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me and help with my work. I thank my previous working group, AWI Phytooptics
group. During the time working in the group I developed skills necessary for my
publications. I thank my current working group, AWI Polar Biological Oceanogra-
phy section, especially Morten Iversen and Tanja Glawatty, for providing a welcoming
and open working atmosphere. I thank Christine Klaas, Eva-Maria Nöthig, Jan Str-
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Chapter 1

Summary

Human-induced climate change is amplified in the Arctic. At the root of these ampli-
fications are changes in air temperature and sea ice. The sea-ice cover is dramatically
receding in the Arctic Ocean. In the study region of the thesis, the Fram Strait (the
largest and only deep gateway to the Arctic Ocean) and its vicinity, changes have been
observed in sea-ice conditions and water temperatures due to Arctic warming. This
has consequences for phytoplankton. Phytoplankton are one of the main primary pro-
ducers in the Arctic Ocean. Arctic warming induced alterations in light and nutrient
regimes impact phytoplankton seasonality, biomass, community composition and dis-
tribution. Phytoplankton biomass and community composition are often indicated by
their pigment composition and concentrations. To study the response of phytoplank-
ton to the changing climate, this thesis aims to estimate phytoplankton pigments us-
ing observations from the shipboard underway flow-through AC-S spectrophotometer
system and the Regulated Ecosystem model version 2 (REcoM2) (Hohn, 2008; Schartau
et al., 2007) implemented with phytoplankton growth and photoinhibition models.

In the first part of the thesis, an underway flow-through AC-S system was set up on-
board R.V. Polarstern during two Fram Strait cruises, PS93.2 and PS99.2. Hyperspectral
particulate absorption coefficient (ap(l)) was derived from the underway AC-S mea-
surements. Particulate absorption line height at 676 nm calculated from ap(l) was
empirically related to high performance liquid chromatography (HPLC) chlorophyll a
(Chl a) concentrations for PS93.2 and PS99.2, respectively. Both relationships were ap-
plied to high frequency (4 Hz) AC-S data to estimate Chl a concentrations along the
cruise tracks. In total, 24424 and 16110 Chl a data points were generated for PS93.2
and PS99.2, respectively. The reconstructed AC-S Chl a data sets were used to evaluate
seven satellite Chl a algorithms. The number of AC-S-satellite match-ups is over one
order of magnitude greater than HPLC-satellite match-ups. AC-S-satellite match-ups
show that all algorithms were characterized by an overestimation of satellite Chl a. Two
algorithms based on Polymer atmospheric correction processors (Steinmetz et al., 2011)
generated data products with relatively high estimation precision and small error. The
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Polymer atmospheric correction processors account for sun glint and thin clouds in
their reflectance models to derive atmospheric corrected remote sensing reflectance, al-
lowing a much larger spatial coverage of data than using standard atmospheric correc-
tion processors. In the Arctic Ocean where operational satellite ocean color data have
relatively low space-time resolution, Polymer algorithms are promising candidates in
enlarging satellite ocean color data sets, e.g., for Sentinel-3/OLCI satellite sensor, given
more validation activities are performed in the future.

In the second part of the thesis, the underway flow-through AC-S system was set up
onboard R.V. Polarstern during the Fram Strait cruise PS107, in addition to PS93.2 and
PS99.2. AC-S derived hyperspectral ap(l) were matched with HPLC pigments data. In
total, 298 ap(l)-pigments match-ups were used as the pigment retrieval data set. Two
pigment retrieval algorithms, Gaussian decomposition (Chase et al., 2013) and the sin-
gular value decomposition combined with non-negative least squares (SVD-NNLS) in-
version method (Moisan et al., 2011) were compared and optimized for estimating vari-
ous phytoplankton pigments or pigment groups from the ap(l) data. The Gaussian de-
composition method provides good estimates (median absolute percentage error, MPE
21-34%) of Chl a, chlorophyll b, chlorophyll c1 and c2, photosynthetic carotenoids and
photoprotective carotenoids (PPC). This method outperformed the SVD-NNLS method
in retrieving chlorophyll b, chlorophyll c1 and c2, photosynthetic carotenoids, and PPC.
However, SVD-NNLS enables robust retrievals of specific carotenoids (MPE 37-65%),
i.e., fucoxanthin, diadinoxanthin and 190-hexanoyloxyfucoxanthin, which is currently
not accomplished by Gaussian decomposition. More robust predictions are obtained
using the Gaussian decomposition method when the observed spectral phytoplank-
ton absorption coefficient (aph(l)) is normalized by the package effect index at 675 nm.
The latter is determined as a function of ”packaged” aph(675) and Chl a concentrations,
which shows potential for improving pigment retrieval accuracy by the combined use
of aph(l) and Chl a data. Both approaches provide useful information on pigment
distribution, and hence phytoplankton community composition indicators, at a spatial
resolution much finer than can be achieved with discrete HPLC samples.

Xanthophyll pigments provide one of the most important photoprotective mechanisms
to dissipate the excess light energy and prevent photoinhibition. In the third part of the
thesis, phytoplankton growth models of Geider et al. (1998), the Geider model, and
Marshall et al. (2000), the Marshall model, were implemented into REcoM2 to predict
the photoprotective needs of phytoplankton and their attributions from phytoplankton
PPC, physiological state, and community composition. Assume that photoinhibition
is negligible in phytoplankton communities acclimated to ambient light (Cullen et al.,
1992). The difference between the photosynthesis–irradiance (P-E) curves with (Mar-
shall) and without photoinhibition (Geider) is considered a measure of photoprotec-
tive needs in order to minimize such photoinhibition. The degree of phytoplankton
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photoprotection is represented by 1-āNP/ā, where āNP and ā are model predicted ini-
tial slopes of the P-E curves of the Marshall and Geider models, respectively. It was
then related to the HPLC PPC/Chl a data, producing a 4-D global map of PPC/Chl a
estimates. These estimates were in agreement with field observations in most of the
surface ocean, at depth and even across seasons, suggesting the role of PPC in photo-
protective activities in the global ocean. However, at higher latitudes, discrepancies be-
tween predictions and observations suggested PPC content was insufficient to satisfy
phytoplankton protective needs the community and thus other mechanisms of non-
photochemical quenching were relevant. Furthermore, at higher latitudes, changes in
PPC content can result from both physiological acclimation and shifts in community
composition while in the rest of ocean taxonomic changes played a main role.

A comprehensive view of the phytoplankton community pigment signature is crucial
for modeling the coupling of light absorption to carbon fixation in the ocean. Future
validation of the above model can use the combined HPLC observations and pigment
estimates from underway flow-through AC-S system. Furthermore, this work provides
insights on how much of the variability in community PPC ratios is attributable to
changes in community composition or changes in physiological state. This may allow
an improvement of the match between satellite ocean color data and the underlying
phytoplankton community. In addition, these insights may contribute to a better un-
derstanding of the effect of phytoplankton photoacclimation on the accuracy of satellite
ocean color products in the Arctic Ocean.

Zusammenfassung

Der vom Menschen verursachte Klimawandel wird in der Arktis amplifiziert. Die Ur-
sache für diese Amplifikation sind Veränderungen der Lufttemperatur und des Meer-
eises. Die Meereisbedeckung im Arktischen Ozean geht dramatisch zurück. In der un-
tersuchten Region dieser Arbeit, der Framstraße (dem größten und einzigen tiefen Zu-
gang zum Arktischen Ozean) und ihrer Umgebung, wurden aufgrund der Erwärmung
der Arktis Veränderungen der Meereisverhältnisse und der Wassertemperaturen beo-
bachtet. Dies hat Folgen für die Phytoplankton Populationen. Phytoplankton ist einer
der wichtigsten Primärproduzenten im Arktischen Ozean. Die durch die Erwärmung
der Arktis verursachten Veränderungen des Licht- und Nährstoffregimes wirken sich
auf die Saisonalität, die Biomasse, die Zusammensetzung und die Verteilung des Phy-
toplanktons aus. Die Biomasse und die Zusammensetzung der Phytoplankton-Artenge-
meinschaft lassen sich häufig anhand der Pigmentzusammensetzung und -konzentra-
tion bestimmen. Um die Reaktion des Phytoplanktons auf den Klimawandel zu un-
tersuchen, sollen in dieser Arbeit die Phytoplanktonpigmente anhand von Beobach-
tungen eines AC-S-Durchfluss-Spektralphotometers an Bord des Schiffes und des Reg-
ulated Ecosystem Model Version 2 (REcoM2) (Hohn, 2008; Schartau et al., 2007), das



4 Chapter 1. Summary

mit Phytoplankton-Wachstums- und Photoinhibitionsmodellen implementiert wurde,
geschätzt werden.

Im ersten Teil der Arbeit wurde ein Durchfluss-AC-S-System an Bord der R.V. Polarstern

während zweier Fahrten in der Framstraße, PS93.2 und PS99.2, aufgebaut. Der hy-
perspektrale Partikelabsorptionskoeffizient (ap(l)) wurde aus den AC-S-Messungen
an Bord abgeleitet. Die Höhe der partikulären Absorptionslinie bei 676 nm, die aus
ap(l) berechnet wurde, wurde empirisch mit den Chlorophyll a-Konzentrationen (Chl
a) der Hochleistungsflüssigkeitschromatographie (HPLC) für PS93.2 bzw. PS99.2 in
Beziehung gesetzt. Beide Beziehungen wurden auf hochfrequente (4 Hz) AC-S-Daten
angewandt, um die Chl a-Konzentrationen entlang der Fahrtrouten abzuschätzen. In-
sgesamt wurden 24424 und 16110 Chl a-Datenpunkte für PS93.2 bzw. PS99.2 erzeugt.
Die rekonstruierten AC-S-Chl a-Datensätze wurden zur Bewertung von sieben Satelliten-
Chl a-Algorithmen verwendet. Die Anzahl der AC-S-Satelliten-Kolokalisierung ist um
mehr als eine Größenordnung größer als die der HPLC-Satelliten-Kolokalisierung. AC-
S-Satelliten-Abgleiche zeigen, dass alle Algorithmen durch eine Überschätzung des
Satelliten-Chl a gekennzeichnet waren. Zwei Algorithmen, die auf Polymer-Atmos-
phärenkorrekturprozessoren basieren, erzeugten Datenprodukte mit relativ hoher Schä-
tzgenauigkeit und geringem Fehler. Die Polymer-Atmosphärenkorrekturprozessoren
berücksichtigen in ihren Reflexionsmodellen Sonnenreflex und dünne Wolken, um die
atmosphärisch korrigierte Fernerkundungsreflexion abzuleiten, was eine viel größere
räumliche Abdeckung der Daten ermöglicht als die Verwendung von Standard-Atmos-
phärenkorrekturprozessoren. Im Arktischen Ozean, wo die operationellen Satelliten-
Ozeanfarbdaten eine relativ geringe räumliche und zeitliche Auflösung haben, sind
Polymer-Algorithmen vielversprechende Kandidaten für die Erweiterung von Satelliten-
Ozeanfarbdatensätzen, z.B. für den Sentinel-3/OLCI-Satellitensensor, vorausgesetzt,
es werden in Zukunft mehr Validierungsaktivitäten durchgeführt.

Im zweiten Teil der Arbeit wurde das Durchfluss-AC-S-System an Bord der R.V. Po-

larstern während der Framstraßen Expedition PS107, zusätzlich zu PS93.2 und PS99.2,
eingesetzt. Die via AC-S abgeleiteten hyperspektralen ap(l) wurden mit HPLC-Pigment-
daten abgeglichen. Insgesamt wurden 298 ap(l)-Pigmentabgleiche als Datensatz für
die Pigmentbestimmung verwendet. Zwei Algorithmen zum Pigmentabruf, die Gauß-
Zerlegung (Chase et al., 2013) und die Methode der Singulärwertzerlegung in Kombi-
nation mit der Inversion der nicht-negativen kleinsten Quadrate (SVD-NNLS) (Moisan
et al., 2011) wurden verglichen und für die Schätzung verschiedener Phytoplankton-
pigmente oder Pigmentgruppen aus den ap(l)-Daten optimiert. Die Gauß-Zerlegungs-
methode liefert gute Schätzungen (median absoluter prozentualer Fehler, MPE 21-34
%) für Chl a, Chlorophyll b, Chlorophyll c1 und c2, photosynthetische Carotinoide und
photoprotektive Carotinoide (PPC). Diese Methode übertraf die SVD-NNLS-Methode
bei der Ermittlung von Chlorophyll b, Chlorophyll c1 und c2, photosynthetischen Caroti-
noiden und PPC. SVD-NNLS ermöglicht jedoch robuste Vorhersagen für bestimmte
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Carotinoide (MPE 37-65 %), d. h. Fucoxanthin, Diadinoxanthin und 190-Hexanoyloxy-
fucoxanthin, was derzeit mit der Gauß-Zerlegung nicht geleistet werden kann. Zu-
verlässigere Vorhersagen werden mit der Gauß-Zerlegungsmethode erzielt, wenn der
beobachtete spektrale Phytoplankton-Absorptionskoeffizient (aph(l)) durch den Paket-
effekt-Index bei 675 nm normalisiert wird. Letzterer wird als Funktion der ”verpack-
ten” aph(675)- und Chl a-Konzentrationen bestimmt, was ein Potenzial zur Verbesserung
der Genauigkeit der Pigmentbestimmung durch die kombinierte Verwendung von aph(l)-
und Chl a-Daten offenlegt. Beide Ansätze liefern nützliche Informationen über die Pig-
mentverteilung und damit Indikatoren für die Zusammensetzung der Phytoplankton-
Gemeinschaft mit einer räumlichen Auflösung, die viel feiner ist als die, die mit diskreten
HPLC-Proben erreicht werden kann.

Xanthophyll-Pigmente sind einer der wichtigsten photoprotektiven Mechanismen, um
die überschüssige Lichtenergie abzuführen und Photoinhibition zu verhindern. Im
dritten Teil der Arbeit These wurden die Phytoplankton-Wachstumsmodelle von Gei-
der et al. (1998), das Geider-Modell, und Marshall et al. (2000), das Marshall-Modell,
in REcoM2 implementiert, um den Photoprotektionsbedarf des Phytoplanktons und
dessen Zuordnung zu Phytoplankton-PPC, physiologischem Zustand und Gemein-
schaftszusammensetzung vorherzusagen. Es wird angenommen, dass die Photoinhibi-
tion in Phytoplanktonartengemeinschaften, die an das Umgebungslicht akklimatisiert
sind, vernachlässigbar ist (Cullen et al., 1992). Die Differenz zwischen den Photosyn-
these-Strahlungsstärke-Kurven (P-E) mit (Marshall) und ohne Photoinhibition (Gei-
der) gilt als Maß für den Photoprotektionsbedarf, um eine solche Photoinhibition zu
minimieren. Der Grad der Photoprotektion des Phytoplanktons wird durch 1-āNP/ā

dargestellt, wobei āNP und ā die modellmäßig vorhergesagten anfänglichen Steigun-
gen der P-E-Kurven der Marshall- bzw. Geider-Modelle sind. Anschließend wurde
sie mit den HPLC-PPC/Chl a-Daten in Beziehung gesetzt, wodurch eine 4-D-Global-
Karte der PPC/Chl a-Schätzungen entstand. Diese Schätzungen stimmten mit den
Feldbeobachtungen im größten Teil des Oberflächenozeans, in der Tiefe und sogar über
die Jahreszeiten hinweg überein, was auf die Rolle von PPC bei den photoprotektiven
Aktivitäten im globalen Ozean hindeutet. In höheren Breitengraden jedoch deutete
die Diskrepanz zwischen Vorhersagen und Beobachtungen darauf hin, dass der PPC-
Gehalt nicht ausreichte, um die Lichtschutzbedürfnisse der Phytoplanktonartengemein-
schaft zu befriedigen, und dass daher andere Mechanismen der nicht-photochemischen
Löschung von Bedeutung waren. Darüber hinaus können in höheren Breitengraden
Veränderungen des PPC-Gehalts sowohl auf eine physiologische Akklimatisierung als
auch auf Verschiebungen in der Zusammensetzung der Gemeinschaft zurückzuführen
sein, während im übrigen Ozean taxonomische Veränderungen die Hauptrolle spielen.
Ein umfassender Überblick über die Pigmentsignatur der Phytoplanktonartengemein-
schaft ist für die Modellierung der Kopplung von Lichtabsorption und Kohlenstofffix-
ierung im Ozean von entscheidender Bedeutung. Für die künftige Validierung des obi-
gen Modells können die kombinierten HPLC-Beobachtungen und Pigmentschätzungen
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aus dem AC-S-Durchflusssystem verwendet werden. Darüber hinaus gibt diese Arbeit
Aufschluss darüber, inwieweit die Variabilität der PPC-Verhältnisse in der Gemein-
schaft auf Veränderungen in der Zusammensetzung der Gemeinschaft oder auf Verände-
rungen des physiologischen Zustands zurückzuführen ist. Dies könnte eine Verbesserung
der Kolokalisierung zwischen den Farbdaten der Satelliten und der zugrunde liegen-
den Phytoplanktonartengemeinschaft ermöglichen. Darüber hinaus können diese Erken-
ntnisse zu einem besseren Verständnis der Auswirkungen der Photoakklimatisierung
des Phytoplanktons auf die Genauigkeit von Satelliten-Ozeanfarbprodukten im Ark-
tischen Ozean beitragen.
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Chapter 2

Introduction

2.1 Phytoplankton

The term phytoplankton comes from the Greek words phyton, meaning ’plant’, and plank-

tos, meaning ’to wander’. In 1887, Victor Hensen, the first quantitative plankton ecolo-
gist, coined the term plankton (Hensen, 1887). Phytoplankton refer to the community of
mostly single-celled, photosynthetic organisms that drift with water currents in aquatic
ecosystems. Whereas most of the phytoplankton species are solo dwellers, i.e., it is only
the single cell that interacts with its environment, some are capable of forming multi-
cellular filaments, coenobia or mucilaginous colonies (Reynolds, 2006).

Phytoplankton are taxonomically diverse. In the contemporary ocean, ⇠ 2 ⇥ 104 mor-
phologically distinct species are distributed among at least eight taxonomic divisions
or phyla (Falkowski et al., 2004). Many morphologically identical species are genet-
ically distinct (e.g., Liu et al., 2009). This diverse group of organisms include both
prokaryotes and eukaryotes. Cyanobacteria are the only extant prokaryotic phyto-
plankton that existed ⇠ 2.5 billion years ago (Falkowski, 2014). These prokaryotes
numerically dominate the phytoplankton community in marine ecosystems. All other
groups are eukaryotic. They evolved more than 1.5 billion years ago and are thought to
trace their lineages back to the endosymbiotic appropriation of a cyanobacterium into
a heterotrophic host cell, where the appropriated cyanobacterium became a chloroplast
(Delwiche, 1999; Falkowski et al., 2004). Subsequent evolution moved into different di-
rections and gave rise to the green and red lineages. The green lineage distinguishingly
features the synthesis of chlorophyll b as a secondary pigment and is dominated by
green algae in the oceans. The red lineage comprises a diverse set of phytoplankton that
synthesizes chlorophyll c as secondary pigments. Of the red-lineage phytoplankton
groups, diatoms, dinoflagellates, haptophytes (including the coccolithophores), and
chrysophytes are the most important (Falkowski, 2014).
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Despite their deep diversity, phytoplankton share defining characteristics. Notably,
they live in the upper illuminated layer of the ocean and carry out oxygenic photosyn-
thesis. Oxygenic photosynthesis takes place in the chloroplasts of eukaryotic phyto-
plankton, while cyanobacteria employ specialized photosynthetic membranes. It is a
redox reaction of the general form:

2H2O + CO2 + light �! (CH2O) + H2O + O2 (2.1)

This equation can be seen as the simplified description of two reactions: the oxidation
or ’splitting’ of water into molecular, gaseous oxygen using light energy, and the reduc-
tion of CO2 to carbohydrate (CH2O) by addition of the intermediate hydrogen atoms
from water. Chlorophyll a (Chl a), the photosynthetic pigment universally distributed
among phytoplankton - except for prochlorophytes which contain divinyl Chl a - cat-
alyzes the photochemical water splitting process using energy from sunlight. In the
oceans, these reactions depend on light regime and nutrient availability (e.g., nitrogen,
phosphorus, iron).

The impact of oxygenic photosynthesis by phytoplankton on Earth’s climate, chemical
composition and ecosystems is profound. Over 2 billion years ago, the rise of oxy-
gen produced by cyanobacteria permanently oxidized Earth’s atmosphere, which ulti-
mately permitted eukaryotes and multicellular organisms to evolve (Falkowski, 2006).
The organic carbon resulting from photosynthesis fuels the growth and respiratory de-
mands of phytoplankton and all remaining organisms in the ocean through the food
webs. Hence, the rate of photosynthesis places an upper bound on the overall biomass
and productivity of oceanic ecosystems and constrains their overall net biological flow
of energy (Falkowski and Raven, 2013). The global fisheries catches, for example, are
constrained by the net primary productivity of marine phytoplankton (Chassot et al.,
2010). The latter currently amounts to ⇠ 50 petagrams of carbon per year, account-
ing for ⇠ 45% of the global net primary productivity (Field et al., 1998). While most
of the net primary production is locally remineralized to inorganic nutrients through
grazing, bacterial consumption and respiration, approximately one third of the organic
matter in the euphotic zone sinks to the ocean interior. The exported organic carbon
is subsequently oxidized and remineralized by biological activity in deeper layers to
inorganic carbon in the ocean interior, with a mere 0.2% of the organic carbon reaching
the sediments. The sum of biological processes leading to carbon export out of the sur-
face layers of the ocean, the so-called biological pump, is crucial to the maintenance of
atmospheric CO2 level and thus exerts an important control on global climate. In the
absence of the biological pump, models predict that the partial pressure of atmospheric
CO2 would be nearly twice as high as the current value (Maier-Reimer et al., 1996).
A very small fraction of the exported organic carbon escapes the biological pump and
becomes incorporated into marine sediments. All above carbon exchange processes be-
tween the ocean and atmosphere are central to the global carbon cycle. Further, given
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that living organisms also contain important elements such as nitrogen, phosphorus,
sulfur, and in some groups also silicon as well as a suite of metals such as iron, zinc,
and cobalt. Alfred Redfield (1934) observed that carbon, nitrogen, and phosphorus in
phytoplankton are commonly in the molar ratio C:N:P = 106:16:1. The biological pump
also influences the cycling of these elements.

Based on their properties and distinct roles in biogeochemical cycles, phytoplankton
are grouped into functional types, e.g., silicifiers, calcifiers, N2-fixers, DMSP-producers,
non N2-fixing pico-phytoplankton in earth system and coupled General Circulation-
Biogeochemical Models (Le Quéré et al., 2005). Silicifiers, mainly diatoms which are
encased in shells (frustules) of amorphous silicon (opal), are responsible for most of
the primary production and biomass during the spring blooms in temperate and polar
regions. They contribute to the vertical carbon export into the ocean interior far more
effectively than phytoplankton of smaller size. The frustules of diatoms are archived
in sediments and form, among others, the opal belt at the Polar Front region around
Antarctica (Lisitzin, 1971). Calcifiers, primarily coccolithophores, are responsible for
more than half of the marine carbonate flux in sediments (Schiebel, 2002). They precip-
itate calcium carbonate, affecting ocean alkalinity and carbonate chemistry and thereby
atmospheric CO2 level on geological timescales. They also produce the densest bal-
lasts that effectively facilitate the vertical carbon export into the ocean interior (Klaas
and Archer, 2002). N2-fixers comprise cyanobacteria, such as Trichodesmium, capable
of reducing atmospheric N2 to ammonium. N2 fixation is the major nitrogen source
supporting primary production throughout most of the world’s oceans and influences
CO2 air-sea exchange (Falkowski, 1997; Gruber and Galloway, 2008). DMSP-producers,
mainly haptophytes such as coccolithophores and Phaeocystis, produce dimethylsulfo-
nium propionate (DMSP). DMSP released in seawater by phytoplankton is converted
to the gas dimethyl sulfid that subsequently diffuses into the atmosphere, affecting the
atmospheric sulfur cycle and possibly cloud formation, with direct impacts on the cli-
mate (Lovelock et al., 1972; McCoy et al., 2021). Non N2-fixing pico-phytoplankton, in
particular Synechococcus and Prochlorococcus, make a considerable contribution to pri-
mary production in oligotrophic regimes, but a negligible contribution to vertical car-
bon export. The functionality of phytoplankton is often related to their size. Therefore,
phytoplankton functional types may be approximated using a size-based classification
(e.g., Uitz et al., 2006).

Phytoplankton functional diversity respond to environmental changes. Currently, our
planet is undergoing significant and accelerated climate change due to human activ-
ities. Human-induced warming reached ⇠ 1�C above pre-industrial levels in 2017,
increasing at a rate of ⇠ 0.2�C per decade (IPCC, 2018). The global ocean has taken
up more than 90% of the excess heat in the climate system (IPCC, 2019). The resulting
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warming of the oceans influence light (e.g., through sea ice melting and increased ver-
tical stratification) and nutrient availability (e.g., by increasing seawater density strat-
ification) and thereby phytoplankton seasonality, productivity and species composi-
tion. Continued uptake of excess atmospheric CO2 by the oceans causes further ocean
acidification, which may have important consequences for the growth and calcifica-
tion rates of coccolithophores (Zeebe and Wolf-Gladrow, 2001). To better understand
the responses of phytoplankton and feedbacks to a changing climate, it is of great im-
portance to determine information on their biomass, net productivity and composition
(taxonomic and functional types) globally and at relevant temporal and spatial scales.

Optical methods, such as ocean color radiometry and spectrophotometry, provide a
useful tool for obtaining such information, both in situ and globally from space using
Earth-observing satellites. The interactions between light and phytoplankton, includ-
ing absorption of light by various pigments, form the basis of these methods.

2.2 Phytoplankton pigments

Phytoplankton have evolved a wide variety of cellular pigments. There are three chem-
ically distinct types of pigments: chlorophylls, carotenoids and phycobiliproteins. All
phytoplankton contain chlorophylls and carotenoids; cyanobacteria, rhodophytes, and
cryptophytes also contain phycobiliproteins.

During oxygenic photosynthesis, phytoplankton pigments are responsible for the ab-
sorption of light energy and the primary steps in its conversion to chemical bond en-
ergy. They are bound in various combinations to specific proteins to form pigment-
protein complexes and localized in the photosynthetic membranes. Depending on their
roles in photosynthesis, phytoplankton pigments can be classified as photosynthetic
reaction center pigments (e.g., Chl a, divinyl Chl a), light-harvesting pigments (e.g.,
chlorophylls b and c, phycobiliproteins, fucoxanthin, peridinin, 19’-hexanoyloxyfucoxanthin
[Hex], 19’-butanoyloxyfucoxanthin), and photoprotective carotenoids (PPC, e.g., allox-
anthin, diadinoxanthin, diatoxanthin, zeaxanthin, carotenes). Light-harvesting pig-
ments act as antennas and capture solar radiation from different spectral wavelengths
incident on phytoplankton cells. Upon absorption of light by a pigment molecule, light
energy is transferred to chlorophyll molecules in the photosynthetic reaction centers
where the oxidation of water (Equation 2.1) is induced. Under excess light conditions,
PPC reduce the production of damaging reactive oxygen species, thus protecting pig-
ments, proteins and lipids from oxidation and minimizing the ensuing reduction in
photosynthesis rate. Despite the broad range in pigments produced by phytoplank-
tonic organisms, only Chl a - and divinyl Chl a in the case of prochlorophytes - are
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directly involved in photosynthesis. All other pigments, grouped under the term ac-
cessory pigments, are not essential for photosynthesis to occur: they assist in the ac-
quisition of light energy and are part of a mechanism that allows photosynthesis to
happen in less than optimum light conditions. Therefore, their composition and con-
centrations depend on environmental factors (e.g., light) and also on phytoplankton
taxonomic affiliations.

Naturally, one application of pigment data is the study of phytoplankton photosyn-
thetic response to changing light environments. For example, variations in certain pig-
ment ratios, such as (diadinoxanthin + diatoxanthin)/Chl a, diadinoxanthin/Chl a,
diatoxanthin/Chl a, diatoxanthin/(diatoxanthin + diadinoxanthin), have been used to
infer photoacclimation at different time scales (Brunet et al., 2011). In my study, as pub-
lished in Álvarez et al. (2019), the ratio PPC/Chl a was found to mediate the long-term
photoprotective response of phytoplankton throughout most of the oceans. Pigment
composition and concentrations also provide important information on phytoplankton
biomass and broad taxonomic and functional diversity (Higgins et al., 2011). As a mat-
ter of empirical and operational convenience, Chl a concentrations are widely used as
a proxy for phytoplankton biomass and hence also as an input parameter for many lo-
cal and global primary productivity models (Behrenfeld and Falkowski, 1997). While
most pigments are distributed across several taxonomic groups, certain key pigments
are signatures for some phytoplankton groups. For example, fucoxanthin is abundant
in diatoms, alloxanthin in cryptophytes, peridinin usually indicates the presence of di-
noflagellates, Hex is associated with haptophytes and peridinin-lacking dinoflagellates,
chlorophyll b is dominant in green algae, divinyl chlorophylls a and b are exclusively
present in prochlorophytes, while phycobiliproteins and zeaxanthin are useful mark-
ers for cyanobacteria. Based on marker pigments, algorithms - such as CHEMTAX
(Mackey et al., 1996) and Diagnostic Pigment Analysis (Vidussi et al., 2001) - have been
developed to estimate the fractional biomass of different phytoplankton groups in wa-
ter samples. In my study (Álvarez et al., 2019), the spatial and temporal distribution
of the ratio PPC/Chl a was modelled for the global ocean and its variability due to the
changes in phytoplankton community composition and physiological acclimation was
analysed.

Phytoplankton pigments absorb light in mainly two regions of the visible spectrum
(roughly 400-700 nm) (Figure 2.1): the blue and red bands. All pigments except phy-
cobiliproteins absorb blue light. Red light, on the other hand, is absorbed only by
chlorophylls, mainly Chl a. Chl a has two dominant peaks in an absorption spectrum:
a primary peak at 440 nm and secondary one at 675 nm. Light from the middle regions
of the visible spectrum is absorbed to a small extent by carotenoids. The absorption
bands of carotenoids extend farther in the long wavelengths, while chlorophylls ex-
tend to the shortwave bands. The phycobiliproteins, however, absorb light more in-
tensively in the middle regions (Figure 2.1). The composition and concentrations of
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pigments influence the shape and magnitude of the spectral absorption coefficients of
phytoplankton (aph(l)), one of the fundamental inherent optical properties (IOPs) of
seawater, thus altering the appearance of ocean color. This allows the development of
absorption spectral-based remote-sensing algorithms for distinguishing phytoplankton
functional types from optical satellites.

FIGURE 2.1: Mass-normalized absorption spectra of phytoplankton pigments based
on the study by Bricaud et al. (2004).

2.3 Phytoplankton from space

Satellite ocean color remote sensing revolutionized ocean observing capabilities and
has been in service for almost five decades. It can provide basin scale coverage of the
upper mixed layer and investigate biogeochemical processes on monthly, inter-annual
to annual timescales, which keeps stimulating interest among the ocean science com-
munity in deriving ocean biological and biogeochemical data products.

Ocean color remote sensing began with the launch of the proof-of-concept radiometer
Coastal Zone Color Scanner (CZCS) aboard the Nimbus-7 satellite in 1978. Its initial ob-
jective was to quantify total phytoplankton pigment, defined as the sum of Chl a and
phaeophytin, in coastal oceans (Gordon et al., 1983). Inadvertently, CZCS data revealed
unprecedented information of open ocean mesoscale structures and the seasonal and
inter-annual variability of total phytoplankton pigment (see the Journal of Geophysical
Research special issue Ocean Color From Space: A Coastal Zone Color Scanner Retrospec-

tive), which greatly transcended the limits of in situ observations and opened up a new
perspective in marine ecology and biogeochemistry. As a result, the objective of follow-
on ocean color satellite missions, characterised by one-off multispectral radiometers
such as SeaWiFS, MODIS, and MERIS, was expanded to routine global observations
over an extended period of time. Additional spectral bands were incorporated to tran-
sition from total pigment mainly to Chl a and to a smaller extent to certain accessory
pigments (e.g., phycobiliproteins). Data products have been used to address a wide
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range of scientific questions including the global decadal trends in primary productiv-
ity and the distributions of phytoplankton functional types (see McClain (2009) for a
review). The new generation of satellite missions, such as Sentinel-3/OLCI (multispec-
tral) and PACE/OCI (hyperspectral), are aimed for consistent observations of marine
ecosystems to support long-time series climate data records and operational monitor-
ing applications (see IOCCG (2012) and Groom et al. (2019) for reviews). Hyperspectral
observations are more capable of discerning subtle differences in spectral absorption by
various accessory pigments (e.g., chlorophylls b and c, carotenoids, phycobiliproteins)
(e.g., Wang et al., 2016; Chase et al., 2017) and thereby phytoplankton functional types
(see Chase (2020) for review). Table 2.1 summarizes selected polar-orbiting satellite
ocean color sensor systems from the past, present and near future.

Sensor Satellite Agency Spatial

resolution

(km)

Spectral bands

(400-890 nm)

Launch(end)

CZCS Nimbus-7 NASA 0.825 4 1978-(1986)
OCTS ADEOS-1 NASDA 0.7 8 1996-(1997)
SeaWiFS SeaStar NASA 4; 1 8 1997-(2010)
MERIS Envisat ESA 1.2; 0.3 12 2002-(2012)
MODIS Terra/Aqua NASA 1 9 1999/2000
VIIRS Suomi NPP NOAA 0.75 7 2011
VIIRS JPSS-1 NASA&NOAA 0.75 7 2017
OLCI Sentinel 3A/B ESA 0.3 21 2016/2018
OCI PACE NASA 1 hyperspectral

(5 nm interval)
2022

OLCI Sentinel 3C/D ESA 0.3 21 >2022

TABLE 2.1: Selected past, current and planned polar-orbiting satellite sensor systems
relevant for ocean color.

Ocean color radiometers mounted on satellites measure upwelling solar radiation at
the top of the atmosphere. This signal can then be processed to obtain spectral water-
leaving radiance (or reflectance), which is the sunlight backscattered out of the ocean
after absorption and scattering by water and its constituents. The variable ocean color

is commonly referred to as the spectral remote-sensing reflectance (Rrs(l)), which is
defined as the ratio of water-leaving radiance to downwelling irradiance just above the
sea surface. The Rrs(l) is a function of the spectral absorption (a(l)) and backscattering
coefficients (bb(l)) of all constituents in seawater, including phytoplankton pigments.
It can be approximated using the formula from Gordon et al. (1988).

Rrs(l) = g0 u(l) + g1 [u(l)]
2 , u(l) =

bb(l)

a(l) + bb(l)
(2.2)

where g0 and g1 are coefficients related to sun-sensor angular geometry (Morel and
Gentili, 1993).
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Phytoplankton pigments influence Rrs(l) mainly through their influence on a(l) and
have different absorption properties from other water constituents (e.g., CDOM and
non-agal particles). The algorithms to retrieve Chl a concentrations, the primary goal of
satellite ocean color radiometry, make use of its distinctive absorption properties in sea-
water either implicitly (e.g., through empirical regression) or explicitly (e.g., through
deriving aph(l)). Standard Chl a algorithms, OCx, rely on empirical relationships
that use blue-to-green band ratio of Rrs(l) (as summarized in https://oceancolor.

gsfc.nasa.gov/atbd/chlor_a/). GSM, a semi-analytical algorithm, makes use of the
known spectral shape of aph(l) (i.e., aph(l) normalised by Chl a concentrations) and
inverts Rrs(l) to directly determine Chl a concentrations through optimization (Garver
and Siegel, 1997). Other methods like QAA (Lee et al., 2002) and C2RCC (Doerffer
and Schiller, 2007; Brockmann et al., 2016) first derive aph(l) from Rrs(l) in a semi-
analytical way and then convert aph(l) to Chl a concentrations using regionally adapted
bio-optical models (e.g., the power function from Bricaud et al. (1995) ). In my study,
different Chl a algorithms were evaluated and inter-compared for Aqua/MODIS and
Sentinel-3/OLCI, as published in Liu et al. (2018).

Compared to Chl a, phytoplankton accessory pigments contribute much less to Rrs(l)

signals, and their spectral differences in the contributions are subtle. Retrieving var-
ious accessory pigments, pigment groups, and single or multiple functional types in-
dicated by their marker pigments from ocean color data is therefore more complex.
Attempts have been made using spectral reflectance (e.g., Rrs(l)) or absorption (e.g.,
aph(l)) measurements alone or in combination. These algorithms make use of the dis-
tinctive absorption properties of different pigments (Figure 2.1) either implicitly (e.g.,
through empirical regression) or explicitly (e.g., through deriving the pigment-specific
absorption). PHYSAT (Alvain et al., 2005, 2008), an algorithm implemented for multi-
spectral satellite sensors SeaWiFS and MODIS, empirically relates the spectral changes
of normalized water-leaving radiance, i.e., after removing the effect of Chl a, to dom-
inant phytoplankton groups. Hyperspectral optical measurements and their deriva-
tives have been explored to separate pigment absorption peaks and ”shoulders” and
quantify pigments or functional types from the magnitude of the derivative spectra
or values at minimum or maximum peak wavelengths using, for example, regression
analysis (e.g., Bidigare et al., 1989; Organelli et al., 2013), clustering analysis (e.g., Xi
et al., 2015), similarity index (e.g., Millie et al.; Kirkpatrick et al., 2000; Craig et al., 2006;
Xi et al., 2017). Spectral inversion methods explicitly use the shape of the component
absorption spectra, e.g., specific absorption coefficients or Gaussian functions repre-
sented by phytoplankton pigments or functional types, as basis vectors. The aph(l)

spectrum can be expressed as a linear combination of the products of the basis vectors
and the concentrations of the components. The concentrations of phytoplankton pig-
ments or functional types can then be solved using measured aph(l) or total particulate
absorption spectra ap(l) (e.g., Chase et al., 2013; Liu et al., 2019), or using Rrs(l) via the
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linkage between aph(l) and Rrs(l) (Equation 2.2) and by parameterizing other absorb-
ing and scattering water constituents (e.g., Chase et al., 2017; Wang et al., 2016). In my
study, two spectral inversion algorithms were compared and optimized for estimating
various phytoplankton pigments, as published in Liu et al. (2019).

Algorithms for deriving phytoplankton Chl a, accessory pigments and functional types
from ocean color data require in situ data for their development. In addition, they need
a comprehensive database of colocated, concurrent satellite and in situ data for valida-
tion. The number of match-up data points puts a limit to the extent these algorithms
can be validated and inter-compared. Therefore, efforts have been and continue to be
made in improving techniques for field sampling and measurements.

2.4 Underway spectrophotometry

The hyperspectral AC-S spectrophotometer (or its former version, the 9-wavelength
resolved AC-9) (Sea-Bird Scientific, Philomath, OR, USA) has been widely used for
measuring in situ a(l) and beam attenuation coefficients (c(l)) in natural waters. The
AC-9 and AC-S were introduced in 1993 and 2002, respectively. Their introduction
revolutionized the capabilities of measuring these two IOPs - a(l) and c(l) - in situ

and remains industry standard today.

The AC-S concurrently measure a(l) and c(l) in two separate optical systems (Fig-
ure 2.2). They share a light source from a tungsten lamp and a rotating wheel em-
bedded with a linear variable filter that samples over 80 wavelengths typically in the
398–740 nm spectral range (Full Width at Half Maximum: 10-18 nm, wavelength incre-
ment: ⇠ 4 nm). A quasi-collimated light beam passes through the linear variable filter
and enters the ”a” and ”c” flow tubes, respectively, through optical glass windows. The
”a” flow tube has reflecting walls inside, with a diffuse collector at the end of the tube,
in front of a large area detector. This design ensures that both forward scattered and
transmitted light reach the detector, so that only absorbed and backscattered light are
removed from the beam. The ”c” flow tube has non-reflecting walls and a collimated,
clear detector at its end. The light beam is scattered and absorbed in the tube, with
transmitted and some scattered light reaching the detector’s field of view. With this
setting, both of the a(l) and c(l) measurements are subject to significant scattering er-
ror, in addition to the water temperature and salinity effects. Data correction methods
for a(l) (as absorption measurements are the focus of this study) are summarized in
IOCCG Protocol Series (2018).

In recent years, techniques have been developed to integrate the AC-S spectrophotome-
ter into the flow-through system of moving ships (see IOCCG Protocol Series (2019) for
review). In my study, the setup of such a system was adapted in the study region, the
Fram Strait and its adjacent waters. The operational experience gained in my study
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FIGURE 2.2: Schematic illustration of the AC-S spectrophotometer (adapted according
to IOCCG Protocol Series (2018)).

contributed to the standard protocol of IOCCG Protocol Series (2019) as suggestions of
operating such a system in polar seas. Figure 2.3 shows the setup of an underway AC-S
flow-through system in my study (Liu et al., 2018). The system was operated such that
within each hour, de-bubbled seawater directly entered the AC-S flow tubes for 50 min-
utes, and in the remaining 10 minutes it entered into a cartridge filter (pore size: 0.2 µm)
beforehand and then to the AC-S flow tubes. The choice of the time slots is empirical
and depends on how variable the dissolved optical properties are in the study region.
A valve controller made the switch periodically. As a result, during the 50 minutes,
the bulk a(l) and c(l) were measured (blue symbols in Figure 2.4), whereas during
the 10 minutes, their dissolved fractions (particle size < 0.2 µm) were measured (red
symbols in Figure 2.4). The a(l) and c(l) of dissolved matter in the 50 minutes were
obtained through linear interpolation of two adjacent filtered seawater measurements.
They were then subtracted from the bulk measurements to obtain the particulate frac-
tions (particle size > 0.2 µm) in the time slot. After correcting for water temperature
and salinity effects as well as scattering error, high quality ap(l) data were output as
the final data product of the underway AC-S flow-through system. From ap(l) data,
the concentrations of Chl a (Liu et al., 2018) and accessory pigments (Liu et al., 2019)
were estimated.

A big advantage of operating AC-S in this underway setting is that the subtraction of
the optical properties of 0.2-µm filtered seawater from those of the bulk greatly reduces
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FIGURE 2.3: Schematic illustration of the underway AC-S flow-through system.

FIGURE 2.4: Example time series of absorption at 548.8 nm measured by an AC-S spec-
trophotometer in an underway flow-through system (IOCCG Protocol Series (2019)).
Blue symbols are total seawater measurements, and red symbols are filtered seawater

measurements.

the effect of instrumental drift, one of the major source of instrumental uncertainties
of optical sensors like AC-S (Slade et al., 2010). The addition of a filter into the flow-
through system operationally allows the separation of signals from the particulate and
dissolved matters. These are much more useful than the bulk optical measurements
when it comes to deriving biophysical parameters. In the traditional way of deploy-
ing AC-S without the filter, only the bulk a(l) and c(l) are measured. They can be
mathematically decomposed into the contributions of particulate and dissolved mat-
ters (e.g., Bricaud and Stramski, 1990; Grunert et al., 2019), which adds methodological
uncertainty.

Compared to traditional discrete water sampling technique, high data sampling fre-
quency of AC-S (4Hz) greatly increases the number of in situ data points. In satellite
data validation practices, many more match-up data points are produced and more
than one in situ data points can match a satellite pixel. Given the mismatch in spatial
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scales between satellite and in situ data, averaged in situ data within a pixel is statis-
tically more representative than a single data point. Moreover, the spatial variability
within a satellite pixel can be addressed. In my study (Liu et al., 2018), in situ Chl a
concentrations estimated from underway ap(l) data and those measured from discrete
samples were compared and used to validate Chl a products of Aqua/MODIS and
Sentinel-3/OLCI generated from various algorithms.

2.5 Arctic Ocean

The Arctic is changing drastically in response to climate change and is transitioning to
a warmer, less frozen region. This has consequences for terrestrial and marine ecosys-
tems. At the root of the changes are changes in air temperatures and sea ice. The air
temperatures of the Arctic are increasing more than twice as fast as the global average
(Moon et al., 2021). The sea-ice cover is dramatically receding (IPCC, 2013). September
sea ice extent declines at a rate of 13% per decade since 1979 (https://climate.nasa.
gov/vital-signs/arctic-sea-ice/). The amount of multi-year ice reached the sec-
ond lowest since 1985 in summer 2021 and the post-winter sea ice volume in April 2021
was the lowest since records began in 2010 (Moon et al., 2021). Sea ice decline has con-
sequences for phytoplankton biomass (e.g., Moon et al., 2021), productivity (e.g., Moon
et al., 2021), bloom timing and frequency (e.g., Kahru et al., 2011; Ardyna et al., 2014),
and community composition (e.g., Ardyna et al., 2017). On the one hand, it allows more
light transmission into the Arctic Ocean surface waters (Nicolaus et al., 2012). On the
other hand, sea ice loss, larger river discharge, and increases in seawater temperatures
enhance salinity and temperature stratification in the water column, which may limit
nutrient replenishment into the sunlit surface waters. The impact of climate change on
future changes in light and nutrient availability and their impact on phytoplankton are
not well understood.

My study region is the Fram Strait and its adjacent waters. The Fram Strait is located
between Svalbard and Greenland. It is the largest and only deep gateway to the Arctic
Ocean. It is important for the mass and heat exchange between the Arctic Ocean and
the rest of the world’s ocean (e.g., Aagaard and Greisman, 1975; Rudels et al., 2013).
Warm and saline Atlantic water flows northward in the West Spitsbergen Current while
cold and fresh polar water and sea ice is transported southward in the East Greenland
Current. The latter constitutes nearly all of the sea ice export from the Arctic Ocean
(e.g., Kwok, 2009).

In recent decades, the Fram Strait has undergone changes in sea-ice conditions (e.g.,
Hansen et al., 2013; Krumpen et al., 2019) and a significant warming, high variability
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of Atlantic water inflow to the Arctic Ocean (Beszczynska-Möller et al., 2012). Mix-
ing, eddies and recirculating water of the warm West Spitsbergen Current further com-
plicate the hydrographic conditions (Walczowski, 2013; von Appen et al., 2015). As
a result, alterations in light and nutrient regimes impact phytoplankton seasonality,
biomass, community composition and distribution. The seasonal cycle of phytoplank-
ton biomass has been significantly enhanced in the shallow upper water layers since
2008 (Nöthig et al., 2015). High Chl a distributions are found to be associated with dif-
ferent conditions of vorticity and mixed layer depth in eastern Fram Strait throughout
the year 2009 (Schourup-Kristensen et al., 2021). A significant increase in summertime
Chl a concentrations in the eastern Fram Strait was observed from 1991 to 2009 and a
decrease since then until 2015, whereas on the western side there were minor changes
(Nöthig et al., 2015, 2020). A shift of dominant phytoplankton assemblages from di-
atoms (mainly Thalassiosira spp., Chaetoceros spp. and Fragilariopsis spp.) towards coc-
colithophores (mainly Emiliania huxleyi) and more recently, Phaeocystis spp. (mainly
Phaeocystis pouchetii) and other small pico- and nanoflagellates during summer months
was reported (Nöthig et al., 2015; Hegseth and Sundfjord, 2008; Bauerfeind et al., 2009).
Changes in phytoplankton biomass and composition impose consequences on higher
trophic levels in the food web (e.g., Bauerfeind et al., 2009; Nöthig et al., 2015) and ver-
tical particle fluxes, and thereby carbon sequestration by the biological carbon pump
(von Appen et al., 2021).

2.6 Outline of the thesis

In this thesis, I aim to estimate phytoplankton pigments using observations from a
shipboard flow-through AC-S system and a global biogeochemical model implemented
with phytoplankton growth and photoinhibition models in the Arctic Ocean, more
specifically, in the Fram Strait and its adjacent waters. Specific goals and main con-
tents are listed as follows.

In Paper I, Chl a concentrations were estimated from underway AC-S data in the Fram
Strait. These data were used to evaluate and inter-compare different Chl a algorithms
for ocean color satellite sensors Aqua/MODIS and Sentinel-3/OLCI in the Fram Strait.
This work confirms the great advantage of the underway spectrophotometry in enlarg-
ing in situ Chl a data sets for the Fram Strait and improving satellite Chl a validation
and Chl a algorithm assessment over discrete water sample analysis.

In Paper II, two spectral inversion algorithms were compared and optimized for esti-
mating various phytoplankton pigments from underway AC-S data in the Fram Strait.
Both approaches provide useful information on pigment distributions, and hence, phy-
toplankton community composition indicators, at a spatial resolution much finer than
that can be achieved with discrete samples.
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In Paper III, the spatial and temporal distribution of the ratio of PPC to Chl a was
modelled for the global ocean, with in situ data from the Fram Strait contributing to
the evaluation of the model. Its variability due to the changes in phytoplankton com-
munity composition and physiological acclimation was analysed. This work shows
that at high latitudes, both taxonomic changes and physiological acclimation deter-
mine phytoplankton pigment signature, whereas in the rest of the oceans, community
composition plays a main role.

2.7 List of publications and declaration of own contribution
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Chapter 3

Synthesis

Human-induced climate change is amplified in the Arctic. This has consequences for
terrestrial and marine ecosystems. Phytoplankton are one of the main primary pro-
ducers in the Arctic Ocean. Phytoplankton growth and photosynthesis and, therefore,
phytoplankton biomass, productivity and functional diversity are limited by light and
nutrients, which are altered by air temperature increase and sea ice decline. To study
the response of phytoplankton to the changing climate, satellite ocean color data are
often used. However, in the Arctic Ocean, these data have relatively lower space-time
resolution than those in the low and middle latitudes due to the heavy clouds and
fog, the prevailing low solar elevations and the presence of sea ice etc. (IOCCG, 2015).
In addition, the validity of standard satellite ocean color algorithms is affected by, for
example, terrigenous CDOM input from river discharge (e.g., Matsuoka et al., 2007,
2011) and phytoplankton photoacclimation to low irradiances that often leads to high
intracellular pigment concentrations (e.g., Cota et al., 2003, 2004; Matsuoka et al., 2007,
2011).

The shipboard underway spectrophotometry technique provides a new perspective for
evaluating satellite Chl a algorithms. Thanks to the underway setting, the inclusion of
a 0.2-µm pore-size filter, and the high sampling frequency (4 Hz) of the AC-S spec-
trophotometer, this technique yields in situ surface Chl a data with high spatial res-
olution along the cruise tracks. This greatly increases the number of match-up data
points between satellite and in situ observations compared to high performance liquid
chromatography (HPLC) measurements of discrete water samples. This is addressed
in Paper I.

In addition to Chl a concentrations, which are widely used indices of phytoplankton
biomass and hence input parameters for many primary productivity models, output
data of the underway AC-S system, hyperspectral ap(l) data, provide estimates of
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surface accessory pigment concentrations, which are indicators of phytoplakton tax-
onomic and functional diversity. The pigment estimates are also obtained with high
frequency along the cruise tracks. This is addressed in Paper II.

While in situ underway and satellite ocean color data only provides information of the
surface ocean, numerical models can transcend this limit and yield data from the wa-
ter column. In Paper III, mechanistic models for phytoplankton photoinhibition and
growth are coupled with the global biogeochemical model RecoM2 to predict photo-
protective needs of phytoplankton, which is in part mediated by pigment ratio PPC/Chl
a in the Arctic Ocean.

The aims of this thesis are to estimate phytoplankton pigments using observations
from the shipboard underway flow-through AC-S system and RecoM2 biogeochemi-
cal model implemented with phytoplankton growth and photoinhibition models in the
Fram Strait and its adjacent waters.

3.1 Estimation of Chl a (Paper I)

An underway flow-through AC-S system was set up onboard R.V. Polarstern during
two Fram Strait cruises, PS93.2 and PS99.2. Hyperspectral ap(l) data was derived
from the underway AC-S system with high spatial resolution (⇠ 300 m for one minute
binned-averaged spectra when the ship is moving at ⇠ 10 knots). Subsequently, partic-
ulate absorption line height at 676 nm calculated from ap(l) was empirically related to
HPLC Chl a concentrations for PS93.2 and PS99.2, respectively. Both relationships were
applied to high frequency AC-S data to estimate Chl a concentrations. In total, 24424
and 16110 Chl a data points were generated for PS93.2 and PS99.2, ranging from 0.179
to 3.550 mg m

�3 (mean value: 1.042 mg m
�3) and from 0.003 to 2.701 mg m

�3 (mean
value: 0.677 mg m

�3), respectively. These values are representative for the summertime
Chl a variability observed in the Fram Strait (Nöthig et al., 2015).

The reconstructed in situ Chl a data sets from AC-S were used to evaluate the following
seven satellite Chl a algorithms (Table 3.1). In addition, assessment using HPLC Chl
a data were also performed for comparison. Notably, this work represented the earli-
est validation activity of Sentinel-3/OLCI (first OLCI sensor launched in 2016) Chl a
products in the Arctic Ocean.

The number of AC-S-satellite match-ups is over one order of magnitude greater than
HPLC-satellite match-ups. AC-S-satellite match-ups show that Chl a was overesti-
mated by all satellite algorithms. Two Polymer algorithms of Sentinel-3/OLCI, Polymer-
Standard and OCI-Polymer, generated data products with relatively high estimation
precision and small error. The unbiased root mean square error and the mean Relative
Percentage Difference are approximately 0.2 mg m

�3 and 140% (meaning on average,
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the estimated values are over twofold as the measured ones), respectively, for both
algorithms when compared with AC-S derived Chl a data.

TABLE 3.1: Satellite Chl a algorithms being evaluated for the cruises PS93.2 and
PS99.2.

Cruise Satellite sensor Atmospheric Correction Chl a algorithm Denotation
PS93.2 Aqua/MODIS Standard OCI OCI
PS99.2 Aqua/MODIS Standard OCI OCI

Sentinel-3/OLCI Standard OC4 OC4-Operational
C2RCC C2RCC C2RCC
Polymer Polymer Polymer-Standard
Polymer OC4 OC4-Polymer
Polymer OCI OCI-Polymer

Note: in the thesis Polymer is short for POLYnomial based algorithm applied to MERIS (Steinmetz
et al., 2011).

