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Abstract 

In freeform surfaces, the evolution of optical components has exceeded the next level. After 

spherical and aspherical surfaces, freeform surfaces do not follow a certain basic shape. 

Therewith, they offer a much higher degree of freedom for designers and the field of 

possibilities of optical function is extended. Simultaneously, the designs can be more compact 

as multiple spherical or aspherical surfaces can be replaced by one single freeform surface. 

Since verification in the fabrication process is indispensable, adequate measurement 

techniques for the characterization of freeform surfaces are required. For spherical and 

aspherical surfaces, highly developed surface measurement techniques area available. 

However, these techniques exceed their limits, when the basic shape of a freeform is not 

spherical or aspherical, but flat. To provide manufacturer with a high accurate option to 

measure freeform surfaces, deviating from a flat basic shape, a gradient-based measurement 

technique for these kind of freeform surfaces is proposed. This measurement technique is of 

laser deflectometry type and measures the gradient field of a freeform surface by use of a 

variation of Experimental Ray Tracing. Using an appropriate integration method leads to the 

reconstruction of the measured freeform surface from the measured gradient field. 

The proposed measurement technique uses evaluation and calibration techniques, which are 

implemented using homogeneous coordinates. With a commercially available simulation 

software, the proposed measurement process and the evaluation and calibration methods are 

validated. The results for different surfaces models are presented and evaluated. 

An experimental setup has been built up and described in this work. Using multiple different 

surface types, the abilities of the experimental measurement setup are shown. Comparing the 

results from the proposed measurement technique to results from commercially available 

measurement techniques, good agreement in the sub-micrometer range can be determined. 

To set the measurement results in context to the expected measurement uncertainty, multiple 

error sources are evaluated for the experimental measurement setup. The considered error 

sources are described and magnitudes are given either by experimental determination or by 

test protocols from the manufacturers. The determined measurement uncertainties are 

evaluated. In relation to the measurement results from the experimental measurements, these 

determined uncertainties shows higher values than expected. Reasons for these deviations 

are discussed. 

Summarizing the proposed measurement technique, optional further developments and 

enhancements are discussed. 
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Kurzfassung 

Die Entwicklung optischer Komponenten hat in Freiformoberflächen ihre nächste Stufe 

erreicht. Anders als sphärische und asphärische Oberflächen folgen Freiformoberflächen 

keiner bestimmten Grundform. Dadurch bieten sie viel mehr Freiheitsgrade für Designer und 

erweitern die Möglichkeiten der optischen Funktionen. Gleichzeitig können deutlich 

kompaktere Designs erstellt werden, da mehrere sphärische und asphärische Oberflächen in 

nur einer einzigen Freiformoberfläche kombiniert werden können. 

Da die Überprüfung im Herstellungsprozess unabdingbar ist, werden Messtechniken für die 

Charakterisierung von Oberflächen benötigt. Für sphärische oder asphärische Oberflächen 

existieren bereits weit entwickelte Messtechniken. Diese Messtechniken stoßen allerdings an 

ihre Grenzen, wenn die Grundform einer Freiform nicht sphärisch oder asphärisch, sondern 

flach ist. Um Herstellern eine hoch präzise Messtechnik zur Vermessung von Freiformen mit 

einer flachen Grundform zur Verfügung zu stellen, wird eine Gradienten-basierte Messtechnik 

für diese Art von Freiformoberflächen vorgestellt. Die Messtechnik ist im Bereich der Laser 

Deflektometrie anzusiedeln und misst das Gradientenfeld einer Freiformoberfläche mit Hilfe 

einer Abwandlung des Experimental Ray Tracing. Unter Nutzung einer geeigneten 

Integrationsmethode kann die Freiformoberfläche aus dem gemessenen Gradientenfeld 

rekonstruiert werden. 

Die vorgestellte Messtechnik nutzt Auswerte- und Kalibrationsmethoden, welche mit Hilfe von 

homogenen Koordinaten implementiert wurden. Unter Zuhilfenahme einer kommerziell 

erhältlichen Simulationssoftware wurden der Messprozess, sowie die Auswerte- und 

Kalibrationsmethoden validiert. Die Ergebnisse verschiedener Oberflächenmodelle werden 

präsentiert und evaluiert. 

Ein experimenteller Aufbau wurde erstellt und wird in dieser Arbeit beschrieben. Unter 

Verwendung mehrerer verschiedener Oberflächentypen werden die Fähigkeiten des 

experimentellen Aufbaus dargelegt. Im Vergleich der Messergebnisse der vorgestellten 

Messtechnik mit Messergebnissen kommerziell verfügbarer Messtechniken können gute 

Übereinstimmungen im sub-Mikrometerbereich festgestellt werden. 

Um die Messergebnisse im Kontext der zu erwartenden Messunsicherheit zu betrachten, 

wurden relevante Fehlerquellen des experimentellen Messaufbaus evaluiert. Diese 

betrachteten Fehlerquellen werden beschrieben und ihre Größe entweder experimentell oder 

durch verfügbare Testprotokolle der Hersteller bestimmt und evaluiert. Im Vergleich zu den 

Ergebnissen aus den experimentellen Messungen, zeigen die festgestellten 

Messunsicherheiten höhere Werte. Gründe für diese Abweichungen werden diskutiert. 

In der Zusammenfassung der vorgestellten Messtechnik werden optionale 

Weiterentwicklungen und Verbesserungen diskutiert. 
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Terminology 

In this work, the terminology follows a certain pattern, if not stated differently in the text. The 

used pattern is described here. 

Direction vectors 

Direction vectors are shown in lower-case bold-italic letters. Additionally, direction vectors are 

always considered unit vectors. 

Example for a direction vector: 𝒈 =
𝒈

|𝒈|
 

Points in space and their position vectors 

Points in space are shown with italic upper-case letters. A corresponding position vector 

pointing to a point in space has the same upper-case letter, but shown in bold-italic. 

Example for a point in space: 𝐼 

Position vector to the point 𝐼: 𝑰 

Matrices 

shown in upper-case bold letters.  

Example for a direction vector: 𝐇 

Transformation matrices 

Transformation matrices to transfer vectors from one coordinate system to another, are shown 

with the coordinate system, the transformation matrix is transferring from in subscript and the 

coordinate system it is transferring into in superscript. 

Example for a transformation of a vector 𝒈 from the coordinate system 𝒞 into the coordinate 

system ℳ by using the transformation matrix 𝐇: 

𝐇𝒞
ℳ𝒈𝒞 = 𝒈ℳ   

Angles in transformation matrices 

Angles to define a transformation matrix follow the same terminology as the transformation 

matrix in terms of the sub- and superscript. 

Example for the angle to define 𝐇𝒞
ℳ: 

𝛼𝒞
ℳ.   

Discrete variables 

The element 𝒈𝑖 is the 𝑖-th element of 𝒈 in a certain sequence. 

Inner product of vectors 

The inner product of two vectors 𝒈 and 𝒊 is donated (𝒈 ⋅ 𝒊). 
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Vector product 

The vector product of two vectors 𝒈 and 𝒊 is donated 𝒈 × 𝒊. 

Least-squares sense relation 

A least-squares sense relation is donated =̂
𝑐𝑗
, while 𝑐𝑗 represents the optimized parameters. 

Example for a least-squares sense relation: 

𝑠(𝑥) =̂
𝑐𝑗
∑𝑐𝑗𝑥

𝑗

𝑁

𝑗=0
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1. Introduction 

1.1 Motivation 
In optics, components like lenses and mirrors are used to redirect light to achieve a desired 

distribution. Surfaces on these components are shaped in certain ways to achieve this desired 

redirection of the light by refraction or reflection [1]. Usually, these surfaces are of flat, spherical 

or aspherical shape. The freeform surface marks the next step in the development of optical 

surfaces [2]. It opens up new abilities, while reducing packaging and weight of optical systems 

as shown in Figure 1.1, since the function of multiple surfaces can be combined in only one 

freeform surface [3, 4]. 

 

Figure 1.1: Qualitative comparison of spheres, conics/aspheres and freeform surfaces 
in terms of field of view (FOV), F/number (F/#) and packaging [3]. 

For a freeform surface, different definitions exist [4]. In this work, a surface is considered to be 

of freeform shape, when it cannot be described by one of the aspheric surface types described 

in DIN ISO 10110-12 [5]. This includes plane, sphere, asphere, cylinder, cone and toric 

surfaces. In DIN ISO 10110-19 general descriptions for surfaces are given [6]. Therewith, 

surfaces with freeform shape and freeform aperture can be described. 

For freeform surfaces, a huge variety of applications is considerable [7]. In imaging optics, it 

offers the ability to design surfaces to suppress aberrations, even for tilted or folded optical 

paths. For example, using freeform mirrors, the optical path in telescopes can be folded to use 

space more efficiently [3, 8, 9]. This increasing efficiency in the use of space is also very helpful 

in technologies like head worn displays [10]. In non-imaging optics, freeform surfaces can be 

used to create special illumination patterns [11, 12]. They can also be used to shape the light 

emitting distribution of LEDs [13]. Even the improvement of the distribution of solar light onto 

a solar cell to increase photovoltaic efficiency can be achieved by freeform surfaces [14]. 

Independent on the function the freeform optical component fulfills, its surface form quality has 

to satisfy high demands. Therefore, metrology is needed that is able to verify the desired 

surface quality [15, 16]. To verify freeform surfaces deviating from a basic shape of a sphere, 

highly developed surface measurement techniques designed for spherical or aspherical 
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surfaces can be adapted. Therewith, these kind of freeform surfaces can already be measured 

with high accuracy [17]. However, if it comes to freeform surfaces deviating from a flat basic 

shape, these measurement techniques exceed their limits. 

For flat surfaces, like wafers, techniques for flatness measurement exist. These measurement 

techniques are able to determine the flatness with high accuracy, but also exceed their limits, 

if the deviation from the flat is too high. 

The gap in between the measurement of surfaces with spherical basic shape and the 

measurement of surfaces with flat basic shape can only be filled with high effort using the 

existing measurement techniques. The measurement technique proposed in this thesis is 

intended to fill this gap. It has been developed to characterize freeform shaped surfaces 

deviating from a flat with high accuracy using a straightforward measurement setup without 

cost-intensive optical components. 

1.2 State of the art 

1.2.1 Introduction 
Exact requirements on accuracy to verify an optical component are not defined. However, if 

requirements for a surface quality are given, the measurement technique has to be accurate 

enough to confirm the surface quality or to give data to correct the surface. Otherwise, a 

confirmation or a correction of the surface quality is not possible [15]. 

In the field of metrology of aspheric surfaces, the measurement techniques have evolved in 

recent years, as aspheric components got common more and more in optical applications. A 

round robin test of aspheric surfaces using different measurement techniques revealed 

deviations in between the measurement techniques of up to ±50 nm [18]. A round robin test 

including freeform surfaces deviating from a spherical basic shape showed deviations of up to 

±110 nm  for the different measurements performed [17]. Since these round robin 

measurements included up-to-date measurement techniques, an accuracy in the same range 

is targeted. 

In the following, state of the art measurement techniques are described. These techniques are 

basically distinguished in two types: surface sag measurement techniques and gradient based 

measurement techniques. While surface sag measurement techniques directly measure the 

surface height, gradient-based measurement techniques measure the surface gradient first 

and reconstruct the surface sag by integration of the measured surface gradient data [19]. 

Both measurement techniques have advantages and disadvantages. While surface sag 

measurement techniques directly create a point cloud with the determined positions, they need 

to offer the same accuracy over the full measurement range, including a standoff representing 

the SUT’s distance from the measure’s origin [20]. Therewith, even if the SUT is flat, redundant 

data is gathered by measuring the standoff with high accuracy. With gradient-based 

measurement techniques, this standoff is irrelevant, as not the surface sag, but the surface’s 

gradient field is measured. This gradient field can be determined with a higher information 

efficiency, as it only represents the change of the sag and not the sag itself and its standoff 

[19]. Although, to reconstruct the surface sag from the determined gradient field, an 

appropriate integration method has to be used [21]. 

To utilize the advantages of gradient-based measurements, the measurement technique 

presented in this work is of this type and designed to measure specular surfaces in reflection. 

In the state of the art, both surface sag and gradient-based measurement techniques are 

presented, as both types are used for surface characterization measurements. 
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1.2.2 Surface sag measurement 
Tactile coordinate measurement 

The basic principle of tactile coordinate measurements is very descriptive. A stylus is moved 

over the surface under test (SUT). According to the sag of the SUT, the stylus is elevated [22]. 

This elevation can be measured in different ways. Dependent on the stylus type and size, 

different surface characteristics can be measured. Tactile coordinate measurement machines 

can achieve high accuracies even for large SUT sizes [18]. Examples for tactile coordinate 

measurement machines are UA3P series by Panasonic Corp., ISARA 400 by IBS Precision 

Engineering GmbH or MarSurf LD 130 / LD 260 by Mahr GmbH [23, 24, 25]. Since tactile 

coordinate measurement relies on a contact between the stylus and the SUT, damage at the 

SUT may occur. To overcome this problem the stylus can be replaced by an optical probe, 

leading to the following category of measurement technique. 

Confocal/interferometric coordinate measurement 

In confocal or interferometric coordinate measurement techniques, an optical probe 

determining the distance to the SUT replaces the tactile stylus. With this, higher scanning rates 

can be achieved [26]. Confocal probes can detect the distance of the probe from the SUT by 

determining the defocus of a test beam focused onto the SUT [27]. Interferometric probes 

determine height information from the phase difference between a reference and the SUT [22]. 

Therewith, the coordinates of the sampled point can be determined. However, both probe 

types have to stick to optical limitations. Especially when surfaces with higher slopes are faced, 

sufficient light has to return to the probe to work properly. This can be ensured by tilting the 

probe to be always perpendicular to the SUT at all sample points. If the mechanical and optical 

limitations are met, freeform surfaces can be measured with this measurement technique [28]. 

Examples for coordinate measurement machines with optical probes are LuphoScan 260 HD 

manufactured by AMETEK Inc., CT 300 by cyberTECHNOLOGIES GmbH, MarForm MFU 200 

Aspheric 3D by Mahr GmbH and NMF350 S / NMF600 S by Dutch United Instruments [29, 30, 

31, 32]. 

Interferometry 

The phenomenon of interference occurs, when two or more waves superpose and create 

regions of constructive and destructive superposition [1, 33]. For the purpose of optical 

metrology, this includes the superposition of two coherent waves, usually derived from splitting 

the light of one coherent beam into two separate beams [22, 27]. One of the beams, the test 

beam, can now be altered by the DUT, while the other beam, the reference beam, serves as 

a reference. Superposing the two beams, interference occurs. Since both beams have the 

same origin, differences in the optical path length, the optical path difference (OPD), defines 

the regions where constructive and destructive superposition occurs. In constructive regions, 

the OPD is an integer multiple of the light’s wavelength [33]. These regions occur bright on a 

detector. In destructive regions, the OPD is an odd integer multiple of half of the lights 

wavelength. These regions occur dark. The patterns of dark and bright regions are called 

interferograms [1]. From these patterns, conclusions about the OPD and therewith about the 

altering of the test beam by the DUT can be drawn. In terms of a configuration, where the test 

beam is reflected by a SUT, its topography can be determined from the interferogram. In 

contrast to the coordinate measurement techniques shown before, interferometers have the 

advantage that the standoff is not measured, since only the OPD to the reference object is 

determined. However, this may not be confused with gradient-based measurement 

techniques, which determine the slope of a beams wavefront as described later. 

Many different configuration types of interferometers have been developed. Well-known 

configurations are the Fizeau, Twyman-Green and Mach-Zehnder interferometer [33]. An 
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example for an interferometric metrology system is the Verifire series by Zygo [34]. It applies 

phase-shift interferometry on a Fizeau configuration [27]. 

Interferometers can provide high accuracies, but need very accurate alignment and positioning 

to achieve these potentials. Thus, high precision optical components and usually specialized 

staff is needed to operate an interferometer. The result of an inaccurate setup of an 

interferometer has painfully been determined in the Hubble Space Telescope program of 

NASA [35]. Due to the inaccurate setup, a form error has been manufactured into the aspheric 

primary mirror resulting in blurred images of the telescope. 

Stitching interferometry 

Certain limits apply when it comes to the evaluation of an interferogram. Considering a 

configuration where the test beam is reflected from a SUT and the reference beam is reflected 

from a reference surface, the interferogram’s dark and bright regions indicates changes of the 

SUT’s from the reference surface’s topography. If this change is too fast, the bright and dark 

regions also alternate too fast and cannot be distinguished anymore. This problem can be 

overcome using stitching interferometry [36]. In this technique, the full aperture of a SUT, which 

cannot be investigated in one interferometric measurement due to limitations, is split into 

overlapping subapertures of smaller dimensions being within the limits. To investigate the 

subapertures according to the limits, the SUT is positioned and oriented within the 

interferometers scope. After investigating the subapertures separately, they are stitched 

together using the overlapping areas to reconstruct the full aperture’s topography. Therewith, 

the limits of interferometric measurements are extended [37]. An example for a stitching 

interferometry measurement machine is the ASI(Q) by QED Technologies International, Inc. 

[38]. 

Interferometry with computer generated holograms 

Using a computer-generated hologram (CGH) in an interferometer is not defining a new 

configuration of interferometer. It introduces a way to alter a beam in the interferometer by 

applying the wavefront stored in the CGH to one of the beams [22, 39]. Therewith, either a 

reference beam with a certain wavefront can be created that compensates the expected test 

wavefront, or the test wavefront can be altered to be comparable to a certain known reference 

wavefront. Either way, using a CGH extends the limits of interferometers of different 

configurations [40, 41]. This can even be applied to non-rotational apertures and freeform 

optics [8, 42]. A provider of CGHs is DIOPTIC GmbH. They offer CGHs for spherical, 

aspherical, cylindrical and even freeform surfaces [43]. A drawback of CGHs is that for every 

new SUT shape, a new CGH has to be manufactured, what can be time consuming and 

expensive [26]. 

Tilted wave interferometry 

The technique of tilted wave interferometry is based on the extension of one spherical 

wavefront to create an array of tilted wavefronts propagating towards the SUT [15]. This array 

of tilted wavefronts is created using an aperture array in a collimated beam. Therewith, 

wavefronts are sent towards the SUT with different angles enabling the observation of the 

whole SUT from different directions simultaneously. As long as at least one of the wavefronts 

meet the limitations for a certain region on the SUT, this region can be observed. The basic 

shape to be measured with this technique is a sphere. With rather large departures from a 

sphere that can be measured, the technique is able to measure even large freeform surfaces 

deviating from a sphere as well [44]. However, when it comes to freeform surfaces deviating 

from a flat, this technique exceeds its limitations fast. This measurement technique has been 

implemented in the MarOpto TWI 60 by Mahr GmbH [45]. 
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1.2.3 Gradient-based measurement 
Shack-Hartmann senor 

Measuring the wavefront of a beam, a Shack-Hartmann sensor (SHS) offers a fast and handy 

solution. The functional principle is derived from the Hartmann-test [46]. It is based on splitting 

the wavefront to be measured in multiple small segments using a micro-lens array and focusing 

these smaller wavefront segments onto a 2D detector array [1]. Comparing the spot’s locations 

to the locations when a collimated beam is introduced into the system, conclusions about the 

wavefront’s slope can be drawn. Integrating the slope data, the wavefront can be 

reconstructed. Using such a sensor to investigate the wavefront reflected from a SUT, its 

topography can be reconstructed from the determined wavefront data [47]. However, the 

resolution of these sensors is limited and fixed by the micro-lens array. Additionally, the 

detectable wavefront slope is limited by the micro-lens pitch as ambiguities in the detected 

spots occur, when the wavefront slopes vary to fast. SHSs are available from multiple 

companies. Exemplary, the company OPTOCRAFT GmbH can be named, as this company is 

specialized in the manufacturing of SHSs in form of their SHSCam sensors [48, 49]. 

Lateral shearing interferometry 

In the sections before, interferometry has been introduced as the superposing of a test 

wavefront with a reference wavefront. In lateral shearing interferometry, the test wavefront is 

superposed with itself by a small lateral shear [22, 50]. Therewith the OPD, creating the 

interferogram, is dependent on the wavefront’s slope in the direction of the lateral shear. For 

the interferogram, one can say that a higher wavefront slope creates a larger OPD, while a 

lower wavefront slope creates a smaller OPD. After deriving the OPD from the interferogram 

and knowing the lateral shear, the wavefront’s slope can be determined. Integrating this slope 

data, the wavefront can be reconstructed. May the wavefront be reflected from a SUT and the 

initial wavefront targeted onto the SUT is known, the SUT’s topography can be reconstructed 

using lateral shearing interferometry. An example for a wavefront sensor using lateral shearing 

interferometry is the SID4-HR manufactured by Phasics SA [51, 52]. 

Phase measuring deflectometry 

The technique known as phase measuring deflectometry (PMD) is also known as fringe 

reflection. It must not be confused with structured light projection, which is not applicable for 

specular surfaces. In PMD, a screen with a certain pattern is placed near by the SUT. The 

screens position and orientation is chosen in a way that its emitted light is reflected from the 

SUT into a camera [53, 54]. From the distortion of the reflected pattern, slope data of the SUT 

can be resolved. Since an ambiguity between the surface slope and the investigated point on 

the surface exists, absolute measurements are not possible. This ambiguity can be overcome 

by either using the surface model function to determine the differences from this model or by 

using a second camera for applying stereo deflectometry [55]. With this technique, even large 

objects can be measured [56]. An example for a measurement machine based on PMD is the 

SpecGAGE3D series, by ISRA VISION AG [57]. 

Laser deflectometry 

The technique of laser deflectometry (LD), sometimes also called scanning beam 

deflectometry, is the technique of scanning a SUT with a single laser beam while determining 

the surface’s slope from the deflected beams direction. The measurement technique presented 

in this thesis is a variation of the LD. 

For LD multiple different implementations have been proposed. They can be categorized in 

implementations with imaging optics and techniques without imaging optics. Implementations 

including imaging optics use these optics to convert the direction of the reflected beam into a 
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position in the focal plane. Determining the position of the beam with an areal sensor and 

knowing the focal length of the imaging optic, the beams direction can be determined. 

A measurement technique for almost flat surfaces has been proposed using a tilting mirror to 

scan the surface [58]. With this technique, high measurement speeds can be achieved, while 

the number of moving objects in the setup is very low. 

Another measurement technique introduced for almost flat surfaces uses a pentaprism and an 

autocollimator [59]. The pentaprism is used to scan the surface, while the autocollimator is 

used to send out the test beam and to determine the reflected ray’s direction. Variations of this 

measurement technique exist, including the separation of the measurement of the reflected 

beam’s direction from the surface angle determination, a new sensor to determine the reflected 

rays direction or the ability to determine the surface curvature instead of slope to overcome 

inaccuracies in positioning stages [59, 60, 61]. 

To measure spherical SUTs, a technique has been introduced including a beamsplitter to 

generate a reference beam reflected from a flat mirror, while the test beam is targeted onto 

and reflected from the spherical SUT [62]. Using a collimating lens and an areal detector in the 

focal plane of the lens, the position of the test beam and the reference beam is determined. 

From the distance in between the two positions, the test beam’s direction is determined. To 

scan the spherical surface, it is rotated around its center of curvature. 

Another technique to measure surfaces with higher surface angles combines the laser 

deflectometry with principles from the confocal or interferometric coordinate measurement 

techniques [63]. A sensor head based on an autocollimator has been introduced. Rotating this 

sensor head around a virtual reference sphere, the investigated surface angle is kept in the 

range of the sensor for spherical and many typical aspheric surfaces. Measuring the surface 

slope as a difference to the virtual reference sphere and integrating this difference determines 

the surface deviation perpendicular to the virtual reference sphere. 

Implementations of LD without imaging optics suffer from an ambiguity when determining a 

beams direction from one beam position on an areal sensor. Two methods to overcome this 

problem have been proposed using basically the same setup. The test beam is targeted onto 

the SUT vertically through a beamsplitter. The beamsplitter redirects the reflected beam onto 

an areal sensor, which determines the beam’s position [64, 65]. Scanning the surface, the 

reflected beam’s position is determined for multiple sample points on the SUT. To reconstruct 

the SUT from these positions, an approach based on solving a partial differential equation was 

proposed [64]. However, in this approach the reflected beam’s position on the areal sensor is 

only defined by its distance to a reference given by a flat SUT. This leads to difficulties in 

reconstructing non-rotational symmetric surface or if the SUT model function is not known 

properly. Another approach has been proposed for the reconstruction of spherical or aspherical 

surfaces for the same setup. Using a spherical surface as initial guess, the reconstructed 

surface is approximated iteratively from the determined reflected beams positions on the 

detector [65]. However, both approaches rely on an exact definition of the distance between 

the sensor and the SUT for one position. Otherwise, the initial ambiguity cannot be resolved. 

1.2.4 Discussion 
The measurement techniques described before are especially for specular surfaces. Before 

going into the discussion of these techniques, it has to be mentioned that also techniques for 

the measurement of non-specular surfaces exist. Well-known examples for these techniques 

are shape from shading and structured light projection. Shape from shading is based on the 

evaluation of one or multiple photos of the SUT with a known light source and has, for example, 

been used to determine the shape of the lunar surface and is now also used to determine the 
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shapes of human faces [66, 67]. Structured light projection is based on the projection of one 

or multiple known patterns on the SUT and determining the SUT’s topography from the 

distortion of the pattern, photographed with a camera under a certain angle [68, 69]. 

Implementations with multiple cameras have been developed as well as miniaturized setups 

with very small dimensions [70, 71]. 

The measurement technique proposed in this thesis is a gradient-based measurement 

technique and a variation of laser deflectometry. It measures the surface topography without 

tactile contact. This prevents surface damage. In contrast to confocal or interferometric 

coordinate measurement techniques or surface sag measuring interferometric measurement 

techniques, it measures the surface gradients. Thus, it obtains the advantages of gradient-

based measurement techniques described before. In contrast to measurement techniques 

using a SHS or lateral shearing interferometry, the proposed measurement technique is not 

based on the measurement of a wavefront being reflected from the SUT, but on the 

measurement of the direction of a single narrow beam, reflected from the SUT. Therewith, it 

does not rely on the accuracy of certain optical components, like lenses, beamsplitters or 

lenslet-arrays. PMD retrieves the SUT’s gradients from the distortion of a certain pattern on a 

screen. Therewith, it is not a scanning technique, since all sample points can be measured in 

one shot. However, PMD has an ambiguity between the surface sag and the surface slope 

that has to be resolved by introducing multiple camera systems or by knowing the SUT’s model 

function in advance. Comparing the proposed measurement technique to other techniques 

based on laser deflectometry, one can say that the proposed method is a technique without 

imaging optics. This prevents the introduction of errors by these optics, which either influence 

the measurement result or have to be calibrated extensively for compensation. Comparing the 

proposed method to other laser deflectometry techniques without imaging optics, it has to be 

noticed that the techniques presented before still use an optical component in between the 

SUT and the areal detector: a beamsplitter. This is not necessary in the proposed technique. 

More clearly, no optical component in between the SUT and the areal detector is used. 

Furthermore, the ambiguity of the surface sag and the surface angle, which is overcome in the 

techniques described before by knowing the exact distance in between the SUT and the areal 

sensor, is resolved in the proposed method by using a variation of Experimental Ray Tracing 

(ERT) to determine the beam’s direction [72]. Thus, the proposed measurement technique is 

a novel approach on the measurement of specular freeform surfaces. It overcomes ambiguities 

in the measurement data faced by other gradient-based measurement techniques, while 

making use of their advantages. Additionally, it does not rely on high precision optical 

components that have to be calibrated. It offers a smart and cost-efficient solution to the 

measurement of freeform specular surfaces. 

1.3 Outline 
The presented thesis is structured as follows. As seen before, the first chapter gives an 

introduction into the topic of surface metrology and an overview of the state of the art metrology 

systems. In the second chapter, the proposed measurement concept is presented and 

described. Techniques and methods used are introduced. Chapter two ends in an analytical 

model about the measurement methodology. This analytical model is transferred into a 

numerical model in chapter three. This numerical model is characterized by the discretization 

of the analytical model. The problems introduced by this discretization are described and the 

approaches to overcome these problems are described. This also includes the numerical 

integration of the determined gradient data and the handling of non-integrable data. In chapter 

four the numerical model is verified by simulation. A simulation model is presented including 

various parameters to simulate misalignments in the measurement setup. Using different 
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surface models, the flexibility of the proposed measurement technique is shown. In chapter 

five, the transfer of the simulation model into a real measurement setup is presented. The 

components, used in the experimental setup, as well as the measurement procedure are 

described. Using four different samples, the abilities of the proposed measurement technique 

are verified experimentally. Chapter six is dedicated to the error analysis. Several error sources 

are described and evaluated. The results from the error analysis are compared to experimental 

repeatability measurements. In chapter seven, the proposed measurement technique and the 

results presented are discussed. The thesis is concluded in chapter eight and an outlook is 

given for further developments and improvements of the proposed measurement technique. 
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2. Methodology 

2.1 Concept of measurement 

2.1.1 Introduction of optical model and basic optical principle 
The basic optical model used for the conceptual development of the proposed measurement 

technique is known as geometrical optics [33, 73]. In this model, the wavelength is considered 

in the limit case of 𝜆 → 0. Therewith, optical phenomena based on the description of light as 

waves, like diffraction and interference, are not considered. This opens up the possibility to 

use geometrical and algebraic tools to describe the behavior of light, as this has already been 

applied in ray tracing procedures [74]. For example, rays, representing the direction of the 

propagation of the flow of the radiant energy, can be described by geometrical lines [1]. This 

must not be confused with the model of paraxial optics. In this model, the concept of 

geometrical optics is also applied, but further simplifications are used to describe the optical 

behaviors in small angles and distances from the optical axis. As this does not apply to the 

proposed measurement method here, the paraxial model is not applicable. 

A well-known optical principle is the law of reflection: “angle of incidence is equal to angle of 

reflectance” [1]. This law describes the relation of the angle 𝛩 for the incidence ray and the 

angle 𝛷 for the reflected ray to the normal of the surface at the point where the incident ray 

intersects with the surface [1, 73]. This relation is illustrated in Figure 2.1. The law says that 

the angles 𝛩 = 𝛷 are equal, while the incident ray and the reflected ray have to be coplanar 

with the surface normal. 

 

Figure 2.1: Sketch of the reflection of a ray with an incident angle 𝛩 and an incident 

direction 𝒊 at the point 𝐼 of surface with the normal 𝒈. After the reflection, the ray has the 

direction 𝒓 with the reflectance angle 𝛷. 

As described before, geometrical tools can be used to describe the behavior of light. Here, 

direction vectors are used to describe the direction of light rays while position vectors are used 

to describe points in space. To describe a light ray as a geometrical line in space completely, 

a point in space and a direction are needed [75]. However, mostly this is not necessary here. 

Regarding Figure 2.1, one can see that the directions of 𝒊, 𝒓 and 𝒈 are not dependent on their 

𝒊 
𝒓 

𝛷 
𝛩 

𝒈 

𝐼 
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position in space, but only on their directional relation to each other. This means, the incident 

ray 𝒊, the reflected ray 𝒓 and the surface normal 𝒈 can be represented by direction vectors, 

while the point 𝐼 of intersection of the incident ray with the surface can be represented by a 

point in space with its position vector 𝑰. 

