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Abstract (EN)

Humans  take  risks  tied  to  different  incentives  -  e.g.,  health,  money,  or  social 

recognition.  While  changes  in  incentives  are  known  to  alter  behavior,  current 

neuropsychological  research on risk-taking focuses almost  exclusively  on financial 

and token incentives. Whether and to what degree neural correlates depend on the 

incentive remains an open question, hindering transferability of  findings from the 

laboratory context to the real world. This thesis is a first step in generalizing findings  

on the neural correlates of risk-taking to other incentive domains.

First, as a basis for further analyses, a meta-analysis of functional magnetic resonance 

imaging (fMRI) studies on human risk-taking was conducted.  A general risk-taking 

brain-network was identified, and several experimental design parameters were found 

to have an influence on its extent. These findings help inform future experimental 

design decisions and serve to explain differences in findings of prior studies.

Second, brain activation during risk-taking with social and financial incentives was 

measured with fMRI in 40 participants. Findings on neural correlates were broadly 

similar  across  incentives,  with  their  conjunction  largely  matching  the  network 

identified through the meta-analysis. However, the right inferior parietal lobule (IPL) 

was  more  strongly  involved  if  incentives  were  financial  compared  to  social. 

Exploratory correlational analyses tie this finding to participants behavior in the social 

condition. The findings place the IPL as a possible source of intra- and inter-individual 

differences in risk-taking propensity between domains. Future research making use of 

recent developments in bayesian multilevel modeling and precision fMRI could help 

understand its exact role.
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Abstract (DE)

Menschen  gehen  Risiken  in  Verbindung  mit  verschiedenen  Anreizen  ein  -  zum 

Beispiel Gesundheit, Geld oder soziale Anerkennung. Während es bekannt ist, dass 

Unterschiede  in  den  Anreizen  einen  Einfluss  auf  das  Verhalten  haben,  nutzt  die 

neuropsychologische Forschung zu Risikoverhalten beinahe ausschließlich finanzielle 

oder  symbolische  Anreize.  Ob  und  zu  welchem  Grad  neuronale  Korrelate  von 

Verhalten  abhängig  sind  von  der  Art  der  Anreize  ist  eine  offene  Frage,  die  die 

Übertragbarkeit von neuronalen Befunden zu Risikoverhalten aus dem Labor in die 

echte Welt  einschränkt.  Diese  Doktorarbeit  ist  ein erster  Schritt  in Richtung einer 

Ausweitung der Befunde zu neuronalen Korrelaten von Risikoverhalten auf andere 

Anreizbereiche.

Zunächst, als Grundlage der weiteren Analysen, wurde eine Meta-Analyse angefertigt. 

Diese  fasst  Ergebnisse  von  Studien,  die  menschliches  Risikoverhalten  mit 

funktioneller  Magnetresonanztomographie  (fMRT)  untersuchen,  zusammen.  Ein 

Netzwerk aus Hirnregionen zur Verarbeitung von Risikoverhalten wurde identifiziert. 

Weiterhin wurden verschiedene Parameter in experimentellen Designs gefunden, die 

einen  Einfluss  auf  die  neuronalen  Korrelate  haben.  Diese  Befunde  helfen  dabei, 

zukünftige  Experimentaldesigns  zu  entwickeln  und  können  darüber  hinaus 

Unterschiede in den Ergebnissen vorheriger Studien erklären.

Anschließend wurde  bei  40  Proband:innen  Hirnaktivität  während Risikoverhaltens 

mit  sozialen  und  finanziellen  Anreizen  mittels  fMRT  gemessen.  Ergebnisse 

hinsichtlich  der  neuronalen  Korrelate  ähnelten  sich  zwischen  den  Anreizen 

weitestgehend.  Ausschließlich  im  inferioren  Parietallappen  (IPL)  wurden  stärkere 

Signale  in  der  finanziellen  Bedingung  gemessen.  Exploratorische 

Korrelationsanalysen bringen diese Ergebnisse mit dem Verhalten der Proband:Innen 

in der sozialen Anreizbedingung in Verbindung. Die Ergebnisse deuten auf den IPL als 

ii



mögliche  Quelle  von  inter-  und  intraindividuellen  Unterschieden  in  der 

Risikobereitschaft zwischen  Anreizdomänen  hin.  Weitere  Studien  könnten  neue  

Entwicklungen in bayesscher Modellierung von fMRT Daten und neue Ansätzen aus 

dem  Bereich  der  Ruhemessungen  nutzen,  um  die  genaue  Rolle  des  IPLs  bei 

Risikoverhalten aufzuklären.
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Introduction

Chapter 1: Introduction

Decisions govern our daily lives, on a large and small scale: "Where do I want 

to be in my life in three years?", "What do I want to eat this afternoon?". When 

making a decision,  we are presented with at  least  two options.  One way to 

distinguish  such  options  is  the  risk  associated  with  them.  It  might  be 

considered riskier to aim for a career in a highly competitive field compared to 

one where new employees are sought after, at least in everyday understanding 

of the terms "risk" and "riskiness".

While most decisions entail options of varying riskiness, the resources at risk 

might differ. Decisions on what to eat entail, for example, a health risk – if 

decisions lead to an imbalanced diet, one's health might deteriorate. Decisions 

on what fund to invest in are coupled with a financial risk, and decisions on 

whether to go to a social event might include a possible social risk (if one does 

not go) and maybe even a health risk (if one does go and consumes too much 

alcohol). Thus, while risk-taking is a common component of decision-making, 

it  takes  place  in  different  contexts,  with  different  stakes  and  different 

incentives.

1.1 Relevance

Psychological research approaches human risk-taking from at least two angles. 

Firstly, by researching risk-taking in relation to judgment and decision-making 

in  the  general  population.  Here,  understanding  risk  could  inform  better 

descriptions of and interventions in decision processes (Fischhoff & Broomell, 

2020). Secondly, through the lens of clinical psychology, excessive risk-taking 
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Introduction

is prevalent in specific age groups (Mata et al., 2011; Mamerow et al., 2016) and 

a component in the DSM-V based diagnosis of several psychiatric disorders – 

among them attention deficit hyperactivity disorder (ADHD), bipolar disorder, 

borderline  personality  disorder  and  substance  abuse  disorders  (American 

Psychiatric Association, 2013).  Excessive risk-taking is used here to describe 

maladaptive behavior where possible negative outcomes are undervalued in 

their severity or probability of occurrence. Such behavior can be problematic 

for the risk-taker. In young adults and adolescents, risk-taking is considered 

one of the main reasons for mortality and permanent injury (Kann et al., 2018). 

It  furthermore  contributes  to  harmful  behavior  in  several  psychiatric 

disorders,  e.g.,  in  alcohol  use  disorder  (Ashenhurst  et  al.,  2011),  in  ADHD 

(Pollak et al., 2017), and in biploar disorder and schizophrenia (Reddy et al., 

2014).

Research related to risk-taking has led to a growing body of behavioral and 

neuroscientific findings on the topic ( Mohr et al., 2010; Schmitz et al., 2016; 

Wu  et  al.,  2021).  A  common  goal  of  both  behavioral  and  neuroscientific 

research  on  risk-taking  is  a  better  understanding  of  the  underlying 

mechanisms  of  -  especially  excessive  -  risk-taking  behavior.  Such 

understanding might pave the way to improved prevention and intervention 

regarding  policy  making  and  clinical  applications.  Neuropsychological 

approaches promise to elucidate how risk and its perception shape decisions 

(Chandrakumar  et  al.,  2018)  and highlight  intervention  targets  to  attenuate 

excessive risk-taking (Poudel et al., 2020).

Behavioral research on the context- and incentive-dependence of risk-taking is 

ongoing (e.g., Blais & Weber, 2006; Josef et al., 2016). However, most current 
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research  into  risk-taking  and  its  neural  correlates  was  conducted  using 

financial  (money)  or  arbitrary  (token)  incentives  to  model  risk  (cf.  review 

articles by Schonberg et al.,  2011; Chandrakumar et al.,  2018; Poudel et  al., 

2020; Wu et al., 2021). 

Minding the multitude of  different incentives in everyday life,  results  from 

studies of risk-taking only using financial or arbitrary incentives may not be 

directly applicable to other contexts and incentives. A lack of studies with non-

financial  incentives  has  been  recognized  in  the  general  decision-making 

research community  in  the last  years,  and the interest  in  neural  correlates 

related to other incentives is on the rise (cf. e.g., Vrtička et al., 2014; Distefano 

et  al.,  2018).  Conducted  in  October  2017,  the  systematic  review  by 

Chandrakumar et al. (2018) found no studies focusing on the neural correlates 

of risk-taking behavior with other incentives besides token and financial ones.

1.2 Overview

This thesis  aims to broaden the study of neural  correlates of  risk-taking by 

comparing risk-taking in  situations with financial  incentives  with situations 

with  social  incentives.  Functional  magnetic  resonance  imaging  (fMRI)  is 

employed to gain insights into the neuronal correlates of risk-taking behavior. 

Several  designs  for  the  laboratory  assessment  of  risk-taking  behavior  with 

financial  incentives  were  already  implemented  in  studies  using  fMRI  (cf. 

Sherman et al., 2018). This opens up the possibility of building upon well-tested 

designs and adapting them slightly to enable the use of social incentives.

During the development of the study design and detailed literature research, it 

became apparent that designs, results, and their interpretation in the study of 
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risk-taking with fMRI are very heterogeneous. Therefore, a meta-analysis was 

conducted to get an up-to-date overview of the field. A network of brain regions 

involved  in  risk-taking  similar  to  that  found  in  other  meta-analyses  was 

identified  (Poudel  et  al.,  2020;  Wu  et  al.,  2021).  It  encompasses  the  right 

dorsolateral prefrontal cortex and superior parietal  lobule, and the bilateral 

dorsal  anterior  cingulate  cortex  (dACC),  Insula,  Caudate,  and  Brainstem. 

Furthermore,  contrast  analyses  resulted  in  several  detailed  findings  on  the 

relationship between experimental design parameters and neuronal activation 

patterns.  The  results  of  the  contrast  analyses  can  be  used  to  inform 

experimental design decisions in future studies on the neural correlates of risk-

taking.  They  furthermore  help  explain  differences  in  findings  of  previous 

primary  studies  that  can  now  be  linked to  differences  in  their  design.  The 

meta-analysis serves as the starting point for the interpretation of the results of 

the fMRI study.

In the fMRI study, participants were asked to decide between risky and non-

risky options tied to financial or social incentives. At the same time, neural 

correlates of their behavior were measured through fMRI. The design was an 

adapted  version  of  an  established,  computerized  instrument  in  risk-taking 

research, the "balloon analogue risk task" (BART, Lejuez et al., 2002). On the 

one  hand,  the  analysis  revealed  a  shared  network  of  brain  regions  active 

independent of  the incentive,  spanning the bilateral  dACC, occipital  cortex, 

and the striatum. On the other hand, social versus financial incentives resulted 

in a significant difference in neuronal activation in the right inferior parietal 

lobule (IPL).
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Further  exploratory analyses  link IPL-activation to risk-taking propensity  in 

the  social  condition.  Prior  studies  and  exploratory  analyses  indicate  that 

intersubject heterogeneity of functional topography in the IPL might be linked 

to  domain-specific  risk-taking  propensity.  These  findings  can  be  a  starting 

point for more detailed analyses of the neural correlates of risk-taking. The 

incentive-independent network of brain regions identified assures that results 

from studies on risk-taking with financial  incentives broadly apply to other 

incentive domains in most circumstances. However, for specific brain regions 

and under specific circumstances, neural activation patterns are dependent on 

the incentive domain, and the transferability of findings is not guaranteed.

The fMRI study was conducted during the onset of the severe acute respiratory 

syndrome  coronavirus  type  2  (SARS-CoV-2)  pandemic.  Thus,  additional 

analyses were conducted to estimate the pandemic's influence on the results. 

Overall,  results  do  not  appear  strongly  influenced  by  the  onset  of  the 

pandemic. However, results from these analyses should only be used to draw 

conclusions  on  the  present  data,  as  sample  sizes  are  too  small  to  permit 

adequately powered inferential statistics.

5



Theoretical Background

Chapter 2: Theoretical Background

2.1 Definitions of Risk-Taking in Psychology and Economics

Risk-taking, as a component of decision-making, is ubiquitous in human life. 

Accordingly, various scientific fields have an interest in understanding it: from 

behavioral economics over clinical- to neuropsychology. Definitions of what 

exactly is meant by "risk" and "risk-taking" vary between the fields (Schonberg 

et al., 2011; Bran & Vaidis, 2019).

Knight  (1921)  defines  "decisions  under  risk"  as  decisions  where  the 

probabilities of all possible outcomes are known. This would, for example, be 

the case in a lottery with a fixed chance of winning a fixed amount. Knight 

contrasts "decisions under risk" with "decisions under uncertainty", where the 

probabilities are not  known in advance,  for  example when investing in the 

stock market. Knights' terminology is widely adapted in behavioral economics 

(De Groot & Thurik, 2018). 

Authors with a background in psychology historically used definitions different 

from  those  in  behavioral  economics  (Lipshitz  &  Strauss,  1997;  De  Groot  & 

Thurik, 2018). Developmental and clinical psychology primarily use the term 

"risk-taking". It usually denotes "engagement in behaviors that are associated 

with  some  probability  of  undesirable  results"  (Boyer,  2006).  This  definition 

matches  some  instances  of  "decisions  under  risk",  e.g.,  playing  roulette  or 

other  games  of  chance  where  the  probabilities  of  outcomes  are  known. 

However, many real-world decisions must be made without knowing the exact 

probabilities of possible outcomes. Developmental risk-taking research often 
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focuses on behaviors like drug consumption, unprotected sexual encounters, 

and  dangerous  driving  (Boyer,  2006)  –  all  "decisions  under  uncertainty" 

according to the definition by Knight (1921).

The  differences  in  the  usage  of  the  word  "risk"  have  led  to  economists 

criticizing psychologists for not correctly addressing the difference between 

"decisions under risk" and "decisions under uncertainty" (De Groot & Thurik, 

2018).  This  critique  ignores  that  the  differentiation  between  known  and 

unknown probabilities is of little importance for clinical researchers, who are 

trying to investigate excessive engangement in possibly harmful activities, be it 

in a lottery or while driving a car. Nevertheless, clear differentiation between 

"risk-taking" and "decisions under risk" allows for a separation of the different 

theoretical  concepts  from  clinical  and  developmental  research  and  from 

behavioral economics, respectively.

The term "risk" on its own is used in publications in psychology to refer to 

various different concepts (e.g., Chandrakumar et al., 2018: explicit definition 

of  risk,  differing  from  that  of  Knight;  Rao  et  al.,  2018:  definition  of  risky 

situations analogous to situations where risk-taking can happen; Buckert et al., 

2014: definition used by Knight). Bran and Vaidis (2019) note in their work on 

terminology in risk-taking research that disagreement on exact definitions and 

measurement instruments was already remarked upon in the 1960s. Review 

articles stated diverging evidence, originating in different scales using different 

concepts behind the same terminology -  without any changes in their wake 

(Bran & Vaidis, 2019).

This  thesis  will  use  the  following  definitions:  "Decisions  under  risk"  and 

"decisions under uncertainty" will be used analogously to Knight (1921). Both 
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terms and definitions are widely adapted in behavioral economics (De Groot & 

Thurik, 2018). Their specificity offers a clarity other definitions lack. Regarding 

risk-taking, the definitions suggested by Bran and Vaidis (2019) will be used: 

"Risk-taking" and "risk-taking behavior" will describe a behavior where actions 

are  taken  that  involve  potential  risks  or  uncertainties.  The  term  can  be 

differentiated  from  "self-reported  risk-taking  behavior"  or  "hypothetical 

choices".  The  former  denotes  all  measures  of  risk-taking  as  reported  by 

participants themselves, i.e. in a questionnaire. The latter relates to decisions 

made in hypothetical scenarios that participants are asked to imagine. 

"Risk-taking propensity" indicates markedness of a person's tendency to choose 

an option with a higher probability of undesirable results. Because risk-taking 

propensity  might  be  domain-specific,  as  explained  in  more  detail  below, 

"general" and "domain-specific" risk-taking propensity will be differentiated.

2.2 Domain Specificity in Risk-Taking

In part of the literature, risk-taking propensity is treated as a domain-general 

trait, not unlike measures of personality (Mata et al., 2018; Zhang et al., 2019). 

An instrument for measuring this supposed trait is the "general risk propensity 

scale  (GRiPS)"  developed  by  Zhang  and  colleagues  (2019).  However,  other 

research indicates  risk-taking  to  be  more  domain-specific,  with  little  or  no 

convergence across domains – the related measure being the domain-specific 

risk-taking scale (DOSPERT, Blais & Weber, 2006). The discussion up until 2017 

is summarized by Mata and colleagues (2018). They recapitulate the evidence 

as  pointing  towards  a  trait-like  domain-general  risk-taking  propensity,  with 

notable convergence across domains (ibid.). Mishra (2014) argues that strong 
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enough  differences  in  participants'  valuation  of  incentives  from  different 

domains  might  mask  a  common  trait.  Other  recent  studies,  however,  find 

indications  of  strong  domain  specificity  in  various  contexts:  correlations 

between risk-taking propensity and disgust sensitivity (Sevi & Shook, 2021), in 

decisions under ambiguity akin to that under risk-taking (Shou et al.,  2020), 

and gender effects unique to social risk-taking (Friedl et al., 2020).

The question has gained interest from other research fields, with a study by 

Nicolaou and Shane (2020) finding a common genetic component accounting 

for a part of the relationship between general and domain-specific risk-taking 

propensity and behavior. These findings explain some portion of the source of 

inter-subject variability in domain-specific risk-taking as a genetic effect. They 

also add to the evidence pointing to some domain generality of risk-taking. The 

mechanism,  origin  and  full  extent  of  domain  specificity,  however,  remain 

unclear.

Neuroscientific research on reward consumption has shown that rewards from 

different  domains  activate  dissociable  neural  networks  (Rademacher  et  al., 

2010; Flores et al.,  2015; Gu et al.,  2019). Behavioral research on risk-taking 

with different incentives found an effect of the incentive type on the behavior. 

Sunstein and colleagues (2011) observed that people's willingness to get paid in 

exchange for a painful yet safe electric shock did not change if the probability 

of  receiving the shock changed.  People accepted a 1% and 100% chance of 

receiving  an  electric  shock  for  the  same  amount  of  money,  demonstrating 

indifference to the actual size of the risk (ibid.), a behavior different from that 

observed in financial risk-taking (Wu et al., 2021). Rosati and Hare (2016) used 

a  more  complex  design  to  compare  risk-taking  propensity  for  financial 
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rewards,  food,  and  office  supply  prizes  and  found  significantly  lower  risk-

taking  for  non-financial  incentives.  They  argue  that  financial  rewards  are 

different from other reward domains, as they enable the acquisition of other 

rewards.  Lastly,  von  Helversen  and  colleagues  (2020)  compared  risk-taking 

with  money  and  odors  as  incentives.  They  found  a  lower  sensitivity  to 

probabilities and stronger deviations from optimal behavior if bad odors were 

used as negative incentives. They attribute this to the bad odor being richer in 

affect, i.e. evoking a stronger affective response compared to a financial loss. 

In conclusion, the behavioral literature agrees on a difference in risk-related 

behavior  between  financial  rewards  and at  least  some other  rewards in  an 

experimental setting (Sunstein et al., 2011; Rosati et al., 2016; von Helversen et 

al.,  2020),  with  affect-richness  and  the  special  status  of  money  probably 

influencing  behavior.  How  broadly  such  effects  apply  and  if  they  have  a 

measurable effect on the neuronal correlates of risk-taking remains an open 

question.

Financial  and token  incentives  have  many advantages  over  other  incentive 

types:  they  are  easy  to  quantify,  can  be  divided  into  smaller  subunits,  are 

related  to  participants'  everyday  life,  and  are  easy  to  disburse  after  the 

experiment.  However,  the  extent  to  which  findings  on  risk-taking  with 

financial  incentives  are  generalizable  to  other  domains  remains  unclear. 

Investigating whether neural networks found in risk-taking differ based on the 

incentive domain would lead to a better understanding of the mechanisms and 

extent of domain specificity in human risk-taking.
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2.3 Risk-Taking Designs in Experimental Studies

A variety of risk-taking designs were developed over the years. Schonberg and 

colleagues  (2011),  among  others,  compared  different  study  designs.  They 

propose  three  criteria  for  evaluating  laboratory  risk-taking  tasks.  (1)  Task 

results  should  be  decomposable  into  the  different  aspects  underlying  risk-

taking, (2) they should show external validity, and (3) the participants should 

be emotionally engaged in the task.

One of the more frequently used designs in the research on risk-taking is the 

BART,  developed in  2002 by  Lejuez  and colleagues  (Schonberg et  al.,  2011; 

Schmitz  et  al.,  2016;  Poudel  et  al.,  2020;  Wu  et  al.,  2021).  In  the  BART, 

participants are instructed to inflate a virtual balloon via button presses. After 

each inflation, they have to decide whether they want to continue inflating or 

stop and continue with the next  balloon.  The reward participants  get  for  a 

balloon  increases  with  every  inflation,  but  so  does  the  probability  of  the 

explosion of the balloon. If the balloon explodes, the accumulated reward for 

that balloon is lost. If the participants decide to stop inflating, the accumulated 

reward is added to their final payout, and they continue with the next balloon. 

The participants know that the probability of an explosion increases with every 

inflation. However, they do not know the exact probability for each size. They 

thus have to decide under incomplete information whether they want to inflate 

the  balloon  further  or  stop  and  collect  the  accumulated  reward.  Usually, 

multiple virtual balloons are inflated by the participants, and the average size 

of  non-exploded  balloons  is  taken  as  a  measure  of  risk-taking  propensity 

(Schmitz et al., 2016). This measure is called the "adjusted BART score" (ibid.).  

Multiple research groups examined the BART's validity in the years after its 
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publication. It was shown that the adjusted BART score correlates with various 

forms of real-world risk-taking, such as alcohol consumption, criminality, and 

drug consumption (Aklin et al., 2005; Skeel et al., 2008). Additionally, Hunt and 

colleagues  (2005)  found  that  psychopathy  and  impulsivity,  two  attributes 

strongly related to excessive risk-taking, affect the risk-taking behavior in the 

BART.  Furthermore,  the  correlation  between  self-reported  risk-taking  and 

behavior in the BART is stronger than that between self-reported risk-taking 

and hypothetical or financial gambles (Lauriola et al., 2014).

Regarding  the criteria  mentioned above (decomposability,  external  validity, 

and emotional engagement), the BART is considered satisfactory in the second 

and third domain by Schonberg and colleagues (2011). Schmitz and colleagues 

(2016)  bring forward a  possible  reason  for  the  comparatively  high external 

validity based on neuropsychological findings by Ulrich and colleagues (2014). 

