷Q

max

{︄∫ (︁
∇𝜓𝑄2𝑖

)︁2 dΛ∫
𝜓 2
𝑄2𝑖

da
,

∫ (︁
∇𝜓𝑄2𝑖−1

)︁2 dΛ∫
𝜓 2
𝑄2𝑖−1

da

}︄
≤ 1
𝐷Q

max
{︃

1
𝔍(𝑄2𝑖−1)

,
1

𝔍(𝑄2𝑖)

}︃
≤ 𝑥

𝐷Q
.

Hence, the 𝑓𝑖 are mutually orthogonal in𝐻 1 and also in 𝐿2
a , we obtain span

(︁
𝑓1, . . . , 𝑓𝑁𝛼,𝑥

)︁
is a 𝑁𝛼,𝑥 - dimensional subspace of 𝐻 1. Again, an application of Lemma 2.19 gives

N𝑁
𝛼,𝔍

(𝑛𝛼,𝑥 )/
(︂
2 ·5𝑑

)︂
−1 ≤ 𝑁𝑁

a

(︁
𝑥/𝐷Q

)︁
.

Consequently, analogous to the proof of Proposition 4.3, we conclude

𝑠𝐷a = liminf
𝑥→∞

log
(︁
𝑁𝐷
a (𝑥)

)︁
log(𝑥) ≥ liminf

𝑛→∞

log+
(︂
N𝐷
𝛼,𝔍

(𝑛)
)︂

𝛼 log (2𝑛) =
𝐹𝐷
𝔍
(𝛼)
𝛼

.

Taking the supremum over all 𝛼 > 0 gives 𝐹𝐷
𝔍
≤ 𝑠𝐷

a
. Furthermore, for 𝑥𝛼,𝑛 ≔ 2𝛼𝑛

with 𝑛 ∈ N, we see that

𝑠𝐷a ≥ limsup
𝑛→∞

log
(︁
𝑁𝐷
a (𝑥𝛼,𝑛)

)︁
log(𝑥𝛼,𝑛)

≥ limsup
𝑛→∞

log+
(︂
N𝐷
𝛼.𝔍

(𝑛)
)︂

log(2𝑛)𝛼 =
𝐹
𝐷

𝔍 (𝛼)
𝛼

,

implying 𝑠𝐷a ≥ 𝐹𝐷𝔍 . In the Neumann case, using

N𝑁
𝛼,𝔍

(𝑛𝛼,𝑥 )/
(︂
2 ·5𝑑

)︂
−1 ≤ 𝑁𝑁

a

(︁
𝑥/𝐷Q

)︁
,

we obtain in the same ways as in the Dirichlet case that 𝐹𝑁
𝔍
≤ 𝑠𝑁

a
and 𝐹

𝑁

𝔍 ≤ 𝑠𝑁a . □

5.2.2 Lower bound on the embedding constant

We need a slight modification of 𝔍a for the case 𝑑 = 2. We define

𝔍
a
(𝑄) = sup

𝑄′∈D(𝑄)
a (𝑄 ′)Λ(𝑄 ′)2/𝑑−1
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for𝑄 ∈ D. Hence, in the case 𝑑 = 2, we have 𝔍
a
(𝑄) = a (𝑄). Clearly, we again have

dim∞(𝔍
a
) > 𝑑 −2, 𝜏𝐷/𝑁

𝔍a
= 𝜏

𝐷/𝑁
𝔍
a

by Proposition 2.35 and for 𝑑 > 2, 𝐹𝐷/𝑁
𝔍
a

= 𝐹
𝐷/𝑁
𝔍a

and 𝐹
𝐷/𝑁
𝔍
a

= 𝐹
𝐷/𝑁
𝔍a

. The case 𝑑 = 2 is covered by the following lemma.

Lemma 5.10. In the case 𝑑 = 2, we have

𝐹
𝐷/𝑁
𝔍
a

= 𝐹
𝐷/𝑁
𝔍a

and 𝐹
𝐷/𝑁
𝔍
a

= 𝐹
𝐷/𝑁
𝔍a

.

Proof. We have always{︄
𝐶 ∈ D𝐷/𝑁

𝑛 : sup
𝑄′∈D(𝐶)

a (𝑄 ′) | log (Λ (𝑄 ′)) | ≥ 2−𝛼𝑛
}︄
⊃

{︂
𝐶 ∈ D𝐷/𝑁

𝑛 : a (𝐶) ≥ 2−𝛼𝑛
}︂
,

and using dim∞(a) > 𝑑 −2, we obtain for every 𝛿 > 1 and 𝑛 ∈ N large enough

a (𝑄) | log(Λ(𝑄)) | ≤ a (𝑄)1/𝛿 , 𝑄 ∈ D𝐷/𝑁
𝑛 .

Indeed, for 𝑑−2 < 𝑠 < dim∞(a), we have for all 𝑛 large and𝑄 ∈ D𝐷/𝑁
𝑛 with a (𝑄) > 0

a (𝑄) ≤ 2−𝑠𝑛 .

Further, for fixed 0 < Y < 1, we have for 𝑛 large

𝑑𝑛 log(2) ≤ 2Y𝑠𝑛 ≤ a (𝑄)−Y .

Hence, for all 𝑄 ∈ D𝐷/𝑁
𝑛 , we obtain

a (𝑄) | log(Λ(𝑄)) | ≤ a (𝑄)1−Y .

This leads to{︄
𝐶 ∈ D𝐷/𝑁

𝑛 : sup
𝑄′∈D(𝐶)

a (𝑄 ′) | log(Λ(𝑄 ′)) | ≥ 2−𝛼𝑛
}︄
⊂

{︂
𝐶 ∈ D𝐷/𝑁

𝑛 : a (𝐶) ≥ 2−𝛼𝛿𝑛
}︂
.

Thus,

log+
(︂
N𝐷/𝑁
𝛼,𝔍a

(𝑛)
)︂

𝛼𝑛 log(2) ≤ 𝛿
log+

(︃
N𝐷/𝑁
𝛼𝛿,𝔍

a

(𝑛)
)︃

𝛼𝛿𝑛 log(2) .

Hence, the claim follows. □

Proposition 5.11. There exists a constant 𝐾 > 0 such that for every 𝑄 ∈ D with
𝔍
a
(𝑄) > 0 there exists a function 𝜓𝑄 ∈ C∞

𝑐 (R𝑑 ) with support contained in
⟨︁
�̊�

⟩︁
3
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and
∥︁∥︁𝜑𝑄∥︁∥︁

𝐿2
a
> 0 such that∥︁∥︁𝜓𝑄∥︁∥︁2

𝐿2
a
≥ 𝐾𝔍

a
(𝑄)

∥︁∥︁∇𝜓𝑄∥︁∥︁2
𝐿2
Λ(R𝑑) .

Proof. Since dim∞(𝔍
a
) > 0, it follows that for each𝑄 ∈ D there exists𝐶𝑄 ∈ D(𝑄)

such that 𝔍
a
(𝑄) = a (𝐶𝑄 )Λ(𝐶𝑄 )2/𝑑−1. Now, choose 𝜓𝑄 ≔ 𝜑⟨𝐶𝑄⟩3,3

as in Lemma

2.21. Then𝜓𝑄 ·1𝐶𝑄 = 1𝐶𝑄 , supp(𝜓𝑄 ) ⊂
⟨︁
𝐶�̊�

⟩︁
3 ⊂

⟨︁
�̊�

⟩︁
3, and

∫ |︁|︁∇𝜓𝑄 |︁|︁2 dΛ∫ |︁|︁𝜓𝑄 |︁|︁2 da
≤ 𝐶2−231−2/𝑑

Λ
(︂⟨︁⟨︁
𝐶𝑄

⟩︁
3

⟩︁
1/3

)︂1−2/𝑑

a

(︂⟨︁⟨︁
𝐶𝑄

⟩︁
3

⟩︁
1/3

)︂
=𝐶2−231−2/𝑑 Λ

(︁
𝐶𝑄

)︁1−2/𝑑

a
(︁
𝐶𝑄

)︁ =𝐶2−231−2/𝑑𝔍
a
(𝑄)−1. □

Proposition 5.12. Assume a (Q̊) > 0. Then for fixed 𝛼 > 0 and for 𝑥 > 0 large, we
have

N𝐷
𝛼,𝔍

a

(𝑛𝛼,𝑥 )

5𝑑
−1 ≤ 𝑁𝐷

a (𝑥𝐾)

with 𝑛𝛼,𝑥 ≔
⌊︁
log2 (𝑥) /𝛼

⌋︁
. In particular, 𝐹𝐷

𝔍a
≤ 𝑠𝐷

a
and 𝐹

𝐷

𝔍a
≤ 𝑠𝐷a .

Proof. This follows from Proposition 5.9, Lemma 5.10, and Proposition 5.11. □

In the same way we obtain the following proposition for the Neumann case.

Proposition 5.13. For fixed 𝛼 > 0, we have for 𝑥 > 0 large

N𝑁
𝛼,𝔍

a

(𝑛𝛼,𝑥 )

2 ·5𝑑
−1 ≤ 𝑁𝑁

a

(︁
𝑥𝐾/𝐷Q

)︁
with 𝑛𝛼,𝑥 ≔

⌊︁
log2 (𝑥) /𝛼

⌋︁
. In particular, 𝐹𝑁

𝔍a
≤ 𝑠𝑁

a
and 𝐹

𝑁

𝔍a
≤ 𝑠𝑁a .

5.3 Main results

In this section, we combine the results of Section 5.1 and Section 5.2.2 to prove the
main results of this chapter.
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5.3.1 Upper spectral dimension, and lower and upper bounds for the
lower spectral dimension

To break up the main result (Theorem 5.15) of this section, we start with the
following proposition.

Proposition 5.14. We have

𝑞𝑁
𝔍a

= 𝐹
𝑁

𝔍a
= ℎ𝔍a = 𝑠

𝑁
a and 𝑠𝑁

a
≤ lim

𝑡↓2
ℎ
𝔍a,𝑡 (2/𝑑−1)/2,1

.

Proof. From Proposition 3.20 and Proposition 5.13 applied to 𝔍 = 𝔍a , we obtain

𝑞𝑁
𝔍a

= 𝐹
𝑁

𝔍a
≤ 𝑠𝑁a .

Moreover, Corollary 3.21 and Corollary 5.6 yield

𝑠𝑁
a
≤ 𝑠𝑁a ≤ lim

𝑡↓2
ℎ𝔍a,𝑡 (1/𝑑−1)/2,1 ≤ 𝑞

𝑁
𝔍a

and 𝐹
𝑁

𝔍a
= ℎ𝔍a = 𝑞

𝑁
𝔍a

which proves the claimed equalities. □

Theorem 5.15. Let a be a Borel probability measure on Q such that dim∞(a) > 𝑑−2.

1. Under Neumann boundary conditions we have

𝐹𝑁
𝔍a

≤ 𝑠𝑁
a
≤ lim

𝑡↓2
ℎ
𝔍a,𝑡 (2/𝑑−1)/2,1

≤ ℎ𝔍a = 𝑠
𝑁
a = 𝑞𝑁

𝔍a
= 𝐹

𝑁

𝔍a
. (5.3.1)

2. Under Dirichlet boundary conditions and a (Q̊) > 0 we have

𝐹𝐷
𝔍a

≤ 𝑠𝐷
a

and 𝐹
𝐷

𝔍a
= 𝑞𝐷

𝔍a
≤ 𝑠𝐷a ≤ 𝑞𝑁

𝔍a
.

3. In particular, if 𝑑 = 2, then 𝑠𝑁a = 1, and under the assumption a (Q̊) > 0, we
also have 𝑠𝐷a = 1.

4. If 𝜏𝑁
𝔍a

(︂
𝑞𝐷
𝔍a

)︂
= 0, or equivalently 𝐹

𝑁

𝔍a
= 𝐹

𝐷

𝔍a
, then the upper Dirichlet and

Neumann spectral dimensions have the common value 𝑠𝐷a = 𝑠𝑁a = 𝑞𝑁
𝔍a

. This
assumption is particularly fulfilled if

dim𝑀 (supp (a) ∩ 𝜕Q)
dim𝑁 \𝐷

∞ (a) −𝑑 +2
< 𝑞𝑁

𝔍a
. (5.3.2)

Proof. The first and second claim follow from Proposition 5.12, Proposition 5.13,
and Proposition 5.14. Furthermore, by Proposition 2.35, we always have in the case
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𝑑 = 2 that 𝑞𝑁
𝔍a

= 1. For the third claim note that a (Q̊) > 0 implies that there exists

an open cube 𝑄 such that 𝑄 ⊂ Q̊, a (𝑄) > 0, and dim∞(a |𝑄 ) > 𝑑 −2 = 0. Hence, we
obtain

1 = 𝑞𝑁
𝔍a |𝑄

≤ 𝐹𝑁𝔍a |𝑄 = 𝐹
𝐷

𝔍a |𝑄
≤ 𝐹𝐷𝔍a = 𝑞

𝐷
𝔍a

≤ 𝑠𝐷a ≤ 𝑠𝑁a = 1.

To prove the last claim, we note that (5.3.2) fulfills the assumption of Lemma 2.38,
which implies 𝑞𝐷

𝔍a
= 𝑞𝑁

𝔍a
. □

Remark 5.16. By Corollary 5.22 we have 𝑞𝑁
𝔍a

≥ dim𝑀 (a)/(dim𝑀 (a) −𝑑 +2). Hence,

we can replaces 𝑞𝑁
𝔍a

by dim𝑀 (a) /(dim𝑀 (a) −𝑑 +2) on the right hand side in (5.3.2)
making this condition independent of 𝑞𝑁

𝔍a
. Moreover, (5.3.2) can easily be verified

for particular measures a such that

1. dim𝑀 (supp (a) ∩ 𝜕Q) < dim𝑀 (a) dim∞ (a)−𝑑+2
dim𝑀 (a)−𝑑+2

, in particular, for a with

dim∞(a) > 𝑑 −1 and dim𝑀 (supp (a) ∩ 𝜕Q) ≤ dim𝑀 (a) /2.

