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Abstract

In freeform surfaces, the evolution of optical components has exceeded the next level. After
spherical and aspherical surfaces, freeform surfaces do not follow a certain basic shape.
Therewith, they offer a much higher degree of freedom for designers and the field of
possibilities of optical function is extended. Simultaneously, the designs can be more compact
as multiple spherical or aspherical surfaces can be replaced by one single freeform surface.

Since verification in the fabrication process is indispensable, adequate measurement
techniques for the characterization of freeform surfaces are required. For spherical and
aspherical surfaces, highly developed surface measurement techniques area available.
However, these techniques exceed their limits, when the basic shape of a freeform is not
spherical or aspherical, but flat. To provide manufacturer with a high accurate option to
measure freeform surfaces, deviating from a flat basic shape, a gradient-based measurement
technique for these kind of freeform surfaces is proposed. This measurement technique is of
laser deflectometry type and measures the gradient field of a freeform surface by use of a
variation of Experimental Ray Tracing. Using an appropriate integration method leads to the
reconstruction of the measured freeform surface from the measured gradient field.

The proposed measurement technique uses evaluation and calibration techniques, which are
implemented using homogeneous coordinates. With a commercially available simulation
software, the proposed measurement process and the evaluation and calibration methods are
validated. The results for different surfaces models are presented and evaluated.

An experimental setup has been built up and described in this work. Using multiple different
surface types, the abilities of the experimental measurement setup are shown. Comparing the
results from the proposed measurement technique to results from commercially available
measurement techniques, good agreement in the sub-micrometer range can be determined.

To set the measurement results in context to the expected measurement uncertainty, multiple
error sources are evaluated for the experimental measurement setup. The considered error
sources are described and magnitudes are given either by experimental determination or by
test protocols from the manufacturers. The determined measurement uncertainties are
evaluated. In relation to the measurement results from the experimental measurements, these
determined uncertainties shows higher values than expected. Reasons for these deviations
are discussed.

Summarizing the proposed measurement technique, optional further developments and
enhancements are discussed.







Kurzfassung

Die Entwicklung optischer Komponenten hat in Freiformoberflachen ihre nachste Stufe
erreicht. Anders als spharische und aspharische Oberflachen folgen Freiformoberflachen
keiner bestimmten Grundform. Dadurch bieten sie viel mehr Freiheitsgrade fur Designer und
erweitern die Moglichkeiten der optischen Funktionen. Gleichzeitig kénnen deutlich
kompaktere Designs erstellt werden, da mehrere spharische und aspharische Oberflachen in
nur einer einzigen Freiformoberflache kombiniert werden kénnen.

Da die Uberpriifung im Herstellungsprozess unabdingbar ist, werden Messtechniken fiir die
Charakterisierung von Oberflachen bendtigt. FUr spharische oder aspharische Oberflachen
existieren bereits weit entwickelte Messtechniken. Diese Messtechniken stol3en allerdings an
ihre Grenzen, wenn die Grundform einer Freiform nicht sphéarisch oder asphéarisch, sondern
flach ist. Um Herstellern eine hoch prazise Messtechnik zur Vermessung von Freiformen mit
einer flachen Grundform zur Verfigung zu stellen, wird eine Gradienten-basierte Messtechnik
fur diese Art von Freiformoberflachen vorgestellt. Die Messtechnik ist im Bereich der Laser
Deflektometrie anzusiedeln und misst das Gradientenfeld einer Freiformoberflache mit Hilfe
einer Abwandlung des Experimental Ray Tracing. Unter Nutzung einer geeigneten
Integrationsmethode kann die Freiformoberflache aus dem gemessenen Gradientenfeld
rekonstruiert werden.

Die vorgestellte Messtechnik nutzt Auswerte- und Kalibrationsmethoden, welche mit Hilfe von
homogenen Koordinaten implementiert wurden. Unter Zuhilfenahme einer kommerziell
erhaltlichen Simulationssoftware wurden der Messprozess, sowie die Auswerte- und
Kalibrationsmethoden validiert. Die Ergebnisse verschiedener Oberflichenmodelle werden
prasentiert und evaluiert.

Ein experimenteller Aufbau wurde erstellt und wird in dieser Arbeit beschrieben. Unter
Verwendung mehrerer verschiedener Oberflachentypen werden die Fahigkeiten des
experimentellen Aufbaus dargelegt. Im Vergleich der Messergebnisse der vorgestellten
Messtechnik mit Messergebnissen kommerziell verfigbarer Messtechniken kdénnen gute
Ubereinstimmungen im sub-Mikrometerbereich festgestellt werden.

Um die Messergebnisse im Kontext der zu erwartenden Messunsicherheit zu betrachten,
wurden relevante Fehlerquellen des experimentellen Messaufbaus evaluiert. Diese
betrachteten Fehlerquellen werden beschrieben und ihre GréRe entweder experimentell oder
durch verfugbare Testprotokolle der Hersteller bestimmt und evaluiert. Im Vergleich zu den
Ergebnissen aus den experimentellen Messungen, zeigen die festgestellten
Messunsicherheiten hohere Werte. Grinde fur diese Abweichungen werden diskutiert.

In der Zusammenfassung der vorgestellten Messtechnik werden optionale
Weiterentwicklungen und Verbesserungen diskutiert.
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Terminology

Terminology

In this work, the terminology follows a certain pattern, if not stated differently in the text. The
used pattern is described here.

Direction vectors
Direction vectors are shown in lower-case bold-italic letters. Additionally, direction vectors are
always considered unit vectors.

Example for a direction vector: g = I%I

Points in space and their position vectors

Points in space are shown with italic upper-case letters. A corresponding position vector
pointing to a point in space has the same upper-case letter, but shown in bold-italic.

Example for a point in space: I
Position vector to the point I: I

Matrices
shown in upper-case bold letters.

Example for a direction vector: H

Transformation matrices

Transformation matrices to transfer vectors from one coordinate system to another, are shown
with the coordinate system, the transformation matrix is transferring from in subscript and the
coordinate system it is transferring into in superscript.

Example for a transformation of a vector g from the coordinate system C into the coordinate
system M by using the transformation matrix H:

HZ'g® = g™
Angles in transformation matrices

Angles to define a transformation matrix follow the same terminology as the transformation
matrix in terms of the sub- and superscript.

Example for the angle to define HZ:

ol

Discrete variables
The element g; is the i-th element of g in a certain sequence.

Inner product of vectors
The inner product of two vectors g and i is donated (g - i).
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Terminology

Vector product
The vector product of two vectors g and i is donated g X i.

Least-squares sense relation

A least-squares sense relation is donated =, while ¢; represents the optimized parameters.
-
J

Example for a least-squares sense relation:

N
s(x) = Z cjxj
¢j 4
j=0
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Introduction

1. Introduction

1.1 Motivation

In optics, components like lenses and mirrors are used to redirect light to achieve a desired
distribution. Surfaces on these components are shaped in certain ways to achieve this desired
redirection of the light by refraction or reflection [1]. Usually, these surfaces are of flat, spherical
or aspherical shape. The freeform surface marks the next step in the development of optical
surfaces [2]. It opens up new abilities, while reducing packaging and weight of optical systems
as shown in Figure 1.1, since the function of multiple surfaces can be combined in only one
freeform surface [3, 4].

Packaging

Freeform

Conics/Aspheres J

Spheres

Figure 1.1: Qualitative comparison of spheres, conics/aspheres and freeform surfaces
in terms of field of view (FOV), F/number (F/#) and packaging [3].

For a freeform surface, different definitions exist [4]. In this work, a surface is considered to be
of freeform shape, when it cannot be described by one of the aspheric surface types described
in DIN ISO 10110-12 [5]. This includes plane, sphere, asphere, cylinder, cone and toric
surfaces. In DIN ISO 10110-19 general descriptions for surfaces are given [6]. Therewith,
surfaces with freeform shape and freeform aperture can be described.

For freeform surfaces, a huge variety of applications is considerable [7]. In imaging optics, it
offers the ability to design surfaces to suppress aberrations, even for tilted or folded optical
paths. For example, using freeform mirrors, the optical path in telescopes can be folded to use
space more efficiently [3, 8, 9]. This increasing efficiency in the use of space is also very helpful
in technologies like head worn displays [10]. In non-imaging optics, freeform surfaces can be
used to create special illumination patterns [11, 12]. They can also be used to shape the light
emitting distribution of LEDs [13]. Even the improvement of the distribution of solar light onto
a solar cell to increase photovoltaic efficiency can be achieved by freeform surfaces [14].

Independent on the function the freeform optical component fulfills, its surface form quality has
to satisfy high demands. Therefore, metrology is needed that is able to verify the desired
surface quality [15, 16]. To verify freeform surfaces deviating from a basic shape of a sphere,
highly developed surface measurement techniques designed for spherical or aspherical
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surfaces can be adapted. Therewith, these kind of freeform surfaces can already be measured
with high accuracy [17]. However, if it comes to freeform surfaces deviating from a flat basic
shape, these measurement techniques exceed their limits.

For flat surfaces, like wafers, techniques for flatness measurement exist. These measurement
techniques are able to determine the flatness with high accuracy, but also exceed their limits,
if the deviation from the flat is too high.

The gap in between the measurement of surfaces with spherical basic shape and the
measurement of surfaces with flat basic shape can only be filled with high effort using the
existing measurement techniques. The measurement technique proposed in this thesis is
intended to fill this gap. It has been developed to characterize freeform shaped surfaces
deviating from a flat with high accuracy using a straightforward measurement setup without
cost-intensive optical components.

1.2 State of the art

1.2.1 Introduction

Exact requirements on accuracy to verify an optical component are not defined. However, if
requirements for a surface quality are given, the measurement technique has to be accurate
enough to confirm the surface quality or to give data to correct the surface. Otherwise, a
confirmation or a correction of the surface quality is not possible [15].

In the field of metrology of aspheric surfaces, the measurement techniques have evolved in
recent years, as aspheric components got common more and more in optical applications. A
round robin test of aspheric surfaces using different measurement techniques revealed
deviations in between the measurement techniques of up to £50 nm [18]. A round robin test
including freeform surfaces deviating from a spherical basic shape showed deviations of up to
+110nm for the different measurements performed [17]. Since these round robin
measurements included up-to-date measurement techniques, an accuracy in the same range
is targeted.

In the following, state of the art measurement techniques are described. These techniques are
basically distinguished in two types: surface sag measurement techniques and gradient based
measurement techniques. While surface sag measurement techniques directly measure the
surface height, gradient-based measurement techniques measure the surface gradient first
and reconstruct the surface sag by integration of the measured surface gradient data [19].

Both measurement techniques have advantages and disadvantages. While surface sag
measurement techniques directly create a point cloud with the determined positions, they need
to offer the same accuracy over the full measurement range, including a standoff representing
the SUT’s distance from the measure’s origin [20]. Therewith, even if the SUT is flat, redundant
data is gathered by measuring the standoff with high accuracy. With gradient-based
measurement techniques, this standoff is irrelevant, as not the surface sag, but the surface’s
gradient field is measured. This gradient field can be determined with a higher information
efficiency, as it only represents the change of the sag and not the sag itself and its standoff
[19]. Although, to reconstruct the surface sag from the determined gradient field, an
appropriate integration method has to be used [21].

To utilize the advantages of gradient-based measurements, the measurement technique
presented in this work is of this type and designed to measure specular surfaces in reflection.
In the state of the art, both surface sag and gradient-based measurement techniques are
presented, as both types are used for surface characterization measurements.
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1.2.2 Surface sag measurement

Tactile coordinate measurement

The basic principle of tactile coordinate measurements is very descriptive. A stylus is moved
over the surface under test (SUT). According to the sag of the SUT, the stylus is elevated [22].
This elevation can be measured in different ways. Dependent on the stylus type and size,
different surface characteristics can be measured. Tactile coordinate measurement machines
can achieve high accuracies even for large SUT sizes [18]. Examples for tactile coordinate
measurement machines are UA3P series by Panasonic Corp., ISARA 400 by IBS Precision
Engineering GmbH or MarSurf LD 130 / LD 260 by Mahr GmbH [23, 24, 25]. Since tactile
coordinate measurement relies on a contact between the stylus and the SUT, damage at the
SUT may occur. To overcome this problem the stylus can be replaced by an optical probe,
leading to the following category of measurement technique.

Confocal/interferometric coordinate measurement

In confocal or interferometric coordinate measurement techniques, an optical probe
determining the distance to the SUT replaces the tactile stylus. With this, higher scanning rates
can be achieved [26]. Confocal probes can detect the distance of the probe from the SUT by
determining the defocus of a test beam focused onto the SUT [27]. Interferometric probes
determine height information from the phase difference between a reference and the SUT [22].
Therewith, the coordinates of the sampled point can be determined. However, both probe
types have to stick to optical limitations. Especially when surfaces with higher slopes are faced,
sufficient light has to return to the probe to work properly. This can be ensured by tilting the
probe to be always perpendicular to the SUT at all sample points. If the mechanical and optical
limitations are met, freeform surfaces can be measured with this measurement technique [28].
Examples for coordinate measurement machines with optical probes are LuphoScan 260 HD
manufactured by AMETEK Inc., CT 300 by cyberTECHNOLOGIES GmbH, MarForm MFU 200
Aspheric 3D by Mahr GmbH and NMF350 S/ NMF600 S by Dutch United Instruments [29, 30,
31, 32].

Interferometry
The phenomenon of interference occurs, when two or more waves superpose and create

regions of constructive and destructive superposition [1, 33]. For the purpose of optical
metrology, this includes the superposition of two coherent waves, usually derived from splitting
the light of one coherent beam into two separate beams [22, 27]. One of the beams, the test
beam, can now be altered by the DUT, while the other beam, the reference beam, serves as
a reference. Superposing the two beams, interference occurs. Since both beams have the
same origin, differences in the optical path length, the optical path difference (OPD), defines
the regions where constructive and destructive superposition occurs. In constructive regions,
the OPD is an integer multiple of the light’'s wavelength [33]. These regions occur bright on a
detector. In destructive regions, the OPD is an odd integer multiple of half of the lights
wavelength. These regions occur dark. The patterns of dark and bright regions are called
interferograms [1]. From these patterns, conclusions about the OPD and therewith about the
altering of the test beam by the DUT can be drawn. In terms of a configuration, where the test
beam is reflected by a SUT, its topography can be determined from the interferogram. In
contrast to the coordinate measurement techniques shown before, interferometers have the
advantage that the standoff is not measured, since only the OPD to the reference object is
determined. However, this may not be confused with gradient-based measurement
techniques, which determine the slope of a beams wavefront as described later.

Many different configuration types of interferometers have been developed. Well-known
configurations are the Fizeau, Twyman-Green and Mach-Zehnder interferometer [33]. An
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example for an interferometric metrology system is the Verifire series by Zygo [34]. It applies
phase-shift interferometry on a Fizeau configuration [27].

Interferometers can provide high accuracies, but need very accurate alignment and positioning
to achieve these potentials. Thus, high precision optical components and usually specialized
staff is needed to operate an interferometer. The result of an inaccurate setup of an
interferometer has painfully been determined in the Hubble Space Telescope program of
NASA [35]. Due to the inaccurate setup, a form error has been manufactured into the aspheric
primary mirror resulting in blurred images of the telescope.

Stitching interferometry

Certain limits apply when it comes to the evaluation of an interferogram. Considering a
configuration where the test beam is reflected from a SUT and the reference beam is reflected
from a reference surface, the interferogram’s dark and bright regions indicates changes of the
SUT’s from the reference surface’s topography. If this change is too fast, the bright and dark
regions also alternate too fast and cannot be distinguished anymore. This problem can be
overcome using stitching interferometry [36]. In this technique, the full aperture of a SUT, which
cannot be investigated in one interferometric measurement due to limitations, is split into
overlapping subapertures of smaller dimensions being within the limits. To investigate the
subapertures according to the limits, the SUT is positioned and oriented within the
interferometers scope. After investigating the subapertures separately, they are stitched
together using the overlapping areas to reconstruct the full aperture’s topography. Therewith,
the limits of interferometric measurements are extended [37]. An example for a stitching
interferometry measurement machine is the AS/(Q) by QED Technologies International, Inc.
[38].

Interferometry with computer generated holograms

Using a computer-generated hologram (CGH) in an interferometer is not defining a new
configuration of interferometer. It introduces a way to alter a beam in the interferometer by
applying the wavefront stored in the CGH to one of the beams [22, 39]. Therewith, either a
reference beam with a certain wavefront can be created that compensates the expected test
wavefront, or the test wavefront can be altered to be comparable to a certain known reference
wavefront. Either way, using a CGH extends the limits of interferometers of different
configurations [40, 41]. This can even be applied to non-rotational apertures and freeform
optics [8, 42]. A provider of CGHs is DIOPTIC GmbH. They offer CGHs for spherical,
aspherical, cylindrical and even freeform surfaces [43]. A drawback of CGHs is that for every
new SUT shape, a new CGH has to be manufactured, what can be time consuming and
expensive [26].

Tilted wave interferometry

The technique of tilted wave interferometry is based on the extension of one spherical
wavefront to create an array of tilted wavefronts propagating towards the SUT [15]. This array
of tilted wavefronts is created using an aperture array in a collimated beam. Therewith,
wavefronts are sent towards the SUT with different angles enabling the observation of the
whole SUT from different directions simultaneously. As long as at least one of the wavefronts
meet the limitations for a certain region on the SUT, this region can be observed. The basic
shape to be measured with this technique is a sphere. With rather large departures from a
sphere that can be measured, the technique is able to measure even large freeform surfaces
deviating from a sphere as well [44]. However, when it comes to freeform surfaces deviating
from a flat, this technique exceeds its limitations fast. This measurement technique has been
implemented in the MarOpto TWI 60 by Mahr GmbH [45].
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1.2.3 Gradient-based measurement

Shack-Hartmann senor

Measuring the wavefront of a beam, a Shack-Hartmann sensor (SHS) offers a fast and handy
solution. The functional principle is derived from the Hartmann-test [46]. It is based on splitting
the wavefront to be measured in multiple small segments using a micro-lens array and focusing
these smaller wavefront segments onto a 2D detector array [1]. Comparing the spot’s locations
to the locations when a collimated beam is introduced into the system, conclusions about the
wavefront's slope can be drawn. Integrating the slope data, the wavefront can be
reconstructed. Using such a sensor to investigate the wavefront reflected from a SUT, its
topography can be reconstructed from the determined wavefront data [47]. However, the
resolution of these sensors is limited and fixed by the micro-lens array. Additionally, the
detectable wavefront slope is limited by the micro-lens pitch as ambiguities in the detected
spots occur, when the wavefront slopes vary to fast. SHSs are available from multiple
companies. Exemplary, the company OPTOCRAFT GmbH can be named, as this company is
specialized in the manufacturing of SHSs in form of their SHSCam sensors [48, 49].

Lateral shearing interferometry

In the sections before, interferometry has been introduced as the superposing of a test
wavefront with a reference wavefront. In lateral shearing interferometry, the test wavefront is
superposed with itself by a small lateral shear [22, 50]. Therewith the OPD, creating the
interferogram, is dependent on the wavefront’s slope in the direction of the lateral shear. For
the interferogram, one can say that a higher wavefront slope creates a larger OPD, while a
lower wavefront slope creates a smaller OPD. After deriving the OPD from the interferogram
and knowing the lateral shear, the wavefront’s slope can be determined. Integrating this slope
data, the wavefront can be reconstructed. May the wavefront be reflected from a SUT and the
initial wavefront targeted onto the SUT is known, the SUT’s topography can be reconstructed
using lateral shearing interferometry. An example for a wavefront sensor using lateral shearing
interferometry is the SID4-HR manufactured by Phasics SA [51, 52].

Phase measuring deflectometry

The technique known as phase measuring deflectometry (PMD) is also known as fringe
reflection. It must not be confused with structured light projection, which is not applicable for
specular surfaces. In PMD, a screen with a certain pattern is placed near by the SUT. The
screens position and orientation is chosen in a way that its emitted light is reflected from the
SUT into a camera [53, 54]. From the distortion of the reflected pattern, slope data of the SUT
can be resolved. Since an ambiguity between the surface slope and the investigated point on
the surface exists, absolute measurements are not possible. This ambiguity can be overcome
by either using the surface model function to determine the differences from this model or by
using a second camera for applying stereo deflectometry [55]. With this technique, even large
objects can be measured [56]. An example for a measurement machine based on PMD is the
SpecGAGE3D series, by ISRA VISION AG [57].

Laser deflectometry

The technique of laser deflectometry (LD), sometimes also called scanning beam
deflectometry, is the technique of scanning a SUT with a single laser beam while determining
the surface’s slope from the deflected beams direction. The measurement technique presented
in this thesis is a variation of the LD.

For LD multiple different implementations have been proposed. They can be categorized in
implementations with imaging optics and techniques without imaging optics. Implementations
including imaging optics use these optics to convert the direction of the reflected beam into a




Introduction

position in the focal plane. Determining the position of the beam with an areal sensor and
knowing the focal length of the imaging optic, the beams direction can be determined.

A measurement technique for almost flat surfaces has been proposed using a tilting mirror to
scan the surface [58]. With this technique, high measurement speeds can be achieved, while
the number of moving objects in the setup is very low.

Another measurement technique introduced for almost flat surfaces uses a pentaprism and an
autocollimator [59]. The pentaprism is used to scan the surface, while the autocollimator is
used to send out the test beam and to determine the reflected ray’s direction. Variations of this
measurement technique exist, including the separation of the measurement of the reflected
beam’s direction from the surface angle determination, a new sensor to determine the reflected
rays direction or the ability to determine the surface curvature instead of slope to overcome
inaccuracies in positioning stages [59, 60, 61].

To measure spherical SUTs, a technique has been introduced including a beamsplitter to
generate a reference beam reflected from a flat mirror, while the test beam is targeted onto
and reflected from the spherical SUT [62]. Using a collimating lens and an areal detector in the
focal plane of the lens, the position of the test beam and the reference beam is determined.
From the distance in between the two positions, the test beam’s direction is determined. To
scan the spherical surface, it is rotated around its center of curvature.

Another technique to measure surfaces with higher surface angles combines the laser
deflectometry with principles from the confocal or interferometric coordinate measurement
techniques [63]. A sensor head based on an autocollimator has been introduced. Rotating this
sensor head around a virtual reference sphere, the investigated surface angle is kept in the
range of the sensor for spherical and many typical aspheric surfaces. Measuring the surface
slope as a difference to the virtual reference sphere and integrating this difference determines
the surface deviation perpendicular to the virtual reference sphere.

Implementations of LD without imaging optics suffer from an ambiguity when determining a
beams direction from one beam position on an areal sensor. Two methods to overcome this
problem have been proposed using basically the same setup. The test beam is targeted onto
the SUT vertically through a beamsplitter. The beamsplitter redirects the reflected beam onto
an areal sensor, which determines the beam’s position [64, 65]. Scanning the surface, the
reflected beam’s position is determined for multiple sample points on the SUT. To reconstruct
the SUT from these positions, an approach based on solving a partial differential equation was
proposed [64]. However, in this approach the reflected beam’s position on the areal sensor is
only defined by its distance to a reference given by a flat SUT. This leads to difficulties in
reconstructing non-rotational symmetric surface or if the SUT model function is not known
properly. Another approach has been proposed for the reconstruction of spherical or aspherical
surfaces for the same setup. Using a spherical surface as initial guess, the reconstructed
surface is approximated iteratively from the determined reflected beams positions on the
detector [65]. However, both approaches rely on an exact definition of the distance between
the sensor and the SUT for one position. Otherwise, the initial ambiguity cannot be resolved.

1.2.4 Discussion

The measurement techniques described before are especially for specular surfaces. Before
going into the discussion of these techniques, it has to be mentioned that also techniques for
the measurement of non-specular surfaces exist. Well-known examples for these techniques
are shape from shading and structured light projection. Shape from shading is based on the
evaluation of one or multiple photos of the SUT with a known light source and has, for example,
been used to determine the shape of the lunar surface and is now also used to determine the
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shapes of human faces [66, 67]. Structured light projection is based on the projection of one
or multiple known patterns on the SUT and determining the SUT’s topography from the
distortion of the pattern, photographed with a camera under a certain angle [68, 69].
Implementations with multiple cameras have been developed as well as miniaturized setups
with very small dimensions [70, 71].

The measurement technique proposed in this thesis is a gradient-based measurement
technique and a variation of laser deflectometry. It measures the surface topography without
tactile contact. This prevents surface damage. In contrast to confocal or interferometric
coordinate measurement techniques or surface sag measuring interferometric measurement
techniques, it measures the surface gradients. Thus, it obtains the advantages of gradient-
based measurement techniques described before. In contrast to measurement techniques
using a SHS or lateral shearing interferometry, the proposed measurement technique is not
based on the measurement of a wavefront being reflected from the SUT, but on the
measurement of the direction of a single narrow beam, reflected from the SUT. Therewith, it
does not rely on the accuracy of certain optical components, like lenses, beamsplitters or
lenslet-arrays. PMD retrieves the SUT’s gradients from the distortion of a certain pattern on a
screen. Therewith, it is not a scanning technique, since all sample points can be measured in
one shot. However, PMD has an ambiguity between the surface sag and the surface slope
that has to be resolved by introducing multiple camera systems or by knowing the SUT’s model
function in advance. Comparing the proposed measurement technique to other techniques
based on laser deflectometry, one can say that the proposed method is a technique without
imaging optics. This prevents the introduction of errors by these optics, which either influence
the measurement result or have to be calibrated extensively for compensation. Comparing the
proposed method to other laser deflectometry techniques without imaging optics, it has to be
noticed that the techniques presented before still use an optical component in between the
SUT and the areal detector: a beamsplitter. This is not necessary in the proposed technique.
More clearly, no optical component in between the SUT and the areal detector is used.
Furthermore, the ambiguity of the surface sag and the surface angle, which is overcome in the
techniques described before by knowing the exact distance in between the SUT and the areal
sensor, is resolved in the proposed method by using a variation of Experimental Ray Tracing
(ERT) to determine the beam’s direction [72]. Thus, the proposed measurement technique is
a novel approach on the measurement of specular freeform surfaces. It overcomes ambiguities
in the measurement data faced by other gradient-based measurement techniques, while
making use of their advantages. Additionally, it does not rely on high precision optical
components that have to be calibrated. It offers a smart and cost-efficient solution to the
measurement of freeform specular surfaces.

1.3 Outline

The presented thesis is structured as follows. As seen before, the first chapter gives an
introduction into the topic of surface metrology and an overview of the state of the art metrology
systems. In the second chapter, the proposed measurement concept is presented and
described. Techniques and methods used are introduced. Chapter two ends in an analytical
model about the measurement methodology. This analytical model is transferred into a
numerical model in chapter three. This numerical model is characterized by the discretization
of the analytical model. The problems introduced by this discretization are described and the
approaches to overcome these problems are described. This also includes the numerical
integration of the determined gradient data and the handling of non-integrable data. In chapter
four the numerical model is verified by simulation. A simulation model is presented including
various parameters to simulate misalignments in the measurement setup. Using different
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surface models, the flexibility of the proposed measurement technique is shown. In chapter
five, the transfer of the simulation model into a real measurement setup is presented. The
components, used in the experimental setup, as well as the measurement procedure are
described. Using four different samples, the abilities of the proposed measurement technique
are verified experimentally. Chapter six is dedicated to the error analysis. Several error sources
are described and evaluated. The results from the error analysis are compared to experimental
repeatability measurements. In chapter seven, the proposed measurement technique and the
results presented are discussed. The thesis is concluded in chapter eight and an outlook is
given for further developments and improvements of the proposed measurement technique.
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2. Methodology

2.1 Concept of measurement

2.1.1 Introduction of optical model and basic optical principle

The basic optical model used for the conceptual development of the proposed measurement
technique is known as geometrical optics [33, 73]. In this model, the wavelength is considered
in the limit case of A —» 0. Therewith, optical phenomena based on the description of light as
waves, like diffraction and interference, are not considered. This opens up the possibility to
use geometrical and algebraic tools to describe the behavior of light, as this has already been
applied in ray tracing procedures [74]. For example, rays, representing the direction of the
propagation of the flow of the radiant energy, can be described by geometrical lines [1]. This
must not be confused with the model of paraxial optics. In this model, the concept of
geometrical optics is also applied, but further simplifications are used to describe the optical
behaviors in small angles and distances from the optical axis. As this does not apply to the
proposed measurement method here, the paraxial model is not applicable.