The Polymer algorithms are of special interests in this work because they have atmo-
spheric correction processors that incorporate the contributions of sun glint and thin
clouds in their reflectance models to derive atmospheric corrected remote sensing re-
flectance (Steinmetz et al., 2011). This allows for a much larger spatial coverage of data
than using standard atmospheric correction processors (Müller et al., 2015a,b). The
number of AC-S matchups of the Polymer algorithms are two to three times greater
than those by the operational OC4 algorithms of Aqua/MODIS and Sentinel-3/OLCI.
In the Arctic Ocean where operational satellite ocean color data have relatively low
space-time resolution, Polymer algorithms are promising candidates in enlarging satel-
lite ocean color data sets for Sentinel-3/OLCI given more validation activities are per-
formed in the future.

Further assessment of other types of satellite Chl a algorithms, e.g., semi-analytical
methods such as QAA (Lee et al., 2002) and GSM (Doerffer and Schiller, 2007; Brock-
mann et al., 2016), or selection of neural network approaches based on water types
(Hieronymi et al., 2017) can be exploited to obtain optimized Chl a data sets for the
Fram Strait. The established bio-optical relationships between ap(l) and Chl a in the
Fram Strait facilitates the local application QAA for retrieving Chl a. When Polymer
atmospheric correction processor is applied, high data coverage with reasonably low
uncertainty can be expected.

This work also shows the capacity of the underway AC-S flow-through system in en-
larging in situ Chl a data sets compared with HPLC discrete measurements. A more
common approach of obtaining high frequency in situ Chl a data is to use in situ chloro-
phyll fluorometers. This approach causes data inaccuracies due to natural variations
in the fluorescence to Chl a ratio (Roesler et al., 2017), the fluorescence of CDOM (e.g.,
Xing et al., 2017), and the non-photochemical quenching of phytoplankton (Huot and
Babin, 2010). In the surface ocean where solar irradiance reaches its maximum before
decreasing with depth, non-photochemical quenching can cause great underestimation
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of Chl a concentrations. The underway AC-S flow-through system provides a promis-
ing and even more accurate method of estimating surface Chl a data, as ap(l) is one
of the inherent optical properties of seawater that are not affected by the light field, in
contrast to Chl a fluorescence.

3.2 Estimation of accessory pigments (Paper II)

The underway flow-through AC-S system was set up onboard R.V. Polarstern during
the Fram Strait cruise PS107, in addition to PS93.2 and PS99.2. AC-S derived hyper-
spectral ap(l) were matched with HPLC pigments data. In total, 298 ap(l)-pigments
match-ups were used as the pigment retrieval data set. Two pigment retrieval algo-
rithms, Gaussian decomposition (Chase et al., 2013) and the singular value decomposi-
tion combined with non-negative least squares (SVD-NNLS) inversion method (Moisan
et al., 2011) were compared and optimized for estimating various phytoplankton pig-
ments or pigment groups from the ap(l) data. While both methods were first applied
to the bio-optical data of the Fram Strait, the SVD-NNLS method is for the time applied
to the underway spectrophotometry data.

The Gaussian decomposition method decomposes aph(l) into Gaussian functions (agaus(l))
and correlates the amplitudes of the Gaussian functions with the concentrations of
major pigment groups. The amplitude of each Gaussian function is assumed to rep-
resent the magnitude of the absorption coefficient of a specific pigment or pigment
group at the Gaussian peak wavelength, based on known pigment absorption prop-
erties determined in laboratory analyses. In this work, each AC-S derived ap(l) was
decomposed to twelve Gaussian functions and one absorption spectrum by non-algal
particles (aNAP(l)) approximated by an exponential function in the range of 400-700
nm. Eleven out of the twelve Gaussian amplitudes were correlated to HPLC pigment
concentrations according to the absorption center wavelengths of the pigments (see
Table 2, Paper II). The (agaus(l)) that best correlates with a certain pigment was se-
lected for predicting that certain pigment. As a result, agaus(434), agaus(660), agaus(638),
agaus(523) and agaus(492) were used to predict the concentrations of Chl a, chlorophyll
b, chlorophyll c1 and c2, photosynthetic carotenoids and PPC, respectively (median
absolute percentage error, MPE 20.8-34.0%). More robust predictions were obtained
when aph(l), calculated as the difference between ap(l) and aNAP(l), was normalized
by the package effect index at 675 nm. The latter is determined as a function of ”pack-
aged” aph(675) and Chl a concentrations, which shows potential for improved pigment
retrieval accuracy by the combined use of aph(l) and Chl a data.

The SVD-NNLS inversion method assumes that aph(l) can be reconstructed from the
linear combination of pigment-specific absorption coefficients multiplied by correspond-
ing pigment concentrations (Bidigare et al., 1987). In this work, AC-S aph(l) was
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calculated as mentioned above. This technique involves a first inversion of the ob-
served pigment concentrations that derives pigment-specific absorption spectra us-
ing SVD and a second inversion of these derived pigment-specific absorption spec-
tra that solves for pigment concentrations using NNLS. In the first inversion, to min-
imize the ill-conditioning of the matrix originated from the multicollinearity of phy-
toplankton pigment concentrations, thresholds of condition numbers and similarity
indices together with sensitivity analyses with data perturbations were proposed to
determine the number and types of pigments that should be inverted for. The SVD-
NNLS method exhibited stable prediction accuracy (MPE 16-65%) for six types of pig-
ments, i.e., Chl a, chlorophyll b, chlorophyll c1 and c2, diadinoxanthin, fucoxanthin,
and Hex. When considering the package effect normalization, additional estimations of
19’-butanoyloxyfucoxanthin (MPE 67-70%) and peridinin (MPE 68-75%) were achieved.

Grouped photosynthetic carotenoids and PPC can also be retrieved using the SVD-
NNLS method, but with less accuracy. On the other hand, SVD-NNLS enables robust
retrievals of specific carotenoids (MPE 37–65%), i.e., fucoxanthin, diadinoxanthin and
Hex, which is currently not accomplished by Gaussian decomposition.

This work improved the Gaussian decomposition algorithm from Chase et al. (2013) by
considering pigment package effect and reconsidered the SVD-NNLS inversion tech-
nique from Moisan et al. (2011) by taking into account matrix conditioning.

When applying the two methods to all the AC-S data, accessory pigments can be esti-
mated along the cruise tracks. This pigment information can be used to indicate phy-
toplankton community composition when verified by microscopic and flow cytome-
tric techniques. It can support the evaluation of ocean color algorithms and coupled
hydrodynamic-biological modelling. With the advancement of hyperspectral radiome-
ters, these algorithms have great potential to be incorporated into the inversion of satel-
lite ocean color measurements (e.g., PACE/OCI mission) for the synoptic detection of
phytoplankton pigments and thus the monitoring of phytoplankton spatial and tem-
poral dynamics. Thus, enhanced understanding in the responses of phytoplankton
community composition and physiology to climate change can be expected.

3.3 Estimation of photoprotection (Paper III)

Phytoplankton growth models of Geider et al. (1998), the Geider model, and Marshall
et al. (2000), the Marshall model, were implemented into the Regulated Ecosystem
model version 2 (REcoM2) (Hohn, 2008; Schartau et al., 2007) to predict the photopro-
tective needs of phytoplankton and their attributions from phytoplankton PPC, physi-
ological state, and community composition.
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The Geider model describes phytoplankton photoacclimation via the changes in Chl
a content. Within the model, the initial slope of the photosynthesis–irradiance (P-E)
curve, a, is set constant and no other photoinhibitory parameter is considered. That
is, photoinhibition does not take place in this model. By contrast, the Marshall model
accounts for changes in Chl a-specific absorption cross-section and quantum yield of
photosynthesis driven by the relative amount of active Photosystem II. Decreases in
absorption cross-section decrease the initial slope of the P-E curve, aNP. aNP is gen-
erally described as the light limited slope of the P-E curve since under light saturated
conditions photosynthesis is limited by dark reactions. The net result of the Marshall
model is making aNP variable along the P-E curve. The decrease in aNP under high
light conditions reverts the limit for photosynthesis from dark to light reactions, which
eventually leads to photoinhibition. Assume that photoinhibition is negligible in phy-
toplankton communities acclimated to ambient light (Cullen et al., 1992). The differ-
ence between the P-E curves with (Marshall) and without photoinhibition (Geider) is
considered a measure of photoprotective needs in order to minimize such photoinhi-
bition. The difference is given by the difference between a and aNP. This difference
reflects a photoprotection gap that could be filled by a variable pool of photoprotective
pigments or by other non-photochemical quenching mechanisms.

The REcoM2 model describes the dynamics of two phytoplankton types, diatoms and
non-diatoms, that have group-specific photoprotective needs. The rest of the ecosystem
is completed with zooplankton, detritus, and main nutrients compartments. Ocean
circulation and mixing is derived from the MIT general circulation model (Hauck et al.,
2013).

The coupled REcoM2 model was run in a nearly global model configuration from 80�S
to 80�N on a horizontal 2� x 2� grid in the Northern Hemisphere and 2� x 2� times the
cosine of the latitude in the Southern Hemisphere, with 30 depth layers (0 to 5,700 m).
The model was spun up for 4 years and analyzed for the next fifth year in a 10-daily
temporal resolution. Model output provided physical variables, temperature and av-
erage light, and biological variables, phytoplankton groups, nutrient limitation, Chl a,
carbon, a (denoted as ā) and aNP (denoted as āNP). Each output variable was averaged
to a global 2� x 2� grid, within the 33 depth layers (0 to 5,750 m) and over 12 months.
This resulted in a 4-D array per variable that had a common spatial and temporal res-
olution to be compared to observations (180 longitude x 90 latitude x 33 depth x 12
time).

The degree of phytoplankton photoprotection is represented by 1-āNP/ā. It was then
related to the HPLC PPC/Chl a data, producing a 4-D global map of PPC/Chl a es-
timates. These estimates were in agreement with field observations in most of the
surface ocean, at depth and even across seasons, suggesting the role of PPC in pho-
toprotective activities in the global ocean. However, at higher latitudes, discrepancies



3.4. Discussion & Outlook 29

between predictions and observations suggested PPC content was insufficient to sat-
isfy phytoplankton protective needs of the community and thus other mechanisms of
non-photochemical quenching were relevant.

Variations in community PPC content can be driven by physiological acclimation as
well as shifts in community composition. The coupled model output provided a full
description of phytoplankton groups as well as group-sepcific PPC/Chl a, allowing
the discernment of respective effects of intragroup photoacclimation and community
composition. At higher latitudes, changes in PPC content can result from both effects
while in the rest of ocean taxonomic changes played a main role.

This work potentially provides a comprehensive view of the phytoplankton commu-
nity pigment signature, which is crucial for modeling the coupling of light absorption
to carbon fixation in the ocean. Future validation of the model can use the combined
HPLC observations and pigment estimates from underway flow-through AC-S system
(results of Paper I and II).

In remote sensing applications, phytoplankton pigment databases have been exten-
sively used to develop, validate, or refine bio-optical algorithms for estimating phy-
toplankton functional types via CHEMTAX (Mackey et al., 1996) and Diagnostic Pig-
ment Analysis (Vidussi et al., 2001). This work provides insights on how much of the
variability in community PPC ratios is attributable to changes in community composi-
tion or changes in physiological state. This may allow an improvement of the match
between satellite ocean color data and the underlying phytoplankton community. In
addition, these insights may contribute to a better understanding of the effect of phy-
toplankton photoacclimation on the accuracy of satellite ocean color products in the
Arctic Ocean.

3.4 Discussion & Outlook

Phytoplankton pigments estimated from the shipboard underway flow-through AC-S
system and phytoplankton groups estimated from the biogeochemical model RecoM2
provide information on phytoplankton diversity. The RecoM2 describes the dynamics
of two phytoplankton types, diatoms and nondiatoms. The difference between groups
is merely functional, as diatoms require silica and other phytoplankton do not. As
for the pigments, there are around ten common marker pigments (see 2.2) that indi-
cate the potential presence of certain phytoplankton groups. However, differentiating
phytoplankton groups by marker pigments can be problematic, as there is substantial
variability in pigment concentrations as a function of physiological responses to the en-
vironmental condition. In addition, a given marker pigment can be present in several
phytoplankton groups (e.g., fucoxanthin in diatoms and haptophytes). Therefore, pig-
ment derived phytoplankton diversity needs to be verified by microscopic data. With
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microscopy one is able to identify many phytoplankton to the species level, while to
date, numerical modelling and pigment analysis can only derive grouped phytoplank-
ton based on their biogeochemical functions. As mentioned in 2.1, in the ocean, there
are ⇠ 2 ⇥ 104 morphologically distinct phytoplankton species distributed among at
least eight taxonomic divisions or phyla (Falkowski et al., 2004). Diatoms, for example,
constitute one of the most diverse groups of phytoplankton. Recent estimations of the
number of diatom species (including the ones from fresh water) range from 12,000 to
30,000 (Guiry, 2012; Mann and Vanormelingen, 2013). When estimating phytoplankton
diversity using bio-optical or numerical models, one needs to bear in mind that there
is great diversity even within a certain phytoplankton group.

Currently, the RecoM2 can resolve diatoms and nondiatoms. In the future, it is possi-
ble to expand the model capacity of simulating more phytoplankton functional types.
The model of Le Quéré et al. (2005), for example, is able to predict seven functional
types. An access to global marker pigment distributions estimated from optical data,
either from in situ or satellite, may assist in further development and validation of the
RecoM2. The pigment estimation algorithms developed in this thesis using underway
spectrophotometry data have a great potential. The high spatial resolution underway
AC-S data sets in the Fram Strait complement the global underway AC-S data set from
the Tara Oceans expedition (Boss et al., 2013). The Gaussian decomposition method has
been applied to the latter data set to obtain estimates for the same pigment groups (e.g.,
PPC) as my study (Chase et al., 2013). Furthermore, when the SVD-NNLS method ap-
plied to this global AC-S data set, the global distributions of several marker pigments,
e.g., fucoxanthin, Hex, can be produced. Hex is a marker pigment of haptophytes. One
type of haptophyte, Phaeocystis, also DMSP-producers in terms of their biogeochemical
function, have a growing importance in the Fram Strait. Their growth data and data of
Hex concentrations may be included in RecoM2 for their prediction in the Fram Strait,
where coccolithophores, another haptophyte algae, are not prominent. Hex data may
contribute to the model prediction of coccolithophores, the calcifiers, in waters where
they are the predominant haptophytes, though the backscattering properties of coc-
coliths are more commonly explored, especially in satellite ocean color prediction for
coccolithophores.

Though promising, the SVD-NNLS method has its inherent limitations. The main lim-
itation is the ill-conditioning of the pigment matrix originated from the multicollinear-
ity of phytoplankton pigment concentrations (Paper II Figure 4(b)). For example, Chl a
shows high correlations (Spearman0s rank correlation coefficient > 0.9) with fucoxan-
thin, chlorophyll c1 and c2, chlorophyll c3, and b-carotene in the study of Paper II. Fu-
coxanthin and chlorophyll c are the main light harvesting pigments of diatoms, while
b-carotene is one of their PPC. This is in agreement with the fact that diatoms thrive in
eutrophic waters where nutrients are abundant. Therefore, in eutrophic waters where
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diatoms are predominant, the SVD-NNLS method may not work. To minimize ill-
conditioning and ensure stable pigment predictions in Paper II, nine pigments were in-
volved in the pigment matrix, namely, fucoxanthin, diadinoxanthin, chlorophyll c1 and
c2, chlorophyll b, peridinin, 190-hexanoyloxyfucoxanthin, 190-butanoyloxyfucoxanthin,
and pheophytin a. This indicates a decent performance of SVD-NNLS in waters con-
taining a mixture of several phytoplankton groups. In oligotrophic waters (e.g., the
subtropical gyres) where phytoplankton of smaller size predominate, SVD-NNLS could
perform well provided that pigment concentrations do not significantly co-vary (e.g.,
Chl a and zeaxanthin, the marker pigment for cyanobacteria) and that the pigment
concentrations are sufficiently higher than zero.

The Gaussian decomposition and the SVD-NNLS methods can be incorporated into the
reconstruction of hyperspectral Rrs(l) through Equation 2.2. A trial has been made that
applied Gaussian decomposition to in situ hyperspectral radiometric data to retrieve
phytoplankton pigment groups (Chase et al., 2017). This shows potential for their ap-
plications in deriving phytoplankton pigments from hyperspectral satellite ocean color
radiometers (e.g., PACE/OCI). Hyperspectral observations are more capable of dis-
cerning subtle differences in spectral absorption by various accessory pigments than
multi-spectral data. This is especially true for the SVD-NNLS method, as when it was
applied to ap(l) at ten MODIS bands, the number of pigments that can be estimated as
well as the estimation accuracy was reduced (Paper II). In addition, extending the vis-
ible to UV light region could make a difference in retrieving phytoplankton pigments
from hyperspectral ocean color data. In theory, it is more accurate to estimate pigments
from aph(l) than from Rrs(l), since the former was only affected by pigment while
the latter contain signals of all water constituents. Also, it is theoretically more accu-
rate and physically explainable to derive spectral absorption coefficients than pigments
from Rrs(l) (IOCCG, 2006). Grunert et al. (2019) has shown that when decomposing
the spectral non-water absorption coefficients, a Level 2 satellite ocean color product,
into the contribution of colored detrital matter (i.e., CDOM+non-algal particles) and
phytoplankton, data at the UV wavelengths can accurately account for the effect of col-
ored detrital matter, allowing accurate derivation of aph(l). Given that this method
is applied to hyperspectral satellite non-water absorption products in the future, easier
implementation of the Gaussian decomposition and the SVD-NNLS methods and more
accurate pigment estimates can be expected.
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Underway spectrophotometry in the Fram 
Strait (European Arctic Ocean): a highly 
resolved chlorophyll a data source for 
complementing satellite ocean color 
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Abstract: Satellite remote sensing of chlorophyll a concentration (Chl-a) in the Arctic Ocean 
is spatially and temporally limited and needs to be supplemented and validated with 
substantial volumes of in situ observations. Here, we evaluated the capability of obtaining 
highly resolved in situ surface Chl-a using underway spectrophotometry operated during two 
summer cruises in 2015 and 2016 in the Fram Strait. Results showed that Chl-a measured 
using high pressure liquid chromatography (HPLC) was well related (R2 = 0.90) to the 
collocated particulate absorption line height at 676 nm obtained from the underway 
spectrophotometry system. This enabled continuous surface Chl-a estimation along the cruise 
tracks. When used to validate Chl-a operational products as well as to assess the Chl-a 
algorithms of the aqua moderate resolution imaging spectroradiometer (MODIS-A) and 
Sentinel-3 Ocean Land Color Imager (OLCI) Level 2 Chl-a operational products, and from 
OLCI Level 2 products processed with Polymer atmospheric correction algorithm (version 
4.1), the underway spectrophotometry based Chl-a data sets proved to be a much more 
sufficient data source by generating over one order of magnitude more match-ups than those 
obtained from discrete water samples. Overall, the band ratio (OCI, OC4) Chl-a operational 
products from MODIS-A and OLCI as well as OLCI C2RCC products showed acceptable 
results. The OLCI Polymer standard output provided the most reliable Chl-a estimates, and 
nearly as good results were obtained from the OCI algorithm with Polymer atmospheric 
correction method. This work confirms the great advantage of the underway 
spectrophotometry in enlarging in situ Chl-a data sets for the Fram Strait and improving 
satellite Chl-a validation and Chl-a algorithm assessment over discrete water sample analysis 
in the laboratory. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 
Phytoplankton, the main primary producers at the base of marine food web, have distinctive 
impacts on the changes of Arctic climate system. The Arctic region is warming at rates 
double than the global average, coinciding with persistent sea ice decline [1]. Seasonal sea ice 
retreat favors phytoplankton bloom development and the extension of phytoplankton growing 
season, increasing annual mean phytoplankton biomass and production [2,3]. This increase, in 
turn, is expected to further warm the ocean surface layer by absorbing more solar radiation 
and triggering additional positive feedbacks, which could amplify Arctic warming by 20% 
[2]. Meanwhile, together with ice algae, the increasing phytoplankton stocks generate more 
dimethylsulphide, a trace gas that provides 80% of global biogenic atmospheric sulphur [4]. 
When released to the atmosphere, dimethylsulphide, via formation of sulphate aerosol, cool 
the Arctic atmospheric temperature by dispersing solar radiation [5–7]. 

Despite the climatic role of Arctic phytoplankton, ship-based in situ measurements of total 
chlorophyll a concentration (Chl-a), a universal proxy of phytoplankton biomass, are sparse 
in the harsh Arctic Ocean. In situ Chl-a can be measured either through in situ fluorometers or 
High-Performance Liquid Chromatography (HPLC). The former method is relatively simple 
and inexpensive, but can cause inaccuracies due to natural variations in the fluorescence to 
Chl-a ratio [8], the fluorescence of colored dissolved organic matter (CDOM) [9], and the 
non-photochemical quenching [10]. HPLC is more accurate, but requires more intensive 
labor, time, money and complex analysis [11–13]. In addition, HPLC Chl-a measurements are 
based on discrete water samples collected on board, therefore, greatly limited by low repeat 
frequency and spatial coverage. 

Satellite remotely sensed Chl-a is one of the most appropriate data sets to study long-term 
phytoplanktonic variability. However, ocean color data of the Arctic Ocean suffer from poor 
spatio-temporal coverage and resolution because of the heavy clouds and fog, the prevailing 
low solar elevations in high latitudes and the presence of sea ice etc [14]. Furthermore, 
standard ocean color Chl-a algorithms may not be sufficient to account for the bio-optical 
heterogeneity within the Arctic Ocean [15]. In the areas subjected to freshwater inputs, 
terrigenous CDOM can cause an overestimation of Chl-a when using standard algorithms 
[16–18]. In addition, phytoplankton tend to increase Chl-a per cell to absorb more light under 
low light conditions. Thus, pigment packaging is enhanced and Chl-a specific absorption 
coefficient is lowered, causing underestimation of satellite retrieved Chl-a [16–20]. 
Therefore, Arctic satellite ocean color Chl-a data require to be validated, improved and 
supplemented with substantial volumes of in situ observations. 

In 2016, the Sentinel-3 Ocean and Land Color Instrument (OLCI) was launched as the 
successor of the Medium Resolution Imaging Spectrometer (MERIS) (mission between 2002 
and 2012). It has a full spatial resolution of approximately 300 m and a swath width of 1270 
km. OLCI Level 2 ocean color products were first released in July 2017. A second OLCI 
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sensor is launched in April 2018, followed by six more OLCI sensors operated until the late 
2030s. To date, OLCI Chl-a retrievals have not yet been evaluated in the Arctic region. There 
is an urgent need for validation data for the new Sentienl-3 OLCI Chl-a product as well as 
other products. 

The Fram Strait, the deepest gateway connecting the Arctic Ocean to the North Atlantic 
Ocean, is one of the most climate-relevant ocean passages. Water masses exchange here 
along with salt and heat, including southward transportation of Arctic cold fresher water and 
sea ice to the Atlantic by the East Greenland Current, which accounts for nearly all of the 
Arctic sea ice export to the Atlantic Ocean [21], and northward inflow of Atlantic warm 
saltier water to the Arctic Ocean carried by the West Spitsbergen Current [22,23]. Within the 
context of climate change, these processes have been enhanced over the past decades. 
Observations in the Fram Strait revealed increased warming [24] and a larger amount of 
Arctic freshwater and sea ice export [25–27], which further accelerated North Atlantic 
freshening and promoted Arctic ice melt. The consequent effects on planktonic community 
patterns might be inferred from the shift of dominated phytoplankton assemblages from 
diatoms to other smaller nano- or picoplankton species [28,29], together with an increase of 
warm-adapted zooplankton in the eastern Fram Strait [30]. Model simulations revealed that 
primary productivity differs in zones influenced by different water masses in the Fram Strait 
[31–34]. Recently, a time series study of summertime Chl-a in eastern Fram Strait showed 
increasing Chl-a trend over 20 years using combined analysis of satellite ocean color and 
discrete in situ measurements [29,35]. However, further long-term in situ investigations are 
needed as ground truth for the validation of new satellite sensors (e.g. OLCI) and evaluation 
of Chl-a algorithms in order to obtain consistent time series data by integrating different 
satellite sensor measurements. 

The shipboard underway spectrophotometry represents a promising in situ Chl-a 
observation technique. It utilizes a WET Labs AC-S hyperspectral spectrophotometer (or its 
former alternative, the 9-wavelength resolved AC-9) that is operated in flow-through mode to 
derive particulate absorption coefficients (ap) (for simplicity, the wavelength dependency of 
ap is omitted in the context) [36–47]. Those ap data are calculated by differencing 
measurements from temporally adjacent 0.2-µm filtered and whole water samples. Instrument 
drift is removed during the subtraction, which is difficult to be accounted for when routine 
calibrations are not possible [39]. Via empirical relationships between ap and Chl-a, 
continuous surface Chl-a data along cruise tracks can be obtained. This technique 
considerably facilitates the collection of in situ Chl-a measurements with unprecedented 
temporal and spatial resolution due to high sampling frequency, low power consumption, and 
the cost-effectiveness of the AC-S or AC-9 instrument and other components of the flow-
through system. While the applicability of this technique to derive highly resolved Chl-a has 
been evaluated on an equatorial transect [39], in Equatorial Pacific, North Atlantic, 
Mediterranean Sea and Subarctic Northeast Pacific [38], and during the cruises of Tara 
Oceans [40,46] and the Atlantic Meridional Transect [42], it has never been used in the Fram 
Strait. 

Here, we evaluate the capability of obtaining highly resolved surface Chl-a using the 
shipboard underway AC-S flow-through system in the Fram Strait. To achieve a detailed 
understanding on the quality of the Chl-a data sets of several satellite sensors and various 
algorithms, the retrieved Chl-a data from AC-S ap measurements are used to validate (1) 
OLCI Level 2 Chl-a operational products, (2) OLCI Level 2 Chl-a products processed with 
Polymer atmospheric correction algorithm (version 4.1) [48,49], and (3) Level 2 Chl-a 
operational products from NASA Aqua Moderate Resolution Imaging Spectroradiometer 
(MODIS-A). 
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2. Data and methods 
Data were collected during two cruises onboard R.V. Polarstern to the Fram Strait: the 
PS93.2 cruise from 20 July to 14 August in 2015 and the PS99.2 cruise from 23 June to 16 
July in 2016. Both cruises followed similar tracks, ranging from approximately latitudes 72°to 
80°N and longitudes 10°W to 15°E (Fig. 1). 

 

Fig. 1. Cruise tracks for PS93.2 (July-August 2015) and PS99.2 (June-July 2016) for underway 
HPLC data. 

2.1 Underway AC-S measurements 

A 25 cm-pathlength AC-S was integrated into the shipboard flow-through system to measure 
the hyperspectral absorption and beam attenuation coefficients over a spectral range of 400 – 
740 nm. The effective spectral resolution (FWHM) is 10 nm and the sampling rate equals ~4 
Hz with ~3.5 nm wavelength resolution. 

The AC-S flow-through system was set up following Slade et al. [39]. The AC-S 
instrument was mounted to the seawater supply from the ship’s membrane pump, with keel 
intake at roughly 11 m below the sea surface. The pumped seawater with a flow rate of 1 to 2 
L min−1 first passed a de-bubbler (4H Jena, Germany) to reduce air bubbles. Via an 
electronically actuated valve controller (Isitec, Germany), the de-bubbled seawater was 
diverted either directly to the AC-S to measure the total non-water absorption and beam 
attenuation for 50 minutes per hour, or through a 0.2-um cartridge filter (Sartobran P, 
Germany) and then to the AC-S for the remaining 10 minutes each hour to provide a baseline 
for particulate absorption measurements. The AC-S instrument was cleaned every 1-2 days 
for blank measurements. The filter cartridges were replaced approximately once per week. 
The system was operated constantly except when anchoring the ship in ports, during daily 
cleaning of the AC-S tubes or while replacing the cartridge filter. 

AC-S data were processed following the procedures adapted from Slade et al. [39]. 
Briefly, AC-S data were successively de-spiked, visually checked and 1-min median binned. 
Temperature and salinity dependency of pure water absorption were accounted for following 
Sullivan et al. [50]. The absorption coefficients measured over the filtering period was 
interpolated to the time of the total absorption measurements and finally subtracted to obtain 
ap and particulate attenuation coefficient (cp). Scatter and residual temperature correction for 
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ap were performed following Slade et al. [39] to correct the overestimation of ap due to the 
incomplete collection of the scattered light in the AC-S a-tube, and concurrently to account 
for the temperature differences between the filtered and unfiltered seawater and between the 
samples in the AC-S tubes and the thermosalinometer. The proportional scatter correction 
approach from Zaneveld et al. [51] was adopted. 

2.2 Discrete water sampling 

To validate the AC-S measurements, approximate 5 L of water samples were collected from 
the unfiltered AC-S outflow for later laboratory analysis of phytoplankton pigment 
composition and concentration and ap. These samples were filtered on 25 mm (or 47 mm only 
for ap measurements during PS93.2) diameter Whatman GF/F glass fiber filters (nominal pore 
size of 0.7 µm). 

2.2.1 Phytoplankton pigment analysis 

Filters for phytoplankton pigment composition and concentration analysis were immediately 
shock-frozen in liquid nitrogen and then stored at −80°C until further analysis at the 
laboratories of the Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research 
(AWI). 

Pigment composition was analyzed by an HPLC system comprising a Waters 600 
controller combined with a Waters 2998 photodiode array detector, a Waters 717plus auto-
sampler and a LC Microsorb C8 HPLC column. A list of 23 pigments shown in Table 2 of 
Taylor et al. [52] were separated and quantified following an adjustment of the method 
described in Barlow et al. [53], as detailed in Taylor et al. [52]. The pigment data were quality 
assured according to Aiken et al. [54]. Chl-a was calculated as the summed contribution of 
monovinyl chlorophyll a, chlorophyllide a and divinyl chlorophyll a concentrations. Four 
phytoplankton groups, namely diatoms, green algae, prymnesiophytes (haptophytes) and 
prokaryotes, were identified and determined from their biomarker pigments using Diagnostic 
Pigment Analysis (DPA) [55–58] that is applied to a large global pigment data set by Losa et 
al. [59] to obtain the specific weights to convert the diagnostic pigment concentrations to Chl-
a contributed by the aforementioned phytoplankton groups. 

2.2.2 Particulate absorption measurements 

The Quantitative Filter Technique (QFT) measurements of spectral light absorption were 
performed differently over the two cruises. Filters collected during PS93.2 were stored at 
−80°C after being immediately shocked-frozen in liquid nitrogen until analysis at AWI. 
Measurements were carried out on a dual-beam UV/VIS spectrophotometer (Cary 4000, 
Varian Inc.) equipped with a 150 mm integrating sphere (external DRA-900, Varian, Inc. and 
Labsphere Inc., made from SpectralonTM) following the method described in Simis et al. 
[60]. The filters were placed in the center of the integrating sphere and scanned in the range 
from 300 to 850 nm with the wavelength resolution of 1 nm. The baseline was recorded using 
a dry blank filter and a blank filter that was soaked in freshly produced Milli-Q water for 
more than 30 minutes. Optical density (OD(Ȝ)) was measured and transformed to 
transmittance (T(Ȝ)) following Eq. (1), which was finally used to calculate ap following Eq. 
(2) using a path length amplification factor of 4.5 (ȕ = 1/4.5) [61]. 

 ( )( ) ODT e λλ −=  (1) 

 1( ) ln( ( ) )pa T A Vλ λ β −= − × × ×  (2) 

where V is the filtrated sample volume in m3, A the filter clearance area in m2 and Ȝ 
wavelength in nm. The calculated ap is in m−1. 

Filters collected during PS99.2 were immediately measured on board with QFT using a 
small portable integrating cavity absorption meter (QFT-ICAM) to avoid the artifacts and 
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uncertainties from sample preservation and transport. Instrument setup and measurement 
procedure were detailed in Röttgers et al. [62]. Briefly, QFT-ICAM is made up of an 80 mm-
diameter integrating spherical cavity with the highly reflective white PTFE walls, a CF-1000-
HC lamp (Illumination Technology, USA) with an integrated filter wheel and a photodiode 
array detector (AVASPEC-ULS2048-RS-USB2, Avantes, the Netherlands). These three 
components are connected by two quartz-glass optical fibers. There are two thin Nylon strings 
in the middle plane across the whole cavity to hold the filters. Sample and reference filters 
were measured inside the integrating cavity by being moved in and outside of the light beam. 
A scan from 300 nm to 850 nm with the wavelength resolution of 0.3 nm was performed for 
each measurement. Dark currents were determined before filter measurements. ap was 
calculated following Eqs. (1) and (2) using a path length amplification of 4.06 (ȕ = 1/4.06) 
[62]. 

2.3 Satellite Chl-a validation 

In situ Chl-a data derived from both AC-S and HPLC were used to validate satellite-derived 
Chl-a products. MODIS-A Level 2 operational products (R2014.0) retrieved from OCI 
algorithm were downloaded from the Ocean Color Website (http://oceancolor.gsfc.nasa.gov/) 
and analyzed for both in situ data sets of PS93.2 and PS99.2. 

OLCI Level 2 Chl-a products were also validated with the PS99.2 data set, since OLCI 
started measuring in 2016. In this case, Chl-a products retrieved from Case 2 Regional 
CoastColour (C2RCC, version 0.15) and OC4 standard processor algorithms were used. 
OLCI Level 2 products (reprocessed data set REP NT_002 IPF-OL-2, version 06.08) were 
provided by EUMETSAT (https://www.eumetsat.int) in the context of Sentinel-3 Validation 
Team (S3VT) project. 

In addition, three Chl-a data products produced from OLCI remote sensing reflectance 
data using Polymer atmospheric correction algorithm (version 4.1) were also evaluated 
because of their increased coverage as compared to the standard products. The Polymer 
algorithm provides a powerful atmospheric correction for ocean color data in the presence of 
contamination from sun glint, thin clouds heavy aerosol plumes or adjacency effect; these 
contaminated conditions are often not correctly treated by standard atmospheric correction 
schemes with extrapolation from the near infrared (e.g., used for MODIS-A OCI and OLCI 
OC4) [48,49]. We processed OLCI Level 1 products (reprocessed data set REP NT_002 IPF-
OL-1-EO, version 06.06) from EUMETSAT with the Polymer algorithm (version 4.1) 
(provided at www.hygeos.com/Polymer). We used the Chl-a product retrieved from the 
Polymer atmospheric correction processing, which is an iterative spectral matching method 
using OLCI bands from 412 to 865 nm. This method relies on two simple models: a three-
parameter model for the atmosphere and a two-parameter model for the ocean. The latter is 
based on a backscattering and an absorption term that is represented by Chl-a. Therefore, 
Polymer produces not only normalized spectral water reflectance but also Chl-a estimates. In 
this configuration, no adjustment of the radiometric calibration has been applied: the gain is 
set to 1 at all bands. Additionally, we applied the OCI and OC4 algorithms to the OLCI 
Polymer remote sensing reflectance to derive Chl-a products, which helps to evaluate 
specifically the effect of atmospheric correction methods on the different OLCI and MODIS-
A products. Here we denote the OC4 algorithm with standard atmospheric correction as OC4-
Operational, OCI and OC4 algorithm with Polymer atmospheric correction as OCI- and OC4-
Polymer, respectively, and Polymer standard algorithm as Polymer-Standard. 

When processing OLCI data, different bitmask settings were applied to approve only 
pixels measured under optimal conditions. S3VT recommends bitmask settings for the OC4 
standard product as follows: [invalid, land, cloud, cloud_ambiguous, cloud_margin, 
snow_ice, suspect, hisolzen, saturated, highglint, whitecaps, ac_fail, oc4me_fail, annot_tau06, 
rwneg_o2, rwneg_o3, rwneg_o4, rwneg_o5, rwneg_o6, rwneg_o7, rwneg_o8] and for the 
C2RCC product as follows: [invalid, land, cloud, cloud_ambiguous, cloud_margin, snow_ice, 

                                                                               Vol. 26, No. 14 | 9 Jul 2018 | OPTICS EXPRESS A686 



suspect, hisolzen, saturated, highglint, whitecaps, ocnn_fail]. For the Polymer output, a 
[thick_aerosol, cloud_base] bitmask was applied. 

In situ Chl-a data sets were then matched to satellite derived Chl-a values at the same day 
for MODIS-A 1x1 and OLCI 3x3 pixel windows following the procedure of MERMAID 
(MERIS Matchup In situ Database) [63]. Different pixel window sizes were chosen because 
of the relatively comparable spatial resolutions of 1 km for MODIS-A 1x1 and 900 m (3x300 
m) for OLCI 3x3 pixel windows. Both MODIS-A and Sentinel-3 orbits are near-polar orbits. 
In polar regions, it is more possible to acquire multiple satellite retrievals for a given in situ 
record due to the increasing overlap in adjacent swaths. In this case, the multiple satellite data 
are considered as parallel measurements and included in the same pixel window. Satellite 
Chl-a data for which the median coefficients of variation with respect to log10 based Chl-a 
within one pixel window were greater than 0.15 were excluded to minimize the effect of 
mismatch in spatial scales of in situ and satellite data [64]. When more than one in situ 
measurements were matched to satellite data within the same pixel window, the in situ Chl-a 
values were averaged. Table 1 shows an overview over all the algorithms that are used to 
derive Chl-a products. 

Table 1. Satellite Chl-a algorithms being evaluated for the cruises PS93.2 and PS99.2. 

Cruises Satellite Sensor Atmospheric Correction Chl-a algorithm Denotation 

PS93.2 MODIS-A Standard OCI OCI 

PS99.2 MODIS-A Standard OCI OCI 

 OLCI Standard OC4 OC4-Operational 

  C2RCC C2RCC C2RCC 

  Polymer Polymer Polymer-Standard 

  Polymer OC4 OC4-Polymer 

  Polymer OCI OCI-Polymer 

2.4 Statistics 

We used a set of statistical tests following Brewin et al. [65] and Sá et al. [66] to evaluate the 
performance of (1) the AC-S data correction scheme, (2) AC-S based Chl-a retrieval models 
and (3) satellite Chl-a algorithms. These tests include the determination coefficient (R2), the 
Pearson correlation coefficient (r), the root mean square error (RMSE), the mean absolute 
error (MAE), the bias error (į), and the unbiased root mean square error (ǻ), the mean 
Relative Percentage Difference (RPD) and the slope (S) and the intercept (I) of Type-2 
regression. For all linear regressions, Type-2 regression analysis was used (MATLAB 
function lsqfitma.m) [67]. The equations for these statistical metrics are given below: 
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where N is the total number of samples, i is the sample index, C is Chl-a (log-transformed 
except in (7)) and ȝ is the averaged C. The superscript E denotes the estimated value (e.g. 
from satellite data) and the superscript M the measured value (e.g. from in situ data). 

3. Results and discussion 
3.1 Chl-a estimation from AC-S 

In this study, particulate absorption line height at 676 nm (aLH(676)) is used to retrieve Chl-a. 
aLH(676) is chosen because it provides good estimates of Chl-a with lower contribution of 
accessory pigments and weaker packaging effect [68, 69]. aLH(676) was calculated from the 
particulate absorption coefficient at 676 nm above the baseline from 650 nm to 715 nm 
following Eq. (8) [68]. For both cruises, aLH(676) derived from the AC-S and filter-pad data 
are linearly related (for PS93.2, r = 0.94, RMSE = 0.008; for PS99.2, r = 0.90, RMSE = 
0.009). 

 
( ) ( ) ( ) ( ) ( )715 650
676 676 (676 650) 650 .

715 650
p p

LH p p

a a
a a a

−
= − × − −

−  (8) 
AC-S derived aLH(676) calculated from Eq. (8) was related to HPLC Chl-a data for the 

two cruises in order to derive Chl-a from all the AC-S data. aLH(676) was log10 transformed 
and averaged within the period of 10 minutes before and after HPLC sampling time [42]. It 
was then back-transformed and related to HPLC Chl-a data by the robust fitting of the power 
function of Eq. (9) [70,71] using bisquare weighting scheme: 

 ( )676 .
B

LHChl a Aa− =
 (9) 

Table 2 portrays the regression coefficients and statistics for Chl-a to aLH(676) 
relationships. aLH(676) and HPLC Chl-a data were both log10-transformed for the calculation 
of the statistical metrics. For PS93.2, the coefficients A and B are 86.1 ± 11.1 and 1.00 ± 0.03, 
respectively; for PS99.2, they are 36.2 ± 6.78 and 0.93 ± 0.05, respectively. The fits are 
shown in Fig. 2(a)-2(b). B value from PS93.2 is close to 1, indicating a linear relationship 
between Chl-a and aLH(676). A value from PS93.2 is over twice greater than that from 
PS99.2. For comparison, the relationships between Chl-a and filter-pad aLH (676) were also 
derived (Table 2). The different fits obtained from AC-S and filter-pad data could be 
attributed to (1) varying degrees of sample-to-sample ȕ variations for filter-pad data, (2) 
sensitivity of the calculated absorption coefficient to filter clearance area (1 mm measurement 
error for diameter causes 0.008 m−1 error in absorption coefficient), and (3) a wider spectral 
bandwidth of AC-S (10 nm) compared to Cary and QFT-ICAM (approximately 2 nm) 
resulting in flattening absorption peaks with AC-S data. Filter-pad data measured by Cary and 
QFT-ICAM can also differ from each other because samples for QFT-ICAM were 
immediately measured after filtration, whereas samples for Cary were stored at −80°C before 
finally measured. Nevertheless, the good R2, RMSE and MAE values support the use of AC-S 
flow-through system to obtain Chl-a with high quality. 

Given the good HPLC Chl-a to AC-S aLH(676) relationships found for both cruises, 
coefficients A and B were then applied to all the AC-S derived aLH(676) data to retrieve 
continuous surface Chl-a data sets along the cruise tracks. Figure 3 shows the comparison 
between Chl-a derived from the underway AC-S flow-through system and HPLC 
measurements for both cruises. The two Chl-a data sets showed good consistency, with S and 
I being 0.97 ± 0.02 and 0.03 ± 0.02, and the log10 based r, RMSE and MAE being 0.95, 0.097 
and 0.064, respectively. In total, 24424 and 16110 Chl-a data were generated for PS93.2 and 
PS99.2, ranging from 0.179 to 3.550 mg m−3 (mean value: 1.042 mg m−3) and from 0.003 to 
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2.701 mg m−3 (mean value: 0.677 mg m−3), respectively. These values are representative for 
the summertime Chl-a variability observed in the Fram Strait [34]. The histograms of both in 
situ Chl-a distribution (Fig. 2(c) and 2(d)) and time series of Chl-a (Fig. 4(a) and 4(b)) show 
that Chl-a data derived from AC-S exhibit a general agreement with those from HPLC, 
however, yet much more highly resolved during both cruise periods. 

Table 2. Regression coefficients and statistics for HPLC Chl-a and in situ aLH(676) power 
function relationships for the cruises PS93.2 and PS99.2. The uncertainties of the 

regression coefficients A and B were calculated with 95% confidence bounds. 

Cruise Measuring 
method 

A B R2 RMSE MAE N 

PS93.2 AC-S 86.1 ± 11.1 1.00 ± 0.03 0.90 0.079 0.051 134 
 Cary 62.8 ± 9.85 1.05 ± 0.04 0.82 0.114 0.070 134 
PS99.2 AC-S 36.2 ± 6.78 0.93 ± 0.05 0.90 0.120 0.083 84 
 QFT-ICAM 57.5 ± 10.2 0.91 ± 0.04 0.90 0.133 0.089 104 

 

Fig. 2. (a) and (b) show the relationships between the collocated aLH(676) derived from the 
underway spectrophotometry and HPLC Chl-a data for PS93.2 and PS99.2, respectively. The 
solid lines are power fits according to Table 2. The dash lines are ± 20% error lines. Different 
colors filled in the circles represent the dominating phytoplankton groups by diatom, 
prymnesiophyte, both diatom and prymnesiophyte or green algae, while the term “mixed” 
denotes a mixture of phytoplankton groups with no dominating group; (c) and (d) show 
frequency distribution of AC-S derived and HPLC Chl-a. 
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Fig. 3. Comparison between Chl-a data obtained from underway spectrophotometry and HPLC 
measurements. 

The differences in the HPLC Chl-a to AC-S aLH(676) relationships as well as the scatter 
around the regression lines between the two cruises suggested an inter- and intra-cruise 
variability of chlorophyll-specific absorption line height. The relationship for PS99.2 
exhibited larger variations than that for PS93.2 as inferred from greater RMSE and MAE 
values. This may originate from the different times of the years being sampled that favor 
different phytoplankton growth conditions: PS93.2 was conducted from late July to mid 
August and had a larger range and higher mean value of Chl-a data (see above); PS99.2 was 
conducted from late June to mid-July and also contained more very low Chl-a values (Fig. 
2(c) and 2(d)). In addition, there were clear shifts of dominating phytoplankton groups 
(defined here as the fraction of a certain group calculated using DPA greater than 45%): 
Prymnesiophytes were dominant in 82.8% of the surface waters of PS93.2, while only 1.5% 
are diatom-dominated and 14.9% of the water samples were mixed without apparent 
dominating phytoplankton groups. In contrast, the fractions changed to 6.0%, 16.7% and 
76.2% for PS99.2, respectively. Figure 2(b) shows that the data points outside of the ± 20% 
error lines can be diatom-, prymnesiophytes-dominated or phytoplankton-mixed samples. 
Further calculation showed that 73.1% of the “mixed” samples have a proportion of diatoms 
over 30%. According to Nöthig et al. [29], in the Fram Strait in summertime, prevailing 
diatoms are Thalassiosira spp and Chaetoceros spp, mainly C. socialis, Fragilariopsis 
oceanica and other pennate diatoms, whereas the main species of prymnesiophytes is in most 
cases Phaeocystis pouchetii. Therefore, we suspected that the more diverse phytoplankton 
composition observed in PS99.2 samples involved greater variations in cell size and pigment 
composition and hence, pigment packaging, contributing to the relatively larger discrepancy 
in the relationship of HPLC Chl-a data and AC-S derived aLH(676). Additional variability of 
these relationships is expected due to the absorption in the line height region by non-algal 
particles and CDOM [68], and to the assumption that CDOM absorption during non-filtering 
period of the underway AC-S flow-through system linearly varied in the AC-S data correction 
scheme. The amount of non-algal particles and CDOM may vary strongly between the period 
of phytoplankton bloom development and degradation. 

3.2 Satellite Chl-a validation 

The reconstructed in situ Chl-a data sets from the AC-S flow-through system along the cruise 
tracks were directly compared with the spatial and temporal coincident satellite Chl-a 
products. In situ Chl-a data were used to validate Chl-a operational products retrieved from 
MODIS-A OCI operational algorithm for PS93.2 and from MODIS-A OCI, OLCI OC4 and 
C2RCC operational algorithms for PS99.2. Furthermore, Polymer-Standard, OCI- and OC4- 
Polymer algorithms were compared and assessed. In addition, validation of the same Chl-a 
products and assessment of the above algorithms using HPLC Chl-a were also performed for 
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comparison. Summary statistics are presented in Table 3. The r, RMSE, į and ǻ were 
calculated in log10 space, while RPD was calculated in linear space. Figure 5 shows the 
density plots of the validation results. 

 

Fig. 4. Time series of AC-S derived and HPLC Chl-a data during the cruise period of (a) 
PS93.2, and (b) PS99.2. 

As is shown in Table 3, the number of match-ups generated by AC-S derived to satellite 
Chl-a (hereinafter denoted as “AC-S matchups”) is over one order of magnitude greater than 
those from HPLC to satellite Chl-a (hereinafter denoted as “HPLC matchups”). For PS93.2, 
the number of AC-S matchups for MODIS-A is 80, in contrast with only 8 HPLC match-ups. 
For PS99.2, the numbers of AC-S matchups from the three Polymer atmospheric correction 
method based algorithms (i.e. OLCI Polymer-Standard, OCI- and OC4- Polymer algorithms) 
and OLCI C2RCC algorithm are two to three times greater than those by the operational 
MODIS-A OCI and OLCI OC4 algorithms. This is because OLCI C2RCC and Polymer are 
the atmospheric correction processors that incorporate the contributions of sun glint and thin 
clouds in their reflectance models to derive atmospheric corrected remote sensing reflectance, 
allowing for much larger coverage of data [72,73]. MERIS Polymer products have shown to 
improve the spatial coverage by almost a factor of two [74] and have proven successful for 
retrieving (MERIS) ocean color products: Polymer was selected as the MERIS processor for 
atmospheric correction for the Ocean Color Climate Change Initiative (OC-CCI) after an 
extensive validation and intercomparison with other atmospheric correction algorithms in 
which each algorithm’s uncertainty was assessed [73]. 

When considering the correlation between in situ and satellite data sets, for PS99.2, both 
AC-S derived and HPLC Chl-a data were reasonably correlated with the corresponding 
satellite Chl-a retrieved from the operational band ratio algorithms (i.e. OLCI OC4-
Operational and MODIS-A OCI) (r > 0.87 and 0.79, respectively) and the three Polymer 
based algorithms (r > 0.94 and 0.96, respectively). However, the correlation coefficient 
significantly decreased when comparing Chl-a data from MODIS-A OCI algorithm to AC-S 
Chl-a for PS93.2 (r = 0.25). The decrease is even more significant for OLCI C2RCC 
algorithm (r = 0.13). Furthermore, the regression slopes for C2RCC algorithm (S = 0.07 and 
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0.11 with respect to AC-S and HPLC measurements, respectively) are far from the unity. A 
reason could be that those satellite Chl-a have less dynamic range than other satellite Chl-a 
products (Fig. 5(g) and 5(h)). Nevertheless, the density plots of OLCI C2RCC match-up 
analysis showed that a considerable proportion of match-up points were around the one-to-
one line (Fig. 5(g) and 5(h)). For PS93.2, the regression slopes for MODIS-A OCI Chl-a to 
both AC-S and HPLC based data sets are 1.04 and 1.14, respectively. For PS99.2, except for 
OLCI C2RCC and OC4-Operational products, the slopes for all the other satellite algorithms 
for both AC-S and HPLC match-ups are close to or greater than the unity. For example, the 
slope for OLCI Polymer-Standard to HPLC Chl-a is 0.90 and to AC-S derived Chl-a 1.61, 
whereas for OC4-Operational they are 0.60 and 0.75, respectively. 

Table 3. Summary statistics of linear regression analysis between in situ and coincident 
satellite Chl-a data. 

Cruise Satellite 
Sensor 

Algorithm In situ N S I r RMSE į ǻ RPD 
(%) 

PS93.2 MODIS-
A 

OCI AC-S 80 1.04 −0.08 0.25 0.302 −0.056 0.297 13 

  OCI HPLC 8 1.14 −0.41 0.92 0.380 −0.258 0.280 −34 
PS99.2 MODIS-

A 
OCI AC-S 512 3.33 −0.23 0.95 0.473 0.445 0.160 199 

  OCI HPLC 91 2.60 −0.09 0.79 0.449 0.402 0.200 47 
 OLCI Polymer-

Standard 
AC-S 2706 1.61 0.11 0.94 0.392 0.332 0.207 137 

  Polymer-
Standard 

HPLC 257 0.90 0.16 0.96 0.229 0.118 0.196 43 

  OCI-
Polymer 

AC-S 2077 1.98 −0.02 0.95 0.395 0.345 0.192 140 

  OCI-
Polymer 

HPLC 213 1.12 −0.03 0.98 0.143 −0.061 0.129 19 

  OC4-
Polymer 

AC-S 3396 3.38 −0.65 0.95 0.461 0.430 0.166 185 

  OC4-
Polymer 

HPLC 212 1.71 −0.25 0.98 0.196 0.123 0.152 39 

  OC4-
Operational 

AC-S 789 0.60 0.29 0.87 0.395 0.274 0.284 125 

  OC4-
Operational 

HPLC 97 0.75 0.27 0.97 0.474 0.381 0.282 186 

  C2RCC AC-S 2144 0.07 0.16 0.13 0.282 0.048 0.278 34 

  C2RCC HPLC 271 0.11 0.13 0.47 0.230 −0.092 0.211 −10 

Considering all four uncertainty measures of RMSE, ǻ, į and RPD with respect to the in 
situ AC-S measurements, OLCI Polymer-Standard algorithm yielded the most reliable 
estimation of Chl-a, closely followed by OCI-Polymer algorithm. Both OLCI Polymer-
Standard and OCI-Polymer algorithms showed small values of ǻ (0.207 and 0.192, 
respectively), which indicates a good estimating precision. Moreover, the bias quantified in 
terms of į (0.332 and 0.345, respectively) and RPD (137% and 140%, respectively) are 
relatively small, ensuring the reasonable accuracy for these two algorithms. OLCI OC4-
Polymer and MODIS-A OCI (PS99.2) algorithms performed similarly, providing the smallest 
values of ǻ (0.166 and 0.160, respectively), and yet, higher uncertainty in terms of į, RPD 
and RMSE. OC4-Operational algorithm performed better than OLCI OC4-Polymer and 
MODIS-A OCI (PS99.2) algorithms in terms of the smaller RMSE, į, and RPD, and yet, a 
large ǻ. OLCI C2RCC and MODIS-A OCI (PS93.2) showed much smaller į (0.048 and 
−0.056, respectively) and RPD (34% and 13%, respectively) than other algorithms. However, 
the data dispersion indicated by ǻ is much higher for these two algorithms, inferring a less 
precise estimation of Chl-a. The lower bias measures are probably because that the positive 
and negative errors cancelled each other, as shown in Fig. 5(b), and 5(h), whereas all the other 
algorithms mostly provided positive errors. 
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Overall, the Polymer-Standard and OCI-Polymer products gave the most reliable results 
among the six considered satellite products. The good performances of OCI-Polymer and 
Polymer-Standard algorithms may be attributed to the successful atmospheric correction of 
adjacent effects due to snow/ice and clouds in the study area [48,49]. However, when 
compared to AC-S data, their overestimation indicated by RPD was one order of magnitude 
higher than MODIS-A OCI for PS93.2. For PS99.2, MODIS-A OCI showed similar high 
values of uncertainty as OLCI OC4-Polymer products. The OCI and OC4 algorithms are both 
empirical algorithms that use a three-band and a four-band blue-green reflectance ratio, 
respectively, to directly retrieve Chl-a. These data products performed well when evaluated 
using a global data set, probably due to their immunity to scale errors or instrument noise in 
remote sensing reflectance data [65]. The OLCI C2RCC products showed relatively low 
uncertainty and low bias (small negative/positive bias for HPLC/AC-S match-ups), but had 
yet the least correlation to the in situ data sets among all operational products. Though 
C2RCC is used to generate the Case 2 water products of Sentinel-3 OLCI standard ESA 
products, it is based on an artificial neural network trained for a wide range of atmospheric 
and ocean optical conditions [75,76]. Moreover, its Chl-a products are estimated using 
particulate absorption at 440 nm derived from remote sensing reflectance [75,76], making the 
C2RCC algorithm work reasonably well in our study area. 