2. dim𝑀 (supp (a) ∩ 𝜕Q) = 0, particularly for supp (a) ⊂ Q̊,

3. a is given by the 𝑑-dimensional Lebesgue measure Λ|Q restricted to Q (then
the left-hand side in (5.3.2) is equal to (𝑑 −1)/2).

Let us also remark that in Section 5.4.4 we present an example for which 𝑠𝑁
a
< 𝑠𝑁a .

Remark 5.17. The above theorem and the notion of regularity give rise to the
following list of observations for measures a with dim∞ (a) > 𝑑 −2:

1. If the Neumann spectral dimension with respect to a exists, then it is given
by purely measure-geometric data encoded in the a-partition entropy, namely
we have ℎ𝔍a = lim𝑡↓2ℎ𝔍a,𝑡 (2/𝑑−1)/2,1

and this value coincides with the spectral
dimension.

2. N-MF-regularity implies equality everywhere in the chain of inequalities
(5.3.1) and in particular the Neumann spectral dimension exists. If 𝔍a is
D-MF-regular, then we have equality everywhere in all chains of inequalities
above and in particular both Neumann and Dirichlet spectral dimensions
exist.

5.3.2 Regularity results

The following theorem shows that the spectral partition function is a valuable
auxiliary concept to determine the spectral behavior for a given measure a .
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Theorem 5.18. Under the assumption dim∞(a) > 𝑑 − 2 we have the following
regularity result:

1. If 𝔍a is N-PF-regular, then it is N-MF-regular and the Neumann spectral
dimension 𝑠𝑁a exists.

2. If 𝔍a is D-PF-regular and 𝜏𝑁
𝔍a

(︂
𝑞𝐷
𝔍a

)︂
= 0, then both the Dirichlet and Neumann

spectral dimension exist and coincide, i.e. 𝑠𝐷a = 𝑠𝑁a .

Proof. Under the assumption that 𝔍a is D/N-PF-regular, we obtain from Proposition
3.24 applied to 𝔍 = 𝔍a , Lemma 2.18, and Theorem 5.15

𝑞𝑁
𝔍a

= 𝐹
𝑁

𝔍a
= 𝑠𝑁a ≥ 𝑠𝐷/𝑁

a
≥ 𝐹𝐷/𝑁

𝔍a
= 𝑞

𝐷/𝑁
𝔍a

and 𝑠𝐷a ≤ 𝑠𝑁a ,

proving the claims. □

We will see in Section 5.4.4 that the result is optimal in the sense that there is an
example derived from a similar example for 𝑑 = 1 in a which is not 𝔍a N-PF-regular
and for which 𝑠𝑁a > 𝑠𝑁

a
. It should be noted that PF-regularity is easy accessible if

the spectral partition function is essentially given by the 𝐿𝑞-spectrum of a .

In the following proposition we present lower bounds of the lower spectral dimen-
sion in terms of the subdifferential of 𝜏𝐷/𝑁

𝔍a
at 𝑞.

Proposition 5.19. If dim∞(a) > 𝑑 −2 and if for 𝑞 ∈
[︁
0,𝑞𝐷/𝑁 ]︁

we have

𝜏
𝐷/𝑁
𝔍a

(𝑞) = lim
𝑛→∞

𝜏
𝐷/𝑁
𝔍a ,𝑛

(𝑞) and − 𝜕𝜏𝐷/𝑁
𝔍a

(𝑞) = [𝑎,𝑏],

then
𝑎𝑞 +𝜏𝐷/𝑁

𝔍a
(𝑞)

𝑏
≤ 𝑠𝐷/𝑁

a
.

Proof. This follows from Proposition 3.18, Proposition 5.12, and Proposition 5.13.
□

Remark 5.20. In the case that 𝜏𝑁
𝔍a
(𝑞𝑁

𝔍a
) = lim𝑛→∞𝜏𝑁𝔍a ,𝑛 (𝑞

𝑁
𝔍a
) and 𝜏𝑁

𝔍a
is differentiable

at 𝑞𝑁
𝔍a

, we infer 𝑞𝑁
𝔍a

≤ 𝑠𝑁
a

and hence we obtain a direct proof of the regularity

statement, namely, 𝑞𝑁
𝔍a

= 𝑠𝑁
a
= 𝑠𝑁a .

Also, if 𝜏𝐷/𝑁
𝔍a

(1) = lim𝑛→∞𝜏
𝐷/𝑁
𝔍a ,𝑛

(1) = 𝑑 −2, we have the lower bound in terms of
left-sided, respectively right-sided, derivative of 𝛽𝑁a given by

−𝜕+𝜏𝐷/𝑁
𝔍a

(1) −𝑑 +2

−𝜕−𝜏𝐷/𝑁
𝔍a

(1)
≤ 𝑠𝐷/𝑁

a
.
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Corollary 5.21. For 𝑑 = 2 we have:

1. It holds
−𝜕+𝛽𝑁a (1)
−𝜕−𝛽𝑁a (1)

≤ 𝑠𝑁
a
≤ 𝑠𝑁a = 1.

2. If 𝛽𝐷/𝑁
a is differentiable at 1, then 𝑠𝐷/𝑁

a = 1.

3. If a (Q̊) > 0 and 𝛽𝑁a is differentiable at 1, then also 𝛽𝐷a is differentiable at 1.
In particular, 𝑠𝐷a = 𝑠𝑁a = 1.

5.3.3 General bounds in terms of fractal dimensions

We obtain general bounds for 𝑠𝑁a in terms of the upper Minkowski dimension
dim𝑀 (a) and the possibly smaller lower ∞-dimension dim∞ (a) of a (see also
Figure 5.3.1).

Corollary 5.22. Assume dim∞(a) > 𝑑 −2. Then for the Neumann upper spectral
dimension we have

𝑑

2
≤ dim𝑀 (a)

dim𝑀 (a) −𝑑 +2
≤ 𝑠𝑁a ≤ dim∞ (a)

dim∞ (a) −𝑑 +2
.

Proof. Theorem 5.15 gives 𝑠𝑁a = 𝑞𝑁
𝔍a

, hence the claim follows from the estimates of
𝑞𝑁
𝔍a

obtained in Fact 2.37. □

Remark 5.23. Note that by choosing measures with dim𝑀 (a) close to 𝑑 −2 we can
easily find examples where 𝑠𝑁a becomes arbitrarily large.

It is also worth mentioning that the analogous situation in the dimension 𝑑 = 1 is
quite different (cf. Section 4.3.3), namely the lower bound becomes an upper bound,

𝑠
𝐷/𝑁
a ≤ dim𝑀 (a)

dim𝑀 (a) +1
≤ 1

2
.

This inequalities in Corollary 5.22 naturally links to the famous question by M. Kac
[Kac66], “Can one hear the shape of a drum?” This question has been modified
by various authors e.g. in [Ber79; Ber80; BC86; Lap91], and closer to our context
by Triebel in [Tri97]. In the plane, the spectral dimension does not encode any
information about the fractal-geometric nature of the underlying measure as we
always have 𝑠𝐷/𝑁

a = 1 for any bounded Borel measure with a (Q̊) > 0. This has been
observed in [Tri97] for the special case of 𝛼-Ahlfors–David regular measures. For all
other dimensions, our results show that the upper spectral dimension 𝑠𝑁a is uniquely
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1 2 𝑞𝑁
𝔍a

3

1

2 dim𝑀 (a)

𝑞

𝜏𝑁
𝔍a
(𝑞)

Figure 5.3.1 Partition function 𝜏𝑁
𝔍a

in dimension 𝑑 = 3 for the self-similar measure a
supported on the Sierpiński tetraeder with all four contraction ratios equal 1/2 and
with probability vector (0.36,0.36,0.2,0.08). Natural bounds for 𝑠𝑁a = 𝑞𝑁

𝔍a
in this set-

ting are the zeros of the dashed line 𝑥 ↦→ −𝑥
(︂
𝜏𝑁
𝔍a

(0) −1
)︂
+ 𝜏𝑁

𝔍a
(0) and the dotted line

𝑥 ↦→ (1−𝑥) dim∞ (a) +𝑥 as given in Corollary 5.22. In this case 𝜏𝑁
𝔍a

(0) = dim𝑀 (a) = 2 and
dim∞ (a) = − log (0.36) /log (2) ≈ 1.47
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determined by the spectral partition function 𝜏𝑁
𝔍a

, which in turn reflects many
important fractal-geometric properties of a . For the case 𝑑 > 2, this common ground
provides interesting bounds on the upper Minkowski dimension of the support of a
and the lower ∞-dimension of a in terms of the upper spectral dimension given by

dim𝑀 (a) ≥
𝑠𝑁a (𝑑 −2)
𝑠𝑁a −1

≥ dim∞ (a) .

So the answer to Kac’s question is “partially yes”. If additionally the 𝐿𝑞-spectrum
𝛽𝑁a is an affine function, we obtain 𝛽𝑁a (𝑞) = dim𝑀 (a) +dim𝑀 (a) (1−𝑞) and with
Corollary 5.22

dim∞ (a) = dim𝑀 (a) =
𝑠𝑁a (𝑑 −2)
𝑠𝑁a −1

.

In this case, Kac’s question regarding dimensional quantities must be answered in
the affirmative.

5.4 Examples

Finally, we give some leading examples where the spectral partition function is
essentially given by the 𝐿𝑞-spectrum of a (see Section 2.4.3.1 and Section 2.4.3.4)
and in this case we are able to provide the following complete picture.

5.4.1 Absolutely continuous measures

As a first application of our results, we present the case of absolutely continuous
measures.

Proposition 5.24. Let a be absolutely continuous with respect to Λ with 𝑟 -integrable
density for some 𝑟 ≥ 𝑑/2. Then the Dirichlet and Neumann spectral partition
function exists as a limit with

𝜏𝑁
𝔍a

(𝑞) = 𝜏𝐷
𝔍a

(𝑞) = 𝑑 −2𝑞, for 𝑞 ∈ [0,𝑟 ] ,

a is D/N-PF-regular, and the Dirichlet and Neumann spectral dimension exist and
equal 𝑠𝐷a = 𝑠𝑁a = 𝑑/2.

Proof. We immediately obtain from Proposition 2.44 and Theorem 5.18 that

𝑠𝐷a = 𝑠𝑁a = 𝑑/2. □

Also for absolutely continuous measures we have the following rigidity result in
terms of reaching the minimal possible value 𝑑/2 of the spectral dimension.
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Proposition 5.25. Let a be an absolutely continuous measure. If dim∞(a) > 𝑑 −2,
then the following rigidity result holds:

1. If 𝑠𝑁a = 𝑑/2, then 𝜏𝑁
𝔍a

(𝑞) = 𝑑 −2𝑞 for all 𝑞 ∈ [0,𝑑/2].

2. If 𝜏𝑁
𝔍a

(𝑞) = 𝑑 −2𝑞 for some 𝑞 > 𝑑/2, then 𝜏𝑁
𝔍a

(𝑞) = 𝑑 −2𝑞 for all 𝑞 ∈ [0,𝑑/2]
and 𝑠𝑁a = 𝑑/2.

Proof. Suppose 𝑠𝑁a = 𝑑/2. Then by Theorem 5.15, we have 𝑞𝑁
𝔍a

= 𝑑/2. Moreover,
by Lemma 2.43, for all 0 ≤ 𝑞 ≤ 1, we have

𝑑 −2𝑞 = 𝛽𝑁a (𝑞) + (𝑑 −2)𝑞 ≤ 𝜏𝑁
𝔍a

(𝑞) ,

and the convexity of 𝜏𝑁
𝔍a

yields for all 𝑞 ∈ [0,𝑑/2]

𝜏𝑁
𝔍a
(𝑞) ≤ 𝑑 −2𝑞.

Furthermore, the convexity of 𝛽𝑁a for all 𝑞 ∈ [1,𝑑/2] yields

𝑑 −2𝑞 ≤ 𝛽𝑁a (𝑞) + (𝑑 −2)𝑞 ≤ 𝜏𝑁
𝔍a

(𝑞) .

This proves the first claim. For the second claim assume 𝜏𝑁
𝔍a

(𝑞) = 𝑑 −2𝑞 for some
𝑞 > 𝑑/2. Again, for all 𝑞′ ∈ [0,𝑞], we deduce

𝑑 −2𝑞′ ≤ 𝛽𝑁a (𝑞′) + (𝑑 −2)𝑞′ ≤ 𝜏𝑁
𝔍a

(𝑞′) ≤ 𝑑 −2𝑞′.

In particular, 𝜏𝑁
𝔍a
(𝑑/2) = 0, which implies 𝑠𝑁a = 𝑑/2. □

5.4.2 Ahlfors–David regular measure

As a second application, we consider a class of measures with linear spectral
partition functions, namely we treat 𝛼-Ahlfors–David regular measures a on Q̊
for 𝛼 > 0, i.e. there exist constants 𝐾 > 0 such that for every 𝑥 ∈ supp (a) and
𝑟 ∈ (0,diam(supp(a))] we have

𝐾−1𝑟𝛼 ≤ a (𝐵𝑟 (𝑥)) ≤ 𝐾𝑟𝛼 .