A well-known optical principle is the law of reflection: “angle of incidence is equal to angle of
reflectance” [1]. This law describes the relation of the angle @ for the incidence ray and the
angle @ for the reflected ray to the normal of the surface at the point where the incident ray
intersects with the surface [1, 73]. This relation is illustrated in Figure 2.1. The law says that
the angles ® = @ are equal, while the incident ray and the reflected ray have to be coplanar
with the surface normal.

\

\
\
\

Figure 2.1: Sketch of the reflection of a ray with an incident angle ® and an incident
direction i at the point I of surface with the normal g. After the reflection, the ray has the
direction r with the reflectance angle @.

As described before, geometrical tools can be used to describe the behavior of light. Here,
direction vectors are used to describe the direction of light rays while position vectors are used
to describe points in space. To describe a light ray as a geometrical line in space completely,
a point in space and a direction are needed [75]. However, mostly this is not necessary here.
Regarding Figure 2.1, one can see that the directions of i, r and g are not dependent on their
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position in space, but only on their directional relation to each other. This means, the incident
ray i, the reflected ray r and the surface normal g can be represented by direction vectors,
while the point I of intersection of the incident ray with the surface can be represented by a
point in space with its position vector I.

To define the geometrical relation between i, r and g, the vectors are considered unit vectors.
This means they all have the same norm |i| = |r| = |g| = 1. Having this, the surface normal

r—i

§=T7—7—7—— (2.1)
/2(1—(r'i))

can be determined from i and r using vector geometry [76]. Thus, having the incident ray
direction i and the reflected ray direction r for a point I, the surface normal g of the surface at
this point can be determined.

2.1.2 Introduction of homogeneous coordinates, transformation matrices

and coordinate systems

For the representation of direction vectors and position vectors in figures, a Cartesian vector
space of the form R? with the axis x, y and z is introduced. Cartesian coordinates are very
descriptive and easily comprehensible. However, transformations in Cartesian coordinates,
like translations or rotations, are cumbersome, as direction and position vectors have to be
treated differently. Unfortunately, direction and position vectors cannot be distinguished by
their structure in Cartesian coordinates. This is a problem as different coordinate systems
(CSs) have to be defined within the Cartesian vector space including transformations of
position and direction vectors between these CSs. To overcome this problem, homogeneous
coordinates in a projective vector space are used [75].

In homogeneous coordinates, transformations and operations can be applied equally to
position and direction vectors [77]. Additionally, problems regarding the far point of lines can
be overcome [75]. These advantages have extensively been used in computer graphics, where
three-dimensional scenes, even including infinitely far distant points, are transformed onto a
two-dimensional screen plane [77]. These advantages are achieved by using one additional
dimension resulting in a vector space of the form R*, the projective vector space V.

In V, a vector can be represented by

=% (2.2)

using the four homogeneous components Iy, Iy, I, and I,,. As vectors in these homogeneous
coordinates represent vectors from the Cartesian coordinates, transferred to another higher
dimensional vector space, the set of all their vectors is also called projective space of the form
P3 [75, 78]. In V, all points on a line through origin, except the origin itself, represent one and
the same position vector in Cartesian coordinates. As one point of the line is the origin, a
second point is needed to define the direction of the line. May I,, I,, and I, be the Cartesian
coordinates of a position vector, one point on the line in homogeneous coordinates can be
defined as

10
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LN/l
T R I (2.3)
I, Iz
1 Ly =

Iy=1
using the Cartesian coordinates. To transfer any point on this line except the origin from
homogeneous coordinates to the Cartesian coordinates, the equations

1
Ix:_X
Iw

X I, = £, with Iy # 0 (2.4)
w

!Iy_IW

are used. In other words, one can say
L=Ix 1, =1y, I, =I;forl, = 1. (2.5)

As in this work all position vectors are defined by the W-component being equal to 1, the
equations given in Equation (2.5) apply to all position vectors.

In contrast to a position vector, a direction vector is not represented by a line through origin in
homogeneous coordinates, but by a plane through origin. This plane has a unique line through
origin where all points on this line have its W-component equal to 0. All lines lying in one plane
in homogeneous coordinates have this same unique intersecting line and therewith represent
the same direction vector in Cartesian coordinates. Thus, a direction vector pointing in a certain
direction in Cartesian coordinates, no matter of its length, can be represented in homogeneous
coordinates as a vector

Ix Ix
(9= 2.6
9=\g. )"\ 9z (2.6)
0 gw gw=0
for gy = 0. Or in other words,
9x = 9x» 9y = 9v» 9z = gz for gy = 0. (2.7)

As in this work all direction vectors are defined by the W-component being equal to 0,
Equation (2.7) applies to all direction vectors.

Thereby, position and direction vectors can now be distinguished in their homogeneous
representation by the W-component. The wording of “homogeneous” comes from the fact that
transformation can now be homogeneously applied to direction vectors and position vectors
while their indication and characteristics are preserved [75].

A CS in the Cartesian space is defined by a basis in the vector space V. This basis represents
the Cartesian CS with position and orientation. To represent vectors in different CSs, linear
transformations in V in form of a change of basis are used [75, 78, 79]. These transformations
are performed by multiplication of a homogeneous transformation matrix with the
homogeneous vector to be transformed. If a shift of a Cartesian CS by Ax, Ay and Az along
the three axis x, y and z is desired, the transformation matrix

1 0 0 —Ax
|10 1 0 -—-Ay 28
T(t) = 0 0 1 —-Az/ 28)
0 00 1

using the translation vector t = (Ax, Ay, Az), can be defined. When this transformation matrix
is applied to the homogeneous representation of a Cartesian position or direction vector, the
new values of the homogeneous vector represent the Cartesian position or direction vector

11
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accordingly to the desired shift. The negative sign here comes from the fact that a movement
of the CS according to t results in an inverse movement of the vectors.

If differences in the orientation of Cartesian CSs exist, the matrices

1 0 0 0
_ |0 cos(a) —sin(a) O 2.9
Ry(@) = 0 sin(a) cos(a) O (9)
0 0 0 1
cos(B) 0 sin(B) O
_ 0 1 0 0 2.10
Ry ()= —sin(f) 0 cos(f) O ( )
0 0 0 1
and
cos(y) —sin(y) 0 0
_|[sin(y) cos(y) 0 O 2.11
R.(¥) 0 0 1 0 211)
0 0 0 1

can be defined using the angles in the rotation vector y = («, B, y) [75]. These angles represent
the rotations around the axis x, y and z in a Cartesian CS. Applying the transformation
matrices defined in Equation (2.9), (2.10) and (2.11) to a homogeneous vector representing a
Cartesian position or direction vector, the resulting homogeneous vector represents the
Cartesian position or direction vector accordingly to the rotations defined by y. As these
transformations can be performed homogeneously to homogeneous vectors, they can easily
be combined using matrix multiplication. Thus, the matrix

H(y,t) = R,(¥)Ry(B)R,(a)T(D) (2.12)

performs all transformations in one step while the order of the transformation is backwards in
terms of the order shown in Equation (2.12). This means that the translation is performed first.
After that, the rotations in the order xyz are performed. These rotations are intrinsic rotations
with Cardan angles. Thus, the next rotation is always performed in reference to the orientation
of the CS after the previous one [80]. To prevent misleading interpretations here, it has to be
mentioned that these transformations are defined to change the CSs around fixed vectors and
not to rotate vectors within a fixed CS. A rotation with @ > 0 leads to a rotation of the z-axis
towards the y-axis of a CS. A rotation around the y-axis with § > 0 leads to a rotation of the
x-axis towards the z-axis of a CS. Finally, a rotation around the z-axis with y > 0 leads to a
rotation of the y-axis towards the x-axis of a CS.

The location and orientation of a Cartesian CS projected in V can be described by a basis in
V. May § be such a basis, it is defined by four vectors. Three vectors represent the direction
vectors of the Cartesian CS projected to homogeneous coordinates. The fourth vector is a
position vector describing the origin of this Cartesian CS projected to homogeneous
coordinates. Thus, one can say S = {ey, ey, e;, 0°}, where ey, ey, e, € V are orthonormal and

describe the orientation of the CS while 0% = (B§,B§,B§,1)T € V describes its origin.
Therewith, all elements of V can be described as a linear combination of § [79]. Since this
description is unique and the elements of § are linear independent, S is a basis of V. Having
this basis, the relation between the canonical basis of V and § can be described by the
transformation matrix H;, performing the mapping V - S. To reverse this transformation, the

invers HS = HY can be used. Having another Cartesian CS which can be defined in
homogeneous coordinates by the basis M, the transformation matrix H}* can be defined to

12
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transfer vectors into this CS. In this work, the canonical basis of V is irrelevant, as only the
relation of the bases defined in V to each other is used. This relation

H(y2, ¢)") = HY = H)'H{ (2.13)

is defined using the canonical basis, but can be bypassed if H can be defined
independently. Having a transformation matrix, the transformation of direction and position
vectors

g° = H5, g™ and I = H3 I (2.14)
can be applied homogeneously.

The CSs used in this work are illustrated in the sketched measurement setup in Figure 2.2.

Figure 2.2: Sketch of the measurement setup with the four CSs: incident ray 7, camera
C, measurement plane M and the surface under test §. A4 represents the investigated
area.

Incident ray J
This CS with the basis 7 represents the CS, wherein the incident ray is introduced into the

measurement setup. Its axes are named i, ¥, w. Within this CS, the incident ray is directed
along the w-axis.

Camera C

The name of this CS with the basis C already identifies the experimental implementation of
one of the components of the measurement setup. However, this does not change the meaning
of the CS, as it is the one the reflected ray’s direction is determined in. The axes of this CS are
u, v, w.

Measurement plane M

The measurement plane identifies the direction of the sampling of the SUT. As the proposed
measurement technique does not detect the surface’s orientation and alignment in relation to
the complete device under test (DUT), this may not be mistaken with the orientation and
location of the DUT itself. This gets clearer, when the measurement principle is described in
Chapter 2.1.3. The CS has the basis M and the axes are %, ¥, Z.

Surface under test S
If the model function of the SUT is known, this function is described in this CS with the basis §
and the axes x, y, z. The SUT is represented by the function

13
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z =s5(x):R? > R, with x = (x,y)T € 4, (2.15)

which has to be defined over the investigated area A in the xy-plane. With this, one can see
that the position vector to I has to fulfil

X

I@%:Sé). (2.16)
1

The SUT has to satisfy the requirements to be continuous and continuously differentiable over
A, as steps in the surface cannot be detected. In addition, the surface must not exceed
incidence angles of ® > 90° as this leads to ambiguous points of intersection or dark spots on
the SUT, which cannot be investigated. This can easily been recognized regarding Figure 2.1
and imagining an increase of @ to 90°. Furthermore, as this is a gradient-based measurement
technique, it has to be said that a constant in s(x) cannot be reconstructed.

From here on, all calculations related to direction or position vectors are performed using their
homogeneous representation, while their presentation in figures is in Cartesian coordinates.
The CSs are named by their basis defined in homogeneous coordinates. Thus, if the CS 7 is
named, this relates to the Cartesian CS, represented by the basis 7 in homogeneous
coordinates.

2.1.3 Measurement principle

Using the CSs described before, a measurement principle can be settled that scans the SUT
and determines the normal g for any point I of the SUT within A. Therefore, the incident ray is
targeted onto the SUT with a certain direction that is along the Ww-axis of the CS 7 as shown in
Figure 2.2. The direction of the reflected ray is determined in the CS ¢ . This will further be
described in Chapter 2.2. From here on, the CSs 7 and C are considered to be fixed in relation
to each other. In addition, the CS S is considered to be fixed in relation to the CS M within one
measurement. To scan the surface, the CSs § and M can be translated arbitrarily within the
Xy-plane. Therefore the basis

0 — - (2.17)
B3
1

of the CS M is shifted to target a certain position ¥ = (¥,7)”. The incident ray can now be
targeted onto any point on the SUT according to I in Equation (2.16).

As the direction of the reflected ray is dependent on the point I on the surface and is
determined in the CS ¢, it can be described as r¢(I). To determine the surface normal using
Equation (2.1), also the direction of the incident ray has to be known in C. Having the relation
between 7 and C, the incident ray’s direction i¢ = HY i’ in the CS € can be defined according
to Equation (2.14). Applying Equation (2.1) one can get the surface normal direction

ré(n —i¢

gc) =
\/2(1 — (e - i)

(2.18)

forany I.

With g5(I) = HSgC(I), this can now be transferred into the CS S where s(x) is defined.
According to Equation (2.6) and (2.16), the vector components
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gx (D
95D = gigi - () (2.19)
g3
0

can be derived from g° (I) dependent on x. This means that the direction of a normal on the
surface s(x) is only dependent on x. Having the surface normal, the slopes

_ 0s(x) g% (x) 2.20
and
ds(x)  gy(x)
sy(x) = oy = —gzs(x) (2.21)

can be determined. These slopes also represent the first derivatives of s(x) in x- and
y-direction at the position x [79, 81].

T
Using the Nabla vector V = (;—x,;—y,%) , a gradient field

0s(x)

dx
| 8 | /Sx(x)
{(x) = Vs(x) = 2(;) | = s,(x) (2.22)

ds(x) 0

0z

can be defined in the CS §. As the surface function is continuous and continuously
differentiable over 4, the integral

f {(x)dx (2.23)

for two arbitrary positions x, and x;, with x,,x; € 4, is independent on the path of the
integration within 4 on the gradient field {(x) [78]. May x, = (0,0) and s(x,) = A, the surface
function can be defined for any arbitrary position x as

s(x) = j((x)dx+A (2.24)

from the gradient field.

2.2 Experimental Ray Tracing

The detection of the direction r of the reflected ray is determined in the CS €. Within this CS
a variation of a technique called ERT is used. ERT has initially been introduced to characterize
optical components in transmission [72]. The idea is based on a measurement technique for
collimating optics called Hartmann test [46]. In this measurement technique, a plate with
pinholes is placed in front of an optical component. Having a collimated beam directed onto
this plate, single sub beams, considered as rays, are created. These rays propagate through
the optical component independently. Behind the optical component, the positions of the rays
are detected around the focus using two parallel photo plates being exposed separately. From
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the spots the rays create on the photo plate, information about the optical component can be
determined. However, this technique was time-consuming as it took a long time to investigate
the photo plates using a microscope. To overcome this problem, a laser diode with a pinhole
and a movable scanning mirror replaced the pinhole plate. In addition, a position sensitive
detector on a linear positioning stage has replaced the two photo plates [72]. Therewith,
arbitrary positions on the optical component can be investigated, while the fast detection of the
ray’s position using the position sensitive detector can be performed in two parallel planes
using the linear stage. A connection between the world of simulations using ray tracing and
the experimental measurements has been built as ray tracing can now also be performed
experimentally. In a next step, this technique has been developed further by using a fiber-
coupled laser diode on linear stages for the positioning of the incident beam and a camera for
the beam position detection. This led to a higher accuracy and repeatability of the
measurement results [82].

In the measurement technique proposed here, the part of the setup of ERT to detect the ray’s
direction is used. The principle can be described by using the sketch shown in Figure 2.3.

Figure 2.3: Sketch of the technique used for the detection of the direction of the reflected
ray r by determining its intersection points € and D with two parallel planes.

As shown in Figure 2.3, two parallel planes are used to detect the reflected rays direction r.
These two parallel planes are perpendicular to the w-axes of the CS € and must not be
identical. With this, two points € and D can be defined, where the reflected ray intersects with
these planes. With the two position vectors € and D to the points € and D, the direction of the
reflected ray

_ D—-C
"I

(2.25)

can be determined. From this equation, one can see that the direction of r is dependent on the
position of the two parallel planes. However, the orientation of the positive direction of r is
dependent on these positions. Thus, it has to be assured that the positions are chosen that
cS > DS, to preserve the validity of Equation (2.1).
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2.3 Determination of surface gradients and surface reconstruction
2.3.1 Shift of sample points

As shown in Equation (2.16), the point of intersection is not only dependent on x and y but
also on the function s(x) that represents the point’s position in z-direction. This is problematic,
as the surface function s(x) is intended to be determined with this measurement technique.
Assuming i is parallel to the yz-plane, has an incident angle of 45° to the xy-plane and points
onto a point J in the X¥j-plane, one can see that a change of the surface in z-direction results
in a shift of I as illustrated in Figure 2.4. Additionally, this shift is dependent on the z-position
and therewith on s(x). Thus, a mapping from J to x independent on s(x) is not possible.

s(x)

Figure 2.4: Sketch to show the difference between | and I. The partially transparent line
shows an alternative position, to illustrate the change of I dependent on a shift of J in
y-direction.

Although, having s(x) and the transformation matrix H5,, one can get a relation between the

targeted position J with its position vector

J=]® = (2.26)

— O X

and the point I, where X = (%, ¥) is the targeted position in the ¥j-plane. To find this relation,
the incident ray direction is used to create a set of position vectors

R" =J+ki™ keR (2.27)
on a line in the direction of i through the point J [83]. With Hﬁ,[ the position vectors
RS = JS + ki (2.28)
are also known. Determining the factor « to fulfill
R =%, (2.29)
a relation between the targeted position X and the position I(x) is found. Regarding Figure 2.4,

one can say that this means that the point I is the point of intersection of i, extended through
the point J, and the surface s(x).

2.3.2 Solution for known surfaces

Having the transformation matrix Hﬁ,[ and knowing the surface function s(x), a relation
between the targeted position J and the surface can be determined. However, one has to
assume the base of the coordinate system S and therewith H3, is unknown. This could be the
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case if, for example, the SUT is not placed perfectly centered and perfectly oriented. Thus, H3,
has to be determined from the detected surface data.

As the integration according to Equation (2.24) can only be performed if the coordinates x are
known, the determination of H3, is performed using the slope information. Assuming the SUT
is positioned and oriented perfectly, Hﬁ,[ can be determined from the expected relation given
by the measurement setup. With this assumption, one can determine the expected point of
intersection K by finding its position vector K (H}g,[%) as the intersection of R® with the SUT
using Equation (2.29). Using Equation (2.20) and (2.21), one can calculate the expected
surface slopes a(H3;,%) and b(H3.,%) in x- and y-direction for the position K(H3., %) .
However, as it is assumed that the SUT is not placed perfectly, it has also to be expected that
K # I and therewith also a(H3., %) # s,(x) and b(H3¢, %) # s,,(x). To find the relation between
S and M, one has to set

a(H3g, %) = s,(x) and b(H3, %) = 5, (x) (2.30)
and find a solution for H3, to fulfill this equation.

2.3.3 Solution for unknown surfaces

In contrast to the chapter before, the surface function s(x) is here considered unknown. Thus,
neither the expected point of intersection K nor expected surface slopes a and b can be
determined as x in Equation (2.29) cannot be found. This leads to the problem that with an
unknown position x of the surface slopes, an integration cannot be performed. However,
observing the situation from another CS, these problems can be overcome.

Observing the situation from the CS 7, this CS is considered to be fixed in relation to M.
Instead of moving the origin of M according to Equation (2.17), the incident ray is assumed to
target a certain position X¥ by moving within the #iv-plane in 7. To overcome the dubiety about
the factor «, the position J? is transferred into the CS 7. As i is parallel to the W-axis in the CS
7, the position J* can be transferred into the CS 7 and projected onto the fi-plane without
translations in ii- or ¥-direction. As homogeneous coordinates are used, this can also be
performed using a transformation matrix. Thus, one can say that the position vector

L = HY J (2.31)

o O OO
o O O

1 0
0 1
0 0
0 0
points to L in the @iv-plane as shown in Figure 2.5. Therewith, the line of the incident beam
R? — L? + K'ij (232)

can be defined in the CS 7. Transferring the surface normal g’ = H. g€ to the CS 7, it can be
mapped to the position L’ directly as the position of L’ in the #i-plane is independent on the

factor k. This can also be seen regarding Figure 2.5. The point L is independent on I even if
s(x) is changing since ] is fixed.
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s(x)

Figure 2.5: Sketch of the incident ray location in the CS 7 after the transformation of the
targeted point J.

J
Using Equation (2.20) and (2.21) one can determine the surface slopes sy (i, ) = —j—}z and

J
sy, U) = — % from the normal in the CS 7. Applying Equation (2.24) accordingly in 7, the

9

surface function can be determined. However, the surface s(@, ¥) will then be represented in
the CS 7. Thus, one can define the position of intersection
U
S_ySy7 —ys v 2.33
F=HI=H]| .o (2.33)

1
that also represents the surface shape in the CS §, from the integration performed in the CS
J. It has to be mentioned here that this is a theoretical construct as the rotation of analytical
functions is not trivial and can easily lead to ambiguities. In the numerical model, this is more
applicable.
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3. Numerical model

3.1 Introduction

As this measurement technique is a scanning technique, it includes two major characteristics.
First, the surface cannot be investigated continuously, but only on certain discrete points.
Second, these discrete points cannot be investigated at the same moment, but have to be
scanned serially. This chapter’s focus is set onto the first point mentioned, as this introduces
a new perspective on the methodology described before. The effects of the second point
mentioned are further described in Chapter 5.1.

As described in the beginning of this thesis, the terminology of the discrete sampling is that the
symbols stay the same, but get an index showing their discrete character. The meaning of the
index is shown in the following chapter.

3.2 Sample points, surface normal and gradient field detection

As described before, the investigation of the SUT is performed by the observation of discrete
points on SUT. In Chapter 2.3.1 it has been shown that the actual investigated point on the
SUT is dependent on the shape of the SUT and its positioning in the setup. Thus, defining
points to be investigated on the SUT directly is not possible. However, it is possible to define
a number M of discrete sample points

%, = (’fi>, with i = 1. M, (3.1)
Yi
in the measurement plane, as described in Chapter 2.1.3. In Equation (2.17), these points
represent a negative shift of the origin of the CS M. As the CS § is fixed to the CS M, one
can also interpret this shift of the origin as a positive shift of the CSs 7 and C so that the incident
ray is positioned to X; in the xj-plane. This situation is shown in Figure 3.1. Since the sample
points are now discrete, this leads also to the discrete points I; and the discrete reflected ray
directions r;. Still, it has to be fulfilled that the projection of I; on the xy-plane has to be an
element of A. In Figure 3.1, a possible sequence of sample points is illustrated. However, this
is only an example as the shape of the sampled area can be changed individually for any SUT.

Additionally to the shape of the area, the sample distances Ay in y-direction and AX in
X-direction can be chosen individually. Having one sample point at (0,0), one can define all
other sample points

%; = (fi0%, g;A9)T with f;,g; €Zand i =1..M (3.2)

as a vector of integer multiples f; and g; of the sample distance. Adding constants to the two
elements of X; one can introduce a shift of all sample points in - or y-direction.

For the principle of the measurement technique, the sample grid does not have to be even and
can also be of arbitrary shape. However, in this work only even grids with a constant sample
distance are considered. The shape of the sample grids in this work are either square, circular
or a single line for a cross-section measurement.
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Figure 3.1: lllustration of a possible sample grid represented by the points %; ... X, in the
xXy-plane. Additionally, the sampling of the discrete position X; is leading to the discrete
reflected ray’s direction r; and the discrete surface normal g;.

As the incident beam direction i is not changing dependent on the positioning of the SUT, it is
the same for all sample points. With the incident beam direction and the discrete reflected ray
direction r; =r(x;), one can determine the discrete surface normal g; = g(¥;) using
Equation (2.1).

According to Equation (2.20) and (2.21) the surface slopes m; and n; in x- and y-direction can
be determined from the surface normal g;. Therewith, the gradient field

m; Sx(xi)
¢ = <ni> = (sy(xi)) (3.3)
0 0

described in Equation (2.22) can now be defined numerically with the numerical surface slopes
m; and n;.

At this point, a differentiation has to be introduced. As deviations can occur during
measurement and evaluation, the determined surface slopes can deviate from those derived
from the surface model. This can be introduced by uncertainties or alignment errors in the
setup, by errors introduced by the integration process or by deviations of the actual SUT from
the model. Since the deviations of the SUT from the model are the targeted result of this
measurement technique, the other sources for deviations have to be identified and minimized.
This is addressed in subsequent chapters.

In Chapter 2.1.3 one can see that the surface slopes can also be determined from the incident
ray direction i and the reflected ray direction r;. In this case, it has to be considered that the
deviations described above can also introduce a deviation of r; from the expected ideal
direction. Therewith, the surface normal determined from i and r; using Equation (2.18) and
consequentially the surface slopes p; and q; determined in x- and y-direction using Equation
(2.20) and (2.21) deviate from the expected slopes of the model. Having

Ix,i
L= _ZXl (3.4)
Pi gz,i
and
9y (3.5)
% gz,i

determined from g;, a gradient field
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Di
ne = n(x) = (qi) (3.6)
0

representing the determined surface gradients, can be defined. This gradient field includes the
surface model gradient field ¢ as well as a gradient field of deviations . Therewith, the relation

n=4+¢§ (3.7)
can be settled.

In addition to the differentiation between the model gradient field and the determined gradient
field, one can also settle the differentiation between the model surface sag and the determined
surface sag.

With Al)i?m0 and Al)i7m0, Equation (2.24) can be used to determine the surface sag

s = s(x) = f Cdx+A (3.8)

from the gradient field {, where A is an unknown constant of the surface function. The same
applies to the determined gradient field n

Xi
h; = fndx+A (3.9)

Xo

and the gradient field of deviations &
Xi
d; = ffdx (3.10)
Xo

resulting in the determined surface sag h; and the surface deviation d;.

According to Equation (3.7), these sag and deviation information can be related as
hi=Si+di' (311)

Regarding Equation (3.9), one can see that the surface can be reconstructed using the
determined gradient field . Substituting n with Equation (3.7) by applying the sum rule, the
surface sag

hi=f((+f)dx+t4=Jx.i(dx+ffdx+A (3.12)

can also be determined from two separate integrations of the two gradient fields ¢ and & [79].
Using Equation (3.8) for substitution in Equation (3.12), one can see that the surface sag

hl-=sl-+f%’dx (3.13)

can even be determined from the surface model and the integration of the gradient field of
deviations only.
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3.3 Gradient integration method and surface characterization

3.3.1 2D surface integration using Radial Basis Functions

The integral over an integrable gradient field is independent on the path of the integration.
However, this is only valid, if the gradient field is continuously known. Accordingly, Equation
(3.8) until (3.13) are only valid for AI}TO and Al}i7r£10.

Since the proposed measurement technique cannot satisfy this approach, an appropriate
method for the integration of gradient data for AX > 0 and Ay > 0, has to be used [84].

In Chapter 2.3.1, it has been shown that the actual sample points may be shifted. This leads
to a non-equidistant grid of sample points. Additionally, the considered area A may has a
freeform shape, according to the edge of the SUT. Thus, the integration method to be used
here has to be able to handle non-equidistant grids of sample points with different shapes. An
integration technique that provides these opportunities is the integration using Radial Basis
Functions (RBFs). The integration using RBFs is based on positioning a certain function, the
RBF, multiple times over the considered area. These positions are further called center points
and are depicted x;, with j = 1...N. In this work, the number of center points N is always
chosen to be equal to the number of sample points M. Additionally, the positions of the center
points are chosen to be identical with the positions of the sample points. Thus, one RBF is
placed at each sample point.

