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Days and nights we were searching for him..
who was with us and we were looking over the world for him..
He was outside of the space and time..
who we searched for in spaces and times...

Persian poet Saádi (13th century)





Abstract

This thesis analyzes how the properties of space-times containing quadrupoles
or acceleration parameters, depending on their values, can be distinguishable
from the Schwarzschild or the Kerr solutions in the observational fingerprints
or be a black hole mimicker. In fact, the recent window to the gravitational
wave has shifted the debate about them from a purely theoretical issue to a
phenomenological consideration.

To answer this question, this investigation takes place on two levels: first,
constructing a solution containing two quadrupoles describing a non-isolated
object to obtain a more realistic model. This metric is new generalization
of the Schwarzschild solution containing a quadrupole. On the second level,
space-times considered here are investigated in the eyes of the configura-
tions and properties of accretion discs, collision of particles, quasi-periodic
oscillations, geodesics, dynamics of uncharged and charged particles with or
without a magnetic field, stability of the geodesics, and shadow.

In this work, the analytical and semi-analytical approaches are employed.
Although the majority of astrophysical systems are studied via numerical
methods and simulations, the analytical techniques always open a window
and provide a systematic study as a stepping stone due to their large param-
eter space. For example, the Event Horizon Telescope findings that provided
a new branch in studying characteristics of black holes and their accretion
flows were predicted theoretically in 2000, the same for the famous Higgs
boson in particle physics.

This study concludes that, first, the resulting generalized metric intro-
duces novel analytical expressions to connect to the observable. For the
accretion discs models new properties arose, in particular, enabling to con-
nect the critical behavior of the observation of the quasi-periodic oscillations
in observed microquasars to the metric parameters. Second, all space-times
considered in this thesis are from the general family of the Weyl space-times
including the Schwarzschild, the distorted Schwarzschild, the static and the
stationary q-metric, characterizing with quadrupole, as the representative of
the different classes of the solution in different ways. Thus, the complete dis-
cussion on astrophysical systems in these space-times provides the primary
reference source for comparisons, particularly with the Kerr space-time. In
the outlook, the various future works led by this thesis are listed.

i





List of publications

1. Thin accretion disk around the distorted Schwarzschild black hole; Shok-
oufe Faraji, Eva Hackmann; Phys. Rev. D 101 023002 (2019).

2. Effect of an external mass distribution on the magnetized accretion disk ;
Shokoufe Faraji, Audrey Trova; Phys. Rev. D 104 083006 (2021).

3. Magnetised tori in the background of a deformed compact object ; Shok-
oufe Faraji, Audrey Trova; Astronomy & Astrophysics 654 A100
(2021).

4. Quasi-periodic oscillatory motion of particles orbiting a distorted, de-
formed compact object ; Shokoufe Faraji, Audrey Trova; Universe,
7(11), 447 (2021).

5. Dynamics of charged particles and quasi-periodic oscillations in the
vicinity of a distorted, deformed compact object embedded in a uni-
form magnetic field ; Shokoufe Faraji, Audrey Trova; Mon. Notices
of the Royal Astronomical Soc. 882 (2022).

6. Circular geodesics in a new generalization q-metric; Shokoufe Faraji;
Universe Mathematical Physics 8 (3), 195 (2022).

7. Magnetised relativistic accretion disc around a spinning, electrically
charged, accelerating black hole: case of C-metric; Shokoufe Faraji,
Valadimir Karas, Audrey Trova; Phys. Rev. D 105 (10), 103017
(2022).

8. Thick accretion disk configurations in the Born-Infeld teleparallel grav-
ity ; Sebastian Bahamonde, Shokoufe Faraji, Eva Hackmann, Christian
Pfeifer; accepted in Phys. Rev. D (2022).

9. Magnetized tori around a uniformly accelerating black hole; Shokoufe
Faraji, Audrey Trova; Contributed Proceedings of the Sixteenth Marcel
Grossmann Meeting (2021).

iii





v

10. Properties of accretion disc models in the background with quadrupole;
Shokoufe Faraji; Contributed Proceedings of the Sixteenth Marcel Gross-
mann Meeting (2021).

11. Summary of the parallel session Time in Physics and Philosophy ; Shok-
oufe Faraji; Contributed Proceedings of the Sixteenth Marcel Gross-
mann Meeting (2021).

12. Thin accretion disc around the distorted deformed compact object ; Shok-
oufe Faraji; (2022) submitted to journal (uploaded to arXiv).

13. Relativistic equilibrium fluid configurations around rotating deformed
compact objects ; Shokoufe Faraji, Audrey Trova, Hernando Quevedo;
(2022) submitted to journal (uploaded to arXiv).

14. Axisymmetric oscillation modes of relativistic tori in the vicinity of
a distorted deformed compact object ; Shokoufe Faraji, Audrey Trova;
(2022) submitted to journal (uploaded to arXiv).





Contents

I Prologue xiii

1 Preface xv

1.1 General motivation . . . . . . . . . . . . . . . . . . . . . . . . xv

1.2 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

2 Analytical accretion disc models 3

2.1 Thin accretion disc . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Assumption of the model . . . . . . . . . . . . . . . . . 4

2.1.2 Equations of the model . . . . . . . . . . . . . . . . . . 6

2.2 Thick accretion disc . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Magnetized version . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Angular momentum distributions . . . . . . . . . . . . 15

3 Quasi-periodic oscillations 19

3.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Models of 3 : 2 quasi-periodic oscillation . . . . . . . . . . . . 21

3.3.1 Resonance . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.2 QPO Models . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Epicyclic oscillations: Local perturbation . . . . . . . . . . . . 26

3.4.1 Test particle . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.2 Perfect fluid disc . . . . . . . . . . . . . . . . . . . . . 27

4 Shadow in the presence of plasma 31

4.1 Equation of motion for light rays in plasma . . . . . . . . . . . 32

4.2 Radius of Shadow . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Low-density plasma . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



viii Contents

5 Stability analysis in the dynamical system 37

5.1 Lyapunov stability . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Jacobi stability . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Kolmogorov entropy . . . . . . . . . . . . . . . . . . . . . . . 41

6 Space-times 43

6.1 Static and axisymmetric space-times . . . . . . . . . . . . . . 43

6.2 Distorted Schwarschild space-time . . . . . . . . . . . . . . . . 46

6.3 Static q-metric space-time . . . . . . . . . . . . . . . . . . . . 48

6.4 Stationary q-metric space-time . . . . . . . . . . . . . . . . . . 50

6.5 C-metric space-time . . . . . . . . . . . . . . . . . . . . . . . . 53

II Results 59

7 Generalized q-metric 61

7.1 Construction of the metric . . . . . . . . . . . . . . . . . . . . 61

7.2 Effective potential . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.3 Circular geodesics . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.3.1 The equatorial plane in Generalized q-metic . . . . . . 67

7.3.2 Revisit the equatorial plane in q-metric . . . . . . . . . 76

7.4 Dynamics of charged particle in a uniform magnetic field . . . 80

7.5 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . 82

8 Extraction of energy: particle collision 87

8.1 Particle collision . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.2 Particle accelerator . . . . . . . . . . . . . . . . . . . . . . . . 88

8.2.1 Distorted Schwarzschild . . . . . . . . . . . . . . . . . 89

8.2.2 q-metric . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.3 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . 91

9 Cognitive study on the Stationary q-metric 93

9.1 Ernst potential . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.2 Effective potential . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.3 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . 99

10 Thin accretion disc model in Generalized q-metric 101

10.1 The valid region . . . . . . . . . . . . . . . . . . . . . . . . . . 102

10.2 Properties of the Thin disc model . . . . . . . . . . . . . . . . 103

10.3 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . 108



Contents ix

11 Thick accretion disc model 111
11.1 Magnetized Thick disc in distorted Schwarzschild . . . . . . . 112

11.1.1 Discussion on the constant angular momentum . . . . . 112
11.1.2 Discussion on the power-law distribution . . . . . . . . 117
11.1.3 Discussion on the trigonometric distribution . . . . . . 121
11.1.4 Summary and conclusion . . . . . . . . . . . . . . . . . 122

11.2 Magnetized Thick disc in Static q-metric . . . . . . . . . . . . 126
11.2.1 Discussion on the power-law angular momentum . . . . 127
11.2.2 Discussion of the trigonometric angular momentum . . 131
11.2.3 Summary and conclusion . . . . . . . . . . . . . . . . . 139

11.3 Thick disc in Stationary q-metric . . . . . . . . . . . . . . . . 140
11.3.1 Discussion on the constant angular momentum . . . . . 140
11.3.2 Summary and conclusion . . . . . . . . . . . . . . . . . 143

11.4 Magnetized Thick disc in C-metric . . . . . . . . . . . . . . . 143
11.4.1 Von Zeipel radius . . . . . . . . . . . . . . . . . . . . . 143
11.4.2 Discussion on the constant angular momentum . . . . . 146
11.4.3 Summary and conclusion . . . . . . . . . . . . . . . . . 149

12 QPOs in Generalized q-metric in the uniform magnetic field153
12.1 Epicyclic frequencies and stability of circular motion . . . . . 154
12.2 Different possibilities . . . . . . . . . . . . . . . . . . . . . . . 160
12.3 Comparison with the observations . . . . . . . . . . . . . . . . 163
12.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . 167

13 Oscillations of tori in the background of
Generalized q-metric 169
13.1 The Thick disc model . . . . . . . . . . . . . . . . . . . . . . . 169
13.2 Radial epicyclic frequency . . . . . . . . . . . . . . . . . . . . 171
13.3 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . 174

14 Shadow in the presence of cold plasma in the background of
q-metric 177
14.1 Photon sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
14.2 Radius of Shadow in the low density plasma . . . . . . . . . . 179
14.3 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . 181

15 Stability analysis of circular geodesics in Generalized q-
metric 185
15.1 Existence of equilibrium points . . . . . . . . . . . . . . . . . 185

15.1.1 For time-like geodesics . . . . . . . . . . . . . . . . . . 188
15.1.2 For light-like geodesics . . . . . . . . . . . . . . . . . . 189



x Contents

15.2 Lyapunov linear Stability . . . . . . . . . . . . . . . . . . . . . 190
15.3 Jacobi nonlinear stability . . . . . . . . . . . . . . . . . . . . . 191
15.4 Kolmogorov entropy . . . . . . . . . . . . . . . . . . . . . . . 192
15.5 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . 193

III Epilogue 195

16 Summary 197

17 Outlook 201

Bibliography 205



Acknowledgements

I want to express my sincere gratitude to Dr. Eva Hackmann, apart from
the valuable scientific discussions which I gratefully appreciate. First, for
providing me with this opportunity to study my PhD in the field that, with-
out any doubt, I am willing to dedicate my life to! Second, I remember after
initiating my first project and having some results; frankly, she let me choose
to work on the related areas that I suggested. It helped me stay motivated,
creative, and work with pleasure. I couldn’t ask for a better... . Thank you!

I would like to thank Prof. Claus Laemmerzahl for his encouragement,
positive attitude, and intriguing discussions that inspired me to enjoy work-
ing even more... . Thank you!

Dr. Audrey Trova stands out not only as my collaborator but also as my
friend... . Together we always remember: focusing on the everyday goals,
improving every day, and dreaming bigger. Thank you Audrey! For your
trust, knowledge, and kindness... .

I have had the great pleasure and good fortune to learn with many won-
derful scientists who made a significant contribution to my understanding
of Mathematics, Physics and Astrophysics, also doing research, and I al-
ways remember gratefully include: Prof. Alexander Grigoryan, Prof. Michel
Roeckner, Prof. Ramesh Narayan, Prof. Hernando Quevedo, Prof. Mehdi
Golshani, Prof. Niayesh Afshordi, Prof. Vladimir Karas, Prof. Kamran
Kaviani, Prof. Siavash Shahshahani, and Prof. Maryam Mirzakhani.

More important than the number of falls we take in life, is how fast and
strong we get back on our feet. This is possible when surrounded by great
people. Thank my amazing supporters: my family and my friends especially
Elham, Asal, Taymaz, Sahar, and Parsa.

Special acknowledgement is due to those who demonstrated great support
in different ways: Prof. Marc Avila, Mrs. Maria Petrogiannis, Mrs. Andrea
Fischer, Mrs. Annette Leonhardt, Mrs. Sabine Vogelsang.

I offer additional acknowledgement to everyone who helped me grow with
their judgments and criticisms.

xi





Part I

Prologue

xiii





Chapter 1

Preface

1.1 General motivation

Gravity is responsible for enkindling various spectacularly astrophysical events.
Einstein’s theory of gravity so far provides the best description of gravita-
tional interactions. In addition, this is also responsible for the existence of
mysterious black holes.

Theoretical and observational efforts are being pursued to understand
and test general relativity in many ways. The ideal regime for such survey-
ing involves the strong gravitational fields in the vicinity of the astrophysical
black holes and compact objects which are not directly accessible because
of their nature. Hopefully, the situation is being better, thanks to great
technological advancements. Nowadays, the significant efforts of astrophysi-
cists and astronomers are devoted to improving the accuracy of astrophysical
observations and fitting within the theoretical models. Large international
collaborations like the Event Horizon Telescope, GRAVITY, the Advanced
Telescope for High ENergy Astrophysics, the Fermi Gamma-ray Space Tele-
scope, the Square Kilometers Array, the LIGO/Virgo and LISA focus on
compact relativistic objects, among them very prominently the supermas-
sive black hole at the center of our galaxy, Sagittarius A⋆, and the one in
the galaxy M87. In fact, our only source of information from the strong
gravity produced by black holes and other compact objects comes from their
fingerprint on the surrounding astrophysical environments, among them are
accretion discs. Accretion discs can reach deeply into the vicinity of these
objects.

An accretion disc generally consists of fluid orbiting around an astro-
physical system. The matter orbiting in the gravitational field of the central
mass loses its angular momentum and gradually spirals inward. Besides,
the geometrical characteristics of the accretion discs depend on their back-
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ground. Studying accretion discs is currently a topic of widespread interest
in astrophysics that links different research areas from fundamental physics
to high-energy astrophysics.

Furthermore, the existence of high-frequency peaks in the Fourier power
spectra of X-ray radiation observational data from accreting compact sources
connected to the so-far unexplained rapid variability known as high-frequency
quasi-periodic oscillations. This important nowadays puzzle is usually sup-
posed to originate from the orbital motion in the innermost parts of an ac-
cretion disc, which again shows the importance of studying accretion discs,
as well as searching for different theoretical set-ups.

In addition, some stellar-mass black holes have received recoil velocity at
their formations. There is a widespread agreement but not yet set exactly
that the birth kicks of black holes are necessary to explain the large distances
above the Galactic plane achieved by some binaries [1] and caused the black
hole to accelerate within a local cosmological medium.

Moreover, the deformation of a compact object is a measurable effect on
the physics of astrophysical systems like binaries, which play an important
role in testing General Relativity. Most of them are caused by rotation;
however, some intrinsic properties like quadrupole can lead to deformation.
Although such an effect would be minimal, its influence can still manifest,
for example, through the creation of gravitational waves or power density
spectra, or as discussed in [2], in the case of extreme mass ratio inspiral
(EMRI), one can extract the multipole moments from the gravitational wave
signal, and any non-Kerr multipole moments should be encoded in the waves.
Therefore, we can expect this metric to be applicable in studying gravita-
tional waves generated in an EMRI.

Mostly, it is assumed that astrophysical black holes are described by the
Kerr solution. However, besides these setup, others can also imitate a black
hole’s properties which makes it challenging to decide when one tries to link
the models to the observation [3, 4, 5]. In fact, the black hole mimickers’ issue
is a topic currently of significant interest in the general relativity and astro-
physics communities and has recently become quite popular. For instance,
in the last case of recoil velocity, the author believes that considering the ac-
celeration parameter in this setup instead of the Kerr solution may provide
the first step towards a (semi-) analytical description of this behavior.

To sum up, astrophysical observations may not all well-fitted within the
general theory of relativity by employing just a restricted family of Kerr
space-time. It appears entirely natural to explore departures due to exer-
cising relatively small parameters in the metric that can be taken as the
additional physical degrees of freedom to the system and facilitate the link
to the observational data that they can be interpreted as rotation or not.
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These crucial issues are particularly challenging tasks yet to be overcome
and require more study on the analytical models in the first place in parallel
to developing new capabilities to check them in simulations.

1.2 Aims

This thesis main aims are:

• to Introduce a generalization of the static q-metric via considering the
external distribution of matter characterized by the set of multipole
moments.

• the Characterization of the impact of the external fields up to the
quadrupole on the circular geodesics and the interplay of these two
quadrupoles in the place of the Innermost Stable Circular Orbit (ISCO)
where consider as the inner edge of the accretion discs in the equatorial
plane.

• understanding of the effects of quadrupole and acceleration parameter
(in C-metric) on the dynamics of matter, the morphology of the equi-
librium configuration of the Thick discs, as well as properties of the
Thin accretion discs and see if the space-times with quadrupole can
act as black hole mimickers.

• the Characterization of the impact of the Generalized q-metric space-
time and magnetic field parameters on the predicted quasi-periodic
oscillations frequencies analytically and fit to the observational data
and see if this metric can mimic the behavior of the Kerr metric.

• the comparison of the photon sphere position and radius of shadow in
q-metric considering the space-time filled with cold plasma and see the
similarities in the results with the Schwarzschild black hole.

• understanding the stability nature of the geodesics of Generalized q-
metric and their chaos behavior.

1.3 Methodology

Realistic scenarios are usually models based on numerical methods and sim-
ulations. Nowadays, new analytic solutions continue to be produced and
examine their ability to fit into data and serve in simulations. Of course,
each method has its benefits and drawbacks. However, developing analytic
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tools can provide a more complete understanding of the physical processes
inside.

In fact, analytical studies are the underlying surface of numerical ap-
proaches and simulations. For example, the importance of the analytical
methods can be seen especially in determining the last stable spherical and
circular orbits, which are starting points for studying the accretion disc the-
ories. In particular, the analytical approach offers a framework to test the
accuracy and reliability of the mentioned methods. Furthermore, on the one
hand, numerical simulations consider space parameters where the choice of
the parameters is critically involved, and on the other hand, massive use of
expensive numerical calculations leaves little room for a physical interpre-
tation. However, analytical approaches demonstrate how exactly an effect
depends on these parameters and they bring out the general features more
clearly. In addition, they may serve as the systematical study of the char-
acteristics of all observable in a given space-time which is the unique way of
their understanding.

In this thesis, the analytical and semi-analytical approaches are hired to
explore different alternatives that may open the door to a broader range of
applications. However, in the quasi-oscillation study, we examine them by
testing their ability to fit the observations.

1.4 Thesis outline

The thesis consists of three parts.

• Part I is thought of as an introduction to the main topics of research
of the thesis. It is a brief review of the necessary background material,
as seen from the point of view of the author and for the aims of this
thesis, with references to the literature:

Chapter 2 introduces the analytical accretion disc models with par-
ticular care to their derivations. The Thin disc and the system of
assumptions and equations are presented. Afterwards, the Thick disc
model and its construction for both versions with and without a mag-
netic field are described. This information will be needed in the rest of
the work in different parts.

Chapter 3 deals with the quasi-periodic oscillations and is devoted to
describing the observation properties and the stable frequencies ratio
observed in the high-frequency quasi-periodic oscillations, as well as
theoretical models that serve to overcome this issue. In particular,
resonance models, and oscillation of Thin and Thick disc models with
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the test particle approach and the perfect fluid approach, respectively.
In Chapter 4 the equation of motion for a light ray in a cold plasma is
presented as well as the impact of the plasma on the radius of shadow.
In Chapter 5 the mathematical tool to explore the linear Laypunov
and non-linear stability analysis of the geodesics based on the Noether
theorem is introduced. In addition, the Kolmogorov entropy which
is a measurement in the study of chaotic behavior of the trajectories
in a given space-time, is outlined. To conclude the background part,
chapter 6 introduces the reader to different space-times considered in
this thesis. They belong to the Weyl class of solutions. In particular,
the C-metric belongs to the large class of Levi-Civita exact solutions,
where also can be obtained from the Weyl metric by taking the limit
of its Newtonian image source length tends to infinity.

• Part II consists of original contributions of the author to the literature:

Chapter 7 the construction of an alternative generalization of the static
q-metric that describes a deformed compact object in the presence of
external fields characterized by multipole moments is introduced. This
metric gives an opportunity to study a non-isolated deformed compact
object. Besides, this generalization is worth considering to have more
vacuum metrics available, for example, to study the interplay of the
vacuum solution with an external field. Therefore, it may be of some
interest to investigate how the external field affects the geometry and
geodesics of the q-metric. In addition, the effective potential, circu-
lar geodesics, and the stable circular orbits in the equatorial plane up
to quadrupole are investigated. Since the properties of congruences of
circular and quasi-circular orbits in an axisymmetric background seem
vital to comprehend accretion processes in the vicinity of compact ob-
jects. The stable circular orbits, in particular, are important to study
the accretion discs in the vicinity of a compact object. They encode
information about the possibility of the existence of the discs and are
considered as the inner boundary of the Thin accretion disc with a high
accuracy [6]. Moreover, the radial and vertical epicyclic frequencies are
the most important characteristics of these orbits that are crucial to
understanding observational phenomena such as quasi-periodic oscilla-
tions, which is a quite profound puzzle in the x-ray observational data
of accretion discs [7, 8, 9]. To have a comparison of the results with
the q-metric the circular motion in this metric with a slightly different
approach than the literature is presented. Moreover, the dynamics of a
charged particle in this space-time in the presence of an asymptotically
uniform magnetic field via the Hamiltonian approach are discussed,
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and different bounded trajectories are studied.

Chapter 8 addresses the issue of examining the possible collision sce-
nario in the background of the Generalized q-metric. In particular, this
question is answered if the distorted Schwarzschild or q-metric back-
ground can act as an accelerator of particles that cause high energy in
their vicinities. This study aims to have behavior of this solution to be
able to have a comprehensible comparison with different space-times,
especially with the Kerr solution at the end.

Chapter 9 explores some of the important features of the rather new
exact analytical solution to Einstein’s theory, the stationary q-metric
described in Chapter 6. To this aim, the Ernst potential and effective
potential of this metric in the equatorial plane are investigated. Be-
sides, different types of trajectories are investigated semi-analytically.
This investigation is needed to understand the existence and proper-
ties of bounded geodesics in the equatorial plane to construct Thick
accretion discs in Chapter 11.

Chapter 10 deals with the Thin accretion disc properties in the back-
ground of Generalized q-metric. As this metric valid locally by its
construction, in the first step the valid region is been investigated with
respect to the parameter of the metric. In the second step, the prop-
erties of the model are presented that show new features that open up
the possibility to fit this model to the observational data.

Chapter 11 presents an extensive study on the magnetized and un-
magnetized Thick accretion discs in different space-times described in
Chapter 6 with constant and non-constant angular momentum are dis-
cussed. In all cases, new features of equilibrium configurations of the
disc structure are investigated. Among them is exploring this disc
model around the C-metric. First, this study is applied to the question
of whether the acceleration parameter in this space-time has a signifi-
cant contribution to the properties of this model in comparison to the
charge and rotation parameters.

Chapter 12 investigates one of the important observational phenomena
related to epicyclic frequencies of circular motion with and without pre-
senting a magnetic field in the background of the Generalized q-metric.
In addition, explore the ability of this metric to fit into the observed
frequencies of three microquasars XTE 1550 − 564, GRS 1915 + 105,
and GRO 1655 − 40.

Chapter 13 presents the equipotential sequences of the Thick disc in
the Generalized q-metric, also studies the oscillation of these discs via



1.4. Thesis outline 1

the local perturbation approach. Subsequently, it highlights the impor-
tance of considering a perfect fluid model rather than a test particle
one to study the radial epicyclic frequency of this oscillation.

Chapter 14 applies the method described in Chapter 4 to the q-metric
and investigates the size of the radius of shadow in this space-time con-
sidering cold plasma. The result is compared with the shadow proper-
ties in the counterpart space-time; namely, the Schwarzschild solution.

Chapter 15 generalizes the method described in Chapter 5 to the Gen-
eralized q-metric. The conditions for having the equilibrium points
are derived depending on the parameters of the metric. Then possible
types of stable motion are classified. Finally, this method can apply
to the off equatorial plane trajectories, which is future work in this
direction. In addition, this study explores the conditions in terms of
the quadrupoles in the metric that can be interpreted as the chaotic
behavior of the solution via the Kolmogoroph entropy, which is linked
to the physical entropy. Of course, the chaotic behavior can consider
in the accretion disc models as an effort to present a new analytical
model of accretion discs describing more realistic scenarios.

• The summary and outlook are presented in Part III.

Throughout this thesis, we use the signature (−,+,+,+) and geometrized
unit system G = 1, c = 1, and M = 1; however, it stated otherwise.
Latin indices run from 1 to 3, while Greek ones are from 0 to 3.





Chapter 2

Analytical accretion disc models

Accretion disc theory is classified in fundamental physics. Because accretion
discs can reach deeply into the strong field regime in the vicinity of the
black hole or a massive compact object. In addition, the accretion disc is
one of the widespread interest phenomena in high-energy astrophysics from
the protoplanet to gamma-ray bursts (GRBs), X-ray binaries, and the active
galactic nuclei (AGN).

However, no unified theoretical accretion disc model could explain all the
basic properties of these sources. In fact, the theory itself endure several
phenomenological estimations and complexities like dynamics, equilibrium,
stability under perturbations, and formation of jets. Each of the models has
some properties that are the best fit for the observation. Investigation of
such systems, either by analytical or numerical methods, may rely on the
ability to construct suitable models based on physical assumptions. There
are impressive studies in this area, analytically or by using simulation in a
complementary fashion.

Analytic and semi-analytic models for accretion onto a compact object
are generally stationary and axially symmetric. Among these successful the-
oretical models are the Thin accretion disc model, and the Thick disc model
with a toroidal shape.

In this thesis, we consider both and study their properties and structure
in different space-times 10, 11.1, 11.2, 11.3, and 11.4. In addition, the results
compared with their counterpart Schwarzschild or Kerr solutions in all pos-
sible cases. In the next section, we study the Thin disc model and later the
Thick disc model in section 2.2.

3
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2.1 Thin accretion disc

Accretion discs establish when gaseous matter spirals onto a central object
by gradually losing its initial angular momentum and forming a disc-like
configuration in which angular momentum is transported outwards due to
the differentially rotating fluid, which causes gas to be accreted onto the
central object.

The standard Thin disc is a fascinating analytical model of accretion,
was proposed and developed in the seminal works by Shakura & Sunyaev
[10], Bardeen, Press & Teukolsky [11], Novikov & Thorne [12] in 1973, and
Lynden-Bell & Pringle 1974 [13]. This model has been used to explain a
variety of observations where the gas is cold and neutral in such a way that
coupling between the magnetic field and the gas is negligible, e.g., [14, 15]. In
general, observations provide the luminosity and the maximum temperature
of the disc that enables us to fit the model to the data.

2.1.1 Assumption of the model

In the Thin standard accretion model, it is supposed that the disc can radi-
ate a considerable fraction of its rest mass energy locally. This radiation is
thermal black body-like radiation which is generated through the viscosity
mechanism that we explain later. As a result, the Thin disc model is consid-
ered as the cold accretion disc. Since, depending on the mass of the central
object, the gas temperature is in the order of 100 K which is considered cold
regarding the virial temperature. For example, this model cannot produce a
very high temperature (T > 1010 K) observed in the Galactic Center source
Sgr A∗ [16].

One of the crucial assumptions of the standard Thin disc is that it is taken
to be razor thin and confined to the equatorial plane, meaning the ratio of the
disc half-thickness H = H(r) over the radius r is very small, H/r ≪ 1. As a
result, the generated heat and radiation losses are in balanced Qgen = Qrad,
and caused to have a negligible advection, since

Qadv ∼
(
H

r

)2

Qgen. (2.1)

Consequently, it causes to luminosities be approximately below 30% of the
Eddington luminosity,

LEdd := 1.26 × 1038

(
M

M⊙

)
erg

s
(2.2)
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or the mass accretion rate Ṁ be below the Eddington rate ṀEdd
1. Above

this limit, the gas becomes optically too thick and can not radiate all the
dissipated energy locally [18, 19]. Therefore, one should justify applying
the standard Thin model to discs with higher luminosity. Interestingly, also
magnetized Thin accretion discs in X-ray binaries, at luminosities below 30%
of Eddington, can be described by the Thin disc model successfully [20].

The solution to the Thin disc model can only be found by applying certain
well-known assumptions that the model is based on. Following the approach
of [10], one assumes that the specific internal energy density is negligible
and the disc lies in the equatorial plane, implying uθ component of fluid
four-velocity vanishes, also quasi-Keplerian circular orbits are assumed with
a small radial drift velocity ur, which is much smaller than the angular ve-
locity. Near the central compact object, ur is negative and gives rise to mass
accretion. Also, no mass or angular momentum crosses the disc surfaces.
Besides, the self-irradiation of the disc, and the loss of angular momentum
due to wind and radiation are neglected. We consider the sub-Eddington
accretion rate, which is the proper choice for the Thin disc model as it was
discussed. The inner edge of a Thin accretion disc with sub-Eddington lu-
minosities is the inner boundary of the region that most of the luminosity
comes from, and this happens to be at the Innermost Stable Circular Orbit,
ISCO.

In this model, the shear stress is supposed to be a form of viscosity respon-
sible for transporting angular momentum and energy outward and accreting
matter inward. Also, it heats the gas locally. This model introduces viscos-
ity through a so-called α-prescription without specifying the concept of the
viscosity itself.

However, according to the very high Reynolds number, the viscosity in
the accretion process can not be the same as molecular viscosity and may
have a magnetic nature [21, 22].

Almost all the accretion disc models assume the dimensionless parameter
α to be a constant in this range 0.01− 0.1 [23]. However, global magnetohy-
drodynamic simulations argued that α is a function of r.

The standard αv viscosity prescription of the Shakura-Sunyaev model is
assumed

Sr̂ϕ̂ = αvP, (2.3)

where Sr̂ϕ̂ is the only non-vanishing component of viscous (internal) stress-
energy tensor in the fluid frame, and P is pressure. In addition, there is

1There are other definitions of ṀEdd are used in the literature that one can see for
example in [17]
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another version of this prescription that is commonly used in terms of the
vertically averaged sound speed and the vertical half-thickness of the disc, as

ν ≃ αvcsH, (2.4)

which one should take it by cautious [24].

In an effort to modify the αv-prescription, in the literature in general,
there are two ways, by considering αv as a function of radius, or keeping αv
a constant and multiplying this by a factor e.g. [25, 26, 27].

Furthermore, in the first model, the authors assumed within the ISCO,
the viscous torque vanishes, and material digs into the central object with
the constant energy and angular momentum flux in its frame. This is called
the zero-torque boundary condition. However, there has been debate on
the validity of this assumption. Some theoretical works suggested that a
non-zero-torque at the inner boundary can emerge due to a magnetic field,
e.g., [28, 29]. However, Paczyński in 2000, based on the angular momentum
conservation equation, and followed by the work of Abramowicz & Kato in
1989, argued that as long as the shear stress is smaller than the pressure,
the Thin disc always satisfies the zero-torque condition. Later Afshordi &
Paczyński [6] suggested that the torque at the ISCO is an increasing function
of the disc thickness and at the inner edge is small. Further, the inner edge
of the disc is almost identical to the place of ISCO. Besides, this result was
satisfied by GRMHD simulations, e.g., [19, 20] and was shown that for a
very Thin disc, inside the ISCO, the viscous dissipation is negligible, and the
dissipation profile is identical to that predicted by the standard disc model.
In [30] was argued that in the evolution of Thin discs, the vanishing stress
boundary condition will be recovered.

Interestingly, this fact motivated the idea that one can estimate the spin of
the black hole by measuring this radius. By the continuum fitting technique,
this radius is determined from the temperature maximum of the soft X-ray
flux [31].

2.1.2 Equations of the model

In this section, we introduce the structure of the Thin accretion disc and
state the assumptions and equations in terms of (t, r, θ, ϕ) coordinate to be
able to focus on the fundamental physics of the problem and to avoid being
distracted by technical details. One could use the transformations (6.10) to
rewrite them in prolate spheroidal coordinates easily.

We assume a steady axisymmetric fluid configuration. All physical quan-
tities depend on the vertical distance from the equatorial plane and the radial
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distance from the central object in these models. As a result of the geomet-
rically thin assumption, the two-dimensional disc structure can be decoupled
into two one-dimensional configurations: radial quasi-Keplerian flow and a
vertical hydrostatic structure. In this model, usually, a vertically integrated
approach is used. Namely, we integrate along with the height of the disc
and neglect the z-dependences of the relevant quantities. However, when the
accretion rate is significant, one should consider the z-dependence of fluid
quantities [16].

Three fundamental equations govern the radial structure of the Thin disc
model. First, the particle number conservation

(ρuµ);µ = 0 , (2.5)

where uµ is the four-velocity of the fluid and ρ is the rest mass density. The
mass accretion rate is connected to this conservation law, meaning we expect
the mass accretion rate to be constant; otherwise, we would see matter pile
up at some certain region of the disc. The other equations are described by
the radial component of conservation of energy-momentum tensor T µν ;ν = 0,
parallel to the four-velocity

uµT
µν

;ν = 0 . (2.6)

And the radial component of projection of this conservation onto the surface
normal to the four-velocity

hµσ(T σν);ν = 0 , (2.7)

where hµν = uµuν + gµν is the projection tensor giving the induced metric
normal to uµ. The stress-energy tensor T σν reads as

T µν = ωuµuν − pgµν + qµuν + qνuµ + Sµν , (2.8)

where ω is enthalpy density, which is the sum of internal energy per unit
of proper volume and pressure over rest-mass density, p is the pressure, uµ

is four-velocity of fluid, qν is transverse energy flux, and Sµν is the viscous
stress-energy tensor. In relativistic form, when we have no bulk viscosity,
it is given by Sµν = −2λσµν , where λ is the dynamical viscosity and σµν

is the shear tensor, where the only non-vanishing component according to
assumptions of the Thin disc model is

σrϕ =
1

2
(ur;βh

β
ϕ + uϕ;βh

β
r) −

1

3
hrϕu

β
;β. (2.9)
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The shear rate is a measure of the rate of change of the angular velocity
with the radius. However, the shear rate is the local measurement, and in
the model, we should consider this component measured in the fluid frame
σr̂ϕ̂. Indeed, this frame is a proper frame to do minimal modifications to an
inviscid flow and contains an orthogonal or nonholonomic basis concerning
the chosen metric. This basis is with respect to the local Lorentz frame
and used by a real observer versus the holonomic basis that represents the
global space-time. Apart from the Cartesian one, they are not orthogonal.
In general, one can obtain the nonholonomic basis from the holonomic one
by applying the Gram-Schmidt process. The relation between σr̂ϕ̂ and σrϕ is
given by

σr̂ϕ̂ = err̂e
ϕ
ϕ̂σrϕ, (2.10)

where the basis eν ν̂ contains orthonormal vectors. This basis is scaled by the
coefficient in the original metric to obtain a unit vector.