To define the geometrical relation between 𝒊, 𝒓 and 𝒈, the vectors are considered unit vectors. 

This means they all have the same norm |𝒊| = |𝒓| = |𝒈| = 1. Having this, the surface normal 

𝒈 =
𝒓 − 𝒊

√2(1 − (𝒓 ⋅ 𝒊))

 (2.1) 

can be determined from 𝒊 and 𝒓 using vector geometry [76]. Thus, having the incident ray 

direction 𝒊 and the reflected ray direction 𝒓 for a point 𝐼, the surface normal 𝒈 of the surface at 

this point can be determined. 

2.1.2 Introduction of homogeneous coordinates, transformation matrices 

and coordinate systems 
For the representation of direction vectors and position vectors in figures, a Cartesian vector 

space of the form ℝ3 with the axis 𝑥, 𝑦 and 𝑧 is introduced. Cartesian coordinates are very 

descriptive and easily comprehensible. However, transformations in Cartesian coordinates, 

like translations or rotations, are cumbersome, as direction and position vectors have to be 

treated differently. Unfortunately, direction and position vectors cannot be distinguished by 

their structure in Cartesian coordinates. This is a problem as different coordinate systems 

(CSs) have to be defined within the Cartesian vector space including transformations of 

position and direction vectors between these CSs. To overcome this problem, homogeneous 

coordinates in a projective vector space are used [75]. 

In homogeneous coordinates, transformations and operations can be applied equally to 

position and direction vectors [77]. Additionally, problems regarding the far point of lines can 

be overcome [75]. These advantages have extensively been used in computer graphics, where 

three-dimensional scenes, even including infinitely far distant points, are transformed onto a 

two-dimensional screen plane [77]. These advantages are achieved by using one additional 

dimension resulting in a vector space of the form ℝ4, the projective vector space 𝑉. 

In 𝑉, a vector can be represented by 

𝑰 = (

𝐼𝑋
𝐼𝑌
𝐼𝑍
𝐼𝑊

) (2.2) 

using the four homogeneous components 𝐼𝑋, 𝐼𝑌, 𝐼𝑍 and 𝐼𝑊. As vectors in these homogeneous 

coordinates represent vectors from the Cartesian coordinates, transferred to another higher 

dimensional vector space, the set of all their vectors is also called projective space of the form 

ℙ3 [75, 78]. In 𝑉, all points on a line through origin, except the origin itself, represent one and 

the same position vector in Cartesian coordinates. As one point of the line is the origin, a 

second point is needed to define the direction of the line. May 𝐼𝑥, 𝐼𝑦 and 𝐼𝑧 be the Cartesian 

coordinates of a position vector, one point on the line in homogeneous coordinates can be 

defined as 
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𝑰 = (

𝐼𝑥
𝐼𝑦
𝐼𝑧
1

) = (

𝐼𝑋
𝐼𝑌
𝐼𝑍
𝐼𝑊

)|

𝐼𝑊=1

 (2.3) 

using the Cartesian coordinates. To transfer any point on this line except the origin from 

homogeneous coordinates to the Cartesian coordinates, the equations 

𝐼𝑥 =
𝐼𝑋

𝐼𝑊
, 𝐼𝑦 =

𝐼𝑌

𝐼𝑊
, 𝐼𝑧 =

𝐼𝑍

𝐼𝑊
, with 𝐼𝑊 ≠ 0 (2.4) 

are used. In other words, one can say 

𝐼𝑥 = 𝐼𝑋, 𝐼𝑦 = 𝐼𝑌, 𝐼𝑧 = 𝐼𝑍 for 𝐼𝑊 = 1. (2.5) 

As in this work all position vectors are defined by the 𝑊-component being equal to 1, the 

equations given in Equation (2.5) apply to all position vectors. 

In contrast to a position vector, a direction vector is not represented by a line through origin in 

homogeneous coordinates, but by a plane through origin. This plane has a unique line through 

origin where all points on this line have its 𝑊-component equal to 0. All lines lying in one plane 

in homogeneous coordinates have this same unique intersecting line and therewith represent 

the same direction vector in Cartesian coordinates. Thus, a direction vector pointing in a certain 

direction in Cartesian coordinates, no matter of its length, can be represented in homogeneous 

coordinates as a vector 

𝒈 = (

𝑔𝑥
𝑔𝑦
𝑔𝑧
0

) = (

𝑔𝑋
𝑔𝑌
𝑔𝑍
𝑔𝑊

)|

𝑔𝑊=0

 (2.6) 

for 𝑔𝑊 = 0. Or in other words, 

𝑔𝑥 = 𝑔𝑋, 𝑔𝑦 = 𝑔𝑌, 𝑔𝑧 = 𝑔𝑍 for 𝑔𝑊 = 0. (2.7) 

As in this work all direction vectors are defined by the 𝑊 -component being equal to 0 , 

Equation (2.7) applies to all direction vectors. 

Thereby, position and direction vectors can now be distinguished in their homogeneous 

representation by the 𝑊-component. The wording of “homogeneous” comes from the fact that 

transformation can now be homogeneously applied to direction vectors and position vectors 

while their indication and characteristics are preserved [75].  

A CS in the Cartesian space is defined by a basis in the vector space 𝑉. This basis represents 

the Cartesian CS with position and orientation. To represent vectors in different CSs, linear 

transformations in 𝑉 in form of a change of basis are used [75, 78, 79]. These transformations 

are performed by multiplication of a homogeneous transformation matrix with the 

homogeneous vector to be transformed. If a shift of a Cartesian CS by Δ𝑥, Δ𝑦 and Δ𝑧 along 

the three axis 𝑥, 𝑦 and 𝑧 is desired, the transformation matrix 

𝐓(𝒕) = (

1 0 0 −Δ𝑥
0 1 0 −Δ𝑦
0 0 1 −Δ𝑧
0 0 0 1

), (2.8) 

using the translation vector 𝒕 = (Δ𝑥, Δ𝑦, Δ𝑧), can be defined. When this transformation matrix 

is applied to the homogeneous representation of a Cartesian position or direction vector, the 

new values of the homogeneous vector represent the Cartesian position or direction vector 
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accordingly to the desired shift. The negative sign here comes from the fact that a movement 

of the CS according to 𝒕 results in an inverse movement of the vectors. 

If differences in the orientation of Cartesian CSs exist, the matrices 

𝐑𝑥(𝛼) = (

1 0 0 0
0 cos(𝛼) − sin(𝛼) 0
0 sin(𝛼) cos(𝛼) 0
0 0 0 1

), (2.9) 

𝐑𝑦(𝛽) = (

cos(𝛽) 0 sin(𝛽) 0
0 1 0 0

− sin(𝛽) 0 cos(𝛽) 0
0 0 0 1

) (2.10) 

and 

𝐑𝑧(𝛾) = (

cos(𝛾) − sin(𝛾) 0 0

sin(𝛾) cos(𝛾) 0 0
0 0 1 0
0 0 0 1

) (2.11) 

can be defined using the angles in the rotation vector 𝜸 = (𝛼, 𝛽, 𝛾) [75]. These angles represent 

the rotations around the axis 𝑥 , 𝑦  and 𝑧  in a Cartesian CS. Applying the transformation 

matrices defined in Equation (2.9), (2.10) and (2.11) to a homogeneous vector representing a 

Cartesian position or direction vector, the resulting homogeneous vector represents the 

Cartesian position or direction vector accordingly to the rotations defined by 𝜸. As these 

transformations can be performed homogeneously to homogeneous vectors, they can easily 

be combined using matrix multiplication. Thus, the matrix 

𝐇(𝜸, 𝒕) = 𝐑𝑧(𝛾)𝐑𝑦(𝛽)𝐑𝑥(𝛼)𝐓(𝒕) (2.12) 

performs all transformations in one step while the order of the transformation is backwards in 

terms of the order shown in Equation (2.12). This means that the translation is performed first. 

After that, the rotations in the order 𝑥𝑦𝑧 are performed. These rotations are intrinsic rotations 

with Cardan angles. Thus, the next rotation is always performed in reference to the orientation 

of the CS after the previous one [80]. To prevent misleading interpretations here, it has to be 

mentioned that these transformations are defined to change the CSs around fixed vectors and 

not to rotate vectors within a fixed CS. A rotation with 𝛼 > 0 leads to a rotation of the 𝑧-axis 

towards the 𝑦-axis of a CS. A rotation around the 𝑦-axis with 𝛽 > 0 leads to a rotation of the 

𝑥-axis towards the 𝑧-axis of a CS. Finally, a rotation around the 𝑧-axis with 𝛾 > 0 leads to a 

rotation of the 𝑦-axis towards the 𝑥-axis of a CS. 

The location and orientation of a Cartesian CS projected in 𝑉 can be described by a basis in 

𝑉. May 𝒮 be such a basis, it is defined by four vectors. Three vectors represent the direction 

vectors of the Cartesian CS projected to homogeneous coordinates. The fourth vector is a 

position vector describing the origin of this Cartesian CS projected to homogeneous 

coordinates. Thus, one can say 𝒮 = {𝒆𝑋, 𝒆𝑌, 𝒆𝑍, 𝑶
𝒮}, where 𝒆𝑋, 𝒆𝑌, 𝒆𝑍 ∈ 𝑉 are orthonormal and 

describe the orientation of the CS while 𝑶𝒮 = (𝐵𝑋
𝒮 , 𝐵𝑌

𝒮 , 𝐵𝑍
𝒮 , 1)

𝑇
∈ 𝑉  describes its origin. 

Therewith, all elements of 𝑉 can be described as a linear combination of 𝒮 [79]. Since this 

description is unique and the elements of 𝒮 are linear independent, 𝒮 is a basis of 𝑉. Having 

this basis, the relation between the canonical basis of 𝑉  and 𝒮  can be described by the 

transformation matrix 𝐇𝑉
𝒮 performing the mapping 𝑉 → 𝒮. To reverse this transformation, the 

invers 𝐇𝑉
𝒮−1 = 𝐇𝒮

𝑉  can be used. Having another Cartesian CS which can be defined in 

homogeneous coordinates by the basis ℳ, the transformation matrix 𝐇𝑉
ℳ can be defined to 
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transfer vectors into this CS. In this work, the canonical basis of 𝑉 is irrelevant, as only the 

relation of the bases defined in 𝑉 to each other is used. This relation 

𝐇(𝜸𝒮
ℳ , 𝒕𝒮

ℳ) = 𝐇𝒮
ℳ = 𝐇𝑉

ℳ𝐇𝒮
𝑉 (2.13) 

is defined using the canonical basis, but can be bypassed if 𝐇𝒮
ℳ  can be defined 

independently. Having a transformation matrix, the transformation of direction and position 

vectors 

𝒈𝒮 = 𝐇ℳ
𝒮 𝒈ℳ and 𝑰𝒮 = 𝐇ℳ

𝒮 𝑰ℳ (2.14) 

can be applied homogeneously. 

The CSs used in this work are illustrated in the sketched measurement setup in Figure 2.2. 

 

Figure 2.2: Sketch of the measurement setup with the four CSs:  incident ray ℐ, camera 

𝒞, measurement plane ℳ and the surface under test 𝒮. 𝑨 represents the investigated 
area. 

Incident ray ℐ 

This CS with the basis ℐ represents the CS, wherein the incident ray is introduced into the 

measurement setup. Its axes are named 𝑢̃, 𝑣̃, 𝑤̃. Within this CS, the incident ray is directed 

along the 𝑤̃-axis. 

Camera 𝒞 

The name of this CS with the basis 𝒞 already identifies the experimental implementation of 

one of the components of the measurement setup. However, this does not change the meaning 

of the CS, as it is the one the reflected ray’s direction is determined in. The axes of this CS are 

𝑢, 𝑣, 𝑤. 

Measurement plane ℳ 

The measurement plane identifies the direction of the sampling of the SUT. As the proposed 

measurement technique does not detect the surface’s orientation and alignment in relation to 

the complete device under test (DUT), this may not be mistaken with the orientation and 

location of the DUT itself. This gets clearer, when the measurement principle is described in 

Chapter 2.1.3. The CS has the basis ℳ and the axes are 𝑥̃, 𝑦̃, 𝑧̃. 

Surface under test 𝒮 

If the model function of the SUT is known, this function is described in this CS with the basis 𝒮 

and the axes 𝑥, 𝑦, 𝑧. The SUT is represented by the function 

𝒓 
𝒊 

𝒈 

ℐ 

𝒞 

𝒮 

ℳ  

𝑥 

𝑦 

𝑧 

𝑦̃ 

𝑧̃ 

𝑥̃ 

𝑢̃ 

𝑣̃ 

𝑤̃ 

𝑢 

𝑣 

𝑤 

𝑨 
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𝑧 = 𝑠(𝒙):ℝ2 → ℝ, with 𝒙 = (𝑥, 𝑦)𝑇 ∈ 𝑨, (2.15) 

which has to be defined over the investigated area 𝑨 in the 𝑥𝑦-plane. With this, one can see 

that the position vector to 𝐼 has to fulfil 

𝑰(𝒙) = (

𝑥
𝑦

𝑠(𝒙)
1

). (2.16) 

The SUT has to satisfy the requirements to be continuous and continuously differentiable over 

𝑨, as steps in the surface cannot be detected. In addition, the surface must not exceed 

incidence angles of 𝛩 ≥ 90° as this leads to ambiguous points of intersection or dark spots on 

the SUT, which cannot be investigated. This can easily been recognized regarding Figure 2.1 

and imagining an increase of 𝛩 to 90°. Furthermore, as this is a gradient-based measurement 

technique, it has to be said that a constant in 𝑠(𝒙) cannot be reconstructed. 

From here on, all calculations related to direction or position vectors are performed using their 

homogeneous representation, while their presentation in figures is in Cartesian coordinates. 

The CSs are named by their basis defined in homogeneous coordinates. Thus, if the CS ℐ is 

named, this relates to the Cartesian CS, represented by the basis ℐ  in homogeneous 

coordinates. 

2.1.3 Measurement principle 
Using the CSs described before, a measurement principle can be settled that scans the SUT 

and determines the normal 𝒈 for any point 𝐼 of the SUT within 𝑨. Therefore, the incident ray is 

targeted onto the SUT with a certain direction that is along the 𝑤̃-axis of the CS ℐ as shown in 

Figure 2.2. The direction of the reflected ray is determined in the CS 𝒞 . This will further be 

described in Chapter 2.2. From here on, the CSs ℐ and 𝒞 are considered to be fixed in relation 

to each other. In addition, the CS 𝒮 is considered to be fixed in relation to the CS ℳ within one 

measurement. To scan the surface, the CSs 𝒮 and ℳ can be translated arbitrarily within the 

𝑥̃𝑦̃-plane. Therefore the basis 

𝑶ℳ =

(

 
 
𝐵𝑥̃
ℳ − 𝑥̃

𝐵𝑦̃
ℳ − 𝑦̃

𝐵𝑧̃
ℳ

1 )

 
 

 (2.17) 

of the CS ℳ is shifted to target a certain position 𝒙̃ = (𝑥̃, 𝑦̃)𝑇. The incident ray can now be 

targeted onto any point on the SUT according to 𝑰 in Equation (2.16). 

As the direction of the reflected ray is dependent on the point 𝐼  on the surface and is 

determined in the CS 𝒞, it can be described as 𝒓𝒞(𝑰). To determine the surface normal using 

Equation (2.1), also the direction of the incident ray has to be known in 𝒞. Having the relation 

between ℐ and 𝒞, the incident ray’s direction 𝒊𝒞 =  𝐇ℐ
𝒞 𝒊ℐ in the CS 𝒞 can be defined according 

to Equation (2.14). Applying Equation (2.1) one can get the surface normal direction 

𝒈𝒞(𝑰) =
𝒓𝒞(𝑰) − 𝒊𝒞

√2(1 − (𝒓𝒞(𝑰) ⋅ 𝒊𝒞))

 (2.18) 

for any 𝑰. 

With 𝒈𝒮(𝑰) = 𝐇𝒮
𝒞𝒈𝒞(𝑰) , this can now be transferred into the CS 𝒮  where 𝑠(𝒙)  is defined. 

According to Equation (2.6) and (2.16), the vector components 
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𝒈𝒮(𝑰) =

(

 
 
𝑔𝑥
𝒮(𝑰)

𝑔𝑦
𝒮(𝑰)

𝑔𝑧
𝒮(𝑰)
0 )

 
 
= 𝒈𝒮(𝒙) (2.19) 

can be derived from 𝒈𝒮(𝑰) dependent on 𝒙. This means that the direction of a normal on the 

surface 𝑠(𝒙) is only dependent on 𝒙. Having the surface normal, the slopes 

𝑠𝑥(𝒙) =
𝜕𝑠(𝒙)

𝜕𝑥
= −

𝑔𝑥
𝒮(𝒙)

𝑔𝑧
𝒮(𝒙)

 (2.20) 

and 

𝑠𝑦(𝒙) =
𝜕𝑠(𝒙)

𝜕𝑦
= −

𝑔𝑦
𝒮(𝒙)

𝑔𝑧
𝒮(𝒙)

 (2.21) 

can be determined. These slopes also represent the first derivatives of 𝑠(𝒙)  in 𝑥 - and 

𝑦-direction at the position 𝒙 [79, 81]. 

Using the Nabla vector 𝛁 = (
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
)
𝑇
, a gradient field  

𝜻(𝒙) = 𝛁𝑠(𝒙) =

(

 
 
 
 

𝜕𝑠(𝒙)

𝜕𝑥
𝜕𝑠(𝒙)

𝜕𝑦

𝜕𝑠(𝒙)

𝜕𝑧 )

 
 
 
 

= (
𝑠𝑥(𝒙)
𝑠𝑦(𝒙)

0

) (2.22) 

can be defined in the CS 𝒮 . As the surface function is continuous and continuously 

differentiable over 𝑨, the integral 

∫ 𝜻(𝒙)𝑑𝒙

𝒙1

𝒙0

 (2.23) 

for two arbitrary positions 𝒙0  and 𝒙1 , with 𝒙0, 𝒙1 ∈ 𝑨 , is independent on the path of the 

integration within 𝑨 on the gradient field 𝜻(𝒙) [78]. May 𝒙0 = (0,0) and 𝑠(𝒙0) = 𝐴, the surface 

function can be defined for any arbitrary position 𝒙 as 

𝑠(𝒙) = ∫𝜻(𝒙)𝑑𝒙

𝒙

𝒙0

+ 𝐴 (2.24) 

from the gradient field. 

2.2 Experimental Ray Tracing 
The detection of the direction 𝒓 of the reflected ray is determined in the CS 𝒞. Within this CS 

a variation of a technique called ERT is used. ERT has initially been introduced to characterize 

optical components in transmission [72]. The idea is based on a measurement technique for 

collimating optics called Hartmann test [46]. In this measurement technique, a plate with 

pinholes is placed in front of an optical component. Having a collimated beam directed onto 

this plate, single sub beams, considered as rays, are created. These rays propagate through 

the optical component independently. Behind the optical component, the positions of the rays 

are detected around the focus using two parallel photo plates being exposed separately. From 
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the spots the rays create on the photo plate, information about the optical component can be 

determined. However, this technique was time-consuming as it took a long time to investigate 

the photo plates using a microscope. To overcome this problem, a laser diode with a pinhole 

and a movable scanning mirror replaced the pinhole plate. In addition, a position sensitive 

detector on a linear positioning stage has replaced the two photo plates [72]. Therewith, 

arbitrary positions on the optical component can be investigated, while the fast detection of the 

ray’s position using the position sensitive detector can be performed in two parallel planes 

using the linear stage. A connection between the world of simulations using ray tracing and 

the experimental measurements has been built as ray tracing can now also be performed 

experimentally. In a next step, this technique has been developed further by using a fiber-

coupled laser diode on linear stages for the positioning of the incident beam and a camera for 

the beam position detection. This led to a higher accuracy and repeatability of the 

measurement results [82]. 

In the measurement technique proposed here, the part of the setup of ERT to detect the ray’s 

direction is used. The principle can be described by using the sketch shown in Figure 2.3. 

 

Figure 2.3: Sketch of the technique used for the detection of the direction of the reflected 
ray 𝒓 by determining its intersection points 𝐶 and 𝐷 with two parallel planes. 

As shown in Figure 2.3, two parallel planes are used to detect the reflected rays direction 𝒓. 

These two parallel planes are perpendicular to the 𝑤-axes of the CS 𝒞  and must not be 

identical. With this, two points 𝐶 and 𝐷 can be defined, where the reflected ray intersects with 

these planes. With the two position vectors 𝑪 and 𝑫 to the points 𝐶 and 𝐷, the direction of the 

reflected ray 

𝒓 =
𝑫 − 𝑪

|𝑫 − 𝑪|
 (2.25) 

can be determined. From this equation, one can see that the direction of 𝒓 is dependent on the 

position of the two parallel planes. However, the orientation of the positive direction of 𝒓 is 

dependent on these positions. Thus, it has to be assured that the positions are chosen that 

𝐶𝑤
𝒞 > 𝐷𝑤

𝒞  to preserve the validity of Equation (2.1). 

𝒞 

𝑢 

𝑣 

𝑤 

𝒓 

𝐶 

𝐷 



   Methodology 
 

  17 
 

2.3 Determination of surface gradients and surface reconstruction 

2.3.1 Shift of sample points 
As shown in Equation (2.16), the point of intersection is not only dependent on 𝑥 and 𝑦 but 

also on the function 𝑠(𝒙) that represents the point’s position in 𝑧-direction. This is problematic, 

as the surface function 𝑠(𝒙) is intended to be determined with this measurement technique. 

Assuming 𝒊 is parallel to the 𝑦𝑧-plane, has an incident angle of 45° to the 𝑥𝑦-plane and points 

onto a point 𝐽 in the 𝑥̃𝑦̃-plane, one can see that a change of the surface in 𝑧-direction results 

in a shift of 𝐼 as illustrated in Figure 2.4. Additionally, this shift is dependent on the 𝑧-position 

and therewith on 𝑠(𝒙). Thus, a mapping from 𝐽 to 𝒙 independent on 𝑠(𝒙) is not possible. 

 

Figure 2.4: Sketch to show the difference between 𝐽 and 𝐼. The partially transparent line 

shows an alternative position, to illustrate the change of 𝐼 dependent on a shift of 𝐽 in  

𝑦̃-direction. 

Although, having 𝑠(𝒙) and the transformation matrix 𝐇ℳ
𝒮 , one can get a relation between the 

targeted position 𝐽 with its position vector 

𝑱 = 𝑱(𝒙̃) = (

𝑥̃
𝑦̃
0
1

), (2.26) 

and the point 𝐼, where 𝒙̃ = (𝑥̃, 𝑦̃) is the targeted position in the 𝑥̃𝑦̃-plane. To find this relation, 

the incident ray direction is used to create a set of position vectors 

𝑹ℳ = 𝑱 + 𝜅𝒊ℳ, 𝜅 ∈ ℝ (2.27) 

on a line in the direction of 𝒊 through the point 𝐽 [83]. With 𝐇ℳ
𝒮  the position vectors 

𝑹𝒮 = 𝑱𝒮 + 𝜅𝒊𝒮 (2.28) 

are also known. Determining the factor 𝜅 to fulfill 

𝑹𝒮 = 𝑰𝒮 , (2.29) 

a relation between the targeted position 𝒙̃ and the position 𝑰(𝒙) is found. Regarding Figure 2.4, 

one can say that this means that the point 𝐼 is the point of intersection of 𝒊, extended through 

the point 𝐽, and the surface 𝑠(𝒙). 

2.3.2 Solution for known surfaces 
Having the transformation matrix 𝐇ℳ

𝒮  and knowing the surface function 𝑠(𝒙) , a relation 

between the targeted position 𝑱 and the surface can be determined. However, one has to 

assume the base of the coordinate system 𝒮 and therewith 𝐇ℳ
𝒮  is unknown. This could be the 

𝒮 

ℳ  
𝑦̃ 

𝑧̃ 

𝑧 

𝑦 

𝒊 

𝑠(𝒙) 

𝐽 

𝐼 
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case if, for example, the SUT is not placed perfectly centered and perfectly oriented. Thus, 𝐇ℳ
𝒮  

has to be determined from the detected surface data. 

As the integration according to Equation (2.24) can only be performed if the coordinates 𝒙 are 

known, the determination of 𝐇ℳ
𝒮  is performed using the slope information. Assuming the SUT 

is positioned and oriented perfectly, 𝐇ℳ
𝒮  can be determined from the expected relation given 

by the measurement setup. With this assumption, one can determine the expected point of 

intersection 𝐾 by finding its position vector 𝑲(𝐇ℳ
𝒮 , 𝒙̃) as the intersection of 𝑹𝒮 with the SUT 

using Equation (2.29). Using Equation (2.20) and (2.21), one can calculate the expected 

surface slopes 𝑎(𝐇ℳ
𝒮 , 𝒙̃)  and 𝑏(𝐇ℳ

𝒮 , 𝒙̃)  in 𝑥 - and 𝑦 -direction for the position  𝑲(𝐇ℳ
𝒮 , 𝒙̃) . 

However, as it is assumed that the SUT is not placed perfectly, it has also to be expected that 

𝑲 ≠ 𝑰 and therewith also 𝑎(𝐇ℳ
𝒮 , 𝒙̃) ≠ 𝑠𝑥(𝒙) and 𝑏(𝐇ℳ

𝒮 , 𝒙̃) ≠ 𝑠𝑦(𝒙). To find the relation between 

𝒮 and ℳ, one has to set 

𝑎(𝐇ℳ
𝒮 , 𝒙̃) = 𝑠𝑥(𝒙) and 𝑏(𝐇ℳ

𝒮 , 𝒙̃) = 𝑠𝑦(𝒙) (2.30) 

and find a solution for 𝐇ℳ
𝒮  to fulfill this equation. 

2.3.3 Solution for unknown surfaces 
In contrast to the chapter before, the surface function 𝑠(𝒙) is here considered unknown. Thus, 

neither the expected point of intersection 𝑲 nor expected surface slopes 𝑎  and 𝑏  can be 

determined as 𝜅 in Equation (2.29) cannot be found. This leads to the problem that with an 

unknown position 𝒙  of the surface slopes, an integration cannot be performed. However, 

observing the situation from another CS, these problems can be overcome. 

Observing the situation from the CS ℐ, this CS is considered to be fixed in relation to ℳ. 

Instead of moving the origin of ℳ according to Equation (2.17), the incident ray is assumed to 

target a certain position 𝒙̃ by moving within the 𝑢̃𝑣̃-plane in ℐ. To overcome the dubiety about 

the factor 𝜅, the position 𝑱ℳ is transferred into the CS ℐ. As 𝒊 is parallel to the 𝑤̃-axis in the CS 

ℐ ,  the position 𝑱ℳ can be transferred into the CS ℐ and projected onto the 𝑢̃𝑣̃-plane without 

translations in 𝑢̃- or 𝑣̃-direction. As homogeneous coordinates are used, this can also be 

performed using a transformation matrix. Thus, one can say that the position vector 

𝑳ℐ = (

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

)𝐇ℳ
ℐ 𝑱ℳ (2.31) 

points to 𝐿 in the 𝑢̃𝑣̃-plane as shown in Figure 2.5. Therewith, the line of the incident beam 

𝑹ℐ = 𝑳ℐ + 𝜅𝒊ℐ (2.32) 

can be defined in the CS ℐ. Transferring the surface normal 𝒈ℐ = 𝐇𝒞
ℐ𝒈𝒞 to the CS ℐ, it can be 

mapped to the position 𝑳ℐ directly as the position of 𝑳ℐ in the 𝑢̃𝑣̃-plane is independent on the 

factor 𝜅. This can also be seen regarding Figure 2.5. The point 𝐿 is independent on 𝐼 even if 

𝑠(𝒙) is changing since 𝐽 is fixed. 
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Figure 2.5: Sketch of the incident ray location in the CS ℐ after the transformation of the 

targeted point 𝐽. 

Using Equation (2.20) and (2.21) one can determine the surface slopes 𝑠𝑢̃(𝑢̃, 𝑣̃) = −
𝑔𝑢̃
ℐ

𝑔𝑤̃
ℐ  and 

𝑠𝑣̃(𝑢̃, 𝑣̃) = −
𝑔𝑣̃
ℐ

𝑔𝑤̃
ℐ  from the normal in the CS ℐ. Applying Equation (2.24) accordingly in ℐ, the 

surface function can be determined. However, the surface 𝑠(𝑢̃, 𝑣̃) will then be represented in 

the CS ℐ. Thus, one can define the position of intersection 

𝑰𝒮 = 𝐇ℐ
𝒮𝑰ℐ = 𝐇ℐ

𝒮 (

𝑢̃
𝑣̃

𝑠(𝑢̃, 𝑣̃)
1

) (2.33) 

that also represents the surface shape in the CS 𝒮, from the integration performed in the CS 

ℐ. It has to be mentioned here that this is a theoretical construct as the rotation of analytical 

functions is not trivial and can easily lead to ambiguities. In the numerical model, this is more 

applicable. 
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3. Numerical model 

3.1 Introduction 
As this measurement technique is a scanning technique, it includes two major characteristics. 

First, the surface cannot be investigated continuously, but only on certain discrete points. 

Second, these discrete points cannot be investigated at the same moment, but have to be 

scanned serially. This chapter’s focus is set onto the first point mentioned, as this introduces 

a new perspective on the methodology described before. The effects of the second point 

mentioned are further described in Chapter 5.1. 

As described in the beginning of this thesis, the terminology of the discrete sampling is that the 

symbols stay the same, but get an index showing their discrete character. The meaning of the 

index is shown in the following chapter. 

3.2 Sample points, surface normal and gradient field detection 
As described before, the investigation of the SUT is performed by the observation of discrete 

points on SUT. In Chapter 2.3.1 it has been shown that the actual investigated point on the 

SUT is dependent on the shape of the SUT and its positioning in the setup. Thus, defining 

points to be investigated on the SUT directly is not possible. However, it is possible to define 

a number 𝑀 of discrete sample points 

𝒙̃𝑖 = (
𝑥̃𝑖
𝑦̃𝑖
), with 𝑖 = 1…𝑀, (3.1) 

in the measurement plane, as described in Chapter 2.1.3. In Equation (2.17), these points 

represent a negative shift of the origin of the CS ℳ. As the CS 𝒮 is fixed to the CS ℳ, one 

can also interpret this shift of the origin as a positive shift of the CSs ℐ and 𝒞 so that the incident 

ray is positioned to 𝒙̃𝑖 in the  𝑥̃𝑦̃-plane. This situation is shown in Figure 3.1. Since the sample 

points are now discrete, this leads also to the discrete points 𝐼𝑖 and the discrete reflected ray 

directions 𝒓𝑖. Still, it has to be fulfilled that the projection of 𝑰𝑖 on the 𝑥𝑦-plane has to be an 

element of 𝑨. In Figure 3.1, a possible sequence of sample points is illustrated. However, this 

is only an example as the shape of the sampled area can be changed individually for any SUT. 