The 2D integration case faced here is of Southwell configuration. This means that two slope
data are available per sample point [85]. To adapt the interpolant to this situation, Ettl et al.
proposed an integration method where the interpolant function is given as

N N
ay oLV
h(x)=cha(x—xj)+;c,v+j@(x—xj) (314)

Jj=1

with

1 1
§(1 —)6(3572 + 187 +3) for? = ;w/x2 +y2<1landp>0

Y(x) = (3.15)

0 otherwise

being the Wendland function, where p is the support radius of the RBF and ¢; is the coefficient
for the j-th RBF [21, 86, 87]. The derivatives of the function can be found in Appendix A. The
Wendland function is a positive-definite function with a limited support radius. In contrast to the
also often used Gaussian function, the Wendland function and its derivatives become 0 at the
position # = p. For comparison, the Gaussian function and the Wendland function are
illustrated in Figure 3.2.

As described in Equation (3.15) the Wendland function is defined to be 0 outside the support
radius p. Therewith, the supported area of one RBF is exactly defined to be within p. Regarding
Figure 3.2, one can see that the Gaussian function becomes close to 0 at # = 2.0, too.
However, applying a limited support radius to the Gaussian functions leads to a step in the
function, as the Gaussian function does not become 0 before # = oo.
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Figure 3.2: Comparison of the Gaussian function with ¢ = 0.5 and the Wendland
function with p = 2.0.

Having Equation (3.14) as the interpolant function, the equations

N
oh 6%y o2y
(ﬂ)i =chﬁ(xi_xf)+ZCN+jm(xi—xj) =D (3.16)
- £

J_

=

and

N
dh 0%
(@)L JZ J axa JC]) +ZCN+] 3y? (xl xj) (3.17)

can be derived for the slopes of the interpolant. Therewith, the interpolation is only supported
by gradient data and therewith is of Hermite type [88]. With this, the linear equation system
(LES)

S =Ac (3.18)

can be defined, where

|
S=k%) (3.19)
dm
holds all slope values,

0%y
/W(xi—x» E,yax(l ,)\
A= - (3.20)

\a,f;’;( —x) - "’2"’(xl x) /

2M X 2N
represents the interpolant matrix and
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C:1
¢ =(c§,’ilw (3.21)
\eiu/

depicts the coefficient vector.

With M = N, the interpolation matrix A becomes symmetric and therewith a unique solution to
the LES exists [21]. The determined coefficient vector ¢ can now be used to reconstruct the
surface using Equation (3.14). For easier readability, the usage of this integration method is
from now on donated by

h = rbf(X, m; p), (3.22)

where h is a set holding the integrated values, X = {x; ... x),} is a set including all sample
positions, i is the gradient field to be integrated and p is the support radius of the Wendland
function.

This method for surface reconstruction can be adapted for noisy data of different levels. To
handle data with higher noise levels, two adaptions are available: either the support radius p
of ¥ can be increased or the number of center points N can be reduced. However, it has to be
kept in mind that with increasing the p, the rank of the interpolation matrix A is decreased until
the matrix becomes singular. Thus, p has to be chosen properly to conserve local
characteristics while ensure reconstruction stability, even if the given data is noisy [87].
Reducing the number of center points N, a smoothening of the noisy data can also be
achieved. Regarding Equation (3.18), one can see that this leads to overdetermined LES and
a non-symmetrical interpolation matrix A. Thus, the LES has to be solved in a least-squares
sense, leading to higher calculations times [89]. In this work, only the case of equal number of
sample points and center points is considered. With this said, the memory usage of this method
has to be considered. In the proposition of this method, Ettl et al. split a given data set of 60 x
60 sample points into a grid of 6 x 6 patches for being able to handle the solving of the LES
given in Equation (3.18) [21]. The patches were later on combined to recover the reconstructed
surface. This stitching method lead to the question of how much memory is needed to hold the
data required by Equation (3.18). The number of elements needed

(4MN) + (2N) + (2M) (3.23)

can be calculated from the given matrix and vector sizes. For M = N this can be reduced to
4N? + 4N. May the size of one element in a computer be 64 Bit = 8 Byte, the evolution of the
needed memory to hold the data can be calculated as illustrated in Figure 3.3.

One can clearly see that the amount of memory needed is increasing rapidly. It has also to be
considered that this is only the amount needed to hold the data. Memory needed to perform
the calculations, as well as for other programs or the operation system are not included.
However, the increase in the sizes of memory available for computers as well as the availability
of solid-state-drives to extend the memory using a swap file, make memory sizes of up to
512 GB or even more realizable. Thus, the need for splitting the data into patches is no longer
given.
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Figure 3.3: Memory needed to hold the data required by Equation (3.18) for N = M and
the size of one element being 8 Byte.

3.3.2 Integrability considerations

As said before, the integrability of a discrete gradient field can be dissolved by the introduction
of noise to the gradient data or even by the discretization itself. Both factors can introduce curls
to the gradient field resolving in a non-integrable gradient field.

The curl of a gradient field is also a vector field describing if the gradient field contains
positions, where a line following the gradient field creates a closed line [79]. In Chapter 2.1.3,
it has been said if a gradient field was integrable, integration from one point to another is
independent on the path. If a closed line along the gradient field exists, this path independency
does not exist anymore. The curl of a gradient field

curlp =Vxng (3.24)

is calculated using the Nabla vector [79]. Introducing the discretization of the vector field n as
described in Equation (3.6), the discrete curl can be defined as

ox , /(’)y az\ 0

] pi dp; 0 0
= . =1 %P7 | 3.25
curlp; =V xn; 3y x<6(1)1> 5 I %_% ( )
iy dq;_Opi| \ox 0y
0z dx dy

Thus, for a 2D gradient field, as given here, the curl vector field is a field of vectors parallel to
the z-axis, while the length of the vectors is giving information about the magnitude of the curl
at the considered position. For further considerations, it is assumed to have the situation shown
in Figure 3.4 for one certain point in a gradient field.

27



Numerical model

. 2y )
Figure 3.4: lllustration of a curl vector V x n; at x; derived from surface slopes given at
the sample points x;_,, x;_;, x;4; and x;,, connected to x;. The red slopes g;_; and
qi+1 represent slopes in y-direction, while the blue slopes p;_, and p;,, represent slopes
in x-direction.

To determine the derivatives needed to calculate the curl according to Equation (3.25),
symmetric derivative calculation is used [90]. Therewith, the z-component of the curl vector as
illustrated in Figure 3.4 can be calculated by

9q; _0pi _ Qi+1~ qi-1_ Pix2 — Pi-2 (3.26)
ox 0y 2Mx 20y
Thus, the length of the curl vector gives information about the slope’s sum along the purple

circle illustrated in Figure 3.4. May the illustrated slopes in this figure have the values p;_, = 1,
qi-1 =—1,q;41 = 1 and p;,, = 1 and may Ax = Ay, the length of the curl vector

Qi+1 — 9i-1 _ Pi+2 — Pi-2 _ 2 (3.27)
2Ax 2Ay 2Ax

for the sample point x; can be determined. Multiplying this with 2Ax, the slope increase or
decrease along the curl can be determined. Assuming to have this increase or decrease along
the circle, a height deviation

dq; Op;

heurts = (53 = ) 4mx® (3.28)
introduced by the curl can be determined. This height deviation cannot be represented in the
reconstruction of the surface as it is not integrable. The RBF method used for the integration
in this work is able to find a least-squares solution for non-integrable gradient fields. However,
it has also been shown that this integration method shows integration instabilities, when large
curl fields are applied [91]. To overcome this problem, the integrability has to be enforced [92].
Regarding Figure 3.4, one can see that one slope information influences two curl vectors: one
in the positive and one in the negative direction. Thus, there is no direct mapping of the slope
values from the determined curl vectors. To solve this, a LES

b = BS (3.29)

based on Equation (3.26) is defined, where b is a vector holding all curl values Vx n;, S is a
vector holding all slope data and B is a sparse matrix mapping the slope values to the
corresponding curl. As the calculation of the curl underlies the sum rule, the given gradient
field can be imagined to be the sum of a curl-free gradient field and a non-curl-free gradient
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field. Using the given gradient field in Equation (3.29), the curl of the gradient field is retrieved.
Reversing the process and solving the LES for § using the calculated curl values, the slopes
of a non-curl-free gradient field are retrieved. Subtracting these from the given gradient field
results in an integrable curl-free gradient field [92].

As described before, curls can also occur due to discretization of the continuous surface
function. In Chapter 3.2, it has been shown that if the surface model function is known, only
the gradient field of deviations &; had to be integrated. May the discretization of the model
function introduce a non-curl-free gradient field ¢, ; to the model gradient field

(i = (O,i + (c,i; (330)
this non-curl-gradient field also appears in the determined gradient field
ni = Mo, + i (3.31)

due to Equation (3.7), while {,; and n,; represent curl-free gradient fields. Rearranging
Equation (3.7) and inserting Equation (3.30) and (3.31) to

&= 8= Mo+ 3ci) — (Soi+8ci) =@ =)+ (8ei = ci), (3.32)

one can see that the curls introduced by discretization of the model function do not appear in
the deviation gradient field §;. It has to be mentioned that this consideration does not cover
curls appearing in the deviation gradient field &; introduced by noise or the deviations from the
model function itself.

The considerations described before are only valid for the reconstruction of a surface, where
the model function is known. If the model function is not known, enforcing the integrability on
the determined gradient field n; can lead to deviations in the reconstructed surface. Regarding
Equation (3.31) and assuming {.; be a non-curl-free gradient field introduced by discretization
of the ground truth of the SUT, this non-curl-free gradient field includes information about the
ground truth that is actually correct. Thus, subtracting these curls from the determined gradient
field, leads to the curl-free gradient field

Noi =M — e (3.33)

that might deviate from the actually correct gradient field ; and therewith represents the
gradient field of a surface deviating from the ground truth. As described in Chapter 3.3.1, the
2D integration using RBFs finds a least-squares solution for the deviation of the reconstructed
surface’s slopes to the given slopes from the determined gradient field n;. Thus, even if a
discrete non-curl-free gradient field of a continuous surface is given, this method can be able
to find a solution for a continuous reconstructed surface [93]. Therefore, the enforcement of
the integrability is not performed for the reconstruction of unknown surfaces, as a high chance
exists that relevant information is subtracted by the enforcement. This will further be shown by
simulations in Chapter 4.2.3.

3.3.3 Surface characterization

As surfaces have different properties and characteristics, a common language for the transfer
of information has to be defined. In general, a definition for surface description and
characterization is given by the DIN ISO standard 10110. This standard is intended to have a
common language of drawings of optical surfaces. From part 5 of this standard, it has been
adopted to represent all deviations here in sagittal deviation [94]. This means all deviations are
represented as distances parallel to the z-axis of the CS §. Furthermore, this part of the DIN
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ISO standard 10110 gives specifications about the units used for different parameters, which
has been adopted here.

The topic of surface characterization is targeted in this work from two perspectives. One is the
perspective of the influence of certain surface characteristics on the optical performance of a
DUT. The second perspective is to observe which surface characteristics determined by the
measurement setup may be introduced from misalignment, stage non-linearity and errors in
the calibration in the measurement setup.

For the perspective of optical performance, one has to consider the influence of different
surface characteristics on the light propagating through the optical component. Therefore, the
spatial wavelength A of the surface structure is considered. This wavelength is separated into
three different bandwidths: form, waviness and roughness [95]. As shown in Figure 3.5 all
three of these bandwidths have different influence on the interaction with incident light.

| |
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Figure 3.5: Scattering of incident light by surface errors of different bandwidths.

While form deviations are introducing a slight scattering of the light resulting in the conventional
aberrations, waviness and roughness introduce scattering in medium and higher angles [96].
This introduces different effects on the optical performance. To show these effects, they are
illustrated in Figure 3.6 in terms of influence on the Point Spread Function (PSF) of an imaging
system.
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Figure 3.6: Influence of surface structures of different bandwidths on the point spread
function of an imaging system [96].

While form deviations do not influence the center peak of the point spread function significantly,
the introduced aberrations generate an increase of the energy in the first diffraction rings. In
contrast to that, waviness widens the center peak of the PSF, resulting in a blurring of the
image generated by the system. Therefore, this bandwidth is very important for the imaging
quality. While roughness also scatters light in higher angles, the scattering is not widening the
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center peak significantly, but distributing light in the area around the center peak. This results
in a reduction of the contrast of the image, while preserving the sharpness. These effects are
not only dependent on the spatial wavelength A, of the surface structure, but also in the
wavelength A of the introduced light. However, the wavelength A used for the incident light in
the measurement method proposed in this work does not have to be equal to the wavelength,
the investigated surface is intended for. Thus, specific limits for the bandwidths cannot be
given. When specific limits are not given, a general specification is given by
DIN ISO 10110-8 [95]. This general specification defines the form deviation for A; > 2.5 mm,
the waviness for 2.5 mm > 4, > 80 um and the roughness for 4, < 80 um.

For the perspective of surface characterization in terms of influences from misalignment, stage
non-linearity and errors in the calibration, the reconstructed surface from a measured gradient
field is considered. This gradient field, and therewith the reconstructed surface, includes
deviations introduced by the factors mentioned above. In contrast to form, waviness and
roughness, these deviations are not bound to the SUT, but are introduced by the measurement
system itself. These errors can change in magnitude and spatial frequency when changing the
size or location of the investigated area and mostly appear in global structures covering the
whole investigated area. To describe these global structures, Zernike polynomials are suitable
[95, 97].

Zernike polynomials have been introduced by Fritz Zernike and are defined over the unit disc
[98]. They are suitable for optical applications with circular apertures. Especially for the
representation of wavefronts and their aberrations, Zernike polynomials are applied broadly,
as some single polynomials represent certain types of aberrations of the wavefront [99].

The Zernike polynomials are a complete set of polynomials. This means that any arbitrary
function can be represented by the sum of the complete set of polynomials each multiplied
with an appropriate coefficient. The polynomials are originally assigned by two indices. For
applications in linear algebra, as it is supposed to be used here, a single index notation is
advantageous. Therefore, the single index [ of natural ordering of the polynomials is used in
this work [100].

Initially, the Zernike polynomials have been defined in polar coordinates. However, they can
also be transferred to Cartesian coordinates [100]. As Cartesian coordinates are used in this
work, the Zernike polynomials will also be used in this definition. The first 15 Zernike
polynomials P; in the natural order are explicitly presented in Cartesian Coordinates in Table
3.1.

Interpreting the polynomials as surface structures of a reconstructed surface with normalized
aperture, these polynomials represent global structures within this surface. To find the
corresponding coefficients for the polynomials to fit these to a reconstructed surface, the
Equation

N

h(x;) :=] z ¢ Pi—1(x;) (3.34)

j=1
has to be solved in a least-squares sense, where P;_; = P, represents the [-th Zernike
polynomial.
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Table 3.1: First 15 Zernike polynomials in Cartesian Coordinates in natural order.

8x3y + 8xy3 — 6xy
6x* + 12x2%y? — 6x% + 6y* —6y% + 1
4x* — 3x% — 4y* + 3y2
x* — 6x%y? + y*

l Pl(x' }’)

0 1

1 y

2 x

3 2xy

4 2x2+2y2—1
5 X2 —y?

6 3x%y —y3

7 3x%y + 3y3 — 2y
8 3x3 + 3xy? — 2x
9 x3 —3xy?

10 4x3y — 4xy3
11

12

13

14

For this, Equation (3.34) can also be written in matrix form

h =Ac (3.35)
where
hy
h=1|{ : |,
<hM) (3.36)
Mx1
(Po(xl) PN—l(x1)>
A= : :
Po(xp) -+ Py_q(xp) (3.37)
M XN
and
€1
€= Q (3.38)
N x1

defining a LES to be solved. Solving this LES for a low number of N, for example N = 36,
global structures in the reconstructed surface can be detected independent on the size of the
surface itself. Using different numbers for N or even a range for j, different structures can be
retrieved and, if desired, subtracted from the given height data [101]. In this work, the first 36
Zernike polynomials are considered representing global structures, since these polynomials
represent low radial and azimuthal degrees and therewith low-frequency structures. Thus, the
sum of these polynomials can be called low-frequency structures. Subtracting these low-
frequency structures from given height data, high-frequency structures can be derived, which
could be disguised by the mostly more prominent global structures.
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For the presentation and transfer of general surfaces, like freeform surfaces, the DIN ISO
10110-19 gives several options [6]. In this work, all presented data are in the form of point
clouds. If not stated differently, the corresponding CS is §.

3.4 Reconstruction of known surfaces

The reconstruction of known surfaces has been described analytically in Chapter 2.3.2. Here,
the numerical tools described before are used to describe the evaluation steps as they are
performed in the simulation and the experimental setup.

Having the desired sample points X; defined, the detected surface normals can be determined
according to the descriptions in Chapter 2 and 3.2. As the surface normals are determined in
the CS ¢, the surface normals are defined as g¢ and can be transferred into the CS M using
the transformation matrix H2® according to Equation (2.14). As the surface model is known,
the relation of the origin of the function describing the surface model and the origin of the CS
M, the transformation matrix H5;, has to be found. According to Equation (2.12), the
transformation matrix is defined using the rotation vector y3, and the translation vector t5;.
The process to appropriate values for the rotation and the translation vector are described in
Chapter 2.3.2 and lead to the requirement given by Equation (2.30). Since it is now expected
that the detected surface normals are not error-free, these Equations have to be solved in
least-squares sense. Therefore, the non-linear cost function

M
N (CICARIC) I CICAREC)) (3.39)
i=1

is defined, which has to be minimized by optimizing H3,. The position x; is hereby assumed to
be the position determined from the shift of sample points as described in Chapter 2.3.1. The
cost function is derived from the root mean square (RMS) slope deviation as defined in the
DIN I1SO 10110-8 standard [95]. Regarding the intended setup and the meaning of the
components of the translation vector t3, = (A%3, Ayi5;, AZs, ), one can see that an ambiguity
between the shifts Ax5, and Ays; and the shift AZ5; exists. Any shift in Z-direction can also be
represented by a shift in X¥- and j-direction, due to the direction i of the incident ray. Thus, the
degree of freedom can be reduced and only the parameters a5, B, Var, AX5e and Ay, have
to be optimized [102]. The transformation matrix will therefore be of the form

H3, = H (e B3 vie), (AT, A3, 0) ).
Having Hﬁ,[ found from the non-linear optimization, the detected normals

gt = Wil (340

can be transferred into the CS S and the detected surface slopes p; and g7 can be calculated
generating the gradient field n°. Applying Equation (3.7), the gradient field of deviations & can
be calculating subtracting the model gradient field ¢° from 5. On this gradient field of
deviations, the integrability can now be enforced. In Equation (3.13), it has been shown that it
is sufficient to integrate the gradient field of deviations only. Thus, the integration

d3 = rbf(X,&; p), (3.41)

can now be performed to reconstruct the surface deviations. The surface can now be
reconstructed using the model data as shown in Equation (3.11).
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A flowchart illustrating the process of the reconstruction of known surfaces is shown in Figure
3.7.
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Figure 3.7: Flowchart of the reconstruction of known surfaces from measurement data
acquisition until the reconstructed surface.

3.5 Reconstruction of unknown surfaces

Equivalently to the reconstruction of known surfaces, the reconstruction of unknown surfaces
has already been described analytically. This description can be found in Chapter 2.3.3. Also,
the process for the surface reconstruction of unknown surfaces is described here in the same
way as it is performed in the simulations and the experimental setup.

Having the detected surface normals g¢ in the CS ¢, the target sample points J in the CS M
and the transformation matrics H2 and HZ, the detected surface normals

gl = Wigf (342)
as well as the targeted sample points

Ji = WHS ¢ .43
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can be transferred in the CS 7. Performing the projection of J} into the fit-plane as described
in Equation (2.31) the position vectors L; = (ii;, #;,0,1)T can be determined. May

U = {(iiy, 77, ({ly, 5,7, ..., (fpy, T T} (3.44)

be a vector holding all positions of L in the &iZ-plane and 5’ be the gradient field determined
from the detected vectors g7, the integration in the CS 7 can now be performed to reconstruct
the surface

hi = rbf(U,n’; p).. (3.45)
The determined points of intersection, also describing the surface shape in the CS 7,
u;
U
I = hzj (3.46)
1

are defined as position vectors. As the model is not known here, the relation between the CS
M and the CS § can be chosen arbitrarily. However, in this work, it is assumed to have the
relation as shown in Figure 2.2 for unknown surfaces, resulting in

H3, = H((0,180°,0),(0,0,0)) (3.47)

for the corresponding transformation matrix. Thus, the position vectors in the CS § can be
calculated by

Xi

1§ =% | = H5HEHS, (3.48)
i
1

where hf represents the reconstructed surface topography value at the point x;. A flowchart
illustrating the process of the surface reconstruction of unknown surfaces is shown in Figure
3.8.
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Figure 3.8: Flowchart of the reconstruction of unknown surfaces from measurement data
acquisition until the reconstructed surface.
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3.6 Calibration methods

3.6.1 Combined calibration including camera rotation

It is expected that an experimental setup is not built up perfectly. Alignment errors occur due
to these imperfections. For high accurate measurements, the alignments have to be known
accurately, too. To get the relevant information, a calibration method has to be found
determining the values a? and g for HZ, the values al* and g2 for HZ® and the value y§
describing the rotation of the camera around the w-axis as shown in Figure 3.9.

=

Figure 3.9: lllustration of the parameters o, B, a2t, p2* and y§ determined by the
combined calibration method.

One can see in Figure 3.9 that angles are determined with this calibration method only, as
positions are not relevant to know for both the measurement of known and unknown surfaces.

The calibration method is based on the evaluation of a known surface in combination with a
non-linear minimization. The basic idea is to find the optimal parameters described above from
the results of the measurement of a known object by minimizing the deviation of the
reconstructed surface from the given model. Observing the influence of misalignments in the
considered parameters lead to the assumption that these misalignments introduce global
structures in the deviations of the reconstructed surface from the model. These global
structures can be represented by Zernike polynomials as described in Chapter 3.3.3. From the
observations, it has been determined that global structures introduced by misalignments in the
considered parameters, can be represented by the first 15 Zernike polynomials, ordered as
described in Table 3.1. Minimizing the RMS of the sum of these fitted polynomials over the
considered sample points, by varying the angles described before, leads to the desired
parameters [102]. It has to be mentioned here that the considered SUT used for the calibration
must have changing surface sag values and surface slope values. Using just a flat mirror is
not meaningful for this calibration method. Also, the SUT used should not deviate to far from
its model. This will be further investigated in Chapter 6.4.

Abstracting the process of a measurement of a known surface as described in Figure 3.7 as
“reconstruction of known surface”, the combined calibration process can be illustrated by the
flowchart shown in Figure 3.10.
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Figure 3.10: Flowchart of the combined calibration of the two transformation matrices HZ,
and H' and the camera rotation y¢.

For easy application, the parameter yg can be used to define a transformation matrix Hg as
described in Equation (2.12). This transformation matrix can be applied to the position vectors
C; and D; directly to perform the rotation of the camera around the w-axis determined by the
combined calibration.

3.6.2 Pitch of DUT positioning

The stages used for the positioning of the DUT are not perfectly even in their movement. They
introduce a pitch and roll due to imperfections in the manufacturing of the bearing of the moving
carriage. Since this measurement technique is based on the determination of the gradient of
a SUT, angular imperfections in the positioning of the DUT are directly transferred into the
measurement results. However, the pitch and roll of the positioning stages is reproducible and
therewith can be measured and subtracted from the determined gradient field.

Since the stages are aligned perpendicular to each other, the pitch of one stage represents
the roll of the other stage. Thus, only the pitches in X¥- and j-direction have to be considered.
To detect these pitches, a setup where a test ray, fixed to the DUT positioning stages, is
targeted onto the camera directly is considered. This ray can now be moved along the
X- and j-axis while targeting onto the camera. A sketch of the considered setup is shown in
Figure 3.11.
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Figure 3.11: Sketch of the setup considered for the determination of the pitch of the
xy-stage. The illustrated ray direction r is fixed in relation to the CS M.

Considering that the direction of r is fixed in relation to the moving carriage, which moves along
the X¥- and y-direction, any change of the direction of r can be traced back to a pitch of the
X- or y-axis. The absolute relation between r and the CS M is not needed as only the change
of r is relevant for the determination of the stages pitches. Scanning the considered area, the
pitch at multiple positions can be obtained, while the average direction of r is considered as
the pitch-free position of the moving carriage. Since the considered positions for this calibration
do not have to be identical with the positions used in a measurement, an interpolation has to
be performed. As the detected pitch of the positioning stages can also be considered being
slopes introduced by the pitch, Zernike polynomials can be used for the interpolation. Fitting
the first 36 Zernike polynomials to the detected pitch data, an interpolation can be performed
using the determined Zernike coefficients, while high-frequency influences introduced by noise
are suppressed.

May the positions X; be investigated for the determination of the pitch, the ray directions r; can
be determined for each position. Using H2?, the ray directions can be transferred into the CS
M resulting in . From this, the slope values #; and §; in - and ¥-direction can be
determined. To observe the changes only, the mean value of these slopes is subtracted to get
the slopes

N Y8y (3.49)
Pi=Pi =5 '
M
and
I Y
9 =49 — ljv; - (3.50)

From partial differentiation of Equation (3.34), one can derive the 2D least-squares sense fitting
of the Zernike polynomials P; as
i | 0x 3.51
(q‘) ' Z NP ) o
ay vt

j=1
Solving this equation for N = 36, a set of 36 coefficients is derived. These coefficients can be
used for the interpolation at any position (%, §) within the area, the fit has been performed over.

0P _
: X, 91)

1)

(2]
-

The slope deviations introduced by the pitch of the DUT positioning stages is only dependent
on the targeted sample point X; and not on the actual investigated position x; on a SUT. Thus,
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the correction is performed directly after the data acquisition. Regarding the flowchart shown
in Figure 3.7, the process step for the correction of the slopes is added for the reconstruction
of known surfaces as shown in Figure 3.12.

transformation of all data
into CS M

v positioning stages pitch

,
.
—

slope correction from J

optimizing H3,

Figure 3.12: Introduction of the pitch correction of the DUT positioning stages into the
flowchart for the reconstruction of known surfaces shown in Figure 3.7.

For the correction of the slopes in the reconstruction of an unknown surface, an additional step
has to be added since the correction can only be performed in the CS M. Regarding the
flowchart shown in Figure 3.8, the two steps have to be added as presented in Figure 3.13.

measurement data transformation of all data
acquisition into CSM
. J . J
< <
\ 4 TN A 4
4 \ 4 N\
transformation of all data slope correction from
intoCSJ positioning stages pitch

4 J AN

Figure 3.13: Introduction of the pitch correction of the DUT positioning stages into the
flowchart for the reconstruction of unknown surfaces shown in Figure 3.8.
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4. Simulations

4.1 Simulation setup and samples

4.1.1 Simulation setup

The setup for the simulations consists of three main parts: the optical simulation, the data
evaluation and the process control. The setup is depicted as a block diagram in Figure 4.1.
The three main parts are described below.

[ data storage J [user interfaceJ

process control

evaluatjon result
conit0ls
raw data

optical simulation data evalution

simulation

Figure 4.1: Block diagram of the simulation setup. The three main parts are the process
control, the optical simulation and the data evaluation. Besides the controlling of the
simulation process, the process control offers the opportunity to store data on the
computers data storage and provides the user interface.

Optical simulation

For the optical simulation, the software OpticStudio by Zemax is used [103]. In this software,
the intended setup is modeled and the optical simulation is performed. These simulations are
mainly single ray tracing processes performed in the sequential mode of OpticStudio. The
modeled setup is shown in the 3D Layout sketch created by OpticStudio shown in Figure 4.2.