Recall that 𝐵𝑟 (𝑥) denotes the open ball with center 𝑥 and radius 𝑟 > 0. Note that for
𝛼-Ahlfors–David regular measures a we have 𝛼 = dim𝑀 (a) = dim∞ (a).

Proposition 5.26. Assume that a is 𝛼-Ahlfors–David regular with 𝛼 ∈ (𝑑 −2,𝑑]
such that a (Q̊) > 0. Then both Neumann and Dirichlet spectral dimensions exist
and are given by 𝑠𝐷a = 𝑠𝑁a = 𝛼/(𝛼 −𝑑 +2).
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Proof. We immediately obtain from Theorem 5.18 and the properties of the partition
function provided in Section 2.4.3.3 that 𝑠𝐷a = 𝑠𝑁a = 𝛼/(𝛼 −𝑑 +2). □

This proposition recovers some of the major achievements on isotropic 𝛼-sets Γ

(in our terms this means that the 𝛼-dimensional Hausdorff measure restricted to Γ

is 𝛼-Ahlfors–David regular) as investigated by Triebel in his book [Tri97]. This
follows in our framework from the fact that the partition function is linear and exists
as a limit (see Section 2.4.3.3).

5.4.3 Self-conformal measures

As a third application, we treat self-conformal measures with possible overlaps,
following up on a question explicitly posed in [NX21, Sec. 5].

Theorem 5.27. Let a be a self-conformal measure as defined in Section 2.4.3.4
with a (𝜕Q) = 0 and dim∞(a) > 𝑑 −2. Then the spectral partition function exists as
a limit and is given by

𝜏
𝐷/𝑁
𝔍a

(𝑞) = 𝛽𝑁a (𝑞) + (𝑑 −2)𝑞.

Further, a is D/N-PF-regular and the Dirichlet and Neumann spectral dimension
exist and equal 𝑠𝐷a = 𝑠𝑁a = 𝑞𝑁

𝔍a
. In particular, in the case 𝑑 = 2, we always have

𝑠𝐷a = 𝑠𝑁a = 1.

Proof. Let a be a self-conformal measure with dim∞(a) > 𝑑 −2. Then it follows
from Corollary 2.53 that 𝔍a is D/N-PF-regular and

𝜏𝐷
𝔍a

(︂
𝑞𝐷
𝔍a

)︂
= 𝜏𝑁

𝔍a

(︂
𝑞𝐷
𝔍a

)︂
= 0.

Now, Theorem 5.15 and Theorem 5.18 give 𝑠𝐷a = 𝑠𝑁a = 𝑞𝑁
𝔍a

. □

Remark 5.28. In general, it is difficult to verify the condition dim∞(a) > 𝑑 −2, but
in the case 𝑑 = 2 a sufficient condition is that the measure a is invariant with respect
to an IFS given by a system of bi-Lipschitz contractions such that the attractor is not
a singleton (see [HLN06, Lemma 5.1]). This carries over to self-similar measures,
provided that the contractive similitudes do not share the same fixed point, so that
dim∞(a) > 0 and the spectral dimension is given by 𝑠𝐷a = 𝑠𝑁a = 1.

5.4.4 Non-existence of the spectral dimension

Here, we present an example for which lower and upper spectral dimension differ.
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Example 5.29. Let us consider the homogeneous Cantor measure ` on (0,1) form
Example 4.48 with non-converging 𝐿𝑞-spectrum, for which we have

𝑠𝐷/𝑁
`

= 3/13 < 3/11 = 𝑠
𝐷/𝑁
` , 𝛽𝑁` (𝑞) =

{︄
3
8 (1−𝑞) , 𝑞 ∈ [0,1] ,
3
10 (1−𝑞) , 𝑞 > 1 ,

and

𝛽
`
(𝑞) ≔ liminf

𝑛→∞
𝛽𝑁`,𝑛 (𝑞) =

{︄
3

10 (1−𝑞) , 𝑞 ∈ [0,1] ,
3
8 (1−𝑞) , 𝑞 > 1.

Take the one-dimensional Lebesgue-measure Λ1 restricted to [0,1] and define the
product measure on Q by a ≔ ` ⊗Λ1 ⊗Λ1. Due to the product structure, we have
for the 𝐿𝑞-spectrum of a

𝛽𝑁a (𝑞) = 𝛽𝑁` (𝑞) + 𝛽𝑁
Λ2 (𝑞) = 𝛽𝑁` (𝑞) +2 (1−𝑞) , 𝑞 ≥ 0,

and hence dim∞ (a) = 2 + 3/10 > 1. Let 𝜋1 denote the projection onto the first
coordinate. Then for 𝑡 ∈ [2,4), we have

𝜏𝑁
𝔍a,(2/3−1),2/𝑡 ,𝑛

(𝑞) = 1
log(2𝑛) log⎛⎜⎝

∑︂
𝑄 ∈D𝑁

𝑛

sup
𝑄′∈D(𝑄)

(︂
a (𝑄 ′)2/𝑡 Λ (𝑄 ′)−1/3

)︂𝑞⎞⎟⎠
=

1
log(2𝑛)

=
1

log(2𝑛) log
⎛⎜⎜⎝

∑︂
𝑄 ∈𝜋1(D𝑁

𝑛 )
` (𝑄)𝑞2/𝑡 2𝑞𝑛 (−4/𝑡+1)22𝑛

⎞⎟⎟⎠
= 𝛽𝑁`,𝑛 (𝑞2/𝑡) −𝑞(4/𝑡 −1) +2

and the spectral partition function 𝜏𝑁
𝔍a,(2/3−1),2/𝑡

is given by

𝜏𝑁
𝔍a,(2/3−1),2/𝑡

(𝑞) = 𝛽𝑁` (𝑞) −𝑞(𝑡 −1) +2

and therefore

𝜏𝑁
𝔍a,(2/3−1),2/𝑡

(𝑞) ≠ liminf
𝑛→∞

𝜏𝑁
𝔍a,(2/3−1),2/𝑡 ,𝑛

(𝑞) = 𝛽𝑁
`
(𝑞) −𝑞(𝑡 −1) +2

for 𝑞 ∈ R≥0 \ {1}. This gives for the upper spectral dimension 𝑠𝑁a = 𝑞𝑁
𝔍a

= 23/13.
Furthermore, by Example 4.48, with 𝑛𝑘 ≔ 22𝑘+18/3−10/3 and 2 < 𝑡 < 4, we have

𝜏𝑁
𝔍a,(2/3−1),2/𝑡 ,𝑛𝑘

(𝑞) = 𝛽𝑁`,𝑛𝑘 (𝑞2/𝑡) −𝑞(4/𝑡 −1) +2 =
(1−𝑞2/𝑡)

8/3−10/(3𝑛𝑘 )
−𝑞(4/𝑡 −1) +2.
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Therefore, it follows

𝑞𝑡,𝑛𝑘 ≔ inf{𝑞 ≥ 0 : 𝜏𝑁
𝔍a,(2/3−1),2/𝑡 ,𝑛𝑘

(𝑞) < 0}

=

(︃
1

8/3−10/(3𝑛𝑘 )
+2

)︃ (︃
2/𝑡

8/3−10/(3𝑛𝑘 )
+ 4
𝑡
−1

)︃−1

.

Moreover, by the construction of `, we have

max
𝑄 ∈D𝑁

𝑛𝑘

𝔍a,(2/3−1),2/𝑡 (𝑄)𝑞𝑛𝑘 = max
𝑄 ∈D𝑁

𝑛𝑘

(︂
` (𝜋1(𝑄))𝑞2/𝑡 2𝑞𝑛𝑘 (−4/𝑡+1)22𝑛𝑘

)︂𝑞𝑛𝑘
=

∑︁
𝑄 ∈D𝑁

𝑛𝑘

(︂
` (𝜋1(𝑄))𝑞2/𝑡 2𝑞𝑛𝑘 (−4/𝑡+1)22𝑛𝑘

)︂𝑞𝑛𝑘
2
𝑛𝑘𝜏

𝑁
𝔍a,(2/3−1),2/𝑡 ,𝑛𝑘

(0)

=

∑︁
𝑄 ∈D𝑁

𝑛𝑘

𝔍a,(2/3−1),2/𝑡 (𝑄)𝑞𝑛𝑘

2
𝑛𝑘𝜏

𝑁
𝔍a,(2/3−1),2/𝑡 ,𝑛𝑘

(0)
.

Hence, the assumptions of Proposition 3.3 are fulfilled. Thus, combining Proposition
3.3 and Corollary 5.6 yield

𝑠𝑁
a
≤ lim

𝑡↓2
ℎ
𝔍a,(2/3−1),2/𝑡

≤ lim
𝑡↓2

lim
𝑘→∞

𝑞𝑡,𝑛𝑘 ≤ lim
𝑡↓2

19
8

(︃
38
𝑡8

−1
)︃−1

=
19
11
.

Furthermore, by Theorem 5.15 and the result of Section 2.4.3.2, we find that 𝑠𝐷a = 𝑠𝑁a .
To summarize, we obtain from the consideration above that

𝑠𝐷
a
≤ 𝑠𝑁

a
≤ 19/11 < 𝑠𝐷a = 𝑠𝑁a =

23
13
.

It should be remarked that this example can be easily modified to construct an
example for non-existing spectral dimension for any 𝑑 ≥ 3.
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Chapter 6

Quantization Dimension

In this chapter, we study the lower and upper quantization dimension with respect
to a compactly supported Borel probability measure a on R𝑑 . Let us first recall the
definition of the lower and upper quantization dimension as given in Section 1.1.2:

𝐷
𝑟
(a) = liminf

𝑛→∞
log(𝑛)

− log(𝔢𝑛,𝑟 (a))
, 𝐷𝑟 (a) = limsup

𝑛→∞

log(𝑛)
− log(𝔢𝑛,𝑟 (a))

,

with 𝑟 > 0 and

𝔢𝑛,𝑟 (a) = inf
𝛼 ∈A𝑛

(︃∫
min
𝑦∈𝛼

∥𝑥 −𝑦∥𝑟 da (𝑥)
)︃1/𝑟

= inf
𝑓 ∈F𝑛

(︃∫
|𝑥 − 𝑓 (𝑥) |𝑟 da (𝑥)

)︃1/𝑟
,

where A𝑛 is the set of subsets of R𝑑 with cardinality less then or equal to 𝑛 and

F𝑛 = {𝑓 : R→𝐴, 𝐴 ∈ A𝑛}.

Note that without loss of generality, we can (and for ease of exposition, we will)
assume that the support of a is contained in (0,1)𝑑 . To see this, fix 𝑎 ≠ 0,𝑏 ∈ R𝑑 ,
and let Φ𝑎,𝑏 (𝑥) ≔ 𝑎𝑥 +𝑏, 𝑥 ∈ R𝑑 , such that Φ𝑎,𝑏 (supp(a)) ⊂ (0,1)𝑑 . Then,

𝔢𝑛,𝑟

(︂
a ◦Φ−1

𝑎,𝑏

)︂
= inf
𝑓 ∈F𝑛

(︃∫ |︁|︁𝑎𝑥 +𝑏 − 𝑓 (︁
Φ𝑎,𝑏 (𝑥)

)︁ |︁|︁𝑟 da (𝑥)
)︃1/𝑟

= |𝑎 | inf
𝑓 ∈F𝑛

(︃∫ |︁|︁𝑥 +Φ−1/𝑎,𝑏/𝑎
(︁
𝑓
(︁
Φ𝑎,𝑏 (𝑥)

)︁ )︁ |︁|︁𝑟 da (𝑥)
)︃1/𝑟

= |𝑎 | inf
𝑓 ∈F𝑛

(︃∫
|𝑥 − 𝑓 (𝑥) |𝑟 da (𝑥)

)︃1/𝑟
= |𝑎 |𝔢𝑛,𝑟 (a) ,

where we used that 𝑓 ↦→ Φ−1/𝑎,𝑏/𝑎 ◦ 𝑓 ◦Φ𝑎,𝑏 defines a surjection on F𝑛. Again, as
for the computation of the spectral dimension, the main strategy is to reduce the
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problem of the determination of the quantization dimension to the combinatorial
problems considered in Chapter 3 applied to 𝔍a,𝑎 :𝑄 ↦→ a (𝑄)Λ(𝑄)𝑟/𝑑 with 𝑄 ∈ D.

This chapter is structured as follows. Section 6.1 is devoted to provide upper bounds
of the lower and upper quantization dimension; we obtain bounds in terms of the
lower and upper 𝔍a,𝑟/𝑑 -partition entropy. In Section 6.2, we obtain lower bounds
of the lower and upper quantization dimension in terms of the lower and upper
optimized coarse multifractal dimension with respect to 𝔍a,𝑟/𝑑 . The main results
of this chapter are presented in Section 6.3. Thereby, we combine the results of
Section 6.1 and Section 6.2 to compute the upper quantization dimension and impose
regularity conditions that guarantee the existence of the quantization dimension.
Finally, we confirm the existence of the quantization dimension for self-conformal
measures where no separation conditions are assumed.

6.1 Upper bounds for the quantization dimension

In this section, building on the results of Section 3.3, we establish upper bounds
of the quantization dimension in terms of the 𝐿𝑞-spectrum of a . For this purpose,
we recall the notation from Section 3.3: 𝔍a,𝑎 (𝑄) = a (𝑄)Λ(𝑄)𝑎, 𝑎 > 0 and 𝑄 ∈ D.
Notice that

𝜏𝑁
𝔍a,𝑎

(𝑞) = 𝛽𝑁a (𝑞) −𝑎𝑑𝑞, 𝑞 ≥ 0.