The  BART's  intuitiveness  and low cognitive  demand might  encourage more 

spontaneous  decisions  that  are  more  in  harmony  with  one's  personality 

dispositions than more abstract choices (Schmitz et al., 2016).

However, it has two major flaws: One is the complete correlation of expected 

value and risk in the design, the other its demand on the learning capacity of  

the participants. As explosion probabilities are unknown to participants, they 

must be learned during the experiment. Mata and colleagues (2011) showed 

that  experimental  designs  with  such  properties  tend  to  mix  up  learning 

capacity and risk-taking propensity and should thus be applied with caution. 

While the first concern is harder to dispel, the second can, at least partly, be 

addressed  by  a  homogeneous  cohort  of  participants  of  a  similar  age  and 

comparable level of education. Another approach to limit the effects of inter-
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subject  differences  in short-term memory is  to  focus  on the comparison of 

different measures within instead of between subjects.

Lejuez and colleagues, the inventors of the original BART, parameterized risk-

taking  by  calculating  participants'  average  number  of  inflations  over  all 

balloons that did not explode. However, several different ways to parameterize 

the BART have since been established. Schmitz and colleagues (2016) discuss 

various  scoring  alternatives  in  detail  and  suggest  using  the  "burst-score", 

calculated by taking the sum of exploded balloons for each participant.

2.4 Neural Correlates of Risk-Taking - a Meta-Analysis

Studies  on  the  neural  correlates  of  risk-taking  are,  like  the  studies  on  the 

behavioral level, heterogeneous in approaches and findings (cf., Mohr et al., 

2010; Chandrakumar et al., 2018; Poudel et al., 2020; Wu et al., 2021). A meta-

analysis on the topic was conducted with the goal to describe and summarize 

the  current  state  of  the  field,  and  to  inform  experimental  design  and 

interpretation  of  further  fMRI  studies  on  the  topic.  The  following chapters 

detail the hypotheses, methods, results, and discussion of the meta-analysis.

2.4.1 Introduction to the meta-analysis

No systematic review articles on fMRI measurements of neural correlates of 

human risk-taking capturing the present state of the field existed in 2019, to the 

best  of  the  author's  knowledge.  Systematic  reviews  existed  on  risk-taking 

studies using electroencephalography (EEG, Chandrakumar et al.,  2018) and 

adolescents'  neural  correlates  of  risk-taking  (Sherman  et  al.,  2018).  EEG 

measurements are precise in time, but despite recent progress limited in their 
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spacial resolution (Seeber et al., 2019). Studies on risk-taking on the behavioral 

and neuropsychological levels found notable differences between adolescents 

and adults, and results can thus not be transferred from one group to the other. 

Furthermore, a review article using a very narrow interpretation of the concept 

of  "decisions under risk",  as  introduced by Knight (1921),  was published by 

Levy in 2017.  The definition of risk-taking commonly used in psychology is 

broader, as detailed above, and neural correlates likely differ depending on 

which one is used (cf. Wu et al., 2021).

Since then, two relevant meta-analyses have been published by other research 

groups: one by Poudel and colleagues (2020) and one by Wu and colleagues 

(2021). The following paragraphs will summarize their findings, followed by an 

overview of the additional insight the present meta-analysis can provide.

Prior meta-analyses of the topic  can be grouped based on the concept they 

focus on - either the psychological concept of risk-taking or broadly defined 

decision-making under risk, as used in economics. Mohr and colleagues (2010) 

compared the findings of 30 fMRI studies. They oriented their analysis on the 

psychological concept of "risk-taking", focusing on designs where probabilities 

of outcomes were known or could be inferred or learned. Another approach to 

the topic is the comparison of decisions under risk and ambiguity (cf. Krain et 

al., 2006). Poudel and colleagues (2020) and Wu and colleagues (2021) worked 

on  two  broadly  similar  meta-analyses  on  the  question.  Both  use  a  broader 

definition of decision-making under risk, including studies where probabilities 

can be inferred or learned.

Previous primary studies on risk-taking use various designs (cf. Mohr et al., 

2010; Poudel et al., 2020; Wu et al., 2021 for fMRI; Chandrakumar et al., 2018 
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for EEG; Schonberg et al., 2011 for behavioral research). Studies offer different 

rewards  to  subjects,  and  fMRI  studies  differ  in  the  contrasts  they  employ. 

Contrasts reach from decisions for save compared to risky options (e.g., Bjork 

et  al.,  2007,  Brevers et  al.,  2015;  Funkunaga et  al.,  2018)  over decisions for 

options with high risk compared to decisions for low risk (e.g., Paulus & Frank, 

2006; Miedl et  al.,  2010) to decisions for risk compared to various baselines 

(e.g., Congdon et al., 2013).

The present study adds to the field in two ways: Study selection criteria were 

more specific compared to other current meta-analyses on the topic (cf. Poudel 

et  al.,  2020;  Wu et  al.,  2021).  Especially the work by Poudel  and colleagues 

(2020) uses broad inclusion criteria,  e.g.,  mixed samples of healthy controls 

and  patient  groups.  Their  approach  allows  for  a  large  number  of  primary 

studies  to  be  included  and  results  in  higher  statistical  power  and  better 

generalization  over  various  groups  of  subjects.  In  comparison,  the  present 

analysis  is  more  focused,  e.g.  including  only  healthy  young  adults. 

Accordingly, statistical power is lowered, but more specific observations can 

be made, adding a new perspective. Furthermore, two subgroup analyses are 

added.  Studies  contrasting  risky  and  save  options  are  compared  to  those 

contrasting  different  levels  of  risk,  and studies  using  financial  rewards  are 

contrasted with those using tokens or similar rewards that cannot be kept after 

the study.

An activation likelihood estimation (ALE; Turkeltaub et al., 2002) will be used 

to summarize the findings of primary studies. The present analysis results can 

be of use to highlight moderators of neural correlates of risk-taking, thereby 
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advancing future design decisions and helping to generate specific hypotheses. 

To this goal, the following questions are investigated:

1. What are common brain areas found in fMRI studies on human risk-
taking?

Including  all  studies  in  one  analysis  promises  to  reveal  structures  that  are 

mostly independent of the specific task and common to most or all  designs 

falling under the here-used definition of risk-taking (Eickhoff et al., 2012). It is  

also the first step to, akin to Laird and colleagues (2009) and Wu and colleagues 

(2021),  conduct  contrast  analyses  on  subsets  of  all  studies  to  identify 

moderating factors. The following research questions are based on previous 

meta-analyses  and  differences  in  the  designs  of  primary  studies  identified 

before the measurement.

2. What are the differences in brain activation between risk-taking in the 
win and the mixed domain?

Previous meta-analyses (Mohr et  al.,  2010;  Wu et  al.,  2021)  compare neural 

correlates  of  risk-taking  in  the  win  and loss  domain.  Both  groups  contrast 

designs that allow only for  gains with designs where gains and losses were 

possible  -  studies  on  pure  losses  were  too  rare  to  allow  for  statistical 

comparison  (Wu et  al.,  2021).  Both  studies  found  significant  differences  in 

neuronal  activation  patterns  associated  with  risk-taking  in  the  win  and the 

mixed domain: Wu and colleagues report  a  broader involvement of the left 

anterior insula in study designs allowing losses. Mohr and colleagues report 

foci in multiple regions. They find the left anterior insula (aINS), left superior  

temporal gyrus (STG), and left precentral gyrus more likely to be activated in  

the  mixed  domain.  In  the  win  domain,  the  dorsomedial  prefrontal  cortex 
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(dmPFC), dorsolateral prefrontal cortex (dlPFC), right parietal cortex, parts of 

the thalamus, and the occipital cortex (OC) were more likely to be activated.

The results of the present analysis are expected to be closer to the findings of 

Wu  and  colleagues  (2021).  The  ALE-meta  analysis  algorithm  was  updated 

multiple times since the study by Mohr and colleagues (cf. Turkeltaub et al., 

2012; Eickhoff et al., 2012), and the overlap in primary studies is larger between 

the present study and the work of Wu and colleagues compared to that of Mohr 

and colleagues. If the results of the present analysis differ from those of Wu 

and colleagues, it will likely be caused by the study selection criteria.

For the present work, "win domain" will refer to designs where only gains were 

allowed, and "loss domain" refers to designs where only losses were possible. 

"Mixed domain"-designs include both.

3. What are the differences in brain activation between financial and 
arbitrary incentives?

Due  to  its  relevance  for  the  current  thesis,  the  effect  of  differences  in 

incentives was analyzed. Previous research shows that different incentives can 

activate different neural structures. A study on the delivery and consumption 

of financial  and social  rewards by Rademacher and colleagues  (2010)  found 

differences  in  the  neural  networks  associated  with  the different  incentives, 

particularly during consumption. Accordingly, research on differences in the 

anticipation and consumption of different rewards is ongoing. Regarding the 

anticipation  phase,  a  study  by  Flores,  Münte  &  Donamayor  (2015)  found 

differences  in  the  event-related  potentials  (ERPs)  measured  through  EEG 

during the anticipation of social versus financial rewards. As another example, 

a current review of fMRI studies on reward anticipation and delivery expressly 
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excludes non-financial rewards to preempt the included studies from being too 

heterogeneous due to different reward types (Jauhar et al., 2021). In the light of 

differences  in  the  neural  networks  associated  with  anticipation  and 

consumption of rewards, differences in the neural networks related to risk-

taking based on whether financial incentives are given to participants or not 

seems plausible. To the author's knowledge, no comparable analysis has been 

conducted on risk-taking studies.

4. What are the differences in brain activation between the comparison of 
different risk levels and contrasts between risky and save decisions?

Studies on the neural correlates of risk-taking differ in the type of analyses they 

conduct:  different  levels  of  risk  –  either  binary  or  parametric  –  can  be 

compared,  and  decisions  for  save  and  risky  options.  While  the  difference 

between  risky  and  save  options  is  qualitative,  differences  between  varying 

levels of risk are quantitative. Investigating if such differences in analysis lead 

to differences in findings will advance the current understanding in multiple 

ways.  On  the  one  hand,  differentiating  brain  regions  sensitive  to  the  pure 

presence of risk and those changing in their activation with the actual level of  

risk can help in understanding brain activation patterns in primary studies. On 

the  other  hand,  it  might  guide  future  studies  in  their  choice  of  analysis 

approach.

Wu  and  colleagues  (2021)  conducted  a  similar  analysis,  focusing  on  the 

methodological  decision  for  parametric  vs.  binary  analyses.  Based  on  their 

findings,  the left aINS and thalamus are  more reliably  active  in parametric  

designs. The left OC and right inferior frontal gyrus (IFG) are more reliably  

active in binary contrasts. In the present analysis, not enough primary studies 

were  found on  parametric  designs  to  replicate  that  analysis.  However,  the 
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present analysis can offer a different perspective, and comparisons between 

the findings of the present analysis and that of Wu and colleagues are likely to 

shed further light on the moderating effects of the analysis approach. 

2.4.2 Research methods

The  meta-analysis  was  oriented  on  the  "Preferred  Reporting  Items  for 

Systematic  Reviews and Meta-Analyses"  Statement (PRISMA 2020 Statement, 

Page et al., 2021). The databases Scopus, PubMed, Web of Science, PsycInfo, 

and ScienceDirect were searched for relevant peer-reviewed articles written in 

English.  The  search  was  conducted  on  the  23rd  of  March,  2019.  A  second 

search with the same parameters was conducted on the 25th of February 2022 

to  find  any  additional  studies  published  in  the  meantime.  For  the  second 

search, The database PsycInfo could not be accessed due to technical problems 

and was thus excluded from the second search. No further exclusion criteria 

were set regarding the publication date of primary studies.

2.4.2.1 Study selection, preparation, and data extraction

Inclusion criteria were a sample of at least ten healthy young or middle-aged 

adults  (minimum  age  >=  18,  maximum  age  <  65)  and  the  use  of  fMRI  to 

investigate  differences  in  blood-oxygen-level-dependent  (BOLD)  signal 

strength in whole-brain analyses. Region of interest (ROI) studies violate the 

assumptions of ALE meta-analyses and were thus excluded (Turkeltaub et al., 

2002). In addition, studies had to include a paradigm where participants were 

actively  engaged  in  a  task  in  which  they  had  to  choose  between  options 

differing in the probabilities of positive or negative outcomes. In contrast to 

other  meta-analyses  on  the  topic,  anticipation  risk  -  the  process  of  risk 

processing without a choice (Mohr et al., 2010) - was excluded from the present 
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analysis for two reasons. First, stricter selection criteria reduce heterogeneity 

while maintaining a large enough database for adequately powered analyses. 

Second, the neural network involved in risk-taking as proposed by Mohr and 

colleagues  (2010),  did  not  differ  between  anticipation  risk  and  actual  risk-

taking during the first stages of processing, while the later stages were only 

present in actual risk-taking. A focus on designs involving the latter might thus 

allow for the whole network to be observed in every primary study.

Overall, inclusion criteria were more narrow compared to other current meta-

analyses  on  the  topic  (cf.  Poudel  et  al.,  2020;  Wu  et  al.,  2021).  Studies 

comparing  risk  and  ambiguity,  studies  using  fixation  or  rest  periods  as  a 

contrast  (compared  to  decisions  for  different  risk  levels,  save  options,  or 

conceptually similar tasks), and studies involving experimental manipulation 

before each risk-taking trial were excluded to decrease heterogeneity.

For  inclusion,  studies  needed  to  use  an  fMRI  analysis  comparing  levels  of 

riskiness with a contrast design (e.g., risk vs. no risk, active vs. passive risk, or 

high vs. low risk) or a parametric regressor varying with the level of risk. The 

term "risk" here denotes the probability of an undesirable outcome, akin to 

definitions commonly used in psychology (cf. Boyer 2006, Bran & Vaidis 2019). 

This  definition mostly  matches  what  other  meta-analyses  termed "decisions 

under risk" (c.f. Poudel et al., 2020; Wu et al., 2021). Studies furthermore had to 

report  the  coordinates  of  peaks  of  significant  differences  in  BOLD  signal 

strength in a known standardized reference frame. 

Tasks using a choice paradigm with a clearly optimal choice option were not 

included to assure that participants treated the decision as purely perceptual. A 

commonly used design in the study base excluded for this reason is the Iowa 
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Gambling Task (IGT, Bechara et al., 1994). In the IGT, participants can choose 

multiple times to draw a card from one of two decks: One deck has a higher 

variability of rewards but lower expected value than the other. After a learning 

period, choices for risk in the IGT are strictly disadvantageous (ibid). As soon 

as participants learn the respective probabilities, they should be able to pick 

only  the  options  leading  to  the  best  outcomes,  leaving  little  room  for 

intentional risk-taking. 

Some previous meta-analyses of decision-making studies included the IGT as 

"decision making under risk" in their study sample (Krain et al., 2006; Poudel et 

al., 2020). This point can be argued, as it seems relatively certain that behavior 

in the IGT can be driven by risk-seeking behavior in some individuals (Dunn et  

al., 2006; Bull et al., 2015). However, Bull and colleagues (2015) found results 

from the IGT concerning risk-taking strongly influenced by minor details in the 

design choices. At least during the first 100 trials, task understanding and risk-

taking are correlated in at least some individuals (ibid.). The IGT was therefore 

excluded from the present meta-analysis as it is unclear how well it captures 

risky decision-making and how strong the influence of minute differences in 

designs might be.

Table 1 reports the number of articles identified through each database and the 

exact search string used. For the second search, the search was adapted only to 

include results published after the exact date of the first search. For search 

engines where only full years could be excluded, the search was rerun for 2019 

and later.
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Table 1

Databases, search terms and results of the primary literature search and the update

Database Search String
first 

search
updated 

search

Scopus TITLE-ABS-KEY ( ( fmri OR "functional 
magnetic resonance" OR "functional MRI" ) 
AND ( "risk taking" OR "risk-taking" OR "risk 
perception" OR "risk propensity" ) )b

408 98

PubMed ( fmri OR "functional magnetic resonance" 
OR "functional MRI" ) AND ( "risk taking" OR 
"risk-taking" OR "risk perception" OR "risk 
propensity" )

545 116

Web of 
Science

ALL= ( ( fmri OR "functional magnetic 
resonance" OR "functional MRI" ) AND 
( "risk taking" OR "risk-taking" OR "risk 
perception" OR "risk propensity" ) )

466 112

PsycInfo ( ( fmri OR "functional magnetic resonance" 
OR "functional MRI" ) AND ( "risk taking" OR 
"risk-taking" OR "risk perception" OR "risk 
propensity" ) )

262 – a

ScienceDi
rect

( ( fmri OR "functional magnetic resonance" 
OR "functional MRI" ) AND ( "risk taking" OR 
"risk-taking" OR "risk perception" OR "risk 
propensity" ) )

102 33

Note: Search strings for the updated search were limited to studies published 
after the date the first literature search was conducted.
a PsycInfo was not available for the updated search due to technical issues.
b Reviews were excluded through the user interface.
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The first search returned a total of 1783 reports, 808 of whom were duplicates 

and thus removed from the analysis. Two independent investigators screened 

abstracts and titles. Any disagreement on whether to include a report in the 

next step was solved by consensus. When no consensus was reached, reports 

were included in the next step. During the first step, 834 reports were excluded 

based on their title and abstract, leading to 141 papers remaining for full-text 

analysis. Of these 141 reports, 55 reports were excluded as they did not report 

any relevant contrasts. A further 47 papers were excluded for various reasons 

detailed in the PRISMA-Flowchart in figure 1. The second search resulted in 

359 papers that went through the same process. Only one additional study was 

eligible,  increasing the number  of  included studies  to  36.  Detailed data  for 

exclusion numbers of the second search can be found in the figure 1.  Data 

were  extracted  by  two  independent  researchers.  Any  disagreements  were 

discussed until consensus was reached. 
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Figure 1

PRISMA-Flowcharts of the primary systematic literature search and the 
update 

Note. Only one reason for exclusion is counted for every study, even if multiple 
reasons applied. The reported reason is the most specific, i.e. a study including 
a clearly superior choice option is counted in that category, although it would 
also qualify for the less specific "design unsuitable" category.

2.4.2.2 Calculation of the ALE-meta analyses

Current practice in fMRI research is to only report the coordinates of peaks of 

significant activation together with their effect size, resulting in large parts of 

the results  -  all  non-peak voxels  -  not  being eligible  for  meta-analyses.  The 

method  used  here  to  circumvent  this  problem  quantitatively  is  the  ALE 

approach developed by Turkeltaub and colleagues in 2002.
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Coordinates were extracted from the primary studies. Coordinates in Talairach 

space  (Talairach,  1967;  Talairach &  Tournoux,  1988)  were  converted  to  the 

MNI152-2009a  template  (Fonov  et  al.,  2011)  through  the  Lancester 

Transformation (Lancester et al., 2007; Laird et al., 2010) as implemented in 

GingerALE 3.0.2. (Eickhoff et al., 2009). Results were reversed in polarity where 

necessary  to  ensure  that  significant  positive  differences  in  BOLD-signal 

strength always indicate a positive relation between BOLD-signal strength and 

risk level. Significant negative BOLD-differences vice versa implied a negative 

relation.

ALE  analyses  were  conducted  in  GingerALE  3.0.2  (Eickhoff et  al.,  2009),  a  

software  solution  implementing  the  updated  ALE  algorithms  described  by 

Turkeltaub and colleagues (2012) and Eickhoff and colleagues (2012). For all  

research questions detailed above, separate analyses were conducted. The ALE 

algorithm  convolutes  the  foci-data  with  a  three-dimensional  Gaussian 

probability  distribution  with  the  width  determined  by  the  sample  size  of 

primary studies. The resulting maps for each study are superimposed, with the 

value in the final map being set to the maximum value from the individual 

studies maps. This method is recommended over simple addition, as the latter 

can lead to distortions if a single study reports multiple foci close to each other 

(Turkeltaub et al., 2012). When multiple analyses from one study were eligible 

for analysis, they were grouped as a single analysis (Turkeltaub et al., 2012) to 

avoid an inflation of the contribution of a single study to the analysis. Next, a 

map of so-called "ALE-values" is created as the union of all study-specific maps. 

Significant  differences  from  zero  are  calculated  via  cluster-thresholding  to 

account for multiple comparisons: For several iterations, the coordinates in the 

dataset  are  replaced  by  random  coordinates,  ALE  values  are  calculated, 
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thresholded,  and  the  size  of  the  resulting  clusters  is  recorded  as  a  null 

distribution. The cluster-forming threshold in the present study was set to  p 

< .001, the cluster threshold to p < .05. 1000 permutations were used to generate 

the null distribution.

Some  software  packages  for  the  analysis  of  fMRI  data  only  report  one-

directional tests if standard settings are used (cf. Cox et al., 2017), and some 

primary studies do not report whether one-directional or bidirectional analyses 

were conducted. As the bias induced by this possibly selective reporting cannot 

be estimated accurately, only positive relations between risk level and BOLD-

signal strength were analyzed. Contrast analyses, as described by Eickhoff and 

colleagues  (2012),  were  conducted  with  GingerALE  to  compare  different 

conditions for  research questions two to four.  For  contrast  analyses,  a  null 

distribution was calculated from 10000 permutations of the data. The statistical 

threshold was set at p<.05, and clusters below 200mm³ volume were rejected.

Anatomical  labels  and  brain  parcellations  were  based  on  the  human 

Brainnetome Atlas  (Fan  et  al.,  2016)  as  implemented  in  AFNI's  "whereami" 

function. All figures used for illustration in this chapter were created in AFNI 

(Version  'Galba'  -  20.0.17,  Cox,  1996).  For  better  comparability,  composite 

images of different analyses were generated using the 3dcalc++ function from 

AFNI.

2.4.2.3 Additional analyses

A strong correlation between any two of the three variables used for contrast 

analyses would impede a clear attribution of neuronal findings to the variables. 

Correlations between all three variables were calcculated to describe any such 

effects in the present sample. Furthermore, correlations between each variable 
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and the year of publication of the primary studies were calculated and tested 

for significance to identify any trends in experimental design choices. Trends 

in the development of sample sizes over time were analyzed with a correlation 

between the year of publication and the sample size. Studies with a sample size 

of  3  standard deviations  above or  below the mean were excluded from the 

analysis.

2.4.3 Results

2.4.3.1 Study characteristics

The 35  studies  reporting significant  changes  in BOLD signals  depending on 

variations in risk contained a total of 44 statistical analyses. Only a single study 

(Gillman et al., 2011) reported no significant effects of risk-taking on neuronal 

activation patterns. The analyses will be called "experiments" in the following, 

as proposed by Laird and colleagues (2009). A list of all included experiments 

can be found in table 2. Studies reported positive and negative relationships 

between increased risk and BOLD signals for a total  of 95 negative and 392 

positive peaks.