The major components of the modeled setup are the incident ray, the SUT and the detector.
The incident ray is a single ray source pointing towards the SUT. The SUT can represent
different surface types. In Figure 4.2 it is a simple flat surface. However, it can also represent
standard surface types like cylindrical, spherical or aspherical surfaces. Additionally user
defined surfaces are available in which arbitrary surface functions can be defined. The third
major component is the detector. It is a simple standard surface providing the ability to
determine the reflected ray’s position on its surface. The origin of the CS C is here set to be in
a distance of 28 mm from the origin of the CS M, while the w-axis of the CS C is pointing
towards the origin of the CS M. The linear stage in the experimental setup has a travel range
of 100 mm with its origin in the origin of the CS C. As the detector's movement is along the
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w-axis, the detector has a distance of 28 mm from the origin of the CS M, when the detector
is positioned to w = 100 mm.

incident ray

detector

SUT

i 20 mm

Figure 4.2: Sketch of the modeled setup in OpticStudio [103]. The three major
components of the model are the incident ray, the SUT and the detector.

Additionally, multiple surfaces of the type “coordinate break” are added. These coordinate
breaks perform three different tasks. First, they are used to model the rotation of the three
major components to each other. This rotation is initially chosen to have al = 90°, g = 0°,
alt = 45°, B2* = 0° and y§ = 0°. Second, they are used to perform the positioning of the SUT
to the desired positions X;. Third, these coordinate breaks are also used to introduce
misalignments into the setup. These misalignments are used to check the performance of the
calibration methods described before. The full list of surfaces used in the modeled setup in
OpticStudio is shown and described in Table 4.1.

Table 4.1: List of all surfaces used for the modeling of the setup in OpticStudio. The
background colors in the id-column are used for illustrating the surfaces in Figure 4.3.

id type rotation x comment

0 standard - incident beam

1 coord. break 45° incident beam direction towards SUT
2 coord. break 0° misalignment of positioning stages

3 coord. break 0° positioning of SUT to positions %;

4 coord. break 0° rotation/deplacement of SUT

5 user defined - SUT

6 coord. break 0° reverse rotation deplacement of SUT
7 coord. break 0° reverse positioning of SUT

8 coord. break 0° reverse misalignment of positioning stages
9 coord. break 45° movement of detector to perform ERT
10 coord. break 0° rotation/deplacement of detector

11

standard

detector

To visualize the different surfaces in the modeled setup, they are illustrated in Figure 4.3 with
their id and color according to Table 4.1.
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1 20 mm

Figure 4.3: Sketch of the modeled setup in OpticStudio including the illustration of all
surfaces used. The number on all surfaces corresponds to the given ids in Table 4.1. In
this table, further information and descriptions about the surfaces can be found.

The coordinate breaks defined in OpticStudio have a flag to define the order of the performed
transformations. By default they follow the order of translation first, rotation around the x-axis
second, rotation around the new y-axis third and finally rotation around the new z-axis [104].
This is equivalent to the transformations performed by the transformation matrix defined in
Chapter 2.1.2. However, if the flag is switched, the order of transformation is reversed including
the order of rotations. Therewith, a coordinate break with reversed order of transformation and
inverted values of another coordinate break inverts its effect. This is used for the surfaces with
the ids 6, 7 and 8 described in Table 4.1, which therewith invert the effects introduced by the
surfaces with the ids 2, 3 and 4.

Data evaluation

For the evaluation of the data determined from OpticStudio, algorithms have been
implemented using Python. To maintain package compatibility the distribution Anaconda is
used [105]. For easier usability and maintainability, several algorithms have been implemented
in separate modules to be used within different scripts equivalently.

Process control

To control the full process of the simulation, a desktop software has been implemented. This
software is able to communicate with the OpticStudio software over its application
programming interface (API). With this API, OpticStudio can be controlled and simulated data
can be exported. After performing the simulation using OpticStudio, the process control
application provides the simulation data to the data evaluation and starts the evaluation
process. Finally, the evaluated data is presented in the desktop software. Additionally, the data
determined from the simulation, as well as the evaluated data are stored on the computers
storage drive. Therewith, the data is saved and can be used for further investigation later on.
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4.1.2 Sample 1 — “Franke surface”
For the simulations three different surfaces are investigated. The first surface is the so-called
“Franke surface” [106]. This surface follows the function

(9x—=2)2+(9y—2)* _(9x+1)% 9y+1
s(x) = 0.75e z +0.75¢~ 49 10 4.1)

—7)\2 —_2)2
1056 TR | gemton-02=(0y-7)°

and is widely used as test function in interpolation studies [97]. It consists of three peaks and
one sag of exponential shape. This function is designed for an interval of x = [-1...1] and
y = [—1...1]. As it will be shown later in this work, a sample distance of 100 um will be used
for the experimental setup. Assuming the unit for the design interval mentioned above is mm
and the investigated area is square, a number of only 441 sample points will be reached. To
increase this number, the function given in Equation (4.1) is altered to

(0.9x—-2)24(0.9y—2)? (0.9x+1)? 0.9y+1
s(x) = 0.75e 4 + 0.75e 49 10 4.2)
—7)2 _2)2 .
+0.5¢e ©2=D) 1(0'93] 2 — 0.2e~(09x=4)2=(0.9y-7)*

increasing the design interval to x = [-10...10] and y = [—10 ... 10] and the number of sample
points to 40401. The surface sag and shape is shown in Figure 4.4 a) and b). The surface
slopes in x- and y-direction are shown in Figure 4.4 c¢) and d). The partial derivatives of
Equation (4.2) are given in the Appendix B.

From the first order derivatives, the gradient field {(x) can be derived. The gradient field is
shown in Figure 4.5.

As shown in Figure 4.4, this surface is a freeform, showing no axis- or rotation-symmetry.
Therewith, it suits very good to show the flexibility of the proposed measurement technique.
Calculating the curl and the curl height of the gradient field { of the surface over the considered
area with a sample distance of 100 um leads to the values shown in Figure 4.6.

These curls shown in Figure 4.6 are introduced by the discrete sampling of the gradient field
with a sampling distance of 100 um in combination with large curvature values represented by
fast changes of the slope data presented in Figure 4.4. Regarding Figure 4.6 b), one can see
that the curls introduce curl heights up to +60 nm. These curl heights are not negligible.
However, they are not derived from noise or any other introduced errors, but are only
introduced by the discrete sampling of the given model function. Reducing the sample distance
leads to smaller curl and curl height values.
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10

1ci

Figure 4.4: Plots presenting the Franke surface. a) and b) show the surface sag in 2D
and 3D. c) and d) show the surface slopes in x- and y-direction.
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Figure 4.5: Gradient field {(x) of the Franke surface.
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Figure 4.6: Plots presenting a) the curl and b) the curl height of the Franke surface’
discrete gradient field.

4.1.3 Sample 2 — “cylinder surface”

The second surface to be investigated is a cylinder surface. This surface type is characterized
by a spherical shape in one direction, while having constant values in the other direction [5].
Here, the spherical shape is considered to be designed in y-direction. Therefore, the model

function
-R+ ’ﬁz_yz forR > 0and|y| <R

s(x) = (4.3)

-R - ’ﬁz—yz for R < 0Oand |y| < |R|

can be defined, where R # 0 is the radius of the spherical surface. This surface type has the
advantage that cross section investigations can be performed in y-direction, while the model
function is independent on the investigated x-position. Thus, this sample is used for cross
section investigations. Pre-empting the description of the experimental samples, a cylindrical
surface is also available for the experimental measurements. Therefore, the design radius R
for the simulation is set to 206.7 mm to match the R of the cylindrical sample used for
experiments. Additionally, the investigated cross section range is set to y = [-14...14] mm
according to the limits given by the dimensions of the experimental sample. The shape and
slope of the cylindrical surface is shown in Figure 4.7. The partial derivative in y-direction of
Equation (4.3) are given in the Appendix B.
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Figure 4.7: Plots presenting the cross section of the cylinder surface with the surface
radius of R = 206.7 mm in y-direction. a) shows the surface sag. b) shows the surface
slopes y-direction.

In Figure 4.7, a) one can see the spherical shape in y-direction, which is independent on the
x-position. In Figure 4.7 b) the surface’s slope in y-direction can be seen. From these slope
data, the gradient field {(x) can be determined, where the gradient’'s component in x-direction
is always 0.

4.1.4 Sample 3 — “polynomial freeform 1”

The third surface used for the simulation is a polynomial freeform. It follows the polynomial
function

s(x) =3.5-1073x2 —2.5-103y2 — 2.5-1075x* + 3.5 - 10 5y* (4.4)

and therewith is symmetrical regarding both the x- and y-direction, but is not rotational
symmetric. Also, the shape in x- and y-direction is different. As another polynomial freeform
will be introduced later, this polynomial freeform is called “polynomial freeform 1”. A real
sample having this model function is also available for the experimental measurements. Since
this sample has a circular aperture and the limits of the experimental setup have to be
considered, the investigated area of this sample is defined to be circular with an diameter of
22 mm. The center of this circular area is set to the center of the function. The shape and slope
of this sample for the considered area are shown in Figure 4.8. The functions s, (x) and s, (x)
of the partial derivatives of Equation (4.4) are given in the Appendix B.

The gradient field derived from the slopes is shown in Figure 4.9.

Calculating the curl and the curl height from the gradient field at the desired sample positions
lead to the values shown in Figure 4.10.

The curl height shown in Figure 4.10 has a RMS of less than 0.3 am. In comparison to the curl
and the curl height of the Franke surface, shown in Figure 4.6, the magnitude of the values of
the polynomial freeform 1 are much lower and do not have to be considered in the
reconstruction. However, if curl and curl height values in the same magnitude are determined
from the simulation, they can be traced back to the discretization.
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Figure 4.8: Plots presenting the polynomial freeform 1 surface. a) and b) show the

surface sag in 2D and 3D. c) and d) show the surface slopes in x- and y-direction.
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Figure 4.10: Plots presenting a) the curl and b) the curl height of the polynomial freeform
1 sampled discrete at the desired positions X;.

4.2 Simulation using different surface models

4.2.1 Simulation process

As described before, the measurement process is controlled by the same application in both
experimental measurement and simulation. Since the experimental measurement process has
higher requirements due to limits by the hardware performance, than there are restrictions in
the simulation, the process has mainly been customized for the experimental measurements.
The simulation has then been adapted to this process to implement the simulation and
experimental measurements in the process equally.

To start the simulation process, the sample positions ¥; to be investigated, have to be defined.
Generally, they can be arranged in arbitrary shape and arbitrary density over the area to be
investigated. However, as described in the beginning of Chapter 3, only even grids are
investigated here. The shape of these grids is either circular, rectangular or a cross section
represented by a single line. After the definition of the sample positions X¥;, the data acquisition
in the simulation is performed as illustrated in Figure 4.11.

The differences to the data acquisition in the experimental measurements are described in
Chapter 5.1, where the data acquisition process of the experimental measurement is
described.
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Figure 4.11: Flow chart of the simulation process.

4.2.2 Simulation results with known surface

For the simulation of all surfaces, the transformation matrices have assumed to be ideal. Thus,
the angles al = 90°, B2 = 0°, al* = 45°, B2* = 0° and y$ = 0° have been chosen as set in the
simulation model. The two investigated detector positions are w = 100 mm to determine the
positions €C; and w = 90 mm to determine the positions D;. Additionally, as expected for all
surfaces, the minimization process to find the SUT position found the surface to be positioned

and oriented as defined in the simulation model.
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For the integration, the support radius of the RBFs is set to p = 20.0 mm. The value of this is
supposed to have a high influence on the accuracy of the reconstruction, when small numbers
N of center points are used [107]. As stated before, the number of center points is equal to the
number of sample points here. This leads to a high stability of the reconstructed surface
dependent on the value of p. This is shown in the reconstruction of the deviations of an
experimental measurement in Chapter 5.4.5.

Franke surface
From the simulation using the Franke surface, the reflected ray positions C; and D; have been
determine as shown in Figure 4.12.
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Figure 4.12: Determined positions C;, with w = 100 mm, and D;, with w = 90 mm,
performing the simulation using the Franke surface as SUT.

From these reflected ray positions, the gradient field of deviations § is determined. As shown
in the flowchart represented in Figure 3.7, the integrability is enforced over this gradient field
as described in Chapter 3.3.2. Calculating the curl of & before enforcing the integrability, the
height deviation shown in Figure 4.13, can be calculated according to Equation (3.28).

y [mm]
heun,i [um]

-10 =5 0 5 10
x [mm]

Figure 4.13: Curl height h,,;; of the determined resulting gradient field ¢ from the
simulation using the Franke surface.

Regarding Figure 4.13, one can see that the curl height is in the range of a few fm, it's RMS is
0.4 fm. These curls are introduced by numerical errors, since curls introduced by discrete
sampling are eliminated as described in Chapter 3.3.2. This can also be seen by comparing
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Figure 4.13 with Figure 4.6 b) which shows the curl height introduced by the discrete sampling
of the Franke surface.

After enforcing the integrability and reconstructing the surface using RBF integration, the
reconstructed surface and its deviation from the surface model, as shown in Figure 4.14, are
derived.

800 le—8
10- 0.5
600
0.0
5,
400 -0.5
T t —_ —_
E 200 = E o -1 OEL
> £ = -
5 -1.5
_5-
-2.0
—-200
_10. -2.5
-10 =5 0 5 10
x [mm]
a) b)

Figure 4.14: Plots presenting a) the reconstructed surface and b) its deviation from the
surface model from the simulation using the Franke surface. For the evaluation, the
surface model has been considered as known.

Regarding Figure 4.14 b), one can see that deviations exit in the reconstruction of the surface.
These deviations occur from numerical limits in the simulation and evaluation and the
discretization of the gradient field. However, regarding the magnitude of these deviations, one
can see that they are negligible. The deviations are in the range of + 20 fm. Even if a
measurement accuracy of 1 nm may be achieved in the experimental setup, these deviations
would be 25000 times smaller than the measurement accuracy. The RMS of these deviations
is 4.7 fm.

Cylinder surface — Cross section

In the simulation of a cross section measurement with the Cylinder surface with R = 206.7 mm,
the sample points X; are chosen to have ¥ = 0. Thus, only one line along the j-axis is
investigated. Performing this using the cylinder surface, the positions C; and D;, as shown in
Figure 4.15, are determined.

In Figure 4.15, one can see that all points C; and D; are positioned at u = 0 mm. This is due
to the slope values in x-direction of s,(x) = 0. Since there is no slope in x-direction, the
reflected ray does not leave the center position in u-direction here.

The evaluation of a cross section is equivalent to the evaluation of a 2D area. However, since
there is one dimension less, the optimization to find the SUT position can be reduced in its
degrees of freedom. In the evaluation of a 2D area, the optimization performs over the
parameters aS;, Bar, Var, AX5e and Ay In the cross section evaluation this is reduced to the
parameters o3, and Ajs,. Additionally, since the model function is of cylinder form, the
parameters a5, and A3, are ambiguous. Thus, the parameters to be optimized can even been
reduced to a3,. Evaluating the cross section simulation leads to the reconstructed surface and
the deviation from the model shown in Figure 4.16.
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Figure 4.15: Determined positions C;, with w = 100 mm, and D;, with w =90 mm,
performing the cross section along the ji-axis simulation using the Cylinder surface

with R = 206.7 mm as SUT.
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Figure 4.16: Plots presenting a) the reconstructed surface and b) its deviation from the
surface model from the cross section simulation using the cylinder surface with
R = 206.7 mm. For the evaluation, the surface model has been considered as known.

The deviations shown in Figure 4.16 b) show a RMS of 73 am.

Polynomial freeform 1

Performing the simulation using the polynomial freeform 1 as SUT, the reflected ray positions

are determined as shown in Figure 4.17.

In Figure 4.17, the different slope magnitudes in x- and y-direction of the polynomial freeform
1 can already be seen in the determined positions C; and D;. Regarding Figure 4.8 ¢) and d),
one can recognize that the slope in y-direction has higher values than the slope in x-direction.
This leads to a higher distance of the determined positions C; and D; form the center in

v-direction than in u-direction.

From the surface slopes, derived from the positions C; and D;, the gradient field & can be
defined. This gradient field can now be investigated regarding its integrability as described in
Chapter 3.3.2. The resulting height deviation from the curl is presented in Figure 4.18.
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Figure 4.17: Determined positions C;, with w = 100 mm, and D;, with w = 90 mm,
performing the simulation using the polynomial freeform 1 as SUT.
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Figure 4.18: Plot of the curl height of the gradient field &, determined from the simulation
using the polynomial freeform 1.

The height deviation h.,,; shows a RMS of only 0.1 fm. The curls, and therewith the height
deviations, are introduced by numerical limits in the simulation and evaluation. However, these
deviations are within a negligible range. As the process of evaluating a known surface,
illustrated in the flowchart in Figure 3.7, includes the enforcement of the integrability, this is
now performed on the gradient field §. After that, the surface is reconstructed. The
reconstructed surface and its deviation from the surface model of the polynomial freeform 1
are shown in Figure 4.19.

The RMS of the deviation shown in Figure 4.19 b) is 0.9 fm resulting from numerical limits.
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Figure 4.19: Plots presenting a) the reconstructed surface and b) its deviation from the
surface model from the simulation using the polynomial freeform 1. For the evaluation,
the surface model has been considered as known.

4.2.3 Simulation results with unknown surface

The data acquisition for unknown surfaces is equivalent to the data acquisition for known
surfaces. Thus, the determined positions C; and D; are equivalent for both methods. Only the
evaluation deviates within the procedures. To avoid repetitions, the evaluation of the data
assuming an unknown surface is presented here only for the Franke surface.

The positions C; and D; used for the evaluation are shown in Figure 4.12. Performing the
evaluation as described in Chapter 3.5 leads to the reconstruction shown in Figure 4.20 a).
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Figure 4.20: Plots presenting a) the reconstructed surface from the simulation using the
Franke surface. b) shows the deviation from the model after the reconstruction has been
performed assuming the model to be unknown. From the deviation, a constant offset has
been subtracted.

To evaluate the performance of the unknown surface reconstruction, the reconstructed surface
shown in Figure 4.20 a) is compared to the model of the Franke surface. Subtracting the model
from the reconstructed surface and subtracting a constant offset from these deviations leads

55



Simulations

to the deviations shown in Figure 4.20 b). These deviations show a RMS of 538 nm. However,
it has to be mentioned that no model-fitting is performed here. The integration constant cannot
be reconstructed during integration. This can lead to a shift of the points of Intersection I;
during the rotation of the reconstructed surface into the CS §.

As shown in Figure 4.6, the discretization of the model function leads to curls in the discrete
gradient field. It has been described before that enforcing the integrability can lead to a gradient
field, different from the gradient field of the model. To show the influence of the integrability
enforcement, it has been performed once before integrating the gradient field. The
reconstructed surface and the deviation from the model function from this evaluation are shown
in Figure 4.21.
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Figure 4.21: Plots presenting a) the reconstructed surface from the simulation using the
Franke surface. In this evaluation the integrability has been enforced before integration.
b) shows the deviation from the model of the reconstructed surface. From the deviation,
a constant offset has been subtracted.

Comparing Figure 4.21 b) with Figure 4.20 b), one can clearly see the difference in the
determined deviations from the model function. The RMS of the deviations including the
integrability enforcement is 15.311 um. This is much larger that the RMS of the deviations
without integrability enforcement. This shows that the enforcement of the integrability is not
always meaningful. In addition, it points out the ability of the RBF integration to reconstruct
surfaces from non-curl-free discrete gradient fields, due to discretization.

4.3 Calibration

In this chapter, the calibration methods are tested by introducing misalignments in the
simulation model that are expected to be detected. This is not an analysis on the accuracy or
repeatability of these methods. This investigation is presented in Chapter 6. Here, the basic
functionality of the methods is shown.

SUT position determination

The first method that is checked is technically not a calibration method, but it is also used in
the evaluation of the data. It is the determination of the SUT’s position. Regarding Figure 2.2
one can see that in an ideal case, the rotation vector 5, = (a3, Bar, var) = (0°,180°,0°). If the
SUT is positioned perfectly in the center of the CS M, the translation vector is expected to be
t5r = (A%, AY5;, AZ5¢) = (0 mm, 0 mm, 0 mm). To check the functionality of the SUT position
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determination, arbitrary misalignments are introduced, so that the rotation vector
vor = (—0.6°,179.3°,—0.8°) and the translation vector t5, = (1.1 mm,1.2 mm,0 mm) are
expected to be determined. Performing the simulation, one can already see the influence of
the misalignments in the detected positions C; and D; shown in Figure 4.22. Especially,
comparing these positions with the positions determined without the misalignments shown in
Figure 4.17.
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Figure 4.22: Determined positions C;, with w = 100 mm, and D;, with w =90 mm,
performing the simulation using the polynomial freeform 1 as SUT including an intended
decenter and misalignment of the SUT.

To determine the position of the SUT, the cost function described in Equation (3.39) is
minimized by optimizing the parameter o5, B3, Var, AX5r and Ajs,. As initial values, the ideal
values oS, = 0°, B3, = 180°,y5; = 0°,A%5; = 0 mm and Ay5; = 0 mm are chosen. Performing
the determination of the SUT’s position, the values shown in Table 4.2 are derived.

Table 4.2: Derived angles and decenter from the SUT’s position determination and their
comparison to the angles and decenter set in the simulation model.

ao [°] B [°] Vo ] A%3, [mm] Ay3, [mm]

expected —0.6 179.3 -0.8 1.1 1.2
derived —0.60000004 179.30000012 —0.79999894  1.09999997 1.20000019
deviation —0.04-107° 0.12-107° 1.06-107° 0.03-107° 0.19-107°

The deviations presented in Table 4.2 show that the expected values have been derived up to
a very small deviation. The deviations are in the range of 0.003" respectively below 0.2 nm.
Thus, one can say that the position of the SUT can be derived from simulation data. The results
from the surface reconstruction with this determined SUT position is shown in Figure 4.23.
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Figure 4.23: Plots presenting a) the reconstructed surface from the simulation using the
polynomial freeform 1 and b) its deviation from the model. In the simulation the SUT was
tilted and misaligned as described before. The set and determined values are shown in
Table 4.2.

Combined calibration including camera rotation

The process of this calibration method is described in Chapter 3.6.1. For the simulation, the
polynomial freeform 1 sample has been used as SUT, as this sample is also used for the
calibration in the experimental setup. This calibration method calibrates 5 values in parallel:
the angles o2, B2, a2%, B2* and y§.

To see if the calibration method is able to determine the angles correctly, the simulation setup
has been altered to introduce known misalignments. Regarding the simulation setup described
in Chapter 4.1.1, one can see that the angles a and 52 are not only dependent on one
coordinate break element, but two: surface 1 and surface 9 as described in Table 4.1. Since
two combined combinations of transformations are most likely not a simple addition of the
given rotation angles, the given angles shown in Table 4.3 lead to the expected angles shown
in Table 4.4.

Performing the simulation with the introduced misalignments using the polynomial freeform 1
as SUT leads to the determined positions €; and D; shown in Figure 4.24.

Comparing the determined reflected ray positions shown in Figure 4.24 with the positions
shown in Figure 4.17, one identifies only minor deviations. In Figure 4.24, a slight shift of all
positions to the negative u-direction and a slightly higher deflection of the reflected rays in
negative u-direction can be determined. From these small deviations, the calibration method
derives the misalignments as presented in Table 4.4. Regarding the deviations in Table 4.4,
one can see that the calibration method is able to determine the correct angles up to a minor
deviation. Using these derived values to perform an evaluation of the given reflected ray
positions the surface shown in Figure 4.25 is reconstructed.

The deviation of the reconstruction shown in Figure 4.25 b) has a RMS value of 239 fm.
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Table 4.3: Rotation angles for the coordinate break surfaces in OpticStudio as shown in
Table 4.1 and Figure 4.3. The misalignments introduced by these rotation angles are
used to test the abilities of the combined setup calibration including the camera rotation.

id rotation x [°] rotation y [°] rotation z [°]
1 45.1 0.015 0.0

2 —0.1 0.075 0.0

8 0.1 —0.075 0.0

9 45.0 0.0 0.0

10 0.0 0.0 —0.13

Table 4.4: Derived angles from the combined calibration and their deviation from the
expected angles set in the simulation model.

aZ [°] B2 [°] az’ [°] Bt [°] v []

expected 90.10009817 0.10588067 45.1 —0.075 —0.13
derived  90.10009821 0.10588084  45.10000002 —0.07499988 —0.12999991

deviation 0.04-10°° 0.17-10°° 0.02-10°° 0.12-10°° 0.09-10°°
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Figure 4.24: Determined positions C;, with w = 100 mm, and D;, with w = 90 mm,
performing the simulation using the polynomial freeform 1 as SUT including the intended
misalignments defined in Table 4.3.
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Figure 4.25: Plots presenting a) the reconstructed surface from the simulation using the
polynomial freeform 1 and b) its deviation from the model. In the simulation the model
was misaligned as described in Table 4.3. The expected and determined values are
shown in Table 4.4.

4.4 Conclusion

The simulations and their results proof the fundamental functionality of the measurement
principle that has theoretically been described before. Additionally, the results show that the
calibration methods are able to detect the desired parameters correctly and the evaluation is
able to use these parameters meaningful.

In Chapter 3.3.2, it has been described that the enforcement of the integrability may introduce
deviations if the suppressed curls are introduced by discretization. This theory has also been
substantiated by integrating a discrete gradient field with and without enforcing the integrability.

The simulations are not perfectly error-free. The introduced errors are introduced by numerical
limits or limits of the minimization processes. However, these errors are negligible in relation
to the errors introduced by the experimental setup as shown later.

60



Experiments and Results

5. Experiments and Results

5.1 Experimental setup and procedure
The experimental setup has been built up according to the sketch of the measurement setup
shown in Figure 2.2. The experimental setup is shown in Figure 5.1

™\

Figure 5.1: Photo of the experimental setup built up according to the sketch shown in
Figure 2.2. Selected components and the path of the test beam are illustrated.

The components, used in the setup, are described in the order along the light’s path. As single
rays do not exist in reality, a narrow light beam represents the incident ray in the experimental
setup. The light source for this light beam is a fiber coupled laser diode. Roithner Lasertechnik
GmbH distributes the used laser diode RLCS-S63. It emits light at a wavelength of 635 nm and
has a maximum output power of 2 mW. The datasheet of the laser diode can be found in
Appendix C. The emitted light is guided into the setup using a single mode fiber. This fiber can
be seen in Figure 5.1 as the yellow covered fiber coming from the top left corner. To get a
narrow collimated light beam after coupling out the light from the fiber, an adjustable aspheric
collimator CFC2-A, manufactured by Thorlabs Inc., is used [108]. This collimator creates an

output beam waist diameter of 0.36 mm (ei2 width) at a maximum distance of 203 mm [109].

The technical drawing of the collimator, provided by Thorlabs Inc., can be found in the
Appendix D. In the experimental setup, the collimator has been adjusted to have the waist on

the SUT. The beam waist diameter of 0.36 mm as eizwidth is equal to a waist diameter of
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0.212 mm as full width half maximum (FWHM). May the model of the Gaussian beam be
applied to this beam, the Rayleigh length of

BT —— 222 mm

can be determined [1]. As the height deviations of the investigated SUTs are much smaller
than the Rayleigh length, the beam diameter can be assumed to be constant. To adjust the
position and direction of the beam, the collimator is mounted into the fiber positioner FAPO 65,
manufactured by OWIS GmbH [110].

After being coupled-out of the fiber and collimation, the light propagates towards the DUT. The
DUTs used in this work are made of material transparent to the light emitted by the laser diode.
Thus, the light is partially refracted into DUT itself and may be reflected at the lower surface of
the DUT. If this light is once again refracted at the SUT, it may disturb the correct detection of
the reflected rays position € and D. To suppress these reflections at the lower side of the DUT,
the DUT itself is placed onto a piece of black glass. The gap in between the DUT and the black
glass is closed using index matching liquid. Therewith, the light refracted into the DUT is
transmitted into and absorbed by the black glass.