By applying the assumptions of the Thin disc model on the basic equa-
tions (2.5)-(2.7) together with the relations describing radiative energy trans-
port and vertical pressure gradient, we end up with a system of nonlinear
algebraic equations governing this model [12], as follows.

The surface density Σ is obtained by vertical integration of the density,

Σ =

∫ +H

−H
ρdz = 2ρH, (2.11)

where H is disc height or half of the thickness of the disc.

For steady accretion through the Thin discs, it is often assumed that the
boundary conditions determine the mass accretion rate at a large distance
from the central object. Considering this assumption and after vertical and
radial integration of the continuity equation, the mass accretion rate is given
by

Ṁ = −2π
√

−|g|urΣ = constant, (2.12)

where ur is the radial velocity of inflow and |g| is the determinant of met-
ric. However, under some circumstances, the expression for Ṁ may not be
that simple [32]. So, the radial velocity of the fluid which is responsible for
accreting mass is obtained in terms of the mass accretion rate Ṁ
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ur = − Ṁ

2π
√

−|g|Σ
. (2.13)

Although the motion is nearly circular in the disc, by passing the ISCO, the
radial velocity increases rapidly.

Following the assumption of Thin disc models, the heat flow was assumed
to be in the vertical direction, meaning qz. Therefore, the time-averaged flux
of radiant energy (energy per unit proper area and proper time) flowing out
of upper and lower surfaces F relates to the heat flow as [33, 12]

qz(r, z) = F (r)
z

H(r)
. (2.14)

By using the fundamental equations (2.5),(2.7),(2.6) and usual manipulation
with assumptions we obtain

(ΩL− E)2

Ω,r

F
√

−|g|
Ṁ

=

∫ r

r0

(ΩL− E)

4π
L,rdr, (2.15)

where E and L are the energy and angular momentum per unit mass of
geodesic circular motion in the equatorial plane, and Ω is the corresponding
angular velocity [34].

The vertically integrated viscous stress W , whose obtained by vertical
integration of the viscous stress S r̂ϕ̂ equation (2.3) is given by

W =

∫ +H

−H
S r̂ϕ̂dz = 2αvPH. (2.16)

The vertical integration generated energy flux via viscosity reads as

F = −
∫ +H

−H
σr̂ϕ̂S

r̂ϕ̂dz = −σr̂ϕ̂W. (2.17)

According to the models’ assumptions, at each radius, the emission is like
black body radiation. The energy transportation law is given by

aT 4 = ΣFκ, (2.18)

here κ is the Rosseland-mean opacity,

κ = 0.40 + 0.64 × 1023(
ρ

g cm−3
)(
T

K
)−

7
2 cm2g−1, (2.19)
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where the first term is electron scattering opacity and the second one is free-
free absorption opacity. And a is the radiation density constant given by

a =
4σ

c
, (2.20)

where σ is the Stefan-Boltzmann’s constant.
In general, for the vertical direction in the comoving frame of fluid, the

force due to vertical pressure gradient is the balance with gravity, the cen-
trifugal force, and vertically Euler force 2. The pressure P is the sum of gas
pressure from nuclei and the radiation pressure

P =
ρkT

mp

+
a

3
T 4, (2.21)

where mp is the rest mass of the proton, k is Boltzmann’s constant, a is the
radiation density constant, and T is the temperature. In fact, we ignore the
mass difference between neutrons and protons in the first term for simplicity.
In practice, the pressure equation in the vertical direction is given by

P

ρ
=

1

2

(HL)2

r4
, (2.22)

which is derived from the relativistic Euler equation with no additional sim-
plifications [35, equation 28].

By solving these eight equations (2.11), (2.13), (2.15), (2.16), (2.17),
(2.18), (2.21) and (2.22), one obtains the radial profiles of the eight vari-
ables in the model, namely the half-thickness of the disc over radius H

r
= h,

surface density Σ, the central temperature T , pressure P , the radial velocity
ur, the radiation flux F , viscous stress W and ρ and from them one can
calculate other physical quantities subsequently. All these parameters are
functions of the distance from the central object. We utilize the Thin accre-
tion disc model formalism in Chapter 10 and some of the related properties
in the quasi-periodic oscillations in Chapter 12.

2Of course, in this frame, the Coriolis force vanishes.
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2.2 Thick accretion disc

The Thick disc is the simplest analytic model of the hydrodynamical struc-
ture of an accretion disc with no accretion flow based on the Boyer’s condition
3 was presented in these seminal works [36, 37, 38, 39, 40, 41, 42, 43]. Ini-
tially, the disc model presents a highly super-Eddington accretion, with low
viscosity, rotating accretion flows that are optically thick, radiation pressure
supported, cooled by advection, and radiatively very inefficient.

The Thick discs are believed to be present in quasars and other active
galactic nuclei, some X-ray binaries, microquasars, and in the central engine
of gamma-ray bursts. As numerical simulations show, such events often result
in a black hole surrounded by a torus (see e.g. [44, 45, 46, 47]).

In this model, the equation of state is taken to be barotropic, and self-
gravity is negligible. We briefly explain this model in the static case that we
have studied. In general, the stationary metric, in the spherical coordinates,
reads as

ds2 = gttdt
2 + gtϕdtdϕ+ grrdr

2 + gθθdθ
2 + gϕϕdϕ2. (2.23)

where components of metric only depend on r and θ. Also, rotation of perfect
fluid is assumed to be in the azimuthal direction; therefore the four-velocity
and a perfect fluid stress-energy tensor 4 simplifies to

uµ = (ut, 0, 0, uϕ), (2.24)

T µν = (ϵ+ p)uνu
µ − δµνp, (2.25)

here ϵ is the proper energy density, and p is isotropic pressure as measured
by an observer moving with the fluid. In fact, in this model, the time-scale of
dynamic processes, involving pressure, centrifugal and gravitational forces,
are considered to be smaller than thermal ones and therefore than the viscous
time-scale. This implies that in T µν the dissipation due to the viscosity and
the heat conduction be neglected. Adopting the definition of the specific
angular momentum and the is the coordinate angular velocity as observed
from infinity in the static case, we have

ℓ = −uϕ
ut
, Ω =

uϕ

ut
, (2.26)

3Boyer’s condition states the boundary of any stationary and barotropic perfect fluid
body is an equipotential surface.

4The stress-energy tensor is stated here is the same as the one used in the description
of the Thick disc in the literature.
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It is worth mentioning that this is not the only definition for ℓ and normally it
is defined as a constant of geodesic motion in axially symmetric space–times
as only the nominator uϕ. However, for non-zero pressure, instead huϕ is
a constant of motion, where h is specific enthalpy. For axially symmetric
and stationary space–times the above relation (2.26) is a constant for both
geodesic and perfect fluid motion. We also have their relationship as

ℓ = −Ωgϕϕ + gtϕ
Ωgtϕ + gtt

, Ω = − ℓgtt + gtϕ
ℓgtϕ + gϕϕ

. (2.27)

Besides, the corresponding redshift factor is given by

(ut)
−2 = −ℓ

2gtt + 2ℓgtϕ + gϕϕ
g2tϕ − gttgϕϕ

. (2.28)

In this model, the motion of the fluid is described by the continuity equation

ua∇aϵ+ (ϵ+ p)∇aua = 0, (2.29)

and the Euler equation

(ϵ+ p)ua∇au
c + hbc∇bp = 0, (2.30)

where hab = gab + uaub. In general, by utilizing the conditions of hydrostatic
equilibrium and axisymmetry simplifies the hydrodynamical equations and
reduces them to Bernoulli-type equations [48],

1

ϵ+ p
∇ip = −∇i lnut +

Ω∇iℓ

1 − Ωℓ
(2.31)

where i is r or θ. This leads to Ω = Ω(ℓ). Or equivalently

1

ϵ+ p
∇ip = ∇i lnu

t − ℓ∇iΩ

1 − Ωℓ
(2.32)

where this gives ℓ = ℓ(Ω) [49]. For a barytropic equation of state, p = p(ρ),
where ρ is the rest-mass density, this leads to∫ p

pin

dp

ϵ+ p
= − ln |ut| + ln |(ut)in| +

∫ ℓ

ℓin

Ωdℓ

1 − Ωℓ
, (2.33)
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where the subscript in refers to the inner edge of the disc. This relation
implies Ω = Ω(ℓ) and satisfies the general relativistic version of the von
Zeipel theorem, which states for a toroidal magnetic field, the surfaces of
constant p coincide with constant w, if and only if constant Ω and constant
ℓ coincide [50, 51]. However, for the non magnetized version, the surface of
equal Ω, ℓ, p and w all coincide [48]. Therefore, by specifying Ω = Ω(ℓ), one
can construct the model via solving equation (2.27) for Ω or ℓ. Then from
equation (2.33), one obtains W (r, θ) and p(r, θ). This model can be adapted
for either constant or a non-constant angular momentum distribution. We
explore more about this while constructing the magnetized version.

2.2.1 Magnetized version

There is no doubt on the role of the magnetic fields in the study of astrophys-
ical systems. In the processes occurring in the vicinity of compact objects,
the magnetic fields can manifest their fingerprint in many ways, for example
in the accretion process in MRI simulations [21].

The fully relativistic model was extended by Komissarov [52] by consid-
ering a purely azimuthal magnetic field. In the magnetized case, all previous
assumptions are indefeasible. Besides, following [52] the magnetic field is as-
sumed to be purely azimuthal, i.e., the four-vector magnetic field has vanish-
ing r and θ components, and the flow is axially symmetric and stationary. In
this method, we employ the strong toroidal magnetic field pressure compared
to the gas pressure [53]. In what follows, the equations and assumptions of
the magnetic Thick disc are reviewed.

Equations of ideal relativistic MHD

Conservation laws that describe the covariant equations governing the evo-
lution of the gas in the ideal relativistic Magnetohydrodynamics (MHD)
are baryon conservation, stress-energy conservation, and induction equation
[54, 55]

(ρuν);ν = 0 , (2.34)

T νµ;ν = 0 , (2.35)
∗F νµ

;ν = 0 , (2.36)

where the subscript ”;” refers to the covariant derivative, T µν is the total
stress-energy tensor of the fluid and the electromagnetic field together. By
neglecting the dissipation due to the viscosity, and the heat conduction in
the fluid frame T µν reads as [55],
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T νµ =
(
w + |b|2

)
uνuµ +

(
p+

1

2
|b|2
)
gνµ − bνbµ, (2.37)

where p is the gas pressure, |b|2 = 2pm where pm is the magnetic pressure in
the fluid [55], and ∗F νµ is the Hodge dual Faraday tensor

∗F νµ = bνuµ − bµuν , (2.38)

where bµ is the four-vector magnetic field. We proceed here following [52],
by the assumption of axially symmetric and stationary space-time

ur = uθ = br = bθ = 0. (2.39)

It is clear that considering these assumptions, the only nontrivial result
follows from solving the stress-energy conservation. By choosing to have
Ω = Ω(ℓ) as the integrability condition, and projection of the conservation of
stress-energy tensor into the plane normal to four-velocity, we obtain [36, 52]

1

w
∇ip = −∇i lnut +

Ω∇iℓ

1 − Ωℓ
− ∇ip̃m

w̃
, (2.40)

where p̃m = Lpm, w̃ = Lw, and in the static set-up L = g2tϕ − gttgϕϕ. Then
this equation turns easily to

∫ p

0

dp

w
+

∫ p̃m

0

dp̃m
w̃

= − ln |ut| + ln |(ut)in| +

∫ ℓ

ℓin

Ωdℓ

1 − Ωℓ
. (2.41)

The constant of integration was chosen so that the pressures vanished on the
surface of the disc and its inner edge i.e., ut = (ut)in and ℓ = ℓin.

Adopting [52], to be able to express the integrals of equation (2.41) in
terms of elementary functions, we need to assume these extra relations

p = Kwκ, p̃m = Kmw̃
η, (2.42)

where K, κ, Km and η are constants. By this particular choice for equations
of state, the Von Zeipel theorem is fulfilled. Therefore the equation (2.41) is
fully integrated, and we obtain
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W −Win +
κ

κ− 1

p

w
+

η

η − 1

pm
w

=

∫ ℓ

ℓin

Ωdℓ

1 − Ωℓ
, (2.43)

where W = ln |ut|. The model parameters to have a unique solution are κ >
0, η, Win, wc enthalpy at the center, and the magnetization parameter βc > 0,
which is the ratio of the gas pressure to magnetic pressure, at the center. The
positivity of κ and βc is due to avoiding divergence in the equation (2.43).
Also, one needs to specify ℓ(r, θ) to fix the geometry of the equipotential
surfaces, where we consider different cases in what follows.

2.2.2 Angular momentum distributions

The first angular momentum case we have considered in this work has the
constant distribution profile ℓ = ℓ0. Therefore, the right-hand side of the
equation (2.43) vanishes

W −Win +
κ

κ− 1

p

w
+

η

η − 1

pm
w

= 0. (2.44)

The disc centre is found at the larger radius where ℓ0 intersects with the
local Keplerian angular momentum. In contrast, ℓ0 is larger than the radius
of the marginally stable Keplerian orbit ℓms. One can find the cusp point
at the radius of the intersection of the specific angular momentum and the
Keplerian one [36, 52]. Therefore, the disc surface is fully determined by
choice of Win independently of the magnetic field [56]. In this case, the total
potential reads as

W (r, θ) =
1

2
ln | L

A
|, (2.45)

where A = gϕϕ+2ℓ0gtϕ+ℓ20gtt in the static case. Thus W satisfies this relation
[48],

{
Win ≤ Wcusp if |ℓms| < |ℓ0| < |ℓmb|,
Win < 0 if |ℓ0| ≥ |ℓmb|.

(2.46)

Besides, the gas pressure at the center pc reads as

pc = wc(Win −Wc)

(
κ

κ− 1
+

η

βmc(η − 1)

)−1

, (2.47)
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where the subscript c refers to the mentioned quantity at the center. Also,
βc = pc/pmc is the magnetization parameter at the center. The variables of
model are then W , w, p, pm, ut, uϕ, bt and uϕ. So by using equation of state,
one can find K and Km, then the solution is easily obtained utilizing (2.43)
and (2.45) [52].

Power-low angular momentum distribution

In the second case, we relax the condition of constant angular momentum.
However, by considering pure rotation and a barotropic equation of state,
angular velocity can state as a function of specific angular momentum Ω =
Ω(ℓ). In this case, following [53] we consider

Ω(ℓ) = cℓn, (2.48)

where c and n are constant parameters. Then the equation (2.43) can be
written as [53],

W −Win +
κ

κ− 1

p

w
+

η

η − 1

pm
w

(2.49)

=
1

n+ 1
ln

(
cℓn+1

in − 1

cℓn+1 − 1

)
.

Of course, one needs to calculate c and n to obtain angular momentum
distribution. It can be done using the center of the torus and the cusp of the
disc. In the next step, by calculating Ω(rc), Ω(rcusp), and using the original
definition of Ω in equation (2.27), one obtains a system of equations that can
be solved analytically to find parameters c and n and the distribution [53].

At this stage, we have all we need to build magnetized Thick discs. We
can find the gas and magnetic distribution, the enthalpy distribution, and
the rest-mass density distribution (2.42). The fluid enthalpy is giving by
w = ρh, where h = 1 + ϵ+ p

ρ
is the specific enthalpy which in this case it can

approximate by h ∼ 1. This approximation is supported by the fact that the
fluid is not relativistic from a thermodynamical point of view, and the internal
energy and the pressure are very small compared to the rest-mass density.
However, relaxing this assumption does not lead to noticeable differences in
the models we considered. It is worth noticing that for a circular rotating
perfect fluid, the shapes and location of the equipressure surface p(r, θ) =
const. are characterized by the assumed angular momentum distribution
independently of the equation of state and the assumed entropy distribution
[38].
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Trigonometric angular momentum distribution

The third case is also considered for non-constant angular momentum where
presented in [57]. This is a reasonable assumption from a physical point
of view to combine the constant profile with the Keplerian one. It has two
important properties features of the angular momentum distribution in accre-
tion discs. This distribution on the equatorial plane and far from the object
is slightly sub-Keplerian, but closer it becomes slightly super-Keplerian and
in the plunging region, it becomes again sub-Keplerian and almost constant.
Following them, we have assumed an angular momentum distribution for the
hydrodynamical case given by

ℓ(r, θ) =

{
ℓ0

(
ℓK(r)

ℓ0

)α
sin2δ, r ≥ rms,

ℓ0(ζ)−α sin2δ, r < rms,
(2.50)

where ℓ0 = ζℓK(rms), and ℓK is the Keplerian angular momentum in the
equatorial plane, and

0 ≤ α ≤ 1, −1 ≤ δ ≤ 1, −1 ≤ ζ ≤ ℓK(xmb)

ℓK(xms)
. (2.51)

In this case, the equipressure surface which starts from the cusp is the
marginally bound for α = 0, δ = 0, and ζ = ℓK(xmb)/ℓK(xms). Also, for
the MHD case

ℓ(r, θ) =


ℓ0

(
ℓK(r)
ℓ0

)α
sin2δ, r ≥ rms,

ℓms(r) sin2δ, r < rms,

(2.52)

where ℓms(r) is calculated on the equatorial plane via considering Ωms simply
by using equation (2.27). This means, aside from the constant case (α, δ) =
(0, 0), the angular momentum distribution in the equatorial plane behaves as
follows. It starts with a constant value from the inner region to the marginally
stable orbit, then monotonically increases from the marginally stable orbit
to the outer part of the disc. In this case, the center is the inflection point of
angular momentum behavior from the super-Keplerian to the sub-Keplerian.
Also, increasing in α tends to make angular momentum distribution closer
to the distribution of the Keplerian one.

This procedure is described as follows. First, one should substitute i = r
in equation (2.40), and after replace i = θ in this equation. Second, divide
the two equations to obtain [57],
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∂rp

∂θp
=
∂rg

tt + ℓ2∂rg
ϕϕ

∂θgtt + ℓ2∂θgϕϕ
:= −F (r, θ) (2.53)

Thus, for a given angular momentum distribution ℓ, the function F is known.
In addition, considering θ = θ(r) as the explicit equation for the equipressure
surface leads to

dθ

dr
= F (r, θ). (2.54)

One can solve this equation for different initial conditions. Therefore one can
obtain all the possible locations for the equipressure surfaces.

Throughout this thesis, we use this description in Chapters 11 and 13.



Chapter 3

Quasi-periodic oscillations

Nowadays, periodic and quasi-periodic variations are observed in several
classes of astrophysical objects containing accretion discs. Although different
models have been proposed for the interpretation of this rich phenomenol-
ogy, it seems still there is not a widely accepted mechanism for most of the
observed sources, for a review see e.g. [7, 58, 59].

The so-far unexplained rapid variability (so-called high-frequency quasi-
periodic oscillations - HF QPOs) is usually supposed to originate from the
orbital motion in the innermost parts of an accretion disc since the peaks of
high frequencies are close to the orbital frequency of the marginally stable
circular orbit where it represents the inner edge of Keplerian discs. The
reasons are as follows; first, these quasi-periodic modulations are observed in
the most luminous part of the source spectrum (and at high photon energies)
implying its origin to be at the inner part of the accretion flow, since most of
the gravitational potential energy of the accreting matter is released there.
Second, a kHz modulation of unbeamed radiation should originate in a region
not larger than almost 100 km 1. Furthermore, this rapid variability arises
across a large scale of mass of the compact sources including neutron stars,
black hole low-mass X-ray binaries (LMXBs), as well as active galactic nuclei
2 [7, 60, 8, 61, 62, 63, 64, 65].

3.1 Observations

For the HF QPOs (> 100 Hz) the oscillation frequencies are usually stable
and often in a 3 : 2 ratio. The phenomenon is not universal, and more
importantly, the HF QPOs are elusive with a low duty cycle. These occur

1Even with a sharper bound when the high degree of coherence of the observed modu-
lation is considered.

2For BHBs: Mbh ∼ 10M⊙, and for AGN: Mbh ≳ 106M⊙.

19



20

only in certain states of luminosity and hardness. In the X-ray binaries, HF
QPOs arise in the steep power-law state [66] or anomalous high-soft state
[67, 68]. In fact, both of these correspond to a luminous state with a soft
X-ray spectrum including a thermal disc component 3. Surprisingly, the HF
QPOs were observed only in 11 of almost 7000 observations of 22 stellar-mass
black holes [67].

Since the time evolution of the viscous instabilities and accretion rate fluc-
tuations is very long 4 compared to stellar-mass sources; therefore, in general,
the QPOs in supermassive sources are not expected to vary over observational
timescales. Furthermore, the impressive correlation between the frequency
of QPOs and the black hole mass has been observed from stellar mass to
supermassive black hole sources [70]. This is a piece of strong evidence to
support the hypothesis of its scale-invariant and suggests the mechanism re-
sponsible for QPOs may be the same in both types of objects. This also may
open a window to measure the supermassive black hole masses, particularly
information on AGN light curves that can gather from like eROSITA, TESS,
and future ground-based surveys.

Moreover, many microquasar and neutron star sources in LMXBs show
QPOs in their observed X-ray fluxes in the Fourier variability peaks in the
Power Density Spectra (PDS). In addition, the frequencies of some QPOs cor-
respond to the orbital frequencies close to the central object. A special class
of HF QPOs consists of twin peak QPOs with lower and upper frequencies of
their pairs (νU , νL) in PDS. These twin peak QPOs were reported also in the
peculiar microquasar. In the LMXBs containing a black hole candidate in
low-density discs, the X-ray luminosity is modulated quasi-periodically, giv-
ing rise to distinctive peaks in the PDS which have been found in sequences
of small integers 2 : 3.

3.2 Theories

Despite the exciting possibilities raised by the observations, there is still no
general agreement on the physical mechanism underlying HF QPOs. Most
of the candidate theories consider resonant epicyclic or orbital frequencies
caused by the gravitational field of the compact object. Because this is ex-
pected that the stable frequencies observed in HF QPOs should be governed
by the fixed gravitational field of the central source, rather than be the prop-
erties of the accretion discs or the X-ray emitting corona, which are known to

3In the HF QPO frequency of GRS 1915+105 slight variability appears to depend on
the spectral hardness [69].

4From tens to hundreds of years.
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fluctuate. However, as mentioned none of the theorems have yet reproduced
all of the observed phenomena successfully.

Among many models serving to explain QPOs in the past years is the
Relativistic Precession Model (RPM). This model assumes that QPOs are
produced by a local motion of accreted inhomogeneities like blobs, and relates
the twin-peak QPOs to the Keplerian and periastron precession frequency
on an orbit located in the inner part of the accretion disc as mentioned
earlier [71, 72]. In this regard, the properties of the Keplerian and epicyclic
frequencies of the orbital motion have been extensively studied in the context
of particle motion underlying the presence of a uniform magnetic field in
various space-times [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]
among many others.

Although, in general, the correlation between these frequencies is quali-
tatively fitted by the RPM prediction [87], the RPM suffers some theoretical
difficulties to explain for example a relatively large observed HF QPO ampli-
tudes which are often observed [88, 89]. During these years, this model was
modified in many ways. In 2001, the orbital resonance model was introduced.
In this model, it was supposed that HF QPOs arise from the resonances be-
tween oscillation modes of the accreted fluid [90, 91]. In fact, several studies
within the HF QPOs framework consider fluid motion instead of a test parti-
cle motion. In this respect, a different class of models deals with the collective
motion of accreted matter considering normal modes of thin accretion disc
oscillations (so-called discoseismology) and thick disc (torus) oscillations e.g.
[92, 93, 94, 95, 96, 97, 98, 99]. In some cases, the QPO frequencies predicted
by a given model can still be expressed in the test particle motion for the
epicyclic oscillations of slender accretion tori or with reasonable accuracy for
the consideration of discoseismic modes. In principle, it is worth mentioning
that it is a rather long way from the test particle motion examination to
considering the more realistic case of non-slender tori oscillations that has
severe impacts on the predicted QPO frequencies e.g. [100, 101].

3.3 Models of 3 : 2 quasi-periodic oscillation

In what follows we briefly introduce QPO models of the test particle, and in
Chapter 12 we explore the properties of the Keplerian and epicyclic frequen-
cies of a charged particle motion in the background of a distorted, deformed
compact object 7 with a relatively weak uniform magnetic field. In the next
step, in Section 3.4 we present an approach to consider a perfect fluid disc
oscillation instead of a test particle approach.



22

3.3.1 Resonance

One of the popular models suggests that QPO arises in resonant interaction
between the radial and vertical oscillation modes in the relativistic accretion
flow. Many orbital resonance models are related to parametric resonance,
forced resonance, or considering beat. Indeed, in these resonance models,
epicyclic frequencies of the test particle circular motion play a crucial role
[102]. In general, depending on internal conditions, it is possible to have
more than one resonance excited in the disc simultaneously or at different
times.

In fact, there are a variety of possibilities in the combination of reso-
nances, where in the parametric and forced resonances, normally, people try
to connect these combinations to the frequency ratio of oscillations; however,
physical details vary [103]. This is worth mentioning here that in principle,
for any case of the orbital resonance model, one can determine the mass and
spin in the case of a rotating black hole. In fact, aside from detailed technical
issues, the magnitude of the measured frequencies can determine the param-
eter M identifying as the mass of the source. While, on the other hand,
the relation between the black hole spin and these frequency ratios is not
unique. Namely, several values are possible for a given ratio set. Therefore,
this is necessary to consider other spin measurement methods like spectral
continuum fitting or profiled spectral lines [96, 104]. However, the different
resonance models are linked to finding the desired combination of resonances
that links them to the observations. In what follows, we explain the para-
metric (or internal) and forced resonances briefly.

Parametric resonance

This resonance is governed by the Mathieu equation. This equation is a linear
second-order ODE, which differs from the one corresponding to a harmonic
oscillator in the existence of a periodic and sinusoidal forcing of the stiffness
coefficient as f(t) = f0 + f1 cos(ω2

xt), and is given by

d2ξy

dt2
+ ω2

y

[
1 + ω2

yh cos(ω2
xt)
]
ξy = 0. (3.1)

where h = f1
f0

≫ 0 is the amplitude of the excitation (forcing) term, νx = ωx

2π

is its excited frequency, and νy = ωy

2π
is the natural, unexcited frequency.

It is well known that this set-up performs free oscillation around the stable
equilibrium case. If the stiffness term contains the parametric excitation i.e.
f1 ̸= 0, the motion can stay bounded which is referred to as stable, otherwise,
the motion becomes unbounded and referred to as unstable.
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Considering the vertical and radial epicyclic oscillations with the frequen-
cies νy = ωy

2π
and νx = ωx

2π
, the Mathieu equation implies that a parametric

resonance is excited strongly for the lowest possible value of integer numbers
in the ratio of these two [103]. Such a parametric resonance [105] can occur
if

ωx
ωy

=
νx
νy

=
2

n
, n = 1, 2, 3, .. (3.2)

and is strongest for the smallest possible value of n. In the case of a black
hole, because in its vicinity νx < νy satisfies, one can say that this lowest
possible value is n = 3, which means that 3νx = 2νy. This can explain most
of the observed 3 : 2 ratio in HF QPOs.

Forced resonance

In a more realistic physical model, we should consider small deviations from
the planar circular motion. The related models are based on the forced non-
linear oscillator. The equations governing the behavior of these fundamental
frequencies read as

d2ξy

dt2
+ ω2

yξ
y + [non-linear terms in ξy] = h1 cos(ω2

0t), (3.3)

d2ξx

dt2
+ ω2

xξ
x + [non-linear terms in ξx] = h2 cos(ω2

0t), (3.4)

where ω0 is the frequency of the external force. In this case also, the resonance
occurs if the frequencies are in the ratio of small natural numbers

ωx
ωy

=
k

l
, k, l = 1, 2, 3, ... (3.5)

The non-linear terms are responsible for beat frequencies in the resonant
for ξy(t) and ξx(t). Indeed, because of the nature of non-linearity in these
equations, they are related to the dissipative processes and the change in
their amplitude the contrary to the Mathieu equation [103]. However, since
the details of dissipative processes in accretion discs are not known one can
not find the corresponding h1 and h2 exactly in this more realistic model.
One of the possibilities is to solve them mathematically and try to find the
best match between them and observed QPOs [102].

3.3.2 QPO Models

A class of models, so-called orbital models which assume a relation between
the QPO frequencies and the frequencies related to the motion of accreted
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matter orbiting in the vicinity of a compact object is considered here. These
models focus on hot-spot or disc-oscillation to describe QPOs.

Among these various models of accretion disc oscillations, we consider the
whole group of QPO models in [106] related to the test particle motion and
examine them in Chapter 12. For a detailed discussion on these models see
also [102, 96, 107, 108]. As we see in the following, the prescription of these
models relies on the formulae for epicyclic frequencies of a particle motion
[106] which are shared the primary motivation with some cases for example
models based on the dynamic of fluid [101]. In fact, in a given model, the
predicted QPOs can be expressed in the test particle motion with reasonable
accuracy even for the consideration of discoseismic modes. In the following,
the two kinematic models are RP and TD, and the resonant models are WD,
Ep, Kp, RP1 and RP2. In fact, they consider different possibilities in the
combination of disc-oscillation modes.

RPM

The Relativistic Precession Model (RP) is one of the first attempts to model
QPOs, proposed in [72, 109]. In RPM the upper frequency is defined as
the Keplerian frequency νU = Ω and the lower frequency is defined as the
periastron frequency i.e. νp := νL = Ω − νx. Their correlations are obtained
by varying the radius of the associated circular orbit. Within this framework,
it is usually assumed that the variable component of the observed X-ray
arises from the motion of “hot-spots” or biting inside the accretion disc on a
slightly eccentric orbit. Therefore, due to the relativistic effects, the observed
radiation is supposed to be periodically modulated. In this model, frequencies
predicted are scaled as 1/M for a fixed spin value; therefore, the expected
frequency ratio is mass independent. As weakness of this model is the lack
of a generic explanation for the observed 3 : 2 frequency ratio.

TDM

Another kinematic model is the Tidal Disruption Model (TD) presented in
[110, 111]. This follows also a very similar approach as the RPM. In this
model, the QPOs are assumed as a result of tidal disruption of large accreting
inhomogeneities. In other words, when blobs orbiting the central compact
object can be stretched by tidal forces forming the ring section. However,
in this case also, the frequency ratio is not reliably constrained. In TD the
frequencies are identified with the frequencies of the orbital motion; namely,
the upper frequency is defined as νU = Ω + ωx and the lower frequency is
defined as νL = Ω.
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Table 3.1: Frequency relations corresponding to individual QPO models

Model νU νL

RP Ω Ω − ωx
Kp Ω ωx
Ep ωy ωx
TD Ω + ωx Ω
WD 2Ω − ωx 2Ω − 2ωx
RP1 ωy Ω − ωx
RP2 2Ω − ωy Ω − ωx

WDM

The Warped disc Model (WD) introduced in [112], which is related to non-
axisymmetric modes in a warped accretion disc. In WD the upper frequency
is defined as νU = 2Ω − ωx and the lower frequency is νL = 2Ω − 2ωx. In
more realistic versions of this model, the higher harmonic oscillations are also
considered up to the third order, then frequencies like 3Ω − ωx are possible
to consider. On the contrary with the two last models, the ratio of the
frequencies is crucial for the model. However, this model suffers from the
fact that it considers a somehow exotic disc geometry that causes a doubling
of the observed lower QPO frequency.

EpM-KpM

The Epicyclic resonance Model (Ep) [102] is the simplest variant. It is about
considering radial and vertical epicyclic oscillations and relates them to the
resonance of axisymmetric disc-oscillation modes. The Keplerian resonance
Model (Kp) considers a resonance between the orbital Keplerian and the
radial epicyclic oscillations. In Ep the upper frequency is defined as νU = ωy
and the lower frequency is νL = ωx. In Kp the upper frequency is defined as
νU = Ω and the lower frequency is νL = ωx.

RP1M-RP2M

The RP1 model by Bursa in 2005 and the RP2 model [76], both consider
different combinations of non-axisymmetric disc-oscillation modes. In RP1M
the upper frequency is defined as the Keplerian frequency νU = ωy, and the
lower frequency is νL = Ω − ωx. In RP2M the upper frequency is defined as
νU = 2Ω − ωy and the lower frequency is νL = Ω − ωx. In the case of slow
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rotation, their outcome frequencies of oscillation modes almost coincide with
the frequencies predicted by the RP.

In Chapter 12 we study these models in the Generalized q-metric back-
ground 7, and also attempt to fit them to the data. However, such an in-
vestigation is worth studying and we can have a good agreement with the
observation, some other observational outcomes in different situations trigger
the idea that considering the effect of perfect fluid than just a test particle
can improve the fitting 5. There are different approaches to dealing with this
scenario. In the next section, we state the vertically integrated quantities
approach to study the radial epicyclic frequencies in a perfect fluid disc and
present the results in Chapter 13.

3.4 Epicyclic oscillations: Local perturbation

As mentioned in the previous section 3, there is not a great agreement on
interpretation of the accepted mechanism of the observed QPOs. In this
regard, studying axisymmetric modes of the relativistic geometrically Thick
discs seems to be a systematic investigation of the oscillation properties of
accretion discs. In fact, the oscillations of these discs are important since
they can produce intense gravitational radiation, also these oscillations may
explain the high-frequency QPOs observed in LMXBs containing a black hole
candidate in low-density discs.

As a standard approach, the oscillation modes of geometrically Thick
discs can be studied through local perturbative analyses when the perturba-
tions of the space–time are neglected. In this regard, the current approach
tends to extend the relativistic discoseismology analysis carried out for Thin
discs to systems having a non-negligible contribution of pressure gradients.
Besides, this allows us to investigate the possible connections between the
oscillation modes of relativistic Thick disc model and the X-ray observed
in QPOs. Furthermore, the axisymmetric oscillations of Thick discs may
provide a criterion in the study of the runaway instability e.g. [113].

In a series of papers [114, 115, 116] it has been shown that the Thick
accretion discs show a long-term oscillatory behavior with the duration of
tens of orbital periods including the vertical integration analytical approach.
In this way, this chapter aims to investigate if and how the dynamics of
such objects change when the influence of quadrupoles is taken into account.
In the following, we discuss briefly the local perturbation approach for the

5For example, to interpret the observed QPOs in some sources like a neutron star X-ray
binaries, the mass of the neutron star which is needed to fit to the observations is larger
(∼ 2M⊙) than the observed value of neutron star mass (∼ 1.4M⊙).
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circular orbiting test particle and a perfect fluid.

3.4.1 Test particle

For a test particle moving in a circular orbit in a stationary and axisymmetric
background, we can consider its four-velocity as uµ = ut(1, 0,Ω, 0). The
particle motion obeys the energy and momentum conservation laws, and in
particular, it moves along geodesics. Using this information the equation of
motion for this particle can take this form

(vµ ;ν + vµ∂ν lnut)vν = 0, (3.6)

where ”;” represents the covariant derivative and vµ is the physical velocity
of the particle that relates to the four-velocity as vµ = uµ

ut
. In the standard

perturbation approach, one can assume the perturbed physical velocity of
this type

vµ = (1, δvr,Ω + δvϕ, 0). (3.7)

Considering this relation in the equation (3.6), and terms up to the first order,
one can obtain the radial epicyclic frequency κr e.g. [117]. For example, as
a special case, in Schwarzschild space-time, one obtains the familiar formula

κ2r =
M(r − 6M)

r2
. (3.8)

Or in Kerr space-time we have [117]

κ2r =
M(r2 − 6Mr + 8a

√
Mr − 3a2)

r2(
√
r3 + a

√
M)

. (3.9)

This is worth mentioning that we only derive the epicyclic frequency referring
to the prograde orbits. Since there is a maximum of this frequency at a radius
outside the ISCO, which would be linked to the oscillation modes trapped in
the inner part of the accretion discs.