MODIS-A OCI Chl-a products had relatively low uncertainty for PS93.2 and tended to 
underestimate Chl-a data at relatively low Chl-a values indicated by the negative value of į. It 
may be attributed to the dominance of prymnesiophytes in the surface waters of PS93.2 (Fig. 
2(a)). Phaeocystis pouchetii, the most likely main species of prymnesiophytes in our study 
area (mentioned in 3.1,) [29], is able to form large colonies that have strong self-shading, 
lowering the specific absorption coefficient and causing the underestimation of satellite Chl-a 
retrievals. However, overall, MODIS-A OCI (PS93.2) overestimated Chl-a, especially at 
relatively high Chl-a values (Fig. 5(b)). As pointed out above for PS99.2, MODIS-A OCI and 
OLCI OC4-Operational and three Polymer based products were characterized by an 
overestimation, as positive į and RPD displayed. However, there is a proportion of 
underestimated Chl-a from OLCI C2RCC products when compared to HPLC data (RPD = 
−10%) and overestimation (RPD = 34%) when compared to AC-S data. For PS99.2, the Chl-
a overestimation was significant for OLCI OC4-Polymer and MODIS-A OCI (RPD ≥ 185%)
and slightly less significant for OLCI Polymer-Standard, OCI-Polymer and OC4-Operational
(100% ≤RPD ≤ 140%). The overestimation of Chl-a by band ratio algorithms is consistent
with previous match-up analysis that Chl-a is overestimated by OC4 algorithm in the Arctic
Ocean [14,77]. This is because CDOM concentrations in the Arctic Ocean are much higher
than the global average, challenging the global empirical relationships underlying OCI and
OC4 algorithms. It also explains the overestimation by the Polymer standard Chl-a product
which is retrieved assuming a variability of the ocean model depending only on two
parameters, the Chl-a and a backscattering coefficient, not accounting for additional CDOM
variability [48,49], which implies a (global) constant relationship between phytoplankton and
other absorbing water constituents, i.e. CDOM and non-algal particles. As a consequence, an
excess of CDOM can be interpreted as an additional concentration of Chl-a.

For a given satellite algorithm, AC-S and HPLC match-ups have different uncertainty 
measures and regression parameters for both cruises. This is especially true for MODIS-A 
OCI Chl-a products for PS93.2 and OLCI C2RCC Chl-a products for PS99.2, where different 
trends (i.e. overestimation or underestimation) of satellite Chl-a estimates were observed. 
This might be because of the insufficient coverage of HPLC data points. The density plots 
(Fig. 5) show that spatial and temporal variability of satellite data is accounted for to a greater 
extent when doing match-up analysis against AC-S data set. 
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Fig. 5. Density plots of satellite to in situ match-up analysis. 
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In summary, validation results revealed acceptable performances of the operational band 
ratio algorithms (OCI, OC4) that are applied to the MODIS-A and OLCI sensors. Better 
results were achieved with the Polymer atmospheric correction algorithm applied to OLCI 
data. Overall, all the algorithms tended to overestimate Chl-a in the Fram Strait to various 
extent. The OLCI Polymer standard output provided the most reliable Chl-a estimates, and 
nearly as good results were obtained from the OCI-Polymer algorithm. The OC4-Operational 
algorithm performed slightly better than OC4-Polymer algorithm. The OLCI C2RCC Chl-a 
products showed relatively low uncertainty, but had yet the least correlation to the in situ data 
sets. MODIS-A OCI Chl-a products during the cruise period of PS93.2 did not correlate well 
to AC-S derived in situ AC-S derived Chl-a, but had yet relatively low uncertainty. For 
PS99.2, they showed similar high values of uncertainty as OLCI OC4-Polymer products. 
Further assessment of other types of Chl-a algorithms, e.g. semi-analytical methods (e.g., 
Quasi-analytical-algorithm (QAA) from Lee et al. [78] or Garver-Siegel-Maritorena (GSM) 
from Maritorena et al. [79]) or selection of neural network approaches based on water types 
[80] are necessary to be exploited to obtain optimized Chl-a data sets for the Fram Strait.
Especially when Polymer atmospheric correction method is applied, high data coverage with
low uncertainty can be expected.

4. Conclusion
We have shown the applicability of using the underway AC-S flow-through technique to 
continuously measure particulate absorption at high frequency in the Fram Strait. For the first 
time in this region, the relationships between AC-S derived particulate absorption and HPLC 
Chl-a were assessed during two summer cruises (PS93.2 in 2015 and PS99.2 in 2016). The 
good power law correlation enabled the estimation of continuous surface Chl-a along the 
entire cruise tracks. The continuous in situ data sets obtained from the underway AC-S flow-
through system were used to validate satellite operational Chl-a products from MODIS-A 
OCI and OLCI OC4-Operational, C2RCC and Polymer-Standard algorithms, and to assess 
the performances of Polymer-Standard, OCI- and OC4-Polymer algorithms. For comparison, 
the validation of satellite operational products and assessment of different algorithms were 
also performed using HPLC measurements. 

Statistics of linear regression analysis between in situ measurements and co-located 
satellite data for both cruises in the Fram Strait indicated reasonable performances of all 
algorithms. When considering AC-S match-ups, all algorithms were characterized by an 
overestimation of satellite Chl-a. However, there is underestimation of Chl-a for MODIS-A 
OCI (PS93.2) and OLCI C2RCC. This underestimation is also determined for HPLC match-
ups. The OLCI Polymer-Standard and OCI-Polymer products had relatively high estimation 
precision and small bias with respect to both in situ AC-S and HPLC data sets, suggesting a 
successful atmospheric correction and the most reliable approximations of Chl-a data by 
OLCI Polymer-Standard and OCI-Polymer algorithm in the Fram Strait. When using HPLC 
data, the numbers of collocations are much lower, highlighting the capability of underway 
spectrophotometry to generate more sufficient surface Chl-a data sets for satellite Chl-a 
products validation and algorithms assessment in the Fram Strait. With the help of further 
automatic acquisition of AC-S data, the establishment of a long-term data record of satellite 
Chl-a data with determined uncertainties for this under-sampled remote area to be used in 
climate change research will be expected. 
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Abstract: Phytoplankton in the ocean are extremely diverse. The abundance of various intracellular
pigments are often used to study phytoplankton physiology and ecology, and identify and
quantify different phytoplankton groups. In this study, phytoplankton absorption spectra (aph(l))
derived from underway flow-through AC-S measurements in the Fram Strait are combined with
phytoplankton pigment measurements analyzed by high-performance liquid chromatography
(HPLC) to evaluate the retrieval of various pigment concentrations at high spatial resolution.
The performances of two approaches, Gaussian decomposition and the matrix inversion technique are
investigated and compared. Our study is the first to apply the matrix inversion technique to underway
spectrophotometry data. We find that Gaussian decomposition provides good estimates (median
absolute percentage error, MPE 21–34%) of total chlorophyll-a (TChl-a), total chlorophyll-b (TChl-b),
the combination of chlorophyll-c1 and -c2 (Chl-c1/2), photoprotective (PPC) and photosynthetic
carotenoids (PSC). This method outperformed one of the matrix inversion algorithms, i.e., singular
value decomposition combined with non-negative least squares (SVD-NNLS), in retrieving TChl-b,
Chl-c1/2, PSC, and PPC. However, SVD-NNLS enables robust retrievals of specific carotenoids
(MPE 37–65%), i.e., fucoxanthin, diadinoxanthin and 190-hexanoyloxyfucoxanthin, which is currently
not accomplished by Gaussian decomposition. More robust predictions are obtained using the
Gaussian decomposition method when the observed aph(l) is normalized by the package effect
index at 675 nm. The latter is determined as a function of “packaged” aph(675) and TChl-a
concentration, which shows potential for improving pigment retrieval accuracy by the combined
use of aph(l) and TChl-a concentration data. To generate robust estimation statistics for the matrix
inversion technique, we combine leave-one-out cross-validation with data perturbations. We find that
both approaches provide useful information on pigment distributions, and hence, phytoplankton
community composition indicators, at a spatial resolution much finer than that can be achieved with
discrete samples.

Remote Sens. 2019, 11, 318; doi:10.3390/rs11030318 www.mdpi.com/journal/remotesensing
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1. Introduction

Phytoplankton account for approximately half of global primary production via photosynthesis [1]
and form the base of the marine food web. Intracellular pigments of phytoplankton, composed
of chlorophylls (a, b and c), carotenoids (carotenes and xanthophylls) and phycobiliproteins
(phycoerythrin, phycocyanin and allophycocyanin) [2], play a vital role in photoprotection and the
light-driven part of photosynthesis. Chlorophyll-b, -c and photosynthetic carotenoids (PSC), such as
fucoxanthin (Fuco), act as antenna pigments that transfer the light energy to chlorophyll-a in the
photosynthetic reaction centers of photosystems, assisting in light harvesting for photosynthesis.
In cyanobacteria, red algae, and cryptophytes, phycobiliproteins are the major light-harvesting
pigments [3]. Chlorophyll-a is crucial in converting the received light energy to chemically bonded
energy. The carotenoids not involved in photosynthesis are photoprotective (PPC). In particular,
some xanthophylls such as violaxanthin (Viola), zeaxanthin (Zea), diadinoxanthin (Diadino)
and diatoxanthin (Diato) are involved in the xanthophyll cycle, one of the most important
photoprotective mechanisms that drives the non-radiative dissipation of the excess light energy
to prevent photoinhibition [4,5]. Therefore, their relative abundance can be used as a tracer of
photoacclimation processes [5].

In the context of global climate change, knowledge of the distributions of phytoplankton pigments
is useful to understand the impacts of the changing environment on primary productivity [6],
phytoplankton diversity and community composition through appropriate analysis, for example,
CHEMTAX [7] and diagnostic pigment analysis [8]. In remote sensing applications, phytoplankton
pigment databases have been extensively used to develop, validate, or refine bio-optical algorithms for
estimating phytoplankton biomass (often estimated using total chlorophyll-a (TChl-a) concentration)
and functional types (via diagnostic pigment analysis) based on both cell size (micro-, nano- and
pico-phytoplankton) and biogeochemical functions (e.g., calcification, silicification, dimethyl sulphide
production and nitrogen fixation) [9] and references therein. These data sets are mainly based on
high-performance liquid chromatography (HPLC) analysis of discrete water samples. This technique
enables the accurate quantification of 25–50 pigments in a single analysis [10]. However, it requires
highly trained personnel, intensive labor and time, expensive and complex analysis, and is limited
by the sampling frequency, spatial coverage and additional issues related to discrete sampling
such as sample handling, storage and transportation. While HPLC pigment analysis remains
indispensable, it is necessary to explore methods that enable easier access to pigment data at higher
spatial-temporal resolution.

Because optical measurements are currently the only means of collecting synoptic scale
information on upper ocean particles (e.g., operational open-ocean satellite ocean color provides
data daily with pixel size down to 300 m by 300 m), attempts have been made to quantify the
concentrations of various phytoplankton pigments from these measurements (e.g., absorption or
reflectance spectra). Optical methods take advantage of the distinctive absorption characteristics of
different pigments and various approaches are applied, such as the decomposition of spectra into
Gaussian functions, e.g., [11], spectral reconstruction, e.g., [12], derivative analysis, e.g., [13], partial
least squares regression, e.g., [14], multiple linear regression [15], reflectance band ratio, e.g., [16,17],
principal component analysis, e.g., [18] and artificial neural networks [19,20].

The Gaussian decomposition method decomposes phytoplankton absorption spectra (aph(l)) into
Gaussian functions and correlates the amplitudes of the Gaussian functions with the concentrations
of major pigment groups. The amplitude of each Gaussian function is assumed to represent the
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magnitude of the absorption coefficient of a specific pigment or pigment group at the Gaussian
peak wavelength, based on known pigment absorption properties determined in laboratory analyses.
This method simultaneously retrieves the concentrations of chlorophyll-a, chlorophyll-b, chlorophyll-c
and carotenoids [11,21–23] or of chlorophyll-a and phycocyanin [24,25]. However, the retrieval accuracy
is generally limited by the variations in pigment package effect of field samples. Nevertheless,
the Gaussian absorption coefficients of specific pigment groups were recently incorporated into the
reconstruction of hyper- and multi-spectral remote sensing reflectance, allowing the robust estimation
of the concentrations of TChl-a, total chlorophyll-b (TChl-b), the combination of chlorophyll-c1 and
-c2 (Chl-c1/2) and PPC globally [23] as well as of phycocyanin in cyanobacteria bloom waters [24,25]
from remote sensing reflectance data.

The spectral reconstruction method assumes that aph(l) can be reconstructed from the linear
combination of pigment-specific absorption coefficients multiplied by corresponding pigment
concentrations [26]. Moisan et al. [27,28] applied matrix inversion analysis to the reconstruction
model and successfully estimated the concentrations of a series of pigments directly from aph(l).
This technique involves a first inversion of the observed pigment concentrations that derives
pigment-specific absorption spectra and a second inversion of these derived pigment-specific
absorption spectra that solves for pigment concentrations. Four methods that solve least squares
problems, i.e., singular value decomposition (SVD) [29], non-negative least squares (NNLS) [30]
and two nonlinear least squares minimization schemes based on the Levenberg–Marquardt
algorithm [31,32] were compared for the two inversions. They found that when the first inversion was
carried out with SVD and the second one with NNLS, the inverse modeling technique yielded the
most accurate pigment estimates. However, the retrieval accuracy is affected by the level of correlation
between pigment concentrations, the contribution of a specific pigment to the spectral aph(l), pigment
package effect, the missing absorption components by the pigments that exist in the samples but are not
obtained by standard HPLC (e.g., mycosporine-like amino acids and phycobiliproteins) [27,28], and the
number of spectral bands of aph(l) used in the inversion model [27,28,33]. Overall, the SVD-NNLS
method achieved simultaneous statistically significant retrievals of TChl-a, total chlorophyll-c (TChl-c),
b-carotene (b-Caro), Fuco, Viola, Diadino and peridinin (Peri) in U.S. east coast waters [27,28]. It was
recently applied to aph(l) modeled from MODIS-Aqua TChl-a data for northeastern U.S. waters,
yielding maps of the concentrations of ten pigments [34]. Similar approaches were successful in infering
phytoplankton size classes globally [35,36] and taxonomic groups in the Chukchi and Bering Seas [33]
from absorption data.

Derivative analysis of absorption spectra separates the secondary absorption peaks and
shoulders contributed by phytoplankton pigments within the overlapping absorption regions [37].
Bidigare et al. [13] found that the fourth derivative maxima of particulate absorption spectra (ap(l))
provided strong linear relationships with chlorophylls (a, b and c) concentrations in Sargasso Sea.
However, this method failed to estimate carotenoid concentrations because of the similarity of their
spectral properties, the broad spectral absorption and relatively rounded absorption peaks that are
less accessible to derivative analysis.

Principal component analysis (a.k.a. empirical orthogonal function analysis) derives several
dominant modes (known as “principal components”) of the spectra that mainly account for the
variability in spectral shape and relates them to pigment concentrations. Bracher et al. [18] performed
this analysis on both hyperspectral and multispectral remote sensing reflectance data and retrieved the
concentrations of TChl-a, monovinyl-chlorophyll-a, PPC, PSC, Chl-c1/2, 190-butanoyloxyfucoxanthin
(But), 190-hexanoyloxyfucoxanthin (Hex), Zea, phycoerythrin and the sum of a- and b-Caro from the
linear combinations of the principal components in the Atlantic Ocean. This method is, however,
only applicable to the pigments that have been identified in most collocated samples. It failed to
retrieve the pigments that are mostly absent or below detection limit. Similarly, Soja–Woźniak et al. [38]
applied this analysis on both hyperspectral and multispectral remote sensing reflectance data and
successfully retrieved TChl-a, phycocyanin and phycoerythrin in the Gulf of Gdansk.
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An artificial neural network relates spectra to pigment data with a nonlinear model that
self-adjusts the model parameters (i.e., weight matrix) for the best fit. Bricaud et al. [19] developed a
multilayer perceptron using a global data set and obtained estimations of the concentrations of TChl-a,
TChl-b, TChl-c, PSC and PPC, with TChl-a and TChl-b being the most accurate and poorest estimates,
respectively. The main limitation of this method lies in the biological variability embedded in the
training data set.

More recently, there has been an increased use of in situ hyperspectral optical sensors to
obtain pigment data from continuous optical measurements, e.g., [22]. In-line and autonomous
measurements by new miniature sensors deployed on various platforms (e.g., profiling floats,
autonomous surface water vehicles) have substantially increased the sampling frequency and spatial
coverage of measurements. The shipboard underway spectrophotometry considerably facilitates
the acquisition of ap(l) with unprecedented spatial resolution. It utilizes an AC-S hyperspectral
spectrophotometer (or the 9-wavelength resolved AC-9) (Sea-Bird Scientific, Philomath, OR, USA)
operated in flow-through mode and derives ap(l) by differencing the bulk seawater absorption
measurements from temporally adjacent 0.2-µm filtered water sample measurements, e.g., [22,39–48].
It has provided surface TChl-a data along cruise tracks via the empirical relationships between
the spectrophotometry derived ap(l) and HPLC measured TChl-a concentrations [39,40,45–48].
Furthermore, Gaussian decomposition has been performed by Chase et al. [22] to retrieve major
pigment groups from a globally extensive underway AC-S derived ap(l) data set. Here we use a data
set obtained with a similar underway system to compare and contrast two different methods to obtain
information on the underlying pigments.

The Fram Strait, the region between Svalbard and Greenland, provides the only deep connection
between the North Atlantic and Arctic Oceans (Figure 1). It is of great importance to the climate
in the Arctic region, as it accounts for 75% of the mass exchange and 90% of the heat exchange
between the Arctic Ocean and the rest of the world’s ocean [49]. In recent decades, the Fram Strait
has undergone a significant warming, high variability of Atlantic water inflow [50] and an overall
increase of sea ice area export [51–55]. This impacts phytoplankton biomass, community composition
and distribution by altering light and nutrient regimes. The seasonal cycle of phytoplankton biomass
has been significantly enhanced in the shallow upper water layers since 2008 [56]. Phytoplankton
distributions reflect the dominant local physical processes [56,57]. A significant increase in summertime
chlorophyll-a concentration in the eastern Fram Strait was observed, whereas on the western side
there were minor changes [56]. Furthermore, a shift of dominant phytoplankton assemblages from
diatoms (mainly Thalassiosira spp., Chaetoceros spp. and Fragilariopsis spp.) towards coccolithophores
(mainly Emiliania huxleyi) and more recently, Phaeocystis spp. (mainly Phaeocystis pouchetii) and other
small pico- and nanoflagellates during summer months was suggested [56,58,59], which can strongly
affect the functioning and stability of marine food webs [60,61]. The studies of phytoplankton
community composition in this region are mainly based on discrete water samples or moored
sediment traps. Because of the inherent limitations of these methods, the observations are scarce.
Furthermore, it remains difficult to obtain information on phytoplankton community composition
via satellite due to the poor spatial-temporal coverage of ocean color data in this region, e.g., [57]
and the lack of assessment of the applicability of satellite algorithms determining the phytoplankton
community structure for this region. Additionally, algorithms applicable to other waters for quantifying
phytoplankton community structure or pigment composition from in situ optical measurements have
not been assessed yet in this region.

The Fram Strait cruises PS93.2, PS99.2 and PS107 on R/V Polarstern collected a comprehensive
in situ bio-optical data set and offer a unique opportunity for bio-optical modeling. In particular,
underway spectrophotometry was applied during all three cruises. To obtain the information
of individual phytoplankton pigments or pigment groups (e.g., PSC and PPC) from underway
spectrophotometry, here, we compare and optimize the performances of two pigment retrieval
approaches, Gaussian decomposition [22] and the matrix inversion technique [27,28], find the potential
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number and types of pigments that can be retrieved, and assess the applicability of the two approaches
to the Fram Strait and its vicinity.

N

Figure 1. Cruise tracks for PS93.2 (July–August 2015), PS99.2 (June–July 2016) and PS107 (July–August
2017). Symbols denote locations where both AC-S and HPLC data were collected. Bathymetric grid
data are extracted from the International Bathymetric Chart of the Arctic Ocean Version 3.0 [62].
Lambert azimuthal equal-area projection was used for mapping.

2. Data and Methods

2.1. Data Collection

Data were collected during three expeditions on R/V Polarstern: PS93.2 (July to August 2015),
PS99.2 (June to July 2016) and PS107 (July to August 2017). These cruises have repeated survey design.
Sampling sites were located in the Fram Strait and its vicinity, ranging from approximately latitudes
72� to 80�N and longitudes 10�W to 15�E (Figure 1).

The underway ap(l) and discrete pigment concentration measurements of the surface water were
collected for each expedition. The average velocity of the ship while moving is ~10 knots (5.1 m s�1).
Sampling methods and data analysis are detailed in Liu et al. [45]. Briefly, a 25-cm-pathlength AC-S
spectrophotometer (spectral range: 400–740 nm, full width half maximum (FWHM): 10 nm, wavelength
resolution: ~3.5 nm) was integrated into the shipboard flow-through system following the setup of
Slade et al. [46]. Seawater was sampled at roughly 11 m below the sea surface from the ship’s keel
using a membrane pump. The flow rate of seawater is 1–2 L min�1. The ap(l) spectra were derived
by subtracting the absorption coefficients of 0.2-µm filtered seawater from those of seawater materials
measured by AC-S. Subsequently, they were corrected for temperature and salinity dependency of pure
water absorption [63], scatter errors [64] and residual temperature effect [46]. Additionally, the effect
of AC-S filter factors resulting in a smoothing of the measured ap(l) spectra was corrected [22].

Discrete seawater samples were collected from the unfiltered AC-S outflow approximately
every three hours. Seawater (1–3 L) was filtered with GF/F glass fiber filters (nominal pore size
0.7 µm) for HPLC phytoplankton pigment analysis (see Table 1 for the names and abbreviations of the
pigments and pigment groups used in this study). Pigments were grouped following Hooker et al. [65].
Divinyl-chlorophyll-a and divinyl-chlorophyll-b were not found in our data set. For convenience, in the
following context, the term “pigment” stands for either a specific type of pigment or a pigment group
such as PSC and PPC. In addition, the spectral absorption coefficient of non-algal particles (aNAP(l))
in discrete water samples was measured for the determination of its spectral exponent. Seawater
(0.2–1 L) was filtered to concentrate particulate materials on the GF/F filters. ap(l) from discrete
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samples was determined using Quantitative Filter Technique [66–68]. Measurements for samples from
PS93.2 were carried out on a dual-beam UV/VIS spectrophotometer (Cary 4000, Varian Inc., Palo Alto,
CA, USA) (spectral range: 300–850 nm, FWHM: 2 nm, wavelength resolution: 1 nm) equipped with
a 150 mm integrating sphere following Simis et al. [69], whereas filters collected during PS99.2 and
PS107 were measured using a small portable integrating cavity absorption meter (spectral range:
300–850 nm, FWHM: 2 nm, wavelength resolution: 0.3 nm) [70], as detailed in Liu et al. [45]. aNAP(l)
was then obtained by measuring the sample filters bleached with 10% NaClO solution [69] following
the same procedure as ap(l) measurements. aNAP(l) was approximated using an exponentially
decaying function [71,72]:

aNAP(l) = aNAP(400) e�S(l�400) (1)

where S is the spectral exponent of aNAP(l). Equation (1) was fit to aNAP(l) for data between
380–620 nm excluding the 400–480 nm range (to eliminate residual chlorophyll-a absorption peak) using
non-linear least squares method [72]. The median value of S for all three expeditions is 0.016 nm�1

(standard deviation with respect to the median value is 0.006 nm�1), which was subsequently used in
the decomposition of the AC-S derived ap(l) to obtain aph(l) (see Section 2.2.1).

AC-S derived ap(l) were averaged within the period of ten minutes before and after HPLC
sampling time and were matched with HPLC pigments data. aph(l) (400–700 nm, wavelength
resolution: ~3.5 nm) was obtained by numerical decomposition (see Section 2.2.1). In total,
298 ap(l)-pigments match-ups were obtained, which were subsequently used as the pigment retrieval
data set. The link to the data used in this study is shared in the Supplementary Materials.

Table 1. Abbreviations of phytoplankton pigments and pigment groups analyzed in this study, and the
minimum, maximum, mean and standard deviation of the pigment concentrations (mg m�3).

Pigment/Pigment Group Abbreviation Minimum Maximum Mean Standard Deviation

alloxanthin Allo 0.00 0.16 0.01 0.01
chlorophyll-c1/2 Chl-c1/2 0.00 0.94 0.15 0.15
chlorophyll-c3 Chl-c3 0.00 0.83 0.08 0.11
a-carotene a-Caro 0.00 0.04 0.00 0.01
b-carotene b-Caro 0.00 0.07 0.02 0.01
diadinoxanthin Diadino 0.00 0.49 0.10 0.08
diatoxanthin Diato 0.00 0.05 0.01 0.01
fucoxanthin Fuco 0.01 1.28 0.22 0.21
190-hexanoyloxyfucoxanthin Hex 0.00 1.63 0.23 0.24
190-butanoyloxyfucoxanthin But 0.00 0.51 0.04 0.05
neoxanthin Neo 0.00 0.02 0.00 0.00
lutein Lut 0.00 0.01 0.00 0.00
peridinin Peri 0.00 0.45 0.03 0.06
prasinoxanthin Prasino 0.00 0.05 0.00 0.01
pheophytin-a Pheo-a 0.00 1.31 0.02 0.10
pheophorbide-a Phide-a 0.00 0.17 0.01 0.02
violaxanthin Viola 0.00 0.03 0.01 0.01
zeaxanthin Zea 0.00 0.08 0.01 0.01
total chlorophyll-a TChl-a 0.06 3.87 0.86 0.66
total chlorophyll-b TChl-b 0.00 0.22 0.06 0.03
total chlorophyll-c TChl-c 0.00 1.62 0.23 0.24
photosynthetic carotenoids PSC 0.02 3.56 0.52 0.49
photoprotective carotenoids PPC 0.01 0.64 0.17 0.11

Note: TChl-a = monovinyl-chlorophyll-a + chlorophyllide-a; TChl-b = monovinyl-chlorophyll-b;
TChl-c = Chl-c1/2 + Chl-c3; PSC = Fuco + But + Hex + Peri [65], PPC = Allo + Diadino + Diato + Zea
+ a- + b-Caro [65].

2.2. Retrieval of Phytoplankton Pigments

Figures 2 and 3 illustrate the steps of applying Gaussian decomposition and the matrix inversion
technique, respectively, to retrieve phytoplankton pigment concentrations, which are described
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in detail in the following subsections. The link to the codes for data processing is shared in the
Supplementary Materials.

Figure 2. Schematic overview of the steps of applying Gaussian decomposition for phytoplankton
pigment retrieval.

Figure 3. Schematic overview of the steps of applying the matrix inversion technique for phytoplankton
pigment retrieval.
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2.2.1. Gaussian Decomposition

Following Chase et al. [22], AC-S derived ap(l) was decomposed to twelve Gaussian functions
and one aNAP(l) exponential function expressed by Equation (1) in the range of 400–700 nm.
Each Gaussian function represents the absorption by a certain phytoplankton pigment. The absorption
by the water-soluble photosynthetic pigment phycoerythrin was also represented as a Gaussian
function though its concentration could not be validated with HPLC. The peak location and width of
each Gaussian function shown in Table 2 were defined with fixed values based on known pigment
absorption shapes [73]. The decomposition is optimized by minimizing the cost function using
a weighted least squares method [22]:

c2 =
700

Â
l=400

[ap(l)�
12
Â

i=1
agaus,i(l)� aNAP(l)]

2

s2
SD(l)

(2)

where agaus,i(l) denotes the ith Gaussian function, and sSD(l) is the standard deviation of the 20-min
averaged matched ap(l) spectra.

Table 2. The peak wavelengths (l0) and widths (s) of the Gaussian functions for phytoplankton
pigments, the statistics for the power function regression of agaus(l0)-pigment pairs in the training set
(regression coefficients A and B of Equation (3) were calculated with 95% confidence bounds), and the
statistics based on leave-one-out cross-validation. MAE is in mg m�3 (values outside the parentheses
were calculated with linear-scale values, while inside the parentheses with log10-scale values), MPE in
%, and N is the number of data points for the regressions.

(a) Decomposition of aph(l)

l0 [nm] s [nm] Pigment A B R2
MAE

b
MPE

b
N MAE

c
MPE

c

406 16 TChl-a 17.60 ± 4.03 0.90 ± 0.08 0.75 0.28(0.18) 26.2 274 - -
434 12 TChl-a 41.61 ± 6.71 1.12 ± 0.05 0.87 0.21(0.13) 20.7 297 0.22(0.13) 20.8
453 12 TChl-b & c a 1.18 ± 0.20 1.23 ± 0.05 0.92 0.00(0.14) 21.1 297 - -
470 13 TChl-b 0.38 ± 0.11 0.50 ± 0.08 0.52 0.02(0.17) 29.5 296 - -
492 16 PPC 1.23 ± 0.38 0.54 ± 0.09 0.50 0.06(0.18) 30.6 298 0.06(0.18) 31.5
523 14 PSC 25.25 ± 7.58 0.92 ± 0.08 0.76 0.20(0.21) 33.4 298 0.20(0.21) 34.0
550 14 phycoerythrin - - - - - - - -
584 16 Chl-c1/2 12.18 ± 5.18 0.85 ± 0.09 0.68 0.07(0.26) 44.9 297 - -
617 13 TChl-a 21.00 ± 7.85 0.57 ± 0.07 0.66 0.33(0.20) 36.8 295 - -
638 11 Chl-c1/2 49.89 ± 16.13 1.03 ± 0.06 0.81 0.05(0.20) 33.4 297 0.06(0.20) 33.5
660 11 TChl-b 0.66 ± 0.21 0.44 ± 0.06 0.57 0.02(0.16) 29.1 293 0.02(0.16) 29.3
675 10 TChl-a 19.70 ± 3.92 0.76 ± 0.05 0.82 0.24(0.14) 24.9 298 0.25(0.14) 25.3

(b) Decomposition of âph(l).

l0 [nm] Pigment A B R2
MAE

b
MPE

b
N MAE

c
MPE

c

406 TChl-a 12.50 ± 1.37 0.96 ± 0.048 0.88 0.22(0.15) 19.5 274 - -
434 TChl-a 19.23 ± 1.22 1.07 ± 0.026 0.96 0.13(0.08) 11.9 297 0.13(0.08) 12.2
453 TChl-b & c a 0.39 ± 0.05 1.10 ± 0.05 0.92 0.00(0.15) 25.8 297 - -
470 TChl-b 0.30 ± 0.06 0.51 ± 0.07 0.60 0.02(0.15) 26.3 296 - -
492 PPC 1.89 ± 0.32 0.77 ± 0.06 0.77 0.05(0.14) 21.4 298 0.05(0.14) 21.8
523 PSC 44.04 ± 5.31 1.19 ± 0.04 0.92 0.11(0.14) 20.4 298 0.11(0.14) 20.5
550 phycoerythrin - - - - - - - -
584 Chl-c1/2 16.73 ± 4.31 1.00 ± 0.06 0.82 0.06(0.22) 36.2 297 - -
617 TChl-a 64.19 ± 13.15 0.83 ± 0.04 0.84 0.22(0.15) 24.1 295 - -
638 Chl-c1/2 34.11 ± 7.20 1.06 ± 0.05 0.91 0.04(0.17) 27.2 297 0.04(0.18) 27.2
660 TChl-b 0.47 ± 0.12 0.41 ± 0.05 0.62 0.02(0.15) 27.9 293 0.02(0.15) 27.4
675 TChl-a 33.57 ± 0.72 1.00 ± 0.01 1.00 0.05(0.03) 3.6 298 0.05(0.03) 3.6

a 0.03(TChl-b) + 0.07(Chl-c1/2) [22,73]; b training errors; c test errors based on cross-validation.
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The amplitude of aNAP(400) was derived by minimizing Equation (2) sample by sample and
used to reconstruct aNAP(l) for each sample according to Equation (1). aph(l) was obtained by
differencing ap(l) and aNAP(l). The amplitude of each Gaussian function agaus(l0) [m�1] was
derived by minimizing Equation (2) and related to the concentration of the corresponding pigment
measured by HPLC (c [mg m�3]) by fitting the following equation using Bisquare robust non-linear
least squares method (data pairs with either agaus(l0) or c being 0 were excluded) (Table 2):

c = A agaus(l0)
B (3)

For convenience, we denote the five pigments that can be retrieved using Gaussian decomposition
(Table 2), i.e., TChl-a, TChl-b, Chl-c1/2, PSC and PPC as “Gauss-5 pigments”.

2.2.2. Matrix Inversion Technique

The aph(l) spectra can be reconstructed as the linear combination of the absorption spectra of
individual pigments that equal to the pigment-specific absorption coefficients (a⇤j (l)) multiplied by
pigment concentrations (cj) [26], i.e., aph(l) = Âm

j=1 cja⇤j (l). When there is more than one sample in
the observed collocated pigment concentrations and aph(l) data set, the reconstruction model can be
written in matrix multiplication form as:

2

64
ci=1,j=1 · · · ci=1,j=m

...
. . .

...
ci=n,j=1 · · · ci=n,j=m

3

75

2

664

ea⇤j=1(l)
...

ea⇤j=m(l)

3

775 =

2

664

aph,i=1(l)
...

aph,i=n(l)

3

775 () C · eA = Aph (4)

where c is the observed pigment concentration (e.g., from HPLC), ea⇤(l) is the derived pigment-specific
absorption coefficient, n is the number of samples, i is the sample index, m is the number of pigments
measured in each sample, and j is the pigment index. The c and aph(l) are known (the former
from HPLC and the latter from spectrophotometry) while ea⇤(l) is unknown. To solve for ea⇤(l),
the elements of matrix eA, the inverse of matrix C is computed. Once this is done, the derived ea⇤(l) is
used with the observed aph(l) (l in Equation (5) is the number of wavelengths) to solve for the pigment
concentrations (ec in Equation (5)). Likewise, the computation of the inverse of matrix eA is necessary.

2

664

ea⇤j=1(l1) · · · ea⇤j=m(l1)
...

. . .
...

ea⇤j=1(ll) · · · ea⇤j=m(ll)

3

775

2

64

eci=1,j=1...m
...

eci=n,j=1...m

3

75 =

2

664

aph,i=1...n(l1)
...

aph,i=1...n(ll)

3

775 () eA · eC = Aph (5)

Hence, this is a two step approach. First, where HPLC is available, Equation (4) is used to obtain
the pigment-specific absorption spectra. Once those are available, Equation (5) is used to derive
pigment concentrations directly from aph(l) (a step that does not require HPLC data). The SVD-NNLS
approach proposed by Moisan et al. [27,28], i.e., solving Equation (4) with SVD least squares method on
each wavelength and Equation (5) with NNLS method, was proved to give the best pigment estimates.

Singular Value Decomposition—Non-Negative Least Squares (SVD-NNLS)

The SVD-NNLS approach was adapted and tested using our data set. The matrix C in Equation (4)
(the concentrations of the pigments listed in Table 1) was inverted using SVD. The least-squares
solution of the overdetermined Equation (4) (in this study n > m) is derived by eA = C+ · Aph, where
C+ is the Moore-Penrose pseudoinverse of matrix C computed by SVD (MATLAB function pinv).
eA provides the specific absorption spectra of each pigment and is then used in Equation (5) to solve for
pigment concentrations via NNLS (MATLAB function lsqnonneg), i.e., by inverting Equation (5) using
least squares method with the constraint ci,j � 0.
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To ensure robust solutions of the overdetermined systems, matrix C in Equation (4) and matrix eA
in Equation (5) should be constructed to avoid ill-conditioning, requiring that the columns and rows
of matrix C have sufficient linear independence, and that the shapes of any two ea⇤(l) be sufficiently
different from each other [36]. Here, we used the condition number (ncond) (MATLAB function cond)
as a diagnostic for the degree of the well-conditioning of matrix C (a matrix with a high ncond is
ill-conditioned, and vice versa). In addition, a similarity index (SIi,j) [74,75] was used to represent the
similarity between the absolute values of two specific spectra eai

⇤(l) and eaj
⇤(l) (denoted as ea⇤+(l)).

The SIi,j is a number ranging from 0 (no similarity) to 1 (perfect similarity).

SIi,j = 1 � 2
p

arccos(
eai
⇤+(l) · eaj

⇤+(l)

||eai
⇤(l)|| ||eaj

⇤(l)|| ) (6)

where ||ea⇤(l)|| is the norm of the vector ea⇤(l) (MATLAB function norm). To maximize the number
of pigment types to be determined (m) while reducing the degree of the ill-conditioning, we tested
all the possibilities of combining pigments composed of matrix C (number of combinations 20!

m!(20�m)! ,
20 types of pigments measured in total) and examined ncond and SIi,j for all cases. For example, when
m = 20, matrix C includes all the pigments listed in Table 1 excluding TChl-c, PSC and PPC (denoted
as “Fram-20 pigments”) in 298 samples . When 1  m < 20, matrix C includes the concentrations of m
types of pigments and a summed contribution of other pigments included in the Fram-20 pigments.
m was then determined as the biggest number with ncond smaller than 60 and SIi,j smaller than 0.9.
For convenience, we denote the retrieval of these m pigments using SVD-NNLS as SVD-NNLS-m.

To compare with the results from Gaussian decomposition, the SVD-NNLS method was also
applied to only retrieve Gauss-5 pigments (denoted as SVD-NNLS-50), i.e., matrix C in Equation (4)
only includes the concentrations of these five pigments and a summed contribution of other pigments.

The SVD derived specific absorption spectra are purely mathematical solutions. Therefore,
they are expected to be different from those obtained through laboratory measurements performed on
the extracted individual pigments in solution (a⇤(l)) [27]. For comparison, we tested the validity of
NNLS in estimating pigment concentrations using a⇤(l) from Bricaud et al. [73] in Equation (5). In this
case, a⇤(l) is available for 12 types of pigments (Divinyl-chlorophyll-a and divinyl-chlorophyll-b
not considered), i.e., TChl-a, TChl-b, alloxanthin (Allo), But, Chl-c1/2, Diadino, Fuco, Hex, Peri, Zea,
a- and b-Caro (denoted as “Bricaud-12 pigments”). The same criteria of ncond and SIi,j were used
for all pigment combinations (number of combinations 12!

m!(12�m)! ). For each combination, the a⇤(l)
for the pigments which are missing in the Fram-20 pigments was solved using SVD (Equation (4),
a⇤j (l) replaces ea⇤j (l)). We denote this case as Bricaud-SVD-NNLS, and the retrieval of m pigments as
Bricaud-SVD-NNLS-m.

Non-Negative Least Squares—Non-Negative Least Squares (NNLS-NNLS)

Though SVD provides a powerful tool for matrix inversion, one concern is that the SVD
derived specific absorption spectra can be negative, which are physically unsound and not intuitively
understood. To cope with this issue, NNLS was used twice (denoted as NNLS-NNLS), i.e., to invert
Equation (4) to solve for the non-negetive matrix eA, as well as to invert Equation (5) to derive the
non-negative matrix eC. Similarly, NNLS-NNLS-50 was tested for comparison with the results from
Gaussian decomposition and SVD-NNLS-50. Bricaud-NNLS-NNLS were also tested using the same
way as Bricaud-SVD-NNLS with the exception that the a⇤(l) for the missing pigments was solved
using NNLS. The NNLS-NNLS approach was also performed by Moisan et al. [27,28]. The pigment
estimation results from NNLS-NNLS are provided in Appendix A.

Sensitivity Analysis

The solution of matrix inversion can be sensitive to input errors depending on the degree of
well-conditioning of the input matrices, which can affect the pigment estimation accuracy. To ensure the
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stability of the matrix inversion model and obtain reliable pigment estimation statistics, perturbations
were introduced to the input data for 300 iterations, and the related parameters, i.e., ncond, SI, ea⇤(l)
and cross-validation statistics (see Section 2.2.4) were calculated as the median values of the 300 sets.
Assuming an uncertainty of 15% for HPLC pigment data, matrix C was perturbed with random values
within ±15% of the measurements. Matrix Aph was also perturbed by adding the random values
within ±sSD(l) (see Equation (2)) to the measurements. The results for three cases, i.e., with perturbed
C, with perturbed Aph and with both matrices perturbed were considered for both SVD-NNLS
and NNLS-NNLS.

2.2.3. Normalization of aph(l) by Pigment Package Effect

The pigment package effect index Q⇤
a(l) can be calculated as the ratio of the measured aph(l)

to the absorption coefficient of the same pigments which would be dispersed into solution [73,76].
To partially account for the package effect, Moisan et al. [27,28,34] normalized the measured aph(l)
by dividing it with Q⇤

a(675) and found improved capability of the matrix inversion technique in
retrieving pigment concentrations. To test the performances of both Gaussian decomposition and the
matrix inversion technique with the normalization strategy, Q⇤

a(675) was calculated, and aph(l) was
normalized following

âph(l) = aph(l)
0.033 cTChl-a

aph(675)
(7)

where cTChl-a is TChl-a concentration (in mg m�3), 0.033 (in m2 mg�1) is the “unpackaged”
Chl-a-specific absorption coefficient at 675 nm measured by Bricaud et al. [73], and the fraction is the
inverse of Q⇤

a(675). Note that chlorophyll-a, divinyl-chlorophyll-a, chlorophyll-b, divinyl-chlorophyll-b
and Chl-c1/2 absorb light at 675 nm, e.g., [12,73]. For simplicity, we assume that Q⇤

a(675) is only
contributed by TChl-a, not only because TChl-a contributes most to aph(675), but also due to the
weaker dependence on pigment data for Q⇤

a(675) calculation. In theory, Q⇤
a(675) ranges from 0

(fully “packed”) to 1 (“unpackaged”). Due to uncertainties, samples with calculated Q⇤
a(675) greater

than 1 are unavoidable in practise and included in the calculation of âph(l).
The âph(l) was subsequently used to retrieve pigment concentrations via Gaussian decomposition,

SVD-NNLS and NNLS-NNLS methods. Results were compared with those using aph(l). To avoid
confusion, in the following context, unless otherwise stated, the results are based on aph(l).

2.2.4. Statistics

For the development of pigment retrieval models, all the match-up points were used as training
data, allowing the models to best account for the biological variations in the data set. Statistics for
applying the model to the training data include the slope and the intercept of Model-1 Bisquare robust
linear regression, the determination coefficient (R2), the mean absolute error (MAE) and the median
absolute percentage error (MPE). The equations for the statistical metrics are given below:

MAE =
1
n

n

Â
i=1

|eci,j � ci,j| (8)

MPE = median o f
|eci,j � ci,j|

ci,j
⇥ 100% (9)

where n is the number of samples, ci,j is the concentration of the jth pigment in the ith sample measured
by HPLC, and eci,j is the estimated pigment concentration. Considering phytoplankton pigments are
approximately log-normally distributed in the ocean, the slope, intercept and R2 were computed in
log10 space. Additionally, MAE is also calculated using log10(ci,j). To avoid confusion, in the following
context, unless otherwise stated, MAE values are calculated using ci,j.
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For model evaluation, leave-one-out cross-validation was performed (MATLAB function
crossvalind) to estimate likely performance of each model on out-of-sample data. The pigment retrieval
data set with N data points was split into two partitions: one partition is the testing set with one data
point, and the other partition is the training set with the union of the other data points. Statistics were
iteratively calculated N times, using a different data point as the testing set each time. The model
prediction errors for out-of-sample data were defined as the average values of the statistics (mean value
for MAE and median value for MPE, respectively) for the N sets. Cross-validation is an effective way
of estimating model test errors when the number of data available is relatively small [18,77]. Compared
to the random train/test split method and k-fold cross-validation, leave-one-out cross-validation has
the advantage that the training set highly resembles the whole data set (the former has only one data
point less than the latter), thus avoids the bias introduced to the estimation of the test errors due to less
training data than data available.

For clarity, statistics (errors) obtained from running the trained model back on the training data
are denoted as “training statistics (errors)”, while those obtained when applying the trained model to
the test data are called “test (or estimation or prediction) statistics (errors)”.

3. Results

3.1. Characteristics of the Pigment Retrieval Data Set

The magnitudes of ap(440) and ap(675) vary in the range of 0.007–0.258 m�1 (median: 0.043 m�1)
and 0.001–0.086 m�1 (median: 0.013 m�1), respectively. Overall, ap(440) varies as a power function
of TChl-a concentration (Bisquare robust regression): ap(440) = 0.056 (cTChl-a)

0.682 (R2 = 0.82,
MAE = 0.01 m�1). This relationship is close to the one derived by Bricaud et al. [71] for Case-1
waters (Figure 4a). TChl-a can also be related to aph(675) via the cruise-specific power functions
(Bisquare robust regression): cTChl-a = 56.46 aph(675)0.984 (R2 = 0.96, MAE = 0.12 mg m�3) (PS93.2),
cTChl-a = 26.3 aph(675)0.935 (R2 = 0.96, MAE = 0.14 mg m�3) (PS99.2), and cTChl-a = 119.1 aph(675)1.217

(R2 = 0.95, MAE = 0.17 mg m�3) (PS107).

Figure 4. (a) Variations of the AC-S derived ap(440) as a power function of TChl-a concentration;
(b) the Spearman0s rank correlation coefficients between the concentrations of phytoplankton pigments
in our data set (linear color bar scale).

The composition and data range of pigments (minimum, maximum, mean and standard deviation)
are shown in Table 1. TChl-a concentration spans the range 0.06–3.87 mg m�3. Only TChl-a, TChl-c,
Fuco, Hex and PSC have a mean concentration greater than 0.2 mg m�3. Other than that, the pigments
with mean concentrations greater than 0.05 mg m�3 are Chl-c1/2, Diadino, TChl-b, and PPC. Large
standard deviations were observed within individual pigments, and the ratios of standard deviation to
mean value are in the range of 0.58–4.35. The correlation between the concentrations of phytoplankton
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pigments was represented by the Spearman0s rank correlation coefficient (Spearman’s r) (Figure 4b).
High level of the correlation (e.g., Spearman’s r > 0.7 or <�0.7) is a concern as it can cause the
ill-conditioning of Equation (4), influencing the accuracy of pigment estimation using the matrix
inversion technique.

3.2. Gaussian Decomposition

Strong correlations were found between the Gaussian function amplitudes and the corresponding
pigment concentrations (R2 > 0.5) (Table 2 (a)). Among all the Gaussian functions representing
TChl-a absorption, the amplitude at 434 nm has the strongest relationship to TChl-a concentration
(R2 = 0.87, MAE = 0.21 mg m�3), closely followed by that at 675 nm. agaus(638) is much better
correlated with Chl-c1/2 than agaus(584), while agaus(660) provides slightly better correlation with
TChl-b than agaus(470). That the R2 for TChl-b and PPC is smaller than 0.6 is likely due to the reduced
dynamic range of TChl-b and PPC compared to TChl-a, Chl-c1/2 and PSC (Table 1). Considering the
relationships for PSC and PPC as well as the strongest correlations for TChl-a, TChl-b and Chl-c1/2,
the MPE ranges from 20.7% to 33.4%. The training errors for the five pigments increase in the order of:
TChl-a, TChl-b, PPC, Chl-c1/2 and PSC. The strongest correlations for all five pigments are shown in
Figure 5a,c,e,g,i. For comparison, TChl-a is also plotted against agaus(675) in Figure 5k.

As a result of the above, agaus(434), agaus(660), agaus(638), agaus(523) and agaus(492) were used to
predict the concentrations of TChl-a, TChl-b, Chl-c1/2, PSC and PPC, respectively. Statistics based on
leave-one-out cross-validation (Table 2 (a)) show that overall, all five pigments were reasonably well
retrieved (MPE 20.8–34.0%). TChl-a and TChl-b have the least and the second least prediction errors,
respectively, while PSC is most poorly estimated.

When using âph(l), the performance of the Gaussian decomposition significantly improved.
Strong contrast was observed in the relationships between the Gaussian function amplitudes and
pigment concentrations before and after applying the package effect normalization according to
Equation (7) (Figure 5, Table 2 (b)). All statistical parameters for the eleven relationships between
Gaussian absorption and pigment concentrations are improved (Table 2 (b)). The R2 for agaus(434) to
TChl-a correlation is 0.96 (0.87 before the normalization) and the regression coefficient B (Equation (3))
is close to one. Similarly, the R2 for agaus(638) to Chl-c1/2 correlation is 0.91 (0.81 before the
normalization) and the regression coefficient B (Equation (3)) is also close to one. The relationships for
PSC and PPC also improved in terms of increased R2 and decreased MAE and MPE for both pigments,
and of a much closer shift of B (Equation (3)) to one for PPC. In contrast, the relationship for TChl-b is
least affected by the package effect normalization of aph(l), with still increased R2, but only slightly
decreased MAE and MPE, and a relatively large deviation of B (Equation (3)) to the unity (0.35–0.60
for both 470 nm and 660 nm regardless of the normalization). Cross-validation results (Table 2 (b))
further confirm the improved performance of Gaussian decompostion in estimating TChl-b, Chlc1/2,
PPC and PSC after taking the package effect into account (MPE 29.3–34.0% before the normalization
and 20.5–27.4% afterwards). The pigment with the lowest estimated accuracy is now Chl-c1/2, but still
with an improved accuracy following normalization. Similarly, TChl-b retrievals have slightly reduced
MAE and MPE than those before the normalization.
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3.3. Matrix Inversion Technique

3.3.1. The Number of Pigment Types to Be Estimated

To apply the matrix inversion technique to estimate phytoplankton pigments, a key issue is to
determine the number of pigments m included in matrix C in Equation (4). Table 3 summarizes the
final selections of m that fulfilled the criteria mentioned in Section 2.2.2 and the corresponding ncond
and SI for all cases of the matrix inversion technique. The ncond and maximum values of SI did not
significantly change after data perturbations were introduced, regardless of the application of the
package effect normalization.

As shown in Figure 6, the minimum values of ncond for all pigment combinations increase with
increasing m, indicating that the larger the number of pigment types to be estimated, the more sensitive
the matrix inversion is to input errors. The largest value of m is nine and six for all combinations of
Fram-20 and Bricaud-12 pigments, respectively, with the minimum value of ncond smaller than the
threshold 60. When composed of Gauss-5 pigments, matrix C has a ncond of 47.8.

Based on the results fulfilling the ncond criterion, when ea⇤(l) is derived by SVD, the SI criterion
allowed m to reach nine out of the Fram-20 pigments, and was satisfied by the Gauss-5 pigments.
However, m for the NNLS-NNLS method decreased to six for of the Fram-20 pigments when package
effect normalization was not performed, because the NNLS algorithm set some of the derived ea⇤(l)
in the pigment combinations (m > 6) to zero to avoid negative values [30]. When the package effect
normalization was applied, the number of pigment combinations valid for SI calculation increased to
nine, possibly because this normalization increases the inner differences of the set of the derived ea⇤(l).
However, the maximum SI value exceeded 0.9 for Gauss-5 pigments. Therefore, NNLS-NNLS-50

method based on âph(l) was not considered in the estimation of pigments. As for the Bricaud-12
pigments, the choice of SVD and NNLS influences the derived specific absorption of the missing
pigments, as indicated by the different SI values. In this case, m reaches four. The specific pigments to
be inverted for all cases are shown in Tables 4 and 5 and Table A1.

Figure 6. Variations in the minimum values of the condition number (ncond) of matrix C in Equation (4)
with different pigment combination (m pigment types to be estimated): (a) pigment data unperturbed;
(b) pigment data perturbed.
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Table 3. The m types of pigments to be estimated using the matrix inversion technique and the
corresponding ncond and maximum SI values.