To adjust the height of the DUT in the setup, the elevator stage HV 60N, manufactured by
OWIS GmbH, is used. Regarding Figure 2.2 and Figure 5.1, one can see that the height
positioning of the DUT has an influence on the detected positions € and D. With a lower
positioning of the DUT, the positions are shifted in positive v -direction. With a higher
positioning of the DUT, the positions are shifted in negative v-direction. In Figure 5.1, one can
see that a vertical breadboard is used to mount the fiber and the detector (camera). Thus, a
height adjustment can also be achieved by moving this breadboard. However, moving the
breadboard leads to a realignment of the setup, especially in terms of the calibrated angles
a2’ and p2*. Thus, using the elevator stage overcomes in most cases the movement of the
breadboard and therewith does not require a recalibration.

The positioning of the DUT to the desired positions %; is performed by two linear stages that
are orthogonally aligned. The two linear stages are of type PMT160-100-DC-L-B,
manufactured by Steinmeyer Mechatronik GmbH [111]. The stages have a travel length of
100 mm and are screw-driven by DC motors. A linear position feedback system with a 100 nm
resolution is integrated. To control the stages a Galil DMC2133 controller assembled by
Steinmeyer Mechatronik GmbH is used. This controller offers a position sensitive output
(PSO). Therewith, an electronic signal can be send if predefined positions are reached. The
manufacturer has tested the stages before delivery. The general datasheet as well as the test
protocols of the stages can be found in the Appendix E.

To detect the reflected beams position in two parallel planes, as intended by the measurement
method, a camera on a linear stage is used. The camera used is of type Prosilica GT4907,
manufactured by Allied Vision Technologies GmbH. The datasheet for the camera can be
found in Appendix F. The built-in sensor is a KAI-16070 monochrome CCD image sensor
manufactured by Semiconductor Components Industries, LLC [112]. This sensor has an active
image size of 36 mm by 24 mm with 4864 by 3232 active pixels, resulting in a number of pixels
of 15 720 448. The pixel size is 7.4 um by 7.4 um and no microlenses are implemented. With
these large dimensions, the sensor offers a large area to detect the reflected beam’s position.
Limited by the chip’s size and due to other mechanical limitations, the range of detectable
surface angles with this camera can be considered to be within £10°. The maximum frame
rate of the camera is 7.6 fps. The camera transfers the data to the controlling computer using
an Ethernet connection and the GigE protocol. Additionally, the camera has a Hirose
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HR10A-10R-12PB connector. On the one hand, this connector is used for power supply of the
camera, on the other hand, this connector can be used to transmit an external trigger signal to
the camera. The trigger input is electronically connected to the PSO of the controller of the
DUT’s positioning stages. Therewith, a continuous movement of the DUT can be performed,
sending triggers to the camera when predefined positions are reached. The determination of
the beams position on the camera is achieved by applying a centroid detection algorithm on
the camera image [113]. The centroid of a beam propagates in a straight line, even if the
intensity distribution is not symmetrical [89, 114].

May i, be the column index and 7, be the row index of the g-th pixel with the value By, then

i,B
PR L P (5.2)
2gBy
and
U,B
2gBy

define the centroid of the image, when i, = 0 defines the center column and ¥, = 0 defines
the center row of the sensor. Having the centroid position #; and 7; determined for the i-th
sample point, one can define the vector

u;

c, =Y (5.4)

w

1
for the first detector position. The same is accordingly valid for the position vectors D; for the
second detector position. To overcome noise in the camera image outside of the reflected
beam’s spot area, an offset can be applied to the whole image data before performing the
centroid determination.

To move the detector to the two different positions along the w-axis, a linear stage is used.
This linear stage is of type PLT100-100-SM-L-B and has been manufactured by Steinmeyer
Mechatronik GmbH. The travel distance of the linear stage is 100 mm. The DC motor moves
the carriage using a screw. An integrated linear position feedback returns the stage’s position
with a resolution of 100 nm. Since this stage has to be stable at one position for a long time
during the measurement process, a break is included. The general datasheet as well as the
test protocol of the stage used in the experimental setup can be found in Appendix G.

The setup has been aligned using the breadboards used for mounting. With these alignments
the angles of a = 90°, gl = 0°, a2" = 45°, B* = 0° and y§ = 0° are targeted. Since errors
are expected to be in the breadboard accuracy as well as in the alignment, these angles are
expected not to be perfectly achieved in the setup. Thus, the calibration methods described
before are used to determine the correct values of these angles.

The measurement process has been defined to achieve minimum measurement time. A
stop-and-go movement of the DUT positioning, as performed in the simulation, has been
avoided. Alternatively, a continuous movement of the DUT positioning is implemented using
the PSO of the X¥y-stages controller. Having an even square grid of sample points as shown in
Figure 5.2 a), a Meander track is defined using linear movements parallel to the j-axis.
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Figure 5.2: Example for a) an even square grid and b) an even circular grid. The blue
dots represent the intended sample points. The orange arrows represent the Meander
track used for the PSO of the Xj-stage position.

Along the lines shown in Figure 5.2, the PSO is activated, while the X¥-position is constant. The
traveling speed of the stage can be defined from the sample distance to achieve the maximum
frame rate of 7.6 fps of the camera. The same is also applied to circular grids, while the length
of the lines parallel to the j-axis is varied according to the number of sample points in the line,
as shown in Figure 5.2 b). Using the PSO in y-direction is useful to perform cross-section
measurement along this axis. Performing the cross-section measurements parallel to the
X-axis leads to a shift of the sample points in y-direction when changes in the SUT’s sag occur
as described in Chapter 2.3.1. This leads to a non-straight line of actually investigated positions
on the SUT.

5.2 Calibration

Determination of the X¥y-stages pitch

To determine the pitch of the X¥y-stages the method described in Chapter 3.6.2 is used.
Therefore, the experimental setup is altered to represent a setup according to the sketch
shown in Figure 3.11. This setup is shown in Figure 5.3.

Moving the %j-stages, leads to a direct repositioning of the reflected beams position on the
camera chip. Thus, the camera chip is the limiting factor for the maximum detectable area for
this investigation. Checking the maximum range possible leads to an even square sample grid
with 20 mm length and width. The sample distance has been set to 250 um. With these
parameters the positions €; and D; as shown in Figure 5.4 are determined.

The positions shown in Figure 5.4 only show one measurement. To suppress deviations
introduced by noise, the measurement has been repeated 50 times. For every investigated
stage carriage position X;, the mean ray vector 7; is calculated.
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Figure 5.4: Positions C; and D; detected from the measurement using the setup to
determine the pitch of the ¥y-positioning stages, shown in Figure 5.3.

As described in Chapter 3.6.2 only the change of these mean ray vectors is important.
Therefore, the vectors are transferred into slopes

~ Tx,i
=t (5.5)
pi 7
and
- i 5.6
g; = R (5.6)

Using Equation (3.49) and (3.50), the changes p; and §; of these slope data can be
determined. The slope values determined from the experimental measurement for this

calibration are shown in Figure 5.5.
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Figure 5.5: Plots showing the slopes p; and §; determined from the measurement
performed to calibrate the Xj-stages pitch.

Performing the fit of the first 36 Zernike polynomials in the slope domain according to Equation
(3.51), the Zernike coefficient for these polynomials are derived. Using these coefficient values
to reconstruct a surface according to Equation (3.34), a virtual reference surface shown in
Figure 5.6 can be determined.
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Figure 5.6: Virtual reference surface integrated from the fitted Zernike coefficients from
the X¥y-stages pitch.

One could imagine to simply subtract the virtual reference surface shown in Figure 5.6 from
the reconstructed surface. But, these values are not defined in the height domain initially, but
in the slope domain. Corrections on the slope data to compensate the xj-stages pitch, also
influence the determination of the SUT position in the setup. Thus, the correction of the
determined slopes using the calibration data shown in Figure 5.5, is implemented after the
surface normals are determined as shown in Figure 3.12 and Figure 3.13.

Combined calibration including camera rotation

The process of this calibration is described in Chapter 3.6.1. According to this process, a
known surface has to be chosen to perform the combined calibration. As already said in the
simulation, the DUT with the surface model according to of the polynomial freeform 1 is used
here. Equivalent to the simulation, the sample has been investigated over a circular aperture
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with a sample distance of 100 um in ¥- and y-direction. The determined positions C; and D;
are shown in Figure 5.22. From the calibration, the values shown in Table 5.1 are determined.
These values will be used throughout all experimental measurement evaluations within this
work.

Table 5.1: Determined angles derived from the combined calibration using the
polynomial freeform 1 as SUT in the experimental setup.

az [°] B ] at' ] B[] vé [
derived  90.301519  —0.065185 45196817  0.015259 0.299291

5.3 Description of samples and measurement parameters
5.3.1 Sample 1 - “flat surface”

As a flat surface, an aluminum wafer is used. This wafer is highly specular and is expected to
have minor local height deviations, while global deviations can be expected due to stress in
the material itself. A photo of this sample is shown in Figure 5.7.

Figure 5.7: Photo of the sample “flat surface”, which is represented by a flat aluminum
wafer.

This sample is the largest sample investigated here. This makes it an appropriate sample to
show the ability of the proposed measurement method to investigate even large samples. It
has been investigated over an even square grid of 90 mm by 90 mm size. The sample distance
has been set to 1 mm to observe mainly the global structure of this sample.

The expected surface function
s(x)=0 (5.7)

is rather simple. Thus, presenting the model function, as well as the model function slopes in
diagrams is skipped. Unfortunately, for this sample no comparison measurement is available.
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5.3.2 Sample 2 — “cylinder surface”

The cylinder surface has already been introduced in Chapter 4.1.3 for the simulation. The
model function, as well as the design radius R = 206.7 mm are equivalent to the model
described for the simulation. The sample used is a stock product offered by Thorlabs Inc. [115].
The sample is made of N-BK7, is uncoated and has a design focal length of 400 mm. A photo
of the sample is shown in Figure 5.8.

Figure 5.8: Photo of the sample “cylinder surface”.

A technical drawing and the datasheet for this sample provided by Thorlabs Inc. are available
in the Appendix H.

For this sample, a comparison measurement is available. The measurement has been
performed by BLF Optik Teknoloji Sanayi A.S. using a MarSurf LD 260 Aspheric manufactured
by Mahr GmbH [25]. This measurement machine is a tactile surface profiler, which has been
used to perform a cross-section measurement of the samples surface. The documentation of
the comparison measurement can be found in Appendix .

5.3.3 Sample 3 — “polynomial freeform 1”

Equivalent to the cylinder surface, the polynomial freeform 1 has already been described
before for the simulation. The surface description can be found in Chapter 4.1.4. The sample
for the experimental measurements has been manufactured by Trionplas Technologies GmbH
using Atmospheric Plasma Jet Machining [116, 117]. It is made out of fused silica and is
uncoated. A photo of the sample is shown in Figure 5.9.

The documentation provided by Trionplas Technologies GmbH can be found in Appendix J. In
the SUT of this sample, three fiducials have been implemented. These fiducials have a
diameter of approximately 1 mm and a depth of approximately 500 nm. The fiducials have
been implemented at three different positions in the surface as shown in Figure 5.10.

These fiducials help to orient the measurement results when comparing the measurement
results from different measurements. For this sample, a comparison measurement is available.
Trionplas Technologies GmbH used a CT 300 by cyberTECHNOLOGIES GmbH to perform
this comparison measurement [30]. The CT 300 has a white light distance sensor and scans
the surface with this sensor. Therewith it is categorized a non-contact surface profiler. The
scan is performed in lines following a Meander path. The results of this comparison
measurement can also be found in Appendix J.
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Figure 5.9: Photo of the sample “polynomial freeform 1.

0.15
0.10—
T £
3 £
> 0.05%
0.00
-10 =5 0 5 10
x [mm]

Figure 5.10: The dashed circles mark the positions of the three fiducials implemented in
the SUT of the polynomial freeform 1 for the experimental measurements.

5.3.4 Sample 4 — “polynomial freeform 2”
This sample has not been described before. Equivalent to the polynomial freeform 1, this
sample follows a polynomial model function. However, the model function of this sample

s(x) =25-1073x2 4+ 25-1073y2 — 15- 10 5x* — 1.5 - 10~°y* (5.8)

shows a symmetry with respect to both axis, while the function profile along both axis is also
equivalent. Additionally, the surface peak-to-valley (PV) value and the maximum slope is
smaller compared to the polynomial freeform 1. The surface model function and the model
slopes are shown in Figure 5.11. Following the parameters of the polynomial freeform 1, this
sample is also investigated over a circular aperture of 22 mm with a sample distance of
100 um.

The gradient field derived from the slopes, shown in Figure 5.11 ¢) and d), is shown in Figure
5.12.

Deriving the curl and the curl height from the discrete gradient field, the values presented in
Figure 5.13 are determined.

69



Experiments and Results

—o-8888° o«

S o o © y\
s(x) [mm]
[wwi] (x)s
n [=] mn o wn (=] Te]
~ 1N N © &~ 1n 9N
o = o+ 4 0 O O
c o o o ©o ©o o

x [mm]

b)

a)

[peiw] (x)4s
o (=]

o o — ~
~ — o | |
o
—
w
o
uw
|
o
—
|
(e] n (@] [Ta] o
— | 1_.
[ww] A
[peaw] (x)*s
o o
o o — ~
o~ — o | |
’ .
—
wn
o
mn
|
o
—
|
o T} [} N =}
— | .ﬂ
[ww] A

x [mm]

c)

Figure 5.11: Plots presenting the polynomial freeform 2 surface. a) and b) show the

surface sag in 2D and 3D. c) and d) show the surface slopes in x- and y-direction.
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Figure 5.12: Gradient field {(x) of the polynomial freeform 2.
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Figure 5.13: Plots presenting a) the curl and b) the curl height of the polynomial freeform
2 sampled discrete at desired positions ;.

Following the polynomial freeform 1, the curl height values, introduced by the discrete sampling
of the surface model function, of the polynomial freeform 2 are negligibly small.

The sample for the experimental measurement has also been manufactured by Trionplas
Technologies GmbH using Atmospheric Plasma Jet Manufacturing. It is also made of fused
silica and is uncoated. A photo of the sample is shown in Figure 5.14.

Figure 5.14: Photo of the sample “polynomial freeform 2”.

For this sample, a comparison measurement is available. This comparison measurement has
been performed by Trionplas Technologies GmbH using a LuphoScan 260 HD manufactured
by AMETEK Inc. [29]. The documentation of the sample’s manufacturer as well as the results
from the comparison measurement can be found in Appendix K.

5.4 Measurement Results

The samples described before have been measured according to the procedure described in
Chapter 5.1. The results of the measurements and the evaluation are presented in the following
subchapters.
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5.4.1 Sample 1 — “flat surface”

The flat surface, in contrast to the other samples, has been measured with an extended sample
distance of 1 mm and an extended measurement area of 90 mm by 90 mm. Since this area is
much larger than the area used for the calibration of the X¥y-stages pitch, the calibration data
is not used to correct the measurement data determined from this measurement. For the
evaluation here it is considered that no Xy-stages pitch exists. Except from this, the evaluation
is performed according to the process for the evaluation of known surfaces described in
Chapter 3.4.

The positions C; and D; determined from the measurement are shown in Figure 5.15. Due to
limitations in the experimental setup, the positions of the detector have been set to 90 mm and
80 mm.
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Figure 5.15: Determined positions C;, with w =90 mm, and D;, with w = 80 mm,
performing the simulation using the flat surface as SUT. The size of the diagram on the
left hand side represents the dimensions of the camera chip.

Regarding Figure 5.15, one can already see that the sample has an almost flat surface, as the
measured centroid positions are all close to each other. Additionally, the alignment of the setup
can be considered well, as the positions C; and D; almost cover up completely. However,
these conclusions are only made on visual observations of the centroids and only give a first
impression. They cannot be taken as relevant estimations about the alignment, calibration or
SUT’s surface profile.

From the determined centroid positions, the SUT’s position within the setup has be determined
according to the description given in Chapter 3.4. The values derived from this determination
are shown in Table 5.2. Since the sample is flat, the rotation y3; and the decenter A%3; and
A5, are unnecessary. Therefore, these parameters are considered ideal.

Table 5.2: Determined angles and decenter of the flat surface in the experimental setup.

ai [°] B [°] vir [°] A%3y [mm] A3 [mm]
derived  0.020 180.012 0.0 0.0 0.0

Using this SUT’s position, the surface has been reconstructed. The reconstructed surface and
the deviation from the model are shown in Figure 5.16.
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Figure 5.16: Plots presenting a) the reconstructed surface and b) its deviation from the
surface model from measurement of the flat surface. For the evaluation, the surface
model has been considered as known.

Regarding Figure 5.16, one can see that the two plots are identical. This is due to the surface
model being flat, according to Equation (5.7). The deviations shown in Figure 5.16 have a
RMS:; of 14.058 um, where RMS; describes the RMS of the total deviation [94]. Regarding
Figure 5.16, one can see that a spherically shaped structure can be found in the surface. This
structure may be introduced by stress in the aluminum wafer resulting in spherical shaped
deformations [118]. Subtracting the best-fit-sphere (BFS) from these deviations leads to the
value RMS;, describing the irregularity of the determined deviation [94, 119]. From the
deviations shown in Figure 5.16 b), a BFS with a radius of 31.391 m is derived in a least-
squares sense. Subtracting this BFS from the deviations leads to the irregularity deviations
shown in Figure 5.17 a).
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Figure 5.17: Plots presenting a) the deviations shown in Figure 5.16 b) minus a BFS with
aradius of 31.391 m. b) shows the deviations without BFS, shown in a) minus a fit of the
first 36 Zernike polynomials to subtract global deviations.

Subtracting the BFS from the determined deviations leads to a RMS; of 1.589 um. As described
in Chapter 3.3.3, subtracting the first 36 Zernike polynomials frees the given deviations from
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global structures. Fitting the first 36 Zernike polynomials in a least-squares sense to the
deviations shown in Figure 5.17 a), according to Equation (3.34), leads to a set of coefficients.
Subtracting the sum of the polynomials multiplied with their coefficients, leads to the high-
frequency deviations shown in Figure 5.17 b). These high-frequency deviations have a RMSk¢
of 92.5 nm, where RMS¢ is the RMS of the high-frequency structures.

Since no comparison measurement is available for this sample, the results cannot be
compared and discussed critically.

5.4.2 Sample 2 — “cylinder surface”

As described before, the cylinder surface is investigated performing a cross-section
measurement along the fast axis of the lens. The investigated sample points X; are positioned
along the j-axis at ¥ = 0 mm. The range of the cross-section is 28 mm and the sample
distance is set to 100 um. The camera is positioned to w = 90 mm and w = 80 mm. The
determined centroid positions from this measurement are presented in Figure 5.18.
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Figure 5.18: Determined positions C;, with w = 90 mm, and D;, with w = 80 mm, from
the measurement of the cylinder surface. The size of the diagram represents the
dimensions of the camera chip.

As described in Chapter 4.2.2, the determination of finding the position of the cylinder surface
in the experimental setup reduces to the parameter aﬁ,[ for a cross-section measurement. The
other parameters are expected to be ideal. The values, to define the SUT’s position determined
from the positions presented in Figure 5.18, are presented in Table 5.3.

Table 5.3: Angles and decenter to define the position of the cylinder surface in the
experimental setup.

e [°] Bar [°] Vi [°] Ax3e [mm] Ay [mm]
derived 0.317 180.0 0.0 0.0 0.0

With the parameters presented in Table 5.3, the surface has been reconstructed. The
reconstructed surface and its deviation from the model are shown in Figure 5.19.

The deviations shown in Figure 5.19 b) have a RMS; of 222.4 nm. Regarding the plot in this
figure, one can observe a parabolic structure on the determined deviations. This parabolic
structure may be due to a deviation of the actual surface’s radius from the model’s radius. To
determine the measured surface radius, a BFS is fitted to the reconstructed surface [119].
Fitting a BFS directly to the reconstructed surface and not to the determined deviation offers
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the possibility to compare its radius to the design radius used for the model. The fit of the BFS
is performed in a least-squares sense to the deviation between the BFS and the reconstructed
surface. The radius determined for the BFS is 206.416 mm. The deviation between the BFS

and the reconstructed surface is shown in Figure 5.20.
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Figure 5.19: Plots presenting a) the reconstructed surface and b) the deviation from the
model for the cross-section measurement of the cylinder surface.
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Figure 5.20: Deviation between the reconstructed surface from the cross-section
measurement of the cylinder surface and the fitted BFS with a radius of 206.416 mm.

The deviations shown in Figure 5.20 show a RMS; of 107.2 nm. As said before in Chapter
5.3.2, a comparison measurement from a tactile surface profiler is available for this sample.
This comparison measurement is given as surface sag data. To compare the two
measurement results, a BFS is fitted to this comparison measurement, too. This BFS has an
radius of 206.497 mm. After subtracting the BFS, the comparison measurement and the results
from the proposed measurement technique are both plotted in the same diagram in Figure
5.21 a). Figure 5.21 b) shows the deviation between the proposed measurement technique

and the comparison measurement.
Regarding Figure 5.21 a), one can clearly see the agreement between the measurement

results. The difference shown in Figure 5.21 b) shows a RMS value of only 19.0 nm. In
combination with the agreement of the determined BFS radii, this shows that the results from
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the proposed measurement technique are comparable to the results of a commercially
available measurement machine performing cross-section measurements.
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Figure 5.21: a) Plot of the determined deviations from the proposed measurement
method and the comparison measurement for the cylinder surface. b) Plot of the
difference between the determined deviations shown in a).

5.4.3 Sample 3 — “polynomial freeform 1”

The measurement of the polynomial freeform 1 has been performed using an even sample
grid with a sample distance of 100 um on a circular aperture. Due to limitations by the
mechanical dimensions in the experimental setup, the camera has been position to w = 90 mm
to determine the positions €; and to w = 80 mm to determine the positions D;. These
measured centroid positions are illustrated in Figure 5.22.
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Figure 5.22: Determined positions C;, with w =90 mm, and D;, with w = 80 mm,
determined from the measurement of the polynomial freeform 1. The size of the diagram
represents the dimensions of the camera chip.

Comparing the positions shown in Figure 5.22 with the positions determined from the
simulations, as shown in Figure 4.17, one can see that the basic pattern can be recognized.
However, misalignments in the setup and the positioning of the SUT in the experimental setup
leads to deformations of this pattern. The SUT’s position determined from these positions is
presented in Table 5.4.
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Table 5.4: Determined angles and decenter of the polynomial freeform 1 in the
experimental setup.

ase [°] Bar [°] Yac [°] A%y [mm] Ay5, [mm]
derived —-0.014 180.013 —1.218 —0.004 —0.103

With this determined position and alignment of the polynomial freeform 1, the reconstructed
surface and its deviation from the surface model, as shown in Figure 5.23, are derived. The
deviation of the reconstructed surface from the model function has a RMS; of 92.1 nm.
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Figure 5.23: Plots presenting a) the reconstructed surface of the polynomial freeform 1
and b) its deviation from the surface model. The implemented fiducials are marked with
dashed circles and can be recognized clearly.

As described in Chapter 5.3.3, a comparison measurement of this sample is available. To
compare the results from the comparison measurement with the results from the measurement
performed with the proposed measurement technique, the results of the comparison
measurement are linearly interpolated at the actual sample positions I; from the proposed
technique. The surface deviation determined from the comparison measurement d.,,, ; and
the difference between this surface deviation and the surface deviation determined with the
proposed technique are shown in Figure 5.24.

The deviations determined with the comparison measurement shown in Figure 5.24 a) has a
RMS; of 64.0 nm. Regarding Figure 5.24 a), one can also clearly see the implemented fiducials.
Also, one can recognize that these fiducials almost completely disappear in the differences
plotted in Figure 5.24 b).

Regarding the Plots shown in Figure 5.23 b) and Figure 5.24 a), one can recognize the obvious
horizontal deviations that can also clearly be recognized in Figure 5.24 b). However, one can
also recognize the basic pattern of dips in the deviations that are represented in both plots.

Extracting the high-frequency structures from the deviations shown in Figure 5.23 b) and
Figure 5.24 b) by fitting and subtracting the first 36 Zernike polynomials from the given
deviations, the high-frequency deviations shown in Figure 5.25 are derived.
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Figure 5.24: a) Plot of the deviation of the polynomial freeform 1 from the surface model,
determined by the comparison measurement. b) difference between the deviation
determined by the proposed measurement technique, shown in Figure 5.23 b), and the

deviations shown in a).
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Figure 5.25: Plots presenting the high-frequency deviations of the polynomial freeform 1
from the model function a) determined with the proposed measurement technique and
b) determined from the comparison measurement. The dotted circles highlight areas

referenced in the text.

On the first glance, the two plots presented in Figure 5.25 seem very different. But, having a
closer look offers many fine structured similarities. The four marked areas show heights that
can be found in both plots, while the magnitude of these heights is higher in the plot in Figure
5.25 a). Additionally, in the plot in Figure 5.25 a), a fine arrow-like structure can be found
pointing to the left parallel to the x-axis at y = 0 mm. This structure can only partly be found in
the plot in Figure b). Overall, it can be said that both plots show similar structures, while the
magnitude of these structures is larger with the proposed measurement method.

5.4.4 Sample 4 — “polynomial freeform 2”
The sample with this SUT, manufactured following the polynomial freeform 2 model function,
is closely related to the polynomial freeform 1. Thus, it has been measured using the same
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sample points X; being defined over a circular even grid with 22 mm diameter and a sample
distance of 100 um . Equivalently the camera has been positioned to w = 90 mm and
w = 80 mm, too. The positions C; and D; detected within the measurement are shown in
Figure 5.26.
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Figure 5.26: Determined positions C;, with w =90 mm, and D;, with w =80 mm,
determined from the measurement of the polynomial freeform 2. The size of the diagram
on the left hand side represents the dimensions of the camera chip.

From these detected centroid positions, the orientation and position of the SUT in the
experimental setup has been determined to be as shown in Table 5.5.

Table 5.5: Determined angles and decenter of the polynomial freeform 2 in the
experimental setup.

ay [°] B [°] vir [°] A%3y [mm] Ay3e [mm]
derived 0.117 180.029 —2.143 0.136 —0.067

The deviation of yﬁ,[, shown in Table 5.5, from the expected value is relatively large in
comparison to the deviation of a5, and B3, from their expected values. The influence of y3;
can already be seen regarding the zoomed cutout in Figure 5.26. The tilted lines of determined
positions are due to the tilt of the SUT in the experimental setup. With the determined position
and orientation, the surface has been reconstructed. The reconstructed surface itself is shown
in Figure 5.27 a). The deviation from the expected surface model is shown in Figure 5.27 b).

The deviation of the reconstructed surface from the surface model, as shown in Figure 5.27
b), has a RMS; of 76.4 nm.

Equivalently to the polynomial freeform 1, a comparison measurement of the surface from a
commercially available measurement machine is available. Details about the measurement
machine can be found in Chapter 5.3.4. This comparison measurement has been performed
on a different sample grid with smaller sample distance than the measurement performed with
the proposed measurement technique. To make the two measurement results comparable, a
linear interpolation has been performed over the comparison measurement. The deviation from
the model function determined within the comparison measurement is shown in Figure 5.28
a). These deviations show a RMS; of 42.5 nm.
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Figure 5.27: Plots presenting a) the surface of the polynomial freeform 2, reconstructed
with the proposed measurement technique, and b) its deviation from the surface model.
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Figure 5.28: a) Plot of the deviation of the polynomial freeform 2 from the surface model,
determined by the comparison measurement. b) difference between the deviation
determined by the proposed measurement technique, shown in Figure 5.27 b), and the
deviations shown in a).