3.4.2 Perfect fluid disc

In this part we are interested to study this space–time in the vicinity of the
equatorial plane (i.e. |y − 0| ≪ 1). In addition, we concentrate on a simple
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model for the torus which can be treated analytically. The main simplifica-
tion in the models is that the vertical structure of the tori is accounted for
by integrating the relevant quantities along the direction perpendicular to
the equatorial plane. Therefore, the tori were built with vertically integrated
and vertically averaged quantities. The point here is that this vertically av-
eraging corresponds to collapsing the vertical structure of the torus onto the
equatorial plane, and not just studying the equatorial slice of the vertically
extended torus.

The general approach is the same in Newtonian and in General relativity.
Here we explain this method briefly. We consider an extended perfect fluid
configuration orbiting a central object and we neglect self-gravitating. We
can introduce the vertically integrated pressure P , corresponding est-mass
density S, velocity components U and W respectively as

P(r) :=

∫ H

−H
pdz, (3.10)

S(r) :=

∫ H

−H
ρdz, (3.11)

U(r) :=
1

2H

∫ H

−H
vrdz, (3.12)

W(r) :=
1

2H

∫ H

−H
vϕdz, (3.13)

where H = H(r) is the local thickness of the torus and vi are the three-
velocity components of the fluid. Considering two first equations the general
polytropic equation of state p = Kργ, becomes P = KSΓ, where K and
Γd lnP
d lnS are the corresponding polytropic constant and the adiabatic index

respectively. We also need to modify the equation of state in a consistent
way since P does not represent a vertically integrated polytropic equation of
state if Γ ̸= 1. In addition, to get ride of the height dependence of Γ = Γ(r, z)
for simplicity one can assume p and ρ have a weak dependence on height,
so that they can be stated in terms of their values at the equatorial plane.
Therefore, we can use this modified expression for the equation of state

P = KSγ. (3.14)

With these quantities the dynamics of the torus is fully determined once we
choose the parameters of the model [118, 115]. Now we introduce harmonic
Eulerian perturbations of this type
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 δU
δW
δQ

 ∼ e−iσt+ikr, (3.15)

where

δQ =
δP
S

(3.16)

since we also included the fluid pressure. In fact, the harmonic spatial depen-
dence in this relations as the signature of the local perturbation is valid for
when the wavelength of the perturbations is smaller than the radial variations
in the equilibrium configuration, the Wenzel–Kramers–Brillouin (WKB) ap-
proximation. By applying the perturbations (3.15) in the equilibrium tori
model and considering only up to the first-order terms and neglecting the
time derivatives, we derive the perturbation equations [115]. This linear
system of differential equations has a non-trivial solution by searching for
the zeros of determinants of coefficients matrix, which simply leads to the
dispersion relation

σ2 = κ2r + f(r)k2c2s, (3.17)

where f(r) in Newtonian set-up is 1, and in general is obtain from the metric
in Schwarzschild space-time [115, equation 42], or in the Kerr space-time [116,
equation 17]. Besides, kr is the epicyclic frequency in the radial direction,
and cs is the local sound velocity in the vertically integrated disc. Moreover,
it is assumed that the perturbation wavelength is much smaller than the
radius of the disc, and the imaginary part of the epicyclic frequency is also
neglected [115].

In fact, the first term in the dispersion relation is the radial oscillation of
a fluid element when due to a restoring centrifugal force, it is infinitesimally
displaced from its equilibrium with no change in the angular momentum that
produces inertial oscillations. This produces inertial oscillations with the
frequency κr. However, there exist also a vertical epicyclic frequency with
an amplitude much smaller than the radial one [119], therefore we neglected
here. The second term, the frequency kcs is due to pressure gradients in
compressible fluids that leads to the acoustic oscillations 6.

6Both of these terms are collectively referred to as inertial–acoustic waves.
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The important key here is in general theory of relativity κr does not
increase as we go closer and closer to the central object, but instead have
a maximum at a few gravitational radii before the ISCO where consider as
a very good estimation of the inner edge of the disc, and it is zero at the
ISCO. Therefore, oscillations in this part of the disc may trap and lead to
the periodic flux variations which we can observe [120]. However, this is not
the case in the Newtonian gravity.

To study the radial epicyclic oscillation in this approach, one can consider
different angular momentum distributions. However, for the Keplerian an-
gular momentum distribution where Ω ∝ r−

3
2 the radial epicyclic frequency

is equal to the orbital frequency κ2r = Ω2. Besides, the radial epicyclic fre-
quency vanishes for the constant specific angular momentum dictating by
the corresponding equations [115, 116]. So, one can conclude that a con-
stant angular momentum distribution provides a limit for the properties of
p-mode oscillations. In Chapter 13 we study the radial epicyclic frequency
in the background of Generalized q-metric.



Chapter 4

Shadow in the presence of plasma

The Event Horizon Telescope Collaboration et al. [121, 122, 123, 124, 125,
126, 127, 128] reveal the characteristics of black holes and their accretion flows
that are optically thin at millimeter wavelengths [129] by the first images of
a supermassive black hole at event horizon scale resolution. In fact, such
a flow is transparent to synchrotron emission and characterized by a bright
ring of emission which is called the shadow of the black hole. Therefore, the
shadow encodes information about underlying space-time which makes it a
powerful tool to study the strong gravity field regime.

On the other hand, there are methods to compute the shape and the
size of the shadow analytically. However, in presenting the actual scenario,
one should take into account, for example, the surrounding accretion disc of
a compact object like the numerical methods [130]. Since the light ray is
influenced by matter. Analytical results as a complementary part of numer-
ical simulations can formulate the dependence of shadow on the underlying
parameters. In this regard, and as a first step, we consider the surrounding
matter to be a cold plasma that is non-magnetized and pressure-less plasma
and present the analytical results on the size of the shadow [131] in spherically
symmetric set-up.

However, before starting, it is worth stating the definition of shadow
that we employ here. If we consider light rays sent from an observer 1 at
radius coordinate into the past and it goes towards the horizon of the black
hole, also we assume no light sources between the observer and the black
hole, initial directions of the light ray corresponds to the darkness on the
observer’s sky. This dark circular disc on the observer’s sky is called the
shadow of the black hole. In fact, the boundary of this shadow is determined
by the initial directions of light rays that asymptotically spiral towards the

1The observer is assumed to be static somewhere between the outermost photon sphere
and infinity.
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outermost photon sphere. Notably, the light rays in the photon sphere are
unstable with respect to radial perturbations since they may serve as limit
curves. For this reason, we can not use this construction straightforward in
the distorted space-times (distorted Schwarzschild or Generalized q-metric)
since their structures contain stable photon orbit 6.2 and 7.3.

In what follows, we briefly explain the properties of shadow in the presence
of the cold plasma.

4.1 Equation of motion for light rays in plasma

We consider a spherically symmetric space-time is filled with cold plasma
with the frequency of

ωp(r)
2 =

4πe2

me

N(r), (4.1)

where ωp is the plasma frequency, e is the charge of the electron, me is the
mass of an electron, and N is the electron number density. In addition, the
fraction index is given by

n(r, ω)2 = 1 − ωp(r)
2

ω(r)2
, (4.2)

where ω is the frequency of photon measured by a static observer. Light
propagation in this medium is only possible if ω ≥ ωp. Furthermore, the
Hamiltonian of the system with plasma is

H =
1

2
(gµνpµpν + ω2

p). (4.3)

Having vanishing Hamiltonian for light rays and utilizing Hamiltonian equa-
tions, it turns out easily that pt and pϕ are constants of motion. For asymp-
totically flat space-times frequency ω measured by a static observer related
to the gravitational redshift as follows

ω2 = − pt
gtt
. (4.4)

Besides, one obtains [131]
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(
dr

dϕ

)2

=
gϕϕ
grr

(
p2t
p2ϕ
h2 − 1

)
, (4.5)

where

h2 = −gϕϕ
gtt

(
1 + gtt

ω2
p

p2t

)
(4.6)

A light ray that comes in from infinity and reaches the minimum at a radius
R, meaning dr

dϕ

∣∣
R

= 0 and again goes out to infinity. The integration over the

orbit gives the formula for the bending angle δ [131] as follows

π + δ = 2

∫ ∞

R

√
grr
gϕϕ

(
h2(r)

h2(R)
− 1

)− 1
2

dr, (4.7)

where

h2(R) =
p2ϕ
p2t
, (4.8)

where by this equation R has been related to the constants of motion.

4.2 Radius of Shadow

Considering approximations we used the equation for the radius of a circular
light orbit [131] is given by

d

dr
h2(r) = 0. (4.9)

This means any solution of this equation gives rise to a photon sphere. If a
light ray starts tangentially it stays on a circular orbit at r = rph. If the space-
time is asymptotically flat, and if ωp(r) → 0 for r → ∞, the outermost photon
sphere is always unstable with respect to radial perturbations. Therefore, this
radius is the critical value of the minimal radius R mentioned above. If a light
ray comes in from infinity that R > rph it will go out to infinity again. The
case R = rph corresponds to a light ray that spirals asymptotically towards
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a circular photon orbit in the sphere of radius rph. All other rays cross the
photon sphere and we exclude the case that they can come back, where this
is the case when there is a second photon sphere.

We consider a light ray sent by the observer at rO into the past under
angle α with respect to the radial direction. Then α easily reads as

cotα =

(√
grr
gϕϕ

dr

dϕ

) ∣∣∣
r=ro

, (4.10)

where by using (4.5) we obtain

sinα =
h(R)

h(ro)
. (4.11)

The boundary of the shadow, αbd, is determined by light rays that spiral
asymptotically towards a circular light orbit at radius rph

sinαbd =
h(rph)

h(ro)
. (4.12)

This is convenient to assume that the observer is in a region where the plasma
density is negligibly small, N(ro) ≪ N(rph), and neglect the corresponding
terms we obtain

sin2 αbd =
gϕϕ(rph)gtt(rO)

gϕϕ(rO)gtt(rph)

(
1 +

gtt(rph)ωp(rph)
2

p2t

)
. (4.13)

Therefore, considering the signature of metric 2 in this situation the plasma
always has a decreasing effect on the size of the shadow.

4.3 Low-density plasma

In this case, by writing the linearized h(r)2 around the corresponding values
for vaccum light rays we have

h2(r) = −gϕϕ
gtt

(
1 + ϵ

gttω
2
p

p2t

)
. (4.14)

2Signature of the metric is (−,+,+,+).
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And the equation (4.9) is written as

(
gϕϕ
gtt

)′(
1 + ϵ

gttω
2
p

p2t

)
+ ϵ

gϕϕ
gtt

(
gttω

2
p

p2t

)′

= 0, (4.15)

where obviously for ωp = 0 we have just
(
gϕϕ
gtt

)′ ∣∣∣
r=rph

= 0 and in this case

we show the photon sphere by r0ph. Therefore, the solution to the equation
(4.15) can be written in the following form

rph = r0ph + ϵr1ph + ... , (4.16)

where ϵ is a linearization parameter, and

r1ph =

(
gϕϕ
gtt

)(
gttω2

p

p2t

)′
(
gϕϕ
gtt

)′′ ∣∣∣
r=r0ph

. (4.17)

Hence, the effect of plasma manifests through the signs of derivative terms
that can shift the photon sphere inwards or outwards. By neglecting higher
orders in ϵ, and assume ωp ≪ ω we have [131]

sin2 αbd =
gϕϕ(r0ph)gtt(rO)

gϕϕ(rO)gtt(r0ph)

(
1 −

(
gtt(r

0
ph)ω

2
p(r

0
ph)

p2t (r
0
ph)

)
+

(
gtt(ro)ω

2
p(ro)

p2t (ro)

))
.

(4.18)

Then in the low-density plasma, depending on the second and the third term
in the parenthesis plasma can have a decreasing effect on the shadow.

We use this construction to study the shadow in the background of q-
metric, as the first step approximation, in Chapter 14. The second step is
considering the axisymmetric space-time that we studied in [132].





Chapter 5

Stability analysis in the dynamical system

In the dynamical system approach to studying nonlinear systems, one can
consider the linearization of such a system around its equilibria. Without
loss generality, let us consider one-dimensional ordinary differential equation
as

ẋ = f(x), (5.1)

where x ∈ Rn, and f is a differentiable function. This function f is called
a vector field. Having linear or nonlinear system of ODEs depends on the
linearity of f , respectively. A point x∗ is called a fixed point or an equilibrium
point if it satisfies f(x∗) = 0. It the follow we describe briefly the linear
Lyapanov and Jacobi stabilities.

5.1 Lyapunov stability

Let us consider the two-dimensional system of ODEs where describe by{
u̇ = f(u, v),
v̇ = g(u, v).

(5.2)

At the equilibrium point, both functions are zero. The jacobian matrix of
this system is

J =

(
f,u f,v
g,u g,v

)
. (5.3)

It is common that show this matrix at the fixed point (u∗, v∗) by A

37



38

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 5.1: Left plot shows Center map, and the right one Saddle point singu-
larity.

A := J at (u∗, v∗). (5.4)

Then the characteristic equation reads as

λ2 − trAλ+ det A = 0, (5.5)

where λ is eigenvalue of matrix A, ”tr” is the trace of A, and ”det” is the
determinant of the A. The sign of the trace, determinant and ∆, where
∆ = (tr)2 − 4 det A, give the linear stability of the fixed points. In fact, the
linear stability of the fixed point means it is a local attractor, or physically
means the trajectories are converging.

There is a standard classification of the fixed points e.g. [133], where here
we state the ones that are more relevant to this work:

1. If λ+, λ− ∈ R+: The fixed point is an unstable point or a saddle point
singularity.

2. If λ+, λ− ∈ I (= iR): The fixed point is a center and to understand its
stability behavior one needs to investigate the higher-order derivatives
(see Figure 5.1).

The physical meaning of the center is that all solutions are periodic and the
corresponding oscillations have fixed amplitude. We will apply this linear
stability analysis in Chapter 15 to study the geodesics of Generalized q-
metric.
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5.2 Jacobi stability

Jacobi stability is a natural generalization of the stability of the geodesic
flow on a differentiable manifold describing the evolution of dynamical sys-
tems. The Jacobi stability of a dynamical system is considered as the ro-
bustness of the system to the small perturbations of the whole trajectory
[134]. This stability is related to a powerful mathematical theory proposed
by Kosambi–Cartan–Chern (KCC). This theorem relates the stability of the
system to intrinsic properties of geometry with five invariants, where the Ja-
cobi stability is the second one. To explain this theorem let’s start with by
the general form of the Euler- Lagrange equations for the Lagrangian of the
system L as

d

dt

∂L
∂ẋi

− ∂L
∂xi

= Fi, i = 1, 2, .., n, (5.6)

where Fi are the external forces. However, solving this equation, for a regular
Lagrangian is equivalent to solving a second-order differential equation as

d2xi

dt2
+ 2Gi(x, y) = 0, i ∈ N (5.7)

where G is an smooth function defined in local coordinates system x =
(x1, x2, .., xn) and y = (y1, y2, .., yn). The equivalent vector field of this equa-
tion is given by

S := yi
∂

∂xi
− 2Gi(xj, yj, t)

∂

∂yi
. (5.8)

This determines a nonlinear connection on the tangent bundle of real, and
smooth n-dimensional manifold M , TM, with local coefficients as

N i
j =

∂Gi

∂yj
. (5.9)

Now, the KCC covariant differential defines by

Dyi

dt
=
dyi

dt
+N i

jy
j. (5.10)

By applying this derivative for yi = ẋi we obtain
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Dẋi

dt
=
dẋi

dt
+N i

j ẋ
j, (5.11)

and by using equation (5.7)

Dẋi

dt
= −2Gi +N i

j ẋ
j. (5.12)

This contravariant vector field is called the first KCC invariant. Now to derive
the second invariant KCC, we use a small perturbation via a diffeomorphism

xi(t) = xi(t) + δζ i(t), (5.13)

where ζ i(t) are components of a contravariant vector field defined along the
path xi that we can choose as ẋi.

In this theory, the properties of any dynamical system are described in
terms of five geometrical invariants, with the second one giving the Jacobi
stability of the system. Consider a system of second-order differential equa-
tion

d2xi

dt2
+ 2Gi(X, Y ) = 0, i ∈ N (5.14)

where Gi(X, Y ) are smooth functions defined in a local system of coordinates
on TM withX = (x1, x2, ...xn), Y = (y1, y2, ...yn). The second KCC invariant
which is also known as a deviation curvature tensor of the system of the
second-order differential equation, gives the Jacobi stability of the system
and is given by

P i
j = −2

∂Gi

∂xj
− 2GlGi

jl + yl
∂N i

j

∂xl
+N i

lN
l
j, (5.15)

where Gi
jl =

∂N i
l

∂yl
is called the Berwald connection, and N i

j = ∂Gi

∂yj
defines the

coefficient of a nonlinear connection N on the tangent bundle TM.
The trajectories of a given system of second-order differential equations

are Jacobi stable if and only if the real parts of the eigenvalues of the devi-
ation curvature tensor P i

j are strictly negative everywhere, and Jacobi un-
stable otherwise. Geometrically, the trajectories of the system are bunching
together if they are Jacobi stable and dispersing if they are Jacobi unstable.
We use this information in the study of the behavior of trajectories in the
Generalized q-metric solution in Chapter 15.
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5.3 Kolmogorov entropy

The Lyapunov exponents describe how the nearby trajectories diverge expo-
nentially in a phase space [133, 135]. An important quantity which is related
to the Lyapunov exponents is the so-called Kolmogorov-Sinai entropy (hks),
which gives a measure of the amount of information lost or gained by a chaotic
orbit as it evolves [135]. In other words, it tells us how the nearby trajectories
diverge in a chaotic system as it evolves. This quantity allows to analyze the
random behavior of system. Following Pesin’s Theorem [136, 137] it is equal
to the sum of the positive Lyapunov exponents n

hks =
n∑
i=1

λi. (5.16)

The relation between this entropy and the physical entropy first was discussed
in [138, 139]. Alternatively, it determines how a system is chaotic or disorder
when hks > 0 and non-chaotic for hks = 0. In general, Lyapunov exponents
describe how nearby trajectories diverge exponentially in the phase space,
and regarding the Kolmogorov entropy measures the complexity of a system
and the positivity of this entropy means the existence of chaos.

We will consider this stability analysis and entropy in Chapter 15 to study
the geodesics of the Generalized q-metric.





Chapter 6

Space-times

The black hole uniqueness theorems in general relativity are one of the most
intriguing results in this theory. In general, for Einstein-Maxwell theory in
the static space-times, the theorem guarantees that the Reissner–Nordström
space-time is the unique black hole solution with a regular event horizon and
asymptotically flat. However, there are some interesting situations where the
hypotheses of this theorem do not hold. For example, in the case of consid-
ering matter other than Maxwell fields coupled to the gravity, or black holes
can have Yang-Mills ”hair”, therefore there is no such uniqueness theorem
for Einstein-Yang-Mills theory. Besides, on the one hand, there are solutions
in Einstein-Maxwell theory which are asymptotically flat but do not have a
regular event horizon like the C-metric or q-metric solutions. On the other
hand, there are static solutions which have a regular event horizon but are
not asymptotically flat like distorted Schwarzschild space-time. Apart from
the mathematics beauty of this solution, it may also have a physical and
astrophysical interest in describing the near horizon geometry of an isolated
black hole which is distorted by the presence of far away matter. The matter
could be a magnetic field in which the black hole is immersed.

In this chapter, we briefly explain the space-times considering in this
thesis. We start with the wide class of Weyl solutions and represent three
special classes of this metric; namely, distorted Schwarzschild, static and
stationary q-metric. Finally, we close this chapter by explaining generalized
C-metric families.

6.1 Static and axisymmetric space-times

In the static space-time, the time evolution is a symmetry transformation.
This means that it admits a time-like Killing vector field which provides a
one-parameter group of isometries corresponding to the time translation, such
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that this parameter can be taken as a time coordinate. Besides, the static
Killing vector ζ is orthogonal to a space-like hypersurface. This condition is
formulated as follows [140]

ζ[µ∆νζλ] = 0, (6.1)

where ζ is a time-like Killing vector field.
Because of the time independency, we can consider a three-dimension

manifold N of trajectories of the time-like Killing vector field ζ. This is
the space-like hypersurface orthogonal to ζ. In the general case, the relation
between tensor fields on this manifold N , and the space-time was investigated
in detail by Geroch [141]. In addition, we consider the axisymmetric space-
times. This condition provides the existence of a space-like Killing vector
field η, with closed integral curves. Both conditions together easily lead to
this relation

ηµ∇µ(ζν∇νf) = ζµ∇µ(ην∇νf), (6.2)

where f ∈ C∞. In this case, we can define coordinates t and ϕ in such a way
that

ζν =∂νt , (6.3)

ην =∂νϕ. (6.4)

In general, the class of static and axisymmetric solutions of Einstein’s field
equation is described by the Weyl metric.

Weyl derived the family of solutions to the static Einstein vacuum equa-
tions in 1917. From that time, an interest in the Weyl metrics developed, par-
ticularly in providing exterior solutions to astrophysical problems via mod-
elling the exterior gravitational field of compact axially symmetric bodies.
Since the Weyl coordinates are valid only in a region where the Killing vec-
tor ζ is timelike, these coordinates cover only the exterior region. In addition
to their astrophysical relevance, mathematically they are also of some interest
since they present the opportunity of explicitly determining and investigat-
ing a large class of relativistic solutions to the Einstein equation. Using
cylindrical coordinates (ρ, z, ϕ) the Weyl metric is given by

ds2 = −e2ψdt2 + e2(γ−ψ)(dρ2 + dz2) + e−2ψρ2dϕ2 , (6.5)
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where ψ = ψ(ρ, z) and γ = γ(ρ, z) are the metric functions, and ψ plays
the role of the gravitational potential. If we consider a three-dimensional
manifold N , orthogonal to the static Killing vector field, then this metric
induces the flat metric on N . Besides, the metric function ψ with respect to
this flat metric obeys the Laplace equation

ψ,ρρ +
1

ρ
ψ,ρ + ψ,zz = 0, (6.6)

The metric function γ is obtained from the metric function ψ [142]

γ,ρ =ρ(ψ2
,ρ − ψ2

,z),

γ,z =2ρψ,ρψ,z, (6.7)

where equation (6.6) is the integrability condition for the metric function
γ. This approach provides a straightforward technique for obtaining static,
axisymmetric, vacuum and general relativistic fields.

The relation between Schwarzschild coordinates and Weyl coordinates is
given by

ρ =
√
r(r − 2M) sin θ, z = (r −M) cos θ, (6.8)

where M is a parameter that is identified with the mass of the compact
object. Later, in 1959, Erez and Rosen pointed out that the multipole struc-
ture of a static axially symmetric solution has a simpler form in the prolate
spheroidal coordinates 1 rather than the cylindrical coordinates of Weyl via
this transformation relation [143, 144]

x =
1

2M
(
√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2) ,

y =
1

2M
(
√
ρ2 + (z +M)2 −

√
ρ2 + (z −M)2). (6.9)

Equivalently, ρ = M
√

(x2 − 1)(1 − y2) and z = Mxy. The relation to
Schwarzschild coordinates is given by

x =
r

M
− 1, (6.10)

y = cos θ. (6.11)

1Prolate spheroidal coordinates are three-dimensional orthogonal coordinates that re-
sult from rotating the two-dimensional elliptic coordinates about the focal axis of the
ellipse.
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As mentioned, the Weyl metric is the most general static and axisymmetric
solution which contains an infinite number of parameters, representing all
the multipole moments. Indeed, such a metric with infinite parameters is
not applicable to realistic sources like compact astrophysical objects. For this
reason and using analytical approaches, in what follows we consider solutions
containing only two independent parameters that can be interpreted as mass
and quadrupole and treated (semi-) analytically.

6.2 Distorted Schwarschild space-time

The Schwarzschild space-time is the unique static solution of Einstein’s vac-
uum equation which is asymptotically flat. However, there is another class of
static, vacuum solution describing non-asymptotically flat space-time, which
is obtained by assuming the existence of a static and axially symmetric ex-
ternal distribution of matter. This space-time is a local solution of the Ein-
stein field equation [145]. In 1965, Doroshkevich and his colleagues consid-
ered an external gravitational field up to a quadrupole in the Schwarzschild
space-time. They also showed that by adding quadrupole correction to the
Schwarzschild space-time, the horizon remains regular [146]. Later, in 1982
a detailed analysis of the global properties of the distorted Schwarzschild
space-time was introduced by Geroch and Hartle [147]. In 1997, the explicit
form of the metric was presented [148].

In brief, since in vacuum, static axisymmetric space-times, Einstein’s
equations reduce to the linear Laplace’s equation on the flat space, the dis-
torted black hole can be obtained by adding an appropriate distortion func-
tion to the Schwarzschild solution. We will see more about this construction
in the Result chapter. However, for example, this technique cannot be ex-
tended to Einstein-Maxwell theory because the result will be a non-linear set
of coupled partial differential equations.

The resulting class is not asymptotically flat. Therefore, the uniqueness
theorem fails in this case. Furthermore, it is not possible to introduce the
notion of null infinity and consequently, the standard concept of an event
horizon in this case. Nevertheless, this class of solutions can be interpreted as
black holes with locally defined isolated horizons, or alternatively, considering
the matter far away from the isolated horizon and extending the solution as
asymptotically flat space-time. The latter allows us to identify the isolated
horizon with an event horizon. ‘

The distorted Schwarzschild space-time in the prolate spheroidal coordi-
nates is described by
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ds2 = −
(
x− 1

x+ 1

)
e2ψ̂dt2 +M2(x+ 1)2e−2ψ̂ (6.12)[

e2γ̂
(

dx2

x2 − 1
+

dy2

1 − y2

)
+ (1 − y2)dϕ2

]
,

where t ∈ (−∞,+∞), x ∈ (1,+∞), y ∈ [−1, 1], and ϕ ∈ [0, 2π]. ψ̂ and
γ̂ are distortion function related to external source. If this is assumed that
the distortion field is generated by material satisfying the strong energy con-
dition then the explicit general form of ψ̂ should be negative [147]. In this
metric, the location of the horizon and the singularity are at x = 1 and
x = −1, respectively. And the distortion functions can be expressed in terms
of Legendre polynomials of the first kind and up to quadrupole are given by

ψ̂ =
∑
n=1

qnR
nP n(

xy

R
), (6.13)

γ̂ = +
∑
n=1

qn

n−1∑
l=0

[
(−1)n−l+1(x+ y) − x+ y

]
RlPl

+
∑
k,n=1

nkqnqk
(n+ k)

Rn+k[PnPk − Pn−1Pk−1] , (6.14)

where

Pn := Pn(
xy

R
) , R =

√
x2 + y2 − 1 . (6.15)

Up to quadrupole these functions reduce to

ψ̂ = −q

2

[
−3x2y2 + x2 + y2 − 1

]
,

γ̂ = −2xq(1 − y2)

+
q2

4
(x2 − 1)(1 − y2)(−9x2y2 + x2 + y2 − 1). (6.16)

where q2 := q is the quadrupole link to the external source. To have some
intuitive picture about the role of q here, let us consider Newtonian gravity
(we show quadrupole in Newtonian picture by qN). In Newtonian theory, it
is rather familiar piece of knowledge that the multipole expansion dominated
by a quadrupole moment βN can be modelled by two equal point-like masses
m located on some axis, say z, and at some distance from the center, also
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an infinitesimally thin ring of the mass M and radius R located at the plane
perpendicular to this axis. If the contribution of the point-like masses to
the gravitational field is greater than the ring, then q < 0, and if for ring
is greater we have qN > 0. If q < 0, then there exist a net force directed
toward the z-axis. This force creates a potential barrier. If q > 0, there is
a net force directed to the ring, outward from the central object. This force
balances the gravitational of the central source and the external fields.

We will investigate this space-time via different tools throughout this
thesis.

6.3 Static q-metric space-time

Around four decades after introducing a wide class of static and axisymmet-
ric solutions to the vacuum Einstein field equations by Weyl, in 1959 Erez
and Rosen published the first static solution with quadrupole moment by
using the Weyl method which includes the Schwarzschild metric as special
case [143]. This quadrupolar solution was generalized to include an infi-
nite number of multipole moments by Quevedo [144]. In the 1960s, Zipoy
[149] and Voorhees [150] found a transformation which allows us to gener-
ate new static solutions called γ-metric or δ-metric from known solutions
and was interpreted as the simplest static solution which generalizes the
Schwarzschild metric by including a quadrupole moment, and later on, by
using a transformation is known as q-metric [151]. Later, Gutsunaev and
Manko suggested another exact solution with monopole and quadrupole mo-
ments to have the same quadrupole as in the Erez–Rosen metric, but different
in higher relativistic multipole moments [152]. In 1990, Manko introduced a
quadrupolar metric which can be interpreted as the nonlinear combination of
the Schwarzschild monopole solution with the quadrupolar term of the Weyl
metric [153]. In 1994, Hernández-Pastora and Mart́ın derived two exact so-
lutions with different monopole–quadrupole structures [154], and this is an
interesting ongoing area of study. In the present work, we are interested to
study q-metric in the different astrophysical settings via accretion discs and
their properties.

As mentioned, q-metric describes static, axially symmetric, and asymp-
totically flat solutions to the Einstein equation with quadrupole moment
generalizing the Schwarzschild family. The metric represents the exterior
gravitational field of an isolated static axisymmetric mass distribution. It can
be used to investigate the exterior fields of slightly deformed astrophysical
objects in the strong-field regime [155]. In fact, the presence of a quadrupole,
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independent of its value, changes the geometric properties of space-time dras-
tically. The metric is presented as follows [144]

ds2 =

(
1 − 2M

r

)1+q

dt2 −
(

1 − 2M

r

)−q

[(
1 +

M2 sin2 θ

r2 − 2Mr

)−q(2+q)
(

dr2

1 − 2M
r

+ r2dθ2

)
+r2 sin2 θdϕ2

]
. (6.17)

In the prolate spheroidal coordinates this metric is written as

ds2 = −
(
x− 1

x+ 1

)(1+q)

dt2 +M2(x2 − 1)

(
x+ 1

x− 1

)(1+q)

[(
x2 − 1

x2 − y2

)q(2+q)(
dx2

x2 − 1
+

dy2

1 − y2

)
+(1 − y2)dϕ2

]
, (6.18)

where t ∈ (−∞,+∞), x ∈ (1,+∞), y ∈ [−1, 1], ϕ ∈ [0, 2π), and q ∈ (−1,∞)
is the quadrupole parameter.

This metric has a central curvature singularity at x = −1, where it oc-
curs for all real values of q. Moreover, for non-vanishing q an additional
singularity appears at x = 1, and the norm of the time-like Killing vector at
this radius vanishes. Also, outside this hypersurface, there exists no addi-
tional horizon. However, considering a relatively small quadrupole moment,
this hypersurface is located very close to the origin of coordinates so that
a physically reasonable interior solution could be used to cover them [155].
Besides, out of this region, there is no more singularity, and the metric is
asymptotically flat. It is worth mentioning that there are different defini-
tions of multipole moments; however, in the lower order, all are equivalent
and link to the parameter q. In fact, the quadrupole can present how the
mass is stretched-out along some, for example, a sphere has zero quadrupole.
The sign of quadrupole determines the shape of the source, which can be
either prolate or oblate, corresponding to different gravitational fields.

This solution for any finite values of parameters q andM is asymptotically
flat, and for q = 0 the obtaining result is the Schwarzschild solution. In
addition, in the limiting case M = 0 independently of the parameter α,
via coordinate transformations that transform the Minkowski space-time is
recovered. This means that the parameter q is related to a genuine mass
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distribution. In another word, by using the invariant definition of Geroch
[156], the lowest independent multipole moments, monopole, for this metric
reads as

m0 = M(1 + q), (6.19)

where m0 is being positive to avoid having a negative mass distribution, is
equivalent to restricting quadrupole at most to this domain α ∈ (−1,∞) 2.
The second multipole moment is also given by

m2 = −M
3

3
q(1 + q)(2 + q), (6.20)

where describe the deformation from the spherical case, which is positive for
prolate mass distribution and negative for an oblate one. It turns out that all
higher multipole moments can be written in terms of m0 and m2 [155]. This
means, equivalently, the only independent parameters are mass M and the
quadrupole moment α. Besides, all odd multipole moments vanish because
of reflection symmetry with respect to the equatorial plane.

The properties of this metric have been studied in the literature, for
example [157, 151, 158]. In the result part 7, we revisit some of its circular
geodesics on the equatorial plane, with a slightly different approach. Through
this thesis, this metric is explored via different implements.

6.4 Stationary q-metric space-time

A stationary generalization of the static Zipoy-Vorhees space-time was first
presented in [159]. However, the physical meaning of the quadrupole param-
eter, in this case, was first investigated in [151]. In 2018, the explicit form of
the metric was calculated [160]. The rotating q-metric has three independent
parameters: mass, rotation parameter and quadrupole and may represent de-
formed rotating objects. In prolate spheroidal coordinates (t, x, y, ϕ) reads
as

ds2 = −f(dt− ωdϕ)2

+
σ2
0

f

[
e2γ(x2 − y2)

(
dx2

x2 − 1
+

dy2

1 − y2

)
+(x2 − 1)(1 − y2)dϕ2

]
, (6.21)

2In fact, the Arnowitt-Deser-Misner mass which characterizes the physical properties
of the exact solution also has the same expression and should be positive [157, App.], also
for stationary space-time it is equivalent to the Komar mass.
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where σ0 is a constant

σ0 :=
M(1 − τ 20 )

(1 + τ 2)
, (6.22)

(6.23)

where τ is a constant. The relations between rotation parameter a, τ and σ0
are as follows

a :=
−2σ0τ

(1 − τ 2)
, (6.24)

σ2 = M2 − a2 . (6.25)

There is a freedom to either consider σ0 and τ as the independent parameters
or M and a. However, it turns out that it is more convenient to work with
M and a. The other metric functions are given by

f =
A

B
,

ω = −2(a+ σ0
C

A
),

e2γ =
1

4

(
1 +

m

σ0

)2
A

(x2 − 1)1+q

[
x2 − 1

x2 − y2

](1+q)2

. (6.26)

Besides

A =a+a− + b+b−, (6.27)

B =a2+ + b2+,

C =(x+ 1)q
[
x(1 − y2)(λ+ η)a+ + y(x2 − 1)(1 − λη)b+

]
.