Further, we define

𝑞𝑟 ≔ 𝑞𝔍a,𝑟/𝑑 = inf
{︁
𝑞 > 0 : 𝛽𝑁a (𝑞) < 𝑟𝑞

}︁
.

The following proposition establishes an upper bound of the quantization dimension
in terms of the 𝐿𝑞-spectrum with respect to a and the lower 𝔍a,𝑟/𝑑 -partition entropy.

Proposition 6.1. For all 𝑛 ∈ N, we have

𝑒𝑛,𝑟 (a)𝑟 ≤
√
𝑑𝑛𝛾𝔍a,𝑟/𝑑 ,𝑛 .

In particular, we have

𝐷𝑟 (a) ≤
𝑟ℎ𝔍a,𝑟/𝑑

1−ℎ𝔍a,𝑟/𝑑
=

𝑟𝑞𝑟

1−𝑞𝑟
≤ dim𝑀 (a),

and

𝐷
𝑟
(a) ≤

𝑟ℎ
𝔍a,𝑟/𝑑

1−ℎ
𝔍a,𝑟/𝑑

.
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Proof. We only consider the case 𝑞𝑟 > 0. The case 𝑞𝑟 = 0 follows analogously.
Note that we always have 𝑞𝑟 < 1. Let 𝑃 ∈ Πa with card(𝑃) ≤ 𝑛. Let us write
𝑃 =

{︁
𝑄1, . . . ,𝑄card(𝑃 )

}︁
and let𝑚𝑖 denote the middle point of the dyadic cube 𝑄𝑖 for

𝑖 ≤ card(𝑃) and set 𝛼𝑛 ≔ (𝑚1, . . . ,𝑚card(𝑃 ) ). Then we have

𝔢𝑛,𝑟 (a) ≤
(︃∫

𝑑 (𝑥,𝛼𝑛)𝑟 da (𝑥)
)︃1/𝑟

=

(︄card(𝑃 )∑︂
𝑖=1

∫
𝑄𝑖

𝑑 (𝑥,𝛼𝑛)𝑟 da (𝑥)
)︄1/𝑟

≤
(︄card(𝑃 )∑︂

𝑖=1

∫
𝑄𝑖

𝑑 (𝑥, {𝑚𝑖})𝑟 da (𝑥)
)︄1/𝑟

≤
√
𝑑

(︄card(𝑃 )∑︂
𝑖=1

a (𝑄𝑖)Λ(𝑄𝑖)𝑟/𝑑
)︄1/𝑟

≤
√
𝑑𝑛1/𝑟

(︃
max
𝑄 ∈𝑃

a (𝑄)Λ(𝑄)𝑟/𝑑
)︃1/𝑟

.

Now, taking the infimum over all 𝑃 ∈ Πa with card(𝑃) ≤ 𝑛 yields

𝔢𝑟𝑛,𝑟 (a) ≤
√
𝑑𝑟𝑛𝛾𝔍a,𝑟/𝑑 ,𝑛 .

Note that by Proposition 3.11, for every Y ∈ (0,1/𝑞𝑟 −1), we have for 𝑛 large

𝑛𝛾𝔍a,𝑟/𝑑 ,𝑛 ≤ 𝑛
1−1/𝑞𝑟+Y,

and, if ℎ
𝔍a,𝑟/𝑑

> 0, there exists a subsequence (𝑛𝑘 )𝑘 such that

𝑛𝑘𝛾𝔍a,𝑟/𝑑 ,𝑛𝑘 ≤ 𝑛
1−1/ℎ𝔍a,𝑟/𝑑 +Y
𝑘

.

The case ℎ
𝔍a,𝑟/𝑑

= 0 follows again similar. This implies

limsup
𝑛→∞

− log(𝑛)
log

(︁
𝔢𝑛,𝑟 (a)

)︁ ≤ 𝑟𝑞𝑟

1−𝑞𝑟
and 𝐷

𝑟
(a) ≤ liminf

𝑘→∞

− log(𝑛𝑘 )
log

(︁
𝔢𝑛𝑘 ,𝑟 (a)

)︁ ≤
𝑟ℎ

𝔍a,𝑟/𝑑

1−ℎ
𝔍a,𝑟/𝑑

,

where we used that lim𝑛→∞𝔢𝑛,𝑟 (a) = 0. Moreover, Proposition 3.11 implies

−1/𝑞𝑟 ≤ −
(︂
dim𝑀 (a) +𝑟

)︂
/dim𝑀 (a),

which proves the last inequality. □
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Corollary 6.2. If a is singular, then

lim
𝑛→∞

𝑛1/𝑑𝔢𝑛,𝑟 (a) = 0.

Proof. Since a is singular, by Corollary 3.10 and Proposition 6.1, we have

𝔢𝑛,𝑟 (a) ≤
(︂
𝑛𝛾𝔍a,𝑟/𝑑 ,𝑛

)︂1/𝑟
= 𝑜

(︂
𝑛−1/𝑑

)︂
. □

By Pötzelberger [Pöt01], for all 𝑟 > 0, we have

𝐷
𝑟
(a) ≤ dim

𝑀
(a) . (6.1.1)

The following corollary gives rise to a slight improvement to the estimate in (6.1.1).

Corollary 6.3. For 𝑟 > 0 such that dim
𝑀
(a)/(𝑟 +dim∞(a)) < 1, we have

𝐷
𝑟
(a) ≤

𝑟dim
𝑀
(a)

𝑟 +dim∞(a) −dim
𝑀
(a) .

Proof. By Proposition 3.13, we have

ℎ
𝔍a,𝑟/𝑑

≤
dim

𝑀
(a)

𝑟 +dim∞(a) .

Now, the claim follows from Proposition 6.1 and the fact that 𝑥 ↦→ 𝑥/(1−𝑥) is
increasing on (0,1). □

6.2 Lower bounds for the quantization dimension

Recall, for 𝑛 ∈ N and 𝛼 > 0,

N𝑁
𝛼,𝔍

(𝑛) = card
(︂
𝑀𝑁
𝛼,𝔍

(𝑛)
)︂

with 𝑀𝑁
𝛼,𝔍

(𝑛) =
{︁
𝐶 ∈ D𝑁

𝑛 : 𝔍(𝐶) ≥ 2−𝛼𝑛
}︁
,

as well as

𝐹
𝑁

𝔍 (𝛼) = limsup
𝑛→∞

log+
(︂
N𝑁
𝛼,𝔍

(𝑛)
)︂

log(2𝑛) and 𝐹𝑁
𝔍
(𝛼) = liminf

𝑛→∞

log+
(︂
N𝑁
𝛼,𝔍

(𝑛)
)︂

log(2𝑛) ,

and

𝐹
𝑁

𝔍 = sup
𝛼>0

𝐹
𝑁

𝔍 (𝛼)
𝛼

and 𝐹𝑁
𝔍
= sup
𝛼>0

𝐹𝑁
𝔍
(𝛼)
𝛼

.

Recall, for 𝑠 > 0 we let ⟨𝑄⟩𝑠 denote the cube centered and parallel with respect to 𝑄
such that Λ(𝑄) = 𝑠−𝑑Λ

(︁
⟨𝑄⟩𝑠

)︁
.
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Proposition 6.4. We have,

𝐷𝑟 (a) ≥
𝑟𝑞𝑟

1−𝑞𝑟
and 𝐷

𝑟
(a) ≥

𝑟𝐹𝑁
𝔍a,𝑟/𝑑

1− 𝐹𝑁
𝔍a,𝑟/𝑑

.

Proof. Fix 𝛼 > 0 such that 𝐹𝔍a,𝑟/𝑑 (𝛼) > 0. Further, let (𝑛𝑘 )𝑘 be such that

𝐹
𝑁

𝔍a,𝑟/𝑑 (𝛼) = lim
𝑘→∞

log+
(︂
N𝑁
𝛼,𝔍a,𝑟/𝑑

(𝑛𝑘 )
)︂

log(2𝑛𝑘 )

and let 𝑐𝛼,𝑛𝑘 ≔ card(𝐸𝛼,𝑛𝑘 ) be given as in Lemma 5.8 for 𝔍a,𝑟/𝑑 . Notice that by

our assumption 𝐹
𝑁

𝔍a,𝑟/𝑑 (𝛼) > 0, we infer that lim𝑘→∞𝑐𝛼,𝑛𝑘 =∞. Let 𝐴 ⊂ R𝑑 be of
cardinality at most 𝑐𝛼,𝑛𝑘/2 and

𝐸 ′𝛼,𝑛𝑘 ≔

{︃
𝑄 ∈ 𝐸𝛼,𝑛𝑘 : min

𝑎∈𝐴
𝑑 (𝑎,𝑄) ≥ 2−𝑛𝑘

}︃
.

Since, for all 𝑄1,𝑄2 ∈ 𝐸𝛼,𝑛𝑘 we have
⟨︁
�̊�1

⟩︁
3 ∩

⟨︁
�̊�2

⟩︁
3 = ∅. Hence, it follows

𝑑 (𝑄1,𝑄2) ≥ 2−𝑛𝑘 .

Thus, if 𝑑 (𝑎,𝑄) < 2−𝑛𝑘 for some 𝑎 ∈ 𝐴 and 𝑄 ∈ 𝐸𝛼,𝑛𝑘 , then 𝑑 (𝑎,𝑄 ′) ≥ 2−𝑛𝑘 for all
𝑄 ′ ∈ 𝐸𝛼,𝑛𝑘 \ {𝑄} and therefore,

card
(︃{︃
𝑄 ∈ 𝐸𝛼,𝑛𝑘 : min

𝑎∈𝐴
𝑑 (𝑎,𝑄) < 2−𝑛𝑘

}︃)︃
≤ card (𝐴) .

Hence, card
(︂
𝐸 ′𝛼,𝑛𝑘

)︂
≥ 𝑐𝛼,𝑛𝑘 − card(𝐴) ≥ 𝑐𝛼,𝑛𝑘/2 and∫

𝑑 (𝑥,𝐴)𝑟 da (𝑥) ≥
∑︂

𝑄 ∈𝐸′𝛼,𝑛𝑘

∫
𝑄

𝑑 (𝑥,𝐴)𝑟 da (𝑥)

≥
∑︂

𝑄 ∈𝐸′𝛼,𝑛𝑘

a (𝑄) 2−𝑛𝑘

≥ card(𝐸 ′𝛼,𝑛𝑘 )2
−𝛼𝑛𝑘 ≥ 𝑐𝛼,𝑛𝑘2−𝛼𝑛𝑘−1.
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Hence, 𝔢𝑟⌊𝑐𝛼,𝑛𝑘 /2⌋,𝑟 (a) ≥ 𝑐𝛼,𝑛𝑘2−𝛼𝑛𝑘−1 and we obtain for the first claim

limsup
𝑘→∞

log
(︁ ⌊︁
𝑐𝛼,𝑛𝑘/2

⌋︁ )︁
− log

(︂
e⌊𝑐𝛼,𝑛𝑘 /2⌋,𝑟 (a)

)︂ ≥ limsup
𝑘→∞

𝑟 log
(︁
𝑐𝛼,𝑛𝑘/4

)︁
− log

(︂
𝑒⌊𝑐𝛼,𝑛𝑘 /2⌋,𝑟 (a)

)︂
≥ limsup

𝑘→∞

𝑟

(︂
log

(︂
N𝑁
𝛼,𝔍a,𝑟/𝑑

(𝑛𝑘 ) /5𝑑 −1
)︂
− log(4)

)︂
− log

(︂
N𝑁
𝛼,𝔍a,𝑟/𝑑

(𝑛𝑘 ) /5𝑑 −1
)︂
+ (𝛼𝑛𝑘 +1) log(2)

=
𝑟𝐹

𝑁

𝔍a,𝑟/𝑑 (𝛼) /𝛼

1− 𝐹𝑁𝔍a,𝑟/𝑑 (𝛼) /𝛼
.

This gives

limsup
𝑛→∞

log(𝑛)
− log

(︁
𝔢𝑛,𝑟 (a)

)︁ ≥ sup
𝛼>0

limsup
𝑘→∞

log
(︁ ⌊︁
𝑐𝛼,𝑛𝑘/2

⌋︁ )︁
− log

(︂
𝔢⌊𝑐𝛼,𝑛𝑘 /2⌋,𝑟 (a)

)︂ ≥ sup
𝛼>0

𝑟𝐹
𝑁

𝔍a,𝑟/𝑑 (𝛼) /𝛼

1− 𝐹𝑁𝔍a,𝑟/𝑑 (𝛼) /𝛼

=
𝑟𝐹

𝑁

𝔍a,𝑟/𝑑

1− 𝐹𝑁𝔍a,𝑟/𝑑
.

Therefore, Proposition 3.20 yields

𝐷𝑟 (a) ≥
𝑟𝐹

𝑁

𝔍a,𝑟/𝑑

1− 𝐹𝑁𝔍a,𝑟/𝑑
=

𝑟𝑞𝑟

1−𝑞𝑟
.

For the lower limit assume 𝐹𝑁
𝔍a,𝑟/𝑑

(𝛼) > 0 and note that for every 𝜖 ∈
(︂
0, 𝐹𝑁

𝔍a,𝑟/𝑑
(𝛼)

)︂
and all 𝑛 large

𝑐𝛼,𝑛 ≔
⌈︂
5−𝑑N𝑁

𝛼,𝔍a,𝑟/𝑑
(𝑛)

⌉︂
≥ 2

𝑛

(︃
𝐹𝑁
𝔍a,𝑟/𝑑

(𝛼)−𝜖
)︃
.