Additionally to the shape of the area, the sample distances Δ𝑦̃  in 𝑦̃ -direction and Δ𝑥̃  in 

𝑥̃-direction can be chosen individually. Having one sample point at (0,0), one can define all 

other sample points 

𝒙̃𝑖 = (𝑓𝑖Δ𝑥̃, 𝑔𝑖Δ𝑦̃)
𝑇 with 𝑓𝑖, 𝑔𝑖 ∈ ℤ and 𝑖 = 1…𝑀 (3.2) 

as a vector of integer multiples 𝑓𝑖 and 𝑔𝑖 of the sample distance. Adding constants to the two 

elements of 𝒙̃𝑖 one can introduce a shift of all sample points in 𝑥̃- or 𝑦̃-direction. 

For the principle of the measurement technique, the sample grid does not have to be even and 

can also be of arbitrary shape. However, in this work only even grids with a constant sample 

distance are considered. The shape of the sample grids in this work are either square, circular 

or a single line for a cross-section measurement. 
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Figure 3.1: Illustration of a possible sample grid represented by the points 𝒙1…𝒙𝑀 in the 

𝑥̃𝑦̃-plane. Additionally, the sampling of the discrete position 𝒙𝑖 is leading to the discrete 

reflected ray’s direction 𝒓𝑖 and the discrete surface normal 𝒈𝑖. 

As the incident beam direction 𝒊 is not changing dependent on the positioning of the SUT, it is 

the same for all sample points. With the incident beam direction and the discrete reflected ray 

direction 𝒓𝑖 = 𝒓(𝒙̃𝑖) , one can determine the discrete surface normal 𝒈𝑖 = 𝒈(𝒙̃𝑖)  using 

Equation (2.1). 

According to Equation (2.20) and (2.21) the surface slopes 𝑚𝑖 and 𝑛𝑖 in 𝑥- and 𝑦-direction can 

be determined from the surface normal 𝒈𝑖. Therewith, the gradient field 

𝜻𝑖 = (
𝑚𝑖
𝑛𝑖
0
) = (

𝑠𝑥(𝒙𝑖)

𝑠𝑦(𝒙𝑖)

0

) (3.3) 

described in Equation (2.22) can now be defined numerically with the numerical surface slopes 

𝑚𝑖 and 𝑛𝑖. 

At this point, a differentiation has to be introduced. As deviations can occur during 

measurement and evaluation, the determined surface slopes can deviate from those derived 

from the surface model. This can be introduced by uncertainties or alignment errors in the 

setup, by errors introduced by the integration process or by deviations of the actual SUT from 

the model. Since the deviations of the SUT from the model are the targeted result of this 

measurement technique, the other sources for deviations have to be identified and minimized. 

This is addressed in subsequent chapters.  

In Chapter 2.1.3 one can see that the surface slopes can also be determined from the incident 

ray direction 𝒊 and the reflected ray direction 𝒓𝑖. In this case, it has to be considered that the 

deviations described above can also introduce a deviation of 𝒓𝑖  from the expected ideal 

direction. Therewith, the surface normal determined from 𝒊 and 𝒓𝑖 using Equation (2.18) and 

consequentially the surface slopes 𝑝𝑖 and 𝑞𝑖 determined in 𝑥- and 𝑦-direction using Equation 

(2.20) and (2.21) deviate from the expected slopes of the model. Having 

𝑝𝑖 = −
𝑔𝑥,𝑖
𝑔𝑧,𝑖

 (3.4) 

and 

𝑞𝑖 = −
𝑔𝑦,𝑖

𝑔𝑧,𝑖
 (3.5) 

determined from 𝒈𝑖, a gradient field 

ℳ  𝑦̃ 

𝑧̃ 

𝑥̃ 

𝒙̃1 

𝒙̃𝑀 

𝒙̃𝑖 

𝐼𝑖 

𝒈𝑖 𝒓𝑖 

𝒊 

Δ𝑥̃ 

Δ𝑦̃ 
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𝜼𝑖 = 𝜼(𝒙𝑖) = (
𝑝𝑖
𝑞𝑖
0
) (3.6) 

representing the determined surface gradients, can be defined. This gradient field includes the 

surface model gradient field 𝜻 as well as a gradient field of deviations 𝝃. Therewith, the relation 

𝜼 = 𝜻 + 𝝃 (3.7) 

can be settled. 

In addition to the differentiation between the model gradient field and the determined gradient 

field, one can also settle the differentiation between the model surface sag and the determined 

surface sag. 

With lim
Δ𝑥̃→0

 and lim
Δ𝑦̃→0

, Equation (2.24) can be used to determine the surface sag 

𝑠𝑖 = 𝑠(𝒙𝑖) = ∫ 𝜻 𝑑𝒙

𝒙𝒊

𝒙0

+ 𝐴 (3.8) 

from the gradient field 𝜻, where 𝐴 is an unknown constant of the surface function. The same 

applies to the determined gradient field 𝜼  

ℎ𝑖 = ∫ 𝜼 𝑑𝒙

𝒙𝒊

𝒙0

+ 𝐴 (3.9) 

and the gradient field of deviations 𝝃 

𝑑𝑖 = ∫ 𝝃 𝑑𝒙

𝒙𝒊

𝒙0

 (3.10) 

resulting in the determined surface sag ℎ𝑖 and the surface deviation 𝑑𝑖. 

According to Equation (3.7), these sag and deviation information can be related as 

ℎ𝑖 = 𝑠𝑖 + 𝑑𝑖 . (3.11) 

Regarding Equation (3.9), one can see that the surface can be reconstructed using the 

determined gradient field 𝜼. Substituting 𝜼 with Equation (3.7) by applying the sum rule, the 

surface sag 

ℎ𝑖 = ∫(𝜻 + 𝝃) 𝑑𝒙

𝒙𝒊

𝒙0

+ 𝐴 = ∫ 𝜻 𝑑𝒙

𝒙𝒊

𝒙0

+ ∫ 𝝃 𝑑𝒙

𝒙𝒊

𝒙0

+ 𝐴 (3.12) 

can also be determined from two separate integrations of the two gradient fields 𝜻 and 𝝃 [79]. 

Using Equation (3.8) for substitution in Equation (3.12), one can see that the surface sag 

ℎ𝑖 = 𝑠𝑖 + ∫ 𝝃 𝑑𝒙

𝒙𝒊

𝒙0

 (3.13) 

can even be determined from the surface model and the integration of the gradient field of 

deviations only. 
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3.3 Gradient integration method and surface characterization 

3.3.1 2D surface integration using Radial Basis Functions 
The integral over an integrable gradient field is independent on the path of the integration. 

However, this is only valid, if the gradient field is continuously known. Accordingly, Equation 

(3.8) until (3.13) are only valid for lim
Δ𝑥̃→0

 and lim
Δ𝑦̃→0

. 

Since the proposed measurement technique cannot satisfy this approach, an appropriate 

method for the integration of gradient data for Δ𝑥̃ > 0 and Δ𝑦̃ > 0, has to be used [84].  

In Chapter 2.3.1, it has been shown that the actual sample points may be shifted. This leads 

to a non-equidistant grid of sample points. Additionally, the considered area 𝑨 may has a 

freeform shape, according to the edge of the SUT. Thus, the integration method to be used 

here has to be able to handle non-equidistant grids of sample points with different shapes. An 

integration technique that provides these opportunities is the integration using Radial Basis 

Functions (RBFs). The integration using RBFs is based on positioning a certain function, the 

RBF, multiple times over the considered area. These positions are further called center points 

and are depicted 𝒙𝑗 , with 𝑗 = 1…𝑁. In this work, the number of center points 𝑁 is always 

chosen to be equal to the number of sample points 𝑀. Additionally, the positions of the center 

points are chosen to be identical with the positions of the sample points. Thus, one RBF is 

placed at each sample point. 

The 2D integration case faced here is of Southwell configuration. This means that two slope 

data are available per sample point [85]. To adapt the interpolant to this situation, Ettl et al. 

proposed an integration method where the interpolant function is given as 

ℎ(𝒙) =∑𝑐𝑗
𝜕𝜓

𝜕𝑥
(𝒙 − 𝒙𝑗)

𝑁

𝑗=1

+∑𝑐𝑁+𝑗
𝜕𝜓

𝜕𝑦
(𝒙 − 𝒙𝑗)

𝑁

𝑗=1

 (3.14) 

with 

𝜓(𝒙) = {

1

3
(1 − 𝑟̂)6(35𝑟̂2 + 18𝑟̂ + 3)

0

     
for 𝑟̂ =

1

𝜌
√𝑥2 + 𝑦2 ≤ 1 and 𝜌 > 0

otherwise

 (3.15) 

being the Wendland function, where 𝜌 is the support radius of the RBF and 𝑐𝑗 is the coefficient 

for the 𝑗-th RBF [21, 86, 87]. The derivatives of the function can be found in Appendix A. The 

Wendland function is a positive-definite function with a limited support radius. In contrast to the 

also often used Gaussian function, the Wendland function and its derivatives become 0 at the 

position 𝑟̂ = 𝜌 . For comparison, the Gaussian function and the Wendland function are 

illustrated in Figure 3.2. 

As described in Equation (3.15) the Wendland function is defined to be 0 outside the support 

radius 𝜌. Therewith, the supported area of one RBF is exactly defined to be within 𝜌. Regarding 

Figure 3.2, one can see that the Gaussian function becomes close to 0  at 𝑟̂ = 2.0 , too. 

However, applying a limited support radius to the Gaussian functions leads to a step in the 

function, as the Gaussian function does not become 0 before 𝑟̂ = ∞. 
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Figure 3.2: Comparison of the Gaussian function with 𝜎 = 0.5  and the Wendland 

function with 𝜌 = 2.0. 

Having Equation (3.14) as the interpolant function, the equations 

(
𝜕ℎ

𝜕𝑥
)
𝑖
=∑𝑐𝑗

𝜕2𝜓

𝜕𝑥2
(𝒙𝑖 − 𝒙𝑗)

𝑁

𝑗=1

+∑𝑐𝑁+𝑗
𝜕2𝜓

𝜕𝑦𝜕𝑥
(𝒙𝑖 − 𝒙𝑗)

𝑁

𝑗=1

= 𝑝𝑖 (3.16) 

and 

(
𝜕ℎ

𝜕𝑦
)
𝑖

=∑𝑐𝑗
𝜕2𝜓

𝜕𝑥𝜕𝑦
(𝒙𝑖 − 𝒙𝑗)

𝑁

𝑗=1

+∑𝑐𝑁+𝑗
𝜕2𝜓

𝜕𝑦2
(𝒙𝑖 − 𝒙𝑗)

𝑁

𝑗=1

= 𝑞𝑖 (3.17) 

can be derived for the slopes of the interpolant. Therewith, the interpolation is only supported 

by gradient data and therewith is of Hermite type [88]. With this, the linear equation system 

(LES) 

𝑺 = 𝐀𝒄 (3.18) 

can be defined, where 

𝑺 =

(

  
 

𝑝1
⋮
𝑝𝑀
𝑞1
⋮
𝑞𝑀)

  
 

⏟  

2𝑀 × 1

 (3.19) 

holds all slope values, 

𝐀 =

(

  
 

𝜕2𝜓

𝜕𝑥2
(𝒙𝑖 − 𝒙𝑗) ⋯

𝜕2𝜓

𝜕𝑦𝜕𝑥
(𝒙𝑖 − 𝒙𝑗)

⋮ ⋱ ⋮
𝜕2𝜓

𝜕𝑥𝜕𝑦
(𝒙𝑖 − 𝒙𝑗) ⋯

𝜕2𝜓

𝜕𝑦2
(𝒙𝑖 − 𝒙𝑗) )

  
 

⏟                          

     2𝑀 × 2𝑁 

 (3.20) 

represents the interpolant matrix and  
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𝒄 =

(

  
 

𝑐1
⋮
𝑐𝑁
𝑐𝑁+1
⋮
𝑐2⋅𝑁)

  
 

⏟    

2𝑁 × 1

 (3.21) 

depicts the coefficient vector. 

With 𝑀 = 𝑁, the interpolation matrix 𝐀 becomes symmetric and therewith a unique solution to 

the LES exists [21]. The determined coefficient vector 𝒄 can now be used to reconstruct the 

surface using Equation (3.14). For easier readability, the usage of this integration method is 

from now on donated by 

𝒉 = rbf(𝑿, 𝜼; 𝜌), (3.22) 

where 𝒉 is a set holding the integrated values, 𝑿 = {𝒙𝑖…𝒙𝑀} is a set including all sample 

positions, 𝜼 is the gradient field to be integrated and 𝜌 is the support radius of the Wendland 

function. 

This method for surface reconstruction can be adapted for noisy data of different levels. To 

handle data with higher noise levels, two adaptions are available: either the support radius 𝜌 

of 𝜓 can be increased or the number of center points 𝑁 can be reduced. However, it has to be 

kept in mind that with increasing the 𝜌, the rank of the interpolation matrix 𝐀 is decreased until 

the matrix becomes singular. Thus, 𝜌  has to be chosen properly to conserve local 

characteristics while ensure reconstruction stability, even if the given data is noisy [87]. 

Reducing the number of center points 𝑁 , a smoothening of the noisy data can also be 

achieved. Regarding Equation (3.18), one can see that this leads to overdetermined LES and 

a non-symmetrical interpolation matrix 𝐀. Thus, the LES has to be solved in a least-squares 

sense, leading to higher calculations times [89]. In this work, only the case of equal number of 

sample points and center points is considered. With this said, the memory usage of this method 

has to be considered. In the proposition of this method, Ettl et al. split a given data set of 60 ×

60 sample points into a grid of 6 × 6 patches for being able to handle the solving of the LES 

given in Equation (3.18) [21]. The patches were later on combined to recover the reconstructed 

surface. This stitching method lead to the question of how much memory is needed to hold the 

data required by Equation (3.18). The number of elements needed 

(4𝑀𝑁) + (2𝑁) + (2𝑀) (3.23) 

can be calculated from the given matrix and vector sizes. For 𝑀 = 𝑁 this can be reduced to 

4𝑁2 + 4𝑁. May the size of one element in a computer be 64 Bit = 8 Byte, the evolution of the 

needed memory to hold the data can be calculated as illustrated in Figure 3.3. 

One can clearly see that the amount of memory needed is increasing rapidly. It has also to be 

considered that this is only the amount needed to hold the data. Memory needed to perform 

the calculations, as well as for other programs or the operation system are not included. 

However, the increase in the sizes of memory available for computers as well as the availability 

of solid-state-drives to extend the memory using a swap file, make memory sizes of up to 

512 GB or even more realizable. Thus, the need for splitting the data into patches is no longer 

given. 
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Figure 3.3: Memory needed to hold the data required by Equation (3.18) for 𝑁 = 𝑀 and 

the size of one element being 8 Byte. 

3.3.2 Integrability considerations 
As said before, the integrability of a discrete gradient field can be dissolved by the introduction 

of noise to the gradient data or even by the discretization itself. Both factors can introduce curls 

to the gradient field resolving in a non-integrable gradient field. 

The curl of a gradient field is also a vector field describing if the gradient field contains 

positions, where a line following the gradient field creates a closed line [79]. In Chapter 2.1.3, 

it has been said if a gradient field was integrable, integration from one point to another is 

independent on the path. If a closed line along the gradient field exists, this path independency 

does not exist anymore. The curl of a gradient field 

curl 𝜼 = 𝛁 × 𝜼 (3.24) 

is calculated using the Nabla vector [79]. Introducing the discretization of the vector field 𝜼 as 

described in Equation (3.6), the discrete curl can be defined as 

curl 𝜼𝑖 = 𝛁 × 𝜼𝒊 =

(

 
 
 
 

𝜕

𝜕𝑥
𝜕

𝜕𝑦
𝜕

𝜕𝑧)

 
 
 
 

× (
𝑝𝑖
𝑞𝑖
0
) =

(

 
 
 
 

𝜕0

𝜕𝑦
−
𝜕𝑞𝑖
𝜕𝑧

𝜕𝑝𝑖
𝜕𝑧
−
𝜕0

𝜕𝑥
𝜕𝑞𝑖
𝜕𝑥

−
𝜕𝑝𝑖
𝜕𝑦)

 
 
 
 

= (

0
0

𝜕𝑞𝑖
𝜕𝑥

−
𝜕𝑝𝑖
𝜕𝑦

). (3.25) 

Thus, for a 2D gradient field, as given here, the curl vector field is a field of vectors parallel to 

the 𝑧-axis, while the length of the vectors is giving information about the magnitude of the curl 

at the considered position. For further considerations, it is assumed to have the situation shown 

in Figure 3.4 for one certain point in a gradient field. 
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Figure 3.4: Illustration of a curl vector 𝛁 × 𝜼𝑖 at 𝒙𝑖 derived from surface slopes given at 
the sample points 𝒙𝑖−2 , 𝒙𝑖−1 , 𝒙𝑖+1  and 𝒙𝑖+2  connected to 𝒙𝑖 . The red slopes 𝑞𝑖−1 and 

𝑞𝑖+1 represent slopes in 𝑦-direction, while the blue slopes 𝑝𝑖−2 and 𝑝𝑖+2 represent slopes 

in 𝑥-direction. 

To determine the derivatives needed to calculate the curl according to Equation (3.25), 

symmetric derivative calculation is used [90]. Therewith, the 𝑧-component of the curl vector as 

illustrated in Figure 3.4 can be calculated by 

𝜕𝑞𝑖
𝜕𝑥

−
𝜕𝑝𝑖
𝜕𝑦

=
𝑞𝑖+1 − 𝑞𝑖−1

2Δ𝑥
−
𝑝𝑖+2 − 𝑝𝑖−2

2Δ𝑦
. (3.26) 

Thus, the length of the curl vector gives information about the slope’s sum along the purple 

circle illustrated in Figure 3.4. May the illustrated slopes in this figure have the values 𝑝𝑖−2 = 1, 

𝑞𝑖−1 = −1, 𝑞𝑖+1 = 1 and 𝑝𝑖+2 = 1 and may Δ𝑥 = Δ𝑦, the length of the curl vector 

𝑞𝑖+1 − 𝑞𝑖−1
2Δ𝑥

−
𝑝𝑖+2 − 𝑝𝑖−2

2Δ𝑦
=

2

2Δ𝑥
 (3.27) 

for the sample point 𝒙𝑖 can be determined. Multiplying this with 2Δ𝑥, the slope increase or 

decrease along the curl can be determined. Assuming to have this increase or decrease along 

the circle, a height deviation 

ℎ𝑐𝑢𝑟𝑙,𝑖 = (
𝜕𝑞𝑖
𝜕𝑥

−
𝜕𝑝𝑖
𝜕𝑦
) 4𝜋Δ𝑥2 (3.28) 

introduced by the curl can be determined. This height deviation cannot be represented in the 

reconstruction of the surface as it is not integrable. The RBF method used for the integration 

in this work is able to find a least-squares solution for non-integrable gradient fields. However, 

it has also been shown that this integration method shows integration instabilities, when large 

curl fields are applied [91]. To overcome this problem, the integrability has to be enforced [92]. 

Regarding Figure 3.4, one can see that one slope information influences two curl vectors: one 

in the positive and one in the negative direction. Thus, there is no direct mapping of the slope 

values from the determined curl vectors. To solve this, a LES 

𝒃 = 𝐁𝑺 (3.29) 

based on Equation (3.26) is defined, where 𝒃 is a vector holding all curl values 𝛁 × 𝜼𝑖, 𝑺 is a 

vector holding all slope data and 𝐁  is a sparse matrix mapping the slope values to the 

corresponding curl. As the calculation of the curl underlies the sum rule, the given gradient 

field can be imagined to be the sum of a curl-free gradient field and a non-curl-free gradient 

𝑦 

𝑧 

𝑥

_i  

𝒙𝑖 

𝒙𝑖−1 
𝒙𝑖−2 

𝒙𝑖+1 
𝒙𝑖+2 

𝛁 × 𝜼𝒊 

Δ𝑦 

Δ𝑥 

𝑞𝑖+1 

𝑞𝑖−1 

𝑝𝑖+2 

𝑝𝑖−2 
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field. Using the given gradient field in Equation (3.29), the curl of the gradient field is retrieved. 

Reversing the process and solving the LES for 𝑺 using the calculated curl values, the slopes 

of a non-curl-free gradient field are retrieved. Subtracting these from the given gradient field 

results in an integrable curl-free gradient field [92]. 

As described before, curls can also occur due to discretization of the continuous surface 

function. In Chapter 3.2, it has been shown that if the surface model function is known, only 

the gradient field of deviations 𝝃𝑖 had to be integrated. May the discretization of the model 

function introduce a non-curl-free gradient field 𝜻𝑐,𝑖 to the model gradient field 

𝜻𝑖 = 𝜻0,𝑖 + 𝜻𝑐,𝑖 , (3.30) 

this non-curl-gradient field also appears in the determined gradient field 

𝜼𝑖 = 𝜼0,𝑖 + 𝜻𝑐,𝑖, (3.31) 

due to Equation (3.7), while 𝜻0,𝑖  and 𝜼0,𝑖  represent curl-free gradient fields. Rearranging 

Equation (3.7) and inserting Equation (3.30) and (3.31) to 

𝝃𝑖 = 𝜼𝑖 − 𝜻𝑖 = (𝜼0,𝑖 + 𝜻𝑐,𝑖) − (𝜻0,𝑖 + 𝜻𝑐,𝑖) = (𝜼𝑖 − 𝜻𝑖) + (𝜻𝑐,𝑖 − 𝜻𝑐,𝑖), (3.32) 

one can see that the curls introduced by discretization of the model function do not appear in 

the deviation gradient field 𝝃𝑖. It has to be mentioned that this consideration does not cover 

curls appearing in the deviation gradient field 𝝃𝑖 introduced by noise or the deviations from the 

model function itself. 

The considerations described before are only valid for the reconstruction of a surface, where 

the model function is known. If the model function is not known, enforcing the integrability on 

the determined gradient field 𝜼𝑖 can lead to deviations in the reconstructed surface. Regarding 

Equation (3.31) and assuming 𝜻𝑐,𝑖 be a non-curl-free gradient field introduced by discretization 

of the ground truth of the SUT, this non-curl-free gradient field includes information about the 

ground truth that is actually correct. Thus, subtracting these curls from the determined gradient 

field, leads to the curl-free gradient field 

𝜼0,𝑖 = 𝜼𝑖 − 𝜻𝑐,𝑖, (3.33) 

that might deviate from the actually correct gradient field 𝜼𝑖  and therewith represents the 

gradient field of a surface deviating from the ground truth. As described in Chapter 3.3.1, the 

2D integration using RBFs finds a least-squares solution for the deviation of the reconstructed 

surface’s slopes to the given slopes from the determined gradient field 𝜼𝑖. Thus, even if a 

discrete non-curl-free gradient field of a continuous surface is given, this method can be able 

to find a solution for a continuous reconstructed surface [93]. Therefore, the enforcement of 

the integrability is not performed for the reconstruction of unknown surfaces, as a high chance 

exists that relevant information is subtracted by the enforcement. This will further be shown by 

simulations in Chapter 4.2.3. 

3.3.3 Surface characterization 
As surfaces have different properties and characteristics, a common language for the transfer 

of information has to be defined. In general, a definition for surface description and 

characterization is given by the DIN ISO standard 10110. This standard is intended to have a 

common language of drawings of optical surfaces. From part 5 of this standard, it has been 

adopted to represent all deviations here in sagittal deviation [94]. This means all deviations are 

represented as distances parallel to the 𝑧-axis of the CS 𝒮. Furthermore, this part of the DIN 
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ISO standard 10110 gives specifications about the units used for different parameters, which 

has been adopted here. 

The topic of surface characterization is targeted in this work from two perspectives. One is the 

perspective of the influence of certain surface characteristics on the optical performance of a 

DUT. The second perspective is to observe which surface characteristics determined by the 

measurement setup may be introduced from misalignment, stage non-linearity and errors in 

the calibration in the measurement setup. 

For the perspective of optical performance, one has to consider the influence of different 

surface characteristics on the light propagating through the optical component. Therefore, the 

spatial wavelength 𝜆𝑠 of the surface structure is considered. This wavelength is separated into 

three different bandwidths: form, waviness and roughness [95]. As shown in Figure 3.5 all 

three of these bandwidths have different influence on the interaction with incident light. 

 

 

Figure 3.5: Scattering of incident light by surface errors of different bandwidths. 

While form deviations are introducing a slight scattering of the light resulting in the conventional 

aberrations, waviness and roughness introduce scattering in medium and higher angles [96]. 

This introduces different effects on the optical performance. To show these effects, they are 

illustrated in Figure 3.6 in terms of influence on the Point Spread Function (PSF) of an imaging 

system. 

 

Figure 3.6: Influence of surface structures of different bandwidths on the point spread 
function of an imaging system [96]. 

While form deviations do not influence the center peak of the point spread function significantly, 

the introduced aberrations generate an increase of the energy in the first diffraction rings. In 

contrast to that, waviness widens the center peak of the PSF, resulting in a blurring of the 

image generated by the system. Therefore, this bandwidth is very important for the imaging 

quality. While roughness also scatters light in higher angles, the scattering is not widening the 

𝜆𝑠 

form waviness roughness 

𝜆𝑠 

waviness form 

PSF PSF 

roughness 

PSF 
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center peak significantly, but distributing light in the area around the center peak. This results 

in a reduction of the contrast of the image, while preserving the sharpness. These effects are 

not only dependent on the spatial wavelength 𝜆𝑠  of the surface structure, but also in the 

wavelength 𝜆 of the introduced light. However, the wavelength 𝜆 used for the incident light in 

the measurement method proposed in this work does not have to be equal to the wavelength, 

the investigated surface is intended for. Thus, specific limits for the bandwidths cannot be 

given. When specific limits are not given, a general specification is given by 

DIN ISO 10110-8 [95]. This general specification defines the form deviation for 𝜆𝑠 > 2.5 mm, 

the waviness for 2.5 mm > 𝜆𝑠 > 80 µm and the roughness for 𝜆𝑠 < 80 µm. 

For the perspective of surface characterization in terms of influences from misalignment, stage 

non-linearity and errors in the calibration, the reconstructed surface from a measured gradient 

field is considered. This gradient field, and therewith the reconstructed surface, includes 

deviations introduced by the factors mentioned above. In contrast to form, waviness and 

roughness, these deviations are not bound to the SUT, but are introduced by the measurement 

system itself. These errors can change in magnitude and spatial frequency when changing the 

size or location of the investigated area and mostly appear in global structures covering the 

whole investigated area. To describe these global structures, Zernike polynomials are suitable 

[95, 97]. 

Zernike polynomials have been introduced by Fritz Zernike and are defined over the unit disc 

[98]. They are suitable for optical applications with circular apertures. Especially for the 

representation of wavefronts and their aberrations, Zernike polynomials are applied broadly, 

as some single polynomials represent certain types of aberrations of the wavefront [99]. 

The Zernike polynomials are a complete set of polynomials. This means that any arbitrary 

function can be represented by the sum of the complete set of polynomials each multiplied 

with an appropriate coefficient. The polynomials are originally assigned by two indices. For 

applications in linear algebra, as it is supposed to be used here, a single index notation is 

advantageous. Therefore, the single index 𝑙 of natural ordering of the polynomials is used in 

this work [100]. 

Initially, the Zernike polynomials have been defined in polar coordinates. However, they can 

also be transferred to Cartesian coordinates [100]. As Cartesian coordinates are used in this 

work, the Zernike polynomials will also be used in this definition. The first 15 Zernike 

polynomials 𝑃𝑙 in the natural order are explicitly presented in Cartesian Coordinates in Table 

3.1. 

Interpreting the polynomials as surface structures of a reconstructed surface with normalized 

aperture, these polynomials represent global structures within this surface. To find the 

corresponding coefficients for the polynomials to fit these to a reconstructed surface, the 

Equation 

ℎ(𝒙𝑖) =̂
𝑐𝑗
∑𝑐𝑗

𝑁

𝑗=1

𝑃𝑗−1(𝒙𝑖) (3.34) 

has to be solved in a least-squares sense, where 𝑃𝑗−1 = 𝑃𝑙  represents the 𝑙 -th Zernike 

polynomial. 
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Table 3.1: First 15 Zernike polynomials in Cartesian Coordinates in natural order. 

𝑙 𝑃𝑙(𝑥, 𝑦) 

0 1 
1 𝑦 

2 𝑥 
3 2𝑥𝑦 
4 2𝑥2 + 2𝑦2 − 1 
5 𝑥2 − 𝑦2 
6 3𝑥2𝑦 − 𝑦3 
7 3𝑥2𝑦 + 3𝑦3 − 2𝑦 
8 3𝑥3 + 3𝑥𝑦2 − 2𝑥 
9 𝑥3 − 3𝑥𝑦2 
10 4𝑥3𝑦 − 4𝑥𝑦3 
11 8𝑥3𝑦 + 8𝑥𝑦3 − 6𝑥𝑦 
12 6𝑥4 + 12𝑥2𝑦2 − 6𝑥2 + 6𝑦4 − 6𝑦2 + 1 
13 4𝑥4 − 3𝑥2 − 4𝑦4 + 3𝑦2 
14 𝑥4 − 6𝑥2𝑦2 + 𝑦4 

 

For this, Equation (3.34) can also be written in matrix form 

𝒉 = 𝐀𝒄 (3.35) 

where 

𝒉 = (
ℎ1
⋮
ℎ𝑀

)
⏟  

,

          𝑀 × 1   

 (3.36) 

 

𝐀 = (
𝑃0(𝒙1) ⋯ 𝑃𝑁−1(𝒙1)
⋮ ⋱ ⋮

𝑃0(𝒙𝑀) ⋯ 𝑃𝑁−1(𝒙𝑀)
)

⏟                  

          𝑀 × 𝑁 

 (3.37) 

and 

𝒄 = (

𝑐1
⋮
𝑐𝑁
)

⏟  

        𝑁 × 1

 (3.38) 

defining a LES to be solved. Solving this LES for a low number of 𝑁, for example 𝑁 = 36, 

global structures in the reconstructed surface can be detected independent on the size of the 

surface itself. Using different numbers for 𝑁 or even a range for 𝑗, different structures can be 

retrieved and, if desired, subtracted from the given height data [101]. In this work, the first 36 

Zernike polynomials are considered representing global structures, since these polynomials 

represent low radial and azimuthal degrees and therewith low-frequency structures. Thus, the 

sum of these polynomials can be called low-frequency structures. Subtracting these low-

frequency structures from given height data, high-frequency structures can be derived, which 

could be disguised by the mostly more prominent global structures. 
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For the presentation and transfer of general surfaces, like freeform surfaces, the DIN ISO 

10110-19 gives several options [6]. In this work, all presented data are in the form of point 

clouds. If not stated differently, the corresponding CS is 𝒮. 

3.4 Reconstruction of known surfaces 
The reconstruction of known surfaces has been described analytically in Chapter 2.3.2. Here, 

the numerical tools described before are used to describe the evaluation steps as they are 

performed in the simulation and the experimental setup. 

Having the desired sample points 𝒙̃𝑖 defined, the detected surface normals can be determined 

according to the descriptions in Chapter 2 and 3.2. As the surface normals are determined in 

the CS 𝒞, the surface normals are defined as 𝒈𝑖
𝒞 and can be transferred into the CS ℳ using 

the transformation matrix 𝐇𝒞
ℳ according to Equation (2.14). As the surface model is known, 

the relation of the origin of the function describing the surface model and the origin of the CS 

ℳ , the transformation matrix 𝐇ℳ
𝒮 , has to be found. According to Equation (2.12), the 

transformation matrix is defined using the rotation vector 𝜸ℳ
𝒮  and the translation vector 𝒕ℳ

𝒮 . 