Regarding the difference between the surface deviations determined with the proposed
measurement technique and the comparison measurement, shown in Figure 5.28 b), one can
observe a global height along the y-axis. This height has been determined with the proposed
measurement technique, but not with the comparison measurement. This difference lead to
the deviation of the RMSi-values. However, one can also see similar deviations in both results.
For example, the striking peak in the middle of the sample has been detected by both
measurement techniques and therewith disappears in the comparison.

To observe the high-frequency deviations of the deviations shown in Figure 5.27 b) and Figure
5.28 b), the fit of the first 36 Zernike polynomials is subtracted from these deviations separately.
These high-frequency deviations are shown in Figure 5.29.
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Figure 5.29: Plots presenting a) the high-frequency deviations of the polynomial freeform
2 from the model function determined with the proposed measurement technique and b)
the high-frequency deviations of the same sample determined from the comparison
measurement.

Comparing the two plots shown in Figure 5.29, one can see many similarities in the high-
frequency deviations determined with both measurement techniques. It can be recognized that
the deviations from the comparison measurement, shown in Figure 5.29 b), seems to be
blurred. This may be due to filters applied to the measurement results. However, to observe
the differences in the high-frequency deviations, the two results are subtracted from each
other. The remaining differences are shown in Figure 5.30.
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Figure 5.30: Difference of the high-frequency deviations between the results of the
proposed measurement technique and the comparison measurement for the polynomial
freeform 2.

Regarding the differences shown in Figure 5.30, one can observe that many of the structures
shown in both plots in Figure 5.29 disappeared. This shows that the detected high-frequency
structures determined from both measurement techniques are very similar. This can also be
seen, regarding the RMS of the high-frequency difference shown in Figure 5.30, which is only
10.0 nm.
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5.4.5 Analysis on integration parameter p

In Chapter 3.3.1, the 2D integration using RBFs according to Ettl et al. has been described
[88]. This integration method uses the Wendland function as basis function, which has a limited
support radius p. This radius defines the “width” of the RBF. With a larger p-value one RBF
covers more sample points, with a smaller p-value it covers less sample points. Therewith,
with smaller p-values, more local details can be reconstructed, while larger p-values lead to a
more stable reconstruction when noisy slope data are expected [87]. However, certain limits
in both directions exist. If the p-value is reduced too far, the interpolation matrix A defined in
Equation (3.18) becomes an identity matrix and the reconstructed surface consists of narrow
peaks at the given sample points. If the p-value is increased too far, the matrix A becomes
singular showing similar values for each element.

To observe the stability of the reconstruction method, one reconstruction has been performed
multiple times with varying p-values. Therefore, the dataset of the experimental measurement
of the polynomial freeform 1 has been used exemplarily. To observe the influence of the
p -value on the reconstruction, the value of p has been changed from p = 2.0 mm to
p =40.0mm in steps of 1.0 mm. As indicator of the influence of the p-value on the
reconstruction, the RMSi-value of each reconstructed surface is observed. The determined
RMS:-values from the reconstruction with different p-values are shown in Figure 5.31.
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Figure 5.31: Plot of the determined RMS surface deviations for the reconstruction of the
polynomial freeform 1 from the experimental measurement. Different values of p for the
RBF reconstruction method are used.

Regarding Figure 5.31, one can observe two regions of different instabilities. In the region
below p = 16.0 mm, the RMS;-value changes fast, when small changes in the p-value are
made. In the region above p = 23.0 mm an oscillating instability of the RMS-value can be
observed. Although, these changes and oscillations are within a range of only about 50 pm,
this observation led to the definition of p = 20.0 mm for the reconstruction in the simulations
and the experimental measurements.

5.5 Performance analysis

5.5.1 Instrument Transfer Function

One of the parameters to define measurement techniques is the instrument transfer function
(ITF) [120]. The ITF describes the response of the measurement technique to different spatial
wavelengths on the investigated surface. It is defined as the relation between the detected
measurement value to the given ground truth. This relation is investigated for varying spatial
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wavelengths. The ITF is therewith closely related to the well-known optical transfer function
(OTF) and modulation transfer function (MTF) in the field of imaging optics [121].

In terms of the proposed measurement technique, the ITF is defined as the relation between
the determined surface slope at a certain position, over the given surface slope of a sinusoidal
surface topography with a the spatial wavelength 4. To determine this relation, simulations
are used. The simulations performed before have used single ray tracing to determine the
surface slope. However, this includes the assumption of the beam having an infinitely small
diameter. With this, the slope at a certain position will always be detectable perfectly. Thus,
another approach has to be found to determine the ITF.

The simulation setup to determine the ITF is shown in Figure 5.32.
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Figure 5.32: Sketch of simulation setup for the determination of the ITF. The red lines
represent the incident and the reflected beam. The reflected beam’s centroid position on
the detector plane is illustrated by x.. Sinusoidal surface topographies are illustrated at
z = 0 with different spatial wavelengths. The surfaces shown in the sketch are
exemplary and not scaled.

Regarding the sketch shown in Figure 5.32, one can recognize a beam propagating onto the
SUT vertically. The SUT follows a sinusoidal function

A x-2-
s(x) = Esin( . ”), (5.9)
where A, represents the spatial wavelength and
4= (5.10)
s

defines the amplitude of the surface, so that its slope

ds(x)
dx

— @ (5.11)

x=0
at the center position can be set by the parameter 7. In the simulations performed here, this

parameter is set to be m = tan (%) and is therewith the equivalent of a surface angle of 1°.

Using Equation (5.10) and (5.9), the surface can now be defined for any spatial frequency with
a constant surface angle of 1° at x = 0.

To perform the simulation, Fourier optics is applied. Instead of a single ray representing a
beam, it is now defined by intensity and phase distribution [1]. Using a nearfield propagation
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algorithm, this intensity and phase distribution can be propagated along a certain axis [122].
As expected from a reflection, the beam’s phase is set to 2s(x) at z = 0. The intensity
distribution is considered Gaussian with a half width w,. Initially, this half width is set to
Wy = 0.106 mm as this is the expected beam’s half width on the SUT as described in Chapter
5.1. This beam is now propagated along the z-axis to the detector plane at d, = 15.0 mm as
shown in Figure 5.32. At the detector plane, the centroid position x,. of the determined intensity
distribution is calculated [113]. From this centroid position, the surface slope

X,
arctan (5¢
m = tan # (5.12)
can be determined. Having the slope value m(A,) determined for a certain spatial wavelength,
the

m(4s) (5.13)

~

ITF(A,) =

can now be defined as the relation between the determined slope value and the expected
slope value. Performing the simulation for multiple spatial wavelengths between 10 ym and
100 mm, the ITFs for different beam half widths w,, shown in Figure 5.33, are determined.
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Figure 5.33: ITF’s determined for different beam half widths W, over spatial wavelengths
between 0.01 mm and 100 mm. Vertical dashed lines separate the three different
surface characteristics roughness, waviness and form. To determine the cutoff
wavelength, a horizontal dashed and dotted line is drawn at ITF = 0.5.

In Figure 5.33, multiple ITFs are shown. The first ITF depicted by the blue continuous line,
shows the ITF for the expected beam half width of w, = 106 um. However, regarding Figure
5.32, one can see that the incident beam is here simulated perpendicular on the SUT. In the
experimental setup, this is valid for the beam regarded in ¥-direction. Regarding the beam’s
y-direction, the beam is coming under an angle of 45°. Thus, its beam width on the SUT is
increased by the factor of v/2. Therefore, the orange continuous line with a beam half
width W, = v/2 - 106 um is shown, representing the ITF in j-direction. Regarding these two
graphs, one can see that they are both almost at ITF = 1.0 within the spatial bandwidth of the
form. Within the bandwidth of the waviness, both graphs drop to almost ITF = 0, where they
stay also with the bandwidth of the roughness. This shows that form deviations can be
reconstructed, while roughness is not detectable with the given incident beam. The explanation
for this can be found in the width w,. While the beam only covers the rising slope of the
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sinusoidal surface topography for large spatial wavelengths, it covers more and more of the
whole period of the sinusoidal structure with decreasing spatial wavelength. When the beam
even covers multiple periods of the sinusoidal structure, it is almost orthogonally reflected.
According to DIN EN ISO 25178-604, the cutoff-wavelength is defined at the point, where the
ITF reaches 50 % [120]. This means that wavelengths shorter than this cutoff-wavelength are
considered not to be detectable. In Figure 5.33 a horizontal line is drawn at ITF = 50 %.
Determining the cutoff frequency for the four beam half widths shown in the Figure, the cutoff-
wavelengths presented in Table 5.6 are determined.

Table 5.6: Determined cutoff-wavelengths of the ITF for the different beam half widths
presented in Figure 5.33.

Wo [um] cutoff-wavelength [um]
106 200.2

V2 -106 282.4
75 141.5
25 47.1

Regarding the values presented in Table 5.6, one can see that the shortest wavelength to be
detectable with the given setup is 200.2 um. The sample distance used in the experimental
measurements (except for the flat surface) is 100 um. Thus, the Nyquist theorem for spatial
wavelengths at the cutoff-wavelength is satisfied [123].

Additionally, two more exemplary beam half widths are presented in Figure 5.33 and Table
5.6. In Figure 5.33, the green dotted line shows the ITF of a beam with a half width of
Wy = 75 um. The red dotted line shows the ITF of a beam with w, = 25 um. Regarding the
graphs in Figure 5.33 and the determined cutoff-wavelengths in Table 5.6, one can see that a
decrease of the beam width, leads to more spatial wavelengths to be detectable. For a beam
half width of w, = 25 um, the cutoff-wavelengths has even been determined to be in the
bandwidth of roughness.

5.5.2 Measurement time

The measurement time is a crucial factor for the commercial compatibility of a measurement
machine. Thus, a short measurement time has to be achieved. To observe different
measurement procedures, a simple sample grid as shown in Figure 5.34 is observed.
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Figure 5.34: Sample grid used for the evaluation of the measurement speed of different
measurement processes.
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The sample grid is an even square grid with a sample distance of 100 um and a aperture of
1 mm. It contains 121 sample points distributed over 11 rows and 11 columns. To gather all
necessary data for the evaluation for each sample point %; the position C; and D; has to be
detected. Three different processes to gather these data are compared here.

The first process is the one described in the flowchart presented in Figure 4.11. It includes the
positioning of the SUT at the positions X; one by one to determine the positions C;. After
moving the detector to the second position, once again the SUT is positioned to the positions
X;, to determine the positions D;.

The second process to evaluate is closely related to the first process, but instead of
determining the positions C; and D; serially, they are determined in parallel. Moving to the SUT
to a position X; both positions C; and D; are determined by staying at the position ¥; and
moving the detector.

The third evaluated process is the one used for the experimental measurements. It uses the
PSO of the X¥y-stage’s controller to trigger the camera, while moving the SUT continuously as
described in Chapter 5.1.

To evaluate the different processes, the following values for the needed times are determined.
Moving the SUT by a distance of 100 um and stop takes 1.0 s. Taking a single image takes
0.5s. Moving the camera by a distance of 10 mm and stop takes 2.5s. Moving the SUT
continuously while using the PSO to trigger the camera a framerate of 7 fps can be achieved.

The movement of all stage to reach the initial position is neglected. The determined times
needed for the measurement of the given sample grid with the different processes are
presented in Table 5.7.

Table 5.7: Measurement times determined for the three different measurement process
types described before.

process type time needed [s]
1 365.5
2 484.0
3 62.2

Regarding the values in Table 5.7, one can clearly see that using the PSO and moving the
SUT continuously, achieves the lowest measurement time. This is due to the long time needed
for the stop-and-go sampling used in the other two process types. However, even the
measurement time of the process type 3 can be improved. The most time consuming element
here is the low framerate of the camera. Improving this, even lower measurement times can
be achieved.
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6. Error analysis

6.1 Error Sources

In contrast to simulations, experimental setups have limited accuracy and stability due to
imperfections, misalignments and noise. The impact of these influences are generally donated
as measurement errors [124]. To estimate these measurement errors and their influence on
the measurement results, the following error sources are investigated:

- centroid uncertainty and drift

- positioning uncertainty of the w-stage

- pitch and yaw of the w-stage

- straightness and flatness of the w-stage

- positioning uncertainty of the xj-stages

- pitch and yaw of the ¥y-stages

- straightness and flatness of the x¥y-stages
- calibration errors due to SUT deviations

Error sources that are not investigated, as no information is available about these error
sources, are:

- roll of w-stage

- roll of the ¥y-stages

- non-orthogonality of the X¥y-stages
- inaccuracies of the camera chip

The information about the magnitude of the error sources defined above either is taken from
datasheets or test protocols or is measured in the measurement setup itself. The error sources
and, if available their magnitude, will be described in the following subchapters.

Centroid uncertainty and drift

The centroid stability and drift are two different error sources both influencing the centroid
position. The centroid uncertainty is the expected stochastic change of the centroid position
due to noise. Dark current, shot noise and centroid instability of the incident beam are included
in this noise [125]. Additionally, fluctuations in the air in the measurement setup, as well as
vibrations can also influence the centroid uncertainty. The centroid uncertainty can be
interpreted as a high frequency change of the centroid position. It will be donated by the two
values g,, and g,, describing the standard deviation of the centroid uncertainty in u- and
v-direction in the camera chip as shown in Figure 6.1.
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Figure 6.1: Sketch to illustrate the centroid uncertainty and drift. The uncertainty bars at
the point, where the incident ray intersects with the detector plane, illustrate the centroid
uncertainty o,, and o,,. The orange arrow illustrates the centroid drift ¢,, ; and o, 4.

The drift of the centroid in u- and v-direction will be donated as o, ; and o, 4. This drift is mostly
caused by environmental influences. Temperature changes stretch and contract the elements
in the setup. The drift will not be given as an uncertainty, but as a change over time [126]. Both
uncertainty and drift values are determined experimentally as presented in Chapter 6.2.

Positioning uncertainty of the w-stage

The positing of the detector along the w-axis underlies the uncertainty of the positioning of the
w-stage. Although, the w-stage is equipped with a feedback system, the actual positioning has
a certain uncertainty. This uncertainty applies to both detector positions. Its magnitude is
donated g,,. The uncertainty is illustrated in Figure 6.2.

Figure 6.2: Sketch to illustrate the influence of the positioning uncertainty o, the pitch
oyp and the yaw o, ,, of the w-stage on the detector plane.

The magnitude of the positioning uncertainty is given as g,, = +1,0 um according to the test
protocol shown in Appendix G. Since an actually targeted position is known and g,, gives the
maximum deviation in positive and negative direction, the error is considered stochastic with a
distribution of the deviation between the targeted and the actual position that is assumed to be
triangular [127, 128].

Pitch and yaw of the w-stage

The pitch and yaw of the w-stage is directly assignable to the pitch and yaw of the detector
plane. Therewith, it has an influence on the detected centroid position of the reflected beams.
The magnitude of the pitch and yaw of the w-stage are donated o,,,, and g, ,,. Their influence
on the detector plane is illustrated in Figure 6.2.

The magnitudes of the pitch and yaw according to the test protocol given in Appendix G are
Owp = £17.791 prad and o,,,, = £12.643 prad. Although, these values are given for the whole
travel length of the w-stage, they are assumed to appear also in the same magnitude if the
stage is used in shorter ranges. These errors are assumed to be systematical.

88



Error analysis

Straightness and flatness of the w-stage
The straightness and flatness given for the w-stage will be donate g, ; and g, . They describe
an elevation or shift of the stages carriage during movement as presented in Figure 6.3.

u

c

w

Figure 6.3: Sketch to illustrate the influence of the straightness and flatness of the
w-stage on the detector plane’s position.

The magnitude of the straightness and flatness error is given as o,,; = £1.926 um and
ow,s = 1£2.286 um according to the test protocol given in Appendix G. Although, the
straightness and flatness influences presented in Figure 6.3 directly indicate the influence on
the detector plane, they can also be interpreted differently. Therefore, one has to recall that
the detector plane is only positioned at two different w-positions within one measurement.
Thus, one can always draw a line between the two center points of the detector plane in the
two positions. Assuming that this line is the ideally straight and flat movement of the w-stage,
the straightness error turns into a constant yaw error and the flatness turns into a constant
pitch error. This is only due to a change of the point of view. To point this out, the change of
the point of view is illustrated in Figure 6.4.

change of
point of view

straightness/flatness yaw/pitch
e \““‘ """ :> """ "\

detéctor

Figure 6.4: Sketch to illustrate change from the straightness and flatness error of the
w-stage to a yaw and pitch error of the detector, when the movement of the center of the
detector is assumed to be ideally along the w-axis.

May the intended movement along the w-axis be Aw, the constant yaw

. iO-w,s
Guey = sin (e (6.1)
and the constant pitch
. io-w,f
Gwep = sin () (6.2)

can be calculated from the straightness and flatness error. Having Aw = 10 mm, as it is used
in the experimental measurements presented in Chapter 5, the constant yaw and pitch can be
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calculated to be oy, = +192.6 yrad and o,,., = £228.6 urad . These errors are also
considered systematical.

Positioning uncertainty of the ¥y-stages

Equivalently to the positioning uncertainty of the w-stage, a positioning uncertainty exists for
the ¥- and y-stage. These uncertainties are donated o; and o3 and they both have a direct
influence on the actually investigated position I on the SUT. However, since the SUT is
positioned to the sample positions X;, the uncertainty has to be considered in this positioning
as illustrated in Figure 6.5.

Figure 6.5: Sketch to illustrate the influence of the positioning errors o; and oy of the
X- and y-stages on the sample position %;.

According to the test protocol given in Appendix E, the positioning errors are gz = £0.627 pm
and o; = £0.517 um. As already assumed for the positioning accuracy of the w-stage, the
error is considered stochastic with a triangular distribution of the deviation from the actually
targeted position.

Pitch, roll and yaw of the ¥y-stages

The pitch and roll of the ¥- and j-stages is crucial to the correct measurement of the surface
gradient, as an error in one of these parameters has a direct impact on the surface normal.
However, since the two stages are mounted orthogonal to each other, the roll of one stage is
equivalent to a pitch of the other and vice versa. Although the roll of the xj-stages is listed as
not considered error source, it can be assumed to be included in the pitch error of the
Xy-stages. Regarding this pitch error, it comes back in mind that this error is considered in the
calibration of the pitch of the DUT positioning described in Chapter 3.6.2 and 5.2. Thus, the
influence of the pitch and roll error of the X¥y-stage is considered known and manageable and
therewith is not considered in this error analysis.

In contrast to the pitch and roll error of the X¥y-stages, their yaw error is not detected in the
experimental setup. Thus, it has to be included in the error analysis. The yaw errors of the two
stages are donated o5, and g5, and are expected to be systematical. Their impact on the

DUT orientation in the experimental is illustrated in Figure 6.6.

N3 4

Figure 6.6: Sketch to illustrate the influence of the yaw errors oy, and oy, of the
%- and j-stages on the DUT orientation.
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According to the test protocol given in Appendix E, their magnitudes are o3, = +6.368 prad
and o3, = +16.662 prad. Both yaw errors have the same influence on the DUT orientation as
shown in Figure 6.6. Thus, they will be connected in the error analysis. Additionally, it has to
be mentioned that this yaw error has no influence on the sample position X;, but only on the
orientation at the sample position itself. The DUT is positioned to X; before the yaw error is
applied. Otherwise the yaw error also had an influence on the position %;.

Straightness and flatness of the ¥y-stages

As described before for the w-stage, the straightness describes a shift and the flatness an
elevation of the stage’s carriage during movement. The straightness errors of the two stages
are donated o3, and gy 5, while the flatness errors are donated o3 ; and oy . Their influence
on the positioning of the DUT is illustrated in Figure 6.7.

NSR 4

Figure 6.7: Sketch to illustrate the influence of the straightness errors o5 and o5 ; and
the flatness errors o5 and oy ¢ of the Xj-stages on the DUT position.

Equivalently to the yaw errors, the flatness errors o3 r and oy » have the same influence on the
DUT position and will later have to be combined. The magnitudes given for the errors described
before are oz = +0.282um, o5, = £0.285um, o0zr = £0.235 um and oy = £0.260 um
according to the test protocol given in Appendix E. These errors are not considered stochastic,
but systematical, as they are a result of the mechanical bearing of the stage carriages. This
differentiates the straightness errors o3 and oy ; from the positioning errors o; and oy, as
these errors are considered stochastic.

Calibration errors due to SUT deviations

The combined calibration described in Chapter 3.6.1 and 4.3 assumes that the investigated
SUT is free of deviations from the expected surface model. However, this assumption is not
valid in experimental measurements, as deviations from the model cannot be prevented. Thus,
deviations in the calibrated values have to be expected. These deviations will be donate 0 gl

01, 0o, Oge and o ¢, for the uncertainties of the values al, B, alt, p2* and y§.

6.2 Experimental error determination

The error sources determined experimentally are the centroid uncertainty and the centroid drift.
To determine the magnitudes of these values, a flat mirror is used as DUT. The camera is
positioned to w = 90 mm and without any movement in the setup, a series of images are taken.
Determining the centroid for every image, the centroid uncertainty and drift can be derived. To
have a significant series of images, 40 000 images have been taken and evaluated over a
duration of 5.5 hours. The centroid positions determined from this series of images are shown
in Figure 6.8.
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Figure 6.8: Determined centroid positions €, and C, to determine the centroid
uncertainty and drift. The red line shows a linear fit to the given centroid data,
representing the drift of the centroid values.

These centroid positions shown in Figure 6.8 include both, the drift and the stochastic
uncertainty. To investigate the two parameters for both directions independently, a linear fit,
representing the slow drift, has been performed over the given centroid positions [129]. This fit
for each direction is shown by the red lines in in Figure 6.8. Over the full 40 000 images this fit
indicates a drift of the centroid in u-direction of 395 nm and in v-direction of =471 nm. To set
this drift in relation to the time the 40 000 images have been taken over, one can determine
the drift errors

[395 nm| nm (6.3)
Oud = "gEy ~ 8T
and
A= 11h T

After subtracting the drift from the determined centroid positions, the position €, and C, as
shown in Figure 6.9 are determined.

0 10000 20000 30000 40000

0 10000 20000 30000 40000
number of image

Figure 6.9: Determined centroid positions €, and C, after subtracting the linear drift. The
red bars represent the standard deviation.
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Regarding the values of C, in Figure 6.9, one can recognize that a systematic structure besides
the stochastic fluctuation exists. Since the frequency of this structure is too high to be
considered a drift, it is taken into account in the centroid uncertainty evaluation. To determine
the centroid uncertainty in u- and v-direction, the standard deviation of the given centroid
positions is determined [129]. Although, the standard deviation only is fully trustable if an
infinite number of samples are evaluated, the 40 000 samples taken into account here are
expected to give a trustable assumption of the centroid position uncertainty. From the data
presented in Figure 6.9 the standard deviations and therewith the centroid uncertainties
o, = 219 nm and g, = 196 nm are determined. These values are also presented in Figure 6.9
by the red bars.

6.3 Uncertainty of ray direction measurement

To investigate the uncertainty of the ray direction measurement, a single sample point is
investigated. Therefore, no drift is considered, as drift only occurs over time. The uncertainties
and systematic errors that are taken into account here are the centroid uncertainty, the
w -stage positioning uncertainty and the w-stage pitch, yaw, straightness and flatness.
Additionally, an estimation about the surface slope determination uncertainty and their
influence on the integration is given. Therefore, the incident ray direction is considered ideally
known.

Centroid uncertainty

For the considerations given in the following, the simplified 2D sketch of the measurement
setup shown in Figure 6.10 is used. Additionally, all explanations are only given in 2D for better
understandability and readability. If differences to these considerations apply in 3D, they will
be pointed out explicitly.

>y

Figure 6.10: Simplified 2D sketch of the measurement setup with the incident ray i, the
reflected ray r, the surface angle @,, the surface slope defined by i—i, the reflected ray

angle 3, and the reflected ray slope AA—;. The reflected ray’s position is defined by the two
detector planes positions w; and w, and the determined positions v; and v,.

In the sketch in Figure 6.10, the incident ray is reflected by the SUT, which has a surface angle
@, in reference to the y-axis. The surface angle can also be represented by the surface slope
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Sy = 2—; = tan(c?y). (6.5)

From the law of reflection one can determine g, = 2a,. While f, represents the angle between

the reflected ray direction and the w-axis. According to the surface slope, one can also define
the ray slope

Ay vy -y

= tan(ﬁ’,,) = tan(2&y). (6.6)

T =—=
VoAw wy, —wy
To investigate the influence of the centroid uncertainty on the ray slope uncertainty oy ,
Equation (6.6) is expanded to

_(vziav)_(vliav)_Avi(\/i'o-v)_£ (\/E'O-U)

T, + = v (6.7)
v+ 9T, Wy — Wy Aw Aw ™  Aw

applying Gaussian error propagation [129]. Regarding Equation (6.7) one can see that the o7,
here is inversely proportional to Aw [130]. This can also be seen regarding Figure 6.11, where
the values of a7, and o, , which is the ray slope uncertainty in w-direction, are shown
dependent on the distance Aw.
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Figure 6.11: Plot to show the influence of the distance Aw on the ray slope detection
uncertainties o, and o7, including the centroid uncertainties o, and o,,. The red markers
indicate the position of Aw = 10 mm as chosen in the experimental measurements.

In the experimental measurements, a distance of Aw = 10 mm has been chosen. Although one
can see that o, and o7, still decrease with Aw > 10 mm, it has also be considered that the first
detector position is chosen as close as possible to the DUT, limited by mechanical dimensions.
Thus, increasing Aw leads to an increase of the distance between the DUT and the second
detector position. Since all reflected beams have to intersect with the optically active area of
the camera chip at both positions w; and w,, this directly leads to a decrease of the range of
detectable surface angles. The determined uncertainties for Aw = 10 mm under the influence
of the centroid uncertainties are o7, = 31.0 prad and o7, = 27.7 prad.

Errors induced by the w-stage

Considering the w-stage positioning uncertainty g,,, Equation (6.6) is now extended in the
denominator leading to
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Av
+ — : 6.8
v +or, (w; £0y) — (Wy £ 0y,) (©-8)

Equation (6.8) indicates a dependency of o7, on Av, which is dependent on the surface
angle &, . Using Equation (6.6), the values of Av for Aw =10mm and
@ = —12.0°,—-11.9°,...,11.9°,12.0° are calculated. To derive o7, from Equation (6.8), Gaussian
error propagation cannot be applied, since the distribution of g,, is expected to be triangular.
Thus, a Monte-Carlo-Simulation (MCS) with 1 000 000 iterations is performed to determine the
magnitude of o numerically [131, 132]. This MCS leads to the standard deviations oy,
dependent on &, as shown in Figure 6.12.

or, [urad]
w

-10 -5 ] 0 5 10
ay [°]

Figure 6.12: Determined values for o, over &, including the w -stage positioning
uncertainty o,,.

It has to be pointed out that this uncertainty is only valid for a single surface slope
determination. In an experimental measurement, the error of the w-stage positioning is not
stochastic for every sample point, but an unknown systematic error for the determination of all
C; and D; separately, as the camera is only repositioned once within a measurement.

According to the simplification in 2D, only the yaw error o,,,, and the constant yaw error g,,, .,

resulting from the straightness of the w-stage are considered. To determine the influence of a
yaw of the detector on the detected position, the situation illustrated in Figure 6.13 is
considered.