And

a± =(x± 1)q [x(1 − λη) ± (1 + λη)] ,

b± =(x± 1)q [y(λ+ η) ∓ (λ− η)] ,

λ =τ(x2 − 1)−q(x+ y)2q,

η =τ(x2 − 1)−q(x− y)2q,

τa =σ0 −M.
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The functions f and ω are related to the twist scalar Ω through

f 2∇ω = ρϕ×∇Ω (6.28)

And the transformation relation to the Schwarzschild like coordinates is given
by

x =
1

σ0
(r −M), (6.29)

y = cos θ. (6.30)

In the limiting cases, M = 0 and q = −1, the Minkowski metric is recovered
as expected. In general, the stationary q-metric is asymptotically flat and
free of curvature singularities outside the hypersurface r = 2M . This implies
that we can use it safely to describe the gravitational field of relativistic
compact objects for which r > 2M . In addition, the physical meaning of the
parameters entering the metric can be clarified by calculating the relativistic
multipole moments [156, 160, 161, 162] as

m2 = M

[
−M2 + σ2

0(1 − τ 2) + σ0τ

(
7

3

σ2
0

M
− 3M

)
− 1

3
τ 3
σ3
0

M

]
, (6.31)

m0 = M + σ0τ , (6.32)

J1 = Ma+ 2aσ0τ. (6.33)

As the static case, all the higher moments can be expressed in terms ofm0, m2

and J1, and all the odd mass moments m2k+1 and even angular momentum
moments J2k vanish, since we have the reflection symmetry with respect to
the equatorial plane. An analysis shows that for negative values of q we have
m2 > 0 and vice versa. Beside m2 is symmetric with respect to a. This
means the gravitational field does not depend on the direction of rotation
that we expected. We study the Ernst potential, the effective potential and
circular trajectories on the equatorial plane in this metric in Chapter 9 and
the Thick accretion disc in Section 11.3.
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6.5 C-metric space-time

Within the first few years of the field equations being known, a few math-
ematical solutions were discovered whose physical meanings were unknown.
Among them were solutions discovered by Levi-Civita in 1918 [163]. The
C-metric family originally belongs to this class. However, this metric again
was discovered in the early 1960s probably following the work by Newman
and Tamburino [164], Robinson and Trautman [165] and Ehlers and Kundt
[166]. The latter classified invariantly the degenerate static vaccum fields to
A, B, and C type metrics, where the standard C-metric today is the axisym-
metric vaccum solution which inherited its name from this classification. At
that time, the physical interpretation of C-metric was not clear. In 1970,
Kinnersley and Walker provided the interpretation of this solution as an
accelerated black hole [167]. Later, in 1976 the Plebanski-Demianski (PD)
family of solutions was introduced to desecrating a new class of stationary
and axisymmetric solutions to the Einstein-Maxwell-Λ field equations [168].
From this metric, via using a series of different coordinate transformations,
one could obtain many of the known black hole solutions like Kerr solution
and C-metric. Additionally, the solution contains a parameter that can be
identified as the NUT charge within certain limits.

However, at this stage, it is impossible to write the C-metric in pseudo-
spherical coordinates since we cannot factorize the metric functions for fur-
ther transformation. Without going to the details, this problem causes by
existence of high order polynomials in the metric. Around three decades
later, Hong and Teo succeeded in expressing these polynomials in a factor-
ized form with simple roots [169, 170]. The new version of the metric is not
only more convenient, but it is also possible to entirely written in Boyer-
Lindquist coordinates. The most characteristic of this family of solutions is
its acceleration nature. In order to realize the accelerating feature of this
solution intuitively, it is helpful to compare this metric with Rindler coor-
dinates. In short, to do so, it is required to work from its flat-space limit.
Then by using a nontrivial coordinate transformation, we are able to recover
the Rindler metric in 3 + 1-dimensional cylindrical coordinates. Thus, this
comparison requires interpreting one of the parameters in the metric as the
acceleration parameter.

Mathematically, the acceleration is supported by the existence of a conical
deficit corresponding to the effect of a cosmic string attached to the horizon.
In fact, the cosmic string has δ-function stress energy tensor. This causes the
existence of an angular deficit around the cosmic string. More precisely, in
the asymptotically flat space, the C-metric describes a configuration of two
black holes that each of them has unequal conical deficits extending from the
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north and south poles of each event horizon to either acceleration horizon
or the boundary that separates them. They are accelerating in opposite
directions. The conical deficit δ = 2π − ∆ϕ, where ϕ is a generic azimuthal
coordinate, is related to the tension of a cosmic string µ = δ/8π. To make
it more familiar, one may also introduce such defects to the Schwarzschild
metric by replacing the azimuthal coordinate with

gϕϕ = r2 sin2 θK−2, (6.34)

where K > 1. This gϕϕ defines a string running through the core to the
black hole. In this case, the deficit along both the θ = 0 and θ = π axes
is the same and µ = 1

4
(1 − K−1) [171]. However, in the C-metric situation

is different. This metric has unequal deficits where the deficit along both
axes are not the same, this imbalanced tension is the origin of the driven
acceleration. As we will see in the following, the conical defect in the C-
metric is controlled through the parameter K by regulating the distribution
of tensions along either axis and allows ϕ to be 2π-periodic. It is also worth
mentioning that a negative deficit is also possible; however, theoretically,
this would be sourced by a negative energy object. The spinning charged
C-metric in Boyer-Lindquist type coordinates reads as [170]

ds2 =
1

Ω2

(
− f

Σ

[
dt− a sin2 θ

dϕ

K

]2
+

Σ

f
dr2 + Σr2

dθ2

g
+
g sin2 θ

Σr2

[
adt− (r2 + a2)

dϕ

K

]2)
, (6.35)

with the metric functions

Ω = 1 + αr cos θ, (6.36)

f(r) =
(
1 − α2r2

)(
1 − 2m

r
+
e2 + a2

r2

)
, (6.37)

g(θ) = (e2 + a2)α2 cos2 θ + 2mα cos θ + 1, (6.38)

Σ(r, θ) =
a2

r2
cos2 θ + 1, (6.39)

ξ = α2(e2 + a2) + 1, (6.40)

K = ξ + 2mα. (6.41)

The metric has four independent parameters: the mass m, the electric charge
e, the rotation a, and the acceleration parameter α that usually are taken to
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be positive. As mentioned also there is a conical singularity on the θ axis.
In fact, the regularity condition at the poles θ+ = 0 and θ− = π provided
K± = g(θ±) where K can regularize only one pole that need to choose from
the beginning. By choosing K = K+ in equation (6.41) we only have a string
at the south pole.

Almost all analyses considering the family of C-metric are revolved around
the coordinate ranges, which are dictated by the metric functions and their
root configurations. First of all, the conformal factor Ω determines the loca-
tion of the boundary

rb = − 1

α cos θ
. (6.42)

In addition, the roots of metric function f(r) correspond to horizons. Thus,
obviously f(r) should have at least one root for r ∈ (0, 1

α
) to have a black

hole in the space-time. In general, mostly with charge, generic configurations
have different distinct horizons in a pair of inner and outer horizons. Like
the regular Reissner-Nordström solution, they typically approach one another
and vanish for a relatively high charge. Furthermore, the pairs of horizons
separated the space-time into different regions with the same signature. In
addition, when the acceleration horizon is present, there is also a second
outer acceleration horizon where both intersect with the boundary. The
astrophysics point of view is more interested in the outer communication
region between the outer horizon and the acceleration horizon. To have a
better inside, in Figure 6.1 the place of the inner and outer horizons have
been presented for the chosen parameters. As we see, by increasing a the
place of horizons become closer to each other, and to the black hole. However,
since the accelerating horizon depends on α, the valid region becomes wider.
The same behavior expected for increasing e, as the metric function f(r) is
symmetric in both parameters e and a.

In addition, from the analyzing the θ-coordinate, the metric function g(θ)
should have positive roots in [0, π). Therefore it requires to have

e2 + a2 ≤ m2, (6.43)

and for a slowly accelerating black hole the following condition should be
fulfilled

2mα ≤
{

2
√
ξ − 1 ξ > 2,

ξ 0 < ξ ≤ 2.
(6.44)
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Figure 6.1: Place of horizons as a function of charge parameter e, for different
rotation parameter a.

Figure 6.2: Allowed parametric regions for the spinning charged C-metric as a
function of a. The regions marked out with hatching correspond to the forbidden
regions. The axes scaled with m.

Figure 6.2 shows different parametric set-ups. The hatched parts are the
excluded regions by the equation (6.44) for chosen parameters. We see that
this condition acts as an upper bound on the rotation or the acceleration for
relatively small parameters. The plots also would have the same pattern as a
function of e, because of the symmetry in the equation. Figure 6.3 shows the
metric function g(θ) for chosen parameters. As it has shown, the forbidden
region is the hatched part, which shrinks as a and e increase since g(θ) is
also symmetric with respect to a and e. In Section 11.4 we study the Thick
disc configuration and its properties in this space-time.



6.5. C-metric space-time 57

Figure 6.3: Plots of metric function g(θ). The red line corresponds to g(θ) = 0,
and the hatched areas correspond to the forbidden regions.
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Chapter 7

Generalized q-metric

As mentioned, the q-metric has the Minkowski space as the limiting case.
While this seems natural, the question of how an external distribution of
mass may distort compact objects described by this metric led us to intro-
duce its generalization by considering an external matter distribution up to
quadrupoles, similar to adding a magnetic environment to the black hole
solution [172]. Of course, solutions of the static Einstein vacuum equations
obtained by Weyl’s method for a long time have played a relatively important
role in the describing exterior gravitational field of axially symmetric com-
pact objects. To do so we utilized the Weyl’s method we used the q-metric as
a background metric to present a family of solutions, given as an expansion
in terms of Legendre polynomials, that may describe for instance the exte-
rior gravitational field of a non-spherically symmetric body embedded in an
external gravitational field. This generalization preserves the main virtues
of the seed metric aside from asymptotical flatness by its construction.

In the second part of this chapter, we consider this metric up to quadrupole
to carry out the characterization of the impact of both quadrupole parame-
ters on the circular geodesics in the equatorial plane. Of course, the effect of
other multipole moments is negligible compared to quadrupole moments. Un-
doubtedly, there is a number of studies on geodesics in the background with
quadrupoles, for example [173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183]
among many others. Throughout this thesis, we investigate various proper-
ties of this generalized metric in different astrophysical scenarios.

7.1 Construction of the metric

We start with the Weyl metric described briefly in Section 6.1. As mentioned,
in the Weyl metric (6.5) the function ψ obeys the Laplace equation with
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respect to the flat metric

ψ,ρρ +
1

ρ
ψ,ρ + ψ,zz = 0, (7.1)

where ”, ” is used for partial derivatives. This linear equation is the key
factor in the Weyl technique of generating solutions. The metric function γ
is obtained by the explicit form of the function ψ, and the equation (7.1) is
the integrability condition for this solution

∇γ∇ρ = ρ(∇ψ)2, (7.2)

where ∇ := ∂z + i∂ρ, or equivalently as mentioned

γ,ρ =ρ(ψ2
,ρ − ψ2

,z),

γ,z =2ρψ,ρψ,z. (7.3)

Before proceeding with the q-metric, we write field equations in the more
symmetric form in the prolate spheroidal coordinates (t, x, y, ϕ). The relation
of the cylindrical coordinates of Weyl to the prolate spheroidal coordinates
is given by

x =
1

2M
(
√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2) ,

y =
1

2M
(
√
ρ2 + (z +M)2 −

√
ρ2 + (z −M)2). (7.4)

In this coordinates system the field equation for ψ (7.1) reads as

[
(x2 − 1)ψ,x

]
,x

+
[
(1 − y2)ψ,y

]
,y

= 0, (7.5)

And for γ (6.7) is given by

γ,x =
1 − y2

x2 − y2
[
x(x2 − 1)ψ2

,x − x(1 − y2)ψ2
,y − 2y(x2 − 1)ψ,xψ,y

]
,

γ,y =
1 − y2

x2 − y2
[
y(x2 − 1)ψ2

,x − y(1 − y2)ψ2
,y + 2x(1 − y2)ψ,xψ,y

]
. (7.6)

We can see from the form of equation (7.5), that it allows separable solutions.
Therefore, ψ can be written in terms of multiplication of two functions, say
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ψ = X (x)Y(y). By using the separation of variable methods in differential
equations, it is easy to see that one can write the y part in terms of Legendre
polynomial. Then, the x dependence part also fulfills the Legender’s equation
[184]

[
(x2 − 1)X,x

]
,x
− n(n+ 1)X = 0. (7.7)

In brief, X can be expressed in terms of Legendre polynomials of the first
kind and second kind. However, by relaxing the assumption of asymptotic
flatness, the second kind’s coefficient should vanish. In addition, by the
requirement of elementary flatness 1 in the neighborhood of the symmetry
axis, the general solution for ψ is obtained as

ψ =
∑
n=0

βnR
nPn(

xy

R
), R =

√
x2 + y2 − 1 , (7.8)

where Pn is Legendre polynomial of order n, and βn ∈ R. Note that, since
ψ is the solution of linear Laplace equation any superposition of solutions is
still a solution of this equation. Regarding our static metric should represent
the q-metric in the presence of the external field, so we shall choose a field
in this form

ψ =
(1 + α)

2
ln

(
x− 1

x+ 1

)
+
∑
n=1

βnR
nPn(

xy

R
). (7.9)

To obtain the field function γ corresponding to this potential ψ (7.9) ex-
plicitly, one needs to solve equations (7.6), where determines γ up to some
constant. However, the requirement of elementary flatness in the neighbor-
hood of the symmetry axis fixes the constant, and it should be set equal to
zero. For the resulting function, we obtain this expression

γ =
(1 + α)2

2
ln

(
x2 − 1

x2 − y2

)
+
∑
n=1

βn(1 + α)
n−1∑
l=0

[
(−1)n−l+1(x+ y) − x+ y

]
RlPl

+
∑
k,n=1

nkβnβk
(n+ k)

Rn+k[PnPk − Pn−1Pk−1] , (7.10)

1In general, these fields should be regular at the symmetry axis. Sometimes this con-
dition is referred to as the elementary flatness condition.
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where

Pn := Pn(
xy

R
) , R =

√
x2 + y2 − 1 . (7.11)

Where the first term in (7.10) is the γ function of the q-metric. For simplicity
and emphasis on the external contributions by noting them as ψ̂ and γ̂, we
can show the equations (7.9) and (7.10) by

ψ = ψq + ψ̂,

γ = γq + γ̂, (7.12)

where ψq and γq are fields for q-metric; namely, one preserves the q-metric

fields by taking γ̂ = ψ̂ = 0, equivalently no external field. It can easily
be checked that in the limits ψ̂ = 0, γ̂ = 0, and α = 0 we recover the
Schwarzschild fields. Ultimately, the metric is then given by

ds2 = −
(
x− 1

x+ 1

)(1+α)

e2ψ̂dt2 +M2(x2 − 1)e−2ψ̂

(
x+ 1

x− 1

)(1+α)
[(

x2 − 1

x2 − y2

)α(2+α)
e2γ̂(

dx2

x2 − 1
+

dy2

1 − y2

)
+ (1 − y2)dϕ2

]
, (7.13)

where t ∈ (−∞,+∞), x ∈ (1,+∞), y ∈ [−1, 1], and ϕ ∈ [0, 2π). Again for
ψ̂ = 0, γ̂ = 0 the q-metric (6.18) is recovered. If also α = 0, the Schwarzschild
metric is obtained. Of course, by replacing α with parameter of ZV space-
time via δ := 1 + α, one can consider this metric as the generalization of ZV
space-time, as well. Up to the quadrupole β := β2, the external field terms
read as follows

ψ̂ = −β
2

[
−3x2y2 + x2 + y2 − 1

]
,

γ̂ = −2xβ(1 + α)(1 − y2)

+
β2

4
(x2 − 1)(1 − y2)(−9x2y2 + x2 + y2 − 1). (7.14)

Therefore, if we consider the external fields up to quadrupole, this metric
contains three free parameters: the total mass, the deformation parameter
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α, and the distortion β, which are taken to be relatively small and connected
to the compact object’s deformation and the external mass distribution, re-
spectively. Moreover, further analysis shows that these parameters are not
independent of each other, as we will see in the following parts. The result
is locally valid by its construction and can be considered as the distorted
q-metric. From the physics perspective, this solution is similar to the q-
metric solution with an additional external gravitational field, like adding a
magnetic surrounding [172].

7.2 Effective potential

To elucidate some aspects of the influence of the parameters, we consider
the effective potential of geodesic motion in this space-time. Regarding the
symmetries in the metric, there are two constants of geodesic motion

E = −gttṫ =

(
x− 1

x+ 1

)(1+α)

e2ψ̂ ṫ, (7.15)

L = gϕϕϕ̇ = M2(x2 − 1)(1 − y2)

(
x+ 1

x− 1

)(1+α)

e−2ψ̂ϕ̇,

where ”over-dot” notation is used for partial derivatives with respect to
the proper time. By using these relations and the normalization condition
gρν ẋ

ρẋν = −ϵ, where ϵ can take values −1, 0 and 1, for the space-like, light-
like and for the time-like trajectories, respectively; the geodesic equation is
obtained as

(
x2 − 1

x2 − y2

)α(2+α)
M2e2γ̂ẋ2 + V 2 = E2, (7.16)

where

V 2 =
x2 − 1

1 − y2

(
x2 − 1

x2 − y2

)α(2+α)
M2e2γ̂ ẏ2

+

(
x− 1

x+ 1

)(2α+1)
L2e4ψ̂

M2(1 − y2)(x+ 1)2

+

(
x− 1

x+ 1

)(α+1)

e2ψ̂ϵ. (7.17)
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One can interpret (7.16) as the motion along the x coordinate in terms of V 2

so-called potential. However, due to the appearance of ẏ in this expression,
in fact, it is not a potential. In the next subsection, we rewrite V 2 in the
equatorial plane (ẏ = 0). Then, it will have the meaning of related effective
potential, and we rename it to Veff , accordingly.

In what follows we study the circular geodesics in this set-up.

7.3 Circular geodesics

The geodesic equation in an arbitrary space-time is described by

ẍµ + Γµνρẋ
ν ẋρ = 0, (7.18)

where derivatives are with respect to the affine parameter, ẋµ is the four-
velocity, and Γαβγ are the Christoffel symbols, which in this space-time read
as follows

Γttx =
(1 + α)

x2 − 1
+ ψ̂,x, (7.19)

Γtty = ψ̂,y,

Γxtt =
e4ψ̂−2γ̂

M2

(
x− 1

x+ 1

)2α+1(
x2 − y2

x2 − 1

)α(α+2) [
1 + α

(x+ 1)2
+

(
x− 1

x+ 1

)
ψ̂,x

]
,

Γxxx = − 1 + α

x2 − 1
+
α(α + 2)(y2 − 1)(1 + 2x)

(x2 − 1)(x2 − y2)
+ γ̂,x − ψ̂,x,

Γxxy = −yα(α + 2)

x2 − y2
+ γ̂,y − ψ̂,y,

Γxyy =

(
1 − x

1 − y2

)[
1 − α

x− 1
+ (γ̂,x − ψ̂,x)(x+ 1)

]
− x

(x2 − y2)
α(α + 2),

Γxϕϕ = e−2γ̂(1 − y2)

(
x2 − y2

x2 − 1

)α(α+2) [
1 + α− x+ ψ̂,x(x

2 − 1)
]
,

Γytt =
e4ψ̂−2γ̂

M2

(
1 − y2

x2 − 1

)(
x2 − y2

x2 − 1

)α(α+2)

ψ̂,y,
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Γyxx =
y2 − 1

x2 − 1

[
yα(α + 2)

x2 − y2
+ γ̂,y − ψ̂,y

]
,

Γyxy =
x− 1 − α

x2 − 1
+

(
1 − y2

x2 − y2

)
xα(2 + α) + γ̂,x − ψ̂,x,

Γyyy =
y

1 − y2
+
yα(α + 2)

x2 − y2
+ γ̂,y − ψ̂,y,

Γyϕϕ =

(
x2 − y2

x2 − 1

)α(2+α)
(1 − y2)e−2γ̂

[
y + ψ̂,y(1 − y2)

]
Γϕϕx =

x− 1 − α

x2 − 1
− ψ̂,x,

Γϕϕy =
y

y2 − 1
− ψ̂,y.

7.3.1 The equatorial plane in Generalized q-metic

In this part, we consider the metric functions up to quadrupole to analyse
the circular motion and the place of ISCO in the equatorial plane. In the
equatorial plane y = 0, the distortion functions (6.16) up to the quadrupole
simplify to

ψ̂ = −β
2

(x2 − 1) ,

γ̂ = −2β(1 + α)x+
β2

4
(x2 − 1)2 . (7.20)

The metric in the equatorial plane is given by

ds2 = −
(
x− 1

x+ 1

)(1+α)

e2ψ̂dt2 +M2(x2 − 1)e−2ψ̂

(
x+ 1

x− 1

)(1+α)
[(

x2 − 1

x2

)α(2+α)
e2γ̂(

dx2

x2 − 1
+ dy2

)
+ dϕ2

]
. (7.21)

Further, the relation (7.16) is reduced to(
x2 − 1

x2

)α(2+α)
M2e2γ̂ẋ2 + Veff = E2, (7.22)
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where

Veff =

(
x− 1

x+ 1

)(α+1)

e2ψ̂[
ϵ+

L2e2ψ̂

M2(x+ 1)2

(
x− 1

x+ 1

)α]
. (7.23)

As mentioned earlier, in the equatorial plane, we point out V 2 by Veff to
emphasise that the contrary to the general form in (7.17), on the equatorial
plane it has the meaning of potential. In addition, the effective potential
Veff for β = 0, reduce to the effective potential for q-metric, and α = 0
corresponds to the effective potential for distorted Schwarzschild metric, and
in the case of α = β = 0 the one for Schwarzschild space-time.

By analyzing the effective potential one can investigate the general prop-
erties of the particle dynamics, in particular, in the equatorial plane. In fact,
this motion is determined by the energy’s boundaries given by E2 = Veff . In
general, depending on the parameters ϵ, E, L, α and β, one obtains different
trajectories. The analytical exploration depends on the number of positive
real zeros and the sign of E2 − ϵ. In fact, for each valid pair of parameters,
one can distinguish different trajectories in this background. In general in
this background, depending on initial values and parameters, particles can
fall onto the central object, escape from it, or trap in some region and form a
toroidal shape around the central object. As in this work, we analyze also the
accretion discs and oscillations in Sections 10, 13 and 12 in this background
where related to the bounded geodesics, the analysis of the effective poten-
tial allows us to examine the regions where these orbits are possible to study
the disc configuration. We can interpret this as indicating the existence of
accretion discs around the gravitational source. Figure 7.1 shows specifically
when particles trapped via the existence of both initial conditions on inner
and outer boundaries. As one can see in the plots, only by a slight change
in the initial values one can obtain different trajectories for a chosen pair of
parameters. In addition, the bounded orbits in the presence of magnetic field
are presented in the following part 7.4.

The timelike trajectories

In the circular motion, there is no change in the x direction ẋ = 0, so one can
study the motion of test particles in the effective potential (7.23) equivalently.

In Figure 7.2, Veff is plotted for different values of α and β. As we see,
the Schwarzschild effective potential lies in between the one with a negative
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Figure 7.1: Timelike geodesic for different pairs of (α, β). The trajectories in
the (r, ϕ) section and in the complete 3D are plotted. In the first column, both
configurations E = 0.90 and L = 25. In the second column, both configurations
have E = 0.94 and L = 22. In the central column, both configurations have
E = 0.93 and L = 12. In the fourth column, both configurations have E = 0.93
and L = 15. In the last one, both configurations have E = 0.96 and L = 9.
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Figure 7.2: Plots of Veff for different values of α and β. In both plots, the
dot-dashed line in the middle is Schwarzschild (α = β = 0), the solid line under
the Schwarzschild corresponds to values (α = 0.5, β = 0), and the solid line above
the Schwarzschild corresponds to (α = −0.4, β = 0). The dotted line under the
Schwarzschild is for the values (α = 0.5, β = −0.00001), and the dotted line above
the Schwarzschild is plotted for (α = −0.4, β = −0.00001). The dashed line under
the Schwarzschild is for values (α = 0.5, β = 0.00001), and the dashed line above
the Schwarzschild is plotted for (α = −0.4, β = 0.00001).

value of α and the positive value of α. Also, for each fixed value of α, the
effective potential for a negative β is higher than the effective potential for
the same α but vanishing β. The opposite is also true for positive β at each
x. As Figure 7.2 shows, further away from the central object, they are more
diverged.

Typically, the place of ISCO, the last innermost stable orbit, is the place
of the exterma of Veff and (Veff)

′
simultaneously. However, finding exterma

of Veff , equivalents to analysis the exterma of L2 for massive particle, and it
is given by

L2 =
M2(x+ 1)α+2 [−βx3 + βx+ α + 1]

(x− 1)α [2βx3 + (1 − 2β)x− 2α− 2]
e−2ψ. (7.24)

The vertical asymptote of this function for x > 1 is

2βx3 + (1 − 2β)x− 2α− 2 = 0, (7.25)

which leads to this relation for β

l1 :=
−x+ 2(α + 1)

2x(x2 − 1)
. (7.26)
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In the space-time with the quadrupole (in general with multipole moments),
there is an interesting possibility that there exists a curve in which L2

may vanish along with it. This means that particles are at rest along this
curve with respect to the central object. Of course, this is nor the case in
Schwarzschild or in the q-metric space-times. In this way, the external mat-
ter manifests its existence by neutralizing the central object’s gravitational
effect at the region determined by this curve. In this case, this happens along
−βx3 + βx+ α + 1 = 0, which can be written also as

l2 :=
α + 1

x(x2 − 1)
. (7.27)

However, it is worth mentioning that, there is just one position for each
chosen value of β. In general, the region between curves l1 (7.26) and l2
(7.27) defines the valid range for the distortion parameter β, due to the fact
that L2 is a positive function. A straightforward calculation of d

dx
L2 = 0

leads to

4x3(x2 − 1)3β3 (7.28)

+ 6x2
(
−2(x2 − 1)2α + x5 − 2x4 − 2x3 + 4x2 + x− 2

)
β2

+ 4x(x2 − 1)(3α2 + 3(2 − x)α + x2 − 3x+ 3)β

− (α + 1)x2 + 6(α + 1)2x− 4α3 − 12α2 − 13α− 5

= 0.

Which gives the solution for β as

β =
1

2x(x2 − 1)
(

3
√
D2 − 3x2

3 3
√
D

+ 2 − x+ 2α), (7.29)

where

D = 27x3 − 81x2(α + 1) + 27(α + 1) + 3
√

∆, (7.30)

and

∆ = 84x6 − 486x5(α + 1) + 729x4(α + 1)2

+ 162x3(α + 1) − 486x2(α + 1)2 + 81(α + 1)2. (7.31)
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α

α

Figure 7.3: The dashed lines are l1 (7.26) and l2 (7.27). The solid lines are the
plots of β (7.29) for α = 1, noted as βα=1. Minimum of βα=1 is −0.0047632 at
x = 5.94338, and maximum of βα=1 is 0.0000659 at x = 13.38972. Moreover,
β = 0 at x = 10.35890, so this is the place of ISCO for α = 1 with vanishing β in
the q-metric.

An analysis shows that for any value of α chosen in this domain [−0.5,∞),
the minimum of β is obtained at the intersection of the curve β (7.29) with l1
(7.26). Besides, the maximum of the curve β in the valid region is determined
by the maximum of β for this chosen α. For instance, in Figure 7.3, 7.4 and
7.5, β and the valid region for one positive and two negative values α = 1,
α = −0.4, and α = −0.5 are plotted. In the later, the minimum of β is
obtained by its intersection with l1 (7.26), placed at the very close to outer
singularity.

For the values of α in this domain [−1 +
√
5
5
,−0.5), where −1 +

√
5
5

∼
−0.553, the curve β behaves differently, and it always lies in the valid region,
so the minimum and maximum of β are determined by its extrema. In Figure
7.6, the minimum for α = −0.526 was shown, where its minimum is obtained
by the minimum of a curve β itself.

It turns out that the maximum value of β is a monotonically decreasing
function of α. However, the place of ISCO for a maximum of β is a mono-
tonically increasing function of α (see Figure 7.7). In addition, the minimum
of β is a decreasing function of α from α ∼ −0.5528 to α = −0.5, and from
this value, it monotonically increases.

To summarize, the minimum of β is obtained in the case α = −0.5, and
the maximum of β is reached for α ∼ −0.5528. In Table 7.1, the values of
minimum and maximum of β for various chosen values of α are presented
2. Besides, the places of ISCO in the cases of maximum, minimum, and

2Note that in the third row it is calculated for some α very close to −0.5.
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α
α

Figure 7.4: The dot-dashed lines depict l1 (7.26) and l2 (7.27). The solid lines
present plots of β (7.29) for α = −0.4, noted as βα=−0.4. Minimum of βα=−0.4 is
−0.0805014 at x = 1.55038, and maximum of βα=−0.4 is 0.0011090 at x = 3.47165.
Also, β = 0 at x = 2.69443, so this x shows the value of ISCO for α = −0.4 with
β = 0 in the q-metric.

α

Figure 7.5: Around α = −0.5 curve β begins to intersect with curve 1 (7.26).
Before this value, the minimum is determined by the minimum of β itself, and
after that, the minimum of β is obtained by the intersection of these two curves.
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α

Figure 7.6: The dotted line is l1 (7.26), and solid line is β (7.29) for α = −0.526.
In this interval [−0.5528,−0.5) the minimum is determined by the minimum of
the curve β (7.29) itself.

α

Figure 7.7: The vertical axis presents the x value at the ISCO. For any chosen
value for parameter α, the solid line is ISCO for β = 0, the dot-dashed line is
ISCO for βmax, and the dashed line is ISCO for βmin. In all cases, ISCO is a
monotonically increasing function of α. Besides, one can see that the place of
ISCO is also a monotonic increasing function of β. For example, if we look at the
plot for any fixed value of α, like the vertical dotted line, the intersections of this
line with all lines show the place of ISCO for a fixed α, but different values of β.
Therefore, one can see the place of ISCO for the negative value of β (green line),
is less than β = 0 (the blue one), and it is also less than a positive value (red line).
Thus, the ISCO is also a monotonically increasing function of β.
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vanishing external quadrupole distortion parameter β are shown. We have
seen for α = β = 0, the place of ISCO for Schwarzschild is recovered at x = 5.
We should mention that β is a parameter chosen for the entire space-time;
however, when β is outside of the bounds, there will be no circular orbits at
the given x (similar to r < 3M in Schwarzschild space-time).

The light-like trajectory

In this case, ϵ = 0, and the effective potential (7.23) for light-like geodesics
is reduced to

Veff =

(
x− 1

x+ 1

)(α+1)

e2ψ̂

[
L2e2ψ̂

M2(x+ 1)2

(
x− 1

x+ 1

)α]
. (7.32)

In fact, a straightforward analysis of the effective potential shows that its
first derivative vanishes for

α =
1

2
(2βx3 − 2βx+ x− 2), (7.33)

where for α = β = 0, it reduces to the Schwarzschild value x = 2 equivalently
to r = 3M in the standard Schwarzschild coordinates (6.10). Furthermore,
the relation (7.33) is the limiting curve for time-like circular geodesics, curve
l1 (7.26), which is written in terms of α. By inserting the relation (7.33) for
α, into the second derivative of the effective potential (Veff)

′′
, we obtain a

very interesting result. The second derivative vanishes along

β = − 1

2(3x2 − 1)
. (7.34)

This expression is also the minimum of the curve (7.33). Surprisingly, this
means that for some negative values of β, we have a bound photon or-
bit in the equatorial plane in this space-time, which is neither the case in
Schwarzschild space-time, nor in q-metric. In fact, this arises due to the
existence of quadrupoles related to the external source. From this relation
(7.34) one can find the negative values of quadrupole which lead to having
ISCO for light-like geodesics

β ∈ (−1

4
, 0). (7.35)

There is no surprise that the minimum value of β in the case of light-like
trajectories coincides with the minimum value of β in the case of time-like
trajectories, which occurs for the choice of α = −0.5, see Table 7.1.
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7.3.2 Revisit the equatorial plane in q-metric

In this part, following the discussion above to have a comparison, we briefly
revisit circular motion on the equatorial plane in the q-metric with this
slightly different approach from the studies in the literature for example
[157].

Time-like geodesics in q-metric

In this case, the specific angular momentum (7.24) is reduced to

L2 =
M2(x+ 1)α+2(1 + α)

(x− 1)α [x− 2(1 + α)]
. (7.36)

An analysis of d
dx
L2, like the previous case, shows the vertical asymptote to

this function for x > 1 is

k1 :=
x

2
− 1. (7.37)

Also, L2 vanishes along this curve

k2 := −1. (7.38)

This value is the infimum value for α, since regarding the domain of α =
(−1,∞), for α = −1 the space-time will be flat as mentioned before. The
region between curves k1 (7.37) and k2 (7.38), defines the valid range for α,
considering L2 is a positive function. A direct calculation for the extrema of
L2, leads to

α± =
3

4
x− 1 ± 1

4

√
5x2 − 4. (7.39)

Since for the domain of our interest x > 1, this relation 5x2 − 4 > 0 satisfies,
therefore we always have two curves α− and α+. In fact, α+ lies out of the
valid region between k1 and k2, for all x > 1. However, α− intersect with
k1 and enter to the region at x = 1, where α−(1) = −1

2
, and always remain

inside this region (see Figure 7.8).

One can show that α− has a minimum inside this region at x = 3
√
5
5

≈
1.342, where αmin

− = −1 +
√
5
5

≈ −0.5528, and after this point, α− is a
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α

Figure 7.8: Solid lines α2 and α1 show the valid region, where dashed line α−
always lies in this region and dotted line α+ is out of this region for any choice of
α.

monotonically increasing function. So in this case, the domain of α is [−1 +√
5
5
,∞).

For obtaining ISCOs, we rewrite equation L2
,x = 0 in terms of x,

x± = 3 + 3α±
√

∆, ∆ = 5α2 + 10α + 4. (7.40)

By using the above analysis for α±, from (7.37) and (7.38) we obtain

x1 =2α + 1, (7.41)

x2 =0. (7.42)

If we plot them with x+ and x− (7.40) together, we see that the corresponding
valid ISCOs are obtained by x+(= xISCO) (see Figure 7.9). Furthermore, this

relation (7.40) shows that ∆ ≥ 0 is equivalent to α ∈ [−∞,−1−
√
5
5

]∪ [−1 +
√
5
5
,+∞), where only the second part, meaning [−1+

√
5
5
,∞), lies in the valid

region. Consequently, this gives us no new information on the domain of α
more than what we have obtained before.

Again, we can see how ISCOs positions evolve as α increases by plotting
x+(= xISCO). the place of ISCO in Schwarzschild is at x = 5 (equivalent to
r = 6M). For a negative α, ISCO is closer to the horizon x = 1, and for a
positive α the place of ISCO is going farther, see Figure 7.10.
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x

α

Figure 7.9: The green line x1 = 2α+1 and x2 = 0, show the valid region, where
the dashed line is the place of ISCO x+, and dots line x− is outside, for any choice
of α.