The process to appropriate values for the rotation and the translation vector are described in 

Chapter 2.3.2 and lead to the requirement given by Equation (2.30). Since it is now expected 

that the detected surface normals are not error-free, these Equations have to be solved in 

least-squares sense. Therefore, the non-linear cost function 

𝜒2 = √
1

2𝑀
∑((𝑝𝑖

𝒮(𝐇ℳ
𝒮 ) − 𝑠𝑥(𝒙𝑖)) + (𝑞𝑖

𝒮(𝐇ℳ
𝒮 ) − 𝑠𝑦(𝒙𝑖)))

𝑀

𝑖=1

 (3.39) 

is defined, which has to be minimized by optimizing 𝐇ℳ
𝒮 . The position 𝒙𝑖 is hereby assumed to 

be the position determined from the shift of sample points as described in Chapter 2.3.1. The 

cost function is derived from the root mean square (RMS) slope deviation as defined in the 

DIN ISO 10110-8 standard [95]. Regarding the intended setup and the meaning of the 

components of the translation vector 𝒕ℳ
𝒮 = (Δ𝑥̃ℳ

𝒮 , Δ𝑦̃ℳ
𝒮 , Δ𝑧̃ℳ

𝒮 ), one can see that an ambiguity 

between the shifts Δ𝑥̃ℳ
𝒮  and Δ𝑦̃ℳ

𝒮  and the shift Δ𝑧̃ℳ
𝒮  exists. Any shift in 𝑧̃-direction can also be 

represented by a shift in 𝑥̃- and 𝑦̃-direction, due to the direction 𝒊 of the incident ray. Thus, the 

degree of freedom can be reduced and only the parameters αℳ
𝒮 , 𝛽ℳ

𝒮 , 𝛾ℳ
𝒮 , Δ𝑥̃ℳ

𝒮  and Δ𝑦̃ℳ
𝒮  have 

to be optimized [102]. The transformation matrix will therefore be of the form 

𝐇ℳ
𝒮 = 𝐇((αℳ

𝒮 , 𝛽ℳ
𝒮 , 𝛾ℳ

𝒮 ), (Δ𝑥̃ℳ
𝒮 , Δ𝑦̃ℳ

𝒮 , 0)). 

Having 𝐇ℳ
𝒮  found from the non-linear optimization, the detected normals 

𝒈𝑖
𝒮 = 𝐇ℳ

𝒮 𝒈𝑖
ℳ (3.40) 

can be transferred into the CS 𝒮 and the detected surface slopes 𝑝𝑖
𝒮 and 𝑞𝑖

𝒮 can be calculated 

generating the gradient field 𝜼𝒮. Applying Equation (3.7), the gradient field of deviations 𝝃𝒮 can 

be calculating subtracting the model gradient field 𝜻𝒮  from 𝜼𝒮 . On this gradient field of 

deviations, the integrability can now be enforced. In Equation (3.13), it has been shown that it 

is sufficient to integrate the gradient field of deviations only. Thus, the integration 

𝑑𝑖
𝒮 = rbf(𝑿, 𝝃𝒮; 𝜌)

𝑖
 (3.41) 

can now be performed to reconstruct the surface deviations. The surface can now be 

reconstructed using the model data as shown in Equation (3.11). 
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A flowchart illustrating the process of the reconstruction of known surfaces is shown in Figure 

3.7. 

 

Figure 3.7: Flowchart of the reconstruction of known surfaces from measurement data 
acquisition until the reconstructed surface. 

3.5 Reconstruction of unknown surfaces 
Equivalently to the reconstruction of known surfaces, the reconstruction of unknown surfaces 

has already been described analytically. This description can be found in Chapter 2.3.3. Also, 

the process for the surface reconstruction of unknown surfaces is described here in the same 

way as it is performed in the simulations and the experimental setup. 

Having the detected surface normals 𝒈𝑖
𝒞 in the CS 𝒞, the target sample points 𝑱ℳ in the CS ℳ 

and the transformation matrics 𝐇𝒞
ℳ and 𝐇𝒞

ℐ , the detected surface normals 

𝒈𝑖
ℐ = 𝐇𝒞

ℐ𝒈𝑖
𝒞 (3.42) 

as well as the targeted sample points 

𝑱𝑖
ℐ = 𝐇𝒞

ℐ𝐇ℳ
𝒞 𝑱𝑖

ℳ (3.43) 

measurement data 
acquisition 

transformation of all data 
into CS ℳ 

optimize αℳ
𝒮 , 𝛽ℳ

𝒮 , 𝛾ℳ
𝒮 , Δ𝑥̃ℳ

𝒮 , Δ𝑦̃ℳ
𝒮  

𝜒2 minimized 

transformation of all data 

into CS 𝒮 using 𝑯ℳ
𝒮  

calculate gradient field of deviations 

𝝃𝒮 

enforce integrability on 𝝃𝒮 

integrate 𝝃𝒮  using RBFs to get 
surface deviations 

add model to deviations to get 
reconstructed surface 

yes 

no 
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can be transferred in the CS ℐ. Performing the projection of 𝑱𝑖
ℐ into the 𝑢̃𝑣̃-plane as described 

in Equation (2.31) the position vectors 𝑳𝑖 = (𝑢̃𝑖, 𝑣̃𝑖 , 0,1)
𝑇 can be determined. May 

𝑼 = {(𝑢̃1, 𝑣̃1)
𝑇 , (𝑢̃2, 𝑣̃2 )𝑇 , … , (𝑢̃𝑀, 𝑣̃𝑀)

𝑇} (3.44) 

be a vector holding all positions of 𝑳 in the 𝑢̃𝑣̃-plane and 𝜼ℐ be the gradient field determined 

from the detected vectors 𝒈𝑖
ℐ, the integration in the CS ℐ can now be performed to reconstruct 

the surface 

ℎ𝑖
ℐ = rbf(𝑼, 𝜼ℐ; 𝜌)

𝑖
. (3.45) 

The determined points of intersection, also describing the surface shape in the CS ℐ, 

𝑰𝑖
ℐ = (

𝑢̃𝑖
𝑣̃𝑖
ℎ𝑖
ℐ

1

) (3.46) 

are defined as position vectors. As the model is not known here, the relation between the CS 

ℳ and the CS 𝒮 can be chosen arbitrarily. However, in this work, it is assumed to have the 

relation as shown in Figure 2.2 for unknown surfaces, resulting in 

𝐇ℳ
𝒮 = 𝐇((0, 180°, 0), (0, 0,0)) (3.47) 

for the corresponding transformation matrix. Thus, the position vectors in the CS 𝒮 can be 

calculated by 

𝑰𝒊
𝒮 = (

𝑥𝑖
𝑦𝑖
ℎ𝑖
𝒮

1

) = 𝐇ℳ
𝒮 𝐇𝒞

ℳ𝐇ℐ
𝒞𝑰𝑖
ℐ, (3.48) 

where ℎ𝑖
𝒮 represents the reconstructed surface topography value at the point 𝒙𝑖. A flowchart 

illustrating the process of the surface reconstruction of unknown surfaces is shown in Figure 

3.8. 

 

Figure 3.8: Flowchart of the reconstruction of unknown surfaces from measurement data 
acquisition until the reconstructed surface. 

measurement data 
acquisition 

transformation of all data 
into CS ℐ 

calculate gradient field 𝜼ℐ 

integrate 𝜼ℐusing RBFs to get 
reconstructed surface in CS ℐ 

transformation of the reconstruced 
surface into CS 𝒮 
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3.6 Calibration methods 

3.6.1 Combined calibration including camera rotation 
It is expected that an experimental setup is not built up perfectly. Alignment errors occur due 

to these imperfections. For high accurate measurements, the alignments have to be known 

accurately, too. To get the relevant information, a calibration method has to be found 

determining the values 𝛼𝒞
ℐ  and 𝛽𝒞

ℐ  for 𝐇𝒞
ℐ , the values 𝛼𝒞

ℳ  and 𝛽𝒞
ℳ  for 𝐇𝒞

ℳ  and the value 𝛾𝒞
𝒞 

describing the rotation of the camera around the 𝑤-axis as shown in Figure 3.9. 

 

Figure 3.9: Illustration of the parameters 𝛼𝒞
ℐ , 𝛽𝒞

ℐ , 𝛼𝒞
ℳ , 𝛽𝒞

ℳ  and 𝛾𝒞
𝒞  determined by the 

combined calibration method. 

One can see in Figure 3.9 that angles are determined with this calibration method only, as 

positions are not relevant to know for both the measurement of known and unknown surfaces. 

The calibration method is based on the evaluation of a known surface in combination with a 

non-linear minimization. The basic idea is to find the optimal parameters described above from 

the results of the measurement of a known object by minimizing the deviation of the 

reconstructed surface from the given model. Observing the influence of misalignments in the 

considered parameters lead to the assumption that these misalignments introduce global 

structures in the deviations of the reconstructed surface from the model. These global 

structures can be represented by Zernike polynomials as described in Chapter 3.3.3. From the 

observations, it has been determined that global structures introduced by misalignments in the 

considered parameters, can be represented by the first 15 Zernike polynomials, ordered as 

described in Table 3.1. Minimizing the RMS of the sum of these fitted polynomials over the 

considered sample points, by varying the angles described before, leads to the desired 

parameters [102]. It has to be mentioned here that the considered SUT used for the calibration 

must have changing surface sag values and surface slope values. Using just a flat mirror is 

not meaningful for this calibration method. Also, the SUT used should not deviate to far from 

its model. This will be further investigated in Chapter 6.4. 

Abstracting the process of a measurement of a known surface as described in Figure 3.7 as 

“reconstruction of known surface”, the combined calibration process can be illustrated by the 

flowchart shown in Figure 3.10. 
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Figure 3.10: Flowchart of the combined calibration of the two transformation matrices 𝐇𝒞
ℐ  

and 𝐇𝒞
ℳ and the camera rotation 𝛾

𝒞
𝒞. 

For easy application, the parameter 𝛾𝒞
𝒞 can be used to define a transformation matrix 𝐇𝒞

𝒞 as 

described in Equation (2.12). This transformation matrix can be applied to the position vectors 

𝑪𝑖 and 𝑫𝑖 directly to perform the rotation of the camera around the 𝑤-axis determined by the 

combined calibration. 

3.6.2 Pitch of DUT positioning 
The stages used for the positioning of the DUT are not perfectly even in their movement. They 

introduce a pitch and roll due to imperfections in the manufacturing of the bearing of the moving 

carriage. Since this measurement technique is based on the determination of the gradient of 

a SUT, angular imperfections in the positioning of the DUT are directly transferred into the 

measurement results. However, the pitch and roll of the positioning stages is reproducible and 

therewith can be measured and subtracted from the determined gradient field. 

Since the stages are aligned perpendicular to each other, the pitch of one stage represents 

the roll of the other stage. Thus, only the pitches in 𝑥̃- and 𝑦̃-direction have to be considered. 

To detect these pitches, a setup where a test ray, fixed to the DUT positioning stages, is 

targeted onto the camera directly is considered. This ray can now be moved along the 

𝑥̃- and 𝑦̃-axis while targeting onto the camera. A sketch of the considered setup is shown in 

Figure 3.11. 
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Figure 3.11: Sketch of the setup considered for the determination of the pitch of the 
𝑥̃𝑦̃-stage. The illustrated ray direction 𝒓 is fixed in relation to the CS ℳ. 

Considering that the direction of 𝒓 is fixed in relation to the moving carriage, which moves along 

the 𝑥̃- and 𝑦̃-direction, any change of the direction of 𝒓 can be traced back to a pitch of the 

𝑥̃- or 𝑦̃-axis. The absolute relation between 𝒓 and the CS ℳ is not needed as only the change 

of 𝒓 is relevant for the determination of the stages pitches. Scanning the considered area, the 

pitch at multiple positions can be obtained, while the average direction of 𝒓 is considered as 

the pitch-free position of the moving carriage. Since the considered positions for this calibration 

do not have to be identical with the positions used in a measurement, an interpolation has to 

be performed. As the detected pitch of the positioning stages can also be considered being 

slopes introduced by the pitch, Zernike polynomials can be used for the interpolation. Fitting 

the first 36 Zernike polynomials to the detected pitch data, an interpolation can be performed 

using the determined Zernike coefficients, while high-frequency influences introduced by noise 

are suppressed. 

May the positions 𝒙̃𝑖 be investigated for the determination of the pitch, the ray directions 𝒓𝑖 can 

be determined for each position. Using 𝐇𝒞
ℳ, the ray directions can be transferred into the CS 

ℳ  resulting in 𝒓𝑖
ℳ . From this, the slope values 𝑝̃𝑖  and 𝑞̃𝑖  in 𝑥̃ - and 𝑦̃ -direction can be 

determined. To observe the changes only, the mean value of these slopes is subtracted to get 

the slopes 

𝑝̂𝑖 = 𝑝̃𝑖 −
∑ 𝑝̃𝑖
𝑀
𝑖=1

𝑀
 (3.49) 

and 

𝑞̂𝑖 = 𝑞̃𝑖 −
∑ 𝑞̃𝑖
𝑀
𝑖=1

𝑀
. (3.50) 

From partial differentiation of Equation (3.34), one can derive the 2D least-squares sense fitting 

of the Zernike polynomials 𝑃𝑗 as 

(
𝑝̂𝑖
𝑞̂𝑖
) =̂
𝑐𝑗
∑𝑐𝑗

(

 

𝜕𝑃𝑗−1

𝜕𝑥
(𝑥̃𝑖, 𝑦̃𝑖)

𝜕𝑃𝑗−1

𝜕𝑦
(𝑥̃𝑖, 𝑦̃𝑖))

 

𝑁

𝑗=1

. (3.51) 

Solving this equation for 𝑁 = 36, a set of 36 coefficients is derived. These coefficients can be 

used for the interpolation at any position (𝑥̃, 𝑦̃) within the area, the fit has been performed over. 

The slope deviations introduced by the pitch of the DUT positioning stages is only dependent 

on the targeted sample point 𝒙̃𝑖 and not on the actual investigated position 𝒙𝑖 on a SUT. Thus, 

𝒞 

𝑢 

𝑣 𝑤 
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𝑦̃ 
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the correction is performed directly after the data acquisition. Regarding the flowchart shown 

in Figure 3.7, the process step for the correction of the slopes is added for the reconstruction 

of known surfaces as shown in Figure 3.12. 

 

Figure 3.12: Introduction of the pitch correction of the DUT positioning stages into the 

flowchart for the reconstruction of known surfaces shown in Figure 3.7. 

For the correction of the slopes in the reconstruction of an unknown surface, an additional step 

has to be added since the correction can only be performed in the CS ℳ. Regarding the 

flowchart shown in Figure 3.8, the two steps have to be added as presented in Figure 3.13. 

 

Figure 3.13: Introduction of the pitch correction of the DUT positioning stages into the 

flowchart for the reconstruction of unknown surfaces shown in Figure 3.8. 
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4. Simulations 

4.1 Simulation setup and samples 

4.1.1 Simulation setup 
The setup for the simulations consists of three main parts: the optical simulation, the data 

evaluation and the process control. The setup is depicted as a block diagram in Figure 4.1. 

The three main parts are described below. 

 

Figure 4.1: Block diagram of the simulation setup. The three main parts are the process 
control, the optical simulation and the data evaluation. Besides the controlling of the 
simulation process, the process control offers the opportunity to store data on the 
computers data storage and provides the user interface. 

Optical simulation 

For the optical simulation, the software OpticStudio by Zemax is used [103]. In this software, 

the intended setup is modeled and the optical simulation is performed. These simulations are 

mainly single ray tracing processes performed in the sequential mode of OpticStudio. The 

modeled setup is shown in the 3D Layout sketch created by OpticStudio shown in Figure 4.2. 

The major components of the modeled setup are the incident ray, the SUT and the detector. 

The incident ray is a single ray source pointing towards the SUT. The SUT can represent 

different surface types. In Figure 4.2 it is a simple flat surface. However, it can also represent 

standard surface types like cylindrical, spherical or aspherical surfaces. Additionally user 

defined surfaces are available in which arbitrary surface functions can be defined. The third 

major component is the detector. It is a simple standard surface providing the ability to 

determine the reflected ray’s position on its surface. The origin of the CS 𝒞 is here set to be in 

a distance of 28 mm from the origin of the CS ℳ, while the 𝑤-axis of the CS 𝒞 is pointing 

towards the origin of the CS ℳ. The linear stage in the experimental setup has a travel range 

of 100 mm with its origin in the origin of the CS 𝒞. As the detector’s movement is along the 

optical simulation data evalution 
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𝑤-axis, the detector has a distance of 28 mm from the origin of the CS ℳ, when the detector 

is positioned to 𝑤 = 100 mm. 

 

Figure 4.2: Sketch of the modeled setup in OpticStudio [103]. The three major 
components of the model are the incident ray, the SUT and the detector. 

Additionally, multiple surfaces of the type “coordinate break” are added. These coordinate 

breaks perform three different tasks. First, they are used to model the rotation of the three 

major components to each other. This rotation is initially chosen to have 𝛼𝒞
ℐ = 90°, 𝛽𝒞

ℐ = 0°, 

𝛼𝒞
ℳ = 45°, 𝛽𝒞

ℳ = 0° and 𝛾𝒞
𝒞 = 0°. Second, they are used to perform the positioning of the SUT 

to the desired positions 𝒙̃𝑖 . Third, these coordinate breaks are also used to introduce 

misalignments into the setup. These misalignments are used to check the performance of the 

calibration methods described before. The full list of surfaces used in the modeled setup in 

OpticStudio is shown and described in Table 4.1. 

Table 4.1: List of all surfaces used for the modeling of the setup in OpticStudio. The 
background colors in the id-column are used for illustrating the surfaces in Figure 4.3. 

id type rotation 𝑥 comment 

0 standard - incident beam 

1 coord. break 45° incident beam direction towards SUT 

2 coord. break 0° misalignment of positioning stages 

3 coord. break 0° positioning of SUT to positions 𝒙̃𝑖 
4 coord. break 0° rotation/deplacement of SUT 

5 user defined - SUT 

6 coord. break 0° reverse rotation deplacement of SUT 

7 coord. break 0° reverse positioning of SUT 

8 coord. break 0° reverse misalignment of positioning stages 

9 coord. break 45° movement of detector to perform ERT 

10 coord. break 0° rotation/deplacement of detector 

11 standard - detector 

 

To visualize the different surfaces in the modeled setup, they are illustrated in Figure 4.3 with 

their id and color according to Table 4.1. 

SUT 

detector 
incident ray 
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Figure 4.3: Sketch of the modeled setup in OpticStudio including the illustration of all 
surfaces used. The number on all surfaces corresponds to the given ids in Table 4.1. In 
this table, further information and descriptions about the surfaces can be found. 

The coordinate breaks defined in OpticStudio have a flag to define the order of the performed 

transformations. By default they follow the order of translation first, rotation around the 𝑥-axis 

second, rotation around the new 𝑦-axis third and finally rotation around the new 𝑧-axis [104]. 

This is equivalent to the transformations performed by the transformation matrix defined in 

Chapter 2.1.2. However, if the flag is switched, the order of transformation is reversed including 

the order of rotations. Therewith, a coordinate break with reversed order of transformation and 

inverted values of another coordinate break inverts its effect. This is used for the surfaces with 

the ids 6, 7 and 8 described in Table 4.1, which therewith invert the effects introduced by the 

surfaces with the ids 2, 3 and 4. 

Data evaluation 

For the evaluation of the data determined from OpticStudio, algorithms have been 

implemented using Python. To maintain package compatibility the distribution Anaconda is 

used [105]. For easier usability and maintainability, several algorithms have been implemented 

in separate modules to be used within different scripts equivalently. 

Process control 

To control the full process of the simulation, a desktop software has been implemented. This 

software is able to communicate with the OpticStudio software over its application 

programming interface (API). With this API, OpticStudio can be controlled and simulated data 

can be exported. After performing the simulation using OpticStudio, the process control 

application provides the simulation data to the data evaluation and starts the evaluation 

process. Finally, the evaluated data is presented in the desktop software. Additionally, the data 

determined from the simulation, as well as the evaluated data are stored on the computers 

storage drive. Therewith, the data is saved and can be used for further investigation later on. 
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4.1.2 Sample 1 – “Franke surface” 
For the simulations three different surfaces are investigated. The first surface is the so-called 

“Franke surface” [106]. This surface follows the function 

𝑠(𝒙) = 0.75𝑒−
(9𝑥−2)2+(9𝑦−2)2

4 + 0.75𝑒−
(9𝑥+1)2

49
−
9𝑦+1
10  

+0.5𝑒−
(9𝑥−7)2+(9𝑦−3)2

4 − 0.2𝑒−(9𝑥−4)
2−(9𝑦−7)2 

(4.1) 

and is widely used as test function in interpolation studies [97]. It consists of three peaks and 

one sag of exponential shape. This function is designed for an interval of 𝑥 = [−1…1] and 

𝑦 = [−1…1]. As it will be shown later in this work, a sample distance of 100 µm will be used 

for the experimental setup. Assuming the unit for the design interval mentioned above is mm 

and the investigated area is square, a number of only 441 sample points will be reached. To 

increase this number, the function given in Equation (4.1) is altered to 

𝑠(𝒙) = 0.75𝑒−
(0.9𝑥−2)2+(0.9𝑦−2)2

4 + 0.75𝑒−
(0.9𝑥+1)2

49
−
0.9𝑦+1
10  

+0.5𝑒−
(0.9𝑥−7)2+(0.9𝑦−3)2

4 − 0.2𝑒−(0.9𝑥−4)
2−(0.9𝑦−7)2 , 

(4.2) 

increasing the design interval to 𝑥 = [−10…10] and 𝑦 = [−10…10] and the number of sample 

points to 40401. The surface sag and shape is shown in Figure 4.4 a) and b). The surface 

slopes in 𝑥- and 𝑦-direction are shown in Figure 4.4 c) and d). The partial derivatives of 

Equation (4.2) are given in the Appendix B. 

From the first order derivatives, the gradient field 𝜻(𝒙) can be derived. The gradient field is 

shown in Figure 4.5. 

As shown in Figure 4.4, this surface is a freeform, showing no axis- or rotation-symmetry. 

Therewith, it suits very good to show the flexibility of the proposed measurement technique. 

Calculating the curl and the curl height of the gradient field 𝜻 of the surface over the considered 

area with a sample distance of 100 µm leads to the values shown in Figure 4.6. 

These curls shown in Figure 4.6 are introduced by the discrete sampling of the gradient field 

with a sampling distance of 100 µm in combination with large curvature values represented by 

fast changes of the slope data presented in Figure 4.4. Regarding Figure 4.6 b), one can see 

that the curls introduce curl heights up to ±60 nm. These curl heights are not negligible. 

However, they are not derived from noise or any other introduced errors, but are only 

introduced by the discrete sampling of the given model function. Reducing the sample distance 

leads to smaller curl and curl height values.  
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a)                                                                                b) 

 

c)                                                                                d) 

Figure 4.4: Plots presenting the Franke surface. a) and b) show the surface sag in 2D 
and 3D. c) and d) show the surface slopes in 𝑥- and 𝑦-direction. 

  

Figure 4.5: Gradient field 𝜻(𝒙) of the Franke surface. 
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a)                                                                                b) 

Figure 4.6: Plots presenting a) the curl and b) the curl height of the Franke surface’ 
discrete gradient field. 

4.1.3 Sample 2 – “cylinder surface” 
The second surface to be investigated is a cylinder surface. This surface type is characterized 

by a spherical shape in one direction, while having constant values in the other direction [5]. 

Here, the spherical shape is considered to be designed in 𝑦-direction. Therefore, the model 

function 

𝑠(𝒙) =

{
 
 

 
 −𝑅̂ + √𝑅̂2 − 𝑦2          for 𝑅̂ > 0 and |𝑦| ≤ 𝑅̂

−𝑅̂ − √𝑅̂2 − 𝑦2          for 𝑅̂ < 0 and |𝑦| ≤ |𝑅̂|

      (4.3) 

can be defined, where 𝑅̂ ≠ 0 is the radius of the spherical surface. This surface type has the 

advantage that cross section investigations can be performed in 𝑦-direction, while the model 

function is independent on the investigated 𝑥-position. Thus, this sample is used for cross 

section investigations. Pre-empting the description of the experimental samples, a cylindrical 

surface is also available for the experimental measurements. Therefore, the design radius 𝑅̂ 

for the simulation is set to 206.7 mm  to match the 𝑅̂  of the cylindrical sample used for 

experiments. Additionally, the investigated cross section range is set to 𝑦 = [−14…14] mm 

according to the limits given by the dimensions of the experimental sample. The shape and 

slope of the cylindrical surface is shown in Figure 4.7. The partial derivative in 𝑦-direction of 

Equation (4.3) are given in the Appendix B. 
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           a)                                                                              b) 

Figure 4.7: Plots presenting the cross section of the cylinder surface with the surface 

radius of 𝑅̂ = 206.7 mm in 𝑦-direction. a) shows the surface sag. b) shows the surface 

slopes 𝑦-direction. 

In Figure 4.7, a) one can see the spherical shape in 𝑦-direction, which is independent on the 

𝑥-position. In Figure 4.7 b) the surface’s slope in 𝑦-direction can be seen. From these slope 

data, the gradient field 𝜻(𝒙) can be determined, where the gradient’s component in 𝑥-direction 

is always 0. 

4.1.4 Sample 3 – “polynomial freeform 1” 
The third surface used for the simulation is a polynomial freeform. It follows the polynomial 

function 

𝑠(𝒙) = 3.5 ⋅ 10−3𝑥2 − 2.5 ⋅ 103𝑦2 − 2.5 ⋅ 10−5𝑥4 + 3.5 ⋅ 10−5𝑦4 (4.4) 

and therewith is symmetrical regarding both the 𝑥 - and 𝑦 -direction, but is not rotational 

symmetric. Also, the shape in 𝑥- and 𝑦-direction is different. As another polynomial freeform 

will be introduced later, this polynomial freeform is called “polynomial freeform 1”. A real 

sample having this model function is also available for the experimental measurements. Since 

this sample has a circular aperture and the limits of the experimental setup have to be 

considered, the investigated area of this sample is defined to be circular with an diameter of 

22 mm. The center of this circular area is set to the center of the function. The shape and slope 

of this sample for the considered area are shown in Figure 4.8. The functions 𝑠𝑥(𝒙) and 𝑠𝑦(𝒙) 

of the partial derivatives of Equation (4.4) are given in the Appendix B. 

The gradient field derived from the slopes is shown in Figure 4.9. 

Calculating the curl and the curl height from the gradient field at the desired sample positions 

lead to the values shown in Figure 4.10. 

The curl height shown in Figure 4.10 has a RMS of less than 0.3 am. In comparison to the curl 

and the curl height of the Franke surface, shown in Figure 4.6, the magnitude of the values of 

the polynomial freeform 1 are much lower and do not have to be considered in the 

reconstruction. However, if curl and curl height values in the same magnitude are determined 

from the simulation, they can be traced back to the discretization. 
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a)                                                                                b) 

 

c)                                                                                d) 

Figure 4.8: Plots presenting the polynomial freeform 1 surface. a) and b) show the 
surface sag in 2D and 3D. c) and d) show the surface slopes in 𝑥- and 𝑦-direction. 

  

Figure 4.9: Gradient field 𝜻(𝒙) of the polynomial freeform 1. 
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a)                                                                                b) 

Figure 4.10: Plots presenting a) the curl and b) the curl height of the polynomial freeform 
1 sampled discrete at the desired positions 𝒙𝑖. 

4.2 Simulation using different surface models 

4.2.1 Simulation process 
As described before, the measurement process is controlled by the same application in both 

experimental measurement and simulation. Since the experimental measurement process has 

higher requirements due to limits by the hardware performance, than there are restrictions in 

the simulation, the process has mainly been customized for the experimental measurements. 

The simulation has then been adapted to this process to implement the simulation and 

experimental measurements in the process equally. 

To start the simulation process, the sample positions 𝒙̃𝑖 to be investigated, have to be defined. 

Generally, they can be arranged in arbitrary shape and arbitrary density over the area to be 

investigated. However, as described in the beginning of Chapter 3, only even grids are 

investigated here. The shape of these grids is either circular, rectangular or a cross section 

represented by a single line. After the definition of the sample positions 𝒙̃𝑖, the data acquisition 

in the simulation is performed as illustrated in Figure 4.11. 

The differences to the data acquisition in the experimental measurements are described in 

Chapter 5.1, where the data acquisition process of the experimental measurement is 

described. 
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Figure 4.11: Flow chart of the simulation process. 

4.2.2 Simulation results with known surface 
For the simulation of all surfaces, the transformation matrices have assumed to be ideal. Thus, 

the angles 𝛼𝒞
ℐ = 90°, 𝛽𝒞

ℐ = 0°, 𝛼𝒞
ℳ = 45°, 𝛽𝒞

ℳ = 0° and 𝛾𝒞
𝒞 = 0° have been chosen as set in the 

simulation model. The two investigated detector positions are 𝑤 = 100 mm to determine the 

positions 𝑪𝑖 and 𝑤 = 90 mm to determine the positions 𝑫𝑖. Additionally, as expected for all 

surfaces, the minimization process to find the SUT position found the surface to be positioned 

and oriented as defined in the simulation model. 

move detector to first position 
on 𝑤-axis 

for each sample position 𝒙̃𝑖 

move SUT to 𝒙̃𝑖  

all 𝒙̃𝑖 tested 

yes 

no 

determine reflected rays position 𝑪𝑖 
on the detector 

move detector to second position 
on 𝑤-axis 

for each sample position 𝒙̃𝑖 

move SUT to 𝒙̃𝑖  

all 𝒙̃𝑖 tested 
no 

determine reflected rays position 𝑫𝑖 
on the detector 

save acquired data 
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For the integration, the support radius of the RBFs is set to 𝜌 = 20.0 mm. The value of this is 

supposed to have a high influence on the accuracy of the reconstruction, when small numbers 

𝑁 of center points are used [107]. As stated before, the number of center points is equal to the 

number of sample points here. This leads to a high stability of the reconstructed surface 

dependent on the value of 𝜌. This is shown in the reconstruction of the deviations of an 

experimental measurement in Chapter 5.4.5. 

Franke surface 

From the simulation using the Franke surface, the reflected ray positions 𝑪𝑖 and 𝑫𝑖 have been 

determine as shown in Figure 4.12. 

 

Figure 4.12: Determined positions 𝑪𝑖 , with 𝑤 = 100 mm , and 𝑫𝑖 , with 𝑤 = 90 mm , 
performing the simulation using the Franke surface as SUT. 

From these reflected ray positions, the gradient field of deviations 𝝃 is determined. As shown 

in the flowchart represented in Figure 3.7, the integrability is enforced over this gradient field 

as described in Chapter 3.3.2. Calculating the curl of 𝝃 before enforcing the integrability, the 

height deviation shown in Figure 4.13, can be calculated according to Equation (3.28). 

 

Figure 4.13: Curl height ℎ𝑐𝑢𝑟𝑙,𝑖  of the determined resulting gradient field 𝝃  from the 

simulation using the Franke surface. 