Mean ages varied from 20.2 to 41 years, with the youngest participants being 18 

and the oldest being 56 years of age. Sample sizes for fMRI analyses reached 

from 10 to 157 participants (m = 28, sd = 25.3). Six studies recruited exclusively 

male samples. No exclusively female sample was investigated, although some 

studies had considerably more female than male participants (e.g., Pletzer et 

al.,  2016  with  41  female  and  18  non-female  participants).  One  study 

(Macoveanu,  2016  -2)  did  not  report  on  the  gender  of  its  participants. 

Information on the sample sizes and gender ratio of all studies can be found in 

table 2.
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Table 2

Experiments identified in the literature search for the ALE meta-analysis

Author Year
n 

(female)
age

 (sd)
peaks 

reported experimental design
win/mixed 

domain incentive contrast type

Bjork et al. 2007 20(10) 28.5(3.2) 22 risky gains task win money risk vs save

Bjork et al. 2007 20(10) 28.5(3.2) 21 risky gains task mixed money risk vs save

Bjork et al. 2007 20(10) 28.5(3.2) 3 risky gains task mixed money high vs low risk

Bjork et al. 2008 17(7) 33.5(NR) 22 risky gains task win money risk vs save

Bjork et al. 2008 17(7) 33.5(NR) 27 risky gains task mixed money risk vs save

Brevers et al. 2015 10(2) 36.2 5 Choice between bet or save win random trial risk vs save

Campbell et al. 2008 23(10) 25.68 16 Choice between bet or save loss arbitrary risk vs save

Cohen et al. 2005 16(7) NR(NR) 5 Choice between bets win not reported high vs low risk

Congdon et al. 2013 23(13) 25.65(4.43) 3 ART – choice for risk win money high vs low risk

Engelmann et al. 2009 10(3) NR(NR) 25 Choice between bets win money risk vs save

Fukunaga et al. 2012 16(8) 20.19(NR) 4 BART – choice for risk win money risk parametric 

Fukunaga et al. 2012 16(8) 20.19(NR) 2 BART – choice for save win money save parametric 
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Author Year
n 

(female)
age

 (sd)
peaks 

reported experimental design
win/mixed 

domain incentive contrast type

Fukunaga et al. 2018 25(14) 24.24(3) 11 Choice between bet or save mixed money variance 
parametric

Gilman et al. 2012 20(12) 26.1(2.8) 0 Choice between bet or save mixed money risk vs save

Haeusler et al. 2018 165(0) 38.9(6.7) 3 Choice between bet or save mixed random trial risk vs save

Kohno et al. 2015 60(27) NR(NR) 8 BART – choice for risk win money risk parametric 
(choice for risk)

Kohno et al. 2015 60(27) NR(NR) 5 BART – choice for save win money risk parametric 
(choice for save)

Lee et al.  200
8

12(0) 19.9(6.2) 3 risky gains task mixed arbitrary risk vs save

Li et al. 2020 34(18) 32.5(8.7) 11 BART – choice for risk mixed not reported risk parametric

Liu et al.  2017 27(0) 22.74(2.35) 2 cups task mixed arbitrary risk vs save

Losecaat et al. 2014 26(12) 22(2.68) 12 choice between bet or save mixed money 
(capped)

risk vs save

Macoveanu, Fisher 
et al.

2016 32(0) NR(NR) 14 choice between bets mixed not reported risk parametric

Macoveanu, 
Miskowiak et al.

2016 62(NR) NR(NR) 18 choice between bets mixed not reported risk parametric

Matthews et al. 2004 12(5) 34(NR) 7 choice between bet or save mixed not reported risk vs save
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Author Year
n 

(female)
age

 (sd)
peaks 

reported experimental design
win/mixed 

domain incentive contrast type

Meder et al. 2016 20(9) NR(NR) 17 cummulative gambling task win not reported risk parametric

Miedl et al. 2010 12(0) 33.4(8) 11 blackjack task mixed money high vs low risk

Paulus et al. 2003 16(6) 41(2.1) 5 risky gains task mixed arbitrary risk vs save

Paulus et al. 2006 17(6) 38.3(1.4) 15 choice between bet or save win arbitrary high vs low risk

Pletzer et al. 2016 59(41) 22.39(5.14) 4 BART win money risk vs save

Pletzer et al. 2016 59(41) 22.39(5.14) 2 Game of Dice Task win money high vs low risk

Rao et al. 2008 14(6) 25.1(NR) 15 BART – choice for risk mixed arbitrary risk parametric

Rao et al. 2008 14(6) 25.1(NR) 7 BART – active vs. passive mixed arbitrary active vs 
passive risk 

taking

Roy et al. 2011 23(15) 27.6(7.9) 72 choice between bet or save option mixed money risk vs save

Schonberg et al. 2012 16(10) 23.6(2.9) 8 BART – choice for risk win money risk vs control 
parametric

Smith et al. 2009 25(12) 29.1(5.5) 2 choice between bets win money high vs low risk

Symmonds et al. 2011 23(11) 24(NR) 12 choice between bet or save option win money risk vs save

Symmonds et al. 2011 23(11) 24(NR) 3 choice between bet or save option win money variance 
parametric

Weber et al. 2008 23(11) 23(NR) 10 choice between bets win money high vs low risk
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Author Year
n 

(female)
age

 (sd)
peaks 

reported experimental design
win/mixed 

domain incentive contrast type

Wright et al. 2013 22(16) 22(NR) 9 choice between bet or save option mixed money for a 
random trial

risk vs save

Wright et al. 2013 25(10) 24(NR) 18 choice between bets mixed money for a 
random trial

high vs low risk

Xue et al. 2009 13(5) 23.6(6) 6 Cups Task mixed arbitrary risk parametric

Yu et al. 2016 25(14) 21(1.6) 8 BART – choice for risk win money risk vs control 
parametric

Yu et al. 2016 25(14) 21(1.6) 9 BART – choice for risk win money risk vs save

Zhang et al. 2019 25(14) 20.64(2.06) 16 choice between bet or save option mixed random trial risk vs save

Note.  Some studies  consist  of  multiple  experiments  and thus fill  multiple  rows.  The  contrast  analyses  are  based  on the columns 
“win/mixed domain”, “incentive”, and “contrast type”. Peaks reported include positive and negative peaks. For information on the 
individual peaks, location and effect sizes, please refer  to appendix table 1. Full citations for all studies can be found in section two of  
the references.
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For correlation analyses including the sample size, the study by Haeusler and 

colleagues  (2018)  was  excluded,  as  its  sample  is  more  than  three  standard 

deviations larger than the average. Correlations between the variables used for 

contrast analyses revealed small to medium correlations between the variables 

(incentive  and  domain:  r =  .33;  incentive  and  contrast  condition:  r =  .15; 

contrast condition and domain:  r = -.19). No significant correlations between 

the year of publication and any of the three variables were found (incentive: 

r(37) = .16, p = .32; domain: r(35) = -.09, p = .59; contrast condition: r(40) = .05, p 

= .78. Sample sizes of primary studies got significantly larger over time (r(41) 

= .54, p < .001).

2.4.3.2 Common neuronal activation patterns in risk-taking over all studies 
and conditions

Two experiments were excluded from the overall analysis as they reported on 

changes in risk-related activations when the save option was picked, and the 

respective studies both included an experiment on signals related to decisions 

for the risky option. The remaining 42 experiments report a total of 396 peaks.

The ALE analysis found 8 clusters of peaks. Peaks in ALE-values were located 

in the anterior cingulate cortex (ACC), left and right insula, bilaterally in the  

Caudate,  in  the  right  superior  parietal  lobule  (SPL),  the  right  midbrain 

extending to the right thalamus, and the right dlPFC. A detailed breakdown of 

all foci, their locations, and the associated anatomical regions can be found in 

appendix  table  1.  Figure  2  illustrates  the  findings  superimposed  on  the 

MNI152-2009a standard brain (Fonov et al., 2011).
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Figure 2

Findings of the main meta-analysis

Note. Significant overlap of all positive foci identified in the primary studies, 
superimposed  on  MNI152-2009a  brain  (Fonov  et  al.,  2011).  All  clusters 
identified are  partially  covered by  the depicted slices.  Left-right  orientation 
follows  psychological  norm:  participants'  left is  depicted  left.  Details  on  
clusters can also be found in table 3.

2.4.3.3 Differences in brain activation during risk-taking in the win and mixed 
domain

Sixteen primary studies were identified, including 19 experiments investigating 

risk-taking only in the win domain. They reported a total of 148 positive peaks 

of BOLD-signal  differences.  No study examining risk-taking only in the loss 

domain was found. Nineteen studies containing 21 experiments investigated 

risk-taking in both the win and the loss domain. These studies identified a total 
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of 244 positive peaks. Some studies included experiments on both risk-taking 

in the win domain and risk-taking in the mixed domain. E.g. both studies by 

Bjork and colleagues (2007 & 2008) calculated a contrast for gambles in the win 

domain and a separate  contrast  for  gambles  allowing for  losses.  Therefore, 

different experiments from these studies appeared in different groups of the 

present contrast.

Figure 3

Results of ALE contrast-analyses

Note. Significant findings superimposed on MNI152-2009a brain (Fonov et al., 
2011). Left-right orientation follows psychological norm: participants' left is 
depicted left. x and z denote slice numbers in the respective orientation. 
Details on clusters can be found in table 3.
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Contrasting  the  two  conditions  revealed  significant  differences  in  the 

convergence of peaks over studies. No peaks exclusively found in studies in the 

mixed  domain  could  be  identified.  Clusters  of  convergence  exclusive  for 

studies  in  the  win  domain  were  found in  the  right  dorsal  ACC  and dlPFC. 

Details on the clusters can be found in table 3 and figure 3a.

A conjunction analysis revealed converging clusters of peaks in the right insula 

and caudate. 

2.4.3.4 Differences in brain activation during risk-taking depending on the 
incentive

Different types of Incentives

Primary  studies  could  be  grouped  into  four  groups  based  on  their  reward 

schemes.  Some  of  the  studies  were  based  on  a  design  where  participants 

received  a  performance-based  financial  reward  directly  influenced by  their 

behavior in the risk-taking task. These represent the majority of the financial-

reward-based  studies.  In  the  study  by  Vermeer  and  colleagues  (2014),  the 

previously explained reward scheme was used, albeit with a maximum return 

defined  beforehand  that  was  known  to  the  participants.  If  participants 

regularly  reached  this  ceiling  is  not  evident  from  the  report.  The  study  is 

grouped with the above-described financial  reward schemes for the present 

analysis.

In five experiments, participants were instructed that they would be rewarded 

with real money but that one or several trials would be chosen randomly, and 

the payoff would be based only on those trials. For the present analysis, these 

experiments were excluded. While they could fit in the financial-reward group, 

35



Theoretical Background

the  difference  is  notable,  and  it  is  uncertain  what  effect  these  different 

instructions have on participants' perception of the task. Thus, excluding them 

allows  for  a  decrease  in  heterogeneity  and increased  interpretability  of  the 

results.

Eight studies clearly stated that no incentives besides "points" or virtual money 

were  given  to  the  participants.  These  studies  belong  to  the  "non-financial" 

group. Five studies did not specify whether any form of financial reward was 

used  or  not.  A  financial  reward  is  expected  to  increase  ecological  validity. 

Thus,  authors  are  likely  incentivized  to  report  on  using  financial  rewards 

explicitly.  Therefore,  studies  not  reporting  on their  reward scheme will  be 

considered not to have rewarded participants' performance with money.

Of  all  experiments  found  in  the  primary  studies,  22  used  real  financial 

incentives (248 peaks), while 13 used arbitrary or token incentives (109 peaks). 

The  conjunction  of  both  groups  revealed  shared  clusters  bilaterally  in  the 

caudate and insula region.

Significant differences were found as follows: Studies working with financial 

rewards found stronger convergence of peaks in the bilateral dACC and the 

right caudate. No stronger convergences were found for studies with arbitrary 

rewards. The results of both contrasts and conjunction can be found in figure 

3b and table 3.

2.4.3.5 Differences in brain activation depending on the contrast condition

Five experiments could not be sorted in either category for this contrast and 

were  thus  excluded  from  the  analysis.  Kohno  and  colleagues  (2015)  and 

Fukunaga  and  colleagues  (2012)  investigated  decisions  for  risky  and  save 
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options with separate contrasts. The analyses focusing on decisions against a 

risk were excluded from the analysis. Rao and colleagues (2008) used a contrast 

with  a  "passive  risk-taking"  condition  that  could  not  be  assigned  to  either 

group.  Schonberg  and  colleagues  (2012)  and  Yu  and  colleagues  (2016) 

compared  a  parametric  correlate  of  risk-taking  with  a  parametric  control 

condition, straddling the line between the two categories defined for the meta-

analysis and will thus be excluded.

Eighteen studies compared different levels of riskiness over 18 experiments, 

either  with  a  simple  contrast  design  (k=8)  or  a  parametric  design  (k=10), 

containing  a  total  of  129  peaks.  17  studies  amounting  to  19  experiments 

compared risk with either a save or similar non-risky decision (240 peaks).

The conjunction of primary studies from both groups showed shared clusters 

in the right caudate and insula. Contrasting the two conditions, unique clusters 

of  peaks were found for both conditions.  Experiments comparing risky and 

save decisions had stronger convergences of foci bilaterally in the caudate and 

the left superior parietal lobule. Experiments comparing more and less risky  

decisions showed a stronger convergence of foci  in the left anterior insula.  

Contrasts  and conjunctions are illustrated in figure 3c. Detailed data on the 

contrast can be found in table 3.
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Table 3
Size of clusters and location of their peaks determined through ALE-meta-analyses

MNI coordinates of 
peak effect at peak

cluster 
size

cluster # location of peak X Y Z  (mm³)

All studies

1 dACC 4 -34 28 ALE = 0.030 4288

2 insula (R) -32 -24 -6 ALE = 0.052 3496

3 caudate (R) -10 -8 0 ALE = 0.049 2824

4 insula (L) 30 -16 -6 ALE = 0.038 2480

5 red nucleus -6 22 -6 ALE = 0.030 2128

6 caudate (L) 10 -6 -2 ALE = 0.039 1992

7 dlPFC (R) -36 -46 26 ALE = 0.031 1344

8 superior parietal 
lobule (R)

-16 64 48 ALE = 0.020 656

win  mix∩ mix

1 caudate (R) -10 -10 0 ALE = 0.024 1256

2 insula (R)/orbital 
gyrus (R)

-32 -24 -4 ALE = 0.019 1152

win > mix

1 dlPFC (R) -38 -42 20 z = 2.09 304

2 dACC (R) -12 -28 28 z = 2.42 272

money  arbitrary∩ mix

1 Insula (R) -32 -22 -8 ALE = 0.019 872

2 Insula (L) 28 -22 -2 ALE = 0.017 592

3 caudate (R) -14 -10 -6 ALE = 0.019 456

4 caudate (L) 12 -6 -4 ALE = 0.014 272
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MNI coordinates of 
peak effect at peak

cluster 
size

cluster # location of peak X Y Z  (mm³)

money > arbitrary

1 caudate (L) -10 -16 2 z = 2.39 784

2 dACC -6 -28 26 z = 2.81 520

contrast with risk  contrast with save∩ mix

1 insula (R) /orbital 
gyrus (R)

-32 -22 -8 ALE = 0.021 720

2 caudate (R) -12 -8 -4 ALE =0.020 632

contrast with risk > contrast with save

1 insula (L) 30 -16 -12 z = 2.46 616

contrast with save > contrast with risk

1 caudate (L) 8 -12 -6 z = 2.60 848

2 caudate (R) -12 -16 4 z = 2.52 680

3 superior parietal 
lobule (L)

18 66 48 z = 2.64 648

Note. Contrasts not resulting in significant findings are omitted from the table. 
Coordinates are in RAI format. Effect sizes for contrasts are given as Z-Values. 
Effect sizes for conjunctions are given as ALE-values. (L) and (R) denote the 
hemisphere where the peak effect size of a cluster was located.
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2.4.4 Discussion

A peak  activation  coordinate-based  meta-analysis  was  calculated to  identify 

brain regions commonly found in fMRI studies investigating neural correlates 

of  risk-taking.  The  primary  analysis,  focusing  on  commonalities  between 

studies,  demonstrated  convergent  activity  in  a  network  spanning  the 

prefrontal, parietal, insular, and cingulate cortex and parts of the striatum and 

brainstem. The contrast analyses on specific features of the primary studies 

found multiple moderating effects. 

Convergence of findings in the insular cortex

A significant convergence of foci was identified bilaterally in the insula, similar 

to findings from comparable meta-analyses (Mohr et al., 2010; Wu et al., 2021). 

While  the  cluster  extends  into  the  orbitofrontal  regions,  its  peak  is  in  the 

anterior insula. 

Involvement  of the insular  cortex has  been described in various processes: 

from the processing of interoceptive sensory information (Afif et al., 2010) to 

complex cognitive tasks like intentional action and consciousness (Gasquoine, 

2014). The findings largely overlap with the anterior-dorsal part of the insula, 

as described by Kurth and colleagues (2010), which is likely involved in the 

functional integration of information from the rest of the insula (Kurth et al.,  

2010; Uddin et al., 2017).

The insula is described in the context of affect and reward processing (Eickhoff 

et al., 2016), with its role in decision making backed by lesion studies: Patients 

with  lesions  affecting  the  insula  show  less  gamblers  fallacy  and  are  less 

motivated  by  so-called  "near  misses"  (Clark  et  al.,  2014).  Furthermore,  von 
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Siebenthal  and colleagues  (2016)  found that  patients  with  a  perculo-insular 

resection were insensitive to the expected value in the loss domain in both the 

IGT and the Cups Task (Levin & Hart, 2003). 

Insula function is likely lateralized (Kurth et al., 2010). Comparing decisions 

under  risk  and  ambiguity,  the  left insula  seems  more  strongly  related  to  

ambiguity and the right to risk (Wu et al., 2021). The left and right insula have  

previously  been  discussed  in  relation  to  parasympathetic  and  sympathetic 

activity,  respectively  (Strigo  &  Craig,  2016).  In  the  present  study,  analyses 

comparing different levels of risk led to a significantly higher convergence of 

foci in the left anterior insula than analyses relating risky and save options. A  

similar pattern has been described when comparing parametric and contrast 

approaches to the study of risk-taking (Wu et al., 2021). While the current data 

is still inconclusive, it seems plausible that a positive affective component in 

choosing a riskier option might be reflected by stronger involvement of the left 

insula compared to when a save option is chosen or under ambiguity.

Convergence of findings in the thalamus

While some primary studies reported activity in various parts of the thalamus 

correlated  with  risk-taking  (e.g.,  Bjork  et  al.,  2007;  Macoveanu et  al.,  2016; 

Meder et al., 2016), no convergence of primary studies was found in it in the 

present meta-analysis. However, a cluster found in the midbrain in the present 

analysis  extends into the most  ventral  parts  of  the thalamus.  The peak and 

most of its extent (66.2%) are located close to the thalamic nuclei, yet outside of 

it.
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The  thalamus  has  come  to  be  understood  not  as  a  relay  nucleus  but  as  a 

mediator  of  cortico-cortical  communication,  interacting  with  multiple 

functional  networks  and  integrating  and  gating  information  flows  between 

them (cf. Sherman, 2016; Hwang et al., 2017). Furthermore, it is engaged in 

many  different  cognitive  functions  (Hwang  et  al.,  2017)  and  thus  a  prime 

candidate to be involved in a complex tasks such as risk processing and -taking. 

The present results do, however, not support the previous model by Mohr and 

colleagues (2010), where the posterior and dorso-medial Thalamus act as a core 

component in human risk-processing. 

Instead,  the  activation  reported  by  primary  studies  in  various  parts  of  the 

thalamus  seems  most  likely  to  be  a  byproduct  of  the  specificities  of  the 

experimental designs rather than a component of the risk-processing network 

itself.  Poudel and colleagues (2020) report on convergent activity in the red 

nucleus,  right  below  the  thalamus  and  partly  overlapping  with  present 

findings, but do not further discuss it.

Additional  analyses  could  reveal  if  any  specific  features  of  task  designs  or 

analysis procedures reliably lead to the recruitment of thalamic nuclei. Such 

an analysis might also disentangle why Mohr and colleagues (2010) found a 

convergence of foci that could not be found in the present analysis.

Convergence of findings in the right dlPFC

A convergence of peaks from all primary studies was found in the right dlPFC). 

This  area  has  previously  been  repeatedly  described  in  the  context  of  risk-

processing (Schonberg et al., 2011). Mohr and colleagues (2010) found it to be 

active only when actual  risks are taken by participants and not  when risky 
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situations are perceived. As the current analysis only focused on studies of the 

former type, no such distinction will be made here.

The  dlPFC  has  been  previously  associated  with  domain-general  executive 

control and conflict management (Oehrn et al., 2014), a role it likely fulfills in a 

network with the dACC (Smith et  al.,  2009).  Hertrich and colleagues  (2021) 

report that the dlPFC is involved in decisions if task inhibition, task switching,  

or engagement in memory systems can be observed. The dlPFC is involved in 

the  dynamic  updating  of  executive  control  processes  and  the  adaption  to 

changing environments (ibid.), fitting well with the observation that the dlPFC 

is more consistently found in designs on ambiguity than risk (Wu et al., 2021).

Executive control  functions in the dlPFC are lateralized (Seikel  et  al.,  2018; 

Ngetich et al., 2020). The right dlPFC is related to nonverbal working memory 

(Baddeley,  2003)  and  error  awareness  (Harty  et  al.,  2014).  Several  primary 

studies introduced experimental designs where probabilities were not known 

to the participants but had to be estimated and learned during the task and thus 

could  have  caused  an  involvement  of  the  dlPFC.  The  learning  component 

inherent to many risk-taking designs has been pointed out before (Schonberg 

et al.,  2011). It might lead to systematic biases in studies on risk preference 

when comparing different groups of participants (Mata et al., 2011). 

In studies where no prior earnings could be lost, the convergence of findings 

from primary studies in the right dlPFC was stronger. Gowin and colleagues 

(2013) draw a link between dlPFC activity and the deliberation between risk 

and  rewards  that  seemingly  contradicts  the  current  finding.  As  dlPFC 

activation  has  been  discussed  in  subjective  utility  calculation  (Fiore  &  Gu, 

2019),  it  seems plausible  that  systematic  differences  between  the groups of 

43



Theoretical Background

primary studies introduced stronger recruitment of the dlPFC. The BART, for 

example,  is one of the designs commonly used only in the win domain (cf. 

Schmitz et al., 2016). It furthermore contains a learning component that also 

might lead to dlPFC involvement.

If  dlPFC  involvement  reflects  a  learning  component,  the  following  line  of 

argumentation should hold:  In  more  ambiguous situations,  where  behavior 

needs to be dynamically updated based on the environment and errors have to 

be observed, right dlPFC involvement should be observable. Such is the case 

for risk-taking designs that do not offer explicit information on probabilities, 

such as the BART. If this holds, lower dlPFC activation should be measured in 

risk-taking designs with explicit information on probabilities. It could thus be 

investigated  in  a  further  subgroup  meta-analysis,  comparing  studies  with 

ambiguity in their tasks to those that had no ambiguity. However, as the dlPFC 

is part of several different networks (cf. Ferbinteanu et al., 2019; Panikratova et 

al., 2020; Xiong & Newman, 2021), this is unlikely to form an exhaustive theory 

of dlPFC involvement in decision making.