(a) Pigment data perturbed

Method Pigments

aph(l) Based âph(l) Based

ncond Maximum SI m ncond Maximum SI m

SVD-NNLS Fram-20 54.9 0.86 9 54.9 0.85 9
NNLS-NNLS Fram-20 30.7 0.79 6 54.9 0.86 9
SVD-NNLS-50 Gauss-5 47.8 0.81 5 47.8 0.84 5
NNLS-NNLS-50 Gauss-5 47.8 0.79 5 47.8 - 5
Bricaud-SVD-NNLS Bricaud-12 45.1 0.72 4 45.1 0.76 4
Bricaud-NNLS-NNLS Bricaud-12 45.1 0.83 4 45.1 0.76 4

(b) aph(l) data perturbed

Method Pigments

aph(l) Based âph(l) Based

ncond Maximum SI m ncond Maximum SI m

SVD-NNLS Fram-20 59.0 0.86 9 59.0 0.81 9
NNLS-NNLS Fram-20 30.7 0.75 6 59.0 0.85 9
SVD-NNLS-50 Gauss-5 47.8 0.74 5 47.8 0.82 5
NNLS-NNLS-50 Gauss-5 47.8 0.78 5 47.8 - 5
Bricaud-SVD-NNLS Bricaud-12 45.8 0.72 4 45.8 0.76 4
Bricaud-NNLS-NNLS Bricaud-12 45.8 0.83 4 45.8 0.76 4

(c) Both pigment and aph(l) data perturbed

Method Pigments

aph(l) Based âph(l) Based

ncond Maximum SI m ncond Maximum SI m

SVD-NNLS Fram-20 54.9 0.84 9 54.9 0.81 9
NNLS-NNLS Fram-20 30.7 0.81 6 54.9 0.86 9
SVD-NNLS-50 Gauss-5 47.8 0.79 5 47.8 0.82 5
NNLS-NNLS-50 Gauss-5 47.8 0.80 5 47.8 - 5
Bricaud-SVD-NNLS Bricaud-12 45.1 0.72 4 45.1 0.76 4
Bricaud-NNLS-NNLS Bricaud-12 45.1 0.83 4 45.1 0.76 4

Table 4. Statistics for the Model-1 linear regressions between SVD-NNLS retrieved and measured
pigment concentrations (regression coefficients were calculated with 95% confidence bounds). MAE is
in mg m�3 (values outside the parentheses were calculated with linear-scale values, while inside the
parentheses with log10-scale values), MPE in %, and N is the number of data points for the regressions.
Unperturbed training data set was used.

(a) SVD-NNLS-9

Pigments

aph(l) Based âph(l) Based

Slope Intercept R2
MAE MPE N Slope Intercept R2

MAE MPE N

TChl-a 0.97 ± 0.04 0.00 ± 0.01 0.92 0.15(0.10) 12.8 295 1.00 ± 0.00 �0.00 ± 0.00 1.00 0.01(0.01) 0.74 298
TChl-b 0.31 ± 0.15 �0.81 ± 0.20 0.31 0.04(0.32) 58.3 268 0.41 ± 0.15 �0.70 ± 0.20 0.25 0.04(0.30) 52.6 269

Chl-c1/2 0.65 ± 0.06 �0.21 ± 0.06 0.72 0.06(0.25) 42.6 286 0.60 ± 0.06 �0.27 ± 0.07 0.63 0.06(0.26) 37.1 275
But 0.43 ± 0.10 �0.53 ± 0.17 0.38 0.04(0.43) 100.0 209 0.54 ± 0.08 �0.45 ± 0.14 0.62 0.03(0.35) 62.6 206

Diadino 0.39 ± 0.07 �0.45 ± 0.08 0.40 0.06(0.30) 57.8 283 0.38 ± 0.08 �0.52 ± 0.09 0.46 0.06(0.30) 49.2 284
Fuco 0.84 ± 0.06 �0.03 ± 0.06 0.82 0.08(0.23) 33.7 276 0.85 ± 0.06 �0.07 ± 0.06 0.79 0.07(0.22) 31.6 286
Hex 0.62 ± 0.05 �0.16 ± 0.05 0.69 0.09(0.24) 37.3 266 0.72 ± 0.04 �0.13 ± 0.04 0.83 0.07(0.20) 32.0 270
Peri 0.74 ± 0.15 �0.30 ± 0.23 0.54 0.04(0.36) 57.5 134 0.67 ± 0.17 �0.37 ± 0.26 0.43 0.05(0.40) 66.6 128

Pheo-a 0.06 ± 0.87 �0.31 ± 0.65 -0.16 0.59(0.53) 166.0 22 �0.04 ± 1.02 �0.39 ± 0.77 �0.34 0.64(0.58) 132.0 22
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Table 4. Cont.

(b) SVD-NNLS-50

Pigments

aph(l) Based âph(l) Based

Slope Intercept R2
MAE MPE N Slope Intercept R2

MAE MPE N

TChl-a 1.04 ± 0.04 �0.00 ± 0.02 0.91 0.16(0.12) 16.2 295 1.00 ± 0.00 �0.00 ± 0.00 1.00 0.02(0.01) 1.8 298
TChl-b 0.54 ± 0.21 �0.54 ± 0.29 0.12 0.05(0.38) 72.6 250 0.55 ± 0.19 �0.54 ± 0.26 0.18 0.05(0.34) 62.0 247

Chl-c1/2 0.55 ± 0.06 �0.25 ± 0.07 0.67 0.09(0.33) 62.4 268 0.52 ± 0.06 �0.31 ± 0.07 0.61 0.08(0.30) 59.1 269
PPC 0.50 ± 0.10 �0.26 ± 0.09 0.50 0.10(0.27) 55.2 278 0.51 ± 0.08 �0.25 ± 0.08 0.58 0.10(0.27) 55.9 288
PSC 0.66 ± 0.05 �0.02 ± 0.03 0.75 0.20(0.22) 37.8 288 0.70 ± 0.04 �0.02 ± 0.02 0.83 0.15(0.19) 32.1 292

(c) Bricaud-SVD-NNLS-4

Pigments

aph(l) Based âph(l) Based

Slope Intercept R2
MAE MPE N Slope Intercept R2

MAE MPE N

TChl-a 0.85 ± 0.06 0.01 ± 0.02 0.75 0.26(0.15) 25.5 298 0.98 ± 0.01 0.01 ± 0.00 0.98 0.08(0.05) 5.3 298
Chl-c1/2 0.69 ± 0.04 �0.20 ± 0.05 0.80 0.05(0.19) 31.2 294 0.69 ± 0.06 �0.24 ± 0.07 0.65 0.06(0.22) 36.3 278
Diadino 0.60 ± 0.08 �0.22 ± 0.10 0.71 0.08(0.33) 75.6 245 0.68 ± 0.16 �0.04 ± 0.18 0.37 0.14(0.44) 111.8 206

Hex 0.10 ± 0.12 �0.66 ± 0.12 �0.01 0.32(0.60) 83.2 227 0.15 ± 0.13 �0.41 ± 0.14 0.10 0.40(0.62) 126.2 175

Table 5. Statistics of phytoplankton pigment retrieval using SVD-NNLS based on leave-one-out
cross-validation. MAE is in mg m�3 (values outside the parentheses were calculated with linear-scale
values, while inside the parentheses with log10-scale values) and MPE in %. “Perturb 1, 2 and 3”
represent the input data with perturbations of pigment concentrations solely, aph(l) solely and both,
respectively.

(a) SVD-NNLS-9

Pigments

Perturb 1
a

Perturb 2
a

Perturb 3
a

Perturb 1
b

Perturb 2
b

Perturb 3
b

MAE MPE MAE MPE MAE MPE MAE MPE MAE MPE MAE MPE

TChl-a 0.22(0.15) 22.3 0.17(0.12) 16.5 0.21(0.15) 21.0 0.01(0.01) 1.1 0.05(0.03) 4.3 0.05(0.03) 4.3
TChl-b 0.04(0.29) 60.2 0.03(0.27) 53.7 0.03(0.27) 53.6 0.04(0.28) 61.4 0.03(0.27) 52.9 0.04(0.27) 56.3

Chl-c1/2 0.07(0.26) 45.3 0.07(0.25) 41.1 0.08(0.26) 44.1 0.09(0.30) 52.9 0.08(0.27) 44.6 0.09(0.29) 50.4
But 0.03(0.32) 104.8 0.03(0.31) 80.7 0.03(0.31) 81.8 0.02(0.25) 68.7 0.02(0.26) 67.2 0.03(0.27) 69.8

Diadino 0.07(0.32) 64.4 0.08(0.31) 61.9 0.08(0.31) 65.2 0.07(0.32) 66.0 0.07(0.31) 59.7 0.08(0.32) 64.7
Fuco 0.09(0.22) 44.5 0.09(0.21) 36.9 0.09(0.22) 38.4 0.12(0.27) 53.1 0.10(0.23) 40.0 0.11(0.25) 44.5
Hex 0.09(0.24) 43.1 0.10(0.26) 42.6 0.11(0.26) 44.9 0.09(0.23) 42.4 0.08(0.22) 36.2 0.10(0.24) 42.1
Peri 0.02(0.17) 66.8 0.03(0.23) 90.4 0.03(0.23) 90.4 0.02(0.17) 68.3 0.02(0.21) 74.8 0.03(0.21) 76.3

Pheo-a 0.04(0.04) 123.7 0.02(0.03) 88.7 0.02(0.03) 90.0 0.04(0.04) 107.0 0.02(0.03) 95.2 0.02(0.03) 91.7

(b) SVD-NNLS-50

Pigments

Perturb 1
a

Perturb 2
a

Perturb 3
a

Perturb 1
b

Perturb 2
b

Perturb 3
b

MAE MPE MAE MPE MAE MPE MAE MPE MAE MPE MAE MPE

TChl-a 0.22(0.17) 23.3 0.18( 0.13) 17.3 0.22(0.16) 21.7 0.02(0.02) 2.2 0.05(0.03) 4.7 0.05(0.04) 4.9
TChl-b 0.04(0.32) 73.1 0.04(0.30) 58.5 0.04(0.30) 59.5 0.04(0.29) 66.2 0.04(0.28) 58.3 0.04(0.29) 61.2

Chl-c1/2 0.09(0.30) 68.5 0.07(0.26) 49.2 0.08(0.27) 50.4 0.09(0.31) 67.1 0.07(0.26) 47.9 0.09(0.29) 54.3
PPC 0.11(0.28) 62.1 0.09(0.24) 47.9 0.10(0.25) 51.1 0.11(0.28) 66.2 0.09(0.25) 53.2 0.10(0.26) 57.6
PSC 0.21(0.23) 42.8 0.20(0.22) 35.0 0.21(0.23) 38.0 0.20(0.24) 42.8 0.16(0.19) 28.7 0.20(0.23) 37.9

(c) Bricaud-SVD-NNLS-4

Pigments
Perturb 1

a
Perturb 2

a
Perturb 3

a
Perturb 1

b
Perturb 2

b
Perturb 3

b

MAE MPE MAE MPE MAE MPE MAE MPE MAE MPE MAE MPE

TChl-a 0.26(0.16) 26.3 0.26(0.15) 25.3 0.27(0.16) 26.6 0.08(0.05) 5.7 0.10(0.06) 8.3 0.10(0.06) 8.4
Chl-c1/2 0.05(0.19) 33.2 0.05(0.20) 32.6 0.05(0.20) 33.5 0.06(0.22) 39.0 0.06(0.23) 41.6 0.06(0.23) 43.1
Diadino 0.06(0.28) 77.2 0.07(0.28) 78.2 0.07(0.28) 80.1 0.10(0.31) 118.1 0.10(0.31) 117.6 0.10(0.32) 118.3

Hex 0.24(0.46) 83.6 0.24(0.44) 82.1 0.24(0.45) 82.7 0.23(0.37) 123.2 0.24(0.37) 112.2 0.24(0.38) 109.8
a aph(l) based; b âph(l) based.

3.3.2. SVD-NNLS

The pigment-specific absorption coefficients obtained from SVD-NNLS-9, SVD-NNLS-50 and
Bricaud-SVD-NNLS-4 without input data perturbations are displayed in Figure 7. Each SVD
derived specific spectra varies smoothly across the full bands and sufficiently differs from each
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other (SI < 0.9). Negative coefficients are permissible because these are mathematical constructs.
Pigment concentration estimates were then solved via NNLS and compared to HPLC pigment
concentrations. Training statistics (Table 4) and the scatter plots (Figure 8) show that the estimated and
the corresponding measured pigments were correlated (R2 > 0.30) except for Pheo-a (SVD-NNLS-9),
TChl-b (SVD-NNLS-50) and Hex (Bricaud-SVD-NNLS-4). For SVD-NNLS-9, the training errors for all
pigments except for Peri and Pheo-a were reduced by the package effect normalization (Table 4 (a)).
In contrast, this normalization increased training errors when using Bricaud-SVD-NNLS-4 (Table 4 (c)).
For SVD-NNLS-50, all Gauss-5 pigments except for PPC were observed to have smaller training errors
with this normalization (Table 4 (b)).

Figure 7. Pigment-specific absorption spectra obtained from SVD-NNLS-9 (a,b), SVD-NNLS-50 (c,d)
and Bricaud-SVD-NNLS-4 (e,f) without data perturbations, respectively. Cases with and without
package effect normalization were compared.
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To obtain robust pigment estimation statistics and evaluate the influences of the package effect
normalization on them, data perturbations and cross-validation were combined to generate the
test errors (Table 5). The SVD-NNLS-9 method (Table 5 (a)) exhibited stable prediction accuracy
(MPE 16–65%) for six types of pigments, i.e., TChl-a, TChl-b, Chlc-1/2, Diadino, Fuco and Hex, in which
MPE varied less than 10% and MAE less than a factor of 1.2 with input data perturbations. TChl-a had
the least prediction error (MAE 0.17–0.22 mg m�3, MPE 16–22%); Fuco, Hex and Chl-c1/2 shared the
second best estimation (MPE 35–45%); Diadino was least accurately estimated (MAE 0.07–0.08 mg m�3,
MPE 61–65%), and TChl-b showed a slightly smaller MPE of 53–60% (MAE 0.03–0.04 mg m�3). Though
included in the calculation, But, Peri and Pheo-a exhibited relatively inconsistent prediction errors with
the three cases of data perturbations, likely because of their relatively low concentrations (Table 1) and
infrequent occurrence in the data set. When considering the package effect normalization, however,
all nine pigments except for Pheo-a achieved stable prediction statistics (MPE 36–76%) with the
different cases of data perturbations (MPE varied less than 13% and MAE less than a factor of 1.3,
Table 5 (a)). The normalization obtained comparable prediction errors as those without normalization
for TChl-b, Diadino and Hex, 8% higher of MPE for Chlc-1/2 and Fuco, and additional estimations of
But (MPE 67–70%) and Peri (MPE 68–75%).

For SVD-NNLS-50 (Table 5 (b)), all five pigments were stably retrieved (MPE 17–73%). TChl-a
and PSC had the lowest prediction errors (MPE 17–23% and 35–43%, respectively), whereas TChl-b
was the most poorly estimated (MPE 58–73%). Chl-c1/2 and PPC exhibited similar retrieval accuracy
(MPE 48–69%). In comparison, the estimation errors with the application of the package effect
normalization did not significantly change for TChl-b, Chlc-1/2 and PSC, and slightly increased
for PPC.

The Bricaud-SVD-NNLS-4 method provided stable retrieval statistics for all four pigments
(Table 5 (c)). The prediction errors increased in the order of TChl-a (MPE 25–27%), Chlc-1/2
(MPE 32–34%), Diadino (MPE 77–80%) and Hex (MPE 82–84%). When using âph(l), the overall
performance of this method was significantly hindered for Diadino and Hex (MPE increased ~40%)
and slightly affected Chl-c1/2 (MPE increased ~10%).

3.3.3. Intercomparison between SVD-NNLS Applications

SVD-NNLS-9 and SVD-NNLS-50 showed similar capabilities in retrieving TChl-a, and both
methods outperformed Bricaud-SVD-NNLS-4 (Table 5). SVD-NNLS-9 surpassed SVD-NNLS-50

in retrieving TChl-b and Bricaud-SVD-NNLS-4 in the retrieval of Diadino and Hex, respectively.
For Chl-c1/2, Bricaud-SVD-NNLS-4 performed the best and SVD-NNLS-50 the worst. Considering the
overall pigment retrieval accuracy and the number of pigment types possible to retrieve, SVD-NNLS-9
performed best among the three SVD-NNLS methods.

3.3.4. Feasibility of SVD-NNLS-9 for Multispectral aph(l)

The performance of the matrix inversion technique is sensitive to the number of wavebands
and their locations on the aph(l) spectrum [27,33]. To test the feasibility of this technique using
multispectral aph(l), SVD-NNLS-9 was performed with aph(l) at ten MODIS bands, i.e., 412, 443,
469, 488, 531, 547, 555, 645, 667 and 678 nm. In this case, only four types of pigments, i.e., TChl-a,
TChl-b, Chlc-1/2 and Hex, were retrieved with stable and acceptable estimation statistics (Table 6)
both with and without package effect normalization. The estimation errors of TChl-a and TChl-b
slightly increased by 4 to 14% using multispectral aph(l), while for Chlc-1/2 and Hex, the MPE were
approximately 30% and 20% higher than those with hyperspectral aph(l), respectively.
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Table 6. Statistics of phytoplankton pigment retrieval using SVD-NNLS-9 with aph(l) at ten MODIS
bands based on leave-one-out cross-validation. MAE is in mg m�3 (values outside the parentheses
were calculated with linear-scale values, while inside the parentheses with log10-scale values) and
MPE in %. “Perturb 1, 2 and 3” represent the input data with perturbations of pigment concentrations
solely, aph(l) solely and both, respectively.

Pigments

Perturb 1
a

Perturb 2
a

Perturb 3
a

Perturb 1
b

Perturb 2
b

Perturb 3
b

MAE MPE MAE MPE MAE MPE MAE MPE MAE MPE MAE MPE

TChl-a 0.25(0.18) 28.8 0.21(0.14) 19.8 0.28(0.18) 29.9 0.01(0.01) 0.3 0.03(0.02) 2.0 0.03(0.02) 1.9
TChl-b 0.04(0.28) 60.7 0.04(0.24) 68.2 0.03(0.23) 67.0 0.06(0.31) 74.7 0.04(0.24) 67.2 0.04(0.25) 73.3

Chl-c1/2 0.13(0.37) 85.3 0.16(0.38) 78.3 0.15(0.37) 80.9 0.18(0.43) 95.0 0.14(0.37) 72.2 0.18(0.40) 87.6
But 0.06(0.39) 185.5 0.08(0.41) 265.0 0.08(0.40) 266.3 0.03(0.30) 87.1 0.05(0.33) 162.1 0.05(0.34) 165.8

Diadino 0.15(0.49) 151.7 0.24(0.48) 188.5 0.23(0.45) 196.0 0.18(0.49) 168.5 0.20(0.45) 165.4 0.23(0.47) 193.4
Fuco 0.24(0.38) 114.7 0.23(0.34) 76.9 0.21(0.32) 76.0 0.35(0.47) 148.4 0.23(0.36) 78.8 0.31(0.39) 97.1
Hex 0.15(0.33) 64.7 0.18(0.34) 70.4 0.19(0.34) 73.4 0.18(0.34) 73.3 0.13(0.28) 58.4 0.18(0.31) 73.2
Peri 0.02(0.14) 89.7 0.04(0.26) 196.6 0.05(0.26) 211.8 0.02(0.12) 82.2 0.03(0.21) 141.0 0.04(0.22) 148.6

Pheo-a 0.07(0.05) 312.4 0.05(0.04) 296.1 0.06(0.04) 281.0 0.08(0.05) 341.4 0.05(0.04) 309.0 0.05(0.04) 285.9
a aph(l) based; b âph(l) based.

3.4. Gaussian Decomposition versus SVD-NNLS

Considering both MAE and MPE, the Gaussian decomposition method revealed comparable
capability in estimating TChl-a compared to SVD-NNLS-9 and SVD-NNLS-50 (Tables 2 and 5 (a,b)).
However, it outperformed SVD-NNLS-50 in retrieving TChl-b (MPE ~ 40% lower), Chl-c1/2
(MPE ~ 35% lower), PSC (MPE ~ 8% lower) and PPC (MPE ~ 30% lower) and surpassed SVD-NNLS-9
in predicting TChl-b (MPE ~ 30% lower) and Chl-c1/2 (MPE ~ 12% lower). When the package effect
normalization was applied, the results from Gaussian decomposition further improved the estimation
of the Gauss-5 pigments (TChl-a excluded).

4. Discussion

The study of phytoplankton dynamics in relation to a changing climate requires access to
high resolution phytoplankton pigment information in space and time. Unlike data obtained from
HPLC analysis of discrete water samples, underway spectrophotometry is capable of providing
nearly continuous in situ data records of spectral particulate absorption as well as phytoplankton
absorption. The latter is dependent on the concentrations and composition of phytolankton pigments.
Therefore, algorithms that link hyperspectral aph(l) obtained from underway spectrophotometry
to the concentrations of various phytoplankton pigments provide pigment information with high
spatial resolution (~300 m for one minute binned-averaged spectra when the ship is moving at
~10 knots). This pigment information can support the evaluation of ocean color algorithms and
coupled hydrodynamic-biological modelling. With the advancement of hyperspectral radiometers,
these algorithms have great potential to be incorporated into the inversion of satellite ocean color
measurements for the synoptic detection of phytoplankton pigments and thus the monitoring of
phytoplankton spatial and temporal dynamics.

Gaussian decomposition is an effective pigment retrieval algorithm that dates back to 1990s [11]
and was recently modified for more extended applications, e.g., [22–25]. At the time this manuscript
is drafted, it is the only method that has been applied to underway spectrophotometry data
and successfully retrieved the concentrations of various pigments [22]. Compared with Gaussian
decomposition and other methods from previous studies, e.g., [14,15,19,26] that are incapable of
resolving PPC and PSC, the matrix inversion technique is capable of estimating these and various
marker pigments indicative of phytoplankton composition [27,28,34]. Both Gaussian decomposition
and the matrix inversion technique rely on the physical links between phytoplankton pigments and
their distinct light absorption properties, while other methods’ (e.g., principle component analysis)
output is often physically uninterpretable.



Remote Sens. 2019, 11, 318 22 of 32

To assess the utility of the two methods and improve their performances in our study area,
we improved the Gaussian decomposition algorithm from Chase et al. [22] by considering pigment
package effect and reconsidered the matrix inversion technique from Moisan et al. [27] by taking into
account matrix conditioning. In the following discussion, we compare the results from this study
to those from the literature, highlight the improvements we have made, and show applications to
underway absorption data.

4.1. Gaussian Decomposition

Our agaus(l0)-pigment data falls into the range of the global data set from Tara expeditions [22]
and has a large portion of overlap with the global data (Figure 5, Table 7) except for TChl-b (Figure 5i),
likely due to the lack of low TChl-b concentrations in this study. Furthermore, our agaus(l)-pigment
data shows less scatter (Figure 5a,c,e,g,i,k), and the estimation errors for all Gauss-5 pigments are
lower than those of the Tara data set (MPE 7.5–20% lower). This is probably because of a higher level
of variability in pigment package effect of the global data set than that in the Fram Strait, as indicated
by the greater quartile coefficient of dispersion of the pigment-specific absorption coefficient (a⇤i (l0),
defined as the ratio of agaus,i(l0) to the corresponding pigment concentration) for the global data set
(Table 7). In addition, it could also be due to the errors introduced by the extent of the Tara expeditions
study (2.5 years) and resulting increased potential for methodological variability, while only four
people were involved in discrete sampling in the current study.

After applying the package effect normalization, as expected, almost all the agaus(675)-TChl-a
data points fall on the regression line (Figure 5l, Table 2), i.e., no additional package effect was
found at agaus(675), suggesting the successful simplification of Q⇤

a(675) calculation using only TChl-a
concentration. Both the R2 for agaus(434) to TChl-a correlation and the regression coefficient B
(Equation (3)) are close to one, indicating that the variations in the magnitude of Q⇤

a(675) account for
a large proportion of the variations in the package effect due to TChl-a at 434 nm. Similar improvements
have been observed for Chl-c1/2, PSC, PPC and to a less extent, TChl-b, which implicates the
covariation between the package effect of these pigments at the corresponding wavelengths and that
of TChl-a. This is also proved by the reduced data dispersion of a⇤i (l0) except for TChl-b (Table 7) and
the strong power law relationships (R2 0.39–0.87) between a⇤TChl-a(434), a⇤TChl-b(660), a⇤Chl-c1/2(638),
a⇤PPC(492), a⇤PSC(523) and a⇤TChl-a(675), respectively. The package effect of a specific pigment is a
function of the concentration of this pigment as well as phytoplankton cell size [76]. The strong
correlations between TChl-a concentration and the concentrations of Chl-c1/2 (Spearman’s r = 0.9),
PSC (Spearman’s r = 1.0), PPC (Spearman’s r = 0.8), and of TChl-b (Spearman’s r = 0.7) (Figure 4b)
explain the covariation of the package effect by the pigments.

In essence, the Gaussian decomposition method takes advantage of the absorption-pigment
concentration correlation. The shape and magnitude of aph(l) is controlled by phytoplankton pigment
composition and the level of the pigment package effect. When applying Gaussian decomposition,
the absorption of individual pigments were separated and related to corresponding pigment
concentrations. Therefore, the effects of pigment composition and package were separated, and the
observed variations in absorption-pigment concentration correlation are mainly attributed to the
package effect. The covarying absorption by more than one pigment that failed to be separated by
this method is also a reason for these variations. Though simplified, the package effect is for the
first time taken into account during Gaussian decomposition of aph(l) and improved the pigment
estimation accuracy. It provides new insight into increasing pigment retrieval accuracy via the
combined use of concurrent aph(l) and TChl-a concentration either obtained from field instrumental
measurements/estimates or satellite data. To test the applicability of this normalization to underway
spectrophotometry data when HPLC TChl-a data is not available, TChl-a was firstly calculated
from the AC-S derived aph(675) via the cruise-specific power functions (see Section 3.1). In this case,
the improvement was also found with the normalization (Table 8). However, when TChl-a was derived
either from ap(440) using the power law relationship described in Section 3.1 or the global relationship
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from Bricaud et al. [71], no improvement was observed (results not shown), possibly because of the
more accurate TChl-a derived by the cruise-specific relationships. Therefore, the improved performance
with this normalization relies on the accurate measurement or derivation of TChl-a data. An improved
method for calculating pigment package effect is needed so that the calculation is independent of
HPLC TChl-a data. Lin et al. [78] developed an optimization approach in estimating Q⇤

a(675) from
aph(l) in the range of 650–700 nm based on pigment package effect theory. We tested this method
and found that the calculated Q⇤

a(675) did not improve retrievals (results not shown ). In summary,
better results can be expected by further deciphering the influence of pigment package effect on the
absorption-pigment concentration relationship.

Table 7. The range of values, median and quartile coefficient of dispersion (CD) for the Gaussian
decomposition derived pigment-specific absorption coefficient at the corresponding wavelength a⇤i (l0)

(in m2 mg�1).

l0
Pigment

Decomposition of aph(l) Decomposition of âph(l) Chase et al. (2013) [22]

(nm) Range Median CD [%] Range Median CD [%] Range Median CD [%]

434 TChl-a 0.006-0.153 0.036 21.2 0.020-0.179 0.064 12.9 0.015-0.165 0.065 35.5
675 TChl-a 0.007-0.060 0.017 28.8 0.024-0.046 0.030 5.9 0.007-0.065 0.019 22.6
660 TChl-b 0.003-0.346 0.060 38.7 0.006-0.540 0.100 44.5 0-0.408 0.072 43.0
638 Chl-c1/2 0.004-0.163 0.024 40.0 0.010-0.333 0.039 31.6 0.010-0.247 0.051 41.2
492 PPC 0.059-0.827 0.142 31.9 0.077-1.012 0.253 21.5 0.049-0.797 0.097 40.7
523 PSC 0.011-0.192 0.029 41.5 0.024-0.483 0.048 28.3 0.010-0.243 0.035 47.2

Table 8. Statistics of phytoplankton pigments retrieval using Gaussian decomposition with package
effect normalization based on leave-one-out cross-validation. Package effect normalization was
performed with cTChl-a in Equation (7) calculated using cruise-specific aph(675) (AC-S)-TChl-a (HPLC)
relationships (see Section 3.1). MAE values outside the parentheses were calculated with linear-scale
values, while inside the parentheses with log10-scale values.

l0 [nm] Pigment MAE [mg m
�3

] MPE [%]

434 TChl-a 0.19(0.13) 19.2
675 TChl-a 0.14(0.09) 12.4
660 TChl-b 0.02(0.16) 28.0
638 Chl-c1/2 0.06(0.18) 30.7
492 PPC 0.05(0.15) 24.5
523 PSC 0.16(0.16) 25.6

4.2. Matrix Inversion Technique

Compared to the seemingly physically interpretable NNLS derived ea⇤(l) and the measured a⇤(l)
from extracted pigments in solution, the usage of the SVD derived ea⇤(l) provided the most robust
pigment estimates, though non-negative specific absorption cannot be guaranteed. This is consistent
with the previous study from Moisan et al. [27]. It is worth noting that neither of the two types of ea⇤(l)
nor the measured a⇤(l) are representative of the real in vivo "unpacked" pigment-specific absorption
coefficient used in the reconstruction model. The former are pure mathematical optimization solutions
based on least squares or constrained least squares minimization.

The different estimation errors of SVD-NNLS-9 and SVD-NNLS-50 for TChl-b and Chlc-1/2
(Table 5 (a,b)) suggest the performance of SVD-NNLS in estimating pigments differs with the different
way of grouping pigments for matrix C (Equation (4)). The estimation accuracy of a specific pigment
using SVD-NNLS-9 and SVD-NNLS-50 increases with the increase of the amount of the pigment in
the samples, which was also observed by Moisan et al. [27]. The similar estimation statistics of all
three SVD-NNLS methods for TChl-a (Table 5) is probably because TChl-a is the main pigment of
phytoplankton and contributes the most to aph(l).

Moisan et al. [27] found that with the package effect normalization, the SVD-NNLS method
yielded much better predictions of pigments. In this study, when considering the training accuracy of
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SVD-NNLS-9 and SVD-NNLS-50 (Table 4 (a,b)), most of the pigments showed improved MAE and MPE
with this normalization. However, the cross-validation results calculated by taking into account the
data perturbations (Table 5 (a,b)) showed randomly improved, reduced, or similar pigment prediction
errors after the application of the normalization. The reason for this inconsistency is probably due to
the fact that both Moisan et al. [27] and the training statistics in this study did not take into account the
sensitivity of matrix inversion to input errors. Moisan et al. [27] also pointed out that the inverse model
solutions are sensitive to the level of errors in the measured aph(l). The inconsistency between the
results of the training (Table 4) and test errors (Table 5) confirms this sensitivity and that in this case,
the training statistics are not appropriate for use to indicate pigment estimation errors. The results from
cross-validation with data perturbations, on the other hand, encompassed the training statistics as their
one special case and effectively reduced the sensitivity of the SVD-NNLS method to provide robust and
stable pigment estimation statistics. Nevertheless, when performing package effect normalization on
SVD-NNLS-9, two more pigments with lower concentrations also obtained robust statistics, possibly
due to the enhancement of the differences between ea⇤(l) of different pigments.

The sensitivity of the matrix inversion technique comes from the ill-conditioning of the linear
systems (Equations (4) and (5)), which originates from the multicollinearity of phytoplankton
pigments. In natural water samples, the multicollinearity of phytoplankton pigments (Figure 4b)
are physiologically unavoidable. In other words, the ill-conditioning of Equations (4) and (5) is not
completely avoidable. To reduce the degree of the ill-conditioning, the choice of the pigments included
in matrix C (Equation (4)) is crucial. Our proposed ncond and SI criteria to determine which pigments
should be inverted for is empirically based on the understanding of the characteristics of the input data
and many trials. The thresholds of ncond and SI may change from case to case. The sensitivity analysis
based on data perturbations (Table 3) shows the relative stable values of ncond and SI. This is consistent
with the singular value perturbation theorems [79], i.e., the singular values of a matrix are very stable
with respect to changes in the elements of the matrix, because the ncond is by definition the ratio of the
largest to smallest singular values of a matrix. In contrast, though aware of the multicollinearity issue,
Moisan et al. [27] did not pre-select the pigments to be determined. Instead, all types of pigments
available from HPLC were included in the inverse modelling, which was also tested by this study
(results not shown) and can lead to reduction of the pigment retrieval accuracy.

4.3. Applications

With the particulate absorption data collected by underway AC-S flow-through system,
phytoplankton pigment concentrations along the cruise tracks are retrieved. Figure 9 shows an example
of the underway Fuco and Hex estimated by SVD-NNLS-9. Fuco and Hex are dominant in diatoms and
prymnesiophytes, respectively, which are the two common phytoplankton groups in the Fram Strait,
e.g., [56]. However, we have to bear in mind that differentiating phytoplankton groups by marker
pigments can be problematic, as there is substantial variability in pigment concentrations as a function
of physiological responses to the environmental conditions. More importantly, a given marker pigment
can be present in several phytoplankton groups (e.g., Fuco in diatoms and prymnesiophytes; more
details in Wright and Jeffrey [80]). Data from the year 2015 indicates a co-prosperity of diatoms
and prymnesiophytes. Overall, the concentrations of Fuco are relatively higher than those of Hex,
which possibly reflects an overall higher biomass of diatoms (Figure 9a). In the year 2016, while this
co-prosperity continued, the Hex concentrations exceeded the concentrations of Fuco in the western
part of our study area (2 July 2016) (Figure 9b). In contrast, the year 2017 experienced an overall higher
concentrations of Hex than Fuco (Figure 9c). These results are consistent with previous observations of
the shift of phytoplankton assemblages from diatoms to Phaeocystis spp. (a type of prymnesiophyte)
during the summer months in the Fram Strait [56,58,59]. In the future, access to similar high resolution
phytoplankton pigment data verified by microscopic and flow cytometric techniques could support
the studies on biogeophysical coupling in the Fram Strait and further enhance our understanding in
the responses of phytoplankton community composition and physiology to climate change.
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Figure 9. SVD-NNLS-9 estimated Fuco and Hex concentrations from underway spectrophotometry
during the cruise periods of PS93.2 (a), PS99.2 (b) and PS107 (c).

5. Conclusions

We demonstrated the retrieval of high spatially resolved phytoplankton pigment concentrations in
the Fram Strait and its vicinity from underway hyperspectral aph(l) (400–700 nm, ~3.5 nm wavelength
resolution) by the application of Gaussian decomposition [22] and the matrix inversion technique [27].
Gaussian decomposition enables robust predictions of Gauss-5 pigments (MPE 21-34%). Improved
retrieval accuracy was obtained by normalizing the aph(l) spectra with the pigment package effect
factor at 675 nm. For the matrix inversion technique, although SVD cannot guarantee the derivation
of non-negative pigment-specific absorption spectra, it generates more accurate pigment estimates
compared to the NNLS derived spectra or the measured spectra from pigments in solution. To minimize
the effect of the ill-conditioned matrices on pigment retrieval accuracy, we propose an innovative
approach in selecting the pigments to be determined based on the combined use of data perturbations
and leave-one-out cross-validation to generate robust pigment estimation statistics. Considering the
overall pigment retrieval accuracy, SVD-NNLS-9 performed best among the three SVD-NNLS methods.
The SVD-NNLS-9 method enables the robust estimations of six pigments (MPE 16-65%), i.e., TChl-a,
TChl-b, Chl-c1/2, Diadino, Fuco and Hex, and two more being less accuraely estimated (MPE 67–76%),
i.e., But and Peri, with the application of the package effect normalization. Gaussian decomposition
outperforms SVD-NNLS-50 in retrieving the TChl-b, Chl-c1/2, PPC and PSC, while both methods
show similar capability in estimating TChl-a.

The matrix inversion technique has the advantage of retrieving the concentrations of several
specific carotenoids, which is currently not accomplished by Gaussian decomposition, derivative
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analysis [13], partial least squares regression [14], and multiple linear regression [15]. However,
its performance is sensitive to input errors when the input matrix is to some extent ill-conditioned.
Therefore, sensitivity analysis such as the one based on data perturbations used in our study is always
needed when assessing the performance of the matrix inversion technique in retrieving phytoplankton
pigments or pigment related parameters. Future studies using methods such as principle component
analysis and artificial neural network may show promise to obtain not only chlorophylls but also
different types of carotenoids in our study area.

In addition to the number of pigments, the number of spectral bands used for pigment retrieval
also significantly influence the performance of the matrix inversion technique. Compared with the
results using hyperspectral aph(l), the number of pigments able to be retrieved by SVD-NNLS-9 was
reduced to four, i.e., TChl-a, TChl-b, Chl-c1/2 and Hex, with increased estimation errors, especially
for Chl-c1/2 and Hex, when using multispectral aph(l) (at ten MODIS bands). This suggests the
advantage of using hyperspectral data for increasing the accuracy of phytoplankton pigment retrievals.
It follows that aph(l) inverted from hyperspectral remote sensing reflectance measured by in situ or
satellite radiometry has a greater potential for the application of Gaussian decomposition and the
matrix inversion technique than multispectral radiometric measurements.

To apply Gaussian decomposition or the matrix inversion technique to a study area,
prior knowledge of concurrent AC-S derived aph(l) and HPLC pigment concentrations in this region
is necessary to derive either the regional agaus(l0)-pigment concentration relationship or the regional
pigment-specific absorption spectra. With this knowledge, we apply both approaches to underway
AC-S measurements in times when no HPLC data is available. Given that proxy-relation may change
in the future, it is imperative to always collect some HPLC data to validate that derived relations or
coefficients are still consistent.

The application of the two methods to our data obtain in three Fram Strait expeditions enables the
derivation of pigment data sets along the cruise tracks. Future work could build upon these results,
by deriving phytoplankton functional types based on retrieved marker pigments from hyperspectral
phytoplankton absorption as well as hyperspectral remote sensing reflectance data. Such a high
resolution data set will strengthen the study of phytoplankton dynamics in responses to environmental
variables in the context of climate change.

Supplementary Materials: The quality controlled particulate absorption data from underway AC-S flow-through
system, the HPLC phytoplankton pigments from discrete samples, and the estimated pigment concentrations along
cruise tracks mentioned in this paper are available on PANGAE: https://doi.pangaea.de/10.1594/PANGAEA.
894875. The MATLAB codes for data processing are available online at https://github.com/phytooptics.
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Abbreviations

The following mathematical parameters are used in this manuscript:

Symbol Description

agaus(l) Gaussian absorption coefficient (Equation (2))
aNAP(l) spectral absorption coefficient by non-algal particles
ap(l) spectral particulate absorption coefficient
aph(l) spectral phytoplankton absorption coefficient
âph(l) pigment package effect normalized aph(l) (Equation (7))
Aph matrix of aph(l) (Equations (4) and (5))
a⇤(l) real or measured pigment-specific absorption coefficient
ea⇤(l) SVD or NNLS derived pigment-specific absorption coefficient (Equations (4) and (5))
ea⇤+(l) absolute values of ea⇤(l) (Equation (6))
||ea⇤(l)|| norm of ea⇤(l) (Equation (6))
eA matrix of ea⇤(l) (Equations (4) and (5))
A regression coefficient of pigment concentration-agaus(l0) power relationship (Equation (3))

B
regression coefficient (power) of pigment concentration-agaus(l0) power relationship
(Equation (3))

c HPLC derived pigment concentration
C matrix of c (Equation (4))
C+ Moore–Penrose pseudoinverse of matrix C
cTChl-a HPLC derived TChl-a concentration
ec⇤ estimated pigment concentration
eC matrix of ec⇤ (Equation (5))
CD quartile coefficient of dispersion
m number of pigment types
MAE mean absolute error (Equation (8))
MPE median absolute percentage error (Equation (9))
n number of samples
ncond condition number of matrix C
R2 determination coefficient
S spectral exponent of aNAP(l) (Equation (1))
SI similarity index between two ea⇤+(l) (Equation (6))
Spearman’s r Spearman0s rank correlation coefficient
Q⇤

a (l) pigment package effect index
l0 peak wavelength of a Gaussian function
s width of a Gaussian function
sSD(l) standard deviation of the 20-minute averaged matched AC-S ap(l) spectra (Equation (2))
c2 cost function of Gaussian decomposition (Equation (2))

Appendix A. Cross-Validation Results of NNLS-NNLS

As shown in Table 5 and Table A1, overall, pigment estimation errors from NNLS-NNLS were
larger than the corresponding SVD-NNLS for all pigments excepte for TChl-a. The NNLS-NNLS-6
method exhibited robust predictions for TChl-a, Fuco and Hex (MPE 21–65%). With the package
effect normalization, three more pigments, i.e., TChl-b, Chl-c1/2 and But were reasonably estimated
(55–82%).
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Table A1. Statistics of phytoplankton pigment retrieval using NNLS-NNLS based on leave-one-out
cross-validation. MAE is in mg m�3 (values outside the parentheses were calculated with linear-scale
values, while inside the parentheses with log10-scale values) and MPE in %. “Perturb 1, 2 and
3” represent the input data with perturbations of pigment concentrations solely, aph(l) solely and
both, respectively.

(a) NNLS-NNLS-6 (aph(l) Based) and NNLS-NNLS-9 (âph(l) Based)

Pigments

Perturb 1
a

Perturb 2
a

Perturb 3
a

Perturb 1
b

Perturb 2
b

Perturb 3
b

MAE MPE MAE MPE MAE MPE MAE MPE MAE MPE MAE MPE

TChl-a 0.22(0.16) 24.2 0.22(0.17) 21.5 0.22(0.16) 23.6 0.05(0.04) 4.2 0.07(0.05) 6.6 0.08(0.05) 6.6
TChl-b - - - - - - 0.03(0.24) 64.4 0.03(0.24) 55.2 0.03(0.24) 58.2

Chl-c1/2 - - - - - - 0.11(0.32) 59.7 0.12(0.34) 66.6 0.12(0.33) 69.6
But - - - - - - 0.03(0.22) 82.2 0.03(0.22) 76.0 0.03(0.23) 79.6

Diadino 0.14(0.38) 267.8 0.45(0.43) 2496 0.15(0.37) 210.4 0.33(0.60) 238.2 0.21(0.48) 161.2 0.23(0.48) 222.3
Fuco 0.10(0.27) 46.5 0.10(0.27) 46.0 0.10(0.27) 46.4 0.13(0.22) 61.8 0.11(0.20) 50.1 0.13(0.21) 60.1
Hex 0.10(0.23) 57.4 0.13(0.24) 61.0 0.14(0.25) 65.3 0.09(0.20) 45.4 0.08(0.21) 42.1 0.09(0.21) 49.1
Peri 0.04(0.25) 185.5 0.04(0.25) 164.7 0.04(0.24) 162.2 0.02(0.13) 67.4 0.02(0.20) 104.0 0.02(0.19) 91.9

Pheo-a 0.01(0.02) 88.5 0.02(0.02) 94.3 0.02(0.02) 97.4 0.07(0.05) 322.9 0.05(0.05) 231.7 0.05(0.05) 234.1

(b) NNLS-NNLS-50

Pigments

Perturb 1
a

Perturb 2
a

Perturb 3
a

MAE MPE MAE MPE MAE MPE

TChl-a 0.21(0.14) 22.0 0.18(0.12) 18.4 0.21(0.07) 21.5
TChl-b 0.04(0.31) 71.9 0.04(0.29) 62.5 0.04(0.27) 64.2

Chl-c1/2 0.06(0.22) 34.1 0.06(0.21) 32.4 0.06(0.30) 34.4
PPC 0.18(0.27) 96.1 0.18(0.28) 85.0 0.17(0.22) 81.5
PSC 0.21(0.20) 46.0 0.20(0.20) 41.0 0.22(0.22) 45.2

(c) Bricaud-NNLS-NNLS-4

Pigments

Perturb 1
a

Perturb 2
a

Perturb 3
a

Perturb 1
b

Perturb 2
b

Perturb 3
b

MAE MPE MAE MPE MAE MPE MAE MPE MAE MPE MAE MPE

TChl-a 0.25(0.15) 26.6 0.24(0.15) 26.0 0.25(0.15) 26.9 0.08(0.05) 5.54 0.10(0.06) 8.1 0.10(0.06) 8.1
Chl-c1/2 0.05(0.20) 35.0 0.05(0.20) 35.1 0.06(0.21) 35.7 0.06(0.22) 38.6 0.06(0.23) 41.5 0.06(0.23) 43.1
Diadino 0.14(0.44) 189.3 0.14(0.43) 188.8 0.14(0.43) 186.0 0.10(0.31) 118.1 0.10(0.31) 117.3 0.10(0.32) 117.4

Hex 0.17(0.35) 46.2 0.17(0.35) 47.3 0.17(0.35) 48.7 0.23(0.37) 123.1 0.24(0.37) 114.3 0.24(0.37) 110.8
a aph(l) based; b âph(l) based.
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Abstract Microalgae are capable of acclimating to dynamic light environments, as they have developed
mechanisms to optimize light harvesting and photosynthetic electron transport. When absorption of light
exceeds photosynthetic capacity, various physiological protective mechanisms prevent damage of the
photosynthetic apparatus. Xanthophyll pigments provide one of the most important photoprotective
mechanisms to dissipate the excess light energy and prevent photoinhibition. In this study, we coupled a
mechanistic model for phytoplankton photoinhibition with the global biogeochemical model Regulated
Ecosystem Model version 2. The assumption that photoinhibition is small in phytoplankton communities
acclimated to ambient light allowed us to predict the photoprotective needs of phytoplankton. When
comparing the predicted photoprotective needs to observations of pigment content determined by
high‐performance liquid chromatography, our results showed that photoprotective response seems to be
mediated in most parts of the ocean by a variable ratio of xanthophyll pigments to chlorophyll. The
variability in the ratio appeared to be mainly driven by changes in phytoplankton community composition.
Exceptions appeared at high latitudes where other energy dissipating mechanisms seem to play a role in
photoprotection and both taxonomic changes and physiological acclimation determine community pigment
signature. Understanding the variability of community pigment signature is crucial for modeling the
coupling of light absorption to carbon fixation in the ocean. Insights about how much of this variability is
attributable to changes in community composition may allow us to improve the match between remotely
sensed optical data and the underlying phytoplankton community.

1. Introduction

Since phytoplankton organisms are living in a spatially and temporally dynamic light field, their cells have
developed a variety of intracellular mechanisms to optimize light harvesting and utilization. Light fluctua-
tions can be harmful to the photosynthetic machinery of microalgae when the harvesting of light energy
exceeds photosynthetic carbon fixation capacity (Dubinsky & Schofield, 2010). Thus, to prevent damage of
the photosynthetic apparatus caused by rapid light fluctuations, algal cells have evolved various physiologi-
cal protective mechanisms for stress mitigation. These mechanisms are summarized under the term non-
photochemical quenching (NPQ; Lavaud, 2007). NPQ includes mechanistically distinct processes with
likely independent evolutionary origins (Magdaong & Blankenship, 2018), but they share the nonradiative
dissipation of excess energy within the photosynthetic apparatus as a common purpose.

Xanthophyll pigments (oxygenated carotenoids) are involved either directly or indirectly in the NPQ of
excess light energy in the antenna of photosystem II complexes (PSII). They are ubiquitous in the global
ocean (Bricaud et al., 2004; Demmig‐Adams & Adams, 1996; Trees et al., 2000). In eukaryotes, one of the
main mechanisms that xanthophylls use to perform their photoprotective function is the so‐called xantho-
phyll cycle (XC; Lavaud, 2007). This mechanism involves the light‐regulated switching of PSII from a
light‐harvesting state to an energy dissipating state (Brunet et al., 2011). But also, photosynthetic organisms
that do not possess an active XC, such as cyanobacteria, possess xanthophylls with central functions in
energy dissipation (Wilson et al., 2006) and locate some carotenoids in the cytoplasmic membrane for pro-
tection from high light (Masamoto et al., 1999). The role of xanthophylls is crucial in the modulation of
the high light response via the kinetics and amplitude of NPQ that helps to protect the photosynthetic cen-
ters against the destructive influence of harmful radiation (Müller et al., 2001).
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The amount of xanthophyll pigments relative to total chlorophyll (Chla) is a distinctive feature of different
phytoplankton types. It reflects the selective pressure on variable pigment composition in local phytoplank-
ton communities adapted to varying environmental conditions. Accessory pigments have been used as gen-
eral diagnostic markers for specific phytoplankton groups, and changes in the community pigment ratios
can be used to derive changes in taxonomic composition (Mackey et al., 1996). However, the ratios of indi-
vidual accessory pigments to Chla can also vary as a function of physiological state. The plasticity in the
response of phytoplankton to irradiance is species specific (MacIntyre et al., 2002). This plasticity depends
on the photoacclimation ability and light history of the phytoplankton cells (Moore et al., 2006) and on
the species‐specific efficiency of the photoregulative mechanisms (Goss & Jakob, 2010; Lavaud, 2007).
Whereas photoregulation involves fast photoprotective reactions that occur on a shorter time scale than pig-
ment synthesis responses, photoacclimation includes longer‐term mechanisms of photoresponse that
involve changes in pigment content and composition (Demers et al., 1991). Ultimately, photoresponse is
determined by the interaction between fast photoregulation and longer‐term photoacclimation (Brunet &
Lavaud, 2010) in the framework of a given genetic background.

Under acclimation to a prolonged light regime, from hours to seasons, phytoplankton cells change the size of
the light harvesting apparatus to saturate dark reactions or to protect PSII. This means typically that the cel-
lular content of photosynthetic pigments tends to increase under low light and to decrease under high light.
Photoacclimation to low light includes not only chlorophyll (Chla) but also the accumulation of other photo-
synthetic accessory pigments, such as fucoxanthin in diatoms or peridinin in dinoflagellates that ensure an
efficient utilization of the available light by absorbing photons outside the range of wavelengths accessible to
Chla molecules. Photoprotective xanthophyll pigments accumulate in high‐light‐exposed cells that show
higher xanthophyll content relative to Chla (MacIntyre et al., 2002). The ratios of photoprotective pigments
to Chla concentrations can be used as quantitative markers for photophysiological state (Stolte et al., 2000).
The variations in the pool size of xanthophyll pigments can provide information on the “average” light cli-
mate to which the cells have been exposed in the past hours/days.

Xanthophylls participate in the fast photoregulative reactions. Despite differences in their particular
mechanisms of action (Fujiki & Taguchi, 2001; Horton et al., 2000; Jahns et al., 2009; Ting & Owens,
1993), it is clear that the function of the XC takes place in time scales of seconds to minutes and allows algae
to accommodate to rapid changes in the light field without net change in pigments content. XC is activated
when the incident light becomes excessive with respect to the optimum, which is necessary to maximize
photosynthesis (Dubinsky & Stambler, 2009). Two different XCs have been described for eukaryotic algae.
In the violaxanthin cycle, violaxanthin is reversibly converted into zeaxanthin by fast de‐epoxidation using
the intermediate antheraxanthin. The diadinoxanthin‐diatoxanthin cycle involves the reversible conversion
of diadinoxanthin into diatoxanthin. Violaxanthin cycle is active in all land plants, brown algae, and most of
the green algae; diadinoxanthin‐diatoxanthin cycle is active in a wide range of different algae including dia-
toms and haptophytes (for reviews see Goss & Jakob, 2010; Jahns et al., 2009). Since the time scale of xantho-
phyll cycling is much shorter than that of photoacclimation, both epoxidated and de‐epoxidated
xanthophylls act as photoprotection in the medium to long term and contribute to the photoprotection abil-
ity of phytoplankton communities.

Description of photoacclimation via the changes in Chla content is by now virtually standard in ocean bio-
geochemical models, mostly in terms of the parameterization given by Geider et al. (1998) and sometimes
also by Geider et al. (1997). Despite the relevant role of xanthophylls in algae and its possibly important
implications, less emphasis has been placed on the capacity of different phytoplankton species or groups
to acclimate or regulate photophysiology through photoprotective pigments (Brunet & Lavaud, 2010).
There are only a few models that explicitly represent the dynamics of reaction centers and the
xanthophyll‐mediated photoprotection. Polimene et al. (2012) proposed a model of DD and DT production
through conversion of other pigments and de novo synthesis and hence predict the long‐term photoprotec-
tive response in Bacilliarophyta and Haptophyta. Gustafsson et al. (2014) proposed a model that describes
xanthophyll synthesis and cycling in zooxanthella and hence predicts the short‐term oxidative stress that
leads to coral bleaching. In both cases, the focus on a specific pigment type or mechanism of action permitted
the authors to gain insight into particular situations, such as coastal areas dominated by diatoms (Polimene
et al., 2014) or corals reefs of the Great Barrier Reef (Baird et al., 2018). Pigment‐ or mechanism‐dependent
models are challenging to extrapolate to diverse phytoplankton communities.
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Models that do not parameterize short‐term photoprotective mechanisms have the advantage that they can
be generalized to diverse phytoplankton communities across the global ocean (Han, 2002; Han et al., 2000;
Marshall et al., 2000; Ross et al., 2011; Zonneveld, 1998). These models predict the role of NPQ influencing
the activity of PSII and consider the role of photoprotective pigments only implicitly. The mechanistic model
of photoinhibition proposed by Marshall et al. (2000) accounts for changes in Chla‐specific absorption cross‐
section and quantum yield of photosynthesis driven by the relative amount of active PSII. The decrease in
both variables under high light conditions leads to the photoinhibition of the light harvesting apparatus
and therefore to the decrease in photosynthetic rate. The fraction of PSII available for photochemistry
depends on the protective effect of NPQ involving both closed reaction centers and photoprotective pig-
ments. Rather than assuming any particular short‐term mechanism of action for these latter, a variable
xanthophyll pool size simulates the resilience of the phytoplankton community to photodamage.

In this study we used the Marshall model as a tool to evaluate the relevance of the different components of
NPQ in the global ocean. Avoiding the representation of the full details of the species‐specific short‐term
photoprotective mechanisms allowed us to represent long‐term photoprotection in a global diverse ecosys-
tem. We implemented both the phytoplankton growth models of Geider et al. (1998) and Marshall et al.
(2000) into the Regulated Ecosystem model version 2 (REcoM2; Hohn, 2009; Schartau et al., 2007).
Thereby, we present an ecosystem model that represents phytoplankton diversity with two phytoplankton
groups that have group‐specific photoprotective needs. Our approach was based on the major assumption
that the photoinhibition predicted by the Marshall model should be negligible in phytoplankton commu-
nities fully acclimated to ambient light. The difference between the photosynthesis‐irradiance curves pre-
dicted with and without photoinhibition, that is, by the Marshall and Geider models, respectively, can be
considered a measure of the need for photoprotection in order to minimize such photoinhibition. We
hypothesize that these photoprotection needs are covered mostly by a variable pool of photoprotective
xanthophylls. By comparing the predicted photoprotection needs with global field observations of photopro-
tective carotenoid content, we evaluated the relevance of nonphotosynthetic xanthophylls for the photopro-
tection of the phytoplankton community at a global scale. Finally, we explored whether changes in the
community aggregated xanthophyll pool were driven by intragroup physiological acclimation and/or by
changes in community composition.