Regarding Figure 4.13, one can see that the curl height is in the range of a few fm, it’s RMS is 

0.4 fm. These curls are introduced by numerical errors, since curls introduced by discrete 

sampling are eliminated as described in Chapter 3.3.2. This can also be seen by comparing 
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Figure 4.13 with Figure 4.6 b) which shows the curl height introduced by the discrete sampling 

of the Franke surface. 

After enforcing the integrability and reconstructing the surface using RBF integration, the 

reconstructed surface and its deviation from the surface model, as shown in Figure 4.14, are 

derived. 

 

a)                                                                                b) 

Figure 4.14: Plots presenting a) the reconstructed surface and b) its deviation from the 
surface model from the simulation using the Franke surface. For the evaluation, the 
surface model has been considered as known. 

Regarding Figure 4.14 b), one can see that deviations exit in the reconstruction of the surface. 

These deviations occur from numerical limits in the simulation and evaluation and the 

discretization of the gradient field. However, regarding the magnitude of these deviations, one 

can see that they are negligible. The deviations are in the range of ± 20 fm . Even if a 

measurement accuracy of 1 nm may be achieved in the experimental setup, these deviations 

would be 25000 times smaller than the measurement accuracy. The RMS of these deviations 

is 4.7 fm. 

Cylinder surface – Cross section 

In the simulation of a cross section measurement with the Cylinder surface with 𝑅̂ = 206.7 mm, 

the sample points 𝒙̃𝑖  are chosen to have 𝑥̃ = 0 . Thus, only one line along the 𝑦̃ -axis is 

investigated. Performing this using the cylinder surface, the positions 𝑪𝑖 and 𝑫𝑖, as shown in 

Figure 4.15, are determined. 

In Figure 4.15, one can see that all points 𝑪𝑖 and 𝑫𝑖 are positioned at 𝑢 = 0 mm. This is due 

to the slope values in 𝑥-direction of 𝑠𝑥(𝒙) = 0. Since there is no slope in 𝑥-direction, the 

reflected ray does not leave the center position in 𝑢-direction here. 

The evaluation of a cross section is equivalent to the evaluation of a 2D area. However, since 

there is one dimension less, the optimization to find the SUT position can be reduced in its 

degrees of freedom. In the evaluation of a 2D area, the optimization performs over the 

parameters αℳ
𝒮 , 𝛽ℳ

𝒮 , 𝛾ℳ
𝒮 , Δ𝑥̃ℳ

𝒮  and Δ𝑦̃ℳ
𝒮 . In the cross section evaluation this is reduced to the 

parameters αℳ
𝒮  and Δ𝑦̃ℳ

𝒮 . Additionally, since the model function is of cylinder form, the 

parameters αℳ
𝒮  and Δ𝑦̃ℳ

𝒮  are ambiguous. Thus, the parameters to be optimized can even been 

reduced to αℳ
𝒮 . Evaluating the cross section simulation leads to the reconstructed surface and 

the deviation from the model shown in Figure 4.16. 
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Figure 4.15: Determined positions 𝑪𝑖 , with 𝑤 = 100 mm , and 𝑫𝑖 , with 𝑤 = 90 mm , 
performing the cross section along the 𝑦̃-axis simulation using the Cylinder surface 

with 𝑅̂ = 206.7 mm as SUT. 

 

          a)                                                                             b) 

Figure 4.16: Plots presenting a) the reconstructed surface and b) its deviation from the 
surface model from the cross section simulation using the cylinder surface with 

𝑅̂ = 206.7 mm. For the evaluation, the surface model has been considered as known. 

The deviations shown in Figure 4.16 b) show a RMS of 73 am. 

Polynomial freeform 1 

Performing the simulation using the polynomial freeform 1 as SUT, the reflected ray positions 

are determined as shown in Figure 4.17. 

In Figure 4.17, the different slope magnitudes in 𝑥- and 𝑦-direction of the polynomial freeform 

1 can already be seen in the determined positions 𝑪𝑖 and 𝑫𝑖. Regarding Figure 4.8 c) and d), 

one can recognize that the slope in 𝑦-direction has higher values than the slope in 𝑥-direction. 

This leads to a higher distance of the determined positions 𝑪𝑖  and 𝑫𝑖  form the center in 

𝑣-direction than in 𝑢-direction. 

From the surface slopes, derived from the positions 𝑪𝑖  and 𝑫𝑖 , the gradient field 𝝃 can be 

defined. This gradient field can now be investigated regarding its integrability as described in 

Chapter 3.3.2. The resulting height deviation from the curl is presented in Figure 4.18. 
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Figure 4.17: Determined positions 𝑪𝑖 , with 𝑤 = 100 mm , and 𝑫𝑖 , with 𝑤 = 90 mm , 
performing the simulation using the polynomial freeform 1 as SUT. 

 

Figure 4.18: Plot of the curl height of the gradient field 𝝃, determined from the simulation 
using the polynomial freeform 1. 

The height deviation ℎ𝑐𝑢𝑟𝑙 shows a RMS of only 0.1 fm. The curls, and therewith the height 

deviations, are introduced by numerical limits in the simulation and evaluation. However, these 

deviations are within a negligible range. As the process of evaluating a known surface, 

illustrated in the flowchart in Figure 3.7, includes the enforcement of the integrability, this is 

now performed on the gradient field 𝝃 . After that, the surface is reconstructed. The 

reconstructed surface and its deviation from the surface model of the polynomial freeform 1 

are shown in Figure 4.19. 

The RMS of the deviation shown in Figure 4.19 b) is 0.9 fm resulting from numerical limits. 
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a)                                                                                b) 

Figure 4.19: Plots presenting a) the reconstructed surface and b) its deviation from the 
surface model from the simulation using the polynomial freeform 1. For the evaluation, 
the surface model has been considered as known. 

4.2.3 Simulation results with unknown surface 
The data acquisition for unknown surfaces is equivalent to the data acquisition for known 

surfaces. Thus, the determined positions 𝑪𝑖 and 𝑫𝑖 are equivalent for both methods. Only the 

evaluation deviates within the procedures. To avoid repetitions, the evaluation of the data 

assuming an unknown surface is presented here only for the Franke surface. 

The positions 𝑪𝑖  and 𝑫𝑖  used for the evaluation are shown in Figure 4.12. Performing the 

evaluation as described in Chapter 3.5 leads to the reconstruction shown in Figure 4.20 a). 

 

a)                                                                                b) 

Figure 4.20: Plots presenting a) the reconstructed surface from the simulation using the 
Franke surface. b) shows the deviation from the model after the reconstruction has been 
performed assuming the model to be unknown. From the deviation, a constant offset has 
been subtracted. 

To evaluate the performance of the unknown surface reconstruction, the reconstructed surface 

shown in Figure 4.20 a) is compared to the model of the Franke surface. Subtracting the model 

from the reconstructed surface and subtracting a constant offset from these deviations leads 
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to the deviations shown in Figure 4.20 b). These deviations show a RMS of 538 nm. However, 

it has to be mentioned that no model-fitting is performed here. The integration constant cannot 

be reconstructed during integration. This can lead to a shift of the points of Intersection 𝐼𝑖 

during the rotation of the reconstructed surface into the CS 𝒮. 

As shown in Figure 4.6, the discretization of the model function leads to curls in the discrete 

gradient field. It has been described before that enforcing the integrability can lead to a gradient 

field, different from the gradient field of the model. To show the influence of the integrability 

enforcement, it has been performed once before integrating the gradient field. The 

reconstructed surface and the deviation from the model function from this evaluation are shown 

in Figure 4.21. 

 

a)                                                                                b) 

Figure 4.21: Plots presenting a) the reconstructed surface from the simulation using the 
Franke surface. In this evaluation the integrability has been enforced before integration. 
b) shows the deviation from the model of the reconstructed surface. From the deviation, 
a constant offset has been subtracted. 

Comparing Figure 4.21 b) with Figure 4.20 b), one can clearly see the difference in the 

determined deviations from the model function. The RMS of the deviations including the 

integrability enforcement is 15.311 µm. This is much larger that the RMS of the deviations 

without integrability enforcement. This shows that the enforcement of the integrability is not 

always meaningful. In addition, it points out the ability of the RBF integration to reconstruct 

surfaces from non-curl-free discrete gradient fields, due to discretization. 

4.3 Calibration 
In this chapter, the calibration methods are tested by introducing misalignments in the 

simulation model that are expected to be detected. This is not an analysis on the accuracy or 

repeatability of these methods. This investigation is presented in Chapter 6. Here, the basic 

functionality of the methods is shown. 

SUT position determination 

The first method that is checked is technically not a calibration method, but it is also used in 

the evaluation of the data. It is the determination of the SUT’s position. Regarding Figure 2.2 

one can see that in an ideal case, the rotation vector 𝜸ℳ
𝒮 = (𝛼ℳ

𝒮 , 𝛽ℳ
𝒮 , 𝛾ℳ

𝒮 ) = (0°, 180°, 0°). If the 

SUT is positioned perfectly in the center of the CS ℳ, the translation vector is expected to be 

𝒕ℳ
𝒮 = (Δ𝑥̃ℳ

𝒮 , Δ𝑦̃ℳ
𝒮 , Δ𝑧̃ℳ

𝒮 ) = (0 mm, 0 mm, 0 mm). To check the functionality of the SUT position 
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determination, arbitrary misalignments are introduced, so that the rotation vector 

𝜸ℳ
𝒮 = (−0.6°, 179.3°,−0.8°)  and the translation vector 𝒕ℳ

𝒮 = (1.1 mm, 1.2 mm, 0 mm)  are 

expected to be determined. Performing the simulation, one can already see the influence of 

the misalignments in the detected positions 𝑪𝑖  and 𝑫𝑖  shown in Figure 4.22. Especially, 

comparing these positions with the positions determined without the misalignments shown in 

Figure 4.17. 

 

Figure 4.22: Determined positions 𝑪𝑖 , with 𝑤 = 100 mm , and 𝑫𝑖 , with 𝑤 = 90 mm , 
performing the simulation using the polynomial freeform 1 as SUT including an intended 
decenter and misalignment of the SUT. 

To determine the position of the SUT, the cost function described in Equation (3.39) is 

minimized by optimizing the parameter αℳ
𝒮 , 𝛽ℳ

𝒮 , 𝛾ℳ
𝒮 , Δ𝑥̃ℳ

𝒮  and Δ𝑦̃ℳ
𝒮 . As initial values, the ideal 

values αℳ
𝒮 = 0°, 𝛽ℳ

𝒮 = 180°, 𝛾ℳ
𝒮 = 0°, Δ𝑥̃ℳ

𝒮 = 0 mm and Δ𝑦̃ℳ
𝒮 = 0 mm are chosen. Performing 

the determination of the SUT’s position, the values shown in Table 4.2 are derived. 

Table 4.2: Derived angles and decenter from the SUT’s position determination and their 
comparison to the angles and decenter set in the simulation model. 

 𝛼ℳ
𝒮  [°] 𝛽ℳ

𝒮  [°] 𝛾ℳ
𝒮  [°] Δ𝑥̃ℳ

𝒮  [mm] Δ𝑦̃ℳ
𝒮  [mm] 

expected −0.6 179.3 −0.8 1.1 1.2 
derived −0.60000004 179.30000012 −0.79999894 1.09999997 1.20000019 

deviation −0.04 ⋅ 10−6 0.12 ⋅ 10−6 1.06 ⋅ 10−6 0.03 ⋅ 10−6 0.19 ⋅ 10−6 
 

The deviations presented in Table 4.2 show that the expected values have been derived up to 

a very small deviation. The deviations are in the range of 0.003′′ respectively below 0.2 nm. 

Thus, one can say that the position of the SUT can be derived from simulation data. The results 

from the surface reconstruction with this determined SUT position is shown in Figure 4.23. 
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a)                                                                                b) 

Figure 4.23: Plots presenting a) the reconstructed surface from the simulation using the 
polynomial freeform 1 and b) its deviation from the model. In the simulation the SUT was 
tilted and misaligned as described before. The set and determined values are shown in 
Table 4.2. 

Combined calibration including camera rotation 

The process of this calibration method is described in Chapter 3.6.1. For the simulation, the 

polynomial freeform 1 sample has been used as SUT, as this sample is also used for the 

calibration in the experimental setup. This calibration method calibrates 5 values in parallel: 

the angles 𝛼𝒞
ℐ , 𝛽𝒞

ℐ, 𝛼𝒞
ℳ, 𝛽𝒞

ℳ and 𝛾𝒞
𝒞. 

To see if the calibration method is able to determine the angles correctly, the simulation setup 

has been altered to introduce known misalignments. Regarding the simulation setup described 

in Chapter 4.1.1, one can see that the angles 𝛼𝒞
ℐ  and 𝛽𝒞

ℐ  are not only dependent on one 

coordinate break element, but two: surface 1 and surface 9  as described in Table 4.1. Since 

two combined combinations of transformations are most likely not a simple addition of the 

given rotation angles, the given angles shown in Table 4.3 lead to the expected angles shown 

in Table 4.4. 

Performing the simulation with the introduced misalignments using the polynomial freeform 1 

as SUT leads to the determined positions 𝑪𝑖 and 𝑫𝑖 shown in Figure 4.24. 

Comparing the determined reflected ray positions shown in Figure 4.24 with the positions 

shown in Figure 4.17, one identifies only minor deviations. In Figure 4.24, a slight shift of all 

positions to the negative 𝑢-direction and a slightly higher deflection of the reflected rays in 

negative 𝑢-direction can be determined. From these small deviations, the calibration method 

derives the misalignments as presented in Table 4.4. Regarding the deviations in Table 4.4, 

one can see that the calibration method is able to determine the correct angles up to a minor 

deviation. Using these derived values to perform an evaluation of the given reflected ray 

positions the surface shown in Figure 4.25 is reconstructed. 

The deviation of the reconstruction shown in Figure 4.25 b) has a RMS value of 239 fm. 
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Table 4.3: Rotation angles for the coordinate break surfaces in OpticStudio as shown in 
Table 4.1 and Figure 4.3. The misalignments introduced by these rotation angles are 
used to test the abilities of the combined setup calibration including the camera rotation. 

id rotation 𝑥 [°] rotation 𝑦 [°] rotation 𝑧 [°] 

1 45.1 0.015 0.0 

2 −0.1 0.075 0.0 
8 0.1 −0.075 0.0 

9 45.0 0.0 0.0 
10 0.0 0.0 −0.13 

 

 

Table 4.4: Derived angles from the combined calibration and their deviation from the 
expected angles set in the simulation model. 

 𝛼𝒞
ℐ  [°] 𝛽𝒞

ℐ [°] 𝛼𝒞
ℳ [°] 𝛽𝒞

ℳ [°] 𝛾𝒞
𝒞 [°] 

expected 90.10009817 0.10588067 45.1 −0.075 −0.13 
derived 90.10009821 0.10588084 45.10000002 −0.07499988 −0.12999991 

deviation 0.04 ⋅ 10−6 0.17 ⋅ 10−6 0.02 ⋅ 10−6 0.12 ⋅ 10−6 0.09 ⋅ 10−6 
 

 

 

Figure 4.24: Determined positions 𝑪𝑖 , with 𝑤 = 100 mm , and 𝑫𝑖 , with 𝑤 = 90 mm , 
performing the simulation using the polynomial freeform 1 as SUT including the intended 
misalignments defined in Table 4.3. 
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a)                                                                                b) 

Figure 4.25: Plots presenting a) the reconstructed surface from the simulation using the 
polynomial freeform 1 and b) its deviation from the model. In the simulation the model 
was misaligned as described in Table 4.3. The expected and determined values are 
shown in Table 4.4. 

4.4 Conclusion 
The simulations and their results proof the fundamental functionality of the measurement 

principle that has theoretically been described before. Additionally, the results show that the 

calibration methods are able to detect the desired parameters correctly and the evaluation is 

able to use these parameters meaningful. 

In Chapter 3.3.2, it has been described that the enforcement of the integrability may introduce 

deviations if the suppressed curls are introduced by discretization. This theory has also been 

substantiated by integrating a discrete gradient field with and without enforcing the integrability. 

The simulations are not perfectly error-free. The introduced errors are introduced by numerical 

limits or limits of the minimization processes. However, these errors are negligible in relation 

to the errors introduced by the experimental setup as shown later. 

 



   Experiments and Results 
 

  61 
 

5. Experiments and Results 

5.1 Experimental setup and procedure 
The experimental setup has been built up according to the sketch of the measurement setup 

shown in Figure 2.2. The experimental setup is shown in Figure 5.1 

 

Figure 5.1: Photo of the experimental setup built up according to the sketch shown in 
Figure 2.2. Selected components and the path of the test beam are illustrated. 

The components, used in the setup, are described in the order along the light’s path. As single 

rays do not exist in reality, a narrow light beam represents the incident ray in the experimental 

setup. The light source for this light beam is a fiber coupled laser diode. Roithner Lasertechnik 

GmbH distributes the used laser diode RLCS-S63. It emits light at a wavelength of 635 nm and 

has a maximum output power of 2 mW. The datasheet of the laser diode can be found in 

Appendix C. The emitted light is guided into the setup using a single mode fiber. This fiber can 

be seen in Figure 5.1 as the yellow covered fiber coming from the top left corner. To get a 

narrow collimated light beam after coupling out the light from the fiber, an adjustable aspheric 

collimator CFC2-A, manufactured by Thorlabs Inc., is used [108]. This collimator creates an 

output beam waist diameter of 0.36 mm (
1

𝑒2
 width) at a maximum distance of 203 mm [109]. 

The technical drawing of the collimator, provided by Thorlabs Inc., can be found in the 

Appendix D. In the experimental setup, the collimator has been adjusted to have the waist on 

the SUT. The beam waist diameter of 0.36 mm as 
1

𝑒2
 width is equal to a waist diameter of 

DUT 

linear stage 

linear stages 

camera 

fiber coupler 

elevator stage 

𝒊 𝒓 
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0.212 mm as full width half maximum (FWHM). May the model of the Gaussian beam be 

applied to this beam, the Rayleigh length of 

𝜋(0.212 mm)2

635 nm
≈ 222 mm (5.1) 

can be determined [1]. As the height deviations of the investigated SUTs are much smaller 

than the Rayleigh length, the beam diameter can be assumed to be constant. To adjust the 

position and direction of the beam, the collimator is mounted into the fiber positioner FAPO 65, 

manufactured by OWIS GmbH [110]. 

After being coupled-out of the fiber and collimation, the light propagates towards the DUT. The 

DUTs used in this work are made of material transparent to the light emitted by the laser diode. 

Thus, the light is partially refracted into DUT itself and may be reflected at the lower surface of 

the DUT. If this light is once again refracted at the SUT, it may disturb the correct detection of 

the reflected rays position 𝑪 and 𝑫. To suppress these reflections at the lower side of the DUT, 

the DUT itself is placed onto a piece of black glass. The gap in between the DUT and the black 

glass is closed using index matching liquid. Therewith, the light refracted into the DUT is 

transmitted into and absorbed by the black glass. 

To adjust the height of the DUT in the setup, the elevator stage HV 60N, manufactured by 

OWIS GmbH, is used. Regarding Figure 2.2 and Figure 5.1, one can see that the height 

positioning of the DUT has an influence on the detected positions 𝑪 and 𝑫. With a lower 

positioning of the DUT, the positions are shifted in positive 𝑣 -direction. With a higher 

positioning of the DUT, the positions are shifted in negative 𝑣-direction. In Figure 5.1, one can 

see that a vertical breadboard is used to mount the fiber and the detector (camera). Thus, a 

height adjustment can also be achieved by moving this breadboard. However, moving the 

breadboard leads to a realignment of the setup, especially in terms of the calibrated angles 

𝛼𝒞
ℳ and 𝛽𝒞

ℳ. Thus, using the elevator stage overcomes in most cases the movement of the 

breadboard and therewith does not require a recalibration. 

The positioning of the DUT to the desired positions 𝒙̃𝑖 is performed by two linear stages that 

are orthogonally aligned. The two linear stages are of type PMT160-100-DC-L-B, 

manufactured by Steinmeyer Mechatronik GmbH [111]. The stages have a travel length of 

100 mm and are screw-driven by DC motors. A linear position feedback system with a 100 nm 

resolution is integrated. To control the stages a Galil DMC2133 controller assembled by 

Steinmeyer Mechatronik GmbH is used. This controller offers a position sensitive output 

(PSO). Therewith, an electronic signal can be send if predefined positions are reached. The 

manufacturer has tested the stages before delivery. The general datasheet as well as the test 

protocols of the stages can be found in the Appendix E. 

To detect the reflected beams position in two parallel planes, as intended by the measurement 

method, a camera on a linear stage is used. The camera used is of type Prosilica GT4907, 

manufactured by Allied Vision Technologies GmbH. The datasheet for the camera can be 

found in Appendix F. The built-in sensor is a KAI-16070 monochrome CCD image sensor 

manufactured by Semiconductor Components Industries, LLC [112]. This sensor has an active 

image size of 36 mm by 24 mm with 4864 by 3232 active pixels, resulting in a number of pixels 

of 15 720 448. The pixel size is 7.4 µm by 7.4 µm and no microlenses are implemented. With 

these large dimensions, the sensor offers a large area to detect the reflected beam’s position. 

Limited by the chip’s size and due to other mechanical limitations, the range of detectable 

surface angles with this camera can be considered to be within ±10°. The maximum frame 

rate of the camera is 7.6 fps. The camera transfers the data to the controlling computer using 

an Ethernet connection and the GigE protocol. Additionally, the camera has a Hirose 
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HR10A-10R-12PB connector. On the one hand, this connector is used for power supply of the 

camera, on the other hand, this connector can be used to transmit an external trigger signal to 

the camera. The trigger input is electronically connected to the PSO of the controller of the 

DUT’s positioning stages. Therewith, a continuous movement of the DUT can be performed, 

sending triggers to the camera when predefined positions are reached. The determination of 

the beams position on the camera is achieved by applying a centroid detection algorithm on 

the camera image [113]. The centroid of a beam propagates in a straight line, even if the 

intensity distribution is not symmetrical [89, 114]. 

May 𝑢̂𝑔 be the column index and 𝑣𝑔 be the row index of the 𝑔-th pixel with the value 𝐵𝑔, then 

𝑢̅ =
∑ 𝑢̂𝑔𝐵𝑔𝑔

∑ 𝐵𝑔𝑔
7.4 µm (5.2) 

and 

𝑣̅ =
∑ 𝑣𝑔𝐵𝑔𝑔

∑ 𝐵𝑔𝑔
7.4 µm (5.3) 

define the centroid of the image, when 𝑢̂𝑔 = 0 defines the center column and 𝑣𝑔 = 0 defines 

the center row of the sensor. Having the centroid position 𝑢̅𝑖 and 𝑣̅𝑖 determined for the 𝑖-th 

sample point, one can define the vector 

𝑪𝑖 = (

𝑢̅𝑖
𝑣̅𝑖
𝑤
1

) (5.4) 

for the first detector position. The same is accordingly valid for the position vectors 𝑫𝑖 for the 

second detector position. To overcome noise in the camera image outside of the reflected 

beam’s spot area, an offset can be applied to the whole image data before performing the 

centroid determination. 

To move the detector to the two different positions along the 𝑤-axis, a linear stage is used. 

This linear stage is of type PLT100-100-SM-L-B and has been manufactured by Steinmeyer 

Mechatronik GmbH. The travel distance of the linear stage is 100 mm. The DC motor moves 

the carriage using a screw. An integrated linear position feedback returns the stage’s position 

with a resolution of 100 nm. Since this stage has to be stable at one position for a long time 

during the measurement process, a break is included. The general datasheet as well as the 

test protocol of the stage used in the experimental setup can be found in Appendix G. 

The setup has been aligned using the breadboards used for mounting. With these alignments 

the angles of 𝛼𝒞
ℐ = 90°, 𝛽𝒞

ℐ = 0°, 𝛼𝒞
ℳ = 45°, 𝛽𝒞

ℳ = 0° and 𝛾𝒞
𝒞 = 0° are targeted. Since errors 

are expected to be in the breadboard accuracy as well as in the alignment, these angles are 

expected not to be perfectly achieved in the setup. Thus, the calibration methods described 

before are used to determine the correct values of these angles. 

The measurement process has been defined to achieve minimum measurement time. A 

stop-and-go movement of the DUT positioning, as performed in the simulation, has been 

avoided. Alternatively, a continuous movement of the DUT positioning is implemented using 

the PSO of the 𝑥̃𝑦̃-stages controller. Having an even square grid of sample points as shown in 

Figure 5.2 a), a Meander track is defined using linear movements parallel to the 𝑦̃-axis. 
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a)                                                                                b) 

Figure 5.2: Example for a) an even square grid and b) an even circular grid. The blue 
dots represent the intended sample points. The orange arrows represent the Meander 
track used for the PSO of the 𝑥̃𝑦̃-stage position. 

Along the lines shown in Figure 5.2, the PSO is activated, while the 𝑥̃-position is constant. The 

traveling speed of the stage can be defined from the sample distance to achieve the maximum 

frame rate of 7.6 fps of the camera. The same is also applied to circular grids, while the length 

of the lines parallel to the 𝑦̃-axis is varied according to the number of sample points in the line, 

as shown in Figure 5.2 b). Using the PSO in 𝑦̃-direction is useful to perform cross-section 

measurement along this axis. Performing the cross-section measurements parallel to the 

𝑥̃-axis leads to a shift of the sample points in 𝑦̃-direction when changes in the SUT’s sag occur 

as described in Chapter 2.3.1. This leads to a non-straight line of actually investigated positions 

on the SUT. 

5.2 Calibration 

Determination of the 𝑥̃𝑦̃-stages pitch 

To determine the pitch of the 𝑥̃𝑦̃-stages the method described in Chapter 3.6.2 is used. 

Therefore, the experimental setup is altered to represent a setup according to the sketch 

shown in Figure 3.11. This setup is shown in Figure 5.3. 

Moving the 𝑥̃𝑦̃-stages, leads to a direct repositioning of the reflected beams position on the 

camera chip. Thus, the camera chip is the limiting factor for the maximum detectable area for 

this investigation. Checking the maximum range possible leads to an even square sample grid 

with 20 mm length and width. The sample distance has been set to 250 µm . With these 

parameters the positions 𝑪𝑖 and 𝑫𝑖 as shown in Figure 5.4 are determined. 

The positions shown in Figure 5.4 only show one measurement. To suppress deviations 

introduced by noise, the measurement has been repeated 50 times. For every investigated 

stage carriage position 𝒙̃𝑖, the mean ray vector 𝒓̅𝑖 is calculated. 
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Figure 5.3: Photo of the setup to detect the pitch of the 𝑥̃𝑦̃-positioning stages. 

 

Figure 5.4: Positions 𝑪𝑖  and 𝑫𝑖  detected from the measurement using the setup to 

determine the pitch of the 𝑥̃𝑦̃-positioning stages, shown in Figure 5.3. 

As described in Chapter 3.6.2 only the change of these mean ray vectors is important. 

Therefore, the vectors are transferred into slopes 

𝑝̃𝑖 = −
𝑟̅𝑥,𝑖
𝑟̅𝑧,𝑖

 (5.5) 

and 

𝑞̃𝑖 = −
𝑟̅𝑦,𝑖

𝑟̅𝑧,𝑖
. (5.6) 

Using Equation (3.49) and (3.50), the changes 𝑝̂𝑖  and 𝑞̂𝑖  of these slope data can be 

determined. The slope values determined from the experimental measurement for this 

calibration are shown in Figure 5.5. 

𝒓 
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a)                                                                                b) 

Figure 5.5: Plots showing the slopes 𝑝̂𝑖  and 𝑞̂𝑖  determined from the measurement 

performed to calibrate the 𝑥̃𝑦̃-stages pitch. 

Performing the fit of the first 36 Zernike polynomials in the slope domain according to Equation 

(3.51), the Zernike coefficient for these polynomials are derived. Using these coefficient values 

to reconstruct a surface according to Equation (3.34), a virtual reference surface shown in 

Figure 5.6 can be determined. 

 

Figure 5.6: Virtual reference surface integrated from the fitted Zernike coefficients from 
the 𝑥̃𝑦̃-stages pitch. 

One could imagine to simply subtract the virtual reference surface shown in Figure 5.6 from 

the reconstructed surface. But, these values are not defined in the height domain initially, but 

in the slope domain. Corrections on the slope data to compensate the 𝑥̃𝑦̃-stages pitch, also 

influence the determination of the SUT position in the setup. Thus, the correction of the 

determined slopes using the calibration data shown in Figure 5.5, is implemented after the 

surface normals are determined as shown in Figure 3.12 and Figure 3.13. 

Combined calibration including camera rotation 

The process of this calibration is described in Chapter 3.6.1. According to this process, a 

known surface has to be chosen to perform the combined calibration. As already said in the 

simulation, the DUT with the surface model according to of the polynomial freeform 1 is used 

here. Equivalent to the simulation, the sample has been investigated over a circular aperture 



   Experiments and Results 
 

  67 
 

with a sample distance of 100 µm in 𝑥̃- and 𝑦̃-direction. The determined positions 𝑪𝑖 and 𝑫𝑖 

are shown in Figure 5.22. From the calibration, the values shown in Table 5.1 are determined. 

These values will be used throughout all experimental measurement evaluations within this 

work. 

Table 5.1: Determined angles derived from the combined calibration using the 
polynomial freeform 1 as SUT in the experimental setup. 

 𝛼𝒞
ℐ  [°] 𝛽𝒞

ℐ [°] 𝛼𝒞
ℳ [°] 𝛽𝒞

ℳ [°] 𝛾𝒞
𝒞 [°] 

derived 90.301519 −0.065185 45.196817 0.015259 0.299291 

 

 

5.3 Description of samples and measurement parameters 

5.3.1 Sample 1 – “flat surface” 
As a flat surface, an aluminum wafer is used. This wafer is highly specular and is expected to 

have minor local height deviations, while global deviations can be expected due to stress in 

the material itself. A photo of this sample is shown in Figure 5.7. 

 

Figure 5.7: Photo of the sample “flat surface”, which is represented by a flat aluminum 
wafer. 

This sample is the largest sample investigated here. This makes it an appropriate sample to 

show the ability of the proposed measurement method to investigate even large samples. It 

has been investigated over an even square grid of 90 mm by 90 mm size. The sample distance 

has been set to 1 mm to observe mainly the global structure of this sample. 

The expected surface function 

𝑠(𝒙) = 0 (5.7) 

is rather simple. Thus, presenting the model function, as well as the model function slopes in 

diagrams is skipped. Unfortunately, for this sample no comparison measurement is available. 
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5.3.2 Sample 2 – “cylinder surface” 
The cylinder surface has already been introduced in Chapter 4.1.3 for the simulation. The 

model function, as well as the design radius 𝑅̂ = 206.7 mm  are equivalent to the model 

described for the simulation. The sample used is a stock product offered by Thorlabs Inc. [115]. 

The sample is made of N-BK7, is uncoated and has a design focal length of 400 mm. A photo 

of the sample is shown in Figure 5.8. 

 

Figure 5.8: Photo of the sample “cylinder surface”. 

A technical drawing and the datasheet for this sample provided by Thorlabs Inc. are available 

in the Appendix H. 