Convergence of findings in the parietal lobe

A significant overlap of peak activations was found in the right SPL, mostly in 

Brodmann area 7, peaking in a7c in the Brainnetome Atlas nomenclature (Fan 

et al., 2016). In contrast analyses, the left SPL was found more consistently in  

studies contrasting decisions for risky and save options. In the same analysis, a 

convergence was observed in the bilateral caudate, a region functionally linked 

to parts of the dACC and SPL (Robinson et al., 2012).
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Findings of prior meta-analyses do not agree on the parietal cortex (Mohr et 

al., 2010; Poudel et al. 2020; Wu et al. 2021). Activation of the medial SPL has 

been  linked  to  sensory  processing  through  functional  decoding.  This  link 

might  explain  why it  is  more  reliably  found in  perceptual  decision-making 

compared to decision-making under risk or  ambiguity  (Poudel  et  al.,  2020). 

However, results seem inconclusive, as do interpretations of parietal findings 

in primary studies (cf. Symmonds et al., 2011; Losecaat et al., 2014; Zhang et  

al., 2019).

The  parietal  cortex is  part  of  the resting state  network (RSN).  Gilmore and 

colleagues  (2021)  found  that  differences  between  participants  in  the 

topography of  the RSN might  hide commonalities in  activations if  standard 

group analysis techniques are used for the analysis of fMRI data. For example,  

nine different subnetworks of the RSN were found that were only discernible in 

single subjects and did not show up in group analyses, as their exact location 

differed between participants (Gordon et al.,  2020). Individual differences in 

parietal network architecture might be one reason for inconclusive findings in 

the literature. Especially comparisons in single subject activation patterns akin 

to  the  single  subject  RSN  studies  by  Gordon  and  colleagues  (2020)  might 

explain some differences between current studies.

Convergence of findings in the dACC and dmPFC

The primary meta-analysis found a bilateral cluster spanning the dmPFC and 

the  dACC.  dACC  and  dmPFC  activation  are  often  co-occurring  (Kolling  & 

O'Reilly, 2018), and activation in a similar cluster has been found in another 

meta-analysis on the topic (Mohr et al., 2010). Furthermore, the regions have 
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been discussed as involved in decision and strategy control, thus likely playing 

a role in the cognitive processing of risk stimuli (Venkatrama et al., 2009).

Based on more recent theories, the dACC and dmPFC-region is concerned with 

evaluating the entire situation an organism is currently experiencing. It uses 

information  on  the  situation  to  trigger  a  change  of  context,  if  necessary 

(Kolling & O'Reilly, 2018). dACC activation can, for example, result in seeking 

new options in foraging designs (Kolling et al.,  2012)  or  abandoning an old 

strategy in favor of searching for a new one (Karlsson et al., 2012). 

Activation  of  the  dACC  was  observed  in  monkeys  that  acted  self-initialized 

(Shima et al.,  2007). In humans, Kolling and colleagues (2016) postulate that 

during learning, the dACC encodes the degree to which a model of the current 

environment must be updated. When faced with a decision, the dACC encodes 

the  average  value  of  exploring  alternative  behaviors  (ibid.).  More  general, 

differences in activations in the dACC serve behavioral adaptation to the task – 

an interpretation substantiated by computational models (Holroyd et al., 2021), 

finding dACC activation related to actuation of the implementation of higher-

level strategies. 

Involvement of dACC and dmPFC was stronger when financial compared to 

token incentives were used in the experimental design. Executive control has 

been  described  as  a  limited  resource  requiring  participants'  effort  to  be 

employed  (Kurzban  et  al.,  2013),  a  process  probably  implemented  through 

dACC  activation  (Shenhav  et  al.,  2013).  Participants  likely  felt  higher 

motivation when faced with financial rather than token incentives, leading to 

more substantial employment of executive control functions for the task.
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A further region directly linked to the tasks of the dACC is the dlPFC. It has 

been  described  to  implement  behavioral  adaptations  initiated  by  the  dACC 

(Voloh et al., 2015). In studies where accumulated gains could be lost again, the 

convergence  of  foci  was  stronger  in  the  dlPFC  and  dACC/dmPFC 

simultaneously.  Comparable  to  the  dlPFC  activation  described  above,  this 

could be an artifact of systematic differences between studies allowing losses 

and those that do not.

Convergence of findings in the striatum

The primary meta-analysis revealed two clusters spanning multiple regions of 

the  ventral  and  dorsal  striatum,  focused  on  the  head  of  the  caudate  but 

including  parts  of  the  nucleus  accumbens  (NAc).  The  clusters  are  located 

symmetrically in both the left and right hemispheres. In both hemispheres,  

their majority (left hemisphere 44%, right hemisphere 38%) and their peaks  

are located in the head of the caudate. As the Gaussian distribution used in the 

ALE  analysis  is  not  constrained  by  neural  anatomy,  peaks  from  separate 

regions close to each other can blur together,  as was likely the case in the 

present cluster.  Peaks reported in primary studies are partly located in the 

head  of  the  caudate  and  partly  spread  over  neighboring  regions.  A  meta-

analysis based on the full results of primary studies and not limited to peaks 

could yield more detailed results on the exact localization of activation.

The ventral caudate is known to be involved in reward processing (Liu et al., 

2010) and was observed in action selection, the initiation in decision making 

(Balleine et  al.,  2007),  and reward valuation (Lau & Gilmcher,  2008).  It  was 

more reliably found in studies comparing risky and save decisions compared to 

studies comparing levels of risk in the present meta-analysis. Based on prior 
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studies and the present findings, the ventral caudate seems more likely to be a 

general component of decision-making and valuation, not necessarily involved 

in evaluating risk specifically. 

In  previous  findings,  lateralization  of  activation  in  the  striatum  can  be 

observed. The left caudate seems more directly linked to risky decision-making 

than other types of decisions (Poudel et al., 2020) and is more reliably found if 

financial  incentives  are  part  of  the  design.  Arsalidou and colleagues  (2020) 

describe lateralization in basal ganglia depending on the type of reward and 

find activation for financial incentives in both hemispheres in the caudate. It 

thus  seems  likely  that  differences  in  reward  might  be  at  least  partially 

responsible for the lateralization of brain activations.

2.4.4.1 Correlations between contrast variables and experimental designs 
over time

Correlations between the variables used for  contrast  analyses vary between 

small and medium effects, with the strongest correlation having a coefficient of 

r = .33. Accordingly, results in one contrast are likely to be slightly influenced 

by  the  effects  from  other  contrasts.  However,  to  the  best  of  the  authors 

knowledge, no tested approaches for more complex statistical models such as 

multiple regression or ANOVAs exist for ALE analyses. As the intercorrelations 

are not excessive in size, they have to be noted as a possible source of limited 

systematic noise in the present analysis but will not be discussed further.

During the years of publication of the primary data, fMRI measurement and 

analysis  techniques  have  steadily  improved,  as  argued  above.  Any  notable 

correlations between the variables used in contrast analyses and the year of 

publication would therefore hint at a possible distortion, when newer, more 
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reliable studies all belong to one group while older, less reliable studies make 

up  the  other  group.  Correlations  between  the  contrast  variables  and 

publication  year  were  all  small  (r <  .16)  and  non-significant.  Thus, 

descriptively,  no  major  effect  of  advancements  in  methods  on  the  contrast 

analyses is to be expected. 

2.4.4.2 Limitations of the present approach

Several  limitations  of  the  present  study  have  to  be  considered.  As  a  meta-

analysis,  it  is  influenced  by  all  potential  limitations  of  primary  studies: 

experimental  designs  (Schonberg  et  al.,  2011),  imaging  parameters  and 

procedures (Feinberg & Setsompop, 2013), data processing and analysis (e.g., 

Eklund et al., 2016; Cox et al., 2017) and recommended minimal sample sizes 

(Poldrack et al., 2017) went through notable changes between the first and last 

study  included in  the  meta-analysis.  While  the  ALE  approach accounts  for 

differences  in  sample  size,  other  parameters  cannot  be  taken  into  account 

without major changes to the procedure and are still likely to affect the result.

The ALE algorithm simplifies the data by only integrating peaks of significant 

activation  and  ignoring  cluster  forms  or  non-significant  data.  Accordingly, 

ALE-analyses do not have the capacity of traditional meta-analyses to detect 

smaller  effects  that  were  not  measurable  in  primary  studies.  While  ALE 

analyses allow to include most of the published literature, future meta-analyses 

based on the actual contrast volumes of previous studies could allow far more 

detailed analyses and might detect previously unobservable small differences 

in BOLD signal.

While  the  strict  criteria  for  study  inclusion  keep  the  heterogeneity  of  the 

present  analysis  comparatively  low,  heterogeneity  is  still  present  and 
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noteworthy  -  studies  used  different  experimental  designs  and took place in 

different countries and laboratories using different equipment. A bias, while 

partly addressed through contrast analyses, cannot be excluded and is likely to 

exist to some extent. Furthermore, the strict criteria led to a smaller sample 

size than other meta-analyses on the topic (Poudel et al., 2020; Wu et al., 2021).

A notable source of heterogeneity is differences between experimental designs 

that require learning of probabilities (e.g.,  the BART) and those that do not 

(e.g., the choice between bets). As noted by Wu and colleagues (2021), learning 

processes are likely to occur in the earlier stages of the task. Participants did 

not  learn  the  probabilities  yet  in  that  phase,  and  decision-making  can  be 

assumed to happen under ambiguity. After learning, decision-making could be 

assumed to happen under risk in the later stages. Risk-taking and learning are 

intertwined and can not easily be separated in the analysis.  In the contrast 

analyses conducted in this meta-analysis, designs requiring learning were not 

evenly spread over conditions and could therefore introduce systematic bias 

(cf. table 2).

For some studies,  assumptions had to be made about  characteristics  of  the 

primary  studies  as  reported  data  was  incomplete  or  other  necessary 

information was missing. This holds particularly for missing indications of the 

direction of the reported effects, most prevalent in older studies. The direction 

of effects can sometimes be inferred from how contrasts are communicated, 

but it is often unclear if tests were conducted two-sided. Furthermore, some 

primary sources  were missing information on the reference space.  In such 

cases,  it  was  assumed  that  the  standard  reference  space  of  the  reported 

50



Theoretical Background

analysis software was used. Last, as mentioned above, not all primary studies 

communicated if financial- or token incentives were used.

2.4.4.3 Reccomendations for future studies

Based on the contrast  analyses,  recommendations for  future studies on the 

neural correlates of risk-taking can be made. Whether performance in the task 

is  incentivized  with  money  or  abstract  tokens  is  associated  with  different 

neural  activation  patterns,  with  the  caudate  and dACC  being  more  reliably 

reported  in  studies  using money as  an incentive.  This  finding  seems to  be 

related  to  higher  engagement  of  the  respective  human  subjects.  Using 

arbitrary points leads to no additional convergence in findings. In combination 

with general differences in neural networks based on differences in incentives 

(Arsalidou et al., 2020) and the ongoing discussion of domain-specificity of risk-

taking, this also calls for future studies on the effects of different incentives on 

human risk-taking.

The  exact  contrast  chosen  for  the  analysis  of  risky  decision-making  has  a 

notable  influence  on  the  findings.  Wu  and  colleagues  (2021)  describe  a 

difference  in  findings  when  using  parametric  or  categorical  approaches  to 

fMRI analysis. The present study adds to this by finding differences depending 

on the condition that risk-taking is compared to, i.e., lower-risk or save. Using 

a save condition as contrast leads to a more extensive network, including left 

caudate and left superior parietal lobule. Contrasting with lower-risk leads to a  

stronger convergence of findings in the left Insula.

2.4.4.4 Summary and perspectives for the present thesis

This meta-analysis investigated commonalities in findings of previous studies 

on human risk-taking as measured through fMRI. A network of regions was 
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found  involving  multiple  regions  previously  linked  to  decision-making  and 

risk.  Based  on  these  findings,  the  following  neuronal  processes  occurring 

during risky decision-making can be deduced: At the cognitively higher levels, 

the  currently  employed  strategy  is  continuously  monitored  and  adapted 

through the dACC (Kolling et al.,  2016; Kolling & O'Reilly, 2018). Changes in 

strategy  instigated  by  the  dACC  are  implemented  through  dlPFC  activation 

(Voloh et al., 2015) as part of the executive control network (Smith et al., 2009; 

Shenhav  et  al.,  2013).  Insula  activation  is  likely  linked  to  an  affective  or 

heuristic component in processing, as substantiated by lesion studies (Clark et 

al., 2014; von Siebenthal et al., 2017). Insula activation is lateralized, with the 

exact implications of the lateralization remaining unclear (cf. Wu et al., 2021).  

Another open question is the lateralization of caudate activation observable in 

several contrasts (cf. Poudel et al., 2020) and possibly linked to differences in 

reward processing (Arsalidou et  al.,  2020).  The role  of  the superior parietal 

lobule and Brodmann area 7 (BA7) is the least clear. Inconsistent findings in 

that  region  might  be  based  on  interindividual  differences  in  functional 

localization  (Gordon  et  al.,  2020;  Gilmore  et  al.,  2021).  Future  research  on 

individual  differences  in  risk-taking,  in  general,  could  help  to  illuminate 

correlates of pathological risk-taking and might also identify neural correlates 

of non-pathological elevated risk-taking propensity.

The  present  findings  might  help  to  understand  differences  in  findings  of 

previous  studies  related  to  heterogeneous  and  partly  incomparable 

experimental study designs. Furthermore, they allow for more precise design 

suggestions for future studies on human risk-taking.
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This  concludes  the  meta-analysis.  In  the  following  paragraphs  of  the 

introduction, one last set of studies relevant for the experimental design of this 

thesis will be discussed. 

2.5 Risk-Taking for Oneself and Others

Some  inference  about  different  incentives  can  be  made  from  the  research 

comparing risk-taking for oneself with risk-taking for others. Studies on the 

topic were conducted on the behavioral level (e.g., Stone et al., 2002; Stone et 

al., 2013) and on neural correlates of both conditions (Ogawa et al., 2018; Zhang 

et  al.,  2019).  Ogawa  and  colleagues  (2018)  let  participants  take  risks  for 

themselves  or  an  anonymous  other.  They  conducted  fMRI-based  region  of 

interest  (ROI)  analyses  of  the  right  temporoparietal  junction  (TPJ),  medial 

orbitofrontal  cortex  (mOFC),  and  ventral  striatum.  The  authors  report  that 

participants adopted a more risk-neutral approach when deciding for others.

Research  on  differences  in  risk-taking  for  oneself  and  others  developed 

partially from the research on differences between outside advice and inside 

perspective (Kray & Gonzalez, 1999; Stone et al., 2002). Accordingly, it assumes 

that both parties are in a similar situation and have similar preferences (Zhang 

et  al.,  2019:  "Participants  were  told  that  the  other  person  was  randomly 

selected  from  among  the  participants  of  another  experiment",  p.  3). 

Furthermore, current fMRI studies on the topic communicate the reward as 

being the same in both conditions, with just the recipient differing (Ogawa et 

al., 2018; Zhang et al., 2019). 
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2.6 Experimental Approach of the Present Study

This  study  investigates  differences  in  the  neural  correlates  of  human  risk-

taking dependent on the incentive domain. To that end, the BART was adapted 

for use in fMRI and different incentive domains, namely financial and social 

domains. Financial rewards were paid out after the measurement. In the social 

incentive  condition,  participants  were  instructed  that  their  performance 

influences how many gift bags would be handed out to children at a later date 

and received a certificate on the number of gift bags after the measurement.

Unlike studies on risk-taking for oneself and others, this study undertook an 

effort to maximize the difference between the different reward types. Several 

steps were taken to make social rewards more distinct: The reward was not 

communicated through numbers  but  through simplistic  smiley faces  whose 

degree of smiling corresponded to the height of the reward. Furthermore, the 

recipients were no young adults in a similar situation as the participants, but 

pre-school children.

fMRI  measurements  were  conducted  to  compare  neural  activation  patterns 

during risk-taking in both conditions. First, a general linear model approach 

was used to contrast parametric regressors of active and passive risk-taking 

within  each  incentive  condition  (financial  and  social).  In  a  second  step, 

differences and similarities of the within-condition contrasts were analyzed to 

compare neural activation patterns between the two incentives.
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2.7 Research Questions and Hypotheses

Human risk-taking behavior  seems to  be,  at  least  partially,  domain-specific 

(Mishra  et  al.,  2014;  Sevi  &  Shook,  2021).  Moreover,  research  on  reward 

anticipation  found  dissociable  neural  networks  for  different  incentives 

(Rademacher et al.,  2010; Flores et al.,  2015, Gu et al.,  2019). Therefore, the 

neural network responsible for active risk-taking is hypothesized to encompass 

different  brain  regions,  depending  on  the  incentive  at  stake.  However,  a 

general  risk-taking  factor  influencing  behavior  across  different  domains  is 

broadly  discussed  in  the  literature  (Mishra  et  al.,  2014,  Mata  et  al.,  2018, 

Nicolaou  &  Shane,  2019),  and  studies  on  reward  anticipation  found 

considerable overlap in neural activation patterns independent of the type of 

reward (Gu et al., 2019). Integrating this information and the fact that many 

processes might be necessary components of risk-taking across domains (e.g., 

value estimation, strategy formation, and selection), an overlap in the neural 

network is expected to be active independent of the incentive domain.

No prior fMRI studies on risk-taking comparing different incentive conditions 

are known to the author. Accordingly, the present study has to be understood 

as exploratory. All studies analyzed in the above meta-analysis used financial 

or arbitrary incentives. Any inference from these studies on possible findings 

in  risk-taking  with  social  incentives  are  possibly  incomplete.  However, 

preliminary  assumptions  on  the  neuronal  basis  of  incentive-dependence  in 

risk-taking can be made based on the meta-analysis described above and other 

prior literature. 

The  network  of  brain  regions  associated  with  risk-taking  in  prior  research 

contains components unlikely to be directly related to the incentive (cf. Poudel 
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et  al.  2020;  Wu  et  al.,  2021).  Activation  in  the  dACC  and  dlPFC  has  been 

associated  with  strategy  adaption  and  implementation  of  such  adaptions, 

respectively (Voloh et al., 2015; Kolling et al., 2016; Kolling & O'Reilly, 2018). In 

addition,  both  regions  are  connected  to  various  tasks  involving  cognitive 

control as part of the executive control network (Shenhav et al., 2013; Smith et  

al.,  2019).  While  the  dACC  was  observed  to  be  more  strongly  involved  if 

financial instead of arbitrary incentives were used in the above meta-analysis, 

this  likely  reflects  increased  engagement  in  the  task  (Kurzban  et  al.,  2013; 

Shenhav et al., 2013).

Differences in the neural correlates of risk-taking based on the incentive are 

more likely found in the insular cortex or the striatum based on the previous 

literature.  Both  regions  are  associated  with  risk-taking  (cf.  meta-analysis; 

Poudel  et  al.,  2020;  Wu  et  al.,  2021),  and  their  involvement  in  reward 

consumption  has  been  shown  to  depend  on  the  type  of  reward  offered 

(Arsalidou et al., 2020). Due to the findings on risk-taking in the parietal lobule 

being  heterogeneous  in  the  prior  literature,  no  assumptions  on  a  possible 

reward dependency can be made here. 

Findings  on  active  risk-taking  contrasted  with  passive  risk-taking  are 

hypothesized to resemble the network identified in the meta-analysis.  Right 

dlPFC,  bilateral  dACC,  dmPFC,  insula  and  striatum,  and  right  SPL  showed 

convergent  activation  in  prior  studies  on  risk-taking  and  were  likely  to  be 

found in the contrast of active and passive risk-taking with financial incentives 

in this  study.  Rao and colleagues (2008)  calculated a similar contrast  to  the 

present study and found differences in bilateral dlPFC, striatum, insula, and 

dACC. 
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On  a  behavioral  level,  response-time  differences  between  incentives  were 

analyzed (e.g., Zhang et al., 2019). From prior literature, it is unclear if or how 

these are affected by differences in incentives.  Zhang and colleagues  (2019) 

found no significant difference in response time between participants taking a 

risk for themselves or others which serves as a first reference point. However, 

due to the difference in focus between the work by Zhang and colleagues and 

this  study,  as  well  as  the  higher  sample  size  acquired  here,  differences  in 

findings are possible but no detailed hypotheses on the direction can be made.

Risk-taking propensity probably changes depending on the incentive. Results 

based on the DOSPERT (Blais & Weber, 2006) indicate substantial variation in 

risk-taking  propensity  between  participants  and  domains  (Blais  &  Weber, 

2006). Furthermore, risk-taking behavior is known to change in the presence of 

peers (Haddad et al., 2014) and if decisions are made for other people (Zhang et 

al., 2019). Effects from peers and risk-taking for others are only loosely related 

to the present study and the effects depend on additional design variables, such 

as whether risk-taking happens in the win- or loss- domain and the variance of 

outcomes (Haddad et al., 2014; Zhang et al., 2019; Sun et al., 2020). As such, 

risk-taking  propensity  was  hypothesized  to  differ  between  incentives,  but 

based on the limited prior literature, no clear hypotheses can be made on the 

size or direction of the effect.

2.8 Addendum: The SARS-COV-2 Pandemic

This study was conducted partly during the SARS-COV-2 pandemic. A total of 

20 participants were measured before data collection was stopped due to the 

pandemic in March 2020. Measurements could be resumed in June 2020 under 
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a strict hygiene protocol and at a slower pace. Data from 20 further participants 

were measured to balance the final sample with equal numbers of participants 

from  before  and  during  the  pandemic.  As  detailed  below,  participants' 

behavior might have been affected by the pandemic.

Self-selection bias

Both during previous pandemics,  such as  the H1N1 pandemic  in  2009,  and 

during the ongoing SARS-COV-2 pandemic, a link between risk perception and 

adaption  in  behavior  was  found  (Bish  &  Mitchie,  2010;  Wise  et  al.,  2020, 

respectively). The higher a person judges their risk of infection or its adverse 

health  effects,  the  more  they  commit  to  protective  behavior,  such as  hand 

washing or social distancing (Bish & Mitchie, 2010; Wise et al., 2020). In this 

study, such changes in behavior could lead to a selection bias, with fewer risk-

averse or  less risk-perceptive individuals  participating during the pandemic 

compared to before its start.