Figure 7.10: The vertical axis presents the x value at the ISCO. The plots show
the evolution of ISCO with α, where the domain of α is [−0.5528,+∞). The
value of ISCO at α = −0.5528 is 1.3416. The place of ISCO for α < 0 is below
the Schwarzschild value x = 5 and for α > 0 is upper.
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Table 7.1: The minimum and the maximum of β and the place of ISCO for
different values of α. The letter α appearing as the upper index in β and x
means that these quantities are calculated at a fixed value of α in the left
column.

α βαmin xαβ−min βαmax xαβ−max xαβ=0

-0.5528 -0.0006262 1.333070 0.0040976 1.93984 1.40333
-0.526 -0.0443754 1.15685 0.0028270 2.30093 1.77325
-0.5 -0.2499996 1.000001 0.00217281 2.58141 2.00000
-0.49 -0.1757730 1.13203 0.0019932 2.68029 2.07818
-0.4 -0.0805014 1.55038 0.0011090 3.47165 2.69443
0 -0.0209443 2.87940 0.0002927 6.45602 5.00000
0.5 -0.0086651 4.42340 0.0001202 9.95281 7.70156
1 -0.0047632 5.94338 0.0000659 13.38972 10.35890
10 -0.0001533 32.98501 0.0000021 74.44744 57.57641

Light-like geodesics in q-metric

In this case, the effective potential (7.32) is reduced to

Veff =

(
x− 1

x+ 1

)(α+1) [
L2

M2(x+ 1)2

(
x− 1

x+ 1

)α]
, (7.43)

and the straightforward calculation shows that its first derivative vanishes
along

x = 2 + 2α. (7.44)

So for any chosen value of α, one obtains a value for x. Of course, in the case
of α = 0, Schwarzschild metric, we obtain x = 2 or equivalently r = 3M with
the transformation law (6.10). Moreover, the sign of the second derivative of
the effective potential for this value of x, and any chosen value for α, unlike
the previous case indicates this circular motion is unstable.
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7.4 Dynamics of charged particle in a uniform mag-
netic field

In this part, we study the dynamics of charged particles in this background
in the presence of an asymptotic uniform magnetic field in this background
that we use this result in the study of QPOs in Chapter 12. In this set-up,
it is assumed that the external weak magnetic field has no influence on the
underlying space-time. Explicitly, we are interested in the dynamics that
occur when a static, axisymmetric central compact object is embedded in
an asymptotic uniform magnetic field of strength B aligned with the central
body’s symmetry axis, and nonsingular throughout the exterior region [185].
In general, by comparing the compact object’s size with the typical length
of varying the strength’s electric and magnetic fields, we can define a test
particle. In fact, by using the fundamental variability plane, the magnitude
of the magnetic field in the vicinity of a black hole is estimated as

B ∼

{
108G , M ∼M⊙,

104G , M ∼ 109M⊙.
(7.45)

Furthermore, the motion of neutral test particles that is not influenced by
magnetic fields satisfying

BG ∼ 1019G

(
M⊙

M

)
. (7.46)

However, the charged test particles’ motion could be strongly influenced even
by relatively weak test magnetic fields [81]. This is also satisfied in the
vicinity of magnetars. This condition comes from comparing the central
body’s gravitational effect and the strength of the magnetic field B on its
vicinity, and for most astrophysical black holes is perfectly satisfied [186]. In
addition, the relative strength of the Lorentz and gravitational forces acting
on a charged particle can be characterized by the order of

b ∼ 4.7 × 107
(q
e

)(mp

m

)( B

108

)(
M

10M⊙

)
, (7.47)

wheremp is the mass of a proton and q is the charge of the particle. The ratios
in this quantity suggest that this characterization is relevant and cannot be
neglected for the astrophysical scales. The standard electric-magnetic tensor
is given by

Fµη = ∂µAη − ∂ηAµ. (7.48)
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As mentioned, following [185] the external asymptotically homogeneous mag-
netic field is chosen to be along the polar axis. The ϕ-component of the vector
potential in this metric is described by

Aϕ =
1

2
B(x2 − 1)e−2ψ̂

(
x+ 1

x− 1

)(1+α)

. (7.49)

The Lorentz equation that describes the charged test particle motion is given
by

m
duµ

ds
= qF µ

νu
ν , (7.50)

where uµ = d
ds

is the four-velocity of the particle with the mass m and charge
q.

Hamiltonian formalism

Now we use the general Hamiltonian formalism to describe the effective po-
tential and dynamics of a charged particle in the vicinity of a distorted,
deformed compact object embedded in the external uniform magnetic field.
The Hamiltonian for the charged particle motion is written as

H =
1

2

[
(πµ − qAµ)(πµ − qAµ) +m2

]
, (7.51)

where πµ is the generalized canonical four-momentum

πµ = pµ + qAµ. (7.52)

Considering the metric is static and axisymmetric immersed in an external
asymptotically homogeneous magnetic field, the conserved quantity specific
angular momentum L of the particle (7.15) is modified as follows

L = πϕ = M2(x2 − 1)(1 − y2)e−2ψ̂

(
x+ 1

x− 1

)(1+α)(
dϕ

ds
+Q

)
, (7.53)

where Q := qB
2m

is magnetic parameter. In addition, the generalized effective
potential, in this case, is obtained as



82

V 2 =

(
x− 1

x+ 1

)(α+1)

e2ψ̂ [ϵ+ (7.54)

e−2ψ̂

(
x+ 1

x− 1

)α
(1 − y2)

(
Le2ψ̂

(x+ 1)(1 − y2)

(
x− 1

x+ 1

)α
−Q(x+ 1)

)2
 .

The second term corresponds to the central force potential related to L, and
electromagnetic potential energy related to B. In Figure 7.11, the effective
potential in the equatorial plane V 2 := Veff presented for different values of
parameters α and β. In general, we can discuss four different situations in
terms of signs of L and Q. However, because of the even power in the second
term, it is sufficient to consider only two situations:

1. LQ > 0, the Lorentz force pushes the particle away in the outward
direction with respect to the central object.

2. LQ < 0, the Lorentz force pushes the particle in the direction of the
z-axis towards the central object.

Again we study the bounded orbits in this set-up while considering the ex-
ternal magnetic field. There is no surprise that test particles’ motion can
be chaotic in this metric for some combinations of parameters Q, α and β.
In particular, as we see in Figures 7.12-7.14, apart from the effect of other
parameters, the value for α makes a profound difference in the trajectories.
Further analysis reveals that aside from the magnitude, the influence of the
signs of magnetic parameter Q along with the sign of α together, have a
significant impact on the results.

7.5 Summary and conclusion

This chapter has presented a Generalized q-metric for the relatively small
quadrupole moment via Weyl’s procedure. This metric explains the exterior
of a deformed body locally in the presence of an external distribution of
matter up to the quadrupole. It contains three free parameters: the total
mass, deformation parameter α, and the distortion parameter β, referring
to the central object’s quadrupoles and its surrounding mass distribution,
where in the case of the circular motion these two quadrupole parameters
are not independent.

In fact, due to its mathematics form, it is possible to study this metric
via the analytical and semi-analytical models of astrophysical relevance, like
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Figure 7.11: Effective potential for various combinations of the model’s param-
eters; the distortion β, the deformation α and the magnetic parameter Q.

the stability analysis of geodesic motion 15, accretion disc models 10, quasi-
periodic oscillations 12 and 13 that we investigate through this thesis.

Furthermore, we carried out a characterization of quadrupole parameters’
impact via studying the circular geodesics on the equatorial plane with and
without a magnetic field, as well as the region of the parameters for which
circular orbits can exist. Some of the examples are listed in Table 7.1. In
consequence, we found out for each choice of α there are ISCOs for time-like
geodesics for β ∈ [βαmin, β

α
max] such that in general βmin ≈ −2.5 × 10−1 at

α = −0.5 and βmax ≈ 4.1× 10−3 at α = −0.5528. Besides, the place of ISCO
is closer to the horizon for negative quadrupole moments contrary to positive
quadrupole moments.

An interesting result is that there is a bound orbit for light-like geodesics
on the equatorial plane, which is not the case neither in Schwarzschild nor in
q-metric. This bound orbit’s existence when we have a negative quadrupole
in the external matter and provides the range for β ∈ (−0.25, 0) in this case.
The result of this chapter is presented in [187].
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Figure 7.12: Trajectories of particles for some choices of the parameters. In the
first row Q > 0 and α > 0, and the initial radius is set to be r0 = 9.5. In the
second one Q < 0 and α < 0, and the initial radius is set to be is r0 = 8.
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Figure 7.13: Trajectories of particles for some choices of the parameters. In all
plots Q > 0 and α < 0. In the first raw, the initial radius is set to be r0 = 5, and
in the second one is r0 = 4.5.
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Figure 7.14: Trajectories of particles for some choices of the parameters. In all
plots Q < 0 and α > 0. In the plots, the initial radius is set to be r0 = 7.5.



Chapter 8

Extraction of energy: particle collision

In this chapter, in the following section we briefly examine the possible col-
lision scenario in the background of the Generalized q-metric, which in prin-
ciple may lead to chaotic behavior. Of course, in the end, by choosing to
have only one quadrupole, the result is valid in both cases: the distorted
Schwarzschild black hole and the q-metric. However, the main focus of this
chapter is on the possibility of having the high energy collisions near distorted
Schwarzschild black hole and the q-metric.

In addition, Bañados et.al. [188] showed that particles falling freely from
rest in the vicinity of a Kerr black hole can collide with an arbitrarily high
center of mass-energy for some spin parameters. Such processes are connected
with the Penrose effect which has been studied a long time ago [189, 190, 191].
In this view, this situation might be related to the high energy collisions, for
example, dark matter particles. In an idealized set-up, this energy can be
even higher than Planck energy, therefore this allows us to have a possible
interpretation of a black hole as a super high energy collider.

This type of effect even within the test-particle regime is an interesting
theoretical issue and its investigation has continued in many different ways.
For example, the BSW effect for non-equatorial particles in different space-
times studied in [192, 193, 194]. In addition, within equatorial motion this
notion is generalized to the arbitrary rotating black holes [195]; moreover
[196] presented some restrictions on the model. For a quick literature review
see e.g. [197, 195, 198, 199, 200, 201, 202, 203, 204]. In the next sections,
we investigate this situation in the distorted Schwarzschild and the q-metric
solutions to see if we can have the results in Kerr solution for some quadrupole
parameters.

87
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8.1 Particle collision

The collision may occur in this vicinity of Generalized q-metric. For ex-
ample, consider the collision of a particle moving in the ISCO with another
particle coming initially at rest. After the collision energy of the particle may
change. For simplicity, we assume during the collision, the azimuthal angular
momentum and the initial radial velocity remains invariant. Therefore, the
orbit of the particle changes slightly; otherwise, the particle can move away
from the original path completely. After the collision, the particle gains the
escape velocity v in the vertical direction [205]. Thus, its angular momentum
and energy become

L2
e = (x0 + 1)2v2 + L2, (8.1)

E2
e =

(
x− 1

x+ 1

)1+α

e2ψ̂v2 + E2, (8.2)

where v = −(x + 1)ẏ is the particles’ initial velocity in the y direction.
Then particle gains greater angular momentum and energy. Therefore, for an
unbounded motion, the particle requires E ≥ 1, then the necessary condition
is

v ≥ e−2ψ

√(
x+ 1

x− 1

)1+α

e2ψ − x− S

x− 2S
. (8.3)

where

S := 1 + α + βx− βx3. (8.4)

Of course, this brief analysis is also valid for both the distorted Schwarzschild
and q-metric cases by substituting α = 0 and β = 0 respectively.

8.2 Particle accelerator

Now we restrict attention here to orbits in the equatorial plane. Given the
energy, and the unit four-velocity normalization, one can compute the limit-
ing energy for a pair of collisions of two particles colliding in the vicinity of
the distorted Schwarzschild black hole the q-metric. We assume the collision
energy comes only from gravitational acceleration.

E2
cm = −gµν(pµ1 + pµ2)(pν1 + pν2) = m2

1 +m2
2 − 2gµνp

µ
1p

ν
2 (8.5)
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where pi is the four momentum of particles. In fact, this relation for Ecm is
valid both in flat and in curved space-times. In the following subsections, we
examine this scenario in the distorted Schwarzschild and the q-metric.

8.2.1 Distorted Schwarzschild

In this part, we study the center of mass energy of particle collisions in the
vicinity of the distorted Schwarzschild black hole (6.12). In this background
we assume two particles approaching the black hole with different angular
momentum and colliding at some distance x. The center of mass relation
(8.5) is obtained as follows

E2
cm

2m1m2

=
(m1 −m2)

2

2m1m2

+ 1 − L1L2

(x+ 1)2

+

(
x+ 1

x− 1

)
e−2ψ

[
E1E2 −

√
(E2

1 − V 2
1eff) (E2

2 − V 2
2eff)

]
.

To see the center of mass energy behavior in the vicinity of the horizon x = 1,
we need to study the limiting case. However, in the limit x→ 1 the last term
seems challenging since this term approaches the horizon as ∞×0. However,
by writing this term as 0

0
, we can evaluate the limit via L’Hopital’s rule easily.

lim
x→1

E2
cm

2m1m2

=
(m1 −m2)

2

2m1m2

+ 1 − L1L2

4

+
E1

2E2

(
1 +

L2
2

4

)
+

E2

2E1

(
1 +

L2
1

4

)
. (8.6)

For equal mass m1 = m2 := m this reduces to

lim
x→1

E2
cm

2m2
= 1 − L1L2

4
(8.7)

+
E1

2E2

(
1 +

L2
2

4

)
+

E2

2E1

(
1 +

L2
1

4

)
. (8.8)

In the case of E1 = E2 := E we have

lim
x→1

E2
cm

2m2
=

(L1 − L2)
2

8
+ 2 (8.9)

Of course, the maximum center of mass-energy happens when L1 and L2 have
their maximum allowed values with an opposite sign for geodesics falling into



90

the black hole. If L1 = L2 we have Ecm = 2m as it should be. A finite limit of
center of mass-energy comes from the fact that all particles proceed toward
the horizon with the same incident angle; therefore their relative velocities
limits are zero.

8.2.2 q-metric

In the second case, we investigate the limit of the center of mass energy
of particle collisions in the vicinity of q-metric (6.18). The center of mass
relation (8.5) becomes

E2
cm

2m1m2

=
(m1 −m2)

2

2m1m2

+ (8.10)

1 −
(
x− 1

x+ 1

)α
L1L2

(x+ 1)2(
x+ 1

x− 1

)(α+1) [
E1E2 −

√
(E2

1 − V 2
1eff) (E2

2 − V 2
2eff)

]
.

Here again, to see the center of mass energy behavior close to x = 1, we need
to study the limiting case via utilizing L’Hopital’s rule. It turned out that
for α > 0 and our technical assumptions we obtain 1

lim
x→1

E2
cm

2m1m2

=
(m1 −m2)

2

2m1m2

+ 1 +

(
E2

1 + E2
2

E1E2

)
. (8.11)

For equal mass m1 = m2 := m this reduces to

lim
x→1

E2
cm

2m2
= 1 +

(
E2

1 + E2
2

E1E2

)
. (8.12)

An analysis reveals that, in general, for α > 0 we have the limit considering
our assumption. However, for α < 0 this limit can blow up. The calculation
is long and complicated where not presented here. This result for α < 0 can
link to the fact that particles approach x = 1 with different incident angles,
so they have tangential velocities relatively which allows the large center of
mass collision where considering this sign is related to a prolate shape this is
consistent with other findings. Therefore, the q-metric for some parameter
α can be a particle accelerator like the Kerr solution and can mimic its
behavior.

1The Schwarzschild solution is excluded (i.e α ̸= 0).
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8.3 Summary and conclusion

In this chapter, we study the possibility of study collision in the back-
ground of Generalized q-metric. In addition, we investigated if the distorted
Schwarzschild solution or q-metric can act as a particle accelerator or not.
It turns out that like Kerr space-time for some range of parameters in these
metrics there is a possibility to reach the high energy in the vicinity of the
compact object described with these two solutions.





Chapter 9

Cognitive study on the Stationary q-metric

As this the Stationary q-metric is quite new, in this chapter, we investigate
some of the most important properties of the metric in the equatorial plane
including the behavior of effective potential and circular geodesics, to ex-
plore the possibility of construction the Thick accretion disc model in this
background. The metric and its general properties are described briefly in
Section 6.4.

9.1 Ernst potential

The first tool, we utilize to investigate more about this metric following [206],
is the complex Ernst potential

E = f + iΩ. (9.1)

where f and ω are the metric functions equation (6.21). It means that if the
potential E is given, one can find the metric function f with an algebraic
manipulation, and the metric function ω is obtained by solving

σ0(x
2 − 1)Ωx = f 2ωy, (9.2)

σ0(1 − y2)Ωy = −f 2ωx. (9.3)

Moreover, by having E the function γ in the metric equation (6.21) is de-
termined by a system of differential equations. It means all necessary infor-
mation of the metric, interestingly, is contained in the Ernst potential. In
addition, analyzing the behavior of the Ernst potential leads to the fact that
the stationary q-metric is also asymptotically flat like the static case. The
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Figure 9.1: The Ernst potential, E , is depicted for various values of q and a
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Ernst potential for this metric by utilizing the solution generating techniques
[207] is calculated [208] as follows

E =

(
x− 1

x+ 1

)q [
x− 1 + (x2 − 1)−qd+
x+ 1 + (x2 − 1)−qd−

]
, (9.4)

where

d± = −α2(x± 1)h+h−(x2 − 1)−q

+iα[y(h+ + h−) ± (h+ − h−)], (9.5)

and

h± = (x± y)2q. (9.6)

Additionally, in the case of q = 0, we obtain

E =
a2(x− 1) − (σ0 −m)2(x+ 1)

a2(x+ 1) − (σ0 −m)2(x− 1)
, (9.7)

since |a| ∈ [0, 1) then its power two is smaller, also the coefficients of a2 in the
nominator and denominator of the equation (9.7) are of the same order and
comparable, the results for different values of a are very close to each other
and not distinguishable. In Figure 9.1 we studied the behavior of the Ernst
potential on the equatorial plane outside the curvature singularity r = 2m.
We presented these results for different values of a and q that we use later
to construct the Thick disc model in Section 11.3. In this Figure, we see
that for each value of a the Ernst potential is a continuous function of r
that approaches monotonically to a constant at infinity. There are certain
points at which the Ernst potential for different values of a coincide. Since
the Ernst potential contains all the information about the gravitational field,
this means that at the intersection points the corresponding space-times are
identical. This can be one interpretation, While another can consider them
as a signal to put some restriction on the chosen values of metric parameters.
To illustrate more the nature of these intersections, the Kretschmann scalar
K is investigated in the equatorial plane [209]. This scalar reads as

K = RνµτθR
νµτθ, (9.8)



96

where Rνµτθ is the Riemann tensor. This analysis shows that the singular-
ities are always happened to be inside r = 2M (for r ̸= a) for the chosen
values of the parameters. Since, in principle the considered values of q are
relatively small, say smaller than 1, we expect to have similar behavior for
all quadrupole values q within this range. Therefore, the corresponding in-
tersections in the Ernst potential are inside the latest singularity and we
can neglect them as we are interested to study the exterior of the stationary
q-metric. Furthermore, we see that the place of singularities is a decreasing
function of a; namely, as |a| increases the singularities are concentrated closer
to the central curvature singularity.

9.2 Effective potential

In the next step of the study of this metric, we analyze the effective poten-
tial of this space-time. We will use this discussion here in Section 11.3 to
construct the Thick accretion disc model. The exact relation for Veff in this
space-time is too complicated that we prefer to state its general form in the
stationary and axisymmetric space-time in terms of the metric components
as

Veff = −1 +
E2gϕϕ + ELgtϕ − L2gtt

g2tϕ + gttgϕϕ
, (9.9)

where E is a specific energy, and L is the specific angular momentum that we
investigate L more in Section 11.3 since this has a key role in constructing
the Thick accretion disc model. In Figure 9.2 we plotted E for different
values of a and q. In particular, we consider cases with a = 0 = q to have
the Schwarzschild case to compare with, as well as static q-metric in each
case. We can see very different behavior for a > 0 and a < 0. We see that
for negative parameters, in general, the curves can reach more to the strong
gravity field while for positive values the minimums are farther away from
the central object. Interestingly, if we compare these plots with E for Kerr in
Figure 9.3 we see the situation is completely opposite, which indicates there
are obvious differences between these two solutions regarding observational
data.

Figure 9.4 shows the effective potential of the stationary q-metric for
different values of q and a. In Figure 9.4 we see that the amplitudes for
the extreme cases where a = −0.8 and a = 0.9 are much higher; however,
there is not a unique pattern to formulate the behavior of its exterma as a
function of a. Again, in general, the amplitudes are higher for negative values
of parameters as we expected from the behavior of the class of q-metric in
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Figure 9.2: Plots of E for different values of a and q in the equatorial plane of
stationary q-metric.

Figure 9.3: Plots of E for different values of a in the equatorial plane of Kerr
metric.
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Figure 9.4: Effective potential Veff for different chosen values of a and q.
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Figure 9.5: Bounded trajectories for various combinations of a and q. The first
row is dedicated to a ≤ 0 and the second one to a > 0. The colors refers to the
values of a the same as others e.g. Figure 9.4. From the left to the right q = −0.4,
q = 0, q = 0.2 and q = 0.6. All along the plots the following parameters remain
constant: The angular momentum L = 8, the initial point r(0) = 100, ϕ(0) = 0.

general. As a standard approach, by analyzing Veff we can investigate the
particle dynamics. In general, different types of trajectories are obtained
by the energy’s boundaries E2 = Veff , depending on the parameters of the
model. In Figures 9.5 and 9.6, for each valid choice of parameters, we see
that it is possible to determine different trajectories.

9.3 Summary and conclusion

In this chapter, we studied the main properties of the stationary q-metric
that mostly are needed to know about the existence and construction of the
Thick accretion disc model in this background. This metric is asymptotically
flat and free of curvature singularities outside the hypersurface r = 2M .
This implies that we can use it safely to describe the gravitational field of
relativistic compact objects for which r > 2M . Besides, there are properties
which can be distinguishable in the observational data from the Kerr solution.

In particular, we analyzed the main properties of the Ernst potential
and the effective potential of the stationary q-metric on the equatorial plane.
Interestingly, it turns out that there are certain points on the equatorial plane
at which the Ernst potential has the same value for different values of a.
However, an analysis of the Kretschmann scalar showed that the intersection
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Figure 9.6: Fall-in and fly-by trajectories for various combinations of a > 0 and
q. The colours refer to the values of a the same as others e.g. Figure 9.4. From
the left to the right q = −0.4, q = 0, q = 0.2 and q = 0.6. All along with the
plots, the following parameter remains constant: The angular momentum L = 8,
the initial point r(0) = 3.5, ϕ(0) = 0.

points are located in a neighborhood of the curvature singularity and around
the hypersurface r = 2M . This means that degeneracy does not affect the
study of different astrophysical scenarios since they are located far away
from this surface. The main results of this chapter are presented in [209]. In
Section 11.3 we will explore the Thick disc configuration and its properties
in this background.



Chapter 10

Thin accretion disc model in Generalized

q-metric

In this chapter, we investigate the properties of the Thin accretion disc model
discussed in Section 2.1 in the background of Generalized q-metric up to
quadrupole. First of all, we need to write the metric (7.13), in the equatorial
plane (7.21), where y = 0 (or equivalently θ = π

2
). We state the metric and

functions again here to be easier to follow

ds2 = −
(
x− 1

x+ 1

)(1+α)

e2ψ̂dt2 +M2(x2 − 1)e−2ψ̂

(
x+ 1

x− 1

)(1+α)
[(

x2 − 1

x2

)α(2+α)
e2γ̂(

dx2

x2 − 1
+ dy2

)
+ dϕ2

]
. (10.1)

And the distortion functions up to the quadrupole moment in the equatorial
plane are simplified to

ψ̂ = −β
2

(x2 − 1) ,

γ̂ = −2β(1 + α)x+
β2

4
(x2 − 1)2 . (10.2)

The second step is to determine the inner edge of the disc. As mentioned
earlier, the inner edge of the standard Thin disc model is assumed to be
at the Innermost Stable Circular Orbit, ISCO. So, we need the analyze the
location of the ISCO in this solution that we had in Section 7.3.1. It has been
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shown that there is a valid range for β, quadrupole moment of source, for
each choice of α, quadrupole of the central object, for time-like trajectories.
First the domain of the central object quadrupole is α ∈ [−1 +

√
5
5
,∞).

Further, for each choice of α, there exist ISCOs for time-like geodesics for
some range of quadrupole of external matter β ∈ [βmin, βmax], such that in
general, βmin ≈ −2.5 × 10−1 at α = −0.5 and βmax ≈ 4.1 × 10−3 at the
minimum of α, meaning α = −0.5528. In addition, from α = −0.5, |β| is
a monotonically decreasing function of α and approaches zero. Some of the
examples are listed in Table 7.1. Also, the place of ISCO, in general, is closer
to the horizon for negative quadrupoles, and it is farther away from it for
positive quadrupoles in both cases, see Figure 7.7. Therefore, from an ISCO
analysis, we restricted choosing the quadrupole values in the model.

10.1 The valid region

Furthermore, one can derive the various physical quantities appearing in the
equations of the Thin disc model described earlier in Section 2.1. As men-
tioned earlier in Chapter 7, by its definition the distorted metric is only valid
locally. We can see this in the analysis of the behavior of physical quan-
tities like E = −ut, L = uϕ and Ω = uϕ

ut
in this space-time, and consider

the valid region where they are real-valued, for a given value of quadrupoles.
Interestingly, the angular velocity - which is supposed to be a monotonically
decreasing function for vanishing quadrupoles - in this space-time may pos-
sess an extremum at some x. A likely explanation is that the effect due to
the external matter starts to reveal from this point. So, one can take this
as the signature of external matter indicating that from this distance x, the
local solution is no longer valid.

Further analysis shows that, although angular velocity gives us an upper
bound for the valid region, one can find a better estimate on the valid region
by analyzing the shear rate (2.9), in the local rest frame σx̂ϕ̂. An analy-
sis shows that for positive values of β, these two estimations are in good
agreement. Consequently, for asymptotically flat solutions, meaning β = 0,
always σx̂ϕ is negative for this space-time; therefore, there is no restriction
for any chosen value of α. However, the place of ISCO, the inner edge, will be
different, as was discussed earlier. Besides, for positive values of β, meaning
(β > 0, α) always σx̂ϕ is negative; however, it is restricted to some region. For
negative β, meaning (β < 0, α) at some point say x0, shear rate σx̂ϕ̂ changes
the sign, which means the valid region is restricted to x0. However, in this
case, it depends on the value of α, the behavior of the σx̂ϕ̂ in the valid region
is different. Since σx̂ϕ is the major contributing factor mostly in vertical
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structure, we expect to have some effects, especially in this direction. Nev-
ertheless, this effect becomes more strong for larger values of α. We should
mention that as the absolute value of the quadrupole |β| approaches zero, we
arrive at a wider valid range for x, as it is expected from the (β = 0, α) limit
for each choice of α.

The final result is obtained by summing up the results from the analysis
of physical quantities being real-valued, and the upper bound given by σx̂ϕ̂
analysis. This gives us some restrictions on the range of the x coordinate for
any chosen value of α and β.

As the last step, before solving the system of equations stated in Section
2.1.2, one needs to rewrite equations and quantities in the prolate spheroidal
coordinates (t, x, y, ϕ) simply via the transformation (6.10) to obtain the
system of algebraic equations that can be treated analytically. In fact, this
system of equations admits a unique solution for considering positive tem-
perature and pressure. The results are described and plotted in the next
Section.

10.2 Properties of the Thin disc model

In fact, as the distorted solutions are only valid locally, we only consider
the inner part of the disc in this space-time. As discussed earlier, the upper
limit of the solution depends on the choice of both the quadrupoles α and β.
The results were produced by Mathematica, and the physical constants and
parameters that were used are as follows

G =6.67 × 10−8 cm3g−1sec−2,

c =3 × 1010 cm sec−1,

κes =0.40 cm2g−1,

M =1034 g, (10.3)

Ṁ =0.25ṀEdd(= 10
LEdd

c2
) g sec−1,

α =0.02. (10.4)

Apart from the height scale h, which is dimensionless, the results are repre-
sented in the cgs units.

First, in Figure 10.1 the flux, temperature, pressure and height scale are
plotted over the distance for different value of α when β = 0. We see that, for
any negative value of α, plots start at a place closer to the horizon, and they
get further away as α increases. This is due to the fact that the inner edge of
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Figure 10.1: Radiation flux F , pressure P , temperature T and The height scale
of the disc h for different values of quadrupole α.
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Figure 10.2: Radiation flux F for different values of parameters.

the disc, ISCO, for the negative quadrupoles is closer to the compact object
and the opposite for positive ones, Figure 7.7. Furthermore, the maximum
of plots is much higher for the negative quadrupoles α, compared to the
Schwarzschild case α = 0, and for the positive quadrupoles α. In addition,
in the case of negative quadrupoles α, there is a sharper ascent and descent
rather than for positive quadrupoles α. In this regard, the place of the
pick of each plot is a monotonically decreasing function in α. Therefore, for
some values of quadrupoles there are distinguishable differences between the
properties of a standard Thin disc around q-metric and the Schwarzschild
case. This behavior repeats in other quantities that in the following we
discuss them with non-vanishing β. This is worth mentioning that after
intersection the order of curves will change which is not the case in Kerr
space-time.

The radiation flux F is plotted over distance in Figure 10.2 for different
values of α and β. Without loss generality, we chose positive α, since we
already see the impact of α on the properties in Figure 10.1. By comparing
the black line and the green one, we see that as α becomes larger the intensity
of the flux reduces and the position of its maximum shifts away from the
central object; therefore, this is not a surprise that its amplitude decreases.
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Figure 10.3: Temperature for different values of parameters.

This is also true for any other choices of α as expected. In particular, in the
plot of flux for the case when both parameters are zero and correspond to the
Schwarzschild solution the intensity is much higher, also closer to the central
source. In addition, at smaller radii, for negative quadrupole β, there is a
sharper ascent and descent with a higher pick compared to the undistorted
and positive β case. However, this may not be a surprise, because also in the
case of negative quadrupole of the external matter β, the inner edge of the
disc, ISCO, is getting closer to the horizon even very small since the values
for quadrupole β are relatively small (see table 7.1), and we expect to have
more intense effects at the inner part.

The temperature T is plotted over distance in Figure 10.3 for different
values of α and β. Again we see the effects of smaller quadrupole is more
intense and one expect to have a higher temperature for them. This is worth
mentioning that since this is not the surface temperature and we expect this
behavior. The pressure P is plotted over distance in Figure 10.4 for different
values of α and β. We see almost the same pattern as temperature as we
expected from the equations. In Figure 10.5 we plotted the viscose stress for
the same parameters values. As this function links to the flux in the equation
directly we expected to have similar behavior by looking at the equations.
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Figure 10.4: Pressure P for different values of parameters.

Figure 10.6 shows the height scale h of the disc over x for the same values.
In general, the disc gets thicker and gradually becomes thinner after reaching
some maximum. Although this thickness change is less manifest for higher
quadrupoles β, it is stronger in the case of the lower quadrupole.

The pattern of all quantities repeats for all values; however, the range of
change and the amplitude vary. In fact, the valid region is more restricted
for the positive quadrupole, as we have seen from the shear rate analysis.
Thus, to see the difference between the case of negative quadrupole β < 0
and β = 0 at larger radii.

In general, we can conclude that the effect of external quadrupole β for a
fixed α at small radii closer to the central source has a rather small impact
on the results. The deviations between the case of (β = 0, α) and different
choices of the quadrupole β become more clear in larger radii. In addition,
in all quantities for a fixed α, for negative β the amplitude is higher than for
(β = 0, α), on the contrary to the positive β values. In this case, also, the
ISCO is closer to the central object; however, because the differences are tiny,
we can not see it on plots. However, since the values for quadrupole β are
relatively small (see table 7.1), we expect to have more intense effects in the
inner part. Besides, it is clearly seen from the plots that as the quadrupole α
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Figure 10.5: Viscous stress for different values of parameters.

becomes larger, the effect of these distortions also becomes more significant
because we have a wider domain for them, as discussed earlier 7.

10.3 Summary and conclusion

In this chapter, we have analyzed the structure of the Thin accretion disc
model in the background of the Generalized q-metric described in Chapter
7, and also compared the results with the Schwarzschild black hole. In fact,
qualitatively, the results appear to be entirely consistent.

We have derived some physical conditions to determine the upper limit
on the valid region depending on quadrupole parameters, as this solution is
only valid locally. In general, an analysis shows that the result for a given
α, say α0, at small radii close to the ISCO for a non-vanishing external
quadrupole β ̸= 0, has a small effect on the results. However, the deviations
between the undistorted naked singularity (β = 0, α0) and different choices
of the distortion background, (β ̸= 0, α0) become stronger for larger radii.
Also, as the magnitude of the quadrupole |β| approaches zero, we get a
wider valid range, as is expected from the (β = 0, α) limit for each choice
of α. Furthermore, the pick of the mentioned quantities for (β < 0, α0)
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Figure 10.6: Height scale of the disc h for α < 0, α = 0 and α > 0.

is generally higher than the (β = 0, α0), and the situation is reversed for
(β > 0, α0). In addition, the intensity of effects due to distortion background
is a monotonically increasing function of α.

Further, we have shown that the presence of quadrupoles changes the
geometric properties of the accretion disc drastically. Thus, the disc struc-
ture in the background of a deformed and/or distorted compact object is
significantly different and clearly distinguishable from other solutions when
trying to fit with the observations. In this respect, a disc around the dis-
torted deformed compact object is much more luminous than one around a
regular black hole that is completely distinguishable in observational data.
The results of this chapter are presented in [210] and [211].





Chapter 11

Thick accretion disc model

In this chapter, we discuss various results with focus on the parameters of dif-
ferent metrics, as well as the other parameters of the Thick disc related to the
angular momentum distributions and magnetic field. We study their impact
on the location and morphology of the equipotential sequences described in
Section 2.2.

As mentioned, in this model, the different regions are bounded by the
value of the angular momentum at the marginally bound orbit ℓmb, and at
the marginally stable circular orbit ℓms. Through this thesis, my interest
is in the regions where we can construct discs with or without a cusp, i.e.,
ℓms < ℓ0 < ℓmb to use in the future works.

In what follows, in three cases 11.1, 11.2 and 11.4 we consider magnetized
version. In addition, the morphology of the solutions seems to have no change
for magnetization values higher than βc = 103 or lower than βc = 10−3. These
cases can thus be considered as the limiting values, the same also applies in
the simulations [212]. Besides, by its definition1, the lower βc corresponds to
the stronger magnetic pressure. In this regard, we aim to study the impact
of the magnetic pressure on the characteristics of the disc when this is strong
in comparison to the gas pressure.

Furthermore, in two cases 11.1 and 11.2 we considered two non-constant
angular momentum distributions, apart from the constant one. Moreover,
we compared the results with the Schwarzschild case. As a special case,
the results are in good agreement with the result in the literature when we
limited our solution to the vanishing quadrupole moment.