For this sample, a comparison measurement is available. The measurement has been 

performed by BLF Optik Teknoloji Sanayi A.Ş. using a MarSurf LD 260 Aspheric manufactured 

by Mahr GmbH [25]. This measurement machine is a tactile surface profiler, which has been 

used to perform a cross-section measurement of the samples surface. The documentation of 

the comparison measurement can be found in Appendix I. 

5.3.3 Sample 3 – “polynomial freeform 1” 
Equivalent to the cylinder surface, the polynomial freeform 1 has already been described 

before for the simulation. The surface description can be found in Chapter 4.1.4. The sample 

for the experimental measurements has been manufactured by Trionplas Technologies GmbH 

using Atmospheric Plasma Jet Machining [116, 117]. It is made out of fused silica and is 

uncoated. A photo of the sample is shown in Figure 5.9. 

The documentation provided by Trionplas Technologies GmbH can be found in Appendix J. In 

the SUT of this sample, three fiducials have been implemented. These fiducials have a 

diameter of approximately 1 mm and a depth of approximately 500 nm. The fiducials have 

been implemented at three different positions in the surface as shown in Figure 5.10. 

These fiducials help to orient the measurement results when comparing the measurement 

results from different measurements. For this sample, a comparison measurement is available. 

Trionplas Technologies GmbH used a CT 300 by cyberTECHNOLOGIES GmbH to perform 

this comparison measurement [30]. The CT 300 has a white light distance sensor and scans 

the surface with this sensor. Therewith it is categorized a non-contact surface profiler. The 

scan is performed in lines following a Meander path. The results of this comparison 

measurement can also be found in Appendix J. 
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Figure 5.9: Photo of the sample “polynomial freeform 1”. 

 

 

Figure 5.10: The dashed circles mark the positions of the three fiducials implemented in 
the SUT of the polynomial freeform 1 for the experimental measurements. 

5.3.4 Sample 4 – “polynomial freeform 2” 
This sample has not been described before. Equivalent to the polynomial freeform 1, this 

sample follows a polynomial model function. However, the model function of this sample 

𝑠(𝒙) = 2.5 ⋅ 10−3𝑥2 + 2.5 ⋅ 10−3𝑦2 − 15 ⋅ 10−5𝑥4 − 1.5 ⋅ 10−5𝑦4 (5.8) 

shows a symmetry with respect to both axis, while the function profile along both axis is also 

equivalent. Additionally, the surface peak-to-valley (PV) value and the maximum slope is 

smaller compared to the polynomial freeform 1. The surface model function and the model 

slopes are shown in Figure 5.11. Following the parameters of the polynomial freeform 1, this 

sample is also investigated over a circular aperture of 22 mm with a sample distance of 

100 µm. 

The gradient field derived from the slopes, shown in Figure 5.11 c) and d), is shown in Figure 

5.12. 

Deriving the curl and the curl height from the discrete gradient field, the values presented in 

Figure 5.13 are determined. 
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a)                                                                                b) 

 

c)                                                                                d) 

Figure 5.11: Plots presenting the polynomial freeform 2 surface. a) and b) show the 
surface sag in 2D and 3D. c) and d) show the surface slopes in 𝑥- and 𝑦-direction. 

  

Figure 5.12: Gradient field 𝜻(𝒙) of the polynomial freeform 2. 
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a)                                                                                b) 

Figure 5.13: Plots presenting a) the curl and b) the curl height of the polynomial freeform 
2 sampled discrete at desired positions 𝒙𝑖. 

Following the polynomial freeform 1, the curl height values, introduced by the discrete sampling 

of the surface model function, of the polynomial freeform 2 are negligibly small. 

The sample for the experimental measurement has also been manufactured by Trionplas 

Technologies GmbH using Atmospheric Plasma Jet Manufacturing. It is also made of fused 

silica and is uncoated. A photo of the sample is shown in Figure 5.14. 

 

Figure 5.14: Photo of the sample “polynomial freeform 2”. 

For this sample, a comparison measurement is available. This comparison measurement has 

been performed by Trionplas Technologies GmbH using a LuphoScan 260 HD manufactured 

by AMETEK Inc. [29]. The documentation of the sample’s manufacturer as well as the results 

from the comparison measurement can be found in Appendix K. 

5.4 Measurement Results 
The samples described before have been measured according to the procedure described in 

Chapter 5.1. The results of the measurements and the evaluation are presented in the following 

subchapters. 
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5.4.1 Sample 1 – “flat surface” 
The flat surface, in contrast to the other samples, has been measured with an extended sample 

distance of 1 mm and an extended measurement area of 90 mm by 90 mm. Since this area is 

much larger than the area used for the calibration of the 𝑥̃𝑦̃-stages pitch, the calibration data 

is not used to correct the measurement data determined from this measurement. For the 

evaluation here it is considered that no 𝑥̃𝑦̃-stages pitch exists. Except from this, the evaluation 

is performed according to the process for the evaluation of known surfaces described in 

Chapter 3.4. 

The positions 𝑪𝑖 and 𝑫𝑖 determined from the measurement are shown in Figure 5.15. Due to 

limitations in the experimental setup, the positions of the detector have been set to 90 mm and 

80 mm. 

 

Figure 5.15: Determined positions 𝑪𝑖 , with 𝑤 = 90 mm , and 𝑫𝑖 , with 𝑤 = 80 mm , 
performing the simulation using the flat surface as SUT. The size of the diagram on the 
left hand side represents the dimensions of the camera chip. 

Regarding Figure 5.15, one can already see that the sample has an almost flat surface, as the 

measured centroid positions are all close to each other. Additionally, the alignment of the setup 

can be considered well, as the positions 𝑪𝑖  and 𝑫𝑖  almost cover up completely. However, 

these conclusions are only made on visual observations of the centroids and only give a first 

impression. They cannot be taken as relevant estimations about the alignment, calibration or 

SUT’s surface profile. 

From the determined centroid positions, the SUT’s position within the setup has be determined 

according to the description given in Chapter 3.4. The values derived from this determination 

are shown in Table 5.2. Since the sample is flat, the rotation 𝛾ℳ
𝒮  and the decenter Δ𝑥̃ℳ

𝒮  and 

Δ𝑦̃ℳ
𝒮  are unnecessary. Therefore, these parameters are considered ideal. 

Table 5.2: Determined angles and decenter of the flat surface in the experimental setup. 

 𝛼ℳ
𝒮  [°] 𝛽ℳ

𝒮  [°] 𝛾ℳ
𝒮  [°] Δ𝑥̃ℳ

𝒮  [mm] Δ𝑦̃ℳ
𝒮  [mm] 

derived 0.020 180.012 0.0 0.0 0.0 

 

Using this SUT’s position, the surface has been reconstructed. The reconstructed surface and 

the deviation from the model are shown in Figure 5.16. 
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a)                                                                                b) 

Figure 5.16: Plots presenting a) the reconstructed surface and b) its deviation from the 
surface model from measurement of the flat surface. For the evaluation, the surface 
model has been considered as known. 

Regarding Figure 5.16, one can see that the two plots are identical. This is due to the surface 

model being flat, according to Equation (5.7). The deviations shown in Figure 5.16 have a 

RMSt of 14.058 µm, where RMSt describes the RMS of the total deviation [94]. Regarding 

Figure 5.16, one can see that a spherically shaped structure can be found in the surface. This 

structure may be introduced by stress in the aluminum wafer resulting in spherical shaped 

deformations [118]. Subtracting the best-fit-sphere (BFS) from these deviations leads to the 

value RMSi, describing the irregularity of the determined deviation [94, 119]. From the 

deviations shown in Figure 5.16 b), a BFS with a radius of 31.391 m is derived in a least-

squares sense. Subtracting this BFS from the deviations leads to the irregularity deviations 

shown in Figure 5.17 a). 

 

a)                                                                                b) 

Figure 5.17: Plots presenting a) the deviations shown in Figure 5.16 b) minus a BFS with 
a radius of 31.391 m. b) shows the deviations without BFS, shown in a) minus a fit of the 
first 36 Zernike polynomials to subtract global deviations. 

Subtracting the BFS from the determined deviations leads to a RMSi of 1.589 µm. As described 

in Chapter 3.3.3, subtracting the first 36 Zernike polynomials frees the given deviations from 
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global structures. Fitting the first 36 Zernike polynomials in a least-squares sense to the 

deviations shown in Figure 5.17 a), according to Equation (3.34), leads to a set of coefficients. 

Subtracting the sum of the polynomials multiplied with their coefficients, leads to the high-

frequency deviations shown in Figure 5.17 b). These high-frequency deviations have a RMShf 

of 92.5 nm, where RMShf is the RMS of the high-frequency structures. 

Since no comparison measurement is available for this sample, the results cannot be 

compared and discussed critically. 

5.4.2 Sample 2 – “cylinder surface” 
As described before, the cylinder surface is investigated performing a cross-section 

measurement along the fast axis of the lens. The investigated sample points 𝒙̃𝑖 are positioned 

along the 𝑦̃ -axis at 𝑥̃ = 0 mm . The range of the cross-section is 28 mm  and the sample 

distance is set to 100 µm . The camera is positioned to 𝑤 = 90 mm and 𝑤 = 80 mm. The 

determined centroid positions from this measurement are presented in Figure 5.18. 

 

Figure 5.18: Determined positions 𝑪𝑖, with 𝑤 = 90 mm, and 𝑫𝑖, with 𝑤 = 80 mm, from 
the measurement of the cylinder surface. The size of the diagram represents the 
dimensions of the camera chip. 

As described in Chapter 4.2.2, the determination of finding the position of the cylinder surface 

in the experimental setup reduces to the parameter 𝛼ℳ
𝒮  for a cross-section measurement. The 

other parameters are expected to be ideal. The values, to define the SUT’s position determined 

from the positions presented in Figure 5.18, are presented in Table 5.3. 

Table 5.3: Angles and decenter to define the position of the cylinder surface in the 
experimental setup. 

 𝛼ℳ
𝒮  [°] 𝛽ℳ

𝒮  [°] 𝛾ℳ
𝒮  [°] Δ𝑥̃ℳ

𝒮  [mm] Δ𝑦̃ℳ
𝒮  [mm] 

derived 0.317 180.0 0.0 0.0 0.0 

 

With the parameters presented in Table 5.3, the surface has been reconstructed. The 

reconstructed surface and its deviation from the model are shown in Figure 5.19. 

The deviations shown in Figure 5.19 b) have a RMSt of 222.4 nm. Regarding the plot in this 

figure, one can observe a parabolic structure on the determined deviations. This parabolic 

structure may be due to a deviation of the actual surface’s radius from the model’s radius. To 

determine the measured surface radius, a BFS is fitted to the reconstructed surface [119]. 

Fitting a BFS directly to the reconstructed surface and not to the determined deviation offers 
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the possibility to compare its radius to the design radius used for the model. The fit of the BFS 

is performed in a least-squares sense to the deviation between the BFS and the reconstructed 

surface. The radius determined for the BFS is 206.416 mm. The deviation between the BFS 

and the reconstructed surface is shown in Figure 5.20. 

 

a)                                                                                b) 

Figure 5.19: Plots presenting a) the reconstructed surface and b) the deviation from the 
model for the cross-section measurement of the cylinder surface. 

 

Figure 5.20: Deviation between the reconstructed surface from the cross-section 
measurement of the cylinder surface and the fitted BFS with a radius of 206.416 mm. 

The deviations shown in Figure 5.20 show a RMSi of 107.2 nm. As said before in Chapter 

5.3.2, a comparison measurement from a tactile surface profiler is available for this sample. 

This comparison measurement is given as surface sag data. To compare the two 

measurement results, a BFS is fitted to this comparison measurement, too. This BFS has an 

radius of 206.497 mm. After subtracting the BFS, the comparison measurement and the results 

from the proposed measurement technique are both plotted in the same diagram in Figure 

5.21 a). Figure 5.21 b) shows the deviation between the proposed measurement technique 

and the comparison measurement. 

Regarding Figure 5.21 a), one can clearly see the agreement between the measurement 

results. The difference shown in Figure 5.21 b) shows a RMS value of only 19.0 nm. In 

combination with the agreement of the determined BFS radii, this shows that the results from 
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the proposed measurement technique are comparable to the results of a commercially 

available measurement machine performing cross-section measurements. 

 

a)                                                                                b) 

Figure 5.21: a) Plot of the determined deviations from the proposed measurement 
method and the comparison measurement for the cylinder surface. b) Plot of the 
difference between the determined deviations shown in a). 

5.4.3 Sample 3 – “polynomial freeform 1” 
The measurement of the polynomial freeform 1 has been performed using an even sample 

grid with a sample distance of 100 µm  on a circular aperture. Due to limitations by the 

mechanical dimensions in the experimental setup, the camera has been position to 𝑤 = 90 mm 

to determine the positions 𝑪𝑖  and to 𝑤 = 80 mm  to determine the positions 𝑫𝑖 . These 

measured centroid positions are illustrated in Figure 5.22. 

 

Figure 5.22: Determined positions 𝑪𝑖 , with 𝑤 = 90 mm , and 𝑫𝑖 , with 𝑤 = 80 mm , 
determined from the measurement of the polynomial freeform 1. The size of the diagram 
represents the dimensions of the camera chip. 

Comparing the positions shown in Figure 5.22 with the positions determined from the 

simulations, as shown in Figure 4.17, one can see that the basic pattern can be recognized. 

However, misalignments in the setup and the positioning of the SUT in the experimental setup 

leads to deformations of this pattern. The SUT’s position determined from these positions is 

presented in Table 5.4. 
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Table 5.4: Determined angles and decenter of the polynomial freeform 1 in the 
experimental setup. 

 𝛼ℳ
𝒮  [°] 𝛽ℳ

𝒮  [°] 𝛾ℳ
𝒮  [°] Δ𝑥̃ℳ

𝒮  [mm] Δ𝑦̃ℳ
𝒮  [mm] 

derived −0.014 180.013 −1.218 −0.004 −0.103 

 

With this determined position and alignment of the polynomial freeform 1, the reconstructed 

surface and its deviation from the surface model, as shown in Figure 5.23, are derived. The 

deviation of the reconstructed surface from the model function has a RMSt of 92.1 nm. 

 

a)                                                                              b) 

Figure 5.23: Plots presenting a) the reconstructed surface of the polynomial freeform 1  
and b) its deviation from the surface model. The implemented fiducials are marked with 
dashed circles and can be recognized clearly. 

As described in Chapter 5.3.3, a comparison measurement of this sample is available. To 

compare the results from the comparison measurement with the results from the measurement 

performed with the proposed measurement technique, the results of the comparison 

measurement are linearly interpolated at the actual sample positions 𝑰𝑖 from the proposed 

technique. The surface deviation determined from the comparison measurement 𝑑𝑐𝑜𝑚𝑝,𝑖 and 

the difference between this surface deviation and the surface deviation determined with the 

proposed technique are shown in Figure 5.24. 

The deviations determined with the comparison measurement shown in Figure 5.24 a) has a 

RMSt of 64.0 nm. Regarding Figure 5.24 a), one can also clearly see the implemented fiducials. 

Also, one can recognize that these fiducials almost completely disappear in the differences 

plotted in Figure 5.24 b). 

Regarding the Plots shown in Figure 5.23 b) and Figure 5.24 a), one can recognize the obvious 

horizontal deviations that can also clearly be recognized in Figure 5.24 b). However, one can 

also recognize the basic pattern of dips in the deviations that are represented in both plots. 

Extracting the high-frequency structures from the deviations shown in Figure 5.23 b) and 

Figure 5.24 b) by fitting and subtracting the first 36 Zernike polynomials from the given 

deviations, the high-frequency deviations shown in Figure 5.25 are derived. 
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a)                                                                                     b) 

Figure 5.24: a) Plot of the deviation of the polynomial freeform 1 from the surface model, 
determined by the comparison measurement. b) difference between the deviation 
determined by the proposed measurement technique, shown in Figure 5.23 b), and the 
deviations shown in a). 

 

a)                                                                                     b) 

Figure 5.25: Plots presenting the high-frequency deviations of the polynomial freeform 1 
from the model function a) determined with the proposed measurement technique and 
b) determined from the comparison measurement. The dotted circles highlight areas 
referenced in the text. 

On the first glance, the two plots presented in Figure 5.25 seem very different. But, having a 

closer look offers many fine structured similarities. The four marked areas show heights that 

can be found in both plots, while the magnitude of these heights is higher in the plot in Figure 

5.25 a). Additionally, in the plot in Figure 5.25 a), a fine arrow-like structure can be found 

pointing to the left parallel to the 𝑥-axis at 𝑦 = 0 mm. This structure can only partly be found in 

the plot in Figure b). Overall, it can be said that both plots show similar structures, while the 

magnitude of these structures is larger with the proposed measurement method. 

5.4.4 Sample 4 – “polynomial freeform 2” 
The sample with this SUT, manufactured following the polynomial freeform 2 model function, 

is closely related to the polynomial freeform 1. Thus, it has been measured using the same 
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sample points 𝒙̃𝑖 being defined over a circular even grid with 22 mm diameter and a sample 

distance of 100 µm . Equivalently the camera has been positioned to 𝑤 = 90 mm  and 

𝑤 = 80 mm, too. The positions 𝑪𝑖  and 𝑫𝑖  detected within the measurement are shown in 

Figure 5.26. 

 

Figure 5.26: Determined positions 𝑪𝑖 , with 𝑤 = 90 mm , and 𝑫𝑖 , with 𝑤 = 80 mm , 
determined from the measurement of the polynomial freeform 2. The size of the diagram 
on the left hand side represents the dimensions of the camera chip. 

From these detected centroid positions, the orientation and position of the SUT in the 

experimental setup has been determined to be as shown in Table 5.5. 

Table 5.5: Determined angles and decenter of the polynomial freeform 2 in the 
experimental setup. 

 𝛼ℳ
𝒮  [°] 𝛽ℳ

𝒮  [°] 𝛾ℳ
𝒮  [°] Δ𝑥̃ℳ

𝒮  [mm] Δ𝑦ℳ
𝒮  [mm] 

derived 0.117 180.029 −2.143 0.136 −0.067 

 

The deviation of 𝛾ℳ
𝒮 , shown in Table 5.5, from the expected value is relatively large in 

comparison to the deviation of 𝛼ℳ
𝒮  and 𝛽ℳ

𝒮  from their expected values. The influence of 𝛾ℳ
𝒮  

can already be seen regarding the zoomed cutout in Figure 5.26. The tilted lines of determined 

positions are due to the tilt of the SUT in the experimental setup. With the determined position 

and orientation, the surface has been reconstructed. The reconstructed surface itself is shown 

in Figure 5.27 a). The deviation from the expected surface model is shown in Figure 5.27 b). 

The deviation of the reconstructed surface from the surface model, as shown in Figure 5.27 

b), has a RMSt of 76.4 nm. 

Equivalently to the polynomial freeform 1, a comparison measurement of the surface from a 

commercially available measurement machine is available. Details about the measurement 

machine can be found in Chapter 5.3.4. This comparison measurement has been performed 

on a different sample grid with smaller sample distance than the measurement performed with 

the proposed measurement technique. To make the two measurement results comparable, a 

linear interpolation has been performed over the comparison measurement. The deviation from 

the model function determined within the comparison measurement is shown in Figure 5.28 

a). These deviations show a RMSt of 42.5 nm. 
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a)                                                                              b) 

Figure 5.27: Plots presenting a) the surface of the polynomial freeform 2, reconstructed 
with the proposed measurement technique, and b) its deviation from the surface model. 

 

a)                                                                                b) 

Figure 5.28: a) Plot of the deviation of the polynomial freeform 2 from the surface model, 
determined by the comparison measurement. b) difference between the deviation 
determined by the proposed measurement technique, shown in Figure 5.27 b), and the 
deviations shown in a). 

Regarding the difference between the surface deviations determined with the proposed 

measurement technique and the comparison measurement, shown in Figure 5.28 b), one can 

observe a global height along the 𝑦-axis. This height has been determined with the proposed 

measurement technique, but not with the comparison measurement. This difference lead to 

the deviation of the RMSt-values. However, one can also see similar deviations in both results. 

For example, the striking peak in the middle of the sample has been detected by both 

measurement techniques and therewith disappears in the comparison. 

To observe the high-frequency deviations of the deviations shown in Figure 5.27 b) and Figure 

5.28 b), the fit of the first 36 Zernike polynomials is subtracted from these deviations separately. 

These high-frequency deviations are shown in Figure 5.29. 
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a)                                                                                b) 

Figure 5.29: Plots presenting a) the high-frequency deviations of the polynomial freeform 
2 from the model function determined with the proposed measurement technique and b) 
the high-frequency deviations of the same sample determined from the comparison 
measurement. 

Comparing the two plots shown in Figure 5.29, one can see many similarities in the high-

frequency deviations determined with both measurement techniques. It can be recognized that 

the deviations from the comparison measurement, shown in Figure 5.29 b), seems to be 

blurred. This may be due to filters applied to the measurement results. However, to observe 

the differences in the high-frequency deviations, the two results are subtracted from each 

other. The remaining differences are shown in Figure 5.30. 

 

Figure 5.30: Difference of the high-frequency deviations between the results of the 
proposed measurement technique and the comparison measurement for the polynomial 
freeform 2. 

Regarding the differences shown in Figure 5.30, one can observe that many of the structures 

shown in both plots in Figure 5.29 disappeared. This shows that the detected high-frequency 

structures determined from both measurement techniques are very similar. This can also be 

seen, regarding the RMS of the high-frequency difference shown in Figure 5.30, which is only 

10.0 nm. 
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5.4.5 Analysis on integration parameter 𝜌 
In Chapter 3.3.1, the 2D integration using RBFs according to Ettl et al. has been described 

[88]. This integration method uses the Wendland function as basis function, which has a limited 

support radius 𝜌. This radius defines the “width” of the RBF. With a larger 𝜌-value one RBF 

covers more sample points, with a smaller 𝜌-value it covers less sample points. Therewith, 

with smaller 𝜌-values, more local details can be reconstructed, while larger 𝜌-values lead to a 

more stable reconstruction when noisy slope data are expected [87]. However, certain limits 

in both directions exist. If the 𝜌-value is reduced too far, the interpolation matrix 𝐀 defined in 

Equation (3.18) becomes an identity matrix and the reconstructed surface consists of narrow 

peaks at the given sample points. If the 𝜌-value is increased too far, the matrix 𝐀 becomes 

singular showing similar values for each element. 

To observe the stability of the reconstruction method, one reconstruction has been performed 

multiple times with varying 𝜌-values. Therefore, the dataset of the experimental measurement 

of the polynomial freeform 1 has been used exemplarily. To observe the influence of the 

𝜌 -value on the reconstruction, the value of 𝜌  has been changed from 𝜌 = 2.0 mm  to 

𝜌 = 40.0 mm  in steps of 1.0 mm . As indicator of the influence of the 𝜌 -value on the 

reconstruction, the RMSt-value of each reconstructed surface is observed. The determined 

RMSt-values from the reconstruction with different 𝜌-values are shown in Figure 5.31. 

 

Figure 5.31: Plot of the determined RMS surface deviations for the reconstruction of the 
polynomial freeform 1 from the experimental measurement. Different values of 𝜌 for the 
RBF reconstruction method are used. 

Regarding Figure 5.31, one can observe two regions of different instabilities. In the region 

below 𝜌 = 16.0 mm, the RMSt-value changes fast, when small changes in the 𝜌-value are 

made. In the region above 𝜌 = 23.0 mm an oscillating instability of the RMSt-value can be 

observed. Although, these changes and oscillations are within a range of only about 50 pm, 

this observation led to the definition of 𝜌 = 20.0 mm for the reconstruction in the simulations 

and the experimental measurements. 

5.5 Performance analysis 

5.5.1 Instrument Transfer Function 
One of the parameters to define measurement techniques is the instrument transfer function 

(ITF) [120]. The ITF describes the response of the measurement technique to different spatial 

wavelengths on the investigated surface. It is defined as the relation between the detected 

measurement value to the given ground truth. This relation is investigated for varying spatial 
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wavelengths. The ITF is therewith closely related to the well-known optical transfer function 

(OTF) and modulation transfer function (MTF) in the field of imaging optics [121]. 

In terms of the proposed measurement technique, the ITF is defined as the relation between 

the determined surface slope at a certain position, over the given surface slope of a sinusoidal 

surface topography with a the spatial wavelength 𝜆𝑠. To determine this relation, simulations 

are used. The simulations performed before have used single ray tracing to determine the 

surface slope. However, this includes the assumption of the beam having an infinitely small 

diameter. With this, the slope at a certain position will always be detectable perfectly. Thus, 

another approach has to be found to determine the ITF. 

The simulation setup to determine the ITF is shown in Figure 5.32. 

 

Figure 5.32: Sketch of simulation setup for the determination of the ITF. The red lines 
represent the incident and the reflected beam. The reflected beam’s centroid position on 
the detector plane is illustrated by 𝑥𝑐. Sinusoidal surface topographies are illustrated at 

𝑧 = 0  with different spatial wavelengths. The surfaces shown in the sketch are 
exemplary and not scaled. 

Regarding the sketch shown in Figure 5.32, one can recognize a beam propagating onto the 

SUT vertically. The SUT follows a sinusoidal function 

𝑠(𝑥) =
𝐴̂

2
sin (

𝑥 ⋅ 2 ⋅ 𝜋

𝜆𝑠
), (5.9) 

where 𝜆𝑠 represents the spatial wavelength and 

𝐴̂ =
𝑚̂𝜆𝑠
𝜋

 (5.10) 

defines the amplitude of the surface, so that its slope  

𝜕𝑠(𝑥)

𝜕𝑥
|
𝑥=0

= 𝑚̂ (5.11) 

at the center position can be set by the parameter 𝑚̂. In the simulations performed here, this 

parameter is set to be 𝑚̂ = tan (
𝜋

180
) and is therewith the equivalent of a surface angle of 1°. 

Using Equation (5.10) and (5.9), the surface can now be defined for any spatial frequency with 

a constant surface angle of 1° at 𝑥 = 0. 

To perform the simulation, Fourier optics is applied. Instead of a single ray representing a 

beam, it is now defined by intensity and phase distribution [1]. Using a nearfield propagation 

detector plane 
𝑥𝑐 

𝑑𝑧 
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algorithm, this intensity and phase distribution can be propagated along a certain axis [122]. 

As expected from a reflection, the beam’s phase is set to 2𝑠(𝑥)  at 𝑧 = 0 . The intensity 

distribution is considered Gaussian with a half width 𝑤̂0 . Initially, this half width is set to 

𝑤̂0 = 0.106 mm as this is the expected beam’s half width on the SUT as described in Chapter 

5.1. This beam is now propagated along the 𝑧-axis to the detector plane at 𝑑𝑧 = 15.0 mm as 

shown in Figure 5.32. At the detector plane, the centroid position 𝑥𝑐 of the determined intensity 

distribution is calculated [113]. From this centroid position, the surface slope 

𝑚 = tan(
arctan(

𝑥𝑐
𝑑𝑧
)

2
) (5.12) 

can be determined. Having the slope value 𝑚(𝜆𝑠) determined for a certain spatial wavelength, 

the 

𝐼𝑇𝐹(𝜆𝑠) =
𝑚(𝜆𝑠)

𝑚̂
 (5.13) 

can now be defined as the relation between the determined slope value and the expected 

slope value. Performing the simulation for multiple spatial wavelengths between 10 µm and 

100 mm, the ITFs for different beam half widths 𝑤̂0, shown in Figure 5.33, are determined. 

 

Figure 5.33: ITF’s determined for different beam half widths 𝑤̂0 over spatial wavelengths 
between 0.01 mm  and 100 mm . Vertical dashed lines separate the three different 
surface characteristics roughness, waviness and form. To determine the cutoff 
wavelength, a horizontal dashed and dotted line is drawn at 𝐼𝑇𝐹 = 0.5. 

In Figure 5.33, multiple ITFs are shown. The first ITF depicted by the blue continuous line, 

shows the ITF for the expected beam half width of 𝑤̂0 = 106 µm. However, regarding Figure 

5.32, one can see that the incident beam is here simulated perpendicular on the SUT. In the 

experimental setup, this is valid for the beam regarded in 𝑥̃-direction. Regarding the beam’s 

𝑦̃-direction, the beam is coming under an angle of 45°. Thus, its beam width on the SUT is 

increased by the factor of √2 . Therefore, the orange continuous line with a beam half 

width 𝑤̂0 = √2 ⋅ 106 µm is shown, representing the ITF in 𝑦̃-direction. Regarding these two 

graphs, one can see that they are both almost at 𝐼𝑇𝐹 = 1.0 within the spatial bandwidth of the 

form. Within the bandwidth of the waviness, both graphs drop to almost 𝐼𝑇𝐹 = 0, where they 

stay also with the bandwidth of the roughness. This shows that form deviations can be 

reconstructed, while roughness is not detectable with the given incident beam. The explanation 

for this can be found in the width 𝑤̂0. While the beam only covers the rising slope of the 

roughness waviness form 



   Experiments and Results 
 

  85 
 

sinusoidal surface topography for large spatial wavelengths, it covers more and more of the 

whole period of the sinusoidal structure with decreasing spatial wavelength. When the beam 

even covers multiple periods of the sinusoidal structure, it is almost orthogonally reflected. 

According to DIN EN ISO 25178-604, the cutoff-wavelength is defined at the point, where the 

ITF reaches 50 % [120]. This means that wavelengths shorter than this cutoff-wavelength are 

considered not to be detectable. In Figure 5.33 a horizontal line is drawn at 𝐼𝑇𝐹 = 50 %. 

Determining the cutoff frequency for the four beam half widths shown in the Figure, the cutoff-

wavelengths presented in Table 5.6 are determined. 

Table 5.6: Determined cutoff-wavelengths of the ITF for the different beam half widths 
presented in Figure 5.33. 

𝑤̂0 [µm] cutoff-wavelength [µm] 

106 200.2 

√2 ⋅ 106 282.4 

75 141.5 
25 47.1 

 

Regarding the values presented in Table 5.6, one can see that the shortest wavelength to be 

detectable with the given setup is 200.2 µm. The sample distance used in the experimental 

measurements (except for the flat surface) is 100 µm. Thus, the Nyquist theorem for spatial 

wavelengths at the cutoff-wavelength is satisfied [123]. 

Additionally, two more exemplary beam half widths are presented in Figure 5.33 and Table 

5.6. In Figure 5.33, the green dotted line shows the ITF of a beam with a half width of 

𝑤̂0 = 75 µm. The red dotted line shows the ITF of a beam with 𝑤̂0 = 25 µm. Regarding the 

graphs in Figure 5.33 and the determined cutoff-wavelengths in Table 5.6, one can see that a 

decrease of the beam width, leads to more spatial wavelengths to be detectable. For a beam 

half width of 𝑤̂0 = 25 µm, the cutoff-wavelengths has even been determined to be in the 

bandwidth of roughness. 

5.5.2 Measurement time 
The measurement time is a crucial factor for the commercial compatibility of a measurement 

machine. Thus, a short measurement time has to be achieved. To observe different 

measurement procedures, a simple sample grid as shown in Figure 5.34 is observed. 

 

Figure 5.34: Sample grid used for the evaluation of the measurement speed of different 
measurement processes. 
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The sample grid is an even square grid with a sample distance of 100 µm and a aperture of 

1 mm. It contains 121 sample points distributed over 11 rows and 11 columns. To gather all 

necessary data for the evaluation for each sample point  𝒙̃𝑖 the position 𝑪𝑖 and 𝑫𝑖 has to be 

detected. Three different processes to gather these data are compared here. 