Now, for 𝑘 ∈ N, we define

𝑛𝑘 ≔

⎡⎢⎢⎢⎢⎢⎢
log (2𝑘)(︂

𝐹𝑁
𝔍a,𝑟/𝑑

(𝛼) −𝜖
)︂

log(2)

⎤⎥⎥⎥⎥⎥⎥ .
Clearly, this gives 𝑐𝛼,𝑛𝑘 ≥ 2𝑘. Then for any subset 𝐴 with card (𝐴) ≤ 𝑘 ≤ 𝑐𝛼,𝑛𝑘/2,
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we have as above card
(︂
𝐸 ′𝛼,𝑛𝑘

)︂
≥ 𝑐𝛼,𝑛𝑘/2 ≥ 𝑘 . Then,∫

𝑑 (𝑥,𝐴)𝑟 da (𝑥) ≥
∑︂

𝑄 ∈𝐸′𝛼,𝑛𝑘

∫
𝑄

𝑑 (𝑥,𝐴)𝑟 da (𝑥)

≥
∑︂

𝑄 ∈𝐸′𝛼,𝑛𝑘

a (𝑄)Λ (𝑄)𝑟/𝑑 ≥ 𝑘2−𝛼𝑛𝑘 .

Taking the infimum over 𝐴 with card (𝐴) ≤ 𝑘 , we obtain

𝔢𝑟
𝑘,𝑟

(a) ≥ 𝑘2−𝛼𝑛𝑘 .

This gives

log(𝑘)
− log

(︁
𝔢𝑘,𝑟 (a)

)︁ ≥ 𝑟 log(𝑘)
− log(𝑘) +𝛼𝑛𝑘 log (2)

≥ 𝑟 log(𝑘)

− log(𝑘) +𝛼 log (2𝑘) /
(︂
𝐹𝑁
𝔍a,𝑟/𝑑

(𝛼) −𝜖
)︂
+𝛼 log(2)

.

Taking the lower limit over 𝑘 and letting 𝜖 tend to zero, yields

𝐷
𝑟
(a) ≥ 𝑟

−1+𝛼/𝐹𝑁
𝔍a,𝑟/𝑑

(𝛼)
=

𝑟𝐹𝑁
𝔍a,𝑟/𝑑

(𝛼) /𝛼

1− 𝐹𝑁
𝔍a,𝑟/𝑑

(𝛼) /𝛼
.

Finally, taking the supremum for 𝛼 > 0 gives

𝐷
𝑟
(a) ≥

𝑟𝐹𝑁
𝔍a,𝑟/𝑑

1− 𝐹𝑁
𝔍a,𝑟/𝑑

. □

6.3 Main results

Now, we are in the position to prove our main results of this chapter.

Theorem 6.5. For every 𝑟 > 0, we have

𝑟𝐹𝑁
𝔍a,𝑟/𝑑

1− 𝐹𝑁
𝔍a,𝑟/𝑑

≤ 𝐷
𝑟
(a) ≤

𝑟ℎ
𝔍a,𝑟/𝑑

1−ℎ
𝔍a,𝑟/𝑑

≤
𝑟ℎ𝔍a,𝑟/𝑑

1−ℎ𝔍a,𝑟/𝑑
= 𝐷𝑟 (a) =

𝑟𝑞𝑟

1−𝑞𝑟
.

If in addition 𝑞𝑟 > 0, then ℜa (𝑞𝑟 ) = 𝛽𝑁a (𝑞𝑟 )/(1−𝑞) = 𝐷𝑟 (a).

Proof. The claim follows by combining Proposition 6.1 and Proposition 6.4. □
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Remark 6.6. As illustrated in Figure 6.3.1, due to Theorem 6.5, the upper quantiza-
tion dimension can be identified by the intersection of the line through (𝑞𝑟 , 𝛽𝑁a (𝑞𝑟 ))
and (0,1) with the 𝑦-axis provided 𝑞𝑟 > 0.

Remark 6.7. By Theorem 6.5 we infer the following one-to-one correspondence
between 𝐷𝑟 (a), 𝑟 > 0, and 𝛽𝑁a (𝑞), 𝑞 ∈ (0,1). For this note that

𝑞𝑟 =
𝐷𝑟 (a)

𝑟 +𝐷𝑟 (a)
.

Hence, if 𝐷𝑟 (a) > 0, then

𝛽𝑁a

(︄
𝐷𝑟 (a)
𝐷𝑟 (a) +𝑟

)︄
=

𝑟𝐷𝑟 (a)
𝐷𝑟 (a) +𝑟

.

Set 𝑥0 ≔ sup
{︂
𝐷𝑟 (a) /

(︂
𝑟 +𝐷𝑟 (a)

)︂
: 𝑟 > 0

}︂
< 1. Then 𝛽𝑁a (𝑞) = 0 for all 𝑞 > 𝑥0 and

for 0 < 𝑞 < 𝑥0, we have 𝛽𝑁a (𝑞) > 0 and

𝐷𝛽𝑁a (𝑞)/𝑞 (a) =
𝛽𝑁a (𝑞)
1−𝑞 . (6.3.1)

This result seems to be very promising, since the study of the 𝐿𝑞-spectra is a highly
active research area. For instance, the 𝐿𝑞-spectrum for certain classes of self-similar
measures with overlaps was computed explicitly by Ngai and Lau [LN98] and Ngai
and Xie [NX19]. The formulae derived therein combined with (6.3.1) will lead to a
number of interesting formulae for the quantization dimension.

At least for special cases, it has been observed in [KZ15, p. 6] that the upper
quantization dimension is often determined by a critical value; we are now in the
position to determine this critical value for arbitrary compactly supported probability
measures as follows.

Corollary 6.8. We have

𝐷𝑟 (a)
𝐷𝑟 (a) +𝑟

= 𝑞𝑟 = ^𝔍a,𝑟/𝑑 = inf
⎧⎪⎨⎪⎩𝑞 > 0 :

∑︂
𝑄 ∈D

(︂
Λ(𝑄)𝑟/𝑑a (𝑄)

)︂𝑞
<∞

⎫⎪⎬⎪⎭ .
In particular, for 𝑑 = 𝑟 = 1, we have the following connection to the upper spectral
dimension of Δ𝐷/𝑁

a

𝐷𝑟 (a)
𝐷𝑟 (a) +𝑟

= 𝑠
𝐷/𝑁
a .

Proof. This follows from Lemma 2.25 applied to 𝔍 = 𝔍a,𝑎 and Theorem 6.5. □
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Further, using 𝐷𝑟 (a) = 𝑟𝑞𝑟/(1−𝑞𝑟 ) , we can affirm a conjecture of Lindsay stated
in his PhD thesis [Lin01].

Corollary 6.9. The map 𝑟 ↦→ 𝐷𝑟 (a) is continuous on (0,∞).

Proof. This follows from the fact that 𝑟 ↦→ 𝑞𝑟 is continuous. Indeed, if 𝑞𝑟 = 0 for
some 𝑟 > 0, then 0 ≤ 𝛽𝑁a (𝑞) < 𝑟𝑞 for all 𝑞 ∈ (0,1). Consequently, lim𝑞↓0 𝛽

𝑁
a (𝑞) = 0

and combined with the convexity of 𝛽𝑁a and 𝛽𝑁a (1) = 0, we infer 𝛽𝑁a (𝑞) = 0 for
𝑞 > 0. Therefore, 𝑞𝑟 = 0 for all 𝑟 > 0. The case 𝑞𝑟 > 0 follows from the fact that 𝛽𝑁a
is continuous and decreasing on (0,1] with 𝛽𝑁a (1) = 0. □

Theorem 6.10. The following regularity implication holds:

𝜏𝑁
𝔍a,𝑟/𝑑

is N-PF-regular =⇒ 𝐷
𝑟
(a) = 𝐷𝑟 (a) =

𝑟𝑞𝑟

1−𝑞𝑟
.

Proof. By Proposition 3.24 applied to 𝔍 = 𝔍a,𝑟/𝑑 , we have 𝐹𝑁
𝔍a,𝑟/𝑑

= 𝑞𝑟 . Hence, we
can infer from Theorem 6.5

𝑟𝑞𝑟

1−𝑞𝑟
=

𝑟𝐹𝑁
𝔍a,𝑟/𝑑

1− 𝐹𝑁
𝔍a,𝑟/𝑑

≤ 𝐷
𝑟
(a) ≤ 𝐷𝑟 (a) ≤

𝑟𝑞𝑟

1−𝑞𝑟
. □

As a corollary, we are able to confirm the existence of the quantization dimension
for any self-conformal measures.

Corollary 6.11. Let a be a self-conformal measure with respect to a 𝐶1-cIFS on Q
with no assumptions on the separation conditions. Then,

𝐷𝑟 (a) =
𝑟𝑞𝑟

1−𝑞𝑟
.

Proof. By Theorem 2.49, we know that 𝛽𝑁a exists as a limit on (0,∞). Since for all
𝑞 > 0 and 𝑛 ∈ N, we have 𝜏𝑁

𝔍a,𝑎,𝑛
(𝑞) = 𝛽𝑁a,𝑛 (𝑞) −𝑞𝑟 . Therefore, it follows that 𝜏𝑁

𝔍a,𝑎

also exists as a limit for all 𝑞 > 0. We infer that 𝔍a,𝑎 is Neumann partition regular.
Now, the claim follows from Theorem 6.10. □
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𝑞𝑟 1

𝐷𝑟 (a)

2 dim𝑀 (a)

𝑞

𝛽𝑁a (𝑞)

Figure 6.3.1 The 𝐿𝑞-spectrum 𝛽𝑁a for the self-similar measure a supported on the Sierpiński
tetraeder in R3 with all four contraction ratios equal 1/2 and with probability vector
(0.66,0.2,0.08,0.06). We have 𝛽𝑁a (0) = dim𝑀 (a) = 2. For 𝑟 = 2.3 (slope of the dotted line)
the intersection of the spectrum and the dashed line determines 𝑞𝑟 . The dotted line through(︁
𝑞𝑟 , 𝛽

𝑁
a (𝑞𝑟 )

)︁
and (0,1) intersects the 𝑦-axis in 𝐷𝑟 (a).
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Chapter 7

Open problems and conjectures

This chapter discusses some open problems and conjectures regarding this thesis.

7.1 Dirichlet/Neumann spectral partition function and
𝐿𝑞-spectrum

In Section 2.4, we introduced the Dirichlet/Neumann spectral partition functions.
Of special interest is the investigation of the Dirichlet/Neumann spectral partition
function 𝔍a,(2−𝑑)/𝑑,1 = 𝔍a which is important for the study of upper spectral dimen-
sion with respect to Dirichlet and Neumann boundary conditions. We showed that
in the one-dimensional case the Dirichlet and Neumann spectral partition functions
𝜏
𝐷/𝑁
𝔍a

coincide whenever a (𝜕Q) = 0 due to the fact that the boundary of 𝜕Q con-
sists of only two points. In contrast, the situation for the higher dimensional case
is much more challenging since the number of the dyadic cubes intersecting the
boundary of Q of level 𝑛 ∈ N tends to infinity as 𝑛 approaches to infinity (because of
card

(︁
D𝑁
𝑛 \D𝐷

𝑛

)︁
= 2𝑑𝑛 − (2𝑛 −2)𝑑 by Lemma 2.1). However, in Section 2.4.3, we

proved that for self-conformal measures, product measures, and Ahlfors-David reg-
ular measures the Neumann spectral partition function coincides with the Dirichlet
spectral partition function whenever a (𝜕Q) = 0 and dim∞(a) > 𝑑 −2. This leads to
the question in which situations we can expect that 𝜏𝐷

𝔍a
= 𝜏𝑁

𝔍a
. In general, we could

not find any reasons to rule out the possibility that the boundary cubes can dominate
the inner cubes. This motivates the following conjecture.

Conjecture 7.1. There exists a Borel probability measure on (0,1)𝑑 with 𝑑 ≥ 2 such
that dim∞(a) > 𝑑 −2 and

𝜏𝐷
𝔍a
(𝑞) < 𝜏𝑁

𝔍a
(𝑞)

for some 𝑞 ≥ 0.
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Another important open problem is the relation between the 𝐿𝑞-spectrum 𝛽𝑁a and
the spectral partition function 𝜏𝑁

𝔍a
under the standard assumption dim∞(a) > 𝑑 −2.

Obviously, we always have

𝛽𝑁a (𝑞) − (2−𝑑)𝑞 ≤ 𝜏𝑁
𝔍a
(𝑞), 𝑞 ≥ 0.

If 𝑑 = 1,2, then by Proposition 2.35 we have

𝜏𝑁
𝔍a
(𝑞) = 𝛽𝑁a (𝑞) − (2−𝑑)𝑞, 𝑞 ≥ 0. (7.1.1)

Unfortunately, in the case 𝑑 > 2, the situation becomes more challenging; this is due
to the reason that the level of dyadic cubes, in which the term

𝔍a (𝑄) = sup
𝑄 ∈D(𝑄)

a (𝑄)Λ(𝑄) (2−𝑑)/𝑑

attains its maximum, is difficult to control. However, we demonstrated in Section
2.4.3 that for self-conformal measures, Ahlfors-David regular measures, and mea-
sures whose 𝐿𝑞-spectrum is linear, the equality in (7.1.1) is valid. Nevertheless,
the examples considered in Section 2.4.3 are very specific and in some sense very
regular. Therefore, in the general case, we conjecture that the equality (7.1.1) fails .