In Figure 6.13 the detector plane is tilted by #,, which is considered the yaw of the detector
plane. Therewith, instead of the correct position v,, the erroneous position ¥, is detected.
Using the sine rule, one can determine the erroneous position

9, = UIM (6.9)
COS(_VU - ﬁv)
from the correct position and the given angles [79]. One can see that a dependency on the
investigated surface angle c?y exists, too, since &y directly influences the position v,. Thus, the
uncertainty of the surface slope detection has to be investigated dependent on &,,. For further
investigations, the following assumptions are made. The distance between the intersecting
point of the incident ray with the SUT and the first detector position is 28 mm. For the detector
position wy, the tilt angle ¢, is set to o, ., — 0,,,. For the detector position w; it is set to
ow,cy T 0w, . Respectively for the u-direction, the tilt angle 7, is set to o,, ., — 0y, ,, for the first
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position and g, ., + 0,,,, for the second detector position. Therewith, the full range of the given
errors is taken into account. Applying this to the same surface angles &, and &,,, as used for

the stochastic error evaluation, erroneous ray slope values T, and T, are determined. The
deviation from the correct ray slopes T,, and T,, are shown in Figure 6.14.

w

Figure 6.13: Simplified 2D sketch to show the influence of a detector tilted by #, on the
determined position v; dependent on the reflected beams angle £, .
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Figure 6.14: Determined values for T, — T,, and T,, — T,, dependent on the surface angles
@, and &, including the w-stage pitch and yaw errors and the w-stage flatness and
straightness errors.

Combining centroid uncertainty and w-stage errors

To get an overall assumption about the uncertainty of the ray slope determination, the error
sources described before are combined in one MCS of 1000 000 iterations [132]. The
simulation has been performed for the same range of @ and for Aw =10.0 mm. The
determined uncertainty in terms of the standard deviation is shown in Figure 6.15.
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Figure 6.15: Determined for o, and o7, dependent on the surface angle & including the

centroid uncertainty, the w-stage positioning uncertainty, the w-stage pitch and yaw
errors and the w-stage flatness and straightness errors.

To transfer the ray slope uncertainties into surface slope uncertainties, Equation (6.6) is
extended to determine the surface angle

2 (&y + Uay) = arctan(T, £ or,) (6.10)

including its uncertainty a,- From Gaussian error propagation, Equation (6.10) is solved for

1 d arctan(T,)
5 4 on == ki . 6.11
@y +0a, =5 <arctan(T1,) + aT, O'Tv> ( )
Solving the differentiation, leads to
R B arctan(T,) 1 6.12
G&Eo, = a1 (612
for the definition of the surface angle [79]. Applying Equation (6.5), the surface slope
qt o, =tan(a, +o,,) (6.13)

with the surface slope uncertainty o, is determined from the surface angle. Once again
Gaussian error propagation is applied, leading to

dtan(a,) . 1
WU@)} = tan(ay) + m

To transfer this surface slope uncertainty into a surface height uncertainty, the sample distance
Ay = Ay has to be considered. Unfortunately, as described in Chapter 2.3.1, the actual
distance between the sample points is dependent on the surface height. Assuming a flat
surface in between the sample points as shown in Figure 6.16, one can determine the actual
sample distance

os (6.14)

qtog= tan(&y) + -

— Ay

Ay=——2 6.15
Y tan(&,) + 1 (6.15)

from surface angle &, and the given sample distance Ay for an angle of 45° between the
incident ray and the z-axis.
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Figure 6.16: Sketch to illustrate the dependency of the actual sample distance Ay on the
surface angle &,, the initial sample distance Ay and the incident beam direction i.

To consider this situation in x-direction, the actual sample distance
Ax = Ax (6.16)

is set equal to Ax as the angle between the incident beam and the z-axis is 0°. Regarding
Figure 6.16, one can derive the relation

o5 = 0,8y (6.17)

to determine the surface height uncertainty o;. To determine the surface height uncertainty
for different given parameters, it is evaluated for x- and y-direction separately for the same
surface angle range as considered before and for sample distances of Ax and Ay in a range
from 25 pm until 1.0 mm in steps of 25 um. The results from these considerations are shown in
Figure 6.17.
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Figure 6.17: Plots presenting the single point surface height determination uncertainty in
a) x- and b) y-direction dependent on the given sample distances Ax and Ay and the
surface angle &, in x- and &,, in y-direction.

Analyzing the data presented in Figure 6.17, one can see that the height uncertainty is
increasing with the given sample distance Ax and Ay, as expected from Equation (6.17).
Additionally, one can recognize that the surface angle has a higher impact on oy in
y-direction, than it has in x-direction. This is due to the incident ray having an angle of 45° to
the z-axis in y-direction in contrast to an angle of 0° in x-direction. Focusing on the two sample
distances used in the experimental measurements, one can derive a maximum value for
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o3, of 2.1 nm for a sample distance of 0.1 mm and a maximum value for oz, of 21 nm for a
sample distance of 1.0 mm.

6.4 Calibration uncertainty

Due to the deviations of the SUT from its model, used for the combined calibration of the
incident beam direction, the xy-stages orientation and the camera rotation, an uncertainty of
the derived calibration data occurs. To derive this uncertainty, the simulation described in
Chapter 4.3, to present the basic abilities of the calibration method, has been performed with
an expected non-ideal SUT model. In Chapter 5.4.3, the experimental measurement results
using the polynomial freeform 1 are shown. From the presented deviations d;, the first 36
Zernike polynomials have been subtracted to obtain the high-frequency deviations of d;. Thus,
the sum of the first 36 Zernike polynomials describe the low-frequency deviations of d;, shown
in Figure 6.18.
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Figure 6.18: Low-frequency deviations of the experimentally determined deviation d; of
the polynomial freeform 1 from its model as shown in Figure 5.23 b). The low-frequency
deviations are determined by a fit of the first 36 Zernike polynomials to d;.

These deviations have been added to the expected SUT model and the calibration has been
performed. The derived values and their deviation from the expected values are shown in Table
6.1.

Table 6.1: Derived angles from the combined calibration performed on simulation data,
while using a SUT model including expected low-frequency deviations to determine the
uncertainty of the calibration method.

az [°] pe [°] az’ [°] N v []

expected 90.10009817  0.10588067 45.1 —0.075 —0.13
derived  90.11788401  0.26661099  45.10864360  0.01355140  —0.04216675
deviation  0.01778584  0.16073032  0.00864360  0.08855140  0.08783325

The deviations presented in Table 6.1 show the deviations for this exact sample. Since the
calibration method is complex, a direct traceability of the deviations to a certain surface
structure is not possible. Thus, for further considerations, the deviation values presented in
Table 6.1 are take into account as the maximum deviation of these angles, while the deviations
are considered distributed uniform.
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6.5 Monte-Carlo-Simulation with full measurement model

To derive the uncertainty of the measurement technique, two MCSs have been performed
including all considered error sources [132]. One MCS has been performed with an areal
measurement using the polynomial freeform 1 as SUT. The second simulation has been
performed as a cross-section simulation using the cylinder surface. The model used for the
simulation is described in Chapter 4.2.1, while the evaluation has been performed considering
the model to be known according to the description in Chapter 3.4.

MCS using polynomial freeform 1

For the first MCS, the polynomial freeform 1 is used as SUT. The sample area is of circular
shape with a diameter of 22 mm and a sample distance of 100 um. Therewith, the simulation
can directly be compared to the experimental measurement shown in Chapter 5.4.3.

The centroid uncertainty, the w-stage positioning of the w-stage, the pitch and yaw of the
w-stage, the straightness and flatness of the w-stage, the positioning uncertainty of the
Xy-stages as well as the calibration errors are considered as described before.

To determine the centroid drift, a measurement time t,,, has to be set. This measurement time
is approx. 4,5 h for the experimental measurement of the polynomial freeform as described in
Chapter 5.4.3. With this, the expected drifts

Gyq = Oyatm = 323.1nm (6.18)
and
6pq = Oygtym = 385.2 nm (6.19)

within one measurement can be determined. To model the drift in the uncertainty evaluation
here it is now considered normal distributed with the standard deviations 6, ; and 6, 4 [133].
Thus, one can sum up the centroid uncertainties and drifts to a normal distributed uncertainty
with the standard deviation of

6= |02 +82, (6.20)

A

Gy, = |0+ 654 (6.21)

and

:

according to Gaussian error propagation [129].

The yaw errors of the ¥- and y-stages is considered to be of full range within the considered
SUT area. Thus for the sample points at ¥ = —11 mm the yaw of the X¥-stage is considered to
be —o,, while at the sample points at ¥ = 11 mm the yaw is considered to be o3 ,. The
evolution in between is considered linear. The same applies for the j-stage with o5 ,. Since
only one yaw error can be applied to the SUT, the yaw errors are added for each sample point.

Equivalently to the yaw errors, the flatness and straightness errors are taken into account. At
the sample positions ¥ = —11 mm, the flatness of the %-stage is considered —oy r while the
straightness is considered —oy ¢ at the sample points ¥ = 11 mm, the flatness is considered
oz s While the straightness is considered o5 . The evolution in between is considered linear.
The same applies equivalently for the j-stage with the corresponding error magnitudes. While
the straightness can be applied separately on the positioning of the SUT, the flatness of the
stages has a correlating influence on the SUT. Thus, the errors of the two stages are added.
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With these error sources, one simulation in OpticStudio is performed including the systematic
errors of the pitch and yaw of the w-stage, the straightness and flatness of the w-stage, the
yaw of the X¥j-stages and the straightness and flatness of the Xj-stages. In the evaluation, the
stochastic errors of the centroid uncertainty and drift, the positioning uncertainty of the
w-stage, the positioning uncertainty of the ¥y-stages and the calibration errors are included.
The evaluation is performed 500 times. Exemplary, one of the 500 surface deviations is shown
in Figure 6.19 a), while Figure 6.19 b) shows the standard deviation for each sample point.
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Figure 6.19: a) Exemplary plot of the determined surface deviation from one evaluation
in the MCS using the polynomial freeform 1. b) Plot of the standard deviation determined
for each sample point over all iterations of the MCS using the polynomial freeform 1.

The RMS of the deviations d; shown in Figure 6.19 a) is 94.5 nm. Regarding Figure 6.19 b),
one can recognize that the standard deviation per sample point correlates with the absolute
value of the surface slope shown in Figure 4.8 d). This is also in accordance with the expected
ray direction uncertainty dependent on the surface angle shown in Figure 6.15. The low
number of 500 iterations performed in the MCS has been chosen due to long calculation times
needed in the evaluation. However, regarding the RMS surface deviation values determined
for each iteration in Figure 6.20 a) and the evolution of the mean value of the RMS value shown
in Figure 6.20 b), one can see that the mean value approaches a constant value.

The mean value of all RMS surface deviations shown in Figure 6.20 a) is 215.0 nm with a
standard deviation of 97.6 nm.

These values shown in Figure 6.19 and Figure 6.20 indicate a very high single point and overall
RMS surface deviation uncertainty. However, it has to be considered that for multiple
uncertainties, worst-case scenarios have been deployed. For example the values for
straightness, flatness, pitch and yaw of the w-stage have been deployed over a distance of
10 mm, although the given values for these errors have been determined over the full travel
length of 100 mm. The same applies for the yaw of the %j-stages. The values for these errors
have been determined over the full travel length of 100 mm, but have been deployed in the
simulations on a distance of 22 mm. Thus, it can be expected that the standard deviation and
the mean value of the RMS surface deviation is smaller than determined in this MCS.
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Figure 6.20: Plots evaluating the RMS surface deviation values determined in the MCS
using the polynomial freeform 1. a) shows the RMS surface deviation for each iteration.
b) shows the evolution of the difference of the mean RMS value with increasing number
of iterations to the mean RMS value of 215.0 nm considering all iterations.

MCS using cylinder surface

To perform the MCS using the cylinder surface, the same SUT and parameters have been
used as described for the simulation of the cylinder surface in Chapter 4.1.3. The evaluation
is performed considering the surface to be known. Regarding the drift considered for this
measurement, a measurement time of t,,, = 2: 25 min is considered. According to Equation
(6.18) and (6.19), an uncertainty induced by the centroid drift of 6,4 = 2.7 nm and
6,4 = 3.2 nm is taken into account. With Equation (6.20) and (6.21), a standard deviation for
the centroid of 6, = 219 nm and G, = 196 is considered. These values are almost similar to
the centroid uncertainties determined experimentally. This shows that the centroid drift has
almost no influence on the cross section measurement due to the short measurement time.

Since the evaluation of the cross-section simulation is very fast in comparison to the evaluation
of the full areal simulation, the number of iterations performed is increased to 10 000. For each
iteration, a BFS has been fitted to the reconstructed surface. Figure 6.21 a) shows the
determined deviations to the BFS, while Figure 6.21 b) shows the standard deviation of the
deviation for each sample point.

The determined radii of the BFS are shown in Figure 6.22 a). The mean radius of all determine
BFSs is 206.692 mm. The standard deviation of these radii is 186 um with a PV of 740 um. The
evolution of the mean radius as deviation to 206.692 mm is presented in Figure 6.22 b). One
can clearly recognize the approximation of the evaluation towards a constant value.

Regarding the RMS surface deviation determined for each iteration as the RMS of the
deviations between the reconstructed surface and the BFS, one can determine values mostly
in the range of single-digit nanometer. The RMS surface deviation for each iteration is
presented in Figure 6.23 a). The mean RMS value, including all iterations, is 5.2 nm, the
according standard deviation is 1.6 nm. The evolution of the mean RMS value with increasing
number of iterations in deviation to the mean RMS value including all iterations is shown in
Figure 6.23 b). An approach towards a constant mean value can be recognized.
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Figure 6.21: Results from the MCS using the cylinder surface. a) shows the determined
deviation to the BFS for each iteration. b) shows the standard deviation of the deviation
to the BFS for each sample point over all iterations of the MCS.
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Figure 6.22: a) shows the deviation of each BFS radius for the different iterations of the
MCS using the cylinder surface in comparison to the mean BFS radius. b) shows the
deviation of the mean BFS radius with in creasing number of iterations to the mean BFS
radius considering all iterations.

To investigate the influence of different error sources on the presented results from the MCS,
histograms of the determined results from the multiple iterations are determined. Figure 6.24
a) shows a histogram of the determined BFS radius deviations to the mean BFS radius
presented in Figure 6.22 a). In Figure 6.24 b), the histogram of the determined RMS surface
deviations presented in Figure 6.23 a) is shown.

Regarding the histogram presented in Figure 6.24 a), one can recognize an uniform pattern of
the distribution of the BF S radii values. As the only error sources considered uniform distributed
are the errors in the parameters from the calibration, it can be considered that these errors
manly influence the radius of the BFS. Regarding the histogram presented in Figure 6.24 b),
one can recognize a gamma distribution. This may be due to a constant RMS deviation
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introduced by systematic errors, while the stochastic errors add up to the constant RMS
deviation to create the determined gamma distribution.
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Figure 6.23: a) shows the RMS surface deviation to the BFS for each iteration of the
MCS using the cylinder surface. b) shows the deviation of the mean RMS surface
deviation with in creasing number of iterations to the mean RMS surface deviation
considering all iterations.

500 1400

1200
$ 400 3
2 :

g o 1000
e -
3 =]

§ 300 § 800
s G

200 & 600

E E 400
<100 <

200

g0.4 -0.2 0.0 0.2 0.4 0 6 8 10 12 14
BFS radius deviation to mean radius [mm] RMS of d; [nm]
a) b)

Figure 6.24: a) shows the histogram of the determined deviation of the BFS radii from
the mean BFS radius as presented in Figure 6.22 a). b) shows the histogram of the
determined RMS surface deviation to the BFS for each iteration as presented in Figure
6.23 a).

6.6 Experimental repeatability determination

To evaluate the determined conclusions from the MCS, the measurement of the cylinder
surface presented in Chapter 5.3.2 has been repeated 200 times. The determined deviations
from these measurements as well as the standard deviation for each sample point are shown
in Figure 6.25.
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Figure 6.25: Results from repeatability measurement using the cylinder surface. a)
shows the determined deviation to the BFS for each iteration. b) shows the standard
deviation of the deviation to the BFS for each sample point over all iterations.

Regarding Figure 6.25 a), one can see that a certain M-shaped structure dominates the
deviations of the reconstructed surfaces from the fitted BFSs. This deviation is expected to be
the actual surface deviation from the model, as the structure is in good accordance with the
comparison measurement as presented in Chapter 5.4.2. Regarding Figure 6.25 b), a certain
systematic structure can here be recognized, too. This structure can also be determined in the
MCS as presented in Figure 6.21 b). Therewith, it can be assumed that the model used for the
MCS is in accordance with the error sources in the experimental measurements. Regarding
the magnitudes of the standard deviations from the MCS and the repeatability measurements,
one can recognize slightly higher values determined with the repeatability measurements. On
the one hand, it has to be considered that due to the lower number of iterations in the
repeatability measurements the determined values are less reliable. On the other hand, since
there are still error sources that have not been investigated in the MCS, these error sources
can also explain the slightly higher values in the repeatability measurements.

In Figure 6.26 a), the determined BFS radii are presented. The mean radius from all iterations
is 206.421 mm. In Figure 6.26 b), the deviation of the mean radius with increasing number of
considered iterations from the mean radius considering all iterations is presented.

Regarding Figure 6.26 b), one can see that the mean value is not approaching a constant
value. Thus, the determined mean value cannot be considered reliable. However, it has to be
mentioned that the scale of the change of the mean value is only in the range of single digit
um. The PV of all BFS radii presented in Figure 6.26 a) is less than 70 um, which is only
0.034 % of the determined mean radius. Comparing this to the PV of the radii determined with
the MCS, one can see that the PV determined from the repeatability measurement is smaller
by a factor of 10. This underlines the assumption that the high deviations in the radii
determined from the MCS is introduced by the uncertainties of the calibration. In the
repeatability measurement, the calibration parameter are not varied, but kept constant over all
iterations.

Regarding the determine RMS surface deviation values of all iterations of the repeatability
measurement, presented in Figure 6.27 a), one can clearly determine the offset of approx.
112 nm applied to all RMS values. This offset is due to the actual deviation of the reconstructed
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surfaces from the BFSs as shown in Figure 6.25 a). The determined mean RMS surface

deviation over all iterations is 112.0 nm.
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Figure 6.26: a) shows the deviation of each BFS radius for the different measurements
in the repeatability measurement with the cylinder surface in comparison to the mean
BFS radius. b) shows the deviation of the mean BFS radius with in creasing number of
measurements to the mean BFS radius considering all measurements.
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Figure 6.27: a) shows the RMS surface deviation to the BFS for each iteration of the
repeatability measurement using the cylinder surface. b) shows the deviation of the
mean RMS surface deviation with in creasing number of iterations to the mean RMS
surface deviation considering all iterations.

Figure 6.27 b) shows the evolution of the difference of the mean RMS surface deviation with
increasing number of considered iterations from the mean RMS surface deviation considering
all iterations. Regarding this, one can recognize an approach towards a constant value,
although the number of iterations is not very high. The standard deviation of the RMS surface
deviations shown in Figure 6.27 a) is 3.1 nm. This value is higher than the determined standard
deviation from the MCS, which is in accordance to the standard deviation for each sample
point presented before.
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7. Discussion

The theoretical considerations presented in Chapter 2 and 3, have been confirmed by the
simulations presented in Chapter 4. The deviations determined in these simulations are
negligible in relation to the expected uncertainties in the experimental setup.

In the experimental measurements, four different samples have been investigated. For three
of these samples a comparison measurement exists, while each of these comparison
measurements have been performed with a different type of measurement technique. The
cross section measurement of a cylinder surface shows a very good agreement with the
comparison in the surface deviation as well as in the determined surface radius.

Comparing the deviations of the polynomial freeform 1 sample from the expected surface
model determined with the proposed measurement technique with the deviations from the
comparison measurement, similar structures can be observed. However, there are also
significant structures determined with the proposed method that cannot be seen in the
comparison measurement. Since no further comparison measurement of this sample exists, it
cannot be said, if these structures exist on the sample or if they are artefacts introduced by the
proposed measurement technique. For better orientation of the results, this sample has been
provided with three fiducials. These fiducials were determined by both, the proposed and the
comparison measurement, with the same magnitude.

The deviation of the reconstructed surface from the expected surface model of the polynomial
freeform 2 do not show the artifacts determined in the measurement of the polynomial freeform
1. The surface deviations determined for the polynomial freeform 2 show a slight global shape
and many smaller local structures. These local structures are in good agreement with the
comparison measurement. Especially regarding the high-frequency deviations determined
from the proposed measurement technique and the comparison measurement, many
similarities can be observed. The difference of these high-frequency deviations shows a RMS
of only 10.0 nm.

For all three comparison measurements, it has to be said that the measurement results
determined with the proposed measurement technique are comparable with the results from
the comparison measurements. The deviations to the comparison measurements are in the
sub-um range, but still larger than the determined deviations from a round-robin measurement
of freeform samples [17]. However, different samples and different measurement machines
have been used in the round-robin measurement than have been used to provide the
comparison measurements in this work.

In the error analysis, multiple error sources have been investigated. Some error sources were
not taken into account, as their magnitude is not known. From the error analysis, one can
recognize that the uncertainty of a sample point’s height information determined from the
surface reconstruction is dependent on the surface’s slope at this position. This is due to the
integration and the measurement setup with the incident beam not perpendicular to the plane
defined by the movement of the %j-stages. Considering the uncertainties related to the
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determination of the reflected beams direction, a standard deviation of o5, = +£2.1 nm for a
surface angle of 0° and a sample distance of 0.1 mm is determined. Since the proposed
measurement technique is a gradient-based measurement technique, an absolute
measurement accuracy cannot be defined for the surface sag. Having the standard deviation
0z, One can expect this to be the standard deviation of the determined surface sag between
two neighboring points with the same ground truth. In relation to this, the LuphosScan 260 HD,
which has been used to perform the comparison measurement for the polynomial freeform 2,
is defined with an accuracy of less than £50 nm (30) [29]. Therewith, two neighbored points
with the same ground truth can deviate with a standard deviation of approximately +16 nm.
However, it has to be mentioned that this standard deviation is not only valid for two neighbored
points, but for the overall measurement and for the full surface angle range.

From the MCS simulating an areal measurement using the polynomial freeform 1, a large
standard deviation per sample point of up to 1 um had been determined. This high standard
deviation occurred in areas of high local slope of the SUT. Additionally, uncertainties in the
calibration had been included in the MCS. Therewith, a conclusion about the repeatability from
this MCS is not reliable. For the second MCS, using the cylinder surface, a comparison to a
repeatability measurement from the experimental setup is available. Although the repeatability
measurement has only been performed over 200 iterations, conclusions about the
performance of the experimental setup can be drawn. The pattern of the standard deviation
for each sample predicted by the MCS was confirmed by the repeatability measurement.
Therewith, a basic accordance of the simulation model with the experimental setup can be
confirmed. However, the standard deviation for each sample point as well as for the RMS
surface deviation from the BFS show slightly higher values in the experimental repeatability
measurement than in the MCS. This may be due to not considered error sources in the MCS.
However, since the calibration data is varied in the experimental repeatability measurement,
but in the MCS, a much smaller distribution of the determined BFS radii has been determined
in the experimental repeatability measurement. The MCS predict an almost uniform uncertainty
of up to +£300 um for the BFS radius, the determined mean radius of the experimental
repeatability measurement deviates from the radius determined by the comparison
measurement by only +38 pum.

The MCS model considered multiple error sources in their maximum expected magnitude,
although this magnitude might not occur in the experimental setup. For more exact conclusions
from the MCS, further investigation on the error sources and their magnitude has to be done.
Additionally, a more expressive investigation on the influence of measurement errors on the
calibration procedure has to be performed. However, the error analysis provides a good model
of the experimental setup to investigate the error sources.
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8. Conclusion and outlook

In this work, a novel measurement technique for the characterization of specular freeform
surfaces has been proposed. It provides the measurement of freeform specular surfaces
deviation from a flat while utilizing the advantages of gradient-based measurement, which is
not available in this combination yet. The measurement technique is a variation of laser
deflectometry and combines a reflective laser scanning approach with the beam direction
determination from a technique called Experimental Ray Tracing. A narrow beam is targeted
onto the surface under test with a non-perpendicular angle. The reflected beam follows a
direction, dependent on the incident beam and the surface angle. Having the incident beam
direction and the reflected beam direction, conclusions about the surface angle can be drawn.
With this, the measurement technique determines the gradient field of a surface under test. To
reconstruct the surface from the gradient-field an integration method based on radial bases
functions is applied, since this integration method is capable of handling non-even sample
grids. The evaluation of the determined data is implemented using homogeneous coordinates.
With geometrical optics used as optical model, advantages of the homogeneous coordinate
representation of points and directions can be applied.

To confirm the essential functionality of the measurement principle, a simulation model has
been implemented in Zemax OpticStudio. Using this simulation model, multiple different
surface types have been investigated to proof the ability of this measurement technique to
handle these surface types. Additionally, the proposed methods for the calibration have been
confirmed using simulations.

An experimental measurement setup has been built up according to the proposed
measurement principle and in correspondence with the simulation model. With the
experimental setup, four different surfaces have been measured and evaluated. The
determined results from the surface’s reconstruction were compared to the expected surface
model. For three of the samples, comparison measurements are available. Comparing the
deviations from the model determined with the proposed method with the deviations
determined from the comparison measurements show good agreements, but also deviations.
However, the determined deviations are in the sub-um range. Therewith the practical abilities
of the measurement technique are proven.

In the error analysis multiple error sources are investigated. The results from the error analysis
show relatively high deviations, which are higher than expected from the comparison of the
results from the experimental measurements with the comparison measurements. However, it
has to be taken into account that the error analysis handled multiple error sources as a worst-
case scenario, even if it may be expected that they have minor magnitudes. A repeatability
measurement of a cylinder lens has been performed, which can directly be compared to a
Monte-Carlo-Simulation using the model function of the cylinder lens. The comparison
revealed slightly higher uncertainties in the experimental repeatability measurement than
predicted from the Monte-Carlo-Simulation, but also proved a good repeatability of the
measurement technique for the performed cross-section measurement.
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Comparing the results from the proposed measurement technique with the results from the
comparison measurements and considering the experimental error analysis, it can be said that
the proposed measurement technique is comparable with other available measurement
techniques. Therewith, it offers a measurement technique to manufacturers, which is gradient-
based and able to measure freeform surfaces. Especially in the field of freeform surface
deviating from a flat basic shape, the available measurement techniques are exceeding their
limits fast. This is overcome with the proposed measurement technique.

As all scanning measurement techniques, the proposed measurement technique also needs
to scan with a high speed to be comparable with non-scanning measurement techniques.
Thus, a fast beam position detector is needed. In the experimental setup proposed in this work,
a CCD camera chip with a high resolution is used that only provides 7.6 fps defining the sample
frequency. Using a position sensitive detector instead of a camera chip can improve the sample
frequency drastically. However, these detectors have a higher centroid uncertainty and are
more prone to environmental influences.

Another possibility to improve the measurement speed is to overcome the scanning of the two
parallel detector planes serially. Using two cameras and a beamsplitter, the two camera
positions can be realized in parallel. Using an integrated beam direction detector in one camera
may also implement this improvement.
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A. First and second order derivatives of the Wendland’s function
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B. First order derivatives of the surface model functions

Franke surface
May s(x) be the Franke surface as defined in Equation (4.2), its first order derivatives are

13. (1+0.9y)2 (1+0.9y)2
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Cylinder surface

May s(x) be the cylinder surface as defined in Equation (4.3), its first order derivatives in y-
direciton is
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— forR >0

forR <0

for R # 0.

Polynomial freeform 1
May s(x) be the polynomial freeform 1 as defined in Equation (4.4), its first order derivatives
are

ds(x)

=7.0-10"3x — 107 4x3
Ox

and

ds(x)

=-50-10"3 1.4 - 107%y3.
dy y+ y

Polynomial freeform 2
May s(x) be the polynomial freeform 2 as defined in Equation (5.8), its first order derivatives
are

ds(x)
dx

= 0.005x — 6+ 107°x3

and

ds(x)
——~ =0.005y —6-1073y3.
3y y y




Appendix

C. Datasheet of the laser diode

é RoOImTHNER LASERT ECHNIK

Wiedner HauptstraBe 76, A-I040 Vienna, Austria

e Tel: ++43 | 586 52 43-0, Fax -44, office@roithner-laser.com

635nm Pigtailed Modules with Single-mode Beam

Features:

» Single-mode beam
» 4um core fiber with N.A.0.11
» FC/ST/SMA 905 connector available

»  Pigtail output ‘l

Applications: /
» Medical

» Industrial

$.