The first process is the one described in the flowchart presented in Figure 4.11. It includes the 

positioning of the SUT at the positions 𝒙̃𝑖  one by one to determine the positions 𝑪𝑖 . After 

moving the detector to the second position, once again the SUT is positioned to the positions 

𝒙̃𝑖, to determine the positions 𝑫𝑖. 

The second process to evaluate is closely related to the first process, but instead of 

determining the positions 𝑪𝑖 and 𝑫𝑖 serially, they are determined in parallel. Moving to the SUT 

to a position 𝒙̃𝑖  both positions 𝑪𝑖  and 𝑫𝑖  are determined by staying at the position 𝒙̃𝑖  and 

moving the detector. 

The third evaluated process is the one used for the experimental measurements. It uses the 

PSO of the 𝑥̃𝑦̃-stage’s controller to trigger the camera, while moving the SUT continuously as 

described in Chapter 5.1. 

To evaluate the different processes, the following values for the needed times are determined. 

Moving the SUT by a distance of 100 µm and stop takes 1.0 s. Taking a single image takes 

0.5 s. Moving the camera by a distance of 10 mm and stop takes 2.5 s. Moving the SUT 

continuously while using the PSO to trigger the camera a framerate of 7 fps can be achieved. 

The movement of all stage to reach the initial position is neglected. The determined times 

needed for the measurement of the given sample grid with the different processes are 

presented in Table 5.7. 

Table 5.7: Measurement times determined for the three different measurement process 
types described before. 

process type time needed [s] 

1 365.5 
2 484.0 
3 62.2 

 

Regarding the values in Table 5.7, one can clearly see that using the PSO and moving the 

SUT continuously, achieves the lowest measurement time. This is due to the long time needed 

for the stop-and-go sampling used in the other two process types. However, even the 

measurement time of the process type 3 can be improved. The most time consuming element 

here is the low framerate of the camera. Improving this, even lower measurement times can 

be achieved. 
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6. Error analysis 

6.1 Error Sources 
In contrast to simulations, experimental setups have limited accuracy and stability due to 

imperfections, misalignments and noise. The impact of these influences are generally donated 

as measurement errors [124]. To estimate these measurement errors and their influence on 

the measurement results, the following error sources are investigated: 

- centroid uncertainty and drift 

- positioning uncertainty of the 𝑤-stage 

- pitch and yaw of the 𝑤-stage 

- straightness and flatness of the 𝑤-stage 

- positioning uncertainty of the 𝑥̃𝑦̃-stages 

- pitch and yaw of the 𝑥̃𝑦̃-stages 

- straightness and flatness of the 𝑥̃𝑦̃-stages 

- calibration errors due to SUT deviations 

Error sources that are not investigated, as no information is available about these error 

sources, are: 

- roll of 𝑤-stage 

- roll of the 𝑥̃𝑦̃-stages 

- non-orthogonality of the 𝑥̃𝑦̃-stages 

- inaccuracies of the camera chip 

The information about the magnitude of the error sources defined above either is taken from 

datasheets or test protocols or is measured in the measurement setup itself. The error sources 

and, if available their magnitude, will be described in the following subchapters. 

Centroid uncertainty and drift 

The centroid stability and drift are two different error sources both influencing the centroid 

position. The centroid uncertainty is the expected stochastic change of the centroid position 

due to noise. Dark current, shot noise and centroid instability of the incident beam are included 

in this noise [125]. Additionally, fluctuations in the air in the measurement setup, as well as 

vibrations can also influence the centroid uncertainty. The centroid uncertainty can be 

interpreted as a high frequency change of the centroid position. It will be donated by the two 

values 𝜎𝑢  and 𝜎𝑣  describing the standard deviation of the centroid uncertainty in 𝑢 - and 

𝑣-direction in the camera chip as shown in Figure 6.1. 
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Figure 6.1: Sketch to illustrate the centroid uncertainty and drift. The uncertainty bars at 
the point, where the incident ray intersects with the detector plane, illustrate the centroid 
uncertainty 𝜎𝑢 and 𝜎𝑣. The orange arrow illustrates the centroid drift 𝜎𝑢,𝑑 and 𝜎𝑣,𝑑. 

The drift of the centroid in 𝑢- and 𝑣-direction will be donated as 𝜎𝑢,𝑑 and 𝜎𝑣,𝑑. This drift is mostly 

caused by environmental influences. Temperature changes stretch and contract the elements 

in the setup. The drift will not be given as an uncertainty, but as a change over time [126]. Both 

uncertainty and drift values are determined experimentally as presented in Chapter 6.2. 

Positioning uncertainty of the 𝑤-stage 

The positing of the detector along the 𝑤-axis underlies the uncertainty of the positioning of the 

𝑤-stage. Although, the 𝑤-stage is equipped with a feedback system, the actual positioning has 

a certain uncertainty. This uncertainty applies to both detector positions. Its magnitude is 

donated 𝜎𝑤. The uncertainty is illustrated in Figure 6.2. 

 

Figure 6.2: Sketch to illustrate the influence of the positioning uncertainty 𝜎𝑤, the pitch 
𝜎𝑤,𝑝  and the yaw 𝜎𝑤,𝑦 of the 𝑤-stage on the detector plane. 

The magnitude of the positioning uncertainty is given as 𝜎𝑤 = ±1,0 µm according to the test 

protocol shown in Appendix G. Since an actually targeted position is known and 𝜎𝑤 gives the 

maximum deviation in positive and negative direction, the error is considered stochastic with a 

distribution of the deviation between the targeted and the actual position that is assumed to be 

triangular [127, 128]. 

Pitch and yaw of the 𝑤-stage 

The pitch and yaw of the 𝑤-stage is directly assignable to the pitch and yaw of the detector 

plane. Therewith, it has an influence on the detected centroid position of the reflected beams. 

The magnitude of the pitch and yaw of the 𝑤-stage are donated 𝜎𝑤,𝑝 and 𝜎𝑤,𝑦. Their influence 

on the detector plane is illustrated in Figure 6.2. 

The magnitudes of the pitch and yaw according to the test protocol given in Appendix G are 

𝜎𝑤,𝑝 = ±17.791 µrad and 𝜎𝑤,𝑦 = ±12.643 µrad. Although, these values are given for the whole 

travel length of the 𝑤-stage, they are assumed to appear also in the same magnitude if the 

stage is used in shorter ranges. These errors are assumed to be systematical. 
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Straightness and flatness of the 𝑤-stage 

The straightness and flatness given for the 𝑤-stage will be donate 𝜎𝑤,𝑠 and 𝜎𝑤,𝑓. They describe 

an elevation or shift of the stages carriage during movement as presented in Figure 6.3. 

 

Figure 6.3: Sketch to illustrate the influence of the straightness and flatness of the 
𝑤-stage on the detector plane’s position. 

The magnitude of the straightness and flatness error is given as 𝜎𝑤,𝑠 = ±1.926 µm  and 

𝜎𝑤,𝑓 = ±2.286 µm  according to the test protocol given in Appendix G. Although, the 

straightness and flatness influences presented in Figure 6.3 directly indicate the influence on 

the detector plane, they can also be interpreted differently. Therefore, one has to recall that 

the detector plane is only positioned at two different 𝑤-positions within one measurement. 

Thus, one can always draw a line between the two center points of the detector plane in the 

two positions. Assuming that this line is the ideally straight and flat movement of the 𝑤-stage, 

the straightness error turns into a constant yaw error and the flatness turns into a constant 

pitch error. This is only due to a change of the point of view. To point this out, the change of 

the point of view is illustrated in Figure 6.4. 

 

Figure 6.4: Sketch to illustrate change from the straightness and flatness error of the 
𝑤-stage to a yaw and pitch error of the detector, when the movement of the center of the 

detector is assumed to be ideally along the 𝑤-axis. 

May the intended movement along the 𝑤-axis be Δ𝑤, the constant yaw 

𝜎𝑤,𝑐𝑦 = sin(
±𝜎𝑤,𝑠
Δ𝑤

) (6.1) 

and the constant pitch 

𝜎𝑤,𝑐𝑝 = sin (
±𝜎𝑤,𝑓

Δ𝑤
) (6.2) 

can be calculated from the straightness and flatness error. Having Δ𝑤 = 10 mm, as it is used 

in the experimental measurements presented in Chapter 5, the constant yaw and pitch can be 
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calculated to be 𝜎𝑤,𝑐𝑦 = ±192.6 µrad  and 𝜎𝑤,𝑐𝑝 = ±228.6 µrad . These errors are also 

considered systematical. 

Positioning uncertainty of the 𝑥̃𝑦̃-stages 

Equivalently to the positioning uncertainty of the 𝑤-stage, a positioning uncertainty exists for 

the 𝑥̃- and 𝑦̃-stage. These uncertainties are donated 𝜎𝑥̃ and 𝜎𝑦̃ and they both have a direct 

influence on the actually investigated position 𝑰  on the SUT. However, since the SUT is 

positioned to the sample positions 𝒙̃𝑖, the uncertainty has to be considered in this positioning 

as illustrated in Figure 6.5. 

 

Figure 6.5: Sketch to illustrate the influence of the positioning errors 𝜎𝑥 and 𝜎𝑦̃ of the 

𝑥̃- and 𝑦̃-stages on the sample position 𝒙𝑖. 

According to the test protocol given in Appendix E, the positioning errors are 𝜎𝑥̃ = ±0.627 µm 

and 𝜎𝑦̃ = ±0.517 µm. As already assumed for the positioning accuracy of the 𝑤-stage, the 

error is considered stochastic with a triangular distribution of the deviation from the actually 

targeted position. 

Pitch, roll and yaw of the 𝑥̃𝑦̃-stages 

The pitch and roll of the 𝑥̃- and 𝑦̃-stages is crucial to the correct measurement of the surface 

gradient, as an error in one of these parameters has a direct impact on the surface normal. 

However, since the two stages are mounted orthogonal to each other, the roll of one stage is 

equivalent to a pitch of the other and vice versa. Although the roll of the 𝑥̃𝑦̃-stages is listed as 

not considered error source, it can be assumed to be included in the pitch error of the 

𝑥̃𝑦̃-stages. Regarding this pitch error, it comes back in mind that this error is considered in the 

calibration of the pitch of the DUT positioning described in Chapter 3.6.2 and 5.2. Thus, the 

influence of the pitch and roll error of the 𝑥̃𝑦̃-stage is considered known and manageable and 

therewith is not considered in this error analysis. 

In contrast to the pitch and roll error of the 𝑥̃𝑦̃-stages, their yaw error is not detected in the 

experimental setup. Thus, it has to be included in the error analysis. The yaw errors of the two 

stages are donated 𝜎𝑥̃,𝑦 and 𝜎𝑦̃,𝑦 and are expected to be systematical. Their impact on the 

DUT orientation in the experimental is illustrated in Figure 6.6. 

 

Figure 6.6: Sketch to illustrate the influence of the yaw errors 𝜎𝑥,𝑦  and 𝜎𝑦̃,𝑦  of the 

𝑥̃- and 𝑦̃-stages on the DUT orientation. 

𝜎𝑥̃ 
𝜎𝑦̃ 

𝒙̃𝑖 
𝑥̃ 

𝑦̃ 

𝑧̃ 

𝒙̃𝑖 
𝑥̃ 

𝑦̃ 

𝑧̃ 

𝜎𝑦̃,𝑦 𝜎𝑥̃,𝑦 



   Error analysis 
 

  91 
 

According to the test protocol given in Appendix E, their magnitudes are 𝜎𝑥̃,𝑦 = ±6.368 µrad 

and 𝜎𝑦̃,𝑦 = ±16.662 µrad. Both yaw errors have the same influence on the DUT orientation as 

shown in Figure 6.6. Thus, they will be connected in the error analysis. Additionally, it has to 

be mentioned that this yaw error has no influence on the sample position 𝒙̃𝑖, but only on the 

orientation at the sample position itself. The DUT is positioned to 𝒙̃𝑖 before the yaw error is 

applied. Otherwise the yaw error also had an influence on the position 𝒙̃𝑖. 

Straightness and flatness of the 𝑥̃𝑦̃-stages 

As described before for the 𝑤-stage, the straightness describes a shift and the flatness an 

elevation of the stage’s carriage during movement. The straightness errors of the two stages 

are donated 𝜎𝑥̃,𝑠 and 𝜎𝑦̃,𝑠, while the flatness errors are donated 𝜎𝑥̃,𝑓 and 𝜎𝑦̃,𝑓. Their influence 

on the positioning of the DUT is illustrated in Figure 6.7. 

 

Figure 6.7: Sketch to illustrate the influence of the straightness errors 𝜎𝑥̃,𝑠 and 𝜎𝑦̃,𝑠 and 

the flatness errors 𝜎𝑥,𝑓 and 𝜎𝑦̃,𝑓 of the 𝑥̃𝑦̃-stages on the DUT position. 

Equivalently to the yaw errors, the flatness errors 𝜎𝑥̃,𝑓 and 𝜎𝑦̃,𝑓 have the same influence on the 

DUT position and will later have to be combined. The magnitudes given for the errors described 

before are 𝜎𝑥̃,𝑠 = ±0.282 µm , 𝜎𝑦̃,𝑠 = ±0.285 µm , 𝜎𝑥̃,𝑓 = ±0.235 µm  and 𝜎𝑦̃,𝑓 = ±0.260 µm 

according to the test protocol given in Appendix E. These errors are not considered stochastic, 

but systematical, as they are a result of the mechanical bearing of the stage carriages. This 

differentiates the straightness errors 𝜎𝑥̃,𝑠  and 𝜎𝑦̃,𝑠  from the positioning errors 𝜎𝑥̃  and 𝜎𝑦̃ , as 

these errors are considered stochastic. 

Calibration errors due to SUT deviations 

The combined calibration described in Chapter 3.6.1 and 4.3 assumes that the investigated 

SUT is free of deviations from the expected surface model. However, this assumption is not 

valid in experimental measurements, as deviations from the model cannot be prevented. Thus, 

deviations in the calibrated values have to be expected. These deviations will be donate 𝜎𝛼𝒞
ℐ , 

𝜎𝛽𝒞
ℐ , 𝜎𝛼𝒞

ℳ , 𝜎𝛽𝒞
ℳ  and 𝜎𝛾𝒞

𝒞, for the uncertainties of the values 𝛼𝒞
ℐ, 𝛽𝒞

ℐ, 𝛼𝒞
ℳ, 𝛽𝒞

ℳ and 𝛾𝒞
𝒞. 

6.2 Experimental error determination 
The error sources determined experimentally are the centroid uncertainty and the centroid drift. 

To determine the magnitudes of these values, a flat mirror is used as DUT. The camera is 

positioned to 𝑤 = 90 mm and without any movement in the setup, a series of images are taken. 

Determining the centroid for every image, the centroid uncertainty and drift can be derived. To 

have a significant series of images, 40 000 images have been taken and evaluated over a 

duration of 5.5 hours. The centroid positions determined from this series of images are shown 

in Figure 6.8. 
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Figure 6.8: Determined centroid positions 𝐶𝑢  and 𝐶𝑣  to determine the centroid 
uncertainty and drift. The red line shows a linear fit to the given centroid data, 
representing the drift of the centroid values. 

These centroid positions shown in Figure 6.8 include both, the drift and the stochastic 

uncertainty. To investigate the two parameters for both directions independently, a linear fit, 

representing the slow drift, has been performed over the given centroid positions [129]. This fit 

for each direction is shown by the red lines in in Figure 6.8. Over the full 40 000 images this fit 

indicates a drift of the centroid in 𝑢-direction of 395 nm and in 𝑣-direction of −471 nm. To set 

this drift in relation to the time the 40 000 images have been taken over, one can determine 

the drift errors 

𝜎𝑢,𝑑 =
|395 nm|

5.5 h
= 71.8

nm

h
 (6.3) 

and 

𝜎𝑣,𝑑 =
|−471 nm|

11 h
= 85.6

nm

h
. (6.4) 

After subtracting the drift from the determined centroid positions, the position 𝐶̂𝑢 and 𝐶̂𝑢 as 

shown in Figure 6.9 are determined. 

 

Figure 6.9: Determined centroid positions 𝐶̂𝑢 and 𝐶̂𝑣 after subtracting the linear drift. The 

red bars represent the standard deviation. 
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Regarding the values of 𝐶̂𝑣 in Figure 6.9, one can recognize that a systematic structure besides 

the stochastic fluctuation exists. Since the frequency of this structure is too high to be 

considered a drift, it is taken into account in the centroid uncertainty evaluation. To determine 

the centroid uncertainty in 𝑢- and 𝑣-direction, the standard deviation of the given centroid 

positions is determined [129]. Although, the standard deviation only is fully trustable if an 

infinite number of samples are evaluated, the 40 000 samples taken into account here are 

expected to give a trustable assumption of the centroid position uncertainty. From the data 

presented in Figure 6.9 the standard deviations and therewith the centroid uncertainties 

𝜎𝑢 = 219 nm and 𝜎𝑣 = 196 nm are determined. These values are also presented in Figure 6.9 

by the red bars. 

6.3 Uncertainty of ray direction measurement 
To investigate the uncertainty of the ray direction measurement, a single sample point is 

investigated. Therefore, no drift is considered, as drift only occurs over time. The uncertainties 

and systematic errors that are taken into account here are the centroid uncertainty, the 

𝑤 -stage positioning uncertainty and the 𝑤 -stage pitch, yaw, straightness and flatness. 

Additionally, an estimation about the surface slope determination uncertainty and their 

influence on the integration is given. Therefore, the incident ray direction is considered ideally 

known. 

Centroid uncertainty 

For the considerations given in the following, the simplified 2D sketch of the measurement 

setup shown in Figure 6.10 is used. Additionally, all explanations are only given in 2D for better 

understandability and readability. If differences to these considerations apply in 3D, they will 

be pointed out explicitly. 

 

Figure 6.10: Simplified 2D sketch of the measurement setup with the incident ray 𝒊, the 

reflected ray 𝒓, the surface angle 𝛼̂𝑦, the surface slope defined by 
Δ𝑧

Δ𝑦
, the reflected ray 

angle 𝛽̂𝑣 and the reflected ray slope 
Δ𝑣

Δ𝑤
. The reflected ray’s position is defined by the two 

detector planes positions 𝑤1 and 𝑤2 and the determined positions 𝑣1 and 𝑣2. 

In the sketch in Figure 6.10, the incident ray is reflected by the SUT, which has a surface angle 

𝛼̂𝑦 in reference to the 𝑦-axis. The surface angle can also be represented by the surface slope 

𝑤 

𝑣 

𝒓 

𝒊 
SUT 

Δ𝑣 

Δ𝑤 

Δ𝑦 
𝑦 

𝑧 

Δ𝑧 

𝛼̂𝑦 

𝛽̂𝑣 

detector plane 

𝑤1 

𝑤2 

𝑣2 
𝑣1 



Error analysis   
 

94   
 

𝑠𝑦 =
Δ𝑧

Δ𝑦
= tan(𝛼̂𝑦). (6.5) 

From the law of reflection one can determine 𝛽̂𝑣 = 2𝛼̂𝑦. While 𝛽̂𝑣 represents the angle between 

the reflected ray direction and the 𝑤-axis. According to the surface slope, one can also define 

the ray slope 

𝑇𝑣 =
Δ𝑣

Δ𝑤
=
𝑣2 − 𝑣1
𝑤2 −𝑤1

= tan(𝛽̂𝑣) = tan(2𝛼̂𝑦). (6.6) 

To investigate the influence of the centroid uncertainty on the ray slope uncertainty 𝜎𝑇𝑣 , 

Equation (6.6) is expanded to  

𝑇𝑣 ± 𝜎𝑇𝑣 =
(𝑣2 ± 𝜎𝑣) − (𝑣1 ± 𝜎𝑣)

𝑤2 −𝑤1
=
Δ𝑣 ± (√2 ⋅ 𝜎𝑣)

Δ𝑤
=
Δ𝑣

Δ𝑤
±
(√2 ⋅ 𝜎𝑣)

Δ𝑤
, (6.7) 

applying Gaussian error propagation [129]. Regarding Equation (6.7) one can see that the 𝜎𝑇𝑣 

here is inversely proportional to Δ𝑤 [130]. This can also be seen regarding Figure 6.11, where 

the values of 𝜎𝑇𝑣  and 𝜎𝑇𝑢 , which is the ray slope uncertainty in 𝑢 -direction, are shown 

dependent on the distance Δ𝑤. 

 

Figure 6.11: Plot to show the influence of the distance Δ𝑤 on the ray slope detection 
uncertainties 𝜎𝑇𝑢 and 𝜎𝑇𝑣 including the centroid uncertainties 𝜎𝑢 and 𝜎𝑣. The red markers 

indicate the position of Δ𝑤 = 10 mm as chosen in the experimental measurements. 

In the experimental measurements, a distance of Δ𝑤 = 10 mm has been chosen. Although one 

can see that 𝜎𝑇𝑣 and 𝜎𝑇𝑢 still decrease with Δ𝑤 > 10 mm, it has also be considered that the first 

detector position is chosen as close as possible to the DUT, limited by mechanical dimensions. 

Thus, increasing Δ𝑤 leads to an increase of the distance between the DUT and the second 

detector position. Since all reflected beams have to intersect with the optically active area of 

the camera chip at both positions 𝑤1 and 𝑤2, this directly leads to a decrease of the range of 

detectable surface angles. The determined uncertainties for Δ𝑤 = 10 mm under the influence 

of the centroid uncertainties are 𝜎𝑇𝑢 = 31.0 µrad and 𝜎𝑇𝑣 = 27.7 µrad. 

Errors induced by the 𝑤-stage 

Considering the 𝑤-stage positioning uncertainty 𝜎𝑤, Equation (6.6) is now extended in the 

denominator leading to 



   Error analysis 
 

  95 
 

𝑇𝑣 ± 𝜎𝑇𝑣 =
Δ𝑣

(𝑤2 ± 𝜎𝑤) − (𝑤1 ± 𝜎𝑤)
. (6.8) 

Equation (6.8) indicates a dependency of 𝜎𝑇𝑣  on Δ𝑣 , which is dependent on the surface 

angle 𝛼̂𝑦 . Using Equation (6.6), the values of Δ𝑣  for Δ𝑤 = 10 mm  and 

𝛼̂ = −12.0°,−11.9°,… ,11.9°, 12.0° are calculated. To derive 𝜎𝑇𝑣 from Equation (6.8), Gaussian 

error propagation cannot be applied, since the distribution of 𝜎𝑤 is expected to be triangular. 

Thus, a Monte-Carlo-Simulation (MCS) with 1 000 000 iterations is performed to determine the 

magnitude of 𝜎𝑇𝑣  numerically [131, 132]. This MCS leads to the standard deviations 𝜎𝑇𝑣 

dependent on 𝛼̂𝑦 as shown in Figure 6.12. 

 

Figure 6.12: Determined values for 𝜎𝑇𝑣  over 𝛼̂𝑦  including the 𝑤 -stage positioning 

uncertainty 𝜎𝑤. 

It has to be pointed out that this uncertainty is only valid for a single surface slope 

determination. In an experimental measurement, the error of the 𝑤-stage positioning is not 

stochastic for every sample point, but an unknown systematic error for the determination of all 

𝑪𝑖 and 𝑫𝑖 separately, as the camera is only repositioned once within a measurement. 

According to the simplification in 2D, only the yaw error 𝜎𝑤,𝑦 and the constant yaw error 𝜎𝑤,𝑐𝑦 

resulting from the straightness of the 𝑤-stage are considered. To determine the influence of a 

yaw of the detector on the detected position, the situation illustrated in Figure 6.13 is 

considered. 

In Figure 6.13 the detector plane is tilted by 𝛾𝑣, which is considered the yaw of the detector 

plane. Therewith, instead of the correct position 𝑣1, the erroneous position 𝑣1 is detected. 

Using the sine rule, one can determine the erroneous position 

𝑣1 = 𝑣1
cos(𝛽̂𝑣)

cos(−𝛾𝑣 − 𝛽̂𝑣)
  (6.9) 

from the correct position and the given angles [79]. One can see that a dependency on the 

investigated surface angle 𝛼̂𝑦 exists, too, since 𝛼̂𝑦 directly influences the position 𝑣1. Thus, the 

uncertainty of the surface slope detection has to be investigated dependent on 𝛼̂𝑦. For further 

investigations, the following assumptions are made. The distance between the intersecting 

point of the incident ray with the SUT and the first detector position is 28 mm. For the detector 

position 𝑤1 , the tilt angle 𝛾𝑣  is set to 𝜎𝑤,𝑐𝑦 − 𝜎𝑤,𝑦 . For the detector position 𝑤2  it is set to 

𝜎𝑤,𝑐𝑦 + 𝜎𝑤,𝑦. Respectively for the 𝑢-direction, the tilt angle 𝛾𝑢 is set to 𝜎𝑤,𝑐𝑝 − 𝜎𝑤,𝑝 for the first 
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position and 𝜎𝑤,𝑐𝑝 + 𝜎𝑤,𝑝 for the second detector position. Therewith, the full range of the given 

errors is taken into account. Applying this to the same surface angles 𝛼̂𝑥 and 𝛼̂𝑦, as used for 

the stochastic error evaluation, erroneous ray slope values 𝑇̃𝑢  and 𝑇̃𝑣  are determined. The 

deviation from the correct ray slopes 𝑇𝑢 and 𝑇𝑣 are shown in Figure 6.14. 

 

 

Figure 6.13: Simplified 2D sketch to show the influence of a detector tilted by 𝛾𝑣 on the 

determined position 𝑣1 dependent on the reflected beams angle 𝛽̂𝑣. 

 

Figure 6.14: Determined values for 𝑇̃𝑢 − 𝑇𝑢 and 𝑇̃𝑣 − 𝑇𝑣 dependent on the surface angles 
𝛼̂𝑥  and 𝛼̂𝑦  including the 𝑤-stage pitch and yaw errors and the 𝑤-stage flatness and 

straightness errors. 

Combining centroid uncertainty and 𝑤-stage errors 

To get an overall assumption about the uncertainty of the ray slope determination, the error 

sources described before are combined in one MCS of 1 000 000  iterations [132]. The 

simulation has been performed for the same range of 𝛼̂  and for Δ𝑤 = 10.0 mm . The 

determined uncertainty in terms of the standard deviation is shown in Figure 6.15. 
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Figure 6.15: Determined for 𝜎𝑇𝑢 and 𝜎𝑇𝑣 dependent on the surface angle 𝛼̂ including the 

centroid uncertainty, the 𝑤-stage positioning uncertainty, the 𝑤-stage pitch and yaw 

errors and the 𝑤-stage flatness and straightness errors. 

To transfer the ray slope uncertainties into surface slope uncertainties, Equation (6.6) is 

extended to determine the surface angle 

2 (𝛼̂𝑦 ± 𝜎𝛼̂𝑦) = arctan(𝑇𝑣 ± 𝜎𝑇𝑣) 
(6.10) 

including its uncertainty 𝜎𝛼̂𝑦. From Gaussian error propagation, Equation (6.10) is solved for 

𝛼̂𝑦 ± 𝜎𝛼̂𝑦 =
1

2
(arctan(𝑇𝑣) ±

𝜕 arctan(𝑇𝑣)

𝜕𝑇𝑣
𝜎𝑇𝑣). 

(6.11) 

Solving the differentiation, leads to  

𝛼̂𝑦 ± 𝜎𝛼̂𝑦 =
arctan(𝑇𝑣)

2
±

1

2(1 + 𝑇𝑣
2)
𝜎𝑇𝑣 

(6.12) 

for the definition of the surface angle [79]. Applying Equation (6.5), the surface slope 

𝑞 ± 𝜎𝑞 = tan (𝛼̂𝑦 ± 𝜎𝛼̂𝑦) (6.13) 

with the surface slope uncertainty 𝜎𝑞 , is determined from the surface angle. Once again 

Gaussian error propagation is applied, leading to 

𝑞 ± 𝜎𝑞 = tan(𝛼̂𝑦) ±
𝜕 tan(𝛼̂𝑦)

𝜕𝛼̂𝑦
𝜎𝛼̂𝑦 = tan(𝛼̂𝑦) ±

1

cos2(𝛼̂𝑦)
𝜎𝛼̂𝑦 . 

(6.14) 

To transfer this surface slope uncertainty into a surface height uncertainty, the sample distance 

Δ𝑦̃ = Δ𝑦  has to be considered. Unfortunately, as described in Chapter 2.3.1, the actual 

distance between the sample points is dependent on the surface height. Assuming a flat 

surface in between the sample points as shown in Figure 6.16, one can determine the actual 

sample distance  

Δ𝑦̆ =
Δ𝑦

tan(𝛼̂𝑦) + 1
 (6.15) 

from surface angle 𝛼̂𝑦  and the given sample distance Δ𝑦 for an angle of 45° between the 

incident ray and the 𝑧-axis. 
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Figure 6.16: Sketch to illustrate the dependency of the actual sample distance Δ𝑦̆ on the 

surface angle 𝛼̂𝑦, the initial sample distance Δ𝑦 and the incident beam direction 𝒊. 

To consider this situation in 𝑥-direction, the actual sample distance 

Δ𝑥̆ = Δ𝑥 (6.16) 

is set equal to Δ𝑥 as the angle between the incident beam and the 𝑧-axis is 0°. Regarding 

Figure 6.16, one can derive the relation 

𝜎Δ𝑧̆ = 𝜎𝑞Δ𝑦̆ (6.17) 

to determine the surface height uncertainty 𝜎Δ𝑧̆. To determine the surface height uncertainty 

for different given parameters, it is evaluated for 𝑥- and 𝑦-direction separately for the same 

surface angle range as considered before and for sample distances of Δ𝑥 and Δ𝑦 in a range 

from 25 µm until 1.0 mm in steps of 25 µm. The results from these considerations are shown in 

Figure 6.17. 

 

a)                                                                                b) 

Figure 6.17: Plots presenting the single point surface height determination uncertainty in 
a) 𝑥- and b) 𝑦-direction dependent on the given sample distances Δ𝑥 and Δ𝑦 and the 
surface angle 𝛼̂𝑥 in 𝑥- and 𝛼̂𝑦 in 𝑦-direction. 

Analyzing the data presented in Figure 6.17, one can see that the height uncertainty is 

increasing with the given sample distance Δ𝑥  and Δ𝑦, as expected from Equation (6.17). 

Additionally, one can recognize that the surface angle has a higher impact on 𝜎Δ𝑧̆  in 

𝑦-direction, than it has in 𝑥-direction. This is due to the incident ray having an angle of 45° to 

the 𝑧-axis in 𝑦-direction in contrast to an angle of 0° in 𝑥-direction. Focusing on the two sample 

distances used in the experimental measurements, one can derive a maximum value for 

SUT 

Δ𝑦 
𝑦 

𝑧 

Δ𝑧̆ 

𝛼̂𝑦 

Δ𝑦̆ 

𝒊 
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𝜎Δ𝑧̆ of 2.1 nm for a sample distance of 0.1 mm and a maximum value for 𝜎Δ𝑧̆ of 21 nm for a 

sample distance of 1.0 mm. 