Changes in risk-taking propensity

During the first months of the pandemic, negative economic influences were 

perceivable  in  the  German  population:  Hövermann  and  Kohlrausch  (2020) 

analyzed  a  data  set  compiled  in  June  2020,  in  the  same time frame as  the 

second wave of fMRI measurements for the present work was conducted. They 

found less than 20% of the participants reporting that they were not likely to be 

financially  affected  by  the  pandemic  in  a  negative  way.  It  was  shown  that 

financial losses decrease people's willingness to take financial  risks, both in 

experts  in  a  short-term experimental  setting  (Cohn  et  al.,  2015)  and in  the 

general population over larger timescales (Malmendier & Nagel, 2011).
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Worldwide,  governments tried to combat  the pandemic by mandating lock-

downs  of  varying  intensity,  prohibiting  gatherings,  limiting  the  number  of 

people  allowed  to  meet,  and  other  social  distancing  measures  (Solomou  & 

Constantinidou,  2020).  These  measures  likely  had  at  least  a  short-term 

detrimental effect on the mental health of the affected populations (Solomou & 

Constantinidou,  2020;  Williams  et  al.,  2020).  Evidence  indicates  that  health 

shocks, such as severe diseases or accidents, can decrease self-reported risk-

taking  propensity  (Decker  &  Schmitz,  2016).  This  influence  is  likely  not 

mediated through a decrease in financial resources following a health shock 

(ibid.). 

In summary,  individuals  experiencing adverse health events,  either directly 

through SARS-CoV-2 or indirectly through the detrimental health effects of the 

measures taken to combat the pandemic, might have a decreased risk-taking 

propensity. The same goes for participants that are financially burdened by the 

pandemic.  Thus,  further  analyses  were  conducted  to  explore  possible 

distortions in the data that the pandemic may have induced.

Effects on neuronal activation patterns and BOLD-signal

The two factors detailed above, self-selection bias and crisis-related changes in 

risk-taking propensity, might also impact the neuronal correlates of risk-taking 

measured via fMRI. Furthermore, participants measured during the pandemic 

wore  a  surgical  mask  in  the  fMRI  scanner,  possibly  influencing  blood-

oxygenation levels. 

Law and colleagues (2021) investigated the effects of surgical mask wearing on 

resting-state and task-based BOLD signals in eight participants. They used two 
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ways to manipulate fresh air available to participants: by directly comparing 

mask-on and mask-off conditions and by supplying fresh air underneath the  

mask through a  nasal  cannula.  The experimental  manipulation results  in  a 

substantial decrease in gray matter BOLD-signal baseline (30%) when wearing 

a mask, but only minimal effects on task-based activation. In a sensory-motor 

task, 2.5% of task activation was related to fresh air supply through the nasal 

cannula (ibid.). 

Scholkmann and colleagues (2021) critically comment on the work by Law and 

colleagues (2021). They base their argument on Chan and colleagues (2020) not 

finding  any  significant  effect  of  mask-wearing  on  arterial  oxygenation  and 

suggest  some improvements  to the experimental  protocol.  Scholkmann and 

colleagues (2021) expect an even lower true effect of mask-wearing on blood 

oxygenation.

In an EEG study, Tamimi and colleagues (2022) found no effects of surgical 

mask  wearing  on  blood  gas,  oxygen  saturation,  or  EEG  data.  Fisher  and 

colleagues  (2021),  using  fNIRS,  find  results  between  those  by  Tamimi  and 

colleagues (2022) and Law and colleagues (2021): wearing a surgical mask leads 

to small but significant changes in cerebral hemodynamics in their sample of 

13 healthy adults.

Due to the inconclusive results of the prior literature, task-based BOLD-signal 

correlates of participants before and during the pandemic were compared. On 

the  one  hand,  the  present  study  can  add  to  the  literature  on  the  topic  by 

possibly  clarifying  if  any  measurable  effects  persist  in  studies  that  do  not 

explicitly focus on the effects of mask-wearing. Whether a mask is worn in the 

fMRI scanner during a pandemic is a weighing between participants' safety and 
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epistemological interest for high data quality. If the effects of mask-wearing on 

BOLD signals are negligible, the ethical consideration should favor participant 

safety. On the other hand, any significant effects between groups would restrict 

generalization  over  all  40  participants  and  have  to  be  considered  for  the 

principal analysis.
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Chapter 3: Research Methods

3.1 Participants

A sample of 30 participants was aimed for in the present study, meeting the 

previously recommended sample size to obtain reliable and replicable results 

(Murphy  &  Garavan,  2004)  and  exceeding  it  in  the  light  of  more  recent 

literature on the topic (Poldrack et al., 2017). Due to the SARS-CoV-2 pandemic, 

measurements were halted after data from 20 participants was collected. Data 

collection  could  only  resume  after  3.5  months.  Immediately  after 

measurements had to be stopped, a decision was made to increase the sample 

size  to  40  participants.  The  increase  resulted  in  an  equal  number  of 

participants before and during the pandemic. The data from one participant 

from the time after the onset of the pandemic had to be excluded for technical 

reasons, leaving the final sample size at 39 (28 female), with 20 participating 

before and 19 during the pandemic (16 and 12 female, respectively).

Participants were recruited through mailing lists, mainly from the University 

of Bremen student body. Participants received the money they accumulated 

during the trials with financial incentives and a certificate stating the amount 

of  gift bags  they  won  after  the  measurement.  In  addition,  students  of  

psychology received course credit for participating.

Older adults were excluded as they behave differently from younger adults in 

risk-taking  designs  (Best  &  Charness,  2015).  Furthermore,  neural  activity 

patterns elicited by risk-taking vary during the adult human lifespan (Yu et al., 

2016). Accordingly, recruitment was limited to participants between 18 and 35 
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years of age for the present study. The average age in the final sample is 23.9 

years (sd = 3.8), with the youngest participant being 19 and the oldest 33 years 

old. 

3.2 Task and Procedure

For the present thesis, a classic risk-taking design - the Balloon Analogue Risk 

Task (BART, Lejuez et al., 2002) - has been adapted in several ways. In the first 

section of this chapter, the design is explained and the reasons for its selection 

are detailed. Following, adaptions of the task to both the research question and 

the prerequisites of fMRI measurements are detailed. 

A behavioral  pilot  study was conducted to investigate whether these design 

decisions  had  the desired  effect.  Details  on  this  study can be  found in  the 

second section of this chapter. The results of the pilot study and its influence 

on the main study are laid out in the third section. The chapter continues with 

a section on the secondary measures taken during the study and the detailed 

fMRI  scanning  parameters.  It  ends  with  a  summary  of  the  measurement 

process as participants experienced it.

3.2.1 The task

The  word  "Trial"  is  ambiguous in  the  BART.  In  the following,  it  is  used to 

denote a full balloon, usually comprising several decisions to inflate and the 

outcome:  a  payout  or  the  explosion  of  the  balloon.  The  period  from  one 

decision phase to the next – presentation of the balloon, decision, inter-trial 

interval  (ITI),  feedback,  inflation  animation  –  will  be  referred  to  as  one 

inflation.
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Incentives

In  the  present  work,  changes  to  the  classic  design  were  made  in  order  to 

directly compare the influence of social and financial incentives on risk-taking. 

Participants were instructed to imagine themselves having a balloon inflation 

machine  and  being  at  a  funfair.  Furthermore,  they  should  imagine  being 

approached by both adults and children. In the setting, adults pay for balloons 

with money (financial incentive condition), while children get them without 

paying (social incentive condition). 

All trials had the same overall sequence of events. The only difference was in 

the presentation of the current reward for a balloon and the final reward. In 

financially incentivized trials, the exact amount accumulated was shown in a 

yellow circle. If a balloon exploded, 0.00€ was displayed in the same way. In 

the  socially  incentivized  trials,  feedback  on  the  current  reward  was  given 

through a smiley that smiled more strongly the larger the balloon was, with the 

corners of its mouth rising with each inflation. If a balloon exploded in the 

social incentive condition, a neutral smiley with a flat line as its mouth was 

shown.  Participants  were  informed  before  the  measurement  that  gift bags  

containing  buttons,  stickers,  balloons,  small  gadgets,  and  other  toys 

appropriate  for  children  would  be  handed  out  to  real  children  later.  The 

amount of gift bags was dependent on the degree of smiling of the smileys in  

the  socially  incentivized  condition.  Participants  were  also  informed  that, 

together with the money from the financial condition, they would receive a 

certificate stating the amount of gift bags they won in the social condition. One 

gift bag  in  the  social  condition was equivalent  to  one euro in  the  financial  

condition.
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The BART and fMRI

Measuring neural correlates via fMRI usually requires some adaptions to the 

tasks: Breaks must be introduced between different tasks to allow for adequate 

measurement of the hemodynamic response function (cf. Brigadoi et al., 2018). 

Furthermore, multiple repetitions of the same event can increase the signal-to-

noise ratio (Chen et al., 2022). Previous studies employing the BART in an fMRI 

setting  arrived  at  a  suitable  number  of  events  by  reducing  the  maximal 

capacity  of  the  balloons  from  the  original  100  inflations  (with  an  average 

capacity of 50 inflations) to a maximum of 8-12 with an average number of 4-5 

inflations (numbers vary between studies, compare e.g. Lei et al., 2017; Rao et 

al., 2018). Fewer inflations result in less time required for each balloon. As a 

result,  participants  can  inflate  more  balloons  in  a  reasonable  time  frame, 

increasing the number of events in each condition and thereby increasing the 

signal-to-noise ratio. In the present study, balloons can be inflated 4.5 times on 

average,  with  a  maximum  of  8  and  a  minimum  of  1  before  the  balloon 

explodes.

Previous studies using the BART in an fMRI context use a variety of contrast 

conditions (e.g. Rao et al., 2008; Hulvershorn et al., 2015; Kohno et al., 2015). 

The present study uses a "passive-viewing" condition where participants see 

the same stimuli as in the active condition but have no influence on whether 

the balloons are inflated or not. Instead, the decision is made automatically for 

them. A similar condition was previously used in other fMRI studies of risk-

taking in the BART (Rao et al., 2008; Lei et al., 2017; Rao et al., 2018)

While inflating a balloon in the BART, phases of risky decision making (when 

deciding to inflate the balloon or not) are interwoven with phases of reward 
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consumption  (when  the  current  accumulated  winnings  are  depicted). 

Differences  in  reward  consumption  might  therefore  carry  over  to  brain 

activation measurements  during the decision phases.  Previous research has 

shown that neural activation patterns are sensitive to differences in the types of 

rewards  consumed  (e.g.,  Rademacher  et  al.,  2010;  Flores  et  al.,  2015)  and 

anticipated (Nummsen et al., 2021). By using a passive-viewing condition with 

real incentives, rewards are consumed in both conditions. Any effect purely 

based on reward consumption should therefore exist in the passive and active 

condition and thus not turn up in the contrast.

In  the  classic  BART-Design,  balloons  grow  by  the  same  amount  with  each 

inflation.  Accordingly,  participants  can  decide  on  their  behavior  for  the 

subsequent inflation as soon as they see the feedback on the previous one. 

Thus, an outside observer cannot differentiate between the feedback and the 

decision phase. The present work decouples decision- and feedback phases in 

the following way: Participants are instructed that balloons grow by different 

amounts  with each inflation.  The  new balloon size  is  shown only  after  the 

feedback that the balloon did not explode. The size increases by 1 to 3 steps, 

with  the  increase  being  fixed  a  priori  in  a  pseudo-randomized  order.  An 

abbreviated example trial can be found in figure 4.

Trial structure

Before each trial, participants are given information on whether a balloon was 

part of the passive or active condition through the words "Aktiv" and "Passiv" 

(active and passive in German). Whether a balloon was active or passive is also 

indicated  through  its  color.  Yellow  and  blue  were  assigned  to  active  and 

passive  balloons  balanced  over  participants.  Furthermore,  it  was  indicated 
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what type of incentive was used in the current trial through a stylized picture of 

either an adult or a child. Both information were shown for 1.5 seconds.

A  sequential  presentation  of  information  similar  to  the  one  described  by 

Schonberg and colleagues (2012) was chosen for the current study to reduce 

visual cluttering and control the exact point in time when participants acquire 

information.  First,  participants  were  shown  the  balloon  until  they 

communicated  via  button presses  whether  they  wanted  to  inflate  it  or  not. 

Then,  a  fixation  cross  was  shown  for  500±200  ms  before  the  currently 

accumulated reward was presented. Afterward, an animation of the balloon 

inflating to its new size (taking 500ms) was displayed before participants could 

decide again. 

Figure 4

Abbreviated example of a trial with financial incentive

Note.  The  incentive  type  is  communicated  in  the  beginning  via  a  drawn 
representation of an adult (financial) or a child (social). Images are cropped for 
representation: the screen used in the pilot- and fMRI study had a side ratio of 
4:3, with the screen being black except for the stimuli depicted here. Balloons 
were separated by a 3000 ms ± 1500 ms ITI (Inter trial interval).
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Participants had a maximum of 4 seconds to decide on whether to inflate a 

balloon or not.  They were instructed to take enough time to make a sound 

decision while not  overthinking their  decisions and staying within the time 

frame. If participants failed to respond within 4 seconds, the text "zu langsam" 

("too slow" in German) was displayed in red letters, the current balloon was 

aborted without any reward, and the next balloon started. Figure 4 depicts an 

abbreviated version of an example trial. Between trials, a fixation cross was 

shown for an interval of 3000ms ± 1500ms, uniformly distributed.

Trial Order

Participants  were  shown  120  balloons  distributed  equally  over  all  four 

combinations of active and passive and socially and financially incentivized 

trials.  The  balloons'  capacity  ranged,  in  integrals,  from  2  to  16.  All  four 

conditions contained two balloons reaching each different size.  As balloons 

increased in size in steps of 1  to 3  with each inflation,  the largest  balloons 

exploded after nine inflations.  The average number of inflations before the 

explosion was 4.5, the minimum 1.

The design was split  in two halves.  The order of the halves was alternated 

between  participants  for  counterbalancing.  The  trial  order  was 

pseudorandomized,  and  the  order  of  presentation  was  the  same  for  all 

participants in the same counterbalancing group. The experiment had three 

breaks  of  variable  length at  regular  intervals  during the task.  During these 

breaks, participants were shown their cumulative earnings from the social and 

financial  condition and were instructed to continue with the task whenever 

they were up to it.
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Experimental Setup

The experiment was scripted in Octave (Version 4.2.1; Eaton et al., 2017), using 

the Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997; Kleiner et 

al., 2007) and running under Ubuntu for high timing precision (cf. Bridges et 

al.,  2020). During feasibility-  and pilot studies,  participants were seated in a 

darkened room in front of a computer screen and used a regular computer 

mouse  for  responses.  In  fMRI  measurements,  participants  laid  in  the  MRI 

scanner,  and  stimuli  were  projected  onto  a  screen  outside  the  scanner. 

Participants saw the stimuli through a mirror mounted on the head coil. In all 

setups, stimuli were presented such that participants saw them straight ahead 

at  what  they  perceived  as  eye  level.  Responses  in  the  scanner  were 

communicated via button presses of the right index, middle and ring finger on 

an input device resembling a three-button mouse. The mapping of buttons to 

responses was counterbalanced over participants.

Feasibility study

The adapted BART design was tested in a feasibility study with 4 participants. 

The study goal was to uncover significant flaws in the design and determine 

whether a blocked or pseudo-randomized design should be used. A pseudo-

randomized design offers to keep the participants engaged by not having too 

many passive trials one after the other. However, frequent changes between 

the  different  conditions  (social  vs.  financial,  active  vs.  passive,  differing 

balloon inflations) might confuse participants.

Interviews  conducted  with  the  participants  after  the  measurement  and  the 

analysis of the behavioral data showed that participants in both conditions had 
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no  problems  understanding  the  task.  As  participants  who  were  shown  a 

blocked design reported boredom during blocks  of  passive balloons,  it  was 

decided to use a pseudo-randomized design for the behavioral pilot study.

3.2.2 Behavioral pilot study - goals and setting

After  the  feasibility  study,  a  behavioral  pilot  study  was  conducted  with  10 

participants with both financial and social rewards. Measurement conditions 

were closely  adapted to the fMRI  environment where the actual  study took 

place. Participants sat in a darkened room in front of a computer screen and 

used a similar device to communicate responses as participants later on in the 

scanner used.

Participants were asked how motivated they felt  by the social  and financial 

incentives and overall design after the measurement. Answers were given on a 

10-point  discreet  scale  ranging  from  "Not  motivated  at  all"  to  "Highly 

motivated".  In  addition,  during  the  short  interview  after  the  measurement, 

participants were explicitly asked whether they had problems with the pace or 

structure of the design and if they got bored or stressed out by it. Participants 

were  furthermore  asked  if  they  had  any  more  general  problems  in 

understanding the design.  Due to the small sample size and the resulting low 

power, no statistical analyses were conducted on the data from the pilot study.

3.2.3 Behavioral pilot study - results and adaptions

The behavioral pilot study revealed no need for extensive revisions regarding 

the design. All participants reported a motivation higher than the neutral point 

on the 10-point self-report scale (m = 8.3,  sd = 1.55,  min = 6,  max = 10). Both 

social and financial incentives were on average rated as motivating (msoc = 7.95, 
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sdsoc = 1.21; mfin = 7.1, sdfin = 1.85). Detailed ratings are shown in figure 5. While 

the lowest ratings for the social incentive were still above the middle of the 

scale,  the lowest  rating for  the  financial  incentive  was at  3.  The respective 

participant reported only studying half-time and working the other half of the 

day. Thus, care was taken in the actual fMRI study to record the employment 

status. If the design were utilized in a setting with a non-student population, 

the financial incentives might have to be increased.

Most participants had no complaints about the design. Some remarked that the 

experiment was a bit too long (n = 2) but also reported no notable problems 

with  their  concentration  regarding  the  overall  length.  Three  participants 

reported boredom when there were more than three passive trials, one after 

the other. The highest number of recurring passive trials was five, which only 

happened once in the design. Two times, four passive balloons were presented 

back to back, making this a concern for a minority of trials, affecting a minor 

number  of  participants.  Furthermore,  the  reported  overall  motivation  was 

nonetheless satisfactory. It was thus decided not to change the design.

Task  understanding  was  good,  albeit  not  perfect,  with  two  participants 

showing understanding problems that only became apparent during the ten 

testing balloons.  All  problems in  understanding could,  however,  quickly  be 

resolved. In addition, an analysis of participants' behavior shows reasonable 

choices by all participants - they always inflated tiny balloons, seldom inflated 

large balloons,  had very few missing responses,  and overall  short  response 

times. The instructions were further standardized and written down in plain 

text  instead  of  the  bullet  points  used  for  the  pilot  study  to  maximize 

understanding of the task and increase objectivity and reliability.
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Figure 5

Ratings of motivation in the pilot study

Note. Participants were asked to indicate on a 10-point scale how motivated 
they  felt  due  to  the  financial  incentives,  the  social  incentives  and  how 
motivated they were in the overall design.

3.2.4 Self-report scales

The GRiPS (Zhang et al., 2019) was used to measure self-reported general risk-

taking  propensity.  In  addition,  domain-specific  risk-taking  propensity  was 

measured with the DOSPERT (Blais  & Weber,  2006).  As altruism and social 

orientation,  might  influence  differences  in  behavior,  participants  were 

furthermore asked to complete the Social Value Orientation scale (SVO-scale) 

by Murphy and colleagues (2011).

3.2.5 fMRI scanning parameters

MRI and fMRI data were acquired with a Siemens Magnetom 3-Tesla system. 

Structural T1-weighted images with a 1mm isometric voxel size (R = 2400 ms, 

TE = 2.43 ms, TI = 900 ms, flip angle = 8°; FOV = 256*256mm; 176 slice) were 
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recorded for alignment of individual functional data to a template. T2-weighted 

images  were  recorded  to  be  used  for  diagnostic  confirmation  in  case  of 

incidental  findings.  Structural  measurements  preceded  functional 

measurements so participants had time to adapt to the scanner environment.

Functional data were acquired using an echo-planar imaging (EPI) sequence 

with a GRAPPA acceleration factor of two (echo time = 30 ms, repetition time 

(TR) = 2500 ms, 46 slices interleaved). Measurements were oriented parallel to 

an imaginary line connecting anterior- and posterior commissure. Voxels had 

a size of  3 mm isometric with an in-slice field of view of 64*64 voxels.  The 

number of volumes recorded was dependent on participants behavior, as both 

response  time  and  choices  had  an  effect  on  the  experiment's  duration. 

Functional  scanning  was  expected  to  take  34  minutes  per  participant, 

excluding breaks. This would have resulted in 816 functional volumes recorded 

per participant.

3.2.6 Experimental procedure and setting

After arriving on-site,  participants were instructed about  the study's  outline 

and  gave  their  informed  consent.  During  the  pandemic,  participants  were 

required to wear a surgical mask and disinfect their hands before entering the 

laboratories.  Demographic  data,  information  on  illnesses,  medication,  drug 

use, and sleep quality were gathered in a small interview. All consent forms, 

participant information and demographic questionnaires can be found in the 

appendix (document 2). In the next step, participants were introduced to the 

specific implementation of the BART with a standardized text.  Finally,  they 

were informed about the different incentives before starting the test trials of 

the BART.
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The  experimental  procedure  was  approved  by  the  ethics  committee  of  the 

University  of  Bremen,  the  approval  vote  can  be  found  in  the  appendix 

(document 1A). Furthermore, a hygiene concept (appendix document 1B) was 

implemented  before  measurements  were  resumed  during  the  SARS-COV-2 

pandemic. Participants furthermore signed a consent form informing them of 

the steps taken to reduce a risk of infection (appendix document 1C). The local 

pandemic crisis board of the university approved the procedure. 

3.3 Data Analyses

Response  times  and risk-taking  was  analyzed based  on  the behavioral  data 

collected  during  the  fMRI  measurement.  These  behavioral  analyses  are 

detailed  in  the  first  paragraphs  of  this  section.  Following  the  behavioral 

analyses, details on the fMRI analysis are presented. 

3.3.1 Behavioral analyses

All behavioral analyses were conducted in R (version 3.6.3; R Core Team, 2020) 

with  RStudio  (version  1.1.456;  RStudio  Team,  2016).  Data  from  all  40 

participants was used for behavioral analyses. 

Absolute and relative numbers of missing trials were calculated, once over all 

participants and once separately for each participant, to gauge whether any 

participants had to be excluded due to excessive amounts of missing trials. 

Assumptions  of  normal  distribution  were  checked  with  Shapiro-Wilk  tests 

before conducting any analysis depending on them.

74



Research Methods

Differences in response times in the four conditions resulting from the two 

factors  -  trial  type  (active/passive)  and  incentive  (financial/social)  -  were 

investigated using a 2x2 repeated measures analysis of variance (ANOVA).

Associations  between  behavior  in  the  BART  and  the  incentive  type  were 

analyzed as follows. Burst-scores (total number of exploded balloons, Schmitz 

et  al.,  2016)  were  calculated  for  each  participant  to  estimate  risk-taking 

propensity. The burst-score was used as it is reported to be most consistently 

related  to  real-world  risk-taking  between  several  different  scoring  methods 

(Schmitz  et  al.,  2016).  Balloons  stopped  because  participants  missed  the  4-

second response interval were omitted from analyses of risk-taking propensity. 