2. Model
2.1. Phytoplankton Bio‐Optical Model

Within the mechanistic model of photoinhibition by Marshall et al. (2000), the Marshall model, the light
harvesting apparatus is divided into two states, PSII with a functional D1 protein and hence active for light
harvesting and PSII whose D1 protein has been damaged and hence can no longer participate in photosyn-
thetic electron transfer. The relative amounts of these two types of PSII are represented by the state variables
AD1 and DD1, which represent the relative amount of active and damaged PSII, respectively. Definitions of
the variables and their units are summarized in Table 1. The model consists of two parts: The first part
describes the damage‐repair cycle, a set of functions that define the rates of damage to the D1 proteins of
the PSII and the rate at which those damaged proteins are repaired; the second part predicts photoinhibition
based on the statement that the amount of AD1 at a given time influences the light harvesting ability of the
cell and hence the initial slope of the photosynthesis versus light curve (PCphot−E). Since the original paper
by Marshall et al. (2000) contains some equations that do not balance, we included some modifications to
reproduce the model behavior shown in the original publication (equations (1) to (7) in Table 2). For a
detailed analysis of the modifications made to Marshall et al. (2000), see the supporting information
(Flynn et al., 1999; Flynn & Flynn, 1998).
2.1.1. Damage and Repair of D1 Proteins
The rate of damage to AD1 (Gd) is modeled as a linear function of photon dose (equation 1). The slope of the
relationship represents the target size for photodamage to PSII (square meter per Joule). The two NPQ
mechanisms that prevent damage to AD1 are (i) the quenching provided by already damaged reaction cen-
ters (qRC) that protects the cell from further damage via multiplication with the term (1 − DD1) and (ii) the
antenna‐based NPQ (Qe) that decreases Gd via multiplication with the term (1 − Qe). Whereas qRC is pro-
portional to DD1 that is a state variable in the model, Qe is not related to any explicit representation of
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nonphotosynthetic pigments. In the original formulation Qe is modified by a correction factor (Ds) that is
intended to reflect the differential resilience of different species to photodamage via xanthophyll‐based
NPQ. By setting the parameter Ds to a constant value of 1, the Marshall model assumes a constant
xanthophyll pigment pool size.

The repair rate of D1 proteins (Rep) is modeled as a function of DD1, the relative amount of damaged PSII
that are ready to be repaired. Repair of DD1 consists on several steps. The apparent bottleneck of the whole
process is the enzymatic removal of damaged proteins (Mellis, 1999). Hence, Rep must reach a maximum
and has the form of a Michaelis‐Menten function where Y is the maximum repair rate and Z the half satura-
tion constant (equation (2)). As repair requires de novo synthesis of D1 proteins, Rep is limited by nutrient
availability (Nlimit) in the original formulation (Marshall et al., 2000). We included a temperature depen-
dency (Tfunc) given the temperature restrictions on D1‐protein turnover (Ni et al., 2017). The change in
AD1 is set to the difference between the damage and repair rates to D1 proteins (equation (3)) and the
amount of DD1 is equal to 1−AD1 (equation (4)).
2.1.2. Effect of AD1 and NPQ on α
The photochemical efficiency of PSII (ϕ), defined as carbon fixed per unit of light absorbed, depends on the
fraction of AD1 proteins available to photochemistry. The closure of reaction centers leads to a decrease in
the value of ϕ. However, a loss of active photosystems of up to 25% has been found to have no impact on ϕ

Table 1
Definitions of State, Intermediate, and Input Variables in the Phytoplankton Growth model

Variable Definition Units

State variables
C Carbon mmolC m‐3

N Nitrogen mmolN m‐3

Si Silica mmolSi m‐3

Chla Photosynthetic pigments mgChla m‐3

AD1 Functioning D1 relative to total D1 Dimensionless
DD1 Damaged D1 relative to total D1 Dimensionless

Intermediate variables
Gd Damage rate d‐1

Rep Repair rate d‐1

ϕ Quantum yield of photosynthesis mmolC J‐1

Qe Antenna‐based non photochemical quenching Dimensionless
a*NP Cellular absorption cross section m2 mgChla‐1

αNP Initial slope of the photosynthesis light curve of damaged cells m2 molC gChla‐1 J‐1

Q Nitrogen to carbon quota mol mol‐1

QSi Silica to carbon quota mol mol‐1

ϴ Chla to carbon quota g mol‐1

LimQmin Limitation term by approach to Qmin Dimensionless
LimQSi

min Limitation term by approach to Qsi
min Dimensionless

Nlimit Nutrient growth‐limitation term Dimensionless
LimQmax limitation term by approach to Qmax Dimensionless
LimQSi

max Limitation term by approach to Qsi
max Dimensionless

Tfunc Arrhenius function Dimensionless
PCphot Rate of photosynthesis d‐1

PCmax Maximum rate of photosynthesis d‐1

R Phytoplankton respiration d‐1

RChl Loss rate of Chla d‐1

VCN Nitrogen uptake molN molC‐1 d‐1

VNmax Maximum nitrogen uptake molN molC‐1 d‐1

VCSi Silica uptake molSi molC‐1 d‐1

VSimax Maximum silica uptake molSi molC‐1 d‐1

Input variables
T Temperature °K
E Irradiance J m‐2d‐1

Ni Dissolved inorganic nitrogen (DIN) mM
dSi Dissolved silica mM
Fe Dissolved iron μM
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(Park et al., 1995). So for AD1 larger than 0.75, ϕ equals ϕmax, and for AD1 smaller than 0.75, ϕ decreases
linearly with D1 (equation (5)). The slope is set to ϕmax/0.75, so ϕ varies from ϕmax to 0.

The buildup of a proton gradient across the thylakoid triggers the de‐epoxidation of xanthophylls (Goss &
Jakob, 2010) and hence an increase in Qe. Since pH is not explicitly taken into account in the Marshall
model, the latter assumes that ϕ is correlated with pH and uses ϕ as a proxy for Qe (equation (6)). The slope
1/ϕ max makes Qe a relative quantity that varies between 0 and 1.

Qe has two roles in the model. It decreases the damage rate to D1 proteins (equation (1)) and decreases the
Chla‐specific optical absorption cross‐section of photosynthetic pigments (a*NP) (equation (7)). Although

Table 2
Phytoplankton Growth Model Equations

Eq. Equations Source

1 Gd = (X × E) × AD1 × (1 − Qe) Modified from (Marshall et al., 2000)
2

Rep ¼ Y×DD1
ZþDD1

! "
×Nlimit×Tfunc

(Marshall et al., 2000)

3
dAD1
dt ¼ DD1×Rep−AD1×Gd

Modified from (Marshall et al., 2000)

4
dDD1
dt ¼ AD1×Gd−DD1×Rep

Modified from (Marshall et al., 2000)

5
ϕ ¼ min ϕmax

F ×AD1;ϕmax

! " Modified from (Marshall et al., 2000)

6
Qe ¼ 1−ϕ

ϕmax

# Modified from (Marshall et al., 2000)

7
αNP ¼ a*NP×ϕ ; a*NP ¼ a*PH× 1−Qeð Þ

(Marshall et al., 2000)

8 LimQmin ¼ 1−e−50× abs Qmin−Qð Þ− Qmin−Qð Þð Þ2 (Hohn, 2009)
9

LimQSi
min ¼ 1−e−1000× abs QSi

min−QSið Þ− QSi
min−QSið Þð Þ2

(Hohn, 2009)

10
Nlimitd ¼ min LimQmin; LimQSi

min;
Fe

FeþkFe

! "
; Nlimitnd ¼ min LimQmin;

Fe
FeþkFe

! " Liebig's law

11 LimQmax ¼ 1−e−1000× abs Q−Qmaxð Þ− Q−Qmaxð Þð Þ2 (Schartau et al., 2007)
12

LimQSi
max ¼ 1−e−1000× abs QSi−Q

Si
maxð Þ− QSi−Q

Si
maxð Þð Þ2

(Hohn, 2009)

13

Tfunc ¼ e
−Ae× 1

T−
1

Tref

! " (Geider et al., 1998)

14
PC
phot ¼ PC

max× 1−e
−αθE=P

maxC
! "

; PC
max ¼ PC

ref×Nlimit×Tfunc
(Webb et al., 1974)

15
R ¼ Rref×LimQmax þ ζ×VC

N þ ϑ×VC
Si

(Geider et al., 1998)

16
dC
dt ¼ C× PC

phot−R−ηC×LimQmax

! " (Geider et al., 1998)

17
dChla
dt ¼ Chla× VC

N×Q
Chl
N

θ ×
PC
phot

α×θ×E−RChl
! " (Geider et al., 1998)

18
RChl ¼ k× 1−e−αθE=P

C
max

! " (Álvarez et al., 2018)

19
VC

N ¼ VN
max×

Ni
NiþkNð Þ ; V

N
max ¼ VC

ref×P
C
max×Qmax×LimQmax

(Geider et al., 1998)

20
dN
dt ¼ C×VC

N−N×ηN×LimQmax

(Geider et al., 1998)

21
VC

Si ¼ VSi
max×

dSi
dSiþkSið Þ ; V

Si
max ¼ VC

ref×P
C
ref×Tfunc×Q

Si
max×LimQmax×LimQSi

max

(Hohn, 2009)

22
dSi
dt ¼ C×VC

Si−Si×ηNSi×LimQmax

(Hohn, 2009)

Note. Details on the modifications made to Marshall et al. (2000) model in the Supporting Information (Flynn et al., 1999; Flynn & Flynn, 1998).
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the latter is the simplest description of the effects of Qe on a*NP, it is sufficient to represent the decrease in
a*NP as observed from saturating to inhibitory light levels (Kolber et al., 1988).

The decrease in the absorption cross‐section acts alongside ϕ decrease to decrease the initial slope of the
PCphot−E curve (αNP). αNP is generally described as the light limited slope of the PCphot−E curve since under
light saturated conditions the photosynthesis is limited by dark reactions. However, the net result of the
Marshall model is making αNP variable along the curve. The decrease in αNP under high light conditions
reverts the limit for photosynthesis from dark to light reactions, which eventually leads to photoinhibition.
2.1.3. Combining the Models by Marshall and Geider et al. (1998)
The dynamic phytoplankton growth model by Geider et al. (1998) sets the initial slope of the PCphot−E curve
(α) as a constant parameter. With α being constant along the whole PCphot−E curve and with no other photo-
inhibitory parameter being considered, photoinhibition does not take place. The differences between Geider
and Marshall approximations are summarized in Figure 1. If we assume that photoinhibition is negligible in
phytoplankton communities acclimated to ambient light (Cullen et al., 1992), the difference between the
PCphot−E curves with (Marshall) and without photoinhibition (Geider) reflects the need for photoprotection
in order to limit such photoinhibition. The difference between Geider andMarshall PCphot−E curves is given
by the difference between α and αNP. Hence, the difference between α and αNP reflects a photoprotection gap
that could be filled by the missing elements in the description of NPQ, such a variable pool of nonphotosyn-
thetic pigments but also by any other mechanism not described explicitly such as constitutive heat dissipa-
tion. By comparing the predicted photoprotection gap to observations of photoprotective carotenoids under
natural conditions, we tested whether the gap is filled by the presence of nonphotosynthetic pigments, or if
further mechanisms are necessary to complete photoprotection.

We performed three experiments with different settings for our model:

EXP‐R equivalent to the dynamic phytoplankton model by Geider, only α was computed and used in the
PCphot−E curve for production.

EXP‐M equivalent to the original Marshall model, only αNP was computed and used in the PCphot−E curve
for production.

EXP‐C both α and αNP were computed, αwas used in the PCphot−E curve for production, and the difference
between α and αNP was explored to evaluate photoprotection requirements.

2.2. Implementation Into REcoM2

The variability in pigment composition in a diverse phytoplankton community is not only dependent on the
direct effect of environmental conditions on light harvesting traits for a particular phytoplankton group.

Figure 1. Schematic showing the parts of the model used in each experiment. The model is divided into photosynthetic
and nonphotosynthetic pigments and reaction center dynamics. State, intermediate, input variables, and parameters are
distinguished.
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Community composition influences the community aggregated pigment signatures. We chose the RecoM2,
which provides the simplest framework to include phytoplankton diversity since it describes the dynamics of
two phytoplankton groups with a detailed description of their elemental composition. The rest of the
ecosystem is completed with zooplankton, detritus, and main nutrients compartments. Ocean circulation
and mixing is derived from the MIT general circulation model. Details about the complete model setup
can be consulted in the appendix to Hauck et al. (2013).
2.2.1. Phytoplankton Diversity
RecoM2 describes the dynamics of two phytoplankton types, diatoms and nondiatoms. The difference
between groups is merely functional, as diatoms require silica and other phytoplankton do not.
However, differences in parameter values between the two groups (Table 3) are size related, and the dia-
tom group can be ascribable to large‐sized phytoplankton while other phytoplankton represents smaller
phytoplankton. We kept α values larger for diatoms compared to the values for small phytoplankton.
This have provided realistic distribution of primary production in previous applications of REcoM2
(Álvarez et al., 2018; Schourup‐Kristensen et al., 2014). With all PSII being active for photochemistry,
αNP should equal α. Since the Marshall model splits αNP into absorption (a*NP) and photochemical (ϕ)
components, we set the maximum values for those, a*PH and ϕmax, in order to match the group specific
α’s (Table 3).

Literature values given for a*PH range from 0.005 to 0.025 m2·mg·Chla‐1 (Kromkamp et al., 2001; Megard
et al., 1979; Oliver & Ganf, 1988) and given the package effect on pigment concentrations, larger cells tend
to have smaller values of a*PH (Bricaud et al., 2004). However, we kept a*PH equal for the two groups in 0.007
m2·mg·Chla‐1, and hence, we have not considered a packaging effect. The light attenuation by phytoplank-
ton (aCHL) was also set constantly to 0.03 m

2·mg·Chla‐1 (Table 3). Experimental values given for ϕmax range
from 2.1·10‐5 to 4.8·10‐4 mmolC/J (Du et al., 2018; Kiefer & Mitchell, 1983; MacIntyre et al., 2002; Raven &

Table 3
Definitions of Parameters With Values for the Two Phytoplankton Groups

Parameter Definition Value diatoms Value nondiatoms Units

α Initial slope of the photosynthesis irradiance curve 0.19 0.14 m2 molC gChla‐1 J‐1

φmax Maximum quantum yield 3.1·10‐4 2.3·10‐4 mmolC J‐1

a*PH Chlorophyll absorption cross section 0.007 0.007 m2 mgChla‐1

F Minimum AD1 to keep φ=φmax 0.75 0.75 relative (0‐1)
X Target size for photoinactivation 1.5·10‐7 7.5·10‐7 m2 J‐1

Y Maximum repair rate 10 10 d‐1

Z Half saturation constant repair 0.3 0.3 relative (0‐1)
PCref Maximum rate of photosynthesis 3.5 3 d‐1

Rref Maintenance respiration rate 0.01 0.01 d‐1

VC
ref Maximum nitrogen uptake 0.7 0.7 molN molC‐1 d‐1

kN Half‐saturation constant nitrate uptake 1 0.55 mmolN m‐3

kSi Half‐saturation constant silica uptake 4 — mmolSi m‐3

kFe Half‐saturation constant iron uptake 0.12 0.02 μmolFe m‐3

Qmin Minimum cell quota of nitrogen 0.04 0.04 molN molC‐1

Qmax Maximum cell quota of nitrogen 0.2 0.2 molN molC‐1

QSi
min Minimum cell quota of silica 0.04 — molSi molC‐1

QSi
max Maximum cell quota of silica 0.2 — molSi molC‐1

QChl
N Maximum Chla to nitrogen ratio 4.2 3.78 gChl molN‐1

QSI
N Minimum silica to nitrogen ratio 0.3 — molSi molN‐1

ζ Cost of N biosynthesis 2.33 2.33 molC molN‐1

? Cost of Si biosynthesis 0 — molC molSi‐1

k Maximum loss rate of Chla 0.25 0.15 d‐1

ηC Phytoplankton loss of C 0.1 0.1 d‐1

ηN Phytoplankton loss of N 0.05 0.05 d‐1

ηSi Phytoplankton loss of Si 0.05 — d‐1

Tref Reference temperature 288.15 °K
Ae Linear slope Arrhenius function 4500 °K
κW Total light attenuation due to water 0.04 m‐1

aCHL Chla‐specific attenuation coefficient 0.03 m2 mg Chla‐1
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Crawfurd, 2012). In the field, higher ϕmax have been documented in communities dominated by diatoms
(Babin et al., 1996). So we gave ϕmax of 3.1·10‐4 mmolC/J to diatoms (which generated an α of 0.19;
Table 3) and 2.3·10‐4 mmolC/J to other phytoplankton (which generated an α of 0.14; Table 3). There were
also group differences regarding the damage‐repair cycle. Picoplankton are generally reported to have
damage coefficients that are higher (Nagy et al., 1995; Six et al., 2007) than for green algae (Oliver et al.,
2003; Serôdio et al., 2017), but not very different from the values in diatoms (Campbell & Tyystjärvi, 2012;
Lavaud et al., 2016). In this work we assigned smaller damage coefficients to diatoms than to other phyto-
plankton and kept equal repair parameters (Table 3).
2.2.2. Phytoplankton Growth Model
The remaining part of the phytoplankton growth model was the same for the three experiments described
above and included the dynamics of the elemental pools of carbon (C), photosynthetic pigments (Chla),
nitrogen (N), and silica (Si; equations (8) to (22) in Table 2). The nutrient limitation terms in REcoM2
include LimQmin and LimQSi

min that limit processes dependent on the content of proteins for enzymatic
reactions and thus decrease when protein content approaches the minimum cellular quota (equations (8)
and (9)). Nlimit (equation (10)) is a combined nutrient‐limitation term that computes the minimum of
LimQmin, LimQSi

min, and a limitation term for Fe in Michaelis‐Menten form for diatoms (Nlimitd) and only
the minimum of LimQmin and the term for Fe for other phytoplankton (Nlimitnd). LimQmax and LimQSi

max

limit processes that saturate when protein content approaches the maximum cellular quota (equations (11)
and (12)). The temperature dependency is an Arrhenius function (Geider et al., 1998; equation (13)). All lim-
itation terms multiply the rates they regulate, and hence, they are 1 for no limitation and approach 0 as
limitation increases.

The PCphot−E curve is used as the exponential formulation in Geider et al. (1998) where maximum photo-
synthesis rate (PCmax) is limited by Nlimit and Tfunc (equation (14)). Phytoplankton respiration includes
maintenance respiration and the cost of biosynthesis (equation (15)). The variation in C content is set to
the rate of photosynthesis minus respiration and excretion (equation (16)).

The synthesis of photosynthetic pigments (represented by Chla) is equivalent to N assimilation regulated by
the photochemical use of absorbed light, a term that allows photoacclimation (Geider et al., 1998; equation
(17)). The loss of Chla is light dependent to account for photodamage in the light harvesting apparatus
(Álvarez et al., 2018; equation (18)).

Although N and Si pools are not central in this work, they both shape the stoichiometric ratios that limit pro-
duction and biosynthetic processes. N uptake (VC

N) depends on available DIN, the half saturation constant
kN, and themaximal uptake rate (VC

max) that is proportional to P
C
max and declines whenQ approachesQmax

(equation (19)). The rate of N assimilation is set to uptake minus excretion rates, and the latter is also limited
by LimQmax (equation (20)). Si uptake (VC

Si) (equation (21)) and assimilation (equation (22)) are formulated
in an equivalent way to those of N (Hohn, 2009).
2.2.3. The Rest of the Ecosystem and the Global Circulation Model
REcoM2 completes the ecological module with one zooplankton and one detritus compartment, and inor-
ganic and organic forms of the main nutrients. Temperature (T) and dissolved nutrients (DIN, dSi, and
Fe), like all other biogeochemical model variables, are advected and mixed by the ocean circulation derived
from the MIT general circulation model. Average light (E) is computed in depth layers as an exponential
decreasing function of depth with a depth‐dependent light attenuation coefficient with two components,
the attenuation coefficient due to water (κW) and the attenuation due to phytoplankton, proportional to total
Chla concentration (aCHL × TChla) (Table 3).

For our study, in each experiment REcoM2 was run in a nearly global model configuration from 80°S to
80°N on a horizontal 2° × 2° grid in the Northern Hemisphere and 2° × 2° times the cosine of the latitude
in the Southern Hemisphere, with 30 depth layers (0 to 5,700 m). The model was initialized with the
January climatological fields of temperature, salinity, nitrate, and silicate from the World Ocean Atlas
2009 (Antonov et al., 2010; Garcia et al., 2010; Locarnini et al., 2010) and with mean alkalinity and preindus-
trial CO2 fields from the Global Ocean Data Analysis Project (GLODAP; Key et al., 2004). The initial field for
dissolved Fe was obtained from PISCES output (Aumont et al., 2003), with values south of 45°S set to average
Southern Ocean vertical profiles from Tagliabue et al. (2012), to avoid a high‐iron bias there. The model was
spun up for 4 years and analyzed for the next fifth year in a 10‐daily temporal resolution.
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Model output provided physical variables, T and E, and biological vari-
ables by phytoplankton group, Nlimit, Chla, C, αNP and α. The group‐
specific values were averaged considering the relative contribution of each
group to total biomass to obtain the values for the whole phytoplankton
community that we indicated with an overbar (see the supporting infor-
mation for details on how we estimated community values for ᾱ and
ᾱNP from several group‐specific α’s; Violle et al., 2007). Each output vari-
able, including biological and physical, was averaged to a global 2° × 2°
grid, within the 33 depth layers (0 to 5,750 m) used in Peloquin et al.
(2013) and over 12 months. This resulted in a 4‐D array per variable that
had a common spatial and temporal resolution to be compared to observa-
tions (180 longitude × 90 latitude × 33 depth × 12 time).

3. Data
3.1. Satellite Observations

To test the consistency between the modeled and observed phytoplankton
biomass, we considered climatologies of Chla and Chla:C from satellite
observations between 2006 and 2010. Monthlymeans of surface Chla were
obtained from the Ocean Colour Climate Change Initiative data set v3.0
by the European Space Agency (http://www.esa‐oceancolour‐cci.org/).
We considered Chla concentration generated by SeaDAS using a blended
combination of OCI (OC4v6 + Hu's CI), OC3, and OC5 depending on
water class memberships (4,320 by 8,640 pixels, monthly means).
Monthly means of surface Chla:C data were obtained from the Ocean
Productivity Dataset by Oregon State University (http://www.science.ore-
gonstate.edu/ocean.productivity/index.php). We considered Chla:C from
the carbon‐based productivity model (updated CbPM; Westberry et al.,
2008) from MODIS r2018 (GSM) data (1,080 by 2,160 pixels,
monthly means).

3.2. Accessory Pigments

Pigment data were obtained from published high‐performance liquid chromatography data sets (Booge
et al., 2018; Bracher et al., 2015b; Liu et al., 2018, 2019b; Peloquin et al., 2013; Soppa et al., 2014;
Taylor et al., 2011a; Trimborn et al., 2015; Zindler et al., 2013), from pigment data in the AEsOP‐
CSIRO database (http://aesop.csiro.au/) and from two not previously published HPLC data sets
(Table 4). These new data sets (Bracher, 2019b; Bracher & Wiegmann, 2019) encompassed the following
cruises: the R/V Heincke cruise HE462 in the North Sea from 30 April to 7 May 2016 and the R/V
Polarstern cruise PS103 in the South Atlantic from 17 December 2016 to 28 January 2017. During the
cruises, 0.25 to 2.5 L of seawater was filtered through Whatman GF/F filters. The sample filters were then
shock‐frozen in liquid N2 and kept at −80 °C until analysis. HPLC pigment analysis was performed fol-
lowing the method of Barlow et al. (1997) that was adjusted to our temperature‐controlled instruments
(Liu et al., 2019a; Taylor et al., 2011a). We determined the concentrations of pigments listed in Table 2
of Taylor et al. (2011a).

In all cases, TChla (micrograms per liter) encompassed all the reported Chla derivatives, monovinyl Chla,
divinyl Chla, and chlorophyllide a. Total accessory pigment concentration (AP; micrograms per liter) was
calculated as the summed concentration of all carotenoids and chlorophyll b and c. Carotenoids were
grouped into photosynthetic (PSC; micrograms per liter) and photoprotective (PPC; micrograms per liter)
carotenoids according to Aiken et al. (2009). PSC consisted of fucoxanthin (Fuco), peridinin (Perid), prasi-
noxanthin (Pras), 19’‐hexanoyloxyfucoxanthin (Hex), and 19’‐butanoyloxyfucoxanthin (But). As we focused
on the long‐term photoprotective response, both epoxidated and de‐epoxidated states of xanthophylls were
considered to be photoprotective and hence PPC consisted of alloxanthin (Allo), lutein (Lut), violaxanthin
(Viola), zeaxanthin (Zea), diadinoxanthin (DD), diatoxanthin (DT), and alpha/beta‐carotenes (Caro).

Table 4
List of Data Sets With HPLC Measurements

Data set Source

MAREDAT pigments Peloquin et al. (2013)
ANT23.1 (PS69) Bracher et al. (2015a, 2015b)
ANT24.1 (PS71.1) Bracher (2015b, 2015e); Bracher et al. (2015b)
ANT24.4 (PS71.4) Bracher (2015b, 2015c); Bracher et al. (2015b)
ANT25.1 (PS73) Taylor et al. (2011a, 2011b)
ANT26.4 (PS75) Bracher (2015c, 2015d ); Bracher et al. (2015b)
ANT27.2 (PS77) Bracher (2015d, 2015e); Trimborn et al. (2015)
ANT28.3 (PS79) Bracher (2014a); Soppa et al. (2014)
MSM18 Bracher (2015a); Bracher et al. (2015b)
MSM09 Bracher and Taylor (2017)
SO202 Taylor and Bracher (2017); Zindler et al. (2013)
SO218 Bracher (2014b); Soppa et al. (2014)
SO234/235 Bracher et al. (2019); Booge et al. (2018)
SO243 (ASTRA) Bracher (2019a); Booge et al. (2018)
PS93.2 Liu et al. (2018, 2019a)
PS99.2 Liu et al. (2018, 2019a)
PS107 Liu et al. (2019a, 2019b)
PS103 Bracher (2019b)
HE462 Bracher and Wiegmann (2019)
CLIVAR AEsOP‐CSIRO
BROKEWEST AEsOP‐CSIRO
Beagle (6 legs) AEsOP‐CSIRO
SOOP AEsOP‐CSIRO
SS (x6) AEsOP‐CSIRO
FR200001 AEsOP‐CSIRO
TIP2000 AEsOP‐CSIRO
NWS‐jun03 AEsOP‐CSIRO
Sniper (x4) AEsOP‐CSIRO
GBR (x5) AEsOP‐CSIRO
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Within the compilation of pigment observations, theMAREDAT data set (Peloquin et al., 2013) was themost
extensive. It was quality controlled by flagging (i) samples in which TChla was zero or less; (ii) samples in
which fewer than four nonzero accessory pigments were reported; (iii) samples that fell outside the range
of two standard deviations of the regression line of the log linear relationship between TChla and AP; and
(iv) the entire campaign's samples if more than 35 % of samples from a given field campaign was flagged dur-
ing the third step. However, not all cruises in MAREDAT provided concentrations of the full set of PPC pig-
ments. In this case, we limited the analysis to the samples that contained measurements for the seven PPC
pigments. This reduced the MAREDAT data set to 8,574 samples, that is, 25% of the quality‐controlled data.

All the other data sets formed the NEW database in which all cruises provided the seven PPC. This NEW
database was quality controlled independently following Aiken et al. (2009) by flagging (i) samples in which
TChla was zero or less; (ii) samples where the difference of TChla and AP was more than 30% of the total
pigment concentration; and (iii) the entire campaign's samples if the regression between TChla and AP have
a slope outside the range 0.7–1.4, explain less than 90% of total variance or less than 85% of the samples of
that particular cruise passed the previous criteria. This reduced the data set to 5,831 samples, that is, 89%
of the original merged data.

All field data were gridded to the same 4‐D array as described for model output. We obtained 1,985 grid
points (404 in surface) in MAREDAT, and we used this set to derive a purely empirical parameterization
of the relative PPC content from the physical forcing, T, E, and Nlimit, in the three modeling experiments.
With NEW we obtained 2,086 grid points (789 in surface) that we used to validate the empirical predictions,
as they were independent from MAREDAT. The combination of the two data sets (ALL) that encompassed
3,982 grid points (1,122 in surface) was used to test the mechanistic predictions in the experiment EXP‐C.

To estimate the contribution of diatoms to TChla, we calculated the fraction of diatoms in Chla (fdChla) as
1.41xFuco/diagnostic pigment (DP) with D1.41Fuco + 1.41Perid + 1.27Hex + 0.6Allo + 0.35But + 1.01Chlb
+ 0.86Zea (Uitz et al., 2006). As an estimate of the contribution of the diatoms to the total pool of PPC, we
considered the sum of DD and DT (micrograms per liter) as the photoprotective carotenoids in diatoms
(Aiken et al., 2009; Strain et al., 1944). All other PPCs were considered to belong to nondiatoms.

4. Results

The analysis of results comprised three stages: (i) the prediction of PPC/TChla from model output, both
empirically (from E, T, and Nlimit) and mechanistically (from ᾱ and ᾱNP), (ii) the exploration of the spatial
and temporal variability of PPC/TChla and the match between predictions and observations, and (iii) the
analysis on the relative contribution of changes in community composition and physiological acclimation
to the predicted PPC/TChla variability.

4.1. Prediction of PPC/TChla: Empirical and Mechanistic Approaches

We proposed a mechanistic approach of exploring photoprotection by comparing ᾱ and ᾱNP. One can won-
der if a simple empirical prediction of PPC/TChla from the model input variables was comparable to the
mechanistic prediction. The empirical approach relied on the direct prediction of pigments from the input
variables to the phytoplankton growth model, temperature, light, and nutrient availability, and hence, it
can be fitted to all the three experiments. EXP‐C was, however, the only experiment where the two types
of predictions can be performed simultaneously. Hence, we used it to test the ability of the empirical and
mechanistic approaches to match observations.
4.1.1. Empirical Prediction
The in situ pigment content in the MAREDAT data set was plotted against the physical input to the phyto-
plankton growth model (Figure 2). Individual pigment ratios relative to TChla were compared against a gen-
eral rule of photoacclimation: Decreasing ratios with light are typical for light‐harvesting pigments, and
increasing ratios with light characterize photoprotective pigments (Henriksen et al., 2002; Schlüter et al.,
2000). This was the case for all PSC (Fuco, But, Hex, Perid, and Pras) and for six of our PPC (Zea, Viola,
DD, DT, Caro, and Lut). Allo, generally reported as photoprotective (Aiken et al., 2009; Henriksen et al.,
2002; Schlüter et al., 2000), showed a decreasing ratio with increasing E. However, its contribution to the
total pool of PPC was minimal. The ratios of the aggregated photosynthetic accessory pigments (PSPSC +
Chlb + Chlc) and PPC, both relative to TChla, showed a comparable pattern as a function of E
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(Figure 2a). This matched observed trends in the variation of PSP and xanthophyll's relative to Chla in
numerous phytoplankton species (MacIntyre et al., 2002). PSP ad PPC ratios also followed inverse
patterns with respect to T and Nlimit input variables. PSP content decreased with increasing T and
nutrient limitation (limitation increases as Nlimit approaches 0) whereas PPC content responded opposed
to that (Figures 2b and 2c).

The three input variables, E, T, Nlimit, and the interactions E:T and E:Nlimit had a significant effect on
PPC/TChla (three‐factor ANOVA, p value < 0.0001, n = 2,830), whereas the interactions T:Nlimit (p value
= 0.242) and E:T:Nlimit (p value = 0.447) did not. Hence, we examined the ability to predict PPC/TChla
through a simple empirical relationship that included all the three input variables as independent variables.
To select the type of fit for each input variable, we binned pigments data in 30 E, T, and Nlimit classes,
respectively. The best fit to the binned PPC/TChla data was linear for E (Figure 2a) but exponential for T
(Figure 2b). Despite some deviation of the binned data at the extremes of Nlimit, PPC/TChla seemed to be
reasonably well represented by a linear fit (Figure 2c). We fitted a multiple nonlinear model with nonlinear
least squares method, function nls (Bates & Watts, 1988) in R (R Core Team, 2018). The resultant empirical
model of PPC/TChla as a function of E, T, andNlimitwas PPC/TChla ~ 0.195 + 0.003 * E+ (0.045 * exp(0.070
* T)) − 0.193 * Nlimit. We also fitted PPC/TChla to the input variables in the two other experiments, EXP‐R
and EXP‐M. There were slight differences in the values of input variables among experiments, differences

Figure 2. Variability of individual pigments to TChla ratios with light (small panels) and of total photoprotective (PPC), total photosynthetic accessory (PSP), and
total accessory pigments (AP) with (a) light, (b) temperature, and (c) nutrient limitation in the EXP‐C experiment. Dots indicatemean pigment ratios binned in E, T,
andNlimit classes, respectively. Solid lines show regressionmodels fitted to binned data. Gray areas in the panels for individual pigments and narrow orange lines in
the panels for aggregated pigments show percentiles 10 and 90 of the original range of pigment ratios.
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that were given by the effect of Chla on the attenuation of E and the effect
of cellular quotas on Nlimit. Nevertheless, the differences in fitted coeffi-
cients and predictions were small, as shown by the similar metrics of
the three empirical fits to observations of PPC/TChla (Table 5).
4.1.2. Mechanistic Prediction
Our approximation combining the models of Geider et al. (1998) and
Marshall et al. (2000) provided both a maximum alpha (ᾱ) and the alpha
that would appear under the effects of photodamage keeping the xantho-
phyll pigments pool constant (ᾱNP). ᾱ was variable over the global oceans
due to variable pigment composition in local phytoplankton communities
adapted to varying nutrient and light limitation regimes. REcoM2 gener-
ated diversity in ᾱ using constant group‐specific α’s and through changes
in community composition (Figure 3a). This was a simplification but simi-
lar simple approximations have given good results when representing the
variability of α in the global ocean (Arteaga et al., 2016). ᾱNP was also vari-
able over the global ocean and, overall, highlighted the areas where the
risk of photoinhibition was higher (Figure 3b).

To further investigate how ᾱ compared to ᾱNP under the same conditions, we explored how ᾱ and ᾱNP varied
as a function of light and nutrient limitation. With an increase in light and nutrient limitation, the commu-
nity value of ᾱ changed from a diatom‐similar community to a small‐phytoplankton‐similar community,
given a smaller prevalence of diatoms under such conditions (solid black line in Figure 4). ᾱNP was close
to ᾱ under nutrient‐replete and subsaturated light conditions, as represented in the central section of
Figure 4, which indicates favorable conditions to keep a healthy light harvesting apparatus. When deviating
from such favorable conditions, ᾱNP decreased both with increasing light but also with increasing nutrient
stress since repair mechanisms were nutrient limited (dotted lines in Figure 4).

The difference between ᾱ and ᾱNP under a particular set of environmental conditions reflected the degree of
photoprotection necessary to keep ᾱNP at the maximum value ᾱ. We expected that the difference between ᾱ
and ᾱNP was somehow related to the amount of xanthophyll pigments in the case when photoprotection
relied predominantly on photoprotective xanthophylls. The ratio between phytoplankton absorption com-
puted without considering PPC and absorption computed considering all pigments has been used as a rela-
tive measure of the degree of photoprotection in phytoplankton (Lindley et al., 1995) and hence the amount
of photoprotective pigments. We therefore proposed the ratio ᾱNP/ᾱ as a proxy for the photoprotective gap in
our model. When ᾱNP/ᾱ was similar to one photodamage had a small impact on the light harvesting appa-
ratus and hence the need for accumulating photoprotective pigments was small. Alternatively, an ᾱNP/ᾱ

Table 5
Skill Metrics per Experiment

Data set Metric EXP‐R EXP‐M EXP‐C

log10(Chla) (μg L
‐1) R 0.648 0.649 0.644

(n=9491) Bias 0.117 0.219 0.158
Chl:C (g:g) R 0.514 0.520 0.517
(n=9401) Bias 0.000 0.002 0.001
PPC:TChla NEW (g:g) R 0.649 0.651 0.649
(n=747) Bias ‐0.015 ‐0.014 ‐0.014
PPC:TChla ALL (g:g) R ‐ ‐ 0.663
(n=1082) Bias ‐ ‐ ‐0.020
NPP PgC year‐1 35.59 33.84 36.21
ExportP PgC year‐1 6.82 6.71 6.87

Note. Annual average correlations for log10(Chla), Chla:C, and PPC/
TChla at surface waters as compared to satellite OC‐CCI Chla, satellite
CbPM, and NEW (for empirical approach) or ALL (for mechanistic
approach) HPLC data set, respectively. Also, total annual net primary
production (NPP) and exported production (ExportP) integrated in the
euphotic layer from the respective experiment are provided.

Figure 3. Variability of ᾱ and ᾱNP in the upper 15 m of the water column in the EXP‐C experiment: (a) community ᾱ as
derived from standard REcoM2 based on Geider model and (b) ᾱNP as derived from the Marshall model with constant
xanthophyll pool.
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smaller than one indicated that cells, without accumulating PPC or rely-
ing on other heat dissipating mechanisms, would be exposed to photo-
damage. We then used 1 − ᾱNP/ᾱ to predict the amount of accumulated
xanthophylls that would avoid such photodamage and compared those
predictions to observations of PPC/TChla.
4.1.3. Skill Metrics
To assess the predictions of the models against observations, we compared
surface model results against log transformed Chla (micrograms per liter)
from OC‐CCI, Chl:C (in weight) from CbPM, and PPC/TChla (in weight)
from the HPLC data sets, the latter sampled within 0‐ to 15‐m depth.
Correlation coefficients and average errors or bias (Stow et al., 2009) were
computed for the three experiments EXP‐R, EXP‐M, and EXP‐C, against
the observational data sets. For each experiment, the empirical predic-
tions of PPC/TChla were tested against the NEWdata set, as this was inde-
pendent from the MAREDAT data set used to fit the models. The
mechanistic approach was only available for the experiment EXP‐C,
whose predictions were tested against the ALL data set. Results of these
comparisons are presented in Table 5.

EXP‐R predicted phytoplankton dynamics following Geider et al. (1998)
with a photodamage‐dependent loss term for Chla and provided Chla

fields and Chl:C ratios well correlated to satellite derived observations (Álvarez et al., 2018). The inclusion
of the original Marshall et al. (2000) model within REcoM2 (EXP‐M), substituting ᾱ with ᾱNP in the
PCphot‐E curve, did not modify the correlation with surface log‐transformed Chla or Chla:C significantly.
Instead, it increased the bias of both estimates and decreased the total net primary production on an annual
basis from 35.6 to 33.8 PgC/year. This showed that including details on the reversible regulation of PSII
seems not to be relevant to predict Chla at global scale and may not be a high priority given the associated
increase in computational costs.

The combined approach (EXP‐C) provided comparable correlations and bias for Chla and Chl:C as EXP‐R
but allowed to predict PPC/TChla both empirically and mechanistically. The empirical predictions provided
surface values of PPC/TChla highly correlated to observations, with a correlation coefficient of 0.649 and
bias of−0.014. The mechanistic predictions that used ᾱ for production and ᾱNP/ᾱ as a proxy for photoprotec-
tion provided a correlation coefficient of 0.663 but a slightly larger bias of −0.020. Note, however, that the
ALL data set against which we tested mechanistic predictions was larger than NEW.

4.2. Spatial and Temporal Variability of PPC/TChla

In this section, the empirical and mechanistic predictions of PPC/TChla for EXP‐C were compared with
HPLC field data. In surface waters (<15‐m depth), field data (Figure 5a) showed high concentrations of
PPC in tropical and subtropical areas with a decrease around the equator, which was very pronounced in
the Pacific but also visible in the Atlantic (Lindley et al., 1995). Smaller values of PPC/TChla were obtained
in temperate and polar waters. A comparable latitudinal pattern in PPC content has been reported by
Bricaud et al. (2004). The empirical prediction of PPC/TChla showed the same latitudinal pattern with
rather horizontal isolines (Figure 5b). Themechanistic prediction (Figure 5c) showed the latitudinal pattern,
but with more longitudinal variability. The correlations in surface waters were almost identical for the two
models when both were correlated to the NEW in situ data set, 0.649 for the empirical and 0.654 for the
mechanistic. Mechanistic predictions showed a slightly larger bias (Table 5). Regardless of the latitudinal
pattern, it was remarkable that in areas where the latitudinal pattern was not followed strictly, such as
the upwellings of Morocco, Benguela, Peru, and Arabian sea, the mechanistic model matched the observa-
tions better than the empirical model, which suggested not‐linear effects of nutrients, T and E on
PPC/TChla ratios.

Observed and predicted PPC/TChla were compared for surface waters along a latitudinal gradient for the
three major ocean basins (Figure 6). The reduced longitudinal variability of the empirical model was
observed in the range of PPC/TChla values (orange areas in Figure 6) that did not cover the variability of
field data at a given latitude. On the other hand, mechanistic predictions (blue areas in Figure 6) showed

Figure 4. Variability of ᾱ (lines) and ᾱNP (dots) as a function of light (E) and
nutrient limitation (Nlimit) in the EXP‐C experiment. The orange and blue
solid lines indicate α of undamaged PSII of diatoms and nondiatoms,
respectively, and the black line indicates the community‐aggregated value
(ᾱ) that changes due to the relative contribution of diatoms and nondiatoms
under different environmental conditions. Dotted lines indicate αNP and
ᾱNP for the same groups.
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more variability and, hence, were able to predict PPC/TChla that did not simply follow a clear latitudinal
gradient, as shown in the previous surface plots (Figure 5).

Zonal annual mean depth profiles of observed and predicted PPC/TChla showed that both types of predic-
tions reproduced the in situ depth profiles (Figure 7). The field data showed a decrease of photoprotective
pigments with depth in the entire tropical and subtropical ocean. In these areas, significant amounts of
photoprotective pigments were observed close to the surface, but even at depths greater than 100 m, we
found PPC/TChla ratios larger than 0.4. As expected due to the ambient light north and south of 40°, PPC
presence was scarce, below 20% of TChla, but the gradient of decrease with depth was still visible
(Figure 7a). The empirical model predicted this gradient quite precisely, although the values in surface
tended to be smaller than the observations (Figure 7b). The gradient predicted by the mechanistic model
was more abrupt, and values were much lower than observations at depths greater than 75 m. The values
at the surface, as shown by previous figures, matched the observations well (Figure 7c). The occasional very
high values at depths greater than 100 m in field samples at latitudes <40° were not reflected well in the pre-
dictions. While the empirical model predicted a low presence of pigments below 100 m (0.3 > PPC/TChla >
0.1), the mechanistic approach predicted a near absence down to this depth (PPC/TChla < 0.1). By observing

Figure 5. Photoprotective pigments in surface waters (averaged over the upper 15 m and scaled to 2° resolution): (a) PPC/
TChla from HPLC data set ALL (also in c) and predicted (b) empirically and (c) mechanistically in the EXP‐C experiment.
Number of collocated observations (n), Person's correlation factor (R), and bias (AE) are shown for modeling predictions
compared against NEW data set and against ALL data set within parenthesis in (c).
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the distribution of predicted TChla (white lines in Figure 7c), it was noticeable that high PPC/TChla values
were predicted mainly for the phytoplankton living above the subsurface Chla maximum.

Averaged annual cycles of PPC/TChla predictions using the mechanistic approach (gray areas in Figure 8)
showed a clear seasonality in temperate and high latitudes of both hemispheres (Figures 8a and 8c). In both
cases, maximum values for the whole range of PPC/TChla occurred during summer and minimum values in

Figure 6. Latitudinal gradients of in situ (black dots) and predicted PPC/TChla values from the empirical andmechanistic
approaches in the EXP‐C experiment across surface waters of the (a) Pacific, (b) Atlantic, and (c) Indian Ocean.

Figure 7. Zonal annual mean depth profiles of PPC/TChla as a function of latitude from (a) in situ HPLCALL data set and
predictions from (b) empirical and (c) mechanistic approaches in the EXP‐C experiment. In panel (c) solid isolines show
the predicted level of 0.5 μg Chla L‐1 that enclose the subsurface Chla maximum and the dotted line shows the level of 0.1
μg Chla L‐1.
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winter. In tropical and subtropical areas, the seasonality was only
reflected in the range of the lowest values but constant for the maximum
ones (Figure 8b). The empirical model predictions showed less seasonality
in all regions, as they followed the observations where no seasonality for
PPC/TChla was seen. The empirical predictions showed less variability
than observations, which were better matched by the range of the
mechanistic model predictions. Monthly mean values of in situ
PPC/TChla (bars in Figure 8) were divided into the contribution of Allo,
Viola, Lut, Zea, and Caro and the contribution of DD and DT. In high lati-
tudes, where the contribution of diatoms was larger, the sum of DD+DT
comprised an important proportion of PPC (Figure 8c).

4.3. Change in PPC/TChla: Effect of Community Composition and
Physiological Acclimation

On an annual perspective, predicted PPC/TChla matched observations
(Figures 5 and 6) or were lower (Figure 7), which indicated that the
observed pool of PPCwould be enough to cover the needs for photoprotec-
tion. Variations in community PPC content, however, can be driven by
physiological acclimation as well as shifts in community composition.
To explore which mechanism contributed more to the change in commu-
nity PPC/TChla, both group‐specific pigment content and a description of
community composition were needed. This was challenging for observa-
tions because we did not have an independent estimate of community
composition but the pigments themselves. The estimate of the contribu-
tion of diatoms to total chlorophyll relied on the use of DPs (Uitz et al.,
2006; Figure 9a). Although the contribution of diatoms to total PPC pool
can be illustrated with the sum DD+DT (Strain et al., 1944; Figure 9b),
other groups can share the same pigments. This uncertainty could trans-

late to the empirical model since it required a group‐specific fit to observations to provide predictions for
each individual group.

The advantage of the mechanistic approach in this context was that, in addition to predicting group specific
pigment content, it provided a full description of community composition. Phytoplankton diversity repre-
sented by just two groups allowed us to build a description of the entire community composition by a single
index of dominance that reflected the contribution of one of the groups to the total biomass. On an annual
basis, the contribution of diatoms Chla to TChla (Figure 9c) and the contribution of diatom PPC to the total
pool of PPC (Figure 9d) showed dominance of diatoms at the equator, high latitudes and near the eastern
coasts of continents at midlatitudes.

In the absence of physiological acclimation that changes group‐specific PPC/TChla ratios, dominance
indexes (% of diatoms) in terms of TChla and in terms of PPC would vary in parallel. The variation over
the year of the % of diatoms in terms of Chla, PPC, and also C were explored for nine areas of the world ocean
(Figure 9). A noticeable difference between the time derivatives of the PPC‐ and Chla‐based dominances
(gray bars in Figure 9) indicated that the ratio PPC/TChla was variable within one or both phytoplankton
groups. In the central areas of the Pacific, Atlantic, and Indian Oceans, dominance indexes varied in parallel,
which indicated that changes in community PPC content were driven by changes in community composi-
tion. At higher latitudes, prior to the polar winter, PPC‐based dominance changed faster than Chla‐based
dominance while prior to polar summer, PPC dominance changed slower than Chla‐based dominance.
Both phenomena implied intragroup acclimative changes in the PPC/TChla ratios.

5. Discussion

As in higher plants, most phytoplankton cells possess specialized carotenoid pigments that contribute to the
rapid and harmless thermal dissipation of excess absorbed light energy in response to a sudden increase in
irradiance (Demmig‐Adams & Adams, 1992). This function reduces the excitation pressure on the reaction
center of PSII and limit photoinhibition. Marshall et al. (2000) proposed a mechanistic model to describe

Figure 8. Averaged seasonal distribution of in situ (colored bars reflect the
regional monthly average value of the specific PPC pigments and dots reflect
the sum of all PPC pigments for each single data point in the respective
region) and predicted (the range of values is given) PPC/TChla values in the
EXP‐C experiment for latitudes (a) north of 30°N, (b) between 30°N and
44°S, and (c) south of 44°S.
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photoinhibition as a consequence of the decrease in the proportion of active PSII and the effect on the initial
slope of the PE curve (α). Photoinhibition is expected to be small for natural phytoplankton communities
acclimated to ambient light (Cullen et al., 1992), so we can assume that phytoplankton cells possess the
mechanisms to keep α at a maximum value. Among these mechanisms, the presence of xanthophyll
pigments is certainly expected to play a role since the thermal dissipation process is assisted by the nearly
universal function of xanthophylls (Demmig‐Adams & Adams, 1996). We therefore used the Marshall
et al. (2000) model to estimate the extent of photoinhibition that phytoplankton communities would have
to deal with. We explored whether the photoprotective role was performed by a variable pool of
xanthophylls and whether the variability in the community xanthophyll pool was driven by shifts in
community composition or implied intraspecific adjustments of pigment content.

5.1. Relevance of Photoprotective Pigments

Both this mechanistic and an empirical approach based on parallel in situ observations of PPC/TChla were
able to predict the long‐term photoprotective response and simulate the cellular accumulation of xantho-
phylls. The mechanistically determined need for photoprotection was in agreement with field observations
of PPC/TChla in most of the surface ocean, at depth and even across seasons. This suggested a predominant

Figure 9. Observed contribution of diatoms (%) to total community in terms of (a) Chla derived from diagnostic pigments (from fdChla; Uitz et al., 2006) and (b)
sumDD+DT to total PPC. Predicted contribution of diatoms (%) to total community in terms of (c) Chla and (d) PPC. Small panels show the variation along the year
of C‐, Chla‐, and PPC‐based dominance (% diatoms) in the nine ocean regions indicated in (d) left axis (note that the scale range is different for each panel). Gray
bars show the difference between the time derivatives of the PPC‐based and the Chla‐based dominance (right axis, all using the same scale).
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role of PPC in photoprotective activities in the global ocean with implications for the fast regulation of photo-
synthetic productivity and carbon fluxes in the ocean.

The approach presented allowed us to predict PPC content via modeling and hence provided a comprehen-
sive description of pigment content of the phytoplankton community at the global scale provided by models.
The content in photosynthetic pigments (Chla) and nonphotosynthetic pigments (PPC) relative to biomass
(C) relates to the contribution of photochemical and nonphotochemical pathways, respectively, to the fate of
absorbed light (Lin et al., 2016). Knowledge of full pigment signatures is crucial for understanding the cou-
pling of light absorption to carbon fixation in the ocean.

5.2. Relevance of Other Physiological Mechanisms

Discrepancies between the mechanistically determined need for photoprotection and observations of
PPC/TChla highlighted scenarios where PPC content was apparently insufficient to protect the community
and thus other mechanisms of NPQ became relevant for heat dissipation. Particularly during summer season
at high latitudes (Figure 8), the amount of PPC fell below the needs for photoprotection, suggesting that in
these areas alternative mechanisms may be relevant for photoprotection.

The difference between predictions and observations can be explained by simplifications of themodel frame-
work. A functional classification of carotenoids into two groups of pigments, photosynthetic and photopro-
tective, is commonly used in the literature (e.g., Bidigare et al., 1990). However, in some groups, the
photosynthetic pigment fucoxanthin may be converted to DD relatively quickly (Harris et al., 2009;
Polimene et al., 2012), thus giving fucoxanthin a role in long‐term photoprotection. Also, the effectiveness
of the XC varies across taxa (Goss & Jakob, 2010; Lavaud, 2007; Six et al., 2009), which can lead to smaller
PPC content in communities dominated by groups containing more efficient XC. In addition to pigments,
energy dissipation can be covered by other protective mechanisms not explicitly considered here, such as
fluorescence or constitutive heat dissipation (Porcar‐Castell et al., 2006). Autotrophic cells also possess some
plasticity to reorganize their photochemical pathways when the photochemical capacity is exceeded, per-
forming cyclic electron flow around PSII (Goss & Lepetit, 2015) or alternative electron transport (Wagner
et al., 2006).

5.3. Change in PPC Content: Intragroup Acclimation or Shifts in Community Composition

Given that results showed that variable PPC/TChla ratios covered most of phytoplankton photoprotective
needs, the question that arose next was whether this variability in pigment content was driven by shifts in
community composition or implied physiological acclimation within a given group. The mechanistic
approach proposed provided the two elements, which are necessary to tackle this question: group‐specific
PPC predictions and a complete description of community composition.

Group‐specific photoprotective needs were generated by assigning smaller damage coefficients to diatoms
than to other phytoplankton, larger photochemical efficiency to diatoms, and equal absorption cross‐
sections and repair rates to both groups. Although the variability in the predictions was high for both groups,
the predicted needs for photoprotection tended to be higher in other phytoplankton than in diatoms. This
corresponds to the observation that smaller phytoplankton can grow in a high but relatively constant light
environment where they do not need to invest as heavily in photosynthetic machinery but require mechan-
isms to reduce the harmful effect of extensive periods of excess irradiance (Kropuenske et al., 2009). Smaller
phytoplankton like prasinophytes cope with prolonged stress and subsequent recovery through a large
induction and relaxation of XC‐induced NPQ (Liefer et al., 2018). Diatoms on the other hand show lower
susceptibility to photoinactivation of PSII (Key et al., 2010) and rely on constitutive dissipation of excitation
energy more than on XC NPQ (Liefer et al., 2018).