Conjecture 7.2. There exists a Borel probability measure on (0,1)𝑑 with 𝑑 ≥ 3 such
that dim∞(a) > 𝑑 −2 and

𝛽𝑁a (𝑞) + (𝑑 −2)𝑞 < 𝜏𝑁
𝔍a
(𝑞)

for some 𝑞 ≥ 0.

7.2 Lower optimized coarse multifractal dimension

In Chapter 3, we saw that by Proposition 3.20,

𝐹
𝐷/𝑁
𝔍 = 𝑞

𝐷/𝑁
𝔍

.

This equality has been crucial for the computation of the upper quantization dimen-
sion as well as for the upper spectral dimension. Thus, it is natural to ask whether
there is a similar result for 𝐹𝐷/𝑁

𝔍
. The importance of this question becomes apparent

when considering the lower spectral dimension and the lower quantization dimen-
sion, which are bounded from below in terms of 𝐹𝐷/𝑁

𝔍
for appropriate choices of 𝔍.

Thus, the better understanding of 𝐹𝐷/𝑁
𝔍

could lead to some progress in understand-
ing of the lower spectral dimension as well as of the lower quantization dimension.
An obvious candidate for the value of 𝐹𝐷/𝑁

𝔍
could be 𝑞𝐷/𝑁

𝔍
when replacing the limit
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superior of the definition of 𝑞𝐷/𝑁
𝔍

with the limit inferior. To be more precise, define

𝜏
𝐷/𝑁
𝔍

(𝑞) ≔ liminf
𝑛→∞

log
(︂∑︁

𝑄 ∈D𝐷/𝑁
𝑛

𝔍(𝑄)𝑞
)︂

log(2𝑛) , 𝑞 ≥ 0.

Then a simple computation leads to the following estimate of 𝐹𝐷/𝑁
𝔍

:

𝐹
𝐷/𝑁
𝔍

(𝛼) ≤
𝜏
𝐷/𝑁
𝔍

(𝑞)
𝛼

+𝑞

for any 𝑞,𝛼 > 0. Therefore, one could conjecture that

𝐹
𝐷/𝑁
𝔍

= inf
{︂
𝑞 ≥ 0 : 𝜏𝐷/𝑁

𝔍
(𝑞) < 0

}︂
. (7.2.1)

The regularity result stated in Proposition 3.24 tells us that the above inequality turns
into an equality if 𝔍 is Dirichlet/Neumann PF-regular. Unfortunately, the method
used in the proof of Proposition 3.20 makes heavily use of large derivation theory
which requires convexity of 𝜏𝐷/𝑁

𝔍
. This causes many problems since 𝜏𝐷/𝑁

𝔍
does not

enjoy convexity in general. Therefore, this makes the situation considerably more
challenging and we believe that in general we cannot expect equality in (7.2.1).

7.3 Spectral dimension in the critical case 𝑑 = 2

As a consequence of Theorem 4.10 and Theorem 5.15, under the assumptions

dim∞(a) > 𝑑 −2 and a (Q̊) > 0,

we obtain the following complete picture of the range of the upper spectral dimen-
sion with respect to Dirichlet/Neumann boundary conditions:

𝑠
𝐷/𝑁
a ∈ [0,1/2] , 𝑑 = 1,

𝑠
𝐷/𝑁
a = 1 , 𝑑 = 2,

𝑠𝑁a ∈ (𝑑/2,∞) , 𝑑 ≥ 3.

Therefore, the case 𝑑 = 2 is the only case for which the upper spectral dimension
is constant as function of a . So the case 𝑑 = 2 seems to be of special interest.
Furthermore, every attempt to find an example in which the spectral dimension does
not exist has failed, leading to the following conjecture.
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Conjecture 7.3. Let 𝑑 = 2 and dim∞(a) > 0. Then,

𝑠𝑁
a
= 𝑠𝑁a = 1.

If additionally a (Q̊) > 0, then we also have 𝑠𝐷
a
= 𝑠𝐷a = 1.

It would be interesting to find a physical interpretation or explanation of this phe-
nomenon. Also from the mathematical point of view it is interesting to understand
this mechanism in more detail. This phenomenon also has been discussed in a
more general context in the recent publication by Rozenblum [Roz22], where this
case is referred to as a ’critical case’. The proof of Theorem 5.15 shows that the
appearance of the value 1 can be explained from the simple fact that the 𝐿𝑞-spectrum
has a unique zero at 1. Further, a next big step might be the study of the precise
asymptotic behavior of 𝑁𝐷/𝑁

a . It is reasonable that we have 𝑁𝐷/𝑁
a (𝑥) ≍ 𝑥−1 for

broad classes of measures.
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Appendix A

Appendix

A.1 Convex functions

In this chapter, we present basic facts about convex functions on R. We mainly
follow [FL01, Chapter 5] and [FV17, Appendix B.2].

Definition A.1. Let 𝐼 ⊂ R be an interval (not necessarily bounded). We say a
function 𝑓 : 𝐼 → R∪ {∞} is convex on 𝐼 if

∀𝑥,𝑦 ∈ 𝐼 ,∀𝑡 ∈ (0,1) : 𝑓 (𝑡𝑥 + (1− 𝑡)𝑦) ≤ 𝑡 𝑓 (𝑥) + (1− 𝑡) 𝑓 (𝑦).

If 𝑓 is real valued, then 𝑓 is convex on 𝐼 if

∀𝑥,𝑦 ∈ 𝐼 ,∀𝑡 ∈ [0,1] : 𝑓 (𝑡𝑥 + (1− 𝑡)𝑦) ≤ 𝑡 𝑓 (𝑥) + (1− 𝑡) 𝑓 (𝑦) .

Remark A.2. A convex function 𝑓 : 𝐼 → R∪ {∞} can always be extended to R by
setting 𝑓 (𝑥) ≔∞ for 𝑥 ∉ dom(𝑓 ). The domain of 𝑓 is given by

dom(𝑓 ) ≔ {𝑥 ∈ R : 𝑓 (𝑥) <∞}.

The interior of dom(𝑓 ) will be denoted by int(dom(𝑓 )). Notice that dom(𝑓 ) is a
convex set.

Proposition A.3 ([FL01, Corollary 2.5.2]). Let 𝑓 : R→ R∪ {∞} be a convex
function. Then 𝑓 is continuous on int(dom(𝑓 )).

Definition A.4 (Subdifferential). Let 𝑓 : R→ R∪ {∞} be a convex function. An
element 𝑥∗ ∈ R is called subgradient of 𝑓 at 𝑥 ∈ R if for all 𝑧 ∈ R,

𝑓 (𝑧) ≥ 𝑓 (𝑥) +𝑥∗(𝑧−𝑥).

The set of subgradients of 𝑓 at 𝑥 , denoted by 𝜕𝑓 (𝑥), is called subdifferential.
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Theorem A.5 ( [FV17, Theorem B.12] and [FL01, Proposition 6.5.2]). Let 𝑓 : R→
R∪ {∞} be a convex function. Then the following list of properties applies.

1. Let 𝑥,𝑦,𝑧 ∈ int (dom(𝑓 )) with 𝑥 < 𝑦 < 𝑧, then

𝑓 (𝑦) − 𝑓 (𝑥)
𝑦−𝑥 ≤ 𝑓 (𝑧) − 𝑓 (𝑥)

𝑧−𝑥 ≤ 𝑓 (𝑧) − 𝑓 (𝑦)
𝑧−𝑦 .

2. 𝜕− 𝑓 (𝑥) ≔ lim𝑧↑𝑥
𝑓 (𝑧) − 𝑓 (𝑥)

𝑧−𝑥 and 𝜕+ 𝑓 (𝑥) ≔ lim𝑧↓𝑥
𝑓 (𝑧) − 𝑓 (𝑥)

𝑧−𝑥 exist for all

𝑥 ∈ int(dom(𝑓 )).

3. 𝜕− 𝑓 (𝑥) ≤ 𝜕+ 𝑓 (𝑥) for all 𝑥 ∈ int(dom(𝑓 )).

4. 𝜕− 𝑓 and 𝜕+ 𝑓 are nondecreasing on int(dom(𝑓 )).

5. 𝜕𝑓 (𝑥) = [𝜕− 𝑓 (𝑥), 𝜕+ 𝑓 (𝑥)] for all 𝑥 ∈ int(dom(𝑓 )).

6. {𝑥 ∈ int(dom(𝑓 )) : 𝜕− 𝑓 (𝑥) < 𝜕+ 𝑓 (𝑥)} is at most countable.

7. 𝜕− 𝑓 is left-continuous and 𝜕− 𝑓 is right-continuous on int(dom(𝑓 )).

A.2 Sobolev spaces, Lipschitz domains, and Stein’s exten-
sion operator

In this section, we briefly review the properties of Stein’s extension operator which
is needed to define Kreı̆n–Feller operators as well as for upper estimates of the
lower and upper spectral dimension. Here, we closely follow [Ste70] and [LV19].

We start with the definition of the Sobolev space. For this purpose, we need some
preparatory definitions. Let Ω ⊂ R𝑑 be a domain (open and connected). The set of
locally integrable functions is given by

𝐿1
𝑙𝑜𝑐

(Ω) ≔ {𝑓 : Ω → R measurable :
∫
𝐾

|𝑓 | dΛ <∞, 𝐾 ⊂ Ω, and 𝐾 compact}.

Definition A.6 (Weak derivatives). Let 𝑢 ∈ 𝐿1
𝑙𝑜𝑐

(Ω) and 𝛼 = (𝛼1, . . . ,𝛼𝑑 ) ∈ N𝑑0 . We
say 𝑢𝛼 is a 𝛼𝑡ℎ-weak derivative of 𝑢 if∫

Ω
𝑢𝐷𝛼𝜑 dΛ = (−1)

∑︁𝑑
𝑖=1𝛼𝑖

∫
Ω
𝑢𝛼𝜑 dΛ

for all 𝜑 ∈ C∞
𝑐 (Ω) with 𝐷𝛼𝜑 ≔

𝜕
∑︁𝑑
𝑗=1𝛼𝑗

𝜕
𝛼1
𝑥1 · · · 𝜕

𝛼𝑑
𝑥𝑑

𝜑 . In this case we write 𝐷𝛼𝑢 ≔ 𝑢𝛼 .
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Definition A.7. The Sobolev space 𝐻 1(Ω) is defined by

𝐻 1(Ω) ≔
{︄
𝑢 ∈ 𝐿2

Λ(Ω) : 𝐷𝛼𝑢 ∈ 𝐿2
Λ(Ω) for (𝛼1, . . . ,𝛼𝑑 ) ∈ N𝑑0 with

𝑑∑︂
𝑖=1

𝛼𝑖 = 1

}︄
.

Now, we define the notion of special Lipschitz domains.

Definition A.8. We call Ω ⊂ R𝑑 a special Lipschitz domain if

Ω =

{︂
(𝑥1, . . . ,𝑥𝑑−1,𝑥𝑑 ) ∈ R𝑑 : 𝑥𝑑 > 𝜑 (𝑥1, . . . ,𝑥𝑑−1)

}︂
,

where 𝜑 : R𝑑−1 → R is a Lipschitz continuous function. The Lipschitz constant of
𝜑 , denoted by 𝑀 , is called Lipschitz bound of Ω.

Theorem A.9 ([LV19, Theorem 1]). Let Ω ⊂ R𝑑 be a domain and suppose there
exist a rotation 𝑅 : R𝑑 → R𝑑 and a special Lipschitz domain 𝐷 such that Ω = 𝑅(𝐷).
Then there exists a continuous linear operator 𝔈Ω : 𝐻 1 (Ω) → 𝐻 1 (︁

R𝑑
)︁

such that

𝔈Ω (𝑓 ) |Ω = 𝑓 Λ-a.e. and 𝔈Ω :𝐶∞
𝑏

(︂
Ω
)︂
→𝐶∞

(︂
R𝑑

)︂
with 𝔈 (𝑓 ) |Ω = 𝑓 .

Definition A.10. Let Ω ⊂ R𝑑 be a domain (open and connected). We call Ω a
Lipschitz domain if there exist Y > 0, 𝑁 ∈ N, 𝑀 > 0, and a sequence {𝑈𝑖}𝑖=1,...,𝑠 of
open sets with 𝑠 ∈ N∪ {∞} such that the following conditions are fulfilled:

1. For all 𝑥 ∈ 𝜕Ω there exists 𝑖 such that 𝐵Y (𝑥) ⊂ 𝑈𝑖 .

2. For each 𝑦 ∈ R𝑑 , we have card({𝑖 ∈ {1, . . . ,𝑠} : 𝑦 ∈𝑈𝑖}) ≤ 𝑁 .

3. For each 𝑖 ∈ {1, . . . ,𝑠} there exists a special Lipschitz domain whose Lipschitz
bound does not exceed 𝑀 and a rotation 𝑅𝑖 : R𝑑 → R𝑑 such that

𝑈𝑖 ∩Ω =𝑈𝑖 ∩𝑅𝑖 (𝐷𝑖) .

Remark A.11. Let Ω be a bounded Lipschitz domain, then only finitely many𝑈𝑖’s
are required. This can be seen as follows. We have

𝜕Ω ⊂
⋃︂
𝑥 ∈𝜕Ω

𝐵Y/2(𝑥) ⊂
⋃︂
𝑥 ∈𝜕Ω

𝐵Y/2(𝑥) ⊂
𝑠⋃︂
𝑖=1

𝑈𝑖 .