1The magnetization parameter is defined as the gas pressure to the magnetic pressure
Section 2.2.1. In fact, the interplay between magnetic pressure and the gas pressure is
important to magnetohydrodynamics and plasma physics.
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Figure 11.1: profiles of ℓms and ℓmb as a function of q.

11.1 Magnetized Thick disc in distorted Schwarzschild

This section presents the magnetized Thick disc model in the background
of the distorted Schwarzschild space-time (6.12) where described briefly in
Section 6.2. The results showing the effect of the quadrupole parameter
of the metric related to the distortion of the black hole combining with a
magnetization parameter and different angular momentum distributions. In
this section, letter q presents the quadrupole.

11.1.1 Discussion on the constant angular momentum

As mentioned in section 2.2.2, different discs can be constructed upon dif-
ferent choices of the value of ℓ0. To see how to choose ℓ0 to have a solu-
tion for which closed equipotential surfaces can exist we interrogation the
variation of ℓms and ℓmb as a function of q where depicted in Figure 11.1
for q ∈ [−0.0001, 0.0001]. We see that the specific angular momentum at
the marginally stable orbit is decreasing. Consequently, the area where
closed equipotential surfaces are possible increases for higher values of q.
First, we assume specific angular momentum is constant and fixed to be
ℓ(x, y) = ℓ0 = 3.77 which is compatible with Figure 11.1. Therefore, it
allows us to have the solution with a cusp for all values of q.

Figure 11.2 shows the profile of the maximum rest-mass density and its
location in the equatorial plane over q, for different values of βc. We see
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that for a fixed value of q, the rest-mass density maximum is a decreasing
function, and its location is an increasing function of βc. Considering the
assumptions of MHD, the magnetic field causes the rest-mass density increase
in the inner part of the disc as a response to the magnetic pressure, and as
a result, its place shifted farther away accordingly. This is compatible with
the proceeding literature. Furthermore, for a fixed βc, the maximum and its
location are an increasing function of q. In fact, the disc has been constructed
between the compact object and the mass distribution parameterized by q
in its vicinity. Therefore, as the parameter, q increases, the effect of this
external source is more manifest, and maximum density becomes higher at
the radios farther away from the central object and closer to the external
source. Then for some proper combination of parameters, q and βc, can
compensate some of their effects. In Figure 11.3, the location of the rest-
mass density maximum and its amplitude are plotted as a function of βc.
The results are compatible with the result of Figure 11.2.

One can construct various disc models with different shapes due to dif-
ferent cusp locations and the centre. We have considered models denoted by
the letters A, B, C, D, and E, to show the effect of the quadrupole q. Also,
by subscripts 1, 2, 3 to show the effect of the magnetization parameter βc on
the disc’s shape. The parameters of each case are given in Table 11.1. All
these solutions are depicted in Figure 11.3.

Figure 11.2: Amplitude and location of the rest-mass density maximum over q,
for ℓ(x, y) = ℓ0 = 3.83.

In Figure 11.4 we have examined models A, C and E of the Table 11.1.
Figure 11.4, shows that q and βc both have significant effects on the structure
of the Thick disc model. In fact, magnetic pressure does not touch the overall
shape of the disc and its radial expansion strongly. However, further analysis
shows a slight change occurs in the range of isodensity contours. This is
compatible with increasing density toward the inner part of the disc.

On the other hand, the role of q is more substantial on the shape of the
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disc and its place. In fact, as the value of q increases, the disc has more
radially extended and shifted away from the central object. This is also well
matched with the result of Figures 11.2 and 11.3.

Figure 11.3: Amplitude and location of the rest-mass density maximum over βc,
and the five values of q described in Table 11.1. This is plotted for ℓ(x, y) = ℓ0 =
3.83.

Case q xin xc xPmax xPm
max βc

B1 0.000001 3.719 6.991 6.439 6.569 10−3

B2 0.000001 3.719 6.991 6.710 6.849 1
B3 0.000001 3.719 6.991 6.990 7.139 103

B1 0.0000001 3.720 6.985 6.440 6.570 10−3

B2 0.0000001 3.720 6.985 6.700 6.840 1
B3 0.0000001 3.720 6.985 6.980 7.130 103

C1 0 3.720 6.984 6.440 6.570 10−3

C2 0 3.720 6.984 6.700 6.840 1
C3 0 3.720 6.984 6.980 7.130 103

D1 −0.00000013.720 6.983 6.440 6.570 10−3

D2 −0.00000013.720 6.983 6.700 6.840 1
D3 −0.00000013.720 6.983 6.980 7.130 103

D1 −0.000001 3.721 6.977 6.430 6.560 10−3

D2 −0.000001 3.721 6.977 6.700 6.830 1
D3 −0.000001 3.721 6.977 6.970 7.120 103

Table 11.1: Parameters of the considered solutions for a constant specific
angular moment ℓ0 = 3.77.
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Figure 11.4: The rest-mass density distribution for constant angular momentum.
The models A, C and E of the Table 11.1 are presented in rows. The index 1, 2
and 3 of each model correspond to each column from left to right.
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Figure 11.5: The models 1, 2 are radial profiles of the specific angular momentum
in the equatorial plane with different slopes. The constant specific angular momen-
tum is shown with a thick straight line, which is chosen to be ℓ(x, y) = ℓ0 = 3.83.
This profile corresponds to q = 0.00002.

Figure 11.6: Amplitude and location of the rest-mass density maximum over q.
The different curves represent different distributions of specific angular momentum
depicted in the Figure 11.5.

Figure 11.7: Amplitude and location of the rest-mass density maximum as a
function of βc. The solid lines correspond to the model 2 and the dot-dashed lines
present the model 1.
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11.1.2 Discussion on the power-law distribution

In this section, we discuss different profiles of ℓ(x, y) following the method
described in [53] which is described in Subsection 2.2.2. This method re-
quires choosing a fixed specific angular momentum ℓ0 to fix the centre xc
and cusp xcusp. This procedure proceeds as follows. We keep xc fixed and set
a new cusp point called x′cusp, choosing between xcusp and xms. The slope of
each profile then depends on the chosen value for x′cusp. Therefore, we chose
two different values to get two ℓ(x, y) distributions denoted by a numeral
index 1 and 2. In Figure 11.5, the profile of the specific angular momentum
distribution is plotted for q = 0.00002.

In addition, as in the previous case, xcusp and xc vary with quadrupole’s
value, then it is expected the slope changes also with q.

In Figures 11.6 and 11.7, we turned on the magnetic field, and we studied
the effect of magnetic pressure combines with different distributions of angu-
lar momentum presented in Figure 11.5. In Figure 11.6 a global view of the
variation of the location and amplitude of the maximum rest-mass density
over q is plotted. In addition, Figure 11.7 shows the maximum rest-mass
density profile and its value in the equatorial plane over magnetization pa-
rameter for different values of quadrupole and two models. For βc and q, the
same behaviour as the constant case applies, so we expect the more radially
extended disc structure for higher values of q. Increasing in βc decreases the
rest-mass density maximum and places its location farther away. In addition,
an increase in q has the same impact as βc on the rest-mass maximum and
its location. Besides, these Figures suggest the effect of q is more intense
for model 1, which has a steeper slope, while the impact of βc is stronger on
model 2, which is closer to the Keplerian one. In fact, a further inspection
reveals that when q is higher, the influence of changing in βc is also greater
for all models.

In Figures 11.8 and 11.9 the rest-mass density distribution profiles are
explored for a different combination of parameters to clearly see the effect
of changing them [213]. Figure 11.8 presents the results for the angular mo-
mentum distribution model 2, and for the cases G2, H2, and J2 in Tables 11.2
and 11.3. As we expected from the constant angular momentum case in the
previous subsection 11.1.1, magnetic pressure causes the rest of mass density
to increase in the inner part of the disc regardless of the type distribution
of angular momentum, as also seen in Figure 11.9. Furthermore, the overall
shape of the disc depends on the choice of q. Especially the disc is more
radially extended for positive values of q. Besides, further analysis shows for
positive values of q; the disc has more balloon shape than negative values.

Figure 11.9 presents the results for the angular momentum distribution
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Case q xin xc xPmax xPm
max

F1 0.000050 4.5 7.206 7.360 7.469
F2 0.000050 3.8 7.206 6.957 7.147

G1 0.000020 4.5 7.241 7.162 7.249
G2 0.000020 3.8 7.241 6.810 6.971

H1 0 4.5 7.353 7.044 7.120
H2 0 3.8 7.353 6.719 6.866

I1 −0.000015 4.5 7.519 6.961 7.030
I2 −0.000015 3.8 7.519 6.655 6.792

J1 −0.000020 4.5 7.817 6.934 7.001
J2 −0.000020 3.8 7.817 6.634 6.768

Table 11.2: Parameters of the considered solutions for power-law angular mo-
mentum distribution. The alphabetical enumeration of the models F,G,H, I
and J refers to the different values of q given in Table 11.2. The indexes in
each model refer to the different specific angular momentum distributions in
Figure 11.5. All the models have βc = 10−3.

Case q xin xc xPmax xPm
max

F1 0.000050 4.5 7.817 7.816 7.939
F2 0.000050 3.8 7.817 7.816 8.076

G1 0.000020 4.5 7.519 7.518 7.611
G2 0.000020 3.8 7.519 7.518 7.720

H1 0 4.5 7.353 7.353 7.431
H2 0 3.8 7.353 7.352 7.528

I1 −0.000015 4.5 7.241 7.241 7.311
I2 −0.000015 3.8 7.241 7.240 7.400

J1 −0.000020 4.5 7.206 7.205 7.274
J2 −0.000020 3.8 7.206 7.205 7.360

Table 11.3: The same cases as table 11.2 for βc = 103.
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Figure 11.8: Map of the rest-mass density distribution for the angular momen-
tum model 2 as described in the Figure 11.5. Each row corresponds to different
values of q, and each column shows different value of βc.



120

Figure 11.9: Map of the rest-mass density distribution for the more steeper
angular momentummodel 1, as described in the Figure 11.5. Each row corresponds
to different values of q, and each column shows different value of βc.
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model 1, and for the cases G1, H1, and J1 in Tables 11.2 and 11.3. In Figure
11.9 we have the same patterns as in Figure 11.8. However, for the distribu-
tion of model 1, we obtain a smaller disc structure in both vertical and radial
directions. Since as we have seen in Figure 11.5 the place of xc and xcusp are
closer to each other. In addition, comparing these Figures shows the smallest
disc is obtained when the steepest distribution is combined with the largest
quadrupole moment. Besides, we can see in each case, as the slope of specific
angular momentum becomes steeper, the matter accumulates more in the in-
ner part. Thus steeper the slope, the more centrally the matter distributes.
This pattern also reminds the role of the magnetization parameter.

11.1.3 Discussion on the trigonometric distribution

In this section, we discuss different profiles of ℓ(x, y) following the method
developed in [57] which is described in Subsection 2.2.2. In Figures 11.10
and 11.11, we have discussed the rest-mass density maximum and its place
for different angular momentum profiles, q and βc. Like previous cases, in-
creasing q causes an increase in rest-mass density maximum and its location.
However, as α becomes higher for a fixed value of q and the curve deviates
from the constant angular momentum distribution, the intensity in density
maximum reduces, and the matter spreads more through the disc. Also, Fig-
ure 11.11 shows the sensitivity of each model on βc. Also, in this case, βc
has a stronger effect on the disc which its angular momentum distribution
is closer to the constant one. And as the matter becomes more distributed
through the disc caused by a higher value of α, magnetic pressure also has a
weaker effect on the disc.

In Figure 11.12 and 11.13 the panels of rest-mess density distributions
presented. The parameters are listed in Tables 11.4 and 11.5. In Figure 11.12
the goal is to study the effect of parameter βc, and in the first column, we have
relatively strong magnetic pressure compare to the second one. However, the
model parameters are the same to distinguish the effect of magnetic pressure
clearly. Also, q is set to be fixed. As mentioned before, βc influences the
distribution of mater inside the disc and not on the shape of the disc, in
general. However, parameters α and δ have influenced the disc structure
strongly. In fact, these two parameters are highly correlated to each other.
However, further analysis shows that for a fixed α, an increase in σ causes
the disc becomes thinner, the same for a fixed value of δ.

Figure 11.13 explores the effects of different parameters, particularly q, on
the panel of rest-mass density in the presence of relatively strong magnetic
pressure. Comparison of columns shows the effect of different values of q
on the models. The parameter q is responsible for the radial extension of
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α δ q xc xPmax xPm
max

0 0.9 0.00002 9.191 6.663 7.230
0.5 0.5 0.00002 9.191 7.077 7.660
0.5 0.9 0.00002 9.191 7.078 7.662

0 0.9 0 9.476 6.692 7.352
0.5 0.5 0 9.476 7.128 7.746
0.5 0.9 0 9.476 7.130 7.746

0 0.9 −0.00002 9.814 6.751 7.446
0.5 0.5 −0.00002 9.814 7.210 7.858
0.5 0.9 −0.00002 9.814 7.210 7.858

Table 11.4: Parameters of the considered models for non-constant trigono-
metric specific angular momentum. All the models have βc = 10−3.

α δ q xc xPmax xPm
max

0 0.9 0.00002 9.191 9.191 10.017
0.5 0.5 0.00002 9.191 9.190 10.016
0.5 0.9 0.00002 9.191 9.190 9.864

0 0.9 0 9.476 9.476 10.346
0.5 0.5 0 9.476 9.475 10.305
0.5 0.9 0 9.476 9.476 10.209

0 0.9 −0.00002 9.814 9.814 10.722
0.5 0.5 −0.00002 9.814 9.814 11.000
0.5 0.9 −0.00002 9.814 9.814 10.701

Table 11.5: The same cases as Table 11.4 for βc = 103.

the disc as it becomes higher. In addition, a deeper analysis shows q is also
responsible for a shift in the radial direction of the disc. In the sense that as
the values of q increase, the disc shifts in the outward direction. However, as
the values of quadrupole parameters that we chose in our models are minimal,
this is not easy to see from the panels. This is also coherent with the shift
in the place of the rest-mass density maximum as q increases.

11.1.4 Summary and conclusion

In this section, we investigated the equilibrium sequences of magnetized,
non-self-gravitating discs around distorted Schwarzschild black holes 6.2.

We have analyzed these models’ properties and their dependency on the
magnetization parameter βc, the quadrupole parameter related to the exter-
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Figure 11.10: Amplitude and location of the rest-mass density maximum as
a function of q. The different curves represent different distributions of specific
angular momentum.

Figure 11.11: Amplitude and location of the rest-mass density maximum as
a function of βc, and for different angular momentum profiles. The solid lines
correspond to q = −0.00002. The Schwarzschild case is shown in dashed line.
Also, q = 0.00002 is represented in dotted line.
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Figure 11.12: Effect of the magnetized parameter q on the rest-mass density
distribution. The deformation parameter is fixed to be q = −0.00002.
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Figure 11.13: Effect of the distortion parameter q on the rest-mass density
distribution. The first column is dedicated to q = −0.00002. The middle column
represents the Schwarzschild case q = 0. The last column shows q = 0.00002. The
magnetization parameter is fixed to be βc = 10−3.
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nal source, and the angular momentum distributions. As a result, the effects
of changing parameter βc, in general, does not change the disc’s overall config-
uration in both constant and non-constant angular momentum distributions.
However, the strongest effect of βc was seen on the rest-mass density in the
disc’s inner part. Furthermore, a slight change occurs in the range of isoden-
sity contours, which is also compatible with increasing density toward the
disc’s inner part.

In the one hand, the effect of varying quadrupole moments has changed
the disc’s geometry and overall shape. In addition, this changes the location
of maximum rest-mass density and its value which is compatible with our
understanding of the way that external matter manifest their existence. We
also traced the fingerprint of different angular momentum distributions on
the shape the size of the disc, and the rest-mass density profile.

On the other hand, in the distribution in the power-low form, we obtain
the smallest disc is obtained when the steepest distribution is combined with
the largest quadrupole moment. Besides, as the slope of specific angular
momentum becomes steeper, the matter accumulates more in the inner part.
Thus steeper the slope, the more centrally the matter distributes. This pat-
tern also reminds the role of the magnetization parameter. For the triangular
distribution like the previous case, increasing q causes an increase in rest-
mass density maximum and its location. However, as α becomes higher for
a fixed value of q and the curve deviates from the constant angular momen-
tum distribution, the intensity in density maximum reduces, and the matter
spreads more through the disc.

Further, the results also compared with the ordinary Schwarzschild solu-
tion. It has shown that the results are in good agreement with the mentioned
literature. The result of this study presented in [213].

11.2 Magnetized Thick disc in Static q-metric

In this Section, we study the magnetized version of the Thick disc model
2.2 in the background of q-metric (6.18). Here the plots are presented in
the (x, y) coordinates. In this section, letter q present the quadrupole in the
metric.

One of the determinant factors in this model is the condition on the
existence of the closed equipotential surfaces, which is the case for having
the angular momentum distribution in this range: ℓms < ℓ ≤ ℓmb 2.2. In
this respect, Figure 11.14 gives us an insight on how the specific angular
momentum at the marginally bound orbit ℓmb and at the marginally stable
orbit ℓms, behaves as a function of the deformation parameter q in static
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Figure 11.14: Variation of ℓmb and ℓms as a function of q, which determines the
corresponding area for existence of closed equipotential surfaces.

q−metric. In particular, Figure 11.14 shows that by increasing q, the area
where equipotential surfaces can exist, increases.

11.2.1 Discussion on the power-law angular momentum

In this subsection the results are of considering the angular momentum dis-
tribution introduced in [53] and briefly described in Section 2.2.2. In this
work the construction of the angular momentum profile consists of two steps.
First, choosing a fixed ℓ0 specific angular momentum, that fixes the position
of the cusp and the centre of the disc. However, as it has shown in Figure
11.14, it is challenging to set a fixed value for ℓ. We have chosen ℓ0 = ℓmb for
all models. Second, creating a new point called x′cusp settled between xcusp
and xms, as shown in the Figure 11.15. By using this approach, one can
build a power-law specific angular momentum distribution. As an example,
ℓ−profile in the equatorial plane is given for q = 0.8 in Figure 11.15.

In this work, three different angular momentum profiles built via choosing
three different values of x′cusp. The profiles are presented via numbers 1, 2
and 3 in Figure 11.15 and they are named by model 1, 2 and 3. Besides,
the constant angular momentum distribution ℓ0 = ℓmb is also presented for
the sake of comparison. In fact, the value of xcusp, x′cusp and xc depend on q.
As a result, the slope of the three models depends on q as well. For all the
plots in within this angular momentum, the solid line represents the constant
angular momentum case, the dashed line the model 3, the dotted line the



128

5 10 15 20 25 30 x
6.00

6.25

6.50

6.75

7.00

7.25

7.50

7.75

8.00

xcusp xc

x �
cusp

q = 0.8

�0

LK

model 3

model 2

model 1

Figure 11.15: The curves 1, 2 and 3 are profiles of the specific angular mo-
mentum in the equatorial plane with different slopes. The constant specific
angular momentum is shown with the solid straight line which is chosen to be
ℓ(x, y) = ℓ0 = ℓmb(q). This profile corresponds to q = 0.8.

model 2, and the model 1 is represented by the dot-dashed line.

In Figure 11.16 top panels, the location and the amplitude of the rest-
mass density maximum as a function of the magnetization parameter have
been represented. The bottom panels depicted the location and amplitude
of the maximum of the magnetic pressure as a function of the magnetization
parameter for the mentioned parameters. As we have different parameters
that result depend on, we need to fix other parameters simultaneously to
study the effect of one variable precisely.

In fact, for any fixed value of q and steepness of angular momentum pro-
file, the location of the rest-mass density maximum by decreasing the value
of βc -increasing the magnetic pressure- has been shifted inward. Addition-
ally, when βc is low, the equidensity surfaces are not coinciding anymore with
the equipotential surfaces. Besides, decreasing βc increases the maximum of
the rest-mass density. This causes to push the matter closer to the central
object. Thus, the matter concentrates more on the inner part of the disc for
any quadrupole value. This effect is coherent with the results in the previ-
ous figures and proceeding studies [52, 212]. This pattern repeats for all the
profiles of angular momentum distributions. In general, the magnetization
parameter has a major effect on how the matter is distributed in the disc
compared to its effect on the geometrical structure of the disc that is more
clearly seen in Figures 11.19 and 11.20.
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For the maximum of the magnetic pressure, we see that for a fixed value
of q, the trend of the curves for the location and the amplitude is follow-
ing the same path as for the maximum of the rest-mass density. The only
difference comes from the fact that the constant value reached by the pres-
sure maximum’s location depends on the angular momentum profile. It is
worth mentioning that for the four models (constant, profile 1, 2, and 3),
the location of the magnetic pressure maximum intersect. This happen at
xmax = xc. Therefore, it does not depend on the angular momentum pro-
file. In fact, this result has been also predicted in [212] for the trigonometric
angular momentum profile presented in the next subsection.

An investigation on the different angular momentum profiles shows that
the steeper the slope of the profile, the farther is the maximum of the rest-
mass density from the central object. In fact, the higher steepness means that
we have higher angular momentum at a given fixed place, as expected, leading
to lower pressure. Then this is not a surprise that by using a steeper angular
momentum profile, one obtains the maximum of the rest-mass density farther
away from the central object; while, having a decline in the maximum value
of the density. This results in obtaining different shapes and sizes of the
disc, which we see in the following Figures. This result is coherent with the
fact that the steeper the profile, the closer xcusp and xc to each other, as
it has been seen clearly in the Figure 11.15. Further analysis reveal that
as the steepness of the angular momentum profile increases, the place of
pressure’s maximum becomes closer to the center of the disc rather than the
cusp point. This is also a reasoned result since as the steepness increase, the
distance between xcusp and xc decreases; simultaneously, the place of density’s
maximum shifted to the outer part of the disc. So, this should become closer
to the center of the disc.

Besides, an inspection on the impact of the parameter of geometry, defor-
mation parameter q, on the disc structure indicates that, the negative values
of q cause the place of the maximum of rest-mass density move inward and
its value higher and vice versa for positive values. So, one can conclude that
increasing q tends to make the disc shape thinner and more extended. It is
reasonable to think that a prolate shape will enlarge the disc in the vertical
direction closer to the inner edge. Also, an oblate form tend to flatten the
disc on the equatorial plane. In summary, the effects of steepness and posi-
tivity of quadrupole parameters are aligned and opposite to the negativity of
quadrupole values and βc. To have a better insight on how the deformation
parameter q affects the disc structure, the location of the maximum of the
rest-mass density (black lines) and the one of the maximum of the magnetic
pressure (blue lines) for all models and a fixed chosen value of βc are shown
in Figure 11.16. The corresponding amplitudes are shown in Figure 11.18,
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Figure 11.16: Top panels: Variation of the location and amplitude of the rest-
mass density maximum in the equatorial plane as a function of βc, for distribution
profiles described in Figure 11.15. Bottom panels: Same description for the mag-
netic pressure maximum.

at the left for the maximum of the rest-mass density and at the right for
the maximum of the pressure maximum. The Figure 11.17 also confirms the
results obtained in the Figure 11.16.

Figures 11.19 and 11.20 show the general structure of the disc. In Figure
11.19 we have investigated the impact of the deformation parameter q and
the effect of different slopes of angular momentum profiles for a fixed value
of βc which corresponds to a stronger magnetic pressure in the models. As
seen, the deformation parameter has a minor effect on the overall shape of
the disc. In fact, this is more relevant for the radial extension.

Figure 11.20 shows how the rest-mass density distribution is changing
with the magnetization parameter and with the steepness of the angular
momentum profile for a fixed negative value of q = −0.4. We note that the
total pressure distribution follows the same behavior on all the panels as the
rest-mass density. The main point here is that, as expected, by increasing βc,
the maximum of the rest-mass density tends to coincide with the maximum
of the total pressure. Besides, as expected from the analysis of the Figure
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Figure 11.17: Variation of the location of the rest-mass density maximum (black
lines), and the magnetic pressure maximum (blue lines), in the equatorial plane
as a function of q, for distribution profiles described in Figure 11.15. The magne-
tization parameter is set to be βc = 10−3.

11.16, the impact of βc decreases on the disc structure by increasing the
steepness of the angular momentum profile, as is seen by comparing all rows
in a column.

11.2.2 Discussion of the trigonometric angular momentum

In this subsection we describe the results of considering the angular momen-
tum distribution presented in [57] and described in Section 2.2.2. In this case,
different angular momentum profiles are given by different combinations of
the parameters. In fact, the angular momentum distribution is constructed
in such a way that for all pairs of (α, δ), the center of the torus places at the
same location.

In Figure 11.21, we have discussed the location of the positions for xcusp
and xc as a function of different profiles and different quadrupole values q. In
fact, the dashed line xc does not change by changing the profile; however, it is
expected to vary with q. On the contrary, xcusp is not fixed and changes with
different profiles. Furthermore, both xcusp and xc are increasing functions
of q. Thus, we expect that in the profiles for where the area between xcusp
and xc shrinks, the size of the discs becomes smaller. Namely, for larger
quadrupole values we have a more extended disc, where this result is coherent
with the one given by the power-law angular momentum. In fact, in this
case, the parameter q plays the opposite role of steepness in the power-law
distribution in the sense that as it increases, the distance between xcusp and
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Figure 11.18: Variation of the amplitude of the rest-mass density maximum
(left panel), and the magnetic pressure maximum (right panel), in the equatorial
plane as a function of q, for distribution profiles described in Figure 11.15. The
magnetization parameter is set to be βc = 10−3.

xc grows. Therefore, we expect that the density maximum shifted from the
cusp point, as q increases. Besides, in Figure 11.21 for any fixed value of q,
by increasing α, the cusp point becomes closer to the disc center, and again
the area between them shrinks, this may result in having a more shrincked
disc structure for larger values of α. However, one should keep in mind that
in this profile, δ also affects the disc structure, and one can not only predict
the shape and properties of the disc by considering α alone.

As shown in Figure 11.22, we have focused on three different angular
momentum profiles. An investigation on the effect of βc on the disc proper-
ties shows that, as the same as the previous model -the power-law angular
momentum- for any fixed value of q and angular momentum profile, the
location of the maximum moves inward by decreasing βc, equivalently by
increasing magnetic pressure; however, the strength of its effect in this case
is different. Indeed, for any chosen value of q, the corresponding curves of
different models coincide when βc is very high. Again, when βc is low, the
equipotential surfaces are not coinciding with the equidensity surfaces. This
effect is in agreement with the results of the previous studies [52, 212]. This
is also coherent with the results found in the previous Figures. Furthermore,
in this model, the location of the maximum is also an increasing function of
the parameter α, on the contrary to its value. One can see the effect of in-
creasing the value of α is aligned with an increase in the steepness of angular
profile in power-law profile. And again the maximum of density is obtained
for the constant case.

In fact, for small values of βc the effect of changing the profile of angular
momentum has the weaker effects on the displacement of maximum density
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Figure 11.19: Map of the rest-mass density. From the left to the right the value
of q varies. The column at the left shows q = −0.4, at the centre q = 0 and,
at the right represents q = 1.5. Also, rows correspond to different distributions
of the specific angular momentum. First row shows the constant specific angular
momentum, the second row model 3, the third row model 2, and the last one
shows model 1. The magnetization parameter is set to be βc = 10−3 in all maps.
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Figure 11.20: Map of the rest-mass density distribution for q = −0.4. From the
left to the right, the magnetization parameter varies. The first column corresponds
to βc = 10−3, second to βc = 1 and third to βc = 103. Also, the distribution of
the specific angular momentum varies in rows. First row represents the constant
specific angular momentum, the second row model 3, the third row model 2, and
the last row shows model 1.
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Figure 11.21: Variation of the location of the cusp (solid lines), and the location
of the centre (dashed line), as a function of q for the different distribution of
specific angular momentum.

and its position, in comparison to changing the value of quadrupole. How-
ever, a deeper inspection shows that the strength of the impact of βc depends
on both parameters q and α as seen in the Figure 11.22. As for larger values
of q and α, the impact of changing in βc is tenser. Besides, for any fixed
value of βc but not large, the parameter α is not also independent of q. As
one can see in the Figure 11.22 the higher q, α has a higher impact on the
disc properties.

Further, the solutions with this angular momentum ansatz and two panels
of the rest-mass density are presented in Figures 11.23 and 11.24. As it has
been shown also in the power-low case, the higher the magnetization, the
more accumulated the rest-mass density distribution in the inner part of the
disc. In the Figure, it is important to mention that the rows 1 and 4 have
the same parameter α = 0, which means they have the same location and
amplitude of the rest-mass density maximum and total pressure.The same
discussion applies to rows 3 and 5, which they have shared the parameter
α = 0.9. In fact, an analysis shows that the α parameter is more responsible
for the vertical direction of the disc in the way that as much as we increase
α we have a less vertically extended disc. While, parameter δ effects on both
the radial and the vertical extension of the disc. Besides, it has an effect on
the distribution of equidensity surfaces in general. However, the analysis on



136

10
�4

10
�2

10
0

10
2 10

4
�c

5

10

15

20

25

x
�

m ax

� = 0  

� = 0.5  

� = 0.9  

10
�4

10
�2

10
0

10
2 10

4
�c

1.0

1.1

1.2

1.3

1.4

1.5

�m ax

� = 0  

� = 0.5  

� = 0.9  

10
�4

10
�2

10
0

10
2

10
4

�c

5

10

15

20

25

xm ax

� = 0  

� = 0.5  

� = 0.9  

10
�4

10
�2

10
0

10
2 10

4
�c

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

P
M

m ax

� = 0  

� = 0.5  

� = 0.9  

Figure 11.22: Top panels: Variation of the location and amplitude of the rest-
mass density maximum as a function of βc, for three models of angular momentum
profiles and five values of q. In this plot q = −0.4 and q = −0.2 are depicted in
solid line and dashed line, q = 0 is shown in the dotted line, q = 0.8 and q = 1.5
are represented in crossed and dot-dashed lines respectively. Bottom panels: same
description but for the maximum of the magnetic pressure.

how δ affects the structure of the disc is in correlation with α that one can
not study this contribution independently.

In Figure 11.24 we have explored the effect of the deformation parameter
q on the structure of the disc with considering the variation of angular mo-
mentum distributions. In this case we have set magnetization parameter to
be βc = 10−3 corresponding to a strong magnetic field. Each column presents
a chosen value of q. It starts with a negative value q = −0.4 at the left, then
q = 0, and a positive value q = 1.5 at the right. Also,the variation of the
angular momentum is in the same as in the Figure 11.23. In comparison to
the Figure 11.23, one can say that the deformed parameter q is more respon-
sible for a shift in the radial direction of the disc. In addition, this is also
responsible for radial extension of the disc in the same manner.
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Figure 11.23: Map of the rest-mass density distribution for q = −0.4. From
the left to the right, the magnetization parameter varies, namely 10−3, 1 and 103

respectively. In rows the power index α and δ is changing. We have chosen these
following pairs (α = δ = 0), (α = δ = 0.5), (α = δ = 0.9), (α = 0, δ = 0.9), (α =
0.9, δ = 0) from the top to the bottom.
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Figure 11.24: Map of the rest-mass density distribution. From the left to the
right, the parameter q varies. The column at the left shows q = −0.4, the middle
q = 0 and the right represents q = 1.5. In rows the power index α and δ is
changing. We have chosen these following pairs with the following pairs (α = δ =
0), (α = δ = 0.5), (α = δ = 0.9), (α = 0, δ = 0.9), (α = 0.9, δ = 0) from the top to
the bottom. Also, the magnetization parameter is set to be βc = 10−3.
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11.2.3 Summary and conclusion

In this section, we explored the magnetized Thick disc model around a de-
formed compact object up to the quadrupole, q-metric, which is briefly ex-
plained in Section 6.3.

In the case of the power-law distribution described in Subsection 2.2.2,
we have shown that steeper angular momentum causes the disc to be more
shrunk. Moreover, increasing in the steepness of the angular momentum
profile, decreases the amplitude of the rest-mass density and pushes away the
location of its maximum. Besides, in the case of trigonometric distribution
profile, we have shown that the pair (α, δ) affect strongly on the overall
configuration of the disc.

In addition, the parameter q is more responsible for a shift of the whole
disc, also its radial extension. Namely, the bigger we choose q, the more
extended disc we have and the disc is more pushed outward from the central
object. Furthermore, a slightly prolate shape of the central object- which is
related to the negative values of q- shows a tendency to enlarge the disc in
the vertical direction. However, a slightly oblate shape which is associated
with the positive values of q tends to flatten the disc in the equatorial plane.
However, as the values of quadrupole parameters that we chose in our models
are minimal, this is not easy to see from the panels. For example, in the
oblate case, We can think the matter tends to spread more through the
disc as we have seen the area between the cusp point and the center of the
disc is greater, and the disc is more diluted comparing to the prolate case.
This is also coherent with decreasing the amplitude of the rest-mass density
maximum and the total pressure maximum.

In addition, the magnetization parameter has more impact on the distri-
bution of matter in the disc and its properties, rather than on the geometrical
structure of the discs. This result is coherent with the results of the previous
studies [52, 212]. Further, for larger values of q and α, the impact of changing
in βc is tenser. Besides, for any fixed value of βc but not large, the parameter
α is not also independent of q. As one can see in the Figure 11.22 the higher
q, α has a higher impact on the disc properties.

More importantly, the parameters of angular momentum, quadrupole and
the magnetization parameter can neutralized their effect for some proper
combination, which can have a great consequence in the model outcome
to interpret the astrophysical observational data when considering different
backgrounds. The result of this study is presented in [214].
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Figure 11.25: Plots of ℓ2 for Stationary q-metric, for different values of q and a.

11.3 Thick disc in Stationary q-metric

In this section, we construct the non-magnetized relativistic tori described in
Section 2.2 in the background of the stationary q-metric where presented in
Sections 6.4 and 9. In this study, we focus on a constant angular momentum
distribution.

11.3.1 Discussion on the constant angular momentum

First of all, Figure 11.25 shows the plots of ℓ2 for different values of q and a.
This can be seen clearly that depend on the different values of q and a the
place of minimum of ℓ2 changes. However, for smaller qs they happen to be
more closer to each other (see q = −0.4) while as q increases the different
cases start to have more distant from each other (see q = 0.6). In particular,
we notice that for q > 0 the smallest negative value of a is corresponds
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Figure 11.26: Plots of ℓ2 for Kerr space-time, for different values of a.

to the smallest minimum in ℓ2 which is also closer to the central source
(see for example in plots a = −0.8). Besides, the situation is reversed for
higher positive values of a. Therefore, one may conclude that the places and
the amplitudes of minimums are increasing function of a. However, when
q < 0 the situation is complex and we can not state a general outcome.
For a comparison ℓ2 in the Kerr background is plotted in 11.26. The most
important deference, in the contrary with the Stationary q-metric, is here
the places and the amplitudes of minimums are a decreasing function of a.
In spite of this fact, the general patterns is more similar to the static q-
metric, where a = 0. It seems the static q-metric more closely can mimic
the general properties of Kerr solution at least in the vicinity of the central
object; however, there exist significant differences in details.