Identification of microalgae species through diagnostic pigments implies the assumption that changes in
community accessory pigments are solely driven by changes in community composition. This is reasonable
when the pigment ratios are constant in time for a particular species. However, variations in diagnostic pig-
ments to Chla ratios also arise due to factors such as nutrient status and light (Mackey et al., 1996). Our
results showed that, for most of the tropical and subtropical ocean, photoprotective pigments dominated
photoprotection and changes in total photoprotective pigments were caused mainly by taxonomic changes
within the phytoplankton community. Our results also highlighted scenarios at high latitudes where
changes in PPC content can also result both from shifts in community composition and from

10.1029/2018GB006101Global Biogeochemical Cycles

ÁLVAREZ ET AL. 18



photoacclimation within the same community. During polar winter, in absence of nutrient limitation, phy-
siological acclimation took place and contributed to changes in PPC/TChla ratios (Figure 9) that met photo-
protective needs (Figures 8a and 8c).

5.4. The Role of Nutrients and Temperature on High‐Latitude Photoprotection

During polar summer, the high requirement of photoprotection predicted by our mechanistic approach was
not observed in field measured PPC/TChla (Figures 8a and 8c). At the same time, there was no sign of phy-
siological acclimation (Figure 9). This suggested not only that other mechanisms of photoprotection may be
more relevant than PPC‐mediated mechanisms in these areas but also that PPC synthesis itself was limited.
The observed physiological acclimation during winter when nutrients were replenished and temperatures
were low suggested that nutrients and not temperature limited the use of PPC‐based NPQ in those polar
areas during the summer season. Under incomplete photoprotection provided by other mechanisms, net
photodamage could eventually occur since the repair of damaged photosystems was both nutrient and tem-
perature limited. In a previous application of the REcoM2model, we showed that given the nutrient require-
ments of repair mechanisms, severe nutrient stress translates into photoinhibition of the light harvesting
apparatus in the absence of complete photoprotection (Álvarez et al., 2018). Since it has been observed that
photodamage can shape the phytoplankton community in the Southern Ocean (Alderkamp et al., 2010), our
results show that nutrient limitation of PSII repair and/or PPC de novo synthesis may be the cause of these
photoinhibitory responses at high latitudes.

6. Conclusions

This study suggests that a variable pool of xanthophyll pigments mediates the long‐term photoprotective
responses of phytoplankton throughout most of the ocean. Hence, the photoprotective pigments accumu-
lated by phytoplankton can be accurately predictable by models. This potentially provides a comprehensive
view of the phytoplankton community pigment signature in terms of photosynthetic and nonphotosynthetic
pigments, which is crucial for modeling the coupling of light absorption to carbon fixation in the ocean. The
variability in the pool of xanthophyll pigments seems to be driven mainly by changes in community compo-
sition in the tropical and subtropical ocean, and in these areas pigment composition may reflect taxonomic
composition strongly. At higher latitudes, during the nutrient‐limited summer season, photoprotection
needs do not seem to be met by changes in xanthophyll pigments and must be met by other energy‐
dissipating mechanisms. When nutrients are resupplied and the nutrient limitation of pigment synthesis
relaxes, both taxonomic shifts and intraspecific photoacclimation appear to shape community pigment sig-
nature. These insights about howmuch of the variability in community nonphotosynthetic pigments is attri-
butable to changes in community composition or changes in physiological state may allow an improvement
of the match between remotely sensed optical data and the underlying phytoplankton community.
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A B S T R A C T

This study presents an algorithm for globally retrieving chlorophyll a (Chl-a) concentrations of phytoplankton
functional types (PFTs) from multi-sensor merged ocean color (OC) products or Sentinel-3A (S3) Ocean and Land
Color Instrument (OLCI) data from the GlobColour archive in the frame of the Copernicus Marine Environmental
Monitoring Service (CMEMS). The retrieved PFTs include diatoms, haptophytes, dinoflagellates, green algae and
prokaryotic phytoplankton. A previously proposed method to retrieve various phytoplankton pigments, based on
empirical orthogonal functions (EOF), is investigated and adapted to retrieve Chl-a concentrations of multiple
PFTs using extensive global data sets of in situ pigment measurements and matchups with satellite OC products.
The performance of the EOF-based approach is assessed and cross-validated statistically. The retrieved PFTs are
compared with those derived from diagnostic pigment analysis (DPA) based on in situ pigment measurements.
Results show that the approach predicts well Chl-a concentrations of most of the mentioned PFTs. The perfor-
mance of the approach is, however, less accurate for prokaryotes, possibly due to their general low variability
and small concentration range resulting in a weak signal which is extracted from the reflectance data and
corresponding EOF modes. As a demonstration of the approach utilization, the EOF-based fitted models based on
satellite reflectance products at nine bands are applied to the monthly GlobColour merged products.
Climatological characteristics of the PFTs are also evaluated based on ten years of merged products
(2002−2012) through inter-comparisons with other existing satellite derived products on phytoplankton
composition including phytoplankton size class (PSC), SynSenPFT, OC-PFT and PHYSAT. Inter-comparisons
indicate that most PFTs retrieved by our study agree well with previous corresponding PFT/PSC products, except
that prokaryotes show higher Chl-a concentration in low latitudes. PFT dominance derived from our products is
in general well consistent with the PHYSAT product. A preliminary experiment of the retrieval algorithm using
eleven OLCI bands is applied to monthly OLCI products, showing comparable PFT distributions with those from
the merged products, though the matchup data for OLCI are limited both in number and coverage. This study is
to ultimately deliver satellite global PFT products for long-term continuous observation, which will be updated
timely with upcoming OC data, for a comprehensive understanding of the variability of phytoplankton com-
position structure at a global or regional scale.

1. Introduction

Over the past decades, satellite ocean color (OC) remote sensing has
been widely used for estimating chlorophyll a (Chl-a) concentration,
which is often used as an indicator of phytoplankton biomass. Beyond

that, extracting information on phytoplankton community structure,
e.g., phytoplankton functional types (PFTs), size classes (PSCs) and
taxonomic composition, has become a research topic of priority, as it
plays an important role in understanding the marine food web and aids
the modelling associated with climate change impacts on
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biogeochemical and ecological cycling of oceans (e.g., Falkowski et al.,
1998; Le Quéré et al., 2005; IPCC, 2013; Bracher et al., 2017). In ad-
dition, accurate estimation on phytoplankton diversity and group dis-
tribution provides valuable information on identifying blooms caused
by specific toxic algae, i.e., harmful algal blooms such as cyanobacterial
blooms and red tides (e.g., Craig et al., 2006; Hu et al., 2010; Wang
et al., 2017). A PFT is usually defined as a homologous set of "organisms
related through common biogeochemical processes" such as silicifica-
tion, calcification, nitrogen fixation, or dimethyl sulfide production, but
are not necessarily phylogenetically affiliated (Falkowski et al., 2003;
Litchman et al., 2006; IOCCG, 2014). However, as many phytoplankton
groups which can be detected by remote sensing are also functional
types, (e.g., diatoms are silicifiers, some cyanobacteria are nitrogen
fixers, and coccolithophorids are calcifiers) (Bracher et al., 2017), these
satellite proxies have been named PFTs for brevity (e.g., Losa et al.,
2017).

Satellite OC remote sensing enables observation of phytoplankton
over large areas or even at global scale. With previous (e.g., Sea-
Viewing Wide Field-of-View Sensor – SeaWiFS and MEdium Resolution
Imaging Spectrometer – MERIS) and current available OC satellites
Moderate Resolution Imaging Spectroradiometer (MODIS), Visible
Infrared Imaging Radiometer Suite (VIIRS), and especially the newly
launched OLCI onboard Sentinel-3A (in February 2016) and 3B (in
April 2018), a vast amount of quality controlled OC data are collected,
allowing us to contribute to developing and/or improving methods and
the corresponding applications to satellite data for estimating biogeo-
chemical parameters in terms of global observation. There is a clear
need to implement a sound PFT retrieval algorithm to the recent OLCI
data, as well as to previous and current satellite OC time series data
such as CMEMS GlobColour merged products (ACRI-ST GlobColour
Team et al., 2017).

Different bio-optical and ecological algorithms have been developed
to identify PFTs and phytoplankton taxonomic composition at the
ocean surface, mainly based on phytoplankton abundance and in-
herent/apparent optical properties. Abundance-based approaches seek
to establish empirical relationships between the PFTs and phyto-
plankton abundance or biomass, such as Chl-a concentration that can
be retrieved from satellites (e.g., Uitz et al., 2006; Brewin et al., 2010,
2015; Hirata et al., 2011). Ecological-based approaches incorporate
additional environmental parameters to identify ecological niches
where particular phytoplankton communities may be found (Raitsos
et al., 2008; Palacz et al., 2013). Efforts have also been made to com-
bine abundance and ecological-based approaches (e.g. Brewin et al.,
2015; Ward, 2015). Spectral-based approaches are more direct as they
target known optical signatures and use satellite observed spectra to
extract the signatures of specific PFT (e.g., Ciotti and Bricaud, 2006;
Devred et al., 2006; Alvain et al., 2005, 2008; Hirata et al., 2008;
Bracher et al., 2009; Kostadinov et al., 2009; Werdell et al., 2014;
Brewin et al., 2015; Correa-Ramirez et al., 2018). These methods are
mainly based on radiative transfer or bio-optical models and generally
require high computation performance and adaptations for specific
sensors. More complete reviews of these approaches are well detailed
by the works of the IOCCG (2014), Bracher et al. (2017), and Mouw
et al. (2017).

In this study, we seek to establish an approach that uses satellite
reflectance data which inherit the information of various phyto-
plankton pigments and, therefore, allows retrieving the Chl-a con-
centrations of multiple PFTs. We choose the empirical orthogonal
function (EOF) analysis, also known as principal component analysis, as
it has been previously used for predicting ocean color metrics and
various phytoplankton pigment concentrations by assessing variance of
structures in spectral remote sensing reflectance (Rrs) or water leaving
radiance (e.g., Lubac and Loisel, 2007; Craig et al., 2012; Taylor et al.,
2013; Bracher et al., 2015; Soja-Woźniak et al., 2017). The spectral data
are subject to EOF analysis to reduce the high dimensionality of the
data and derive the dominant signals (EOF modes) that best describe

the variance within the data set. Studies also proved that the EOF
analysis could provide reliable retrievals even with limited number of
data points (Craig et al., 2012; Bracher et al., 2015). Another advantage
is that the models exhibited negligible loss of skill when applied to data
sets with a reduced spectral resolution, which enables the applicability
to the previous or currently existing multispectral OC sensors and future
hyperspectral satellite missions such as PACE (Gregg and Rousseaux,
2017), HyspIRI (Lee et al., 2015) and EnMAP (Guanter et al., 2015).

Given that the EOFs derived from in situ or satellite hyper-/multi-
spectral Rrs data have provided reliable retrievals of the concentrations
of Chl-a and different pigments/pigment groups (Taylor et al., 2013;
Bracher et al., 2015), we intend to present an implementation of the
method proposed in Bracher et al. (2015) to retrieve PFTs instead of
pigments, and to up-scale the application from regional to global scale
by constructing large in situ data sets and multi-sensor OC products.
Therefore, with the use of extensive in situ phytoplankton pigment data
sets, satellite OC products, and matchups between in situ and satellite
data, we propose an EOF-based global PFT retrieval approach by
linking the variances in Rrs spectral structures to different PFTs. In the
present study, we aim firstly to establish the EOF fitted model based on
the nearly globally covered matchups between the satellite Rrs and the
PFT Chl-a concentrations derived from diagnostic pigment analysis
(DPA) of in situ HPLC pigment data, and cross-validate the performance
of the EOF-based algorithm statistically; secondly, to set up the PFT
retrieval scheme based on the EOF modes obtained from the matchups
for the implementation to satellite OC products; thirdly, to investigate
and evaluate the climatological characteristics of the PFTs retrieved
from merged OC products (2002–2012) through inter-comparisons with
other existing PFT/PSC products at the same period, and finally, to
explore the potential of applying the approach to OLCI products based
on a prediction scheme using a much more limited number of
matchups.

2. Data and methods

2.1. Data sets

2.1.1. In situ databases of phytoplankton pigments
2.1.1.1. Pigment Database I (1997–2012). A large data set of the quality
controlled near surface (first 12 m) HPLC phytoplankton pigments built
for the ESA SynSenPFT Project (Bracher et al., 2016) was used for the
extraction of the collocated Rrs spectra from satellite data. This HPLC
pigment data set includes >15,000 sets of phytoplankton pigment data
spanning 25 years from 1988 to 2012 covering the global ocean,
collected from SEABASS, MAREDAT, LTER, BATS, AESOP-CSIRO, LOV
and also from our own data published at PANGAEA (see Table 1 in Losa
et al., 2017). Since SeaWiFS as an earlier OC sensor was launched in
1997, a subset for the period of 1997–2012 including 11,977 sets of
pigment data was taken as Pigment Database I and used for the
extraction of the Rrs matchups from GlobColour merged products.
Yearly coverage of this matchup database spans from 3.2% (the least
data points for 2012) to 9.3% (the most for 2004). 24.1%, 17.4%,
21.1%, and 37.4% of the data were collected during March–May,
June–August, September–November, and December–February,
respectively. Fig. 1(A) shows the spatial distribution of all the data
points in this database in which all pigments are included, but only total
chlorophyll a concentration (TChl-a, sum of monovinyl chlorophyll a,
divinyl chlorophyll a, chlorophyll a allomers, chlorophyll a epimers,
and chlorophyllide a) is present in the figure.

2.1.1.2. Pigment Database II (2016–2018). A relatively smaller
(n = 992) phytoplankton pigment database of quality controlled near
surface HPLC pigments was also built for the OLCI matchups from 2016
to 2018, involving our recently published data sets of HPLC based
phytoplankton pigment concentrations collected mainly in late spring
and summer from five cruises – Heincke462 in the North Sea
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�



(April–May 2016): https://doi.pangaea.de/10.1594/PANGAEA.899043
(Bracher and Wiegmann, 2019), PS99 in the North Sea and the Fram
Strait Arctic (June–July 2016): https://doi.pangaea.de/10.1594/
PANGAEA.905502 (PS99.1) and https://doi.pangaea.de/10.1594/
PANGAEA.898102 (PS99.2) (Liu et al., 2019a, 2019c), PS103 in the
Southern Ocean: https://doi.pangaea.de/10.1594/PANGAEA.898941
(Bracher, 2019) (December 2016–January 2017), PS107 in the Fram
Strait Arctic (July–August 2017): https://doi.pangaea.de/10.1594/
PANGAEA.898100 (Liu et al., 2019b), and PS113 in the trans-Atlantic
Ocean (May–June 2018): https://doi.pangaea.de/10.1594/PANGAEA.
911061 (Bracher et al., 2020). Fig. 1(B) shows the locations of the data

points from Pigment Database II (including all the pigments but with
only TChl-a concentration present in the figure), which covers a large
range of latitudes but focuses on the Atlantic Ocean only (60°W–20°E).

2.1.2. Satellite ocean color data
Satellite normalized remote sensing reflectance (Rrs) Level-3 (L3)

products from multiple sensors were obtained from the CMEMS
GlobColour data archive (http://www.globcolour.info/). The Rrs pro-
ducts used for matchup analysis included daily Rrs L3 products with 4-
km resolution at the bands from either individual sensors (SeaWiFS,
MODIS, MERIS, and VIIRS onboard Suomi-NPP) or the merged products

Table 1
Numbers of available Rrs matchups (1× 1 pixel and averaged by 3× 3 pixels) with different band combinations from the CMEMS GlobColour merged products. Bold
highlights the matchups used in the EOF based algorithm. SeaW = SeaWiFS (1997–2010), MO = MODIS (2002–present), ME = MERIS (2002–2012), V = VIIRS/
Suomi-NPP (2012–present). Note that with SeaWiFS included merged products, the bands from SeaWiFS only contributed until December 2010. Waveband centers
for the four sensors were listed in Table S1 in the supplementary document.
Sensors No. of matchups Available wavebands (nm) No. of bands

1 × 1 3 × 3 412 443 490 510 531 547 551 555 560 620 670 678

SeaW 1223 609 × × × × × × 6
SeaW/ME 381 125 × × × × × × × × 8
SeaW/MO/ME 766 516 × × × × × × × × 8
SeaW/MO/ME 394 265 × × × × × × × × × 9
MO + V 25 27 × × × × × × × × × 9
SeaW/MO/ME 183 63 × × × × × × × × × × × 11
MO/ME/V 3 2 × × × × × × × × × × × × 12

Fig. 1. Spatial distribution of the TChl-a concentration from the quality controlled in situ (A) Pigment Database I (1997–2012), and (B) Pigment Database II
(2016–2018).
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of two or more sensors. More details on the merged products are given
in the GlobColour Product User Guide (ACRI-ST GlobColour Team
et al., 2017). Rrs products from OLCI were not merged with any other
sensor products and were therefore used separately for an OLCI only
PFT retrieval scheme. Similar to the merged products, daily 4 km Rrs L3
products of OLCI were used for matchup extraction. In further appli-
cation of the proposed approach to derive global long time series PFT
products, monthly Rrs L3 products with 25 km spatial resolution from
both, the merged products and OLCI data, were obtained for July
2002–April 2012 (time when SeaWiFS, MODIS and MERIS were in
orbit, although SeaWiFS operation ended in late 2010 and then in late
2011 VIIRS was added), and April 2016–December 2018 (OLCI on
Sentinel-3A in operation), respectively. In addition, the GlobColour
merged ocean TChl-a monthly products with 25 km resolution in July
2002–April 2012 were also obtained for inter-comparison. The merged
L3 TChl-a products were derived by a weighted average method (AVW)
from single-sensor Level 2 chlorophyll products for case 1 waters
(ACRI-ST GlobColour Team et al., 2017).

2.1.3. PFT retrieval input data

(A) PFT Chl-a concentrations derived from diagnostic pigment analysis
(DPA)

Chl-a concentrations of PFTs were derived using an updated DPA
method (Soppa et al., 2014; Losa et al., 2017). The DPA method was
originally developed by Vidussi et al., 2001, adapted in Uitz et al.
(2006) and further refined by Hirata et al. (2011) and Brewin et al.
(2015). Basically, it relates the weighted sum of seven DPs (re-
presentative of individual PFTs) to TChl-a concentration, enabling us to
determine the fraction of each PFT to the TChl-a thus to derive the PFT
Chl-a concentrations. The partial coefficients of the DPs used in this
study were derived from multiple linear regression using the data from
the large global pigment data set as detailed in Table S1 of Supple-
mentary Material in Losa et al. (2017) and were in good agreement with
previous studies. The pigment concentrations of fucoxanthin, peridinin,
19′hexanoyloxy-fucoxanthin, 19′butanoyloxy-fucoxanthin, alloxanthin,
chlorophyll b, zeaxanthin and divinyl chlorophyll a were used to derive
the Chl-a concentrations of six PFTs in our study, that are, respectively,
diatoms and dinoflagellates which are commonly considered as mi-
crophytoplankton, two types of nanophytoplankton – haptophytes and
green algae (chlorophytes), and two picophytoplankton – prokaryotes,
and Prochlorococcus which is a typical species of prokaryotes and
commonly found in the subtropical region. PFT Chl-a concentrations
<0.005 mg m−3 were excluded as such low values might contain much
uncertainty. The rational for this threshold is that the surface Chl-a
concentration encountered in the clearest ocean waters (South Pacific
Gyre) was found to be in the range 0.01–0.02 mg m−3 (Morel et al.,
2007). Therefore, values below 0.01 mg m−3 may be questionable. The
corresponding PFT Chl-a concentration can be smaller. Considering the
quality control on a large pigment data set as in Aiken et al. (2009), we
chose the threshold of 0.005 mg m−3 for PFT Chl-a to minimize the
influence of low accuracy in observations on the retrieval model, as it
could bring much higher uncertainty to final prediction. The DPA de-
rived PFT Chl-a concentrations for diatoms, haptophytes and prokar-
yotes from the pigment database I were published already in Losa et al.
(2017) and are available from PANGAEA: https://doi.pangaea.de/10.
1594/PANGAEA.875879 (Soppa et al., 2017).

(B) Matchups between in situ PFT and satellite Rrs data

Matchups to in situ PFT data were extracted from GlobColour global
4-km daily products for both merged and OLCI products. GlobColour
"L3b" products with a sinusoidal projection were used so that each
extracted pixel covers the same area. For each in situ measurement
covered by a product, a matchup of 1× 1 and 3× 3 pixels around the

in situ location was extracted. No specific quality filtering was applied
at this stage because L3 products already exclude bad quality Level-2
pixels (ACRI-ST GlobColour Team et al., 2017). Averaged data based on
3 × 3 pixels were computed using the standard MERMAID tools
(http://mermaid.acri.fr/) which follows the protocol from Bailey and
Werdell (2006), in summary:

• only matchups containing at least 50% of valid pixels were kept;• outlier pixels with (pixel value – median value) greater than
±1.5 ∗ standard deviation were removed;• the matchups were removed if the coefficient of variation (CV) of
the remaining pixels was higher than 0.15.

The same extraction and averaging protocol was used for merged
and OLCI matchups. Based on the two HPLC pigment databases in Sect.
2.1.1, we have obtained the following matchups:

1) Matchups between daily merged Rrs products and in situ PFT data:
the Rrs spectra at multispectral bands collocated with the PFT data
derived from the Pigment Database I in Sect. 2.1.1 were extracted
from the merged products (including SeaWiFS, MODIS, MERIS,
VIIRS) from 1997 to 2012 archived in the GlobColour database. The
extracted Rrs matchups included 1 × 1 pixel, and averaged Rrs by
3 × 3 pixels with the median and the standard deviation for each
matchup. However, the same wavebands for Rrs data are not always
available because different sensors have different spectral coverage
at different periods (in addition to the exclusion of data with bad
quality). Table 1 lists the numbers of matchups with different band
combinations (from six to twelve bands) for Rrs matchups with
1 × 1 pixel and 3 × 3 pixels, respectively. Fig. 2 shows the cor-
responding geographical locations of 1× 1 pixel matchups for Rrs at
eight, nine and eleven bands, where the matchups were to some
extent still globally distributed.

2) Matchups between daily OLCI Rrs and in situ PFT data: the Pigment
Database II in Sect. 2.1.1 was used to derive the in situ PFT data and
extract the corresponding OLCI Rrs matchups from 2016 to 2018.
Table 2 lists the numbers of matchups with 10, 11 and 12 wave-
bands for Rrs data from S3A OLCI with 1× 1 pixel and 3× 3 pixels,
respectively. Note that OLCI also includes the 709 nm and that OLCI
itself does not have a band at 555 nm, but GlobColour database
provides for MERIS and OLCI sensors the 555 nm through an inter-
spectral conversion using:

Rrs(555) = Rrs(560) ∗ (1.02542–0.03757 ∗ y − 0.00171 ∗ y2
+ 0.0035 ∗ y3 + 0.00057 ∗ y4), where y = log10(CHL1) and CHL1 is
the TChl-a concentration estimated by OC4 algorithm (ACRI-ST
GlobColour Team et al., 2017). With this conversion, Rrs at 555 nm for
OLCI were also included in our study.

2.2. Empirical orthogonal functions (EOF) based algorithm for PFT retrieval

2.2.1. EOF-based statistical approach
Following Bracher et al. (2015), each Rrs spectrum was firstly

standardized by subtracting the mean spectral value and then divided
by the spectral standard deviation (Taylor et al., 2013). The standar-
dized data set of Rrs, denoted as matrix X (M observations × N wave-
lengths), was collocated to the respective DPA-based PFT data set C
with M observations and 6 PFTs (M might be different for the six PFTs).
As indicated in the model training box of Fig. 3, singular value de-
composition (SVD) was applied to X for deriving the EOF modes:=X U V ,T (1)
where matrix U (M × N) contains column vectors of scores associated
with EOF modes, matrix V (N× N) contains the EOF loadings (spectral
pattern), and Λ is an N × N matrix containing the singular values of X
on the diagonal in decreasing order. For the PFT Chl-a prediction,
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generalized linear models (GLM) were created expressing the log-
transformed Chl-a concentrations of each PFT, Cp, as a function of a
subset of EOF scores (U). EOF modes with standard deviations (singular
values from Λ) that are <0.0001 times the standard deviation of the
first EOF mode were considered insignificant and thus omitted. The
regression model for PFT prediction was expressed as:= + + + …C a a u a u a uln( ) ,n np 0 1 1 2 2 (2)
where u1,2,…n are the leading n EOFs from column vectors of U, a0 is the
intercept and a1,2,…n are the regression coefficients. In addition, a
stepwise routine was applied to search for smaller regression models,
i.e., less u variables, through minimization of the Akaike information
criterion (AIC). The significance of included terms was defined by the
change in AIC (ΔAIC) with each term's removal.

2.2.2. Model assessment
We consider the coefficient of determination (R2), the slope (S) and

the intercept (a) of the GLM regression, which are based on the log-
scaled predicted (ln(Cp)) against the log-scaled observed (ln(Co)) PFT
Chl-a concentration data, while the root-mean-square difference
(RMSD), the median percent difference (MDPD), and the bias are based
on the non-log-transformed data. Model performance statistics are ex-
pressed as:
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=
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where M is the number of observations in Co, and Coi is the mean of the
observations, i.e., = =C Coi M i
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To test the robustness of the fitted model, cross-validation of the
model fitting was carried out, similar to the procedure performed in
Bracher et al. (2015). The collocated data were randomly split into two
subsets, in which 80% of the data was used for model fitting/training,
which included Xtrain (standardized Rrs spectra) and Ctrain (PFT Chl-a
concentrations), and the rest 20% was used for prediction validation
including Xval and Cval. The procedure was run for 500 permutations to
eliminate the model uncertainty produced based on a spatially or
temporally biased data set. For each permutation, with Eqs. (1)–(2) and
the stepwise routine, a regression model was fitted between ln(Ctrain)
and Utrain. The standardized validation set Xval was then projected onto
the EOF loadings Vtrain and the inverse of singular values Λtrain−1 to
derive their EOF scores Uval:=U X Vval val train train 1 (7)

Fig. 2. Geographical locations of the single pixel matchups for merged Rrs at eight (in×), nine (in △) and eleven bands (in +). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Numbers of available OLCI Rrs matchups with 10, 11 and 12 wavebands.
Number of OLCI matchups OLCI central bands (nm) No. of bands

1 × 1 3 × 3 3 × 3 alla 400 412 443 490 510 555 560 620 665 674 681 709

115 33 924 × × × × × × × × × × 10
115 33 924 × × × × × × × × × × × 11
86 25 749 × × × × × × × × × × × × 12

a 3 × 3 all: all available pixels in the 3 × 3 square were selected, but only matchup data with more than five out of nine pixels available were used.
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Lastly, the PFT Chl-a concentrations for the validation data set
(Cpval) were predicted using Uval of the selected EOF modes and the
corresponding regression coefficients. The pairs of the observed and
predicted PFT concentrations (Coval and Cpval) of the 500 permutations
were recorded for model assessment.

For each permutation, the R2 for cross validation based on ln(Cpval)
versus ln(Coval) is determined, and the mean value of the R2 from all
permutations (R2cv) is calculated. Similarly, other statistical para-
meters for cross validation are determined as follows by taking the
mean values of the parameters from all permutations:
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2.2.3. PFT predictions from satellite data
As illustrated in Fig. 3 (model application part), we were able to

apply the EOF analysis to satellite Rrs data listed in Sect. 2.1.2. Fol-
lowing Bracher et al. (2015), to predict PFTs globally using Rrs data

from merged OC or OLCI products, for which we do not have corre-
sponding pigment and PFT measurements, we projected standardized
Rrs data from the satellite onto the EOF loadings (V) to derive a new set
of EOF scores (Usat), which was subsequently used for the prediction
with the fitted model (see equations in model application of Fig. 3),
where a0 and a1,2,…n were taken from the model developed with
matchups from merged products or OLCI data as listed in Sect. 2.1.2.

2.3. PFT relative dominance

With the six retrieved PFTs in our study, we classified the relative
PFT dominance in terms of Chl-a concentration on a global scale. The
classification was performed simply based on the absolute values of the
retrieved PFT Chl-a concentrations. For each set of the monthly PFT
products, two steps were performed as follows. Step 1: the five PFTs –
diatoms, dinoflagellates, haptophytes, green algae and prokaryotes –
were compared pixelwise and the one with the highest Chl-a con-
centration was considered as the dominant PFT at this particular pixel.
Since prokaryotes mainly contain Prochlorococcus and Synechococcus-
like-cyanobacteria (SLC), Step 2 was performed to further assign the
dominance of prokaryotes to either Prochlorococcus-dominated or SLC-
dominated type. That is, for pixels where prokaryotes were the domi-
nant group, we then compared the retrieved Prochlorococcus with pro-
karyotes – pixel with Prochlorococcus Chl-a concentration higher than
50% of that of the prokaryotes was defined as Prochlorococcus domi-
nated, otherwise it was SLC dominated. With this straightforward
classification we finally derived the dominance of diatoms,

Fig. 3. Schematic flowchart of the EOF-based algorithm for predicting six PFTs with different input data sets. The left dashed-line box depicts the model training with
the pigment-satellite matchup data and the right dashed-line box depicts the model application to satellite products. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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dinoflagellates, haptophytes, green algae, Prochlorococcus and SLC from
EOF-based PFTs.

3. Results and discussion

3.1. EOF analysis of Rrs data sets from GlobColour matchups

The matchups of satellite Rrs data sets highlighted in Table 1 with
eight, nine and eleven bands (namely Rrs_8, Rrs_9, and Rrs_11) were taken
as input data for the corresponding EOF analysis, respectively. The
choice of the number of bands was based on previous positive experi-
ence with the eight MERIS bands (Bracher et al., 2015). In addition, it
was tested if more spectral information would improve the retrieval
results. As an example to illustrate satellite Rrs matchups, Fig. 4 shows
the spectra of Rrs_9 and the corresponding standardized spectra used in
the EOF analysis. Most of the Rrs spectra presented quite typical spectral
features of clean open ocean waters, i.e., high reflectance presented in
blue band. However, our data set also contained cases of phyto-
plankton-rich waters with high reflectance in the green. With hyper-
spectral Rrs, a few bio-optical features related to phytoplankton pig-
ments and thus to PFTs can be caught only when they are prominent
enough, such as phycocyanin (a marker pigment for cyanobacteria)
which causes an obvious trough in 620–630 nm. While most spectral
features in hyperspectral Rrs are often caused by a combined effect, e.g.,
both absorption and fluorescence peaks of phycoerythrin are located in
green bands, where chlorophylls have the minimum absorption (Soja-
Woźniak et al., 2017). With limited number of wavebands measured by
multispectral sensors, it is even more challenging to identify directly
the spectral features in terms of specific pigments of phytoplankton
types.

As a statistical approach, EOF analysis on multispectral Rrs may not
be able to catch the entire PFT absorption and scattering properties, but
it provides information on to what extent the EOF modes (which have
each their specific spectrum) are correlated to the PFTs. Following Sect.
2.2.1, the standardized Rrs_8, Rrs_9, and Rrs_11 were decomposed by Eq.
(1) into seven, eight, and ten EOF modes, respectively. As shown in
Table 3, the first four modes already explain 99.51% to 99.71% of the

total variance, with the first mode explaining 79.11%–82.51% of the
total variance. Though previous studies (e.g., Craig et al., 2012; Bracher
et al., 2015) have investigated the underlying bio-optical signature that
the first several EOF modes may carry, it is still difficult to well define
the distinct linkage between the EOF modes and the specific pigments
or PFTs, as the significance level of the modes may change in different
water types (Craig et al., 2012), and the PFT information cannot be the
first-order reflected by the EOF modes derived from multispectral Rrs
data. Nevertheless, a stepwise regression routine, via which the im-
portant modes to a certain PFT can be retained, was used to determine
the PFT prediction models. Since the in situ PFT Chl-a concentrations
derived from DPA are based on the marker pigments that were mostly
identified in Bracher et al. (2015), we followed their study and included
in the prediction model higher EOF modes. Though they contributed
only a minute portion to the total Rrs variance, they might still inherit
the optical signature by phytoplankton (partly group specific) pigments
and therefore, be statistically significant for the prediction.

3.2. EOF-based algorithm for PFT retrievals

3.2.1. Stepwise regression procedure
As illustrated in Sect. 2.2.1, a stepwise routine was applied to de-

termine the best EOF prediction model. The ΔAIC indicating the relative
importance of the included terms (EOF modes) was presented in
Table 4. For all three data sets, EOF-2 was the most important term in
the respective models for TChl-a and Chl-a concentrations of most PFTs
except for prokaryotes (also except for Prochlorococcus for Rrs_11).
However, the second important EOF mode differed in PFT prediction
models, and the total number of the EOF modes included in each model
also varied. For instance, with data set Rrs_9 only three EOFs were se-
lected for Prochlorococcus, but all eight EOFs were included for hapto-
phytes. It was also found that the most relevant EOF modes for pro-
karyotes and Prochlorococcus prediction were not fixed among the three
Rrs data sets, indicating that the models are vulnerable and unstable,
which was also reflected in their low performance (see Table 5 and
Fig. 5). According to Bracher et al. (2015), EOF-2 is associated with Chl-
a; the high importance of EOF-2 in the PFTs is likely due to the

Fig. 4. (A) Rrs spectra at nine bands and (B) the corresponding standardized Rrs spectra from merged OC matchups at 1× 1 pixel (in grey) with the mean spectra and
standard deviation (black line with error bars).

Table 3
Percentage of total variance explained (%) by the decomposed EOF modes derived from three satellite matchup data sets Rrs_8, Rrs_9, and Rrs_11 within the 1× 1 pixel.
% of variance EOF-1 EOF-2 EOF-3 EOF-4 EOF-5 EOF-6 EOF-7 EOF-8 EOF-9 EOF-10

Rrs_8 1 × 1 82.51 14.78 2.14 0.28 0.18 0.08 0.02
Rrs_9 1 × 1 79.11 17.75 2.03 0.79 0.22 0.06 0.03 0.01
Rrs_11 1 × 1 79.28 17.60 1.76 0.87 0.25 0.13 0.05 0.05 0.01 0.01

H. Xi, et al. 5HPRWH�6HQVLQJ�RI�(QYLURQPHQW������������������

�



elevation of Chl-a concentration in most of the PFTs when TChl-a in-
creases. Since prokaryotes and Prochlorococcus mainly dominate in
oligotrophic regions with very low biomass concentration, they do not
have a collinearity in their Chl-a concentration with TChl-a as most
other PFTs. A similar statement was also given in Bracher et al. (2015)
for predicting pigments.

3.2.2. Performance of retrieval models based on matchups of merged Rrs
data sets

Satellite PFT Chl-a and TChl-a concentrations were predicted with
the regression models built based on the EOF scores derived from the
Rrs data sets and the in situ PFT Chl-a concentrations. Matchups at
different band settings and pixel level (1× 1, 3× 3 pixels) were taken
as input for comparison between the results from different band

Table 4
ΔAIC for the predictions of the TChl-a and six PFT Chl-a concentration by the EOF modes based on Rrs 1× 1 matchups with eight, nine and eleven bands from merged
OC products (Rrs_8 1 × 1, Rrs_9 1 × 1, and Rrs_11 1 × 1). Bold highlights the EOF mode with the highest ΔAIC for TChl-a and each derived PFT.
Rrs_8 1 × 1 EOF-1 EOF-2 EOF-3 EOF-4 EOF-5 EOF-6 EOF-7

TChl-a 16.02 283.25 105.43 24.82 2.48
Diatom 8.16 130.24 90.83 10.53 0.89
Haptophytes 42.34 214.50 4.57 24.04 1.45
Prokaryotes 12.52 5.49
Dinoflagellates 5.69 122.46 54.56 0.41
Green algae 1.14 92.25 8.05 1.49 9.25
Prochlorococcus 7.29 6.87 0.73

Rrs_9 1 × 1 EOF-1 EOF-2 EOF-3 EOF-4 EOF-5 EOF-6 EOF-7 EOF-8

TChl-a 38.27 416.17 109.26 58.11 3.13 10.07
Diatom 20.05 217.09 80.52 30.17 9.43 7.07 1.14
Haptophytes 41.31 266.08 1.32 7.33 1.89 4.64 4.1 7.45
Prokaryotes 16.71 7.32 0.63 3.24 22.24 10.93 2.84
Dinoflagellates 4.85 177.95 27.59 24.62 7.14
Green algae 173.91 2.59 2.29 7.43 4.46
Prochlorococcus 20.63 12.66 1.97

Rrs_11 1 × 1 EOF-1 EOF-2 EOF-3 EOF-4 EOF-5 EOF-6 EOF-7 EOF-8 EOF-9

TChl-a 13.34 181.37 48.59 6.66 1.94
Diatom 7.86 105.23 44.49 0.32 3.41
Haptophytes 25.35 123.10 0.58 0.82 0.55 6.38 1.32
Prokaryotes 9.45 3.15 6.86 0.55 4.52
Dinoflagellates 10.32 86.57 8.95 5.10 2.03
Green algae 102.48 1.73 8.36 1.82 0.39
Prochlorococcus 9.30 0.06 0.65 10.87

Table 5
Statistics of regression models for TChl-a and six PFT Chl-a concentrations using EOF modes based on Rrs matchups Rrs_8, Rrs_9, and Rrs_11 within 1 × 1 pixel from
merged products. Cross-validation (cv) results are presented with 500 permutations for data splitting into 80% of the data used for training and 20% for validation.
N = number of valid matchups for each parameter.

N MDPD (%) RMSD (mg m−3) R2 MDPDcv (%) RMSDcv (mg m−3) R2cv

Rrs_8 1 × 1
TChl-a 381 40.66 1.38 0.72 40.97 1.40 0.71
Diatoms 286 80.28 1.25 0.59 81.56 1.27 0.58
Haptophytes 366 57.16 0.30 0.58 57.97 0.30 0.54
Prokaryotes 348 62.32 0.15 0.05 62.95 0.14 0.04
Dinoflagellates 258 59.14 0.91 0.56 60.52 0.64 0.54
Green algae 239 60.51 0.12 0.50 61.81 0.12 0.47
Prochlorococcus 139 41.92 0.03 0.13 42.77 0.03 0.08
Rrs_9 1 × 1
TChl-a 394 37.41 1.24 0.76 37.08 1.27 0.75
Diatoms 306 73.70 1.21 0.65 74.74 1.29 0.63
Haptophytes 387 47.16 0.22 0.64 48.62 0.24 0.61
Prokaryotes 367 53.70 0.13 0.15 55.08 0.13 0.11
Dinoflagellates 272 55.32 0.93 0.62 57.29 0.72 0.59
Green algae 262 55.81 0.11 0.51 56.26 0.11 0.48
Prochlorococcus 142 39.65 0.02 0.24 42.68 0.02 0.18
Rrs_11 1 × 1
TChl-a 183 38.15 1.42 0.75 40.20 1.43 0.73
Diatoms 148 75.56 1.26 0.68 77.42 1.28 0.64
Haptophytes 179 53.04 0.28 0.61 55.84 0.29 0.54
Prokaryotes 171 61.41 0.17 0.13 62.61 0.16 0.08
Dinoflagellates 132 64.32 1.20 0.56 66.75 0.83 0.51
Green algae 116 54.52 0.12 0.60 58.60 0.13 0.48
Prochlorococcus 52 41.83 0.02 0.35 50.60 0.03 0.14
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numbers, pixels and data points. Prediction model performances of
using Rrs data sets with 1 × 1 and 3 × 3 matchups were statistically
similar. Therefore, here we only presented and discussed in detail the
results of the 1× 1 pixel matchups, as there were more collocated data
which should provide more robust predictions (statistics based on Rrs
3 × 3 data sets are presented in Table S2 in the supplementary docu-
ment). The prediction models developed from the 1 × 1 collocated Rrs
data sets were also later applied to the satellite products.

Statistics of the EOF-based regression models are listed in Table 5
for different Rrs data sets (Rrs_8, Rrs_9 and Rrs_11). The predicted PFT Chl-
a concentrations display slight differences between different band set-
tings of the input Rrs. With all three data sets, the predicted and ob-
served (based on in situ data) TChl-a and Chl-a concentrations for

diatoms, haptophytes, dinoflagellates and green algae are well corre-
lated, with R2 ≥ 0.50 and R2cv ≥ 0.47. TChl-a has the highest corre-
lation (R2 ≥ 0.72), while Prokaryotes and Prochlorococcus have the
weakest correlation between the predicted and observed concentrations
but are generally better correlated using data set Rrs_9 compared to the
other two data sets. The MDPD are lowest for TChl-a and Pro-
chlorococcus (< 42%) and low for haptophytes, dinoflagellates, green
algae and prokaryotes (< 60% for data set Rrs_9). The highest MDPD
was found for diatoms (< 80%). The MDPDcv of all cases are slightly
higher but still comparable with the MDPD, indicating that the pre-
diction models are stabilized. Rrs_9 presents an overall lowest MDPD
among the three data sets. RMSD values were calculated in non-log
transformed manner, and thus vary depending on the corresponding

Fig. 5. Regressions between observed (x-axis, obs.) and predicted (y-axis, pred.) Chl-a concentrations of (A) diatoms, (B) haptophytes, (C) prokaryotes, (D) dino-
flagellates, (E) green algae, (F) Prochlorococcus, and (G) TChl-a using EOF modes derived from merged Rrs products at 9 bands (1 × 1 pixel).
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Chl-a concentration ranges of individual PFTs. TChl-a has the highest
RMSD as it is the indicator of all phytoplankton biomass, whereas Chl-a
of Prochlorococcus which is always low in concentration has the lowest
RMSD. Among the three data sets, the lowest RMSD are found for Rrs_9.
Hence, we conclude that the EOF-based models with Rrs at nine bands
(see Table 1) perform best and slightly better than those with eleven
bands, while the weakest are the models based on eight bands. This to
some extent indicates that the performance of prediction models is not
only subject to the number of bands (i.e., the more bands the better),
but also to the number of matchups (with Rrs_11 the least).

As a summary, Fig. 5 shows the observed against the predicted TChl-
a and Chl-a concentrations for the six PFTs by the EOF-based method
using Rrs_9. Corresponding to the statistics in Table 5, TChl-a and Chl-a
of diatoms, haptophytes, dinoflagellates, and green algae which have
relatively larger ranges in magnitude show relatively good predictions,
with regression lines close to the 1:1 reference line and lower inter-
cepts. Prokaryotes and Prochlorococcus are of weaker correlations with
slopes much lower than 1 and higher intercepts, mainly due to their low
concentrations, the narrow range of the variation, as well as the low
variability in the concentrations especially for prokaryotes that could
not be well interpreted by the EOF modes. Slopes of all regression lines
<1 indicate that the models to some extent overestimate the variables
in low concentrations and underestimate them in higher concentra-
tions. Slopes of <1 were also shown in Bracher et al. (2015) for all the
predictions of pigments and pigment composition, though in their study
the prediction performance for some important pigments was statisti-
cally better compared to our prediction of PFT Chl-a concentration.
Among the well predicted pigments in Bracher et al. (2015), zeax-
anthin, typically used as a marker pigment for prokaryotes, showed the
lowest correlation but reasonable MDPD, which corresponds to our
lower R2 values for prokaryotic phytoplankton. It is worth investigating
further the prediction models and perform certain tuning procedure
through mathematical methods to reduce these over- or under-
estimations, especially for picophytoplankton which are usually very
low in concentration.

The cross-validation procedure effectively examined the robustness
of the prediction models. The statistical parameters for cross-validation
(averaged for all 500 permutations with 20% data for prediction) were
nearly or as equivalently good as the statistics for the model trained
with the whole data set (Table 5). This suggests that the number of data
points (matchups) is adequate for a robust model establishment. In fact,
in our study there were 52–394 data points for all matchups with dif-
ferent band settings, which is much higher than that was suggested to
be necessary for robust model development by Craig et al. (2012) (15
points at a seasonal cycle) and Bracher et al. (2015) (50 points).
However, since their studies were rather regional while we are focusing
on the global scale, a higher number of points is expected in our study
to enable a comprehensive coverage of the global ocean water types.
From Table 5 one can see that the statistics of the cross validation are
much worse than the original statistics for the green algae and Pro-
chlorococcus Chl-a predictions using the data set Rrs_11, for which less
available matchups were obtained. Therefore, though lower R2 and
higher MDPD were obtained with the data set Rrs_9, for these two PFTs,
the cross-validation showed better results than that from the data set
Rrs_11, convincing us the nine-band setting of the Rrs to be optimal for
PFT model applications to satellite products without in situ matchups.

To better understand the performance of the EOF-based algorithm,
Fig. S1 in the supplementary document shows the uncertainty for dif-
ferent ocean biomes in the algorithm derived Chl-a concentrations of
the six PFTs using GlobColour merged Rrs at nine bands (global pro-
jection of the uncertainty is detailed in the supplementary document).
Diatoms show underestimation in coastal regions (mean deviation of
−0.11 mg m−3 in this biome), slight underestimation in high latitudes
and near the equator (~−0.02 mg m−3), and very slight over-
estimation in the subtropical regions (~0.013 mg m−3). Haptophytes,
dinoflagellates, and green algae present similar uncertainty

distributions, i.e., overestimation in higher than 40°N and subtropical
regions and underestimation near the equator and in the Southern
Ocean, but with different amplitudes. Both prokaryotes and
Prochlorococcus show distinct overestimation in the central part of the
oligotrophic gyres (0.026 and 0.014 mg m−3, respectively) but un-
derestimation in the surrounding areas of the gyres (−0.06
and − 0.012 mg m−3, respectively).

3.2.3. Application to merged products for global PFT retrieval
Given that the EOF-based PFT models based on the matchups of

merged Rrs at nine bands show the best performance, we applied these
models (based on the full data set fit) to the merged Rrs global products
at the same nine bands for the period of 2002–2012. Selection criterion
of the nine bands from merged Rrs products is detailed in Sect. 3.2.2 of
the supplementary document. The numerical matrices and regression
coefficients determined by Eqs. (1) and (2) used for the model im-
plementation to the merged Rrs products at nine bands are also ex-
plained and provided in Tables S3 and S4 in the supplementary docu-
ment.

Fig. 6 illustrates the global mean distribution Chl-a concentration of
each PFT, based on the monthly PFT products derived from the merged
Rrs products with 25 km resolution from 2002 to 2012. Diatom Chl-a
concentrations are generally higher in high latitudes, marginal seas and
coastal upwelling regions but are much lower in the tropical regions
and extremely low in the subtropical gyres. The typical diatom abun-
dant regions are higher than 40°N (North Atlantic, Bering Sea and
Labrador Sea up to the Arctic Ocean), the Patagonian upwelling and
most part of the Southern Ocean. The average Chl-a concentration of
diatoms over the globe is ~0.08 mg m−3. Chl-a concentration of di-
noflagellates is low nearly over the whole globe (~0.02 mg m−3) but
higher in the Arctic Ocean and Patagonian upwelling. Haptophytes with
a global average Chl-a of 0.09 mg m−3 follow in distributions of the
diatoms but have more spread regions of high Chl-a in the high lati-
tudes, waters near the coasts, and equatorial regions (such as the west
coast of Africa). Chl-a concentration of green algae (global average of
0.03 mg m−3) is found typically higher in the Arctic and the near coast
oceans around the southern part of South America. Prokaryotes and
Prochlorococcus show distinctly different distribution features from the
other four PFTs. Prokaryotes with a global average Chl-a concentration
of 0.07 mg m−3 are much more abundant in the subtropical regions but
also substantially contribute (~5–30% of TChl-a) in the Arctic Ocean.
Waters such as the Baltic Sea, the east coast of China, and the west coast
of Africa (around 5°S and 10–20°N) show very prominent abundance of
prokaryotes. Prochlorococcus are generally very low on a global scale
(global average 0.03 mg m−3), especially in high latitude waters (not
really detectable), slightly higher in subtropical regions and apparently
abundant in some parts of the west coast of Africa similar to prokar-
yotes. Distribution of Prochlorococcus is supported by previous findings
(Flombaum et al., 2013). Their quantitative model based on a large
number of observations well defined the assessment of the Pro-
chlorococcus abundance and the results match well our retrievals. In
general the global average Chl-a concentrations of the PFTs retrieved
from our study are consistent with those from Hirata et al. (2011),
except that prokaryotes Chl-a is higher (0.07 mg m−3 in our study
versus 0.04 mg m−3 from Hirata et al., 2011), mainly due to our ele-
vated Chl-a prediction in the subtropics for prokaryotes. To illustrate
the changes in the PFT Chl-a distribution with seasons, the monthly
climatological products of each PFT are provided in Figs. S2-S7 in the
supplementary document. For instance, diatom blooms are mainly de-
tected during early summer in the Southern Ocean (December–Jan-
uary) and in the subarctic and Arctic waters (May–June). Haptophytes
show similar seasonal changes in high latitudes as diatoms, but highly
increase during the summer season in the equatorial Atlantic. A strong
prokaryotic enhancement is also found during July–August at the west
coast of South Africa.

Distribution of TChl-a retrieved by the EOF-based algorithm is
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presented in comparison to the GlobColour merged ocean chlorophyll
products (mean over all years in Fig. 7, and climatological monthly
mean in Figs. S8–S9). The ten-year mean of our EOF-based predicted
TChl-a is generally in good agreement considering the distribution
patterns with the standard products, though it is clearly seen that the
EOF-based TChl-a shows higher/lower values in the subtropical gyres/
coastal waters than the standard products. This was however expected,
as the EOF-based retrieval models based on matchups already showed
an over-/under-estimation for lower/higher values for all the retrieved
variables/PFTs, as illustrated in Fig. 5. This flattening effect of the
prediction is most prominent in prokaryotes and Prochlorococcus, of
which the EOF-based models present the weakest correlation. An ac-
curate retrieval of prokaryotic phytoplankton or its corresponding
marker pigments (zeaxanthin, divinyl Chl-a) has always been a chal-
lenge so far (e.g., Bracher et al., 2015; Losa et al., 2017), as the pico-
phytoplankton Chl-a concentrations are usually globally very low, even
when dominating in oligotrophic oceans. This results in a narrow var-
iation range and low variability in their concentrations compared to

other PFTs, and also in a weak imprint on the spectral shape which are
limited for the detection via the spectral analysis. An exception is that
in the Baltic Sea prokaryotes can have high Chl-a concentrations
especially during blooms. This is also reflected in our retrievals, though
there are no matchups available included in the EOF analysis.

3.3. Evaluation of the EOF-based PFT products

3.3.1. Inter-comparison with other PFT/PSC products
To evaluate our retrieval algorithm, the derived Chl-a concentra-

tions of diatoms, haptophytes and prokaryotes were compared with
SynSenPFT Chl-a of diatoms, coccolithophores and cyanobacteria (Losa
et al., 2017) and Chl-a of three PSCs (micro- >20 μm, nano- 2–20 μm,
and picophytoplankton <2 μm, Sieburth et al., 1978) obtained with the
PSC model of Brewin et al. (2010, 2015). Both SynSenPFT and PSC
products developed within the frame of the SynSenPFT project (Losa
et al., 2017) were available globally at 4 km daily resolution over the
period from 2002 to 2012. Prior to the inter-comparison, both products

Fig. 6. Ten-year mean distribution (July 2002–April 2012) of the PFT Chl-a concentration for (A) diatoms, (B) dinoflagellates, (C) haptophytes, (D) green algae, (E)
prokaryotes, and (F) Prochlorococcus retrieved by EOF-based algorithm from merged monthly Rrs products at nine bands.
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were binned to monthly averages and re-gridded to 25 km resolution, to
be consistent with our EOF-based PFT products. For simplification, in
the following text the SynSenPFT derived Chl-a concentrations of dia-
toms, coccolithophores, and cyanobacteria are denoted as dia-Syn-
SenPFT, coc-SynSenPFT, and cya-SynSenPFT, respectively; the Chl-a
concentrations of micro-, nano- and picophytoplankton derived from
PSC model are denoted as c-micro, c-nano, and c-pico, respectively. The
EOF-based Chl-a products of the other two PFTs, green algae and Pro-
chlorococcus were compared to those derived by OC-PFT method pro-
posed by Hirata et al. (2011) using GlobColour AVW merged TChl-a
monthly 25-km products as input for the same period (2002–2012).
Dinoflagellates were not considered for comparison as the OC-PFT de-
rived dinoflagellates showed very poor validation result (Hirata et al.,
2011). It is noteworthy that OC-PFT also allows the retrieval of Chl-a
concentrations of diatoms, haptophytes and prokaryotes, but as they
are intrinsic in the SynSenPFT products (Losa et al., 2017) they were
not included as separate products for the inter-comparison.

Following Losa et al. (2017), the time-latitude Hovmöller diagrams
were generated covering the monthly means from 2002 to 2012 of the
different PFT/PSC products. Since globally the Chl-a concentration is
typically log-normally distributed (Campbell, 1995), all averaging was
done in logarithmic space and then back-transformed to the original
scale. The Hovmöller diagrams are presented in Figs. 8–11, where the
left side of each subplot shows the monthly variation during the ten-
year period (2002–2012), and the right side shows the climatological
annual cycle. Since different studies tend to provide different retrieval
information in terms of phytoplankton composition, the optimal way
for the inter-comparison is to select the variables carrying the most
similar PFT information, but one has to keep in mind that the products
compared here are not always representing exactly the same quantities.

Diatoms derived from our study (Fig. 8A) and dia-SynSenPFT
(Fig. 8B) show similar distributions with both lowest diatom Chl-a
concentration in the subtropical regions especially in the gyres and
higher concentration in high latitudes. Compared to dia-SynSenPFT, the
EOF-based diatoms show generally lower Chl-a in the polar and tropical
regions, however they indicate the same blooming periods for diatoms
in May–June in the Arctic and December–January in the Southern
Ocean. Dia-SynSenPFT presented distinct higher Chl-a from 10°S to
10°N during December to February 2005–2006, 2007–2008 and
2010–2011 than other years, whereas the change between the years is
not evident in either our results or the c-micro products (Fig. 8C). Since
microphytoplankton contain not only diatoms but also other micro-size
phytoplankton such as dinoflagellates, the sum of EOF-based diatoms
and dinoflagellates was also shown (Fig. 8D), presenting similar sea-
sonal variation to c-micro but higher/lower Chl-a in the gyres/high
latitudes.