Since 𝜕Ω is compact, it also follows that
⋃︁
𝑥 ∈𝜕Ω 𝐵Y/2(𝑥) is compact. We infer⋃︂

𝑥 ∈𝜕Ω
𝐵Y/2(𝑥) ⊂

⋃︂
𝑖∈𝐼
𝑈𝑖

for some finite index set 𝐼 ⊂ {1, . . . ,𝑠}.
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Further, in this case, the𝑈𝑖’s can be modified to be bounded. Indeed, for 𝑗 ∈ {1, . . . ,𝑠},
we define ˜︁𝑈𝑗 ≔ ⋃︂

𝑥 ∈𝜕Ω,
𝐵Y (𝑥) ⊂𝑈𝑗

𝐵Y (𝑥) . (A.2.1)

Now, let us check that the conditions in Definition A.10 are fulfilled for
(︂˜︁𝑈𝑗 )︂

𝑗=1,...,𝑠
.

For any 𝑥 ∈ 𝜕Ω there exists 𝑖 such that 𝐵Y (𝑥) ⊂ 𝑈𝑖 which gives

𝐵Y (𝑥) ⊂
⋃︂
𝑥 ∈𝜕Ω,

𝐵Y (𝑥) ⊂𝑈𝑖

𝐵Y (𝑥) = ˜︁𝑈𝑖 .
Clearly, using𝑈𝑖 ∩Ω =𝑈𝑖 ∩𝑅𝑖 (𝐷𝑖), we infer⋃︂

𝑥 ∈𝜕Ω,
𝐵Y (𝑥) ⊂𝑈𝑖

𝐵Y (𝑥) ∩Ω =
⋃︂
𝑥 ∈𝜕Ω,

𝐵Y (𝑥) ⊂𝑈𝑖

𝐵Y (𝑥) ∩𝑅𝑖 (𝐷𝑖) .

The following proposition gives rise to an equivalent definition of 𝐻 1(Ω) as pre-
sented in the introduction for the case that Ω is a Lipschitz domain.

Proposition A.1 ([Ada75][Theorem 3.18]). Let Ω ⊂ R𝑑 be a bounded Lipschitz
domain. Then 𝐶∞

𝑏

(︂
Ω
)︂

lies dense in 𝐻 1(Ω) with respect to the norm given by the
inner product ⟨·, ·⟩𝐻 1 (Ω) .

Example A.12. Suppose Ω is an open bounded convex set. Then Ω is a Lipschitz
domain and only finitely many𝑈𝑖’s are needed (see for instance [Ste70, Example 1
on p. 189]).

Now, we briefly outline the construction of the Stein operator for bounded Lipschitz
domains (for details see [Ste70, p. 191-192] and [LV19]). Let Ω be a bounded
Lipschitz domain with parameters Y, 𝑁 , 𝑀 , and {(𝑈𝑖 ,𝑅𝑖 ,𝐷𝑖) : 𝑖 ∈ {1, . . . ,𝑠}} with
𝑠 ∈ N (here we choose the𝑈 ′

𝑖 𝑠 to be bounded, which is always possible by (A.2.1)).
There exists

(︁
𝑔𝑖 : R𝑑 → R

)︁
𝑖=1,...,𝑠 ∈ 𝐶∞ (︁

R𝑑
)︁𝑠 such that for every 𝑖 ∈ {1, . . . ,𝑠}, we

have

1. 0 ≤ 𝑔𝑖 and supp(𝑔𝑖) ⊂ 𝑈𝑖 ,

2. 𝑔𝑖 (𝑥) = 1 for all 𝑥 ∈𝑈 Y/2
𝑖
≔ {𝑥 ∈𝑈𝑖 : 𝐵Y/2(𝑥) ⊂ 𝑈𝑖},

3. 𝑔𝑖 has bounded derivatives of all orders and the bounds of the derivatives can
be chosen independent of 𝑖.

Further, we can construct 𝐺−,𝐺+ ∈𝐶∞
𝑐

(︁
R𝑑

)︁
fulfilling the following properties:
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A.2. Sobolev spaces, Lipschitz domains, and Stein’s extension operator

1. supp (𝐺+) ⊂ {𝑥 ∈ R𝑑 : dist(𝑥, 𝜕Ω) < Y/2} ⊂ ⋃︁𝑠
𝑖=1𝑈

Y/2
𝑖

with

dist(𝑥,𝐴) ≔ inf
𝑦∈𝐴

|𝑥 −𝑦 | ,

for 𝐴 ⊂ R𝑑 and 𝑥 ∈ R𝑑 .

2. supp (𝐺−) ⊂ Ω.

3. |𝐺− |, |𝐺+ | ≤ 1,𝐺−(𝑥) +𝐺+(𝑥) = 1 for all 𝑥 ∈ Ω, and𝐺−(𝑥) +𝐺+(𝑥) = 0 for all

𝑥 ∈
{︁
𝑦 ∈ R𝑑 : dist(𝑦,Ω) ≤ Y/2

}︁∁.

Let 𝔈𝑖 : 𝐻 1 (𝑅𝑖 (𝐷𝑖)) → 𝐻 1 (︁
R𝑑

)︁
denote the extension operator of 𝑅𝑖 (𝐷𝑖) defined

in Theorem A.9. Now, we define the extension operator 𝔈 for Ω as follows. For
𝑓 ∈ 𝐻 1(Ω), we set

𝔈(𝑓 ) (𝑥) ≔ 𝐺+(𝑥)
∑︁𝑠
𝑖=1𝑔𝑖 (𝑥)𝔈𝑖 (𝑔𝑖 𝑓 ) (𝑥)∑︁𝑠

𝑖=1𝑔
2
𝑖
(𝑥)

+𝐺−(𝑥) 𝑓 (𝑥). (A.2.2)

Remark A.13. We remark the following important properties of 𝔈.

1. For all 𝑥 ∈ Ω, we have 𝔈(𝑓 ) (𝑥) = 𝑓 (𝑥).

2. The terms 𝔈𝑖 (𝑔𝑖 𝑓 ) are well-defined, since the 𝑔𝑖 𝑓 are given in 𝑅𝑖 (𝐷𝑖). To be
more precise, using Ω∩𝑈𝑖 =𝑈𝑖 ∩𝑅𝑖 (𝐷𝑖) and supp(𝑔𝑖) ⊂ 𝑈𝑖 , we can extend
𝑔𝑖 𝑓 by zero on𝑈 ∁

𝑖
∩𝑅𝑖 (𝐷𝑖) which gives 𝑔𝑖 𝑓 ∈𝐻 1 (𝑅𝑖 (𝐷𝑖)). If we additionally

assume that 𝑓 ∈𝐶∞
𝑏

(︂
Ω
)︂
, then 𝑔𝑖 𝑓 ∈𝐶∞

𝑏

(︂
𝑅𝑖 (𝐷𝑖)

)︂
. Thus, by Theorem A.9, we

have 𝔈𝑖 (𝑔𝑖 𝑓 ) ∈𝐶∞ (︁
R𝑑

)︁
. Indeed, for 𝑓 ∈𝐶∞

𝑏

(︂
Ω
)︂
, we define

𝐸 (𝑥) ≔
{︄
𝑓 (𝑥)𝑔𝑖 (𝑥), 𝑥 ∈𝑈𝑖 ∩𝑅𝑖 (𝐷𝑖) ,
0, 𝑥 ∈𝑈 ∁

𝑖
∩𝑅𝑖 (𝐷𝑖) .

Then we have 𝐸 ∈ 𝐶∞
𝑏

(︂
𝑈𝑖 ∩𝑅𝑖 (𝐷𝑖)

)︂
and supp(𝐸) ⊂ supp (𝑔𝑖) ∩Ω ⊂ 𝑈𝑖 ∩Ω.

We only have to check that 𝐸 is infinitely often differentiable on 𝜕𝑈𝑖 ∩𝑅𝑖 (𝐷𝑖).
Since𝑈𝑖 is bounded, the support of 𝑔𝑖 is compact and we deduce

dist (𝜕𝑈𝑖 , supp (𝑔𝑖)) > 0.

Hence, there exists 𝛿 > 0 such that for any 𝑥 ∈ 𝜕𝑈𝑖 ∩𝑅𝑖 (𝐷𝑖) we have 𝐵𝛿 (𝑥) ∩
supp (𝑔𝑖) = ∅. In particular, for each 𝑥 ∈ 𝜕𝑈𝑖 ∩𝑅𝑖 (𝐷𝑖) it follows 𝐸 (𝑦) = 0 for
all 𝑦 ∈ 𝐵𝛿 (𝑥) ∩𝑅𝑖 (𝐷𝑖).
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A.3. Sobolev spaces in the one-dimensional case

3. 𝐺−(𝑥) 𝑓 (𝑥) is well-defined, since the support of 𝐺− lies in Ω, implying that
we can extend 𝐺− 𝑓 by zero outside of Ω. In particular, if 𝑓 ∈ 𝐶∞

𝑏

(︂
Ω
)︂
, then

𝐺− 𝑓 ∈𝐶∞
𝑐 (Ω).

4. Since supp (𝐺+) ⊂ {𝑥 ∈ R𝑑 : dist(𝑥, 𝜕Ω) < Y/2}, for 𝑥 ∈ supp (𝐺+), it follows
for at least one 𝑖 we have 𝑥 ∈𝑈 Y/2

𝑖
, implying

∑︁𝑠
𝑖=1𝑔

2
𝑖 (𝑥) ≥ 1. Consequently,

we have 𝐺+/∑︁𝑠
𝑖=1𝑔

2
𝑖 ∈ C∞

𝑐

(︁
R𝑑

)︁
.

5. Observe that the functions 𝐺+/∑︁𝑠
𝑖=1𝑔

2
𝑖 and 𝐺− have compact support since

Ω is bounded. Thus, if 𝑓 ∈ 𝐶∞
𝑏

(︂
Ω
)︂
, then 𝔈(𝑓 ) ∈ 𝐶∞

𝑐

(︁
R𝑑

)︁
as the product of

smooth functions with compact support with a finite sum of smooth functions
with compact support.

From [LV19, Theorem 3] and Remark A.13, we obtain the following theorem.

Theorem A.14. Any bounded Lipschitz domain Ω ⊂ R𝑑 permits a Stein extension
(see Definition 2.6) and the extension operator can be chosen as in (A.2.2).

A.3 Sobolev spaces in the one-dimensional case

In this section, we collect some important facts about the Sobolev space in the
one-dimensional case, which can be found in [Dav95]. Fix 𝑎,𝑏 ∈ R with 𝑎 < 𝑏.

Lemma A.15. A function 𝑓 : [𝑎,𝑏] → R lies in 𝐻 1((𝑎,𝑏)) if and only if there exist
a constant 𝑐 and 𝑔 ∈ 𝐿2

Λ((𝑎,𝑏)) such that

𝑓 (𝑥) = 𝑐 +
∫
[𝑎,𝑥 ]

𝑔(𝑦) dΛ(𝑦) (A.3.1)

for all 𝑥 ≥ 𝑎. All such functions are uniformly continuous on [𝑎,𝑏]. Moreover, 𝑔 is
equal to the weak derivative of 𝑓 . A function 𝑓 of the form (A.3.1) lies in 𝐻 1

0 (𝑎,𝑏) if
and only if one also has 𝑓 (𝑎) = 𝑓 (𝑏) = 0.

Remark A.16. By Lemma A.15, we have

𝐻 1((𝑎,𝑏)) =
{︃
𝑓 : [𝑎,𝑏] → R : ∃𝑐 ∈ R,𝑔 ∈ 𝐿2

Λ((𝑎,𝑏)) : 𝑓 (𝑥) = 𝑐 +
∫
[𝑎,𝑥 ]

𝑔𝑑Λ, 𝑥 ≥ 𝑎
}︃

and 𝐻 1
0 ((𝑎,𝑏)) =

{︁
𝑓 ∈ 𝐻 1((𝑎,𝑏)) | 𝑓 (𝑎) = 𝑓 (𝑏) = 0

}︁
, where the equalities hold in

the sense of equivalence classes with respect to the relation of almost everywhere
equality.

In the following, for elements 𝑓 ∈ 𝐻 1((𝑎,𝑏)), we will always choose the continuous
representative.
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Proposition A.17. The embedding of the Hilbert space
(︂
𝐻 1((𝑎,𝑏)), | | · | |𝐻 1 ( (𝑎,𝑏))

)︂
into (𝐶 ( [𝑎,𝑏]), | | · | |∞) is compact. In particular, for every finite Borel measure a on
[𝑎,𝑏], the embedding of

(︂
𝐻 1((𝑎,𝑏)), | | · | |𝐻 1 ( (𝑎,𝑏))

)︂
into 𝐿2

a ( [𝑎,𝑏]) is compact.

Proof. Let 𝑈 ⊂ 𝐻 1((𝑎,𝑏)) be a bounded set with respect to | | · | |𝐻 1 ( (𝑎,𝑏)) which
means there exists 𝑐 > 0 such that

sup
𝑓 ∈𝑈

(︃∫
(𝑎,𝑏)

(∇𝑓 )2 dΛ+
∫
(𝑎,𝑏)

𝑓 2 dΛ
)︃1/2

≤ 𝑐.

We have to show 𝑈 is precompact in (𝐶 ( [𝑎,𝑏]), | | · | |∞). This will be done by
showing that 𝑈 is bounded in 𝐶 ( [𝑎,𝑏]) with respect to ∥·∥∞ and equicontinuous.
The Arzelà–Ascoli Theorem then guarantees that 𝑈 is precompact in 𝐶 ( [𝑎,𝑏]).
Using the Cauchy-Schwarz inequality, for all 𝑥,𝑦 ∈ [𝑎,𝑏], we have

|𝑓 (𝑥) − 𝑓 (𝑦) | ≤
∫
(𝑥,𝑦)

|∇𝑓 (𝑧) | dΛ(𝑧)

≤ |𝑥 −𝑦 |1/2
(︃∫

(𝑎,𝑏)
(∇𝑓 )2 dΛ

)︃1/2

≤ 𝑐 |𝑥 −𝑦 |1/2 .