The radius of the center in terms of a for different values of q is shown
in Figure 11.27. In the left plot, we see that rc is an increasing function
of a and q. Thus, for any fixed value of q, for larger values of a the disc
can be constructed farther away from the central object and the same for
a fixed value of a and an increase in q. In addition, the plots of rc as a
function of a have maximum for the positive qs and minimum for the negative
qs. Therefore, for positive values by an continuously increase in a, the disc
configuration shifted from the central source and then come closer. It could
be either an interesting behavior of this space-time, or some signal to discard
larger positive values of q. This pattern again is indicated in the right plot
in Figure 11.27. In fact, this needs to have a deeper analysis on the physical
properties of the background metric which was not focus of this work and
could be a future work.

The right plot in Figure 11.27 shows the angular momentum profiles at
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Figure 11.27: Left: The Variation of the position of the center of the disc as a
function of a and ℓ0 = (ℓ2mb + ℓ2ms)/2. Right: The variation of ℓ2mb (dashed line)
and ℓ2ms (thick line) as a function of rmb(a) and rms(a), respectively.

the marginally stable and marginally bound orbits [209]. In fact, these an-
gular momentum profiles have the same behavior as rc with respect to the
parameter a. However, these are increasing functions as q, as we see, for
example, the highest profile of angular momentum happens for q = 0.6. In
addition, the area between these two profiles are also an increasing function,
where it leads to having a wider area where closed equipotential surfaces
are exist. As mentioned, the chosen angular momentum distribution should
be within this area to have closed equipotential surfaces. To have a consis-
tent approach for different values of parameters we set the constant angular
momentum to ℓ20 = 1

2
(ℓ2mb + ℓ2ms) for all different set of parameters that we

considered to calculate W equation (2.45) in this case (see Section 2.2).

W (r, θ) =
1

2
ln |

g2tϕ − gttgϕϕ

gϕϕ + 2ℓ0gtϕ + ℓ20gtt
|. (11.1)

In addition, an analysis on the location of the maximum of the rest mass
density in the equatorial plane shows that increasing q or a only shifts the
position of maximum of rest mass density farther away from the central
object which is consistent with the result in Figure 11.27.

To study the influence of the parameters q and a on the morphology of
the equipotential surfaces, in Figure 11.28 the structure of the disc is plotted
for the chosen values that we studied earlier. In the second column, we chose
a = 0 to have the static q-metric 11.2 and compare with the stationary case,
as well as Schwarzschild case specifying as a = 0 = q. In this Figure, a
comparison among the different rows tells us about the role of quadrupole q
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for any chosen a, while a contrast among the columns shows the influence
of parameter a on the model for any chosen value of q. Clearly, one can see
that by increasing the value of a, the position of the disc shifts away from the
central object. Besides in this case, we have a more radially extended disc
structure. Thus, both parameters have the same effect on the disc structure.
However, a deeper analysis reveals that the growth rate caused by increasing
a is higher than by an increase in q. For the case a = 0, the result is in the
good agreement with the results found in Section 11.2 for a constant angular
momentum case [214].

11.3.2 Summary and conclusion

In conclusion, in this section, we investigated the Thick disc structure in the
background of the stationary q-metric to reveal more physical properties of
this space-time through the study of the shape and properties of equipotential
surfaces in this model. In addition, we also compare the result with the static
q-metric and Schwarzschild solution.

In general, we conclude that for higher values of q and a we have the
larger Thick disc configuration which is also constructed farther away from
the central object with more radially extension. In particular, the size and
position of the disc with respect to the central source, are a monotonically
increasing function of both parameters a and q. In addition, the plots of ℓ2

behave entirely different from the Kerr space-time which make it distinguish-
able easily in analysis of observational data. The results of this study are
presented in [209].

11.4 Magnetized Thick disc in C-metric

In this section, we analyzed the impact of the different parameters of the
spinning charged C-metric described in Section 6.5 on the morphology of
the equipotential surfaces of the Thick disc model 2.2 with constant angular
momentum.

11.4.1 Von Zeipel radius

Before we start to investigate the construction of the Thick disc model, we
briefly discuss the modified Von Zeipel radius or radius of gyration [50]. This
radius determines surfaces of constant R, which for an axisymmetric and the
stationary metric is defined as
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Figure 11.28: Thick disc configurations for various values of a (vertical direction)
and q (horizontal direction). All along the plots, ℓ0 = (ℓ2mb+ ℓ2ms)/2, with the ℓ2mb

and ℓ2ms values associated to a and q.
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Figure 11.29: Von Zeipel cylinders with respect to the stationary observers. The
plots show poloidal sections across the constant R surfaces, where the circular
time-like motion of the fluid is possible. Colours correspond to different values of
the radius, as listed on the colour-bar to the right of each panel. Selected contours
are indicated with black lines.
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R =
g2φφ

g2tφ − gttgφφ
, (11.2)

with respect to the stationary observers, and known as von Zeipel cylinders
[215, 216]. In fact, this radius helps to analyze circular particle motion and
provides an intuitive image of them in this space-time. Besides, this radius
is related to the inertial forces. In this concept using von Zeipel theorem, we
can conclude that for a constant angular momentum distribution, the surface
of constant R and constant Ω coincide. In Figure 11.29, we see the effect of
parameters on this radius for different sets of α, e and a in this space-time.

11.4.2 Discussion on the constant angular momentum

In the part, we examine the possibility of having solutions for this disc’s
model rely on the variation of the parameters. To have a better insight on
the role of acceleration parameter, first we focus on the non-spinning case.

Figure 11.30 shows the regions where we may have a disc in the non-
spinning charged set-up.

In the panel, the intersection of the dashed curve with the white and
the dark-blue areas show the possible places for choosing the centre of the
disc, and the cusp point, respectively. As we see the acceleration parameter
α plays a crucial role in the existence of solutions. As a result, as α even
slightly increases, almost the possibility of having solutions decreases dra-
matically. Therefore, we can build this disc’s model only for relatively small
acceleration. On the other hand, the charge parameter e has an impercep-
tible impact, and positively contributes to having solutions. Especially, the
charge’s effect manifests clearly when α is relatively large. For example, with
a comparison in the second row for relatively large α and vanishing e, we do
not have a solution while by increasing e, we obtain solutions.

This panel 11.30 also shows that the distance between the center and the
cusp point changes as an monotonic decreasing function of α. This leads to
the larger disc structure for smaller rotation parameters a. In conclusion,
as α increases with a moderate rate the disc structure become smaller and
finally, it will be vanished. Besides, the deeper analysis of the panel manifests
the possibility of the existence of two cusps for some choices of parameters.

In Figure 11.31, by using Figure 11.30, we choose a solution possessing
an inner cusp, a centre and an outer cusp to construct the largest possible
model. Here, clearly can be seen for vanishing rotation in the first column,
there is a possibility of having an inner cusp and an outer cusp specified by
the red curves. In addition, by increasing charge, the closed equipotential
surfaces also become larger, as predicted by Figure 11.30. Furthermore, by
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Figure 11.30: Possible region for having the Thick disc solution. The dashed
curves shows when ∂rW = 0 and ∂θW = 0. The dark blue regions shows area
where the condition for a maximum of W (r, θ) are fulfilled. The white area depicts
where the condition for a minimum of W (r, θ) are fulfilled.
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comparing the first and second columns we can see the impact of the rotation
parameter a. In general, the deepest analysis reveals the effect of the rotation
parameter a on having solutions is not strong compared to α as we see in
Figure 11.30, but stronger than the effect of the charge parameter e. In
fact, parameter a, like α, has a negative effect on having solutions, and for
relatively higher acceleration and rotation parameters we do not find any
disc structure, unless we add a relatively high charge as far as it is possible.
Moreover, the possibility of having the inner cusp is strongly reduced, while
increasing the possibility of the outer cusp, in fact, leads matter to flow
outwards.

Besides,the distance between the center and the cusp point is an mono-
tonic increasing function of e, while it is a monotonic decreasing function of
a. Therefore, the larger disc structure for bigger charge values e and smaller
rotation parameters a is predicted. In other words, on the contrary to e, by
increasing a and α, the centre and the cusp’s locations approach one another,
and gradually we lose solutions.

In addition, by increasing α and e, we obtain closed equipotential surfaces
where more oriented concerning the horizontal axis. Of course the effect of α
is more decisive than e in this behavior; namely, as α even slightly increases
the disc deviate from the horizontal axis noticeably.

In Figures 11.32, we examine the effect of the magnetization parameter βc
and the dependency of the disc structure and its orientation on the param-
eter e in the vicinity of the compact object for a fixed value of acceleration
parameter α and vanishing rotation. In the first column we chose high mag-
netized model, and in the second row relatively high charged one. In fact,
comparing columns shows that the magnetization parameter does not influ-
ence the disc’s geometry; however, it changes the distribution of matter inside
the disc and shifts the location of the rest-mass density maximum which is
pointed out as the dashed lines in Figure 11.32. In addition, comparing rows
show that we have a larger oriented disc for larger values of e. Moreover, the
matter is more concentrated in the inner part of the disc, as was predicted
in the previous Figures 11.30 and 11.31.

In Figures 11.33 and 11.34 we focus more on the impact of only one
parameter α and a on the disc structure, respectively. Figure 11.33 presents
the profound impact of α on the geometry and orientation of the disc for
a fixed value of e and magnetization parameters. In fact, according to the
last row of Figure 11.30, the possibility of having solutions for larger α could
be depend on having large values for e, so the effect of higher α on the disc
could be neutralized only partially with the higher charge values.

Figure 11.34 shows the dependency of the disc structure on the parameter
α in the presence of the rotation. As expected, increasing a change the
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disc size and the distribution of matter inside the disc. Furthermore, we do
not have an inner cusp for any value of rotation parameters. In addition,
increasing α and a shifts the disc farther away from the compact object,
contrary to an increase in e.

11.4.3 Summary and conclusion

In this section, we have analyzed the influence of the magnetization parame-
ter βc, and the C-metric parameters on the structure of the magnetized Thick
disc model. In one hand, we have shown that changing magnetization param-
eter βc has a noticeable effect on the location and amplitude of the rest-mass
density maximum, also distributing the matter inside the disc. The effect of
the magnetization parameter is in complete agreement with previous studies
using this model e.g [52]. Furthermore, in this case, the range of isodensity
contours increases, which is compatible with the increase of rest-mass density
in the inner part of the disc. Indeed, this result remains valid for any chosen
value of other parameters.

On the other hand, we have seen that acceleration parameter play a
crucial role on the existence and behavior of the solutions in this set-up. It
means, we can have the Thick disc model only for relatively small values of
α, and by increasing α, the disc structure becomes smaller and more oriented
concerning the horizontal axis and gradually vanishes. Besides, higher values
of α shifts the disc farther away from the black hole. Additionally, a has a
similar effect but weaker on the structure; by increasing a, the disc becomes
thinner and smaller and more oriented concerning the horizontal axis until
it vanishes completely. On the contrary to these two parameters, an increase
in e increases the disc size and possibility of having solutions.

In addition, we have seen that e changes the distribution of matter inside
the disc in the opposite way of α and a. Besides, increasing α and a shifts the
disc farther from the compact object, contrary to an increase in e. However,
we should emphasis that the strength of the parameters are not the same;
among these tree parameters, α has a stronger and e has the weaker effect
on the disc structure, in comparison. In general, impact of charge parameter
is the inverse of α and a in any aspects regarding the disc properties. As
the final point, it is worth mentioning that because of the asymmetry with
respect to the equatorial plane, the accretion discs in this space-time, in
general, are likely to be unstable even to axis-symmetric instabilities, which
is the subject of the following work. The results of this Section are presented
in [217].
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Figure 11.31: Contour map of the equipotential surfaces. The red lines show
the equipotential corresponding to the inner and outer cusps.
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Figure 11.32: Contour map of the rest-mass density of magnetized disc. The
dashed lines point the center of the disc located at rc = 7.5. The first plot shows
highly magnetized disc and the second one low magnetized.

Figure 11.33: Contour map of the rest-mass density of magnetized highly disc.
The dashed lines point the center of the disc located at rc = 6.5.
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Figure 11.34: Contour map of the rest-mass density for various spin values. The
dashed lines point the center of the disc. Those solution have the same parameters
(α,L and e) of the non-rotating solution given at the bottom left of the Figure
11.32.



Chapter 12

QPOs in Generalized q-metric in the uniform

magnetic field

As mentioned in Chapter 3, circular and quasi-circular orbits seem to be
crucial in the study of accretion process and in particular HF QPOs, since in
these processes, a variety of oscillatory motions are expected. In this regard,
in the study of the relativistic accretion disc, three frequencies are relevant:
the Keplerian orbital frequency νK = Ω

2π
, radial frequency νx = ωx

2π
and the

vertical frequency νy = ωy

2π
where the resonance among these frequencies can

be a source of quasi-periodic oscillations that leads to chaotic and quasi-
periodic variability in X-ray fluxes observations in many observations.

Furthermore, an external magnetic field at a large distance in a finite
region can be approximated as a uniform magnetic field [218, 81]. Such a
large-scale magnetic field could be initiated during the early phases of the
expansion of the Universe [219, 220, 221, 222, 223]. Further, a compact
object near the equatorial plane of a magnetar can be approximated to be
in a uniform magnetic field if the magnetar is at a distance large enough
[224, 82]. In fact, the motion in a gravitational field and in the presence of
an external electromagnetic field was explored in a large variety of studies
e.g. [225, 226, 227] among many more.

In this chapter we aim to investigate them in the background of the
Generalized q-metric with and without an asymptotically uniform magnetic
field. In addition, in the last section we examine the ability of this set-up
to fit to the observational data and compare with some results in the Kerr
metric.
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12.1 Epicyclic frequencies and stability of circular mo-
tion

These mentioned fundamental frequencies related to the circular motion, in
equatorial plane of the Schwarzschild metric, in spheroidal coordinates, are
given by

ω2
y = Ω2 =

1

(x+ 1)3
, (12.1)

ω2
x =

1

(x+ 1)3

(
1 − 6

x+ 1

)
. (12.2)

The vertical and keplerian frequencies are always positive; however, it is not
the case for radial frequency. Therefore, the stable circular orbits are located
at radial distances larger than the location of the ISCO at x = 5 in these
coordinates. Further, for the Schwarzschild metric, we have ω2

x < ω2
y =

Ω2. Interestingly, in contrast to Newtonian geometry, bounded quasi-elliptic
orbits can also exist, meaning the trajectories relevant to a perturbed stable
circular test particle may not be elliptic but exhibit a periapsis shift, which
is often called the effect of relativistic precession [228].

In what follows, we investigate the stability of circular motion in the pres-
ence of the asymptotically homogeneous magnetic field in the background of
Generalized q-metric with two quadrupoles (see chapter 7). In this regard,
seminal papers [73, 74] studied the existence and stability of circular non-
geodesic equatorial orbits, and derived Keplerian and epicyclic orbital fre-
quencies in Kerr(-Newman) geometry. In this chapter, we extend the result
to this space-time. Of course, if parameters of the metric vanish, the axial
and radial oscillations frequencies are the same as their result for non-rotating
case.

The equation of motion for a particle with mass m and electric charge e
is the geodesic equation with force in its right-hand side takes this standard
form

d2xµ

ds2
+ Γµνρ

dxν

ds

dxρ

ds
=

q

m
F µ

η

dxη

ds
(12.3)

In the equatorial plane we have x = x0 and y = 0, and replace all neces-
sary Christoffel symbols on the left-hand side using equations (7.19). For
substitute the right hand side we utilized (7.48) and (7.49).

To describe the more general class of orbits in the equatorial plane slightly
deviated from the circular ones, we can use the perturbation approach and
consider a slightly perturbed orbit x′µ = xµ + ξµ from the original one xµ.
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By substituting this relation into equation (12.3) and consider only terms up
to linear order in ξµ, we obtain

d2ξµ

dt2
+ 2γµη

dξη

dt
+ ξη∂ηU

µ =
q

mu0
fµ, (12.4)

and

γµη =
[
2Γµηδu

δ(u0)−1 − q

mu0
F µ

η

]
y=0

, (12.5)

Uµ =
[
γµηu

η(u0)−1 − q

mu0
F µ

ηu
η(u0)−1

]
y=0

, (12.6)

where the 4-velocity for the circular orbits in the equatorial plane is uµ =
u0(1, 0, 0,Ω) and the external force as fµνu

ν(u0)−1 [74]. Then the integration
of equation (12.4) for the t and ϕ components leads to

dξη

dt
+ γηνξ

ν =
q

mu0

∫
f ηdt, (12.7)

d2ξx

dt2
+ ω2

xξ
x =

q

mu0

(
fx − γxη

∫
f ηdt

)
, (12.8)

d2ξy

dt2
+ ω2

xξ
y =

q

mu0
f y. (12.9)

where here η can be taken t, or ϕ, and

ω2
x = ∂xU

x − γxηγ
η
x,

ω2
y = ∂yU

y. (12.10)

This system of equations describes radial phase and vertical oscillations of the
charged particle around the circular orbits 1. The positive sign of the squared
frequencies (12.10) determines the stability of circular orbits; otherwise, even
a minimal perturbation can make a strong deviation from the unperturbed
orbit. In the absence of the external force, these equations describe the free
radial phase and vertical oscillations of particles around the circular orbits.

The corresponding frequencies (12.10) in the background of a distorted,
deformed compact object with vanishing magnetic field are obtained as

w2
x =AxΩ

2,

w2
y =AyΩ

2, (12.11)

1For an alternative definition of the epicyclic harmonic motion, see [140].
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where

Ax =
e−2γ̂(1 − 1/x2)−α(2+α)

(x2 − 1)[
2(2S − x)(S − x) − (x2 − 1)

S
(1 + α + 2βx3)

]
, (12.12)

Ay =
e−2γ̂(1 − 1/x2)−α(2+α)

S
(1 + α + 2βx3), (12.13)

where S is given by

S := 1 + α + βx− βx3. (12.14)

Note that these frequencies are measured regarding the proper time of a
comoving observer. Nevertheless, in the presence of magnetic field, this is
not possible to write these equations as some coefficients of Ω. The vertical
frequency is obtained as

w2
y = e−2γ̂

(
x2 − 1

x2

)−α(2+α) [
Ω2xf1(x, β) + S

S
+ (1 + f1(x, β))ΩωB

]
.

(12.15)

And radial frequency is given by

w2
x =

Ω2e−2γ̂(1 − 1/x2)−α(2+α)

x(1 − x2)

[
g1(x, β, α)

x− S

S
+ g2(x, β, α)

]
(12.16)

+
e−2γ̂(1 − 1/x2)−α(2+α)

x(1 − x2)

[
−ω2

Bx(S − x)2 + ΩωBg2(x, β, α)
]
,

where

f1(x, β) = β(−1 + 3x2), (12.17)

g1(x, β, α) = 2α3 + α2
(
6 − 2βx

(
−1 + x2

))
+ (12.18)

2α
(
2 + x

(
x+ β

(
−1 + x2

) (
−4 + βx

(
−1 + x2

))))
+

x
(
2x− β

(
−1 + x2

) (
5 + x

(
−x+ 2β

(
−1 + x2

) (
−3 + βx

(
−1 + x2

)))))
,
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and

g2(x, β, α) = 2α3 − 4x
(
1 + α + (−1 + β)x − βx3

)2
(12.19)

− 2α2
(
−3 + x − βx+ βx3

)
+ 2α

(
2 + x

(
−2 + β

(
−1 + x2

) (
−4 + βx

(
−1 + x2

))))
− x

(
−1 + x2

)
×
(
−1 + β

(
5 + x

(
−4 − 3x+ 2β

(
−1 + x2

) (
−3 + x− βx+ βx3

))))
.

In Figure 12.1 and 12.2 we see the locations of maxima of these frequencies
ωx and ωy. For any choice of parameters, the radial frequency’s extrema must
be located above the marginally stable orbit. The extrema are dependent on
the choice of parameters for the vertical frequency, but these are always a
monotonic function of distance x.

Figures 12.3 and 12.4 are depicted for the study of the existence and the
stability of timelike orbits with respect to vertical or radial oscillations. On
the these Figures, the red line and the blue line correspond to w2

x = 0 and
w2
y = 0, respectively. The dark-green region bounded by those two blue and

red lines represents the area where both are positive w2
x > 0 and w2

y > 0,
which is the condition to have stability with respect to vertical and radial
oscillations. Note that above the red line, where we have w2

x < 0 and w2
y > 0,

orbits are stable with respect to vertical oscillations but unstable to the radial
one. And on the contrary, below the blue line, where w2

x > 0 and w2
y < 0, the

orbits are stable with respect to radial oscillations and unstable with respect
to the vertical one. We analyze these Figures by exploring the existence of
the timelike circular orbit for different parameters. In fact, the region of
existence is clearly affected by the three parameters. In the (x, β)− plane in
Figure 12.5, we see that switching α from negative to positive values tends to
shrink the light-green region, on the contrary to an increase in β. The effect
of the magnetic parameter is not monotonic; namely, by decreasing Q from
positive to zero, the region is reduced in the vertical direction, but when Q
becomes negative, and we continue to decrease that parameter, the region
extends again.

Let’s focus now on the stability region (dark-green area). As for the ex-
isting area, all three parameters also have influence on the region of stability
but with different strengths. We can note that switching β negative to posi-
tive values makes the area of stability shrink (see Figure 12.4). The opposite
effect is visible when switching α from negative to positive (see Figure 12.5).
However, the region of stability hardly changes with the parameter Q. It
starts to shrink when Q decreases and continues by being pushed away from
the central mass and then completely disappear for the negative values. This
due to the fact that, on the (x, β)− plane, the blue curve comes up, and the
red one comes down, so the dark-green region shrinks, and at the end does
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Figure 12.1: The radial epicyclic frequency wx is plotted with respect to x for
four different pairs of (α, β). On each plot, different values of Q are used from
Q = −0.0001 to Q = 0.1. The blue curve is corresponds to Q = 0.1 and the red
curve to Q = −0.0001. When the red curve (Q = −0.0001) is not appearing, it
means for these pair, the radial epicyclic frequency is not real.
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Figure 12.2: The vertical epicyclic frequency wy is plotted with respect to x for
four different pairs of (α, β). On each plot, different values of Q are used from
Q = −0.0001 to Q = 0.1. The blue curve corresponds to Q = 0.1 and the red
curve to Q = −0.0001.
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Figure 12.3: Stability of the timelike circular orbits of a charged particle in the
(x, β)-plane. Timelike circular orbits can exist in the green light area. The blue
curve represents w2

y = 0 and the red one w2
x = 0. Timelike orbits are stable with

respect to vertical and radial perturbations in the region where w2
x > 0 and w2

y > 0.
This area is depicted by the green-gray region, which combined the conditions of
existence and the condition of stability, w2

x > 0 and w2
y > 0. The analysis is done

for two positive values of Q, two negatives values of Q, and the unmagnetized cased
Q = 0. Also, we have examined opposite signs of the deformation parameter α.

not exist anymore. For larger negative values, a branch from above comes
back in the physical range but keeps staying below the blue curve. On the
(x, α)− plane, this is due to the fact that the red curve goes up and then
goes out from the physical range. This situation is mainly what is happening
for negatives values of Q. A small area remains for values of the magnetic
parameter close to zero Q = −0.01. In this case, it means there is no stable
orbit in any direction in the chosen physical range.

12.2 Different possibilities

In Figures 12.5 and 12.6, different relations between the frequencies have been
plotted [229]. Similar to Figures 12.3 and 12.4 the red and the blue curves are
representing w2

x = 0 and w2
y = 0, respectively.Besides, The orange line shows

w2
y = Ω2, which leads to the hatched line region w2

y > Ω2. Also, w2
x = Ω2

corresponds to the pink line related to the dark-green area where w2
x >

Ω2. Furthermore, w2
x = w2

y is shown by the yellow line. The corresponding
region w2

x > w2
y is presented in the hatched dotted line. By analyzing both

Figures together, we can order the frequencies as a function of the magnetic
parameter Q. We see that for Q ≥ 0, the order’s behavior will depend on two
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Figure 12.4: Stability of the timelike circular orbits in the (x, β)-plane. Timelike
circular orbits exist in the green light area. The blue curve represents w2

y = 0 and
the red one w2

x = 0. Timelike orbits are stable with respect to vertical and radial
perturbations in the region where w2

x > 0 and w2
y > 0. The analysis has done for

two positive values ofQ, two negatives values ofQ, also for the unmagnetized cased
Q = 0. Besides, we have examined opposite signs of the deformation parameter
α.

crossing points. One when the orange line crossed the red line and another
one when the orange, pink and yellow all are crossing.

For small values of β, the order is pretty steady (see plots with Q ≥ 0
on the left in Figure 12.6). However, by increasing β, the crossing points
appear, then the behaviour of ordering becomes more complicated (see plots
with Q ≥ 0 on the left in Figure 12.5). For instance, using the second plot
of the first raw of Figure 12.5 in the stable region; namely, between the red
and blue lines, the frequencies are ordered as follow:

(i) Inside the hatched region (above the orange line) where β is close to
zero, and for positive or negative α:

(a) from the red line to the pink one: w2
x < Ω2 < w2

y,

(b) from the pink line to the yellow one: Ω2 < w2
x < w2

y,

(c) above the yellow line: Ω2 < w2
y < w2

x.

(ii) Outside the hatched region (below the orange line), where β has larger
negative values, for any value of α, the order of the frequencies is dif-
ferent,

(a) from the red line to the yellow one: w2
x < w2

y < Ω2,
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Figure 12.5: Order of the different epicyclic frequencies in the (x, β)-plane.
Timelike circular orbits can exist in the green light area. The blue curve represents
w2

y = 0 and the red one w2
x = 0. The pink, orange and yellow depicts w2

x = Ω2,
w2

y = Ω2 and w2
x = w2

y, respectively. The green-gray area shows the region where
w2

x > Ω2. The hatched line region represents the area where w2
y > Ω2. Also,

the hatched dotted area is where w2
x > w2

y. The analysis has done for different
values of Q. Besides, two different values of the deformation parameter α has been
tested.

(b) from the yellow line to the pink one: w2
y < w2

x < Ω2,

(c) and above the pink line: w2
y < Ω2 < w2

x.

About negative values of Q, the order’s distribution is different; however, the
analysis is simple because the region of stability is strongly reduced. In this
Figure, the only stable region appears for the positive value of α and the
case Q = −0.01 (the fourth plot of the top line in Figure 12.6). In this small
stable region (dark-green region in the corresponding plot in Figure 12.4),
the order is as follow:

(i) from the red to the yellow line (small extended vertically region): w2
x <

w2
y < Ω2,

(ii) from the yellow line to the blue one: w2
y < w2

x < Ω2.

To sum up, increasing Q makes the region of specific order larger and creates
new regions where the order of the frequencies is different.
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Figure 12.6: Order of the different epicyclic frequencies in the (x, α)-plane.
Timelike circular orbits exist in the green light area. The blue curve represents
w2

y = 0 and the red one w2
x = 0. The pink, orange and yellow depicts w2

x = Ω2,
w2

y = Ω2 and w2
x = w2

y, respectively. The green-gray area shows the region where
w2

x > Ω2. The hatched line region represents the area where w2
y > Ω2. Finally,

the hatched dotted area is where w2
x > w2

y. The analysis has done for different
signs of Q. In addition, two different values of the deformation parameter β has
been tested.

12.3 Comparison with the observations

The results of fitting the charged particle oscillation frequencies to the ob-
served frequencies of three microquasars XTE 1550-564, GRS 1915+105, and
GRO 1655-40 is presented in Figures 12.7 and 12.8 presented in Table 12.1.
Indeed significant spin is expected in astrophysical black holes at all scales,
and it is important to develop the model that encode spin also, which is
in progress. However, this results show for some chosen parameters of the
model the fitting can be done even for the fast rotating microquasar GRS
1915+105.

The observed values of the twin HF QPO frequencies for this three sources
show νU : νL = 3 : 2 ratio [66, 230]. In Figure 12.7 the resonance model EP is
fixed and we try to find the best fitting with exercising different parameters
of the model; the deformation, the distortion and the magnetic parameter.

In Figure 12.7 each plot corresponds to different values of the distorted
parameter β, and the line styles present various deformation parameter α.
Finally, the magnetic parameter is given by the different colors. Interestingly
a direct inspection of the various combinations of the parameters shows the
crossing of the data line and could fit with the data. Although the fitting
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Figure 12.7: The upper oscillation frequency νU at the resonance radius 3 : 2 is
presented for various combinations of the studied parameters for the EP model.
The magnetic parameter vary with the color’s lines. The black lines depict Q = 0
(unmagnetized case). The blue lines show Q = 0.01 and the red lines present
Q = 0.1. The upper frequency is compared to the mass-limits obtained from
observations of three mentioned microquasars.
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Figure 12.8: The upper oscillation frequencies for the models presented in the
Table 3.1 are compared to the mass-limits obtained from observations of three
microquasars for various set of parameters.
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Table 12.1: Observed twin HF QPO data for the three micro-quasars, based
on measurements independent of the HF QPO measurements given by the
spectral continuum fitting.

Source GRO 1655-40 XTE 1550-564 GRS 1915+105

νU 447 — 453 273 — 279 165 — 171
νL 295 — 305 179 — 189 108 — 118
M
M⊙

6.03 — 6.57 8.5 — 9.7 9.6 — 18.4

a 0.65 — 0.75 0.29 — 0.52 0.98 — 1

totally depends on the combination of parameters, we still can expect to have
a better fitting for choosing a larger α in the combination.

In Figure 12.8 we have analyzed the fitting of different models presented
in Section 3.3.2. In fact, we note that although different sets of parameters
can fit the data, even for the fast-rotating source as GRS 1915+105 and GRO
1655−40, we focus on this fitting in the case of relatively slowly rotating XTE
1550-564 source which is more compatible with our set up. As Figure 12.8
suggests, for chosen parameters Q, α, and β; the best fit almost corresponds
to RP2, RP, and RP1 models in low spin cases. For a high spin source Kp
and Ep models seems to be the best fit. It is worth comparing this result
with the behavior of these models in Kerr space-time [106]. In general, it
appears that a non-zero magnetic field facilitates the fitting procedure. As
a result, we find that WD and TD almost have similar behavior. The same
is true for Ep and Kp, while RP1, RP2, and RP may deviate from each
other depending on the magnetic field and deformation parameter α. These
results are almost compatible with the result in Kerr space-time, where spin
plays a similar role to α [106]. More precisely, by increasing α the deviation
between RP’s models increases. In this way, studying these three models and
the deviations from each other may play an important role to recognize the
oblateness of the source from observational data. However, a deeper analysis
shows that we can note that almost for α ∈ [0.1, 0.9] one can have a better
fitting to observations.

Further analysis reveals that the curves take their minimum at different
radius depending on the choice of parameters. We see that in all cases,
almost the positive and negative values of β take their maximum at the same
radios; however, further investigation indicates that this radio is smaller for
negative values of this parameter. Also, the maximums in all curves in the
desirable domain depend on the ratio; for example, we see that as this ratio
becomes larger, the maximum happens in smaller radios. This means that
the resonance is not monotonic after some distance from the central object,
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depending on the combination of parameters in this background.

12.4 Summary and conclusion

In this chapter, we studied the dynamics of test charged particles in the
presents of a uniform magnetic field, also discussed the case of vanishing
magnetic field. Further, we have examined different QPOs models considered
in [106] in the vicinity of a deformed compact object up to the quadrupole
7. We have shown that the effect of parameters on the radial and vertical
frequencies around a stable equatorial orbit is significant and different or-
dering can arise in comrasion to the Schwarzschild and Kerr solutions. In
addition, the resonant phenomena of the radial and vertical oscillations at
their frequency ratio 3 : 2 depending on chosen parameters, and can be well
related to the observed frequencies of the HF QPOs 3 : 2 in the microquasars
GRS 1915 + 105, XTE 1550 − 564, GRO 1655 − 40. In particular, different
combinations can fit link to different observed effects.

This is worth mentioning that in this deformed and distorted background,
with different combinations of quadrupole parameters α, β and charge Q, it
is possible to have other ratios which can be relevant in other observed data
like in other frequencies observed in the microquasar GRS 1915 + 105, see
for example [231].

Importantly, the result of fit into data showed the Generalized q-metric
and q-metric can imitate some effects produced by the Kerr space-times
reflected in the QPOs. In fact, the quadrupole parameter in these metrics
related to the central source, for some range of values, can play the role of
spin in the Kerr black hole perfectly. The results of this chapter are presented
in [232, 229].





Chapter 13

Oscillations of tori in the background of

Generalized q-metric

As mentioned earlier, the radial epicyclic frequency in an accretion disc
around compact objects may serve to interpret the observed QPOs phe-
nomenon in different models. However, to have a more accurate model, one
needs to pay attention to the problems in using the expression of the radial
epicyclic frequency obtained in a test particle and investigate it in a perfect
fluid case. The approach employed here is considered by Rezzolla et al. for
Schwarzschild, and Kerr space-times [115, 116]. However, instead of power-
law angular momentum distribution, here the trigonometric description for
angular momentum is used where introduced in Section 2.2.2.

In this chapter, we intend to employ the local perturbation analysis for
Thick disc model oscillation when the perturbations of the space-time are
neglected via a local approach. This approach is briefly explained in Section
3.4. Nevertheless, since their domains are quite different, there is no difficulty
in recognizing them. In the next section, we briefly discuss the Thick disc
model in this background; then, in the second section, we study the radial
epicyclic frequency.

13.1 The Thick disc model

Before start studying the epicyclic frequency, without going into the details
we present the Thick disc model in this background briefly. To be convenient
we state the metric again here

169
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ds2 = −
(
x− 1

x+ 1

)(1+α)

e2ψ̂dt2 +M2(x2 − 1)e−2ψ̂

(
x+ 1

x− 1

)(1+α)
[(

x2 − 1

x2 − y2

)α(2+p)

e2γ̂(
dx2

x2 − 1
+

dy2

1 − y2

)
+ (1 − y2)dϕ2

]
, (13.1)

where

ψ̂ = −β
2

[
−3x2y2 + x2 + y2 − 1

]
,

γ̂ = −2xβ(1 + α)(1 − y2)

+
β2

4
(x2 − 1)(1 − y2)(−9x2y2 + x2 + y2 − 1). (13.2)

Figure 13.1 shows the map of relativistic tori with constant angular momen-
tum ℓcons. = (ℓms+ℓmb)/2 for different parameters α and β. I should emphasis
that the place of ℓms and ℓmb also depends on quadrupoles α and β. As we
expected from what we have seen so far, for negative α parameters the disc
is closer to the central object than for positive αs. In particular, for both
positive values of α and β we have a more radially extended disc. In fact,
when both are positive the disc configuration is farther away from the cen-
tral object and the external matter has more chance to reveal its influence.
However, the impact of distortion parameter β is less than α for the chosen
values. Note that to have a good comparison with literature we plot all Fig-
ures in the (r, θ) plane which is obtained easily by a simple transformation
(6.10).