The  relative  number  of  exploded  balloons  in  each  category  was  used  for 

analyses so that missing trials did not interfere with the comparison between 

participants.

3.3.2 fMRI preprocessing and analysis

Analyses of structural and functional data were conducted in AFNI (Cox, 1996; 

Cox & Hyde,  1997).  For  preprocessing,  a  script  was  created through AFNIs 

"uber_subject.py" function, adapted manually, and applied to the data of all 

participants. The script can be found in the appendix (document 3).

MRI data were preprocessed as follows: Dicom files were converted to NIfTI 

format  (Li  et  al.,  2016)  and  structural  data  were  defaced  through  AFNI's 

@afni_refacer function to decrease the risk of de-anonymization (cf. Theyers et 

al.,  2021).  Slice  timing  was  corrected  before  movement  parameters  were 

estimated with rigid-body transformations. Any volumes where a participant's 

head moved by  more than 0.3  mm within one TR were censored from the 
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analysis. The functional and structural alignment was performed using Afni's 

"lpc+ZZ" cost function (Saad et al., 2009). Structural normalization was based 

on the  MNI152-2009c  template  as  packaged with AFNI  (Fonov et  al.,  2011). 

Functional volumes were registered based on the volume determined to have a 

minimum number of outlier voxels (+/- 3 standard deviations from average). 

Nonlinear warping was used to register structural scans to the template volume 

as described by Cox and Glen (2013).  Data were checked for accidental left-

right flips (cf. Glen et al., 2020). Data were blurred with an 8 mm full-width-

half-maximum gaussian kernel.  Functional  data  were  masked based on the 

structural scan, and voxel wise scaling was applied as described by Chen and 

colleagues  (2017).  Volumes  where  5%  of  voxels  or  more  were  found  to  be 

outliers (± 3 standard deviations from voxel average),  were censored in the 

regression  model.  AFNIs  quality-control  scripts  were  used  to  check  for 

mistakes  in  preprocessing,  and  two  independent  researchers  evaluated  the 

results.

First level analysis

A general linear model approach was used for fMRI analysis. Three different 

types of stimuli were modeled separately for all four combinations of active 

and passive and social and financial incentives – social incentive active (socact), 

social incentive passive (socpas), financial incentive active (finact) and financial 

incentive  passive  (finpas).  Decision  periods  before  decisions  to  inflate  were 

modeled with two regressors each: A constant regressor for the average effect 

and  a  mean-centered  regressor  parametrically  modulated  by  the  explosion 

probability of the current balloon. Regressors for the decision periods were 

based  on  a  duration  modulated  BLOCK  regressor,  an  incomplete  gamma 
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function convolved with a boxcar function equaling one during the decision 

period and zero everywhere else. In addition, negative feedback in the form of 

an exploded balloon was modeled with a fixed duration BLOCK regressor, as 

was positive feedback in the form of the current reward. The overall number of 

regressors of interest was 16.

Added to the model were motion estimates for translation and rotation in all 

directions  (6  regressors)  and their  derivatives  (6  regressors)  to  account  for 

movement-related effects.  In addition, Legendre polynomials  were added to 

the  regression  model  for  baseline  detrending.  The  number  of  polynomials 

added was determined through AFNIs afni_proc.py script and varied between 

15 and 17, depending on the measurement duration.

General linear tests (GLTs) were calculated on the subject level for the decision 

period  regressors.  For  both  types  of  incentives,  a  GLT  was  calculated  to 

compare parametric regressors in active and passive trials.

Second level analysis

Second level analyses were based on the GLTs calculated at the subject level. 

Non-parametric  cluster  analyses  were  used  for  statistical  interference  and 

calculated through the -ClustSim option of AFNIs 3dttest++ function. Residuals 

of the GLM were used with randomized signs to simulate 10000 volumes of null 

results.  Based on this data and the cluster forming threshold (p < .001),  the 

cluster size threshold is calculated so that the false discovery rate is held below 

5% (cf. Cox et al., 2017a; Cox et al., 2017b). Voxels were considered to belong to 

a cluster if their edges or faces touched. All tests were conducted two-sided.
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Group-level contrasts were calculated for parametric regressors only. Voxel-

wise t-tests between beta-values were used to compare active and passive risk 

taking within both incentive conditions (socact -  socpas and finact -  finpas).  The 

contrast calculated within the financial incentive domain is a loose conceptual 

replication of prior studies on risk-taking with financial incentives (cf. Lei et 

al.,  2017, Rao et al.,  2018). It will  be discussed in comparison to these prior 

studies. Because the individual data of these prior studies is not available, the 

thresholded results must be used for comparison. This procedure increases the 

likelihood  that  small  differences  in  findings  where  results  are  close  to  the 

threshold of significance are overinterpreted (cf.  Chen et al.,  2017).  For the 

contrast  within  the  social  condition,  no similar  prior  studies  exist,  and the 

findings of this analysis will not be analyzed on their own. Instead, the analyses 

detailed in the following paragraph will be used.

A symbolic GLT was calculated to determine whether the difference between 

the inter-incentive contrasts significantly differed from zero ((socact - socpas) - 

(finact -  finpas)).  To  analyze  overlapping  regions  between  incentives  a 

conjunction  analysis  was  used  ((socact -  socpas)   (fin∩ mix act -  finpas)).  Anatomical 

labels  were drawn from the human brainnetome atlas  (Fan et  al.,  2016)  as 

implemented in AFNI's "whereami" function.

Additional exploratory analyses

In  case  significant  differences  in  brain  activation  between  the  social  and 

financial incentive conditions were found, further exploratory analyses of the 

findings were conducted. The exploratory analyses were based on the symbolic 

GLT comparing the two incentive conditions ((socact - socpas) - (finact - finpas)). The 

average  beta-estimate  over  voxels  of  this  GLT  was  calculated  for  each 

78



Research Methods

participant.  Calculations  were  conducted  separately  for  each  cluster  of 

significant differences found at the group level. These calculations result in a 

single value for each participant and cluster, signifying the average difference 

between the incentive conditions for each participant in each cluster.

The  resulting  data  were  used  for  strictly  exploratory  regression  analyses. 

Average  beta-estimates  were  used  in  a  multiple  regression  model  with  six 

predictor variables:

• participants' risk-taking-propensity for social and financial incentives 
(burst-score)

• self-reported probabilities to engage in risky financial and social behavior 
taken from the DOSPERT

• self-reported general risk-taking propensity as measured with the GRiPS 

• social value orientation measured with the SVO-scale

While other data on participants'  risk-taking preferences were available, the 

variables included in the model had to be limited. The measured risk-taking 

propensity was included as it is directly related to the central question of this 

thesis and the only measure of actual risk-taking available. DOSPERT-Scales 

and  the  GRiPS  were  included as  domain-specific  and  -general  measures  of 

reported risk-taking propensity. Lastly,  the SVO scale is related to self-other 

differences in behavior that were previously investigated in the context of risk-

taking by other groups (e.g., Stone et al., 2002; Stone et al., 2013; Ogawa et al., 

2018; Zhang et al., 2019) and might influence present results. A second multiple 

regression  model  was  calculated  with  all  predictor  variables  significantly 

contributing to the previous model at p < .1.
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3.4 Estimation of Influences of SARS-CoV-2 Pandemic

3.4.1 Influences on behavioral measurements and self-report scales 

As argued in the chapter on the theoretical background, the onset of the SARS-

CoV-2 pandemic might have influenced participants' risk-taking propensity in 

two  different  ways.  First,  an  overall  risk-taking  reduction  due  to  negative 

experiences  might  have  occurred.  Second,  self-selection  toward  more  risk-

taking  individuals  might  have  influenced  the  sample  selection  during  the 

pandemic.

Estimation of self-selection bias

The  data  compiled  from  each  participant  include  various  self-report 

measurements of both general- and domain-specific risk-taking. A multivariate 

ANOVA  (MANOVA)  was  calculated  to  estimate  differences  between 

participants from before and during the pandemic.

The GRIPS score and the DOSPERT-Scales for financial, social, and health risk-

taking  propensity  were  used  as  dependent  variables.  Financial  and  social 

scales are of specific interest as these are the two types of incentives used in 

the present study. Risk-taking propensity in the health domain was added as it 

is related to the risks imposed by a pandemic. A similar analysis was conducted 

on  the  behavioral  measures,  namely  the  BART  burst-score.  The  predictor 

variables  were  the  burst-scores  for  balloons  with  social  and  financial 

incentives, the predicted variable the date of the measurement, dichotomized 

to "before" and "during" the pandemic.

Estimation of changes in risk taking propensity
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To estimate whether the pandemic changed risk-taking behavior in the study's 

sample,  participants  from  before  the  pandemic  were  contacted  again  in 

September 2020. They were asked to participate in an additional online survey 

to help estimate the effects of the pandemic on risk-taking. Within the data 

collected in the follow-up study were the DOSPERT scales for health, social and 

financial risk-taking and the GRIPS. All scales mentioned above were added as 

independent  variables  to  a  repeated  measures  MANOVA  predicting  the 

timepoint of the measurement. Of the 20 participants that were contacted, 16 

took part in the follow-up study.

The two likely effects of  the pandemic,  overall  risk-taking reduction due to 

negative experiences and self-selection towards more risk-taking individuals, 

act in opposite directions. As it is unclear how strong they are relative to each 

other, all tests in the above section were conducted two-sided.

3.4.2 Influences on fMRI measurements

To  estimate  the  effects  of  the  pandemic  and  mask-wearing  on  the  BOLD-

signals,  beta-weights  of  the  main  parametric  regressors  of  interest  were 

compared between participants from before and during the pandemic. To this 

goal, three two-sample t-tests with cluster simulations were calculated for the 

symbolic GLTs within the social and financial conditions (socact - socpas and finact 

- finpas) and the difference between the two conditions ((finact - finpas) - (socact - 

socpas)).
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Chapter 4: Results

4.1 Behavioral Results

4.1.1 Response times, missing trials and overall performance measurement

Over all participants and trials, the maximal response time of 4 seconds was 

exceeded 31 times, or in 0.17% of all trials. 27 participants never took too long 

to decide on whether to inflate a balloon or not. The highest relative amount of 

exceed  response  time  windows  for  a  single  participant  was  4.6%.  No 

participants had to be excluded from the analysis due to missing trials.

Participants took on average 542ms (sd = 384ms) to respond, measured from 

the  beginning  of  the  decision  window.  As  part  of  the  behavioral  analysis, 

average response times in the different conditions (active and passive balloons 

and social and financial incentives) were calculated for each participant and 

compared  in  a  2x2  factorial  within-subject  ANOVA.  Shapiro  Wilk  tests 

confirmed  that  the  response  times  in  three  of  the  four  conditions  were 

normally distributed (p > .05).  Response times in the active social  condition 

significantly deviated from a normal distribution (Wsoc-act =  .94,  psoc-act =  .040). 

False positives in ANOVA are not strongly influenced by slight deviations from 

normality  (Harwell  et  al.,  1992;  Lix et  al.,  1996;  Schmider et  al.,  2010).  The 

ANOVA  was  thus  calculated,  but  results  from  this  analysis  should  be 

interpreted with adequate caution.

No interaction effect between the two factors was found (F(1,38) = .01, p = .091). 

Main effects of both the balloon type (F(1,38) = 37.33, p <.001, ηp² = .50) and the 

incentive type (F(1,38) = 10.82,  p = .002,  ηp² = .22) on the response time were 
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found. Participants took longer to decide when balloons were active compared 

to passive (mact = 592 ms, sdact = 186 ms; mpas = 492 ms, sdpas = 146 ms). Balloons 

with a social  incentive elicited longer response times compared to balloons 

with a financial incentive (msoc = 552 ms, sdsoc = 175 ms; mfin = 532 ms, sdfin = 174 

ms). Data on response-times are illustrated in figure 6.

Figure 6
Boxplots of average response times in all conditions

Note. Mean  response  times  within  each  combination  of  conditions  were 
calculated on the individual level.
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4.1.2 Behavioral risk measurements

The  behavioral  risk  measurement  was  compared  between  the  different 

incentives in active trials. The relative burst score (Schmitz et al., 2016) was 

used to estimate risk taking in the BART. The number of balloons completed 

under each condition varied slightly over participants due to missed response 

time windows. Thus, the relative number of exploded balloons was used for 

the analysis instead of the absolute amount. 

Burst-scores in both groups were normally distributed (Wsoc = .97, psoc = .44; Wfin 

=  .97,  pfin =  .15).  A  paired  t-test  shows significant  differences  between  risk-

taking measures of the two incentive types (t(38)= 3.64,  p = .001). With social 

incentives,  participants  were  less  risk-seeking (m =  35%,  sd =  8  percentage 

points) compared to financial incentives (m = 39%, sd = 9 percentage points).

4.1.3 Influences of SARS-CoV-2 pandemic on behavioral results

Data of participants from before and during the pandemic were compared to 

test for self-selection bias. Data from a follow-up survey and retrospective self-

report  scales  were  used  to  estimate  changes  in  the  risk-taking  propensity 

caused by the pandemic. 

Self-selection bias

A MANOVA using Pillai's trace was calculated to compare the DOSPERT risk-

taking propensity scales for the social, economic and health domains as well as 

the  GRIPS  score  between  the  data  sets  collected  before  and  during  the 

pandemic. No significant difference between the groups were found (V = .073, 

F(4, 35) = 0.63,  p = .64). A power analysis conducted with G*Power (Version 
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3.1.9.7, Faul et al., 2009) revealed a power of .18 to reveal effects of a medium 

size based on the aquired sample size. Figure 7 depicts the relevant DOSPERT-

scales and the GRiPS for both groups.

Figure 7
Comparison of selected self-report scales between the participants partaking 
before and during the SARS-COV-2 pandemic

A  second  MANOVA,  comparing  the  burst-scores  with  social  and  financial 

incentives between the two groups found no significant differences either (V = 

0.050,  F(2,35) = 0.92,  p = .410). A power analysis based on the aquired sample 

size resulted in a power of .25 to reveal effects of medium size. The underlying 

data are depicted in figure 8.
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Figure 8
Comparison of burst-scores in the BART between the participants measured before 
and during the SARS-COV-2 pandemic

Changes in risk-taking propensity

Comparing data on social, financial, health and general risk taking propensity 

from participants before the pandemic with data from the same participants 

collected during the follow up study with a repeated measures MANOVA using 

Pillais trace found no significant difference in measurements between the two 

time points (V = 0.379, F(3, 13) = 2.65, p = .093).

4.2 fMRI Results

The  number  of  volumes  recorded  differed  between  participants  due  to 

differences in response times and decisions in the task. The average number of 

TRs was 894 (SD = 43), the minimum 818, and the maximum 1016.
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4.2.1 Social and financial incentives

Risk-taking with financial incentives

Six  clusters  of  significant  differences  in  beta-estimates  were  found  in  the 

contrast  of  active  and  passive  risk-taking  with  financial  incentives.  For  all 

clusters,  beta-estimates  were  higher  in  the  active  compared  to  the  passive 

condition. Clusters were located in the left striatum stretching to the left insula, 

in  the  right  striatum,  dorsal  anterior  cingulate  cortex  (dACC),  right  insular 

cortex and bilaterally in the occipital cortex. Detailed information on cluster 

sizes, extent, and peaks can be found in table 4 and figure 9.

Figure 9
Significant results of the contrast within the financial incentive condition

Note. Significant differences in beta-estimates of active and passive risk-taking 
within the financial incentive condition, superimposed on the MNI152-2009c 
brain (Fonov et al., 2011).
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Risk-taking with social incentives

Seven clusters of significant differences were found by contrasting active and 

passive risk taking within the social incentives condition. Beta-estimates were 

higher in the active condition in a large cluster spanning much of the occipital 

cortex and three smaller clusters, one in the bilateral dACC and right BA9, one 

spanning the left striatum, insula, and IFG, and the last in the right striatum.  

Beta  estimates  in  the  passive  condition  were  significantly  higher  in  three 

clusters,  all  located in  the  left hemisphere:  In the  IFG and the middle  and  

inferior  frontal  gyrus.  The  exact  location  of  peaks  and  more  detailed 

information on the extent can be found in table 4 and figure 10.

Figure 10
Significant results of the contrast within the social incentive condition

Note. Significant differences in beta-estimates of active and passive risk-taking 
within the financial incentive condition, superimposed on the MNI152-2009c 
brain (Fonov et al., 2011).
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Contrast between risk-taking with social and financial incentives

Contrasting the results of both prior analyses and thus comparing differences 

between  the  two  incentive  types  resulted  in  a  single  cluster  of  significant 

differences in the right inferior parietal lobule (IPL) in Brodmann areas 39 and 

40.  The  findings  are  detailed  in  table  4  .  Figure  11  depicts  the  results  

superimposed on a standard MNI152_2009c brain (Fonov et al., 2011).

Conjunction analysis of risk-taking with social and financial incentives

A conjunction analysis of findings from contrasting both active conditions with 

the respective passive conditions within each incentive found five clusters of 

overlapping activation. Clusters were located in the dACC, bilateral striatum 

and  bilateral  OC.  Again,  details  can  be  found  in  table  4.  The  findings  are 

depicted in figure 11.

Figure 11
Contrast and conjunction of the results from both incentive conditions

Note. Significant differences and commonalities of the social and financial risk-
taking contrasts, superimposed on the MNI152-2009c brain (Fonov et al., 2011).
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Table 4

Results of all fMRI analyses on neural correlates of risk-taking

peak coordinates peak size

Nr. location of peak extent X Y Z
Z-score

(p)
voxels
(mm³)

ea - ep minimal cluster-size for significance: 55 voxels

ea > ep

1 Left orbital gyrus,
<2mm from left 
nucleus accumbens

Left striatum (Putamen, 
caudate, nucleus 
accumbens, globus 
pallidus)
Left inferior frontal 
gyrus
Left dorsal insular lobe

19.5 -4.5 -16.5 4.416
(<.01)

230
(6210)

2 Right dorsal anterior 
cingulate cortex 
(dACC)
<2mm from right 
medial BA9

Right dACC, right medial 
and dorsolateral SFG, 
left ACC

-1.5 -25.5 34.5 4.587
(<.01)

227 
(6129)

3 Right occipital cortex Bilateral rostral cuneus, 
right occipital cortex

-25.5 91.5 34.5 4.142
(<.02)

141
(3807)

4 Right putamen Right striatum (putamen, 
caudate)

-10.5 1.5 13.5 4.211
(<.02)

111
(2997)

5 Left occipital cortex
(1mm: cCunG_left)

Left occipital cortex and 
caudal cuneus

1.5 103.5 4.5 4.367
(<.03)

94
(2538)

6 Right dorsal 
agranular insula
(1mm: A12/47l_right)
(2mm: A44op_right)

Right orbital gyrus and 
opercular IFG, right 
dorsal insula

-49.5 -19.5 -7.5 4.079
(<.03)

79
(2133)

ea < ep 

No significant clusters matching criteria

sa – sp  minimal cluster-size for significance: 57 voxels

sa > sp

1 Medial superior 
occipital gyrus

Right occipital cortex, 
bilateral parietooccipital 
sulcus, bilateral lingual 
gyrus

-13.5 85.5 46.5 3.406 
(<.01)

1480
(39960)
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peak coordinates peak size

Nr. location of peak extent X Y Z
Z-score

(p)
voxels
(mm³)

2 (3) Right dACC
<1mm from left dACC
<1mm from right 
subgenual ACC

Bilateral dACC, right 
medial BA9, right 
subgenual ACC

-1.5 -37.5 19.5 3.945
(<.01)

300
(8100)

3 (6) Left dorsal 
disgranular insula
<1mm from left 
opercular IFG
< 2mm from left 
ventral IFG
< 2mm from left 
agranular insula

Left striatum (Putamen, 
caudate, nucleus 
accumbens), left insula, 
left opercular IFG

43.5 -13.5 -1.5 3.834
(<.01)

176
(4752)

4(7) Right nucleus 
accumbens

Right striatum (caudate, 
putamen, nucleus 
accumbens)

-16.5 -4.5 -10.5 3.292
(<.02)

97
(2619)

Sp > 
sa

1 (2) Left inferior parietal 
lobule (IPL), BA39

Left IFP, BA39 & BA40 34.5 76.5 52.5 -3.297
(<.01)

366
(9882)

2(4) <3mm from left 
inferior frontal 
junction

Left middle and inferior 
frontal gyrus

52.5 -22.5 40.5 -4.114
(<.01)

225
(6075)

3(5) <2mm from left 
orbital gyrus 
(A12/47l)

Left middle frontal, 
orbital and inferior 
frontal gyrus

49.5 -46.5 -16.5 -4.159
(<.01)

213
(5751)

(ea-ep) – (sa-sp) minimal cluster size for significance: 54 voxels

ea-ep > sa-sp

1 < 1mm from right 
Cuneus

Right caudate, right 
rostrodorsal BA39 & 
BA40

-49.5 52.5 58.5 4.007
(<.04)

68
(1647)

ea-ep < sa-sp

No significant clusters matching criteria
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peak coordinates peak size

Nr. location of peak extent X Y Z
Z-score

(p)
voxels
(mm³)

ea-ep  sa-sp∩ sa-sp  conjunction of ea-ep and sa-sp, no minimal cluster size

Location of internal 
center Center of mass 

1 Right dACC Right and left dACC, right 
medial BA9

-4.5 -25.5 28.5 NA 101
(2727)

2 Right lateral 
occipital cortex

Bilateral occipital cortex -13.5 88.5 22.5 NA 95
(2565)

3 Left ventromedial 
putamen
<1mm from left 
caudate

Left striatum (caudate, 
putamen, anterior 
cingulate)

19.5 -10.5 -4.5 NA 76
(2052)

4 Right ventromedial 
putamen
<1mm from right 
caudate

Right striatum (caudate, 
putamen)

-16.5 -10.5 -1.5 NA 47
(1269)

5 Left occipital cortex Left occipital cortex 7.5 97.5 13.5 NA 43 
(1161)

Note.  Cluster  peak  location  and  extent.  For  conjunction  analysis,  internal 
center coordinates (as calculated through AFNIs iCenter function) are given. 
Regions accounting for less than 5% of a cluster are not included in the table.  
All coordinates in MNI-notation. NA: Not applicable; Nr.: Number of cluster.
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4.2.2 Additional exploratory analyses

For  each participant,  average  beta-estimates  in  the cluster  identified in  the 

contrast  between  the  two  incentive-conditions  were  calculated.  A  multiple 

regression model with burst-scores, domain-specific and -general risk-taking 

propensity and SVO-values was calculated. It  does not explain a statistically 

significant amount of variance in the average contrast estimates (F(6,29) = 1.21, 

p = .32,  R = .200,  R²adjusted = .035). Only the burst-score in the social-incentive 

condition was significant at p < .1 (β = 0.0027, 95% CI [-0.0002, 0.0056], βi = 0.40, 

t(29) = 1.883,  p = .070). The smaller model therefore included only the social-

incentive  burst  score  as  a  predictor.  The  model  explains  a  statistically 

significant amount of variance in the average contrast estimates (F(1,37) = 8.51, 

p = .006, R = .187, R²adjusted = .165, β = 0.0028, 95% CI [0.0009, 0.0048], βi = 0.43).