Before comparing the EOF-based haptophytes to other products, it
should be noted that coccolithophores are a main contributing PFT to
haptophytes, while haptophytes are a part of nanophytoplankton, with
the latter containing also Phaeocystis, cryptophytes, and a few other
groups. Haptophytes derived from our study (Fig. 9A) are well con-
sistent with coc-SynSenPFT (Fig. 9B), although again our retrievals
show a relatively mild pattern with lower Chl-a in high latitudes and
the 10°S-10°N equator belt. Chl-a concentration of coc-SynSenPFT from
10°N to 40°N during the summer time is significantly higher, but this
pattern is not found in either our products or c-nano. Our haptophytes
present similar distribution with c-nano (Fig. 9c) but lower Chl-a in the
high latitudes and equatorial regions as expected. The climatological
annual cycles of both are in very good agreement in the Southern
Ocean, while in the Arctic c-nano shows much Chl-a enhancement in
May–July. In addition, c-nano spreads more to the north until 25°N
from the equator. However, caution should be taken since our DPA
derived haptophytes contain only their nanophytoplankton fraction
while their picophytoplankton fraction is neglected, whereas Brewin
et al. (2015) consider part of the haptophytes in the picophytoplankton
group when TChl-a is below 0.08 mg m−3.

The overall Chl-a concentration of our EOF-based prokaryotes
(Fig. 10A) is generally low (0.03–0.20 mg m−3), but higher con-
centrations are found in the subtropical regions, only slightly lower
than the maxima in the Arctic and in the Southern Ocean from 70°S to
80°S during the summer. On the contrary, both distributions of cya-
SynSenPFT (Fig. 10B) and c-pico (Fig. 10C) show the lowest Chl-a in the
gyres. Similar seasonality (with little changes) between the cya-Syn-
SenPFT and c-pico is observed at the mid- to high latitudes, while the
EOF-based prokaryotes show slightly lower Chl-a maxima as well as a
different seasonal change in the Arctic, which have a clear elevation in
Chl-a from spring to summer. It is noteworthy that the cyanobacteria
derived from SynSenPFT include all the prokaryotic phytoplankton
(Losa et al., 2017) which should thus be the same product as our EOF
retrieved prokaryotes. The product of c-pico from Brewin et al. (2015)
contains not only prokaryotes but also other picoeukaryotic phyto-
plankton (green algae and pico-sized haptophytes), therefore we also
presented in Fig. 10D the sum of the prokaryotes and green algae Chl-a
from our study, which shows much higher Chl-a concentration in
general compared to c-pico, simply due to the predictions of high Chl-a
of prokaryotes in the subtropical regions. Nevertheless, the high pro-
karyotes Chl-a concentrations in the subtropical regions are not only
shown in our study, but are also found in the cyanobacteria simulated
by NASA Ocean Biogeochemical Model (NOBM), which is a global
biogeochemical model with coupled circulation and radiative models
(Gregg, 2002; Gregg and Casey, 2007, figure not shown here but can be
found in Losa et al., 2017). However, our prokaryotic phytoplankton

Fig. 7. Ten-year mean distribution (July 2002–April 2012) of (A) TChl-a concentration retrieved by EOF-based algorithm from merged monthly Rrs products at nine
bands and (B) GlobColour AVW merged TChl-a concentration based on open ocean L2 chlorophyll products from SeaWIFS, MODIS and MERIS sensors.
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Fig. 8. Hovmöller diagrams of Chl-a concentrations of (A) diatoms derived from our study, (B) dia-SynSenPFT (Losa et al., 2017), (C) c-micro derived from PSC
method (Brewin et al., 2015), and (D) sum of diatoms and dinoflagellates (Diatom + Dino.) from our study.
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retrieval performance still needs to be further improved by potentially
scaling the low concentration range or using non-linear prediction
models.

Hovmöller diagrams of green algae and Prochlorococcus Chl-a con-
centrations derived by our study (Fig. 11A–B) are presented in com-
parison with those from OC-PFT (Hirata et al., 2011, Fig. 11D–E). Green
algae in both products show distinct seasonality but Chl-a concentra-
tions of green algae from our study are generally lower than those from
OC-PFT (except for the subtropical regions), especially in the Arctic
where OC-PFT shows enhanced green algae from late spring to early
winter, whereas the EOF-based green algae show the lowest Chl-a
during summer and increase in autumn to winter. Prochlorococcus Chl-a
is generally very low (< 0.1 mg m−3) for both products with quite
different patterns presented. The EOF-based Prochlorococcus Chl-a
concentrations are higher in mid- to low latitudes but lower in polar
regions, corresponding to previous findings by Flombaum et al. (2013),

while the OC-PFT Prochlorococcus shows higher Chl-a in the Southern
Ocean which is outside the known distribution range and likely caused
by undersampling of the in situ data (Hirata et al., 2011). Dino-
flagellates show similar distribution with diatoms but with much lower
Chl-a concentration, which is almost neglectable in subtropical regions
and only higher than 0.05 mg m−3 in higher than 40°N with clear
seasonality observed (Fig. 11C). However, an equivalent product is still
necessary for dinoflagellates evaluation.

3.3.2. PFT Chl-a dominance comparison with PHYSAT products
We compared the PFT Chl-a dominance derived from our study for

the period of 2002–2012 to the PHYSAT product from 1997 to 2006
(Alvain et al., 2008) which empirically relates the radiance anomaly to
specific dominant phytoplankton groups. It is worth noting that the
periods of the two compared products do not coincide, because we
could only obtain the 12-month PHYSAT climatology data from 1997 to

Fig. 9. Hovmöller diagrams of Chl-a concentrations of (A) haptophytes derived from our study, (B) coc-SynSenPFT (Losa et al., 2017), and (C) c-nano derived from
PSC method (Brewin et al., 2015).
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Fig. 10. Hovmöller diagrams of Chl-a concentrations of (A) prokaryotes derived from our study, (B) cya-SynSenPFT (Losa et al., 2017), (C) c-pico derived from PSC
method (Brewin et al., 2015), and (D) sum of prokaryotes and green algae (Proka. + GA) from our study. Note that the color scale is different from Figs. 8–9.
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2006 due to our limited access to the PHYSAT product. Diatoms, hap-
tophytes, Prochlorococcus and SLC were included but the dominance of
Phaeocystis-like group derived by PHYSAT was not available in our
products. Distributions of dominant PFTs extracted from our products
for four representative months (Fig. 12) generally present haptophytes
and diatoms dominating in high latitudes and Prochlorococcus and SLC
dominating in lower latitudes, which is well consistent with PHYSAT
products. A more detailed comparison is described as follows.

In the high latitudes of the north hemisphere, our classified hapto-
phytes dominance in January spreads a smaller range (30°N–50°N) than
that from PHYSAT. In April, both products show haptophytes dom-
inating above 30°N while diatoms are dominating in coastal areas only
in our product. In July the two products show similar identification
results with diatoms dominating in some parts of the North Sea,
Norwegian Sea, Bering Sea and the Arctic waters, while haptophytes are
still the major dominant PFT. Similar distribution is found for October
as well despite of our product showing more diatoms in nearshore
waters.

In the mid- to low latitudes, haptophytes and diatoms mainly
dominate in coastal waters. Our product also shows dominance of
haptophytes in the equatorial waters especially in the Pacific Ocean
nearly for all seasons, which is barely presented in PHYSAT products.
Prochlorococcus and SLC are two largely dominant groups in the mid- to
low latitudes (Zubkhov et al., 1998). Prochlorococcus dominance is
hardly found in 20°N–35°N from our product, whereas it is prominent in
PHYSAT product especially in the north Pacific and north Atlantic gyres
for all seasons. Prochlorococcus is found dominating in the low latitudes
approximately between 15°S–15°N and SLC mainly dominates in the

south Pacific gyre in both products. In the central to south Atlantic and
Indian Ocean (equator to 40°S), our product shows SLC dominance in
most of the regions in January and April, which decreases and is taken
over by Prochlorococcus and haptophytes in July. However, PHYSAT
products present dominance of both Prochlorococcus and SLC in this
region in January and April, which is then gradually taken over by
haptophytes in July with Prochlorococcus only dominating in the gyres.
In the southern Pacific Ocean near 40°S both products show mainly
Prochlorococcus dominating for nearly all seasons.

In the high latitudes of the south hemisphere (40°S–80°S), our
product shows that Prochlorococcus and SLC spread more to the
Southern Ocean especially from the south Pacific Ocean. In January,
diatoms dominance of our product is found in Patagonian coastal wa-
ters and the south part of the Southern Ocean, while PHYSAT shows
extensive diatoms dominance in 40°S–80°S with haptophytes and
Phaeocystis also detected. For the other seasons, our product presents a
smaller coverage of haptophytes dominance compared to PHYSAT
products, and that diatoms are always dominant in Patagonian coastal
waters and the west coast of South Africa.

Overall, besides some different distribution in diatoms dominance
between PHYSAT and our products, the other main difference exists in
the dominance of Prochlorococcus and SLC distributed in the central
oceans, likely attributed to the low retrieval performance of prokar-
yotes. One should also keep in mind that PHYSAT product presents the
climatology of 1997–2006 while ours for a more recent period
(2002–2012) as explained in the beginning of this section. Recent long-
term observations in the Arctic have shown a shift in phytoplankton
composition from diatom-dominated to haptophyte-dominated and an

Fig. 11. Hovmöller diagrams of Chl-a concentrations of (A) green algae, (B) Prochlorococcus, and (C) dinoflagellates derived from our study, with the former two in
comparison to (D) green algae and (E) Prochlorococcus from OC-PFT (Hirata et al., 2011). Note that the color scale is the same as Fig. 10.
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enhancement of prokaryotic phytoplankton indicating that smaller
phytoplankton species appear more often in the high latitudes (Nöthig
et al., 2015), which is also presented in our product. In general, the
overall high consistency between the two products confirms that rea-
listic information on the PFT dominance can be extracted from the EOF-
based PFT products.

3.4. Potential application to Sentinel-3A OLCI products

3.4.1. EOF-based PFT algorithm based on collocated OLCI Rrs and in situ
HPLC pigments

Based on the Rrs matchups extracted specifically from the OLCI
products (listed in Table 2), the EOF-based algorithm for OLCI appli-
cation was built using the matchups of Rrs at 10 bands, 11 bands and 12
bands (denoted as OLCI Rrs_10, OLCI Rrs_11, and OLCI Rrs_12,

Fig. 12. PFT Chl-a dominance extracted from the EOF retrieved PFTs (2002–2012, left panel) versus the results derived by PHYSAT (1997–2006, Alvain et al., 2008,
right panel) for representative months. Note that the classified dominant PFTs are not all the same as the PHYSAT product, i.e., dinoflagellates and green algae
dominance were included in our product while Phaeocystis dominance was included in PHYSAT. Blank areas indicate no available data.
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respectively) at 1 × 1 pixel and corresponding DPA-derived PFTs. The
matchups for 3× 3 averaged data were not used due to low number of
points. As shown in Fig. 3, the same procedure was applied to OLCI
matchups regarding EOF analysis and regression model establishment.
Similar to Sects. 3.1 and 3.2.1, EOF analysis was performed and the
contribution to total variance of each important EOF mode was pro-
vided in Table S5 (supplementary document), showing EOF-1 takes
>85% and the first four EOF modes contribute >99.9% of the total
spectral variance. Table S6 in supplementary document presents the
stepwise routine generated ΔAIC showing the importance of the EOF
modes. Different from that based on merged matchups (Table 4), EOF-3
and EOF-2 for most PFTs both have high ΔAIC scores, indicating both
are relatively important. Statistical results of the prediction perfor-
mance provided in Table S7 (supplementary document) shows little
differences between using different band numbers for the input Rrs data
sets. For all PFTs the predictions are comparable to that gained using
merged matchups in Sect. 3.2.2, however low number of matchups led
to weaker cross validation statistics. As an example, Fig. S10 (supple-
mentary document) shows the comparison between the predicted and
observed PFTs using OLCI Rrs_11 at 1 × 1 pixel. In general, good pre-
dictions are achieved with OLCI Rrs_11 for diatoms, haptophytes, dino-
flagellates, green algae and Prochlorococcus, especially the predictions
of the latter two PFTs were obviously better than those from merged
matchups. However, performances for TChl-a and diatom Chl-a pre-
diction are a bit downgraded with OLCI data compared to merged
matchups, possibly due to the low quality of corrected Rrs at blue bands
for OLCI. This needs to be further investigated as it does not apply to
other PFTs. As the retrieval approach is also an empirical method based
on regressions, other factors such as the lower number of matchup
points andvariation range of input data do also have impacts on the
OLCI model performance. Prokaryotes prediction still has the least good
performance. Good performance for Prochlorococcus estimation is
achieved but the robustness could be weak due to little number of
matchups (only 17–22 points for 1 × 1 pixel).

3.4.2. Test output of global PFTs retrieved from S3A OLCI products
The EOF fitted models based on OLCI Rrs_11 at 1 × 1 pixel were

selected and applied to the OLCI Rrs L3 monthly products with 25 km
spatial resolution. Fig. 13 shows the mean distribution of each PFT Chl-
a concentration derived from OLCI products during April 2016–De-
cember 2018. Compared to the PFTs derived from merged products,
diatoms derived from OLCI are also well represented for coastal regions
and show similar distribution in polar regions, but have higher Chl-a in
the gyres and lower at the Equator. Haptophytes, dinoflagellates and
green algae show nearly identical distributions with those from merged
products, suggesting that the fitted models of these PFTs are well de-
fined for both satellite products. Prokaryotes present elevated Chl-a
concentration in the oligotrophic regions, however, opposed to that
derived from the merged products, low abundance of prokaryotes is
detected in coastal waters and high latitudes especially in the Arctic.
Prochlorococcus shows much spatial variation with higher Chl-a con-
centration in the Arctic Ocean, north and central Atlantic Ocean, cen-
tral Pacific Ocean, most coastal waters, and scattered regions in the
Southern Ocean. This is apparently inconsistent with the consensus that
Prochlorococcus is hardly detectable in most of these regions. This
misinterpretation might be attributed to the ill-defined prediction
model due to low number of valid matchups for Prochlorococcus.

It is noteworthy that the PFTs are retrieved for different periods
between OLCI (2016–2018) and merged products (2002–2012), and
that the matchups extracted from OLCI data are not adequate for a
global coverage. Relatively weak performance for prokaryotes and
Prochlorococcus retrieval lies in both applications of OLCI and merged
products, suggesting again that improvement on their models is ne-
cessary to achieve more reliable retrievals.

4. Conclusion and outlook

An EOF-based global retrieval algorithm for quantifying multiple
PFTs was developed using collocated satellite Rrs data and DPA derived
PFT Chl-a concentrations from in situ pigment data. Rrs matchups with
different band numbers extracted from the GlobColour SeaWiFS/
MODID/MERIS merged products were used to assess and compare the
performance of corresponding EOF fitted models in predicting PFTs.
The models developed using Rrs data set with nine bands slightly out-
performed those using the other data sets. The retrieval skills for six
PFTs (diatoms, dinoflagellates, haptophytes, green algae, prokaryotes
and Prochlorococcus) were investigated and cross-validated via a boot-
strapping method. Satisfactory retrievals were achieved for diatoms,
dinoflagellates, haptophytes and green algae, while the correlation
generated by the EOF-based models for prokaryotic phytoplankton was
relatively weak, resulting in less accurate retrievals for prokaryotes and
Prochlorococcus. Global PFT retrievals over a ten-year period
(2002–2012) were obtained based on the EOF-based models using
merged Rrs L3 products at nine bands, showing plausible distributions
for most of the investigated PFTs in the open ocean.

Evaluations on the EOF-based PFT products were carried out
through inter-comparisons with SynSenPFT, PSC and OC-PFT products.
Time-latitude Hovmöller diagrams covering monthly means of
2002–2012 showed generally good agreement between our EOF-based
PFTs and other PFT/PSC products, despite that prokaryotic phyto-
plankton showed higher Chl-a concentrations in the subtropical gyres,
which needs to be further validated. Dominance of PFTs derived from
the EOF-based PFT products was also in high agreement with PHYSAT-
products. Implementation of EOF models to OLCI products showed
potential for a continuous observation, though differences for certain
PFTs appeared comparing to the PFT products derived from merged
products, likely due to lower number and limited coverage of matchups.

Different from abundance-based PFT algorithms, the proposed re-
trieval algorithm directly uses the reflectance data from satellites, thus
can avoid uncertainty generated in the chlorophyll products, and links
the variation of satellite reflectance spectra via PFT specific EOF based
regression models. In addition, the retrieval algorithm is still an em-
pirical approach, which is subject to the input data sets for training with
regard to the number of observations, range of data variation and
homogeneity of the data distribution in space and time. The apparent
over−/underestimation feature in the regression models should also be
further investigated. Nevertheless, this study showed the high potential
of the EOF-based algorithm for quantitatively retrieving PFTs globally
using satellite reflectance products from different sensors, which was
not adequately reported in previous studies. Future efforts will be put in
improving the current algorithm especially for prokaryotes prediction,
such as applying proper scaling to the data sets and using non-linear
fitting models. Further work, which is ongoing, is focusing on updating
and extending the global in situ pigment data sets (especially from 2012
to present). The updated data sets will be used for EOF re-training with
hopefully globally distributed matchups for OLCI (2016–present) and
MODIS/VIIRS (2012–present) merged products, to fill the gap between
MERIS and OLCI (2012–2016), and ultimately enable a continuous PFT
observation from multi-sensor data. The updated in situ data sets will
also be used for a thorough validation of the satellite retrieved PFTs.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.rse.2020.111704.
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Abstract Phytoplankton size classes (PSCs) is of great significance for exploring marine ecological and
biogeochemical processes. Remote sensing of PSCs has been successfully applied to open oceans; however,
it is still quite limited for optically complex coastal oceans. In this study, the entire continental shelf sea of
China including Bohai Sea (BS), Yellow Sea (YS), and East China Sea (ECS) characterized by distinctive turbid
waters and impacted by plumes of large world-class river (the Changjiang River) was taken as an example
of turbid coastal ocean for remotely sensed spatial-temporal distributions of PSCs. In situ data were col-
lected from cruises during April to June in 2014 and an improved algorithm for PSCs retrieval was proposed.
PSCs derived from GOCI (Geostationary Ocean Color Imager) images revealed that microplankton was domi-
nant in the BS, the YS, and the nearshore ECS and nanoplankton distributed widely in the entire study area,
while picoplankton mainly distributed in the offshore ECS in April, which was consistent with in situ investi-
gation and related to environmental factors. Validation indicated that the improved algorithm provided a
more accurate estimation of PSCs, with the root mean square error (RMSE) between estimated and mea-
sured size-fractionated concentrations been 0.774, 0.257, and 0.142 mg m23 for micro, nano, and picoplank-
ton, respectively. Diurnal variations of PSCs were mainly affected by tidal currents and light intensity
depending on different water types. These illustrated that remote sensed spatial distributions as well as
diurnal variations of PSCs are effective in turbid continental shelf seas of China.

1. Introduction

Phytoplankton are the fundamental component of the marine ecosystem. Complex biophysical controls
(e.g., irradiance, temperature, salinity, nutrients, and grazing) and anthropogenic impact (e.g., runoff modifi-
cation, nutrient fluxes) result in large spatial and temporal variations in phytoplankton biomass, community
structure, and functionality (Behrenfeld & Boss, 2014; Cloern, 2001; Geider et al., 1998; Lindemann & John,
2014). According to Sieburth et al. (1978), phytoplankton can be operationally divided into three phyto-
plankton size classes (i.e., microplankton, >20 lm; nanoplankton, 2–20 lm; picoplankton, <2 lm). Phyto-
plankton size structure are recognized as prime physiological parameters that can influence many marine
ecological and biogeochemical processes (Finkel et al, 2010). For example, physiology of phytoplankton,
including metabolic rates, growth rates, nutrient uptake, and sinking rate are influenced by cell size (Geider
et al., 1986; Waite et al., 1997). Several researches also suggested that size structure can result in different
photosynthetic rates and maximum quantum yields, potentially leading to different carbon fixation attrib-
utes (Hirata et al., 2009; Uitz et al., 2008). Phytoplankton cell size also influence the optical properties of the
ocean surface via light scattering and absorption (Devred et al., 2006; Yentsch & Phinney, 1989). Further-
more, shifts in PSCs can affect the relationship of phytoplankton grazers, and consequently change the
function and structure of marine food webs (Legendre & Rassoulzadegan, 1995). Therefore, size structure of
phytoplankton has been widely investigated in its role in primary production, carbon-specific photosynthe-
sis, and export production (Cerme~no et al., 2005; Hilligsøe et al., 2011; Teira et al., 2001) and utilized in estab-
lishing and improving biogeochemical models in marine system (e.g., Aumont et al., 2003; Ward et al.,
2012).

A few tools can help to obtain the PSCs, e.g., microscopy, flow cytometry, size-fractionated filtration (SFF),
and high performance liquid chromatography (HPLC), and each method has its own advantages and

Key Points:
! In situ PSCs obtained from HPLC
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disadvantages (IOCCG, 2014, Table 2.3). Results of these approaches usually generate a ‘‘static’’ image, for
the given environmental conditions and species distributions. However, oceanic environment and phyto-
plankton distributions are dynamic in space and time. Remote sensing has been regarded as the most
important tool for acquiring the continuous observational data spatially and temporally. Hence, the demand
to develop methods for identifying PSCs in ocean using remote sensing is urgent. To estimate size-
fractionated chlorophyll-a concentration, statistical links between the total chlorophyll-a concentration and
PSCs derived from HPLC should be developed. Vidussi et al. (2001) pioneered this approach by selecting
seven diagnostic pigments to obtain the fractions of PSCs in the total chlorophyll concentration. Afterward,
constant improvements of relationships between the total chlorophyll-a concentration and PSCs were
made, such as determining weighting factors of diagnostic pigments and refining assignments of diagnos-
tic pigments for classifying PSCs (Brewin et al., 2010; Hirata et al., 2011; Uitz et al., 2006). Through satellite
images (i.e., SeaWiFs and MODIS), these statistical relationships have been successfully utilized in estimating
PSCs in global ocean and different oceanic regions (e.g., Brewin et al., 2010, 2012, 2015; Brotas et al., 2013;
Hirata et al., 2011; Lin et al., 2014; Uitz et al., 2006).

As mentioned above, relationships between PSCs and total chlorophyll-a concentration have been widely
used in global oceanic waters. However, few relationships were carried out in studies for applying in coastal
and estuarine systems, particularly in the region with large river plumes. The BS, the YS, and the ECS make
up the largest marginal seas, and host one of the most turbid coastal and shelf seas environments globally,
supporting high primary and fishery production. They are strongly impacted by the large Changjiang River
plumes and adjoining ocean processes, and hydrodynamic features are predominantly driven by variations
in tides, large seasonal climatic, and monsoon changes. Together these drivers result in complicated optical,
hydrodynamic, and biogeochemical environments, which have a strong influence on the physiology of phy-
toplankton, leading to region-specific relationships between chlorophyll-a concentration and PSCs, com-
pared to general oceanic conditions. Several studies in which pigment concentrations or size structures of
phytoplankton based on SFF methods have been investigated in the BS, the YS, or the ECS (e.g., Deng et al.,
2008; Fu et al., 2009; Huang et al, 2006; Sun et al., 2002, 2012; Zhu et al., 2009). However, to the best of our
knowledge, there have not been published documents on the application of remote sensing derived PSCs
in the entire continental shelf sea of China.

Therefore, we tried to develop an improved algorithm for the monitoring spatial distribution and diurnal
variations of PSCs from remote sensing focusing on the BS, the YS, and the ECS. For this purpose, we pre-
sented comprehensive in situ measurements derived from HPLC method, aiming to seek relationships
between proportions of PSCs and chlorophyll-a concentration. Based on these, existing models (Brewin
et al., 2010; Hirata et al., 2011) in estimating PSCs from satellite images were tested for the applicability in
the turbid seas affected by terrestrial inputs, of which three-component model (Brewin et al., 2010) was
improved by parameterization and subsequently validated through match-ups. Spatial distributions and
diurnal variations of PSCs from GOCI observations were analyzed and major controlling environmental fac-
tors were discussed.

2. Data and Method

2.1. In Situ Data
The BS is a shallow semienclosed marginal sea on the northern coast of China, of which the mean water
depth is no more than 20 m (Figure 1). The Bohai Strait, which connecting the southern of Liaodong Penin-
sula and the northern of Shandong Peninsula, is defined as the boundary between the BS and the YS. The
YS is surrounded by mainland China and the Korean Peninsula, including the north Yellow Sea (NYS) and
the south Yellow Sea (SYS). The depth of YS increases gradually from nearshore area (continental shelf) to
offshore area (central YS), approximately from 0–40 m to 60–80 m (Figure 1). To its south is the ECS, which
is the one of the largest marginal seas in the world. The depth of ECS is shallow in the northwestern area
and deep in the southeastern area, due to the impact of continental shelf. The ECS can be broadly divided
into three parts: the continental shelf (0–60 m), the outer continental shelf (60–200 m), and Okinawa Trough
(200–2,700 m). To the northwest of Taiwan Island, the depth is less than 200 m and it increases significantly
toward southeastern area (Figure 1).
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Water masses and current systems are complex in the YS and the ECS during the sampling time, including
coastal currents in the east, open ocean water in the west, and mixed water between them (Figure 1).
Changjiang River carries large amount of fresh water into the sea, forming Changjiang diluted water (CDW)
with low temperature, salinity, and more nutrients. The Shandong Peninsula coastal current comes out of
the BS and flows into the YS bypassing the Shandong Peninsula. The Yellow Sea coastal current water flows
southward along Jiangsu province and turns southeastward into the ECS, while the Zhe-min coastal current
water flows through Zhejiang coastline. By contrast, the Kuroshio water is more powerful and characterized
by higher temperature and salinity. After entering the ECS, it flows northeastward along the continental
slope. Taiwan Strait warm current flows through Taiwan Strait and moves forward to the north, together
with Kuroshio intrusion, forming Taiwan warm current (Chen et al., 1995; Li et al., 2006, 2016; Lie et al., 2001;
Quan et al., 2013; Zhang et al., 2008).

The study is based on samples collected on two research cruises in the BS and the YS (31"408N,
118"1268E, 28 April to 18 May) and the ECS (22"308N, 121"1268E, 22 May to 11 June) in 2014 (Figure 1).
Water samples for HPLC pigment concentration were collected with Niskin bottles attached to the
conductivity-temperature-depth profiler (CTD, Seabird 911) rosette. During the analyses, five outliers of
HPLC pigment concentrations were removed and 180 samples were acquired for analyzing surface distribu-
tions in the study. Among them, algae bloom was observed at station 4-0-0 (27.768N, 122.558E) and quite
high chlorophyll concentration was obtained at station H40 (328N, 124.998E). To avoid the effect of bloom

Figure 1. Locations of in situ data used in this study (N 5 180), circle green symbols represent stations in the Bohai Sea and the Yellow Sea and circle blue ones
are the stations in the East China Sea. Square yellow symbols stand for match-ups between in situ measurements and satellite images. Major water masses in
summer-half-year are sketched with red lines (after Li et al., 2016). The background seawater depth (The GEBCO_2014 Grid, version 20150318) is obtained from
GEBCO (http://www.gebco.net/).
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water on the algorithm (details in section 4.4), these two samples were excluded and 178 samples were left
in model reparameterization and validation processes. Underway data such as temperature and salinity
were measured by CTD in the BS, the YS, and the ECS as well.

2.2. Satellite Data
The Geostationary Ocean Color Imager (GOCI) is a geostationary-orbiting ocean color sensor with the cover-
age including the YS and the ECS. The spatial resolution of GOCI image is 500 m and 8 images (one image
per hour) are available during daytime (Ryu et al., 2011), not only increasing numbers of image over coastal
ocean affected by cloud coverage, but also providing a capability to map short-time scale variation in the
entire continental shelf sea of China. In this study, L1B data were obtained from the KOSC (Korea Ocean Sat-
ellite Center) website (http://kosc.kiost.ac/eng/). The surface chlorophyll-a concentration products were cal-
culated through the GOCI Data Processing System (GDPS version 1.4.1), in which KOSC standard was the
method for atmospheric correction and YOC (Yellow Sea Large Marine Ecosystem Ocean Color Work Group)
was the method for chlorophyll-a concentration products. Based on the empirical algorithm applied for
coastal waters from Tassan (1994), parameters of the algorithm YOC were optimized for the YS and ECS
(Siswanto et al., 2011). The YOC algorithm is:

Chlayoc510 0:34222:511#log 10ðRÞ20:277#log 2
10 Rð Þð Þ (1)

R5
Rrs 443ð Þ
Rrs 555ð Þ

! "
Rrs 412ð Þ
Rrs 490ð Þ

! "21:012

(2)

Since a whole GOCI image consists of 4-by-4 subimages taken by one camera, mosaic edge effects of top-
of-atmosphere radiance from L1B products at some bands (e.g., Band 1 at 412nm) are the cause of spatial
discontinuity of the chlorophyll-a concentration products. Therefore, in this study we utilized neighboring
pixel interpolation method to reprocess the neighboring slots in order to avoid discontinuity. After top-of-
atmosphere of radiance products which have slot margin effects are exported from the GDPS, pixels values
on either sides of the slot margins are extracted to establish linear regression equations and calculate

Table 1
Symbols and Definitions

Symbol Description Units

CE The estimation of chlorophyll-a concentration using seven diagnostic pigments
(equation (3))

mg m23

CHPLC Chlorophyll-a concentration derived from HPLC method (equation (5)) mg m23

Fm/ Fn/ Fp Fraction of microplankton/ nanoplankton/ picoplankton (equations (4), (5), and (6)) Dimensionless
Cm/ Cn/ Cp Concentration of microplankton/ nanoplankton/ picoplankton (equations (9), (10), and

(11))
mg m23

Cn,p Concentration of combined of nanoplankton and picoplankton (equation (8)) mg m23

Pm/ Pn/ Pp Percentage of microplankton/ nanoplankton/ picoplankton (equations (12), (13), and (14)) %
Cm

n;p Asymptotic maximum values for combined nanoplankton and picoplankton (equation
(8))

mg m23

Cm
p Asymptotic maximum values for picoplankton (equation (10)) mg m23

Dn,p Fraction of total chlorophyll in combined nanoplankton and
picoplankton as total chlorophyll tends to zero (equation (8))

Dimensionless

Dp Fraction of total chlorophyll in picoplankton as total chlorophyll tends to zero
(equation (10))

Dimensionless

r Pearson linear correlation coefficient Dimensionless
p p Value Dimensionless
d Bias between concentrations or percentages from measured and

estimated data (equation (16))
mg m23 or %

MAE Mean absolute error between concentrations or percentages from
measured and estimated data

mg m23 or %

RMSE Root mean squared error between concentrations or percentages from measured and
estimated data

mg m23 or %

MAE% Relative mean absolute error between concentrations or percentages from measured
and estimated data (equation (17))

%
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slopes. Through the judgment of chlorophyll-a concentration, slots with outliers are calculated based on
slopes. Then without mosaic edge effects, the processed top-of-atmosphere radiance L1B products are
imported to the GOCI images.

Considering the frequency of the GOCI no-cloud overpassing and in situ survey time, the time window of
match-ups was set to 63.5 h. Under the condition of picking images with the shortest time interval, 31 sam-
pling sites were matched to GOCI data in the study area (Figure 1). The matched images were acquired on
30 April, 1 May, 2 May, 3 May, 6 May, 9 May, 12 May, and on 9 June. Average values of 3-by-3 pixel box from
the GOCI chlorophyll-a concentration products were regarded as the matched data. Eight images on 7 April
2013 were provided to show the GOCI-derived PSCs and the diurnal variation.

For comparison with physical variables on 7 April 2013, SNPP VIIRS (Suomi NPP Visible Infrared Imaging
Radiometer Suite) daily composite sea surface temperature data at 4 km resolution was obtained from
OceanColor website (https://oceancolor.gsfc.nasa.gov/).

2.3. Laboratorial Determination of Phytoplankton Size Classes
Laboratorial determination of PSCs was based on the high performance liquid chromatography (HPLC)
method. Water samples (100"2,000 mL) from Niskin bottles were filtered through the Whatman GF/F Glass
Microfiber Filters (pore size 0.7 lm, diameter 25 mm), and the filters were kept in the aluminum foil and fro-
zen in liquid nitrogen. Using a Shimadzu LC-20A high-performance liquid chromatography system (Kyoto,
Japan), pigment concentrations in the ECS were processed using the method described by Wang et al.
(2016). Detailed instrumentation and methodology of samples processing for HPLC pigments in the BS and
the YS can be found in Zhang et al., (2016). Twenty phytoplankton pigments were measured, including
chlorophyll-c3, chlorophyllide-a, chlorophyll-c2, peridinin, 19-but-fucoxanthin, fucoxanthin, neoxanthin, pra-
sinoxanthin, 19-hex-fucoxanthin, violaxanthin, diadinoxanthin, alloxathin, diatoxanthin, zeaxanthin, lutein,
chlorophyll-b, DV-chlorophyll-a, chlorophyll-a, a-carotene, and b-carotene. Pigments or pigment groups can
be assigned to individual phytoplankton species, thus characterizing PSCs indirectly. We utilized seven diag-
nostic pigments (i.e., fucoxanthin, peridinin, alloxanthin, 19-but-fucoxanthin, 19-hex-fucoxanthin,
chlorophyll-b and zeaxanthin) considering the differences in phytoplankton species of each study area
(Brewin et al., 2010; Hirata et al., 2011) (Table 2).

In the global marine system, Devred et al. (2011) and Hirata et al. (2011) assigned part of the pigment fuco-
xanthin to the nanoplankton group by involving pigments 19’-but-fucoxanthin and 19’- hex-fucoxanthin in
fucoxanthin adjustment when chlorophyll-a concentration was low (0.25 mg m23), because fucoxanthin

Table 2
Major Diagnostic Pigments Used for Classification of PSCs From Brewin et al. (2010), Hirata et al. (2011), and This Study,
Along With the Taxonomic or Biogeochemical Significance (Ras et al., 2007)

Diagnostic pigments Designation Brewin et al. (2010) Hirata et al. (2011) In this study

Fucoxanthin (Fuco) Diatoms Micro Micro/Nano Micro
Peridinin (Per) Dinoflagellates Micro Micro Micro
Alloxanthin (All) Cryptophytes Nano Nano Nano
19’-but-fucoxanthin (But) Pelagophytes Nano Nano Nano
19’- hex-fucoxanthin (Hex) Prymnesiophytes Nano/Pico Nano/Pico Nano/Pico
Chlorophyll-b (Chl-b) Chlorophytes Pico Nano Nano
Divinyl chlorohphyll-b Prochlorophytes Pico
Zeaxanthin (Zea) Cyanobacteria Pico Pico Pico

Prochlorophytes

Table 3
Retrieved Parameter Values Derived From Fitting the Three-Component Model to In Situ Pigment Data From the YS and the ECS

Study Cm
n;p Dn,p Cm

p Dp MAEa MAEb

This study 0.329 1.000 0.052 0.914 0.127 0.045

aMAE was the mean absolute error between in situ and modeled Cn,p. bMAE was the mean absolute error between
in situ and modeled Cp.
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was also present in prymnesiophytes and chrysophytes. Considering most water samples were higher than
0.25 mg m23 and diatoms had absolute advantage in the climatic spring in the BS, the YS, and the ECS (Gao
et al., 2003; Guo et al., 2014), we assumed that fucoxanthin was a representative for microplankton. Brewin
et al. (2010) combined pigments chlorophyll-b and divinyl chlorophyll-b as a whole and treated them as the
diagnostic pigments of picoplankton. However, chlorophytes were one of the major composition of nano-
plankton in the study area (Gao et al., 2013; Song et al., 2017). Therefore, in this study, chlorophyll-b was
regarded as a biomarker of nanoplankton which has been utilized by Hirata et al. (2011). Zeaxanthin and
alloxanthin were much lower in the study area, comparing to the other five diagnostic pigments. Even
though values were small, these two pigments were detected in most stations through a more sensitive
method developed for the purpose of decreasing the detection limit (Zhang et al., 2016).

The estimation of chlorophyll-a concentration (CE) as proposed by Vidussi et al. (2001) and later refined by
Uitz et al. (2006) can be inferred as

CE51:41Fuco11:41Per11:27Hex10:6All10:35But11:01Chl2b10:86Zea (3)

According to Brewin et al. (2010) and Hirata et al. (2011), the fractions (F) of the size-fractionated chloro-
phyll-a concentrations can be estimated as

Fm5
1:41 & Fuco1Perð Þ

CE
(4)

Fn5

12:5 & CHPLC & 1:27 & Hex11:01 & Chl2b10:35 & But10:6 & All
CE

; CHPLC < 0:08mg=m3

1:27 & Hex11:01 & Chl2b10:35 & But10:6 & All
CE

; CHPLC > 0:08mg=m3

8
>><

>>:
(5)

and

Fp5

212:5 & CHPLC11ð Þ & 1:27 & Hex10:86 & Zea
CE

; CHPLC < 0:08mg=m3

0:86 & Zea
CE

; CHPLC > 0:08mg=m3

8
>><

>>:
(6)

The subscripts m, n, and p refer to micro, nano, and picoplankton, respectively. CHPLC represents
chlorophyll-a concentration derived from in situ HPLC pigment data. CHPLC and CE were in good agreement,
with a correlation coefficient of 0.843 and p-value of< 0.001. Size-fractionated percentages could be calcu-
lated by multiplying fractions by 100, and size-fractionated concentrations could be calculated by multiply-
ing fractions by the CHPLC.

2.4. Estimation of Phytoplankton Size Classes
2.4.1. Three-Component Model of PSCs
Brewin et al. (2010) developed a group of equations based on an underlying conceptual model (Sathyendra-
nath et al., 2001) that was used to quantify the relationship between chlorophyll-a concentration and frac-
tional contribution to chlorophyll-a for each size class. These equations were extended by Brewin et al.,
(2014, 2015), where total and size-fractionated concentrations are obtained from

CHPLC5Cm1Cn1Cp (7)

Cn;p5Cm
n;p 12exp 2

Dn;p

Cm
n;p

CHPLC

 !" #

(8)

Cm5CHPLC2Cn;p; (9)

Cp5Cm
p 12exp 2

Dp

Cm
p

CHPLC

 !" #

(10)

and
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Cn5Cn;p2Cp (11)

where CHPLC is the sum of micro (Cm), nano (Cn), and picoplankton (Cp) chlorophyll-a concentration, and Cn,p

is the sum of nano and picoplankton. Cm
n;p and Cm

p are the asymptotic maximum values for the classes whose
sizes are smaller than 20 and 2 lm, respectively. Similarly, Dn,p and Dp represent size-fractionated chloro-
phyll-a concentrations as total chlorophyll-a concentrations tends to zero. Therefore, Dn,p and Dp are con-
strained to be less than or equal to one. The percentage of each PSCs (Pm, Pn, Pp, and Pn,p) to the CHPLC can
be calculated by dividing the size-fractionated chlorophyll-a concentration by the total and multiplying by
100, which are

Pm5
Cm

CHPLC
& 100 (12)

Pn 5
Cn

CHPLC
& 100 (13)

Pp 5
Cp

CHPLC
& 100 (14)

and

Pn;p 5
Cn;p

CHPLC
& 100 (15)

2.4.2. Model Reparameterization and Algorithm Improvement
In this study, we reparameterized the three-component model of PSCs based on in situ pigment measure-
ments from the BS, the YS, and the ECS. According to section 2.1 and 2.2, 31 satellite match-ups of 178 sur-
face samples were removed, leaving 147 samples for parameter establishment. The unknown model
parameters Cm

n;p, Cm
p , Dn,p, and Dp were obtained by fitting the equations (14) and (15) using nonlinear least-

square regressions (MATLAB R2014b, Curve Fitting Tool). The newly obtained parameters are shown in
Table 3.

2.5. Error Tests
Different parameters of error tests were used to compare (1) the estimation of size-fractionated concentra-
tion and percentage from the different algorithms and in situ measurements; and (2) the size-fractionated
concentration derived from satellite images and in situ measurements. These parameters include Pearson
linear correlation coefficient (r), p-value (p), and the bias (d) which was calculated by

d 5
1
N

XN

i51
ðXi;A2Xi;BÞ (16)

where N is the number of samples and X is variable derived from A and B methods, respectively. In section
3.3, estimation from satellite data were regarded as A, and B was in situ HPLC measurements. Besides, mean
absolute error (MAE) measures the average magnitude of errors in a set of comparison, while the root mean
squared error (RMSE) represents the sample standard deviation of the differences between predicted values
and observed values. Relative mean absolute error (MAE%) between in situ measurements and observations
from satellite images is computed according to

MAE% 5
1
N

XN

i51

# $$$$
Xi;A2Xi;B

Xi;A

$$$$'&100 (17)

where A is the in situ measurement and B is the estimation from satellite images.

3. Results

3.1. Total Chlorophyll-a Concentration and PSCs Derived From HPLC Pigments
Chlorophyll-a concentration (CHPLC) ranged from 0.027 to 11.298 mg m23 in the entire study area
(Figure 2a). In the BS and the YS, the CHPLC varied from 0.531 to 6.631 mg m23, and the average concentra-
tion was 1.849 mg m23. In the ECS, the CHPLC had a wider range from 0.027 to 11.298 mg m23, with an aver-
age concentration of 0.454 mg m23. The CHPLC was lower in the central BS, the northwest NYS, the central

Journal of Geophysical Research: Oceans 10.1029/2017JC013651

SUN ET AL. 7



SYS, and outer continental shelf area of the southeast ECS. By contrast, higher values were found in the
coastal BS, the central NYS, coastal currents (i.e., Yellow Sea coastal current and Zhe-min coastal current)
and the extension area of the Changjiang Diluted Water (CDW), which carries large quantities of freshwater
from mainland and the salinity was less than 32.

Surface salinity and temperature ranged, respectively, from 27.95"33.34 and 8.74"14.79 (8C) in the BS and
the YS (Figures 2b and 2c). Compared to temperature, salinity varied obviously from the nearshore area (i.e.,
northwest area of Shandong Peninsula and southeast area of Liaodong Peninsula) to the offshore area (i.e.,
central SYS). Higher salinities and temperatures were observed in the southeast of the ECS due to the influ-
ence of Kuroshio water and Taiwan warm current which transport high salinity and temperature surface
waters to the eastern boundary of ECS, where the surface salinities and temperatures were 29.80"34.46
and 21.58"27.86 (8C), respectively. Salinities and temperatures were much lower in the nearshore area due
to coastal currents and the CDW, compared to the offshore area.

The CHPLC, salinity, and temperature had similar patterns of spatial distribution (Figure 2). In the nearshore
area where salinity and temperature was lower, CHPLC was higher, compared to the offshore area. With the
increase of salinity and temperature, the CHPLC tended to be lower. The CHPLC had a negative relationship
with salinity (N 5 35, r 5 20.594, p< 0.001) and temperature (N 5 35, r 5 20.460, p< 0.01) in the ECS.

Distribution of size-fractionated concentration of microplankton was similar to that of the CHPLC (Figure 2a),
having higher average value than nano and picoplankton, which were 1.116, 0.254, and 0.038 mg m23,
respectively. In the nearshore area, both percentage and concentration of microplankton were higher than
those of the other two groups (Figures 3a and 3d). Besides the central SYS, percentages of microplankton
were higher than 70% in the BS and the YS. Nanoplankton was distributed extensively, especially in the ECS
(Figures 3b and 3e), with the average percentage of 27.48% over the entire study area and 50.77% in the
ECS. The percentage of picoplankton constituted the main background in the central SYS and offshore area

Figure 2. Distribution of surface (a) CHPLC, (b) salinity, and (c) temperature in the Bohai Sea, the Yellow Sea, and the East China Sea during the 2014 cruise
investigation.
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Figure 3. Spatial distribution of size-fractionated (a–c) percentages and (d–f) concentrations of micro, nano, and picoplankton in the Bohai Sea, the Yellow Sea,
and the East China Sea during the 2014 cruise investigation.
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in the ECS, where the CHPLC was low (Figure 3c). For example, at station TW1–3-1 (24.088N, 122.508E) located
east of Taiwan Island, the percentage of picoplankton was 78.54%. The concentrations of picoplankton
were the lowest, which were no more than 0.1 mg m23 in the most of the study area (Figure 3f).

When comparing size-fractionated percentages with the temperature and salinity, we found that in the BS
and the YS, microplankton was negatively correlated with salinity (N 5 123, r 5 20.361, p< 0.001) and tem-
perature (N 5 123, r 5 20.379, p< 0.001); nanoplankton was positively correlated with salinity (N 5 123,
r 5 0.275, p< 0.01) and temperature (N 5 123, r 5 0.362, p< 0.001); and picoplankton had a positive correla-
tion with temperature (N 5 123, r 5 0.254, p< 0.01). In the ECS, microplankton was negatively correlated
with salinity (N 5 35, r 5 20.414, p< 0.05); picoplankton had positive correlation with salinity (N 5 35,
r 5 0.416, p< 0.05) and temperature (N 5 35, r 5 0.356, p< 0.05).

3.2. PSCs Predicted by the Improved Algorithm
The improved algorithm (details in section 2.4.2) was applied to estimate concentrations and percentages
of PSCs in the BS, the YS, and the ECS (Figure 4). Furthermore, estimates by other two algorithms from
Brewin et al. (2010) and Hirata et al. (2011) are also shown in the plot, as a comparison. The size-
fractionated percentages were smoothed with the 5-point running mean filer to improve the signal-to-
noise ratio and make it easier to show changing regularities. The improved algorithm (red lines) fits the
measurements well (Figure 4). The improved parameters were effective in predicting the trends in size-
fractionated percentages of the PSCs in the BS, the YS, and the ECS, especially when chlorophyll-a concen-
tration was high (Figures 4a–4d). As for concentrations, the improved algorithm had good agreements in
estimating microplankton and nanoplankton. Because of the extremely low values of picoplankton in the
BS and the YS (Figures 3f and 4h), the improved algorithm had lower precision in estimating picoplankton
concentration when chlorophyll-a concentration was high, and its trend with the change of total concentra-
tion requires further study.

For the purpose of discussing the applicability of two existed methods (details in section 4.1), PSCs derived
from three component model (Brewin et al., 2010) and from empirical equations (Hirata et al., 2011) were
shown as well. Instead of estimating size-fractionated concentration (Brewin et al., 2010), Hirata et al. (2011)
expressed the percentages of PSCs (Pm, Pn, and Pp) instead of concentration. The equations are

Figure 4. Relationships between size-fractionated (a–d) percentages and (e–h) concentrations, all as a function of CHPLC. Measurements included in situ data (blue
dots) and 5-point running mean data (blue triangles), N 5 149. Estimations were predicted by the improved algorithm in this study (red lines), by Brewin et al.
(2010) (green dotted lines) and by Hirata et al. (2011) (yellow dash dot lines). MAE and RMSE were calculated between in situ measurements and estimations from
the improved algorithm.
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Pm5 0:91171exp ð22:7330 & log 10 CHPLCð Þ10:4003ð Þ21 & 100 (18)

Pn51002Pm2Pp (19)

and

Pp5 2 0:15291exp 1:0306 & log 10 CHPLCð Þ21:5576ð Þ½ '2121:8597 & log 10 CHPLCð Þ12:9954
% &

& 100 (20)

the concentration of each PSCs can be calculated by multiplying its percentage by the total, which are Cm,
Cn and Cp.

3.3. GOCI-Derived PSCs and Validation
All the GOCI images with less cloud coverage from April to June from 2011 to 2017 were processed, of
which images on 7 April 2013 had the best image quality and the largest available areas. Figure 5 showed
the spatial distributions of the chlorophyll-a concentration and the estimation of size-fractionated percen-
tages by the improved algorithm, which were derived from the GOCI image at 10:28 (center time of the
scene, Beijing time) on 7 April, 2013. Daily SNPP VIIRS sea surface temperature on the same day was shown
as well.

Figure 5a illustrated that higher values of chlorophyll-a concentration distributed in the northern BS, north-
ern NYS, central SYS, and along the nearshore area of the YS and the ECS. While in the offshore area, such
as the eastern SYS and the southeastern ECS, concentrations were much lower. The distribution pattern of
microplankton percentage was similar to the total concentration. Except for the offshore area of the ECS,
microplankton was dominant in the study area where chlorophyll-a concentrations were higher than 1 mg
m23 (Figure 5b). Nanoplankton had lower percentage in the BS and nearshore area of the YS and the ECS,
while in the offshore area of the SYS and the ECS, its percentage ranges from 20% to 50% (Figure 5c). By
contrast, picoplankton only had higher distribution in the offshore area and percentage in these areas
tended to be greater than 40% (Figure 5d). Figure 5e showed that temperature rose from north to south
and from west to east in the study area, due to the influence of Taiwan warm current, the Kuroshio and its
brunches. Temperature in the offshore area of the SYS and the ECS was higher, leading to lower percentage
of microplankton and higher percentages of nano and picoplankton. In comparison, distribution of total
chlorophyll-a concentration and microplankton percentage had clear negative correlation with tempera-
ture, while nanoplankton and picoplankton percentages were positively correlated to temperature. This
estimated distribution of PSCs’ derived from the GOCI image with the improved algorithm had a good con-
sistency with the in situ results presented in section 3.1, especially for the BS and the YS, where both the
image time and the investigation time were in April. However, the shaded area caused by the shape of
clouds, leading to challenges in representing full knowledge of PSCs in the study area, especially for the
edges. Additionally, there is a temporal limitation in observing continuous changes with one image.

Figure 5. GOCI-derived chlorophyll-a concentration (a, Chl-a, in unit of mg m23) and percentage (%) of each PSCs (b–d) in the Bohai Sea, the Yellow Sea, and the
East China Sea, which were estimated by the improved algorithm. The GOCI image was taken at 10:28 on 7 April 2013 (Beijing time). Daily sea surface temperature
image of SNPP VIIRS (e, in unit of 8C) on the same day.
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The improved algorithm was then applied to GOCI images to validate the estimation accuracy of PSCs
through independent match-ups between satellite data and in situ measurements. During the investigation
time, 31 in situ data were matched to the GOCI satellite images. In the GDPS (version 1.4.1), there are three
algorithms for chlorophyll-a concentration retrieval, of which OC2 (ocean chlorophyll 2 algorithm) and YOC
algorithms were selected for comparison. Based on the data set from oceanic waters, OC2 proposed by
O’Reilly et al. (1998) was the default for chlorophyll analysis in the GDPS, whereas the YOC data set from
Siswanto et al. (2011) covered the YS and the ECS. Chlorophyll-a concentrations derived directly from GDPS
using YOC algorithm were named YOC (preprocessing). Considering the mosaic edge effects caused by
Band 1 at 412 nm in L1B products, a neighboring pixel interpolation method was used (details in section
2.2) in processing chlorophyll-a concentration, thus using YOC (postprocessing) to distinguish from YOC
(preprocessing). Statistically, the YOC algorithm was better than the OC2 algorithm in the study area, as it
had lower bias, MAE, RMSE, and MAE% (Table 4).

Based on the images with neighboring pixel interpolation processing, independent satellite and in situ
match-up data (N 5 31) were compared, including chlorophyll-a concentration, size-fractionated concentra-
tion, and size fractionated percentages. When calculating errors, extremely low in situ size-fractionated con-
centrations which less than 0.01 mg m23 were eliminated, leaving 29, 31, and 18 match-ups for micro,
nano, and picoplankton. Figure 6a showed that satellite-derived total and microplankton chlorophyll-a con-
centration had good agreements with in situ measurements, with MAE% of 43.83% and 49.09%, respec-
tively. Biases indicated that the improved algorithm overestimated microplankton concentration and
underestimated nanoplankton concentration slightly. As for picoplankton concentration, poor MAE%

Table 4
Comparison of Chlorophyll-a Concentration Between In Situ Measurements and Observations Derived From Satellite Data
Using Different Chlorophyll-a Concentration Algorithms (N 5 31)

d (mg m23) MAE (mg m23) RMSE (mg m23) MAE% (%)

OC2 0.368 0.720 0.928 69.00
YOC (preprocessing) 0.408 0.698 0.974 55.75
YOC (postprocessing) 20.050 0.626 0.824 43.83

Figure 6. Validation of GOCI estimations using the improved algorithm through match-ups, including (a) total chlorophyll-a concentration (yellow circle) and size-
fractionated chlorophyll-a concentration of micro (blue square), nano (purple triangle) and picoplankton (green diamond), and (b) size fractionated percentages of
micro, nano, and picoplankton. Match-ups within 63.5 h are shown in filled symbols, while match-ups within 60.5 h are shown in empty symbols. Solid lines rep-
resent the 1:1 lines. The units of d, MAE, RMSE are mg m3 in Figure 6a, and % in Figure 6b.
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(82.97%) was obtained compared to the other groups, which was caused by the limited coverage of match-
ups. Match-ups mostly distributed in the BS and the YS (Figure 1), where microplankton was dominant dur-
ing the investigation and in situ picoplankton concentrations were low (Figures 3c and 3f). By contrast, pico-
plankton was abundant in the offshore ECS, however, cloudy weather was common during the ECS cruise
and only two match-ups were found in the ECS. Figure 6b showed that the improved algorithm had a better
accuracy in estimating the microplankton percentage (MAE% 5 17.84%), while it underestimated percen-
tages of nano and picoplankton, compared to the in situ measurements. Moreover, match-ups within
60.5 h (empty symbols) were shown in the Figure 6 as well, and with this strict time window, the improved
algorithm had a better accuracy in estimating PSCs, with the RMSE for size-fractionated chlorophyll-a con-
centrations and percentages are 0.848, 0.183, 0.139, and 14.48, 10.60, 10.14, respectively.