Hence, 𝑈 is equicontinuous. Moreover, Lemma 2.2 implies that𝑈 is also bounded
in (𝐶 ( [𝑎,𝑏]), ∥·∥∞). □

A.4 Self-adjoint operators and quadratic forms

In this section, we summarize basic results and definitions on self-adjoint operators
and quadratic forms which we need to define Kreı̆n–Feller operators. Here, we
follow closely the presentation of [Kig01, Appendix B], which is based on [Dav95].
Throughout this section, let H be an infinite dimensional real separable Hilbert
space with an inner product ⟨·, ·⟩.

Definition A.18. We call a linear map 𝐴 : dom(𝐴) →H with dom(𝐴) ⊂ H a linear
operator if dom(𝐴) is a dense subspace of H .

Definition A.19. Let 𝐴 be a linear operator on H .

1. We call 𝐴 symmetric if ⟨𝐻 𝑓 ,𝑔⟩ = ⟨𝑓 ,𝐻𝑔⟩ for all 𝑓 ,𝑔 ∈ dom(𝐴) .

2. The linear operator 𝐴 is called self-adjoint if 𝐴 is symmetric and

dom(𝐴) = {𝑔 ∈ H : ∃ℎ ∈ H∀𝑓 ∈ dom(𝐴) : ⟨𝐴𝑓 ,𝑔⟩ = ⟨𝑓 ,ℎ⟩} .
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3. A symmetric operator𝐴 is said to be non-negative if ⟨𝐴𝑓 , 𝑓 ⟩ ≥ 0 for all 𝑓 ∈ H .

Proposition A.20. Let 𝐴 be a non-negative self-adjoint operator. Then there exists
a unique non-negative self-adjoint operator 𝐺 : dom (𝐺) →H such that 𝐴 =𝐺2,

dom(𝐴) ⊂ dom (𝐺) , and dom(𝐴) = {𝑓 ∈ H : 𝑓 ∈ dom (𝐺) ,𝐺 𝑓 ∈ dom (𝐺)} .

We define 𝐴1/2 ≔ 𝐺 .

Definition A.21. The form E : dom(E) ×dom(E) is called a non-negative quadratic
form on H if

1. dom(E) is dense in H .

2. E is bilinear and symmetric: E(𝑎𝑓 +𝑏𝑔,ℎ) = 𝑎E(ℎ, 𝑓 ) +𝑏E(𝑔,ℎ) for every
𝑓 ,𝑔 ∈ dom(E) and 𝑎,𝑏 ∈ R.

3. E is non-negative definite if E(𝑓 , 𝑓 ) ≥ 0 for all 𝑓 ∈ dom(E).

Let 𝐴 be a self-adjoint operator on H . Then the associated quadratic form is
defined by E𝐴 (𝑓 ,𝑔) ≔ ⟨𝐴1/2 𝑓 ,𝐴1/2𝑔⟩ with 𝑓 ,𝑔 ∈ dom

(︁
𝐴1/2)︁ . The following lemma

establishes an important characterization of self-adjoint operators in terms of the
associated quadratic form, which immediately follows from Proposition A.20 and
the definition of self-adjoint operators.

Lemma A.22. Let 𝐴 be a non-negative self-adjoint operator on H . Then, we have

dom (𝐴) =
{︂
𝑔 ∈ dom

(︂
𝐴1/2

)︂
: ∃ℎ ∈ H∀𝑓 ∈ dom

(︂
𝐴1/2

)︂
: E𝐴 (𝑓 ,𝑔) = ⟨𝑓 ,ℎ⟩

}︂
In this case we have ℎ =𝐴𝑔.

The following theorem plays a crucial role for the definition of Kreı̆n–Feller opera-
tors.

Theorem A.23. Let E be a non-negative quadratic form on H such that its domain
dom(E) is dense in H . Then the following conditions are equivalent.

(1) There exists a non-negative self-adjoint operator 𝐴 such that

dom(E) = dom
(︂
𝐴1/2

)︂
and E = E𝐴 .

(2) Let E1(𝑓 ,𝑔) ≔ E(𝑓 ,𝑔) + ⟨𝑓 ,𝑔⟩. Then (dom(E),E1) is a Hilbert space.

Definition A.24. Let (𝐻1, ⟨·, ·⟩1) and (𝐻2, ⟨·, ·⟩2) be Hilbert spaces. We call a linear
operator 𝐴 : 𝐻1 → 𝐻2 compact if 𝐴(𝐵1) is relatively compact, where 𝐵1 denotes the
unit ball with respect to (𝐻1, ⟨·, ·⟩1).
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Definition A.25. Let 𝐴 be a non-negative self-adjoint operator on H . We say 𝐴
has compact resolvent if the resolvent (𝐴+ id)−1 is a compact operator, where id
denotes the identity map.

Theorem A.26. Let 𝐴 be a non-negative self-adjoint operator on H . Then the
following statements are equivalent.

1. 𝐴 has compact resolvent.

2. There exists a complete orthonormal basis (𝑓𝑛)𝑛 of H such that 𝐴𝑓𝑛 = _𝑛 𝑓𝑛
for all 𝑛 ∈ N, where (_𝑛)𝑛 is a non-negative increasing sequence with _𝑛 →∞
for 𝑛→∞.

3. The identity map from
(︁
dom

(︁
𝐴1/2)︁ ,E1

)︁
into (H , ⟨·, ·⟩) is compact, where E1

is defined as in Theorem A.23.

We end this chapter with the important min-max principle.

Theorem A.27 (Min-max principle). Let 𝐴 be a non-negative self-adjoint operator
on H with compact resolvent and let (_𝑛)𝑛 denote the eigenvalues of 𝐴 given by
Theorem A.26. Then,

_𝑛 = inf
{︃
sup

{︃
E𝐴 (𝑓 , 𝑓 )
⟨𝑓 , 𝑓 ⟩ : 𝑓 ∈ 𝐿, ⟨𝑓 , 𝑓 ⟩ > 0

}︃
: 𝐿 ⊂ dom

(︂
𝐴1/2

)︂
, dim(𝐿) = 𝑛

}︃
= inf

{︃
sup

{︃
E𝐴 (𝑓 , 𝑓 )
⟨𝑓 , 𝑓 ⟩ : 𝑓 ∈ 𝐿, ⟨𝑓 , 𝑓 ⟩ > 0

}︃
: 𝐿 ⊂ dom (𝐴) , dim(𝐿) = 𝑛

}︃
.

A.5 Fractal dimensions

We define the lower and upper Minkowski dimension, as well as the Hausdorff
dimension. These definitions can be found in the classical book from Falconer
[Fal97].

Definition A.28 (Minkowski dimension). Let 𝐴 be a bounded subset of R𝑑 . The
lower and upper Minkowski dimension are defined as

dim
𝑀
(𝐴) ≔ liminf

𝑛→∞
log (card ({(𝑘1, · · · ,𝑘𝑑 ) :𝐴∩𝑄 ((𝑘1, · · · ,𝑘𝑑 )) ≠ ∅ : 𝑘𝑖 ∈ Z}))

log (2𝑛)

and

dim𝑀 (𝐴) ≔ limsup
𝑛→∞

log (card ({(𝑘1, . . . ,𝑘𝑑 ) :𝐴∩𝑄 ((𝑘1, . . . ,𝑘𝑑 )) ≠ ∅ : 𝑘𝑖 ∈ Z}))
log (2𝑛) ,

with 𝑄 ((𝑘1, . . . ,𝑘𝑑 )) ≔
∏︁𝑑
𝑖=1 (𝑘𝑖2−𝑛, (𝑘𝑖 +1)2−𝑛] for (𝑘1, . . . ,𝑘𝑑 ) ∈ Z𝑑 , respectively.

If dim
𝑀
(𝐴) = dim𝑀 (𝐴), then the common value, the Minkowski dimension, is

denoted by dim𝑀 (𝐴).
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Definition A.29 (Hausdorff measure and dimension). Let 𝐴 ⊂ R𝑑 and 𝑠 ≥ 0. Then
the 𝑠-dimensional Hausdorff-measure is given by

H𝑠 (𝐴) ≔ sup
𝛿>0

inf

{︄ ∞∑︂
𝑖=1

diam(𝐴𝑖)𝑠 :𝐴 ⊂
∞⋃︂
𝑖=1

𝐴𝑖 , diam(𝐴𝑖) < 𝛿
}︄
.

The Hausdorff dimension of 𝐴 is defined as

dim𝐻 (𝐴) ≔ inf{𝑠 ≥ 0 : H𝑠 (𝐴) = 0} = sup{𝑠 ≥ 0 : H𝑠 (𝐴) =∞}.
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[BS67] M. Š. Birman and M. Z. Solomjak. Piecewise polynomial approxi-
mations of functions of classes𝑊𝑝

𝛼 . Mat. Sb. (N.S.) 73 (115) (1967),
pp. 331–355.
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[BS74] M. Š. Birman and M. Z. Solomjak. “Quantitative analysis in Sobolev’s
imbedding theorems and applications to spectral theory”. Tenth Math-
ematical School (Summer School, Kaciveli/Nalchik, 1972) (Russian).
1974, pp. 5–189.

[BW82] J. A. Bucklew and G. L. Wise. Multidimensional asymptotic quan-
tization theory with 𝑟 th power distortion measures. IEEE Trans. In-
form. Theory 28.2 (1982), pp. 239–247. doi: 10.1109/TIT.1982.
1056486.

[Dav95] E. B. Davies. Spectral Theory and Differential Operators. Cambridge
Studies in Advanced Mathematics. Cambridge University Press, 1995.
doi: 10.1017/CBO9780511623721.

181

https://doi.org/10.1111/mafi.12049
https://doi.org/10.1016/S0246-0203(97)80104-5
https://doi.org/10.1016/S0246-0203(97)80104-5
https://doi.org/10.1007/978-1-4684-8926-2_5
https://doi.org/10.1007/978-1-4684-8926-2_5
https://doi.org/10.1080/14697680903508487
https://doi.org/10.1080/14697680903508487
https://doi.org/10.1109/TIT.1982.1056486
https://doi.org/10.1109/TIT.1982.1056486
https://doi.org/10.1017/CBO9780511623721


Bibliography

[Del+04] S. Delattre, S. Graf, H. Luschgy, and G. Pagès. Quantization of prob-
ability distributions under norm-based distortion measures. Statist.
Decisions 22.4 (2004), pp. 261–282. doi: 10.1524/stnd.22.4.261.
64314.

[DeV87] R. A. DeVore. “A note on adaptive approximation”. Proceedings of
China-U.S. Joint Conference on Approximation Theory (Hangzhou,
1985). Vol. 3. 4. 1987, pp. 74–78.

[DKS20] O. Davydov, O. Kozynenko, and D. Skorokhodov. Optimal approxima-
tion order of piecewise constants on convex partitions. J. Complexity
58 (2020), pp. 101444, 14. doi: 10.1016/j.jco.2019.101444.

[DN15] D.-W. Deng and S.-M. Ngai. Eigenvalue estimates for Laplacians on
measure spaces. J. Funct. Anal. 268.8 (2015), pp. 2231–2260. doi:
10.1016/j.jfa.2014.12.019.

[EH21] T. Ehnes and B. Hambly. An approximation of solutions to heat equa-
tions defined by generalized measure theoretic Laplacians. J. Evol. Equ.
21.1 (2021), pp. 805–830. doi: 10.1007/s00028-020-00602-0.

[Ehn19] T. Ehnes. Stochastic Wave Equations defined by Fractal Laplacians on
Cantor-like Sets. arXiv: 1910.08378 (2019).

[ELP22] R. El Nmeir, H. Luschgy, and G. Pagès. New approach to greedy vector
quantization. Bernoulli 28.1 (2022), pp. 424–452. doi: 10.3150/21-
bej1350.

[Els11] J. Elstrodt. Maß- und Integrationstheorie. Fourth. Springer-Lehrbuch.
[Springer Textbook]. Grundwissen Mathematik. [Basic Knowledge in
Mathematics]. Springer-Verlag, Berlin, 2011, pp. xvi+434.

[Eva+09] J. A. Evans, Y. Bazilevs, I. Babuška, and T. J. R. Hughes. 𝑛-widths, sup-
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irrégulières. Bull. Soc. Math. France Suppl. Mém. 51-52 (1977),
pp. 125–219.

[Mil64] J. Milnor. Eigenvalues of the Laplace operator on certain manifolds.
Proc. Nat. Acad. Sci. U.S.A. 51 (1964), p. 542. doi: 10.1073/pnas.
51.4.542.

[Min17] L. A. Minorics. Spectral Asymptotics for Kreı̆n-Feller-Operators with
respect to Random Recursive Cantor Measures. arXiv: 1709.07291
(2017).

[Min20] L. A. Minorics. Spectral asymptotics for Kreı̆n-Feller operators with
respect to 𝑉 -variable Cantor measures. Forum Math. 32.1 (2020),
pp. 121–138. doi: 10.1515/forum-2018-0188.

[MP84] V. G. Maz’ja and S. P. Preobrazenskii. Estimates for capacities and
traces of potentials. Internat. J. Math. Math. Sci. 7.1 (1984), pp. 41–63.
doi: 10.1155/S0161171284000053.

[MR62] H. P. McKean Jr. and D. B. Ray. Spectral distribution of a differential
operator. Duke Math. J. 29 (1962), pp. 281–292.
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