In Figure 13.2 we investigate the disc configuration for a non-constant
angular momentum as it is needed to have the non-vanishing radial epicyclic
frequency. We write this angular momentum distribution again to be easier
to follow

ℓ(r, θ) =

{
ℓ0

(
ℓK(r)

ℓ0

)γ
sin2δ, r ≥ rms,

ℓ0(ζ)−γ sin2δ, r < rms,
(13.3)

where ℓ0 = ζℓK(rms), and ℓK is the Keplerian angular momentum in the
equatorial plane, and
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Figure 13.1: Equipotential surfaces for tori with a constant angular momentum
distribution for various values of combination of α and β in (r, θ) coordinates.

0 ≤ γ ≤ 1, −1 ≤ δ ≤ 1, −1 ≤ ζ ≤ ℓK(xmb)

ℓK(xms)
. (13.4)

As we have already seen for q-metric 11.2 and distorted Schwarzschild solu-
tion 11.1 these parameters in this distribution have a strong correlation with
each other. However, for each fixed pair of (γ, δ) we can see the play of metric
parameters α and β in each row. In this Figure, the same values are chosen
as for quadrupoles as in Figure 13.1 to see the effect of angular momentum
distribution clearly. The impact of different combinations of (γ, δ) is seen in
columns. We see that choosing the angular momentum profile has a strong
effect on the shape and size of the disc. As we chose higher values for these
pairs the disc configuration become smaller. However, the interplay between
these two quadrupole parameters, is similar to the previous case.

13.2 Radial epicyclic frequency

Following the same steps for the Schwarzschild and Kerr solutions, in men-
tioned papers described in Section 3.4, one can obtain the radial epicyclic
frequency of a perfect fluid disc in a Generalized q-metric space-time without
writing the expressions of the perturbed equations and dispersion relation,
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Figure 13.2: Equipotential surfaces for tori with the non-constant angular
momentum distribution (2.50) for different parameters in combinations with
quadrupole parameters α and β.
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due to their complexity the κr squared in this background is obtained as
follows

κ2r =
2eβ(x

2−1)+2ψ−2λ
(
x+1
x−1

)α
ΩV (−2ΩV + (x2 − 1)∂xΩ)

F
, (13.5)

where

V = 1 + α + (β − 1)x− βx3 + (x2 − 1)∂xψ (13.6)

F =
(
x2 − 1

)(
−e2ψ + eβ(x

2−1)(x+ 1)2
(
x+ 1

x− 1

)α
Ω2

)
,

ψ(x) =

(
1 + α

2

)
ln
x− 1

x+ 1
+ ψ̂, (13.7)

λ(x) =

(
1 + α

2

)
ln
x+ 1

x− 1
+

(
α(2 + α)

2

)
ln
x2 − 1

x2
− ψ̂ + γ̂. (13.8)

In Figure 13.3 we see the plot of κr for different values of α and Schwarzschild
case, with γ = 0.1 in the angular momentum distribution (13.3). First
of all, in calculation of the epicyclic radial frequency because of vertically
integration, we are interested in a neighborhood of equatorial plane; therefore
parameter δ in the angular momentum distribution equation (13.3) plays no
role. However, we have its contribution in the disc configuration. In this
Figure, the blue curve represents the κr for a test particle with a Keplerian
angular momentum. The red line is κr for a perfect fluid disc. We see that
for all values of the deformation parameter α the radial epicyclic frequency
for a test particle is higher than for a perfect fluid. However, by increasing
γ these the red curves goes closer to the blue one by the definition of this
angular momentum. As it is stated before, we are interested in prograde
orbits which for this the maximum of the frequency is outside of the ISCO
(rms) as mentioned earlier in Chapter 3.4. Of course, the place of ISCO is
dependent on quadrupole moments. We see that for α < 0 the maximum is
higher than for α > 0, also it is closer to the central object. In general, the
amplitude and its position are monotonically decreasing functions of α.

Figure 13.4 shows the radial epicyclic frequency for different parameters
of α, β, also γ in angular momentum (13.3). In this Figure, the line styles
present the values of α and colors represent different values of the distortion
parameter β. We see that for any fixed value of α the curve corresponds to
a positive value of β is below β = 0, and the one related to β < 0 is upper.
Furthermore, there is an interesting fact about positive quadrupole β. When
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Figure 13.3: Left plot: In red κr is depicted for a perfect fluid with the angular
momentum (13.3)(γ = 0.1). In blue, κr is depicted for a test particle with respect
to r. The vertical dashed line corresponds to the radius of the marginally stable
orbit.

β is positive the radial epicylic frequency terminates much faster regardless
of sign of α. It is worth mentioning that as we saw before 7, the place of
ISCO also depends on the value of β; however, since their values are very
small the main contribution to determine its position comes from α and on
the plots, we can not see the differences. In general, we see the same behavior
for κr both for α and β regarding amplitude and its position. Additionally,
the larger parameter β has more influence on the area r > ISCO with its
definition (13.3) that we also see in Figure 13.4.

13.3 Summary and conclusion

In this chapter, we studied the radial epicyclic frequency of the Thick disc
for a perfect fluid. As was mentioned before in an effort to have a better
fitting of the data to the analytical models of QPOs, one way is to consider a
perfect fluid frequency rather than a test particle. In this regard, we derived
the κr for the Generalized q-metric and investigated the influences of the
metric quadrupoles. In addition, the impact of chosen angular momentum
distribution parameters on the disc configuration and κr in this background
was investigated. In general, for higher quadrupoles, κr can have a lower
amplitude where is placed also farther away from the central object. In-
deed, this result is consistent with other results from different parts of this
study that was stated so far. The results also compare with a test particle
extensively are submitted to the journal.
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Figure 13.4: κr with respect to r for a perfect fluid with a non-constant angular
momentum (13.3), and for different combination of β, α and γ. The solid lines
presents α = −0.4, the dashed lines α = 0, and the dotted one is α = 0.4.





Chapter 14

Shadow in the presence of cold plasma in the

background of q-metric

In this chapter, we analytically analyze the influence of the cold plasma on
the shadow in the q-metric background. The structure is briefly explained in
Chapter 4. We present the result in the prolate spheroidal coordinates. In
fact, the non-vanishing quadrupole moment will give rise to some deviation
from the spherical symmetry; however in this work, to start with, we employ
the condition y = 0 and choose relatively small quadrupoles. Under these
assumptions, we consider the metric to be spherically symmetric as the first
step in studying shadow in this background.

14.1 Photon sphere

From Chapter 4, to have the equation equation of the photon sphere (4.9) first
we should derive h2(x) via equation (4.6). In this space-time this function
reads as

h2(x) = M2(x2 − 1)

(
x+ 1

x− 1

)1+q
[(

x+ 1

x− 1

)1+q

−
ω2
p

p2t

]
, (14.1)

so the equation of the photon sphere (4.9) becomes

(
x+ 1

x− 1

)1+q

[xph − 2(1 + q)] −
ω2
p

p2t
[xph − (1 + q)] − (x2 − 1)

ωpω
′
p

p2t
= 0,

(14.2)

where for q = 0 and Schwarzschild-like coordinates this is reduced to photon
sphere for Schwarzschild solution for a special choice of ωp [233]. Besides, for
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Figure 14.1: The photon sphere for the different values of q, and k
p2
t
= 1, and

for ω2 ∝ (x+ 1)−3.

ωp = 0 we recover xph = 2 or equivalently rph = 3M . If we choose wp as a
special power-law [233]

ω2
p =

k

(x+ 1)3
, (14.3)

by substituting in equation (14.2) we obtain

(
x+ 1

x− 1

)1+q

[xph − 2(1 + q)] − k

p2t (xph + 1)3
[xph − (1 + q)] +

3k

2p2t

(xph − 1)

(xph + 1)3
= 0.

(14.4)

In Figure 14.1 we see the photon sphere for different chosen values of pa-
rameter q for this chose of ω2

p ∝ (x + 1)−3. We see that in all cases, plasma
has a negative effect on the place of the photon sphere. However, a further
investigation shows that by choosing q = −0.25, one can neutralise the ef-
fect of plasma on the photon sphere. As a consequence, also by having a
smaller value of q < −0.25, the impact of plasma on the size of the photon
sphere will reverse. Nevertheless, one should keep in mind that we don not
want to go very far from zero to have a valid approximation of the spherical
symmetric set-up. Additionally, for any fixed parameter related to plasma
(i.e. fixed k

p2t
) we see by increasing q the place of photon sphere goes farther

from the central object. We saw such a behavior also in the place of ISCO
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Figure 14.2: The photon sphere for the different values of q, and k
p2
t
= 1 and for

ω2 ∝ (x+ 1)−3/2.

in Chapter 7.3. However, the impact of plasma can be totally different for
different powers of (x+ 1) (smaller or larger than −2). For example, Figure
14.2 shows the place of photon sphere for when we have ω2

p ∝ (x + 1)−3/2.
Even it can totally change the effect of quadrupole as we see in Figure 14.2.
In the following section, we analyze the radius of shadow in this set-up.

14.2 Radius of Shadow in the low density plasma

As mentioned in Chapter 4, in this set-up the boundary of the shadow (4.18)
by assuming ωp ≪ ω is given by

sin2 αbd =
(x2ph − 1)

(
xph+1

xph−1

)(1+q) (
xO−1
xO+1

)(1+q)
(x2O − 1)

(
xO+1
xO−1

)(1+q) (
xph−1

xph+1

)(1+q) (14.5)

[
1 −

(
1 + 2q

3 + 2q

)(1+q)(ω2
p(2 + 2q)

p2t

)
+

(
xO − 1

xO + 1

)(1+q)(ω2
p(xO)

p2t

)]
.

Therefore, one can investigate the revelation of the plasma impact by calcu-
lating xO from

(
1 + 2q

3 + 2q

)(1+q)(ω2
p(2 + 2q)

p2t

)
−
(
xO − 1

xO + 1

)(1+q)(ω2
p(xO)

p2t

)
= 0. (14.6)
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Figure 14.3: Variation of xO with respect to q. Left plot: ω2
p ∝ (x+ 1)−3. The
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By choosing again ωp as equation (14.3) we obtain

(
1 + 2q

3 + 2q

)(1+q)(
k

p2t (2 + 2q)3

)
−
(
xO − 1

xO + 1

)(1+q)(
k2

p2t (xO)3

)
= 0. (14.7)

For q = 0 it gives xO ≃ 1.999. However, in Figure 14.3 we see the variation
of xo with respect to q. In fact, for a homogeneous plasma, there is a unique
photon sphere for any choice of q. However, in general, there is not necessarily
a unique photon sphere in each case. Nevertheless, determining shadow is
more relevant to the outermost photon sphere.

Figure 14.4 shows the dependency of size of shadow on the frequency
of plasma ωp in the Schwarzschild background. Of course, the place of xO
in each case when the effect manifests calculated with respect to related ωp
from equation (14.7). Figure 14.5 and 14.6 investigate the dependency of
the shadow radius on k

p2t
for different quadrupoles q and different observers.

For chosen values of q, we see that the radius of the shadow is a decreasing
function of the distance of the observer from the source. Further, it turns out
that for any q ≥ 0, the radius of shadow for any fixed observers is smaller
in the presence of plasma compared to the vanishing case. In particular, for
larger q, we have a smaller radius for each fixed observer. On the contrary, for
q ≤ 0 for closer observers to the central object, we have a larger shadow radius
which increases by increasing |q|. In addition, considering different power of
distance in ωp cause different behavior in the size of shadow; nevertheless, in
general, we have a reduction in size for a distant observer.
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Figure 14.4: Variation of sinα
sinα|0 with respect to k
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t
for various values of xO for

the Schwarzschild case q = 0, in the left plot ωp ∝ (x + 1)3/2, in the right one
ωp ∝ (x+ 1)3/4.

14.3 Summary and conclusion

In this chapter, we studied the photon sphere and the size of shadow in
the background of q-metric, as the first step approximation. We have seen
the influence of plasma as well as the metric parameter on the place of the
photon sphere. In general, this depends highly on the chosen profile of plasma
frequency and may result in an increase or decrease in the photon sphere as
well as its position. The size of the shadow also depends on the quadrupole
values and the plasma frequency can change. However, for a distant observer
in all cases, we see a reduction in the size. The second step of this study is
considering the axisymmetric space-time in a more general set-up that is in
preprint.
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Chapter 15

Stability analysis of circular geodesics in

Generalized q-metric

We discuss dynamical system stability analysis in Chapter 5. Now in this
chapter, we apply the linear and non-linear stability analysis in the circular
geodesics of Generalized q−metric 7 in the equatorial plane, to investigate
the behavior of the geodesics in this metric.

15.1 Existence of equilibrium points

To apply the stability analysis of the associated system of ordinary differential
equations to this metric we proceed as follows. The Lagrangian associated
to this metric reads as

L =
1

2

(
−
(
x− 1

x+ 1

)(1+α)

e2ψ̂ ṫ2 + (x2 − 1)e−2ψ̂

(
x+ 1

x− 1

)(1+α)

(15.1)[(
x2 − 1

x2 − y2

)α(2+α)
e2γ̂
(

ẋ2

x2 − 1
+

ẏ2

1 − y2

)
+ (1 − y2)ϕ̇2

])
,

where ”over-dot” is derivative with respect to the affine parameter η. More-
over, the conserved energy and angular momentum per unit mass are ob-
tained as follows

E =
∂L
∂ṫ

= −
(
x− 1

x+ 1

)(1+α)

e2ψ̂ ṫ,

L =
∂L
∂ϕ̇

= (x2 − 1)(1 − y2)

(
x+ 1

x− 1

)(1+α)

e−2ψ̂ϕ̇. (15.2)
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We carry out the stability analysis for the circular geodesics in the equatorial
plane and in the metric and Lagrangian (15.1) we substitute y = 0. By
replacing E and L into the Lagrangian and solving the geodesic equation
L = ϵ, for ẋ2 we obtain

ẋ2 =

(
x−1
x+1

)(1+α)
e2ψ̂(x2 − 1)ϵ− L2

(
x−1
x+1

)2(1+α)
e4ψ̂ + E2(x2 − 1)

(x2 − 1)
(
x2−1
x2

)α(2+α)
e2γ̂

:=2h(x). (15.3)

Where for simplicity we defined the new variable X2 := (x2 − 1). The right-
hand side is only a function of x and we can note it by 2h, where factor
2 is just a convention to have nicer forms of equations. Thus we find an
equation where the left-hand side is derivative of x and the right-hand side is
a differentiable function of x. In the next section, we proceed to investigate
the existence of fixed points or equilibrium points of this differential equation.

Derivation of equation (15.3) with respect to the affine parameter gives
the geodesic equation as

ẍ = h′(x), (15.4)

where ”prime” is the derivative with respect to x. This equation easily can
be separated as two first-order ODE in the two-dimension phase space{

ẋ = p,
ṗ = h′,

(15.5)

where p is the inverse of ϕ component of the metric times px conjugate
momentum of x given by ∂L

∂ẋ
.

These two equations construct a system in the phase space which is
spanned by (x, p). Mixing phase space is a necessary condition for the re-
laxation of a non equilibrium state to equilibrium. By definition, the fixed
points of this system (x∗, p∗) is obtained by asking the right-hand side of
equations (15.5) vanish

p = 0, and h′ = 0, (15.6)

or equivalently

ẋ(x∗, p∗) = 0, and ṗ(x∗, p∗) = 0, (15.7)
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where obviously for our desired system p∗ = 0. In order to obtain physical
restriction, in this part, we work with the set of equations (15.7). To have
an easier expression we play with ṗx as

0 = ṗ∗x =
d

dη

(
∂L
∂ẋ

)
= ẋ

d

dx
(gϕϕẋ)

=
1

2gϕϕ

d

dx

(
g2ϕϕẋ

2
)
, (15.8)

where in the first line we used the chain rule. Now, if we replace gϕϕ metric
component and ẋ from (15.3), at the fixed points we obtain

ṗx = 0 ≡ h′ = 0 ≡ hN
′ = 0, at x = x∗, (15.9)

and hN is the nominator of h, and

hN
′ =

(
x∗ − 1

x∗ + 1

)(1+α)

(ξ + x)e2ψ̂ϵ− 2

(
x∗ − 1

x∗ + 1

)2(1+α)

ξ
L2

x2 − 1
e4ψ̂ + xE2,

(15.10)

where for simplicity we use ξ := 1+α+ψ̂,x(x
∗2−1) which appears frequently.

Therefore, solving these two equations ẋ = 0 and hN
′ = 0 is equivalent to

solve this following matrix equation

(
x∗2 − 1 −e4ψ̂

(
x∗−1
x∗+1

)2(1+α)
x∗(x∗2 − 1) −2e4ψ̂

(
x∗−1
x∗+1

)2(1+α)
ξ

)(
E2

L2

)
= −ϵ

(
(x∗2 − 1)

(
x∗−1
x∗+1

)(1+α)
e2ψ̂

(x
∗−1
x∗+1

)(1+α)e2ψ̂(x∗2 − 1)(x∗ + ξ)

)
.

(15.11)

This system of equations has a unique solution if and only if the determinant
of the coefficients be non zero, therefore we need to exclude

x∗ − 2ξ = 0. (15.12)

To solve the system of equations (15.11), first we choose ϵ = −1 and study
the (massive) particle geodesics, then replace ϵ = 0 to study the photon
geodesics.
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15.1.1 For time-like geodesics

In this case, we obtain the following solutions for E2 and L2

E2 =

(
x∗−1
x∗+1

)(1+α)
e2ψ̂(x∗ − ξ)

x∗ − 2ξ
, (15.13)

L2 =

(
x∗+1
x∗−1

)(1+α)
e−2ψ̂ξ(x∗2 − 1)

x∗ − 2ξ
. (15.14)

Indeed, to have a physically reasonable solution the right-hand side of this set
of solutions should be positive. Therefore, by analyzing the existing solutions
for the entire system, we obtain conditions that violet the entire system. If
one of these conditions satisfies then there exists no solution for E2 and L2

1. x∗ − 2ξ ≤ 0,

2. ξ < 0,

3. x∗ − ξ < 0. (15.15)

However, the first condition already leads to the third condition. Thus, in
conclusion, we have these conditions to not have a solution for the system

1. x∗ − 2ξ ≤ 0,

2. ξ < 0. (15.16)

Note that the entire system should have a solution. For example, in all these
cases E2 has a solution but not L2. To be able to go further we consider
function ψ̂ and γ̂ up to the quadrupole and in the equatorial plane (y = 0).
Since we are interested to find the restriction on the domain of β, we write
the conditions (15.16) in terms of β as

1. β ≤ −x∗ + 2(1 + α)

2x∗(x∗2 − 1)
,

2. β >
1 + α

x∗(x∗2 − 1)
. (15.17)

Thus, this system of equations admit fixed point for

−x∗ + 2(1 + α)

2x∗(x∗2 − 1)
< β ≤ 1 + α

x∗(x∗2 − 1)
. (15.18)



15.1. Existence of equilibrium points 189

However, for the equality which is equivalent to vanishing ξ, we have L2 =
0. This situation happens only when β ̸= 0 and presents the effect of the
external source. Obviously, the domain of β depends on the chosen value for
α ∈ (−1,∞).

Case1: q-metric

If we restrict our self in the case of q-metric; namely ψ̂ = 0, for timelike
geodesics, the first condition in (15.17) is relevant, since ξ = 1 + α > 0.
Thus, the condition to have the fixed points is equivalent to having this
restriction on α

α <
x∗

2
− 1. (15.19)

Therefore, the minimum valid domain of α where we always have a fixed
point is α ∈ (−1,−1

2
) and as far as we go farther from the central object this

domain increases.

Case2: Distorted Schwarzschild

For studying the distorted Schwarzschild solution by replacing α = 0 we have

−x∗ + 2

2x∗(x∗2 − 1)
< β ≤ 1

x∗(x∗2 − 1)
. (15.20)

Therefore, for positive and negative values of β we can have fixed points.
However, the domain of β for any chosen value of x∗ is more restricted than
for α.

15.1.2 For light-like geodesics

To investigate the existence of an equilibrium point for the photon geodesics,
we fix ϵ = 0. Hence, the condition (15.7) equivalent to have

1.
E2

L2
=

e4ψ̂

(x∗ + 1)2

(
x∗ − 1

x∗ + 1

)(2α+1)

, (15.21)

2. x∗ − 2ξ = 0. (15.22)

The right-hand side of the first equation is positive and for some combination
of parameters has a solution. The second condition states that the system
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does not have a unique solution for E2 and L2. This condition for the ex-
istence of fixed point for lightlike geodesics considering (15.17) is equivalent

to have β = x∗−2(1+α)
2x∗(x∗2−1)

.

Case1: q-metric

In this case, for lightlike geodesics, for any chosen value of α ∈ (−1,∞), the
relation α = x∗

2
− 1 leading to have equilibrium points. However, also here

the system does not admit a unique solution.

Case2: Distorted Schwarzschild

Similar to the first case, for any chosen value of β, one can obtain fixed points
via β = x∗−2

2x∗(x∗2−1)
, while there is no unique solution.

15.2 Lyapunov linear Stability

In this section, we start with the system (15.5). The vector field mentioned
earlier in Section 5 associated with this system is given by

f(x, p) = (p, h′(x)), (15.23)

where f : R+ × R → R2. The Jacobian matrix (5.3) of f at the equilibrium
point (x∗, 0) for the mentioned system (15.5) is obtained as

A =

(
0 1

h′′(x∗) 0

)
. (15.24)

From the characteristic equation (5.5) for this matrix we obtain

λ± = ±
√
h′′N(x∗). (15.25)

Thus, depending on the sign of h′′(x) at x = x∗ we can find the stability
nature of the equilibrium point. Besides, in our case, the sign of h′′(x∗) is
the same as the sign of h′′N(x∗).To see its physical meaning, let’s assume a
perturbation δ around the fixed point as

x(t) = x∗ + δ(t), (15.26)



15.3. Jacobi nonlinear stability 191

So, at x(t) we have

δ̇(t) = ẋ(t)

= f(x, 0)

= f(x∗ + δ, 0)

= f(x∗, 0) + δf ′(x∗, 0) +
δ2

2
f ′′(x∗, 0) + ... . (15.27)

Since we are interested in linear stability analysis, we only look up to the
first derivative, and by definition of the fixed points the first term in (15.27)
vanishes, then

δ̇ = δf ′(x∗, 0)

= δh′′(x∗). (15.28)

Thus

δ(t) = eah
′′(x), (15.29)

where a is some constant. This means if h′′(x∗) > 0 then trajectories are di-
verging since the perturbation grows exponentially. If h′′(x∗) < 0 trajectories
are converging since the perturbation decays exponentially.

Therefore, for any chosen values for the metric parameters, we need to
compute the sign of h′′ at the zeros of h′ to see the behavior of the corre-
sponding geodesics.

15.3 Jacobi nonlinear stability

To study the Jacobi analysis we rewrite the equation (15.4) in this form

ẍ+ 2(−1

2
h′) = 0. (15.30)

Besides, we can state the G1 term in the equation (5.7) as

G1 = −1

2
h′. (15.31)
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In addition, the Berwald connection and coefficient of a nonlinear connection
associated with this system respectively obtain as

N1
1 =

∂G1

∂p
= 0 , G1

11 =
∂N1

1

∂p
= 0. (15.32)

Then second KCC invariant P 1
1 at the equilibrium points of our system (x∗, 0)

is given by

P 1
1 (x∗, 0) = −2

∂G1

∂x
− 2G1G1

11 + p
∂N1

1

∂x
+N1

1N
1
1 ,

= −2
∂G1

∂x
,

= h′′. (15.33)

Therefore, we have an equilibrium point that is Jacobi stable if h′′ < 0.
Hence, if h′′ at the roots of h′ is negative we have Jacob stability for any
chosen pair of (α, β) in the metric.

There is a subtle point here worth mentioning that aside from the same
having equal, there is a difference in meaning: Let us point out that the
stability in the Jacobi sense refers to a linear stability type of the trajectories
in the curved space endowed with a nonlinear connection and a curvature
tensor, as described above. Here the role of the usual partial derivative is
played by the covariant derivative along with the flow. This obviously leads
to the difference in the meaning of linear stability and Jacobi stability.

15.4 Kolmogorov entropy

The test particle motion expected to be chaotic even in the equatorial plane
for some combinations of parameters α and β, since a perturbation in the
gravitational or the electromagnetic field generally leads to chaos. As a first
systematic study toward this issue the Kolmogorov entropy was explored
that has link to this feature.

As we stated before in Section 5.3 the Kolmogorov-Sinai entropy is equal
to the sum of the positive Lyapunov exponents (5.16). Therefore in our
system for the fixed points and any pair of (α, β) we have at most one positive
λ (15.25)

hks = λ+ > 0. (15.34)

Therefore, just the sign of the positive exponent of the system for fixed
parameters reveals the chaotic behavior of the corresponding trajectory.
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15.5 Summary and conclusion

In this chapter, we have studied the stability of timelike and null circular
geodesics in the background of Generalized q-metric on the equatorial plane
using Lyapunov stability and the Jacobi stability analysis. Mainly, We have
analyzed the effect of the metric parameter in the region of stable circular
orbit by using effective potential and phase portrait analysis. The linear
stability analysis is performed by the linearization of the dynamical system
via the Jacobian matrix of a non-linear system at the equilibrium point. In
addition, we study the Kolmogorov entropy in this setup. This entropy links
to the chaos, which is one of the most important ideas for understanding
various non-linear phenomena in nature. We try to find some conditions
that is interpreted as the chaotic behavior of the solution. However, all the
above criteria depend on the values of both quadrupoles in the metric and
by choosing them and using the results of this part, one can recognize the
corresponding solutions. However, a more complete description of this sta-
bility analysis regarding also non-geodesics trajectories is in the preparation
by the author.
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Epilogue
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Chapter 16

Summary

One of the main aims of this study was to have a comprehensible analysis of
different aspects of space-times containing a quadrupole or acceleration pa-
rameter on the astrophysical systems and compare them with Schwarzschild
and Kerr black holes with analytical and semi-analytical methods. In addi-
tion, the construction of a metric describing a non-isolated deformed object
having q-metric as a seed, via considering the external mass distribution was
of the main goals.

Upon these aims, this thesis is composed of two main parts. In part
one, the necessary material for this research was presented in Chapters 2-6.
Part two presented the new results and contribution of the author to the
literature. This part contains 9 chapters, each of them dealing with different
aspects of these aims.

Chapter 7 presented the construction of a new generalization of the static
q-metric via considering the external distribution of matter characterized by
multipole moments as planned, which is one of the most significant results
in this thesis. Besides, based on an analytical approach which provides a
systematic study, this chapter discussed extensively the impact of the exter-
nal fields up to the quadrupole on the circular geodesics and the interplay
of these two quadrupoles in the place of the Innermost Stable Circular Or-
bit, ISCO. In addition, the circular geodesics and the place of the ISCO as
a function of the quadrupole parameter were also revisited in the q-metric,
with the considered approach in the second part of this investigation. Aside
from its simplicity, the results agree with the studies in previous literature.
Chapter 15 also revealed the stability nature of the geodesics of General-
ized q-metric and their chaos behavior. However, because this calculation
is very complicated, we restrict our attention up to the quadrupoles. This
also required to specify values of both quadrupole moments to use the final
results.
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However, presenting the external source leads to having a bound orbit for
light-like geodesics on the equatorial plane, this is the case in the Generalized
q-metric and distorted Schwarzschild solution. The key point is that this
bound orbit’s existence directly is reflected in the having negative quadrupole
in the external matter distributions. In fact, most of our information about
the astrophysical environment is obtained from electromagnetic radiation and
consequently by studying the null geodesics; therefore, this result is of great
implications in studying some astrophysical phenomena like the shadow.

Further, Chapter 9 illustrated the effect of rotation in the q-metric. The
goal of this study was to examine the similarity of the rotation parameter
in this metric with the Kerr solution. The Thick accretion disc model was
investigated in Chapter 11 to evaluate its importance even more. However,
the result of this part was more than it was planned.

In the line of this research’s goals, Chapters 8, 10, 11, 12 and 13 pro-
vided a big picture to understanding the role of parameters of the metric
in association with astrophysical systems. To do so, the impacts of the pa-
rameters of considered space-times were examined. In the Thin disc model,
the properties are distinguishable with the Schwarzschild solution, but in the
inner part of the disc, they are similar to the Kerr metric with different spin
parameters. Interestingly, in the extensive study on the quasi-periodic oscil-
lations and the Thick accretion discs with non-constant angular momentum
distributions, this has been seen that a proper combination of the angular
momentum parameters, magnetization parameters, and value chosen for the
quadrupole can drain away their effects on the disc configuration, also on
the distribution of material inside the disc. In fact, this can be of great
consequence in the application to the astrophysical systems as well as to the
numerical simulation. Since these configurations are indistinguishable from
the standard space-times of Schwarzschild and Kerr, therefore, can act as
black hole mimickers.

Chapter 14 showed the differences between the photon sphere position
and radius of shadow in q-metric and the Schwarzschild space-time. In this
study was considered that the space-time was filled with cold plasma. The
results show the clear differences in these two metrics, for different choices
of plasma frequency. Chapter 11 also provided an understanding of the ac-
celeration parameter in C-metric, in combination with charge, rotation and
magnetization parameters via constructing the morphology of the equilib-
rium configuration of the Thick discs, which was one of the goals of the
present study.

In general, for some parameters range we obtain the quantities values
that correspond to Schwarzschild or Kerr solutions. Therefore, among other
results, one can conclude that if we evaluate the central compact object
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properties without having tested the Schwarzschild or Kerr hypothesis first,
then these measurements might be misleading and may be related to some
black hole mimickers. Thus, more studies and researches on these objects is
worthwile to continue.

The possible future works are presented in the outlook.





Chapter 17

Outlook

The work accomplished in this thesis opened a variety of research areas and
applications mostly in general relativity and astrophysics that can be con-
tinued for future in the several interesting passes including:

Astrophysical Observable

• Predict the existence of possible various types of astrophysical observa-
tions with searching for the probable outcomes of considering different
values of quadrupole that mathematically allowed. In addition, com-
pare the analytical results with the ambiguous high-energy astronomy
observational data. This research line is under investigation by author
and colleagues.

• Determine an upper bound on the mean efficiency parameter using the
Generalized q-metric solution in this thesis. In fact, the energy radiated
by a compact object as a consequence of the accretion process is related
to the mass rate and efficiency parameter. However, accurate estimate
of mass rate is typically very problematic and model dependent. It is
instead possible to determine the mean efficiency parameter of active
galactic nuclei. In this analytical set-up, one can find upper bound on
this efficiency in terms of quadrupoles that can be very much better fit
to the observational data related to calculating this efficiency.

• Investigate how the different types of plasma, and magnetic fields sur-
rounding the objects describing with the considered metric, especially
containing quadrupoles, interact with each other and have impact on
the properties of shadow in these backgrounds (this is also related to
the extension of the Generalized q-metric.).
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• Study the periodicity of the particle trajectories, where it can reveal
the observables associated to the trajectory of the metric (this is also
related to the extension of the Generalized q-metric.).

• Explore the variabilities in high frequency quasi-periodic oscillations
associated with discoseismic oscillation modes of the accretion disc.
There are models that relate these variabilities in HF QPOs to gen-
eral relativistic effects. In these models, with no magnetic field, the
inertial oscillations, g-modes, can be self-trapped in the inner region
of the disc. While a weak magnetic field even can modify or destroy
the self-trapping zone of these g-modes [234, 235]. Therefore, it seems
reasonable to consider the effect of the deformation parameter on this
self-trapping zone and compare with data. An interesting preliminary
investigation reveals that as α even increases slightly, this self-trapping
zone of g-mode changes. Indeed, this critical result needs further con-
sideration (this is also related to the extension of the Generalized q-
metric.).

Numerical simulations

• Use these discussed analytical settings in this research as the initial
conditions for the numerical simulations of accretion discs and corre-
sponding gravitational wave templates, and test their ability to account
for observable constraints of astrophysical systems simulations.

Analytical Accretion Disc Models

• Develop a new analytical accretion disc model to include chaotic be-
havior of trajectories to have a more realistic and still analytic model
to study the link to the observational data with more accuracy and
freedom. Since, this may offer a better insight into the physical mech-
anisms of the accretion discs like dissipation processes and stability. In
particular, to clarify which processes dominate its evolution and what
are the applicable ranges of model parameters capable to fit into ob-
servational data. The results in the last chapter was the first attempt
to accomplish this goal and more in progress.

• Study the instability in space-times with quadrupole and see the impact
of quadrupole on the instability puzzle of the Thin accretion discs.



Outlook 203

Extension of the Generalized q-metric

• Considering the Generalized q-metric is valid locally, it seems reason-
able to use an approach like the perturbation matching calculation to
describe the external universe [236], which may be the next stage of
this study.

• This metric can be seen as the first step toward considering the self-
gravity of the disc, which is the one of main plan for extending this
work. In this line of research, considering the external distribution of
matter was the starting point to model the effect of outer part of the
disc on the inner part. Of course, real models will be inaccurate due
to incomplete knowledge of the underlying physics, or perhaps a desire
for simplicity.

• Considering quadrupoles may facilitate the study on heating the outer
region by inner part that normally is neglected in the assumptions of
models.

Multipole Moments

• Applying this approach of considering distribution of matter character-
izing first only with quadrupoles to other theories of gravity, and study
the quadrupolar structure of the underlying gravitational field.

• Finding another way of defining multipoles, where be applicable in the
setting of neutron stars tidal deformations to interpret the universal
relations among special multipole moments.

Observational and analytical Applications of the C-metric

• Study the recoil velocity, or the natal kick reaching values up to 5000
km/s where possibly left behind after a binary black hole merger, via
the C-metric as the first semi-analytical step to provide enough initial
acceleration. This phenomenon has important implications for grav-
itational wave, black hole formation, and in general testing general
relativity.

• Analyzing the axis-symmetric instabilities in the family of C-metric and
regarding accretion discs, probably starting with the standard version
without charge and rotation, because of the existence of conical deficit
the accretion discs in this space-time are likely to be unstable.
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To sum up, it is expected that future works in this field to be guided more by
astrophysics questions and observations and other areas where strong-field
gravitational theory applies.
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cretion and gravitational waves from oscillating ‘toroidal neutron stars’
around a Schwarzschild black hole. Monthly Notices of the Royal As-
tronomical Society, 341(3):832–848, 05 2003.

[115] Luciano Rezzolla, Shin’ichirou Yoshida, and Olindo Zanotti. Oscilla-
tions of vertically integrated relativistic tori – I. Axisymmetric modes
in a Schwarzschild space-time. Monthly Notices of the Royal Astro-
nomical Society, 344(3):978–992, 09 2003.

[116] Pedro J. Montero, Luciano Rezzolla, and Shin’ichirou Yoshida. Oscilla-
tions of vertically integrated relativistic tori - II. Axisymmetric modes
in a Kerr space-time. MNRAS, 354(4):1040–1052, November 2004.

[117] Atsuo T. Okazaki, Shoji Kato, and Jun Fukue. Global trapped oscilla-
tions of relativistic accretion disks. PASJ, 39:457–473, January 1987.

[118] F. H. Shu. The physics of astrophysics. Volume II: Gas dynamics. 1992.
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