3.4. Diurnal Surface Variation of GOCI-Derived Chlorophyll-a and PSCs
Diurnal variation of chlorophyll-a and PSCs were derived from GOCI images on 7 April, 2013 from 8:28 to
15:28 (center time of the scene, Beijing time). Based on the available coverage of eight images, a transect
and four regions of interest were analyzed, which are ROI-1 (center coordinate, 34.338N, 123.158E), ROI-2
(29.968N, 122.568E), ROI-3 (29.808N, 122.948E), and ROI-4 (29.628N, 123.398E), 11 pixels by 11 pixels (Figures
7a and 7b). ROI-1 is located far away from the coast, less affected by coast currents and contains clearer
water. The transect in the southeastern area of Zhoushan Island is approximately parallel with the direction
of tidal currents and vertical to isobaths. Due to the impacts of different water masses and current systems,

Figure 7. A transect and four regions of interest (ROIs) utilized in diurnal variation (a, b). The base map is a three-band composite true color image acquired at
10:28 (local time, red: Band 6, green: Band 4, blue: Band 2). (c) Tide height from Shenjiamen tide gauge station on 7 April 2013, the red squares represent hourly
imaging time of GOCI images. (d) Diurnal variation of GOCI-derived chlorophyll-a concentration of the transect.
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chlorophyll-a concentration of the transect decreased obviously from nearshore area to offshore area (Fig-
ure 7d). Besides, characteristics of diurnal variation changed with the distance from the shore. Thus, ROI-2,
ROI-3, and ROI-4 were extracted, located at nearshore area, the transition region with a steep drop in
chlorophyll-a concentration and offshore area, respectively.

GOCI-derived chlorophyll-a values showed a regular pattern of variation during the daytime (Figures 8a, 8b,
and 8d). In the morning, the concentration value was the lowest, after that it reached its highest value
between 10:00 and 12:00. Then in the afternoon, the concentration tended to decline. However, due to the
impact of tides, variation of chlorophyll-a concentration in the afternoon was different in the transition area
(i.e., ROI-3). Diurnal variations in four ROIs were as follows.

1. In the ROI-1, chlorophyll-a value varied from 1.11 to 1.40 mg m23 throughout the day and peaked at
12:28 (Figure 8a). Microplankton was the major component throughout the day, while nanoplankton had
higher percentages in the morning and afternoon. Picoplankton was no more than 5% throughout the
day.

2. Since the ROI-2 received more terrestrial inputs, chlorophyll-a concentration was the highest among four
ROIs, ranging from 2.80 to 3.15 mg m23 during the daytime (Figure 8b). Microplankton was dominant,
while percentages of nanoplankton and picoplankton were less than 10% during the daytime.

Figure 8. Diurnal surface variations of GOCI-derived chlorophyll-a concentration (mg m23) and percentage of PSCs (%) are included in (a) ROI-1, (b) ROI-2, (c)
ROI-3, and (d) ROI-4. The axis on the left gives the concentration (mg m23) and the axis on the right gives the percentage (%) and deviation bar were included for
chlorophyll-a concentration and percentages of PSCs.
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Presumably nutrient concentrations would provide enhanced growth conditions for microplankton. Size-
fractionated percentages were stable within the day and insensitive to environmental changes.

3. As for the ROI-3, the biggest difference was that chlorophyll-a concentration increased at 14:28 and
15:28 (Figure 8c). As shown in the Figure 7c, all the eight images were acquired during the ebb tide
phase when water flowed from nearshore area to offshore area. Under the influence of the tidal currents,
high chlorophyll-a concentration nearshore move southeastward to the offshore area, as well as high
percentages of microplankton. The increasing temperature and decreasing turbidity led to higher per-
centages of nanoplankton and picoplankton in this region, compared to the ROI-2.

4. The variation trend of chlorophyll-a concentration in the ROI-4 was similar to that in the ROI-1. However,
chlorophyll-a concentrations were much lower, ranging from 0.46 to 0.88 mg m23 (Figure 8d). Both
microplankton and nanoplankton were dominant groups and picoplankton percentage was higher than
10% at 8:28. Percentages of nano and picoplankton decreased with the light intensity increased. The
intrusion of Taiwan warm current with high temperature and salty water masses made it beneficial for
the growth of small size phytoplankton.

In summary, characteristics of spatial distributions of PSCs were affected by environmental factors and diur-
nal variations were observed as well, which will be discussed later.

4. Discussion

4.1. Applicability of Methods for Deriving PSCs
By comparison, the improved algorithm had an advantage in estimating both percentages and concentra-
tions of PSCs (Figure 4 and Table 5). When chlorophyll-a concentration was low, percentage and concentra-
tion of microplankton derived from Hirata et al. (2011) were more suitable to in situ measurements since
there was an acceleration in the regression slopes (Figure 4a). However, when chlorophyll-a concentration
was high, it underestimated. The three-component model (Brewin et al., 2010) had lower accuracy in esti-
mating microplankton, with a little bit higher MAE and RMSE (Table 5). As for estimating nanoplankton and
picoplankton, three methods had differences (Figures 4c, 4d, 4g, and 4h). Both algorithms of Brewin et al.
(2010) and Hirata et al. (2011) seemed to overestimate nanoplankton and picoplankton when chlorophyll-a
concentration was high, which made it less applicable in the study area. Since the three-component model
is based on an underlying conceptual model (Sathyendranath et al., 2001), it was parameterized to fit the
study area. As a result, the improved algorithm has a higher estimation accuracy.

Moreover, due to the effects of CDW and Zhe-min coastal current, the ECS was divided into two parts, one
is the area where salinity was lower than 32 (ECS-1), the other is the outer continental area where salinity
was higher than 32 (ECS-2). Table 5 showed that the improved algorithm had a better accuracy in estimat-
ing PSCs in the BS and the YS, since more measurements were utilized in parameterization and

Table 5
Comparison of Size-Fractionated Percentages and Concentrations Between In Situ Measurements and Estimations From
Three Methods in Different Study Areas

Percentage (%)
Concentration

(mg m23)

Method Study area Error tests Micro Nano Pico Micro Nano Pico

Brewin et al. (2010) Entire area MAE 25.36 23.53 10.33 0.337 0.288 0.079
N 5 147 RMSE 29.87 26.03 13.33 0.434 0.367 0.096

Hirata et al. (2011) Entire area MAE 21.24 13.41 17.44 0.271 0.135 0.185
N 5 147 RMSE 27.07 16.48 19.13 0.352 0.187 0.221

In this study Entire area MAE 12.87 11.56 7.10 0.127 0.105 0.045
N 5 147 RMSE 17.06 15.61 10.96 0.185 0.166 0.071

In this study BS and YS MAE 10.63 7.83 4.22 0.162 0.129 0.058
N 5 93 RMSE 13.22 9.94 7.28 0.208 0.183 0.085

In this study ECS-1 MAE 23.34 21.74 12.51 0.136 0.129 0.037
N 5 19 RMSE 29.43 26.86 17.04 0.225 0.211 0.047

In this study ECS-2 MAE 13.13 15.94 11.82 0.027 0.029 0.018
N 5 35 RMSE 16.99 19.23 14.35 0.044 0.046 0.023
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environmental factors were homogeneous relatively (Figures 2b and 2c). In the ECS, abundant fresh water
and nutrients carried by the coastal current supported the growth of large size phytoplankton (Deng et al.,
2008; Huang et al, 2006; Sun et al., 2012), which affected the distribution of PSCs, making the model less
robust in the nearshore area (ECS-1). Without the influence of the coastal current, the improved algorithm
provided a better estimation in the ECS-2.

4.2. Spatial Distribution of PSCs
GOCI-derived PSCs’ distribution showed that microplankton and nanoplankton were generally the major
contributors to coastal and transitional regions, and picoplankton was found to be abundant in the oligotro-
phic regions (Figure 5), which was consistent with in situ investigations in our study (Figure 2), previous
studies in the BS, the YS, and ECS (e.g., Fu et al., 2009; Huang et al, 2006; Sun et al., 2002, 2012), and from
other study areas (e.g., Arin et al., 2002; Chisholm et al., 1988; Madariaga & Orive, 1989; Mara~n!on et al.,
2001). Similar distribution of GOCI-derived PSCs was observed from our study (Figure 5) and the study of
Sun et al. (2017). However, slight differences existed in the nearshore BS and SYS where microplankton
instead of nano and picoplankton was dominant in our study, which might result from regional data sets
for modeling and time scales utilized in the two studies.

Spatial distribution is closely related to the competitive abilities of different PSCs in response to environ-
mental conditions. Figures 2b and 2c showed that salinity and temperature were higher in the central YS
and the offshore ECS, due to the influence of Yellow Sea warm current, Taiwan warm current, and Kuroshio
(Li et al., 2016; Quan et al., 2013; Yu et al., 2005). Results in section 3.1 revealed that temperature and salinity
were correlated to the phytoplankton size structure, which might serve to explain why nano and picoplank-
ton had higher concentrations and percentages offshore. Similar correlations were observed in a previous
study in the same season and area (Sun et al., 2012). However, obvious relationships between PSCs and
temperature or salinity in the YS and the ECS were not found from Deng et al. (2008), indicating that envi-
ronmental factors that determined the PSCs were more than temperature and salinity. Some previous stud-
ies have suggested that nutrients have positive correlations with larger phytoplankton and negative
correlations with smaller phytoplankton in the YS and the ECS (Deng et al., 2008; Sun et al., 2012). Indeed,
higher dissolved inorganic nitrogen, phosphate, and silicate along coastlines and in the Changjiang Estuary
and its adjacent areas were observed (Gong et al., 2003; Guo et al., 2014; Liu et al., 2015; Wang et al., 2003;
Zhang et al., 2007), supporting our results that micro and nanoplankton were distributed with higher per-
centages in nearshore areas (Figure 3). With the enhanced solar radiation in April, sea surface temperature
increased and the stratification occurred in the central YS (Li et al., 2016; Yu et al., 2005), preventing the sup-
plementary of nutrients in the surface. Availability of nutrients became the major limiting factor for the
growth of large-sized phytoplankton in more oligotrophic environments (Mara~n!on, 2015). Due to the
surface-area-to-volume ratio, small cells are considered to be more competitive under limiting nutrient con-
ditions (Agawin et al., 2000; Mara~n!on et al., 2013), which could help to explain why percentage and concen-
tration of picoplankton were higher in the central YS (Figures 3c and 3f).

4.3. Diurnal Variation of PSCs
Unlike polar-orbiting ocean color satellites (e.g., SeaWiFs and MODIS), GOCI has higher temporal resolution
which can capture diurnal changes. Plenty of researches showed applications in suspended particulate
materials (Ge et al., 2015; He et al., 2013; Pan et al., 2018) and phytoplankton (Choi et al., 2014; Lee et al.,
2012; Lou & Hu, 2014). The atmospheric correction utilized in this study (i.e., KOSC standard in GDPS system)
is the same as that in the researches of diurnal variation of turbidity fronts (Hu et al., 2016a), tidal currents
(Hu et al., 2016b), and salinity (Liu et al., 2017).

Hourly variations of chlorophyll-a concentration observed from space were obvious throughout the day in
all the ROIs (Figure 8). Maximum chlorophyll-a concentration usually occur around noon, which was similar
with the temporal pattern from Lorenzen (1963) and Maulood et al. (1978). Similar trends of variation
between photosynthetically available radiation (PAR) and chlorophyll-a concentration among the four ROIs
indicated that the diurnal variation of chlorophyll-a concentration might due to the ability of photosynthe-
sis to light by phytoplankton (Figures 8 and 9a). Synchronous GOCI-derived PAR was calculated by
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where ki 5 412, 443, 490, 555, 660, and 680 nm, h 5 6.626*10234 j s, c 5 2.996*108 m s21, Ed 5 Lw/Rrs and
the unit of PAR was convert to Ein m22 d21. The equation (21) is originated from Cao and Yang (2002).

As for PSCs, variations were much stronger in the offshore area. It is obvious that the percentages of micro-
plankton increased with the increasing radiation, while the picoplankton was opposite (Figures 8a and 8d).
Previous study found that micro and nanoplankton required more illuminance intensity than picoplankton
for reaching the best growth condition (Sun et al., 2008). Dinoflagellates, such as Ceratium tripos and Cera-
tium furca were phototactic and had characteristics of diurnal vertical migration (i.e., upward migration to
the surface in the morning and downward migration in the evening), leading higher abundance in the
upper layers during the daytime (Blasco, 1978; Jephson & Carlsson, 2009). By contrast, small cells cope bet-
ter with reduced light conditions, since they are less affected by the package effect (Finkel et al., 2004). Sur-
face chlorophyll and abundance of Synechococcus were observed higher in the morning and after evening,
while at noon the lower populations could be suffered from photoinhibition because of the high radiation
(Mitbavkar & Saino, 2015; Vaulot & Marie, 1999). Since the phytoplankton mentioned above are common
species in the ECS (Chen et al., 2006), their responses to the light can well explain the features of surface dis-
tribution in this study.

Furthermore, water turbidity is one of important factors for phytoplankton in turbid coastal oceans. Figure
9b showed GOCI-derived hourly turbidity of the four ROIs, which was computed following equations from
Dogliotti et al. (2015). Compared to the ROI-1 which was located far from the coast, diurnal variations were
more obvious in the ROI-2, ROI-3, and ROI-4. Turbidity was the highest in the ROI-2, where suspended par-
ticulate matters were mainly dominated by nonalgal particles. Under influences of tidal currents, coastal
currents, and waves, the mechanism of the turbidity variation was complicated, and the relationship
between turbidity and chlorophyll-a concentration was not significant. Diurnal variations of PSCs in the ROI-
2 were stable and less affected by environmental factors (Figure 8b). The ROI-3 was located in turbid-clear
transition zone. Diurnal variation of turbidity might be influenced by the tidal current. It was found in Figure
9b that an obvious increment of turbidity was found in the afternoon, which was corresponding to the ebb
tidal phase of 7 April 2013 (Figure 7c). Horizontal transportation of the water mass was the cause of the vari-
ation in chlorophyll-a concentration and percentages of PSCs in the afternoon (Figure 8c). Diurnal variation
of bloom surface distribution impacted by tidal situation in nearshore waters of ECS was also reported by
Lou and Hu (2014). The ROI-4 was situated in the clearer water mostly dominated by high salinity and oligo-
trophic water mass of Taiwan warm current so that it had the lowest turbidity, where algal particles were
the major component of suspended particulate matters. Thus, the fluctuation of turbidity suggested the

Figure 9. GOCI-derived diurnal variation of (a) photosynthetically available radiation (PAR) and (b) turbidity in the four ROIs.
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variation of chlorophyll-a concentration (Figures 8d and 9b). Compared to other ROIs, percentages of PSCs
had significant variations in the ROI-4 within a day due to the combined effects of both light intensity and
turbidity. In addition to environmental factors mentioned before, intrinsic population processes caused by
resuspension of benthic phytoplankton and grazing might also have influences on diurnal variation of PSCs.
Consistent and more comprehensive monitoring in the whole water column is required in the future.

4.4. Potential and Limitation of Remote Sensing Estimation
In general, PSCs can be detected by remote sensing through three popular approaches—abundance-based,
spectral-based, and ecological-based (Brewin et al., 2011b; IOCCG, 2014; Nair et al., 2008). The three-
component model (Brewin et al., 2010) which is regarded as an abundance-based method can be used to
estimate PSCs when chlorophyll-a concentration derived from space has been proved to be accurate. The
accuracy of classification is completely relied on parameters in the models, thus model parameters are
required to improve for different biogeochemical provinces (Devred et al., 2006). In this study, parameters
of the model were tuned and validated according to our investigation. However, the abundance-based
approach has its limitations that it might not work well in distinguishing algal blooms of different PSCs with
the same chlorophyll concentration, since it assumes that larger cells dominate in higher concentrations
and smaller cells in low concentrations. Many studies found that microplankton such as dinoflagellates
were the most common dominances along coastal waters in the study area (e.g., Dai et al., 2013; Lou & Hu,
2014; Xia et al., 2007; Zhou et al., 2003) which confirmed the assumptions of the abundance-based model.
Although there are few reports, there is the possibility that small size or mixed sizes phytoplankton blooms
could exist. Therefore, bloom stations were removed in the reparameterization in the study. When analyzing
PSCs in blooming conditions utilizing the abundance-based approach, additional environmental knowledge
are required to improve the model reliability (Brewin et al., 2010).

In order to be more dependable, recent trend of detecting PSCs concerned more about the comparison
and combination of different approaches. Spectral-based approach is a more direct way depending on fea-
tures that spectrum shape of chlorophyll-specific absorption coefficient or particle backscattering coeffi-
cient varies with size structure (Brewin et al., 2011a; Ciotti & Bricaud, 2006; Ciotti et al., 2002; Kostadinov
et al., 2009; Loisel et al., 2006; Uitz et al., 2008). Brewin et al. (2011b) has proved that both abundance-based
and spectral-based approaches can have similar accuracy, however, comparison results remain to be tested
in the BS, the YS, and the ECS. As discussed in the section 4.2, environmental factors are crucial to the distri-
bution pattern of PSCs, and several studies have pointed that some of them, such as light availability and
temperature are tightly related to parameters of abundance-based model (Brewin et al., 2015, 2017). The
combination of empirical methods and the exploitation of additional environmental data will help to opti-
mize models and obtain retrivals more accurately (Bracher et al., 2017).

5. Conclusions

Large numbers of in situ samples were collected in the entire continental shelf sea of China. Through the
HPLC method, seven diagnostic pigments were obtained and assigned to corresponding size classes. In situ
PSCs’ distributions showed that microplankton was dominant in the BS, the YS, and nearshore ECS, while
nanoplankton was the major contribution to the chlorophyll-a concentration in the ECS, and picoplankton
had higher proportions in the offshore ECS. Temperature and salinity in the study area affected by continen-
tal shelf currents circulation had influences on the spatial distribution of PSCs. Microplankton was negatively
correlated with the temperature and salinity, while nano and picoplankton had positive correlations.

We proposed an improvement on the parameterization of the three-component model (Brewin et al.,
2010). Using strict match-ups, validation revealed that the improved algorithm had a higher accuracy in esti-
mating PSCs in the BS, the YS, and the ECS, with RMSE of concentrations and percentages been 0.774,
0.257, 0.142, and 14.17, 13.58, 13.77 for micro, nano, and picoplankton, respectively.

GOCI-derived PSCs’ spatial distribution was in good agreement with in situ measurements and previous
studies, resulting from responses of PSCs to different environmental conditions. Characteristics of diurnal
variations of PSCs’ distributions in different water types were captured by this high temporal resolution sat-
ellite as well. Diurnal variation of PSCs in the offshore area was obvious and mainly affected by the light
intensity, leading to maximum microplankton percentage around noon and higher percentages of nano
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and picoplankton in the morning and afternoon. However, in the nearshore area, diurnal variation of PSCs
was relatively slight and water masses such as coastal currents and tides were major influencing factors.
The study provides a beneficial approach of a consistently spatial-temporal observation of PSCs for better
understanding marine ecological and biogeochemical systems in the entire continental shelf sea of China.
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a b s t r a c t

Field measurements of CDOM absorption properties and DOC concentrations were collected in the
Changjiang estuarine and coastal waters from 2011 to 2013. CDOM absorption coefficient at 355 nm (ag
(355)) was found to be inversely correlated with salinity, with Pearson's coefficients r of !0.901
and !0.826 for summer and winter observations, respectively. Analysis results of the relationships
between salinity and CDOM optical properties (i.e., absorption coefficient and spectral slope) suggested
that terrigenous inputs dominated CDOM sources in the Changjiang estuary, but the proportion of
terrigenous CDOM declined with increasing salinity. The level of CDOM in the Changjiang estuary was
lower compared to some of the major estuaries in the world, which could be attributed to several
controlling factors such as vegetation cover in the drainage basin, the origin of recharged streams and
high sediment load in the Changjiang estuary. We further evaluated the relationships between CDOM
and DOC and their mixing behavior among world's major estuaries. An empirical model was finally
developed to estimate DOC concentration from ag (355) and spectral slope S275-295 using a non-linear
regression. This empirical relationship was calibrated using the Cal dataset, and was validated with
the Val dataset, resulting in an acceptable error with the R2 of 0.746, the RMSE of 20.99 mmol/L and the
rMAD of 14.46%.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Colored dissolved organic matter (CDOM) is an important
component of coastal waters, controlling the functioning of
ecological processes and biogeochemical cycles of marine ecosys-
tems. Light absorption by CDOM mainly depends on the origin of
CDOM. Terrestrial sources contain more humic acid and large
molecules of dissolved organic matter (DOM), while aquatic sour-
ces contain more fulvic acid and smaller DOM molecules (Helms
et al., 2008). Riverine discharge is considered as the main source
of CDOM in most coastal waters, resulting in a robust correlation
between salinity and the CDOM absorption coefficient (Fichot and
Benner, 2011; Granskog, 2012; Xie et al., 2012). The aquatic
CDOM is mainly produced locally by phytoplankton degradation

and bacterial decomposition. The absorption spectrum of CDOM
follows an exponential function, whereby the CDOM absorption
decreases with increasing wavelength (Bricaud et al., 1981). The
rate of this decrease, hereafter called the spectral slope (S, in nm
!1), can easily be computed from the absorption spectrum of
CDOM. This spectral slope is related to the ratio of fulvic to humic
acids and the molecular weight (MW) of fulvic acids and is,
therefore, commonly used to identify the origins of CDOM (Carder
et al., 1989; Keith et al., 2002). The slope S can be computed from
the spectral range either using narrow waveband (e.g.,
275e295 nm) or broader waveband (e.g., 250e700 nm). However, S
computed from narrow waveband is known to be more sensitive to
CDOM sources than the S determined from a broader waveband
(Asmala et al., 2012; Fichot and Benner, 2011, 2012).

Dissolved organic carbon (DOC), on the other hand, represents
97% of the organic carbon in the ocean (Hansell and Carlson, 1998),
and is therefore an essential part in the global carbon cycle.* Corresponding author.
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Phytoplankton converts inorganic carbon to organic carbon
through photosynthesis (Longhurst and Harrison, 1989), contrib-
uting a substantial source of DOC in the oceans. Other sources of
DOC in the oceans mostly come from riverine discharge and
zooplankton activity (Kuli!nski and Pempkowiak, 2008). Terrige-
nous DOC from river discharges contributes a large portion of DOC
in the coastal oceans and is further transported to the open ocean.
To understand the migration of terrigenous DOC and estimate the
DOC budget from rivers to the ocean, measurements of DOC con-
centrations are necessary in the coastal oceans. However, tradi-
tional DOC measurements are always limited due to discrete
sampling. Therefore, a prompt and continuous estimation from
earth observation data at large spatial scales would be strongly
recommended (Liu et al., 2013; Mannino et al., 2008).

CDOM is the optically active component of DOM and therefore
can be potentially linked to DOC concentration. Although CDOM
only represents a portion of the entire DOC pool, optical proper-
ties of CDOM have been found to be empirically related to DOC
concentration in some estuarine and coastal waters (Asmala et al.,
2012; Ferrari, 2000; Fichot and Benner, 2011, 2012; Matsuoka
et al., 2012a; Rochelle-Newall et al., 2014; Spencer et al., 2007).
For example, DOC concentration can be linked to the CDOM ab-
sorption coefficient at a reference wavelength (e.g., 250 nm or
350 nm) by single linear regression (Baker and Spencer, 2004;
Matsuoka et al., 2012a; Spencer et al., 2009a). However, linear
models rely heavily on the conservative mixing of DOC and CDOM
and are not always practical in the coastal waters, such as in the
Mississippi River estuary (Chen and Gardner, 2004), the Pearl
River estuary (Chen et al., 2004) and West Florida Shelf (Del
Castillo et al., 2000). The other approach is to estimate DOC
from the spectral slope S275-295 and the DOC-normalized CDOM
absorption coefficient by non-linear regression (Fichot and
Benner, 2012). The non-linear model is supposed to be more
suitable for coastal waters, especially for river-influenced coastal
waters with lignin as the important chromophore of the CDOM
pool and the main terrigenous component of DOC (Fichot and
Benner, 2012).

The hydrodynamic environment is unique in the Changjiang
estuarine and coastal waters due to the joint influences of runoffs,
tides and coastal circulations, which makes the mixing behavior
between DOC and CDOM more complicated and variable at sea-
sonal and regional scales. For example, conservative mixing
behavior was observed in the Changjiang estuary with the DOC
concentration linearly related to the CDOM absorption coefficient
(Liu et al., 2013, 2014; Zhang et al., 2013). However, the linear
correlation was not always practical in this region (Cauwet and
Mackenzie, 1993; Liu et al., 2013), and could be easily collapsed in
the zones with significant phytoplankton production (Liu et al.,
2013, 2014). Therefore, field investigations are still necessary to
better understand the variation of CDOM and DOC in the Chang-
jiang estuarine and coastal waters. Moreover, an alternative model
estimating the DOC concentration could be also useful especially
when no correlation between CDOM and DOC concentration can be
found.

In this study, we first investigate the seasonal and spatial vari-
ations of the CDOM optical properties, which were less well
documented in the Changjiang estuarine and coastal waters. We
further discuss the potential sources of CDOM and DOC, and
employ a non-linear model to estimate the DOC concentration from
CDOM optical properties. The developed relationship was found to
be robust, and therefore could be an alternative approach to esti-
mate the DOC concentration at large spatial scales from remotely
retrieved CDOM optical properties in the Changjiang estuarine and
coastal waters.

2. Materials and methods

2.1. Shipborne sampling and measurements

Water samples were collected during five cruises in the
Changjiang estuarine and coastal waters from 2011 to 2013, and the
sampling stations are presented in Fig. 1. The field campaigns were
carried out in July 2011 (32 samples), July 2012 (29 samples),
August 2013 (53 samples), February 2012 (37 samples) and March
2012 (24 samples). A total number of 175 water samples were
collected from the surface layer and analyzed for their content of
CDOM. Salinity (in PSU, practical salinity units) was recorded syn-
chronously to CDOM sampling during the cruises using the CTD
device (SeaBird Electronics INC). Note, however, that the salinities
of 4 samples (out of 175) were not recorded during the CDOM
sampling. DOC samples were collected simultaneously with surface
CDOM samples in July of 2011 (31 samples) and August 2013 (53
samples). To investigate the vertical variation of CDOM, depth
profile of CDOM was recorded during the cruise in July 2011,
whereby CDOM samples were collected at two depths of 5 m (31
samples) and 10 m (29 samples).

Water samples were gravity-filtered on shipboard using a
0.22 mm polycarbonate membrane (Millipore, 47 mm diameter)
under low vacuum immediately after the sampling. The mem-
branes were soaked in 10% HCL for 15 min and then rinsed byMilli-
Q water three times before the filtration. The filtered CDOM sam-
ples were collected in borosilicate glass vials, and then stored in
the !40 "C refrigerator. All vials were pre-soaked in 10% HCL for
24 h, rinsed by Milli-Q water for three times, and pre-combusted at
450 "C for 5 h. DOC samples were filtered using a 0.45 mm nylon
membrane (RephiLe RF-Jet Syringe Filter, 25 mm diameter) and
collected in ampoule bottles, which were pre-combusted at 500 "C
for 5 h. After the filtration, the ampoule bottles were sealed by
fusing the bottleneck, and then stored in the - 40 "C refrigerator.

2.2. Laboratory measurements

Immediately prior to measurement, CDOM samples were un-
frozen and warmed to room temperature under fully dark

Fig. 1. Location of sampling stations in the Changjiang estuarine and coastal waters.
Samples were collected from five cruises in summer (July 2011, July 2012 and August
2013) and winter (February and March of 2012).

X. Yu et al. / Estuarine, Coastal and Shelf Science 181 (2016) 302e311 303



conditions, which was used to minimize the freezing influence on
the absorption spectra. The CDOM absorbance spectra were
measured from 250 to 900 nm using a 10 cm quartz cuvette
referenced to the Milli-Q water by the PerkinElmer Lambda 1050
UV/VIS spectrophotometer. The CDOM absorption coefficient a0

g ðlÞ
(in m!1) was then computed from the absorptance D ðlÞ as (Pegau
et al., 1997):

a0g ðlÞ ¼ 2:303 & D ðlÞ=l (1)

where, l is the cuvette path length. The effect of scattering was
corrected by normalizing the spectra to zero at 700 nm (Bricaud
et al., 1981),

agðlÞ ¼ a0gðlÞ ! a0gðl700Þ & l=l700 (2)

where, l700 is the 700 nm wavelength and ag ðlÞ is the CDOM
absorption coefficient after the scattering correction. Fig. 2 shows
the absorption spectra of all CDOM samples.

The spectral slope is derived from CDOM absorption spectra by
fitting the absorption data to the exponential equation (i.e., Eq. (3))
using the optimization method (Bricaud et al., 1981),

agðlÞ ¼ agðl0Þe!Sðl!l0Þ (3)

where, l is wavelength (nm) and l0 is the reference wavelength
(nm). As shown in Fig. 2, S is apparently dependent on the wave-
length interval over which it is calculated. We chose 440 nm as the
reference wavelength to calculate the spectral slope for the broad
range from 250 to 700 nm, which is hereafter denoted as S440. S275-
295 and S350-400 were also calculated for the narrow wavelength
intervals from 275 to 295 nm and 350e400 nm, respectively. The
spectral slope ratio SR was then defined as the ratio of S275-295 and
S350-400.

DOC concentration (in mmol/L) was determined in duplicate
with a Shimadzu TOC-VCPH Total Organic Carbon analyzer using
potassium hydrogen phthalate as the standard for the DOC cali-
bration curve. The typical precision of this instrument is less than
2% in terms of the coefficient of variation. DOC samples were

acidified by 100 mL 2 mmol/L phosphoric acid prior to the mea-
surement to remove the inorganic carbon. To ensure the accuracy
and consistency of measured DOC concentration, we analyzed the
Florida Strait seawater reference, provided by Dr. Hansell's labo-
ratory at the University of Miami, at the beginning and every fifth
sample. The average measured DOC concentration of the Florida
Strait seawater was 45.6 mmol/L, which fitted well to the expected
range (44e46 mmol/L). DOC concentrations were estimated as the
average value of the duplicate measurements. The DOC-normalized
CDOM absorption coefficient (a*g ðl0Þ, in L mmol!1 m!1) was defined
as the ratio of ag ðl0Þ and the DOC concentration.

2.3. Data analysis

To evaluate the relationship between salinity and CDOM ab-
sorption, we calculate the Pearson's coefficient r and the proba-
bility p of the linear regression. For the goodness-of-fit between
derived and known DOC concentration, statistical parameters
such as the determination coefficient R2, the mean of absolute
relative difference (rMAD) and the root mean square error
(RMSE) are determined. The rMAD and the RMSE are defined as
follows:

rMAD ¼
X

j1! derived=knownj=N& 100%; (4)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

ðderived! knownÞ2
.
N;

r
(5)

where, N is the number of observations.

3. Results

3.1. Spatial-temporal variation of CDOM

The distribution of the CDOM absorption coefficient (ag (355)) at
the surface layer in the Changjiang estuarine and coastal waters is
presented in Fig. 3, where noticeable spatial-temporal variations of
ag (355) can be observed.

The ag (355) values ranged from 0.42 to 1.91 m-1 in July 2011,
from 0.11 to 0.84 m-1 in February 2012, from 0.13 to 1.21 m!1 in
March 2012, from 0.26 to 1.36 m-1 in July 2012 and from 0.23 to
1.45 m-1 in August 2013, respectively. The ag (355) values exhibited
a gradual decrease from nearshore to offshore, forming a persistent
northwest-southeast gradient, with low values (less than 0.5 m-1)
in regions far from the rivermouth. Most samples inMarch and July
2012were collected at the same sites (Fig. 3c and d), fromwhichwe
can observe that CDOM absorption coefficients in summer were
higher than in winter. The annual variation of ag (355) over the
study area in the summer from 2011 to 2013 is also observed ac-
cording to Fig. 3a, d and 3e. The average values of ag (355) are
0.89 m-1, 0.52 m-1 and 0.60 m-1 in July 2011, July 2012 and August
2013, respectively.

As shown in Fig. 4, the vertical gradients of ag (355) in July 2011
are random among the stations with no consistent depth profile.
The largest variations of the ag (355) depth-profile are found at
stations adjacent to the Changjiang river mouth (e.g., stations with
longitudes below 122.5"E in Fig. 4c, e and 4f), while vertical vari-
ations in offshore are rather small, especially for stations with
longitudes larger than 123"E.

3.2. CDOM and salinity

Salinity is a perfect indicator of the influence of river runoff in
the estuarine regions. The variation of salinity is mainly attributed

Fig. 2. CDOM absorption spectra of all measurements. The two blue spectra represent
samples with maximum and minimum absorption coefficients, while the red spectrum
represents the mean absorption coefficient of all samples.
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to the mixing between fresh river discharge and saline oceanwater.
Fresh water is almost free from salinity while the surface salinity in
the open ocean is typically between 32 and 37 PSU (Lagerloef et al.,
1995). To better explore the relationship between the CDOM ab-
sorption coefficient and salinity, CDOM measurements are divided
into subsets based on two criteria. The first classification is based on
the sampling seasons, i.e. winter and summer. The second is ac-
cording to the salinity values, from which three classes are formed
using two thresholds of 20 PSU and 32 PSU. We consider that
samples with salinity lower than 20 PSU are riverine-dominant
while marine-dominant samples have salinities greater than 32
PSU. Fig. 5 shows the relationships between salinities and ag (355),
as well as their linear fitting parameters.

From Fig. 5a we observe that ag (355) is negatively correlated
with salinity, with a more robust correlation in summer
(r¼"0.901, p¼ 0) than inwinter (r¼"0.826, p < 0.001). Moreover,
as shown in Fig. 5b, the correlation is more robust for low salinity
samples (<20 PSU, r ¼ "0.851, p¼ 0.002) compared to high salinity
samples (>32 PSU, r ¼ "0.572, p < 0.001).

3.3. Spectral slope of CDOM absorption and salinity

The range of S440 for all samples was from 0.009 to 0.019 nm"1

with an average value of 0.015 nm"1. Seasonal variations of S440 are
also observed as the average value of S440 in July 2012 was
0.017 ± 0.001 nm"1, while the average value in March 2012 was
0.0145± 0.0017 nm"1. On the other hand, S275-295 ranges from0.015
to 0.032 nm"1 for all observations with an average value of

0.021 nm"1. However, opposite to the seasonal variation of S440, the
average value of S275-295 in March 2012 (0.023 ± 0.004 nm"1) was
higher than in July 2012 (0.018 ± 0.002 nm"1).

No correlation between S440 and salinity can be found in this
study (figure not shown), while both S275-295 and SR increased with
the increasing salinity as shown in Fig. 6. The patterns between
salinity and S275-295 and SR are in accordance with previous studies
(Fichot and Benner, 2012; Helms et al., 2008). Moreover, the cor-
relation with salinity is more robust in riverine-dominant samples
for both S275-295 and SR.

3.4. CDOM properties and DOC

DOC concentrations ranged from 60.54 to 217.06 mmol/L in this
study, with an average value of 115.41 mmol/L. DOC was not
correlated to both salinity and ag (355) in this study, presenting a
non-conservative mixing behavior between CDOM and DOC. To
estimate DOC from CDOM properties, we adopted the approach of
Fichot and Benner (2012) and developed a non-linear relationship
between S275-295 and DOC-normalized CDOM absorption coeffi-
cient. All the DOC samples were divided into two optimal calibra-
tion and validation sets according to the GeoCal/Val model of
Salama et al. (2012). The Cal and Val sets were selected such that
they have the same moments (mean and standard deviation). An
exponential function was used to fit a*g ð355Þ and S275-295 for the
calibration dataset (Fig. 7a), resulting in a R2 of 0.78. The fitting
equation is expressed as,

Fig. 3. Spatial distribution of surface ag (355) over the Changjiang estuarine and coastal region. Data was collected from five cruises in July of 2011 (a), February (b), March (c), July
(d) of 2012 and August of 2013 (e).
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a*gð355Þ ¼ eð"2:45 " 130:79 S275"295Þ (6)

The fitting equation from Fichot and Benner (2012) is also pro-
vided in Fig. 7a for reference. The developed model was applied to
the Val dataset to estimate the error of retrieved DOC as shown in
Fig. 7b. The accuracy of ourmodel in Eq. (6) is expressed by the R2 of
0.746, the RMSE of 20.99 mmol/L and the rMAD of 14.46%.

4. Discussion

4.1. Comparison of CDOM and DOC in several estuarine and coastal
waters

Table 1 shows the comparison of several investigated parame-
ters among the world's estuarine and coastal waters, including the

Fig. 4. Vertical distribution of ag (355) along geographic longitude increasing in July 2011. Fig. 4aef are corresponding to the six axial transects in Fig. 3a from the bottom up.

Fig. 5. Relationships between salinity and ag (355). All CDOM measurements are divided into (a) two subsets for samples collected in winter and summer and (b) three subsets
according to the salinity values with two thresholds at 20 and 32 PSU.
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Fig. 6. Scatter plots between salinity and (a) S275-295 and (b) SR. All observations are divided into three subsets using thresholds of salinity at 20 PSU and 32 PSU.

Fig. 7. Calibration and validation for DOC estimation model using the Cal and Val datasets. (a) A non-linear relationship (black line) is used to fit a%g ð355Þ and S275-295 using the Cal
dataset. A referential relationship from Fichot and Benner (2012) is also provided (dash line). (b) Validation of the developed model using the Val dataset.

Table 1
Comparisons of CDOM optical properties, salinity, DOC concentration and the relationship between CDOM and DOC among different estuarine and coastal waters.

Region ag (355) (m-1) S440 (nm-1) Salinity (PSU) DOC (mmol/L) CDOM vs. DOC Season References

Amazon River and Estuary 0.14e3.12 0.014e0.033 0e36.4 NA NA winter (Green and Blough, 1994)
Orinoco River plume 0.93e9.02 ag (300) 0.012e0.022 19.7e34.6 84e276 Correlated fall (Del Castillo et al., 1999)
St. Lawrence River Estuary 0.2e3.8 ag (365) 0.015 0e35.5 NA NA summer (Nieke et al., 1997)
Mackenzie River Estuary 0.6e2.02 ag (320) 0.018e0.025

S320
24.5e30.1 73.3e205.8 Correlated fall (Retamal et al., 2007)

Southern Beaufort Sea 0.018e1.08 ag (440) 0.015e0.023 0e35.0 49e460 Correlated summer (Matsuoka et al., 2012a)
Scheldt Estuary 0.97e4.22 ag (375) 0.017e0.019 0.7e29.6 NA NA winter (Astoreca et al., 2009)

2.34e4.29 ag (375) 0.018e0.019 2.7e19.9 NA NA summer
Northern Gulf of Mexico 3.96e17.52 ag (350) NA 0e37 232e611 Correlated all (Fichot and Benner, 2012)
Chesapeake Bay 0.4e4.5 0.015e0.024 0e33 60e290 Correlated all (Rochelle-Newall and Fisher, 2002)
Pearl River estuary 0.24e1.93 0.014e0.018 0e32.5 NA NA winter (Hong et al., 2005)
Pearl River estuary 0.34e1.40 NA 0e35.0 86e250 Uncorrelated summer (Chen et al., 2004)
Changjiang estuarya 0.1e3.2 0.017e0.020 0e32.0 NA NA summer (Guo et al., 2007)
Changjiang estuarya 0.10~2.82 0.017~0.020 0.12~29.4 41.7e126.2 Correlated spring (Sun et al., 2014)
Changjiang estuarya 0.43~3.74 0.018~0.022 0.2~26.5 139.4e220 Correlated summer (Zhang et al., 2013)

0.05~ 1.15 0.012~0.023 19~34.5 63.7e129.5 winterb

Changjiang estuaryc 0.11e1.20 0.008e0.018 18.7e34.9 NA NA winter This study
0.23e1.91 0.012e0.025 4.0e33.6 60.5e217 Uncorrelated summer

a Included samples collected from the river mouth.
b Included data collected from the PN section in March of 2011 in their study.
c Only data from the surface layer is counted; NA means no data or information can be found in their study.
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ranges of the CDOM absorption coefficient, spectral slope S440,
salinity, DOC concentration and the relationship between CDOM
and DOC. In general, the level of ag (355) in the Changjiang estuary
was on par with the Pearl River estuary, but lower than most of the
world's major estuaries, which is consistent with previous studies
in the Changjiang estuary and other Chinese estuaries (Guo et al.,
2014; Pan et al., 2012).

The abundance of DOM in the estuarine and coastal water is al-
ways influencedbyvegetation, climate, and the typesof rockand soil
in the river basins (Ludwig et al.,1996; Pan et al., 2012). As shownby
the Terra MODIS NDVI products (http://earthobservatory.nasa.gov/
GlobalMaps/view.php?d1¼MOD13A2_M_NDVI), the coverage of
vegetation in the Changjiang River basin is lower compared to other
drainage basins of theworld'smajor rivers, which is probably due to
rapid urbanization and massive deforestation in the past decades
(Huang et al., 2015, 2016). The low degree of vegetative cover in the
drainage basin could be an important factor in determining the
relatively low content of soil organicmatter, and therefore results in
a low level of CDOM in the Changjiang estuary. The same factor was
also reported tobe responsible for the low level of CDOM in the Pearl
River estuary (Chen et al., 2004; Hong et al., 2005).

The recharged streams could also have huge impact on the level
of CDOM in the river. Compared to streams originated from
marshland, peatland and rainforest, streams originated from glacier
and mountain areas usually have a low degree of DOM and their
discharges into the main river will dilute the concentration of DOM
(Pan et al., 2012). The Changjiang River originates from the Tang-
gula Mountains that are underlain by glaciers in large expanses.
Dilution by stream recharged from glacial melting could be an
important factor in explaining the low concentration of CDOM in
the estuary. On the other hand, the Changjiang River has a relatively
high sediment load compared to other major rivers in the world
with an average annual discharge of 0.39 billion of tons of sedi-
ments from 1951 to 2010, (Changjiang Sediment Bulletin of 2012,
available in Chinese at http://www.cjh.com.cn/fileupload/2013-09-
13/130913171010455.pdf). The high load of suspended matter
prevents the light from penetrating into the water and limits the
photosynthesis of phytoplankton in the upper layer. Therefore, the
aquatic sources of CDOM from photosynthesis could be reduced
significantly in the estuarine waters.

4.2. Spatial-temporal variation of CDOM in the Changjiang estuary

The northwest-southeast gradient of decreasing CDOM
observed in this study could be attributed to the mixing of fresh-
water and seawater. The freshwater end-member contains much
higher CDOM than seawater in the Changjiang estuary as shown in
this study as well as in Guo et al. (2014). However, the influence of
the Changjiang's runoff weakens with the increasing distance from
the river mouth, resulting in the observed gradient. This kind of
spatial distribution is in accordance with previous studies in this
area (Lei et al., 2012; Sun et al., 2014), and was also observed in
other river-influenced estuaries such as the St. Lawrence Estuary
(Nieke et al., 1997), the Southern Bight of the North Sea (Warnock
et al., 1999) and two estuaries of Canadian Arctic (Retamal et al.,
2007). Note that the spatial distribution of CDOM in February
2012 (Fig. 3b) did not follow this gradient. A more likely explana-
tion could be that the samples were collected during a tidal cycle.
The tide type in the Hangzhou Bay and adjacent waters is semi-
diurnal and the sampling interval in the February cruise was less
than 1 h. Therefore, CDOM variability could be affected by the
resuspension of bottom sediments during the reverse phase of the
tide. During the resuspension, bottom sediments with terrestrial
matter are injected into overlying waters and thus increase the
CDOM concentration (Bodineau et al., 1998).

The seasonal difference in CDOM, between March 2012 (Fig. 3c)
and July 2012 (Fig. 3d), was mainly because of the changes in the
Changjiang's runoff, which was almost doubled from March to July
in 2012 (See also the Changjiang Sediment Bulletin of 2012),
resulting in a higher level of CDOM in summer. In addition, due to
the weak freshwater input in winter, tidal movement could be
dominant in the coastal region, resulting in the low level of CDOM
(Guo et al., 2014). However, the seasonal variation of CDOMwas not
obvious for the two stations in the Hangzhou bay (Fig. 3c and d),
presenting a relatively stable level of CDOM in the Hangzhou Bay. In
the turbid waters like the Hangzhou Bay, the observed seasonal
variation of CDOM level could be the affected and balanced by
several factors, such as CDOM could be removed by flocculation and
particle sorption, added by particle desorption and degradation of
particulate organic matter (POM), or released from interstitial
water enriched with CDOM by resuspension (Guo et al., 2014). It is
worthy to notice that sediment resuspension in the Hangzhou Bay
is significant in winter due to the distinct structure of the bay and
the mutual effects by wind and tide (Chen et al., 2003).

The vertical distribution of ag (355) was more stratified in
coastal waters and peaked in the surface layer, which might be due
to hydrological dynamics and the mixing behavior between fresh
river discharge and saline ocean water. Similar phenomena were
also observed in other estuarine regions (Del Castillo and Miller,
2011; Gardner et al., 2005). The stratification was not significant
in most offshore stations, which can be explained by the weak in-
fluence of the runoff.

Comparing with reported results from Guo et al. (2007) and
Zhang et al. (2013), the interannual variation of ag (355) in the
summer are in general small in the estuarine and coastal waters.
Note that the tabulated data in Table 1 for the results fromGuo et al.
(2007) and Zhang et al. (2013) included samples collected in the
river's mouth with high absorption. The limited interannual vari-
ation of CDOM indicates that parameterization of CDOM absorption
coefficient could adopt the locally defined parameters (e.g., average
ag (355) and S400) in reducing the uncertainties of the retrieval
models on inherent optical properties (IOPs). This is mainly because
CDOM contributes a large portion to the total absorption coefficient
in most estuaries, and is therefore sensitive in IOPs-retrieval
models (Garver and Siegel, 1997; Lee et al. 2002, 2007;
Maritorena et al., 2002; Yang et al., 2013; Yu et al., 2016). Howev-
er, CDOM parameterization (Eq. (3)) in these models always re-
quires an empirical coefficient (e.g., S440) and a locally defined value
from field measurements would meet the demand.

4.3. CDOM sources

Negative correlation between salinity and ag (355) (Fig. 5a)
suggests that terrestrial inputs were the main source of CDOM in
the study area, especially for the riverine end observations with low
salinity samples (Fig. 5b). The lower Pearson's coefficient between
salinity and ag (355) in high salinity water (>32 PSU) indicates a
weak influence of runoff and a decreased proportion of terrigenous
CDOM in the marine end observations. The same conclusion can be
drawn from the relationship between salinity and S275-295 on one
hand, and the dimensionless ratio SR on the other. The smaller S275-
295 and SR are corresponding to the higher MW, which is mostly
determined by humic acid from terrestrial sources (Helms et al.,
2008). As shown in Fig. 6, the DOM shifted from high MW to low
MW with increasing salinity, corresponding to a decreasing pro-
portion of terrigenous CDOM. One important fact is that DOM
molecular size was reduced due to photobleaching of terrigenous
CDOM during downstream transit, resulting in larger S275-295 with
increasing salinity (Helms et al., 2008). Additionally, responses of
CDOM absorption at 275 nm and 295 nm to the exposure to solar
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radiation are different, where a much greater fractional decrease in
ag (295) was found than in ag (275), resulting in a smaller S275-295
upstream (Del Vecchio and Blough, 2002, 2004; Fichot and Benner,
2012). Another factor that determined the high S275-295 in marine
end waters could be attributed to the aquatic CDOM, especially the
protein-rich plankton CDOM production, which has been proven to
have significant effect on the S275-295 (Fichot and Benner, 2012).

Compared to the S275-295, the SR seems to be a more effective
indicator of the proportion of terrigenous DOM in this study, since
the negative relationships between SR and salinity are more robust
for the three types of waters (i.e., riverine-dominant water, mixed
water and marine-dominant water) as shown in Fig. 6b. This is
mainly due to the fact that the values of the spectral slope S350-400
generally decreased with increasing salinity (blue circles in Fig. 8),
which is consistent with Helms et al. (2008). The increase of SR is
mainly due to the increase of S275-295, while the decreasing trend of
S350-400 enhanced the sensitivity of SR to terrigenous DOM.

4.4. DOC sources and estimation

The range of DOC concentration in this study (i.e., 60.54 e
217.06 mmol/L) is comparable with the previous investigations in
summer in the Changjiang estuarine and coastal waters with DOC
concentration ranging from 139.4 to 220 mmol/L from Zhang et al.
(2013). However, our results are higher than the investigations in
spring from Sun et al. (2014) with DOC concentration ranging from
41.7 to 126.2 mmol/L. The difference between our results and results
from Sun et al. (2014) could be firstly attributed to the difference in
sampling sites, and secondly due to the larger Changjiang runoff in
summer than in spring. On the other hand, DOC concentrations in
this study, in agreement with CDOM absorption coefficient, are
much lower than in other world's major estuaries. For instance, the
DOC concentration in the Amazon River estuary was averaged at
350 ± 75 mmol/L (Ward et al., 2015), while it reached 446 mmol/L
(Chen and Gardner, 2004) and 611 mmol/L (Fichot and Benner, 2012)
in the Mississippi River estuary, respectively. The DOC concentra-
tion even reached as high as 800 mmol/L in the Congo River estuary
(Spencer et al., 2009b). It is likely that the same factors driving the
observed distribution of CDOM result in the relatively low DOC
concentrations in the Changjiang estuary.

As shown in Table 1, the mixing behavior between DOC and
CDOM in most estuarine and coastal waters is conservative. How-
ever, this mixing behavior between the two parameters could be
highly variable at seasonal and regional scales. For example, non-
conservative mixing between DOC and CDOM can be found in
this study, as well as in previous study in the Changjiang estuary

(Cauwet and Mackenzie, 1993), while a conservative mixing was
also reported by Zhang et al. (2013) and Liu et al. (2014). The
variation of DOC-CDOM relationship could be attributed to the
asynchronous changes between DOC and CDOM (Vodacek et al.,
1997). The discrepancy between DOC and CDOM in their stabil-
ities and residence period is always significant in estuarine and
coastal waters, because DOC are commonly unstable and easily
decomposed compared to the CDOM in coastal waters (Spitzy and
Ittekkot, 1986). Another factor resulting in the discrepancy could
be attributed to phytoplankton production. It seems that DOC and
CDOM produced by phytoplankton production is disproportionate,
resulting in the collapse of DOC-CDOM correlation in significant
phytoplankton production zones (Liu et al., 2013, 2014).

Despite the discrepancy between DOC and CDOM, the devel-
oped non-linear model in this study presents a robust method to
estimate DOC concentration from S275-295 and ag (355) as shown in
Fig. 7. Note that despite SR is a more indicative parameter to
terrestrial DOM in this study, it seems to be independent to DOC,
which is consistent with results from Helms et al. (2008). The
developed model can be considered as satisfactory and the vali-
dation result is not biased since the adopted GeoCal/Val model
(Salama et al., 2012) ensures that both calibration and validation
datasets are independent to each other. Considering the phyto-
plankton production may result in the discrepancy between DOC
and CDOM in this study, the non-linear model developed seems
less vulnerable to the effect of phytoplankton production. This, on
the other hand, shows that S275-295 could be a reliable parameter to
estimated DOC concentration in river-influenced estuarine and
coastal waters.

Furthermore, considering the nature of this non-linear rela-
tionship is empirical, applying this relationship to different regions
could require a fine-tuning on the empirical coefficients. For
instance, adopting the empirical coefficients from Fichot and
Benner (2012) will overestimate DOC concentration in the Chang-
jiang estuarine and coastal waters as shown in Fig. 7a. On the other
hand, as shown in this study, the developed relationship worked
well for observations collected from both July 2011 and August
2013, indicating this relationship would be reliable and practical in
the summer season in the Changjiang estuarine and coastal waters.
Therefore, with the regionally defined DOC-CDOM relationship,
DOC concentration can be potentially estimated from earth obser-
vation data since the CDOM absorption coefficient can be retrieved
from remote sensing reflectance with acceptable accuracy (Lee
et al., 2002; Matsuoka et al., 2012b; Siswanto et al., 2011).

5. Conclusion

Field measurements on CDOM optical properties and DOC
concentration allow the investigation and discussion on the spatial-
temporal variation of CDOM and DOC, the sources of CDOM and
DOC and their correlations in the Changjiang estuarine and coastal
waters. The following conclusions are drawn based on the results
presented in this study:

1. CDOM absorption coefficient at 355 nm was negatively corre-
lated with salinity, resulting in a decreasing gradient of ag (355)
from northwest to southeast. The spatial-temporal variation of
ag (355) could be highly dependent on the influence of Chang-
jiang runoff. The vertical variation of CDOM was more pro-
nounced in near-shore than that in offshore.

2. The sources of CDOM in the estuary were mainly from terrige-
nous inputs, while the level of CDOM could be determined by
several factors in the drainage basin and the origin of recharged
streams. Sediment resuspension could also be an important
source of CDOM in winter, while aquatic sources could

Fig. 8. The trends of the spectral slopes (S275-295 and S350-400) and the slope ratio SR
with increasing salinity.
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contribute large proportions of CDOM in marine-dominant
waters with high salinities.

3. A non-linear relationship was developed to estimate DOC con-
centration from ag (355) and S275-295, which was proven to be
robust and stable for the Changjiang estuarine and coastal wa-
ters. Therefore, the developed relationship provides an alter-
native approach to estimate DOC at large spatial scales from
remotely retrieved CDOM optical properties over the Chang-
jiang estuarine and coastal waters.
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