4.2.3 Influences of SARS-CoV-2 pandemic on fMRI results

No  significant  differences  in  the  beta-weights  of  the  main  parametric 

regressors of interest were found between participants from before and during 

the pandemic.
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Chapter 5: Discussion

This work investigates the impact of different incentives on participants' risk-

taking behavior and their respective neural responses. On the behavioral level, 

participants were less risk-seeking and had longer response times if incentives 

were  social  compared  to  financial.  Both  significant  differences  and 

commonalities  in  the  neural  correlates  between  the  two  conditions  were 

found.  The  commonalities  outline  a  domain-general  risk-taking  network 

similar to the findings of the meta-analysis. Significant differences between the 

conditions were found in the inferior parietal lobule. It seems unlikely that the 

onset of the SARS-CoV-2 pandemic during the data collection influenced results 

to a considerable degree.

5.1 Extent of Influences of the SARS-CoV-2 Pandemic

Based  on  prior  literature,  an  influence  of  the  onset  of  the  pandemic  on 

behavioral  data  was  possible.  Self-selection  bias  might  have  influenced the 

sample selection (Bish & Mitchie, 2010; Wise et al., 2020). Furthermore, risk-

taking  propensity  might  have  decreased  due  to  the  pandemic's  adverse 

financial and health effects (cf. Malmendier & Nagel, 2011; Cohn et al., 2015; 

Decker & Schmitz, 2016).

None of the analyses conducted to investigate possible effects of the pandemic 

on behavior, self-description, and self-selection bias found a significant effect. 

On the descriptive level, scores on the GRiPS were slightly higher during the 

pandemic  compared  to  before  its  onset.  Furthermore,  risk-taking  with 

financial incentives was slightly decreased during the pandemic (cf. figure 7 
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and 8). However, both effects were not significant and should, at most, be seen 

as a starting point for further investigations.

The present behavioral findings indicate that no large systematic differences 

between  the  participants  from  before  and  during  the  pandemic  were 

measurable.  However,  they  cannot  be  used  to  rule  out  any  effects  of  the 

pandemic  on  risk-taking.  The  sample  size  is  relatively  small  and  the  two 

statistical tests used had a power of .18 and .25 to uncover effects of a medium 

size for the self-report scales and the behavioral data, respectively. Wise and 

colleagues (2020) report a significant but small correlation of  r = .2 between 

perceived risk of infection and willingness to participate in social distancing in 

the early  days  of  the pandemic.  Cohn and colleagues  (2015)  describe small 

immediate effects of financial losses on financial risk-taking propensity (OR = 

1.65, cf. Chen et al., 2010). Decker and Schmitz (2016) found a very small effect 

of  health shocks  on risk-taking propensity  (d =  -.11,  cf.  Gignac  & Szodorai, 

2016). All these measures can not be directly translated to the study at hand. 

They can,  however,  serve as an estimate of  likely effect  sizes of  pandemic-

related effects on risk-taking behavior. Based on them, the sample used in this 

study was too small to reliably measure an effect of the estimated size.

The  comparison  between  participants  measured  before  and  during  the 

pandemic could not discern between self-selection bias and changes in risk-

taking propensity at the individual level. It could even result in null findings in 

case both effects existed and were of a similar magnitude. To circumvent this 

effect,  participants  from  before  the  pandemic  were  contacted  again,  and 

sixteen  participants  completed  the  GRiPS  and  DOSPERT  again.  While  no 
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significant effects were found, the analysis suffers from the same problem of 

low sample size as the other analyses.

The fMRI analyses revealed no differences in the contrasts of interest between 

the  participants  from  before  and  during  the  pandemic.  There  is  a  broad 

agreement that the effects of surgical mask wearing on oxygen levels in the 

brain  on  task-related  changes  in  brain  oxygenation  should  be  minimal, 

although the details are highly disputed (Scholkmann et al., 2021; Fisher et al., 

2021).  Taking into consideration the ethical  aspect  of  providing participants 

with a safe environment during measurements, the present results encourage 

mask wearing during fMRI measurements in a pandemic context.

Concerning the primary study, no effects impeding a combined analysis of data 

collected before and during the pandemic were found. Thus, the data from all  

participants were used for all analyses discussed in the following paragraphs.

5.2 Discussion of Behavioral Results

Participants  took longer  to  respond to  active  balloons  compared to  passive 

balloons,  indicating  that  additional  processing  took  place  in  the  active 

condition (Kyllonen & Zu, 2016). Furthermore, response times were slower for 

trials  with  social  incentives  compared  to  financial  incentives.  Zhang  and 

colleagues  (2019)  calculated  a  similar  analysis  on  response  times  in  a  task 

where  participants  took  risks  for  themselves  and others.  They  did  not  find 

differences in response times between risk-taking for oneself and others in the 

win domain. The effect of the incentive domain on response times can be seen 

as  an  indicator  that  the  present  design  succeeded  in  creating  clearly 
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distinguishable incentives and showed an effect beyond that of studies on self-

other differences in risk-taking. 

In active trials,  participants were more risk-seeking for  financial  incentives 

than  social  incentives.  On  average,  approximately  10%  fewer  balloons 

exploded in social trials (burstsoc = 35% (SD = 8%-points), burstfin = 39% (SD = 9%-

points)). A study on risk-taking for oneself and others (Zhang et al., 2019) did 

not find similar effects. Sun and colleagues (2020) found differences in the risk-

taking propensity between decisions for oneself and others, albeit in opposing 

directions, depending on the variance of gambles. In high variance gambles, 

such as the inflation of an already large balloon, they found decreased risk-

taking  propensity  when  making  decisions  for  others.  Their  findings  are 

comparable to those of the this study -  the lower burst  scores in the social  

incentive condition indicate that participants chose the safe option (payout) 

earlier.  However,  other  variables  should  be  considered  in  the  behavioral 

analysis. For instance, not all participants reported being equally motivated by 

both  types  of  rewards.  A  large  enough  sample  size  to  estimate  a  model 

encompassing  more  relevant  variables  would  be  required  to  adequately 

delineate behavioral effects.

5.3 Discussion of fMRI Results

The  contrast  between  active  and  passive  risk-taking  within  the  financial 

incentive condition resembles analyses conducted by previous studies (e.g. Lei 

et al., 2017, Rao et al., 2018). It can thus be understood as a loose conceptual 

replication of these prior studies and can be used to validate the design. It will  

therfore be discussed first. In the following paragraphs, the contrast within the 
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social  condition is  briefly discussed before focusing on the  differences  and 

commonalities between social and financial incentives. 

5.3.1 Risk-taking with financial incentives

Active  compared  to  passive  risk-taking  with  financial  incentives  elicited 

stronger brain activation correlates in multiple regions. Beta estimates in the 

bilateral  striatum,  insula,  dACC,  and  OC  were  higher  in  active  risk-taking. 

Based on the prior meta-analysis, a similar pattern was expected. However, 

unlike in the meta-analysis, the present study found no activation in the right 

dlPFC  and  midbrain.  Instead,  clusters  in  the  OC  were  found  that  have  no 

comparable finding in the meta-analysis data.

A probable source of this discrepancy in findings are differences in the task 

design of the present study and most primary studies of the meta-analysis. One 

such difference is the usage of a passive risk-taking task for contrasting. Some 

previous studies implemented similar paradigms (e.g. Lei et al., 2017; Rao et 

al., 2018), but the use of different contrast conditions is more widespread (cf. 

meta-analysis; Poudel et al., 2020; Wu et al., 2021). Accordingly, differences in 

findings between the present analysis of neural correlates of risk-taking with 

financial incentives and the meta-analysis are likely related to this difference in 

approaches.

Right  dlPFC activation has  previously  been  linked to  error  awareness  (e.g., 

Harty et al., 2014). As argued above, a link between right dlPFC activation and a 

learning  component  is  likely  (cf.  meta-analysis).  In  the  present  study, 

explosion probabilities were the same in the active and the passive condition. 

Learning  of  probabilities  and  error  awareness  can  thus  be  equally  present 
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under both conditions. Voloh and colleagues (2015) propose that the dACC is 

recruited for strategy monitoring and that the dlPFC initiates strategy changes. 

This  role  of  the  dlPFC  is  coherent  with  present  findings  if  strategies  are 

understood  as  spanning  multiple  trials.  Observations  made  during  passive 

trials could still lead to a change of strategy on a neuronal level, even though 

this  change would only manifest  on the behavioral  level  in  the subsequent 

active trial. Contrary to this explanation, Rao and colleagues (2008) investigated 

a  similar  contrast  between  active  and  passive  risk-taking  in  the  BART  and 

found differences between the two conditions in the left and right dlPFC. The 

present study has a larger sample size (39 subjects compared to 14) and profits 

from the numerous advances in fMRI methodology since Rao and colleagues 

(2008) published their work, so it is likely to be more reliable. However, the 

exact origin of discrepancies in dlPFC-findings remain unclear. Subjects could 

be interviewed on their perception of passive risk-taking trials in future studies 

to delineate the role of the dlPFC more precisely. 

Findings in the OC are likely affected by attention and not direct visual input. 

The relationship between balloon size (directly linked to risk of explosion) and 

the parametric regressors is the same in active and passive conditions. While 

balloon colors changed between conditions so participants could distinguish 

them  effortlessly,  the  colors  were  counterbalanced  over  participants.  The 

activation in the OC is likely affected by attention. Attention focused on visual 

stimuli changes the related activation patterns of primary visual areas (Song et 

al.,  2011;  Hembrook-Short  et  al.,  2019).  Participants  probably  paid  closer 

attention to the actual balloon size in the active condition where they had to 

make  a  choice  compared  to  the  passive  one,  thus  upregulating  neural 
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activation and BOLD-signal in the relevant primary sensory areas (Green et al., 

2017).

5.3.2 Risk-taking with social incentives

As detailed in the methods, the results within the social incentive condition are 

not discussed in detail on their own, but mostly in comparison to those in the 

financial condition. The contrast of active and passive risk-taking within the 

social condition revealed three clusters where beta-estimates were higher in 

the passive condition - one in the left IPL and two in the left IFG. While these  

are not found in the financial  incentive condition, the contrast between the 

financial  and social  incentive  conditions  shows no  significant  difference  in 

these regions. Indeed, a similar cluster in the left IPL is found in the financial  

condition when an uncorrected threshold of p < .001 is applied to the data. 

However,  it  only  consists  of  21  voxels  and  thus  does  not  pass  cluster 

thresholding, determined to be at  55 voxels for an FDR below five percent. 

Similar findings from the financial  and social  incentive exist for most other 

differences between the two analyses - significant differences between active 

and passive risk-taking from within one domain exist in the other, only right 

below the significance threshold. 

These  observations  stress  the  importance  to  not  only  compare  significant 

results of two contrast analyses, but to instead compare the underlying effect 

sizes and variances statistically.  Furthermore, it  highlights how hard cutoffs 

implemented through statistical thresholding in fMRI-analysis carry the risk of 

information loss and impede the comparison of results between studies (cf. 

Chen et al., 2017). An approach with finer-grained measures such as different 
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confidence levels derived from Bayesian statistics would suffer less from this 

problem.

5.3.3 Differences between financial and social incentives

Contrasting  incentive  conditions  resulted  in  a  single  cluster  in  the  inferior 

parietal lobule (IPL), where activations related to active risk-taking were higher 

in the financial compared to the social condition. Large parts of the cluster are 

located in BA40, specifically in its caudal (A40c, comprises 42% of cluster) and 

rostrodorsal (A40rd, comprises 25% of cluster) part. These areas are sometimes 

referred to as PFm and PFt, respectively (cf. Caspers et al., 2013; Fan et al., 

2016; nomenclature based on the Economo-Koskinas area names, cf. Triarhou, 

2007). The cluster comprises two peaks, one located in each of the two areas. 

The incentive-dependent activation found in the IPL is adjacent to one of the 

clusters of convergent findings of primary studies on risk-taking found in the 

meta-analysis.

Caspers and colleagues (2013) define seven subregions in the IPL that can be 

grouped  into  three  larger  regions  based  on  receptor  distributions: 

rostroventral, intermediate, and caudate IPL. A40rd lies in the rostral part of 

the  IPL.  Caspers  and  colleagues  (2013)  associate  the  region  with  action 

observation and imitation (based on works by Molenberghs et al., 2009; Van 

Overwalle  &  Baetens,  2009;  Caspers  et  al.,  2010).  A40c  is  located  in  the 

intermediate part of the IPL (Caspers et al., 2013). The region was previously 

associated with switching between choice options (Boormann et al., 2009).

More recently, Nummsen and colleagues (2021) used ROI analyses to analyze 

IPL function in tasks on attention, lexical decisions, and social cognition. They 
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employed  three  different  analysis  techniques  and  converged  on  the  same 

findings: both left and right IPL can, functionally, be separated in an anterior 

and posterior part. The coupling of function and architecture is less consistent 

in heteromodal brain regions like the IPL compared to, e.g., primary cortices 

(Braga & Leech, 2015). This decoupling can explain the difference in functional 

(Numsen et al., 2021) and cytoarchitectural topography (Caspers et al., 2013). 

In  the  functional  topography  of  Nummsen  and  colleagues  (2021),  the 

differences in activation depending on the incentive in the present study are 

located  at  the  border  of  anterior  and  posterior  IPL,  linked  to  attention 

relocation and social  cognition respectively.  It  is,  however,  likely  that  both 

regions play a broader role in cognition as they were linked to the processing 

of stimuli and tasks in various domains (Caspers et al., 2013; Nummsen et al., 

2021).

Functional localization in heteromodal regions varies between (Dubois et al., 

2019; Fehr et al., 2019; Gilmore et al., 2021) and within subjects (Boukhdhir et 

al., 2021). Indeed, neural activation patterns in the parietal cortex are known to 

be  highly  individual:  Gilmore  and  colleagues  (2021)  point  to  a  history  of 

findings of individuality in the lateral parietal cortex based on the works by 

Mueller and colleagues (2013) and Laumann and colleagues (2015). The parts of 

the IPL where activation differed based on the incentive in the present study 

form part of the parietal memory network (PMN) first described by Gilmore 

and colleagues (2015). The PMN was later found to consist of various separate 

regions differing in their location between individuals (Gilmore et al.,  2019, 

Gilmore et al., 2021). Heterogeneity in inferior parietal cortex topography is 

also reported in risk-taking tasks. Rao and colleagues (2018) analyzed genetic 

contributions to variations in the neural correlates of risk-taking in a sample of 
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111 pairs of twins. They implemented the BART similarly to the present study 

with an active and a passive condition, and found genetic influences on neural 

activation patterns in the IPL and SPL during active risk-taking. Based on these 

findings, it can be hypothesized that heterogeneity in functional topography in 

the IPL might correlate with inter-and intraindividual differences between and 

within incentive domains.

Different  from the  expectation based  on part  of  the previous  literature,  no 

differences in activation between the incentive conditions were found in the 

striatum  or  insula.  Gu  and  colleagues  (2019)  use  an  ALE  meta-analysis  to 

investigate prior findings on differences between social and financial reward 

anticipation.  They  find  a  shared  network  being  active  irrespective  of  the 

reward type,  including the striatum and the aINS.  Gu and colleagues (2019) 

argue that their findings align with the common-currency hypothesis (Berridge 

&  Kringelbach,  2013)  that  the  representation  of  value  and  motivational 

processes are at least partially incentive-type independent. The present data 

support  this  hypothesis  and  hint  at  this  common  valuation  network  being 

similar in reward anticipation and reward-related risk-taking processes.

5.3.4 Commonalities of financial and social incentives

Findings of commonality between the two incentive conditions were similar to 

the findings in the financial reward condition and thus to the general network 

identified in the meta-analysis. Overlaps in activation were found bilaterally in 

the striatum, dACC, primary visual areas, and the left insular cortex. 

Activation in the dACC was,  as hypothesized,  independent of  the incentive. 

Prior  research  has  linked  dACC  involvement  to  strategy  adaption  and 
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implementation  (Kolling  et  al.,  2016,  Kolling  &  O'Reilly,  2018,  Voloh et  al., 

2015), a task seemingly independent of the incentive involved. Furthermore, 

no dlPFC involvement  was found in  either  the social  or  financial  incentive 

condition, and as such, no overlap was found either. As discussed above for the 

contrast within the financial  incentive condition, this likely occurred due to 

effects of the passive condition and seemingly independent of the incentive.

One of  the major differences  between the network found in  both incentive 

domains  and the  network  identified  in  the  meta-analysis  is  the  right  aINS. 

Activation of the right insula was linked to risk-taking in the meta-analysis and 

the financial incentive condition. However, no activation of the right aINS was 

observed in the social incentive condition. This is similar to findings by Gu and 

colleagues (2019), who investigated differences and commonalities in neural 

activation patterns between social and financial reward anticipation with an 

ALE meta-analysis. Like the present analysis, they found no overlap of brain 

activation related to both incentive types in the right aINS. 

The present study used a passive risk-taking task for contrasting to minimize 

the  effect  that  differences  between  social  and financial  reward  anticipation 

have  on  the  findings.  Rewards  were  the  same  in  the  passive  and  active 

conditions. As such, the large overlap of the present findings and the incentive-

independent  reward-anticipation  network  identified  by  Gu  and  colleagues 

(2019)  is  noteworthy.  The  left aINS  and  striatal  regions,  both  part  of  this  

network, were consistently stronger involved in active than passive risk-taking. 

Accordingly, their activation not only tracks value in the present study but does 

so  more  strongly  when  decisions  have  to  be  made  based  on  it.  Similarly, 

activation  in  the  OC  was  common  to  both  conditions.  As  in  the  financial  
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condition, this was likely caused by participants paying closer attention to the 

actual visual stimuli in the active condition (Green et al., 2017).

In summary, an incentive-independent risk-taking network could be identified 

that includes the left aINS, parts of the left and right striatum, and the dACC.  

Such a network fits the common currency hypothesis (Berridge & Kringelbach, 

2013).

5.3.5 Additional exploratory analyses

Based  on  the  above  identified  cluster  of  differences  between  social  and 

financial  incentives in the IPL,  average beta-estimates for  that  contrast  and 

cluster were calculated for each participant. An exploratory regression model 

with the beta-estimates as criterion and six predictors based on questionnaires 

and behavioral data found a single significant predictor of beta-estimates in the 

IPL-cluster:  Higher  social  risk-taking  propensity  in  the  BART  is  related  to 

higher beta-estimates in the between-incentives contrast. As mentioned above, 

posterior IPL-activation has been linked to social cognition (Numssen et al., 

2021).  Furthermore,  Ethofer  and  colleagues  (2019)  find  the  right  IPL  to  be 

involved in the processing of situations where others behave socially accepting 

towards a participants. Based on the present findings and the prior literature, 

the differences found in the main analysis in the IPL seem more likely to be an 

effect specific to the addition of the social incentive. 

However,  results  from these  additional  analyses  are  highly exploratory.  No 

hypotheses  were  formulated  beforehand,  and  statistical  thresholds  were 

deliberately  more liberal  than usual  (p <  .1).  While these liberal  thresholds 

partly counteract the high probability of type II errors resulting from the small 
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sample size, the sample size itself constrains attempts at generalization from 

the present findings (Poldrack et al., 2017; Chen et al., 2022). Even though they 

should not be interpreted on their own, the findings of the exploratory analysis 

constitute a first cue to the exact implication of the IPL-cluster and provide a 

starting point for future studies.

5.4 Limitations and Outlook

Task-design

In the present study,  inflating a balloon yielded a fixed reward in both the 

social and the financial incentive conditions. However, this fixed amount, in 

combination with an increasing probability of explosion and a larger bank as 

the balloon grew, leads to a diminishing of the expected value (EV) with each 

inflation (compare figure 12). The change in EV results in a "tipping point": 

risk-taking is adaptive before and maladaptive after a specific balloon size. 

While the option to differentiate between adaptive and maladaptive risk-taking 

would allow for specific analyses otherwise not feasible (cf. Dean et al., 2011), 

it  poses  a  problem  for  the  present  analysis.  The  regressors  used  for  fMRI 

analysis  do  not  capture  the  qualitative  difference  between  beneficial  and 

detrimental  risk-taking.  It  is  thus  unknown  if  or  how  such  a  qualitative 

difference might have influenced the results. Participants behaved differently 

depending  on  the  incentive.  Accordingly,  it  cannot  be  ruled  out  that 

differences  between  the  incentive  conditions  result  from  a  difference  in 

perception of advantageous and detrimental risk-taking. Future research could 

use a similar design to focus on these differences specifically.
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Figure 12.

Expected value for different balloon sizes within the financial incentive condition 

Note. For some sizes, different expected values are possible, due to the balloons 
growing by different amounts with each inflation. Above a size of ten, further 
inflations  have  a  negative  expected  value.  Expected  values  for  the  social 
conditions were exactly the same, only with gift-bags instead of euros. Figure 
cropped at a balloon size of 14. Expected value continues to drop exponentially 
and the smaller scale required to display low values diminishes visibility of the 
tipping point where EV becomes negative.

An inherent limitation of the BART is that explosion probabilities have to be 

learned by  participants  (Schonberg  et  al.,  2010).  The  present  study tried to 

minimize  participants'  heterogeneity  in  education  and  age,  two  variables 

known to influence findings in the BART through learning (Dean et al., 2011; 

Mata  et  al.,  2011;  Mamerow  et  al.,  2016),  but  a  considerable  variance  in 

participants' ability to learn the probabilities is likely (Bull et al., 2015). In the 

fMRI  analysis,  the  actual  probability  of  an  explosion  was  used  for  the 

parametric regressors of risk. However, a self-report questionnaire conducted 

after  the  measurement  revealed  notable  differences  between  participants' 
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expectations  and  actual  probabilities.  Most  participants  reported  subjective 

explosion probabilities that increased mostly linearly with balloon size, while 

the actual probabilities increased exponentially,  as figure 1 in the appendix 

illustrates.  This  could  just  be  an  artefact  due  to  the  misperception  of 

exponential growth (Wagenaar & Sagaria, 1975), a bias also demonstrated in 

highly educated samples as this one (Schonger & Sele, 2021). However, using 

the  reported  probabilities  as  regressors  in  the  regression  model  for  fMRI 

analysis  might  lead  to  better-fitting  regressors  or  at  least  a  better 

understanding  of  exponential  growth  misperception.  While  this  regression 

model is not part of this thesis, it is planned as a future exploratory analysis.

Statistical power, replicability and sample size 

This  study  used  an  exploratory  whole-brain  approach.  Previous  literature 

supports the present findings, but false positives cannot be excluded. Direct 

replications in fMRI research are rare (Turner et al., 2018). However, future 

studies on a similar topic that would allow for replicating the present analyses 

should do so. In the above meta-analysis, a notable amount of the 114 studies 

excluded because no relevant  contrast  was  reported collected all  necessary 

data to calculate a contrast relevant for the meta-analysis but did not do so. 