Absolute Maximum Ratings

Parameter Symbol Value Unit
Reverse Voltage Ve 2.0 v
Operating Temperature Tep +10~+30 e
Storage Temperature Tsg -20 ~ +80 C
Lead Soldering Temperature (10 sec.) Tis 260 e

Peak Wavelength @25C 635£10nm
Output Power (Typ.) 1/2/10/20mwW
Spectral Width (FWHM) <3nm
Temperature Coefficient of Wavelength 0.2nm / °C
Threshold Current <30mA
Operating Current <50mA
Operating Voltage (Typ.) 2V

Fiber core Diameter 4um
Fiber Numerical Aperture 0.11
Fiber Length (Typ.) 70cm
Connector Type SMAS05 / ST/ FC
Package Type Coaxial

09.08.2010 ricd_s63.doc 10of3
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Wiedner HauptstraBBe 76, A-1040 Vienna, Austria
Tel: +43 | 586 52 43-0, Fax -44, office@roithner-laser.com

é RoImHNER LASERTECHNIK

Coaxial Package View

38.0
T~
= o v/ 4
L § ’ = "
‘ Pin Layout
— 1. LD Cathode (-)
,/’_ 2 "\:\\\-\ 2. LD Anode (+), PD Cathode (-), Case
{ G -, <‘¢'\ 3. PD Anode (+)
&, & Y]

OPERATIONAL PRECAUTIONS

Laser Safety
Laser light emitted from this laser diode is harmful to the human. Avoid looking directly into the module aperture
or the fiber end when the device is in operation.

ESD Caution

Handle laser diodes and modules with extreme care to prevent electrostatic discharge (ESD), which is the main
cause of unexpected diode failure.

Always wear wrist straps, work on grounded anti-static mats, and follow extremely rigorous anti-static procedures.
If a laser diode is handled carelessly, it may be destroyed instantly by ESD from a human body. When not in use,
shorten the leads of laser diodes to protect against ESD.

Operation Caution

Prevention of current surge

Laser diodes are of fast response devices. Use surge-protected outlets to prevent the possibilities of large
momentary transients from switches, power supply and other high current devices such as soldering irons, vacuum
pumps, fluorescent lamps, etc.

Soldering

4 Keep the solder iron (30W) tip temperature less than 260°C.

4 Apply solder promptly once the connections are brought in place.

4 Grounded the metal part of the solder iron tip if solder iron is used more than 5 min.

Cutting leads

& Perform the work over conductive mats.

4 Wear grounded anti-static wrist bands.

4 Do not use air nippers as they are a source of static electricity.

Handling

09.08.2010 ricd_s63.doc 20f3
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*
*
*
*

RoImHNER LASERTECHNIK

Do not directly touch the leads of laser diodes or modules.

Wiedner HauptstraBBe 76, A-1040 Vienna, Austria
Tel: +43 | 586 52 43-0, Fax -44, office@roithner-laser.com

Do not touch the window glass of a laser diode or a finer emitting end with bare hands.

Use care to prevent damage to the window glass by tools or other objects.
When dust deposited on the window glass, be sure to remove with an air gun.

Fiber Caution
The bending diameter of fiber should be larger than 4cm for short term storage and larger than 8cm for long term
storage.

Operation Procedure
Connect the electrodes of a laser diode or module correctly according to the supplied pin layout.

9)

Set the current or voltage to zero before switching on the power supply.

Increase the current or voltage gradually to the required value; never exceed the rated value.

Suggest to put the modules on a heat sink when operation.
Decrease the current or voltage gradually to zero when finish.
Disconnect the module.

Turn off the power supply.

Electrically shorten LD module and store in non-extreme conditions.

Suggest using the constant current power supply.

09.08.2010 ricd_s63.doc
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D. Technical drawing of the adjustable aspheric collimator CFC2-A
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~~

E. Datasheet and test protocol of the xy-stages
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Appendix

A
Steinmeyer
——————
Mechatronik

Kunde / Customer

Auftragsnummer / Order no,

PRUFPROTOKOLL / TEST PROTOCOL

Hochschule Bremen

021794

Bezeichnung / Specification

Typ / Type
Teilenr. / Part no.
Serienr. / Serial no

XY-System
782300:236.26
051703_081716

Baujahr / Year of construction 2018

Verdrahtungsplan / Wiring diagram 48

Priifergebnisse / Test result X
Verfahrweg / Travel 100,96
Positioniergenauigkeit absolut / Accuracy absolute +- 1,582
Positioniergenauigkeit 1D komp. / Accuracy 1D comp. 0,627
Kompensationsdatei / Compensation file #KORA.dmc
Wiederholgenauigkeit (bidirektional) / Repeatability (bidirectional) +- 0,240
Ebenheit / Flatness +/- 0,235
Geradheit / Straightness */- 0,282
Nicken / Pitch +- 18,000
Gieren / Yaw +- 6,368
max. Geschwindigkeit / max. speed 30,00
max. Beschleunigung / max. acceleration 500,00
fiir Bremsrampen-Berechnung / for brake ramp calculation

Weg zwischen Endschalter-Schaltpunkt und mechanischer Begrenzung

Travel between limit switching point and mechanical limit

negativer Endschalter / negative limit switch 2,22
positiver Endschalter / paositive limit switch 2,34

Funktionskontrolle / Functional check
Sichtkontrolle / Visual check

Datum / Date

gteinmeyer
————2

mechatronik

Bb
23.02.2018

Produkte mit Sollwertabweichungen werden nur mit Sonderfreigabe des Kunden geliefert
Falls zutreffend, ist die Sonderfreigabe diesem Dokument beigefugt

Products with setpoint deviations are only delivered with special release of the customer.
If applicable, the special release is attached to this document

Profprotokol_782300_236_26_051703_0B1716_0 - Ersteldatum 28.02.2018 09.57

Steinmeyer Mechatronik GmbH
Fritz Schreiter Str. 32

D - 01259 Dresden

Tel.: (+49) 0351/885 85-0
Fax: (+49) 0351/ 885 85-25
http://www.steinmeyer.com

i

101,05 mm

1,084 um
0,517 um
#KORB.dmc
0,219 pm
0,260 pm
0,285 um
12,354 urad
16,662 prad
30,00 mm/s
500,00 mm/s?
2,42 mm
2,23 mm

VI




Appendix

Original-Einbauerklarung

im Sinne der Maschinenrichtlinie 2006/42/EG Anhang 1B

Hersteller:

Bevollméachtigter
fiir die Zusammenstellung der

relevanten technischen Unterlagen:

Produktbezeichnung:
Modell:

Typ:

Teile-Nr.:

[0

Mechatronik

Steinmeyer Mechatronik GmbH
Fritz-Schreiter-Str. 32

01259 Dresden

Deutschland

Steinmeyer Mechatronik GmbH
Fritz-Schreiter-Str. 32

01259 Dresden

Deutschland

XY-System
PMT160

[o]e}
782300:236.26

Der Hersteller erklart, dass das oben genannte Produkt eine unvollstandige Mas;ha‘ne im Sinne der .
Maschinenrichtlinie ist. Das Produkt ist ausschlieBlich zum Einbau in eine Maschine oder unvollstandige
Maschine vorgesehen und entspricht daher noch nicht allen Anforderungen der Maschinenrichtlinie.

Folgende grundlegenden Anforderungen der Maschinenrichtlinie wurden angewandt und eingehalten:

1.1.2;1.1,5;1.3.2; 1.3.4; 1.5.1, 1.5.5; 1.5.8; 1.5.9, 1.7.3; 1.7.4

Die speziellen technischen Unterlagen gemaB Anhang VIl Teil B wurden erstellt. Der Bevollméchtigte flr das
Zusammenstellen der technischen Unterlagen verpflichtet sich, die Unterlagen auf begriindetes Verlangen an die
einzelstaatlichen Stellen zu dbermitteln. Die Ubermittlung erfolgt postalisch in Papierform oder auf elektronischem

Datentrager.

Die Inbetriebnahme des Produkls ist so lange untersagt, bis festgestellt wurde, dass die Maschine, in die das
oben genannte Produkt eingebaut wird, allen grundlegenden Anforderungen der Maschinenrichtlinie entspricht.

Es wurden folgende harmonisierte Normen angewandt:

DIN EN ISO 12100:2011 — Sicherheit von Maschinen - Allgemeine Gestaltungsleitsitze — Risikobeurteilung

= DIN EN 82079-1:2013 — Erstellen von Anleitungen - Gliederung, Inhalt und Darstellung

Dresden, 06.02.2018

DIN ISO 3864-1:2012 — Graphische Symbole - Sicherheitsfarben und Sicherheitszeichen
DIN ISO 3864-2:2011 — Graphische Symbole - Sicherheitstarben und Sicherheitszeichen
VDI 4500:2006 — Technische Dokumentation, Benutzerinformation
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F. Datasheet of the camera

Allied Vision

GiG= Prosilica GT
A907/

GI_JI + Weiter Temperaturbereich flr
.'I extreme Umgebungen
- « IEEE 1588 PTP
) « PoE

7.6 fps @ 15.7 Megapixel

Beschreibung

15.7 Megapixel CD Kamera fiir extreme Umgebungen - GigE Vision

Die Prosilica GT4907/GT4907C ist eine 15.7 Megapixel Kamera mit Gigabit Ethernet Interface (GigE Vision).
Die Prosilica GT4907/GT4907C ist eine besonders robuste Kamera fiir extreme Umgebungen. Sie ist mit
dem OnSemi KAI-16070 CCD Sensor ausgestattet, der eine hervorragende Bildqualitat fiir Monochrom-
und Farbkameras bietet.

Optionen:
« Diverse IR Cut/Pass Filter

« Class 1 Sensor
« Diverse Objektivanschlisse

Spezifikationen

Prosilica GT 4907
Interface |IEEE 802.3 1000BASE-T, IEEE 802.3af (PoE)
Auflésung 4864 (H) x 3232 (V)
Sensor ON Semi KAI-16070
Sensortyp CCD Progressive
ZellgroRe T4pmx 7.4 pm
Objektivanschluss F-Mount
Maximale Framerate bei voller Auflésung 7.6 fps
ADC 14 bit
Bildzwischenspeicher (RAM) 128 MByte
OQutput
Bit-Tiefe 14 (monochrome); 12 (color) bit




Appendix

” Allied Vision

Prosilica GT
Mono Modi
Farbmodi YUV
Farbmodi RGB

Raw Modi

4907

Mono8, Monol2, Monol2Packed, Monol4
YUV411Packed, YUV422Packed, YUV444Packed
RGBS8Packed, BGR8Packed, RGBA8Packed,
BGRA8Packed

BayerGR8, BayerGR12, BayerRG12Packed

General purpose Inputs/Outputs (GPI0Os)

TTL1/Os
Optogekoppelte I/0s
RS-232

Betriebstemperatur
Spannungsversorgung
Leistungsaufnahme (@12 V)
Masse

Abmessungen (L x B x Hin mm)
Konformitat

1input, 2 outputs
1input, 2 outputs
1

Betriebsbedingungen/Abmessungen

-20°C to +50 °C ambient (without condensation)
7 to 25VDC; PoE

T.7TW@ 12VDC; 9.5 W PoE

372g

96 x 66 x 53.3 mm (inkl. Anschlisse)

CE, RoHS, REACH, WEEE, FCC, ICES

—Blue QE —Green QF ——Red QF ——Monochrome QF
50% T T T T T
= ON Semiconductor KAI-16070 absolute QE
45% ON Gen 2 CFA material for color sensors|__|
Note: Measured with AR coated cover glass
The uncertainty of measurement of the QE is +/- 10.25%.
40% / \ /\ LThe values are typical and are subject to minor varlations. [—
> 35%
1]
: VAVARYEW AN
5 30%
S N
= 25%
5 / \ N
2
£ 20%
S | L | A [} ~u
3
O 15% N
[1 ] / | ™
10% N
[ / T\ ] .
” A S TS "‘---=F
[/
0%
300 350 400 450 500 550 600 650 700 750 800 850 Q200 950 1000 1050
Wavelength [nm]

Features zur Bildoptimierung:

« Auto Gain (manuelle Gainsteuerung: 0 bis 32 dB)

Xl
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” Allied Vision

« Auto Belichtung (manuelle Belichtung: 35 ps bis 26,8 s)
« Auto Weilabgleich (Color-Modelle)

+ Binning

« Decimation

Farbton, Sattigung, Farbkorrektur (Color-Modelle)

« Spaltendefekt-Maskierung

+« Gamma

« LUTs (Look-Up Tables)

« Region of interest (ROI), separates ROI fiir Auto Features
Bildspiegelung (X/Y)

Kamerakontroll-Features

« EF-Objektivsteuerung (Atikelnummer -18)

« Event Channel

« Chunk Daten

« |EEE 1588 Precision Time Protocol (PTP)

« RS232

« Speicherbare Benutzereinstellungen

« StreamBytesPerSecond (einfache Bandbreitenkontrolle)

« Stream Hold

« Sync out Modi: Trigger ready, input, exposing, readout, imaging, strobe, GPO
« Tap Modus umschaltbar (four-tap, one-tap)

« Kameratemperatur-Uberwachung (Mainboard und Sensorboard)
« Trigger over Ethernet (ToE) Action Commands

Xl
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” Allied Vision

Technische Zeichnung

1/4-20

Tripod Maunt 279 M3x4 (4x) 2 sides
2 sides ‘ iﬁ:
o | ¢ !
B ° 40
@ |
‘ 9
sy, ] 7
25 483 25
. 599
M3x4 (4x) 2 sides M3xa (8x
483 25 . 3x4 (8x)
I:/’é - . i
L | 4 ; T

04

533 |97 =268 0597 / \ Adjustable
7 \Nikon F-Mount

63
A
i =t i
e
¥ = @ *Nominal, precise dimension is sensor dependent
66 28 -@©-
_}_B. o
[s]
1 = -
06 (2x) 2 sides / 279

Xl
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” Allied Vision

Applikationen
Prosilica GT4907/GT4907C eignet sich ideal fiir viele Applikationen einschlieBlich:

« Outdoor Bildverarbeitung

« Verkehrsiiberwachung / Intelligent Traffic Systems (ITS)
« Offentliche Sicherheit und Uberwachung

« Industrielle Inspektion

+ Machine Vision

« Militdr und Raumfahrt

XV
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(((

Steinmeyer Mechatronik GmbH
Fritz Schreiter Str. 32

eyer D - 01259 Dresden

Tel.: (+49) 0351 / 885 85-0
Fax: (+49) 0351 /885 85-25
http:/iwww.steinmeyer.com

Mechatronik

PRUFPROTOKOLL / TEST PROTOCOL
Kunde / Customer Hochschule Bremen
Auftragsnummer / Order no. 021794

Bezeichnung / Specification

Typ / Type PLT100-100-DC-R-L-B
Teilenr. / Part no. 782359:002.26
Serienr. / Serial no. 021801

Baujahr / Year of construction 2018
Verdrahtungsplan / Wiring diagram 299

Priifergebnisse / Test result

Verfahrweg / Travel 100,00 mm
Positioniergenauigkeit / Accuracy +/- 1,000 pm
Kompensationsfaktor / Compensation factor 0,999953
Umkehrspiel / Backlash +/- XXX pm
Ebenheit / Flatness +- 2,286 pm
Geradheit / Straightness +/- 1,926 um
Nicken / Pitch +- 17,791 prad
Gieren / Yaw +/- 12,643 prad
max. Geschwindigkeit / max. speed 0,00 mm/s
max. Beschleunigung / max. acceleration 0,00 mm/s?
fiir Bremsrampen-Berechnung / for brake ramp calculation

Weg zwischen Endschalter-Schaltpunkt und mechanischer Begrenzung

Travel between limit switching point and mechanical limit

negativer Endschalter / negative limit switch 5,50 mm
positiver Endschalter / positive limit switch 5,50 mm
Funktionskontrolle / Functional check

Sichtkontrolle / Visual check

Datum / Date 28.02.208

Produkte mit Sollwertabweichungen werden nur mit Sonderfreigabe des Kunden geliefert
Falls zutreffend, ist die Sonderfreigabe diesem Dokument beigefiigt.

Products with setpeiﬁﬂmumggée only delivered with special release of the customer.
If app{@gﬂe thefpe al release is attached to this document.
J o Steinmeyer |

Mechatronik GmbH

Prifprotokoll_782359_002_26_021801_0 - Erstelidatum 28.02.2018 11:41

XVI
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Original-Einbauerkliarung Sl
im Sinne der Maschinenrichtlinie 2006/42/EG Anhang Il 1B -.._,__,_,...-g
P ——_}
f
Mechatronik
Hersteller: Steinmeyer Mechatronik GmbH
Fritz-Schreiter-Str. 32
01259 Dresden
Deutschland
Bevollmé&chtigter Steinmeyer Mechatronik GmbH
fir die Zusammenstellung der Fritz-Schreiter-Str. 32
relevanten technischen Unterlagen: 01250 Dresden
Deutschland
Produktbezeichnung: PLT100
FMD Teilenr.: 782359:xxx.26

Der Hersteller erklart, dass das oben genannte Produkt eine unvollstandige Maschine im Sinne der
Maschinenrichtlinie ist. Das Produkt ist ausschlieBlich zum Einbau in eine Maschine oder unvollsténdige
Maschine vorgesehen und entspricht daher noch nicht allen Anforderungen der Maschinenrichtlinie.

Folgende grundlegenden Anforderungen der Maschinenrichtlinie wurden angewandt und eingehalten:
1.1.2;1.1.3; 1.1.5; 1.3.2; 1.34; 1,51, 1.5.5;1.5.8; 1.6.9,1.7.3; 1.74

Die speziellen technischen Unterlagen gemaR Anhang VII Teil B wurden erstellt. Der Bevollm&chtigte flr das
Zusammenstellen der technischen Unterlagen verpflichtet sich, die Unterlagen auf begriindetes Verlangen an die
einzelstaatlichen Stellen zu ibermitteln. Die Ubermittiung erfolgt postalisch in Papierform oder auf elektronischem
Datentrager.

Die Inbetriebnahme des Produkts ist so lange untersagt, bis festgestellt wurde, dass die Maschine, in die das
oben genannte Produkt eingebaut wird, allen grundlegenden Anforderungen der Maschinenrichtlinie entspricht.

Es wurden folgende harmonisierte Normen angewandt:

¢ DINEN ISO 12100:2011 - Sicherheit von Maschinen - Allgemeine Gestaltungsleitsitze - Risikobeurteilung
* DIN EN 82079-1:2013 - Erstellen von Anleitungen - Gliederung, Inhalt und Darstellung

* DIN ISO 3864-1:2012 — Graphische Symbole - Sicherheitsfarben und Sicherheitszeichen

e VDI 4500:2006 — Technische Dokumentation, Benutzerinformation

Dresden, 28.02.2018

XVII
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H. Technical drawing of the Sample 2 “cylinder surface”
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. Documentation of the comparison measurement of the Sample 2
“cylinder surface” for the experiments

MarWin BLF OPTIK ~ 27/10/2017 1
8.00-28 Asphere measurement BLF 17:20:43
Meas. profile and differential profile cm ey — | INSPector:
Part: Drawing n*: Machining operation - e LR
Signature:
Probe arm LP D 20-10-5_47 1101 Measuring force 0.5 mN
LJ1363L1 LD260
Comment:
K1-2D filter 0,20 mm
Sphere
Measured profile + Nominal profile
0,00 nominal fitted
RO [mm]| 206.700000 206.497440
0,104 D [mm] 28.000000
-0,204
0,304
-0,40
\
[
050 +—1F—"T"—"7F"T"—"T"T"—"T"T"T"T"TTTTTTTT"T"T"T"TTTTTT7
-14-13-12-11-10-9 8 -7 6 -54-3-2-1012345678 91011121314
mm
Measured profile
Sagitta (Fit)
h (mm) z(h) (mm)
i . . 0,00 0,000000
Differential curve fit/Measurement 0,50 0,000605
0,204 1,00 0,002421
1,50 0,005448
2,00 0,009686
0,104 2,50 0,015134
3,00 0,021793
0,00 3,50 0,029664
4,00 0,038745
/ 4,50 0,049038
-0,104-# 5,00 0,060542
5,50 0,073258
0,204 6,00 0,087187
6,50 0,102327
‘ 7,00 0,118680
-0,30 T T T T T T T T 7,50 0,136245
-14-13-12-11-10 9 8 -7 6 54-3-2-1 012 3 4567 8 9101112 :nsm14 .00 0.155024
pm N
PV 0.333 0.526
RMS 0.098 0.155
MIN -0.174
MAX 0.159
C:/Mahr/Family/Asphere/Para/THOR LABS Lensleri/LJ1363L1_Y/ ' Aet= 632.82 nm - HeNe laser (red)
C:/Mahr/Family/Asphere/MPR/Asphere.mpr AsphericLib 3.01-36

XIX
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J. Documentation given by the manufacturer of the Sample 3 for the
experiments “polynomial freeform 1”

a B

brionplas

technologies

Freiform auf Quarzglas

14.06.2019

XX
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Freiform auf Quarzglas 2019

Material: Quarzglas
Durchmesser: 36 mm
Dicke: ca.4 mm

CA: 26 mm

Mathematische Sollform

SAG(X,Y) =  A*X.A2 + B*Y.A2 + C*X. A + DFXA2.*Y A2 + EXY. M + F¥X A6 + G*X AL *Y A2 +
H*X.A2. %Y. N4 +1*Y .76

A = +3.5000e-03; A = A/100071;

= -2.5000e-03; B = B/100071;
C =-2.5000e-05; C = C/1000"3;
D = +0.0000e-01; D = D/1000/3;
E = +3.5000e-05; E = E/100043;
F = -0.0000e-01; F = F/100015;
G = +0.0000e-01; G = G/100075;
H = -0-0000e-01; H = H/100075;
| =-0.0000e-01; | = 1/1000"5

Max. Sag ~ 670 um

3D Model

Freiform CA 26 mm

, 7
trionplas 2

XXI
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Freiform auf Quarzglas 2019

|E‘reeform Shape |

4595991

| e—..
‘|||““““||||||||II" nm
—— I

3923516

PV 672.48 K
[
| s 4104.13 .

| [size X 25.90 Tarm
|
Power 196. 88 K Size X 518.00 1X
[ | I EF pi
|

|size v 25.90 mm

|rmsi 86.81 pm |size v 518.00 pix

Freiform, PV ~ 670 um

El EZER) Phase Profile
+600.0000
+400.0000 -
§ +200.0000 ]
= J
=)
& J
== 0. 0000 = s i e e e
-200.0000 -~
III]I]IIIIIIIIIIIIII]IIIIII
0.0 5.0 10.0 15.0 20.0 25.0
Distance {mm)
PV 574.825 m rms 146.977 m
I B I n

Profil in NS-Richtung

brionplas

XXl
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Freiform auf Quarzglas 2019

Phase Profile

+100.0000

+25.0000

-50.0000

Height (pm)

-125.0000

e e el peneen o1 e pendl e g |

-200.0000

[TATT [ AT TF A THE]FFEER]FEEL] T
0.0 5.0 10.0 15.0 20.0 25.0

Distance (mm)

[ev 219.623 __ pm___ |[xms 52.598 _ pm

Profil OW-Richtung

trionplas 4
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Freiform auf Quarzglas 2019

Restfehlermessungen mit CyberScan

Messungen erfolgte mit automatischer Z-Nachfuhr und anschlieRendem Fit gegen die
Sollform mit 100 um Auflésung in XY,

Messung 01

IE [Z430 | Phase Map El

|Freeform Resiual Error MO1|

":‘: - +339.16

nm

-229.97
|pv 569.13 nm | |size x 25.486 mm |
|rms 81.60 nm | [size ¥ 25.46 mn |
|Power 196.04 nm | |size X 510.00 pix |
|rmsi 60.06 nm | [|size Y 510.00 pix |

Daten Restfehler:

Daten Freiform\ Freiform Messung 01 Restfehler.ascii
Daten Freiform)\ Freiform Messung 01 Restfehler.dat
Daten Freiform\ Freiform Messung 01 Restfehler.xyz
Daten Form:

Daten Freiform)\ Freiform Messung 01 Form.ascii
Daten Freiform\ Freiform Messung 01 Form.dat

Daten Freiform)\ Freiform Messung 01 Form.xyz

brionplas

XXIV
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K. Documentation given by the manufacturer of the Sample 4 for the
experiments “polynomial freeform 2”

trionplas

Kalibrierelement
MFF8

18.06.2018
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Kalibrierelement MFF8

Material: Quarzglas
Durchmesser: 36 mm
Dicke: ca. 4 mm

CA: 26 mm

Mathematische Sollform

SAG(X,Y) = A*XA2 + B¥YA2 + C*XA4 + D*YA4
A =2.5E-3
B =2.5E-3
C=-15E-5
D = -1.5E-5

Max. Sag ~ 210 um

(= l[Z930] 3D Model

Freiform MFF8 CA 26 mm

brionplas
bechnologes.

XXVI
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Kalibrierelement MFF8

-

+214.2200

MM

! -0.0000

| Size X 25.90 mm | [size ¥ 25.90 mm

PV 214.22 __ pm

MFF8 SAG(X,Y), PV ~ 214 pm

L)

+150.0000 :

L/

+116.6667 _ -

1

+83.3333

+50.0000

+16.6667

Height (um)

-16.6667

-50.0000

L I B O I B B
0 5000 10000 15000 20000 25000

Distance (um)
|pv 104.165 pm | |ems 36.447 pm |

Profil in NS- bzw. OS-Richtung

Grionplas
Lechnologies.
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Kalibrierelement MFF8

*"
300.00000 . .
250.00000 \
1 ‘4-» ;
200.00000
5150.00000 -
§ ]
s 100.00000
I n
50.00000
s
JilllIIIII'Itlllllll;lllllllllllIIIIl
0 10000 20000 30000
Distance (um)
[ev 208.380 um | [ems 72.852 pm |
Profil diagonal NW-SO-richtung
Daten:

MFF8_Sollform\MFF8_Sollform.ascii
MFF8_Sollform\MFF8_Sollform_ZYGO.dat

MFF8_Sollform\MFF8_Sollform_ZYGO.xyz

Grionplas 4

XXVII




Appendix

Kalibrierelement MFF8

Restfehlermessungen mit LuphoScan 260 HD

Messungen erfolgten gegen Sollform mit 100 um Aufldsung in XY.

Messung 01
—
+300.00
nm
-700.00
PV 0. 89 pm | Is;zex 26.10 mm | |size ¥ 26.10 i
|rns 66,49 nm | |Emsi 63.38 nm___| |power -69.68 nm___|

Daten Restfehler:

MFF8_LuphosHD_Messung01\ MFF8_LuphosHD_Messung01_Restfehler.ascii
MFF8_LuphosHD_Messung01\ MFF8_LuphosHD_Messung01_Restfehler_ZYGO.dat
MFF8_LuphosHD_Messung01\ MFF8_LuphosHD_Messung01_Restfehler_ZYGO.xyz
Daten Form:

MFF8_LuphosHD_Messung01\ MFF8_LuphosHD_Messung01_Form.ascii
MFF8_LuphosHD_Messung01\ MFF8_LuphosHD_Messung01_Form_ZYGO.dat

MFF8_LuphosHD_Messung01\ MFF8_LuphosHD_Messung01_Form_ZYGO.xyz

, &
trionplas

XXIX