6.4 Calibration uncertainty 
Due to the deviations of the SUT from its model, used for the combined calibration of the 

incident beam direction, the 𝑥𝑦-stages orientation and the camera rotation, an uncertainty of 

the derived calibration data occurs. To derive this uncertainty, the simulation described in 

Chapter 4.3, to present the basic abilities of the calibration method, has been performed with 

an expected non-ideal SUT model. In Chapter 5.4.3, the experimental measurement results 

using the polynomial freeform 1 are shown. From the presented deviations 𝑑𝑖 , the first 36 

Zernike polynomials have been subtracted to obtain the high-frequency deviations of 𝑑𝑖. Thus, 

the sum of the first 36 Zernike polynomials describe the low-frequency deviations of 𝑑𝑖, shown 

in Figure 6.18. 

 

Figure 6.18: Low-frequency deviations of the experimentally determined deviation 𝑑𝑖 of 
the polynomial freeform 1 from its model as shown in Figure 5.23 b). The low-frequency 
deviations are determined by a fit of the first 36 Zernike polynomials to 𝑑𝑖. 

These deviations have been added to the expected SUT model and the calibration has been 

performed. The derived values and their deviation from the expected values are shown in Table 

6.1. 

Table 6.1: Derived angles from the combined calibration performed on simulation data, 
while using a SUT model including expected low-frequency deviations to determine the 
uncertainty of the calibration method. 

 𝛼𝒞
ℐ  [°] 𝛽𝒞

ℐ [°] 𝛼𝒞
ℳ [°] 𝛽𝒞

ℳ [°] 𝛾𝒞
𝒞 [°] 

expected 90.10009817 0.10588067 45.1 −0.075 −0.13 
derived 90.11788401 0.26661099 45.10864360 0.01355140 −0.04216675 

deviation   0.01778584 0.16073032    0.00864360 0.08855140     0.08783325 

 

The deviations presented in Table 6.1 show the deviations for this exact sample. Since the 

calibration method is complex, a direct traceability of the deviations to a certain surface 

structure is not possible. Thus, for further considerations, the deviation values presented in 

Table 6.1 are take into account as the maximum deviation of these angles, while the deviations 

are considered distributed uniform. 
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6.5 Monte-Carlo-Simulation with full measurement model 
To derive the uncertainty of the measurement technique, two MCSs have been performed 

including all considered error sources [132]. One MCS has been performed with an areal 

measurement using the polynomial freeform 1 as SUT. The second simulation has been 

performed as a cross-section simulation using the cylinder surface. The model used for the 

simulation is described in Chapter 4.2.1, while the evaluation has been performed considering 

the model to be known according to the description in Chapter 3.4. 

MCS using polynomial freeform 1 

For the first MCS, the polynomial freeform 1 is used as SUT. The sample area is of circular 

shape with a diameter of 22 mm and a sample distance of 100 µm. Therewith, the simulation 

can directly be compared to the experimental measurement shown in Chapter 5.4.3. 

The centroid uncertainty, the 𝑤-stage positioning of the 𝑤-stage, the pitch and yaw of the 

𝑤 -stage, the straightness and flatness of the 𝑤 -stage, the positioning uncertainty of the 

𝑥̃𝑦̃-stages as well as the calibration errors are considered as described before. 

To determine the centroid drift, a measurement time 𝑡𝑚 has to be set. This measurement time 

is approx. 4,5 h for the experimental measurement of the polynomial freeform as described in 

Chapter 5.4.3. With this, the expected drifts 

𝜎̂𝑢,𝑑 = 𝜎𝑢,𝑑𝑡𝑚 = 323.1 nm (6.18) 

and 

𝜎̂𝑣,𝑑 = 𝜎𝑣,𝑑𝑡𝑚 = 385.2 nm (6.19) 

within one measurement can be determined. To model the drift in the uncertainty evaluation 

here it is now considered normal distributed with the standard deviations 𝜎̂𝑢,𝑑 and 𝜎̂𝑣,𝑑 [133]. 

Thus, one can sum up the centroid uncertainties and drifts to a normal distributed uncertainty 

with the standard deviation of  

𝜎̂𝑢 = √𝜎𝑢
2 + 𝜎̂𝑢,𝑑

2  (6.20) 

and 

𝜎̂𝑣 = √𝜎𝑣
2 + 𝜎̂𝑣,𝑑

2 , (6.21) 

according to Gaussian error propagation [129]. 

The yaw errors of the 𝑥̃- and 𝑦̃-stages is considered to be of full range within the considered 

SUT area. Thus for the sample points at 𝑥̃ = −11 mm the yaw of the 𝑥̃-stage is considered to 

be −𝜎𝑥̃,𝑦 , while at the sample points at 𝑥̃ = 11 mm the yaw is considered to be 𝜎𝑥̃,𝑦 . The 

evolution in between is considered linear. The same applies for the 𝑦̃-stage with 𝜎𝑦̃,𝑦. Since 

only one yaw error can be applied to the SUT, the yaw errors are added for each sample point. 

Equivalently to the yaw errors, the flatness and straightness errors are taken into account. At 

the sample positions 𝑥̃ = −11 mm, the flatness of the 𝑥̃-stage is considered −𝜎𝑥̃,𝑓 while the 

straightness is considered −𝜎𝑥̃,𝑠 at the sample points 𝑥̃ = 11 mm, the flatness is considered 

𝜎𝑥̃,𝑓 while the straightness is considered 𝜎𝑥̃,𝑠. The evolution in between is considered linear. 

The same applies equivalently for the 𝑦̃-stage with the corresponding error magnitudes. While 

the straightness can be applied separately on the positioning of the SUT, the flatness of the 

stages has a correlating influence on the SUT. Thus, the errors of the two stages are added. 
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With these error sources, one simulation in OpticStudio is performed including the systematic 

errors of the pitch and yaw of the 𝑤-stage, the straightness and flatness of the 𝑤-stage, the 

yaw of the 𝑥̃𝑦̃-stages and the straightness and flatness of the 𝑥̃𝑦̃-stages. In the evaluation, the 

stochastic errors of the centroid uncertainty and drift, the positioning uncertainty of the 

𝑤-stage, the positioning uncertainty of the 𝑥̃𝑦̃-stages and the calibration errors are included. 

The evaluation is performed 500 times. Exemplary, one of the 500 surface deviations is shown 

in Figure 6.19 a), while Figure 6.19 b) shows the standard deviation for each sample point. 

 

a)                                                                                b) 

Figure 6.19: a) Exemplary plot of the determined surface deviation from one evaluation 
in the MCS using the polynomial freeform 1. b) Plot of the standard deviation determined 
for each sample point over all iterations of the MCS using the polynomial freeform 1. 

The RMS of the deviations 𝑑𝑖 shown in Figure 6.19 a) is 94.5 nm. Regarding Figure 6.19 b), 

one can recognize that the standard deviation per sample point correlates with the absolute 

value of the surface slope shown in Figure 4.8 d). This is also in accordance with the expected 

ray direction uncertainty dependent on the surface angle shown in Figure 6.15. The low 

number of 500 iterations performed in the MCS has been chosen due to long calculation times 

needed in the evaluation. However, regarding the RMS surface deviation values determined 

for each iteration in Figure 6.20 a) and the evolution of the mean value of the RMS value shown 

in Figure 6.20 b), one can see that the mean value approaches a constant value. 

The mean value of all RMS surface deviations shown in Figure 6.20 a) is 215.0 nm with a 

standard deviation of 97.6 nm. 

These values shown in Figure 6.19 and Figure 6.20 indicate a very high single point and overall 

RMS surface deviation uncertainty. However, it has to be considered that for multiple 

uncertainties, worst-case scenarios have been deployed. For example the values for 

straightness, flatness, pitch and yaw of the 𝑤-stage have been deployed over a distance of 

10 mm, although the given values for these errors have been determined over the full travel 

length of 100 mm. The same applies for the yaw of the 𝑥̃𝑦̃-stages. The values for these errors 

have been determined over the full travel length of 100 mm, but have been deployed in the 

simulations on a distance of 22 mm. Thus, it can be expected that the standard deviation and 

the mean value of the RMS surface deviation is smaller than determined in this MCS. 
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a)                                                                                b) 

Figure 6.20: Plots evaluating the RMS surface deviation values determined in the MCS 
using the polynomial freeform 1. a) shows the RMS surface deviation for each iteration. 
b) shows the evolution of the difference of the mean RMS value with increasing number 
of iterations to the mean RMS value of 215.0 nm considering all iterations. 

MCS using cylinder surface 

To perform the MCS using the cylinder surface, the same SUT and parameters have been 

used as described for the simulation of the cylinder surface in Chapter 4.1.3. The evaluation 

is performed considering the surface to be known. Regarding the drift considered for this 

measurement, a measurement time of 𝑡𝑚 = 2: 25 min is considered. According to Equation 

(6.18) and (6.19), an uncertainty induced by the centroid drift of 𝜎̂𝑢,𝑑 = 2.7 nm  and 

𝜎̂𝑣,𝑑 = 3.2 nm is taken into account. With Equation (6.20) and (6.21), a standard deviation for 

the centroid of 𝜎̂𝑢 = 219 nm and 𝜎̂𝑣 = 196 is considered. These values are almost similar to 

the centroid uncertainties determined experimentally. This shows that the centroid drift has 

almost no influence on the cross section measurement due to the short measurement time. 

Since the evaluation of the cross-section simulation is very fast in comparison to the evaluation 

of the full areal simulation, the number of iterations performed is increased to 10 000. For each 

iteration, a BFS has been fitted to the reconstructed surface. Figure 6.21 a) shows the 

determined deviations to the BFS, while Figure 6.21 b) shows the standard deviation of the 

deviation for each sample point. 

The determined radii of the BFS are shown in Figure 6.22 a). The mean radius of all determine 

BFSs is 206.692 mm. The standard deviation of these radii is 186 µm with a PV of 740 µm. The 

evolution of the mean radius as deviation to 206.692 mm is presented in Figure 6.22 b). One 

can clearly recognize the approximation of the evaluation towards a constant value. 

Regarding the RMS surface deviation determined for each iteration as the RMS of the 

deviations between the reconstructed surface and the BFS, one can determine values mostly 

in the range of single-digit nanometer. The RMS surface deviation for each iteration is 

presented in Figure 6.23 a). The mean RMS value, including all iterations, is 5.2 nm, the 

according standard deviation is 1.6 nm. The evolution of the mean RMS value with increasing 

number of iterations in deviation to the mean RMS value including all iterations is shown in 

Figure 6.23 b). An approach towards a constant mean value can be recognized. 
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a)                                                                                b) 

Figure 6.21: Results from the MCS using the cylinder surface. a) shows the determined 
deviation to the BFS for each iteration. b) shows the standard deviation of the deviation 
to the BFS for each sample point over all iterations of the MCS. 

 

a)                                                                                b) 

Figure 6.22: a) shows the deviation of each BFS radius for the different iterations of the 
MCS using the cylinder surface in comparison to the mean BFS radius. b) shows the 
deviation of the mean BFS radius with in creasing number of iterations to the mean BFS 
radius considering all iterations. 

To investigate the influence of different error sources on the presented results from the MCS, 

histograms of the determined results from the multiple iterations are determined. Figure 6.24 

a) shows a histogram of the determined BFS radius deviations to the mean BFS radius 

presented in Figure 6.22 a). In Figure 6.24 b), the histogram of the determined RMS surface 

deviations presented in Figure 6.23 a) is shown. 

Regarding the histogram presented in Figure 6.24 a), one can recognize an uniform pattern of 

the distribution of the BFS radii values. As the only error sources considered uniform distributed 

are the errors in the parameters from the calibration, it can be considered that these errors 

manly influence the radius of the BFS. Regarding the histogram presented in Figure 6.24 b), 

one can recognize a gamma distribution. This may be due to a constant RMS deviation 
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introduced by systematic errors, while the stochastic errors add up to the constant RMS 

deviation to create the determined gamma distribution. 

 

a)                                                                                b) 

Figure 6.23: a) shows the RMS surface deviation to the BFS for each iteration of the 
MCS using the cylinder surface. b) shows the deviation of the mean RMS surface 
deviation with in creasing number of iterations to the mean RMS surface deviation 
considering all iterations. 

 

a)                                                                                b) 

Figure 6.24: a) shows the histogram of the determined deviation of the BFS radii from 
the mean BFS radius as presented in Figure 6.22 a). b) shows the histogram of the 
determined RMS surface deviation to the BFS for each iteration as presented in Figure 
6.23 a). 

6.6 Experimental repeatability determination 
To evaluate the determined conclusions from the MCS, the measurement of the cylinder 

surface presented in Chapter 5.3.2 has been repeated 200 times. The determined deviations 

from these measurements as well as the standard deviation for each sample point are shown 

in Figure 6.25. 
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a)                                                                                b) 

Figure 6.25: Results from repeatability measurement using the cylinder surface. a) 
shows the determined deviation to the BFS for each iteration. b) shows the standard 
deviation of the deviation to the BFS for each sample point over all iterations. 

Regarding Figure 6.25 a), one can see that a certain M-shaped structure dominates the 

deviations of the reconstructed surfaces from the fitted BFSs. This deviation is expected to be 

the actual surface deviation from the model, as the structure is in good accordance with the 

comparison measurement as presented in Chapter 5.4.2. Regarding Figure 6.25 b), a certain 

systematic structure can here be recognized, too. This structure can also be determined in the 

MCS as presented in Figure 6.21 b). Therewith, it can be assumed that the model used for the 

MCS is in accordance with the error sources in the experimental measurements. Regarding 

the magnitudes of the standard deviations from the MCS and the repeatability measurements, 

one can recognize slightly higher values determined with the repeatability measurements. On 

the one hand, it has to be considered that due to the lower number of iterations in the 

repeatability measurements the determined values are less reliable. On the other hand, since 

there are still error sources that have not been investigated in the MCS, these error sources 

can also explain the slightly higher values in the repeatability measurements. 

In Figure 6.26 a), the determined BFS radii are presented. The mean radius from all iterations 

is 206.421 mm. In Figure 6.26 b), the deviation of the mean radius with increasing number of 

considered iterations from the mean radius considering all iterations is presented. 

Regarding Figure 6.26 b), one can see that the mean value is not approaching a constant 

value. Thus, the determined mean value cannot be considered reliable. However, it has to be 

mentioned that the scale of the change of the mean value is only in the range of single digit 

µm. The PV of all BFS radii presented in Figure 6.26 a) is less than 70 µm, which is only 

0.034 % of the determined mean radius. Comparing this to the PV of the radii determined with 

the MCS, one can see that the PV determined from the repeatability measurement is smaller 

by a factor of 10 . This underlines the assumption that the high deviations in the radii 

determined from the MCS is introduced by the uncertainties of the calibration. In the 

repeatability measurement, the calibration parameter are not varied, but kept constant over all 

iterations. 

Regarding the determine RMS surface deviation values of all iterations of the repeatability 

measurement, presented in Figure 6.27 a), one can clearly determine the offset of approx. 

112 nm applied to all RMS values. This offset is due to the actual deviation of the reconstructed 
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surfaces from the BFSs as shown in Figure 6.25 a). The determined mean RMS surface 

deviation over all iterations is 112.0 nm. 

 

a)                                                                                b) 

Figure 6.26: a) shows the deviation of each BFS radius for the different measurements 
in the repeatability measurement with the cylinder surface in comparison to the mean 
BFS radius. b) shows the deviation of the mean BFS radius with in creasing number of 
measurements to the mean BFS radius considering all measurements. 

 

a)                                                                                b) 

Figure 6.27: a) shows the RMS surface deviation to the BFS for each iteration of the 
repeatability measurement using the cylinder surface. b) shows the deviation of the 
mean RMS surface deviation with in creasing number of iterations to the mean RMS 
surface deviation considering all iterations. 

Figure 6.27 b) shows the evolution of the difference of the mean RMS surface deviation with 

increasing number of considered iterations from the mean RMS surface deviation considering 

all iterations. Regarding this, one can recognize an approach towards a constant value, 

although the number of iterations is not very high. The standard deviation of the RMS surface 

deviations shown in Figure 6.27 a) is 3.1 nm. This value is higher than the determined standard 

deviation from the MCS, which is in accordance to the standard deviation for each sample 

point presented before. 
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7. Discussion 

The theoretical considerations presented in Chapter 2 and 3, have been confirmed by the 

simulations presented in Chapter 4. The deviations determined in these simulations are 

negligible in relation to the expected uncertainties in the experimental setup. 

In the experimental measurements, four different samples have been investigated. For three 

of these samples a comparison measurement exists, while each of these comparison 

measurements have been performed with a different type of measurement technique. The 

cross section measurement of a cylinder surface shows a very good agreement with the 

comparison in the surface deviation as well as in the determined surface radius. 

Comparing the deviations of the polynomial freeform 1 sample from the expected surface 

model determined with the proposed measurement technique with the deviations from the 

comparison measurement, similar structures can be observed. However, there are also 

significant structures determined with the proposed method that cannot be seen in the 

comparison measurement. Since no further comparison measurement of this sample exists, it 

cannot be said, if these structures exist on the sample or if they are artefacts introduced by the 

proposed measurement technique. For better orientation of the results, this sample has been 

provided with three fiducials. These fiducials were determined by both, the proposed and the 

comparison measurement, with the same magnitude. 

The deviation of the reconstructed surface from the expected surface model of the polynomial 

freeform 2 do not show the artifacts determined in the measurement of the polynomial freeform 

1. The surface deviations determined for the polynomial freeform 2 show a slight global shape 

and many smaller local structures. These local structures are in good agreement with the 

comparison measurement. Especially regarding the high-frequency deviations determined 

from the proposed measurement technique and the comparison measurement, many 

similarities can be observed. The difference of these high-frequency deviations shows a RMS 

of only 10.0 nm. 

For all three comparison measurements, it has to be said that the measurement results 

determined with the proposed measurement technique are comparable with the results from 

the comparison measurements. The deviations to the comparison measurements are in the 

sub-µm range, but still larger than the determined deviations from a round-robin measurement 

of freeform samples [17]. However, different samples and different measurement machines 

have been used in the round-robin measurement than have been used to provide the 

comparison measurements in this work. 

In the error analysis, multiple error sources have been investigated. Some error sources were 

not taken into account, as their magnitude is not known. From the error analysis, one can 

recognize that the uncertainty of a sample point’s height information determined from the 

surface reconstruction is dependent on the surface’s slope at this position. This is due to the 

integration and the measurement setup with the incident beam not perpendicular to the plane 

defined by the movement of the 𝑥̃𝑦̃ -stages. Considering the uncertainties related to the 
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determination of the reflected beams direction, a standard deviation of 𝜎Δ𝑧̆ = ±2.1 nm for a 

surface angle of 0°  and a sample distance of 0.1 mm is determined. Since the proposed 

measurement technique is a gradient-based measurement technique, an absolute 

measurement accuracy cannot be defined for the surface sag. Having the standard deviation 

𝜎Δ𝑧̆, one can expect this to be the standard deviation of the determined surface sag between 

two neighboring points with the same ground truth. In relation to this, the LuphosScan 260 HD, 

which has been used to perform the comparison measurement for the polynomial freeform 2, 

is defined with an accuracy of less than ±50 nm (3𝜎) [29]. Therewith, two neighbored points 

with the same ground truth can deviate with a standard deviation of approximately ±16 nm. 

However, it has to be mentioned that this standard deviation is not only valid for two neighbored 

points, but for the overall measurement and for the full surface angle range. 

From the MCS simulating an areal measurement using the polynomial freeform 1, a large 

standard deviation per sample point of up to 1 µm had been determined. This high standard 

deviation occurred in areas of high local slope of the SUT. Additionally, uncertainties in the 

calibration had been included in the MCS. Therewith, a conclusion about the repeatability from 

this MCS is not reliable. For the second MCS, using the cylinder surface, a comparison to a 

repeatability measurement from the experimental setup is available. Although the repeatability 

measurement has only been performed over 200 iterations, conclusions about the 

performance of the experimental setup can be drawn. The pattern of the standard deviation 

for each sample predicted by the MCS was confirmed by the repeatability measurement. 

Therewith, a basic accordance of the simulation model with the experimental setup can be 

confirmed. However, the standard deviation for each sample point as well as for the RMS 

surface deviation from the BFS show slightly higher values in the experimental repeatability 

measurement than in the MCS. This may be due to not considered error sources in the MCS. 

However, since the calibration data is varied in the experimental repeatability measurement, 

but in the MCS, a much smaller distribution of the determined BFS radii has been determined 

in the experimental repeatability measurement. The MCS predict an almost uniform uncertainty 

of up to ±300 µm  for the BFS radius, the determined mean radius of the experimental 

repeatability measurement deviates from the radius determined by the comparison 

measurement by only ±38 µm. 

The MCS model considered multiple error sources in their maximum expected magnitude, 

although this magnitude might not occur in the experimental setup. For more exact conclusions 

from the MCS, further investigation on the error sources and their magnitude has to be done. 

Additionally, a more expressive investigation on the influence of measurement errors on the 

calibration procedure has to be performed. However, the error analysis provides a good model 

of the experimental setup to investigate the error sources. 
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8. Conclusion and outlook 

In this work, a novel measurement technique for the characterization of specular freeform 

surfaces has been proposed. It provides the measurement of freeform specular surfaces 

deviation from a flat while utilizing the advantages of gradient-based measurement, which is 

not available in this combination yet. The measurement technique is a variation of laser 

deflectometry and combines a reflective laser scanning approach with the beam direction 

determination from a technique called Experimental Ray Tracing. A narrow beam is targeted 

onto the surface under test with a non-perpendicular angle. The reflected beam follows a 

direction, dependent on the incident beam and the surface angle. Having the incident beam 

direction and the reflected beam direction, conclusions about the surface angle can be drawn. 

With this, the measurement technique determines the gradient field of a surface under test. To 

reconstruct the surface from the gradient-field an integration method based on radial bases 

functions is applied, since this integration method is capable of handling non-even sample 

grids. The evaluation of the determined data is implemented using homogeneous coordinates. 

With geometrical optics used as optical model, advantages of the homogeneous coordinate 

representation of points and directions can be applied. 

To confirm the essential functionality of the measurement principle, a simulation model has 

been implemented in Zemax OpticStudio. Using this simulation model, multiple different 

surface types have been investigated to proof the ability of this measurement technique to 

handle these surface types. Additionally, the proposed methods for the calibration have been 

confirmed using simulations. 

An experimental measurement setup has been built up according to the proposed 

measurement principle and in correspondence with the simulation model. With the 

experimental setup, four different surfaces have been measured and evaluated. The 

determined results from the surface’s reconstruction were compared to the expected surface 

model. For three of the samples, comparison measurements are available. Comparing the 

deviations from the model determined with the proposed method with the deviations 

determined from the comparison measurements show good agreements, but also deviations. 

However, the determined deviations are in the sub-µm range. Therewith the practical abilities 

of the measurement technique are proven. 

In the error analysis multiple error sources are investigated. The results from the error analysis 

show relatively high deviations, which are higher than expected from the comparison of the 

results from the experimental measurements with the comparison measurements. However, it 

has to be taken into account that the error analysis handled multiple error sources as a worst-

case scenario, even if it may be expected that they have minor magnitudes. A repeatability 

measurement of a cylinder lens has been performed, which can directly be compared to a 

Monte-Carlo-Simulation using the model function of the cylinder lens. The comparison 

revealed slightly higher uncertainties in the experimental repeatability measurement than 

predicted from the Monte-Carlo-Simulation, but also proved a good repeatability of the 

measurement technique for the performed cross-section measurement. 
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Comparing the results from the proposed measurement technique with the results from the 

comparison measurements and considering the experimental error analysis, it can be said that 

the proposed measurement technique is comparable with other available measurement 

techniques. Therewith, it offers a measurement technique to manufacturers, which is gradient-

based and able to measure freeform surfaces. Especially in the field of freeform surface 

deviating from a flat basic shape, the available measurement techniques are exceeding their 

limits fast. This is overcome with the proposed measurement technique. 

As all scanning measurement techniques, the proposed measurement technique also needs 

to scan with a high speed to be comparable with non-scanning measurement techniques. 

Thus, a fast beam position detector is needed. In the experimental setup proposed in this work, 

a CCD camera chip with a high resolution is used that only provides 7.6 fps defining the sample 

frequency. Using a position sensitive detector instead of a camera chip can improve the sample 

frequency drastically. However, these detectors have a higher centroid uncertainty and are 

more prone to environmental influences. 

Another possibility to improve the measurement speed is to overcome the scanning of the two 

parallel detector planes serially. Using two cameras and a beamsplitter, the two camera 

positions can be realized in parallel. Using an integrated beam direction detector in one camera 

may also implement this improvement. 
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A. First and second order derivatives of the Wendland’s function 

∂𝜓

𝜕𝑥
=
2𝑥(𝜌 − √𝑥2 + 𝑦2)

5

3𝜌8√𝑥2 + 𝑦2
(−9𝜌2 − 54𝜌√𝑥2 + 𝑦2 − 105𝑥2 − 105𝑦2

+ (𝜌 − √𝑥2 + 𝑦2) (9𝜌 + 35√𝑥2 + 𝑦2)) 

∂𝜓

𝜕𝑦
=
2𝑦(𝜌 − √𝑥2 + 𝑦2)

5

3𝜌8√𝑥2 + 𝑦2
(−9𝜌2 − 54𝜌√𝑥2 + 𝑦2 − 105𝑥2 − 105𝑦2

+ (𝜌 − √𝑥2 + 𝑦2) (9𝜌 + 35√𝑥2 + 𝑦2)) 

𝜕2𝜓

𝜕𝑥2
=

1

3𝜌8
(−56𝜌6 + 2520𝜌4𝑥2 + 840𝜌4𝑦2 − 8960𝜌3𝑥2√𝑥2 + 𝑦2 − 2240𝜌3𝑦2√𝑥2 + 𝑦2

+ 12600𝜌2𝑥4 + 15120𝜌2𝑥2𝑦2 + 250𝜌2𝑦4 − 8064𝜌𝑥4√𝑥2 + 𝑦2

− 9408𝜌𝑥2𝑦2√𝑥2 + 𝑦2 − 1344𝜌𝑦4√𝑥2 + 𝑦2 + 1960𝑥6 + 4200𝑥4𝑦2 + 2520𝑥2𝑦4

+ 280𝑦6) 

𝜕2𝜓

𝜕𝑥𝜕𝑦
=
𝜕2𝜓

𝜕𝑦𝜕𝑥
=
560𝑥𝑦

𝜌8
(𝜌4 − 4𝜌3√𝑥2 + 𝑦2 + 6𝜌2𝑥2 + 6𝜌2𝑦2 − 4𝜌𝑥2√𝑥2 + 𝑦2 − 4𝜌𝑦2√𝑥2 + 𝑦2

+ 𝑥4 + 2𝑥2𝑦2 + 𝑦4) 

𝜕2𝜓

𝜕𝑦2
=

1

3𝜌8
(−56𝜌6 + 840𝜌4𝑥2 + 2520𝜌4𝑦2 − 2240𝜌3𝑥2√𝑥2 + 𝑦2 − 8960𝜌3𝑦2√𝑥2 + 𝑦2

+ 2520𝜌2𝑥4 + 15120𝜌2𝑥2𝑦2 + 12600𝜌2𝑦4 − 1344𝜌𝑥4√𝑥2 + 𝑦2

− 9408𝜌𝑥2𝑦2√𝑥2 + 𝑦2 − 8064𝜌𝑦4√𝑥2 + 𝑦2 + 280𝑥6 + 2520𝑥4𝑦2 + 4200𝑥2𝑦4

+ 1960𝑦6) 

B. First order derivatives of the surface model functions 

Franke surface 

May 𝑠(𝒙) be the Franke surface as defined in Equation (4.2), its first order derivatives are 

∂s(𝒙)

𝜕𝑥
= −0.3375(−2 + 0.9𝑥)𝑒−0.25(−2+0.9𝑥)

2−0.25(−2+0.9𝑦)2 −
13.5

490
(1 + 0.9𝑥)𝑒−

(1+0.9𝑦)2

49
−
(1+0.9𝑦)2

10

− 0.225(−7 + 0.9𝑥)𝑒−0.25(−7+0.9𝑥)
2−0.25⋅(−3+0.9𝑦)2

+ 0.36(−4 + 0.9𝑥)𝑒−(−7+0.9𝑦)
2−(−4+0.9𝑥)2 

and 

∂s(𝒙)

𝜕𝑦
= −0.3375(−2 + 0.9𝑦)𝑒−0.25(−2+0.9𝑥)

2−0.25(−2+0.9𝑦)2 −
6.75

50
(1 + 0.9𝑦)𝑒−

(1+0.9𝑦)2

49
−
(1+0.9𝑦)2

10

− 0.225(−3 + 0.9𝑦)𝑒−0.25(−7+0.9𝑥)
2−0.25(−3+0.9𝑦)2

+ 0.36(−4 + 0.9𝑦)𝑒−(−7+0.9𝑦)
2−(−4+0.9𝑥)2 . 

Cylinder surface 

May 𝑠(𝒙) be the cylinder surface as defined in Equation (4.3), its first order derivatives in 𝑦-

direciton is 
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∂s(𝒙)

𝜕𝑦
=

{
 
 

 
 −

𝑦

√𝑅̂2 − 𝑦2
          for 𝑅̂ > 0

𝑦

√𝑅̂2 − 𝑦2
              for 𝑅̂ < 0

      

for 𝑅̂ ≠ 0. 

Polynomial freeform 1 

May 𝑠(𝒙) be the polynomial freeform 1 as defined in Equation (4.4), its first order derivatives 

are 

∂s(𝒙)

𝜕𝑥
= 7.0 ⋅ 10−3𝑥 − 10−4𝑥3 

and 

∂s(𝒙)

𝜕𝑦
= −5.0 ⋅ 10−3𝑦 + 1.4 ⋅ 10−4𝑦3. 

Polynomial freeform 2 

May 𝑠(𝒙) be the polynomial freeform 2 as defined in Equation (5.8), its first order derivatives 

are 

∂s(𝒙)

𝜕𝑥
= 0.005𝑥 − 6 ⋅ 10−5𝑥3 

and 

∂s(𝒙)

𝜕𝑦
= 0.005𝑦 − 6 ⋅ 10−5𝑦3. 
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C. Datasheet of the laser diode 
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D. Technical drawing of the adjustable aspheric collimator CFC2-A 
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E. Datasheet and test protocol of the 𝒙̃𝒚̃-stages 
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F. Datasheet of the camera 

 



   Appendix 
 

  XI 
 

 



Appendix   
 

XII   
 

 



   Appendix 
 

  XIII 
 

 



Appendix   
 

XIV   
 

 



   Appendix 
 

  XV 
 

G. Datasheet and test protocol of the 𝒘-stage 
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H. Technical drawing of the Sample 2 “cylinder surface” 
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I. Documentation of the comparison measurement of the Sample 2 

“cylinder surface” for the experiments 
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J. Documentation given by the manufacturer of the Sample 3 for the 

experiments “polynomial freeform 1” 
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K. Documentation given by the manufacturer of the Sample 4 for the 

experiments “polynomial freeform 2” 

 



Appendix   
 

XXVI   
 

 



   Appendix 
 

  XXVII 
 

 



Appendix   
 

XXVIII   
 

 



   Appendix 
 

  XXIX 
 

 