Especially studies comparing an experimental and a control group often did 

not report the results from the control group alone. A more detailed analysis of 

existing data sets  and the communication of all  resulting findings  of future 

studies, at least as supplements, are likely to benefit neuroscientific research. 

One  step  further,  the  publication  of  primary  data  would  allow  combining 

multiple data sets. Thus, more detailed meta-analyses and the application of 

modern  methods  to  older  data  sets  would  be  possible.  However,  such  a 
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publication  of  primary  data  would  risk  infringing  on  data  protection,  as 

structural MRI data can also be used to circumvent anonymization (Theyers et 

al., 2021). While defacing can mitigate some risks, it would still be possible to 

link data  from different  experiments  based on defaced structural  MRI  data 

(ibid.).

The  sample size  of  the  current  study is  relatively  small,  as  is  the resulting 

statistical power, even for within-participant analyses (Poldrack et al., 2017). 

The  relatively  high  number  of  trials  (average  of  74  inflation  events  per 

participant  and  category)  increases  the  statistical  power  of  the  within-

participant analyses (Chen et al., 2021, 2022). However, the sample size is too 

small  to allow for a correlation of external variables such as self-reports or 

behavior with brain activation on a whole-brain basis (Poldrack et al.,  2017; 

Turner et al., 2018; Grady et al., 2021; Chen et al., 2022). Such analyses would 

be  a  valuable  tool  to  investigate  the  neuronal  basis  of  inter-individual 

differences  in  risk-taking  propensity.  The  exploratory  analysis  of  beta-

estimates of the between-incentives contrast in the IPL-cluster provides a first 

cue  that  IPL  activation  might  be  related  to  social  incentives  specifically. 

However, due to its exploratory nature and small sample size, it should not be 

interpreted on its own.

This study used incentives belonging to only two different domains and can 

thus  not  depict  a  domain-general  account  of  risk-taking.  However,  the  two 

incentive  conditions  were  explicitly  designed as  similar  as  possible.  Future 

studies on risk-taking with social and financial incentives could use a design 

where incentives differ more strongly. Furthermore, social and financial risk-

taking  are  only  two  of  many  domains  -  health  risks  are  essential  for 
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policymakers  and might have worse outcomes and higher  costs  than either 

financial or social risks on the individual and the societal level. Additionally, 

behavioral research showed that participants perform worse in a risk-taking 

task if ,e.g.,  odors, food, or electric shocks are used as affect-rich outcomes 

(von Helversen et al., 2020; Rosati & Hare, 2016; Sunstein & Zeckhauser, 2011). 

Investigating the neuroscientific underpinnings of such effects could further 

improve  our  understanding  of  the  differences  between  adaptive  and 

maladaptive risk-taking.

Interindividual differences in brain topography

Besides a general call for larger samples in group analyses (Poldrack et al., 

2017; Turner et al., 2018; Grady et al., 2021; Chen et al., 2022), neuroscientific 

research in  the  past  few  years  has  increasingly  focused  on  individuality  in 

brain topography (Fehr et al., 2019; Dubois et al., 2019; Gilmore et al., 2021). In 

behavioral  research  on  decision-making,  a  similar  movement  exists. 

Regenwetter and colleagues (2022) criticize an overly simplistic inference from 

summary statistics to the individual level, with a concurrent call for a stronger 

focus  on  the  individual  instead  of  the  group.  The  average  choice  behavior 

might  not  reflect  any  single  individual's  behavior  (Chen  et  al.,  2020).  In 

behavioral research, hierarchical statistical models could be one way to solve 

the  apparent  dichotomy  between  group-level  analyses  and  a  focus  on  the 

individual (Scheibehenne, 2022). In fMRI research, newly developed methods 

might  fill  a  similar  role.  For  resting-state  and task-based  connectivity  data, 

precision fMRI (Laumann et al., 2015; Gordon et al., 2017; Gilmore et al., 2021)  

promises  a  high  enough  resolution  to  identify  inter-individual  differences 

(Gordon et al., 2020). Additionally, Bayesian multilevel modeling (BML, Chen, 
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Burkner, et al., 2019; Chen, Xiao, et al., 2019) could advance investigations of  

intersubject correlation in naturalistic fMRI studies (Chen, Xiao, et al., 2019) 

and brain-behavior correlations in task-based designs with higher  precision 

and less data loss compared to previous methods (Chen et al., 2021).

Future research directions

A repeatedly stated aim of neuroscientific research on human risk-taking is the 

identification  of  neural  correlates  of  excessive  risk-taking  in  patients  (e.g., 

Macoveanu et al., 2016; Rao et al., 2018) and other at-risk groups, such as young 

adults  (e.g.,  Yu  et  al.,  2016;  Perino  et  al.,  2019).  It  has  been  shown  that 

individual differences in network architecture correlate with behavior (Smith 

et al.,  2021). Based on the present study, IPL activation is linked to domain 

specificity in risk-taking and, as discussed above, considerable heterogeneity in 

the functional topography of this activation is probable. Future studies should 

leverage  the  new  possibilities  of  precision  fMRI  and  BML-approaches  to 

determine if a link between functional topography and risk-taking propensity 

can be established.

Future  studies  on  risk-taking  should  consider  how  they  incentivize 

participants' behavior. While a network of brain regions was identified in the 

present study that was active independently of whether incentives were social 

or financial, findings in IPL activation differed in the present study. Based on 

the  exploratory  analyses,  the  difference  in  brain  activation  related  to  the 

different  incentives  in  the  IPL  seems  to  be  driven  by  the  social  incentive 

condition. It is, however, unclear if there is a unique component to risk-taking 

with social  incentives,  or  if  it  is  rather  a  more general  component  of  risk-

processing that is only absent if incentives are financial. On the one hand, it 
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has previously been argued that financial incentives take a special role, as they 

can be translated to other domains (Rosati & Hare, 2016). On the other hand, 

social  situations  were  shown to  change  participants  behavior  in  risk-taking 

tasks (Gardner & Steinberg, 2005; Reniers et al., 2017). A future study focusing 

on the IPL, for example via ROI-analyses, could compare the correlates of risk-

taking with social, monetary, and a third incentive domain. A plausible option 

for  a  third  incentive  could  be  the  use  of  odors  akin  to  the  work  of  von 

Helversen and colleagues (2020). Results would help to discern if financial or 

social incentives are unique in their level of IPL-activation. Such studies also 

promise to further illuminate the boundaries of the domain-general risk-taking 

network identified here.

Due to the heterogeneity in the topography of heteromodal cortices such as the 

IPL (c.f., Dubois et al., 2019; Gilmore et al., 2021), the standard approach of 

voxelwise  comparison  across  subjects  might  prove  inadequate  to  further 

examine the details of risk-related activation in the IPL. One way around such 

problems  would  be  a  combined  approach  of  resting-state  and  task-based 

analyses akin to the work by Gilmore and colleagues (2019). Extensive resting-

state  analyses  can  reveal  individual  network  structures.  These  network 

structures  can  be  linked  to  task-based  activation  and  thus  be  compared 

between participants. Comparing the extent and topography of the identified 

networks with behavioral and self-report measures could unveil possible links 

between individual functional topography and risk-preference. Furthermore, 

using these individual ROIs as a basis for correlational analysis of task-based 

activations and external measures could result in a better signal-to-noise ratio, 

as it would take topographic heterogeneity in account.
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Another way to broaden the understanding of neural correlates of risk-taking 

would be to investigate decisions with incentives from multiple domains. Real-

life decisions often involve the weighting of incentives from various domains. 

An  example  is  the  decision  to  drive  faster  to  ensure  that  nobody  is  upset 

because one is  coming late -  weighing a health risk for  social  risk.  Future 

research on risk-taking or reward-anticipation in different domains should also 

focus on the role of the right aINS. In the present study and in the work by Gu 

and colleagues  (2019),  activation in  the right  aINS was found to  be at  least 

partly dependent on the reward domain, but the underlying reasons are still 

unclear.

Implications of findings

The present findings stress the importance of studying risk-taking with non-

financial  incentives.  It  implicates  that  risk-taking  with  social  and  financial 

incentives differs in risk-taking propensity and neuronal activation patterns. 

Besides this specific point, the broader implication is that findings from one 

incentive  domain  can  not  necessarily  be  translated  to  others.  Investigating 

differences in incentives and domain promises to yield further insight into the 

details of human risk-taking. General behavior- and brain activation patterns 

are  well  researched,  but  the  importance  of  incentives  and,  likely,  the 

importance of other context details remains under-explored. 

Policy-makers  and  clinical  psychologists  are  interested  in  risk-taking  in  a 

context where incentives are often non-financial. An example of the former 

group is young adults who drive fast or take drugs and are likely not motivated 

by financial incentives. For the latter group, risk-taking in patients with mental 

illness is linked to several negative symptoms such as aggression or response 
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disinhibition  (c.f.,  Reddy  et  al.,  2014).  When  trying  to  adapt  results  from 

laboratory studies to the real-world, differences in incentives and context have 

to be taken into account.

Policy-makers trying to incentivize prosocial behavior often pursue changes in 

behavior that are not directly related to financial incentives. Limiting drug use,  

promoting careful driving, and increasing vaccination rates are all areas where 

the  potential  target  group  takes  risks  with  social  and  health  incentives. 

Concerning driving behavior, Bingham and colleagues (2016) observed social 

effects  on  driving  behavior  in  young  adults,  as  did  Simons-Morton  and 

colleagues  (2019).  Regarding  vaccines,  Tram  and  colleagues  (2022)  found, 

among other factors, social ("Other people need it more right now") and health 

("Plan to wait and see if it is save") concerns responsible for vaccine hesitancy 

during the early vaccination periods in the SARS-CoV-2 pandemic in the USA. 

For both examples, the effect of financial incentives on behavior was studied. 

In "pay-how-you-drive" insurance schemes, risky-driver are identified through 

continuous  measurements  of  driving  behavior.  Such  drivers  have  to  pay  a 

premium  on  their  insurance.  "Pay-how-you-drive"  schemes  were  shown  to 

decrease  risky  driving,  albeit,  to  the  author's  knowledge,  studies  were 

conducted  in  the  general  population  and  not  specific  at-risk  groups  so  far 

(Tselentis et al., 2017). Financial incentives were shown to increase vaccination 

adherence before the SARS-CoV-2 pandemic (cf. Higgins et al., 2021). A survey 

on SARS-CoV-2 vaccine hesitancy in Germany found that a financial incentive 

of  50€  would  likely  increase  vaccine  adherence  by  2.2  percentage  points 

(Klüver  et  al.,  2021).  However,  the  prospect  of  getting  exemptions  from 

pandemic restrictions had the strongest effect on vaccine adherence in young 

adults, while older adults were most strongly influenced by the option to get 
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their vaccination at a local doctor instead of a vaccination center. Of all three 

incentives, the financial one had the lowest effect. 

The literature outlined above highlights the complexity that interventions in 

risk-taking face once they are applied to the real world. While studies on the 

effects of interventions in the real world, such as the work by Tselentis and 

colleagues  (2017)  on  insurance  schemes,  help  clarify  real-world  effects, 

laboratory studies allow to separate the different components and study them 

in isolation.  Laboratory studies on the neural  correlates  of  risk-taking offer 

further  possibilities.  First,  uncovering  differences  and  convergences  in  the 

neural  correlates  of  risk-taking  for  other  incentive  types  promises  a  better 

understanding  of  domain-specificity.  A  more  complete  model  of  the 

interactions between risk-taking and incentive domains could inform future 

interventions  in  excessive  risk-taking  in  areas  where  incentives  are  non-

financial. Second, better information on the same neuronal networks involved 

in  risk-taking  and  their  dependence  on  incentives  could  lead  to  a  better 

understanding of changes in risk-taking propensity in mental illness.
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Chapter 6: Conclusion

A common network of brain regions activated when taking risks with financial 

and social risks was identified. It includes the bilateral striatum, the dACC, and 

the left insular cortex. Overlaps between this network and the domain-general 

valuation network identified by Gu and colleagues (2019) lead to the conclusion 

that  it  might  generalize  to  risk-taking  with  incentives  from  other  domains 

besides financial and social. The existence of this network supports the idea of 

a domain-general risk-taking propensity, as proposed by various authors (e.g., 

Mata et al., 2018; Zhang et al., 2019). 

The link between domain-general  risk-taking propensity and exhibited risk-

taking in each domain is likely moderated by differences in the perception and 

valuation of stimuli from different domains. These intra-individual differences 

dependent on the incentive are connected to activation of the right IPL, at least 

for risk-taking with social and financial incentives. Based on previous work on 

heterogeneity  in  functional  topography  in  the  IPL  (Laumann  et  al.,  2015; 

Gordon et al., 2017; Gilmore et al., 2021), it is also a probable source of inter-

individual differences in risk-taking propensity. 

Research on the neural correlates of human risk-taking has converged on a few 

regions reliably identified across participants in prior studies (cf. Poudel et al.,  

2020; Wu et al., 2021). The present thesis is a first step in generalizing these 

findings  to  other  incentive  domains.  Based on it,  two promising roads to a 

better understanding of risk-taking can be made out. First, the domain-general 

risk-taking network proposed here could be tested by investigating the neural 

correlates of risk-taking with incentives from other domains such as health. 
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Conclusion

Second,  BML  or  precision  fMRI  studies  on  IPL  involvement  in  risk-taking 

might uncover neural correlates of excessive risk-taking that could lead to a 

better understanding of altered risk-taking in affected patients.
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7.4 Revisions for Published Version

Page 75, line 19 and following:

"Functional MRI data were preprocessed as follows:[...] and defaced through 

AFNI[…]"

changed to:

"MRI data were preprocessed as follows: [...] and structural data were defaced 

through AFNI[...]".

Page 78, line 14:

“A symbolic GLM was calculated […].”

changed to:

“A symbolic GLT was calculated […].”
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Appendix: Table 1 – All peaks identified for the ALE meta-analysis

Note. Regions  are  taken  from  the  primary  studies,  using  their  notation.  Denotations  of 
hemisphere (R, L, and B – right, left and both, respectively) were unified for simplicity, but  
only added where reported by primary studies. Full citations of all studies can be found in  
section  two  of  the  references.  X,Y  and  Z  columns  report  coordinates  in  the  respective 
reference frames (Talairach and MNI). Coordinates in Talairach space were converted to MNI 
space before any further analyses were conducted. Effect sizes and coordinates are reported in 
the same way the primary studies did. Effect sizes were rounded to two decimal places. “NR” 
denotes the number of the experiment and can be used to differentiate multiple experiments 
from  the  same  authors  and  year.  Column  “dir.”  denotes  the  direction  of  the  effect, 
standardized as explained in the main text. pos?: likely positive direction (cf. main text). NA: 
Not applicable. NR: Not reported. 
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Document 1 – Ethics vote and SARS-CoV-2 documents

8.1.1 Document 1A – Approval of the Ethics committee
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8.1.2 Document 1B – Hygiene concept for fMRI studies during SARS-CoV-2

XII



Appendix: Document 1 – Ethics vote and SARS-CoV-2 documents

XIII



Appendix: Document 1 – Ethics vote and SARS-CoV-2 documents

8.1.3 Document 1C – Additional consent form during SARS-CoV-2
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8.2 Document 2 – Participant information and 

questionnaires

Note: Questionnaires public available and based on third sources (DOSPERT, 
GRiPS, SVO) are not reproduced here.

8.2.1 Document 2A – Participant information on fMRI and MRI
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8.2.2 Document 2B – Consent form
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8.2.3 Document 2C – MRI-safety questionnaire
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8.2.4 Document 2D – Written information on design

Note: Handed to the participants to read before the measurement started; used 

to provide context for the decisions made in the scanner.
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8.2.5 Document 2 E – Guideline for verbal information for participants

Note:  The text  was  read to  participants  to  inform them on the  experiment before  the  measurement 
started. Participants could ask questions at any moment and the text mostly served as a guideline. A  
presentation was used in parallel to accustom participants to the stimuli. “click” notes where the slide 
was changed.

XXI



Appendix: Document 2 – Participant information and questionnaires

XXII



Appendix: Document 2 – Participant information and questionnaires

8.2.6 Document 2F – Guideline for demographic interview

Note:  The questionnaire was not handed over  to participants directly but  used as a  guideline for an 
interview to circumvent any misunderstanding and follow up on possibly relevant conditions.
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8.2.7 Document 2G – questions on motivation

Note: The questionnaire was handed out right after the measurement.
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8.2.8 Document 2H – Certificate on acquired gift-bags
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8.3 Document 3 – AFNI preprocessing script

Note:  Function call to afni_proc.py, generated through ubers_subject.py and adapted. 
The  function was  called  once for  each participant,  $path_anatomy,  $path_epi, 
$subj_id,  and  $path_timing were different for each participant. They indicated 
paths  to  the  T1-scan,  the  functional  data,  a  subject  identifier,  and  a  path  to  the 
stimulus timing files, respectively.

afni_proc.py -subj_id $subj_id                                              \
        -script proc_py_script -scr_overwrite                               \
        -blocks tshift align tlrc volreg blur mask scale regress            \
        -copy_anat $path_anatomy                                            \
        -dsets $path_epi                                                    \
        -tcat_remove_first_trs 0                                            \
        -align_opts_aea -cost lpc+ZZ -check_flip -ginormous_move            \
        -tlrc_base MNI152_T1_2009c+tlrc                                     \
        -tlrc_NL_warp                                                       \
        -volreg_align_to MIN_OUTLIER                                        \
        -volreg_align_e2a                                                   \
        -volreg_tlrc_warp                                                   \
        -mask_epi_anat yes                                                  \
        -blur_size 8.0                                                      \
        -regress_stim_times                                                 \
            $path_timing/inflate_1D_no1inf_eco_act_rt_param.1D              \
            $path_timing/inflate_1D_no1inf_eco_pas_rt_param.1D              \
            $path_timing/inflate_1D_no1inf_soc_act_rt_param.1D              \
            $path_timing/inflate_1D_no1inf_soc_pas_rt_param.1D              \
            $path_timing/feedback_exp_01.1d                                 \
            $path_timing/feedback_exp_00.1d                                 \
            $path_timing/feedback_exp_11.1d                                 \
            $path_timing/feedback_exp_10.1d                                 \
            $path_timing/feedback_win_01.1d                                 \
            $path_timing/feedback_win_00.1d                                 \
            $path_timing/feedback_win_11.1d                                 \
            $path_timing/feedback_win_10.1d                                 \
        -regress_stim_labels                                                \
            risk_ea risk_ep risk_sa risk_sp                                 \
            expl_ea expl_ep expl_sa expl_sp                                 \
            win_ea win_ep win_sa win_sp                                     \
        -regress_basis_multi 'dmBLOCK' 'dmBLOCK' 'dmBLOCK' 'dmBLOCK'        \
                  'BLOCK(1.5,1)' 'BLOCK(1.5,1)' 'BLOCK(1.5,1)' 'BLOCK(1.5,1)'\
                  'BLOCK(1.5,1)' 'BLOCK(1.5,1)' 'BLOCK(1.5,1)' 'BLOCK(1.5,1)'\
        -regress_stim_types AM2                                             \
        -regress_censor_motion 0.3                                          \
        -regress_apply_mot_types demean deriv                               \
        -regress_motion_per_run                                             \
        -regress_censor_outliers 0.05                                       \
        -regress_opts_3dD                                                   \
            -jobs 4                                                         \
            -num_glt 20                                                     \
            -gltsym 'SYM: risk_ea[1] -risk_ep[1]' -glt_label 1 risk_ea-
ep_modulation\
            -gltsym 'SYM: risk_sa[1] -risk_sp[1]' -glt_label 2 risk_sa-
sp_modulation\
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            -gltsym 'SYM: risk_ea[0] -risk_ep[0]' -glt_label 3 risk_ea-
ep_mean\
            -gltsym 'SYM: risk_sa[0] -risk_sp[0]' -glt_label 4 risk_sa-
sp_mean\
            -gltsym 'SYM: risk_ea[1] -risk_sa[1]' -glt_label 5 risk_ea-
sa_modulation\
            -gltsym 'SYM: risk_ea[0] -risk_sa[0]' -glt_label 6 risk_ea-
sa_mean\
            -gltsym 'SYM: risk_ep[1] -risk_sp[1]' -glt_label 7 risk_ep-
sp_modulation\
            -gltsym 'SYM: risk_ep[0] -risk_sp[0]' -glt_label 8 risk_ep-
sp_mean\
            -gltsym 'SYM: risk_ea[1] -risk_ep[1] -risk_sa[1] +risk_sp[1]' -
glt_label 9 risk_ea-ep-sa+sp_modulation\
            -gltsym 'SYM: risk_ea[0] -risk_ep[0] -risk_sa[0] +risk_sp[0]' -
glt_label 10 risk_ea-ep-sa+sp_mean\
            -gltsym 'SYM: expl_ea[1] -expl_sa[1]' -glt_label 11 expl_ea-
sa_modulation\
            -gltsym 'SYM: expl_ea[0] -expl_sa[0]' -glt_label 12 expl_ea-
sa_mean\
            -gltsym 'SYM: win_ea[1] -win_sa[1]' -glt_label 13 win_ea-
sa_modulation\
            -gltsym 'SYM: win_ea[0] -win_sa[0]' -glt_label 14 win_ea-sa_mean\
            -gltsym 'SYM: win_sa[1] -expl_sa[1]' -glt_label 15 win_sa-
expl_sa_modulation\
            -gltsym 'SYM: win_sa[0] -expl_sa[0]' -glt_label 16 win_sa-
expl_sa_mean\
            -gltsym 'SYM: win_ea[1] -expl_ea[1]' -glt_label 17 win_ea-
expl_ea_modulation\
            -gltsym 'SYM: win_ea[0] -expl_ea[0]' -glt_label 18 win_ea-
expl_ea_mean\
            -gltsym 'SYM: win_ea[1] -expl_ea[1] -win_sa[1] +expl_sa[1]' -
glt_label 19 wea-eea-wsa+esa_modulation\
            -gltsym 'SYM: win_ea[1] -expl_ea[1] -win_sa[0] +expl_sa[0]' -
glt_label 20 wea-eea-wsa+esa_mean\
        -regress_reml_exec                                                  \
        -regress_compute_fitts                                              \
        -regress_make_ideal_sum sum_ideal.1D                                \
        -regress_est_blur_epits                                             \
        -regress_est_blur_errts                                             \
        -regress_run_clustsim no                                            \
        -html_review_style pythonic
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8.4 Figure 1 – EV based on participants self-report

Note: EV is approximated, real EV varies, c.f. figure 12. Subjective EV is calculated 
based on participants self-reported explosion probabilities for balloons from active 
and passive condition. Participant 300 was a pilot participant not included in the main 
analysis.
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